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Abstract

The plug-in hybrid electric vehicle (PHEV) is a promising option for future sustainable
transportation. It offers better fuel economy and lower emissions than conventional vehi-
cles. This thesis has developed a novel energy-optimal powertrain controller for PHEVs.
The controller will be broadly applicable to all PHEV models; however, it will be fine-tuned
to the Toyota Prius Plug-in Hybrid for testing and validation. The controller will take ad-
vantage of advancements in vehicle intelligent and communications technologies, such as
Global Positioning System (GPS), Intelligent Transportation System (ITS), Geographic
Information System (GIS), radar, and other on-board sensors, to provide look-ahead trip
data. These data are critical to increasing fuel economy as well as driving safety.

This PhD research has developed three energy-optimal systems for PHEVs: Trip Plan-
ning module, Route-based Energy Management System (Route-based EMS), and Ecologi-
cal Cruise (Eco-Cruise) Controller. The main objective of these energy-optimal systems is
to minimize the total energy cost, including both electricity derived from the grid and fuel.
The upper-level system is Trip Planning, using an algorithm designed to take advantage of
previewed trip information to optimize State of Charge (SOC) profiles. The Route-based
EMS optimally distributes propulsion power between the batteries and engine. Finally,
the Eco-Cruise controller adjusts the speed considering upcoming trip data.

Real-time implementation has remained a major challenge in the design of complex
control systems. To address this hurdle, simple and efficient models and fast optimization
algorithms are developed for each energy-optimal strategy. A Real-time Cluster-based
Optimization is developed to solve the Trip Planning problem in real-time. The Route-
based EMS is developed based on Equivalent Consumption Minimization Strategy (ECMS)
to optimally distribute propulsion power between two energy sources. And, a Nonlinear
Model Predictive Control (NMPC) is utilized to obtain optimum traction or regenerative
torques in Eco-Cruise controller.

Model-in-the-Loop (MIL) and Hardware-in-the-Loop (HIL) testing are critical steps in
control validation and in ensuring real-time implementation capability. The MIL results
show that the novel energy-optimal powertrain controller can improve the total energy
cost by up to %20 compare to benchmark rule-based controller. The HIL test results
demonstrate that the computational time for energy-optimal strategies are less than the
target sampling-time, and they can be implemented in real-time.
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Chapter 1

Introduction

1.1 Background

Energy and environmental issues are among the most serious concerns facing today’s so-

ciety, with the automotive industry figuring prominently in the global dialogue. At its

current trajectory, the transportation sector is expected to become the largest greenhouse

gas producer over the next 50 years [1], and will continue to rank among the world’s leading

energy consumers. This situation has spurred significant investment in the research and

development of fuel efficient, sustainable transportation systems that will minimize, and

eventually replace, non-renewable, fossil-based energy sources with clean, renewable ones.

Electric vehicles (EV) consume electric energy from the grid, which can be provided

from renewable resources. In addition, EVs demonstrate outstanding energy efficiency, at

roughly 70%, in comparison with conventional Internal Combustion Engine (ICE) vehicles,
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which have peaked at just 30% efficiency [2]. Therefore, EVs are increasingly considered

viable long-term solutions to the sustainable transportation challenge. However, broad

take-up of current EV technologies has been hampered by their limited operating range

(about 150 km) and high initial costs.

PHEVs are promising options for near-term improvements to transportation sustain-

ability. Utilizing two sources of energy, batteries (to power an electric motor) and gasoline

(to power an ICE), allows them to achieve much higher energy efficiencies than conven-

tional ICE vehicles, without sacrificing performance. Furthermore, with an ability to store

electric energy directly from the grid, PHEVs offer the combined advantages of both elec-

tric and Hybrid Electric Vehicles (HEVs). That is, they can operate in full electric mode

in urban areas (zero emissions, zero fuel consumption) and provide the extended range and

efficiency typical of HEVs during highway driving (low emissions, low fuel consumption).

The potential to maximize energy efficiency and minimize environmental impacts through

vehicle electrification has captured the attention of most automotive manufacturers. In

response to energy and environmental concerns, governments across the world have estab-

lished strict vehicle standards, such as the American Corporate Average Fuel Economy

(CAFE), which require automotive companies to dramatically reduce fleet emissions and

improve efficiencies on a very tight timeline. Most, if not all, major automotive manufac-

turers have made major investments in HEV, PHEV, and/or EV development, not only

to meet future market demands, but also to maintain their annual average fuel economy

within the range allowable by government standards.
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1.2 Motivation and challenges

Due to rising fuel cost and emission concerns, PHEVs are increasingly considered a viable

alternative to conventional vehicle technologies. Although these vehicles demonstrate sig-

nificantly improved vehicle performance, high initial and maintenance costs have proved an

impractical trade-off for most consumers. According to the report by National Academy

of Sciences [1], EVs and PHEVs, which were once expected to dominate the automotive

industry by 2020, will likely capture only 5% of the market in the next decade.

To increase demand for PHEVs, long-term operation cost issues must be resolved. In

other words, vehicle systems should be enhanced to improve fuel efficiency, which in turn,

will provide long-term cost advantages over conventional vehicles. One approach is to

improve total energy cost through advanced powertrain control systems, in particular the

optimal trip planning module, Energy Management System (EMS), and ecological cruise

controller. Trip planning modules optimize electrical energy profiles based on long-range

trip information for any driving scenario. EMS strategies compute the power distribution

between two sources of energy (fuel and battery). Ecological cruise controllers adjust

vehicle speeds to minimize total energy cost.

Although PHEVs offer improved efficiencies similar to conventional HEVs, they also

present new challenges in energy-optimal powertrain control problem. It is difficult to find

control solutions that can optimally distribute power demand between the two sources of

energy. This difficulty largely stems from the fact that PHEVs differ from HEVs in two

key ways: they can fully charge the battery by connecting to the grid and they can operate

in charge depletion mode, reducing the battery SOC to the minimum permissible value.
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Furthermore, the ability to restore the electrical energy during regenerative braking makes

ecological cruise control for PHEVs more complicated than that for a conventional vehicle.

Therefore, approaches to the development of energy-optimal controllers for PHEVs must

consider these differences in the dynamics of the system, initial conditions and constraints.

A global optimum solution for the PHEV powertrain control problem can only be ad-

dressed with advance knowledge of driving conditions. Access to these data enables optimal

distribution of electrical energy throughout any trip. We can take advantage of recent ad-

vancements in GPS, GIS, Intelligent Vehicle Technologies, such as Vehicle-to-Vehicle (V2V)

and Vehicle-to-Infrastructure (V2I) Communication Systems, and radar sensor to predict

future driving conditions and create more effective energy-optimal controllers.

In particular, control systems that optimize EMS and enable ecological cruise control

are very complex, making real-time implementation a significant challenge. Several global

optimization methods that aim to provide an optimum powertrain control strategy already

exist; however, computationally they are extremely costly, particularly for long trips, and

cannot be implemented in real time. This PhD research will address these challenges

by developing a novel energy-optimal controller for power-split PHEVs, with real-time

implementation capability.

1.3 Objectives and methods

The goal of this PhD research was to design a real-time energy-optimal controller to min-

imize total energy cost, including both fuel and electrical energy taken from the grid. To
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enhance the performance of the controller, prediction of future driving conditions were in-

corporated. The energy-optimal controller has been designed for real-time implementation.

To address the potential for practical implementation, the controller has been fine-tuned

to a commercial PHEV architecture, the Toyota Prius Plug-in Hybrid, for testing and

validation purposes. The devised energy-optimal controller consists of three main systems:

• Trip Planning module

• Route-based EMS

• Eco-Cruise controller

The real-time implementation capability of the energy-optimal controller is achieved

through efficient control-oriented models and fast optimization techniques. Control-oriented

models are sufficiently simple and fast for real-time implementation, and are accurate

enough to characterize the system. These models have been validated using a high-fidelity

model, which is more complex and considers more system details. The high-fidelity model

of baseline PHEV has been developed in Prof. Nasser L. Azad and Prof. John McPhee’s

research group by A. Taghavipour [3] and M. Chehresaz [4] (Please see Section 3.2).

In each aforementioned energy-optimal system, a proper and fast optimization algo-

rithm is developed based on the problem characteristics such as desired computational

speed, number of variables and optimization parameters, and dynamics of the system.

The Trip Planning module deals with huge number of variables and optimization param-

eters, especially during long trips. Therefore, a Real-time Cluster-based Optimization

(RCO) algorithm is developed for this module that reduces the number of optimization
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parameters using clustering technique. Then, Dynamic Programming (DP) is applied to

solve the simplified optimization problem. Route-based EMS is based on ECMS strategy,

which is fast technique for solving EMS problems. This thesis improves EMS performance

by incorporating trip information. Finally, the NMPC technique is utilized for solving

the Eco-Cruise control problem. NMPC can solve multi-objective control problems and

can handle constraints on states and inputs. Therefore, it’s a promising technique for the

Eco-Cruise controller which optimizes both the total energy cost and driving safety while

considering constraints on vehicle speed and powertrain variables.

This PhD research evaluates the new energy-optimal controller using following strate-

gies:

• Energy-optimal controller performance compared against:

– Autonomie software rule-based controllers; and

– Global optimum control methods: Dynamic Programming and Pontryagin’s

Minimum Principle (PMP).

• MIL simulations to evaluate the new controllers; and

• HIL tests to evaluate the real-time implementation capability of the energy-optimal

controller.
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1.4 Document organization

This thesis is organized as follows: Chapter 2 reviews state-of-the art HEV and PHEV

control strategies, including both EMS and speed controllers. This discussion also addresses

current methods used to incorporate trip information within control strategies that aim

to improve vehicle performance. Chapters 3, 4, and 5 cover the steps in the design of the

proposed Trip Planning, Route-based EMS, and Eco-Cruise controller. Finally, Chapter 6

discusses the conclusions and future work, and outlines anticipated contributions of the

proposed research.
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Chapter 2

Literature review

This chapter reviews recent advances in HEV and PHEV research, spanning Trip Planning

algorithms, EMS strategies, and cruise control techniques. It also investigates approaches

to improve control system efficiency. The chapter concludes with a summary of the relevant

literature and an overview of the significant contributions of the designed energy-optimal

control system.

2.1 Trip planning

This section investigates algorithms used to improve powertrain control systems based on

knowledge of upcoming driving conditions. Two general approaches are currently used

to predict future traffic conditions: model-based and data-driven methods [5]. In model-

based methods, future traffic speed is calculated based on traffic flow theory. Data-driven

methods, on the other hand, predict upcoming traffic speeds based on current and past
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traffic data, without incorporating a traffic model. Neural networks are among the most

popular data-driven prediction methods. For example, Park [6, 7] utilized an artificial

neural network to model traffic conditions based on trip information obtained from GPS

and ITS, then used this information to improve EMS performance and, subsequently, fuel

efficiency.

Some researchers used model-based driving condition predictions in the speed controller

systems to improve fuel efficiency. Recent examples include studies by Keulen et al. [8–10].

They obtained optimum future speed trajectory for an HEV, based on trip information.

Then, they fed this data to a cruise controller to ensure that the vehicle followed the op-

timum speed trajectory. In another work [11], Keulen et al. presented an optimized EMS

controller for hybrid electric trucks based on trip information. They calculated optimal fu-

ture speed trajectories using trip information. By implementing an online EMS controller,

they obtained the optimum deceleration rate during the regenerative braking, to achieve

the maximum energy recovery. They showed that the fuel consumption can be reduced

considerably by using the proposed control approach.

Gong et al. [12, 13] proposed a two-scale DP method to produce optimized energy

management schemes for PHEVs. In this method, they first calculated the power demand

governed by trip information, and then optimized the SOC profile using the linear model of

the battery. They investigated the use of Gas-kinetic based models and neural networks to

incorporate trip modelling into EMS, finding that Gas-kinetic models are complicated by

several parameters, while neural networks offer better trip modelling accuracy and are more

feasible for real-time implementation. They used traffic data to train the neural network

and utilized future traffic conditions in the EMS of a parallel PHEV. In another PHEV
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EMS study, Gong et al. [14, 15] used a statistical approach to obtain traffic information,

specifically applying a Markov chain model to generate a velocity trajectory. The predicted

velocity trajectory was then utilized to tune the controller and augment the EMS strategy

to improve vehicle performance.

Bin et al. [16] utilized an adjustable segment scheme that regulates the length of trip

segments based on trip information, to minimize the computational effort required for

effective EMS. They compared the simulation results against earlier-mentioned DP results,

which numerically calculated power demand and SOC, and found that the two-scale DP

method is more computationally efficient.

Katsargyri et al. [17,18] optimized the battery SOC profile of power-split PHEVs based

on trip information. They employed the rule-based controller offered by the PSAT software

to track the optimum SOC and proposed a receding horizon approach in the segmentation

procedure. They replaced the original route, which had a large number of segments, with a

virtual route. In the virtual route, they considered the few initial segments of the original

route plus the last segment, which was considered equivalent to all the remaining segments.

Using DP, they obtained the optimum SOC of each segment and used the first segment’s

SOC as a reference point in the EMS strategy. They showed that this method had a lower

computational cost than the optimal solution of the original route.
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2.2 HEV/PHEV energy management strategies

In order to obtain optimal fuel economy, an EMS strategy that optimizes energy flow

between the two power sources is a key requirement. EMS schemes can be divided into

two main categories: reactive and route-based strategies. Reactive EMS strategies use

current driving information in their controller scheme; therefore, they can find only the

near-optimal solution for the problem. Rule-based controllers, Charge Depleting Charge

Sustaining strategy (CDCS), Stochastic Dynamic Programming (SDP), and the ECMS

strategy belong to this group.

Rule-based approaches typically utilize maps constructed from engineering expertise,

or more formal methods such as optimization [19]. These are rigid strategies that yield

high performance for known drive cycle patterns, but they are not optimized. In the

CDCS strategy, the vehicle is propelled primarily using energy from the battery in charge

depleting (CD) mode, until a predefined level of SOC is reached. Then, the EMS controller

switches to charge sustaining (CS) mode to keep the SOC at the predefined level.

The SDP method is an appealing EMS approach because it provides an ability to

optimize system performance with respect to a probabilistic distribution of different drive

cycles [20]. Bashash [21] and Moura [22, 23] utilized the SDP method to establish an

appropriate EMS strategy for power-split PHEVs. Bashash predicted the PHEV’s power

demand based on stochastic data. Moura used SDP to derive an optimal EMS strategy for

a PHEV platform. The strategy aims to minimize both fuel cost and battery maintenance

cost. His simulation results showed that, at first, more electric power is consumed to

quickly deplete the battery SOC when the battery resistance growth is high. Then, a

11



blended strategy is the more efficient strategy when the SOC is low.

Look-ahead trip and driving conditions that cover the entire drive cycle should also be

incorporated in a truly optimized EMS scheme. Considerable research has been undertaken

to reduce fuel consumption and vehicle emissions with the help of preview trip information

[24–28]. Gonder [29, 30] investigated the efficacy of using route-based control algorithms

to improve the fuel economy of HEVs. He showed that look-ahead control improves fuel

consumption approximately 2% to 4%. This may seem a negligible improvement; however,

it represents an opportunity for significant fuel savings. Based on estimated annual HEV

fuel consumption in 2006, a 2% to 4% improvement in efficiency could potentially reduce

annual fuel consumption by 6.5 million gallons in the US alone.

Taking advantage of trip information increases the complexity of the energy manage-

ment problem, and makes the real-time implementation of these control strategies very

challenging in practice. Several optimal control approaches for HEV and PHEV energy

management schemes were studied in the literature [31], including: DP, PMP, Model Pre-

dictive Control (MPC), and Adaptive-ECMS (A-ECMS). To clarify previous EMS research

directly related to this thesis, the following discussion focuses on the aforementioned opti-

mal control techniques.

2.2.1 Dynamic programming

DP is a global optimization method that can optimally solve a vehicle’s power distribution

based on trip information. This method is computationally expensive, and often impracti-

cal for real-time implementation, particularly for complex problems. Lin [32,33] has found
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near-optimal rules in the EMS controller of parallel HEVs based on DP global minimum

results. Using this method, he obtained an optimal power distribution between the engine

and electric motor, and showed rather large improvements in fuel efficiency.

Gonder et al. [34] studied several PHEV EMS strategies during CD mode, including

all-electric-range and blended strategy. They compared these strategies in terms of travel

distance and prior knowledge of the trip. The results showed that the all-electric-range op-

eration mode has all the benefits of a full electric vehicle, but would require more expensive

electric components (a larger battery and electric motor). On the other hand, the blended

strategy showed the best fuel efficiency for long-distance travel. O’Keefe and Markel [35]

demonstrated that in optimal battery charge distribution strategies, SOC reaches the min-

imum level exactly when the trip terminates.

2.2.2 Pontryagin’s minimum principle

The PMP technique finds the global optimal solution for control problems based on mini-

mizing the Hamiltonian. This technique can minimize the performance index in the pres-

ence of states and inputs constraints. Razavian et al. [36, 37] developed a real-time EMS

strategy for a series HEV using the PMP technique. This controller works independently

of speed trajectory, requiring only the cruise time and the amount of energy used dur-

ing regenerative braking to tune its parameters. With this approach, the optimal control

problem was reduced from the integral cost minimization to the instantaneous Hamilto-

nian minimization, enabling real-time implementation of the EMS strategy. To evaluate

the performance of the controller, it was applied to a high-fidelity HEV model developed in
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MapleSim. The simulation results demonstrated a significant improvement in fuel economy.

Ebbesen et al. [38] considered battery life in the optimum EMS strategy of a parallel

HEV using the PMP technique. Ebbesen has claimed that they developed the first state of

health model for Li-ion batteries. Because electrochemical models are extremely complex,

they cannot be implemented in real-time EMS strategies. Therefore, Ebbesen used a

throughput-based capacity fade model in his study. In this model, it is assumed that

the battery’s energy capacity is equivalent to the remaining number of cycles before its

end-of-life, under constant conditions.

2.2.3 Model predictive control

Model predictive control is a promising method for exploiting the potentials of modern

concepts and fulfilling automotive requirements, because of its ability to handle constrained

multi-input multi-output optimal control problems [39]. Application of MPC to hybrid

vehicles has been investigated before. Wang [40] proposed a real-time control system for

different hybrid architectures using the MPC concept. Kim [41] utilized MPC to calculate

an optimal torque split in the parallel HEV. Borhan [42, 43] applied MPC to a power-

split HEV, ignoring the dynamics of the powertrain against other faster dynamics for

the model inside the controller. He implemented several different controllers, such as a

nonlinear MPC, linearized MPC, and the rule-based controller strategy offered by the

PSAT software, to evaluate performance. The results illustrate that, in comparison with

the other controllers studied, nonlinear MPC provides the largest improvement to fuel

economy.
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Taghavipour et al. [44] applied MPC to a power-split PHEV and used DP as a bench-

mark for evaluating the EMS performance. In another work [45], the authors developed an

EMS strategy based on MPC approach and applied it to a high-fidelity model of a power

split PHEV in the MapleSim software in order to minimize fuel consumption.

2.2.4 Equivalent consumption minimization strategy

ECMS has been widely employed for building EMS schemes. This approach is helpful in

developing an optimal control system that minimizes total energy consumption whether

electric energy (consumed by the battery) or fuel (consumed by the engine) [46–55]. Since

electric energy consumed by the battery and fuel consumed by the engine are not directly

comparable, the ECMS technique is used to develop an optimal control system that min-

imizes total fuel consumption. Tulpule et al. [56] applied the ECMS technique to series

and parallel PHEVs, taking into consideration two different strategies: CD and Blended.

The results demonstrated greater efficiencies for both architectures, depending on trip con-

ditions. Musardo et al. [57] proposed an A-ECMS method based on driving conditions,

which calculates the equivalency factor in ECMS technique for parallel HEVs.

Among the different PHEV architectures available, the power-split configuration has

particular advantages. It decouples the engine crankshaft from the road, and allows electric

machines to move the engine operation point to where fuel efficiency is at its maximum.

Yiming He [58] adopted the A-ECMS for power-split PHEVs. Wollaeger [59] showed that

a near-optimal EMS strategy can be achieved by depleting the battery SOC with respect

to the driving distance. This optimal strategy assumes that we have prior knowledge of the
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travelling distance, while speed trajectory remains unknown. Stockar et al. [60,61] proposed

a novel supervisory EMS strategy for series-parallel PHEVs. They applied the ECMS

to calculate the overall vehicle CO2 emissions, taking into account emissions indirectly

produced during electric power generation. They applied PMP to find the optimum power

distribution between the engine and motor-generators.

2.3 Cruise controller

Reports released by the World Health Organization indicate that the annual worldwide

costs resulting from road traffic injuries are approximately $518 billion [62]. The evidence

indicates that human perception error is the most significant factor, contributing to 90%

of road traffic accidents. This fact has brought the automotive control engineers to de-

velop Advanced Driving Assistant Systems (ADAS). The main goal of ADAS systems is to

decrease the constraints on human judgment during the driving cycle, which will in turn

result road transportation safety improvement [63–65]. Adaptive Cruise Control (ACC)

is one of the most important ADAS technologies, and has attracted increasing interest

from automotive engineers. ACC works based on the information received from on-board

sensors, for instance radar, to adjust vehicle speed to maintain a proper distance with the

proceeding vehicle on the road [66,67].

16



2.3.1 Adaptive cruise controller

ACC systems aim to increase traffic flow and reduce accidents, and thus represent a big

step towards improving overall traffic and transportation system efficiency. ACC takes

advantage of sensor technologies to measure headway distance, and a controller uses the

obtained data to adjust both velocity and distance to the next vehicle according to current

driving and environmental conditions. Employing much more effective ACCs can signifi-

cantly enhance the driving safety and performance of vehicles [68,69]. ACC systems can be

divided into two main groups: rule-based approaches and model-based approaches. Slid-

ing mode [70], optimal control [71], and model predictive control [72] are all examples of

model-based approaches.

Ferrara and Vecchio [73] proposed a collision avoidance ACC system to reduce the in-

cidence of collisions involving passengers and other vulnerable road users. They used a

supervisory control technique that switches the control mode between normal condition

and collision avoidance, based on trip data. In normal condition, the sliding mode con-

trol system has been utilized to follow the desired distance from the leading vehicle. If

the supervisory control detects a possible collision, the control mode is switched to colli-

sion avoidance, which activates the emergency braking or performs a collision avoidance

manoeuvre.

Moon et al. [74] integrated ACC with collision avoidance. They proposed a control

scheme that operates the vehicle in three modes based on specific driving situations, in-

cluding comfort-mode, large- deceleration mode, and severe-braking mode. The driving

situation is recognized by two indexes: the time-to-collision index and non-dimensional
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warning index. The latter is calculated based on vehicle spacing. They used manual driv-

ing data in the no-crash condition to tune the controller parameters. Full vehicle testing

demonstrated that the ACC system could drive the vehicle similar to the human driving

and avoid the collision.

2.3.2 Ecological cruise controller

Some researchers have begun to investigate ecological cruise controller for conventional ve-

hicles. Huang [75] used constrained nonlinear programming to predict the optimal throttle,

gear shifting and velocity trajectory of heavy trucks. Hellstom [76] incorporated MPC in

real-time, set the optimum speed trajectory as a set point of the cruise control system, and

then implemented his solution on a heavy diesel truck. The results showed that look-ahead

cruise control provides better fuel efficiency than conventional cruise control systems, espe-

cially on hilly roads. The look-ahead control system improves fuel economy by efficiently

reducing the vehicle’s speed as it proceeds towards a downhill slope and increasing it before

an uphill climb. Zhaun et al. [77] claim they were the first to formulate a solution to the

nonlinear problem, but specifically for application to trains. They proposed an output reg-

ulation approach that incorporates measurement feedback and has the locomotive follow

a prescribed speed profile.

MPC theory has received a great deal of attention for automotive control applications,

as its formulation is best suited for online optimizations, as well as dealing with constraints

in large multivariate systems [78–81]. The scope of MPC technique application has also

been extended to ITS, in which the principal focus is on using upcoming information from
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the intended route to adjust the control variable of vehicles. A significant number of studies

in the literature demonstrate the applicability of MPC controllers for ITS applications.

Li et al. [82] used MPC in their ACC system design. They proposed a multi-objective

controller, which simultaneously considers fuel economy and speed tracking. Kamal et

al. [83] took advantage of the MPC theory to design a novel ecological driving system for

running a vehicle on roads with up-down slopes. The simulation results demonstrated that

the use of MPC controllers can significantly decrease the fuel consumption.

Wang et al. [84] analysed driver assistance systems and concluded that using a control

strategy with the ability to predict the future dynamics of proceeding vehicles’ speed

can result in efficient ACC. In this way, they demonstrated that MPC theory has a high

potential to be used for ACC systems. Groot et al. [85] used the MPC theory to design an

integrated predictive traffic and emission control. They observed that the MPC technique

can be fused with a mixed-logic dynamical model description to efficiently control system

performance. Lin et al. [86] applied the MPC technique to reduce the traffic delays and

traffic emissions on urban roads. Their simulation demonstrated that the predictive nature

of MPC significantly contributes to the efficiency of results. Kamal et al. [87, 88] used

MPC in designing a predictive control scheme capable of using the upcoming information

on traffic flow to adjust vehicle distance under a bounded driving torque condition. An

exhaustive comparative study for different traffic conditions demonstrated the efficacy of

the MPC-based ACC.
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2.4 Summary

This chapter introduced optimal powertrain control strategies including trip planning,

energy management strategy, and cruise controller. Also, it described what have been

done for designing optimal powertrain control strategies in the literature. Its found that

using advance knowledge of the entire driving cycles can improve powertrain controllers.

Processing trip date increases the complexity of control systems, and presents significant

challenges for real-time implementation.

Most research to date has been conducted with the goal of developing efficient control

systems for traditional gasoline powered or conventional hybrid vehicles. Some recent

studies have reported progress towards energy management of power-split PHEVs, which

have more complicated dynamics and provide more flexibility to reduce total energy cost.

There exist only rare reports in the literature addressing the applicability of ACCs for

HEVs and PHEVs. A complicated architecture of a PHEV propulsion system can restore

energy during regenerative braking. Therefore, the ecological cruise control problem in

PHEV is more complicated than that for a conventional vehicle. This thesis develops a

novel energy-optimal controller for PHEV that addresses these challenges.
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Chapter 3

Real-time trip planning module

development and evaluation

This chapter presents the Trip Planning module as a part of the devised energy-optimal

controller. This module takes advantage of long-range trip data to optimize SOC profiles.

Parts of this chapter are extracted from the author’s published papers [89–91].

3.1 An overview of the real-time energy-optimal con-

trol scheme

Vehicular powertrain control strategies benefit immensely from real-time data provided by

GPS, ITS, and other infrastructure sensors. These technologies provide critical short- and

long-range traffic data, as well as important trip information such as the trip distance,
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Figure 3.1: Schematic of the energy-optimal controller.

road grade, the positions of stopping points, bridge ramps, etc. Together, these inputs

enable accurate prediction of future driving conditions, more efficient control of vehicle

components and, subsequently, better system performance.

Figure 3.1 presents our proposed architecture for the energy-optimal controller of PHEVs,

which takes advantage of the above-mentioned real-time inputs. It consists of three main

subsystems: the Trip Planning module, Route-based EMS, and Eco-Cruise controller.

The Trip Planning contains an optimization algorithm designed to find the optimum

SOC profiles based on trip information. The algorithm minimizes the total energy cost

of the trip, including both fuel and electrical grid energy expenditures, while taking into

consideration the constraints on the PHEV’s powertrain components. Eco-Cruise controller

calculates the optimum propulsion and braking torques, considering fuel economy and

driving safety. Finally, the Route-based EMS uses the optimum SOC profiles to determine

the power distribution between the engine and motor-generators, in real-time. Total energy

cost, driving safety, and comfort must be taken into account to build a properly energy-
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Table 3.1: Energy-optimal control system objectives

System Safety Energy cost Comfort

Trip Planning module X
Route-based EMS X
Eco-Cruise controller X X ×

X : direct criteria, × : indirect criteria

optimal control system. Table 3.1 shows the criteria employed in each sub-controller.

There is broad variance in the rates at which trip conditions change. For example,

travel paths and traffic data tend to change infrequently and relatively slowly, whereas

vehicle speed, power demand, and the working points for both the engine and motor-

generator change often and very quickly. This has concomitant impacts on the desired

update rates for the Trip Planning and Route-based EMS. Even though these sub-systems

are implemented in real-time, the Trip Planning can receive updates at a much slower rate

than is required by the Route-based EMS. This chapter describes and presents simulation

results outlining the development of the Trip Planning, while the Route-based EMS and

Eco-Cruise controller are presented in the Chapters 4 and 5, respectively.

The Trip Planning optimizes SOC profiles by considering constraints on powertrain

components. Fig. 3.2 shows a schematic of the controller. First, the route is divided into

segments using a trip model. Then, the fuel consumption and ∆SOC of each segment are

calculated based on the power distribution between the engine and the battery. Finally,

the optimum SOC profiles are obtained using the fast RCO algorithm. Progress towards

designing the Trip Planning is described below.
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3.2 High-fidelity model

The baseline PHEV powertrain includes an engine and two electric machines, MG-1 and

MG-2, both of which can operate as a generator and as a motor. These components are

coupled to the wheels through a power-split transmission system consisting of two planetary

gear sets, as shown in Fig. 3.3.

The ring gears of both planetary gears are coupled to the wheels. The sun gear and
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planet carrier of the first planetary gear are coupled with MG-1 and the engine, whereas

the sun gear and planet carrier of the second planetary gear are coupled to MG-2 and the

chassis. In this configuration, the power-split transmission decouples the engine crankshaft

from the road and allows the electric machines to adjust the engine’s operation so that it

functions at its maximum fuel efficiency point.

In a power-split system, the engine use can be minimized in low-efficiency operating

conditions. For example, the engine is turned off when driving at low speeds and when the

vehicle accelerates from a standstill. In these cases, electricity generated from the battery

is the only power source used to operate the vehicle. While driving at normal speeds, the

power-split system distributes the engine power in two ways. One power stream is used to

drive the wheels, while the other is applied to MG-1, which operates as a generator. The

electric power produced by the generator is converted to mechanical power in MG-2 and

then transmitted to the final drive.

Control system design, tuning, testing, and validation activities typically incorporate

several different types of model, which can be broadly divided into: high-fidelity, control-

oriented, and online-optimization models. High-fidelity models are complex and describe

the plant in detail, but are computationally expensive to run. Control-oriented or online-

optimization models are sufficiently simple and fast for real-time implementation, and are

accurate enough to characterize the system.

The high-fidelity model of the baseline PHEV powertrain is developed in the Autonomie

software to evaluate the performance of the designed controller. Autonomie is a next

generation of PSAT software, developed by Argon National Lab. The high-fidelity model
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is employed for the evaluation of a controller’s performance through MIL and HIL testing.

It can also be utilized for both the parameter identification and model validation of control-

oriented models.

A top level Simulink model of the PHEV is shown in Fig. 3.4, including the driver,

vehicle powertrain architecture (VPA), and vehicle powertrain controller (VPC). The VPA,

VPC, driver and environment blocks are interconnected via buses that contain information

about the vehicle. The main info bus leaves the VPA and collects all the signals from the

vehicle’s powertrain systems (VPA). Then this main VPA info bus enters the VPC, driver

and environment blocks. The environment blocks also send a bus, with all of the signals,

into the VPC. The main VPA info bus and environment bus come together, along with

input from the driver, before they enter the VPC, where they are used by the control

strategy to adjust system behaviour. Afterwards, signals from all of the VPC subsystems

enter the VPA [92].

3.2.1 Powertrain model

Figure 3.5 shows the powertrain configuration built in Autonomie. The main components

of the powertrain are an internal combustion engine (Eng), two electric motors (more

specifically, a traction motor (MG-2) and a generator (MG-1)), and a battery pack (B).

Table 3.2 shows the characteristics of Toyota Prius Plug-in Hybrid.
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Figure 3.4: Interconnection of blocks in the Autonomie model of the PHEV

B: Battery
Eng: Engine (ICE)
MG2: Traction Motor
MG1: Generator
PC1: Power converter
PC2: Power conditioner
M-ac: Mechanical Accessories
E-ac: Electrical Accessories
Gb: Planetary Gear
Fd: Final drive 
Whl: Wheels

M-ac

B

ChassisWhlFdGb

MG1PC2

E-acPC1

MG2

Eng

Figure 3.5: Power-split PHEV powertrain configuration
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Table 3.2: The characteristics of Toyota Prius Plug-in Hybrid.

Parameter Symbol Unit Value

Drag coefficient CD - 0.26
Frontal area A m2 2.25
Vehicle mass m kg 1525
Rolling resistance f - 0.008
Engine power Pe kW 73
Motor power Pm kW 50
Generator power Pg kW 30
Number of battery cells Nb - 56
Battery cell nominal voltage V V 3.7
Battery nominal capacity Q Ah 21
Wheel radius r m 0.3

Engine

The internal combustion engine was modeled using look-up tables based on the engine

torque and speed. The ICE of Prius 2012 is a 1.8L spark ignition engine with a maximum

power of 73 kW. Fig. 3.6 depicts the ICE efficiency maps for the Prius.

Electric motor-generators

The Prius is equipped with two permanent magnet electric motors. The efficiency of these

electric motor-generators are represented by two look-up tables, as shown in Fig. 3.7.

Battery

The Lithium-ion battery pack is characterized using dual polarization circuit model. Bat-

tery variables such as open circuit voltage (Voc), Internal resistance (Rb), and polarization
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Figure 3.6: Engine efficiency map.
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Figure 3.8: Schematic of dual polarization battery model.

variables (R1, R2, C1, C2) are obtained using look-up tables. The initial SOC and the

minimum SOC are set to 0.9 and 0.2, respectively.

3.2.2 Driver model

The driver model block controls the speed of the vehicle. It contains of both feedforward

and feedback controller. The feedforward controller is fast but not accurate. On the other

hand, the feedback controller is more accurate but it needs feedback from the system that

makes it relatively slow. The feedforward controller calculates desired torque based on the

longitudinal dynamics (Eq. 3.1), and the feedback controller adjusts the desired torque

using a PID controller.

Tloss = R× (mg sin θ +
1

2
ρACDv

2 + Crmg cos θ +ma) (3.1)

where R is the wheel radius, θ is the road grade, a is the vehicle acceleration, Cr and CD

are the rolling resistance and drag coefficients, respectively.
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3.2.3 Powertrain controller

The Autonomie rule-based EMS strategy is similar to the CDCS strategy. The only differ-

ence is that the rule-based EMS operates the engine in CS mode when the power demand

is high. Based on this strategy, the engine would be turned on when the requested power

is above a threshold or the battery SOC is lower than a threshold, or the electric mo-

tor cannot provide the requested wheel torque. First, the engine power command Peng is

calculated to determine the engine ON/OFF status.

Peng = Pd + Pe,b (3.2)

where Pd is the requested power, Pe,b is the additional power to maintain the SOC of the

battery during the CS operation. Pd is calculated from the vehicle longitudinal dynamics.

Pe,b is obtained from the Eq. .

Pe,b = kp(SOCref − SOC) +
ki
s

(SOCref − SOC) + P0 (3.3)

where, kp and ki are the proportional and integral gains, respectively. P0 is obtained from

the look-up table.

The controller determine the engine On/Off status using the engine power and SOC;

i.e., if Peng is more than threshold for a certain SOC, the engine is turned on and vice

versa.

In the Low-level controllers (shown in Fig. 3.9), the torques of each powertrain compo-

nent are computed based on torque demand and the optimum engine power. The angular
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Figure 3.9: Schematic of the low-level controllers.

velocity and torque of the engine are obtained from look-up tables based on optimum work-

ing point of the engine. Then, Generator torque (Tg) is controlled to track the optimum

angular velocity of the engine. A PID controller adjust the electric motor torque in a way

that wheel torque follow the desired torque which is calculated from driver model.

3.3 Online-optimization model

The high-fidelity model is very detailed and thus too complex and computationally expen-

sive for real-time applications. Therefore, the online-optimization model is developed for

the Trip Planning module. The inputs of the online-optimization model are trip data and

Power Ratio (PR) between two energy sources. This model predicts future speed trajectory

and calculate total energy cost using a simple but sufficiently accurate powertrain model.
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3.3.1 Powertrain model

In the online-optimization model, the powertrain components are represented based on

their power instead of torque & angular velocity or voltage & current. Therefore, this model

is simpler than the high-fidelity model. First, the vehicle’s power demand is determined

from Eq. 3.4.

Pd = (mv̇ + Fd) .v (3.4)

Fd = 1
2
ρACdv

2 +mgf cos θ +mg sin θ

where Pd is the power demand, Fd is the resistance force, v is the vehicle speed, ρ is

the air density, Cd is the drag coefficient, f is the rolling resistance coefficient, m is the

vehicle mass, θ is the road grade, A is the frontal area of the vehicle, and g is the gravity

acceleration.

Based on Eq. 3.4, the vehicle longitudinal dynamics is derived:

mv̇ =
Pd
v
− C1v

2 − C2 (3.5)

C1 =
1

2
ρACd

C2 = mgf cos θ +mg sin θ

The power distribution between the battery and engine is determined based on the power
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Figure 3.10: Schematic of the power flow in PHEV powertrain

flow of the power-split architecture (please see Fig. 3.10).

PR =
P̃b
Pd

(3.6)

P̃b = ηkmPb = PR.Pd (3.7)

ηt Pe = (1− PR)Pd (3.8)

where ηt is power-split transmission efficiency, ηm is the motor-generator efficiency, Pb is

the battery electrical power, and P̃b, Pe are the mechanical power, delivered by the battery

and engine, respectively. In Eq. 3.7, k = −1 during battery charging and k = 1 during

battery discharging.

In the next steps, a battery model and an engine fuel map are built to enable accurate

prediction of fuel consumption and SOC, respectively.
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Figure 3.11: Schematic of the battery model.

Battery model

Considering the simple model of the battery pack as shown in Fig. 3.11, the energy balance

of the circuit is obtained from Eq. 3.9.

−VocI +RbI
2 + Pb = 0 (3.9)

where Voc is the battery open circuit voltage, Rb is the battery resistance, and I is the load

current.

The battery SOC must be defined to evaluate the energy content of the battery. This

parameter indicates the percentage of the total available battery capacity. By substituting

the load current from Eq. 3.9, SOC is derived [93]:

˙SOC(Pb) =
−I
Qmax

=
−Voc +

√
V 2
oc − 4PbRb

2RbQmax

(3.10)

where Qmax is the maximum battery capacity.
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Figure 3.13: Optimum fuel map of the engine.

Engine fuel maps

Figure 3.12 depicts the fuel consumption map of the baseline PHEV engine [44] as a

function of the angular velocity (ωe) and torque of the engine (Te).

After obtaining the optimum working curve of the engine, the fuel consumption map

is derived in terms of the engine power as shown in Fig. 3.13.
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3.3.2 Math-based trip model

It is assumed that prior knowledge of route and traffic data is available through on-board

and infrastructure-based sensors, such as GPS, ITS, and road maps. This information is

crucial to predicting future driving conditions, enabling efficient, real-time control of the

vehicle’s powertrain, and, subsequently, minimizing total energy consumption.

For a given trip, the route is divided in such a way that key variables, such as the

traffic speed profile, maximum permissible speed, and road grade, are constant in each

segment. Furthermore, obstacles, such as bridge ramps, traffic lights, or stop signs, are

positioned at the margin of the segments. In general, each segment consists of three

sections: acceleration, deceleration, and cruise sections. However, based on the conditions

of each segment, the acceleration or deceleration section may be excluded.

Figure 3.14 shows an example route divided into 4 segments. In this route, maximum

speed limits are shown with a dashed line, and a stop point and bridge ramp are located

at the end of the first and second segments, respectively. The third and fourth segments

have different traffic speeds. Based on these data, the speed trajectory is obtained, which

is shown by the solid line. The third segment does not contain a deceleration section.

Each segment starts with an initial speed, va, which, after the acceleration section,

reaches the cruise speed vc. The final speed reduces to ve at the end of the deceleration

section. The speed at the margin of the segments, va and ve, are determined based on trip

information. For instance, if there is a stop sign at the beginning or the end of a segment,

va or ve will be equal to zero. Speeds used to turn at a junction or pass a bridge ramp can

be calculated based on the maximum permissible speed or the recommended safe speed,
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determined according to the road curvature. The cruise speed is the average traffic speed

of the segment or maximum permissible speed.

Based on the proposed speed trajectory, a math-based trip model is developed to cal-

culate total energy consumption. It is assumed that the driver operates the vehicle with

constant power during acceleration and deceleration sections (Pacc, Pdec). Herein, the in-

dices acc, dec, and c denote acceleration, deceleration and cruise modes, respectively.

Acceleration section:

In power-split PHEV architectures, the engine operates inefficiently at low speeds and is

therefore turned off. As a result, a threshold speed v? is defined to determine the starting

point for engine operation. Based on v?, the acceleration section can be divided into two

parts: Engine turned Off, and Engine turned On.

i) Engine turned Off (v < v?): In this period, it is assumed that MG-2 propels the ve-

hicle and the battery is the only energy source for the system. The travel time is
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obtained by solving longitudinal dynamics from Eq. 3.5:

4t1 =

∫ v?

va

mv

Pacc − C1v3 − C2v
dv (3.11)

Pb1 = η−1
m Pacc (3.12)

ii) Engine turned On (v ≥ v?): At high speeds, it is assumed that both the engine and

battery contribute energy to the system.

4t2 =

∫ vc

v?

mv

Pacc − C1v3 − C2v
dv (3.13)

Pb2 = η−1
m PR Pacc (3.14)

Pe2 = η−1
t (1− PR) Pacc (3.15)

The fuel consumption mf , 4SOC, travel time 4tacc and the travel distance 4xacc during

acceleration section are determined from:

mfacc = ṁf (Pe2).4t2 (3.16)

4SOCacc = ˙SOC(Pb1).4t1 + ˙SOC(Pb2).4t2 (3.17)

4tacc = 4t1 +4t2 (3.18)

4xacc =

∫ vc

va

mv2

Pacc − C1v3 − C2v
dv (3.19)
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Deceleration section:

It is assumed that MG-2 operates as a generator while in regenerative braking mode. The

travel time, travel distance, and ∆SOC during the deceleration section can be calculated

from:

Pbdec = −ηm PR Pdec (3.20)

4SOCdec = ˙SOC(Pbd).4tdec (3.21)

4tdec =

∫ ve

vc

mv

−Pdec − C1v3 − C2v
dv (3.22)

4xdec =

∫ ve

vc

mv2

−Pdec − C1v3 − C2v
dv (3.23)

Cruise section:

In the cruise section, which is the dominant travel mode, the speed is assumed to be

constant (vc). Based on the travel distances of the acceleration and deceleration sections,
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the travel time of the cruise section can be calculated by:

4tc =
Lseg − (4xacc +4xdec)

vc
(3.24)

Pd = C1v
3
c + C2vC (3.25)

Pbc = η−1
m PR Pd (3.26)

Pec = ηt−1 (1− PR) Pd (3.27)

4SOCc = ˙SOC(Pbc).4tc (3.28)

mfc = ṁf (Pec).4tc (3.29)

where Lseg is the length of the segment.

3.3.3 Parameter estimation

The high-fidelity PHEV model can be utilized to support parameter estimation and vali-

dation of the online-optimization model. To estimate unknown parameters, first the para-

metric model is rewritten in the general form:

Z = θ Φ (3.30)

where θ is an unknown parameter, and Z and Φ are measurable variables.

Then, variables Z and Φ are measured by running the high-fidelity model simulation.

Finally, the unknown parameter is estimated by minimizing the root mean square error
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(RMSE):

RMSE =

√√√√ N∑
i=0

(Z(i)− θ̂ Φ(i))2 (3.31)

where N is the length of sampling variable vector, and θ̂ is the estimated parameter.

Given its importance to EMS, the battery resistance should be estimated. The ohmic

resistance of the battery can be directly measured; however, in order to accurately model

the battery, we should consider other phenomena that may affect battery performance, such

as activation polarization and concentration polarization. On the other hand, considering

the polarization increases the complexity of the system. Therefore, the effective resistance

of the battery is estimated based on the results of the high-fidelity model. The parametric

model of the battery resistance is derived from Eq. 3.10:

(Qmax
˙SOC Voc + Pb) = −Rb

˙SOC
2
Q2
max (3.32)

The engine efficiency must also be considered. The optimum fuel curve of the engine,

Fig. 3.13, is built based on the fuel map. During cruise-controlled driving, the controller

adjusts the working point of the engine to its optimum point for maximum fuel efficiency.

However, realistically, there are transient times during which the engine does not work

efficiently. Engine efficiency (ηe) is defined by evaluating the actual fuel consumption, mf

, based on the optimum fuel curve, m∗
f (Pb).

mf = η−1
e m∗

f (Pb) (3.33)
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Table 3.3: Results of parameter estimation for the baseline PHEV.

Parameter Estimation

Powertrain efficiency 0.89
Engine efficiency 0.88
Battery resistance 0.93
Motor efficiency 0.90
Generator efficiency 0.87

The parametric models of powertrain efficiency (ηt) and motor-generator efficiency (ηm)

are written in Eq. 3.34-3.36:

(Pd − P̃b) = ηt Pe (3.34)

P̃b = η−1
m Pb Charging (3.35)

P̃b = ηm P̃b Disharging (3.36)

Unknown parameters are estimated based on the simulation results for Urban Dynamome-

ter Driving Schedule (UDDS) and Highway Fuel Economy Driving Schedule (HWFET).

The parameter estimation results are shown in Table 3.3.

3.3.4 Model evaluation

Simulation results from our high-fidelity PHEV model are used to evaluate our online-

optimization model, taking into account both urban (UDDS) and highway (HWFET)

drive cycles. First, the trip model is employed to predict future speed trajectories for these

two drive cycles based on assumed trip information, stop points and average traffic speed.
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Predicted speed trajectories are shown in Fig. 3.15.

Figures 3.16, and 3.17 show a comparison between the simulation results generated

from our high-fidelity and online-optimization models using four speed trajectories (UDDS,

predicted UDDS, HWFET, and predicted HWFET). In order to maintain similar condi-

tions for both models, the simulations are implemented in two different operating modes:

CD and CS. In CD mode, only the MG-2 propels the vehicle, while in CS mode only the

engine supplies power to the system and the battery’s SOC remains constant. The max-

imum error between results of the high-fidelity model and online-optimization model are

1.5% and 2% for calculating the SOC and engine fuel consumption, respectively.

3.4 Optimization

Optimization problems that address future driving patterns, where a large number of

parameters and constraints must be considered, are particularly challenging to solve in

real-time, which is exacerbated over long trips. To reduce the complexity of these problems,

this thesis proposes a new real-time approach, an RCO algorithm, to optimize PHEV SOC

profiles.

It should be noted that the main objective function of the devised energy-optimal

controller is total energy cost. To compare the performance of energy optimal controller

against other strategies, we consider a SOC constraint at terminal time. This constraint

causes equal electrical energy cost for all strategies. Therefore, the optimization index can

change from the total energy cost to the fuel consumption.

44



0 200 400 600 800 1000 1200 1400
0

5

10

15

20

25

30

Time (s)

S
p

ee
d

 (
km

/h
)

 

 
UDDS drive cycle
Predicted  UDDS

(a) UDDS drive cycle

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30

35

Time (s)

S
p

ee
d

 (
km

/h
)

 

 
HWFET drive cycle
Predicted  HWFET

(b) HWFET drive cycle

Figure 3.15: Speed prediction based on future driving condition for UDDS and HWFET
drive cycles.
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Figure 3.16: Comparison between high-fidelity and online-optimization modelling results
for PHEVs running in CD mode in highway and urban drive cycles.
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Figure 3.17: Comparison between high-fidelity and online-optimization modelling results
for PHEVs running in CS mode in highway and urban drive cycles.
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3.4.1 Dynamic programming

Dynamic programming (DP), a numerical method based on the principle of optimality,

was developed by Richard Bellman in the 1950s. Similar to other optimization meth-

ods, this global optimization approach aims to minimize the cost function while satisfying

performance component constraints. The DP method is widely applicable to complex op-

timization problems because it applies a decomposition process to break down n-variable

problems into n simplified one-variable sub-problems, each of which is solved only once

and saved in a table. The solutions for each sub-problem are then combined together to

provide an overall solution. This results in a large reduction in computational time and

effort [94].

The DP algorithm is applied to find the optimum SOC profile that minimizes total

energy cost. In this problem, the SOC is the output of the system, PR is the optimization

parameter, and fuel consumption is the objective function. Due to the complexity of the

high-fidelity model built in Autonomie, it cannot be applied to DP optimization; therefore,

our online-optimization model is employed. The optimal dynamic optimization problem

can be formulated in the discrete format as follows:

J =
N∑
k=1

mf (PR(k)) .∆tk (3.37)

SOC(k + 1) = SOC(k) +
−Voc+

√
V 2
oc−4PR(k)Pd(k)ηkRb

2RbQmax
(3.38)
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Figure 3.18: Schematic of DP algorithm

In this problem, the following constraint should be satisfied:

SOC(t0) = SOC0 (3.39)

SOC(tf ) = SOCf

SOCmin ≤ SOC ≤ SOCmax

Pbmin
≤Pb ≤ Pbmax

Pemin
≤Pe ≤ Pemax

0 ≤PR ≤ 1

In the DP algorithm, the sub-problems of optimization should be solved backward from

the terminal condition, as shown in Fig. 3.18. For step k, the sub-problem is to minimize

J ik with SOC(i) as the initial point of each sub-problem:
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J ik = Min
[
Lik(PR(j)) + J∗

k+1

]
(3.40)

The cost function is calculated only for the grid points of the SOC. The SOC at next time

step (k+1) (filled circle), is determined through discrete state space Eq. 3.38. If this value

does not match to the quantized value (empty circle), then the value of J∗
k+1 is updated

using linear interpolation.

3.4.2 Real-time cluster-based optimization

In the PHEV Trip Planning optimization problem, predicted power demand is the input

and the power ratio is the optimization parameter. The energy consumption is calculated

based on these two variables. It can be assumed that two trip segments with the same

power demand also have the same optimum power ratio. This thesis proposes the RCO

algorithm that clusters trip segments into groups that share similar power demands, and

similar optimum power ratios. Therefore, instead of finding the optimum power ratio of

each trip segment, the power ratio is only calculated for each group. In this way, the

number of optimization parameters is dramatically reduced.

In general, clustering is the process of grouping objects/data based on their similarities.

This process produces a model of data, which is grouped into meaningful sets. Clustering

algorithms can be categorized in many different ways. Some of the most important algo-

rithms are hierarchical based, centroid-based and distribution-based algorithms. Based on

the application and desired objectives, a robust clustering algorithm can be employed to

reduce complexity in optimization problems.
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Figure 3.19: Schematic of k-means clustering algorithm

A centroid-based or k-means algorithm is used to cluster the segments in this PhD

research. This algorithm works based on some centroid points, which may not be members

of any cluster. The data is divided into different groups based on their distances from the

centroid points [95].

According to Fig. 3.19, at the first step, k cluster centers (same as the number of

clusters) are determined. After defining the k centroids, data points are assigned to clusters

based on their distance from the centroids. When all data have been assigned, the k

centroids should be recalculated. The algorithm continues by reassigning each point to the

nearest centroid. These steps are repeated until recalculation of the centroids yields no

change in cluster assignment for the data.
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3.5 MIL testing

The Trip Planning is applied to two different test scenarios. In the first, the algorithm is

evaluated in different standard driving cycles; while trip data such as the average speed of

each segment, segment length, road grade, and maximum speed are known beforehand. In

the second test scenario, the benefit of online optimization is investigated by running the

simulation when trip data changes.

3.5.1 Following standard driving cycles

This thesis applies the RCO algorithm to the PHEV Trip Planning problem, taking into

consideration two drive cycles. The first drive cycle (EPA-UHU cycle) begins and ends

with a UDDS cycle, and has a HWFET drive cycle in the middle. The second drive cycle

(3xUDDS cycle) combines three UDDS drive cycles. The travel distance of both cycles

exceeds the full electric range of the vehicle. Therefore, at the terminal point, the SOC

reaches its minimum value and the engine takes over propelling the vehicle.

To implement the RCO algorithm, first the optimal power demands are calculated based

on predicted speed. Then, the centroids of groups are obtained and the power demand

data cluster into groups. Fig. 3.20 shows the power distribution and clustering results for

the EPA-UHU and 3xUDDS drive cycles. The dark bars show the power distribution of

the drive cycle during propulsion (positive power demands). Each bar represents the total

travel time for the corresponding power demand. The light bars depict each cluster and

the center lines show the centroids.
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(a) 3xUDDS drive cycle

(b) EPA-UHU drive cycle

Figure 3.20: Power distribution and power clustering results for: a)3xUDDS and b)EPA-
UHU drive cycles
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Table 3.4: Results of RCO algorithm for the EPA-UHU drive cycle.

Group Number Power (KW) Power Ratio Cruise speed range

1 2.2 1 less than 40 km/h
2 3.1 1 40 - 60 km/h
3 6.4 0.3 60 - 70 km/h
4 7.1 1 70 - 80 km/h
5 9.1 0.1 80 - 110 km/h
6 21.9 0.8 During acceleration

The power ratio of each power-group is obtained to minimize total fuel consumption.

The optimization results for the EPA-UHU drive cycle is shown in Table 3.4. In the low

speed and low power demand groups (groups 1 and 2), the engine did not work efficiently,

therefore the vehicle switched to full electric mode. In average cruise speed (groups 3 and

5), the energy management strategy switched to Blended strategy. During acceleration

with high power demand, both the engine and electric motor propel the vehicle, while the

electric power is dominant (Pb = 0.8 Pd).

Figure 3.21 shows the optimum SOC profile based on RCO and DP approaches for

the 3xUDDS and EPA-UHU drive cycles. The RCO results match the global optimum

solution generated by the DP algorithm; The maximum error between the optimum SOC

profile obtained by RCO and DP approaches are 1.1% and 2.4% for 3xUDDS and EPA-

UHU, respectively. However, the RCO algorithm is much less computationally expensive.

All simulations are run on a PC with Intel Core 2 Duo CPU (E8500, 3.17GHz) and 4GB

RAM. The average computation time of RCO and DP algorithms are 5 s, 35 min for

3xUDDS drive cycle, and 5 s, 28 min for EPA-UHU drive cycle, respectively.
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Figure 3.21: Optimum SOC profiles produced using RCO and DP algorithms for:
a)3xUDDS drive cycle and b) EPA-UHU drive cycle
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Table 3.5: Characteristics of each case study for online Trip Planning.

Case Drive cycle Change in the trip plan
1 3xHWFET No
2 EPA-HF No
3 EPA-HF Yes

3.5.2 Benefit of online optimization

Practically, various sources such as changes in the trip-plan and unpredicted traffic condi-

tions can change trip data. This section investigates the effect of change in trip data on

the performance and optimality of the online Trip Planning module through simulations

of three different cases. In the first case, the 3xHWFET drive cycle is used; in the second

and third cases, the EPA-HF drive cycle. In the last case, trip data change in the follow-

ing manner: at first, the driver sets a trip-plan in which the predicted speed is that for

the 3xHWFET drive cycle. Then, after passing the first highway, the driver changes the

trip-plan to that of the FTP-75 drive cycle for the rest of the trip. Fig. 3.22 illustrates the

speed trajectories for the three different cases.

Figures 3.23-3.25 show simulation results for the different EMS controller under various

conditions. The performance of the controllers can be evaluated from Table 3.6. It is

concluded that the Route-based EMS significantly improves fuel economy compared to the

rule-based and A-ECMS controllers. However, change in trip data affects the Route-based

EMS performance by 1.7% (118 MPG in case-2 and 116 MPG in case-3) .
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(c) EPA-HU drive cycle with change in trip plane.

Figure 3.22: Speed trajectories applied in different case studies for online Trip Planning.

Table 3.6: Online Trip Planning results for different case studies.

EMS Trip Planning
Fuel consumption (MPG)
Case-1 Case-2 Case-3

Rule-based No 97 102 102
A-ECMS No 93 113 114

Route-based EMS Yes 94 118 116
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Figure 3.23: Simulation results for following 3xHWFET drive cycle without changing in
the trip plan.
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Figure 3.24: Simulation results for following EPA-HU drive cycle without changing in the
trip plan.
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Figure 3.25: Simulation results for following EPA-HU drive cycle when trip plan is changed
after passing the first HWFET cycle.

3.6 HIL testing

Electronic Control Units (ECUs) have been widely used in many automotive applications

such as engine controller, transmission controller, cruise controller, driver assistance sys-

tem, and entertainment systems. ECU development process has become a critical phase

toward launching a new vehicle and 90% of automotive novelties are related to electronic

systems, especially advanced ECUs [96]. Testing and validating ECUs have become crucial

tasks in the automotive development process. The most effective way to validate an ECU

is to connect it to a real plant. However, in many cases, hardware-in-the-loop (HIL) tests

are more efficient. In fact, HIL testing systems provide a virtual vehicle model for ECU

validation. The main advantages of validating ECU by HIL testing are as follows:

• The controller development can be done and verified prior to manufacturing of the
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prototype vehicle. Therefore, HIL systems enable simultaneous development of ECU

and vehicle, which can significantly reduce the vehicle development process time;

• Validation time and cost can be reduced by replacing expensive field experiments

by laboratory experiments. HIL test often requires significantly less hardware than

physical prototyping. This makes the procedure faster and cheaper;

• HIL testing has lower risk, especially in the extreme or hazardous ambient conditions

such as typical winter test drives, cold-start tests, or validating adaptive cruise ECU

in severe situation with the risk of collision;

• HIL systems can support more comprehensive tests in a shorter time. HIL testing can

significantly increase repeatability and provide simulation over much broader range

of operating conditions than what is feasible via purely physical prototyping;

• HIL systems also provide the initial calibration of ECUs which is a starting-point for

the later development phases; and

• Damage to the vehicle can be avoided in a test scenario where failures or errors

can occur. HIL simulation makes it possible to simulate destructive events without

incurring a costly destruction.

This PhD research uses dSPACE systems for HIL testing. dSPACE GmbH (Digital

Signal Processing And Control Engineering) is one of the top providers of instruments

for developing ECUs especially for automotive applications. dSPACE systems are used at

many vehicle manufacturer such as Toyota, Audi, BMW, Ford, General Motors, Honda,
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Figure 3.26: Schematic of HIL test platform.

Nissan, and some automotive suppliers [97]. dSPACE supports different phases of ECUs

development process, in particular, Rapid Control Prototyping (RCP) and ECU testing

and calibration.

In general, HIL testing requires a high-performance simulator with special I/O (e.g.

CAN interface), real-time model, and prototype ECU. Fig 3.26 shows the architecture of

the HIL test platform. It consists of three main components: a real-time simulator (DS1006

processor board), prototype ECU (MicroAutoBox II), and interface (Computer).

The real-time simulator is a very fast processor that executes the Autonomie high-

fidelity model in real-time. The high-fidelity model includes the powertrain, driver, and

environment models. In each time step, it sends the powertrain variables and driver com-

mands to the ECU through a Controller Area Network (CAN). The ECU calculates the
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Table 3.7: Specification of the dSPACE HIL components.

Component Part Specification

Real-time simulator

Processor DS-1006 Quad-Core AMD, 2.8 GHz

Memory 1 GB local, 4 x 128 MB global memory

HIL I/O Board DS-2202

ECU: MicroAutoBox II

Processor DS-1401 PowerPC 750GL 900 MHz

Memory 16 MB main, 16 MB nonvolatile memory

I/O interface DS-1511

Interface
Processor Core i7, 3.4 GHz

Memory 16 GB

optimal control commands and sends them back to the real-time simulator. An interface

is used to set up the test, to program both the real-time simulator and ECU, and to record

the desired outputs. The specifications for the HIL components are shown in Table 3.7.

3.6.1 Controller prototyping

To develop an ECU which can be implemented in the vehicle, the proper hardware should

be designed for the desired application. Then, an optimized code should be generated for

the target ECU platform. This process makes the ECUs development very challenging.

To reduce the difficulties and enhance the process time, RCP systems have been devel-

oped, that support both hardware and code generation. This research used the dSPACE

MicroAutoBox II as the prototype ECU for testing the real-time performance of the energy-

optimal control strategy. The MicroAutoBox has two dedicated CAN controllers (4 CAN

channels) that enable communication with the simulator over the CAN bus.
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dSPACE provides some libraries in the MATLAB software to generate a C-code for

different devices ( MicrroAutoBox II and DS1006 processor board). These libraries handle

all features of the target device (for example, reading from analog and digital inputs and

communicate with other devises through CAN communication). The host service code is

also uploaded to the simulator and prototype ECU for data exchange between the real-time

hardware and an interface computer.

First, two separate Simulink models are generated for the PHEV high-fidelity model

and the designed controller. Then, the designed control code should be prepared to be

implemented in the dSPACE sytems by incorporating the dSPACE Real Time Interface

(RTI) blocks. For instance, the RTI CAN Controller Setup Block is employed in both

real-time model and designed controller to configure the CAN communication. The RTI

CAN Receive and Sent are used for receiving and sending data.

The next step to generate a C-code for rapid control prototyping is to compile the

Simulink model using the Real Time Workshop code generator. For each hardware plat-

form, the corresponding compiler and code generator is used (for instance, rti1401.tlc

and rti1006.tlc for the MicrroAutoBox (DS1041) and Simulator (DS1006), respectively).

The Real Time Workshop creates the following files after code generation process: system

description file (*.sdf) for uploading the executable file from interface computer using Con-

trolDesk software, executable file (*.ppc) for the processor in the hardware platform,trace

file (*.trc) for navigating through the model, and map file (*.map) for the memory address.

The dSPACE ControlDesk software is an interface used to connect with RCP hardware

platform, upload the executable file, manage the HIL test, and record the desired signals.
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Figure 3.27: Schematic of the Simulink models for HIL testing of the Trip Planning module.

Figure 3.27 shows the software architectures for both the prototype ECU and simu-

lator. The prototype ECU runs the Trip Planning and the simulator executes both the

environment and powertrain models. These modules are communicated over the CAN

bus. Table 3.8 represents the input and output signals and their characteristics in CAN

communication.

3.6.2 HIL testing results

To validate the real-time capability of the ECU, the turnaround time of the controller

should be less than the desired time step. Turnaround time is the amount of time taken

to execute the controller code and to provide the required ECU output. To implement
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Table 3.8: Specification of the input and output signals of the Trip Planning module.

CAN signal Variable name CAN ID Bit length

ECU inputs

Position 100 32

Speed 101 32

SOC 102 16

ECU outputs

Slope of Ref. SOC 120 16

Initial position of Ref. SOC 121 16

Initial SOC of Ref. SOC 122 16

the HIL testing, first the time step of the system should be determined. Generally, the

response time of the system or the update-rate of the impute signals are considered as

a time step. One of the main input signals to the Trip Planning module is traffic data

which is approximately updated in one minute. Therefore, the time step of this module is

considered to be one minute.

The HIL results of the on-line Trip Planning module are shown in Fig. 3.28. The results

show that the turnaround-time of Trip Planning in the MicroAutoBox hardware platform

is less than 5 sec, which is significantly less than the desired time step (1 min). Therefore,

the designed Trip Planning can be implemented in real-time.

3.7 Summary

This chapter has presented the Trip Planning for PHEV platforms that can optimize the

total expenditure of electricity and fossil fuel. The designed algorithm utilizes look-ahead

trip and driving information to predict optimum SOC profiles.
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Figure 3.28: Trip Planning HIL test results under 3xUDDS drive cycle.

In the first step, PHEV online-optimization model are developed and validated against

the high-fidelity PHEV model. The speed trajectory is predicted using the math-based trip

model. The optimization problem is then solved in real-time using the RCO algorithm.

Results show that at low speeds, the low-efficiency engine is turned off and the vehicle

is operated in full electric mode. Conversely, the engine is dominant during acceleration,

when power demand is high.

The RCO results are evaluated against those generated using a global optimization

approach, DP. The real-time results are very promising as they show good agreement with

the DP data and are achieved at much less computational expense. The results also show

that online optimization can compensate changes in trip data.

The HIL results demonstrate that the computational time of the RCO algorithm is

significantly less than one minute that validate the real-time Trip Planning module.
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Chapter 4

Route-based energy management

system development and evaluation

This chapter covers steps to design a real-time Route-based EMS for a power-split PHEV.

The EMS controller adjusts power distribution between two energy sources, the engine and

the battery. A schematic of the Route-based EMS is shown in Fig. 4.1. Trip Planning mod-

ule employs the simple powertrain model and predicted speed trajectory to find optimum

power distribution, while Route-based EMS calculates the optimum power distribution,

based on actual momentary power demand. Therefore, this EMS can handle any sudden

speed or propulsion power variations during a trip. Finally, the low-level controllers adjust

the engine, the electric motors, and the battery operations to provide the demanded power

based on the optimum power distribution.

The Route-based EMS is compared against popular EMS strategies, based on different
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Figure 4.1: Schematic of the real-time Route-based EMS strategy.

levels of trip information. Also, the real-time implementation of the devised Route-based

EMS is evaluated using HIL testing. Portions of this chapter have been published in

[98–102].

4.1 Control-oriented modelling

The control-oriented model is developed to obtain the power of powertrain components

based on the battery power. This model is same as the online optimization model, which

is presented in Section 3.3. The only difference is that the control-oriented model calculates

power demand based on the command of driver or cruise controller system, while the online

optimization model predicts future speed using the math-base trip model. In the control-

oriented model, the power distribution between the engine and the battery is calculated

based on the Power Ratio (PR):

68



Pd =
(
mv̇ + 1

2
ρACdv

2 +mgf cos θ +mg sin θ
)
v (4.1)

Pe =
1− PR
ηt

Pd (4.2)

Pb = η−km PR.Pd (4.3)

The objective of the controller is to minimize the total energy cost of the vehicle,

including the fuel and grid electrical energy, which is formulated in Eq. 4.4:

Cost = kfṁf + keηchQmax
˙SOC (4.4)

where mf is fuel consumption, Qmax is the maximum battery capacity, ηch is the charger

efficiency, and kf , ke are the unit price of gas and grid electrical energy, respectively.

4.2 Optimum energy management development

To establish an optimum EMS of PHEV, the power distribution between the engine and

the battery is calculated to minimize the total energy cost considering the constraints on

the system. The optimal control problem can be derived by considering SOC as a state of
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the system, power ratio (PR) as an input, and total energy cost as a cost function:

J =

∫ tf

0

Cost dt =

∫ tf

0

(
kfṁf − keηchQmax

˙SOC
)
dt (4.5)

Subjected to : ˙SOC = − ηb
Qmax

Pb

SOC(0) = SOC0

SOC(tf ) = SOCf

The constraints on the system are:

SOCmin ≤ SOC ≤ SOCmax

Pb,min ≤Pb ≤ Pb,max

Pe,min ≤Pe ≤ Pe,max

Based on the control-oriented model, the power capacity of the powertrain components

can be calculated as functions of the power ratio (PR). Therefore, the constraints can be

combined to reach equivalent constraints in terms of battery power and SOC:

SOCmin ≤ SOC ≤ SOCmax (4.6)

PRmin ≤ PR ≤ PRmax (4.7)

PRmax = min
(

1, (1− ηt Pe,min

Pd
), (ηm

Pb,max

Pd
))
)

(4.8)

PRmin = max
(

0, (1− ηt Pe,max

Pd
), (ηm

Pb,min

Pd
))
)

(4.9)
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To solve this problem, we apply the PMP technique to find the global optimum solution.

Then, we develop a real-time algorithm based on ECMS (Route-based EMS), that includes

future driving conditions.

4.2.1 Pontryagin’s minimum principle

PMP is an optimal control approach used to find the global optimal solution for control

problems [103]. Assuming the objective of the optimal control problem is to minimize the

cost function (J) as a function of time (t), and the state of the system is x:

J =

∫ tf

t0

L(x(t), t)dt (4.10)

Subjected to :

ẋ = f (x(t), u(t), t) (4.11)

with the following constraints:

Ψ (x(t), t) ≤ 0 (4.12)

To solve this problem, the Hamiltonian function must first be derived:

H = L(x(t), t) + λf (x(t), t) + νΨ (x(t), t) (4.13)

ν = ν0 if ψ (x(t), t) = 0

ν = 0 if ψ (x(t), t) < 0
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Then, the state and co-state equations should be solved simultaneously:

ẋ =
∂H

∂λ
= f (x(t), u(t), t) (4.14)

λ̇ = −∂H

∂x
(4.15)

The optimum input, u?, is obtained by minimizing the Hamiltonian function:

u? = argmin {H (x(t), u(t), t)} (4.16)

In the optimum EMS of the baseline PHEV, the cost-function is the energy cost. Therefore,

according to Eq. 4.13, the Hamiltonian equation can be derived as:

H = Cost(Pb) + λ(− ηb
Qmax

Pb) + ν1(socmin − soc) + ν2(soc− socmax) (4.17)

ν1 = ν socmin = soc

ν1 = 0 socmin < soc

ν2 = ν soc = socmax

ν2 = 0 soc < socmax

72



The equations for the state and co-state that should be solved simultaneously are:

˙SOC = − ηb
Qmax

Pb (4.18)

SOC(0) = SOC0

SOC(tf ) = SOCf

λ̇ = − ∂H

∂SOC

Also, based on the PMP algorithm, the optimum control law will be:

u? = P ?
b = argmin {H(Pb, SOC)} (4.19)

This problem is a Two Point Boundary Value (TPBV) problem, in which the initial and

final values of the SOC are known and the initial value of λ is unknown. The Simple

Shooting Method (SSM) is a common approach to solving TPBV problems. This method

converts the TPBV problem into an initial value problem, and adjusts the initial values

to satisfy the end constraints. In this problem, first, an initial value for the co-state

λ(t0) is assumed. Then, the state and co-state equations are solved simultaneously. At

the terminal time (end of trip), the difference between the final SOC (SOC(tf )), and its

desired value (SOCf ), is used to correct the initial guessed value of λ(t0). This procedure

is repeated until the final SOC value approaches the desired value. Since the state and

co-state equations depend on power demand, upcoming driving conditions are required to

solve the TPBV problem and calculate the initial λ.

Since the SSM is very sensitive to the initial guessed value of the co-state, we employ
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the Modified Simple Shooting Method (MSSM), which is a more accurate method, to solve

the TPBV problem. This method is similar to the SSM, but defines the passes through a

trajectory in order to guide the final state to its desired value [104]. In this problem, the

pass through trajectory is represented by a line between the initial and final states:

Φ = SOC0 +
SOCf

tf
tk (4.20)

In each step, the SSM is solved for the reduced trip in time interval [0, tk], with the desired

final state of SOCk
f = Φ(tk). The solution of this step, λk0, is considered as an initial guess

of the next step, time interval [0, tk+1]. This process continues until the problem is solved

for the entire time interval [0, tf ], [105].

Lewis [106] has proved the stability of the PMP technique. This technique solves the

optimal control problem for an infinite horizon. In this problem, there are constraints on

both states and input of the system. Therefore, if the power demand is feasible and can

satisfy the powertrain constraint, the solution can stabilize the system.

4.2.2 Route-based EMS

The ECMS was initially developed to address the real-time EMS of HEVs. Since HEVs have

only one external power source, vehicle performance can only be evaluated if the electrical

energy generated by the battery is converted to an equivalent fuel consumption value. The

total equivalent fuel consumption represents the consumption of both energy resources,
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electrical energy and fuel, which should be minimized in the optimal EMS strategy:

J =

∫ tf

t0

ṁeq dt (4.21)

ṁeq = ṁf + S
ηchηb
HLHV

Pb

where ηb is the battery efficiency, HLHV is a low heat value of the fuel, and S is the

equivalency factor.

Conversely, PHEVs have two external energy sources and can store electric energy

directly from the grid. Furthermore, the electrical energy stored in the battery is not

provided by the engine and is independent from the fuel. Therefore, the total energy cost

during the trip is considered as a cost function of the problem.

J =

∫ tf

t0

F (Pb, S) dt (4.22)

F (Pb, S) = kfṁf + SkeηchηbPb (4.23)

In comparing the PMP and ECMS approaches, the main difference is that the PMP solves

the TPBV problem to calculate λ(t), while the ECMS assigns an equivalency factor as a

design parameter.

The equivalency factor has a significant effect on the power distribution between the

two energy sources. If the battery energy capacity is unlimited, the equivalency factor is

equal to one, S = 1, and the total energy cost can be used to evaluate vehicle performance.

However, there is a constraint on the battery capacity; therefore, the equivalency factor is
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defined to regulate the supply and demand of electrical energy. For instance, if we assume

that the electrical energy cost is less than the fuel cost, and the trip distance is more than

the full electric range of the vehicle, the demand for electrical energy will be more than

the battery capacity. Increasing the equivalency factor raises the cost of electrical energy,

which allows us to find a more optimal point for consuming the battery electrical energy.

In general, reducing the equivalency factor decreases electrical energy cost. According

to the control law, this reduction in the cost of electrical energy leads to increased battery

power and decreased engine power. Therefore, more electrical energy is consumed if the

equivalency factor is decreased, and vice versa: increasing the equivalency factor increases

the fuel consumption.

The optimal equivalency factor depends on the driving cycle and future power demand.

To overcome this problem and ensure the ECMS approach is independent of the driving

cycle, an A-ECMS is employed. In this algorithm, the equivalency factor S(t) is obtained

based on the reference SOC. In the literature it has been shown that the linear profile of

SOC with respect to driving distance is a near optimum solution for the PHEV energy

management problem, and it is considered as a reference SOC in the A-ECMS method.

In the Route-based EMS, the Trip Planning scheme first uses future driving conditions

to find the optimum SOC profile and then employs it as a reference SOC. A PID controller

is employed to generate an equivalency factor based on the reference SOC, as shown in

Fig. 4.2.
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Figure 4.2: Schematic of the Route-based EMS.

4.2.3 Level of trip information

As mentioned, preview knowledge of a trip can significantly improve EMS performance. In

this way, we can take advantage of advancements in vehicle intelligence and communications

technologies, such as GPS, ITS, GIS, radar, and other on-board sensors to provide look-

ahead trip data. These data can be utilized to predict the future driving conditions and

increase the performance of EMS strategies. In terms of the level of access to the trip

preview information, the EMS strategies can be categorized into three groups: I) no access,

II) travelling distance, and III) speed trajectory.

Reactive EMS strategies such as rule-based, CDCS, and Manual CDCS require no

preview of trip information. The Autonomie default control strategy is rule-based and

similar to CDCS, except that the engine operates in CD mode when power demand is

high.

In A-ECMS technique, the travelling distance is known in advance, and a linear battery

depletion profile is used as a reference SOC. In the Route-based EMS, the Trip Planning
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module use sensors to acquire traffic conditions and thus find an optimum reference SOC

profile.

The global optimum solution is obtained by employing the PMP technique to evaluate

other strategies. In this technique the exact future driving conditions and speed trajectory

are known in advance (due to complete preview information).

This thesis evaluated the real-time Route-based EMS against three existing EMS strate-

gies, taking into consideration different levels of trip information.

4.3 MIL testing

This section investigates performance of the popular EMS strategies: rule-based, CDCS,

Manual CDCS, A-ECMS, and Route-based EMS, based on different levels of trip infor-

mation. In particular, performance of the Route-based EMS is compared against MPC

controller, which is developed by A.Taghavipour [44].

4.3.1 Following standard driving cycles

The simulation results for EMS strategies without any preview trip information according

to EPA-UHU drive cycle are shown in Fig. 4.3, 4.4, and 4.5, respectively. The control

system accurately follows the reference speed trajectory with a margin of error of less than

1 km/h.

The engine operates more efficiently at higher speeds than lower speeds. As a result,

the better engine operation while driving on highways can improve fuel economy. While
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Figure 4.3: CDCS strategy performance over 3xUDDS driving schedule
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Figure 4.4: Autonomie’s default rule-based strategy performance over 3xUDDS driving
schedule
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Figure 4.5: Manual CDCS strategy performance over 3xUDDS driving schedule
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driving in urban areas, using electrical energy is preferable. So, in Manual CDCS, the driver

can manually switch between EV mode (CD) and HEV mode (CS) depending on traffic

conditions. Doing so can improve fuel economy further. The Manual CDCS strategy

utilizes more engine power in the highway rather than rule-based strategy, and extends

CD operating mode until t = 3100 s. This strategy enhances the fuel economy by 5.6%

compared to the default rule-based controller in Autonomie software.

In CDCS strategy, the battery energy propels the vehicle for approximately the first

half of the trip (t = 1715 s), then the operating mode switches to CS and the engine takes

over (Fig. 4.3). The rule-based controller of Autonomie has a similar approach, but it

starts the engine even when SOC is more than the predefined value. As shown in Fig. 4.4,

for acceleration at t = 220 s and t = 1720 s, the engine assists the electric drive to propel

the vehicle. This leads to a longer charge depletion period and a 2.1% improvement in fuel

economy (MPG) over CDCS.

The global optimum solution is obtained using the PMP technique. The resulting

TPBV problem is very sensitive to initial value of λ. Figures 4.6 - 4.9 show the simulation

results for different initial λ values. In low λ0, the battery power mainly propels the vehicle

until the SOC reaches the minimum value, while in high λ0, the engine is the main power

source. The modified simple shooting method is employed to solve the TPBV problem,

and the optimum λ0 satisfies the constraint SOC(tf ) = SOCf .

Based on the level of trip information, A-ECMS or Route-based EMS strategies can

be used to find optimal power distribution. A linear reference SOC can be developed

based on trip distance or an optimum SOC profile can be generated by Trip Planning

80



0

10

20

30

S
p

ee
d

 (
m

/s
)

0

0.5

1

1.5
F

u
el

 (
L

)

 

 

0 500 1000 1500 2000 2500 3000 3500 4000
0.2

0.4

0.6

0.8

S
O

C

Time (S)

 

 

λ =1.5 λ =2 λ =2.2 λ =4 λ =5

λ =1.5 λ =2 λ =2.2 λ =4 λ =5

Figure 4.6: Simulation results for 3xUDDS drive cycle using different initial λ values.
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Figure 4.7: Simulation results for 2xWLTP drive cycle using different initial λ values.
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Figure 4.8: Simulation results for 3xSFTP-US06 drive cycle using different initial λ values.
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Figure 4.9: Simulation results for 3xHWFET drive cycle using different initial λ values.
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Table 4.1: Fuel consumption results for each EMS strategy

Drive cycle
Fuel consumption (MPG)

Rule-based CDCS Manual A-ECMS
Route-based

PMP
EMS

3xUDDS 97.7 94.9 99.6 104.7 107.7 108.4
3xHWFET 79.3 75.8 88.0 92.8 94.6 96.9
3xSFTP 52.1 50.3 59.0 58.4 60.5 62.2
2xWLTP 72.7 69.7 80.4 78.0 80.3 82.3
EPA-UH 129.0 125.5 156.0 148.0 159.6 190.2
EPA-UHU 95.1 93.1 100.5 98.3 103.4 103.8

described in Chapter 3. The optimum fuel consumption and SOC profiles generated by

the A-ECMS and Route-based EMS for various drive cycles are shown in Figures 4.10 -

4.15. The results show that both Route-based EMS and A-ECMS strategies extend the

charge depleting mode until the end of trip. Therefore, both controllers can optimally

use the battery and engine power for longer range compare to rule-based controller. The

results also demonstrate the Route-based EMS can significantly improve the energy cost.

Table 4.1 shows the results of the EMS strategies. The best results are achieved by the

real-time Route-based EMS, which closely approximated the results of the global optimum

solution based on PMP technique. When no preview information is available, the Manual

strategy shows the best results.

4.3.2 Comparison with MPC controller

This study also compares two optimal route-based control approaches- the MPC controller

and the devised Route-based EMS- for different levels of trip information. The MPC energy
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Figure 4.10: Simulation results for each EMS strategy when tracking EPA-UHU drive
cycle.
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Figure 4.11: Simulation results for each EMS strategy when tracking 2xWLTP drive cycle.
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Figure 4.12: Simulation results for each EMS strategy when tracking 3xHWFET drive
cycle.
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Figure 4.13: Simulation results for each EMS strategy when tracking 3xUDDS drive cycle.
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Figure 4.14: Simulation results for each EMS strategy when tracking 3xSFTP-US06 drive
cycle.
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Figure 4.15: Simulation results for each EMS strategy when tracking EPA-UH drive cycle.
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management strategy was developed in our research group by A. Taghavipour [3]. Both

controllers are implemented in the high-fidelity model.

MPC energy management strategy

The MPC technique has been recently applied to many control applications because of

its ability to handle constraints on states and inputs of the system. It solves the optimal

control problem in a finite horizon time, which makes the controller capable of real-time

implementation.

The MPC controller uses the control-oriented model in order to predict the future. In

each prediction horizon, a cost function is minimized that results in maximum fuel economy

and tracking a reference SOC trajectory while following a drive cycle. The cost function

is:

J(k) =

Np∑
i=1

(w1(SOCref (k + i)− SOC(k + i))2

+w2(ṁf (k + i))2). (4.24)

In Eq. 4.24, w1 are w2 weighting parameters that are chosen according to the predicted

maximum value of the weighted variables. The performance of the control system can

deteriorate significantly when the control signals from the original design meet with the
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constraints. There are some constraints on this problem that are defined as follows:

Tmin−i < Ti < Tmax−i i ∈ {e,m, g} (4.25)

ωmin−i < ωi < ωmax−i i ∈ {e,m, g}

SOCmin < SOC < SOCmax

Stabilizing the MPC controller requires consideration of extra constraints or auxiliary

objective functions, which affects the global optimality of the original problem [107–109].

It also increases the computational time and makes real-time implementation more chal-

lenging. In addition, adding constraints might make the optimal solution infeasible. Zheng

et. al [110] show that closed-loop MPC controllers are asymptotically stable if the opti-

mization problem is feasible. Therefore, MPC stability can be achieved by ensuring that

the solution is always feasible and the constraints are satisfied.

Simulation results

To evaluate the designed EMS strategies performance (MPC controller and Route-based

EMS), they are implemented to the high-fidelity model in Autonomie. Two different driving

schedules for urban driving and combined highway and urban driving are used for the

simulation. The first one is a combination of three UDDS drive cycles (3xUDDS drive

cycle) and the latter is two UDDS and a HWFET drive cycles (EPA-UHU drive cycle).

The trip information helps improving the EMS strategy performance. Moreover, the

battery depletion profile affects the PHEV fuel economy. If the travelling distance is
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Figure 4.16: Results of EMS strategies with linear reference SOC.

available beforehand, the linear depletion profile is used as the reference SOC. In the case

of modern vehicle with on-board sensors, the optimum depletion profile is generated by

Trip Planning in real-time and applied to the EMS strategy. The simulation results of

A-ECMS and MPC controller for linear reference SOC are shown in Fig. 4.16. It is shown

that both EMS strategies satisfy the constraint on SOC at the end of the trip.

MPC uses more battery power while the vehicle is accelerating (at t = 210 s and

t = 2400 s). So, electrical power provides smoother engine operation, since the engine

operates inefficiently in transients. On the other hand, A-ECMS uses more engine power

for acceleration in order to follow the SOC reference trajectory.

The simulation results with optimized reference SOC are shown in Fig. 4.17. In highway,

Route-based EMS first utilizes more engine power for acceleration part and then employs

battery power to track the reference SOC. But MPC propels the vehicle by battery power in
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Figure 4.17: Results of EMS strategies with optimized reference SOC.

acceleration mode then uses engine power to restore battery energy and track the reference

SOC. For instance, in the second segment, in the time period of 180s to 360s, the fuel

consumption and ∆SOC are 0.122 L, 0.032% for MPC, and 0.087 L, 0.049% for Route-

based EMS, respectively. Therefore, MPC increases SOC (decrease ∆SOC of the segment)

by utilizing more engine power at the end of the segment.

To evaluate these EMS strategies in a different driving schedule, 3xUDDS drive cycle

is applied to the model. Fig. 4.19 shows the simulation results. By comparing the results

of Route-based EMS and MPC strategies for different driving schedules, it is found that

the fuel consumption of the two EMS strategy are close to each other.

The fuel consumption for different EMS strategies with different levels of trip informa-

tion in EPA-UHU and 3xUDDS drive cycles are shown in Table 4.2. When the future trip

information is not available, the Manual CDCS has the best performance. If the travel-
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Figure 4.18: Results of EMS strategies with linear reference SOC over the 3xUDDS driving
schedule.
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Figure 4.19: Results of EMS strategies with optimized reference SOC over the 3xUDDS
driving schedule.
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Table 4.2: Fuel economy for different levels of trip information

Strategy
Level of trip Fuel consumption (MPG)
information EPA-UHU cycle 3xUDDS cycle

CDCS No 93.1 94.9
Rule-based No 95.1 97.7
Manual CDCS No 100.5 99.6
A-ECMS Distance 98.3 104.7
MPC Distance 97.4 105.4
Route-based EMS Speed 103.4 107.7
MPC Speed 102.9 108.4
PMP Speed 103.8 108.4

ling distance is known in advance, Manual CDCS or A-ECMS results are close. In urban

drive cycle (3xUDDS), A-ECMS strategy has a better performance because the electrical

energy is available until the end of the trip. In the combined urban and highway driving

(EPA-UHU), Manual CDCS operates the engine more efficiently, and therefore, leads to

better fuel economy.

If the predicted future speed trajectory is available, the devised Trip Planning module

that generates optimum SOC profile can improve the performance of both MPC and Route-

based EMS strategies. Using these control approaches, the fuel consumption is improved

by 8.5% (102.9 vs. 95.1) and 10.2% (107.7 vs. 97.7) for EPA-UHU and 3xUDDS drive

cycles comparing to the results of the default rule-based controller of Autonomie software.

The other criteria that should be considered in the EMS controller design is the compu-

tational effort in order to implement controls in real time. To compare the computational

effort, all simulations are run on a PC with Intel Core 2 Duo CPU (E8500, 3.17GHz) and
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4GB RAM. The average computation time of MPC and Route-based EMS strategies are

240, 208s for EPA-UHU drive cycle, and 290, 252 s for 3xUDDS drive cycle, respectively.

4.4 HIL testing

HIL simulation is an essential part of the ECU development process that evaluates and val-

idates the ECU functions and communications between ECUs. The HIL simulations enable

ECU testing under a variety of scenarios that may be very expensive or time consuming for

vehicle drive test. In the HIL testing, ECUs are connected to a simulator instead of being

connected to a real vehicle. The first step of HIL testing is prototype ECU preparation.

4.4.1 Controller prototyping

The dSPACE MicroAutoBox II hardware platform is used as the prototype ECU for testing

the real-time performance of the Route-based EMS strategy. The control signals generated

by the EMS strategy are sent to the high-fidelity vehicle model in the simulator over the

CAN network. Figure 4.20 illustrates the schematic of software architecture for both

prototype ECU (MicroAutoBox) and simulator (DS1006 processor).

Figure 4.21 shows the control architecture of Toyota Prius Plug-in Hybrid provided by

Toyota Information System (TIS) [111]. By comparing the current controller of the Prius

with the designed energy-optimal controller, the difference is that the latter employs Trip

Planning module to provide reference SOC profiles and also incorporate Route-based EMS

instead of using rule-based control strategy.
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Figure 4.21: Schematic of the Prius EMS from the TIS document [111].
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Table 4.3: Specification of the input and output signals of the Route-based EMS.

CAN signal Variable name CAN ID bit length

ECU inputs

Position 100 32

Speed 101 32

SOC 102 16

Slope of Ref. SOC 120 16

Initial position of Ref. SOC 121 16

Initial SOC of Ref. SOC 122 16

Demand torque 140 32

Engine speed 151 32

Motor speed 152 32

Generator speed 153 32

ECU outputs

Engine torque 141 32

Motor torque 142 32

Generator torque 143 32

The input signals to the prototype ECU are driver or cruise controller commands,

Trip Planning signals, and feedbacks from the high-fidelity powertrain model; the output

signals are the engine and motor-generators desired torques. These signals transfer to the

simulator hardware through CAN bus. Table 4.3 represent the input and output signals

and their characteristics in CAN bus.

4.4.2 HIL testing results

The results of the Route-based EMS system for different driving cycles are shown in

Fig. 4.22 and 4.23. The HIL and MIL results are in complete agreement. The control
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systems are basically the same. The only differences are in the solver program (C-code or

Simulink) and the hardware (ECU or PC). The results show that the controller turnaround-

time is less than 25 µs, which is less than the desired time step (1 ms). Therefore, the

Route-based EMS is validated.

4.5 Summary

This chapter has presented a new real-time EMS system for PHEVs based on the ECMS

approach. The designed controller takes advantage of preview trip information through

optimum SOC profiles. The controller is implemented in the high-fidelity PHEV model

and compared against the results of several different EMS strategies, including the CDCS,

Manual CDCS, rule-based, PMP, and MPC methods. The real-time Route-based EMS

system showed promising results and improved fuel consumption up to 11% compared to

the rule-based controller. The HIL test results showed that the turnaround-time is less

than 25 µs, and the Route-based EMS system can be implemented in real-time.
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Figure 4.22: HIL test results for the Route-based EMS over the 3xUDDS driving schedule.
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Figure 4.23: HIL test results for the Route-based EMS over the EPA-UHU driving schedule.
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Chapter 5

Ecological cruise controller

development and evaluation

In this chapter, an Eco-Cruise controller is developed to improve energy cost while main-

taining a safe distance from the preceding vehicle. We show that the Eco-Cruise system

can improve total energy costs, as well as vehicle safety, simultaneously. The developed

controller is equipped with an onboard sensor to capture upcoming trip data to optimally

adjust the speed of baseline PHEV. The NMPC technique is used to optimally control the

vehicle’s speed. To prepare the NMPC controller for real-time applications, a fast and effi-

cient control-oriented model is developed. The NMPC controller is compared against three

different controllers, i.e. PID, linear MPC, and PMP. Also, the real-time implementation

of the controller is verified by HIL testing. Portions of this chapter have been published in

[112–114].
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Figure 5.1: Schematic of two consecutive vehicles.

5.1 Control-oriented modeling

In this section, a control-oriented model is developed to be used at the heart of the Eco-

Cruise controller. The main goal of the proposed Eco-Cruise controller is to simultaneously

maintain the safe distance of the host vehicle from the preceding vehicle and minimize its

total energy costs. The tasks can be fulfilled by optimally adjusting the vehicle’s speed for

any given driving condition. In our control-oriented model formulation, speed and distance

of the host vehicle and preceding vehicle are considered as the states of the system, and the

wheels’ torque is considered as the input of the system. Thus, the Eco-Cruise controller

should adjust the wheels’torque to comply with the required tasks.

In the rest of this section, we derive the model equations and consequently develop a

proper objective function based on the input and states of the system.

5.1.1 Inter-vehicle distance modelling

Fig. 5.1 shows the schematic illustration of two consecutive vehicles in the traffic flow, in

which L presents the inter-vehicle distance, Ld shows the desired inter-vehicle distance,

and δ delegates the distance error.
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According to the vehicle longitudinal dynamics theory, the considered system can be

modeled as below:



ẋh

v̇h

ẋp

v̇p


=



vh

u− 1
m
Fd

vp

ap


(5.1)

Fd =
1

2
ρACd(vh)

2 +mg sin θ +mgf cos θ

where vh and xh are the speed and position of the host vehicle, and vp and xp are the

speed and position of the preceding vehicle, u is input, Fd is resistance force, and ap is the

acceleration of the preceding vehicle. In this equation u is equal to u = 1
m.r
Td, where Td is

wheel torque, and r is wheel radius.

To develop the controller for practical application and also to make sure the controlling

commands always fall within a safe range, the desired inter-vehicle distance is adaptively

changed by increasing the speed, as below:

Ld = L0 + hvh (5.2)

where L0 is stationary distance, and h headway time. The inter-vehicle distance error is

calculated using Eq. 5.3 :

δ = Ld − L = (L0 + hvh)− (xp − xh) (5.3)
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Figure 5.2: Acceleration distribution in a combined UDDS, WLTP, HWFET, and SFTP
drive cycle.

It is assumed that we have access to the speed and acceleration of the preceding vehicle

through measurement or through the vehicle communication system. To improve the

accuracy of the prediction model and enhance the controller performance, the acceleration

of the preceding vehicle is adjusted during the prediction horizon.

By investigating the acceleration distribution in several drive cycles, it is found that the

vehicle mostly drives at low acceleration and a constant speed (see Fig. 5.2). Therefore, the

future acceleration of the preceding vehicle decreases gradually from the measured value.

âp(τ) = e−λτap(tk) (5.4)

where âp is the predicted future acceleration of the preceding vehicle, ap(tk) is the measured

acceleration of the preceding vehicle, tk is the previous time step, τ is prediction time, and

λ is a constant positive parameter.
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5.1.2 Powertrain modelling

This model is same as Route-based EMS control-oriented powertrain model, described in

Section 4.1. The amount of supplied engine and battery power strictly depend on the EMS

strategy. It is assumed that the power distribution does not vary during a time step, and

that the power distribution rate is the same as previous time-step values.

P̂b(τ) = Pb(tk)
Pd(tk)

Pd(τ) (5.5)

P̂e(τ) = Pe(tk)
Pd(tk)

Pd(τ) (5.6)

where Pd is power demand, P̂e, P̂b are predicted engine power and battery power, Pe(tk), Pb(tk)

are measured engine power and battery power in the previous time step, and τ is prediction

time, respectively.

5.1.3 Model evaluation

To evaluate the control-oriented model, the Autonomie high-fidelity model is used as a

reference. The combination of three EPA driving cycles (UDDS, HWFET, and SFTP-

US06) is applied to a high-fidelity model. The simulation data are collected in each time

step. Fig. 5.3 schematically illustrates the designed Simulink model to compare the re-

sults of a high-fidelity model and a control-oriented model. The maximum error for fuel

consumption, SOC, and energy cost are 2.4%, 1.6%, and 3.6%, respectively (Fig. 5.4).
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Figure 5.3: Schematic for validating the control-oriented model.

5.2 Control design

This section gives the mathematical steps required for the implementation of the controller.

Fig. 5.5 clarifies the details of this controller schematically. The simulation model includes

four main blocks: the environment, Eco-Cruise controller, EMS controller, and PHEV

powertrain model.

Based on the vehicle’s position, the inter-vehicle distance, preceding vehicle speed,

and road grade are obtained and fed to the Eco-Cruise controller. The controller optimally

calculates the wheel torque considering driving safety and energy cost. The EMS distributes

the power demand between the two energy sources and determines the optimum torques

of the engine and motor-generators. Finally, in the high-fidelity PHEV powertrain model,

vehicle speed, fuel consumption, and SOC are calculated. This chapter investigates and

compares four different control techniques for the Eco-Cruise controller: PMP, NMPC,

LMPC, and PID.

107



0 500 1000 1500 2000 2500
0

20

40

V
 (

m
/s

)

0 500 1000 1500 2000 2500

0
0.5

1
1.5

P
b
 / 

P
d

0 500 1000 1500 2000 2500
0

1

2

F
ue

l (
L)

 

 

Control oriented model
High−fidelity model

0 500 1000 1500 2000 2500
0

0.5

1

S
O

C

 

 

Control oriented model
High−fidelity model

0 500 1000 1500 2000 2500
0

1

2

Time (s)

C
os

t (
$)

 

 

Control oriented model
High−fidelity model

Figure 5.4: Simulation results for validating the control-oriented model.
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Figure 5.5: Schematic of Eco-Cruise controller for PHEVs.

5.2.1 Pontryagin’s minimum principle

The PMP technique can provide a global optimum solution for an optimal control problem.

The objectives of the controller are to minimize the total energy cost as well as to ensure the

vehicle follows the preceding vehicle at a safe distance. The PMP technique requires future

trip information to evaluate the global optimum solution. In other words, to calculate

optimum speed trajectory, the position and velocity of preceding vehicle are considered

to be known variables. In this case, the state variables of the system are reduced to

X = [xh vh]
T . The optimal control problem is stated in Eq. 5.7:

J =

∫ tf

0

(
ω1 δ

2(X) + ω2 Cost(X, u, PR)
)
dt (5.7)

Ẋ = F(X, u)
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The constraints of the system are:

vmin ≤ vh ≤ vmax

umin ≤ u ≤ umax

where PR = [Pb

Pd
, Pe

Pd
] is the power ratio between the two energy sources in previous time

step, ω1, ω2 are respectively the weights of safety and cost in the objective function, and F

represents the system model, which is described in the Section 5.1, (Eq. 5.1). ω1 adaptively

changes, considering the safe distance, as described in Eq. 5.8:

ω1 =


eβ1(δ−0.6δmax) 0.6 δmax ≤ δ

1 −0.6 δmax < δ < 0.6 δmax

eβ2(−δ−0.6δmax) δ ≤ −0.6 δmax

(5.8)

The optimum input is obtained by:

Ẋ = F(X, u, t), X(0) = [0 0]T (5.9)

λ̇ = −∂H
∂X

, λ(tf ) = [0 0]T (5.10)

u? = argmin{H} (5.11)

These states and co-states equations are categorized as two-point boundary value problems,

that the initial value of states and the final value of co-states are known. Here, the single

shooting method is applied to solve this problem. First, the initial value of the co-states
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is assumed. Next, Eq. 5.9- 5.11 are solved simultaneously. By comparing the final value

of the co-states with the desired value, λ(tf ) = [0 0]T , the co-states’ initial values will be

updated. This procedure continues until the final co-states converge to the desire value.

5.2.2 Nonlinear model predictive control

In this section, the Eco-Cruise controller is designed based on the NMPC approach to find

the optimum wheel torque. In contrast to PMP formulation, the future position and speed

of the preceding vehicle are unknown. Eq. 5.4 is applied to predict the acceleration of

preceding vehicle. The problem formulation is given in Eq. 5.12:

J =

∫ tf

0

(
ω1 δ

2(X) + ω2 Cost(X, u, PR)
)
dt (5.12)

Ẋ = F(X, u, âp)

vmin ≤ vh ≤ vmax

umin ≤ u ≤ umax

Using the control-oriented model, the states of the system are predicted for any given

prediction horizon (τ), and consequently, the objective function is evaluated in each time

step. To solve the above optimal control problem, an optimization algorithm should be

taken into account. Many researches apply Particle Swarm Optimization (PSO) to solve

the optimization inside MPC technique and calculate controlling commands [115–120].

PSO is a stochastic and population-based optimization search algorithm which is mainly

inspired by social behavior of natural systems. Let us consider a large group of individuals
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interacting within a social system, such as in flocks of birds or swarms of bees seeking a

location with abundant food. In such system, each individual has two properties, a current

position and a velocity. Also, each individual has knowledge of its best position so far plus

the knowledge of the best-found position of the group. Now each individual can correct its

properties (position and velocity) according to this information.

The PSO algorithm works based on the same principle as that of the social system

described above. It simulates a simplified social system with moving particles in a multi-

dimensional search space. Each particle is dynamically adjusting its own velocity and

position in each step based on its history (its best position experienced so far) and those of

its peers. Thus, PSO can obtain the global optimum in optimization problems as a result

of a global behavior and interaction between all of the particles [121,122].

Fig. 5.6 shows the schematic of particle position adjustment in the PSO algorithm. The

velocity and position of each particle is updated in each iteration using Eq. 5.13, 5.14.

V t+1
i = ΩV t

i + C1Φ1(Pi −Xi) + C2Φ2(Pg −Xi) (5.13)

X t+1
i = X t

i + V t+1
i (5.14)

where, V,X are velocity and position of the particle, i is the index for particle number,

t is the iteration number, ω is the inertia weight, Φ1,Φ2 are random numbers, Pi is the

best position of the particle, and Pg is the best position of the swarm.

The meta-optimization is used to tune PSO algorithm. Figure 5.7 shows the schematic
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Figure 5.6: Velocity and position adjustment of a particle in the PSO algorithm.

of the meta-optimization. The optimization parameters are number of particles, maximum

iteration, maximum particle velocity, and inertia weight. The objective is to minimize

computation time of the PSO optimization. The DP algorithm is applied to solve the

meta-optimization problem off-line and tune the PSO algorithm.

5.2.3 Linear model predictive control

To design and implement a LMPC for the Eco-cruise controller, the model is linearized

and the objective function is derived in the quadratic form.

J =

∫ tf

0

(
Q (vh − vref )2 +R (u− uref )2 + ω1 δ

2 + ω2 Cost
)
dt (5.15)

Ẋ = AX +Bu

vmin ≤ vh ≤ vmax

umin ≤ u ≤ umax

113



V2I

V2V

Radar

ITS

GIS

GPS

Meta Optimization

PSO 
parameters

Computation time

Vehicle performance 

Figure 5.7: Schematic of the meta-optimization algorithm to tune PSO optimization.

where Q, R are positive definite matrices, and vref , uref are the reference values of speed

and control input, respectively.

The objective is to follow the preceding vehicle, the reference speed is considered to

be the speed of the preceding vehicle in previous time step. Reference control input is

required input for tracking reference speed, and can be obtained from Eq. 5.1 based on

v̇h = 0, vh = vref . MATLAB toolbox is used to solve the optimal control problem.

5.3 MIL testing

To reliably check the authenticity and efficacy of the devised controller, here, the controller

is evaluated for different driving scenarios, i.e. driving over a hill, and car-following.
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5.3.1 Scenario-1: driving over a hill

In this scenario, it is assumed that the vehicle drives over a hill while there is no other

preceding vehicle. We investigate the efficacy of the designed controller for finding the

optimum speed trajectory that minimizes energy costs and neglect the inter-vehicle distance

(ω1 = 0).

Since the hill length (travelling distance) is less than the All-Electric-Range (AER) of

the baseline PHEV (AER = 18km), the propulsion of the vehicle is guaranteed by the

electrical motor, and the resulting fuel consumption is zero. Thus, the entire driving range

is considered as part of a longer trip (total trip distance = 40 km). The optimal power

distribution is obtained by the designed A-ECMS strategy. In this strategy, two energy

sources optimally propel the vehicle simultaneously and SOC is gradually decreased during

the trip until it reaches the minimum value at the end of the trip (SOCmin = 0.3). In this

case, the cost of both electrical and fuel consumption should be considered.

The PMP technique can find the global optimum solution of the cruise problem because

it takes advantage of all trip data. The single shooting method is applied to solve the PMP

problem. Fig. 5.8 shows the speed trajectory for different initial values of co-states. Based

on the PMP technique, the final values of co-states should be zero at final time. The result

of the single-shooting method is λ(t0) = [0.002, −0.2].

Fig. 5.9 shows the results obtained with the cruise controller. The simulation results

verify that PMP leads to best energy economy. However, this technique is computationally

expensive and cannot be implemented in real-time. Therefore, the optimum solution of

PMP is used to evaluate the designed controllers.
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Figure 5.8: Cruise controller results for different initial co-states when driving over a hill.
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Figure 5.9: Cruise controller result when driving over a hill using A-ECMS strategy, with
different prediction horizons.
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It is determined that the prediction horizon is the most important controlling parameter

affecting the performance of NMPC (see Table 5.1). Based on the results, it can be

concluded that increasing the prediction horizon improves the performance of the NMPC.

When the prediction horizon is low (PT = 5s and PT = 10s), after ascending the uphill,

the car speeds up, reaching the reference value (20 m/s) in a very short period of time. By

increasing the prediction horizon (PT = 20s and PT = 50s), the speed remains low until

the vehicle descends the hill and uses gravity to increase both the acceleration and speed.

These speed trajectories are closed to the optimum solution of the PMP technique.

On the other hand, increasing the prediction horizon increases the computational time,

which is not appropriate for real-time implementation. Thus, the minimum acceptable

prediction horizon is more desirable. In this case, the optimum prediction horizon is

PT = 20s.

In general, the optimum prediction horizon depends on the dynamics of the system and

variation rate of the inputs. In this problem, the prediction horizon should be set according

to the variation rate of trip data such as road grade or traffic speed. To show the effect of

trip data on prediction horizon, we repeat the simulation on a shorter hill while all other

parameters remain constant. The results of the simulation are shown in Fig. 5.10.

The simulation results show that the optimum prediction horizon is reduced to PT =

10s. In other words, by decreasing the distance between uphill and downhill, the controller

with smaller prediction horizon (10s) can still see the upcoming changes (going down-hill),

and maintain the speed in a low rate to improve fuel economy. The Eco-Cruise controllers

results with different prediction time are shown in Table 5.1.
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Figure 5.10: Cruise controller result when driving over a hill using A-ECMS strategy, with
a distance of 1.5 km.

Table 5.1: Improvement of energy cost for different Eco-Cruise controllers compared to
cruise with constant speed.

Hill number (length) PT=5 PT=10 PT=20 PT=50 PMP
Hill-1 (5 km) 2.5 % 5.0 % 15.1 % 15.5 % 15.7 %

Hill-2 (1.5 km) 0.7 % 2.6 % 2.8 % 3.0 % 3.1 %
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Table 5.2: Parameters of car-following model.

Traffic condition L0 h δmax

Congested low traffic flow 2 4 1

Uncongested low traffic flow 4 8 3

In the case of following a preceding vehicle, calculation of the optimum value of predic-

tion horizon length depends on the time between acceleration, cruise and deceleration of

the preceding vehicle. To predict all future events in MPC, the prediction horizon should

be equal to a travelling time. Unfortunately, this makes the controller computationally ex-

pensive, and cannot be implemented in a real-time manner. Consequently, the remainder

of this chapter will consider that the prediction horizon is equal to PT = 20s.

5.3.2 Scenario-2: car-following

This section presents the simulation results for energy-optimal controller with all three

modules: Trip Planning, Route-based EMS, and Eco-Cruise controller. The objective

of Eco-Cruise controller is to maintain a safe distance from the preceding vehicle while

considering energy cost.

The safe distance between vehicles depends on speed and traffic conditions. The de-

sired inter-vehicle distance is obtained based on the stationary distance and headway time

in Eq. 5.2. This thesis considers two different traffic conditions, congested and uncon-

gested low traffic flow, and obtained optimum traffic parameters from [123], as reported in

Table 5.2.

The results of the NMPC controller are compared with those of two other controllers,
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Figure 5.11: Car-following simulation results in congested traffic conditions for following
3xUDDS cycle.

the LMPC and PID controllers. For an unbiased comparison, a fine-tuning procedure is

carried out on the controllers.

Fig. 5.11- 5.13 show the simulation results for following a vehicle with different speed

trajectories in congested low traffic flow. All controllers follow the preceding vehicle with

the acceptable distance error, (−1 < δ < 1), but the control performances are all different.

The results show that the NMPC yields the lowest energy cost, compared to the other

controllers.

Fig. 5.14- 5.16 show the results of Eco-Cruise controller for both congested and uncon-

gested conditions. In the congested condition, the acceptable inter-vehicle distance error

is relatively small, δmax = 1, and the cruise controller primarily considers safety as an ob-

jective function. In the uncongested condition, the acceptable inter-vehicle distance error

121



0

20

40

V
 (

m
/s

)

−1

0

1

2

δ 
(m

)

 

 

0 500 1000 1500 2000
0

1

2

Time (s)

C
o

st
 (

$)

 

 

NMPC LMPC PID

NMPC LMPC PID

Figure 5.12: Car-following simulation results in congested traffic conditions for following
3xHWFET cycle.
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Figure 5.13: Car-following simulation results in congested traffic conditions for following
3xSFTP-US06 cycle.

122



0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

V
 (

m
/s

)

0 500 1000 1500 2000 2500 3000 3500 4000

−2

0

2

4

δ 
(m

)

 

 

Congested Uncongested

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

Time (s)

C
o

st
 (

$)

 

 

Congested Uncongested

Figure 5.14: Camparison of Eco-Cruise controller results in congested and uncongested
traffic conditions for following 3xUDDS cycle.

is more than the congested one (δmax = 3). Therefore, the cruise controller can adjust the

speed cost effectively by accepting a small inter-vehicle distance error, while improving the

performance of the vehicle.

Until now, the Route-based EMS is applied to calculate optimal power distribution.

To find the effect of each module in energy-optimal control scheme, the cruise controllers

are applied to the rule-based EMS of the Autonomie model. The simulation results for

different control strategies under different conditions are shown in Table 5.3.

The results show that the NMPC controller can improve energy costs by up to 20% while

maintaining driving safety. This improvement is achieved through optimizing the speed

profile and reducing the acceleration of the vehicle. Fig. 5.17 illustrates the acceleration

distribution of different control strategies for the combined UDDS, HWFET, and SFTP
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Figure 5.15: Camparison of Eco-Cruise controller results in congested and uncongested
traffic conditions for following 3xHWFET cycle.

0 200 400 600 800 1000 1200 1400 1600 1800
0

20

40

V
 (

m
/s

)

0 200 400 600 800 1000 1200 1400 1600 1800

−2

0

2

δ 
(m

)

 

 

Congested Uncongested

0 200 400 600 800 1000 1200 1400 1600 1800
0

1

2

Time (s)

C
o

st
 (

$)

 

 

Congested Uncongested

Figure 5.16: Camparison of Eco-Cruise controller results in congested and uncongested
traffic conditions for following 3xSFTP-US06 cycle.
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Table 5.3: Fuel economy for different cruise controllers.

Cruise
EMS

Traffic Fuel consumption (MPG)
controller condition 3xUDDS 3xHWFET 3xSFTP

PID

Route-based Congested 101 89 51
EMS Uncongested 101 89 51

Autonomie Congested 93 75 47
controller Uncongested 93 75 47

LMPC

Route-based Congested 108 90 54
EMS Uncongested 114 95 58

Autonomie Congested 96 77 51
controller Uncongested 102 81 56

NMPC

Route-based Congested 111 95 58
EMS Uncongested 118 100 60

Autonomie Congested 97 78 54
controller Uncongested 107 85 63

drive cycles. NMPC has smaller acceleration than the PID controller. In congested traffic

conditions the acceleration is increased. That observation justifies the fact that, in such a

condition, the cruise controller function mainly focuses on vehicle safety and cannot widely

adjust its speed.

5.4 HIL testing

Real-time HIL testing promises an effective approach for validation of vehicle control sys-

tems. There has been increasing need for real-time simulation and support for HIL in

automotive applications. Section 3.6 described the HIL test platform. It consists of

a real-time simulator, prototype ECU, and interface computer. These components are
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Figure 5.17: Acceleration distribution of different cruise control schemes when following
combined UDDS, HWFET, and SFTP-US06 cycles.

connected through a CAN bus. The prototype ECU executes the controller and obtains

optimal controller commands. The real-time simulator runs the high-fidelity model and

calculates powertrain variables. These variables are fed back to the controller. An interface

computer is used to set up an HIL test, program the ECU and simulator, and record the

desired outputs and variables.

5.4.1 Controller prototyping

Figure 5.18, 5.19 show the cruise controller architectures of Toyota Prius (from TIS doc-

uments [124] ) and the designed energy-optimal controller. Both controllers use input

signals from radar and feedback signals from powertrain, and send command signals to

energy management ECU. The main difference between these two controllers is the control
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Figure 5.18: Schematic the Prius Cruise controller from TIS document [124].

Table 5.4: Specification of the input and output signals of the Eco-Cruise controller.

CAN signal Variable name CAN ID bit length

ECU inputs

Speed 101 32
Intervehicle distance 180 16
Acceleration of the preceding vehicle 181 16
Speed of the preceding vehicle 182 16
Rate of SOC 160 16
Rate of fuel 161 16

ECU outputs Demand torque 140 32

techniques.

Tabale 5.4 characterizes the CAN communication signals between the simulator and

prototype ECU. It should be noted that it is assumed that the raw radar signals are pre-

processed by another algorithm. Therefore, intervehicle distance, speed, and acceleration

of preceding vehicle are available for the Eco-Cruise controller.
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Figure 5.19: Schematic of the Simulink models for HIL testing of the Eco-Cruise controller.

5.4.2 HIL testing results

The HIL and MIL results of the NMPC controller for different driving cycles are shown in

Fig. 5.20 and 5.21. The HIL and MIL results are in complete agreement. The HIL results

show that the turnaround-time in the prototype ECU is less than 55 µs. The desired

sample time in the Prius adaptive cruise ECU is 1 ms. The HIL tests verify that the

turnaround-time is less than the desired time step. Hence, the NMPC controller can be

implemented in real-time.
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Figure 5.20: HIL test results for the NMPC Eco-Cruise controller following the 3xUDDS
driving schedule.
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Figure 5.21: HIL test results for the NMPC Eco-Cruise controller following the 3xHWFET
driving schedule.
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5.5 Summary

In this chapter, an Eco-Cruise controller was designed for a PHEV based on nonlinear

model predictive control. The controller optimally adjusts the vehicle speed to enhance

driving safety and minimizes total energy costs.

First, the control-oriented model is developed and validated using the high-fidelity

PHEV model. The simulation results show that the control-oriented model can predict

vehicle performance with an error of less than 3.6%. Thereafter, the model is used at

the heart of the NMPC technique to design the Eco-Cruise controller. PMP technique is

applied to find the global optimum solution of the cruise control problem. To endorse the

efficacy of the NMPC, its performance is evaluated against the PID, LMPC, and PMP

controllers under different driving conditions.

The results indicate that for a vehicle driving over a hill, the Eco-Cruise controller takes

advantage of the trip information to speed up the vehicle before the uphill, which improves

the energy cost up to 15%. The results show that NMPC results are in agreement with

the global optimum solution.

For the car-following scenario, the results show that the NMPC technique outperforms

the PID and LMPC controllers. It is found that the performance of the Eco-Cruise con-

troller depends on traffic conditions. In congested low traffic flow conditions, the cruise

controller mainly considers the safety criteria and, as a result, the bound of allowable

control command is very narrow due to small inter-vehicle distance. For uncongested low

traffic flow conditions, the acceptable intervehicle distance error is relatively large, which

enables the controller to improve the performance while considering the safety criterion.
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The feedback of the simulation revealed that NMPC shows promising results and can

improve energy costs of a vehicle by up to 20%.

HIL test results show that the turnaround-time is less than 55 µs, and the NMPC-based

Eco-Cruise controller can be implemented in real-time.
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Chapter 6

Conclusion

This thesis has described the development of an energy-optimal controller for a PHEV. The

controller consists of three main modules: the Trip Planning, Route-based EMS, and Eco-

cruise control. The Trip Planning module takes advantage of trip information to predict

future speed trajectory and optimizes SOC profiles to minimize total energy cost. Route-

based EMS calculates optimal power distribution between the battery and engine. The

Eco-Cruise controller optimally adjusts speeds in real-time to improve diving safety and

total energy cost.

The control-oriented models are developed for each module, and validated against the

high-fidelity PHEV model of the Toyota Prius in Autonomie. Then, the controllers are

evaluated using MIL and HIL testing.

In Trip Planning, the RCO algorithm is developed based on data clustering technique.

The results are evaluated against DP results. The RCO algorithm is very promising and
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can find the optimum SOC profile with less than 2.4% error with respect to the DP results.

Route-based EMS is developed based on ECMS strategy. The controller performance

compared against CDCS, Manual CDCS, rule-based, PMP, and MPC techniques under

various driving conditions. The Route-based EMS results are in agreement with the results

from PMP and MPC techniques. They can improve fuel consumption up to 11% compared

to rule-based controllers. The designed controller is evaluated using HIL testing and showed

a turnaround time of less than 25 µs. Thus, the devised controller is capable of real-time

implementation in the ECU hardware.

The Eco-Cruise controller is designed based on the NMPC technique. To evaluate

the efficacy of the controller, its performance is compared against the PID, LMPC, and

PMP controllers under variety of driving conditions. The NMPC results are in agreement

with the global optimum solution of PMP controller. It is also observed that the NMPC

technique can improve energy economy by up to 20% compared to the PID controllers.

HIL test results show that the turnaround time of the controller is less than 55 µs, and

then the real-time Eco-Cruise controller is validated.

6.1 Summary of contributions

This section summarizes the major contributions of the research.

1. Design of a new algorithm for Trip Planning, which

• Employs future driving conditions in a real-time optimization; and
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• Incorporates a novel RCO algorithm that is feasible for real-time implementa-

tion.

2. Design of a new Route-based EMS strategy for a power-split PHEV, which include

• Development of a novel architecture that use trip data to obtain a nearly optimal

solution; and

• Implementation in real-time.

3. Development of a novel technique for an Eco-Cruise controller, which

• Considers both fuel consumption and safety in the cruise controller;

• Is independent from the EMS system; and

• Implements in real-time.

6.2 Future work

This thesis demonstrates the performance of an energy-optimal controller for improving

total energy cost and driving safety through MIL and HIL simulations. However, further

research is needed to expand this study. This section provides some recommended future

work for each control system.

1. Trip Planning module:

• Improve the control-oriented model by considering the engine transient effect;
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• Include traffic light time schedules in the traffic model; and

• Improve the robustness of the designed controller in cases of data loss and missed

prediction situations.

2. Route-based EMS:

• Improve the controller performance using short-horizon speed prediction; and

• Improve the robustness of the control system.

3. Eco-Cruise controller:

• Include a radar model to make the high-fidelity model more accurate;

• Add powertrain delay into the control-oriented model; and

• Improve the robustness of the control system against disturbances.
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