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Abstract

The method of separation of variables facilitates the integration of the Hamilton-
Jacobi equation by reducing its solution to a series of quadratures in the separable
coordinates. The case in which the metric tensor is diagonal in the separable
coordinates, that is, orthogonal separability, is fundamental. Recent theory by Be-
nenti has established a concise geometric (coordinate-independent) characterisation
of orthogonal separability of the Hamilton-Jacobi equation on a pseudoRieman-
nian manifold. It generalises an approach initiated by Eisenhart and developed
by Kalnins and Miller. Benenti has shown that the orthogonal separability of a
system via a point transformation is equivalent to the existence of a Killing tensor
with real simple eigenvalues and orthogonally integrable eigenvectors. Applying
a moving frame formalism, we develop a method that produces the orthogonal
separable coordinates for low dimensional Hamiltonian systems. The method is
applied to a two dimensional Riemannian manifold of arbitrary curvature. As an
illustration, we investigate Euclidean 2-space, and the two dimensional surfaces of
constant curvature, recovering known results. Using our formalism, we also derive
the known superseparable potentials for Euclidean 2-space. Some of the original

results presented in this thesis were announced in [8, 9, 10].
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Notation and Conventions

Summation notation (index appearing once up and once down):

a‘b; = zn:aibi

=1

Tensor indices in the natural basis: ¢, 5, ..., z; range: 1,...  n.
Tensor indices in the moving frame: a, b, ..., h; range: 1,...  n.
Set of permutations of r elements: S,

Symmetrisation of indices, (4 ...%:):

1
T(lllm) = % Z Tio-(l)“'io-(m)

OCESm

Sign of a permutation, o € S,:

1, if even

() :{ 1, if odd

Skew-symmetrisation of indices, [i1 ... %y):
1
) OCESm

th -

Exclusion of j*" index from (skew-)symmetrisation: |4



Partial differentiation with respect to position coordinate, ¢*: ; or &;
Partial differentiation with respect to momentum coordinate, p;:
(Partial) differentiation with respect to time, ¢: fi= % or 06_]:
Metric tensor: g(q)

Metric tensor determinant: g := det(gij)nxn

Metric: ds? = g;;dqtdq’

Frame vector fields: E, = h,’ aai
q

w-frame 1-forms: F% = h“idqi

Bracket of two vector fields: [X,Y]:= XY —Y X

Bracket of 1-form, f = f;X* and vector field, Y = Y'X;: <f, Y> =Y'f;
Components of object of anholonomy: C*;;Ey := [E;, E;]

Components of connection coefficients:
1 1
Fbca = §(Ebgac - Eagcb + Ecgba) - §(cha - Cbac + Cacb)

Christoffel symbols of the first kind: [i7, k] := %(aigjk + 0;9ir — Orgi;)

Christoffel symbols of the second kind: { .Z

; } = g"[jk, 1]

o

x1



Connection 1-form: wij = ijiEk

Covariant derivative:

. dr...
Torvtry e i= BTy o+ T %y pLeq, ™+ oF T4y 5. Deg, @

d d
_Tal a"d ]-_‘Cbl L — e T Tal arbl...dr+s]‘_‘0bs e

r+1 ..bs

Lie derivative: Lx(Y)(z) = [%(thY)]
t=0

where F; is the one parameter group of diffeomorphisms generated by X.

Exterior derivative:

d(wi, s dz™ A AN de") = W[ ]dwl Ao ANdzem Tt

ig...ir+1,i1
Torsion tensor: T, := I'jp" — ['i;" — Cg
Riemann curvature tensor:

R o= 2E3Ty;" + 2T " Ty’ — C™ 1l

Poisson bracket:

"~ (Of O of 0
{f.g9}:= Z (—f—gk - _f_g) = 0" fOhg — OLFO"g.

xi1



Schouten bracket:

p
[P7 Q]Zlmizﬁq—l = <ZP(i1...i(k_1) |M|ik...i(p_1)>6MQip...i(p+q_l))_|_
k=1
p
<Z(—1)kP["l~~i(k—1) lslik--i(p—1) > aMQiP"'i(P-I-q—l)] _
k=1

q
<ZQ(@1 A=) lBlirdg-ny > aMqu...z(p+q_1) )

=1
q
<Z(_ 1)(pq+p+q+l) Q[i1~~~i(z_1) [pslig-i(g—1) > @MQiq~~~i(p+q—1)]‘

=1

Canonical symplectic structure: wy := dp; A dg*

0 0
oq' " Ipi

Canonical Poisson bi-vector: Py :=
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Chapter 1
Introduction

A problem in mechanics can be mathematically represented in many different forms,
each having a variety of solution methods. We are interested in the Hamilton-Jacobi
formalism. In this approach, a first order partial differential equation, the Hamilton-
Jacobi equation, is the key mathematical object. A powerful solution method of
the Hamilton-Jacobi formalism is separation of variables.

In this chapter, we introduce the Hamilton-Jacobi formalism and the method of
separation of variables. We briefly discuss the major contributions to separation
of variables by Liouville, Stackel, Levi-Civita, and Eisenhart to extend the basic

theory and provide a historical context.

1.1 Hamilton-Jacobi Formalism

In mechanics, the number of degrees of freedom for a physical system, say n, is the
minimum number of independent quantities that uniquely determines its position
at all times. It is often the case that a problem is simplified if we utilise quantities
different from the standard Cartesian coordinates. In fact, any set of n generalised
position coordinates, q = (q',... ,q"), that completely describes the motion of the
system is adequate. Naturally, the derivatives q are called the generalised velocities.

Let M be an n dimensional pseudoRiemannian manifold with local coordinates (q').
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The tangent bundle, 7 M, has canonical coordinates (¢, ¢'), where i = 1,... ,n.

The basis of the Hamilton-Jacobi formalism in mechanics is the Hamilton-Jacob:

(HJ) equation,

H(plv"' 7pn7q17"'7qn):E7 (]‘]‘)

in which H is the time-independent Hamiltonian (function). The variables, (p;),
are the generalised momenta defined in terms of the time-independent Lagrangian,
L =T —V (T and V represent the kinetic and potential energies of the system,
respectively), by

oL

;= -, 1.2
Pii= 5 (1.2)

We study only time-independent Hamiltonians in this thesis. A complete integral

of the HJ equation is a solution of (1.1), W(q, ), depending on the n separation

constants, a = {ay, ... ,a,}, that satisfies
dt{yw};&o (1.3)
e : : :
Bqlaaj
The momenta satisfy the relationship
ow

Pi= (1.4)

hence, the HJ equation (1.1) may be written as
H(,....,",\ W.,... W,)=E. (1.5)

We assume that the Hamiltonian is quadratic in the momenta, (p;), so that the

Hamiltonian of (1.1) and HJ equation (1.5) have the forms

H =S¢ (ann; + V(a), (16)
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and

1 ..
H = Sg(@WW,; + V(q) = E. (L7)

respectively, where ¢ are the contravariant components of the symmetric metric

tensor, g, and V is a smooth function.
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1.2 Separation of Variables

A Hamiltonian is said to be (additively) separable provided the HJ equation (1.7)

has a complete integral of the form
W(q,a) = —Et+ Wi(¢', a) + ... + W.(¢", ). (1.8)

The coordinates (q') are said to be separable with respect to the Hamiltonian and
the potential is compatible with the separable coordinates, or simply compatible or

separable. If, furthermore, the metric is diagonal, that is,
g7 =0, i #3, (1.9)
then the Hamiltonian system, for which
L 2
H = 9" (a)pi +V(a), (1.10)

is said to be orthogonally separable.
In physics, there is also the notion of product, or multiplicative, separability for

the Helmholtz equation with a potential function U(q),

1 9

in which the solution has the form 1 = [[;:(¢’; ). Product separation of the

ija_¢ —
(\/ﬁg W.) + U = N,

Helmholtz equation is not investigated in this thesis; however, there is a close
relation between it and the additive separation of the HJ equation.

A comprehensive theory of separation of variables must be able to intrinsically
characterise (that is, in a coordinate-free manner) separability, and determine the
distinct separable coordinate systems. In this thesis, we discuss recent results, by
Benenti and others, in the geometric characterisation of separability. We apply a

moving frame method for the determination of separable coordinates that extends
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the work initiated by Eisenhart [14], and developed by others.
First, it 1s natural to investigate the major results in the field of variable sepa-

ration.
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1.3 Historical Outline

The method of separation of variables has been studied extensively since the middle
of the nineteenth century. Other methods have been developed in the second half

of this century, some of which we discuss in Chapter 2.

1.3.1 Liouville

Liouville [27] was the first person to study the separability of the Hamiltonian with

distinct kinetic and potential energy components,
H=T+V =E. (1.11)

Given 3n functions a;, ¢;, and V; that are dependent on only the corresponding
coordinate, ¢', we define Liouville systems (investigated by Liouville in 1849 [28])
as those with a Hamiltonian (1.11) such that

ke ./L' 2
_c (") _ 1 .
T = 9 2, = %gazl)

where

c=Y e (112)

1
H=_—) (ap} +2V;) = E. (1.13)
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For a Liouville system, we construct n — 1 first integrals,

1
Ii = 56%'])? + V; — CiH, (114)

that is, quantities that satisfy {I,, H} = 0, ¢ = 1,... ,n. We derive the fact that
only (n — 1) of the first integrals are independent by observing that

>
i=1

= cH — Z(Cl)H

= 0,

using (1.12) and (1.13). If, in addition, the first integrals satisfy {[;, [;} =0, 4,5 =
1,...,m—1, i # j, then {I,... ,[,_1, H} is called an involutive set, or is said to
be in involution. The n first integrals (1.14) including the Hamiltonian, H, (1.13)
form an involutive set. Liouville [29] proved a theorem connecting the existence of

first integrals with separability.

Theorem 1.1 (Liouville) A Hamiltonian system with n degrees of freedom that

possesses n independent first integrals in involution is integrable by quadratures.
By the Liouville Theorem, the following theorem is established

Theorem 1.2 The complete integral for any Liowville system (1.13) can be deter-
mined (in theory) by the method of separation of variables.

Using the coordinate transformation ¢* = [ 4/a;(¢*)dq’, i = 1,... ,n, we elimi-

nate the a; dependence from the kinetic energy; therefore, using (1.4), we transform
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the HJ equation (1.13) into the form

1

H=—
2¢

Y (W) +2V] = E.

=1

Comparing this form of the HJ equation with the general form (1.7), we conclude
that the metric is diagonal (1.9) with non-zero contravariant components ¢ = 1/,
for 2 = 1,...,n. It follows from the fact that the matrices corresponding to the
contravariant and covariant forms of the metric must be inverses that the non-zero

covariant components are

n
Gii = E ¢, t=1,...,n.

i=1

The general form of the line element, also referred to as the metric, is
ds® = gi;dq'dq’. (1.15)
For Liouville systems, the metric is said to be in Liouville form,
ds® = [er(qh) + ... + ca(g™)][(dgH)? + ... + (dg™)F]. (1.16)

Morera [33] showed that on a two dimensional Riemannian space of arbitrary cur-

vature, the converse to Theorem 1.2 holds locally.

Theorem 1.3 (Morera) On a two dimensional Riemannian manifold, any sepa-

rable metric can be written locally in Liouville form (1.16).
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1.3.2 Stackel

Stackel’s first major contribution [40] was to find all the separable metrics for an

arbitrary two dimensional Riemannian manifold, Ms:
I ds® =[ea(q") + ea(q)][(dg")* + (dg*)?],
1T ds? = gusla ) (da' ) + 2950(a e dg? + gsala')(da?)?. (1.17)

11T ds* = (dq')* — 2 coslei(q") + c2(q?)]dg’ dg” + (dg?)*.

We observe that the type I metrics are in Liouville form. By Theorem 1.3, we know
that the other two metrics must be equivalent to some metric in Liouville form. In

case [, we define new coordinates (¢', ¢*) by

. g
P = [Yag,
G922
~ J12
i =q+ /—dql-
G922

In these coordinates, we write type I1 metrics in the Liouville form

ds® = g22(¢'("))[(dq")” + (dg*)°].

Similarly, by using the transformation to Cartesian coordinates,

T = /cos(cl)dq1 —/cos(c2)dq2,

Yy = /sin(cl)dql +/sin(c2)dq2,
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we transform metrics of type III into the Liouville form
ds? = dz? + dy2.

For dimensions greater than two, there are separable systems that are not equiv-
alent to a Liouville system. Omne such family of systems is that of the Stackel
systems, see [41, 42, 43]. They have Hamiltonians of the form

H =Y ai(a) g2 + Vita)]. (1.18)

Stackel proved the following theorem connecting the integrability of a Stackel sys-

tem with the existence of a matrix, S, called a Stackel matrix for the system.

Theorem 1.4 (Stackel) A dynamical system with a Hamiltonian of the form
(1.18) is separable if and only if there exists an n X n matriz S, with elements

si; = 8i5(q%), such that its determinant does not vanish, and

k3

Y sii(d’)aj(a) = G- (1.19)

i=1

If we denote the inverse matrix of S by A = (a;;), then the relations
a; =a;1, t=1,....n

follow immediately from (1.19). The n independent integrals in involution for this

system are constructed as
- L, i
I =Y aijla) | 50F + Vila)]

=1

where [, = H.
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1.3.3 Levi-Civita

The separation of the general HJ equation (1.1) was investigated by Levi-Civita at
the beginning of the twentieth century, see [26]. He produced a separability test for

a specific coordinate system. This is the famous Levi-Civita criterion.

Theorem 1.5 (Levi-Civita) The HJ equation (1.1) separates in a specific set of
coordinates, ('), if and only if the Hamiltonian satisfies the n(n — 1)/2 equations

OHOH O0*H _OHOH 0°H _ OHOH 9°H | OHOH 9*H —0
Op: Op; 8¢'0¢'  Opi O¢’ 0q'0p;  0¢' Op; Op;0¢° = Oq* Og OpiOp; ’
(1.20)

1<i<j<m, i#j,
where there is no summation over the indices.

Theorem 1.5 provides a straightforward test for separability; however, since it
1s only a local characterisation, it does not, in general, aid in the determination of
separable coordinates.

The separability of a Hamiltonian with distinct kinetic and potential energy

components (1.11) where V is non-zero requires that the geodesic HJ equation,

1 ..
G .= §g”pipj =F, (1.21)

for which the potential energy is zero, separates. Using the notation (1.21), the
Hamiltonian (1.6) is represented as H = G+ V.

To analyse a Riemannian manifold, Levi-Civita introduced a classification system
for coordinates. If 9;H is divisible by 8°H, then the coordinate ¢' is said to be first
class. Otherwise, ¢' is said to be a second class coordinate. We observe that, for
a geodesic Hamiltonian (1.21), &;H is quadratic in momenta and 9*H is linear in
momenta.

Using this taxonomy, Levi-Civita recovered Stackel’s separable metrics (1.17) for

two dimensional spaces. He also showed that if all separable coordinates are first
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class, then the space is necessarily flat, that is, Euclidean.

1.3.4 Eisenhart

Eisenhart was the first mathematician to provide a geometrical characterisation of

separation of variables, see [14].

Theorem 1.6 (Eisenhart) The geodesic Hamiltonian (1.21) is orthogonally sep-
arable in some coordinate system, (q'), if and only if the following conditions are

satisfied:

1. There are (n — 1) linearly independent quadratic first integrals,
I, = Alpip;,

that form an involutive set with the Hamiltonian, H.

2. The eigenvalues of A%, N are all distinct, said to be simple, and satisfy the

determinant equation
det[AS — )\j‘] # 0,

fori fized and a=2,... n,j=1,... ,n, j#1i.

3. The eigenvectors, {E,}, corresponding to the eigenvalues {\.} are normal, a

concept discussed in Appendiz A.

By taking the hypersurfaces orthogonal to each of the vector fields, E,, as the
coordinate hypersurfaces, we define a separable coordinate system. In these coor-
dinates, the metric component matrix, ¢/, and first integral component matrices,
A% can be simultaneously diagonalised. This follows from the fact that the vector
fields are normal.

In Chapter 3, we discuss recent work by Benenti that simplifies and generalises

Theorem 1.6. The groundwork of Eisenhart motivates our application of the method
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of moving frames to the Benenti intrinsic characterisation theorem of orthogonal

separability.



Chapter 2
Hamilton-Jacobi Theory

In this chapter, we present the mathematical basis required for the study of me-
chanics. In agreement with the chronology of their development, we introduce first
Lagrange’s and then Hamilton’s equations. Next we discuss the key tools for the
present discussion: first integrals, the Poisson bracket and symplectic structures,
and Killing vectors and tensors. This thesis focuses on the Hamilton-Jacobi for-
malism of mechanics which we proceed to develop including the important results
for the solution of the Hamilton-Jacobi equation, the Jacobi and Arnol’d-Liouville
theorems. One of the primary solution methods for the Hamilton-Jacobi equa-
tion is the method of separation of variables. It is described and applied to the
two dimensional harmonic oscillator. Finally, two other algorithms, the Lax and
bi-Hamiltonian methods, are introduced, then applied to the non-periodic, finite

dimensional Toda lattice.

2.1 Lagrangian and Hamiltonian Formalisms

Hamilton-Jacobi theory is an extension of earlier formalisms of mechanics. We de-
scribe the Lagrangian formalism based on the Lagrangian and Lagrange’s equations.
Then we discuss the development of the Hamiltonian and Hamilton’s functions, in

the Hamiltonian formalism, from the Lagrangian. Since transformations to separa-

14



§2.1. Lagrangian and Hamiltonian Formalisms 15

ble coordinate systems are key to the study of separation of variables, we discuss

the transformations, point and canonical, permitted in mechanics.

2.1.1 Lagrange’s Equations

The formulation of Lagrange’s equations begins with the concept of a functional,
any function of some class of curves. Following [24], we consider a system that
occupies positions q(to) and q(#1) at times ¢y and #;, respectively. The fundamental

functional in the Lagrangian formalism is the action,

S— /tlL(q, a)dt. (2.1)

to

The function L is called the Lagrangian of the system. In this thesis, we investigate

only time-independent Lagrangians. An important subset of these systems are

closed systems, for which the system’s particles experience no external forces.
With respect to the Lagrangian, the generalised momenta of the system are

defined by (1.2) and the generalised forces are defined by
pi = O; L. (2.2)

Hamilton’s principal of least action states that the motion of a mechanical system
coincides with an extremal of the action and, in the case of a sufficiently short
segment of the path, a minimum thereof. It is interesting to note that, because
L is a function of only position, and velocity, Hamilton’s principal implies that
Newton’s principal of determinacy holds: The motion of a system for all times is
completely determined by specifying both the position and velocity vectors at some
time, to. This is certainly not an intuitive result; however, it follows trivially, from
our mathematical formulation of mechanics, that there exists a unique solution to a
set of second order ordinary differential equations given the aforementioned initial
conditions.

The requirement that S be minimised implies that the first variation of the
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integral (2.1) vanishes,

31
0S8 = / L(q,q)dt =0

to

Integrating the second term by parts, we obtain

t1+/t:l<5_L_ia_fi>5th: . (2:3)

to

5%

At the endpoints the variation of ¢ is zero, that is, dq(to) = dq(t1) = 0; therefore,
the integrand of the second term must vanish; thus, for a system with n degrees of

freedom, (2.3) implies that the n second order differential equations

d (0L oL

are satisfied. The equations of motion (2.4) for the system are called Lagrange’s

equations. Given 2n constants, say the positions and velocities at t;, we may, in

theory, determine the trajectories.

2.1.2 Hamilton’s Equations

The equations of motion need not be formulated in terms of positions and velocities.
Another natural perspective depends on the positions and momenta. We consider
an n dimensional manifold, M, in conjunction with its cotangent bundle, 7% M.
We represent the local coordinates of M by (gq'), and the corresponding canonical
coordinates of T*M by (q',p;), where i = 1,... . n.

The change of independent variables from (¢‘) to (p;) may be effected by a

Legendre transformation. The Hamilton’s function, or Hamiltonian, is the Legendre
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transform of the Lagrangian with respect to the variable q [24],

H(p,q) = pq— L(q,q). (2.5)

The Legendre transform is involutive. That is, the square of the transformation is
the i1dentity; thus, by taking the transform of the Hamiltonian, we return to the
Lagrangian of the system.

To derive Hamilton’s equations, we consider, as in [24], the total differential of

the Hamiltonian (2.5),

oL
aq’

0L .
dg* — —dq'.
T~ g

dH = p;dg* + ¢'dp; —

Using the definitions of the generalised momenta and forces, (1.2) and (2.2), we

obtain
dH = —pidq’ + ¢'dpi.
This leads directly to Hamilton’s equations for the system,
¢ =0'H, p;,=—0H. (2.6)

We observe that this has transformed the problem from n second order differential
equations in n coordinate functions, q, to a system of 2n first order differential
equations in the 2n momenta and coordinate functions, p and q, respectively. These
equations are also called the canonical equations because they treat the variables
p and q symmetrically.

For a mechanical system, we geometrically represent the state of the system
using its phase space. Consistent with the Hamiltonian formalism, it is a 2n dimen-
sional space in which each of the n generalised coordinates, ¢, and n generalised
momenta, p;, plays the role of an independent variable. Each point in the phase

space corresponds to a unique system state. As the system evolves in time, a curve
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in the phase space, called the phase path or phase flow, is constructed.

2.1.3 Point and Canonical Transformations

As mentioned in Section 1.1, problems may be described using any coordinate
system that uniquely determines the state of the system for all times ¢. The for-
mulation of Lagrange’s equations (2.4) is not dependent on any preferred coordi-
nate system; hence, they are invariant under a transformation of the coordinates
(¢',...,q") = (*,...,3") using a point transformation, ¢’ = §'(q). It follows that
Hamilton’s equations are also invariant.

In the Hamiltonian formalism, because the momenta are treated as variables

independent of the coordinates, we may consider transformations of the form

qi = qi(pqut)v ﬁz = ﬁi(pqut)' (27)

Not all coordinate transformations of this form are desired. We consider only the

transformations (2.7) under which Hamilton’s equations retain their canonical form,

I%) OH
q

“on T ar

Such transformations are said to be canonical. It has been shown [24] that sufficient

conditions for a transformation to be canonical are

{@,dY=0, {p.in} =0, {57} =4} (2.8)

The greater diversity in allowable transformations for Hamilton’s equations is an ad-
vantage because problems may be more readily transformed to a position-momenta
coordinate system in which they can be solved; nonetheless, in this thesis, we utilise

only point transformations,

i =g ;= ——Dr. 2.
¢ =4q(a), p ik (2.9)
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2.2 Mathematical Machinery

The study of Hamiltonian mechanics requires special mathematical tools. As men-
tioned in the Liouville theorem, Theorem 1.1, first integrals are important quan-
tities for separation. The Poisson bracket is key to our mathematical definition
of first integrals, and other concepts, such as canonical transformations. The
bracket connects naturally with symplectic structures, a fundamental part of the bi-
Hamiltonian method. We then introduce Killing tensors and show their significance

to mechanics.

2.2.1 First Integrals

An important concept in the solution of Hamilton’s (and Lagrange’s) equations is
that of the first integral of the motion. A first integral is a function of the variables
fixed by initial conditions, that is, that remains constant along any integral curve.

If the Hamiltonian is independent of a coordinate, say ¢', (and thus also the
Lagrangian) then the coordinate is called ignorable, or cyclic. It is obvious, from
(2.6), that if some ¢', say ¢', is ignorable, then the corresponding momentum is
constant, p; = c¢;; thus, the momentum is a first integral. Also the coordinate
function may be written as ¢' = ¢t + d; for constants ¢; and dy; furthermore, the
order of the problem is reduced to 2(n —1) because the Hamiltonian may be written

[2] as

H(Clvp27 s 7pn7d17q27 s 7qn)‘

The most important first integral for a closed system is the energy. We derive
this result using the Hamiltonian formalism. By design, it is trivial. Following [24]

we begin with the total time derivative of the Hamiltonian,

dH . .
— = 0;H¢" + 0" Hp;.
7 q + P
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Replacing the partial derivatives of H with respect to coordinates and momenta

using Hamilton’s equations (2.6), the right hand side vanishes,

therefore, if the Hamiltonian is time-independent, then H is constant. The value of
this constant is simply the total energy of the system, E; thus, we have established
the law of conservation of energy (1.11). In our terminology, the Hamiltonian, H,
1s a first integral of the system, equal in value to E; therefore, one of the constants
of integration, «, is E, say " := E.

Any mechanical system with constant energy is called a conservative system;
hence, this thesis exclusively examines conservative systems. This set of systems
includes, but is not limited to, closed systems.

For a closed mechanical system with n degrees of freedom, there are at most
2n — 1 first integrals. As stated previously, the general solution to a mechanical
problem has 2n arbitrary constants that must be specified to uniquely determine
the solution. Because 0H /0t = 0, the time origin may be shifted without chang-
ing the problem; thus, one of the constants is simply a translation in time. The
remaining 2n — 1 constants can then be represented by functions of the coordinates

and momenta (or velocities). These are the first integrals.

2.2.2 Poisson Brackets

We consider the functions f(p,q,t) and g(p,q,t). The Poisson bracket is defined
by the sum

{f.9} = 0"forg — O fO"g. (2.10)
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The Poisson bracket is a bilinear operator. If one of the functions is a position or

momentum then the bracket reduces to, respectively,

If both functions are position-momenta coordinates, we obtain the relations

{¢".d"} =0, {pi.p} =0, {pi.d"} = 6.

We recall that these equations are the conditions on new coordinates (2.8), stated
in Subsection 2.1.3, sufficient for a canonical transformation.
The most interesting property of the Poisson bracket involves first integrals. We

consider the total time derivative of a first integral, f(p,q,t), as in [24],

af af af n f
- = 0.
=Y (G

Using Hamilton’s equations (2.6), this becomes

of

S T f} =0,

For a first integral without explicit time dependence, we have
{H.f} =0.

In this case, we say that f is in involution with the Hamiltonian. This property
holds if and only if f is a first integral.

Another property involves the derivative of the bracket,

{f, }—{ or }+{ﬁ%}-

Other important properties of the Poisson bracket are the:
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Jacobi identity,

{5, {9,h3} +{g,{h, f}} +{h.{f, 93} =0, (2.11)

skew-symmetry,

{f,9y =g, 1}, (2.12)

and Leibniz rule,

{f,ghy ={f g}k +{f hig. (2.13)

By (2.11), (2.12), and (2.13), a Lie algebra on the space of functions is defined by
L

The Jacobi identity (2.11), with h = H, implies that the Poisson bracket of two
first integrals, f and g, 1s also a first integral. This result is known as Poisson’s
theorem. As discussed earlier, there at most 2n — 1 first integrals for a system;
hence, the application of Poisson’s theorem does not always produce additional
linearly independent first integrals. The Poisson bracket, {f, g}, may be a constant
or functionally dependent on f or g. Similarly, the Leibniz rule (2.13), with f = H,
implies that the product of two first integrals is a first integral.

2.2.3 Symplectic Structure

Hamilton’s equations may be written as a single vector equation by introducing
a new notation. Following [36], we define a 2n dimensional vector x by x :=
(p,q); thus, the phase space, which we shall take to be R*" (in general, some 2n

dimensional manifold, M), contains x. It follows that VH = (0H/0p,0H/dq). By
0

introducing the matrix J = ( /

—TI
) , we may write Hamilton’s equations (2.6)
0



§2.2. Mathematical Machinery 23

x = JVH(x). (2.14)

This leads to an alternate representation for the Poisson bracket in Euclidean space

for functions f(x), g(x) € R**,
{f7 g} = _(va ng), (215)

where (, ) represents the standard Euclidean scalar product.
From (2.14), (2.15) and the skew-symmetry property of the Poisson bracket
(2.12), it follows that

2n
{H,o'} = (JVH,Va/) = @*6 =i, j=1,... 2n;

k=1

therefore, the equations of motion may be written in the form
Xg:={H x} =x (2.16)

Xpg is called the Hamiltonian vector field corresponding to H(z); hence, a Hamil-
tonian system is characterised by the triple (R**,{,}, H(z)).

The matrix J is nondegenerate; thus, it has an inverse that is clearly J=! = —.J.
This inverse matrix defines a nondegenerate skew-symmetric bilinear form wy on

R2n

wo(x,y) = (x,J 7 'y).

On a general 2n dimensional manifold, M, a nondegenerate closed 2-form, w, is
called a symplectic form or structure; thus, the phase space, M, equipped with

a symplectic structure, w, is called a symplectic manifold, (M,w). Using local
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coordinates, we write w as,
w = wip(x)de? Ade®, § k=1,..., 2n.

The nondegeneracy of w is equivalent to the nonvanishing of det(w;x(z)) at every
point in M so that its inverse, a skew-symmetric matrix w’*(z), exists everywhere
on M. In local coordinates, we write the requirement that w be closed, that is,

dw =0, as

6wij 6o.)jk 6wki ..
. - =0 k=1,... . 2n.
axk 6£B7’ ax] b 7’7]7 b b n

This is equivalent to the Jacobi condition on the Poisson bracket (2.11).
The manifold M = R2*is equipped with the aforementioned canonical symplectic

form, wy, associated with —.J,

0 I i A ;. .
Wy = I o de’ Ndz® =dp; Ndq', j,k=1,...,2n, i=1,...,n, (2.17)

and its inverse, the canonical Poisson bi-vector,

POZO.)O_l == aaq’/\ai7 ’l,:]_7 , . (218)

Theorem 2.1 (Darboux) At any point x on a symplectic mainfold (M,w), there
exists a local coordinate system in a neighbourhood of X such that w has the standard

form
w=dp;Ndq', i=1,... n.

The general Poisson bracket is an extension of the standard Poisson bracket, de-
fined using the Schouten bracket. See Appendix B for a description of the Schouten

bracket. With respect to a general Poisson bi-vector, P, the general Poisson bracket
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{f.9}p := Pdfdg := [P, fls, gls.

For the canonical Poisson bi-vector, Py (2.18), the general bracket reduces to the
standard form (2.10); thus, using Darboux’s theorem, Theorem 2.1, we conclude
that in the neighbourhood of any point on a manifold, we can find coordinates with

respect to which the general Poisson bracket is the standard Poisson bracket.

2.2.4 Killing Tensors

Killing tensors were historically of interest primarily to relativists. More recently,
they have become a tool used in classical mechanics to determine first integrals.
We consider a pseudoRiemannian manifold, (M, g), of dimension n. In a local
coordinate system, (¢'), a Killing n-tensor is defined as a symmetric, covariant
tensor field K on M satisfying the Killing tensor equation, originally known as

Killing’s equations,
K(llln,ln+1) - 07 (219)

This is a generalisation of the concept of a Killing vector (KV), a one dimensional
Killing tensor that satisfies K;;;y = (1/2)(K;; + Kju) = 0. A Killing vector may

equivalently be defined, see, for example [46], as a contravariant vector satisfying

;5

the condition

,CKg = 0,

where L is the Lie derivative.
Another definition of a Killing tensor is provided by the Schouten bracket. The

contravariant form of a Killing tensor of any valence must commute with the metric
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tensor, g, see [46], that is,
(K. gls = 0.

We shall consider only Killing vectors and Killing 2-tensors in this thesis. It 1s to
be understood that the term Killing tensor is used to mean Killing 2-tensor.

For a dynamical system, Killing tensors (KTs) correspond to first integrals
quadratic in momenta and KVs correspond to first integrals linear in momenta,
see [15]. This is shown by calculating the Poisson bracket of the corresponding first
integral and the Hamiltonian (1.6).

We consider a contravariant vector, L‘(q), and a symmetric contravariant ten-
sor, K'%(q), with components that are functions of the coordinates. From this,
we construct a second first integral, K*p;p; + L'p; + U, where U(q) is a smooth
function of the coordinates. The first integral is necessarily in involution with the

Hamiltonian (1.6), that is,
ij i L3
{K¥pipi + L'pi + U, 59"pipi + V} = 0.
Expanding, we obtain

ij Iy P Y 1
{K"pip;, 29 “pip;} +{L'ps, 29 “pip;} +{U, 59 "pip; }

+{Kpip;, V} + {L'p;, V}+{U,V} =0

= (K919 — K¥g" ) pipipi + <L " - 5L k,j)l)ipk
(2.20)

+(=Umg™ + 2K"™V,,)pi + L'V; = 0.

The terms in (2.20) cubic, quadratic, linear, and constant in momentum must
vanish independently.

First we examine the cubic terms. The p;p;p; factor implies that the anti-
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symmetric components with respect to ¢, j, and [ vanish; thus, the symmetric
components, with respect to ¢, j, and [, vanish. Using the contravariant metric
tensor components, g, to substitute covariant components for the contravariant
components, K%, and expanding the directional derivatives of ¢ according to the

formula g ;. = ¢g"¢™ gy i [14], we obtain

Kiji+ Kiji + Kij — Kijg"™ (gimi1 + Gimi — Gitm)
— K1ig"™ (gimi + Gimj — Gitom) — Kng" ™ (Gim; + Gimi — Gijom) = 0.

This is the expansion of the Killing equation (2.19) for a 2-tensor; thus, the K%
are the components of a KT.
Similarly, we conclude that the symmetric (over ¢ and k) components must vanish
for the quadratic terms. Since ¢** is symmetric, we deduce that
G e _ Lo
thg —§Lg7j:0.
Rewriting this equation in terms of the covariant form of L and the directional

derivatives of the covariant metric tensor components, we obtain
mn il _kj
[Lij + Lji — Ling™ (ing + Gjni — 9iim)lg" 9™ = 0.

This implies that the expression contained in the brackets vanishes. We observe
that this expression may be written as L;;; + Lj;;; therefore, L;;) = 0 and the L
are the components of a Killing vector.

By requiring that the linear in momentum terms sum to zero, we derive the

equation
U; —2K;V; = 0.

We may write this in the form of a tensor equation,
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dU = 2KdV. (2.21)

This equation characterises the potential, U, of a second first integral with respect
to the Hamiltonian potential, V; furthermore, it establishes, using the property
of the exterior derivative, d(dU) = 0, the compatibility condition between the
Hamiltonian potential, V', and associated KT, K,

d(KdV) = 0, (2.22)

where K is the Killing tensor with components K.

The final condition, deriving from the term independent of momentum, is
L'V; = 0.
This is equivalent to the vanishing of the Lie derivative of V' with respect to L,
LV =0. (2.23)

We observe that there exists a coordinate system in which the KV takes the form
L' = 0/dq", that is, L' = §¢. Since Lis a KV, it follows that d;g;; = 0. From (2.23),
the form of the KV implies that ;V = 0. Because both the metric and potential
are independent of ¢*, the Hamiltonian (1.6) is independent of ¢'; therefore, ¢! is
an ignorable coordinate. This links the concept of KVs to ignorable coordinates.

By setting K = 0 in the second first integral, we obtain a first integral linear in
the momentum that corresponds to the KV, L. Similarly, a first integral quadratic
in momentum corresponding to the KT, K, is produced by imposing L' = 0.

It 1s not a trivial task to find Killing n-tensors in an arbitrary manifold; however,
Thompson proved that for spaces of constant curvature every Killing tensor is a

sum of symmetrised products of KVs [46].
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In Euclidean n-space, with the standard metric, ¢;; = d;; in the natural basis,

the Lie algebra of KVs has as a basis

Ri; =¢8; — q'8;, 1 <i<j<n,

corresponding to the conservation of linear momentum and angular momentum
[46], respectively.
Killing tensors play an integral part in the intrinsic characterisation of additive

separation of variables for the HJ equation. This point is elucidated in Chapter 3.
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2.3 Hamilton-Jacobi Formalism

We have established the necessary background theory in mechanics and mathemat-
ics to discuss the Hamilton-Jacobi formalism. We first derive the key mathematical
objects in the theory, the Hamilton-Jacobi equation and its complete integral. The
direct approach to solving for the trajectories is provided by the Jacobi theorem,
which we describe next. Finally, we include the extension of the Liouville theorem,

Theorem 1.1, by Arnol’d.

2.3.1 Hamilton-Jacobi Equation

We initially remove our standard assumption that the system is time-independent;
therefore, we treat the Lagrangian and Hamiltonian functions as dependent on
time until we explicitly state otherwise later in this subsection. We must derive
two preliminary results to develop the Hamilton-Jacobi equation.

Following [24], we view the action (2.1) for the actual path of the system as a
function of the coordinates at time ¢;. We are interested in comparing the values of
S obtained by varying the coordinates at ¢;, that is, along paths in a neighbourhood
of the actual path. As we derived in Subsection 2.1.1, for the one dimensional case,

the first variation of the action is

oL 1" (" (0L dOL
08 = | =0 — — ——— ] dqdt.
G, [ (G iss) o
The second term vanishes because the motion satisfies Lagrange’s equations. In
the first term, we set dq(to) = 0 and replace dq(¢1) with dg because ¢; adopts any

value of ¢ greater than ¢y. Using the relationship (1.2), we arrive at the equivalence

0S = pdq. For an n dimensional system, this has the form

§S = pidq'.
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A relationship between the action and momenta follows directly,
Si = pi. (2.24)

Another necessary result is produced by examining the total time derivative of

the action. Directly from the definition of the action (2.1), we observe that

ds

-~ I 2.25
— =L (2.25)

however, by viewing the action as a function of only coordinates and time, it is
obvious, using (2.24), that

ds 98 ) a5 )
o + 5.4 = Bt + Pigi- (2.26)

Comparing (2.25) and (2.26), then using (2.5), we obtain

s
T H(p,q,t) = 0; (2.27)

hence, we have derived a relationship between the action and Hamiltonian. The
momenta in (2.27) are replaced using (2.24) to produce the first-order partial dif-

ferential equation called the Hamilton-Jacobt equation,

aa—I/I/—I—H(ql,...,q",Wl,...,Wn,t):(), (2.28)

where we have relabelled the action, S, as W in agreement with standard notation.
Using our new notation, we observe that our derivation of (2.24) also proves the
relation (1.4).

There exists a general method for integrating the HJ equation to solve for the
system’s motion. Before considering it, we introduce two relevant terms.

From the theory of partial differential equations, we have the result that all first

order equations have a solution that is unique up to an arbitrary function. This
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solution is called a general integral. A more important concept in mechanics is
that of a complete integral. For the HJ equation, a complete integral is a solution
with n 4+ 1 independent arbitrary constants that satisfies (1.3). Since the action,
W, appears in the HJ equation (2.28) only as a derivative, a complete integral is

defined modulo an additive constant, ¢y, that may be ignored,
W =W(q,t; o) + to, (2.29)

where a = (@, ... , a,) represents the remaining n independent constants.

2.3.2 Jacobi Theorem

We now establish the connection between the complete integral of the Hamilton-
Jacobi equation and solutions of Hamilton’s equations. We use the function W(q, ¢; )
as the generating function for a canonical transformation from the original coor-
dinates (p,q) to (a,[3); therefore, our new position coordinates are (8*,...,3")
and new momenta coordinates are (o, ... ,a,). As shown in [24], with this gen-
erating function, the new Hamiltonian vanishes everywhere; thus, the transformed

Hamilton’s equations become
& =0, g =0,

where " := t,, the constant introduced in the preceding section; therefore, we have
o; = constant, 3* = constant. We solve for the position coordinates q as functions
of t, @ and B using the relationships 8° = OW/d«; [24]; thus, we have determined
the general integral of motion.

The general method for solving the equations of motion is summarised as follows.
We derive the Hamilton-Jacobi equation, then find the corresponding complete

integral (2.29). We then solve n algebraic equations of the form

oW

o =1 (2.30)
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to obtain the coordinates ¢' = ¢*(¢; a,3). The momenta are then calculated using
(1.4).

This result is known as Jacobi’s Theorem.

Theorem 2.2 (Jacobi) LetW = W(q,t; ) be a complete integral of the Hamilton-
Jacobi equation (2.28) where a = (au,... ) is a set of n arbitrary constants.
Let B = (f1,...,0n) be an additional n arbitrary constants. Provided that the
determinant condition (1.3) holds, the n relations (2.30) define the n coordinate
functions ¢ = ¢'(t;a,B) and n momentum functions p; = OW/dq" to produce a

general solution to Hamilton’s equations (2.6).

In the case that a complete integral cannot be found, the problem may still be
simplified by reduction of the number of degrees of freedom. For example, there
may be one or more ignorable coordinates for the system.

Our interest focuses exclusively on conservative systems for which the Hamilto-
nian has no explicit time dependence. In this case, the action’s only time depen-

dence is the term — Et. That is, the action may be written in the form
W(q,t;a) = Wy(q; ) — Et,

where o* := E. The Hamilton-Jacobi equation (2.28) simplifies to the standard
form (1.5).

2.3.3 Arnol’d-Liouville Theorem

As previously described, the existence of first integrals for a system allows us to
reduce the number of degrees of freedom in the associated mathematical problem.
It is generally required that we find 2n first integrals to integrate a system of 2n
ordinary differential equations; however, for a set of canonical equations, n integrals
is sufficient, if they have the correct form, because each reduces the order of the
system of equations by two instead of one. Liouville proved this result in general.

Arnol’d formalised the concepts of Liouiville’s theorem, Theorem 1.1, and extended
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it in [2]. Before stating his theorem, we define the concept of a conditionally
periodic system. We consider a system that has a motion that is not periodic in
any coordinate. That is, the system will not return to any previous state in a finite
interval of time. The system is said to be conditionally periodic provided that it
will pass arbitrarily close to any previous state given a sufficiently large interval of

time.

Theorem 2.3 (Arnol’d-Liouville [2]) Given n functions, Fy,... , F,, in involu-

tion on a symplectic manifold, we consider some level set of the functions,
Miy={z:F(x)=Ffi,i=1,... ,n}.

Under the assumption that we have independence of the n functions on My, that
is, that at each point in My the 1-forms dF; are linearly independent, we have the
following:

1. My s a smooth manifold that is invariant under phase flow with a Hamilto-

nian, H = F}.
2. If the manifold My is compact and connected, then it is diffeomorphic to the

n dimensional torus,

T ={(®1,...,®,)mod 27}.

3. The phase flow with a Hamiltonian, H, determines a conditionally periodic

motion on My, that is,

% = w where w = w(f).

4. The canonical equations with a Hamiltonian, H, can be integrated by quadra-

tures.
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A useful corollary of this theorem exists for two dimensional systems.

Corollary 1 A mechanical system with two degrees of freedom that possesses a first
integral independent of the Hamiltonian is integrable by quadratures; furthermore, a
compact connected two dimensional submanifold of the phase space H = h, F = f

s an tnvariant torus. Motion on it is conditionally periodic.
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2.4 Method of Separation of Variables

An important technique for the determination of a complete integral for the Hamilton-
Jacobi equation of a system is the method of separation of variables.

We consider the case in which a coordinate, ¢/, — without loss of generality ¢!
— and the corresponding momentum, p; = W, appear in the HJ equation (1.1)

in some combination that is independent of the other coordinates, derivatives and

time, ¢(q', W1). We may write (1.5) in the form [24]

oW (L OW\\

In (2.31) and the remainder of this section, q represents the set of position coordi-
nates excluding ¢'.

We proceed to seek a separated solution of the form
W =W(q; a) + Wi(q*) — Et, (2.32)
where o™ := E. When we substitute this action into (2.31), its form changes to
ow oW,
H —-— ! =FE.

This must be an identity for any solution (2.32). Since the only ¢' dependence is in

¢, ¢ must be constant, say equal to the arbitrary constant a;. The problem (2.31)

has been reduced to

oW,
¢ (ql —qu> =, (2.33)

It is clear that this system is simpler than the original HJ equation (2.31). The
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first equation is an ordinary differential equation for W; that may be solved by
quadrature, and the second is a partial differential equation that has two fewer
independent variables than the original HJ equation. Ideally, we may separate the
remaining n—1 coordinates. Then finding the complete integral for the HJ equation
1s reduced to n quadratures. We say, in this case, that the HJ equation is completely
separable.

A specific example of separation of variables is the separation of a cyclic coor-
dinate, say ¢*. By definition, the Hamiltonian, and hence the HJ equation, are
independent of a cyclic coordinate; thus, it is a separable coordinate. In particular,
the ordinary differential equation (2.33) becomes W;; = «;. This implies that
W1 = aiq'. The complete integral (2.32) is

W =W(q; &)+ a1q" — Et.

We observe that oy is the constant value of the corresponding momentum, p; = Wy,
and «,, is the system’s energy, E.

For conservative systems, the energy term, £, in (2.31) is produced by the cyclic
time variable, t; furthermore, as mentioned in Subsection 2.2.1, E is one of the n
first integrals, and hence, constants of motion. If completely separable, the method

yields

where o := E.

The method of separation of variables encompasses the previous methods of
integration using ignorable coordinates. It also includes the more general case in
which a coordinate is not cyclic but is separable. In practice, the HJ equation for
a system must be represented in appropriate coordinates for it to be separable. A
local characterisation of separability, the Levi-Civita criterion, Theorem 1.5, was

described in Chapter 1; however, recent work by Benenti, see [4, 5], has produced
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an intrinsic coordinate-independent characterisation of the separability of a system
via a point transformation. This is investigated in Chapter 3.

Separation of variables is a powerful method; however, there are other methods
used to solve Hamilton’s equations. Of the variety of approaches, two, the Lax
operator and bi-Hamiltonian methods, are discussed in subsequent sections of this
chapter. First, we illustrate the use of separation of variables by applying it to an

elementary problem from mechanics, the two dimensional harmonic oscillator.

2.4.1 Example: Two Dimensional Harmonic Oscillator

A standard example for separation of variables is the two dimensional harmonic
oscillator, see, for example, [21]. For both independent variables, we have a kinetic
energy T; = (1/2)p;¢* = (1/2)m(q")? — using the definition of the momentum in
Cartesian coordinates, p; = mq' — and a potential energy V; = 1/2mw?(¢*)?; thus,
the Hamiltonian is

1
H= 5o (0} +93) + 5 (@i(a) +3()).

This system is conservative because there is no explicit time dependence. Using

(1.4), the HJ equation (1.7) is

S LWa) + (o] + 5 (') + o)) = E. (234)

Neither coordinate is cyclic but both are separable; hence, we seek a solution
of the form W = —Et + Wi(q') + Wa(q?). Substituting this form into (2.34), we

obtain the separated equations

1 m
%(WMV t5 (wi(q")?) = o,

1 m
5 (Waa) + 5 (3(4)) = E - au.
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These ordinary differential equations may be rearranged to obtain equations of the

form W, ,; = \/2mc — m?w?(q')? where ¢; = ay and ¢; = E—ay, respectively. Using

inverse trigonometric functions, we integrate to determine the complete integral,

1
W=—FEt—+ q—\/2m041 — m2wi(q')? + a2l arcsin m —wi ¢t
2 Wi 20&1
2 E _
—I—%\/2m(E — ) — mPl( ) + % arcsin (, /ﬁ%qz)

(2.35)

To solve for the coordinate functions we must solve the n equations (2.30). For
a two dimensional system, we have 2 x 2 — 1 = 3 separation constants, {ay, F, 31},
corresponding to the number of first integrals derived in Subsection 2.2.1, plus
the constant representing an allowable shift in the time origin, ¢y; therefore, the

equations (2.30) take the form

oW ., oW
- JE°

Substituting the complete integral (2.35) into these equations, we obtain

/3 1 X m 1 1 . m 2
= —— arcsin —Ww — —— arcsin — W
! Wi 20&1 14 Ws 2(E — Oél) 24 ’

1 . m 9
t+it, = o arcsin mu@;q .
2 —

By inspection, the closed form solution for q is

1 2001 .
g =— Fl sinfwy (81 + t + to)],

w1

1 20FE — ay) .
¢ == 7( ) sin[ws(t + to)).
ws m
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2.5 Other Complete Integrability Methods

In this section, we outline the Lax and bi-Hamiltonian methods for solving the HJ
equation. After describing the non-periodic, finite dimensional Toda lattice, we

analyse 1ts integrability using these methods.

2.5.1 Lax Method

A powerful technique used to study dynamical systems is the Lax method, also
known as the isospectral deformation method, formulated by Lax [25]. The essence
of this method is to write the equations of motion in a matrix form from which we
can derive integrals of the motion. If we generate n functionally independent first
integrals in involution, then, by Liouville’s theorem, Theorem 1.1, we may conclude
that the system is completely integrable.

We follow the development of Toda [49]. It is necessary to construct n x n real
matrices L and B such that the equations of motion for our system are equivalent

to the Lax representation,
L =BL-LB=|B,1L). (2.36)

The matrices L and B are referred to as a Laz pair.
We seek a unitary matrix, that is, U satisfying UU* = I where * indicates the
Hermitian conjugate of a matrix (the transpose of the complex conjugate). Taking

the time derivative of this expression, we obtain

dUu au=

U = 0. 2.

7 Ur+0U 7 0 (2.37)
U is defined by the initial value problem

du

Using the fact that U is unitary, we rewrite the differential equation of (2.38) in
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the form B = (dU/dt)U*. With this definition for B, and the properties (2.37)
and (AB)* = B*A*, it can be shown directly that B* = — B; thus, B is necessarily
a skew-symmetric matrix. If B were known, then, provided a solution to (2.38)
exists, we may, in theory, determine U.

Another implication of (2.37) is that dU~!/dt = —U~*B. Using this with (2.36)
and (2.38), we conclude that

d
(UML) = 0;
! ) =0;

hence, U7 LU is time-independent. We write this condition as
L(t) = U@#)L(0)U(t) . (2.39)

It follows from the fact that U is a unitary matrix, that L(¢) and L(0) are
unitary equivalent, that is, have the same eigenvalues. Let A(t) and ¢(t) represent
an eigenvalue and the corresponding eigenfunction of L(t), respectively. At time
t = 0, these quantities satisfy the equation L(0)¢(0) = A(0)¢(0). This may be

rewritten, using (2.39), as

This equation shows that U(#)$(0) is an eigenvector and A(0) is an eigenvalue for

every time, ¢, that is,

Since this is true for every A;, all the eigenvalues of L are time-independent. Equiv-
alently, we say L evolves in time but conserves its spectrum, {A;}, that is, undergoes
an isospectral deformation. Although the eigenvalues of L are first integrals, it is
easier to generate first integrals by taking the trace of powers of L.

The Lax method has been applied to many known integrable systems; however,
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the determination of suitable matrices, L and B, may be difficult.

2.5.2 Bi-Hamiltonian Method

Previously, we characterised a Hamiltonian system by the triplet (M,w, Xg). In
the bi-Hamiltonian framework (see, for example, [39]), we must generalise from a
symplectic manifold to a Poisson manifold, that is, a manifold equipped with a
Poisson bi-vector, P.

A (non-degenerate) Poisson bi-vector is a skew-symmetric contravariant tensor

of valence two on the manifold, M, that satisfies the condition
[P, Pls = 0(& dw =0,) (2.40)

(where w = P7'). Since w is nondegenerate by the definition of a symplectic
manifold, every symplectic manifold is a Poisson manifold, (M, P); hence, every
Hamiltonian system may be represented by the triple (M, P, Xg). The Hamiltonian
vector field (2.16) is uniquely determined by

Xy = PdH = [P, H]s.

A bi-Hamiltonian system (M, P, Py, Xp1 m2) possesses two distinct Hamiltonian

representations, that is,
Xm1,ma2 = PrdH, = PydH,,

where the Poisson bi-vectors are compatible. Compatibility signifies that the eigen-

values of P; and P, are in involution which is equivalent to the condition
[Pl, P2]S - 0 (241)

Integrability of bi-Hamiltonian systems was investigated for the infinite dimen-

sional case by Magri in [30]. Then, Gelfand and Dorfman [13] produced similar
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results for finite dimensional Hamiltonian systems. Their work has been extended
by Magri and Morosi [31]. The complete integrability of these systems is guaranteed
if the following theorem developed by Smirnov [39] is satisfied.

Theorem 2.4 Consider a bi-Hamiltonian system (M, Py, Py, Xg, m,) for a 2n di-
mensional manifold, M. If the linear operator A := PyP[' has ezactly n func-
tionally independent eigenvalues, then the dynamical system determined by X, m,,

that is, &(t) = Xu, m,(x(t)), is completely integrable.

2.5.3 Example: Non-periodic, Finite Toda Lattice

The Toda lattice was first discussed by Toda in 1967 [47, 48]. The non-periodic,

finite dimensional Toda lattice describes the movement of n particles located on a

line with an exponential interaction between only adjacent particles. In physical

position-momenta coordinates, (q*), (p;), its motion is described by the 2n equations
i = pi,

(2.42)

i1

‘

q

pi= el 'm0 et
where ¢? 74 = ¢7"~¢""" = (). The vector field Xz (2.16) of (2.42) is known to be
Hamiltonian and completely integrable, see, for example, [32]. The corresponding

Hamiltonian function,

H = % Zp? + z_: e e (2.43)

1s constant and equal to the total energy of the system, E.

The periodic Toda lattice represents similarly interacting particles arranged on
a circle. Its equations of motion are represented by (2.42) with the proviso that
g = ¢,
We proceed to establish the complete integrability of the non-periodic finite

dimensional Toda lattice using both the Lax and the bi-Hamiltonian methods.
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Example of the Lax Method: Non-Periodic, Finite Dimensional Toda
Lattice

The Arnol’d-Liouville integrability of the non-periodic, finite dimensional Toda
lattice was first established by Flaschka using the Lax method [18].
Our analysis is similar to that of the periodic lattice in [49]. First, we define the

Flaschka variables by

e(ql_qi+l)/27 7/: 1..

DO —

a; =

(2.44)
b =

pi, t=1,... . n,

Do —

where we have used different numbering and signs than in Flaschka’s paper [18].
In this new coordinate system (2.44), Hamilton’s equations for the system (2.42)

become

b; =2(a?,—a?),i=1,...,n,

where 1t 1s understood that ag = 0.
Using these coordinates, we define the n x n Jacobi matrices (that is, only the

main diagonal and its 2 neighbouring diagonals have non-zero entries) L and B by
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by a1
a; b
0
biyr ai
L= a;_1 b a; ,
a; bi-|—1
0
b1 Gn_1
Un—1 br,
0 —a
ar 0
0
0 —a;_1
B = i1 0 —a;
a; 0
0
0 — Q1
Ap_1 0

These matrices satisfy (2.36). They are thus said to form a Laz pair; hence, the
set of eigenvalues of L is independent of time. Because L is real, its eigenvalues are
real; furthermore, since L is an » X n matrix, it has up to n distinct eigenvalues.
It has been proven [17] that because the a;’s are all positive, the eigenvalues are
distinct.

The eigenvalues of L are determined by the determinant equation det(L — AI) =

0. This can be expanded into n polynomial equations with respect to the eigenval-
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ues
)\?—I—cl)\?_l—|—...—|—cn_1)\i—|—cn:(), 1=1,...,n,

in which the ¢;’s are functions of a; and b;. Simultaneously solving these equations
for ¢;, we obtain ¢;(a;, b;) = ¢i(A1,... ,A,) for ¢ = 1,...  n. Since the eigenvalues
are conserved by the motion, the ¢;’s are conserved quantities. From (2.36), we

observe that n conserved quantities are
Ti=Te(L7) =) N, j=1....m
i=1

where Tr indicates the diagonal sum.
We can write the n functionally independent first integrals, I;, = 1,... ,n, in
terms of the J;, 3 = 1,... ,n; thus, by Liouville’s theorem, the non-periodic, finite

dimensional Toda lattice i1s completely integrable.

Example of the Bi-Hamiltonian Method: Non-Periodic, Finite Dimen-

sional Toda Lattice

In considering the non-periodic, finite dimensional Toda lattice, we use the Poisson
manifold (R?**, P,), where the Poisson bi-vector, P, (2.18), is canonical. Following
[39] ,we relabel the Hamiltonian, H, (2.43) as Hy.

We define the vector field, Yp, by

1ca e~ @ S g Igm g
Yp = §;j§1pja—qi + (-Z;eq g 5;1)3) 5

On a Poisson manifold, (M, P), the (contravariant exterior) operator o, acts on

the space of skew-symmetric contravariant tensors on M, V*(M). For an arbitrary
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Q € VH(M),

oQ = —[P,Qls. (2.45)
For a vector Q € V'(M), this simplifies to

oQ = —Lq(P),

a property inherited from the Schouten bracket (see Appendix B (B.2)). We say

that o is a coboundary operator because it satisfies the property
o’ =0. (2.46)

Using 0g and Yp, we define the tensor P; = Ly, (Py) = [Py, Yp|s = —00Yp by

(2.47)

n—1 n n

i_ i1 O 0 0 0 1 0 0

p=) et At pi——A—+=Y — A —.
' ; Opir1 Op; ; dq¢®  Op; 2 ; aq¢’  9q'

Using the second Hamiltonian function for the system, H; = > | p;, the Hamil-
tonian vector field, Xz, may be written in terms of P; as Xy = Plio‘HLa. Provided
that P; is a Poisson bi-vector, we have produced a second Hamiltonian represen-
tation. To directly check the condition [Pi, Pi]ls = 0 (2.40) is computationally

intensive. Instead, we observe that (2.40) is equivalent to o3Py = 0. This holds if
P, has the form

Pl = PoO.)l_PO (248)

for the second symplectic structure on M,

n—1 n

- . . . 1 —
. gt 4 4 i+1 A . - . .
wy 1= E e dg" Ndg'T + E pidq* N dp; + 5 E dp; A dp;.

=1 i=1 1<j



§2.5. Other Approaches to Complete Integrability 48

Das and Okubo derived w; and showed that it is compatible with the canonical
symplectic form, wo (2.17), in [12]. In fact, P; can be written in the form (2.48);
therefore, it is a Poisson bi-vector.

We establish the compatibility of the two Poisson bi-vectors by verifying that the
condition (2.41) holds. Using the definitions of o (2.45) and P; (2.47), we derive

[P07P1]S = —O'O_Pl = 0,

using the coboundary property of o (2.46); hence, we have a bi-Hamiltonian system
(M, Py, P, Xg, i,). The involutive set of first integrals is {I; = (1/i)TtP,P; "'}
where P;' = wy; therefore, using Theorem 2.4, we have again established the

complete integrability of the non-periodic, finite dimensional Toda lattice.



Chapter 3
Intrinsic Characterisation

In this chapter, we describe the intrinsic characterisation developed by Benenti
[4] for the orthogonal separation of variables of the Hamilton-Jacobi equation on
a pseudoRiemannian manifold. It provides a definitive criterion for the existence
of separable coordinates related to the natural position-momenta coordinates by a
point transformation (2.9). This approach uses geometrical objects, Killing tensors,
on the manifold rather than local descriptions.

The related mathematical background is presented. Then the theorem is de-
scribed and proved. We discuss some of the implications of the theory and relate it
to the theory of Kalnins and Miller [22]. As an example, we analyse the non-periodic

two and three dimensional Toda lattices using the characterisation.

3.1 Intrinsic Characterisation of Orthogonal Sep-
arability

We seek a complete integral of the HJ equation (1.7) that is separable. For a sepa-
rable system, it is clear from (1.4) that W is a function of only ¢'. In accordance
with the Jacobi theorem, Theorem 2.2, by solving these n equations for (o) in

terms of (q,p), we produce n independent integrals in involution; hence, the sys-

49
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tem is completely integrable. Stackel [44] established that these first integrals are
polynomials quadratic in momentum for orthogonal systems (1.10); therefore, as
we discussed in Subsection 2.2.4, the coefficients produce Killing two-tensors. This
is the key to the intrinsic characterisation of orthogonal separability.

Before investigating the characterisation theorem of Benenti, we show that the
eigenvectors of a KT, with distinct eigenvalues, can be used to form a quasi-

orthonormal frame that is a rigid moving frame.
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3.2 Constructing a Quasi-Orthonormal Frame

Following Eisenhart [14], we establish a quasi-orthonormal frame on a pseudoRie-
mannian manifold, (M,g), from the eigenvectors of a KT, K;; — a symmetric
covariant tensor — with pointwise simple eigenvalues. We begin by considering the

determinant equation,
|Kij — Agij| =0, (3.1)
related to the eigenvalue problem,
Kii X7 = \gi; X7 (3.2)
The solution set of (3.1) and (3.2) consists of n pairs
{(Aiy X3) : Xi #0, i =1,... ,n}. (3.3)

Using the transformation law for a covariant tensor, we observe that, in a differ-

ent coordinate system, (3.1) may be written

ok ’

Km_)\Nm N'
| l gi | Ozt

= |Klm_)\glm| =0

since the Jacobian matrix for a coordinate transformation is necessarily non-zero.
It follows that if A is an eigenvalue in one coordinate system, it is an eigenvalue in
every coordinate system; therefore, the eigenvalues, {\;}, are invariant.

We consider a pseudoRiemannian manifold on which the eigenvalues of the solu-
tion set (3.3) are simple, that is, A; # A, for ¢ # j. To establish that the eigenvectors

determine an quasi-orthonormal frame, we prove the following propositions:

Proposition 3.1 The set of eigenvectors, {X;}, is linearly independent.
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Proposition 3.2 Each pair of eigenvectors, {X;, X; : 1 # j}, is orthogonal.

Proposition 3.3 If M is a Riemannian manifold, the eigenvalues of K;;, {\i},

are real.

Proposition 3.4 If the set {\;} is real and simple, then there exists corresponding

eigenvectors, {X;}, that are real.

Proposition 3.5 No eigenvector, X;, is null.

Proof of Proposition 3.1

We consider

k3

D X =0, (3.4)

k=1

for constants, ¢, k=1,...,n.

Using the n equations (3.2) with (A, X) = (Mg, X&), we derive

k3 k3

ZCk)\kginkj = chKinkj
k=1 k=1
= Kl<ZCka‘7>
k=1
= ()7

using (3.4). It follows that

k3

9ij <20k)\ka‘7> =0= ch)\ka =0. (35)
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We observe that (3.4) is equivalent to

Can = z_:(—ck)Xk (36)

Substituting this relation into (3.5), we obtain

i
L

Ck()\k — )\n)Xk =0. (37)

1

b
Il

We now prove, by induction on the dimension n, that the set of eigenvectors as-
sociated with a set of simple eigenvalues is linearly independent. In this proof, we
use the fact that eigenvectors are necessarily non-zero.

We first consider the case n = 2. Setting n = 2 in (3.7), we obtain ¢;(A; —
A2) X1 = 0. It follows, from the fact that the eigenvalues are distinct, that ¢; = 0.
Substituting ¢; = 0 into (3.4), we obtain ¢2 = 0. Since both coefficients necessarily
vanish, the set of eignvectors is linearly independent.

We assume that the hypothesis holds for n — 1, then deduce that it holds for n.

The set of eigenvectors {Xi,... ,X,_1} is linearly independent. This implies
that the coefficients, cx(Ax — An), of (3.7) vanish. Since the eigenvalues are simple,

in particular, Ay, #Z A\, k=1,... ,n — 1, we conclude that
=0, k=1,... ,.n— 1L
Substituting these values into (3.6), we deduce that
¢, =0

because no eigenvector is zero.
Since the condition that the linear combination of eigenvectors vanishes (3.4)
implies that all the coefficients vanish, we conclude that the set of eigenvectors,

{X1,...,X,}, is linearly independent. This completes the proof by induction. O
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Proof of Proposition 3.2

We show directly that any two eigenvectors, X; and X;, corresponding to distinct
eigenvalues, Ay and A, 1 < k,1 < n, k # [, are mutually orthogonal. From (3.2),

we have the equations

Kii X0 = \ogi; Xi?, (3.8)
and

Ki;i Xy = Ngi; X7 (3.9)
We take the difference between X% x (3.9) and X;* x (3.8),

0= (A — M\)gi; Xi' X)7

= g Xi' X =0

since A # A;; thus, the vectors X} and le are orthogonal. [J

Proof of Proposition 3.3

Any eigenvalue-eigenvector pair, (A, X), satisfies the equation (3.2). Taking its

complex conjugate, we obtain the equation
Kinj = j\ginj.

The Killing and metric tensor components are unchanged because they are real.

Contracting both sides with X*, we obtain

Kinin = j\ginin.
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Using the equation (3.2), we produce the identity
(A —N)g; X' X7 = 0. (3.10)

We now investigate when g;; X* X7 vanishes. Writing the eigenvector as a sum of

its real and imaginary parts, X* = U® + iV, we derive
gijUin = —gijViVj. (3.11)

If g is positive or negative definite, then one side of (3.11) is non-zero (since the
eigenvector cannot be zero) and the other is zero or of the opposite sign, which

is impossible; thus, no eigenvector satisfies the equation g¢;; X*X? = 0; therefore,

(3.10) implies A = \. O

On a pseudoRiemannian manifold, we may obtain eigenvector solutions to (3.11);

hence, we must assume that all the eigenvalues are real.

Proof of Proposition 3.4

We consider an eigenvalue-eigenvector pair, (A, X). We write the eigenvector in the

form
X =U7 +4V7,

where V7 = ( if the eigenvector is real. Substituting this into (3.2), then separating

the real and imaginary parts, we obtain

Ki;U7 = Agi; U7,

K V7 = AgiiV¥;
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therefore, we have generated two real eigenvectors corresponding to A. Since the
eigenvalues are distinct, the eigenspaces are one dimensional; hence, V7 = kU’ for
some real constant k.

We have shown that for any eigenvalue we can generate an associated real eigen-

vector.

Proof of Proposition 3.5
We establish this proposition by contradiction. Without loss of generality, we as-
sume that the eigenvector X is null,
ginlinj =0.
Using this relation and Proposition 3.2, we conclude that
ginliij == (312)

VvV k € {1,...,n}. Since the eigenspace, V, is spanned by the set {Xi,...,X,},
any vector, Y € V., can be expressed as a linear combination of the eigenvectors;

hence, it follows from (3.12) that
9i;X:'Y7 =0

VY € V. This is the degeneracy condition for the metric, g — a contradiction;

thus, X is not null. It can be similarly shown that no other eigenvector is null. [

We have proven that on a pseudoRiemannian manifold, a KT, K, with real
simple eigenvalues has a set of associated eigenvectors, {Xi,... , X, }, that are real,
linearly independent, mutually orthogonal and non-null; therefore, the eigenvectors
form an orthogonal frame.

For a rigid moving frame, the frame vectors must have constant lengths. Since
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the vectors, X}, are not null, we scale the components so that
ginkiij = €k, k= 1, e s

where e = £1. That is, we normalise the vectors to produce a quasi-orthonormal
frame.
In conclusion, from a KT, K, with real simple eigenvalues, we construct a rigid

moving frame on the pseudoRiemannian manifold from the eigenvectors of K.

3.2.1 Introduction to the Moving Frame Formalism

We consider an n dimensional pseudoRiemannian manifold, M. The vectors X;
represent the natural frame corresponding to some system of coordinates, (q'),
that is, X; = 8/9¢', 4+ = 1,... ,n. The corresponding co-vectors are X' = dg’,
i =1,...,n. In the natural basis, the metric (1.15) takes the form

ds? = g; X' X7, (3.13)

The moving frame vector fields spanning the tangent space, M, are defined,

with respect to the natural basis, {X;,...,X,} by
E, = h,X;, (3.14)

where h,* is an n x n matrix of C* functions. The dual w-frame 1-forms are defined

by
E* = h% X", (3.15)

where h%; is also an n x n matrix of C* functions. Since the {F,} and {E*} are

dual bases, we have

(E®, By) = &, (3.16)
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where the bracket <w, X > represents the real value of the 1-form, w, acting on the
vector field, X. The property (3.16) follows from the fact that the corresponding
natural bases are dual, <dqi,6/6qj> = 5; This leads to the relations hythb; = &°
and h,'h®; = 5;.; hence, h%; and h,' may be viewed as inverse matrices.

A rigid moving frame is a frame in which the metric tensor components are
constant (See Appendix C for a more complete description of the moving frame),

that is,
Gabe = 0.

Since the eigenvalues of the KT of interest are real and distinct, by selecting the
normalised eigenvectors of the KT as the frame vectors, { E,}, we obtain, as proven
in Section 3.2, a rigid moving frame. In this quasi-orthonormal basis the metric

tensor components take the form
gap = diag(1,...,1,=1,...,—1), (3.17)

and the metric may be written as
ds* = (BEY)? + ...+ (E?)> — (E*™)? — ... — (E")?, (3.18)

where the signature of the metric, 2p —n, is independent of the basis by Sylvester’s
law of inertia.

In addition, the KT components,

Kab — haihijijv
(3.19)
Kab — haihijij,

are diagonalised in this frame,
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K = K = diag(A1, ..., \), (3.20)

where {A1,... A} is the set of eigenvalues of K,j and K. The two forms of the
tensor, purely contravariant and purely covariant, are identical because the square

of the metric is the identity.
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3.3 Benenti Theorem

The geometrical approach to separation of variables was initiated by Eisenhart
[14, 15], then developed by Benenti [3, 4, 5], Kalnins and Miller [22, 23], Woodhouse
[51], and others.

The separability of a system is unaffected by applying a separated transformation,
G =G (q"),7=1,... ,n, to aset of separable coordinates. These equivalence classes
of coordinates produce (intrinsically) the same complete integral; thus, it is natural
to investigate the separability properties of the coordinate hypersurfaces.

On a pseudoRiemannian manifold, M, we define an orthogonal web as a family,
S =(S1,...,8,), of n orthogonal and transversal foliations of hypersurfaces. These
submanifolds of dimension (n—1) are defined on M —Q, where Q is a closed singular
set. A set of n real C* functions (¢') defined on M — Q is a parametrisation of
the orthogonal web provided that dg* does not identically vanish at any point
and the restriction of ¢' to its corresponding leaf S; € S is constant. Locally,
orthogonal coordinates adapted to the web are produced by a parametrisation. If
the adapted coordinates are separable, then we say the orthogonal web is separable;
hence, the problem of intrinsically characterising separability is the determination
of the geometric properties of a separable web. Benenti has solved this problem by

determining necessary and sufficient conditions for separability based on a single

KT, see [4].

Theorem 3.1 (Benenti) A Hamiltonian (1.6) on a (pseudo)Riemannian mani-
fold, M, is separable in orthogonal coordinates if and only if there exists a Killing
tensor, K, on M, with pointwise (real) simple eigenvalues and orthogonally inte-

grable eigenvectors, that satisfies the potential separability condition (2.22).

3.3.1 Proof of Benenti Theorem

We prove the Benenti theorem, Theorem 3.1, for a Riemannian manifold, M, then

show how the proof may be generalised to a pseudoRiemannian manifold. Although
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the theory is global, we use local coordinate representations for the proofs. In
addition, we assume all objects are C*°. The essence of the proof is given in [4].

To prove Theorem 3.1, we need two lemmas.

Lemma 3.1 A Killing tensor, K, with (real) simple eigenvalues and orthogonally
integrable eigenvectors can be written, in some orthogonal coordinate system, (u'),

in the form
=1

where X; 1= 0/0u’. In these coordinates, the Killing tensor equation (2.19) may be

written as

Nig = (A = X)(Ing™) i # 5, (3.22)
and
Aii = 0. (3.23)

Proof of Lemma 3.1

We are interested in the case of distinct eigenvalues; furthermore, the eigenvectors
must be orthogonally integrable, that is, the orthogonal distribution, A+, must be
completely integrable. Because each eigenvector i1s orthogonal to an n — 1 dimen-
sional hypersurface, we express this condition as the n equations on the w-frame

1-forms
E*NdAE* =0, a=1,... ,n. (3.24)

We rewrite these equations in a useful form. The Froebenius theorem, Theorem
A.1, implies that the w-frame 1-forms satisfy the equations: E® = §2f'du’, where
i = fi(q), and v* = ui(q). Since the (u) are independent, we choose them as the
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coordinates of the natural basis; hence, we have

E* = §2fidu’ = frdu®, a =1,

,m, (3.25)
for undetermined functions f*(u); thus, the frame vectors satisfy
89 1 9
E,=——=— . 3.26
tOut f*Ou” (326)
That is,
iy 1
ho'! = = = -, (3.27)
o
and
he = fi6¢ = fe. (3.28)

Comparing the metric in the moving frame (3.18) with the expressions (3.25),
we observe that the metric in the natural basis (3.13) has the form

ds® = (F) (X)) +... + (M) (X")

(3.29)
where X* = du’. Of course, the corresponding dual basis is X; = 8/0u’. From

(3.29), we observe that the coordinates, (u'), are orthogonal (1.9) and

gi = [".
Substituting this into (3.27), we obtain

hy' = +/giié. (3.30)
We recall that K is symmetric and of the form (3.20)

. Using this fact and (3.30)
in the relations between the components of the KT in the two frames (3.19), we



§3.3. Benenti Theorem 63

derive the components of (3.21)

K = hihi K%
NN
Aigh, it i =j,
0, ifi#j.

Now we write the Killing tensor equation (2.19) in the local coordinates. In
Subsection 2.2.4, we established that K is a KT if and only if the Poisson bracket
of the related quadratic in momentum polynomial with the geodesic Hamiltonian
(1.21) is zero; hence, we calculate the Poisson bracket of K = \;g%p? with (1.21)

to determine an equivalent system of partial differential equations,

R L . . .
(K. H} =3 DD {@Ng P (9 5) — (Nosg™ + Xig” 5)pi (29°Pad?)}

=1 j=1

=) {Nighg ipip? — (Migg” + Mg jg7pini)}

=1 j=1
=Y =g N+ (A= X)) g ilpip}-
=1 j=1

By requiring that the result be equal to zero, we obtain that each term must vanish,

that is,

9N = (N = X)g" 5.
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In the case ¢ # j, this simplifies to (3.22). If ¢ = j, then it becomes (3.23). O

Lemma 3.2 Local orthogonal coordinates (u') are separable if and only if the equa-

tions
g i = (Ing") ;g™ i + (Ing”) ;g™ ;, i # j, (3.31)

are satisfied. If the potential, V| is non-zero, then it s separable with respect to the

orthogonal separable coordinates (u') if and only if the equations
Vij = (Ing");Vi + (Ilng”) iV, i # J, (3.32)
are satisfied.

Proof of Lemma 3.2

The separability of a Hamiltonian system is locally characterised by the Levi-Civita
criterion. To determine the characteristic equations for separability in this case, we

substitute the Hamiltonian (1.10) into the equations of (1.20) for arbitrary ¢ # j,
<%9kk,ipi + V,i) <%9kk,jpi> (0) - <%9kk,ipi + Vi) (97 pi) (" ipi)—
(¢7pi) (%g’“’“,jp}i + V,j> (9% p;) + (9°p:) (97 p;) <%9§'§Pi + Vij) =0
& T(—g" igPig i — g g g g it
(=Vig® ;97 — V99" i + 9" g7 Vij)pip; = 0.

The term quartic in momenta must vanish independently of the quadratic term.

By requiring that the quartic equals zero for ¢ # j, we derive
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9 979" ji = g% 49" 9" i + 9797 g™

& g" i = (Ing") ;g i + (Ing%), ig"* ;;

hence, we have established condition (3.31). Similarly, by demanding that the

quadratic term equals zero for any ¢ # j, we obtain (3.32),
9 97 Vi; = Vag® ;97 + V99" s

& V= (ng"),jV; + (lng¥),iV;.

4

Proof of Theorem 3.1

The theorem is first proven for a Riemannian manifold, then generalised to the
pseudoRiemannian case. On a Riemannian manifold, the eigenvalues of a symmetric
matrix are real. Also the eigenvectors are necessarily non-null by Proposition 3.5.

Initially we assume that the potential, V' is zero. The integrability conditions

for the system of partial differential equations comprised of (3.22) and (3.23) are

[Ei, Ej])\h =0
(3.33)
= )\h,ji - )\h,ij =0, 1 7A J-

That is, mixed partial derivatives must be equal. We use this fact in the following

derivation.
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Substituting (3.22) into (3.33), we obtain
(A7 = A)(Ing™™) 3l — [(Ai = An)(Im g™*) ] j = 0

& (A= An)amng) i+ (A = M) (o g™) i — (A — M) i (lng"™) 5
—(Ai = An)(Ing"*) 5; = 0
S (A=) g™+ (Ni — Ana)(Ing™™) ; — (Aij — Any)(Ing™) i = 0.

We substitute (3.22) into the final equation to obtain

(A = A)[(Ing"™) ij — (In g%7) i(In ™) ; — (In g*) j(In g"") ;

+(In g"") i(In g"*) ;] = 0

& (A —A) (" — (Ing”) g™ ; — (lng®) ;9™ i) =0, i #j. (3.34)

The condition (2.22) can be written in local coordinates. We observe from (3.21)
that K, = 5;:)% for any KT; hence, KdV = \;V;du’. Using this in the condition
(2.22), we obtain, for ¢ # j,

(AiVi)i— (\V)a=0

& AigVi+ AV — AV — AV = 0.
We simplify these equations using the Killing tensor equations (3.22),

(N = X)Vig + (A = M) (0 g™) 3V — (A = ) (In g%) ;V; = 0

& A=) (Vij — (Ing™) ;Vi — (Ing”):V;) =0, i # 5. (3.35)
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We proceed to show that the existence of a suitable KT, K. and potential,
V, that satisfy (2.22), implies the existence of separable coordinates (u') in the
neighbourhood of a point, P, with respect to which V is compatible. Since the
KT, K, is assumed to have pointwise simple eigenvalues, {\;}, and orthogonally
integrable eigenvectors, Lemma 3.1 implies that the Killing tensor equation has the
form (3.22), (3.23). It follows that the integrability conditions (3.34) for this system
of differential equations are satisfied. Since A; # A; for ¢ # j, equations (3.34) imply
that the separability conditions (3.31) hold. By Lemma 3.2, we conclude that the
coordinates (u') are separable.

By assumption, (2.22) holds. In local coordinates, this is equivalent to the
equations (3.35). Because the eigenvalues, {);}, are distinct this implies that the
equations (3.32) hold. By Lemma 3.2, we conclude that V' is compatible with the
separable coordinates; therefore, we have orthogonal separable coordinates () and

a compatible separable potential, V., in a neighbourhood of any point.

We now prove the converse: orthogonal separability implies the existence of a
KT with simple eigenvalues and a potential, V that satisfies the condition (2.22).
We assume orthogonal separable coordinates, (u'), exist in a neighbourhood of some
point, P; therefore, the metric has the form ds? = g5 (du')® +. .. + gun(du™)? (1.9).
We further assume that the Killing tensor has the form (3.21). Letting X := du’,
we define B¢ := §¢f* X" and the corresponding dual vectors, E,, satisfy (3.26). It is
clear that the vectors, E,, ¢« = ¢,... ,n, are the eigenvectors of K, corresponding
to the eigenvalues, A,, a = 1,... ,n. By the Frobenius theorem, Theorem A.1, the
equations (3.24) hold. Geometrically this means that each eigenvector is orthog-
onal to a n — 1 dimensional hypersurface; thus, the eigenvectors are orthogonally
integrable.

By Lemma 3.2, the equation (3.31) is satisfied for every pair (¢,7), ¢ # 5. Sub-
stituting these equations into (3.34), we find that they are trivially satisfied; thus,
the integrability conditions for the Killing tensor equations hold. We conclude that
the system of linear equations (3.22), (3.23) can be integrated to yield n linearly
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independent solutions, {As;;}, a = 0,... ,» — 1. The linear independence of solu-
tions is equivalent to the condition that the determinant of the matrix (A4;) never
vanishes. We view the complete solution (A,;) as a set of n vectors, {A,}, in an
n dimensional vector space. Any linear combination, with constant coefficients, of
these vectors is a solution of the linear Killing tensor equations (3.22) (3.23). In
fact, the general solution is such a combination, for which the coefficients are the
n constants of integration. Since det(A,;) # 0, we can find a vector A at any point,
P, on M such that its components are distinct, that is, A\; # A;, Vi # j. Since this
holds in some neighbourhood of P, we have pointwise simple eigenvalues for the
corresponding KT, K, of the form (3.21).

Since the potential, V', 1s compatible with the separable coordinates, the condi-
tion (3.32) is satisfied; therefore, the equations (3.35) hold. This is a local charac-
terisation of the d(KdV') = 0 condition, that is, (2.22) holds.

This establishes Theorem 3.1 on a Riemannian manifold. We now extend the
previous arguments to a pseudoRiemannian manifold. To circumvent possible prob-
lems produced by the indefinite metric, we require two changes. In the formulae,

we replace g% with |g|. More importantly, we require that the eigenvalues of the

KT be real (which we must assume for a pseudoRiemannian manifold). O

3.3.2 Remarks

Remark 1 By varying the n constants of integration in the KT, K, we generate
an n dimensional space of KTs, K = {K,}. Every element, K, € K, has common
eigenvectors and satisfies the potential condition (2.22).

Kalnins and Miller [22] have produced a similar result to Theorem 3.1. In the
geodesic case, they require the use of n KTs. Using Theorem 3.1, we consider only
one KT; however, verifying the orthogonal integrability condition on the eigenvec-

tors can be difficult.
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Remark 2 We observe that A; = 1 is a solution of (3.22) and (3.23); therefore,

the metric tensor, g, is necessarily an element of K.

Remark 3 In a two dimensional manifold, the basis of K is (g, Ki) where K,
s independent of the metric. The critical set, §, is the set of points at which K
has identical eigenvalues, that is, where K; and g are proportional. Benenti and
Rastelli have shown that distinct and non-constant eigenvalues, Ay and Ay, form a

parametrisation of the separable web [6].

Remark 4 As a corollary to the theorem, we observe that (n — 1) first integrals, in
addition to the Hamiltonian, can be computed from K. The function K®p,p,+U(u)
is a first integral provided dU = 2KdV (2.21), as derived in Subsection 2.2.4. We
consider the n KTs, K,, of the form (3.21), each with eigenvalues {Agig™ : ¢ =
1,...,n}. Given smooth functions U, : M — R defined locally by dU, = 2K,dV,

the n functions
-[a — )\azg”pf + Ua

are independent first integrals in involution. Referring to Remark 2, we observe that
in the case Ko = g, the corresponding first integral is the Hamiltonian scaled by a
factor of 2. The remaining (n — 1) elements of K generate the (n — 1) additional
first integrals.
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3.4 Example: Non-periodic, Finite Toda Lattice

We proceed to apply the Benenti theory to the aforementioned system, the non-
periodic, finite dimensional Toda lattice. This system has been studied using
most of the known techniques of complete integrability including the Lax and bi-
Hamiltonian methods mentioned in Chapter 2. We use the classical approach to
Hamilton-Jacobi theory, in which the separable coordinates are related to the gen-
eralised physical position-momenta coordinates by a point transformation (2.9).
We show, using Theorem 3.1, that the lattice is separable via a point trans-
formation to separable coordinates in only the two dimensional case. For higher
dimensional lattices, there does not exist any separable coordinate system related
to the physical position-momenta coordinates by a point transformation. In the two
dimensional case, the trajectories are explicitly found by separation of variables.
The Levi-Civita criterion, Theorem 1.5, provides a local characterisation of sep-
arability. That is, it indicates whether or not a Hamiltonian is written in separable
coordinates. We observe that the only mixed second partial derivatives of H that

are not identically zero result from

62H : i+1‘
@qi@qu-l - ’

hence, substituting (2.43) into the %(n — 1) equations of the Levi-Civita criterion

(1.20), we obtain (n — 1) equations with single terms,

qi_qi-l-l
—PiDiy1€ )

that never vanish; therefore, the Toda lattice is not separable in the given set of

Cartesian coordinates.
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341 n=2

In this section, we derive an explicit solution for the non-periodic, two dimensional
Toda lattice using the Hamilton-Jacobian approach without a priori knowledge of
separability. We seek behaviour in agreement with that produced by other methods.

The orthogonal integrability of this system is well established. The existence
of orthogonally separable coordinates is verified by showing that the conditions of
Theorem 3.1 are satisfied. The eigenvalues are {—1,1} and in a two dimensional
space the eigenvectors are necessarily orthogonally integrable. Alternatively, the
Bertrand-Darboux-Whittaker theorem [50] guarantees the separability of our sys-
tem as a Hamiltonian system with two degrees of freedom from the existence of a
second first integral quadratic in the momenta, Hy = pyps — et —¢ [8]. We observe
that the required condition on the potential provided by Whittaker [50] — that the
expression (a? — b*)V12 4+ ab(Vas — V1) vanishes for some constants a,b € R — is
satisfied. The expression Vs — V11 vanishes identically; hence, any a = +b suffices.
We conclude that orthogonal separable coordinates exist.

The first step is to find separable coordinates. As we showed in the preced-
ing subsection, the HJ equation for this system does not separate in the physical
position-momenta coordinates because the Levi-Civita criterion is not satisfied. A
translation does not transform the Hamiltonian to a form that satisifies the Levi-
Civita criterion. It is natural to proceed by trying a rotation. This choice is reason-
able because the system admits a first integral linear in momentum, H; = p; + ps
(see the bi-Hamiltonian example in Subsection 2.5.2). A suitable point transforma-

tion is a rotation of 7 /4 radians about the origin,

q = q = ; (3.36)

thus,
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Dropping the tildes, we obtain the transformed Hamiltonian
H=1/2p +1/2p% 4 ¢V, (3.37)

In this form, it is clear that the Levi-Civita criterion is trivially satisfied because
the second derivative of the Hamiltonian with repect to any combination of position
and momenta variables is zero; hence, we have separability in these coordinates. We
note that rotations of 37 /4, bw /4, or Tx /4 radians also yield separable coordinates;
furthermore, any transformation of the form ¢ = f(q') of the new coordinates
preserves separability of the system.

We now proceed to find the complete integral W of the system of the form (1.8).
Using the separability ansatz (1.8), the Hamilton-Jacobi equation of the system,

L/2(Wa)* +1/2(Ws)* + ' = E,

reduces to two ordinary differential equations

1/2(W})? = 1/2a2,
(3.38)
1/2(W])? + 1/2a? + V24" = E.

We observe that « is the separation constant. Solving (3.38) by quadratures, we

obtain a complete integral, W, of the form

W= —Et—|—2\/E —1/2a% — V2

3.39)
E —1/2a% — eV2¢' (
2\/E1/2a2tanh1<\/ \/E/ ?/2 j )—I—aq2.

— &

According to classical Hamilton-Jacobi theory, the partial derivatives OW/OFE
and OW/0a are first integrals of the system. The orbits of the system may be
obtained by solving the equations OW/OE = ¢;, OW/0a = ¢4 (2.30). Using (3.39),
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these equations are

1 ) \/E—l/2042—e\/§‘11
— ———=  tanh™ = cq,
VE —1/2a2 VE —1/2a2

E —1/2a% — eV2d'
@+ —2 —tanh™! \/ f2a ‘ = Ca.
VE —1/2a? VE —1/2a2

Solving these equations for the transformed position coordinates, we obtain a solu-

tion for the orbits,
¢t = 1/v2In[(E — 1/2a%)(1 — tanh®((t + ¢1)1/E — 1/2a2))],
@ =a(t+c)+ co.

Converting to the original coordinates using the inverse transformation correspond-

ing to (3.36), we produce a closed form solution for the orbits,

¢' = 1/2In[(E — 1/2a®)(1 — tanh®((t 4 ¢1)/E — 1/2a2))]
+1/v2a(t + ¢1) + 1/3/2¢s,

¢ = —1/2In[(E — 1/2a?)(1 — tanh®((t + ¢1)/E — 1/2a2))]
+1/4/2a(t + ¢1) + 1/v/2¢.

(3.40)

It is obvious from the form of the solution that both ¢; and ¢y are inessential
constants. We may eliminate ¢; by a time origin translation and ¢, by a space
origin translation.

Substituting p» = W4 = «, from Hamilton’s equation and (3.38), into (3.37),
using H = E, we see that E — 1/2a? is strictly positive because the exponential
term is strictly positive and the remaining term is non-negative. Since the value of

the hyperbolic tangent function varies in the open interval (—1, 1), the second factor
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20

10

10

20,

Figure 3.1: Trajectories of two particles in non-periodic Toda lattice
where ¢; = ¢; = 0 (to eliminate any translation from the origin), £ = 100, and
a = 7. This corresponds to some initial value problem.

inside the logarithm term is also strictly positive; therefore, the orbits described by
(3.40) are well behaved; however, either of these factors can be arbitrarily small. In
fact the second tends to zero as time tends to positive or negative infinity; therefore,
the logarithmic term, though bounded above, is not bounded below. It follows that
the particles exhibit unbounded motion (see Figure 3.1) in agreement with previous
results concerning the Toda lattice as a completely integrable Hamiltonian system.
It is well known that the non-periodic Toda lattice admits cylinders, rather than
tori, as the invariant submanifolds in the theory of Arnol’d-Liouville [2].

Although the Hamilton-Jacobi approach solves the non-periodic Toda lattice
with two degrees of freedom, the solution may be obtained more simply using the
Hamiltonian formalism. Consider the Hamiltonian for the transformed coordinates.
From the corresponding Hamiltonian (3.37), it follows that ¢ is an ignorable co-
ordinate; thus, the system can be reduced to a one dimensional system. We solve

Hamilton’s equations directly!
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Examining the equation

dp, _ 0H
At 0¢%’

we conclude, since H is independent of ¢%, that p, is constant with respect to time.

Setting p, = «, we obtain
£ = at 4 g (3.41)
Substituting « for p,, the Hamiltonian (3.37) becomes
H=1/2p" +1/2a% + V",

Using the fact that H = E, we solve for p;. Substituting p; into the Hamilton

equation,

d¢*  0H
dt N apl’

we obtain the first order ordinary differential equation

dqt
dq” _ Vgt
T —\/5\/E 1/2a2 — eV2e

where we have used the fact that H = E. This can be separated trivially, then

solved by quadratures to obtain

t—|—t0:—

1 - \/E—1/2a2—e\/§‘11
———tanh~ :
v E —1/2a2 ( v E —1/2a2 )

Solving for ¢!, we derive

¢' = 1/vV2I[(E — 1/2a%)(1 — tanh*((t + to)y/E — 1/2a2))]. (3.42)
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Converting (3.41) and (3.42) to the original position-momenta coordinates, we
produce a description of the trajectories that agrees with that found previously
by the Hamilton-Jacobi method (3.40). The relationships amongst the constants

appearing in the solution’s different forms may easily be obtained.

342 n=3

In this section, we study the non-periodic, three dimensional Toda lattice in the
framework of Theorem 3.1 since the conclusion is different from the case n = 2 and
the calculations extend naturally to the general case, n > 3.

We begin with the condition (2.22) on the characteristic K-tensor K. In this
case the potential V(q',¢?) = e 0 4 =9 and K is a KT in three dimensional
Euclidean space with the standard metric, g, whose components with respect to
the Cartesian coordinates q = (¢*, ¢%, ¢°) are g;; = diag(1,1,1).

The Killing tensor equation (2.19) with respect to Cartesian coordinates has the

form
Kijr + Kjri + Kiij = 0. (3.43)
Setting ¢ = j = k in (3.43), we immediately observe that
Kii; = 0. (3.44)

That is, the components Kj;; do not depend on the coordinate ¢', for ¢ = 1, 2, 3.
If exactly two of the indices are identical, then (3.43) implies a partial differential

equation of the form
Kiij = —2K;;;, 1 # J. (3.45)

In the case that all indices are distinct, (3.43) retains its form
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Kijp + Kjri + Kiij =0, i £ j #k # 1. (3.46)

The integrability conditions for the Killing tensor equation (3.43) are the n*(n +
1)?/4 equations

Kijim = Kija, 1 <i<j<mn, 1<k<Il<n, (3.47)

representing the equality of the mixed second partial derivatives.
Solving the system of differential equations (3.44) (3.45) (3.46) subject to the
integrability conditions (3.47), we obtain the following expressions for the covariant

components of the tensor K:

Kii = a(¢®)? + b’ + c(¢®)? + dg* + ed® + |,

Ky = a(¢")?+he'® +i(¢®) + ja* + k¢® + 1,

Kss = o(¢")? +nd'@ +i(¢*)? +pg* + ag® +r,

Ki = —ag'q® — $he®d® — §ig* — §ba’ct — §da* + §n(®)? + t¢* +u,
K. — — 31_lb21_l 1 1 923 1 3 lh 22 2,5
13 = —cg’q — 5b¢°q — geq’ — 5ng’e’ — 5p¢° + 5h(4%)? + we® + 4,
Koe — +23 1 13 1 3_lh12_lk2 lb 12 _ (¢ 1
23 = —i¢’¢° — 5nq'¢® — 5a¢° — 5hq'q® — 5k + 5b(¢")? — (t +w)g' + 7,

(3.48)

where the twenty constants indicate the dimension of the related space of KTs,

calculated using known formulae, see, for example, [45].
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We use the fact that Kj; is independent of ¢* in (2.22) to derive an equivalent
system of partial differential equations. We let ¢; = K';V; = K;;V; since the

metric is the Kroenecker delta. In this notation, (2.22) becomes
1 i ;
5($ig — bia)dg’ Adg" =0, (3.49)

for each pair ¢ # j. Calculating these functions using the Toda potential energy

function from (2.43), we obtain

b1 = Kuald®, e + Kisfa)(—et' ™ + ) 4 Kigla)(—er'~7"),

¢2 = Kia(q)e? " + Kaa(g, %) (—e? =7 + e 0) + Kas(q)(—e? ~7), (3.50)

b = Ko@)t 4 Kagla)(—e? 7 4 e#=0) 4 Kaglghq?)(— 7).
For j =1, i = 2, substituting (3.50) into (3.49), we derive the condition

1_ .2 1_ .2 1_ .2 2_ .3 1_ .2
[K121€9 7 4+ K12e? 70 + Kap1(—€? 77 4 €777 ) — Kppe? ¢

D=

1_ .2 1_ .2 1_ .2 2_ .3
[K11267 77 — K167 77 4 Kpo(—e? 77 4 777

DO —

-I-K23(—6q2_q3)] -

+K1p(e? 70 4870 ) 4 Kigp(—e? ~0) + Kyg(—e? 70)] = 0

= (K21 + K12 — Koo1 — Koo — K112+ K11 + Ki20 — Klz)eql_q2
(3.51)

+(Ka21 — Koz1 — K20 — K12+ K32 + K13)6‘12_q3 = 0.
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Similarly, for j = 2, ¢ = 3, we obtain

[(Kis2 — K13 — Kas 2 + Kas) — (K123 — K2273)]e‘11_‘12

(3.52)
+[(Kas,2 — K3s2 — Ks3) — (Kaz3 — Kag — K2373)]e‘12_‘13 =0,
and, for j =1, ¢ = 3, we produce
[(KlS,l + K13 — K31 — K23) - (K11,3 — K1273)]e‘11_‘12
(3.53)

+[(Ka31 — Ks31) — (K123 — K12 — Kis3 + K13)]6q2_q3 = 0.

By requiring that the coeflicients of the exponential terms of (3.51), (3.52), and

(3.53) vanish independently, we obtain the six conditions:

K1 — Ko21 — Kog — K112+ K11 + K22 =0,
Kizo + Kog1 — Kog1 — Kiao + K13 — K12 =0,
Ki32 — K13 — Koz o + Koz — K123+ Kaa 3 = 0,
(3.54)

Kass — K330 — Ksg — Kosg + Kag + Koz 3 =0,

Kis1 + K13 — Kog1 — Koz — K113+ K123 =0,

Kas1 — K331 — Kias+ Kis + Kis3 — K13 = 0.

We substitute the Killing tensor component equations (3.48) into (3.54) to derive
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that K;; has the constant form
Ki1 = Ky = K33 = a, K1y = K13 = Ko = b.

The characteristic equation of the matrix defining K is

(a—A)?—=3b*(a—A)+20°=0

= (a—A+2b)(a—A—0)*=0.

It follows that if b # 0, then K has an eigenvalue with multiplicity two. Otherwise,
the only eigenvalue has multiplicity three; thus, there is no characteristic K-tensor
K for the system (2.42) satisfying the conditions of Theorem 3.1; hence, for the
Hamiltonian system (2.42), there is no point transformation (2.9) from the original
position-momenta coordinates to a separable coordinate system.

The calculations of this section can be generalised to show that the non-periodic,
finite dimensional Toda lattice cannot be separated via a point transformation for
any dimension n > 3. For an arbitrary dimension, n > 3, the Killing tensor has
the constant form K% = b = constant, K% = a = constant, 1 < 7 # j < n.
Our conclusion follows from Theorem 3.1 using the fact that the matrix does not
have n distinct eigenvalues. Similarly, the n dimensional periodic Toda lattice,
for n > 3, cannot be transformed to a separable coordinate system by a point
transformation. The matrix corresponding to the Killing tensor has all entries

equal, that is, K" = a =constant, 1 < i, < n. For details, see [8].



Chapter 4
Finding Separable Coordinates

Theorem 3.1 is very useful because it provides a criterion to determine whether or
not there exist orthogonal separable coordinates, related to the position-momenta
coordinates by a point transformation (2.9), for a Hamiltonian (1.6); however, if
separable coordinates exist, we need a procedure to find them. In this chapter,
we apply the method of moving frames to the intrinsic characterisation theory of
Benenti to produce such a formalism for low dimensional Hamiltonian systems.
The method is applied to a two dimensional Riemannian manifold of arbitrary
curvature to find the general form of the separable metrics, and their corresponding
Killing tensors, separable potentials, and second first integrals. As an example, we
investigate Euclidean 2-space, F,, and the surfaces of constant curvature, recovering
known results. Using our formalism, we also recover the superseparable potentials

of Euclidean 2-space.

4.1 Using the Moving Frame Formalism

Benenti and Rastelli have developed an algorithm that determines separable co-
ordinates but it is computationally intensive, see, for example, [37]. We propose
an alternate method that studies the Killing tensor in a rigid moving frame, the

orthonormal frame introduced in subsection 3.2.1.

81
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The dual bases of moving frame vector fields, { £, }, and w-frame 1-forms, { £},
are defined by (3.14), and (3.15), respectively. As discussed in Subsection 3.2.1, in
the rigid moving frame, the component matrices of the metric and KT are diago-
nalised, (3.17) and (3.20), respectively. The orthogonal integrability condition of
Theorem 3.1 implies the forms (3.27) and (3.28) of the functions in the definitions
of {E,}, and {E*} given by (3.14), and (3.15), respectively.

In addition, we must consider Cartan’s first and second structure equations.
The Levi-Civita connection is torsion-free by definition; therefore, the torsion 2-
form vanishes identically. This condition on the first Cartan structure equation,

leads to
dE* + w% A E* =0, (4.1)
where the connection 1-form, w?, is defined by
w® =T4*E°. (4.2)
The curvature of the surface is described by Cartan’s second structure equation
dw®y, + W N W = 0%, (4.3)
where
0% = %Rabchc A E* (4.4)

1s the curvature 2-form.

By solving the three equations (2.19), (3.24), and (4.1), we obtain all possible
separable orthogonal coordinate systems for the pure geodesic Hamiltonian, H =
%gijpipj, on M. If the potential energy term, V', is non-zero, then the additional
restriction (2.22) must be considered. This determines the general form of the

separable potential for each coordinate system.
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4.2 Two Dimensional Riemannian Manifold

In this section, we investigate a general two dimensional Riemannian manifold, M.
We develop the forms of the orthogonal integrability condition on the frame vectors
(3.24), Killing tensor equation (2.19) and its integrability conditions, and Cartan’s
first equation (4.1). Then we solve the cases of the associated equations in the
following subsections.

In two dimensions, the orthogonal integrability condition on the Killing ten-
sor eigenvectors, that is, the vectors of the moving frame, (3.24) is automatically
satisfied.

With respect to the moving frame, we know that the connection coefficients

satisfy the skew-symmetry property,

Lape = —Tacp (4.5)
From the definition of the connection 1-form (4.2), we observe that

Wahp = —Wha, (4.6)

in the moving frame. Because the manifold is two dimensional, we conclude from

(4.5) and (4.6) that the connection coeflicients have only four non-zero components,

112 = —T'191 and T'y;s = —T'521, and the connection 1-form has only two non-zero
components, wis = —wsq;. To simplify the form of the equations, we introduce the
notation
a(ul,uz) =TI'112 = —T'1a9,
(4.7)

ﬁ(ul,u2) = [310 = —T'901.

On a two dimensional Riemannian manifold, the metric in the moving frame
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(3.17) is
gap = diag(1,1). (4.8)

This 1mplies that raising and lowering indices using the metric tensor is simpli-
fied. The component functions of any quantity in terms of the moving frame are

unchanged by these procedures. For example, from (4.7), we have

F112 =lp=a= Ty = —F1217
(4.9)
I‘212 = I‘212 - 5 = —F221 = —Fzzla

and the remaining components are zero.
The Killing tensor equation is a tensor equation; thus, the natural frame form

(2.19) is identical to the moving frame form,
K{ape) = 0. (4.10)

In general, the covariant derivative of a 2-covariant tensor may be written using

the frame vector fields and connection coefficients as
d d
Kab;c - EcKab - Kdlb]-_‘ca ' — Kadgrcb z.

Using the facts that the KT is diagonal, the connection coefficients are skew-
symimetric on the last two indices (4.5), and the metric is the identity matrix (4.8),

we simplify each of the four cases of the Killing tensor equation (4.10):

Kaiy=0 = Ki1a =0

= E1K11 - 0,
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Ki12)=0 = K+ 2K193 =0

= FE»Kj — 2K5T2 — 2K Tt = 0,

K(12;2) =0 = K1 +2Ki35=0

= E1Ksy — 2K5T52 — 2K Typt = 0,

K22y =0 = Kaza =10

= E2K22 - 0

Using (3.20) and (4.9), we write these equations as

El)\l — 0,

E2)\]_ = 20&()\2 — )\1)7
(4.11)
Erds = 2B(A2 — A1),

E2)\2 - 0

We may conclude immediately that A; is independent of u! and A, is independent of
u?; furthermore, A; is constant if and only if « is zero and ), is constant if and only
if 3 1s zero. The sufficiency of the a = 0 condition is trivially true. The necessity
follows from the hypothesis of Theorem 3.1 that requires A; and A, be distinct.
We must also investigate the associated integrability conditions for the KT. The

first step is to derive the form of the commutator [E;, E»]. The moving frame



§4.2. Two Dimensional Riemannian Manifold 86

is torsion-free; therefore, the structure coefficients satisfy C¢; = I'ppy® — [, In

general, [E,, Ep] = C°4E.; hence,
[Elv Ez] = —ak, — BE,, (4-12)

using the notation (4.9). We proceed to apply (4.12) to the two non-zero compo-
nents of the KT, simplifying using the relations (4.11), to produce partial differential

equations for « and 3 with respect to the coordinates. We consider [Ey, Eq])A,
E1EsAi — EsEi ) = —aE1 A — BE )\
= 2(A2— A1) Era 4+ 2a(E1 ) — E1A) = —2a3(As — A1)
= Eia(A — A1) = =3af(A2 — Ap).
Since Theorem 3.1 requires that the eigenvalues be distinct, we conclude that
Eia = —3ap. (4.13)

Investigating the integrability condition [E;, E2|A2, we similiarly produce the equa-

tion
E.(3 = 3ap. (4.14)

Finally, we examine Cartan’s equations. From the first equation (4.1), we derive
a useful equation for dE® and also express a and 3 in terms of f!, f? and their
derivatives with respect to the coordinates, ! and u?.

We substitute (4.2) into (4.1) to obtain

dE* =T4*E® A E°.
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a

Using the skew-symmetry on ['* and the simplifying notation (4.9), we obtain

dE' = aE' A B2,

dE? = BE* A E2.

To clarify the process of finding expressions for @ and 3, we use the original notation

(3.15) in (4.1) to derive

dEa—I-wab/\EbZO

= d(haldul) + T B¢ A Eb =0
(4.15)
= thaihfjduj A du? + Fcbahcjhbiduj A dut =0

= tha[ihfj] + Fcbahc[jhbi] =0.

We introduce another notation change to avoid ambiguity in the remaining cal-

culations,

Evaluating the result of (4.15) in the cases ¢ = 1 and a = 2, we produce

fu

~ e (4.16)

o =

where , := 9/0v, and
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p=2 (4.17)
fg
where ,, := 0/0u, respectively.

We proceed by examining Cartan’s second equation (4.3). In a moving frame
on any two dimensional Riemannian manifold, the equations dw'; + w!. A w¢; = 0
and dw?y + w?, A w®y = 0 are identically satisfied. In the remaining case, we
observe that w!, A w5 = w!ly A wly + wls A w?, = 0 by the skew-symmetry of
w? inherited from wg; hence, (4.3) reduces to dw's = ©',. In a two dimensional
Riemannian manifold, the curvature 2-tensor can be written, from the definition
(4.4), as O, = %Rl%dEe A E? by using the skew-symmetry on the last pair of
indices of the Riemann tensor. Using this fact and the definition of w?,, we see that

Cartan’s second equation is equivalent to
dLes' N E° +Tp' dE° = %ledEe A E4.
We substitute for dE¢ from Cartan’s first equation (4.1) to obtain
ETo B\ B+ Top' (—w%g A EY) = 3 R34 E° N B*
= Bl — Tenlpge = § Rizea

= E1F221 - E2F121 - F121F121 - F221F122 + F121F211 + F121F211 = R1212-

Removing the zero terms and writing with the simplified notation (4.7), we obtain

the partial differential equation
—El/B + EQO& — 042 — /62 == R1212. (418)

With this formulation on a general two dimensional Riemannian manifold, we anal-
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yse the three cases: a and § both zero, only one of « and 3 zero, and neither a nor

0 zero. The general forms of the separable metric
ds®* = (E')* + (E?)?, (4.19)

and the associated Killing tensor (3.20), up to some unknown functions or constants,
are derived in each case. With the KT determined, we derive the form of the most

general separable potential, V(u,v), admitted. We must convert the separability
condition described in Chapter 2, d(KdV') = 0 (2.22), into a useful form,

d((K*%E,V)E®) =0
= d(K%E, V)N E*+ (K%E,V) NdE* = 0
= (E.K%)(E,V)E° N E®*+ K%(E.E,V)E° N E* — (K%E,V)w’4 AN E* = 0,
using Cartan’s first equation (4.1). It follows that
(E.K%)(E,V)E° AN E* + K*(E.E,V)E° N E* — (K*4E, V)T, E° N E® = 0,

using the definition of w®, (4.2), then permuting dummy indices in the final term.
After eliminating the zero terms and converting to the simplified notation defined

by (4.9), (3.20), we derive

(BlK%)(EV) + KW(EqEV) — (K E,V )Ty = 0

= (Ei\)(EoV) + Aa(ELEoV) + adi(EV) — (EoA)(ELV) — A (B2, V)
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= 2/6()\2 — )\1)(E2V) + )\2(E1E2 + /6E2)V — 20&()\2 — )\1)(E1V)
—)\1(E2E1 — OéEl)V == 0,

using the Killing tensor equations (4.11). We observe that
2B8(A2 — A)(E2V) + (A2 — M) (Er Bz + BE2)V — 2a(As — M) (E1 V) = 0,

using the commutator relation (4.12). Since the eigenvalues of the KT must be

distinct, we simplify to obtain

Once V is determined, we derive the second first integral (4.8) as discussed in
Remark 4 of Subsection 3.3.2. Since the KT is diagonal, the form of the second

first integral in the moving frame is
K = )\1])12 + )\2])22 + U(u,v). (421)

We calculate U by solving the tensor equation (2.21). Writing this condition in the
moving frame, (E,U)E® = (2K%E,V)E®, we immediately obtain the system

ElU - 2)\1E1‘/,
(4.22)
E2U - 2)\2E2V
Since the momentum is a vector field, its frame components, p, = (p1,p2), are

related to its components in the natural basis, p; = (pu, ps), by
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Pa = haipi
(4.23)
= PN = %puv P2 = %pvv

using (3.27); therefore, the Hamiltonian function (1.6) written in the separable

coordinates is

1/p Pl
H—=_(fu_ o _
2<f2 " g2> + V(w0

Using (4.23), we write the second first integral (4.21) in the coordinates,

Apad Ao
K = 1}{’2 + 2;; + U(u,v). (4.24)

4.2.1 Casel: a=p=0

It is an immediate consequence of equations (4.16) and (4.17) with « and § equal
to zero, that f is independent of v and g is independent of w, that is, f = f(u)
and g = g(v); hence, By = f(u)du and E; = g(v)dv. This implies that the metric
(4.19) has the form ds* = f?(u)du® 4+ g*(v)dv®. Consider f(u)du. There exists a
coordinate transformation @ = @(w) such that dit = f(u)dw. Simliarly, there exists
coordinate transformation ¥ = ¥(v), such that do = g(v)dv. Removing the tildes

to simplify the notation, we have
f=9=1 (4.25)
therefore, the metric (4.19) is
ds® = du® + dv?. (4.26)

This is the metric for Cartesian separable coordinates.
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We observe that, for this case, Cartan’s second equation (4.18) reduces to
Ri212 = 0,

that is, the curvature vanishes everywhere, because both a and 8 are zero. This
means that the surface is flat, that is, the manifold is necessarily Euclidean space,
E,; thus, we have proven that Cartesian separable coordinates exist only on Eu-
clidean spaces.

Since f = g = 1, we also observe that the frame and natural basis components
of vectors and forms are identical; thus, the moving frame is the natural basis.

To determine the KT for Cartesian coordinates, we substitute (4.25), « = 0 and

B = 0 into the Killing tensor equations (4.11). This gives the trivial system
AMu = A1y = Aoy = Aoy, =0,
with the solution A\; = ¢; and Ay = ¢s, both constant; hence, the KT is
K = diag(ci, c2). (4.27)

We observe that this may be written as a linear combination of two KTs, K =
18+ (e2 —c1)Ky, where Ky = diag(0, 1), consistent with the theory of Kalnins and
Miller.

We seek the form of the separable potential, V', for this case. Substituting
a = =0 into (4.20), we obtain V,,, = 0 since f = g = 1 (4.25). We immediately
conclude that the potential is separable, that is,

V = Vi(u) + Va(v). (4.28)
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Substituting the form of V into the differential equations for U (4.22), we produce

Uu=2c1V14,
U,v = 202%4};
therefore, U has the form
U =2c1Vi(u) 4 2¢3Va(v). (4.29)

Using (4.27), (4.29), we know that the second first integral (4.24) has the form
K = c1p® + capy® + 2e1Vi(u) + 2¢2Va(v). (4.30)
We want a second first integral that is functionally independent of the Hamiltonian,
Lo 2
H =5 (pa” +p%) + Vit Vs

however, clearly (4.30) contains H. Removing a constant multiple times H from
(4.30), which is invariant, then dividing by 2(¢; — ¢2), we derive a second first

integral independent of H,

K =2c1H + (¢ — c1)p2 4 2(c2 — 1) Vs

= K= %pf + Va(v).

Since the separable coordinates are Cartesian, the second first integral in Cartesian

coordinates, (z,y), is

1
K = 5"+ Valy) (431)
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4.2.2 Case [la: a=0,3+#0

We solve for f by substituting @ = 0 into (4.16) to obtain f, = 0. This im-
plies that f is independent of v, that is, that f = f(u). Performing a coordinate

transformation on w, then dropping the tilde, we obtain
f=1 (4.32)

Substituting a = 0 into (4.14), we obtain E,f = 0. This implies that /3 is indepen-
dent of v, that is,

B = B(u). (4.33)

We proceed to determine the general form of g(u,v). Substituting (4.17) with (4.32)
into (4.14), we obtain

1/gu
_<g_> =0=(Ing)uw =0;
g g U

hence, In g separates as a sum of functions A(w) + B(v), that is, ¢ = C(u)E(v).
Again, we find a coordinate system, by transformation on the independent variable

v, so that
g = g(u); (4.34)
hence, the metric has the form
ds* = du® + ¢*(u)dv®. (4.35)

We now derive the curvature tensor component in this case. Substituting (4.32)

and (4.34) into (4.17), we find that 8 has the form

p =2 (4.36)
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To calculate Rj21a, we substitute & = 0 and f (4.36) into the simplified Cartan’s
second structure equation (4.18),

Ris12 = —<g?"> - <g?“>2

)

= Rypy = — 22, (4.37)

g

We observe that, in this case, Rjs15 depends on only one coordinate, u. Since the
metric (4.35) is independent of v, the coordinate is ignorable; thus, it is natural
that the curvature has no v dependence.

Now we derive the KT. Substituting (4.32), (4.34), @ = 0, and (4.36) into the

Killing tensor equations (4.11), we produce a system of differential equations,
)\1u = )\1,11 = )\2,11 = 07

29
)\2,u: g’ ()\2—)\1)

We conclude immediately that A; is equal to a constant, say ¢;. Then the differential

equation for A, which is independent of v, is solved as

D
du

dAs
= /)\2 e 2/(lng)7udu

= In(As —¢1) =2lng(u) +d

=2(Ing)u(As — 1)

= Ay = c29*(u) + c1;
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hence, the KT is
K = diag(cy, cag®(u) + c1). (4.38)

Again, we observe that the KT can be written as the sum of two KTs: K =
c18 + 2Ky, where K; = diag(0, g*(u)).

We proceed to calculate the separable potential, V. Substituting a = 0 and
f =1 (4.32) into (4.20), we obtain the partial differential equation

3/3E2V —|— E1E2V — 0

- e () o

29 1y, _
= 92 Vv —I' g‘/:vu - 07

where (4.17) has been used. To simplify this problem, we multiply by an integrating

factor, ¢°,

= 2gg,qu + g2Vvu =0

= (*Vo)u=0

_ ha(v) w
= V_g2(u) +h3( )7

where hi(v), he(v), and hs(u) are arbitrary functions of one variable; hence, the

separable potential has the form

N

(v)
?(u)

V= Vi(u) + (4.39)

<
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To find U, we substitute this form of V into (4.22),

U,u — 2Cl <‘/1,u - 2'9—?7,“‘/2>7
g

U,v — 262‘/2,1} + %g%%,va

U = 201‘/1 —|— 26912‘/2 —|— hl(’U),

Equating the two forms of U, we obtain hi(v) = 2¢2Va and ha(u) = 2¢1Vi; thus,
the potential has the form

2¢1Va(v)
g*(u)

Substituting (4.38), (4.40) into (4.24) then removing the Hamiltonian compo-

U =2cVi(u) + 2¢2Va(v) + (4.40)

nent,

1 2 Vs
H=—<pi+p—§>+vl+
2 g

2
DR
we derive the form of the second first integral

2
Cag” + €1
2

2
K =cpl + ( ), + 2c1v1 + 2¢3 Vs + —261;/2

= K =2c1H + cyp? + 2¢, Vs (4.41)

= K =3p>+ Va(v).
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4.2.3 Case I[Ib: a#0,3=0

Despite the sign differences in the associated equations, the solution in this subcase

is similar to that of case I/a. The metric can be written in the form
ds? = f(v)2du2 + dv?.

Modulo an interchange of the coordinates, this is identical to the metric of case
ITa. Consistent with this result, the forms of the Killing tensor, potentials V' and
U and second first integral are identical to those of case Ila after the coordinates
are interchanged; hence, we consider only case I1: a =0, # # 0 when we specialise

to Euclidean 2-space and the surfaces of constant curvature.

4.2.4 Case III: af #0

With the moving frame formalism, the investigation of the general case is as simple
as either of the previous cases. We begin by proving that the functions f(u,v) and
g(u,v) are identical in this case.

In addition to the two equations (4.16), and (4.17), Cartan’s first equation, in
conjunction with the integrability conditions, implies that the two functions f(u,v)
and g(u,v) are identical provided that neither « nor § is zero. Comparing (4.13),

and (4.14), we obtain
ElOé = _E2/6

Substituting (4.16) into the lefthand side and (4.17) into the righthand side, we

obtain the sequence of partial differential equations

). = a(%).
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f,uv o f,uf,v o 9w

Juipy _
Sy sl el =0

2

= [(Inf—1Ing)u.,=0

= <ln 5) w = 0;

therefore, In(f/g) is separable. That is, In(f/g) = A(u) + B(v) for unknown func-
tions A(u) and B(v). Exponentiating this relationship, we obtain

f = gC(u)D(v),

where C'(u) = exp(A(u)), D(v) = exp(B(v)). We counsider f(u,v)du = g(u,v)C(uw)D(v)du.
There exists a coordinate system such that da = C'(u)du; hence, we have established
that f(@,v) = g(@,v)D(v). Now we consider g(@,v)dv = g(ﬂ,v)D(v)(dv/D(v)).
There exists a coordinate system such that do = dv/D(v). This implies that

f(@,v) = g(@,?). For brevity of notation, we remove the tildes, then write

f(uv ’U) = g(u, ’U); (4'42)

henceforth, in the calculations for the case II1, we use this simplification (4.42).

We proceed to determine the general form of the metric.

We substitute (4.16) and (4.17) into (4.13) to obtain

), o

3Pl
w o fP20 217
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N T

= T T af T AP

= f2..=0.

This implies that f? is separable,
f? = A(u) + B(v). (4.43)

We observe that this condition is a direct result of the vanishing of the torsion and
the integrability condition on the Killing tensor equations. We conclude that in any
two dimensional Riemannian manifold the integrability conditions for the Killing

tensor equation imply that the metric may be written as
ds? = (A(u) + B(v))(du2 + dv2). (4.44)

We observe that, in agreement with Theorem 1.3, the metric (4.44) is in Liouville
form (1.16).

We seek the form of Rjs12 in this case. Substituting f = g from (4.42) into (4.16)
and (4.17), we obtain

and

A

2v/(A+ B)®’

respectively. Substituting « and g into the simplified form of Cartan’s second

8=
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equation (4.18), we obtain

Rizs = —¢A1+ 5 (2\/(21’1 B)3>,u - \/A1—|— B (2\/(51 B)3>,v

__(B.) (AW
4(A+ B 4(A+BY

_ 1 (A + (Bo)®
= Rigz = m [—A,uu — B, + AT B .

Rewriting, we obtain
(A + B)(A,uu + B,vv) + 2(A + B)3R1212 = (A,u)2 + (B,v)2- (445)

We simplify (4.45) in the case that the curvature Rys15 is constant. After taking the
partial derivatives of (4.45) with respect to w, then with respect to v, we produce

a separable differential equation,

A,uB,mw + B,UA,uuu + 12R1212A,UB,U(A + B) =0

(4.46)

Auuu Bm}v
| + 12R1012A = —< Bv + 12R12123> = k2,

U

for some constant k > 0. We observe that the product A, B, is non-zero because
af # 0; therefore, the coupled and separated equations in (4.46) are equivalent. In
addition, there i1s no loss of generality in setting the separation constant equal to a
non-negative quantity. If it were negative, we would interchange the roles of A and
B by performing a coordinate transformation that interchanges the independent

variables, w and v, to produce the above form.

We proceed to find the form of the KT. Substituting (4.16) and (4.17) with (4.43)



§4.2. Two Dimensional Riemannian Manifold 102

into (4.11), we obtain the following system of differential equations,

)\1,u - )\271, - 0, (447)
B
Ay = (A1 — As), 4.4
e = 2o 7 (A= A2) (4.48)
Au

From (4.47), we conclude that A; is independent of u; therefore, A,/ B, is a func-
tion of only v. Using this fact in (4.48), we conclude that (A — A2)/(A+ B) is a

function of only v, say

AL — A
A+ B

= d01(v). (4.50)
Similarly, (4.47) implies that A, is independent of v and (4.49) implies that (A —
A1)/(A + B) is a function of only u, say

Ao — Ay
A+ B

= d(u). (4.51)
Comparing (4.50) and (4.51), we conclude that
—01(v) = d2(u) = 4,

where § is a separation constant. Using this relationship we substitute (4.50) and

(4.51) into (4.48) and (4.49) to obtain the simple relationships

)\171, — —(8‘_371,7

)\2,u — (SAM,
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respectively. Solving these equations, we obtain

)\1 = —(SB(’U) + C1,
(4.52)

)\2 = (SA(’UJ) + Co.

Substituting A; and A, into (4.51), we derive

5A‘I—C2‘|—5B_C]_ _5
A+ B -

Co—C
= 5+A+B_5

= (1 = Cy = C.

Substituting for ¢; and ¢, in (4.52), we determine that the KT (3.20) is of the form
K = diag(—éB(v)+ ¢, §A(u) + ¢). (4.53)

This KT is a linear combination of the metric and Ky = diag(—B(v), A(v)), K =
cg+0Ky; therefore, we have shown that the K'Ts produced by the theory of Benenti,
Theorem 3.1, using our moving frame method, agree with the theory of Kalnins
and Miller [22] in each case.

We use the fact that f and g are identical in this case to simplify the general
equation for V (4.20),

3/3E2V —|— E1E2V - 20&E1V = 0

3fu 1(1 2fwy, _
= fSV”f(fV“),ﬁ V=0

2f 2f.
= : Vv—l' Vvu—l' Vu_o
f3 B f2 f3 )
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To simplify this problem, we multiply by an integrating factor, f*,
= 2ffuVo + fVu +2ffoVu =0

= fi‘/:v + f2Vvu + fz,‘/:u = 0.
The solution is obvious after we substitute for f? using (4.43),

= AMVU + (A + B)Vvu + B,vVu =0

= [(A+ B)V]uw =0.

We observe that the quantity (A + B)V is additively separable; thus, the form of
Vs
Vi(u) + Va(v)

V= A(u) + B(v)

(4.54)

Using the above form of V in (4.22), we integrate to obtain

U =238+ o) (GE32) + (o),

_I_
U =254+ ) (GLg) +ha(uw),

[2(—0B + ¢)Va + Bhy] 4+ (=26 BV1 + Ahy) + 2¢V)

]
v AT B

[2(0A + ¢)V1 + Ahs] + (20AV, + Bhs) + 2cv2
A+ B

U

for arbitrary functions of one variable, hi(v) and hay(u). The two representations of

U must be equivalent if a solution exists. Comparing the terms dependent on only
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v, we observe that

hy =20V, (4.55)
Similarly, if we equate the terms dependent on only u, we derive that

hy = —26V1. (4.56)

Using (4.55) and (4.56) for h; and hs, respectively, we obtain identical mixed terms
for each representation of U; therefore, U is of the form
_ 2(=9B(v) + ¢)Vi(u) + 2(8A(u) 4 c)Va(v)

U= A5 B0 . (4.57)

To find the second first integral, we substitute (4.53) and (4.57) into (4.24), and

then remove the Hamiltonian,

1 2+ p? i+ V;
gt Pyt Dy 1+ Vs

2 <A(u) + B(v)> A(u) + B(v)’

dependence. We obtain

(—0B + c)p + (JA+ c)p2 + 2(—6B + c)Vi + 2(8 + ) Vs

K =
A+ B
B —6Bp? + §Ap2 — 25 BV, + 20 AV,
(4.58)
L g - =Bpi+ Alwp, — 2B(0)Vi(u) + 24(w)Va(v)

2[A(u) + B(v)]

We have found the general solution for the metric, KT, potentials, U and V', and
second first integral in terms of the arbitrary functions A(w) and B(v) in the Liou-

ville metric (4.44).
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On the surfaces of constant curvature and Euclidean space, E,, we determine
the metric for each separable coordinate system. From this, we restrict the form
of the admitted KT, potentials and second first integral. We begin by examining

Euclidean space, E.
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4.3 Euclidean 2-Space, E,

As mentioned in case I, Euclidean space, E,,, is characterised by the vanishing of
the curvature tensor component, Rj21s; therefore, Cartan’s second equation (4.18)

simplifies to
—El/B + EQO& — 042 — /62 =0. (459)

We observe that the vanishing of the curvature is unrelated to the existence of a
Killing tensor because (4.59) is independent of (4.13) and (4.14).

The set of differential equations (4.13), (4.14), (4.16), (4.17), and (4.59) are now
solved to produce all the separable metrics in Euclidean space, FEs. Since Euclidean
space is flat, there exist coordinate transformations from the separable coordinates
to Cartesian coordinates in which the metric 1s Euclidean. At the singular points of
the metric, that is, where the eigenvalues of the KT are equal, analytic extensions
are used to extend the separable coordinates to the entire space. Once the metric
has been derived, we determine the form of the associated Killing tensor, K. This
determines the specialised form of the potentials U and V and the second first

integral, K, for the corresponding separable coordinates.

4.3.1 Casel: a=p=0

This case was completely analysed in the general Riemannian treatment because
a = 3 = 0 implies that the manifold is Euclidean. The metric (4.26) is Euclidean
(since the separable coordinates are Cartesian), the KT is constant (4.27), and the
second first integral is (4.31). The forms of the separable potentials, V and U,
were determined to be (4.28) and (4.29), respectively. This is the only constant

curvature surface in which Cartesian separable coordinates exist.
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4.3.2 Casell: a=0,8+#0

In Euclidean 2-space, we have the simplified Cartan’s second equation (4.59). Using
it, we determine the form of the function C(u) found in the metric (4.35) and KT
(4.38) for this case of the general Riemannnian manifold.

Using a = 0, (4.32), and (4.33) in (4.59), we obtain a differential equation for S,

a6 _

2
du A

This separates to yield 8 = (u+ ¢;)~!. Translating « to eliminate the constant, we

have

3= % (4.60)

We proceed to solve for g by substituting (4.32) and (4.60) into (4.17) to obtain

the separable differential equation

The solution is In g = Inw + h(v) for some function of integration h(v). Solving for

h(v)

g, we obtain g = ue™”. Performing a coordinate transformation on v to eliminate

the factor dependent on v, then removing the tilde, we simplify the expression for

9,

hence, the metric has the form
ds? = du? + v2dv?. (4.61)

We recognise (4.61) as the Euclidean metric in polar coordinates. The transforma-
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tion to Cartesian coordinates is given by

T = UCoSv,
(4.62)

Yy = usinuv,

where 0 < u < 00, 0 < v < 2.
To determine the KT, we recall that g(«) = w. Substituting this into the general
form of the KT for case I (4.38), we find that

K = diag(cy, cou® + ¢1), (4.63)

a linear combination of the metric, g, and K; = diag(0, u?).
Substituting g(w) = u into (4.39) and (4.40), we obtain the separable potentials

in this case for E,,

V:w@+%gx (4.64)
and
2¢1Va(v)
U =2cVi(u) 4 2¢;,Va(v) + —5—.

u

The form of the second first integral was calculated in the associated Riemannian

case to be (4.41).

4.3.3 Case III: af #0

Using (4.59), we determine the forms of the functions A(w) and B(v) found in the
metric (4.44) and KT (4.53). From (4.46), we obtain the simplified equation

=— = k. (4.65)
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If k =0, then the system (4.65) has a solution

A = cju? + cou + cs,
(4.66)

B = dl’U2 + d2’U + d3.

Substituting these functions into the original partial differential equation for A and
2 v and constant terms from either

B (4.45), then equating coefficients of the u?, u, v
side of the resulting equation, we obtain the restrictions

C1 = dl,
2 dg

C
461(C3+d3):C§+d§:>ﬁ:C3+d _461'

Using these relations in (4.66), we obtain

2 2 2 2
_ Cy _ Gy ﬁ) _dy
A+ B —cl<u+ 261) + cs i +cl<v+261 + ds 4c?
2 d2 d 2 d2
:Cl<u+26721> —d3+é+01<v+ﬁ> + ds 72%

—al(ergz) (i) ]

By an appropriate coordinate transformation, we translate and scale v and v such

that A+ B = u? + v% In this coordinate system, the metric (4.44) is

ds? = (u2 + v2)(du2 + dv2). (4.67)

We recognise (4.67) as the Euclidean metric in parabolic coordinates. The trans-

formation to Cartesian coordinates is given by
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r = %(’UP - 1)2),
(4.68)
y = uv,
where —oo < u < 00, 0 < v < oo.
The KT (4.53) is
K = diag(—5v2 + ¢, du’ + c). (4.69)

In this coordinate system, the KT is a linear combination of the metric and K; =
diag(—v?, u?).
Using the fact that A + B = u? + v?, we conclude from (4.54) and (4.57) that

Vi(u) + Va(v)

V = , 4.70
L (4.70)
and
- 2(—51}2 +e)Vi(u) + 2(5u2 + ¢)Va(v)
N u? + v? '
The second first integral (4.58) takes the form
K- —0’p2 4+ u’p? — 207 Vi (u) + 2u*Va(v)
N 2(u2 + v2) '
If k # 0, the solution to (4.65) is
A =cief + cge™ 4 5,
(4.71)

B = d; cos(kv) + d sin(kv) + ds.

Substituting (4.71) into (4.45), then equating coefficients of the €2 eh*  e=hv
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e~?* and constant terms from either side of the resulting equation, we obtain the

restrictions

C3 —|— d3 = 0,
(4.72)
46162 = d% + dg

We observe that the second restriction implies that ¢; and ¢, have the same sign.
We shall assume, for simplicity, that both are positive. Using the first restriction

of (4.72) in (4.71), we obtain
A+ B = cie® + coe™™ + d; cos(kv) + dy sin(kv).

Since ¢; and ¢, are both positive, the first two terms may be written as 2,/¢ycs cosh(ku+
¢). Similarly, the final two terms may be written as bcos(kv + ¢) where b =

—+/d? + di = —2,/c1¢5 using the second restriction of (4.72); hence, we have shown
that

A+ B = 2,/cics cosh(ku + ) — 2, /creq cos(kv + ¢).

Using standard trigonometric identities, we may write this as

A+ B = 4./cic; cosh? <w> N . N Cos2<7kv2+ ¢>
—|—2w/0102

= 4,/cicy [cosh2 <W> — cos? <w>] .

By an appropriate coordinate transformation, we translate and scale v and v to

convert A + B to the form

A+ B = az(cosh2 U — cos> v), (4.73)
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where a? = 4,/cicy, with a > 0 without loss of generality; therefore, the metric
(4.44) is

ds? = az(cosh2 U — cos> v)(du2 + dv2). (4.74)

We recognise (4.74) as the Euclidean metric in elliptic/hyperbolic coordinates. The

transformation to Cartesian coordinates is given by

x = acoshucoswv,

(4.75)
y = asinh w sin v,
where 0 < u < 00, 0 < v < 2.
The KT (4.53) is
K = diag(a25 cos2(v) + ¢, aé cosh2(u) + ¢). (4.76)

We observe that the family of KTs related to the elliptic/hyperbolic separable

coordinates is {g, K;}, where K; = diag(a® cos? v, a® cosh® u).

Using the fact that A+ B = a*(cosh® u — cos? v) (4.73), we conclude from (4.54)
and (4.57) that

Vi(u) + Va(v)

2
cosh?u — cos? v

V =

(4.77)

and

2(a25 cos2(v) +e)Vi(u) + 2(a25 coshz(u) + c)Vé(v)‘

?
cosh? u — cos? v

U =

thus, the independent second first integral (4.58) has the form

cos2(v)pi + coshz(u)pi +2 cos2(v)V1(u) +2 cosh2(u)V§(1})

2(cosh2 uw — cos? v)

K =




§4.3. Euclidean 2-Space, Eo 114

4.3.4 Separable Coordinates in F,

It is well known [5] that the four separable coordinate systems in Euclidean 2-space

(with corresponding metrics) are:

Cartesian, (z,y): ds* = da* 4 dy?,
Polar, (r,8): ds? = dr? + r2dp?,
Parabolic, (§,7): ds® = (& + n*)(d& + dn?),

Elliptic/Hyperbolic, (a, 8):  ds* = a*(cosh® a — cos? B)(da® 4 dB3?),

where a is a scaling parameter representing half the distance between the focii.

Cartesian coordinates (for which our results are summarised in Table 4.1) are
the standard orthogonal coordinates used to describe the natural basis of Euclidean
spaces. In fact, any manifold imbedded in Euclidean n-space can be represented
locally by a set of Cartesian coordinates (z!,...,z"). Using Remark 3 from Sub-
section 3.3.2, we determine the singular points of the metric. Since the metric in
the moving frame is diag(1,1) (4.8), K is proportional to g if and only if its diag-
onal components are identical. Since the components are (ci,cs) (4.27), there are
no singular points.

Polar coordinates (see the summary of our results in Table 4.2) are related to
Cartesian coordinates by the formulae (4.62) with « = 7 and v = §. The coordinate
r represents the distance between the origin and a point, P, and 6 is the angle,
measured in the counterclockwise direction, between the positive z-axis and the
line connecting the origin and P; hence, the coordinate lines are concentric circles
for constant r and rays for constant #. This is shown in Figure 4.1. At any point,
P, in the plane — except the origin where r = 0 and 6 is undefined — there
exists a unique representation in polar coordinates; hence, the origin is a singular

point. Since the KT (4.63) is proportional to the metric only at this point, where
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‘ Cartesian Separable Coordinates ‘

Metric ds? = dz? + dy?

Killing tensor diag(eq, c2)

Separable potential | V = Vi(z) + Va(y)

Second first integral %py2 + Va(y)

Table 4.1: Summary for Cartesian coordinates.

r:=u = 0 and 6 := v i1s undefined, it is the only singular point.

Parabolic coordinates (see Table 4.3 for a summary of our results) are employed
less frequently than polar coordinates but are no less useful. These coordinates
are related to Cartesian coordinates by the formulae (4.68) with v = ¢, v = 7.
The coordinate lines are two families of mutually orthogonal parabolae opening
in opposite directions on the z-axis. Figure 4.2 depicts these lines. We observe
that the coordinate lines at the origin are parallel; therefore, it is a singular point.
Again, the KT (4.69) is proportional to the metric if and only if ¢ := « = 0 and
n :=wv = 0, that is, at the origin (z,y) = (0,0); thus, it is the only singular point.
In fact, there are two coincident singular points at the origin, see, for example, [3].

The most complicated separable coordinate system in Es are the elliptic/hyperbolic
coordinates (see Table 4.4 for our corresponding results). In fact, the other three
coordinate systems are degenerate forms of these coordinates. The transformation
law to Cartesian coordinates is (4.75) with v = «, v = . The coordinate lines
a = ap are ellipses and 3 = f are hyperbolae along the z-axis (see Figure 4.3). The
coordinate lines are parallel at the focii of the conics (z,y) = (+a,0). By examining

the KT (4.76), we observe it is proportional to the metric provided a := u = 0 and
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‘ Polar Separable C

oordinates ‘

Metric

ds? = dr? + r*db?

Killing tensor

diag(cy, cor? + ¢1)

Separable potential

Second first integral

0% + Va(6)

Table 4.2: Summary for polar coordinates.

Figure 4.1: Coordinate lines for polar coordinates.
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‘ Parabolic Separable Coordinates ‘

Metric ds* = (52 + 772)(6152 + d’72)

Killing tensor diag(—dn® + ¢, 6&* + ¢)

Vi(€) + Va(n)

Separable potential
&+’

—n’p: + Epl — 20" Vi(€) + 267 Va(n)
2(62 _|_772>

Second first integral

Table 4.3: Summary for parabolic coordinates.

Figure 4.2: Coordinate lines for parabolic coordinates.
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‘ Elliptic/Hyperbolic Separable Coordinates

Metric

ds? = a*(cosh® a — cos? B)(da® + dB?)

Killing tensor

diag(a®d cos*(3) + ¢, a*d cosh2(a) +¢)

Separable potential

Vi(a) + Va(B)

cosh® a — cos? 8

Second first integral

cos2(ﬁ)pi + cosh2(o¢)pé +2 cos2(ﬁ)V1(a) +2 coshz(a)%(ﬁ)

2(cosh2 a — cos” 5)

Table 4.4: Summary for elliptic/hyperbolic coordinates.

B :=wv =0 or 7. Since these points correspond to the focii, (a,0) and (—a,0) are

the only singular points. This agrees with previous results, see, for example, [3].

By our method, we have produced the four separable coordinate systems in
E» (4.26), (4.61), (4.67), and (4.74) without a priori knowledge regarding their

existence! In addition, we recovered the associated potentials, KTs, and second

first integrals, see, for example, [36].
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Figure 4.3: Coordinate lines for elliptic/hyperbolic coordinates.
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4.4 Two Dimensional Constant Curvature Sur-

faces

A surface for which the curvature is some non-zero constant, Rjs12 = R, is called
a surface of constant curvature. Geometrically, we locally represent these surfaces
as imbeddings in E3 if R > 0, or Hy if R < 0. For R > 0, we can represent the
surface by the 2-sphere if it 1s closed. For R < 0, the surface can be represented
only locally.

As discussed in the treatment of case I for a general Riemannian manifold, the
curvature is necessarily zero when both « and  vanish; hence, we begin the analysis

with case I1.

44.1 Casell: a=0,8#0

In the treatment of a general Riemannian manifold in this case, we found the

differential equation for g(u) (4.37). We solve this equation to obtain
g = —Rg
¢y sin(v/Ru) 4 ¢ cos(v/Ru), if R > 0,
c;;emu + cm‘mu, if R<O.

This is equivalent to

Asin(vRu + §), if R > 0,

g = Asinh(v/—Ru + §),
Acosh(v/—Ru+§), if B <0.

—Ru
Ae ,
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By translating « and scaling v, we obtain

sin(v/Ru), if R > 0,

g= sinh(v/— Ru), (4.78)
cosh(v/—Ru), if B <0.
6—2\/ju

Using f =1 (4.32) and (4.78), for R > 0, we write the metric (4.35) as
ds* = du® + sin®(V Ru)dv®.

To recognise the separable coordinates, we write the metric in the coordinates

% = v/Ru, ¥ = v/Ro,
ds? = i [dfﬁ + sin2(ﬂ)dﬁ2]
I )

This form of the metric corresponds to regular spherical coordinates that are related

to Cartesian coordinates, (z,y, z), by the transformation law

& = 78N % COoS v,
Yy = 7 sin 4 sin v, (4.79)

z = rcost,

1/2 = constant, 0 < % < 7, 0 < 9 < 2m; hence, the separable co-

where r = R~
ordinates are spherical coordinates. Spherical coordinates are employed to analyse
objects with spherical symmetry. In standard notation, we use the variable names
¢ instead of w and 6 in place of v in (4.79). The coordinate ¢ represents the angle
between the z-axis and the point, P. The angle, measured in the counterclockwise

direction, between the positive z-axis and the line connecting the origin to the pro-
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Figure 4.4: Coordinate lines for regular spherical coordinates.

jection of P into the zy-plane is #; hence, the coordinate lines are circles of latitude
for constant ¢ and half great circles for constant 6. This is shown in Figure 4.4.
At any point, P, on the 2-sphere — except the poles where ¢ = 0 or @ and 8 is
undefined — there exists a unique representation in spherical coordinates.

For R negative, there are three cases. The first separable metric from (4.78),
ds? = du® + sinhz(\/ —Ru)dv2, (4.80)

1s related to the positive definite metric of the coordinates &« = /—Ru, v = v/ —Rwv,

__ !
"R

ds? [dﬂ2 n sinh2(ﬁ)dﬁ2].

The transformation law (locally) relating Minkowskian coordinates, (¢,z,y), to
these coordinates is
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xz = psinh @ cos v,
y = psinh @ sin v,
t = pcosha,

where p = (—R)_1/2 = constant, 0 < < 0o, 0 < v < 27,
The second separable metric from (4.78),

ds? = du® + coshz(\/—Ru)dv2, (4.81)

1s related to the positive definite metric of the coordinates &« = /—Ru, v = v/ —Rwv,

1

ds? =
N R

[dfﬁ + coshz(ﬂ)dﬁ2] )

The transformation law (locally) relating the coordinates (¢, z,y) to these coordi-

nates is
x = pcosh @ cos v,
y = pcosh @ sin 9,

t = psinh a,

where p = (—R)™Y/? = constant, —co < % < 00, 0 < ¥ < 2.
The coordinates of the final separable metric from (4.78),

ds? = du® + 6_2m"dv2, (4.82)
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can be transformed using @ = v/—Ru, v = /—Rv to obtain the metric

!
R

ds? = (dﬂ2 + 6_21~‘d172).

These coordinates are (locally) related to the coordinates (¢,z,y) by the transfor-

mation

= (—R)™?e % cos,

y = (—R)"%e " %sin 9,

= = (L)

The KT, and separable potentials, V' and U, may be determined in each case
by direct substitution into the formulae (4.38), (4.39), and (4.40), respectively.
For a discussion of the related singular points, see [37]. The form of the second
first integral for all coordinates (4.41) was calculated in the general Riemannian
case I calculations. The metric calculations were performed in detail by Olevski
while investigating the product separability of the Laplace-Beltrami equation, in
[34] where, for R < 0, a rigorous geometrical characterisation of the coordinate

lines in H, is given.

4.4.2 Case III: af #0

We proceed from the differential system developed in the general Riemannian case

I1] treatment (4.46) with Ri212 = R,

A e + 12RAA, = KA,
(4.83)
B.w + 12RBB, = —k*B,,.
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We solve the differential equation for A(u). It is equivalent to the differential

equation for A ,,

(A)um + 6R(A2)7u = k2A7u
(4.84)
= Au+6RA*=FKA+1,

where [ 1s a constant of integration. The remaining equation is solved by using the

following technique. We let

dA
Ay = . 4.
w(a)= % (4.85)
It follows that
dw
Auu = ,
= WA

using the chain rule. Substituting this relation into the reduced order equation

(4.84), we produce a separable differential equation that is integrable

wl — _6RA? L I2A 41

S,
o>

= /wdw = /(—6RA2 +12A +1)dA

W= ORAP LKA LA m

= Vi

DO —

= w?= —4RA3+ k2A? + 2lA + 2m,

where m is a second constant of integration. Using (4.85), we derive the equation

for A,
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(AL)? = —4RA® + K*A* + 21A + 2m. (4.86)
Similarly, we integrate the differential equation for B(v) (4.83) to obtain
(B.)? = —4RB® — kB + 2nB + 2p, (4.87)

where n and p are constants of integration.

To obtain the relations amongst the constants, we substitute into the original
differential equation (4.45). First, we differentiate (4.86) with respect to u to obtain
A UU Y

Ay = —6RA* + B*A+ 1, (4.88)
and (4.87) with respect to v to obtain B,,,
B., = —6RB® — kB 1 n, (4.89)

using the fact A, B, # 0. Substituting (4.86), (4.87), (4.88), and (4.89) into (4.45),

then simplifying, we obtain
(n—10)(A—B)—2(m+p)=0. (4.90)
Differentiating this relation with respect to w, we produce

(n—10A,=0

= n=1

Substituting n = [ into (4.90), we obtain the relation p = —m; therefore, the
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solution satisfies the conditions

(A,)? = —4RA® + K*A* 4+ 21A + 2m,
(4.91)
(B,)? = —4RB® — k*B? + 2B — 2m.

To remove the quadratic terms from the equations of (4.91), we perform a trans-

lation by a constant. Shifting A by a = —k?/12R and B by —a, we simplify (4.91),

(A,)? = —4RA®* + cA+ d,

(B,)? = —4RB® + ¢B — d,

where ¢ = k*/12R + 2] and d = (k*/18R)(k*/12R + 31) + 2m.
It follows that the separation constant, k, can be set to zero without loss of

generality. It also follows that

2 _ dA?

W= P AT d
2 _ dB?

W= R B —d

Since A, and B, do not vanish, we adopt (A, B) as coordinates; hence, the

metric (4.44) can be written as

(4.92)

2 2
ds2:(A+B)( aA 4B )

—4RA® +cA+d + —4RB®* 4+ c¢B — d

The allowable ranges of the coordinates A and B depend on the roots of the cubic
polynomials in the denominators of the metric (4.92). It is necessary that (A +
B), and both cubics be positive. To simplify the analysis, we first tranform the
coordinates according to A=A B=-B. Dropping the tildes, we write the metric
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in this new coordinate system as

dA? dB? )

d32:(A_B)( 3 - 3
—4RA*+cA+d —4RB’>+cB+d

The cubic polynomials in the denominators are now identical. To write the poly-

nomial in reduced form, we factor the leading coefficient,

1 dA? dB?
ds® = —— (A — B)( . p—— ) (4.93)
iR A*13hA+j B 13hB 1

where h = —¢/12R and j = —d/4R.
Since the surface is Riemannian, the metric is positive definite. Without loss of

generality, we impose the condition
A>B

on the coordinate functions A and B.

The analysis depends on the sign of the curvature, R. If R > 0, then we require
that A>+3hA+j < 0and B>+3hB+j > 0; however, if R < 0, then it is necessary
to impose the conditions A®>+3hA+j > 0, and B*>+ 3hB + j < 0. By varying the
zeros of cubic polynomial, we determine all separable coordinate systems. Olevski
performed this analysis in [34]. In all cases, the metric is of the form we derived
(4.93). We denote the zeros of the cubic polynomial in the denominator of the
metric terms by a, b, and c.

For R > 0, the analysis produces only one separable coordinate system, the Ja-
cobi elliptic coordinates. The coordinates vary in the intervals between the distinct
zeros, that is, ¢ < B < b < A < a. The coordinates are related to Cartesian

coordinates by

where C = A or B.



§4.4. Two Dimensional Surfaces of Constant Curvature 129

For R < 0, we obtain siz additional separable coordinate systems. We list
the corresponding relations between coordinates, (¢,z,y), and the separable coor-
dinates, (A, B), and the intervals of existence for the separable coordinates with

respect to the zeros:

B<e<bc<a< A

y? 2dzt + (C — e)(t* — z?)
C—a (C —e)? + d?

=0,

B<a<A b=e+1id, c=e—1d;

2 2 _ 42 2
Yy r*—t (x —t)

4. =
C—a+C—b+(C—b)2 0

c=b< B<a<A;
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. y2 +$2—t2 ($—t)2_0
CC—a C—b (C—b2

B<e=b<a< A

B<e=b=a< A,

where C' = A or B. Other possible cases exist that are equivalent, by coordinate
transformation, to one of these six cases. That is, this is a complete list of the
inequivalent cases. For details, including a description of the orthogonal coordi-
nates, see [34]; thus, we have recovered all the known separable coordinate systems
for surfaces of constant curvature, see, for example, [21]. The KTs, separable po-
tentials, V and U, and second first integrals may be determined by substitution
into the appropriate form from the general two dimensional Riemannian surface

analysis. For a discussion of the related singular points, see [37].
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4.5 Superseparability in E,

A Hamiltonian system is said to be superintegrable, if it possesses 2n—1 functionally
independent first integrals, that is, two sets of involutive first integrals each with »
elements. We are interested in the subset of superintegrable systems for which there
are potentials that are separable in multiple coordinate systems, called supersepara-
ble systems. To complete the study of separation of variables for Euclidean 2-space,
E,, we determine the superseparable potentials. Since the dimension of the surface
is two, we seek potentials that separate in two coordinate systems. This provides
two first integrals, not necessarily independent, in addition to the Hamiltonian.
The results of Section 4.3 permit the determination of such potentials with rela-
tive ease. The results to follow have been obtained previously, by an arguably more

complicated approach involving Lie groups, by Winternitz, Smorodinsky et al [19].

4.5.1 Cartesian-Polar

The separable potential for Cartesian coordinates, (z,y), given by (4.28) is V =
Vi(z) + Va(y). We write this in polar coordinates, (r, ), as

V = Vi(r cos 0) 4+ Va(rsin §),

where (4.62) has been used. If a potential separates in both Cartesian and polar

coordinates, by (4.64), we may also write V in the form

%

I
=~
=
_|_

The partial derivatives of each form of V' must be equal; hence,

~ 1
Vo= —V% = —V/rsind + V)r cos b
,

(4.94)
= V, = r?(—V]sin b + V; cos b),
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and
V, = 7 — 2—32 = V/ cos 6 + V] sin §
,
. . 3
= V,= (Vll — V] cos 8 — Vsin 9)% (4.95)
. 3
= V, = %(Vl"r sinf cos § + V/sin § — Vy'rsin 0 cos § — V) cos 9).
Comparing the final lines of (4.94) and (4.95), we obtain
Vl”r sin § cos 8 + 3V1’ sin § = Vé”r sin § cos 8 + 3V2’ cos f
3V/ 3V,
= ‘/1// _I_ 1 — ‘/2// _I_ : 2
r cos f 7 sin
3V/ 3V,
> V'+—==V+—2=25, (4.96)

where S is a separation constant. Solving for Vi, we get

!
vy + 3G s
= V=52+5
_ S22, 51
= ‘/1_8x+x27

where 51 1s a constant of integration. Solving for V5, we obtain

S S
sz—y2+y—§,

where S, is a constant of integration; therefore, the superseparable potential in
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Cartesian coordinates is

S S S
V= g(:,;2 +92) + x—; T y—j (4.97)

The potential may be written in terms of polar coordinates (4.64) as

S1 Ss
V= §r2 n cos’h  sin’h ‘ (4.98)

’I°2

4.5.2 Cartesian-Parabolic

The separable potential for Cartesian coordinates, (z,y), given by (4.28) written in

parabolic coordinates, (¢,7), is given by

V=W @(62 — 772)> + Va(én), (4.99)

where (4.68) has been used. The separability condition for parabolic coordinates

(4.70) can be written as

O*[(&* +n*)V]
0&0n

= 0. (4.100)

A superseparable potential, V., that separates in both Cartesian and parabolic
coordinates, must satisfy (4.100). Computing the mixed second partial derivative

using (4.99), we obtain

UEEEML = oy + v + 207 +972)

+(E + ) (VY + Vi + EnVy)

= (& +9°)8Vy — &V + &y,
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from which it follows that

3V —&nVi"+ V) =0
= V/+3vi=V=5
The solution for Vi(z) is
Wi = §w2 + Sz,

where 5] is an arbitrary constant of integration. The differential equation for V5 is
identical to that encountered while solving the Cartesian-polar case (4.96); hence,

the solution is given by,

where S, 1s a constant of integration; therefore, in Cartesian coordinates, the su-
perseparable potential has the form

S S Sy
V:§w2—|—§y2—|—5'1w—|—?.

In terms of parabolic coordinates, the potential may be written as
S e St S S ¢ S1 4 9

V=
&+

4.5.3 Cartesian-Elliptic/Hyperbolic

The separable potential for Cartesian coordinates, (z,y), given by (4.28) expressed
in elliptic/hyperbolic coordinates, («,3), is given by

V = Vi(acosh acos 3) + Vz(asinh asin ), (4.101)
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where (4.75) has been employed. The separability condition for elliptic/hyperbolic

coordinates (4.77) can be written as

9*[(cosh® a — cos® B)V]
dadp

= 0. (4.102)

A superseparable potential, V', that separates in both Cartesian and elliptic/hyperbolic
coordinates must satisfy (4.102). Computing the mixed second partial derivative

using (4.101), we obtain

0*[(cosh® a — cos® B)V]

960D = 2sin f cos B(asinh acos BV + a cosh asin SV5)

+2 sinh « cosh a(—a cosh asin V] +
asinh a cos BV5) + (cosh® a — cos? B)
(—asinh asin BV{ + a cosh a cos BV,
—a? sinh « cosh asin 3 cos BV

+a® sinh « cosh acsin 3 cos BV').
It follows from (4.102) and the above that

(cosh? @ — cos? B)(—a?sinh « cosh asin 3 cos B)V;" + (cosh® a — cos? 3)
(—3asinh asin B)V + (cosh® a — cos? 3)(a? sinh « cosh asin 3 cos 3) V!
+(cosh? a — cos? 3)(3a cosh a cos B) Vi = 0

" 3‘/]_/ _ " 3‘/2/
= W+ acosh acos 0 — Va' a sinh a sin 3
3V/ 3V,
= W+Z-=W+-+=5

We observe that the separable equations for V; and V, are identical to those en-
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countered while solving the Cartesian-polar case (4.96); therefore, the solution is
given by (4.97). Transforming this potential into elliptic/hyperbolic coordinates,

we obtain

a’cosh?’a  a’sinh® «

2
(S?a sinh? o cosh? o — 51 + 52 )
V _
cosh® & — cos? 8
Sa? , , S, S, (4.103)
?sm (B cos” 3+ 5 +
_I_

a’cos’ B a’sin’p

cosh® a — cos? 8

4.5.4 Polar-Parabolic

The separable potential for polar coordinates, (r,6), given by (4.64) written in

terms of parabolic coordinates, (£,7), is given by

1 4 2¢n
V:V<— 2 2) 71/( 6 ( )) 4.104
1 2(€ ‘|‘77) +(€2_|_772)2 zjarctan €2_n2 ( )
where (4.62) and (4.68) have been used. As previously mentioned, a superseparable
potential, V', that separates in parabolic coordinates must satisfy (4.100).
Computing the mixed second partial derivative using (4.104), we obtain

PUETIVE — oy + 260Vy + en(€ + 7)Y

_Q28(E )V + 2tn(E + )V, + (€ +0)*V,
(€ +n%)*
A& +)Va + 407 (€ + ")V
(62 +772)4 ’

from which it follows that

166nVy' + 24(&8% — n*)V, — 32¢nVs
(& +n?)°

(& + ")V + 4nVy =
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2yV§" + 6:13‘/; —4yV,
3

= 2yrV/ +4yV] =
,

3V,
tan #

= V2V =Vt s =2V, = S,

where S i1s a separation constant. To solve for V;, we integrate twice to obtain

S 5

22 T

Vi

Y

where 5] is a constant of integration. The differential equation for V5 has a partic-

ular solution,

V, = —g. (4.105)

To find a solution to the related homogeneous equation,
(7!

. 3V, .
g 2 9V, = 4.1
V420, =0, (4.106)

we observe that csc? 8 is a solution of (4.106). Since csc? # factors as [(1— cos #)(1+

cos )], we are able to show that

B S Ss
W= (1 + cosb) + (1 — cos®) (4.107)

satisfies (4.106) where S5 and S5 are constants of integration. It follows from (4.105)
and (4.107) that the sought solution is

S Ss S,
2 ?

Vo = -
2 1—|—cos<9+1—c05(9

hence, in polar coordinates, the superseparable potential has the form

v:ﬁ+1< S, 5 ) (4.108)

7 r2 1+cosfd 1—-cosb
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In terms of parabolic coordinates, the potential may be expressed as

26, 25,
(s+%2) + ()
1% N/

N &+

To allow the superseparable potentials to be viewed in the same coordinate system,
we seek the form of this potential in Cartesian coordinates. From (4.108), we may

immediately rewrite the potential as

v- L (S TR )
\/m ' 2 +y?+ux \/m —x/)
4.5.5 Polar-Elliptic/Hyperbolic

We know that the potential (4.97) separates in Cartesian, polar and elliptic/hyperbolic
coordinates; therefore, it is a superseparable potential with respect to polar and
elliptic/hyperbolic coordinates; however, there may be a more general potential
that is superseparable in these two systems. To investigate this possibility, we per-
form the standard calculation. The separable potential for polar coordinates, (r, ),

(4.64) expressed in elliptic/hyperbolic coordinates, (a, ), is given by

Va(arctan(tanh a tan 3))

a*(cosh® @ —sin*3)

V=V <a\/cosh2 a — sin? 5) + (4.109)
using (4.68) and (4.75).

A superseparable potential, V| that separates in both polar and elliptic /hyperbolic
coordinates must satisfy (4.102). Imposing this condition, we obtain, after a lengthy

calculation,
P4V — 13V; = V' + 3(cot § — tan §) Vs — 8V5. (4.110)

Instead of proceeding to solve this differential equation, we re-examine the Cartesian-

polar superseparable potential. Transforming the polar separable potential (4.64)
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into Cartesian coordinates, we obtain

Vs <arctan <g>>
V=V (Ve ) + — (4.111)
ity
By imposing the condition for separability in Cartesian coordinates on (4.111) and

transforming to polar coordinates, we find that
V" —r*V] = VJ + 3(cot § — tan §)V, — 8V%.

Since this equation matches the superseparability condition for polar and el-
liptic/hyperbolic coordinates (4.110), their solutions must be the same; thus, the
sought potential is of the form (4.97). This potential can be written in polar coor-

dinates as (4.98) or in elliptic/hyperbolic coordinates as (4.103).

4.5.6 Parabolic-Parabolic

We observe that there is a second set of distinct parabolic coordinates, (a,b), in
E, related to the original, (£,7), by a rotation of 7/2 in the plane; therefore, the

transformation law from (a,b) to Cartesian coordinates, (z,y), is

r = —ab,

(a2 - b2)7

(4.112)

DO —

y:

where —oco < a < oo, 0 < b < o©. The coordinates lines in this coordinate
system are two families of orthogonally intersecting parabolae centred on the origin,
opening in opposite directions on the y-axis. The metric associated with these
coordinates is (4.67); hence, they are separable. The associated separable potential

has the form derived above (4.70), that is,

Vi(a) + V2(b).
a?+b:
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hence, the separability condition is

0’[(a” + 0)V]

Sion . =0 (4.113)

We seek a superseparable potential for these two parabolic coordinate systems.
The separable potential for the standard parabolic coordinates, (£,n), given by

(4.70) expressed in the second parabolic coordinates (a,b) is given by

(4.114)

using (4.68) and (4.112).

Computing the mixed second partial derivative using (4.114), we obtain

A () )

Setting this equal to zero, as prescribed by (4.113), we obtain
V' =V'=S5, (4.115)
where S 1s a separation constant. Integrating, we get

Vi = %u2 + Syu+ T,
(4.116)

@)

Vo = 7U2+52U+T2,

where 51, S5, T1, and T, are constants of integration; therefore, the superseparable

potential is

B Slu—l— SQ’U + S3

uf‘:—l—v2

%

Y

where S5 = 71 4+ T5. In terms of the second parabolic coordinates, the potential
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may be expressed as

(51-|-52>a_|_ (S2_Sl>b
L U V2
N a? + b? '

Transforming to Cartesian coordinates, we obtain

v SivVVEE+yit e+ Sy Vel +yt—az+ S5
N 2/z? + y? '

4.5.7 Parabolic-Elliptic/Hyperbolic

There may exist potentials that can be separated in both parabolic and ellip-
tic/hyperbolic coordinate systems. We have not, at the time of the writing of
this thesis, found a solution to the related differential equations. This is consistent

with the paper by Winternitz, et al [19].

4.5.8 Summary of Results

Despite the fact that there are six pairs of coordinate systems in Fs in which we
can construct superseparable potentials, there are only four distinct superseparable
potentials. They are listed in Table 4.5. To facilitate their comparison, we write
them in Cartesian coordinates.

The utility of superseparable potentials results from our ability to find trajecto-
ries as a function of the parameters in the potential, see, for example, [19]. There
are several well known physical examples of superseparable systems.

The two dimensional harmonic oscillator discussed in Subsection 2.4.1, with
w = w; = ws, separates in both Cartesian and polar coordinates. In the physical
position-momenta coordinates the system separates. In addition, converting the
Hamiltonian of (2.34) to polar coordinates, we observe that V is independent of 4;

hence, it is ignorable, and thus separable. As shown in Table 4.5, the potential is
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Superseparable Potential ‘ Coordinates ‘
Cartesian,
%($2 + yz) + % + % Polar,
Elliptic/Hyperbolic
S S Sa

Cartesian, Parabolic

522+ gy’ + Siz + .

S

1
1 (g
\/:B2—I-y2( 1+\/w2—|-y2—|-w

SivyvVER+yr o4 Sey/ Vet +y? -2+ S5 : .
Parabolic, Parabolic

2\/:132 +y2

+ 9 ) Polar, Parabolic
Vit +

yr—u

Table 4.5: Superseparable potentials in Euclidean 2-space.

in the form of a Cartesian-polar-elliptic/hyperbolic superseparable potential with
S =mw?/2, 51 = S5 = 0; hence, it also separates in elliptic/hyperbolic coordinates.
Another important example is the central force problem. The Hamiltonian func-

tion in polar coordinates is
1 P2 m
e )

9m \Ir + 72 r

The associated trajectories are conics: ellipses, parabolae, and hyperbolac. The

potential separates in both polar and parabolic coordinates. It corresponds to

51:—m752:S3:0.



Chapter 5
Conclusions

The intrinsic characterisation of orthogonal separability of the Hamilton-Jacobi
equation developed by Benenti [4] simplifies earlier geometrical theory initiated
by Eisenhart [14] and developed recently by Kalnins and Miller [22]. Whereas
previous descriptions required a family of n independent Killing tensors, Benenti
has developed a theory based on a single Killing tensor.

In general, solving the Killing tensor equation to determine Killing tensors on a
space of non-constant curvature is non-trivial; furthermore, to apply the theory of
Benenti, we require that such a Killing tensor have orthogonally integrable eigen-
vectors. By adapting a moving frame to the eigenvectors of the Killing tensor, we
simultaneously diagonalise the Killing tensor and metric, facilitating the determina-
tion of orthogonal separable coordinates on the corresponding pseudoRiemannian
manifold. We also circumvent the problem of finding a general Killing tensor on
the space.

The moving frame approach, introduced by Darboux and developed by Cartan,
permits calculation independent of local coordinates. Moving frames have been
used in other areas of mathematics and physics; however, this is the first application
of the method of moving frames in the theory of finite dimensional Hamiltonian
systems.

From the intrinsic theory of Benenti, we have developed a coordinate-independent
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method that generates separable coordinates for a Hamiltonian system on the cor-
responding pseudoRiemannian manifold. Our analysis of two dimensional Rieman-
nian manifolds of arbitrary curvature determined an intrinsic characterisation of
separability of the Hamiltonian-Jacobi equation. Without a priori assuming sepa-
rability, we derived the general forms of the separable metrics, and their associated
Killing tensors, separable potentials and second first integrals. As an illustration,
we used our method based on the moving frame approach to investigate Euclidean

2-space, and the surfaces of constant curvature.

In addition, by applying our method to the separable potentials in Euclidean
2-space, we determined all known superseparable potentials. These calculations
are arguably simpler than those of the Lie group method used in [19]. The work
initiated in this thesis can be extended to investigate superseparable potentials be-
tween separable coordinate systems of Fs with different axis orientations or origin
positions. Additional superseparable potentials can, in principal, be determined by
this generalisation. This extension does not yield new results for Cartesian coordi-
nates because both coordinates are ignorable, as the form of the metric indicates.

Similarly, for polar coordinates, the orientation is irrelevant since 4 is ignorable.

The value of this method derives from its applicability to manifolds of arbitrary
curvature and its intrinsic formulation that avoids the complexities related to the
use of local coordinates.

Starting with the two dimensional Lorentzian manifolds of arbitrary curvature,
we will extend the results of this thesis to Riemannian and Lorentzian manifolds of
dimension three and four. The study of four dimensional Lorentzian manifolds is

important to the analysis of Hamiltonian systems in General Relativity.



Appendix A

Orthogonal Integrability

An important concept in this thesis is that of orthogonally integrable vector fields.
We develop the basic terminology in this appendix as in [7]. We consider a manifold,
M, of dimension m = n + k. To each p € M, we assign a n dimensional subspace,
A,, of the tangent space, M,,. If there exists a neighbourhood of each p € M, say
U, for which there are n linearly independent C'* vector fields, X;, 1 = 1,... . n,
that form a basis of A, for all ¢ € U, then A is a O™ distribution of dimension n
on M. The set {X;} is called a local basis of A.

A distribution is involutive if and only if there exists a local basis, {X;}, in a

neighbourhood of each point p € M such that
(X X;) =) ChXp, 1< j <,
k=1

where the Cikj’s are some functions.

If Ais a C* distribution on M and N is a connected C* submanifold of M
such that at each ¢ € N, N, C A,, that is, the tangent space of N coincides with
the distribution, we say N is an integral (sub)manifold of A.

We define n vectors E; = ¢~1(9/0q), where ¢, 4 = 1,... ,m, are local coordi-
nates on M and the chart (U, ¢) defines a cubic coordinate neighbourhood for each
p € M, that is, for each p € M, there exists a chart (U, ¢) such that {¢(q): ¢ € U}
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defines a cube in R™. We say that A is completely integrable if for each p € M,
there exists a neighbourhood U such that { £;} is a local basis for A on U. This im-
plies that there is an » dimensional integral manifold N through each point g € U
such that N, = A,,.

The concepts of complete integrability and involutivity are related by the Frobe-

nius theorem:

Theorem A.1 (Frobenius) A distribution, A, on a manifold, M, is completely

integrable if and only if it is involutive.

Naturally, an orthogonal distribution, AL, is the distribution orthogonal to A.
A vector field is orthogonally integrable, or normal, if the corresponding orthogonal

distribution is completely integrable.



Appendix B

Schouten Bracket

Let U?(M) represent the space of contravariant g-tensors on a manifold, M. We
observe that U°(M) is the algebra of C'™ real valued functions on M.

For arbitrary P € UP(M), Q) € U%(M) such that p+q > 1, the Schouten bracket
is a contravariant (p + g — 1)-tensor defined in [38] by

p
[P, Q]?~~~ip+q—1 — <Zp(i1...i(k_1)Iulik...i(p_l)>6MQip...i(p+q_l))_|_

k=1

P

<Z(_1)kP[i1...i(k_1) |M|ik...i(p_1)>6MQip...i(p+q_l)]_
k=1

(B.1)

q
<ZQ(i1...i(,_1) |M|i,...i(q_1)>6MQiq...i(p+q_l))_
=1

q

<Z(_ 1)(pq+p+q+l) Q[il Aoy el dgot) > @MQiq~~~i(p+q—1)] ‘

=1

We observe that for P, () symmetric the second and last terms of (B.1) vanish.
Similarly, if P, () are skew-symmetric, then the first and third terms of (B.1) vanish.
For a contravariant vector X € U'(M), the Schouten bracket reduces to the Lie
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derivative in the direction of the vector field X,
(X, Qls = Lx(Q). (B.2)
The Schouten bracket also satisfies the properties [11]:
[P, Qs = (-1)"[Q, Pls, (B.3)
and, for R € U" (M),
(—1)"[[Q, Rls, Pls + (-1)"[[R. Pls, Q]s + (—1)™[[P, Q]s, R]s = 0, (B.4)
and
[P,Q A R]ls =[P,Q]s A R+ (—1)P*"Q A [P, R]s. (B.5)

The properties (B.3), (B.4), and (B.5), respectively correspond to the skew-symmetry
(2.12), Jacobi (2.11), and Leibniz (2.13) properties of the Poisson bracket.



Appendix C

Moving Frame Formalism

We consider an n dimensional pseudoRiemannian manifold, M. In general, a frame

in which the directional derivatives of the metric tensor components vanish,

Gab,e = 0, (Cl)

is called a (rigid) moving frame. A moving frame is an invaluable tool for mechanics.
It simplifies the mathematical formulation of the intrinsic theory of orthogonal
separation of the Hamilton-Jacobi equation described in Chapter 3, and the solution
method developed and applied in Chapter 4.

The frame vector fields spanning the tangent space, M, are defined, with respect

to the natural basis, {a/aql, o ,a/aq"}, by

0
Ox?’

E, = h,}

where h,* is an n x n matrix of C* functions. The dual w-frame 1-forms are defined,

with respect to the dual basis, {d¢',... ,dq"} by
E* = h%da’,
where h%; is the n X n inverse matrix of h,’.
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The components of the object of anholonomy, C¢,;, are defined in any manifold

by
CcabEc = [Eav Eb]?

where [ X, Y] is the Lie bracket of two vector fields. The bracket is antisymmetric in

its arguments. It follows that C.4 1s antisymmetric in its second and third indices,
Ccab - _cha-

The connection coeflicients are given, in general, by

Fbca = %(Ebgac - Eagcb + Ecgba) - %(cha - Cbac + Cacb)

— %(gac,ihbi - gcb,ihai + gba,ihci) - %(cha - Cbac + Cacb)7

In a rigid moving frame, they take the form
1
Fbca = _§(cha - Cbac + Cacb)7 (02)

in view of (C.1). Using the antisymmetry of Ce.qp in (C.2), we find that the connec-

tion coeflicients are skew-symmetric in the second and third indices,

Poca = —Tpae- (C.3)
Using the definition of the connection 1-form,

w =Ty EC,
we conclude, from (C.3), that it is also skew-symmetric in its indices,

Wahp = —Wha,
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The Levi-Civita connection is torsion-free by definition, that is,
Tabe = Thea — Leba — Cape = 0;
therefore, the object of anholonomy has the simple form
Capve = Toca — T'eta = 2L pelq-
This simplifies the curvature tensor components,
Ryeq = 2B qp® + 20 g T'ge” — CCcal’er?,
which we may write as

R%eq = 2(Tap® she” + Tiap’Tge® — Cieq*Te”)-
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