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Abstract 

Hearing loss is one of the most common physical and sensory impairments among all ages, especially 

elders. Hearing loss may affect only one ear or both ears of a patient at a different degree of 

impairment. This asymmetrical nature of hearing loss makes it more difficult for the patient to 

localize the source of the sound properly. One possible solution for this asymmetry of hearing 

problem is to use a pair of hearing aid devices. Each hearing aid device should be able to deal with 

such asymmetry of the ears, as well as the natural asymmetry induced by spectral sound differences. 

By using a pair of hearing aid devices operating at 2.4GHz- 2.5GHz Bluetooth band, wirelessly 

communicating with each other, the binaural processing will be improved for the person who suffers 

from unbalanced hearing loss between the two ears and one can properly localize the source of the 

sound. 

A novel lumped elements loaded miniaturized differential dipole antenna for Bluetooth enabled 

hearing aid devices is proposed. Miniaturization of the proposed antenna is achieved by planting 

lumped components directly on the optimized locations of the antenna traces. The lumped elements 

also serve as a matching circuit which matches the antenna’s input impedance directly to the radio, 

without need for an additional dedicated matching circuit. The effect of the human body is taken into 

consideration during the antenna design stages. The proposed antenna was simulated, fabricated and 

measured. There are some good agreements between simulated and measured results. Radio link tests 

were done after integrating the proposed antenna with a hearing aid package, and good link ranges 

were observed. Integrating tunable elements, for example voltage controlled capacitors; directly on 

the antenna structure to achieve adaptive matching according to different human bodies will be a 

valuable future work for this research. 
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Chapter 1. Introduction 

1.1 Introduction to Body Area Network 

A body area network (BAN), also referred to as a wireless body area network (WBAN) or a body 

sensor network, is a wireless network of wearable computing devices. BAN devices are devices 

embedded inside the body, surface-mounted on the body in a fixed position or they can be 

accompanied devices which human can carry in different positions, in cloth pockets, by hand or in 

various bags [1]. 

 

Fig. 1.1. Body Area Network (BAN) 

There is a trend towards the miniaturization of such devices, in particular, networks consisting of 

several miniaturized body sensor units together with a single body central unit [2-3]. However, larger 

decimeter sized smart devices, accompanied devices, still play an important role by acting as a data 

hub, data gateway and providing a user interface to view and manage BAN applications. The 

development of WBAN technology started around 1995 where the idea of using wireless personal 

area network technologies to implement communications on, near, and around the human body 

occurred. Few years later, the term “BAN” came to refer systems where communication is entirely 

within, on, and in the immediate proximity of a human body [4-5]. A BAN system can use wireless 

personal area network technologies as gateways to reach longer ranges. Through these gateway 
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devices, it is possible to connect the wearable devices on the human body to the internet. This way, 

medical professionals can access patient data online using the internet independent of the patient 

location as shown in Fig. 1.1[6].  

This research focuses on the development of intelligent wireless sensors that can adapt and optimize 

their performance while operating in, on or around the human body. One application of this research 

project is wireless hearing aids. 

1.2 Introduction to Some Hearing Problems and Proposed Solution 

Hearing lost is one of the most common physical and sensory impairments among all ages, especially 

elders as shown in Fig. 1.2 [7]. Not being able to see a hearing loss directly makes this disease an 

“invisible” condition, whose side effects can only be observed upon behavior and communication [8-

9]. Those side effects which vary from one person to another, makes hearing loss such a complicated 

disease which is responsible for the pressure, anxieties and conflicts happened in one’s life. 

 

Fig. 1.2. Who has hearing loss? 

Binaural processing, in audiology, is the capability of the brain to process sound coming from both 

the left and the right ears which helps in localizing the source of the sound [10]. Hearing loss has an 

asymmetrical nature and it may affect only one ear or both ears of a patient at a different degree of 

impairment as demonstrated in Fig. 1.3[6]. The asymmetrical nature of hearing loss makes it more 

difficult for a patient to localize the source of the sound properly. 



 

 3 

  

(a) (b) 

Fig. 1.3. Asymmetrical nature of hearing loss: (a) Single ear; (b) Both ears 

One possible solution for this asymmetry is to use a pair of hearing aid devices. Each hearing aid 

device should be able to deal with such asymmetry of the ears, as well as the natural asymmetry 

induced by spectral sound devices. By using a pair of hearing aid devices operating at 2.4 GHz- 

2.5GHz Bluetooth frequency band, wirelessly communicating with each other, the binaural 

processing will be improved for a person who suffers from unbalanced hearing loss and he or she can 

properly localize the source of the sound [11]. 

Generally speaking, there are two different types of hearing aid devices with respect to the location 

where people put them on as shown in Fig. 1.4[6]. The first type goes inside one’s ears, and the 

second type goes behind one’s ears. And we choose the behind ear configuration for our application. 

  

(a) (b) 

Fig. 1.4. Two types of hearing aids: (a) Inside ear configuration; (b) Behind ear configuration 
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1.3 Organization of the Dissertation 

The objective of this dissertation is to design a miniaturized antenna operating at ISM band to meet 

the needs of individuals suffering from unbalanced hearing. One essential part of wireless hearing aid 

application is to design miniaturized antenna which can operate in the proximity of a human body 

with omnidirectional radiation pattern and acceptable antenna efficiency. Works have been done in 

designing antenna for near head applications [12-20] and modelling propagation channel in or around 

the human head [21-25]. Here, we proposed a lumped elements loaded miniaturized antenna for 

Bluetooth enabled hearing aid devices. 

Theory of mixed-mode scattering parameters is reviewed in chapter two. The transformation between 

the standard scattering parameters and the mixed-mode scattering parameters is required because we 

choose the differential signal for our application to achieve better noise performance. There is no 

direct way to measure a differential signal by a normal vector network analyzer, so the transformation 

is utilized. 

Designs, simulations and measurements of a lumped inductors loaded miniaturized differential dipole 

antenna are illustrated in chapter three. Challenges in the design of an antenna for hearing aid devices 

are introduced in section 3.1. Dipole antenna was chosen for this application to achieve 

omnidirectional radiation requirement. Simulation results of the designed antenna in free space 

(section 3.2) and with the presence of human head (section 3.3) show that designed antenna meets the 

other requirements as well. Designed antenna was fabricated and measured. Measurement results 

(section 3.4) have good agreements with the simulation results, which means the idea of loading 

inductors directly on the antenna structure is applicable. 

Then, integration of a lumped capacitors loaded symmetrical dipole antenna with radio board package 

for a finalized hearing aid case focusing on ear-to-remote communication application is demonstrated 

in chapter four. Section 4.1 introduces a lumped capacitors loaded symmetrical differential dipole 

antenna which can satisfy the limited allocated PCB space for the antenna. Then, a brief introduction 

of integrating the designed antenna with a radio board designed by On Semiconductor into a finalized 

hearing aid case is demonstrated in section 4.2. Radio link tests between this hearing aid device and a 

cellphone were conducted and good link ranges were observed.  
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Chapter five concludes this research study addressing future. A brief note is given on possible 

realization in integrating tunable elements, for example voltage controlled capacitors, directly on the 

antenna structure to achieve adaptive matching for BAN applications. 
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Chapter 2. Theory of Mixed-mode Scattering Parameters 

Differential signaling is the primary choice for a low power RF circuit, since it provides superior 

immunity to noise by offering twice the signal swing for a given supply voltage. Moreover, the out of 

phase property of a balanced pair has several other benefits: “it rejects any common mode 

interference signal, cancels the even order distortions, and reduces Electromagnetic Interference 

(EMI), EMI emission, and susceptibility” [26]. Considering these advantages, the RF and antenna 

part of our hearing aid device are designed to be in a differential configuration. To do so, the 

transformation between the standard scattering parameters and the mixed-mode scattering parameters 

is required. 

 

Fig. 2.1. Diagram of a general two-port differential circuit 

D. E. Bockelman, et. al. developed the method to convert the standard scattering parameters into 

mixed-mode scattering parameters [27]-[28]. Consider the differential circuit composed by two 

differential ports as shown in Fig. 2.1. The incident waves and reflected waves of a standard four 

ports network are represented by a1, a2, a3, a4 and b1, b2, b3, b4 respectively. Standard port 1 and port 2 

construct mixed-mode port 1, and standard port 3 and port 4 construct mixed-mode port 2. According 

to [28], the normalized differential-mode incident and reflected waves are represented by ad1, ad2 and 

bd1, bd2 respectively. Similarly, the normalized common-mode incident and reflected waves are 

represented by ac1, ac2 and bc1, bc2. 



 

 7 

The mixed-mode normalized waves can be written in terms of standard normalized waves as [28]: 
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Where matrix M in (2)-(3) is defined as: 
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Mixed-mode normalized incident and reflected waves, and standard normalized incident and reflected 

waves can be related in terms of mixed-mode scattering parameters and standard scattering 
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parameters, respectively. Smm and Sstd in (5)-(6) stand for mixed-mode scattering matrix and standard 

scattering matrix, respectively. 
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From (2)-(6), the transformation between standard scattering parameters and mixed-mode scattering 

parameters is done in (7). 
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The differential-mode scattering parameters in (8), obtained from (7), are used in the following 

chapters. 
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As we mentioned before, we need a pair of hearing aids for ear-to-ear communication application, 

which means that we have two identical antennas in our hearing aid system. And we choose 

differential dipole antenna for the application because of the advantages of differential signal. As 

shown in Fig. 2.2, each differential dipole antenna has two standard ports, so that there are four 

standard ports in total for the hearing aid system. Once we get the standard four-port scattering 

parameters from simulations or measurements, we can then use formulas illustrated in (8) to calculate 

the differential return loss of each antenna, and differential insertion loss between two antennas.   

 

Fig. 2.2. Diagram of a hearing aid system containing two identical differential dipole antennas 
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Chapter 3. Designs, Simulations and Measurements of a Lumped 

Inductors Loaded Differential Dipole Antenna for Bluetooth 

Enabled Hearing Aid Devices 

The increasing growth of wireless Bluetooth devices operating at 2.4GHz- 2.5GHz frequency band 

has attracted industrial companies to incline towards this range of frequency in designing their 

products. In this chapter, a lumped inductors loaded differential dipole antenna operating at Bluetooth 

band is proposed to meet the needs of individuals suffering from unbalanced hearing problems. 

3.1 Challenges in Antenna Design 

The two main challenges in implementing the antenna for a hearing aid device are the limited 

allocated space for the antenna and the presence of the human head in the proximity of the radiating 

element. As shown in Fig. 3.1, the available PCB space for the antenna of our first prototype is 

comparable to a coin. Although the given PCB is a planar structure, it needs to fit into a specific 

hearing aid case. Thus, flexible substrate which can be bent easily must be chosen in the process of 

designing the antenna to make sure that it can be integrated with the other parts of a hearing aid 

device.  

 

Fig. 3.1. Available PCB space for antenna 
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Considering the fact that the size, shape and even properties of each individual human head are 

different, optimizing the antenna performance while operating around a human head is the major 

challenge. So coming up with a novel antenna which can be adjusted for individuals to give 

customers better user experience would be a valuable work to do. And another thing one must take 

into consideration is that human body is a highly lossy medium at 2.4GHz- 2.5GHz frequency band, 

so the designed antenna must have acceptable efficiency at a certain direction to ensure good 

communication between the left and right ears. 

3.2 Designed Antenna and Simulation Results in Free Space 

In this section, the major considerations in designing a lumped inductors loaded differential dipole 

antenna are presented and some simulation results of the designed antenna in free space environment 

are demonstrated.  

3.2.1 Major Considerations in Antenna Design 

For a hearing aid antenna, an omnidirectional radiation pattern is needed to support not only ear-to-

ear communication application, but also ear-to-remote communication application. Dipole antenna, 

loop antenna or slot antenna all can be chosen when an omnidirectional radiation pattern is required. 

But for the given PCB space, the possible loop antenna design for this application will be electrically 

small loop which is difficult to match. And considering that the available RF ground is small, the slot 

antenna would not be a good option either. Thus, a dipole antenna is designed to meet this 

requirement.  

Considering all the advantages of differential signals as we mentioned in section 2.1, a dipole antenna 

with differential feeds is designed. The differences between a differential dipole antenna and a normal 

dipole antenna are shown in Fig. 3.2. For a normal dipole antenna, there is just one feed port. But for 

a differential dipole antenna, there are two feed ports which have the same magnitude and are out of 

phase. 
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(a) (b) 

Fig. 3.2. Dipole antennas: (a) Normal dipole antenna; (b) Differential dipole antenna 

3.2.2 Designed Antenna Model 

The geometry of proposed inductors loaded differential dipole antenna is shown in Fig. 3.3. From the 

side view of this antenna model, we can see that the two arms of this dipole antenna are not on the 

same surface and the two surfaces are separated by a ground with a width of 5mm. There are two feed 

ports to excite this differential dipole as we mentioned. One feed port was connecting arm 1 with the 

ground, and another feed port was connecting arm 2 with the ground. These two feed ports had the 

same magnitude and 180 degrees phase difference of voltages. The battery modeled as a cylinder was 

connected with ground as it is in reality. The substrate used in this model was flexible material, 

UL3850 provided by Rogers Corporation. The dielectric constant of this substrate is 2.9 and the 

thickness of the substrate is 0.1mm. To be assured that the hearing aid device works well when it is 

inserted on either side of the head (left/right ear), the proposed antenna was designed in such a way to 

conform to the natural symmetries, in term of line width and the total length. 
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(a) (b) 

Fig. 3.3. Geometry of proposed antenna: (a) Front view; (b) Side view 

3.2.3 Resonant Frequency VS Inductances 

The inductive lumped components are planted at the center of the two antenna traces, as shown in 

Fig. 3.4. Not only do they reduce the necessary length of the trace at certain bands, but they also serve 

as matching circuits to match the input impedance of antennas to the input/output radio. Using this 

strategy would also save the space for any additional matching circuit which was going to be 

employed between the radio and the antenna.  

 

Fig. 3.4. Locations of implanted inductors on the antenna arms 

Choosing locations for implanting the lumped inductors was a process of trade-off between the total 

length and the radiation efficiency of the antenna. A model of a simple printed dipole antenna with 

loaded inductors in HFSS is shown in Fig. 3.5. Two 3nH lumped inductors were implanted on the two 
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arms of the dipole antenna, symmetrically about the excitation port. The distance between the 

locations of the excitation port and one lumped inductor was a variable d (if d=0, that means there 

were no lumped components loaded on the antenna structure). As we can see from Fig. 3.6, as the 

distance between the locations of the excitation port and the lumped inductor decreases, the resonant 

frequency of the antenna shifts to the lower band and the radiation efficiency of the antenna decreases 

in the meantime. Implanting lumped inductors on the antenna structure surely can reduce the total 

length of the antenna at a desired band, but it also sacrifices a certain amount of radiation efficiency 

of the antenna. Considering that the available PCB size for the antenna is limited in this design and 

one does not want to sacrifice too much efficiency, the optimal locations for implanting the lumped 

components would be at the centers of the two antenna arms.    

 

Fig. 3.5. Model of a simple printed dipole antenna with loaded lumped inductors 

  

(a) (b) 

Fig. 3.6. Effects of the locations of the lumped inductors on: (a) Return loss; (b) Radiation efficiency 

Furthermore, we chose three different locations to implant lumped inductor L1 to verify whether the 

optimal location for the designed hearing aid antenna was at the center of the trace or not. As shown 
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in Fig. 3.7, the three chosen locations were close to the excitation port, at the center of the trace, or 

close to the end of the trace, respectively. And the capacitance of L1 keeps unchanged. As we can see 

from Fig. 3.8, as the location to implant L1 moves further to the excitation port, the resonant 

frequency shifts to higher band and the radiation efficiency increases. So taking resonant frequency 

and radiation efficiency into consideration at the same time, the optimal location was at the center of 

the trace. 

 
 

 

(a) (b) (c) 

Fig. 3.7. Three different locations to implant L1: (a) Close to the excitation port; (b) At the center of the trace; 

(c) Close to the end of the trace 

  

(a) (b) 

Fig. 3.8. Three different locations to implant L1: (a) Differential return loss S(d); (b) Radiation efficiency 

For a differential feed dipole antenna, the differential return loss S(d) can be obtained from a general 

two port scattering matrix as mentioned in section 2.1. As shown in Fig. 3.9, the resonant frequency 
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of this differential dipole antenna can be easily adjusted by changing the inductance values of these 

two lumped inductors, L1 and L2. As we expected, the resonant frequency would shift down as the 

inductance of either L1 or L2 increases. The beauty of having two inductors is that we have two 

degrees of freedom to change the antenna impedance, which are very beneficial considering the fact 

that we need to match the antenna impedance to the radio with the presence of human head. Matching 

the antenna impedance to the radio in free space environment is not necessary since we know that the 

presence of human head while the hearing aid device is operating would cause changes on the 

antenna impedance. As we will discuss the effects of battery in antenna model, antenna radiation 

pattern and radiation efficiency in the following parts, a set of fixed values of lumped inductors L1 

and L2, which are 3.6nH and 0.1nH respectively, have been chosen. The reason of choosing this set 

of values is that the antenna impedance is matched to the radio with the presence of the human head 

with the chosen values of L1 and L2. 

  

(a) (b) 

Fig. 3.9. Resonant frequency VS inductances: (a) Varying L1; (b) Varying L2 

3.2.4 Effects of Battery in the Antenna Model 

In order to study the effects of battery in the antenna model, we made comparisons on the differential 

return loss, S(d), and differential impedance, Z(d), of complete antenna model (finalized model 

including the battery) and incomplete model (without battery). Including the battery, which was 

connected to the ground, caused a shift in the resonant frequency of the dipole to the lower frequency 

band as shown in Fig. 3.10. This effect has been carefully taken into the consideration in the design of 
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the final prototype of the antenna. To minimize the coupling from the battery and the ground, the 

traces of the two arms of the antenna should be kept as far as possible away from them. 

  

(a) (b) 

Fig. 3.10. Effects of battery on: (a) Differential return loss S(d); (b) Differential impedance Z(d) 

3.2.5 Radiation Pattern and Radiation Efficiency 

Fig. 3.11 shows the current distribution on antenna arms, ground and battery at the resonant 

frequency which is 2.5GHz. It is obvious that the current on the two antenna arms is much stronger 

than that on the ground or battery, and major radiation will be caused by these two arms of the 

antenna. The radiation pattern of this current distribution will be similar to a dipole lying on the xoz 

plane. As shown in Fig. 3.12, an omnidirectional dipole-like radiation pattern is observed at not only 

resonant frequency 2.5GHz, but also at its two sidebands, 2.45GHz and 2.55GHz. 

 

Fig. 3.11. Current distribution at resonant frequency 
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(a) 

 

  

(b) (c) 

Fig. 3.12. Radiation pattern at different frequencies: (a) 2.5GHz; (b) 2.45GHz; (c) 2.55GHz 

The two lumped inductors loaded directly on the antenna structure would have caused a drop on the 

antenna radiation efficiency. To study the loss contributed by lumped inductors, quality factors of 

these inductors must be taken into consideration. Both lumped inductors are 0402 planar inductors 

with quality factors of 30 which are widely used in the industry. For a lumped inductor: 



 

 19 

R

fL

R

L
Q

 2
  

(9) 

From the equation above, we can calculate the loss resistance of a lumped inductor and include it into 

our antenna model. As we can see from Fig. 3.13, the major losses are caused by dielectric loss and 

conductivity loss. The loss caused by the two lumped inductors is minor. 

 

Fig. 3.13. Radiation efficiency 

3.3 Simulation Results of Designed Antenna with the Presence of Human Head 

Model 

3.3.1 Simplifications of the Numerical Human Head Model 

The human head model used in this section was developed by Aarkid (a 3D modeling company), 

supplied by HFSS [29] which is shown in Fig. 3.14. The model includes the whole human body 

consisting of most of the human body organs which can be imported separately. The electromagnetic 

properties of a human organ at a certain frequency can be found in [30-31]. It has been verified 

though that the part below the shoulder will not affect the simulation results significantly at this range 

of frequency, since hearing aid devices are inserted around ears, which is more than three 
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wavelengths away from the shoulders. Thus, the human body model below the shoulder has been 

removed to improve the simulation efficiency.  

It has been observed in the course of the simulations that more simplifications can be applied to the 

head model. It has been noticed that the results remain almost the same when only the essential parts, 

brain, skull, eyes and skin, are kept and all other detail parts are replaced by a homogeneous material. 

By using the simplified head model, the simulation time would be almost 7 times faster compared to 

the complete head model. 

  

(a) (b) 

Fig. 3.14. Numerical human head model: (a) Complete model; (b) Simplified model 

3.3.2 Comparisons of Simulation Results between Complete Head Model and 

Simplified Model 

The configuration, consisting two hearing aid devices in HFSS is shown in Fig. 3.15(a). The two 

hearing aid devices, which are inserted around ears, wirelessly communicate with each other. Due to 

the asymmetry of the antenna, which exists between the left and the right traces, the input impedance 

of the antenna around the left ear (antenna 1) may be different from the one inserted around the right 

ear (antenna 2). This discrepancy between the two antennas is not desired since the objective here is 

to design one type of hearing aid device for both of the ears. This asymmetry is improved by the two 
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lumped components implanted on the antenna structure. By varying the values of lumped 

components, the differences between the two antennas can be minimized. 

   

(a) (b) (c) 

Fig. 3.15. Antenna with the presence of head model: (a) Configuration of the hearing aid system; (b) Side view 

around right ear; (c) Zoomed in around right ear 

As mentioned in section 3.2, the optimized values of the two inductors, L1 and L2, are 3.6nH and 

0.1nH respectively. With these optimized values, we can get well matched impedances on both 

antennas and good insertion loss between two antennas as we will see later. 

As we mentioned before, the human head model has been simplified in such a way to achieve similar 

results compared to the complete head model, with respect to the differential return loss, S(d1d1) and 

S(d2d2),  and the differential insertion loss, S(d1d2) and S(d2d1). All the differential return loss and 

insertion loss can be derived from section 2.1 using the transformation between standard scattering 

matrix and mixed-mode scattering matrix. Since the whole hearing aid antenna system is passive and 

lossless, we know that S(d1d2) and S(d2d1) are identical according to reciprocity theorem. Thus, we 

take S(d2d1) as the insertion loss between left ear and right ear antennas for the following study.  

As observed from Fig. 3.16(a), using the simplified head model, the return loss for antenna 1 or 

antenna 2 is almost the same with that of the complete human head model. Only the local geometry 

around human ear plays the dominant role on the antenna impedance. The return loss of both antennas 

are below -10dB, which means good matching has been accomplished.  
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The insertion loss between antenna 1 and 2 for both simplified and complete head model is 

demonstrated in Fig. 3.16 (b). Small variations are observed in the insertion loss as the frequency 

goes above 2.7 GHz. But at our desired band (2.4GHz- 2.5GHz), S(d2d1) is almost identical for the 

simplified and the complete head model. According to the results shown in Fig. 3.16, the replacement 

of the complete head model by the simplified head model is not only efficient, but also does not cause 

any significant error at desired frequency band in our simulations. Therefore, from now on the 

simplified human head model has been utilized for further analysis and designs. And at 2.4GHz- 

2.5GHz frequency band, the insertion loss is around -70dB. Since the transmitter output power of this 

hearing aid device is 4dBm and the receiver sensitivity is -93dBm, the insertion loss observed from 

our simulation will be good enough for this application. 

  

(a) (b) 

Fig. 3.16. Comparisons between complete model and simplified model: (a) Differential return loss S(d1d1) & 

S(d2d2); (b) Differential insertion loss S(d2d1) 

The plots of the electric field and magnetic field of a cross-section in the direction of the wave 

propagation at 2.4GHz, 2.45GHz and 2.5GHz using simplified human head model are demonstrated 

in Fig. 3.17. The E-field decays rapidly inside the human head since human head acts as highly lossy 

material at this range of frequency, which can also be proved by taking a careful look at the 

wavelength inside the head and around head. The head attenuates the H-field minimally if any at all, 

because of the non-magnetic property of the human head. Both surface wave propagating around head 
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and directed wave propagating inside head exist at this range of frequency for ear-to-ear 

communication. And it is difficult to tell which one of them takes the dominant role. It will depend on 

the certain operating frequency and placements of the transmitter and receiver. 

  

(a) (b) 

 
 

(c) (d) 
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(e) (f) 

Fig. 3.17. Field inside and around simplified human head model: (a) E-field at 2.4GHz; (b) H-field at 2.4GHz; 

(c) E-field at 2.45GHz; (d) H-field at 2.45GHz; (c) E-field at 2.5GHz; (d) H-field at 2.5GHz 

3.3.3 Parameter Study of Simplified Human Head Model 

In order to investigate whether the antenna works well for different size of the human head or not, we 

scale the size of the head model to 0.9 times and 1.1 times compare to original model, respectively. 

For simplification, we name these three models as small, medium and large head model. As 

demonstrated in Fig. 3.18(a), the differences between the return loss of both antennas (1 and 2) for 

these three models are tolerated. However, the changes of insertion loss through the whole band (2-

3GHz) are unpredictable as shown in Fig. 3.18(b). But at the desired band, the insertion loss goes 

down as the size of the head increases as expected. Generally speaking, hearing aid devices using the 

designed antenna can be utilized by people with different head size. 
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(a) (b) 

Fig. 3.18. Effects of head size on: (a) Differential return loss S(d1d1) & S(d2d2); (b) Differential insertion loss 

S(d2d1) 

Another thing we want to study is how the return loss and the insertion loss change when we make 

some changes on the electromagnetic properties (permittivity and conductivity) of the remained 

organs (skin and brain). So we can know whether this simplified head model works for different kinds 

of people since there may be some changes on the electromagnetic properties (permittivity and 

conductivity) of the skin and brain of different people. For this purpose, we increase/decrease the 

permittivity/conductivity of the skin and brain by 10 percent of their original values respectively and 

compare the results with the original simplified head model. The results are as follows. 

From Fig. 3.19, we can see that the changes on the permittivity or conductivity on the skin won’t 

change the return loss of the antennas much. The local geometry of human ear dominates on the 

antenna impedance instead of small changes on the electromagnetic properties of human skin. And 

the changes on insertion loss are within 2dB at desired band (2.4GHz- 2.5GHz) as shown in Fig. 3.20. 
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(a) (b) 

Fig. 3.19. Effects on the differential return loss S(d1d1) and S(d2d2) when we make changes on: (a) 

Permittivity of skin; (b) Conductivity of skin 

  

(a) (b) 

Fig. 3.20. Effects on the differential insertion loss S(d2d1) when we make changes on: (a) Permittivity of skin; 

(b) Conductivity of skin 

From Fig. 3.21, we can conclude that the changes on the permittivity or conductivity on the brain 

won’t change the return loss of the antennas much. And the changes on insertion loss are within 2dB 

at desired band (2.4GHz- 2.5GHz) as shown in Fig. 3.22. 
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(a) (b) 

Fig. 3.21. Effects on differential return loss S(d1d1) and S(d2d2) when we make changes on: (a) Permittivity of 

brain; (b) Conductivity of brain 

  

(a) (b) 

Fig. 3.22. Effects on differential insertion loss S(d2d1) when we make changes on: (a) Permittivity of brain; (b) 

Conductivity of brain 

From the parameter study of the simplified human head model on return loss and insertion loss in this 

part, we can conclude that designed antenna works well for different human heads. Maybe the 

antenna performance is different when different people wear it, but we can always optimize its 
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performance by adjusting the two lumped inductors implanted on the antenna structure. And as we 

will discuss in chapter four, these two lumped elements can also be lumped capacitors. 

3.4 Measurement of Designed Antenna 

3.4.1 Fabricated Antenna Samples and Measurement Setup 

Designed antenna was fabricated and some samples are shown in Fig. 3.23. The substrate used in this 

sample was flexible material UL3850 with a thickness of 0.1mm, provided by Rogers Corporation, as 

we mentioned in section 3.2. The antenna arms and ground were made of copper with a cladding of 

0.5 oz. The width of the antenna arm trace was 0.5mm, which was the same width as the 0402 planar 

lumped component.  

As shown in Fig. 3.23(a), except the expected discontinuity at the center of each antenna arm, two 

extra discontinuities close to the start and the end of each antenna arm were implemented for possible 

needs of implanting extra lumped components or simply changing the location of lumped components 

for the sake of impedance matching. The extra discontinuity part was soldered together when not used 

as the location for the implanting a lumped component. Between the two arms, there was the common 

ground for differential signals.  

While we folded the planar structure of fabricated sample into the three-dimensional model designed 

before, foam was used to keep the separation of two planes of the arms of the designed antenna to be 

5mm. SMA cables were used for testing as we can see from the two test antenna samples shown in 

Fig. 3.23(b). For one test sample, we needed two identical SMA cables to make sure that designed 

antenna was excited by balanced differential signals coming from radio at the input ports of the 

antenna. The center conductors of the two SMA cables were soldered to the starting points of two 

arms of the antenna respectively. The shields of the two cables were soldered together to the antenna 

ground. One more thing needs to be pointed out is that a Balun, which was a copper cylinder with a 

length of 3cm (a quarter wavelength at 2.45GHz), was connected to the cable shields to prevent 

possible radiation caused by SMA cables. 
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(a) (b) 

Fig. 3.23. Fabricated antenna samples: (a) Planar structure; (b) Two test samples with SMA cables 

Vector network analyzer (VNA) is needed to measure the antenna impedance. But for a normal VNA, 

it cannot generate differential signal and measure differential impedance directly. So a Balun board 

designed by a CIARS lab engineer Shadi Dashmiz, as shown in Fig. 3.24, was used to generate 

differential signals to excite the designed differential dipole antenna. The input port, which is 

connected to a VNA under testing, is port 1 in the Fig. 3.24. The two output ports, which are 

connected to the two SMA cables of a test sample, are port 2 and 3 respectively. 

 

Fig. 3.24. A Balun board designed to generate differential signals 

The scattering parameters of this Balun board were tested and the results are shown in Fig. 3.25. 

From Fig. 3.25(a), we can see that the S(1,1) is below -10dB from 2GHz to 2.7GHz which means 
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majority of power is delivered to the two output ports. The power from port 1 is equally divided to 

port 2 and port 3 as shown in Fig. 3.25(b). And the phase difference between port 2 and port 3 is 

constantly 180 degree. In summary, this Balun board can generate very good differential signals that 

can be used to excite the designed differential dipole antenna. 

  

(a) (b) 

  

(c) (d) 

Fig. 3.25. Scattering parameters of the Balun board: (a) Magnitude of S(1,1) in dB; (b) Magnitude of S(2,1) and 

S(3,1) in dB; (c) Phase of S(2,1) and S(3,1) in degree; (d) Phase difference between S(2,1) and S(3,1) in degree 

The block diagram of measurement setup is shown in Fig. 3.26(a). A VNA, which was used to 

generate a signal at desired frequency band, was connected to the input port (port 1) of the Balun 

board mentioned before. The single-ended signal was transferred into balanced differential signals by 
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the Balun board and delivered to the two output ports. Each output port was connected to one of the 

two identical SMA cables, and then the antenna was excited by the differential signals coming from 

the SMA cables. After we got the one-port scattering matrix at the input of the Balun board (which 

was the reference plane for a VNA to measure scattering matrix), we needed to de-embed the effects 

of the Balun board and SMA cables to get the actual antenna impedance. The methods used to de-

embed the effects of the Balun board and SMA cables can be found in [32-35]. After de-embedding, 

the reference planes was moved to the excitation planes of the differential antenna (which were also 

the ends of the SMA cables) and we can get the standard two-port scattering matrix. Then we can use 

the transformation between standard scattering parameters and mixed-mode scattering parameters 

mentioned in chapter 2 to compute the differential return loss or differential impedance we need. 

 

(a) 

 

(b) 

Fig. 3.26. Measurement setup: (a) Block diagram; (b) A test sample with the Balun board 

Although we can move the reference planes to the ends of the SMA cables by de-embedding and get 

the two-port scattering matrix, there were still some remaining effects of the SMA cables since the 
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current on the cable shields may cause some radiation. To make all the comparisons between 

simulations and measurements in the following parts as accurate as possible, we included the SMA 

cables with the same lengths and radiuses of center conductor and shield conductor as the actual 

antenna sample used in the test and re-modelled the antenna. From now on, all the simulation results 

are based on the new model shown in Fig. 3.27. The antenna was excited by two plane waves with the 

same amplitude and 180 degree phase difference at the starts of the cables.  

 

Fig. 3.27. New antenna model including cables 

3.4.2 Measurement Results in Free Space 

To study the amount of undesired radiation caused by SMA cables compared to the amount of desired 

radiation generated by antenna arms, we plot the current distribution on the antenna arms and cables 

in the free space environment as shown in Fig. 3.28. From the zoomed in current distribution around 

the antenna arms and the starts of the cables, we can tell that the current on the shields of the cables 

are at least 10 times weaker than the current on the antenna arms and the center conductors of the 

cables, which means the amount of undesired radiation caused by SMA cables is much weaker than 

the amount of desired radiation generated by antenna arms.  
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(a) 

 

 

 

(b) (c) 

Fig. 3.28. Current distribution on the antenna arms and cables: (a) Overall distribution; (b) Zoomed in around 

antenna arms; (c) Zoomed in around the starts of cables 

To minimize the interferences from the test environment, the test sample was surrounded by 

absorbers as shown in Fig. 3.29. One can either choose to move the whole measurement setup inside 

an anechoic chamber and cover the VNA with absorbers to minimize the scattering waves caused by 

the big metal piece (VNA), or do the test at a lab environment and surround the test antenna sample 

with absorbers. Since the test sample is much smaller compared to a VNA, we chose the second 

method and surrounded the sample with thick absorbers to get high accuracy measurement data.  



 

 34 

  

(a) (b) 

Fig. 3.29. Measurement setup in free space: (a) Overall view; (b) Close view around test sample 

The comparisons of standard two-port scattering parameters between simulations of the new antenna 

model and measurements of two samples are shown in Fig. 3.30 and Fig. 3.31.  

From Fig. 3.30, we can conclude that the resonant frequencies of S(1,1), S(2,1) and S(2,2) of sample 

1 are all shifted to higher bands compared to that of the S(1,1), S(2,1) and S(2,2) of simulated model. 

Since the antenna is passive and lossless, the insertion loss S(2,1) and S(1,2) between the two 

excitation ports are identical. And we only plot S(2,1) here. But the overall trends of the both 

magnitudes and phase of the standard two-port scattering parameters between simulated model and 

sample 1 are the same. These discrepancies could be caused by the deviations in the processing of 

building the test sample 1. 

A better agreement of the magnitudes of the standard two-port scattering parameters between 

simulated model and sample 2 is observed from Fig. 3.31(a). Magnitudes of simulated and measured 

S(1,1) and S(2,2) are almost overlapped. And in terms of the magnitudes of S(2,1), there is only a 

nearly constant deviation between simulation and measurement. But we must note that there are shifts 

to higher bands in terms of the phases as shown in Fig. 3.31(b), and these shifts are understandable 

since the phase measurements are more likely affected by the errors caused in the processing of 
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building test sample and the interferences from the test environment.  But in general, the differences 

between simulated antenna model and test samples are at acceptable ranges. 

  

(a) (b) 

Fig. 3.30. Comparisons of standard two-port scattering matrix between simulated model and test sample 1: (a) 

Magnitude in dB; (b) Phase in degree 

  

(a) (b) 

Fig. 3.31. Comparisons of standard two-port scattering matrix between simulated model and test sample 2: (a) 

Magnitude in dB; (b) Phase in degree 
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Now, let’s apply the transformation between standard scattering parameters and mixed-mode 

scattering parameters illustrated in chapter 2 to get the differential impedance at the input of the 

antenna. After converting the two-port standard scattering parameters into one-port mixed-mode 

scattering parameters, we got the differential return loss and differential impedance of this dipole 

antenna as shown in Fig. 3.32. As we expected, the differential return loss of sample 1 is shifted to 

higher frequency band compared to simulation as agreed with the shifts on the two-port standard 

scattering parameters demonstrated in Fig. 3.30. Small shifts on resonant frequencies between sample 

2 and simulated model are also observed and they are due to the shifts on the phases between 

simulation and measurement. Both magnitudes and phases measurements are important in a 

differential test since the transformation between standard scattering parameters and mixed-mode 

scattering parameters needs both magnitude and phase information. And from Fig. 3.32(b), we can 

tell that the trends of both real and imaginary parts of the differential impedance are the same between 

simulated model and measured samples. 

  

(a) (b) 

Fig. 3.32. Differential parameters: (a) Differential return loss S(d) in dB; (b) Differential impedance Z(d) in 

ohm 

From the measurement results of two antenna samples in the free space environment, we can 

conclude that the measurements done with sample 2 have better agreements with the simulated 

model. So for the differential impedance measurements with the presence of Specific 
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Antropomorphic (SAM) head model and actual human being head, we use sample 2 to do all the 

measurements. 

3.4.3 Measurement Results with the Presence of SAM Head Model 

Specific Antropomorphic (SAM) head model is a homogeneous head model which is widely used in 

the cellphone tests. There are two layers for a SAM head model, shield layer made of plastic material 

and inside layer filled by a liquid. The SAM head model used here for impedance measurement is 

provided by On Semiconductor and can work well at 2GHz- 3GHz frequency band. A numerical 

SAM head model developed by Ansys is used in the HFSS simulation. As we can see from Fig. 3.33, 

the simulated differential insertion loss S(d2d1) between two hearing aid antennas using SAM head 

model is at least 6dB higher than that using the complex head model mentioned in section 3.3. And 

the trends using these two different head models are not the same at the desired band. Usually, SAM 

head model is good for modelling antenna impedance for BAN application, but it’s not good for 

modelling the insertion loss between two antennas for ear-to-ear communication application here.      

 
 

(a) (b) 

Fig. 3.33. (a) Hearing aid system using SAM head model; (b) Differential insertion loss between two antennas 

Because of the asymmetrical structure of this dipole antenna, the differential impedance of the 

antenna could be different when we put the antenna close to the left ear or right ear of SAM head 
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model. From now on, for a test, putting antenna close to the left ear and right ear of SAM head model 

or real human being head are called left ear scenario and right ear scenario, respectively. The 

simulation and measurement setups for both left ear scenario and right ear scenario are shown in Fig. 

3.34 and Fig. 3.35. For the measurements, both test antenna sample and SAM head model were 

surrounded by thick absorbers. 

 
 

(a) (b) 

Fig. 3.34. Left ear scenario: (a) Simulation setup; (b) Measurement setup 

  

(a) (b) 

Fig. 3.35. Right ear scenario: (a) Simulation setup; (b) Measurement setup 
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The comparisons of differential return loss between simulation and measurement are demonstrated in 

Fig. 3.36. For the left ear scenario, a good agreement is observed between simulation and 

measurement. And a down-shift on the resonant frequency is observed for the right ear scenario. But 

the overall trends for both scenarios between simulations and measurements are the same, which 

means the designed antenna can work properly with the presence of SAM head model. 

  

(a) (b) 

Fig. 3.36. Comparisons of differential return loss S(d) between simulation and measurement: (a) Left ear 

scenario; (b) Right ear scenario 

3.4.4 Measurement Results with the Presence of Actual Human Being Heads 

Matching the antenna impedance to the radio with the presence of an actual human being head is the 

most difficult part of this research since every human being has a different head. The complex head 

model or simplified model presented in section 3.3 can work for parts of human beings and give us a 

good starting point for our design including the human body effect. There is not one human body 

model that is good for modeling every person anyway. But for our proposed antenna, we can always 

re-match the antenna to the desired impedance by changing the lumped elements loaded on the 

antenna structure as long as the mismatch is within acceptable range.  

To study the changes on the antenna impedance at different locations of a real human being head, we 

measured the antenna impedance at two different positions on the same person’s head for both left ear 

scenario and right ear scenario. The results are shown in Fig. 3.37. As we can see, the resonant 

frequency would shift unpredictably when the relative location of test antenna is changed with the 
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respect to the human ear for both left ear scenario and right ear scenario. The antenna impedance 

really depends on the local geometry of the location where the antenna is put on. 

  

(a) (b) 

Fig. 3.37. Differential return loss S(d) at different locations of human heads: (a) Person 1; (b) Person 2 

To study the changes on the antenna impedance for different human beings, we measured the 

differential return loss of the antenna for six more persons as shown in Fig. 3.38. Again, the resonant 

frequency would be different for each person. But the resonances are all in the range of 2.3GHz and 

2.7GHz. We can retune the antenna for an individual by changing the lumped elements loaded on the 

antenna. We must state that the measurements done in this section are not repeatable because the 

measurements highly depend on the test environment and people who participate in the test. But the 

impedance measurements with the presence of actual human beings done in this section are still good 

to show that the designed antenna can work with real human beings.      



 

 41 

  

(a) (b) 

 
 

(c) (d) 

  

(e) (f) 

Fig. 3.38. Differential return loss S(d) for different persons: (a) Person 3; (b) Person 4; (c) Person 5; (d) Person 

6; (e) Person 7; (f) Person 8 
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In summary, a lumped inductors loaded differential dipole antenna was designed. The simulation and 

measurement results of designed antenna were demonstrated in this chapter and the results showed 

that the designed antenna would be a promising choice for Bluetooth enabled hearing aid devices.  
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Chapter 4. Integration of a Lumped Capacitors Loaded Dipole 

Antenna with a Hearing Aid Package 

4.1 Design of a Lumped Capacitors Loaded Differential Dipole Antenna 

A lumped capacitors loaded dipole antenna was designed to be fitted into a specific hearing aid 

package focusing on ear-to-remote communication application. Good radio link was observed 

between transmitting hearing aid device and receiving cellphone after integrating the designed 

antenna with a hearing aid radio board package, and vice versa. 

Compared to the dipole antenna designed in chapter three, the available PCB space for this antenna 

was decreased to half the size as before as shown in Fig. 4.1. A differential dipole antenna with 

symmetrical arms was designed for this finalized PCB. Same as before, the two antenna arms were 

separated by the ground, which was connected to the battery. Two lumped capacitors C1 and C2, 

instead of inductors, were implanted at the center of the antenna arms. The reason behind this choice 

was that we wanted to investigate whether integrating tunable elements, for example voltage 

controlled capacitors, on the antenna structure to achieve adaptive matching for different human 

heads was doable or not.   

 
 

(a) (b) 

Fig. 4.1. A lumped capacitors loaded dipole antenna: (a) Available PCB size for antenna; (b) Designed antenna 

model 

The tunable capacitors designed by STMicroelectronics with a package of 0.65*1.0*0.3mm can be 

used for this application [36]. The available values of these tunable capacitors operating from DC to 
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3GHz are: 1.2pF, 2.7pF, 3.3pF, 3.9pF, 4.7pF, 5.6pF, 6.8pF, and 8.2pF. These tunable capacitances are 

controlled through a bias voltage ranging from 2 to 20 volts. And the tuning range C2V/C20V is 3.5, 

which means that, for a specific tunable capacitor, the capacitance can be changed consistently from 

its highest value to 2/7 of its highest value. We can change the resonant frequency of the designed 

antenna by changing the values of C1 and C2 manually as shown in Fig. 4.2. For this stage, we 

haven’t been able to integrate the tunable capacitors directly on the antenna structure. But the idea of 

tuning the antenna by tunable capacitors is doable. Achieving adaptive matching by integrating 

voltage controlled capacitors on the antenna structure for miniaturized device operating at BAN could 

be a valuable future work for this research.    

  

(a) (b) 

Fig. 4.2. Resonant frequency VS capacitances: (a) Varying C1; (b) Varying C2         

4.2 Integration of Designed Antenna with a Hearing Aid Radio Board Package 

A radio board designed by On Semiconductor was used for the hearing aid device and the impedance 

of radio input/output is 22-j32 ohms. To enable the maximum power transfer, the antenna impedance 

with the presence of head needed to be conjugate matched to the radio. The simplified head model 

mentioned in section 3.3 was used to optimize the antenna impedance to 22+j32 ohms. Since this 

hearing aid device focused on ear-to-remote communication application, we only needed to optimize 

the antenna impedance to the desired value for both left ear scenario and right ear without worrying 
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about the insertion loss between two ears. By setting the capacitances of the two lumped capacitors 

implanted on the antenna arms to be 3.3 pF and 2.7pF respectively, the antenna impedance was nearly 

conjugate matched to the radio for both left ear and right ear scenarios as shown in Table 1. 

Table 1. Impedance table 

Radio input/output 

impedance 

Antenna impedance: 

Free space 

Antenna impedance: 

Left ear scenario 

Antenna impedance: 

Right ear scenario 

22-j32 ohms 19-j26 ohms 18+j34 ohms 23+j30 ohms 

The designed antenna was fabricated and a sample is shown in Fig. 4.3(a). Since the antenna ground 

in the simulation model was actually the RF ground of the radio board and the antenna arms were 

identical, there was no need to fabricate the antenna using a flexible material anymore. We fabricated 

the antenna using the low cost FR4 substrate with a thickness of 0.4mm, same as simulation, and then 

connected the two arms directly to the differential radio input/output without cables as shown in Fig. 

4.3(b). Then we fitted the radio board and antenna into a small hearing aid case and assembled the 

rest parts as well. A fully assembled hearing aid device is shown in Fig. 4.3(d) and the size of the 

device is comparable to a coin. 

    

(a) (b) (c) (d) 

Fig. 4.3. A hearing aid device: (a) Antenna sample; (b) Integration of antenna with a radio board; (c) Fitting 

antenna and radio board into a case; (d) Fully assembled device 
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4.3 Link Tests between Hearing Aid Device and Cellphone 

To evaluate the antenna performance after integration with the other parts, some link tests were done 

and the results are presented in this section. For the ear-to-remote communication application here, 

the objective was to have a good link between transmitter and receiver within 10m range at all the 

directions at an indoor environment. For link tests, a cellphone with 2.4GHz- 2.5GHz Bluetooth band 

antenna and a hearing aid device were needed. The hearing aid device needed to work well at both 

transmitting mode and receiving mode, so two sets of link tests were done. The transmitting power 

was always 4dBm no matter it was the hearing aid device or the cellphone working at the transmitting 

mode, and the receiver sensitivity was always -93dBm no matter which one was the receiver. 

Firstly, the hearing aid device was working at transmitting mode (the transmitter) and the cellphone 

was the receiver. A measurement setup is shown in Fig. 4.4 and the measurements were done inside a 

small anechoic chamber. The hearing aid device attached to the left ear or right ear of the SAM head 

model kept sending constant power of 4dBm at the output of its radio, and the cellphone located one 

foot away from the hearing aid device kept recording the received power at the input of its LNA. For 

each test, the cellphone stored the measured power within a time span of five minutes as shown in 

Fig. 4.5. As we can see, the received power by the cellphone was stable after two minutes and then 

we took the average value of the last three minutes as the power received by the cellphone. To 

compare the performances of the designed lumped capacitors loaded dipole antenna with another 

antenna (here we call it ITIS antenna) provided by another partner of ON Semiconductor which was 

also designed for this hearing aid device, we used the same measurement setup for ITIS antenna. 

From Fig. 4.5, we can tell that the capacitors loaded antenna works well for both left ear scenario and 

right ear scenario, but the ITIS antenna only works well for right ear scenario. For the capacitors 

loaded antenna, since the average received power by cellphone was no less than -53dBm with a 

separation of one feet from the transmitter, the radio link range can easily go beyond 10m for both left 

ear scenario and right ear scenario, which means the designed antenna worked well with the presence 

of the SAM head model.         
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(a) (b) 

Fig. 4.4. Radio link tests inside a small anechoic chamber: (a) Left ear scenario; (b) Right ear scenario 

 

Fig. 4.5. Received power by cellphone with the presence of the SAM head model 

Then, some radio link range tests were done with actual human beings at indoor (office) environment. 

As shown in Fig. 4.6, we tested the link ranges at four different directions, which are called as facing 

the same ear case (For example, if the transmitter, hearing aid device is on the left ear of a person as 

shown in Fig. 4.6(a), then the case that the receiver cellphone located at the left side of a person is 

called facing the same ear case), facing the opposite ear case, facing the nose case and facing the back 

case for both left ear scenario and right ear scenario of a person. The tests were done for two persons. 
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(a) (b) 

 
 

(c) (d) 

Fig. 4.6. Measurement setup illustration: (a) RX facing the same ear case; (b) RX facing the opposite ear case; 

(c) RX facing the nose case; (d) RX facing the back case 

The results of the radio link range tests are demonstrated in Table 2. As we can see, for the two 

persons, the radio link ranges at all the four directions were beyond 10m for both left ear scenario and 

right ear scenario. And as we expected, the radio link ranges for facing the opposite ear case were the 

worst. This was because that most of the directed waves from hearing aid device towards the 

cellphone direction were attenuated by the highly lossy human head. But since there were scattering 

waves from ceiling, ground and other objects of the room, the radio link range can still go about 10m.   
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Table 2. Radio link range (m): TX was the hearing aid device and RX was the cellphone 

Radio link range 

(m) 

RX facing the 

same ear case 

RX facing the 

opposite ear case 

RX facing the 

nose case 

RX facing the 

back case 

TX on the left ear 

of person 1 

21 11 17 13 

TX on the right 

ear of person 1 

18 10 16 15 

TX on the left ear 

of person 2 

19 10 15 16 

TX on the right 

ear of person 2 

20 10 17 15 

Lastly, the audio link range tests at the same office environment were done when the cellphone was 

working at the transmitting mode and the hearing aid device was working at the receiving mode. The 

hearing aid device attached to the left ear or right ear of a person kept receiving the audio from the 

cellphone. As we mentioned before, the output power of the cellphone was still 4dBm and the 

receiver sensitivity of the hearing aid device was still -93dBm. Same as the radio link range tests 

mentioned before, the audio link range tests were done with the same two persons for both left ear 

scenario and right scenario. The results of audio link range tests are shown in Table 3. As we can see, 

the audio link ranges were clearly worse than the radio link ranges done before. This was because that 

the audio link range tests required the hearing aid device was able to receive a power that was always 

more than -93dBm, otherwise the link between cellphone and hearing aid device would be terminated 

immediately. But for the radio link range tests, the link between hearing aid device and cellphone 

wouldn’t be terminated immediately even if the received power by cellphone were below -93dBm. 

The received power by cellphone could go up than -93dBm and the radio link range would be further. 

But except the facing the opposite ear direction, the audio link ranges can go beyond 10m at all the 

other three directions. And the good thing is that we can increase the transmitting power of the 
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cellphone without worrying about affecting one’s health as it is not the one which is always on a 

person’s head. 

Table 3. Audio link range (m): TX was the cellphone and RX was the hearing aid device 

Audio link test 

(m) 

TX facing the 

same ear case 

TX facing the 

opposite ear case 

TX facing the 

nose case 

TX facing the 

back case 

RX on the left ear 

of person 1 

14 7 10 10 

RX on the right 

ear of person 1 

13 6 11 11 

RX on the left ear 

of person 2 

13 7 9 11 

RX on the right 

ear of person 2 

13 7 10 10 

In summary, a lumped capacitors loaded differential dipole antenna was designed to meet specific 

ear-to-remote communication applications. And results of the link range tests showed that the antenna 

works well after integrating with the radio board package, which means designed antenna is good for 

real products. 
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Chapter 5. Conclusion and Future Work 

In conclusion, this thesis proposed a novel lumped elements loaded differential dipole antenna for 

blue-tooth enabled hearing aid devices. Miniaturization and direct matching were realized by 

implanting lumped components on the antenna structure. Proposed antennas were simulated, 

fabricated and measured. The measurements had good agreements with simulations. And for body 

area network applications, human body model can be simplified according to specific application to 

shorten time in the antenna design. Further, the designed antenna worked well after integrating with a 

radio board package for a hearing aid device focusing on ear-to-remote communication application.   

As mentioned in this thesis, the effects of human body on the impedance of an antenna operating 

in/on or around the body area network are unpredictable for different human beings. So integrating 

tunable elements, for example voltage controlled capacitors, directly on the antenna structure to 

achieve adaptive matching according to different human body will be a valuable future work for this 

research.  
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