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Abstract

The centroid formalism provides a phase space representation of quantum statistical mechanics
based on the Feynman path integral. Real time quantum correlation functions can be exactly
calculated using the centroid formalism, though this requires diagonalizing the system Hamiltonian
which is intractable for large collections of molecules. A computational method for computing
real time correlation functions called centroid molecular dynamics (CMD) has been formulated
to circumvent this issue though the results are approximations. The centroid formalism had
previously only been able to treat systems moving in Euclidean space. This is insufficient to
capture rotational motion and intramolecular torsions, which may be viewed as motion in a
constrained subspace of the Euclidean space. Herein we present a method for incorporating this
type of motion into the centroid formalism and test the validity by examining the motion of a
particle on a ring. Past work has also seen the centroid formalism extended to pairs of particles
obeying Bose-Einstein and Fermi-Dirac statistics by way of a projection operator. In this work we
examine the case where this projection operator projects onto an individual quantum state. This
will allow the centroid formalism, and hence CMD, to be extended to microcanonical ensembles.
Results are shown for the quantum harmonic oscillator, quartic well system and double well
system.
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Chapter 1

Introduction

One of the central problems in chemical physics is determining the equilibrium and dynamical
properties of systems of atoms or molecules. Directly solving for the properties of a system using
a quantum mechanical treatment with operators is in general intractable since the computational
resources grow exponentially with every additional degree of freedom. Since this is the regime
of chemical physics, alternate formulations must be employed. One such approach for studying
finite temperature properties of large systems is the Feynman path integral formulation of quantum
mechanics [1]. The method under study in this thesis is based on the path integral formalism which
uses the centroids of the path integral [2–4] to define a phase space distribution for the system. This
method allows us to practically compute approximations of quantum time correlation functions
of dynamical variables using the centroid molecular dynamics (CMD) approximation [5, 6] and
the very closely related ring polymer molecular dynamics (RPMD) method [7–9]. These are
currently two of the most popular molecular dynamic methods based on the path integral, and
allow for the efficient simulation of the time evolution of systems composed of large numbers
of particles given as real time correlation functions. Correlation functions have connections to
various time dependent properties of physical systems including spectra, transport properties,
and chemical kinetics [10]. However only CMD can be connected with the operator formulation
of quantum mechanics, being a semi-classical approximation to the exact quantum dynamics
of the true centroid dynamics [11]. The CMD method has modeled the transport properties
of para-hydrogen [12, 13] and ortho-deuterium [14] clusters. It has also accurately predicted
the infrared spectrum of liquid water [15, 16]. In comparison to CMD, no connection with the
operator formulation of quantum dynamics has yet been demonstrated for RPMD, and so it must
be classified as an ad-hoc method or algorithm. Despite this, RPMD has managed to accurately
model chemcial reaction rates [17,18]. The method can also be used to model very large chemical
systems, and has been succesfully applied to the dynamics of enzyme catalysis [19].

Thus far the centroid formalism has only been formulated for systems undergoing motion in
Cartesian space and cannot fully capture the motion on constrained surfaces. Being able to extend
the formalism to motion on these sorts of spaces, which include circles and spheres, would allow
for the CMD method to be applied to the study of rotations or torsions. It is the main goal of
this thesis to present a means of extending the centroid formalism to these sorts of spaces. In the
latter half of this thesis we will examine the centroid formalism in the case where we project the
system onto a single state. The content of this thesis is mostly theoretical in scope with some
numerical results presented as validation of the new formalisms.
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1.1 Path integral quantum mechanics

In quantum mechanics the operator which governs the time evolution of a physical system is
a hermitian operator known as the Hamiltonian, Ĥ. In the Schrödinger picture of quantum
mechanics it is the state vector, |ψ〉, which undergoes time evolution by way of the time dependant
Schrödinger equation (TDSE)

i~
∂

∂t
|ψ〉 = Ĥ |ψ〉 (1.1.1)

where ~ is the reduced Planck’s constant. For the derivation of the path integral presented here
the Hamiltonian is explicitly time independent and in separable form and is therefore a sum of
momentum and position dependent components

Ĥ = T (p̂) + V (q̂) (1.1.2)

where T (p̂) = p̂2/2m is the kinetic energy operator and V (q̂) is the potential energy operator. p̂
and q̂ are the momentum and position operators, respectively. It is assumed that these operators
both possess instantaneous eigenstates

q̂ |q〉 = q |q〉 p̂ |p〉 = p |p〉 (1.1.3)

which independently form continuous complete orthonormal bases for the Hilbert space. The
eigenvectors are also assumed to have the following inner products

〈qa|qb〉 = δ(qa − qb) 〈pa|pb〉 = δ(pa − pb) (1.1.4)

where δ(x) is the Dirac delta distribution, hereafter referred to as the delta function. Since both
sets of eigenstates form complete bases for the Hilbert space, the identity operator may be written
as

1 =

∫ ∞
−∞

dq |q〉 〈q| (1.1.5)

1 =

∫ ∞
−∞

dp |p〉 〈p| (1.1.6)

where we have integrals because the spectral range of the position and momentum operators are the
real numbers and hence continuous; this is referred to as the resolution of the identity. The position
and momentum operators are non-commuting and obey the so-called canonical commutation
relation

[q̂, p̂] = i~ (1.1.7)

where [Â, B̂] = ÂB̂− B̂Â is the commutator. As a result of this, the inner product of the position
and momentum eigenvectors is

〈q|p〉 =
1√
2π~

eipq/~ (1.1.8)

Now that the necessary mathematical background has been established, we can proceed to the mo-
tivation for the path integral formulation. In the Schrödinger picture, assuming that Hamiltonian
is time independent, the TDSE may be solved to give the time evolved state vector

|ψ, t〉 = e−iĤt/~ |ψ〉 (1.1.9)
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where to practically solve the time evolution operator, exp(−iĤt/~), one would have to solve the
time independent Schrödinger equation (TISE)

Ĥ |χn〉 = En |χn〉 (1.1.10)

where {|χn〉} are the set of eigenvectors of the Hamiltonian with associated eigenvalues {En},
which are also referred to as eigenenergies; here n can take on discrete values. The eigenvectors
of the Hamiltonian also form a complete orthonormal basis for the Hilbert space, and in the case
where the eigenstates form a discrete set have a resolution of the identity of the form

1 =
∑
n

|χn〉 〈χn| (1.1.11)

where we have a sum rather than an integral because the infinite set {n} is discrete and therefore
countable. Using (1.1.9) the time evolution from one state at time ta, |ψ, ta〉, to another state at
a later time tb, |ψ, tb〉, is given by the unitary transformation

〈ψ, tb| = Û(tb, ta) |ψ, ta〉 = e−iĤ(tb−ta)~ |ψ, ta〉 (1.1.12)

The probability of transitioning to some other arbitrary state at this time, |φ, tb〉, is then given
by the inner product

〈φ, tb|Û(tb, ta)|ψ, ta〉 = 〈φ, tb|e−iĤ(tb−ta)~|ψ, ta〉 (1.1.13)

Naturally, one can insert sets of resolutions of the identity using the position eigenstates, see
(1.1.5), between the state vectors and the time evolution operator to obtain

〈φ, tb|ψ, ta〉 =

∫ ∞
−∞

∫ ∞
−∞

dqadqb 〈φ, tb|qb〉 〈qb|e−iĤ(tb−ta)/~|qa〉 〈qa|ψ, ta〉 (1.1.14)

=

∫ ∞
−∞

∫ ∞
−∞

dqadqb φ
∗(qb, tb)ψ(qa, ta) 〈qb, tb|qa, ta〉 (1.1.15)

where 〈q|ψ, t〉 represents the projection of the state vector onto the position basis, which is equiv-
alent to the wave function ψ(q, t) which assumed to be known. The inner product of the time
evolved position eigenstates,

〈qb, tb|qa, ta〉 = 〈qb|e−iĤ(tb−ta)/~|qa〉 (1.1.16)

is called the transition amplitude, and it is solving this quantity that is the goal of the path
integral formulation of quantum mechanics. We begin by splitting the time evolution operator
into a product of exponentials using the Lie-Trotter product formula

et(Â+B̂) = lim
N→∞

[
etÂ/NetB̂/N

]N
(1.1.17)

where t is any complex number and where the infinite dimensional operators Â and B̂ are Her-
mitian.1 The evolution operator is thusly split into an infinite number of time slices

e−iĤ(tb−ta)/~ = lim
N→∞

[
e−iεT (p̂)/~e−iεV (q̂)/~

]N
(1.1.18)

1The product formula has been shown to hold for all finite dimensional matrices by Sophus Lie. Trotter gave
the original proof for infinite dimensional unbounded self-adjoint (also known as Hermitian) operators, and it has
been shown to hold for bounded operators. It is not yet known to be true for all infinite dimensional operators,
and does not appear to have been proven for all the types of operators which will appear in later sections, though
we will wave our hands and ignore this technical problem when continuing to use this result.
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where ε = (tb − ta)/N . We insert the completeness relation (1.1.5) between each time slice and
(1.1.6) between the exponential of the kinetic and potential operator within each time slice to
retrieve

〈qk+1|e−iεT (p̂)/~e−iεV (q̂)/~|qk〉 =

∫ ∞
−∞

dpk 〈qk+1|e−iεT (p̂)/~|pk〉 〈pk|e−iεV (q̂)/~|qk〉

=

∫ ∞
−∞

dpk e
−iε(T (pk)+V (qk))/~ 〈qk+1|pk〉 〈pk|qk〉

=
1

2π~

∫ ∞
−∞

dpk e
−i(εH(pk,qk)−pk(qk+1−qk))/~ (1.1.19)

where (1.1.8) was used to get the final result. Since we are assuming that qk is the position
coordinate value associated with the state at time tk we can use the definition of the derivative
to write

lim
ε→0

qk+1 − qk
ε

≡ lim
ε→0

qk(tk+1)− qk(tk)
ε

=
dqk
dt

= q̇k (1.1.20)

Combining all the time slices, and remembering to include the integrations over dqk, the transition
amplitude may now be written as

〈qb, tb|qa, ta〉 = lim
N→∞

∫
dq1 . . . dqN−1dp0 . . . dpN−1

N−1∏
k=1

1

2π~
e−iε(H(pk,qk)−pk q̇k)/~ (1.1.21)

where we have made the replacements qb = qN and qa = q0. The product of exponentials may
be combined into a sum in one exponential since there is no longer any worry about operator
ordering

lim
N→∞

N−1∏
k=1

exp

(
− i
~
ε [H(pk, qk)− pkq̇k]

)
= exp

(
lim
N→∞

i

~
ε
N−1∑
k=0

[pkq̇k −H(pk, qk)]

)

= exp

(
i

~

∫ tb

ta

dt [pq̇ −H(p, q)]

)
(1.1.22)

Equation (1.1.22) follows due to the fact that the infinite limit of the sum here is indeed a Riemann
sum and so may be replaced by an integral. We may now define “measures” for the path integration
over the position and momentum variables

Dq = lim
N→∞

N−1∏
k=1

dqk Dp = lim
N→∞

1

(2π~)N

N−1∏
k=0

dpk (1.1.23)

Finally, the transition amplitude may be written in the path integral formulation as a functional
integral

〈qb, tb|qa, ta〉 =

∫ q(tb)=qb

q(ta)=qa

DqDp exp

(
m
i

~

∫ tb

ta

dt[pq̇ −H(p, q)]

)
=

∫ q(tb)=qb

q(ta)=qa

DqDp exp(iS[t]/~) (1.1.24)

where the identification has been made that

L ≡ pq̇ −H(p, q) (1.1.25)
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is the Lagrangian, written here as a Legendre transform of the Hamiltonian, and hence its time
integral is the real time action

S[t] =

∫ tb

ta

dtL(q(t), q̇(t)) =

∫ tb

ta

dt (pq̇ −H(p, q)) (1.1.26)

The operator Hamiltonian has disappeared in (1.1.24) and has been replaced by an analogous
classical-like Hamiltonian composed of symbols

Ĥ(p̂, q̂) = T (p̂) + V (q̂) → H(p, q) = T (p) + V (q) (1.1.27)

Classical symbols always commute so there is no need to worry about non-commutativity of
operators in the final path integral. It is trivial to extend this result to multiple Euclidean
dimensions using Cartesian coordinates since the position and momentum operators along the
different axes will commute. We say the Hamiltonian is classical like, since there may be additional
terms which appear in the Hamiltonian when expressed in other coordinate systems [20] so the
path integral Hamiltonian is not guaranteed to be equivalent to the Hamiltonian for the analogous
classical system. We also note that while this derivation using the Trotter factorization holds in
the case of a separable Hamiltonian, if there are terms coupling position and momentum then a
different approach may be required.

1.2 Quantum statistical mechanics

Given that the number of possible states of a collection, or ensemble, of subsystems grows ex-
ponentially with increasing degrees of freedom, when considering large systems it is impossible
to treat each subsystem independently due to current limitations in computational and analytic
methods. Instead it is practical to only treat the system as a whole and through this treatment
derive statistical averages of the ensemble’s physical properties; the physical theory behind this
treatment is known as quantum statistical mechanics. Here, the focus is on a collection of sub-
systems which is in thermal equilibrium and therefore has a constant temperature T , along with
a fixed volume and number of constituent systems; this is referred to as a canonical ensemble. By
further assuming that the subsystems in the ensemble are noninteracting then the state of each
subsystem is independent of all others and will follow the same statistics as the entire canonical
ensemble. The statistical distribution of the possible energy states that the subsystems may in-
habit is known as the Boltzmann distribution, and all systems considered hereafter are assumed
to follow this distribution. One of the most important quantities associated with a canonical
ensemble is the partition function, Z, which is defined as the following operator trace in quantum
statistical mechanics

Z = Tr
[
e−βĤ

]
(1.2.1)

where β = 1/kBT is known a the thermodynamic beta, kB is Boltzmann’s constant, and T is
the temperature given in Kelvin. Each system in the ensemble is assumed to have the same
Hamiltonian, Ĥ. Z will converge to a finite value except in the infinite temperature case, β → 0,
where it diverges to positive infinity. The partition function acts as a normalizing factor for the
Boltzmann distribution and can be used to generate the system’s Helmholtz free energy, average
energy, heat capacity and entropy. The operator exp(−βĤ) therefore acts as the generator of
the Boltzmann distribution. The expectation value for an arbitrary measurement of the ensemble
associated with the operator Â may be calculated by using

〈Â〉 =
1

Z
Tr
[
e−βĤÂ

]
(1.2.2)
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where, as previously stated, Z acts a normalizing factor. This formula applies to both quantum
and classical systems, but under the assumption that the system is purely classical the partition
function may be represented as a 2N dimensional integral over the system’s phase space

Z =
1

hN

∫
dq1 . . . dqN dp1 . . . dpN e

−βH(q1,...,qN ,p1,...,pN ) (1.2.3)

where h is the Plank constant and the operator Hamiltonian has been replaced by the classical
symbol Hamiltonian. Similarly, the statistical average of some property represented by the symbol
A is given by

〈A〉 =
1

ZhN

∫
dq1 . . . dqN dp1 . . . dpN e

−βHA (1.2.4)

Returning to the quantum case, the trace may be performed by taking a set of states which
forms a complete orthonormal basis for the Hilbert space of Ĥ and taking the inner product
with exp(−βĤ). If the set of basis states, denoted by {|n〉}, is discrete and thus the notational
parameter n takes discrete values the trace takes the form of a sum over the set of inner products

Z =
∑
n

〈n|e−βĤ |n〉 (1.2.5)

but if the set is continuous, and so the parameter n is uncountable, the trace takes the form of an
integral

Z =

∫
〈n|e−βĤ |n〉 dn (1.2.6)

To represent the partition function using path integrals we use the set of position eigenstates,
{|q〉 , q ∈ R}, which as previously stated forms a continuous basis. The partition function may
then be represented as an integral over all of position space

Z =

∫ ∞
−∞
〈qa|e−βĤ |qa〉 dqa (1.2.7)

Noting that the integrand is similar to the real time transition amplitude in equation (1.1.16)
where the initial and final positions are the same and where the elapsed time is an imaginary
value, tb − ta = −i~β, we can replace exp(−βĤ) with the path integral from equation (1.1.24)

Z =

∫ ∞
−∞

dqa

∫ q(β~)=qa

q(0)=qa

DqDp exp

(
−1

~

∫ β~

0
dτ

[
H(√,q)− ipq̇

])
(1.2.8)

=

∫ ∞
−∞

dqa

∫ q(β~)=qa

q(0)=qa

DqDp exp (−S[τ ]/~) (1.2.9)

where τ = it is the imaginary time variable and S[τ ] is the imaginary time action; all time
derivatives and integrals are now with respect to τ and the path integral is said to have undergone
a Wick rotation.

1.3 Centroid formulation of quantum statistical mechanics

1.3.1 Static centroid symbols

The centroid is conceptually defined as the mean of an imaginary time thermal path in the path
integral; these thermal paths are closed since the partition function is defined using a trace. The
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use of centroids to calculate statistical quantities from the path integral formulation of the partition
function was first proposed by Feynman so as to “save effort and increase our accuracy” [1, pp. 279].
The formal definition of the centroid for some operator Â with corresponding path integral symbol
A is

A0 =
1

β~

∫ β~

0
dτ A(τ) (1.3.1)

where the use of A(τ) indicates that A has a functional dependence on the imaginary time vari-
ables, as is the case for the action. This is then used to construct a constraint in the path integral
through the use of the delta function, which is inserted into the integrand. The result is no longer
the partition function but a density function for the associated centroid variable, which will be
denoted by Ac,

ρc(Ac) =

∫ ∞
−∞

dqa

∫ q(β~)=qa

q(0)=qa

DqDp δ(Ac −A0) exp(−S[τ ]/~) (1.3.2)

=
1√
2π

∫ ∞
−∞

dξ e−iξAc
∫ ∞
−∞

dqa

∫ q(β~)=qa

q(0)=qa

DqDp exp

(
−1

~

∫ β~

0
dτ

[
H(p, q)− ipq̇ − i ξ

β
A

])
(1.3.3)

where the following Fourier representation of the delta function has been used

δ(x) =
1√
2pi

∫ ∞
−∞

e−iωxdω (1.3.4)

Specifically it is the position and momentum variables which are constrained to their thermal path
centroids and this is what we will assume for the remainder of the work. In Cartesian coordinates,
the centroid distribution is then

ρc(qc, pc) =

∫
DqDp δ(qc − q0) δ(pc − p0)e−S[τ ]/~ (1.3.5)

=
~

2π

∫ ∞
−∞

∫ ∞
−∞

dξ dηe−iξqce−iηpc Tr
[
e−βĤ+iξq̂+iηp̂

]
(1.3.6)

To obtain (1.3.6) the derivation detailed in sections 1.1 and 1.2 is performed in reverse, where the
momentum centroid is paired with the kinetic term and the position centroid is paired with the
potential term, the identity operators are removed and finally the Lie-Trotter product formula is
reversed to obtain the operator trace. Since the kinetic terms in the path integral are quadratic
in the momentum symbols the integrals over the momentum are Gaussian integrals and may
be evaluated under the assumption that the potential is position dependent only. The centroid
density then becomes separable in the position and momentum centroid variables

ρc(qc, pc) = e−βp
2
c/2mρc(qc) (1.3.7)

where the position centroid density is defined using (1.3.2). The density is uniquely defined for
each system through the potential term; to date only the quantum harmonic oscillator (QHO)
can be formulated exactly. Also note that the centroid density has no regions of negative density
and so is a positive semidefinite function (that is ρc(qc, pc) ≥ 0,∀qc, pc ∈ R). We can now write
the quantum partition function in a classical like manner as an integral over the entire centroid
phase space

Z =

∫∫
dqc dpc

2π~
ρc(qc, pc) (1.3.8)

7



Jang and Voth noted [21] that information about the system has been lost through the use of the
trace and thus the centroid density is insufficient to reproduce statistical averages for observables
of the system. This led to the definition of a density operator for the centroid phase space as the
untraced centroid density,

δ̂c(qc, pc) =
~

2πρc(qc, pc)

∫ ∞
−∞

∫ ∞
−∞

dξ dη e−iξqce−iηpc e−βĤ+iξq̂+iηp̂ := ϕ̂c(qc, pc)/ρc(qc, pc) (1.3.9)

For notation sake we define the effective centroid Hamiltonian as

Ĥ ′(ξ, η) := Ĥ − i

β
ξq̂ − i

β
ηp̂ (1.3.10)

The operator δ̂c(qc, pc) is of unit trace since the centroid density acts as normalizing factor. We
can define an associated symbol in the centroid phase space for any static operator Â by tracing

Ac(qc, pc) := Tr
[
δ̂c(qc, pc)Â

]
(1.3.11)

Note that while the centroid density has no negative regions, the same cannot be said in general
for the phase space distribution Ac(qc, pc) so it is not a probability distribution. δ̂c(qc, pc) is
therefore not a true density operator and so will be called the quasi-density operator (QDO) and
so ϕ̂c(qc, pc) from (1.3.9) will then be called the unnormalized QDO; the centroid density may
therefore be defined as the trace of the unnormalized QDO

ρc(qc, pc) = Tr[ϕ̂c(qc, pc)] (1.3.12)

The expectation value for the operator Â is now defined in a classical-like manner as the space
space average of the associated centroid symbol

〈Ac〉c :=
1

Z

∫∫
dqc dpc

2π~
ρc(qc, pc)Ac (1.3.13)

=
1

Z
Tr

[∫∫
dqc dpc

2π~
ϕ̂c(qc, pc)Â

]
(1.3.14)

=
1

Z
Tr
[
e−βĤÂ

]
≡ 〈Â〉 (1.3.15)

It is useful to define the centroid symbol corresponding to the Hamiltonian of the system

Hc := Tr
[
δ̂c(qc, pc)Ĥ

]
= Tc + Vc (1.3.16)

where Tc and Vc are the centroid symbols corresponding to T (p̂) and V (q̂), respectively. The
centroid phase space average of Hc is defined to be the average energy of the ensemble. It is also
possible to show2 that the centroid symbols for the position and momentum operators are

qc = Tr
[
δ̂c(qc, pc)q̂

]
(1.3.17)

pc = Tr
[
δ̂c(qc, pc)p̂

]
(1.3.18)

It then follows using the linearity of the trace that for an operator which is linear in position and
momentum, B̂ = B0Î +B1q̂ +B2p̂, the centroid symbol is then

Bc ≡ B0 +B1qc +B2pc = Tr
[
δ̂c(qc, pc)B̂

]
(1.3.19)

2Refer to A.1
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It is important to note that this is not true for any other operator, so for example

(q2)c = Tr
[
δ̂c(qc, pc)q̂

2
]
6= (qc)

2 (1.3.20)

In the case of other distributions, such as the Wigner distribution, this leads to the generalization
of the usual notion of a product for distributions in the phase space. The centroid symbol for the
operator q̂2 is therefore defined as the phase space product of the centroid distribution for q̂, that
is

(q2)c ≡ qc ? qc (1.3.21)

where · ? · is the phase space product, also referred to as a star product or ?-product. Past
attempts to find an expression for this star product have been unsuccessful [22], so for now the
phase space distribution for nonlinear operators must be independently computed.

1.3.2 Dynamic centroid symbols

The usefulness of the centroid method comes from the ability to define dynamic centroid symbols
which contain information about the statistical fluctuations undergone by observables of the Boltz-
mann ensemble. We first define a time evolving operator using the definition from the Heisenberg
picture of quantum mechanics

Â(t) := eiĤt/~Âe−iĤt/~ (1.3.22)

The definition of time dependent centroid variables is then as follows

Ac(t; qc, pc) := Tr
[
δ̂c(qc, pc)Â(t)

]
≡ Tr

[
δ̂c(t; qc, pc)Â

]
(1.3.23)

where we can define a time dependent QDO

δ̂c(t; qc, pc) = e−iĤt/~δ̂c(qc, pc)e
iĤt/~ (1.3.24)

and so view the QDO as undergoing time evolution according to Liouville’s theorem. The QDO
is then an object which creates a dynamical centroid symbol corresponding to a stationary ob-
servable. Due to cyclicality of the trace the centroid density corresponding to the time dependent
QDO remains independent of time. The reason to adopt this viewpoint is that the Boltzmann
distribution is inherently stationary, that is the ensemble average of dynamic observables is inde-
pendent of time

〈Â(t)〉 := Tr
[
e−βĤeiĤt/~Âe−iĤ/~

]
= Tr

[
e−βĤÂ

]
≡ 〈Â〉 (1.3.25)

So viewing the QDO as being time dependent allows for the interpretation of the centroid QDO
as containing all of the non stationary fluctuations in the canonical ensemble. It follows from
equations (1.3.25) and (1.3.15) that the centroid phase space average for the static and dynamic
centroid symbols corresponding to Â are identical

1

Z

∫∫
dqc dpc

2π~
ρc(qc, pc)Ac(qc, pc) =

1

Z

∫∫
dqc dpc

2π~
ρc(qc, pc)Ac(t; qc, pc) (1.3.26)

While the phase space average over all the trajectories of the centroid variable Ac(t) is a stationary
quantity, the individual trajectories based on different starting conditions in phase space are non
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stationary. The time evolution of the QDO, being a phase space distribution function, is given by
the quantum Liouville equation

d

dt
δ̂c(t; qc, pc) =

1

i~
[Ĥ, δ̂c(t; qc, pc)] (1.3.27)

The time evolution of the centroid symbol Ac(t) is therefore

d

dt
Ac(t; qc, pc) = Tr

[
d

dt
δ̂c(t; qc, pc)Â

]
(1.3.28)

= Tr

[
1

i~
[Ĥ, δ̂c(t; qc, pc)]Â

]
(1.3.29)

= Tr

[
δ̂c(t; qc, pc)

i

~
[Ĥ, Â]

]
(1.3.30)

where we notice that
d

dt
Â(t) =

i

~
[Ĥ, Â] (1.3.31)

is the Heisenberg equation of motion for an operator defined by (1.3.22). Using (1.3.30) and the
following equations of motion

d

dt
q̂(t) =

i

~
[Ĥ, q̂] =

p̂

m

d

dt
p̂(t) =

i

~
[Ĥ, p̂] (1.3.32)

we are able to write the dynamics of the position and momentum centroid symbols using Hamil-
ton’s equations

d

dt
qc(t; qc, pc) =

pc(t; qc, pc)

m
(1.3.33)

d

dt
pc(t; qc, pc) = Fc(t; qc, pc) (1.3.34)

where Fc(t; qc, pc) is the dynamic centroid symbol corresponding to the quantum force operator,
defined as

F̂ :=
d

dt
p̂ =

i

~
[V (q̂), p̂] (1.3.35)

Since the momentum operator will commute with the kinetic portion of the Hamiltonian, only the
potential determines the force, as expected. It must be emphasized that the statistical fluctuations
obtained from the dynamical equations (1.3.33) and (1.3.34) are exact quantum dynamics; the
method which approximately solves of these Heisenberg equations is called centroid molecular
dynamics (CMD).

1.3.3 Centroid Molecular Dynamics

The first step in making the CMD approximation is removing the explicit time dependence in the
centroid symbols and instead treats them as parametric functions of the time dependent symbols
qc(t) and pc(t). This is done by writing the QDO as follows

δ̂c(t; qc, pc) = δ̂c(qc(t), pc(t)) (1.3.36)

where the time evolution of qc(t) and pc(t) will be determined by solving the Heisenberg equations
of motion. The dynamic centroid symbols defined so far are explicitly time dependent quantities
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and exhibit the non-locality inherent to quantum mechanics. This means that even for closed
trajectories in the centroid phase space the centroid distributions for the operators will be different
at the exact same point in phase space at a later time. CMD has destroyed this non-locality and
so the results will only be approximate as the dynamic force symbol is now equivalent to the static
force symbol. The static force symbol may be written as [21]

Fc = − ∂

∂qc
Vcm(qc) = − 1

β
ln [ρc(qc)] (1.3.37)

where Vcm(qc) is a potential of mean force and is not equal to the centroid symbol for the potential
operator, Vc. The force is only position dependent due to separability of the momentum and
position components of the centroid distribution as seen in (1.3.7). Although the force symbol
no longer contains all the necessary information regarding its time evolution, it is still possible to
recover the exact quantum dynamics. This would require us to include an additional equation of
motion for the force symbol

d

dt
Fc(qc(t), pc(t)) = Tr

[
δ̂c(qc(t), pc(t))

i

~
[Ĥ, F̂ ]

]
(1.3.38)

and another equation of motion for this one and so on. For most systems this series never
terminates, so we would need an infinite number of first order differential equations to capture
the exact motion. The CMD approximation terminates this series at the equation of motion for
the momentum centroid symbol so that the system of equations is still reminiscent of Hamilton’s
equations. The CMD equations of motion are then

d

dt
qc(t) =

pc(t)

m
(1.3.39)

d

dt
pc(t) = − 1

β
ln [ρc(qc(t))] (1.3.40)

The CMD method is only able to capture the exact dynamics of the QHO due to the fact that its
force operator is linear in position; this will be expounded upon in chapter 3.

1.3.4 Correlation functions

Now that the time evolution of observables and their expectation values can be captured exactly
in the centroid formalism and approximately via CMD, we wish to extend this to the calculation
of real time quantum correlation functions between the static operator B̂(0) ≡ B̂ and the time
evolving operator Â(t). Using the QDO, their real time correlation function may be written as

〈B̂Â(t)〉 :=
1

Z
Tr
[
e−βĤB̂Â(t)

]
(1.3.41)

=
1

Z

∫ ∞
−∞

∫ ∞
−∞

dqc dpc
2π~

ρc(qc, pc)Tr
[
δ̂c(qc, pc)B̂Â(t)

]
(1.3.42)

The quantum correlation function of B̂ and Â is therefore the time evolution of the centroid
distribution for the operator product B̂Â(t) and cannot be expressed as a correlation function
between their centroid symbols Bc and Ac(t), respectively. It can be shown that when B̂ is is
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a linear function of the position and momentum operators, then the correlation function of the
centroid symbols is equal to a so-called Kubo transformed quantum time correlation function3

〈BcAc(t)〉 :=

∫ ∞
−∞

∫ ∞
−∞

dqc dpc
2π~

ρc(qc, pc)BcAc(t) (1.3.43)

=
1

Z

∫ 1

0
duTr

[
e−(1−u)βĤB̂e−βuĤÂ(t)

]
(1.3.44)

=
1

Z
Tr

[
e−βĤ

∫ 1

0
du B̂(−iuβ~)Â(t)

]
(1.3.45)

≡
∫ 1

0
du〈B̂(−iuβ~)Â(t)〉 =: 〈B̂Â(t)〉(K) (1.3.46)

where the operator B̂ is said to have been Kubo transformed∫ 1

0
du B̂(−iuβ~) ≡

∫ 1

0
du euβĤB̂e−uβĤ (1.3.47)

Assuming that the Hamiltonian governing the time evolution of Â(t) is the same as Ĥ then it is
possible to undo the single Kubo transform and so retrieve the original correlation function by
taking the Fourier transform from time to frequency space and evaluating the trace in the basis
of the eigenstates of Ĥ.4 The relationship between the Fourier transforms, F{f(t)}(ω), of both
correlations function is

F{〈B̂Â(t)〉}(ω) =
β~ω

1− e−β~ω
F{〈B̂Â(t)〉(K)}(ω) (1.3.48)

which leads to the following Fourier transform relation between the correlation functions

〈B̂Â(t)〉 =
1

2π

∫ ∞
−∞

dω eiωt
β~ω

1− e−β~ω

∫ ∞
−∞

dt′ e−iωt
′〈B̂Â(t′)〉(K) (1.3.49)

It is stressed that these equations are exact if the centroid symbol Ac(t) is evolved exactly, so if the
dynamics of the symbol is determined approximately via the CMD method then the correlation
function is exact at zero time and approximate thereafter. When Bc is nonlinear in the centroid
variables then the correlation function corresponds to higher order Kubo-transformed correlation
functions; in the case of Bc = (qc)

n this corresponds to the nth order Kubo transform [23]. Unlike
in the single Kubo transform case where a relation exists through a simple frequency factor as seen
in (1.3.49), no such relation exists in general for the higher order Kubo transformed correlation
functions.

Now that the basic background information has been presented, we can progress to the spe-
cialized topics contained within this thesis. Chapter 2 presents a generalized method for tackling
rotational dynamics and by extension any system which can be represented as motion on a con-
strained surface embedded in Euclidean space. Chapter 3 contains the work performed in the area
of state projected centroid dynamics, which allows for the centroid formalism to be extended to
microcanonical systems. Formal derivations for these chapters are present in Appendices B and
C, respectively, in order to maintain the flow of the text.

3Refer to A.2
4Refer to A.3
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Chapter 2

Centroid quantum statistical mechanics
in constrained spaces

2.1 Introduction

Past attempts to reformulate the centroid formalism to accommodate systems undergoing rota-
tional motion have so far been unsuccessful [24]. Here we present a method to properly capture
the dynamics of rotating systems by viewing the system as having been topologically constrained
from the regular motion in Euclidean space. Specifically, we include the theory and results for
a system constrained to move on the 1-sphere or circle, hereafter referred to as a ring. The the-
oretical extension to motion on the 2-sphere, also called the sphere, is also shown. We will do
this by instead beginning with the Euclidean path integral representation of the centroid density
and applying topological constraints to reduce the phase space so that the system moves on the
desired manifold. The centroid symbols are not restricted directly; the phase space reduction will
however result in physically significant changes in the nature of the centroid phase space.

The naïve method to extend the centroid formalism to that of a particle on a ring would be to
define the centroids for the angular position and angular momentum, ϕc and pϕ,c, which would be
associated with the path integral variables ϕ and pϕ and therefore the original quantum operators
ϕ̂ and Ĵ . Formal problems arise when attempting to define an angle operator ϕ̂. One way of
quantizing a classical system is to use the canonical quantization relation

(Poisson bracket)→ 1

i~
(Commutator) (2.1.1)

where the Poisson bracket is defined as

[f, g]P :=

N∑
n=1

∂f

∂qn

∂g

∂pn
− ∂f

∂pn

∂g

∂qn
(2.1.2)

where the summation is over all sets of canonical coordinates in the 2N -dimensional classical phase
space. The Poisson bracket also has the same properties of the commutator. The quantization
procedure (2.1.1) works in the case of Cartesian variables with a Euclidean phase space, but the
process of quantizing the angle in polar coordinates

[ϕ, pϕ]P = 1 → [ϕ̂, Ĵ ] = i~ (2.1.3)
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is inherently problematic [25, 26]. If one were to assume the operator is continuous, then its
spectral range is the entire real line and hence the operator belongs to the Hilbert space L2(R),
however the corresponding angular momentum operators will lose its hermiticity since it is only
hermitian on the Hilbert space L2(S1) where the vectors are 2π-periodic. If we instead define the
operator as being 2π-periodic using a modulo operation then it will have a discontinuity at 2π; this
results in a problematic appearance of an infinite number of discontinuities in the commutation
relation of ϕ̂ and Ĵ . It was also demonstrated in [27] that the behaviour of the time evolution
of expectation value of the angle operator gives results which are inconsistent with those for free
motion on a ring, but that the cosine of the angle did not have this problem. The use of the cosine
has an advantage for comparison with experiments since it corresponds with the dipole moment
of the particle; if the centroid symbol was the angle ϕc then the autocorrelation function of the
dipole would be a difficult to replicate due to the nonlinear terms in the cosine which would result
in higher order Kubo transform correlation functions. It would be advantageous to use the cosine
and sine operators as the position variables for the centroid distribution since they may be directly
compared to the x and y Cartesian coordinates. The only problem is that it is not immediately
obvious how to construct momentum operators to construct the equations of motion. The theory
of constraints in path integrals is used in an attempt to provide a rigourous method to generate
these operators and derive the centroid density.

The cosine and sine operators, cos ϕ̂ and sin ϕ̂ respectively, have previously been suggested
[25,28] as suitable replacements for ϕ̂ since they are naturally continuous, 2π-periodic, hermitian,
and have physically appropriate uncertainty relations [26]. Using the angle variable representation
of the trigonometric and the angular momentum operator allows one to determine the commutator
relations

[cos ϕ̂, sin ϕ̂] = 0 [Ĵ , cos ϕ̂] = −i~ sin ϕ̂ [Ĵ , sin ϕ̂] = i~ cos ϕ̂ (2.1.4)

We can instead use the complex exponential form of the trigonometric functions to define a new
pair of operators

Û := eiϕ̂ ≡ cos ϕ̂+ i sin ϕ̂ (2.1.5)

Û † := e−iϕ̂ ≡ cos ϕ̂− i sin ϕ̂ (2.1.6)

which obviously form a unitary operator pair, 1 = Û Û † = Û †Û . The set of commutator relations
is then

[Û , Û †] = 0 [Ĵ , Û ] = ~Û [Ĵ , Û †] = −~Û † (2.1.7)

From this we can determine how these operators act on the basis of the eigenstates of the angular
momentum operator, {|j〉 , j ∈ Z}

Ĵ |j〉 = ~j |j〉 Û |j〉 = |j + 1〉 Û † |j〉 = |j − 1〉 (2.1.8)

so Û and Û † are ladder operators for angular momentum and act as raising and lowering operators,
respectively. Their eigenstates are the angle eigenstates, {|ϕ〉 , ϕ ∈ [0, 2π)}

Û |ϕ〉 = eiϕ |ϕ〉 Û † |ϕ〉 = e−iϕ |ϕ〉 (2.1.9)

We can work out that the inner products between the eigenstates are

〈ϕ′|ϕ〉 = δ(ϕ′ − ϕ) 〈j′|j〉 = δj′j 〈ϕ|j〉 =
1√
2π
eijϕ (2.1.10)

where δj′j is the Kronecker delta. This background information will be useful when defining the
QDO and observables for the particle on a ring.
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2.2 Theory of Constraints

2.2.1 Constraints in classical mechanics

Implementing constraints in the operator formulation of quantum mechanics is difficult due to
the non-commuting nature of operators in a Hilbert space. We instead formulate the classical
constraints for the system which can be used to constrain the commuting symbols present in the
path integral. If some extra conditions are fulfilled it may be possible to generate a set of quantum
operators via canonical quantization. We will focus on the relevant sections of the method required
to derive constraints for a Hamiltonian system as initially devised by Dirac [29]; a very detailed
explanation can be found in chapter 1 of reference [30]. We will be using Einstein notation for
this section5. We begin with the Lagrangian for a system with a 2N -dimensional phase space,
L(qk, q̇k), and recall that the equations of motion may be obtained by invoking the principle of
least action which results in the Euler-Lagrange equations

0 =
d

dt

(
∂L
∂q̇n

)
− ∂L
∂qn

(2.2.1)

= − ∂L
∂qn

+ q̈k
∂2L

∂q̇k∂q̇n
+ q̇k

∂2L
∂qk∂q̇n

(2.2.2)

where we have used the definition of the total derivative

d

dt
f(q, t) =

∂

∂t
f(q, t) + q̇k

∂

∂qk
f(q, t) (2.2.3)

An equation for the acceleration term q̈α can be found in the case that the velocity Hessian matrix
is invertible and therefore has a non-zero determinant. The elements of the N×N Hessian matrix
in this case are

Hj
k =

∂2L
∂q̇j∂q̇k

(2.2.4)

If the determinant is 0 then the rank of the Hessian is less than N and so one or more rows is a
linear combination of the others, so the accelerations are not all uniquely determined. As a result
the conjugate momenta in the Hamiltonian formulation

pn =
∂L
∂q̇n

(2.2.5)

will not be functions of just the phase space coordinates, but will also have some unknown explicit
time dependent terms. There will be relations dependent on both the position and momentum
generated by the definition of the momenta (2.2.5)

φm(qk, pk) ≈ 0, m = 1, . . . ,M (2.2.6)

These relations are called primary constraints in the literature, and will constrain the system to
move in some subspace of the full phase space called the constrained subspace. The symbol “ ≈ ”
in (2.2.6) denotes a so-called weak equality ; the quantities f and g are said to be weakly equal,
f ≈ g, when they are equal in the subspace but not necessarily throughout the full phase space.
If the quantities f and g are equal throughout the entire phase space they are said to be strongly

5Refer to section B.1
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equal, this is denoted by the usual equality sign f = g. If we truly are in the classical subspace
where the constraints are satisfied then we should remain there given the following transformation
of the Hamiltonian

H → H+ um(qk, pk)φm =: HT (2.2.7)

where the um are Lagrange multipliers. This is because the constraints are expected to be weakly
equal to zero in entire phase space. The quantity HT is referred to as the total Hamiltonian. It
is not necessarily the case that the primary constraints are sufficient to remain in the constrained
subspace. Although the primary constraints are defined to be strongly equal to zero there, if the
system is to remain in the constrained subspace the equations of motion of the constraints must
vanish there or else the system could drift into a region where the constraints are non-zero and
hence not satisfied. We therefore define the following consistency equation for a constraint φm
based on the classical Hamiltonian equations of motion

[φm,HT ] = [φm,H] + uk[φm, φk] ≈ 0 (2.2.8)

We must solve the left side for all the primary constraints. There are two possible outcomes when
solving this equation:

1. The left side is exactly 0, generates a restriction for the uk Lagrange multipliers, or else gen-
erates a constraint dependent on a previously known constraint. In this case the consistency
equation is satisfied since it will be exactly zero in the constrained subspace.

2. The left side returns a function which does not satisfy any of the previous conditions and as
such is not dependent on some previous constraint. The consistency equation has therefore
generated a new constraint for the system, called a secondary constraint since it is not fixed
in the Hamiltonian via a Lagrange multiplier. In this case, we must apply the consistency
equation (2.2.8) to the new constraint, and repeat this process until one of conditions in 1.
is satisfied. We may then end up generating a series of secondary constraints, though it is
assumed this process terminates.

Assuming that the process has generated some additional constraints we can discard those that
are dependent constraints as redundant. If the we have generated S unique secondary constraints
then we will have M + S = R constraints in total. The dimension of the constrained subspace
is then 2N −R. Now that we have a full set of constraints, we consider an even more important
classification, that of first-class constraints and second-class constraints. First-class constraints
are constraints which have a vanishing Poisson bracket with every other constraint in the set,
while second-class constraints have a non-zero Poisson bracket with at least one other constraint
of the system. We must now define a new canonical bracket in the constrained subspace which
generalizes the Poisson bracket called the Dirac bracket, after its developer. The Dirac bracket
will be developed in such a way that all constraints will have a vanishing Dirac bracket. This is
used so that the second-class constraints can be strongly set to zero in the constrained subspace,
and as a result any primary second-class constraints can be set to zero so they vanish from the
Hamiltonian. This is not true for primary first class constraints which will survive as additional
terms in the Hamiltonian, though these do not appear in the systems under consideration here
and so we will not talk about their effects. We construct a skew-symmetric matrix whose elements
are the Poisson brackets between the known secondary constraints

Cjk = [φj , φk] (2.2.9)
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which is guaranteed to be invertible. If it were not then the rank would be less than the number
of constraints used to build it which would indicate that one or more of the constraints is not
uniquely defined and hence a first-class constraint. The Dirac bracket is now defined as

[f, g]D = [f, g]P + (C−1)jk [f, φj ]P [φk, g]P (2.2.10)

≡ [f, g]P + C k
j [f, φj ]P [φk, g]P (2.2.11)

where C−1 is the inverse matrix of C, and the summation is over total number of second-class
constraints. The Dirac bracket can be shown to satisfy all of the same properties of the Poisson
bracket. However, we can now see that the Dirac brackets of all the constraints are zero. The Dirac
bracket between the canonical variables of the system will also differ from their original Poisson
brackets which shows how the constraints have manifested as a new interdependence between the
phase space variables in the constrained subspace.

We note that this formalism is important when applying constraints to the Lagrangian, and
by extension the Hamiltonian, in the form of Lagrange multipliers. The Lagrange multipliers
constitute extra degrees of freedoms for the system and so act as an additional set of coordinates;
they will therefore increase the size of the classical phase space and generate their own equations
of motion. If the Lagrangian with these Lagrange multipliers is singular then this provides the
avenue to constrain the Hamiltonian.

2.2.2 Constraints in quantum mechanics

Operators

Assume we have a system in a 2N -dimensional phase space with a set coordinates xj which is
restricted to some subspace by a set of second-class constraints

φm(xj) ≈ 0, m = 1, . . . , R (2.2.12)

which is also equipped with a Dirac bracket. It may be possible to find a set of variables yk in
the constrained subspace such that the constraints are exactly equal to 0 when expressed as a
function of these coordinates, or

xj = F j(yk)→ φm(F j(yk)) = 0 (2.2.13)

where F is vector whose elements are functions of the new system of coordinates. Here the sets of
coordinates xj and yk will contain both position and momentum phase space coordinates. If all
second-class constraints are strongly equal to zero in this new set of coordinates then the Dirac
bracket will reduce to the usual Poisson bracket, so we should have the relation

[xa, xb]D = [xa(yk), xb(y
k)]P (2.2.14)

It may then be possible to follow the canonical quantization procedure (2.1.1) and so obtain
a set a operators with the desired set of commutation relations. Care must be taken here when
defining the quantum analogue x̂j for the phase space coordinates xj . If the set of new phase space
coordinates yk possess non-zero Poisson brackets then the analogous quantum operators ŷk will
be non-commuting; these non-zero commutators will result in operator ordering issues in x̂j(ŷk)
if xj is a nonlinear function of the reduced phase space coordinates yk. There is some ambiguity
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in choosing an operator ordering, though for this work we will select the one which generates the
most symmetric ordering of the operators and gives the correct commutator relations in the ŷk

operator basis.6

Path Integrals

If we assume a set of variables yk exists such that condition (2.2.13) is satisfied7 then the path
integral for the system is ∫

[Dyk] (detM−1)1/2 exp(iS[yk(t)]) (2.2.15)

where S[yk(t)] is the action corresponding to the Hamiltonian (2.2.7) where the original coordi-
nates xj have been replaced by yk. The (2N −R)× (2N −R) matrix M has elements

Mk
l = [yk, yl]D ≡ [yk, yl]P (2.2.16)

where the equivalence relation follows from our assumption that the constraints vanish in these
coordinates. We can immediately write down the path integral in the original constrained phase
space variables as ∫

[Dxj ]
∏
m

δ(φm)(detC−1)1/2 exp(iS[xj(t)]) (2.2.17)

where the action is the one expected for the Hamiltonian H without constraints, and the matrix C
is defined by (2.2.9). Using the Fourier representation of the delta function this may be rewritten
as ∫

[Dxj ][Du](detC−1)1/2 exp(iS[xj(t), um(t)]) (2.2.18)

S[xk(t), um(t)] = S[xk(t)]−
∫
umφm (2.2.19)

This can be extended to the partition function by instead using the imaginary time action.8

2.3 Theoretical Results

2.3.1 Constraining to the ring

In the case of the free particle moving on the circle, we begin with the classical Lagrangian for a
free particle moving in the 2-dimensional plane but with a Lagrange multiplier constraint that the
positions be fixed such that the motion is on a ring of radius R, so x2 + y2 = R2. The Lagrangian
with this additional Lagrange multiplier is then

L =
m

2

(
ẋ2 + ẏ2

)
− λ

(
x2 + y2 −R2

)
(2.3.1)

6See chapter 13 of reference [30].
7As with the operator approach this is not necessarily true, in which case there will be added difficulties in

defining a path integral. This problem does not arise for the systems considered here so we do not discuss the
theory needed.

8See chapter 16 of reference [30].
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The Lagrange multiplier must be treated here as an additional canonical coordinate with its own
velocity, λ̇. The Hamiltonian phase space will therefore be 6-dimensional since it will have its own
canonically conjugate momentum. The Hessian with respect to the velocity for this Lagrangian
is then

H =

m 0 0
0 m 0
0 0 0

 (2.3.2)

which is evidently singular, so we must use the theory of constraints laid out in the previous
section. The total Hamiltonian in this case has the form

HT = (ẋpx + ẏpy + λ̇pλ)− L =
1

2m
(p2
x + p2

y) + λ(x2 + y2 −R2) + λ̇pλ (2.3.3)

To prevent the Lagrange multiplier from varying, the canonical momentum should be zero in the
constrained subspace. This constitutes our primary constraint for the system

φ1 = pλ ≈ 0 (2.3.4)

The λ̇ term is then one of the uk Lagrange multiplier functions previously mentioned that will be
fixed by constraining the system, so we instead define λ̇ := uλ. Though the Lagrange multiplier
term is present in the Hamiltonian, it is not itself a constraint. We will now apply the consistency
equation to see if we generate any secondary constraints:

φ̇1 = [φ1,H]P = −(x2 + y2 −R2) → φ2 = x2 + y2 −R2 ≈ 0 (2.3.5)

φ̇2 = [φ2,H]P =
2

m
(xpx + ypy) → φ3 = xpx + ypy ≈ 0 (2.3.6)

φ̇3 = [φ3,H]P =
1

m
(p2
x + p2

y)− 2λ(x2 + y2) → φ4 =
1

2
(p2
x + p2

y)− λm(x2 + y2) ≈ 0

(2.3.7)

φ̇4 = [φ4,H]P = −4λ(xpx + ypy)−muλ(x2 + y2) → uλ = − 4λ

m(x2 + y2)
(xpx + ypy) ≈ 0

(2.3.8)

The last consistency equations fixes uλ which terminates our series of constraints. We can see that
φ2 ≈ 0 forces the position of the system to be fixed on the ring. The quantity pr := xpx + ypy is
also a representation of the radial momentum, just as pϕ := xpy − ypx is the angular momentum,
so the constraint φ3 ≈ 0 can be interpreted as fixing the radial momentum to be zero. We also
note that φ2 ensures that Lagrange multiplier term will be zero in the constrained subspace, and
φ4 can be used to explicitly find an expression for the Lagrange multiplier. With all constraints
determined the second class constraints in the Hamiltonian are strongly equal to zero. As a result
the Lagrange multiplier term λ(x2 + y2−R2) ≡ λφ2 will also disappear. Since we have generated
4 independent constraints, the constrained subspace will have dimension 6 − 4 = 2 which is the
expected phase space size for the 1 dimensional ring. We can now construct the C matrix using
the definition from (2.2.9)

C =


0 0 0 mqkqk
0 0 2qkqk 2qkpk
0 −2qkqk 0 pkpk + 2mλqkqk

−mqkqk −2qkpk −pkpk − 2mλqkqk 0

 (2.3.9)
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where the vectors are qk = (x, y) and pk = (px, py). The matrix is non-singular since the determi-
nant is detC = 4m2(qkqk)

4 and its inverse is

C−1 =
1

2m(qkqk)2


0 −pkpk − 2mλqkqk qkpk −2qkqk

pkpk + 2mλqkqk 0 −mqkqk 0
−qkpk mqkqk 0 0
2qkqk 0 0 0

 (2.3.10)

The Dirac bracket can now be defined, and the relations between the canonical variables worked
out

[x, px]D =
y2

R2
[y, py]D =

x2

R2
[x, y]D = 0

[x, py]D = −xy
R2

[y, px]D = −xy
R2

[px, py]D =
1

R2
(ypx − xpy) (2.3.11)

We note that the Dirac bracket of the Lagrange multiplier and its conjugate momentum is
[λ, pλ] = 0 and so has vanished in the constrained subspace. Expressing these symbols as functions
of the canonical variables for motion on a ring, ϕ and pϕ, allows us to reduce the Dirac brackets
above to the Poisson bracket

[f, g]P =
∂f

∂ϕ

∂g

∂pϕ
− ∂f

∂pϕ

∂g

∂ϕ
(2.3.12)

if we define the constrained variables as follows

x := R cosϕ y := R sinϕ px := − 1

R
pϕ sinϕ py :=

1

R
pϕ cosϕ (2.3.13)

where the definition of x and y is as expected. If we substitute these definitions for the original
coordinates into the constraints, it can be seen that the constraints will are strongly equal to
zero in the reduced phase space coordinates, ie φm(ϕ, pϕ) = 0. This is also true for the Lagrange
multiplier function, uλ(ϕ, pϕ) = 0. Now that the terms λφ2 and uλpλ can be strongly set to zero
in the total Hamiltonian, the free Hamiltonian in the constrained subspace is then

H =
1

2m
(p2
x + p2

y) =
1

2mR2
((−pϕ sinϕ)2 + (pϕ cosϕ)2) =

p2
ϕ

2mR2
(2.3.14)

which is the expected classical Hamiltonian corresponding to free motion of a particle on a ring.
All of the generated constraints and uλ have vanished from the Hamiltonian when written in this
basis, though for φ4 to go to zero we have to fix the value of the Lagrange multiplier

φ4 =
1

2R2
p2
ϕ − λmR2 = 0 → λ =

p2
ϕ

2mR4
(2.3.15)

The Lagrange multiplier is directly proportional to Hamiltonian (2.3.14), which is a conserved
quantity thereby implying that the Lagrange multiplier will not vary in time; this is consistent
with the constraint pλ = 0. Since we can write all of (2.3.11) using Poisson brackets, the way is
paved to quantize our system. We must now establish a set of operators which have the following
commutation relations

[x̃, p̃x] = −i~ ỹ
2

R2
[ỹ, p̃y] = −i~ x̃

2

R2
[x̃, ỹ] = 0

[x̃, p̃y] = i~
x̃ỹ

R2
[ỹ, p̃x] = i~

x̃ỹ

R2
[p̃x, p̃y] = −i~ 1

R2
(ỹp̃x − x̃p̃y) (2.3.16)
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where the tilde is used to indicate that although these are operators they are not the usual
Cartesian operators. It is also useful to have the following relationship between the two pairs of
position and momentum operators

d

dt
q̃ ≡ i

~
[Ĥ, q̃] =

p̃

m
(2.3.17)

so that the equation of motion for the position centroid variables (1.3.33) remains consistent
allowing for the use of CMD. The quantum operators from L2(S1) introduced in the introduction
to this chapter can be used to define a set of operators which satisfy this condition as well as the
commutator relations (2.3.16). These operators may then be written as

x̃ := R cos ϕ̂ ỹ := R sin ϕ̂ p̃x := − 1

2R
{Ĵ , sin ϕ̂} p̃y :=

1

2R
{Ĵ , cos ϕ̂} (2.3.18)

where {A,B} = AB +BA is the anti-commutator, and the commutators (2.3.16) can be worked
out using (2.1.4). We note that the momentum operators are a symmetric product of the po-
sition operators and the angular momentum operator. Using these momentum operators the
Hamiltonian is

Ĥ =
1

2m

(
p̃2
x + p̃2

y

)
=

1

2mR2

(
Ĵ2 − 1

4

)
(2.3.19)

where we have an additional constant potential which introduces a shift constant potential term
so that the expected free particle on a ring Hamiltonian is not obtained. These results, though
independently obtained, are the same as those found in [31]. While this shift would need to
be accounted for in the path integral, the centroid formalism is invariant under the addition of
constant potential terms in the Hamiltonian. Although this derivation was specifically for the
case of the free particle on the ring, the same constrained symbols and operators can be retrieved
in the case where a position dependent potential is included in the Lagrangian though some of
the constraints, and hence the Dirac bracket, will be defined differently.9

2.3.2 Constraining the centroid density

Here we begin with the path integral representation for the centroid density in two dimensions

ρc(xc, yc, pxc, pyc) =

∫
DqDp δ(xc−x0) δ(yc−y0) δ(pxc−px 0) δ(pyc−py 0) exp(−S[τ ]/~) (2.3.20)

The theory explained in section 2.2.2 is used to constrain the variables in the path integral and
then replace them with the equivalent symbols present in the reduced phase space. In this instance
we will replace the constrained Cartesian phase space variables with those from the phase space
for S1 using the relations (2.3.13). While the path integral variables are constrained, the centroid
phase space variables are not. The proposed centroid density is

ρc =

∫
DϕDpϕ δ(xc − x0) δ(yc − y0) δ(pxc − px 0) δ(pyc − py 0) exp(−S[τ ]/~) (2.3.21)

where measures have changed, and the functional integral over the momentum is in fact a product
of sums. The centroid constraints are no longer functions of the Cartesian path integral variables
but have the form

a0 =

∫ β~

0
dτa(ϕ(τ), pϕ(τ)) (2.3.22)

9Refer to B.1
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and the imaginary time action undergoes the transformation

S[τ ] =

∫ β~

0
dτ [H− ipxẋ− ipyẏ]→ S[τ ] =

∫ τ

0
dτ [H− ipϕϕ̇] (2.3.23)

H =
1

2m

(
p2
x + p2

y

)
+ V (x, y)→ H =

1

2mR2

(
p2
ϕ −

1

4

)
+ V (ϕ) (2.3.24)

The constant potential present in the kinetic term of the Hamiltonian may be treated as a constant
scaling factor since it is independent of the path integral variables. After the phase space reduction
the partition function is now

Z = Tr

[
exp

(
1

2mR2

(
Ĵ2 − 1

4

)
+ V (ϕ̂)

)]
= e−

1
8mR2 Tr

[
exp

(
1

2mR2
Ĵ2 + V (ϕ̂)

)]
(2.3.25)

where the constant potential is again present. Since the centroid density is normalised by the
partition function these terms will cancel, so the resultant density will be identical to the case
where the Hamiltonian does not contain this term. The centroid formalism will always be invariant
under the addition of a constant potential term in the Hamiltonian. An issue now presents itself
when we try to undo the trace operation in the centroid density to try and obtain a QDO. The
presence of cross terms involving the angular position and momentum path integral variables
inhibits undoing the Trotter operation, which presents a theoretical issue for this method. In
order to generate the desired Hamilton-like equations of motion among the centroid symbols, we
conjecture that the symbol Hamiltonian is be replaced by the equivalent operator Hamiltonian in
the QDO using the operators from (2.3.18). The QDO is then proposed to be

δ̂c(xc, yc, pxc, pyc) =

∫
dξx dξy dηx dηy e

−i(ξxxc+ξyyc) e−i(ηxpxc+ηypyc)

× exp

(
−βĤ + iξxR cos ϕ̂+ iξyR sin ϕ̂+ iηx

1

2R
{Ĵ ,− sin ϕ̂}+ iηy

1

2R
{Ĵ , cos ϕ̂}

)
(2.3.26)

Whether the trace of this QDO is equal to the proposed centroid density is not yet known.
Potential issues are discussed in the conclusion to this chapter. One way to test this is to build
the centroid density using both the path integral definition (2.3.21) and as the trace of the QDO
(2.3.26) for comparison, though this has currently not been done. This QDO has been used in
all numerical calculations and computational results show that this QDO appears to return the
expected centroid phase space distributions for the Cartesian position and momentum operators
in our reduced Hilbert space

xc = Tr[δ̂cx̃] yc = Tr[δ̂cỹ] pxc = Tr[δ̂cp̃x] pyc = Tr[δ̂cp̃y] (2.3.27)

Since Hamilton’s equations of motion for the quantum operators are

d

dt
x̃ =

i

~
[x̂, H̃] =

i

2mR~
[Ĵ2, cos ϕ̂] = − 1

2mR
{Ĵ , sin ϕ̂} ≡ p̃x

m
(2.3.28)

d

dt
p̃x =

i

~
[p̃x, Ĥ] = − 1

2mR2
{Ĵ , p̃y}+

i

~
[V̂ , p̃x] =: F̂x (2.3.29)

for the x-direction and
d

dt
ỹ =

1

2mR
{Ĵ , cos ϕ̂} ≡ p̃y

m
(2.3.30)

d

dt
p̃y =

1

2mR
{Ĵ , p̃x}+

i

~
[V̂ , p̃y] =: F̂y (2.3.31)
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for the y-direction, we can formulate a similar set using the centroid variables to use in CMD
calculations. Noting that both force operators are dependent on the position and momentum op-
erators, the associated centroid distributions are also not expected to be separable in the position
and momentum centroid variables and so the definition of the force operator (1.3.37) therefore
does not hold for the rotational formulation.

2.4 Computational Results

2.4.1 Numerical Structure

Due to the significant difficulty we faced in obtaining any analytic results, the bulk of the work
has been computational in nature. The production code used was written from scratch in C++
with linear algebra structures and operations provided by the Armadillo linear algebra package.
All operators are represented as matrices using some finite number of the momentum operator
eigenstates, {|j〉 , j ∈ [−jmax, . . . , jmax]}, as the basis. In this basis the momentum operator is
diagonal, and the raising and lowering operators are constant on the upper and lower diagonal,
respectively. Since all periodic potentials can be written using a Fourier series of sines and cosines,
we will need to represent these as higher powers of the raising and lowering operators

cos(mϕ̂) =
1

2

(
Ûm + (Û †)m

)
sin(mϕ̂) =

1

2i

(
Ûm − (Û †)m

)
(2.4.1)

A uniform grid is constructed for each of the four Fourier variables, and a matrix representation of
the centroid Hamiltonian is constructed at each grid point. Eigenvalue decomposition is performed
on the centroid Hamiltonian and the matrix exponentials then constructed. We can then replace
the quantum operators of interest with this object and so obtain Fourier space functions for the
centroid density and various centroid symbols. The continuous Fourier transform (CFT) can then
be performed along each Fourier variable axis to retrieve centroid distribution functions in terms
of the four centroid variables. If the phase space integral of the centroid density is not closely
equal to Z then the maximum value of all axes of the Fourier space are increased. Performing
the CFT using Riemann sums is very inefficient for a system with four dimensions so to greatly
improve computation time we used the method detailed in [32] which involves the use of two
forward and one inverse fast Fourier transforms to compute the one dimensional CFT. The one
downside is that the range of the output function is inversely proportional to the grid spacing of
the input function, and the grid spacing of the output is inversely proportional to the range of
the input by the following relations

∆a = 2
amax

asize
bmax =

π

∆a
∆b = 2π

asize

∆a
asize = bsize (2.4.2)

where ∆q gives the grid spacing, the qsize is the maximum point, qsize is the number of grid points.
The variables a and b indicate whether the properties are associated with the input or output
function, respectively. Since the rotational centroid density is zero when the radial distance in the
position coordinates is greater than the radius of the system

ρc = 0, x2
c + y2

c > R2 (2.4.3)

for non-zero β the only useful points are located within this radius. To obtain a fine grid spacing
within this radius would require the exponential of the centroid Hamiltonian to be built at ’a large
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number of points, which becomes impractical with a large number of dimensions in the Fourier
space. To circumvent this, we choose to build the exponential of the centroid Hamiltonian to a
maximum point in the Fourier space where it has sufficiently decayed. We can then increase the
input range by padding the matrix with zeroes before passing the function to the CFT routine.
This will increase the number of grids points and therefore give us a smaller value for ∆b while
leaving ∆a fixed with only a minor increase in computation time. The accumulated errors from
performing this for each of the four dimensions in Fourier space results in some anomalies in the
centroid phase space distributions. Having built the centroid density and distributions for the two
force operators, we use the CMD algorithm to approximate the dipole autocorrelation function.
The system of Hamilton’s equations are computed using the explicit fourth order Runge-Kutta
algorithm.

2.4.2 Free particle on a ring

We begin by examining the results for the particle on a ring with no potential, where the Hamil-
tonian is given by

Ĥ = BĴ2 (2.4.4)

and where we have chosen ~ = 1, m = 0.5, R = 1 and therefore B = 1. The maximum radial
value in the centroid phase space should therefore be rc = 1. Some centroid densities are shown in
Fig. 2.1 for temperatures β =2, 5, 8 and 12. The densities in the left column have been integrated
over the centroid momentum coordinates while those in the right column have been integrated
over the position centroid coordinates. We can see that the position distribution is uniform in ϕc
due to the lack of a potential in the Hamiltonian, but that the density is only non-zero within
the radius rc = R. The reason for this is that the thermal paths are confined to move on the ring
so the centroid of the thermal paths must be located within this arc. This is why the centroid
density is heavily localized near the radius of the ring in the low temperature limit where the
thermal paths are short. As the temperature increases the paths can wind around the circle, and
so the centroid is more likely to be located near the origin. It can be seen that in this case the
outer portion of the density becomes wider and moves towards the origin while another hump
begins to rise centred at the origin. It can be shown that the high and low temperature limit of
the position centroid density are respectively10

lim
β→0

ρc(xc, yc) =

∞∑
j=−∞

1

2πrc
δ(rc −R) (2.4.5)

lim
β→∞

ρc(xc, yc) =
1

2πrc
δ(rc) (2.4.6)

where rc =
√
x2
c + y2

c , which is in agreement with what we observe in these systems. In the case
of the momentum distribution, when integrated over the position centroid variables, the shape
appears to be a Gaussian which which has a width directly proportional to the temperature and
a height inversely proportional to the temperature. We can surmise that in the low temperature
limit the density will approach a delta function, much like the position centroid distribution, so
that the phase space integral is equal to Z = 1. It is currently unclear what the limiting behaviour
is in the high temperature limit.

10Refer to section B.3.1
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We have also included cuts of the total centroid density at constant yc and pyc is Fig. 2.2.
In the right column yc is held constant and pyc is varied and in the left column pyc is held
constant and yc is varied. The plots demonstrate the correlation which exists between the four
centroid variables. This correlation frustrates attempts at efficient computation of the centroid
density since it cannot be decomposed into a product of centroid distributions, as is the case with
Euclidean space. Examining these cuts also gives us insight into the trajectories the centroid
will take through the phase space when performing CMD calculations. It is not possible for the
centroid to visit regions where the density becomes zero, so the shape of the non-zero regions gives
insight into how the centroid coordinates are correlated.

We can see that for yc = 0.6 the centroid density is zero outside the range xc ∈ [−0.8, 0.8] as
expected from (2.4.3). As the value of pyc is increased the bulk of the density starts to accumulate
at the extremes of the xc axis and broadens along the pxc axis such that the density appears to
twist about the origin in the xc− pxc plane. This broadening is towards negative values of pxc for
positive values of xc, and towards positive values of pxc for negative values of xc. This behaviour
in the centroid density demonstrates that as trajectories move closer to rc = R the momentum
density changes such that the trajectories are directed away from this barrier. The same trend
is seen when yc is at a constant positive value and pyc is made more negative. When yc is at a
constant negative value the correlation between xc and pyx is reversed. When the magnitude of
the pyc coordinate value is increased the bulk of the distribution will move towards positive values
of pxc for positive values of xc, and towards negative values of pxc when xc is negative.

When pyc is fixed and the yc coordinate increased the range of the density along the xc axis
begins to shrink, as expected. The density also begins to broaden along the pxc axis, and this
broadening is again dependent on the xc coordinate. For positive values of xc the broadening is
towards negative values of pxc and for negative values of xc it is towards positive values of pxc.
This broadening in the pxc axis is again to direct trajectories away from the barrier at rc = R.
We notice that as yc becomes closer to the radius of the ring and the range of xc begins to shrink
in turn that the xc dependence of the broadening along the pxc axis becomes less noticeable as a
result.

CMD calculations were also performed for the centroid symbol xc(t) at a variety of temper-
atures and the resulting centroid dipole autocorrelation results are displayed in Fig. 2.3, along
with the exact Kubo transformed dipole function. A time step of ∆t = 0.01 was chosen for all
calculations which proved to give stable results. Since the CMD results are expected to converge
to the classical results in the β → 0 limit, we have also plotted this function as given by B.4.6
except the functions has been rescaled by 2〈xcxc(0)〉 so that the time zero values match. We
do this since we only want to show that the CMD results will eventually match the decaying
exponential behaviour in the classical result. As can be seen in Fig. 2.3a the CMD results do
indeed match the rate of Gaussian decay expected from the classical autocorrelation function and
displays no recurrence. The drift of the CMD results away from zero here and in all other plots
in Fig. 2.3 is due to accumulated instabilities in the individual xc(t) trajectories. As temperature
is increased, the CMD results begin the match the exact result at very early times but quickly
dephase and decohere. Even at very low temperatures the CMD results have difficulty matching
the exact Kubo transformed correlation function to the first minimum, as can be seen in Fig. 2.3e.
The difference is very slight but still present even in Fig. 2.3f which has twice the β value. The
phase matching is also poor, with the CMD results matching the exact case for 0.75 oscillations in
Fig. 2.3d, 1.25 oscillations in Fig. 2.3e and 2.25 oscillations in Fig. 2.3f. That the CMD results are
so slow to converge to the exact results with decreasing temperature demonstrates the difficulty
the method has with capturing the quantum dynamics of the free particle on a ring.
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Figure 2.1: Position and momentum centroid densities for the free particle on a ring
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Figure 2.2: Centroid density for the free POR at constant yc and pyc
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Figure 2.3: Comparison of exact Kubo transformed autocorrelation function (red), approximate
CMD dipole autocorrelation function (blue), and the classical dipole autocorrelation function
(green).
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Figure 2.4: Position and momentum centroid densities for the Hamiltonian (2.4.7)

29



-1
 0

 1-1

 0

 1

xc
yc

 0  3.5e-07  7e-07  1.05e-06  1.4e-06

(a) ρc(xc, yc) for β = 8

-0.7
 0

 0.7-0.7

 0

 0.7

px,c
py,c

 0  5e-08  1e-07  1.5e-07  2e-07

(b) ρc(pxc, pyc) for β = 8

-1
 0

 1-1

 0

 1

xc
yc

 0  1e-10  2e-10  3e-10

(c) ρc(xc, yc) for β = 12

-0.7
 0

 0.7-0.7

 0

 0.7

px,c
py,c

 0  2.5e-11  5e-11

(d) ρc(pxc, pyc) for β = 12

Figure 2.5: Position and momentum centroid densities for the Hamiltonian (2.4.8)

2.4.3 Hindered rotor model

We now move on to systems with a periodic potential in the Hamiltonian, which are collectively
referred to as hindered rotor models. For consistency purposes we have taken ~ = 1 and B = 1.
The first model under consideration has a potential with three wells and the following Hamiltonian

Ĥ = Ĵ2 + 2(1− cos(3ϕ̂)) (2.4.7)

We again calculated the centroid density for the temperatures β = 2, 5, 8, 12, which are displayed
in Fig. 2.4. The left column has been integrated over the momentum coordinates and the right
column has been integrated over the position coordinates. The position density shows the same
behaviour as the free particle case, with the density being localized near the radius of ring in the
high temperature limit and showing a growing hump localized about the origin at progressively
lower temperatures. The localizing effect of the potential is also evident as the centroid density has
three humps located at ϕc = 0, 2π/3, 4π/3 corresponding with the location of the minima in the
potential. Although these peaks eventually disappear a distortion is still apparent in the density at
these points causing a triangular shape, though this too disappears with decreasing temperature.
The shape of the momentum distributions are seemingly unaffected by the potential and still
appear to be Gaussian in shape with a width which is inversely proportional to the temperature.

30



We also considered a system with a strongly confining potential with only one well given by
the Hamiltonian

Ĥ = Ĵ2 + 10(cos(ϕ̂) + 1) (2.4.8)

and the resulting centroid densities are shown in Fig. 2.5 for β = 8, 12. We can see that the
confining potential is so strong that the position densities are very similar in both cases. It also
causes the position density to be strongly peaked at ϕc = π and very near the radius of the
ring. For both temperatures, the non-zero portion of the density are the width of one grid space.
The ripples in the density are artefacts from the Fourier transform. A test calculation was also
performed at β = 40 and the results for the position density were nearly identical, demonstrating
that a sufficiently strong potential can severely inhibit the bulk of the density making the expected
appearance around the origin of the centroid phase space in the low temperature limit. The
potential also results in the momentum densities becoming squeezed in the pyc direction. The
momentum distribution does broaden with a decrease in temperature, which is the expected
trend.

CMD calculations were performed for all given temperatures and both hindered rotor Hamil-
tonians, and despite having a correct t = 0 value the dipole autocorrelation function was highly
unstable even for a small time step. As a result, no comparison of CMD and exact Kubo trans-
formed correlation functions are shown for the hindered rotor models. The issue is with the
centroid force fields, which we expect to become infinitely repulsive at the radius of ring since the
centroid should not be allowed beyond this point in phase space. This is problematic for calcu-
lating the centroid trajectories; if they get too close to the radius of the ring and have sufficient
momentum the centroid will sometimes clip outside the ring on the next time step and avoid the
repulsive force field. If this occurs to a sufficient number of orbits the centroid correlation function
results become unusable. The system is therefore stiff, meaning that smooth and stable results
can only be achieved when the time step is taken to be extremely small. In our case this would
also necessitate a larger number of grid points for the force fields so that the centroid trajectories
can move closer to the ring. Since this would increase the computation time and memory, we
wish to approach this problem by using an implicit method rather than explicit method for the
integrator. Explicit integrators use current and past positions in phase space to compute the next
time step while implicit integrators also require knowledge about the next position in phase space.
To determine the position of the next time step using an implicit integrator therefore requires use
of a root finding algorithm which will also increase computation time, but should allow us to
better avoid any instability by restricting the search to phase space points located within the ring.

2.4.4 Summary and future work

In this chapter we have successfully extended the centroid formalism to systems which can be
considered to inhabit constrained spaces. This includes rotational motion and internal torsions
within molecules. We have seen that this necessitates considering the constrained space as be-
ing embedded in some Euclidean space, and using the number of centroid phase space variables
associated with the Euclidean space. The centroid densities for the operators will also no longer
be separable in the phase space coordinates, so the force fields had to be generated from the
force operators. Performing the exact centroid dynamics for the free particle on a ring yielded
a dipole time correlation function which was exactly equal to the one generated using a finite
dimensional matrix representation for the quantum operators. We also tested the CMD approxi-
mation by introducing parametric dependence into the centroid force symbols in order to calculate
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the approximate dipole autocorrelation function. Only the CMD results for the free particle are
currently usable, but these show that the CMD approximation will have difficulty capturing the
exact nature of quantum mechanical motion on a ring. A recent formulation of rotational RPMD
has shown good results for a particle on a ring system with a highly confining potential at a high
temperature [33,34] and we hope to replicate these results using our formalism.

We now discuss in the issue presented in section 2.3.2, that is whether

ρc(xc, yc, pxc, pyc)
?
= Tr δ̂c(xc, yc, pxc, pyc) (2.4.9)

for the proposed quantities. We assume that the content of the QDO is correct since it generates
the desired equations of motion, so the issue then is with the centroid density. The terms coupling
the position and angular momentum operators in the QDO makes the process of rewriting the
trace as a path integral difficult. It seems likely that the constrained momentum operators will
generate additional phases proportional to the Fourier variables ηx and ηy which are not present
in ρc. This discrepancy may be a result of us constraining the Hamiltonian

Ĥ =
1

2m

(
p̂2
x + p̂2

y

)
+ V (x̂, ŷ) (2.4.10)

instead of the effective centroid Hamiltonian

Ĥ ′ =
1

2m

(
p̂2
x + p̂2

y

)
+ V (x̂, ŷ)− iξx

β
x̂− iξy

β
ŷ − iηx

β
p̂x − i

ηy
β
p̂y (2.4.11)

The additional momentum terms will effect the Dirac brackets of the system and therefore the
constrained phase space symbols. Preliminary work has been done dealing with this issue, but is
not shown in this thesis. Another potential problem may come from the functional integral over
the momentum. In the path integral the angular momentum coordinates should still only take
on integer values, however, when we generated the constrained phase space symbols the classical
angular momentum symbol was used. The classical angular momentum can be any real number,
so the question is whether the functional integral is an integral over the all of the reals or a sum
over all of the integers. Again, this is an open problem. We note that if we were to only consider
the position centroid constraints, then the statement

ρc(xc, yc) = Tr
[
δ̂c(xc, yc)

]
(2.4.12)

is true assuming the angular momentum functional integral is in fact a product of sums11. The
reason is that the Dirac brackets are totally independent of any position dependent potential,
which includes the position centroid constraints.

We have also worked out the constrained operators corresponding to motion on a 2-sphere,
which is equivalent to the motion of a linear rigid rotor which has no orientation. The constrained
operators are given in section B.2 where the action of the position operators on the |l,m〉 basis
was found in [35]. The proposed QDO for the motion of a particle on a 2-sphere of radius R to
given by (B.2.22). The centroid phase space is naturally 6-dimensional, which will pose significant
problems for our method of performing test calculations.

Lastly, we present a scheme for connecting the motion of the rigid rotating tops to motion
on a constrained surface. The motion of the rigid tops is associated with the group SO(3) and

11Refer to section B.3
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is generally parametrized in terms of the Euler angles. The topology of SO(3) is that of a half
3-sphere in R4, with antipodal points on the boundary. Quaternions may also be used to describe
the motion of rigid bodies; these are associated with the group S3, the 3-sphere, which forms the
boundary of a ball in R4. The group S3 therefore acts as double cover of SO(3), with antipodal
points on the 3-sphere mapping to the same Euler angles. Use of the 3-sphere is preferable to
that of the half 3-sphere since we do not have to account for the discontinuous boundary. It
follows from the method laid out in this chapter that the centroid phase space would therefore be
8-dimensional. Work has been done to determine the constrained phase space variables in terms
of the hyper-spherical coordinates, but the mapping to Euler angles has not yet been completed.
This approach assumes that all three moments of inertia are identical, that is where the motion
corresponds to a spherical top. The 4-dimensional surfaces corresponding to the spherical top,
where only two of the moments of inertia are identical, and the asymmetric top, where no moments
of inertia are the same, will likely be different, and is currently presumed to be a 3-ellipsoid. We
note that the method described in this chapter is not limited to motion on n-spheres, but can be
extended to other constrained spaces such as ellipses and tori.
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Chapter 3

State projected centroid quantum
statistical mechanics

3.1 Projection operators in the centroid formalism

The formulation of centroid dynamics as presented in chapter 1 was defined for the canonical
ensemble, where the temperature, volume and number of particles were constant. We will now
adapt the centroid formulation for the microcanonical ensemble where instead the energy, volume
and number of particles are fixed. Specifically, we wish to study the statistical mechanics associ-
ated with the normalized state |ψ〉 with associated energy level Eψ.12 To do this we construct a
density operator associated with this pure state

P̂ψ := |ψ〉 〈ψ| (3.1.1)

which is idempotent and a projection operator. In particular, we will be interested in the case
where the projection is onto an eigenstate of the system Hamiltonian, which has some special
properties that will not prove to hold for projection onto an arbitrary pure state. For now, we
use the fact that the eigenstates of the Hamiltonian form a complete basis for the Hilbert space,
and write the state |ψ〉 in this basis

|ψ〉 =
∑
n

cn|χn〉 (3.1.2)

where the set {cn} are complex numbers satisfying
∑
n

|cn|2 = 1 and {|χn〉} are the eigenstates of

the Hamiltonian with associated eigenenergies {En}. The normalisation constant associated with
the microcanonical ensemble is

Zψ := Tr
[
e−βĤP̂ψ

]
= 〈ψ|e−βĤ |ψ〉 =

∑
n

|cn|2e−βEn (3.1.3)

We can now define the centroid density for the microcanonical formulation, also called the state
projected centroid density,

ρ(ψ)
c (qc, pc) = Tr

[
ϕ̂c(qc, pc)P̂ψ

]
= 〈ψ|ϕ̂c(qc, pc)|ψ〉 (3.1.4)

12It is noted that since a mixed state may be represented as a linear combination of pure states, ρ̂ =
∑
pi |ψ〉 〈ψ|,

the following work would also apply to mixed states even in the case where it is not a projection operator by simply
using a linear combination of the results for each pure state
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which by construction will have the correct phase space average

Zψ ≡
∫∫

dqc dpc
2π~

ρ(ψ)
c (qc, pc) (3.1.5)

This centroid density can in general contain regions of negative density and so is no longer guar-
anteed to be a positive semi-definite function and is no longer separable in the momentum and
position centroid symbols. From here we could naïvely define the state projected version of the
QDO as

δ̂(ψ)
c (qc, pc) := δ̂c(qc, pc)P̂ψ (wrong) (3.1.6)

which is not Hermitian unlike the QDO for the canonical ensemble. This will result in a loss of
consistency when defining the centroid symbols due to an ordering ambiguity since the QDO and
projection operator possess a non-zero commutator in general; thusly

Ac 6= Tr
[
δ̂c(qc, pc)P̂ψÂ

]
6= Tr

[
P̂ψ δ̂c(qc, pc)Â

]
(3.1.7)

The correct method, as shown in Roy and Blinov [36], is to Kubo-transform the projection operator
with the effective centroid Hamiltonian Ĥ ′, see (1.3.16), as follows

δ̂(ψ)
c (qc, pc) :=

~
2πρ

(ψ)
c (qc, pc)

∫ ∞
−∞

∫ ∞
−∞

dξ dη eiξqceiηpc
[∫ 1

0
du e−(1−u)βĤ′P̂ψe−uβĤ

′
]

(3.1.8)

Though the work in [36] was for exchange operators for particles following Bose-Einstein and
Fermi-Dirac statistics, the general results apply to the case of our state projection operators and
so this paper forms the theoretical basis of this chapter. The state projected centroid density
remains unchanged due to the cyclic property of the trace which effectively cancels the Kubo
transform. The time dependent QDO is also defined in the same way as in equation (1.3.24). It
can be shown that the consistency equations for the position and momentum operators, (1.3.17)
and (1.3.18), still hold regardless of the projection operator

qc = Tr
[
δ̂(ψ)
c (qc, pc)q̂

]
(3.1.9)

pc = Tr
[
δ̂(ψ)
c (qc, pc)p̂

]
(3.1.10)

The definition of time evolved centroid symbols for qc and pc and their equation of motions still
hold under state projection, so the formulation of CMD is the same. In general, the time dependent
centroid symbol for an operator Â is now defined as

A(ψ)
c (t; qc, pc) := Tr

[
δ̂(ψ)
c (t; qc, pc)Â

]
(3.1.11)

where the superscript is used due to denote state projection. The definition of the centroid force
(1.3.37) does not hold any longer since it relied on the separability of the centroid distribution
in the momentum and position symbols. When performing CMD calculations then we must
use the more general definition of the centroid force as the centroid symbol associated with the
force operator. The centroid force will is also uniquely determined by the Hamiltonian and the
projection operator. While the linear position and momentum centroid symbols remain the same
in the case of state projection, the same cannot be said for the centroid symbols corresponding
to operators which are a nonlinear combination of the canonical operators. So, while the force
operator may be a function of the position operator in general, the distribution in the state
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projected centroid phase will not be constant along the centroid momentum axis. This can cause
problems in the case when the state projected centroid density oscillates wildly between areas with
positive and negative density, since the force will not be well defined near the crossover region.
We also note that in the case of the high temperature limit, β → 0, that the state projected QDO
becomes

lim
β→0

δ̂(ψ)
c (qc, pc) :=

~
2πρ

(ψ)
c (qc, pc)

∫ ∞
−∞

∫ ∞
−∞

dξ dη eiξqceiηpc
[∫ 1

0
du e−(1−u)(iξx̂+iηp̂)P̂ψe−u(iξx̂+iηp̂)

]
(3.1.12)

and so the associated centroid density in this limit is

lim
β→0

ρ(ψ)
c (qc, pc) =

~
2π

∫ ∞
−∞

∫ ∞
−∞

dξ dηTr
[
eiξx̂+iηp̂P̂ψ

]
(3.1.13)

We can immediately establish a connection with the Wigner distribution function, defined as

Wψ(q, p) =
1

π~

∫ ∞
−∞

dy 〈q − y|P̂ψ|q + y〉 e2ipy/~ (3.1.14)

=
1

(2π~)2

∫ ∞
−∞

∫ ∞
−∞

dσ dτ e−i(σq+τp)/~Tr
[
ei(σq̂+τ p̂)/~P̂ψ

]
(3.1.15)

The high temperature centroid distribution and Wigner distribution function are then related as
follows

lim
β→0

ρ(ψ)
c (qc, pc) ≡ 2π~Wψ(qc, pc) (3.1.16)

3.2 Microcanonical correlation functions

Due to the inclusion of the projection operator via a Kubo transform in the QDO, the following
state projected centroid correlation function

〈BcAc(t)〉(ψ) :=
1

Zψ

∫ ∞
−∞

∫ ∞
−∞

dqc dpc
2π~

ρ(ψ)
c (qc, pc)B

(ψ)
c A(ψ)

c (t) (3.2.1)

where Bc is linear in the position and momentum centroid symbols, is no longer related to the
single Kubo transformed correlation function, but instead to the double Kubo transform of the mi-
crocanonical correlation function.13 The microcanonical ensemble real time quantum correlation
function is defined as

〈B̂Â(t)〉(ψ) :=
1

Zψ
Tr
[
P̂ψe−βĤB̂Â(t)

]
=

1

Zψ
〈ψ|e−βĤB̂Â(t)|ψ〉 (3.2.2)

In the case of the double Kubo transform both the stationary operator B̂ and the state projection
operator P̂ψ undergo a Kubo transform

〈B̂Â(t)〉(ψ)
(DK)

:=
1

Zψ
Tr

[
e−βĤ

∫ 1

0
du

(∫ 1

u
dv B̂(−ivβ~)P̂ψ(−iuβ~) +

∫ u

0
dv P̂ψ(−iuβ~)B̂(−ivβ~)

)
Â(t)

]
(3.2.3)

=
2

Zψ
Tr

[
e−βĤ

∫ 1

0
du

∫ 1

u
dv B̂(−ivβ~)P̂ψ(−iuβ~)Â(t)

]
(3.2.4)

13Refer to section C.4
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For the canonical ensemble it was possible to undo the Kubo transform by transforming to fre-
quency space, multiplying by a common frequency factor, then transforming back to time space.
In the case of the double Kubo transform it is not always possible to define a common frequency
factor, see section C.5.2 where it is shown to be impossible for projection onto an arbitrary state
as the frequency factors are different for each peak in the spectrum and therefore require knowl-
edge of the energy eigenstates. However, it is possible to define a common frequency factor in the
case where P̂ψ is a sum of projection operators each of which projects onto an eigenstate of the
Hamiltonian

P̂ψ =
∑
n

cnP̂n =
∑
n

cn|χn〉 〈χn| (3.2.5)

The results here therefore generalise the results from [37], where two projection operators were
used to project onto the symmetric and antisymmetric energy eigenstates. Working in the basis of
the Hamiltonian’s eigenfunctions, the relationship between the two Fourier transform correlation
functions when the projection operator is of the form (3.2.5) can be shown to be14

F{〈B̂Â(t)〉(ψ)}(ω) =
(β~ω)2

2(e−β~ω + β~ω − 1)
F{〈B̂Â(t)〉(ψ)

(DK)}(ω) (3.2.6)

and so the relationship between the correlation functions is

〈B̂Â(t)〉(ψ) =
1

2π

∫ ∞
−∞

dω eiωt
(β~ω)2

2(e−β~ω + β~ω − 1)

∫ ∞
−∞

dt′ e−iωt
′〈B̂Â(t′)〉(ψ)

(DK) (3.2.7)

However since establishing a physical connection between the double Kubo transformed correla-
tion function, and hence state projected CMD results, and the exact correlation function cannot
generally be done without solving the TISE performing state projected CMD is not always useful
for determining the dynamics of microcanonical ensembles. We do know however that in the case
where the projection operator is the identity operator the double Kubo transform reduces to a
single Kubo transform, which can be undone in general as shown in section (C.4.37). Therefore if
state projection is performed onto a each individual state from a known complete basis, which are
not necessarily the energy eigenstates, the sum of the double Kubo transform correlation functions
will give the regular Kubo transform correlation function.

3.3 Results

3.3.1 Computational setup

The program was written from scratch in C++ using the Armadillo linear algebra library. All
operators here are constructed as matrices in the basis of the QHO number eigenstates using
normal ordered combinations of the creation and annihilation operators. The eigenvectors of
the Hamiltonian in this basis representation are used to construct the state projection operator.
The rest of the program is identical in structure to the one described in section 2.4.1 with the
exception of the Fourier space function of the centroid symbols, except the operator exponential
of the centroid Hamiltonian was traced with the projection operator for the centroid density. In
the case of the centroid symbols the Kubo transform had to be performed, so these functions
where instead defined on a grid

P̂ϕe−βuĤ
′
Âe−β(u−1)Ĥ′ u = k/κ, k = 0, . . . , κ (3.3.1)

14Refer to section C.5.1
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where κ is the grid size of the interval [0, 1]. The Kubo transform integral was computed using a
Riemann sum, with the grid size chosen to be κ = 50.

3.3.2 Quantum harmonic oscillator

The state projected formalism is first applied to the quantum harmonic oscillator. We will be
working in the basis of the QHO eigenstates, called the number eigenstates and denoted by
{|n〉 , n ∈ N}, so it useful to express all operators in terms of the creation and annihilation
operators. First recall that the Hamiltonian for the QHO is

Ĥ =
p̂2

2m
+

1

2
mω2q̂2 ≡ ~ω

(
â†â+

1

2

)
(3.3.2)

where â† is the creation operator and â is the annihilation operator. The force operator corre-
sponding to the QHO system is

F̂ =
i

~
[mω2q̂2/2, p̂] = −mω2q̂ (3.3.3)

and so given that the consistency conditions for the position and momentum operators still hold
under the state projection, the associated static force symbol is

F (ψ)
c = −mω2qc (3.3.4)

which is independent of the state we are projecting on to. The equation of motion for qc(t) can
then be determined analytically by solving Hamilton’s equation of motion, which will yield

qc(t; qc, pc) = qc cos(ωt) +
pc
mω

sin(ωt) (3.3.5)

This result is independent of whether we make the CMD assumption or not, and so the QHO is the
one case where the exact centroid dynamics and CMD results are equivalent. This is a result of the
force operator being proportional to the position operator, which means the corresponding force
symbol will be proportional to the centroid position symbol. The CMD approximation usually
results in a loss of information about the time evolution of the force symbol since the force symbol
loses its explicit time dependence and there are no additional equations of motion included to
allow for the time evolution of the centroid symbol. To accurately capture the dynamics of the
system one would need another differential equation to accurately capture the time evolution of
the force symbol, and another to account for the time evolution of this equation, etcetera. In
general this would result in an infinite number of extra differential equations, however since the
position symbol has an equation of motion included in the set of Hamilton’s equations for the
centroid symbols these additional equations of motion are redundant, so we can terminate this
hierarchy for the QHO knowing that no information is lost in using CMD. Since the equation of
motion for qc(t) is independent of the state projection, the position autocorrelation function will
always be given by

〈qcqc(t)〉(ψ) =
1

Zψ

(
cos(ωt)

∫∫
dqc dpc

2π~
ρ(ψ)
c (qc, pc)qcqc + sin(ωt)

∫∫
dqc dpc

2π~
ρ(ψ)
c (qc, pc)qcpc

)
(3.3.6)
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so the phase space integrals will only set the amplitude of the correlation function. The state
projected centroid densities can also be analytically solved for the QHO system, and we present
the results in the case of projection onto a canonical coherent state with eigenvalue z15

ρ(z)
c (qc, pc)=

β~ω
sinh(β~ω/2)

1

1 + α
exp

(
− 2

1 + α
|z|2
)

exp

(
−
(
β~ω +

2

1 + α

)(
mω

2~
q2
c +

1

2mω~
p2
c

))
× exp

(
2

1 + α

(√
2mω

~
Re(z)qc +

√
2

mω~
Im(z)pc

))
(3.3.7)

and also for projection onto an individual QHO eigenstate with quantum number n16

ρ(n)
c (qc, pc) =

β~ω
sinh(β~ω/2)

(−1)n

1 + α
exp

[
−
(
β~ω +

2

1 + α

)
|ac|2

](
1− α
1 + α

)n
Ln

(
4

1− α2
|ac|2

)
(3.3.8)

A selection of eigenstate projected centroid densities are presented in Fig. 3.2 for the parameters
~ = 1, m = 1, and ω = 1. It is noted that the functions are entirely even in qc and pc, and from
this it can be deduced that the second integral in (3.3.7) will evaluate to zero as both qc and pc
are odd functions. Equation (3.3.6) can then be simplified to

〈qcqc(t)〉(ψ) = cos(ωt)
1

Zψ

∫∫
dqc dpc

2π~
ρ(ψ)
c (qc, pc)qcqc (3.3.9)

So for our chosen parameters we expect the answer to be a cosine with period 2π. CMD calcula-
tions were performed for a total time of t = 20 with a time step of ∆t = 0.1 and the results are
presented in Fig. 3.3 along with the results using exact quantum dynamics, and as expected the
CMD results are identical.

3.3.3 Quartic well

We next consider a Hamiltonian with only a quartic anharmonic potential term

Ĥ =
p̂2

2m
+ d4q̂

4 (3.3.10)

The force operator for the quartic well is then of the form

F̂ =
i

~
d4[q̂4, p̂] = −4d4q̂

3 = −4d4

(
~

2mω

)3/2

(a+ a†)3 (3.3.11)

The state projected centroid densities for the lowest three eigenenergies are shown in Fig. 3.4,
where we selected the parameter values ~ = 1, m = 1, ω = 1 and d4 = 1/4 and the temperatures
β = 1, 8 in order to match those from [37]. The centroid densities are no longer symmetric under
rotation in qc − pc plane as was the case in with the QHO, though this is difficult to discern from
the plots since the anharmonic term is weak. CMD calculations were performed next with a time
step of ∆t = 0.0025 and a total time of t = 40 for β = 1 and t = 100 for β = 8 and the results
shown in Fig. 3.5. We can see that the β = 1 correlation functions show better matching for
the phase and amplitude in the case of projection onto higher energy eigenstates with some slight

15Refer to section C.1
16Refer to section C.2
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drifting from the exact results, though the results are very quick to decorrelate. The β = 8 CMD
results are a poorer approximation to the exact results for higher energy eigenstates. The CMD
results for the ground state match the exact phase for roughly 5 oscillations as seen in Fig. 3.5b
while the CMD results for the first excited state results only match for about 3 oscillations, see
Fig. 3.5d. The results for the second excited state at β = 8 are included in Fig. 3.5f despite the
presence of numerical errors which proved to be very persistent. Although not noticeable, the
time zero value for the CMD results is exact, but the individual trajectories proved to be unstable
even at a very short time step.

3.3.4 Double well

The final system under consideration is the double well, which has the Hamiltonian

Ĥ =
p̂2

2m
+ d2q̂

2 + d4q̂
4 (3.3.12)

and associated force operator

F̂ =
i

~
[d2q̂

2 + d4q̂
4, p̂] = −2d2q̂−4d4q̂

3 = −2d2

√
~

2mω
(a+a†)−4d4

(
~

2mω

)3/2

(a+a†)3 (3.3.13)

For the numerical computations we again selected parameter values from [37], which correspond
to ~ = 1, m = 1, ω = 1, d2 = −1/2 and d4 = 1/10. The state projected centroid densities are
presented for the lowest three energy eigenstates at β = 1, 8 in Fig. 3.6. CMD calculations were
performed with a time step of ∆t = 0.0025 for a total time of t = 40 for β = 1 and t = 100
for β = 8 and the results are displayed in Fig. 3.7. In the case of the β = 1 results we can see
the results becoming progressively better for higher energy eigenstates, however the results still
fail to match the exact results to the first local minimum and as such are very poor though this
is expected for the double well. The results for β = 8 are reversed like the quartic well system,
with the ground state CMD results matching the exact results better than the first excited state.
The results in Fig. 3.7f are again a result of instability in the CMD trajectories which would
not disappear, and so cannot be analyzed further. It was expected that the energy levels above
the central maximum in the double well would perform better since tunneling would not occur,
though it is unclear why this would not be the case at lower temperatures.

In an attempt to better understand the effect of the two wells on the centroid dynamics we
also show the time evolution of the centroid distribution ρ(1)

c (qc, pc) · qc(t; qc, pc) for β = 1 using
exact centroid dynamics and CMD in Figs. 3.8 and 3.9. The qc axis is on the horizontal and the
pc axis is along the vertical. The ranges for each axis are qc ∈ [2.5, 2.5] and pc ∈ [1.5, 1.5]. Since
we do not expect the centroid trajectories to cross the point where the density become zero we
can deduce from Fig. 3.6c that there are two regions of motion here, one in the centre of the plane
where the density is negative and everywhere outside this region where the density is positive.
The times shown span t = 0 to t = 20 which is almost the period of one oscillation in the exact
results, see Fig. 3.3c. We first note that the minima of the double well are located at ±

√
5/2. The

centroid density is greater than zero for qc = ±
√

5/2, and we see initially in the t = 0 densities
in Fig. 3.8 that the bulk of the density in this region is just slightly offset from this position. As
time progresses, the exact centroid trajectories never cross the ρ(1)

c (qc, pc) = 0 boundary resulting
in two regions of motion. Generally speaking, in the exact results we see the two blobs of positive
and negative density swirling counter-clockwise about the origin of the phase space. The same
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behaviour is also present in the CMD plots, but we can see in the CMD densities in Figs. 3.8
and 3.9 that a well is also present which traps some of the trajectories. As time progresses these
trajectories move around in this well while the rest rotate counter-clockwise about the origin. This
well in the phase space is very nearly centered at pc = 0 and qc = ±

√
5/2, indicating that this

is a lingering effect of the double wells. For this system the energy of the first excited eigenstate
is slightly above the hump in the middle of the potential so the poor performance of the CMD
simulation is not due to tunneling by the first excited eigenstate.

Lastly, we combined the energy eigenstate projected CMD position autocorrelation functions
to obtain an approximate of the Kubo transformed position autocorrelation function. Results are
shown for β = 1, 8 in Fig. 3.1 where we also show the results obtained using exact quantum dy-
namics, regular CMD and symmetry-adapted CMD (SA-CMD). SA-CMD was introduced in [37],
and as previously stated involved projecting onto the symmetric and antisymmetric eigenstates

PS =
1

ZS

∑
n even

|χn〉 〈χn| PA =
1

ZA

∑
n odd

|χn〉 〈χn| (3.3.14)

and then recombining the results

〈qcqc(t)〉(SA) =
ZS
Z
〈qcqc(t)〉(S) +

ZA
Z
〈qcqc(t)〉(A) (3.3.15)

Here we also recombine the state-projected CMD (SP-CMD) results as follows

〈qcqc(t)〉(SP ) =
∑
n

Zn
Z
〈qcqc(t)〉(n) (3.3.16)

For the β = 1 case the double Kubo transformed autocorrelation functions for the lowest ten
eigenstates are used, and for the β = 8 case we recombined the results for the the lowest four
eigenstates. As can be seen, the SA-CMD results are slightly better than those from regular CMD
but they still fail to match the exact result to the first local minimum in both cases. The SP-CMD
results are a bit better and do match the exact results to the first minimum in the β = 1 results
before failing, which is unexpected given the generally poor results seen in Fig. 3.7. The β = 8
SP-CMD results are very slightly better than that SA-CMD results, and it is expected that the
two will converge in the low temperature limit where the entire population is in the ground state.
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Figure 3.1: Comparison of the Kubo transformed position autocorrelation function as computed
using exact quantum dynamics, CMD, symmetry-adapted CMD (SA-CMD) and state-projected
CMD (SP-CMD) for the double well system with β = 1 at top and β = 8 below.
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Figure 3.2: State projected centroid densities for the quantum harmonic oscillator with tempera-
tures β = 1, 8 for the three lowest energy eigenstates
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Figure 3.3: Double Kubo transformed state projected position autocorrelation functions calculated
using exact quantum dynamics (red) and CMD (blue) for the temperatures β = 1, 8 and the three
lowest energy eigenstates of the quantum harmonic oscillator
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Figure 3.4: State projected centroid densities for the quartic well system with temperatures
β = 1, 8 for the three lowest energy eigenstates
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Figure 3.5: Double Kubo transformed state projected position autocorrelation functions calculated
using exact quantum dynamics (red) and CMD (blue) for the temperatures β = 1, 8 and the three
lowest energy eigenstates of the quartic well system
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Figure 3.6: State projected centroid densities for the double well system with temperatures β =
1, 8 for the three lowest energy eigenstates
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Figure 3.7: Double Kubo transformed state projected position autocorrelation functions calculated
using exact quantum dynamics (red) and CMD (blue) for the temperatures β = 1, 8 and the three
lowest energy eigenstates of the double well system
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Figure 3.8: Time evolution of ρc(qc, pc)qc(t) using exact centroid dynamics (left column) and CMD
(right column) at times t = 0, 2, 4, 6 (figures are in descending order) for the double well system
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Figure 3.9: Time evolution of ρc(qc, pc)qc(t) using exact centroid dynamics (left column) and CMD
(right column) at times t = 8, 12, 16, 20 (figures are in in descending order) for the double well
system.
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Chapter 4

Conclusions

In chapter 2 a general method was devised to formulate centroid statistical mechanics for systems
undergoing rotational and torsional motion using the theory of constraints initially laid out by
Dirac. This was worked out in detail motion on any n-dimensional ellipsoid with an arbitrary
position dependent potential. The case of a particle moving on a ring was used as a test, and
centroid densities were generated for the case of free motion as well as motion in the presence
of periodic potentials. These centroid densities were not separable in the each of the centroid
coordinates, as is the case for centroid densities of systems in Euclidean space. The CMD results
for the free particle case gave a dipole autocorrelation function which showed closer agreement
with the classical autocorrelation function at higher temperatures. Limits were worked out to
show that the high temperature classical limit of the dipole autocorrelation function does not
have the recurrences as are expected with the high temperature limit quantum results, as seen
in section B.4. As temperature was decreased the results better matched the expected quantum
Kubo transformed autocorrelation function, but still decorrelated rapidly and quickly drifted out
of phase with the exact result. The CMD results for the hindered rotor models were not given
due to numerical instability of the xc(t) trajectories, and therefore as of now only equilibrium
properties can be successfully computed.

In chapter 3 we extended the used of projection operators in the centroid formalism to the
case of state projection. We saw that in the case of state projection the centroid density is no
longer positive definite and is again not separable in the position and momentum coordinates.
Analytic results were obtained for the QHO, which demonstrated that the CMD results are again
exact for this system. Equilibrium and dynamical properties were also obtained for the quartic
well and double well systems. The recombined correlation functions for the double well showed
improvement over the CMD and SA-CMD results. It was also shown that it is in general not
possible to undo a double Kubo transformed time correlation function without prior knowledge
of the eigenenergies to modify the height of the peaks in the Fourier transform spectrum.

4.1 Future work

The initial attempts at computing time correlation functions for the hindered rotor model were not
successful due to numerical instabilities in the CMD trajectories. Obtaining useable results will
necessitate use of an improved integrator along with a finer grid force field. The case of a hindered
rotor with a highly confining potential is another matter, since it is difficult to obtain a grid fine
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enough to accurately represent the highly localized centroid density. We will therefore tackle
this case by approximating the centroid density for highly confined systems as a one dimensional
Euclidean centroid density since the position and momentum densities are effectively squeezed
in one direction. Once this work has been completed we hope to perform CMD calculations
for multiple interacting rotors. We also note that motion on a circle is identical to motion of a
particle in a one-dimensional Euclidean space with periodic boundary conditions, and so we hope
to extend the CMD method to optical lattices. The next step is to move to higher dimensions,
and here the first step is to test the centroid formalism for motion of a particle on a sphere.
Significant optimizations will need to be made for the storage of the centroid densities, since the
memory demands for higher dimensional objects will grow exponentially with each additional pair
of position-momentum centroid variables. The motion of the rotating tops is the final goal, but at
this stage the map between the Euler angles and the hyperspherical angles has not be constructed.

A new integrator must also be implemented for the state projected CMD calculations given
the instability seen in some of the autocorrelation functions. We also wish to perform simulations
with increased degrees of freedom which includes particles moving in a multidimensional Cartesian
space and collections of coupled systems. We also wish to connect this work with current methods
for computing low temperature and ground state dynamics.
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Appendix A

Introductory Material

A.1 Consistency equations for centroid symbols

Here we wish to show that the associated centroid phase space distributions for the position and
momentum operators, q̂ and p̂, are qc and pc, respectively. We will show this in general for the
centroid distribution of an arbitrary operator Â

ρc(Ac) = Tr

[∫ ∞
−∞

dξ√
2π
e−βĤ+iξÂe−iξAc

]
(A.1.1)

The goal then is to show that the following consistency equation holds

Ac =
1

ρc(Ac)
Tr

[∫ ∞
−∞

dξ√
2π
e−βĤ+iξÂe−iξAcÂ

]
(A.1.2)

The addition of other centroid constraints will not affect this derivation, so the results are easily
generalized. This derivation depends on the application of the product rule and the cyclic property
of the trace. We begin by writing∫ ∞

−∞

dξ√
2π

(
∂

∂ξ
e−iξAc

)
Tr
[
e−βĤ+iξÂ

]
+

∫ ∞
−∞

dξ√
2π
e−iξAc

(
∂

∂ξ
Tr
[
e−βĤ+iξÂ

])
= lim
z→∞

1√
2π
e−iξAcTr

[
e−βĤ+iξÂ

] ∣∣∣∣z
ξ=−z

(A.1.3)

The centroid is assumed to be an entirely real and even function of Ac, implying that trace of the
exponential of the effective centroid Hamiltonian is also a real and even function of ξ. Further
assuming that it is Fourier integrable implies that the function decays to zero in the ξ → ±∞
limit, so that the left hand side of (A.1.3) is independent of the undefined behaviour of e−iξAc at
the boundaries and goes to zero in both limits. We are aware that this argument is not rigourous
but the analysis required is beyond the scope of this thesis. Moving on, we must now solve both
sides of∫ ∞

−∞

dξ√
2π

(
∂

∂ξ
e−iξAc

)
Tr
[
e−βĤ+iξÂ

]
= −

∫ ∞
−∞

dξ√
2π
e−iξAcTr

[
∂

∂ξ
e−βĤ+iξÂ

]
(A.1.4)

We first solve the left hand side∫ ∞
−∞

dξ√
2π

(
∂

∂ξ
e−iξAc

)
Tr
[
e−βĤ+iξÂ

]
= −iAc

∫ ∞
−∞

dξ√
2π
e−iξAcTr

[
e−βĤ+iξÂ

]
= −iAcρc(Ac)

(A.1.5)
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We can evaluate the right hand side using the following operator derivative identity [38] to evaluate
the derivative within the trace

∂

∂λ
e−L̂ = −

∫ 1

0
e−(1−u)L̂ ∂L̂

∂λ
e−uL̂du (A.1.6)

Using the cyclic property of the trace this expression can be simplified

Tr

[
∂

∂λ
e−L̂

]
= −Tr

[∫ 1

0
e−(1−u)L̂ ∂L̂

∂λ
e−uL̂du

]
= −Tr

[∫ 1

0
e−L̂

∂L̂

∂λ
du

]
= −Tr

[
e−L̂

∂L̂

∂λ

]
(A.1.7)

The right hand side is then

−
∫ ∞
−∞

dξ√
2π
e−iξAcTr

[
∂

∂ξ
e−βĤ+iξÂ

]
=

∫ ∞
−∞

dξ√
2π
e−iξAcTr

[
e−βĤ+iξÂ ∂

∂ξ

(
−βĤ + iξÂ

)]
(A.1.8)

= i

∫ ∞
−∞

dξ√
2π
e−iξAcTr

[
e−βĤ+iξÂÂ

]
(A.1.9)

The final result is then

−iAcρc(Ac) = i

∫ ∞
−∞

dξ√
2π
e−iξAcTr

[
e−βĤ+iξÂÂ

]
(A.1.10)

Ac =
1

ρc(Ac)

∫ ∞
−∞

dξ√
2π
e−iξAcTr

[
e−βĤ+iξÂÂ

]
(A.1.11)

and thus the consistency equation holds. It follows that the centroid distributions for the operators
q̂ and p̂ are qc and pc, respectively.

A.2 Kubo transformed correlation functions

The following derivation only holds for operators which are a linear function of q̂ and p̂, i.e.
B̂ = B0Î +B1q̂ +B2p̂, which will by definition have the centroid symbol Bc = B0 +B1qc +B2pc.
Since we are generally interested in correlation functions involving the position or velocity this
restriction is not limiting. The correlation function for two centroid symbols is then

〈BcAc(t; qc, pc)〉 =
1

Z

∫ ∞
−∞

dqc dpc
2π~

ρc(qc, pc)BcAc(t; qc, pc) (A.2.1)

=
1

Z

∫ ∞
−∞

dqcdpc
2π~

Bc

∫ ∞
−∞

dξ dη

2π
e−iξqce−iηpcTr

[
e−βĤ

′
eitĤ/~Âe−itĤ/~

]
(A.2.2)

For the B0 term, the integrals over qc and pc can be immediately performed to yield delta functions√
2πδ(ξ) and

√
2πδ(η), respectively. Performing the integrals over ξ and η reduces the centroid

Hamiltonian to the system Hamiltonian, Ĥ ′ → Ĥ. We therefore have

1

Z

∫ ∞
−∞

dqc dpc
2π~

B0

∫ ∞
−∞

~
dξ dη

2π
e−iξqce−iηpc Tr

[
e−βĤ

′
eitĤ/~Âe−itĤ/~

]
(A.2.3)

=
1

Z
B0

∫ ∞
−∞

dξ dη

2π
δ(ξ)δ(η)Tr

[
e−βĤ

′
eitĤ/~Âe−itĤ/~

]
(A.2.4)

=
1

Z
B0Tr

[
e−βĤÂ(t)

]
(A.2.5)
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The result here is the correlation function between the identity operator and the operator Â(t).
Next, for the qc term we can perform the integral over pc, which will be replaced by the delta
function

√
2πδ(η). The integral over η is then performed, the result being that the centroid

Hamiltonian is simplified to only include the ξ term. We must then evaluate

〈qcAc(t; qc, pc)〉 =
1

Z

∫ ∞
−∞

dqc dξ

2π
e−iξqcqc Tr

[
e−βĤ+iξq̂Â(t)

]
(A.2.6)

We now use the following Fourier transform property∫ ∞
−∞

xne−iωx
dx√
2π

=
√

2πinδ(n)(ω) (A.2.7)

and the following property of the distributional derivative of the delta function∫ ∞
−∞

δ′(x)f(x)dx = −
∫ ∞
−∞

δ(x)f ′(x)dx (A.2.8)

to evaluate the two integrals. The correlation function can now be written

〈qcAc(t; qc, pc)〉 = − i

Z

∫ ∞
−∞

dξ√
2π
δ(ξ)Tr

[(
∂

∂ξ
e−βĤ+iξq̂

)
Â(t)

]
(A.2.9)

We now make use of equation (A.1.6) to evaluate the derivative

〈qcAc(t; qc, pc)〉 =
i

Z

∫ ∞
−∞

dξ√
2π
δ(ξ)Tr

[∫ 1

0
due−(1−u)(βĤ−iξq̂) ∂

∂ξ

(
βĤ − iξq̂

)
e−u(βĤ−iξq̂)Â(t)

]
(A.2.10)

=
1

Z

∫ ∞
−∞

dξ√
2π
δ(ξ)Tr

[∫ 1

0
due−(1−u)(βĤ−iξq̂)q̂e−u(βĤ−iξq̂)Â(t)

]
(A.2.11)

=
1

Z
duTr

[∫ 1

0
e−(1−u)βĤ q̂e−uβĤÂ(t)

]
=

1

Z

∫ 1

0
duTr

[
e−βH q̂(−iuβ~)Â

]
(A.2.12)

where in the previous line we have used the standard notation for time evolution of an operator
and we say the correlation function has been Kubo transformed. The centroid correlation function
is therefore equal to

〈qcAc(t; qc, pc)〉 = 〈q̂Â(t)〉(K) ≡
1

Z

∫ 1

0
du〈q̂(−iuβ~)Â〉 (A.2.13)

The same steps can be performed for the momentum operator to retrieve

〈pcAc(t; qc, pc)〉 = 〈p̂Â(t)〉(K) (A.2.14)

Therefore it follows that for an arbitrary operator Â and operator B̂ which is a linear function
of the position and momentum operators, the centroid correlation function is equal to the Kubo
transformed correlation function

〈BcAc(t; qc, pc)〉 = 〈B̂Â(t)〉(K) (A.2.15)
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A.3 Undoing the Kubo transform

We wish to establish a connection a connection between the usual quantum time correlation
function and its Kubo transformed version. This is easily done when working in the basis of the
Hamiltonian eigenstates. We begin with the regular correlation function

〈B̂Â(t)〉 :=
1

Z
Tr
[
e−βĤB̂Â(t)

]
(A.3.1)

=
1

Z

∑
n,m

e−βEn 〈χn|B̂|χm〉 〈χm|Â|χn〉 eit(Em−En)/~ (A.3.2)

Performing the Fourier transform of the correlation function yields

F{〈B̂Â(t)〉}(ω) =
1

Z

∑
m,n

e−βEn 〈χn|B̂|χm〉 〈χm|Â|χn〉 δ
(
ω − Em − En

~

)
(A.3.3)

Expanding the Kubo transformed correlation function in the basis of the energy eigenstates gives

〈B̂Â(t)〉(K) :=
1

Z

∫ 1

0
duTr

[
e−βĤeuβĤB̂e−uβĤÂ(t)

]
(A.3.4)

=
1

Z

∑
n,m

e−βEn
∫ 1

0
du euβ(En−Em) 〈χn|B̂|χm〉 〈χm|Â|χn〉 eit(Em−En)/~ (A.3.5)

=
1

Z

∑
n,m

e−βEn
eβ(En−Em) − 1

β(En − Em)
〈χn|B̂|χm〉 〈χm|Â|χn〉 eit(Em−En)/~ (A.3.6)

(A.3.7)

Taking the Fourier transform gives

F{〈B̂Â(t)〉(K)}(ω) =
1

Z

∑
n,m

e−βEn
eβ(En−Em) − 1

β(En − Em)
〈χn|B̂|χm〉 〈χm|Â|χn〉 δ

(
ω − Em − En

~

)
(A.3.8)

=
1

Z

∑
n,m

e−βEn
e−β~ω − 1

−β~ω
〈χn|B̂|χm〉 〈χm|Â|χn〉 δ

(
ω − Em − En

~

)
(A.3.9)

We can see that this is simply the Fourier transform of the usual correlation function multiplied
by a constant frequency factor; the relation between the two Fourier transform is then

F{〈B̂Â(t)〉}(ω) =
β~ω

1− e−β~ω
F{〈B̂Â(t)〉(K)}(ω) (A.3.10)

Undoing the Fourier transforms then gives us the following relation between the two correlation
functions

〈B̂Â(t)〉 =
1

2π

∫ ∞
−∞

dω eiωt
β~ω

1− e−β~ω

∫ ∞
−∞

dt′ e−iωt
′〈B̂Â(t′)〉(K) (A.3.11)
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Appendix B

Constraints

B.1 Constraining to an n-dimensional ellipsoid with a position
dependent potential

Here we show how to constrain a system moving in Rn+1 space to the n-ellipsoid. We will use
Einstein notation for this section. Since all indices are Latin characters, we are working with
spatial coordinates. The distinction between covariant and contravariant indices is not applicable
here; the use of this notation is merely convenient. A symbol with an upper index, qk, represent
column vectors and symbols with a lower index, qk, represent row vectors. The object Ajk is a
matrix, quite literally a column vector whose entries are row vectors. Repeated indices denotes a
contraction, so qkpk is a dot product of vectors while Ajj represents a trace. The Poisson bracket
may then be written as

[f, g]P =
∂f

∂qk
∂g

∂pk
− ∂f

∂pk

∂g

∂qk
(B.1.1)

First we consider the Lagrangian with a Lagrange multiplier term

L =
m

2
q̇kq̇k − V + λ((q/a2)kqk − 1) (B.1.2)

where the equation for the n-dimensional ellipsoid is

1 =
( q
a2

)k
qk =

q2
(1)

a2
(1)

+
q2

(2)

a2
(2)

+ · · · (B.1.3)

where q are the Cartesian coordinates and a are the lengths of the semi-principal axes. Since the
Lagrangian is independent of λ̇ the (n + 2) × (n + 2) Hessian with respect to the velocities will
have one row and one column of all zeros and will hence be singular. The total Hamiltonian in
this case is

HT =
1

2m
pkpk + V + λ((q/a2)kqk − 1) + uλpλ (B.1.4)

where uλ is an additional Lagrange multiplier term, and it is understood that the potential term
V is purely dependent on the position coordinates qk. The primary constraint is naturally that
the momentum for the Lagrange multiplier be zero

φ1 = pλ ≈ 0 (B.1.5)

59



Now we may generate the consistency conditions for this constraint in doing so generate additional
constraints

φ̇1 = −((q/a2)kqk − 1) → φ2 = (q/a2)kqk − 1 ≈ 0 (B.1.6)

φ̇2 =
2

m
(q/a2)kpk → φ3 = (q/a2)kpk ≈ 0 (B.1.7)

The effects of the potential become noticeable in the consistency equation for the third constraint

φ̇3 =

[
(q/a2)kpk,

plpl
2m

+ V + λ(q/a2)lql

]
P

(B.1.8)

=
pk
2m

[(q/a2)k, plpl]P + (q/a2)k[pk, V ]P + λ(q/a2)k[pk, (q/a
2)lql]P (B.1.9)

=
(p/a2)kpk

m
− (q/a2)k∂kV − 2λ(q/a4)kqk (B.1.10)

→ φ4 =
(p/a2)kpk

2
− m

2
(q/a2)k∂kV −mλ(q/a4)kqk ≈ 0 (B.1.11)

where we define ∂k := ∂/∂qk. The consistency condition for φ4 will fix the value of uλ and
terminate the series of constraints

φ̇4 =

[
(p/a2)kpk

2
− m

2
(q/a2)k∂kV −mλ(q/a4)kqk,

plpl
2m

+ V + λ(q/a2)lql + uλpλ

]
P

(B.1.12)

=
1

2
[(p/a2)kpk, V + λ(q/a2)lql]P −

1

4
[(q/a2)k∂kV , p

lpl]P −m
[
λ(q/a4)kqk,

plpl
2m

+ uλpλ

]
P

(B.1.13)

= −(p/a2)k∂kV − 2λ(q/a4)kpk −
pk

2
∂k

(
(q/a2)l∂lV

)
− 2λ(q/a4)kpk −muλ(q/a4)kqk ≈ 0

(B.1.14)

→ uλ = − 1

m((q/a4)kqk)

(
(p/a2)k∂kV + 4λ(q/a4)kpk +

pk

2
∂k

(
(q/a2)l∂lV

))
(B.1.15)

We can now construct the C matrix using the Poisson bracket

C =


0 0 0 m(q/a4)kqk
0 0 2(q/a4)kqk 2(q/a4)kpk

0 −2(q/a4)kqk 0
(p/a4)kpk+2mλ(q/a6)kqk
+m

2
(q/a2)k∂k((q/a2)l∂lV )

−m(q/a4)kqk −2(q/a4)kpk
−(p/a4)kpk−2mλ(q/a6)kqk
−m

2
(q/a2)k∂k((q/a2)l∂lV )

0

 (B.1.16)

The determinant of this matrix is detC = 4m2((q/a4)kqk)
4. The inverse therefore exists and is

C−1 =
1

2m((q/a4)lql)2

×


0

−(p/a4)kpk−2mλ(q/a6)kqk
−m

2
(q/a2)l∂l((q/a

2)k∂kV )
(q/a4)kpk −2(q/a4)kqk

(p/a4)kpk+2mλ(q/a6)kqk
+m

2
(q/a2)l∂l((q/a

2)k∂kV )
0 −m(q/a4)kqk 0

−(q/a4)kpk m(q/a4)kqk 0 0
2(q/a4)kqk 0 0 0

 (B.1.17)
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We can now work out the Dirac brackets between the various position and momentum coordi-
nates. The position variables only have a non vanishing Poisson bracket with φ3 and φ4, but
the corresponding matrix elements in C−1 are zero so the Dirac bracket between two position
variables is simply the Poisson bracket

[qj , qk]D = [qj , qk]P = 0 (B.1.18)

The momentum variables have a non-vanishing Poisson bracket with all the constraints except φ1.
If we ignore the elements of C−1 which are zero, then the Dirac bracket between two momentum
coordinates is

[pj , pk]D = [pj , pk]P − (C−1)2
3[pj , φ3]P [φ2, pk]P − (C−1)3

2[pj , φ2]P [φ3, pk]P (B.1.19)

=
1

2(q/a4)lql

(
[pj , (q/a2)bqb]P [(q/a2)cpc, pk]P − [pj , (q/a2)cpc]P [(q/a2)bqb, pk]P

)
(B.1.20)

=
1

(q/a4)lql

(
(p/a2)j(q/a2)k − (q/a2)j(p/a2)k

)
(B.1.21)

We now consider the Dirac bracket between a position and momentum variable

[qj , pk]D = [qj , pk]P − (C−1)3
2[qj , φ3]P [φ2, pk]P (B.1.22)

= δjk −
1

2(q/a4)lql
[qj , (q/a2)bpb]P [(q/a2)cqc, pk]P (B.1.23)

= δjk −
1

(q/a4)lql
(q/a2)j(q/a2)k (B.1.24)

where δjk is the Kronecker delta tensor. Finally, we will evaluate the Dirac bracket between the
λ Lagrange multiplier and its conjugate momentum

[λ, pλ]D = [λ, pλ]P − (C−1)1
4[λ, φ1]P [φ4, pλ]P (B.1.25)

= 1 +
1

m(q/a4)lql
(−m(q/a4)kqk)[λ, pλ]P [λ, pλ]P = 0 (B.1.26)

The Dirac brackets between all other variables and λ and pλ are also zero. These terms may
therefore be strongly set to zero; the total Hamiltonian is then

HT =
pkpk
2m

+ V (qj) (B.1.27)

where the Dirac brackets between the constrained variables in the reduced phase space are

[qj , qk]D = 0 [qj , pk]D = δjk −
1

(q/a4)lql
(q/a2)j(q/a2)k

[pj , pk]D =
1

(q/a4)lql

(
(p/a2)j(q/a2)k − (q/a2)j(p/a2)k

)
(B.1.28)

We can see that the inclusion of the position dependent potential term in the Lagrangian had
no effect on the Dirac brackets between the phase space variables. We also note that while the
dimension of the original phase space was 2(n+2) due to the inclusion of the Lagrange multipliers
in the Lagrangian, since we generated 4 constraints the restricted phase space will have dimension

61



2n which is to be expected for the n-ellipsoid. The results for motion on an n-sphere may be
retrieved by taking the length of all semi-principal axes to be the same value ak = R,

1 =
( q

R2

)k
qk =

qkqk
R2

(B.1.29)

in which case the Dirac brackets reduce to

[qj , qk]D = 0 [qj , pk]D =
1

R2
(δjkR

2 − qjqk) [pj , pk]D =
1

R2

(
pjqk − qjpk

)
(B.1.30)

B.2 Constraining the particle to the 2-sphere

We can use the results from section B.1 to extend the centroid formalism to a particle moving on
a 2-sphere with radius R under an arbitrary potential. The set of Dirac brackets for the restricted
phase space variables {x, y, z, px, py, pz} can be obtained by subbing these variables into equation
(B.1.28). In the classical phase space on the sphere the position variables are ϕ ∈ [0, 2π) and
θ ∈ [0, π], each with an associated conjugate momentum pϕ and pθ, respectively. The conjugate
momenta may be written in terms of the velocities of the angle variables as follows

pθ = mR2θ̇ pϕ = mR2 sin2 θϕ̇ (B.2.1)

In this case quantum analogues of the conjugate momentum are not used due to issues quantizing
pθ. Since the angular momentum operators are used instead to describe the motion of a particle
on a sphere, we will use the classical versions of these operators

Lx = −pθ sinϕ− pϕ cot θ cosϕ Ly = pθ cosϕ− pϕ cot θ sinϕ Lz = pϕ (B.2.2)

to allow for easy quantization of the constrained phase space variables. We begin by postulat-
ing that the expected position operators are the spherical coordinate versions of the Euclidean
positions with the radial component fixed

x = R sin θ cosϕ y = R sin θ sinϕ z = R cos θ (B.2.3)

Using the Poisson bracket

[f, g]P =
∂f

∂ϕ

∂g

∂pϕ
− ∂f

∂pϕ

∂g

∂ϕ
+
∂f

∂θ

∂g

∂pθ
− ∂f

∂pθ

∂g

∂θ
(B.2.4)

and expressing the relations (B.1.30) in spherical coordinates allows us to determine the expression
for the momenta in the reduced phase space coordinates

px =
1

R2
(zLy − yLz) =

1

R
(pθ cos θ cosϕ− pϕ csc θ sinϕ) (B.2.5)

py =
1

R2
(xLz − zLx) =

1

R
(pθ cos θ sinϕ+ pϕ csc θ cosϕ) (B.2.6)

pz =
1

R2
(yLx − xLy) = − 1

R
pθ sin θ (B.2.7)
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When converting the reduced phase space symbols to operators, we also demand that the Heisen-
berg equations of motion for the position operators still hold so that the CMD equations of motion
remain self consistent. It can be worked out that the restricted position operators are

x̃ = R sin θ̂ cos ϕ̂ = RX̂x (B.2.8)

ỹ = R sin θ̂ sin ϕ̂ = RX̂y (B.2.9)

z̃ = R cos ϕ̂ = RX̂z (B.2.10)

and the restricted momentum operators are

p̃x =
1

2R2

(
{z̃, L̂y} − {ỹ, L̂z}

)
=

1

2R

(
{X̂z, L̂y} − {X̂y, L̂z}

)
(B.2.11)

p̃y =
1

2R2

(
{x̃, L̂z} − {z̃, L̂x}

)
=

1

2R

(
{X̂x, L̂z} − {X̂z, L̂x}

)
(B.2.12)

p̃z =
1

2R2

(
{ỹ, L̂x} − {x̃, L̂y}

)
=

1

2R

(
{X̂y, L̂x} − {X̂x, L̂y}

)
(B.2.13)

The L̂n operators are the usual angular momentum operators for the sphere and the X̂n operators
act as position operators. The commutation relations for this set of operators are

[X̂l, X̂n] = 0 [L̂l, L̂m] = i~εlmnL̂n [L̂l, X̂m] = i~εlmnX̂n (B.2.14)

where εlmn is the Levi-Civita symbol and the where the set (l,m, n) can take the values (1, 2, 3) ≡
(x, y, z). It is convenient to work in the usual |l,m〉 basis when building a matrix representation
for these and other operators, and in order to work out how the operators act in the x and y
directions it is easiest to construct ladder operators using the definitions

X̂+ = X̂x + iX̂y X̂− = X̂x − iX̂y L̂+ = L̂x + iL̂y L̂− = L̂x − iL̂y (B.2.15)

Using the commutation relations and the knowledge that the angular momentum operators act
on the |l,m〉 basis states as follows

L̂+ |l,m〉 =
√

(l −m)(l +m+ 1) |l,m+ 1〉 (B.2.16)

L̂− |l,m〉 =
√

(l +m)(l −m+ 1) |l,m− 1〉 (B.2.17)

L̂z |l,m〉 = m |l,m〉 (B.2.18)

then it can be worked out that the position operators act on this basis in the following manner

X̂+ |l,m〉 =

√
(l −m)(l −m− 1)

(2l − 1)(2l + 1)
|l − 1,m+ 1〉 −

√
(l +m+ 2)(l +m+ 1)

(2l + 1)(2l + 3)
|l + 1,m+ 1〉

(B.2.19)

X̂− |l,m〉 = −

√
(l +m− 1)(l +m)

(2l − 1)(2l + 1)
|l − 1,m− 1〉+

√
(l −m+ 1)(l −m+ 2)

(2l + 1)(2l + 3)
|l + 1,m− 1〉

(B.2.20)

X̂z |l,m〉 =

√
(l −m)(l +m)

(2l − 1)(2l + 1)
|l − 1,m〉+

√
(l −m+ 1)(l +m+ 1)

(2l + 1)(2l + 3)
|l + 1,m〉 (B.2.21)

Using the method described in chapter 2, the QDO for the particle on a sphere system may then
be built by replacing the position and momentum operators in the 3-dimensional centroid QDO
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with these restricted Hilbert space operators. Computations may then be performed using finite
dimensional matrix representations in the |l,m〉 basis. Using the method from Chapter 2, the
QDO for motion on the 2-sphere is then

δ̂c(xc, yc, zc, px c, py c, pz c) =

∫
dξx dξy dξz dηx dηy dηz e

−i(ξxxc+ξyyc+ξzzc) e−i(ηxpxc+ηypyc+ηzpzc)

× exp
(
−βĤ + iξxx̃+ iξyỹ + iξz z̃ + iηxp̃x + iηyp̃y + iηz p̃z

)
(B.2.22)

B.3 The position centroid density for a particle on ring

If we only wish to consider the position centroid density for the particle on a sphere we begin with
the unconstrained density

ρc(xc, yc) =

∫
DqDp δ(xc − x0) δ(yc − y0) exp(−S[τ ]/~) (B.3.1)

and applying the method from Chapter 2 retrieve the following density

ρc(xc, yc) =

∫
DϕDpϕ δ(xc − x0) δ(yc − y0) exp(−S[τ ]/~) (B.3.2)

=

∫
DϕDpϕ

∫∫
dξxdξy

2π
e−i(ξxxc+ξyyc)

× exp

(
−1

~

∫ β~

0
dτ

[
H(pϕ, ϕ)− ipϕϕ− i

ηx
β
R cosϕ− iηy

β
R sinϕ

])
(B.3.3)

The proposed QDO corresponding to this position centroid density is then

δ̂c(xc, yc) =

∫∫
dξxdξy

2π
e−i(ξxxc+ξyyc) exp

(
−βĤ + iηxR cos ϕ̂+ iηyR sin ϕ̂

)
(B.3.4)

The classical and quantum Hamiltonians here are

H = Bp2
ϕ + V (ϕ) Ĥ = BĴ2 + V (ϕ̂) (B.3.5)

where the potentials are both 2π-periodic. We now wish to establish that

ρc(xc, yc) = Tr
[
δ̂c(xc, yc)

]
(B.3.6)

We begin with the proposed centroid density, and write the trace as an integral over the angular
position eigenstates

Tr
[
δ̂c(xc, yc)

]
=

∫ 2π

0
dϕ(0) 〈ϕ(0)|δ̂c(xc, yc)|ϕ(0)〉 (B.3.7)

The resolution of the identity for the angular position eigenstates and angular momentum eigen-
states are

1 =

∫ 2π

0
|ϕ〉〈ϕ| dϕ 1 =

∞∑
j=−∞

|j〉〈j| (B.3.8)
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Assuming that we can use the Trotter factorization17 we decompose the exponential of the effective
centroid Hamiltonian into position and momentum dependent parts

Tr
[
δ̂c(xc, yc)

]
=

∫∫
dξxdξy

2π
e−i(ξxxc+ξyyc)

× lim
N→∞

∫ 2π

0
dϕ(0) 〈ϕ(0)|

(
e(−βBĴ2)/Ne(−βV (ϕ̂)+iηxR cos ϕ̂+iηyR sin ϕ̂)/N

)N
|ϕ(0)〉

(B.3.9)

We now insert resolutions of the identity in the form of the angular position eigenstates between
each of the terms in this product, and the resolution of the identity formed by the angular
momentum eigenstates between the exponentials. A general element in this expansion is then

〈ϕ(k+1)|e(−βBĴ2)/N |j(k)〉 〈j(k)|e(−βV (ϕ̂)+iηxR cos ϕ̂+iηyR sin ϕ̂)/N |ϕ(k)〉 (B.3.10)

= exp
[
(−βB~2j2

(k))/N
]

exp
[
(−βV (ϕ(k)) + iηxR cosϕ(k) + iηyR sinϕ(k))/N

]
〈ϕ(k+1)|j(k)〉〈j(k)|ϕ(k)〉

(B.3.11)

= exp
[
(−β[B~2j2

(k) + V (ϕ(k))] + iηxR cosϕ(k) + iηyR sinϕ(k))/N
] 1

2π~
eij(k)(ϕ(k+1)−ϕ(k)) (B.3.12)

We now introduce the parameter ε = β~/N , and recombine the individual terms in the expansion

lim
N→∞

〈ϕ(0)|
(
e(−βBĴ2)/Ne(−βV (ϕ̂)+iηxR cos ϕ̂+iηyR sin ϕ̂)/N

)N
|ϕ(0)〉 (B.3.13)

= lim
N→∞

∫ 2π

0

1

(2π)N
dϕ(0)dϕ(1) . . . dϕ(N−1)

∞∑
j(0)=−∞

. . .

∞∑
j(N−1)=−∞

× exp

[
− ε
~

N−1∑
k=0

(
H(ϕ(k), j(k))− i~j(k)

ϕ(k+1) − ϕ(k)

ε
− iηx

β
R cosϕ(k) − i

ηy
β
R sinϕ(k)

)]
(B.3.14)

For notations sake we will define a functional measure for the angle variables∫
Dϕ = lim

N→∞

N−1∏
k=0

∫ 2π

0
dϕ(k) (B.3.15)

and similarly a compact way of writing the many sums over the discrete angular momentum
variables ∫

Dpϕ = lim
N→∞

1

(2π)N

N−1∏
k=0

∞∑
j(k)=−∞

(B.3.16)

We now make the identification that we are in the limit ε→ 0 and so substitute in the derivative

lim
ε→0

ϕ(k+1) − ϕ(k)

ε
= lim

ε→0

ϕ(τ + ε)− ϕ(τ)

ε
= ϕ̇(k)(τ) (B.3.17)

where we have used an imaginary time unit τ . The sum in the exponential is a Riemann sum and
so can also be replaced by a Riemann integral over the imaginary time unit in the ε → 0 limit,

17We could perform the time-slicing procedure, but the answers are equivalent in this case
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which must run from 0 to β~

lim
ε→0

ε

~

N−1∑
k=0

(
H(ϕ(k), j(k))− i~j(k)

ϕ(k+1) − ϕ(k)

ε
− iηx

β
R cosϕ(k) − i

ηy
β
R sinϕ(k)

)

=
1

~

∫ β~

0
dτ

[
H(ϕ, pϕ)− ipϕϕ̇− i

ηx
β
R cosϕ− iηy

β
R sinϕ

]
(B.3.18)

We have replaced the discrete momentum with the label ~j(k) = pϕ for consistency purposes. It
should not be confused with the classical angular momentum, which is a continuous quantity.
Putting everything back together we have the result

Tr
[
δ̂c(xc, yc)

]
=

∫∫
dξxdξy

2π
e−i(ξxxc+ξyyc)

×
∫
DϕDpϕ exp

[
−1

~

∫ β~

0
dτ

[
H(ϕ, pϕ)− ipϕϕ̇− i

ηx
β
R cosϕ− iηy

β
R sinϕ

]]
(B.3.19)

which is what we wanted to show.

B.3.1 The free particle on a ring position centroid density

We now consider the case of centroid density for the free particle on a ring. We begin by performing
a change of coordinates on the Fourier variables ξx and ξy to polar coordinates as follows

ξx = ξr cos ξθ ξy = ξr sin ξθ (B.3.20)

This allows us to to rewrite the centroid constraint terms as follows

ξx cosϕ+ ξy sinϕ = ξr cos(ϕ− ξθ) (B.3.21)

The Fourier integrals then change to∫ ∞
−∞

∫ ∞
−∞

dξxdξy =

∫ ∞
0

ξrdξr

∫ 2π

0
dξθ (B.3.22)

The integral over one of the ϕ(k) is then∫ 2π

0
eiϕ(k)(j(k)−j(k−1))eiRξr cos(ϕ(k)−ξθ)/Ndϕ(k)

=e−ξθ(j(k)−j(k−1))

∫ 2π−ξθ

−ξθ
eiθ(k)(j(k)−j(k−1))eiRξr cos θ(k)/Ndθ(k) (B.3.23)

where we have made the coordinate change θ(k) = ϕ(k) − ξθ. Since the integrand is 2π-periodic
we can change the limits of integration back to [0, 2π). We will now make use of the following
integral definition of the Bessel function of the first kind, hereafter called the Bessel function,

Jn(z) =
1

2πin

∫ 2π

0
ei(nφ+z cosφ)dφ (B.3.24)
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The integral over θ(k) may be readily evaluated to yield

e−ξθ(j(k)−j(k−1))

∫ 2π

0
eiθ(k)(j(k)−j(k−1))eiRξr cos θ(k)/Ndθ(k)=(ie−iξθ)(j(k)−j(k−1))2πJ(j(k)−j(k−1))(Rξr/N)

(B.3.25)
The phase factor for each link will cancel, even at the end points due to the cyclic property of the
trace. The path integral is then independent of the Fourier angle, so we can perform the integral
over ξθ. First we also rewrite the centroid phase space coordinates in polar coordinate form

xc = rc cosϕc yc = rc sinϕc (B.3.26)

so we need to evaluate the following integral∫ 2π

0
e−ξrrc(cos ξθ cosϕc+sin ξθ sinϕc)dξθ =

∫ 2π

0
e−ξrrc cos(ξθ−ϕc) = 2πJ0(−rcξrrc) ≡ 2πJ0(rcξr)

(B.3.27)

The centroid density is therefore independent of the angular coordinate, as would be expected for
the free particle. The centroid density may now be written in the following form

ρc(rc) = lim
N→∞

∫ ∞
0
dξr ξr J0(rcξr)

∞∑
j(N)=−∞

δj(0)j(N)

N−1∏
k=0

∞∑
j(k)=−∞

e
−βB~2j2

(k)
/N
J(j(k+1)−j(k))(Rξr/N)


(B.3.28)

= lim
N→∞

∫ ∞
0
dξr ξr J0(rcξr)

∞∑
j(N)=−∞

δj(0)j(N)

N−1∏
k=0

∞∑
j(k)=−∞

e
−βB~2j2

(k)
/N
J(j(k)−j(k+1))(Rξr/N)


(B.3.29)

where the Kronecker delta is required to ensure that the k = 0 and k = N angular momentum
variables are identical. We can simplify this form in the high and low temperature limits.

The low temperature limit

In the low temperature limit the following term

lim
β→∞

exp

[
− 1

N
βB~2

N−1∑
k=0

j2
(k)

]
(B.3.30)

is only non-zero when the sum of the angular momentum variables is zero, which is only the case
when each term j(k) is zero since they can only take non-negative values. Only the j(k) = 0 term
from each sum will survive and we can immediately write the low temperature limit as

lim
β→∞

ρc(rc) =

∫ ∞
0
dξr J0(rcξr) lim

N→∞

N−1∏
k=0

J0(Rξr/N) (B.3.31)

The Bessel functions can also be eliminated in this limit by repeated use of

lim
x→0

J0(x) = lim
y→∞

J0(1/y) = 1 (B.3.32)

67



So the product is of Bessel functions merely evaluates to one. We are then left to evaluate the
Hankel transform

lim
β→∞

ρc(rc) =

∫ ∞
0
dξr J0(rcξr) =

δ(rc)

2πrc
(B.3.33)

Converting back to Cartesian centroid coordinates gives us the equivalent high temperature limit

lim
β→∞

ρc(xc, yc) = δ(xc)δ(yc) (B.3.34)

which is only non-zero at the origin, x2
c + y2

c = 0.

The high temperature limit

In the high temperature limit it can be seen that the exponential terms will go to one, so the
position centroid density may be written as follows

lim
β→0

ρc(rc) = lim
N→∞

∫ ∞
0
dξr ξr J0(ξrrc)

∞∑
j(N)=−∞

δj(0)j(N)

N−1∏
k=0

∞∑
j(k)=−∞

J(j(k)−j(k+1))(Rξr/N)


(B.3.35)

We can evaluate the product the sums of products of Bessel functions using the Bessel addition
theorem

Jn(x+ y) =

∞∑
m=−∞

Jm(x)Jn−m(y) (B.3.36)

However, we must first reindex our infinite sums to use this theorem

∞∑
j(k)=−∞

J(j(k)−j(k+1))(ξrR/N)J(j(k−1)−j(k))(ξrR/N)

=
∞∑

h(k)=−∞
Jh(k)(Rξr/N)J(j(k−1)−j(k+1)−h(k))(Rξr/N)

= J(j(k−1)−j(k+1))(2Rξr/N) (B.3.37)

In this way the product of N Bessel functions may be condensed to a single Bessel function by
evaluating N − 1 sums. Due to the cyclic nature of the indices, upon performing the N − 1 sum
the result is a Bessel function of order 0. We are therefore left with a single infinite sum which
cannot be eliminated

lim
β→0

ρc(rc) = lim
N→∞

∫ ∞
0
dξr ξr J0(rcξr)

∞∑
j(0)=−∞

J0(NRξr/N) (B.3.38)

=
∞∑

j=−∞

∫ ∞
0
dξr ξr J0(rcξr) J0(Rξr) (B.3.39)

=
∞∑

j=−∞

1

2πrc
δ(rc −R) (B.3.40)

so that we have an infinite number of delta functions located at the radius of the ring.
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B.4 Correlation functions for the free particle on a ring

B.4.1 Classical system

We wish to compare the β → 0 limit of the centroid dipole autocorrelation function for the free
particle on a ring with the exact result. The classical Hamiltonian for this system is

H =
p2
ϕ

2mR2
≡ Bp2

ϕ (B.4.1)

and we can then determine the exact time evolution of the dipole moment cosϕ(t) using the
following system of differential equations and initial conditions

d

dt
ϕ(t) =

pϕ(t)

mR2
, ϕ(0) = ϕ

d

dt
pϕ(t) = 0, pϕ(0) = pϕ (B.4.2)

Solving these yields the solution
ϕ(t) =

pϕ
mR2

t+ ϕ (B.4.3)

and so the equation for the time evolution of the dipole moment is

cosϕ(t) = cos
( pϕ
mR2

t
)

cos(ϕ)− sin
( pϕ
mR2

t
)

sin(ϕ) (B.4.4)

The classical dipole autocorrelation function is then given by integration over the entire phase
space

〈cosϕ cosϕ(t)〉 =

∫ ∞
−∞

dpϕ

∫ 2π

0
dϕ e−βp

2
ϕ/2mR

2
cosϕ cosϕ(t)∫ ∞

−∞
dpϕ

∫ 2π

0
dϕ e−βp

2
ϕ/2mR

2

(B.4.5)

=
1

2
exp

(
− t2

2βmR2

)
=

1

2
exp

(
−Bt

2

β

)
(B.4.6)

Here we can see that the system decorrelates more rapidly with an increase in temperature, and
in the β → 0 limit we have

lim
β→0
〈cosϕ cosϕ(t)〉 =

{
1/2 if t = 0

0 if t > 0
(B.4.7)

B.4.2 Quantum system

The Hamiltonian operator for the free particle on a ring is

Ĥ =
1

2mR2
Ĵ2 ≡ BĴ2 (B.4.8)

The partition function for this Hamiltonian is

Z = Tr
[
e−βBĴ

2
]

=

∞∑
j=−∞

e−βBj
2

= ϑ3

(
0, e−βB

)
(B.4.9)
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where

ϑ3(z, q) :=
∞∑

j=−∞
qj

2
e2ijz (B.4.10)

is one of the Jacobi theta functions. The dipole autocorrelation function for this system is

〈cos ϕ̂ cos ϕ̂(t)〉 =
1

Z
Tr
[
e−βBĴ

2
cos ϕ̂eiBĴ

2t/~ cos ϕ̂e−iBĴ
2t/~
]

(B.4.11)

=
1

4Z

∞∑
j=−∞

e−βBj
2 〈j|(Û + Û †)eiBĴ

2t/~(Û + Û †)|j〉 e−iBj2t/~ (B.4.12)

=
1

4Z

∞∑
j=−∞

e−βBj
2
(
eiB(j+1)2t/~ + eiB(j−1)2t/~

)
e−iBj

2t/~ (B.4.13)

=
1

4Z
eiBt/~

∞∑
j=−∞

e−βBj
2
(
e2iBjt/~ + e−2iBjt/~

)
(B.4.14)

Using the fact that both sums are identical we can combine them to retrieve

〈cos ϕ̂ cos ϕ̂(t)〉 =
1

2Z
eiBt/~

∞∑
j=−∞

e−βBj
2
e2iBjt/~ (B.4.15)

=
1

2
eiBt/~

ϑ3

(
Bt/~, e−βB

)
ϑ3

(
0, e−βB

) (B.4.16)

The Kubo transformed dipole autocorrelation function for this system is

〈cos ϕ̂ cos ϕ̂(t)〉(K) =
1

Z
Tr

[∫ 1

0
du e−βBĴ

2
euBĴ

2
cos ϕ̂e−uBĴ

2
eiBĴ

2t/~ cos ϕ̂e−iBĴ
2t/~
]

(B.4.17)

=
1

4Z

∞∑
j=−∞

∫ 1

0
du e−βBj

2
e(u−it/~)Bj2 〈j|(Û + Û †)e−uBĴ

2
eiBĴ

2t/~(Û + Û †)|j〉

(B.4.18)

=
1

4Z

∞∑
j=−∞

∫ 1

0
du e−βBj

2
e(u−it/~)Bj2

(
e−(u−it/~)B(j+1)2 + e−(u−it/~)B(j−1)2

)
(B.4.19)

=
1

4Z
eiBt/~

∞∑
j=−∞

e−βBj
2

(
e2iBjt/~ 1− e−βB(2j+1)

βB(2j + 1)
+ e−2iBjt/~ 1− e−βB(−2j+1)

βB(−2j + 1)

)
(B.4.20)

Since both sums are again identical we can combine them

〈cos ϕ̂ cos ϕ̂(t)〉(K) =
1

2Z
eiBt/~

∞∑
j=−∞

e−βBj
2
e2iBjt/~ 1− e−βB(2j+1)

βB(2j + 1)
(B.4.21)

We now wish to compare these two quantum autocorrelation functions to the classical autocorre-
lation function in the β → 0 limit. This is equivalent to the e−βB → 1 limit, and so the following
limit of the Jacobi theta function will prove useful

lim
q→1

ϑ3(z, q) = ш(z/π) (B.4.22)
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We define the Shah function, also known as the Dirac comb, as

ш(t) :=

∞∑
j=−∞

δ(t− j) =

∞∑
j=−∞

e2πikt (B.4.23)

where it follows that ш(0) = δ(0) and therefore the limit of the partition function is δ(0). The
Shah function has the useful sampling property

f(t)ш(t) =
∞∑

j=−∞
f(j)δ(t− j) (B.4.24)

Although the appearance of the Dirac delta distribution in the limits is problematic, we will still
be able to derive physical meaning from the results. The high temperature limit of the dipole
autocorrelation function is

lim
β→0
〈cos ϕ̂ cos ϕ̂(t)〉 =

1

2

ш (Bt/π~)

δ(0)
(B.4.25)

=
1

2δ(0)
eiBt/~

∞∑
j=−∞

δ(j −Bt/π~) (B.4.26)

Since the function is only non-zero when Bt/π~ is an integer, the complex exponential will only
ever be non-zero when eitB/~ = ±1. Assuming that the delta functions will cancel at these points
allows us to retrieve the following limiting case for this correlation function

lim
β→0
〈cos ϕ̂ cos ϕ̂(t)〉 =


1/2 if Bt/π~ is even
−1/2 if Bt/π~ is odd
0 otherwise

(B.4.27)

We now compute the high temperature limit of the Kubo-transformed correlation function

lim
β→0
〈cos ϕ̂ cos ϕ̂(t)〉(K) =

1

2δ(0)
eiBt/~

∞∑
j=−∞

e2iBjt/~ (B.4.28)

=
1

2δ(0)
eiBt/~

∞∑
j=−∞

δ(j −Bt/π~) (B.4.29)

and so the limit is identical to the regular correlation function

lim
β→0
〈cos ϕ̂ cos ϕ̂(t)〉(K) =


1/2 if Bt/π~ is even
−1/2 if Bt/π~ is odd
0 otherwise

(B.4.30)

We note that even in the high temperature limit the classical and quantum cases of the free
particle on a ring are different, with the quantum version experiencing periodic recoherence. We
have not ruled out that this result is a product of some error when taking the limit.
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Appendix C

Projections

C.1 Coherent state centroid density

Here we derive the centroid density when the projection is onto a coherent state of the QHO.
Recall that the definition of the QHO coherent states is

|z〉 := e−
|z|2
2

∞∑
n=0

zn√
n!
|n〉 = e−

|z|2
2 ezâ

† |0〉 (C.1.1)

where z is any complex number. We first split the operator exponential of the effective centroid
Hamiltonian

Ĥ ′ := Ĥ − i ξ
β
q̂ − i η

β
p̂ (C.1.2)

into a product of operator exponentials using the results from section C.3, specifically (C.3.4)
where the operators are reordered with (C.3.44)

e−β~ω(N̂+ 1
2)+iν∗â+iνâ† = e

−|ν|2 e
−β~ω+β~ω−1

(β~ω)2 e
iν e
−β~ω−1
β~ω â†

e−β~ω(N̂+ 1
2)e

iν e
−β~ω−1
β~ω â (C.1.3)

where we have defined

ν :=

√
~

2mω
(ξ + imωη) (C.1.4)

To work out the coherent state density we will need to use the fact that the coherent state is
the right eigenvector for the annihilation operator, and hence the left eigenvector for the creation
operator

â |z〉 = z |z〉 〈z| â† = 〈z| z∗ 〈z|N̂ |z〉 = |z|2 ≡ |〈n|z〉|2 (C.1.5)

It is also useful to show that

〈z|eλN̂ |z〉 = e−|z|
2
∞∑

m,n=0

αn(α∗)m√
n!m!

〈m|eλN̂ |n〉 (C.1.6)

= e−|z|
2
∞∑
n=0

(|α|2eλ)n

n!
(C.1.7)

= exp
(
−|z|2

(
1− eλ

))
(C.1.8)
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The diagonal matrix elements of (C.1.3) in the coherent state representation can now be worked
out

〈z|e−βĤ′ |z〉 = e
−|ν|2 e

−β~ω+β~ω−1

(β~ω)2 〈z|eiν
1−e−β~ω
β~ω â†

e−β~ω(N̂+ 1
2)e

iν 1−e−β~ω
β~ω â|z〉 (C.1.9)

= e−β~ω/2e
−|ν|2 e

−β~ω+β~ω−1

(β~ω)2 e
iν 1−e−β~ω

β~ω z∗
e
iν 1−e−β~ω

β~ω z 〈z|e−β~ωN̂ |z〉 (C.1.10)

= e−β~ω/2e
−|ν|2 e

−β~ω+β~ω−1

(β~ω)2 e
i 1−e

−β~ω
β~ω (νz∗+ν∗z)

e−|z|
2(1−e−β~ω) (C.1.11)

Reintroducing the original parameters, the matrix element is

〈z|e−βĤ′ |z〉 =e−β~ω/2e−(1−e−β~ω)|z|2e
−( ~

2mω
ξ2+mω~

2
η2) e

−β~ω+β~ω−1

(β~ω)2

× eiξ
√

~
2mω

1−e−β~ω
β~ω (z+z∗)

e
iη
√
mω~
2

1−e−β~ω
β~ω i(z∗−z) (C.1.12)

Ignoring the constant term e−β~ω/2e−(1−e−β~ω)|z|2 , we can now perform the Fourier integrals∫∫
~
dξ dη

2π
e
−( ~

2mω
ξ2+mω~

2
η2) e

−β~ω+β~ω−1

(β~ω)2 e
−iξ(xc−

√
~

2mω
1−e−β~ω
β~ω (z+z∗))

e
−iη(pc−

√
mω~
2

1−e−β~ω
β~ω i(z∗−z))

(C.1.13)

=
(β~ω)2

e−β~ω + β~ω − 1
e
− (β~ω)2

4(e−β~ω+β~ω−1)

[(√
2mω
~ xc− 1−e−β~ω

β~ω (z+z∗)

)2

+

(√
2

mω~pc−
1−e−β~ω
β~ω i(z∗−z)

)2
]

(C.1.14)

=
(β~ω)2

e−β~ω + β~ω − 1
e
− (β~ω)2

e−β~ω+β~ω−1

[(
Re(ac)− 1−e−β~ω

β~ω Re(z)

)2

+

(
Im(ac)− 1−e−β~ω

β~ω Im(z)

)2
]

(C.1.15)

=
(β~ω)2

e−β~ω + β~ω − 1
e
−|z|2

(
(1−e−β~ω)2

e−β~ω+β~ω−1

)
e
− (β~ω)2

e−β~ω+β~ω−1
|ac|2

e
β~ω(1−e−β~ω)

e−β~ω+β~ω−1
(za∗c+z∗ac) (C.1.16)

(C.1.17)

where we have substituted the position and momentum centroid symbols for a complex ladder
operator centroid symbol

ac :=

√
mω

2~

(
qc +

i

mω
pc

)
(C.1.18)

Subbing the constant term back into (C.1.16) we can simplify further and so retrieve an expression
for the coherent state projected centroid density

ρ(z)
c (ac, a

∗
c)

=
(β~ω)2e−β~ω/2

e−β~ω + β~ω − 1
e−(1−e−β~ω)|z|2e

−|z|2
(

(1−e−β~ω)2

e−β~ω+β~ω−1

)
e
− (β~ω)2

e−β~ω+β~ω−1
|ac|2

e
β~ω(1−e−β~ω)

e−β~ω+β~ω−1
(za∗c+z∗ac)

(C.1.19)

=
β~ω

sinh(β~ω/2)

1

1 + α
exp

(
− 2

1 + α
|z|2
)

exp

(
−
(
β~ω +

2

1 + α

)
|ac|2

)
exp

(
2

1 + α
(za∗c + z∗ac)

)
(C.1.20)

=
β~ω

sinh(β~ω/2)

1

1 + α
exp

(
−β~ω|ac|2

)
exp

(
− 2

1 + α
|z − ac|2

)
(C.1.21)
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We have introduced a new parameter α into our final results to better relate the results to those
from [21] where it appears frequently to compactify the results obtained for the QHO

α := coth

(
β~ω

2

)
− 2

β~ω
(C.1.22)

We can write this in the usual centroid symbols as

ρ(z)
c (qc, pc)=

β~ω
sinh(β~ω/2)

1

1 + α
exp

(
− 2

1 + α
|z|2
)

exp

(
−
(
β~ω +

2

1 + α

)(
mω

2~
q2
c +

1

2mω~
p2
c

))
× exp

(
2

1 + α

(√
2mω

~
Re(z)qc +

√
2

mω~
Im(z)pc

))
(C.1.23)

where we can see that the distribution is a Gaussian centred at the amplitude of the coherent
state and is entirely real and positive. Recalling that the coherent states form an over complete
basis, the resolution of the identity is

1 =
1

π

∫
d2z |z〉 〈z| , where d2z = dRe(z) d Im(z) (C.1.24)

Integrating over all coherent state centroid densities gives us

1

π

∫
d2zρ(z)

c (qc, pc)

=
β~ω

π sinh(β~ω/2)

1

1 + α

(√
π(1 + α)

2

)2

e
1+α
8 ( 2

1+α)
2
( 2mω

~ q2c+ 2
mω~p

2
c)e−(β~ω+ 2

1+α)(mω2~ q
2
c+ 1

2mω~p
2
c)

(C.1.25)

=
β~ω

2 sinh(β~ω/2)
exp

(
−β~ω

(
mω

2~
q2
c +

1

2mω~
p2
c

))
(C.1.26)

which is indeed to usual centroid distribution for the QHO.

C.2 Number state representation centroid density

We will derive the number eigenstate representation of the Fourier transform of the centroid
density

ρ(n,m)
c (qc, pc) :=

∫ ∞
−∞

∫ ∞
−∞

~
dξ dη

2π
〈n|eβĤ′ |m〉 (C.2.1)

To do this we will use the diagonal elements of the coherent state representation, which was
derived in the previous section and the fact that the number eigenstate representation of an
arbitrary operator, Â, may be obtained from the coherent state representation via the following
relation [39, pp. 102]

〈n|Â|m〉 =
1√
n!m!

∂n

∂z∗n
∂m

∂zm

(
e|z|

2 〈z|Â|z〉
)
|z=0 (C.2.2)

Subbing in the result from the previous section this then becomes

ρ(n,m)
c =

1√
n!m!

β~ω
sinh(β~ω/2)

1

1 + α
e−(β~ω+ 2

1+α
)|ac|2 ∂n

∂z∗n
∂m

∂zm

(
e−zz

∗(−1+ 2
1+α)e

2
1+α

(za∗c+z∗ac)
) ∣∣∣∣∣

z=0
(C.2.3)
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For temporary compactness when taking the derivatives, we define two intermediate constants

µ =
2

1 + α
λ = −1 +

2

1 + α
=

1− α
1 + α

(C.2.4)

and the expression we differentiate becomes

∂n

∂z∗n
∂m

∂zm

(
e−zz

∗λeµ(za∗c+z∗ac)
) ∣∣∣∣∣

z=0

(C.2.5)

We make a useful change of coordinates to retrieve

λ
m+n

2 e
µ2

λ
|ac|2 ∂n

∂Ξ∗n
∂m

∂Ξm
e−Ξ∗Ξ

∣∣∣∣∣
Ξ=− µ√

λ
ac

where Ξ =
√
λz − µ√

λ
ac (C.2.6)

which we immediately replace with the 2D Laguerre polynomial, defined as follows [40]

Ln,m(z, z∗) = (−1)n+mezz
∗ ∂n

∂z∗n
∂m

∂zm
e−zz

∗
(C.2.7)

= (−1)mm! zn−m L(n−m)
m (zz∗) (C.2.8)

= (−1)nn! z∗m−n L(m−n)
n (zz∗) (C.2.9)

where L(a)
k (x) is the associated Laguerre polynomial. It follows that (C.2.6) may be written as

(−1)nm!λ
m+n

2 e
µ2

λ
|ac|2e−ΞΞ∗Ξn−mL(n−m)

m (ΞΞ∗)

∣∣∣∣∣
Ξ=− µ√

λ
ac

=(−1)nm!λ
m+n

2

(
− µ√

λ
ac

)n−m
L(n−m)
m

(
µ2

λ
|ac|2

)
(C.2.10)

Replacing the two constants (C.2.3) now becomes

ρ(n,m)
c =

√
m!

n!

β~ω
sinh(β~ω/2)

(−1)m

1 + α

(
1− α
1 + α

)m( 2

1 + α
ac

)n−m
e−(β~ω+ 2

1+α
)|ac|2L(n−m)

m

(
4

1− α2
|ac|2

)
(C.2.11)

=

√
n!

m!

β~ω
sinh(β~ω/2)

(−1)n

1 + α

(
1− α
1 + α

)n( 2

1 + α
a∗c

)m−n
e−(β~ω+ 2

1+α
)|ac|2L(m−n)

n

(
4

1− α2
|ac|2

)
(C.2.12)

In the case where we have some general projection represented in the number eigenstate basis as

P̂ =
∞∑

m,n=0

cm,n |m〉 〈n| (C.2.13)

then the associated state projected centroid density is

ρc(qc, pc) =

∞∑
m,n=0

cm,nρ
(n,m)
c (qc, pc) (C.2.14)
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Number eigenstate centroid projection

In the case of projection onto a single number eigenstate the density reduces to

ρ(n)
c (qc, pc) =

β~ω
sinh(β~ω/2)

(−1)n

1 + α
exp

[
−
(
β~ω +

2

1 + α

)
|ac|2

](
1− α
1 + α

)n
Ln

(
4

1− α2
|ac|2

)
(C.2.15)

Calculating the high temperature limit gives

lim
β→0

ρ(n)
c (qc, pc) = (−1)n exp

[
−2

(
p2
c

1

2mω~
+ q2

c

mω

2~

)]
Ln

[
4

(
p2
c

1

2mω~
+ q2

c

mω

2~

)]
(C.2.16)

and here we immediately notice the relation

lim
β→0

ρ(n)
c (qc, pc) = 2π~Wn(qc, pc) (C.2.17)

where Wn(qc, pc) is the Wigner function for the nth eigenstate of the QHO. To determine the low
temperature limit we note that the α parameter tends to 1 and so in this case all state projected
centroid densities are 0 except for the ground state, which is simply a Gaussian

lim
β→∞

ρ(0)
c = exp

[
− 1

2~

(
mωq2

c +
1

mω
p2
c

)]
(C.2.18)

Integration of this over the centroid phase space yields a partition function of 1 as is expected
in this limit. Summation over all the state projected centroid densities should yield the expected
density for the QHO. First we make use of the generating function for the Laguerre polynomials

∞∑
n=0

tnLn(x) =
1

1− t
e−

tx
1−t (C.2.19)

We therefore have that t =
α− 1

α+ 1
so that 1− t =

2

α+ 1
. Using this we can write

∞∑
n=0

ρ(n)
c (qc, pc) =

β~ω
sinh(β~ω/2)

1

1 + α
e−(β~ω+ 2

1+α)|ac|2
∞∑
n=0

(
α− 1

α+ 1

)n
Ln

[
4

1− α2
|ac|2

]
(C.2.20)

=
β~ω

sinh(β~ω/2)

1

1 + α

(
α+ 1

2

)
e−(β~ω+ 2

1+α)|ac|2e
−(α+1

2 )(α−1
α+1 )

(
4

1−α2
|ac|2

)
(C.2.21)

=
β~ω

2 sinh(β~ω/2)
e−β~ω|ac|

2
(C.2.22)

which is indeed the canonical centroid density for the QHO.

C.3 Splitting the operator exponential

When obtaining analytic results for the quantum harmonic oscillator, it is useful to have a more
workable form of the operator exponential

e−β(p̂2/2m+mω2q̂2/2)+iξq̂+iηp̂ (C.3.1)
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which we rewrite as
e−β~ω(N̂+ 1

2
)+iν∗â+iνâ† (C.3.2)

where we redefine the Fourier variables as

ν :=

√
~

2mω
(ξ + imωη) (C.3.3)

Our goal is then to prove that the following equality is true

e−β~ωN̂+iν∗â+iνâ† = e
−|ν|2 e

−β~ω+β~ω−1

(β~ω)2 e−β~ωN̂e
iν e

β~ω−1
β~ω â†

e
iν∗ 1−e

−β~ω
β~ω â (C.3.4)

To accomplish this an expansion related to the Baker-Campbell-Hausdorf formula known as the
Zassenhaus formula will be used. This states that given two objects X and Y which generate a
Lie algebra L(X,Y ), the exponential eλ(X+Y ) may be decomposed as

eλ(X+Y ) = eλXeλY
∞∏
n=2

eλ
nCn(X,Y ) (C.3.5)

where λ ∈ C and Cn(X,Y ) ∈ L(X,Y ) is a homogeneous Lie polynomial in X and Y and of degree
n. For clarity, a completely general form of (C.3.2) will be used so that we instead have to solve

eλN̂+qâ+râ† = eqr
1+λ−eλ
λ2 eλN̂e

1−e−λ
λ

râ†e
eλ−1
λ

qâ (C.3.6)

where λ, q, r ∈ C. Using the QDO creation and annihilation operators as the base, a more
convenient set of operators is defined

X := N̂ Y :=
qâ+ râ†

λ
Z :=

−qâ+ râ†

λ
(C.3.7)

where despite the lack of “hats” the objects are understood to be operators. Recalling the known
commutation relations for the QDO creation and annihilation operators

[N̂ , â] = −â [N̂ , â†] = â† [â, â†] = 1 (C.3.8)

and taking the Lie bracket [·, ·] to be the commutator, the Lie algebra generated by X and Y is
therefore

[X,Y ] = Z [X,Z] = Y [Y,Z] =
2qr

λ2
:= κ (C.3.9)

The Lie polynomials in the Zassenhaus expansion for this group of operators are

C2m = − 1

(2m)!
Z C2m+1 =

1

(2m+ 1)!
Y + µ2m+1κ (C.3.10)

where µ2m+1 is a constant that is only recursively dependent on the coefficients for the operator
terms in the Lie polynomials. To show that these statements are true we use the recursive
definition for the Lie polynomials from [41]

Cn+1 =
1

n+ 1

∑
(i0,i1,...,in)∈In

(−1)i0+···+in

i0!i1! · · · in!
adinCn · · · adi2C2

adi1Y adi0XY (C.3.11)
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In is defined as the set of (n+ 1)-tuples of non-negative integers with the following properties

i0 + i1 + 2i2 + · · ·+ nin = n (C.3.12)
i0 + i1 + 2i2 + · · ·+ jij ≥ j + 1 for j = 0, . . . , n− 1 (C.3.13)
im = 0 if m > n/2 (C.3.14)

Here adnA is referred to as the adjoint representation of the Lie algebra, which may be defined in
terms of the Lie bracket as follows

adnAB=[A, adn−1
A B] ad1

AB=[A,B] ad0
AB=B adnA+kB=adnAB adnkAB=knadnAB

(C.3.15)
where A and B are arbitrary operators, n is a non-negative integer, and k is a scalar. In our case
these terms will simply generate a series of nested commutators. We will prove the statements
(C.3.10) using strong induction with the recursive definition of the Lie polynomials (C.3.11). We
first prove for the even and odd order Lie polynomial base cases, n = 2, 3. According to (C.3.10)
these should be

C2 = −1

2
Z C3 =

1

6
Y + µ3κ (C.3.16)

To show that (C.3.11) is consistent for the even base case, we first determine that the set of tuples
is I1 = {(1, 0)}. We then have

C2 =
1

2

∑
(i0,i1)∈I1

(−1)i0+i1

i0!i1!
adi1Y adi0XY (C.3.17)

= −1

2

1

1!0!
ad0

Y ad1
XY (C.3.18)

= −1

2
[X,Y ] = −1

2
Z (C.3.19)

which is in agreement with the base case. Next for the odd base case, the set of tuples is I2 =
{(2, 0, 0), (1, 1, 0)}. The Lie polynomial is then

C3 =
1

3

∑
(i0,i1,i2)∈I2

(−1)i0+i1+i2

i0!i1!i2!
adi2C2

adi1Y adi0XY (C.3.20)

=
1

3

(
1

2!0!0!
ad0

C2
ad0

Y ad2
XY +

1

1!1!0!
ad0

C2
ad1

Y ad1
XY

)
(C.3.21)

=
1

3

(
1

2
ad1

XZ + ad1
Y Z

)
(C.3.22)

=
1

6
Y +

1

3
κ (C.3.23)

which is agreement with the base case, where it has been determined that µ3 = 1/3. Now that
we know the base case is in agreement, we assume (C.3.10) works for all Ck, k < n and must now
prove it holds for the next greatest even integer 2m ≥ n and odd integer 2l + 1 ≥ n. We begin
with the even case. Using the properties (C.3.15) and the inductive hypothesis, the even order
Lie polynomial may be written as

C2m =
1

2m

∑
I2m−1

(−1)i0+···i2m−1

i0! · · · i2m−1!
ad

i2m−1
1

(2m−1)!
Y
· · · adi2− 1

2
Z

adi1Y adi0XY (C.3.24)

=
1

2m

∑
I2m−1

(−1)i0+
∑m
k=1 i2k−1

i0! · · · i2m−1!

(
2m−1∏
k=1

(
1

k!

)ik)
ad

i2m−1

Y · · · adi2Z adi1Y adi0XY (C.3.25)
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We now examine the two cases which can arise when i0 is even or odd:

• If i0 is odd then adi0XY = Z. In this case the only non-vanishing terms are those where
i2k = 0,∀ 2k < 2m because the only terms which may appear in this Lie polynomial are
proportional to Z or κ since we know that adrZZ = 0 and adrZκ = 0 for some non-negative
integer r. The terms in the Lie polynomial with i0 odd are then

1

2m

(−1)i0+
∑m
k=1 i2k−1

i0!i1!i3! · · · i2m−1!

(
m∏
k=1

(
1

(2k − 1)!

)i2k−1
)

ad
∑m
k=1 i2k−1

Y Z (C.3.26)

There can be at most one non-zero commutator with Y because ad0
Y Z = Z and ad1

Y Z = κ
while adrY Z = 0 for r ≥ 2, so we have

∑m
k=1 i2k−1 = {0, 1}. If the sum is 1 then only one

of the i2k−1 terms would be non-zero and equal to unity. From (C.3.12) we require that
i0 + (2k − 1) = 2m− 1, so this tuple is not possible since 2k − 1 and i0 are both odd and
cannot sum to an odd number. If the sum is 0, then only the i0 term is non-zero and by
(C.3.12) we must have that i0 = 2m−1. Therefore, when i0 is odd there is only one non-zero
term

1

2m

(−1)i0+0

(2m− 1)!0! · · · 0!

(
m∏
k=2

(
1

(2k − 1)!

)0
)

ad0
Y Z = − 1

2m!
Z (C.3.27)

• If i0 is even then adi0XY = Y . In this case the only non-vanishing terms are those with
i2k−1 = 0,∀ 2k − 1 < 2m because the only terms which may appear in this Lie polynomial
are proportional to Y or κ since we know that adrY Y = 0 and adrY κ = 0. The terms in the
Lie polynomial with i0 even are then

1

2m

(−1)i0

i0!i2!i4! · · · i2m−2!

(
m−1∏
k=1

(
1

(2k)!

)i2k)
ad
∑m−1
k=1 i2k

Z Y (C.3.28)

At most only one commutator with Z will be non-zero because ad0
ZY = Y and ad1

ZY = −κ
while adrZY = 0 for r ≥ 2, so we have

∑m−1
k=1 i2k = {0, 1}. If the sum is 0 then i0 = 2m− 1

which generates an invalid tuple since i0 is even. If the sum is 1 then only one i2k is non-zero
and it is equal to 1. However by (C.3.12) we must have i0 + k = 2m − 1 which is again
not possible since i0 and k are even. It follows that there are no non-zero terms in the Lie
polynomial when i0 is even.

The only non vanishing term in the Lie polynomial corresponds to the tuple where i0 = 2m − 1
and all others are 0. The Lie polynomial C2m is therefore

C2m = − 1

2m!
Z (C.3.29)

and so we have proved (C.3.10) for the even order Lie polynomials so we now move to the odd
case. Using the properties (C.3.15) and the inductive hypothesis, the odd order Lie polynomial
may be written as

C2l+1 =
1

2l + 1

∑
I2l

(−1)i0+···i2l

i0! · · · i2l!
adi2l− 1

2l!
Z

ad
i2l−1

1
(2l−1)!

Y
· · · adi2− 1

2
Z

adi1Y adi0XY (C.3.30)

=
1

2l + 1

∑
I2l

(−1)i0+
∑l
k=1 i2k−1

i0! · · · i2l!

(
2l∏
k=1

(
1

k!

)ik)
adi2lZ ad

i2l−1

Y · · · adi2Z adi1Y adi0XY (C.3.31)

Again we examine the two cases which can arise when i0 is even or odd:
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• If i0 is odd then adi0XY = Z. In this case the only non-vanishing terms are those where
i2k = 0, ∀ 2k < 2l − 1 because the only terms which may appear in this Lie polynomial are
proportional to Z or κ since we know that adrZZ = 0 and adrZκ = 0. The terms in the Lie
polynomial with i0 odd are then

1

2l + 1

(−1)i0+
∑l
k=1 i2k−1

i0!i1!i3! · · · i2l−1!

(
l∏

k=1

(
1

(2k − 1)!

)i2k−1
)

ad
∑l
k=1 i2k−1

Y Z (C.3.32)

At most only one commutator with Y will be non-zero because ad0
Y Z = Z and ad1

Y Z = κ
while adrY Z = 0 for r ≥ 2, so we have

∑l
k=1 i2k−1 = {0, 1}. If the sum is 0, then by (C.3.12)

we have i0 = 2l but this contradicts the assumption that i0 is odd so this is not a valid
tuple. If the sum is 1 then one other term i2k−1 will be equal to 1, and in this case we
have i0 + (2k − 1) = 2l which is possible since both i0 and 2k − 1 are odd. In this case the
only non-zero terms for odd i0 are those which are proportional to κ since we must have
i2k−1 = 1. We must also recall that by (C.3.14) that i2k−1 = 0 if (2k − 1) > l, so that the
non-zero term in this case is

κ

2l + 1

b l2c∑
k=1

1

(2l − 2k + 1)!(2k − 1)!
(C.3.33)

• If i0 is even then adi0XY = Y . In this case the only non-vanishing terms are those where
i2k−1 = 0,∀ 2k−1 < 2l−1 because the only terms which may appear in this Lie polynomial
are proportional to Y or κ since we know that adrY Y = 0 and adrY κ = 0. The terms in the
Lie polynomial with i0 even are then

1

2l + 1

(−1)i0

i0!i2!i4! · · · i2l!

(
l∏

k=1

(
1

(2k)!

)i2k)
ad
∑l
k=1 i2k

Z Y (C.3.34)

At most only one commutator with Z will be non-zero because ad0
ZY = Y and ad1

ZY = −κ
while adrZY = 0 for r ≥ 2, so we have

∑l
k=1 i2k = {0, 1}. If the sum is 0, then by (C.3.12)

we have i0 = 2l which is possible since i0 is even making this a valid tuple. If the sum is 1
then one other term i2k will be equal to 1, and in this case we have i0 + 2k = 2l which is
possible since both i0 and 2k are even. There will therefore be one term proportional to Y
where i0 = 2l! and a number proportional to κ where i0 = 2(l − k) and where according to
(C.3.14) that i2k = 0 if 2k > l. The non-zero terms in this case are

1

(2l + 1)!
Y − κ

2l + 1

d l2e−1∑
k=1

1

(2l − 2k)!(2k)!
(C.3.35)

We can now combine the non-vanishing terms from above to retrieve C2l+1

C2l+1 =
1

(2l + 1)!
Y − κ

2l + 1

d l2e−1∑
k=1

1

(2l − 2k)!(2k)!
+

κ

2l + 1

b l2c∑
k=1

1

(2l − 2k + 1)!(2k − 1)!
(C.3.36)

=
1

(2l + 1)!
Y − κ

2l + 1

l∑
k=1

(−1)k

(2l − k)!k!
(C.3.37)

=
1

(2l + 1)!
Y +

κ

2l + 1

(
(−1)l(2l)!− 2(l!)2

2(l!)2(2l)!

)
≡ 1

(2l + 1)!
Y + µ2l+1κ (C.3.38)
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and so we have proved (C.3.10) for the odd order Lie polynomials. The formula for µ2l+1 is not
dependent on previous terms so we cannot say that it is correct using induction. We now have
the following formula for the operator exponential

eλ(X+Y ) = exp

(
κ
∞∑
k=1

λ2k+1µ2k+1

)
eλX

∞∏
m=0

exp

(
λ2m+1

(2m+ 1)!
Y

)
exp

(
− λ2m+2

(2m+ 2)!
Z

)
(C.3.39)

which may be written using creation and annihilation operators again using the established defi-
nitions

eλN̂+qâ+râ† = erq∆eλN̂
∞∏
m=0

exp

(
λ2m

(2m+ 1)!
(qâ+ râ†)

)
exp

(
λ2m+1

(2m+ 2)!
(qâ− râ†)

)
(C.3.40)

where ∆ is a proportionality constant

∆ := 2

∞∑
k=1

λ2k−1µ2k+1 (C.3.41)

We must now split the operators containing the creation and annihilation operator, moving all
the creation operators to the right and all the annihilation operators to the left. To do this we
use the Zassenhaus formula (C.3.5) again, though because of (C.3.8) only the second order Lie
polynomial is non-zero

eqâ±râ
†

= e±râ
†
eqâe±rq/2 (C.3.42)

We must also make use the following lemma of t he Baker-Campbell-Hausdorff formula

eXeY = exp

( ∞∑
k=0

1

k!
adkXY

)
eX (C.3.43)

to slide the operator exponentials past each other. For the operators under consideration here
these are

eqâerâ
†

= erâ
†
eqâeqr eλN̂eqâ = eqe

−λâeλN̂ eλN̂erâ
†

= ere
λâ†eλN̂ (C.3.44)

Using these two formulas we can rewrite (C.3.40) as

eλN̂+qâ+râ†

= erq∆erqΩeλN̂
∞∏
m=0

exp

((
λ2m

(2m+ 1)!
− λ2m+1

(2m+ 2)!

)
râ†
)

exp

((
λ2m

(2m+ 1)!
+

λ2m+1

(2m+ 2)!

)
qâ

)
(C.3.45)

where we define the sum

Ω :=
1

2

∞∑
m=0

((
λ2m

(2m+ 1)!

)2

−
(

λ2m+1

(2m+ 2)!

)2

− 2

(
λ2m

(2m+ 1)!

λ2m+1

(2m+ 2)!

))
(C.3.46)

82



to to compactify the result. We can now reorder all of the creation and annihilation operator
exponentials; the infinite product in this case becomes

∞∏
m=0

exp

((
λ2m

(2m+ 1)!
− λ2m+1

(2m+ 2)!

)
râ†
)

exp

((
λ2m

(2m+ 1)!
+

λ2m+1

(2m+ 2)!

)
qâ

)
(C.3.47)

=erqΞ

( ∞∏
k=0

exp

(
(−1)k

λk

(k + 1)!
râ†
))( ∞∏

l=0

exp

(
λl

(l + 1)!
qâ

))
(C.3.48)

=erqΞ exp

(
1− eλ

λ
râ†
)

exp

(
eλ − 1

λ
qâ

)
(C.3.49)

where the constant Ξ is double sum

Ξ :=

∞∑
k=0

(
λ2k

(2k + 1)!
+

λ2k+1

(2k + 2)!

) ∞∑
m=k+1

(
λ2m

(2m+ 1)!
− λ2m+1

(2m+ 2)!

)
(C.3.50)

≡
∞∑
k=0

(
λ2k

(2k + 1)!
− λ2k+1

(2k + 2)!

) k−1∑
m=0

(
λ2m

(2m+ 1)!
+

λ2m+1

(2m+ 2)!

)
(C.3.51)

which is obtained by combining the constant terms which come from repeated use of the formula
(C.3.44). We can now write

eλN̂+qâ+râ† = erq(∆+Ω+Ξ)eλN̂e
1−eλ
λ

râ†e
eλ−1
λ

qâ (C.3.52)

The last step is to sum the constants we have collected so far

f(λ) := ∆ + Ω + Ξ (C.3.53)

though this is difficult to simplify by hand or with a computer algebra system. We instead
approach this final step in a different manner by using the following result from Jang and Voth [21]

ρc(qc, pc) =

∫ ∞
−∞

∫ ∞
−∞

~
dξdη

2π
e−iξqce−iηpcTr

[
e−β~ω(N̂+1/2)+iξq̂+iηp̂

]
(C.3.54)

=
β~ω

2 sinh(β~ω/2)
e−β~ω(mω2~ q

2
c+ 1

2mω~p
2
c) (C.3.55)

to find the value of the polynomial function f(λ). Making the appropriate replacements, λ = −β~ω,
r = iν, q = iν∗, we can evaluate the trace of (C.3.2)

Tr
[
e−β~ω(N̂+1/2)+iν∗â+iνâ†

]
= e−β~ω/2e−|ν|

2f(β~ω)Tr

[
e−β~ωN̂e

iν e
β~ω−1
β~ω a†

e
iν∗ 1−e

−β~ω
β~ω a

]
(C.3.56)
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Focusing purely on the operator portion we have

Tr

[
e−β~ωN̂e

iν e
β~ω−1
β~ω a†

e
iν∗ 1−e

−β~ω
β~ω a

]
=
∞∑
n=0

〈n|e−β~ωNeiν
eβ~ω−1
β~ω a†

e
iν∗ 1−e

−β~ω
β~ω a|n〉 (C.3.57)

=

∞∑
n=0

e−β~ωn
(
e
−iν∗ e

β~ω−1
β~ω a |n〉

)† n∑
k=0

1

k!

(
iν∗

1− e−β~ω

β~ω

)k√
n!

(n− k)!
|n− k〉 (C.3.58)

=
∞∑
n=0

e−β~ωn
n∑
l=0

n∑
k=0

1

l!k!

(
iν
eβ~ω − 1

β~ω

)l (
iν∗

1− e−β~ω

β~ω

)k√
n!n!

(n− l)!(n− k)!
δn−l,n−k (C.3.59)

=

∞∑
n=0

e−β~ωn
n∑
k=0

n!

(k!)2(n− k)!

(
−|ν|2 e

β~ω − 1

β~ω
· 1− e−β~ω

β~ω

)k
(C.3.60)

=
∞∑
n=0

e−β~ωn
n∑
k=0

(
n

k

)
(−1)k

k!

(
2|ν|2 cosh(β~ω)− 1

(β~ω)2

)k
(C.3.61)

=
∞∑
n=0

e−β~ωnLn

(
2|ν|2 cosh(β~ω)− 1

(β~ω)2

)
(C.3.62)

using the definition of the Laguerre polynomials. We can use the generating function for the
Laguerre polynomials,

∞∑
n=0

tnLn(x) =
1

1− t
e−tx/(1−t) (C.3.63)

to write (C.3.62) as

e−β~ω/2e−|ν|
2f(β~ω)

∞∑
n=0

e−β~ωnLn

(
2|ν|2 cosh(β~ω)− 1

(β~ω)2

)
(C.3.64)

= e−β~ω/2e−|ν|
2f(β~ω) 1

1− e−β~ω
exp

(
−2|ν|2 e−β~ω

1− eβ~ω
cosh(β~ω)− 1

(β~ω)2

)
(C.3.65)

=
1

2 sinh(β~ω/2)
exp

(
−|ν|2

(
1− e−β~ω

(β~ω)2
+ f(β~ω)

))
(C.3.66)

Replacing ν with (C.3.3) we can solve the Fourier integrals to retrieve the centroid distribution

~
2 sinh(β~ω/2)

∫ ∞
−∞

∫ ∞
−∞

dξ dη

2π
eiξqceiηpc exp

(
−
(

~
2mω

ξ2 +
mω~

2
η2

)(
1− e−β~ω

(β~ω)2
+ f(β~ω)

))
(C.3.67)

=
~

2 sinh(β~ω/2)

(
~2

(
1− e−β~ω

(β~ω)2
+ f(β~ω)

)2
)−1/2

exp

− (
2mω
~ q2

c + 2
mω~p

2
c

)
4
(

1−e−β~ω
(β~ω)2

+ f(β~ω)
)
 (C.3.68)

=
1

2 sinh(β~ω/2)

(
1− e−β~ω

(β~ω)2
+ f(β~ω)

)−1

exp

 −1
1−e−β~ω

(β~ω)2
+ f(β~ω)

(
mω

2~
q2
c +

1

2mω~
p2
c

)
(C.3.69)
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Since (C.3.55) and (C.3.69) must be identical, we merely have to solve

β~ω =

(
1− e−β~ω

(β~ω)2
+ f(β~ω)

)−1

(C.3.70)

f(β~ω) =
−1 + e−β~ω

(β~ω)2
+

1

β~ω
(C.3.71)

f(β~ω) =
e−β~ω + β~ω − 1

(β~ω)2
(C.3.72)

We can now return to (C.3.2) expression and can finally write the final result

e−β~ω(N+ 1
2

)−iν∗a−iνa† = e
−|ν|2 e

−β~ω+β~ω−1

(β~ω)2 e−β~ω(N+ 1
2

)e
iν e

β~ω−1
β~ω a†

e
iν∗ 1−e

−β~ω
β~ω a (C.3.73)

which may be generalized to

eλN̂+qâ+râ† = eqr
1+λ−eλ
λ2 eλN̂e

1−e−λ
λ

râ†e
eλ−1
λ

qâ (C.3.74)

and so we can state that (C.3.4) is absolutely true.

C.4 Double Kubo transformed correlation function

The following derivation only holds for an operator which is linear combination of q̂ and p̂, i.e.
B̂ = A0Î +B1q̂ +B2p̂, which by definition will have the centroid symbol Bc = B0 +B1qc +B2pc.
Since we are mostly interested in position or velocity autocorrelation functions, this restriction is
not limiting. The correlation function of the centroid variables is then

〈BcA(ψ)
c (t; qc, pc)〉 =

1

Zψ

∫ ∞
−∞

dqc dpc
2π~

ρ(ψ)
c (qc, pc)BcA

(ψ)
c (t; qc, pc) (C.4.1)

=
1

Zψ

∫ ∞
−∞

dqc dpc
2π~

Bc

∫ ∞
−∞

~
dξ dη

2π
e−iξqce−iηpc

× Tr

[∫ 1

0
du e−(1−u)βĤ′P̂ψe−uβĤ

′
eitĤ/~Âe−itĤ/~

]
(C.4.2)

where Ĥ ′ is defned by (C.1.2). For the B0 term, the integrals over qc and pc can be immediately
performed to yield delta functions

√
2πδ(ξ) and

√
2πδ(η), respectively. Performing the integrals

over ξ and η reduces the effective centroid Hamiltonian to the system Hamiltonian, Ĥ ′ → Ĥ. We
therefore have

1

Zψ

∫ ∞
−∞

dqc dpc
2π

B0

∫ ∞
−∞

~
dξ dη

2π
e−iξqce−iηpc Tr

[∫ 1

0
du e−(1−u)βĤ′P̂ψe−uβĤ

′
eitĤ/~Âe−itĤ/~

]
(C.4.3)

=
1

Zψ
B0Tr

[∫ 1

0
du e−(1−u)βĤP̂ψe−uβĤeitĤ/~Âe−itĤ/~

]
(C.4.4)

=
1

Zψ
B0Tr

[
e−βĤ

∫ 1

0
du P̂ψ(−iuβ~)Â(t)

]
(C.4.5)
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This is merely the correlation of the identity operator with Â(t) where there projection operator
has been Kubo transformed. Turning to the qc term, we can immediately perform the integral
over pc, which will be replaced by the delta function

√
2πδ(η). The integral over η is then easily

performed, the result being that the effective centroid Hamiltonian is simplified to only include
the ξ term. We are then left to evaluate

〈qcA(ψ)
c (t; qc, pc)〉 =

1

Zψ

∫ ∞
−∞

dqc dξ

2π
e−iξqcqc Tr

[∫ 1

0
du e−(1−u)(βĤ−iξq̂)P̂ψe−u(βĤ−iξq̂)Â(t)

]
(C.4.6)

We can now use the Fourier transform property∫ ∞
−∞

√
2π xn e−iωxdx = in

√
2πδ(n)(x) (C.4.7)

and the following property of the distributional derivative of the delta function∫ ∞
−∞

δ′(x)f(x)dx = −
∫ ∞
−∞

δ(x)f ′(x)dx (C.4.8)

to evaluate the integrals over qc and ξ. Our correlation function may now be written

〈qcA(ψ)
c (t; qc, pc)〉 = − i

Zψ

∫ ∞
−∞

dξ δ(ξ)
∂

∂ξ
Tr

[∫ 1

0
du e−(1−u)(βĤ−iξq̂)P̂ψe−u(βĤ−iξq̂)Â(t)

]
(C.4.9)

We must now make use of an operator derivative identity from Wilcox [38] to evaluate this
derivative

∂

∂λ
e−aL̂ = −

∫ a

0
e−(a−u)L̂ ∂L̂

∂λ
e−uL̂du (C.4.10)

and in conjuncture with the regular properties of derivatives, evaluate the derivative over ξ. Hence

∂

∂ξ
e−(1−u)(βĤ−iξq̂) = −

∫ 1−u

0
e−(1−u−v)(βĤ−iξq̂) ∂

∂ξ
(βĤ − iξq̂) e−v(βĤ−iξq̂)dv (C.4.11)

= i

∫ 1−u

0
e−(1−u−v)(βĤ+iξq̂) q̂ e−v(βĤ+iξq̂)dv (C.4.12)

and so
∂

∂ξ
e−u(βĤ−iξq̂) = i

∫ u

0
e−(u−v)(βĤ−iξq̂) q̂ e−v(βĤ−iξq̂)dv (C.4.13)

The integral over ξ is easily performed; the resulting correlation function is then

〈q̂Â(t)〉(ψ)
(DK) =

1

Zψ
Tr

[∫ 1

0
du

∫ 1−u

0
dv e−(1−u−v)βĤ q̂ e−vβĤP̂ψe−uβĤeitĤ/~Âe−itĤ/~

]
+

1

Zψ
Tr

[∫ 1

0
du e−(1−u)βĤP̂ψ

∫ u

0
dv e−(u−v)βĤ q̂ e−vβĤeitĤ/~Âe−itĤ/~

]
(C.4.14)

The inclusion of the Kubo transform in the QDO means that the centroid correlation function is
equal to the double Kubo (DK) transformed state projected quantum correlation function, i.e.

〈qcA(ψ)
c (t; qc, pc)〉 ≡ 〈q̂Â(t)〉(ψ)

(DK) (C.4.15)
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The expression for 〈q̂ Â(t)〉(ψ)
(DK) may be condensed using the standard Heisenberg notation for

time evolution

〈q̂Â(t)〉(ψ)
(DK) =

1

Zψ
Tr

[
e−βĤ

∫ 1

0
du

(∫ 1−u

0
dv q̂(−ivβ~)P̂ψÂ(t− iuβ~)

+P̂ψ(−iuβ~)

∫ u

0
dv q̂(−ivβ~)Â(t)

)]
(C.4.16)

Redefining u+ v → v in the first integral and changing the limits of integration to (u, 1) we arrive
at the more familiar form

〈q̂Â(t)〉(ψ)
(DK) =

1

Zψ
Tr

[
e−βĤ

∫ 1

0
du

(∫ 1

u
dv q̂(−ivβ~)P̂ψ(−iuβ~)Â(t)

+

∫ u

0
dv P̂ψ(−iuβ~)q̂(−ivβ~)Â(t)

)]
(C.4.17)

The steps for the correlation function involving pc follow in much the same manner and yield the
similar relation

〈pcA(ψ)
c (t; qc, pc)〉 ≡ 〈p̂Â(t)〉(ψ)

(DK) (C.4.18)

Returning briefly to the B0 term, we note that

1

Zψ
B0Tr

[
e−βĤ

∫ 1

0
du P̂ψ(−iuβ~)Â(t)

]
(C.4.19)

=
1

Zψ
B0Tr

[
e−βĤ

∫ 1

0
du

∫ 1

0
dv P̂ψ(−iuβ~)Â(t)

]
(C.4.20)

=
1

Zψ
B0Tr

[
e−βĤ

∫ 1

0
du

(∫ 1

u
dv P̂ψ(−iuβ~) +

∫ u

0
dv P̂ψ(−iuβ~)

)
Â(t)

]
(C.4.21)

=
1

Zψ
B0Tr

[
e−βĤ

∫ 1

0
du

(∫ 1

u
dv Î(−ivβ~) P̂ψ(−iuβ~) +

∫ u

0
dv P̂ψ(−iuβ~) Î(−ivβ~)

)
Â(t)

]
(C.4.22)

which is allowed since Î(−ivβ~) = Î. Combining the three double Kubo transforms gives us the
desired result (valid only for operators of the form B̂ = B0Î +B1q̂ +B2p̂)

〈BcA(ψ)
c (t; qc, pc)〉 = 〈B̂Â(t)〉(ψ)

(DK) (C.4.23)

or equivalently

1

Zψ

∫ ∞
−∞

dqc dpc
2π~

ρ(ψ)
c (qc, pc)BcA

(ψ)
c (t; qc, pc)

=
1

Zψ
Tr

[
e−βĤ

∫ 1

0
du

(∫ 1

u
dv B̂(−ivβ~) P̂ψ(−iuβ~) +

∫ u

0
dv P̂ψ(−iuβ~) B̂(−ivβ~)

)
Â(t)

]
(C.4.24)

For computational purposes, it is convenient to change this expression from being evaluated using
numerical integration involving matrices to simple nested sums; it is easiest to work in the basis
of the eigenstates of the Hamiltonian. Inserting resolutions of the identity in the form of sums
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over the outer product of the eigenstates between the exponentials of the Hamiltonians and the
operators yields the expression

〈ÂB̂(t)〉(ψ)
(DK)

=
1

Zψ

∑
k,l,m

(
e−βEk

∫ 1

0
du

(∫ 1

u
dv evβ(Ek−El)euβ(El−Em)eit(Em−Ek)/~ 〈χk|B̂|χl〉〈χl|P̂ψ|χm〉〈χm|Â|χk〉

+

∫ u

0
dv euβ(Ek−El)evβ(El−Em)eit(Em−Ek)/~ 〈χk|P̂ψ|χl〉〈χl|B̂|χm〉〈χm|Â|χk〉

))
(C.4.25)

The integrals are then performed

e−βEk
∫ 1

0
du

∫ 1

u
dv evβ(Ek−El)euβ(El−Em) =

1

β(Ek − El)

(
e−βEm − e−βEl
β(El − Em)

+
e−βEk − e−βEm
β(Ek − Em)

)
(C.4.26)

e−βEk
∫ 1

0
du

∫ u

0
dv euβ(Ek−El)evβ(El−Em) =

1

β(El − Em)

(
e−βEk − e−βEm
β(Em − Ek)

+
e−βEk − e−βEm
β(Ek − Em)

)
(C.4.27)

The double Kubo transformed correlation function is then

〈B̂Â(t)〉(ψ)
(DK)

=
1

Zψ

∑
k,l,m

(
1

β(Ek − El)

(
e−βEm − e−βEl
β(El − Em)

+
e−βEk − e−βEm
β(Ek − Em)

)
〈χk|B̂|χl〉〈χl|P̂ψ|χm〉〈χm|Â(t)|χk〉

+
1

β(El − Em)

(
e−βEk − e−βEm
β(Em − Ek)

+
e−βEk − e−βEl
β(Ek − El)

)
〈χk|P̂ψ|χl〉〈χl|B̂|χm〉〈χm|Â(t)|χk〉

)
(C.4.28)

Since the indices are arbitrary in the sums we can swap the indices k ↔ m in the first term of the
sum; the correlation function is now

〈B̂Â(t)〉(ψ)
(DK) =

1

Zψ

∑
k,l,m

[
1

β(El − Em)

(
e−βEk − e−βEm
β(Em − Ek)

+
e−βEk − e−βEl
β(Ek − El)

)
×
(
〈χm|B̂|χl〉 〈χl|P̂ψ|χk〉 〈χk|Â(t)|χm〉

+ 〈χk|P̂ψ|χl〉 〈χl|B̂|χm〉 〈χm|Â(t)|χk〉
)]

(C.4.29)

Under the assumption that P̂ψ, B̂ and Â(t) are Hermitian operators we can write

〈χm|B̂|χl〉 〈χl|P̂ψ|χk〉 〈χk|Â(t)|χm〉 = 〈χk|P̂ψ|χl〉 〈χk|B̂|χm〉 〈χm|Â(t)|χk〉 (C.4.30)

The more compact form is therefore

〈B̂Â(t)〉(ψ)
(DK) =

2

Zψ

∑
k,l,m

1

β(El − Em)

(
e−βEk − e−βEm
β(Em − Ek)

+
e−βEk − e−βEl
β(Ek − El)

)
× 〈χk|P̂ψ|χl〉 〈χl|B̂|χm〉 〈χm|Â(t)|χk〉 (C.4.31)
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Using this result we can then compactly write the double Kubo transform as a single double
integral

〈B̂Â(t)〉(ψ)
(DK) =

2

Zψ
Tr

[
e−βĤ

∫ 1

0
du

∫ 1

u
dv B̂(−ivβ~) P̂ψ(−iuβ~)Â(t)

]
(C.4.32)

=
2

Zψ
Tr

[
e−βĤ

∫ 1

0
du

∫ u

0
dv P̂ψ(−iuβ~) B̂(−ivβ~)Â(t)

]
(C.4.33)

If we consider the case where the projection is the identity operator the double Kubo transform
will reduce to a single Kubo transform, corresponding to the canonical ensemble

〈B̂Â(t)〉(I)
(DK)= Tr

[
e−βĤ

∫ 1

0
du

(∫ 1

u
dv B̂(−ivβ~)Î(−iuβ~)Â(t) +

∫ u

0
dv Î(−iuβ~)B̂(−ivβ~)Â(t)

)]
(C.4.34)

= Tr

[
e−βĤ

∫ 1

0
du

(∫ 1

u
dv B̂(−ivβ~)Â(t) +

∫ u

0
dv B̂(−ivβ~)Â(t)

)]
(C.4.35)

= Tr

[
e−βĤ

∫ 1

0
dv B̂(−ivβ~)Â(t)

]
(C.4.36)

= 〈B̂Â(t)〉(K) (C.4.37)

If we have a set of eigenvectors which forms a basis for the Hilbert space, {|ψn〉} with associated
normalization constants {Zψn} for their microcanonical ensembles, then the sum of all double
Kubo transform correlation functions renormalized by Zψn/Z therefore recovers the single Kubo
transform correlation function for the canonical ensemble.

C.5 Undoing the double Kubo transform

C.5.1 Eigenstate projection

The double Kubo transformed correlation function between two arbitrary operators can be undone
in the case that the projection is a sum of individual projection operators onto eigenstates of the
Hamiltonian

P̂ =
∑

pn |χn〉 〈χn| ≡
∑

pnP̂n (C.5.1)

Here we just study the case of one eigenstate; the general case can be retrieved by taking a linear
combination of the results. We recall the correlation function for the microcanonical ensemble in
question is

〈B̂Â(t)〉(ψ) :=
1

Zψ
Tr
[
P̂ψe−βĤB̂Â(t)

]
(C.5.2)

=
1

Zψ

∑
k,l,m

e−βEk 〈χk|P̂ψ|χl〉 〈χl|B̂|χm〉 〈χm|Â|χk〉 eit(Em−Ek)/~ (C.5.3)
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In the case of an eigenstate projection this may be further simplified

〈B̂Â(t)〉(n) =
1

Zn

∑
k,l,m

e−βEk 〈χk|χn〉 〈χn|χl〉 〈χl|B̂|χm〉 〈χm|Â|χk〉 eit(Em−Ek)/~ (C.5.4)

= eβEn
∑
k,l,m

e−βEkδk,nδn,l 〈χl|B̂|χm〉 〈χm|Â|χk〉 eit(Em−Ek)/~ (C.5.5)

=
∑
m

〈χn|B̂|χm〉 〈χm|Â|χn〉 eit(Em−En)/~ (C.5.6)

The Fourier transform of the eigenstate projected correlation function is therefore

F{〈B̂Â(t)〉(n)}(ω) =
∑
m

〈χn|B̂|χm〉 〈χm|Â|χn〉 δ
(
ω − Em − En

~

)
(C.5.7)

Now turning to the double Kubo transform correlation function, we use the sum version (C.4.31)
already derived, and sub in our projection operator

〈B̂Â(t)〉(ψ)
(DK)

=
2

Zn

∑
k,l,m

1

β(El − Em)

(
e−βEk − e−βEm
β(Em − Ek)

+
e−βEk − e−βEl
β(Ek − El)

)
δk,nδn,l 〈χl|B̂|χm〉〈χm|Â(t)|χk〉

(C.5.8)

= 2 eβEn
∑
m

1

β(En − Em)

(
e−βEn − e−βEm
β(Em − En)

− e−βEn
)
〈χn|B̂|χm〉〈χm|Â|χn〉 eit(Em−En)/~

(C.5.9)

= 2
∑
m

e−β(Em−En) − 1 + β(Em − En)

(β(Em − En))2
〈χn|B̂|χm〉〈χm|Â|χn〉 eit(Em−En)/~ (C.5.10)

We know perform the Fourier transform on this object

F{〈B̂Â(t)〉(n)
(DK)}(ω)

= 2
∑
m

e−β(Em−En) + β(Em − En)− 1

(β(Em − En))2
〈χn|B̂|χm〉〈χm|Â|χn〉 δ

(
ω − Em − En

~

)
(C.5.11)

= 2
e−β~ω + β~ω − 1

(β~ω)2

∑
m

〈χn|B̂|χm〉〈χm|Â|χn〉 δ
(
ω − Em − En

~

)
(C.5.12)

We notice that the sum in the Fourier transform of both correlation functions are identical and
so they differ by a common frequency factor

F{〈B̂Â(t)〉(n)}(ω) =
(β~ω)2

2(e−β~ω + β~ω − 1)
F{〈B̂Â(t)〉(n)

(DK)}(ω) (C.5.13)

Undoing the Fourier transform, a direct relation may be established between the microcanonical
correlation function for an eigenstate and its double Kubo transformed version

〈B̂Â(t)〉(n) =

∫ ∞
−∞

dωeiωt
(β~ω)2

2(e−β~ω + β~ω − 1)

∫ ∞
−∞

dt′e−iωt〈B̂Â(t)〉(n)
(DK) (C.5.14)
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C.5.2 General state projection

We now check to see under what conditions the double Kubo transform correlation function can
be undone when the projection operator is an arbitrary pure state; from there the formalism can
be extended to cover any mixed state. In the basis of the Hamiltonian’s eigenstates the pure state
projection operator can be written as

P̂ψ =
∑
x,y

c∗xcy |χx〉 〈χy| =
∑
x

|cx|2 |χx〉 〈χx|+
1

2

∑
x 6=y

c∗xcy |χx〉 〈χy|+ c∗ycx |χy〉 〈χx| (C.5.15)

which will have diagonal elements which can be connected to the normal projected correlation
function as detailed in the previous section. We recall that the frequency factor connecting the
Fourier transforms of the correlation functions was

(β~ω)2

2(e−β~ω + β~ω − 1)
(C.5.16)

and for consistency purposes it is desirable that the constant be the same for the off-diagonal
elements as well. In deriving any additional restrictions on the possible operators, we will ex-
amine the off-diagonal elements of the projection operator when constructed in the Hamiltonian
eigenstate basis

P̂ψ = αx,y |χx〉 〈χy|+ α∗x,y |χy〉 〈χx| (C.5.17)

where summation over all possible x and y is implied. Starting with equation (C.5.3) the regular
correlation function is

〈B̂Â(t)〉(ψ) =
1

Zψ

∑
k,l,m

e−βEk(αδk,xδy,l + α∗δk,yδx,l) 〈χl|B̂|χm〉 〈χm|Â|χk〉 eit(Em−Ex)/~ (C.5.18)

=
1

Zψ

∑
m

(
αe−βEx 〈χy|B̂|χm〉 〈χm|Â|χx〉 eit(Em−Ex)/~

+α∗e−βEy 〈χx|B̂|χm〉 〈χm|Â|χy〉 eit(Em−Ey)/~
)

(C.5.19)

and the corresponding double Kubo transformed correlation function can be obtained from equa-
tion (C.4.31)

〈B̂Â(t)〉(ψ)
(DK)

=
2

Zψ

∑
m

[
α

β(Ey − Em)

(
e−βEx − e−βEm
β(Em − Ex)

+
e−βEx − e−βEy
β(Ex − Ey)

)
〈χy|B̂|χm〉〈χm|Â|χx〉 eit(Em−Ex)/~

+
α∗

β(Ex − Em)

(
e−βEy − e−βEm
β(Em − Ey)

+
e−βEy − e−βEx
β(Ey − Ex)

)
〈χx|B̂|χm〉〈χm|Â|χy〉 eit(Em−Ey)/~

]
(C.5.20)

From here we will define
G(χx, χy) = 〈χx|B̂|χm〉 〈χm|Â|χy〉 (C.5.21)

in order to compactify the notation. The goal now is so show, given a completely general projection
operator, if any restrictions must be placed on the operators Â and B̂ such that (C.5.14) is always
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satisfied. We begin by using the Fourier transformed versions of the correlation functions

2
e−β~ω + β~ω − 1

(β~ω)2
F{〈B̂Â(t)〉(ψ)}(ω)

=
1

Zψ

∑
m

[
2α
e−βEm + (β(Em − Ex)− 1)e−βEx

β2(Em − Ex)2
G(χy, χx) δ

(
ω − Em − Ex

~

)
+ 2α∗

e−βEm + (β(Em − Ey)− 1)e−βEy

β2(Em − Ey)2
G(χx, χy) δ

(
ω − Em − Ey

~

)]
(C.5.22)

The Fourier transform of the double Kubo transform correlation function is then

F{〈B̂Â(t)〉(ψ)
(DK)}(ω)

=
2

Zψ

∑
m

[
α

β(Ey − Em)

(
e−βEx − e−βEm
β(Em − Ex)

+
e−βEx − e−βEy
β(Ex − Ey)

)
G(χy, χx) δ

(
ω − Em − Ex

~

)
+

α∗

β(Ex − Em)

(
e−βEy − e−βEm
β(Em − Ey)

+
e−βEy − e−βEx
β(Ey − Ex)

)
G(χx, χy) δ

(
ω − Em − Ey

~

)]
(C.5.23)

The peaks in this spectrum will only overlap in the case where the eigenenergy differences Em−Ex
and Em′ −Ey are equal. Since we are assuming that the states are not the same when Em = Em′

this can only arise when the eigenenergies are degenerate, but this contradicts the assumption that
the projection operator is totally general. In the case that Em 6= Em′ then the energy differences
must be the same but this is only guaranteed to happen for the QHO where the eigenenergies are
evenly spaced. Our goal is then to check that the amplitude of each individual peak in frequency
space is related to the amplitudes from the double Kubo transform correlation function via the
same frequency factor, and the final result follows from taking a linear combination. We must
therefore match terms in the Fourier transforms, choosing an arbitrary peak at Em − Ex

1

β(Ey − Em)

(
e−βEx − e−βEm
β(Em − Ex)

+
e−βEx − e−βEy
β(Ex − Ey)

)
=
e−βEm + (β(Em − Ex)− 1)e−βEx

β2(Em − Ex)2
(C.5.24)

which can be rearranged to give

0 =e−βEx((Em − Ex)2 − (Ey − Ex)2 − β(Em − Ex)(Em − Ey)(Ey − Ex))

+ e−βEm(Ey − Ex)2 − e−βEy(Em − Ex)2 (C.5.25)

This equation is only solvable in the case where Em = Ex, Em = Ey, or Ex = Ey, and so in general
we require that one of our observables is simply the identity, otherwise the frequency factors are
dependent on the eigenenergies. We can conclude that it is not always possible to make a direct
connection to the regular correlation function without knowledge of the eigenvalues of the system.
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