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Abstract

The method of separation of variables facilitates the integration of the Hamilton-

Jacobi equation by reducing its solution to a series of quadratures in the separable

coordinates. The case in which the metric tensor is diagonal in the separable

coordinates, that is, orthogonal separability, is fundamental. Recent theory by Be-

nenti has established a concise geometric (coordinate-independent) characterisation

of orthogonal separability of the Hamilton-Jacobi equation on a pseudoRieman-

nian manifold. It generalises an approach initiated by Eisenhart and developed

by Kalnins and Miller. Benenti has shown that the orthogonal separability of a

system via a point transformation is equivalent to the existence of a Killing tensor

with real simple eigenvalues and orthogonally integrable eigenvectors. Applying

a moving frame formalism, we develop a method that produces the orthogonal

separable coordinates for low dimensional Hamiltonian systems. The method is

applied to a two dimensional Riemannian manifold of arbitrary curvature. As an

illustration, we investigate Euclidean 2-space, and the two dimensional surfaces of

constant curvature, recovering known results. Using our formalism, we also derive

the known superseparable potentials for Euclidean 2-space. Some of the original

results presented in this thesis were announced in [8, 9, 10].
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Notation and Conventions

Summation notation (index appearing once up and once down):

a
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bi :=
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i=1

a
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bi
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(
1; if even

�1; if odd

Skew-symmetrisation of indices, [i1 : : : im]:

T[i1:::im] :=
1

m!

X
�2Sm

sgn (�)Ti�(1):::i�(m)

Exclusion of jth index from (skew-)symmetrisation: jijj
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Partial di�erentiation with respect to position coordinate, qi: ;i or @i

Partial di�erentiation with respect to momentum coordinate, pi: @
i

(Partial) di�erentiation with respect to time, t: _f :=
df

dt
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Metric tensor: g(q)

Metric tensor determinant: g := det(gij)n�n

Metric: ds2 = gijdq
i
dq

j

Frame vector �elds: Ea = ha
i @

@q
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!-frame 1-forms: Ea = h
a
idq

i

Bracket of two vector �elds: [X;Y ] := XY � Y X

Bracket of 1-form, f = fiX
i and vector �eld, Y = Y

i
Xi:



f; Y

�
:= Y

i
fi

Components of object of anholonomy: Ck
ijEk := [Ei; Ej]

Components of connection coe�cients:

�bca :=
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(Ebgac � Eagcb + Ecgba) � 1
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(Ccba � Cbac + Cacb)

Christo�el symbols of the �rst kind: [ij; k] := 1
2(@igjk + @jgik � @kgij)

Christo�el symbols of the second kind:
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jk
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il[jk; l]
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k

Covariant derivative:
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a1:::ar

b1:::dr+s�cbs
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Lie derivative: LX (Y )(x0) =
h
d

dt
(F �

�tY )
i
t=0

where Ft is the one parameter group of di�eomorphisms generated by X.

Exterior derivative:

d(!i1 :::irdx
1 ^ : : : ^ dxr) := ![i2:::ir+1;i1]dx

1 ^ : : : ^ dxr+1

Torsion tensor: T i
jk := �jk

i � �kj
i � C

i
jk

Riemann curvature tensor:

R
i
jkl := 2E[k�l]j

i + 2�[ljjj
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kl�mj
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Chapter 1

Introduction

A problem in mechanics can be mathematically represented in many di�erent forms,

each having a variety of solution methods. We are interested in the Hamilton-Jacobi

formalism. In this approach, a �rst order partial di�erential equation, the Hamilton-

Jacobi equation, is the key mathematical object. A powerful solution method of

the Hamilton-Jacobi formalism is separation of variables.

In this chapter, we introduce the Hamilton-Jacobi formalism and the method of

separation of variables. We briey discuss the major contributions to separation

of variables by Liouville, St�ackel, Levi-Civita, and Eisenhart to extend the basic

theory and provide a historical context.

1.1 Hamilton-Jacobi Formalism

In mechanics, the number of degrees of freedom for a physical system, say n, is the

minimum number of independent quantities that uniquely determines its position

at all times. It is often the case that a problem is simpli�ed if we utilise quantities

di�erent from the standard Cartesian coordinates. In fact, any set of n generalised

position coordinates, q = (q1; : : : ; qn), that completely describes the motion of the

system is adequate. Naturally, the derivatives _q are called the generalised velocities.

LetM be an n dimensional pseudoRiemannian manifold with local coordinates (qi).

1



x 1.1. Hamilton-Jacobi Formalism 2

The tangent bundle, TM , has canonical coordinates (qi; _qi), where i = 1; : : : ; n.

The basis of the Hamilton-Jacobi formalism in mechanics is the Hamilton-Jacobi

(HJ) equation,

H(p1; : : : ; pn; q
1
; : : : ; q

n) = E; (1.1)

in which H is the time-independent Hamiltonian (function). The variables, (pi),

are the generalised momenta de�ned in terms of the time-independent Lagrangian,

L = T � V (T and V represent the kinetic and potential energies of the system,

respectively), by

pi :=
@L

@ _qi
: (1.2)

We study only time-independent Hamiltonians in this thesis. A complete integral

of the HJ equation is a solution of (1:1), W (q;�), depending on the n separation

constants, � = f�1; : : : ; �ng, that satis�es

det

�
@
2
W

@q
i
@�j

�
6= 0: (1.3)

The momenta satisfy the relationship

pi =
@W

@qi
; (1.4)

hence, the HJ equation (1:1) may be written as

H(q1; : : : ; qn;W;1; : : : ;W;n) = E: (1.5)

We assume that the Hamiltonian is quadratic in the momenta, (pi), so that the

Hamiltonian of (1:1) and HJ equation (1:5) have the forms

H =
1

2
g
ij(q)pipj + V (q); (1.6)
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and

H =
1

2
g
ij(q)W;iW;j + V (q) = E; (1.7)

respectively, where gij are the contravariant components of the symmetric metric

tensor, g, and V is a smooth function.
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1.2 Separation of Variables

A Hamiltonian is said to be (additively) separable provided the HJ equation (1:7)

has a complete integral of the form

W (q;�) = �Et+W1(q
1
;�) + : : :+Wn(q

n
;�): (1.8)

The coordinates (qi) are said to be separable with respect to the Hamiltonian and

the potential is compatible with the separable coordinates, or simply compatible or

separable. If, furthermore, the metric is diagonal, that is,

g
ij = 0; i 6= j; (1.9)

then the Hamiltonian system, for which

H =
1

2
g
ii(q)p2i + V (q); (1.10)

is said to be orthogonally separable.

In physics, there is also the notion of product, or multiplicative, separability for

the Helmholtz equation with a potential function U(q),

�n + U =
1p
g

@

@qi

�p
gg

ij @ 

@qj

�
+ U = � ;

in which the solution has the form  =
Q

i  i(q
i;�). Product separation of the

Helmholtz equation is not investigated in this thesis; however, there is a close

relation between it and the additive separation of the HJ equation.

A comprehensive theory of separation of variables must be able to intrinsically

characterise (that is, in a coordinate-free manner) separability, and determine the

distinct separable coordinate systems. In this thesis, we discuss recent results, by

Benenti and others, in the geometric characterisation of separability. We apply a

moving frame method for the determination of separable coordinates that extends
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the work initiated by Eisenhart [14], and developed by others.

First, it is natural to investigate the major results in the �eld of variable sepa-

ration.
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1.3 Historical Outline

The method of separation of variables has been studied extensively since the middle

of the nineteenth century. Other methods have been developed in the second half

of this century, some of which we discuss in Chapter 2.

1.3.1 Liouville

Liouville [27] was the �rst person to study the separability of the Hamiltonian with

distinct kinetic and potential energy components,

H = T + V = E: (1.11)

Given 3n functions ai, ci, and Vi that are dependent on only the corresponding

coordinate, qi, we de�ne Liouville systems (investigated by Liouville in 1849 [28])

as those with a Hamiltonian (1:11) such that

T = c

2

nX
i=1

( _qi)2

ai

=
1

2c

nX
i=1

aip
2
i ;

V = 1
c

nX
i=1

Vi;

where

c =

nX
i=1

ci; (1.12)

thus, the HJ equation (1:11) for a Liouville system is

H =
1

2c

nX
i=1

(aip
2
i + 2Vi) = E: (1.13)
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For a Liouville system, we construct n � 1 �rst integrals,

Ii =
1

2
aip

2
i + Vi � ciH; (1.14)

that is, quantities that satisfy fIi;Hg = 0; i = 1; : : : ; n. We derive the fact that

only (n� 1) of the �rst integrals are independent by observing that

nX
i=1

Ii

= cH �
nX
i=1

(ci)H

= 0;

using (1:12) and (1:13). If, in addition, the �rst integrals satisfy fIi; Ijg = 0; i; j =

1; : : : ; n � 1; i 6= j, then fI1; : : : ; In�1;Hg is called an involutive set, or is said to

be in involution. The n �rst integrals (1:14) including the Hamiltonian, H, (1:13)

form an involutive set. Liouville [29] proved a theorem connecting the existence of

�rst integrals with separability.

Theorem 1.1 (Liouville) A Hamiltonian system with n degrees of freedom that

possesses n independent �rst integrals in involution is integrable by quadratures.

By the Liouville Theorem, the following theorem is established

Theorem 1.2 The complete integral for any Liouville system (1:13) can be deter-

mined (in theory) by the method of separation of variables.

Using the coordinate transformation ~qi =
R p

ai(qi)dq
i, i = 1; : : : ; n, we elimi-

nate the aj dependence from the kinetic energy; therefore, using (1:4), we transform
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the HJ equation (1:13) into the form

H =
1

2c

nX
i=1

[(W;i)
2 + 2Vi] = E:

Comparing this form of the HJ equation with the general form (1:7), we conclude

that the metric is diagonal (1:9) with non-zero contravariant components gii = 1=c,

for i = 1; : : : ; n. It follows from the fact that the matrices corresponding to the

contravariant and covariant forms of the metric must be inverses that the non-zero

covariant components are

gii =

nX
j=1

cj; i = 1; : : : ; n:

The general form of the line element, also referred to as the metric, is

ds
2 = gijdq

i
dq

j
: (1.15)

For Liouville systems, the metric is said to be in Liouville form,

ds
2 = [c1(q

1) + : : :+ cn(q
n)][(dq1)2 + : : :+ (dqn)2]: (1.16)

Morera [33] showed that on a two dimensional Riemannian space of arbitrary cur-

vature, the converse to Theorem 1.2 holds locally.

Theorem 1.3 (Morera) On a two dimensional Riemannian manifold, any sepa-

rable metric can be written locally in Liouville form (1:16).
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1.3.2 St�ackel

St�ackel's �rst major contribution [40] was to �nd all the separable metrics for an

arbitrary two dimensional Riemannian manifold, M2:

I ds
2 = [c1(q

1) + c2(q
2)][(dq1)2 + (dq2)2];

II ds
2 = g11(q

1)(dq1)2 + 2g12(q
1)dq1dq2 + g22(q

1)(dq2)2;

III ds
2 = (dq1)2 � 2 cos[c1(q

1) + c2(q
2)]dq1dq2 + (dq2)2:

(1.17)

We observe that the type I metrics are in Liouville form. By Theorem 1.3, we know

that the other two metrics must be equivalent to some metric in Liouville form. In

case II, we de�ne new coordinates (~q1; ~q2) by

~q1 =

Z p
g

g22
dq

1
;

~q2 = q
2 +

Z
g12

g22

dq
1
:

In these coordinates, we write type II metrics in the Liouville form

ds
2 = g22(q

1(~q1))[(d~q1)2 + (d~q2)2]:

Similarly, by using the transformation to Cartesian coordinates,

x =

Z
cos(c1)dq

1 �
Z

cos(c2)dq
2
;

y =

Z
sin(c1)dq

1 +

Z
sin(c2)dq

2
;
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we transform metrics of type III into the Liouville form

ds
2 = dx

2 + dy
2
:

For dimensions greater than two, there are separable systems that are not equiv-

alent to a Liouville system. One such family of systems is that of the St�ackel

systems, see [41, 42, 43]. They have Hamiltonians of the form

H =

nX
i=1

ai(q)
h1
2
p
2
i + Vi(q

i)
i
: (1.18)

St�ackel proved the following theorem connecting the integrability of a St�ackel sys-

tem with the existence of a matrix, S, called a St�ackel matrix for the system.

Theorem 1.4 (St�ackel) A dynamical system with a Hamiltonian of the form

(1:18) is separable if and only if there exists an n � n matrix S, with elements

sij = sij(q
j), such that its determinant does not vanish, and

nX
j=1

sij(q
j)aj(q) = �i1: (1.19)

If we denote the inverse matrix of S by A = (aij), then the relations

ai = ai1; i = 1; : : : ; n

follow immediately from (1:19). The n independent integrals in involution for this

system are constructed as

Ij =

nX
i=1

aij(q)
h1
2
p
2
i + Vi(q

i)
i
;

where I1 = H.
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1.3.3 Levi-Civita

The separation of the general HJ equation (1:1) was investigated by Levi-Civita at

the beginning of the twentieth century, see [26]. He produced a separability test for

a speci�c coordinate system. This is the famous Levi-Civita criterion.

Theorem 1.5 (Levi-Civita) The HJ equation (1:1) separates in a speci�c set of

coordinates, (qi), if and only if the Hamiltonian satis�es the n(n� 1)=2 equations

@H

@pi

@H

@pj

@
2
H

@q
i
@q

j � @H

@pi

@H

@q
j
@
2
H

@q
i
@pj

� @H

@q
i
@H

@pj

@
2
H

@pi@q
j +

@H

@q
i
@H

@q
j
@
2
H

@pi@pj
= 0;

1 � i < j � n; i 6= j;

(1.20)

where there is no summation over the indices.

Theorem 1.5 provides a straightforward test for separability; however, since it

is only a local characterisation, it does not, in general, aid in the determination of

separable coordinates.

The separability of a Hamiltonian with distinct kinetic and potential energy

components (1:11) where V is non-zero requires that the geodesic HJ equation,

G :=
1

2
g
ij
pipj = E; (1.21)

for which the potential energy is zero, separates. Using the notation (1:21), the

Hamiltonian (1:6) is represented as H = G+ V .

To analyse a Riemannian manifold, Levi-Civita introduced a classi�cation system

for coordinates. If @iH is divisible by @iH, then the coordinate qi is said to be �rst

class. Otherwise, qi is said to be a second class coordinate. We observe that, for

a geodesic Hamiltonian (1:21), @iH is quadratic in momenta and @iH is linear in

momenta.

Using this taxonomy, Levi-Civita recovered St�ackel's separable metrics (1:17) for

two dimensional spaces. He also showed that if all separable coordinates are �rst
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class, then the space is necessarily at, that is, Euclidean.

1.3.4 Eisenhart

Eisenhart was the �rst mathematician to provide a geometrical characterisation of

separation of variables, see [14].

Theorem 1.6 (Eisenhart) The geodesic Hamiltonian (1:21) is orthogonally sep-

arable in some coordinate system, (qi), if and only if the following conditions are

satis�ed:

1. There are (n� 1) linearly independent quadratic �rst integrals,

Ia = Aij
a pipj ;

that form an involutive set with the Hamiltonian, H.

2. The eigenvalues of Aij
a , �

i
a are all distinct, said to be simple, and satisfy the

determinant equation

det[��i � �
�
j ] 6= 0;

for i �xed and � = 2; : : : ; n, j = 1; : : : ; n, j 6= i.

3. The eigenvectors, fEag, corresponding to the eigenvalues f�iag are normal, a

concept discussed in Appendix A.

By taking the hypersurfaces orthogonal to each of the vector �elds, Ea, as the

coordinate hypersurfaces, we de�ne a separable coordinate system. In these coor-

dinates, the metric component matrix, gij , and �rst integral component matrices,

Aij, can be simultaneously diagonalised. This follows from the fact that the vector

�elds are normal.

In Chapter 3, we discuss recent work by Benenti that simpli�es and generalises

Theorem 1.6. The groundwork of Eisenhart motivates our application of the method
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of moving frames to the Benenti intrinsic characterisation theorem of orthogonal

separability.



Chapter 2

Hamilton-Jacobi Theory

In this chapter, we present the mathematical basis required for the study of me-

chanics. In agreement with the chronology of their development, we introduce �rst

Lagrange's and then Hamilton's equations. Next we discuss the key tools for the

present discussion: �rst integrals, the Poisson bracket and symplectic structures,

and Killing vectors and tensors. This thesis focuses on the Hamilton-Jacobi for-

malism of mechanics which we proceed to develop including the important results

for the solution of the Hamilton-Jacobi equation, the Jacobi and Arnol'd-Liouville

theorems. One of the primary solution methods for the Hamilton-Jacobi equa-

tion is the method of separation of variables. It is described and applied to the

two dimensional harmonic oscillator. Finally, two other algorithms, the Lax and

bi-Hamiltonian methods, are introduced, then applied to the non-periodic, �nite

dimensional Toda lattice.

2.1 Lagrangian and Hamiltonian Formalisms

Hamilton-Jacobi theory is an extension of earlier formalisms of mechanics. We de-

scribe the Lagrangian formalism based on the Lagrangian and Lagrange's equations.

Then we discuss the development of the Hamiltonian and Hamilton's functions, in

the Hamiltonian formalism, from the Lagrangian. Since transformations to separa-

14
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ble coordinate systems are key to the study of separation of variables, we discuss

the transformations, point and canonical, permitted in mechanics.

2.1.1 Lagrange's Equations

The formulation of Lagrange's equations begins with the concept of a functional,

any function of some class of curves. Following [24], we consider a system that

occupies positions q(t0) and q(t1) at times t0 and t1, respectively. The fundamental

functional in the Lagrangian formalism is the action,

S =

Z t1

t0

L(q; _q)dt: (2.1)

The function L is called the Lagrangian of the system. In this thesis, we investigate

only time-independent Lagrangians. An important subset of these systems are

closed systems, for which the system's particles experience no external forces.

With respect to the Lagrangian, the generalised momenta of the system are

de�ned by (1:2) and the generalised forces are de�ned by

_pi = @iL: (2.2)

Hamilton's principal of least action states that the motion of a mechanical system

coincides with an extremal of the action and, in the case of a su�ciently short

segment of the path, a minimum thereof. It is interesting to note that, because

L is a function of only position, and velocity, Hamilton's principal implies that

Newton's principal of determinacy holds: The motion of a system for all times is

completely determined by specifying both the position and velocity vectors at some

time, t0. This is certainly not an intuitive result; however, it follows trivially, from

our mathematical formulation of mechanics, that there exists a unique solution to a

set of second order ordinary di�erential equations given the aforementioned initial

conditions.

The requirement that S be minimised implies that the �rst variation of the
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integral (2:1) vanishes,

�S = �

Z t1

t0

L(q; _q)dt = 0

)
Z t1

t0

�
@L

@q
�q +

@L

@ _q
� _q
�
dt = 0:

Integrating the second term by parts, we obtain

h
@L

@ _q
�q

i����
t1

t0

+

Z t1

t0

�
@L

@q
� d

dt

@L

@ _q

�
�qdt = 0: (2.3)

At the endpoints the variation of q is zero, that is, �q(t0) = �q(t1) = 0; therefore,

the integrand of the second term must vanish; thus, for a system with n degrees of

freedom, (2:3) implies that the n second order di�erential equations

d

dt

�
@L

@ _qi

�
� @L

@qi
= 0 (2.4)

are satis�ed. The equations of motion (2:4) for the system are called Lagrange's

equations. Given 2n constants, say the positions and velocities at t0, we may, in

theory, determine the trajectories.

2.1.2 Hamilton's Equations

The equations of motion need not be formulated in terms of positions and velocities.

Another natural perspective depends on the positions and momenta. We consider

an n dimensional manifold, M , in conjunction with its cotangent bundle, T �M .

We represent the local coordinates of M by (qi), and the corresponding canonical

coordinates of T �M by (qi; pi), where i = 1; : : : ; n.

The change of independent variables from ( _qi) to (pi) may be e�ected by a

Legendre transformation. The Hamilton's function, or Hamiltonian, is the Legendre
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transform of the Lagrangian with respect to the variable _q [24],

H(p;q) = p _q� L(q; _q): (2.5)

The Legendre transform is involutive. That is, the square of the transformation is

the identity; thus, by taking the transform of the Hamiltonian, we return to the

Lagrangian of the system.

To derive Hamilton's equations, we consider, as in [24], the total di�erential of

the Hamiltonian (2:5),

dH = pid _q
i + _qidpi � @L

@qi
dq

i � @L

@ _qi
d _qi:

Using the de�nitions of the generalised momenta and forces, (1:2) and (2:2), we

obtain

dH = � _pidq
i + _qidpi:

This leads directly to Hamilton's equations for the system,

_qi = @
i
H; _pi = �@iH: (2.6)

We observe that this has transformed the problem from n second order di�erential

equations in n coordinate functions, q, to a system of 2n �rst order di�erential

equations in the 2nmomenta and coordinate functions, p and q, respectively. These

equations are also called the canonical equations because they treat the variables

p and q symmetrically.

For a mechanical system, we geometrically represent the state of the system

using its phase space. Consistent with the Hamiltonian formalism, it is a 2n dimen-

sional space in which each of the n generalised coordinates, qi, and n generalised

momenta, pi, plays the role of an independent variable. Each point in the phase

space corresponds to a unique system state. As the system evolves in time, a curve
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in the phase space, called the phase path or phase ow, is constructed.

2.1.3 Point and Canonical Transformations

As mentioned in Section 1.1, problems may be described using any coordinate

system that uniquely determines the state of the system for all times t. The for-

mulation of Lagrange's equations (2:4) is not dependent on any preferred coordi-

nate system; hence, they are invariant under a transformation of the coordinates

(q1; : : : ; qn)! (~q1; : : : ; ~qn) using a point transformation, ~qi = ~qi(q). It follows that

Hamilton's equations are also invariant.

In the Hamiltonian formalism, because the momenta are treated as variables

independent of the coordinates, we may consider transformations of the form

~qi = ~qi(p;q; t); ~pi = ~pi(p;q; t): (2.7)

Not all coordinate transformations of this form are desired. We consider only the

transformations (2:7) under which Hamilton's equations retain their canonical form,

_~q
i
=
@H

@~pi
; _~pi = �

@H

@~qi
:

Such transformations are said to be canonical. It has been shown [24] that su�cient

conditions for a transformation to be canonical are

f~qi; ~qkg = 0; f~pi; ~pkg = 0; f~pi; ~qkg = �
k
i : (2.8)

The greater diversity in allowable transformations for Hamilton's equations is an ad-

vantage because problems may be more readily transformed to a position-momenta

coordinate system in which they can be solved; nonetheless, in this thesis, we utilise

only point transformations,

~qi = ~qi(q); ~pi =
@q

k

@~qi
pk: (2.9)
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2.2 Mathematical Machinery

The study of Hamiltonian mechanics requires special mathematical tools. As men-

tioned in the Liouville theorem, Theorem 1.1, �rst integrals are important quan-

tities for separation. The Poisson bracket is key to our mathematical de�nition

of �rst integrals, and other concepts, such as canonical transformations. The

bracket connects naturally with symplectic structures, a fundamental part of the bi-

Hamiltonian method. We then introduce Killing tensors and show their signi�cance

to mechanics.

2.2.1 First Integrals

An important concept in the solution of Hamilton's (and Lagrange's) equations is

that of the �rst integral of the motion. A �rst integral is a function of the variables

�xed by initial conditions, that is, that remains constant along any integral curve.

If the Hamiltonian is independent of a coordinate, say q
i, (and thus also the

Lagrangian) then the coordinate is called ignorable, or cyclic. It is obvious, from

(2:6), that if some qi, say q
1, is ignorable, then the corresponding momentum is

constant, p1 = c1; thus, the momentum is a �rst integral. Also the coordinate

function may be written as q1 = c1t+ d1 for constants c1 and d1; furthermore, the

order of the problem is reduced to 2(n�1) because the Hamiltonian may be written

[2] as

H(c1; p2; : : : ; pn; d1; q
2
; : : : ; q

n):

The most important �rst integral for a closed system is the energy. We derive

this result using the Hamiltonian formalism. By design, it is trivial. Following [24]

we begin with the total time derivative of the Hamiltonian,

dH

dt
= @iH _qi + @

i
H _pi:
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Replacing the partial derivatives of H with respect to coordinates and momenta

using Hamilton's equations (2:6), the right hand side vanishes,

dH

dt
= 0;

therefore, if the Hamiltonian is time-independent, then H is constant. The value of

this constant is simply the total energy of the system, E; thus, we have established

the law of conservation of energy (1:11). In our terminology, the Hamiltonian, H,

is a �rst integral of the system, equal in value to E; therefore, one of the constants

of integration, �, is E, say �n := E.

Any mechanical system with constant energy is called a conservative system;

hence, this thesis exclusively examines conservative systems. This set of systems

includes, but is not limited to, closed systems.

For a closed mechanical system with n degrees of freedom, there are at most

2n � 1 �rst integrals. As stated previously, the general solution to a mechanical

problem has 2n arbitrary constants that must be speci�ed to uniquely determine

the solution. Because @H=@t = 0, the time origin may be shifted without chang-

ing the problem; thus, one of the constants is simply a translation in time. The

remaining 2n�1 constants can then be represented by functions of the coordinates

and momenta (or velocities). These are the �rst integrals.

2.2.2 Poisson Brackets

We consider the functions f(p;q; t) and g(p;q; t). The Poisson bracket is de�ned

by the sum

ff; gg := @
k
f@kg � @kf@kg: (2.10)
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The Poisson bracket is a bilinear operator. If one of the functions is a position or

momentum then the bracket reduces to, respectively,

ff; qkg = @
k
f; ff; pkg = �@kf:

If both functions are position-momenta coordinates, we obtain the relations

fqi; qkg = 0; fpi; pkg = 0; fpi; qkg = �
k
i :

We recall that these equations are the conditions on new coordinates (2:8), stated

in Subsection 2.1.3, su�cient for a canonical transformation.

The most interesting property of the Poisson bracket involves �rst integrals. We

consider the total time derivative of a �rst integral, f(p;q; t), as in [24],

df

dt
=
@f

@t
+

nX
k=1

�
@f

@qk
_qk +

@f

@pk

_pk

�
= 0:

Using Hamilton's equations (2:6), this becomes

@f

@t
+ fH; fg = 0:

For a �rst integral without explicit time dependence, we have

fH; fg � 0:

In this case, we say that f is in involution with the Hamiltonian. This property

holds if and only if f is a �rst integral.

Another property involves the derivative of the bracket,

@

@t
ff; gg =

�
@f

@t
; g

�
+

�
f;
@g

@t

�
:

Other important properties of the Poisson bracket are the:
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Jacobi identity,

ff; fg; hgg+ fg; fh; fgg+ fh; ff; ggg = 0; (2.11)

skew-symmetry,

ff; gg = �fg; fg; (2.12)

and Leibniz rule,

ff; ghg = ff; ggh+ ff; hgg: (2.13)

By (2:11), (2:12), and (2:13), a Lie algebra on the space of functions is de�ned by

f; g.
The Jacobi identity (2:11), with h = H, implies that the Poisson bracket of two

�rst integrals, f and g, is also a �rst integral. This result is known as Poisson's

theorem. As discussed earlier, there at most 2n � 1 �rst integrals for a system;

hence, the application of Poisson's theorem does not always produce additional

linearly independent �rst integrals. The Poisson bracket, ff; gg, may be a constant
or functionally dependent on f or g. Similarly, the Leibniz rule (2:13), with f = H,

implies that the product of two �rst integrals is a �rst integral.

2.2.3 Symplectic Structure

Hamilton's equations may be written as a single vector equation by introducing

a new notation. Following [36], we de�ne a 2n dimensional vector x by x :=

(p;q); thus, the phase space, which we shall take to be R2n (in general, some 2n

dimensional manifold, ~M), contains x. It follows that rH = (@H=@p; @H=@q). By

introducing the matrix J =

 
0 �I
I 0

!
, we may write Hamilton's equations (2:6)
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as

_x = JrH(x): (2.14)

This leads to an alternate representation for the Poisson bracket in Euclidean space

for functions f(x), g(x) 2 R2n,

ff ;gg := �(rf ; Jrg); (2.15)

where (; ) represents the standard Euclidean scalar product.

From (2:14), (2:15) and the skew-symmetry property of the Poisson bracket

(2:12), it follows that

fH;xjg = (JrH;rxj) =
2nX
k=1

_xk�jk = _xj; j = 1; : : : ; 2n;

therefore, the equations of motion may be written in the form

XH := fH;xg = _x: (2.16)

XH is called the Hamiltonian vector �eld corresponding to H(x); hence, a Hamil-

tonian system is characterised by the triple (R2n
; f; g;H(x)).

The matrix J is nondegenerate; thus, it has an inverse that is clearly J�1 = �J .
This inverse matrix de�nes a nondegenerate skew-symmetric bilinear form !0 on

R
2n,

!0(x;y) = (x; J�1y):

On a general 2n dimensional manifold, ~M , a nondegenerate closed 2-form, !, is

called a symplectic form or structure; thus, the phase space, ~M , equipped with

a symplectic structure, !, is called a symplectic manifold, ( ~M;!). Using local
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coordinates, we write ! as,

! = !jk(x)dx
j ^ dxk; j; k = 1; : : : ; 2n:

The nondegeneracy of ! is equivalent to the nonvanishing of det(!jk(x)) at every

point in ~M so that its inverse, a skew-symmetric matrix !jk(x), exists everywhere

on ~M . In local coordinates, we write the requirement that ! be closed, that is,

d! = 0, as

@!ij

@xk
+
@!jk

@xi
+
@!ki

@xj
= 0; i; j; k = 1; : : : ; 2n:

This is equivalent to the Jacobi condition on the Poisson bracket (2:11).

The manifold ~M = R2n is equipped with the aforementioned canonical symplectic

form, !0, associated with �J ,

!0 =

 
0 I

�I 0

!
dx

j ^ dxk = dpi ^ dqi; j; k = 1; : : : ; 2n; i = 1; : : : ; n; (2.17)

and its inverse, the canonical Poisson bi-vector,

P0 = !0
�1 =

@

@qi
^ @

@pi
; i = 1; : : : ; n: (2.18)

Theorem 2.1 (Darboux) At any point x on a symplectic mainfold ( ~M;!), there

exists a local coordinate system in a neighbourhood of x such that ! has the standard

form

! = dpi ^ dqi; i = 1; : : : ; n:

The general Poisson bracket is an extension of the standard Poisson bracket, de-

�ned using the Schouten bracket. See Appendix B for a description of the Schouten

bracket. With respect to a general Poisson bi-vector, P, the general Poisson bracket
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is de�ned by

ff; ggP := Pdfdg := [[P; f ]S ; g]S:

For the canonical Poisson bi-vector, P0 (2:18), the general bracket reduces to the

standard form (2:10); thus, using Darboux's theorem, Theorem 2.1, we conclude

that in the neighbourhood of any point on a manifold, we can �nd coordinates with

respect to which the general Poisson bracket is the standard Poisson bracket.

2.2.4 Killing Tensors

Killing tensors were historically of interest primarily to relativists. More recently,

they have become a tool used in classical mechanics to determine �rst integrals.

We consider a pseudoRiemannian manifold, (M;g), of dimension n. In a local

coordinate system, (qi), a Killing n-tensor is de�ned as a symmetric, covariant

tensor �eld K on M satisfying the Killing tensor equation, originally known as

Killing's equations,

K(i1 :::in;in+1) = 0; (2.19)

This is a generalisation of the concept of a Killing vector (KV), a one dimensional

Killing tensor that satis�es K(i;j) = (1=2)(Ki;j + Kj;i) = 0. A Killing vector may

equivalently be de�ned, see, for example [46], as a contravariant vector satisfying

the condition

LKg = 0;

where L is the Lie derivative.

Another de�nition of a Killing tensor is provided by the Schouten bracket. The

contravariant form of a Killing tensor of any valence must commute with the metric
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tensor, g, see [46], that is,

[K;g]S = 0:

We shall consider only Killing vectors and Killing 2-tensors in this thesis. It is to

be understood that the term Killing tensor is used to mean Killing 2-tensor.

For a dynamical system, Killing tensors (KTs) correspond to �rst integrals

quadratic in momenta and KVs correspond to �rst integrals linear in momenta,

see [15]. This is shown by calculating the Poisson bracket of the corresponding �rst

integral and the Hamiltonian (1:6).

We consider a contravariant vector, Li(q), and a symmetric contravariant ten-

sor, K ij(q), with components that are functions of the coordinates. From this,

we construct a second �rst integral, K ij
pipj + L

i
pi + U , where U(q) is a smooth

function of the coordinates. The �rst integral is necessarily in involution with the

Hamiltonian (1:6), that is,

fK ij
pipj + L

i
pi + U;

1

2
g
ij
pipj + V g = 0:

Expanding, we obtain

fK ij
pipj ;

1

2
g
ij
pipjg+ fLi

pi;
1

2
g
ij
pipjg+ fU; 1

2
g
ij
pipjg

+fK ij
pipj ; V g+ fLi

pi; V g+ fU; V g = 0

) �
K

ij
;kg

lk �K
kl
g
ij
;k

�
pipjpl +

�
L
i
;jg

jk � 1

2
L
j
g
ik
;j

�
pipk

+
��U;mg

im + 2K im
V;m

�
pi + L

i
V;i = 0:

(2.20)

The terms in (2:20) cubic, quadratic, linear, and constant in momentum must

vanish independently.

First we examine the cubic terms. The pipjpl factor implies that the anti-
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symmetric components with respect to i, j, and l vanish; thus, the symmetric

components, with respect to i, j, and l, vanish. Using the contravariant metric

tensor components, gij, to substitute covariant components for the contravariant

components, K ij, and expanding the directional derivatives of gij according to the

formula gij ;k = g
il
g
mj
gml;k [14], we obtain

Kij;l +Klj;i +Kil;j �Kkjg
km(gim;l + glm;i � gil;m)

�Kkig
km(gjm;l + glm;j � gjl;m)�Kklg

km(gim;j + gjm;i � gij;m) = 0:

This is the expansion of the Killing equation (2:19) for a 2-tensor; thus, the K ij

are the components of a KT.

Similarly, we conclude that the symmetric (over i and k) components must vanish

for the quadratic terms. Since gik is symmetric, we deduce that

L
(i
;jg

j)k � 1

2
L
j
g
ik
;j = 0:

Rewriting this equation in terms of the covariant form of L and the directional

derivatives of the covariant metric tensor components, we obtain

[Li;j + Lj;i � Lmg
mn(gin;j + gjn;i � gij;n)]g

il
g
kj = 0:

This implies that the expression contained in the brackets vanishes. We observe

that this expression may be written as Li;j + Lj;i; therefore, L(i;j) = 0 and the Li

are the components of a Killing vector.

By requiring that the linear in momentum terms sum to zero, we derive the

equation

U;i � 2Ki
j
V;j = 0:

We may write this in the form of a tensor equation,
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dU = 2KdV: (2.21)

This equation characterises the potential, U , of a second �rst integral with respect

to the Hamiltonian potential, V ; furthermore, it establishes, using the property

of the exterior derivative, d(dU) = 0, the compatibility condition between the

Hamiltonian potential, V , and associated KT, K,

d(KdV ) = 0; (2.22)

where K is the Killing tensor with components Ki
j.

The �nal condition, deriving from the term independent of momentum, is

L
i
V;i = 0:

This is equivalent to the vanishing of the Lie derivative of V with respect to L,

LLV = 0: (2.23)

We observe that there exists a coordinate system in which the KV takes the form

L
i = @=@q

1, that is, Li = �
i
1. Since L is a KV, it follows that @1gij = 0. From (2:23),

the form of the KV implies that @1V = 0. Because both the metric and potential

are independent of q1, the Hamiltonian (1:6) is independent of q1; therefore, q1 is

an ignorable coordinate. This links the concept of KVs to ignorable coordinates.

By setting K ij = 0 in the second �rst integral, we obtain a �rst integral linear in

the momentum that corresponds to the KV, L. Similarly, a �rst integral quadratic

in momentum corresponding to the KT, K, is produced by imposing Li = 0.

It is not a trivial task to �nd Killing n-tensors in an arbitrary manifold; however,

Thompson proved that for spaces of constant curvature every Killing tensor is a

sum of symmetrised products of KVs [46].
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In Euclidean n-space, with the standard metric, gij = �ij in the natural basis,

the Lie algebra of KVs has as a basis

Ti = @i; i = 1; : : : ; n;

Rij = q
j
@i � q

i
@j; 1 � i < j � n;

corresponding to the conservation of linear momentum and angular momentum

[46], respectively.

Killing tensors play an integral part in the intrinsic characterisation of additive

separation of variables for the HJ equation. This point is elucidated in Chapter 3.
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2.3 Hamilton-Jacobi Formalism

We have established the necessary background theory in mechanics and mathemat-

ics to discuss the Hamilton-Jacobi formalism. We �rst derive the key mathematical

objects in the theory, the Hamilton-Jacobi equation and its complete integral. The

direct approach to solving for the trajectories is provided by the Jacobi theorem,

which we describe next. Finally, we include the extension of the Liouville theorem,

Theorem 1.1, by Arnol'd.

2.3.1 Hamilton-Jacobi Equation

We initially remove our standard assumption that the system is time-independent;

therefore, we treat the Lagrangian and Hamiltonian functions as dependent on

time until we explicitly state otherwise later in this subsection. We must derive

two preliminary results to develop the Hamilton-Jacobi equation.

Following [24], we view the action (2:1) for the actual path of the system as a

function of the coordinates at time t1. We are interested in comparing the values of

S obtained by varying the coordinates at t1, that is, along paths in a neighbourhood

of the actual path. As we derived in Subsection 2.1.1, for the one dimensional case,

the �rst variation of the action is

�S =

�
@L

@ _q
�q

�t1
t0

+

Z t1

t0

�
@L

@q
� d

dt

@L

@ _q

�
�qdt:

The second term vanishes because the motion satis�es Lagrange's equations. In

the �rst term, we set �q(t0) = 0 and replace �q(t1) with �q because t1 adopts any

value of t greater than t0. Using the relationship (1:2), we arrive at the equivalence

�S = p�q. For an n dimensional system, this has the form

�S = pi�q
i
:
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A relationship between the action and momenta follows directly,

S;i = pi: (2.24)

Another necessary result is produced by examining the total time derivative of

the action. Directly from the de�nition of the action (2:1), we observe that

dS

dt
= L; (2.25)

however, by viewing the action as a function of only coordinates and time, it is

obvious, using (2:24), that

dS

dt
=
@S

@t
+ S;i _qi =

@S

@t
+ pi _qi: (2.26)

Comparing (2:25) and (2:26), then using (2:5), we obtain

@S

@t
+H(p;q; t) = 0; (2.27)

hence, we have derived a relationship between the action and Hamiltonian. The

momenta in (2:27) are replaced using (2:24) to produce the �rst-order partial dif-

ferential equation called the Hamilton-Jacobi equation,

@W

@t
+H

�
q
1
; : : : ; q

n
;W;1; : : : ;W;n; t

�
= 0; (2.28)

where we have relabelled the action, S, as W in agreement with standard notation.

Using our new notation, we observe that our derivation of (2:24) also proves the

relation (1:4).

There exists a general method for integrating the HJ equation to solve for the

system's motion. Before considering it, we introduce two relevant terms.

From the theory of partial di�erential equations, we have the result that all �rst

order equations have a solution that is unique up to an arbitrary function. This
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solution is called a general integral. A more important concept in mechanics is

that of a complete integral. For the HJ equation, a complete integral is a solution

with n + 1 independent arbitrary constants that satis�es (1:3). Since the action,

W , appears in the HJ equation (2:28) only as a derivative, a complete integral is

de�ned modulo an additive constant, t0, that may be ignored,

W =W (q; t;�) + t0; (2.29)

where � = (�1; : : : ; �n) represents the remaining n independent constants.

2.3.2 Jacobi Theorem

We now establish the connection between the complete integral of the Hamilton-

Jacobi equation and solutions of Hamilton's equations. We use the functionW (q; t;�)

as the generating function for a canonical transformation from the original coor-

dinates (p;q) to (�;�); therefore, our new position coordinates are (�1; : : : ; �n)

and new momenta coordinates are (�1; : : : ; �n). As shown in [24], with this gen-

erating function, the new Hamiltonian vanishes everywhere; thus, the transformed

Hamilton's equations become

_�i = 0; _�i = 0;

where �n := t0, the constant introduced in the preceding section; therefore, we have

�i = constant, �i = constant. We solve for the position coordinates q as functions

of t, � and � using the relationships �i = @W=@�i [24]; thus, we have determined

the general integral of motion.

The general method for solving the equations of motion is summarised as follows.

We derive the Hamilton-Jacobi equation, then �nd the corresponding complete

integral (2:29). We then solve n algebraic equations of the form

@W

@�i
= �

i (2.30)
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to obtain the coordinates qi = q
i(t;�;�). The momenta are then calculated using

(1:4).

This result is known as Jacobi's Theorem.

Theorem 2.2 (Jacobi) LetW = W (q; t;�) be a complete integral of the Hamilton-

Jacobi equation (2:28) where � = (�1; : : : ; �n) is a set of n arbitrary constants.

Let � = (�1; : : : ; �n) be an additional n arbitrary constants. Provided that the

determinant condition (1:3) holds, the n relations (2:30) de�ne the n coordinate

functions qi = q
i(t;�;�) and n momentum functions pi = @W=@q

i to produce a

general solution to Hamilton's equations (2:6).

In the case that a complete integral cannot be found, the problem may still be

simpli�ed by reduction of the number of degrees of freedom. For example, there

may be one or more ignorable coordinates for the system.

Our interest focuses exclusively on conservative systems for which the Hamilto-

nian has no explicit time dependence. In this case, the action's only time depen-

dence is the term �Et. That is, the action may be written in the form

W (q; t;�) = W0(q;�)� Et;

where �n := E. The Hamilton-Jacobi equation (2:28) simpli�es to the standard

form (1:5).

2.3.3 Arnol'd-Liouville Theorem

As previously described, the existence of �rst integrals for a system allows us to

reduce the number of degrees of freedom in the associated mathematical problem.

It is generally required that we �nd 2n �rst integrals to integrate a system of 2n

ordinary di�erential equations; however, for a set of canonical equations, n integrals

is su�cient, if they have the correct form, because each reduces the order of the

system of equations by two instead of one. Liouville proved this result in general.

Arnol'd formalised the concepts of Liouiville's theorem, Theorem 1.1, and extended
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it in [2]. Before stating his theorem, we de�ne the concept of a conditionally

periodic system. We consider a system that has a motion that is not periodic in

any coordinate. That is, the system will not return to any previous state in a �nite

interval of time. The system is said to be conditionally periodic provided that it

will pass arbitrarily close to any previous state given a su�ciently large interval of

time.

Theorem 2.3 (Arnol'd-Liouville [2]) Given n functions, F1; : : : ; Fn, in involu-

tion on a symplectic manifold, we consider some level set of the functions,

Mf = fx : Fi(x) = fi; i = 1; : : : ; ng:

Under the assumption that we have independence of the n functions on Mf , that

is, that at each point in Mf the 1-forms dFi are linearly independent, we have the

following:

1. Mf is a smooth manifold that is invariant under phase ow with a Hamilto-

nian, H = F1.

2. If the manifold Mf is compact and connected, then it is di�eomorphic to the

n dimensional torus,

T
n = f(�1; : : : ;�n)mod 2�g:

3. The phase ow with a Hamiltonian, H, determines a conditionally periodic

motion on Mf , that is,

d�

dt
= ! where ! = !(f):

4. The canonical equations with a Hamiltonian, H, can be integrated by quadra-

tures.
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A useful corollary of this theorem exists for two dimensional systems.

Corollary 1 A mechanical system with two degrees of freedom that possesses a �rst

integral independent of the Hamiltonian is integrable by quadratures; furthermore, a

compact connected two dimensional submanifold of the phase space H = h, F = f

is an invariant torus. Motion on it is conditionally periodic.
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2.4 Method of Separation of Variables

An important technique for the determination of a complete integral for the Hamilton-

Jacobi equation of a system is the method of separation of variables.

We consider the case in which a coordinate, qj, | without loss of generality q1

| and the corresponding momentum, p1 = W;1, appear in the HJ equation (1:1)

in some combination that is independent of the other coordinates, derivatives and

time, �(q1;W;1). We may write (1:5) in the form [24]

H

�
q;
@W

@q
; �

�
q
1
;
@W

@q1

��
= E: (2.31)

In (2:31) and the remainder of this section, q represents the set of position coordi-

nates excluding q1.

We proceed to seek a separated solution of the form

W = ~W (q;�) +W1(q
1)�Et; (2.32)

where �n := E. When we substitute this action into (2:31), its form changes to

H

 
q;
@ ~W

@q
; �

�
q
1
;
@W1

@q1

�!
= E:

This must be an identity for any solution (2:32). Since the only q1 dependence is in

�, � must be constant, say equal to the arbitrary constant �1. The problem (2:31)

has been reduced to

�

�
q
1
;
@W1

@q1

�
= �1; (2.33)

H

 
q;
@ ~W

@q
; �1

!
= E:

It is clear that this system is simpler than the original HJ equation (2:31). The
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�rst equation is an ordinary di�erential equation for W1 that may be solved by

quadrature, and the second is a partial di�erential equation that has two fewer

independent variables than the original HJ equation. Ideally, we may separate the

remaining n�1 coordinates. Then �nding the complete integral for the HJ equation
is reduced to n quadratures. We say, in this case, that the HJ equation is completely

separable.

A speci�c example of separation of variables is the separation of a cyclic coor-

dinate, say q
1. By de�nition, the Hamiltonian, and hence the HJ equation, are

independent of a cyclic coordinate; thus, it is a separable coordinate. In particular,

the ordinary di�erential equation (2:33) becomes W1;1 = �1. This implies that

W1 = �1q
1. The complete integral (2:32) is

W = ~W (q;�) + �1q
1 � Et:

We observe that �1 is the constant value of the corresponding momentum, p1 = W;1,

and �n is the system's energy, E.

For conservative systems, the energy term, E, in (2:31) is produced by the cyclic

time variable, t; furthermore, as mentioned in Subsection 2.2.1, E is one of the n

�rst integrals, and hence, constants of motion. If completely separable, the method

yields

W =

nX
i=1

Wi(q
i;�)� Et;

where �n := E.

The method of separation of variables encompasses the previous methods of

integration using ignorable coordinates. It also includes the more general case in

which a coordinate is not cyclic but is separable. In practice, the HJ equation for

a system must be represented in appropriate coordinates for it to be separable. A

local characterisation of separability, the Levi-Civita criterion, Theorem 1.5, was

described in Chapter 1; however, recent work by Benenti, see [4, 5], has produced
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an intrinsic coordinate-independent characterisation of the separability of a system

via a point transformation. This is investigated in Chapter 3.

Separation of variables is a powerful method; however, there are other methods

used to solve Hamilton's equations. Of the variety of approaches, two, the Lax

operator and bi-Hamiltonian methods, are discussed in subsequent sections of this

chapter. First, we illustrate the use of separation of variables by applying it to an

elementary problem from mechanics, the two dimensional harmonic oscillator.

2.4.1 Example: Two Dimensional Harmonic Oscillator

A standard example for separation of variables is the two dimensional harmonic

oscillator, see, for example, [21]. For both independent variables, we have a kinetic

energy Ti = (1=2)pi _q
i = (1=2)m( _qi)2 | using the de�nition of the momentum in

Cartesian coordinates, pi = m _qi | and a potential energy Vi = 1=2m!2
i (q

i)2; thus,

the Hamiltonian is

H =
1

2m

�
p
2
1 + p

2
2

�
+
m

2

�
!
2
1(q

1)2 + !
2
2(q

2)2
�
:

This system is conservative because there is no explicit time dependence. Using

(1:4), the HJ equation (1:7) is

1

2m
[(W;1)

2 + (W;2)
2] +

m

2

�
!
2
1(q

1)2 + !
2
2(q

2)2
�
= E: (2.34)

Neither coordinate is cyclic but both are separable; hence, we seek a solution

of the form W = �Et +W1(q
1) +W2(q

2). Substituting this form into (2:34), we

obtain the separated equations

8>>><
>>>:

1

2m
(W1;1)

2 +
m

2

�
!
2
1(q

1)2
�
= �1;

1

2m
(W2;2)

2 +
m

2

�
!
2
2(q

2)2
�
= E � �1:
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These ordinary di�erential equations may be rearranged to obtain equations of the

formWi;i =
p
2mci �m2!

2
i (q

i)2 where c1 = �1 and c2 = E��1, respectively. Using
inverse trigonometric functions, we integrate to determine the complete integral,

W = �Et+ q
1

2

q
2m�1 �m2!

2
1(q

1)2 +
�1

!1
arcsin

�r
m

2�1
!1q

1

�

+
q
2

2

q
2m(E � �1)�m2!

2
2(q

2)2 +
(E � �1)

!2

arcsin

�r
m

2(E � �1)!2q
2

�
:

(2.35)

To solve for the coordinate functions we must solve the n equations (2:30). For

a two dimensional system, we have 2� 2� 1 = 3 separation constants, f�1; E; �1g,
corresponding to the number of �rst integrals derived in Subsection 2.2.1, plus

the constant representing an allowable shift in the time origin, t0; therefore, the

equations (2:30) take the form

�1 =
@W

@�1
; t0 =

@W

@E
:

Substituting the complete integral (2:35) into these equations, we obtain

8>>>>><
>>>>>:

�1 =
1

!1
arcsin

�r
m

2�1
!1q

1

�
� 1

!2
arcsin

�r
m

2(E � �1)!2q
2

�
;

t+ t0 =
1

!2
arcsin

�r
m

2(E � �1)!2q
2

�
:

By inspection, the closed form solution for q is

8>>>>><
>>>>>:

q
1 =

1

!1

r
2�1

m
sin[!1(�1 + t+ t0)];

q
2 =

1

!2

r
2(E � �1)

m
sin[!2(t+ t0)]:
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2.5 Other Complete Integrability Methods

In this section, we outline the Lax and bi-Hamiltonian methods for solving the HJ

equation. After describing the non-periodic, �nite dimensional Toda lattice, we

analyse its integrability using these methods.

2.5.1 Lax Method

A powerful technique used to study dynamical systems is the Lax method, also

known as the isospectral deformation method, formulated by Lax [25]. The essence

of this method is to write the equations of motion in a matrix form from which we

can derive integrals of the motion. If we generate n functionally independent �rst

integrals in involution, then, by Liouville's theorem, Theorem 1.1, we may conclude

that the system is completely integrable.

We follow the development of Toda [49]. It is necessary to construct n � n real

matrices L and B such that the equations of motion for our system are equivalent

to the Lax representation,

_L = BL� LB = [B;L]: (2.36)

The matrices L and B are referred to as a Lax pair.

We seek a unitary matrix, that is, U satisfying UU� = I where � indicates the
Hermitian conjugate of a matrix (the transpose of the complex conjugate). Taking

the time derivative of this expression, we obtain

dU

dt
U
� + U

dU
�

dt
= 0: (2.37)

U is de�ned by the initial value problem

dU

dt
= BU; U(0) = I: (2.38)

Using the fact that U is unitary, we rewrite the di�erential equation of (2:38) in
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the form B = (dU=dt)U�. With this de�nition for B, and the properties (2:37)

and (AB)� = B
�
A
�, it can be shown directly that B� = �B; thus, B is necessarily

a skew-symmetric matrix. If B were known, then, provided a solution to (2:38)

exists, we may, in theory, determine U .

Another implication of (2:37) is that dU�1
=dt = �U�1

B. Using this with (2:36)

and (2:38), we conclude that

d

dt
(U�1

LU) = 0;

hence, U�1
LU is time-independent. We write this condition as

L(t) = U(t)L(0)U(t)�1: (2.39)

It follows from the fact that U is a unitary matrix, that L(t) and L(0) are

unitary equivalent, that is, have the same eigenvalues. Let �(t) and �(t) represent

an eigenvalue and the corresponding eigenfunction of L(t), respectively. At time

t = 0, these quantities satisfy the equation L(0)�(0) = �(0)�(0). This may be

rewritten, using (2:39), as

L(t)U(t)�(0) = �(0)U(t)�(0):

This equation shows that U(t)�(0) is an eigenvector and �(0) is an eigenvalue for

every time, t, that is,

�(t) = �(0) = �:

Since this is true for every �i, all the eigenvalues of L are time-independent. Equiv-

alently, we say L evolves in time but conserves its spectrum, f�ig, that is, undergoes
an isospectral deformation. Although the eigenvalues of L are �rst integrals, it is

easier to generate �rst integrals by taking the trace of powers of L.

The Lax method has been applied to many known integrable systems; however,
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the determination of suitable matrices, L and B, may be di�cult.

2.5.2 Bi-Hamiltonian Method

Previously, we characterised a Hamiltonian system by the triplet (M;!;XH ). In

the bi-Hamiltonian framework (see, for example, [39]), we must generalise from a

symplectic manifold to a Poisson manifold, that is, a manifold equipped with a

Poisson bi-vector, P .

A (non-degenerate) Poisson bi-vector is a skew-symmetric contravariant tensor

of valence two on the manifold, M , that satis�es the condition

[P;P ]S = 0(, d! = 0; ) (2.40)

(where ! = P
�1). Since ! is nondegenerate by the de�nition of a symplectic

manifold, every symplectic manifold is a Poisson manifold, (M;P ); hence, every

Hamiltonian system may be represented by the triple (M;P;XH ). The Hamiltonian

vector �eld (2:16) is uniquely determined by

XH = PdH = [P;H]S :

A bi-Hamiltonian system (M;P1; P2;XH1;H2) possesses two distinct Hamiltonian

representations, that is,

XH1;H2 = P1dH1 = P2dH2;

where the Poisson bi-vectors are compatible. Compatibility signi�es that the eigen-

values of P1 and P2 are in involution which is equivalent to the condition

[P1; P2]S = 0: (2.41)

Integrability of bi-Hamiltonian systems was investigated for the in�nite dimen-

sional case by Magri in [30]. Then, Gelfand and Dorfman [13] produced similar
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results for �nite dimensional Hamiltonian systems. Their work has been extended

by Magri and Morosi [31]. The complete integrability of these systems is guaranteed

if the following theorem developed by Smirnov [39] is satis�ed.

Theorem 2.4 Consider a bi-Hamiltonian system (M;P1; P2;XH1;H2
) for a 2n di-

mensional manifold, M . If the linear operator A := P2P
�1
1 has exactly n func-

tionally independent eigenvalues, then the dynamical system determined by XH1 ;H2
,

that is, _x(t) = XH1 ;H2
(x(t)), is completely integrable.

2.5.3 Example: Non-periodic, Finite Toda Lattice

The Toda lattice was �rst discussed by Toda in 1967 [47, 48]. The non-periodic,

�nite dimensional Toda lattice describes the movement of n particles located on a

line with an exponential interaction between only adjacent particles. In physical

position-momenta coordinates, (qi), (pi), its motion is described by the 2n equations

_qi = pi;

_pi = e
qi�1�qi � e

qi�qi+1

;

(2.42)

where eq
0�q1 = e

qn�qn+1

= 0. The vector �eld XH (2:16) of (2:42) is known to be

Hamiltonian and completely integrable, see, for example, [32]. The corresponding

Hamiltonian function,

H =
1

2

nX
i=1

p
2
i +

n�1X
i=1

e
qi�qi+1

; (2.43)

is constant and equal to the total energy of the system, E.

The periodic Toda lattice represents similarly interacting particles arranged on

a circle. Its equations of motion are represented by (2:42) with the proviso that

q
i+n := q

i.

We proceed to establish the complete integrability of the non-periodic �nite

dimensional Toda lattice using both the Lax and the bi-Hamiltonian methods.
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Example of the Lax Method: Non-Periodic, Finite Dimensional Toda

Lattice

The Arnol'd-Liouville integrability of the non-periodic, �nite dimensional Toda

lattice was �rst established by Flaschka using the Lax method [18].

Our analysis is similar to that of the periodic lattice in [49]. First, we de�ne the

Flaschka variables by

ai =
1
2e

(qi�qi+1)=2
; i = 1; : : : ; n� 1;

bi =
1
2pi; i = 1; : : : ; n;

(2.44)

where we have used di�erent numbering and signs than in Flaschka's paper [18].

In this new coordinate system (2:44), Hamilton's equations for the system (2:42)

become

_ai = ai(bi � bi+1); i = 1; : : : ; n� 1;

_bi = 2(a2i�1 � a
2
i ); i = 1; : : : ; n;

where it is understood that a0 = 0.

Using these coordinates, we de�ne the n � n Jacobi matrices (that is, only the

main diagonal and its 2 neighbouring diagonals have non-zero entries) L and B by
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L =

0
BBBBBBBBBBBBBBBBBB@

b1 a1

a1 b2

. . . 0

bi�1 ai�1

ai�1 bi ai

ai bi+1

0
. . .

bn�1 an�1

an�1 bn

1
CCCCCCCCCCCCCCCCCCA

;

B =

0
BBBBBBBBBBBBBBBBBB@

0 �a1
a1 0

. . . 0

0 �ai�1
ai�1 0 �ai

ai 0

0
. . .

0 �an�1
an�1 0

1
CCCCCCCCCCCCCCCCCCA

:

These matrices satisfy (2:36). They are thus said to form a Lax pair ; hence, the

set of eigenvalues of L is independent of time. Because L is real, its eigenvalues are

real; furthermore, since L is an n � n matrix, it has up to n distinct eigenvalues.

It has been proven [17] that because the ai's are all positive, the eigenvalues are

distinct.

The eigenvalues of L are determined by the determinant equation det(L��I) =
0. This can be expanded into n polynomial equations with respect to the eigenval-
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ues,

�
n
i + c1�

n�1
i + : : :+ cn�1�i + cn = 0; i = 1; : : : ; n;

in which the ci's are functions of ai and bi. Simultaneously solving these equations

for ci, we obtain ci(ai; bi) = ci(�1; : : : ; �n) for i = 1; : : : ; n. Since the eigenvalues

are conserved by the motion, the ci's are conserved quantities. From (2:36), we

observe that n conserved quantities are

Jj = Tr(Lj) =

nX
i=1

�
i
j ; j = 1; : : : ; n;

where Tr indicates the diagonal sum.

We can write the n functionally independent �rst integrals, Ii, i = 1; : : : ; n, in

terms of the Jj, j = 1; : : : ; n; thus, by Liouville's theorem, the non-periodic, �nite

dimensional Toda lattice is completely integrable.

Example of the Bi-Hamiltonian Method: Non-Periodic, Finite Dimen-

sional Toda Lattice

In considering the non-periodic, �nite dimensional Toda lattice, we use the Poisson

manifold (R2n
; P0), where the Poisson bi-vector, P0 (2:18), is canonical. Following

[39] ,we relabel the Hamiltonian, H, (2:43) as H0.

We de�ne the vector �eld, YP , by

YP =
1

2

n�1X
i=1

nX
j=i+1

pj
@

@q
i
+
�
�

n�1X
i=1

e
qi�qi+1

+
1

2

nX
i=1

p
2
i

�
@

@pi
:

On a Poisson manifold, (M;P ), the (contravariant exterior) operator �, acts on

the space of skew-symmetric contravariant tensors on M , V k(M). For an arbitrary
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Q 2 V k(M),

�Q = �[P;Q]S: (2.45)

For a vector Q 2 V 1(M), this simpli�es to

�Q = �LQ(P );

a property inherited from the Schouten bracket (see Appendix B (B:2)). We say

that � is a coboundary operator because it satis�es the property

�
2 = 0: (2.46)

Using �0 and YP , we de�ne the tensor P1 = LYP (P0) = [P0; YP ]S = ��0YP by

P1 =

n�1X
i=1

e
qi�qi+1 @

@pi+1

^ @

@pi

+

nX
i=1

pi
@

@q
i
^ @

@pi

+
1

2

nX
i<j

@

@q
j
^ @

@q
i
: (2.47)

Using the second Hamiltonian function for the system, H1 =
Pn

i=1 pi, the Hamil-

tonian vector �eld, XH , may be written in terms of P1 as XH = P
i�
1 H1;�. Provided

that P1 is a Poisson bi-vector, we have produced a second Hamiltonian represen-

tation. To directly check the condition [P1; P1]S = 0 (2:40) is computationally

intensive. Instead, we observe that (2:40) is equivalent to �1P1 = 0. This holds if

P1 has the form

P1 = P0!1P0 (2.48)

for the second symplectic structure on M ,

!1 :=

n�1X
i=1

e
qi�qi+1

dq
i ^ dqi+1 +

nX
i=1

pidq
i ^ dpi + 1

2

nX
i<j

dpi ^ dpj :
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Das and Okubo derived !1 and showed that it is compatible with the canonical

symplectic form, !0 (2:17), in [12]. In fact, P1 can be written in the form (2:48);

therefore, it is a Poisson bi-vector.

We establish the compatibility of the two Poisson bi-vectors by verifying that the

condition (2:41) holds. Using the de�nitions of � (2:45) and P1 (2:47), we derive

[P0; P1]S = ��0P1 = 0;

using the coboundary property of � (2:46); hence, we have a bi-Hamiltonian system

(M;P0; P1;XH0;H1
). The involutive set of �rst integrals is fIi = (1=i)TrP1P

�1
0 g

where P�1
0 = !0; therefore, using Theorem 2.4, we have again established the

complete integrability of the non-periodic, �nite dimensional Toda lattice.



Chapter 3

Intrinsic Characterisation

In this chapter, we describe the intrinsic characterisation developed by Benenti

[4] for the orthogonal separation of variables of the Hamilton-Jacobi equation on

a pseudoRiemannian manifold. It provides a de�nitive criterion for the existence

of separable coordinates related to the natural position-momenta coordinates by a

point transformation (2:9). This approach uses geometrical objects, Killing tensors,

on the manifold rather than local descriptions.

The related mathematical background is presented. Then the theorem is de-

scribed and proved. We discuss some of the implications of the theory and relate it

to the theory of Kalnins and Miller [22]. As an example, we analyse the non-periodic

two and three dimensional Toda lattices using the characterisation.

3.1 Intrinsic Characterisation of Orthogonal Sep-

arability

We seek a complete integral of the HJ equation (1:7) that is separable. For a sepa-

rable system, it is clear from (1:4) that W;i is a function of only qi. In accordance

with the Jacobi theorem, Theorem 2.2, by solving these n equations for (�) in

terms of (q;p), we produce n independent integrals in involution; hence, the sys-

49
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tem is completely integrable. St�ackel [44] established that these �rst integrals are

polynomials quadratic in momentum for orthogonal systems (1:10); therefore, as

we discussed in Subsection 2.2.4, the coe�cients produce Killing two-tensors. This

is the key to the intrinsic characterisation of orthogonal separability.

Before investigating the characterisation theorem of Benenti, we show that the

eigenvectors of a KT, with distinct eigenvalues, can be used to form a quasi-

orthonormal frame that is a rigid moving frame.



x 3.2. Constructing a Quasi-Orthonormal Frame 51

3.2 Constructing a Quasi-Orthonormal Frame

Following Eisenhart [14], we establish a quasi-orthonormal frame on a pseudoRie-

mannian manifold, (M;g), from the eigenvectors of a KT, Kij | a symmetric

covariant tensor | with pointwise simple eigenvalues. We begin by considering the

determinant equation,

jKij � �gij j = 0; (3.1)

related to the eigenvalue problem,

KijX
j = �gijX

j
: (3.2)

The solution set of (3:1) and (3:2) consists of n pairs

f(�i;Xi) : Xi 6= 0; i = 1; : : : ; ng: (3.3)

Using the transformation law for a covariant tensor, we observe that, in a di�er-

ent coordinate system, (3:1) may be written

j ~Klm � �~glmj
����@~xk@x

i

����
2

= 0

, j ~Klm � �~glmj = 0

since the Jacobian matrix for a coordinate transformation is necessarily non-zero.

It follows that if � is an eigenvalue in one coordinate system, it is an eigenvalue in

every coordinate system; therefore, the eigenvalues, f�ig, are invariant.
We consider a pseudoRiemannian manifold on which the eigenvalues of the solu-

tion set (3:3) are simple, that is, �i 6= �j for i 6= j. To establish that the eigenvectors

determine an quasi-orthonormal frame, we prove the following propositions:

Proposition 3.1 The set of eigenvectors, fXig, is linearly independent.
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Proposition 3.2 Each pair of eigenvectors, fXi;Xj : i 6= jg, is orthogonal.

Proposition 3.3 If M is a Riemannian manifold, the eigenvalues of Kij , f�ig,
are real.

Proposition 3.4 If the set f�ig is real and simple, then there exists corresponding

eigenvectors, fXig, that are real.

Proposition 3.5 No eigenvector, Xi, is null.

Proof of Proposition 3.1

We consider

nX
k=1

ckXk = 0; (3.4)

for constants, ck, k = 1; : : : ; n.

Using the n equations (3:2) with (�;X) = (�k;Xk), we derive

nX
k=1

ck�kgijXk
j =

nX
k=1

ckKijXk
j

= Kij

� nX
k=1

ckXk
j
�

= 0;

using (3:4). It follows that

gij

� nX
k=1

ck�kXk
j
�
= 0)

nX
k=1

ck�kXk = 0: (3.5)



x 3.2. Constructing a Quasi-Orthonormal Frame 53

We observe that (3:4) is equivalent to

cnXn =

n�1X
k=1

(�ck)Xk: (3.6)

Substituting this relation into (3:5), we obtain

n�1X
k=1

ck(�k � �n)Xk = 0: (3.7)

We now prove, by induction on the dimension n, that the set of eigenvectors as-

sociated with a set of simple eigenvalues is linearly independent. In this proof, we

use the fact that eigenvectors are necessarily non-zero.

We �rst consider the case n = 2. Setting n = 2 in (3:7), we obtain c1(�1 �
�2)X1 = 0. It follows, from the fact that the eigenvalues are distinct, that c1 = 0.

Substituting c1 = 0 into (3:4), we obtain c2 = 0. Since both coe�cients necessarily

vanish, the set of eignvectors is linearly independent.

We assume that the hypothesis holds for n� 1, then deduce that it holds for n.

The set of eigenvectors fX1; : : : ;Xn�1g is linearly independent. This implies

that the coe�cients, ck(�k � �n), of (3:7) vanish. Since the eigenvalues are simple,
in particular, �k 6= �n, k = 1; : : : ; n� 1, we conclude that

ck = 0; k = 1; : : : ; n� 1:

Substituting these values into (3:6), we deduce that

cn = 0

because no eigenvector is zero.

Since the condition that the linear combination of eigenvectors vanishes (3:4)

implies that all the coe�cients vanish, we conclude that the set of eigenvectors,

fX1; : : : ;Xng, is linearly independent. This completes the proof by induction. �
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Proof of Proposition 3.2

We show directly that any two eigenvectors, Xk and Xl, corresponding to distinct

eigenvalues, �k and �l, 1 � k; l � n, k 6= l, are mutually orthogonal. From (3:2),

we have the equations

KijXk
j = �kgijXk

j
; (3.8)

and

KijXl
j = �lgijXl

j
: (3.9)

We take the di�erence between Xk
i � (3:9) and Xl

i � (3:8),

0 = (�l � �k)gijXk
i
Xl

j

) gijXk
i
Xl

j = 0

since �k 6= �l; thus, the vectors X
i
k and X

j
l are orthogonal. �

Proof of Proposition 3.3

Any eigenvalue-eigenvector pair, (�;X), satis�es the equation (3:2). Taking its

complex conjugate, we obtain the equation

Kij
�Xj = ��gij �X

j
:

The Killing and metric tensor components are unchanged because they are real.

Contracting both sides with X i, we obtain

KijX
i �Xj = ��gijX

i �Xj
:
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Using the equation (3:2), we produce the identity

(�� � �)gijX
i �Xj = 0: (3.10)

We now investigate when gijX
i �Xj vanishes. Writing the eigenvector as a sum of

its real and imaginary parts, X i = U
i + iV

i, we derive

gijU
i
U
j = �gijV i

V
j
: (3.11)

If g is positive or negative de�nite, then one side of (3:11) is non-zero (since the

eigenvector cannot be zero) and the other is zero or of the opposite sign, which

is impossible; thus, no eigenvector satis�es the equation gijX
i �Xj = 0; therefore,

(3:10) implies �� = �. �

On a pseudoRiemannian manifold, we may obtain eigenvector solutions to (3:11);

hence, we must assume that all the eigenvalues are real.

Proof of Proposition 3.4

We consider an eigenvalue-eigenvector pair, (�;X). We write the eigenvector in the

form

X
j = U

j + iV
j
;

where V j = 0 if the eigenvector is real. Substituting this into (3:2), then separating

the real and imaginary parts, we obtain

KijU
j = �gijU

j
;

KijV
j = �gijV

j;
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therefore, we have generated two real eigenvectors corresponding to �. Since the

eigenvalues are distinct, the eigenspaces are one dimensional; hence, V j = kU
j for

some real constant k.

We have shown that for any eigenvalue we can generate an associated real eigen-

vector. �

Proof of Proposition 3.5

We establish this proposition by contradiction. Without loss of generality, we as-

sume that the eigenvector X1 is null,

gijX1
i
X1

j = 0:

Using this relation and Proposition 3.2, we conclude that

gijX1
i
Xk

j = 0 (3.12)

8 k 2 f1; : : : ; ng. Since the eigenspace, V , is spanned by the set fX1; : : : ;Xng,
any vector, Y 2 V , can be expressed as a linear combination of the eigenvectors;

hence, it follows from (3:12) that

gijX1
i
Y

j = 0

8 Y 2 V . This is the degeneracy condition for the metric, g | a contradiction;

thus, X1 is not null. It can be similarly shown that no other eigenvector is null. �

We have proven that on a pseudoRiemannian manifold, a KT, K, with real

simple eigenvalues has a set of associated eigenvectors, fX1; : : : ;Xng, that are real,
linearly independent, mutually orthogonal and non-null; therefore, the eigenvectors

form an orthogonal frame.

For a rigid moving frame, the frame vectors must have constant lengths. Since
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the vectors, Xk, are not null, we scale the components so that

gijXk
i
Xk

j = ek; k = 1; : : : ; n;

where e = �1. That is, we normalise the vectors to produce a quasi-orthonormal

frame.

In conclusion, from a KT, K, with real simple eigenvalues, we construct a rigid

moving frame on the pseudoRiemannian manifold from the eigenvectors of K.

3.2.1 Introduction to the Moving Frame Formalism

We consider an n dimensional pseudoRiemannian manifold, M . The vectors Xi

represent the natural frame corresponding to some system of coordinates, (qi),

that is, Xi = @=@q
i, i = 1; : : : ; n. The corresponding co-vectors are X i = dq

i,

i = 1; : : : ; n. In the natural basis, the metric (1:15) takes the form

ds
2 = gijX

i
X

j
: (3.13)

The moving frame vector �elds spanning the tangent space, Mp, are de�ned,

with respect to the natural basis, fX1; : : : ;Xng by

Ea = ha
i
Xi; (3.14)

where ha
i is an n�n matrix of C1 functions. The dual !-frame 1-forms are de�ned

by

E
a = h

a
iX

i
; (3.15)

where hai is also an n � n matrix of C1 functions. Since the fEag and fEag are
dual bases, we have



E

a
; Eb

�
= �

a
b ; (3.16)
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where the bracket


!;X

�
represents the real value of the 1-form, !, acting on the

vector �eld, X. The property (3:16) follows from the fact that the corresponding

natural bases are dual,


dq

i
; @=@q

j
�
= �

i
j. This leads to the relations ha

i
h
b
i = �

b
a

and ha
i
h
a
j = �

i
j; hence, h

a
i and ha

i may be viewed as inverse matrices.

A rigid moving frame is a frame in which the metric tensor components are

constant (See Appendix C for a more complete description of the moving frame),

that is,

gab;c = 0:

Since the eigenvalues of the KT of interest are real and distinct, by selecting the

normalised eigenvectors of the KT as the frame vectors, fEag, we obtain, as proven
in Section 3.2, a rigid moving frame. In this quasi-orthonormal basis the metric

tensor components take the form

gab = diag(1; : : : ; 1;�1; : : : ;�1); (3.17)

and the metric may be written as

ds
2 = (E1)2 + : : :+ (Ep)2 � (Ep+1)2 � : : :� (En)2; (3.18)

where the signature of the metric, 2p�n, is independent of the basis by Sylvester's

law of inertia.

In addition, the KT components,

Kab = ha
i
hb

j
Kij ;

K
ab = h

a
ih

b
jK

ij
;

(3.19)

are diagonalised in this frame,
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Kab = K
ab = diag(�1; : : : ; �n); (3.20)

where f�1; : : : ; �ng is the set of eigenvalues of Kab and K
ab. The two forms of the

tensor, purely contravariant and purely covariant, are identical because the square

of the metric is the identity.
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3.3 Benenti Theorem

The geometrical approach to separation of variables was initiated by Eisenhart

[14, 15], then developed by Benenti [3, 4, 5], Kalnins and Miller [22, 23], Woodhouse

[51], and others.

The separability of a system is una�ected by applying a separated transformation,

~qi = ~qi(qi), i = 1; : : : ; n, to a set of separable coordinates. These equivalence classes

of coordinates produce (intrinsically) the same complete integral; thus, it is natural

to investigate the separability properties of the coordinate hypersurfaces.

On a pseudoRiemannian manifold, M , we de�ne an orthogonal web as a family,

S = (S1; : : : ;Sn), of n orthogonal and transversal foliations of hypersurfaces. These
submanifolds of dimension (n�1) are de�ned onM�
, where 
 is a closed singular

set. A set of n real C1 functions (qi) de�ned on M � 
 is a parametrisation of

the orthogonal web provided that dqi does not identically vanish at any point

and the restriction of qi to its corresponding leaf Si 2 S is constant. Locally,

orthogonal coordinates adapted to the web are produced by a parametrisation. If

the adapted coordinates are separable, then we say the orthogonal web is separable;

hence, the problem of intrinsically characterising separability is the determination

of the geometric properties of a separable web. Benenti has solved this problem by

determining necessary and su�cient conditions for separability based on a single

KT, see [4].

Theorem 3.1 (Benenti) A Hamiltonian (1:6) on a (pseudo)Riemannian mani-

fold, M , is separable in orthogonal coordinates if and only if there exists a Killing

tensor, K, on M , with pointwise (real) simple eigenvalues and orthogonally inte-

grable eigenvectors, that satis�es the potential separability condition (2:22).

3.3.1 Proof of Benenti Theorem

We prove the Benenti theorem, Theorem 3.1, for a Riemannian manifold, M , then

show how the proof may be generalised to a pseudoRiemannian manifold. Although
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the theory is global, we use local coordinate representations for the proofs. In

addition, we assume all objects are C1. The essence of the proof is given in [4].

To prove Theorem 3.1, we need two lemmas.

Lemma 3.1 A Killing tensor, K, with (real) simple eigenvalues and orthogonally

integrable eigenvectors can be written, in some orthogonal coordinate system, (ui),

in the form

K =

nX
i=1

�ig
ii
Xi 
Xi; (3.21)

where Xi := @=@u
i. In these coordinates, the Killing tensor equation (2:19) may be

written as

�j;i = (�i � �j)(ln g
jj);i; i 6= j; (3.22)

and

�i;i = 0: (3.23)

Proof of Lemma 3.1

We are interested in the case of distinct eigenvalues; furthermore, the eigenvectors

must be orthogonally integrable, that is, the orthogonal distribution, �?, must be

completely integrable. Because each eigenvector is orthogonal to an n � 1 dimen-

sional hypersurface, we express this condition as the n equations on the !-frame

1-forms

E
a ^ dEa = 0; a = 1; : : : ; n: (3.24)

We rewrite these equations in a useful form. The Froebenius theorem, Theorem

A.1, implies that the !-frame 1-forms satisfy the equations: Ea = �
a
i f

i
du

i, where

f
i = f

i(q), and ui = u
i(q). Since the (ui) are independent, we choose them as the
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coordinates of the natural basis; hence, we have

E
a = �

a
i f

i
du

i = f
a
du

a
; a = 1; : : : ; n; (3.25)

for undetermined functions fa(u); thus, the frame vectors satisfy

Ea =
�
i
a

f i

@

@ui
=

1

fa

@

@ua
: (3.26)

That is,

ha
i =

�
i
a

f
i
=

1

f
a ; (3.27)

and

h
a
i = f

i
�
a
i = f

a
: (3.28)

Comparing the metric in the moving frame (3:18) with the expressions (3:25),

we observe that the metric in the natural basis (3:13) has the form

ds
2 = (f1)2(X1)2 + : : :+ (fn)2(Xn)2; (3.29)

where X i = du
i. Of course, the corresponding dual basis is Xi = @=@u

i. From

(3:29), we observe that the coordinates, (ui), are orthogonal (1:9) and

p
gii = f

i
:

Substituting this into (3:27), we obtain

ha
i =

p
gii�

i
a: (3.30)

We recall that Kab is symmetric and of the form (3:20). Using this fact and (3:30)

in the relations between the components of the KT in the two frames (3:19), we
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derive the components of (3:21)

K
ij = ha

i
hb

j
K

ab

=
p
gii�

i
a

p
gjj�

j
bK

ab

=

8>><
>>:

�ig
ii
; if i = j;

0; if i 6= j:

Now we write the Killing tensor equation (2:19) in the local coordinates. In

Subsection 2.2.4, we established that K is a KT if and only if the Poisson bracket

of the related quadratic in momentum polynomial with the geodesic Hamiltonian

(1:21) is zero; hence, we calculate the Poisson bracket of K = �ig
ii
p
2
i with (1:21)

to determine an equivalent system of partial di�erential equations,

fK;Hg =
1

2

nX
i=1

nX
j=1

f(2�igiipi�ji )(gaa;j)� (�i;jg
ii + �ig

ii
;j)p

2
i (2g

aa
pa�

j
a)g

=

nX
i=1

nX
j=1

f�igiigjj ;ipip2j � (�i;jg
ii + �ig

ii
;jg

jj
pjp

2
i )g

=

nX
i=1

nX
j=1

g
ii[�gjj�j;i + (�i � �j)g

jj
;i]pip

2
j :

By requiring that the result be equal to zero, we obtain that each term must vanish,

that is,

g
jj
�j;i = (�i � �j)g

jj
;i:
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In the case i 6= j, this simpli�es to (3:22). If i = j, then it becomes (3:23). �

Lemma 3.2 Local orthogonal coordinates (ui) are separable if and only if the equa-

tions

g
kk

;ji = (ln gii);jg
kk

;i + (ln gjj);ig
kk

;j; i 6= j; (3.31)

are satis�ed. If the potential, V , is non-zero, then it is separable with respect to the

orthogonal separable coordinates (ui) if and only if the equations

V;ij = (ln gii);jV;i + (ln gjj);iV;j; i 6= j; (3.32)

are satis�ed.

Proof of Lemma 3.2

The separability of a Hamiltonian system is locally characterised by the Levi-Civita

criterion. To determine the characteristic equations for separability in this case, we

substitute the Hamiltonian (1:10) into the equations of (1:20) for arbitrary i 6= j,

�
1
2g

kk
;ip

2
k + V;i

��
1
2g

kk
;jp

2
k

�
(0) �

�
1
2g

kk
;ip

2
k + V;i

�
(gjjpj)(g

ii
;jpi)�

(giipi)
�
1
2g

kk
;jp

2
k + V;j

�
(gjj ;ipj) + (giipi)(g

jj
pj)
�
1
2g

kk
;jip

2
k + V;ij

�
= 0

, 1
2(�gii;jgjjgkk;i � g

ii
g
jj
;ig

kk
;j + g

ii
g
jj
g
kk

;ji)pipjp
2
k+

(�V;igii;jgjj � V;jg
ii
g
jj
;i + g

ii
g
jj
V;ij)pipj = 0:

The term quartic in momenta must vanish independently of the quadratic term.

By requiring that the quartic equals zero for i 6= j, we derive
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g
ii
g
jj
g
kk

;ji = g
ii
;jg

jj
g
kk

;i + g
ii
g
jj
;ig

kk
;j

, g
kk

;ji = (ln gii);jg
kk

;i + (ln gjj); igkk;j ;

hence, we have established condition (3:31). Similarly, by demanding that the

quadratic term equals zero for any i 6= j, we obtain (3:32),

g
ii
g
jj
V;ij = V;ig

ii
;jg

jj + V;jg
ii
g
jj
;i

, V;ij = (ln gii); jV;i + (ln gjj); iV;j:

�

Proof of Theorem 3.1

The theorem is �rst proven for a Riemannian manifold, then generalised to the

pseudoRiemannian case. On a Riemannian manifold, the eigenvalues of a symmetric

matrix are real. Also the eigenvectors are necessarily non-null by Proposition 3.5.

Initially we assume that the potential, V is zero. The integrability conditions

for the system of partial di�erential equations comprised of (3:22) and (3:23) are

[Ei; Ej]�h = 0

, �h;ji � �h;ij = 0; i 6= j:

(3.33)

That is, mixed partial derivatives must be equal. We use this fact in the following

derivation.
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Substituting (3:22) into (3:33), we obtain

[(�j � �h)(ln g
hh);j];i � [(�i � �h)(ln g

hh);i];j = 0

, (�j � �h);i(ln g
hh);j + (�j � �h)(ln ghh);ji � (�i � �h);j(ln g

hh);i

�(�i � �h)(ln g
hh);ij = 0

, (�j � �i)(ln g
hh);ij + (�j;i � �h;i)(ln g

hh);j � (�i;j � �h;j)(ln g
hh);i = 0:

We substitute (3:22) into the �nal equation to obtain

(�j � �i)[(ln g
hh);ij � (ln gjj);i(ln g

hh);j � (ln gii);j(ln g
hh);i

+(ln ghh);i(ln g
hh);j] = 0

, (�j � �i)(ghh;ij � (ln gjj);ig
hh

;j � (ln gii);jg
hh

;i) = 0; i 6= j: (3.34)

The condition (2:22) can be written in local coordinates. We observe from (3:21)

that K i
j = �

i
j�i for any KT; hence, KdV = �iV;idu

i. Using this in the condition

(2:22), we obtain, for i 6= j,

(�iV;i);j � (�jV;j);i = 0

, �i;jV;i + �iV;ij � �j;iV;j � �jV;ji = 0:

We simplify these equations using the Killing tensor equations (3:22),

(�i � �j)V;ij + (�j � �i)(ln g
ii);jV;i � (�i � �j)(ln gjj);iV;j = 0

, (�i � �j)(V;ij � (ln gii);jV;i � (ln gjj);iV;j) = 0; i 6= j: (3.35)
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We proceed to show that the existence of a suitable KT, K, and potential,

V , that satisfy (2:22), implies the existence of separable coordinates (ui) in the

neighbourhood of a point, P , with respect to which V is compatible. Since the

KT, K, is assumed to have pointwise simple eigenvalues, f�ig, and orthogonally

integrable eigenvectors, Lemma 3.1 implies that the Killing tensor equation has the

form (3:22), (3:23). It follows that the integrability conditions (3:34) for this system

of di�erential equations are satis�ed. Since �i 6= �j for i 6= j, equations (3:34) imply

that the separability conditions (3:31) hold. By Lemma 3.2, we conclude that the

coordinates (ui) are separable.

By assumption, (2:22) holds. In local coordinates, this is equivalent to the

equations (3:35). Because the eigenvalues, f�ig, are distinct this implies that the
equations (3:32) hold. By Lemma 3.2, we conclude that V is compatible with the

separable coordinates; therefore, we have orthogonal separable coordinates (ui) and

a compatible separable potential, V , in a neighbourhood of any point.

We now prove the converse: orthogonal separability implies the existence of a

KT with simple eigenvalues and a potential, V that satis�es the condition (2:22).

We assume orthogonal separable coordinates, (ui), exist in a neighbourhood of some

point, P ; therefore, the metric has the form ds
2 = g11(du

1)2+ : : :+ gnn(du
n)2 (1:9).

We further assume that the Killing tensor has the form (3:21). Letting X i := du
i,

we de�ne Ea := �
a
i f

i
X

i and the corresponding dual vectors, Ea, satisfy (3:26). It is

clear that the vectors, Ea, i = i; : : : ; n, are the eigenvectors of Kab corresponding

to the eigenvalues, �a, a = 1; : : : ; n. By the Frobenius theorem, Theorem A.1, the

equations (3:24) hold. Geometrically this means that each eigenvector is orthog-

onal to a n � 1 dimensional hypersurface; thus, the eigenvectors are orthogonally

integrable.

By Lemma 3.2, the equation (3:31) is satis�ed for every pair (i; j), i 6= j. Sub-

stituting these equations into (3:34), we �nd that they are trivially satis�ed; thus,

the integrability conditions for the Killing tensor equations hold. We conclude that

the system of linear equations (3:22), (3:23) can be integrated to yield n linearly
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independent solutions, f�aig, a = 0; : : : ; n � 1. The linear independence of solu-

tions is equivalent to the condition that the determinant of the matrix (�ai) never

vanishes. We view the complete solution (�ai) as a set of n vectors, f�ag, in an

n dimensional vector space. Any linear combination, with constant coe�cients, of

these vectors is a solution of the linear Killing tensor equations (3:22) (3:23). In

fact, the general solution is such a combination, for which the coe�cients are the

n constants of integration. Since det(�ai) 6= 0, we can �nd a vector � at any point,

P , on M such that its components are distinct, that is, �i 6= �j , 8i 6= j. Since this

holds in some neighbourhood of P , we have pointwise simple eigenvalues for the

corresponding KT, K, of the form (3:21).

Since the potential, V , is compatible with the separable coordinates, the condi-

tion (3:32) is satis�ed; therefore, the equations (3:35) hold. This is a local charac-

terisation of the d(KdV ) = 0 condition, that is, (2:22) holds.

This establishes Theorem 3.1 on a Riemannian manifold. We now extend the

previous arguments to a pseudoRiemannian manifold. To circumvent possible prob-

lems produced by the inde�nite metric, we require two changes. In the formulae,

we replace gii with jgiij. More importantly, we require that the eigenvalues of the

KT be real (which we must assume for a pseudoRiemannian manifold). �

3.3.2 Remarks

Remark 1 By varying the n constants of integration in the KT, K, we generate

an n dimensional space of KTs, K = fKag. Every element, Ka 2 K, has common

eigenvectors and satis�es the potential condition (2:22).

Kalnins and Miller [22] have produced a similar result to Theorem 3.1. In the

geodesic case, they require the use of n KTs. Using Theorem 3.1, we consider only

one KT; however, verifying the orthogonal integrability condition on the eigenvec-

tors can be di�cult.
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Remark 2 We observe that �i = 1 is a solution of (3:22) and (3:23); therefore,

the metric tensor, g, is necessarily an element of K.

Remark 3 In a two dimensional manifold, the basis of K is (g;K1) where K1

is independent of the metric. The critical set, 
, is the set of points at which K

has identical eigenvalues, that is, where K1 and g are proportional. Benenti and

Rastelli have shown that distinct and non-constant eigenvalues, �1 and �2, form a

parametrisation of the separable web [6].

Remark 4 As a corollary to the theorem, we observe that (n�1) �rst integrals, in

addition to the Hamiltonian, can be computed from K. The function Kab
papb+U(u)

is a �rst integral provided dU = 2KdV (2:21), as derived in Subsection 2.2.4. We

consider the n KTs, Ka, of the form (3:21), each with eigenvalues f�aigii : i =
1; : : : ; ng. Given smooth functions Ua : M ! R de�ned locally by dUa = 2KadV ,

the n functions

Ia = �aig
ii
p
2
i + Ua

are independent �rst integrals in involution. Referring to Remark 2, we observe that

in the case K0 = g, the corresponding �rst integral is the Hamiltonian scaled by a

factor of 2. The remaining (n � 1) elements of K generate the (n � 1) additional

�rst integrals.
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3.4 Example: Non-periodic, Finite Toda Lattice

We proceed to apply the Benenti theory to the aforementioned system, the non-

periodic, �nite dimensional Toda lattice. This system has been studied using

most of the known techniques of complete integrability including the Lax and bi-

Hamiltonian methods mentioned in Chapter 2. We use the classical approach to

Hamilton-Jacobi theory, in which the separable coordinates are related to the gen-

eralised physical position-momenta coordinates by a point transformation (2:9).

We show, using Theorem 3.1, that the lattice is separable via a point trans-

formation to separable coordinates in only the two dimensional case. For higher

dimensional lattices, there does not exist any separable coordinate system related

to the physical position-momenta coordinates by a point transformation. In the two

dimensional case, the trajectories are explicitly found by separation of variables.

The Levi-Civita criterion, Theorem 1.5, provides a local characterisation of sep-

arability. That is, it indicates whether or not a Hamiltonian is written in separable

coordinates. We observe that the only mixed second partial derivatives of H that

are not identically zero result from

@
2
H

@qi@qi+1
= �eqi�qi+1

;

hence, substituting (2:43) into the n2 (n � 1) equations of the Levi-Civita criterion

(1:20), we obtain (n� 1) equations with single terms,

�pipi+1eqi�qi+1

;

that never vanish; therefore, the Toda lattice is not separable in the given set of

Cartesian coordinates.
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3.4.1 n = 2

In this section, we derive an explicit solution for the non-periodic, two dimensional

Toda lattice using the Hamilton-Jacobian approach without a priori knowledge of

separability. We seek behaviour in agreement with that produced by other methods.

The orthogonal integrability of this system is well established. The existence

of orthogonally separable coordinates is veri�ed by showing that the conditions of

Theorem 3.1 are satis�ed. The eigenvalues are f�1; 1g and in a two dimensional

space the eigenvectors are necessarily orthogonally integrable. Alternatively, the

Bertrand-Darboux-Whittaker theorem [50] guarantees the separability of our sys-

tem as a Hamiltonian system with two degrees of freedom from the existence of a

second �rst integral quadratic in the momenta, H2 = p1p2 � eq1�q2 [8]. We observe

that the required condition on the potential provided by Whittaker [50] | that the

expression (a2 � b
2)V;12 + ab(V;22 � V;11) vanishes for some constants a; b 2 R| is

satis�ed. The expression V;22�V;11 vanishes identically; hence, any a = �b su�ces.
We conclude that orthogonal separable coordinates exist.

The �rst step is to �nd separable coordinates. As we showed in the preced-

ing subsection, the HJ equation for this system does not separate in the physical

position-momenta coordinates because the Levi-Civita criterion is not satis�ed. A

translation does not transform the Hamiltonian to a form that satisi�es the Levi-

Civita criterion. It is natural to proceed by trying a rotation. This choice is reason-

able because the system admits a �rst integral linear in momentum, H1 = p1 + p2

(see the bi-Hamiltonian example in Subsection 2.5.2). A suitable point transforma-

tion is a rotation of �=4 radians about the origin,

~q1 =
q
1 � q

2

p
2

; ~q2 =
q
1 + q

2

p
2

; (3.36)

thus,

~p1 =
p1 � p2p

2
; ~p2 =

p1 + p2p
2

:
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Dropping the tildes, we obtain the transformed Hamiltonian

H = 1=2p21 + 1=2p22 + e

p
2q1
: (3.37)

In this form, it is clear that the Levi-Civita criterion is trivially satis�ed because

the second derivative of the Hamiltonian with repect to any combination of position

and momenta variables is zero; hence, we have separability in these coordinates. We

note that rotations of 3�=4, 5�=4, or 7�=4 radians also yield separable coordinates;

furthermore, any transformation of the form ~qi = f
i(qi) of the new coordinates

preserves separability of the system.

We now proceed to �nd the complete integral W of the system of the form (1:8).

Using the separability ansatz (1:8), the Hamilton-Jacobi equation of the system,

1=2(W;1)
2 + 1=2(W;2)

2 + e

p
2q1 = E;

reduces to two ordinary di�erential equations

8<
:

1=2(W 0
2)

2 = 1=2�2;

1=2(W 0
1)

2 + 1=2�2 + e

p
2q1 = E:

(3.38)

We observe that � is the separation constant. Solving (3:38) by quadratures, we

obtain a complete integral, W , of the form

W = �Et+ 2

q
E � 1=2�2 � e

p
2q1

�2
p
E � 1=2�2 tanh�1

 q
E � 1=2�2 � ep2q1p

E � 1=2�2

!
+ �q

2
:

(3.39)

According to classical Hamilton-Jacobi theory, the partial derivatives @W=@E

and @W=@� are �rst integrals of the system. The orbits of the system may be

obtained by solving the equations @W=@E = c1; @W=@� = c2 (2:30). Using (3:39),
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these equations are

8>>>>>>><
>>>>>>>:

�t� 1p
E � 1=2�2

tanh�1
 q

E � 1=2�2 � e

p
2q1p

E � 1=2�2

!
= c1;

q
2 + �p

E � 1=2�2
tanh�1

 q
E � 1=2�2 � e

p
2q1p

E � 1=2�2

!
= c2:

Solving these equations for the transformed position coordinates, we obtain a solu-

tion for the orbits,

8<
:

q
1 = 1=

p
2 ln[(E � 1=2�2)(1 � tanh2((t+ c1)

p
E � 1=2�2))];

q
2 = �(t+ c1) + c2:

Converting to the original coordinates using the inverse transformation correspond-

ing to (3:36), we produce a closed form solution for the orbits,

8>>>>>>><
>>>>>>>:

q
1 = 1=2 ln[(E � 1=2�2)(1 � tanh2((t+ c1)

p
E � 1=2�2))]

+1=
p
2�(t+ c1) + 1=

p
2c2;

q
2 = �1=2 ln[(E � 1=2�2)(1 � tanh2((t+ c1)

p
E � 1=2�2))]

+1=
p
2�(t+ c1) + 1=

p
2c2:

(3.40)

It is obvious from the form of the solution that both c1 and c2 are inessential

constants. We may eliminate c1 by a time origin translation and c2 by a space

origin translation.

Substituting p2 = W;2 = �, from Hamilton's equation and (3:38), into (3:37),

using H = E, we see that E � 1=2�2 is strictly positive because the exponential

term is strictly positive and the remaining term is non-negative. Since the value of

the hyperbolic tangent function varies in the open interval (�1; 1), the second factor
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Figure 3.1: Trajectories of two particles in non-periodic Toda lattice

where c1 = c2 = 0 (to eliminate any translation from the origin), E = 100, and
� = 7. This corresponds to some initial value problem.

inside the logarithm term is also strictly positive; therefore, the orbits described by

(3:40) are well behaved; however, either of these factors can be arbitrarily small. In

fact the second tends to zero as time tends to positive or negative in�nity; therefore,

the logarithmic term, though bounded above, is not bounded below. It follows that

the particles exhibit unbounded motion (see Figure 3.1) in agreement with previous

results concerning the Toda lattice as a completely integrable Hamiltonian system.

It is well known that the non-periodic Toda lattice admits cylinders, rather than

tori, as the invariant submanifolds in the theory of Arnol'd-Liouville [2].

Although the Hamilton-Jacobi approach solves the non-periodic Toda lattice

with two degrees of freedom, the solution may be obtained more simply using the

Hamiltonian formalism. Consider the Hamiltonian for the transformed coordinates.

From the corresponding Hamiltonian (3:37), it follows that q2 is an ignorable co-

ordinate; thus, the system can be reduced to a one dimensional system. We solve

Hamilton's equations directly!
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Examining the equation

dp2

dt
= �@H

@q2
;

we conclude, since H is independent of q2, that p2 is constant with respect to time.

Setting p2 = �, we obtain

q
2 = �t+ q

2
0: (3.41)

Substituting � for p2, the Hamiltonian (3:37) becomes

H = 1=2p21 + 1=2�2 + e

p
2q1
:

Using the fact that H = E, we solve for p1. Substituting p1 into the Hamilton

equation,

dq1

dt
=
@H

@p1
;

we obtain the �rst order ordinary di�erential equation

dq1

dt
=
p
2

q
E � 1=2�2 � e

p
2q1;

where we have used the fact that H = E. This can be separated trivially, then

solved by quadratures to obtain

t+ t0 = � 1p
E � 1=2�2

tanh�1
�q

E � 1=2�2 � e

p
2q1p

E � 1=2�2

�
:

Solving for q1, we derive

q
1 = 1=

p
2 ln[(E � 1=2�2)(1� tanh2((t+ t0)

p
E � 1=2�2))]: (3.42)
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Converting (3:41) and (3:42) to the original position-momenta coordinates, we

produce a description of the trajectories that agrees with that found previously

by the Hamilton-Jacobi method (3:40). The relationships amongst the constants

appearing in the solution's di�erent forms may easily be obtained.

3.4.2 n = 3

In this section, we study the non-periodic, three dimensional Toda lattice in the

framework of Theorem 3.1 since the conclusion is di�erent from the case n = 2 and

the calculations extend naturally to the general case, n � 3.

We begin with the condition (2:22) on the characteristic K-tensor K. In this

case the potential V (q1; q2) = e
q1�q2 + e

q2�q3 and K is a KT in three dimensional

Euclidean space with the standard metric, g, whose components with respect to

the Cartesian coordinates q = (q1; q2; q3) are gij = diag(1; 1; 1):

The Killing tensor equation (2:19) with respect to Cartesian coordinates has the

form

Kij;k +Kjk;i +Kki;j = 0: (3.43)

Setting i = j = k in (3:43), we immediately observe that

Kii;i = 0: (3.44)

That is, the components Kii do not depend on the coordinate qi, for i = 1; 2; 3:

If exactly two of the indices are identical, then (3:43) implies a partial di�erential

equation of the form

Kii;j = �2Kij;i; i 6= j: (3.45)

In the case that all indices are distinct, (3:43) retains its form
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Kij;k +Kjk;i +Kki;j = 0; i 6= j 6= k 6= i: (3.46)

The integrability conditions for the Killing tensor equation (3:43) are the n2(n +

1)2=4 equations

Kij;kl = Kij;lk; 1 � i � j � n; 1 � k � l � n; (3.47)

representing the equality of the mixed second partial derivatives.

Solving the system of di�erential equations (3:44) (3:45) (3:46) subject to the

integrability conditions (3:47), we obtain the following expressions for the covariant

components of the tensor K:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

K11 = a(q2)2 + bq
2
q
3 + c(q3)2 + dq

2 + eq
3 + f;

K22 = a(q1)2 + hq
1
q
3 + i(q3)2 + jq

1 + kq
3 + l;

K33 = c(q1)2 + nq
1
q
2 + i(q2)2 + pq

1 + �q
2 + r;

K12 = �aq1q2 � 1
2hq

3
q
2 � 1

2jq
2 � 1

2bq
3
q
1 � 1

2dq
1 + 1

2n(q
3)2 + tq

3 + u;

K13 = �cq3q1 � 1
2bq

2
q
1 � 1

2eq
1 � 1

2nq
2
q
3 � 1

2pq
3 + 1

2h(q
2)2 + wq

2 + �;

K23 = �iq2q3 � 1
2nq

1
q
3 � 1

2�q
3 � 1

2hq
1
q
2 � 1

2kq
2 + 1

2b(q
1)2 � (t+ w)q1 + ;

(3.48)

where the twenty constants indicate the dimension of the related space of KTs,

calculated using known formulae, see, for example, [45].
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We use the fact that Kii is independent of q
i in (2:22) to derive an equivalent

system of partial di�erential equations. We let �j = K
i
jV;i = KijV;i since the

metric is the Kroenecker delta. In this notation, (2:22) becomes

1

2
(�i;j � �j;i)dq

j ^ dqi = 0; (3.49)

for each pair i 6= j. Calculating these functions using the Toda potential energy

function from (2:43), we obtain

8>>>>>>><
>>>>>>>:

�1 = K11(q
2
; q

3)eq
1�q2 +K12(q)(�eq1�q2 + e

q2�q3) +K13(q)(�eq2�q3);

�2 = K12(q)e
q1�q2 +K22(q

1
; q

3)(�eq1�q2 + e
q2�q3) +K23(q)(�eq2�q3);

�3 = K13(q)e
q1�q2 +K23(q)(�eq1�q2 + e

q2�q3) +K33(q
1
; q

2)(�eq2�q3):

(3.50)

For j = 1; i = 2, substituting (3:50) into (3:49), we derive the condition

1
2 [K12;1e

q1�q2 +K12e
q1�q2 +K22;1(�eq1�q2 + e

q2�q3)�K22e
q1�q2

+K23(�eq2�q3)]� 1
2[K11;2e

q1�q2 �K11e
q1�q2 +K12;2(�eq1�q2 + e

q2�q3)

+K12(e
q1�q2 + e

q2�q3) +K13;2(�eq2�q3) +K13(�eq2�q3)] = 0

) (K12;1 +K12 �K22;1 �K22 �K11;2 +K11 +K12;2 �K12)e
q1�q2

+(K22;1 �K23;1 �K12;2 �K12 +K13;2 +K13)e
q2�q3 = 0:

(3.51)
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Similarly, for j = 2; i = 3, we obtain

[(K13;2 �K13 �K23;2 +K23)� (K12;3 �K22;3)]e
q1�q2

+[(K23;2 �K33;2 �K33)� (K22;3 �K22 �K23;3)]e
q2�q3 = 0;

(3.52)

and, for j = 1; i = 3, we produce

[(K13;1 +K13 �K23;1 �K23)� (K11;3 �K12;3)]e
q1�q2

+[(K23;1 �K33;1)� (K12;3 �K12 �K13;3 +K13)]e
q2�q3 = 0:

(3.53)

By requiring that the coe�cients of the exponential terms of (3:51), (3:52), and

(3:53) vanish independently, we obtain the six conditions:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

K12;1 �K22;1 �K22 �K11;2 +K11 +K12;2 = 0;

K13;2 +K22;1 �K23;1 �K12;2 +K13 �K12 = 0;

K13;2 �K13 �K23;2 +K23 �K12;3 +K22;3 = 0;

K23;2 �K33;2 �K33 �K22;3 +K22 +K23;3 = 0;

K13;1 +K13 �K23;1 �K23 �K11;3 +K12;3 = 0;

K23;1 �K33;1 �K12;3 +K12 +K13;3 �K13 = 0:

(3.54)

We substitute the Killing tensor component equations (3:48) into (3:54) to derive
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that Kij has the constant form

K11 = K22 = K33 = a; K12 = K13 = K23 = b:

The characteristic equation of the matrix de�ning K is

(a� �)3 � 3b2(a� �) + 2b3 = 0

) (a� �+ 2b)(a� �� b)2 = 0:

It follows that if b 6= 0, then K has an eigenvalue with multiplicity two. Otherwise,

the only eigenvalue has multiplicity three; thus, there is no characteristic K-tensor

K for the system (2:42) satisfying the conditions of Theorem 3.1; hence, for the

Hamiltonian system (2:42), there is no point transformation (2:9) from the original

position-momenta coordinates to a separable coordinate system.

The calculations of this section can be generalised to show that the non-periodic,

�nite dimensional Toda lattice cannot be separated via a point transformation for

any dimension n � 3. For an arbitrary dimension, n � 3, the Killing tensor has

the constant form K
ii = b = constant, K ij = a = constant, 1 � i 6= j � n.

Our conclusion follows from Theorem 3.1 using the fact that the matrix does not

have n distinct eigenvalues. Similarly, the n dimensional periodic Toda lattice,

for n � 3, cannot be transformed to a separable coordinate system by a point

transformation. The matrix corresponding to the Killing tensor has all entries

equal, that is, K ij = a =constant, 1 � i; j � n. For details, see [8].



Chapter 4

Finding Separable Coordinates

Theorem 3.1 is very useful because it provides a criterion to determine whether or

not there exist orthogonal separable coordinates, related to the position-momenta

coordinates by a point transformation (2:9), for a Hamiltonian (1:6); however, if

separable coordinates exist, we need a procedure to �nd them. In this chapter,

we apply the method of moving frames to the intrinsic characterisation theory of

Benenti to produce such a formalism for low dimensional Hamiltonian systems.

The method is applied to a two dimensional Riemannian manifold of arbitrary

curvature to �nd the general form of the separable metrics, and their corresponding

Killing tensors, separable potentials, and second �rst integrals. As an example, we

investigate Euclidean 2-space, E2, and the surfaces of constant curvature, recovering

known results. Using our formalism, we also recover the superseparable potentials

of Euclidean 2-space.

4.1 Using the Moving Frame Formalism

Benenti and Rastelli have developed an algorithm that determines separable co-

ordinates but it is computationally intensive, see, for example, [37]. We propose

an alternate method that studies the Killing tensor in a rigid moving frame, the

orthonormal frame introduced in subsection 3.2.1.

81
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The dual bases of moving frame vector �elds, fEag, and !-frame 1-forms, fEag,
are de�ned by (3:14), and (3:15), respectively. As discussed in Subsection 3.2.1, in

the rigid moving frame, the component matrices of the metric and KT are diago-

nalised, (3:17) and (3:20), respectively. The orthogonal integrability condition of

Theorem 3.1 implies the forms (3:27) and (3:28) of the functions in the de�nitions

of fEag, and fEag given by (3:14), and (3:15), respectively.

In addition, we must consider Cartan's �rst and second structure equations.

The Levi-Civita connection is torsion-free by de�nition; therefore, the torsion 2-

form vanishes identically. This condition on the �rst Cartan structure equation,

leads to

dE
a + !

a
b ^ Eb = 0; (4.1)

where the connection 1-form, !ab, is de�ned by

!
a
b := �cb

a
E

c
: (4.2)

The curvature of the surface is described by Cartan's second structure equation

d!
a
b + !

a
c ^ !cb = �a

b; (4.3)

where

�a
b :=

1

2
R
a
bcdE

c ^ Ed (4.4)

is the curvature 2-form.

By solving the three equations (2:19), (3:24), and (4:1), we obtain all possible

separable orthogonal coordinate systems for the pure geodesic Hamiltonian, H =
1
2
g
ij
pipj, on M . If the potential energy term, V , is non-zero, then the additional

restriction (2:22) must be considered. This determines the general form of the

separable potential for each coordinate system.
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4.2 Two Dimensional Riemannian Manifold

In this section, we investigate a general two dimensional Riemannian manifold, M .

We develop the forms of the orthogonal integrability condition on the frame vectors

(3:24), Killing tensor equation (2:19) and its integrability conditions, and Cartan's

�rst equation (4:1). Then we solve the cases of the associated equations in the

following subsections.

In two dimensions, the orthogonal integrability condition on the Killing ten-

sor eigenvectors, that is, the vectors of the moving frame, (3:24) is automatically

satis�ed.

With respect to the moving frame, we know that the connection coe�cients

satisfy the skew-symmetry property,

�abc = ��acb: (4.5)

From the de�nition of the connection 1-form (4:2), we observe that

!ab = �!ba; (4.6)

in the moving frame. Because the manifold is two dimensional, we conclude from

(4:5) and (4:6) that the connection coe�cients have only four non-zero components,

�112 = ��121 and �212 = ��221, and the connection 1-form has only two non-zero

components, !12 = �!21. To simplify the form of the equations, we introduce the

notation

�(u1; u2) = �112 = ��121;

�(u1; u2) = �212 = ��221:
(4.7)

On a two dimensional Riemannian manifold, the metric in the moving frame
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(3:17) is

gab = diag(1; 1): (4.8)

This implies that raising and lowering indices using the metric tensor is simpli-

�ed. The component functions of any quantity in terms of the moving frame are

unchanged by these procedures. For example, from (4:7), we have

�11
2 = �112 = � = ��121 = ��121;

�21
2 = �212 = � = ��221 = ��221;

(4.9)

and the remaining components are zero.

The Killing tensor equation is a tensor equation; thus, the natural frame form

(2:19) is identical to the moving frame form,

K(ab;c) = 0: (4.10)

In general, the covariant derivative of a 2-covariant tensor may be written using

the frame vector �elds and connection coe�cients as

Kab;c = EcKab �Kd1b�ca
d1 �Kad2�cb

d2:

Using the facts that the KT is diagonal, the connection coe�cients are skew-

symmetric on the last two indices (4:5), and the metric is the identity matrix (4:8),

we simplify each of the four cases of the Killing tensor equation (4:10):

K(11;1) = 0 ) K11;1 = 0

) E1K11 = 0;
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K(11;2) = 0 ) K11;2 + 2K12;1 = 0

) E2K11 � 2K22�11
2 � 2K11�12

1 = 0;

K(12;2) = 0 ) K22;1 + 2K12;2 = 0

) E1K22 � 2K22�21
2 � 2K11�22

1 = 0;

K(22;2) = 0 ) K22;2 = 0

) E2K22 = 0:

Using (3:20) and (4:9), we write these equations as

E1�1 = 0;

E2�1 = 2�(�2 � �1);

E1�2 = 2�(�2 � �1);

E2�2 = 0:

(4.11)

We may conclude immediately that �1 is independent of u
1 and �2 is independent of

u
2; furthermore, �1 is constant if and only if � is zero and �2 is constant if and only

if � is zero. The su�ciency of the � = 0 condition is trivially true. The necessity

follows from the hypothesis of Theorem 3.1 that requires �1 and �2 be distinct.

We must also investigate the associated integrability conditions for the KT. The

�rst step is to derive the form of the commutator [E1; E2]. The moving frame
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is torsion-free; therefore, the structure coe�cients satisfy C
c
ab = �ab

c � �ba
c. In

general, [Ea; Eb] = C
c
abEc; hence,

[E1; E2] = ��E1 � �E2; (4.12)

using the notation (4:9). We proceed to apply (4:12) to the two non-zero compo-

nents of the KT, simplifying using the relations (4:11), to produce partial di�erential

equations for � and � with respect to the coordinates. We consider [E1; E2]�1,

E1E2�1 �E2E1�1 = ��E1�1 � �E2�1

) 2(�2 � �1)E1� + 2�(E1�2 � E1�1) = �2��(�2 � �1)

) E1�(�2 � �1) = �3��(�2 � �1):

Since Theorem 3.1 requires that the eigenvalues be distinct, we conclude that

E1� = �3��: (4.13)

Investigating the integrability condition [E1; E2]�2, we similiarly produce the equa-

tion

E2� = 3��: (4.14)

Finally, we examine Cartan's equations. From the �rst equation (4:1), we derive

a useful equation for dEa and also express � and � in terms of f1, f2 and their

derivatives with respect to the coordinates, u1 and u2.

We substitute (4:2) into (4:1) to obtain

dE
a = �cb

a
E

b ^ Ec
:
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Using the skew-symmetry on �cb
a and the simplifying notation (4:9), we obtain

dE
1 = �E

1 ^ E2
;

dE
2 = �E

1 ^ E2
:

To clarify the process of �nding expressions for � and �, we use the original notation

(3:15) in (4:1) to derive

dE
a + !

a
b ^ Eb = 0

) d(haidu
i) + �cb

a
E

c ^ Eb = 0

) Efh
a
ih

f
jdu

j ^ dui + �cb
a
h
c
jh

b
idu

j ^ dui = 0

) Efh
a
[ih

f
j] + �cb

a
h
c
[jh

b
i] = 0:

(4.15)

We introduce another notation change to avoid ambiguity in the remaining cal-

culations,

u := u
1
; v := u

2
:

For the coe�cient functions of the moving frame vectors and 1-form, we let

f(u; v) := f
1(u; v); g(u; v) := f

2(u; v):

Evaluating the result of (4:15) in the cases a = 1 and a = 2, we produce

� = �f;v
fg
; (4.16)

where ;v := @=@v, and
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� =
g;u

fg
; (4.17)

where ;u := @=@u, respectively.

We proceed by examining Cartan's second equation (4:3). In a moving frame

on any two dimensional Riemannian manifold, the equations d!1
1 + !

1
c ^ !c1 = 0

and d!
2
2 + !

2
c ^ !c2 = 0 are identically satis�ed. In the remaining case, we

observe that !1
c ^ !c2 = !

1
1 ^ !1

2 + !
1
2 ^ !2

2 = 0 by the skew-symmetry of

!
a
b inherited from !ab; hence, (4:3) reduces to d!

1
2 = �1

2. In a two dimensional

Riemannian manifold, the curvature 2-tensor can be written, from the de�nition

(4:4), as �1
2 = 1

2
R
1
2edE

e ^ Ed by using the skew-symmetry on the last pair of

indices of the Riemann tensor. Using this fact and the de�nition of !ab, we see that

Cartan's second equation is equivalent to

d�c2
1 ^ Ec + �c2

1
dE

c =
1

2
R
1
2edE

e ^ Ed
:

We substitute for dEc from Cartan's �rst equation (4:1) to obtain

Ed�c2
1
E

d ^ Ec + �c2
1(�!cd ^ Ed) = 1

2R
1
2edE

e ^ Ed

) E[e�d]21 � �c21�[ed]c =
1
2R12ed

) E1�221 � E2�121 � �121�121 � �221�122 + �121�211 + �121�211 = R1212:

Removing the zero terms and writing with the simpli�ed notation (4:7), we obtain

the partial di�erential equation

�E1� + E2� � �
2 � �2 = R1212: (4.18)

With this formulation on a general two dimensional Riemannian manifold, we anal-
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yse the three cases: � and � both zero, only one of � and � zero, and neither � nor

� zero. The general forms of the separable metric

ds
2 = (E1)2 + (E2)2; (4.19)

and the associated Killing tensor (3:20), up to some unknown functions or constants,

are derived in each case. With the KT determined, we derive the form of the most

general separable potential, V (u; v), admitted. We must convert the separability

condition described in Chapter 2, d(KdV ) = 0 (2:22), into a useful form,

d((Ka
bEaV )E

b) = 0

) d(Ka
bEaV ) ^ Eb + (Ka

bEaV ) ^ dEb = 0

) (EcK
a
b)(EaV )E

c ^ Eb +K
a
b(EcEaV )E

c ^ Eb � (Ka
bEaV )!

b
d ^ Ed = 0;

using Cartan's �rst equation (4:1). It follows that

(EcK
a
b)(EaV )E

c ^ Eb +K
a
b(EcEaV )E

c ^ Eb � (Ka
dEaV )�cb

d
E

c ^ Eb = 0;

using the de�nition of !ab (4:2), then permuting dummy indices in the �nal term.

After eliminating the zero terms and converting to the simpli�ed notation de�ned

by (4:9); (3:20), we derive

(E[cK
a
b])(EaV ) +K

a
[b(Ec]EaV )� (Ka

dEaV )�[cb]
d = 0

) (E1�2)(E2V ) + �2(E1E2V ) + ��1(E1V )� (E2�1)(E1V )� �1(E2E1V )

+��2(E2V ) = 0
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) 2�(�2 � �1)(E2V ) + �2(E1E2 + �E2)V � 2�(�2 � �1)(E1V )

��1(E2E1 � �E1)V = 0;

using the Killing tensor equations (4:11). We observe that

2�(�2 � �1)(E2V ) + (�2 � �1)(E1E2 + �E2)V � 2�(�2 � �1)(E1V ) = 0;

using the commutator relation (4:12). Since the eigenvalues of the KT must be

distinct, we simplify to obtain

E1E2V + 3�E2V � 2�E1V = 0: (4.20)

Once V is determined, we derive the second �rst integral (4:8) as discussed in

Remark 4 of Subsection 3.3.2. Since the KT is diagonal, the form of the second

�rst integral in the moving frame is

K = �1p1
2 + �2p2

2 + U(u; v): (4.21)

We calculate U by solving the tensor equation (2:21). Writing this condition in the

moving frame, (EbU)E
b = (2Ka

bEaV )E
b, we immediately obtain the system

8>><
>>:

E1U = 2�1E1V;

E2U = 2�2E2V:

(4.22)

Since the momentum is a vector �eld, its frame components, pa = (p1; p2), are

related to its components in the natural basis, pi = (pu; pv), by
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pa = ha
i
pi

) p1 =
1
f
pu; p2 =

1
g
pv;

(4.23)

using (3:27); therefore, the Hamiltonian function (1:6) written in the separable

coordinates is

H =
1

2

�
p
2
u

f
2
+
p
2
v

g
2

�
+ V (u; v):

Using (4:23), we write the second �rst integral (4:21) in the coordinates,

K =
�1pu

2

f
2

+
�2pv

2

g
2

+ U(u; v): (4.24)

4.2.1 Case I: � = � = 0

It is an immediate consequence of equations (4:16) and (4:17) with � and � equal

to zero, that f is independent of v and g is independent of u, that is, f = f(u)

and g = g(v); hence, E1 = f(u)du and E2 = g(v)dv. This implies that the metric

(4:19) has the form ds
2 = f

2(u)du2 + g
2(v)dv2. Consider f(u)du. There exists a

coordinate transformation ~u = ~u(u) such that d~u = f(u)du. Simliarly, there exists

coordinate transformation ~v = ~v(v), such that d~v = g(v)dv. Removing the tildes

to simplify the notation, we have

f = g = 1; (4.25)

therefore, the metric (4:19) is

ds
2 = du

2 + dv
2
: (4.26)

This is the metric for Cartesian separable coordinates.
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We observe that, for this case, Cartan's second equation (4:18) reduces to

R1212 = 0;

that is, the curvature vanishes everywhere, because both � and � are zero. This

means that the surface is at, that is, the manifold is necessarily Euclidean space,

E2; thus, we have proven that Cartesian separable coordinates exist only on Eu-

clidean spaces.

Since f = g = 1, we also observe that the frame and natural basis components

of vectors and forms are identical; thus, the moving frame is the natural basis.

To determine the KT for Cartesian coordinates, we substitute (4:25), � = 0 and

� = 0 into the Killing tensor equations (4:11). This gives the trivial system

�1;u = �1;v = �2;u = �2;v = 0;

with the solution �1 = c1 and �2 = c2, both constant; hence, the KT is

K = diag(c1; c2): (4.27)

We observe that this may be written as a linear combination of two KTs, K =

c1g+(c2�c1)K1, whereK1 = diag(0; 1), consistent with the theory of Kalnins and

Miller.

We seek the form of the separable potential, V , for this case. Substituting

� = � = 0 into (4:20), we obtain V;vu = 0 since f = g = 1 (4:25). We immediately

conclude that the potential is separable, that is,

V = V1(u) + V2(v): (4.28)
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Substituting the form of V into the di�erential equations for U (4:22), we produce

8>><
>>:

U;u = 2c1V1;u;

U;v = 2c2V2;v;

therefore, U has the form

U = 2c1V1(u) + 2c2V2(v): (4.29)

Using (4:27), (4:29), we know that the second �rst integral (4:24) has the form

K = c1pu
2 + c2pv

2 + 2c1V1(u) + 2c2V2(v): (4.30)

We want a second �rst integral that is functionally independent of the Hamiltonian,

H =
1

2
(pu

2 + pv
2) + V1 + V2;

however, clearly (4:30) contains H. Removing a constant multiple times H from

(4:30), which is invariant, then dividing by 2(c1 � c2), we derive a second �rst

integral independent of H,

K = 2c1H + (c2 � c1)p
2
v + 2(c2 � c1)V2

) K = 1
2pv

2 + V2(v):

Since the separable coordinates are Cartesian, the second �rst integral in Cartesian

coordinates, (x; y), is

K =
1

2
py

2 + V2(y): (4.31)
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4.2.2 Case IIa: � = 0, � 6= 0

We solve for f by substituting � = 0 into (4:16) to obtain f;v = 0. This im-

plies that f is independent of v, that is, that f = f(u). Performing a coordinate

transformation on u, then dropping the tilde, we obtain

f = 1: (4.32)

Substituting � = 0 into (4:14), we obtain E2� = 0. This implies that � is indepen-

dent of v, that is,

� = �(u): (4.33)

We proceed to determine the general form of g(u; v). Substituting (4:17) with (4:32)

into (4:14), we obtain

1

g

�
g;u

g

�
;v
= 0 ) (ln g);uv = 0;

hence, ln g separates as a sum of functions A(u) + B(v), that is, g = C(u)E(v).

Again, we �nd a coordinate system, by transformation on the independent variable

v, so that

g = g(u); (4.34)

hence, the metric has the form

ds
2 = du

2 + g
2(u)dv2: (4.35)

We now derive the curvature tensor component in this case. Substituting (4:32)

and (4:34) into (4:17), we �nd that � has the form

� =
g;u

g
: (4.36)
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To calculate R1212, we substitute � = 0 and � (4:36) into the simpli�ed Cartan's

second structure equation (4:18),

R1212 = �
�
g;u

g

�
;u
�
�
g;u

g

�2

) R1212 = �g;uu
g
: (4.37)

We observe that, in this case, R1212 depends on only one coordinate, u. Since the

metric (4:35) is independent of v, the coordinate is ignorable; thus, it is natural

that the curvature has no v dependence.

Now we derive the KT. Substituting (4:32), (4:34), � = 0, and (4:36) into the

Killing tensor equations (4:11), we produce a system of di�erential equations,

8>><
>>:

�1;u = �1;v = �2;v = 0;

�2;u =
2g;u
g

(�2 � �1):

We conclude immediately that �1 is equal to a constant, say c1. Then the di�erential

equation for �2, which is independent of v, is solved as

d�2

du
= 2(ln g);u(�2 � c1)

)
Z

d�2

�2 � c1 = 2

Z
(ln g);udu

) ln(�2 � c1) = 2 ln g(u) + d

) �2 = c2g
2(u) + c1;
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hence, the KT is

K = diag(c1; c2g
2(u) + c1): (4.38)

Again, we observe that the KT can be written as the sum of two KTs: K =

c1g + c2K1, where K1 = diag(0; g2(u)).

We proceed to calculate the separable potential, V . Substituting � = 0 and

f = 1 (4:32) into (4:20), we obtain the partial di�erential equation

3�E2V + E1E2V = 0

) 3�
g
V;v +

�
1
g
V;v

�
;u
= 0

) 2g;u
g
2 V;v +

1
g
V;vu = 0;

where (4:17) has been used. To simplify this problem, we multiply by an integrating

factor, g3,

) 2gg;uV;v + g
2
V;vu = 0

) (g2V;v);u = 0

) V =
h2(v)

g
2(u)

+ h3(u);

where h1(v), h2(v), and h3(u) are arbitrary functions of one variable; hence, the

separable potential has the form

V = V1(u) +
V2(v)

g2(u)
: (4.39)
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To �nd U , we substitute this form of V into (4:22),

8>>><
>>>:

U;u = 2c1

�
V1;u � 2g;u

g
3 V2

�
;

U;v = 2c2V2;v +
2c1
g
2 V2;v;

)

8>>><
>>>:

U = 2c1V1 +
2c1V2
g
2 + h1(v);

U = 2c2V2 +
2c1V2
g
2 + h2(u):

Equating the two forms of U , we obtain h1(v) = 2c2V2 and h2(u) = 2c1V1; thus,

the potential has the form

U = 2c1V1(u) + 2c2V2(v) +
2c1V2(v)

g
2(u)

: (4.40)

Substituting (4:38), (4:40) into (4:24) then removing the Hamiltonian compo-

nent,

H =
1

2

�
p
2
u +

p
2
v

g
2

�
+ V1 +

V2

g
2
;

we derive the form of the second �rst integral

K = c1p
2
u +

(c2g
2 + c1)p

2
v

g
2 + 2c1v1 + 2c2V2 +

2c1V2
g
2

) K = 2c1H + c2p
2
v + 2c2V2

) K = 1
2pv

2 + V2(v):

(4.41)
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4.2.3 Case IIb: � 6= 0, � = 0

Despite the sign di�erences in the associated equations, the solution in this subcase

is similar to that of case IIa. The metric can be written in the form

ds
2 = f(v)2du2 + dv

2
:

Modulo an interchange of the coordinates, this is identical to the metric of case

IIa. Consistent with this result, the forms of the Killing tensor, potentials V and

U and second �rst integral are identical to those of case IIa after the coordinates

are interchanged; hence, we consider only case II: � = 0, � 6= 0 when we specialise

to Euclidean 2-space and the surfaces of constant curvature.

4.2.4 Case III: �� 6= 0

With the moving frame formalism, the investigation of the general case is as simple

as either of the previous cases. We begin by proving that the functions f(u; v) and

g(u; v) are identical in this case.

In addition to the two equations (4:16), and (4:17), Cartan's �rst equation, in

conjunction with the integrability conditions, implies that the two functions f(u; v)

and g(u; v) are identical provided that neither � nor � is zero. Comparing (4:13),

and (4:14), we obtain

E1� = �E2�:

Substituting (4:16) into the lefthand side and (4:17) into the righthand side, we

obtain the sequence of partial di�erential equations

1
f

�
f ;v

fg

�
;u
= 1
g

�
g;u

fg

�
;v
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) f ;uv

f
� f ;uf ;v

f
2 � g;uv

g
+
g;ug;v

g
2 = 0

) [(ln f � lng);u];v = 0

)
�
ln
f

g

�
;uv

= 0;

therefore, ln(f=g) is separable. That is, ln(f=g) = A(u) +B(v) for unknown func-

tions A(u) and B(v). Exponentiating this relationship, we obtain

f = gC(u)D(v);

whereC(u) = exp(A(u)),D(v) = exp(B(v)). We consider f(u; v)du = g(u; v)C(u)D(v)du.

There exists a coordinate system such that d~u = C(u)du; hence, we have established

that f(~u; v) = g(~u; v)D(v). Now we consider g(~u; v)dv = g(~u; v)D(v)
�
dv=D(v)

�
.

There exists a coordinate system such that d~v = dv=D(v). This implies that

f(~u; ~v) = g(~u; ~v). For brevity of notation, we remove the tildes, then write

f(u; v) = g(u; v); (4.42)

henceforth, in the calculations for the case III, we use this simpli�cation (4:42).

We proceed to determine the general form of the metric.

We substitute (4:16) and (4:17) into (4:13) to obtain

1
f

�
�f;v
f
2

�
;u
= 3
f
4f;uf;v

) �
h
f
2
;v

2f3

i
;u
= 3
f
3

f
2
;u

2f
f
2
;v

2f
;
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) �f
2
;vu

2f3
+
3f2;v
2f4

f
2
;u

2f
=

3f2;uf
2
;v

4f5

) f
2
;vu = 0:

This implies that f2 is separable,

f
2 = A(u) +B(v): (4.43)

We observe that this condition is a direct result of the vanishing of the torsion and

the integrability condition on the Killing tensor equations. We conclude that in any

two dimensional Riemannian manifold the integrability conditions for the Killing

tensor equation imply that the metric may be written as

ds
2 = (A(u) +B(v))(du2+ dv

2): (4.44)

We observe that, in agreement with Theorem 1.3, the metric (4:44) is in Liouville

form (1:16).

We seek the form of R1212 in this case. Substituting f = g from (4:42) into (4:16)

and (4:17), we obtain

� =
�B;v

2
p
(A+B)3

;

and

� =
A;u

2
p
(A+B)3

;

respectively. Substituting � and � into the simpli�ed form of Cartan's second



x 4.2. Two Dimensional Riemannian Manifold 101

equation (4:18), we obtain

R1212 = � 1p
A+B

�
A;u

2
p
(A+B)3

�
;u

� 1p
A+B

�
B;v

2
p
(A+B)3

�
;v

� (B;v)
2

4(A+B)3
� (A;u)

2

4(A+B)3

) R1212 =
1

2(A+B)2

�
�A;uu �B;vv +

(A;u)
2 + (B;v)

2

A+B

�
:

Rewriting, we obtain

(A+B)(A;uu +B;vv) + 2(A+B)3R1212 = (A;u)
2 + (B;v)

2
: (4.45)

We simplify (4:45) in the case that the curvature R1212 is constant. After taking the

partial derivatives of (4:45) with respect to u, then with respect to v, we produce

a separable di�erential equation,

A;uB;vvv +B;vA;uuu + 12R1212A;uB;v(A+B) = 0

, A;uuu

A;u
+ 12R1212A = �

�
B;vvv

B;v
+ 12R1212B

�
= k

2
;

(4.46)

for some constant k � 0. We observe that the product A;uB;v is non-zero because

�� 6= 0; therefore, the coupled and separated equations in (4:46) are equivalent. In

addition, there is no loss of generality in setting the separation constant equal to a

non-negative quantity. If it were negative, we would interchange the roles of A and

B by performing a coordinate transformation that interchanges the independent

variables, u and v, to produce the above form.

We proceed to �nd the form of the KT. Substituting (4:16) and (4:17) with (4:43)
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into (4:11), we obtain the following system of di�erential equations,

�1;u = �2;v = 0; (4.47)

�1;v =
B;v

A+B
(�1 � �2); (4.48)

�2;u =
A;u

A+B
(�2 � �1): (4.49)

From (4:47), we conclude that �1 is independent of u; therefore, �1;v=B;v is a func-

tion of only v. Using this fact in (4:48), we conclude that (�1 � �2)=(A + B) is a

function of only v, say

�1 � �2

A+B
= �1(v): (4.50)

Similarly, (4:47) implies that �2 is independent of v and (4:49) implies that (�2 �
�1)=(A+B) is a function of only u, say

�2 � �1

A+B
= �2(u): (4.51)

Comparing (4:50) and (4:51), we conclude that

��1(v) = �2(u) = �;

where � is a separation constant. Using this relationship we substitute (4:50) and

(4:51) into (4:48) and (4:49) to obtain the simple relationships

�1;v = ��B;v;

�2;u = �A;u;
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respectively. Solving these equations, we obtain

8>><
>>:

�1 = ��B(v) + c1;

�2 = �A(u) + c2:

(4.52)

Substituting �1 and �2 into (4:51), we derive

�A+ c2 + �B � c1
A+B

= �

) � + c2 � c1
A+B

= �

) c1 = c2 = c:

Substituting for c1 and c2 in (4:52), we determine that the KT (3:20) is of the form

K = diag(��B(v) + c; �A(u) + c): (4.53)

This KT is a linear combination of the metric and K1 = diag(�B(v); A(u)), K =

cg+�K1; therefore, we have shown that the KTs produced by the theory of Benenti,

Theorem 3.1, using our moving frame method, agree with the theory of Kalnins

and Miller [22] in each case.

We use the fact that f and g are identical in this case to simplify the general

equation for V (4:20),

3�E2V + E1E2V � 2�E1V = 0

) 3f;u
f
3 V;v +

1
f

�
1
f
V;v

�
;u
+
2f;v
f
3 V;u = 0

) 2f;u
f
3 V;v +

1
f
2V;vu +

2f;v
f
3 V;u = 0:
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To simplify this problem, we multiply by an integrating factor, f4,

) 2ff;uV;v + f
2
V;vu + 2ff;vV;u = 0

) f
2
;uV;v + f

2
V;vu + f

2
;vV;u = 0:

The solution is obvious after we substitute for f2 using (4:43),

) A;uV;v + (A+B)V;vu +B;vV;u = 0

) [(A+B)V ];uv = 0:

We observe that the quantity (A+ B)V is additively separable; thus, the form of

V is

V =
V1(u) + V2(v)

A(u) +B(v)
: (4.54)

Using the above form of V in (4:22), we integrate to obtain

8>><
>>:

U = 2(��B + c)
�
V1 + V2
A+B

�
+ h1(v);

U = 2(�A+ c)
�
V1 + V2
A+B

�
+ h2(u);

)

8>>><
>>>:

U =
[2(��B + c)V2 +Bh1] + (�2�BV1 +Ah1) + 2cV1

A+B
;

U =
[2(�A+ c)V1 +Ah2] + (2�AV2 +Bh2) + 2cV2

A+B
;

for arbitrary functions of one variable, h1(v) and h2(u). The two representations of

U must be equivalent if a solution exists. Comparing the terms dependent on only
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v, we observe that

h1 = 2�V2: (4.55)

Similarly, if we equate the terms dependent on only u, we derive that

h2 = �2�V1: (4.56)

Using (4:55) and (4:56) for h1 and h2, respectively, we obtain identical mixed terms

for each representation of U ; therefore, U is of the form

U =
2(��B(v) + c)V1(u) + 2(�A(u) + c)V2(v)

A(u) +B(v)
: (4.57)

To �nd the second �rst integral, we substitute (4:53) and (4:57) into (4:24), and

then remove the Hamiltonian,

H =
1

2

�
p
2
u + p

2
v

A(u) +B(v)

�
+

V1 + V2

A(u) +B(v)
;

dependence. We obtain

K =
(��B + c)p2u + (�A+ c)p2v + 2(��B + c)V1 + 2(� + c)V2

A+B

) K = 2cH +
��Bp2u + �Ap

2
v � 2�BV1 + 2�AV2
A+B

) K =
�B(v)p2u +A(u)p2v � 2B(v)V1(u) + 2A(u)V2(v)

2
�
A(u) +B(v)

� :

(4.58)

We have found the general solution for the metric, KT, potentials, U and V , and

second �rst integral in terms of the arbitrary functions A(u) and B(v) in the Liou-

ville metric (4:44).
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On the surfaces of constant curvature and Euclidean space, E2, we determine

the metric for each separable coordinate system. From this, we restrict the form

of the admitted KT, potentials and second �rst integral. We begin by examining

Euclidean space, E2.
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4.3 Euclidean 2-Space, E2

As mentioned in case I, Euclidean space, En, is characterised by the vanishing of

the curvature tensor component, R1212; therefore, Cartan's second equation (4:18)

simpli�es to

�E1� + E2�� �
2 � �

2 = 0: (4.59)

We observe that the vanishing of the curvature is unrelated to the existence of a

Killing tensor because (4:59) is independent of (4:13) and (4:14).

The set of di�erential equations (4:13), (4:14), (4:16), (4:17), and (4:59) are now

solved to produce all the separable metrics in Euclidean space, E2. Since Euclidean

space is at, there exist coordinate transformations from the separable coordinates

to Cartesian coordinates in which the metric is Euclidean. At the singular points of

the metric, that is, where the eigenvalues of the KT are equal, analytic extensions

are used to extend the separable coordinates to the entire space. Once the metric

has been derived, we determine the form of the associated Killing tensor, K. This

determines the specialised form of the potentials U and V and the second �rst

integral, K, for the corresponding separable coordinates.

4.3.1 Case I: � = � = 0

This case was completely analysed in the general Riemannian treatment because

� = � = 0 implies that the manifold is Euclidean. The metric (4:26) is Euclidean

(since the separable coordinates are Cartesian), the KT is constant (4:27), and the

second �rst integral is (4:31). The forms of the separable potentials, V and U ,

were determined to be (4:28) and (4:29), respectively. This is the only constant

curvature surface in which Cartesian separable coordinates exist.
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4.3.2 Case II: � = 0, � 6= 0

In Euclidean 2-space, we have the simpli�ed Cartan's second equation (4:59). Using

it, we determine the form of the function C(u) found in the metric (4:35) and KT

(4:38) for this case of the general Riemannnian manifold.

Using � = 0, (4:32), and (4:33) in (4:59), we obtain a di�erential equation for �,

d�

du
= ��2:

This separates to yield � = (u+ c1)
�1. Translating u to eliminate the constant, we

have

� =
1

u
: (4.60)

We proceed to solve for g by substituting (4:32) and (4:60) into (4:17) to obtain

the separable di�erential equation

g;u

g
=

1

u
:

The solution is ln g = ln u+ h(v) for some function of integration h(v). Solving for

g, we obtain g = ue
h(v). Performing a coordinate transformation on v to eliminate

the factor dependent on v, then removing the tilde, we simplify the expression for

g,

g = u;

hence, the metric has the form

ds
2 = du

2 + u
2
dv

2
: (4.61)

We recognise (4:61) as the Euclidean metric in polar coordinates. The transforma-
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tion to Cartesian coordinates is given by

x = u cos v;

y = u sin v;
(4.62)

where 0 � u <1; 0 � v < 2�.

To determine the KT, we recall that g(u) = u. Substituting this into the general

form of the KT for case II (4:38), we �nd that

K = diag(c1; c2u
2 + c1); (4.63)

a linear combination of the metric, g, and K1 = diag(0; u2).

Substituting g(u) = u into (4:39) and (4:40), we obtain the separable potentials

in this case for E2,

V = V1(u) +
V2(v)

u2
; (4.64)

and

U = 2c1V1(u) + 2c2V2(v) +
2c1V2(v)

u
2

:

The form of the second �rst integral was calculated in the associated Riemannian

case to be (4:41).

4.3.3 Case III: �� 6= 0

Using (4:59), we determine the forms of the functions A(u) and B(v) found in the

metric (4:44) and KT (4:53). From (4:46), we obtain the simpli�ed equation

A;uuu

A;u

= �B;vvv

B;v

= k
2
: (4.65)
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If k = 0, then the system (4:65) has a solution

A = c1u
2 + c2u+ c3;

B = d1v
2 + d2v + d3:

(4.66)

Substituting these functions into the original partial di�erential equation for A and

B (4:45), then equating coe�cients of the u2; u; v2; v and constant terms from either

side of the resulting equation, we obtain the restrictions

c1 = d1;

4c1(c3 + d3) = c
2
2 + d

2
2 ) c

2
2

4c1
= c3 + d3 � d

2
2

4c1
:

Using these relations in (4:66), we obtain

A+B = c1

�
u+ c2

2c1

�2
+ c3 � c

2
2

4c21
+ c1

�
v + d2

2c1

�2
+ d3 � d

2
2

4c21

= c1

�
u+ c2

2c1

�2
� d3 +

d
2
2

4c21
+ c1

�
v + d2

2c1

�2
+ d3 � d

2
2

4c21

= c1

h�
u+ c2

2c1

�2
+
�
v + d2

2c1

�2i
:

By an appropriate coordinate transformation, we translate and scale u and v such

that A+B = u
2 + v

2. In this coordinate system, the metric (4:44) is

ds
2 = (u2 + v

2)(du2 + dv
2): (4.67)

We recognise (4:67) as the Euclidean metric in parabolic coordinates. The trans-

formation to Cartesian coordinates is given by
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x = 1
2(u

2 � v
2);

y = uv;

(4.68)

where �1 < u <1; 0 � v <1.

The KT (4:53) is

K = diag(��v2 + c; �u
2+ c): (4.69)

In this coordinate system, the KT is a linear combination of the metric and K1 =

diag(�v2; u2).
Using the fact that A+B = u

2 + v
2, we conclude from (4:54) and (4:57) that

V =
V1(u) + V2(v)

u
2 + v

2
; (4.70)

and

U =
2(��v2 + c)V1(u) + 2(�u2 + c)V2(v)

u
2 + v

2
:

The second �rst integral (4:58) takes the form

K =
�v2p2u + u

2
p
2
v � 2v2V1(u) + 2u2V2(v)

2
�
u
2 + v

2
� :

If k 6= 0, the solution to (4:65) is

A = c1e
ku + c2e

�ku + c3;

B = d1 cos(kv) + d2 sin(kv) + d3:

(4.71)

Substituting (4:71) into (4:45), then equating coe�cients of the e2ku, eku, e�ku,
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e
�2ku

; and constant terms from either side of the resulting equation, we obtain the

restrictions

c3 + d3 = 0;

4c1c2 = d
2
1 + d

2
2:

(4.72)

We observe that the second restriction implies that c1 and c2 have the same sign.

We shall assume, for simplicity, that both are positive. Using the �rst restriction

of (4:72) in (4:71), we obtain

A+B = c1e
ku + c2e

�ku + d1 cos(kv) + d2 sin(kv):

Since c1 and c2 are both positive, the �rst two terms may be written as 2
p
c1c2 cosh(ku+

 ). Similarly, the �nal two terms may be written as b cos(kv + �) where b =

�
p
d
2
1 + d

2
2 = �2

p
c1c2 using the second restriction of (4:72); hence, we have shown

that

A+B = 2
p
c1c2 cosh(ku+  )� 2

p
c1c2 cos(kv + �):

Using standard trigonometric identities, we may write this as

A+ B = 4
p
c1c2 cosh

2
�
ku+  

2

�
� 2
p
c1c2 � 4

p
c1c2 cos

2
�
kv + �

2

�
+2
p
c1c2

= 4
p
c1c2

h
cosh2

�
ku+  

2

�
� cos2

�
kv + �

2

�i
:

By an appropriate coordinate transformation, we translate and scale u and v to

convert A+B to the form

A+B = a
2(cosh2 u� cos2 v); (4.73)
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where a2 = 4
p
c1c2, with a > 0 without loss of generality; therefore, the metric

(4:44) is

ds
2 = a

2(cosh2 u� cos2 v)(du2 + dv
2): (4.74)

We recognise (4:74) as the Euclidean metric in elliptic/hyperbolic coordinates. The

transformation to Cartesian coordinates is given by

x = a coshu cos v;

y = a sinh u sin v;
(4.75)

where 0 � u <1; 0 � v < 2�.

The KT (4:53) is

K = diag(a2� cos2(v) + c; a
2
� cosh2(u) + c): (4.76)

We observe that the family of KTs related to the elliptic/hyperbolic separable

coordinates is fg;K1g, where K1 = diag(a2 cos2 v; a2 cosh2 u).

Using the fact that A+B = a
2(cosh2 u� cos2 v) (4:73), we conclude from (4:54)

and (4:57) that

V =
V1(u) + V2(v)

cosh2 u� cos2 v
; (4.77)

and

U =
2(a2� cos2(v) + c)V1(u) + 2(a2� cosh2(u) + c)V2(v)

cosh2 u� cos2 v
;

thus, the independent second �rst integral (4:58) has the form

K =
cos2(v)p2u + cosh2(u)p2v + 2 cos2(v)V1(u) + 2 cosh2(u)V2(v)

2
�
cosh2 u� cos2 v

� :
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4.3.4 Separable Coordinates in E2

It is well known [5] that the four separable coordinate systems in Euclidean 2-space

(with corresponding metrics) are:

Cartesian, (x; y): ds
2 = dx

2 + dy
2
;

Polar, (r; �): ds
2 = dr

2 + r
2
d�

2
;

Parabolic, (�; �): ds
2 = (�2 + �

2)(d�2 + d�
2);

Elliptic/Hyperbolic, (�; �): ds
2 = a

2(cosh2 �� cos2 �)(d�2 + d�
2);

where a is a scaling parameter representing half the distance between the focii.

Cartesian coordinates (for which our results are summarised in Table 4.1) are

the standard orthogonal coordinates used to describe the natural basis of Euclidean

spaces. In fact, any manifold imbedded in Euclidean n-space can be represented

locally by a set of Cartesian coordinates (x1; : : : ; xn). Using Remark 3 from Sub-

section 3.3.2, we determine the singular points of the metric. Since the metric in

the moving frame is diag(1; 1) (4:8), K is proportional to g if and only if its diag-

onal components are identical. Since the components are (c1; c2) (4:27), there are

no singular points.

Polar coordinates (see the summary of our results in Table 4.2) are related to

Cartesian coordinates by the formulae (4:62) with u = r and v = �. The coordinate

r represents the distance between the origin and a point, P , and � is the angle,

measured in the counterclockwise direction, between the positive x-axis and the

line connecting the origin and P ; hence, the coordinate lines are concentric circles

for constant r and rays for constant �. This is shown in Figure 4.1. At any point,

P , in the plane | except the origin where r = 0 and � is unde�ned | there

exists a unique representation in polar coordinates; hence, the origin is a singular

point. Since the KT (4:63) is proportional to the metric only at this point, where
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Cartesian Separable Coordinates

Metric ds
2 = dx

2 + dy
2

Killing tensor diag(c1; c2)

Separable potential V = V1(x) + V2(y)

Second �rst integral 1
2py

2 + V2(y)

Table 4.1: Summary for Cartesian coordinates.

r := u = 0 and � := v is unde�ned, it is the only singular point.

Parabolic coordinates (see Table 4.3 for a summary of our results) are employed

less frequently than polar coordinates but are no less useful. These coordinates

are related to Cartesian coordinates by the formulae (4:68) with u = �; v = �.

The coordinate lines are two families of mutually orthogonal parabolae opening

in opposite directions on the x-axis. Figure 4.2 depicts these lines. We observe

that the coordinate lines at the origin are parallel; therefore, it is a singular point.

Again, the KT (4:69) is proportional to the metric if and only if � := u = 0 and

� := v = 0, that is, at the origin (x; y) = (0; 0); thus, it is the only singular point.

In fact, there are two coincident singular points at the origin, see, for example, [3].

The most complicated separable coordinate system in E2 are the elliptic/hyperbolic

coordinates (see Table 4.4 for our corresponding results). In fact, the other three

coordinate systems are degenerate forms of these coordinates. The transformation

law to Cartesian coordinates is (4:75) with u = �; v = �. The coordinate lines

� = �0 are ellipses and � = �0 are hyperbolae along the x-axis (see Figure 4.3). The

coordinate lines are parallel at the focii of the conics (x; y) = (�a; 0). By examining
the KT (4:76), we observe it is proportional to the metric provided � := u = 0 and
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Polar Separable Coordinates

Metric ds
2 = dr

2 + r
2
d�

2

Killing tensor diag(c1; c2r
2 + c1)

Separable potential V = V1(r) +
V2(�)

r2

Second �rst integral 1
2p

2
� + V2(�)

Table 4.2: Summary for polar coordinates.

x 108642-2-4-6-8-10

y

10

8

6

4

2

0

-2

-4

-6

-8

-10

Figure 4.1: Coordinate lines for polar coordinates.
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Parabolic Separable Coordinates

Metric ds
2 = (�2 + �

2)(d�2 + d�
2)

Killing tensor diag(���2 + c; ��
2 + c)

Separable potential
V1(�) + V2(�)

�
2 + �

2

Second �rst integral
��2p2� + �

2
p
2
� � 2�2V1(�) + 2�2V2(�)

2
�
�
2 + �

2
�

Table 4.3: Summary for parabolic coordinates.

x 10080604020-40-60-80-100

y

100

80

60

40

20

0

-20

-40

-60

-80

-100

Figure 4.2: Coordinate lines for parabolic coordinates.
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Elliptic/Hyperbolic Separable Coordinates

Metric ds
2 = a

2(cosh2 �� cos2 �)(d�2 + d�
2)

Killing tensor diag(a2� cos2(�) + c; a
2
� cosh2(�) + c)

Separable potential
V1(�) + V2(�)

cosh2 �� cos2 �

Second �rst integral
cos2(�)p2� + cosh2(�)p2� + 2 cos2(�)V1(�) + 2 cosh2(�)V2(�)

2
�
cosh2 � � cos2 �

�

Table 4.4: Summary for elliptic/hyperbolic coordinates.

� := v = 0 or �. Since these points correspond to the focii, (a; 0) and (�a; 0) are
the only singular points. This agrees with previous results, see, for example, [3].

By our method, we have produced the four separable coordinate systems in

E2 (4:26), (4:61), (4:67), and (4:74) without a priori knowledge regarding their

existence! In addition, we recovered the associated potentials, KTs, and second

�rst integrals, see, for example, [36].
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x
42-2-4

y

4

2

0

-2

-4

Figure 4.3: Coordinate lines for elliptic/hyperbolic coordinates.
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4.4 Two Dimensional Constant Curvature Sur-

faces

A surface for which the curvature is some non-zero constant, R1212 = R, is called

a surface of constant curvature. Geometrically, we locally represent these surfaces

as imbeddings in E3 if R > 0, or H2 if R < 0. For R > 0, we can represent the

surface by the 2-sphere if it is closed. For R < 0, the surface can be represented

only locally.

As discussed in the treatment of case I for a general Riemannian manifold, the

curvature is necessarily zero when both � and � vanish; hence, we begin the analysis

with case II.

4.4.1 Case II: � = 0, � 6= 0

In the treatment of a general Riemannian manifold in this case, we found the

di�erential equation for g(u) (4:37). We solve this equation to obtain

g;uu = �Rg

) g =

8>><
>>:

c1 sin(
p
Ru) + c2 cos(

p
Ru), if R > 0;

c3e

p�Ru + c4e
�p�Ru, if R < 0:

This is equivalent to

g =

8>>>>>>><
>>>>>>>:

A sin(
p
Ru+ �), if R > 0;

8>><
>>:

A sinh(
p�Ru+ �);

A cosh(
p�Ru+ �);

Ae

p�Ru
;

if R < 0:
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By translating u and scaling v, we obtain

g =

8>>>>>>><
>>>>>>>:

sin(
p
Ru), if R > 0;

8>><
>>:

sinh(
p�Ru);

cosh(
p�Ru);

e
�2p�Ru

;

if R < 0:

(4.78)

Using f = 1 (4:32) and (4:78), for R > 0, we write the metric (4:35) as

ds
2 = du

2 + sin2(
p
Ru)dv2:

To recognise the separable coordinates, we write the metric in the coordinates

~u =
p
Ru, ~v =

p
Rv,

ds
2 =

1

R

h
d~u2 + sin2(~u)d~v2

i
:

This form of the metric corresponds to regular spherical coordinates that are related

to Cartesian coordinates, (x; y; z), by the transformation law

x = r sin ~u cos ~v;

y = r sin ~u sin ~v;

z = r cos ~u;

(4.79)

where r = R
�1=2 = constant, 0 � ~u � �, 0 � ~v < 2�; hence, the separable co-

ordinates are spherical coordinates. Spherical coordinates are employed to analyse

objects with spherical symmetry. In standard notation, we use the variable names

� instead of u and � in place of v in (4:79). The coordinate � represents the angle

between the z-axis and the point, P . The angle, measured in the counterclockwise

direction, between the positive x-axis and the line connecting the origin to the pro-
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Figure 4.4: Coordinate lines for regular spherical coordinates.

jection of P into the xy-plane is �; hence, the coordinate lines are circles of latitude

for constant � and half great circles for constant �. This is shown in Figure 4.4.

At any point, P , on the 2-sphere | except the poles where � = 0 or � and � is

unde�ned | there exists a unique representation in spherical coordinates.

For R negative, there are three cases. The �rst separable metric from (4:78),

ds
2 = du

2 + sinh2(
p
�Ru)dv2; (4.80)

is related to the positive de�nite metric of the coordinates ~u =
p�Ru, ~v = p�Rv,

ds
2 = � 1

R

h
d~u2 + sinh2(~u)d~v2

i
:

The transformation law (locally) relating Minkowskian coordinates, (t; x; y), to

these coordinates is
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x = � sinh ~u cos ~v;

y = � sinh ~u sin ~v;

t = � cosh ~u;

where � = (�R)�1=2 = constant, 0 � ~u � 1, 0 � ~v < 2�.

The second separable metric from (4:78),

ds
2 = du

2 + cosh2(
p
�Ru)dv2; (4.81)

is related to the positive de�nite metric of the coordinates ~u =
p�Ru, ~v = p�Rv,

ds
2 = � 1

R

h
d~u2 + cosh2(~u)d~v2

i
:

The transformation law (locally) relating the coordinates (t; x; y) to these coordi-

nates is

x = � cosh ~u cos ~v;

y = � cosh ~u sin ~v;

t = � sinh ~u;

where � = (�R)�1=2 = constant, �1 < ~u � 1, 0 � ~v < 2�.

The coordinates of the �nal separable metric from (4:78),

ds
2 = du

2 + e
�2p�Ru

dv
2
; (4.82)
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can be transformed using ~u =
p�Ru, ~v = p�Rv to obtain the metric

ds
2 = � 1

R
(d~u2 + e

�2~u
d~v2):

These coordinates are (locally) related to the coordinates (t; x; y) by the transfor-

mation

x = (�R)�1=2e�~u cos ~v;

y = (�R)�1=2e�~u sin ~v;

t = (�R)�1=2
�p

1� e�2~u � ln

�
1 +

p
1 � e�2~u
e�~u

��
:

The KT, and separable potentials, V and U , may be determined in each case

by direct substitution into the formulae (4:38), (4:39), and (4:40), respectively.

For a discussion of the related singular points, see [37]. The form of the second

�rst integral for all coordinates (4:41) was calculated in the general Riemannian

case II calculations. The metric calculations were performed in detail by Olevski

while investigating the product separability of the Laplace-Beltrami equation, in

[34] where, for R < 0, a rigorous geometrical characterisation of the coordinate

lines in H2 is given.

4.4.2 Case III: �� 6= 0

We proceed from the di�erential system developed in the general Riemannian case

III treatment (4:46) with R1212 = R,

8>><
>>:

A;uuu + 12RAA;u = k
2
A;u;

B;vvv + 12RBB;v = �k2B;v:

(4.83)
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We solve the di�erential equation for A(u). It is equivalent to the di�erential

equation for A;u,

(A;u);uu + 6R(A2);u = k
2
A;u

) A;uu + 6RA2 = k
2
A+ l;

(4.84)

where l is a constant of integration. The remaining equation is solved by using the

following technique. We let

!(A) =
dA

du
: (4.85)

It follows that

A;uu = !
d!

dA
;

using the chain rule. Substituting this relation into the reduced order equation

(4:84), we produce a separable di�erential equation that is integrable

!
d!

dA
= �6RA2 + k

2
A+ l

)
Z
!d! =

Z
(�6RA2 + k

2
A+ l)dA

) 1
2!

2 = �2RA3 + k
2

2 A
2 + lA+m

) !
2 = �4RA3 + k

2
A
2 + 2lA+ 2m;

where m is a second constant of integration. Using (4:85), we derive the equation

for A;u
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(A;u)
2 = �4RA3 + k

2
A
2 + 2lA+ 2m: (4.86)

Similarly, we integrate the di�erential equation for B(v) (4:83) to obtain

(B;v)
2 = �4RB3 � k

2
B

2 + 2nB + 2p; (4.87)

where n and p are constants of integration.

To obtain the relations amongst the constants, we substitute into the original

di�erential equation (4:45). First, we di�erentiate (4:86) with respect to u to obtain

A;uu,

A;uu = �6RA2 + k
2
A+ l; (4.88)

and (4:87) with respect to v to obtain B;vv,

B;vv = �6RB2 � k
2
B + n; (4.89)

using the fact A;uB;v 6= 0. Substituting (4:86), (4:87), (4:88), and (4:89) into (4:45),

then simplifying, we obtain

(n� l)(A�B)� 2(m+ p) = 0: (4.90)

Di�erentiating this relation with respect to u, we produce

(n� l)A;u = 0

) n = l:

Substituting n = l into (4:90), we obtain the relation p = �m; therefore, the
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solution satis�es the conditions

(A;u)
2 = �4RA3 + k

2
A
2 + 2lA+ 2m;

(B;v)
2 = �4RB3 � k

2
B

2 + 2lB � 2m:

(4.91)

To remove the quadratic terms from the equations of (4:91), we perform a trans-

lation by a constant. Shifting A by a = �k2=12R and B by �a, we simplify (4:91),

(A;u)
2 = �4RA3 + cA+ d;

(B;v)
2 = �4RB3 + cB � d;

where c = k
4
=12R + 2l and d = (k2=18R)(k2=12R + 3l) + 2m.

It follows that the separation constant, k, can be set to zero without loss of

generality. It also follows that

du
2 = dA

2

�4RA3 + cA+ d
;

dv
2 = dB

2

�4RB3 + cB � d
:

Since A;u and B;v do not vanish, we adopt (A;B) as coordinates; hence, the

metric (4:44) can be written as

ds
2 = (A+B)

�
dA

2

�4RA3 + cA+ d
+

dB
2

�4RB3 + cB � d

�
: (4.92)

The allowable ranges of the coordinates A and B depend on the roots of the cubic

polynomials in the denominators of the metric (4:92). It is necessary that (A +

B), and both cubics be positive. To simplify the analysis, we �rst tranform the

coordinates according to ~A = A, ~B = �B. Dropping the tildes, we write the metric
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in this new coordinate system as

ds
2 = (A�B)

�
dA

2

�4RA3 + cA+ d
� dB

2

�4RB3 + cB + d

�
:

The cubic polynomials in the denominators are now identical. To write the poly-

nomial in reduced form, we factor the leading coe�cient,

ds
2 = � 1

4R
(A�B)

�
dA

2

A
3 + 3hA+ j

� dB
2

B
3 + 3hB + j

�
; (4.93)

where h = �c=12R and j = �d=4R.
Since the surface is Riemannian, the metric is positive de�nite. Without loss of

generality, we impose the condition

A > B

on the coordinate functions A and B.

The analysis depends on the sign of the curvature, R. If R > 0, then we require

that A3+3hA+j < 0 and B3+3hB+j > 0; however, if R < 0, then it is necessary

to impose the conditions A3+3hA+ j > 0, and B3+3hB + j < 0. By varying the

zeros of cubic polynomial, we determine all separable coordinate systems. Olevski

performed this analysis in [34]. In all cases, the metric is of the form we derived

(4:93). We denote the zeros of the cubic polynomial in the denominator of the

metric terms by a, b, and c.

For R > 0, the analysis produces only one separable coordinate system, the Ja-

cobi elliptic coordinates. The coordinates vary in the intervals between the distinct

zeros, that is, c < B < b < A < a. The coordinates are related to Cartesian

coordinates by

x
2

C � b
+

y
2

C � a +
z
2

C � c = 0;

where C = A or B.
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For R < 0, we obtain six additional separable coordinate systems. We list

the corresponding relations between coordinates, (t; x; y), and the separable coor-

dinates, (A;B), and the intervals of existence for the separable coordinates with

respect to the zeros:

1:
x
2

C � b
+

y
2

C � a �
t
2

C � c
= 0;

c < b < B < a < A;

2:
x
2

C � c
+

y
2

C � a
� t

2

C � b = 0;

B < c < b < a < A;

3:
y
2

C � a
� 2dxt+ (C � e)(t2 � x

2)

(C � e)2 + d2
= 0;

B < a < A; b = e+ id; c = e� id;

4:
y
2

C � a
+
x
2 � t

2

C � b
+

(x� t)2

(C � b)2
= 0;

c = b < B < a < A;
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5:
y
2

C � a
+
x
2 � t

2

C � b
� (x� t)2

(C � b)2
= 0;

B < c = b < a < A;

6:
�
t� x

(C � a)
+ y

�2
= t

2 � x
2
;

B < c = b = a < A;

where C = A or B. Other possible cases exist that are equivalent, by coordinate

transformation, to one of these six cases. That is, this is a complete list of the

inequivalent cases. For details, including a description of the orthogonal coordi-

nates, see [34]; thus, we have recovered all the known separable coordinate systems

for surfaces of constant curvature, see, for example, [21]. The KTs, separable po-

tentials, V and U , and second �rst integrals may be determined by substitution

into the appropriate form from the general two dimensional Riemannian surface

analysis. For a discussion of the related singular points, see [37].
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4.5 Superseparability in E2

A Hamiltonian system is said to be superintegrable, if it possesses 2n�1 functionally
independent �rst integrals, that is, two sets of involutive �rst integrals each with n

elements. We are interested in the subset of superintegrable systems for which there

are potentials that are separable in multiple coordinate systems, called supersepara-

ble systems. To complete the study of separation of variables for Euclidean 2-space,

E2, we determine the superseparable potentials. Since the dimension of the surface

is two, we seek potentials that separate in two coordinate systems. This provides

two �rst integrals, not necessarily independent, in addition to the Hamiltonian.

The results of Section 4.3 permit the determination of such potentials with rela-

tive ease. The results to follow have been obtained previously, by an arguably more

complicated approach involving Lie groups, by Winternitz, Smorodinsky et al [19].

4.5.1 Cartesian-Polar

The separable potential for Cartesian coordinates, (x; y), given by (4:28) is V =

V1(x) + V2(y). We write this in polar coordinates, (r; �), as

V = V1(r cos �) + V2(r sin �);

where (4:62) has been used. If a potential separates in both Cartesian and polar

coordinates, by (4:64), we may also write V in the form

V = ~V1(r) +
~V2(�)

r
2
:

The partial derivatives of each form of V must be equal; hence,

V;� =
~V2
0

r
2 = �V 0

1r sin � + V
0
2r cos �

) ~V2
0
= r

3(�V 0
1 sin � + V

0
2 cos �);

(4.94)
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and

V;r = ~V1
0 � 2 ~V2

r
3 = V

0
1 cos � + V

0
2 sin �

) ~V2 = ( ~V1
0 � V

0
1 cos � � V

0
2 sin �)

r
3

2

) ~V2
0
= r

3

2 (V
00
1 r sin � cos � + V

0
1 sin � � V

00
2 r sin � cos � � V

0
2 cos �):

(4.95)

Comparing the �nal lines of (4:94) and (4:95), we obtain

V
00
1 r sin � cos � + 3V 0

1 sin � = V
00
2 r sin � cos � + 3V 0

2 cos �

) V
00
1 +

3V 0
1

r cos �
= V

00
2 +

3V 0
2

r sin �

) V
00
1 +

3V 0
1

x
= V

00
2 +

3V 0
2

y
= S; (4.96)

where S is a separation constant. Solving for V1, we get

(V 0
1)
0 +

3(V 0
1)
x

= S

) V
0
1 =

S

4 x+
c

x
3

) V1 =
S

8 x
2 + S1

x
2 ;

where S1 is a constant of integration. Solving for V2, we obtain

V2 =
S

8
y
2 +

S2

y
2
;

where S2 is a constant of integration; therefore, the superseparable potential in
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Cartesian coordinates is

V =
S

8
(x2 + y

2) +
S1

x
2
+
S2

y
2
: (4.97)

The potential may be written in terms of polar coordinates (4:64) as

V =
S

8
r
2 +

S1

cos2 �
+

S2

sin2 �
r
2

: (4.98)

4.5.2 Cartesian-Parabolic

The separable potential for Cartesian coordinates, (x; y), given by (4:28) written in

parabolic coordinates, (�; �), is given by

V = V1

�1
2
(�2 � �

2)
�
+ V2(��); (4.99)

where (4:68) has been used. The separability condition for parabolic coordinates

(4:70) can be written as

@
2[(�2 + �

2)V ]

@�@�
= 0: (4.100)

A superseparable potential, V , that separates in both Cartesian and parabolic

coordinates, must satisfy (4:100). Computing the mixed second partial derivative

using (4:99), we obtain

@
2[(�2 + �

2)V ]
@�@�

= 2�(��V 0
1 + �V

0
2 ) + 2�(�V 0

1 + �V
0
2)

+(�2 + �
2)(���V 00

1 + V
0
2 + ��V

00
2 )

= (�2 + �
2)[3V 0

2 � ��V 00
1 + ��V

00
2 ];
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from which it follows that

3V 0
2 � ��V

00
1 + ��V

00
2 = 0

) V
00
2 + 3

y
V
0
2 = V

00
1 = S:

The solution for V1(x) is

V1 =
S

2
x
2 + S1x;

where S1 is an arbitrary constant of integration. The di�erential equation for V2 is

identical to that encountered while solving the Cartesian-polar case (4:96); hence,

the solution is given by,

V2 =
S

8
y
2 +

S2

y
2
;

where S2 is a constant of integration; therefore, in Cartesian coordinates, the su-

perseparable potential has the form

V =
S

2
x
2 +

S

8
y
2 + S1x+

S2

y
2
:

In terms of parabolic coordinates, the potential may be written as

V =

�
S

8
�
6 +

S1

2
�
4 +

S2

�
2

�
+

�
S

8
�
6 � S1

2
�
4 +

S2

�
2

�
�
2 + �

2 :

4.5.3 Cartesian-Elliptic/Hyperbolic

The separable potential for Cartesian coordinates, (x; y), given by (4:28) expressed

in elliptic/hyperbolic coordinates, (�; �), is given by

V = V1(a cosh� cos�) + V2(a sinh� sin �); (4.101)
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where (4:75) has been employed. The separability condition for elliptic/hyperbolic

coordinates (4:77) can be written as

@
2[(cosh2 � � cos2 �)V ]

@�@�
= 0: (4.102)

A superseparable potential,V , that separates in both Cartesian and elliptic/hyperbolic

coordinates must satisfy (4:102). Computing the mixed second partial derivative

using (4:101), we obtain

@
2[(cosh2 � � cos2 �)V ]

@�@�
= 2 sin � cos�(a sinh� cos �V 0

1 + a cosh� sin �V 0
2)

+2 sinh � cosh�(�a cosh� sin �V 0
1+

a sinh� cos �V 0
2) + (cosh2 � � cos2 �)

(�a sinh� sin �V 0
1 + a cosh� cos �V 0

2

�a2 sinh� cosh� sin � cos�V 00
1

+a2 sinh� cosh� sin � cos�V 00
2 ):

It follows from (4:102) and the above that

(cosh2 �� cos2 �)(�a2 sinh� cosh� sin � cos �)V 00
1 + (cosh2 �� cos2 �)

(�3a sinh � sin �)V 0
1 + (cosh2 � � cos2 �)(a2 sinh� cosh� sin � cos�)V 00

2

+(cosh2 �� cos2 �)(3a cosh� cos �)V 0
2 = 0

) V
00
1 +

3V 0
1

a cosh� cos �
= V

00
2 +

3V 0
2

a sinh� sin �

) V
00
1 +

3V 0
1
x

= V
00
2 +

3V 0
2
y

= S:

We observe that the separable equations for V1 and V2 are identical to those en-
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countered while solving the Cartesian-polar case (4:96); therefore, the solution is

given by (4:97). Transforming this potential into elliptic/hyperbolic coordinates,

we obtain

V =

�
Sa

2

8
sinh2 � cosh2 � � S1

a
2 cosh2 �

+
S2

a
2 sinh2 �

�
cosh2 �� cos2 �

+

�
Sa

2

8
sin2 � cos2 � +

S1

a
2 cos2 �

+
S2

a
2 sin2 �

�
cosh2 �� cos2 �

:

(4.103)

4.5.4 Polar-Parabolic

The separable potential for polar coordinates, (r; �), given by (4:64) written in

terms of parabolic coordinates, (�; �), is given by

V = V1

�1
2
(�2 + �

2)
�
+

4

(�2 + �
2)2
V2

�
arctan

� 2��

�
2 � �

2

��
; (4.104)

where (4:62) and (4:68) have been used. As previously mentioned, a superseparable

potential, V , that separates in parabolic coordinates must satisfy (4:100).

Computing the mixed second partial derivative using (4:104), we obtain

@
2[(�2 + �

2)V ]
@�@�

= 2��V 0
1 + 2��V 0

1 + ��(�2 + �
2)V 00

1

�82�
2(�2 + �

2)V 0
2 + 2��(�2 + �

2)V 00
2 + (�2 + �

2)2V 0
2

(�2 + �
2)4

+8
4��(�2 + �

2)V2 + 4�2(�2 + �
2)V 0

2

(�2 + �
2)4

;

from which it follows that

��(�2 + �
2)V 00

1 + 4��V 0
1 =

16��V 00
2 + 24(�2 � �2)V 0

2 � 32��V2

(�2 + �
2)3
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) 2yrV 00
1 + 4yV 0

1 =
2yV 00

2 + 6xV 0
2 � 4yV2

r
3

) r
4
V
00
1 + 2r3V 0

1 = V
00
2 +

3V 0
2

tan �
� 2V2 = S;

where S is a separation constant. To solve for V1, we integrate twice to obtain

V1 =
S

2r2
+
S1

r
;

where S1 is a constant of integration. The di�erential equation for V2 has a partic-

ular solution,

V2 = �S
2
: (4.105)

To �nd a solution to the related homogeneous equation,

~V 00
2 +

3~V 0
2

tan �
� 2~V2 = 0; (4.106)

we observe that csc2 � is a solution of (4:106). Since csc2 � factors as [(1�cos �)(1+

cos �)]�1, we are able to show that

W =
S2

(1 + cos �)
+

S3

(1 � cos �)
(4.107)

satis�es (4:106) where S2 and S3 are constants of integration. It follows from (4:105)

and (4:107) that the sought solution is

V2 =
S2

1 + cos �
+

S3

1 � cos �
� S

2
;

hence, in polar coordinates, the superseparable potential has the form

V =
S1

r
+

1

r
2

�
S2

1 + cos �
+

S3

1� cos �

�
(4.108)



x 4.5. Superseparability in E2 138

In terms of parabolic coordinates, the potential may be expressed as

V =

�
2S1 +

2S2

�
2

�
+

�
2S3

�
2

�
�
2 + �

2
:

To allow the superseparable potentials to be viewed in the same coordinate system,

we seek the form of this potential in Cartesian coordinates. From (4:108), we may

immediately rewrite the potential as

V =
1p

x2 + y2

�
S1 +

S2p
x2 + y2 + x

+
S3p

x2 + y2 � x

�
:

4.5.5 Polar-Elliptic/Hyperbolic

We know that the potential (4:97) separates in Cartesian, polar and elliptic/hyperbolic

coordinates; therefore, it is a superseparable potential with respect to polar and

elliptic/hyperbolic coordinates; however, there may be a more general potential

that is superseparable in these two systems. To investigate this possibility, we per-

form the standard calculation. The separable potential for polar coordinates, (r; �),

(4:64) expressed in elliptic/hyperbolic coordinates, (�; �), is given by

V = V1

�
a

q
cosh2 � � sin2 �

�
+
V2(arctan(tanh� tan�))

a
2(cosh2 � � sin2 �)

; (4.109)

using (4:68) and (4:75).

A superseparable potential, V , that separates in both polar and elliptic/hyperbolic

coordinates must satisfy (4:102). Imposing this condition, we obtain, after a lengthy

calculation,

r
4
V
00
1 � r

3
V1 = V

00
2 + 3(cot � � tan �)V2 � 8V2: (4.110)

Instead of proceeding to solve this di�erential equation, we re-examine the Cartesian-

polar superseparable potential. Transforming the polar separable potential (4:64)
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into Cartesian coordinates, we obtain

V = V1

�p
x2 + y2

�
+
V2

�
arctan

�
y

x

��
x
2 + y

2
: (4.111)

By imposing the condition for separability in Cartesian coordinates on (4:111) and

transforming to polar coordinates, we �nd that

r
4
V
00
1 � r

3
V
0
1 = V

00
2 + 3(cot � � tan �)V 0

2 � 8V2:

Since this equation matches the superseparability condition for polar and el-

liptic/hyperbolic coordinates (4:110), their solutions must be the same; thus, the

sought potential is of the form (4:97). This potential can be written in polar coor-

dinates as (4:98) or in elliptic/hyperbolic coordinates as (4:103).

4.5.6 Parabolic-Parabolic

We observe that there is a second set of distinct parabolic coordinates, (a; b), in

E2 related to the original, (�; �), by a rotation of �=2 in the plane; therefore, the

transformation law from (a; b) to Cartesian coordinates, (x; y), is

x = �ab;
y = 1

2(a
2 � b2);

(4.112)

where �1 < a < 1; 0 � b < 1. The coordinates lines in this coordinate

system are two families of orthogonally intersecting parabolae centred on the origin,

opening in opposite directions on the y-axis. The metric associated with these

coordinates is (4:67); hence, they are separable. The associated separable potential

has the form derived above (4:70), that is,

V =
V1(a) + V2(b)

a
2 + b

2 ;
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hence, the separability condition is

@
2[(a2 + b

2)V ]

@b@a
= 0: (4.113)

We seek a superseparable potential for these two parabolic coordinate systems.

The separable potential for the standard parabolic coordinates, (�; �), given by

(4:70) expressed in the second parabolic coordinates (a; b) is given by

V =

V1

�
a� bp

2

�
+ V2

�
a+ bp

2

�
a
2 + b

2
; (4.114)

using (4:68) and (4:112).

Computing the mixed second partial derivative using (4:114), we obtain

@
2[(a2 + b

2)V ]

@b@a
= V

00
1

�
�1

2

�
+ V

00
2

�1
2

�

Setting this equal to zero, as prescribed by (4:113), we obtain

V
00
1 = V

00
2 = S; (4.115)

where S is a separation constant. Integrating, we get

V1 =
S

2 u
2 + S1u+ T1;

V2 =
S

2 v
2 + S2v + T2;

(4.116)

where S1, S2, T1, and T2 are constants of integration; therefore, the superseparable

potential is

V =
S1u+ S2v + S3

u
2 + v

2
;

where S3 = T1 + T2. In terms of the second parabolic coordinates, the potential
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may be expressed as

V =

�
S1 + S2p

2

�
a+

�
S2 � S1p

2

�
b

a
2 + b

2
:

Transforming to Cartesian coordinates, we obtain

V =
S1

qp
x2 + y2 + x+ S2

qp
x2 + y2 � x+ S3

2
p
x2 + y2

:

4.5.7 Parabolic-Elliptic/Hyperbolic

There may exist potentials that can be separated in both parabolic and ellip-

tic/hyperbolic coordinate systems. We have not, at the time of the writing of

this thesis, found a solution to the related di�erential equations. This is consistent

with the paper by Winternitz, et al [19].

4.5.8 Summary of Results

Despite the fact that there are six pairs of coordinate systems in E2 in which we

can construct superseparable potentials, there are only four distinct superseparable

potentials. They are listed in Table 4.5. To facilitate their comparison, we write

them in Cartesian coordinates.

The utility of superseparable potentials results from our ability to �nd trajecto-

ries as a function of the parameters in the potential, see, for example, [19]. There

are several well known physical examples of superseparable systems.

The two dimensional harmonic oscillator discussed in Subsection 2.4.1, with

! = !1 = !2, separates in both Cartesian and polar coordinates. In the physical

position-momenta coordinates the system separates. In addition, converting the

Hamiltonian of (2:34) to polar coordinates, we observe that V is independent of �;

hence, it is ignorable, and thus separable. As shown in Table 4.5, the potential is
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Superseparable Potential Coordinates

Cartesian,
S

8

�
x
2 + y

2
�
+ S1

x
2 +

S2

y
2 Polar,

Elliptic/Hyperbolic

S

2 x
2 + S

8 y
2 + S1x+

S2

y
2 Cartesian, Parabolic

1p
x2 + y2

�
S1 +

S2p
x2 + y2 + x

+ S3p
x2 + y2 � x

�
Polar, Parabolic

S1

qp
x2 + y2 + x+ S2

qp
x2 + y2 � x+ S3

2
p
x2 + y2

Parabolic, Parabolic

Table 4.5: Superseparable potentials in Euclidean 2-space.

in the form of a Cartesian-polar-elliptic/hyperbolic superseparable potential with

S = m!
2
=2, S1 = S2 = 0; hence, it also separates in elliptic/hyperbolic coordinates.

Another important example is the central force problem. The Hamiltonian func-

tion in polar coordinates is

H =
1

2m

�
p
2
r +

p
2
�

r2

�
� m

r
:

The associated trajectories are conics: ellipses, parabolae, and hyperbolae. The

potential separates in both polar and parabolic coordinates. It corresponds to

S1 = �m, S2 = S3 = 0.



Chapter 5

Conclusions

The intrinsic characterisation of orthogonal separability of the Hamilton-Jacobi

equation developed by Benenti [4] simpli�es earlier geometrical theory initiated

by Eisenhart [14] and developed recently by Kalnins and Miller [22]. Whereas

previous descriptions required a family of n independent Killing tensors, Benenti

has developed a theory based on a single Killing tensor.

In general, solving the Killing tensor equation to determine Killing tensors on a

space of non-constant curvature is non-trivial; furthermore, to apply the theory of

Benenti, we require that such a Killing tensor have orthogonally integrable eigen-

vectors. By adapting a moving frame to the eigenvectors of the Killing tensor, we

simultaneously diagonalise the Killing tensor and metric, facilitating the determina-

tion of orthogonal separable coordinates on the corresponding pseudoRiemannian

manifold. We also circumvent the problem of �nding a general Killing tensor on

the space.

The moving frame approach, introduced by Darboux and developed by Cartan,

permits calculation independent of local coordinates. Moving frames have been

used in other areas of mathematics and physics; however, this is the �rst application

of the method of moving frames in the theory of �nite dimensional Hamiltonian

systems.

From the intrinsic theory of Benenti, we have developed a coordinate-independent
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method that generates separable coordinates for a Hamiltonian system on the cor-

responding pseudoRiemannian manifold. Our analysis of two dimensional Rieman-

nian manifolds of arbitrary curvature determined an intrinsic characterisation of

separability of the Hamiltonian-Jacobi equation. Without a priori assuming sepa-

rability, we derived the general forms of the separable metrics, and their associated

Killing tensors, separable potentials and second �rst integrals. As an illustration,

we used our method based on the moving frame approach to investigate Euclidean

2-space, and the surfaces of constant curvature.

In addition, by applying our method to the separable potentials in Euclidean

2-space, we determined all known superseparable potentials. These calculations

are arguably simpler than those of the Lie group method used in [19]. The work

initiated in this thesis can be extended to investigate superseparable potentials be-

tween separable coordinate systems of E2 with di�erent axis orientations or origin

positions. Additional superseparable potentials can, in principal, be determined by

this generalisation. This extension does not yield new results for Cartesian coordi-

nates because both coordinates are ignorable, as the form of the metric indicates.

Similarly, for polar coordinates, the orientation is irrelevant since � is ignorable.

The value of this method derives from its applicability to manifolds of arbitrary

curvature and its intrinsic formulation that avoids the complexities related to the

use of local coordinates.

Starting with the two dimensional Lorentzian manifolds of arbitrary curvature,

we will extend the results of this thesis to Riemannian and Lorentzian manifolds of

dimension three and four. The study of four dimensional Lorentzian manifolds is

important to the analysis of Hamiltonian systems in General Relativity.



Appendix A

Orthogonal Integrability

An important concept in this thesis is that of orthogonally integrable vector �elds.

We develop the basic terminology in this appendix as in [7]. We consider a manifold,

M , of dimension m = n + k. To each p 2 M , we assign a n dimensional subspace,

�p, of the tangent space, Mp. If there exists a neighbourhood of each p 2 M , say

U , for which there are n linearly independent C1 vector �elds, Xi, i = 1; : : : ; n,

that form a basis of �q for all q 2 U , then � is a C1 distribution of dimension n

on M . The set fXig is called a local basis of �.

A distribution is involutive if and only if there exists a local basis, fXig, in a

neighbourhood of each point p 2M such that

�
Xi;Xj

�
=

nX
k=1

C
k
ijXk; 1 � i; j � n;

where the Ck
ij's are some functions.

If � is a C1 distribution on M and N is a connected C
1 submanifold of M

such that at each q 2 N , Nq � �q, that is, the tangent space of N coincides with

the distribution, we say N is an integral (sub)manifold of �.

We de�ne n vectors Ei = �
�1(@=@qi), where qi, i = 1; : : : ;m, are local coordi-

nates on M and the chart (U; �) de�nes a cubic coordinate neighbourhood for each

p 2M , that is, for each p 2 M , there exists a chart (U; �) such that f�(q) : q 2 Ug
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de�nes a cube in Rm. We say that � is completely integrable if for each p 2 M ,

there exists a neighbourhood U such that fEig is a local basis for � on U . This im-

plies that there is an n dimensional integral manifold N through each point q 2 U
such that Nq = �q.

The concepts of complete integrability and involutivity are related by the Frobe-

nius theorem:

Theorem A.1 (Frobenius) A distribution, �, on a manifold, M , is completely

integrable if and only if it is involutive.

Naturally, an orthogonal distribution, �?, is the distribution orthogonal to �.

A vector �eld is orthogonally integrable, or normal, if the corresponding orthogonal

distribution is completely integrable.



Appendix B

Schouten Bracket

Let U q(M) represent the space of contravariant q-tensors on a manifold, M . We

observe that U0(M) is the algebra of C1 real valued functions on M .

For arbitrary P 2 Up(M), Q 2 U q(M) such that p+q � 1, the Schouten bracket

is a contravariant (p+ q � 1)-tensor de�ned in [38] by

[P;Q]
i1:::ip+q�1
S :=

� pX
k=1

P
(i1:::i(k�1)j�jik:::i(p�1)

�
@�Q

ip:::i(p+q�1))+

� pX
k=1

(�1)kP [i1:::i(k�1)j�jik:::i(p�1)
�
@�Q

ip:::i(p+q�1)]�

� qX
l=1

Q
(i1:::i(l�1)j�jil:::i(q�1)

�
@�Q

iq:::i(p+q�1))�

� qX
l=1

(�1)(pq+p+q+l)Q[i1:::i(l�1)j�jil:::i(q�1)
�
@�Q

iq:::i(p+q�1)]:

(B.1)

We observe that for P , Q symmetric the second and last terms of (B:1) vanish.

Similarly, if P , Q are skew-symmetric, then the �rst and third terms of (B:1) vanish.

For a contravariant vector X 2 U1(M), the Schouten bracket reduces to the Lie
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derivative in the direction of the vector �eld X,

[X;Q]S = LX(Q): (B.2)

The Schouten bracket also satis�es the properties [11]:

[P;Q]S = (�1)pq[Q;P ]S; (B.3)

and, for R 2 U r(M);

(�1)pq[[Q;R]S; P ]S + (�1)qr[[R;P ]S; Q]S + (�1)rp[[P;Q]S; R]S = 0; (B.4)

and

[P;Q ^R]S = [P;Q]S ^R + (�1)pq+qQ ^ [P;R]S : (B.5)

The properties (B:3), (B:4), and (B:5), respectively correspond to the skew-symmetry

(2:12), Jacobi (2:11), and Leibniz (2:13) properties of the Poisson bracket.



Appendix C

Moving Frame Formalism

We consider an n dimensional pseudoRiemannian manifold, M . In general, a frame

in which the directional derivatives of the metric tensor components vanish,

gab;c = 0; (C.1)

is called a (rigid) moving frame. A moving frame is an invaluable tool for mechanics.

It simpli�es the mathematical formulation of the intrinsic theory of orthogonal

separation of the Hamilton-Jacobi equation described in Chapter 3, and the solution

method developed and applied in Chapter 4.

The frame vector �elds spanning the tangent space,Mp, are de�ned, with respect

to the natural basis,
�
@=@q

1
; : : : ; @=@q

n
	
, by

Ea = ha
i @

@xi
;

where ha
i is an n�n matrix of C1 functions. The dual !-frame 1-forms are de�ned,

with respect to the dual basis, fdq1; : : : ; dqng by

E
a = h

a
idx

i
;

where hai is the n� n inverse matrix of ha
i.
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The components of the object of anholonomy, Cc
ab, are de�ned in any manifold

by

C
c
abEc := [Ea; Eb];

where [X;Y ] is the Lie bracket of two vector �elds. The bracket is antisymmetric in

its arguments. It follows that Ccab is antisymmetric in its second and third indices,

Ccab = �Ccba:

The connection coe�cients are given, in general, by

�bca := 1
2(Ebgac � Eagcb + Ecgba) � 1

2(Ccba � Cbac + Cacb)

= 1
2(gac;ihb

i � gcb;iha
i + gba;ihc

i)� 1
2(Ccba � Cbac + Cacb);

In a rigid moving frame, they take the form

�bca = �1

2
(Ccba � Cbac + Cacb); (C.2)

in view of (C:1). Using the antisymmetry of Ccab in (C:2), we �nd that the connec-

tion coe�cients are skew-symmetric in the second and third indices,

�bca = ��bac: (C.3)

Using the de�nition of the connection 1-form,

!
a
b := �cb

a
E

c
;

we conclude, from (C:3), that it is also skew-symmetric in its indices,

!ab = �!ba;
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The Levi-Civita connection is torsion-free by de�nition, that is,

Tabc := �bca � �cba � Cabc = 0;

therefore, the object of anholonomy has the simple form

Cabc = �bca � �cba = 2�[bc]a:

This simpli�es the curvature tensor components,

R
a
bcd = 2E[c�d]b

a + 2�[djbj
e�c]e

a � C
e
cd�eb

a
;

which we may write as

R
a
bcd = 2(�[djb

a
;ijhc]

i + �[djbj
e�c]e

a � �[cd]
e�eb

a):
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