
A Survey of Attacks on
Multivariate Cryptosystems

by

Adam Thomas Feldmann

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2005

c©Adam Thomas Feldmann 2005

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of
the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the
public.

iii

Abstract

This thesis provides a survey of the attacks on multivariate cryptosystems. We
begin by providing an outline of the general multivariate cryptosystem. Pro-
ceeding from there, we show that even with this level of detail, there are sev-
eral attacks that are possible, including the method of Gröbner bases, the XL
method, and the recently announced method of Dixon resultants. Less general
attack techniques also exist, such as MinRank attacks and differential analy-
sis. These attacks lack the universality of the first three mentioned. In order
to explore these less general attacks further, more details are required, so we
present four different multivariate cryptosystems. Then, we attack them, using
the less general attacks of MinRank, differential analysis and even an attack
specific to one system. This concludes our study of the attacks themselves, and
we move on to note that not all routes of attack are promising. Specifically,
quantum computing does not seem to be helpful beyond the quadratic speed-up
of Grover’s algorithm. We also note that not all multivariate cryptosystems
have been successfully attacked as of the writing of this thesis. We conclude
with the fact that multivariate cryptography is gaining more and more active
study.

v

Acknowledgments

I would like to thank the following people for their help and insights. Thanks to
Christopher Wolf and Xijin Tang, for their insights in personal correspondence.
Scott Aaronson gave me a concise overview of quantum computing, for which I
am grateful. Thanks to Jacques Patarin, for sending a modern version of one of
his papers my way. Also, I would like to thank Arthur D. Chtcherba, for telling
me what RSC stands for, and Nicolas T. Courtois, for answering a question
about HFE security. I would like to thank my readers, Alfred Menezes and
Douglas Stinson, for their comments. Last, but certainly not least, I would like
to thank my advisor Edlyn Teske, whose support and advice made this thesis
far better than I could have done alone.

vii

Contents

1 Introduction 1

2 Multivariate Cryptography in Brief 5
2.1 The MQ Problem . 5
2.2 The Isomorphism of Polynomials problem 6
2.3 A Generic MQ-based encryption scheme 7

2.3.1 Key generation . 7
2.3.2 Encryption and decryption 8
2.3.3 Security . 8
2.3.4 Efficiency . 8
2.3.5 MQ-Based signature schemes 10

3 Attacking Multivariate Cryptosystems 13
3.1 Gröbner bases . 13

3.1.1 Defining a Gröbner basis 14
3.1.2 Computing Gröbner bases 16
3.1.3 The elimination theorem and Gröbner basis conversion . . 21
3.1.4 Attacks using Gröbner bases 22

3.2 The XL method . 24
3.2.1 Defining the XL algorithm 24
3.2.2 Attack methods using the XL algorithm 26

3.3 Dixon resultants . 27
3.3.1 The Dixon polynomial, Dixon matrix and Dixon resultant 27
3.3.2 The KSY Dixon matrix and the extended Dixon resultant 29
3.3.3 The DR algorithm . 32
3.3.4 Runtime of the DR algorithm 34

3.4 MinRank-based attacks . 35
3.4.1 Goals of MinRank attacks 35
3.4.2 Solving MinRank(r) . 36

3.5 Differential cryptanalysis . 36
3.5.1 Differentials and bilinear functions 36
3.5.2 Attack methods using differential cryptanalysis 37

3.6 Specific attacks . 37

ix

4 Selected MQ-Cryptosystems 39
4.1 Preliminaries . 39
4.2 The STS family . 39

4.2.1 Key generation . 40
4.2.2 Encryption . 41
4.2.3 Decryption . 41
4.2.4 Suggested Parameters . 41

4.3 Basic HFE . 42
4.3.1 Key generation . 42
4.3.2 Encryption . 44
4.3.3 Decryption . 44
4.3.4 Suggested parameters . 45
4.3.5 Toy example . 45

4.4 MIC∗ . 46
4.4.1 Key generation . 47
4.4.2 Encryption . 47
4.4.3 Decryption . 47
4.4.4 Suggested parameters . 48

4.5 Perturbed MIC∗ . 48
4.5.1 Key generation . 48
4.5.2 Encryption . 48
4.5.3 Decryption . 48
4.5.4 Suggested parameters . 49

5 Attacking TPM, HFE, MIC∗ and PMI 51
5.1 Preliminaries . 51
5.2 Attacking STS . 52

5.2.1 Matrices and MinRank . 52
5.2.2 Chain of kernels . 53
5.2.3 Finding T̃ . 54
5.2.4 Computing P̃ ′ and S̃ . 55
5.2.5 Using (T̃ , P̃ ′, S̃) . 56
5.2.6 Efficacy . 56

5.3 Attacking HFE . 57
5.3.1 Setup . 58
5.3.2 Calculating T . 62
5.3.3 Calculating S . 63
5.3.4 Last steps and conclusions 64

5.4 Attacking MIC∗ . 64
5.4.1 Equation generating . 65
5.4.2 Efficiency . 66

5.5 Attacking PMI . 68
5.5.1 Membership in K . 69
5.5.2 Determining K . 71
5.5.3 Attacking the MIC∗ portion 73

x

6 Special Topics 75
6.1 Quantum computing is not a panacea 75
6.2 Patching systems . 76

6.2.1 Basic HFE pros and cons 76
6.2.2 HFE- . 77
6.2.3 PMI+ . 78

6.3 Multivariate schemes not appearing in this thesis 79

7 Future work and conclusions 81
7.1 Future work . 81

7.1.1 Future work in attacking MQ-based schemes 81
7.1.2 Future work in creating MQ-based schemes 83

7.2 Conclusions . 83

xi

List of Tables

3.1 Gr obner basis algorithms . 24

xiii

Chapter 1

Introduction

Multivariate public key cryptosystems are generally traced back to Matsumoto
and Imai’s 1988 paper [MI88], which seems to be the one which popularized the
idea. In it, Matsumoto and Imai introduced a public key encryption scheme
called MIC∗, which utilized an instance of what is known as the MQ problem
for its security. The MIC∗ scheme was successfully broken by Patarin in a 1995
paper [Pat95, Pat05], who went on to produce his own MQ-based public key
encryption scheme, HFE, in a 1996 paper [Pat96b]. From there, research has
continued, and quite a few schemes and attacks on them have been created
[Din04, WP04, DG05, KS99, CKPS00, BWP04, FGS05, DGS+05].

This thesis presents a survey of attacks on multivariate public key cryptosys-
tems. For brevity, we will drop the “public key” portion of that term. It details
attacks against the earliest multivariate cryptosystems [Pat95, Pat05, KS99],
while also including the latest developments in multivariate cryptography, both
in cryptosystems and attacks [TF05, FGS05, DG05, DGS+05].

In order to do this survey of attacks efficiently, Chapter 2 provides the re-
quired level of setup to understand the remainder of the text. First, it introduces
the problems upon which the security of multivariate public key cryptosystems
relies. Then, it sets up a generic multivariate public key cryptosystem. The
terminology and conventions of Chapter 2 will continue throughout the text, so
even those already familiar with multivariate cryptosystems will want to peruse
it. A reader who desires a more thorough grounding in multivariate cryptosys-
tems before dealing with attacks may wish to skip ahead to Chapter 4, where
four such systems are described in detail. For those people, it should be noted
that Chapters 3 and 4 are independent of each other, and either may be read
first without loss of understanding.

Once these preliminaries are taken care of, we move on to actual attacks.
Chapter 3 is devoted to surveying the various techniques used to attack mul-
tivariate cryptosystems. We explain five different techniques used to attack
multivariate cryptosystems. Each attack is presented so as to give the reader
an understanding of how and why the attack works in addition to noting that
it does work (although perhaps not so well as one might hope).

1

1. INTRODUCTION

The first such attack technique is the method of Gröbner bases (see Sec-
tion 3.1). In order to properly present this method, first the Gröbner basis is
defined, which requires a bit of work. Next we show that a Gröbner basis can
be calculated by showing that Buchberger’s algorithm to compute a Gröbner
basis successfully completes. Finally, we explain the value of a Gröbner basis
in attacking multivariate cryptosystem. Thus, the reader need not peruse such
tomes as [CLO92, CLO98] in order to understand the benefits and value of a
Gröbner basis—the details important to a cryptanalyst attacking multivariate
cryptosystems are contained in Section 3.1.

The second such attack technique is the XL method (see Section 3.2). Intro-
duced by Courtois et al. [CKPS00], the XL method is presented in this thesis
primarily for completeness. It is an attack technique that can be shown to be
a kind of Gröbner basis attack. However, this was shown only very recently, by
Ars et al. [AFI+04]. So that the interested reader can more easily understand
papers written prior to [AFI+04], it makes sense to include the XL method.

Moving past the Gröbner basis we proceed to the method of Dixon resul-
tants (see Section 3.3). The method of Dixon resultants was first applied to
attacks on the AES cryptosystem by Tang and Feng [TF05]. Their AES attack
works by representing the AES cryptosystem as a large system of multivariate
polynomials, and attempting to find the common zeroes of this system. It has
been adapted in this thesis in order to function directly as an attack on mul-
tivariate cryptosystems. In order to properly explain the attack, the concept
of the Dixon resultant is introduced, and then the steps required to extend the
Dixon resultant to be useful in a Dixon resultant-based attack on a multivariate
cryptosystem. Finally, the DR algorithm of Tang and Feng [TF05] is presented,
which uses the calculation of an extended Dixon resultant in order to attack a
multivariate quadratic cryptosystem.

The last two attacks presented in Chapter 3 are somewhat different from the
first three attacks. These last two attacks are the MinRank attack and the tech-
nique of differential analysis (see Sections 3.4 and 3.5, respectively). The Min-
Rank attack technique is harder to quantify than an attack based on calculating
a Gröbner basis or an extended Dixon resultant, because no MinRank-based at-
tack exists that will work for any multivariate quadratic cryptosystem. What
Section 3.4 does explain, however, is the idea behind such an attack. In Chap-
ter 5, there are two different MinRank attacks presented, showing how even
in different multivariate cryptosystems, a MinRank attack is possible. How-
ever, unlike the previous attacks, there is no simple algorithmic way to apply a
MinRank-based attack to a given multivariate cryptosystem.

The last attack presented is the technique of differential analysis (see Sec-
tion 3.5). This technique is also quite new, introduced by Fouque, Granboulan
and Stern [FGS05] in a 2005 paper. They successfully applied it to several sys-
tems in that paper. It is presented in Chapter 3 as a technique that may work
in many situations, but similar to the MinRank attack there is no known way to
universally state what one must do to attack a multivariate cryptosystem with a
differential analysis attack usefully. Later, the technique of differential analysis
is applied to the multivariate cryptosystem PMI in Section 5.5 with efficacious

2

results.
Chapter 3 concludes with a note that not all attacks fall into one of the

attack techniques listed in that chapter. Techniques exist which do not cleanly
generalize to other systems and are therefore specific. One such attack is the
attack of Patarin [Pat95, Pat05] on the MIC∗ multivariate cryptosystem, which
is presented in Section 5.4.

This leads naturally to the question of what a multivariate cryptosystem
actually looks like, so that a more specific attack may be attempted. Chap-
ter 4 elucidates the general multivariate cryptosystem by providing four differ-
ent examples of it—the STS family, basic HFE, MIC∗, and Perturbed MIC∗ (or
PMI). These example systems are presented in order to clarify several impor-
tant points to the reader. First, no thesis involving multivariate cryptosystems
would be complete without providing the reader with at least one functional
multivariate cryptosystem as an example. Second, showing four cryptosystems
helps the reader see that all multivariate cryptosystems have an essential same-
ness to them, as noted in Chapter 2—encryption is nearly identical between
the systems, and decryption differs between the systems only in one place (see
Section 2.3.2 for details). Third, each cryptosystem introduced is then used in
Chapter 5 in order to explain an attack against that system.

The cryptosystems introduced in Chapter 4 run the gambit from old to new.
The MIC∗ cryptosystem, due to Matsumoto and Imai [MI88], is one of the old-
est proposed multivariate cryptosystems. Basic HFE was introduced by Patarin
[Pat96b] as a way to fix the MIC∗ cryptosystem. The STS family is a gener-
alization of cryptosystems proposed by Kasahara and Sakai [KS04b, KS04a].
Wolf, Braeken and Preneel [WBP04] introduced the STS family themselves in
the very paper that attacked that family (and therefore also the schemes of
Kasahara and Sakai). Finally, in 2004, the PMI cryptosystem was introduced
by Ding [Din04].

Chapter 5 provides the answer to another question naturally arising from the
end of Chapter 3—namely, “What does a specific attack against a multivariate
cryptosystem look like?” One such attack is explained in detail in Section 5.4,
as promised in the last section of Chapter 3. Chapter 5 has a larger purpose
than explaining single specific attacks, however. Its goal is to provide concrete
examples of attacks that could not have occured in Chapter 3 without obscuring
the main point of the attack technique with a specific cryptosystem’s details.
Additionally, the attacks of Chapter 5 serve the purpose of further detailing the
mechanics of the MinRank and differential analysis techniques of Chapter 3.

The first two attacks of Chapter 5 are attacks on the STS family and the
Basic HFE system, as described in Chapter 4. The attack on STS, due to
Wolf, Braeken and Preneel [WBP04] makes use of a MinRank attack. The
Basic HFE attack, due to Kipnis and Shamir [KS99], and cleaned up slightly
by Courtois [Cou01], also uses a MinRank attack. By viewing both attacks, it
can easily be seen that a MinRank attack may take a very different form from
one cryptosystem to the next.

The remaining two attacks are even more directly connected. The specific
attack of Patarin [Pat95, Pat05] against the MIC∗ cryptosystem is presented

3

1. INTRODUCTION

next. After this, a differential analysis attack against the PMI cryptosystem is
presented. The PMI cryptosystem is related to the MIC∗ cryptosystem. Because
of this connection, the differential analysis attack on the PMI cryptosystem
incorporates the Patarin attack on MIC∗. Additionally, it should be noted that
the attack on PMI, due to Fouque, Granboulan and Stern [FGS05] is from a
2005 paper, and is therefore quite recent.

Chapter 6 is a step away from the main thrust of this thesis. While most
of our effort has gone towards finding and elucidating successful attacks on
multivariate cryptosystems, Chapter 6 introduces material about unsuccessful
attacks. First and foremost, there is an explanation for a remarkable fact about
multivariate cryptosystems—quantum computing does not seem to be able to
decrypt a ciphertext encoded with a multivariate scheme in polynomial time. On
the other hand, Shor’s algorithm [Sho97] makes polynomial time decryption of
RSA and elliptic curve-based cryptosystems on quantum computers a reality—
provided such machines are ever constructed. Also, some systems that resist all
known attacks are presented briefly.

Chapter 7 concludes the thesis with some suggestions for areas where further
work would be useful in order to improve existing attacks, and also in order to
create more secure multivariate cryptosystems. We note in Section 7.2 that
multivariate cryptosystems are gaining more recognition and more study now
than ever, judging by the number of recent papers versus the number of older
papers in the field, and the speed at which the latest multivariate cryptosystems
are created, attacked and patched.

4

Chapter 2

Multivariate Cryptography
in Brief

Multivariate public key cryptography uses systems of multivariate quadratic
equations as the public key and part of the private key. Thus, multivariate public
key cryptosystems are in fact multivariate quadratic public key cryptosystems.
We will usually omit the phrase “public key” for brevity. For the purposes of this
paper, it will be assumed that all such equations occur over finite fields (although
it is possible to define the problem in more generic rings). These systems are
studied because of two problems that are believed to be hard. The first is
called theMQ problem, where theMQ stands for multivariate quadratic. The
second is called the Isomorphism of Polynomials problem (IP problem). MQ-
based encryption schemes are encryption schemes that rely on the difficulty of
solving an apparently random instance of theMQ problem and the IP problem
for their security.

2.1 The MQ Problem

The MQ problem over a finite field Fq (where q is a prime power) is finding
a solution x ∈ Fnq to a given system of m quadratic polynomial equations y =
(p1, . . . , pm) over Fq in n indeterminates. That is, we wish to solve

y1 = p1(x1, . . . , xn)
y2 = p2(x1, . . . , xn)

...
ym = pm(x1, . . . , xn)

for a given y = (y1, . . . , ym) ∈ Fmq and unknown x = (x1, x2, . . . , xn) ∈ Fnq . True
to the term quadratic, in the above system of equations, the polynomials pi

5

2. MULTIVARIATE CRYPTOGRAPHY IN BRIEF

have the form

pi(x1, . . . , xn) :=
∑

1≤j≤k≤n

γi,j,kxjxk +
n∑
j=1

βi,jxj + αi

for 1 ≤ i ≤ m; 1 ≤ j ≤ k ≤ n and αi, βi,j , γi,j,k ∈ Fq (the constant, linear and
quadratic coefficients, respectively). It has been shown that over a finite field,
this problem is NP-hard [PG97].

2.2 The Isomorphism of Polynomials problem

Given a pair of (not necessarily quadratic) polynomial vectors, P and P ′, where
each vector is an m-tuple of polynomials over the same set of n indeterminates as
in the previous section, the IP problem is to find a pair of affine transformations
T and S such that

P = T ◦ P ′ ◦ S.

Thus, T ∈Aff(Fmq) and S ∈Aff(Fnq). They are therefore representable by the
pairs of terms T` and Tc, and S` and Sc, respectively, where T` and S` are
invertible m ×m (resp. n × n) matrices with elements from Fq. Similarly, Tc
and Sc are column vectors over Fq of lengths m and n respectively. Thus, S(x),
where x = (x1, x2, . . . , xn) is given by S(x) = S`x+ Sc, viewing x as a column
vector, and using standard matrix multiplication for S`x and standard matrix
addition for the summation.

The difficulty of the IP problem is equivalent to solving for the unknowns
of S and T using the entries of P and P ′ as constants. This is a problem quite
similar to the MQ problem. Now, however, the unknown values are the values
of T and S, while the values for P and P ′ are given. Solving such a problem
reduces to solving a set of equations in the values of T and S of total degree one
larger than the total degree of P ′. So, when solving problems in the situation
of MQ-based encryption schemes, the total degree of these equations is 3, in
the unknown entries of T and S, namely, the unknown entries of the matrices
T`, Tc, S`, and Sc. It can be shown that this problem is NP-hard [PGC98].

Here is a simple example of an IP problem. Let m = 1 and let n = 1. Let
q = 3, so we are working in F3. Let P ′ = x2 + x and let P = x2 + x+ 1. Then
we wish to find T and S such that

x2 + x+ 1 = (T ◦ P ′ ◦ S)(x).

Since we know that here T (x) = t1x+t2, and S(x) = s1x+s2, for indeterminates
t1, t2, s1, s2 ∈ F2, we have the following equation to solve:

x2 + x+ 1 = t1
(
(s1x+ s2)2 + s1x+ s2

)
+ t2.

The indeterminates can be determined by solving the following three equations,
determined by setting the coefficients of x2, x, 1 equal on each side of the previous

6

2.3. A GENERIC MQ-BASED ENCRYPTION SCHEME

equation:

1 = s2
1t1

1 = 2s1s2t1 + s1t1

1 = s2
2t1 + s2t1 + t2.

Note that these equations are of degree 3, one higher than the total degree of
P ′, as above. There are two solutions. The first equation gives us the fact t1 = 1
and s1 6= 0. If we choose s1 = 1, then s2 = 0 and t2 = 1. If we choose s1 = 2,
then s2 = 1 and t2 = 1.

2.3 A Generic MQ-based encryption scheme

Now that the basic problems underlying MQ-based encryption schemes have
been divulged, let us create a generic outline of how such a cryptosystem is
constructed.

2.3.1 Key generation

The private key of a genericMQ-based encryption scheme is an ordered set (T ,
P ′, S), following the same conventions as previous sections in this chapter. T
and S are determined in the same way, so only the T case will be considered in
detail. T is to be an invertible affine transformation on Fmq . Thus, by finding T`
and Tc, an invertible m×m matrix and a column vector of length m respectively,
T is totally determined. So, using a cryptographically secure pseudorandom
number generator over Fq, continue to determine random matrices in Fm×mq

until one is found with nonzero determinant. This is an expected constant-time
operation, and its output will be T`. Then choose a column vector of length
m by choosing m elements from Fq with the random number generator. This
determines Tc.

Determining P ′ is somewhat more difficult. P ′ is always a vector of quadratic
polynomials. However, every MQ-based encryption scheme embeds some sort
of trapdoor into the choice of P ′, so that for a known output y of the function P ′,
the preimage of P ′ is easily computable. It is simplest to choose an invertible
P ′. By building a small amount of redundancy into messages sent (usually
by concatenating part or all of a message’s hash to the message proper), it
is possible for non-invertible P ′ functions to be used as well. Generally, P ′ is
chosen uniformly at random from some appropriate space of quadratic functions.

The public key P is given by

P = T ◦ P ′ ◦ S

where one notes that as P ′ is quadratic and the functions T and S are affine,
the total degree of P is also 2.

7

2. MULTIVARIATE CRYPTOGRAPHY IN BRIEF

2.3.2 Encryption and decryption

Encryption is accomplished by taking a message x and embedding it into Fnq ,
possibly with the redundancy required by the choice of the key, and running
it through the public key, forming y = P(x). The decryption process varies
slightly with the particular trapdoor built into P ′, but the general procedure is
to take a given ciphertext y, and convert it to the plaintext by using the secret
key (T , P ′, S) to invert P over the message space, recalling the possibility of
message redundancy to ensure this is possible. T is known to be invertible, so
as a first step, we get

T−1(y) = (P ′ ◦ S)(x).

Then we find the set of preimages of P ′,

P ′−1(T−1(y)).

Then, each element τ ∈ P ′−1(T−1(y)) is given as input to S−1, which exists
by definition of S. The exact redundancy specified by the encryption scheme
will almost certainly occur in only one such preimage S−1(τ). Remove the
redundancy to retrieve the decrypted message in Fnq . In the special case of
invertible P ′, one simply applies the three inverses T−1, P ′−1, and S−1 to the
ciphertext y in order, then by recovering the plaintext x = S−1 ◦P ′−1 ◦T−1(y).
Note that the only changing factor when encrypting or decrypting is the nature
of the trapdoor built into P ′, which determines whether or not redundancy is
required, and the exact technique used to find the preimage S−1(τ).

2.3.3 Security

A fundamental requirement for security is that the private key be difficult to
obtain from the public key. Therefore, the IP problem must be difficult. There
exist families of MQ-based schemes that have relatively few possible choices
of private key value P ′ (for example, the Matsumoto and Imai C∗ scheme of
[MI88]). Therefore, if the IP problem is easy, simply solving it over and over
again for the possible P ′ values will eventually return the remainder of the
private key, breaking the system.

Similarly, the MQ problem must also be kept difficult for security reasons.
If the MQ problem is easily solved, then for any ciphertext y, the associated
plaintext x can be efficiently computed by solving an instance of theMQ prob-
lem.

2.3.4 Efficiency

The efficiency of an MQ-based scheme can be seen from multiple viewpoints.
Courtois [Cou05] notes that for theMQ-based scheme HFE (see Section 4.3 for
details), the security of HFE for 80-bit messages can be made equivalent to the
security of RSA for 512-bit messages—after all, the security parameters of HFE
are the length of the message n (assuming that the base field is q = 2) and an

8

2.3. A GENERIC MQ-BASED ENCRYPTION SCHEME

additional security parameter d (see Section 4.3.1 for the definition of d), while
the RSA cryptosystem’s security rests solely on its modulus (i.e., the message
length). It is also noted that while the best attack on HFE operates in O(eln2 n)
operations, where n is the length of the plaintexts, the number field sieve attack
on RSA operates in

O(e(64
9)1/3(log 2n)1/3(log log 2n)2/3

)

(or, in L-function notation, L2n(1
3 , (

64
9)1/3)) operations.

Let us attempt to compare security levels of RSA and HFE in the more usual
way (as opposed to Courtois’s note in the previous paragraph). So, for a given
equivalent security level, we wish to determine the key sizes and encryption and
decryption speeds of each system. Even given that the most powerful attack on
HFE operates in O(n10) base field operations, which comes from assuming that
the estimates of Faugère [Fau03] hold for all n (a very generous assumption), we
can choose, as suggested by Courtois [Cou05], q = 2, n = 251, and d = 25, and
achieve an estimated security level of 280 base field operations. Meanwhile, as a
1024-bit RSA key is equivalent to an 80-bit symmetric key, according to Kaliski
[Kal03], we have roughly equivalent security for those parameter choices. We will
now compare key sizes, encryption and decryption efficiency at this comparable
security level.

The public key of RSA is a pair of integers. The public key of anMQ-based
scheme is a system of quadratic multivariate equations, stored as their associated
set of coefficients. So, at an equivalent security level, a 1024-bit RSA system
will use at most 2 kilobits for a public key—1024 bits for each number (and the
encryption exponent can be chosen to be significantly shorter than 1024 bits). A
multivariate cryptosystem stores n(n−1)/2+n+1 coefficients per equation, and
has m equations. Note that in the case of HFE, m = n, and there are exactly as
many equations as there are indeterminates. Each coefficient requires dlog2(q)e
bits of storage. In the case of HFE, the recommendation is for q = 2, so we use
≈ n3

2 bits, or ≈ 7721 kilobits. RSA uses orders of magnitude less space for its
public key at this security level.

The private key for RSA is approximately the same size as its public key—a
1024-bit RSA system will use at most 2 kilobits for a private key, then. The
private key for anMQ-based scheme consists of ≈ n2 field elements for each of
T and S, as well as the storage required for P ′. In the case of HFE, this storage
space required for storing P ′ is the same as the storage space required for one
multivariate equation, so it is also ≈ n2. So, the total storage requirements for
an HFE scheme are 3n2. At the same security level as RSA, that totals to 185
kilobits. Again, RSA uses orders of magnitude less space for the private key
than HFE.

The efficiency of encryption in any MQ-based scheme can easily be com-
pared to that of RSA. To evaluate a randomly generated multivariate equation
in n indeterminates requires O(n2) field multiplications and as many field ad-
ditions. Thus, for m equations, a total of O(mn2) field operations are required.
If the base field is F2 (which is recommended for HFE) and m = n (which is

9

2. MULTIVARIATE CRYPTOGRAPHY IN BRIEF

always true for HFE), then we have approximately O(n3) bit operations, or a
number of bit operations cubic in the length of a single message. Encryption
in RSA is effectively an O(n2) operation, as the encryption exponent is gener-
ally small. So, encryption is faster in RSA than in an MQ-based scheme for
equivalently-sized messages, as modular exponentiation is merely quadratic in
the length of the modulus. Returning to the case of systems with equivalent
security (such as this 251-bit HFE versus 1024-bit RSA), we can make a direct
comparison. To send the same amount of data, the HFE system must send
multiple messages, each message is encrypted in approximately 224 bit opera-
tions with in this instance of HFE and approximately 220 bit operations in RSA.
These numbers are not too far apart, even if 8 or so messages (including space
for redundancy requirements in HFE) are required to send the same data in
the HFE instance. Unfortunately, HFE scales very poorly. In order to achieve
the ≈ 2112 bit operations of security needed to reach the approximate security
level of a 2048-bit RSA key (as noted in [Kal03]), we must use n ≈ 2048 by
our assumptions in this section, and the speed difference only increases, making
RSA a better and better choice.

Decryption in the realm of RSA is approximately the same operation as en-
cryption (a modular exponentiation), while decryption of anMQ-based scheme
can involve finding a set of pre-images for the trapdoor function, which can be
quite costly. Courtois [Cou05] notes that HFE requires O(n4d2 log(d)) oper-
ations to do so, recalling that it has 2 security parameters n and d (see Sec-
tion 4.3.1 for the definition of d). For our given HFE cryptosystem of q = 2,
n = 251 and d = 25, we must compare O(n4d2 log(d)), the dominating cost
of decryption in HFE to O((4n)3), which is the approximately the cost of de-
cryption in 1024-bit RSA for n = 251. Since 43 = 64, we expect that the cost
O(n4d2 log(d)) will be much higher than O((4n)3). In general, as n increases,
this will only get worse. Even if d is ignored in O(n4d2 log(d)), we have a de-
cryption quartic in the message length compared to a decryption cubic in the
message length. Again, as HFE scales very poorly, the 2048-bit RSA to 2048-bit
HFE equivalent security level noted in the paragraph on encryption means that
decryption is more than an order of magnitude more painful in the next step
up, security-wise, for HFE.

In conclusion, HFE has some valid choices of security parameters, but it
very quickly becomes too slow to use when RSA is available. Also, HFE uses
copious amounts of memory for its public and private keys, while RSA uses
a more reasonable amount. But it should be noted that there are parameter
choices for HFE that are reasonably secure, as shown in this section. One might
also wonder why HFE, or any MQ-based encryption scheme is studied at all.
See Section 7.1.2 for a brief defense of the schemes.

2.3.5 MQ-Based signature schemes

It should be noted that there exist signature schemes that rely on the difficulty
of the MQ problem and the IP problem for their security. These are denoted
MQ-based signature schemes. We do not discuss them in this thesis. The

10

2.3. A GENERIC MQ-BASED ENCRYPTION SCHEME

interested reader may look to the taxinomy of Wolf and Preneel [WP04] for the
workings of MQ-based signature schemes.

11

Chapter 3

Attacking Multivariate
Cryptosystems

The most basic kind of attack on any cryptosystem is to find a plaintext x for a
given ciphertext y. In the case of multivariate cryptography, the intention is to
make solving this problem equivalent to solving an instance of theMQ problem
over a finite field. While this problem is NP-hard, there are still techniques that
are often helpful in practice.

This chapter presents five different attacks, and these attacks may be divided
into two groups. The first three attacks of this chapter are based on Gröbner
bases, the XL method and Dixon resultants, respectively (see Sections 3.1, 3.2,
and 3.3 for details). These attacks all have one thing in common—they solve
an MQ problem without using any information beyond the public key itself.
So, they do not take advantage of an attacker having knowledge of the specific
MQ-based encryption scheme used. The last two attacks, MinRank attacks
and Differential Analysis (see Sections 3.4 and 3.5 for details) require the use of
such information, and are therefore less general, and not universally applicable.

3.1 Gröbner bases

The first attack method under consideration is the method of Gröbner bases.
Buchberger [Buc65] both coined the term Gröbner basis (after his thesis advisor,
Wolfgang Gröbner) and created the Buchberger algorithm [Buc65, vzGG03] to
calculate them. Gröbner bases are used in a generic attack possible for any
multivariate cryptographic scheme. The idea of the attack is to take a given
ciphertext y and solve the following polynomial system

P(x)− y = 0

for the plaintext x by forming a Gröbner basis of the ideal generated by the
polynomials P(x)− y. It shall be seen that the properties of the Gröbner basis
calculated in this process should make finding x straightforward.

13

3. ATTACKING MULTIVARIATE CRYPTOSYSTEMS

3.1.1 Defining a Gröbner basis

The basic definitions from this section were culled from [vzGG03]. Consider first
the case of univariate polynomials. Let F be a field. When considering an ideal
I ⊂ F[x], where x is a univariate indeterminate, the question, “Is the polynomial
g contained in I?” is easy to answer. The technique normally used is simply
polynomial division of g(x) by the unique monic generating polynomial i(x) of I;
as F[x] is a euclidean domain, and therefore is also a principal ideal domain, so I
is generated by a single element of F[x]. It is clear that i(x) | g(x) if and only if
g(x) ∈ I. Gröbner bases are used to bring that same sort of simple containment
test into the multivariate case. The multivariate problem is similar: given a field
F and an ideal I ⊂ F[x1, x2, . . . , xn], is there a simple, division-like technique to
determine whether or not a polynomial g(x1, x2, . . . , xn) is contained in I?

There are several difficulties that must be overcome before such a contain-
ment test is possible. What is desired is a technique for dividing multivariate
polynomials by other multivariate polynomials. To do this in a seemly way, it
is necessary to use an ordering on the set of (monic) monomials. In the univari-
ate case, the degree of the monomial was sufficient. Now a more complicated
technique must be used.

Definition 3.1 (Monomial order) A monomial order on F[x1, x2, . . . , xn] is
a well-ordering ≺ of the monic monomials such that if α, β, and γ are all monic
monomials, and α ≺ β, then α+ γ ≺ β + γ.

A monomial ordering such as this is satisfied by the degree of a monomial in
the univariate case, and there are many examples of such monomial orderings in
the multivariate case. To illustrate the concept, consider the following example,
for monic monomials α and β as above.

Example 3.2 (Lexicographic order (LEX)) Write any monic monomial α
as α = xa1

1 xa2
2 · · ·xann . Then another such monomial β = xb11 x

b2
2 · · ·xbnn is com-

pared to α by forming the n-tuple (a1 − b1, a2 − b2, . . . , an − bn). If the leftmost
nonzero element of this n-tuple is negative, then α ≺LEX β.

Note that this example defines two orderings. First, it defines x1 ≺ x2 ≺
· · · ≺ xn. Then it defines the more obvious behavior on the powers of each
indeterminate. Often when computing Gröbner Bases, a different monomial
ordering is used.

Example 3.3 (Degree reversed lexicographic order (DRL)) Again, let α =
xa1

1 xa2
2 · · ·xann and β = xb11 x

b2
2 · · ·xbnn be monic monomials. Let deg(α) =

∑n
i=1 ai

and deg(β) =
∑n
i=1 bi. Then α ≺DRL β if deg(α) < deg(β), or deg(α) =

deg(β), but the rightmost nonzero entry in (a1 − b1, a2 − b2, . . . , an − bn) is
positive.

Any monomial order is sufficient to sort the terms of polynomials. Now any poly-
nomial once again has well-defined leading terms with associated leading coeffi-
cients, defined by the maximal monomial in that polynomial. In the future, let

14

3.1. GRÖBNER BASES

LT(f) represent the leading term of a polynomial f over some monomial order-
ing ≺. Also, let the multidegree of f , MDEG(f) be given by a = (a1, a2, . . . , an),
where LT(f) = Cxa1

1 xa2
2 · · ·xann . The leading monomial of a polynomial is sim-

ply its leading term made monic, and is denoted LM(f) = xa1
1 xa2

2 · · ·xann .
With a monomial order ≺, it is possible to define a long division technique

that is a generalization of long division with remainder in the univariate case.
Recall that the univariate polynomial division algorithm relies on the leading
term of a polynomial being well-defined, and that it proceeds along a monomial
ordering. The multivariate polynomial division algorithm that follows uses the
same convention. It is also made generic enough to deal with division of a single
polynomial by multiple polynomials at once. This is desired behavior, as in
general, an ideal I ∈ F[x1, x2, . . . , xn] is not generated by a single element of
F[x1, x2, . . . , xn], and therefore it becomes necessary to check a given polynomial
against a set of polynomials when attempting to determine ideal containment.
It should be noted that the Hilbert basis theorem ensures that this set is always
finite.

The following algorithm is essentially identical to the one found in [vzGG03].

Algorithm 3.4 (Multivariate long division)

Input: Nonzero polynomials f, f1, f2, . . . , fu ∈ F[x1, x2, . . . , xn], monomial
order ≺.

Output: Polynomials r, q1, q2, . . . , qu ∈ F[x1, x2, . . . , xn] such that f =
q1f1 + q2f2 + · · · + qufu + r, and for each fi for 1 ≤ i ≤ u, the leading
term (LT) of fi does not divide any monomial term of r.

Let r := q1 := q2 := · · · := qu := 0.

Let d := f .

while d 6= 0 do

if there is an i such that LT(fi) divides LT(d), then

choose the smallest such i, and let
qi ←− qi + LT(d)

LT(fi)
,

d←− d− LT(d)
LT(fi)

fi

else let

r ←− r + LT(p)
p←− p− LT(p)

return r, q1, q2, . . . , qu

This algorithm allows one to divide a polynomial f by a set of polynomials
F = {f1, f2, . . . , fu}, and returns the set of their quotients q1, q2, . . . , qu and a
remainder r, all uniquely defined in this algorithm. As other division algorithms
are possible, the concept of a unique remainder (or even unique quotients) does

15

3. ATTACKING MULTIVARIATE CRYPTOSYSTEMS

not exist in the multivariate case. Still, using this algorithm, we now have
a well-defined remainder modulo a set of polynomials, and will be written as
f mod F .

It is now possible to give the following definition of a Gröbner basis..

Definition 3.5 (Gröbner basis) Let I ⊂ F[x1, x2, . . . , xn] be an ideal, I =
〈i1, i2, . . . , iv〉, where i1, i2, . . . , iv ∈ F[x1, x2, . . . , xn] generate I. Let ≺ be a
monomial ordering. Then G = {g1, g2, . . . , gk} ⊂ I is a Gröbner basis of I with
respect to ≺ if 〈LT(G)〉 = 〈LT(I)〉, where LT(G) = {LT(g1),LT(g2), . . . ,LT(gk)}.

That is not the only possible way to define a Gröbner basis, however. It can
be shown that the following definition is equivalent, and it is useful in showing
other facts about Gröbner bases.

Definition 3.6 (Gröbner basis) Let I ⊂ F[x1, x2, . . . , xn] be an ideal and let
≺ be a monomial ordering. Then G = {g1, g2, . . . , gk} ⊂ F[x1, x2, . . . , xn] is a
Gröbner basis of I if for every g ∈ F[x1, x2, . . . , xn], the following is true: g ∈ I
if and only if g rem G = 0; that is, g ∈ I if and only if the polynomial long
division of g by the set G has a remainder of 0.

It can be shown that for any given monomial ordering, every ideal I ∈ F[x1, x2, . . . , xn]
has a Gröbner basis, and that any such basis also generates the ideal I. Both
facts follow from Hilbert’s basis theorem. See [vzGG03] for details.

3.1.2 Computing Gröbner bases

The definition of a Gröbner basis fails to account for the process of computing
one. Several algorithms exist, including Buchberger’s, F4 and F5, with the latter
two due to work by Faugère (see [Fau99, Fau02]). The F4 and F5 algorithms
apply linear algebra ideas to Buchberger’s algorithm in order to save effort, as
noted in [JKJMR05] . Buchberger’s algorithm itself is widely implemented, and
will be presented here.

By the second definition of a Gröbner basis, every element of an ideal I is a
linear combination of elements of a Gröbner basis of I. Therefore, one way to
decide whether or not a given set G ⊂ I is a Gröbner basis of I is to check this
condition for various polynomials, and add more elements to G as necessary, as
a Gröbner basis is not necessarily unique, and not necessarily minimal.

Buchberger’s algorithm employs just such a technique. It relies on calculat-
ing large numbers of so-called syzygy polynomials, or S-polynomials (as they
are more commonly known). An S-polynomial of two multivariate polynomials
f and g is given by finding the minimum monomials m1 and m2 such that in
m1f −m2g the leading terms of m1f and m2g cancel. More precisely,

Definition 3.7 (S-polynomial) Let f, g ∈ F[x1, x2, . . . , xn]. Let a = MDEG(f),
and let b = MDEG(f). Then let c = (max(a1, b1),max(a2, b2), . . . ,max(an, bn)).
Then the S-polynomial of f and g is given by

S(f, g) =
xc

LT(f)
f − xc

LT(g)
g.

16

3.1. GRÖBNER BASES

S-polynomials are easy to compute, and have an interesting property—any time
it is possible to cancel terms, the cancellation can be written so as to involve
S-polynomials. This fact is the basis of Buchberger’s algorithm. In order to
prove that Buchberger’s algorithm works, and that therefore computing Gröbner
bases is possible, a couple of theorems are necessary. These will be proved in
detail, along with a proof of the correctness of the algorithm itself, in an effort
to demonstrate the ideas involved in computing Gröbner bases, and to justify
their use in this attack on multivariate cryptosystems by convincing the reader
of their computability.

Theorem 3.8 Let G = {g1, g2, . . . , gu} ⊂ F[x1, x2, . . . , xn]. Let α1, α2, . . . , αu ∈
N
n be multidegrees of monomials, and let c1, c2, . . . , cu ∈ F∗. Then let

f =
u∑
i=1

cix
αigi,

with a δ ∈ Nn defined with the αi for 1 ≤ i ≤ u so that δ = αi + MDEG(gi),
and MDEG(f) ≺ δ. Note that this condition implies cancellation occurs on the
leading term of f . Let γij ∈ Nn be defined by xγij = lcm(LM(gi),LM(gj)). Then
xγij divides xδ, and there are cij ∈ F such that

f =
∑

1≤i<j≤u

cijx
δ−γijS(gi, gj)

and for all 1 ≤ i < j ≤ u, MDEG(δ − γijS(gi, gj)) ≺ δ, using ≺ here to denote
the ordering monomials would have given those two elements of Nn as their
multidegrees.

PROOF (from [vzGG03]): Without loss of generality, assume that all of the
gi are monic (if not, then use the ci to make it so.). Then for all the gi, the
leading monomial is the same as the leading term. So, as xδ = xαiLM(gi) and
xδ = xαjLM(gj), for all 1 ≤ i < j ≤ u, xδ is a common multiple of LM(gi) and
LM(gj). So by definition, xγij divides xδ.

Now note that as

S(gi, gj) =
xγij

LT(gi)
gi −

xγij

LT(gj)
gj

it is clear that MDEG(S(gi, gj)) 4 γij . As the leading terms cancel,

MDEG(xδ−γijS(gi, gj)) = δ − γij + MDEG(S(gi, gj)) ≺ δ − γij + γij = δ

and thus MDEG(xδ−γijS(gi, gj)) ≺ δ.
All that remains to be proven is that

f =
∑

1≤i<j≤u

cijx
δ−γijS(gi, gj)

17

3. ATTACKING MULTIVARIATE CRYPTOSYSTEMS

and this can be shown by induction on u. The statement is trivially true for u =
1. Then for a given u, all sets G with u−1 or fewer elements make this theorem
true. Consider a set G with u elements. Then define a g ∈ F[x1, x2, . . . , xn] by

g = f − c1xγ12S(g1, g2)

= c1x
α1g1 + c2x

α2g2 +
u∑
i=3

cix
αigi − c1xγ12

(
xγ12

LT(g1)
g1 −

xγ12

LT(g2)
g2)
)

= c1

(
xα1 − xδ−MDEG(g1)

)
g1 +

(
c2x

α2 + c1x
δ−MDEG(g2)

)
g2 +

u∑
i=3

cix
αigi

= (c1 + c2)xalpha2g2 +
u∑
i=3

cix
αigi.

The last lines utilize the fact that δ−MDEG(gi) = αi for 1 ≤ i ≤ u. Then note
that the function g has the same form as the function f , but the set G′ that g
uses has either u − 1 elements, if c1 6= c2, or u − 2 elements if c1 = c2. So, by
the inductive hypothesis, this statement is true for g.

Then g =
∑

2≤i<j≤u cijx
δ−γijS(gi, gj). By rewriting in terms of f , we have

f = g + c1x
γ12S(g1, g2)

which fulfills the requirements of the theorem in the case of u elements in G. ♦

Theorem 3.9 Let G = {g1, g2, . . . , gu} ⊂ F[x1, x2, . . . , xn] generate an ideal
〈G〉. Then G is a Gröbner basis for the monomial ordering ≺ if and only if for
every f, g ∈ G, S(f, g) mod G = 0

PROOF ([CLO92]): It follows from the second definition of a Gröbner basis
that if G is in fact a Gröbner basis of 〈G〉, then it is also a generating set for
〈G〉, and for every f, g ∈ G, S(f, g) mod G = 0, as S(f, g) ∈ 〈G〉. Therefore
it suffices to show that if for every gi, gj ∈ G, S(gi, gj) mod G = 0, then G
is a Gröbner basis. This is done by taking some f ∈ 〈G〉, and showing that
LT(f) ∈ 〈LT(g1),LT(g2), . . . ,LT(gu)〉.

By definition of 〈G〉, one can write f as

f =
u∑
i=1

qigi

Let mi = MDEG(qigi) for 1 ≤ i ≤ u. If MDEG(f) = δ, where δ = max≺{mi :
1 ≤ i ≤ u}, and δ is chosen so that it is minimal, then it is clear that LM(f) =
LM(qigi) = LM(qi)LM(gi) for at least one i. Since this calculation is being done
in a field, this leads to the conclusion that LT(f) = CLT(qi)LT(gi) for some
C ∈ F. Then LT(f) ∈ 〈LT(g1),LT(g2), . . . ,LT(gu)〉.

Now suppose for contradiction that MDEG(f) ≺ δ, using the monomial
ordering to order Nn, and again chosing δ so that it is minimal with f in the

18

3.1. GRÖBNER BASES

required form. Then a contradiction is derived in the following way:

f =
∑
mi=δ

qigi +
∑
mi<δ

qigi

=
∑
mi=δ

LT(qi)gi +
∑
mi=δ

(qi − LT(qi))gi +
∑
mi<δ

qigi

Since the second and third sums on the second line all have multidegree < δ,
it follows that the first sum must also have multidegree < δ. Then this first
sum satisfies exactly the conditions of theorem 3.8—each term has multidegree
δ, but their summation has a strictly smaller multidegree. Then by those same
conditions, it is possible to represent the expression in this way∑

mi=δ

LT(qi)gi =
∑

1≤j<k≤u

cjkx
δ−γjkS(gj , gk)

where as before the cjk ∈ F and xγjk = lcm(LM(gj),LM(gk)).
Now use the previous theorem. By that theorem,

S(gj , gk) =
u∑
i=1

aijkgi

where aijk ∈ F[x1, x2, . . . , xn]. By the division algorithm, MDEG(aijkgk) 4
MDEG(S(gj , gk)), for all i, j, k. Multiply on both sides by xδ−γjk to get

xδ−γjkS(gj , gk) =
u∑
i=1

bijkgi

where bijk = xδ−γjkaijk. Then

MDEG(bijk) 4 MDEG(xδ−γjkS(gj , gk)) ≺ δ.

Substituting back into the original expression for S(gj , gk) leads to∑
mi=δ

LT(qi)gi =
∑
j,k

cjkx
δ−γjkS(gj , gk)

=
∑
j,k

cjk

(∑
i

bijkgi

)
=
∑
i

∑
j,k

cjkbijk

 gi.

Then rewrite the last sum as
∑
i q̄igi, and note that because the cjk are con-

stants, it is still true that MDEG(q̄igi) ≺ δ.
Finally, substitute

∑
i q̄igi for

∑
mi=δ

LT(qi)gi and note that

f =
∑
mi=δ

q̄igi +
∑
mi=δ

(qi − LT(qi))gi +
∑
mi<δ

qigi

19

3. ATTACKING MULTIVARIATE CRYPTOSYSTEMS

is now expressed as a polynomial combination of terms, all of which have mul-
tidegree ≺ δ. This contradicts the minimality of δ. ♦

This leads naturally to a simple algorithm for finding a Gröbner basis. The
following algorithm is due to Buchberger and is reprinted from [CLO92]. Many
refinements to it are possible.

Algorithm 3.10

Input: G = {g1, g2, . . . , gs} ⊂ F[x1, x2, . . . , xn]

Output: A Gröbner basis F for I = 〈G〉

F ←− G

DO

F ′ ←− F
FOR each pair {p, q}, p 6= q, p, q ∈ F ′ DO

S ←− S(p, q)modF ′

IF S 6= 0 THEN F ←− F ∪ {S}

WHILE F 6= F ′

In layman’s terms, the algorithm calculates S-polynomials for a given generating
set G and adds new polynomials to the set G whenever an S-polynomial is found
that does not have a remainder of 0 modulo G. It remains to show that this
algorithm is correct, and that it terminates in a finite period of time. Note that
the termination condition is precisely the condition of Theorem 3.9, so if this
algorithm terminates, it will output a Gröbner basis for the expanded set F .

PROOF ([CLO92]): Two facts must be shown. First, it must be shown that
F ⊂ I, so that the Gröbner basis generated is clearly a basis of the original
ideal I. Second, it must be shown that the algorithm itself terminates in a finite
number of steps. It is clear that before the algorithm begins, F ⊂ I. Then it is
sufficient to show that each added element S is contained in I. As p, q ∈ F ′ ⊂ I,
therefore S(p, q) ∈ I. Combine this with the fact that the long division is by
F ′ ⊂ I, and it becomes clear that the remainder must also be an element of the
ideal I by additive closure. So it is true that F ⊂ I.

The other fact to be shown is that the algorithm terminates. If F 6= F ′, then
by the algorithm, F ′ (F . This implies 〈LT(F ′)〉 (〈LT(F)〉 in the following
way. Let r be a non-zero remainder of an S-polynomial that was divided byF ′.
Then it is clear that r cannot be divisible by the leading terms of elements of F ′,
and therefore LT(r) /∈ 〈LT(F ′)〉. However, LT(r) ∈ 〈LT(F)〉, as it was explicitly
added to F .

This leads to an ascending chain of ideals 〈LT(F)〉 of F[x1, x2, . . . , xn]. As it
is true that the ideals of F[x1, x2, . . . , xn] satisfy the ascending chain condition,
it is true that after a finite number of ideals in this chain, they stop growing, and
〈LT(F ′)〉 = 〈LT(F)〉. The previous paragraph shows that this implies F = F ′.
Thus, the algorithm terminates in a finite number of steps. ♦

20

3.1. GRÖBNER BASES

Buchberger’s algorithm is a useful starting point. Faugère’s F4 and F5 al-
gorithms both flow from Buchberger’s algorithm, with modifications designed
to reduce the number of times an S-polynomial is calculated that reduces to 0
over the current set of polynomials. In fact, in many cases, it is noted in [Fau02]
that no “useless” pairs (those S-polynomials that reduce to 0) are generated at
all. Generally-speaking, F4 is at least an order of magnitude faster than Buch-
berger’s Algorithm, and F5 is at least an order of magnitude faster than F4, as
noted experimentally in [Fau02].

Still, the problem of computing a Gröbner basis is not necessarily solvable
in any reasonable time-frame, as it can be shown that the problem of finding a
Gröbner basis is EXPSPACE-complete.

Definition 3.11 (EXPSPACE and EXPSPACE-complete) A decision prob-
lem DP solved by an algorithm A is in the class EXPSPACE if A requires 2k

O(1)

space to run for inputs of length k. DP is EXPSPACE-complete if in addition,
every decision problem DP ′ in EXPSPACE can be reduced to DP in polynomial
time.

Typically speaking, an EXPSPACE-complete problem uses, for at least some
inputs of length k, doubly-exponential time 22O(k)

, as noted in [vzGG03, Section
21.7]. Thus, in the worst case, computing a Gröbner basis is impractical.

3.1.3 The elimination theorem and Gröbner basis conver-
sion

One of the cornerstones, if not the cornerstone, of Gröbner basis attacks is the
elimination theorem. This theorem states that Gröbner bases constructed using
certain monomial orderings essentially solve the problem of finding the plaintext
x for the ciphertext y. Specifically, the elimination theorem states that such a
Gröbner basis has subsets G0, G1, . . . , Gn−1 so that in each subset Gk, the only
indeterminates that occur in the polynomials ofGk are xk+1, xk+2, . . . , xn. Then
it becomes possible to solve for the indeterminates xn, xn−1, . . . , x1 in sequence,
creating a set of possible solutions from which the “correct” solution should be
easy to find.

First, in order to state the elimination theorem, the elimination ideal must
be defined.

Definition 3.12 (Elimination ideal) Given an ideal I = 〈f1, f2, . . . , fs〉 ⊂
F[x1, x2, . . . , xn], the kth elimination ideal Ik is the ideal of F[xk+1, xk+2, . . . , xn]
defined by

Ik = I ∩ F[xk+1, xk+2, . . . , xn]

Using this definition, it is possible to state the elimination theorem itself.

Theorem 3.13 (Elimination theorem) Let G be a Gröbner basis of an ideal
I = 〈f1, f2, . . . , fs〉 ⊂ F[x1, x2, . . . , xn] with respect to the lexicographical mono-
mial ordering. Then the set

Gk = G ∩ F[xk+1, xk+2, . . . , xn]

21

3. ATTACKING MULTIVARIATE CRYPTOSYSTEMS

is a Gröbner Basis of the kth elimination ideal Ik with respect to the lexico-
graphical monomial ordering.

This statement is proven in various books, including [CLO92]. Such a proof will
not be repeated here. Note that this theorem uses explicitly the lexicographical
monomial ordering, while the previous work on Gröbner bases done here is
monomial ordering agnostic. In fact, it is also true that the lexicographical
ordering is generally inferior to the degree reversed lexicographical ordering
when computing Gröbner bases (as mentioned in [CLO98, 2.4]). Then in order
to make efficient use of the elimination theorem, Gröbner basis conversion is
necessary. Then a Gröbner basis can be constructed efficiently, converted to
lexicographical ordering, and the elimination theorem put to use. As [CLO98]
notes, it is faster in general to compute the DRL-Gröbner basis and convert it
to LEX than it is to compute the LEX-Gröbner basis in the first place.

The Faugère-Gianni-Lazard-Mora algorithm is suggested here as one “black-
box” technique for performing this conversion. It may be found in [CLO98, 2.3].

3.1.4 Attacks using Gröbner bases

It is now possible to outline a generic attack on a multivariate cryptosystem
using Gröbner bases. Recall that this attack involves solving a known system
of equations P(x) = y for x. The attacker finds a set of possible solutions X to
the equations P(x) = y, or, equivalently,

p1(x1, x2, . . . , xn)− y1 = 0
p2(x1, x2, . . . , xn)− y2 = 0

...
pm(x1, x2, . . . , xn)− ym = 0

by computing a Gröbner basis G for the ideal I = 〈p1−y1, p2−y2, . . . , pm−ym〉.
For reasons of efficiency, it is usually constructed using the degree reversed
lexicographical ordering, and then converted to the lexicographical ordering
using Gröbner basis conversion.

This set G is useful for the following reason. Once G is computed, note
that any x that is a root of all the polynomials of G must also be a root of all
polynomials of P − y, and vice-versa. One proves this by noting that as G and
P − y both generate I, any polynomial of G may be rewritten as a polynomial
sum of the elements of the other set P. If x is a root of every element of P,
then by this, any element of G has a root at x. The same logic works for x a
root of G. So, every common root of G is a common root of P, and vice-versa.

Therefore, because the elimination theorem holds for G, the attacker can
solve a sequence of sets of univariate equations Gn, Gn−1, . . . , G0 = G, where
for each Gk, the values of the indeterminates xk+1, xk+2, . . . , xn have been com-
puted using Gn, Gn−1, . . . , Gk+1. The attacker factors n + 1 sets of univariate
polynomials to carry out the attack. Even the Berlekamp algorithm [vzGG03,

22

3.1. GRÖBNER BASES

Section 14.8] is capable of factoring a given polynomial in O(d3) field operations,
where d is the degree of the polynomial to be factored. The algorithm branches
at each possible value for xi, for i = 1, 2, . . . , n, creating a set of possible solu-
tions X . Note that this will not find all possible solutions to the set of common
roots of G, as to do so requires an appropriate splitting field for F, but the roots
that cannot be found by this method are unwanted anyways, as they cannot be
valid plaintexts. So, the set X is the set of all possible common roots of G, and
therefore all possible common roots of P. This is precisely the set of possible
solutions desired.

Finally, it is easy to determine the correct value of x to use, given the set X ,
regardless of the implementation of the multivariate cryptosystem. In a multi-
variate cryptosystem in which P is invertible, X consists of exactly one element.
In a multivariate cryptosystem in which P is not invertible, the correct choice
of x ∈ X is the one that follows the redundancy condition of that particular
multivariate cryptosystem (e.g., an x that has the form x = m||H(m) for some
hash function H).

This attack is not meant to be seen as “the” Gröbner basis attack. It is
possible to note variants thereof. For example, any Gröbner basis G has a
minimal Gröbner basis G′ as a subset (one that has no polynomial g such that
LT(g) ∈ 〈LT(G− g)〉, and all polynomials are monic). In any minimal Gröbner
basis G that results from an attack on an invertible P, all elements of G have
degree 1, and there are enough of them to fully determine x. Naturally, as
forming a minimal Gröbner basis from a given Gröbner basis is straightforward,
in this situation, one does so, saving a basis conversion and essentially all of the
remaining math (the correct value of x can be read off the Gröbner basis instead,
as noted in [JKJMR05]). In fact, in general forming a minimal Gröbner basis is
easy enough to do (it is simply a sequence of attempted monomial divisions by
other monomials, which can be viewed as a subtraction of their multidegrees)
that it is a way to reduce the number of computations in later steps. In [FJ03],
still further optimizations are noted for the case F = F2 and the system P(x) is
invertible.

The main cost of a Gröbner basis attack is the computation of the Gröbner
basis. Even using the most advanced algorithm to date, F5, there are limits.
In 2003, a variant of F5 designed to be used over F2 was used to to defeat the
first HFE Challenge (proposed for the HFE cryptosystem in [Pat96b], available
at [Pat96a]). Faugère and Joux [FJ03] noted that this challenge is broken,
and that it was a system of 80 equations of degree 2 in 80 indeterminates.
To demonstrate the superiority of the F5 algorithm, Faugère and Joux [FJ03]
presented Table 3.1 to note that F5 is a significantly faster technique to compute
a Gröbner basis. However, it is quite difficult to estimate in general the cost
of computing Gröbner bases in these problem spaces, so exact measurements of
what can and cannot be done are rare.

In Section 6.2.1, it is noted that Gröbner basis attacks on the HFE cryp-
tosystem are often highly effective, and run in polynomial time. More detailed
information about the efficacy of Gröbner basis attacks on this particular system
will be noted there.

23

3. ATTACKING MULTIVARIATE CRYPTOSYSTEMS

Table 3.1: The number of equations of degree 2 various algorithm implementa-
tions can handle in the given time frames (on a PC PIII 1 GHz) [FJ03].

Algorithm Buchberger F4 F5

System Maple Magma Macaulay Singular FGb FGb
CPU Time < 10m 12 17 18 19 22 35
CPU Time < 2h 14 19 20 21 28 45

3.2 The XL method

The eXtended Linearization (aka XL) algorithm, first proposed by Courtois et
al. [CKPS00], is designed to solve the same sort of multivariate system as the
one solved using a Gröbner Basis attack. That is, when given a ciphertext
y = (y1, y2, . . . , ym), it attempts to solve the following polynomial system

P(x)− y = 0

for the plaintext x = (x1, x2, . . . , xn). The XL algorithm attempts to discover
the indeterminates x1, x2, . . . , xn one at a time, and recursively calls itself on
the new, simplified system on each success. At this level of detail, it bears a
striking resemblence to the techniques of the Gröbner basis method.

Unfortunately, this resemblence is significantly more than skin-deep. The
XL method is now known to be a slower version of F4, as shown by Ars et
al. [AFI+04]. Therefore, there is little point in using it. F4 itself has been
supplanted by F5 in terms of speed, so at this time there is really no reason to
consider the XL algorithm in its present state as a useful technique.

However, this discovery is quite recent. Papers from 2000 to 2004 all men-
tioned XL as its own avenue of attack on a cryptosystem. Only very recently
have papers begun to note that it is unnecessary to seperately consider the ef-
ficacy of XL and Gröbner bases attacks. In a 2004 paper, Ding [Din04] makes
no mention of the fact the XL method is a disguised Göbner basis technique.
However, in a 2005 paper, Ding and Schmidt [DS05] note the new connection,
as well as the fact that the XL algorithm may now be ignored, as it is merely a
slower implementation of the Gröbner basis attack than the state of the art.

Thus, the XL algorithm is covered here for a pair of reasons. First, it has
some historical significance, in that for several years, many papers referenced
the idea. Second, it is interesting in its own right, as a slightly different take on
some of the same ground covered by a standard Gröbner basis technique.

3.2.1 Defining the XL algorithm

In [CKPS00], the XL algorithm is explicitly set up to solve the polynomial
system P(x)− y = 0 for the plaintext x, given the ciphertext y. It is implicitly
noted in [CKPS00] and explicitly noted in [AFI+04] that one assumption of
the XL algorithm is that the x being sought is unique–that is, there is only

24

3.2. THE XL METHOD

one solution x = (x1, x2, . . . , xn) over Fnq . Without this assumption, claims of
efficiency for the XL algorithm become quite dubious.

In order to define the algorithm itself, first some notation is necessary.
Let X k denote the set of all monic monomials of degree k in x = (x1, x2, . . . , xn).

That is,

X k =

{
n∏
i=1

xαii | αi ∈ N0,
n∑
i=1

αi = k

}
.

Let X k ×P denote the set of all polynomials formed by multiplying each poly-
nomial of the public key pi, for 1 ≤ i ≤ m, by each element of X k. That
is,

X k × P =
{
fp | f ∈ X k, p ∈ P

}
.

So, if m = 2, n = 2 and k = 2, where m is the number of polynomial equations in
P and n is the number of indeterminates, then there are a total of 6 polynomials
formed (3 possible monic monomials x1x2, x2

1 and x2
2 times 2 polynomials p1

and p2).
Now, let D ∈ N. Consider the set of polynomials

∞⋃
k=1

X k × P.

Since every element of P has degree 2, the subset of these polynomials of total
degree ≤ D is given by

D−2⋃
k=0

X k × P.

Let ID be the ideal of Fq[x1, x2, . . . , xn] generated by such polynomials. So, ID
is the vector space over Fq[x1, x2, . . . , xn] generated by

⋃D−2
k=0 X k×P. If D = 2,

then the ideal is generated by P itself and is refered to as I. For all D ≥ 0, it
is true that ID ⊂ I.

The creators of the XL method [CKPS00] note that the idea behind the
technique is to move from I to ID in the hope that for some D not too large
the equations will become simpler to solve than the equations of I.

Finally, recall that when performing multivariate long division, some kind
of monomial ordering is required. Monomial orderings were defined in Defini-
tion 3.1 on page 14.

We are now ready to define the XL algorithm (definition follows [CKPS00]).

Definition 3.14 (XL Algorithm) For a positive integer D ≥ 2, execute the
following steps:

1. Multiply: Generate all the products X k × P for k ≤ D − 2.
2. Linearize: Consider each monomial term in the xi of degree ≤ D as

a new indeterminate. Substitute these new indeterminates into the products
obtained in 1, creating a system of linear equations. Perform Gaussian elimi-
nation on these linear equations, using a monomial ordering that eliminates all
the terms containing one indeterminate (say, x1) last.

25

3. ATTACKING MULTIVARIATE CRYPTOSYSTEMS

3. Solve: Assuming that step 2 yields at least one univariate equation in
the powers of x1, solve this equation over the finite field (e.g., with Berlekamp’s
algorithm).

4. Repeat: Simplify the equations and repeat the process to find the values
of the other indeterminates.

It should be clear from how it is defined that the XL algorithm is not designed
to return a set of possible values for x, and therefore, x should be unique for
efficient use of the algorithm.

The original paper [CKPS00] failed to demonstrate the efficacy of this attack,
by failing to prove that the XL algorithm terminates. It is shown in [AFI+04]
that the XL algorithm not only terminates, it is in fact a redundant variant of
the F4 Gröbner basis algorithm.

Diem [Die04] notes that this algorithm has no graceful exit behavior for
problem instances that have multiple solutions or no solutions over their given
finite field, although such behavior is easy enough to implement–simply allow
those cases to end in failure at step 3, rather than assuming success.

Ars et al. [AFI+04] note that the algorithm fixes D. Clearly, it is implausible
to believe that D will be initialized to an appropriate value all of the time.
Therefore, it will be necessary to start with a small value of D, such as D = 2,
and increase it at each failed step (failure being possible due to the first fix).
There are various ways to increase D, and they will be mentioned in the next
section.

Finally, [AFI+04] notes that if the XL algorithm terminates successfully, it
does so with a lexicographical ordering.

3.2.2 Attack methods using the XL algorithm

In carrying out an attack on an MQ-based encryption scheme using the XL
algorithm, an attacker seeks to solve a system

P(x)− y = 0

for the unique plaintext x, where P and y are known. Using the XL algorithm
basically takes care of all the details. The only choice remaining to the attacker
is how the XL algorithm implementation will increase D. In [AFI+04], four
seperate ways of doing so are suggested. They are reprinted here, edited to
begin with D = 2 rather than D = 1, as using D = 1 leads to polynomial
fractions and is therefore nonsensical in this context. So, in all these cases,
begin with D = 2 and let A = P − y be the system we desire to solve, and
repeat until a solution is found.

1. Do the XL algorithm on A. If the solution cannot be obtained, set D :=
D + 1. Repeat until solved.

2. Iterate the “multiply” and “linearize” steps for A by adding new equations
obtained by “linearize” to A. If the resulting system is not solveable, then
return to the original set A, set D := D + 1. Repeat until solved.

26

3.3. DIXON RESULTANTS

3. Do the XL algorithm on A. On failure, set D := D + 1, replace A by
the resulting system of the “linearize” step of the most recent XL. Repeat
until solved.

4. Iterate the “multiply” and “linearize” steps for A by adding new equations
obtained by “linearize” to A. If the resulting system A′ is not solveable,
then replace A by A′ and D := D + 1. Repeat until solved.

It is further noted in [AFI+04] that the second pair of techniques can result in
a smaller final D than the first pair.

For any method of incrementing D, the XL algorithm will eventually termi-
nate with an answer, assuming y really is a ciphertext to a system that has an
invertible function P. This answer x will be the plaintext. As noted previously,
however, XL algorithm-based attacks are no longer considered useful at this
time.

3.3 Dixon resultants

The method of Dixon resultants was recently introduced by Tang and Feng
[TF05]. Like Gröbner basis techniques, Dixon resultants do not depend on the
particular MQ-based encryption scheme used. They are a generic technique
that works for any instance of an MQ problem. From a cryptanalysis stand-
point, they have the advantage of an easily determined complexity. Early re-
sults also indicate that they are significantly faster than Faugère’s F4 method of
Gröbner basis calculation [TF05], although there are no published comparisons
to Faugère’s faster F5 algorithm.

A Dixon resultant-based method uses a necessary condition for finding a
common affine zero x of a system of equations P in order to solve, given a
ciphertext y, the following polynomial system

P(x)− y = 0

for the plaintext x.

3.3.1 The Dixon polynomial, Dixon matrix and Dixon re-
sultant

Some preliminary definitions are required to define the Dixon resultant. First,
a multivariate polynomial p with n indeterminates x1, x2, . . . , xn is called a
generic ndegree polynomial if one can write p as

p(x1, x2, . . . , xn) =
k1∑
i1=1

k2∑
i2=1

· · ·
kn∑
in=1

ai1,i2,...inx
i1
1 x

i2
2 · · ·xinn

for some positive integers k1, k2, . . . kn. The salient feature of such a polynomial
is that each of its monomial terms incorporates all the indeterminates (i.e., note

27

3. ATTACKING MULTIVARIATE CRYPTOSYSTEMS

that i1, i2, . . . , in ≥ 1). Let F be a set of n+ 1 generic ndegree polynomials in n
indeterminates x1, x2, . . . , xn. We write F = {f1, f2, . . . , fn+1}. Next, take the
following determinant:

∆(x1, x2, . . . , xn, α1, α2, . . . , αn) =

det


f1(x1, x2, . . . , xn) f2(x1, x2, . . . , xn) . . . fn+1(x1, x2, . . . , xn)
f1(α1, x2, . . . , xn) f2(α1, x2, . . . , xn) . . . fn+1(α1, x2, . . . , xn)
f1(α1, α2, . . . , xn) f2(α1, α2, . . . , xn) . . . fn+1(α1, α2, . . . , xn)
...

...
...

f1(α1, α2, . . . , αn) f2(α1, α2, . . . , αn) . . . fn+1(α1, α2, . . . , αn)

 . (3.1)

Here, α1, α2, . . . , αn are new indeterminates. Then the Dixon polynomial δ of
F is given by

δ(x1, x2, . . . , xn, α1, α2, . . . , αn) =
∆(x1, x2, . . . , xn, α1, α2, . . . , αn)
(x1 − α1)(x2 − α2) · · · (xn − αn)

.

Note that δ is still a polynomial, as for each xi, replacing it by αi in ∆ leads to
two identical rows in the matrix of (3.1), namely the ith row and the (i+ 1)th
row. Thus, the determinant of this matrix becomes zero, and division by (xi−αi)
corresponds to removing a root of ∆.

Now we have a polynomial δ in indeterminates x1, x2, . . . , xn, α1, α2, . . . , αn.
If the original set of polynomials F has a common zero, then note that the
determinant in (3.1), upon which the Dixon polynomial is based, has a row
of all zeroes (the top row) when evaluated at that common zero. Thus, when
x1, x2, . . . , xn correspond to a common zero of F , the Dixon polynomial evalu-
ated at (x1, x2, . . . , xn) is zero, regardless of the values of α1, α2, . . . , αn. With
this in mind, we consider δ to be a polynomial in α1, α2, . . . , αn. Thus, its co-
efficients are polynomials in x1, x2, . . . , xn. Let ε′ be the vector given by fixing
an ordering to the set of all monomials in α1, α2, . . . , αn that appear as terms
of δ. Fix an ordering of the monomials in x1, x2, . . . , xn that appear in at least
one coefficient of one element of ε′. Let V ′ be the column vector given by

V ′ = (v′1, v
′
2, . . . , v

′
s2)T ,

where there are s2 such monomials, and each v′i, for 1 ≤ i ≤ s2 is given by

v′i = xi11 x
i2
2 · · ·xinn , where xi11 x

i2
2 · · ·xinn is a term contained in some element of ε′.

When we refer to V ′, we refer to a vector of monomials. This allows us to set up
a homogeneous system of equations to express ε′ in terms of the elements of V ′,
represented as a matrix D with entries from the base field Fq. If x1, x2, . . . , xn
is a common zero of the original system, then we have

ε′ = DV ′ = (0 0 0 0 0 . . . 0)T .

28

3.3. DIXON RESULTANTS

Kapur, Saxena and Yang [KSY94] note that if F is a set of generic ndegree
polynomials, then |ε′| = |V ′|. Let s = |V ′|, and note that D is a square s × s
matrix. Now we replace each element of V ′ by a new indeterminate vi. Let
V = (v1, v2, . . . , vs)T be the result of this change of indeterminates. Then we
can form an equivalent ε from ε′ by forming the system

ε = DV.

Now, if x1, x2, . . . , xn is a common zero of the original system, we still have a
homogeneous linear system of equations

ε = DV = (0 0 0 0 0 . . . 0)T

in the indeterminates V = (v1, v2, . . . , vs)T . We call the matrix D the Dixon
matrix, and we call det(D) the Dixon resultant.

The benefits of calculating the Dixon resultant are as follows. First, note
that if x = (x1, x2, . . . , xn) is a common root of the polynomials of F , then the
Dixon polynomial is zero, and thus the Dixon matrix has rank 0. So, the Dixon
resultant also vanishes. Thus we see that the vanishing of the Dixon resultant
is a necessary condition for a given x to be a common root of the set F .

Of course, this is not the whole story. These Dixon terms are all defined
for a set of polynomials F that are generic ndegree polynomials. However, the
polynomials used in an MQ-based encryption scheme are generally not of this
form (in fact, they are essentially never in this form). Therefore, in order to deal
with the situation of F = P(x)− y, where P is a public key for an MQ-based
encryption scheme and y is a known ciphertext of that scheme, more work is
required. In fact, if the condition on the set of polynomials F that it be a set of
generic ndegree polynomials is dropped, it is no longer certain that the Dixon
matrix will be square, as noted by Kapur, Saxena and Yang [KSY94]. Thus, the
Dixon resultant may not even exist. Somehow, the concept must be extended
before it remains suitable for use in the case of general polynomials.

When dealing with general polynomials, everything stated in this section
about the Dixon polynomial and Dixon matrix remains true, save that the
Dixon matrix may not be square, and thus the Dixon resultant may not exist.
In particular, it is still a necessary condition for an affine zero x to exist that
the Dixon polynomial vanish at x. In the remainder of this chapter, the terms
Dixon polynomial and Dixon matrix will be used to refer to the case of general
polynomials.

3.3.2 The KSY Dixon matrix and the extended Dixon re-
sultant

The failure of a standard Dixon resultant to be useful in the general case, which
is also the case of an MQ-based encryption scheme, led to an extension of the
Dixon resultant by Kapur, Saxena and Yang [KSY94]. Their technique can
handle the general case, subject to a condition that they noted always held in
their experiments, the Rank Submatrix Construction Criteria, or RSC Criteria

29

3. ATTACKING MULTIVARIATE CRYPTOSYSTEMS

(see Theorem 3.16). They created a new matrix, dubbed by Tang and Feng
[TF05] the KSY Dixon matrix with a determinant referred to as the extended
Dixon resultant. Tang and Feng [TF05], who worked with extended Dixon
resultants, noted as well that the RSC Criteria always held in their experiments.

The technique of Kapur, Saxena and Yang [KSY94] takes the Dixon matrix
D, as computed normally, and, given that the rank of D is r, finds an r × r
submatrix of D that is also of rank r. This new matrix is called the KSY Dixon
matrix, and its determinant is the extended Dixon resultant. It is presented
here with the following change: now, all calculations take place using a finite
field Fq as the base field, rather than Q.

In order to work with the Dixon matrix, a few labels and definitions are
necessary, as noted by Kapur, Saxena and Yang [KSY94]. A Dixon matrix D is
an s1 × s2 matrix, where s1 and s2 are not necessarily equal. Let the columns
of D be represented as m1,m2, . . . ,ms2 . Then let monom(mi) = vi. Let C be
a set of constraints on the indeterminates x1, x2, . . . , xn of the form

xi1 6= 0 ∧ xi2 6= 0 ∧ . . . ∧ xik 6= 0, (3.2)

for some 1 ≤ i1, i2, . . . , ik ≤ n. Finally, let nvcol(C) denote the set of all columns
mi such that C → monom(mi) 6= 0.

Let G be a set of n+ 1 polynomials, G ⊂ Fq[x1, x2, . . . , xn], where Fq is the
algebraic closure of F. Let N be the Dixon matrix of G, and let

N1 = {X | X is an s1 × (s2 − 1) submatrix of N obtained by (3.3)
deleting a column which belongs to nvcol(C) from N}.

The following lemma and its proof are as [KSY94].

Lemma 3.15 Let G ⊂ Fq[x1, x2, . . . , xn] be a set of n + 1 polynomials with
associated Dixon matrix N . Let C be a set of constraints on the indeterminates
x1, x2, . . . , xn of form (3.2). If G has a common affine zero which satisfies C,
then

For every X ∈ N1, rank(X) = rank(N).

Proof: Let (c1, c2, . . . , cn) be a common zero of G. Then as each indeterminate
of V corresponds to a monomial of x1, x2, . . . , xn, this common zero leads to a
solution to the system of homogeneous linear equations ε = NV = 0, denoted
C1, C2, . . . , Cs2 . Then for the column vectors m1,m2, . . . ,ms2 of N , we have

C1m1 + C2m2 + . . .+ Cimi + . . .+ Cs2ms2 = 0.

Let X ∈ N1. Then as X was obtained from N by removing some column
vector mi belonging to nvcol(C), we know that monom(mi) does not vanish for
any solution satisfying C. Thus, Ci 6= 0. Then we may divide by Ci, and by
rearranging terms we get

mi =
−C1

Ci
m1 +

−C2

Ci
m2 + . . .+

−Ci−1

Ci
mi−1 +

−Ci+1

Ci
mi+1 + . . .+

−Cs2
Ci

ms2 .

30

3.3. DIXON RESULTANTS

Therefore, as the column vector mi can be expressed as a linear combination of
the other column vectors, removing it does not decrease the rank of the matrix
X. So, rank(X) = rank(N), as desired.♦

This lemma leads to a testable necessary condition for an affine zero to exist
in the case of general polynomials, and calls for more notation, again following
the work of Kapur, Saxena and Yang [KSY94]. Let K = Fq[a1, a2, . . . , ak], for
indeterminates a1, a2, . . . , ak. Let H be a set of n+1 polynomials. However, this
time, let H ⊂ K[x1, x2, . . . , xn] = Fq[x1, x2, . . . , xn, a1, a2, . . . , ak], with Dixon
matrix D having entries in K. Let C be a set of constraints of form (3.2). Let
r = rank(D). Let

D1 = {X | X is an s1 × (s2 − 1) submatrix of D obtained by
deleting a column which belongs to nvcol(C) from D}.

Now, let φ : [a1, a2, . . . , ak] −→ Fq be an assignment of values to the indeter-
minates a1, a2, . . . ak from Fq. Define φ(H) ⊂ Fq[x1, x2, . . . , xn] to be the set
H after applying the indeterminate assignment of φ. Similarly, for a matrix M
with entries in K, we define a matrix φ(M) with entries in Fq by performing φ
on each entry, and then removing all zero rows and columns that arise due to
the assignment. We use this definition to get φ(D) and φ(D1). Then let

R = {Y | Y is an r × r nonsingular submatrix of D}.

Since D has rank r, R is nonempty, and of course for every element Y ∈ R
we know that det(Y) 6= 0. Thus, Kapur, Saxena and Yang [KSY94] state and
prove the following theorem.

Theorem 3.16 (RSC Criteria) Let H, D, D1, and φ be as defined in the
previous paragraph, and let C be as in (3.2). Assume that φ(H) has a common
affine zero x1, x2, . . . , xn which satisfies C. Then, if there exists X ∈ D1 such
that rank(X) < rank(D), then for all Y ∈ R, we have that det(φ(Y)) = 0.

Proof: Let G = φ(H). Then let N = φ(D), and note that N is the Dixon matrix
of G. Similarly, note that N1, as defined in (3.4), is given by N1 = φ(D1)−N .
So, by Lemma 3.15, if G has a common zero which satisfies C, then for every
X ∈ D1, we have

rank(φ(D)) = rank(φ(X)).

Of course, the indeterminate assignment of φ cannot increase the rank of a
matrix, so we also know that for every X ∈ D1,

rank(φ(X)) ≤ rank(X).

The last piece of information is to note that if the initial condition is true, we
have some matrix X1 ∈ D1 such that

rank(X1) < rank(D).

31

3. ATTACKING MULTIVARIATE CRYPTOSYSTEMS

Putting these statements together, we see that for X1,

rank(φ(D)) = rank(φ(X1)) ≤ rank(X1) < rank(D) = r.

In other words, rank(φ(D)) < r. So, all submatrices of φ(D) must have a rank
< r. Every element Y ∈ R, after the indeterminate assignment is performed,
has less than full rank r. So, every such matrix, after indeterminate assignment,
is singular. Therefore, det(φ(Y)) = 0, as desired.♦

Note that the condition “if there exists X ∈ D1 such that rank(X) <
rank(D)” of Theorem 3.16 is the RSC Criteria (Rank Submatrix Construc-
tion Criteria). For any set of polynomials F with a Dixon matrix that satisfies
the RSC Criteria, any element Y ∈ R is considered the KSY Dixon matrix, and
det(Y) is the extended Dixon resultant.

3.3.3 The DR algorithm

Tang and Feng [TF05] created an algorithm that uses the extended Dixon re-
sultant to solve, given a public key P of an MQ-based encryption scheme and
ciphertext y, the polynomial system

P(x)− y = 0

for the plaintext x. Note that if RSC Criteria is not met, this algorithm will
fail.

The algorithm DR, as described by Tang and Feng [TF05], assumes that
there are n indeterminates and n polynomial equations. So, here, the number
of polynomial equations m is set to m = n.

Algorithm 3.17 (DR Algorithm)
Input: A system H(x) of multivariate quadratic equations with n indetermi-
nates x1, x2, . . . , xn over a finite field Fq. Note that H(x) = P(x) − y = 0 in
terms of the encryption scheme.

Output: At least one solution of the input system.
Step 1: Compute the Dixon matrix D(xn) for H, with the entries of D

taken from Fq[xn].
Step 2: Choose a v ∈ Fq uniformly randomly.
Step 3: Let D′ = D(v).
Step 4: Perform Gaussian Elimination on D′. Call the result of this E.

Let r = rank(E).
Step 5: Let (s1, s2) := (NumRows(E), NumColumns(E)). If s1 = s2 = r,

then let Y = D, and goto step 8.
Step 6: For 1 ≤ i ≤ s2 do:
Delete the ith column of E; call the result Ei.
If rank(Ei) < r, then goto step 7.
End loop.
Goto step 2.
Step 7: Perform Gaussian elimination on D to choose the columns needed

to construct an r×r submatrix of D with rank r. Perform Gaussian elimination

32

3.3. DIXON RESULTANTS

again to choose the rows needed to construct said submatrix. Call the submatrix
of D formed by these rows and columns Y .

Step 8: Calculate det(Y).
Step 9: Solve det(Y) for its roots (e.g., with Berlekamp’s algorithm[vzGG03,

Section 14.8]). Let S be the set of roots found.
Step 10: For each root w ∈ S, substitute it into Y . Then solve the linear

system Y (w) for its indeterminates v1, v2, . . . vr. Let U be the set of r-tuples
discovered in this way.

Step 11: If Step 10 failed to find a valid solution to Y , let S = {0, v}, and
rerun Step 10.

Step 12: For each r-tuple of [v1, v2, . . . vr] ∈ U , use the indeterminates
v1, v2, . . . vr to determine the indeterminates x1, x2, . . . , xn−1. Store the set of
{n− 1}-tuples found this way in a set W

Step 13: Return the subset of W that actually correspond to common roots
of H.

Proof that Algorithm 3.17 terminates and outputs the desired result:
First, we must assume that the RSC Criteria will hold for the Dixon Matrix

D given by H. If not, then this algorithm may fail. Kapur, Saxena and Yang
[KSY94] noted, and so did Tang and Feng[TF05] note that in all their simula-
tions, the RSC Criteria always held. Neither group offered an explanation for
why this RSC Criteria holds so often.

Step 1 merely computes a Dixon matrix. The random element chosen in
Step 2 is equivalent to the function φ of Theorem 3.16. Steps 3 through 6
check the RSC Criteria of the same theorem using an implicitly chosen set of
constraints C = {x1 6= 0∧ · · ·xn 6= 0}. It is assumed that the RSC Criteria will
hold. Note that the equality of Step 5 occurs only if the original Dixon matrix
D was a square matrix of full rank r. If the loop of Step 6 completes without
being broken to go to Step 7, then the choice of xn = v was bad. The choice
of v can only be bad if xn = v is part of a solution x1, x2, . . . , xn−1, v to the
system P(x) − y = 0. The solution is to choose a different v and repeat the
process. Step 7 computes a matrix Y as in Theorem 3.16, which is the KSY
Dixon matrix. Step 8 computes the KSY Dixon resultant. Step 9 is used to
determine for which values of xn the KSY Dixon resultant is 0. Then we know
that the function φ must evaluate xn to one of the values found in Step 9 in
order for Theorm 3.16 to hold. Step 10 attempts to solve the linear system
given by the KSY Dixon matrix for some of the indeterminates v1, v2, . . . , vs2 .
Here, without loss of generality, we call them v1, v2, . . . , vr.

Step 10, similar to Step 6, can fail. It can fail if an affine zero exists only for
xn = 0, which the constraints C forbid, and therefore do not check. It can also
fail if an affine zero exists for xn = v. As we assume that an affine zero exists
and that the RSC Criteria holds, if Step 10 fails to find a necessary condition for
an affine zero, then one of these last two values must provide such a necessary
condition. The answer here is to retry Step 10 using the last two possibilities
for xn, namely 0, v, as indicated by Step 11.

Step 12 uses the indeterminates v1, v2, . . . vr to determine the indeterminates

33

3. ATTACKING MULTIVARIATE CRYPTOSYSTEMS

x1, x2, . . . , xn−1 by recalling that each vi is a monomial in x1, x2, . . . , xn−1. In
fact, it is likely that some of the vi are equivalent to monomials xj , allow-
ing one to read off the indeterminates x1, x2, . . . , xn−1 from the indeterminates
v1, v2, . . . vr.

Step 13 simply checks all the potential common roots found.
Note that only Step 12 is inexact. It is possible that that the column cor-

responding to the monomial 1 = x0
1x

0
2 · · · in the Dixon matrx D is a linear

combination of the other columns, in which case it is not possible to fully define
the solution set of H, as there will be no constant term to “start” a fully defined
solution using the KSY Dixon matrix K. It is also possible that the indeter-
minates v1, v2, . . . vr are not equivalent to monomials proper for computing the
entirety of x1, x2, . . . , xn−1. In this case, the remaining terms can be chosen
using a brute force search.♦

3.3.4 Runtime of the DR algorithm

Tang and Feng [TF05] note that their algorithm is normally dominated by
Gaussian elimination on the Dixon matrix, which is an s1 × s2 matrix, in Step
4. They note that even if xn = v is part of a common root (x1, x2, . . . , xn) of
F , only a small finite number of Gaussian eliminations are required, in the case
of their testing, 3 was usually the number necessary. So, the algorithm’s overall
complexity is based on the complexity of performing Gaussian eliminations on
a matrix of size s1 × s2. Then it is necessary to estimate s1 and s2. Tang and
Feng [TF05] note that each of s1 and s2 are bounded above by (2n)!

n!(n+1)! . They

note that if f(x) = (2x)!
x!(x+1)! , then as f(x+1)

f(x) = 2 2x+1
x+2 , we have

lim
x→∞

f(x+ 1)
f(x)

= 4.

As 2 2x+1
x+2 ≤ 4 for all positive x, we have 4n as upper bound on s1 and s2 for all

n. Therefore, the DR algorithm has a complexity of O(4nω), where Gaussian
elimination on an n × n matrix is assumed to have complexity O(nω). For
example, one possible value is ω = 3. In fact, for 22 ≤ n ≤ 80, it is possible
to estimate an upper bound on s1 and s2 of 3.5n, and even smaller values as n
approaches 1.

Finally, Tang and Feng [TF05] note that their technique is effective by gener-
ating various small, nonsparse systems of equations and comparing the runtime
of the DR algorithm with the Buchberger algorithm in Maple 9.5 and Faugère’s
F4 algorithm in Singular 3.0. The conclusion that they draw is that the DR
algorithm is significantly faster, often by orders of magnitude, than the other
algorithms used. These experiments are by no means conclusive (they are all
done over F127 and for systems of no more than 8 equations and indeterminates),
but they do merit further review.

One aspect of Tang and Feng’s work not used here is that Tang and Feng
[TF05] claim that for certain sparse systems, the running time of the DR algo-
rithm is polynomial in n, the number of equations and indeterminates. Generic

34

3.4. MINRANK-BASED ATTACKS

MQ-based encryption schemes do not necessarily involve sparse systems at all,
so such a claim is less useful than one might hope from a cryptanalysis point of
view.

3.4 MinRank-based attacks

Solving instances of the MinRank problem is another technique employed in
some attacks on MQ-based encryption schemes. Typically speaking, such at-
tacks aim to break apart the public key P = T ◦ P ′ ◦ S into the private key
(T,P ′, S). However, they are usually tied rather tightly to the underlying cryp-
tosystem, making them hard to describe given the current generic example.
Still, since MinRank is used in more than one attack, and on quite different
cryptosystems, it makes sense to think of it as a somewhat more generic tech-
nique than some others.

The MinRank problem is a deceptively simple problem in linear algebra. It
is restated here from [GC00].

Definition 3.18 (MinRank Problem) Let r be an integer and let F be a
field. Then the MinRank(r) problem is the following: given a set {M1,M2, . . . ,M`} ∈
F
n×n, find a non-zero `-tuple (λ1, λ2, . . . , λ`) ∈ F` such that Rank

(∑`
i=1 λiMi

)
≤

r.

The MinRank problem usually arises when considering the public key P =
(p1, p2, . . . , pm). One can consider the quadratic part of each pi to be given
by a matrix multiplication of the form xtMix, where x = (x1, x2, . . . , xn), and
M ∈ Fn×n. By viewing the public key in this way, it is possible to consider
various MinRank problems, some of which are useful in specific attacks.

The idea behind a MinRank-based attack is to substitute one NP-hard
problem, theMQ problem, for another one, the MinRank(r) problem [SFB96].
The hope is that it is faster to solve an instance of the MinRank(r) problem
and use that solution to determine the private key of anMQ-based encryption
scheme than it would be to directly solve an instance of anMQ-based encryption
scheme for its private key.

3.4.1 Goals of MinRank attacks

The goal of a MinRank-based attack is to learn the private key (T,P ′, S), start-
ing with the function T . Once this is known, the attack proceeds to uncover the
quadratic coefficients of P ′ and the function S. Once these parts of the private
key are known, the linear and constant coefficients of P ′ can be discovered using
gaussian elimination. The details of some such attacks will be provided later,
in Section 5.2.

35

3. ATTACKING MULTIVARIATE CRYPTOSYSTEMS

3.4.2 Solving MinRank(r)

The MinRank(r) problem is shown in [SFB96] to be NP-hard. Of course, this
does not preclude specific instances of the problem being much easier to solve.
For example, it is clear that if r > n, the MinRank(r) problem is totally trivial.
Solving a MinRank(r) problem also varies with the system from which it arises.
Typically, either a heuristic is given to solve an overly-constrained (many more
equations than indeterminates)MQ problem in expected polynomial time (thus
solving the MinRank(r) problem, where the matrices are quadratic coefficients
of a set of polynomials), or some effort is made to show that a process of re-
peated guessing and checking is sufficient to mount an expeditious attack. More
information will follow when details of such attacks are discussed in Section 5.2.

3.5 Differential cryptanalysis

Differential cryptanalysis was introduced by Fouque, Granboulan and Stern
[FGS05] to attack the PMIMQ-based encryption scheme. The PMI cryptosys-
tem was introduced by Ding [Din04] (The PMI cryptosystem is also described
here in Section 4.5, with the associated attack from [FGS05] described in Sec-
tion 5.5.). The technique of differential cryptanalysis is also used in [FGS05]
to attack the MIC∗ cryptosystem (which is described in Section 4.4), so the
technique is not unique to the PMI cryptosystem.

The differential cryptanalysis techniques of [FGS05] are designed to create
practical decryption functions. That is, for any given ciphertext y, its associated
plaintext x will be computed using a calculated function rather than resolving
a system for each ciphertext y, as in a Gröbner basis attack. The primary tools
used to determine such a function are the differential and the bilinear function.

3.5.1 Differentials and bilinear functions

As noted in [FGS05], the following definitions are useful when dealing with
differential cryptanalysis attacks on MQ-based schemes. First and foremost,
let G : Fnq −→ F

m
q be any function, and let k ∈ Fnq . Then, the differential of G

with respect to k is dGk(x), which is given by

dGk(x) = G(x+ k)− G(x).

If G is quadratic, as it is if it is the public key of an MQ-based encryption
scheme, then dGk is an affine function. In this case, it is possible to go one step
further and compute the linear part of the differential, LG,k(x), given by

LG,k(x) = dGk(x)− dGk(0).

Then it is also true that LG,k(x) is linear in the term k, as LG,k(x) = Gk(x +
k)−Gk(x)−Gk(k) +Gk(0). In this case, LG,k(x) is a bilinear function BG(x, k),
where

BG(x, k) = LG,k(x).

36

3.6. SPECIFIC ATTACKS

3.5.2 Attack methods using differential cryptanalysis

The idea of attack methods using differential cryptanalysis is to use differentials
of quadratic functions P to get bilinear functions LP,k(x) = BP(x, k). The goal
is to find clever ways to take these differentials, and clever ways to manipulate
the bilinear maps in order to generate a bilinear system in terms of the plaintexts
x and the ciphertexts y. The main attack of Fouque, Granboulan and Stern
[FGS05], which does just that, is reproduced in Section 5.5 in this work.

3.6 Specific attacks

Sometimes a given MQ-based encryption scheme has a design flaw allowing
an attack on that particular system of a type not previously mentioned. It is
rare that the attack methods used in such an attack lend themselves to use
in other attacks on other MQ-based encryption schemes. A specific attack
against a particularMQ-based encryption scheme will be explained in detail in
Section 5.4.

37

Chapter 4

Selected
MQ-Cryptosystems

4.1 Preliminaries

Often, a family of MQ-based encryption schemes uses a public key function P
that is not a bijection on its image. Because of this, it is necessary to create
some redundancy in the domain of the function P. In these instances, rather
than create our plaintext x = (x1, x2, . . . , xn) ∈ Fnq by a simple embedding of
the original message M into Fnq , something slightly more complicated occurs.

In these cases, the plaintext x is generated from the message M in the
following way. First, let H be a cryptographically secure hash function, with
output at least 64 bits. Patarin [Pat96b] recommends that at least 64 bits of
redundancy be used to ensure that the messages encrypted can be decrypted,
so embed the original text M concatenated with the first 64 bits of H(M) into
F
n
q , to form our plaintext x.

A side effect of this fact is the following–decryption techniques will create a
set of candidates. The correctly deciphered plaintext x will be the one with the
property x = M ||H(M).

4.2 The STS family

The Step-wise Triangular Schemes (STS) family was introduced by Wolf, Braeken
and Preneel [WBP04]. They are a somewhat artificial family, introduced solely
to showcase a new attack on a pair of schemes proposed by Kasahara and Sakai
[KS04b, KS04a]. The STS family itself contains the Triangle Plus-Minus (TPM)
family, another artificial family of cryptosystems introduced to showcase an at-
tack, this time by Goubin and Courtois [GC00]. As mentioned in Chapter 2 the
trapdoor technique used is the primary piece of information required to under-
stand the unique features of anMQ-based encryption system’s encryption, de-

39

4. SELECTED MQ-CRYPTOSYSTEMS

cryption, and key generation techniques. Here, the trapdoor technique is to cre-
ate a “triangle” out of the indeterminates in the equations P ′ = (p′1, p

′
2, . . . , p

′
m)

that make up the private key, where p′1 uses r+ 1 indeterminates, and each fol-
lowing pi uses a superset of the indeterminates that were in the previous pi−1,
until all n indeterminates are in use. A totally triangular shape would use n
equations, have r = 0, and introduce a single additional indeterminate at each
private equation.

4.2.1 Key generation

The STS family uses a number of parameters. First, a scheme from the STS
family uses a field of q elements for all operations, Fq. The triplet (T,P ′, S)
making up the private key uses m equations and n indeterminates. There are
L layers or steps in an STS scheme.

Step 1


p′1
...
p′m1

=
...
=

g1(x1, x2, . . . , xa1)

gm1(x1, x2, . . . , xa1)

Step 2


p′m1+1
...
p′m1+m2

=
...
=

gm1+1(x1, x2, . . . , xa1 , xa1+1, . . . , xa1+a2)

gm1+m2(x1, x2, . . . , xa1 , xa1+1, . . . , xa1+a2)
...

Step L


p′m−mL+1
...
p′m

=
...
=

gm−mL+1(x1, . . . , xn)

gm(x1, . . . , xn).

The positive integers a1, a2, . . . , aL are the number of new indeterminates in-
troduced at each step—they are the width of each step i, for 1 ≤ i ≤ L. The
positive integers m1,m2, . . . ,mL are the number of polynomials used for each
step—they are the height of each step i. It is the case that a1 + · · · + aL = n
and m1 + · · · + mL = m, as one might expect. In terms of the metaphor, the
stairs go all the way down.

The TPM family is a special case of the STS family in the following way: in
the TPM family,

a2 = a3 = · · · = aL = m1 = m2 = · · · = mL−1 = 1.

The remaining values, a1 and mL, represent the number of indeterminates used
in the initial equation, and the number of equations that utilize all n indeter-
minates, respectively. The idea is that in the TPM family, the perfect triangle
shape has had some (a1−1) equations subtracted from it and some (mL−1) ad-
ditional equations using all the indeterminates added to it. Goubin and Courtois
[GC00] noted that so long as a1 ≤ mL, the probability this system of equations
is not injective is negligible.

40

4.2. THE STS FAMILY

The private key is computed in the following way. First, the affine functions
T and S are computed in the usual way, as described in Section 2.3.1. Second,
for each of the private polynomials p′i, the polynomial gi will be a random
quadratic polynomial using the first a1 + · · ·+aj indeterminates, where j is the
smallest positive integer such that i ≤ a1 + · · ·+ aj . So,

p′i = gi(x1, . . . , xa1+···+aj).

This gi is determined by choosing the coefficients using a uniformly random
number generator over the finite field Fq. The public key P is determined as
usual, P = T ◦ P ′ ◦ S.

4.2.2 Encryption

In an STS system, encryption is accomplished by embedding a message M into
F
n
q , forming a plaintext x, using the technique described in Section 4.1 forMQ-

based encryption schemes that may not be bijective. The public key P is then
used to compute P(x), which is sent out as the ciphertext y.

4.2.3 Decryption

Decryption is a step-wise process. The recipient begins with a ciphertext y,
where

y = P(x) = T ◦ P ′ ◦ S(x).

First, the recipient applies T−1 to this ciphertext, forming

T−1(y) = P ′ ◦ S(x).

After this, the recipient performs a sequence of exhaustive searches on each
“step” of the private set of polynomial equations P ′. At the first step, an ex-
haustive search of the a1 indeterminates requires O(qa1) indeterminate assign-
ments. Once the a1-tuples satisfying the first m1 equations are found, there is a
recursive loop, as for each valid set of choices for x1, x2, . . . , xa1 , a new system
is created by assigning the indeterminates x1, x2, . . . , xa1 each set of possible
values. Then the next step can be solved, using the same technique. After all L
steps, there will be a set of valid x values. The correct x value will be the one
of the form x = M ||H(M) (see Section 4.1).

Note that these exhaustive searches are bounded in speed by the values
a1, a2, . . . , aL, so it is imperative that no step be too wide, or the stairs will take
too long to climb down, and the system will be unusably slow as an encryption
scheme.

4.2.4 Suggested Parameters

Wolf, Braeken and Preneel’s STS family was created to generalize an attack on
the TPM family of Goubin and Courtois [WBP04, GC00]. Both families are
quite general. A pair of schemes RSSE(2)PKC and RSE(2)PKC introduced by

41

4. SELECTED MQ-CRYPTOSYSTEMS

Kasahara and Sakai [KS04b, KS04a] are shown by Wolf et al. [WBP04] to be
instances of the STS family, and use the following parameters. They use the
base field F2. Both set a value r such that

r = a1 = · · · = aL = m1 = · · ·mL.

This greatly simplifies much of the notation, and also makes it highly unlikely
[GC00], although not impossible, that at any given step, there will be more than
one possible solution.

Each of these systems is susceptible to the STS attacks of Wolf et al. [WBP04],
so they are by no means secure. One particular challenge involved an instance
with r = 5, n = 100, which, by the rules for r just listed, means that m = 100
and L = 20. It was beaten by Wolf et al. [WBP04] in a matter of hours using
an AMD Athlon XP 2000+.

Similarly, TPM schemes are not considered secure. The main scheme con-
sidered by Goubin and Courtois [GC00] was the TTM cryptosystem, which uses
the following parameters:

q = 256, n = 64, m = 100, a1 = 2, mL = 38,

recalling that as a TPM scheme, all steps consist of 1 equation with one new
indeterminate, except the first step, which introduces a1 = 2 new indeterminates
and 1 new equation in this case and the last step, which introduces 1 new
indeterminate and mL new equations. Goubin and Courtois [GC00] note that
they have an attack on TTM that uses O(252) elementary operations.

Details of attacks on STS and TPM are given in Section 5.2.

4.3 Basic HFE

The Hidden Field Equations (HFE) family of MQ-based encryption schemes
includes a number of variants. Basic HFE, which will be explained here, forms
the basis for the rest. HFE was introduced by Patarin [Pat96b], as an extension
of the ideas of Matsumoto and Imai [MI88]. However, it is sufficiently different
from the MIC∗ system of [MI88] to be considered its own system. MIC∗ itself is
described in Section 4.4. The trapdoor technique used in Basic HFE is to use a
certain kind of univariate equation in Fqn as the basis of the private key element
P ′. In order to efficiently do this, we use a bijection from the n-tuples of elements
of Fq to Fqn . These bijections are easily found, as they correspond to the monic
irreducible polynomials of degree n in Fq[z], for a univariate indeterminate z.
Unfortunately, the HFE system requires redundancy in the plaintexts it uses,
as the function P ′ is rarely invertible.

4.3.1 Key generation

In a basic HFE encryption scheme, there are as many indeterminates as there
are equations, so n = m. The private key of an HFE system can be considered,

42

4.3. BASIC HFE

as always, a triple (T , P ′, S). T and S are formed in the usual way (see
Section 2.3.1). Let φ be an isomorphism

φ : Fnq −→ Fqn .

φ can be constructed by forming uniformly random monic univariate polynomi-
als g(z) of degree n over Fq until an irreducible one is found. This irreducible
polynomial g(z) defines the isomorphism φ in the usual way–

φ : F
n
q −→ Fq[x]/ (g(x))

(a0, . . . , an−1) 7−→
∑n−1
i=0 aix

i.

Since g(z) generates a maximal ideal of Fq[z], the commutative ring Fq[z]/〈g(z)〉
is a field, and that field has qn elements. Let Q be a univariate polynomial over
Fqn , defined in the following way

Q(z) =
∑

a,b∈Z≥0

qa+qb≤d

αa,bz
qa+qb +

∑
c∈Z≥0
qc≤d

βcz
qc + γ.

The coefficents of Q are chosen uniformly randomly, with a maximum degree
d, which, amongst other things, prevents polynomials of infinite degree. Kipnis
and Shamir suggest [KS99] a maximum value of d = 8192. In order to see
that Q(z) is in fact a quadratic function, first recall that in Fqn , the function
g(z) = zq is a linear function:

g(z1 + z2) = g(z1) + g(z2) and g(k · z1) = kg(z1) for z1, z2 ∈ Fqn , k ∈ Fq.

Therefore, zq
c

is a composition of linear functions, and thus also linear. Now a
small theorem is requred.

Theorem 4.1 Let f be a linear function over a finite field Fqn . Then f is either
the zero function or a bijection; furthermore, f can be written as f(x) = cx for
some constant c ∈ Fqn .

Proof: First note that f is a linear transformation over Fqn seen as a vector
space. Therefore, it has a kernel of dimension 0 or dimension 1. If dim(ker(f)) =
1, then f is the zero function. If dim(ker(f)) = 0, then f is a bijection. To
see that f(x) = cx, for some constant c ∈ Fqn , let c = f(1). Then the function
f(x) − cx is also linear, as f(x) and cx are linear functions, and the sums and
differences of linear functions are linear. Therefore, since the function f(x)− cx
has at least 2 roots x = 1 and x = 0, we have that dim(ker(f(x) − cx)) = 1,
and f(x)− cx is the zero function. So f(x) = cx, as desired.♦

Theorem 4.1 implies that the product of 2 linear univariate functions is a
quadratic function in the usual sense; if f and g are linear functions, then by
Theorem 4.1, they may be written as f(x) = cx and g(x) = dx, respectively.
So their product is a quadratic function f(x)g(x) = cdx2. Therefore, the terms
of the form zq

a+qb = zq
a

zq
b

are a product of linear functions of z, so they are

43

4. SELECTED MQ-CRYPTOSYSTEMS

quadratic functions of z. Thus, basic HFE is an MQ-based scheme. Then the
private key element P ′ may be constructed from these components, forming
P ′ = φ−1 ◦ Q ◦ φ. However, this is not actually done. Instead of computing P ′
and storing it, the polynomial Q and the invertible function φ are stored instead.
Q is stored using its coefficients, while φ is stored as an invertible matrix, since
it is a linear transformation. The public key P is given by P = T ◦ P ′ ◦ S, as
usual, noting that in this case, P ′ itself is never directly computed—it is merely
a placeholder for φ−1 ◦ Q ◦ φ.

Note that the term hidden field equations comes from the fact that “hidden”
inside the public key polynomial system is a univariate polynomial system over
an extension field of the field used in the public key itself.

4.3.2 Encryption

In an HFE system, encryption is accomplished by embedding a message M into
F
n
q , forming a plaintext x, using the technique described in Section 4.1 forMQ-

based encryption schemes that may not be bijective. The public key P is then
used to compute P(x), which is sent out as the ciphertext y.

4.3.3 Decryption

Let y = P(x) be the ciphertext for some unknown plaintext x. The intended
recipient of the ciphertext begins applying the private key in reverse order, as

y = (T ◦ φ−1 ◦ Q ◦ φ ◦ S)(x).

T and φ−1 are invertible, and represented by matrices, so not only does φ◦T−1

exist, it can be computed with simple matrix manipulations. Therefore,

φ ◦ T−1(y) = Q ◦ φ ◦ S(x),

is easily computed. Now, however, we are working with a univariate polynomial
in x of degree ≤ d. Many techniques exist to find the roots of such polynomials,
such as Berlekamp’s algorithm [vzGG03, 14.8]. Let R denote the set of all
solutions x to

0 = (Q ◦ φ ◦ S)(x)− φ ◦ T−1(y).

Note that only roots in the field Fqn itself are found by Berlekamp’s algorithm,
and only those roots are desired. Note also that finding the roots of a polynomial
is bounded in difficulty by the degree of that polynomial. This is the reason
that Kipnis and Shamir [KS99] suggested a maximum value of d = 8192, as for
larger values root-finding algorithms perform too slowly. The set R is the set
of all possible preimages that could lead to y, so

R =
{
z ∈ Fqn | 0 = (Q(z)− φ ◦ T−1(y)

}
.

Now construct the set S−1(φ−1(R)) from R. For this set, we have

S−1(φ−1(R)) =
{
x ∈ Fnq | 0 = (Q ◦ φ ◦ S)(x)− φ ◦ T−1(y)

}
.

44

4.3. BASIC HFE

Thus, it is exactly the set of possible plaintexts x that could encrypt to the
ciphertext y. The correct plaintext is the element of this set having the property
listed in Section 4.1.

4.3.4 Suggested parameters

While attacks against basic HFE do exist (see Section 5.3 for details), they are
subexponential, and certain parameter choices push one outside their bounds.
For starters, Patarin [Pat96b] suggested using plaintexts at least 128 bits long
to avoid brute force searching. Courtois [Cou05] recommended using q = 2. For
n, the number of equations and indeteriminates, he recommended that n ≥ 127,
in order to avoid attacks that threaten small values of n. He also recommended
that n be prime, to avoid the possibility of attacking a system through subfields.
Such attacks have been reported againstMQ-based signature schemes that use
coefficients from proper subfields, as noted by Wolf and Preneel [WP04]. As
for d, the degree of the hidden field equation Q, provided n ≥ 127, he notes
25 ≤ d ≤ 33 is sufficient to resist all known attacks. Courtois also gave an
example of choices that lead to a system unassailable by current attacks, namely
q = 2, n = 251 and d = 25. For a more detailed look at the security of HFE,
see Section 6.2.1.

4.3.5 Toy example

Here is a toy example of HFE key generation, encryption and decryption. We
use q = 2,m = n = 3, d = 3 as parameters. We begin selecting our private key
by fixing φ,

φ : (x1, x2, x3) 7−→ x1 + x2α+ x3α
2,

where α is a root of v3 + v + 1. We generate a random univariate function
Q(z) = z3 + z2 in F8. Next, we generate two random affine transformations T
and S. Here, T is given by:

T (x) =

 0 1 1
1 1 1
0 1 0

x+

 1
0
1

 .
Similarly, S is given by:

S(x) =

 0 1 1
1 0 1
1 0 0

x+

 0
1
1

 .
This gives us a private HFE key. We generate the public key P by composing
these functions T ◦ φ−1 ◦ Q ◦ φ ◦ S. Thus, P is given by:

y1 = x1x2 + x2x3 + x1 + x2 + x3

y2 = x1x2 + x1x3 + x2x3 + x2 + x3

y3 = x1x3 + 1.

45

4. SELECTED MQ-CRYPTOSYSTEMS

In this example, we still need a level of redundancy in order to determine correct
answers versus incorrect answers. So, all plaintexts will consist of two bits of
information followed by a parity bit. Therefore, in order to send 11, we encode
it as x = (1, 1, 0), then encrypt it by using x as the input to the public key. The
result of this encryption is our ciphertext y = (1, 0, 1).

Now we will attempt to decrypt our ciphertext y = (1, 0, 1). To do this, we
need the functions φ−1, T−1 and S−1. For this example, φ−1 is trivial if we
work with F8 using the polynomial basis 1, α, α2. We have T−1 given by:

T−1(x) =

 1 1 0
0 0 1
1 0 1

x+

 1
1
0

 .
Similarly, S−1 is given by:

S−1(x) =

 0 0 1
1 1 1
0 1 1

x+

 1
0
0

 .
Now we can continue. We begin by taking T−1(y), which is:

T−1

 1
0
1

 =

 0
0
0


This maps to 0 ∈ F8 after applying φ. So, now we have to solve the equation

z3 + z2 = 0

for its roots. By inspection, z = 0 is a double root and z = 1 is the other root.
Apply φ−1 to each of these and we have (0, 0, 0) and (1, 0, 0), respectively. Then
apply S−1, and we see that

S−1 : (0, 0, 0) 7−→ (1, 0, 0).

A simple parity check shows that (1, 0, 0) is not the plaintext. However,

S−1 : (1, 0, 0) 7−→ (1, 1, 0)

passes the parity check, so we decrypt our original ciphertext y = (1, 0, 1) to
x = (1, 1, 0).

4.4 MIC∗

Introduced by Matsumoto and Imai [MI88], the MIC∗ cryptosystem can also
be seen as a special case of the basic HFE cryptosystem family, although it
should be noted that MIC∗ came first. Because the nature of the MIC∗ system
makes encryption and decryption significantly different from HFE encryption
and decryption, it is listed seperately. An MIC∗ system requires that the field
Fq is characteristic 2, so q = 2k. This is a requirement that HFE does not have.
MIC∗ systems retain the HFE assumption that n = m.

46

4.4. MIC∗

4.4.1 Key generation

The private key of an MIC∗ encryption scheme is found in a way quite similar
to that of the key of basic HFE. As usual, T and S are determined in the same
way as any other MQ-based encryption scheme. The function φ is determined
exactly as in Section 4.3.1, and the private key element P ′ is again created using
φ and a univariate polynomial Q over the extension field Fqn . In the case of the
MIC∗ scheme, however, the hidden field equation Q is much simpler, having the
form

Q(z) = zq
`+1

where ` ∈ [1, n− 1] is uniformly randomly chosen until

gcd(q` + 1, qn − 1) = 1.

Note that Q is quadratic, as it is the product of two linear functions in z, namely
zq
`

and z, where a linear function is a function g such that

g(z1 + z2) = g(z1) + g(z2) and g(k · z1) = kg(z1) for z1, z2 ∈ Fqn , k ∈ Fq.

This is shown exactly as in Section 4.3.1, using Theorem 4.1 in the same way, as
the MIC∗ family is strictly contained within the HFE family. Thus, this scheme
isMQ-based. Now, just like in the case of the HFE system (see Section 4.3.1),
the private key is stored as (T, φ,Q, S), where the usual middle term P ′ is given
by P ′ = φ−1 ◦ Q ◦ φ. The public key is given by P = T ◦ P ′ ◦ S. As in the
HFE system, the set of polynomial equations P ′ are merely a shorthand for
φ−1 ◦ Q ◦ φ in this system.

4.4.2 Encryption

In the MIC∗ system, encryption is accomplished by embedding a message m
into Fnq , forming a plaintext x. The public key P is then used to compute P(x).

4.4.3 Decryption

In the MIC∗ system, decryption is much more straightforward than in basic
HFE systems. The choice of ` in generating the private key polynomial Q
implies that by Fermat’s Little Theorem, there exists an h ∈ [1, qn−1] such that
h(q` + 1) ≡ 1 (mod qn − 1). Then, Q−1(z) = zh, as Q is invertible. Note that
gcd(q`+1, qn−1) = 1 is the requirement that forces fields of even characteristic
to be used in MIC∗. In a field of odd characteristic, gcd(q` + 1, qn − 1) ≥ 2 and
thus Q is not necessarily invertible.

Let y = P(x) be a received ciphertext. The legitimate recipient of this
ciphertext simply applies the inverses of each section of the private key in turn,
moving from

y = (T ◦ φ−1 ◦ Q ◦ φ ◦ S)(x)

to
(S−1 ◦ φ−1 ◦Q−1 ◦ φ ◦ T−1)(y) = x.

47

4. SELECTED MQ-CRYPTOSYSTEMS

4.4.4 Suggested parameters

There is an extremely effective attack on MIC∗ due to Patarin [Pat95]. Because
of this, there are no real suggested parameters for this MQ-based encryption
scheme. As a historical footnote, Matsumoto and Imai [MI88] created an im-
plementation of MIC∗ for q = 28 and n = 32.

4.5 Perturbed MIC∗

Perturbed MIC∗ is a variant of MIC∗ introduced by Ding [Din04]. It is usually
abbreviated to PMI. The PMI system attempts to increase the complexity of
the private key term P ′ in order to increase security, using a system A of r
arbitrary quadratic equations over Fq, with the assumption that r << n.

4.5.1 Key generation

Key generation in perturbed MIC∗ is a strict superset of the process described in
Section 4.4.1. The private key becomes still more complicated, as the function
P ′ is modified using an additional pair of functions. The first function is a linear
map π : Fnq −→ F

r
q. π can be constructed randomly by taking random r × n

matrices until one of rank r is found. The second function is a system A of n
arbitrary quadratic equations in r indeterminates over Fq. Choosing uniformly
random coefficients for each term of the n polynomials (a1, a2, . . . , an) of A
determines A.

The private key is now (T, φ,Q,A, π, S), where φ and Q are constructed and
stored as in Section 4.4.1. That is, the usual term P ′ in the private key is not
stored directly. Rather, since φ, Q and A are already being stored, and

P ′ = φ−1 ◦ Q ◦ φ+A ◦ π,

there is no need to calculate P ′ explicitly. The public key, as usual, is P =
T ◦ P ′ ◦ S. Note that as in Section 4.4.1, the term P ′ is not stored; it is a
shorthand for the function compositions and sums used in the PMI system.

4.5.2 Encryption

In a PMI system, encryption is accomplished by embedding a message M into
F
n
q , forming a plaintext x, using the technique described in Section 4.1 forMQ-

based encryption schemes that may not be bijective. The public key P is then
used to compute P(x), which is sent out as the ciphertext y.

4.5.3 Decryption

Decryption is somewhat more painful than in MIC∗ itself. The system A is
an arbitrary system of quadratic equations, so in general it is not invertible.
Therefore, typically A is stored as a set of points P , where

48

4.5. PERTURBED MIC∗

P =
{

(λ,Λ) | λ ∈ Im(A),Λ = A−1(λ)
}
.

The decryption process is now fairly straightforward. Let y = P(x) be a received
ciphertext. The legitimate recipient of this ciphertext begins with

y = (T ◦ (φ−1 ◦ Q ◦ φ+A ◦ π) ◦ S)(x).

First, the recipient computes

T−1(y) = ((φ−1 ◦ Q ◦ φ+A ◦ π) ◦ S)(x).

Note that this can be rewritten as

T−1(y) = (φ−1 ◦ Q ◦ φ ◦ S +A ◦ π ◦ S)(x).

This leads to the next step, a brute force search of the points P . For each pair
(λ,Λ) ∈ P , assume that

T−1(y) = (φ−1 ◦ Q ◦ φ ◦ S)(x) + λ.

Now it is sufficient to compute

(φ−1 ◦ Q−1 ◦ φ)(T−1(y)− λ) = S(x).

If (π◦S)(x) ∈ Λ, then compute x from S(x) as usual, and add the computed x to
a set of candidate solutions C. If (π◦S)(x) /∈ Λ, then ignore this λ and continue.
Once each element of P is considered, there will be a set of possible solutions.
Use the standard technique set forth in Section 4.1 to find the plaintext x.

4.5.4 Suggested parameters

Standard PMI can be attacked. This is shown in Section 5.5. Ding [Din04] sug-
gests that a practical implementation of the PMI system be as follows: choose
q = 2, n = 136, and r = 6. Let the function Q(z) = z25×8+1. He believed
that the attack complexity of his given system was on the order of 2100 opera-
tions. However, the attack of Fouque, Granboulan and Stern [FGS05] indicates
a security level on the order of 249 operations. Ding and Gower [DG05] later
recommended that in general, r ≥ 6, based on computer simulations. For r = 6,
they suggest n = 100. The attack of Fouque, Granboulan and Stern is exponen-
tial in r and polynomial in n, so basic PMI is considered broken. It has been
patched, however, as noted in Section 6.2.3.

49

Chapter 5

Attacking TPM, HFE,
MIC∗ and PMI

5.1 Preliminaries

Sometimes, in the course of attacking an MQ-based encryption scheme, it is
useful to know that T and S, the affine transformations that make up part of
the private key, are in fact linear transformations. It is often possible to show
this directly by a simple trick, due to Wolf, Braeken and Preneel [WBP04].
Recall that T and S are defined as T (x) = T`x + Tc and S(x) = S`x + Sc,
where T` ∈ Fm×mq is an invertible matrix and Tc ∈ Fmq is a column vector,
and S` ∈ Fn×nq is an invertible matrix and Sc ∈ Fnq is a column vector. Let
P be the public key of a generic MQ-based encryption scheme, with private
key (T,P ′, S). It is a simple matter to rewrite T and S in a more favorable
way. First, view T` and S` as linear operators, and let Id denote the identity
operator. Then let

S(x) = (Id+ Sc) ◦ (S`x).

In a similar way, let
T (x) = T` ◦ (Id+ T−1

` Tc)(x).

Now, instead of writing P = T ◦ P ′ ◦ S, we consider

P(x) = (T` ◦ (Id+ T−1
` Tc)) ◦ P ′ ◦ ((Id+ Sc) ◦ S`)(x).

Now, as function composition is associative, this can be restated as:

P(x) = T` ◦ ((Id+ T−1
` Tc) ◦ P ′ ◦ (Id+ Sc)) ◦ S`(x).

Now, let U be this new internal function, so

U = (Id+ T−1
` Tc) ◦ P ′ ◦ (Id+ Sc).

If this new system (T`, U , S`) still satisfies the trapdoor condition inherent to
the particular MQ-based encryption scheme in question using the new middle

51

5. ATTACKING TPM, HFE, MIC∗ AND PMI

function U , then an attacker may assume that T and S are linear. Wolf, Braeken
and Preneel [WBP04] note that this result holds for STS encryption schemes
(described here in Section 4.2), and that it has been shown to hold for HFE
encryption schemes (described here in Section 4.3).

5.2 Attacking STS

The following attack is due to Wolf, Braeken and Preneel [WBP04].
Recall that the STS cryptosystem was first discussed in Section 4.2. This

attack uses the MinRank attack ideas of Section 3.4. The values of note in an
STS cryptosystem are the order q of the base field, the number n of indetermi-
nates, the number m of equations, and the number L of steps. For simplicity,
this attack assumes all steps have equal height and width r. STS schemes with
steps of this sort are refered to as regular STS schemes. In regular STS schemes,
n = m, and L = n/r. Note that the term layer is equivalent to the term step,
and they will be used interchangeably in this section.

The flow of this attack will be as follows. First, there will be some ground
work about matrices, and demonstrating that a chain of kernels exists. Then,
using the fact there is a chain of kernels, an attack of Wolf, Braeken and Preneel
[WBP04] will be presented. This particular attack recovers a system (T̃ , P̃ ′, S̃)
that functions equivalently to the original private key (T,P ′, S). Finally, this
attack will use the facts pointed out in Section 5.1 to assume that the private key
(T,P ′, S) uses linear functions T and S rather than affine functions. Note finally
that this attack is one of several variants offered by Wolf, Braeken and Preneel
[WBP04]. There are variants that do not recover a complete equivalent private
key, and that solve for T̃ slightly differently. The variants exist because for
certain parameter choices, they are asymptotically faster than the one presented
here, but do not significantly stray from the ideas of this variant. Thus, they
are omitted.

5.2.1 Matrices and MinRank

It is necessary, when dealing with MinRank attacks, to deal with matrices.
Here, those matrices come from the quadratic coefficients of the public key
P polynomials pi, 1 ≤ i ≤ m. Let x ∈ Fnq . For 1 ≤ i ≤ m, the quadratic
coefficients of pi can be represented with a matrix Mi ∈ Fn×nq . The quadratic
terms themselves can be constructed by taking xtMix, where t denotes the
transpose. These matrices Mi are all public, as the public key is public. In
the same way, the quadratic coefficients for the private key polynomials P ′,
p′i, 1 ≤ i ≤ m can be represented with a matrix Ai ∈ Fn×nq . The quadratic
terms themselves are then constructed by taking xtAix. These matrices Ai are
all secret.

In order for MinRank attacks to work correctly, such matrices must always
be uniquely represented. If q is odd, then this is always possible using symmetric
matrices. Any quadratic polynomial γ can have its quadratic terms represented

52

5.2. ATTACKING STS

by a symmetric matrix Γ in the following way, demonstrated using a toy example
with 3 indeterminates:

Γ =

 γ1,1
γ1,2

2
γ1,3

2γ1,2
2 γ2,2

γ2,3
2γ1,3

2
γ2,3

2 γ3,3

 .

This corresponds to a system

xtΓx = γ1,1x1x1 + γ1,2x1x2 + γ1,3x1x3 + γ2,2x2x2 + γ2,3x2x3 + γ3,3x3x3.

Note that this requires a division by 2. A different technique must be used to
deal with the case of q even.

If q is even, then let γ be any quadratic polynomial, and, similar to before, let
Γ be a matrix representation of the quadratic coefficients of γ such that xtΓx
is the quadratic part of γ. Using Gaussian elimination, reduce Γ to a lower
triangular matrix L. Then, according to Wolf, Braeken and Preneel [WBP04],
the symmetric matrix L + Lt is also capable of fulfilling the role of Γ and is
symmetric by construction. This particular result can be traced back to Don
Coppersmith, according to Wolf, Braeken and Preneel, who note that Kipnis
and Shamir [KS99] attribute the statement to Coppersmith, and that this is the
first time to their knowledge that the statement was reported. Note also that
the diagonal is necessarily all 0. This is good. If q is even, then the function
x2
i is a linear function. Thus, it is always possible to uniquely represent the

quadratic parts of polynomials with symmetric matrices.

5.2.2 Chain of kernels

Now we wish to show that there exists a chain of kernels, one per step. This
chain of kernels is the key to attacking the STS system. First, note that the
secret matrices Ai have common kernels. For each layer `, for 1 ≤ ` ≤ L
all of the matrices A(`−1)r+1, . . . A`r are rank r`, and use exactly the first rl
indeterminates of x ∈ Fnq . There are common kernels for each matrix in the
same layer as well. For each Ai sharing the same layer `, the kernel is given by

ker′` =
{
a′ ∈ Fnq | a′1 = · · · = a′r` = 0

}
.

This gives a chain of kernels

ker′L ⊂ · · · ⊂ ker′1 .

Now we seek to determine something about the kernels of the public matrices
Mi from this fact. Note first that these kernels are always hidden behind the
linear transformation S, which is a mere change of indeterminates. For each
private polynomial p′i, we can take the composition of that function and the
change of indeterminates S and instead let p̂i := p′i ◦ S. Then we obtain a set
of matrices Âi from this,

Âi := StAiS.

53

5. ATTACKING TPM, HFE, MIC∗ AND PMI

S is invertible, so rank(Âi) = rank(Ai). Also, the kernels of Âi for all Âi sharing
the same layer—that is, for a fixed `, 1 ≤ ` ≤ L, and for (`− 1) < i ≤ r`—are
given by

ker` =
{
a′S−1 | a′ ∈ Fnq and a′1 = · · · = a′r` = 0

}
.

Since there is a chain of kernels for the ker′`, there is a chain of kernels

kerL ⊂ · · · ⊂ ker1 .

It is now possible to write down Mi entirely in terms of these Âi and T . First,
let T = (τi,j)1≤i,j≤m. Then as P = T ◦ P ′ ◦ S, each Mi can be written as

Mi =
m∑
j=1

τi,j
(
StAiS

)
=

m∑
j=1

τi,jÂi.

Finally, as
T−1 ◦ P = P ′ ◦ S,

finding T−1 is reduced to finding a linear combination of the public matrices Mi

with a specific rank. The chain of kernels kerL ⊂ · · · ⊂ ker1 gives this property.

5.2.3 Finding T̃

This attack attempts to guess row vectors of T−1. The reasoning behind this
begins with the vector spaces

J` =
{
b′T−1 | b′ ∈ Fmq and b′`r+1 = · · · = b′m = 0

}
for 1 ≤ ` ≤ L.

It is clear that these also form a descending chain of subspaces, and that each J`
has rank m− `r. Thus, if v ∈R J`+1 is chosen randomly, there is a probability
of q−r that v ∈ J` as well. Now we need a method to determine whether or not
v ∈ J`. We will consider a method called matrixCheck that returns true if and
only if

rank

(
m∑
i=1

viMi

)
≤ `r.

Definition 5.1 (matrixCheck) The algorithm matrixCheck is defined as fol-
lows:

matrixCheck(m,n, r, `,M1,M2, . . . ,Mm, v1, v2, . . . , vm)
Input: A set of matrices Mi and a set of constants vi, where 1 ≤ i ≤ m.

Also, m,n, r, ` as above.
Output: TRUE, if v ∈ J` or FALSE if v /∈ J`.
Let M =

∑m
i=1 viMi.

If rank (M) ≤ `r, then return TRUE
Else return FALSE

54

5.2. ATTACKING STS

To see that this method actually works, note that instead of considering v ∈
J`+1, we may write v as b′T−1, by definition of J`+1. Then instead of computing∑m
i=1 viMi, note that the T−1 and T cancel, so instead we consider a matrix M

given by:

M :=
m∑
i=1

b′iÂi =
m∑
i=1

b′i
(
StAiS

)
= St

(
m∑
i=1

b′iAi

)
S.

Then it is clear from the ranks of the secret polynomials Ai that

rank(M) ≤ `r if and only if v ∈ J`.

Since M is the same matrix as the one defined in the definition of matrixCheck,
this procedure works as advertised.

This leads to a simple algorithm. Given the matrices Mi, we can compute
each vector space J` from L−1 down to 1, as JL = F

m
q . We do this using O(mqr)

randomly chosen v ∈ J`+1 per layer. Each v requires one use of matrixCheck,
which requires O(n3) operations, as it requires a rank computation of a matrix
M ∈ Fn×nq . Finally, there are L layers. So the total time to compute this chain
of kernels is O(mn3Lqr).

Now that the chain of kernels J`, for 1 ≤ ` ≤ L is known, we can compute T̃
by first computing T̃−1. We compute this value in the following way. Assuming
J0 = ∅, Let

J̃`+1 := J`+1 − J`, for 0 ≤ ` ≤ L− 1.

Then each J̃`+1 has rank r. Pick a basis B`+1 for each J̃`+1. Define T̃−1 row
by row by setting rows 1 through r as the basis vectors of B1, and in general
rows `r + 1 through (`+ 1)r as the basis vectors of B`.

Finally, invert T̃−1 and return T̃ . Wolf, Braeken and Preneel note [WBP04]
that in general this is not T itself, and that the rows of T̃ are linear combina-
tions of rows of T within the same layer. The computational difficulty of the
steps after the chain of kernels is computed is negligible, so the overall cost of
calculating T̃ is O(mn3Lqr).

5.2.4 Computing P̃ ′ and S̃

The first step of the attack is over. We have a replacement for T—T̃ . The next
step is to calculate S̃ and P̃ ′, as naturally calculating one gives the other. To
do so, first compute the values Âi from Mi by noting that

Âi = T̃−1Mi, for 1 ≤ i ≤ m.

Let K` be the kernel for Âi, for (` − 1)r < i ≤ `r, and 1 ≤ ` ≤ L. Similar to
before, let

K̃` := K`−1 ∩ K̄`, for 0 ≤ ` ≤ L.

Again, each K̃` has rank r, so find a basis C` for each K̃`. Define S̃−1 row by
row by setting rows 1 through r as the basis vectors of B1, and in general rows
(`− 1)r + 1 through `r as the basis vectors of B`.

55

5. ATTACKING TPM, HFE, MIC∗ AND PMI

Finally, invert S̃−1 and return S̃, and return P̃ ′ in the form

Ã′i := ÂiS̃
−1, for 1 ≤ i ≤ m.

The most costly step is computing the kernels K`. There are m polynomials to
evaluate, and they have O(n2) quadratic terms each. Each quadratic term costs
O(n2) to evaluate, as it has 2 indeterminates. Thus, the total cost is O(mn4).
This dominates the other costs here.

5.2.5 Using (T̃ , P̃ ′, S̃)

The attack gives almost everything necessary to operate as the legitimate user.
The attacker has access to a system (T̃ , P̃ ′, S̃) that faithfully replicates the
behavior of the quadratic part of the system (T,P ′, S. The linear and constant
terms of the polynomial system, however, are not yet known. This is easily
remedied. Note that the system

P − T̃ ◦ P̃ ′ ◦ S̃

is linear. Therefore, the system

T̃−1 ◦ (P − T̃ ◦ P̃ ′ ◦ S̃) ◦ S̃−1

is also linear, and we have:

T̃−1 ◦ (P − T̃ ◦ P̃ ′ ◦ S̃) ◦ S̃−1 = T̃−1 ◦ (P ◦ S̃−1 − T̃ ◦ P̃ ′)
= T̃−1 ◦ P ◦ S̃−1 − P̃ ′.

This final expression can be used to determine the linear and constant co-
efficients of the alternate secret key polynomials p̃′i very quickly. For x =
(0, . . . , 0, 1, 0, . . .) ∈ Fnq , where the i-th entry is one, this expression returns
the linear coefficients for xi on the various p̃′i. Similarly, x = 0 ∈ Fnq returns the
constant coefficients for the various p̃′i.

5.2.6 Efficacy

Wolf, Braeken, and Preneel [WBP04] conclude that between this attack variant
and the others presented in [WBP04], all practical existing implementations of
STS cryptosystems are insecure, due to the presence of a chain of kernels. This
particular variant of the attacks offered by Wolf, Braeken and Preneel has a
total expected complexity of O(mn3Lqr +mn4). As for attacking the schemes
of Kasahara and Sakai [KS04b, KS04a] themselves, Wolf, Braeken, and Preneel
[WBP04] showed that Kasahara and Sakai’s schemes are part of the STS family,
and noted that their new attack therefore would work on those schemes as well.

56

5.3. ATTACKING HFE

5.3 Attacking HFE

The HFE cryptosystem was discussed in Section 4.3. Recall that an HFE cryp-
tosystem uses as many indeterminates as there are equations, so n = m. The
private key of an HFE system can be considered, as always, as a triple (T , P ′,
S). T and S are formed in the usual way (see Section 2.3.1). The main idea of
HFE is that the private key term P ′ is given by

P ′ = φ−1 ◦ Q ◦ φ,

where φ is a bijection going from n-tuples in Fq to Fqn and Q is a univariate
polynomial over Fqn , defined in the following way

Q(z) =
∑

a,b∈Z≥0

qa+qb≤d

αa,bz
qa+qb +

∑
c∈Z≥0
qc≤d

βcz
qc + γ.

For further details, see Section 4.3.1. For the purpose of this attack, we will
consider φ to be defined through

φ : F
n
q −→ Fqn ,

(x1, x2, . . . , xn) 7−→
∑n
i=1 xiwi

where {w1, w2, . . . , wn} is a basis for Fqn over Fq. Kipnis and Shamir [KS99]
proposed an attack on HFE that is interesting because it determines an equiv-
alent private key and solves a MinRank problem to do so (see Section 3.4 for
details on the MinRank problem). In the following, we will refer to this attack
as the Kipnis-Shamir attack.

The attack proceeds similarly to the MinRank attack against STS (see Sec-
tion 5.2), in that it first determines T , and then determines S and P ′. As in
the STS attack, only the quadratic portion of the private key is recovered in the
attack proper, with the remainder determined exactly as in Section 5.2.5. Note
that this implies that the function Q is assumed to have the form

Q(z) =
∑

a,b∈Z≥0

qa+qb≤d

αa,bz
qa+qb

in this case. This can be rewritten, however, for a value of r given by the known
value d, which is a parameter of the HFE cryptosystem (see Section 4.3.1). In
this case, we get

∑
a,b∈Z≥0

qa+qb≤d

αa,bz
qa+qb =

r−1∑
a=0

r−1∑
b=0

δa,bz
qa+qb ,

where r = 1 + dlogq(d)e. Also, as noted in Section 5.1, it is safe to assume
that T and S are linear transformations when performing cryptanalysis of HFE
cryptosystems.

57

5. ATTACKING TPM, HFE, MIC∗ AND PMI

5.3.1 Setup

In order to carry out a MinRank attack, matrices are required. In order to get
the matrices that this attack uses, some setup is necessary. We would like to
push all of our work into the land of univariate polynomials, which will lead
to the matrices we will be using. We require a few lemmas to do this. These
lemmas and their proofs are due to Kipnis and Shamir [KS99].

The first lemma states that any linear mapping from F
n
q to itself can be

represented uniquely as an equivalent linear mapping from Fqn to itself.

Lemma 5.2 Let {w1, w2, . . . , wn} be a basis for Fqn over Fq. The set of map-
pings {A : Fnq −→ F

n
q | A is linear} is equivalent to the set of univariate

polynomials {
∑n
i=1 aiX

qi−1 | {a1, a2, . . . , an} ⊂ Fqn}. That is, for any lin-
ear mapping A, there exists a univariate polynomial

∑n
i=1 aiX

qi−1
such that

for any (v1, v2, . . . , vn), (x1, x2, . . . , xn) ∈ F
n
q , and with x =

∑n
i=1 xiwi and

v =
∑n
i=1 viwi, we have that v =

∑n
i=1 aix

qi−1
if and only if (v1, v2, . . . , vn) =

A(x1, x2, . . . , xn).

Proof: There are qn
2

matrices of size n×n over Fq, which is the number of possi-
ble linear mappings A. There are (qn)n linear combinations of the n monomials
xq

i−1
over Fqn , given by the qn choices for each of the n unknowns ai. Now,

as the function f , given by f(x) = xq
i−1

is a linear function (see Theorem 4.1),
then a linear combination of such functions is also a linear function. So, the set
of linear mappings and the set of monomial sums

∑n
i=1 aix

qi−1
are of the same

size, and a surjective map from one to the other exists. Therefore, there is an
isomorphism between them, and every linear map A : Fnq −→ F

n
q is uniquely

represented by a univariate polynomial
∑n
i=1 aix

qi−1
over the field Fqn .♦

The second lemma states that, in fact, any set of n multivariate polynomials
in n indeterminates over Fq is uniquely representable by a univariate polynomial
in Fqn

Lemma 5.3 Let {w1, w2, . . . , wn} be a basis for Fqn over Fq. The set of map-
pings { {P1, . . . , Pn} | Pi : Fnq −→ Fq is a multivariate polynomial, 1 ≤ i ≤ n}
is equivalent to the set of univariate polynomials {

∑qn

i=1 aiX
i−1 | a1, a2, . . . aqn ∈

Fqn}. That is, for any set of such multivariate polynomials P1(x1, x2, . . . , xn), . . . , Pn(x1, x2, . . . , xn),
there is a univariate polynomial

∑qn

i=1 aiX
i−1 such that for any (v1, v2, . . . , vn), (x1, x2, . . . , xn) ∈

F
n
q , and with x =

∑n
i=1 xiwi and v =

∑n
i=1 viwi, we have that vj = Pj(x1, x2, . . . , xn)

for all j, 1 ≤ j ≤ n if and only if v =
∑qn

i=1 aix
i−1.

Proof: First, assume without loss of generality that w1 = 1. Now, note that the
mapping πi

πi : (x1, x2, . . . , xn) −→ (xi, 0, 0, . . . , 0)

is a linear mapping. Thus, by Lemma 5.2 this function has a univariate poly-
nomial representation over Fqn . Let’s call this polynomial representation fi. To

58

5.3. ATTACKING HFE

represent the mapping

π(x1, x2, . . . , xn) −→ (
n∏
i=1

xcii , 0, 0, . . . , 0)

as a univariate polynomial over Fqn , we form the product

U(x) =
n∏
i=1

(fi(x1, x2, . . . , xn))ci . (5.1)

To represent an arbitrary multivariate polynomial P (x1, x2, . . . , xn) as a uni-
variate polynomial over Fqn , we simply take an appropriate linear combination
of products of form (5.1) to construct the univariate representation of that mul-
tivariate polynomial if it were in the first coordinate of the n-tuple. To take
care of the case where that multivariate polynomial is in a different coordinate,
we can construct it in the first coordinate as usual, and then shift it to a dif-
ferent coordinate k in the n-tuple, where 1 ≤ k ≤ n, by multiplying by the
basis element wk. This is possible because the univariate polynomials take their
coefficients from Fqn , not Fq itself. Finally, to construct the univariate poly-
nomial that represents a system of n multivariate polynomials, as is the case
here, we construct a representation of each multivariate polynomial at the first
coordinate, shift it to its proper coordinate, and sum all n resulting univariate
polynomials. Clearly, this process is invertible, and thus a representation in one
form leads to a unique representation in the other form.♦

A corollary to this result is that the univariate representations desired can
be found in polynomial time.

Lemma 5.4 Let C be any collection of n homogeneous multivariate polynomials
of degree d in n indeterminates over Fq. Let G(x) be the univariate polynomial
representation of C over Fqn . The only powers of x with nonzero coefficients
in G(x) are sums of exactly d (not necessarily distinct) powers of q; i.e., qi1 +
qi2 + · · ·+ qid . If d is constant, then G(x) is sparse, and its coefficients can be
found in polynomial time.

Proof: From the proof of Lemma 5.3, we can note that any given univariate term
generated of form (5.1) will be a product of exactly d univariate polynomials
corresponding to linear functions as in Lemma 5.2. In the remainder of the
steps, the degree of the polynomials are not changed, so every nonzero term has
the form xq

i1+qi2+···+qid , as desired.
No matter the degree of G(x) as a univariate polynomial (it may be expo-

nential in n), at most O(nd) of its coefficients can be non-zero. If d is fixed, this
is a polynomial of n. Given that such a sparse univariate polynomial represen-
tation exists, we can find its coefficients in polynomial time using sufficiently
many input/output pairs.♦

We may now begin talking about the matrices we will be using in our Min-
Rank problem. In the HFE cryptosystem, the private key (T,P ′, S) consists of
two linear mappings T and S that may be converted to univariate polynomials

59

5. ATTACKING TPM, HFE, MIC∗ AND PMI

by Lemma 5.2. So, we may represent S as S(X) =
∑n
i=1 siX

qi−1
. As T is

linear, T−1 is linear, so we may represent T−1 as T−1(X) =
∑n
i=1 tiX

qi−1
.

This leaves the public key P and the private key term P ′. By the assumptions
of Section 5.3, the private key term P ′ has only quadratic terms, and therefore
Lemma 5.4 applies. This fact allows us to compute the following representation
of the private key term P ′:

P ′(x) =
n∑
i=1

n∑
j=1

aijx
qi+qj = x̄Ax̄t, whereA = [aij], and x̄ = (xq

0
, xq

1
, . . . , xq

n−1
).

This matrix A is unknown, as it is part of the secret key. However, a similar
setup exists for P, as Lemma 5.4 applies to the quadratic terms of P. This leads
to

P(x) =
n∑
i=1

n∑
j=1

mijx
qi+qj = x̄Mx̄t, whereM = [mij], and x̄ = (xq

0
, xq

1
, . . . , xq

n−1
).

The matrix M is computable from the public key. Note that for the same
reasons the matrices of Section 5.2.1 were considered unique representations,
we can consider A and M to be unique representations.

By our work, we can write P(x) = T ◦P ′◦S(x) as a composition of univariate
functions. Alternatively, we may write

T−1 ◦ P(x) = P ′ ◦ S(x),

where T−1(x) =
∑n
i=1 tix

qi−1
and S(x) =

∑n
i=1 six

qi−1
. This equation leads to

our MinRank problem.
Let G = [gij] be an n × n matrix. Then we define the matrix G∗k from G

entry-wise by:

G∗kij = gq
k

i−k,j−k, where i− k, j − k are computed modulo n.

Note that here the range of modulo arithmetic is [1, n]. This leads to the follow-
ing theorem, which is presented and proved as by Kipnis and Shamir [KS99].

Theorem 5.5 Let x̄ = (xq
0
, xq

1
, . . . , xq

n−1
). Let u1, u2, . . . , un be a basis for

Fqn over Fq.. Let M and A be as just defined, with matrices M∗k also as just
defined computed for all k, 1 ≤ k ≤ n. Let T−1(x) =

∑n
i=1 tix

qi−1
and S(x) =∑n

i=1 six
qi−1

. Then the matrix representation of T−1 ◦ P is
∑n
k=1 tkM

∗(k−1).
Also, the matrix representation of P ′ ◦ S(x) is WAW t, where W = [wij] is an
n×n matrix defined by wij = sq

i

j−i, and j− i is computed modulo n, noting that
here the range of modulo arithmetic is [1, n].

Proof: First, take the composition of T−1 and P, given by:

T−1 ◦ P(x) =
n∑
k=1

tk

 n∑
i=1

n∑
j=1

Mijx
qi+qj

qk−1

.

60

5.3. ATTACKING HFE

There are several steps to take to change this into a form we prefer. We have:

n∑
k=1

tk

 n∑
i=1

n∑
j=1

Mijx
qi+qj

qk−1

=
n∑
k=1

tk

n∑
i=1

n∑
j=1

Mqk−1

ij xq
i+k−1+qj+k−1

=
n∑
k=1

tk

n∑
i=1

n∑
j=1

Mqk−1

i−k+1,j−k+1x
qi+qj

=
n∑
k=1

tk

n∑
i=1

n∑
j=1

M
∗(k−1)
ij xq

i+qj

=
n∑
k=1

tk

(
x̄M∗(k−1)x̄t

)
= x̄

(
n∑
k=1

tkM
∗(k−1)

)
x̄t.

The first step of this simplification is to note that taking the qk-th power is a
linear function. The next step is to rewrite the indices by noting they can be
cyclically rotated modulo n and that the exponents of q can be reduced modulo
n as xq

n

= xq
0

= x. Finally, note that M∗kij = Mqk

i−k,j−k. This finishes the
simplification to the first matrix representation.

The second matrix representation is done similarly:

P ′ ◦ S(x) =
n∑
i=1

n∑
j=1

Aij

(
n∑
k=1

skx
qk−1

)qi+qj

=
n∑
i=1

n∑
j=1

Aij

(
n∑
k=1

skx
qk−1

)qi (n∑
`=1

s`x
q`−1

)qj

=
n∑
i=1

n∑
j=1

Aij

(
n∑
k=1

sq
i

k x
qi+k−1

)(
n∑
`=1

sq
j

` x
qj+`−1

)

=
n∑
i=1

n∑
j=1

Aij

(
n∑
k=1

sq
i

k x
qi+k−1

)(
n∑
`=1

sq
j

` x
qj+`−1

)

=
n∑
i=1

n∑
j=1

Aij

(
n∑
k=1

sq
i

k−ix
qk−1

)(
n∑
`=1

sq
j

`−jx
q`−1

)
.

As before, we used the linearity of exponentiation by qi, cyclic index shifting
and modulo arithmetic to simplify. Now we change the order of summation and

61

5. ATTACKING TPM, HFE, MIC∗ AND PMI

rewrite in terms of W = [wij]. This will net the second matrix representation.

P ′ ◦ S(x) =
n∑
i=1

n∑
j=1

Aij

(
n∑
k=1

sq
i

k−ix
qk−1

)(
n∑
`=1

sq
j

`−jx
q`−1

)

=
n∑
i=1

n∑
j=1

(
n∑
k=1

sq
i

k−ix
qk−1

)
Aij

(
n∑
`=1

sq
j

`−jx
q`−1

)

=
n∑
i=1

n∑
j=1

(
n∑
k=1

wikx
qk−1

)
Aij

(
n∑
`=1

wj`x
q`−1

)

=
n∑
k=1

n∑
i=1

n∑
j=1

n∑
`=1

wikx
qk−1

Aijwj`x
q`−1

= x̄WAW tx̄t.

And this concludes the proof.♦
We are now ready to construct our MinRank problem. Theorem 5.5 states

that T−1◦P, when represented as a matrix, can be written as a sum of matrices.
Recall from Section 3.4 that the MinRank(r) problem is, given a finite set of
matrices with entries in Fq, to find a linear combination of those matrices of
rank ≤ r. We can compute M , and therefore the matrices M∗k, for 1 ≤ k ≤ n.
These are the matrices we will be dealing with. We still, however, require an r
value. This is easy to determine in the following way. Recall that the private
key univariate function has the form

∑
a,b∈Z≥0

qa+qb≤d

αa,bz
qa+qb =

r−1∑
a=0

r−1∑
b=0

δa,bz
qa+qb ,

where r = 1 + dlogq(d)e. In particular, this implies that the matrix δa,b com-
pletely determines the private key function Q. As δa,b is an r × r matrix, this
implies that the secret matrix A cannot have a rank higher than r. So, as S can
be represented by a full rank matrix, we have that the rank of P ′ ◦ S(x) is at
most r. Recall that T−1 ◦P(x) = P ′ ◦S(x) to note that the rank of T−1 ◦P(x)
is also at most r. Now we have the following MinRank(r) problem: Given the
matrices M∗(k−1), for 1 ≤ k ≤ n, and r = 1 + dlogq(d)e, find a set of coefficients
t∗1, t

∗
2, . . . , t

∗
n such that

rank

(
n∑
k=1

t∗kM
∗(k−1)

)
≤ r.

5.3.2 Calculating T
Calculation of T occurs by solving the MinRank(r) problem introduced in the
previous section. We assume that any set of coefficients t∗1, t

∗
2, . . . , t

∗
n that solve

62

5.3. ATTACKING HFE

the MinRank(r) problem corresponds to the function T−1. Courtois [Cou01]
presents a succinct way of doing this.

By construction, we know that the MinRank(r) problem we wish to solve
has a solution. So, we know that there are t∗1, t

∗
2, . . . , t

∗
n such that there exists

an M such that

M =
n∑
k=1

t∗kM
∗(k−1), and rank(M) ≤ r.

Then any (r+1)× (r+1) submatrix ofM has determinant 0, and this determi-
nant is a degree (r+1) equation in t∗1, t

∗
2, . . . , t

∗
n. There are

(
n
r+1

)
ways to choose

r+ 1 rows (and respectively columns) of M, so there are up to
(
n
r+1

)2 different
submatrices, and as many equations. Each of these equations will contain up
to
(
n+r
r+1

)
monomial terms. This is simply the number of possible degree r + 1

monomials in n indeterminates. If we can accumulate
(
n+r
r+1

)
linearly indepen-

dent equations, then we can simply linearize these degree r + 1 monomials and
solve the resulting linear system using Gaussian reduction for a unique solution.

This gives a set of
(
n+r
r+1

)
monomial equations in t∗1, t

∗
2, . . . , t

∗
n, which can be

solved by brute force fairly easily, giving T−1, and in turn giving T itself. So, the
overall cost of calculating T is given by solving a system of

(
n+r
r+1

)
equations and

as many indeterminates. We can use simple properties of binomial coefficients
to approximate this by(

n+ r

r + 1

)
≤
(

(n+ r)e
r + 1

)r+1

≤
(

ne

r + 1
+ e

)r+1

≤ nr+1.

The previous statement holds for r ≥ 2 and n ≥ 32, or r ≥ 3 and n ≥ 9, so
for any reasonable choices of r, n this statement holds. Therefore the Gaussian
reduction takes O(nω(r+1)), where ω is, as usual, the exponent of Gaussian
elimination. In terms of d, rather than r, we have a total cost of O(nω logq d).

5.3.3 Calculating S
Now that we know T , we may recover S fairly easily. This method was in-
troduced by Kipnis and Shamir [KS99]. By recovering T , we also recovered a
matrix M such that

M = WAW t.

At this point, W and A are still unknown. However, we know that rank(A) ≤ r,
and of course rank(W) ≤ n. We can assume without loss of generality that
rank(A) = r and that rank(W) = n. The trick is to notice that the left kernel
ofM corresponds to the left kernel of WAW t, and that therefore it corresponds
to the left kernel of WA, since W t is invertible. But W is also invertible, so the
left kernel of P , which is exactly the vectors that are 0 in their first r entries,
defines the left kernel of WAW t. That is, if v1, v2, . . . , vn−r is a basis of the left
kernel of M, then W maps the vi values to a set of vectors that are 0 in their
first r entries.

63

5. ATTACKING TPM, HFE, MIC∗ AND PMI

So, we compute the left kernel of M, as M is known, and get a basis
v1, v2, . . . , vn−r. Each basis vector leads to r equations in the n2 indetermi-
nates of W . This leads to a system of r(n− r) equations in n2 indeterminates.
This does not appear to be enough equations. But recall that we may replace
each wij by sq

i

j−i, dropping the number of indeterminates from n2 to n. Unfor-
tunately, the equations are no longer linear over Fqn . Fortunately, if we replace
each sj−i by

∑n
k=1 sj−i,kuk, where the sj−i,k form a new set of n2 indetermi-

nates over Fq, we get a linear combination of n indeterminates taken to the
qi-th power. As f(z) = zq

i

is a linear function over Fq, we still have a linear
combination of the sj−i,k indeterminates. So, each sq

i

j−i is now a linear com-
bination of the sj−i,k indeterminates, and each equation over Fqn becomes a
set of n linear equations over Fq. So, now we have r(n− r)n equations and n2

indeterminates. As long as r ≥ 2, we have an overdefined system, and we may
solve this system of homogeneous equations up to multiplication by a constant.
This gives S, from W .

5.3.4 Last steps and conclusions

Now that S and T are both known, we can use the quadratic portion of the
public key to compute the quadratic portion of the private key. We use the
technique of Section 5.2.5 to compute the lower degree terms of the private
key, completing the attack. The hardest portion of the attack is solving the
large linear system to determine T , giving an overall complexity of O(nω logq d).
Kipnis and Shamir note that their attack has polynomial complexity for a fixed
d, and is subexponential in general. Thus, we see that d must be chosen large
enough to render this attack ineffective. Kipnis and Shamir do not provide
experimental evidence to indicate exactly how large d should be. As for the
security of basic HFE, see Section 6.2.1.

5.4 Attacking MIC∗

Patarin’s attack [Pat95] on the MIC∗ cryptosystem family does not cleanly fit
into an organized system of attacks. Recall that the MIC∗ family is described
in Section 4.4. This attack relies on using the public key to generate a large set
of equations in the plaintext indeterminates x1, x2, . . . , xn and the ciphertext
indeterminates y1, y2, . . . , yn. The equations to be generated in this attack all
have the form

n∑
i=1

n∑
j=1

γijxiyj +
n∑
i=1

αixi +
n∑
i=1

βiyi + δ0 = 0. (5.2)

Note that, given a ciphertext Y = (y1, y2, . . . , yn), the system becomes degree
one in the corresponding unknown plaintext X = (x1, x2, . . . , xn), and solvable
using standard Gaussian elimination. The idea behind the attack is that once
these equations are found, each such independent equation fixes one of the xi

64

5.4. ATTACKING MIC∗

in terms of the other xk, where i 6= k. The remaining xk are then determined
via brute force searching. Naturally, then, this attack breaks down into two
parts. First, we must show that equations of this form can be generated from
the public key. Second, we must show that sufficient independent equations
exist to make this attack worthwhile.

5.4.1 Equation generating

The goal of the Patarin attack [Pat95] is to find equations of the same form as
described in (5.2). Recall that the public key P of the MIC∗ cryptosystem has
the form

P = T ◦ φ−1 ◦ Q ◦ φ ◦ S,

and consists of n quadratic equations using n indeterminates. Also recall that
the function Q is a univariate polynomial of the form

Q(z) = zq
`+1,

for some ` such that gcd(q` + 1, qn − 1) = 1.

Lemma 5.6 Let φ, S, T , and Q be MIC∗ parameters, where Q(z) = zq
`+1.

There exist equations of the form (5.2) in the plaintext x and the ciphertext y.

Proof: First, consider only the equation Q(z) = zq
`+1, where we let z = a and

Q(z) = b, giving
b = aq

`+1.

Take each side of this equation to the power q` − 1, and we have

bq
`−1 = aq

2`−1.

Now multiply both sides by ab, and we have

abq
`

= baq
2`
. (5.3)

Now, as the function z −→ zq is a linear function, as noted on page 43, and
since the composition of linear functions is also linear, abq

` − baq2`
is linear in a

and b. However, one can determine a and b using only affine or linear mappings
on the plaintext x and the ciphertext y. Given x, and letting a = φ ◦ S(x), we
may write y = T ◦ φ−1(b). Moreover, b = φ ◦ T−1(y), and thus by substitution
in abq

` − baq2`
= 0, we get an equation of the form (5.2), as a is affine in x and

b is affine in y.♦
Now the difficulty lies in generating equations of the form (5.2). This task is

simple. Select any value of plaintext x = (x1, x2, . . . , xn), and apply the public
key P to calculate its associated ciphertext y = (y1, y2, . . . , yn). Recall that this
is unambiguous, as P is a bijection by construction. Each time we do so, we
generate an input-output pair for an equation of form (5.2), which is known to
exist by Lemma 5.6. By generating many such pairs (that is, choosing many

65

5. ATTACKING TPM, HFE, MIC∗ AND PMI

plaintexts x and calculating their associated ciphertexts y), we can attempt to
solve the equation of form (5.2) for its coefficients γij , αi, βi and δ0. We do this
by setting up some equations of the form

n∑
i=1

n∑
j=1

γijxiyj +
n∑
i=1

αixi +
n∑
i=1

βiyi + δ0 = 0. (5.4)

At first glance, this may seem to be identical to an equation of form (5.2). In
fact, they are quite different. In form (5.2), the indeterminates are the xi and
yi, for 1 ≤ i ≤ n. However, in this form, the indeterminates are γij , αi, βi and
δ0. Thus, this form is solvable for its coefficients using standard techniques for
a linear system, provided enough equations are found.

The equations themselves are found in practice by forming a basis for a
particular vector space. Let V be the vector space of equations of form (5.4)
over the base field Fq. Finding a basis B of this vector space V gives precisely a
largest set of independent equations of form (5.4), which are then interpretted
as independent equations of the form (5.2). Patarin [Pat05] notes that V itself
can be calculated using O(n2) equations of form (5.4) with at least a 99% chance
of success. Once V is calculated, finding a basis B for V is a matter of Gaussian
reductions. Patarin [Pat05] displays a technique to ensure that this step can be
accomplished at cost O(n4 log n log2 q), a cost dominated by a clever Gaussian
reduction. This is a significant improvement over a naive Gaussian reduction
on O(n2) indeterminates with multiplications that cost O(log q), which has cost
O(n6 log2 q).

5.4.2 Efficiency

The efficiency of this attack relies entirely on the number of independent equa-
tions of form (5.2) generated. If roughly n such independent equations are
generated, then the attack is very efficient. If much fewer than n independent
equations are generated, then there is little to be gained by using it. Let λ
be the number of independent equations that can be generated in the equation
generation phase. Patarin [Pat95] notes that there is a lower bound on λ. Be-
fore it is possible to prove anything about this lower bound, a few lemmas will
be necessary. The first two lemmas are proven as by Fouque, Granboulan and
Stern [FGS05]. The third is proven as by Patarin [Pat95].

Lemma 5.7 For any integers q, i, and n, gcd(qn − 1, qi − 1) = qgcd(n,i) − 1.

Proof: Let (rk)k≥0 be the sequence of integers obtained by the Euclidean algo-
rithm applied to compute gcd(n, i). Therefore, r0 = n and r1 = i. Let k0 be
the largest integer such that rk0 6= 0, so rk0 = gcd(i, n).

In the same way, let (Rk)k≥0 be the sequence of polynomials obtained from
the Euclidean algorithm when applied to compute gcd(Xi − 1, Xn − 1). There-
fore, R0 = Xi−1 and R1 = Xn−1. Then let t0 be the largest integer such that
Rt0 6= 0, so that Rt0 = gcd(Xi − 1, Xn − 1). We will show by induction on k
that for 0 ≤ k ≤ k0 + 1, Rk = Xrk − 1. This is clear by definition for 0 ≤ k ≤ 1.

66

5.4. ATTACKING MIC∗

So, assume 2 ≤ k ≤ k0 + 1. Recall that the Euclidean algorithm relates the
successive values in the sequence (rk)k≥0 by rk−2 = αrk−1 + rk, where α is the
integer part of the fraction rk−2/rk−1. Then we can write,

Xrk−2−1 = (Xrk−1−1)(Xrk−2−rk−1+Xrk−2−2rk−1+· · ·+Xrk−2−(α+1)rk−1)+Xrk−1.

So, Xrk − 1 is the remainder of the division of Rk−2 = Xrk−2 − 1 by Rk−1 =
Xrk−1 − 1 as the sequence (rk)k≥0 is strictly decreasing; that is, Rk = Xrk − 1.
So, Rk0+1 = X0−1 = 0, and Rk0 6= 0. So, Rk0 = Rt0 = Xrk0−1 = Xgcd(n,i)−1.
Replace X by q to get the lemma.♦

Lemma 5.8 In a finite field Fqn with qn elements, the equation Xj = A has
either 0 solutions or gcd(j, qn − 1) solutions.

Proof: If gcd(j, qn − 1) = 1, then the function Xj is invertible in Fqn , and has
the function Xh as its inverse, where h ≡ j−1 (mod qn − 1). So, in this case,
there is exactly one solution, X = Xjh = Ah.

If gcd(j, qn − 1) = d > 1, then there are slightly more difficulties. Let
j′ = j/d. Therefore gcd(j′, qn−1) = 1. So, let h′ = j′−1 (mod qn−1). Now we
have Xd = Xj′dh′ = Xjh′ = Ah

′
. This merely removes the invertible portion of

the function Xj . Let A′ = Ah
′
. Now, it is possible that this equation has no

solutions—this occurs when A′ is not a d-th power of some value of Fqn . On
the other hand, if a solution does exist, then in fact d solutions exist. The other
solutions can be found by multiplying the original solution by the d-th roots of
unity. The d d-th roots of unity are contained in Fqn because d | qn − 1.♦

Lemma 5.9 Let b ∈ F∗qn . Then the equation abq
`

= baq
2`

has at most qgcd(`,n)

solutions a ∈ Fqn .

Proof: Note first that the equation of this lemma is (5.3) of the proof of
Lemma 5.6. It is clear that a = 0 is always a solution. Then suppose that
a 6= 0. Then it is possible to cancel ab from both sides, giving

bq
`−1 = aq

2`−1 = (aq
`−1)q

`+1.

Then recall that the function Q(z) = zq
`+1 is a bijection (see Section 4.4.3 for

details). So, here, we have a solution a if and only if

aq
`−1 = Q−1(bq

`−1).

Recall now that b is given. So we are in the case of Lemma 5.8. Thus, there are
either 0 solutions or gcd(q` − 1, qn − 1) solutions. Using Lemma 5.7, we learn
that if any solutions exist, there are qgcd(`,n)− 1 of them, excluding a = 0. Add
this solution to achieve the desired maximum number of solutions.♦

Finally, we can show that λ has a lower bound. The proof is as Patarin’s
[Pat95].

67

5. ATTACKING TPM, HFE, MIC∗ AND PMI

Theorem 5.10 Let b ∈ F∗qn . If the equation abq
`

= baq
2`

is considered as a
set of n equations over Fq, then at least n− gcd(`, n) independent equations of
degree one in the components of a ∈ Fqn are obtained.

Proof: First note that the equations obtained are all of degree 1 in a, so they are
all of degree 1 in a1, a2, . . . , an, where a = (a1, a2, . . . , an) as it is represented
as an n-tuple of elements of Fq. The equations also have at least one solution,
corresponding to a = 0. Thus, if λ is the number of independent equations,
there are exactly qn−λ solutions. However, there are at most qgcd(`,n) solutions,
by Lemma 5.9, so n− λ ≤ gcd(`, n), and thus λ ≥ n− gcd(`, n).♦

Thus, for a given ciphertext y, Patarin’s attack reduces the problem from a
search of qn possible plaintexts x to a search of qn−λ possible plaintexts. We
have that λ ≥ n− gcd(`, n). Patarin [Pat05] notes that due to certain technical
aspects of the possible choices of ` and n, it is true that gcd(`, n) ≤ n/3.
Therefore, no more than qn/3 possible plaintexts need be searched. However, it
is a fact that many times, gcd(`, n) = 1, which results in a simple search of q
plaintexts.

In this best case and average case scenario, the dominant cost of the attack is
the initial phase of equation generation, which is, as mentioned, O(n4 log n log2 q).
The surprising efficiency of this attack makes the MIC∗ system unsafe for cryp-
tographic use.

An efficiency sidenote

Again recall that the efficiency of this attack hinges on finding a number of
equations of form (5.2). The lower bound on λ, the number of such equations
found, seems to be a loose one. There is not yet an explanation as to why this
bound is loose, or, more usefully, there is not yet a tighter bound on the number
of equations that can be found in this way.

5.5 Attacking PMI

The attack on the PMI cryptosystem outlined by Fouque, Granboulan and Stern
[FGS05] reduces to an attack on the MIC∗ cryptosystem. The trick of this PMI
attack is to find a clever way of reducing the PMI system to the MIC∗ system.
Doing so relies on differential cryptanalysis, first discussed in Section 3.5. The
PMI cryptosystem was introduced in Section 4.5. Recall that it has a public
key function of the form

P = T ◦ (φ−1 ◦ Q ◦ φ+A ◦ π) ◦ S.

This form may be rewritten as

P = T ◦ φ−1 ◦ Q ◦ φ ◦ S + T ◦ A ◦ π ◦ S,

which reveals that the public key of a PMI cryptosystem is exactly a public key
T ◦ φ−1 ◦ Q ◦ φ ◦ S of an MIC∗ cryptosystem, plus some noise in the form of

68

5.5. ATTACKING PMI

T ◦ A ◦ π ◦ S. The attack will remove that noise, reducing to the case of the
MIC∗ cryptosystem, for which effective attacks have been shown to exist, as
noted in Section 5.4.

Removing the noise T ◦A◦π ◦S is as easy as finding a way to replace it with
a constant. This can be done by computing the linear space K, the kernel of the
linear portion of π ◦ S. As noted in Section 3.5.2, this attack uses differential
equations. These differential equations are used to create a test for membership
in K.

5.5.1 Membership in K
The test for membership in K is based on several lemmas. First, let k1, k2 ∈ Fnq
and let P1 and P2 be systems of quadratic equations, and let T and S be affine
bijections as usual. Then recall some facts about LP,k(x) = dPk(x)− dPk(0):

LP1,k1+k2 = LP1,k1 + LP1,k2 . (5.5)
LP1+P2,k1 = LP1,k1 + LP2,k1 . (5.6)
LT◦P1◦S,k = T ◦ LP1,S(k1) ◦ S + T ◦ P1 ◦ S(0)− T ◦ P1(0). (5.7)

LP1,0 = 0. (5.8)

Each of these lemmas is proven as by Fouque, Granboulan and Stern [FGS05].
The first two lemmas are Lemma 5.7 and Lemma 5.8, as found on page 66
and the following. They provide the support needed to deal with the lemmas
and remarks in the remainder of this section. They are simple statements from
algebra. The remaining lemmas concern LP,k, as defined above.

Lemma 5.11 If U = T ◦φ−1◦Q◦φ◦S is the public key of a MIC∗ system over
Fq of characteristic 2, dimension n and exponent q`+1, then dim(kerLT◦φ−1◦Q◦φ◦S,k) =
gcd(`, n).

Proof: The function T ◦φ−1 ◦Q◦φ◦S is a composition of the bijective functions
T and S, the linear bijection φ and the function Q. Therefore,

dim(kerLT◦φ−1◦Q◦φ◦S,k) = dim(kerLQ,k).

To show this, first note that by Fact 5.5, we have that for any bijection Φ,

LQ◦Φ,k(x) = LQ,Φ(k) ◦ Φ(x) +Q ◦ Φ(0)−Q(0)
= Q ◦ Φ(x+ k)−Q ◦ Φ(x)−Q ◦ Φ(k) +Q ◦ Φ(0) +Q ◦ Φ(0)−Q(0)
= Q ◦ Φ(x+ k)−Q ◦ Φ(x)−Q ◦ Φ(k) +Q ◦ Φ(0).

So, if there is a bijection composed with Q on the right, it clearly does not
change the dimension of the kernel. Thus,

dim(kerLQ◦φ◦S,k) = dim(kerLQ,k).

69

5. ATTACKING TPM, HFE, MIC∗ AND PMI

Similarly, by Fact 5.5, we have that for any bijection Φ,

LΦ◦Q,k(x) = Φ ◦ LQ,k(x) + Φ ◦ Q(0)− Φ ◦ Q(0)
LΦ◦Q,k(x) = Φ ◦ LQ,k(x).

So, if there is a bijection composed with Q on the left, it clearly does not change
the dimension of the kernel. Therefore it is true that

dim(kerLT◦φ−1◦Q◦φ◦S,k) = dim(kerLQ,k).

This implies that only the dimension of the kernel of the linear portion of the
equation Q(z) = zq

`+1 matters. So, for this proof let z = φ(x) and j = φ(k).
Then LQ,j = (zq

` · j + z · jq`). Then clearly z = 0 is in the kernel of LQ,j . For
the same reason, 0 6= z ∈ ker(LQ,j) if and only if zq

` · j + z · jq` = 0. This
equation can be rewritten as

zq
`+1 ·

(
j

z
+
(
j

z

)q`)
= 0.

As z 6= 0, let X = j
z , and note that it remains to solve X + Xq` = 0 in

the finite field Fqn . When X 6= 0 (equivalently, when j 6= 0), this equation
becomes Xq`−1 = 1 in a finite field of characteristic 2. So, because X = 1 is a
solution, by Lemma 5.8, there are gcd(q` − 1, qn − 1) solutions. By Lemma 5.7,
gcd(q`− 1, qn− 1) = qgcd(`,n)− 1. Add the solution X = 0 and there are a total
of qgcd(`,n) solutions. So, dim(kerLU,k) = gcd(`, n). ♦

Note that X = 1 is always a solution, which means that x = k, and thus k
is always in the kernel. If gcd(`, n) = 1, then k is the only solution.

Lemma 5.12 If P is the public key of the PMI cryptosystem and k ∈ K, then
dim(ker(LP,k)) = gcd(`, n).

Proof: Assume that k ∈ K. Recall that P can be written as

P = T ◦ φ−1 ◦ Q ◦ φ ◦ S + T ◦ A ◦ π ◦ S,

where the left term in the addition is the public key U of an instance of the
MIC∗ cryptosystem. We write

U = T ◦ φ−1 ◦ Q ◦ φ ◦ S.

Now we will show that for this MIC∗ cryptosystem U associated with P, we
have

LP,k = LU,k.

Step one is to notice that k ∈ K is equivalent to π ◦ S(k) = π ◦ S(0). Then we
compute

LP,k(x)− LU,k(x) = LT◦A◦π◦S,k(x)
= T ◦A ◦ π ◦ S(x+ k)− T ◦A ◦ π ◦ S(x)
−T ◦A ◦ π ◦ S(k) + T ◦A ◦ π ◦ S(0).

70

5.5. ATTACKING PMI

Therefore, since π ◦ S(k) = π ◦ S(0), we have

T−1(LP,k(x)− LU,k(x)) = A ◦ π ◦ S(x+ k)−A ◦ π ◦ S(x)
−A ◦ π ◦ S(k) +A ◦ π ◦ S(0)
= A ◦ π ◦ S(x+ k)−A ◦ π ◦ S(x)
= 0.

Therefore, T−1 ◦ LP,k(x) = T−1 ◦ LU,k(x). So dim(ker(LP,k) = dim(ker(T−1 ◦
LP,k) = dim(ker(T−1 ◦ LU,k) = dim(ker(LU,k). ♦

These lemmas lead to a corollary result.

Theorem 5.13 If P is the public key of the PMI cryptosystem and if dim(ker(LP,k)) 6=
gcd(`, n), then k /∈ K.

Proof: This statement is the contrapositive of Lemma 5.12. ♦
Now it is possible to define a test to decide whether or not a vector k is in K.

Let H be a boolean function such that H(k) = 1 if dim(ker(LP,k)) 6= gcd(`, n),
and H(k) = 0 otherwise. Thus, if H(k) = 1, then with probability 1, k /∈ K. If
H(k) = 0, then it is not known whether or not k is in K. The computation of
the dimension of the kernel is the most expensive part of this test, taking O(n3)
field operations to determine the rank and nullity of the linear transformation
LP,k.

In order to see that this test is reasonable, Fouque, Granboulan and Stern
[FGS05] make the following remark.

Remark 5.14 If P is the public key of the PMI cryptosystem and k /∈ K, then
often dim(ker(LP,k)) 6= gcd(`, n).

It is noted by Fouque, Granboulan and Stern [FGS05] that this remark can be
verified experimentally. The paper also gives a rationale for this experimental
success. The argument is that the term LT◦A◦π◦S,k(x) is no longer null, as
k /∈ K, but that since it is a random-looking linear function, the dimension of
the kernel of the sum LP,k follows the distribution of the dimension of the kernel
of random linear maps.

5.5.2 Determining K
The test H defined at the end of Section 5.5.1 can be used to create algorithms
that will determine a basis for K. Let α = Pr[H(k) = 0] and let β = Pr[k ∈
K] = q−r. The algorithms that will use the test H will use the linearity of K as
well. Each algorithm uses the assumption that for any fixed value k and random
value k′, the probability that H(k + k′) = 0 is independent of the probability
that H(k′) = 0.

The two suggested algorithms of [FGS05] are rather different, and it is de-
clared that a real-world attack will use a mix of the two algorithms. Thus, they
are both included here.

71

5. ATTACKING TPM, HFE, MIC∗ AND PMI

If it is true that α − β � β, then there are almost no false positives in the
test H. However, this is rarely the case. Normally, gcd(`, n) = 1, and therefore
β � α.

Technique 1

This technique operates under the idea that if for many different k′ ∈ K, k+k′ ∈
K, then k is in K as well. So, if there are many different k′ such that H(k′) = 0
and H(k+k′) = 0, then k ∈ K with high probability. Let p(k) = Pr[H(k+k′) =
0|H(k′) = 0]. Note that for a random k, k + k′ is uniformly distributed, so
p(k) = α. However, if k ∈ K, then

p(k) = Pr[k′ ∈ K|H(k′) = 0] + Pr[k′ /∈ K|H(k′) = 0] · Pr[H(k + k′) = 0|k + k′ /∈ K]

=
β

α
+
α− β
α
· α− β

1− β
.

Thus, if in addition we assume that β � α, in the case k ∈ K, we have p(k)/α =
1−β/α

1−β + β
α2 ' 1 + β(α−1 − 1)2. So, the difference in the expected value of p(k),

depending on whether or not k ∈ K, is on the order of αβ. So, take N = 1
(αβ)2

elements k′ such that H(k′) = 0 and compute the average of H(k + k′). This
computed average will determine whether or not k is an element of K, as if it is
nearly α, then it is random, while if this average is on the order of αβ removed
from α, then k ∈ K. The complexity of this test is about β−2, according to
[FGS05].

Thus, to determine K totally, this test must run on the order of nβ−1 times,
as approximately n distinct elements of K are necessary to form a basis, and
it takes approximately β−1 randomly chosen elements to choose an element of
(Fq)n that is an element of K. This implies a total complexity on the order of
nβ−3 = nq3r to determine K using this technique.

Technique 2

This technique works with graphs. We define a graph whose vertices are the
elements k such that H(k) = 0. These are precisely the elements that might be
in the kernel. For each pair of vertices (k, k′) we place an edge if and only if
H(k + k′) = 0. Note that in this graph, all the vertices of K are connected to
each other, and are therefore in the same large clique. In practice, the entirety
of this graph is too large to create. Instead, it is formed up to a restricted
number of vertices N . If N > n/β, then according to Fouque, Granboulan and
Stern [FGS05], it is likely that the graph has sufficient vertices to contain n− r
independent elements of K. The goal is to seek a largest clique in the graph
we construct, which will contain a basis of K, given the same assumption of
independence used by the first technique, and using general results on random
graphs, again as noted by Fouque, Granboulan and Stern. Note that if the
probability that H(k + k′) = 0 is independent of the probability H(k) = 0,
then for this graph restricted to N randomly chosen vertices, there are αN2

72

5.5. ATTACKING PMI

edges. By our assumptions, these edges are randomly distributed wherever
they do not correspond to elements of K. Now Fouque, Granboulan and Stern
use results from graph theory to estimate that the number of vertices in the
clique of maximal order in a random graph of N vertices with a probability α
between each edge is 2 logN

log1/α + O(log logN). Thus, if βN is much larger than
2 logN
log1/α , there will be a unique large clique, and it will contain a basis of K.
Again, assuming β � α, this condition is equivalent to N ≈ β−1 log β−1. Thus,
the whole complexity for finding K is a2r log q2r.

Combining Techniques

In [FGS05] it is advised that in an implemented attack, the attacker would
use Technique 1 to identify some good elements (ones likely to be in K) and
Technique 2 to extract a basis of K from a large clique in a graph of N vertices,
some of which were chosen using technique 2.

5.5.3 Attacking the MIC∗ portion

Now that the desired kernel K has been found, it is possible to mount the
last stage of the attack. We iterate qr attacks on the various possible MIC∗

schemes formed by replacing T ◦A ◦ π ◦ S by each of the qr possible constants,
in the qr affine subspaces parallel to K. Since for speedy decryption, qr is not
too large, this attack is feasible. The remaining question, is the attack on the
MIC∗ scheme of Section 5.4 feasible when x is restricted to a subspace is yes,
according to [FGS05]. In fact, it is noted that this can only increase the number
of independent equations found in the attack, which favours the attacker.

The attack, therefore, ends by reducing to the case of the MIC∗ cryptosys-
tem, and performing an attack on that system. The setup phase prior to running
the attack on the MIC∗ portion takes, according to Fouque, Granboulan and
Stern [FGS05] is a precomputation of order O(nq3r + n6qr) and a precompu-
tation of order O(n3 × qr × qgcd(`,n) using Technique 1. This cost dwarfs the
expected cost of an attack on the MIC∗ cryptosystem (see Section 5.4 for de-
tails). Fouque, Granboulan and Stern [FGS05] did not implement this attack
themselves, so they did not have practical results. Still, as a consequence, Ding
and Gower [DG05] modified PMI to attempt to defeat this attack. See Sec-
tion 6.2.3 for details.

73

Chapter 6

Special Topics

6.1 Quantum computing is not a panacea

It would certainly be desirable, at least for a cryptanalyst, to be able to use a
quantum computer (perhaps our cryptanalyst is from the future) to defeat an
MQ-based scheme in polynomial time. Already, RSA and ECC-based cryptog-
raphy are known to be susceptible to such attacks. So far, however, there has
not been a quantum algorithm found that does such a thing. In fact, one of
the nicer aspects of MQ-based cryptosystems is that no clear route to defeat
them using the power of quantum computing is known. In general, it is not
known whether a quantum computer can solve an instance of an NP-complete
problem in less than exponential time in the size of the problem. Since theMQ
problem can be shown to be NP-complete, as noted by Patarin and Goubin
[PG97], the two major quantum algorithms are not useful.

The first major quantum algorithm is Shor’s algorithm [Sho97], which is used
to solve what is known as the Hidden Subgroup Problem for an Abelian group
in polynomial time. The Discrete Logarithm Problem and the Factorization
Problem can be seen as instances of a Hidden Subgroup Problem for an Abelian
group, so Shor’s algorithm can solve such problems in polynomial time as well.
Thus, in a world with a sufficiently advanced quantum computer, RSA and
elliptic curve cryptography are not secure. However, to the knowledge of this
author, there is no known transformation of the problem of finding the plaintext
x of anMQ-based scheme from its associated ciphertext y, using only the public
key P into an instance of the Hidden Subgroup Problem for an Abelian group.
So, Shor’s algorithm does not appear to be helpful.

This leaves us with Grover’s algorithm [Gro96]. Grover’s algorithm allows
any space of N elements to be searched in O(

√
N) time. It has been shown by

Bennet, Bernstein, Brassard and Vazirani [BBBV97] to be optimal for solving
NP-complete problems in this way. So, if one views the problem of decrypting a
ciphertext y into its plaintext x as solving an instance of anMQ problem, then
quantum computing is certainly not a panacea. Quantum computing provides

75

6. SPECIAL TOPICS

a quadratic speed-up using Grover’s algorithm, and that is all. This is certainly
nothing to ignore, but such an ability on the part of an attacker necessitates
requiring larger keys, not scrapping a system entirely. Furthermore, it is the
same attacking power that an attacker has to solve the ECDLP in a conventional
computational model as-is.

It is, of course, possible that as no MQ-based cryptosystem uses a truly
random instance of the MQ problem (they must have trapdoors to be useful),
there is a quantum algorithm (or several algorithms) that are capable of solving
certain classes of MQ-based cryptosystems in polynomial time. However, no
such algorithms exist at this time, to the knowledge of the author.

6.2 Patching systems

Not every system introduced in this survey has been totally defeated, and there
exist variants of those systems that resist all known attacks. We now seek to
shed some light on a few such systems. The aim of this section is to note that
not every MQ-based cryptosystem has been defeated, and that a system that
has a powerful attack can often be patched to prevent such an attack.

6.2.1 Basic HFE pros and cons

The HFE cryptosystem is described in Section 4.3. Recall that it relies on a
system of n public multivariate equations in n indeterminates, and has a private
univariate polynomial of degree no greater than d. However, not all agree as
to the security of the system. For some, such as Wolf and Preneel [WP04],
the basic HFE system is broken from a cryptanalytic point of view, due to the
Kipnis-Shamir attack of Section 5.3. Recall that the Kipnis-Shamir attack of
Section 5.3 is a MinRank-based attack that first recovers T , then recovers the
pair P ′ and S simultaneously by solving a large linear system derived from the
public key and the calculated T . Others, such as Faugère and Joux [FJ03], are a
bit less inclined to declare the scheme insecure, calling for a “re-evaluation of the
security of HFE based cryptosystems.” On the other hand, Courtois [Cou05]
maintains a website with security recommendations and estimates for HFE,
despite his own work on HFE. Courtois’s work [Cou01] indicates that attacking
HFE has a complexity of O(nω logq d), where ω is the exponent of Gaussian
elimination. Faugère [Fau03] has shown through experiments that for HFE
systems with n ≤ 160 and d ≤ 512, a Gröbner basis attack will run in O(n10)
time. This is a significant improvement over the bound of O(nω logq d) given by
Courtois. Some of Courtois’ recommended security parameters, as mentioned
in Section 4.3.4, become unusable in this light, and the final recommendation,
q = 2, d = 25, n = 251 lies beyond the scope of Faugère’s results only because
Faugère’s results did not cover n ≥ 161. So, while this choice of parameters
may formally lie outside the bounds of all known attacks, it is on less firm
ground than one might expect. Still, even in the worst case, if a Gröbner basis
attack will run in O(n10) time even for q = 2, d = 25, n = 251, we have about

76

6.2. PATCHING SYSTEMS

280 operations before the Gröbner basis attack completes. That is, as noted
in Section 2.3.4, approximately the security level of a RSA using a 1024-bit
modulus. Note, though, that the estimate of Courtois [Cou01] for this case is
O(n4.64ω). For ω = 3, this becomes O(n13.93). The estimate of Faugère [Fau03]
is still O(n10), by assumption. So, Faugère’s estimate is significantly smaller
than the estimate of Courtois, if it still holds for n = 251.

So, who is correct? It seems only a matter of time before further experi-
ments increase the known range in which Gröbner bases attacks outperform the
more specific attack of Kipnis and Shamir [KS99]. Between that and general
computing power increases, the required size for n will keep increasing, result-
ing in larger keys and slower performance. Most likely, HFE is a dead-end—
parameters sufficient to resist Gröbner basis attacks will quickly prove so large
as to render decryption (which has a complexity of O(n4d2 log(d))) inhibitively
slow.

6.2.2 HFE-

HFE- (read: “HFE minus”) is a variant of basic HFE that resists all known
attacks. Key generation is done in the following way. Let (T , P ′, S) be the
private key of a basic HFE system. It remains unchanged as the private key of
our HFE- system. The public key, however, is now given by:

P = R ◦ T ◦ P ′ ◦ S,

where R is the function given by:

R : F
n
q −→ F

n−`
q ,

(y1, y2, . . . , yn) 7−→ (y1, y2, . . . , yn−`).

In HFE-, the value ` is a parameter. Note that the only difference between
basic HFE and HFE- is that basic HFE retains the last ` indeterminates of the
ciphertext, while they are never computed for HFE-. Encryption is essentially
identical to basic HFE: simply input the plaintext into the public key, as usual.
Decryption is accomplished by first guessing the values of the ` indeterminates
deleted by R, and then attempting to decrypt as usual. So, where previously
1 decryption was necessary, now we expect to use O(q`) decryption attempts.
Thus, ` cannot be too large, or the system becomes unusable.

Current attacks are ineffective against HFE-: the Kipnis-Shamir attack of
Section 5.3 falls apart; the final ` public matrices of a basic HFE system simply
do not exist in the HFE- equivalent system, and it is no longer possible to work
with T directly, even in the abstract. The work of Faugère and Joux [FJ03],
which is simply a set of estimates for the cost of a Gröbner basis attack, falls
apart as well, as an HFE- cryptosystem does not follow the estimates Faugère
[Fau03] calculated for basic HFE. Faugère and Joux [FJ03] note that every
dropped ciphertext character yi, for n − ` + 1 ≤ i ≤ n, essentially doubles the
maximum possible degree d of a system with respect to their original framework,
as found in [Fau03]. So, for ` not too large, an HFE- system moves well beyond

77

6. SPECIAL TOPICS

the parameters n ≤ 160, d ≤ 512 of Faugère’s [Fau03] Gröbner basis attack on
basic HFE.

6.2.3 PMI+

The PMI cryptosystem is described in Section 4.5. Recall that it relies on a
so-called “internal perturbation” of the MIC∗ cryptosystem for its security, and
that there is an attack that reduces attacking the PMI cryptosystem to attacking
the MIC∗ cryptosystem multiple times (see Section 5.5 for details). In order to
circumvent this attack, Ding and Gower [DG05] have introduced a new variant
of PMI, which they have dubbed PMI+ (read: “PMI plus”), as it functions by
simply adding more quadratic equations to the original PMI cryptosystem.

Key generation in PMI+ is nearly identical. In the original PMI cryptosys-
tem, the private key consists of (T, φ,Q,A, π, S), where φ andQ are as described
in Section 4.4.1 and π is as described in Section 4.5.1. Recall that Q is a uni-
variate function given by:

Q(z) = zq
`+1,

where ` ∈ [1, n− 1] is uniformly randomly chosen until

gcd(q` + 1, qn − 1) = 1.

As usual, the system uses n indeterminates with m multivariate quadratic equa-
tions in the public key

P = T ◦ φ−1 ◦ Q ◦ φ+A ◦ π ◦ S.

Recall that the permutation in the PMI cryptosystem is to add an internal
pertubation to a standard MIC∗ cryptosystem in the form of n random quadratic
polynomials (represented by A) in r indeterminates created by an affine linear
transformation π of the output of S. The PMI+ cryptosystem is similar. The
private key is changed in two ways. First, a new parameter b and an associated
map B are introduced, given by:

B : F
n
q −→ F

n+b
q ,


v1

v2

...
vn

 7−→



v1

v2

...
vn

B1(v1, v2, . . . vn)
B2(v1, v2, . . . vn)

...
Bb(v1, v2, . . . vn)


,

where each of the Bi, for 1 ≤ i ≤ b is a uniformly randomly determined mul-
tivariate quadratic equation in n indeterminates with coefficients from Fq. In

78

6.3. MULTIVARIATE SCHEMES NOT APPEARING IN THIS THESIS

the PMI+ cryptosystem, S is an affine invertible transformation on n indeter-
minates, as before, but T is now an affine invertible transformation on n + b
indeterminates. The PMI+ private key is given by (T,B, φ,Q,A, π, S), and the
public key is given by:

P = T ◦ B ◦ φ−1 ◦ Q ◦ φ+A ◦ π ◦ S.

In other words, the PMI+ cryptosystem simply adds b multivariate quadratic
equations to the vector of multivariate quadratic equations determined by φ−1 ◦
Q ◦ φ+A ◦ π ◦ S.

Encryption is no different than in the original PMI cryptosystem, although
it is of course done with a PMI+ public key. Decryption is accomplished in
the same way as the original PMI cryptosystem, by simply ignoring the poly-
nomials B1, B2, . . . , Bb when they are encountered, and proceeding as usual for
decrypting a PMI ciphertext.

Ding et al. [DG05, DGS+05] show through experiments that for δ = gcd(`, n),
adding b = δ+10 equations is sufficient to secure a PMI+ system with n = 136,
q = 2, r = 6 and gcd(`, n) = δ against the attack on PMI of Section 5.5. Recall
that this was a differential analysis-based attack that reduced the PMI system
to the case of the MIC∗ cryptosystem from which it was derived. They note that
doing so increases the expected attack time to at least 280 operations. They also
note that the following parameters are sufficient to provide a baseline security
requirement of 280 operations:

q = 2
n > 84
r = 6

gcd(`, n) = 1
b = 11.

Ding and Gower [DG05] caution against using more than the suggested choice
of b = δ + 10 added equations, as sufficiently overdefined systems of equations
can be attacked more efficiently, as noted by Courtois et al. [CKPS00].

This system’s resistance to further attacks has not yet been tested, so it
would be premature to consider this “fix” to PMI to be both necessary and
sufficient for a secure MQ-based scheme.

6.3 Multivariate schemes not appearing in this
thesis

A number of multivariate schemes exist that do not appear in this thesis. A
complete listing of all multivariate encryption schemes was certainly not the
goal of this thesis, so schemes for which no novel attacks exist, such as the
HFEv scheme introduced by Wolf and Preneel [WP04] and shown by Ding and
Schmidt [DS05] to succumb to Gröbner basis-based attacks, were passed over.
Some schemes, while based on theMQ problem, fail to be useful as encryption

79

6. SPECIAL TOPICS

schemes. These tend to be signature schemes rather than encryption schemes in
any case. One example of such schemes is the so-called unbalanced oil and vine-
gar scheme, which uses a trapdoor not even mentioned in this thesis. According
to Braeken, Wolf and Preneel [BWP04], the unbalanced oil and vinegar scheme
has the advantage of remaining secure against forgery attempts provided the
appropriate key choices are made. Braeken, Wolf and Preneel [BWP04] also
note that these same key choice requirements render unbalanced oil and vinegar
schemes unusable as encryption schemes.

Additionally, most of the schemes in this thesis have signature scheme vari-
ants, and all of these signature scheme variants have been ignored as well.

80

Chapter 7

Future work and
conclusions

As this thesis draws to a close, we wrap up with some of the unfinished business
in attacking MQ-based encryption schemes. We close with some conclusions.

7.1 Future work

As always in cryptography, there is work to be done. Here, that remaining work
will be divided into two types: future work in attacking MQ-based schemes and
future work in creating MQ-based schemes. In keeping with the title of this
thesis, the former will be discussed first and in greater detail.

7.1.1 Future work in attacking MQ-based schemes

The first thought one might have when considering the “future work” in attack-
ing MQ-based schemes is to attempt to break the patched systems. Indeed,
there is work to be done there. In general, the method of Gröbner basis-based
attacks is used on a fairly regular basis. There is as of now no good system
in place for determining how long a Gröbner basis-based attack will require to
extract a plaintext from a general MQ-based encrypted ciphertext. Estimates
have been made for HFE by Faugère and Joux [FJ03], and other estimates have
been made for PMI by Ding et al. [DGS+05], but in both cases, the estimates
are simply the result of computing many Gröbner basis-based attacks on said
schemes. While this is a valid technique, it does not generalize to other schemes,
and may not generalize to the original systems themselves beyond certain pa-
rameter choices. We saw in Section 6.2.1 that the experiments of Faugère and
Joux [FJ03] only extended to n ≤ 160 and d ≤ 512 (See Section 4.3.1 for details
on the key structure of HFE). In any case, improvements to our knowledge of
the speed of Gröbner basis-based attacks (especially with respect to basic HFE)

81

7. FUTURE WORK AND CONCLUSIONS

will probably put the last nails in the coffin for using basic HFE with a reason-
able choice of parameters—ones that do not render decryption uselessly slow.
Continuing on this “attack the patched systems” line of thought, we also have
HFE- and PMI+ to consider. So far, both resist all known attacks. Perhaps
the attacks on HFE and PMI can be extended to cover HFE- and PMI+. Or
perhaps other attacks exist suited more to HFE- and PMI+ themselves.

So far, most attacks on MQ-based schemes are either extremely specific,
such as the MinRank-based attack on HFE, or extremely generic, such as a
Gröbner basis-based attack. While it has been mentioned that the generic
attack using Gröbner bases has a difficult to predict running time, not much has
been said about the specific attacks. They all suffer from a common problem–
once the specific weakness they exploit has been removed, these attacks often
become useless, or at least much less effective, as noted by Ding and Gower et
al. [DG05] for PMI+, and by Wolf and Preneel [WP04] for HFE-. Extending
these specific attacks to a more general case may eventually become necessary
to attack new cryptosystems. An example where this may be the case is the
IPHFE cryptosystem introduced by Ding and Schmidt [DS05]. It uses the exact
same internal perturbation of the PMI cryptosystem, but applies it to the HFE
cryptosystem, rather than the MIC∗ cryptosystem. Ding and Schmidt [DS05]
note that encryption and decryption hold no real surprises to those familiar with
the HFE system and the PMI system (see Sections 4.3, 4.5, respectively), and go
on to suggest without proof that the IPHFE cryptosystem resists all the attacks
on HFE (both the one due to Kipnis and Shamir [KS99] and the much faster
Gröbner basis-based attack, whose effectiveness was noted by Faugére and Joux
[FJ03]). Since the debut of the IPHFE cryptosystem [DS05], to our knowledge
no work has been reported on it. Ding and Gower [DG05] suggest that the
attack of Fouque, Granboulan and Stern [FGS05] on PMI may not work on the
IPHFE cryptosystem. However, they admit that they lack the experimental
and theoretical evidence to confirm this.

So, what may have happened with the IPHFE system is that by combining
various “base” ideas forMQ-based encryption schemes, a new scheme has been
created that is stronger than its constituent parts. Finding ways to extend the
HFE and PMI attacks to cover IPHFE is one idea. The natural counter to this
idea from the perspective of the cryptanalyst is to find ways to generalize the
current crop of attacks on HFE and PMI and other systems. Hopefully, such
generalizations will make it easier to understand why, say, IPHFE is (or is not)
more secure than HFE or PMI.

One attack technique in this paper is particularly deserving of further study.
The Dixon resultant-based technique of Section 3.3 is a polynomial time algo-
rithm, according to Tang and Feng [TF05], when dealing with particular kinds
of sparse systems of quadratic equations. Expanding the set of sparse systems
that work, as well as possibly making such a technique work in general systems
are obvious new avenues of research.

82

7.2. CONCLUSIONS

7.1.2 Future work in creating MQ-based schemes

The IPHFE cryptosystem mentioned in the previous section is a good starting
point for the future work in creating MQ-based schemes. While further work
must be done to confirm or deny this, the general idea of combining existing
ideas seems to be a good one. In fact, Wolf and Preneel have an excellent paper,
titled Taxonomy of Public Key Schemes based on the problem of Multivariate
Quadratic Equations [WP05]. In [WP05, Section 7], Wolf and Preneel suggest
several new schemes, each created by combining ideas from various older schemes
in new ways.

Of course, it is always desirable to find new trapdoor conditions for the
private key term P ′ not created by combining old trapdoor conditions, a sen-
timent also expressed by Wolf and Preneel [WP05, Section 8]. To generalize a
bit, any new idea for constructing anMQ-based encryption scheme will remain
welcome, even if there is the trend is to reuse older ideas in new ways in future
schemes, rather than to introduce new trapdoor conditions.

Finally, in another partial echo of Wolf and Preneel [WP05, 8], it should be
noted that there are currently no MQ-based encryption schemes that are both
secure and efficient, compared to ECC and RSA. As is, MQ-based encryption
schemes must choose security (e.g., HFE or HFE-, which have very slow decryp-
tion speeds at a usable security level) or speed (e.g., MIC∗, which is not at all
secure). Finding a secure, efficient technique would be most desirable.

7.2 Conclusions

There are many attacks on MQ-based encryption schemes. However, we have
noted that the attacks on such schemes fall largely into 2 groups. First, there
are system-agnostic attacks, such as the methods using Gröbner bases (and,
historically, the XL method) and Dixon resultants. Second, there are attacks
that remain highly specific; MinRank attacks and differential attacks require
very specific knowledge of the system they are used against. Most other specific
attacks fail to earn themselves the distinction of a category, and are simply
considered specific attacks, such as Patarin’s [Pat05] attack on MIC∗.

Furthermore, we have seen that often a system is created, as PMI was
by Ding [Din04] and then quickly broken, as Fouque, Granboulan and Stern
[FGS05] did with their PMI attack. Then, after a round of fixes, the cycle
starts anew. For MIC∗, there were HFE and PMI as follow-up systems. More
recently, the ideas of PMI and HFE have been combined to create IPHFE. And
by looking at the dates of the relevant papers, the time lag between a new
system, a new attack, and a new variant that resists that attack is quickly de-
creasing. The MIC∗ to HFE cycle took nearly a decade [MI88, Pat95, Pat96b]
while the PMI to PMI+ cycle has happened over the past two years or so
[Din04, FGS05, DG05]. Arguably, the change between PMI and PMI+ was less
complex than the change between MIC∗ and HFE, but it is perhaps unfair to
consider one security improvement more difficult to conceive than another sim-

83

7. FUTURE WORK AND CONCLUSIONS

ply because it is harder to implement efficiently. Judging by the widening pool
of names associated with multivariate cryptography papers, it seems as if more
individuals are working in the area as well.

In any case, MQ-based cryptosystems seem to be gaining momentum and
recognition. Hopefully, they will gain more attention as time goes by, and more
people will work in this area. They are an alternative to the world of pub-
lic key cryptography based on the integer factorization and discrete logarithm
problems. In the same vein, the lack of effective quantum-based attacks onMQ-
based cryptosystems makes them an interesting “back-up” set of cryptosystems
in the off-chance some organization is hiding a useful quantum computer some-
where, or if such a machine is ever built.

84

Bibliography

[AFI+04] Gwénolé Ars, Jean-Charles Faugère, Hideki Imai, Mitsuru Kawa-
zoe, and Makoto Sugita, Comparison between XL and Gröbner ba-
sis algorithms, ASIACRYPT 2004 (P.J. Lee, ed.), Lecture Notes in
Computer Science, vol. 3329, Springer, 2004, pp. 338–353.

[BBBV97] Charles H. Bennet, Ethan Bernstein, Gilles Brassard, and Umesh
Vazirani, The strengths and weaknesses of quantum computation,
SIAM Journal on Computing 26 (1997), 1510–1523.

[Buc65] Bruno Buchberger, Ein Algorithmus zum Auffinden der Basisele-
mente des Restklassenringes nach einem nulldimensionalen Poly-
nomial, Ph.D. thesis, Leopold-Franzens-Universität, 1965.

[BWP04] An Braeken, Christopher Wolf, and Bart Preneel, A study of the
security of unbalanced oil and vinegar signature schemes, Cryptol-
ogy ePrint Archive, Report 2004/222, 2004, http://eprint.iacr.
org/.

[CKPS00] Nicolas T. Courtois, Alexander Klimov, Jacques Patarin, and
Adi Shamir, Efficient algorithms for solving overdefined systems
of multivariate polynomial equations, 2000, Available at http:
//www.minrank.org/xlfull.pdf.

[CLO92] David Cox, John Little, and Donal O’Shea, Ideals, varieties and
algorithms, Springer-Verlag, 1992.

[CLO98] David Cox, John Little, and Donal O’Shea, Using algebraic geom-
etry, Springer-Verlag, 1998.

[Cou01] Nicolas T. Courtois, The security of hidden field equations
(HFE), The Cryptographer’s Track at RSA Conference 2001
(D. Naccache, ed.), Lecture Notes in Computer Science, vol.
2020, Springer, 2001, http://www.minrank.org/hfesec.\{ps|
dvi|pdf\}, pp. 266–281.

[Cou05] Nicolas T. Courtois, Hidden field equations public key cryptosys-
tem home page (HFE), 2005, http://www.minrank.org/hfe/, last
modified 07/31/05.

85

BIBLIOGRAPHY

[DG05] Jintai Ding and Jason E. Gower, Inoculating multivariate schemes
against differential attacks, Cryptology ePrint Archive, Report
2005/255, 2005, http://eprint.iacr.org/.

[DGS+05] Jintai Ding, Jason E. Gower, Dieter Schmidt, Christopher Wolf,
and Zhijun Yin, Complexity estimates for the F4 attack on the Per-
turbed Matsumoto-Imai cryptosystem, Manuscript, 15 pages, 2005,
Available at http://math.uc.edu/~aac/pub/pmi-groebner.pdf.

[Die04] Claus Diem, The XL-algorithm and a conjecture from commutative
algebra, ASIACRPYT 2004 (P.J. Lee, ed.), vol. 3329, Springer,
2004, pp. 323–337.

[Din04] Jintai Ding, A new variant of the Matsumoto-Imai cryptosys-
tem through perturbation., Public Key Cryptography—PKC 2004
(Feng Bao, Robert H. Deng, and Jiangying Zhou, eds.), vol. 2947,
Springer, 2004, pp. 305–318.

[DS05] Jintai Ding and Dieter Schmidt, Cryptanalysis of HFEv and in-
ternal perturbation of HFE, Public Key Cryptography—PKC 2005
(Serge Vaudenay, ed.), Lecture Notes in Computer Science, vol.
3386, Springer, 2005, pp. 288–301.

[Fau99] Jean-Charles Faugère, A new efficient algorithm for computing
Gröbner bases (F4), Journal of Pure and Applied Algebra (1999),
61–88.

[Fau02] Jean-Charles Faugère, A new efficient algorithm for computing
Gröbner bases without reduction to zero F5., Proceedings of ISSAC
(T. Mora, ed.), ACM Press, July 2002, pp. 75–83.

[Fau03] Jean-Charles Faugère, Algebraic cryptanalysis of HFE using
Gröbner bases, Tech. report, INRIA, 2003.

[FGS05] Pierre-Alain Fouque, Louis Granboulan, and Jacques Stern, Dif-
ferential cryptanalysis for multivariate schemes, Advances in
Cryptology—EUROCRYPT 2005 (Ronald Cramer, ed.), Lecture
Notes in Computer Science, vol. 3494, Springer, 2005, pp. 341–353.

[FJ03] Jean-Charles Faugère and Antoine Joux, Algebraic cryptanalysis
of hidden field equations (HFE) using Gröbner bases, Advances in
Cryptology—CRYPTO 2003 (Dan Boneh, ed.), Lecture Notes in
Computer Science, vol. 2729, Springer, 2003, pp. 44–60.

[GC00] Louis Goubin and Nicolas T. Courtois, Cryptanalysis of the TTM
cryptosystem, Advances in Cryptology—ASIACRYPT 2000 (Tat-
suaki Okamoto, ed.), Lecture Notes in Computer Science, vol. 1976,
Springer, 2000, pp. 44–57.

86

BIBLIOGRAPHY

[Gro96] Lov Grover, A fast quantum mechanical algorithm for database
search, Proceedings of the 28th Annual ACM Symposium on the
Theory of Computing, 1996, p. 212.

[JKJMR05] Antoine Joux, Sèbastien Kunz-Jacques, Frédéric Muller, and
Pierre-Michel Ricordel., Cryptanalysis of the tractable rational map
cryptosystem, Public Key Cryptography—PKC 2005 (Serge Vaude-
nay, ed.), Lecture Notes in Computer Science, vol. 3386, Springer,
2005, pp. 258–274.

[Kal03] Burt Kaliski, TWIRL and RSA key size, Available at http://
www.rsasecurity.com/rsalabs/node.asp?id=2004, 2003, May
6, 2003 revision.

[KS99] Aviad Kipnis and Adi Shamir, Cryptanalysis of the HFE pub-
lic key cryptosystem, Advances in Cryptology—CRYPTO 1999
(Michael Wiener, ed.), Lecture Notes in Computer Science, vol.
1666, Springer, 1999, pp. 19–30.

[KS04a] Masao Kasahara and Ryuichi Sakai, A construction of public key
cryptosystem for realizing ciphertext of size 100 bit and digital sig-
nature scheme, Institute of Electronics Information and Commu-
nication Engineers Transactions Fundamentals E87-A(1) (2004),
102–109, Electronic version: http://search.ieice.org/2004/
files/e000a01.htm#e87-a,1,102.

[KS04b] Masao Kasahara and Ryuichi Sakai, A construction of public-key
cryptosystem based on singular simultaneous equations, Symposium
on Cryptography and Information Security—SCIS 2004, The In-
stitute of Electronics, Information and Communication Engineers,
January 27–30 2004, 6 pages.

[KSY94] Deepak Kapur, Tushar Saxena, and Lu Yang, Algebraic and geo-
metric reasoning using Dixon resultants, ACM ISSAC 94 (1994),
99–107.

[MI88] Tsutomo Matsumoto and Hideki Imai, Public quadratic polynomial-
tuples for efficient signature verification and message-encryption,
Advances in Cryptology—EUROCRYPT 1988 (Christoph G.
Günther, ed.), Lecture Notes in Computer Science, vol. 330,
Springer, 1988, pp. 419–453.

[Pat95] Jacques Patarin, Cryptanalysis of the Matsumoto and Imai pub-
lic key scheme of EUROCRYPT ’88, Advances in Cryptology—
CRYPTO 1995 (Don Coppersmith, ed.), Lecture Notes in Com-
puter Science, vol. 963, Springer, 1995, pp. 248–261.

[Pat96a] Jacques Patarin, HFE first challenge, 1996, http://www.minrank.
org/challenge1.txt.

87

BIBLIOGRAPHY

[Pat96b] Jacques Patarin, Hidden field equations (HFE) and isomorphisms
of polynomials (IP): Two new families of asymmetric algorithms,
1996, Extended Version.

[Pat05] Jacques Patarin, Cryptanalysis of the Matsumoto and Imai public
key scheme of Eurocrypt’88, Personal correspondence, 34 pages,
2005, This is an extended version of Pat95.

[PG97] Jacques Patarin and Louis Goubin, Trapdoor one-way permutations
and multivariate polynomials, International Conference on Infor-
mation Security and Cryptology 1997, Lecture Notes in Computer
Science, vol. 1334, Springer, 1997, Extended Version: http://
citeseer.nj.nec.com/patarin97trapdoor.html, pp. 356–368.

[PGC98] Jacques Patarin, Louis Goubin, and Nicolas T. Courtois, Im-
proved algorithms for isomoprhisms of polynomials, Advances in
Cryptology—EUROCRYPT 1998 (Kaisa Nyberg, ed.), Lecture
Notes in Computer Science, vol. 1403, Springer, 1998, Extended
Version: http://www.minrank.org/ip6long.ps, pp. 184–200.

[SFB96] Jeffrey Outlaw Shallit, Gudmund Skovbjerg Frandsen, and
Jonathan F. Buss, The computational complexity of some prob-
lems of linear algebra, Tech. report, Basic Research in Computer
Science, 1996, Available at http://www.brics.dk/RS/96/33/.

[Sho97] Peter Shor, Polynomial time algorithms for prime factorization and
discrete logarithms on a quantum computer, SIAM Journal on Sci-
entific Computing 26 (1997), 1484.

[TF05] Xijin Tang and Yong Feng, A new efficient algorithm for solving
systems of multivariate polynomial equations, Cryptology ePrint
Archive, Report 2005/312, 2005, http://eprint.iacr.org/.

[vzGG03] Joachim von zur Gathen and Jürgen Gerhard, Modern computer
algebra, Cambridge, 2003.

[WBP04] Christopher Wolf, An Braeken, and Bart Preneel, Efficient crypt-
analysis of RSE(2)PKC and RSSE(2)PKC, Cryptology ePrint
Archive, Report 2004/237, 2004, http://eprint.iacr.org/.

[WP04] Christopher Wolf and Bart Preneel, Asymmetric cryptogra-
phy: Hidden field equations, Cryptology ePrint Archive, Report
2004/072, 2004, http://eprint.iacr.org/.

[WP05] Christopher Wolf and Bart Preneel, Taxonomy of public key
schemes based on the problem of multivariate quadratic equa-
tions, Cryptology ePrint Archive, Report 2005/077, 2005, http:
//eprint.iacr.org/.

88

