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Summary

A copula-based model is described which enables joint analysis of multiple progressive multi-
state processes. Unlike intensity-based or frailty-based approaches to joint modeling, the copula
formulation proposed herein ensures that a wide range of marginal multistate processes can be
specified and the joint model will retain these marginal features. The copula formulation also
facilitates a variety of approaches to estimation and inference including composite likelihood and
two-stage estimation procedures. We consider processes with Markov margins in detail, which
are often suitable when chronic diseases are progressive in nature. We give special attention to
the setting in which individuals are examined intermittently and transition times are consequently
interval-censored. Simulation studies give empirical insight into the different methods of analysis
and an application involving progression in joint damage in psoriatic arthritis provides further
illustration.
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1 INTRODUCTION

Multistate models are used routinely to characterize, identify risk factors for, and make predictions
about chronic disease processes (e.g. Hougaard, 1999, 2000). Markov and semi-Markov processes are
two fundamental classes of models with the former being most widely adopted in settings involving
progressive conditions. The considerable advances in counting process theory in recent years have led
to a unification of survival and more general event history methods (Andersen et al., 1993, Therneau
and Grambsch, 2000, Kalbfleisch and Prentice, 2002, Lawless, 2003, Cook and Lawless, 2007, Aalen
et al., 2008).
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Chronic diseases frequently affect multiple organ systems or multiple locations in the body. There
are a variety of frameworks available for analysis of multiple multistate processes. First, models
for two or more multistate processes may be constructed based on the complete intensity functions,
which characterize the instantaneous risk of transition between disease states in terms of the full
process history (Andersen et al., 1993). One may view this as working with an expanded state space
defined by all combinations of states from the marginal processes (Ross, 1996). Secondly, mixed-
effect models can be specified in which transitions for the different processes are made independently,
conditional on random effects (Satten, 1999, Cook et al., 2004, Sutradhar and Cook, 2008). Thirdly,
standard separate analysis of each process is justified under a working independence assumption (Lee
and Kim, 1998) with a robust covariance matrix.

A natural goal in the analysis of multiple multistate processes is to provide simple estimates
of transition rates and related covariate effects which have a straightforward marginal interpretation
for each component process. Estimates of this sort do not arise naturally from the aforementioned
approaches except the one based on a working independence assumption. It may, however, also
be important to parametrically model the association between processes to improve efficiency and
advance scientific understanding about the relation between the processes under study. For these
purposes, we develop a joint model for multiple multistate processes based on copula functions (Joe,
1997, Nelsen, 2006), which motivates use of composite likelihood (Besag, 1974, Lindsay, 1988, Cox
and Reid, 2004, Lindsay et al., 2011). A review of composite likelihood is given in Appendix A of
supplementary material available at Biostatistics online.

The remainder of this paper is organized as follows. In Section 2, we define notation and formulate
a joint model for multiple multistate processes. In Section 3, we discuss methods for estimation and
statistical inference. We focus on setting in which the transition times are interval-censored since
disease processes are often only observed at periodic assessment times. Simulation studies and an
application to data on joint damage in psoriatic arthritis (PsA) are presented in Section 4, and general
remarks and topics for future research are given in Section 5.

2 MODEL FORMULATION

A multistate process is a stochastic process with a finite state space and a right-continuous sample
path. Such processes can be used to describe how a disease leads to changes in a condition over time.
With progressive disease processes, the extent of damage may be characterized by ordered states
1, 2, . . . , K + 1, where state 1 represents no impairment and state K + 1 represents the most severe
degree of impairment or damage. In this setting, the only possible transition at any instant in time is
to the state representing the next stage of damage (i.e. k → k + 1 transitions for k = 1, 2, . . . , K),
thus we use the term “progressive” multistate process.

Consider a disease process in which damage may occur in J organs of affected individuals as
illustrated in Figure 1. We restrict attention to a vector of p × 1 “cluster-level” covariates, Xj = X ,
common to all processes and representing, for example, a genetic marker, sex or treatment. Let
Tjk denote the time of a k → k + 1 transition for process j, k = 1, . . . , K, where 0 < Tj1 <
Tj2 < · · · < TjK , j = 1, . . . , J ; Tj = (Tj1, . . . , TjK)′, and T = (T ′1, . . . , T

′
J)′. Let (T1K , . . . , TJK)′

denote the vector of absorption times for the J processes, Tj,−K = (Tj1, . . . , Tj,K−1)
′ denote the

vector of transition times up to and including the penultimate transition time for process j, T−j,k =
(T1k, . . . , Tj−1,k, Tj+1,k, . . . , TJk)

′ denote the vector of k → k + 1 transition times for all processes
except process j, and T−j,−K = (T ′−j,1, . . . , T

′
−j,K−1)

′. We let tjk, tj , t, tj,−K , t−j,k and t−j,−K denote
the corresponding realizations. A fully specified multivariate multistate model requires a complete
specification of the joint density of all transition times given the covariate X = x, which we denote
by f(t|x). This can be decomposed into a product of conditional and unconditional densities, and one
can make working (conditional) independence assumptions to avoid specification of (conditional) de-
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pendencies of secondary interest. These conditional independence assumptions lead to simplifications
and motivate our use of composite likelihood; see Section 3. There are many ways to decompose the
joint density, and different decompositions and working independence assumptions may prove useful
for addressing different research questions.

1 2 K−1 K K+1

1 2 K−1 K K+1

j = J

j = 1

Figure 1: State space diagram for multivariate multistate processes.

Our first goal is to model each component marginal process in a way that is similar to the way one
would for a single multistate process. Specifically, we wish to consider the case in which each com-
ponent process j is modeled under a Markov assumption with multiplicative intensities for transitions
of state k of the form

λjk(t|x; θjk) = λjk(t;αjk) exp(x′βjk) ,

where λjk(t;αjk) is a baseline intensity function indexed by a parameter vector αjk, βjk is a p × 1
vector of regression coefficients and θjk = (α′jk, β

′
jk)
′. If θj = (θ′j1, . . . , θ

′
jK)′, the density of Tj =

(Tj1, . . . , TjK)′ given X = x has the form

f(tj|x; θj) =
K∏
k=1

{
λjk(tjk|x; θjk) exp

[
−
∫ tjk

tj,k−1

λjk(u|x; θjk)du

]}
, (2.1)

where 0 = tj0 < tj1 < · · · < tjK for j = 1, . . . , J (Andersen et al., 1993).
Our second goal is to parameterize the association between processes which we do in terms of the

joint survivor function of the absorption times (T1K , . . . , TJK)′ conditional on X = x as

P (T1K ≥ t1K , . . . , TJK ≥ tJK |x;ψ) = C(F1K(t1K |x; θ1), . . . ,FJK(tJK |x; θJ);φ) , (2.2)

(Nelsen, 2006, Patton, 2006), where C(·;φ) is a multivariate copula function with association parame-
ters φ, FjK(tjK |x; θj) is the marginal survivor function of the entry time to the absorption stateK+1,
θ = (θ′1, . . . , θ

′
J)′ and ψ = (θ′, φ′)′. If process j is Markov, FjK(t|x) is obtained as the complement of

the [1, K+1] entry of the transition probability matrix Pj(0, t|x) of process j, which can be calculated
by product integration (Andersen et al., 1993) via

Pj(0, t|x) =
∏
u∈(0,t]

[I + dAj(u|x)] ,

where I is an identity matrix of size K + 1,

Aj(u|x) =



−Λj1(u|x) Λj1(u|x) 0 . . . . . . 0
0 −Λj2(u|x) Λj2(u|x) . . . . . . 0
...

...
...

...
...

...
0 0 0 . . . . . . 0
0 0 0 . . . −ΛjK(u|x) ΛjK(u|x)
0 0 0 . . . 0 0


,
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and Λjk(t|x) =
∫ t
0
λjk(u|x)du, k = 1, 2, . . . , K.

To ensure our model satisfies these two goals, we decompose the joint density f(t|x;ψ) in a
particular way and make “working” conditional independence assumptions about the dependence
relations of little interest. First, we decompose the full density f(t|x;ψ) as

f(t|x;ψ) = f(t1,−K , . . . , tJ,−K |t1K , . . . , tJK , x;ψ) · f(t1K , . . . , tJK |x;ψ) , (2.3)

which can be rewritten as

f(t|x;ψ) =
J∏
j=1

f(tj,−K |t1K , . . . , tJK , x;ψ) · f(t1K , . . . , tJK |x;ψ) , (2.4)

under the first set of working conditional independence assumptions,
A.1 Tj,−K⊥T−j,−K |(T1K , . . . , TJK , X ′)′,
where Y1⊥Y2|Y3 implies fY1,Y2|Y3(y1, y2|y3) = fY1|Y3(y1|y3)fY2|Y3(y2|y3) for random vectors Y1, Y2
and Y3. This assumption states that intermediate transition times are independent between processes
given covariates and the absorption times for all processes. Expression (2.4) can be further simplified
to

f(t|x;ψ) =
J∏
j=1

f(tj,−K |tjK , x; θj) · f(t1K , . . . , tJK |x;ψ) , (2.5)

by invoking the second set of working assumptions applied to the first product term of (2.5) :
A.2 Tj,−K⊥T−j,K |(TjK , X ′)′.
This assumption states that the intermediate transition times for a particular process are conditionally
independent of the absorption times for other processes given its own absorption time. The second
item in (2.5) is the joint density of the absorption times, which by the copula formulation in (2.2) has
the form

f(t1K , . . . , tJK |x;ψ) =
J∏
j=1

f(tjK |x; θj) · c(F1K(t1K |x; θ1), . . . ,FJK(tJK |x; θJ);φ) , (2.6)

where c(·) is the copula density function of the copula C(·) in (2.2). By (2.5) and (2.6), the full density
f(t|x;ψ) can then be expressed as

f(t|x;ψ) =
J∏
j=1

f(tj|x; θj) · c(F1K(t1K |x; θ1), . . . ,FJK(tJK |x; θJ);φ) , (2.7)

where the first J components are density functions which correspond to marginal models (2.1), and
the last component is the copula density function governing the absorption time distribution.

Some conditional dependence structures are left unspecified under the working conditional inde-
pendence assumptions A.1 and A.2, so (2.7) only involves a partial specification of the full likelihood
(2.3). As such it can be characterized as a composite likelihood for a fully observed joint multistate
processes. The working independence approach of Lee and Kim (1998) involving separate marginal
analyses can be cast in this framework. They require their multiple multistate model to have the first
feature only, and do not model the dependence structure between processes. Thus (2.1) is a composite
likelihood under working independence assumptions between processes. We also remark that, in the
special case J = 2 and K = 2, our model can be also justified by a vine copula decomposition (Joe,
1996, Bedford and Cooke, 2001, 2002, Aas and Berg, 2009, Aas et al., 2009).

Figure 2 shows the decomposition specification of the joint density f(t|x;ψ) according to a D-
vine (Kurowicka and Cooke, 2005). Each edge in Figure 2 corresponds to a pair-copula (conditional)
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Figure 2: A D-vine decomposition with four variables.

density, e.g. the edge T11, T22|T12 corresponds to the conditional copula density c(F(t11|t12, x; θ1),
F(t22|t12, x; θ, φ);φ2). The joint density of Tj1, Tj2 is given by (2.1), which is not induced by a copula
function, for j = 1, 2. The joint density f(t|x;ψ) corresponding to the D-vine illustrated in Figure 2
may be written as

f(t|x;ψ) = f(t11, t12|x; θ1) · c(F12(t12|x; θ1),F22(t22|x; θ2);φ) · f(t21, t22|x; θ2)

· c(F(t11|t12, x; θ1),F(t22|t12, x; θ, φ);φ2) · c(F(t12|t22, x; θ, φ),F(t21|t22, x; θ2);φ3)

· c(F(t11|t12, t22, x; θ, φ, φ2),F(t21|t12, t22, x; θ, φ, φ3);φ4) . (2.8)

Conditional independence assumptions are commonly used in the vine copula framework to reduce
the number of pair copulas in the decomposition and hence simplify model construction. Our working
conditional independence assumptions, when J = K = 2, have the forms of
(A.1) T11⊥T21|(T12, T22, X ′)′,
(A.2) T11⊥T22|(T12, X ′)′, T21⊥T12|(T22, X ′)′,
the same as vine copula conditional independence assumptions making the last three terms of (2.8)
equal to one. Thus (2.8) is simplified to a truncated vine (Brechmann et al., 2012)

f(t|x;ψ) = f(t11, t12|x; θ1) · c(F12(t12|x; θ1),F22(t22|x; θ2);φ) · f(t21, t22|x; θ2) ,

which is equal to (2.7) when J = K = 2.
The marginal processes are compatible with those of a single multistate process and each compo-

nent process in (2.7) yields parameters with a straightforward interpretation in terms of transition rates
and covariate effects. However, our model features a parameterized association structure and hence a
measure of the association can be readily calculated based on the functional form of the copula C(·)
and association parameter φ (Genest and MacKay, 1986). In addition, our working assumptions are
weaker than those of complete independence, and may lead to more efficient estimation. Under (2.7),
one can separately specify the marginal models for each process and the model for the association
among the processes, thereby avoiding specification of the conditional dependence structures of little
interest. Many options exist for specification of the marginal models and the association models, of
course making (2.7) quite flexible.
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3 ESTIMATION AND INFERENCE

3.1 NOTATION FOR INTERVAL-CENSORED DATA

When individuals are assessed intermittently, the times of transitions between states are subject to
interval censoring. This is routinely the case when the processes relate to damage of internal or-
gans. For notational convenience, we restrict attention to the case in which all processes are assessed
at the same M (> 1) time points denoted by v0 < v1 < · · · < vM < vM+1, where v0 = 0,
vM+1 = ∞. Let V1, . . . , VM be a sequence of corresponding random variables with joint density
fV1,...,VM (v1, . . . , vM ; ν) indexed by ν. Let Zj(t) represent the state occupied by the disease process
j at time t and assume that Zj(v0) = 1 with probability 1, j = 1, . . . , J . We next define random
variables which record the number of “transitions” of a particular type and let Nm

jk` = I(Zj(vm−1) =
k, Zj(vm) = `) indicate whether process j occupied state k at assessment time vm−1 and state `
at vm. The data available then consist of the inspection times, the indicators and the covariate
vector:

{
(vm, N

m
jk`, ` = k, . . . , K + 1, k = 1, . . . , K, j = 1, . . . , J), m = 1, . . . ,M, X

}
. The data

can also be expressed as the left and right end point of the censoring intervals: {Tjk ∈ (Ljk, Rjk]; k =
1, . . . , K, j = 1, . . . , J, X}, where M(t) = argmaxm{vm < t}, Ljk = vM(Tjk) and Rjk =
vM(Tjk)+1.

3.2 COMPOSITE LIKELIHOOD CONSTRUCTION

We assume that the parameter ν associated with the inspection process in fV1,...,VM (v1, . . . , vM ; ν) is
functionally independent of the parameter of interestψ, making the inspection process non-infomative.
Under the conditions of Grüger et al. (1991), we proceed to construct the full likelihood arising from
intermittent inspection of a joint multistate process as if the inspection times are fixed and hence, in
what follows we restrict attention to

L(ψ) = P (Tjk ∈ (ljk, rjk]; k = 1, . . . , K; j = 1, . . . , J |x, v1, . . . , vM ;ψ) . (3.1)

The likelihood in (3.1) is obtained by computing J ×K -dimensional integrals over the full density
f(t|x;ψ) in (2.3). For example, in the special case J = K = 2, 4D integrals involving f(t|x;ψ)
in (2.8) are required. When J or K are large, the likelihood involves computationally demanding
high-dimensional integration. Use of composite likelihood enables some simplification in model
specification and increases robustness to model misspecification.

Lee and Kim (1998) discuss the case when interest lies only in estimation of marginal parameters.
If a working independence assumption among processes is reasonable, the estimation problem sim-
plifies to one that has been addressed in the literature (Kalbfleisch and Lawless, 1985). Since process
j is Markov, the composite likelihood of process j is

CL1(θj) =
M∏
m=1

K∏
k=1

K+1∏
`=k

P (Zj(vm) = `|Zj(vm−1) = k, x; θj)
nm
jk` . (3.2)

A Fisher-scoring or Newton-Raphson algorithm can be used for estimation, and robust variance esti-
mation is described in Appendix A of supplementary material available at Biostatistics online.

If both marginal and association parameters are of interest in the interval-censored setting, we
make the following working conditional independence assumptions:
(A.3) Tj,−K⊥T−j,−K |(T1K ∈ (L1K , R1K ], . . . , TJK ∈ (LJK , RJK ], X ′)′,

(A.4) Tj,−K⊥T−j,K |(TjK ∈ (LjK , RjK ], X ′)′.
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These are slightly different from assumptions A.1 and A.2, but enable one to write down the
composite likelihood arising from intermittent inspection:

CL2(ψ) =
J∏
j=1

P (Tjk ∈ (ljk, rjk], k = 1, . . . , K − 1|TjK ∈ (ljK , rjK ], x; θj)

× P (TjK ∈ (ljK , rjK ], j = 1, . . . , J |x;ψ) , (3.3)

in which the J + 1 components are analogous to those in (2.7). In (3.3),

P (TjK ∈ (ljK , rjK ], j = 1, . . . , J ;ψ) =
∑
a∈A

(−1)daC(F1K(a1K |x; θ1), . . . ,FJK(aJK |x; θJ);φ), (3.4)

where a = (a1K , . . . , aJK)′, A = {a : ajK ∈ {ljK , rjK}, j = 1, . . . , J}, da =
∑J

j=1 I(ajK = rjK),
and (3.4) involves a summation of 2K items. Note that since {Tjk ∈ (Ljk, Rjk]; k = 1, . . . , K, j =
1, . . . , J, X} contains the same information as {(vm, Nm

jk`, ` = k, . . . , K + 1, k = 1, . . . , K, j =
1, . . . , J), m = 1, . . . ,M, X}, P (Tjk ∈ (ljk, rjk], k = 1, . . . , K; θj) is equal to the marginal likeli-
hood Lj(θj) in (3.2). The composite likelihood (3.3) can therefore be written as

CL2(ψ) =
J∏
j=1

Lj(θj)

FjK(ljK |x; θj)−FjK(rjK |x; θj)
· P (TjK ∈ (ljK , rjK ], j = 1, . . . , J |x;ψ) . (3.5)

A composite likelihood can alternatively be built using the “construction method” (Varin, 2008)
by using J marginal likelihoods to obtain marginal estimates and using the joint probability of the J
absorption times to estimate the association parameters. The composite likelihood is then

CL3(ψ) =
J∏
j=1

Lj(θj) · P (TjK ∈ (ljK , rjK ], j = 1, . . . , J |x;ψ) . (3.6)

Composite likelihoods based on (3.2), (3.5) and (3.6) represent simplifications to the full likeli-
hood (3.1) and so may lead to some loss of efficiency (see Appendix B of supplementary material
available at Biostatistics online), but their use introduces robustness (see Appendix C of supplemen-
tary material available at Biostatistics online) and significant computational advantages. The compos-
ite likelihood based on (3.2) is obtained under the strongest working independence assumption and
so does not provide estimation of any association parameters and would be expected to be the least
efficient. The composite likelihoods in (3.5) and (3.6) are constructed based on different ideas but
have similar forms, and both avoid the need for high-dimensional integration.

3.3 TWO-STAGE ESTIMATION

A two-stage estimation procedure (Shih and Louis, 1995, Newey and McFadden, 1994, Zhao and
Joe, 2005) is possible with the formulation described due to the copula structure of the association
model. In the first stage, an estimate of the marginal parameters θj is obtained for each process j
using the marginal likelihood (3.2), j = 1, . . . , J . In the second stage, the estimate θ̂ is inserted
into composite likelihood CL2(ψ) in (3.5) or CL3(ψ) in (3.6), which is then maximized with respect
to φ to obtain an estimate φ̃. With regard to the two composite likelihoods (3.5) and (3.6), only
P (TjK ∈ (ljK , rjK ], j = 1, . . . , J ;ψ) in (3.4) contains the association parameters, and so this is the
objective function in the second stage. Shih and Louis (1995) develop the asymptotic distribution for
the case when the association parameter is a scalar. The corresponding asymptotic results for a vector
of association parameters are given in Newey and McFadden (1994).
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4 SIMULATION STUDIES AND ILLUSTRATION

4.1 DESIGN AND ANALYSIS OF SIMULATION STUDIES

The simulation studies conducted here are designed to assess the finite sample properties of estimators
from the various composite likelihoods. We consider two processes with three states each, where state
1 represents a “normal” condition, state 2 represents “abnormal”, and state 3 represents the absorbing
state of “organ damage”; we assume that all subjects start from state 1 for both processes. We consider
one Bernoulli covariate X , with P (X = 1) = 0.5. We assume here that there are M = 10 common
inspection times evenly spaced over the interval (0, 1], giving visit times vm = 0.1 × m for m =
1, . . . , 10. We generate data from the full density of the form (2.8) as illustrated in Appendix D of
supplementary material available at Biostatistics online, where the marginal model is a progressive
time-homogeneous Markov processes with transition intensities λjk(t|x; θjk) = αjk exp(xβjk) for
j, k = 1, 2. We assume that the two processes have the same margins, as would be the case with
clustered processes, so that α1k = α2k and β1k = β2k for k = 1, 2. We set βj1 = log(1.25) to reflect
a mild increase of the risk of transition from state 1 to 2 when X = 1 and set βj2 = log(1.4) to
reflect a moderate effect on increasing the risk of transition from state 2 to 3 in both processes. The
baseline transition intensities αjk for j, k = 1, 2 are set under the following constraints: (i) the baseline
transition rate out of state 2 is 1.5 times of that out of state 1, i.e. αj2 = 1.5αj1 for j = 1, 2; (ii) the
probability of both processes being in state 3 by time 1 is 0.4 in the control group. These constraints
give αj1 = 1.8148 and αj2 = 2.7221. For the association model, we consider four scenarios including
the following: (i) the four copulas in (2.8) are induced by Clayton copulas when the dependencies
are strong; specifically, Kendall’s τ , τ2, τ3 and τ4 are equal to 0.8, 0.7, 0.6 and 0.5, respectively, (ii)
Clayton copulas when the dependencies are weak; specifically, Kendall’s τ , τ2, τ3 and τ4 are equal
to 0.4, 0.3, 0.2 and 0.1, respectively, (iii) Frank copulas when the dependencies are positive and
moderate; specifically, Kendall’s τ , τ2, τ3 and τ4 are equal to 0.6, 0.5, 0.4 and 0.3, respectively, and
(iv) Frank copulas when the dependencies are negative and moderate; specifically, Kendall’s τ , τ2, τ3
and τ4 are equal to -0.6, -0.5, -0.4 and -0.3, respectively. (φ, φ2, φ3, φ4)

′ = (3, 8, 2, 4.6667)′ giving
Kendall’s τ ’s of (0.6, 0.8, 0.5, 0.7)′, respectively (Nelsen, 2006). Two thousand samples are simulated
of n = 1000 individuals each.

For each dataset, analyses are carried out based on the composite likelihoods (3.5) and (3.6), and
two-stage estimation to estimate ψ. The empirical biases (BIAS), average standard error (ASE), em-
pirical standard error (ESE), and empirical coverage probability (ECP) are evaluated for all parameter
estimates and reported in Table 1. The ASE is the average of the 2000 sample standard errors, the
ESE is the standard deviation of 2000 parameter estimates, and the ECP is the proportion of all trials
for which the composite likelihood Wald-based 95% confidence intervals (CIs) contain respective true
parameter value (Molenberghs and Verbeke, 2005).

As expected from the asymptotic theory, the empirical biases are all very small for estimates of
the marginal parameters and the association parameters using all methods. The ASE and ESE are
consistent with each other and the ECPs are all very close to the nominal confidence level of 95%,
suggesting that the methods proposed provide a valid basis for inference. The relative precision of the
marginal parameters estimates shows that the two-stage procedure incurs a loss of efficiency, but the
estimates of the association parameter by the two-stage procedure are of comparable precision. We
also note that estimates of the marginal parameters for transitions from the mild to intermediate state
obtained via the composite likelihood (3.5) is slightly more efficient than their counterparts from the
composite likelihood (3.6).
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Table 2: Joint analysis of progression in the left and right SI joints in PsA with the covariate HLA
B27 and allowing different parameters in the two processes

CL1 (3.2) CL2 (3.5) CL3 (3.6)

EST Naive SE SE EST SE EST SE

BASELINE INTENSITY

LEFT-SIDE
log(α11) -0.215 0.057 0.035 -0.182 0.015 -0.196 0.028
log(α12) -0.977 0.105 0.187 -0.788 0.027 -0.944 0.098

RIGHT-SIDE
log(α21) -0.005 0.007 0.003 0.009 0.001 0.019 0.003
log(α22) -0.903 0.097 0.136 -0.828 0.049 -0.978 0.093

COEFFICIENTS

LEFT-SIDE
β11 0.265 0.131 0.440 0.249 0.049 0.291 0.081
β12 0.649 0.191 0.835 0.519 0.107 0.568 0.251

RIGHT-SIDE
β21 0.176 0.106 0.306 0.149 0.022 0.173 0.211
β22 0.398 0.192 0.728 0.395 0.143 0.428 0.419

ASSOCIATION PARAMETER

log(φ) - - - 2.188 0.161 2.288 0.137

The marginal estimates using composite likelihood (3.2) are plugged into the composite likelihood (3.5) or (3.6) to obtain
log(φ̂) = 2.239 (SE = 0.246).

4.2 ANALYSIS OF PROGRESSION IN JOINT DAMAGE AMONG INDIVIDUALS WITH ARTHRITIS

We consider data from the University of Toronto Psoriatic Arthritis (PsA) Clinic which are com-
prised of several hundred patients enrolled since 1978. We focus on the state of damage of the left
and right sacroiliac (SI) joints since damage in these joints signifies the onset of a condition called
spondyloarthritis which is associated with considerable disability. The modified Steinbrocker scale
(Steinbrocker et al., 1949, Rahman et al., 1998) is a five-point scale used to record the extent of dam-
age based on radiographic examination. The states are numbered 1 − 5 with labels 1 = normal;
2 = equivocal; 3 = abnormal with erosions or sclerosis; 4 = unequivocally abnormal, moderate
or advanced sacroilitis showing one or more of erosions, sclerosis, widening, narrowing or partial
ankylosis; 5 = total ankylosis. In our analysis, we combine states 2 and 3 to form a state representing
mild joint damage, and states 4 and 5 as a state denoting moderate to severe damage. We consider
the Human Leukocyte Antigen (HLA) B27 as a covariate X , since it is an inherited genetic marker
associated with a number of related rheumatic diseases including ankylosing spondylosis. We restrict
attention to data as of December 1, 2007, for 640 patients with complete covariate information (HLA
B27) and use data obtained at all assessments that the modified Steinbrocker score could be assessed.
We allow the covariate HLA B27 to have different effects for the left and right SI joints, and also allow
different baseline transition rates for both transition into the mild state and that into moderate-severe
state.

The results are summarized in Table 2. The upper part of the table gives estimates (ESTs) and
standard errors (SEs) pertaining to baseline transition rates, the middle part is of the regression coef-
ficients, and the lower part is for the association parameter. Based on analysis using the composite
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likelihood (3.5), for example, individuals HLA B27 positive have a significantly higher transition
rate to mild damage on the left SI joint (relative risk (RR) = 1.28, 95% CI: 1.16–1.41, p < 0.001)
and a significantly higher rate of progression to the state of moderate-severe damage on that side
(RR = 1.68, 95% CI: 1.33–2.03, p < 0.001). On the right SI joint, being B27 positive is associ-
ated with an increased risk of mild damage (RR = 1.16, 95% CI: 1.11–1.21, p < 0.001) and there
was evidence of a more rapid onset of moderate-severe damage (RR = 1.48, 95% CI: 1.07–1.90,
p < 0.001). The estimate of Kendall’s τ based on (3.5) was τ̂ = 0.82 (95% CI: 0.77–0.87, p < 0.001)
corresponding to significant evidence of a very strong association in progression times to moderate-
severe damage. One of the New York criteria (Moll and Wright, 1973) for diagnosis of ankylosing
spondylitis is satisfied if (Z1(t), Z2(t)) = (3, 3). The joint model is particularly appealing here then,
since it permits prediction of time to the development of ankylosing spondylitis. Figure 3 gives plots
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Figure 3: Plots of the cumulative probability of ankylosing spondylitis by B27 status according to
the composite likelihood (3.5) analysis from the joint model and based on non-parametric estimate
of Gentleman and Vandal (2002); for the fitted parametric model the estimated joint probability is
P (Z1(t) = Z2(t) = 3|Z1(0) = Z2(0) = 1; ψ̂).

of the cumulative probability of ankylosing spondylitis by this criteria based on the fitted model using
the composite likelihood (3.5) as an illustration. The left-hand panel shows this probability estimated
for individuals who are B27 negative and the right-hand panel is for B27 positive. Overlaid on these
plots are estimates obtained by the graph-theoretic approach to non-parametric estimation of bivariate
failure time distribustions with interval-censored data developed in Gentleman and Vandal (2002) and
implemented in the R package MLEcens (Maathuis, 2010); there is reasonable agreement between
the estimates. The joint model is also useful for examining how risks of damage in a particular SI joint
depend on the damage state of the contralateral SI joint. For example if we consider the risk of the left
SI joint exhibiting moderate or severe damage since onset, we can consider three scenarios: the right
SI joint developed i) no damage by 10 years, ii) mild damage by 10 years, and iii) moderate-severe
damage by 10 years. The fitted model yields estimates as P (Z1(t) = 3|Z1(0) = 1, Z2(10) = 1, x; ψ̂),
P (Z1(t) = 3|Z1(0) = 1, Z2(10) = 2, x; ψ̂), and P (Z1(t) = 3|Z1(0) = 1, Z2(10) = 3, x; ψ̂) respec-
tively. These are plotted in Figure 4 and reveal that the appreciable estimate of Kendall’s τ leads to a
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strong influence on the conditional probabilities and hence prediction in the course of disease.
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Figure 4: Plots of the estimated conditional probability P (Z1(t) = 3|Z1(0) = 1, Z2(10) = 1, x; ψ̂),
P (Z1(t) = 3|Z1(0) = 1, Z2(10) = 2, x; ψ̂) and P (Z1(t) = 3|Z1(0) = 1, Z2(10) = 3, x; ψ̂) according
to the composite likelihood (3.5) analysis from the joint model vs. time since disease onset (years).

5 DISCUSSION

In settings where processes are clustered, one may wish to constrain αjk = αk and βjk = βk, j =
1, 2, . . . , J , and let α = (α1, . . . , αK)′, β = (β1, . . . , βK)′ and θ = (α′, β′)′ (Lee et al., 1992). We
have restricted attention to the case in which all the process were inspected at the same time. In
studies of organ damage in diabetic patients, interest may lie in the processes of diabetic retinopathy
and nephropathy (Cook and Lawless, 2013). The extent of damage in the eyes, assessed by a detailed
clinical examination, and kidneys, assessed by blood tests or imaging, would routinely be measured
at different times. Adaptation of the proposed methods are relatively straightforward to handle this
case by allowing process j to be assessed at Mj time points vj0 < vj1 < · · · < vj,Mj

< vj,Mj+1 where
vj0 = v0 = 0, vj,Mj+1 = vMj+1 =∞ for j = 1, . . . , J .

With interval-censored data arising from intermittent inspection, the composite likelihood ap-
proaches and the two-stage methods have computational advantages. These methods also bring about
increased robustness but also a certain loss in efficiency. The robustness regarding consistency is sim-
ilar in spirit to the robustness of generalized estimating equations (GEE) since both methods avoid
specification of the higher-order dependencies (Xu and Reid, 2011). The computational advantages
are based on the fact that the composite likelihood is integration-free and is easier to maximize (Varin
et al., 2011). As is often the case, the computational convenience and robustness are gained by sac-
rificing statistical efficiency, so that the trade-off between those factors needs to taken into account
when formulating a composite likelihood function.

The marginal processes may correspond to more general, non-Markov, intensity-based models.
Multiple ways of devising estimation strategies in this paper point to the flexibility of estimation.
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We have focused on parametric estimation, but weakly parametric piecewise constant transition rates,
GEE, or even more robust semiparametric analysis should be explored for estimation of marginal pa-
rameters. Several extensions are possible to the association model. First, we assumed the dependence
between the absorption transition time are the same whether X = 1 and X = 0; see (2.2). One could
allow different association parameters for different covariate values; indeed entirely different copula
functions could be adopted. Secondly, we model the association between absorption times via a cop-
ula, but one could set, ujk = exp[−

∫ tjk
tj,k−1

λjk(s|x; θjk)ds], j = 1, . . . , J , and use a copula function
to model associations between ujk and uj′k, and hence between the transition times Tjk and Tj′k. If a
semi-Markov model is adopted for the marginal processes, the association between sojourn times is
then modeled, as is routinely done in survival analysis. This is an area of current research.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at http://biostatistics.oxfordjournals.org.
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WEB APPENDIX A: REVIEW OF COMPOSITE LIKELIHOOD

Composite likelihoods are based on partial specification of the full likelihood (Besag, 1974, Lindsay,
1988, Cox and Reid, 2004, Lindsay et al., 2011). Let {A1, . . . ,AQ} denote a set of Q user-selected
marginal or conditional events. If a component likelihood Lq(ψ) ∝ f(t ∈ Aq;ψ) is indexed by a
parameter ψ, a composite likelihood is simply a product of the component likelihoods,

CL(ψ) =

Q∏
q=1

Lq(ψ) . (A.1)

When the selected events are not independent, a “working independence assumption” can be invoked
and the component likelihoods can simply be multiplied together as in (A.1).

Since each component likelihood is a true likelihood in some context, it has some of the features
of an ordinary likelihood; see Lindsay (1988) and Molenberghs and Verbeke (2005) for the asymptotic
theory. Under mild regularity conditions, the component score functions satisfyE(∂ logLq(ψ)/∂ψ) =
0, and it is apparent from (A.1) that the composite score ∂ logCL(ψ)/∂ψ is simply the summation
of the component score functions; under regularity conditions, E(∂ logCL(ψ)/∂ψ) = 0. If CLi(ψ)
is the composite likelihood contribution from individual i in a sample of n independent individuals,
the overall composite likelihood is

∏n
i=1CLi(ψ) and a consistent estimator ψ̂ is obtained by solving∑n

i=1 ∂ logCLi(ψ)/∂ψ = 0. Moreover,

√
n(ψ̂ − ψ)→D N(0,D−1(ψ)B(ψ)D−1(ψ)) , as n→∞, (A.2)

where

D(ψ) = E

[
−∂

2 logCL(ψ)

∂ψ∂ψ′

]
, (A.3)

B(ψ) = E

[
∂ logCL(ψ)

∂ψ

∂ logCL(ψ)

∂ψ′

]
. (A.4)
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In the analysis of a particular dataset, standard errors are estimated based on this result by replacing
the expectations in (A.2) with their empirical counterparts and evaluating at the estimate ψ̂.

A natural question is how to select {A1, . . . ,AQ} to construct the composite likelihood. One ap-
proach is to construct the composite likelihood from low-dimensional marginal or conditional densi-
ties; this is called the “construction method”. Alternatively, a composite likelihood can be constructed
by omitting particular terms for a full likelihood; this is referred to as the “omission method” (Varin,
2008). The general guideline for both the construction and the omission method is that the parts kept
in the composite likelihood should be informative, easily computed and contain parameters of interest;
in contrast, the parts omitted are usually hard to evaluate, not very informative, or pose a significant
computational burden. Both approaches invoke a series of working independence assumptions under
which we can write down a new, more convenient composite likelihood.

WEB APPENDIX B: EFFICIENCY LOSSES UNDER COMPOSITE LIKELIHOOD

Here we report on computations carried out to investigate the efficiency of composite likelihood versus
full likelihood analysis in finite samples. We consider the setting with two processes and three states
in each as in Section 4.1, but we assume no covariates. We consider two scenarios in which all four
copulas in

f(t|x;ψ) = f1(t11, t12|x; θ1) · c(F12(t12|x; θ1),F22(t22|x; θ2);φ) · f2(t21, t22|x; θ2)
· c(F(t11|t12, x; θ1),F(t22|t12, x; θ, φ);φ2) · c(F(t12|t22, x; θ, φ),F(t21|t22, x; θ2);φ3)

· c(F(t11|t12, t22, x; θ, φ, φ2),F(t21|t12, t22, x; θ, φ, φ3);φ4) (B.1)

are Clayton copulas and in which they are Frank copulas. The values for Kendall’s τ in the four
copulas in (B.1) are assumed to be proportional to one another such that

τ4 = 0.8τ3 = 0.82τ2 = 0.83τ .

We evaluate the efficiency loss versus maximum likelihood in estimation of the marginal pa-
rameters α = (α11, α12, α21, α22)

′ under composite likelihood methods (3.2), (3.5) and (3.6). The
efficiency of the estimators of the vector of transition rates α using composite likelihood CL(α) is
defined as

Eff.(α) =
diag (G−1(α))

diag (D−1(α)B(α)D−1(α))
,

where G(α) = E [−∂2 logL(α)/∂α∂α′] is the Fisher information of the full likelihood, and D(α)
and B(α) are given in (A.3) and (A.4) respectively. We approximate the Fisher information G(α) by
computing

Ĝ(α) = − 1

n

n∑
i=1

∂2 logLi(α)

∂α∂α′
.

using Monte Carlo methods. Moreover we let D(α) and B(α) be likewise approximated by

D̂(α) = − 1

n

n∑
i=1

∂2 logCLi(α)

∂α∂α′
,

and

B̂(α) =
1

n

n∑
i=1

∂ logCLi(α)

∂α

∂ logCLi(α)

∂α′
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respectively. The efficiency Eff.(α) can be approximated by

diag
(
Ĝ−1(α)

)
diag

(
D̂−1(α)B̂(α)D̂−1(α)

) . (B.2)

The results are illustrated in Figure 1. The plots in the first row arise from the model involving
Clayton copulas and the plots in the second row arise from Frank copulas. In each of the eight
plots, the y-axis represents the efficiency given by the corresponding element of (B.2) and the x-
axis represents the value of Kendall’s τ . The black line corresponds to estimates using composite
likelihood (3.2), the red line corresponds to the estimates base on composite likelihood (3.5), and the
green line corresponds to those based on composite likelihood (3.6). As would be expected, the loss
of efficiency increases as the dependence between processes increases. It is also apparent that the
estimates based on composite likelihood (3.5) are the most efficient and those based on composite
likelihood (3.2) are the least efficient in the most scenarios. Under the Frank copula one can consider
negative values of Kendall’s τ in which case it becomes apparent that the efficiency curves, while not
symmetric, display the similar trend in that the loss of efficiency becomes more appreciable as the
negative dependence gets stronger.

WEB APPENDIX C: ROBUSTNESS OF COMPOSITE LIKELIHOOD ESTIMATORS

To provide insight into robustness regarding consistency of composite likelihood, we conducted sim-
ulation studies involving misspecified copula models in the full density (B.1) and examined the per-
formance of estimates of the parameters (θ′, φ)′ based on composite likelihood. We followed the
simulation design and the configuration of the marginal parameters given in Section 4.1. For the as-
sociation model we considered scenarios in which either the copula governing the absorption times
and indexed by φ was misspecified as a Frank copula, or the three conditional copulas indexed by φ2,
φ3 and φ4 in (B.1), were Frank copulas; in all cases analyses were conducted based on four Clayton
copulas. We considered strong dependence between processes by setting Kendall’s τ = 0.8, τ2 = 0.7,
τ3 = 0.6 and τ4 = 0.5, and weak dependence between with processes by setting Kendall’s τ = 0.4,
τ2 = 0.3, τ3 = 0.2 and τ4 = 0.1. We consider a sample size of 1000 individuals per simulation and
2000 simulations.

The results are reported in Table 1. The two upper panels reveal that when the copula governing
the absorption times is misspecified, empirical biases are quite appreciable for both the association
parameter φ governing the association between the absorption times, and the marginal parameters θ;
the biases are larger when the dependencies are stronger. The two panels on the bottom display the
biases when the three conditional copulas are misspecified; these are negligible for both the marginal
parameters θ and the association parameter φ whether the dependencies between processes are large
or small. We also observe close agreement between the average asymptotic standard errors (ASE) and
empirical standard errors (ESE) and between empirical coverage probability (ECP) and 95% nominal
level. In the other words, the estimates for (θ′, φ)′ based on the composite likelihood methods and the
two-stage estimation method are valid even with misspecified conditional copulas in the full density
(B.1), which demonstrates robustness of composite likelihood to some degree of model misspecifi-
cation. The composite likelihood methods only require correct specification of the joint density of
absorption times to produce valid estimates, which is weaker than full likelihood requiring correct
specification of the full density.

We remark in addition that the choice of the copula governing the absorption times becomes an
important issue and it can be approached by using model selection techniques in the context of com-
posite likelihood. Varin and Vidoni (2005) proposed composite Akaike Information Criteria (AIC)
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and Gao and Song (2011) proposed composite Bayesian Information Criteria (BIC), which are ana-
logues of AIC and BIC for model selection derived in the framework of composite likelihood.

In the current setting it is also possible to carry out model fitting in stages. Given the copula
formulation, separate fits to the marginal processes are possible and diagnostics can be carried out
using standard methods (Lawless, 2003) for survival analysis (i.e. based on hazard-based residuals,
linearization plots, etc.). Assessing validity of assumptions about the dependence structure is more
challenging but again strategies can be borrowed from the survival analysis literature. Work by Genest
et al. (2006, 2009) involves use of the probability integral transform of the copula model and is
proposed in the context of nonparametric estimates of the marginal distributions for time to event
data. This idea can be borrowed and applied to parametric models but inferences about the copula
would be predicated on correct specification of the marginal absorption time distributions in our
setting. Residual forms of dependence can also be investigated by generalizing the intensity-based
models of the marginal processes and testing the need for this type of model expansion.

WEB APPENDIX D: DATA SIMULATION PROCEDURE IN NUMERICAL STUDIES

Data simulation is conducted by R. The data are generated from the full density (B.1), where the
marginal processes are progressive time-homogeneous Markov processes with transition intensities
λjk(t|x; θjk) = αjk exp(xβjk) for j, k = 1, 2.

The data generation procedure involves the following steps:

1. Simulate T11 given X = x whose survival function is F11(t11|x; θ11) = exp(−α11e
xβ11t11).

2. Simulate T12 given T11 = t11, X = x from F(t12|t11, x; θ12) = exp[−α12e
xβ12(t12 − t11)].

3. Simulate T22 given T11 = t11, T12 = t12, X = x from

F(t22|t12, t11, x; θ, φ, φ2) =
∂C(u1, u2;φ2)

∂u2

∣∣∣∣
u1=F(t22|t12,x;θ,φ),u2=F(t11|t12,x;θ1)

where

F(t22|t12, x; θ, φ) =
∂C(u1, u2;φ)

∂u2

∣∣∣∣
u1=F22(t22|x;θ2),u2=F12(t12|x;θ1)

F(t11|t12, x; θ1) =
exp[(α12e

xβ12 − α11e
xβ11)t11]− exp[(α12e

xβ12 − α11e
xβ11)t12]

1− exp[(α12exβ12 − α11exβ11)t12]

Fj2(tj2|x; θj) =
αj2e

xβj2

αj2exβj2 − αj1exβj1
exp(−αj1exβj1tj2)−

αj1e
xβj1

αj2exβj2 − αj1exβj1
exp(−αj2exβj2tj2)

for j = 1, 2.

4. Simulate T21 given T11 = t11, T12 = t12, T22 = t22, X = x from

F(t21|t11, t12, t22, x;ψ) =
∂C(u1, u2;φ4)

∂u2

∣∣∣∣
u1=F(t21|t12,t22,x;θ,φ,φ3),u2=F(t11|t12,t22,x;θ,φ,φ2)

where

F(t21|t12, t22, x; θ, φ, φ3) =
∂C(u1, u2;φ3)

∂u2

∣∣∣∣
u1=F(t21|t22,x;θ2),u2=F(t12|t22,x;θ,φ)

F(t21|t22, x; θ2) =
exp[(α22e

xβ22 − α21e
xβ21)t21]− exp[(α22e

xβ22 − α21e
xβ21)t22]

1− exp[(α22exβ22 − α21exβ21)t22]

and

F(t12|t22, x; θ, φ) =
∂C(u1, u2;φ)

∂u2

∣∣∣∣
u1=F12(t12|x;θ1),u2=F22(t22|x;θ2)

.



Diao L and Cook RJ 5

REFERENCES

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the
Royal Statistical Society - Series B, 36:192–236.

Cox, D. R. and Reid, N. (2004). A note on pseudolikelihood constructed from marginal densities.
Biometrika, 91:729–737.

Gao, X. and Song, P. X.-K. (2011). Composite likelihood EM algorithm with applications to multi-
variate hidden Markov model. Statistica Sinica, 21:165–185.

Genest, C., Quessy, J. F., and Rémillard, B. (2006). Goodness-of-fit procedures for copula models
based on the probability integral transformation. Scandinavian Journal of Statistics, 33.2:337–366.

Genest, C., Rémillard, B., and Beaudoin, D. (2009). Goodness-of-fit tests for copulas: A review and
a power study. Insurance: Mathematics and Economics, 44.2:199–213.

Lawless, J. F. (2003). Statistical Models and Methods for Lifetime Data. Wiley, Hoboken, NJ, 2nd
edition.

Lindsay, B. G. (1988). Composite likelihood methods. Contemporary Mathematics, 80:221–239.

Lindsay, B. G., Yi, G. Y., and Sun, J. (2011). Issues and strategies in the selection of composite
likelihoods. Statistica Sinica, 21:71–105.

Molenberghs, G. and Verbeke, G. (2005). Models for Discrete Longitudinal Data. Springer, New
York.

Varin, C. (2008). On composite marginal likelihoods. Advances in Statistical Analysis, 92:1–28.

Varin, C. and Vidoni, P. (2005). A note on composite likelihood inference and model selection.
Biometrika, 92:519–528.



Composite likelihood for multiple multistate processes 6

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
7

0.
8

0.
9

1.
0

α11

E
ffi

ci
en

cy
 U

si
ng

 C
la

yt
on

 C
op

ul
a

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
7

0.
8

0.
9

1.
0

α12

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
7

0.
8

0.
9

1.
0

α21

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
7

0.
8

0.
9

1.
0

α22

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
7

0.
8

0.
9

1.
0

Kendall's τ

E
ffi

ci
en

cy
 U

si
ng

 F
ra

nk
 C

op
ul

a

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
7

0.
8

0.
9

1.
0

Kendall's τ

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
7

0.
8

0.
9

1.
0

Kendall's τ

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
7

0.
8

0.
9

1.
0

Kendall's τ

Figure 1: Plots of efficiency as a function of Kendall’s τ for Clayton and Frank copulas with the black
line corresponding to composite likelihood (3.2), the red line composite likelihood (3.5) and the green
line composite likelihood (3.6)
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Table 1: Frequency properties of estimators of parameters using composite likelihood and two-stage
estimation procedure under misspecified model; 1000 observations per sample; 2000 simulations.

CL2 in (3.5) CL3 in (3.6) Two-Stage Rel. Eff.

Para True BIAS ASE ESE ECP BIAS ASE ESE ECP BIAS ASE ESE ECP RE1 RE2

Strong Dependence and Copula Governing Absorption Times Misspecified1

log(α11) 0.617 0.053 0.045 0.046 0.782 0.021 0.047 0.047 0.917 -0.001 0.049 0.050 0.946 0.939 0.848
log(α12) 1.023 0.058 0.051 0.050 0.808 0.026 0.053 0.052 0.919 -0.001 0.056 0.055 0.955 0.921 0.831
log(α21) 0.617 0.052 0.046 0.045 0.794 0.021 0.047 0.046 0.928 -0.001 0.049 0.048 0.956 0.950 0.857
log(α22) 1.023 0.059 0.051 0.050 0.786 0.027 0.053 0.053 0.922 0.000 0.056 0.056 0.945 0.908 0.809
β11 0.223 -0.071 0.059 0.059 0.779 -0.040 0.062 0.062 0.902 -0.002 0.068 0.069 0.950 0.898 0.739
β12 0.336 -0.047 0.072 0.071 0.900 -0.015 0.073 0.072 0.946 0.002 0.076 0.075 0.945 0.951 0.876
β21 0.223 -0.070 0.060 0.059 0.786 -0.039 0.063 0.062 0.904 -0.001 0.068 0.068 0.950 0.907 0.753
β22 0.336 -0.049 0.071 0.071 0.890 -0.017 0.073 0.073 0.942 -0.001 0.076 0.077 0.947 0.939 0.845
log(φ) 2.901 -0.781 0.054 0.055 0.000 -0.764 0.053 0.054 0.000 -0.757 0.053 0.057 0.000 1.033 0.940

Weak Dependence and Copula Governing Absorption Times Misspecified2

log(α11) 0.557 0.020 0.048 0.048 0.922 0.008 0.049 0.049 0.939 -0.001 0.049 0.050 0.944 0.951 0.920
log(α12) 0.962 0.019 0.057 0.055 0.932 0.007 0.057 0.055 0.948 -0.002 0.057 0.056 0.953 0.981 0.975
log(α21) 0.557 0.020 0.049 0.048 0.920 0.008 0.049 0.049 0.940 0.000 0.049 0.050 0.941 0.964 0.936
log(α22) 0.962 0.019 0.056 0.056 0.934 0.007 0.057 0.057 0.946 -0.002 0.057 0.057 0.948 0.971 0.968
β11 0.223 -0.019 0.066 0.066 0.944 -0.011 0.067 0.068 0.949 -0.002 0.068 0.070 0.946 0.936 0.892
β12 0.336 -0.013 0.078 0.077 0.949 -0.003 0.077 0.077 0.947 0.002 0.077 0.077 0.948 0.987 0.985
β21 0.223 -0.017 0.067 0.067 0.936 -0.008 0.067 0.069 0.943 0.000 0.069 0.071 0.940 0.950 0.904
β22 0.336 -0.013 0.077 0.077 0.938 -0.003 0.077 0.078 0.942 0.002 0.077 0.078 0.942 0.988 0.990
log(φ) 1.426 -1.091 0.081 0.083 0.000 -1.084 0.081 0.083 0.000 -1.080 0.081 0.084 0.000 1.009 0.998

Strong Dependence and Conditional Copulas Misspecified3

log(α11) 0.623 0.000 0.044 0.045 0.945 0.000 0.046 0.047 0.946 0.000 0.049 0.050 0.945 0.932 0.825
log(α12) 1.029 0.000 0.053 0.052 0.954 0.000 0.054 0.052 0.956 0.000 0.055 0.054 0.954 0.974 0.901
log(α21) 0.623 0.000 0.044 0.044 0.953 0.000 0.046 0.046 0.952 0.000 0.049 0.048 0.954 0.942 0.834
log(α22) 1.029 0.001 0.052 0.053 0.944 0.000 0.053 0.054 0.944 0.001 0.055 0.057 0.944 0.954 0.872
β11 0.223 -0.001 0.055 0.055 0.946 -0.001 0.059 0.060 0.950 -0.001 0.068 0.068 0.950 0.848 0.648
β12 0.336 0.001 0.072 0.071 0.952 0.001 0.072 0.071 0.952 0.000 0.075 0.075 0.947 0.989 0.892
β21 0.223 -0.001 0.055 0.054 0.956 -0.001 0.059 0.059 0.952 -0.001 0.068 0.068 0.950 0.854 0.646
β22 0.336 -0.001 0.071 0.072 0.951 -0.001 0.072 0.073 0.948 -0.001 0.075 0.077 0.941 0.973 0.860
log(φ) 2.079 0.003 0.052 0.052 0.948 0.003 0.053 0.053 0.948 0.000 0.053 0.053 0.950 0.968 0.979

Weak Dependence and Conditional Copulas Misspecified4

log(α11) 0.561 0.000 0.047 0.048 0.946 0.000 0.048 0.049 0.948 0.000 0.049 0.050 0.948 0.944 0.905
log(α12) 0.967 -0.001 0.057 0.056 0.952 -0.001 0.057 0.056 0.951 -0.001 0.057 0.055 0.952 1.007 1.007
log(α21) 0.561 0.000 0.048 0.047 0.949 0.000 0.048 0.048 0.948 0.000 0.049 0.049 0.950 0.962 0.933
log(α22) 0.967 0.000 0.057 0.057 0.948 0.000 0.057 0.057 0.946 0.000 0.057 0.057 0.948 0.987 0.992
β11 0.223 -0.001 0.063 0.063 0.948 -0.001 0.066 0.066 0.949 -0.001 0.068 0.069 0.946 0.898 0.824
β12 0.336 0.001 0.078 0.078 0.955 0.001 0.077 0.078 0.953 0.001 0.077 0.077 0.946 1.016 1.019
β21 0.223 -0.001 0.064 0.065 0.947 0.000 0.066 0.067 0.941 0.000 0.068 0.070 0.942 0.921 0.859
β22 0.336 0.001 0.077 0.078 0.946 0.001 0.077 0.078 0.946 0.001 0.077 0.078 0.944 0.999 1.002
log(φ) 0.288 0.002 0.083 0.087 0.940 0.002 0.083 0.086 0.944 0.001 0.082 0.086 0.941 1.017 1.012

RE1 is the relative efficiency from composite likelihood (3.6) v.s. composite likelihood (3.5) based on ASE;
RE2 is the relative efficiency from two-stage estimation v.s. composite likelihood (3.5) based on ASE;
1 τ=0.8, τ2=0.7, τ3=0.6, τ4=0.5; the copula governing absorption time is generated by Frank but fitted by Clayton copula;
2 τ=0.4, τ2=0.3, τ3=0.2, τ4=0.1; the copula governing absorption time is generated by Frank but fitted by Clayton copula;
3 τ=0.8, τ2=0.7, τ3=0.6, τ4=0.5; the three conditional copulas are generated by Frank but fitted by Clayton copulas;
4 τ=0.4, τ2=0.3, τ3=0.2, τ4=0.1; the three conditional copulas are generated by Frank but fitted by Clayton copulas.


