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Summary

Many chronic diseases feature recurring clinically important events. In addition, however, there
often exists a random variable which is realized upon the occurrence of each event reflecting the
severity of the event, a cost associated with it, or possibly a short term response indicating the
effect of a therapeutic intervention. We describe a novel model for a marked point process which
incorporates a dependence between continuous marks and the event process through the use of a
copula function. The copula formulation ensures that event times can be modeled by any inten-
sity function for point processes, and any multivariate model can be specified for the continuous
marks. The relative efficiency of joint versus separate analyses of the event times and the marks is
examined through simulation under random censoring. An application to data from a recent trial
in transfusion medicine is given for illustration.
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1 INTRODUCTION

1.1 OVERVIEW

Many disease processes feature recurrent events which represent acute exacerbations of an underlying
chronic condition. Examples include respiratory attacks in patients with asthma which can be associ-
ated with considerable disability and increased risk of death (Verona et al., 2003), flares of symptoms
in patients with systemic lupus erythematosus (Petri et al., 1991; Fok et al., 2012), recurrent headaches
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among migraineurs (Pascual et al., 2000), and graft rejection episodes arising in transplant recipients
where the rejection episodes signal increased risk of total graft rejection (Cole et al., 1994).

Statistical methods for the analysis of recurrent events have seen considerable development in
the last three decades. The three primary classes of methods are based on intensity-based models
(Andersen et al., 1993; Aalen et al., 2008), random effect models (Lawless, 1987a) and marginal
models (Lawless and Nadeau, 1995). In the clinical trial arena, marginal methods based on rate
functions (Andersen and Gill, 1982) have considerable appeal, and the development of methods for
robust inference (Lawless and Nadeau, 1995) has led to their widespread use. Partially conditional
models (Prentice, Williams and Peterson, 1981) and marginal methods based on multivariate failure
time data (Wei, Lin and Weissfeld, 1989) are also used routinely.

The events in many conditions are severe enough to warrant therapeutic intervention for alleviation
of symptoms and mitigation of risk for more serious complications. When such interventions are
applied, there is typically a short-term response which reflects how effective the intervention was in
alleviating symptoms and improving health. Studies of short-acting β2-agonists for the treatment of
asthma attacks (Sears et al., 1990), for example, aim to quickly improve lung function as measured
by short term change in forced expiratory volume.

The data resulting from such processes feature event times, with each event having an accom-
panying attribute realized upon event occurrence. Marked point processes are suitable for modeling
such data, and have been used extensively in areas such as seismology (Holden et al., 2002), genetics
(Robin, 2002), image analysis (Descombes and Zerubia, 2002), insurance (Grandell, 1997, Ch. 9),
finance (Prigent, 2001), forestry (Penttinen et al., 1992), and management science (Chen and Zheng,
1997). The theory of marked point processes is given in several excellent books on stochastic pro-
cesses including Cox and Isham (1980, Chap. 5), Snyder and Miller (1991; Chap. 4), Karr (1991,
Sect. 1.4), and more recently Daley and Vere-Jones (2008, Sect. 13.4). Semiparametric methods of
analysis based on likelihood are discussed in Andersen et al. (1993, Sect. 2.4) and robust nonpara-
metric marginal methods are considered in Cook et al. (2003) and Cook and Lawless (2007). Goulard
et al. (1996) consider pseudo-likelihood methods and moment estimation is developed by Politis and
Sherman (2001). The marks are often assumed to be independent of the event times to facilitate their
separate modeling using simple methods, but this assumption is often questionable. Tests of the inde-
pendence between the marks and event times were developed by Schlather et al. (2004), Schoenberg
(2004), and Guan (2006).

We propose a novel model for a marked point process in which the marginal models for the events
and the marks are compatible with standard models for recurrent event and longitudinal analyses.
A copula function is used to link the “survival” function of each mark given the history of marks,
with the distribution of the inter-event times given the relevant event history. This appealing structure
means that analyses of the incidence of the events and analysis of the marks are compatible with
standard methods for recurrent event data and any continuous multivariate distribution; efficiency
gains can therefore be explored for joint versus separate analyses. The remainder of this paper is
organized as follows. In Section ?? we define notation, describe the formulation of a copula-based
marked point process model and construct the likelihood. Simulation studies and an illustration of
the Mirasol platelet transfusion trial are presented in Sections ?? and ??, respectively, and general
remarks and topics for future research are in Section ??.

1.2 A TRIAL OF PATHOGEN-INACTIVATED PLATELETS IN THROMBOCYTOPENIC PATIENTS

Mirasol is a pathogen inactivation technology which utilizes exposure to ultraviolet light to inhibit
the proliferation of pathogens and white blood cell replication to produce pathogen reduced platelets
(PRT-PLT). The Mirasol Study is a recent multicentre trial of 118 hematology/oncology patients
with chemotherapy induced thrombocytopenia reported in Cazenave et al. (2010). Patients were
randomized to receive either pathogen reduced platelets (PRT-PLT) or standard platelets (Reference)
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as required over a 28 day treatment period. The primary outcome in this trial was based on the
corrected count increment (CCI), which is the difference between the patients platelet count before
and after the transfusion, adjusted for dose of platelets and body surface area of the patient (Davis
et al., 1999). Patients receive prophylatic transfusions whenever their platelet counts drop below the
defined threshold of 10 × 109m2/`. As a result, one might expect an association between the CCI for
a particular transfusion and the time to the next transfusion.
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Figure 1: Profiles of four patients from the Mirasol Study (Cazenave et al., 2010) showing the times
of the transfusions, the corrected count increments and the duration of follow-up; the horizontal line
at 4.5 (×109m2/`) is the threshold for a successful transfusion.

This phenomenon is illustrated in Figure ?? which displays data for a sample of four patients
from the Mirasol Study. In each panel, the horizontal axis indicates the number of days since the
first transfusion and the vertical axis is the corrected count increment based on the measurement
24 h after the transfusion. The horizontal dashed line at 4.5 corresponds to the threshold used to
define a successful (CCI > 4.5) or unsuccessful (CCI ≤ 4.5) transfusion. Patient 1 required only one
transfusion during the 28 day treatment period and experienced a large increase in their platelet count
due to this transfusion. Patient 4 on the other hand, required 9 transfusions and with only three of
these leading to a successful response. Patients 2 and 3 had intermediate numbers of transfusions
which generally lead to successful responses.

2 MODEL FORMULATION AND LIKELIHOOD CONSTRUCTION

2.1 A COPULA-BASED MARKED POINT PROCESS MODEL

Let X = 1 if the individual is randomized to receive the experimental intervention and X = 0
otherwise. We consider studies in which the primary purpose is to compare the effect of the experi-
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mental intervention to the standard intervention with respect to the distribution of the responses, and
secondary interest lies in the effect of the randomized intervention on event occurrence.

We suppose the process begins with an initiating event at T0 = 0, let Tk be the time of the kth
recurrence, and let Wk = Tk − Tk−1 denote the waiting time between the (k − 1)st and kth event,
k = 1, . . .. We let N(t) =

∑∞
k=1 I(Tk ≤ t), where I(·) is the indicator function such that I(A) = 1 if

A is true and I(A) = 0 otherwise. The associated right-continuous counting process is {N(s), 0 < s}
and the associated history is HN(t) = {N(s), 0 < s < t}. Let ∆N(t) = N((t + ∆t)−) − N(t−)
be the number of events over [t, t + ∆t), dN(t) = lim∆t→0 ∆N(t) = 1 if an event occurs at time t,
and dN(t) = 0 otherwise. The mark associated with the kth event is denoted by the random variable
Yk, k = 0, 1, . . ., and we let Y (t) = {Y0, . . . , YN(t)} denote the set of marks realized over [0, t].
It is convenient to denote the history of the marks at t as HY (t) = {Y (s), 0 < s < t}, and the
full history is then H(t) = {N(s), Y (s), 0 < s < t,X}. Let [0, CA] denote the planned period of
observation, where CA > 0 is an administrative right censoring time. Suppose further that CR > 0 is
a random right-censoring time (Kalbfleish and Prentice, 2002; Lawless, 2003) giving a net duration
of observation C = min(CA, CR); Figure ?? gives a schematic diagram relating key variables.

We let C(t) = I(t ≤ C) indicate whether the process is under observation at time t. Then
if dN̄(t) = C(t)dN(t), dN̄(t) = 1 implies that an event occurs and is observed at t. We define
N̄(t) =

∫ t
0
dN̄(s) and let Ȳ (t) = {Y0, . . . , YN̄(t)} denote the number of events and the respective

marks observed over (0, t]. The corresponding histories at time t are then H̄N(t) = {N̄(s), C(s), 0 <
s < t} and H̄Y (t) = {Ȳ (s), C(s), 0 < s < t} and the full history is H̄(t) = {N̄(s), Ȳ (s), C(s), 0 <
s < t,X}.
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Figure 2: Schematic diagram with notation for a marked point process

The full likelihood for a marked point process observed over (0, CA] subject to random right
censoring can be expressed in product integral notation (Cook and Lawless, 2007; Chap. 8) as∏

s∈[0,CA]

P (C(s)|H̄(s))
{
P (dN̄(s)|H̄(s), C(s) = 1)

P (YN̄(s)|H̄(s), C(s) = 1, dN̄(s) = 1)dN̄(s)
}C(s)

,

where we informally let the conditional probability involving YN̄(t) represent a conditional density
when the marks are continuous. Under non-informative censoring we omit the term P (C(s)|H̄(s))
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and work with the partial likelihood∏
s∈[0,CA]

{
P (dN̄(s)|H̄(s), C(s) = 1)

P (YN̄(s)|H̄(s), C(s) = 1, dN̄(s) = 1)dN̄(s)
}C(s)

. (2.1)

If censoring is conditionally independent, (??) is equal to∏
s∈[0,CA]

P (dN(s)|H(s), C(S))
∏

s∈[0,CA]

P (YN(s)|H(s), dN(s) = 1)dN̄(s) , (2.2)

and we can express the partial likelihood in terms of the model of interest.
We aim to specify a model such that the event intensity is formulated so that a marginal analysis

of the recurrent event process yields parameters compatible with a standard recurrent event model
while at the same time there is a dependence on the previous mark. Copula models can be used for
this purpose (Joe, 1997; Nelsen, 2006) and we provide a brief general discussion of them first.

If U1 and U2 are two random variables with standard uniform marginals on [0, 1], the bivariate
distribution

C(u1, u2) = P (U1 ≤ u1, U2 ≤ u2) ,

corresponds to a copula function (Genest and MacKay, 1986). For two continuous random variables
V1 and V2 with marginal survivor functions Fj(·), j = 1, 2, a joint survivor function F(v1, v2) =
P (V1 ≥ v1, V2 ≥ v2) is constructed through a copula by defining

F(v1, v2) = C(F1(v1),F2(v2)) ;

Sklar’s theorem (Nelsen, 2006) ensures the existence and uniqueness of C : [0, 1]2 → [0, 1]. Suppose
Fj(vj|X) is the survivor function of Vj given X = x, j = 1, 2. Patten (2006) proved for conditional
distributions that for each X = x in the support of X , the joint distribution of V1 and V2 given X = x
is uniquely defined by

F(v1, v2|x) = P (V1 ≥ v1, V2 ≥ v2|X = x) = C(F1(v1|x),F2(v2|z)|x) , (2.3)

for all (v1, v2) ∈ R2.
Returning now to the marked point process setting, we consider the case where the marks are

continuous random variables and for convenience let HN
k = {T1, . . . , Tk−1}, HY

k = {Y0, . . . , Yk−1}
and Hk = {T1, . . . , Tk−1, Y0, . . . , Yk−1, X}. If we let N̄(C) = n, note that

∏
s∈[0,CA]

P (dN(s)|H(s), C(s)) =
n∏
k=1

fk(tk|Hk) · Fn+1(C|Hn+1) . (2.4)

The joint distribution of F(Tk, Yk−1|HN
k , H

Y
k−1, X) can be defined through a copula C as

C(F(tk|HN
k , H

Y
k−1, X),F(yk−1|HN

k , H
Y
k−1, X);φ) , (2.5)

where φ is a vector of association parameters. This particular way of modeling the association be-
tween the marks and the events was chosen because in our motivating study, larger realized values
of Yk−1 are expected to lead to larger gaps Wk = Tk − Tk−1. To retain the feature that the marginal
models for the event times and marks have a standard form, we make the following two assumptions:

Assumption A1: Tk ⊥ HY
k−1|HN

k , X , k = 1, 2, . . .

Assumption A2: Yk−1 ⊥ HN
k |HY

k−1, X , k = 2, 3, . . .
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Assumption A1 means that given the history of the event times and the fixed covariate the marks
at times prior to Tk−1 are not associated with Wk = Tk − Tk−1. Assumption A2 states that the
mark at Tk−1 is independent of the event times prior to Tk given the previous marks and the fixed
covariate. This means that any models for longitudinal data can be used for the joint distribu-
tion of the marks. Under assumptions A1 and A2, (??) simplifies to involve F(tk|HN

k , X) (un-
der A1) and F(yk−1|HY

k−1, X), the “survivor function” of the mark given the history of the marks
(under A2). By applying the copula constructed in (??) with assumptions A1 and A2 to (??),∏

s∈[0,∞) P (dN(s)|H(s)) becomes∏
k

f(tk|HN
k , X) · c

(
F(tk|HN

k , X),F(yk−1|HY
k−1, X)

)
, (2.6)

where c(·, ·) is the density function of the copula C in (??).
The term P (YN(s)|H(s), dN(s) = 1) in the second part of the product integrand in (??) is the

density of the mark at time s conditional on the full historyH(s) and the fact that an event occurred at
time s. It can be written in terms of event times and marks as f(yk|HN

k+1, H
Y
k , X), and by assumption

A2, this becomes

P (YN(s)|H(s), dN(s) = 1) = f(yk|HY
k , X) . (2.7)

We have adopted this model formulation to ensure the marginal model for the event process can be
any point process model and the marks can be modelled separately using any model for longitudinal
data; the association model linking these two processes is based on a copula.

If n events are observed for one individual over (0, C], the likelihood of the observed outcome
“n events occur at times t1 < · · · < tn with respective marks y0, y1, . . . , yn given covariate x” is
proportional to{

C(01)
(
P (Tn+1 > C|HN

n+1, X), P (Yn > yn|HY
n , X)

)
·

n∏
k=1

c
(
P (Tk > tk|HN

k , X), P (Yk−1 > yk−1|HY
k−1, X)

)}
(2.8)

·

{
n∏
k=1

P (Tk ∈ [tk, tk + dtk)|HN
k , X)

}
·

{
n−1∏
k=0

P (yk ∈ [yk, yk + dyk)|HY
k , X)

}
,

where C(01)(u, v) = ∂C(u, v)/∂v. The likelihood (??) is in a very amenable form. The first n + 1
components provide information about all parameters; the second n components provide information
about the marginal model for the recurrent event; and the last n+ 1 components relate to the marginal
model for the marks.

The formulation of this model, through the use of copula function, enables specification of the
marginal and association models separately. Particular models for the recurrent events will be pro-
posed in Section ?? and those for the marks in Section ??.

2.2 MARGINAL MODELS FOR THE RECURRENT EVENTS

The “marginal” intensity function of the recurrent event process is defined as

λ(t|HN(t), X) = lim
∆t→0

P
(
∆N(t) = 1|HN(t), X

)
∆t

, (2.9)

where we assume that two events cannot occur at the same time.



Diao L, Cook RJ, Lee K-A 7

2.2.1 MARKOV MODELS

One might adopt a Markov model of the form

λ(t|HN(t), X) = λk(t|X) ,

where N(t−) = k, whereby the transition intensity depends on cumulative number of events over
(0, t]; see Prentice et al. (1981). The Poisson intensity (Lawless, 1987b) arises if we set λk(t|X) =
λ(t|X) for k = 0, 1, . . .. Models with multiplicative covariate effects of the form

λ(t|X; θ) = λ0(t;α) exp(Xβ) , (2.10)

are very common, where λ0(t|X;α) is a baseline intensity (rate) function indexed by α, and β is a
regression coefficient.

2.2.2 A MIXED MARKOV MODEL

To allow for extra-Poisson variation, one can consider a standard mixed Poisson model, in which
conditional on a random effect U > 0 with E(U) = 1 and Var(U) = γ, the marginal intensity given
U is of the form

λ(t|HN(t), X, U) = lim
∆t→0

P (∆N(t) = 1|X,U)

∆t
= Uλ0(t;α) exp(Xβ) . (2.11)

Under this mixed Poisson model, if we define E(N(t)|X) = µ(t|X), then Var(N(t)|X) = µ(t|X) +
µ(t|X)2γ and it is apparent that the mixed Poisson model accommodates extra Poisson variation.
When U follows a gamma distribution, the marginal intensity function becomes(

1 +N(t−)γ

1 + µ(t|X)γ

)
λ0(t;α) exp(Xβ) , (2.12)

which corresponds to a negative binomial process.

2.2.3 A SEMI-MARKOV MODEL

Semi-Markov models are useful when there is a sort of renewal in the process when an event occurs.
These feature intensities of the form

λ(t|HN(t), X) = hk(B(t)|X) ,

where N(t−) = k and B(t) = t − TN(t−) is the time since the most recent event. A renewal process
is obtained if hk(s) = h(s) for k = 0, 1, . . . in which case the waiting times are independent and
identically distributed within subjects. Use of mixed semi-Markov models is likewise possible, where
given a random effect U we may have

λ(t|HN(t), X, U) = Uhk(B(t)|X) .

2.3 MARGINAL MODELS FOR THE MARKS

Let Y = (Y0, Y1, . . . , YK)′ denote the vector of K+ 1 marks. We may assume, for example, that Y |X
is a (K + 1)× 1 multivariate normal random variable with mean µ(X) = (µ0(X), . . . , µK(X))′ and
(K + 1)× (K + 1) covariance matrix Σ with diagonal events σ2 and off diagonal elements ρσ2. We
may specify, for example, that µk(X) = η0k + η1kX and so the effect of treatment is to change the
mean mark. Often one would set η1k = η1, k = 1, . . ., to obtain a parsimonious representation of the
treatment effect, although tests ofH0 : η1k = η1 are often sensible. When marks are binary, analogous
multivariate binary models may be adopted and often these would be most naturally formulated with
marginal specifications of treatment and other covariate effects, particularly for data arising in clinical
trials.
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2.4 ESTIMATION AND STATISTICAL INFERENCE

Let L(θ; z) denote the likelihood function (??), where z denotes the data comprised of the marks
y0, y1, . . . , yn observed at time points t1, . . . , tn, the right censoring time C, and the covariate x; the
vector θ = (ψ′1, ψ

′
2, φ
′) is the full vector of parameters where ψ1 indexes the marginal recurrent event

process, ψ2 indexes the joint distribution of the marks, and φ characterizes the association between the
marks and the event times. Conditional onX = x, with a sample of sizem and data z = (z1, . . . , zm)′,
the maximum likelihood estimate θ̂ is the solution to the score equation U(θ; z) =

∑m
i=1 U(θ; zi) = 0

where

U(θ; zi) =
∂ logL(θ; zi)

∂θ
,

and is consistent. Moreover,
√
m(θ̂ − θ) D−→ N(0,A−1(θ)B(θ)A−1(θ))

as m → ∞, where A(θ) = −E[∂U(θ;Zi)/∂θ
′] and B(θ) = E[U(θ;Zi)U

′(θ;Zi)]. If the model
is correctly specified, A(θ) = B(θ) and asvar(

√
m(θ̂ − θ)) = A−1(θ). If the model is misspecified,

the asymptotic covariance matrix has the more complex formA−1(θ)B(θ)A−1(θ), which is the robust
asymptotic covariance matrix that can provide protection from some forms of model misspecification.
The robust covariance matrix is estimated by Â−1(θ̂)B̂(θ̂)Â−1(θ̂), where

Â(θ̂) = − 1

m

m∑
i=1

∂U(θ; zi)

∂θ
|θ=θ̂ ,

and

B̂(θ̂) =
1

m

m∑
i=1

U(θ; zi)U
′(θ; zi)|θ=θ̂ .

3 SIMULATION STUDIES

3.1 EMPIRICAL PERFORMANCE UNDER THE CORRECT COPULA

Here we investigate the finite sample performance of maximum likelihood estimators based on the
specified marked point process model and study empirically the relative efficiency of estimators from
the joint model and corresponding marginal analyses of the recurrent event process and marks.

We first consider events generated from a joint process where the marginal model for the recurrent
events corresponds to a non-homogeneous Poisson process as discussed in Section ??. The marginal
rate function is of the form

λ(t|X) = α1α2(α1t)
α2−1 exp(Xβ) (3.1)

giving the corresponding marginal mean function E(N(t)|X) =
∫ t

0
λ(s|X)ds = (α1t)

α2 exp(Xβ).
We set the administrative censoring time to CA = 1, α2 = 0.75 and E(N(1)|X = 0) = αα2

1 = 4
giving α1 = 6.35. We set coefficient β = log(0.5) = −0.6931 to indicate a 50% reduction of the risk
of events under the experimental treatment. We assume that the marks are multivariate normal with
σ2 = 1 and consider marks with a moderate (ρ = 0.3) and strong correlation (ρ = 0.6). The means
are assumed to be constant within groups with η0k = η0 = 0 and η1k = η1 = 0.5, k = 0, 1, . . . , K
corresponding to an experimental treatment which gives a better mean response.

The event process and marks are linked through the Clayton copula,

C(u, v) = (u−φ + v−φ − 1)−1/φ for φ > 0 . (3.2)
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We consider scenarios with both moderate (Kendall’s τ = 0.2) and strong (τ = 0.6) dependence
between the marks and the recurrent event process giving φ = 2τ/(1− τ) = 0.5 and 3 in (??) respec-
tively (Nelsen, 2006). We consider 40% random right censoring with P (CR > CA) = exp(−λc) =
0.6 giving λc = 0.5108. A total of 500 samples were simulated with 200 and 1000 subjects per sam-
ple for each parameter configuration. We next repeated the simulation study with events generated
according to a negative binomial process with intensity function given by (??).

For each dataset, we carried out a “joint analysis” based on the copula-based marked point process
model formulation described above with a Poisson margin (JOINTP ), where parameters are estimated
by maximizing the likelihood in (??). Marginal analyses of the event times were also conducted based
on a parametric Poisson model (NHPP) and a semi-parametric Andersen-Gill model (AG). Marginal
analysis of the marks were also carried out based on generalized estimating equations (GEE) under
both an independence working correlation structure (WI) and an exchangeable working correlation
structure (EXCH). The empirical biases (BIAS), empirical standard error (ESE) and average standard
error (ASE) are reported for each method of estimation and parameter configuration.

The BIAS of the estimators of log(α1), log(α2) and β are negligible for the parametric Poisson
(NHPP) and joint analyses for all configurations with Poisson margin in Table ??, as is the case for
the estimators of β from the AG analysis. Moreover there is excellent agreement between the ESEs
and average model-based standard errors. There is a marked decrease in the empirical and average
model-based SEs of all estimators from the joint analysis compared to the marginal analyses, with
the gain in efficiency greatest when τ is largest; not surprisingly there is little effect of the association
between the marks on the relative efficiency.

The frequency properties of the estimates of the marks are reported in Table ??. The analysis of
the marks based on GEEs with a working independence assumption yields heavily biased estimators;
use of an exchangeable working correlation structure, which is compatible with the true structure,
provides some protection against the selection effects arising from the association between the marks.
The BIAS are smallest under the joint analysis and the respective estimates are most efficient as well.

In Table ?? we report the results for the marginal event process when data are generated from
a joint model with a negative binomial intensity of the form (??) with γ = 0.5. The resulting data
were analysed under a misspecified parametric Poisson (NHPP), a semiparametric AG model, a semi-
parametric negative binomial model (SNB), a joint model with a misspecified Poisson event process
(JOINTP ), and a joint model with a correctly specified negative binomial margin (JOINTNB). In
addition to reporting the empirical bias, ESE, and average model-based standard error, we also report
the average robust standard error (RSE), calculated as described in the Section ??.

The biases are larger under the joint model with a Poisson margin revealing that misspecification
of the marginal intensity is more of a concern in the joint analysis. There is generally good perfor-
mance of the estimators under the correctly specified joint negative binomial model. The BIAS of the
estimators of β from the AG and semiparametric negative binomial analysis are negligible but robust
standard errors are required for valid inferences in the former approach. Again there are appreciable
gains in efficiency from the joint analysis with respect to most parameters with this gain being largest
when τ is large.

The results from the marginal semiparametric analysis of the marks are given in Table ?? along
with those from a joint analysis under Poisson and negative binomial assumptions for the marginal
event process. The BIAS under GEE analysis with a working independence correlation structure are
larger than those under an exchangeable correlation structure. Misspecification of the marginal model
for the recurrent event process leads to biased estimators of the marginal parameters for the marks as
well as estimation of the association parameter; this effect is stronger for larger τ . Estimates of the
fully and correctly specified joint model with a negative binomial margin have negligible empirical
biases and the smallest standard errors compared to other valid approaches.
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Table 1: Frequency properties of parameter estimators for the recurrent event process through
marginal and joint analysis of the marked point process with a Poisson margin under 40% random
right censoring where E(N(1)|X = 0) = 4; α1 = 6.35, α2 = 0.75, β = log 0.5; η0 = 0, η1 = 0.5,
σ2 = 1; 500 simulated samples

log(α1) log(α2) β

ρ Kendall’s τ NHPP JOINTP NHPP JOINTP NHPP AG JOINTP

Results based on 200 subjects/sample

0.3 0.2 BIAS 0.0029 0.0027 0.0011 0.0012 -0.0022 -0.0021 -0.0023
ESE 0.1039 0.1005 0.0428 0.0415 0.0943 0.0942 0.0911
ASE 0.1037 0.1015 0.0431 0.0420 0.0965 0.0965 0.0929

0.6 BIAS -0.0022 -0.0004 0.0035 0.0023 0.0015 0.0015 0.0004
ESE 0.1052 0.0891 0.0431 0.0306 0.0956 0.0955 0.0764
ASE 0.1033 0.0871 0.0431 0.0304 0.0964 0.0964 0.0726

0.6 0.2 BIAS 0.0029 0.0026 0.0011 0.0012 -0.0022 -0.0021 -0.0020
ESE 0.1039 0.1011 0.0428 0.0417 0.0943 0.0942 0.0905
ASE 0.1037 0.1017 0.0431 0.0421 0.0965 0.0965 0.0926

0.6 BIAS -0.0022 -0.0017 0.0035 0.0026 0.0015 0.0015 0.0012
ESE 0.1052 0.0904 0.0431 0.0325 0.0956 0.0955 0.0725
ASE 0.1033 0.0888 0.0431 0.0324 0.0964 0.0964 0.0690

Results based on 1000 subjects/sample

0.3 0.2 BIAS -0.0014 -0.0011 0.0014 0.0012 0.0019 0.0019 0.0012
ESE 0.0461 0.0454 0.0191 0.0185 0.0447 0.0447 0.0429
ASE 0.0463 0.0454 0.0193 0.0188 0.0430 0.0430 0.0414

0.6 BIAS -0.0007 -0.0013 0.0018 0.0014 0.0008 0.0008 0.0012
ESE 0.0461 0.0380 0.0191 0.0135 0.0430 0.0430 0.0320
ASE 0.0463 0.0390 0.0193 0.0136 0.0429 0.0429 0.0323

0.6 0.2 BIAS -0.0014 -0.0012 0.0014 0.0012 0.0019 0.0019 0.0011
ESE 0.0461 0.0456 0.0191 0.0186 0.0447 0.0447 0.0427
ASE 0.0463 0.0455 0.0193 0.0188 0.0430 0.0430 0.0413

0.6 BIAS -0.0007 -0.0015 0.0018 0.0015 0.0008 0.0008 0.0011
ESE 0.0461 0.0391 0.0191 0.0143 0.0430 0.0430 0.0303
ASE 0.0463 0.0398 0.0193 0.0145 0.0429 0.0429 0.0308

NHPP denotes a nonhomogeneous Poisson process model with rate
λ(t|HN (t), X) = α1α2(α1t)

α2−1 exp(βX), AG denotes a semiparametric analysis with
λ(t|HN (t), X) = λ0(t) exp(βX) with λ0(t) unspecified, and JOINTP corresponds to the joint model with
Poisson margin for the event intensity.



Diao L, Cook RJ, Lee K-A 11

Ta
bl

e
2:

Fr
eq

ue
nc

y
pr

op
er

tie
s

of
pa

ra
m

et
er

es
tim

at
or

s
fo

r
th

e
m

ar
ks

an
d

as
so

ci
at

io
n

m
od

el
th

ro
ug

h
jo

in
ta

nd
m

ar
gi

na
la

na
ly

si
s

of
th

e
m

ar
ke

d
po

in
t

pr
oc

es
s

w
ith

a
Po

is
so

n
m

ar
gi

n
un

de
r4

0%
ra

nd
om

ri
gh

tc
en

so
ri

ng
w

he
re
E

(N
(1

)|X
=

0)
=

4;
α

1
=

6.
35

,α
2

=
0.

75
,β

=
lo

g
0.

5;
η 0

=
0,
η 1

=
0.

5,
σ

2
=

1;
50

0
si

m
ul

at
ed

sa
m

pl
es

η
0

η
1

σ
2

ρ
K

en
d

al
l’

s
τ

ρ
K

en
d

al
l’

s
τ

W
I

E
X

C
H

JO
IN

T
W

I
E

X
C

H
JO

IN
T

W
I

E
X

C
H

JO
IN

T
E

X
C

H
JO

IN
T

JO
IN

T

R
es

u
lt

s
b

as
ed

o
n

2
0

0
su

b
je

ct
s/

sa
m

p
le

0
.3

0
.2

B
IA

S
-0

.0
5

9
3

-0
.0

0
5

6
-0

.0
0

3
6

0
.0

1
0

3
0

.0
0

7
6

0
.0

0
7

1
-0

.0
1

0
6

-0
.0

0
7

3
-0

.0
0

4
0

-0
.0

1
3

9
-0

.0
0

2
2

0
.0

0
2

2
E

S
E

0
.0

7
1

6
0

.0
7

1
3

0
.0

6
9

6
0

.1
0

6
1

0
.1

0
4

7
0

.1
0

2
3

0
.0

6
2

8
0

.0
6

3
8

0
.0

6
2

7
0

.0
5

7
9

0
.0

4
2

7
0

.0
2

5
1

A
S

E
0

.0
7

1
1

0
.0

7
0

0
0

.0
6

9
4

0
.1

0
5

8
0

.1
0

4
4

0
.1

0
2

6
-

-
0

.0
6

0
4

-
0

.0
4

2
2

0
.0

2
4

2

0
.6

B
IA

S
-0

.1
3

1
9

0
.0

0
8

2
-0

.0
0

1
4

0
.0

0
3

6
0

.0
0

8
2

0
.0

0
4

0
-0

.0
1

3
0

0
.0

0
8

9
-0

.0
0

0
3

0
.0

5
1

6
0

.0
0

0
9

0
.0

0
2

0
E

S
E

0
.0

7
3

5
0

.0
7

9
3

0
.0

6
5

2
0

.1
1

0
1

0
.1

0
8

4
0

.0
8

9
8

0
.0

6
0

3
0

.0
6

7
6

0
.0

4
8

3
0

.0
8

3
9

0
.0

2
7

3
0

.0
1

6
9

A
S

E
0

.0
7

0
6

0
.0

7
0

4
0

.0
6

3
4

0
.1

0
6

0
0

.1
0

5
3

0
.0

8
6

8
-

-
0

.0
5

0
0

-
0

.0
2

6
0

0
.0

1
6

5

0
.6

0
.2

B
IA

S
-0

.0
8

9
7

-0
.0

0
7

6
-0

.0
0

4
3

0
.0

0
4

2
0

.0
0

8
6

0
.0

0
8

1
-0

.0
3

3
6

-0
.0

2
5

0
-0

.0
0

5
9

-0
.0

2
8

4
-0

.0
0

3
3

0
.0

0
2

3
E

S
E

0
.0

8
8

0
0

.0
8

6
3

0
.0

8
3

4
0

.1
2

7
7

0
.1

2
4

0
0

.1
2

0
2

0
.0

7
7

4
0

.0
7

9
6

0
.0

7
5

1
0

.0
7

1
8

0
.0

3
4

0
0

.0
2

5
0

A
S

E
0

.0
8

7
4

0
.0

8
4

4
0

.0
8

2
8

0
.1

2
6

5
0

.1
2

2
2

0
.1

1
9

1
-

-
0

.0
7

4
5

-
0

.0
3

4
3

0
.0

2
4

2

0
.6

B
IA

S
-0

.2
0

0
0

0
.0

0
2

4
-0

.0
0

0
6

-0
.0

1
7

9
0

.0
0

9
5

0
.0

0
3

0
-0

.0
5

3
9

-0
.0

0
5

6
0

.0
0

0
2

0
.0

5
0

5
0

.0
0

0
0

0
.0

0
2

3
E

S
E

0
.0

8
8

8
0

.0
9

2
9

0
.0

7
3

7
0

.1
3

0
2

0
.1

2
7

8
0

.0
9

8
3

0
.0

7
4

8
0

.0
8

9
3

0
.0

5
7

1
0

.0
9

7
6

0
.0

2
3

3
0

.0
1

6
4

A
S

E
0

.0
8

5
1

0
.0

8
4

9
0

.0
7

1
4

0
.1

2
3

7
0

.1
2

3
2

0
.0

9
3

9
-

-
0

.0
5

7
2

-
0

.0
2

2
1

0
.0

1
6

0

R
es

u
lt

s
b

as
ed

o
n

1
0

0
0

su
b

je
ct

s/
sa

m
p

le

0
.3

0
.2

B
IA

S
-0

.0
5

4
8

-0
.0

0
0

7
0

.0
0

0
8

0
.0

0
1

9
-0

.0
0

1
4

-0
.0

0
1

0
-0

.0
0

8
2

-0
.0

0
5

2
-0

.0
0

0
0

-0
.0

1
0

5
0

.0
0

1
3

-0
.0

0
0

1
E

S
E

0
.0

3
1

2
0

.0
3

0
6

0
.0

3
0

3
0

.0
4

8
3

0
.0

4
6

8
0

.0
4

6
8

0
.0

2
8

6
0

.0
2

9
0

0
.0

2
8

4
0

.0
2

5
8

0
.0

1
8

9
0

.0
1

1
1

A
S

E
0

.0
3

2
1

0
.0

3
1

5
0

.0
3

1
2

0
.0

4
7

7
0

.0
4

7
0

0
.0

4
6

0
-

-
0

.0
2

7
1

-
0

.0
1

8
9

0
.0

1
0

8

0
.6

B
IA

S
-0

.1
3

0
0

0
.0

1
2

5
0

.0
0

0
1

-0
.0

0
2

1
0

.0
0

2
0

-0
.0

0
1

2
-0

.0
1

1
9

0
.0

0
9

1
-0

.0
0

0
5

0
.0

5
6

8
0

.0
0

0
6

0
.0

0
0

1
E

S
E

0
.0

3
1

5
0

.0
3

3
0

0
.0

2
7

5
0

.0
4

8
5

0
.0

4
7

2
0

.0
3

9
0

0
.0

2
7

0
0

.0
2

9
7

0
.0

2
2

6
0

.0
3

6
3

0
.0

1
1

6
0

.0
0

7
6

A
S

E
0

.0
3

1
8

0
.0

3
1

7
0

.0
2

8
4

0
.0

4
7

7
0

.0
4

7
2

0
.0

3
8

7
-

-
0

.0
2

2
3

-
0

.0
1

1
7

0
.0

0
7

4

0
.6

0
.2

B
IA

S
-0

.0
8

3
7

-0
.0

0
1

1
0

.0
0

1
1

-0
.0

0
4

9
-0

.0
0

1
7

-0
.0

0
0

8
-0

.0
2

8
0

-0
.0

2
0

7
0

.0
0

0
7

-0
.0

2
2

3
0

.0
0

0
7

-0
.0

0
0

0
E

S
E

0
.0

3
8

1
0

.0
3

6
7

0
.0

3
6

0
0

.0
5

7
6

0
.0

5
4

6
0

.0
5

4
2

0
.0

3
6

6
0

.0
3

7
6

0
.0

3
5

1
0

.0
3

3
8

0
.0

1
5

5
0

.0
1

1
1

A
S

E
0

.0
3

9
5

0
.0

3
8

0
0

.0
3

7
2

0
.0

5
7

1
0

.0
5

5
0

0
.0

5
3

5
-

-
0

.0
3

3
6

-
0

.0
1

5
3

0
.0

1
0

8

0
.6

B
IA

S
-0

.1
9

7
8

0
.0

0
8

0
0

.0
0

0
1

-0
.0

2
3

7
0

.0
0

2
4

-0
.0

0
1

3
-0

.0
5

1
5

-0
.0

0
4

3
-0

.0
0

0
2

0
.0

5
7

8
0

.0
0

0
3

0
.0

0
0

1
E

S
E

0
.0

3
8

5
0

.0
3

9
3

0
.0

3
1

8
0

.0
5

7
0

0
.0

5
5

4
0

.0
4

2
7

0
.0

3
2

7
0

.0
3

8
5

0
.0

2
5

9
0

.0
4

3
3

0
.0

0
9

9
0

.0
0

7
4

A
S

E
0

.0
3

8
4

0
.0

3
8

2
0

.0
3

1
9

0
.0

5
5

7
0

.0
5

5
3

0
.0

4
1

9
-

-
0

.0
2

5
5

-
0

.0
0

9
9

0
.0

0
7

2

W
Id

en
ot

es
a

G
E

E
an

al
ys

is
un

de
ra

w
or

ki
ng

in
de

pe
nd

en
ce

as
su

m
pt

io
n,

E
X

C
H

de
no

te
s

a
G

E
E

an
al

ys
is

un
de

ra
n

ex
ch

an
ge

ab
le

co
rr

el
at

io
n

m
at

ri
x,

an
d

JO
IN

T
co

rr
es

po
nd

s
to

th
e

jo
in

tm
od

el
w

ith
Po

is
so

n
m

ar
gi

n
fo

rt
he

ev
en

ti
nt

en
si

ty
.



A copula model for marked point processes 12
Ta

bl
e

3:
Fr

eq
ue

nc
y

pr
op

er
tie

s
of

pa
ra

m
et

er
es

tim
at

or
s

fo
rt

he
re

cu
rr

en
te

ve
nt

pr
oc

es
s

th
ro

ug
h

jo
in

ta
nd

m
ar

gi
na

la
na

ly
si

s
of

th
e

m
ar

ke
d

po
in

tp
ro

ce
ss

w
ith

a
ne

ga
tiv

e
bi

no
m

ia
lm

ar
gi

n
un

de
r4

0%
ra

nd
om

ri
gh

tc
en

so
ri

ng
w

he
re
E

(N
(1

)|X
=

0)
=

4;
α

1
=

6.
35

,α
2

=
0.

75
,β

=
lo

g
0.

5;
η 0

=
0,
η 1

=
0.

5,
σ

2
=

1;
γ

=
0.

5;
50

0
si

m
ul

at
ed

sa
m

pl
es

lo
g
(
α

1
)

lo
g
(
α

2
)

β
γ

ρ
K

e
n
d
a
ll

’s
τ

N
H

P
P

JO
IN

T
P

JO
IN

T
N
B

N
H

P
P

JO
IN

T
P

JO
IN

T
N
B

N
H

P
P

A
G

S
N

B
JO

IN
T
P

JO
IN

T
N
B

S
N

B
JO

IN
T
N
B

R
e
su

lt
s

b
a
se

d
o
n

2
0
0

su
b
je

c
ts

/s
a
m

p
le

0
.3

0
.2

B
IA

S
-0

.0
0
2
8

-0
.0

1
4
4

-0
.0

0
1
4

0
.0

0
3
7

0
.0

1
0
2

0
.0

0
4
3

-0
.0

0
6
0

-0
.0

0
5
8

-0
.0

0
5
9

-0
.0

0
1
4

-0
.0

0
8
3

-0
.0

1
4
9

-0
.0

1
3
9

E
S

E
0
.1

4
2
7

0
.1

3
9
3

0
.1

3
8
9

0
.0

4
5
4

0
.0

4
4
2

0
.0

4
3
9

0
.1

3
9
7

0
.1

3
9
7

0
.1

3
7
7

0
.1

3
4
6

0
.1

3
3
5

0
.1

0
5
5

0
.0

9
8
5

A
S

E
0
.1

0
3
9

0
.1

0
1
2

0
.1

3
7
6

0
.0

4
3
3

0
.0

4
2
3

0
.0

4
2
8

0
.0

9
6
5

0
.0

9
6
5

0
.1

3
8
9

0
.0

9
3
8

0
.1

3
6
8

-
0
.0

9
4
5

R
S

E
0
.1

4
0
6

0
.1

3
7
2

0
.1

3
6
9

0
.0

4
4
0

0
.0

4
2
8

0
.0

4
2
3

0
.1

4
1
8

0
.1

4
1
6

-
0
.1

3
7
8

0
.1

3
6
8

-
0
.0

9
3
7

0
.6

B
IA

S
-0

.0
0
8
2

-0
.0

9
2
9

-0
.0

0
7
9

-0
.0

0
0
3

0
.0

3
8
6

0
.0

0
2
4

0
.0

0
1
6

0
.0

0
1
4

0
.0

0
1
0

0
.0

4
9
2

0
.0

0
2
1

-0
.0

0
7
7

-0
.0

0
0
4

E
S

E
0
.1

4
3
0

0
.1

2
7
8

0
.1

2
0
6

0
.0

4
6
4

0
.0

3
6
2

0
.0

3
4
7

0
.1

4
5
8

0
.1

4
5
8

0
.1

4
5
0

0
.1

2
2
6

0
.1

0
7
6

0
.1

0
5
0

0
.0

6
9
5

A
S

E
0
.1

0
3
9

0
.0

8
4
7

0
.1

1
6
1

0
.0

4
3
3

0
.0

3
3
6

0
.0

3
1
9

0
.0

9
7
1

0
.0

9
7
1

0
.1

3
9
8

0
.0

7
7
9

0
.1

0
8
5

-
0
.0

6
5
4

R
S

E
0
.1

4
0
3

0
.1

2
1
9

0
.1

1
5
5

0
.0

4
4
1

0
.0

3
3
9

0
.0

3
1
8

0
.1

4
2
2

0
.1

4
2
2

-
0
.1

1
8
0

0
.1

0
8
3

-
0
.0

6
5
5

0
.6

0
.2

B
IA

S
-0

.0
0
2
8

-0
.0

0
7
6

-0
.0

0
1
5

0
.0

0
3
7

0
.0

0
8
3

0
.0

0
4
3

-0
.0

0
6
0

-0
.0

0
5
8

-0
.0

0
5
9

-0
.0

0
1
7

-0
.0

0
8
0

-0
.0

1
4
9

-0
.0

1
3
9

E
S

E
0
.1

4
2
7

0
.1

3
9
9

0
.1

3
9
3

0
.0

4
5
4

0
.0

4
4
3

0
.0

4
4
0

0
.1

3
9
7

0
.1

3
9
7

0
.1

3
7
7

0
.1

3
4
4

0
.1

3
3
4

0
.1

0
5
5

0
.0

9
8
9

A
S

E
0
.1

0
3
9

0
.1

0
1
7

0
.1

3
7
7

0
.0

4
3
3

0
.0

4
2
4

0
.0

4
2
8

0
.0

9
6
5

0
.0

9
6
5

0
.1

3
8
9

0
.0

9
3
6

0
.1

3
6
3

-
0
.0

9
4
9

R
S

E
0
.1

4
0
6

0
.1

3
7
6

0
.1

3
7
0

0
.0

4
4
0

0
.0

4
2
9

0
.0

4
2
3

0
.1

4
1
8

0
.1

4
1
6

-
0
.1

3
7
4

0
.1

3
6
3

-
0
.0

9
4
2

0
.6

B
IA

S
-0

.0
0
8
2

0
.0

0
1
3

-0
.0

0
7
6

-0
.0

0
0
3

0
.0

2
4
0

0
.0

0
2
3

0
.0

0
1
6

0
.0

0
1
4

0
.0

0
1
0

0
.0

2
1
3

0
.0

0
1
4

-0
.0

0
7
7

-0
.0

0
0
7

E
S

E
0
.1

4
3
0

0
.1

3
2
6

0
.1

1
9
9

0
.0

4
6
4

0
.0

3
7
1

0
.0

3
5
0

0
.1

4
5
8

0
.1

4
5
8

0
.1

4
5
0

0
.1

1
9
1

0
.1

0
0
8

0
.1

0
5
0

0
.0

6
9
2

A
S

E
0
.1

0
3
9

0
.0

9
0
6

0
.1

1
6
6

0
.0

4
3
3

0
.0

3
4
8

0
.0

3
2
1

0
.0

9
7
1

0
.0

9
7
1

0
.1

3
9
8

0
.0

7
7
2

0
.1

0
2
0

-
0
.0

6
5
6

R
S

E
0
.1

4
0
3

0
.1

2
7
6

0
.1

1
6
1

0
.0

4
4
1

0
.0

3
4
8

0
.0

3
2
0

0
.1

4
2
2

0
.1

4
2
2

-
0
.1

1
6
2

0
.1

0
1
6

-
0
.0

6
5
5

R
e
su

lt
s

b
a
se

d
o
n

1
0
0
0

su
b
je

c
ts

/s
a
m

p
le

0
.3

0
.2

B
IA

S
-0

.0
0
7
1

-0
.0

1
9
2

-0
.0

0
6
0

0
.0

0
2
8

0
.0

0
9
1

0
.0

0
2
6

0
.0

0
1
5

0
.0

0
1
5

0
.0

0
0
8

0
.0

0
7
1

0
.0

0
0
4

-0
.0

0
6
5

-0
.0

0
5
7

E
S

E
0
.0

6
3
6

0
.0

6
2
5

0
.0

6
2
1

0
.0

1
9
5

0
.0

1
8
9

0
.0

1
8
9

0
.0

6
5
1

0
.0

6
5
1

0
.0

6
4
2

0
.0

6
3
4

0
.0

6
2
4

0
.0

4
5
7

0
.0

4
2
5

A
S

E
0
.0

4
6
3

0
.0

4
5
2

0
.0

6
1
7

0
.0

1
9
3

0
.0

1
8
9

0
.0

1
9
1

0
.0

4
3
0

0
.0

4
3
0

0
.0

6
2
1

0
.0

4
1
8

0
.0

6
1
3

-
0
.0

4
2
6

R
S

E
0
.0

6
3
2

0
.0

6
1
9

0
.0

6
1
8

0
.0

1
9
8

0
.0

1
9
3

0
.0

1
9
1

0
.0

6
3
7

0
.0

6
3
7

-
0
.0

6
1
9

0
.0

6
1
3

-
0
.0

4
2
6

0
.6

B
IA

S
-0

.0
0
2
0

-0
.0

8
6
7

-0
.0

0
3
5

0
.0

0
0
4

0
.0

3
7
9

0
.0

0
0
6

-0
.0

0
2
8

-0
.0

0
2
8

-0
.0

0
2
6

0
.0

4
4
7

-0
.0

0
1
0

-0
.0

0
2
7

-0
.0

0
1
5

E
S

E
0
.0

6
2
8

0
.0

5
3
8

0
.0

5
2
0

0
.0

1
9
9

0
.0

1
5
1

0
.0

1
4
7

0
.0

6
1
7

0
.0

6
1
7

0
.0

6
2
0

0
.0

5
1
2

0
.0

4
7
9

0
.0

4
6
5

0
.0

2
8
3

A
S

E
0
.0

4
6
3

0
.0

3
7
9

0
.0

5
1
9

0
.0

1
9
3

0
.0

1
5
0

0
.0

1
4
2

0
.0

4
3
1

0
.0

4
3
1

0
.0

6
2
3

0
.0

3
4
6

0
.0

4
8
2

-
0
.0

2
9
0

R
S

E
0
.0

6
3
2

0
.0

5
5
1

0
.0

5
1
9

0
.0

1
9
8

0
.0

1
5
1

0
.0

1
4
2

0
.0

6
3
9

0
.0

6
3
8

-
0
.0

5
2
9

0
.0

4
8
2

-
0
.0

2
9
0

0
.6

0
.2

B
IA

S
-0

.0
0
7
1

-0
.0

1
2
7

-0
.0

0
6
4

0
.0

0
2
8

0
.0

0
7
3

0
.0

0
2
6

0
.0

0
1
5

0
.0

0
1
5

0
.0

0
0
8

0
.0

0
7
0

0
.0

0
0
8

-0
.0

0
6
5

-0
.0

0
5
6

E
S

E
0
.0

6
3
6

0
.0

6
2
6

0
.0

6
1
9

0
.0

1
9
5

0
.0

1
9
0

0
.0

1
8
9

0
.0

6
5
1

0
.0

6
5
1

0
.0

6
4
2

0
.0

6
3
2

0
.0

6
2
1

0
.0

4
5
7

0
.0

4
2
5

A
S

E
0
.0

4
6
3

0
.0

4
5
4

0
.0

6
1
7

0
.0

1
9
3

0
.0

1
9
0

0
.0

1
9
1

0
.0

4
3
0

0
.0

4
3
0

0
.0

6
2
1

0
.0

4
1
7

0
.0

6
1
1

-
0
.0

4
2
8

R
S

E
0
.0

6
3
2

0
.0

6
2
1

0
.0

6
1
8

0
.0

1
9
8

0
.0

1
9
3

0
.0

1
9
1

0
.0

6
3
7

0
.0

6
3
7

-
0
.0

6
1
8

0
.0

6
1
1

-
0
.0

4
2
8

0
.6

B
IA

S
-0

.0
0
2
0

0
.0

0
7
3

-0
.0

0
4
1

0
.0

0
0
4

0
.0

2
2
7

0
.0

0
0
7

-0
.0

0
2
8

-0
.0

0
2
8

-0
.0

0
2
6

0
.0

1
8
3

-0
.0

0
0
8

-0
.0

0
2
7

-0
.0

0
1
4

E
S

E
0
.0

6
2
8

0
.0

5
6
5

0
.0

5
2
0

0
.0

1
9
9

0
.0

1
5
6

0
.0

1
4
8

0
.0

6
1
7

0
.0

6
1
7

0
.0

6
2
0

0
.0

5
0
7

0
.0

4
4
5

0
.0

4
6
5

0
.0

2
8
6

A
S

E
0
.0

4
6
3

0
.0

4
0
5

0
.0

5
2
1

0
.0

1
9
3

0
.0

1
5
6

0
.0

1
4
3

0
.0

4
3
1

0
.0

4
3
1

0
.0

6
2
3

0
.0

3
4
3

0
.0

4
5
3

-
0
.0

2
9
0

R
S

E
0
.0

6
3
2

0
.0

5
7
7

0
.0

5
2
1

0
.0

1
9
8

0
.0

1
5
6

0
.0

1
4
3

0
.0

6
3
9

0
.0

6
3
8

-
0
.0

5
2
0

0
.0

4
5
3

-
0
.0

2
9
0

N
H

PP
de

no
te

s
a

no
nh

om
og

en
eo

us
Po

is
so

n
pr

oc
es

s
m

od
el

w
ith

ra
te
λ
(t
|H

N
(t
),
X
)
=
α

1
α

2
(α

1
t)
α
2
−

1
ex
p
(β
X
),

JO
IN

T
P

de
no

te
s

th
e

jo
in

tm
od

el
w

ith
a

N
H

PP
m

ar
gi

n
fo

rt
he

ev
en

tp
ro

ce
ss

,J
O

IN
T
N
B

de
no

te
s

th
e

jo
in

tm
od

el
w

ith
a

ne
ga

tiv
e

bi
no

m
ia

lm
ar

gi
n

fo
rt

he
ev

en
tp

ro
ce

ss
,A

G
de

no
te

s
a

se
m

ip
ar

am
et

ri
c

an
al

ys
is

w
ith

λ
(t
|H

N
(t
),
X
)
=
λ

0
(t
)
ex
p
(β
X
)

w
ith

λ
0
(t
)

un
sp

ec
ifi

ed
,a

nd
SN

B
de

no
te

s
a

se
m

ip
ar

am
et

ri
c

ne
ga

tiv
e

bi
no

m
ia

lp
ro

ce
ss

w
ith

λ
(t
|H

N
(t
),
X
,U

)
=
U
λ

0
(t
)
ex
p
(β
X
)

w
ith

λ
0
(t
)

un
sp

ec
ifi

ed
an

d
U

ga
m

m
a

di
st

ri
bu

te
d

w
ith

m
ea

n
1

an
d

va
ri

an
ce
γ

.



Diao L, Cook RJ, Lee K-A 13
Ta

bl
e

4:
Fr

eq
ue

nc
y

pr
op

er
tie

s
of

pa
ra

m
et

er
es

tim
at

or
s

fo
rt

he
re

cu
rr

en
te

ve
nt

pr
oc

es
s

th
ro

ug
h

jo
in

ta
nd

m
ar

gi
na

la
na

ly
si

s
of

th
e

m
ar

ke
d

po
in

tp
ro

ce
ss

w
ith

a
ne

ga
tiv

e
bi

no
m

ia
lm

ar
gi

n
un

de
r4

0%
ra

nd
om

ri
gh

tc
en

so
ri

ng
w

he
re
E

(N
(1

)|X
=

0)
=

4;
α

1
=

6.
35

,α
2

=
0.

75
,β

=
lo

g
0.

5;
η 0

=
0,
η 1

=
0.

5,
σ

2
=

1;
γ

=
0.

5;
50

0
si

m
ul

at
ed

sa
m

pl
es

η
0

η
1

σ
2

ρ
K

en
da

ll
’s
τ

ρ
K

en
da

ll
’s
τ

W
I

E
X

C
H

JO
IN

T
P

JO
IN

T
N
B

W
I

E
X

C
H

JO
IN

T
P

JO
IN

T
N
B

W
I

E
X

C
H

JO
IN

T
P

JO
IN

T
N
B

E
X

C
H

JO
IN

T
P

JO
IN

T
N
B

JO
IN

T
P

JO
IN

T
N
B

R
es

ul
ts

ba
se

d
on

20
0

su
bj

ec
ts

/s
am

pl
e

0.
3

0.
2

B
IA

S
-0

.0
91

4
-0

.0
04

4
-0

.0
48

7
-0

.0
05

8
0.

02
71

0.
00

62
0.

02
49

0.
00

82
-0

.0
16

3
-0

.0
08

3
-0

.0
46

1
-0

.0
08

5
0.

00
17

-0
.0

33
0

-0
.0

03
0

-0
.0

35
0

0.
00

03
E

S
E

0.
07

79
0.

07
22

0.
07

10
0.

07
04

0.
10

85
0.

10
60

0.
10

21
0.

10
07

0.
06

42
0.

06
70

0.
05

86
0.

06
37

0.
09

03
0.

04
55

0.
04

65
0.

02
25

0.
02

47
A

S
E

0.
04

84
0.

07
23

0.
06

90
0.

07
18

0.
07

80
0.

10
70

0.
10

21
0.

10
48

-
-

0.
05

65
0.

06
15

-
0.

04
27

0.
04

37
0.

02
19

0.
02

43
R

S
E

0.
07

66
0.

07
20

0.
07

20
0.

07
18

0.
11

20
0.

10
67

0.
10

60
0.

10
48

-
-

0.
05

65
0.

06
09

-
0.

04
29

0.
04

31
0.

02
22

0.
02

42

0.
6

B
IA

S
-0

.2
06

9
0.

06
09

-0
.1

17
6

0.
00

31
0.

03
39

-0
.0

00
8

-0
.0

02
2

-0
.0

02
7

-0
.0

08
8

0.
06

26
-0

.1
78

7
-0

.0
01

8
0.

19
40

-0
.1

73
6

0.
00

09
-0

.0
72

5
0.

00
19

E
S

E
0.

07
69

0.
09

37
0.

07
15

0.
06

86
0.

11
55

0.
10

74
0.

10
01

0.
08

95
0.

06
72

0.
09

66
0.

04
43

0.
05

60
0.

16
19

0.
03

11
0.

03
24

0.
02

32
0.

01
69

A
S

E
0.

04
84

0.
08

41
0.

05
20

0.
06

67
0.

07
86

0.
12

27
0.

07
53

0.
09

06
-

-
0.

03
86

0.
05

50
-

0.
02

37
0.

03
14

0.
01

85
0.

01
67

R
S

E
0.

07
75

0.
07

40
0.

07
07

0.
06

63
0.

11
55

0.
10

96
0.

09
87

0.
09

04
-

-
0.

04
28

0.
05

47
-

0.
02

84
0.

03
11

0.
02

20
0.

01
66

0.
6

0.
2

B
IA

S
-0

.1
41

8
-0

.0
06

2
-0

.0
76

3
-0

.0
06

7
0.

03
30

0.
00

69
0.

03
95

0.
00

92
-0

.0
43

5
-0

.0
24

0
-0

.0
63

7
-0

.0
09

1
-0

.0
05

4
-0

.0
29

0
-0

.0
03

2
-0

.0
34

5
0.

00
04

E
S

E
0.

09
77

0.
08

54
0.

08
38

0.
08

25
0.

13
21

0.
12

30
0.

11
85

0.
11

65
0.

08
44

0.
09

15
0.

07
31

0.
08

01
0.

12
74

0.
03

92
0.

03
77

0.
02

23
0.

02
47

A
S

E
0.

04
77

0.
08

53
0.

08
26

0.
08

50
0.

07
69

0.
12

29
0.

11
88

0.
12

11
-

-
0.

06
95

0.
07

66
-

0.
03

68
0.

03
56

0.
02

18
0.

02
42

R
S

E
0.

09
57

0.
08

60
0.

08
56

0.
08

49
0.

13
62

0.
12

40
0.

12
31

0.
12

11
-

-
0.

06
97

0.
07

57
-

0.
03

68
0.

03
51

0.
02

20
0.

02
41

0.
6

B
IA

S
-0

.3
27

4
0.

05
52

-0
.2

04
2

0.
00

26
0.

03
60

0.
00

24
0.

06
25

-0
.0

01
9

-0
.0

56
2

0.
08

94
-0

.2
51

4
-0

.0
01

4
0.

23
78

-0
.1

48
5

-0
.0

00
3

-0
.0

83
5

0.
00

20
E

S
E

0.
09

22
0.

10
34

0.
08

39
0.

07
75

0.
13

69
0.

12
31

0.
11

36
0.

09
88

0.
08

69
0.

13
90

0.
04

90
0.

06
69

0.
18

65
0.

03
60

0.
02

63
0.

02
10

0.
01

64
A

S
E

0.
04

72
0.

09
88

0.
06

27
0.

07
56

0.
07

67
0.

14
11

0.
08

79
0.

09
84

-
-

0.
03

98
0.

06
62

-
0.

02
99

0.
02

66
0.

01
74

0.
01

63
R

S
E

0.
09

32
0.

08
84

0.
08

30
0.

07
52

0.
13

57
0.

12
73

0.
11

28
0.

09
81

-
-

0.
04

66
0.

06
59

-
0.

03
47

0.
02

65
0.

02
02

0.
01

63

R
es

ul
ts

ba
se

d
on

10
00

su
bj

ec
ts

/s
am

pl
e

0.
3

0.
2

B
IA

S
-0

.0
86

2
0.

00
23

-0
.0

42
5

0.
00

12
0.

01
73

-0
.0

02
3

0.
01

51
-0

.0
01

8
-0

.0
09

5
-0

.0
02

5
-0

.0
38

5
-0

.0
00

7
0.

00
62

-0
.0

30
2

-0
.0

00
2

-0
.0

35
9

-0
.0

00
1

E
S

E
0.

03
57

0.
03

16
0.

03
17

0.
03

12
0.

04
92

0.
04

47
0.

04
52

0.
04

42
0.

02
86

0.
02

94
0.

02
73

0.
02

88
0.

03
98

0.
01

98
0.

01
98

0.
01

01
0.

01
06

A
S

E
0.

02
16

0.
03

25
0.

03
10

0.
03

22
0.

03
50

0.
04

81
0.

04
59

0.
04

71
-

-
0.

02
54

0.
02

77
-

0.
01

91
0.

01
96

0.
00

98
0.

01
08

R
S

E
0.

03
47

0.
03

25
0.

03
24

0.
03

23
0.

05
07

0.
04

80
0.

04
77

0.
04

71
-

-
0.

02
57

0.
02

77
-

0.
01

95
0.

01
96

0.
01

00
0.

01
08

0.
6

B
IA

S
-0

.2
13

0
0.

06
93

-0
.1

21
2

0.
00

14
0.

04
07

0.
00

25
0.

00
28

0.
00

08
-0

.0
05

9
0.

06
75

-0
.1

78
3

-0
.0

00
7

0.
22

18
-0

.1
74

4
0.

00
02

-0
.0

74
1

0.
00

09
E

S
E

0.
03

48
0.

04
26

0.
03

18
0.

02
96

0.
05

33
0.

05
08

0.
04

52
0.

04
18

0.
03

01
0.

04
38

0.
02

07
0.

02
48

0.
07

97
0.

01
39

0.
01

35
0.

01
08

0.
00

80
A

S
E

0.
02

16
0.

03
84

0.
02

32
0.

02
98

0.
03

51
0.

05
58

0.
03

35
0.

04
04

-
-

0.
01

72
0.

02
45

-
0.

01
05

0.
01

40
0.

00
83

0.
00

74
R

S
E

0.
03

56
0.

03
35

0.
03

20
0.

02
98

0.
05

24
0.

04
93

0.
04

43
0.

04
04

-
-

0.
01

93
0.

02
45

-
0.

01
29

0.
01

40
0.

00
99

0.
00

74

0.
6

0.
2

B
IA

S
-0

.1
34

3
0.

00
27

-0
.0

68
6

0.
00

24
0.

01
91

-0
.0

04
0

0.
02

75
-0

.0
03

4
-0

.0
35

6
-0

.0
18

3
-0

.0
56

4
-0

.0
01

3
0.

00
09

-0
.0

26
6

-0
.0

00
7

-0
.0

35
5

-0
.0

00
1

E
S

E
0.

04
54

0.
03

71
0.

03
75

0.
03

66
0.

06
08

0.
05

18
0.

05
24

0.
05

10
0.

03
59

0.
03

82
0.

03
28

0.
03

50
0.

05
86

0.
01

69
0.

01
61

0.
01

00
0.

01
06

A
S

E
0.

02
13

0.
03

83
0.

03
70

0.
03

81
0.

03
45

0.
05

53
0.

05
33

0.
05

44
-

-
0.

03
13

0.
03

45
-

0.
01

64
0.

01
59

0.
00

97
0.

01
08

R
S

E
0.

04
34

0.
03

87
0.

03
85

0.
03

81
0.

06
17

0.
05

57
0.

05
53

0.
05

44
-

-
0.

03
18

0.
03

45
-

0.
01

66
0.

01
58

0.
00

98
0.

01
08

0.
6

B
IA

S
-0

.3
34

3
0.

06
32

-0
.2

08
1

0.
00

19
0.

04
29

0.
00

57
0.

06
73

0.
00

06
-0

.0
52

3
0.

09
68

-0
.2

51
8

-0
.0

01
0

0.
27

46
-0

.1
48

0
-0

.0
00

2
-0

.0
85

6
0.

00
09

E
S

E
0.

04
19

0.
04

73
0.

03
78

0.
03

34
0.

06
29

0.
05

83
0.

05
28

0.
04

50
0.

03
85

0.
06

28
0.

02
23

0.
02

95
0.

09
46

0.
01

63
0.

01
15

0.
00

97
0.

00
78

A
S

E
0.

02
11

0.
04

50
0.

02
80

0.
03

38
0.

03
42

0.
06

40
0.

03
92

0.
04

39
-

-
0.

01
77

0.
02

95
-

0.
01

34
0.

01
19

0.
00

78
0.

00
73

R
S

E
0.

04
28

0.
04

00
0.

03
76

0.
03

38
0.

06
17

0.
05

73
0.

05
07

0.
04

39
-

-
0.

02
10

0.
02

95
-

0.
01

57
0.

01
19

0.
00

90
0.

00
73

W
Id

en
ot

es
a

G
E

E
an

al
ys

is
un

de
ra

w
or

ki
ng

in
de

pe
nd

en
ce

as
su

m
pt

io
n,

E
X

C
H

de
no

te
s

a
G

E
E

an
al

ys
is

un
de

ra
n

ex
ch

an
ge

ab
le

co
rr

el
at

io
n

m
at

ri
x,

JO
IN

T
P

co
rr

es
po

nd
s

to
th

e
jo

in
tm

od
el

w
ith

no
nh

om
og

en
eo

us
Po

is
so

n
m

ar
gi

n
fo

rt
he

ev
en

ti
nt

en
si

ty
,a

nd
JO

IN
T
N
B

co
rr

es
po

nd
s

to
th

e
jo

in
tm

od
el

w
ith

a
ne

ga
tiv

e
bi

no
m

ia
l

m
ar

gi
n

w
ith

a
no

nh
om

og
en

eo
us

ra
te

.



A copula model for marked point processes 14

3.2 EMPIRICAL PERFORMANCE UNDER COPULA MISSPECIFICATION

Prokhorov and Schmidt (2009) discuss asymptotic properties of parameter estimates under misspec-
ification of the copula model and characterize settings in which inferences can be robust regarding
features of the marginal distributions. Other authors have examined the issue of copula misspeci-
fication in some special cases. Chatterjee et al. (2006) investigate misspecification in the context
of “parallel” bivariate survival data in response-dependent (i.e. case-control and case-only) designs
and find misspecification of the copula function does not lead to appreciable bias in estimators of the
marginal parameters for some types of misspecification. Craiu and Craiu (2008) empirically study the
effect of copula misspecification on conditional means and variances and show there can be significant
impact on inferences; careful consideration of the copula family is therefore required.

Here we deal with a setting involving life history data in which the copula plays a role in defining
the conditional distribution of successive marks and gap times. To provide insight into the effect of
misspecification in this context, we carried out further simulations in which data were generated using
a Frank copula and a Gumbel-Hougaard copula, both of which are in the Archimedian family (Nelson,
2006); analyses, however, were conducted based on the Clayton copula. We considered ρ = 0.3 and
0.6 for the correlations between the marks, and τ = 0.2 and 0.6 for the dependence between the marks
and the gap times, and restricted attention to the setting in which the events were generated according
to a marginal Poisson process and with a sample size of m = 1000.

The results are reported in Table 5 and reveal that biases arising when the copula is misspecified
are negligible for the marginal parameters when Kendall’s τ is modest, but can be appreciable when
Kendall’s τ is large. Not surprisingly the biases for Kendall’s τ are generally quite large. We remark
that in addition to biases that may arise due to copula misspecification in the context of “parallel”
bivariate survival data, the limiting behaviour in our context depends on the validity of the likelihood
in (??) and specifically the conditional independence assumptions A1 and A2, which are not satisfied
under misspecification of the copula.

4 AN ILLUSTRATION APPLICATION TO DATA FROM THE MIRASOL STUDY

The Mirasol Study (Cazenave et al., 2010) is a multicenter, open-label, parallel-group non-inferiority
randomized controlled trial in which 118 haematology /oncology patients with thrombocytopenia
were randomized to receive either a pathogen-reduced platelet product (PRT-PLT) (X = 1) or stan-
dard reference platelets (X = 0) as required over a 28-day treatment period (i.e. CA = 28). The
primary outcome was transfusion-based and defined as the 24-hour corrected count increment (CCI).
As mentioned earlier, the count increment is the post-transfusion platelet count measured 24h after
transfusion minus the pre-transfusion platelet count and the CCI adjusts this number by the dose of
platelets transfused and the patients’ body surface area (Davis et al., 1999).

In Table ?? we report on analyses of the Mirasol Study based on separate marginal and joint
analyses for the events and marks as discussed in Section ??. The estimate of Kendall’s τ from
the joint model with the negative binomial margin is 0.157 (s.e.(τ̂ )=0.032, p < 0.001), so there is
significant but modest dependence between the CCI at the kth transfusion and the time to the next
transfusion (Wk+1 = Tk+1 − Tk). We therefore may not expect an appreciable gain in efficiency in
this dataset from the joint modeling.

The model-based standard errors for β̂ from the parametric and semiparametric Poisson analyses
are smaller than the respective RSEs, which in turn are close to the model-based standard error of
β̂ from the semiparametric negative binomial model. This suggests the presence of extra-Poisson
variation; the likelihood ratio test statistic of H0 : γ = 0 versus HA : γ > 0 asymptotically follows a
distribution which is a 50 : 50 mixture of a point mass at zero and a χ2

1 distribution (Self and Liang,
1987). The resulting test statistic is 10.344 which gives a p−value of 0.5P (χ2

1 > 10.344) = 0.0007
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Table 5: Sensitivity analysis on the effect of copula misspecification showing the frequency proper-
ties of estimators via joint analysis of the marked point process ; marginal intensity is Poisson; 40%
right censoring with E(N(1)|X = 0) = 4; α1 = 6.35, α2 = 0.75, β = log 0.5; η0 = 0, η1 = 0.5,
σ2 = 1; 1000 subjects/sample; 500 simulated samples

ρ Kendall’s τ log(α1) log(α2) β η0 η1 σ2 ρ Kendall’s τ

Data are generated using Frank copula

0.3 0.2 BIAS 0.0046 -0.0026 0.0054 -0.0022 -0.0049 0.0115 0.0012 -0.0427
ESE 0.0488 0.0202 0.0432 0.0311 0.0495 0.0278 0.0193 0.0112
ASE 0.0460 0.0190 0.0420 0.0316 0.0468 0.0276 0.0189 0.0112

0.6 BIAS 0.0555 -0.0302 0.0635 -0.0326 -0.0468 0.0809 0.0079 -0.0810
ESE 0.0439 0.0152 0.0409 0.0320 0.0486 0.0297 0.0164 0.0098
ASE 0.0423 0.0151 0.0347 0.0307 0.0435 0.0267 0.0140 0.0085

0.6 0.2 BIAS 0.0045 -0.0026 0.0053 -0.0021 -0.0055 0.0132 0.0014 -0.0427
ESE 0.0490 0.0203 0.0431 0.0377 0.0571 0.0345 0.0157 0.0113
ASE 0.0460 0.0190 0.0419 0.0379 0.0546 0.0344 0.0154 0.0112

0.6 BIAS 0.0632 -0.0346 0.0586 -0.0439 -0.0402 0.0965 0.0114 -0.0800
ESE 0.0458 0.0163 0.0389 0.0392 0.0548 0.0379 0.0142 0.0098
ASE 0.0433 0.0158 0.0334 0.0357 0.0483 0.0321 0.0115 0.0084

Data are generated using Gumbel-Hougaard copula

0.3 0.2 BIAS 0.0073 -0.0050 0.0077 -0.0015 -0.0054 0.0111 -0.0000 -0.0527
ESE 0.0468 0.0191 0.0426 0.0311 0.0469 0.0282 0.0197 0.0126
ASE 0.0462 0.0191 0.0421 0.0316 0.0468 0.0277 0.0188 0.0114

0.6 BIAS 0.0739 -0.0389 0.0570 -0.0418 -0.0391 0.0966 0.0089 -0.0897
ESE 0.0458 0.0164 0.0415 0.0340 0.0496 0.0303 0.0161 0.0095
ASE 0.0430 0.0154 0.0351 0.0311 0.0442 0.0275 0.0143 0.0086

0.6 0.2 BIAS 0.0073 -0.0050 0.0074 -0.0015 -0.0049 0.0128 0.0008 -0.0526
ESE 0.0470 0.0193 0.0424 0.0369 0.0531 0.0358 0.0157 0.0127
ASE 0.0463 0.0191 0.0420 0.0379 0.0547 0.0344 0.0154 0.0114

0.6 BIAS 0.0834 -0.0442 0.0527 -0.0563 -0.0310 0.1133 0.0121 -0.0886
ESE 0.0470 0.0176 0.0392 0.0409 0.0552 0.0381 0.0136 0.0095
ASE 0.0442 0.0161 0.0339 0.0363 0.0492 0.0330 0.0117 0.0085
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and rejection of the Poisson assumption for the marginal model. The estimated treatment effect on
the event rate is RR = 1.18 (95% CI: 0.86, 1.62; p = 0.306) reflecting a nonsignificant trend towards
increased need for transfusion in the PRT-PLT arm.

Regarding the marks, there is a consistent finding of a significantly lower response in the PRT-PLT
arm compared to the reference arm. In the joint analysis with the negative binomial margin, we see
a lower response by on average 3.37 (95% CI: -5.40, -1.33; p = 0.001) ×109m2/`. Thus noninfe-
riority of the PRT-PLT product was not successfully demonstrated based on the 24-h CCI response.
The correlation between the marks is quite strong at 0.635 from the joint negative binomial analysis
suggesting the importance of accommodating this association in the joint model for the marks.

Figure ?? contains plots of the estimated mean function from a parametric analysis with a non-
homogeneous baseline Poisson rate function, a semiparametric Andersen-Gill analysis, and a joint
analysis based on a Poisson and negative binomial intensity function. There is excellent agreement
between the three parametric analyses and close agreement between all four in terms of the expected
number of transfusions required over the 28 day treatment period. The estimated mean function based
on the semiparametric AG model reflects a higher rate during the first two weeks followed by a lower
rate in the latter two weeks; this is not exhibited in the parametric models suggesting the need for
more flexible piecewise constant baseline rate functions.
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Figure 3: Plots of estimated baseline mean function obtained by integrating the marginal rate from
a marginal analysis under a Poisson assumption with a parametric Weibull rate and semiparametric
Andersen-Gill and from a joint analysis using (??) with a Poisson and negative binomial parametric
marginal rate

5 DISCUSSION

The idea of using copula functions to link the marks and the event times has been proposed in the ruin
theory literature based on renewal processes (Albrecher and Teugels, 2006; Landriault et al., 2013)
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but these models have different formulations motivated by issues arising in actuarial science. This
model is the first we are aware of that address an important problem prevalent in the health research.

The model we proposed in Section ?? is a fully parametric model and it would be desirable to relax
the parametric assumption for the baseline rate within the class of mixed Poisson marginal processes
to obtain some robustness. A simple first step would be to assume a piecewise constant baseline
rate which would require specification of break points at which the rate can change. This approach
has the advantage that it facilitates parametric analysis with a more flexible form for the baseline
rate and it can be shown to give good approximations to results from semiparametric models. A
disadvantage is the need to specify the break points and the arbitrary nature of any choices one might
make for them. Recent work by Lawless and Yilmaz (2011a,b) on fitting bivariate failure time data
with marginal Cox models and a specified copula suggests that some progress could be made in
semiparametric analysis. Lawless and Yilmaz (2011a) comment that the two-stage semiparametric
estimator of the copula parameter is about as good as the semiparametric simultaneous estimator of
it. Since there are considerable computational challenges that arise in a joint analysis, two-stage
estimation procedures (Shih and Louis, 1995) can be applied in principle, however, there will always
be a trade-off between the need to make greater assumptions in the joint analysis with the robustness
to dependent observation schemes that arise from joint analysis. A compromise approach would
be to consider a two-stage procedure in which only the event process model is fit at the first stage.
The resulting estimates could then be inserted into (??) and maximization could be carried out with
respect to the marginal parameters of the marks and the association parameters in the copula. This
would permit use of semiparametric estimates of the event process obtained by standard methods, and
would provide protection against the dependent observation scheme in the modeling of the marks at
the second stage. This approach is currently under investigation.

Several other extensions are possible to this model. We assumed that the dependence between
the recurrent event process and the marks remains unchanged for each consecutive pair of marks and
waiting times. We also assumed that the association between the mark and the subsequent waiting
time was the same in the two treatment arms (??). One could generalize the model to allow different
copula parameters or even different copula functions for successive pairs of marks and waiting times,
and these could even differ between the two treatment arms.

We have empirically quantified the efficiency gains that can be realized from joint analyses. We
also studied the effect of misspecifying the marginal intensity for event times under the assumption
that the copula function was correctly specified. We also examined empirical properties of estimators
arising from misspecification of the copula function and found, in our limited investigation, only
modest impact when Kendall’s τ is modest. When the association between the marks and subsequent
waiting times is strong, the copula model should be checked carefully. One attractive avenue for doing
this is through model expansion; see Yilmaz and Lawless (2011) for a discussion of this approach in
the failure time context.
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