
Sparse Polynomial
Interpolation and Testing

by

Andrew Arnold

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philsophy
in

Computer Science

Waterloo, Ontario, Canada, 2016

© Andrew Arnold 2016

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Interpolation is the process of learning an unknown polynomial f from some set of its evalua-
tions. We consider the interpolation of a sparse polynomial, i.e., where f is comprised of a small,
bounded number of terms. Sparse interpolation dates back to work in the late 18th century by the
French mathematician Gaspard de Prony, and was revitalized in the 1980s due to advancements
by Ben-Or and Tiwari, Blahut, and Zippel, amongst others. Sparse interpolation has applications
to learning theory, signal processing, error-correcting codes, and symbolic computation. Closely
related to sparse interpolation are two decision problems. Sparse polynomial identity testing is the
problem of testing whether a sparse polynomial f is zero from its evaluations. Sparsity testing is
the problem of testing whether f is in fact sparse.

We present effective probabilistic algebraic algorithms for the interpolation and testing of
sparse polynomials. These algorithms assume black-box evaluation access, whereby the algorithm
may specify the evaluation points. We measure algorithmic costs with respect to the number and
types of queries to a black-box oracle.

Building on previous work by Garg–Schost and Giesbrecht–Roche, we present two methods
for the interpolation of a sparse polynomial modelled by a straight-line program (SLP): a sequence
of arithmetic instructions. We present probabilistic algorithms for the sparse interpolation of an
SLP, with cost softly-linear in the sparsity of the interpolant: its number of nonzero terms. As an
application of these techniques, we give a multiplication algorithm for sparse polynomials, with
cost that is sensitive to the size of the output.

Multivariate interpolation reduces to univariate interpolation by way of Kronecker substitu-
tion, which maps an n-variate polynomial f to a univariate image with degree exponential in n.
We present an alternative method of randomized Kronecker substitutions, whereby one can more
efficiently reconstruct a sparse interpolant f from multiple univariate images of considerably
reduced degree.

In error-correcting interpolation, we suppose that some bounded number of evaluations may
be erroneous. We present an algorithm for error-correcting interpolation of polynomials that are
sparse under the Chebyshev basis. In addition we give a method which reduces sparse Chebyshev-
basis interpolation to monomial-basis interpolation.

Lastly, we study the class of Boolean functions that admit a sparse Fourier representation.
We give an analysis of Levin’s Sparse Fourier Transform algorithm for such functions. Moreover,
we give a new algorithm for testing whether a Boolean function is Fourier-sparse. This method
reduces sparsity testing to homomorphism testing, which in turn may be solved by the Blum–
Luby–Rubinfeld linearity test.

iii

Acknowledgements

I would like to acknowledge some of the people who supported me throughout my studies:

• My supervisor, Mark Giesbrecht. Mark has been very generous with his time and resources;
introduced inspiring problems to me; and gave me the freedom and support to pursue my
research. Mark has provided me direction and opened many doors for me along my career
path. Thank you, Mark.

• My friend Dan Roche, for our many collaborations. It is always a pleasure discussing mathe-
matics with Dan. I hope we continue to work together on interesting problems.

• Eric Blais and Erich Kaltofen, for the opportunity to work with each of them on rewarding
projects that became chapters of my thesis.

• My committee, for their thoughtful questions, and their careful reading of my thesis draft. In
addition to other committee members mentioned herein I would like to name my internal-
external examiner Kevin Hare; my external examiner Jeremy Johnson; and Éric Schost, whose
work on interpolation was a starting point for my doctoral research. Thanks as well to Evelyne
Hubert and Clément Pernet for sharing stimulating questions and ideas.

• My Master’s supervisor, Michael Monagan, without whose direction I would not have pursued
doctoral studies at Waterloo; and Peter Borwein, who first encouraged me to pursue research.

• To my friends at the Symbolic Computation Group (SCG) lab, who made it a fun and stimu-
lating place to work at: Curtis Bright, Reinhold Burger, Shaoshi Chen, Mustafa Elshiek, Joseph
Haraldson, Albert Heinle, Ilias Kosteras, Winnie Lam, Roman Lebreton, Steve Melczer, Vijay
Menon, Andy Novocin, Colton Pauderis, and Nam Phan. I also thank SCG faculty George
Labahn and Arne Storjohann for the times they’ve given me valued professional advice.

• For their generous financial support: the National Sciences and Engineering Research Council
of Canada (NSERC), the Ontario Graduate Scholarship (OGS) program, the David R. Cheriton
School of Computer Science, the University of Waterloo, and the Fields Institute.

• My friends, who enriched my time spent in Waterloo and Toronto: Parsiad Azimzadeh, Cecylia
Bocovich, Duane Bobbsemple, Hicham El-Zein, Sam Gentile, Hella Hoffmann, Mark Horton,
Carol Jung, Stephen Kiazyk, Erik Postma, Shadab Rashid, Johl Ringuette, Dean Shaft, Valerie
Sugarman, Jack Thomas, Oliver Trujillo, The Clockwork (my ultimate team), and the David
R. Cheriton School of Hockey Superfriends (my intramural hockey team); also my out-of-
town friends Kyle Allesia, Jamieson Anderson, Colin Beaumont, Nate Hapke, Reuben Heredia,
Athena Li, Chelsea Richards, Mike Rozen, and Rob Szolomicki, for being a phone call away
whenever I needed a laugh.

Lastly, I want to thank my family: my parents, Dave and Marie; my brother Thomas; and my
sister-in-law Yoshiko. I could not have written this thesis without their encouragement and sup-
port.

iv

To my parents and my big brother Thomas.

v

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

Dedication v

List of Tables xi

List of Figures xii

List of Algorithms xiii

1 Introduction 1

1.1 Preliminaries . 2

1.2 Model of Computation . 3

1.3 Sparse and dense polynomial representations 6

1.3.1 Vector polynomials . 8

1.4 Models of polynomial evaluation . 9

1.4.1 Black-box polynomials . 9

1.4.2 Extended-black-box polynomials . 10

1.4.3 Straight-line programs . 12

1.5 Organization of thesis . 14

vi

2 Algorithmic tools 16

2.1 Integer, dense, modular ring, and finite field arithmetic 17

2.1.1 Integer and modular arithmetic . 17

2.1.2 Dense polynomial arithmetic . 18

2.1.3 Finite field operations . 19

2.1.4 Chinese remaindering and simultaneous modular reduction 20

2.1.5 Polynomial factorization via Hensel lifting 20

2.1.6 Linear algebra . 21

2.2 Data structures . 23

2.2.1 Constructing dictionaries of terms . 24

2.3 Probabilistic inequalities . 26

2.3.1 Amplifying probabilistic algorithms . 27

2.4 Selecting primes . 28

2.4.1 Constructing the first k primes via sieve methods 28

2.4.2 Selecting random primes from a specified interval 29

2.4.3 Constructing elements in Zq of specified order 33

2.4.4 Selecting primes in arithmetic progressions 33

2.5 Probabilistic black-box polynomial identity testing 37

2.6 Kronecker Substitution . 40

2.7 Prony’s algorithm for interpolating black-box polynomials 42

2.7.1 Linearly generated sequences . 42

2.7.2 Determining the minimal generator . 45

2.7.3 Prony’s algorithm . 46

2.7.4 Decoding BCH codes and Prony’s algorithm over finite fields 47

2.7.5 The Ben-Or–Tiwari Algorithm . 48

2.8 Early termination, sparsity testing, and sparsity estimation 49

vii

3 Sparse interpolation of straight-line programs 52

3.1 Introduction . 52

3.2 Preliminaries . 53

3.2.1 Extended black box queries . 53

3.2.2 Hashing exponents . 55

3.2.3 Organization of chapter and summary of results 56

3.3 Previous Work . 57

3.3.1 The Garg–Schost algorithm . 57

3.3.2 Probabilistic Garg–Schost . 60

3.3.3 Related work: sparse polynomial identity testing of SLPs 61

3.3.4 The Giesbrecht–Roche “diversified” method 63

3.4 Iterative sparse interpolation . 65

3.4.1 Allowing for some collisions with σ-support primes 66

3.4.2 Deceptive terms . 68

3.4.3 Interpolation . 68

3.5 Majority-rule sparse interpolation over finite fields 70

3.5.1 Selecting a set of primes of f . 71

3.5.2 Generalized diversification . 72

3.5.3 Collecting images of terms . 76

3.6 Estimating degree and sparsity bounds on the interpolant 78

3.7 Conclusions and open questions . 81

3.7.1 Extensions to other models . 81

3.7.2 Open problems . 82

4 Output-sensitive algorithms for sumset and sparse polynomial multiplication 84

4.1 Introduction . 84

4.1.1 Context . 85

4.2 Previous sparse multiplication algorithms . 88

viii

4.2.1 Multiplication via interpolation . 88

4.2.2 Multiplication via “large primes” interpolation 90

4.2.3 The Cole–Hariharin Las Vegas multiplication algorithm 93

4.3 A softly-linear Monte Carlo algorithm for sumset 97

4.3.1 Estimating the cardinality of sumset . 97

4.3.2 Computing sumset . 100

4.4 Estimating the sparsity of the product . 101

4.5 Multiplication with support . 103

4.5.1 Determining the true support of the product h = fg 103

4.6 Putting the multiplication algorithm together 105

4.6.1 Extensions to Laurent polynomials and various coefficient rings 106

4.7 Conclusions and future work . 107

5 Multivariate sparse interpolation 108

5.1 Introduction . 108

5.1.1 Comparison of sparse multivariate algorithms 110

5.2 Zippel’s algorithm . 111

5.2.1 Analysis of Zippel’s algorithm . 113

5.2.2 An alternative formulation of Zippel’s algorithm 115

5.3 Randomized Kronecker substitutions . 116

5.3.1 Bivariate substitutions . 117

5.3.2 Multivariate substitutions . 119

5.4 Multivariate iterative sparse interpolation . 120

5.4.1 Interpolation . 122

5.5 Multivariate diversification . 124

5.6 Bivariate and multivariate majority-rule sparse interpolation 126

5.6.1 Choosing substitutions and a diversifying set 126

5.6.2 Recovering the multivariate exponents 127

5.7 Ultravariate majority-rule sparse interpolation 132

5.7.1 Selecting primes and substitution vectors 133

5.7.2 A comparison of approaches to interpolate a multivariate SLP 137

ix

6 Error-correcting sparse interpolation in the Chebyshev basis 140

6.1 Introduction . 140

6.2 Background . 141

6.2.1 Error-correcting sparse interpolation in the monomial basis 142

6.2.2 The Lakshman–Saunders algorithm . 144

6.3 List-decoding Lakshman–Saunders algorithm 146

6.3.1 Generalizing Laskhman–Saunders to folded affine subsequences 146

6.3.2 A list-decoding algorithm . 149

6.3.3 Upper-bounding the query cost to interpolate T -sparse f for T ≤ 3 . . . 150

6.4 Reducing sparse-Chebyshev interpolation to sparse-monomial interpolation . . 151

7 Fast Fourier-sparsity testing of Boolean functions 153

7.1 Background . 153

7.1.1 Previous work . 157

7.1.2 Projections and restrictions . 157

7.1.3 The FFT over the hypercube . 159

7.2 Sparse Fourier Transforms over the hypercube 160

7.3 Fourier sparsity testing via homomorphism testing 162

7.3.1 A simple sparsity tester . 162

7.3.2 A O(t log t)-query t-sparsity tester . 166

References 171

x

List of Tables

1.1 Some conventions and definitions of this thesis 4

3.1 Algorithms for the sparse interpolation and identity testing of an extended black
box polynomial . 56

3.2 Bit cost of sparse interpolation and identity testing algorithms for length-L SLPs
over Fq . 56

4.1 A comparison of sparse multiplication and product sparsity estimation 89

5.1 Algorithms for sparse multivariate interpolation and testing via univariate images 111

xi

List of Figures

1.1 A black-box for a polynomial f . 9

1.2 An erroneous black-box for a polynomial f . 10

1.3 An extended black-box for a polynomial f . 10

1.4 A straight-line program for f = 5(xy − (y + 3)) 13

7.1 The 4-dimensional hypercube graph . 155

xii

List of Algorithms

1 Constructing a sparse vector polynomial . 25

- Procedure GetPrime(λ) . 30

- Procedure GetPrimes(λ, n) . 31

- Procedure GetPrimeAP-5/6(λ,B; 5/6) . 35

- Procedure GetPrimesAP(λ,C) . 37

2 Polynomial identity testing of a sparse black-box polynomial 44

3 Prony’s algorithm for interpolating a T -sparse black-box polynomial 47

4 A probabilistic sparsity test . 50

5 Black-box sparsity estimation via repeated doubling 51

6 The Garg–Schost method for extended black-box polynomials 58

7 A Monte Carlo variant of the Garg–Schost method 60

- Procedure SparsePIT(f, fsparse, D, T) . 62

8 Las Vegas sparse interpolation of SLPs . 62

9 Giesbrecht–Roche diversified sparse interpolation 64

- Procedure IterativeSI(f,D, T) . 69

10 Majority-rule sparse interpolation of a straight-line program 77

11 Determing partial degree bounds for an SLP . 79

12 Sparsity Estimation of an SLP over Fq . 80

13 Prony sparsity estimation for a sparse polynomial product 91

14 Sparse polynomial multiplication via Prony . 92

xiii

- Procedure ProductExtBB(f, g, p, α) . 93

- Procedure BaseCaseMultiply(f, g,D, T) . 93

- Procedure SumsetSize(A,B) . 99

- Procedure Sumset(A,B, D) . 101

- Procedure ProductSparsity(f, g, S) . 102

- Procedure SparseProductCoeffs(f, g, E) . 105

- Procedure SparseMultiply(f, g) . 106

15 Zippel’s algorithm . 113

16 Multivariate iterative sparse interpolation . 123

17 Bivariate majority-rule interpolation . 130

18 Multivariate majority-rule interpolation . 131

19 Ultravariate majority-rule interpolation . 138

20 The Lakshman–Saunders algorithm for the interpolation of a sparse Chebyshev-
basis black-box rational polynomial . 146

21 The Lakshman–Saunders algorithm for folded affine subsequences 149

22 List-decoding Lakshman–Saunders . 149

23 The FFT over the hypercube . 159

- Procedure ExactSFT(f, n, t) . 161

24 A simple ϵ-ℓ2 t-sparsity tester . 165

25 A fast ϵ-ℓ2 t-sparsity tester . 169

xiv

Chapter 1

Introduction

This thesis explores efficient methods of polynomial interpolation: the process of learning a poly-
nomial f from its evaluations. By learning f , we mean learning some useful representation of f ,
e.g., a linear combination of powers of variables. Astronomers used polynomial interpolation to
predict the position of celestial bodies, as early as the time of ancient Babylon; and was developed
further by the likes of Newton, Waring, and Lagrange during the scientific revolution [Mei02].
Interpolation is often thought of as a numerical problem; however, we intend to study the prob-
lem from an algebraic perspective. Interpolation is a cornerstone of symbolic computation, and
has applications to computational complexity, error-correcting codes, scientific computing, and
signal processing. One may also obtain evaluations from signal measurements, in which case the
aim of interpolation is to find a polynomial that nicely approximates the signal.

The focus of this thesis is on sparse polynomials. We usually say a polynomial or a signal
is sparse if it admits a natural concise (i.e., sparse) representation, or is well-approximated by
such a representation. Otherwise we say that a polynomial is dense. For example, the polynomial
2x0 +3x99 could be naively represented by a dense representation (2, 0, 0, . . . , 0, 3) of length 100,
or one could represent it with the sparse representation ((2, 0), (3, 99)). We say a polynomial or
signal is T -sparse if it can be represented as a linear combination of T basis elements. In many
cases the bit size of the sparse representation may be as small as logarithmic compared to the
size of the dense representation.

Sparse signals occur naturally in a variety of contexts. Lossy compression schemes such as
JPEG and MPEG rely on sparsity occurring in video, image, and audio signals. Biomedical signals
admit sparsity that allows for wireless medical monitoring devices to consume fewer resources
[Sma]. Sparse signals also occur in computational learning theory [KM93], data centre monitor-
ing [MNL10], and database similarity search [AFS93].

Sparse interpolation algorithms exploit sparsity in order to recover the interpolant polyno-
mial more efficiently than a naive dense algorithm. Sparse interpolation falls under the larger

1

umbrella of algorithms that exploit sparsity in a variety of contexts. Sparse signals and sparse
systems have become a widely-studied topic over the past decade, with recent advancements
such as compressed sensing [Don06], sparse Fourier transforms [Has+12], and randomized nu-
merical linear algebra [Sar06]. In many settings we can solve problems in polynomial-time, and
sometimes softly-linear-time, in the size of the underlying sparse representation. One challenge
of achieving such a runtime is that it imposes strong bounds on the number of polynomial eval-
uations or signal measurements one can make. In many cases sparse algorithms only inspect a
fraction of their inputs; such algorithms, including many herein, make random choices.

One of our goals is to study and improve upper bounds on the asymptotic complexity of sparse
polynomial arithmetic. Using fast interpolation/evaluation schemes such as the Fast Fourier
Transform, arithmetic of dense polynomials can be performed in time that is softly linear in
the combined sizes of the inputs and outputs. We give a number of algorithms that allow for the
fast computation of straight-line programs (SLPs) that output sparse polynomials, for univariate
and multivariate cases and for functions over either an arbitrary commutative ring with identity,
or a finite field. We also give an asymptotically fast algorithm for the multiplication of sparse
polynomials with integer coefficients.

We mention here two decision problems closely related to sparse interpolation. Sparsity testing
is the problem of deciding whether a polynomial f is T -sparse from its evaluations. Sparsity
testing is a useful subroutine to estimate the sparsity of f , which itself is a useful and often
necessary preprocessing step to run before a sparse interpolation algorithm. Sparsity testing
allows us to estimate the sparsity of f , a necessary preprocessing step to sparse interpolation.
Sparse polynomial identity testing (sparse PIT) is the problem of determining whether f = 0, given
that f is T -sparse. We collate a number of sparsity-testing and sparse-PIT algorithms throughout
literature, as well as give an algebraic algorithm for Fourier-sparsity testing on Boolean functions
over the hypercube.

1.1 Preliminaries

This thesis assumes the reader has a literacy in algebra, algorithms and asymptotic notation, and
probability theory. Table 1.1 gives an unexhaustive list of some of the objects we will commonly
use throughout this thesis. We expect that the reader is familiar with these objects, some of which
we define in the introduction.

We list some basic conventions of this thesis. We will write vectors in lower-case boldface,

2

and scalars in normal-weight font, including vector entries. E.g., a vector s ∈ Zn may be written

s = (s1, . . . , sn) =

s1
s2
...
sn

 =
[
si
]t
i=1

,

whereas si ∈ Zn would be a vector indexed by i. We write si = (si1, . . . , sin). Indices will be
only be comma-separated when it usefully aids readability, e.g. ai+1,j−1. We will typically reserve
capitalized bold-faced font for matrices, e.g., we may write

R =

r1
r2
...
rm

 =

r11 r12 . . . r1m
r21 r22 . . . r2m
...

...
. . .

...
rn1 rn2 . . . rnm

In the case that m = n we may write R = [rij]

n
i,j=1. We let R⊤ denote the transpose of R.

Given r, s ∈ Rk and a ∈ R, we let as = (as1, . . . , ask) and rs = (r1s1, . . . , rksk). Given ω ∈ Rk

for a ring R and e ∈ Nk, we let ωe mean either (ωe1
1 , . . . , ω

en
n) or

∏n
i=1 ω

ei
i , depending on the

context. We also use shorthand notation for multivariate expressions, e.g., f(ω) = f(ω1, . . . , ωn).
These conventions are described in more detail in Section 1.3 and Chapter 5. We will generally
use caligraphic fonts to denote sets, e.g., S = {s1, s2, . . . , sm}. Here and throughout, we let
0 ∈ N†.

1.2 Model of Computation

We will often describe our algorithms in terms of soft-oh notation.

Definition 1.2.1 (soft-oh notation). Given two functions f, g : R>0 → R>0, we write f ∈ Õ(g)
if and only if f ∈ O(g logc g) for some constant c ∈ Z. For instance, logn log log2 n ∈ Õ(log n).
If f(n) ∈ Õ(n) we say f is softly linear in n. We also define polylog(g) and poly(g) to denote
functions such that polylog(g) ∈ O(logc g) and poly(g) ∈ O(gd) for some constants c, d ∈ Z.

We also define Θ̃, Ω̃, and õ as “soft” analogues to asymptotic classes of functions given by Θ,Ω,
and o, respectively. These are defined in the obvious manner.

We use soft-oh notation in order to make our analysis less cumbersome, while examining
the most significant factors appearing in a cost function. We note that f ∈ Õ(g) implies that
f ∈ O(g1+ϵ) for any constant ϵ > 0.

†As it should be!

3

Table 1.1: Some conventions and definitions of this thesis
x, y, z, x1, . . . , xn variables, i.e., indeterminates
f, g, h polynomials
f a vector polynomial (Sec. 1.3.1)
τ a term
deg(f); degx(f) total degree of f ; degree of f with respect to x
∥f∥1; ∥f∥∞ the length and height of f ∈ Z[x]
C upper bound on the height of f ∈ Z[x]
#f sparsity of f , i.e., number of terms in f
D;D∗ bounds on the partial and total degrees of f
T ;n bounds on sparsity of f , and the number of variables of f
S a finite set
#S number of elements of S
R;Z;K commutative ring with identity; integral domain; field
R[x] = R[x1, . . . , xn] ring of polynomials over R with indeterminates x1, . . . , xn
f(x) a multivariate polynomial f(x1, . . . , xn) ∈ R[x]
R[x±1] = R[x±1

1 , . . . , x±1
n] ring of Laurent polynomials over R

R[x]D R-module of polynomials with partial degrees at most D
⟨a1, . . . , am⟩ ideal generated by a1, . . . , am ∈ R
⟨g⟩ ⟨g1, . . . , gm⟩, where g = (g1, . . . , gm) ∈ R[x]m

fmod p f(x) mod ⟨xp1 − 1, . . . , xpn − 1⟩, for f ∈ R[x]
R[x]mod p The quotient ring R[x]/⟨xp1 − 1, . . . , xpn − 1⟩
µ a probability bound, typically a parameter for algorithms
Z;Z>0;N ring of integers; positive integers; natural numbers
Zm ring of integers modulo m ∈ Z>0

Q;R;C fields of rational, real, and complex numbers
Fq A finite field of size q, q not necessarily prime
[m] the integer range {1, 2, . . . ,m}, where m ∈ Z>0

[k..m] For k < m ∈ Z, the range of integers {k, k + 1, . . . ,m}
(k..m); (k..m]; [k..m) [k..m] with k and m, m, and k removed, respectively
V(v1, . . . , vn) n× n Vandermonde matrix parameterized by values v1, . . . , vn
H(h1, . . . , h2n−1) n× n Hankel matrix parameterized by values h1, . . . , h2t−1

T(t−n+1, . . . , tn−1) n× n Toeplitz matrix parameterized by values t−n+1, . . . , tn−1

Many of our algorithms are Monte Carlo, meaning that their runtime is deterministic but
they fail with nonzero probability at most µ, for some parameter µ > 0. Monte Carlo algorithms
make random choices, and require a source of randomness, e.g., a string of random bits, which it
will use to decide what choices to make. Such algorithms usually admit a soft-oh log(1/µ) factor
in its cost.

We note that an algorithm that produces a unique output upon success, and succeeds with
probabilty at least 1− c for some constant c > 1

2 , can be made to succeed with probability 1 − µ
for arbitrarily small µ > 0 by running the original algorithm O(log(1/µ)) times and producing the

4

most frequently occuring output of the original algorithm. This is described in detail in Section
2.3.

We will also work with Las Vegas algorithms, which are randomized algorithms that always
produce a correct result but whose runtime is probabilistic. Any Las Vegas algorithm can be
made Monte Carlo by terminating the algorithm, regardless of whether it has completed, after
an appropriate deterministic length of time. By Markov’s inequality, a Las Vegas algorithm with
an expected runtime at most f(n) on inputs of size n will terminate in time kf(n) time with
probability at least 1− 1/k.

We will usually assume a probabilistic algebraic random access machine (PARAM) as our
model of computation (see Section 2 of [Kal88] for an exact definition), though we do not intend
to encumber our analysis with too many model-specific details. This is a modification of the
random access machine (RAM) described in [AHU74]. Like the RAM, the probabilistic algebraic
RAM has an infinite array to store words, allow for pointer manipulation, and to maintain a stack;
however, this array also allows for the storage and manipulation of elements of a specified ring
R. The PARAM can copy, compare, add, substract, and multiply ring elements, and division by
units (i.e., invertible elements). The PARAM in addition has a source of randomness, such that
an algorithm running on a PARAM can choose x ∈ S uniformly at random for any specified finite
set S.

In some cases when we are specifically interested in the bit complexity on a PARAM, where
we consider the bit cost arithmetic operations over a specified ring R (we will call these simply
R-operations). A PARAM usually assumes either unit-cost or logarithmic-cost memory access,
whereby the cost of accessing the nth element of either array is O(1) or O(log n) respectively. The
choice of whether to use a unit-cost or logarithmic-cost RAM will not affect a soft-oh algorithmic
runtime analysis, provided the runtime is polynomial in the memory cost, or greater.

We may measure our algorithms in terms of bit operations, R-operations, polynomial eval-
uations, or some combination thereof. In the event that an algorithm has a cost of O(f(n)) R
operations, we will assume an implied cost of O(f(n)) bit operations as well.

In some cases, we will consider algorithms for which the output size may vary asymptotically
for inputs of a fixed size. In such cases we may measure the complexity of the algorithm in terms
of the problem size, by which we mean the combined bit-size of the inputs and outputs.

This thesis does not explore parallel algorithms. We remark though that parallel sparse in-
terpolation of multivariate black-box polynomials or extended black-box polynomials (Section 1.4)
have been studied, e.g., in [GKS90] and [HR99]. Parallel sparse black-box polynomial interpola-
tion over finite fields has been studied (and implemented) in [JM10].

5

1.3 Sparse and dense polynomial representations

The word polynomial comes the Greek words poly (many) and nomós (portion). In a computer
algebra system, the most commonly used polynomial representations express a polynomial f as
a sum of its parts, i.e. monomials or terms. The dense representation expresses a univariate
f ∈ R[x] as a list of terms of consecutive degree

f(x) =

D∑
i=0

cix
i, D ≥ deg(f), (1.1)

or in the n-variate case we may write

f(x1, . . . , xn) =
∑

e∈[0..D]n

cex
e1
1 · · ·x

en
n ∈ R[x1, . . . , xn], (1.2)

which we may condense to
f(x) =

∑
e∈[0..D]n

cex
e ∈ R[x].

We will typically reserve n for the number of variables in our polynomial ring R[x].

In some instances we may consider partial degree boundsD1, . . . , Dn, wherebyDi ≥ degxi
(f),

and we write f as a linear combination xe over all e ∈ Zn
≥0 with ei ≤ Di for i = 1, 2, . . . , n. In

other cases we may consider a bound D∗ on the total degree of f . The total degree of a nonzero
term cxe is

∑n
i=1 ei. The total degree of f is the maximum of the total degree of its terms.

In computer memory, one can represent (1.1) as a vector (c0, . . . , cD). One may similarly
represent (1.2) as a multi-dimensional array indexed by [0..D]n. The advantage of such a repre-
sentation is that degree of each monomial cixi is implicitly given by the array index. An advantage
of the dense representation over the monomial basis is that it lends itself to asymptotically fast
and, in practise, efficient arithmetic and interpolation in a wide variety of settings.

However, if most of the coefficients of f are zero, it may be more natural to use a sparse
representation,

f(x) =

t∑
i=1

cix
ei , or f(x) =

t∑
i=1

cix
ei (1.3)

in the univariate and multivariate cases respectively, where the exponents ei (or ei) are distinct
and sorted and the ci are explicitly nonzero. In the univariate case we suppose e1 > e2 > · · · > et.
In the multivariate case, we will suppose the ei are sorted with respect to the lexicographical
ordering ≻, where for d,d′ ∈ Zn

≥0, d ≻ d
′ if and only if there exists k ∈ [n] such that dℓ = d′ℓ for

all ℓ ∈ [1..k), and dk > d′k. We call the exponent components eij of f ∈ R[x] the partial exponents

6

of f . We will assume throughout this thesis that the θ(logD) bits are used to store every partial
exponent of a sparse polynomial f . Thus the sparse representation of f takes O(T logD) bits and
O(T) ring elements.

We note that the size of a dense representation (1.2) of f(x) is (D + 1)n ring elements,
whereas the sparse representation (1.3) requires O(T) ring elements and another O(Tn logD)
bits in order to store the exponents of f . As the number of terms T is at most O(Dn), the bit size
of a dense representation is soft-oh asympotically at least that of the sparse representation.

We will generally let a term of f denote a nonzero term and a formal term denote a term
cxe of f , where c may possibly be zero, and reserve term to mean a nonzero term. We will often
write τ to denote a term. We also will use the short-hand notation τ ∈ f to mean that τ is a term
of f .

In the PARAM model, we would store the expression (1.3) as a list [(ci, ei)]ti=1, and similarly
in the multivariate case with the exponents sorted with respect to the lexicographical ordering.
We identify f with the set of its terms, and write τ ∈ f to mean that τ is a term of f .

We say that f a is sparse polynomial if it has significant “gaps” between terms of consecutive
degree, otherwise we will say f is a dense polynomial. We also let a sparse (dense) polynomial
refer to a polynomial given by its sparse (dense, resp.) representation, though it is generally
assumed that a polynomial f given by its sparse representation admits such gaps, such that it is
well suited towards a sparse representation. The sparsity of f is its number of nonzero terms.
We denote by #f the sparsity of f , and say f is T -sparse if #f ≤ T .

Sparse polynomials are also called lacunary polynomials and fewnomials in literature. As
with dense representations, sparse representations naturally generalize to multivariate polyno-
mials and alternative bases. We will also refer to a polynomial as sparse (dense) if it is given by
its sparse (dense, respectively) representation.

Given a sparse representation of f ∈ R[x], in order to construct its dense representation we
initialize a dense array with each entry 0 ∈ R, and then populate the array with the nonzero
coefficients of f while making a pass of the sparse representation. We can similarly construct
a sparse representation of f from its dense representation by making a single pass through the
dense representation, and appending a term to the sparse representation of f whenever we come
across a nonzero coefficient. We conclude the following lemma.

Lemma 1.3.1. We can convert between the sparse and dense representations of f with bit cost linear
in the combined size of the representations.

For f =
∑t

i=1 cix
ei ∈ Z[x], we define the height of f to be ∥f∥∞

def
= maxti=1 |ci| and the length

of f to be ∥f∥1
def
=
∑t

i=1 |ci|.

7

We will also consider Laurent polynomials, which allow for negative integer exponent entries
as well. That is, we allow for exponents of the form

f =
∑

e∈[−D..D]n

cex
e ∈ R[x±1]

def
= R[x1, x

−1
1 , . . . , xn, x

−1
n] (1.4)

We will define, for f ∈ R[x±1], the absolute degree of f , absdeg(f)
def
= maxe∈supp(f) |e|, as well

as partial absolute degrees defined in a similar fashion.

A sparse or dense representation for F is with respect to a particular basis for R[x] as an
R-module. We most often use the monomial basis, comprised of the set of all monomials {xe :
e ∈ Zn

≥0}. We will also consider the univariate Chebyshev basis, comprised of the Chebyshev
polynomials Ti, i ∈ Z≥0, defined by

T0(x) = 1, T1(x) = x, Ti+2(x) = 2xTi+1(x)− Ti(x), i ≥ 0.

The multivariate Chebyshev basis is similarly comprised of products of univariate Chebyshev
polynomials in each variable, e.g., Te1(x1)Te2(x2) · · ·Ten(xn).

The sparse interpolation problem, roughly, will be to construct a sparse representation of f
given some model of evaluation for f . We discuss some of these models in Section 1.4.

1.3.1 Vector polynomials

In some cases we will work with vector polynomials. We will say f is a length-m vector polyno-
mial if it may be written as

f(x) = (f1(x), . . . , fm(x)) ∈ R[x]m,

where fi ∈ R[x] for i = 1, . . . ,m. We identify R[x]m with Rm[x] in a natural manner, writing f as
a sum of the form

f(x) =
∑
e

cex
e,

where ce ∈ Rm, and cxe is understood to be taken as (c1xe1 , . . . , cnx
en). One can consider sparse

and dense representations of vector polynomials.

An n-variate vector polynomial induces a map Φ : Rn → Rm given by

(x1, . . . , xn) 7→ f(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)) .

8

α ∈ Rn

f ∈ R[x]

f(α) ∈ R

Figure 1.1: A black-box for a polynomial f

1.4 Models of polynomial evaluation

In fast dense interpolation methods the set of evaluation points used is typically fixed. For
instance the fast Fourier transform (FFT) allows for the fast evaluation and interpolation of
f ∈ R[x], using specific roots of unity as evaluation points, i.e. elements ω from R or an exten-
sion thereof, for which ωn = 1 for some n ∈ Z>0. The order of ω is the least positive integer
n such that ωn = 1. The FFT allows for fast evaluation and interpolation with roots of unity as
evaluation points, allowing for practical and fast dense polynomial arithmetic.

However, sparse interpolation algorithms often require that evaluation points are chosen ran-
domly. We consider three models of evaluations, in order of increasing power: black-box polyno-
mials, extended-black-box polynomials, and straight-line programs. A straight-line program can
simulate an extended black-box polynomial, which can simulate a black-box polynomial, which
in turn can produce a set of evaluations over a fixed set of points.

1.4.1 Black-box polynomials

We will often think of such an algorithm as being given a “black box” which encapsulates the
interpolant f , allowing an algorithm to evaluate f without letting us see its monomial represen-
tation.

Definition 1.4.1. A black box for a polynomial f ∈ R[x1, . . . , xn] is an oracle that, when queried
with α ∈ Rn, produces f(α). We call a polynomial given by a black box a black-box polynomial.

Figure 1.1 gives a graphical representation of a black-box polynomial. Prony’s algorithm (Sec.
2.7) interpolates sparse, black-box polynomials over integral domains containing roots of unity
with order exceeding the degree of f . Black-box interpolation algorithms are measured in terms
of the number of black-box queries, i.e., evaluations produced by the black-box, in addition to
bit and ring operations.

In some cases we may restrict the set of α with which we may query our black box. For
instance, in Chapter 7 we will study functions acting over the n-dimensional hypercube, Fn

2 .

9

α ∈ Rn

f ∈ R[x], E ∈ Z>0

f(α) + e(α) ∈ R

#{x ∈ Rn : e(x) ̸= 0} ≤ E

Figure 1.2: An erroneous black-box for a polynomial f

a ∈ R[y]n

b1, . . . , bm ∈ R[y1]× · · · × R[ym]

f ∈ R[x]

f(a) mod ⟨b⟩︸ ︷︷ ︸
∈R[y]/⟨b⟩

Figure 1.3: An extended black-box for a polynomial f

We will identify the additive group structure of F2 with the multiplicative group structure of
{±1} ⊂ R, and consider a black-box polynomial f ∈ R[x1, . . . , xn] that may only be evaluated
over {±1}n. Restricting to these evaluation points, f admits a reduced representation modulo
(xi + 1)(xi − 1), i ∈ [n]. That is, f admits a multilinear represenation. We consider the problem
of testing whether f is sparse with respect to this approximation.

1.4.1.1 Erroneous-black-box polynomials

In Chapter 6 we will consider an erroneous black box that may produce either an evaluation
of f or an erroneous evaluation. In this model, we suppose that the black-box may produce an
incorrect evaluation for f at up to E evaluation points, for some bound E. We further suppose
that the black-box will produce a fixed output for any evaluation point, such that if the black
box produces an incorrect value for some evaluation f(α), repeated queries will not reveal the
true value of f(α). We can think of the black box as producing f(α) + e(α), where e is an error
function that is zero except on a subset of Rn of cardinality at most E.

This model was introduced by Comer, Kaltofen, and Pernet in [CKP12], where the authors
studied interpolation with erroneous evaluations.

1.4.2 Extended-black-box polynomials

In some cases, black-box access to a polynomial f ∈ R[x] will be insufficient to reconstruct a
monomial representation of f . For instance, if we are given black-box access to f ∈ Fq[x], we can

10

only interpolate f modulo
∏

α∈Fq
(x − α) = xq − x. Thus, for instance, the polynomials x2 and

xq+2, evaluated at any α ∈ Fq, will agree, even though they are distinct polynomials.

We extend the notion of a univariate black-box to allow for evaluation in certain extensions
of R that allow us to interpolate f over R with arbitrarily many terms.

Definition 1.4.2. Let R be a commutative ring with identity, and Z an integral domain.

• An extended black box for f ∈ R[x1, . . . , xn] is an oracle that, queried with a1, . . . , an ∈
R[y1, . . . , ym] and a monic polynomials bi ∈ R[yi], for i ∈ [m], produces

f(a) mod ⟨b⟩ def
= f(a1, . . . , an) mod ⟨b1, . . . , bn⟩, (1.5)

where B = ⟨b1, . . . , bm⟩ ⊆ R.

• An algebraic black box for f ∈ Z[x1, . . . , xn] is an extended black-box with the additional
restriction that the bi are separable, meaning that bi has no multiple roots in the algebraic
completion of Z.

We say f given by an extended black-box an extended black-box polynomial, and define algebraic
black-box polynomials similarly.

Extended black boxes allow for the interpolation of univariate polynomials of arbitrary degree
and number of nonzero terms. An algebraic black box is a natural generalization of a black box.
An algebraic black box may be implemented provided evaluation access to f ∈ Z[x] over the
algebraic closure of the field of fractions of Z. One can reconstruct f(a) mod ⟨b⟩ by evaluating
f at xi = ai(βij), where βij is taken over the roots of bi, for i ∈ [m]. One could conceivably
further generalize an algebraic black box to allow us to take images of f modulo a radical zero-
dimensional ideal I ⊂ Z[y1, . . . , yn]. For the purposes of our algorithms we do not require this
generality.

In the case that f is over an algebraically closed field K, a black box for f is an algebraic black
box. Thus interpolation algorithms designed for an extended black box may work, for instance,
on a black-box polynomial over C, though in that setting numerical considerations exist.

In the case that f ∈ Fq[x1, . . . , xn], an extended black-box can evaluate f over field extensions
of Fq. Namely, if we fix an irreducible polynomial Φ ∈ Fq[y] of degree d, we can evaluate f at
ω ∈ Fqd

∼= Fq[y]/⟨Φ⟩. We can also construct images of f over Fqd , e.g., for some g(x) ∈ Fq[x],

f(αx) mod (Φ, g(x)) ∈ Fq[x, y]/⟨Φ, g(x)⟩ ∼= Fq[x]/⟨g⟩.

We will measure the cost of an interpolation algorithm of an extended black box on the number
of queries to the extended black-box polynomial f , as well as in terms of the types of inputs
a, b used to query f . Here we may need an appropriate cost function for producing various
extended-black-box queries. Chapter 3 discusses this in greater detail.

11

1.4.2.1 Randomized black-boxes

A randomized black-box polynomial f ∈ R[x] is an oracle whereby the algorithm does not query
f with an evaluation point x. Rather, the algorithm queries f and gets back a pair (x, f(x)),
where x is chosen according to a distribution (e.g., uniform) over a domain D ⊂ R.

We do not consider this model in the thesis but remark that the corresponding sparse interpo-
lation problem has been studied, for instance, in the case that f ∈ R[x], where queries are taken
over the real hypercube {±1}n in [And+14] and [Koc+14].

1.4.3 Straight-line programs

Definition 1.4.3. A straight-line program (SLP) acting on variables x1, . . . , xn over a ring R is a
list of arithmetic instructions Γ = (Γ1, . . . ,ΓL), where each instruction Γi is of the form

Γi : βi ← γi1 ⋆ γi2,

where ⋆ ∈ {+,−,×,÷}, and

γi1, γi2 ∈ R ∪ {x1, . . . , xn} ∪ {β1, . . . , βi−1}, for i ∈ [L].

We let L denote the length of Γ and say Γ is n-variate. We say βL is the output of Γ.

In other words, every straight-line program instruction assigns to the value βi the result of
an binary arithmetic operation acting on some combination of ring constants, variables and pre-
viously computed and stored algebraic values. A straight-line program may be represented by a
directed acyclic graph (DAG) with labelled edges, whereby every vertex represents either a vari-
able, ring constant, or arithmetic instruction. A vertex is connected by a directed edge to an
instruction vertex if it is an operand to that instruction. The source vertices are precisely the
variables x1, . . . , xn and ring constants that are instruction inputs. Each node representing an
arithmetic operation instruction has in-degree 2. For nodes representing a subtraction or division
operation, we label its in-edges 1 or 2 to specify whether an input is the first or second operand.
We may reuse a value arbitrarily many times, such that the out-degree of a node is only limited by
the number of subsequent arithmetic-operation nodes. Figure 1.4 illustrates an example straight-
line program. The computer algebra software DAGWOOD of Freeman et al. was specifically
designed for computation with straight-line programs [Fre+88].

We will assume that every variable x appearing in a straight-line program appears in an
instruction (or else we could trivially disregard x), such that n ∈ O(L).

A straight-line program is also referred to in literature as an arithmetic circuit or white-box
polynomials. We say Γ computes f ∈ R(x1, . . . , xn) if the value assigned to βi by the instruction

12

x

y

3

+

×

5

−

× = f2

1

Figure 1.4: A straight-line program for f = 5(xy − (y + 3))

Γi is well-defined for all i, and γL produces the output f . We will sometimes write Γf to denote
an SLP that computes f .

The straight-line program is a very powerful model, allowing for evaluation over arbitrary
ring extensions of R. For any ring extension R1 ⊃ R and any α ∈ Rn

1 , we evaluate Γ at
(x1, . . . , xn) = (α1, . . . , αn) by replacing each instance of xi appearing in Γ with αi, before per-
forming the resulting sequence of arithmetic operations. The output may be undefined for a given
evaluation point if an arithmetic instruction calls for division by a zero divisor. We will restrict
our attention to division-free SLPs, such that the output is always defined.

More generally, we may think of an SLP as a sort of “homomorphic black box”, allowing us
to construct arbitrary homomorphic images of f . Given any ring homomorphism Φ mapping
the polynomial ring R[x1, . . . , xn] to another ring R2, we may construct Φ(f) by applying Φ to
the value of any source vertex in the DAG representation of Γf , i.e., each variable and constant
appearing in Γf . We let Φ(Γf) denote this transformation of Γf . The resulting arithmetic in-
structions of Φ(Γf) are over R2. The output of Φ(Γf) is Φ(f). For instance, if we take R2 to
be R[y1, . . . , ym]/⟨b1, . . . , bm⟩ for some bi ∈ R[yi], i ∈ [m], and let Φ be an R-linear map given by
xj 7→ aj for some aj ∈ R[x1, . . . , xn], j ∈ [n], then the output of Φ(Γf) is precisely f(a) mod ⟨b⟩.
Thus a straight-line program may simulate an extended black-box polynomial.

We may even transform a straight-line program Γ by maps other than ring homomorphims,
such as inverse homomorphims. E.g., one could take an SLP acting over R = Zm, and, for
j ∈ [0..m), identify j mod m ∈ Zm with j. As with black-boxes we will let a query to an SLP
computing f refer to the construction of an image of f with respect to a map Φ. As with extended
black boxes, we will need to consider the number and types of queries made by an algorithm in
a cost analysis of that algorithm.

13

1.5 Organization of thesis

In Chapter 2, we provide some of the tools we use within sparse interpolation. These include
asymptotically fast algorithms from dense polynomial arithmetic, integer and finite field arith-
metic, linear algebra, and number theoretic operations such as finding and testing primes. We
also cite some basic probabilistic inequalities and methods used in probabilistic algorithms. We
also discuss the DeMillo–Lipton–Schwartz–Zippel Lemma and the problem of dense PIT of a
black-box polynomial. We also give the theory behind Prony’s algorithm for evaluating a black-
box polynomial, as well as the method of Kronecker substitution, which reduces multivariate
interpolation to univariate interpolation.

In Chapter 3, we give two Monte Carlo algorithms for the sparse interpolation of a univariate
polynomial given by an extended black box or a straight-line program. We give two algorithms,
one for polynomials over arbitrary rings and an improved algorithm in the case that the inter-
polant f is over an integral domain with sufficiently many elements. This builds on work by Garg
and Schost, and Giesbrecht and Roche. We apply some of the techniques developed for these
algorithms in Chapter 4, where we give an asympotically fast algorithm for the multiplication
of sparse polynomials. This algorithm is probabilistic and sensitive to the size of the output,
which may vary widely for inputs with fixed parameters. As a subroutine to the multiplication
algorithm, we give a fast probabilistic algorithm for constructing the sumset of two finite sets of
vectors of integers A,B ⊂ Zn, i.e., the set of all sums a+ b where a ∈ A and b ∈ B.

In Chapter 5, we give algorithms for the interpolation of sparse multivariate polynomials.
These algorithms reduce multivariate interpolation to univariate interpolation, by reconstructing
the interpolant f from a number of randomly-selected univariate images. We call this technique
randomized Kronecker substitutions, and it may work with any black-box algorithm over a suf-
ficiently large integral domain. “Classical” Kronecker substitution, in comparison, reconstructs
multivariate f deterministically from a single univariate image. In the case that f is sufficiently
sparse, randomized Kronecker substitution can outperform multivariate interpolation via classi-
cal Kronecker substitution. We give an additional algorithm that combines ideas from Chapter 3
with randomized Kronecker substitutions, giving an algorithm for the sparse interpolation of an
extended black-box or SLP with an improved runtime when f is highly multivariate.

In Chapter 6, we consider the interpolation of a univariate polynomial f that is sparse under
the Chebyshev basis, where f is given by an erroneous black-box. We give two algorithms, one
that generalizes a black-box sparse interpolation algorithm by Lakshman and Saunders, and one
that reduces interpolation in the Chebyshev basis to interpolation in the monomial basis. In
Chapter 7, we consider the problem of sparsity testing. Specifically, we consider the specific case
of testing whether a boolean function f , a function acting over the hypercube, admits a sparse
representation as a real-valued multilinear polynomial.

This thesis is based on work from the following six publications:

14

• (with Mark Giesbrehct and Daniel S. Roche) Faster sparse interpolation of straight-line pro-
grams. Proceedings of the 14th International Workshop on Computer Algebra in Scientific
Computing (CASC 2013). [AGR13]

• (with Mark Giesbrecht and Daniel S. Roche) Sparse polynomial interpolation via low-order
roots of unity. Proceedings of the 40th International Symposium on Symbolic and Algebraic
Computation (ISSAC 2014). [AGR14]

• (with Daniel S. Roche) Multivariate sparse interpolation using randomized Kronecker sub-
stitutions. ISSAC 2014. [AR14]

• (with Erich Kaltofen) Error-correcting sparse interpolation for the Chebyshev basis. ISSAC
2015. [AK15]

• (with Daniel S. Roche) Output-sensitive algorithms for sumset and sparse polynomial mul-
tiplication. ISSAC 2015. [AR15]

• (with Mark Giesbrecht and Daniel S. Roche) Faster sparse multivariate polynomial interpo-
lation of straight-line programs. Journal of Symbolic Computation. [AGR15]

Chapter 3 is based on work from [AGR13] and [AGR14]; Chapter 4 from [AR15]; Chapter 5 from
[AR14] and [AGR15]; and Chapter 6 from [AK15]. Chapter 7 is part of currently unpublished
joint work with Eric Blais.

Given the dependencies between chapters, we recommend the thesis be read in the following
manner:

• Chapters 1 and 2 first;

• Chapter 3 before Chapters 4 and 5;

though Chapter 2 is mostly a tabulation of results, and can be skipped and referred to as needed
when reading later chapters.

15

If I have seen further, it is by standing on
the shoulders of giants.

Issac Newton

Chapter 2

Algorithmic tools

In this chapter we will collate some of the basic tools and methods we will use as subroutines in
subsequent algorithms. These tools include:

• fast arithmetic over the integers, modular rings, finite fields, and dense polynomials, all of
which rely heavily on the Fast Fourier Transform (FFT);

• fast multipoint evaluation and its inverse operation, simultaneous modular reduction;

• fast linear algebraic subroutines;

• efficient data structures for dictionaries;

• basic probabilistic inequalities and methods for probabilistic algorithms;

• number theoretic subroutines for constructing primes or random sets of primes of from a
specified range.

Lastly, we give some well-known tools from sparse interpolation: Kronecker substitution, reduc-
ing multivariate interpolation to univariate interpolation; Prony’s algorithm for interpolating a
black-box polynomial; and the technique of early termination, which we use for sparsity estima-
tion.

16

2.1 Integer, dense, modular ring, and finite field arithmetic

To that end we collate a few fundamental results. Most of these appear in Modern Computer
Algebra by Joachim von zur Gathen and Jürgen Gerhard [VG03], the “bible” of computer algebra.1

We will, however, give references to the source material as well wherever possible.

2.1.1 Integer and modular arithmetic

Theorem 2.1.1. Let m,n ∈ Z. The following can be computed in time softly-linear in the bit-length
of the inputs:

• m± n,mn,m rem n, for any m,n ∈ Z;

• Arithmetic in Zm for any m ∈ Z>0.

Again, addition and subtraction trivially achieves this cost via the grade-school method. Di-
vision with remainder reduces to multiplication via Newton iteration (Thm. 9.8, [VG03]). All
subquadratic multiplication methods essentially rely on interpolation-evaluation methods.

Fast integer multiplication has an interesting history. In the 1950’s, Andrey Kolmogorov con-
jectured that multiplication of two n-bit integers requires O(n2) bit operations. In 1960, Kol-
mogorov stated this conjecture in a Moscow University seminar, attended by Anatolii Alexeevitch
Karatsuba. Karatsuba subsequently derived a O(nlog2 3) bit-operation algorithm based on the
divide-and-conquer paradigm. In 1962, Komolgorov wrote [KO63], containing Karatsuba’s algo-
rithm and a separate result by Yuri Ofman. Karatsuba only later became aware of this publication
(see his personal account in [Kar95]). Subsequently, Andrei Toom and Stephen Cook generalized
Karatsuba’s method to give a family of multiplication algorithms that divide the problem into
2k − 1 equally sized multiplications, for arbitrary, fixed k > 1, with runtime O(nlog2k−1 k), essen-
tially achieved O(n1+ϵ) for arbitrarily large ϵ. Karatsuba’s algorithm is merely the case k = 2. A
considerable caveat of Toom–Cook multiplication is that the constant hidden within “O” grows
very fast with respect to k (see Section 9.5.3, [CP06]).

Multiplication of two n-bit integers can be done in O(n log n log log n) bit operations due
to the method of Schönhage and Strassen [SS71]. Most high-performance implementations of
fast integer arithmetic use this method (e.g., GMP [GG14]). The Schönhage–Strassen method
maintained the fastest asymptotic runtime until in 2009 when Fürer gave an algorithm with a
runtime O(n log n2O(log∗ n)) [Fr09] on a multitape Turing machine, where log∗ n is the iterated
logarithm, given by log∗ x = 0 for x ≤ 1 and log∗ = 1 + log∗(log x) otherwise. De et al. gave a

1Many also appear in the “Old Testament”, Algorithms for Computer Algebra by Geddes, Czapor, and Labahn
[GCL92]

17

version of Fürer’s algorithm based on modular arithmetic in [De+13]. More recently, Harvey, van
der Hoeven, and Lecerf gave a refined analysis of Fürer’s algorithm, and showed that it achieved
a bit complexity of O(n log n16log∗ n). In addition, they gave a slightly improved algorithm with
runtime O(n log n8log∗ n). In the unit-cost RAM model, Schönhage–Strassen multiplication and
its contemporaries all admit a runtime of O(n log n).

2.1.2 Dense polynomial arithmetic

Theorem 2.1.2. Let R be a ring, and f, g ∈ R[x] be given by their dense representations, where
deg(f),deg(g) ≤ D. Then the following can all be computed with Õ(D) ring operations and similarly
many bit operations:

• f ± g, fg;

• f rem g, if R is commutative and with identity, and g is monic;

• f rem g, if R is a field.

• gcd(f, g), if R is a field.

Addition and subtraction achieve such a runtime using the grade-school method. In order to
achieve this cost for multiplication, one can use the algorithm of Cantor and Kaltofen [CK91],
which performs a base-2 or base-3 FFT over an appropriate extension of R, for a cost ofO(n log n)
multiplications and O(n log n log log n) additions and substractions. In the case that R = Fp, a
finite field of prime size p, Harvey, van der Hoeven, and Lecerf have improved the bit complexity
using faster FFT-based techniques in the spirit of work by Fürer and De et al. Fast division, as in
the integer case, reduces to fast multiplication via Newton iteration (Thm. 9.6, [VG03]).

Computing gcd(f, g), the greatest common divisor (GCD) of f, g ∈ K[x], via the Euclidean
algorithm may takeO(D2) operations. The Euclidean algorithm produces a remainder sequence
(r0, r1, . . . , rk) ∈ K[x]k+1 defined by

r0 = f, r1 = g, ri+2 = ri mod ri+1 for i ∈ [0..k − 2], rk−1 ̸= rk = 0. (2.1)

is the remainder of ri divided by ri+1, for i ≥ 0. If rk = 0, then gcd(f, g) = rk−1.

The GCD may be expedited to Õ(D) arithmetic operations over arbitrary Euclidean domains
using the half-GCD (HGCD) algorithm. Given f, g ∈ K[x], with deg(f) > deg(g), the HGCD
algorithm produces a unimodular matrix Q = [qij]

2
i,j=1 ∈ K[x]2×2 satisfying[

rℓ
rℓ+1

]
= Q

[
f
g

]
, where deg(rℓ) ≥ deg(f)/2 > deg(rℓ+1),

18

and whose components are individually of minimal degree.

The HGCD algorithm was developed by Schönhage for integers [Sch71], improving on a
fast integer GCD algorithm of Knuth. Moenck generalized the HGCD algorithm to polynomial
rings [Moe73]. Moenck only gave an analysis of his algorithm on inputs that produced “normal”
remainder sequences: sequences such that deg(ri+1) = deg(ri) − 1 for all i. An analysis of
Moenck’s algorithm on arbitrary sequences was given in [AHU74]; however, Thull and Yap noted
this analysis was incorrect, and provided a corrected version of the HGCD algorithm in with a
proof of correctness in [TY]. The HGCD algorithm is a valuable subroutine in the study of linearly
generated sequences (see Section 2.7).

Theorem 2.1.3. There exists an algorithm that, given dense polynomials f, g ∈ K[x], produces rℓ
and rℓ+1 appearing in remainder sequence defined by (2.1).

2.1.3 Finite field operations

Throughout this thesis, we will assume a finite field written as Fq, where q = pr for some prime
p, is represented as the quotient ring Zp[y]/⟨Φ⟩, where Φ ∈ Zp[y] is an irreducible polynomial of
degree r.

It follows from Theorems 2.1.1 and 2.1.2 that we achieve the following cost for finite field
arithmetic.

Theorem 2.1.4. Let p be prime and q = pr. Then we can perform arithmetic operations in Fq,
represented as Zp[y]/⟨Φ⟩ in Õ(r log p) = Õ(q) bit operations.

In some cases we will be given evaluation access to a polynomial over Fq, and we will need to
evaluate f over an extension Fqs . We will similarly represent Fqs as Fq[w]/⟨Ψ⟩, where Ψ ∈ Fq[w]
is of degree s and irreducible over Fq. We cite the following results, which allows us to quickly
construct irreducible polynomials.

Theorem 2.1.5 ([Sho94], [CL13]). There exist Las Vegas algorithms that, given an irreducible
polynomial Φ ∈ Zp[y] of degree r, produces an irreducible polynomial Ψ ∈ (Zr[y]/⟨Φ⟩)[w] of degree
s with costs:

• Õ(s2 + s log q) bit operations;

• O(s1+ϵ(s)(log q)5+ϵ(q)) bit operations, where ϵ : Z≥0 → R>0 satisfies limn→∞ ϵ(n) = 0.

19

2.1.4 Chinese remaindering and simultaneous modular reduction

Often we will reconstruct exponents from their images modulo a choice of primes. One can apply
Chinese Remaindering iteratively to reconstruct an exponent less than D in Õ(log2D) steps. We
achieve a better complexity via the following result.

Theorem 2.1.6 ([BM74]). Given m1, . . . ,mr ∈ Z>1, m =
∏r

i=1mi and vi ∈ Z∩ [0,mi), 1 ≤ i ≤ r,
we can compute n ∈ Z ∩ [0,m) such that n ≡ vi mod m for 1 ≤ i ≤ r with a cost of Õ(logm) bit
operations.

Similarly, given n and m1, . . . ,mn, we can compute vi = n mod mi for 1 ≤ i ≤ r, also with a
cost of Õ(logm) bit operations.

Fast simultenous modular reduction can be achieved via binary splitting or subproduct-tree
techniques. Namely, given n, we reduce n modulo

∏⌊r/2⌋
i=1 mi and

∏r
i=⌊r/2⌋+1mi and recurse on

each half. Fast Chinese remaindering reconstructs n by traversing this tree of reductions in the
reversed order.

Often the methods we use to solve these problems will require us to construct and factor
an auxillary polynomial, a polynomial whose roots encode information about the support of f .
Specifically, over finite fields and integers, we will need to map some product of linear factors
Φ =

∏t
i=1(x−αi) ∈ R[x] to (α1, . . . , αt), and vice versa. We can achieve this similarly by a binary

splitting method. For a detailed overview of the algorithms and techniques therein, we refer to
reader to Section 10 of [VG03]. For our purposes we state the following as a Theorem.

Theorem 2.1.7 ([BM74]). Given a dense polynomial Λ ∈ R[x] of degree less than T , and distinct
ring elements α1, . . . , αT ∈ R, we can map Φ to (Φ(α1), . . . ,Φ(αT)) in Õ(T) ring operations. If
R is a field we can similarly map (Φ(α1), . . . ,Φ(αT)) to a dense representation of Φ in Õ(T) ring
operations.

2.1.5 Polynomial factorization via Hensel lifting

Given an auxillary polynomial Φ ∈ Z[y] comprised of linear factors, we will need to reconstruct
Φ from its linear factors modulo a choice of prime p. We can do this via Hensel lifting.

Theorem 2.1.8 (Theorem 15.18, [VG03]). Let Λ =
∏T

i=1(y−αi) ∈ Z[y], and suppose we are given
the linear factors (y−αi) mod p, for some prime p and i = 1, 2, . . . , D. Then for a choice of ℓ ∈ Z>0,
we compute (y − αi) mod pℓ, for i = 1, 2, . . . , T with a bit cost of Õ(Tℓ log2 p).

In particular, if the factors of Λ have height at most C and we have the factors of Λ modulo a
prime p ∈ polylog(T logC) then one can recover Λ in Õ(T logC) bit operations.

20

2.1.6 Linear algebra

Much as in the case of integer and polynomial arithmetic, the algorithmic cost of many linear
algebra problems may be reduced to multiplication, in this case, the multiplication of matrices.
We let ω = ωK denote the exponent of the cost of matrix multiplication, that is, a parameter
such that two n × n matrices over a field K can be multiplied in O(nω+ϵ) K-operations for any
ϵ > 0. This parameter ω may depend on, if anything, the characteristic of the underlying field K
(see, e.g., Cor. 15.18, [BCS10]). By LeGall [Le 14] we can take ω < 2.3728639 for an arbitrary
field K. There is a large gap between the K-operation cost of the least asymptotically expensive
algorithms for matrix multiplication, and the best known lower bounds.

In some instances in multivariate linear algebra, we will need to solve integer linear systems.
To bound the bit complexity of such operations we cite the following.

Theorem 2.1.9 (Thm. 39, [Sto05]). Let Am×n,m ∈ O(n), have rank n and b ∈ Zm×1 be given.
There exists a Las Vegas algorithm that either:

• produces a solution x to Ax = b, where x ∈ Qn is a solution with minimal demonimator (the
denominator of x is the least d ∈ Z>0 such that dx ∈ Zn), or

• certifies that no such solution exists.

The expected number of bit operations is Õ(nω log(C)), where C is a bound on the absolute values
of the entries of A and 1

nb.

2.1.6.1 Structured linear systems

We often need to solve linear systems where the accompanying matrix admits special structure.
The most common systems of this form that we will need to solve involve Hankel, Toeplitz, and
Vandermonde matrices of the respective forms

h1 h2 · · · hn
h2 h3 · · · hn+1
...

...
. . .

...
hn hn+1 · · · h2n

︸ ︷︷ ︸

def= H(h1,...,h2n)

,

t0 t1 · · · tn−1

t−1 t0 · · · tn−2
...

...
. . .

...
t−n t−n+1 · · · t0

︸ ︷︷ ︸

def= T(t−n,...,tn−1)

,

v01 v11 · · · vn−1

1

v02 v12 · · · vn−1
2

...
...

. . .
...

v0n v1n · · · vn−1
n

︸ ︷︷ ︸

def= V(v1,...,vn)

. (2.2)

These and related matrices can easily be represented using an ordered list of O(n) entries, e.g.,
we can represent a Vandermonde matrix as (v1, v2, . . . , vn). For systems involving these and

21

related structured matrices, an algebraic RAM may solve these systems in deterministic softly-
linear time. In [Pan89], Victor Pan unified the analysis of such systems. Pan observed that each
of these systems are related to low-rank matrices via linear operators. For a matrix M of any of
the above forms, there exists a linear operator L of one of the following forms

∇A,B : Kn×n → Kn×n, M 7→ AM −MB, (2.3)

∆A,B : Kn×n → Kn×n, M 7→M −AMB, (2.4)

for matrices A and B such that L(M) has low rank. These operators are known as displace-
ment operators of the Sylvester and Stein type respectively. We say that M has low displace-
ment rank. Typically we assume A and B are sparse and with sparse inverses, i.e., such that
A,B,A−1,B−1 have O(n) nonzero entries. Victor Pan gave a general strategy for solving linear
systems with matrices of low displacement rank. We cite the following theorem.

Theorem 2.1.10 ([Pan01]). Let M ∈ Kn×n be a Hankel, Toeplitz, or Vandermonde matrix, or a
Hankel-plus-Toeplitz matrix (the sum of a Hankel matrix and a Toeplitz matrix), given in a natural
compressed representation. Then if Ma = b, one can compute a from M and b, and similarly a
from M and b, using Õ(n) field operations.

These linear systems play a critical role in polynomial interpolation. A Vandermonde system,
for instance, gives the relationship between the evaluations and coefficients of a dense polyno-
mial. The Vandermonde case of theorem 2.1.10 is equivalent to Theorem 2.1.7 in the case that R
is a field.

2.1.6.2 The transposition principle

We are also would like to solve systems involving the transposes of the matrices of Theorem
2.1.10. To that end we cite the transposition principle. The transposition principle roughly
states that multiplying a vector by a matrix M is almost the same cost of multiplying by M⊤.
More specifically, for any algorithm that computes a matrix-vector product Mx as a sequence
of vector operations, i.e. a sequence of matrix-vector products M1(M2(. . . (Mkx))) where mul-
tiplication by each matrix M i is done via the classical row-by-column method (but excluding
performing multiplications by 0 and 1 so as to exploit the sparsity of M) then M⊤y can be com-
puted as M⊤

k (M
⊤
k−1(. . . (M

⊤
1 y))) with roughly comparable cost. Linear solver algorithms over

arbitrary fields can generally be expressed in this form.

Theorem 2.1.11 (Transposition principle). LetM ∈ Rm×n. If there exists an algorithm running on
an algebraic RAM that can compute Mx for any vector x ∈ Rn via a sequence of vector operations
with a cost of u R multiplications and v R additions, then M⊤y can be computed for any vector
y ∈ Rm in u multiplications and v +O(m+ n) operations.

22

In other words, Theorem 2.1.10 holds for the transposes of Hankel, Toeplitz, Vandermonde,
and Hankel-plus-Toeplitz matrices as well. The transposition principle has been reinvented multi-
ple times, many of which are documented by Berstein in [Ber]. We follow Bernstein and attribute
the transposition principle to Fiduccia (Theorems 4 and 5, p. 112, [Fid73]). The transposi-
tion principle is also known as Tellegen’s principle, after Dutch electrical engineer Bernard D. H.
Tellegen.

2.2 Data structures

We will often have to construct dictionaries to store homomorphic images of polynomials. In
some of our algorithms we will need to store results in a dictionary or an associative array.

Definition 2.2.1. Let K be a set with a comparison operation ≻ (i.e., a total ordering of K). A
dictionary is a collection D of key-value pairs (k, v), where each key k ∈ K is unique. D supports
the following operations

• D.add(k, v): adds key-value pair (k, p) to D.

• D.remove(k): if D has a key-value pair of the form (k, v), it removes that key-value pair.

• D.lookup(k): if D has a key-value pair of the form (k, v), it produces v; otherwise it produces
fail.

• D.keys(): produces a list of all keys k for which D has a key-value pair (k, v), sorted in
increasing order according to ≻.

One could implement such a dictionary in a number of ways, e.g., a hash table or a binary
tree. For the purposes of our analysis we will use a red-black tree (see, e.g., Sec. 13, [Cor+09]).

Lemma 2.2.2. A dictionary D can be implemented on an algebraic RAM using a red-black tree,
where, if D contains t keys, the dictionary operations cost the following:

• D.add(k, v),D.remove(k) and D.lookup(k): O(log t) comparisons similarly many bit opera-
tions,

• D.keys(): Õ(t) bit operations.

The space overhead in addition to the key-value pairs is Õ(t) bits.

More generally, we will require multi-dimensional associative arrays whose keys are m-tuples.
Moreover, we will need to be able to efficiently search for all values associated with a key k with
a given prefix p. Specifically, we define the following.

23

Definition 2.2.3. Let K be a set with a comparison operation ≻. A prefix dictionary is a dictionary
whose keys are m-tuples k ∈ Km. We let a vector p ∈ Kℓ, ℓ < [m − 1] denote a prefix of key k if
pi = ki for all i ∈ [ℓ]. In addition to the defined dictionary operations, a prefix dictionary supports
the following operations:

• D.remove(p): removes all key-value pairs (k, v) where k has p as a prefix.

• D.keys(p): produces a list of all keys ofD with prefix p, sorted according to the lexicographical
ordering induced by ≻.

• D.prefixes(ℓ): produces a list of all length-ℓ prefixes, for ℓ < m, sorted according to lexico-
graphical order.

One could implement a prefix dictionary using a hierarchy of dictionaries. E.g., If our key set
was Z2, at the top level we would have a dictionary indexed by Z. For each key with prefix i ∈ Z,
we would have a dictionary Di indexed by key i. For each key (i, j), Di would store a key-value
pair (j, v), where v is the value to be associated with (k, v).

Lemma 2.2.4. Let D be a prefix dictionary that takes length-m tuples k ∈ Km as keys, where m ∈
O(1). Then D can be implemented using a hierarchy of red-black trees, with dictionary operation
costs given as stated in Lemma 2.2.2. If p is a prefix of length-ℓ, and D has r length-ℓ prefixes and s
keys with prefix p, then the additional prefix dictionary operations require as follows:

• D.remove(p),D.keys(p): O(log r) comparisons of prefixes.

• D.prefixes(ℓ): Õ(r) bit and copy operations.

2.2.1 Constructing dictionaries of terms

In a number of our algorithms we will have to construct a set of sparse polynomials f1, . . . , fℓ and
a dictionary of terms. The key to the dictionary will be something to identify a class of nonzero
terms, and the value will be the list of all tuples (i, d) such that the degree-d term of fi has this
property. More concretely, we will consider two types of keys: in Section 3.4, our keys will be
d mod p for a fixed prime p; in Section 3.5 in Chapter 5, our keys will be the constants, i.e., we
will want to store all instances that a term with some coefficient c occurs. Often we will have to
do this for vector polynomials. In addition, we will have to construct vector polynomials from a
set of polynomials. In order to be free ourselves of these technical considerations later on, we
discuss them here. All of these operations amount to resorting terms according to a different
ordering.

In order to construct a vector polynomial f = (f1, . . . , fℓ), expressed as f =
∑t

i=1 cx
ei ∈

Rℓ[x], from the sparse representations of f1, . . . , fℓ ∈ R[x], one can use a prefix dictionary. We

24

could, for instance, do this using a dictionary. For each term cxd of each image fi, we can store a
value c with key (d, i).

Algorithm 1: Constructing a sparse vector polynomial

Input: ℓ sparse n-variate polynomials fi =
∑ti

j=1 cijx
eij ∈ R[x], i ∈ [ℓ]

Output: A sparse representation of the vector polynomial f = (f1, . . . , fℓ)

1 D ← an empty prefix dictionary that takes keys (d, i) ∈ Zn+1
≥0 , sorted according to

lexicographical order;
2 for i← 1 to ℓ do
3 for j ← 1 to ti do D.add((eij , i), c);

4 f ← 0 ∈ Rℓ[x], a sparse polynomial;
5 for d ∈ D.prefixes(1) do
6 c = (c1, . . . , cℓ)← 0 ∈ Rℓ;
7 for i ∈ D.keys(d) do
8 ci ← D.lookup((d, i));
9 f ← f + cxd;

10 return f ;

Algorithm 1 describes how one could construct f . If f is T -sparse and f1, . . . , fℓ have a
combinedm terms, then D will have at most m entries, and at most T length-1 prefixes. It follows
that populating the dictionary will entail Õ(m) comparisons of keys of bit size n logD log ℓ, for a
bit cost of Õ(mn logD). Producing the list of keys with prefix d has cost softly-linear in terms of
the number of keys outputted. The m lookup operations cost O(log ℓT) key comparisons, for a
bit cost of Õ(mn logD).

Similarly, when we want to group terms from a set of images of sparse polynomials f1, . . . , fℓ
according to their coefficient, we construct a prefix dictionary of terms, where a term cxe of fi
will be stored the the key (c, i) and value e. If we wanted to collect terms according to their
exponent modulo an integer p, we could store a term cxe with the key ((e mod p), i, e) associated
to value c.

In general, we will suppose that if we can test a property of a term with cost softly-linear in
the bit size of that term, then we can collect terms from among a set of polynomials f1, . . . , fℓ
according to that property in time softly linear in the bit size of those images. More generally,
we remark that, for any dictionary D whereby we only retrieve each value a constant number of
times, data access will have cost softly linear in the combined bit size of all key-value pairs ever
contained in D.

25

2.3 Probabilistic inequalities

Most of the algorithms presented in this thesis are Monte Carlo probabilistic. We use a few
elementary probabilistic inequalities which we will use throughout.

Lemma 2.3.1 (Union bound). Let Ai be an event occuring with probability pi, for 1 ≤ i ≤ n. Then
the probability that at least one of A1, . . . , An occurs is at most

∑n
i=1 pi.

The union bound is also known as Boole’s inequality, named after logician George Boole.

Lemma 2.3.2 (Markov’s inequality). Let X be a nonnegative random variable. Then for k > 1,
Pr[X > kE[X]] < 1/k.

We give the following as Corollary to Markov’s inequality, which will be subsequently used to
probabilistic construct sets of primes.

Corollary 2.3.3. Let U be a finite set and S ⊂ U , where #S ≥ 2n, and let δ = #S/#U . Then if
we choose m ≥ min

(
⌈2nδ−1µ−1⌉,#U

)
distinct elements a1, . . . am from U uniformly at random, the

probabilty that {a1, . . . , am} ∩ S ≥ n is at least 1− µ.

Proof. Let a1, . . . , a#U be an ordering of U , and let Xi be the indicator variable for the event that
ai ∈ S. Fix i and suppose fewer than n of a1, . . . , ai−1 are in S. Then the conditional probability
that Xi = 1 is at least δ/2. It follows that the expected value of the least k such that a1, . . . , ak
contains n elements of S is less than 2nδ−1. The result follows from Markov’s inequality.

We give a version of Hoeffding’s inequality for Bernoulli random variables (i.e. coin flips with
a weighted coin).

Theorem 2.3.4 (Hoeffding’s inequality; Thm. 1.1, [DP09]). Let X1, . . . , Xn be independently
distributed in [0, 1], and let X = 1

n

∑n
i=1Xi. Then

• Pr[X < (1− ϵ)E[X]], Pr[X > (1 + ϵ)E[X]] ≤ exp
(
−ϵ2

2 E[X]
)

;

• Pr[X > E[X] + ϵ], Pr[X < E[X]− ϵ] ≤ e−2ϵ2n.

Sometimes we will work with random variables that are not purely independent, but such
that the “failure” of one random variable only increases the “success” of another.

Definition 2.3.5. We say a set of random variables Xi, i ∈ [n] are negatively associated if for
all disjoint subsets I, J ⊂ [n] and for all nondecreasing functions f and g, E[f(Xi, i ∈ I)g(Xj , j ∈
J)] ≤ E[f(Xi, i ∈ I)]E[g(Xj , j ∈ J)].

26

As an example, we prove negative association of a family of sets of random variables that we
will subsequently work with.

Lemma 2.3.6. Suppose we have N bins of which M contain red balls, and the remaining contain
white balls. We draw from distinct n ≤ N bins, and let Xi be the indicator variable for the event
that the ith draw produces a red ball.

Intuitively if we let N = n = 2 and M = 1, the variables X1, X2 are negatively associated
because X1 = 1 forces X2 = 0 and vice versa.

Proof of Lemma 2.3.6. By linearity of expectation, without loss of generality we may translate f
and g such that f(0, . . . , 0) = 0 and g(0, . . . , 0) = 0; we also may choose I = [k], k ≤ n and
J = [n] \ I, or else replace n with |I ∪ J | and relabel the Xi accordingly.

We prove my induction on N . The case N = 1 is clear as either f or g is a constant in this case.
Now suppose the induction hypothesis is true for all N ∈ [N ′] and consider the case N = N ′ + 1.
Define

Eb = E[f(b,X2 . . . , Xk)g(Xj , j ∈ J)], E∗
b = E[f(b,X2, . . . , Xk)]E[g(Xj , j ∈ J)], b = 0, 1.

By the induction hypothesis, Eb ≤ E∗
b for b = 0, 1. Letting µ =M/N , we have that

E[f(X, i ∈ I)g(Xj , j ∈ J)] = (1− µ)E0 + µE1,

≤ (1− µ)E∗
0 + µE∗

1 = E[f(Xi, i ∈ I)]E[g(Xj , j ∈ J)],

completing the proof.

The following Lemma allows us to use Hoeffding’s inequality on negatively associated random
variables.

Lemma 2.3.7 (Hoeffding’s bound with negative dependence; Thm 3.1, [DP09]). Let X1, . . . , Xn

be a set of negatively associated random variables taking values in [0, 1]. Then the inequalities of
Theorem 2.3.4 hold.

2.3.1 Amplifying probabilistic algorithms

We now describe a standard technique we will frequently use in order to raise the probability of
success for a probabilistic algorithm from 2/3 to 1−µ for arbitrarily large µ. We call this technique
probabilistic amplification, and consider two cases of probabilistic algorithms.

Suppose that UniqueProbProc is a probabilistic procedure that takes as input a tuple a, and,
for a fixed choice of a, produces a unique correct input with probability at least 1 − c, for a

27

constant c < 1/2. Then by Hoeffding’s inequality, if we run UniqueProbProc with input a n
times, where n is at least ln(µ−1)/(2(c− 1/2)2), then UniqueProbProc(a) will produce the correct
output less than n/2 times with probability at most

exp(−2(c− 1/2)2n) = µ−1.

By setting n to be odd, it guarantees that the majority output will be the correct output with
probability at least 1− µ.

Now suppose that LasVegasProc is a probabilistic procedure that produces a correct output,
not necessarily unique for a fixed input, with probability at least 1 − c, for a constant c ∈ [0, 1),
and produces fail in the event that it does not produce a correct output. Then the probability
that LasVegasProc fails n = ⌈log1/c(µ−1)⌉ is at most cn ≤ µ. As you may have guessed by its
name, LasVegasProc can be made Las Vegas probabilistic by merely running it until it produces
an output that is not fail.

Theorem 2.3.8. Suppose ProbProc is a probabilistic algorithm that takes an input a and satisfies
one of the following:

• ProbProc produces a unique correct solution for a fixed input a, and succeeds with probability
at least 1− c for a constant c < 1/2;

• ProbProc produces fail in the event of failure and succeeds with probability at least 1− c for
a constanct c < 1.

Then if ProbProc(a) admits a cost of O(Φ(a)), then we can modify ProbProc(a) to succeed with
probability 1− µ for arbitrary µ ∈ (0, 1) and cost O(Φ(a) log(µ−1)).

Remark 2.3.9. We establish the following convention. We will write ProbProc(a1, . . . , am;µ) to
denote that ProbProc(a1, . . . , am;µ) succeeds with probability at least 1−µ. Probabilistic algorithms
satisfying the criteria of Theorem 2.3.8 will generally be written so as to succeed with probability at
least 2/3. For such a procedure ProbProc, when we write ProbProc(a1, . . . , am;µ), where µ < 1/3, it
is implicit that we amplify the probability of success in the manner described in this section.

2.4 Selecting primes

2.4.1 Constructing the first k primes via sieve methods

We will use sieve methods in order to construct the first k primes for a choice of k.

Theorem 2.4.1 ([Pri82]). One can compute all prime numbers up to n ∈ Z>0 in Õ(n) bit opera-
tions.

28

Using the sieve of Eratosthenes requires O(n log log n) additions for a bit-operation cost of
O(n log n log log n); with the wheel sieve this can be reduced to O(n/ log log n) additions or
O(n log n/ log log n) bit operations [Pri82].

We state the Prime Number Theorem for completeness.

Theorem 2.4.2 (prime number theorem (PNT)). limk→∞ pk/(k ln k) = 1, where pk is the kth
least prime number.

By the PNT, constructing the first k primes requires O(k log2 k/ log log log k), or merely Õ(k),
bit operations. We state this as a Corollary.

Corollary 2.4.3. One can construct the first k prime numbers in Õ(k) bit operations.

2.4.2 Selecting random primes from a specified interval

Often as a subroutine, we will need to select a prime at random from an interval containing
a sufficiently large number of primes. Because we will often consider the set of primes in an
interval (λ..2λ], where λ ∈ Z, we will write

P(λ..2λ]
def
= {p ∈ (λ..2λ] : p is prime}.

Throughout Section 2.4 we will also let π : R→ Z≥0 denote the prime counting function, where

π(x)
def
= #{p ≤ x : p is prime}.

We will rely heavily on the following effective version of the Prime Number Theorem due to
Rosser and Schoenfeld.

Lemma 2.4.4 (Cor. 3, [RS62]). We have

3λ

5 lnλ
< #P(λ..2λ] <

7λ

5 lnλ
, for λ ≥ 20.5, and

λ

lnλ
< π(λ) <

5λ

4 ln(λ)
for λ ≥ 114.

Sometimes we will like to choose λ such that (λ..2λ], for some k ≥ 1 and bound B > 1, (λ..2λ]
contains at least k logλB primes, such that any proportion of 1/k of the primes in (λ..2λ] have a
product at least B. This is useful when we need to reconstruct some value v ∈ Z ∩ [0, B) from
a set of primes, and we know that we can obtain v mod p for a proportion 1/k of all primes in
(λ..2λ]. In which case, it suffices that

3
5λ ln

−1 λ ≥ k lnB ln−1 λ ⇐⇒ λ ≥ 5
3k ln(B).

We state this as a Corollary.

29

Corollary 2.4.5. Let k,B ∈ R≥1 and let Z ∋ λ ≥ max(21, 53k lnB). Then #P(λ..2λ] ≤ k logλB
primes.

A natural way to select a prime at random from within a range (λ..2λ] is to select an arbitrary
integer within that range and to test that it is prime using a primality test. To that end we cite
the primality test of Agrawal, Kayal, and Saxena (AKS).

Theorem 2.4.6 ([AKS04]). The AKS primality test determines whether p ∈ Z>0 is prime with
runtime polylog(p).

In particular, [AKS04] gives a runtime of Õ(log10.5 p). Using the AKS primality test as a
subroutine, Procedure GetPrime gives a Monte Carlo method to generate a prime p ∈ (λ..2λ].
The pseudocode warrants some explanation. Either GetPrime succeeds and produces a prime
p ∈ (λ..2λ], or it produces fail. In the latter case, we will establish the convention that the
procedure that called GetPrime will produce fail as well, such that any algorithm relying on
GetPrime as a subroutine will fail if GetPrime fails.

Procedure GetPrime(λ)
Input: λ ∈ Z, where λ ≥ 21.
Result: With probability at least 2/3, outputs a prime p ∈ (λ..2λ]. Otherwise produces fail.

1 m←
⌈
5 ln 3
3 lnλ

⌉
;

2 repeat m times times
3 p← integer chosen uniformly at random from (λ..2λ] ∩ Z;
4 if AKS primality test determines p is prime then return p;

5 return fail;

Lemma 2.4.7. Procedure GetPrime produces a prime p ∈ (λ..2λ] ∩ Z with probability at least 2/3.
It admits a runtime of polylog(λ).

Proof. The cost of GetPrime is dominated by the primality tests. Per Theorem 2.4.6, the cost of
a single primality test is polylogarithmic in λ, such that the cost of all O(log(λ)) primality tests is
also polylogarithmic in λ.

We now prove correctness. By Lemma 2.4.4, the probability that an integer p chosen uniformly
and at random from (λ..2λ] is at least (3/5) ln−1 λ, such that the probability that none of the chosen
p are prime is at most (1− (3/5) ln−1 λ)m ≤ exp(−(3/5) ln−1 λ)(5 ln 3/3) lnλ = exp(− ln 3) = 1/3, as
desired.

More generally we would often like to construct a set of primes n primes P(λ..2λ]. This may be
done probabilistically via GetPrimes(λ, n).

30

Procedure GetPrimes(λ, n)
Input: λ ∈ Z, λ ≥ 21; n ∈ Z>0.
Output: Produces a set of min(n,#P(λ..2λ]) primes p ∈ P(λ..2λ]. Succeeds with probability

at least 2/3, otherwise produces fail.
1 ρ← 3

10λ ln
−1 λ;

2 if n > ρ then
3 Generate P(λ..2λ] via the wheel sieve;
4 if n > #P(λ..2λ] then return P(λ..2λ];
5 else return a random subset of P(λ..2λ], S, of cardinality n;

6 m← min(⌈ρ⌉, λ);
7 a1, . . . , am ← m distinct elements from (λ..2λ];
8 S ← {};
9 for i← 1 to m do

10 if AKS test determines ai is prime then
11 Add ai to S;
12 if #S = n then break;

13 if #S < n then return fail;
14 else return S;

Proposition 2.4.8. GetPrimes(n, λ) is correct with probability at least 2/3 and admits a cost of
Õ(n · polylog(λ)).

Proof. We first prove correctness. By Corollary 2.4.5, #P(λ..2λ] ≥ (3/5)λ ln−1 λ = 2ρ. Correctness
follows in the cases that n > ρ or m = λ.

Suppose then that the algorithm sets m = ⌈ρ⌉, such that (λ..2λ] contains at least m integers
and at least 2n primes. Then by Corollary 2.3.3, taking δ = #P(λ..2λ]/λ ≥ δ̄ = 3

5 ln
−1 λ, and

µ = 1/3, and given that m = 2nδ̄−1µ−1 ≥ 2nδ−1µ−1, the probability that a1, . . . , am contains at
least n primes is at least 1/3.

We now analyze the cost. In the case that we generate all primes in (λ..2λ], by Theorem 2.4.1,
this costs Õ(λ), which for this case, by line 2, is Õ(n). In the case that we select m primes, then
the cost is dominated by the AKS primality tests. These cost Õ(m ·polylog(λ)) = Õ(n ·polylog(λ))
in total.

On some occasions we will need that (λ..2λ] contains at least n primes for a fixed n. To that

31

end we note that it suffices, for λ ≥ 21, that

λ

lnλ
≥ 5

3
n.

We note that the solutions to x ln−1(x) = c, c ∈ R≥−1, are

x = exp(W−1(−1/c)), x = exp(W0(−1/c)),

where W−1,W0 : C 7→ C are the lower and upper branches of the Lambert W function, i.e., the
inverse function to x 7→ xex (see, e.g., [Cor+96]). In order to simplify our analysis we would
like a solution of the form λ = an ln(n) for an appropriate constant a. We note that, for such a λ,

λ

lnλ
=

an ln(n)

ln(an ln(n))
.

Solving for
a ln(n) = ln(a) + ln(n) + ln(ln(n))

where n = 21 ln−1(21) gives

a =
ln(21)

lnn
≈ 1.576510209 <

8

5
, a =

W0(−n−1)

lnn
≈ 0.08918131506,

We note that λ ln−1 λ is an increasing function for λ ≥ e, and a lnn/(ln(an ln(n))) is an increasing
function, with respect to n, for a = 8

5 and n ≥ 21 ln−1(21). We conclude with the following
proposition:

Proposition 2.4.9. Let n, λ ∈ Z>0 with λ ≥ max(21, 85n lnn). Then (λ..2λ] contains at least n
primes.

In some cases we will want to efficiently select a large prime p ∈ Θ̃(λ), i.e., with special
attention to the cost with respect to log λ. In this setting, we may use, in place of the AKS
test, the Miller–Rabin test [Mil75; Rab80], which always accepts if p is prime and rejects with
probability 1 − µ if p is not prime, with cost Õ(log2D log(µ−1)) using FFT-based arithmetic. As
p ∈ Θ̃(λ) is prime with probability Θ̃(log−1 λ), we can modify GetPrime and GetPrimes in order
to find primes with cost Õ(log3 λ). We state this as a lemma.

Lemma 2.4.10 (Construction of primes via Miller–Rabin [Mil75; Rab80]). There exists an algo-
rithm which finds a prime p ∈ (λ..2λ] with probability at least 2/3 and cost Õ(log3 λ).

There exists an algorithm that takes n and λ, and produces ℓ = max(n,#P(λ..2λ]) distinct primes
p1, . . . , pℓ ∈ (λ..2λ] with cost Õ(n log3 λ)

32

2.4.3 Constructing elements in Zq of specified order

In some instances we will need to identify, for a prime q, an ω ∈ Zq of a specific multiplicative
order d|(q − 1). We can “guess” ω = ζ(q−1)/d for a generator ζ of Z∗

q . We can then test if ω
has multiplicative order d by checking that ωd/p ̸= 1 for each p dividing d. As ZZ∗

q has ϕ(q − 1)
generators, where ϕ is Euler’s totient function, and ϕ(n) ∈ O(n/ log log n) (Thm. 328, [Har+08]),
we can probabilistically find a generator ζ by selecting O(log log q) ζ ∈ Z∗

q independently and
uniformly at random. As d has at most O(log q) divisors, this gives us the following:

Lemma 2.4.11. Given a prime q and some d > 0 dividing q − 1, there exists an algorithm which
discovers some ω ∈ Zq with multiplicative order dwith cost Õ(log3 q) bit operations. If d is specifically
a product of a constant number of prime powers, then we can discover ω ∈ Zq of multiplicative order
d with cost Õ(log2D).

2.4.4 Selecting primes in arithmetic progressions

In some applications we will need to select a prime q such that Zq contains pth roots of unity
for an appropriate prime p. In other words, we need a prime q of the form q = kp + 1 for some
k ∈ Z>0. To that end we define the prime-counting function over arithmetic progressions,

π(y;m, a) = #{p ≤ y : p ≡ a mod m, p is prime}.

We cite the following result on the number of primes in arithmetic progressions, a corollary of an
effective version of the Bombieri-Vinogradov theorem, due to Akbary and Hambrook.

Lemma 2.4.12 (Corollary 1.4, [AH15]). Let γ ≥ 4, 1 ≤ λ1 ≤ λ2 ≤ γ1/2. Let ℓ(m) denote the least
prime divisor of m and ϕ be Euler’s totient function. Then∑

m≤λ2
ℓ(m)>λ1

max
2≤y≤γ

max
a

gcd(a,m)=1

∣∣∣∣π(y;m, a)− π(y)

ϕ(m)

∣∣∣∣
< 346.21

(
4
γ

λ1
+ 4γ1/2λ2 + 18γ2/3λ

1/2
2 + 5γ5/6 ln(eλ2/λ1)

)
(ln γ)9/2.

Taking λ1 = λ ≥ 106, λ2 = 2λ, and γ = λ3, gives us the following

Corollary 2.4.13. Let λ ≥ 106, then∑
p∈P(λ..2λ]

∣∣∣∣π(λ3; p, 1)− π(λ3)

p− 1

∣∣∣∣ < 48572
(
4λ2 + (27 + 5 ln(2))λ5/2

)
(lnλ)9/2

≤ 1.48 · 106λ5/2 ln9/2 λ.

33

By Lemma 2.4.4, we have that π(λ3) ≥ λ3/(3 lnλ), such that the number of primes p ∈ P(λ..2λ]
for which π(λ3; p, 1) ≤ λ2/(6 lnλ) is at most

1.48 · 106λ5/2 ln9/2 λ
1
6λ

2 ln−1 λ
= 8.88 · 106λ1/2 ln11/2 λ.

Now, the number of primes in λ is at least 3λ/(5 lnλ), such that the proportion of such primes for
which π(λ3; p, 1) < λ2/(6 lnλ) is at most

1.48 · 107λ−1/2 ln13/2 λ. (2.5)

If we take λ ≥ 2191, then we can bound (2.5) by 1.64 · 10−8.

Corollary 2.4.14. Suppose λ ≥ 2191. Then for a prime p chosen at random from (λ..2λ], we have
that π(λ3; p, 1) ≥ λ2/(6 lnλ) with probability greater than 1− 1.64 · 10−8.

We remark that increasing the probability of failure does not significantly decrease bounds on
log λ. If we wanted instead that the proportion (2.5) were at most 1/2 as opposed to 1.64 · 10−8,
we would require that log λ ≥ 155.

We present two procedures for producing primes in arithmetic progressions. These are both
used in Chapter 4, where we give a procedure for the multiplication of sparse polynomials
over the integers. Our first procedure, GetPrimeAP-5/6 is somewhat technical. GetPrimeAP-
5/6(λ,B) probabilistically produces a prime p ∈ (λ..2λ] and a prime q = ap + 1 ∈ (λ..λ3] such
that q does not divide an unknown nonzero integer of absolute value at most B.

Lemma 2.4.15. Let λ,B ∈ Z>0 with λ ≥ max(2191,
√
140 lnB). Let b be a fixed, unknown integer

with absolute value at most b. With probability at least 5/6, GetPrimeAP-5/6(λ,B; 1/6) produces a
triple (p, q, ω), where

• p ∈ (λ..2λ] is a prime selected uniformly at random;

• q ∈ (2λ2..λ3] is a prime such that q ≡ 1 (mod p) and q does not divide b;

• ω is a pth primitive root of unity modulo q.

In the case of failure GetPrimeAP-5/6 either produces the error code fail, or a triple (p, q, ω) where
q divides the unknown integer B. Its cost is Õ(polylog(λ) + polylog(logB)).

Proof. We first prove the probabilistic correctness of GetPrimeAP-5/6. By the union bound, and
Corollary 2.4.14, GetPrime produces a prime in p ∈ (λ..2λ] for which there are at least λ2/(6 lnλ)
primes q ≤ λ3 of the form q = aq + 1 with probability at least 1− 1

15 − 1.64 · 10−8. Assume this is

34

Procedure GetPrimeAP-5/6(λ,B; 5/6)

Input: λ ∈ Z, where λ ≥ 2191,
√
140 lnB.

Output: With probability exceeding 5/6, a triple (p, q, w) where p ∈ (λ..2λ] is prime,
q ∈ (2λ2..λ3] is a prime of the form q = ap+ 1 and such that q does not divide a
fixed integer B ∈ Z>0, and ω is a pth root of unity in Zq.

1 p← GetPrime(λ; 1/20);
2 (ℓ1, ℓ2)← ⌊(2λ− 1)/p⌋, ⌊(λ3 − 1)/p⌋;
3 m← ⌈140 lnλ⌉;

4 repeat m times
5 Choose a ∈ (ℓ1..ℓ2] uniformly at random;
6 q ← ap+ 1;
7 if q is prime then
8 Choose ζ ∈ Z∗

q uniformly at random;
9 e← (q − 1)/p ∈ Z;

10 ω ← ζe;
11 if ωp mod q ̸= 1 then return (p, q, ω);

12 return fail;

the case. As ap+1 is not prime for a = 0 and odd a, there are at most λ primes of the form ap+1,
a ∈ [ℓ1] such that there are at least λ2/(6 lnλ) − λ primes of the form ap + 1, where a ∈ (ℓ1..ℓ2].
For λ ≥ 2191, we have

λ2/(6 lnλ)− λ > λ2/(7 lnλ).

Thus probability that ap + 1 is prime for a ∈ (ℓ1..ℓ2] chosen uniformly at random is more than
λ2/(7ℓ2 lnλ) ≥ 1/(7 lnλ). Thus, over m ≥ 140 lnλ iterations, the expected number of primes q
that would be produced is at least 20, such that by Markov’s inequality, at least one iteration of
the loop produces a prime q with probability at least 1− 1/20.

We will say a prime q is “bad” if it divides our unknown nonzero integer with absolute value
at most B. As there are at most logλB bad primes q that divide our fixed nonzero integer. By our
assumption and the choice of λ ≥

√
140 lnB, there are at least λ2/(7 lnλ) ≤ 20 logλB primes q

of the form q = ap+ 1, q ≤ λ3. Thus the probability that such a q chosen uniformly at random is
a bad prime is at most 1/20.

The probability that ω is not a primitive pth root of unity is at least 1/p ≥ 2−191, as p ≥ λ ≥
2−191. Thus by the union bound, the entire procedure fails with probability at most 3/20+2−191+
1.64 · 10−8 ≤ 1/6.

35

The cost is dominated by primality testing. The cost of m primality tests is Õ(m·polylog(λ)) =
Õ(polylog(λ)). By the choice of λ ∈ Ω(

√
logB), this cost is Ω̃(polylog(logB)).

We remark that it is difficult to construct GetPrimeAP-5/6 to succeed with arbitrarily large
probability. This is because we cannot efficiently detect that case that p is a prime for which there
are not many primes of the form q = ap + 1, which would then affect the probability that such
a q does not divide our unknown integer. However, to fit GetPrimeAP-5/6 within other calling
procedures with other probabilistic steps, we designed it to succeed with probability at least 5/6
we name our procedure GetPrimeAP-5/6 to remind the reader of this.2

GetPrimesAP(λ,C) probabilistically produces a prime p ∈ (λ..2λ] and a list of tuples of the
form (ωi, qi) where the qi ∈ (λ..λ3] are distinct primes of the form qi = ap + 1, ωi ∈ Zq is a pth
primitive root of unity, and there are sufficiently many qi such that one can reconstruct an integer
k ∈ [0..C] from its congruences modulo the qi. Unlike GetPrimeAP-5/6, we can detect when
failure occurs, such that GetPrimeAP-5/6 can be made to succeed with arbitrary probability via
probabilistic amplification.

Lemma 2.4.16. Suppose λ ≥ max(2191,
√
42 lnC). Then GetPrimesAP(λ,C) probabilistically pro-

duces a prime p ∈ (λ, 2λ] and k = ⌈logλC⌉ pairs (qi, ωi) where each qi = aip+ 1 ≤ λ3 is prime and
ωi is a pth root of unity. It succeeds with probability at least 2/3. In the case of failure it produces
fail. Its cost is Õ(m · polylog(λ)).

Proof. First, by the choice of λ we have that, for p chosen uniformly at random from P(λ,2λ], that
with probability at least 1−1.64 ·10−8, there are at least λ2/(6 lnλ) ≥ 7 logλC primes of the form
q = ap + 1, a ∈ [ℓ]. Suppose this is the case, such that the probability that ap + 1 is prime for
a randomly selected a ∈ [1..ℓ] exceeds 1/(6 lnλ). If m = ℓ then we necessarily will construct at
least 7 logλC primes. The expected number of primes amongst values aip + 1, i ∈ [m], exceeds
m/(6 lnλ) ≥ logλC. Thus by Markov’s inequality, this exceeds 7 logλC with probability at least
1/7.

Note that, for a prime q = ap + 1 and ω ∈ Z∗
q , that ωa is either a pth root of unity, or 1.

Moreover, there are precisely a ω ∈ Z∗
q such that ωa = 1, such that the probability that ω selected

uniformly at random satisfies ωa ̸= 1 is at least 1 − 1/p ≥ 1 − 2−191. Thus the expected number
of pairs (qi, ωi) ∈ L is at least 7(1 − 2192) logλC, such that #L ≥ logλC with probability at least
1/(7(1− 2192)). Thus, by the union bound the procedure succeeds with probability at least

1− 1.64 · 10−8 − 1/7− 1

7(1− 2192)
≈ 0.71429 > 2/3.

We now analyze the cost. The cost of the call to GetPrime is Õ(polylog(λ)). The cost of the m
primality tests on the qi is Õ(m · polylog(λ)) ⊆ Õ((logC) · polylog(λ)). The cost of computing

2More realistically, to remind the author.

36

Procedure GetPrimesAP(λ,C)

Input: λ ∈ Z, λ ≥ 2191,
√
42 lnC; C ∈ Z>0

Output: With probability exceeding 2/3, a prime p ∈ (λ, 2λ] and a list L of logλC pairs
(q, ω) such that the q are distinct primes of the form q = ap+ 1, q ≤ λ3, and
ω ∈ Zq is a pth root of unity.

1 p← GetPrime(λ; 1/16);
2 ℓ← ⌊(λ3 − 1)/p⌋ m← min(ℓ, 84 lnC);
3 Select distinct a1, . . . , am ∈ [ℓ];
4 Q ← {aip+ 1 : i ∈ [m]};
5 if Q contains fewer than 7 logλC primes then
6 return fail

7 q1, . . . , qk ← primes in Q;
8 for i← 1 to k do
9 Choose ω ∈ Z∗

qi uniformly at random, for i ∈ [ℓ];
10 a = (qi − 1)/p ∈ Z;
11 ωi = ωa;

12 L ← {(qi, ωi mod qi) : ω
ai ̸= 1 mod qi, i ∈ [ℓ]};

13 if #L ≤ logλC then return fail;
14 return p,L;

ωa mod qi via square-and-multiply is Õ(log a log qi) ⊆ Õ(polylog(λ)). Doing this for at most m qi
costs Õ(m · polylog(λ)) = Õ((logC) · polylog(λ)).

2.5 Probabilistic black-box polynomial identity testing

In this section we present results that will allow us to probabilistically test whether an unknown
polynomial f is zero, given a bound on the degree of f and the ability to evaluate f . We first cite
a lemma due to Schwartz, and include his concise proof.

Theorem 2.5.1 (Lem. 1, [Sch80]). Let Z be an integral domain and f ∈ Z[x1, . . . , xn] be an n-
variate nonzero polynomial. Let d1 = degx1

(f), and let f1 ∈ K[x2, . . . , xn] be the coefficient of the
xd11 term of f , treating f as an element in K[x2, . . . , xn][x1]. Similarly define d2 = degx2

(f1) and let
f2 be the coefficient of the xd22 of f1. Recursively define f1, . . . , fn−1 and d1, . . . , dn in this fashion.
Then for finite sets S1, . . . ,Sn ⊆ Z, and for ω chosen uniformly at random from the Cartesian

37

product
∏n

i=1 Si, f(ω) ̸= 0 with probabilty at least

1−
n∑

i=1

di
#Si

.

Proof. We prove by induction on n, the number of variables. For the case that n = 1, we note
that the number of roots of f ∈ Z[x1] is at most its degree (see, e.g., Chap. IV, Sec. 1, Thm. 1.1,
[Lan05]).

Now suppose the theorem holds for any k-variate nonzero polynomial over Z, k < n. If f(ω) =
0, then it holds that either f1(ω2, . . . , ωn) = 0, or f∗(ω1) = 0, where f∗ = f(x1, ω2, . . . , ωn)Z[x1].
Then by the induction hypothesis, f1(ω2, . . . , ωn) = 0 with probability at most

∑n
i=2 di/#Si,

and f∗(x1) = 0 with probability at most d1/#S1. Taking the union bound for these two events
completes the proof.

As the total degree of f is at most
∑n

i=1 di, taking S1 = S2 = · · · = Sn gives the following
corollary, which we state as a theorem.

Theorem 2.5.2 (DeMillo–Lipton–Schwartz–Zippel Lemma). Let Z be a field and f ∈ Z[x1, . . . , xn]
be a nonzero polynomial with total degree D∗. Let S ⊂ Z, and choose ω ∈ Sn uniformly at random.
Then f(ω) ̸= 0 with probability at least 1−D∗/#S

Theorem 2.5.2 is known as the Schwartz–Zippel Lemma or the DeMillo–Lipton–Schwartz–
Zippel Lemma in literature, due to related work by DeMillo and Lipton, and by Zippel in poly-
nomial identity testing. We will refer to it as the DLSZ Lemma.

Thus, for a black-box polynomial f over an integral domain containing in excess of D∗ ele-
ments by some constant factor exceeding 1, we may probabilistically test that f is zero with a
probability of failure at most µ > 0, at a cost of Õ(logµ−1) black-box queries. Moreover, this test
can only be incorrect in the event that f is nonzero. In the case that f has partial degrees at most
D, the DLSZ Lemma gives the following corollary:

Corollary 2.5.3. If f ∈ K[x] is nonzero and n-variate with partial degrees at most D, then for
any finite set S ⊂ K and ω ∈ S chosen uniformly at random, f(ω) ̸= 0 with probability at least
1− nD/#S.

Zippel used Theorem 2.5.2 for the purposes of probabilistic interpolation. Namely, Zippel’s
interpolation algorithm chooses random evaluation points for which, with high probability, a set
of unknown nonzero polynomials of bounded degree would all evaluate to nonzero values (see
Section 5.2.1). Zippel calls this the zero avoidance problem [Zip90]. We use the DLSZ Lemma
in a slightly different context. We use it to pick evaluation points ω1, . . . ,ωm such that with high

38

probability, and for an unknown set of polynomials F , for every f, g ∈ F , f ̸= g, there exists an
ωj such that f(ωj) ̸= g(ωj). We do this in a technique called diversification, first employed by
Giesbrecht and Roche in [GR11] and subsequently generalized to a number of contexts described
herein.

The DLSZ Lemma has a lengthy history and many variants exist, many of which were discov-
ered independently multiple times. We refer to [Bis+15] for a detailed history of the Lemma.
To the surprise of the author, the result attributed to Zippel does not imply Theorem 2.5.2. Both
DeMillo and Lipton in [DL78] and Zippel in [Zip79] prove the following.

Theorem 2.5.4 (DeMillo–Lipton–Zippel Theorem, [DL78] [Zip79]). Let R be an integral domain
and S ∈ R a finite set, and let f ∈ R[x] be an n-variate nonzero polynomial with partial degrees at
most D. Then for ω chosen independently and uniformly at random, f(ω) ̸= 0 with probability at
least (#S − d)n.

A natural question is whether these results extend f ∈ R[x] when R has zero divisors? It is
easy to construct counterexamples to the DLSZ Lemma in this setting.

Example 2.5.5. Let f(x) = 2k−1x ∈ Z2k [x]. Then f(2j + 1) = 0 for all j ∈ [2k]. I.e., f is of degree
1 but with 2k roots.

In [Bis+15], Bishnoi et al. generalize the DLSZ Lemma to arbitrary commutative rings, with
identity with additional constraints on the set S.

Definition 2.5.6. A set S ⊂ R is said to satisfy the regular-difference condition if, for all a ̸= b ∈ S,
a− b is not a zero divisor (i.e., a− b is regular). We will call any set satisfying the regular-difference
condition a regular-difference set.

In [Cla14] and [Bis+15], the regular-difference condition is referred to as Condition (D). This
condition was previously introduced in [Sch+08], towards a generalization of the Combinatorial
Nullstellensatz.

Theorem 2.5.7 (Generalized DLSZ Lemma; Thm. 4.2, 4.3[Bis+15]). Theorems 2.5.1 and 2.5.2
and Corollary 2.5.3 hold with R instead a commutative ring with identity, not necessarily a domain,
provided S and S1, . . . ,Sn are regular-difference sets.

The Generalized DLSZ Lemma follows from a generalization of the Alon–F uredi Theorem
due to Bishnoi et al., which gives an lower bound on the number of nonzero evaluations of a
polynomial f over a multidimensional grid S1 × S2 × · · · Sn, where each Si ⊂ R. The General-
ized Alon-F uredi Theorem is also used to prove a generalization of the DeMillo–Lipton–Zippel
Theorem. We may let the “DLSZ Lemma” refer to either Theorem 2.5.2 or 2.5.7.

39

The probabilistic correctness of many of our algorithms for f over Fq will rely on the DLSZ
Lemma. As such, these algorithms may be readily adapted to arbitrary coefficient rings containing
a regular-difference set S of cardinality at least (1 + ϵ)D, ((1 + ϵ)nD in the n-variate case) for
some constant ϵ > 0.

2.6 Kronecker Substitution

In this section we introduce the well-known technique of Kronecker substitution, which reduces
multivariate interpolation to univariate interpolation.

In [Kro82], Leonard Kronecker gave a method for interpolating a black-box polynomial over
the integers. Given a black-box polynomial f =

∑t
i=1 cix

ei ∈ Z[x], if one knows a bound D on
the partial degrees of f and C ≥ |f |∞ = maxti=1 |ci|, one can choose B ≥ (2D + 1), and evaluate

a = f(B,B(D+1), B(D+1)2 , . . . , B(D+1)n−1
) =

t∑
i=1

ciB
(
∑n

j=1 eij(D+1)j−1) ∈ Z.

If we write a as a base-B integer in balanced form, i.e., as a =
∑ℓ

j=1 ajB
j , with−B/2 < aj ≤ B/2,

then the Bk digit of a, where k =
∑n

j=1 eij(D + 1)j , is exactly the coefficient ci.

Example 2.6.1. Suppose we know f ∈ Z[x, y] with partial degrees at most D = 2 and coefficients
at most 3 in magnitude If we choose B = 8, then a = f(8, 83) = 98302 = 2 · 85 + 7 · 84 + 7 · 83 + 7 ·
82 + 7 · 8 + 6. Converting to balanced form, we get a = 3 · 85 − 2. As the 8(0,0)·(1,D+1) base-8 digit
of a is −2, we get that f has a term −2x0y0. Similarly, as the 8(2,1)·(1,D+1) is 3, we ascertain that f
has the term 3x2y.

This technique, which we call integer Kronecker substitution reduces multiplication of mul-
tivariate integer polynomials to multiplication of integers; given inputs f1, f2 ∈ Z[x], one can
ascertain appropriate bounds C and D for the product f1f2, such that we can compute the inte-
ger product

f1(B,B
(D + 1), B(D+1)2 , . . . , B(D+1)n)f2(B,B

(D+1), . . . , B(D+1)n)

from which we can read the coefficients of the product f1f2.

More generally, for polynomials over arbitrary rings, one may use a univariate interpolation
algorithm of their choosing to interpolate the univariate image of f ,

g(z) = f(z, z(D+1), z(D+1)2 , . . . , z(D+1)n−1
) ∈ R[z], (2.6)

40

from which we can recover f . We will call this technique Kronecker substitution, resulting
image g a substitution of f . The degree of this univariate image is at most

∑n
j=1D(D + 1)j−1 =

(D+1)n−1. This map has the useful property that an n-variate term cxe of f with partial degrees
at most D uniquely maps to a term cze·d, where d = (1, D + 1, (D + 1)2, . . . , (D + 1)n−1).

More generally, if f has partial degree bounds Di ≥ deg(fi), i ∈ [n], then we may make the
substitution

g(z) = f(z, zD+1, z(D1+1)(D2+1), . . . , z(D1+1)···(Dn−1+1)), (2.7)

then a term cxe of f will uniquely map to a term in g of degree d =
∑n

i=1(ei
∏

j<i(Dj + 1)). The
partial exponents may be obtained as

e1 = d rem (D1 + 1)),

e2 = (d quo (D1 + 1)) rem (D2 + 1),

e3 = (d quo (D1 + 1)(D2 + 1)) rem (D3 + 1),

...

en = (d quo

n−1∏
j=1

(Dj + 1)) rem (Dn + 1).

(2.8)

These techiques easily extend to multivariate Laurent polynomials. Given a bound D on the
partial absolute degrees of f , we may instead replace D + 1 in (2.6) with (2D + 1). The partial
exponents of an exponent e can be obtained by the base-(2D + 1) expansion of e in balanced
form. If instead we have bounds Di on the absolute value of the xi-degree of fi, we may replace
Dj +1 with (2Dj +1). Instead of taking a positive remainder as in (2.8), we would take the least
absolute remainders. For a, b ∈ Z, b > 0, the integer the least absolute remainder of a divided by
b is r ∈ (⌊−b/2⌋..⌊b/2⌋], and r ≡ a (modb).

A different strategy is taken in [GLL09], whereby one chooses distinct primes p1, . . . , pn ≥ D,
and, for m =

∏n
i=1 pi, constructs the univariate image

g(z) = f(zm/p1 , . . . , zm/pn).

Here a term with exponent e maps to a = e · p, where p = (m/p1, . . . ,m/pn). One can then
obtain each component ei from ei(m/pi) ≡ a (mod pi). The congruences a (mod pi) for i ∈ [n],
may all be obtained via simultaneous modular reduction, i.e., the Chinese remainder algorithm
reversed. Per Theorem 2.1.6, this cost of this recovery is softly linear in the size of the resulting
univariate exponent, i.e., Õ(log(nDn)) = Õ(n logD). As in Kronecker substitution, the cost of
this recovery is at most softly linear in the bit size of the resulting multivariate polynomial.

The caveat of this approach is that this approach has significant dependence on n. In Chapter
3, the univariate algorithms therein all had a runtime with cubic dependence on logD, such that

41

this approach would have a n3 log3D factor. If f is a black-box polynomial over Fq, where q > D
and such that the multiplicative group F∗

q smooth order, then this may be reduced to n2 log2D
using Prony’s method (Section 2.7).

We remark that Kronecker substitution is a dense interpolation technique, in that it will work
regardless of the sparsity of f . In Chapter 5 we introduce techniques that may outperform Kro-
necker substitution when f is sufficiently sparse.

2.7 Prony’s algorithm for interpolating black-box polynomials

In this section we redevelop the theory behind Prony’s algorithm, originally due to Gaspard Clair
François Marie Riche de Prony. Prony’s algorithm has an interesting history. In 1795 in the first
issue of the Journal de l’École Polytechnique, Prony gave an algorithm for the interpolation of a
linear combination of sparse exponential functions. Independently, the development of decod-
ing procedures for Bose–Chaudhury–Hocquenghem codes, beginning in the 1960s, eventually
gave rise to sparse interpolation algorithms in the 1980s by Ben-Or–Tiwari [BT88] and others.
Giesbrecht, Labahn, and Lee observed an equivalence between these methods [GLL02].

2.7.1 Linearly generated sequences

Definition 2.7.1. A sequence a = (a0, a1, a2, . . .) ∈ RN, i = 0, 1, 2, . . . , is said to be linearly
generated over K if there exists values ψ0, . . . , ψℓ ∈ K, not all zero, such that for all i ≥ 0,

ℓ∑
j=0

ai+jψi = 0.

The polynomial Ψ(y) =
∑ℓ

j=0 ψjy
j is called a linear generator of length ℓ for a. We say Ψ gener-

ates a and refer to deg(Ψ) = ℓ as the length of the linear generator Ψ.

The set of all linear generators of a sequence has the following useful structure:

Lemma 2.7.2. Fix a sequence a = (ai)i≥0 ∈ RN and let I ⊂ K[y] be the set of linear generators of
a. Then I forms an ideal in K[y].

Proof. Let Ψ =
∑ℓ

j=0 ψjy
j and Φ =

∑m
j=0 ϕmy

m be linear generators of the sequence a. Without
loss of generality, suppose ℓ ≤ m and let ψj = 0 for j > ℓ. Then for all i ∈ Z≥0, we have that

m∑
j=0

ai+j(ψj + ϕj) =
ℓ∑

j=0

ai+jψj +
m∑
j=0

ai+jϕj .

42

As Φ and Ψ are linear generators for a, the right-hand side of the equality above must be zero. It
follows that Φ+Ψ is also a linear generator for a.

Now suppose g(y) =
∑n

j=0 gjy
j ∈ K[y]. It remains to show that gΨ is a linear generator for a.

Write gΨ = h =
∑k+n

j=0 hjy
j and observe, for i ≥ 0, that

ℓ+n∑
j=0

ai+jhj =

n∑
j=0

gj

(
ℓ∑

k=0

ai+j+kψk

)
=

n∑
k=0

gj · 0 = 0,

with the inner sums being zero as Ψ generates a.

If K is a field, then K[y] is a principal ideal domain, such that I is a principal ideal, i.e., I is
an ideal generated by some polynomial Φ. I may be generated by any Φ ∈ I of minimal degree.
As Φ is a field we may take Φ to be monic.

Definition 2.7.3. The minimal generator of a linearly generated sequence a is the monic linear
generator Φ of a of minimal degree.

The key observation that gives Prony’s algorithm is that a t-sparse polynomial f , evaluated
over an appropriate geometric sequence, gives a linearly generated sequence whose minimal
generator Φ encodes the exponents of f .

Lemma 2.7.4. Let f =
∑t

i=1 cix
ei ∈ K[x1, . . . , xn], and ζ = (ζ1, . . . , ζn),ω = (ω1, . . . , ωn) ∈

(K∗)n, where the values ωei are distinct for i ∈ [t]. Then the sequence a given by ai = f(ζω) =
f(ζ1ω1, . . . , ζnωn), i ∈ Z≥0 is linearly generated with minimal generator

Φ(y)
def
=

t∏
i=1

(y − ωei) =
t∏

i=1

(y −
∏n

j=1ω
eij
j). (2.9)

Proof. We prove by induction on t. If t = 0 then f = 0, which gives the sequence defined by
ai = 0, which is generated by 1. If t = 1, then f = cxe, where c ̸= 0. In which case the sequence
given by ai = c(

∏n
j=1 ζj)(

∏n
j=1 ω

ej
j)i is generated by Φ =

∏n
j=1(y − ω

ej
j). Φ is minimal in this

case, as a generator of length 0 would imply that the ai are all zero.

Now suppose the lemma holds for any t-sparse polynomial, and consider the (t + 1)-sparse
f =

∑t
i=1 cix

ei + ct+1x
et+1 . Then a = a′ + a′′ ⊆ KN, where

a′i =
t∑

j=1

cjζ
ejωej , a′′i = ct+1ω

et+1 .

43

By the induction hypothesis, a′ and a′′ have minimal generators

Φ′ =

t∏
j=1

(y − ωej), Φ′′ = y − ωet+1 .

As Φ = Φ′Φ′′ =
∏t+1

j=1(y−ωej) is a linear generator for both a′ and a′′, it follows that Φ is a linear
generator of a.

Let Φmin be the minimal generator of a. It remains to show that Φ = Φmin. Note that Φmin

must divide Φ. Towards a contradiction, suppose that (y − ωet+1) is not a factor of Φmin. Then
Φmin divides Φ′, and Φ′ is a linear generator for a and hence a′′ = a − a′ as well. Observe that,
by hypothesis, the linear factors (y − ωej), j = 1, 2, . . . , t+ 1 are unique. Thus Φ′′ is not a factor
of Φ′. In other words, Φ′ is not a linear generator of a′′, giving a contradiction. Thus (y − ωet+1)
is a factor of Φmin. As the choice of the (t+ 1)-th term was arbitrary, we have that (y − ωej) is a
factor of Φmin for all j, and Φ = Φmin as desired.

Generally we will take ζ = (1, 1, . . . , 1); however, in some cases it will be advantageous to
choose ζ at random.

With or without the requirement in Lemma 2.7.4 that ωe ̸= 1 for any e ∈ Zn
≥0 with ei ≤

degxi
(f), the minimal generator of a would be the squarefree factor of maximal degree of∏n

j=1(y − ω
ej
j).

2.7.1.1 A Prony sparse polynomial identity test

We further remark that Lemma 2.7.4 gives a polynomial identity test for black-box polynomials
with known bounds on their degree and sparsity. Namely, for a black-box polynomial f ∈ Z[x]D,
where f is T -sparse and Z contains an element ω multiplicative order exceeding D, we can
evaluate f over the geometric progression ωi, i ∈ [0..T). As Z is a subset of a field (namely its
field of fractions) and f has a linear generator of length T , the evaluations will all be zero if and
only if f is zero. This test can generalize to the multivariate case via Kronecker substitution.
Algorithm 2 gives this approach. We cite the following cost:

Algorithm 2: Polynomial identity testing of a sparse black-box polynomial
Input: A black-box polynomial f ∈ Z[x1, . . . , xn]D; T ≥ #f ; ω ∈ Z of order at least

(D + 1)n

Output: Accepts if and only if f = 0
1 if f(ωi) = 0 for i = 0, 1, . . . , T − 1 then Accept;
2 else Reject;

44

Lemma 2.7.5. Algorithm 2 tests whether a black-box polynomial f ∈ Z[x1, . . . , xn] is zero. Its cost
is T black box queries.

2.7.2 Determining the minimal generator

A linear generator Φ = ys +
∑s−1

i=0 ϕiy
i of the sequence a corresponds to a solution to the s × s

Hankel system
ak ak+1 · · · ak+s−1

ak+1 ak+2 · · · ak+s
...

...
. . .

...
ak+s−1 ak+s · · · ak+2s−2

ϕ0
ϕ1
...

ϕs−1

 = −

ak+s

ak+s+1
...

ak+2s−1

 , (2.10)

for any k ∈ N. Usually we will choose k = 0 in (2.10). If a has a minimal generator of length
t ≤ s, then system (2.10) will have rank t.

One question we have not addressed yet is how to determine t = #f efficiently. When a bound
T ≥ t is known, and our base ring and evaluations are exact (i.e., non-numerical) quantities, then
the problem is solved via the Berlekamp–Massey algorithm.

The Berlekamp–Massey algorithm may be described in terms of the extended Euclidean al-
gorithm and Padé rational approximation. Let A(x) = a0x

2T−1 + a1x
2T−1 + · · · + a2T−1. The

minimal generator Φ is the monic polynomial of degree at most T such that

AΦ mod x2T = Ψ, deg(Ψ) < T.

In other words, we want to find Φ,Ψ ∈ K[x] such that A ≡ Ψ/Φ (mod x2T). The quotient Ψ/Φ
is a rational approximation to A, known as the Padé approximation of order (T − 1, T) of A.
This may be computed via the extended Euclidean algorithm acting on A and x2T . The extended
Euclidean algorithm produces, up to constant factors, all (c, 2T − 1 − c) Padé approximations
a/b such that a and b are coprime. The Berlekamp–Massey algorithm merely halts once we
reach c < T . The Half-GCD algorithm can expedite Berlekamp–Massey. In particular, the order
(T−1, T) Padé approximation may be obtained in Õ(T) K-operations from the output of half-GCD
algorithm acting on x2T and A. This gives us the following:

Lemma 2.7.6. Given a linearly generated sequence a ∈ KZ≥0 with a bound T on the length of its
minimal generator Φ ∈ K[y], one can find Φ in Õ(T) field operations on an algebraic RAM.

In the case that a is a sequence over an integral domain Z but not a field, the linear generator
may be found without working in the field of fractions of Z, via the fraction-free Berlekamp-Massey
algorithm due to Kaltofen and Yugahz [KY13]. This is an analogue to fraction-free algorithms for
pseudoremainders of polynomials over integral domains, e.g., polynomials over Z.

45

2.7.3 Prony’s algorithm

We describe Prony’s algorithm for an n-variate polynomial f over a field K. Suppose we are given
black-box access to f as well as bounds D ≥ deg(f) and T ≥ #f , and some ζ,ω ∈ (K∗)n, such
that the values ωe = ωe1

1 · · ·ωen
n are distinct for e ∈ Zn

D+1. We set

ai = f(ζωi) = f(ζ1ω
i
1, . . . , ζnω

i
n) for i ∈ [0..2T),

and let t be the largest rank appearing for any system (2.10), for s ∈ [T]. We then solve the
Hankel system (2.10) for s = t, which produces the minimal generator Φ = yt +

∑t−1
i=0 ϕiy

i. We
factor Φ =

∏t
i=1(y − ωei), and from the values ωei we obtain the multivariate exponents ei. The

corresponding coefficients ci may be obtained as solutions to the linear system
ζ⊤ω0e1 ζ⊤ω0e2 · · · ζ⊤ω0et

ζ⊤ω1e1 ζ⊤ω1e2 · · · ζ⊤ω1et

...
...

. . .
...

ζ⊤ω(t−1)e1 ζ⊤ω(t−1)e2 · · · ζ⊤ω(t−1)et

c1
c2
...
ct

 =

a0
a1
...

at−1

 . (2.11)

The determinant of the Vandermonde matrix appearing in (2.11) is
∏

1≤i<j≤n(ζ
⊤(ωei − ωej),

such that the system produces a unique solution provided ωei ̸= ωej for i ̸= j. Algorithm 3 gives
a high-level description of Prony’s method. We state the following cost:

Lemma 2.7.7. Algorithm 3 (Prony) interpolates a black-box polynomial f ∈ Z[x1, . . . , xn] with a
query-cost of T queries.

We remark that Prony’s formulation of Algorithm 3 was for sums of dampened exponentials.
Namely, Prony’s algorithm was to interpolate functions of the form h : C→ C of the form

h =
t∑

j=1

cj exp (dj + eji)t,

where ci ∈ C, di, ei ∈ R, and i =
√
−1. Sparse polynomial interpolation is the specific case

that the damping factors dj = 0 and the values ej ∈ Z for all j ∈ [t]. Prony’s algorithm, as
originally formulated by Prony, evaluates Ψ over a real arithmetic progression of length 2T . Then
evaluating Ψ over an arithmetic progression t = u, u+v, u+2v, . . . , where u, v ∈ R, is equivalent
to evaluating the polynomial

h1(x) =
t∑

j=1

cjx
ej

over the geometric progression x = exp(u+ vj), j ∈ (1, 2, . . .).

There are a number of variants of Prony’s algorithm. We describe some of these variants in
the remainder of Section 2.7.

46

Algorithm 3: Prony’s algorithm for interpolating a T -sparse black-box polynomial
Input: A black-box polynomial f ∈ K[x1, . . . , xn]; D ≥ maxi degxi

f ; T ≥ #f ; ζ,ω ∈ (K∗)n,
where the values {ωe : e ∈ [0..D]n} are distinct.

Output: A sparse representation of f .

1 Choose ω = (ω1, . . . , ωn) ∈ Kn with ord(ωi) > D for i ∈ [n], and k ∈ Z≥0;
2 for i← 0 to 2T − 1 do ai+k ← f(ζωi+k);
3 Compute minimal generator Φ(y) of length t ≤ T to the sequence given by
(ak, . . . , ak+2T−1);

4 Factor Φ to obtain its roots b1, . . . , bt ∈ Z;
5 for i← 1 to t do Determine exponent ei from bi = ω

ei;
6 Determine coefficients (c1, . . . , ct) via the Vandermonde system (2.11), if the system is

nonsingular, otherwise return fail;
7 return

∑t
i=1 cix

ei;

2.7.4 Decoding BCH codes and Prony’s algorithm over finite fields

Decoding procedures for Reed–Solomon [RS60] and Bose–Chaudhuri–Hocquenghem (BCH)
codes [BR60] were developed by Peterson, Berlekamp, Gorenstein (amongst others), and and
subsequently unified under an algebraic treatment by Blahut [Bla83]. These decoding procedures
give a means of interpolating a sparse black-box polynomial.

A BCH code is an additive subgroup of a vector space over a finite field Fq. We can construct a
BCH code with distance ℓ as follows. We select an element α ∈ Fqs belonging to a field extension
of Fq. For some choice of k, ℓ ∈ Z≥0,≤ s = ord(α), we take the generator of the code to be

g(x) = lcm (mαk+1(x),mαk+2(x), . . . ,mαk+D−1(x)) ∈ Fq[x],

where mβ ∈ Fq[x] is the minimal polynomial of β ∈ Fqs over Fq. The code is the additive
subgroup of Fq[x]/⟨xn − 1⟩ generated by g, where n is the multiplicative order of α. We identify
Fq[x]/⟨xn − 1⟩ with Fn

q as additive groups. A Reed–Solomon code is merely a BCH code where α
is selected from Fq.

Every code word C ∈ Fq[x] has the property that C(αi) = 0 for i ∈ [k..k + D). Thus, for a
code word and error term C, E ∈ Fq[x]2t, the evaluation (C + E)(αi) gives us evaluation E(αi), for
i ∈ [k..k +D). Moreover, for any pair of code words C ≠ C′, we have that (C − C′)(αj) must be
nonzero for some j ∈ [d..n], such that (C − C′) has a linear generator of length at least D, and
that (C − C′) is D-sparse, and the code has distance D.

If we select d = 2t + 1, then we can decode a code word with at most t errors, by essentially
interpolating the t-sparse error E ∈ Fq[x] of degree less than n from its evaluations αk, . . . , α2t+k.

47

In the setting of BCH code error-correction, the auxillary polynomial is known as the error-
locator polynomial, as it enables us to find the locations (exponents) of the error E .

More generally, Prony’s method allows for the sparse interpolation of arbitrary black-box
sparse polynomials over finite fields. In the case that the interpolant f ∈ Fq[x] is univariate,
by choosing ω1 to have multiplicative order exceeding D, we guarantee that the transposed Van-
dermonde system (2.11), such that can deterministically interpolate f .

For the interpolation of an n-variate function f use Kronecker substitution; however, in order
to guarantee a nonsingular linear system (2.11), we would require a root of unity of multipicative
order at least (D + 1)n. That is, we would need to evaluate f in a field extension containing
more than (D + 1)n elements. We can also probabilistically guarantee nonsingularity over Fq,
independently of n, by the following proposition due to Zippel.

Proposition 2.7.8 (Prop 8, [Zip90]). Let e1, . . . , et ∈ Nn be exponents with total degree less than
D∗, for i ∈ [t], j ∈ [n]. For ζ ∈ (F∗

q)
n, and ω ∈ {Fq}n chosen uniformly at random, the linear system

(2.11) is nonsingular with probability at least 1− 1
2 t(t− 1)D∗/q.

The bottleneck of Prony’s algorithm over finite fields is the recovery of the exponents ei from
the roots ωei of the auxillary polynomial. Discrete logarithms with over arbitrary finite fields are
not known to be solveable in polynomial time in general on a classical computer.

Discrete logarithms can be computed efficiently, however, in the case that the base ω ∈ Fq has
smooth multiplicative order d, throughout meaning that all prime factors of d are bounded by a
constant. We say an integer d ∈ Z>0 is B-smooth if all of its prime factors are at most B. If d
is smooth, then a discrete logarithm with base ω can be performed in O(log q) Fq-operations, or
O(log2 q) bit operations. Kaltofen observed in [Kal10] that this approach could expedite sparse
interpolation of a black-box polynomial f ∈ Z[x], by embedding f in an appropriate field Zq,
where q is prime. The task of finding a prime q for which q−1 contains a smooth factor exceeding
D, however, is nontrivial and can potentially dominate the cost of interpolation.

2.7.5 The Ben-Or–Tiwari Algorithm

In [BT88], the authors give a deterministic algorithm for the interpolation of a sparse black-box
polynomial f ∈ Z[x1, . . . , xn], with bounds T ≥ t = #f and D ≥ maxni=1 degxi

(f). Perhaps the
most significant contribution of [BT88] was extending Prony’s algorithm to multivariate polyno-
mials.

In this setting, for all i ∈ [n], we set ζi = 1 and ωi is chosen to be the ith prime which we
will denote here by pi. The exponents ei are then recovered via the prime factorization of the
roots ωei of the auxillary polynomial Φ. By the choice of ω, we have that ωei ̸= ωej for distinct
exponents ei ̸= ej , such that the resulting transposed Vandermonde system (2.11) is nonsingular.

48

In [KY89], Kaltofen and Lakshman made improvements to runtime of the Ben-Or–Tiwari
algorithm based on faster transposed-Vandermonde system solving and root-finding subroutines.

2.8 Early termination, sparsity testing, and sparsity estimation

In [KL03], Kaltofen and Lee studied black-box sparse interpolation in the case that no bound
T ≥ t = #f is given. They developed the technique of early termination, which probabilistically
detects when we have enough black-box queries to interpolate f . One can probabilistically test
that f is not 0-sparse by way of the DLSZ identity test. To test whether f is s-sparse, s > 1
consider the symbolic sequence a ∈ Fq[x]

N given by

ai = f(xi1, . . . , x
i
n) ∈ Fq[x1, . . . , xn].

We can think of ai as an evaluation of f at the symbolic point (xi1, . . . , x
i
n). It follows that the

ai satisfies the Hankel relationship (2.10) for s ≥ t. For s > 0, define the Hankel matrices of
polynomials

Hs
def
=
[
ai+j

]s−1

i,j=0
.

If s > t, then we have that Hs is singular. In other words, det(Hs) ∈ R[x] is identically zero, such
that det(Hs)(ω) = 0 for any ω with components taken from the algebraic completion of Fq.

If s ∈ [1..t], then we can show that Hs is probably full rank. Write the determinant of Hs as

det(Hs) =
∑
σ

(−1)sign(σ)
s∏

i=1

 t∑
j=1

cjx
σ(i)ej

 ∈ Fq[x], (2.12)

where the sum is taken over all permutations σ acting on [s]. Suppose e1 ≻ e2 ≻ · · · ≻ et with
respect to the lexicographical ordering. Then the expansion of (2.12) contains a unique term of
degree d = e2 + (2 + 3 + · · ·+ s)e1, namely c(s−1)

1 c2x
d.

We may bound the degree of det(Hs) by s(s − 1)D∗, such that, for ω chosen uniformly at
random from Fn

q , det(Hs)(ω) is nonzero with probability at least s(s − 1)D∗/q by the DLSZ
Lemma. This sparsity test (Algorithm 4) was later independently discovered in [GJR10], who
were studying it in the specific context of property testing.

Lemma 2.8.1. Algorithm 4 accepts if f ∈ Fq[x] is s-sparse and rejects with probability at least 2/3

otherwise. Its cost is O(s) black-box queries to f and an additional Õ(s log q) ⊇ Õ(s logD∗) bit
operations.

49

Algorithm 4: A probabilistic sparsity test
Input: f ∈ Fq[x], D∗ ≥ deg(f) and s ∈ Z>0, where q ≥ 3s(s− 1)D.
Output: If f is s-sparse, then the algorithm accepts. If f is not s-sparse, then the algorithm

rejects with probability at least 2/3.
1 Choose ω ∈ Fq uniformly at random;
2 for i ∈ [0..2s− 2] do ai ← f(ωi);
3 Hs ← [ai+j]

s−1
i,j=0;

4 if Hs is non-singular then Accept;
5 else Reject;

Proof. Probabilistic correctness follows from the preceding discussion. The query complexity
is immediate. The cost of computing the Hankel determinant is Õ(s) operations in Fq, or
Õ(s log q) ∈ Ω̃(s logD∗) bit operations.

It follows that, if we test whether det(Hs) = 0 for s = 1, 2, 3, . . . , t + 1, the probability that
det(Ht+1) is not the first nonsingular Hankel matrix is at most

D∗

q

t∑
s=1

s(s− 1) =
Dt(t− 1)(t+ 1)

3q
.

Thus, by choosing a random evaluation point ω ∈ Fn
q , one may probabilistically compute t as the

least value such that Ht+1 is nonsingular.

In some instances, we may only want an estimate for t that is tight up to a constant fac-
tor. In this case one can employ a technique we call repeated doubling. We make an ini-
tial guess t = Tmin, and run Algorithm 4 (alternatively, a sparsity test of one’s choosing) for
s = Tmin, 2Tmin, 4Tmin, . . . , until the algorithm rejects. In this case, the probability that the first
instance of rejection is for s ∈ (t..2t] is

D∗

q

⌊log t⌋∑
i=0

2i(2i − 1) <
D∗t2

q
. (2.13)

Algorithm 5 gives such a method for the estimation of the sparsity t = #f of a black-box polyno-
mial f ∈ Fq[x]. Its correctness and cost are as follows.

Lemma 2.8.2. Algorithm 5 behaves as stated. Its cost is Õ(t + Tmin) black-box queries and an
additional Õ(t log q) bit operations.

We further remark that Algorithm 5 can be made to succeed with probability 1−µ, at the cost
of an additional O(log(µ−1)) factor as usual; we merely take the maximum output after running
the algorithm O(log(µ−1)) times.

50

Algorithm 5: Black-box sparsity estimation via repeated doubling
Input: f ̸= 0 ∈ Fq[x], a black-box polynomial; T ≥ t = #f and D∗ ≥ deg(f), where

q ≥ 3D∗T 2; Tmin, an initial guess for t.
Output: If Tmin > t, algorithm produces Tmin. If Tmin ≤ t, then with probability at least 2/3,

algorithm produces s ∈ (t..2t], and otherwise produces s ≤ t
1 Choose ω ∈ Fn

q independently and uniformly at random;
2 s← Tmin;
3 for i← 0 to 2s− 2 do ai ← f(ωi);
4 while true do
5 for i← s− 1 to 2s− 2 do ai ← f(ωi);

6 H ← [ai+j]
t̃−1
i,j=0;

7 if H is singular then return s;
8 else s← 2s;

51

Few things are harder to put up with
than a good example.

Mark Twain

Chapter 3

Sparse interpolation of straight-line
programs

3.1 Introduction

A straight-line program (SLP) is a branchless sequence of arithmetic instructions that can model
a rational function. Straight-line programs are central to the study of algebraic complexity. One
reasonable measure of the complexity of a rational function is the least size of all straight-line
programs that compute it.

This chapter discusses the sparse interpolation of a SLP: learning the sparse representation of a
polynomial f given by a SLP. In 2009, Garg and Schost gave an algorithm that solves this problem,
given as inputs asymptotically tight bounds on the degree and sparsity of f , with deterministic
running time polynomial with respect to the combined size of the inputs and outputs [GS09].
In subsequent work [GR11], Giesbrecht and Roche developed a new technique, diversification,
which enabled them to give a faster, Las Vegas method.

In this chapter we will describe two Monte Carlo sparse interpolation algorithms for SLPs.
The methods presented herein have the advantage over previous variants in that they are all
softly linear in the number of terms in the output. This work was published in a series of papers
[AGR13; AGR14] with Mark Giesbrecht and Daniel S. Roche.

SLPs can serve as a generalization of black-box polynomials, producing arbitrary homomor-
phic images of f , not limited to the evaluation homomorphism. A natural generalization of
polynomial interpolation is the recovery of f given by specified sets of homomorphic images. The
algorithms herein all recover f , essentially by Chinese remaindering on a set of modular images
that each preserve the sparseness of f . In order to construct these modular images for f over

52

an integral domain Z, it suffices that we can evaluate f over the algebraic completion of Z. We
describe this model in terms of extended black-box polynomials, for which we easily generalize
the algorithms of [AGR13; AGR14].

These techniques may expedite sparse polynomial arithmetic and any R-algebraic program
whose output is a sparse polynomial, or one that will generate sparse polynomials as results to
intermediate computation. We will use many of the techniques developed in this chapter to create
fast algorithms for sumset and sparse polynomial multiplication, described in Chapter 4.

We further believe that techniques developed herein may have applications in signal pro-
cessing and multi-exponential analysis. A continuous-time signal comprised of a sparse linear
combination of integer-valued frequencies can be expressed as a complex-valued black-box poly-
nomial f with evaluation access over the unit circle. We show in the conclusions how to adapt
our algorithms to this model to recover such f on an algebraic RAM.

3.2 Preliminaries

In this section we discuss the extended black box polynomial model and how our algorithms
will interact with it. For the purposes of this chapter we will restrict our attention to univariate
extended black-box polynomials.

We recall, from Definition 1.4.2, that a univariate extended black-box polynomial for f ∈ R[x]
takes as input a ∈ R[y1, . . . , ym] and b1 ∈ R[y1], . . . , bm ∈ R[ym] and produces f(a) mod B, where
B = ⟨b1, . . . , bm⟩ ⊂ R[y1, . . . , ym] is the ideal generated by the bi.

An extended black box may be simulated by an SLP. Given a straight-line program computing
f ∈ R[x] and α ∈ R, we may compute f(αx) mod B by replacing any instance of x appearing
as an input to an instruction with αx, and performing each resulting arithmetic instruction over
R[x]/B.

3.2.1 Extended black box queries

Here we are strictly interested in images of the form f(ax) mod (xp − 1), for constants a ∈ R and
p ∈ Z>0. Note, for f =

∑t
i=1 cix

ei ∈ R[x], that in its reduced form,

f mod (xp − 1) =

t∑
i=1

cix
ei mod p. (3.1)

As such we introduce the shorthand notation,

fmod p def
= f(x) mod (xp − 1).

53

We may think of fmod p as being either in R[x] or R[x]/⟨xp − 1⟩ and will specify which is the case
if relevant.

Definition 3.2.1. Given an extended black-box polynomial f ∈ R[x], we let

f mod p def
= f mod (xp − 1).

We will call an image f mod p a query of degree p or simply a p-query, and we call an image
f(αx) mod p a shifted query of degree p or merely a shifted p-query). We call α the shift of the
query, e.g., a p-query is a shifted query with shift 1. We may writeO(ψ(n))-query to denote a p-query
for some p ∈ O(ψ(n)) and similarly for all other query variants defined herein and all asymptotic
classes of functions over Z>0.

An extended black-box for f can produce (shifted) queries of arbitrary degree. We will often
but not always choose the query degree p to be prime from a specified range (λ..2λ]. While our
algorithms were originally designed for straight-line programs, it is straightforward to generalize
these algorithms to extended black-box polynomials. Much of our analysis will be towards select-
ing an appropriate λ such that the probability f mod p satisfies certain properties for a randomly
selected prime from (λ..2λ].

In order to produce a shifted query f(αx)mod p, given an SLP that computes f , we evaluate
Γ at αx ∈ R[x]/⟨xp − 1⟩. To compute this evaluation, each arithmetic instruction of the SLP
is performed in R[x] and then reduced via division by (xp − 1), all using dense arithmetic. By
Theorem 2.1.2, each of these instructions cost Õ(p) R-operations. The resulting dense image can
then be converted to a sparse representation in Õ(p) R and bit operations.

Lemma 3.2.2. Let Γf be a straight-line program of length L that computes f , α ∈ R, and p ∈ Z>0.
Then, given Γf , we can compute a (shifted) p-query f(αx)mod p using Õ(Lp) ring operations.

We can also produce shifted queries from the sparse representation of f itself. We first write
f(αx) in place of f(x) by replacing each term cxe ∈ f with cαexe. This costs Õ(T logD) bit
operations by a square-and-multiply approach. We then merely reduce the exponents of f(αx)
modulo p, and then sort the resulting terms and add terms of equal degree together.

Lemma 3.2.3. Given a sparse representation of f ∈ R[x], we can produce a p-query of f with cost
Õ(T logD) bit operations and an additional Õ(T) ring operations; and a shifted p-query with a cost
of Õ(T logD) bit and ring operations.

Remark 3.2.4. We will generally suppose that a (shifted) p-query of f has cost at least that of
querying f via its sparse representation. By this assumption and the previous lemma, a p-query
costs at least Ω̃(T logD) bit operations and Ω̃(T) R-operations, whereas a shifted p-query costs
at least Ω̃(T logD) bit and ring operations. Note this cost exceeds the space complexity of fmod p

(f(αx)mod p). We will measure the cost of the algorithms with respect to the number of queries and
shifted queries. We also will keep track of additional ring and bit operations, however, under this
assumption the query cost will dominate all other costs in all algorithms described this chapter.

54

3.2.2 Hashing exponents

Note that by (3.1), reduction modulo (xp−1) effectively acts as a hash function on the exponents
of f , mapping a term of degree e to one of degree e mod p. We generalize the maps to a broader
family of sparsity-preserving maps, which we introduce here in order to describe the technique of
diversification. We revisit these maps in Chapter 5.

Definition 3.2.5. We say a map Φ : R[x] → R[x] is a sparsity-preserving map if it is a R-module
homomorphism for which there exists Φ∗ : Z≥0 → Z≥0 such that Φ(xd) = xΦ

∗(d). We call Φ∗ the
induced map of Φ.

For f =
∑t

i=1 cix
ei ∈ R[x], we let the preimage of a formal term cxd of Φ(f) (i.e. such that c

may be 0) be the sum of all nonzero terms of f which map to terms of degree d, i.e.,

σ =
∑
i∈[t]

Φ∗(ei)=d

cix
ei .

In the case Φ is the R-linear map given by xe 7→ xe mod p, the induced map of Φ is the map
Φ∗ : e 7→ e mod p. We will construct images of f under sparsity-preserving maps, and learn the
exponents of the terms of f from information given by the induced map acting on the exponents.
Via this induced map, Φ acts as a hash function on the exponents of f , mapping them from [0..D]
to the appreciably smaller set [0..p).

Definition 3.2.6. Let Φ : R[x]→ R[x] be a sparsity-preserving map with induced map Φ∗, f ∈ R[x],
and τ1 a term of f .

We say τ1 is a singleton (with respect to Φ) if there does not exist another nonzero term τ2 ∈ f
such that Φ(τ1) and Φ(τ2) are terms of the same degree. If there does exist such a term τ2, we say that
τ1 and τ2 collide, and the sum of terms τ ∈ f such that deg(Φ(τ)) = deg(Φ(τ1)) form a collision.
Moreover, we say a term τ ∈ Φ(f) is a singleton if a singleton of f uniquely maps to it.

We say an exponent e ∈ supp(f) is a singleton or collides if its corresponding term does. In the
case that Φ is given by f 7→ fmod p and Φ∗ by e 7→ e mod p, we will say that τ1 = cxe ∈ f is a
singleton or collides modulo (xp − 1) and its exponent is a singleton or collides modp.

Example 3.2.7. Define Φ : R[x]→ R[x] by xe 7→ xe mod 5. Consider f = 3x2+4x3+5x8−3x17+7x19.
Then Φ(f) = fmod 5 = 9x3+7x4. We have that 3x2 collides with −3x17 to give the formal term 0x2,
and that 4x3 collides with 5x8 to give 9x3. The remaining term of f , 7x19, is a singleton mapping to
7x4.

The preimage of 9x3 is the sum of terms of f with exponent congruent to 3 (mod5), i.e. σ =
4x3 + 5x8. The preimage of the formal term 0x2 of fmod 5 is σ = 3x2 − 3x17.

We stress, per the example, that terms with zero coefficients appearing in images may have
nonzero preimages.

55

Algorithm Reference1 Section Ring2 Queries3 Query deg.3 SLP Cost4 Type5

Dense R 1 D LD Det
Alg. 6 [GS09] 3.3.1 R T 2 logD T 2 logD LT 4 log2 D Det

Alg. 7 3.3.2 R T logD T 2 logD LT 3 log2 D LV
Alg. 9 [GR11] 3.3.4 Fq logD T 2 logD LT 2 log2 D LV

IterativeSI [AGR13] 3.4 R logD log T T log2 D LT log3 D MC
Alg. 10 [AGR14] 3.5 Fq logD log T T logD LT log2 D MC

SparsePIT [Bl+09] 3.3.3 R T logD T logD LT 2 log2 D Det

1 GS09 (Garg–Schost); GR11 (Giesbrecht–Roche); AGR13/14 (Arnold–Giesbrecht–Roche); Bla+09
(Bläser–Hardt–Lipton–Vishnoi)
2 R = any commutative ring with identity.
3 # of queries and query-degree in terms of “Õ”. Over Z queries are shifted queries.
4 Cost on a length-L SLP in terms of soft-oh number of ring operations.
5 Det = deterministic; LV = Las Vegas; MC = Monte Carlo.

Table 3.1: Algorithms for the sparse interpolation and identity testing of an extended black box
polynomial

Algorithm Soft-oh cost

Dense LD log q
Alg. 6 LT 4 log2D log q
Alg. 7 LT 3 log2D log q
Alg. 9 LT 2 log2D(logD + log q)
Alg. IterativeSI LT log3D log q
Alg. 10 LT log2D(logD + log q)

SparsePIT LT 2 log2D log q

Table 3.2: Bit cost of sparse interpolation and identity testing algorithms for length-L SLPs over
Fq

3.2.3 Organization of chapter and summary of results

Table 3.1 gives a summary of results for sparse interpolation, sparsity testing, and sparse identity
testing of extended black-box polynomials, as well as giving relevant references and the sections
where each algorithm appears in this chapter. Some of the algorithms work for f over arbitrary
commutative rings with identity R; other algorithms only work for polynomials over a finite field
Fq.

The algorithms over Fq rely on diversification, a technique whose correctness relies on the
DLSZ Lemma. As such, one can generalize these algorithms for any coefficient ring R containing

56

a regular-difference set of cardinality (1+ϵ)v for some ϵ > 0. In order to compare these algorithms
in a more even setting, Table 3.2 compares the soft-oh bit cost of each of the algorithms acting
on an SLP over Fq. From Table 3.2 we see that diversification essentially replaces a cost factor of
logD log q with (logD + log q).

In Section 3.3, we describe previous work on the interpolation and identity testing of straight-
line programs. In Section 3.3.1 we give the algorithm of Garg and Schost, which achieved a ring-
operation cost that was polynomial in the input and output size. In 3.3.2 we describe a Monte
Carlo variant thereof that saves a logD cost factor. This method can be made Las Vegas via
polynomial identity testing (PIT). We give a deterministic PIT method due to Bläser et al., which,
given a length-L SLP Γf and bounds D and T , tests whether f is zero with cost Õ(LT 2 log2D).
In Section 3.3.4, we describe the technique of diversification and give a Monte Carlo algorithm
of Giesbrecht and Roche. This algorithm may also be made Las Vegas via the test of Bläser et al.

In Section 3.4, we describe a new Monte Carlo approach due to the author, Giesbrecht, and
Roche, that achieves runtime that is softly linear in the sparsity T . In Section 3.5, we give a faster
algorithm in the case that the extended black-box is over a integral domain of sufficient order.
These algorithms are Monte Carlo as their costs are dominated by that of polynomial identity
testing (PIT). Our algorithms require as inputs bounds on the degree and sparsity of f . We give
algorithm to determine nontrivial bounds on the partial degrees and sparsity of multivariate f
given by an SLP in Section 3.6. In Section 3.7, we offer conclusions and open problems.

3.3 Previous Work

3.3.1 The Garg–Schost algorithm

In 2009, in the paper [GS09], Sanchit Garg and Éric Schost gave an algorithm that interpolates a
sparse polynomial given by a straight-line program Γf , given bounds on the sparsity and degree
of f . Provided these bounds are tight up to polynomial factors, their algorithm is the first known
algorithm that achieves a cost, in terms of ring operations, that is polynomial in the combined
size of the input and output. We state the cost of the algorithm as a Theorem.

Theorem 3.3.1. Algorithm 6 takes an extended black-box for f ∈ R[x] and bounds D ≥ deg(f),
and T ≥ #f , and constructs a sparse representation for f . Its cost is Õ(T 2 logD) queries of degree
O(T 2 logD).

Definition 3.3.2. We say a prime p is a good prime (for f) if none of the terms of f collide modulo
(xp − 1). Otherwise we say p is a bad prime. If p is a good (bad) prime we call an image fmod p a
good image (bad image, resp.).

57

Algorithm 6: The Garg–Schost method for extended black-box polynomials
Input: An extended black-box polynomial f ∈ R[x]; bounds T ≥ #f,D ≥ deg(f).
Output: A sparse representation of f .

1 ℓ← ⌈12T (T − 1) log2D + T log(D + 1) + 1⌉; // ℓ = bound on # of queries needed

// Construct images fmod p for a set of good primes p ∈ P
2 p1, . . . , pℓ ← the least ℓ primes;
3 t← maxℓi=1(#f

mod pi);
4 P ← {pi : i ∈ [ℓ],#fmod pi = t}

// Construct images of Λ mod p for good primes p ∈ P
5 M ← 1; // M = combined modulus of congruences in C
6 for p ∈ P do
7 Λp ←

∏
e∈supp(fmod p)(y − e) mod p;

8 M ←Mp;
9 if M > 2DT then break;

// Construct exponents ei and pair each ei with its coefficient

10 Construct Λ ∈ Z[x] with height at most DT from congruences {Λp mod p};
11 Factor Λ =

∏t
j=1(y − ej) to get exponents ej;

12 for j = 1, 2, . . . , t do cj ← coefficient of (ej mod p)-degree term of f mod p for some fixed
p ∈ P;

13 return
∑t

j=1 cjx
ej

Observe that p is a good prime if and only if #f = #(fmod p).

Example 3.3.3. Let f = 3x + x6. Then f mod (x5 − 1) = 4x, such that #(fmod 5) = #f and 5 is
a bad prime. f mod (x3 − 1) = 3x+ 1. As #f = #(fmod 3), we have that and 3 is a good prime.

If p is not a good prime, then p divides ei − ej for some i, j where 1 ≤ i ̸= j ≤ t. As∏
1≤i<j≤t(ei − ej) < DT (T−1)/2, this gives us the following bound.

Lemma 3.3.4. [Step 0, [GS09]] There are at most 1
2T (T − 1) logD bad primes.

We construct fmod p for p taken from a set of O(T log2D) primes P. The algorithm then
determines t as t = maxp∈P(#f

mod p)Once the algorithm determines t it can trivially identify
other good primes p via inspection of fmod p.

58

Once t is known, we interpolate the auxillary polynomial

Λ(y) =

t∏
i=1

(y − ei) ∈ Z[y]. (3.2)

If p is a good prime, then the exponents of fmod p give the distinct values ei mod p for i ∈ [t] and
hence Λ mod p as well. We can bound the length and thus the height of Λ by

∏t
i=1(1 + ei) ≤

(D + 1)T . Thus we can compute f mod p for T log(D + 1) good primes p and reconstruct Λ
from its corresponding images modulo p. We can then factor Λ to obtain the support of f , i.e.,
e1, e2, . . . , et. The coefficient ci corresponding to exponent ei can be obtained from the coefficient
of the degree-(ei mod p) term appearing in any good image fmod p.

Our bounds on the number of primes needed at each stage is naive, as it does not consider
the magnitude of the respective primes; however, using more refined bounds will not improve
the soft-oh cost of the algorithm. For completeness we include a pseudocode description of the
Garg–Schost method in Algorithm 6.

The query cost entails O(T 2 logD) queries of degree Õ(T 2 log2D). The additional costs are
as follows:

• Construction of the primes p: By Corollary 2.4.3, we can construct the first ℓ ∈ Õ(T 2 logD)
primes in Õ(T 2 logD) bit operations via the wheel sieve.

• Construction of the images Λ mod p: For a prime pi, Λ mod pi may be computed from its
linear factors {ei mod p : i ∈ [t]} with Õ(T) Fpi-operations by Theorem 2.1.7, or a bit
cost of Õ(T log pi) = Õ(T log logD). Constructing Λ mod pi for O(T logD) primes then
becomes Õ(T 2 logD).

• Construction of the auxillary polynomial Λ, via Chinese remaindering remaindering: Each
of the O(T) has magnitude at most (D + 1)T . Thus the Chinese remaindering will cost
Õ(T log(DT)) = Õ(T 2 logD) per Theorem 2.1.6.

• Factorization of Λ: In order to obtain the complete factorization we can merely employ
Hensel lifting on a good image fmod p. Per Theorem 2.1.8, and as each of the linear factors
(y − ei) of Λ have height less than D, this costs Õ(T logD).

This gives a total additional bit cost of Õ(T 2 log2D). Per remark 3.2.4, these costs are dominated
by the query cost. This completes the cost analysis of Algorithm 6.

In the case that f is given by a straight-line program, Lemma 3.2.2 gives the following Corol-
lary.

Corollary 3.3.5 (Thm. 1, [GS09]). Algorithm 6 interpolates f ∈ R[x] given by a length-L straight-
line program with a cost of Õ(LT 4 log2D) R-operations.

59

3.3.2 Probabilistic Garg–Schost

In order to expedite the Garg–Schost method, we merely choose a prime p that is good with high
probability.

Lemma 3.3.6 (Lemma 2.1, [GR11]). Let Z ∋ λ ≥ max(21, 53T (T − 1) lnD). Then the probability
that a prime p, randomly selected from P(λ..2λ], is good, is at least 1/2.

Proof. Let B be the set of bad primes in (λ..2λ]. Per the proof of Lemma 3.3.4, we have that∏
p∈B p ≤ D

1
2T (T−1), such that if B is nonempty, then #B ≤ 1

2T (T − 1) lnD/ lnλ. By Lemma
2.4.4, the number of primes in (λ..2λ] is at least 3

5λ ln
−1 λ ≥ T (T − 1) lnD ln−1 λ ≥ 2#B, as

desired.

Algorithm 7: A Monte Carlo variant of the Garg–Schost method
Input: An extended black-box polynomial f ∈ R[x]; bounds T ≥ #f , D ≥ deg(f).
Output: With probability at least 2/3 a sparse representation of f .

// Construct images of Φ mod p for a set P ′ of good primes

1 λ← ⌈max(21, 5
3T (T − 1) lnD, 40 ln(2(D + 1)T + 1))⌉;

2 m← ⌈24 logλ(2(D + 1)T + 1)⌉;
3 P ← GetPrimes(λ,m; 5/6);
4 t← maxp∈P #(fmod p);
5 Pgood ← {p ∈ P : #(fmod p) = t};
6 if

∏
p∈Pgood

p ≤ 2(D + 1)T + 1 then return fail;
7 for p ∈ P ′ do Λp ←

∏
e∈supp(fmod p)(y − e) ;

// Construct each exponent ei and pair it with its coefficient

8 Construct Λ ∈ Z[x] with height at most (D+1)T from congruences {Λp mod p | p ∈ Pgood};
9 Factor Λ =

∏t
j=1(y − ej) to get exponents ej;

10 for j = 1, 2, . . . , t do cj ← coefficient of (ej mod p)-degree term of f mod p for some fixed
p ∈ Pgood;

11 return
∑t

j=1 cjx
ej

Lemma 3.3.7. Algorithm 7 succeeds with probability at least 2/3. It admits a cost of Õ(T logD)
queries of degree Õ(T 2 logD).

Proof. We first prove correctness. By Lemma 3.3.6, forcing λ ≥ 21 and 5
3T (T −1) lnD guarantees

that a randomly selected prime from (λ..2λ] is a good prime for f with probability at least 1/2.

60

By forcing λ ≥ 20 ln(2(D + 1)T + 1), it follows from Corollary 2.4.5 that (λ..2λ] contains at
least (3/5) 40 logλ(2(D + 1)T + 1) = 24 logλ(2(D + 1)T + 1) primes, such that GetPrimes can
select ⌈24 logλ(2(D + 1)T + 1)⌉ distinct primes from (λ..2λ]. By Corollary 2.3.3, and taking n =
logλ(2(D+1)T +1), δ = 1/2, and µ = 1/6; the probability that P contains n good primes is at least
5/6. If P contains n good primes then we have sufficiently many good primes in order to construct
Λ. It follows from the union bound that the algorithm succeeds with probability at least 2/3.

We now analyze its cost. The query cost is Õ(T logD) queries of degree Õ(T log2D). The
additional bit-operation cost due to lines 8-11 is Õ(T 2 log2D), similar to the discussion of the
cost of Algorithm 6 at the end of Section 3.3.1. This again is dominated by the query cost, per
Remark 3.2.4.

In the case that f is given by an SLP, this gives us the following cost:

Corollary 3.3.8. Algorithm 7 interpolates f given by a length-L straight-line program with a cost
of Õ(LT 3 log2D) ring operations.

3.3.3 Related work: sparse polynomial identity testing of SLPs

We mention an algorithm, due to Bläser, Hardt, Lipton, and Vishnoi [Bl+09], for the deterministic
identity test of a sparse polynomial f , given by an SLP or extended black box, with bounds
T ≥ #f and D ≥ deg(f) are known. Their method similarly relies on querying f . The following
Lemma is central to their method.

Lemma 3.3.9. Suppose f is nonzero with T ≥ #f and D ≥ deg(f). Then there are at most
⌊(T − 1) logD⌋ primes p such that fmod p is zero.

Proof. Write the sparse representation of f as f =
∑

i cix
ei . If fmod p = 0, then p|(e1 − ej) for

some j ̸= 1, or else c1xe1 is a singleton modulo (xp−1), and fmod p would have a term c1x
e1 mod p.

Thus, if we let B be the set of primes p satisfying fmod P = 0; we have that

2#B ≤
∏
p∈B

p ≤
t∏

j=2

(e1 − ej) ≤ DT−1.

such that #B ≤ (T − 1) logD.

Lemma 3.3.10. Procedure SparsePIT(f, fsparse, D, T) is correct and costs Õ(T logD) queries of
degree Õ(T logD), and an additional Õ(T 2 log2D) bit operations and Õ(T 2 logD) ring operations.

61

Procedure SparsePIT(f, fsparse, D, T)
Input: f ∈ R[x], an extended black-box polynomial; fsparse ∈ R[x], a sparse polynomial;

D ≥ deg(f),deg(fsparse); T ≥ #f,#fsparse
Result: Accepts if and only if f = fsparse.

1 P ← set of first ⌊(2T − 1) logD⌋+ 1 primes ;
2 for p ∈ P do
3 if (f − fsparse)mod p = 0 then reject;

4 accept;

Proof. Correctness follows from Lemma 3.3.9. By the Prime Number Theorem (Thm. 2.4.2), we
have that all the primes pi computed on line 1 satisfy pi ∈ Õ(T logD). We can construct all
such primes in Õ(T logD) bit operations via the wheel sieve, by Theorem 2.4.1. The construc-
tion of each image f mod pi entails a query of degree Õ(T logD). Constructing f mod pi

sparse entails
Õ(T logD) bit operations and Õ(T) ring operations. Taking the difference (f − fsparse) mod pi =

f mod pi−f mod pi
sparse entails an additionalO(T) ring operations. Accounting for all Õ(T logD) primes

completes the proof.

Corollary 3.3.11. SparsePIT costs Õ(LT 2 log2D) ring operations for f given by a straight-line
program of length L.

Procedure SparsePIT allows for any Monte Carlo interpolation procedure for an extended
black box, and taking bounds D and T as inputs, to be made Las Vegas. We merely run the
Monte Carlo sparse interpolation algorithm repeatedly until the polynomial identity test given by
SparsePIT verifies the output to be correct. Algorithm 8 gives pseudocode for the approach. In
the case that the Monte Carlo procedure SparseInterpProc has cost O(Ψ(D,T)), the expected
ring operation cost of Algorithm 8 will be Õ(max(T 2 log2D,Ψ(D,T))).

Algorithm 8: Las Vegas sparse interpolation of SLPs
Input: SparseInterpProc, a Monte Carlo algorithm that interpolates a sparse polynomial

given by an extended black-box with probability at least 2/3; D ≥ deg(f); T ≥ #f
Output: A sparse representation of f .

1 while true do
2 fsparse ← output of SparseInterpProc with inputs f , D, and T ;
3 if #fsparse ≤ T , and SparsePIT(f, fsparse, D, T) accepts then return fsparse;

62

3.3.4 The Giesbrecht–Roche “diversified” method

In [GR11], the authors present a probabilistic algorithm with improved cost over the Garg–Schost
algorithm for the case that R is an integral domain with order exceeding the degree of the in-
terpolant f by some constant factor. Their strategy is to construct, for f =

∑t
i=1 cix

ei , shifted
queries of the form

f(αx) mod p =

t∑
i=1

ciα
eixei mod p. (3.3)

for a set of good primes p and a fixed choice of α ∈ Fq, such that the nonzero coefficients of f(αx)
are, with high probability, distinct. This technique is called diversification.

Definition 3.3.12. We say f ∈ R[x] is diverse if its nonzero coefficients are distinct. We say α ∈ R
(or a ring extension of R) diversifies f if f(αx) is diverse.

Using diversification, we may avoid the construction of the polynomial Λ (3.2). Instead, by
collecting terms from the images f(αx)mod p according to their coefficient, we obtain lists of
congruences each corresponding to a distinct term cxe of f(αx). By probabilistically selecting
O(logD) good primes p ∈ Õ(T 2 logD), one can reconstruct the exponents of f via Chinese
remaindering on these sets of congruences. In order to probabilistically select an α that diversifies
f , we prove the following using the DLSZ Lemma (Thm. 2.5.7). The proof mimics that of
Theorem 3.1 of [GR11].

Lemma 3.3.13. Let R be a ring and S ⊆ R a regular-difference set of cardinality at least 2D. Let
m = ⌈log(T (T − 1)µ−1)− 1⌉, and choose α1, . . . , αm ∈ S independently and uniformly at random.
Then

f(x) = (f(α1x), . . . , f(αmx)) ∈ Rm[x]

is diverse with probability at least 1− µ.

Proof. For f =
∑t

i=1 cix
ei , the term of degree ei in f will have coefficient

(ciα
ei
1 , . . . , ciα

ei
m),

such that the ith and jth terms will share a coefficient if and only if (ciα
ei
k − cjα

ej
k) for all k ∈ [m].

By the DLSZ Lemma this occurs with probability at most 2−m ≤ µ/(12T (T − 1)). Taking the union
bound over the at-most 1

2T (T − 1) pairs (i, j), i ≤ j ∈ [t], completes the proof.

Corollary 3.3.14 (Thm. 3.1, [GR11]). Let q be a prime power and let s ≥ logq
(
1
2T (T − 1)Dµ−1

)
.

If α is randomly chosen from Fqs , then α diversifies f with probability at least 1− µ.

63

Algorithm 9: Giesbrecht–Roche diversified sparse interpolation
Input: An extended black-box polynomial f ∈ Fq[x]; D ≥ deg(f); T ≥ #f
Output: With probability at least 2/3, a sparse representation of f

// Construct good images fp
1 λ← ⌈max(21, 5

3T (T − 1) lnD, 30 lnD)⌉;
2 P ← GetPrimes(λ, 18 logλD; 1/9);
3 t← maxp∈P

(
#f mod p

)
;

4 Pgood ← {p ∈ P | #f mod p = t};

// Diversify f
5 k ← ⌈92T (T − 1)⌉;
6 s← ⌈logq(2D)⌉;
7 Choose α1, . . . , αk ∈ Fqs independently and uniformly at random;
8 fp ← (f(α1x)

mod p, . . . , f(αkx)
mod p), for some fixed p ∈ Pgood;

9 c1, . . . , ct ← coeffs(fp);
10 if c1, . . . , ct are not distinct then return fail;

// Construct congruences for each exponent

11 for p ∈ P ′ do
12 fp ← (f(α1x)

mod p, . . . , f(αkx)
mod p);

13 if coeffs(fp) ̸= {c1, . . . , ct} then return fail;
14 for i← 1 to t do eip ← exponent of term with coefficient ci in fp;

// Construct exponents via Chinese remaindering

15 for i← 1 to t do ei ← solution in [0..D] to congruences {ei ≡ eip (mod p) : p ∈good};
16 return

∑t
i=1 ci1α

−ei
1 xei;

Theorem 3.3.15. Let f ∈ Fq[x] be an extended black-box polynomial with bounds D ≥ deg(f)
and T ≥ #f . Given f,D, and T , Algorithm 9 interpolates f with probability at least 2/3. It costs
Õ(logD) Fqs-shifted queries of degree Õ(T 2 logD), where s ∈ O(1 + logqD)

Proof. We first prove correctness. λ is chosen to be at least 21 and 5
3T (T − 1) lnD, such that

by Lemma 3.3.6, a randomly chosen prime from (λ, 2λ] is a good prime with probability at least
1/2. By Corollary 2.4.5, by choosing λ ≥ 30 lnD, we guarantee that (λ..2λ] contains at least
18 logλD primes, such that GetPrimes produces ⌈18 logλD⌉ from (λ..2λ]. By Corollary 2.3.3,
taking m = 18 logλD,n = logλD, δ = 1/2, and µ = 1/9 the probability that fewer than logλD
primes in P are good is less than 1/9. Per Lemma 3.3.13, f = (f(α1x), . . . , f(αkx)) ∈ Rk[x] is

64

diverse with probability at least 1/9. As these comprise the probabilistic steps of the algorithm, by
the union bound we succeed with probability at least 2/3 as desired.

Per Theorem 2.1.6, the cost of constructing the exponents ei is softly-linear in the combined
bit size of the exponents ei, i.e., Õ(T logD) bit operations. Computing α−ei

1 for i ∈ [t] costs
Õ(T logD) Fqs-operations via a square-and-multiply approach, or a bit cost of Õ(sT logD log q) =

Õ(T logD(logD + log q). We can construct such a field extension Fqs by the first algorithm of
Theorem 2.1.5, with a bit cost Õ(s2 log q + s log2 q) ⊆ Õ(log3D).

These costs are dominated by the cost of the Õ(logD) shifted queries of degree Õ(T 2 logD)
over Fqs , which per Remark 3.2.4 have a bit cost of at least

Õ(T 2 log2Ds log q) = Õ(T 2 logD(logD + log q)).

This algorithm can be made Las Vegas by the sparse PIT of Blaser et al. In the case that f is
given by an SLP this gives the following cost.

Corollary 3.3.16. There exists a Las Vegas algorithm that, given a length-L SLP computing f ∈ Fq,
and T ≥ #f and D ≥ deg(f), interpolates f with an expected cost of Õ(LT log2D(logD + log q))
bit operations.

3.4 Iterative sparse interpolation

In this section we present sparse interpolation algorithm for an extended black-box polynomial
f over an arbitrary ring R with identity, with cost softly linear in T . This algorithm was first
described in [AGR13], and is joint work with Daniel S. Roche and Mark Giesbrecht. This approach
is unique amongst the algorithms in this section for constructing queries fmod pq of degree pq, a
product of two primes. We will fix a prime p for which most of the exponents of f are singletons
modulo p. We choose a list of primes q which will give a set of congruences that allows us to
construct the singleton exponents of f .

The algorithm maintains a sparse polynomial fsparse “approximating” f , where, after the end
of the ith iteration and with high probability #(f − fsparse) ≤ 2−iT . After ⌈log T ⌉ + 1 iterations,
this gives us fsparse = f . In each iteration, we add to fsparse over half of the remaining terms of
f − fsparse, plus possibly some additional deceptive terms constructed due to collisions of terms
in modular images of f − fsparse. As such we call this approach iterative sparse interpolation.
Throughout Section 3.4, we will let g = f − fsparse.

65

3.4.1 Allowing for some collisions with σ-support primes

Instead of choosing a prime p modulo which all the exponents of g remain distinct, we choose a
prime for which most of the exponents remain distinct.

Definition 3.4.1. For g ∈ R[x] and any prime p, we let Cg(p) denote the number of terms of g that
are in collisions modulo (xp − 1).

For any proportion σ ∈ (0, 1], we say p is a σ-support prime for g if at least σ(#g) exponents
of g are singletons modulo p. That is, if Cg(p) ≤ (1− σ)#g.

Example 3.4.2. For the polynomial g = 1 + x5 + x7 + x10, we have g mod (x2 − 1) = 2 + 2x and
g mod (x5− 1) = 3+x7. One can check that Cg(2) = 4 as 1 collides with x10 and x5 collides with x7

modulo x2 − 1. Cg(5) = 3, as 1, x5, and x10 all collide modulo x5 − 1, but the term x7 is a singleton.

A 1-support prime is precisely a good prime. The following lemma allows us to find σ-support
primes.

Lemma 3.4.3. Let g ∈ R[x] be T -sparse with degree at most D, and fix σ, µ ∈ (0, 1). Let λ ∈ Z
where λ ≥ max(21, ⌈53(T − 1)(1− σ)−1µ−1 lnD⌉). Then p chosen uniformly at random from the set
of primes in (λ..2λ] is an σ-support prime with probability at least 1− µ.

Proof. Write g =
∑t

i=1 cix
ei , where t ≤ T and let B denote the set of “bad” primes p ∈ (λ..2λ] that

are not σ-support primes. For every p ∈ B, more than a proportion of (1−σ) of the terms of e are
non-singletons modulo (xp − 1). For every non-singleton ei ∈ supp(f), there exists ej ∈ supp(g),
ej ̸= ei, such that p divides ei − ej . If B is nonempty it follows that

λ#B(1−σ)t <
∏
p∈B

p(1−σ)t ≤
t∏

i=1

t∏
j=1
j ̸=i

(ei − ej) < DT (T−1),

so #B < (T − 1)(1− σ)−1 lnD ln−1 λ. By Lemma 2.4.4, the number of primes in (λ..2λ] exceeds
3
5λ/ lnλ. As

#B
3
5λ ln

−1 λ
<

(T − 1)(1− σ)−1 lnD ln−1 λ
3
5λ ln

−1 λ
=

5(T − 1)(1− σ)−1 lnD

3λ
≤ µ−1,

this completes the proof.

We will look for 5/8-support primes. In [AGR13] these were referred to as ok primes. We
choose λ = ⌈max(21, 1609 (T − 1) lnD)⌉ such that a prime p chosen uniformly at random from
(λ..2λ] is an 13/16-support prime with probability at least 1/2.

66

In order to boost the probability of success, we will choose primes p and choose the best can-
didate from among them. A natural choice is to take a p which maximizes #(gmod p). However,
as the following example shows, maximizing #(g mod p) does not necessarily minimize Cg(p), the
number of terms that collide modulo (xp − 1).

Example 3.4.4. Let
g = 1 + x+ x4 − 2x13.

We have
gmod 2 = 2− x, and gmod 3 = 1.

While gmod 2 has more terms than gmod 3, we see that Cg(2) = 4 whereas Cg(3) = 3.

While we cannot determine the prime p for which g mod (xp−1) has minimally many colliding
terms, the following lemma shows that choosing the prime p that maximizes #(gmod p) is within
a factor 2 of optimal.

Lemma 3.4.5. Suppose that g ∈ R[x] has t terms and g mod p has s terms. Then t − s ≤ Cg(p) ≤
2(t− s).

Proof. To prove the lower bound, note that t − Cg(p) exponents of g will not collide modulo p,
and so g mod (xp − 1) has at least t− Cg(p) terms.

We now prove the upper bound. There are Cg(p) terms of g that collide modulo (xp − 1). Let
h be the Cg(p)-sparse polynomial comprised of those terms of g. As each term of h collides with
at least one other term of h, h mod p has sparsity at most Cg(p)/2. Since all of the terms of g − h
are singletons, (g − h) mod p has sparsity exactly t − Cg(p). It follows that g mod p has sparsity at
most t− Cg(p) + Cg(p)/2 = t− Cg(p)/2. That is, s ≤ t− Cg(p), and so Cg(p) ≤ 2(t− s).

Corollary 3.4.6. Suppose g mod p has sparsity sp, and g mod q has sparsity sq, where sp ≥ sq. Then
Cg(p) ≤ 2Cg(q).

Proof.
Cg(p) ≤ 2(t− sp) by the second inequality of Lemma 3.4.5,

≤ 2(t− sq) since sp ≥ sq,
≤ 2Cg(q) by the first inequality of Lemma 3.4.5.

Observe that Examples 3.4.2 and 3.4.4 agree with Corollary 3.4.6. By Corollary 3.4.6, if
{p1, . . . , pm} contains at least one 13/16-support prime, then the prime pi for which #g mod pi is
maximal will necessarily be a 5/8-support prime.

67

3.4.2 Deceptive terms

Once we have probabilistically identified a 5/8-support prime p for g = f − fsparse, we construct
images of the form g mod pq for q = 2, 3, 5, . . . , until we have sufficient information to construct
the exponents of what we hope are the singletons appearing in g mod p. Observe that if a term
cxe of g is a singleton modulo (xp − 1), then g mod pq will have a unique term of the form cxeq

where eq ≡ e (mod p). The exponent eq satisfies eq ≡ e (mod q) as well, so that we can use these
congruences, for a sufficiently large set of primes q, to reconstruct e via Chinese remaindering.

If there is a collision of terms, however, the terms may interact in a way that fools us into
constructing a deceptive term: a term constructed from the images of g that is not a term of g.

Example 3.4.7. Let

g(x) = 1 + x+ x2 + x3 + x11+4 − x14·11+4 − x15·11+4,

and suppose we are given an extended black for g, and bounds D = 200 ≥ deg(g) and T = 7 ≥ #g.
Let p = 11, and suppose we construct images

g mod 11 = 1 + x+ x2 + x3 − x4,
g mod 22 = 1 + x+ x2 + x3 − x15,
g mod 33 = 1 + x+ x2 + x3 − x26,
g mod 55 = 1 + x+ x2 + x3 − x48,
g mod 77 = 1 + x+ x2 + x3 − x15.

Collecting terms amongst the images with like degree modulo 11, and reconstructing exponents via
Chinese remaindering on the resulting congruences modulo q = 2, 3, 5, 7, we get the terms 1, x, x2,
and x3, and in addition an additional deceptive term −x113 not appearing in g.

In the case that a collision is only comprised of two terms of g, then we will be able to detect if
it occurs. Namely, if cxe and c′xe

′
collide modulo (xp−1), then we will choose a prime q such that

e ≡ e′ (mod q). For such a prime q there will be two terms of degree congruent to e modulo p.
In which case it is clear that a collision occured in gmod p at degree e mod p, and we know not to
construct a term in that case. In practise, one may implement a prefix dictionary (Section 2.2) in
order to store a term of cxd of gmod pq with key ((d mod p), i, d) and value c. The cost of accessing
and traversing all key-value pairs is softly linear in the bit sizes of the key-value entries.

3.4.3 Interpolation

Procedure IterativeSI (i.e., “Iterative Sparse Interpolation”) describes the interpolation proce-
dure, which iteratively interpolates g = f − fsparse. We construct every singleton of g modulo

68

(xp− 1), and potentially Cg(p)/3 deceptive terms, each resulting from a collision of three or more
terms of g. Thus, if p is an 5/8-support prime, we will construct a sum of terms f ′sparse such that
#(g− f ′sparse) ≤ 4

3Cg(p) =
1
2#(g). We accordingly replace fsparse with fsparse + f ′sparse, and replace

bound Tg ≥ #(f − fsparse) with ⌊Tg/2⌋. We continue in this manner until Tg = 0, at which point
f = fsparse, provided the probabilistic steps of the algorithm succeeded.

Procedure IterativeSI(f,D, T)
Input: An extended black-box polynomial f ∈ R[x]; D ≥ deg(f), T ≥ #f .
Output: With probability at least 2/3, a sparse representation of f

// Initialize values

1 Tg ← T ;
2 fsparse ← 0 ∈ R[x], a sparse polynomial;
3 µ← 1/(3⌈log T + 1⌉);
4 Q ← the first ⌈logD⌉ primes, generated by the wheel sieve;

5 while Tg > 0 do
// Build images

6 λ← max(21, ⌈3209 (T − 1) lnD⌉);
7 m← log(2µ−1);
8 p1, . . . , pm ← GetPrimes(m,λ;µ/2);
9 for i← 1 to m do Compute (f − fsparse) mod pi;

10 p← a prime pi for which #(f − fsparse) mod pi is maximal;
11 for q ∈ Q do Construct (f − fsparse) mod pq;

// Reconstruct exponents via Chinese remaindering

12 f ′sparse ← 0 ∈ R[x], a sparse polynomial;
13 for d ∈ supp(f mod p) do
14 if for each q ∈ Q, f mod pq has a unique nonzero term of degree dq ≡ d (mod p) then
15 e← solution to congruences (e ≡ dq)q∈Q;
16 c← coefficient of degree-(e mod p) term of (f − fsparse) mod p;
17 f ′sparse ← f ′sparse + cxe;

18 fsparse ← fsparse + f ′sparse;
19 Tg ← ⌊Tg/2⌋;
20 if #fsparse > Tg + T then return fail;

21 return fsparse

69

Theorem 3.4.8. IterativeSI(f,D, T) interpolates f with probability at least 2/3, and a cost of
O(logD log T) queries of degree Õ(T log2D).

Proof. We first prove correctness. Since we initialize Tg to T and decrease Tg by a factor of at
least 2 each iteration, we will have Tg ≤ 1 after ⌊log T ⌋ iterations. It follows that there are at most
⌊log T + 1⌋ iterations of the outer while loop. Thus, if every iteration succeeds with probability
at least 1 − µ, where µ = 1

3⌈log T + 1⌉−1, then by the union bound the algorithm succeeds with
probability at least 2/3.

The only probabilistic step in each such iteration is the selection of an 5/8-support prime p.
GetPrimes(m,λ;µ/2) produces a set P comprising m primes from (λ..2λ], or all primes from
(λ..2λ] if the interval contains fewer than m primes. The procedure produces these primes with
probability at least 1− µ/2. By the choice of λ and Lemma 3.4.3, a prime chosen from (λ..2λ] is
a 13/16-support prime with probability at least 1/2. It follows that the probability that P contains
a 13/16-support prime is at least 1 − µ/2. If this holds, then by selecting p ∈ P to maximize
(f − fsparse)

mod p, p is an 5/8-support prime by Corollary 3.4.6. Thus, by the union bound, a
single iteration succeeds with probability at least 1− µ, as desired.

We now analyze the cost of one iteration of the outer for loop. The query cost is Õ(logD)
queries of degree Õ(T log2D). The cost of constructing m primes in (λ..2λ] via GetPrimes is
Õ(m · polylog(λ)) ⊆ Õ(m · polylog(T logD)) bit operations, per Propositon 2.4.8. By the test on
line 20, we have as a loop invariant that #fsparse ≤ 2T .

Chinese remaindering of each set of congruences, per Theorem 2.1.6, costs Õ(logD) bit oper-
ations, for a total of Õ(T logD). Per Remark 3.2.4 the cost of constructing images of g = f−fsparse
is dominated by the cost of querying f , which is Õ(log T + logD) queries of degree Õ(T log2D),
or a bit and R operation cost of Õ(T log3D).

As accounting for all O(log T) iterations does not affect the soft-oh cost, this completes the
proof.

Corollary 3.4.9. IterativeSI(f,D, T) interpolates f given by a length-L SLP, with a Õ(LT log3D)
ring operation cost. If in addition f is over Fq, IterativeSI(f,D, T) costs Õ(LT log3D log q) bit
operations.

3.5 Majority-rule sparse interpolation over finite fields

In this section we present another sparse interpolation algorithm that improves over that of the
previous section, in the case that f is over an integral domain of order exceeding D by some
constant factor. This algorithm appears in [AGR14] for f over a finite field and was joint work
with Mark Giesbrecht and Daniel S. Roche. In the original presentation of this algorithm, we

70

interpolated f in an iterative fashion similar to that of iterative sparse interpolation, whereby
we maintain a sparse polynomial fsparse and attempt to construct terms of the difference g =
f−fsparse. Here we will present a variant of the algorithm that constructs all the terms in a single
batch. This was a strategy we used later in a multivariate interpolation algorithm presented in
Section 5.3.

In IterativeSI, we distinguish terms by their degree reduced modulo p for an appropriate
choice of a prime p. We were unable to naively apply the diversification technique of Giesbrecht
and Roche because we choose a prime p that is not necessarily a good prime for g. In the
algorithm we will present in this section, we use a generalization of diversification in order to
probabilistically distinguish not only images of distinct terms of f , but also images of collisions
of terms of f that appear in a set of ℓ queries fmod pi for primes pi ∈ O(T logD). This notion
of diversification will allow us to collect terms belonging to the images fi according to their
preimage, by collecting terms with like coefficients. In this way we can identify a pair of terms τ
of fi and τ ′ of fj as being images of the same term of f , or the same sum of terms of f .

Every image will “vote” on whether such a collection corresponds to a single term of f , or
a collision. Essentially fi votes for a collection if it has a term belonging to that collection. We
will construct terms for every collection of size at least ℓ/2, i.e., those collections for which at
least half of terms of f vote in favour of. As such, we will call our algorithm majority-rule sparse
interpolation.

3.5.1 Selecting a set of primes of f

For the purposes of Section 3.5.1 it suffices to consider f ∈ R[x]. We first aim to construct a
list of distinct primes (pi)1≤i≤ℓ and corresponding images fi = f mod pi such that the following
conditions hold:

(3.5.i) Every term of f appears as a singleton in over half of the images f mod pi .

(3.5.ii) Any half of the primes pi have a product exceeding D.

We will only guarantee (3.5.i) probabilistically. If either (3.5.i) or (3.5.ii) hold, given that any
two terms differ by degree at most D, any fixed sum of two or more terms of f must occur in
fewer than half of the images fi. If both hold, then for any term τ = cxe ∈ f , the images fmod pi

for which τ is a singleton will give us e mod pi, and these congruences will be sufficient in order
to reconstruct the exponent e. In order to construct such a set of primes we use the following
lemma:

Lemma 3.5.1. Let f(x) ∈ R[x] be T -sparse with degree at most D ≥ 1, τ a fixed term of f , and
Z ∋ λ ≥ max(21, ⌈(T − 1)µ−1 lnD⌉). Then for a prime chosen uniformly at random from (λ..2λ], τ
is in a collision modulo (xp − 1) with probability at most 1− µ.

71

Proof. Write f =
∑t

i=1 cix
ei and suppose τ is the ith term cix

ei . Let B ⊂ P(λ..2λ] be the set of bad
primes p in (λ, 2λ] for which τ collides in the image fmod p. If τ collides with the jth term cjx

ej

in fmod p, j ̸= i ∈ [t], then p divides ei − ej , and

λ#B <
∏
p∈B

p ≤
t∏

j=1
j ̸=i

|ei − ej | ≤ DT−1.

Thus, if B is nonempty, #B < (T − 1) lnD ln−1 λ. By Lemma 2.4.4, the number of primes in
(λ..2λ] is at least 3

5λ ln
−1 λ, and so

#B
#P(λ,2λ]

≤ (T − 1) lnD ln−1 λ
3
5λ ln

−1 λ
≤ 5(T − 1) lnD

3λ
= µ.

Corollary 3.5.2. Let f be as in Lemma 3.5.1. Suppose λ ∈ Z, λ ≥ max(21, ⌈203 (T − 1) lnD⌉), and

ℓ ≥ min
(
8 ln(Tµ−1), #P(λ..2λ]

)
.

Then for ℓ distinct primes p1, . . . , pℓ chosen independently and uniformly at random from P(λ..2λ],
every term τ of f collides in fewer than half of the images f mod pi , i ∈ [ℓ], with probability at least
1− µ.

Proof. By Lemma 3.5.1, τ collides in an image fmod pi with probability less than 1/4. In the case
that ℓ = #P(λ..2λ], every term τ of f will necessarily collide in fewer than 1/4 of the images fi.

Consider the case then that ℓ < #P(λ..2λ]. Fix a term τ of f , and let Xi be the indicator
variable that τ collides modulo (xpi − 1). Observe that the random variables Xi, i ∈ [ℓ] are
negatively correlated, and that E[Xi] < 1/4. It follows from Hoeffding’s inequality (Thm. 2.3.4)
that

Pr

[
ℓ∑

i=1

Xi ≤ ℓ/2

]
≤ exp(−ℓ/8) ≤ T−1µ.

Taking the union bound over the T terms of f completes the proof.

3.5.2 Generalized diversification

Here we now suppose f ∈ Fq[x]. Once we have generated a list of primes (p1, . . . , pℓ) satisfying
properties (3.5.i) and (3.5.ii), and their corresponding images fi = fmod pi , i ∈ [ℓ], the remaining

72

challenge is to collect terms amongst the images fi according to their preimage. In order to
accomplish this, we will construct ℓm images of the form

fij = f(αjx)
mod pi , i ∈ [ℓ], j ∈ [m],

where αj is chosen from a sufficiently large field extension Fq. Any term of an image fi is an
image of either a single term of f or a sum of multiple terms of f . To analyze our situation,
consider the bivariate polynomials

f(yx) mod (xpi − 1) = σi,0 + σi,1x+ · · ·+ σi,pi−1x
pi−1,

where each σi,u ∈ R[y] is the sum of terms of f(y) with degrees congruent to u (mod p). Each
σi,u has between 0 and T terms and degree at most D in y. The nonzero σi,u(x) are precisely the
singletons and collisions of f under the reductions modulo (xpi−1), i ∈ [ℓ]. For a choice of α ∈ R,
computing f(αx)mod pi gives a univariate polynomial whose coefficient of degree u is σi,u(α). If a
term τ of f is a singleton modulo (xpi − 1), then τ(y) = σi,u(y) for some u. If τ is also a singleton
modulo (xpk − 1), then there exists some v such that σi,u = σk,v. Obviously, for any α ∈ R, we
then have σi,u(α) = σk,v(α).

One problem is that we may have σi,u(α) = σk,v(α), but σi,u ̸= σk,v. That is, we have
that f(αx) mod pi and f(αx) mod pk have terms sharing the same coefficient but with different
preimages. We call this event a deception, since it may fool our algorithm into constructing a
deceptive term that is not a term of f . If αj is such that σi,u(αj) ̸= σk,v(αj), then αj distinguishes
the pair σi,u, σk,v as having distinct preimages.

Definition 3.5.3. Let Φ1, . . . ,Φℓ : R[x] 7→ R[x] be sparsity-preserving maps. We say α1, . . . , αm

is a diversifying set for f with images fi = Φi(f), i ∈ [ℓ], if, for any pair of nonzero terms
τ1 = c1x

e1 ∈ fi and τ2 = ce22 ∈ fj with respective preimages σ1 ̸= σ2, then there exists k ∈ [m], such
that of σ1(αk) ̸= σ2(αk).

In other words, if α1, . . . , αm form a diversifying set for f with queries f mod pi , i ∈ [ℓ], then
we can collect terms from the images f mod pi according to their preimages. We assign to the
degree-e term of f mod pi the key ce ∈ Rm, where ce,j is the coefficient of the degree-(e mod p)
term of f(αj)

mod pi for j ∈ [m]. We do this for every such term that gives a nonzero key. We then
merely collect terms according to their keys.

A minor technicality is that a diversifying set does not need to distinguish a collision of terms
from zero. Namely, we do not require that a particular preimage σ is such that σ(αj) ̸= 0 for
some j ∈ [m]. This is because we our algorithm does not need to use information coming from
any non-singleton (formal) term τ that occurs in a query of f . If cxd ∈ fi is a singleton term,
then the degree-d term of fij is a singleton for j ∈ [n]. We thus need only consider exponents
that appear in the support of fi and each fij , j ∈ [m].

73

Another way to describe a diversifying set is in terms of vector polynomials. We construct
images. Namely, if we define the images of vector polynomials

f(x) = (f(α1x), f(α2x), . . . , f(αm(x))) =
t∑

i=1

cix
ei ∈ Rm[x], (3.4)

f i(x) = f(x)
mod pi = (f(α1x)

mod pi , f(α2x)
mod pi , . . . , f(αmx)

mod pi), i ∈ [ℓ] (3.5)

then α1, . . . , αm is a diversifying set for f with f1, . . . , fℓ if and only if any two nonzero terms
from among the f1, . . . ,f ℓ sharing the same (vector) coefficient also share the same preimage.
We probabilistically construct a diversifying set according to the following Lemma.

Lemma 3.5.4. Let f ∈ R[x] be a polynomial of degree at most D and at most T ≥ 1 nonzero terms,
f1, . . . , fℓ images of f under sparsity-preserving maps Φ1, . . . ,Φℓ. Furthermore, let S ⊂ R be a finite
regular-difference set with #S ≥ (1 + ϵ)D, where ϵ > 0 is a constant, and

m =

⌈
log
(
1
2T

2(1 + ℓ/2)2µ−1
)

log ρ

⌉
. (3.6)

Choose α1, . . . , αm independently and uniformly at random from S. Then, with probability at least
1− µ, {α1, . . . , αm} forms a diversifying set for f with f1, . . . , fℓ.

Proof. Consider a pair of nonzero preimages σi,u ̸= σk,v ∈ R[x] as above. As σi,u − σk,v has
degree at most D, by the DLSZ Lemma (Thm. 2.5.7), for α ⊂ S chosen uniformly at random,
(σi,u − σk,v)(α) = 0 with probabilty at most 1

ρ . Thus the probability that none of α1, . . . , αm

distinguishes a fixed pair σi,u and σk,v is at most

ρ−m ≤ µ
1
2T

2(1 + ℓ/2)2
. (3.7)

Each nonzero preimage of a formal term in f1, . . . , fℓ is either one of the at most T singletons
or the at most 1

2Tℓ collisions of terms. It follows that there are in total fewer than T (1 + 1
2ℓ)

distinct singletons and collisions of f that occur as a preimage in any of the fi. From (3.7) we
complete the proof taking the union bound over the at most 1

2T
2(1 + 1

2ℓ)
2 unordered pairs of

distinct nonzero preimages.

It is important to note that m (3.6) is logarithmic in T and ℓ. This implies that a multiplicative
factor of m will not affect the soft-oh cost of our Ω̃(ℓ) interpolation algorithm. In the case where
R = Fq we have the following corollary.

Corollary 3.5.5. Let q be a prime power, u = ⌈logq(2D)⌉. Then Lemma 3.5.4 holds with S = Fqu .

74

Example 3.5.6. Suppose f = 2x31 + 233 + 7x110 + 7x161 ∈ F23[x]. Choose (p1, p2, p3, p4, p5) =
(5, 7, 11, 13, 17). If we align terms from f1, . . . , f5 in columns according to their preimage, we get

2x31 2x33 7x110 7x161 σ1 σ2 σ3

f1 = f mod 5 = 2x3 + 7x0 + 9x1 +
f2 = f mod 7 = 2x3 + 7x0 + 9x5

f3 = f mod 11 = 2x9 + 7x7 + 9x0

f4 = f mod 13 = 2x7 + 7x6 + 9x5 +
f5 = f mod 17 = 2x14 + 2x16 + 14x8

(3.8)

where columns are labelled by the corresponding preimage, and

σ1 = 2x31 + 7x110, σ2 = 2x33 + 7x161, σ3 = 7x110 + 7x161.

Note, we cannot distinguish the preimages of 2x31 with those of 2x33. Nor can we distinguish images
of 7x110 with those of 7x161 or images of σ1 with those of σ2.

However, if we choose α1 = 22, and construct the images fi1 = f(α1x) mod (xp − 1), we get

2x31 2x33 7x110 7x161 σ1 σ2 σ3

f11 = f(22x) mod 5 = 21x3 + 7x0 + 14x1 +
f21 = f(22x) mod 7 = 21x3 + 16x0 + 5x5

f31 = f(22x) mod 11 = 21x9 + 16x7 + 5x0

f41 = f(22x) mod 13 = 21x7 + 7x6 + 14x5 +
f51 = f(22x) mod 17 = 21x14 + 21x16 + 0x8

Now we can distinguish between the preimages of 7x110 and 7x161, and those of ψ1 and ψ2, but not
of 2x31 and 2x33. If we choose α2 = 9, we get

2x31 2x33 7x110 7x161 σ1 σ2 σ3

f12 = f(9x) mod 5 = 2x3 + 7x0 + 9x1 +
f22 = f(9x) mod 7 = 4x3 + 5x0 + 9x5

f32 = f(9x) mod 11 = 4x9 + 5x7 + 9x0

f42 = f(9x) mod 13 = 2x7 + 7x6 + 9x5 +
f52 = f(9x) mod 17 = 4x14 + 2x16 + 12x8

Now we know that the terms of f1, f4, and f5 of respective degrees 3, 7, and 16 do not share the same
preimages as the terms of of f2, f3, and f5 of respective degrees 3, 9, and 14.

By inspection of the coefficients of the images fij , i ∈ [2], j ∈ [5], we can separate the terms of
f1, . . . , f5 into their respective columns as in (3.8). That is, {22, 9} forms a diversifying set for f
with f1, . . . , f5.

75

We should note that if, for a constructed set of images {fij : i ∈ [ℓ], j ∈ [m]}, the degree-d1
term of f1j has the same coefficient as the degree-d2 term of f2j for all j ∈ [m], that the terms
may not necessarily have the same preimage, albeit with controlled probability.

3.5.3 Collecting images of terms

After we construct the images fij , we will build a dictionary that will allow us to collect terms
from the images fi according to their preimage. The images fij , j ∈ [m], give the vectorized
functions f i (3.5), which we can write as

f i(x) =

ti∑
k=1

cikx
eik ,

where ti ≤ t = #f , cik = (cik1, . . . , cikm) ∈ Fm
qs , and cikj is the coefficient of the degree-eik term

of fij .

We use the vector coefficients cik in order to identify images of the same singletons or colli-
sions of f . These coefficients will act as keys in a dictionary. The value associated with a key c
will be a list of exponent-prime pairs (d, i) for every term cxd occuring in an image f i, i ∈ [ℓ].
Provided the probabilistic steps described in Sections 3.5.1 and 3.5.2 succeed, the keys whose
value is a list of length at least ℓ/2 correspond exactly to the nonzero terms of f .

After we have constructed the dictionary of terms, we iterate through its keys. For every key
c that gives a set of at least ℓ/2 congruences indexed by Ic ⊂ [ℓ],

{e ≡ di (mod p) : i ∈ Ic},

we construct an exponent e ∈ [0..D] by way of Chinese remaindering on this system of congru-
ences. This identifies every exponent with high probability. The coefficient c corresponding to an
exponent e can be obtained from the degree-(e mod pi) term in fi for some i ∈ Ic.

Theorem 3.5.7. Algorithm 10 interpolates f ∈ Fq[x] with probability at least 2/3. It admits a cost
of Õ(logD log T) Fqs-shifted queries of degree O(T logD).

Proof. We first show correctness. In each iteration of the outer while loop, the only probabilistic
steps are the selection of the primes p1, . . . , pℓ and the α1, . . . , αm. The call to procedure Get-
Primes(λ, n; 1/12) produces a set of either n primes or all the primes in (λ, 2λ] with probability at
least 11/12. By Corollary 3.5.2, the primes p1, . . . , pℓ satisfy (3.5.i) with probability at least 11/12.
By setting λ ≥ 10

3 lnD, we have that (λ..2λ] contains at least 2 logλD primes per Corollary 2.4.5,
such that, as n ≥ 2 logλD, any n/2 primes from P(λ..2λ] will have a product exceeding D, such
that p1, . . . , pℓ will satisfy (3.5.ii).

76

Algorithm 10: Majority-rule sparse interpolation of a straight-line program
Input: An extended black-box polynomial f ∈ Fq[x]; D ≥ deg(f); T ≥ #f .
Output: With probability at least 2/3, a sparse representation of f

// Make random choices

1 λ← ⌈max(21, 5
3(T − 1) lnD, 10

3 lnD)⌉;
2 if κ ∈ (λ..2λ] then λ← 2λ;
3 n← ⌈max(8 ln(12T), 2 lnD ln−1 λ)⌉;
4 p1, . . . , pℓ ← GetPrimes(λ, n; 1/12);
5 m← ⌈log

(
1
2T

2(1 + ℓ/2)2
)
⌉;

6 s← ⌈logqD⌉;
7 Choose α1, . . . , αm ∈ Fqs independently and uniformly at random;

// Construct images

8 for i← 1 to ℓ do
9 fi ← f mod pi;

10 for j ← 1 to m do fij ← f(αjx)
mod pi;

11 f i = (fi1, . . . , fim) ∈ Fm
qs [x];

// Collect terms from images and build sparse polynomial

12 g ← 0 ∈ Fqs [x], a sparse polynomial;
13 for every nonzero coefficient c appearing in a term cxdi in an image f i, i ∈ [ℓ] do
14 Ic ← {i ∈ [ℓ] : f i has a term cxdi};
15 if #Ic < ℓ/2 then continue;
16 e← solution in [0..D] to congruences {e ≡ (di mod pi) : i ∈ Ic};
17 c← coefficient of degree-e term of fi for any i ∈ Ic;
18 g ← g + cxe;

19 return g;

By Lemma 3.5.4, {α1, . . . , αm} forms a diversifying set for f with f1, . . . , fℓ with probability
at least 5/6. By the union bound this guarantees the the algorithm succeeds with probability at
least 2/3.

We now consider the cost. The probe cost is clearly as stated. By Proposition 2.4.8, the cost
of the call to GetPrimes(λ, n; 1

12) costs Õ(n ·polylog(λ)) ⊆ Õ(n ·polylog(T logD)) bit operations.
The cost of constructing the at most T exponents via Chinese remaindering is, per Theorem 2.1.6,
Õ(T logD) bit operations. These costs are dominated by the cost of the queries.

Per the generalized DLSZ Lemma (Theorem 2.5.7), we can further generalize our algorithm

77

to any ring R containing a regular-difference set of cardinality at least (1 + ϵ)D for some positive
constant ϵ. This requires #R ∈ Ω(D), such that R-operations will cost Ω(logD). Thus the number
of bit operations required by Algorithm 10 will be at least Ω̃(T log3D). In case that f is given by
an SLP Γ, we have the following.

Corollary 3.5.8. Algorithm 10 costs Õ(LT log2D) R-operations in the case that f is given by a
length-L straight-line program. If, in addition, f is over Fq, Algorithm 10 costs Õ(LT log2D(logD+
log q)) bit operations.

3.6 Estimating degree and sparsity bounds on the interpolant

The interpolation algorithms presented in this chapter all require prior knowledge of bounds on
the degree and sparsity of polynomial computed by the input straight-line program. This is a
somewhat artifical constraint. In practise, one may need to efficiently derive such bounds.

For an n-variate polynomial f computed by a straight-line program Γf of length L, the total
degree of f is at most 2L; each instruction can double the total degree. We can construct tighter
bounds, in time faster than the resulting sparse interpolation procedure should take. Recall that
the straight-line program, encoded as a sequential list of instructions, gives a directed acyclic
graph (representation) representation as an adjacency list, whereby we store the in-neighbours
of the ith instruction. Variables and ring constants have no in-neighbours, and are represented
as entries in the adjacency lists of their out-neighbours. This encoding is topologically sorted. A
slightly better bound on deg(f) is 2K , where K is the length of the longest path in the DAG.

A yet better method is to simply sequentially assign upper bounds Dj(βi) ≥ degxj
(βi) for

all j ∈ [n] and increasing i from 1 to L. The partial degree, with respect to some variable x,
of an addition instruction will be the maximum of the bounds on those partial degrees of the
inputs. For multiplication instructions it will be merely be the sum of the bounds on the inputs.
Constructing a bound for the i-th instruction will be linear in the size of the resulting bound. The
result βi of the ith instruction Γi can have total degree at most 2i, such that constructing these
bounds for the ith instruction costs Õ(i+n). Thus the integer arithmetic cost of such an approach
over L instructions is thus at most Õ(L2 + Ln) bit operations. We summarize as follows:

Lemma 3.6.1. Given a length-L SLP computing f ∈ R[x1, . . . , xn], Algorithm 11 produces partial
degree bounds Dj ≥ degxj

(f) for j ∈ [n]. Its cost is Õ(L2 + Ln) bit operations.

If we are not given a priori bounds on the sparsity of an extended black-box f ∈ Fq[x], we
can construct shifted queries of f in order to probabilistically estimate its sparsity. Algorithm 12
gives pseudocode for our approach, which we describe and analyze here. We employ repeated
doubling, i.e., we choose a guess T̃ for T ≥ #f , test whether f is probably T̃ -sparse. If not, we

78

Algorithm 11: Determing partial degree bounds for an SLP
Input: Γ, an SLP computing f ∈ R[x1, . . . , xn], with L instructions of the form

Γi : βi ← γi1 ⋆ γi2.
Output: Bounds Dj ≥ degxj

(f), for j ∈ [n].

1 for i← 1 to L do
2 for k ∈ {1, 2} do
3 if γik ∈ R ∪ {x1, . . . , xn} then
4 for j ← 1 to n do Dj ← degxj

(γik);

5 if Γi is of the form βi ← γi1 ± γi2 then
6 for j ← 1 to n do Dj(βi)← max(Dj(γi1),Dj(γi2)));

7 else if Γi is of the form βi ← γi1 × γi2 then
8 for j ← 1 to n do Dj(βi)← Dj(γi1) +Dj(γi2);

9 return {Dj = Dj(βL) : j ∈ [n]};

double T̃ and repeat. We choose p ∈ Õ(T̃ logD) to be a 1/2-support prime for a fixed 2T̃ -sparse
polynomial g with degree probability at least 1− µ.

Suppose that f has at least 2T̃ terms, and let g ∈ Fq[x] be comprised of the first 2T̃ terms
of f . We further suppose that p is an 1/2-support prime for g. In that case, g contains at least
T̃ singletons modulo (xp − 1) and either at least an additional singleton or collision of terms
modulo (xp − 1), such that #(supp(f) mod p) > T̃ . By setting s = ⌈logq(2D)⌉ and choosing
α ∈ Fqs at random, we guarantee for a fixed formal term τ = cxe ∈ fmod p, with a nonzero
preimage, that e ∈ supp(f(αx)mod p), with probability at least 1/2 by the DLSZ Lemma. Thus if
we set m = ⌈log(p/µ)⌉ and choose α1, . . . , αm ∈ Fqs independently and uniformly at random, we
guarantee with probability 1− µ that for any formal term cxe ∈ fmod p with a nonzero preimage
there exists j ∈ [m] such that f(αjx)

mod p has a nonzero term of degree e, regardless of f .

In summation, if these probabilistic steps succeed, then if f has at least 2T̃ terms, then the
vector function

(fmod p)(αx)
def
= (f(α1x)

mod p, . . . , f(αmx)
mod p) ∈ Fqs [x],

has #f(αx)mod p > T̃ . Thus in this case we double T̃ and repeat this approach, otherwise we
probabilistically guarantee #f(αx) ≤ T = 2T̃ . Given that t = #f ≤ D + 1, this will entail
at most log(D + 1) + 1 iterations. Thus, if each iteration succeeds with probability 1/µ, where

79

Algorithm 12: Sparsity Estimation of an SLP over Fq

Input: An extended black-box polynomial f ̸= 0 ∈ Fq; D ≥ deg(f).
Output: With probability at least 2/3, returns T̃ ≥ #supp.

1 T̃ ← 1;
2 µ← ⌊log(D + 1) + 1⌋;
3 s← ⌈logqD⌉;
4 while true do
5 λ← ⌈max(21, 1603 T̃ lnD/µ)⌉;
6 p← GetPrime(λ;µ/3);
7 m← log(3p/µ);
8 Choose α ∈ Fm

qs uniformly at random;
9 if #f(αx)mod p > T̃ then return T = 2T̃ ;

10 else T̃ ← 2T̃ ;

µ = 3⌊log(D + 1) + 1⌋, the algorithm will succeed with probability at least 1/3 Moreover, an
iteration will necessarily terminate if T̃ ≥ #f , such that we never output T ≥ 2t.

Each iteration comprises three probabilistic parts: the success of the subroutine call to Get-
Prime; the event that p is a 1/2-support prime; the selection of α1, . . . , αm. Per techiques similarly
seen throughout the chapter, we leave it to the reader to verify that each succeeds with probability
at least µ/3.

The cost in the ith iteration is dominated by the query cost. Each iteration entails m Fqs-
shifted queries of degree Õ(T̃ logD/µ). Per the assumptions of Remark 3.2.4, this admits a Fqs

operation cost of Õ(mT logD) ⊂ Õ(T logD), as m is polylogarithmic in T logD. Accounting
for all O(logD) iterations, as well as the cost of finite field arithmetic, gives a total bit cost of
Õ(T log2D(logD + log q)).

Theorem 3.6.2. Algorithm 12 takes an extended black box polynomial f ̸= 0 ∈ Fq[x] and D ≥
deg(f), and with probability at least 2/3, produces T ∈ [t..2t], where t = #f . Otherwise the
algorithm produces T < t.

Its cost is Õ(T logD) Fqs-shifted queries, where s = ⌈logq(2D)⌉.

This cost equals that of majority-rule interpolation. In particular, when f is given by an SLP,
we have the following:

Corollary 3.6.3. For f ∈ Fq[x] given by a length-L SLP, Algorithm 12 admits a bit operation cost of
Õ(LT log2D(logD + log q)).

80

3.7 Conclusions and open questions

In this section we gave two algorithms, iterative and majority-rule interpolation, for interpolating
a T -sparse extended black-box polynomial with degree at most D. Both have cost softly linear in
the sparsity bound T , and cubic in logD, with a logD factor being absorbed by the cost of ring
arithmetic in the case of majority-rule interpolation.

The algorithms are both small primes interpolation algorithms, in that one reconstructs the
exponents via Chinese remaindering on a set of primes polylogarithmic in D. They both use
a set of Õ(logD log T) modular images belonging to a R-vector space of cardinality as large
as Ω̃(T log2D), i.e. either R[x]mod pq or Fqs [x]

mod p, where p ∈ Ω̃(T logD), q ∈ Ω̃(logD), and
s = ⌈logq(2D)⌉. It appears we need a set of this size in order to accomplish two tasks: uniquely
map most of the terms of f (or a difference f − fsparse for a sparse polynomial fsparse) to terms of
significantly smaller degree; and map terms in a manner that we can identify most or all resulting
terms in images according to their preimage. In iterative interpolation, we accomplish both of
these tasks by introducing a factor p into the degree of every query for a 5/8-support prime p.
In majority-rule interpolation, we accomplish the former by choosing a set of small primes as
exponent moduli, and the latter via generalized divesification.

3.7.1 Extensions to other models

All the algorithms here extend to Laurent polynomials. E.g., given an extended black-box polyno-
mial f ∈ R[x±1] with absdeg(f) ≤ D, we can interpolate the polynomial xDf ∈ R[x] with degree
at most 2D, from which we can recover f with no additional polynomial cost factor. That is,

Proposition 3.7.1. The algorithms of Chapter 3 extend to Laurent polynomials f with absdeg(f) ≤
D, at the same costs as is stated. In particular, Algorithms 6–8, 10–11, and procedure IterativeSI
may be adapted to interpolate f ∈ R[x±1], and Algorithms 9, 10, and 12 can be adapted to f ∈
Fq[x

±1].

As the interpolation algorithms of the chapter construct exponents by way of Chinese remain-
dering, we could also merely find solutions to congruences in the range [−D..D], for sufficiently
many primes p.

The algorithms herein also may be adapted to algebraic black boxes (Defn. 1.4.2). Recall
that an algebraic black box for f ∈ Z[x±1] is a slightly weaker version of an extended black
box, allowing for evaluation of f over any algebraic extension of Z. Here, if p = char(Z) is the
characteristic of Z, then we cannot query f to yield fmod mp for m ∈ Z>0, as (xpm − 1) factors
into (xm − 1)p. For the purposes of our algorithms, it then suffices that we merely choose query
degrees not divisible by p. E.g., if our algorithm were to select primes from (λ..2λ] ∋ p, we merely

81

double λ. If our algorithm were to construct the first ℓ primes, we instead have it construct the
first 2ℓ primes.

Proposition 3.7.2. The algorithms of Chapter 3 may be adapted to f ∈ Z[x±1] (or f ∈ Fq[x
±1] for

those as stated in Prop. 3.7.1) given by an algebraic black box, with no additional cost.

Another problem to explore is whether small primes interpolation translates well to black-box
numerical models, e.g., in the case that the coefficient ring is C. In this setting, a black box may
serve as an extended black box. One can construct f(αx) mod p given by an algebraic or extended
black box for f ∈ C[x] by evaluating it at the points α · exp(2πij/p), j ∈ [p], and interpolating the
result via a prime-length FFT, e.g., Rader’s FFT [Rad68] or Bluestein’s FFT [Blu70]. In order to
obtain a robust numerical interpolation analog to IterativeSI or Algorithm 10, one would need a
careful analysis of the numerical stability of such an approach.

Giesbrecht and Roche give a numerical version of their diversified interpolation algorithm in
[GR11]. In order to collect terms according to preimage via coefficients, one requires that the
coefficients of f(αx) are more than machine precision from each other. They achieve this by
choosing α to be a random root of unity for a fixed choice of p. They also require that all the
coefficients of f each are sufficiently far from zero. In the case of generalized diversity, we would
need to construct a set of complex α, such that any pair of colliding sums of terms, i.e., preimages,
disagree for some α. This problem reduces to finding a set V ⊂ C such that for an unknown set
P of unknown T -sparse polynomials of degree at most D, for every σ ∈ P there exists α ∈ V
such that σ(α) is bounded distance away from zero. This is the numerical version of Zippel’s zero
avoidance problem.

3.7.2 Open problems

We mention some open problems we have not deeply explored. First, we ask whether one can
break the soft-oh T log3D barrier, i.e.:

Problem 3.7.3. Given a length-L SLP Γf computing f ∈ R[x] with boundsD ≥ deg(f) and T ≥ #f ,
can we interpolate f with a bit and ring operation cost that is õ(LT log3D).

A related problem is to construct lower bounds for the cost of this interpolation problem.
How to solve this problem is unclear to us. As our techniques heavily rely on the construction of
modular images of f , a good first problem to solve would be to show that for any set of polynomial
moduli m1, . . . ,ms ∈ R[x], there exists a sparse polynomial f that is zero modulo some or all of
those images. This problem is closely tied to the sparse multiple problem: given a polynomial
m(x) ∈ R[y] and bounds D and T , does there exist T -sparse f ∈ R[x] that is a multiple of m(x)?
This is an interesting and nontrivial problem in its own right.

82

Another related problem is whether we can do sparse polynomial identity testing in sub-
quadratic time, i.e.:

Problem 3.7.4. Given a length-L SLP Γf computing f ∈ R[x], with bounds D ≥ deg(f) and
T ≥ #f , can we test if f = 0 with a bit and ring operation cost that is õ(LT 2 log2D)?

If we could reduce this cost to linear in T , the Monte Carlo interpolation algorithms we
presented could be made Las Vegas.

83

Chapter 4

Output-sensitive algorithms for sumset
and sparse polynomial multiplication

4.1 Introduction

In this chapter we use some of the techniques from univariate sparse interpolation in order to
obtain an asymptotically fast Monte Carlo algorithm for the multiplication of sparse univariate
polynomials f, g ∈ Z[x] with integer coefficients. The algorithm is joint work with Daniel S. Roche
and appears in [AR15]. A challenge of this problem is that the number of terms, and the size of
the coefficients may vary greatly. For example,

(x8 + x7 + x5 + x4 + x3 + x+ 1)(x7 + x6 + x5 + x2 + x+ 1) =

x15+2x14+2x13+2x12+2x11+4x10+4x9+4x8+4x7+4x6+4x5+2x4+2x3+2x2+2x+1,

whereas

(x8 − x7 + x5 − x4 + x3 − x+ 1)(x7 + x6 + x5 − x2 − x− 1) = x15 − 1. (4.1)

We present a multiplication algorithm that is sensitive to the number of terms in the output. As
a subroutine, we give a Monte Carlo algorithm for computing the sumset (also known as the
Minkowski sum) of two finite sets of integer vectors A,B ⊂ Zn, defined by

A⊕ B def
= {a+ b : a ∈ A, b ∈ B},

where a+ b is the componentwise sum. The runtime of our multiplication algorithm depends on
the cardinality of the sumset of the supports of the inputs. We define the possible support as

poss(f, g)
def
= supp(f)⊕ supp(g),

84

and remark that this contains supp(fg) as a subset. Throughout this chapter, we will let h = fg,
and use the following bounds.

C = max (∥f∥∞, ∥g∥∞) , D = deg(fg),

S = #poss(f, g), T = #f +#g +#h,

Tin = #f +#g, Th = #h.

We note that given inputs f and g, the parameters S and T are not immediate. As we saw in
the example above they may vary for inputs with fixed degrees and a fixed number of terms. We
state our results.

Theorem 4.1.1. LetA,B ⊂ [0..D] be finite sets and let S = #(A⊕B). Then Sumset(A,B) computes
A⊕ B with probability at least 2/3 and a bit operation cost of Õ(S logD).

For the purposes of sparse polynomial multiplication, we will take A = supp(f) and B =
supp(g).

Theorem 4.1.2. SparseMultiply(f, g), computes a sparse representation of fg, with probability at
least 2/3 and a bit operation cost of

Õ(S logD + T logC).

Both Sumset and SparseMultiply trivially extend to the n-dimensional case via Kronecker
substitution. For those cases we replace the logD factors appearing in Theorems 4.1.1 and 4.1.2
with n logD.

We also give an analysis of the Las Vegas sparse multiplication algorithm of Cole and Har-
iharan and show that their algorithm can be easily modified to compute a product with cost
Õ(S(logC + logD)).

4.1.1 Context

As we have mentioned, the number of terms in the product fg may vary. We state some rudimen-
tary bounds for the size of a sumset and the sparsity of a product.

Lemma 4.1.3. Let A,B ⊂ Z be finite, and f, g ∈ Z[x] be nonzero polynomials, with at least one
having more than one term. Then the following hold.

#A+#B − 1 ≤ #(A⊕ B) ≤ (#A)(#B),
2 ≤ #fg ≤ (#f)(#g).

(4.2)

85

From this Lemma, we have that

Õ(Tin) ⊆ Õ(S) ⊆ Õ(T 2
in), Õ(Th) ⊆ Õ(T 2

in). (4.3)

In an extreme case, we may have that (#f)(#g) ∈ Ω(T 2), e.g., if #h ≤ #f +#g.

A naive lower bound for the runtime of any algorithm for sparse multiplication or sumset is
softly linear in the respective problem size: the combined bit size of the problem’s inputs and
outputs. If we suppose that f, g, and h = fg are all encoded by their sparse representations and
satisfying:

(4.1.i) the same number of bits are used to represent every nonzero coefficient; and

(4.1.ii) the same number of bits are used to represent every partial exponent;

then the total bit size of the inputs and outputs for the multiplication problem is

Õ(T (logD + logC)). (4.4)

This follows from the fact that the coefficients of h are less than TC2, and so theO(T) coefficients
of h require at most O(T log(TC2)) ⊂ Õ(T logC) bits.

As the S logD term in the cost stated in Theorem 4.1.2 has hidden polylog(logC) factors, the
runtime of the multiplication algorithm exceeds the problem size by an additive factor Õ((S −
T) logD · polylog(logC)).

Similarly, if we suppose that the same number of bits is used to represent every component
of every vector v in A,B, or A ⊕ B, then the combined bit size of the inputs and outputs to the
sumset problem is Õ(S logD). In that sense we achieve an optimal algorithm.

There may be instances where, if we relax the assumptions (4.1.i) and (4.1.ii), we may achieve
smaller problem sizes. We list a few such cases:

• If most terms of f, g, and h have relatively small coefficients, and the remaining terms have
coefficients that, in comparison, are exponential in magnitude; or similarly we could have
that a small proportion of terms have degree that is exponential in comparison to that of
the rest.

• Multivariate cases where the exponents of h ∈ Z[x] may be better served using sparse
exponents. Consider the case such that f ∈ Z[x1, . . . , xn] is the sum of monomials of total
degree 3, and h = f2. Then h would be comprised of all monomials of total degree 6. In
our sparse representation we would represent the term x31x

3
2 of h as (1, (3, 3, 0, 0, . . . , 0)),

where the exponent has length-n. In this case perhaps a more natural encoding would be
(1, ((3, 1), (3, 2))).

86

• If the height of the product is considerably smaller than the height of the inputs. For
instance, if we let Φn(x) ∈ Z[x] denote the nth cyclotomic polynomial, i.e., the minimal
polynomial of the complex primitive nth roots of unity, then Φn divides (xn − 1). However,
Erdös proved that the heights of Φn can grow arbitrarily large [Erd46]. In particular, he
showed ∥Φn∥∞ is not bounded by a polynomial in n.

We do not consider further potential speedup in these “unbalanced” instances.

We further preface our results by noting that for an overwhelming majority of conceivable
inputs, either a dense multiplication algorithm or the grade-school method of sparse polynomial
multiplication is softly optimal. If the number of terms in h is asymptotically quadratic in the
number of terms of f and g, then the grade-school method will compute the product in softly
linear time, under the assumption (4.1.i). There are two ways by which the product h can
have subquadratic terms. First, we can have the case that the possible support poss(f, g) =
supp(f) ⊕ supp(g) has cardinality subquadratic in terms of #supp(f) + #supp(g). The easiest
way to construct such an example is if we take f and g to be dense, for which a fast dense
multiplication algorithm is softly linear. Second, we can have coefficient cancellation, whereby
terms with a common exponent sum together to produce zero coefficients. This is the case in the
carefully-constructed example (4.1). For that example we took f = Φ15(x), and g = (x15 − 1)/f .

In “most” cases, there will be little to no coefficient cancellation. To substantiate this, fix a
pair of support sets A,B ⊂ Zn

≥0, and consider the product(∑
a∈A

cax
a

)(∑
b∈B

cbx
b

)
,

where we treat the coefficients ca and cb as indeterminates. This product has support that is
a subset of A ⊕ B regardless of the choice of coefficients. A coefficient cancellation occurs at
exponent e ∈ A ⊕ B if and only if the ca and cb are a solution to the multilinear diophantine
equation

Φe
def
=
∑

(a,b)∈A×B
a+b=e

cacb = 0.

The set of such solutions will be within a hyperplane of ZA⊗B. Thus, for any cv appearing as a
variable in Φe, and fixing the choices of cu, u ∈ A ⊕ B \ {cv}, there will be at most one choice
of cv ∈ Z that gives a coefficient cancellation. Moreover, it is not necessarily the case that an
asympotically significant number of coefficient cancellations will simultaneously occur.

That said, we can construct structured examples whereby the algorithm herein may be ad-
vantageous over either dense or grade-school sparse multiplication. One such example is taking
high powers of a sparse polynomial.

87

Example 4.1.4. Suppose f = x7+3x5y2+y7. Then, for instance, f8 has 42 terms and partial degrees
at most 56, whereas f16 has 98 terms and partial degrees at most 112. Were we to compute f16 as
(f8)2 using a dense multiplication algorithm, the resulting dense representation of f16 would require
storage for (112+1)2 = 12769≫ 98 coefficients. Note, moreover, that (#(f8))2 = 1764≫ 98 terms,
the number of terms in the product is significantly subquadratic.

This example gives a product with subquadratically many terms because the sumset of the
support of f8 with itself is structured in a way that there will exist many pairs of exponents in
supp(f4) whose componentwise sums agree.

If f is t-sparse, then fn may have as many as
(
t+n−1

n

)
distinct terms. If n≫ t, then #(fn)≪

#(f ⌈n/2⌉)#(f ⌊n/2⌋) (
t+ ⌈n/2⌉ − 1

⌈n/2⌉

)(
t+ ⌊n/2⌋ − 1

⌊n/2⌋

)
≫
(
t+ n− 1

n

)
,

so that, the number of terms in the product fn = f ⌈n/2⌉f ⌊n/2⌋ may be significantly subquadratic.
Moreover, if f is sparse and n is not too large, we may expect that fn is not significantly dense,
such that it does not lend itself to dense arithmetic.

Lastly, a softly-linear sparse multiplication algorithm would be a theoretically meaningful re-
sult, and would provide a sparse analogue to dense polynomial multiplication, which can be
made softly-linear under a dense encoding satisfying (4.1.i) via FFT-based methods. The algo-
rithm herein is a meaningful step towards that goal.

4.2 Previous sparse multiplication algorithms

Table 4.1 gives a comparison of univariate multiplication algorithms. The simplest way to mul-
tiply sparse polynomials is by the grade-school method: multiply every term of f with every
term of g. Using dense multiplication over the integers modulo a prime q > 2C+1 gives a cost of
Õ(D logC). To compute a product of terms c1xe1 ·c2xe2 = c1c2x

e1+e2 , we merely need to take the
product of the coefficients and the sums of the exponents. Both of these operations have softly
linear cost. In the worst case we may have (#f)(#g) ∈ Ω(T 2), such that the grade school method
has a worst-case cost of Õ(T 2 logD). We describe a few more sophisticated methods hereafter.

4.2.1 Multiplication via interpolation

One way to compute the product fg is to merely interpolate the product. Given sparse represen-
ations of f, g ∈ R[x], we realize a black box for fg by simply evaluating (fg)(α) as f(α)g(α). A
single term τ = cxe can be evaluated at α in O(logD) ring evaluations by way of the square and
multiply technique. This gives the following lemma.

88

Algorithm Reference Section Soft-oh cost Type1

dense Ch. 8, [VG03] D logC Det
grade school 4.2 T 2(logC + logD) Det
BaseCaseMultiply2 [AGR13] 4.2.2.3 T (logC + logD) log2D MC
Prony (Alg. 14)2 4.2.2 T (logC + logD2) MC
Cole–Hariharan3 [CH02] 4.2.3 S(logC + logD) LV
SparseMultiply [AR15] 4 S logD + T logC MC

Prony (Alg. 13)3 4.2.2.1 Õ(S logD + T (logC + log2D) MC
ProductSparsity 4.4 Õ(Tin logC + S logD) MC

1. MC = Monte Carlo; LV = Las Vegas; Det = Deterministic.
2. BaseCaseMultiply requires a bound Th ≥ #(fg).
3. Additional Õ(log3 D · polylog(T logC)) precomputation cost to find a large prime p ∈ Õ(D + T logC).
4. Additional precomputation cost to find a prime q for which Zq contains a sth root of unity ω, where s > D is
smooth.

Table 4.1: A comparison of sparse multiplication and product sparsity estimation

Lemma 4.2.1. Given sparse representations of f, g ∈ R[x] and α ∈ R, we can compute the evaluation
(fg)(α) in O(Tin logD) ring operations.

We will also use fast multipoint evaluation in Section 4.4, to evaluate fg more efficiently over
a geometric sequence, with fg embedded in an appropriate ring. We do this for the purposes of
efficiently estimating the sparsity of the product.

More generally, we can perform fast multipoint evaluation of a sparse polynomial f =
∑t

i=1 cix
ei

over a field K by way of the transposed Vandermonde product
ω0e1 ω0e2 · · · ω0et

ω1e1 ω1e2 · · · ω1et

...
...

. . .
...

ω(t−1)e1 ω(t−1)e2 · · · ω(t−1)et

c1
c2
...
ct

 =

f(ω0)
f(ω1)

...
f(ωt−1)

 .
By Theorem 2.1.10 and the Transposition Principle (Thm. 2.1.11), we can compute this system in
Õ(t) field operations. We trivially can generalize this to produce s > t evaluations at consecutive
powers of ω by treating f as an s-sparse polynomial with coefficients ci = 0 for i > t. Thus we
have the following Lemma.

Lemma 4.2.2. Given sparse representations of f, g ∈ K[x], and ω ∈ K, we can compute the evalua-
tions h(ωi) where h = fg, s ≥ max(#f,#g), and for i ∈ [0..s), in Õ(s) field operations.

89

4.2.2 Multiplication via “large primes” interpolation

One way to compute the product h is by way of Prony’s algorithm. Such an algorithm would entail
two parts: probabilistically estimating Th = #h, and then interpolating h using an appropriate
root of unity ω of multiplicative order exceeding D.

4.2.2.1 Estimating the sparsity of h = fg

We use Algorithm 5 in order to estimate the sparsity of the product. We can use (#f)(#g) ∈
O(T 2

in) as the initial naive upper bound on #h we provide the algorithm. As the algorithm cost
is at least softly linear in Õ(Tin), we input an initial guess of Tmin = Tin for the sparsity of h.
We will need to embed fg in Zp[x] for a prime p. The algorithm requires that p ≥ 3DT 4

in. We
can find such a prime probabilistically by way of the Miller–Rabin primality test with a cost of
Õ(log3D + log3 Tin) = Õ(log3D) (Lemma 2.4.10). Reducing f and g modulo p potentially costs
Õ(Tin logC).

We note that this approach would produce an estimate for #(h mod p) and not necessarily
f . As the product h has at most T 2

in terms with height at most TinC2, the number of primes
for which a term of f disappears is at most Õ(T 2

in logC), such that by looking for primes p ∈
Õ(D+ Tin logC), we can guarantee that none of the coefficients of h dissappear for a choice of p
with high, constant probability (e.g. 99/100).

In order to find a root of unity ω ∈ Zp of multiplicative order exceeding D, we can discover
a primitive element ω via the algorithm of Lemma 2.4.11 with cost Õ(log3 p). We can alterna-
tively instead run Algorithm 5 for O(log log p) choices of ω ∈ Z∗

p, such that with high constant
probability, at least one of the choices of ω is a primitive element.

The cost of multipoint evaluation for each instance we run Algorithm 5 is then Õ(Tin + Th)
operations modulo p per Lemma 4.2.2. Algorithm 13 describes this approach, albeit without
explicit parameters. We summarize with the following Lemma:

Lemma 4.2.3 (Algorithm 13). There exists an algorithm which, given sparse representations of
f, g ∈ Z[x], produces T̃h ∈ [max(Th + 1, Tin)..max(2Th, Tin)] with probability at least 2/3, and
produces T̃h ≤ Th otherwise. Its cost is Õ(Tin logC + T logD) and an additional Õ(log3D ·
polylog(Tin logC)) bit operations of precomputation.

In Section 4.4, we improve on this approach to avoid the cost of having to construct a large
prime p.

90

Algorithm 13: Prony sparsity estimation for a sparse polynomial product
Input: Sparse polynomials f, g ∈ Z[x].
Output: With high probability, T̃h ≥ max(Tin, Th).
Parameters: C = max(∥f∥1, ∥g∥1); D = deg(fg); Tin = #f +#g.
Precomputation: Choose a prime p ∈ Θ̃(D + Tin logC) via Miller–Rabin

1 repeat O(log log p) times
2 Execute Algorithm 4 on h mod p, with bounds T 2

in ≥ Th, D ≥ deg(h), and initial guess
Tmin = Tin, using fast multipoint evaluation (Lemma 4.2.2) in order to produce
evaluations of h;

3 return maximum output produced by Algorithm 4;

4.2.2.2 Interpolating the product via Prony’s algorithm

Once we have an estimate T̃h, where Tin ≤ T̃h ≤ max(2Th, Tin), we can use Prony’s algorithm to
interpolate h; however, we need to work in a setting where we can do discrete logarithms effi-
ciently. Namely, we choose a prime q such that q− 1 is divisible by a power of two s exceeding D.
Then Zq contains an sth root of unity ωs for which discrete logarithms in base ωs are inexpensive.

Namely, for α = ωe
s, the least significant bit of e is 0 if and only if αs/2 mod q = 1. Then, if we

determine this bit to have value e0, we have that (α/ωe0
s) = (ω2

s)
e′ , the ith least significant bit of

e′ ∈ Z is the (i+ 1)th least significant bit of e for i ≥ 1. We can then learn the least significant bit
of e′ in the same manner, continuing until we have all the bits of e. In this way we can perform
logarithms with cost Õ(log q) operations modulo q, or Õ(log2 q) bit operations. We can generalize
this technique for q such that q − 1 has a large smooth divisor s > D.

If we choose q ∈ Ω̃(D + T̃h logC), then we can guarantee with high constant probability that
none of the coefficients of h disappear modulo q, such that supp(h mod q) = supp(h). As we
will show in Section 4.5, the coefficients can then be obtained with cost Õ(T (logC + logD)), via
SparseProductCoeffs, which combines ideas from Prony’s method and Chapter 3. Thus the total
cost becomes Õ(T (logC + log2D)).

We do not have a tight analysis of the precomputation of q and ωs. The machinery developed
in Section 2.4 to find primes q for which Zq contains a pth root of unity for a prime p within a
specified range. This is because there are significantly fewer smooth integers than primes. Given
q, we can discover such a value ωs via the approach of Lemma 2.4.11, with a cost of Õ(log2 q) bit
operations.

Lemma 4.2.4 (Algorithm 14). There exists an algorithm that, takes sparse representations of f and
g and precomputed values of:

91

Algorithm 14: Sparse polynomial multiplication via Prony
Input: Sparse polynomials f, g ∈ Z[x].
Output: With high probability, h = fg.
Parameters: C = max(∥f∥1, ∥g∥1); D = deg(fg); Tin = #f +#g.
Precomputation: Find a prime q ∈ Õ(D + Tin logC) such that s = 2⌈logD+1⌉ divides q − 1,

and an sth root of unity ω.

1 T̃h ← Output of Alg. 13 with inputs f, g, Tin, D;
2 Interpolate h mod q via Prony’s algorithm (Alg. 3), using root of unity ω;
3 return SparseProductCoeffs(f, g, supp(h mod q); 99/100)

• a prime q for which s|q − 1 for some smooth integer s > D, and

• an sth primitive root of unity ω,

and produces h = fg with probability 2/3 and cost Õ(T (logC + log2D)).

4.2.2.3 Multiplication via “small primes” interpolation

We can also use the interpolation methods of Chapter 3, by constructing an extended black box
for h. In order to compute a p-query of fg ∈ R[x], we reduce f and g modulo (xp − 1) and take
their product in R[x] mod p. Per Lemma 3.2.3, this gives us the following costs.

Lemma 4.2.5. Given sparse representation of f, g ∈ R[x] and an integer p ∈ Z>0, one can compute
the following with given costs:

• A p-query of fg in Õ(Tin + p) ring operations and an additional Õ(Tin logD) bit operations.

• A shifted p-query of fg in Õ(Tin logD + p) ring operations.

We can thus, for instance, choose a prime q, construct images (f mod q), (g mod q) ∈ Zq[x],
and use iterative two-prime interpolation (Procedure IterativeSI) to interpolate fg mod q.

Our multiplication procedure BaseCaseMultiply supplies the extended black box polynomial
realized by ProductExtBB to IterativeSI. From Theorem 3.4.8 and Lemma 4.2.5, this gives the
following cost:

Lemma 4.2.6. Given sparse representations of f and g ∈ R[x] and bounds D ≥ deg(fg) and T ≥
#f , one can compute the sparse representation of h = fg ∈ R[x] with cost Õ(Tin logD + T log3D)
R-operations via Procedure IterativeSI.

We use BaseCaseMultiply as a subroutine in our main multiplication algorithm.

92

Procedure ProductExtBB(f, g, p, α)
Input: Sparse polynomials f, g ∈ R[x]; p ∈ Z>0; α ∈ R.
Output: Returns the (shifted) p-query h(x) mod p (h(αx) mod p, resp.), where h = fg.

1 fp,α ← f(αx) mod p;
2 gp,α ← g(αx) mod p;
3 return (fp,αgp,α)

mod p, computed via dense arithmetic;

Procedure BaseCaseMultiply(f, g,D, T)
Input: Sparse polynomials f, g ∈ R[x];D ≥ deg(fg);T ≥ #(fg).
Output: Returns a sparse representation of h = fg with probability at least 2/3.

1 Let h■ be an extended black box for h = fg given by ProductExtBB(f, g, ·, ·);
2 return IterativeSI(h■, D, T ; 2/3);

4.2.3 The Cole–Hariharin Las Vegas multiplication algorithm

In [CH02], Cole and Hariharin give a Las Vegas algorithm for sparse convolution. Their multipli-
cation algorithm is used as a subroutine in sparse pattern matching problems. Their algorithms
for sparse pattern matching problems are in turn used as subroutines in sparse convolution. We
describe their approach and give an analysis of their method.

Fix a finite alphabet A, e.g. a finite set, containing a wildcard character “∗”. Generally we
will assume A ⊂ Z≥0 with ∗ = 0. Cole and Hariharin considered the problem of finding all
instances of a pattern f = (f0, . . . , fm−1) ∈ Am appearing in a text g = (g0, . . . , gn−1) ∈ An. We
identify f with f =

∑m−1
i=0 fix

i and g with g =
∑n−1

i=0 gix
i. The non-wildcard characters of f and

g correspond to the nonzero terms of f and g.

4.2.3.1 Wildcard matching problem

Without loss of generality we can assume n ≤ 2m. For longer texts g we can break g into
contiguous segments of length 2m that begin at every mth index, and then solve the wildcard
matching problem for the O(n/m) segments. We suppose Σ = [0..C].

We say the pattern f occurs at position i in g if, for all j ∈ [0..m), either fj = gi+j or one
of fj and gi+j is a wildcard symbol. The wildcard matching problem is to find all instances
i ∈ [0..n−m) for which p occurs at position i in t.

Their solution is to construct a pair of products. The first constructs a new pattern f ′ and
text g′ defined by f ′j = 0 if fj = ∗, and f ′j = 1 otherwise, and similarly for g′. Then if we let

93

f ′ =
∑m−1

j=0 f ′jx
j , g′ =

∑n−1
j=0 g

′
jx

j , and h′ = (f ′g′) mod n =
∑n−1

j=0 h
′xi ∈ Q[x], the coefficient of the

xi term of h′ gives the number of non-wildcard characters that align when f0 is aligned with gi.

They then construct f ′′ ∈ Q2m and text g′′ ∈ Q2n, where

(f ′2j , f
′
2j+1) =

{
(0, 0) if fj = ∗,
(fj , 1/fj) otherwise,

for j ∈ [0..m)

g′j =

{
(0, 0) if gj = ∗,
(1/gj , gj) otherwise.

for j ∈ [0..n).

Let f ′′ =
∑2m−1

j=0 f ′′j x
j , g′′ =

∑2n−1
j=0 g′′j x

j and h′′ = f ′′g′′ mod (x2n − 1) =
∑n−1

j=0 h
′′
i x

i ∈ Q[x].
Then, if f occurs at position i in g, then h′′i = 2h′; otherwise |h′′ − 2h′| ≥ 1/C. By computing
the reduced product h′′ to O(logC) bits of precision, we can detect all positions where f occurs
in g. By (Thm. 1, [CH02]), the cost of computing such a product is Õ(n logC). One could also
embed f ′′ and g′′ over Zq, for a prime q > C, instead of over Q; this would require an additional
precomputation cost to obtain q.

4.2.3.2 Shifted wildcard matching problem

The shift matching problem is the problem of finding all indices i for which f occurs at some
shift of g. That is, to find all i ∈ [0..n −m) for which there exists a constant ki such that, for all
j ∈ [0..m), either fj = gi+j+ki or one of fj or gi+j = 0. We again assume an alphabet A = [0..C].
Cole and Hariharan give a Õ(n logC) algorithm for this problem as well.

Their algorithm again first computes h′ as in the wildcard matching problem, to determine
the number of non-wildcards that align for each alignment of p starting at the ith index of text
t. They then choose an Cth complex primitive root of unity ω, and construct the complex-
valued pattern p′′ given by p′′j = ωpj for j ∈ [0..m), and t′′ similarly. Then, letting h′′ =

(
∑m−1

j=0 p′′jx
j)(
∑n−1

j=0 t
′′
jx

j) mod (xn − 1), we have that p occurs at some shift of t is and only if
the xi coefficient of h′′ is ωki times the xi coefficient of h′. Again by performing a dense product
numerically, this gives a Õ(n logC) algorithm.

We can also work in non-numerical settings, e.g., any ring containing a root of unity of mul-
tiplicative order exceeding C. We could work, for instance, over Z2

ℓ , where ℓ ≥ C is an integer.
In that setting we have the ℓth root of unity ω = ℓ + 1, satisfying ωe mod ℓ2 = eℓ + 1, such that
logarithms with base ω are easy to compute. We will use fast logarithms over Zℓ2 in Section 4.3
in order to quickly determine the exponents of a particular product.

94

4.2.3.3 Fast sparse convolution

Now we consider the product of f, g ∈ N[x], where m = deg(f), n = deg(g), and D = m+ n. In
this setting there is no coefficient cancellation, such that Th = S. In order to multiply f, g ∈ Z[x],
we would have to write f as f+− f− and g as g+− g−, where each of f+, f−, g+, g− have strictly
nonnegative coefficients, and then compute h as

h = f+g− − f+g− − f−g+ + f−g−.

They use a repeated doubling approach, whereby their algorithm makes a guess S̃ = 1 for S and
continues doubling its guess until they verify that the product is computed correctly. We consider
an iteration where we have S̃ > S, such that f, g, and h are all S̃-sparse.

Their algorithm fixes a prime p ∈ (2D..4D] and an integer r, and for various choices of a ∈ Z∗
p,

constructs products of the form

ha = (f(xa) mod pg(xa) mod p) mod r ∈ N[x], (4.5)

for various choices of a ∈ Z∗
p. Note that, for every exponent e ∈ supp(h), ha has at least one or

possibly both terms of degree ae mod r and ae + p mod r. In this setting say a pair of distinct
exponents e1, e2 ∈ supp(ϕ), where ϕ ∈ N[x] collide for a choice of a if any pair of the potential
resulting exponents agree. That is, if

(ae1 mod p) mod r ∈ {(ae2 mod p) + kp mod r : k ∈ {0, 1, 2}}.

We extend the notion of a singleton in this setting to mean a non-colliding term of h, As ae mod p
is uniformly distributed over Z∗

p for e ̸= 0 and a chosen uniformly at random from Z∗
p, we have

that the probability that e and e∗ collide for a choice of a is less than 8/r. Thus, if r is chosen to
be at least 16S̃, the probability that e and e∗ collide for a choice of a is at most S̃/2.

By the union bound, the probability that e ∈ supp(h) collides with any other exponent of h
for a choice of a is at most 1/2 (assuming correctness of the bound S̃). Similarly, an exponent of f
also avoids collision with other exponents of f in the image fa with probability less than 1/2, and
similarly for g. By choosing m = ⌈log(9S̃)⌉ a ∈ Z∗

p, then with probability at least 2/3, every term
of f, g, and h avoids collision in fa, ga, and ha for some choice of a, with probability at least 2/3.

Now fix a choice of a and define

fa =
(
f(xa)mod p

)mod r
=

r−1∑
i=0

faix
i, ga =

(
g(xa)mod p

)mod r
=

r−1∑
i=0

gaix
i.

95

Such that ha = (faga)
mod r. We construct a pattern f ′ ∈ Zr

4 and text g′ ∈ Z2r
4 given by

f ′−i mod r =

0 if fai = 0
1 if faixi is a singleton
3 if faixi is a multiple.

for i ∈ [n],

g′i, g
′
i+r =

0 if gai = 0
1 if gaixi is a singleton
2 if gaixi is a multiple.

for i ∈ [n],

Then, if the pattern f ′ occurs at locations i, i+ p ∈ [0..r) in g′, then the the xi coefficient of ha is
a sum of products of pairs of coefficients of singleton terms of fa and ga. Let I ′ be the set of such
indices i.

We can then use the shift matching problem to determine, for each i ∈ I ′, whether the degree-
i term of ha is a singleton. We construct a text f ′′ and pattern g′′ defined by

f ′′j =

{
−e mod D if fajxj ∈ fa has a preimage cxe ∈ f for some c ̸= 0;
0 otherwise.

g′′j =

{
e if gajxj ∈ ga has a preimage cxe ∈ g for some c ̸= 0;
0 otherwise.

for j ∈ [r].

In other words, f ′′j = 0 only if fajxj is not a singleton, and similarly for g′′j . If f ′′ occurs at some
shift of g′′ at an index i ∈ I ′, we have that f ′′j + g′′i+j = ki for all j ∈ [0..m) and some constant ki.
In other words, the degree-i term of ha is the image of a single term of h of degree ki. For each
i ∈ I ′, such that f ′′ occurs at a shift of g′′ we note the shift ki corresponding to the degree of the
preimage of the degree-i term of ha. We constuct the corresponding coefficients of h by way of
computing ha over a ring Zu, where u > 2T 4

inC
2 ≥ 2∥h∥∞, and taking the resulting coefficients

over the range (⌊−u/2⌋..⌊u/2⌋]. We maintain a sum h̃ of these constructed terms.

The resulting cost is Õ(Tin logD) to produce fa,f ′,f ′′, ga, g
′, and g′′, Õ(S̃) for the wildcard-

matching problem, Õ(S̃ logD) for the shift-matching problem, and Õ(S̃ logC) to compute ha.
Accounting for all O(logS) values of a does not affect the soft-oh cost. With probability at least
2/3, if S̃ > S, we produce every term of h. Moreover, as we know every constructed term is a
true term of h, and the coefficients of f, g, and h are all positive, we know we have h̃ = h when
f(1)g(1) = h̃(1).

Thus the expected cost of this approach is Õ(S(logC + logD)). We remark that Cole and
Hariharan stated a cost of Õ(S log2m). This is because they usedO(logm) choices of a as opposed
toO(log S̃). We should remark that it was not their aim to minimize the cost with respect to logm.
We summarize our analysis as a Theorem.

Theorem 4.2.7 (Cole–Hariharan algorithm). There exists an algorithm which, given f, g ∈ Z[x],
computes h = fg with an expected cost of Õ(S(logC + logD)) bit operations, and an initial
Õ(log3D) bit operations to obtain a prime p > D.

96

As future work, we would like to remove this precomputation cost by choosing an appropriate
prime power in place of p in (4.5).

4.3 A softly-linear Monte Carlo algorithm for sumset

Here we present a Monte Carlo algorithm for sumset that first appeared in [AR15]. Throughout
Section 4.3, we let A,B ∈ [0..D], S = A ⊕ B, R = #A + #B, and S = #S. We will prove
that our sumset procedure Sumset(A,B, D) produces A ⊕ B with probability 2/3 and a bit cost
of Õ(S logD). We note that one could use the Las Vegas Cole–Hariharan algorithm to obtain the
same complexity.

We will compute the sumset of A,B ⊂ Zn as supp(FG), where

F =
∑
a∈A

xa, G =
∑
b∈B

xb.

This polynomial product is special in that all of the coefficients in the inputs are positive, from
which it follows that no coefficient cancellation will occur in the product FG.

Our algorithm comprises two signficant parts. First, we estimate S = #supp(F,G). Once
we have an estimate for S, we use it to interpolate the product FG with degree at most 2D and
satisfying

R− 1 ≤ #supp(FG) = S ≤ R2.

4.3.1 Estimating the cardinality of sumset

In this section we give a Monte Carlo for estimating S, the cardinality of A⊕B, i.e., #supp(FG).
This algorithm probabilistically produces S̃ such that

S ≤ S̃ < 8S.

If the algorithm fails, it will either produce an error message fail, or a value S̃ < S.

Using Lemma 3.3.6 and the bound #H ≤ R2, we first probabilistically select a good prime
p ∈ Õ(R4 logD), such that #supp(Hmod p) determines #supp(H). Define

Fp
def
= Fmod p, Gp

def
= Gmod p, Hp

def
= FpGp ∈ Zp[x].

Then deg(Hp) < 2p and each nonzero term cxe of H corresponds to a nonzero term of Hp of
degrees e rem p and (e rem p) + p. Thus,

#H ≤ #Hp, if p is a good prime for H, and

#Hp ≤ 2#H for any choice of p.

97

We will make an initial guess of S̃ = R for S, and double S̃ until we are confident that we have a
value of S̃ > S. Given our guess S̃, we probabilistically select a 1/2-support prime q ∈ Õ(S̃ log p)

for a S̃-sparse polynomial with degree less than 2p, and compute Hpq
def
= Hmod q

p . Note that

#Hp/2 < #Hpq, if q is a 1/2-support prime for Hp, and

#Hpq ≤ #Hp for any choice of q.

We test whether Hpq has fewer than S̃/2 nonzero terms. If the test accepts we produce S̃, oth-
erwise we double the value of S̃ and repeat. If S̃ > 4S, then we have #Hpq ≤ 2S < S̃/2, and
hence Hpq is S̃/2-sparse regardless of the choice of p and q. Thus the test accepts and we produce
S̃. Conversely if p and q are chosen correctly, then #Hpq > S/2, and so S < S̃ if the test fails.
Thus, provided the good prime p and 1/2-support primes q are chosen correctly, when the test
terminates we will have S̃ such that S ≤ S̃ ≤ 8S. If p or any of the q are not chosen correctly,
then we can erroneously produce S̃ < S.

In order to compute Hpq, we embed the problem in ZR2 and use fast dense arithmetic. As
the total length of H is less than R2, any coefficient of Hpq ∈ Z[x] will be in the range [0..R2).
Procedure SumsetSize describes the approach.

We remind the reader that, by our convention, if a procedure used as a subroutine, e.g.
GetPrime in SumsetSize, produces fail, then its calling procedure is understood to produce
fail as well. We prove the following:

Proposition 4.3.1. SumsetSize(A,B, D) produces S̃ ∈ [S..8S), where S = #(A ⊕ B) ≤ S̃ with
probability at least 2/3. If the procedure fails it either produces S̃ < S, or it produces fail. It admits
a cost of Õ(R logD + S) bit operations.

Proof. We first analyze the correctness of the procedure. By Lemma 3.3.6, a prime chosen from
(λ..2λ] is a good prime for R2-sparse H0 ∈ Z[x]D with probability at least 11/12, and GetPrime
produces a prime p ∈ (λ..2λ] with probability at least 11/12. Whether or not p is a good prime, we
have that #Hp ≤ 2S.

By Lemma 3.4.3, a prime q chosen from (λq..2λq] is a 1/2-support support prime with proba-
bility at least 1−µ/12, and GetPrime selects q ∈ P(λq ..2λq], also with probability at least 1−µ/12.

The while loop will terminate before S̃ reaches a value at least 8S < 8R2. Thus the number
of iterations of the while loop will be less than log(8R2) − log(R) + 1 = µ−1. It follows that the
algorithm succeeds with probability at least 2/3.

The algorithm can only fail if a call to GetPrime fails, in which case SumsetSize produces
fail, or SumsetSize produces S̃ < S.

98

Procedure SumsetSize(A,B)
Input: A,B ⊂ [0..D], where D ∈ Z>0

Output: With probability at least 2/3, S̃ ∈ Z such that S̃/4 < S ≤ S̃. Otherwise produces
S̃ < S or fails.

1 R← #F +#G;
2 F,G←

∑
a∈A x

a,
∑

b∈B x
b ∈ ZR2 [x];

3 λ← max(21, ⌈20R2(R2 − 1) logD⌉);
4 p← GetPrime(λ; 1/12);
5 (Fp, Gp)← (F rem (xp − 1), G rem (xp − 1));

6 S̃ ← R;
7 µ← 1/(4 + logR);
8 while true do
9 λq ← max(21, ⌈1203 (S̃ − 1)µ−1 log(2p))⌉);

10 q ← GetPrime(λq;µ/12);
11 (Fpq, Gpq)←

(
Fp mod (R2, xq − 1), Gp mod (R2, xq − 1)

)
;

12 Hpq ← FpqGpq mod (R2, xq − 1), computed via dense arithmetic;
13 if 2#Hpq ≤ S̃ then return S̃;
14 S̃ ← 2S̃;

The cost of producing the images Fp, Gp is, per Lemma 3.2.3, Õ(R logD) operations in ZR2 ,
or a bit cost of Õ(R logD). The cost of producing the prime p is polylog(p) ∈ Õ(R logD), per
Lemma 2.4.7.

The cost of producing Fpq andGpq for a single iteration of the while loop similarly is Õ(R log p)

operations, and the cost of producing q costs Õ(polylog(q) log(µ−1)) = Õ(polylog(q) log(R)). The
cost of computing the product FpqGpq and reducing the result modulo (xq − 1) is Õ(q) operations
in ZR2 . As q ∈ Õ(∼ log p) ⊂ Õ(S log logD). Thus, accounting for all Õ(logR) iterations of the
while loop, the procedure costs

Õ(R logD + S logR log logD) ⊆ Õ(R logD + S),

completing the proof.

99

4.3.2 Computing sumset

Once we are armed with the bound S̃ ≥ S = #supp(FG), we probabilistically construct the
product H = FG. Our approach is to construct a pair of images

H1 = F1G1 mod (ℓ2, xp − 1), H2 = F (ωℓx)G(ωℓx) mod (ℓ2, xp − 1),

where p is a good prime for H, ℓ = 4D ≥ max(deg(H), ∥H∥1), and ωℓ = ℓ+ 1. Note that

ωe
ℓ = (ℓ+ 1)e ≡ 1 + eℓ (mod ℓ2),

that is, ωℓ is an ℓth primitive root of unity modulo ℓ2, and we can easily recover e from ωe
ℓ . In

other words, discrete logarithms with base ωℓ ∈ Zℓ2 are easy to compute.

A single term τ = cxe ∈ H maps to τ1 = cxe rem p in H1 and τ2 = cωe
ℓx

e rem p in H2. If cxe

avoids collision modulo (xp − 1) we can recover ωe
ℓ by computing the quotient of the coefficients

of the degree-(e mod p) terms τ2 and τ1.

Proof of Theorem 4.1.1. The probabilistic steps of Sumset are the four calls to subroutines, each
of which succeed with probability at least 1/15, and the random selection of p. By Lemma 3.3.6,
p is a good prime for H with probability at least 1/15, provided the estimate S̃ ≥ #H given by
SumsetSize is correct. By the union bound Sumset succeeds with probability at least 2/3s.

By Proposition 4.3.1, S̃ ∈ Õ(S). The calls to BaseCaseMultiply thus each cost Õ(S log3 p)
ring operations in Zℓ2 , of a bit cost of Õ(S log3 p log ℓ) ⊆ Õ(S logD) bit operations. The cost
of constructing a sumset element for each nonzero term of czxe of H1 costs Õ(S) arithmetic
operations on integers c1, c2 ∈ [0..ℓ2), or Õ(S logD) bit operations. These dominate the cost of
Sumset.

In the case that A,B ∈ [−D..D] instead, we use the same techniques. We merely construct
the exponents of FG modulo ℓ > 2D, and then translate the exponents from the range [0..2D]
to [−D..D]. We can extend to the multidimensional setting where A,B ∈ [−D..D]n by instead
computing A⊕ B as supp(FG), where now

F =
∑
a∈A

xa, G =
∑
b∈B

xb ∈ N[x±1],

and using Kronecker substitution . This gives us the following corollary:

Corollary 4.3.2. There exists an algorithm that, given A,B ⊂ [−D..D]n, produces A ⊕ B with
probability at least 2/3 and cost Õ(Sn logD).

100

Procedure Sumset(A,B, D)
Input: A,B ⊂ [0..D]; D ∈ Z>0.
Output: With probability at least 2/3, A⊕ B.

1 F,G←
(∑

a∈A x
a,
∑

b∈B x
b
)
∈ ZR2 [x];

2 S̃ ← SumsetSize(A,B, D; 1/15);

3 λ← max(21, ⌈25T (T − 1) logD⌉);
4 p← GetPrime(λ; 1/15);
5 ℓ← 2D + 1;
6 (F1, G1)←

(∑
a∈A x

a mod p,
∑

b∈B x
b mod p

)
∈ Zℓ2 [x]

2;
7 (F2, G2)←

(∑
a∈A(aℓ+ 1)xa mod p,

∑
b∈B(bℓ+ 1)xb mod p

)
∈ Zℓ2 [x]

2;
8 H1 ← BaseCaseMultiply(F1, G1, S̃, 2p; 1/15);
9 H2 ← BaseCaseMultiply(F2, G2, S̃, 2p; 1/15);

10 for i ∈ [2] do Hi ← Hi mod (xp − 1);

11 S← empty list of integers;
12 for every nonzero term c1x

e ∈ H1 do
13 c2 ← coefficient of degree-e term of H2;
14 if c1 | c2 and ℓ | (c2/c1 − 1) as integers then
15 Add (c2/c1 − 1)/ℓ ∈ Z to S;

16 else return fail;

17 if #S > S̃ then return fail;
18 return S;

4.4 Estimating the sparsity of the product

We now present a step that was not included in [AR15], to address an unlikely but possible case
that was missed in the original presentation of the algorithm. If the probabilistic steps of the algo-
rithm succeed, the original algorithm has a guaranteed runtime of Õ(S logC+T logD); however,
if the algorithm fails to produce the correct sumset poss(f, g), then we may incorrectly produce a
guess for the support E ̸= supp(h), such that #E ≫ T . In which case our algorithm can exceed the
runtime bound of Õ(S logC + T logD), conceivably achieving a runtime of Õ(S(logC + logD)).

Here we probabilistically estimate Th = #h, in a manner that does not significantly overesti-
mate Th, similar to how we estimated the cardinality of a sumset in Section 4.3.1. We cannot use
the method of SumsetSize in order to estimate the size of the produce, because that approach
relies on the absence of coefficient cancellation.

101

We use ideas from Prony’s algorithm and linearly generated sequences. Namely, we use the
half GCD algorithm in order to compute the minimal generator of the sequence given by h eva-
luted over a geometric sequence. We evaluate f over powers of a primitive pth root of unity
modulo q, for a pair of primes p, q, where p | (q − 1).

We choose p and q such that probably both p is a good prime for h, and none of the coeffi-
cients of h vanish modulo q. This relies on the Monte Carlo subroutine ProductSparsity, which
probabilistically chooses such a p, q, and a pth root of unity ω ∈ Zp, ω ̸= 1.

Procedure ProductSparsity(f, g, S)
Input: Sparse polynomials f, g ∈ Z[x]; S > poss(f, g).
Result: With probability at least 2/3, produces T̃h such that Th ≤ T̃h ≤ 2Th. Otherwise

produces fail or T̃h < Th.
Parameters: C ≥ ∥f∥∞, ∥g∥∞; D ≥ deg(fg); Tin = #f +#g.

1 λ← ⌈max(2191,
√

140S ln(TinC2), 40(S − 1) lnD⌉;
2 p, (q, ωp)← GetPrimeAP-5/6(λ, (RC2)2R

2
; 1/6);

3 Write f, g as f =
∑#f

i=1 cfix
efi , g =

∑#g
i=1 cgix

egi;

4 (f0, g0)←
(∑#f

i=1(cfi mod q)xefi mod p,
∑#g

i=1(cgi mod q)xegi mod p
)

;

5 Evaluate f0(ωi), g0(ω
i) for all i ∈ [0..p) via fast multipoint evaluation;

6 for i← 0 to 2S do ai ← f0(ω
i)g0(ω

i);
7 Compute linear generator Φ of (a0, . . . , a2S) ∈ Z2S+1

q by way of the half GCD algorithm;
8 return T̃h = 2deg(Φ);

Proposition 4.4.1. With probability at least 2/3, ProductSparsity(f, g, S) produces T̃h = Th. It
succeeds with probability at least 2/3. In the event of failure, or in the case that input S is such that
S < #poss(f, g), it either produces fail or T̃h < Th. Its cost is Õ(Tin logC + S logD).

Proof. We first analyze the correctness of ProductSparsity. Recall from Lemma 2.4.15 that
GetPrimeAP-5/6(λ,B; 1/6) takes λ,B ∈ Z, where λ ≥ 140

√
lnB, and produces a prime p ∈

(λ..2λ] chosen uniformly at random, a prime q ∈ (2λ2..λ3] of the form q = ap+1, and such that q
does not divide a fixed unknown integer with absolute value at most B, and a primitive pth root
of unity ωp ∈ Zq, all with probability at least 5/6.

As the coefficients of fg are trivially each at most TinC2, and there are at most S of them, the
product of the nonzero coefficients of fg are at most B = (TinC

2)S . As λ ≥ 2191 and

λ ≥ 140
√
S ln(TinC2) = 140

√
lnB

102

our choice of λ satisfies the constraints placed on λ as an input to GetPrimeAP-5/6(λ,B; 1/6).
It follows that with probability at least 5/6, the subroutine call produces q for which none of
coefficients of h vanish modulo q. Assume this is the case, such that #(h mod q) = #h.

As λ ≥ 40(S − 1) lnD, if GetPrimeAP-5/6 succeeds, it produces a 1/2-support prime p for h
with probability at least 14/15 by Lemma 3.4.3. If this holds in addition we have that #h/2 <
#(h mod p mod q). Assuming #h ≤ S, the algorithm produces #h mod p mod q. Otherwise we
produce a minimal generator Φ of degree T̃h ≤ S < Th.

Thus, in the case that either the algorithm fails or the input S is incorrect in that S <
#poss(f, g), either GetPrimeAP-5/6 produces fail, in which case by convention ProductSpar-
sity produces fail, or ProductSparsity produces some value T̃h < Th.

We now analyze the cost. The cost of GetPrimeAP-5/6(λ,B; 1/6) is

Õ(polylog(λ) + polylog(B)) = Õ(polylog(STin logC logD)).

The cost of computing f0 = f mod p mod q and g mod p mod q is Õ(Tin(logC + logD + log q)) to
reduce the coefficients and exponents of f and g. The cost of evaluating f0 and g0 at ωi for all
i ∈ [0..p) via fast multipoint evaluation costs Õ(p) Zq-operations, or

Õ(
√
S logC + S logD) ∈ Õ(Tin logC + S logD)

bit operations. Computing the linear generator via the half GCD entails Õ(S log q) or Õ(S ·
polylog(logB)) bit operations. Thus the algorithm costs Õ(Tin logC + S logD) bit operations in
total.

4.5 Multiplication with support

We now turn to the problem of multiplying sparse f, g ∈ Z[x], provided some set E such that
(probably) E ⊇ supp(fg). This algorithm is used twice in our complete polynomial multiplication
algorithm: first with a large support set poss(f, g), but small coefficients, then with the actual
support set supp(fg) but full-size coefficients. We will further suppose that our support set E
contains the support of f and g as well, without affecting the worst-case cost of the algorithm.

4.5.1 Determining the true support of the product h = fg

In order to multiply f and g, given some set E = {e1, . . . , eu} ⊇ supp(f) ∪ supp(g) ∪ supp(h),
we will produce the coefficients of h =

∑u
i=1 cix

i as the solution to a transposed Vandermonde

103

system.
ω0·e1
p ω0·e2

p · · · ω0·eu
p

ω1·e1
p ω1·e2

p · · · ω0·eu
p

...
...

. . .
...

ω
(u−1)·e1
p ω

(u−1)·e2
p · · · ω

(u−1)
p

c1
c2
...
cu

 =

f(ω0

p)g(ω
0
p)

f(ω1
p)g(ω

1
p)

...
f(ωu−1

p)g(ωu−1
p)

 .
over an appropriate ring containing a pth root of unity ωp. By results on fast multiplication by
Vandermonde matrices (e.g. fast multipoint evaluation) and fast Vandermonde system solving
(Thm. 2.1.10, and the Transposition Principle (Thm. 2.1.11), we can multiply or divide a vec-
tor by a u × u nonsingular transposed Vandermonde matrix over a field K with a cost of Õ(u)
K-operations. Lecerf and van der Hoeven also studied fast multiplication and division by Vander-
monde matrices in [HL13b], where they also give algorithms for the multiplication of two sparse
polynomials, given the support of the product, over a variety of coefficient fields.

In their approach for f, g over Z (Section 5.4, [HL13b]), the Vandermonde arithmetic is
performed modulo Zp1p2...pr , where r ∈ O(logD C) and Zpi contains a root of unity ωi of order
exceeding D, for each i ∈ [r]. Our approach differs in that we use pth roots of unity for some
good prime p≪ D.

Proposition 4.5.1. SparseProductCoeffs(f, g, E) produces a sparse representation of h = fg with
probability at least 2/3. Its cost is Õ(#E(logC+logD)) bit operations. If SparseProductCoeffs fails
it produces fail.

Proof. The probabilistic correctness only relies on selection of primes p and the qi. By Lemma
2.4.16, with probability at least 5/6, GetPrimesAP(λ, 2Ch + 1; 1/6) produces a prime p ∈ (λ..2λ]
and pairs (qi, ωi), i ∈ [ℓ], such that the qi are distinct primes whose product exceeds 2Ch + 1, and
each ωi ∈ Zqi is a pth primitive root of unity. As λ ≥ 10S(S − 1) logD, p is a good prime for∑

e∈E x
e with probability at least 5/6. That is, the exponents e ∈ E remain distinct modulo p. Thus

the algorithm succeeds with probability at least 2/3.

The cost of reducing every e ∈ E modulo q is at most Õ(#E logD). The cost of reducing the
coefficients of f and g modulo q is at most Õ(Tin logC). The cost of multiplying by V⊤

(i) and its

inverse are both Õ(#E) operations modulo qi, or a bit cost of Õ(#E log q) = Õ(#E(log logC +
log logD)). Thus the algorithm costs Õ(Tin logC + E logD).

We further remark that the SparseProductCoeffs can be made Las Vegas by selecting primes
p (line 4) until we discover one which keeps the elements of E separate modulo p.

104

Procedure SparseProductCoeffs(f, g, E)
Input: Sparse polynomials f, g ∈ Z[x]; E = {e1, . . . , eS} ⊂ Z>0, where

supp(fg), supp(f), supp(g) ⊆ E .
Output: With probability at least 2/3, a sparse representation of h = fg.
Parameters: C = max (∥f∥1, ∥g∥1); D ≥ max(deg(fg), E); S = #E .

1 Ch ← S2C2;

2 Write f, g as f =
∑S

j=1 c
(f)
j xej , g =

∑S
j=1 c

(g)
j xej ;

3 λ← max(21, ⌈25(S − 1) logD⌉,
√

42 ln(2Ch + 1));
4 p, ((q1, ω1), . . . , (qℓ, ωℓ))← GetPrimesAP(λ, 2Ch + 1; 1/6);
5 if ei ≡ ej(mod p) for some i ̸= j ∈ [S] then return fail;
6 for j ∈ [S] and ϕ ∈ {f, g} do
7 c

ϕ,i)
j ← c

(ϕ)
j mod qi, for all i ∈ [ℓ], via multi-modular reduction;

8 for i ∈ [ℓ] do
9 for j ∈ [S] do vj ← ωej mod p mod qi;

10 V(i) ← V(v1, . . . , vs);
11 d(f) ← V⊤

(i)(c
(f,i)
1 , . . . , c

(f,i)
S) ∈ ZS

qi;

12 d(g) ← V⊤
(i)(c

(g,i)
1 , . . . , c

(g,i)
S) ∈ ZS

qi;

13 d(h) ← (d
(f)
1 d

(g)
1 , . . . , d

(f)
S d

(g)
S) ∈ ZS

qi;

14 c(h,i) ←
(
V⊤

(i)

)−1
d(h) ∈ ZS

qi;

15 for j ∈ [S] do
16 Construct c(h)j ∈ [−Ch..Ch] by way of Chinese remaindering on the set of congruences

{c(h,i)j mod qi : i ∈ [ℓ]};

17 return
∑

j∈S c
(h)
j xej ;

4.6 Putting the multiplication algorithm together

We are now in a position to give the entire multiplication algorithm, given by SparseMultiply.
We then restate and prove Theorem 4.1.2.

Theorem 4.1.2. SparseMultiply(f, g), computes a sparse representation of fg, with probability at
least 2/3 and a bit operation cost of

Õ(S logD + T logC).

105

Procedure SparseMultiply(f, g)
Input: Sparse polynomials f, g ∈ Z[x].
Output: With probability at least 2/3, a sparse representation of h = fg.
Parameters: C = max(∥f∥∞, ∥g∥∞); D = deg(fg); Tin = #f +#g.

1 E ← Sumset(supp(f), supp(g); 1/18);
2 S ← #E;

3 T̃h ← ProductSparsity(f, g, S; 1/18);

4 λ← max(21, ⌈30S log(TinC
2)⌉);

5 q ← GetPrime(λ; 1/18);
6 hq ← SparseProductCoeffs(f rem q, g rem q, E ; 1/18);
7 Write hq as hq =

∑
e∈E cex

e;
8 E ′ ← {e ∈ E : ce mod q ̸= 0};
9 if #E ′ > T̃h then return fail ;

10 return SparseProductCoeffs(f, g, E ′; 1/18);

Proof. The probabilistic correctness of SparseMultiply relies on the five calls to subroutines, each
which fail with probability at most 1/18, and the selection of the prime q. We require that q does
not divide any of the coefficients of h. As #h ≤ S and ∥h∥∞ ≤ TinC2, the product of the nonzero
coefficients of h, call it Π, has absolute value at most (TinC2)S . By Lemma 2.4.4, (λ..2λ] contains
at least 3λ/5 lnλ ≥ logλ

(
TinC

2)/18
)

primes, such that q chosen uniformly at random from (λ..2λ]
divides Π is at most 1/18. Thus the algorithm succeeds with probability at least 2/3 as desired.

The cost is dominated by the calls to SparseProductCoeffs, which by Proposition 4.5.1 cost

Õ(S(log λ+ logD) + T (logC + logD)) = Õ(S logC + T logD).

4.6.1 Extensions to Laurent polynomials and various coefficient rings

Our multiplication algorithm easily extends to Laurent polynomials. Given f, g ∈ R[x±1] with
exponents e ∈ [−D..D], we can instead naively compute the polynomial product h′ = (xDf)(xDg)
with cost (S logD + T logC) by Theorem 4.1.2. The products xDf, xDg, and h = x−2Dh can be
computed by adding or subtracting from the exponents of f, g, and h with cost Õ(). We can
further reduce the multiplication of n-variate Laurent polynomials with absdeg(h) = D to a

106

univariate product with absolute degree O(Dn) via Kronecker substitution. This reduction is also
bounded by the cost of multiplication. We state this as a Corollary.

Corollary 4.6.1. Given f, g ∈ Z[x±1
1 , . . . , x±1

n], with supp(fg) ⊂ [−D..D]n, one can compute fg
with probability at least 2/3 and cost Õ(Sn logC + T logD) bit operations.

In other coefficient rings, we can still efficiently compute poss(f, g); however, we cannot as
easily decouple the factor logC from S. To compute f, g ∈ Zm, we can embed the problem in Z
with bound C = m/2, and reduce the resulting product modulo m.

Multiplying f, g ∈ Fpv [x], where p is prime, is more involved. We suppose Fpv is represented
as Zp[y]/⟨Φ⟩ for some irreducible polynomial Φ ∈ Zp[y] of degree v. We let f ′, g′ ∈ Z[y, x] be
the embedding of f, g ∈ Z[y, x]. Then h′ = f ′g′ hasdegy(fg) ≤ 2s − 2 and is O(vS)-sparse.
Thus we can obtain h′ from the product h′′ = f ′(y, y2v−2)g′(y, y2v−2) with degree O(vD) and at
most O(vS) terms, and the heights of f ′ and g′ bound by p. We can extract h = fg by reducing h′

modulo p and Φ(y). As h′ has height at most Tinp2, this costs vS log p. Generalizing to multivariate
Laurent polynomials gives us the following.

Corollary 4.6.2. There exists a Monte Carlo algorithm that, given f, g ∈ Fq[x
±1
1 , . . . , x±1

m], with
supp(fg) ⊂ [−D..D]n and q a prime power, computes a sparse representation of fg with probability
at least 2/3 and cost Õ(S(log q + n logD)).

4.7 Conclusions and future work

We presented new probabilistic and asymptotically fast algorithms to compute the sumset of
two finite sets of integers, and to multiply two polynomials with integer coefficients. There are
many open problems that remain. The biggest open problem is to remove all quadratic factors
from a multiplication algorithm. A Prony-based method, even ignoring precomputation, appears
to require Ω̃(log2D) bit operations; whereas both the Cole–Hariharan algorithm and the new
method given by SparseMultiply admit a soft-oh cost factor of S, which in the worst case is
Ω̃(T 2).

Problem 4.7.1. Give an algorithm which computes fg for arbitrary f, g ∈ Z[x] with worst-case
runtime subquadratic in the bit sizes of f, g, and h.

We do not even know whether we can certify a polynomial product in softly-linear time.
Namely, we pose the following problem.

Problem 4.7.2. Given f, g, ϕ ∈ Z[x] and C > ∥f∥∞, ∥g∥∞, ∥ϕ∥∞, test whether fg = ϕ with cost
Õ((#f +#g +#ϕ)(logC + logD)), either probabilistically or deterministically.

A Las Vegas or deterministic solution to that problem would allow us to make SparseMultiply
a Las Vegas algorithm.

107

How could they see anything but the
shadows if they were never allowed to
move their heads?

Plato, The Allegory of the Cave

Chapter 5

Multivariate sparse interpolation

5.1 Introduction

We now bring our attention to the probabilistic interpolation of sparse multivariate polynomials.
In this setting we suppose f is of the form

f =
t∑

i=1

cix
ei1
1 xei22 . . . xeinn ∈ R[x1, . . . , xn], (5.1)

where the exponents ei = (ei1, . . . , ein) are sorted lexicographically. Throughout this chapter we
will use the parameters n for the number of variables, D ≥ maxni=1 degxi

f for the partial degrees
of f , and T ≥ #f for the sparsity.

We first describe Zippel’s probabilistic multivariate interpolation algorithm for a black-box
polynomial over a finite field, which reduces the problem to univariate interpolation. We then
present new algorithms for multivariate sparse interpolation, based on a technique we call ran-
domized Kronecker substitutions, which we liken to Kronecker substitution. The key idea therein
is to construct a multitude of univariate images of reasonably small degree, whereby most terms
of f do not collide in each image. We give two methods of substitution: one for general n-
variate polynomials, and one strictly for bivariate polynomials that is advantageous in the case
that

√
T ≪ lnD.

These methods of substitution give rise to a variety of algorithms. In Section 5.4, we present
an algorithm for a black-box polynomial f over an arbitrary ring, that follows a similar template
to iterative interpolation (Sec. 3.4). In Section 5.6, we give a multivariate analogue of majority-
vote interpolation (Sec. 3.5) for a black-box polynomial over a sufficiently large finite field.
These algorithms rely on a univariate interpolation procedure as a subroutine, and their costs are

108

expressed partly in terms of these subroutine calls. This algorithm appeared in [AR14] and was
joint work with Daniel S. Roche.

A caveat of this multivariate majority-rule interpolation is that it requires a linear system to be
solved in order to construct every term of f . In Section 5.7, we give a procedure for the interpo-
lation of a highly multivariate (which we will fondly refer to as ultravariate) extended black-box
polynomial, that outperforms a combination of majority-rule multivariate and univariate inter-
polation, in the case that the cost of the latter approach is dominated by solving n × n linear
systems. It achieves this improvement by reducing the linear algebra overhead via structured
linear systems. This algorithm appears in [AGR15], respectively, and is joint work with Daniel S.
Roche and Mark Giesbrecht.

We introduce some multivariate notation. We will often write (5.1) as

f(x) =
t∑

i=1

cix
ei ∈ R[x]. (5.2)

We will also consider univariate images of f of the form

f(zs)
def
= f(zs1 , . . . , zsn) ∈ R[z],

where s = (s1, . . . , sn) ∈ Nn. For a vector a ∈ Rn, we will also use throughout the notation

f(azs)
def
= f(a1z

s1 , . . . , anz
sn),

f(ax)
def
= f(a1x1, . . . , anxn),

f(axs)
def
= f(a1x

s1
1 , . . . , anx

sn
n).

This chapter will revisit sparsity-preserving maps, and so we generalize them in the natural
way to a multivariate setting.

Definition 5.1.1. We say Φ : R[x1, . . . , xn] → R[y1, . . . , ym] is a sparsity-preserving map if Φ is
R-linear and there exists a map Φ∗ : Nn → Nm such that Φ is given by xe = yΦ

∗(e). We call Φ∗ the
induced-map of f . We say the preimage σ of a formal term cyd of Φ(f) to the sum of all terms of
f that map to a term with exponent d under the map Φ, i.e., for f =

∑t
i=1 cix

ei ,

σ =
∑
i∈[t]

Φ∗(ei)=d

cix
ei .

We extend definitions of singletons, colliding terms, colliding exponents and collisions in
the natural way.

The algorithms herein rely on constructing sets of univariate images.

109

Definition 5.1.2. Let f ∈ R[x] be a black-box polynomial. We define a d-query or query of degree
d for f to be a univariate image of the form f(zs)mod d ∈ R[z] of degree at most d−1, where s ∈ Nn.

We let a shifted d-query of f denote an image of the form f(azs)mod d we call a the shift of the
query. If a is selected from Sn for a ring extension S ⊇ R, we may call the shifted d-query a S-shifted
d-query.

A d-query is a generalization of a p-query. Namely, if f is a univariate extended black-box
polynomial, then a p-query for f is a d-query with p = d. We relax the condition that f is an
extended black-box polynomial, because in some cases we may not need access to roots of unity
taking a large variety of prime orders. Sometimes a d-query will be unreduced, i.e., we say f(azs)
is a d-query for d = deg(f(azs)) + 1. We further remark that a query of a query of f is itself a
query of f . We may informally refer to queries also as substitutions or images. Generally we
will suppose the cost of such a query is at least the bit size of the sparse representation of the
query. In the case that f is given by an SLP, it suffices to perform arithmetic in R[z]mod d, which
gives the following cost:

Lemma 5.1.3. Given a length-L SLP computing f ∈ R[x], we can compute a d-query of f with a
cost of Õ(Ld) ring operations.

We remark in this chapter that we do not consider the selection of primes in our probabilistic
analysis. We merely remark that we can construct n primes from (λ..2λ] with probability exceed-
ing 1 − µ in Õ(n log(µ−1) · polylog(λ)) bit operations, e.g., using GetPrimes. This simplifies the
analysis of a number of Monte Carlo procedures herein, without affecting the correctness. More-
over, many of the algorithms in this chapter rely on univariate interpolation algorithms. In our
analysis we suppose our univariate interpolation subroutines are deterministic; however, it would
be straightforward to extend these multivariate procedures to allow for Monte Carlo univariate
interpolation algorithms.

5.1.1 Comparison of sparse multivariate algorithms

Table 5.1 compares various interpolation and testing algorithms that work via reduction to uni-
variate interpolation or identity testing. We mention a randomized multivariate polynomial iden-
tity test due to Klivans and Spielman [KS01]. They attempted to minimize the number of random
bits required by their identity test, while keeping it polynomial time. They use O(log(nTD)) bits
of randomness.

Kronecker substitution gives a deterministic interpolation or testing procedure, provided it
uses a deterministic univariate interpolation/testing subroutine. We describe Zippel’s algorithm
in detail in the subsequent section.

110

Algorithm Section Ring # of queries degree

Kronecker 2.6 R 1 (D + 1)n

Zippel [Zip79] 5.2 Fq nt D

multivariate iterative 5.4 R O(log2 T) O(nDT)
O(n log T) Õ(DT (nD + T))

bivariate majority rule 5.6 Fq O(log2 T) O(D logD
√
T)

multivariate majority rule 5.6 Fq O(n+ log T) O(nTD)

ultravariate majority rule 5.7 Fq Õ(n log T (logD + log T)) Õ((T + n) logD)

Klivans–Spielman PIT [KS01] Fq n O(n2T 2D)

Table 5.1: Algorithms for sparse multivariate interpolation and testing via univariate images

5.2 Zippel’s algorithm

Any discussion of multivariate polynomial interpolation would be incomplete without Zippel’s
algorithm. In [Zip79], Richard Zippel gave a probabilistic algorithm for the interpolation of a
sparse multivariate black-box polynomial f over a field K = Fq or Q. We analyze these cases,
though the algorithm can extend to any ring containing a sufficiently large regular-difference set.
As K can be infinite, we let R denote a regular-difference set in K (e.g. any finite subset of K).
The algorithm does not require an a priori bound T on the sparsity of the interpolant f , though
it can use such a bound to lower its cost. We describe a probabilistic version of the algorithm as
given in [Zip90].

To explain Zippel’s algorithm we will define polynomials whose coefficients are themselves
polynomials. In Section 5.2 we reserve B and C to denote “polynomial coefficients” and b and c
to denote field constants.

Zippel’s algorithm constructs f ∈ K[x1, . . . , xn] from a hierarchy of multivariate images. The
algorithm learns the support of f with respect to increasingly many variables. For k ∈ [n], write
f as

f (k) =
t(k)∑
i=1

C
(k)
i xe

(k)
i ∈ K[xk+1, . . . , xn][x1, . . . , xk], where

0 ̸= C
(k)
i ∈ K[xk+1, . . . , xn], e

(k)
i ∈ Zk

≥0, and xe
(k)
i =

k∏
j=1

x
e
(k)
ij

j for i ∈ [t(k)].

(5.3)

We define suppk(f) = {e
(k)
i : i ∈ [tk]}. Observe that for m > k, suppm(f) determines suppk(f).

For k < m ∈ [n], suppk(f) = {(e(m)
1 , . . . , e

(m)
k) : e(m) ∈ suppm(f)}. In other words, suppk(f) is

comprised of the set of length-k truncations of all length-m exponents in suppm(f). It follows

111

that t(1) ≤ t(2) ≤ · · · ≤ t(n) = #f . Zippel’s algorithm learns suppk(f) for increasing k, until we
have suppn(f) = supp(f).

Zippel’s algorithm initially chooses a set of random evaluation points ωi0 ∈ R, i ∈ [n]. We
also define the images

f
(ℓ)
0

def
= f(x1, . . . , xℓ, ωℓ+1,0, . . . , ωn0) ∈ K[x1, . . . , xℓ], for ℓ ∈ [n]. (5.4)

In the first stage of the algorithm, Zippel’s algorithm densely interpolates the univariate im-
age f

(1)
0 . The algorithm makes a (not necessarily random) choice of D + 1 distinct values

ω11, . . . , ω1D ∈ K \ {ω10}, and evaluates f (1)0 (ω1j) for j ∈ [0..D], from which it interpolates f (1)0 .

We describe the kth stage of the algorithm, where k ∈ (1..n]. In the kth stage we always
evaluate f at a point x where xℓ = ωℓ for all ℓ > k. We write

f
(k−1)
0 (x1, . . . , xk−1) =

t′∑
i=1

ci0x
ei , where

t′ = t(k−1), ci0 = C
(k−1)
i (ωk0, ωk+1,0, . . . , ωn0), and ei = e

(k−1)
i for i ∈ [t′].

(5.5)

At the start of the k-th stage, we have f
(k−1)
0 , and we aim to learn f

(k)
0 . Zippel’s algorithm

supposes that each of these ci0 are nonzero. In other words, Zippel’s algorithm assumes that
supp

(
f
(k−1)
0

)
= suppk−1(f), such that we can ascertain the latter from the former. Zippel gives

probabilistic guarantees on this assumption, under which, and given the expression (5.5) for
f
(k−1)
0 , we can write f (k)0 as

f
(k)
0 (x1, . . . , xk) =

t′∑
i=1

C ′
ix
ei ∈ K[xk][x1, . . . , xk−1], (5.6)

where C ′
i ∈ K[xk] and C ′

i(ωk0) = ci0 for i ∈ [t′]. We will densely interpolate the “coefficients” C ′
i

which determine f (k)0 . We choose distinct values ωk1, ωkn . . . , ωkD ∈ K \ {ωk0}, and compute the
images

f
(k−1)
j

def
= f

(k)
0 (x1, . . . , xk−1, ωkj) =

t′∑
i=0

cijx
ei ∈ K[xk], j ∈ [0..D],

We use sparse interpolation in order to construct the j-th image f (k−1)
j . Under the algorithm’s

aforementioned assumption, supp
(
f
(k−1)
j

)
⊆ supp

(
f
(k−1)
0

)
, in which case we need only deter-

mine the coefficients c(k−1)
ij , for i ∈ [t′]. We choose ζ = (ζ1, . . . , ζk−1) ∈ Rk−1 such that the values

ζei are distinct for i ∈ [t′]. We make the evaluations

aij = f (k)(ζi1, . . . , ζ
i
k−1, ωkj), i ∈ [t′], j ∈ [0..D]. (5.7)

112

Algorithm 15: Zippel’s algorithm
Input: A black-box polynomial f ∈ K[x1, . . . , xn]; D ≥ maxni=1 degxi

(f).
Output: With high probability, f (See Section 5.2.1 for analysis).

1 Fix a finite regular-difference set R ⊂ K;
2 Randomly select ω10, . . . , ωn0 ∈ R;

3 Choose D distinct values ω11, . . . , ω1D ∈ K \ {ω10};
4 Compute f (1)0 from evaluations f (1)0 (ω1j), j ∈ [0..D];

5 for k ← 2 to n do
6 Write f (k−1)

0 =
∑t′

i=1 cix
ei ∈ K[x1, . . . , xk−1] in terms of its sparse representation.

7 Choose D distinct values ωk1, . . . , ωkD from K \ {ωk0};
8 Choose ζ1, . . . , ζt ∈ R, such that the values ζei , i ∈ [t′], are distinct;
9 for j ← 0 to D do

10 for i← 1 to t′ do aij ← f(ζi1, . . . , ζ
i
k−1, ωkj , ωk+1,0, . . . , ωn0);

11 (c1j , . . . , ct′j)← solution c to system
[
ζ(i−1)eij

]t′
i,j=1

c = (ai1, . . . , ait′);

12 for i← 1 to t′ do
13 Densely interpolate C ′

i ∈ K[xk] from evaluations C ′
i(ωkj) = cij , j ∈ [0..D];

14 f
(k)
0 ←

∑t′

i=1C
′
ix
ei ∈ K[xk][x1, . . . , xk−1];

15 return f (n)0 =
∑t

i=1 ci0x
ei ∈ K[x1, . . . , xn];

For each j ∈ [0..D], this gives a t′ × t′ Vandermonde system
ζ0e1 ζ0e2 . . . ζ0et′

ζ1e1 ζ1e2 . . . ζ1et′

...
...

. . .
...

ζ(t
′−1)e1 ζ(t

′−1)e2 . . . ζ(t
′−1)et′

c1j
c2j
...
ct′j

 =

a1j
a2j
...

at′j ,

 (5.8)

whose solution determines the desired values cij , i ∈ [t′]. After the nth stage we have f (n)0 = f ∈
K[x1, . . . , xn]. Algorithm 15 describes the approach.

5.2.1 Analysis of Zippel’s algorithm

We first analyze the correctness of Zippel’s algorithm. Here we let t = #f . In the kth stage, k > 1,
we require that C(k−1)

i (ωk0, . . . , ωn0) ̸= 0 for all i ∈ [t(k−1)]. If the ωk0 are chosen uniformly at

113

random from a finite setR, by the DLSZ Lemma, the probability that this occurs for a fixed C(k−1)
i

is at least 1−deg(C
(k−1)
i)/#R. As each c(k−1)

i has total degree at least (n−k+1)D, by the union
bound, the probability that this occurs for C(k−1)

i for every k ∈ (1..n] and i ∈ [t(k−1)] is at least
1− µ, where

µ =
1

#R

n∑
k=2

t(k−1)∑
i=1

deg(C
(k−1)
i) ≤ 1

#R

n−1∑
k=1

ktD ≤ 1

2#R
n2tD.

We require, in addition, that in the kth stage, the values ζe
(k−1)i are distinct for 1 ≤ i ≤ t(k−1),

such that the resulting Vandermonde systems are nonsingular. In the case when K = Q, we can
choose ζj to be the jth prime, such as in the Ben-Or–Tiwari algorithm. This gives the following
in the case that K = Q.

Proposition 5.2.1. Suppose, for t-sparse f ∈ Q[x1, . . . , xn] and D ≥ maxi degxi
f , that Algorithm

15 chooses ω10, . . . , ωn0 independently and uniformly at random from a finite set R ⊂ Q, and
takes ζi to be the ith prime number. Then the algorithm takes O(ntD) black-box queries to f and
interpolates f with probability at least 1− n2tD/(2#R).

In the case that K = Fq, where q > (D+1)t, we could choose ζ of multiplicative order (D+1)t

and let ζj = ζ(D+1)j−1
for all j ∈ [t(k−1)]. This essentially maps the (k−1)-variate exponents e(k−1)

i

to univariate exponents of the form ei =
∑k−1

j=1 x
e
(k−1)
ij

j via Kronekcer substitution such that, given
the order of ζ, the values ζei are distinct. This, however, requires access to a very high-order
element. We can instead use Proposition 2.7.8, which guarantees that, for a finite set R ⊂ Fq

and ζ ∈ Rt′ chosen uniformly at random, that the Vandermonde system 5.8 is singular with
probability at most 1

2 t
′(t′−1)D/#R < 1

2 t
2D/#R. Accounting for all n−1 Vandermonde systems

gives the following.

Proposition 5.2.2. Suppose, for t-sparse f ∈ Fq[x1, . . . , xn], Algorithm 15 chooses ω10, . . . , ωn0

and ζ1, . . . , ζn independently and uniformly at random from Fq. Then the algorithm takes O(ntD)
black-box queries to f and succeeds with probability exceeding

1− nt(n+ t)D

2q
.

We note that if f ∈ Fq[x1, . . . , xn] is given by an extended black-box, then we can choose
u = ⌈logq(nD2t2µ−1)⌉ and choose random evaluation points from Fqu , such that the algorithm
succeeds with probability at least 1− µ.

In the case that if f is a black-box polynomial over Fq, then it suffices that

q ≥ (1 + ϵ)max(12 t
2D,nD),

114

for a constant ϵ > 0. Then the n Vandermonde systems are individually nonsingular with proba-
bility at least ϵ

1+ϵ . A good heuristic would be in every stage to reselect ζ until we get a nonsin-
gular system. Alternatively, in order to keep the algorithm Monte Carlo, we can select at most
⌈ln(6n)(1 + ϵ)/ϵ⌉ vectors ζ ∈ Fn

q , choosing one that gives a nonsingular Vandermonde system,
such that with probability exceeding 1/(1 + ϵ)ln(6n)(1+ϵ)/ϵ ≤ exp(− ln(6n)) = 1/(6n), we have a
nonsingular Vandermonde system at the kth stage of the algorithm. We thus have nonsingularity
at every stage with probability at least 1/6.

We can similarly choose multiple tuples of the form ω0 = (ω10, . . . , ωn0) and then assume the
support suppk−1(f) is the union of supp(f (k−1)

0) given by (5.4), over all choices of ω. Each of
the C(k−1)

i has total degree at most nD, such that C(k−1)
i evaluates to zero with probability at

most 1
1+ϵ . We can similarly choose ⌈ln(6nt)(ϵ+ 1)/ϵ⌉ vectors ω, such that each of the at-most nt

coefficient polynomials C(k−1)
i , for k ∈ [2..n] and i ∈ [t(k−1)] are nonzero for some choice ω, with

probability at least 5/6.

If the algorithm does not start with knowledge of t, and there is no supplied bound T ≥ t,
one can naively take T = Dn, given the degree bound D.

5.2.2 An alternative formulation of Zippel’s algorithm

We note that we could alternatively reverse the order of dense and sparse interpolation in Zippel’s
algorithm. We mention this to more directly compare Zippel’s algorithms to other interpolation
methods whose cost we measure in terms of the univariate images required. Specifically, in the
kth stage of Zippel’s algorithm, one could use dense interpolation on the evaluations ai0, . . . , aiD
given by (5.7) in order to construct the univariate images

g
(k−1)
i

def
= f(ζi1, . . . , ζ

i
k−1, xk, ωk+1,0, . . . , ωn0) =

D∑
j=0

bijx
j
k ∈ K[xk], i ∈ [t′],

where t′ = t(k−1). We can write f (k)0 defined by (5.4) as

f
(k)
0 =

D∑
j=0

B
(k)
j xjk ∈ K[x1, . . . , xk−1][xk],

where B(k)
j ∈ K[x1, . . . , xk−1]. Note the union of supp(B(k)

j), for j ∈ [0..D], is suppk−1(f). Thus

to interpolate g(k)i , one only needs find the coefficients of each of the B(k)
j . This again can be

115

accomplished via the Vandermonde system
ζ0e1 ζ0e2 . . . ζ0et

ζ1e1 ζ1e2 . . . ζ1et

...
...

. . .
...

ζ(t
′−1)e1 ζ(t−1)e2 . . . ζ(t

′−1)et

 bj =

b0j
b1j
...

bt−1,j

 ,

whose solution bj ∈ Kt′ gives representation B
(k)
j =

∑t′

i=1 bjix
ei . Clearly we need only do this

for j such that (b0j , . . . , bt−1,j) is nonzero. In this way, we see that Zippel’s algorithm constructs
at most nt D-queries: the f (k−1)

i for k ∈ (1..n] and i ∈ [t(k)], as well as the images produced in
the first stage.

5.3 Randomized Kronecker substitutions

In this section we describe a multivariate interpolation strategy first given in [AR14]. This is
joint work with Daniel S. Roche. As in the case of Kronecker substitution, this technique relies
on univariate interpolation as a subroutine. We reconstruct a polynomial from a set of univari-
ate images, i.e., substitutions. As such, the method works in any setting over any coefficient
ring whereby one can interpolate T -sparse univariate polynomial of appropriately large degree.
Such settings include straight-line programs and extended black-boxes over arbitrary commuta-
tive rings with identity, and black-box polynomials over integral domains of appropriately large
cardinality.

Recall that Kronecker substitution creates a single (D+1)n-query of f . We will instead choose
tuples of n integers s1, . . . , sn at random and construct multiple queries g(z) = f(zs1 , . . . , zsn).
When the si are not too large (e.g., if si ≪ Dn−1), then the degree of the univariate image will
be appreciably less than that resulting from Kronecker substitution.

Our method poses technical obstacles. First, two or more distinct terms in f may collide
in g. Second, as with sparse univariate interpolation, we need a means of reconstructing the
multivariate exponents from multiple queries. We show how choosing O(n+ log T) such random
queries may overcome these difficulties.

Example 5.3.1. Consider, for example, the bivariate polynomial

f = 3x9y − 2x5y4 − y6 + x2y9.

Using degree bound D = 10, the resulting Kronecker substitution would create a substitution

g(z) = f(z, z10) = 3z19 − 2z45 − z60 + z92.

116

Every term from g comes from a single term in f . Suppose instead we make substitutions

f1 = f(z5, z2) = −z12 + z28 − 2z29 + 3z47

f2 = f(z2, z5) = 3z23 − 3z30 + z49.

For the first substitution we have that #f1 = #f , such that there were no term collisions. In the
second substitution f2, the two terms −2x5y4 and −y6 collided to produce the term −3z30.

For the two terms not involved in a collision, both images can be used to recover the original
terms in f . The two terms in f1 and f2 with coefficient 1 have degrees 47 and 23, producing a linear
system [

5 2
2 5

] [
e1
e2

]
=

[
28
49

]
,

whose solution (e1, e2) = (2, 9) recovers the original term x2y9.

In the next sections we determine an appropriate choice of substitution entries si, such that a
suitably large number of terms of f do not collide in each substitution. We give two substitution
techniques: one for the strictly bivariate case that is advantageous in the case that T ≫ logD,
and one for the general n-variate case, where n ≥ 2.

5.3.1 Bivariate substitutions

Throughout this section, we will assume f ∈ R[x, y] is an unknown bivariate polynomial written
as

f =

t∑
i=1

cix
uiyvi .

We further assume partial degree bounds Dx ≥ degx(f), Dy ≥ degy(f), in addition to T ≥ t. Our
approach is to choose substitutions of the form

g(z) = f(zp, zq),

for randomly chosen primes p and q. In order to probabilistically bound the number of collisions
that occur for a choice of substitution vector, we prove the following lemma:

Lemma 5.3.2. Let f ∈ R[x, y] with partial degrees at most Dx, Dy and at most T ≥ 2 nonzero
terms, and µ ∈ (0, 1). Fix a nonzero term τ of f and define

M = 25
9 (T − 1)µ−1 lnDx lnDy,

λx = max

(
21,

⌈√
M

Dy

Dx

⌉)
,

λy = max
(
21,
⌈√

M Dx
Dy

⌉)
.

117

If we choose primes p ∈ (λx..2λx] and q ∈ (λy..2λy] independently and uniformly at random, then
the probability that τ collides in f(zp, zq) is less than µ.

Proof. Let τ = cix
uiyvi for some i ∈ [t]. We will say a pair (p, q) is bad if τ collides with any

other term in f(zp, zq). Let B denote the set of bad pairs of primes (p, q) with p ∈ (λx..2λx] and
q ∈ (λy..2λy]. A collision with the ith term τ occurs when

uip+ viq = ujp+ vjq (5.9)

for some j ̸= i, 1 ≤ j ≤ t. By reducing (5.9) modulo p and q, we see this may only occur if
p | (vi−vj) and q | (ui−uj). Since i ̸= j, it cannot be the case that both (ui−uj) and (vi−vj) are
zero. Furthermore, if one (ui − uj) or (vi − vj) is zero, then the ith and jth term cannot collide.
Thus, all collisions will occur at indices j ∈ J , where

J = {j ∈ [t] : (ui − uj)(vi − vj) ̸= 0}.

For each prime p ∈ (λx..2λx], define the subset of possible collision indices j as Jp = {j ∈ J : p |
(vi − vj)}. We have that ∏

p∈(λx..2λx]

p#Jp divides
∏
j∈J

(ui − uj) ≤ D(T−1),

where the product on the left-hand side is taken over all primes p ∈ (λx..2λx]. As the right-hand
side product is nonzero by definition of J , it follows that if Jp is nonempty for some p, then∑

p∈(λx..2λx]

#Jp < (T − 1) lnDy ln
−1 λx.

For each prime p, let Qp be the number of primes q ∈ (λy..2λy] such that (p, q) is bad. We have
that ∏

q∈Qp

q divides
∏
j∈Jp

(ui − uj) ≤ D
#Jp
x .

It follows that if #Qp is nonempty, then #Qp < #Jp lnDx ln
−1 λy, such that if Qp is nonempty

for any prime p ∈ (λx..2λx], then∑
p

#Qp <
lnDx

lnλy

∑
p

#Jp <
(T − 1) lnDx lnDy

lnλx lnλy
, (5.10)

The left-hand side of (5.10) is precisely #B. Note that M ≤ λxλy, such that by Lemma 2.4.4, the
number of pairs of primes (p, q) with p ∈ (λx..2λx] and q ∈ (λy..2λy] is at least

9λxλy
25 lnλx lnλy

≥ 9M

25 lnλx lnλy
=

(T − 1) lnDx lnDy

lnλx lnλy
µ−1 > #B · µ−1,

completing the proof.

118

Corollary 5.3.3. Let f ∈ R[x, y] with partial degress at most Dx, Dy and at most T nonzero terms.
Then for any µ ∈ (0, 1) and primes p, q chosen at random as in Lemma 5.3.2, the substitution
polynomial g(z) = f(zp, zq) has degree at most

O
(
Dx +Dy +

√
TDxDy log(Dx) log(Dy)

)

In comparison, the degree of a standard Kronecker substitution is O(DxDy). Because we
can naively take T to be at most DxDy, the randomized substitution will never be more than a
logarithmic factor greater than DxDy. When f is known to be sparse, i.e., when T ≪ DxDy, we
can obtain a substitution of appreciably reduced degree.

5.3.2 Multivariate substitutions

The analysis of the previous section fails in the n-variate case, where n > 2, as colliding terms may
have exponents differing in two or more variables. As a result we do not have the same divisibility
conditions as we used in the proof of Lemma 5.3.2. We take a different approach, choosing
random integers as substitution vector components, not necessarily prime. This approach may
apply to the bivariate case as well, and may be advantageous over the strategy of the previous
section in the case that T ≪ log(DxDy).

In this section, we write f ∈ R[x1, . . . , xn] as

f =
t∑

i=1

cix
ei ,

where each ei ∈ Zn is distinct, and n ≥ 2. We let D ≥ maxni=1 degxi
(f) and T ≥ t as usual.

Lemma 5.3.4. Let f =
∑t

i=1 cix
ei ∈ R[x1, . . . , xn] with at most T nonzero terms, and τ = cix

ei

the ith term of f for some fixed i ∈ [t]. Fix µ ∈ (0, 1), let γ > (T − 1)/µ be prime, and choose s ∈ Zn
γ

uniformly at random. Then e⊤i s ̸≡ e⊤j s (modγ) for some j ∈ [t] \ {i} with probability exceeding
1− µ. In particular, τ collides in f(zs) with probability less than µ.

Proof. Identify [0..γ) with Zγ , and let s = (s1, . . . , sn) ∈ Zn
γ be a randomly-chosen vector. Con-

sider the jth term of f , j ∈ [t] \ {i}. Let uj = ei − ej ∈ Zn. Observe that uj ̸= 0, and that the ith
and jth terms of f collide in f(zs1 , . . . , zsn) if and only if u⊤

j s = 0.

Let ℓ ≥ 0 be the largest integer such that γℓ divides every entry in uj , and write vj = djγ
−ℓ.

We have that vj ∈ Zn and uj mod γ ̸= 0. Furthermore, u⊤
j s = 0 if and only if d′⊤j s = 0.

119

Now, if v⊤j s = 0, then this also holds modulo γ, such that s lies in the (n − 1)-dimensional
null space of v⊤j mod γ. Denote this null space by W ⊆ Zn

γ . The probability that s ∈ W is γ−1,
such that the probability that terms i and j collide is at most γ−1 as well.

Taking the union bound over the t − 1 indices j ∈ [t] \ {i}, we have that the probability that
the ith term of f collides with any other term of f is at most (t− 1)γ−1 ≤ (T − 1)γ−1, which less
than µ by the definition of γ.

By Lemma 2.4.4, there exists a prime γ where (T − 1)/µ < γ ≤ max(21, 2⌈(T − 1)/µ⌉) ∈
O(Tµ−1). In the following Corollary we give the resulting degrees of the univariate polynomials:

Corollary 5.3.5. Let f ∈ R[x1, . . . , xn] with partial degrees at most D and at most T nonzero terms.
For integers s1, . . . , sn chosen randomly as in Lemma 5.3.4, the polynomial g(z) = f(zs1 , . . . , zsn)
has degree at most O(nDTµ−1).

5.4 Multivariate iterative sparse interpolation

We give an algorithm for the interpolation of a multivariate polynomial over an arbitrary commu-
tative ring with identity. We exclude an analysis of the technique in the strictly-bivariate case, as
the improvement over Kronecker substitution is less pronounced. The method described is a mul-
tivariate analogue of two-prime interpolation described in Section 3.4. As with that algorithm,
we will maintain a sparse polynomial fsparse such that #(f − fsparse) decreases by a factor of 1/2.

We choose a substitution vector s such that most of the terms of f do not collide with respect
to s, and then construct a set of images corresponding to substitution vectors of the form s+ri for
which we can identify terms in the images f(zs+ri) with terms in the image f(zs). In this fashion
we will be able to construct the terms of f that appear as singletons in f(zs), plus potentially
additional deceptive terms constructed from information from collisions.

Similar to the selection of a 5/8-support prime in two-prime interpolation, we will look for a
substitution vector for which at most a proportion 3/8 of the terms of g collide. We let a σ-support
vector for g denote a substitution vector s such that a proportion of at most σ terms of f are in
collisions in the image g(zs).

As with two-prime interpolation, we would like a means of selecting an image with minimally
many terms of g appearing in collisions. we show that a good candidate is the choice of s for
which g(zs) has maximally many terms. We define Cg(s) to be the number of terms of g that are
in collisions for a choice of substitution vector s. By a completely analogous argument to that of
Lemma 3.4.5 and Corollary 3.4.6, we claim the following lemma:

Lemma 5.4.1. Let u and v be substitution vectors such that #g(zu) ≥ #g(zv). Then Cg(u) ≤
2Cg(v).

120

From Lemma 5.4.1 we obtain the following proposition:

Proposition 5.4.2. Let g ∈ R[x] be n-variate and T -sparse. Let γ be a prime exceeding 16T and
ℓ ≥ ⌈ 1

32 ln(Tµ
−1)⌉. Choose s1, . . . , sℓ ∈ Zn

γ independently and uniformly at random. Then any of
the si maximizing #g(zsi) is a 5/8-support vector with probability at least 1− µ.

Proof. By Lemma 5.3.4, if we choose s uniformly at random from Zn
γ , then a fixed term τ of g

collides with probability at least 1/16. Then if we choose ℓ = ⌈ 1
32 ln(Tµ

−1)⌉ substitution vectors
s1, . . . , sℓ ∈ Zn

γ independently and uniformly at random, by Hoeffding’s inequality each term
collides for at most a proportion 3/16 of the substitution vectors si with probability at least 1−µ/T ,
such that by the union bound this occurs for all terms of g with probability at least 1−µ. In which
case, there must exist si for which a proportion of at most 3/16 of the terms of g collide.

Once we fix a substitution vector s and a substitution g0(z)
def
= g(zs), we pick a set of n-

vectors r1, . . . , rn, such that we can correlate terms from the substitutions gi = g(zs+ri) to terms
in g(zs). We let ri ∈ Zn

≥0 be zero except for its ith component. We set ri1 to some value w such
that the formal terms of g(zs) with nonzero preimages have distinct exponents modulo w. Then
we associate terms of g(zs+ri) with single terms of g(zs).

If a term cxe of g appears as a singleton term czd in g(zs) then it will appear as czd+wei in
g(zs+ri) for each i ∈ [n]. For each term czd in g0 and each i ∈ [n], we look for a unique term with
degree di. If such terms exist for a given d and all i ∈ [n], we construct a term τ = cxe, where
e = (e1, . . . , en).

If a pair of terms c1xe1 and c2x
e2 of g form a collision in g(zs) at degree d, then, for any

i ∈ [n] such that e1i ̸= e2i, g(zs+ri) will have two distinct terms of degrees d1 ̸= d2 such that
d1 ≡ d2 ≡ d (mod w), namely c1zd+we1i and c2zd+we2i . In this event we know that the degree-d
term of g0 is a not a singleton.

As few as three terms colliding may result in a deceptive term. One may produce an additional
check to test if a constructed term τ is deceptive by testing that τ(zs) = zd, such that τ agrees
with its supposed image in g0. If we observe this then we know that the degree-d term of g(zs) is
not a singleton; however, as we illustrate in the following example, this check is not robust.

Example 5.4.3. Let g(x1, x2, . . . , x6) = x1x2x3x4 + x3x4x5x6 − x2x3x4x5. Suppose we choose a
substitution vector s = (1, 1, 1, 1, 1, 1), such that the terms of g all collide at degree 4 in

g0 = g(zs) = g(z, z, z, z, z, z) = z4.

1The author laments that “ei”, the common notation for a standard basis element, is already in use.

121

Then, choosing v = 1, our approach will construct univariate images

g1 = g(z2, z, z, z, z, z) = z5 + z4 − z4 = z5, g2 = g(z, z2, z, z, z, z) = z5 + z4 − z5 = z4,

g3 = g(z, z, z2, z, z, z) = z5 + z5 − z5 = z5, g4 = g(z, z, z, z2, z, z) = z5 + z5 − z5 = z5,

g5 = g(z, z, z, z, z2, z) = z4 + z5 − z5 = z4, g6 = g(z, z, z, z, z, z2) = z4 + z5 − z4 = z5.

We (erroneously) suppose that the z4 term of g0 is the image of a single term τ of g, and construct
the partial exponents ei of τ as ei = deg(gi) − deg(g0) for i ∈ [6]. This gives a deceptive term
τ = x1x3x4x6 that is not a term of g. Note that τ(zs) = z4, such that this deceptive term agrees with
the image g0.

Note that, in order for a deceptive term to occur, we need a collision of terms σ ∈ g forming
a multiple in the substitution g(zs), such that σ(zs+ri) appears as a single, unique nonzero term
for each i ∈ [n]. We argue this cannot happen in the bivariate case. If all of the terms of σ collide
in g(zs), then the exponents of σ all lie in some translation of the nullspace of s⊤. Moreover, for
each i ∈ [n], in order for σ(zs+ri) to appear as a single term, there must be a collision of some
terms of σ under that substitution. That is, σ has a pair of terms c1xe1 and c2xe2 such that e1−e2
is in the nullspace of (s+ri)⊤, and hence ri, for each i ∈ [2]. As e1−e2 is in the nullspace of s as
well as ri, and e1 = e2, we must have that s and r1 have the same nullspace, and that s and r1
differ by a nonzero constant factor. By the same argument we get that s is a constant multiple of
r2, a contradiction. We were unable to determine if a deceptive term may occur in the n-variate
case, for n ∈ [3..5].

We can take w, i.e., the amount we add to the i-th component of s in the image gi, to be
B + 1 for a degree bound B ≥ deg(g(zs)). The substitution g0 will have degree at most B =
nD(γ − 1) ∈ O(nDT). We can also take v to be a prime such that the formal terms of g(zs)
with a nonzero preimage remain distinct modulo (zw − 1). We will call such terms of g(zs) its
significant formal terms. Per the proof of Lemma 3.3.6, as there are at most T such terms, we
can probabilistically select a “good prime” w ∈ O(T 2 logB) = O(T 2 log(nDT)). One may choose
whichever possibility for w is smaller, which depends on the relative sparsity of g.

5.4.1 Interpolation

We describe our interpolation procedure in Algorithm 16. We state its correctness and cost as a
Theorem.

Theorem 5.4.4. Algorithm 16 interpolates a black-box polynomial f with probability at least 2/3.

• O(log2 T) queries of degree O(nTD);

• O(n log T) queries of degree O(nDT +DT min(nD, T log(nTD))).

122

Algorithm 16: Multivariate iterative sparse interpolation
Input: f ∈ R[x], an n-variate black-box polynomial; D ≥ maxni=1 degxi

(f); T ≥ #f .
Output: With probability at least 2/3, a sparse representation of f .

1 Tg ← T ;
2 fsparse ← 0 ∈ R[x1, . . . , xn], a sparse polynomial;
3 µ← 1/(3⌈log T + 1⌉);

4 while Tg > 0 do
// Construct g0 = g(zs) for a 5/8-support substitution vector s

5 γ ← a prime from (16Tg..32Tg];
6 S ← ℓ = ⌈ 1

32 ln(2Tgµ
−1)⌉ vectors s ∈ Zn

γ chosen uniformly at random;
7 g0 ← (f − fsparse)(zs), where s = argmaxs∈S #(f − fsparse)(zs);

// Construct substitutions gi, for i ∈ [n]
8 B ← nD(γ − 1);
9 w ← B + 1;

10 λ← max(21, ⌈T (T − 1) lnB⌉);
11 if λ≪ B then
12 Choose m = ⌈log(2µ−1)⌉ primes p1, . . . , pm ∈ P(λ..2λ] at random;
13 if #(g mod pi) = #g for some pi then w ← pi;
14 else return fail;

15 for i← 1 to n do
16 ri ← ith column of wIn, where In is the n× n identity matrix;
17 gi ← (f − fsparse)(zs+ri);

// Construct terms and update fsparse and Tg
18 for each term cxd of g0 do
19 if for each i ∈ [n], gi has a unique nonzero term of degree di ≡ d (modv) then
20 e← w−1(d1 − d, d2 − d, . . . , dn − d);
21 if e⊤s ̸= d then continue;
22 fsparse ← fsparse + cxe;

23 Tg ← ⌊Tg/2⌋;
24 if #fsparse > Tg + T then return fail;

25 return fsparse

Proof. The algorithm has at most ⌈log T + 1⌉ iterations of the outer while loop. Thus it suffices
that each iteration succeeds with probability at least 1 − µ, where µ = 1/(3⌈log T + 1⌉). The

123

probabilistic steps of a single iteration of the while loop are the selection of a 5⁄8 substitution
vector s, and (possibly), the selection of a good prime pi for g0 = (f − fsparse)(zs).

By Proposition 5.4.2, s is a 5/8-support substitution vector with probability at least 1 − µ/2.
The total degree of g0 is at most nD(γ − 1) = B. By Lemma 3.3.6, a prime chosen at random
from (λ..2λ] is a good prime for g0 with probability at least 1/2, such that the probability that
m = ⌈log(2µ−1)⌉ primes p1, . . . , pm ∈ (λ..2λ] are all not good primes for g0 is 2−m ≤ µ/2. By the
union bound an iteration succeeds with probability at least 1− µ.

We now analyze the cost for a single iteration of the outer while loop. The selection of a
5/8-support substitution vector s requires ℓ ∈ O(log T) calls to an interpolation procedure to com-
pute images (f − fsparse)(zs) of degree at most nD(γ − 1) ∈ O(nTD). The n shifted substitutions
gi, i ∈ [n] are T -sparse with degree at most

nDT +Dw = O(nDT +Dmin(B, λ)) = O(nDT +Dmin(nDT, T 2 log(nDT)))

= O(nDT +DT min(nD, T log(nDT))).

Accounting for all O(log T) iterations gives the number of queries.

We remark that the additional bit-cost due to selecting primes does not dominate the cost of
constructing the univariate images. The selection of primes p1, . . . , pm ∈ P(λ..2λ], can be done
with probability, say, 1− µ/100 via GetPrimes with cost

Õ(m · polylog(λ) log(µ−1)) ⊆ Õ(polylog(T log log(nD))),

which is less than the bit sizes of the sparse representations of the univariate images. The cost of
identifying terms in the images gi, i ∈ [n], with terms in g0 can be done via a dictionary with cost
softly-linear in the bit size of g0, . . . , gn.

We also note that one could instead of choosing v to be a prime for which a constant propor-
tion of the significant terms of g0 do not collide modulo (zv − 1). This would allow us to choose
w ∈ O(T logB) = O(T log(nDT)). This would require a lengthier analysis.

5.5 Multivariate diversification

Multivariate iterative sparse interpolation allows us to collect terms from multiple substitutions
by allowing for substitutions of larger degree. We can forego this by way of the multivariate
analogue of diversification. We note that the maps f → f(zs) are sparsity-preserving maps acting
on the multivariate ring R[x]. We remind the reader of a notion of a diversifying set, now defined
in a multivariate setting.

124

Definition 5.5.1. Let Φ1,Φ2, . . . ,Φℓ : R[x]→ R[y] be sparsity-preserving maps. Define fi = f(zsi),
for i ∈ [ℓ]. We say a1, . . . ,am form a diversifying set for f with images fi = Φi(f), i ∈ [ℓ] if, for
any pair of formal terms τ1 = c1x

e1 of fi and τ2 = c2x
e2 of fj with respective nonzero preimages σ1

and σ2, σ1 ̸= σ2, then there exists k ∈ [m], such that σ1(ak) ̸= σ2(ak).

As in the univariate case, a diversifying set for f and f1, . . . , fℓ will allow us to collect terms
from f1, . . . , fℓ according to their preimage. For a = (a1, . . . , an) ∈ Rn, let

fij
def
= f(ajz

si) = f(aj1z
si1 , . . . , ajnz

sin),

A diversifying set {a1, . . . ,am} is precisely a set that builds a one-to-one correspondence between
nonzero preimages and vectorized coefficients. Consider the vector polynomial f given by

f(x)
def
= (f(a1x), . . . , f(amx)) ∈ Rm[x], (5.11)

and may write f = f(Ax), where the ith column of A ∈ Rn×m is given by ai. We also define the
images

f i
def
= f(Azsi) = (fi1, . . . , fiℓ) ∈ Rn[z], i ∈ [ℓ].

If {a1, . . . ,am} forms a diversifying set for f with substitutions f1, . . . , fℓ, then any pair of terms
from the substitutions f1, . . . ,f ℓ that share a common nonzero vector coefficient cmust have the
same preimage.

We associate with each nonzero term cxe ∈ f i a key c ∈ Rm, where ci is the coefficient of the
degree-e term of fij = f(ajz

si). By the definition of a diversifying set, collecting terms according
to these keys will group the terms according to their preimage. The following Lemma allows us
to probabilistically construct diversifying sets:

Lemma 5.5.2. Let Φ1, . . . ,Φℓ : R[x] 7→ R[y] be sparsity-preserving maps, f ∈ R[x], D∗ ≥ deg(f),
T ≥ #f and fi = Φi(f) for i ∈ [ℓ]. Let S ⊂ R be a finite regular-difference set of cardinality at least
ρD∗, where ρ > 1. Let

m =

⌈
2 log(T/2) + 2 log(1 + ℓ/2) + log µ−1

log ρ

⌉
.

Choose a1, . . . ,am independently and uniformly at random from Sn. Then {a1, . . . ,am} forms a
diversifying set for f with f1, . . . , fℓ with probability at least 1− µ.

We exclude a proof, but note that it follows essentially in the same way as the proof of Lemma
3.5.4. The only difference is that now we consider total degree bound by D∗, as opposed to
univariate degrees bound by D. The DLSZ Lemma still applies. In the case that f has partial
degrees bound by D, we can take D∗ = nD, giving us this immediate Corollary in the case f is
an extended black-box polynomial over Fq.

125

Corollary 5.5.3. Let f ∈ Fq[x1, . . . , xn] with partial degrees at most D and at most T terms, with
substitutions f1, . . . , fℓ, and µ ∈ (0, 1), and fix a set of images f1, . . . , fℓ Let u = ⌈logq(2nD + 1)⌉,
and let m = ⌈2 log T + 2 log(1 + ℓ/2) + log(µ−1) − 1⌉. Choose a1, . . . ,am ∈ Fqu independently
and uniformly at random. Then {a1, . . . ,am} forms a diversifying set of f with f1, . . . , fℓ with
probability at least 1− µ.

5.6 Bivariate and multivariate majority-rule sparse interpolation

In this section we show how one can interpolate an extended black-box polynomial f using
randomized substitutions with diversification. As with univariate majority-vote interpolation, we
will construct all the terms of f in one batch. We letD∗ = nD be a bound on the total degree of f .
We will consider the case that f ∈ Fq[x], but the algorithms generalize to f over ring containing
a regular-difference set of cardinality at least 2D∗ (or, more generally, (1 + ϵ)D∗ for a constant
ϵ > 0).

If T = 1, then we simply perform n substitutions

f(z, 1, . . . , 1), f(1, z, 1, . . . , 1), . . . , f(1, . . . , 1, z),

each of which reveals the single term and its exponent in one of the variables. No randomization
here is necessary. For the remainder of the Chapter we assume T ≥ 2.

5.6.1 Choosing substitutions and a diversifying set

We first select ℓ randomized Kronecker substitutions s1, . . . , sℓ. We will require that the si are
chosen in such a way that, with high probability, every term of f avoids collision for at least half
of the substitutions si. To achieve this we first randomly select substitutions in a manner such
that any fixed term of f avoids collision for a fixed substitution s with probability exceeding 3/4.

In order to achieve this in the bivariate case, we choose primes p and q according to Lemma
5.3.2, and set a substitution vector s = (p, q). That is, we set

λx = max

(
21,

⌈
10
9

√
(T − 1)Dy/Dx lnDx lnDy

⌉)
,

λy = max

(
21,

⌈
10
9

√
(T − 1)Dx/Dy lnDx lnDy

⌉)
.

and randomly choose primes p ∈ (λx..2λx] and q ∈ (λy..2λy] independently and uniformly at
random. In the general n-variate case we choose s ∈ [0..γ)n, where we follow Lemma 5.3.4 and
take γ to be a prime where γ > 4(T − 1).

126

The following lemma shows how many substitutions ℓ are required such that every term of f
appears without collisions in at least half of the images.

Lemma 5.6.1. Let f ∈ R[x1, . . . , xn] be T -sparse. Set

ℓ = max(4n, ⌈8 ln(Tµ−1)⌉),

and choose ℓ vectors s ∈ Zn
≥0 such that, for any single s and for any fixed term τ of f , the probability

that τ collides with another is less than 1/4. Then, with probabilty at least 1 − µ, every term of f
collides with no others for at least 2n of the substitutions.

Proof. By Hoeffding’s inequality (Thm. 2.3.4), the probability that any fixed term of f collides in
a proportion of at least 1/2 of the substitutions is less than exp(−ℓ/8) ≤ T−1µ. Taking the union
bound over the at most T terms of f completes the proof.

We choose substitution vectors s1, . . . , sℓ and construct the substitutions

fi = f(zsi) = f(zsi1 , zsi2 , . . . , zsin), i ∈ [ℓ]. (5.12)

By Lemma 5.5.2, if we take r = ⌈logq(2nD)⌉ and m = ⌈2 log T + 2 log(1 + ℓ/2) + 2⌉ and choose
a1, . . . ,am ∈ Fm

qr independently and uniformly at random, then A = {a1, . . . ,am} forms a diver-
sifying set with probability at least 7/8.

If A forms a diversifying set, then distinct vector coefficients occurring in the images f i given
by (5.11) will each have distinct preimages. Then, by Lemma 5.6.1, any nonzero vector coeffi-
cients that appears in over half of the images f i will have a preimage that is a distinct term of
f .

5.6.2 Recovering the multivariate exponents

For each vector coeffcient c that appears in at least ℓ/2 of the images f i, we attempt to find a set of
n substitutions fi(α) for which f i contains the coefficient c, and the corresponding substitution
vectors are linearly independent. In the bivariate case this is not difficult as any 2 × 2 linear
system formed by two substitution vectors will have nonzero determinant since in this case the
substitution vectors are distinct ordered pairs of primes.

The general multivariate case is more invovled, as a choice of n substitution vectors may not
always be linearly independent. For this case we suppose there are at least 2n vectors si, i ∈ Ic,
where Ic ⊂ [ℓ] which give vector images f i each containing the vector coefficient c. In order to
construct a unique exponent, we require that the matrix whose rows are given by si, i ∈ Ic, has
full rank. This requires some care because this probability is conditional on the fact that some
fixed term of f does not collide for each of the si.

127

Lemma 5.6.2. Let f ∈ R[x1, . . . , xn] and λ be a prime number, and suppose that a term of f avoids
collision in an image f(xs), for a randomly-chosen s ∈ [0..λ)n, with probabilty at least 3/4. Let
s1, . . . , s2n be row vectors chosen independently and uniformly at random from [0..λ)n. Given that
a fixed term τ ∈ f avoids collision in the images f(zri), i ∈ [2n], then for the matrix

S =
[
s1 · · · s2n

]⊤ ∈ Z2n×n
λ , (5.13)

S mod λ has rank less than n with probability at most (9
16λ)

−n.

Note that if S mod λ has full rank, then S is as well.

Proof. If S has rank less than n, then S mod λ also has rank less than n. We identify {0, 1, . . . , λ−
1} with Zλ and consider the si and S as being over Zλ.

Suppose then that S has rank less than n. Then s1, . . . , s2n all lie in some (n− 1)-dimension
subspace W ⊆ Zn

λ, of cardinality λn−1. Thus W may be specified by a nonzero vector spanning
its orthogonal space, unique up to a scalar multiple. It follows that the number of such possible
subspaces W is less than λn, and so the number of possible 2n-tuples comprised of substitution
vectors that do not span Zn

λ is at most

λn(λn−1)2n = λ2n
2−n.

Meanwhile, there are λ2n
2

possible 2n-tuples of substitution vectors from λn, and thus the prob-
ability that such a 2n-tuple does not span W is a most λ2n

2−(2n2−n) = λ−n. Furthermore, by the
hypothesis, the probability that a term of f avoids collision for every substitution f(zsi) is at least
(3/4)2n. Thus the conditional probability that S is not full rank, given that a fixed term of f avoids
collision for each si is at most λ−n(3/4)−2n = (9

16λ)
−n.

From this we show that, with high probability, every term τ ∈ f admits such a full rank matrix
S of substitution vectors in whose corresponding substitution τ does not collide.

Corollary 5.6.3. Let λ ≥ 4T and f ∈ R[x1, . . . , xn] be T -sparse, where T ≥ 2 and n ≥ 3. Suppose
that any fixed term τ ∈ f avoids collision for a randomly selected substitution vector s ∈ [0..λ)n with
probability at least 3/4. Choose s1, . . . , sℓ ∈ [0..λ)n independently and uniformly at random.

If every term τ ∈ f avoids collision for at least 2n substitution vectors sτ1, . . . , sτm ∈ {si :
i ∈ [ℓ]}, then with probability at least 713/729, Sτ has full rank for every term τ ∈ f , where Sτ =
[sτ1 · · · sτ2n].

Proof. By Lemma 5.6.2 the probability that a single term does not have a full-rank set of good
substitution vectors is at most (9

16λ)
−n. By the union bound, and using that λ ≥ 4T ≥ 8, the

probability that any of the at most T ≥ 2 terms of f each have such a full-rank set is less than

T

(
16

9λ

)n

≤ λ

4

(
16

9λ

)n

=
4

9

(
16

9λ

)n−1

≤ 4

9

(
2

9

)2

=
16

729
.

128

For every nonzero vector coefficient c occuring in any of the vector polynomials f i, we main-
tain a matrix Sc whose rows are s⊤i , i ∈ [ℓ] such that f i has some term of the form cxdi . We may
implicitly store Sc as the list of indices i corresponding to the si that comprise the scj . For any
vector coefficient c that results in a matrix Sc of more than 2n rows, we randomly truncate Sc to
2n rows by removing some at random, and then solve the 2n× n overdetermined system

Sc

e1...
en

 =

 dc,1...
dc,2n

 , where Sc =

 s
⊤
c,1
...

s⊤c,2n

 ,
and dc,i is the degree of the term with coefficient c appearing in the substitution f(zsc,i).

Remark 5.6.4. A fixed collision σ of terms of f may appear in 2n or more images fi, however, it will
not give a full-rank linear system. If a pair of terms c1xe1 , c2xe2 ∈ f collided to form a multiple for
substitution vectors s1, . . . , sn forming a full-rank system, then we would have that[

s1 · · · sn
]⊤

(e1 − e2) = 0,

such that e1 = e2.

We give pseudocode for the bivariate case with distinct partial degree bounds in Algorithm
17, and the general multivariate case with a total degree bound. The algorithms differ in the
selection of the substitution vectors, and the construction of a full-rank linear system. Otherwise
the algorithms are essentially the same.

Per the preceding analysis, the bivariate algorithm succeeds with probability at least 3/4, and
the univariate algorithm succeeds with probability at least 3/4− 16/729 ≥ 8/11.

We now analyze the costs. To simplify the analysis in the bivariate case we consider the case
when Dx = Dy = D such that λx = λy = λ for some constant λ. In the bivariate case we chose
ℓ = O(log T) substitutions vectors with entries of magnitude at most O(λ) ⊆ O(

√
T logD), and

a diversifying set of m ∈ O(log T + log ℓ) = O(log T) vectors aj ∈ R. The univariate degrees of
the substitutions are, per Corollary 5.3.3 at most O(D logD

√
T). In other words, the query cost

is O(log2 T) shifted queries of degree O(D logD
√
T).

The bit cost of generating 2ℓ ∈ O(log T) primes pi, qi ∈ O(λ) via a Monte Carlo method (e.g.,
GetPrimes) is

Õ(ℓ log λ) ⊂ Õ(log2 T + log T log logD).

We have to solve 2T 2 × 2 linear systems Sce = d where the entries of Sc and d are Õ(D
√
T).

Using the “grade-school” method of solving the at-most T linear systems gives a bit cost of
Õ(T log(D

√
T)) = Õ(T logD). We can choose 2ℓ primes from (λ..2λ] with probability at least,

say, 99/100, with a bit cost of Õ(ℓ · polylog(λ)) ∈ Õ(polylog(T logD)). As the total bit size of the
sparse representation of the substitutions fij is Ω(T logD), the query cost must dominate the
total cost of the algorithm. We state its cost as a Theorem.

129

Algorithm 17: Bivariate majority-rule interpolation
Input: f ∈ Fq[x, y], an extended black-box polynomial; Dx ≥ degx(f); Dy ≥ degy(f);

D∗ = DxDy; T ≥ #f .
Output: A sparse representation of f , with probability at least 2/3.

// Choose substitution vectors

1 ℓ← ⌈8 ln(8T)⌉;
2 λx = max

(
21,
⌈
10
9

√
(T − 1)Dy/Dx lnDx lnDy

⌉)
;

3 λy = max
(
21,
⌈
10
9

√
(T − 1)Dx/Dy lnDx lnDy

⌉)
;

4 Choose distinct primes p1, . . . , pℓ ∈ (λx..2λx] and q1, . . . , qℓ ∈ (λy..2λy] independently and
uniformly at random;

5 for i← i to ℓ do si ← (pi, qi);

// Choose diversifications

6 r ← logq(2nD);
7 m← ⌈2 log(T/2) + 2 log(1 + ℓ/2) + 2⌉;
8 Choose a1, . . . ,am ∈ F2

qr independently and uniformly at random;

// Construct substitutions

9 for i← 1 to ℓ do
10 Interpolate fi = f(zsi) ∈ Fqr [z];
11 for j ← 1 to m do Interpolate fij = f(ajz

si) ∈ Fqr [z];
12 f i ← (fi1, . . . , fim) ∈ Fm

qr [x];

// Construct exponents via linear systems

13 g ← 0 ∈ Fq[x], a sparse polynomial;
14 for every coefficient c ̸= 0 appearing in at least 2 substitions f i ̸= f j , i ̸= j ∈ [ℓ] do
15 Sc ← [si sj]

⊤ ∈ Z2×2;
16 for k ∈ {i, j} do dk ← degree of term with c coefficient in f i;
17 d← (di, dk) ∈ Z2;
18 e← solution to Sce = d;
19 c← coefficient of degree-d1 term of fi;
20 g ← g + cxe;

21 return g;

130

Algorithm 18: Multivariate majority-rule interpolation
Input: f ∈ Fq[x1, . . . , xn], an extended black-box polynomial; D ≥ maxni=1 degxi

(f);
D∗ = nD; T ≥ max(#f, 2).

Output: A sparse representation of f , with probability at least 2/3.

// Choose substitution vectors

1 ℓ← max(4n, ⌈8 ln(8T)⌉);
2 λ← a prime in (4T..8T];
3 Choose s1, . . . , sℓ ∈ [λ]n independently and uniformly at random;

// Choose diversifications

4 r ← ⌈logq 2nD⌉;
5 m← ⌈2 log(T/2) + 2 log(1 + ℓ/2) + 2⌉;
6 Choose a1, . . . ,am ∈ Fn

qr independently and uniformly at random;

// Construct substitutions

7 for i← 1 to ℓ do
8 Interpolate fi = f(zsi) ∈ Fq[z];
9 for j ← 1 to m do Interpolate fij = f(αjz

si) ∈ Fqr [z];
10 f i ← (fi1, . . . , fim) ∈ Fm

qr [z];

// Construct exponents via linear systems

11 g ← 0 ∈ Fq[x], a sparse polynomial;
12 for every coefficient c ̸= 0 appearing in 2n substitutions f(zs) for vectors
s ∈ {sc,1, . . . , sc,2n} ⊆ {si : i ∈ [ℓ]} do

13 Sc ← [sc,1 · · · sc,2n]⊤ ∈ Z2n×n;
14 for i← 1 to 2n do di ← degree of term with c coefficient in f i;
15 d← (d1, . . . , d2n) ∈ Z2n;
16 Find solution e to Sce = d via a fast Monte Carlo version of the algorithm of Thm.

2.1.9;
17 c← coefficient of degree-d1 term of fc,1;
18 g ← g + cxe;

19 return g;

131

Theorem 5.6.5 (c.f. Algorithm 17). There exists a Monte Carlo algorithm that, given a bivariate
extended black-box polynomial f ∈ Fq[x, y] and bounds D ≥ max(degx(f),degy(f)) and T ≥ #f

and, if #Z ≥ 4D, interpolates f and requiresO(log2 T) Fqr -shifted queries of degreeO(D logD
√
T),

where r = ⌈logq(2nD)⌉.

In the multivariate case we choose ℓ = O(n + log T) substitutions with entries bounded by
λ ∈ O(T), and m ∈ O(log T + log ℓ) diversification vectors. The resulting univariate images are
of degree O(nDλ) ⊆ O(nDT). We note that the combined bit size of the sparse representations
of images fij is Õ(ℓmTn logD) ∈ Õ(n2T logD).

Here the cost of linear system solving may affect the soft-oh cost if we take n as a parameter.
In order to achieve a Monte Carlo algorithm, it suffices to solve the at-most T 2n × n linear
systems Sce = d, each with probability at least 1 − ϵ, where ϵ < T/100. We can do this, e.g.,
using the algorithm of Theorem 2.1.9, with cost

Õ(nωT log(TD) log(ϵ)) = Õ(nωT logD).

This exceeds the combined bit size of the sparse images fij . We summarize with the following
Theorem:

Theorem 5.6.6. [c.f. Algorithm 18] There exists a Monte Carlo algorithm that, given an n-variate
extended black-box polynomial f ∈ Fq[x] with partial degrees bounded by D, and at most T terms,
and interpolates f with cost:

• O((n+ log T) log T) Fqr -shifted queries of degree O(nDT), where r = ⌈logq(2nD)⌉, and

• an additional O(nωT logD) bit operations due to linear system solving.

In the next section we will show how to reduce the cost when f is highly multivariate, by
choosing substitutions that form structured matrices.

5.7 Ultravariate majority-rule sparse interpolation

One caveat of the approach of the last section is that it potentially requires that we solve a unique
linear system for every term of f . In this section we present an interpolation method for sparse,
ultravariate (i.e. highly multivariate) extended black-box polynomials. This appears in [AGR15],
and is joint work with Mark Giesbrecht and Daniel S. Roche. We also include herein an idea from
Clement Pernet that further reduced the linear algebraic overhead by using structured linear
algebra. It is a synthesis of ideas presented in Sections 3.5 and 5.3.

132

The techniques herein rely on diversification again. As such our algorithm can extend to
polynomials over a R containing a sufficiently large regular-difference set. For the purposes of
the description here we consider an extended black-box polynomial f over a finite field Fq.

The idea is to work with images of the form

f(x) mod p def
= f(x) mod ⟨xp1 − 1, xp2 − 1, . . . , xpn − 1⟩,

for a choice of primes p. For each choice of prime p, we will only construct some of the terms of
f . We will choose substitutions s ∈ Zn

p , and construct univariate images

f(zs) mod p = f(zs1 , . . . , zsn) mod (zp − 1).

We do this for n vectors s1, . . . , sn, which form an n× n matrix over Zp. Then, using diversifica-
tion and collecting terms according to their coefficient, we are able to reconstruct e mod p for a
significant proportion of the exponents e ∈ supp(f) by solving a single n × n linear system over
Zp. We do this for ℓ ∈ O(logD + log T) primes pi in a manner such that, with high probability
and for every term τ ∈ f , we can construct τ mod (xpi − 1) for over half of the primes pi. We
then construct the exponents of f by way of Chinese remaindering. In this way, instead of solving
T integer linear systems, we solve O(logD + log T) linear systems modulo a prime.

Now a term of f can collide in one of two ways. Two terms can collide for a choice of
prime p if their componentwise difference modulo p is the zero vector, i.e., xe1 and xe2 collide if
(e1i − e2i) mod p = 0 for all i ∈ [n]. We will call this type of collision a prime collision. If those
terms are not in a prime collision, they can still collide for a choice of substitution vector s ∈ Zn

p .
I.e., we can have that (e1 − e2) mod p ̸= 0, but s⊤(e1 − e2) mod p = 0. We will call this type of
collision a substitution collision.

5.7.1 Selecting primes and substitution vectors

In order to appropriately select primes, we give a multivariate generalization of Lemma 3.5.1.
The proof follows very similarly.

Lemma 5.7.1. Let f ∈ R[x] be an n-variate polynomial with t ≤ T terms and partial degrees at
most D, µ ∈ (0, 1), and

λ ≥ max(21, 53(T − 1)µ−1 lnD).

Choose a prime p uniformly at random from (λ..2λ]. The probability that a fixed term τ ∈ f is not
in an prime collision in f(x) mod p exceeds 1− µ.

Proof. Write f =
∑t

i=1 cix
ei , and, without loss of generality, suppose τ is the term c1x

e1 . Let
B comprise the set of “bad” primes p ∈ (λ..2λ] such that τ is in a prime collision in the image

133

f(x) mod p. If c1xei and cix
ei , collide in f(x) mod p, then p divides e1j − eij for every j ∈ [n].

Furthermore, for every i ∈ (1..t], there must exist some j(i) ∈ [n] such that e1,j(i) ̸= ei,j(i). It
follows that, for each p ∈ B, p divides the nonzero integer

∏t
i=2(e1,j(i) − ei,j(i)). Thus, if B is

nonempty, we have

λ#B <
∏
p∈B

p ≤
t∏

i=2

(e1,j(i) − ei,j(i)) ≤ DT−1,

which gives us #B ≤ (T − 1) lnD ln−1 λ. By Lemma 2.4.4, the number of primes in (λ..2λ] is at
least 3

5λ ln
−1 λ ≥ (T − 1) lnD ln−1 λµ−1, completing the proof.

Unlike in previous sections, we will choose substitution vectors sp1, . . . , spn that form a Hankel
matrix S, such that the cost of the resulting n× n linear system solving over Zp is reduced from
Õ(nω) to Õ(n). This idea is due to Clément Pernet, and deviates from the algorithm given in
[AGR15]. The following Lemma, due to Pernet, shows that a randomly selected Hankel matrix
will produce substitution collisions with bounded probability.

Lemma 5.7.2 (C. Pernet, personal correspondence). Let f =
∑t

i=1 ∈ R[x] with t ≤ T terms.
Choose s1, . . . , s2n ∈ Zp independently and uniformly at random. Then a term τ of f avoids substi-
tution collisions for

si = (si+1, . . . , si+n) ∈ Zn
p , (5.14)

for all i ∈ [n] with probability at least 1− n(T − 1)/p.

Proof. Consider a pair of terms τ1 = c1x
e1 and τ2 = c2x

e2 . If τ1 and τ2 are in a substitution
collision, then we have that e1 − e2 ̸= 0 mod p, such that there exists j ∈ [n] such that e1j ̸= e2j .
Without loss of generality suppose j = n.

For each i ∈ [n] and for a fixed choice of si, . . . , si+n−1 ∈ Zp, we have that s⊤i e = 0 if and only
if

si+n =

∑n−1
k=1 sk(e1k − e2k)
e1n − e2n

, (5.15)

such that there is a unique choice of si+n for which s⊤i (e1 − e2) = 0, and τ1 and τ2 collide with
probability at least 1− 1/p. The lemma then follows from the union bound.

Lemma 5.3.4 gives a means of bounding the probability that a term is in a substitution colli-
sion. We take p > 10n(T − 1), and s1, . . . , sn ∈ Zn

p are chosen independently and uniformly at
random, then a fixed term of f will not collide in any substitution f(zsi), i ∈ [n], with probability
at least 9/10.

We will require, in addition, that s1, . . . , sn ∈ Zn
p form a nonsingular matrix S ∈ Zn×n

p .
In a non-theoretical setting, we may just reselect s1, . . . , s2n ∈ Zp, until we get a nonsingular

134

matrix; however, for the purposes of obtaining a deterministic runtime, our algorithm will merely
disregard that particular prime p. To probabilistically guarantee that S is nonsingular we cite the
following Theorem.

Theorem 5.7.3 (Corollary 2, [KL96]). Let p be prime. Then for s1, . . . , s2n ∈ Zp chosen indepen-
dently and uniformly at random, the probability that the Hankel matrix

Sp =

s1 s2 · · · sn
s2 s3 · · · sn+1
...

...
. . .

...
sn sn+1 · · · s2n

 ∈ Zn×n
p (5.16)

is nonsingular with probability 1− 1/p.

By Lemmata 5.3.4 and 5.7.2, Theorem 5.7.3, and the union bound we have the following
Corollary.

Corollary 5.7.4. Let

λ ≥ ⌈max(21, 50
3 (T − 1) lnD, 10n(T − 1))⌉. (5.17)

Choose a prime p uniformly at random from (λ..2λ], and s1, . . . , s2n independently and uniformly at
random from Zp. Then, for a fixed term τ ∈ f , with probability exceeding 3/4 the following all occur:

(5.7.i) τ is not in a prime collision for the choice of p;

(5.7.ii) τ is not in a substitution collision for any of the si, i ∈ [n] given by (5.14);

(5.7.iii) The matrix S (5.16) is nonsingular.

We will call a prime p and choice of S ∈ Zn×n
p a good system for a term τ ∈ f if (5.7.i)-

(5.7.iii); otherwise we call it a bad system for τ . A good system for τ is precisely a system that
for which the resulting substitutions will reveal τ mod p, provided that

We will select ℓ distinct primes p1, . . . , pℓ ∈ (λ..2λ], and for each prime pi we construct a
system Si = [si,j+k+1]

n−1
j,k=0, where si,1, . . . , si,2n ∈ Zpi are chosen independently and uniformly

at random. By setting ℓ ≥ 8 ln(8T), at least half of the ℓ systems will be good for a fixed term of
f with probability at least 1 − T/8. By the union bound every term will have at least ℓ/2 good
systems with probability at least 7/8.

In order to be able to do this we require that (λ..2λ] contains at least 8 ln(8T) primes. By
Proposition 2.4.9, it suffices that λ ≥ 64

5 ln(8T) ln(8 ln(8T)) ∈ Õ(log(T)). We require in addition
that any ℓ/2 primes has a product exceedingD, such that we can reconstruct the partial exponents

135

of f via Chinese remaindering. By Corollary 2.4.5, to achieve this it suffices that λ ≥ 10
3 lnD, such

that (λ..2λ] contains at least 2 logλD primes. As 50
3 (T −1) lnD ≥ 10

3 lnD for T ≥ 2, this is already
satisfied by λ given by (5.17).

For i ∈ [ℓ] and k ∈ [n], we construct the images

fik
def
= f(zsi,k) mod p ∈ Z[z] mod p, where si,k

def
= (si,k, . . . , si,k+n−1) ∈ Zn

p .

For each term τ ∈ f for which the system (pi,Si) is good, we will construct the term τ mod p of

fi
def
= f(x) mod pi = f(x1, . . . , xn) mod (xpi1 − 1, . . . , xpin − 1).

As before, need to group terms from the images fi and fik, for i ∈ [ℓ] and k ∈ [n] according to
their preimage in f . Each collision polynomial σ, a sum of terms of f , has total degree at most
nD. For our purposes, it thus suffices that we choose diversifications from a regular-difference set
U of cardinality 2nD or greater. Over Fq, we require that we can work in an extension Fqr , where
r = ⌈logq(2nD)⌉, such that a random choice of a ∈ Fqr will distinguish two distinct preimages of
f with probability at least 1/2. We construct a

As there are in total (ℓ + 1)n images, we can naively bound the total number of nonzero
preimages of terms of f appearing as terms in fi or fik by (ℓ + 1)nT . Thus, if we choose m ≥
⌈log

(
ℓ+ 1)2n2T 2µ−1

)
⌉ diversification vectors a ∈ Fqr independently and uniformly at random,

then every colliding preimage will be distinguished by one of the choices of a with probability
at least 1 − µ. That is, the a form a diversifying with high probability. We summarize with the
following proposition:

Proposition 5.7.5. Suppose f ∈ Fq[x1, . . . , xn], with deg(f) ≤ D and #f ≤ T terms, and let

λ ≥ ⌈max(21, 50
3 (T − 1) lnD, 10n(T − 1), 64

5 ln(8T) ln(8 ln(8T)))⌉,
ℓ = ⌈max(8 ln(8T), 2 logλD)⌉,
m = ⌈log

(
ℓ+ 1)2n2T 2

)
+ 3⌉,

r = ⌈logq(2nD)⌉,

and choose each of the following independently and uniformly at random:

• ℓ distinct primes p1, . . . , pℓ ∈ (λ..2λ];
• ℓ Hankel matrices Si ∈ Zn×n

pi , i ∈ [ℓ];
• a1, . . . ,am ∈ FN

qr .

Then with probability at least 7/8, the following all hold:

• any ℓ/2 primes pi have product exceeding D;

136

• every term τ of f , at least half of the systems (pi,Si), i ∈ [ℓ] are good systems for τ ;
• a1, . . . ,am forms a diversifying set for f with the images fi, fik, i ∈ [ℓ], j ∈ [m].

Proposition 5.7.5 helps prove the correctness of Algorithm 19.

Theorem 5.7.6. Let f ∈ Fq[n] be a T -sparse extended-black-box polynomial with partial degress
at most D. Then Algorithm 19 interpolates f with probability at least 2/3 and a query cost of
Õ(n log T (logD + log T)) Fqr -shifted queries of degree O((T + n) logD), where r = 2nD.

Proof. We first prove correctness. The subroutine call to GetPrimes succeeds with probability at
least 11/12. By Proposition 5.7.5, we have sufficiently many good systems in order to reconstruct
each term τ ∈ f with probability at least 7/8. Thus by the union bound the algorithm succeeds
with probability 2/3 as desired.

We now analyze the query and bit costs. We construct ℓmn ∈ Õ(n log T (logD + log T)) Fqr -
shifted queries, each of degree O((T + n) logD).

The subroutine call GetPrimes(λ, ℓ; 1/12) costs Õ(ℓpolylogλ) bit operations. We solve at most
T n × n Hankel systems modulo pi ∈ Õ(λ). Accounting for all ℓ primes gives a total bit cost of
Õ(ℓnT log λ). Chinese remaindering to construct each of the n components, each at most D, of
each of the at-most T exponents of f costs Õ(nT logD). These costs total to

Õ(nT (ℓ+ logD)polylog(λ)) ∈ Õ(nT logD),

as ℓ ∈ Õ(logD + log T) and λ ∈ Õ(nT logD).

The ℓmn images fikj ∈ Fqr [z] may be encoded by their sparse representations each with
Õ(T (log(qr) + n logD)) ∈ Õ(T (n logD + log q)) bits. Thus all ℓmn images are encoded by

Õ(ℓmnT (n logD + log q)) ∈ Õ(n2T log2D + n2T logD log q)

bits. Thus the Õ(n2T log2D+n2T logD log q) cost of merely traversing the images fijk dominates
the bit cost of the algorithm.

5.7.2 A comparison of approaches to interpolate a multivariate SLP

One approach to interpolate an multivariate extended blackbox polynomial f ∈ Fq[x] is to com-
bine multivariate and univariate majority-rule algorithms (Algorithms 10 and 18). Per Theo-
rem 5.6.6, multivariate majority-rule interpolation entails some O((n + log T) log T) Fqr -shifted
queries of degree O(nDT), where r = ⌈logq(2nD)⌉. If we let E = nDT , then by Theorem 3.5.7,
each of these queries can be interpolated from O(logE log T) queries of degree O(T logE) ⊆

137

Algorithm 19: Ultravariate majority-rule interpolation
Input: An n-variate extended-black-box polynomial f ∈ Fq[x]; D ≥ maxni=1 degxi

(f);
T ≥ #f .

Output: With probability probability at least 2/3, a sparse representation for f .

// Choose parameters and make random selections

1 λ← ⌈max(21, 50
3 (T − 1) lnD, 10n(T − 1), 64

5 ln(8T) ln(8 ln(8T)))⌉;
2 ℓ← ⌈max(8 ln(8T), 2 logλD)⌉;
3 m← ⌈2 log(T/2) + 2 log(1 + ℓn/2) + 3⌉;
4 r ← ⌈logq(2nD)⌉;
5 p1, . . . , pℓ ← GetPrimes(λ, ℓ; 1/12);
6 Choose a Hankel matrices Si = (s⊤i1, . . . , s

⊤
in) ∈ Zn×n

pi , i ∈ [n] uniformly at random;
7 Select α1, . . . , αm ∈ Fn

qr independently and uniformly at random;

// Construct images

8 Interpolate fik = f(zsik) mod pi for i ∈ [ℓ], k ∈ [n];
9 Interpolate fikj = f(ajz

sik) mod pi for i ∈ [ℓ], j ∈ [m], k ∈ [n];
10 Construct vector polynomials f ik = (fi1k, . . . , fimk) ∈ Fm

qr [z] for i ∈ [ℓ], k ∈ [n];

// Solve linear systems to construct exponents modulo pi
11 for i ∈ [ℓ] do
12 gi ← 0 ∈ Zm

pi [x1, . . . , xm] mod pi , a sparse polynomial;
13 if Si is not invertible modulo pi then continue;
14 for every c ∈ Fm

qr such that czdk ∈ f ik for some dk ∈ supp(f ik), and all k ∈ [n] do
15 d← (d1, . . . , dn) ∈ Zn

pi;

16 ec,i ← solution to n× n Hankel system Siec,i = dc over Zpi;
17 gi ← gi + cx

e;

// Reconstruct exponents via Chinese remaindering

18 g ← 0 ∈ Fq[x], a sparse polynomial;
19 for each c appearing as a term cxec,i ∈ gi for at least ℓ/2 i ∈ [ℓ] do
20 ec ∈ [0..D]n ← solution to congruences {ec ≡ ec,i(modpi) : cx

ec,i ∈ gi};
21 c← coefficient of degree ec,i,1 in fi1, for some i ∈ [ℓ] such that c ∈ coeffs(gi);
22 g ← g + cxec;

23 return g

138

Õ(T log n logD). This entails O((n+log T) log T logD) Fqr -shifted queries. Per Lemma 5.1.3, the
total Fq-operation cost of these queries on a lenght-L SLP is

Õ(L(n+ log T) log T logD(T log n logD)) ⊆ Õ(LnT log2D),

this brings the total bit cost of these queries to

Õ(LnT log3D(r log q)) = Õ(LnT log2D(logD + log q)). (5.18)

Per Theorem 5.6.6, multivariate majority-rule interpolation costs an additional O(nωT logD) bit
operations, where ω ≤ is the exponent of matrix multiplication. This brings the total cost to

Õ(LnT log2D(logD + log q) + nωT logD).

In comparison, the bit cost due to queries of ultravariate majority-rule interpolation is

Õ(Ln log T (logD + log T)(T + n) logD(r log q))

⊆ Õ(Ln(n+ T) log2D(logD + log q)). (5.19)

Thus, compared to the first approach, ultravariate majority-rule interpolation adds a soft-oh bit
cost factor of Ln2 log2D(logD + log q), and removes a factor nωT logD. In summation, the
“ultravariate” approach surpasses the first approach in the case that

n ∈ Ω̃

((
L logD(logD + log q)

T

)1/(ω−2)
)
.

We see that this approach is superior for either n or T sufficiently large.

139

Chapter 6

Error-correcting sparse interpolation in
the Chebyshev basis

6.1 Introduction

In this chapter we present algorithms for the interpolation of a univariate sparse Chebyshev-
basis polynomial, i.e., a polynomial f that is sparse with respect to the Chebyshev basis. This
work appears in [AK15] and is joint work with Erich Kaltofen. We will consider f is given by an
erroneous black box. That is, we consider f of the form

f(x) =

b∑
i=1

ciTδi(x) ∈ K[x], 0 ≤ δ1 > δ2 > · · · > δt, (6.1)

where K is a field of characteristic ̸= 2, cj ̸= 0 for all j ∈ [t], and Tn ∈ K[x] is the nth Chebyshev
polynomial of the first kind, defined by:

T0(x) = 1, T1(x) = x, Tn(x) = 2xTn−1(x)− Tn−2(x).

Recall that an erroneous black-box takes as input x ∈ K and produces f(x) + e(x), where e(x) is
an error that evaluates to a nonzero value for a bounded number of evaluation points x ∈ K. We

write a
?
= f(ω) to denote that a is the result of querying the erroneous black-box polynomial f

with ω.

We aim to interpolate f in the presence of errors, while minimizing the number of black-box
queries. For the purposes of this chapter we will use bounds D ≥ deg(f), T ≥ t, and E for the
number of errors. Throughout this chapter we let supp(f) = {δ1, . . . , δt}.

140

The erroneous black-box is a useful abstraction for studying interpolation in the presence of
unreliable evaluations. Moreover, this problem examines the error-correcting properties of sparse
Chebyshev-basis polynomials. By identifying such functions as K-valued vectors indexed by K,
we can treat the set of sparse Chebyshev-basis polynomials as an error-correcting code when K is
finite, and a generalization thereof when K is infinite.

We give an algorithm that solves this problem for the case K = Q. To accomplish this, we
extend the Prony-like algorithm of Lakshman and Saunders for interpolating a black-box poly-
nomial of the form (6.1). We show that for f comprised of up to three Chebyshev terms, our
algorithm requires fewer black-box evaluations than naively applying the Lakshman–Saunders
E + 1 times on distinct sets of 2T evaluation points.

We also give a second algorithm for a black-box sparse Chebyshev polynomial f that reduces
the interpolation of a sparse Chebyshev-basis polynomial to sparse black-box interpolation in
the monomial basis, and show that this method allows for early termination, so that we may
probabilistically interpolate f in the case that a bound T ≥ #f = t is not known.

6.2 Background

We give some basic properties of Chebyshev polynomials.

Fact 6.2.1. Let m,n ∈ Z. Then the following hold:

(6.2.1.i)
[
0 1
−1 2x

]n [
1
x

]
=

[
Tn(x)
Tn+1(x)

]
.

(6.2.1.ii) Tn(Tm(x)) = Tmn(x) = Tm(Tn(x)).

(6.2.1.iii) Tm(x)Tn(x) = 1
2(Tm+n(x) + T|m−n|(x)).

(6.2.1.iv) Tn
(
1
2(x+ x−1)

)
= 1

2 (x
n + x−n) for all n ≥ 0, as an identity in the function field K(x).

(6.2.1.v) Tn(x) = 1
2

((
x−
√
x2 − 1

)n
+
(
x+
√
x2 − 1

)n)
, as an identity in the quadratic exten-

sion K(x, y)/⟨y2 − x2 + 1⟩ of the function field K(x).

(6.2.1.vi) For K = R and |ξ| ≥ 1, Tm(ξ) ̸= 0.

We cite a Chebyshev analogue of Descartes’ rule of signs due to Obrechkoff, that gives an
upper bound on the number of real roots ≥ 1 for sparse Chebyshev-basis polynomials over R.

141

Theorem 6.2.2 (Obrechkoff, 1918). Let the sequence of polynomials {Fn(x)}∞n=0 be defined by
F−1(x) = 0, F0(x) = 1, and the recurrence relation

xFn(x) = αnFn+1(x) + βnFn(x) + γnFn−1(x), n ≥ 0,

where αn, βn, γn ∈ R, α, γn > 0. Let (c1, . . . , ct) be a list of nonzero real numbers with s sign changes
between consecutive values, and 0 < δ1 < δ2 < · · · < δt ∈ R. Then

∑t
i=1 ciFδi(x) has at most s

roots in (ζn,∞), where ζn denotes the largest real root of Fn.

See [DR09] for a proof of Obrechkoff’s Theorem. Combined with Fact (6.2.1.vi) this gives the
following corollary:

Corollary 6.2.3. Let K = R and f(x) =
∑t

i=1 ciTδi(x), with δi < δj and ci ̸= 0 for 1 ≤ i < j ≤ t.
Then f has at most t− 1 distinct real roots ≥ 1.

As Tn(ξ) > Tm(ξ) for ξ > 1 and n > m, we have in addition the following:

Corollary 6.2.4. Let ξ > 1 and f(x) be a t-sparse polynomial over R in the Chebyshev basis. Let
m1 < m2 < · · · < mt ∈ Z≥0. If f(Tmi(ξ)) = 0 for all i, then f(x) is identically zero.

Corollary 6.2.5. Let ξ > 1 and f(x), g(x) be two T -sparse Chebyshev-basis polynomials. Let m1 <
m2 < · · · < m2T ∈ Z≥0. If f(Tmi(ξ)) = g(Tmi(ξ)) for all i, then f = g.

Corollary 6.2.4 gives a polynomial identity test for a black-box sparse Chebyshev-basis poly-
nomial f ∈ R[x]

Corollary 6.2.6. Suppose f ∈ R[x] is a T -sparse Chebyshev-basis polynomial given by an erroneous
black-box that produces at most E errors. Let ω1, . . . , ω2T+2E > 1 be distinct, and, for i ∈ [2T +2E],

let ai
?
= f(ωi) be the value produced by the erroneous black-box when queried with ωi. If g is a T -

sparse Chebyshev-basis polynomial such that g(ωi) = ai for all but at most E indices i ∈ [2T + 2E],
then f = g.

6.2.1 Error-correcting sparse interpolation in the monomial basis

In [Shp01] and with Winterhof in [SW05], Shparlinski studied the problem of “noisy” interpo-
lation of sparse polynomials over finite fields, where we are given the support of some B-sparse
f ∈ Zp[x], and black-box evaluations of f roughly up to k bits precision, which we will call
a k-bit query. More precisely, this problem considers an oracle that, given u ∈ Zp, produces
v ∈ Z such that |f(u) − v| ≤ p/2k+1. They showed that if f is T -sparse with degree at most
p log(T log p)1−ϵ/ log p, for a constant ϵ > 0, that f can be recovered from O((T log p)1+ϵ log p)
k-bit queries, where k ∈ Θ((T log p)1/2), in polynomial time. In [SY11], Saraf and Yekhanin

142

considered the case of interpolating f over an arbitrary finite field Fq, where deg(f) < (1 − δ)q
and the support of f is known, and when the black-box evaluations of f are erroneous for a
proportion α of selected inputs. They show, for fixed α and δ, that a T -sparse polynomial can be
interpolated from O(k) queries with high probability, independent of the choice of q.

Error-correcting sparse interpolation in the monomial basis was considered in [CKP12] and
[KP14]. Here we suppose f is a T -sparse polynomial under the monomial basis, and that we are
given a sequence a = (a0, . . . , aN−1) of the form ai = f(ζωi), where ω is of multiplicative order
at least D

In [CKP12], Comer, Kaltofen, and Pernet give an error-correcting Berlekamp–Massey algo-
rithm, that produces the minimal generator of a linearly generated sequence with errors. Sup-
pose a′ = (a′0, . . . , a

′
N) is a linearly generated sequence with a minimal generator Φ with length

at most T , and a = (a0, . . . , aN) is a sequence that disagrees with a′ in at most E erroneous
locations. The error-correcting Berlekamp–Massey algorithm takes a of length N ≥ 2T (2E + 1),
E and T as inputs, and produces Φ, which they show to be unique. It does this by way of a simple
majority-rule procedure that runs Berlekamp–Massey on 2E +1 contiguous subsequences of a of
length 2T , taking Φ to be the minimal generator corresponding produced by the majority of the
“blocks”. Using this approach, they are able to identity the erroneous components of a and pro-
duce the corrected sequence a′. If a′ is a sequence of evaluations of the form a′i = f(ζωi), where
ω has multiplicative order exceeding D and f is T -sparse under the monomial basis, then f may
then be obtained from a′ via Prony’s algorithm. We call this method block-decoding Prony.

They show, moreover, that if N < 2T (2E +1), then one can construct examples whereby Φ is
not unique.

Example 6.2.7 (Example 2.1, [CKP12]). Suppose K is a field with char(K) ̸= 2, and consider the
sequence (a0, . . . , a2T (2E+1)−1) given by

ai =

1 if i mod 8T ∈ {2T − 1, 4T − 1, 6T − 1},
−1 if i mod 8T = 8T − 1,
0 otherwise,

then a differs in exactly E locations from two distinct linearly generated sequences a+ and a− with
minimal generators yT + 1 and yT − 1 respectively, and given by

a±i =

{
(−1)∓1 if i mod 8T = 8T − 1,
ai otherwise.

If N instead is only at least 2T (E+1), then we can produce a list containing E+1 candidates
for the appropriate minimal generator Φ, by running Berlekamp–Massey on E + 1 contiguous
blocks of length 2T . By running Prony’s method on each of these blocks, we obtain a list of at

143

most E + 1 possibilities for f , that is guaranteed to contain the actual interpolant f . We will call
this method list-block-decoding Prony. In the case that K = R, we can determine the unique
interpolant via Descartes’ rule of signs. That is, if we choose all the evaluation points ζωi to
be positive, then any s-sparse polynomial will have at most s − 1 positive roots, such that any
T -sparse g that is not the true T -sparse interpolant f will agree with f in less than 2T places.
Thus, provided N ≥ 2E + 2T , the true interpolant f will be the unique T -sparse polynomial for
which f(ζωi) ̸= ai in at most E locations i ∈ [0..N).

In [KP14], Kaltofen and Pernet give an improved list-decoding interpolation algorithm. They
run Prony’s algorithm on every length-2B subsequence of a that is the evaluation of f over a
nontrivial geometric sequence. These correspond to all length-2T affine subsequences of a,
which we define as subsequences indexed by a nontrivial arithmetic progression, i.e., (au+iv)

k−1
i=0 ,

where 0 ≤ u < u + (2T − 1)v < N . We call this method list-decoding Prony. They completely
characterize the instances for which list-decoding Prony outperforms block-list-decoding Prony
in terms of the number of black-box queries required. Namely, they show the following:

Lemma 6.2.8. Let a = (a0, a1, . . .) denote a sequence containing at most E errors, and let Nk,E

denote the minimum value of N for which (a0, . . . , aN−1) must contain a length-k affine subsequence
that does not contain an error, then we have that Nk,E ≤ k(E + 1). Moreover, Nk,E = k(E + 1) if
and only if E + 2 ≤ pk, where pk is the least prime factor of k.

They also compute Nk,E for k ≤ 13 and E ≤ 10, as well as other select values. The value
Nk,E is related to the problem of finding the largest subsequence of {1, 2, . . . , N} not containing
k terms in an arithmetic progression. We define r(k,N) to be the cardinality of the largest such
subsequence. We have that

Nk,E = min{N : N − r(k,N) ≥ E + 1}.

Erdős and Turán studied r(k,E) in the case that k = 3 [ET36]. They conjectured the following
result that was later proven by Szemereédi.

Theorem 6.2.9 ([Sze75]). r(k,N) ∈ o(N) for fixed k ∈ Z>0.

This alone is insufficient to derive stronger asymptotic bounds on Nk,E , which remains an
open problem.

6.2.2 The Lakshman–Saunders algorithm

In [LS95], Lakshman and Saunders give a Prony-like algorithm for a sparse Chebyshev-basis
polynomial f ∈ R[x] of the form (6.1). Their algorithm evaluated f over points of the form Ti(ξ),

144

where ξ > 1. Their algorithm was designed when t was known; however, it is easy to adapt to
the case that we are given a bound T ≥ t.

They show that the evaluations ai = f(Ti(ξ)), i ∈ [0..2T] forms a Hankel-plus-Toeplitz system
whose solution encodes the Chebyshev-basis support of f , similar to Prony’s algorithm. The
solution ϕ to the Hankel-plus-Toeplitz system

2a0 2a1 · · · 2at−1

2a1 a2 + a0 · · · at + at−2
...

...
. . .

...
2at−1 at + at−2 · · · a2t−2 + a0

︸ ︷︷ ︸

def= A(t)

ϕ0
ϕ1
...

ϕt−1

︸ ︷︷ ︸

def= ϕ

=

2at

at+1 + at−1
...

a2t−1 + a1

︸ ︷︷ ︸

def= α

, (6.2)

forms the coefficients of the auxillary polynomial Φ ∈ R[y] whose roots give the Chebyshev-basis
support of f ,

Φ =

t∑
i=0

ϕiy
i =

t∏
i=1

(y − Tδj (ξ)), (6.3)

where we define ϕt = 1. Moreover, if we define

A(s)
def
= [ai+j+a|i−j|]s−1

i,j=0, for s ∈ [1..T], (6.4)

then it is easy to show that A(s) is singular for s > t (Lemma 6.3.2. We thus can obtain the
sparsity t of f as the greatest integer s ≤ T for which A(s) is nonsingular, or 0 if no such integer
s exists.

As Tδ(ξ) is strictly increasing with respect to δ for ξ > 1, we can find δ from Tδ by way of a
binary search on [0..D]. Tδ(ξ) can be computed for various powers of δ efficiently by a square-
and-multiply approach, using Fact (6.2.1.i).

Once we have the support δ1, . . . , δt, we can obtain the coefficients ci by way of the linear
system

Tδ1(T0(ξ)) Tδ2(T0(ξ)) · · · Tδt(T0(ξ))
Tδ1(T1(ξ)) Tδ2(T1(ξ)) · · · Tδt(T1(ξ))

...
...

. . .
...

Tδ1(Tt−1(ξ)) Tδ2(Tt−1(ξ)) · · · Tδt(Tt−1(ξ))

c1
c2
...
ct

 =

a0
a1
...
at

 (6.5)

Algorithm 20 describes this approach in pseudocode.

145

Algorithm 20: The Lakshman–Saunders algorithm for the interpolation of a sparse
Chebyshev-basis black-box rational polynomial

Input: A black-box polynomial f ∈ Q[x]; T ≥ #f ; ξ ∈ Q, ξ > 1.
Output: A sparse Chebyshev-basis representation of f

1 for i← 0 to 2T do ai ← f(Ti(ξ));
2 t← max{s ∈ [0..T] : A(s) defined by (6.4) is nonsingular};
3 Obtain ϕ = (ϕ0, . . . , ϕt−1) as solution to Hankel-plus-Toeplitz system (6.2);
4 Factor Φ = yt +

∑t−1
i=0 ϕiy

i to obtain the roots Tδi(ξ), i ∈ [t];
5 Find the indices δi from Tδi(ξ), for i ∈ [t];
6 Compute coefficients c = (c1, . . . , ct) as solution to linear system (6.5);
7 return

∑t
i=1 ciTδi;

6.3 List-decoding Lakshman–Saunders algorithm

In this section we descibe the list-decoding Lakshman–Saunders algorithm, that is an analogue
to list-decoding Prony’s method. Whereas list-decoding Prony considered subsequences of the
form au+iv, i ∈ [0..2T), we will consider subsequences of the form

(a|u−Tv|, a|u−(T−1)v, . . . , a|u+(2T−1)v|), where

ai = f
(
Ti(ξ)

)
for some ξ ∈ Q, ξ > 1, and

|u+ iv| ̸= |u+ jv| for i ̸= j ∈ [0..T).

(6.6)

We call such subsequences valid folded affine subsequences. These subsequences will comprise
at least 2T and as many as 3T entries of a. The distinctness constraint in (6.6) is equivalent to
u ̸= −kv/2 for k ∈ [1..2T − 2).

Throughout Section 6.3, we will suppose f ∈ Q[x] is of the form (6.1), and we consider a
sequence of evaluations a given by (6.6) with ξ ∈ Q, ξ ≥ 1.

6.3.1 Generalizing Laskhman–Saunders to folded affine subsequences

For the purposes of Section 6.3.1, fix u, v ∈ Z and ξ ∈ Q with v, ξ ≥ 1. We will also define
Φ ∈ Q[y] here by

Φ =

t∏
j=1

(
y − Tvδj (ξ)

)
=

t∑
j=1

ϕjy
j .

We first prove a generalization of Lemma 5 of [LS95], whose proof is similar.

146

Lemma 6.3.1. Fix v ∈ Z>0, ξ ∈ Q≥1, and let Φ ∈ Q[y] be given by (6.3), with ϕt = 1. Then, for
u, v ∈ Z,

t∑
j=0

ϕj(a|u+(i+j)v| + a|u+(i−j)v) = 0. (6.7)

Proof. Using Facts (6.2.1.ii) and (6.2.1.iii), we have that

t∑
j=0

ϕjau+(i+j)v =

t∑
j=0

ϕj

(
t∑

ℓ=1

cℓTδℓ
(
Tu+(i+j)v(ξ)

))
,

=
t∑

ℓ=1

cℓ

 t∑
j=0

ϕjTu+(i+j)v

(
Tδℓ(ξ)

) , (6.8)

and

Tu+(j+i)v

(
Tδℓ(ξ)

)
= 2Tvj

(
Tδℓ(ξ)

)
Tu+iv

(
Tδℓ(ξ)

)
− T|u+(i−j)v|

(
Tδℓ(ξ)

)
,

= 2Tj
(
Tvδℓ(ξ)

)
Tu+iv

(
Tδℓ(ξ)

)
− T|u+(i−j)v|

(
Tδℓ(ξ)

)
. (6.9)

Thus we can rewrite the inner sum of (6.8) as
t∑

j=0

ϕj

(
2Tj
(
Tvδℓ(ξ)

)
Tu+iv

(
Tδℓ(ξ)

)
− T|u+(i−j)v|

(
Tδℓ(ξ)

))
,

= 2Φ
(
Tvδℓ

)︸ ︷︷ ︸
=0

Tui+v

(
Tδℓ(ξ)

)
−

t∑
j=0

ϕjT|u+(i−j)v|
(
Tδℓ(ξ)

)
.

Thus (6.8) becomes

−
∑t

ℓ=1 cℓ

(∑t
j=0 ϕjT|u+(i−j)v|

(
Tδℓ(ξ)

))
= −

∑t
j=0 ϕj

∑t
ℓ=1 cℓTδℓ

(
T|u+(i−j)v|(ξ)

)
,

= −
∑t

j=0 ϕjf
(
T|u+(i−j)v|(ξ)

)
= −

∑t
j=0 ϕja|u+(i−j)v|.

The identity (6.7) follows.

Taking (6.7) for all i ∈ [0..t) gives a Hankel-plus-Toeplitz system A(t,u,v)ϕ = α, where

ϕ = (ϕ0, . . . , ϕt−1)

A(s,u,v) =
[
a|u+(i+j)v|

]s−1

i,j=0
+
[
a|u+(i−j)v

]s−1

i,j=0
for s ∈ [1..T],

α =
[
a|u+(i+t)v| + a|u+(i−t)v|

]t−1

i=0
.

(6.10)

Thus we can obtain ϕ from A and α, provided A is nonsingular. To that end we adapt Lemma 6
of [LS95] to our generalized setting.

147

Lemma 6.3.2. Let u, v ∈ Z with v > 0. If the values |u+ iv|, for i ∈ [0..t) are distinct, then A(t,u,v)

is nonsingular. Moreover, A(s,u,v) is singular for s > t.

Proof. A(s,u,v) admits a factorization A(s,u,v) = M (s)DN (s), where D = diag(2c1, . . . , 2ct) and
M (s) ∈ Qs×t,N (s) ∈ Qt×s are given by

M
(s)
ij = T|u+iv|

(
Tδj+1

(ξ)
)

N
(s)
ij = T|jv|

(
Tδi+1

(ξ)
)
. (6.11)

To show this, using Facts (6.2.1.ii) and (6.2.1.iii), we have that the (i, j)th entry of MDN is

t∑
ℓ=1

2cℓT|u+iv|
(
Tδℓ(ξ)

)
· Tjv

(
Tδℓ(ξ)

)
,

=

t∑
ℓ=1

cℓ
(
T|u+(i+j)v|

(
Tδℓ(ξ)

)
+ T|u+(i−j)v|

(
Tδℓ(ξ)

))
,

=

t∑
ℓ=1

cℓ
(
Tδℓ
(
T|u+(i+j)v|(ξ)

)
+ Tδℓ

(
T|u+(i−j)v|(ξ)

))
=f
(
T|u+(i+j)v|(ξ)

)
+ f

(
T|u+(i−j)v|(ξ)

)
=a|u+(i+j)v| + a|u+(i−j)v|.

This proves singularity for the case s > t. Now suppose s = t and let b = (b0, . . . , bt−1) be
such that b⊤M (t) = 0. Then

∑t−1
i=0 biT|u+iv| is a b-sparse Chebyshev-basis polynomial with roots

Tδ1(ξ), . . . , Tδb(ξ). By Corollary 6.2.4, b is necessarily zero. It follows thatM is nonsingular. N (t)

is nonsingular by a similar argument. This completes the proof.

The coefficients can then be obtained from the system
Tδ1
(
T|u|(ξ)

)
· · · Tδt

(
T|u|
)

Tδ1
(
T|u+v|(ξ)

)
· · · Tδt

(
T|u+v|

)
...

. . .
...

Tδ1
(
T|u+(t−1)v|(ξ)

)
· · · Tδt

(
T|u+(t−1)v|

)

c1
c2
...
ct

 =

a|u|
a|u+v|

...
a|u+(t−1)v|

 . (6.12)

The matrix appearing above in (6.12) is exactly M (t) by Fact (6.2.1.ii), and hence is nonsingular.

Thus we can essentially run Lakshman–Saunders over any sequence of the form (6.6). This is
described in Algorithm 21.

148

Algorithm 21: The Lakshman–Saunders algorithm for folded affine subsequences
Input: A black-box polynomial f ∈ Q[x]; T ≥ #f ; ξ ∈ Q, ξ ≥ 1; u, v ∈ Z where v > 0 and

|u+ iv| ̸= |u+ jv| for i ̸= j ∈ [0..t] =).
Output: A sparse Chebyshev-basis representation of f

1 for i← −T to 2T − 1 do a|u+iv| ← f(T|u+iv|(ξ));
2 t← max{s ∈ [0..T] : A(s,u,v) defined by (6.4) is nonsingular}};
3 Obtain ϕ = (ϕ0, . . . , ϕt−1) as solution to Hankel-plus-Toeplitz system Aϕ = α with
A(t, u, v),α(t) given by (6.10);

4 Factor Φ = yt +
∑t−1

i=0 ϕiy
i to obtain the roots Tvδi(ξ), i ∈ [t];

5 Find the indices δi from Tvδi(ξ), for i ∈ [t];
6 Compute coefficients c = (c1, . . . , ct) as solution to linear system (6.5);
7 return

∑t
i=1 ciTδi;

6.3.2 A list-decoding algorithm

In this section we present our simple list-decoding Lakshman–Saunders algorithm. We merely

produce a sequence of N erroneous black-box evaluations ai
?
= f(Ti(ξ)) for i ∈ [0..N), and run

Algorithm 21 over all length-3T valid folded affine subsequences (a|u+iv|)
2T−1
i=−T , with |u + iv| ̸=

|u + jv| for i ̸= j ∈ [0..T). Without loss of generality, we can take |u| < |u + (T − 1)v|, or
equivalently, u ≥ (T − 1)v/2, as {u + iv : i ∈ [−T..2T)} and {u′ + iv : i ∈ [−T..2T)} agree
for u′ = −(u + (T − 1)v). For each such pair (u, v), Algorithm 21 produces a candidate sparse
representation for the interpolant f , which it tests to see if it is the unique interpolant.

Algorithm 22: List-decoding Lakshman–Saunders
Input: An erroneous black-box polynomial f ∈ Q[x]; T ≥ #f ; N ≥ 2T + 2E.
Output: If [0..N) contains a subset length-3T valid folded arithmetic progression P for

which each ai, i ∈ P , avoids errors, then Algorithm 22 produces f . Otherwise it
produces fail.

1 for v ← 1 to ⌊2N−1
3T−1 ⌋ do

2 for u← ⌈12(T − 1)⌉ to N − 1− (3T − 1)v do
3 if |u+ iv| = |u+ jv| for some i ̸= j ∈ [0..T) then continue;
4 f ← output of Algorithm 21 on inputs f, T, ξ, u, v;
5 if f(Ti(ξ)) = ai for all but at most E exceptions in [0..N) then
6 return f ;

7 return fail;

149

If N is sufficiently large that any set of E error locations in [0..N) will avoid at least one valid
length-3T arithmetic progression, then Algorithm 22 will produce a unique interpolant. If, in
addition, N ≥ 2T + 2E, then we can identify this interpolant per Corollary 6.2.6.

6.3.3 Upper-bounding the query cost to interpolate T -sparse f for T ≤ 3

We would like that N∗
3T,E ≤ 2T (E + 1), or can instead interpolate f with fewer erroneous black-

box evaluations by running Algorithm 20E+1 times, using in each iteration a set of 2T evaluation
points distinct from those used in previous iterations. We call this approach block-list-decoding
Lakshman–Saunders, which is an analogue of block-list-decoding Prony.

An open problem remains whether, for each T ∈ Z, there exists ET such that we can interpo-
late f in fewer than 2T (E +1) queries for all E ≥ ET . We determined this to be true in the cases
that T = 1, 2, 3, via the following strategy.

Consider a block of evaluations of the form (a1, . . . , aM), i.e., excluding the evaluation a0 =
f(1). We can interpolate f from such a block of evaluations provided it contains affine subse-
quence of length 3T that does not intersect with any errors.

For a fixed T , we determine a pair (MT , ET), such that for M = MT , such a block of evalua-
tions with at most ET errors necessarily contains such a subsequence. Then, for an arbitrary error
bound E > ET , we run Algorithm 21 on blocks of ⌈E/ET ⌉ non-intersecting evaluation points.

If we do this for ⌈(E + 1)/(ET + 1)⌉ blocks, then one of the blocks must contain at most ET

errors and will give us f , or else each block would have at least ET +1 errors, such that the total
number of errors would be at least E + 1. The total number of evaluations by this approach is at
most MT ⌈(E + 1)/(ET + 1).

From Table 1 of [KP14], we have N3,8 = 17, such that we can interpolate 1-sparse f from
a block of M1 = 17 evaluations with at most E1 = 8 errors. Thus, for arbitrary E, we can
interpolate f from 17⌈(E + 1)/9⌉ evaluations. A straightforward computation shows this is less
than 2T (E + 1) for T = 1 and E ≥ 153.

Similarly, we have N6,8 = 34, such that we can interpolate 2-sparse f from a block of M2 = 34
evaluations with at most E2 = 8 errors. This gives a method with 34⌈(E + 1)/9⌉ evaluations,
which is less than 2T (E + 1) for T = 2 and E ≥ 136.

Clément Pernet has communicated to us that N9,12 = 74. Thus we can interpolate 3-sparse
f in the presence of E errors with 74⌈(E + 1)/13⌉ evaluations, which is less than 2T (E + 1) for
T = 3 and E ≥ 403.

150

6.4 Reducing sparse-Chebyshev interpolation to sparse-monomial
interpolation

In this section we present an algorithm for the sparse interpolation of a black-box polynomial
f ∈ K[x] given by (6.1) when K is a field of characteristic not 2, and cj ̸= 0 for all 1 ≤ j ≤ t, from
evaluations of the from

ai = f(ω
i+ω−i

2),where ω ∈ K, ω ̸= 0, (6.13)

where we assume throughout 6.4 that the values

ω−2δ1 , . . . , ω−2δt , ω2δt , . . . , ω2δ1

are all distinct, with the possible exception that ω2δt = ω−2δt in the case that δt = 0. In this section
we stress that f is not an erroneous black-box polynomial, i.e., all the evaluations are correct.
Note that ai = f(Ti(ξ)) with ξ = (ω + ω−1)/2, so the evaluations used by Lakshman–Saunders
and its variants apply.

We will show how to interpolate f from a worst-case 2T evaluations. Our method reduces the
interpolation of a T -sparse Chebyshev-basis polynomial to that of a 2T -sparse monomial-basis
Laurent polynomial. In Section 2.8, we adapt the algorithm to early termination, such that in a
sufficiently large field K and with high probability, we only require 2t+ 1 evaluations.

Define the Laurent polynomial

g(z)
def
= f(z+z−1

2) =
t∑

j=1

cj
2 (z

δj + z−δj) ∈ K[z, z−1].

g is 2t-sparse if δt > 0 and (2t − 1)-sparse otherwise. Observe that g is reciprocal, i.e., its
coefficients read the same way in orders of increasing or decreasing degree.

ai = a−i = g(ωi), for i ∈ Z.

We can interpolate g via Prony’s algorithm. As g is 2T -sparse, we can interpolate g from the 4T
evaluations

(b0, . . . , b4T−1) = (a−2T−1, a−2T−3, . . . , a−1, a1, . . . , a2T−1),

which can be produced from 2T evaluations of f . We do not use the evaluation a0 as it does not
give us a free additional evaluation of g.

By the theory of Prony’s method, we know the minimal generator of the sequence b, which
we cite as a lemma.

151

Lemma 6.4.1. Suppose ω has multiplicative order exceeding 2D + 1. Then the minimal generator
of the sequence b ∈ KZ (6.13) is

Φ =

{ ∏t
j=1(y − ω2δj)(y − ω−2δj) if δt > 0

(y − 1)
∏t

k=2(y − ω2δj)(y − ω−2δj) if δt = 0

Thus the minimal generator Φ encodes the support of g and thus f as well. The corresponding
coefficients of f may be obtained via the t × t linear system (6.12) with u = 1 and v = 2, which
reuses the evaluations a1, a3, . . . , a2t−1.

As with Prony’s algorithm, we can employ the technique of early termination in this setting as
well. This is useful in the case that a bound T ≥ t is not provided, such that we can probabilisti-
cally estimate t, or if we want to interpolate f with the computation and query costs dependent
on the true sparsity t and not a bound T .

Namely, if we define the Hankel matrices

Hs =

a−2s−1 a−2s+1 · · · a−1

a−2s+1 a−2s+3 · · · a1
...

...
. . .

...
a−1 a1 · · · a2s−3

 , s ∈ Z≥0,

then we can probabilistically determine t as the least integer s such that H(s+1) is singular. If g
has absolute degree at most D, then for a random choice of ω ∈ K, we have that from Section
2.7 this approach will give t with probability at least Dtg(tg − 1)(tg + 1)/(3#K).

152

Chapter 7

Fast Fourier-sparsity testing of Boolean
functions

In this chapter we consider the problem of Fourier-sparsity testing. Specifically, we will consider
f acting over the n-dimensional hypercube, i.e., Fn

2 , where high-order roots of unity are not
available. This is based on ongoing work with Eric Blais. One important class of such functions
are Boolean functions, i.e., functions that take as input a string of n bits and whose output is
true or false.

We have seen probabilistic sparsity testing used to expedite Prony’s algorithm (via early termi-
nation), sparse interpolation of extended black boxes, and sparse multiplication. In each of these
cases we use a probabilistic tester with one-sided error, such that we do not erroneously over-
estimate the sparsity. In each of these cases we restricted our attention to univariate polynomials
over domains containing roots of unity of large order.

These algorithms are based on the construction and inspection of low-dimensional images of
f . We saw similar techniques used with the technique of randomized Kronecker substitutions
in Chapter 5. Such techniques also appear in Sparse Fourier Transforms (SFTs), a family of
algorithms that compute the discrete Fourier transform f̂ of f , when it is known to be sparse.
More generally, these algorithms may find a t-term approximation that, in terms of ℓ2 distinct from
f̂ , is within a constant factor of the best t-term approximation f̂ . For completeness, we analyze a
sparse Fourier transform algorithm based on ideas originating from [GL89] and [Lev93].

7.1 Background

We consider complex-valued functions that act on the hypercube Fn
2 . The hypercube admits

a graph representation whose vertices are the elements of Fn
2 , with edges connecting any two

153

elements of Hamming distance 1 (see Figure 7.1). We identify the additive group structure of
F2 with the multiplicative structure of {±1} ⊂ R, and use both representations throughout. A
function f : Fn

2 → C admits a Fourier representation

f =
∑
α∈Fn

2

f̂(α)χ(α),

where the f̂(α) are the Fourier coefficients of f , also known as Hadamard or Walsh–Hadamard
coefficients, and χα(x) : Fn

2 → C is the character or parity function defined by

χα(x) = (−1)α⊤x = (−1)x⊤α =

{
1 if

∑n
i=1 αixi = 0 ∈ Fn

2 ,
−1 otherwise.

In other words, χα(x) outputs 1 or −1 according to the parity of x restricted to the support of
α. We will generally use w, x, y, z for arguments to f and α, β, κ letters for arguments to f̂ . We

define the support of f to be supp(f)
def
= {α ∈ Fn

2 : f̂(α) ̸= 0}.

The character functions form an orthonormal basis for CFn
2 . We can express the Fourier coef-

ficient f̂(α) as an expectation

f̂(α) = Ex[f(x)χα(x)] = 2−n
∑
x∈Fn

2

f(x)χα(x) (7.1)

where Ex is the expectation with x taken from the uniform distribution over Fn
2 . We call a term

f̂(α)χα a Fourier term or merely a term. We say the Fourier mass of a sum of terms g =∑
α ĝ(α)χα of Fourier terms is the sum of the square of its Fourier coefficients, i.e.,

∑
α ĝ(α)

2 =
∥g∥22.

The function f admits an equivalent representation

f : {±1}n → C, x 7→
∑
α∈Fn

2

f̂(α)xα1
1 · · ·x

αn
n ,

so that we may think of the Fourier representation of f as a complex-valued multilinear polyno-
mial over C, but whose evaluations are restricted to the real-valued hypercube {±1}n. We let H
denote the class of complex-valued functions acting on the n-dimensional hypercube. Since the
ℓ2-norm differs for f : Fn

2 → C and f̂ : Fn
2 → C by a constant factor, we let Ĥ denote the class H

in the Fourier domain.

One important subclass of functions are Boolean functions. Named after the logician George
Boole, a Boolean function takes as input a string of n bits and outputs a single bit. We may
represent a Boolean function f as a function that acts on the hypercube and produces 1 or −1.

154

0000

0001

0011

0111

1111

1110

1100

1000

1001

0010

0101

1011

0110

1101

1010

0100

Figure 7.1: The 4-dimensional hypercube graph

We let H± ⊂ H and Ĥ± ⊂ Ĥ denote the subclass of Boolean functions in the evaluation and
Fourier domains respectively.

We define the ℓ2 norm of f ∈ H to be ∥f∥2
def
=
√

Ex[f(x)2] and the relative Hamming norm
to be ∥f∥0 = Prx[f(x) ̸= 0]. By Plancherel’s Theorem, we have that

∥f∥2 =
√∑

α∈Fn
2

f̂(α)2.

For f ∈ H±, we have ∥f∥2 = 1. We also define, for f, g ∈ the ℓ2 distance dist2(f, g) = ∥f − g∥2,

155

and the relative Hamming distance dist0(f, g) = ∥f − g∥0, that is, the probability that f(x) ̸=
g(x) for x ∈ Fn

2 chosen uniformly at random. This definition of dist0 extends to arbitrary functions
over a common finite domain.

If f, g ∈ H±, then |f−g| only takes the values 0 and 2, such that their ℓ2 and relative Hamming
distances are related by the following:

Fact 7.1.1. Let f, g ∈ H±, and let µ = dist0(f, g) and ϵ = dist2(f, g). Then ϵ = 2
√
µ, or equivalently

µ = ϵ2/4.

Given a class of functions C ⊂ H, we let

distk(f, C)
def
= inf

g∈C
distk(f, g) for k = 0, 2.

We letHt ⊂ H denote the family of t-sparse functions, i.e., those functions with at most t nonzero
Fourier coefficients, and H±

t denote the subclass of t-sparse Boolean functions. We say f ∈ H±

is ϵ-close to t-sparse if dist2(f,Ht) ≤ ϵ, otherwise we say f is ϵ-far from t-sparse. We define
sparsity testers that distinguish t-sparse Boolean functions from those that are distant from t-
sparse functions under either ℓ2 or relative Hamming distance.

Definition 7.1.2. An ϵ-ℓ2 t-sparsity tester for f ∈ H± is an algorithm A that takes ϵ, f and t and
such that, with probability at least 2/3, the following hold:

• If f is t-sparse, then A accepts;

• If f is ϵ-far from t-sparse, then A rejects.

A µ-Hamming t-sparsity tester for f ∈ H± is an algorithm A that takes f and t, and such
that, with probability at least 2/3, the following hold:

• If f is t-sparse, then A accepts;

• If dist0(f,H±
t) > µ, then A rejects.

We will also consider vector-valued analogues of classes of functions. For instance, we consider
functions of the form f : Fn

2 → Cm for m ≥ 1. Here the Fourier transform f̂ of f is merely the
vector-valued function whose components are the Fourier transforms of the components of f . We
extend the notion of support in the natural way, letting supp(f) = {α ∈ Fn

2 : f̂(α) ̸= 0 ∈ Cm}.

We write
#–H to denote the family of vector functions over the hypercube, and use

#–H, #–Ht and
#–H±

t similarly. When n or both n and m are not clear from the context we may write H(n), #–H(n),
#–H(n,m), and similarly for H±,Ht,H±

t , and their vector-valued variants.

156

7.1.1 Previous work

Fourier sparsity testing was first studied by Gopolan et al. in [Gop+11]. There the authors
give an algorithm based on projections of f (see Section 7.1.2). They gave an ϵ-ℓ2 t-sparsity-
tester for the class H±

t ⊂ H± with query complexity O(t6 log t/ϵ2). They achieve this result by
“hashing” the Fourier terms of f into O(t2) bins, such that with high probability the t significant
Fourier coefficients of f land in unique bins. They then probabilistically estimate the Fourier mass
concentrated in each of the O(t2) bins up to an additive factor O(µ2/t2). Section 7.1.2 discusses
this hashing and estimation.

They show, moreover, that if f is a Boolean function that is close to the class of t-sparse
functions Ht, then it is close to the class of Boolean t-sparse functions H±

t . Namely, they showed
the following.

Theorem 7.1.3 (Thm. 3.4 [Gop+11]). Let f ∈ H± be such that dist2(f,Ht) ≤ ϵ, where ϵ ≤ 1
20t2

.
Then dist2(f,H±

t) ≤ 2ϵ, or equivalently, dist0(f,H±
t) ≤ ϵ2/2.

By setting ϵ = min(2
√
µ, 1

20t2
), the ϵ-ℓ2 t-sparsity tester of Gopolan et al. becomes a µ-

Hamming t-sparsity tester with query-complexity O(t6 log t/µ2 + t14 log t). This same approach
may be used to develop a µ-Hamming t-sparsity tester from any ϵ-ℓ2 t-sparsity tester.

In [WY13], Wimmer and Yoshida further analyze the technique of Gopolan et al. to get a tol-
erant tester that accepts if dist2(f,Ht) < ϵ/3 and rejects if dist2(f,Ht) > ϵ, each with probability
2/3, and with query complexity poly(t/ϵ). This method allows one to estimate distance from t-
sparsity up to a multiplicative factor. In [HL13a], Hatami and Lovett give a method of estimating
dist2(f,Ht) up to an additive factor, albeit with a query-complexity that is a tower of exponents
of height t.

7.1.2 Projections and restrictions

In this section we introduce projection and restriction operations on f ∈ H, which we use in
sparse Fourier testing and transform algorithms. We let V ⊤ denote the orthogonal space of a
subspace V ≤ Fn

2 . For a choice of v1, . . . , vr ∈ Fn
2 , we let v be the n× r matrix whose ith column

is given by vi, and identity v with its column space V = span({v1, . . . , vr}). For β ∈ Fn
2 , we define

the Fourier projection of f onto the coset β + V ⊤ by

f̂vβ (α) =

{
f̂(α) if α ∈ β + V ⊤,
0 otherwise.

We will often simply call fvα a projection of f . One can estimate an evaluation or the Fourier
mass of a projection function by way of the following fact.

157

Fact 7.1.4 ([Gop+11]).

fvα(x) = Ey∈V [f(x+ y)χα(y)], and ∥fvα∥22 = Ex∈Fn
2

[(
Ey∈V [f(x+ y)χα(y)]

)2]
.

Projections allow us to hash Fourier coefficients α to “bins” corresponding to cosets of V . For
κ ∈ Fr

2, we let the bin B(κ) denote the set of α ∈ Fn
2 such that v⊤α = κ. That is,

B(κ) def
= {α ∈ Fn

2 : v⊤i α = κi for i ∈ [s]}.

If the vi form a linearly independent set, then the bins B(κ) comprise the cosets of V ⊤. Otherwise,
some of the bins B(κ) will be empty, with the cosets of V ⊤ being the nonempty bins. The set hash
functions corresponding to choices of v ∈ Fn×r

2 forms a pairwise independent hash family.

Fact 7.1.5. Choose v ∈ Fn×r
2 independently and uniformly at random. For V = span({v1, . . . , vr})

and fixed κ ∈ Ft
2, let Xα be the indicator random variable for the event that α ∈ B(κ). Then the

collection of random variables {Xα}α∈Fn
2

is pairwise independent. Moreover, for α ̸= 0, E[Xα] = 2−r.

We also define, for x ∈ Fn
2 , the transformation f |vx of f by

f |vx : Ft
2 → C, y 7→ f(v⊤y + x) = f(v⊤1 y + x1, v

⊤
2 y + x2, . . . , v

⊤
n y + xn).

For lack of a better term, we will refer to f |vx as the restriction of f to x + V . We let f |v = f |v0.
One can compute f |vx by evaluating f over the image vα, α ∈ Fr

2. We can compute all elements of
the column space V at a cost of O(n2r) bit operations on a unit-cost RAM, by producing all linear
combinations of the first i columns of v for increasing values of i. Adding x to each element of V
to produce x+ V costs O(n2r) similarly, which yields the following cost.

Lemma 7.1.6. Given f ∈ H(n,m), v ∈ Fn×r
2 and x ∈ F2, one can compute f |vx with a cost of O(2r)

queries and an additional bit operation cost of O(nm2r).

Restrictions and projections are closely related. Observe that for any α, x ∈ Fn
2 , β ∈ V ⊤, y ∈

Fr
2, that

χα+β(vy + x) = χα+β(x)(−1)α
⊤vy (−1)β⊤vy︸ ︷︷ ︸

=1

= χα+β(x)χv⊤α(y),

from which we obtain the following.

Lemma 7.1.7. For α ∈ Fn
2 , let κ = V ⊤α ∈ Fr

2. Then fvα(x) = f̂ |vx(κ).

158

7.1.3 The FFT over the hypercube

Given f ∈ H, we may compute f̂ via the Fast Fourier Transform, also known as the Fast Walsh-
Hadamard Transform. By treating f and f̂ as vectors indexed by Fn

2 , we can describe the map
from f to f̂ as a 2n × 2n linear map

F n
def
= 2−n

[
χα(β)

]
α,β∈Fn

2
= 2−n

χ0···00(0 · · · 00) χ0···00(0 · · · 01) · · · χ0···00(1 · · · 11)
χ0···01(0 · · · 00) χ0···01(0 · · · 01) · · · χ0···01(1 · · · 11)

...
...

. . .
...

χ1···11(0 · · · 00) χ1···11(0 · · · 01) · · · χ1···11(1 · · · 11)

 .
The matrix F n admits a factorization

F n =

n∏
i=1

(In−i−1 ⊗ F 1 ⊗ Ii),

where the product can be read in any order, and F 1 =
[
1 1
1 −1

]
. For instance, we have that

F 2 =
1

4

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 =

1/2 1/2 0 0
1/2 −1/2 0 0
0 0 1/2 1/2
0 0 1/2 −1/2

1/2 0 1/2 0
0 1/2 0 1/2

1/2 0 1/2 0
0 −1/2 0 −1/2

 .
This factorization describes the FFT, which we give as pseudocode in Algorithm 23. We use the
binary concatenation operation ∥.

Algorithm 23: The FFT over the hypercube

Input: f ∈ #–H(n,m)
Output: f̂

1 g ← f ;
2 for i ∈ [n] do
3 for γ ∈ Fi

2 and κ ∈ Fn−i−1
2 do

4 α← γ∥0∥κ;
5 β ← γ∥1∥κ;

6

[
g(α)
g(β)

]
←
[
1 1
1 −1

] [
g(α)
g(β)

]
;

7 return 2−ng

159

Lemma 7.1.8. Algorithm 23 takes f ∈ #–H(n,m) and produces f̂ . It costs Õ(2n) queries to f , and
O(2nn) additions and subtractions in C. If f ∈ H±(n,m), its bit cost is O(2nmn2) on a unit-cost
RAM.

Proof. The query cost is clear: we query f at all 2n evaluation points in Fn
2 . The number of

iterations of the inner for loop is 2n−1n, from which the arithmetic cost follows.

In the case that f ∈ H±(n,m), each of the entries of each component of f is either 1 or −1.
It follows via induction that the values of the components of g(α), α ∈ Fn

2 , at the start of the ith
iteration of the outer for loop, are at most 2i−1 ∈ O(2n) in absolute value. Thus, in this case,
addition or subtraction of any two components of g(α) and g(β) costs at mostO(n) bit operations.
As the indices α, β are also n bits, this brings the bit cost of one iteration of the inner for loop to
O(nm), from which the total bit cost O(2nmn2) follows.

As F−1
n = 2−nF n, the inverse FFT follows identically up to scalar multiplication.

7.2 Sparse Fourier Transforms over the hypercube

In this section we give an efficient Sparse Fourier Transform (SFT) algorithm for f acting over the
hypercube, when f is known to be t-sparse. An SFT algorithm was given by Goldreich and Levin
in [GL89] for the purposes of constructing hard-core predicates for arbitrary one-way functions.
Kushilevitz and Mansour describe a similar algorithm in [KM93]. Their algorithm takes arbitrary
f ∈ H and produces a t-sparse approximation to f that is within a constant factor of the best
t-sparse approximation to f . That is, it produces ĝ, where g is t-sparse, such that dist2(f, g) <
(1+ ϵ)dist2(f,Ht). Its query complexity is Õ(nt2 ·poly(ϵ−1)). In [Lev93], Levin described an idea
which gives a probabilistic O(nt · poly(ϵ−1))-query SFT. For completeness, we give a description
and analysis of such an algorithm here.

Observe that if a Fourier index α ∈ supp(f) uniquely hashes to B(κ), then

f̂ |vej = f̂ |vx(κ)(−1)αj ,

where ej is the jth column of the n×n identity matrix. From this we can recover the jth bit of α,
αj . This idea was described by Levin in [Lev93], and can be used to give a O(nk)-query Sparse
Fourier Transform algorithm that succeeds with probability at least 2/3.

Lemma 7.2.1. Procedure ExactSFT(f, n, t) takes as input t-sparse f ∈ #–Ht(n,m) and produces f̂
with probability at least 2/3. Its query cost is O(mnt).

If f ∈ #–H±
t (n,m), the bit cost is O(mnt) bit operations.

160

Procedure ExactSFT(f, n, t)

Input: f ∈ #–Ht(n)
Output: With probability at least 2/3, f̂

1 ĝ ← 0 ∈ H(n);
2 s← t;
3 for i← 1 to ⌈log4 t⌉ do
4 r ← i+ ⌈log (18(s− 1))⌉;
5 Choose v ∈ Fn×r

2 uniformly at random;

6 Compute f̂ |v and f̂ |vej for each j ∈ [n] via the FFT;

7 ĥ|v ← f̂ |v − ĝ|v;

8 for j ∈ [n] do ĥ|vej ← f̂ |vej − ĝ|vej ;
9 I ← supp(ĥ|v) ⊂ Fr

2;
10 for κ ∈ I do
11 ακ ← 0 ∈ Fn

2 ;
12 for j ∈ [n] do
13 if ĥ|vej (κ) = ĥ|v(κ) then ακj ← 0;

14 else if ĥ|vej (κ) = −ĥ|v(κ) then ακj ← 1;
15 else I ← I \ {κ};

16 for κ ∈ I do ĝ(ακ)← f̂ |v(κ);
17 s← ⌊s/4⌋;
18 return ĝ;

Proof. Let h = f − g, and suppose h is s-sparse at the beginning of the ith iteration of the outer
for loop. Then, for our choice of V and using the union bound, the probability that a nonzero
Fourier coefficient ĥ(α) is in a collision in h|v is at most (s−1)2−r ≤ 2−i/3. LetXi be the indicator
event that more than s/6 nonzero Fourier coefficients collide in the ith iteration. By linearity of
expectation and Markov’s inequality, E[Xi] < 2−1/18. By the union bound, the probability of this
event occuring for any iteration of the outer for loop is at most (12 + 1

4 + 1
8 + . . .)/3 < 1/3.

Suppose then that this does not occur. It follows from the discussion preceding Lemma 7.2.1
that the algorithm correctly constructs the index α of every nonzero, non-colliding Fourier co-
efficient ĥ(α). For every bucket B(κ) where a collision occured, either an erroneous Fourier
coefficient is added to g, or κ is removed from I on line 15, where it is detected that the bin
B(κ) is a multiple. Thus, the algorithm constructs at least 5s/6 singleton Fourier terms of h, and
at most s/12 erroneous terms corresponding to the at-most 1

2s/6 bins B(κ) containing collisions.
Thus, after updating g on line 16 we will have that #h ≤ s/6 + s/12 = s/4.

161

We now analyze the cost. In the ith iteration the query complexity of constructing each
restriction of f via the FFT is 2r ∈ O(s) ⊆ O(2−it). Thus the total query complexity is O(2−int).
Accounting for all log t iterations gives a cost of O(mnt) queries.

If f ∈ H±
t (n,m), computing each restriction f |ve costs O(mn2r) ⊆ (nms) bit operations via

Lemma 7.1.6. The cost of computing f̂ |ve from f |ve via the FFT is O(m2rr2) ⊆ O(ms log2 s) bit
operations. Accounting for all (n + 1) restrictions per every iteration the outer for loop yields a
total bit cost of O(mt log2 t+ n2mt) = O(mn2t).

7.3 Fourier sparsity testing via homomorphism testing

In this section we restrict our attention to the sparsity testing of Boolean functions. We present
a Fourier sparsity tester that generalizes the homomorphism test of Blum, Luby, and Rubinfeld,
i.e., the BLR linearity test. Our tester takes as input a Boolean-valued function f and, with
probability at least 2/3, distinguishes between the cases that f is t-sparse and the case that f is
ϵ-far from t-sparse, by which we mean dist2(f,H±

t) > ϵ.

We present two versions of our tester, a simple sparsity tester, with query complexityO(t2ϵ−2),
and a faster sparsity tester, that uses the Sparse Fourier Transform (SFT) as a subroutine, and
admits a query complexity of O(t log tϵ−2 + ϵ−4).

7.3.1 A simple sparsity tester

Our sparsity tester algorithms rely on the selection of a matrix v which gives a hash function such
that each α ∈ supp(f) hashes to a unique bin.

Definition 7.3.1. We say v separates f̂ if α− β ̸∈ V ⊤, for all α ̸= β ∈ supp(f).

In other words, v separates f̂ if each nonzero Fourier coefficient of f lies in a distinct bin
B(κ). By Fact 7.1.5 and the union bound, we obtain the following:

Lemma 7.3.2. Fix µ ∈ (0, 1) and let r =
⌈
log
(
t(t− 1)/(2µ)

)⌉
. Then, if f ∈ Ht(n), and v ∈ Fn×r

2 is
chosen uniformly at random, then v separates f̂ with probability at least 1− µ.

If v separates f̂ , then each projection function fvα is either identically zero or the product
of a character function and a nonzero constant. This will allow us to reduce sparsity testing to
homomorphism testing.

Definition 7.3.3. For f ∈ Fn
2 and v ∈ Fn×r

2 , we define ϕf,v : Fn
2 → Ĥ(r) by setting

ϕf,v(x)
def
= f̂ |vx.

162

We compute ϕf,v(x) by computing the restriction f |vx, and then computing its Fourier trans-
form via the FFT.

Definition 7.3.4. Let C∗ be the multiplicative group of nonzero complex numbers and I be a
nonempty set. The function ϕ : Fn

2 → CI if an affine homomorphism if it is the component-
wise product of a homomorphism Φ : Fn

2 → (C∗)I and the vector ϕ(0) ∈ CI . We call ϕ(0) the shift
of ϕ.

We note that the only homomorphisms of the form Φ : Fn
2 → C are the character functions

χα.

If v separates f̂ , then ϕf,v is the product of the shift f̂ |v and the homomorphism Φ : Fn
2 →

Ĥ(r) whose components Φκ, for κ ∈ Fr
2, are given by

Φκ(x) =

{
χα(x) if κ = vα for some α ∈ supp(f̂),
1 otherwise.

We state this as a lemma.

Lemma 7.3.5. Suppose v separates f̂ . Then ϕf,v is an affine homomorphism.

We will show now that, if f |v is t-sparse, and ϕf,v agrees with an affine homomorphism ψ on
most inputs, then f agrees with some t-sparse function on most inputs as well.

Lemma 7.3.6. Suppose f |v is t-sparse, and dist0(ϕ
f,v,ψ) < µ < 1

2 for an affine homomorphism
ψ : Fn

2 → CFr
2 with shift f̂ |v. Then dist0(f, g) < µ for a t-sparse function g.

Proof. Suppose f |v is t-sparse and write supp(f |v) = {κ1, . . . , κs}, where s ≤ t. If κ ̸∈ supp(f |v),
then ψκ is identically zero. For i ∈ [s], we must have that ψκi = f̂ |v(κi)χβi

for some βi ∈ Fn
2 . Let

g =
∑s

i=1 f̂ |v(βi)χβi
. We will show that ψ = ϕg,v.

To this end it suffices to show that v⊤βi = κi for each i. To that end suppose otherwise and
choose i, j such that v⊤j βi ̸= κij . Then, for any x ∈ Fn

2 ,

ψκi(x+ vj) = f̂ |v(κi)χβi
(x+ vj) = f̂ |v(κi)χβi

(x)(−1)v
⊤
j βi = ψκi(x)(−1)

v⊤j βi . (7.2)

However, as

ϕf,vκi
(x+ vj) = f̂ |vx+vj

(κi)χβi
(x+ vj) =

∑
α:v⊤α=κî

f(α)χα(x+ vj) = ϕf,vκi
(x)(−1)κij (7.3)

ϕf,vκi can only agree with ψκi for one of x and x+ vj . This contradicts the condition that ϕf,v and
ψ agree on more than half of all inputs. From this we have that v⊤βi = κi for all i, such that
ψ = ϕg,v. It follows that if ψ(x) = ϕf,v(x) for some x, then f(y) = g(y) for all y ∈ x + V . In
particular, it implies f(x) = g(x). The result follows.

163

Thus, in order to test the sparsity of f , we select v that probably separates f̂ for f ∈ Ht, and
then test if ϕf,v is an affine homomorphism via a natural extension of the Blum-Ruby-Lubinfeld
(BLR) homomorphism test, which tests whether a map Ψ between Abelian groups satisfies
Ψ(x)Ψ(y) = Ψ(x+ y) for a selection of x and y. They showed the following theorem:

Theorem 7.3.7 ([BLR93]). Let G and H be finite Abelian groups, and let Φ : G→ H be such that
dist0(Φ,Ψ) > µ for any group homomorphism Ψ. Then for x, y ∈ G chosen uniformly at random,
Φ(x) + Φ(y) ̸= Φ(x+ y) with probability at least 2

9µ.

The only group homomorphisms Ψ ∈ H± are the character functions. The only 1-sparse
Boolean functions are the character functions and their negations. Thus 1-sparsity testing can be
directly solved via the BLR test. The BLR test may be modified to give an affine homomorphism
test.

Lemma 7.3.8. Let µ < 1/2. Suppose ϕ : Fn
2 → CI is such that dist0(ϕ,ψ) > µ for any affine

homomorphism ψ with shift ϕ(0) ∈ CI . Then, for x, y ∈ Fn
2 chosen independently and uniformly at

random, at least one of the following does not hold with probability at least 2
9µ:

(7.3.i) |ϕκ(z)| = |ϕκ(0)| for all κ ∈ I and z ∈ {x, y, x+ y};

(7.3.ii) ϕκ(x)ϕκ(y) = ϕκ(0)ϕκ(x+ y) for all κ ∈ supp(ϕ(0)).

Proof. Define the map Φ by

Φ : Fn
2 →

{
±1,±

√
−1
}I
, x 7→

κ 7→

ϕκ(x)/ϕκ(0) if |ϕκ(x)| = |ϕκ(0)| ̸= 0,
1 if ϕκ(x) = ϕκ(0) = 0,√
−1 otherwise.

 .

Observe that for any homomorphism Ψ : Fn
2 → (C∗)I , its components Ψκ, κ ∈ I, necessarily

map x to 1 or −1, so that if ϕ(x) disagrees with ϕ(0)Ψ(x), then Φ(x) disagrees with Ψ(x). Thus
dist0(Φ,Ψ) ≥ dist0(ϕ, ϕ(0)Ψ) > µ. Thus, by Theorem 7.3.7, Φ fails a linearity test with probability
at least 2

9µ. I.e., for x, y ∈ Fn
2 chosen independently and uniformly at random, Φ(x) · Φ(y) ̸=

Φ(x+ y).

If we have both (7.3.i) and (7.3.ii) in addition, however, we must have that Φ(x) · Φ(y) =
Φ(x+ y), giving a contradiction.

Equipped with this affine homomorphism test, we now can analyze the key component of our
sparsity test,

Lemma 7.3.9. Let ϕ = ϕf,v, and ϵ ∈ [0, 1]. Then the following hold for x, y ∈ Fn
2 chosen uniformly

at random:

164

• If f is t-sparse and v separates f , then (7.3.i) and (7.3.ii) hold;

• If f is ϵ-far from t-sparse, but f |v is t-sparse, then at least one of (7.3.i) or (7.3.ii) does not
hold, with probability at least ϵ2/18.

Proof. If v separates f then ϕ is an affine homomorphism per Lemma 7.3.5, such that (7.3.i) and
(7.3.ii) necessarily hold.

If f is ϵ-far from t-sparse, then by Fact 7.1.1, for µ = dist0(f,H±
t) we have µ ≥ ϵ2/4. If f |v is

t-sparse in addition, then by Lemma 7.3.6, dist0(ϕf,v,ψ) ≥ µ for any weighted homomorphism
ψ. It follows from Lemma 7.3.8 that at least one of (7.3.i) and (7.3.ii) does not hold, with
probability at least 2µ/9 ≥ ϵ2/18.

Algorithm 24 describes our Monte Carlo sparsity test.

Algorithm 24: A simple ϵ-ℓ2 t-sparsity tester
Input: f ∈ H±(n); t ∈ Z>0; ϵ > 0
Result: Test accepts if f ∈ H±(n), and rejects if dist2(f,Ht) > ϵ, each with probability at

least 2/3.
1 r ← ⌈log (3t(t− 1)/2)⌉;
2 Select v ∈ Fn×r

2 independently and uniformly at random;

3 Compute f̂ |v from f |v via the FFT;
4 if f |v is not t-sparse then Reject;
5 for j ← 1, 2, . . . , v = ⌈18 ln(3)ϵ−2⌉ do
6 Choose x, y ∈ Fn

2 independently and uniformly at random;

7 Test that
∣∣∣f̂ |vz (κ)∣∣∣ = ∣∣∣f̂ |v(κ)∣∣∣ for all z ∈ {x, y, x+ y} and all κ ∈ Fr

2;

8 Test that f̂ |vx(κ)f̂ |vy(κ) = f̂ |vx+y(κ)f̂ |v(κ);
9 if the tests on lines 7 and 8 pass for all j then Accept;

10 else Reject;

Theorem 7.3.10. Algorithm 24 is a ϵ-ℓ2 t-sparsity tester. Its query complexity is O(t2ϵ−2).

Proof. Suppose f is t-sparse, such that f |v is t-sparse. By Lemma 7.3.2, v separates f̂ with
probability 2/3, such that by Lemma 7.3.5, ϕf,v is an affine homomorphism, and the tests on
lines 7 and 8 always pass and the algorithm accepts.

If f is ϵ-far from t-sparse and the test does not reject on line 4, then at least one of the
tests on lines 7 and 8 will not pass for a fixed iteration of the for loop, with probability at least

165

ϵ2/18. Thus the probability that these tests pass for v = ⌈18 ln(3)ϵ−2⌉ iterations is less than
(1− ϵ2/18)v ≤ exp(−vϵ2/18) ≤ 1/3.

The query complexity is O(2rv) ⊆ O(t2ϵ−2)

From Theorem 7.1.3, we have the following Corollary:

Corollary 7.3.11. There exists a µ-Hamming t-sparsity tester with query complexity O(t2µ+ t6).

7.3.2 A O(t log t)-query t-sparsity tester

In this section we give a sparsity tester with query complexity softly linear in t. The key is to
use ExactSFT, as opposed to the FFT, to compute the Fourier transforms of the restrictions f̂ |vw.
We will compute Fourier transforms in batches using vectorized functions. This is so that we
can more easily control the probability that ExactSFT fails. Specifically we will perform s affine
homomorphism tests for some s > 0. We choose x1, . . . , xs, y1, . . . , ys ∈ Fn

2 , and set zi = xi + yi
for each i ∈ [s]. We then implicitly let

F = (f |vw)w∈W ∈
#–H(r, 3s+ 1),where

W = {0, x1, . . . , xs, y1, . . . , ys, z1, . . . , zs},

where F is implicitly encoded by the black-box f , v, and W. In order to reduce the query
complexity of our sparsity tester to be subquadratic, we cannot compute all the evaluations of
each f |vw, w ∈ W. Note that supp(F) = {vα : α ∈ supp(f)}, so that if f is t-sparse, then F is
t-sparse.

We compute Ĝ as the output to ExactSFT(F , n, t;µ), for an appropriate bound µ on the
failure probability. In the case that F is t-sparse and ExactSFT succeeds, then G is exactly F . We
perform some checks that probabilistically guarantee that the output G is close to F . First, we
check that each component Gw of G is actually a Boolean function. We can do this, albeit with
bit cost quadratic in t, by performing an inverse FFT on each component of G. We then test that
dist0(F ,G) is probably small, e.g., that dist0(F ,G) ≤ µ = ϵ2/32 with high probability.

We show that if ϕf,v is sufficiently close to a map ψ : Fn
2 → Ĥ±, and ψ is sufficiently close to

an affine homomorphism π : Fn
2 → Ĥ

±
t , with support of cardinality t, then f is close to a t-sparse

function h. To that end, for any function ψ : Fn
2 → Ĥ(r), and for x ∈ Fn

2 , we define

∥ψ∥2
def
=
√

Ex∈Fn
2

[
∥ψ(x)∥22

]
, where ∥ψ(x)∥2 =

√∑
κ∈Fr

2

ψ2
κ(x),

166

and observe that ∥·∥2 is a norm in both settings, and that

∥ψ∥22 = 2−n
∑

x∈Fn
2 ,κ∈Fr

2

ψ2
κ(x).

We will be interested in ψ defined by

ψ(w) =

{
Ĝw if w ∈ W
F̂w otherwise.

(7.4)

Lemma 7.3.12. Let ψ : Fn
2 → Ĥ(r) be such that:

• dist2(ϕ
f,v(x),ψ(x)) ≤ ϵ/4 for all x ∈ Fn

2 ;

• ψ(x) ∈ Ĥ± for all x ∈ Fn
2 ;

• dist0(ψ,π) ≤ µ = ϵ2/64 < 1 for an affine homomorphism π : Fn
2 → Ĥ

±
t (r).

Then dist2(f, h) ≤ ϵ for a t-sparse function h.

Proof. Note that, for f, h ∈ H(n),

∥f − h∥2 = ∥ϕf,v − ϕh,v∥2.

We first show that ∥ϕf,v − ψ∥2 ≤ ϵ/2. First, ∥ϕf,v − ψ∥2 ≤ ϵ/4 as ∥ϕf,v(x) − ψ(x)∥2 ≤ ϵ/4 for
all x. As ∥ψ(x)∥2 = 1 for all x, and ψ and π must agree for some y ∈ Fn

2 , we must have that
∥π(x)∥2 = ∥π(y)∥2 = 1 for all x ∈ Fn

2 . It follows that

∥ψ − π∥2 =
√

Ex∈Fn
2

[
∥ψ(x)− π(x)∥22

]
≤
√
4µ = ϵ/4,

and so ∥ϕf,v − π∥2 ≤ ϵ/2 by the triangle inequality.

We will now show that there exists a t-sparse function h satisfying ∥π − ϕh,v∥2 ≤ ϵ/2. Write
supp(π) = {κ1, . . . , κs}, where s ≤ t. Each nonzero component of π can be written as πκi =
πκi(0)χβi

for some βi ∈ Fn
2 .

Let I ⊂ [s] denote the set of i ∈ [s] such that v⊤βi ̸= κi, and let I = [s] \ I. We claim that
for every i ∈ I, only one of the pairs (ϕf,vκi (x), πκi(x)) and (ϕf,vκi (x + vj), πκi(x + vj)) can agree
in sign. To that end, we follow the argument of the proof of Lemma 7.3.6. Fix i ∈ I, and let
vj be such that v⊤j βi ̸= κij . Then, following (7.2) and (7.3), πκi(x + vj) = (−1)v

⊤
j βiπκi(vj) and

ϕf,vκi (x+ vj) = (−1)κijϕf,vκi (x), establishing the claim.

167

It follows that(
ϕf,vκi

(x)− πκi(x)
)2

+
(
ϕf,vκi

(x+ vj)− πκi(x+ vj)
)2
≥ 2πκi(x)

2 = 2πκi(0)
2,

so that

Ex∈Fn
2

[(
ϕf,vκi

(x)− πκi(x)
)2]
≥ ψκi(0)

2,

and thus ∑
i∈I

πκi(0)
2 ≤ Ex∈Fn

2

∑
κ∈Fr

2

∥ϕf,vκi
− πκi(x)∥22

 ≤ ϵ2/4.
Let h =

∑
i∈I πκi(0)χβi

. The function h is t-sparse, as supp(h) = {βi : i}. Then

∥ϕh,v − π∥22 = Ex∈Fn
2

∑
κ∈Fr

2

(
ϕh,vκ (x)− πκ(x)

)2 ,
= Ex∈Fn

2

[∑
i∈I

(
ϕh,vκi

(x)− πκi(x)
)2]

,

=
∑
i∈I

πκi(0)
2 ≤ ϵ2/4.

Thus ∥ϕh,v−π∥2 ≤ ϵ/2, and ∥ϕf,v−ϕh,v∥ ≤ ϵ by the triangle inequality, so that ∥f−h∥2 ≤ ϵ.

We are now in position to give our algorithm.

Theorem 7.3.13. Algorithm 25 is an ϵ-ℓ2 tester. Its query complexity is O(t log t/ϵ2 + ϵ−4)

Proof. Suppose f is t-sparse. Then v separates f̂ , and henceϕf,v is an affine homomorphism, with
probability at least 5/6. Moreover, F is t-sparse, so that ExactSFT produces F̂ with probability
at least 5/6. If these conditions hold, then the output Ĝ of ExactSFT satisfies Ĝw(κ) = ϕf,v(w),
an affine homomorphism, so that the tests on lines 14 and 15 pass for all i ∈ [u], and the test
accepts.

Suppose now that f is ϵ-far from t-sparse, but G(w) is a t-sparse Boolean function for each
w ∈ W. Let ψ be defined as in (7.4). By Lemma 7.3.12, we must have that either:

• there exists x ∈ Fn
2 such that dist2(ϕf,v(x),ψ(x)) > ϵ/4; or

• dist0(ψ,π) > ϵ/64 for every affine homomorphism of the form π : Fn
2 → Ĥ

±
t (r).

168

Algorithm 25: A fast ϵ-ℓ2 t-sparsity tester
Input: f ∈ H±(n); t ∈ Z>0; ϵ > 0
Result: Accepts if f ∈ H±

t and rejects if f is ϵ-far from H±
t , each with probability at least

2/3.

1 r ← ⌈log(3t(t− 1))⌉;
2 Select v ∈ Fn×r

2 independently and uniformly at random;

3 u← ⌈288 ln(3)ϵ2⌉;
4 Choose x1, . . . , xu, y1, . . . , yu ∈ Fn

2 independently and uniformly at random;
5 W ← {0} ∪

∪u
i=1{xi, yi, xi + yi} ⊂ Fn

2 ;
6 F ← a black-box polynomial for (f |vw)w∈W ;
7 Ĝ← ExactSFT(F , r, t; 1/6);
8 Compute G from Ĝ via the inverse FFT;
9 if Gw /∈ H±

t (r) for some w ∈ W then Reject;

10 s← ⌈64 ln(3)/ϵ2⌉;
11 Choose z1, . . . , zs ∈ Fr

2 independently and uniformly at random;
12 if Gw(zi) ̸= f |vw(zi) for some w ∈ W and i ∈ [s] then Reject;

13 for i ∈ [u] do

14 Test that
∣∣∣Ĝw(κ)

∣∣∣ = ∣∣∣Ĝ0(κ)
∣∣∣ for all w ∈ {xi, yi, xi + yi} and all κ ∈ Fr

2;

15 Test that Ĝxi(κ)Ĝyi(κ) = Ĝxi+yi(κ)Ĝ0(κ);

16 if the tests on lines 14 and 15 pass for all i ∈ [u] then Accept;
17 else Reject;

Suppose that dist2(ϕ
f,v)(w),ψ(w)) > ϵ/4 for some w ∈ W. Then dist0(f |vw, Gw) > ϵ2/64,

such that dist0(F ,G) > ϵ2/4, and the probability that F (z) = G(z), for all z ∈ {z1, . . . , zs} ⊂
Fr
2 chosen independently and uniformly at random, is less than (1 − ϵ2/4)s ≤ exp(−sϵ2/64) ≤

exp(− ln(6)) = 1/3. We have that dist2(ϕf,v(x),ψ(x)) = 0 for x ̸∈ W.

Suppose then that dist2(ϕ
f,v(x),ψ(x)) < ϵ/4 for all x ∈ Fn

2 . Suppose, moreover, that ψ is

ϵ2/64-far from any affine homomorphism π : Fn
2 → Ĥ

±
t (r) in terms of relative Hamming distance.

Then the probability that the tests on lines 14 and 15 fail for a fixed i ∈ [u] is more than ϵ2/288,
by Lemma 7.3.8. Thus the probability that this test passes for all i ∈ [u], given that xi and yi are
chosen independently and uniformly at random, is less than (1−ϵ2/288)u ≤ exp(−uϵ2/288) ≤ 1/3.
Thus, in either case, the algorithm rejects with probability at least 2/3. This proves the probabilistic
correctness of the algorithm.

169

Per Lemma 7.2.1, the call to ExactSFT costs O(urt) ⊆ O(t log tϵ−2) queries. The other check
on line 12 costs us ∈ O(ϵ−4) queries.

By Theorem 7.1.3, we get the following Corollary:

Corollary 7.3.14. There exists a µ-Hamming t-sparsity tester with query complexity O(t5 log t +
µ−2).

170

References

[AFS93] Rakesh Agrawal, Christos Faloutsos, and Arun Swami. “Efficient similarity search in
sequence databases”. English. In: Foundations of Data Organization and Algorithms.
Vol. 730. 1993, pp. 69–84. DOI: 10.1007/3-540-57301-1_5 (cit. on p. 1).

[AGR13] Andrew Arnold, Mark Giesbrecht, and Daniel S. Roche. “Faster Sparse Interpolation
of Straight-Line Programs”. In: Computer Algebra in Scientific Computing. Vol. 8136.
2013. DOI: 10.1007/978-3-319-02297-0_5 (cit. on pp. 15, 52, 53, 56, 65, 66, 89).

[AGR14] Andrew Arnold, Mark Giesbrecht, and Daniel S. Roche. “Sparse Interpolation over
Finite Fields via Low-order Roots of Unity”. In: Proceedings of the 39th International
Symposium on Symbolic and Algebraic Computation. 2014. DOI: 10.1145/2608628.
2608671 (cit. on pp. 15, 52, 53, 56, 70).

[AGR15] Andrew Arnold, Mark Giesbrecht, and Daniel S. Roche. “Faster sparse multivariate
polynomial interpolation of straight-line programs”. In: Journal of Symbolic Compu-
tation (2015). To appear. DOI: dx.doi.org/10.1016/j.jsc.2015.11.005 (cit. on
pp. 15, 109, 132, 134).

[AH15] Amir Akbary and Kyle Hambrook. “A variant of the Bombieri-Vinogradov theorem
with explicit constants and applications”. In: Mathematics of Computation 84.294
(2015), pp. 1901–1932. DOI: 10.1090/S0025-5718-2014-02919-0 (cit. on p. 33).

[AHU74] Alfred V Aho, J Hopcroft, and J Ullman. The design and analysis of algorithms.
Addison-Wesley Reading, 1974 (cit. on pp. 5, 19).

[AK15] Andrew Arnold and Erich Kaltofen. “Error-Correcting Sparse Interpolation in the
Chebyshev Basis”. In: 2015 (cit. on pp. 15, 140).

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. “PRIMES Is in P”. English. In:
Annals of Mathematics 160.2 (2004), pp. 781–793. DOI: 10.4007/annals.2004.
160.781 (cit. on p. 30).

171

http://dx.doi.org/10.1007/3-540-57301-1_5
http://dx.doi.org/10.1007/978-3-319-02297-0_5
http://dx.doi.org/10.1145/2608628.2608671
http://dx.doi.org/10.1145/2608628.2608671
http://dx.doi.org/dx.doi.org/10.1016/j.jsc.2015.11.005
http://dx.doi.org/10.1090/S0025-5718-2014-02919-0
http://dx.doi.org/10.4007/annals.2004.160.781
http://dx.doi.org/10.4007/annals.2004.160.781

[And+14] Alexandr Andoni, Rina Panigrahy, Gregory Valiant, and Li Zhang. “Learning Sparse
Polynomial Functions”. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Sym-
posium on Discrete Algorithms. 2014, pp. 500–510. URL: http://dl.acm.org/

citation.cfm?id=2634074.2634111 (cit. on p. 12).

[AR14] Andrew Arnold and Daniel S. Roche. “Multivariate Sparse Interpolation Using Ran-
domized Kronecker Substitutions”. In: 2014. DOI: 10.1145/2608628.2608674 (cit.
on pp. 15, 109, 116).

[AR15] Andrew Arnold and Daniel S. Roche. “Output-Sensitive Algorithms for Sumset and
Sparse Polynomial Multiplication”. In: Proceedings of the 40th International Sympo-
sium on Symbolic and Algebraic Computation. 2015. URL: http://arxiv.org/abs/
1501.05296 (cit. on pp. 15, 84, 89, 97, 101).

[BCS10] Peter Brgisser, Michael Clausen, and Mohammad A. Shokrollahi. Algebraic Complex-
ity Theory. 1st. Springer Publishing Company, Incorporated, 2010 (cit. on p. 21).

[Ber] Daniel Bernstein. The Transposition Principle. URL: cr.yp.to/transposition.html
(visited on 12/05/2015) (cit. on p. 23).

[Bis+15] Anurag Bishnoi, Pete L. Clark, Aditya Potukuchi, and John R. Schmitt. “On zeros of a
polynomial in a finite grid”. In: Journal (2015). preprint. URL: http://arxiv.org/
abs/1508.06020 (cit. on p. 39).

[Bl+09] Markus Blser, Moritz Hardt, Richard J. Lipton, and Nisheeth K. Vishnoi. “Determin-
istically Testing Sparse Polynomial Identities of Unbounded Degree”. In: Inf. Process.
Lett. 109.3 (2009), pp. 187–192. DOI: 10.1016/j.ipl.2008.09.029 (cit. on pp. 56,
61).

[Bla83] Richard E Blahut. Theory and practice of error control codes. Vol. 126. Addison-Wesley
Reading (Ma) etc., 1983 (cit. on p. 47).

[BLR93] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. “Self-testing / correcting with
applications to numerical problems”. In: Journal of computer and system sciences 47.3
(1993), pp. 549–595. DOI: 10.1016/0022-0000(93)90044-W (cit. on p. 164).

[Blu70] Leo I Bluestein. “A linear filtering approach to the computation of discrete Fourier
transform”. In: IEEE Transactions on Audio and Electroacoustics 18.4 (1970), 451
–455. DOI: 10.1109/TAU.1970.1162132 (cit. on p. 82).

[BM74] A. Borodin and R. Moenck. “Fast Modular Transforms”. In: J. Comput. Syst. Sci. 8.3
(1974), pp. 366–386. DOI: 10.1016/S0022-0000(74)80029-2 (cit. on p. 20).

[BR60] R.C. Bose and D.K. Ray-Chaudhuri. “On a class of error correcting binary group
codes”. In: Information and Control 3.1 (1960), pp. 68–79. DOI: 10.1016/S0019-
9958(60)90287-4 (cit. on p. 47).

172

http://dl.acm.org/citation.cfm?id=2634074.2634111
http://dl.acm.org/citation.cfm?id=2634074.2634111
http://dx.doi.org/10.1145/2608628.2608674
http://arxiv.org/abs/1501.05296
http://arxiv.org/abs/1501.05296
cr.yp.to/transposition.html
http://arxiv.org/abs/1508.06020
http://arxiv.org/abs/1508.06020
http://dx.doi.org/10.1016/j.ipl.2008.09.029
http://dx.doi.org/10.1016/0022-0000(93)90044-W
http://dx.doi.org/10.1109/TAU.1970.1162132
http://dx.doi.org/10.1016/S0022-0000(74)80029-2
http://dx.doi.org/10.1016/S0019-9958(60)90287-4
http://dx.doi.org/10.1016/S0019-9958(60)90287-4

[BT88] Michael Ben-Or and Prasoon Tiwari. “A Deterministic Algorithm for Sparse Multi-
variate Polynomial Interpolation”. In: Proceedings of the Twentieth Annual ACM Sym-
posium on Theory of Computing. 1988, pp. 301–309. DOI: 10.1145/62212.62241
(cit. on pp. 42, 48).

[CH02] Richard Cole and Ramesh Hariharan. “Verifying Candidate Matches in Sparse and
Wildcard Matching”. In: Proceedings of the Thirty-fourth Annual ACM Symposium on
Theory of Computing. Full proofs available from . 2002, pp. 592–601. DOI: 10.1145/
509907.509992 (cit. on pp. 89, 93, 94).

[CK91] David G. Cantor and Erich Kaltofen. “On Fast Multiplication of Polynomials over Ar-
bitrary Algebras”. In: Acta Inf. 28.7 (1991), pp. 693–701. DOI: 10.1007/BF01178683
(cit. on p. 18).

[CKP12] Matthew T. Comer, Erich L. Kaltofen, and Clment Pernet. “Sparse Polynomial In-
terpolation and Berlekamp/Massey Algorithms That Correct Outlier Errors in Input
Values”. In: Proceedings of the 37th International Symposium on Symbolic and Alge-
braic Computation. 2012, pp. 138–145. DOI: 10.1145/2442829.2442852 (cit. on
pp. 10, 143).

[CL13] Jean-Marc Couveignes and Reynald Lercier. “Fast construction of irreducible poly-
nomials over finite fields”. English. In: Israel Journal of Mathematics 194.1 (2013),
pp. 77–105. DOI: 10.1007/s11856-012-0070-8 (cit. on p. 19).

[Cla14] Pete L Clark. “The Combinatorial Nullstellenstze Revisited”. In: The Electronic Journal
of Combinatorics 21.4 (2014), P4–15. URL: www.combinatorics.org/ojs/index.
php/eljc/article/view/v21i4p15 (cit. on p. 39).

[Cor+09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to algorithms. The MIT Press, 2009 (cit. on p. 23).

[Cor+96] R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, and D.E. Knuth. “On the Lam-
bertW function”. English. In: Advances in Computational Mathematics 5.1 (1996),
pp. 329–359. DOI: 10.1007/BF02124750 (cit. on p. 32).

[CP06] Richard Crandall and Carl B Pomerance. Prime numbers: a computational perspective.
2nd. Vol. 182. Springer Science & Business Media, 2006 (cit. on p. 17).

[De+13] Anindya De, Piyush P. Kurur, Chandan Saha, and Ramprasad Saptharishi. “Fast Inte-
ger Multiplication Using Modular Arithmetic”. In: SIAM Journal on Computing 42.2
(2013), pp. 685–699. DOI: 10.1137/100811167 (cit. on p. 18).

[DL78] Richard A. Demillo and Richard J. Lipton. “A probabilistic remark on algebraic pro-
gram testing”. In: Information Processing Letters 7.4 (1978), pp. 193–195. DOI: 10.
1016/0020-0190(78)90067-4 (cit. on p. 39).

[Don06] David L Donoho. “Compressed sensing”. In: Information Theory, IEEE Transactions on
52.4 (2006), pp. 1289–1306. DOI: 10.1109/TIT.2006.871582 (cit. on p. 2).

173

http://dx.doi.org/10.1145/62212.62241
http://dx.doi.org/10.1145/509907.509992
http://dx.doi.org/10.1145/509907.509992
http://dx.doi.org/10.1007/BF01178683
http://dx.doi.org/10.1145/2442829.2442852
http://dx.doi.org/10.1007/s11856-012-0070-8
www.combinatorics.org/ojs/index.php/eljc/article/view/v21i4p15
www.combinatorics.org/ojs/index.php/eljc/article/view/v21i4p15
http://dx.doi.org/10.1007/BF02124750
http://dx.doi.org/10.1137/100811167
http://dx.doi.org/10.1016/0020-0190(78)90067-4
http://dx.doi.org/10.1016/0020-0190(78)90067-4
http://dx.doi.org/10.1109/TIT.2006.871582

[DP09] Devdatt P Dubhashi and Alessandro Panconesi. Concentration of measure for the anal-
ysis of randomized algorithms. Cambridge University Press, 2009 (cit. on pp. 26, 27).

[DR09] Dimitar K Dimitrov and Fernando R Rafaeli. “Descartes’ rule of signs for orthogonal
polynomials”. In: East J. Approx. 15.2 (2009), pp. 233–262 (cit. on p. 142).

[Erd46] Paul Erds. “On the coefficients of the cyclotomic polynomial”. In: Bull. Amer. Math.
Soc. 52.2 (1946), pp. 179–184. URL: http://projecteuclid.org/euclid.bams/
1183507708 (cit. on p. 87).

[ET36] Paul Erds and Paul Turn. “On Some Sequences of Integers”. In: Journal of the London
Mathematical Society s1-11.4 (1936), pp. 261–264. DOI: 10.1112/jlms/s1-11.4.
261 (cit. on p. 144).

[Fid73] Charles M. Fiduccia. “On the Algebraic Complexity of Matrix Multiplication.” PhD
thesis. 1973. URL: cr.yp.to/bib/1973/fiduccia-matrix.html (cit. on p. 23).

[Fre+88] Timothy S. Freeman, Gregory M. Imirzian, Erich Kaltofen, and Lakshman Yagati.
“Dagwood: A system for manipulating polynomials given by straight-line programs”.
In: ACM Trans. Math. Softw. 14.3 (1988), pp. 218–240. DOI: 10.1145/44128.214376
(cit. on p. 12).

[Fr09] M. Frer. “Faster Integer Multiplication”. In: SIAM Journal on Computing 39.3 (2009),
pp. 979–1005. DOI: 10.1137/070711761 (cit. on p. 17).

[GCL92] Keith O Geddes, Stephen R Czapor, and George Labahn. Algorithms for computer
algebra. Springer Science & Business Media, 1992 (cit. on p. 17).

[GG14] Torbjrn Granlund and the GMP development team. The GNU multiple precision arith-
metic library. 6.0.0. visited on 2015/07/16. 2014. URL: https://gmplib.org/gmp-
man-6.0.0a.pdf (cit. on p. 17).

[GJR10] Elena Grigorescu, Kyomin Jung, and Ronitt Rubinfeld. “A Local Decision Test for
Sparse Polynomials”. In: Inf. Process. Lett. 110.20 (2010), pp. 898–901. DOI: 10.

1016/j.ipl.2010.07.012 (cit. on p. 49).

[GKS90] Dima Yu Grigoriev, Marek Karpinski, and Michael F Singer. “Fast parallel algorithms
for sparse multivariate polynomial interpolation over finite fields”. In: SIAM Journal
on Computing 19.6 (1990), pp. 1059–1063 (cit. on p. 5).

[GL89] Oded Goldreich and Leonid A Levin. “A hard-core predicate for all one-way func-
tions”. In: Proceedings of the twenty-first annual ACM symposium on Theory of com-
puting. ACM. 1989, pp. 25–32. DOI: 10.1145/73007.73010 (cit. on pp. 153, 160).

[GLL02] Mark Giesbrecht, George Labahn, and Wen-shin Lee. On the Equivalence Between
Prony’s and Ben-Or’s/Tiwari’s Methods. Tech. rep. Computer science technical re-
port. CS-2002-23. University of Waterloo, 2002. URL: https://cs.uwaterloo.

ca/research/tr/2002/23/CS-2002-23.pdf (cit. on p. 42).

174

http://projecteuclid.org/euclid.bams/1183507708
http://projecteuclid.org/euclid.bams/1183507708
http://dx.doi.org/10.1112/jlms/s1-11.4.261
http://dx.doi.org/10.1112/jlms/s1-11.4.261
cr.yp.to/bib/1973/fiduccia-matrix.html
http://dx.doi.org/10.1145/44128.214376
http://dx.doi.org/10.1137/070711761
https://gmplib.org/gmp-man-6.0.0a.pdf
https://gmplib.org/gmp-man-6.0.0a.pdf
http://dx.doi.org/10.1016/j.ipl.2010.07.012
http://dx.doi.org/10.1016/j.ipl.2010.07.012
http://dx.doi.org/10.1145/73007.73010
https://cs.uwaterloo.ca/research/tr/2002/23/CS-2002-23.pdf
https://cs.uwaterloo.ca/research/tr/2002/23/CS-2002-23.pdf

[GLL09] Mark Giesbrecht, George Labahn, and Wen-shin Lee. “Symbolic-numeric Sparse In-
terpolation of Multivariate Polynomials”. In: J. Symb. Comput. 44.8 (2009), pp. 943–
959. DOI: 10.1016/j.jsc.2008.11.003 (cit. on p. 41).

[Gop+11] Parikshit Gopalan, Ryan O’Donnell, Rocco A Servedio, Amir Shpilka, and Karl Wim-
mer. “Testing Fourier dimensionality and sparsity”. In: SIAM Journal on Computing
40.4 (2011), pp. 1075–1100. DOI: 10.1137/100785429 (cit. on pp. 157, 158).

[GR11] Mark Giesbrecht and Daniel S. Roche. “Diversification Improves Interpolation”. In:
Proceedings of the 36th International Symposium on Symbolic and Algebraic Compu-
tation. 2011, pp. 123–130. DOI: 10.1145/1993886.1993909 (cit. on pp. 39, 52, 56,
60, 63, 82).

[GS09] Sanchit Garg and ric Schost. “Interpolation of polynomials given by straight-line
programs”. In: Theor. Comput. Sci. 410.27-29 (2009), pp. 2659–2662. DOI: 10.1016/
j.tcs.2009.03.030 (cit. on pp. 52, 56–59).

[Har+08] Godfrey Harold Hardy, EM Wright, Roger Heath-Brown, and Joseph Silverman. An
Introduction to the Theory of Numbers. 6th. Oxford University Press, 2008 (cit. on
p. 33).

[Has+12] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. “Nearly Optimal Sparse
Fourier Transform”. In: Proceedings of the Forty-fourth Annual ACM Symposium on
Theory of Computing. 2012, pp. 563–578. DOI: 10.1145/2213977.2214029 (cit. on
p. 2).

[HL13a] Hamed Hatami and Shachar Lovett. “Estimating the Distance from Testable Affine-
Invariant Properties”. In: Proceedings of the 2013 IEEE 54th Annual Symposium on
Foundations of Computer Science. 2013, pp. 237–242. DOI: 10.1109/FOCS.2013.33
(cit. on p. 157).

[HL13b] Joris van der Hoeven and Grgoire Lecerf. “On the bit-complexity of sparse poly-
nomial and series multiplication”. In: Journal of Symbolic Computation 50 (2013),
pp. 227–254. DOI: http://dx.doi.org/10.1016/j.jsc.2012.06.004 (cit. on
p. 104).

[HR99] Ming-Deh A Huang and Ashwin J Rao. “Interpolation of Sparse Multivariate Poly-
nomials over Large Finite Fields with Applications”. In: Journal of Algorithms 33.2
(1999), pp. 204–228. DOI: 10.1006/jagm.1999.1045 (cit. on p. 5).

[JM10] Seyed Mohammad Mahdi Javadi and Michael Monagan. “Parallel Sparse Polynomial
Interpolation over Finite Fields”. In: Proceedings of the 4th International Workshop
on Parallel and Symbolic Computation. 2010, pp. 160–168. DOI: 10.1145/1837210.
1837233 (cit. on p. 5).

175

http://dx.doi.org/10.1016/j.jsc.2008.11.003
http://dx.doi.org/10.1137/100785429
http://dx.doi.org/10.1145/1993886.1993909
http://dx.doi.org/10.1016/j.tcs.2009.03.030
http://dx.doi.org/10.1016/j.tcs.2009.03.030
http://dx.doi.org/10.1145/2213977.2214029
http://dx.doi.org/10.1109/FOCS.2013.33
http://dx.doi.org/http://dx.doi.org/10.1016/j.jsc.2012.06.004
http://dx.doi.org/10.1006/jagm.1999.1045
http://dx.doi.org/10.1145/1837210.1837233
http://dx.doi.org/10.1145/1837210.1837233

[Kal10] Erich L. Kaltofen. “Fifteen Years After DSC and WLSS2 What Parallel Computations
I Do Today: Invited Lecture at PASCO 2010”. In: Proceedings of the 4th International
Workshop on Parallel and Symbolic Computation. 2010, pp. 10–17. DOI: 10.1145/
1837210.1837213 (cit. on p. 48).

[Kal88] Erich Kaltofen. “Greatest Common Divisors of Polynomials Given by Straight-line
Programs”. In: J. ACM 35.1 (1988), pp. 231–264. DOI: 10.1145/42267.45069 (cit.
on p. 5).

[Kar95] Anatolii Alexeevich Karatsuba. “The complexity of computations”. In: Proceedings of
the Steklov Institute of Mathematics-Interperiodica Translation 211 (1995), pp. 169–
183 (cit. on p. 17).

[KL03] Erich Kaltofen and Wen-shin Lee. “Early termination in sparse interpolation algo-
rithms”. In: Journal of Symbolic Computation 36.3 (2003), pp. 365–400. DOI: 10.
1016/S0747-7171(03)00088-9 (cit. on p. 49).

[KL96] E. Kaltofen and A. Lobo. “On Rank Properties of Toeplitz Matrices over Finite Fields”.
In: Proceedings of the 1996 International Symposium on Symbolic and Algebraic Com-
putation. 1996, pp. 241–249. DOI: 10.1145/236869.237081 (cit. on p. 135).

[KM93] Eyal Kushilevitz and Yishay Mansour. “Learning decision trees using the Fourier spec-
trum”. In: SIAM Journal on Computing 22.6 (1993), pp. 1331–1348 (cit. on pp. 1,
160).

[KO63] A. Karatsuba and Y. Ofman. “Multiplication of Multidigit Numbers on Automata”. In:
Soviet Physics Doklady 7 (1963), p. 595 (cit. on p. 17).

[Koc+14] Murat Kocaoglu, Karthikeyan Shanmugam, Alexandros G Dimakis, and Adam Kli-
vans. “Sparse Polynomial Learning and Graph Sketching”. In: Advances in Neural
Information Processing Systems 27. 2014, pp. 3122–3130. URL: http://papers.

nips.cc/paper/5426-sparse-polynomial-learning-and-graph-sketching.pdf

(cit. on p. 12).

[KP14] Erich L. Kaltofen and Clment Pernet. “Sparse Polynomial Interpolation Codes and
Their Decoding Beyond Half the Minimum Distance”. In: Proceedings of the 39th
International Symposium on Symbolic and Algebraic Computation. 2014, pp. 272–
279. DOI: 10.1145/2608628.2608660 (cit. on pp. 143, 144, 150).

[Kro82] Leopold Kronecker. Grundzge einer arithmetischen theorie der algebraischen grssen...
von L. Kronecker. G. Reimer, 1882 (cit. on p. 40).

[KS01] Adam R Klivans and Daniel Spielman. “Randomness efficient identity testing of mul-
tivariate polynomials”. In: Proceedings of the thirty-third annual ACM symposium on
Theory of computing. ACM. 2001, pp. 216–223 (cit. on pp. 110, 111).

176

http://dx.doi.org/10.1145/1837210.1837213
http://dx.doi.org/10.1145/1837210.1837213
http://dx.doi.org/10.1145/42267.45069
http://dx.doi.org/10.1016/S0747-7171(03)00088-9
http://dx.doi.org/10.1016/S0747-7171(03)00088-9
http://dx.doi.org/10.1145/236869.237081
http://papers.nips.cc/paper/5426-sparse-polynomial-learning-and-graph-sketching.pdf
http://papers.nips.cc/paper/5426-sparse-polynomial-learning-and-graph-sketching.pdf
http://dx.doi.org/10.1145/2608628.2608660

[KY13] Erich Kaltofen and George Yuhasz. “A fraction free Matrix Berlekamp/Massey algo-
rithm”. In: Linear Algebra and its Applications 439.9 (2013), pp. 2515–2526. DOI:
10.1016/j.laa.2013.06.016 (cit. on p. 45).

[KY89] Erich Kaltofen and Lakshman Yagati. “Improved sparse multivariate polynomial in-
terpolation algorithms”. English. In: Symbolic and Algebraic Computation. Vol. 358.
1989, pp. 467–474. DOI: 10.1007/3-540-51084-2_44 (cit. on p. 49).

[Lan05] Serge Lang. “Undergraduate Algebra”. In: Springer, New York 5.7 (2005), p. 8 (cit. on
p. 38).

[Le 14] Franois Le Gall. “Powers of tensors and fast matrix multiplication”. In: Proceedings
of the 39th International Symposium on Symbolic and Algebraic Computation. ACM.
2014, pp. 296–303 (cit. on p. 21).

[Lev93] Leonis A. Levin. “Randomness and Non-determinism”. In: Journal of Symbolic Logic
58.3 (1993), pp. 1102–1103. DOI: 10.2307/2275127 (cit. on pp. 153, 160).

[LS95] Yagati N. Lakshman and B David Saunders. “Sparse polynomial interpolation in non-
standard bases”. In: SIAM Journal on Computing 24.2 (1995), pp. 387–397. DOI:
10.1137/S0097539792237784 (cit. on pp. 144, 146, 147).

[Mei02] Erik Meijering. “A chronology of interpolation: from ancient astronomy to modern
signal and image processing”. In: Proceedings of the IEEE 90.3 (2002), pp. 319–342
(cit. on p. 1).

[Mil75] Gary L. Miller. “Riemann’s Hypothesis and Tests for Primality”. In: Proceedings of
Seventh Annual ACM Symposium on Theory of Computing. 1975, pp. 234–239. DOI:
10.1145/800116.803773 (cit. on p. 32).

[MNL10] Abdullah Mueen, Suman Nath, and Jie Liu. “Fast Approximate Correlation for Mas-
sive Time-series Data”. In: Proceedings of the 2010 ACM SIGMOD International Con-
ference on Management of Data. 2010, pp. 171–182. DOI: 10.1145/1807167.1807188
(cit. on p. 1).

[Moe73] R. T. Moenck. “Fast Computation of GCDs”. In: Proceedings of the Fifth Annual ACM
Symposium on Theory of Computing. 1973, pp. 142–151. DOI: 10.1145/800125.
804045 (cit. on p. 19).

[Pan01] Victor Y. Pan. Structured Matrices and Polynomials: Unified Superfast Algorithms.
Springer-Verlag New York, Inc., 2001 (cit. on p. 22).

[Pan89] Victor Pan. “On Some Computations with Dense Structured Matrices”. In: Proceed-
ings of the ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic
Computation. 1989, pp. 34–42. DOI: 10.1145/74540.74546 (cit. on p. 22).

[Pri82] Paul Pritchard. “Explaining the wheel sieve”. English. In: Acta Informatica 17.4
(1982), pp. 477–485. DOI: 10.1007/BF00264164 (cit. on pp. 28, 29).

177

http://dx.doi.org/10.1016/j.laa.2013.06.016
http://dx.doi.org/10.1007/3-540-51084-2_44
http://dx.doi.org/10.2307/2275127
http://dx.doi.org/10.1137/S0097539792237784
http://dx.doi.org/10.1145/800116.803773
http://dx.doi.org/10.1145/1807167.1807188
http://dx.doi.org/10.1145/800125.804045
http://dx.doi.org/10.1145/800125.804045
http://dx.doi.org/10.1145/74540.74546
http://dx.doi.org/10.1007/BF00264164

[Rab80] Michael O Rabin. “Probabilistic algorithm for testing primality”. In: Journal of Num-
ber Theory 12.1 (1980), pp. 128–138. DOI: 10.1016/0022-314X(80)90084-0 (cit.
on p. 32).

[Rad68] Charles Rader. “Discrete Fourier transforms when the number of data samples is
prime”. In: Proceedings of the IEEE 56.6 (1968), pp. 1107–1108. DOI: 10.1109/

PROC.1968.6477 (cit. on p. 82).

[RS60] Irving S Reed and Gustave Solomon. “Polynomial codes over certain finite fields”. In:
Journal of the society for industrial and applied mathematics 8.2 (1960), pp. 300–304
(cit. on p. 47).

[RS62] J. Barkley Rosser and Lowell Schoenfeld. “Approximate formulas for some func-
tions of prime numbers”. In: Illinois J. Math. 6.1 (1962), pp. 64–94. URL: http:

//projecteuclid.org/euclid.ijm/1255631807 (cit. on p. 29).

[Sar06] Tamas Sarlos. “Improved approximation algorithms for large matrices via random
projections”. In: Foundations of Computer Science, 2006. FOCS’06. 47th Annual IEEE
Symposium on. IEEE. 2006, pp. 143–152. DOI: 10.1109/FOCS.2006.37 (cit. on p. 2).

[Sch+08] Uwe Schauz et al. “Algebraically solvable problems: describing polynomials as equiv-
alent to explicit solutions”. In: Electron. J. Combin 15.1 (2008). URL: http://www.
combinatorics.org/ojs/index.php/eljc/article/view/v15i1r10 (cit. on
p. 39).

[Sch71] A. Schnhage. “Schnelle Berechnung Von Kettenbruchentwicklungen”. In: Acta Inf.
1.2 (1971), pp. 139–144. DOI: 10.1007/BF00289520 (cit. on p. 19).

[Sch80] J. T. Schwartz. “Fast Probabilistic Algorithms for Verification of Polynomial Identi-
ties”. In: J. ACM 27.4 (1980), pp. 701–717. DOI: 10.1145/322217.322225 (cit. on
p. 37).

[Sho94] Victor Shoup. “Fast Construction of Irreducible Polynomials over Finite Fields”. In: J.
Symb. Comput. 17.5 (1994), pp. 371–391. DOI: 10.1006/jsco.1994.1025 (cit. on
p. 19).

[Shp01] Igor E. Shparlinski. “Sparse Polynomial Approximation in Finite Fields”. In: Pro-
ceedings of the Thirty-third Annual ACM Symposium on Theory of Computing. 2001,
pp. 209–215. DOI: 10.1145/380752.380803 (cit. on p. 142).

[Sma] SmartCare. URL: http://smartcare.be/home (visited on 05/06/2015) (cit. on
p. 1).

[SS71] A. Schnhage and V. Strassen. “Schnelle Multiplikation groer Zahlen”. German. In:
Computing 7.3-4 (1971), pp. 281–292. DOI: 10.1007/BF02242355 (cit. on p. 17).

178

http://dx.doi.org/10.1016/0022-314X(80)90084-0
http://dx.doi.org/10.1109/PROC.1968.6477
http://dx.doi.org/10.1109/PROC.1968.6477
http://projecteuclid.org/euclid.ijm/1255631807
http://projecteuclid.org/euclid.ijm/1255631807
http://dx.doi.org/10.1109/FOCS.2006.37
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v15i1r10
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v15i1r10
http://dx.doi.org/10.1007/BF00289520
http://dx.doi.org/10.1145/322217.322225
http://dx.doi.org/10.1006/jsco.1994.1025
http://dx.doi.org/10.1145/380752.380803
http://smartcare.be/home
http://dx.doi.org/10.1007/BF02242355

[Sto05] Arne Storjohann. “The shifted number system for fast linear algebra on integer ma-
trices”. In: Journal of Complexity 21.4 (2005), pp. 609–650. DOI: 10.1016/j.jco.
2005.04.002 (cit. on p. 21).

[SW05] Igor Shparlinski and Arne Winterhof. “Noisy interpolation of sparse polynomials in
finite fields”. English. In: Applicable Algebra in Engineering, Communication and Com-
puting 16.5 (2005), pp. 307–317. DOI: 10.1007/s00200- 005- 0180- 1 (cit. on
p. 142).

[SY11] Shubhangi Saraf and Sergey Yekhanin. “Noisy Interpolation of Sparse Polynomials,
and Applications”. In: Proceedings of the 2011 IEEE 26th Annual Conference on Com-
putational Complexity. 2011, pp. 86–92. DOI: 10.1109/CCC.2011.38 (cit. on p. 142).

[Sze75] E. Szemerdi. “On sets of integers containing k elements in arithmetic progression”.
English. In: Acta Arithmetica 27.1 (1975), pp. 199–245. URL: eudml . org / doc /

205339 (cit. on p. 144).

[TY] Klaus Thull and C Yap. “A unified approach to HGCD algorithms for polynomials and
integers, 1990”. Unpublished manuscript. Obtained 2015/11/23. (cit. on p. 19).

[VG03] Joachim Von Zur Gathen and Jrgen Gerhard. Modern computer algebra. 2nd. Cam-
bridge university press, 2003 (cit. on pp. 17, 18, 20, 89).

[WY13] Karl Wimmer and Yuichi Yoshida. “Testing Linear-invariant Function Isomorphism”.
In: Proceedings of the 40th International Conference on Automata, Languages, and
Programming - Volume Part I. 2013, pp. 840–850. DOI: 10.1007/978-3-642-39206-
1_71 (cit. on p. 157).

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. Springer, 1979 (cit.
on pp. 39, 111).

[Zip90] Richard Zippel. “Interpolating polynomials from their values”. In: Journal of Sym-
bolic Computation 9.3 (1990), pp. 375–403. DOI: 10.1016/S0747-7171(08)80018-
1 (cit. on pp. 38, 48, 111).

179

http://dx.doi.org/10.1016/j.jco.2005.04.002
http://dx.doi.org/10.1016/j.jco.2005.04.002
http://dx.doi.org/10.1007/s00200-005-0180-1
http://dx.doi.org/10.1109/CCC.2011.38
eudml.org/doc/205339
eudml.org/doc/205339
http://dx.doi.org/10.1007/978-3-642-39206-1_71
http://dx.doi.org/10.1007/978-3-642-39206-1_71
http://dx.doi.org/10.1016/S0747-7171(08)80018-1
http://dx.doi.org/10.1016/S0747-7171(08)80018-1

	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Preliminaries
	Model of Computation
	Sparse and dense polynomial representations
	Vector polynomials

	Models of polynomial evaluation
	Black-box polynomials
	Extended-black-box polynomials
	Straight-line programs

	Organization of thesis

	Algorithmic tools
	Integer, dense, modular ring, and finite field arithmetic
	Integer and modular arithmetic
	Dense polynomial arithmetic
	Finite field operations
	Chinese remaindering and simultaneous modular reduction
	Polynomial factorization via Hensel lifting
	Linear algebra

	Data structures
	Constructing dictionaries of terms

	Probabilistic inequalities
	Amplifying probabilistic algorithms

	Selecting primes
	Constructing the first k primes via sieve methods
	Selecting random primes from a specified interval
	Constructing elements in Zq of specified order
	Selecting primes in arithmetic progressions

	Probabilistic black-box polynomial identity testing
	Kronecker Substitution
	Prony's algorithm for interpolating black-box polynomials
	Linearly generated sequences
	Determining the minimal generator
	Prony's algorithm
	Decoding BCH codes and Prony's algorithm over finite fields
	The Ben-Or–Tiwari Algorithm

	Early termination, sparsity testing, and sparsity estimation

	Sparse interpolation of straight-line programs
	Introduction
	Preliminaries
	Extended black box queries
	Hashing exponents
	Organization of chapter and summary of results

	Previous Work
	The Garg–Schost algorithm
	Probabilistic Garg–Schost
	Related work: sparse polynomial identity testing of SLPs
	The Giesbrecht–Roche ``diversified'' method

	Iterative sparse interpolation
	Allowing for some collisions with sigma-support primes
	Deceptive terms
	Interpolation

	Majority-rule sparse interpolation over finite fields
	Selecting a set of primes of f
	Generalized diversification
	Collecting images of terms

	Estimating degree and sparsity bounds on the interpolant
	Conclusions and open questions
	Extensions to other models
	Open problems

	Output-sensitive algorithms for sumset and sparse polynomial multiplication
	Introduction
	Context

	Previous sparse multiplication algorithms
	Multiplication via interpolation
	Multiplication via ``large primes'' interpolation
	The Cole–Hariharin Las Vegas multiplication algorithm

	A softly-linear Monte Carlo algorithm for sumset
	Estimating the cardinality of sumset
	Computing sumset

	Estimating the sparsity of the product
	Multiplication with support
	Determining the true support of the product h=fg

	Putting the multiplication algorithm together
	Extensions to Laurent polynomials and various coefficient rings

	Conclusions and future work

	Multivariate sparse interpolation
	Introduction
	Comparison of sparse multivariate algorithms

	Zippel's algorithm
	Analysis of Zippel's algorithm
	An alternative formulation of Zippel's algorithm

	Randomized Kronecker substitutions
	Bivariate substitutions
	Multivariate substitutions

	Multivariate iterative sparse interpolation
	Interpolation

	Multivariate diversification
	Bivariate and multivariate majority-rule sparse interpolation
	Choosing substitutions and a diversifying set
	Recovering the multivariate exponents

	Ultravariate majority-rule sparse interpolation
	Selecting primes and substitution vectors
	A comparison of approaches to interpolate a multivariate SLP

	Error-correcting sparse interpolation in the Chebyshev basis
	Introduction
	Background
	Error-correcting sparse interpolation in the monomial basis
	The Lakshman–Saunders algorithm

	List-decoding Lakshman–Saunders algorithm
	Generalizing Laskhman–Saunders to folded affine subsequences
	A list-decoding algorithm
	Upper-bounding the query cost to interpolate T-sparse f for T >= 3

	Reducing sparse-Chebyshev interpolation to sparse-monomial interpolation

	Fast Fourier-sparsity testing of Boolean functions
	Background
	Previous work
	Projections and restrictions
	The FFT over the hypercube

	Sparse Fourier Transforms over the hypercube
	Fourier sparsity testing via homomorphism testing
	A simple sparsity tester
	A O(t log(t))-query t-sparsity tester

	References

