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Abstract

When two or more chaotic systems are coupled, they may exhibit synchronized chaotic oscil-

lations. The synchronization of chaos is usually understood as the regime of chaotic oscillations

in which the corresponding variables or coupled systems are equal to each other. This kind of

synchronized chaos is most frequently observed in systems specifically designed to be able to

produce this behaviour.

In this thesis, one particular type of synchronization, called impulsive synchronization, is

investigated and applied to low dimensional chaotic, hyperchaotic and spatiotemporal chaotic

systems. This synchronization technique requires driving one chaotic system, called response sys-

tem, by samples of the state variables of the other chaotic system, called drive system, at discrete

moments. Equi-Lagrange stability and equi-attractivity in the large property of the synchro-

nization error become our major concerns when discussing the dynamics of synchronization to

guarantee the convergence of the error dynamics to zero. Sufficient conditions for equi-Lagrange

stability and equi-attractivity in the large are obtained for the different types of chaos-generating

systems used.

The issue of robustness of synchronized chaotic oscillations with respect to parameter varia-

tions and time delay, is also addressed and investigated when dealing with impulsive synchroniza-

tion of low dimensional chaotic and hyperchaotic systems. Due to the fact that it is impossible

to design two identical chaotic systems and that transmission and sampling delays in impulsive

synchronization are inevitable, robustness becomes a fundamental issue in the models considered.

Therefore it is established, in this thesis, that under relatively large parameter perturbations and

bounded delay, impulsive synchronization still shows very desired behaviour. In fact, criteria for

robustness of this particular type of synchronization are derived for both cases, especially in the

case of time delay, where sufficient conditions for the synchronization error to be equi-attractivity

in the large, are derived and an upper bound on the delay terms is also obtained in terms of the

other parameters of the systems involved.

The theoretical results, described above, regarding impulsive synchronization, are reconfirmed

numerically. This is done by analyzing the Lyapunov exponents of the error dynamics and by

showing the simulations of the different models discussed in each case.

The application of the theory of synchronization, in general, and impulsive synchronization,

in particular, to communication security, is also presented in this thesis. A new impulsive cryp-

tosystem, called induced-message cryptosystem, is proposed and its properties are investigated. It

was established that this cryptosystem does not require the transmission of the encrypted signal
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but instead the impulses will carry the information needed for synchronization and for retrieving

the message signal. Thus the security of transmission is increased and the time-frame congestion

problem, discussed in the literature, is also solved. Several other impulsive cryptosystems are also

proposed to accommodate more solutions to several security issues and to illustrate the different

properties of impulsive synchronization.

Finally, extending the applications of impulsive synchronization to employ spatiotemporal

chaotic systems, generated by partial differential equations, is addressed. Several possible models

implementing this approach are suggested in this thesis and few questions are raised towards

possible future research work in this area.
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Chapter 1

Introduction

Secure communication and chaos form the foundations of what is so called chaos-based secure

communication schemes. The properties of systems generating chaos, such as their unpredictabil-

ity behaviour in the absence of knowing the initial conditions, led many mathematicians and

engineers to integrate chaos generating systems with secure communication, in general, and to

cryptography, in particular.

When speaking about conventional cryptography, we mean cryptosystems which work on

discrete values and in discrete time. This involves classical cryptography as well as all modern

systems being in practical use nowadays. The crucial points in chaotic cryptography, however,

are continuous-value information and the usage of continuous-value systems which may operate

in continuous or discrete time. To emphasize its difference to conventional cryptography, we shall

use the term continuous-value cryptography synonymously with chaotic encryption or chaotic

cryptography. In our understanding, it is just a necessity to utilize non-linearities and to force

the system dynamics into a chaotic operation to fulfill basic cryptographical requirements in the

continuous-value case.

Since its ancient beginnings, cryptographical methods have been almost exclusively applied

to discrete-value information. These methods range from the so called Caesar cipher, to the well

known Vigenère Cipher, up to the modern encryption algorithms like data encryption standard

(DES) or the asymmetrical algorithm by Rivest, Shamir and Adelman (RSA). A comprehensive

survey on these, and many more conventional ciphers, can be found in [96]. The development

of cryptographical methods became a modern science which formed the basis of all encryption

systems in use nowadays.

1
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Despite the strong relevance of the discrete-value systems, there have been attempts to apply

cryptographical methods to continuous-value information. Early investigations, that were mainly

inspired by increasing research on chaotic systems, can be found in [16–19, 22–24, 88, 89]. In

these papers, autonomous continuous-time chaotic systems were used as pseudo-random number

generators and pioneering works on chaos synchronization led to a new branch of applications;

namely, chaos-based secure communication.

In the next section, we shall present the structure of any network, or internet, and the security

requirements needed to make any network safe from hackers or intruders. In Section 1.2, an intro-

duction to important mathematical concepts such as asymptotic stability, Lagrange stability and,

most importantly, continuous-time chaos, will be provided to facilitate the understanding of the

rest of the thesis. Then, in Section 1.3, an introduction to impulsive systems and their structures,

together with some stability theory associated with it, which is available in the literature, will

be presented. This theory will be very crucial in the development of impulsive synchronization,

a concept heavily used in this thesis.

1.1 Motivations

The requirements of information security within an organization have undergone major changes

in the last several decades. Before the widespread use of data processing equipment, the security

of information felt to be valuable to an organization was provided primarily by physical and

administrative means. An example of the former is the use of rugged filing cabinets with a

combination lock for storing sensitive documents. An example of the latter is personnel screening

procedures used during hiring precesses.

However, with the introduction of the computer, the need and emphasis on automated tools

for protecting information became evident. This is especially the case for shared systems, such

as time-sharing systems, and the need is even more acute for systems that can be accessed over a

public telephone network, data network, or internet. The generic name for the collection of tools

designed to protect data and to thwart hackers is computer security.

The second major change, that gave birth to a new generation of security requirements, is

the introduction of distributed systems and the use of networks and communication facilities

for carrying data between terminal user and computer and between computer and computer.

Network security measures are needed to protect data during their transmission. In fact, the

term network security is somewhat misleading, because virtually all businesses, governments
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and academic organizations interconnect their data processing equipment with a collection of

interconnected networks. Such a collection is often referred to as an internet, and the term

internet security is used.

There are no clear boundaries between different forms of information security. But in order to

assess the security needs of an organization effectively and to evaluate and choose various security

products and policies, the manager responsible for security must determine some systematic way

of defining the requirements that correspond to the needs of the organization. In other words,

there is a general platform that determines the concepts and the methods applied to information

security, but, depending on the specifics and the objectives of a given organization, these methods

or mechanisms differ from one to another. To characterize the general platform that describes

any secure system, we give the following classifications of security services.

• Confidentiality: Confidentiality is the protection of transmitted data from passive attacks.

By passive attacks we mean those ones which are in the nature of eavesdropping on, or

monitoring of, transmissions. The broadest service protects all user data transmitted be-

tween two users over a period of time. For example, if a virtual circuit is set up between

two systems, this broad protection would prevent the release of any user data transmitted

over the virtual circuit. Narrower forms of this service can also be defined, including the

protection of a single message or even specific fields within a message. These refinements

are less useful than the broad approach and may even be more complex and expensive to

implement. The other aspect of confidentiality is the protection of traffic flow from analysis.

This requires that an attacker not be able to observe the source and destination, frequency,

length, or other characteristics of the traffic on a communications facility.

• Authentication: The authentication service is concerned with assuring that a communica-

tion is authentic. In the case of a single message, such as a warning or an alarm signal, the

function of the authentication service is to assure the recipient that the message is from the

source that it claims to be from. In the case of an ongoing interaction, such as the con-

nection of a terminal to a host, two aspects are involved. First, at the time of connection

initiation, the service assures that the two entities are authentic (in other words, that each

is the entity which it claims to be). Second, the service must assure that the connection

is not interfered with in such away that a third party can masquerade as one of the two

legitimate parties for the purposes of unauthorized transmission or reception.

• Integrity: As with confidentiality, integrity can apply to a stream of messages, a single
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message, or a selected field within a message. Definitely, the most useful and straightfor-

ward approach is total stream protection. A connection-oriented integrity service, the one

that deals with a stream of messages, assures that messages are received as sent, with no

duplication, insertion, modification, reordering, or replays. The destruction of data is also

covered under this service. Thus the connection-oriented integrity service addresses both

message stream modification and denial of service. On the other hand, a connectionless

integrity service, the one that deals with individual messages only without regard to any

larger context, generally provides protection against message modification only. If a vio-

lation of integrity is detected, then the service may simply report this violation. In this

case, some other portion of software or human intervention is required to recover from the

violation.

• Non-Repudiation: Non-Repudiation prevents either the sender or the receiver of a message

from denying the transmission. Thus when a message is sent, the receiver can prove that

the message was in fact sent by the alleged sender. Similarly, when a message is received,

the sender can prove that the message was in fact received by the alleged receiver.

• Access control: In the context of network security, access control is the ability to limit and

control the access to host systems and applications via communication links. To achieve

this control, each entity trying to gain access must first be identified, or authenticated, so

that access rights can be tailored to the individual.

• Availability: A variety of attacks can result in the loss of or reduction in availability. Some

of these attacks are amenable to automated countermeasures, such as authentication and

encryption, whereas others require some sort of physical action to prevent or recover from

loss of availability of elements of a distributed system.

There is no single mechanism that will provide all the services just listed. Instead, there are

a variety of mechanisms that come into play. However, we can note at this point that there

is one particular element that underlies most of the security mechanisms in use: cryptographic

techniques. Encryption or encryption-like transformation of information are the most common

means of providing security. These techniques establish an important field in secure communi-

cation called cryptography, which is defined to be the study of sending messages in a secret or

hidden form, so that only those people authorized to receive the message will be able to read it

(Crypto is derived from the Greek word which means hidden). Cryptanalysis, on the other hand,
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is the science of breaking cryptographic writings. Cryptography and cryptanalysis are collectively

referred to as cryptology.

Let us build up a typical cryptographic model to further illustrate the above definition. The

basic idea is that a message is to be transferred from one party to another across some sort

of internet. The two parties, who are the principals in this transition, must cooperate for the

exchange to take place. A logical information channel is established by defining a route through

the internet from source to destination and by the cooperative use of communication protocols

by the two principals. Security aspects come into play when it is necessary or desirable to protect

the information transmission from an opponent who may present a threat to confidentiality,

authenticity and so on. All the techniques for providing security have two essential components.

The first component is a security-related transformation on the information to be sent. Examples

include the encryption of message, which scrambles the message so that it is unreadable by the

opponent, and the addition of a code based on the contents of the message, which can be used to

verify the identity of the sender. Whereas for the second component, we require that some secret

information shared by the two principals and, it is hoped, unknown to the opponent. An example

is an encryption key used in conjunction with the transformation to scramble the message before

transmission and unscramble it upon reception. We should mention here that, when designing this

kind of model, a trusted third party may be needed to achieve secure transmission. For example,

a third party may be responsible for distributing the secret information to the two principals

while keeping it from any attacker, or a third party may be needed to arbitrate disputes between

the two principals concerning the authenticity of a message transmission. This general model

shows that there are four basic tasks in designing a particular security service:

1. Design an algorithm for performing the security-related transformation. The algorithm

should be such that an attacker cannot defeat its purpose.

2. Generate the secret information to be used with the algorithm.

3. Develop methods for the distribution and sharing of the secret information.

4. Specify a protocol to be used by the two principals that makes use of the security algorithm

and the secret information to achieve a particular security service.

It is clear from the above design that the complexity and the secrecy of the keys used for

encryption-decryption purposes, play a major role in the security of the model just described.

They are used as tools to complement the security-related transformation in encoding messages,
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and therefore they have to be generated as randomly as possible. In other words, the key gen-

erators must be unpredictable random generators in order to add more uncertainty into the

cryptosystem and thus make it less vulnerable. The following two criteria are used to validate

that a generator or a source is random.

• Uniform distribution: in the sense that the outcomes of the generator should be uniform;

that is, the frequency of each of the outcomes should be approximately the same.

• Independence: meaning that one outcome is not influenced by the previous one.

We would like to adopt these two criteria in the design of random generators employed as sources

of encryption keys used in a given cryptosystem.

Due to the importance of randomness in cryptography, recently the use of chaos for secure

communication has become much more interesting field, since chaotic signals are broadband,

noise-like and difficult to predict. In fact, objects exhibiting chaotic behaviour would follow un-

predictable patterns which would be considered a good source of randomness needed for a strong

cryptosystem; they are hoped to be good mask or key signals for private communication. There-

fore in the last ten years many cryptosystems based on chaos phenomenon have been proposed.

Some of them use continuous-time chaos (a system of ordinary differential equations, ODE’s) and

others use discrete-time chaos (iterating chaotic maps). The continuous case has been applied

mainly to secure communication where continuous signals (e.g., voice signals) are encrypted and

transfered within a given network; however, the discrete chaotic systems are applied on secret

key cryptosystems that lie within the category of block and stream ciphers. The pivotal issue of

this thesis is to try to apply chaos theory with its different aspects, such as synchronization, to

the study and development of cryptography.

The idea of synchronized oscillations is usually associated with the frequency and phase locking

of oscillations in various generators of periodic signals. This phenomenon, known since the 17th

century, plays a very important role both in physics as well as in engineering. The synchronization

of radio-generators is crucial for the operation of modern radio-devices [101]. It is widely used

for the frequency stabilization of powerful generators such as klystron and magnetron generators

[101]. In industrial engineering, synchronization is important for minimizing stress due to multiple

sources of vibrations [101]. Many mechanical mechanisms powered by multiple vibrators, such

as transporters, separators, grinders and mixers, are based on the principle of synchronization

[101]. Nowadays, synchronization of longitudinal cavity modes in lasers receives considerable
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attention as one of the most effective mechanisms for producing ultra-short pulses for fibre-optics

communications [101].

Such a wide interest in the phenomenon of synchronization has supported a very intensive

research directed towards the development of the theory of synchronization of periodic oscillations.

The first serious steps in this direction were taken by Van der Pol in 1927 and by Andronov

and Vitt in 1930 who analyzed the synchronization of oscillations in triode generators. As a

result of the efforts of physicists and engineers over the last few decades, many aspects of the

synchronization of periodic oscillations is well understood now. At the same time, it has been

realized that in many physical, biological and chemical systems and technical devices, the regime

of periodic oscillations can be replaced by a chaotic behaviour and still observe synchronization.

In 1983, Fujisaka and Yamada published the first paper discussing the synchronization of chaos. In

that paper, the authors considered a system of diffusively coupled identical chaotic oscillators and

demonstrated that when the coupling is sufficiently strong, all elements exhibit identical chaotic

oscillations. They developed a procedure for linear stability analysis for the synchronized chaotic

oscillations which was a very important step. The problem of synchronized chaotic oscillations

in diffusive media composed of coupled chaotic oscillators, was also studied by Pikovskii in 1984.

This work motivated Carroll and Pecora to use synchronization to control the behaviour of chaotic

systems and employ this phenomenon in designing chaos-based communication security schemes

which implement synchronization for decryption purposes, as well shall see in Chapter 2.

In this thesis, we shall be interested in examining and analyzing the use of continuous-time

chaos in secure communication using different synchronization approaches. Chief among them

is the method of impulsive control which uses samples of the state variables to synchronize two

chaotic systems. This synchronization method may give an efficient way to deal with systems

which cannot endure continuous disturbances (i.e., control input) unlike other methods suggested

in controlling continuous-time chaos. Its sensitivity to attacks and insensitivity to noise present

in public channels, make this method quite powerful and more promising to be used in designing

chaos-based secure communication systems with the aid of conventional cryptographic schemes.

We shall further investigate this synchronization approach by analyzing it using the concept of La-

grange stability. Since Lagrange stability is a weaker condition than asymptotic stability and that

it reflects the desired synchronization behaviour, we derive, in this thesis, sufficient conditions for

Lagrange stability. These conditions, which are weaker than the ones discussed in the literature

for asymptotic stability, reflect the types of requirements needed for chaos synchronization using

impulsive methods. Furthermore, due to the fact that deigning identical chaotic systems in prac-
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tice is impossible, the concept of robustness becomes very crucial in impulsive synchronization. In

this thesis, we establish theoretically how robust this method is towards parameter mismatch be-

tween the chaotic systems involved. We also compare the robustness performance of this method

with the method of Carroll-Pecora synchronization described in the literature. We show that im-

pulsive synchronization is more robust than the Carroll-Pecora synchronization. We then address

the issue of delay in impulsive synchronization with and without continuous driving and establish

how robust impulsive synchronization is towards bounded delays. Sufficient conditions are ob-

tained to reflect the needed requirements for robustness towards delay and estimates on the upper

bounds on the delay terms are derived using these sufficient conditions. The theory developed

considers the general case when the delay terms and the impulses are time varying, which has

not been investigated previously in the literature. We generalize the theory of impulsive control

and synchronization to include spatiotemporal chaos generated by spatially extended systems

such as partial differential equations. The Kuramoto-Sivashinsky equation and the Grey-Scott

models are used as examples of partial differential equations generating spatiotemporal chaos for

impulsive control and synchronization. We derive the sufficient conditions that guarantee the

impulsive control and synchronization of the above mentioned models. All of these results are

further investigated numerically by simulating the results and by analyzing the Lyapunov expo-

nents of the synchronization errors to verify the theoretical results. The structure of the impulses,

using the Dirac delta function, is used to study these systems numerically. Eventually, we check

how these models can be implemented in designing communication security schemes based on

impulsive synchronization. We propose a new scheme called the induced-message cryptosystem

which adds more security to the impulsive methods available in the literature and solves the

problem of time-frame-congestion which is persistent in these cryptosystems.

This thesis can be summarized as follows. In the remaining of this chapter, we shall introduce

the concepts of Lagrange stability, equi-attractivity in the large, continuous-time chaos and the

theory of impulsive differential equations needed for the development of the thesis. In Chapter

2, the robustness of impulsive synchronization is investigated and sufficient conditions for certain

types of impulsive systems to be equi-Lagrange stable are obtained. Furthermore, Lyapunov

exponent analysis is provided to confirm the theoretical results. Then in Chapter 3, the delay

factor in impulsive synchronization is considered and its robustness, in the presence of delay in the

impulses as well as in the differential system, is established. In Chapter 4, extending the theory of

impulsive control and impulsive synchronization to spatiotemporal chaotic systems generated by

partial differential equations, is discussed and sufficient conditions for the equi-attractivity in the
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Figure 1.1: Trajectory of a stable solution.

large property for both cases are obtained. Moreover, Lyapunov exponent analysis is provided

to confirm the theoretical results once more. Applying the theory of impulsive synchronization,

with all of its aspects and theory developed in this thesis, to secure communication, is done in

Chapter 5 and numerical simulations to reflect on its performance are also given. Finally, some

concluding remarks and discussion regarding future research work are presented in Chapter 6.

1.2 Mathematical Preliminaries

In this section, we shall consider some important definitions and notations that will be useful in

this thesis as it will become evident in the subsequent chapters.

Suppose that we have a continuous-time non-linear system given by

ẋ = f(t,x), (1.1)

where x(t) = (x1(t), x2(t), . . . , xn(t))
T are the state variables of the system and f is an n-

dimensional continuous-time non-linear map. Let x = 0 be the trivial solution (equilibrium

point) of equation (1.1), i.e., f(t,0) = 0. In addition, for (t0,x0) ∈ R+ × Rn, assume that

x(t) = φ(t, t0,x0) is a solution to equation (1.1) through (t0,x0). Then we have the following

definitions.

Definition 1.2.1 The trivial solution of (1.1) is said to be stable if for every ε > 0 and any

t0 ∈ R+, there exists a δ(ε, t0) > 0 such that ||x(t)|| < ε, for all t > t0, whenever ||x0|| < δ(ε, t0).
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Definition 1.2.2 The trivial solution of (1.1) is said to be uniformly stable if δ in Definition

1.2.1 satisfies δ(ε, t0) = δ(ε), i.e., δ is independent of t0.

Definition 1.2.3 The trivial solution of (1.1) is said to be asymptotically stable if

• it is stable, and

• for every t0 ≥ 0, there exists an η(t0) > 0 such that

lim
t→∞

x(t) = 0,

whenever ||x0|| < η(t0).

The set of all x0 ∈ Rn such that x(t) −→ 0 as t −→ ∞, for some t0 ≥ 0, is called the basin of

attraction (or the domain of attraction) of the trivial solution, x = 0, of (1.1).

Definition 1.2.4 The trivial solution of (1.1) is said to be uniformly asymptotically stable if

• it is uniformly stable, and

• there exists a δ0 such that for every ε > 0 and for any t0 ∈ R+, there exists a T (ε) > 0,

independent of t0, such that

||x(t)|| < ε, for all t ≥ t0 + T (ε),

whenever ||x0|| < δ0.

A geometrical interpretation of stability, uniform stability and uniform asymptotic stability no-

tions are given in Figures 1.1, 1.2 and 1.3, respectively. They show typical behaviours of three

different solution trajectories according to the type of stability they possess. As for asymp-

totic stability, geometrically speaking, solution trajectories would approach the trivial solution

as t −→∞.
We introduce now three definitions that are necessary to illustrate the concept of synchro-

nization, a special feature that certain continuous-time non-linear systems would possess. These

definitions are:

Definition 1.2.5 System (1.1) is said to be equi-bounded if for every α > 0 and t0 ∈ R+, there
exists a β = β(t0, α) > 0, continuous in t0, such that ||x(t)|| < β, for all t ≥ t0, whenever

||x0|| < α.
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Definition 1.2.6 System (1.1) is said to be uniformly bounded if β in Definition 1.2.5 satisfies

β(t0, α) = β(α), i.e., β is independent of t0.

Definition 1.2.7 System (1.1) is said to be equi-attractive in the large if for every ε > 0, α > 0

and t0 ∈ R+, there exists a T = T (t0, ε, α) > 0 such that ||x(t)|| < ε, for all t ≥ t0 + T, whenever

||x0|| < α.

Definition 1.2.8 System (1.1) is said to be uniformly attractive in the large if T in Definition

1.2.7 satisfies T (t0, ε, α) = T (ε, α), i.e., T is independent of t0.

Definition 1.2.9 System (1.1) is said to be equi-Lagrange stable if it is equi-bounded and equi-

attractive in the large.

Definition 1.2.10 System (1.1) is said to be uniformly Lagrange stable if it is uniformly bounded

and uniformly attractive in the large.

There is a special class of functions that is quite important in the study of stability features

of well-behaved autonomous systems given by

ẋ = f(x), (1.2)

where f(0) = 0. This class of functions provide us with sufficient conditions needed to prove that

the trivial solution of (1.2) possesses certain stability properties as illustrated in the following

theorem.

Theorem 1.2.1 Let S be an open subset of Rn containing the trivial solution of (1.2), and let

x(t) be a solution to (1.2). Let V : S −→ R be a continuously differentiable function, such that

V (0) = 0 and V (x) > 0 in S\{0} (1.3)

and

V̇ (x) := ∇V (x) · f(x) ≤ 0 in S. (1.4)

Then the trivial solution of (1.2) is stable. Moreover, if

V̇ (x) < 0 in S\{0},

then the trivial solution of (1.2) is asymptotically stable.
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Thus the task of proving the stability or the asymptotic stability of the trivial solution of (1.2),

reduces to finding a continuously differentiable function V satisfying the conditions in Theorem

1.2.1. Actually, the class of continuously differentiable functions, whose elements satisfy condi-

tions (1.3) and (1.4), is called the class of Lyapunov functions (in fact, this class can be extended

to non-autonomous systems, but we shall not present them here because we seek not to overload

the readers with unnecessary definitions; for further details, see [57] and [77]).

Another important task that we would like to investigate is to give an estimate on the rate of

convergence of a nearby trajectory x̃ to the true trajectory x (e.g., during synchronization). It

should be noted that the estimate is essentially for small differences e := x− x̃, but, in practice,

it appears to work well in many systems for differences on the attractor size (see [89]). This

will probably depend on the shape of the basin of attraction of the system x̃, as well as for

the general flow of the system from the starting point to the true trajectory x. Both of these

could cause the system to wind around in phase space before getting near the true trajectory.

Thus caution must be taken when using the convergence rates for large ||e||. To estimate the

actual convergence rates, we want to get an estimate on the average convergence rates and their

associated directions. This translates into finding quantities called Lyapunov exponents and their

associated eigenvectors (note that we shall introduce the definitions here and leave the illustration

of the correlation of these concepts with convergence in the coming sections). In order to define

these quantities, we denote by Z(t) the solution of the equation Ż(t) = Jxf(t,x)Z(t), where Jxf

is the Jacobian matrix of f at x = 0 and Z(t0) is the identity matrix (Z(t) is often referred to as

the state transition matrix or the principal matrix solution).

Definition 1.2.11 Let a1(t), a2(t), . . . , an(t) be the eigenvalues of Z(t). The Lyapunov exponents

of (1.2), starting at x0, are given by

λi := lim
t→∞

1

t
ln |ai(t)| , i = 1, 2, . . . , n,

whenever the limit exists.

The above definitions are used intensively in the theory of chaos, the theory of impulsive

systems and in several problem formulations described in this thesis. They will be referred to

whenever it is necessary.

We turn our attention now to the concept of chaos. The word chaos is familiar in everyday

speech. It normally means a lack of order or predictability. For example, one says that the weather

is chaotic, or that rising particles of smoke are chaotic, or the stock market is chaotic. It is the lack



14

x(t)x(0)δ δ

Figure 1.4: Effect of a small change in initial conditions.

of predictability that lies behind the mathematical notion of chaos. Chaotic systems comprise the

transition between solvable and near-solvable systems and those that are completely stochastic or

random. They are the most recent to be investigated by scientists and mathematicians because

they are the least susceptible to study using the tools of mathematical analysis. In order to give

a more rigorous mathematical definition for the terminology chaos, we distinguish between two

types of chaos that will be defined and explained separately:

1. Continuous-time chaos.

2. Discrete-time chaos.

Continuous-time chaotic systems are non-linear deterministic dynamical systems which can

exhibit erratic and irregular behaviour. Its bounded steady-state behaviour is not an equilibrium

point, not periodic and not quasi-periodic. A very common representation of these systems is

that of a system of n-simultaneous first order ODE’s given by equation (1.1). We let, as before,

x(t) be the solution of (1.1) with the initial condition (t0,x0). If we slightly change the position

of the initial point, x(t0) −→ x′(t0) = x(t0) + δx(t0), the point at time t will also be changed

(see Figure 1.4). Generally speaking, from the continuity of solutions of an ODE with respect

to initial conditions, one expects that if δx(t0) is small, δx(t) is also small. To the contrary,

what may happen is that, when the time becomes large, the small initial distance grows anyway

and it may grow exponentially fast: δx(t) ∼ δx(t0) exp(λt), where λ > 0 is the largest Lyapunov

exponent which measures the mean rate of divergence of the orbits (see Definition 1.2.11 and [92]).
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Figure 1.5: (a) Trajectory of Lorenz system. (b) Trajectory of Chua’s oscillator.

Therefore sensitive dependence on initial conditions and possessing positive Lyapunov exponents

are associated with each other. In this case, the motion, although purely deterministic, has those

stochastic features referred to as chaos. In fact, in all those cases in which the initial state is given

with limited precision, we may observe a situation where trajectories emerge from the same initial

point. Thus, even though there is a deterministic situation from a mathematical point of view

(the uniqueness theorem for ODE’s is not in question), nevertheless the exponential growth of

errors makes the time evolution self-independent from its past history and then non-deterministic

in any practical sense.

The limiting trajectory of the dissipative chaotic systems are attracted to a region in state

space which forms a set having fractional dimension and zero volume. These sets are not simple

geometrical objects like a circle or a torus; in fact, it is not even a manifold [22,37,63]. Solution

trajectories in this limiting set are locally unstable, yet remain bounded within some region of

the system’s state space [22]. These sets are termed strange attractors because they exhibit the

following properties [92].

1. Sensitive dependence on initial conditions: i.e., system (1.1) possesses at least one positive

Lyapunov exponent.

2. Attractivity: In the sense that for every open set V containing the strange attractor, the

solution trajectories of (1.1) starting in U will converge to V after a given time t. In other

words, for every ε > 0, for every α > 0 and for every t0 ∈ R+, there exists a T = T (t0, ε, α) >

0 such that d(x,V) < ε, for all t > t0 + T, whenever d(x0,V) < α, where d(x,V) :=
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min
y∈V

||x− y||.

3. Invariance with respect to (1.1): In the sense that solutions starting in the strange attrac-

tors, remain there for all future time.

4. Irreducibility: In the sense that these sets do not consist of a number of disjoint invariant

pieces, some of which may not be attracting.

Considering the facts that at least one Lyapunov exponent of a chaotic system must be

positive, that one Lyapunov exponent of any limit set other than an equilibrium point must be

zero and that the sum of the Lyapunov exponents of an attractor must be negative, it follows that

a strange attractor must have at least three Lyapunov exponents. Hence chaos cannot occur in

a first or second order autonomous continuous-time systems or in a first order non-autonomous

continuous-time systems [84]. In the three dimensional case, the only possibility for chaos to

occur is when we have the Lyapunov exponents to be λ1 > 0, λ2 = 0 and λ3 < 0. In addition,

since contraction must outweigh expansion, a further condition on a three dimensional chaos is

λ3 < −λ1 [84]. This type of chaos is termed low-dimensional chaos.

Examples of systems that exhibit low-dimensional chaotic behaviour are:
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1. The Lorenz system, given by
dx

dt
= −σx+ σy

dy

dt
= rx− y − xz

dz

dt
= xy − bz,

(1.5)

where σ, r and b are positive constants.

2. The Chua’s oscillator, given by

dx

dt
= α(y − x− f(x))

dy

dt
= x− y + z

dz

dt
= −βy − γz,

(1.6)

where α, β, γ are positive constants and f(x) = bx+
1

2
(a− b)(|x+ 1| − |x− 1|), a < b < 0.

3. Rössler system, given by
dx

dt
= p+ x(z − c)

dy

dt
= −(x+ z)

dz

dt
= y + az,

(1.7)

where a, p and c are positive constants.

Notice that the trajectories of the first two systems (Lorenz system and Chua’s oscillator), as

shown in Figure 1.5, lie inside a bounded but locally unstable regions with two wells being

the strange attractors mentioned earlier. Furthermore, the time propagation of the solution

trajectories of these two chaotic systems are also shown in Figure 1.6.

Now concerning fourth order systems, there are three possibilities to consider regarding chaos

[84].
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• λ1 > 0, λ2 = 0 and λ4 ≤ λ3 < 0.

• λ1 ≥ λ2 > 0, λ3 = 0 and λ4 < 0. This type of chaos was termed hyperchaos by Rössler.

• λ1 > 0, λ2 = λ3 = 0 and λ4 < 0. This corresponds to a chaotic two-torus which, according

to Parker et al., [84], has not been observed.

Examples of systems that exhibit hyperchaotic behaviour are:

1. The high dimensional Chua’s oscillator, given by

dx1
dt

= α1(f(x3 − x1)− x2)

dx2
dt

= x1 + (δ − ε)x2

dx3
dt

= −β1(f(x3 − x1) + x4)

dx4
dt

= γ1x3 − εx4,

(1.8)

where α1, β1, γ1, δ, ε are positive constants and f(u) is as defined before in Chua’s oscillator.

2. The high dimensional Rössler system, given by

dx1
dt

= −x2 − x3

dx2
dt

= x1 + ηx2 + x4

dx3
dt

= x1x3 + θ

dx4
dt

= −νx3 + ζx4,

(1.9)

where η, θ, ν, ζ are positive constants.
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3. The hysteresis chaos generator, given by

dx1
dt

= −x3 − x4

dx2
dt

= 2γ2δ2x2 + γ3x3

dx3
dt

= ρ(x1 − x2)

dx4
dt

=
1

ε1
(x1 − g(x4)),

(1.10)

where γ2, γ3, δ2, ρ, ε1 are positive constants and

g(x4) =





x4 + (1 + η1) if x4 ≤ −η1

− 1

η1
x4 if −η1 < x4 < η1

x4 − (1 + η1) if x4 ≥ η1,

where η1 is also a positive constant.

In Section 3.3, we shall show the projections of the strange attractor of a system that resembles

(1.8), in three dimensional spaces, and a plot of its time propagation.

Now for the discrete-time chaos, its theory lies outside the scope of this thesis, but we shall

present here a few of its properties for the sake of illustrating different aspects of chaos. In this

case, similar features to those we have seen for the continuous-time chaos will carry over to the

discrete case, although they follow different formulation. This formulation is expressed in terms

of difference equations defined by a continuous mapping F : S −→ S, where S is a closed and

bounded subset of Rm, given by

xn+1 = F(xn,α), n = 0, 1, 2, . . . ,

where again xn = (xn1, xn2, . . . , xnm)T are the state variables and α = (α1, α2, . . . , αl)
T is a

set of parameters. i.e., we are considering the (n + 1)st iterate of a given point, x0, in S and

constructing the sequence {xi}∞i=0 (orbit). Notice that the map F might possess a fixed point

x∗ such that x∗ = F(x∗,α), a periodic point p of period n such that p = F[n](p,α) and, in
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addition, p,F(p,α), . . . ,F[n−1](p,α) are all distinct, or an eventually periodic point p∗ whose

ith iterate, F [i](p∗), for some i > 1, is periodic (these terminologies are analogous to those given

in the continuous case). The extension of Lyapunov exponents, defined for the continuous case,

to the discrete case, lead us to formulate other types of quantities, called Lyapunov numbers.

These numbers, when evaluated at fixed points, periodic points, etc., describe the amount of

contraction or expansion of the orbit {xi}∞i=0 per iteration in all possible eigendirections.

The behaviour of the orbit {xi}∞i=0 depends entirely on the behaviour of the map F. Thus,

in order for the map F to exhibit chaotic behaviour, it has to possess certain properties very

much similar to those explained for the continuous case. These properties define discrete-time

chaos [38], and can be summarized as follows.

1. Sensitive dependence on parameters: If a parameter (the shape of F) varies slightly, then

two orbits obtained from repeated iterations of the chaotic map, starting from the same

initial point, eventually become quite different.

2. Sensitive dependence on initial points: If an initial point x0 varies slightly, the two orbits

obtained from repeated iterations of the chaotic map with the same parameters eventually

become quite different.

3. F has positive Lyapunov exponents at each point in its domain which is not eventually

periodic.

These features imply that if the parameters and the exact initial point are kept unknown, then

it is impossible to predict the path of the chaotic orbit.

Let us consider the tent function as an example of one-dimensional chaotic map. The tent

function Fα : [0, 1]→ [0, 1], for 0 < α < 1, is given by

xk+1 = Fα(xk, α) =





xk/α if 0 ≤ xk ≤ α

(xk − 1)/(α− 1) if α < xk ≤ 1.

(1.11)

It has been established in [37] that this map possesses the following three important properties:

(a) it is chaotic, (b) it has dense set of periodic points (i.e., any non-empty open interval J ⊂ [0, 1]

will always contain at least one periodic point), and (c) it is transitive (i.e., for any pair of non-

empty open interval J1, J2 ⊂ [0, 1], there is a positive integer n such that F
[n]
α (J1) ∩ J2 6= φ,

where φ is the non-empty set). Therefore, by applying the definition of strong chaos, the three

properties make the tent map Fα strongly chaotic over the interval [0, 1].
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We shall see in the next chapters the important role continuous-time chaotic systems play in

developing synchronization theory and in building secure communication schemes.

1.3 Impulsive Systems

Many evolution processes are characterized by the fact that at certain moments of time they

experience a change of state abruptly. These processes are subject to short-term perturbations

whose duration is negligible in comparison with the duration of the process. Consequently, it is

natural to assume that these perturbations act instantaneously, that is, in the form of impulses.

It is known, for example, that many biological phenomena involving thresholds, bursting rhythm

models in medicine and biology, optimal control models in economics, population dynamics [71],

space navigation [74], chaos control [72, 112, 113, 117], etc., do exhibit impulsive effects. Thus

impulsive differential equations, that is, differential equations involving impulse effects, appear

as a natural description of observed evolution phenomena of several real world problems.

The mathematical description of these impulsive systems of differential equations, modeling

evolutionary processes that are subject to impulsive effects, consists of a system of ordinary

differential equations together with a system of difference equations that define the impulsive

actions. These difference equations are given by

∆x(t) = I(t,x(t)), (1.12)

where ∆x(t) = x(t+)−x(t−). Here and elsewhere throughout this thesis, we use the abbreviated

notation x(t+) = limτ→t+ x(τ) and x(t
−) = limτ→t− x(τ) to refer to the right-hand and left-hand

limits, respectively. It is assumed that equation (1.12), which describes the instantaneous changes

of state, or impulses, is satisfied when a particular spatiotemporal relation, given by h(t,x(t)) = 0,

is satisfied. Let M := {(t,x(t)) ∈ R+ × Rn : h(t,x(t)) = 0} denotes the hypersurface of the

equation h(t,x(t)) = 0 in R+×Rn. Let A :M→ R+×Rn, where A(t,x(t)) := (t, x(t)+I(t,x(t))),

denote the function which defines the impulsive action. It should be noted that we require

x(t) + I(t,x(t)) ∈ Rn, for (t,x(t)) ∈ R+ ×Rn. Thus, according to this set up, the combination of

equations (1.1) and (1.12) lead us to the the following impulsive differential equation, given by





ẋ(t) = f(t,x(t)), h(t,x(t)) 6= 0

∆x(t) = I(t,x(t)), h(t,x(t)) = 0

(1.13)
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This means that for as long as we have h(t,x(t)) 6= 0, then the evolution of the state is governed

by the ordinary differential equation (1.1). However, whenever h(t,x(t)) = 0, the state undergoes

an impulse and instantly changes by some amount given by I(t,x(t)) according to equation (1.12).

This causes a jump discontinuity in the solution. Following this impulsive action, and assuming

h(t,x(t)) is non-zero for some time thereafter, the solution will continue to evolve according to

(1.1) until it undergoes an impulse once more.

We shall now define the notion of solutions to system (1.13) as follows.

Definition 1.3.1 A function x : (t0, σ̃) → Rn, where 0 ≤ t0 < σ̃ ≤ ∞ is called a solution of

system (1.13) if the following conditions are satisfied:

(i) (t,x(t)) ∈ R+ × Rn, for t ∈ (t0, σ̃);

(ii) x(t+0 ) = limt→t+0
x(t) exists and (t0,x(t

+
0 )) ∈ R+ × Rn;

(iii) for each t ∈ (t0, σ̃), if h(t,x(t)) 6= 0 then x is continuously differentiable at t and satisfies

ẋ(t) = f(t,x(t));

(iv) the set T := {t ∈ (t0, σ̃) : h(t,x(t)) = 0} of instants of impulsive effect (moments of

impulse) is finite (possibly empty) or consists of a countable increasing sequence of points

with limit σ̃; and

(v) if t ∈ T then x(t−) exists and x(t−) = x(t), for t 6= t0 and x(t+) exists and x(t+) =

x(t) + I(t,x(t)), for t 6= σ̃.

If x(t) is a solution of (1.13), then we call the solution curve in R+ × Rn, described by the

points (t,x(t)), the integral curve associated with x(t). Clearly these solutions curves are either

continuous or piecewise continuous with simple jump discontinuities.

The arbitrary nature of the relation h(t,x(t)) = 0 makes the study of system (1.13) extremely

difficult. It is therefore common to focus on a particular type of relation. The set of points

(t,x) ∈ R+×Rn, for which h(t,x) = 0, will be assumed to consist of a sequence of hypersurfaces

of the form t = τk(x), where τk ∈ C(Rn,R+), for k = 1, 2, . . . and 0 = τ1(x) < τ2(x) < τ3(x) < . . .

with limk→∞ τk(x) =∞, for each x ∈ Rn. This system is then written as





ẋ(t) = f(t,x(t)), t 6= τk(x(t))

∆x(t) = I(t,x(t)), t = τk(x(t))




, k = 1, 2, . . . . (1.14)
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When the functions τk depend on the state, then system (1.14) is said to have impulses at variable

times. This is reflected in the fact that different solution trajectories will tend to undergo impulses

at different times. If the functions τk are all constant, then (1.14) is said to be a system having

impulses at fixed times. In this case all solution trajectories of the state variables undergo the

impulsive action, described by the function I in equation (1.14), at the same exact times. In

other words, the impulsive differential system will be given by





ẋ(t) = f(t,x(t)), t 6= τk

∆x(t) = I(t,x(t)), t = τk




, k = 1, 2, . . . . (1.15)

The question of existence of solutions of system (1.14) is a non-trivial one when impulses

occur at variable times. Even the precise notion of what a solution is, must be carefully stated.

It is fairly clear that solutions should be piecewise continuous and, in fact, piecewise continuously

differentiable (or piecewise absolutely continuous if considering generalized types of solutions).

A solution will undergo simple jump discontinuities when it intersects impulse hypersurfaces

t = τk(x(t)), k = 1, 2, . . ..

It is common practice to assume that the solutions of (1.14) (and hence solutions of (1.15))

are left continuous, as described by item (v) in Definition 1.3.1 [7,63,64]. This is also intuitively

appealing since one can think of a solution as approaching and actually reaching a hypersurface

before being mapped to some new point. Thus under this assumption of left continuity, the initial

condition for system (1.14) is typically given by

x(t+0 ) = x0, (1.16)

which is a slight modification of the usual way of expressing initial conditions for ordinary dif-

ferential equations, i.e., x(t0) = x0 (see Definition 1.3.1 (ii)). In fact, the two latter expressions

for initial conditions become equivalent when t0 6= τk(x0), for all k = 1, 2, . . . . Condition (1.16)

emphasizes the fact that we do not consider a solution to instantly undergo an impulse at the

initial time t0. We shall denote solutions to system (1.14) satisfying (1.16) by x(t) = x(t, t0,x0).

Even after focusing on a particular class of relations h(t,x(t)) = 0 given by these impulse hy-

persurfaces, described in system (1.14), impulsive differential equations still exhibit some unusual

behaviour. Solutions, depending on how they are defined, could undergo an infinite number of

impulses in a finite amount of time unless some additional restrictions on the functions τk are

imposed. Furthermore, solutions may not exist after reaching one of the impulse hypersurfaces.
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They may also intercept the same hypersurface t = τk(x(t)) more than once or not at all or

even intercept it after intercepting a subsequent hypersurface t = τi(x(t)), for some i > k. The

repeated intersection of the same hypersurface by a solution is commonly known as a pulse or

beating phenomenon and conditions are often sought to guarantee that it does not happen.

Another problem associated with system (1.14) is: the usual notions of continuous dependence

and stability of solutions tend to break down since neighbouring solutions tend to undergo jump

discontinuities at slightly different times. When impulses occur at fixed times, as in system (1.15),

then much of the theory of ordinary differential equations can be directly carried over to the study

of these impulsive differential equations.

In this thesis, we will restrict ourselves to impulsive differential equations whose impulses

occur at fixed times, i.e., to those impulsive systems described by (1.15). In this case, it should

be mentioned that if the function I is defined so that x + I(τk,x) is not a one to one function

in x, then it is possible that two different solutions could merge following the impulsive action

at time t = τk. This merging, which is also known as confluence, of solutions cannot happen in

ordinary differential equations when f is sufficiently smooth. Note also that, in this situation,

if one were to try to extend a solution for system (1.14) backwards in time, then non-unique

solutions would result. In fact, if x + I(t,x) were not also surjective function, then backward

continuation of solutions would be impossible. It is therefore more fruitful to consider only the

forward continuation of solutions.

We shall now state a theorem that displays the conditions which govern the existence and

uniqueness of solutions to system (1.15) with the presence of the initial condition (1.16) [63].

Theorem 1.3.1 Let Ω ⊂ Rn. If the function f , described in equation (1.15), is continuous on

(τk, τk+1] × Ω and lim(t,y)→(τ+
k
,x) f(t,y) exists, for x ∈ Ω, k = 1, 2, . . . , then solutions to system

(1.15) together with the condition (1.16) exist locally. Moreover, if f is continuous on R+ × Ω

and locally Lipschitz with respect to x in R+ × Rn, then solutions of equation (1.15) satisfying

(1.16) are unique.

Most of the impulsive differential equations we will be dealing with in this thesis, resemble the

initial value impulsive differential system given by equations (1.15) and (1.16). Therefore it will

be assumed, when dealing with these systems, that the conditions of Theorem 1.3.1 are satisfied

and thus a unique solution exists.

The importance of the theory of impulsive differential equations in developing a framework for

controlling chaos through impulsive synchronization will become evident in Chapter 2. Therefore
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we shall, in the remaining of this section, introduce some of the impulsive models and the theory

associated with it which is available in the literature. In this theory, the asymptotic stability of

solutions of impulsive models are investigated and, for special cases, sufficient conditions on the

parameters of these systems are obtained to guarantee asymptotic stability properties. However,

by considering Definitions 1.2.3 and 1.2.9, we could see very clearly that the equi-Lagrange

stability of solutions of impulsive systems is a weaker property which requires weaker conditions

than asymptotic stability. Moreover, we shall see later that synchronization will require only

equi-Lagrange stability of solutions. Hence we shall improve the results stated in this section and

we shall provide an extension of this work in Chapter 2.

Let us begin our discussion by introducing the following classes of functions and definitions.

K0 := {g ∈ C[R+,R+] : g(s) > 0 if s > 0 and g(0) = 0},
K := {g ∈ K0 : g(s) is strictly increasing in s},

KR := {g ∈ K : lim
s→∞

g(s) =∞},
PC := {p : R+ → R+ : p(t) ∈ C((τk, τk+1]) and p(τ+k ) exists,

k = 1, 2, . . .},
Sr := {x ∈ Rn : ||x|| ≤ r},

Sc(M) := {x ∈ Rn : ||x|| ≥M},
Sc(M)0 := {x ∈ Rn : ||x|| > M},

where r > 0 and M ≥ 0.

Definition 1.3.2 Let V : R+ × Sc(M) −→ R+, then V is said to belong to class ν0(M) if

• V is continuous in (τk, τk+1]× Sc(M) and, for each x ∈ Rn,

lim
(t,y)→(τ+

k
,x)
V (t,y) = V (τ+k ,x)

exists, k = 1, 2, . . . ,;

• V is locally Lipschitz in x.

The class ν0 will represent the class of Lyapunov functions which will be used in studying the

stability theory of impulsive systems.

Definition 1.3.3 Let M ≥ 0 and V ∈ ν0(M). Define the upper right derivative of V (t,x)

with respect to the continuous portion of system (1.15), for (t,x) ∈ R+ × Sc(M)0 and t 6= τk,
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k = 1, 2, . . . , by

D+V (t,x) := lim
δ→0+

sup
1

δ
[V (t+ δ,x+ δf(t,x))− V (t,x)] .

It is clear that Definition 1.3.3 will automatically reduce to the usual notion of derivative if the

function V (t,x) is differentiable on R+ × Rn. i.e.,

D+V (t,x) =
∂

∂t
V (t,x) +

∂

∂x
V (t,x) · f(t,x).

Definition 1.3.4 Let V ∈ ν0(0) and assume that





D+V (t,x) ≤ g[t, V (t,x)], t 6= τk

V [t,x+ I(t,x)] ≤ ψk[V (t,x)], t = τk




, k = 1, 2, . . . ,

where g : R+ × R+ −→ R is continuous and ψk : R+ −→ R+ is non-decreasing. Then the system





ẇ = g(t, w), t 6= τk

w(τ+k ) = ψk[w(τk)] k = 1, 2, . . .

w(t+0 ) = w0 ≥ 0,

(1.17)

is called the comparison system of system (1.15).

It should be noted that in the rest of the argument to follow, it is assumed that f(t,0) = I(t,0) = 0

and g(t, 0) = 0.

Now using the above definitions, we are ready to state some important results regarding

the stability properties of the trivial solution of system (1.15) (for detailed proofs, see [63] and

[114–116]).

Theorem 1.3.2 Assume that

1. for V : R+ × Sr −→ R+, V ∈ ν0(0), we have

D+V (t,x) ≤ g(t, V (t,x)), t 6= τk, k = 1, 2, . . . ;

2. there exists an r0 > 0 such that for all x ∈ Sr0 , we have x+I(t,x) ∈ Sr and V [t,x+I(t,x)] ≤
ψk[V (t,x)], for t = τk, k = 1, 2, . . . .
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3. there exist functions α, β ∈ K such that β(||x||) ≤ V (t,x) ≤ α(||x||) on R+ × Sr.

Then the stability properties of the comparison system (1.17) imply the stability properties of the

corresponding impulsive system (1.15).

Since the comparison system is easier to work with, the stability theory of impulsive systems,

given by (1.15), will become simpler to investigate. This will be quite clear in the next result

where the different stability properties of the trivial solution of the comparison system and their

required conditions will imply, as in Theorem 1.3.2, the stability properties of the trivial solution

of the corresponding impulsive system.

Corollary 1.3.1 We have three different cases to consider.

1. Suppose that g(t, w) = 0, ψk(w) = dkw, for all k = 1, 2, . . . , are admissible in Theorem

1.3.2. Then the trivial solution, x = 0, of system (1.15) is uniformly stable provided that

∞∏

k=1

dk <∞.

2. Suppose that g(t, w) = λ′(t)w, λ ∈ C1[R+,R+], ψk(w) = dkw, where dk ≥ 0, for all k =

1, 2, . . . , are admissible in Theorem 1.3.2. Then the trivial solution, x = 0, of system (1.15)

is stable provided that

λ′(t) ≥ 0 (1.18)

and

λ(τk+1) + ln dk ≤ λ(τk),

for all k = 1, 2, . . . .

3. Suppose that the functions in 2. are also admissible in Theorem 1.3.2. Then the trivial

solution, x = 0, of system (1.15) is asymptotically stable provided that equation (1.18) is

satisfied and

λ(τk+1) + ln ξdk ≤ λ(τk),

for all k = 1, 2, . . . , where ξ > 1.
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Yang and Chua in [114–116, 120, 122] applied the above results to impulsively control the

dynamics of a certain kind of non-linear systems, given by




ẋ = Ax+Φ(x), t 6= τk

∆x|t=τk
= Bx, k = 1, 2, . . . .

(1.19)

In particular, they applied the third case of Corollary 1.3.1 to obtain sufficient conditions for

system (1.19) to be asymptotically stable, as illustrated in the following corollary.

Corollary 1.3.2 Let Γ be an n× n symmetric and positive definite matrix with λ1, λ2 > 0 being

the smallest and the largest eigenvalues of Γ, respectively. Moreover, let

Q = ΓA+ATΓ,

with λ3 being the largest eigenvalue of Γ
−1Q, and let Φ(x) be a continuous mapping which satisfies

Lipschitz condition at 0, i.e., ||Φ(x)|| ≤ L||x||, for some positive constant L. Finally, suppose

that λ4 is the largest eigenvalue of the matrix Γ−1(I+B)Γ(I+B), where B is a symmetric matrix

satisfying ||I+B|| ≤ 1. Then the trivial solution of system (1.19) is asymptotically stable provided

that (
λ3 + 2L

√
λ2
λ1

)
(τk+1 − τk) ≤ − ln(ξλ4), ξ > 1 (1.20)

and

λ3 + 2L

√
λ2
λ1
≥ 0.

Let us take the Chua’s oscillator, defined by system (1.6), as an example to explain Corollary

1.3.2. In this case, we have Φ(x) = (−αf(x), 0, 0)T , where f(x) = bx+1/2(a−b)(|x+1|−|x−1|),
and ||Φ(x)|| ≤ |αa| ||x||. Suppose that Γ is a 3× 3 identity matrix and q is the largest eigenvalue

of (A + AT ). Moreover, suppose that B is a symmetric matrix satisfying ||I + B|| ≤ 1, and let

d denote the largest eigenvalue of (I + BT )(I + B). Thus, if the impulses are equidistant, with

period ∆ = τk+1− τk, for all k = 1, 2, . . ., then, by inequality (1.20), the trivial solution of Chua’s

oscillator will be asymptotically stable provided that

0 ≤ q + 2|αa| ≤ − 1

∆
ln(ξd), (1.21)

where ξ > 1. Inequality (1.21) gives an upper bound on ∆; namely,

∆max =

∣∣∣∣
ln(ξd)

q + 2|αa|

∣∣∣∣ , as ξ −→ 1+, (1.22)
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Figure 1.7: Stable simulation results for the case B = diag(−1.5,−1,−1).

which is a sufficient condition, but not necessary, for the trivial solution to be asymptotically

stable. It should be noted that, in [122], the same approach, mentioned above, was applied to

the Lorenz system and conditions similar to (1.21) and (1.22) were obtained.

In order to illustrate Corollary 1.3.2, we present two different simulation results which corre-

spond to two different values for the matrix B. The parameters of Chua’s oscillator are chosen

to be α = 15, β = 20, γ = 0.5, a = −120/7, b = −75/7 and the initial condition is taken to be

(x(0), y(0), z(0))T = (−2.121304,−0.06617, 2.88109)T . Hence the largest eigenvalue of (A + AT )

will be given by q = 20.16218. A fourth-order Runge-Kutta method with step size 10−5 is used

in the following simulations. We start first with a strong impulsive control model by choosing

the matrix B = diag(−1.5,−1,−1). Thus, by considering condition (1.21), we may choose the

period of the impulses to be ∆ = 0.002. Figure 1.7 shows stable results, where we could see that

the system asymptotically approaches the origin with a settling time of about 0.05. As a second

choice for the matrix B (weak impulsive control model), we let B = diag(−1,−0.1,−0.1). In
this case, we may select the following value for ∆ = 3 × 10−4. In Figure 1.8, the control system

asymptotically approaches the origin with a settling time of about 0.05.

In Theorem 1.3.2 and Corollary 1.3.1, it was assumed that ψk : R+ −→ R+, k = 1, 2, . . . , are

non-decreasing functions which is a strong condition that can be weakened for certain kind of

impulsive systems. For example, it was realized that if the function g(t, V (t,x)) = p(t)c(V (t,x)),

where p ∈ PC and c ∈ K, then the non-decreasing behaviour of ψk, k = 1, 2, . . . , is no longer

required to achieve the stability or asymptotic stability of the trivial solution of (1.15) [65, 71].
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Figure 1.8: Stable simulation results for the case B = diag(−1,−0.1,−0.1).

Instead, a weaker condition is required to be satisfied as explained in the following theorem.

Theorem 1.3.3 Assume that

1) there exist r and r0, with 0 < r0 < r, such that if x ∈ Sr0 , it implies that x+ I(t,x) ∈ Sr, for

all t = τk, k = 1, 2, . . . ;

2) β(||x||) ≤ V (t,x) ≤ α(||x||) on R+ × Sr, where α, β ∈ K, and there exists Ψk ∈ K0 such that

V (τ+k ,x+ I(τk,x)) ≤ Ψk(V (τk,x)), k = 1, 2, . . . ;

3) there exist c ∈ K and p ∈ PC such that

D+V (t,x) ≤ p(t)c(V (t,x)), x ∈ Sr, t 6= τk;

4) there exists a constant σ > 0 such that for all z ∈ (0, σ), we have

τk+1∫

τk

p(s)ds+

Ψk(z)∫

z

ds

c(s)
≤ −γk,

for some constant γk and k = 1, 2, . . . .

Then the trivial solution of system (1.15) is stable if γk ≥ 0, for all k = 1, 2, . . . , and asymptoti-

cally stable if, in addition,
∑∞

k=1 γk =∞.
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Actually replacing conditions 3) and 4) of Theorem 1.3.3 by these two conditions

3′) there exist functions c ∈ K and π ∈ PC such that

D+V (t,x) ≤ −π(t)c(V (t,x)), x ∈ Sr, t 6= τk;

4′) there exists a constant σ > 0 such that for all z ∈ (0, σ), we have

−
τk∫

τk−1

π(s)ds+

Ψk(z)∫

z

ds

c(s)
≤ −γk,

for some constant γk and k = 1, 2, . . . , will also give the same conclusion as in Theorem 1.3.3;

namely, the trivial solution of (1.15) is stable if γk ≥ 0, for k = 1, 2, . . . , and it is asymptotically

stable if, in addition,
∑∞

k=1 γk =∞.
The latter results motivate us to weaken the conditions that guarantee the asymptotic stability

of the trivial solution of system (1.15), stated in Theorem 1.3.3, and replace it by a weaker

property, namely, equi-Lagrange stability, as illustrated before. In oder to do so, we shall present

one theorem which deals with equi-boundedness properties of equation (1.15) [8, 73], then prove

another theorem which gives the conditions under which the solutions of that equation are equi-

Lagrange stable. These two theorems will be useful in the study of impulsive control needed for

the next chapter.

Theorem 1.3.4 The solutions of system (1.15) are uniformly bounded if

(T1.1) V ∈ ν0(M), for some M ≥ 0, and there exist functions a, b ∈ KR such that b(||x||) ≤
V (t,x) ≤ a(||x||), (t,x) ∈ R+ × Sc(M);

(T1.2) there exist functions p ∈ PC and ck ∈ K0 such that

D+V (t,x) ≤ p(t)ck(V (t,x)), (t,x) ∈ (τk, τk+1)× Sc(M)0, (1.23)

for k = 1, 2, . . . ;

(T1.3) there exists a constant N ≥ 0 such that if ||x(τk)|| ≤ M, then ||x + I(τk,x)|| ≤ N, for

k = 1, 2, . . . ;

(T1.4) there exist functions Ψ ∈ KR and Ψk ∈ K0 such that Ψ(s) ≤ Ψk(s) ≤ s, s ∈ R+, and

V (τ+k ,x+ I(τk,x)) ≤ Ψk(V (τk,x)), (1.24)

whenever (τk,x), (τk,x+ I(τk,x)) ∈ R+ × Sc(M)0, for k = 1, 2, . . .;
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(T1.5) there exist constants λ > 0 and γk ≥ 0 such that

∫ τk+1

τk

p(s)ds+

∫ Ψk(y)

y

ds

ck(s)
≤ −γk, (1.25)

where y ≥ λ, k = 1, 2, . . . .

The next result is on equi-Lagrange stability.

Theorem 1.3.5 The solutions of system (1.15) are equi-Lagrange stable if

(T2.1) system (1.15) is equi-bounded;

(T2.2) condition (T1.2) holds for V ∈ ν0(0) with inequality (1.23) being true for all (t,x) ∈ R+ ×
Rn;

(T2.3) there exist functions Ψk ∈ K0 such that inequality (1.24) holds, for all (τk,x) ∈ R+ × Rn

and for all k = 1, 2, . . . ;

(T2.4) there exist a constant ρ > 0 and functions Ck ∈ K such that Ck(s) ≤ ck(s), for all s ∈ R+
and for all k = 1, 2, . . . , and for any given fixed s ∈ R+, infk Ck(s) > ρ;

(T2.5) inequality (1.25) holds, for all y > 0, and
∑∞

k=1 γk =∞.

Proof: To prove equi-Lagrange stability, we need to show that system (1.15) is equi-attractive

in the large in view of assumption (T2.1). For simplicity, we set m(t) := V (t,x(t)), where x(t) =

x(t, t0,x0) is any solution of (1.15) such that x(t+0 ) = x0. Since system (1.15) is equi-bounded,

the solution x(t) = x(t, t0,x0) of (1.15) exists on [t0,∞), for all x0 ∈ Rn. Since V ∈ ν0(0), we

have D+m(t) = D+V (t,x(t)). By inequalities (1.23) and (1.24), we have

{
D+m(t) ≤ p(t)ck(m(t)), t 6= τk

m(τ+k ) ≤ Ψk(m(τk)), k = 1, 2, . . . .
(1.26)

Using (1.26), we obtain

m(t)∫

m(τ+
k
)

ds

ck(s)
≤

t∫

τk

p(s)ds ≤
τk+1∫

τk

p(s)ds, t ∈ (τk, τk+1], (1.27)
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and
m(τ+

k
)∫

m(τk)

ds

ck(s)
≤

Ψk(m(τk))∫

m(τk)

ds

ck(s)
. (1.28)

Adding (1.27) and (1.28), we get, in view of (1.25),

m(t)∫

m(τk)

ds

ck(s)
≤

τk+1∫

τk

p(s)ds+

Ψk(m(τk))∫

m(τk)

ds

ck(s)
≤ −γk. (1.29)

With inequality (1.29), we conclude that m(t) ≤ m(τk), for all t ∈ (τk, τk+1], i.e., m(τk+1) ≤
m(τk). This means that the sequence {m(τk)}∞k=1 is non-increasing. Furthermore, since the se-

quence is bounded from below, it follows that the sequence possesses a limit, say L ≥ 0, as k

approaches infinity. We shall prove that L = 0. Let us assume L > 0 and try to reach a contradic-

tion. Using the fact that ck ∈ K0, Ck ∈ K, Ck(s) ≤ ck(s), for all s ∈ R+, and m(τk) ≥ m(τk+1),

for all k = 1, 2, . . . , we obtain

m(τk+1)∫

m(τk)

Ck(L)
ck(s)

ds ≥ m(τk+1)−m(τk),

for all k = 1, 2, . . . . Thus for n > 1, we obtain

m(τn+1)−m(τ1) = m(τn+1)−m(τn) +m(τn)− . . .+m(τ2)−m(τ1)

≤
m(τn+1)∫

m(τn)

Cn(L)
cn(s)

ds+ . . .+

m(τ2)∫

m(τ1)

C1(L)
c1(s)

ds

≤ −γnCn(L)− γn−1Cn−1(L)− . . .− γ1C1(L)

= −
n∑

k=1

γkCk(L).

This implies, by conditions (T2.4) and (T2.5), that

m(τn+1) ≤ m(τ1)− ρ
n∑

k=1

γk −→ −∞

as n → ∞, which is a contradiction. Therefore, we must have L = 0, as we claimed. On the

other hand, m(t) ≤ m(τk), for all t ∈ (τk, τk+1] and for all k = 1, 2, . . . . Thus

lim
t→∞

m(t) = 0.



34

It follows that

lim
t→∞

||x(t)|| = lim
t→∞

b(||x(t)||) = lim
t→∞

m(t) = 0,

i.e., system (1.15) is equi-attractive in the large and hence it is equi-Lagrange stable, as required.¤

Theorems 1.3.4 and 1.3.5 give sufficient conditions on the equi-boundedness and equi-Lagrange

stability of solutions for equation (1.15). In the next chapter, we shall use these results as tools

to investigate the boundedness and Lagrange stability properties of particular impulsive systems

which will mimic the structure of error systems between impulsively synchronized chaotic systems.



Chapter 2

Chaos Synchronization

Although the term synchronization seems to be quite regular when applied to periodic oscillations,

the combination synchronized chaotic oscillations may sound quite mysterious. Indeed, there is

an essential difference between the synchronization of periodic oscillations and synchronization

of chaos. In the former case the oscillations do not have intrinsic instability which is one of the

signatures of chaos. In systems oscillating chaotically, we have seen that infinitesimally nearby

initial conditions trigger quite distinct evolutions. Considering this, it may appear that it is

quite pointless to try to synchronize chaotic oscillations in any sense. Yet, as we shall see in this

chapter, one may outline a whole class of systems which can exhibit synchronization of chaos in

a very narrow sense, namely, identical synchronized chaotic oscillations.

This chapter summarizes the most important general information on this kind of synchroniza-

tion and introduces the concept of impulsive synchronization. We shall limit our explanations to

the case of so called forced synchronization of chaos which is observed in systems consisting of an

autonomous chaotic driving system whose signal (or samples of its signal) serves as an input for

the response system.

In Section 2.1 we shall discuss the problem of forced synchronization and some methods for

its analysis in the general form which already exist in the literature. An explanation of the

terminologies used for the description of synchronized chaos leading to the idea of impulsive

synchronization will be provided. Then in Section 2.2, we derive sufficient conditions needed to

guarantee accurate impulsive synchronization, by implementing Lagrange stability, and study the

robustness of this approach towards parameter mismatch between the chaotic systems involved.

In Section 2.3, the Lyapunov exponents of the error dynamics between impulsively synchronized

35
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chaotic systems are studied and evaluated to confirm the theoretical results obtained in Section

2.2.

2.1 Synchronization

Considering the different types of chaotic systems, we wonder whether it is possible to find

mechanisms for externally influencing the functioning of chaotic systems and, on the other hand,

how one can explain and possibly use, for other purposes, the amazing ability of performing

useful tasks such as signal processing out of cooperation of a multiple number of chaotic systems.

These questions and many more may be answered through illustrating the concept of forced

synchronization. We therefore describe in this section the linking of two chaotic systems with a

common signal or signals (or even samples of signals) using different approaches that have been

proposed so far in the literature. Each method will be investigated thoroughly and an example

will be provided for each one of them.

There are two different types of forced synchronization that are discussed and explained with

some illustrative examples in this section:

1. Synchronization through remote replication or Carroll-Pecora synchronization.

2. Impulsive synchronization.

Both of these forced synchronization methods consist of two dynamical systems; one of which

generates the driving signals and is called the drive system (or driving system) and the other

is driven by these signals and is called response system (or driven system). We shall see, in

Chapter 5, the importance of these two types of forced synchronization methods in the study

of cryptography and secure communication, especially impulsive synchronization that has been

developed very recently. We shall explain both terminologies in detail after we introduce the

following definition of synchronization in the general sense.

Definition 2.1.1 Suppose that x(t) and x̃(t) represent the solution trajectories of a continuous-

time dynamical system, given by equation (1.1), and suppose that e := x− x̃ represents the error

dynamics. Then x and x̃ are said to synchronize if the error dynamics, e, is equi-Lagrange stable,

i.e.,

lim
t→∞

e(t) = 0.
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Moreover, we say that x and x̃ have the property of generalized synchronization if a functional

relation exists between them and the synchronized manifold defined with this functional relation

behaves as an attractor.

Notice that the value of β, in Definition 1.2.5, can be quite large, allowing the error dynamics

between synchronized chaotic systems to have initially large values (called the transient region).

However, the existence of T, in Definition 1.2.7, guarantees that the error will converge to zero

eventually.

We see clearly from Definition 2.1.1 that synchronization of two (not necessarily identical)

dynamical systems means that the trajectories of one of the two systems will converge to the same

values of the other and will remain in step with each other, which makes synchronization appear

to be structurally stable. Unfortunately, the capability of these two chaotic non-linear systems to

oscillate in coherent and synchronized way is still not obvious. Yet, in [19,88,89], the method of

remote replication or Carroll-Pecora (mentioned earlier), which is based on decomposing a system

into at least two subsystems: a drive system and stable response subsystems that synchronize

when coupled with a common drive signal, was obtained. This method may be summarized in

the following manner. We shall consider an autonomous n-dimensional dynamical system given

by

u̇ = f(u). (2.1)

System (2.1) can be arbitrarily decomposed into two subsystems, u = (v,w)T , such that

v̇ = g(v,w), ẇ = h(v,w), (2.2)

where v = (u1, . . . , um)T , g = (f1, . . . , fm)T , w = (um+1, . . . , un)
T and h = (fm+1, . . . , fn)

T . We

create a new subsystem w′, called the response, identical to the w subsystem, but the set of

variables v are substituted for the corresponding v′ in the function h. Then we augment equation

(2.2) with this new system, to obtain

v̇ = g(v,w), ẇ = h(v,w), ẇ′ = h(v,w′). (2.3)

We now examine the difference e = w−w′. The subsystem components w and w′ will synchronize

only if e −→ 0 as t −→∞. In the infinitesimal limit, this leads to the linear variational expansion

for the subsystem, given by

ė = ẇ − ẇ′ = h(v,w)− h(v,w′) = Jwh(v(t),w(t))e+O(||e||2), (2.4)
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where Jwh is the Jacobian of the w subsystem vector field with respect to w only. The behaviour

of equation (2.4), or its matrix version, depends on the Lyapunov exponents of the w subsystem,

which are referred to as sub-Lyapunov exponents or conditional Lyapunov exponents. In [88,89], it

has been realized that the necessary and sufficient conditions for the trivial solution of (2.4) to be

asymptotically stable, depends on the sign of these sub-Lyapunov exponents. This dependence

is expressed in the following theorem.

Theorem 2.1.1 The trivial solution of the non-linear non-stationary system, given by (2.4),

is asymptotically stable if and only if the sub-Lyapunov exponents of the w subsystem are all

negative.

The negativity of the sub-Lyapunov exponents for the w subsystem is obviously a necessary con-

dition for the asymptotic stability of the trivial solution, but since lim||e||→0O(||e||2)/||e|| = 0 and

Jwh is bounded, the negativity condition is also sufficient condition because of the Fundamental

Linear Stability Theorem (see [57,77,89]). Hence the w and w′ subsystems will synchronize after

a transient period. One more thing we should mention is that the theorem says nothing about

the set of initial conditions in w′ which will synchronize with w. In fact, the effect of these set of

points of initial conditions is dramatic, especially with cascaded systems, and will be investigated

later in this section

A natural question to ask is: how will the synchronization be affected by the differences in

parameters that exist in bothw andw′ subsystems which are found in real life and practical appli-

cations (e.g., in circuit design). In [88,89], this question was studied analytically and numerically

as follows. We shall begin as above and examine the equation of motion for e(t) = w(t)−w′(t).
Letting µ and µ′ stand for the vector of parameters in the w and w′ subsystems, respectively,

and recalling the equations in (2.3), we get

ė = h(v,w,µ)− h(v,w′,µ′)

= h(v,w,µ)− h(v,w,µ′) + h(v,w,µ′)− h(v,w′,µ′)

= h(v,w,µ)− h(v,w,µ′) + Jwhe+O(v,w′).

Due to the extra terms h(v,w,µ) and h(v,w,µ′), the asymptotic stability of the trivial solution

is not guaranteed anymore (i.e., Theorem (2.1.1) is not applicable). We can get an estimate on

e by assuming that ||e(0)|| << 1; that is, we are letting the systems have nearly identical initial
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conditions. By ignoring the term O(v,w′), for times less than t1 > 0, we get

ė = h(v,w,µ)− h(v,w,µ′) + Jwhe,

whose approximate solution is given by

e(t) = Z(t)e(0) +

t∫

0

Z(t− τ)B(τ)dτ,

where Z(t) is, as before, the state transition matrix which satisfies Ż = Jwh(v,w)Z, and B =

h(v,w,µ)− h(v,w,µ′), t ≤ t1. We can now show that e may be bounded. In general, denoting

the largest negative sub-Lyapunov exponent of the w subsystem by −c2, then there will exist a

c1 > 0 (for further details, see [15]), such that

||Z(t)|| ≤ c1 exp(−c2t).

Thus if B(t) is bounded by a positive constant b1 (as it will be for most situations), we obtain

||e|| ≤ c1 exp(−c2t) +
c1b1
c2

(1− exp(−c2t)).

Notice that if our assumption about O(v,w′) holds for long enough time, then letting t approach

infinity, we get ||e|| ≤ c1b1/c2. Hence e will remain bounded and small provided that the differ-

ences in parameters are not large and O(v,w′) is small enough. i.e., with small enough parameter

differences, the actual response trajectory will remain near its drive counterpart (remain nearly

synchronized). This is maybe better understood by taking a one-dimensional drive and response

systems as an example (this example is given in [15], but it is slightly modified here). A small

variation e = w − w′ and ∆µ = µ− µ′, will give

ė ≈ hwe+ [
∂h

∂µ
] ·∆µ, (2.5)

where [
∂h

∂µ
] is the gradient vector of h with respect to µ. Roughly, if hw is constant in time and

[
∂h

∂µ
] is a constant vector in time, then (2.5) becomes a linear first order ODE whose solution is

given by

e(t) =

[
e(0) +

1

hw
[
∂h

∂µ
]∆µ

]
exp(hwt)−

1

hw
[
∂h

∂µ
]∆µ.
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Thus if hw < 0, the difference between w and w′ will level off at some constant value. For multi-

dimensional case, it was realized numerically, in [88,89], that such behaviour extends even if the

difference in parameters are rather large [10%-20%]. It was suggested in [18] how to overcome

this parameter difference in designing circuits by using cascaded systems. We shall describe later

in this section cascaded systems and their applications.

Let us work now directly on a specific system called the Lorenz system, given by equation

(1.5), in order to apply the above results and investigate the applications (for additional details,

see [23, 24, 89]). It was established in [89] that Lorenz system is decomposable into two stable

response subsystems (x1, z1) and (y2, z2). However, it was observed that the response subsystem

(x3, y3) is unstable. These subsystems are given by the following equations.

• The (x1, z1) subsystem is given by

ẋ1 = σ(y − x1)

ż1 = x1y − bz1.

• The (y2, z2) subsystem is given by

ẏ2 = rx− y2 − xz2

ż2 = xy2 − bz2.

• The (x3, y3) subsystem is given by

ẋ3 = σ(y3 − x3)

ẏ3 = rx3 − y3 − x3z.

Notice that the dynamics of the Lorenz system is independent of all of the response subsystems

given above. Therefore the Lorenz system is called the drive system, whereas the (x1, z1), (y2, z2)

and (x3, y3) subsystems are called the response (or driven) subsystems, because they are driven

by the driving signals y, x and z, respectively.

Let us examine each subsystem separately for stability issues. We start first with the (x1, z1)

subsystem. Notice that the Jacobian matrix of (x1, z1) subsystem is given by


−σ 0

y −b


 ,
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whose eigenvalues are −σ and −b which are strictly negative. Therefore

|x1 − x| −→ 0 and |z1 − z| −→ 0 as, t −→∞.

Moreover, it was established numerically [23] that the Lyapunov exponents of the (y2, z2) sub-

system are negative and they both have the same value −2.5. Thus as above, we have

|y2 − y| −→ 0 and |z2 − z| −→ 0, as t −→∞.

However, it was discovered [89] that the last subsystem (x3, y3) has a slightly positive sub-

Lyapunov exponent given by 7.89 × 10−3. Therefore, x3 and y3 will not converge to x and y,

respectively. Yet, in the subsequent sections, a very important method called impulsive synchro-

nization may be integrated with the above method to achieve convergence; this convergence is

enforced by applying impulses at instances whose time periods will satisfy certain conditions, as

it will be explained later.

Thus, using the Carroll-Pecora synchronization, the two subsystems (x1, z1) and (y2, z2) con-

verged to the corresponding components of the original Lorenz system (x, z) and (y, z), respec-

tively. Suppose now that one subsystem is used to generate the full dimensional response system,

then the question that we might ask is will this new system synchronize with the original one

(the driving system)? In other words, if the subsystem (y2, z2) is used to generate the third com-

ponent x2 through the equation ẋ2 = −σx2 + σy2, then can one conclude that the 3-dimensional

response system (x2, y2, z2) will converge to the original system (x, y, z)? The answer to this

question depends entirely on the subsystem chosen and on the stability properties of the trivial

solution of the error dynamics between the driving and response systems. We shall discuss two

different ways to answer this question: one of them uses the method of Lyapunov functions which

motivates a new analytical way of analyzing synchronization, and the other uses the method of

cascaded systems which depends on manipulating the sub-Lyapunov exponents. We begin by

illustrating the first approach in the following manner. We shall take the Lorenz system and

its (y2, z2) subsystem as an example. But before we do that, it should be mentioned that the

Lorenz system can be slightly modified, for reasons related to circuit design (for further details,

see [22–24]), by applying the substitution

u =
x

10
, v =

y

10
and w =

z

20
.
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Hence, using the above substitution, the Lorenz system becomes

u̇ = σ(v − u)

v̇ = ru− v − 20uw

ẇ = 5uv − bw.

(2.6)

Employing u as the driving signal, i.e., using the (v2, w2) as a response subsystem, the full

dimensional response system will be given by

u̇r = σ(vr − ur)

v̇r = ru− vr − 20uwr

ẇr = 5uvr − bwr.

(2.7)

By equations (2.6) and (2.7), the error dynamics e = u− ur, in this case, will be given by

ė1 = σ(e2 − e1)

ė2 = −e2 − 20u(t)e3

ė3 = 5u(t)e2 − be3.

(2.8)

The trivial solution of system (2.8) is asymptotically stable, since the derivative of the Lyapunov

function, given by

V (e) =
1

2σ
e21 +

1

2
e22 + 2e23,

is strictly negative and is given by V̇ (e) = −(e1 − 1
2e2)

2 − 3
4e
2
2 − 4be23. Therefore

lim
t→∞

e(t) = 0,

which is the desired property of synchronizing the response system with the driving system.

As an alternative approach to the method described above and an immediate extension of the

Carroll-Pecora synchronization, another method, called synchronization using cascaded systems,

was proposed in [18] which is considered more advantageous compared with the former approach.
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This new method utilizes a chaotic system that possesses at least two stable subsystems (e.g.,

Lorenz system, as shown earlier). In this current method, we proceed one step further with syn-

chronized chaotic systems. This is done as follows. We begin, as before, by using an autonomous

non-linear dynamical system that may be divided into several parts

u̇ = f(u, v, w)

v̇ = g(u, v, w)

ẇ = h(u, v, w).

The dynamical variables (u, v, w)T can be thought of as scalars for simplicity, although the fol-

lowing argument can be generalized to vector variables. Suppose now that we have a new set of

equations corresponding to the response system which is driven by the signal u:

v̇′ = g(u, v′, w′)

ẇ′ = h(u, v′, w′).

(2.9)

By Theorem 2.1.1, if all the sub-Lyapunov exponents of the response system, given by (2.9), are

negative, then after an initial transient region, v′(t) will converge to v(t) and w′(t) will converge to

w(t), as explained earlier. We then reproduce an additional subsystem driven by v ′ and expressed

in the following equations (see Figure 2.1).

u̇′′ = f(u′′, v′, w′′),

ẇ′′ = h(u′′, v′, w′′).

(2.10)

Once more, if this new response subsystem (2.10) has negative sub-Lyapunov exponents, then

it will synchronize with the drive system, provided that the initial conditions belong to the

same basin of attraction (for more details, see [18]). Thus the negativity of the sub-Lyapunov

exponents is no longer a guarantee that the chaotic trajectories of the drive and the response

systems will synchronize if they start from initial conditions that belong to different attractors,

such as one-well two chaotic attractors. Actually, in the case of two-well chaotic attractor, the

synchronization will not be as good, since after the chaotic waveform shifts from one well to the

other, it spends some time in an unstable region causing a large error in synchronization. While
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Figure 2.1: Block diagram of a cascaded system.

the chaotic waveform is in this unstable region, the time dependent conditional sub-Lyapunov

exponents (calculated during this unstable period) for the response system are not all less than

zero. However, the time averaged conditional sub-Lyapunov exponents for the entire response

attractor are still less than zero. Parameter mismatch is another obstacle that will cause the

response (u′′, w′′) to diverge from the drive system in the unstable region. In [18], these problems

were noticed to give cascaded-system method certain properties that are very important. These

properties are: we are able to reproduce all signals from one drive signal, we are able to use the

pair of response subsystems as an attractor recognition device for chaotic attractors and finally

we are able to use the synchronized subsystems, with the aid of return maps, to find the value of

a parameter in the drive system and follow changes in that parameter in its magnitude and sign.

It should be mentioned that the authors of [18] and [119] obtained an estimate on how the

approach to synchronization scales with time. This estimate was found out to be given by

e1 = u− u′′ ∼ eλ1t∆u(0) +
B∆v(0)eλ1t

λ2 − λ1

[
e(λ2−λ1)t − 1

]
, (2.11)

where λ1 is the largest (least negative) sub-Lyapunov exponent of the (u,w) subsystem, λ2 is

the largest (least negative) sub-Lyapunov exponent of the (v, w) subsystem and B is an upper

bound on ∂f/∂y. Clearly there are three regimes of scaling behaviour for equation (2.11). When
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λ2 << λ1, we have ∆u(t) ∼ eλ1t; that is, the first response follows fast enough that only the

second response synchronization rate is important. When λ2 = λ1, we have ∆u(t) ∼ eλ1t again,

but with a different amplitude. Now when λ2 >> λ1, ∆u(t) ∼ eλ2t; that is, the first response

(v′ −→ v) is the slow link in the cascade chain [18].

From the above discussion, we see clearly how useful this method is, in identifying attractors

and finding system parameters which are considered the major tasks of this approach.

Another synchronization technique, which is useful for synchronizing hyperchaotic systems,

was proposed in [33–35] and first motivated by the work in [90]. This technique does not require

the computation of the Lyapunov exponents or the initial conditions belonging to the same basin

of attraction. Moreover, it guarantees synchronization of a wide class of hyperchaotic systems via

a scalar signal only. The synchronization method is based on a control theory result related to

the idea of making the response system a linear observer for the state of the drive system, hence

the name observer design synchronization. In order to illustrate how this method works, we shall

consider the synchronization of two identical n-dimensional chaotic systems, given by

u̇ = Au+ bf(u) + c (2.12)

and

u̇′ = Au′ + bf(u′) + c+ g(s(u)− s(u′)), (2.13)

where A is an n× n matrix, b ∈ Rn×1, f, s : Rn → R and g : Rn → Rn. System (2.12) represents

the drive system and system (2.13) represents the response system with s(u) being the scalar

synchronization signal. The low-dimensional chaotic and hyperchaotic systems, stated in the

previous chapter, can be all written in the form given by equation (2.12). If s(u) is given by

s(u) = f(u) + ku,

where k = (k1, k2, . . . , kn) ∈ R1×n, and g is given by

g(s(u)− s(u′)) = b(s(u)− s(u′)),

then the error dynamics between the drive and response systems will be given by

ė = Au+ bf(u) + c−Au′ − bf(u′)− c− b(s(u)− s(u′))

= Ae− bke.
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Let v = −ke and choose a proper coordinate transformation e = [T1 T2]e such that the columns

of T1 form a set of basis vectors for the controllable state subspace and the columns of T2 are

orthogonal to these [57]. Since T := [T1 T2] is an orthogonal matrix, i.e., T−1 = T T , then the error

dynamics e can be transformed into to the following Kalman controllable canonical form [57]:

(
ėc

ėnc

)
=

(
T T
1 AT1 T T

1 AT2

O T T
2 AT2

)(
ec

enc

)
+

(
T T
1 b

0

)
v

=

(
Ac A12

O Anc

)(
ec

enc

)
+

(
bc

0

)
v,

where O is the zero matrix of appropriate dimension, Ac := T T
1 AT1, A12 := T T

1 AT2, Anc :=

T T
2 AT2 and bc := T T

1 b. Obviously the eigenvalues of Ac are controllable. In other words, its

eigenvalues can be placed anywhere in the complex plane by proper state feedback controller

v = −ke. However, the eigenvalues of Anc are uncontrollable, i.e., they are not affected by

the introduction of any state feedback controller. Therefore it was realized in [33–35] that a

necessary and sufficient condition to globally asymptotically stabilize the error dynamics e is

that the eigenvalues of Anc must lie in the left half of the complex plane and an appropriate

choice for the vector k should be made to ensure that the eigenvalues of Ac will also lie in the

left half of the complex plane.

To demonstrate the above observer design method for synchronization, we shall take a nu-

merical example employing the high dimensional Rössler system, given by equation (1.9). Let

η = 0.25, θ = 3, ν = 0.5 and ζ = 0.05. In this case, by driving the response system u′ with the

signal s(u) = u1u3 +
∑4

j=1 kiuj , as explained above, the error dynamics e will be given by




ė1

ė2

ė3

ė4



=







0 −1 −1 0

1 0.25 0 1

0 0 0 0

0 0 −0.5 0.05



−




0

0

1

0



[k1 k2 k3 k4]







e1

e2

e3

e4



. (2.14)

Since the controllability matrix of system (2.14) is full rank [57], we may conclude, by applying

the above discussion, that there exists a gain vector k such that the drive system u becomes a

global observer of the response system u′. This means that u′ → u, as t→∞, for any initial state.

Taking k = (−3.3712,−0.9561, 4.3,−5.8126), the eigenvalues of system (2.14) can be placed at

−1 and thus the error dynamics can be driven to zero as shown in Figure 2.2 (A Runge-Kutta
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Figure 2.2: The components of the error dynamics e, given by equation (2.14), approaching zero.

method with an integration step-size equal to 0.0001 is applied to obtain the simulation in Figure

2.2).

Recently a new synchronization method, called impulsive synchronization, which is based on

the theory of impulsive control and first reported in [1, 97], has been developed. The method

allows synchronization of two or more chaotic systems using only small impulses [102, 114–116].

These impulses are samples of state variables (or functions of state variables) of the drive system

at discrete instances. The impulses are called synchronization impulses, and they drive the

response system discretely at these instances. The equi-attractivity in the large of the error

dynamics between the drive and the response chaotic systems is achieved, thus reaching the

synchronization mode between the two systems. We shall now explain in detail how this method

works by first discussing the model introduced in [97].

Suppose that we have two identical chaotic systems; a driving system x = (u,w)T , where

u = (x1, x2, . . . , xm)T and w = (xm+1, xm+2, . . . , xn)
T , satisfying

u̇ = Fu(u,w), ẇ = Fw(u,w), (2.15)

and a driven system x′ = (u′,w′)T satisfying

u̇′ = Fu(u
′,w′) + δ∆(t)(u− u′), ẇ′ = Fw(u′,w′), (2.16)
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where

δ∆(t) =
∞∑

k=0

δ(t− k∆), (2.17)

and δ(t− k∆) is the delta Dirac function given by δ(t− k∆) = limT→0 δT (t− k∆), where

δT (t− k∆) =





0, t < k∆

1

T
, k∆ ≤ t ≤ k∆+ T

0, t > k∆+ T.

From the above model, we can see that the solution trajectory of u′, defined by equation (2.16),

will oscillate freely and unforcedly except for the equidistant moments τk = k∆, when u′(τk) is

forced to a new value u(τk), for k = 1, 2, . . . . The above representation of impulsive systems,

described by equations (2.15) and (2.16), are identical to the impulsive system given by equation

(1.15). However, this current representation is useful for numerical purposes when trying to

obtain simulations for solution trajectories.

The next theorem [88, 97] gives the conditions that would guarantee the synchronization of

the driving system x and the response system x′, i.e., limt→∞ e(t) = limt→∞ [x(t)− x′(t)] = 0.

Theorem 2.1.2 Consider system (2.15). Assume that ẇ = Fw(u,w) is asymptotically stable

when driven by u(t) and for initial conditions w0 ∈ S ⊂ Rn−m. Then there exists a value ∆H

such that for all ∆ < ∆H , impulsive (sporadic) driving of a copy of (2.15), given by (2.16), results

in synchronization between (2.15) and (2.16). In other words, ||x− x′|| −→ 0, when t −→∞.

The above result gives no information or an estimate on the value of ∆H , (the maximum duration

between two impulses permissible) but it guarantees the existence of such value. However, when

dealing with chaotic systems, whose structures resemble those described by equation (1.19), will

be a different story. In this case, a special method proposed in [114–116] will allow us to obtain

an estimate on the value of ∆H by deriving it analytically in a manner similar to the one given

in Corollary (1.3.2). We illustrate this manner in the following example that employs Chua’s

oscillator as the chaotic system. Consider the Chua’s oscillator, given by equation (1.6), as a
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driving system. The response system is given by

dx′

dt
= α(y′ − x′ − f(x′))

dy′

dt
= x′ − y′ + z′

dz′

dt
= −βy′ − γz′,

where t 6= τk, k = 1, 2, . . . , and the impulses are given by

∆x′|t=τk
= −Be(τk),

where B is a 3× 3 symmetric matrix and e = x− x′ is the synchronization error. Thus if we let

A =



−α α 0

1 −1 1

0 −β −γ


 , Ψ(x,x′) =



−αf(x) + αf(x′)

0

0


 ,

then it follows that 



de

dt
= Ae+Ψ(x,x′), t 6= τk

∆e|t=τk
= Be, k = 1, 2, . . . .

(2.18)

Notice that ||Ψ(x,x′)|| ≤ |αa| ||e||. Therefore, by Corollary 1.3.2, the following result guarantees

the asymptotic stability of the equilibrium point (0, 0, 0)T of the error dynamics and it even gives

an estimate on the region of attraction of the point (0, 0, 0)T .

Corollary 2.1.1 Let d be the largest eigenvalue of (I + BT )(I + B), where B is a symmetric

matrix, and q be the largest eigenvalue of (A + AT ). Assume that ||I + B|| ≤ 1 and that the

impulses are equidistant, i.e., τk+1 − τk = ∆, ∀k = 1, 2, . . . . If

0 ≤ q + 2|αa| ≤ − 1

∆
ln(ξd), ξ > 1, (2.19)

then the impulsive synchronization of the two Chua’s oscillators is asymptotically stable. In other

words, the error dynamics (2.18) is asymptotically stable.
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Corollary 2.1.1 implies that imposing condition (2.19) on the locations of τk, for all k = 1, 2, . . . ,

will guarantee that lim
t→∞

e(t) = 0.

In the above discussion, it was assumed that the impulses are equidistant, i.e., ∆k = ∆,

for k = 1, 2, . . . . The sufficient conditions obtained for synchronization depend on that factor

completely. However, in [70], the equidistant-impulses assumption is relaxed and a new set

of sufficient conditions for asymptotic stability of the error dynamics (2.18), with time-varying

impulses, are obtained. The next theorem shows the set of sufficient conditions needed for the

impulsive synchronization of two Chua’s oscillators by applying time-varying impulses [70].

Theorem 2.1.3 Let d be the largest eigenvalue of (I + BT )(I + B), where B is a symmetric

matrix, and q be the largest eigenvalue of (A + AT ). Assume that ||I + B|| ≤ 1 and that the

impulses satisfy the relation

τ2k+1 − τ2k ≤ ε(τ2k − τ2k−1),

where ε is some positive constant and k = 1, 2, . . . . Then the impulsive synchronization of two

Chua’s oscillators, given by equation (2.18), is asymptotically stable if

0 ≤ q + 2|αa| ≤ − 1

(1 + ε)∆1
ln(ξd), ξ > 1, (2.20)

where

∆1 = sup
k
{τ2k − τ2k−1} <∞.

Comparing conditions (2.19) and (2.20), we see how applying time-varying impulses changes the

type of conditions needed to achieve the asymptotic stability of system (2.18). It should be noted,

however, that in the latter choice for the impulses, ∆1 represents the supremum duration between

two impulses which means that condition (2.20) does not require a smaller upper bound on the

impulse duration permissible without affecting synchronization.

The whole theory of impulsive synchronization we have presented so far seeks one particular

objective, namely, asymptotic stability of the error dynamics between the chaotic systems in-

volved, although this scenario is not needed. We shall develop in the next section a new approach

which leads to a weaker objective: equi-Lagrange stability that achieves our main goal; namely,

synchronization.
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2.2 Sufficient Conditions for Impulsive Synchronization

In this section, we shall apply Theorems 1.3.4 and 1.3.5 to an impulsive system and employ the

results obtained for impulsive synchronization purposes. We begin by considering the following

impulsive system. {
ẋ = A(t)x+Φ(t,x) + g(u(t)), t 6= τk

∆x = Bkx, t = τk, k = 1, 2, . . . ,
(2.21)

where A(t) = (aij(t)) is an n×n continuous functional matrix, Φ and g are continuous non-linear

maps satisfying ||Φ(t,x)|| ≤ L1||x|| and ||g(u(t))|| ≤ L2||u(t)||, for some constants L1, L2 > 0,

u(t) is an arbitrary bounded control function and Bk are n × n constant matrices, for all k =

1, 2, . . . .

Theorem 2.2.1 Solutions to system (2.21) are uniformly bounded if the largest eigenvalue of

(I +BT
k )(I +Bk), denoted by λk, satisfies

λk ≤ exp(−2αk), (2.22)

for all k = 1, 2, . . . and if ||x(τk)||, ||x(τk) + Bkx(τk)|| > M, for some M ≥ 0, where αk :=

(1/2)[γk + `k∆k+1] + δ, γk ≥ 0 are constants and {γk}∞k=1 has an upper bound, 0 < δ ≤ infk(γk +

`k∆k+1), ∆k = τk − τk−1 > r > 0, for all k = 2, 3, . . . , and

`k = sup
t∈(τk,τk+1]

p(t),

p(t) = max
t∈R+

{f(t) + 2L1, 2L2||u(t)||}

and

f(t) = max
1≤i≤n




|qii(t)|+

1

2

n∑

l=1

l 6=i

|qil(t)|+
1

2

n∑

j=1

j 6=i

|qji(t)|




,

where qij := aij + aji. Moreover, if γk = 1/k, for all k = 1, 2, . . . and g(u(t)) = 0, then system

(2.21) is uniformly Lagrange stable.

Proof: We shall first prove that system (2.21) is uniformly bounded by achieving the conditions

of Theorem 1.3.4. Let B := supk(αk), M := (exp(B) − exp(δ))/(exp(δ) − 1) > 0, and V (t,x) :=

V (x) = xTx = ||x||2. Choose b(||x||) = a(||x||) = ||x||2. The upper right derivative of V is given

by

D+V (x) = xTQ(t)x+ [xTΦ(t,x) +Φ(t,x)Tx] + [xTg(u(t)) + g(u(t))Tx],
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where Q(t) = (qij(t)) := A(t)T +A(t) is a symmetric matrix. Notice that

xTQ(t)x =
n∑

i,j=1

qij(t)xixj =
n∑

i=1

qii(t)x
2
i +

n∑

i=1

n∑

j=1

i6=j

qij(t)xixj

≤
n∑

i=1

|qii(t)|x2i +
n∑

i=1

n∑

j=1

i6=j

|qij(t)||xixj |

≤
n∑

i=1

|qii(t)|x2i +
n∑

i,j=1

i6=j

|qij(t)|
2

[
x2i + x2j

]

=
n∑

i=1


|qii(t)|+

1

2

n∑

j=1

j 6=i

|qij(t)|


x

2
i +

1

2

n∑

j=1




n∑

i=1

i6=j

|qij(t)|


x2j

=
n∑

i=1




|qii(t)|+

1

2

n∑

l=1

l 6=i

|qil(t)|+
1

2

n∑

j=1

j 6=i

|qji(t)|




x2i

≤ max
1≤i≤n




|qii(t)|+

1

2

n∑

l=1

l 6=i

|qil(t)|+
1

2

n∑

j=1

j 6=i

|qji(t)|





n∑

i=1

x2i

= f(t) xTx,

for all t ≥ 0.Moreover, xTΦ(t,x)+Φ(t,x)Tx ≤ 2L1x
Tx and g(u(t))Tx+xTg(u(t)) ≤ 2L2||u(t)||(xTx)1/2.

This implies that

D+V (x) ≤ f(t)xTx+ 2L1x
Tx+ 2L2||u(t)||(xTx)1/2

= [f(t) + 2L1]V (x) + 2L2||u(t)||(V (x))1/2

≤ max
t∈R+

{f(t) + 2L1, 2L2||u(t)||}
{
V (x) + V (x)1/2

}

= p(t)c(V (x)),

where c(s) := s+ s1/2. Clearly p ∈ PC and c ∈ K. Thus conditions (T1.1) and (T1.2) are satisfied

over R+ × Rn. Now if ||x(τk)|| ≤M, then, by inequality (2.22), we have

||x(τk) +Bkx(τk)|| ≤ ||I +Bk|| ||x(τk)|| ≤ exp(−αk)M < exp(−δ)M =: N,

for k = 1, 2, . . . , and thus condition (T1.3) is also satisfied. Define the mapping Ψk(s) as follows:

Ψk(s) := exp(−2αk)s, for all s ≥ 0. (2.23)



53

Clearly Ψk(s) ≤ s, for all s ≥ 0, and Ψk(s) ≥ (1/2) exp(−2B)s =: Ψ(s), for all s ≥ 0. i.e.,

Ψ(s) ≤ Ψk(s) ≤ s. Furthermore, by inequality (2.22), for ||x(τk) + Bkx(τk)|| > M, we have, for

k = 1, 2, . . . ,

V (x(τk) +Bkx(τk)) = (x(τk) +Bkx(τk))
T (x(τk) +Bkx(τk))

= x(τk)
T (I +BT

k )(I +Bk)x(τk)

≤ λkx(τk)
Tx(τk)

≤ exp(−2αk)||x(τk)||2

= Ψk(V (x(τk))).

This implies that condition (T1.4) is satisfied. In addition,
∫

ds

s+ s1/2
= 2 ln(1 + s1/2). (2.24)

It follows that, for k = 1, 2, . . . ,

τk+1∫

τk

p(s)ds+

Ψk(y)∫

y

ds

s+ s1/2
= `k∆k+1 + 2 ln

[
1 + Ψ

1/2
k (y)

1 + y1/2

]

= `k∆k+1 + 2 ln

[
1 + exp(−αk)y

1/2

1 + y1/2

]

= −γk − 2δ + 2 ln

[
exp(αk) + y1/2

1 + y1/2

]
.

Notice that exp(αk) ≤ exp(B) and the function

h(y) := ln

[
exp(B) + y1/2

1 + y1/2

]

is a decreasing function of y, for all y ≥ 0. This implies, for y > λ :=M 2, that

τk+1∫

τk

p(s)ds+

Ψk(y)∫

y

ds

s+ s1/2
≤ −γk − 2δ + 2h(M2)

= −γk − 2δ + 2 ln

[
exp(δ)(exp(B)− 1)

exp(B)− 1

]

= −γk − 2δ + 2δ = −γk,

for every y ≥ λ := M2. Thus condition (T1.5) is satisfied. We therefore conclude that system

(2.21) is uniformly bounded as desired. It remains to show, with the choices of γk = 1/k, for all
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k = 1, 2 . . . , and g(u(t)) = 0, that system (2.21) is uniformly Lagrange stable. This is done by

applying Theorem 1.3.5 as follows. The upper right derivative of V (x), in this case, satisfies

D+V (x) ≤ [f(t) + 2L1]||x||2
= p̃(t)c̃(V (x)),

where p̃(t) := f(t)+2L1 and c̃(s) := s. Thus, by employing the mapping Ψk(s), defined by (2.23),

for all k = 1, 2, . . . , we conclude that conditions (T2.1), (T2.2), (T2.3) and (T2.4) are all satisfied.

Moreover, for k = 1, 2, . . . ,

τk+1∫

τk

p̃(s)ds+

Ψk(y)∫

y

ds

c̃(s)
≤ `k∆k+1 + ln

[Ψk(y)

y

]
< −γk,

for all y > 0. Therefore condition (T2.5) is also satisfied. This implies, by Theorem 1.3.5, that

system (2.21) is uniformly Lagrange stable. ¤

It should be mentioned that, in the proof of Theorem 2.2.1, we may conclude that the smaller

the ||g(u(t))||, the smaller the upper bound on ||x(t)||, for all t ≥ t0 + T, for some T > 0. This

is due to the fact that when ||g(u(t))|| = O(ε), for some 0 < ε << 1, then c(s) = s + εs1/2, i.e.,

s1/2 becomes significantly smaller than s. This implies that inequality (1.25) will enforce a very

small upper bound on the solutions of (2.21) starting from time t0 + T.

We now demonstrate how equi-Lagrange stability is an integral factor in illustrating the

robustness of impulsive synchronization between two non-identical chaotic systems by formulating

the following example.

Consider the driving system given by this Lorenz chaotic system

ẋ =



−σ σ 0

r −1 0

0 0 −b


x+




0

−xz
0


+




0

0

xy


 . (2.25)

The response system is a non-identical Lorenz chaotic system which is driven by the signal −xz
and is given by





u̇ =



−σ σ 0

r −1 0

0 0 −b


u+




0

−xz
0


+



−µu
−νv
uv


 , t 6= τk

∆u = −Bke, t = τk, ∀ k = 1, 2, . . . ,

(2.26)
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Figure 2.3: Error dynamics e with µ = ν = 0 and Bk = −diag(0.02, 0.06, 0.01).

where µ, ν ≥ 0 are constants and e = x − u. It follows, by systems (2.25) and (2.26) that the

error dynamics is give by




ė =



−σ σ 0

r −1 0

0 0 −b


 e+




0

0

xy − uv


+




µu

νv

0


 , t 6= τk

∆e = Bke, t = τk, ∀ k = 1, 2, . . . .

(2.27)

Letting

A =



−σ σ 0

r −1 0

0 0 −b


 (2.28)

and taking V (e) := eTe, we obtain

D+V (e) = eTQe+ 2(xy − uv)e3 + [(µu, νv, 0)e+ eT (µu, νv, 0)T ],

where Q := AT +A. Let d be the largest eigenvalue of Q and L = max(µ, ν). Notice that

2(xy − uv)e3 ≤ 2|xy − uv||e3|
≤ 2[|x||y − v|+ |v||x− u|]|e3|
≤ 2|x||e2e3|+ 2|v||e1e3|+ e23
≤ |x|(e22 + e23) + |v|(e21 + e23) + e23
≤ (|x|+ |v|+ 1)||e||2.

Thus

D+V (e) ≤ (d+ |x|+ |v|+ 1)eTe+ 2L
√
u2 + v2 (eTe)1/2

≤ max
t∈R+

{
(d+ |x|+ |v|+ 1), 2L

√
u(t)2 + v(t)2

}
[V (e) + V (e)1/2].
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Figure 2.4: Error dynamics e with µ = ν = 0.01 and Bk = −diag(0.5, 0.33, 0.2).
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Figure 2.5: Error dynamics e with µ = ν = 1 and Bk = −diag(0.5, 0.6, 0.2).

Let p(t) = maxt∈R+

{
(d+ |x|+ |v|+ 1), 2

√
u(t)2 + v(t)2

}
and c(s) = s+ s1/2. We may conclude,

by imposing the conditions of Theorem 2.2.1 on the matrices Bk, for all k = 1, 2, . . . , that

the error dynamics, described by system (2.27), is uniformly bounded. Furthermore, choosing

γk = 1/k, for all k = 1, 2, . . . , and letting µ = ν = 0, we can also conclude that system (2.27)

is uniformly Lagrange stable. Note that if µ and ν are chosen such that 0 ≤ µ, ν << 1, then

impulsive synchronization shows very robust results as illustrated in the following examples. In

these numerical examples, a fourth order Runge-Kutta method with step size 10−5 is used.
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(e 1, e

2, e
3)T

Figure 2.6: Error dynamics e with µ = ν = 0.01 by implementing the continuous driving method

proposed in [22–24].
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Moreover, we choose the values of the parameters and the initial conditions to be σ = 10, r = 28,

b = 8/3, ∆k = ∆ = 0.002, (x0, y0, z0) = (1.12,−1, 0.5) and (u0, v0, w0) = (2.7,−2.1, 2.502). Thus
starting with the first and simplest case when µ = ν = 0 and Bk = B = −diag(0.02, 0.06, 0.01),
we obtain Figure 2.3 which shows how the error dynamics components reach zero in a small finite

time given by 0.1 (for the remaining of this section, the first component of the error dynamics is

represented by a solid curve, the second component is represented by a dashed curve and the third

component is represented by a dashed-dotted curve). In the second example, we take µ = ν = 0.01

and Bk = B = −diag(0.5, 0.33, 0.2). The impulsive synchronization, in this case, is achieved as

shown in Figure 2.4. We can see from the above examples that impulsive synchronization exhibits

a very robust behaviour towards parameter mismatch. In fact, with relatively large differences

in parameters, the performance of this model is still acceptable. For example, in the case when

µ = ν = 1, the simulation of this model is shown in Figure 2.5, where the error is of the order

of 0.003 starting from the time t = 8 seconds (it is even smaller for time t < 8 seconds). This

promising behaviour indicates that in practice, the condition µ, ν << 1 can be relaxed and still

reach desirable results. In comparison with the method of continuous driving, discussed in the

previous section and proposed by Cuomo and Oppenheim in [22–24], this robust behaviour fails

completely as shown clearly in Figure 2.6, where the error is of the order of 0.02 for µ = ν = 0.01.

We shall now extend the above work and Theorem 2.21 to study the dynamics of another type

of impulsive systems. This new type will have a very important role in building a chaos-based

secure-communication scheme which will be proposed in Chapter 5.

Let us consider the following second order impulsive system which depends on x̃ and ˙̃x,

simultaneously: 



¨̃x = Ã ˙̃x+ Φ̃(t, x̃, ˙̃x) + g̃( ˙̃x,u(t)), t 6= τk

∆x̃ = Dkx̃, t = τk, k = 1, 2, . . .

∆ ˙̃x = D̃k
˙̃x, t = τk, k = 1, 2, . . . ,

(2.29)

where Ã is an n× n constant matrix, Φ̃ and g̃ are continuous non-linear maps satisfying

˙̃x
T
Φ̃(t, x̃, ˙̃x) ≤ L1

[
||x̃||2 + || ˙̃x||2

]

and ||g̃( ˙̃x,u(t))|| ≤ L2|| ˙̃x||+L3, for some constant L2 > 0 and L3 ≥ 0, u(t) is an arbitrary control

function satisfying ||u(t)|| ≤ K, for some K ≥ 0, and Dk and D̃k are n×n constant matrices, for

all k = 1, 2, . . . . Set x1 = x̃, x2 = ˙̃x, and let x = (x1,x2)
T ,

A :=

(
0 I

0 Ã

)
, Bk :=

(
Dk 0

0 D̃k

)
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be block matrices, where I is the identity matrix,

Φ(t,x) :=

(
0

Φ̃(t,x)

)
and g(x,u(t)) :=

(
0

g̃(x2,u(t))

)
.

Then system (2.29) becomes

{
ẋ = Ax+Φ(t,x) + g(x,u(t)), t 6= τk

∆x = Bkx, t = τk, k = 1, 2, . . . .
(2.30)

We shall investigate the equi-boundedness and equi-Lagrange stability of solutions of system

(2.29) using system (2.30).

Theorem 2.2.2 System (2.30) is uniformly bounded if the largest eigenvalue of (I+BT
k )(I+Bk),

denoted by λk, satisfies

λk ≤ exp(−2αk), (2.31)

for all k = 1, 2, . . . and if ||x(τk)||, ||x(τk) + Bkx(τk)|| > M, for some M ≥ 0, where αk :=

(1/2)[γk + `∆k+1]+ δ, γk ≥ 0 are constants and {γk}∞k=1 has an upper bound, 0 < δ << infk(γk +

`∆k+1), ∆k := τk − τk−1 > r > 0, for all k = 2, 3, . . . , and

` := |d|+ 2L1 + 2L2 + 2L3,

where d is the largest eigenvalue of Q := A+AT . Moreover, if γk = 1/k, for all k = 1, 2, . . . , and

L3 = 0, then system (2.30) is uniformly Lagrange stable.

Proof: To prove equi-boundedness property, we shall check all the conditions stated in Theorem

1.3.4. Let B := supk(αk), M := (exp(B)− exp(δ))/(exp(δ)− 1) > 0 and V (t,x) := V (x) =

xTx = ||x||2. Choose b(||x||) = a(||x||) = ||x||2. The upper right derivative of V is given by

D+V (x) = ẋTx+ xT ẋ

= xTQx+ 2Φ(t,x)Tx+ 2g(x,u(t))Tx

≤ d||x||2 + 2L1||x||2 + 2L2||x||2 + 2L3||x||
= (d+ 2L1 + 2L2)||x||2 + 2L3||x||
≤ (|d|+ 2L1 + 2L2 + 2L3)(V (x) + V (x)1/2)

= p(t)c(V (x)),

(2.32)

where p(t) := |d| + 2L1 + 2L2 + 2L3 and c(s) := s + s1/2. Clearly p ∈ PC and c ∈ K. Thus
conditions (T1.1) and (T1.2) are satisfied over R+ × Rn. If ||x(τk)|| ≤ M, k = 1, 2, . . . , then, by
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Figure 2.7: Typical sketch of the mapping Ψk(s).

inequality (2.31), we have

||x(τk) +Bkx(τk)|| ≤ ||I +Bk|| ||x(τk)|| ≤ exp(−αk)M < exp(−δ)M := N,

for k = 1, 2, . . . , and thus condition (T1.3) is also satisfied. Define the mapping Ψk(s), for all

k = 1, 2, . . . , as follows:

Ψk(s) := exp(−2αk)s, for all s ≥ 0. (2.33)

Clearly Ψk(s) ≤ s, for all s ≥ 0, and Ψk(s) ≥ (1/2) exp(−2B)s =: Ψ(s), for all s ≥ 0. i.e.,

Ψ(s) ≤ Ψk(s) ≤ s. Figure 2.7 shows a typical sketch of the mapping Ψk(s) lying between the

two lines y = s and Ψ(s). Furthermore, by inequality (2.31), for ||x(τk) + Bkx(τk)|| > M, for

k = 1, 2, . . . , we have

V (x(τk) +Bkx(τk)) = (x(τk) +Bkx(τk))
T (x(τk) +Bkx(τk))

= x(τk)
T (I +BT

k )(I +Bk)x(τk)

≤ λkx(τk)
Tx(τk)

≤ exp(−2αk)||x(τk)||2

= Ψk(V (x(τk))).



60

This implies that condition (T1.4) is satisfied. In addition, by equation (2.24), we have for

k = 1, 2, . . . ,

τk+1∫

τk

p(s)ds+

Ψk(y)∫

y

ds

s+ s1/2
= `∆k+1 + 2 ln

[
1 + Ψ

1/2
k (y)

1 + y1/2

]

= `∆k+1 + 2 ln

[
1 + exp(−αk)y

1/2

1 + y1/2

]

= −γk − 2δ + 2 ln

[
exp(αk) + y1/2

1 + y1/2

]
.

Notice that exp(αk) ≤ exp(B), for all k = 1, 2, . . . , and the function

h(y) := ln

[
exp(B) + y1/2

1 + y1/2

]

is a decreasing function of y, for all y ≥ 0. This implies, for y ≥ λ :=M 2 and k = 1, 2, . . . , that

τk+1∫

τk

p(s)ds+

Ψk(y)∫

y

ds

s+ s1/2
≤ −γk − 2δ + 2h(M2)

= −γk − 2δ + 2 ln

[
exp(δ)(exp(B)− 1)

exp(B)− 1

]

= −γk − 2δ + 2δ = −γk

Thus condition (T1.5) is satisfied. We therefore conclude that the system (2.30) is uniformly

bounded as desired. It remains to show, with the choice of γk = 1/k, for all k = 1, 2, . . . , and

L3 = 0, that system (2.30) is uniformly Lagrange stable. This is done by applying Theorem 1.3.5

as follows. We first consider the upper right derivative of V (x)

D+V (x) ≤ (|d|+ 2L1 + 2L2)||x||2
= p̃(t)c̃(V (x)),

where p̃(t) := |d| + 2L1 + 2L2 and c̃(s) := s. Thus, by employing the mapping Ψk, defined by

(2.33), for all k = 1, 2, . . . , we conclude that conditions (T2.1), (T2.2), (T2.3) and (T2.4) are all

satisfied. Moreover, for k = 1, 2, . . . ,

τk+1∫

τk

p̃(s)ds+

Ψk(y)∫

y

ds

c̃(s)
≤ `∆k+1 + ln

[
Ψk(y)

y

]
< −γk,



61

for all y > 0. Therefore condition (T2.5) is also satisfied, since
∑∞

k=1(1/k) =∞. This means that,

by Theorem 1.3.5, solutions to system (2.30) are uniformly Lagrange stable, as required. ¤

If we return now to system (2.29), Theorem 2.2.2 implies that limt→∞ x̃(t) = limt→∞
˙̃x(t) = 0.

In other words, if the conditions of Theorem 2.2.2 are satisfied, then the solutions to system

(2.29) are uniformly Lagrange stable. This important result will be applied considerably in the

discussion of Chapter 5. For now, we shall illustrate the above Theorem by considering an example

consisting of one pair of Lorenz chaotic systems and one pair of their derivatives. The uniform

Lagrange stability of the two error dynamics associated with those two pairs will be discussed

and established by employing Theorem 2.2.2.

Once more, we consider the Lorenz system as our driving system in the equation ẋ =

f(x,m(t), a), i.e.,

ẋ = Ax+




0

−x(z + am(t))

xy


 , (2.34)

where A is given by (2.28), m(t) ∈ C1([0,∞)) satisfies |m(t)| ≤ K1 and |ṁ(t)| ≤ K2, for some

K1,K2 > 0, and a = 0 or 1. The second driving system is the derivative of the Lorenz chaotic

system given by (2.34), for a = 1, and is expressed by

ẍ = Aẋ+




0

−ẋz − xż
ẋy + xẏ


+




0

−ẋm(t)− xṁ(t)

0


 . (2.35)

Let the first response Lorenz chaotic system be




u̇ = Au+




0

−uw
uv


 , t 6= τk

∆u = −Bke, t = τk, k = 1, 2, . . . ,

(2.36)

where Bk are n×n constant matrices, for all k = 1, 2, . . . , and e = x−u with a = 0. The second

response system is the derivative of the first response system, and is given by




ü = Au̇+




0

−u̇w − uẇ
u̇v + uv̇


+ q




0

−u̇m(t)− uṁ(t)

0


 , t 6= τk

∆u̇ = −Bkė, t = τk, k = 1, 2, . . . ,

(2.37)
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ẋy + xẏ
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Figure 2.8: Impulsive synchronization of two Lorenz chaotic systems.

where q = 0 or 1, ė = ẋ − u̇, x, y, z, u, v and w are the chaotic signals. The above set up

shown in Figure 2.8 can be described as follows. x, y and z, produced by the Lorenz chaotic

system (2.34), with a = 1, are used to completely generate the derivative system (2.35). System

(2.36), however, is driven impulsively by system (2.34), with a = 0, while system (2.37) is driven

impulsively by system (2.35), and continuously by the chaotic signals u, v and w from system

(2.36).

With equations (2.34)-(2.37), the error dynamics e, for a = 0, and ė can be expressed as

follows: 



ė = Ae+




0

−xz + uw

xy − uv


 , t 6= τk

∆e = Bke, t = τk, k = 1, 2, . . .

(2.38)

and




ë = Aė+




0

−ẋz + u̇w − xż + uẇ

ẋy − u̇v + xẏ − uv̇


−




0

(ẋ− qu̇)m+ (x− qu)ṁ
0


 , t 6= τk

∆ė = Bkė, t = τk, k = 1, 2, . . . .

(2.39)

Notice that the error dynamics e, given by system (2.38) is uniformly Lagrange stable provided

that the matrices Bk, for all k = 1, 2, . . . , are chosen to satisfy the conditions of Theorem 2.2.2,

where g(x,u(t)) = 0, i.e., limt→∞ e(t) = 0. We have already shown in Figure 2.3 how the error
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dynamics e in terms of its three components e1, e2 and e3 converge to zero. It was also shown

that this method of synchronization is robust towards parameter mismatch.

We shall now prove that system ė is uniformly Lagrange stable, which is to prove that system

(2.39) satisfies all the conditions described by Theorem 2.2.2. Let ẽ = (e, ė)T and choose V (ẽ) :=

ẽT ẽ, then

D+V (ẽ) = ˙̃e
T
ẽ+ ẽT ˙̃e

= (ėT , ë
T
)(e, ė)T + (eT , ė

T
)(ė, ë)T

= ėTe+ ë
T
ė+ eT ė+ ė

T
ë

≤ 2L||e||2 + ė
T
(AT +A)ė− 2[(ẋz − u̇w) + (xż − uẇ)]ė2+

2[(ẋy − u̇v) + (xẏ − uv̇)]ė3 − 2[(ẋ− qu̇)m+ (x− qu)ṁ]ė2,

where ėTe ≤ L||e||2, for some L > 0, which follows from system (2.38). Note that ė
T
(AT +A)ė ≤

d ė
T
ė, where d is the largest eigenvalue of AT +A,

[(ẋz − u̇w) + (xż − uẇ)]ė2 ≤ |(ẋz − u̇w) + (xż − uẇ)||ė|2
= |ẋ(z − w) + w(ẋ− u̇) + x(ż − ẇ) + ẇ(x− u)| |ė2|
= |ẋe3 + wė1 + xė3 + ẇe1| |ė2|
≤ |ẋ| |e3ė2|+ |w| |ė1ė2|+ |x| |ė3ė2|+ |ẇ| |e1ė2|
≤ |ẋ| ||e|| ||ė||+ 1

2
|w| ||ė||2 + 1

2
|x| ||ė||2 + |ẇ| ||e|| ||ė||

≤ 1

2
(|ẋ|+ |w|+ |x|+ |ẇ|)||ẽ||2,

[(ẋy − u̇v) + (xẏ − uv̇)]ė3 ≤ |(ẋy − u̇v) + (xẏ − uv̇)| |ė3|
= |ẋ(y − v) + v(ẋ− u̇) + x(ẏ − v̇) + v̇(x− u)| |ė3|
= |ẋe2 + vė1 + xė2 + v̇e1| |ė3|
≤ |ẋ| |e2ė3|+ |v| |ė1ė3|+ |x| |ė2ė3|+ |v̇| |e1ė3|
≤ |ẋ| ||e|| ||ė||+ 1

2
|v| ||ė||2 + 1

2
|x| ||ė||2 + |v̇| ||e|| ||ė||

≤ 1

2
(|ẋ|+ |v|+ |x|+ |v̇|)||ẽ||2

and
[(ẋ− qu̇)m+ (x− qu)ṁ]ė2 ≤ |(ẋ− qu̇)m+ (x− qu)ṁ|||ė||

≤
[
K1|ẋ− qu̇|+K2|x− qu|

]
||ẽ||.
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Thus we may conclude that

D+V (ẽ) ≤
[
2L+ d+ 2|x|+ 2|ẋ|+ |v|+ |w|+ |v̇|+ |ẇ|

]
||ẽ||2+

[
2K1|ẋ− qu̇|+ 2K2|x− qu|

]
||ẽ||

≤
{
2L+ d+ 2|x|+ 2|ẋ|+ |v|+ |w|+ |v̇|+ |ẇ|+

2K1|ẋ− qu̇|+ 2K2|x− qu|
}[
V (ẽ) + V (ẽ)1/2

]
.

Thus if the impulses of system (2.39) are chosen to satisfy inequality (2.31), then, for q = 0 and

1, it can be concluded that system (2.39) is uniformly bounded. Furthermore, if we let q = 1,

then the upper right derivative of V (ẽ) will satisfy

D+V (ẽ) ≤
[
2L+ d+ 2|x|+ 2|ẋ|+ |v|+ |w|+ |v̇|+ |ẇ|+ 2K1 + 2K2

]
V (ẽ).

This implies, by choosing γk = 1/k, for all k = 1, 2, . . . , and applying Theorem 2.2.2, that

solutions to system (2.39) are also uniformly Lagrange stable, as desired. It should be mentioned

that if m(t) decays exponentially in time, then, due to the properties of exponential functions,

the convergence of ė to zero becomes faster.

The following numerical examples are used to explain how uniform Lagrange stability may be

achieved by applying Theorem 2.2.2 and by employing the system described in Figure 2.8. The

parameters in the examples are Bk = B = −diag(0.5, 0.6, 0.2), the period of the impulses ∆k =

∆ = 0.002, the initial conditions (x0, y0, z0) = (3.07,−2.37, 0.88), (u0, v0, w0) = (1.46,−1.87, 0.5)
and (u̇0, v̇0, ẇ0) = (3.9, 0.74,−1.62). In the following two examples a fourth-order Runge-Kutta

method with step size 10−5 is used. In the first example, m(t) is taken to be with small upper

bound and small frequency, whereas in the second example, m(t) is taken to be with large upper

bound and large frequency. The two choices are considered in order to show the performance

of the system described in Figure 2.8. For the first example, let m(t) = 2 exp(−10t) sin(4t). As

shown in Figure 2.9, the system converges to zero in 1.35 seconds. Note that the largest eigenvalue

of B is 0.6, and it possesses all the required properties given in Theorem 2.2.2. For the second

example, let m(t) = 20 exp(−10t) sin(50t), which possesses a relatively large amplitude and high

frequency for short time t. Figure 2.10 shows that the uniform Lagrange stability is still achieved

and the performance of the model is as desired. The conditions of Theorem 2.2.2 are satisfied by

both the matrix B and system (2.39).
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Figure 2.9: Uniform Lagrange stability of system (2.39), for m(t) = 2 exp(−10t) sin(4t).
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Figure 2.10: Uniform Lagrange stability of system (2.39), for m(t) = 20 exp(−10t) sin(50t).
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2.3 Lyapunov Exponent Analysis

We have developed in the previous section a scheme for impulsively synchronizing chaotic sys-

tems. This was done by applying analytical methods which generate sufficient conditions on

the impulses and on the parameters of the system. Enforcing these conditions guarantees equi-

Lagrange stability (or uniform Lagrange stability) of the error dynamics between the chaotic

systems involved in the model. It remains to investigate how this method behaves when we an-

alyze the model numerically. In other words, we need to check the Lyapunov exponents of the

models developed in the previous section and see if the results are consistent with the theoretical

results we have already obtained in Theorems 2.2.1 and 2.2.2. Due to the fact that impulsive

systems have a unique character represented by jump discontinuities at the moments of impulse,

the classical approach of finding Lyapunov exponents of the error dynamics is not very applicable

in this case. We shall apply a method proposed by Itoh et al., in [44] to study the dynamics of

the synchronization error systems described by equations (2.38) and (2.39). Let us first explain

the steps of this technique.

Recall that, in the previous models, we only considered the impulsive synchronization of two

chaotic systems with unidirectional-coupling. i.e., one chaotic system was impulsively driving

the other but not vice versa. In a uni-coupled synchronization scheme, we transmit the impulses

sampled from one state variable of the driving system to the response system (driven system).

To avoid clutter, and without loss of generality, we study the case when impulse samples are

equidistant. Let P and Q denote the period and the width of the impulse samples, respectively.

Note that P and Q must satisfy Q << P and the area enclosed by the impulse is equal to

1 (see Figure 2.11). This structure for the sequence of impulses reflects the properties of the

function δ∆(t), defined by equation (2.17), which impulsively controls the general behaviour of

the synchronization error system. This motivates us to split this error system into two dynamical

models: one which corresponds to the period given by Q and the other which corresponds to

the period given by P −Q. The error dynamics we are interested in, is the one which resembles

equation (2.30), i.e., the impulses applied are of linear nature and represented by the set of

matrices Bk, k = 0, 1, . . . . In fact, in the following argument, we shall assume that the set of

matrices Bk = B, k = 0, 1, . . . , where B is a block diagonal matrix whose diagonal block elements

are the `× ` negative identity matrix, −I, and the m×m zero matrix, O, where n = `+m. In
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Figure 2.11: A scheme showing the structure of the impulses.

other words,

Bk = B =

(
−I O

O O

)
.

Consider the following general form of a continuous dynamical system whose state variables

can be grouped into two parts corresponding to the dimensions of the negative identity matrix

−I and the zero matrix O in B; namely, x(t) and y(t), where

{
ẋ = f(x,y)

ẏ = g(x,y),
(2.40)

where x = (x1, x2, . . . , xl)
T ∈ Rl, y = (y1, y2, . . . , ym)T ∈ Rm and f , g are smooth maps. Let us

assume that samples of the state variable x(t) are sent to the response system. During the time

interval when the kth impulse is applied to the response system, we have

x′(τ+k ) = x′(τk) + Ix(τk)− Ix′(τk)

= (I − I)x′(τk) + Ix(τk) = x(τk),
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where (x′(t),y′(t))T is the response system. This implies that, for t ∈ [kP, kP +Q), k = 0, 1, . . . ,

the response system can be written as

Response system A

{
x′ = x

ẏ′ = g(x,y′).
(2.41)

During the time interval when the kth impulse is not applied to the driven system; namely, for

t ∈ [kP +Q, (k + 1)P ), k = 0, 1, . . . , the response system, in this case, can be written as

Response system B

{
ẋ′ = f(x′,y′)

ẏ′ = g(x′,y′).
(2.42)

Therefore, by equations (2.41) and (2.42), the synchronization error systems are given by

for response system A

{
x− x′ = 0

ẏ − ẏ′ = g(x,y)− g(x,y′),
(2.43)

and

for response system B

{
ẋ− ẋ′ = f(x,y)− f(x′,y′)

ẏ − ẏ′ = g(x,y)− g(x′,y′),
(2.44)

respectively. If the synchronization errors X := x − x′ and Y := y − y′ are sufficiently small,

then the synchronization error systems (2.43) and (2.44) can be approximated by the variational

systems

Ẏ = Jyg(x,y)Y (2.45)

and (
Ẋ

Ẏ

)
=

(
Jxf(x,y) Jyf(x,y)

Jxg(x,y) Jyg(x,y)

)(
X

Y

)
, (2.46)

respectively, where again Jxf(x,y) and Jyf(x,y) are the Jacobian matrices of f with respect to

x and y, respectively, and Jxg(x,y) and Jyg(x,y) are the Jacobian matrices of g with respect

to x and y, respectively.

Let us now define ||E(t)|| as

||E(t)|| :=
√
X(t)TX(t) +Y(t)TY(t).
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It follows that, for some n ∈ Z+,

||E(nP )||
||E(0)|| =

||E(Q)||
||E(0)||

||E(P )||
||E(Q)||

||E(P +Q)||
||E(P )||

||E(2P )||
||E(P +Q)|| . . .

||E((n− 1)P +Q)||
||E((n− 1)P )||

||E(nP )||
||E((n− 1)P +Q)||

=

[ ||E(Q)||
||E(0)||

||E(P +Q)||
||E(P )|| . . .

||E((n− 1)P +Q)||
||E((n− 1)P )||

]

×
[ ||E(P )||
||E(Q)||

||E(2P )||
||E(P +Q)|| . . .

||E(nP )||
||E((n− 1)P +Q)||

]
.

This implies that

ln

( ||E(nP )||
||E(0)||

)
= nQ


 1

nQ

n−1∑

j=0

ln

( ||E(jP +Q)||
||E(jP )||

)


+n(P −Q)


 1

n(P −Q)

n−1∑

j=0

ln

( ||E((j + 1)P )||
||E(jP +Q)||

)
 .

(2.47)

Let µ and λ be the largest Lyapunov exponents of the systems (2.45) and (2.46), respectively.

Assuming that P and Q are sufficiently small and n is sufficiently large in (2.47), we have

ln

( ||E(nP )||
||E(0)||

)
≈ nQµ+ n(P −Q)λ

= n(µ− λ)Q+ nPλ.

Hence

||E(nP )|| ≈ exp (n(µ− λ)Q+ nPλ) ||E(0)||.

Therefore if the inequality

D := (µ− λ)Q+ λP < 0 (2.48)

is satisfied, then we may conclude that

ln

( ||E(nP )||
||E(0)||

)
→ 0, n→∞,
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from which we know that the driving and the response systems are impulsively synchronized.

Equation (2.48) can explain the following observations:

• The accuracy of synchronization depends on both the period and the width of synchroniza-

tion impulses.

• The minimum impulse width for synchronization increases as the impulse period increases.

In fact, we can get a numerical estimate on the maximum length for the period P if the length

of the impulse Q is known. This can be done by solving for P from inequality (2.48) (in other

words, we need P < (λ − µ/λ)Q). Clearly we were able to provide another method to generate

an estimate on the impulse period ∆ = P for synchronization.

We shall now examine inequality (2.48) by considering the model we discussed in the previous

section and described by equations (2.38) and (2.39). In that model, we employed the Lorenz

system as being our chaos generating system. We shall take several numerical examples to

illustrate our previous arguments. We begin by analyzing equation (2.38). As a first scenario, we

suppose that samples of the state variable y are used to drive the state variable v, of the response

system, at the discrete moments τk, k = 0, 1, . . . (here ` = 1 and m = 2). Using our previous

notations and discussion, the response system A1, for t ∈ [kP, kP +Q), k = 0, 1, . . . , is given by





v = y

(
u̇

ẇ

)
=

(
−σu+ σy

uy − bw

)
.

Thus the error dynamics between the drive and response systems is given by




e2 = 0

(
ė1

ė3

)
=

(
−σe1

ye1 − be3

)
=

(
−σ 0

y −b

)(
e1

e3

)
.

Notice the the second equation in the error dynamics is linear differential equation whose eigen-

values are given by −σ and −b. Since eigenvalues and Lyapunov exponents become identical for

linear systems, we may conclude immediately that the largest Lyapunov exponent in this model

is µ = max(−σ,−b). It follows that if σ = 10 and b = 8/3 (using the same values considered in the

previous section), we obtain µ = −8/3. The situation changes if we take instead samples of the
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state variable x as our driving signal. In this case, the response system A2, for t ∈ [kP, kP +Q),

k = 0, 1, . . . , is given by 



x = u

(
v̇

ẇ

)
=

(
rx− v − xw
xv − bw

)
.

This implies that the error dynamics between the drive and response systems is given by





e1 = 0

(
ė2

ė3

)
=

(
−e2 − xe3
xe2 − be3

)
=

(
−1 −x
x −b

)(
e2

e3

)
.

Again the resulting model, describing the synchronization error, is a linear system except that

its eigenvalues are functions of t. This makes finding the Lyapunov exponents, using the latter

approach, not feasible. Therefore, we evaluate the largest Lyapunov exponents of the above model

numerically by using Matlab coding, which reveals that µ = −2.668.
Considering both scenarios, A1 and A2, described above, the corresponding response system

B outside the impulse duration, i.e., for t ∈ [kP +Q, (k + 1)P ), for k = 0, 1, . . . , is given by

u̇ = Au+




0

−uw
uv




and the error dynamics is given by

ė = Ae+




0

−xz + uw

xy − uv


 .

Thus, using once more Matlab coding, the largest Lyapunov exponent of the synchronization

error is λ = 0.907. With these values, one can determine an upper bound on P once an impulse

width Q is chosen.

We shall now apply the same analysis we just discussed to the next system; namely, (2.39),

where, for simplicity, we shall take m(t) = 0. The coming derivations, however, can still be done

for other choices of m(t) such as those taken in the previous section. There are three different
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scenarios that we need to analyze. In the first one, we shall take samples of the state variables

x and ẋ as our driving signals. In this case, the response system A′1, for t ∈ [kP, kP + Q),

k = 0, 1, . . . , will be given by





u̇ = ẋ

(
v̈

ẅ

)
=

(
rẋ− v̇ − ẋw − xẇ
−bẇ + ẋv + xv̇

)
,

where it is known that u = x, for t ∈ [kP, kP +Q), k = 0, 1, . . . . Hence the synchronization error

between the drive and response systems is given by





ė1 = 0

(
ë2

ë3

)
=

(
−ė2 − ẋe3 − xė3
−bė3 + ẋe2 + xė2

)
=

(
−ė2 + (σx− σy)e3 − xė3
−bė3 − (σx− σy)e2 + xė2

)
,

where it is known that e1 = 0, for t ∈ [kP, kP + Q), k = 0, 1, . . . . The resulting error system is

a linear one and its largest Lyapunov exponent is given by µ = −1.607. Similarly, when we take

the driving impulses to be samples of the state variables x and ẏ, the response system A′2, for

t ∈ [kP, kP +Q), k = 0, 1, . . . , will be given by





v̇ = ẏ

(
ü

ẅ

)
=

(
−σu̇+ σẏ

−bẇ + u̇v + xẏ

)
,

where, again, u = x, for t ∈ [kP, kP +Q), k = 0, 1, . . . . Hence the synchronization error between

the drive and response systems is given by





ė2 = 0

(
ë1

ë3

)
=

(
−σė1

−bė3 + ẋe2 + vė1

)
=

(
−σė1

−bė3 − (σx− σy)e2 + vė1

)
,

where e2 = 0, for t ∈ [kP, kP +Q), k = 0, 1, . . . . The largest Lyapunov exponent associated with

this new error dynamics is µ = −1.764. Finally, the last scenario we shall discuss, is when the
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state variables y and ẏ are taken to be the generators of the driving impulses. Taking v = y, for

t ∈ [kP, kP +Q), k = 0, 1, . . . , the response system A′3, on the same interval, will be given by





v̇ = ẏ

(
ü

ẅ

)
=

(
−σu̇+ σẏ

−bẇ + u̇y + uẏ

)
,

and the synchronization error between the drive and response systems will given by





ė2 = 0

(
ë1

ë3

)
=

(
−σė1

−bė3 + ẏe1 + yė1

)
=

(
−σė1

−bė3 + (rx− y − xz)e1 + yė1

)
,

where we have taken e2 = 0. Calculating the largest Lyapunov exponent of the latter synchroniza-

tion error reveals that µ = −2.5106. It still remains to calculate the largest Lyapunov exponent

of the error dynamics when the impulses are not applied, i.e., when t ∈ [kP + Q, (k + 1)P ), for

all k = 0, 1, . . . . The response system B′ outside the impulses will be given by

ü =




−σu̇+ σv̇

ru̇− v̇ − u̇w − uẇ
−bẇ + u̇v + uv̇




and the error dynamics will be given by

ë =




−σė1 + σė2

rė1 − ė2 − ẋz + u̇w − xż + uẇ

−bė3 + ẋy − u̇v + xẏ − uv̇




=




−σė1 + σė2

(r − w)ė1 − ė2 − uė3 + σ(x− y)e3 + (bz − xy)e1
vė1 + uė2 − bė3 − σ(x− y)e2 + (rx− y − xz)e1


 .

The largest Lyapunov exponent of the error dynamics, in this case, is given by λ = 0.9751. This

indicates, as before that once the width of the impulse is chosen, an upper bound on the length

of the impulse period ∆ = P can be determined for this case as well.
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We see clearly that the discussion in this section indicates that the numerical results obtained

by finding the Lyapunov exponents, are consistent with the theoretical results obtained in Section

2.2. We shall see later in Chapter 4 that a modification of this method will be also used in studying

the Lyapunov exponents of the error dynamics between impulsively synchronized spatiotemporal

chaotic systems generated by non-linear partial differential equations.



Chapter 3

Delayed Impulsive Systems

Ordinary differential equations are sometimes inadequate as models of certain physical processes

and therefore, in such cases, one or more generalizations of equation (1.1) is necessary. Two

properties inherent in system (1.1) are that it satisfies the principle of causality, meaning that

the future state of the system depends exclusively on the present state and not on past (or future)

states and that the evolution of the state is continuous. However, in many processes, including

physical, chemical, economic, biological and control systems (one of which is impulsive control),

time delay factor is a fundamental issue. The rate of change of the state, ẋ(t), may depend on

historical values of the state at times t+s, where s ≤ 0, in addition to the present state values. In

other words, it may be unreasonable to assume that the causality principle applies to the system.

In fact, strictly speaking, the causality principle does not apply to most real systems. Instead, it

is an approximation to how the true system behaves. When time delays are negligible, then they

can often be ignored in mathematical models, leading us to simple equations like (1.1). When

time delays are an important feature of a process, then one is led to consider delay differential

equations, also known as retarded functional differential equations. In many processes, including

physical, chemical, economic, biological and control systems, time delays are important factor.

For example, in reactors and mixing tanks, in reality, a certain time is needed for the mixing of

liquids in the vessels to take place. This time lag will generate models which will be described by

delayed differential equations. It should be mentioned that some phenomena might even possess

large enough time lags [63]. For example, the delay that arises in the description of the process of

cellulose cooking is about 3 min., and the delay in the description of the limestone drying process

in rotating furnaces reaches several tens of minutes.

75
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Impulsive differential equations, described by equations (1.14) and (1.15), are no exceptions

to what has been said regarding time delay and equation (1.1). In fact, we shall see, in this

chapter, that a more accurate description of every impulsive differential equation will definitely

involve time delay at least in the impulses. This follows from the fact that applying the impulses

at a given exact moment ti, for some i = 1, 2, . . . , is practically impossible, since a time delay

between sampling the impulse and applying it, will occur. This will become evident when we

discuss the robustness of impulsive synchronization towards time delay, which will, in this case,

also include transmission delay.

In Chapter 5, we shall see the importance of investigating the robustness of impulsive syn-

chronization in the presence of two types of delay; namely, sampling delay and transmission delay.

There are several attempts in the literature to study the existence, uniqueness, boundedness and

stability of solutions for a specific type of delayed impulsive systems using the notion of Lya-

punov functionals and Lyapunov functions [9, 10]. Whereas in [36], the asymptotic stability of

singularly perturbed delayed impulsive systems with uncertainty from non-linear perturbations

was explored. In this chapter, we address the stability issue of impulsive systems and impulsive

synchronization with the presence of delay. We shall establish the sufficient conditions under

which the chaotic systems will synchronize in the presence of delay in the impulses and in the

differential system. We would like to study the influence of delay on the general behaviour of

synchronization and its relationship with the other parameters of the system in order to maintain

the equi-attractivity property of the error dynamics. In other words, we shall explore how far

the synchronization process can endure the maximum amount of delay without losing its equi-

attractivity properties. This will certainly describe the robustness of impulsive synchronization

towards delay in the impulses and in the differential system itself. The sufficient conditions ob-

tained relate the delay terms with systems’ parameters and guarantee the convergence of solutions

of the error dynamics to zero, which is the desired property in synchronizing chaotic systems.

This chapter is organized as follows. In the next section, we shall introduce several important

definitions, which are similar to those definitions presented in Section 1.2 but incorporating delay,

then we shall state some results regarding the existence and uniqueness of delayed impulsive

systems. In Section 3.2, we shall investigate the stability properties of impulsive synchronization

with the response of linear delayed impulses only. Whereas, in Section 3.3, we extend these results

to study the stability of impulsive synchronization (which will also include continuous driving)

which possesses delay in the differential system as well as in the impulses. This will be done

by exploring the sufficient conditions which guarantee the equi-attractivity properties of delayed
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impulsive systems whose structure resemble those describing the synchronization error in both

cases.

3.1 Introduction

We have discussed in the previous chapter how two identical chaotic systems could synchronize

impulsively by driving the response system with samples of the state variables of the drive system

at the discrete moments ti, i = 1, 2, . . .. We obtained sufficient conditions on the impulses in terms

of the different parameters of the chaotic systems involved so that this synchronization technique

would work. i.e., the uniform Lagrange stability (or just the uniform attractivity in the large

property, since chaotic systems are already uniformly bounded) of the synchronization error is

achieved upon satisfying the sufficient conditions of Theorem 2.2.1. It still remains to investigate

the robustness of this method with the presence of delay. In order to do so, we need to distinguish

between two different situations.

1. The response system is driven impulsively only by the drive system. i.e., the impulses are

the only values transmitted for synchronization.

2. The response system is driven impulsively and continuously simultaneously. In other words,

the impulses together with a continuous signal, consisting of a combination of the state

variables of the drive system, are transmitted to achieve synchronization.

The purpose of making the above classification will become evident when discussing the design

of communication security schemes in Chapter 5. In fact, we shall see how delay arise in each

case described in the classification above and how it plays an important role in affecting the

general performance of chaos-based secure communication schemes. Figures 3.1 and 3.2 give

illustrative diagrams of the two categories 1. and 2., respectively, where, in the second case, the

signal −xz is chosen as an example of a continuous driving signal (as in Lorenz system). Clearly,

with these two types of design, the delay involved in each case will be different from the other.

Actually, there are two kinds of delay involved in each case. The first kind is the transmission

delay required for the impulses to reach the receiver end. Whereas the second type of delay

is the sampling delay required to sample the system u(t) at each instance ti and formulating

the difference ∆e(ti) = ∆x(ti)−∆u(ti), i = 1, 2, . . . . Therefore the error dynamics between the

synchronized chaotic systems will possess delay terms representing the transmission and sampling

delays. However, this representation will differ between the two categories involving impulsive
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x
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x(ti)

delay ri

Figure 3.1: Synchronizing two identical chaotic systems impulsively only.

x

−x(t)z(t)

u

delay r̃
delay ri

x(ti)

Figure 3.2: Synchronizing two identical chaotic systems impulsively and continuously by the

signal −xz.
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driving only and impulsive/continuous driving, mentioned above. We shall discuss each category

separately and see what happens to the error dynamics with the presence of the delay factor.

1. Impulsive driving only: As we said earlier, only samples of the chaotic systems, at the

discrete instances ti, generated at the transmitter end (the driving system), are transmitted and

installed at the receiver end (the response system). In other words, the state variables of the

response system are subject to jumps at these instances, by applying linear maps, in order to

make them behave in accordance with the state variables of the driving chaotic system. Due to the

existence of transmission and sampling delays, it is not feasible to apply the impulses at the exact

instances ti to achieve synchronization. Instead, there will be delay, ri, which is the maximum

of the two types of delay involved in the system, in general, and involved in the impulses, in

particular. i.e., the impulses will be applied at the instances ti + ri, for some ri > 0, i = 1, 2, . . . .

We shall analyze the general dynamics of impulsive synchronization with the presence of delay in

the impulses, and investigate how robust impulsive synchronization is towards delayed impulses

subject to the physically reasonable assumption that delay is bounded, i.e., there exists an upper

bound r ≥ ri, for some r ≥ 0 and for all i = 1, 2, . . ..

Let τi = ti + ri, for i = 1, 2, . . . . This implies that τi, becomes the moment of impulse and

ti = τi − ri. In this case, using the Lorenz chaotic attractor, Chua’s oscillator or Rössler system,

the general expression of the drive and response systems, whose structures resemble the structure

of the above mentioned chaotic systems, are given by

ẋ = Ax+Ω(x) (3.1)

and {
u̇ = Au+Ω(u), t 6= τi

∆u(t) = −Bie(t− ri), t = τi, i = 1, 2, . . . ,
(3.2)

respectively, where A is an n×n constant matrix, Ω(x) is a continuous non-linear mapping from

R3 → R3 and e = x − u. Since the impulses depend on the values of e in the past time and by

using systems (3.1) and (3.2), we conclude that the error dynamics is given by

{
ė = Ae+Φ(x,u), t 6= τi

∆e(t) = Bie(t− ri), t = τi, i = 1, 2, . . . ,
(3.3)

where Φ(x,u) = Ω(x) − Ω(u). A common property possessed by the mapping Φ, upon using

any of the three chaotic systems we mentioned earlier, is given by ||Φ(x,u)|| ≤ L2||e||, for some
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L2 > 0. In order for the two systems (3.1) and (3.2) to synchronize, the error dynamics e, given by

(3.3), must satisfy limt→∞ e(t) = 0. We shall investigate the influence of delay in achieving this

desired property and obtain conditions on the system, in general, and on the delays, in particular,

to make the error dynamics e converge to zero.

In the next section, an arbitrary impulsive system with varying impulse intervals and linear

delayed impulses is considered. Its structure resembles the error dynamics given by (3.3). The

objective is to obtain a general theory regarding the convergence of solutions of that particular

class of differential systems to zero, and apply the results to the model described by system (3.3).

2. Impulsive and continuous driving: In this case, the response system is driven con-

tinuously by a continuous signal constructed from the state variables of the drive system, and

impulsively by the synchronizing impulses at the discrete instances ti, i = 1, 2, . . . , where the

impulses are applied linearly on the chaotic response system. As before, this model will possess

transmission and sampling delays. Applying the same technique used in the previous model, the

impulses will include delay terms exactly in the same manner described before. However, due

to the use of continuous driving in this model, the transmission delay will also appear in the

differential system of the response system u. Let us denote this type of delay, appearing in the

chaotic system u itself, but not in the impulses, by r̃. Whereas, we denote the delay appearing in

the impulses by ri, i = 1, 2, . . . . As before, the moments τi = ti− ri, i = 1, 2, . . . , will become the

moments of impulse acting on the response system. Let us consider the Lorenz chaotic system as

a model for this category (actually other systems, such as Chua’s oscillator and Rössler system,

will also work). Hence the drive and response systems, in this case, will be given by

ẋ(t) = Ax(t) +Φ1(x(t)) +Φ2(x(t)) (3.4)

and {
u̇(t) = Au(t) +Φ1(x(t− r̃)) +Φ2(u(t)), t 6= τi

∆u(t) = −Bie(t− ri), t = τi, i = 1, 2, . . . ,
(3.5)

respectively, where A is defined by (2.28), Φ1(x) = (0,−xz, 0)T , Φ2(x) = (0, 0, xy)T and e = x−u
is the error dynamics. Notice that according to this model, the system at the receiver end is driven

continuously by the signal −xz and by the impulses. From (3.4) and (3.5) the error dynamics e

is given by {
ė(t) = Ae(t) +Ψ1(x(t),x(t− r̃)) +Ψ2(x(t),u(t)), t 6= τi

∆e(t) = Bie(t− ri), t = τi, i = 1, 2, . . . ,
(3.6)
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Figure 3.3: Error dynamics for (a) system (3.6); (b) system (3.7).

where Ψ1(x(t),x(t − r̃)) = Φ1(x(t)) − Φ1(x(t − r̃)) and Ψ2(x(t),u(t)) = Φ2(x(t)) − Φ2(u(t)).

Let σ = 10, ρ = 28, b = 8/3, Bi = B = −diag(0.5, 0.6, 0.2), ∆ := ∆i+1 = τi+1 − τi = 0.002, and

ri = r̃ = 0.001, for all i = 1, 2, . . .. By applying the Runge-Kutta integration method with an

integration step-size given by 0.0001, to integrate system (3.6), identical synchronization cannot

be achieved, although the magnitude of the delay is fairly small, as shown in Figure 3.3 (a). In

fact, choosing different matrices Bi, i = 1, 2, . . . , does not improve the synchronization results.

The reason for such behaviour is that the two terms Φ1(x(t)) and Φ1(x(t− r̃)) no longer eliminate

each other. Thus the magnitude of the error between them will not approach zero, since x is a

chaotic signal. Therefore it is necessary to construct a new response system that can synchronize

with the chaotic attractor. By adding the two terms Φ1(u(t)) and −Φ1(u(t − r̃)) in (3.5), we

obtain
{

u̇(t) = Au(t) +Φ1(u(t)) +Φ1(x(t− r̃))−Φ1(u(t− r̃)) +Φ2(u(t)), t 6= τi

∆u(t) = −Bie(t− ri), t = τi, i = 1, 2, . . . .
(3.7)

The latter operation of adding two more terms is feasible because these two terms are generated

using the response system and are totally independent of the drive system. Upon the addition of

these two terms and by applying systems (3.4) and (3.7), the error dynamics will be given by
{

ė(t) = Ae(t) +Ψ1(x(t),u(t)) +Ψ1(x(t− r̃),u(t− r̃)) +Ψ2(x(t),u(t)), t 6= τi

∆e(t) = Bie(t− ri), t = τi, i = 1, 2, . . . .
(3.8)

The simulation of the error dynamics, given by (3.8), using the same values given above except

for the delay terms, where we have chosen ri = 0.002, i = 1, 2, . . . , and r̃ = 0.6, shows identical
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synchronization (see Figure 3.3 (b)). Notice that the model in (3.8) possesses the following

important property:

||Ψm(x,u)|| ≤ Lm||x− u|| = Lm||e||,

where m = 1, 2 and L1 and L2 are two positive constants. The latter inequality will be used in

the theory developed for a certain kind of delayed impulsive differential equations with delayed

impulses.

We shall analyze in Section 3.3 the dynamics of system (3.8) and find the conditions under

which the equi-attractivity in the large property of the synchronization error may be achieved.

This will be done by considering an arbitrary impulsive system whose structure resembles the

system described by (3.8) and attempt to derive the conditions which guarantee convergence of

solutions to zero (i.e., to achieve the equi-attractivity in the large property of the solutions).

3.2 Impulsive Control and Synchronization with Linear Delayed

Impulses

Consider the impulsive system





ẋ = Ax+Φ(x), t 6= τi

∆x(t) = Bix(t− ri), t = τi,

}
t > t0

x(t) = φ(t− t0), t0 − r ≤ t ≤ t0,

(3.9)

where A is an n×n constant matrix, ∆x(τi) = x(τ+i )−x(τ−i ), x(τ+i ) = limt→τ+
i
x(t), the moments

of impulse satisfy t0 < τ1 < τ2 < . . . < τi < . . . and limi→∞ τi = ∞, φ(t − t0) is an arbitrary

differentiable initial function defined over [t0−r, t0], ri are the delay constants, for all i = 1, 2, . . . ,

and r := maxi(ri) ≥ 0. Let k, ki, i = 1, 2, . . ., be a set of non-negative integers chosen in such

a way that t0 < τi−k < τi − r ≤ τi−k+1 and t0 < τi−ki
< τi − ri ≤ τi−ki+1, where 1 ≤ ki, k ≤ i

and τ0 is defined to be some point satisfying t0 < τ0 < τ1 (τ0 does not represent a moment

of impulse). It should be mentioned that the subscript i in ki is a label only, where ki reflects

the number of backward steps that corresponds to the delay ri at the i
th impulse. Assume that

Φ(x) is a continuous non-linear map satisfying ||Φ(x)|| ≤ L2||x||, for some L2 > 0, and Bi are

n × n constant matrices satisfying ||Bi|| :=
√
λmax(BT

i Bi) < L1, for all i = 1, 2, . . . , and for

some L1 > 0 (λmax(B
TB) is the largest eigenvalue of BTB). This guarantees that, for each

(t0,φ) ∈ R+ × C([−r, 0],Rn), there exists a local solution of (3.9) satisfying the initial condition
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x(t) = φ(t−t0), for t0−r ≤ t ≤ t0 [9,10]. Let x(t) := x(t, t0,φ) be any solution of (3.9) satisfying

x(t) = φ(t − t0), for t0 − r ≤ t ≤ t0, and x(t) be left continuous at each τi > t0 in the interval

of existence, i.e., x(τ−i ) = x(τi), i = 1, 2, . . . . Using the above set up, we define the impulse

interval ∆i by ∆i := τi− τi−1, and the quantities δi−ki+1, by δi−ki+1 := ri− (τi− τi−ki+1), where

0 ≤ δi−ki+1 < ∆i−ki+1, i = 1, 2, . . . . These terms, together with the following definitions, will be

very necessary to state the main results of this section. It should be mentioned that the following

definitions are generalizations of previously defined terms, except that they incorporate delay.

Definition 3.2.1 Given the delay constant r, we equip the linear space C([−r, 0],Rn) with the

norm || · ||r defined by ||φ||r = sup−r≤s≤0 ||φ(s)||.

Definition 3.2.2 Let M ≥ 0 and V ∈ ν0(M), and consider the following delayed impulsive

system, given by

ẋ = f(t,xt), t 6= τi

∆x = I(t,xt), t = τi, i = 1, 2, . . . ,
(3.10)

where xt = xt(s) = x(t + s), for −r ≤ s ≤ 0. The upper right derivative of V (t,x) with respect

to the continuous portion of the system (3.10), for (t,x) ∈ R+ × Sc(M)0 and t 6= τi, by

D+V (t,x) := lim
δ→0+

sup
1

δ
[V (t+ δ,x+ δf(t,xt))− V (t,x)] .

Definition 3.2.3 Solutions of the impulsive system (3.9) are said to be

(S1) equi-attractive in the large if for each ε > 0, α > 0 and t0 ∈ R+, there exists a number

T := T (t0, ε, α) > 0 such that ||φ||r < α implies ||x(t)|| < ε, for t ≥ t0 + T ;

(S2) uniformly attractive in the large if T in (S1) is independent of t0.

From the definition of equi-attractivity in the large, it can been seen that the solutions of sys-

tem (3.9), which possess this property, will converge to zero no matter how large ||φ||r is, i.e.,

limt→∞ x(t) = 0. Moreover, the properties (S1) and (S2) in Definition 3.2.3 become identical

for autonomous systems. Therefore the term uniform is dropped. Furthermore, equi-attractivity

in the large will be able to reflect the desired behaviour of impulsive synchronization of the two

chaotic systems (3.1) and (3.2), by driving the error dynamics (3.3) to zero. Finally, it should

be noted that the definitions mentioned above, will also apply to the impulsive system we shall

use in the next section. Therefore these definitions will be automatically used in the next section

and no confusion should arise when applying them.

We shall prove now the following lemma.



84

Lemma 3.2.1 Suppose that f(t) = (f1(t), f2(t), . . . , fm(t))T , where fs(t) ∈ C[a, b], s = 1, 2, . . . ,

m, and a, b are constants. If || · || is the Euclidean norm, then

||
b∫

a

f(t)dt||2 ≤ (b− a)
b∫

a

||f(t)||2dt, (3.11)

where the integration in the left hand side represents a componentwise integration.

Proof: By applying the Schwarz-Hölder inequality for integrals [30], we obtain

||
b∫

a

f(t)dt||2 =
m∑

s=1




b∫

a

fs(t)dt



2

≤
m∑

s=1







b∫

a

12dt



1/2


b∫

a

fs(t)
2dt



1/2



2

= (b− a)
b∫

a

m∑

s=1

fs(t)
2dt = (b− a)

b∫

a

||f(t)||2dt,

as required. ¤

Lemma 3.2.1 will be useful in the following derivations. By applying Taylor’s Theorem, Taylor’s

Remainder Theorem and system (3.9), we obtain

x(τi − ri) = x(τi−ki+1 − δi−ki+1) = x(τi−ki+1)− δi−ki+1ẋ(t)

= x(τi−ki+1)− δi−ki+1Ax(t)− δi−ki+1Φ(x(t)),

for small δi−ki+1, 0 ≤ δi−ki+1 < ∆i−ki+1, and for some t ∈ (τi−ki+1 − δi−ki+1, τi−ki+1) ⊂
(τi−ki

, τi−ki+1), i = 1, 2, . . . . Thus

||x(τi)− x(τi − ri)|| = ||x(τi)− x(τi−ki+1 − δi−ki+1)||

≤ ||x(τi)− x(τi−ki+1)||+ δi−ki+1(||A||+ L2)||x(t)||, (3.12)

for some t ∈ (τi−ki+1 − δi−ki+1, τi−ki+1) and for i = 1, 2, . . . . Furthermore, according to the

Fundamental Theorem of Calculus, we have, for all i = 1, 2, . . . ,

x(τi)− x(τ+i−1) =

τi∫

τ+
i−1

ẋ(t)dt.
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It follows from system (3.9) and inequality (3.11) that

||x(τi)− x(τ+i−1)||2 = ||
τi∫

τ+
i−1

ẋ(t)dt||2 ≤ ∆i

τi∫

τ+
i−1

||ẋ(t)||2dt

≤ ∆i(||A||+ L2)
2

τi∫

τ+
i−1

||x(t)||2dt, (3.13)

for i = 1, 2, . . . . The importance of inequalities (3.12) and (3.13) will eventually become evident

in the proof of the next theorem.

Notice that system (3.9) has varying impulse durations and varying delay terms corresponding

to each impulse. We shall state in the next theorem the sufficient conditions under which system

(3.9) is equi-attractive in the large, then, in Theorem 3.2.2, we shall develop the same conditions

for the same system but with equidistant impulses and having a maximum constant delay term

in all of the impulses.

Theorem 3.2.1 Let 2λ̃ be the largest eigenvalue of AT +A, ∆i ≤ ∆ for some ∆ > 0,

Ki := ea∆i ||I +Bi||, (3.14)

F (j)i := ∆je
a∆j ||Bi||(||A||+ L2), i− ki + 2 ≤ j ≤ i, ki > 1, (3.15)

E(j)i := e
aδj−kj+1 ||Bi||||Bj ||, i− ki + 1 ≤ j ≤ i− 1, ki > 1 (3.16)

and

Li := δi−ki+1e
a∆i−ki+1 ||Bi||(||A||+ L2), (3.17)

i = 1, 2, . . . , where a := λ̃+ L2 and I is the identity matrix with the appropriate dimension. Let

Ji be the (i− pi)× (i− pi) matrix (where pi = max(0, qi) and qi = min(i− ki, i− 1− ki−1, i− 2−
ki−2, . . . , i− ki + 1− ki−ki+1), given by





Ji := (Ki + Li), if i = 1 or ki = 1 (i.e., pi = i− ki), for some i = 2, 3, . . . , or

Ji :=




0 1 0 · · · 0 0

0 0 1 · · · 0 0

0 0 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 1

α
(1)
i α

(2)
i α

(3)
i · · · α

(i−pi−1)
i α

(i−pi)
i




, if ki > 1, for some i = 2, 3, . . . ,

(3.18)
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where

α
(j)
i :=

∑

Si,j

E(Si,j)
i , 1 ≤ j ≤ i− ki − pi,

α
(i−ki−pi+1)
i := Li +

∑

Si,i−ki−pi+1

E(Si,i−ki−pi+1)

i ,

α
(j)
i := F (j+pi)

i +
∑

Si,j

E(Si,j)
i , i− ki − pi + 2 ≤ j ≤ i− pi − 1,

α
(i−pi)
i := Ki + F (i)i

(the bounds on the set of integers Si,j, which could be empty, depend on the impulse i and the

entry j which both depend on the delay terms ri, for all i such that ki > 1). Then system (3.9)

is equi-attractive in the large if each eigenvalue, λ(i), of Ji satisfies |λ(i)| ≤ γ, where 0 ≤ γ < 1,

i = 1, 2, . . . (i.e., the matrix Ji can define a contraction linear mapping).

Remark 3.1: When ki > 1, the structure of the matrices Ji and the values of the parameters

α
(j)
i , for some i = 2, 3, . . . and j = 1, 2, . . . , i − pi, will become clearer in the following proof.

Actually there is no general formulation to describe all of these quantities (the matrices and the

parameters) since they change at every impulse i. A simpler and clearer version of this theorem

will be stated in Theorem 3.2.2.

Proof: We shall use the Euclidean norm as a Lyapunov function to prove this theorem.

According to Definition 3.2.2, we have

D+ [||x||] =
1

2
(xTx)−1/2

[
ẋTx+ xT ẋ

]

=
1

2||x||
[
xT (AT +A)x+ 2Φ(x)Tx

]

≤ 1

2||x||(2λ̃+ 2L2)||x||2

= a||x||. (3.19)
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Thus, by (3.19), we have, for every t ∈ (τi−1, τi] and for every i = 1, 2, . . . ,

||x(t)||∫

||x(τ+
i−1)||

D+ [||x||]
||x|| ≤

t∫

τi−1

adt.

Hence, for every t ∈ (τi−1, τi], i = 1, 2, . . . , we have

||x(t)|| ≤ ea(t−τi−1)||x(τ+i−1)|| ≤ ea∆i ||x(τ+i−1)||. (3.20)

Let us first consider the case when i = 1. We have by inequalities (3.12) and (3.20), for some

t∗ ∈ (τ1 − r1, τ1),

||x(τ+1 )|| = ||x(τ1) +B1x(τ1 − r1)||

= ||x(τ1) +B1x(τ1)−B1x(τ1) +B1x(τ1 − r1)||

≤ ||I +B1||||x(τ1)||+ ||B1||||x(τ1)− x(τ1 − r1)||

≤ ea∆1 ||I +B1||||x(τ+0 )||+ r1||B1||(||A||+ L2)||x(t∗)||

≤ ea∆1 ||I +B1||||x(τ+0 )||+ r1e
a∆1 ||B1||(||A||+ L2)||x(τ+0 )||,

since τ0 < τ1 − r1 (recall that x(τ+0 ) = x(τ0)). Thus

||x(τ+1 )|| ≤ (K1 + L1)||x(τ+0 )||. (3.21)

Similarly, if ki = 1, for some i = 2, 3, . . . , we may also conclude that

||x(τ+i )|| ≤ (Ki + Li)||x(τ+i−1)||. (3.22)
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However, if ki > 1, for some i = 2, 3, . . ., we have, by applying system (3.9), Schwarz inequality

and inequalities (3.12) and (3.20), for some t ∈ (τi−ki+1−δi−ki+1, τi−ki+1), 0 ≤ δi−ki+1 < ∆i−ki+1,

||x(τ+i )|| = ||x(τi) +Bix(τi − ri)||

= ||x(τi) +Bix(τi)−Bix(τi) +Bix(τi − ri)||

≤ ||I +Bi||||x(τi)||+ ||Bi||||x(τi)− x(τi − ri)||

≤ ea∆i ||I +Bi||||x(τ+i−1)||+ ||Bi||||x(τi)− x(τi−ki+1)||

+δi−ki+1||Bi||(||A||+ L2)||x(t)||

≤ ea∆i ||I +Bi||||x(τ+i−1)||+ ||Bi||||x(τi)− x(τi−ki+1)||

+δi−ki+1e
a∆i−ki+1 ||Bi||(||A||+ L2)||x(τ+i−ki

)||.
(3.23)

Moreover, if ki > 1, for some i = 2, 3, . . . , we have

||x(τi)− x(τi−ki+1)|| = ||x(τi) + [−x(τi−1) + x(τi−1)] + . . .

+[−x(τi−ki+2) + x(τi−ki+2)]− x(τi−ki+1)||

≤ ||x(τi)− x(τi−1)||+ . . .+ ||x(τi−ki+2)− x(τi−ki+1)||

= ||x(τi)− x(τ+i−1) + x(τ+i−1)− x(τi−1)||+ . . .

+||x(τi−ki+2)− x(τ+i−ki+1
) + x(τ+i−ki+1

)− x(τi−ki+1)||

≤ ||x(τi)− x(τ+i−1)||+ ||∆x(τi−1)||+ . . .

+||x(τi−ki+2)− x(τ+i−ki+1
)||+ ||∆x(τi−ki+1)||

≤
i∑

j=i−ki+2

||x(τj)− x(τ+j−1)||+
i−1∑

j=i−ki+1

||Bj ||||x(τj − rj)||.
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Thus, by inequalities (3.13) and (3.20), we have

||x(τi)− x(τi−ki+1)|| ≤
i∑

j=i−ki+2

∆
1/2
j (||A||+ L2)





τj∫

τ+
j−1

||x(t)||2dt





1/2

+
i−1∑

j=i−ki+1

||Bj ||||x(τj−kj+1 − δj−kj+1)||

≤
i∑

j=i−ki+2

∆
1/2
j (||A||+ L2)





τj∫

τ+
j−1

e2a∆j ||x(τ+j−1)||2dt





1/2

+
i−1∑

j=i−ki+1

e
aδj−kj+1 ||Bj ||||x(τ+j−kj

)||

=
i∑

j=i−ki+2

∆je
a∆j (||A||+ L2)||x(τ+j−1)||

+

i−1∑

j=i−ki+1

e
aδj−kj+1 ||Bj ||||x(τ+j−kj

)||.

Therefore the latter inequality, together with inequality (3.23) and equations (3.14), (3.15), (3.16)

and (3.17), imply, for all i such that ki > 1, that

||x(τ+i )|| ≤ Ki||x(τ+i−1)||+
i∑

j=i−ki+2

F (j)i ||x(τ+j−1)||+
i−1∑

j=i−ki+1

E(j)i ||x(τ+j−kj
)||+Li||x(τ+i−ki

)||. (3.24)

Since qi = min(i− ki, i− 1− ki−1, . . . , i− ki+1− ki−ki+1) and pi = max(0, qi), we may define the

quantities v1(pi) := ||x(τ+pi
)||, v2(pi) := ||x(τ+pi+1

)||, . . . , vi−pi
(pi) := ||x(τ+i−1)||. It follows that

vj(pi + 1) = ||x(τ+pi+j)|| = vj+1(pi), (3.25)
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where 1 ≤ j ≤ i − pi. Now, with the consideration of inequality (3.24) and equation (3.25), we

have
vi−pi

(pi + 1) = vi−pi+1(pi) = ||x(τ+i )||

≤ Kivi−pi
(pi) +

i∑

j=i−ki+2

F (j)i vj−pi
(pi)

+

i−1∑

i−ki+1

E(j)i vj+1−kj−pi
(pi) + Livi−ki−pi+1(pi).

Let v(pi) := (v1(pi), v2(pi), . . . , vi−pi
(pi))

T . Then, by equation (3.18), the system of difference

inequalities obtained above, including inequalities (3.21) and (3.22), can be written in a vector

form as

v(pi + 1) ≤ Jiv(pi), (3.26)

for all i = 1, 2, . . . , with the convention that the same inequality holds between the corresponding

components. Thus if each eigenvalue, λ(i), of Ji, i = 1, 2, . . . , satisfies |λ(i)| ≤ γ, 0 ≤ γ < 1, then,

by (3.26), it follows that lims→∞ v(pi + s) = 0, since ki < k. On the other hand, vi−pi
(pi + s) =

||x(τ+i+s−1)||, for i = 1, 2, . . . . Therefore if we let ` = i+ s− 1, we can conclude that

lim
`→∞

||x(τ+` )|| = lim
s→∞

||x(τ+i+s−1)|| = lim
s→∞

vi−pi
(pi + s) = 0.

Moreover, from inequality (3.20), we can further conclude that, for every t ∈ (τi−1, τi] and i =

1, 2, . . . ,

||x(t)|| ≤ ea∆i ||x(τ+i−1)|| ≤ ea∆||x(τ+i−1)|| → 0,

as i→∞. In other words ||x(t)|| → 0, as t→∞. Thus solutions to system (3.9) are equi-attractive

in the large, as required. ¤

The complexity of Theorem 3.2.1 reduces drastically when considering impulsive systems with

equidistant impulses and with maximum constant delay in the driving impulses. In other words,

we shall now consider the impulsive system, given by




ẋ = Ax+Φ(x), t 6= τi

∆x(t) = Bix(t− r), t = τi,

}
t > t0

x(t) = φ(t− t0), t0 − r ≤ t ≤ t0,

(3.27)

where τi+1 − τi = ∆ and ri = r, for all i = 1, 2, . . . . The delay parameter r represents the

maximum delay that system (3.27) can endure without losing its equi-attractivity in the large
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property. In this case, ki = k and δi = δ, for all i = 1, 2, . . . . Therefore, using the above set up,

we may obtain the following theorem.

Theorem 3.2.2 Let 2λ̃ be the largest eigenvalue of AT +A, ∆i = ∆, for some ∆ > 0,

Ki := ea∆||I +Bi||, (3.28)

F (j)i := ∆ea∆||Bi||(||A||+ L2), i− k + 2 ≤ j ≤ i, k > 1, (3.29)

E(j)i := eaδ||Bi||||Bj ||, i− k + 1 ≤ j ≤ i− 1, k > 1 (3.30)

and

Li := δea∆||Bi||(||A||+ L2), (3.31)

i = 1, 2, . . . , where a := λ̃+ L2 and I is the identity matrix with the appropriate dimension. Let

Ji be the (2k − 1)× (2k − 1) matrix given by





Ji := (Ki + Li), if k = 1, for i = 1, 2, . . . ,

Ji :=




0 1 0 · · · 0 0

0 0 1 · · · 0 0

0 0 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 1

α
(1)
i α

(2)
i α

(3)
i · · · α

(2k−2)
i α

(2k−1)
i




, if k > 1, for i = 2, 3, . . . ,

(3.32)

where
α
(j)
i := E(i−k+j)

i , 1 ≤ j ≤ k − 1,

α
(k)
i := Li,

α
(j)
i := F (i+j−2k+1)

i , k + 1 ≤ j ≤ 2k − 2,

α
(2k−1)
i := Ki + F (i)i .

Then system (3.27) is equi-attractive in the large if each eigenvalue, λ(i), of Ji satisfies |λ(i)| ≤ γ,

where 0 ≤ γ < 1, i = 1, 2, . . . .
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Proof: Using an identical approach to the proof of Theorem 3.2.1, we may reach inequalities

(3.21) and (3.22), provided that k = 1, for all i = 1, 2, . . . . However, if k > 1, for all i = 2, 3, . . . ,

then inequality (3.24) becomes

||x(τ+i )|| ≤ Ki||x(τ+i−1)||+
i∑

j=i−k+2

F (j)i ||x(τ+j−1)||+
i−1∑

j=i−k+1

E(j)i ||x(τ+j−k)||+ Li||x(τ+i−k)||. (3.33)

Thus if we choose v1(i − 1) := ||x(τ+i−2k+1)||, v2(i − 1) := ||x(τ+i−2k+2)||, . . . , v2k−1(i − 1) :=

||x(τ+i−1)||, for i = 2, 3, . . . and k > 1, we can conclude that

vj(i) = ||x(τ+i+1−2k+j)|| = vj+1(i− 1),

where 1 ≤ j ≤ 2k − 1. Hence, by using (3.33), it follows that

v2k−1(i) = v2k(i− 1) = ||x(τ+i )||

≤ Kiv2k−1(i− 1) +
i∑

j=i−k+2

F (j)i vj−i+2k−1(i− 1) +
i−1∑

i−k+1

E(j)i vj−i+k(i− 1)

+Livk(i− 1).

Like before, we define v(i) := (v1(i), v2(i), . . . , v2k−1(i))
T . Then, by equations (3.28), (3.29),

(3.30), (3.31) and (3.32), the corresponding system of difference inequalities obtained above,

including inequalities (3.21) and (3.22), can be written in a vector form as

v(i) ≤ Jiv(i− 1), (3.34)

for all i = 1, 2, . . ., with the convention that the same inequality holds between the corresponding

components. Thus, with the same reasoning as before, if each eigenvalue, λ(i), of Ji, i = 1, 2, . . . ,

satisfies |λ(i)| ≤ γ, 0 ≤ γ < 1, then, by (3.34), it follows that limi→∞ v(i) = 0. However, since

v2k−1(i− 1) = ||x(τ+i−1)||, we may deduce that

lim
i→∞

||x(τ+i−1)|| = lim
i→∞

v2k−1(i− 1) = 0.

Finally, by inequality (3.20) (which is satisfied by system (3.27)), we can further conclude that,

for every t ∈ (τi−1, τi], i = 1, 2, . . . ,

||x(t)|| ≤ ea∆||x(τ+i−1)|| → 0,
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as i→∞. In other words ||x(t)|| → 0, as t→∞. This means that system (3.27) is equi-attractive

in the large, as required. ¤

With Theorems (3.2.1) and (3.2.2), we have the following six useful remarks.

Remark 3.2: If ki = 1 (or k = 1), for some i = 1, 2, . . . , then the matrix Ji corresponding to

the ith impulse will be a 1× 1 matrix, given by Ji = (Ki +Li). However, if ki > 1 (or k > 1), for

some i = 2, 3, . . . , then the eigenvalues of the matrix Ji, defined by equation (3.18) (and also by

equation (3.32)), corresponding to the ith impulse, are the roots of the characteristic equation,

given by

det(λ(i)I − Ji) =
(
λ(i)
)i−pi −

i−pi∑

j=1

(
λ(i)
)i−pi−j

α
(i−pi+1−j)
i = 0. (3.35)

In fact, the matrix Ji is called the companion matrix of the polynomial given by the left hand

side of equation (3.35). We may find the roots of this characteristic equation numerically and

choose the matrices Bi in such a way that all the eigenvalues λ(i), will lie inside a circle of radius

γ. The choice of ki, i = 2, 3, . . . , is determined by trial and error.

Remark 3.3: Theorems 3.2.1 and 3.2.2 indicate that if we choose some integer K > 1 such that

the matrices Ji, for all i ≥ K, satisfy the conditions of these theorems, whereas the matrices

Ji, for 1 ≤ i < K, may not necessarily satisfy the conditions, then systems (3.9) and (3.27) will

remain equi-attractive in the large regardless of what the value of K > 1 is.

Remark 3.4: From the structure of the matrix Ji, for i = 1, 2, . . . , we conclude that the smaller

the choice of the impulse duration ∆i, (and thus ∆), the bigger the upper bound on the delay

terms ri ≤ r, for i = 1, 2, . . . . In other words, system (3.9) (and also system (3.27)) can endure

larger delays in the impulses if ∆i (and also ∆), i = 1, 2, . . . , are chosen to be small enough.

Remark 3.5: From equations (3.14), (3.15), (3.16) and (3.17) (similarly from equations (3.28),

(3.29), (3.30) and (3.31)), we see clearly that as the delay term ri, i = 1, 2, . . . , increases, the mag-

nitude of the impulse, ||Bi||, must be chosen small enough in order to achieve the equi-attractivity

in the large property for system (3.9) (and system (3.27)). This is due to the fact that, for small

||Bi||, i = 1, 2, . . . , F (j)i , E(j)i and Li will become relatively small and Ki will become the more

dominant term, i.e., we can reduce the influence of all the impulses preceding ith impulse and

increase the influence of the ith impulse. However, there exists a threshold value βi for ||Bi||, with
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a fixed value for ∆i, i = 1, 2, . . . , such that if ||Bi|| < βi the desired property of equi-attractivity

in the large will never be achieved since Ki will become large and consequently |λ(i)| will become

greater than 1. This means that, for large enough ri and with a fixed choice for ∆i, i = 1, 2, . . . ,

there will not exist a matrix Bi which can drive the solutions of system (3.9) (and system (3.27))

to zero. This phenomenon will be illustrated in the next section by an example employing two

Chua’s oscillators.

Remark 3.6: In the absence of delay from system (3.9), the resulting system will be given by




ẋ = Ax+Φ(x), t 6= τi

∆x(t) = Bix(t), t = τi, i = 1, 2, . . . ,

x(t+0 ) = x0,

(3.36)

where x0 represents the initial condition. In other words, the delay terms ri, i = 1, 2, . . . , in

system (3.9), are set to be equal to zero. In this case, we have ki = 0, Ki = ea∆i ||I + Bi||
and F (j)i = E(j)i = Li = 0, i = 1, 2, . . . . Thus the condition on the eigenvalues of Ji to lie

inside a circle of radius γ reduces to the condition that ||I + Bi|| ≤ e−a∆iγ. This implies

that if we choose γi := 1/i, for all i = 1, 2, . . . , and ε := (1/2) ln(1/γ), then we may let

||I + Bi|| ≤ e−a∆i−γi−2ε ≤ e−a∆iγ. The latter inequality represents the condition on the ma-

trices Bi, i = 1, 2, . . . , so that system (3.36) is equi-attractive in the large, which is identical to

the condition obtained in Theorem 2.2.1; namely, inequality (2.22) with g(u) = 0.

Remark 3.7: The conditions of Theorem 3.2.1 and Theorem 3.2.2 are sufficient conditions

but not necessary. Therefore in the process of searching for impulse durations ∆i and matrices

Bi, i = 1, 2, . . . , which achieve equi-attractivity in the large, we may apply Theorem 3.2.1 (or

Theorem 3.2.2) to find such matrices Bi, i = 1, 2, . . . . However, there might still exist other

matrices Bi, i = 1, 2, . . . , which will fail the conditions of Theorem 3.2.1 (or Theorem 3.2.2) and

still achieve the desired equi-attractivity in the large property. In other words, Bi, i = 1, 2, . . . ,

define a basin of attraction for the trivial solution of (3.9) (or of system (3.27)) which is smaller

than the actual basin of attraction of the trivial solution. This will be illustrated in the numerical

examples considered later in this section.

Several simulation examples employing a fourth order Runge-Kutta method with step size

10−5 will be presented. We shall show, through these numerical examples, how the simulations

agree with the theory, although one might still be able to obtain synchronization with choices of

Bi which may not satisfy the theory.
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Let us demonstrate the applications of Theorem 3.2.2 by considering the impulsive synchro-

nization of two Chua’s oscillators. In this case, the parameters of the error dynamics e between

the two Chua’s oscillators, described by (3.3), are given by

A =



−15 15 0

1 −1 1

0 −20 −0.5


 ,

Ω(x) =
[
(1125/7)x + (675/7)(|x + 1| − |x − 1|), 0, 0

]T
, Φ(x,u) = Ω(x) − Ω(u), t0 = 0 and

φ(t − t0) = φ(t) = (−2.436, 0.345, 1.639)T (a constant initial function). Hence the parameters

of the system are 2λ̃ = 20.16218025, ||A|| = 26.97909637 and ||Φ(x,u)|| ≤ L2||e||, where L2 =

1800/7 (see [114–116]), i.e., a = 267.2239473. Suppose that the delay term ri = r is constant (i.e.,

ki = k), ∆i = ∆ = 0.002 is also a constant and that Bi := B = −I, for all i = 1, 2, . . . . Then, from

Theorem 3.2.2 and by equation (3.35), Ki = 0, F (j)i and E(j)i are not applicable (because k = 1),

Li = L = rea∆(||A|| + L2) and Ji = J = (L), for all i = 1, 2, . . .. Thus the error dynamics e is

equi-attractive in the large or, in other words, the two chaotic systems x and u will impulsively

synchronize, if

ri ≤ rmax ≈
e−a∆γ

||A||+ L2
= 0.002062469033γ,

which indicates the maximum amount of delay permissible predicted by Theorem 3.2.2. The

parameter γ can be chosen to be very close to one but less than one. Let us take γ := 0.999, then

ri ≤ rmax = 0.002060406564.

As mentioned earlier, if the delay is less or equal to the above value, solutions will always be

equi-attractive in the large. The solutions might still remain equi-attractive in the large for

slightly bigger values of r = rmax, as indicated in Remark 3.7. But as r gets significantly bigger,

the attractivity property will be lost at one point. This is shown clearly in Figure 3.4. The

solid curve represents the first component e1, of the error dynamics e, whereas the dashed curve

represents the second component e2 and the dashed-dotted curve represents the third component

e3. We see that in (a), for B = −I and r = 0.0011, solutions quickly converge to zero in

0.031 seconds, as we have predicted. However, in (b), we see that, for r = 0.0021 > rmax equi-

attractivity in the large is still achieved and solutions approach zero in 3.1 seconds. Finally, if we

increase r significantly beyond this value (i.e., completely outside the actual basin of attraction

defined by B = −I), such as r = 0.003, solutions never approach zero, as shown in (c). This
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Figure 3.4: Impulsive synchronization of two Chua’s oscillators with different delay values: (a)

r = 0.0011. (b) r = 0.0021. (c) r = 0.003.
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Figure 3.5: Impulsive synchronization of two Chua’s oscillators with B = −0.7I and r = 0.003.
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Figure 3.6: Impulsive synchronization of two Chua’s oscillators with (a) B = −0.03I and r = 0.07;

(b) B = −0.01I and r = 2.
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Figure 3.7: Impulsive synchronization of two Chua’s oscillators with B = −I, r = 0.003 and

∆ = 0.001.

means that the two Chua’s oscillators will never synchronize. On the other hand, if we decrease

||Bi|| to a value less than 1, say B = −0.7I, and for r = 0.003, equi-attractivity in the large is

achieved, as predicted by Theorem 3.2.2 and as shown in Figure 3.5.

When the delay term r increases to a relatively large value and ∆ is kept fixed, we have to

choose the matrices Bi = B, i = 1, 2, . . . , so that ||B|| must be small enough. For example, in

Figure 3.6 (a), we see that if the delay term r is taken to be 0.07, then we must choose ||B|| = 0.03

in order to impulsively synchronize the two Chua’s oscillators. This is due, as mentioned in

Remark 3.5, to the fact that we need to keep the influence of the impulses preceding the ith

impulse, for all i = 1, 2, . . . , as small as possible. Furthermore, as we increase the delay term to

a large enough value and keep ∆ fixed, impulsive synchronization of the two Chua’s oscillators

will not be achieved no matter how small ||B|| is. This is illustrated in Figure 3.6 (b), where we

can see that for r = 2, the error dynamics e will never become equi-attractive in the large even

if we select a matrix B with a very small norm (e.g., in (b), we have taken B = −0.01I and

∆ = 0.002). This suggests that there is a lower bound for ||B||, with ∆ being fixed, such that if

we choose a matrix B whose norm is below that lower bound, equi-attractivity in the large will

fail to hold.

Finally, in Remark 3.4, we have indicated that Theorems 3.2.1 and 3.2.2 predict that the

influence of the impulse duration ∆ on the amount of delay r in the impulses, which the system

can endure, is very significant. For example, reconsidering the above example where r, ∆ and

B are chosen to be 0.003, 0.002 and −I, respectively, we find out that the error dynamics is not

equi-attractive in the large. However, reducing the impulse duration to ∆ = 0.001, shown in

Figure 3.7, solutions to system (3.3) become equi-attractive in the large, as expected.
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3.3 Delayed Impulsive Systems with Delayed Linear Impulses

To analyze the dynamics of the impulsive error dynamics, given by equation (3.8), which involves

delay in the differential system as well as in the impulses, we shall discuss a general impulsive

system which resembles system (3.8).

Consider the system





ẋ(t) = Ax(t) +Ψ1(x(t)) +Ψ1(x(t− r̃)) +Ψ2(x(t)), t 6= τi

∆x(t) = Bix(t− ri), t = τi i = 1, 2, . . . ,

}
t > t0

x(t) = φ(t− t0), t0 − r ≤ t ≤ t0,

(3.37)

where A, ∆x(τi), ri, i = 1, 2, . . . , and φ(t) are as defined before when considering system (3.9).

The only difference in the new model is the presence of constant delay term r̃ in the differential

system. Let r := maxi{r̃, ri} ≥ 0 and k, k̃, ki, i = 1, 2, . . . , be a set of non-negative integers

chosen in such a way that t0 < τi−k < τi − r ≤ τi−k+1, t0 < τi−ki
< τi − ri ≤ τi−ki+1 and

t0 < τ
i−k̃

< τi − r̃ ≤ τ
i−k̃+1

, where 1 ≤ ki + k̃ ≤ i and τ0 is defined to be some point satisfying

t0 < τ0 < τ1. Assume that Ψ1 and Ψ2 are continuous non-linear maps satisfying ||Ψm(x)|| ≤
Lm||x||, where m = 1 or 2, for some L1 and L2 > 0, and Bi are, as before, n×n constant matrices

satisfying ||Bi|| < L1, for all i = 1, 2, . . . , and for some L1 > 0. This guarantees that, for each

(t0,φ) ∈ R+×C([−r, 0],Rn), there exists a local solution of (3.37) satisfying the initial condition

x(t) = φ(t − t0), for t0 − r ≤ t ≤ t0 [9, 10]. Let x(t) := x(t, t0,φ) be any solution of (3.37)

satisfying x(t) = φ(t− t0), for t0 − r ≤ t ≤ t0, and x(t) be left continuous at each τi > t0 in the

interval of existence, i.e., x(τ−i ) = x(τi). The definitions of the impulse durations, ∆i, and the

terms δi, i = 1, 2, . . . , will remain the same as the we defined in Section 3.2.

Applying Taylor’s Theorem, Taylor’s Remainder Theorem and system (3.37) in a manner

similar to the one used in the previous section, we obtain

x(τi − ri) = x(τi−ki+1 − δi−ki+1) = x(τi−ki+1)− δi−ki+1ẋ(t)

= x(τi−ki+1)− δi−ki+1 [Ax(t) +Ψ1(x(t)) +Ψ1(x(t− r̃)) +Ψ2(x(t))] ,

for small δi−ki+1, 0 ≤ δi−ki+1 < ∆i−ki+1, and for some t ∈ (τi−ki+1 − δi−ki+1, τi−ki+1) ⊂
(τi−ki

, τi−ki+1), i = 1, 2, . . . . Since

||x(t)|| ≤ ||xt||r̃ = ||x(t+ s)||r̃ (3.38)
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for every t ∈ R+, it follows that

||x(τi)− x(τi − ri)|| = ||x(τi)− x(τi−ki+1)||+ δi−ki+1(||A||+ L1 + L2)||x(t)||+

δi−ki+1L1||x(t− r̃)||

≤ ||x(τi)− x(τi−ki+1)||+ δi−ki+1(||A||+ 2L1 + L2)||xt||r̃, (3.39)

for some t ∈ (τi−ki+1 − δi−ki+1, τi−ki+1) and for i = 1, 2, . . . . In addition, in a similar fashion as

before, the Fundamental Theorem of Calculus implies, for all i = 1, 2, . . . , that

x(τi)− x(τ+i−1) =

τi∫

τ+
i−1

ẋ(t)dt.

It follows from inequality (3.11) and system (3.37) that

||x(τi)− x(τ+i−1)||2 = ||
τi∫

τ+
i−1

ẋ(t)dt||2 ≤ ∆i

τi∫

τ+
i−1

||ẋ(t)||2dt

≤ ∆i(||A||+ L1 + L2)
2

τi∫

τ+
i−1

||x(t)||2dt+∆iL
2
1

τi∫

τ+
i−1

||x(t− r̃)||2dt

≤ ∆i(||A||+ L1 + L2)
2

τi∫

τ+
i−1

||xt||2r̃dt+∆iL
2
1

τi∫

τ+
i−1

||xt||2r̃dt

≤ ∆i

[
(||A||+ L1 + L2)

2 + L
2
1

] τi∫

τ+
i−1

||xt||2r̃dt, (3.40)

for i = 1, 2, . . . .

The importance of inequalities (3.39) and (3.40) will become evident in the proof of the next

theorem which will give the conditions under which system (3.37) is equi-attractive in the large.

Theorem 3.3.1 Let 2λ̃ be the largest eigenvalue of AT +A, ∆i ≤ ∆ for some ∆ > 0,

K′i := exp
[
a(τi − τi−1−k̃

) + L1(τi − τi−1−k̃
)ea(τi−τ

i−1−k̃
)
]
||I +Bi||, (3.41)
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Γ
(j)
i := ∆jK′j ||Bi||

[
(||A||+ L1 + L2)

2 + L
2
1

]1/2
, i− ki + 2 ≤ j ≤ i, ki + k̃ > 1, (3.42)

Υ
(j)
i := G′j ||Bi||||Bj ||, i− ki + 1 ≤ j ≤ i− 1, ki + k̃ > 1, (3.43)

L′i := δi−ki+1G′i||Bi||(||A||+ 2L1 + L2), (3.44)

and

G′i := exp

{
a(τi − τi−ki−k̃

) +
L1
a
e
a(τi−τ

i−ki−k̃
) − L1

a

}
, (3.45)

i = 1, 2, . . . , where a := λ̃ + L1 + L2 > 0 and I is the identity matrix with the appropriate

dimension. Let J i be the (i− pi)× (i− pi) matrix (where pi = max(0, qi) and qi = min(i− ki −
k̃, i− 1− ki−1 − k̃, i− 2− ki−2 − k̃, . . . , i− ki + 1− ki−ki+1 − k̃) given by





J i := (K′i + L′i), if i = 1 or ki + k̃ = 1 (i.e., pi = i− ki − k̃), for some i = 2, 3, . . . , or

J i :=




0 1 0 · · · 0 0

0 0 1 · · · 0 0

0 0 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 1

α
(1)
i α

(2)
i α

(3)
i · · · α

(i−pi−1)
i α

(i−pi)
i




, if ki > 1, for some i = 2, 3, . . . ,

(3.46)

where

α
(j)
i :=

∑

Si,j

Υ
(Si,j)
i , 1 ≤ j ≤ i− ki − k̃ − pi,

α
(i−ki−k̃−pi+1)
i := L′i +

∑

S
i,i−ki−k̃−pi+1

Υ
(S

i,i−ki−k̃−pi+1
)

i ,

α
(j)
i := Γ

(j+pi)
i +

∑

Si,j

Υ
(Si,j)
i , i− ki − k̃ − pi + 2 ≤ j ≤ i− k̃ − pi − 1,

α
(i−k̃−pi)
i := K′i + Γ

(i)
i ,

α
(j)
i := 0 i− k̃ − pi ≤ j ≤ i− pi

(the bounds on the set of integers Si,j, which could be empty, depend on the impulse i and the

entry j which both depend on the delay terms ri, for all i such that ki+k̃ > 1). Then system (3.37)



101

is equi-attractive in the large if each eigenvalue, λ(i), of J i satisfies |λ(i)| ≤ γ, where 0 ≤ γ < 1,

i = 1, 2, . . . (i.e., the matrix J i can define a contraction linear mapping).

Proof: We shall prove that under the assumptions of Theorem 3.3.1, ||xt||r̃ → 0, as t → ∞.
Thus, in view of inequality (3.38), we may immediately conclude that ||x(t)|| → 0, as t → ∞
which means that system (3.37) is equi-attractive in the large. By considering the Euclidean

norm ||x(t)|| = (xTx)1/2 ∈ ν0(0), as our Lyapunov function, we have

D+
[
||x||

]
=

1

2
(xTx)−1/2(ẋTx+ xT ẋ)

=
1

2

1

||x||
[
xT (AT +A)x+ 2Ψ1(x)

Tx+ 2Ψ1(x(t− r̃))Tx+ 2Ψ2(x)
Tx
]

≤ 1

2||x||
[
2λ̃||x||2 + 2L1||x||2 + 2L2||x||2 + 2||Ψ1(x(t− r̃))||||x||

]

≤
(
λ̃+ L1 + L2

)
||x||+ L1||x(t− r̃)||.

i.e., D+
[
||x(t)||

]
≤ a||x(t)||+ L1||x(t− r̃)||, which implies that

D+
[
||x(t)||

]
− a||x(t)|| ≤ L1||x(t− r̃)||.

Multiplying both sides of the above inequality by exp(−at), we obtain

e−atD+
[
||x(t)||

]
− ae−at||x(t)|| ≤ L1e

−at||x(t− r̃)||.

This implies that

D+
[
e−at||x(t)||

]
≤ L1e

−at||x(t− r̃)||. (3.47)

Therefore, for every t ∈ (τi − ri, τi] ⊂ (τi−ki
, τi], for every s ∈ [−r̃, 0] and for every i = 1, 2, . . . ,
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we have t+ s ∈ (τi−ki
− r̃, τi] ⊂ (τ

i−ki−k̃
, τi], where t− r̃ > τ

i−ki−k̃
, and, by (3.47),

t+s∫

τ+

i−ki−k̃

D+
[
e−aτ ||x(τ)||

]
dτ ≤ L1

t+s∫

τ+

i−ki−k̃

e−aτ ||x(τ − r̃)||dτ =⇒

e−a(t+s)||x(t + s)|| − e
−aτ

i−ki−k̃ ||x(τ+

i−ki−k̃
)|| ≤ L1

t+s∫

τ
+

i−ki−k̃

e−aτ ||x(τ − r̃)||dτ =⇒

||x(t + s)|| ≤ e
a(t+s−τ

i−ki−k̃
)||x(τ+

i−ki−k̃
)||+ L1

t+s∫

τ+

i−ki−k̃

ea(t+s−τ)||x(τ − r̃)||dτ =⇒

||xt(s)|| ≤ e
a(t+s−τ

i−ki−k̃
)||x(τ+

i−ki−k̃
)||+ L1

t+s∫

τ+

i−ki−k̃

ea(t+s−τ)||xτ ||r̃dτ =⇒

sup
s∈[−r̃,0]

||xt(s)|| ≤ sup
s∈[−r̃,0]




e
a(t+s−τ

i−ki−k̃
)||x(τ+

i−ki−k̃
)||+ L1

t+s∫

τ+

i−ki−k̃

ea(t+s−τ)||xτ ||r̃dτ





= e
a(t−τ

i−ki−k̃
)||x(τ+

i−ki−k̃
)||+ L1

t∫

τ+

i−ki−k̃

ea(t−τ)||xτ ||r̃dτ

≤ e
a(τi−τ

i−ki−k̃
)||x(τ+

i−ki−k̃
)||+ L1

t∫

τ+

i−ki−k̃

ea(t−τ)||xτ ||r̃dτ.

Thus

||xt||r̃ ≤ e
a(τi−τ

i−ki−k̃
)||x(τ+

i−ki−k̃
)||+ L1

t∫

τ+

i−ki−k̃

ea(t−τ)||xτ ||r̃dτ.
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Applying Gronwall’s Lemma [77] and equation (3.45), we obtain

||xt||r̃ ≤ e
a(τi−τ

i−ki−k̃
)||x(τ+

i−ki−k̃
)|| exp


L1

t∫

τ+

i−ki−k̃

ea(t−τ)dτ




= e
a(τi−τ

i−ki−k̃
)||x(τ+

i−ki−k̃
)|| exp

{
−L1
a

[
1− ea(t−τ

i−ki−k̃
)
]}

≤ exp

{
a(τi − τi−ki−k̃

) +
L1
a
e
a(τi−τ

i−ki−k̃
) − L1

a

}
||x(τ+

i−ki−k̃
)||

= G′i||x(τ+i−ki−k̃
)||.

By inequality (3.38), it follows, for every t ∈ (τi − ri, τi] ⊂ (τi−ki
, τi] and i = 1, 2, . . . , that

||x(t)|| ≤ ||xt||r̃ ≤ G′i||x(τ+i−ki−k̃
)||. (3.48)

Similarly, by inequality (3.47) and for all t ∈ (τi−1, τi], s ∈ [−r̃, 0] and i = 1, 2, . . . , where

t+ s ∈ (τi−1 − r̃, τi] ⊂ (τ
i−1−k̃

, τi], we have

t+s∫

τ+

i−1−k̃

D+
[
e−aτ ||x(τ)||

]
dτ ≤ L1

t+s∫

τ+

i−1−k̃

e−aτ ||x(τ − r̃)||dτ =⇒

e−a(t+s)||x(t + s)|| − e−aτ
i−1−k̃ ||x(τ+

i−1−k̃
)|| ≤ L1

t+s∫

τ+

i−1−k̃

e−aτ ||x(τ − r̃)||dτ =⇒

||xt(s)|| ≤ ea(t+s−τ
i−1−k̃

)||x(τ+

i−1−k̃
)||+ L1

t+s∫

τ
+

i−1−k̃

ea(t+s−τ)||xτ ||r̃dτ =⇒

sup
s∈[−r̃,0]

||xt(s)|| ≤ sup
s∈[−r̃,0]





ea(t+s−τ
i−1−k̃

)||x(τ+

i−1−k̃
)||+ L1

t+s∫

τ+

i−1−k̃

ea(t+s−τ)||xτ ||r̃dτ





=⇒
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||xt||r̃ ≤ ea(t−τ
i−1−k̃

)||x(τ+
i−1−k̃

)||+ L1

t∫

τ+

i−1−k̃

ea(t−τ)||xτ ||r̃dτ

≤ ea(τi−τ
i−1−k̃

)||x(τ+
i−1−k̃

)||+ L1

t∫

τ+

i−1−k̃

ea(τi−τ)||xτ ||r̃dτ

≤ ea(τi−τ
i−1−k̃

)||x(τ+
i−1−k̃

)||+ L1e
a(τi−τ

i−1−k̃
)

t∫

τ+

i−1−k̃

||xτ ||r̃dτ.

It follows, by Gronwall’s Lemma, that, for all i = 1, 2, . . . ,

||xt||r̃ ≤ exp
[
a(τi − τi−1−k̃

) + L1(τi − τi−1−k̃
)ea(τi−τ

i−1−k̃
)
]
||x(τ+

i−1−k̃
)||.

Passing to the limit as t → τi and by applying inequality (3.38), the latter inequality becomes,

for i = 1, 2, . . . ,

||x(τi)|| ≤ ||xτi
||r̃ ≤ exp

[
a(τi − τi−1−k̃

) + L1(τi − τi−1−k̃
)ea(τi−τ

i−1−k̃
)
]
||x(τ+

i−1−k̃
)||. (3.49)

Let us first consider the case when i = 1. We have, by inequalities (3.38), (3.39) and (3.48), for

some t∗ ∈ (τ1 − r1, τ1),

||x(τ+1 )|| = ||x(τ1) +B1x(τ1 − r1)||

≤ ||I +B1||||x(τ1)||+ ||B1||||x(τ1)− x(τ1 − r1)||

= ea∆1 ||I +B1||||x(τ+0 )||+ r1||B1||(||A||+ L1 + L2)||x(t∗)||+ r1L1||B1||||x(t∗ − r̃)||

≤ ea∆1 ||I +B1||||x(τ+0 )||+ r1||B1||(||A||+ 2L1 + L2)||xt∗ ||r̃

≤ ea∆1 ||I +B1||||x(τ+0 )||+ r1G′1||B1||(||A||+ 2L1 + L2)||x(τ+0 )||,

since τ0 < τ1 − r1 (notice again that x(τ+0 ) = x(τ0)). Hence equations (3.41) and (3.43) imply

that

||x(τ+1 )|| ≤ (K′1 + L′1)||x(τ+0 )||. (3.50)
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Similarly, if ki + k̃ = 1, for some i = 2, 3, . . . , we may also conclude that

||x(τ+i )|| ≤ (K′i + L′i)||x(τ+i−1)||. (3.51)

On the other hand, if ki > 1, for some i = 2, 3, . . ., we have, by system (3.37), equations (3.41)

and (3.44) and inequalities (3.38), (3.39) and (3.49), for some t ∈ (τi−ki+1 − δi−ki+1, τi−ki+1),

0 ≤ δi−ki+1 < ∆i−ki+1, the following.

||x(τ+i )|| = ||x(τi) +Bix(τi − ri)||

≤ ||I +Bi||||x(τi)||+ ||Bi||||x(τi)− x(τi − ri)||

≤ ||I +Bi||||x(τi)||+ ||Bi||
[
||x(τi)− x(τi−ki+1)||+ δi−ki+1(||A||+ 2L1 + L2)||xt||r̃

]

≤ ||I +Bi||||x(τi)||+ ||Bi||||x(τi)− x(τi−ki+1)||+

δi−ki+1G′i||Bi||(||A||+ 2L1 + L2)||x(τi−ki−k̃
)||

≤ K′i||x(τi−1−k̃
)||+ ||Bi||||x(τi)− x(τi−ki+1)||+ L′i||x(τi−ki−k̃

)||. (3.52)

But, in the proof of Theorem 3.2.1, we proved that

||x(τi)− x(τi−ki+1)|| ≤
i∑

j=i−ki+2

||x(τj)− x(τ+j−1)||+
i−1∑

j=i−ki+1

||Bj ||||x(τj − rj)||.
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Therefore, by inequalities (3.40), (3.48) and (3.49), it follows that

||x(τi)− x(τi−ki+1)|| =
i∑

j=i−ki+2

∆
1/2
j

[
(||A||+ L1 + L2)

2 + L
2
1

]1/2




τj∫

τ+
j−1

||xt||2r̃dt





1/2

+
i−1∑

j=i−ki+1

||Bj ||||x(τj−kj+1 − δj−kj+1)||

≤
i∑

j=i−ki+2

∆
1/2
j

[
(||A||+ L1 + L2)

2 + L
2
1

]1/2




τj∫

τ+
j−1

K′j ||x(τ+j−1−k̃
)||2dt





1/2

+
i−1∑

j=i−ki+1

G′j ||Bj ||||x(τ+
j−kj−k̃

)||

=
i∑

j=i−ki+2

∆jK′j
[
(||A||+ L1 + L2)

2 + L
2
1

]1/2
||x(τ+j−1)||+

i−1∑

j=i−ki+1

G′j ||Bj ||||x(τ+
j−kj−k̃

)||.

Hence the latter inequality, together with inequality (3.52) and equations (3.41), (3.42), (3.43),

(3.44) and (3.45), imply that, for all i such that ki > 1,

||x(τ+i )|| ≤ K′i||x(τ+i−1−k̃
)||+

i∑

j=i−ki+2

Γ
(j)
i ||x(τ+j−1−k̃

)||+
i−1∑

j=i−ki+1

Υ
(j)
i ||x(τ+j−kj−k̃

)||

+L′i||x(τ+i−ki−k̃
)||.

(3.53)

Since qi = min(i−ki− k̃, i−1−ki−1− k̃, . . . , i−ki+1−ki−ki+1− k̃) and pi = max(0, qi), we may,

as in the proof of Theorem 3.2.1, define the quantities v1(pi) := ||x(τ+pi
)||, v2(pi) := ||x(τ+pi+1

)||,
. . . , vi−pi

(pi) := ||x(τ+i−1)||. It follows that

vj(pi + 1) = ||x(τ+pi+j)|| = vj+1(pi), (3.54)
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where 1 ≤ j ≤ i − pi. Now taking inequality (3.53) and equation (3.54) into consideration, we

have

vi−pi
(pi + 1) = vi−pi+1(pi) = ||x(τ

+
i )||

≤ K′ivi−pi−k̃
(pi) +

i∑

j=i−ki+2

γ
(j)
i v

j−pi−k̃
(pi) +

i−1∑

i−ki+1

Υ
(j)
i v

j+1−kj−pi−k̃
(pi)+

L′ivi−ki−pi+1−k̃
(pi).

Let v(pi) := (v1(pi), v2(pi), . . . , vi−pi
(pi))

T . Then, by equation (3.46), the system of difference

inequalities obtained above, including inequalities (3.50) and (3.51), can be written in a vector

form as

v(pi + 1) ≤ J iv(pi), (3.55)

for all i = 1, 2, . . . , with the convention that the same inequality holds between the corresponding

components. Thus if each eigenvalue, λ(i), of J i, i = 1, 2, . . . , satisfies |λ(i)| ≤ γ, 0 ≤ γ < 1,

then, by (3.55), it follows that lims→∞ v(pi + s) = 0, since ki < k. Furthermore, vi−pi
(pi + s) =

||x(τ+i+s−1)||, for i = 1, 2, . . . . Therefore if we let ` = i+ s− 1, we can conclude that

lim
`→∞

||x(τ+` )|| = lim
s→∞

||x(τ+i+s−1)|| = lim
s→∞

vi−pi
(pi + s) = 0.

Therefore, from inequality (3.48), we can further conclude that, for every t ∈ (τ
i−k̃

, τi] and

i = 1, 2, . . . ,

||x(t)|| ≤ G ′i||x(τ+i−ki−k̃
)|| ≤ G′||x(τ+i−1)|| → 0,

as i→∞, where
G′ = exp

{
2ka∆+

L1
a
− e2kaL1

a

}
.

In other words ||x(t)|| → 0, as t→∞. Thus solutions to system (3.37) are equi-attractive in the

large, as required. ¤

With the absence of the delay term r̃ from (3.37), the resulting system is an impulsive system

with delayed impulses, given by system (3.9). This means that if r̃ = 0, then Theorem 3.3.1

will reduce to Theorem 3.2.1, except that Theorem 3.3.1 produces an estimate on the upper

bound of the maximum delay that system (3.9) can endure which is smaller than the estimate

Theorem 3.2.1 produces. We just mention here that Theorem 3.3.1 can be applied to system
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(3.9), by comparing system (3.9) with (3.37). In this case, we have r̃ = 0, k̃ = 0, Ψ1(x) = 0 and

Ψ2(x) = Φ(x), which means that L1 = 0 and L2 = L2. With these values, the equi-attractivity

properties of system (3.9) can be studied using the result of Theorem 3.3.1.

Remark 3.8: If ki + k̃ = 1, for some i = 1, 2, . . . , then the matrix J i corresponding to this

ith impulse will be a 1 × 1 matrix given by J i = (K′i + L′i). However, if ki + k̃ > 1, for some

i = 2, 3, . . . , then the eigenvalues of the matrix J i, defined by equation (3.46), corresponding to

the ith impulse, are the roots of the characteristic equation, given by

det(λ(i)I − J i) =
(
λ(i)
)i−pi −

i−pi∑

j=1

(
λ(i)
)i−pi−j

α
(i−pi+1−j)
i = 0, (3.56)

which is similar to the structure of the characteristic equation given by equation (3.35). We may

find the roots of this characteristic equation numerically and choose the matrices Bi, as before,

in such a way that all the eigenvalues λ(i), will lie inside a circle of radius γ. The choice of ki,

i = 2, 3, . . . , is determined by trial and error.

Remark 3.9: Although, intuitively, one may think that the delay term r̃ has no influence on the

dynamics of the impulsive system, Theorem 3.3.1 indicates that the value of G ′i and the dimension

of the matrix J i, for i = 1, 2, . . . , will increase as the value r̃ increases. Thus the upper bound on

the range of values of ri will change accordingly so that system (3.37) will remain equi-attractive

in the large. We will show, through several numerical examples that when considering impulsive

synchronization of hyperchaotic systems, the larger the delay term r̃, the smaller the upper bound

on the delay terms ri, i = 1, 2, . . . , in order to obtain identical synchronization.

Remark 3.10: The conditions of Theorem 3.3.1, as for Theorem 3.2.1, are all sufficient condi-

tions but not necessary, i.e., system (3.37) may remain equi-attractive in the large, although one

of the conditions of Theorem 3.3.1 may fail. This is also illustrated through several numerical

examples employing impulsive synchronization.

We shall now present several examples to investigate impulsive synchronization of two identi-

cal four-dimensional hyperchaotic systems with the presence of delay, in order to show the appli-

cations of Theorem 3.3.1. Recently, there has been considerable attention towards hyperchaotic

systems and their applications to secure communication. Since hyperchaotic systems possess more
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than one positive Lyapunov exponent, unlike low-dimensional chaotic systems, it is believed that

hyperchaos might be a better tool for constructing a chaos-based secure communication scheme.

This topic will be discussed in detail in Chapter 5.

Hyperchaos was observed for the first time in 1986 from a real physical system - a fourth order

electrical circuit [76]. This simple circuit is autonomous and contains only one non-linear element,

a three-segment piecewise-linear resistor. All other elements are linear and passive, except an

active resistor, which has a negative resistance. By considering the circuit parameters from [76],

the dynamics can be written as




ẋ1

ẋ2

ẋ3

ẋ4




=




0 0 −2 0

0 0 0 −20
1 0 1 0

0 1.5 0 0







x1

x2

x3

x4




+




2g(x2 − x1)
−20g(x2 − x1)

0

0



, (3.57)

where x1 and x2 denote the voltage across the two capacitors in the circuit, whereas x3 and x4

denote the currents through the two inductors included in the same circuit. g is a piecewise-linear

function, given by

g(x2 − x1) = 3(x2 − x1)− 1.6(|x2 − x1 + 1| − |x2 − x1 − 1|). (3.58)

Let Φ1(x) =
[
0,−20g(x2 − x1), 0, 0

]T
, Φ2(x) =

[
2g(x2 − x1), 0, 0, 0

]T
and

A =




0 0 −2 0

0 0 0 −20
1 0 1 0

0 1.5 0 0



.

Then system (3.57) becomes

ẋ(t) = Ax(t) +Φ1(x(t)) +Φ2(x(t)). (3.59)

System (3.59) will represent the driving system in our model, whereas the response system will

be given by

{
u̇(t) = Au(t) +Φ1(u(t)) +Φ1(x(t− r̃))−Φ1(u(t− r̃)) +Φ2(u(t)), t 6= τi

∆u(t) = −Bie(t− ri), t = τi, i = 1, 2, . . . ,
(3.60)



110

−5 0 5
−5

0
5

−2
0
2

x
1x

2

x
3

−5 0 5
−5

0
5

−2
0
2

u
1

u
2

u
3

−5 0 5
−5

0
5

−2
0
2

x
1

x
2

x
4

−5 0 5
−5

0
5

−2
0
2

u
1

u
2

u
4

−5 0 5
−2

0
2

−2
0
2

x
1

x
3

x
4

−5 0 5
−2

0
2

−2
0
2

u
1

u
3

u
4

−5 0 5
−2

0
2

−2
0
2

x
2

x
3

x
4

−5 0 5
−2

0
2

−2
0
2

u
2

u
3

u
4

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Figure 3.8: Solution trajectories of systems (3.59) and (3.60) in the state spaces (a) (x1, x2, x3),

(b) (u1, u2, u3), (c) (x1, x2, x4), (d) (u1, u2, u4), (e) (x1, x3, x4), (f) (u1, u3, u4), (g) (x2, x3, x4), (h)

(u2, u3, u4).

where e(t) = x(t)− u(t). This new model resembles the one given by system (3.7). In this case,

system (3.60) is impulsively driven by system (3.59), using the matrices Bi , i = 1, 2, . . . , and

continuously driven by the signal Φ1(x(t − r̃)), where r̃ represents the transmission delay. The

solution trajectories of system (3.59) in the state spaces (x1, x2, x3), (x1, x2, x4), (x1, x3, x4) and

(x2, x3, x4), are displayed in Figure 3.8 (a), (c), (e) and (g), respectively, whereas the trajectories

of the system (3.60) in the state spaces (u1, u2, u3), (u1, u2, u4), (u1, u3, u4) and (u2, u3, u4) are

shown in Figure 3.8 (b), (d), (f) and (h), respectively. In addition, the time evolution of the state

variables of both systems (3.59) and (3.60) are shown in Figure 3.9 (a) and (b), respectively,

where the first component of each system is represented by a solid curve, the second component

by a dashed curve, the third component by a dashed-dotted curve and the fourth component
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Figure 3.9: Time evolution of the state variables for (a) system (3.59); (b) system (3.60).

by a dotted curve. Notice their identical behaviour, although they start from different initial

conditions. The identical behaviour is verified by considering the error system, given by





ė(t) = Ae(t) +Ψ1(x(t),u(t)) +Ψ1(x(t− r̃),u(t− r̃))
+Ψ2(x(t),u(t)), t 6= τi

∆e(t) = Bie(t− ri), t = τi i = 1, 2, . . . ,





t > t0

e(t) = φ(t− t0), t0 − r ≤ t ≤ t0,

(3.61)

where, Ψ1(x,u) = Φ1(x) − Φ1(u), Ψ2(x,u) = Φ2(x) − Φ2(u), φ(t − t0) is an initial constant

function and r = maxi{ri, r̃}. Theorem 3.3.1 gives the sufficient conditions under which the error

system (3.61) is equi-attractive in the large, i.e., e→ 0, as t→ 0.

Notice that
||Ψ1(x,u)|| = ||Φ1(x)−Φ1(u)||

= 20|g(x2 − x1)− g(x2 − x1)|
≤ 124(|e2|+ |e1|) ≤ 124||e||.

Similarly, it can be checked that ||Ψ2(x,u)|| ≤ 24.8||e||. With the above model, we have ||A|| =
20, 2λ̃ = 18.5, L1 = 248, L2 = 24.8 and a = 282.05. Thus applying equi-distant stabilizing

impulses with ∆i = ∆ = 0.002 and Bi = B = −I, for all i = 1, 2, . . . , where I is the identity

matrix, we obtain K′i = 0, Γ
(j)
i and Υ

(j)
i are not applicable because ki + k̃ = k̂ = 1,

L′i = L′ = exp
[
ak̂∆+

L1
a
eak̂∆ − L1

a

]
ri(||A||+ 2L1 + L2)

= 540.8 exp
[
0.5641k̂ + 0.0879276724e0.5641k̂ − 0.0879276724

]
ri
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Figure 3.10: Solution trajectories of system (3.61) with the presence of delay: (a) r̃ = 0.001 and

r = 0.0004. (b) r̃ = 0.001 and r = 0.001. (c) r̃ = 1 and r = 0.0021.

and Ji = J = (L′), for all i = 1, 2, . . .. Therefore, according to Theorem 3.3.1 and Remark 3.8,

system (3.61) is equi-attractive in the large if

ri ≤ rmax ≈
γ

540.8
exp

[
− 0.5641k̂ − 0.0879276724e0.5641k̂ + 0.0879276724

]
(3.62)

for all i = 1, 2, . . . . It follows that the maximum delay the error system can endure in the impulses,

for γ = 0.999, is given by

ri < rmax = 0.0009831121,

for all i = 1, 2, . . . . Notice that rmax, in this case, is smaller than ∆ = 0.002. From (3.62), we may

conclude that as r̃ →∞, then k̃ →∞ and rmax → 0, which reflects the nature of the relationship

between the two delay terms. In general, it can be checked that as r̃ increases, the upper bound

on ri, for all i = 1, 2, . . . , given by rmax, decreases.

From the above discussion, we may conclude that if the delay terms ri, for all i = 1, 2, . . . ,

are all bounded above by rmax, then Theorem 3.3.1 will guarantee that system (3.61) remains

equi-attractive in the large. This is reflected in the numerical simulations, employing the Runge-

Kutta method, presented in Figure 3.10 (a), where the initial constant function is given by

φ(t− t0) = φ(t) = (1.12,−1, 0.5,−0.2)T (t0 = 0), the integration step-size is taken to be 0.0001
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Figure 3.11: Solution trajectories of system (3.61) with r̃ = 0 and r = 0.0021.

and the delay terms are taken to be r̃ = 0.001 and ri = r = 0.0004, for all i = 1, 2, . . . . It can

be seen that the solution curves, presented by a solid curve for e1(t), dashed curve for e2(t),

dashed-dotted curve for e3(t) and dotted curve for e4(t), all converge to zero. In addition, Figure

3.10 (b) shows that the desired result of equi-attractivity in the large is still achieved, although

r̃ = 0.001 and ri = 0.001 > rmax, for all i = 1, 2, . . . , which indicates that the conditions of

Theorem 3.3.1 are sufficient conditions but not necessary, as discussed in Remark 3.10. Finally,

taking the delay term r̃ = 1 and ri = 0.0021, for all i = 1, 2, . . . , the synchronization is lost and

the equi-attractivity in the large of system (3.61) fails, as shown in Figure 3.10 (c). Actually,

without the presence of the delay term r̃, i.e.,when r̃ = 0, and keeping r = 0.0021, the numerical

simulation shows that system (3.61) remains equi-attractive in the large, as shown in Figure 3.11.

This kind of relationship between r̃ and rmax is already expected in view of equation (3.62) and

Remark 3.9.

Before we end this chapter, we shall have a few comments about Lyapunov exponents of the

error dynamics between the two hyperchaotic systems employed in the previous example. The

numerical method we developed in Section 2.3, which we used to analyze Lyapunov exponents

of synchronization error dynamics between identical chaotic systems, will fail when dealing with

delayed systems. The reason lies behind the fact that delay will force us to consider previous

impulses in addition to the one at which the system is analyzed at. For example, when the

time frames, P , were constructed, and the Lyapunov exponents were analyzed over the intervals

[iP, iP + Q) and [iP + Q, (i + 1)P ), for i = 0, 1, . . . , the method becomes inapplicable, because

the delay will imply that for the ith impulse, we also need to consider the (i− ki − k̃)th impulse

as well and the inequality (2.48) will not be valid anymore. This opens the door to an unresolved

problem of developing a technique which will be able to accommodate delay and be able to find

the Lyapunov exponents associated with it.



Chapter 4

Spatiotemporal Chaos Control and

Synchronization

The study of complex phenomena in spatially extended dynamical systems, such as coupled

map lattices [60,61], coupled ordinary differential equations [59,61] and partial differential equa-

tions [60, 61], can provide insights into the behaviour found in such diverse fields as biology,

chemistry and physics. An understanding of the rich variety of modes that can be excited due to

the interplay between spatial and temporal behaviour may provide a clue to phenomena like pat-

tern formation in natural systems and turbulence. Spatially extended dynamical systems often

serve as standard models for investigating the phenomena occurring in living cells, tissues, neu-

ral networks, physiological systems and ecosystems, hydrodynamics, plasma physics, lasers and

chemical reaction systems. The most complicated type of dynamics encountered in spatially ex-

tended dynamical systems is spatiotemporal chaos, when the observed trajectories exhibit chaotic

properties both in time and space, thus characterized by positive Lyapunov exponents [21]. One

of the properties of oscillations generated by non-linear dynamical systems is their ability to be

synchronized. We have discussed and analyzed this phenomenon with low dimensional chaotic

and hyperchaotic dynamical systems. We shall extend this work to spatially extended systems.

In particular, we shall study the synchronization of two or more non-linear partial differential

equations which generate spatiotemporal chaos.

In the next section, we shall introduce several synchronization methods presented in the

literature by employing two one-dimensional coupled complex Ginzburg-Landau equations (the

expression “one dimensional” refers to the concept of one spatial dimension). In Section 4.2, the
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concept of impulsive partial differential equations and some of the theory associated with it, such

as existence, uniqueness and stability (for linear ones), will be given. Then, in Section 4.3, we

shall generalize the ideas of stability theory of linear impulsive partial differential equations to

non-linear equations by attempting to impulsively control the spatiotemporal chaotic Kuramoto-

Sivashinsky equation. In Section 4.4, sufficient conditions to impulsively synchronize two identical

chaotic systems, called Grey-Scott models, will be derived and several supportive simulation

results will be presented. Finally, in the last section, we shall analyze the Lyapunov exponents

of the error dynamics between the impulsively synchronized Grey-Scott models.

4.1 Introduction

So far we have only considered the synchronization of chaos in systems which had a finite number

of degrees of freedom or, in other words, a finite-dimensional phase space. Therefore one impor-

tant class of coupled systems was left out of our consideration. In this section, we shall discuss

briefly the possibility of synchronization of fluctuations of coupled chaotic fields in spatially ex-

tended systems which form one particular class of coupled systems with an infinite number of

degrees of freedom.

The phenomenon of synchronization of chaos in spatially extended systems (termed spatiotem-

poral chaos) remains quite uninvestigated. As a result, it is not very clear exactly how important

this phenomenon is in physics and engineering. However, there are quite a few physical sys-

tems for which the observation of synchronization of coupled spatiotemporal chaotic fields would

definitely be important.

Firstly, this would be an important step for understanding the dynamics of multi-layered

natural and artificial neural networks. It has been hypothesized that a neural network must

be in a chaotic state to successfully process information [99]. At the same time it is clear that

information processing becomes impossible if the behaviours of different layers in the network are

completely uncorrelated. Therefore, in a properly arranged chaotic neural network, the chaotic

excitations in coupled neural layers must be synchronized.

Secondly, the synchronization of chaotic fields would be relevant to analysis of some physical

systems where physically separated spatially extended systems interact through some mechanism.

This class includes, for instance, thermal convection in multi-layered media and oscillations in

long coupled Josephson junctions [99].

Lastly, the behaviour of many physical systems is described by the interaction of quite few
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spatial modes. These modes may be, for example, wave packets with close frequencies but with

different propagation speeds which are frequently observed in binary convection patterns and in

electrohydrodynamical convection in liquid crystals, or, on the contrary, waves propagating with

close speeds but having different frequencies and wave numbers, as it occurs in bi-harmonically

excited gravity-capillary ripples [99]. In many cases, the behaviour of partial wave fields can

be described by coupled equations for the slow amplitudes of these wave fields. Thus rather

than being spatially separated, these fields are separated due to the fact that they describe the

amplitudes of orthogonal modes.

Although spatially extended systems have infinitely many degrees of freedom and as such,

in principle, can exhibit very complicated behaviour practically indistinguishable from noise,

it is quite common that chaotic oscillations in these systems correspond to a low dimensional

attractor. In such situations, the problem of synchronization of spatiotemporal chaos may seem

no different from synchronization of chaos in systems with a small number of degrees of freedom.

However, although these problems have many similarities, a clear distinction should be made.

The effects of synchronization of spatiotemporal chaos, generated by spatially extended partial

differential equations, can be much more dramatic. If two chaotic systems with low dimensional

phase-spaces are coupled, even without synchronization, the dimension of the resulting attractor

will be low. In the case of spatially extended systems, the coupling between two systems by itself

may lead to excitation of many additional degrees of freedom. Thus, in contrast with what one

observes in coupled finite dimensional systems, the loss of synchronization between chaotic fields

may result to the onset of a regime which is characterized by a dimension much larger than the

dimension of the chaotic oscillations in coupled systems. This dimension can become so high that

the fluctuations in the system can be treated as noise in all practical situations. Therefore the

onset of synchronization, in this case, would mark the point of transition from noise to chaos with

clear consequences for the choice of methods and models used for the description of the system.

Although the general analysis of synchronization of spatiotemporal chaos is very complicated

and goes beyond the scope of this thesis, the principal possibility of such synchronization can be

clearly demonstrated analytically and numerically. To do this we shall consider the simplest form

of spatiotemporal chaotic synchronization which is the synchronization of coupled chaotic fields

which are generated by identical (apart from the coupling term) partial differential equations.

When the coupled systems are identical, it is easy to obtain the condition under which two

systems can exhibit synchronized spatiotemporal chaos in the case when the coupling is of a special

linear form. For simplicity, we shall discuss, as for low-dimensional chaotic and hyperchaotic
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systems, the case of uni-directional coupling only. We write the equation for complex variables

of the driving field in the form

∂u

∂t
= F(u,u∗, r, t) + L̂

(
∂

∂r

)
u, (4.1)

where u(t, r) = (u1, u2, . . . , um)T is the vector of complex amplitudes for the wave fields, u∗ =

(|u1|, |u2|, . . . , |um|)T , L̂(∂/∂r) is the linear operator which contains the derivatives with respect to

space variables. Equation (4.1) is a general form of many non-linear PDE models which are used

for studying spatiotemporal chaotic behaviour. We consider complex u and complex function F

(rather than real) to keep this analysis as general as possible and so that it can be easily applied

to the analysis of synchronization of chaotic wave fields with u being the complex amplitudes of

the partial wave modes. We use u(t, r) to drive the response system which is identical to the

drive system except for the coupling term

∂v

∂t
= F(v,v∗, r, t) + L̂

(
∂

∂r

)
v − Ê(v − u), (4.2)

where v(t, r) = (v1, v2, . . . , vm)T is the vector of variables of the response fields. The matrix

Ê describes the coupling between the drive system (4.1) and the response system (4.2). Let us

assume that both systems are bounded in space and have identical boundary conditions. One can

see that there is a solution of the response system (4.2) which corresponds to identical behaviour

of the vectors of complex amplitudes v(t, r) and u(t, r), i.e.,

u(t, r) = v(t, r), (4.3)

while both of them can be chaotic in space and in time. It should be emphasized here that the

stability of this solution depends on the parameters of the coupling matrix Ê. The above set up

models two different types of synchronization, which we shall discuss now, and, in fact, can also

model impulsive synchronization, which we shall discuss in Section 4.4, although we shall develop

the model differently in Section 4.3.

As an example, let us consider a real coupling in the form

Ê = εI, (4.4)

where ε is a positive real scalar and I is, as usual, the identity matrix of appropriate dimensions.

We shall assume that the rate of instability which is responsible for the spatiotemporal chaos in
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the drive system is restricted by some limited value. This instability, in the case of spatiotemporal

chaos, is characterized by the spectrum of Lyapunov exponents. Usually the spectrum is limited

from above and therefore this assumption is valid. Suppose that the spectrum of Lyapunov

exponents of the solution generated by the system (4.1) has values which are less than some value

Λ.

Let us consider the evolution of the perturbations ξ(t, r) against the background of the solution

of the form (4.3). If these perturbations are small, they are described by the following linearized

system
∂ξ

∂t
= (JuF− εI) ξ + Ju∗Fξ

∗ + L̂

(
∂

∂r

)
ξ, (4.5)

where ξ := v − u and JuF, Ju∗F are the Jacobian matrices calculated for a particular solution

of (4.3), with respect to u and u∗, respectively. We introduce a new vector field η(t, r) which is

defined by the equation

ξ = η exp(−εt). (4.6)

Using (4.6), the linearized equation (4.5) can be rewritten in the form

∂η

∂t
= JuFη + Ju∗Fη

∗ + L̂

(
∂

∂r

)
η. (4.7)

It is easy to check that equations (4.6) and (4.7) describe the growth of small perturbations

away from a particular solution u(t, r) of the drive system (4.1) in the linear approximation. As

we assumed earlier, the characteristic rate at which these perturbations grow is not faster than

C exp(Λt), for some positive constant C. Therefore the perturbation vector ξ will decay with

t→ 0 if the coupling factor is strong enough to suppress the instability, i.e., ε > Λ.

Thus we demonstrated that a chaotic field can be synchronized to a chaotic driving field by

means of dissipative coupling of a special form. The synchronous motion is linearly stable if

the coupling coefficient is larger than the upper bound of the spectrum of Lyapunov exponents.

When this condition is satisfied, the fields in two systems become synchronized under a proper

choice of initial conditions [99].

To demonstrate the possibility of synchronization of coupled fields, we shall study numerically

a system of two coupled complex Ginzburg-Landau equations for complex amplitudes u(t, x) and

v(t, x), given by
∂u

∂t
= u− (1− iβ)|u|2u+ (1 + iα)

∂2u

∂x2
(4.8)

∂v

∂t
= v − (1− iβ)|v|2v + (1 + iα)

∂2v

∂x2
+ ε(u− v). (4.9)
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Figure 4.1: The principle of the sensor coupling scheme.

The complex Ginzburg-Landau equation is a very common model used for the description of

dynamics of wave fields in non-equilibrium media close to the threshold of Hopf bifurcation.

In [99], a numerical analysis of the synchronization of systems (4.8) and (4.9) was provided.

The parameters α and β were chosen to be α = β = 4. At these values, u(t, x) exhibited

spatiotemporal amplitude chaos with Lyapunov dimension as high as Dλ = 67.7 and with the

largest Lyapunov exponent equal to Λ = 0.416. It was shown, in [99], by numerical simulations,

that for a coupling parameter ε > Λ = 0.416, the synchronization was achieved as predicted by

the analysis shown earlier. In fact, it was noticed that, by running more simulations for values

of ε < Λ, no synchronization between systems (4.8) and (4.9) could be achieved.

An extension of the above coupling technique was further developed in [47–49,103] by intro-

ducing sensor coupling method. In this proposed method, a finite number of coupling signals,

given in terms of local spatial averages, were used. These elements are called sensors and, for

one-spatial-dimensional systems, they measure scalar time series of the form

u(t) =
1

l

nd+l/2∫

nd−l/2

u(t, x)dx, n = 1, 2, . . . , N, (4.10)

where N is the total number of sensor elements, d is the distance between the centers of two

consecutive elements and l is the width of each sensor (see Figure 4.1).

Because of the exponential decrease of spatial correlations in extended chaotic systems, a

finite number N of coupling signals that contain all the necessary information to reconstruct the
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whole state in the synchronization process, is needed for this coupling technique [47]. In fact,

it was realized that an equidistant arrangement of N sensors with distance d = L/N , turned

out to be nearly optimal (for periodic boundary conditions) for this coupling scheme [49]. The

coupling term chosen in [47–49, 103] was a unidirectional dissipative coupling. This method was

implemented by measuring N sensor signals in the response system at the same positions as the

ones in the drive system and applying the dissipative coupling term with coupling strength ε,

given by

f(un,vn) =





ε(un − vn), nd− l

2
≤ x ≤ nd+

l

2

0, elsewhere,

(4.11)

at each sensor position n = 1, 2, . . . , N, respectively, as shown in Figure 4.1.

Once more, the one-dimensional complex Ginzburg-Landau equation, described by equation

(4.8), was used in this model (in addition to the Kuramoto-Sivashinsky equation which will be

used in the next section). The response system with the coupling factor was given by

∂v

∂t
= v − (1− iβ)|v|2v + (1 + iα)

∂2v

∂x2
+ f(un, vn) (4.12)

which would evolve between the sensor locations freely in time. It was established in [47,49], using

numerical simulations, that, for particular values of the parameters of the systems (4.8) and (4.11)

(i.e., for phase turbulence and for defect turbulence), the two systems will synchronize when the

dissipative coupling factor (4.10), with an appropriate choice of the parameter ε, is applied. In

fact, several numerical results regarding the relationship between the parameters of systems (4.8)

and (4.11) and the Lyapunov dimension, DL, of the synchronization error between them, were

derived in [47,49] (similar results are obtained for the Kuramoto-Sivashinsky equation [48,103]).

For example, it was demonstrated that DL ≈ 0.332L in the case of defect turbulence (α = 1.2 and

β = 2) and DL ≈ 0.102L for the case of phase turbulence (α = 0.7 and β = 2). Furthermore, a

minimal number of sensors N needed for synchronization, using different but fixed values of l and

ε, was obtained by numerically plotting a linear curve corresponding to the relationship between

N and L. Additional numerical results were also obtained when considering the relationship

between the two pairs (N, l) and (L, ε), keeping other parameters fixed, to guarantee accurate

synchronization.

Actually, there are more proposed methods of synchronization of partial differential equations,

which generate spatiotemporal chaos, presented in the literature. Two of these methods are:
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- Synchronizing PDE’s by means of a finite number of local tiny perturbations selected by

an adaptive technique [12,13].

- Synchronizing PDE’s by using an extended time-delay auto-synchronization algorithm [28].

Finally, it remains to discuss the possibility of synchronizing PDE’s which generate chaos,

using impulsive techniques. The work of Kocarev et al. [60, 61] motivates us to develop an

impulsive method to synchronize identical non-linear PDE’s and develop an analytical approach

towards studying the dynamics of the synchronization error between the systems involved. We

begin this study by first introducing impulsive methods to control the dynamics of spatiotemporal

chaotic systems whose structures resemble the system given in (4.1). Due to the fact that there

is a lack of standard set of properties that a group of PDE’s would possess (i.e., different PDE’s

have different structural properties), we shall take specific system of PDE’s to develop the theory

related to impulsive control, then we shall do exactly the same concerning the theory of impulsive

synchronization. In other words, we shall take the Kuramoto-Sivashinsky equation to discuss

impulsive control, and the Grey-Scott model to discuss impulsive synchronization.
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4.2 Impulsive Partial Differential Equations

Consider the impulsive initial boundary value problem presented by the one-dimensional (i.e.,

one spatial dimension) nth order partial differential equation given by




∂u

∂t
= f(t, x,u,

∂u

∂x
,
∂2u

∂x2
, . . . ,

∂nu

∂xn
), t 6= τk

∆u(t, x) = Qku(t, x), t = τk





t ∈ R+, k = 1, 2, . . .

u(0+, x) = u0(x), x ∈ [0, L]

u(t, 0) = u(t, L) = h0(t), t ∈ R+

∂u

∂x
(t, 0) =

∂u

∂x
(t, L) = h1(t), t ∈ R+,

...

∂n1u

∂xn1
(t, 0) =

∂n1u

∂xn1
(t, L) = hn1(t), t ∈ R+,

(4.13)

for some n1 such that 0 ≤ n1 < n, where

∂u

∂t
= (

∂u1
∂t

,
∂u2
∂t

, . . . ,
∂um
∂t

)T ,

∂u

∂x
= (

∂u1
∂x

,
∂u2
∂x

, . . . ,
∂um
∂x

)T ,

∂2u

∂x2
= (

∂2u1
∂x2

,
∂2u2
∂x2

, . . . ,
∂2um
∂x2

)T ,

...

∂nu

∂xn
= (

∂nu1
∂xn

,
∂nu2
∂xn

, . . . ,
∂num
∂xn

)T ,

∆u(τk, x) := u(τ+k , x) − u(τ−k , x), for all x ∈ [0, L], u(τ+k , x) = limt→τ+
k
u(t, x), for a fixed x ∈

[0, L], and the moments of impulse satisfy 0 = τ1 < τ2 < . . . < τk < . . . and limk→∞ τk = ∞.



123

The matrices Qk are m × m constant matrices satisfying ||Qk|| :=
√
λmax(QT

kQk) < L1, for

every k = 1, 2, . . . and some L1 > 0. Let f : R+ × [0, L] × Rm × . . . → Rm be continuous on

(τk, τk+1]× [0, L]×Rm× . . .→ Rm, and f(τ+k , x,u, ∂u/∂x, ∂
2u/∂x2, . . . , ∂nu/∂xn) exist for every

k = 1, 2, . . .. Suppose that n = 2 in the above model and assume that f satisfies Lipschitz

condition with respect to u, ∂u/∂x and ∂2u/∂x2. Furthermore, assume that there exist functions

f1(t,u) and f2(t,u) such that

f1(t,u) ≤ f(t, x,u,0,0) ≤ f2(t,u),

for every (t, x,u) ∈ [0, T ] × [0, L] × Rm, where the inequality holds componentwise and T is a

positive number, and that there exist solutions γ(t) and ρ(t) to the systems given by





γ̇(t) = f1(t,γ), t 6= 0, τk, T, 1 ≤ k ≤ m1

∆γ(τk) = Qkγ(τk), 1 ≤ k ≤ m1

γ(0+) = γ0

and 



ρ̇(t) = f1(t,ρ), t 6= 0, τk, T, 1 ≤ k ≤ m1

∆ρ(τk) = Qkρ(τk), 1 ≤ k ≤ m1

ρ(0+) = ρ0,

respectively, where τm1 ≤ T. If ρ0 ≤ u0(x) ≤ γ0 on [0, L] and if there exist functions p ∈
C((0, T )× {0, L},R+), such that, for i = 0, 1, . . . , n1,

p(t, x)ρ(t) ≤ hi(t) ≤ p(t, x)γ(t),

t 6= τk, k = 1, 2, . . . ,m1, then there exists a local solution u(t, x) for system (4.13) satisfying

ρ(t) ≤ u(t, x) ≤ γ(t)

provided that the original partial differential equation, in (4.13), without the impulses, has a

solution [27]. For x ∈ [0, L], let u(t, x) := u(t, x,u0(x)) be any solution of (4.13) satisfying

u(0+, x) = u0(x) and u(t, x) be left continuous at each τk > 0, k = 1, 2, . . . , in its interval of

existence, i.e., u(τ−k , x) = u(τk, x), for every x ∈ [0, L].
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Definition 4.2.1 Suppose that u(t, x) : R+ × [0, L] → Rm for some m > 0, where u is of class

L2[0, L] with respect to x. Then || · ||2 of u(t, x) is defined by

||u(t, x)||2 :=





L∫

0

||u(t, x)||2dx





2

,

where || · || is the Euclidean norm.

In order to study the dynamics of particular systems whose structure resemble system (4.13),

we shall introduce the following classes of functions and definitions. Let

Sc(M) := {u ∈ Rm : ||u||2 ≥M},
Sc(M)0 := {u ∈ Rm : ||u||2 > M},
ν0(M) := {V : R+ × Sc(M) → R+ : V (t,u) ∈ C((τk, τk+1] × Sc(M)), locally Lipschitz in u

and V (τ+k ,u) exists for k = 1, 2, . . .}, where M ≥ 0.

We shall now extended the definitions of the upper right derivative, equi-attractivity and

uniform attractivity in the large properties that we had for ODE’s to spatially extended systems

represented by PDE’s.

Definition 4.2.2 Let M ≥ 0 and V ∈ ν0(M). Define the upper right derivative of V (t,u) with

respect to the continuous portion of system (4.13), for (t,u) ∈ R+ × Sc(M)0 and t 6= τk, by

D+t V (t,u) := lim
δ→0+

sup
1

δ

[
V (t+ δ,u+ δf(t, x,u,

∂u

∂x
,
∂2u

∂x2
, . . . ,

∂nu

∂xn
))− V (t,u)

]
.

Definition 4.2.3 Solutions of the impulsive system (4.13) are said to be

(S1) equi-attractive in the large if for each ε > 0, α > 0 and t0 ∈ R+, there exists a number

T := T (t0, ε, α) > 0 such that ||u(t0, x)||2 < α implies ||u(t, x)||2 < ε, for t ≥ t0 + T ;

(S2) uniformly attractive in the large if T in (S1) is independent of t0.

From the definition of equi-attractivity in the large, it can been seen that the solutions of sys-

tem (4.13), which possess this property, will converge to zero, with respect to the || · ||2, no

matter how large ||u(t+0 , x)||2 is. In other words, limt→∞ ||u(t, x)||2 = 0. Moreover, the proper-

ties (S1) and (S2) in Definition 4.2.3 become identical for autonomous systems [64], i.e., when

f(t, x,u, ∂u/∂x, . . . , ∂nu/∂xn) = f(x,u, ∂u/∂x, . . . , ∂nu/∂xn). Therefore when dealing with au-

tonomous systems, the uniform terminology will be automatically removed.
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Figure 4.2: Spatiotemporal propagation of the Kuramoto-Sivashinsky equation when L = 50 and

without the impulses.

The above definitions will be used heavily in exploring the conditions under which the solutions

generated by impulsive PDE’s are equi-attractive in the large.

It should be mentioned that, in [4–6], some comparison results, involving first order nonlinear

PDE’s, were obtained. A specific class of PDE’s was chosen and comparison systems, similar

to those obtained for impulsive ODE’s, were designed to construct comparison results regarding

asymptotic stabilities of solutions of PDE’s. In other words, Bainov et al., in [4–6], were able

to establish that, under certain conditions, the asymptotic stability of the comparison systems

imply the asymptotic stability of the the impulsive PDE’s. Unfortunately, these results do not

apply to the models discussed in the coming theory, because the models discussed in the next

two sections are not first order and do not satisfy many conditions required to apply the results

stated in [4–6].
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4.3 Impulsive Control of the K-S Equation

Consider the impulsive control of the Kuramoto-Sivashinsky equation represented by the impul-

sive initial boundary value problem given by




ut + (u2)x + uxx + uxxxx = 0, t 6= τk

∆u(t, x) = −qku(t, x), t = τk





t ∈ R+, k = 1, 2, . . .

u(0+, x) = u0(x), x ∈ [0, L]

u(t, 0) = u(t, L) = 0, t ∈ R+

ux(t, 0) = ux(t, L) = 0, t ∈ R+,

(4.14)

where qk > 0, k = 1, 2, . . . , and L is the only free parameter. Equation (4.14), with the absence of

the impulses, exhibits extensive chaos, which means that the Lyapunov dimension of the attractor

grows linearly with the system size L [21], as shown in Figure 4.2.

The following lemma gives upper bounds on ||u(t, x)||2 and ||ux(t, x)||2 in terms of ||uxx(t, x)||2.
These inequalities are very similar to the Poincaré inequality [75,98].

Lemma 4.3.1 Let J = [0, L] and u ∈ C2(J). If u(0) = u(L) = 0, then

||u(x)||2 ≤
L

π
||ux(x)||2. (4.15)

Proof: To prove this lemma, we shall apply variational methods to obtain a value for the

parameter R defined by the equation

1

R
= max

H

||u(x)||22
||ux(x)||22

, (4.16)

where H = {u ∈ C2(J)|u(0) = u(L) = 0}. Let I1 = ||u||22 and I2 = ||ux||22. The optimization

problem, described by equation (4.16), can be solved using the Euler-Lagrange equations which

can be found from the equation

d

dκ

I1(u+ κη)

I2(ux + κηx)

∣∣∣
κ=0

= δ(
I1
I2
) =

I2δI1 − I1δI2
I22

=
1

I2

(
δI1 −

I1
I2

∣∣∣
max

δI2

)
=

1

I2

(
δI1 −

1

R
δI2

)
,
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where η is an arbitrary function in H,

δI1 =
d

dκ

L∫

0

(u+ κη)2dx
∣∣∣
κ=0

(4.17)

and

δI2 =
d

dκ

L∫

0

(ux + κηx)
2dx
∣∣∣
κ=0

. (4.18)

Thus the solution of the optimization problem above must satisfy

δI1 −
1

R
δI2 = 0. (4.19)

Equation (4.19) is similar to the classical approach in calculus for finding the critical points of a

differentiable function by equating its first derivative (or partial derivatives) to zero in order to

obtain its maximum and minimum values over a given region. Substituting equations (4.17) and

(4.18) into equation (4.19), leads to

L∫

0

(uη − 1

R
uxηx)dx = 0.

Integrating the second term by parts, we obtain

L∫

0

η(uxx +Ru)dx = 0.

Since η is an arbitrary function in H, we conclude that

uxx +Ru = 0 with u(0) = u(L) = 0,

which is a linear second order ordinary differential equation with two point boundary conditions.

The general solution of the differential equation is given by

u(x) = C1 sin(R
1/2x) + C2 cos(R

1/2x),

where C1 and C2 are arbitrary constants to be determined. Since u(0) = 0, we conclude that

C2 = 0. Notice that u(x) = 0 is a trivial solution and not interesting, so we shall set C1 = 1 and

thus

u(x) = sin(R1/2x).



128

In this case, the only remaining parameter to be determined is R. Since u(L) = 0, it follows that

R = n2π2/L2, n = ±1,±2, . . . . This implies that the maximization problem, given in equation

(4.16), is attained when n = 1 and R = π2/L2. In other words, due to the fact that u ∈ H, we

have, for every x ∈ J ,

||u(x)||22
||ux(x)||22

≤ L2

π2
=⇒ ||u(x)||22 ≤

L2

π2
||ux(x)||22,

as required by equation (4.15). ¤

The next Theorem gives the required criteria for system (4.14) to be equi-attractive in the

large. It provides us with a tool towards impulsively controlling the chaotic behaviour of the

Kuramoto-Sivashinsky equation by forcing the solution to converge to zero.

Theorem 4.3.1 Let q = mink qk and ∆k+1 = τk+1 − τk ≤ ∆, for k = 1, 2, . . . and for some

∆ > 0. Then the impulsive Kuramoto-Sivashinsky equation (4.14) is equi-attractive in the large

if

(1− q)2eζ∆ < 1, (4.20)

where ζ = 1− (π/L)4.

Proof: We shall prove this theorem by choosing an appropriate Lyapunov function V (u(t, x)) ∈
ν0(0). Let

V (u(t, x)) := ||u(t, x)||22 =
L∫

0

u(t, x)2dx.

Then, by system (4.14) with its boundary conditions, by Definition 4.2.2 and by applying inte-
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gration by parts, we obtain, for all t ∈ (τk, τk+1], k = 1, 2, . . . ,

D+t V (u(t, x)) =

L∫

0

2u(t, x)ut(t, x)dx

=

L∫

0

[
− 4u(t, x)2ux(t, x)− 2u(t, x)uxx(t, x)− 2u(t, x)uxxxx(t, x)

]
dx

= −4

3
u(t, x)3

∣∣∣
L

0
− 2

L∫

0

u(t, x)uxx(t, x)dx− 2u(t, x)uxxx(t, x)
∣∣∣
L

0

+2ux(t, x)uxx(t, x)
∣∣∣
L

0
− 2

L∫

0

uxx(t, x)
2dx

= −2
L∫

0

u(t, x)uxx(t, x)dx− 2

L∫

0

uxx(t, x)
2dx

≤
L∫

0

u(t, x)2dx+

L∫

0

uxx(t, x)
2dx− 2

L∫

0

uxx(t, x)
2dx

= ||u(t, x)||22 − ||uxx(t, x)||22.

However, by Lemma 4.3.1, we have

||u(t, x)||22 ≤ L2/π2||ux(t, x)||22.

Since ux(t, x) satisfies the conditions of Lemma 4.3.1, we also have

||ux(t, x)||22 ≤ L2/π2||uxx(t, x)||22.

Thus

D+t V (u(t, x)) ≤ ||u(t, x)||22 −
π4

L4
||u(t, x))||22 = ζV (u(t, x)).
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Hence, for all t ∈ (τk, τk+1], k = 1, 2, . . . , we obtain

V (u(t, x)) ≤ eζ(t−τk)V (u(τ+k , x)), (4.21)

and

V (u(τk+1, x)) ≤ eζ∆k+1V (u(τ+k , x)), (4.22)

Moreover, according to the structure of the impulses defined in (4.14), we have, for all x ∈ [0, L]

and k = 1, 2, . . . ,

u(τ+k , x) = u(τk, x)− qku(τk, x) = (1− qk)u(τk, x) =⇒

L∫

0

u(τ+k , x)
2dx =

L∫

0

(1− qk)2u(τk, x)2dx.

It follows that

V (u(τ+k , x)) = (1− qk)2V (u(τk, x)). (4.23)

Hence, by using inequalities (4.22) and (4.23), we have, for every k = 1, 2, . . . ,

V (u(τ+k , x)) ≤ (1− qk)2eζ∆k+1V (u(τk, x)) ≤ (1− q)2eζ∆V (u(τk, x)). (4.24)

By inequalities (4.20) and (4.24), we can conclude that

lim
k→∞

V (u(τk, x)) = 0.

Therefore, by inequality (4.21), we have, for all t ∈ (τk, τk+1] and k = 1, 2, . . . ,

V (u(t, x)) ≤ eζ∆k+1V (u(τ+k , x))

≤ (1− qk)2eζ∆k+1V (u(τk, x))

≤ (1− q)2eζ∆V (u(τk, x))→ 0, as k →∞.

It follows that

lim
t→∞

V (u(t, x)) = 0.

In other words the solutions to the impulsive Kuramoto-Sivashinsky equation, defined by (4.14),

are equi-attractive in the large. ¤
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Remark 4.1: From Theorem 4.3.1, we see that the spatiotemporal chaotic behaviour (or when

π/L << 1) of the Kuramoto-Sivashinsky equation, described by the partial differential equation

in (4.14), is impulsively controlled and the solutions are driven towards the equilibrium solu-

tion u(t, x) = 0, achieving the desired equi-attractivity in the large property. The proof is done

by reducing the problem from a PDE problem into an ODE involving the Lyapunov function

V (u(t, x)) = ||u(t, x)||22 which is easier to handle.

Remark 4.2: From the proof of Theorem 4.3.1, we may conclude that if the ratio π/L is

chosen to be strictly greater than 1 (by taking smaller spatial range L), the solutions of the

Kuramoto-Sivashinsky equation will remain equi-attractive in the large even with the absence

of the impulses. A numerical example showing this phenomenon will be given in this section.

However, if π/L < 1, then the impulses are needed to stabilize the system provided that these

impulses satisfy the condition stated in Theorem 4.3.1; namely, inequality (4.20).

Remark 4.3: The condition in Theorem 4.3.1 is a sufficient condition but not necessary. In

other words, the impulsive partial differential equation described by system (4.14) may remain

equi-attractive in the large even if inequality (4.20) is not satisfied. We shall demonstrate this

result in the numerical example given in this section.

Remark 4.4: Inequality (4.20) reflects the type of relationship that exists between the magni-

tude of the impulses (represented by the parameter q) and the interval between two consecutive

impulses (represented by the parameter ∆). Thus the larger the interval ∆k is, the stronger

the magnitude of the impulse qk, for all k ≥ K for some K ≥ 1, is required to maintain the

equi-attractivity in the large property (see Figure 4.3). An estimate on the basin of attraction

can be obtained by solving for ∆:

∆ < ∆max =
− ln(1− q)2

ζ
, for 0 < q < 2.

Remark 4.5: The Kuramoto-Sivashinsky equation is a spatiotemporal chaotic system. This

means that the solutions to system (4.14) are equi-bounded solutions. Thus if the conditions

of Theorem 4.3.1 are satisfied, then this indicates that the solutions of (4.14) are not just equi-

attractive in the large only, but also equi-Lagrange stable.

The following numerical examples illustrate Theorem 4.3.1 and Remarks 4.1-4.4. When L =
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Figure 4.3: Basin of attraction of ∆ with respect to q for different values of L.

50, the Kuramoto-Sivashinsky equation, given in (4.14), exhibits chaotic behaviour in both time

and spatial dimensions. If we take the magnitude of the impulses to be qk = q = 0.4, for all

k = 1, 2, . . . , then Theorem 4.3.1 indicates that the maximum impulse duration permissible to

guarantee the equi-attractivity property (i.e., convergence to the equilibrium solution) is given

by ∆max ≈ 1.022 sec. In other words, if the impulse durations satisfy ∆k < ∆max, k = 1, 2, . . . ,

then limt→∞ ||u(t, x)||2 = 0. This can be shown in Figure 4.4, where the time of the convergence

is approximately 0.12 sec. In this numerical simulation and the remaining ones in this section,

a MacCormack’s method [67, 68], with first forward differencing and then backward differencing

to achieve second order accuracy, is applied. The time step size is taken to be 0.0001 sec.

and the number of spatial points is taken to be 150. Moreover, in all of these simulations, the

initial condition is taken to be u0(x) = 0 with strong perturbations in the middle. Increasing

the magnitude of the impulses to qk = q = 0.7, k = 1, 2, . . . , the maximum impulse duration

predicted by Theorem 4.3.1 becomes ∆max = 2.408 sec. Figure 4.5 shows the convergence of

||u(t, x)||2 to zero with impulse duration ∆k = ∆ = 0.1 sec., for k = 1, 2, . . . , which is consistent

with that of Theorem 4.3.1. This illustrates the type of relationship that exists between the

impulse durations and the magnitude of the impulses, as mentioned in Remark 4.4. Furthermore,

when applying impulses with magnitude qk = q = 0.2, k = 1, 2, . . . , then according to Theorem

4.3.1, ∆max = 0.4463 sec. However, the impulsive control of the Kuramoto-Sivashinsky equation

can still be achieved with impulse durations given by ∆k = ∆ = 0.45 > ∆max (see Figure 4.6).
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Figure 4.4: ||u(t, x)||2 converging to zero for ∆ = 0.01, qk = q = 0.4 and L = 50.
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Figure 4.5: ||u(t, x)||2 converging to zero for ∆ = 0.1, qk = q = 0.7 and L = 50.
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Figure 4.6: ||u(t, x)||2 converging to zero for ∆ = 0.45, qk = q = 0.2 and L = 50.
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Figure 4.7: ||u(t, x)||2 not converging to zero for ∆ = 1, qk = q = 0.2 and L = 50.
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Figure 4.8: ||u(t, x)||2 converging to zero without the presence of impulses for L = 2.
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This indicates that condition (4.20), in Theorem 4.3.1, is a sufficient condition but not necessary,

as we discussed in Remark 4.3. In other words, the equi-attractivity property was still achieved

even if the impulses lie outside the basin of attraction described by Figure 4.3. If these impulses lie

drastically far from the basin of attraction, then the solutions to system (4.14) will not converge

to zero, as shown in Figure 4.7, where ∆k = ∆ = 1 > ∆max and qk = q = 0.2. Finally, we show

in Figure 4.8, the convergence of the solutions of the Kuramoto-Sivashinsky equation to zero

without the impulses because L = 2 and (π/L) > 1, as was mentioned in Remark 4.2.

4.4 Impulsive Synchronization of the Grey-Scott Model

We have been successful in using impulsive control methods to control the behaviour of the

Kuramoto-Sivashinsky equation by making its solutions equi-attractive in the large, although

the original PDE exhibited spatiotemporal chaotic behaviour. We will extend this work and

investigate the impulsive synchronization of two identical spatiotemporal chaotic systems. The

Grey-Scott model [87] will be used as the spatiotemporal chaos generator. The coming theory

is definitely applicable to the synchronization of two Kuramoto-Sivashinsky equations as well as

any other spatiotemporal chaotic system exhibiting the same structure.

The Grey-Scott cubic auto-catalysis model is a reaction-diffusion system which corresponds

to two reactions which are both irreversible. This model exhibits mixed mode spatiotemporal

chaos and is described by the following equations.

∂u1
∂t

= −u1u22 + a(1− u1) + d1 52 u1

∂u2
∂t

= u1u
2
2 − (a+ b)u2 + d2 52 u2,

(4.25)

where b is the dimensionless rate constant of the second reaction, a is the dimensionless feed

rate and d1 and d2 are the diffusion coefficients. The system size is 2.5× 2.5 and the boundary

conditions are periodic. Detailed stability and bifurcation analysis of the above model is given

in [87]. Figures 4.9 and 4.10 show the propagation of the solutions u1(t, x) and u2(t, x) for the one-

dimensional case. A forward Euler integration of the finite difference equation, resulting from the

discretization of the diffusion operator, is applied with 256 mesh points and 0.01 integration step

size. The initial conditions are chosen to be (u01, u02)
T = (1, 0)T with strong perturbations in the

middle and the parameters of the system are taken to be a = 0.028, b = 0.053, d1 = 2× 10−5 and

d2 = 10−5. In the following, we shall discuss the impulsive synchronization of the one-dimensional
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Figure 4.9: Spatiotemporal propagation of u1(t, x) in the one-dimensional case of equation (4.25).

Figure 4.10: Spatiotemporal propagation of u2(t, x) in the one-dimensional case of equation (4.25).
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version of system (4.25) with another identical system starting from different initial conditions. In

other words, we investigate the synchronization of the chaotic signal u(t, x) = (u1(t, x), u2(t, x))
T ,

given by

Transmitter :





∂u1
∂t

= −u1u22 + a(1− u1) + d1
∂2u1
∂x2

∂u2
∂t

= u1u
2
2 − (a+ b)u2 + d2

∂2u2
∂x2





t ∈ R+

u(0, x) = u0(x), x ∈ [0, L]

u(t, 0) = u(t, L) = h(t), t ∈ R+,

(4.26)

with the chaotic signal v(t, x) = (v1(t, x), v2(t, x))
T , given by

Receiver :





∂v1
∂t

= −v1v22 + a(1− v1) + d1
∂2v1
∂x2

∂v2
∂t

= v1v
2
2 − (a+ b)v2 + d2

∂2v2
∂x2





t 6= τk, k = 1, 2, . . .

∆v(t, x) = −Qke(t, x), t = τk, x ∈ [0, L], k = 1, 2, . . .

v(0+, x) = v0(x), x ∈ [0, L]

v(t, 0) = v(t, L) = h̃(t), t ∈ R+,

(4.27)

where a, b, d1 and d2 are as defined before, L = 2.5 is the linear extension of the reactor tank, u0(x)

and v0(x) are the initial conditions, h(t) is the periodic boundary condition for the transmitter

system, e(t, x) := u(t, x)−v(t, x). Qk are 2×2 constant matrices satisfying ||Qk|| < L1, for every

k = 1, 2, . . . and some L1 > 0. The boundary condition h̃(t) described at the receiver, is defined

by

h̃(t) := h(t)− g(t)

{
1 +

∞∑

k=1

[
(||I +Qk||2k − ||I +Qk||2(k−1))H(t− τk)

]}
, (4.28)

where g(t) = (g1(t), g2(t))
T ∈ C1(R+), ||g(t)|| ≤ N , for all t ∈ R+, I is the 2× 2 identity matrix



138

and H(t− τk), k = 1, 2, . . . , is the alternative heaviside step function, defined by

H(t− τk) =





0 if t ≤ τk

1 if t > τk.

According to equations (4.26), (4.27) and (4.28), the error system e will be given by





∂e1
∂t

= −u1u22 + v1v
2
2 − ae1 + d1

∂2e1
∂x2

∂e2
∂t

= u1u
2
2 − v1v22 − (a+ b)e2 + d2

∂2e2
∂x2





t 6= τk, k = 1, 2, . . .

∆e(t, x) = Qke(t, x), t = τk, x ∈ [0, L], k = 1, 2, . . .

e(0+, x) = e0(x), x ∈ [0, L]

e(t, 0) = e(t, L) = H̃(t), t ∈ R+,

(4.29)

where e0(t) := u0(t)− v0(t) and

H̃(t) := h(t)− h̃(t) = g(t)

{
1 +

∞∑

k=1

[
(||I +Qk||2k − ||I +Qk||2(k−1))H(t− τk)

]}
.

Notice that if ||I +Qk|| ≤ L2 < 1, for every k = 1, 2, . . . , then

lim
t→∞

||H̃(t)|| = lim
t→∞

||h(t)− h̃(t)|| = 0.

This is a very important property which will be used in the upcoming theory. Furthermore, Due

to the fact that u and v are both generated by spatiotemporal chaotic systems, we may conclude

immediately that they are both equi-bounded. This will also be a very useful property which

will be used in the proof of the next theorem. Thus, using the above description, exploring the

idea of impulsive synchronization of the two systems u and v, reduces to proving that the error

system (4.29) is equi-attractive in the large or that limt→∞ ||e||2 = 0.

We shall state now two lemmas ( [51], Theorem 3.1, p. 45 and Corollary 2.2, p 33, respectively)

and prove two other ones in order to establish several results needed for obtaining certain criteria

regarding system (4.29) to be equi-attractive in the large.
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Lemma 4.4.1 Let p(t) 6= 0 and r(t) be given functions for t = `, ` + 1, ` + 2, . . . , for some

` ∈ R+ ∪ {0}. Then

(a) The solutions of the equation w(t+ 1) = p(t)w(t) are given by

w(t) = w(`)
t−1∏

s=`

p(s).

(b) All solutions of the equation z(t+ 1) = p(t)z(t) + r(t) are given by

z(t) = w(t)

[∑ r(t)

Ew(t)
+ C

]
,

where
∑

is the indefinite sum, E is the shift operator (Ez(t) = z(t+1)), C is an arbitrary

constant and w(t) is any non-zero solution from part (a).

Lemma 4.4.2 If n ∈ Z+ ∪ {0}, than
∑

tn =
1

1 + n
Bn+1(t) + C,

where Bn are Bernoulli polynomials [51], for all n ∈ Z+ ∪ {0}, and C is an arbitrary constant.

Lemma 4.4.3 Let p(t) := q and r(t) := Ktnqt−1 in Lemma 4.4.1, for all t = 1, 2, . . . (` = 1),

where 0 < q < 1, n ∈ Z+ ∪ {0} and K ∈ R+. Then limt→∞ z(t) = 0.

Proof: From Lemmas 4.4.1 and 4.4.2, we can conclude that w(t) = qtw(1) and

z(t) = w(t)

[∑ r(t)

Ew(t)
+ C

]

= qtw(1)

[∑ Ktnqt−1

qt+1w(1)
+ C

]

= Kqt−2
[∑

tn + P
]

= Kqt−2
[

1

n+ 1
Bn+1(t) + P

]

=
K

1 + n
Bn+1(t)q

t−2 + PKqt−2,
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where C is an arbitrary constant and P = aw(1)C/K. Notice that

lim
t→∞

PKqt−2 = 0 and lim
t→∞

K

n+ 1
Bn+1(t)q

t−2 = 0

(since 0 < q < 1, Bn are Bernoulli polynomials, for all n ∈ Z+ ∪ {0}, and because of L’Hôpital’s

rule applied n+ 1 times for the second limit). It follows that limt→∞ z(t) = 0. ¤

We can also prove that the type of function chosen for r(t) in Lemma 4.4.3 satisfies

lim
t→∞

r(t) = lim
t→∞

Ktnqt−1 = 0,

for all n ∈ Z+ ∪ {0}, by applying again L’Hôpital’s rule n times.

Lemma 4.4.4 Let f(u1, u2) := u1u
2
2 be defined over the set S = {(u1, u2)T ∈ R2 : 0 ≤ |u1| ≤

β1 and 0 ≤ |u2| ≤ β2}. Then the function f satisfies Lipschitz condition on S with Lipschitz

constant given by L0 := β2
√
β21 + 4β1. In other words, for every (u1, u2)

T , (v1, v2)
T ∈ S, we have

|f(u1, u2)− f(v1, v2)| ≤ L0||(u1 − v1, u2 − v2)||.

Proof: Since the set S is compact and convex subset of R2 and f has continuous partial derivatives

on S, we have, by the Mean Value Theorem [40], for some c = (c1, c2)
T in the line segment joining

(u1, u2)
T and (v1, v2)

T which lies entirely in S,

|f(u1, u2)− f(v1, v2)| = ||∇f(c) · (u1 − v1, u2 − v2)||

≤ ||∇f(c)||||(u1 − v1, u2 − v2)||

= ||(c22, 2c1c2)||||(u1 − v1, u2 − v2)||

= |c2|
√
c22 + 4c21||(u1 − v1, u2 − v2)||

≤ β2
√
β22 + 4β21 ||(u1 − v1, u2 − v2)||,

as required. ¤

We shall now establish the following theorem which specifies the type of conditions required

to guarantee the convergence of solutions of system (4.29) to zero as time approaches infinity.
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Theorem 4.4.1 Let qk be the largest eigenvalue of (I +Qk)
T (I +Qk) and ∆k+1 := τk+1 − τk ≤

∆, for all k = 1, 2, . . . and for some ∆ > 0. In addition, let q := supk qk, d = max(d1, d2),

d̃ = min(d1, d2),

βi := max( sup
t∈R+

ui(t), sup
t∈R+

vi(t)),

Ei := sup
t∈R+

∣∣∣∣
∂ei
∂x

(t, L)− ∂ei
∂x

(t, 0)

∣∣∣∣ ,

for i = 1 and 2,

β := β2

√
β22 + 4β21 − a,

E := max(E1, E2) and F := 2dE/β. If H̃(t) = (H̃1(t), H̃2(t))
T , H̃(t) := H̃1(t) + H̃2(t) with

g(t) = (0.5, 0.5)T , for all t ∈ R+ (i.e., g1(t) + g2(t) = 1), and

qeβ∆ < 1, (4.30)

then system (4.29) is equi-attractive in the large.

Proof: The proof of this Theorem is similar to that of Theorem 4.3.1. Choose the Lyapunov

function (or energy function) to be

V (e(t, x)) :=

L∫

0

eT (t, x)e(t, x)dx =

L∫

0

(e21(t, x) + e22(t, x))dx.
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In this case, we have, by equation (4.29) and Lemma 4.4.4,

D+t V (e) = 2

L∫

0

(
e1
∂e1
∂t

+ e2
∂e2
∂t

)
dx

= 2

L∫

0

[
−(u1u22 − v1v22)e1 − ae21 + d1e1

∂2e1
∂x2

+(u1u
2
2 − v1v22)e2 − (a+ b)e22 + d2e2

∂2e2
∂x2

]
dx

≤ 2

L∫

0

[
|u1u22 − v1v22||e1|+ |u1u22 − v1v22||e2|

]
dx

+2

L∫

0

[
− ae21 − (a+ b)e22

]
dx+ 2

L∫

0

[
d1e1

∂2e1
∂x2

+ d2e2
∂2e2
∂x2

]
dx

≤ 4β2

√
β22 + 4β21

L∫

0

||e||2dx− 2

L∫

0

[
ae21 + (a+ b)e22

]
dx

+2

L∫

0

[
d1e1

∂2e1
∂x2

+ d2e2
∂2e2
∂x2

]
dx

≤ (4β2

√
β22 + 4β21 − a)||e||22 + 2

L∫

0

[
d1e1

∂2e1
∂x2

+ d2e2
∂2e2
∂x2

]
dx.

Applying integration by parts to the second term in the latter inequality, we get, for i = 1 and 2,

L∫

0

ei
∂2ei
∂x2

dx = ei
∂ei
∂x

∣∣∣
L

0
−

L∫

0

∂ei
∂x

2

dx ≤ EiH̃i(t)−
L∫

0

∂ei
∂x

2

dx.
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Thus

D+t V (e) ≤ (4β2

√
β22 + 4β21 − a)||e||22 + 2d1E1H̃1(t) + 2d2E2H̃2(t)− 2d̃||ex||22,

However, −2d̃||e||22 ≤ 0. Therefore we can conclude that

D+t V (e) ≤ (4β2

√
β22 + 4β21 − a)||e||22 + 2d1E1H̃1(t) + 2d2E2H̃2(t) ⇐⇒

D+t V (e) ≤ β||e||22 + 2dEH̃(t) = βV (e) + 2dEH̃(t) ⇐⇒

D+t V (e)− βV (e) ≤ 2dEH̃(t).

By multiplying both sides of the latter inequality by e−βt, we obtain

e−βtD+t V (e)− βe−βtV (e) ≤ 2dEH̃(t)e−βt ⇐⇒

D+t

[
e−βtV (e)

]
≤ 2dEH̃(t)e−βt.

It implies that, for every t ∈ (τk, τk+1],

t∫

τ+
k

D+s

[
e−βsV (e)

]
ds ≤ −Fe−βtH̃(t) + Fe−βτkH̃(t).

Hence, for t ∈ (τk, τk+1], we have

V (e(t, x)) = eβ∆k+1V (e(τ+k , x)) + F(eβ∆k+1 − 1)H̃(t) (4.31)

and

V (e(τk+1, x)) = eβ∆k+1V (e(τ+k , x)) + F(eβ∆k+1 − 1)H̃(t). (4.32)

On the other hand, for every x ∈ [0, L] and every k = 1, 2, . . . , we have, by the structure of the

impulses given in system (4.29),

e(τ+k , x) = (I +Qk)e(τk, x) ⇐⇒

V (e(τ+k , x)) =

L∫

0

eT (τk, x)(I +Qk)
T (I +Qk)e(τk, x)dx ⇐⇒

V (e(τ+k , x)) ≤ qk

L∫

0

eT (τk, x)e(τk, x)dx.
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i.e.,

V (e(τ+k , x)) ≤ qkV (e(τk, x)). (4.33)

Substituting inequality (4.33) into inequalities (4.31) and (4.32), we obtain

V (e(t, x)) = qke
β∆k+1V (e(τk, x)) + F(eβ∆k+1 − 1)H̃(t) (4.34)

and

V (e(τk+1, x)) = qke
β∆k+1V (e(τk, x)) + F(eβ∆k+1 − 1)H̃(t). (4.35)

Let Vk := V (e(τk, x)), for every k = 1, 2, . . .. In this case, we have, by inequality (4.35) and for

every k = 1, 2, . . . ,

Vk+1 ≤ qke
β∆k+1Vk + F(eβ∆k+1 − 1)H̃(t)

≤ qeβ∆Vk + F(eβ∆ − 1)H̃(t).

Since qk < q < 1, for every k = 1, 2, . . . , we may conclude that, for every t ∈ (τk, τk+1],

F(eβ∆ − 1)H̃(t) < Fqk−1.

Hence

Vk+1 ≤ qeβ∆Vk + Fqk−1. (4.36)

Define V1 := V1 and Vk+1 := qeβ∆Vk +Fqk−1, for k = 1, 2, . . . . This implies, by inequality (4.36)

and induction, that Vk ≤ Vk, for all k = 1, 2, . . . . However, by Lemma 4.4.3 and inequality (4.30),

we have limk→∞ Vk = 0. i.e., limk→∞ Vk = 0. Therefore

lim
k→∞

V (e(τk, x)) = 0,

which, in turn, implies that, by inequality (4.34),

lim
t→∞

V (e(t, x)) = 0.

In other words, solutions to system (4.29) are equi-attractive in the large, as required. ¤

Remarks 4.3, 4.4 and 4.5, from the previous section characterizing the Kuramoto-Sivashinsky

model, are also suitable for this model, especially Remarks 4.3 and 4.5 which reflect the fact that

the conditions stated in Theorem 4.4.1 are sufficient conditions but not necessary and that the

solutions of the synchronization error (4.29) is, in fact, equi-Lagrange stable, respectively. The
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latter result follows from the fact that, as before, the Grey-Scott model is spatiotemporal chaotic

system which implies that it is equi-bounded. This makes the error dynamics (4.29) automatically

equi-bounded as well.

We shall now state some additional remarks regarding Theorem 4.4.1.

Remark 4.6: The existence of the parameters Ei, i = 1, 2, indicates that the solution surfaces

of the impulsive Grey-Scott model are bounded and that the frequency of the oscillations of the

solution surfaces, at the boundary, is also bounded (i.e., boundary oscillations of the solution sur-

faces do not increase with time). This is consistent with the properties of the Grey-Scott model

and the boundary conditions corresponding to it. Therefore the existence of the parameters E1
and E2 is guaranteed.

Remark 4.7: Theorem 4.4.1 can be extended to the two-dimensional Grey-Scott model described

by system (4.25), although the theory is more complicated due to the use of double integrals for

the evaluation of the Lyapunov functions (or energy functions).

Remark 4.8: Theorem 4.4.1 assures the existence of the matrices Qk, k = 1, 2, . . . , which will

guarantee the convergence of solutions of the error system (4.29) to the equilibrium solution.

Obtaining an estimate on q is done numerically upon knowing the other parameters of the sys-

tem. In this case, an approximation of the basin of attraction for ∆ can be obtained with this

numerical value for q.

We show now several numerical simulations to confirm the results obtained in Theorem 4.4.1.

The numerical method applied in these simulations is the forward Euler integration of the finite-

difference equations. As in the simulations of system (4.26), the integration step size in these

simulations is taken to be 0.01 sec. and the number of spatial points is taken to be 256. Moreover,

the initial conditions in these simulations are taken to be (u01(x), u02(x))
T = (1, 0)T with strong

perturbations in the middle and (v01(x), v02(x))
T = (1, 0)T as well but with significantly different

perturbations in the middle from the transmitter system. The remaining parameters of the error

system are the same as described for the simulations of system (4.26). If the impulse durations

are taken to be ∆k = ∆ = 0.1 sec., for all k = 1, 2, . . . , then the solutions converge to zero by

choosing Qk = Q = −0.5I, for all k = 1, 2, . . . . Figure 4.11 shows the quick convergence of the

error dynamics to zero in 0.9 sec., which is consistent with that of Theorem 4.4.1. It should be
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Figure 4.11: ||e(t, x)||2 converging to zero for ∆ = 0.1 and Qk = Q = −0.5I.
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Figure 4.12: ||e(t, x)||2 converging to zero for ∆ = 0.1, and Qk = Q = −0.5I with impulses

applied at 32 spatial points in the direction of e1 and e2.
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Figure 4.13: ||e(t, x)||2 converging to zero for ∆ = 0.1, and Qk = Q = diag(0,−0.5) with impulses

applied at 32 spatial points in the direction of e2 only.
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mentioned that with the discretization chosen above and the theoretical model represented by

equation (4.29), the impulses are applied at every discrete point in the spatial direction x, at

every impulsive moment τk, k = 1, 2, . . .. In other words, in the numerical model shown here, the

impulses are applied on the 256 discrete spatial points corresponding to every τk, k = 1, 2, . . . . This

explains the quick convergence of solutions to zero. However, in [60,61], it was observed (with an

example) that the numerical model obtained from the discretization of systems (4.26) and (4.27)

(and hence the error system (4.29)) impulsively synchronize without the need to drive all of the

256 spatial points. i.e., the synchronization of the discrete models approximating systems (4.26)

and (4.27) synchronize even by driving much smaller number of points in the spatial direction for

every τk, k = 1, 2, . . . . We confirm this result by showing two different examples with the same

value for ∆ and Q. In the first example, we drive 32 spatial points in the e1 and e2 directions

simultaneously, for every τk, k = 1, 2, . . . . Figure 4.12 shows how the error system converges to

zero very slowly. In fact the convergence is significantly faster if the impulses are applied at the

32 spatial points but in the e2 direction only (i.e., Q = diag(0,−0.5)), as shown in Figure 4.13.

This is a significant difference between the theoretical model presented earlier and the numerical

model shown in the simulations. The reason for the numerical models to show convergence is that

the equations obtained by discretization are coupled equations. Thus if the impulse is applied

at one particular discrete point, then the neighboring points are also affected because of the

coupling factor. This does not hold in the theoretical (or continuous model), because impulses

are applied in a continuous manner and it is impossible to apply impulses at discrete points (since

the solutions, in this case, are hypersurfaces). We shall analyze the Lyapunov exponents of the

numerical examples discussed above to confirm the theoretical results obtained in this section

and to provide a numerical evidence on why synchronization still occurs even with impulses not

applied along the whole spatial dimension x.

4.5 Analyzing Lyapunov Exponents

In Section 2.3, we discussed a numerical method, employing Lyapunov exponents, to study the

dynamics of synchronization errors between two identical Lorenz systems and their derivative

systems. We shall extend this method to analyze the Lyapunov exponents of error dynamics

between two identical Grey-Scott models.

We begin our discussion by first dealing with the case when we have impulsive driving along

the whole spatial direction x. i.e., using the discretization we mentioned in the previous section,
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where every discrete spatial point, at every moment τk, k = 0, 1, . . . , is driven. Let us have the

same set up we had in Section 2.3 where the impulsive synchronization was uni-directional and

the impulses were equidistant. Moreover, let, as before, P stand for the period of the impulse

and Q stand for the width of the impulse (see Figure 2.11). We shall assume, like before that

samples of the state variables of the drive system are used to drive the response system at the

discrete moments τk, k = 0, 1, . . . . The set of matrices Qk, k = 0, 1, . . . , will be chosen to be

Qk = Q =

(
−I O

O O

)
,

where I is an ` × ` identity matrix and O is an m ×m zero matrix (` +m = n). This suggests

that we should split the drive system into two subsystems, exactly in the same manner we

described in Section 2.3, i.e., we shall take u = (u1,u2)
T , where u1 = (u11, u12, . . . , u1`)

T and

u2 = (u21, u22, . . . , u2m)T . In this case, the general form of the driving system will be given by





∂u1
∂t

= p(u1,u2,u1x,u2x, . . .)

∂u2
∂t

= q(u1,u2,u1x,u2x, . . .),

(4.37)

where we have assumed that p and q are both independent of the time variable t and the spatial

variable x, an assumption which is consistent with the the models discussed in this chapter.

However, for the response system, we have two sets of time intervals to consider (exactly in the

same manner discussed in Section 2.3).

• For all x ∈ [0, L] and for t ∈ [kP, kP +Q), k = 0, 1, . . . , we have

Response system A





u′1 = u1

∂u′2
∂t

= q(u1,u
′
2,u

′
1x,u

′
2x, . . .),

(4.38)

• For all x ∈ [0, L] and for t ∈ [kP +Q, (k + 1)P ), k = 0, 1, . . . , we have

Response system B





∂u′1
∂t

= p(u′1,u
′
2,u

′
1x,u

′
2x, . . .),

∂u′2
∂t

= q(u′1,u
′
2,u

′
1x,u

′
2x, . . .),

(4.39)
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It follows, from systems (4.38) and (4.39), that the synchronization error will be given by

• For response system A: with x ∈ [0, L] and t ∈ [kP, kP +Q), k = 0, 1, . . . , we have




e1 = 0

∂e2
∂t

= q(u1,u2,u1x,u2x, . . .)− q(u1,u
′
2,u

′
1x,u

′
2x, . . .),

(4.40)

• For response system B: with x ∈ [0, L] and t ∈ [kP +Q, (k + 1)P ), k = 0, 1, . . . , we have




∂e1
∂t

= p(u1,u2,u1x,u2x, . . .)− p(u′1,u
′
2,u

′
1x,u

′
2x, . . .),

∂e2
∂t

= q(u1,u2,u1x,u2x, . . .)− q(u′1,u
′
2,u

′
1x,u

′
2x, . . .),

(4.41)

Notice that systems (4.40) and (4.41) are partial differential equations. Therefore applying the

same derivations presented in Section 2.3, is not feasible even with use of the norm given in

Definition 4.2.1. This is due to the presence of the spatial derivatives uix,uixx, . . . , i = 1, 2.

Therefore in order to implement the same techniques discussed in Section 2.3, we need to apply the

numerical method of lines for integrating partial differential equations [93]. This method is based

on transforming the spatial derivatives uix,uixx, . . . , i = 1, 2, into finite difference expressions

(discretization). In other words, systems (4.40) and (4.41) are transformed into a system of

N ordinary differential equations, where N depends on the number of spatial points in the

discretization process. The new system of ODE’s, which approximates the dynamics of the

system of PDE’s, will be used to discuss the dynamics of the synchronization error. In this case,

the synchronization error, (e1, e2)
T , will be given by:

• For response system A: with t ∈ [kP, kP +Q), k = 0, 1, . . . , we have




e1 = 0

ė2 = q̃(u1,u2)− q̃(u1,u
′
2),

(4.42)

• For response system B: t ∈ [kP +Q, (k + 1)P ), k = 0, 1, . . . , we have




ė1 = p̃(u1,u2)− p̃(u′1,u
′
2),

ė2 = q̃(u1,u2)− q̃(u′1,u
′
2),

(4.43)
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The equations in (4.42) and (4.43) are systems of ODE’s that can be approximated by the

variational systems, given by

ė = Ju1p̃(u1,u2)e1 (4.44)

and (
ė1

ė2

)
=

(
Ju1p̃(u1,u2) Ju2p̃(u1,u2)

Ju1q̃(u1,u2) Ju2q̃(u1,u2)

)(
e1

e2

)
, (4.45)

respectively, where, as before, J stands for the Jacobian matrices of the corresponding functions.

Hence if we let µ and λ be the largest Lyapunov exponents of systems (4.44) and (4.45), respec-

tively, then the derivations stated in Section 2.3 can immediately follow, and inequality (2.48);

namely,

D := (µ− λ)Q+ λP < 0,

must be satisfied to guarantee synchronization.

In order to illustrate how the numerical method of lines work and how to incorporate this

with the theory of Lyapunov exponents presented in Section 2.3, we shall take the synchronization

error between two identical Grey-Scott models discussed at the end of Section 4.4. Suppose that

samples of the state variable u2 are used to drive the state variable v2 in the response system at

the discrete moments τk, k = 0, 1, . . . , for all x ∈ [0, L] (here ` = m = 1). Obviously, the response

system A1, for x ∈ [0, L] and t ∈ [kP, kP +Q), k = 0, 1, . . ., is given by

Response system A1





∂e1
∂t

= −(a+ u22)e1 + d1
∂2e1
∂x2

.

e2 = 0

(4.46)

Applying the finite difference method, to discretize the last term in the first equation of (4.46),

and the periodic boundary conditions, we get, for j = 1, 2, . . . , 255,

ė
(j)
1 = −

[
a+

(
u
(j)
2

)2]
e
(j)
1 + d1

e
(j+1)
1 − 2e

(j)
1 + e

(j−1)
1

(∆x)2
,

where ∆x = L/256 (here N = 256). The largest Lyapunov exponent of the latter model is given

by µ = −0.80867. To evaluate the second Lyapunov exponent λ, we need to consider the response

system B, given by

Response system B





∂e1
∂t

= −(u1u22 − v1v22)− ae1 + d1
∂2e1
∂x2

∂e2
∂t

= u1u
2
2 − v1v22 − (a+ b)e2 + d2

∂2e2
∂x2

.

(4.47)
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With the applications of the finite difference method and the periodic boundary conditions, system

(4.47) becomes, for j = 1, 2, . . . , 255,





ė
(j)
1 = −

[
u
(j)
1

(
u
(j)
2

)2
− v(j)1

(
v
(j)
2

)2]
− ae(j)1 + d1

e
(j+1)
1 − 2e

(j)
1 + e

(j−1)
1

(∆x)2

ė
(j)
2 = u

(j)
1

(
u
(j)
2

)2
− v(j)1

(
v
(j)
2

)2
− (a+ b)e

(j)
2 + d2

e
(j+1)
2 − 2e

(j)
2 + e

(j−1)
2

(∆x)2
.

(4.48)

The variational equation of system (4.48) is given by





ė
(j)
1 = −

[
a+

(
u
(j)
2

)2]
e
(j)
1 − 2u

(j)
1 u2(j)e

(j)
2 + d1

e
(j+1)
1 − 2e

(j)
1 + e

(j−1)
1

(∆x)2

ė
(j)
2 =

(
u
(j)
2

)2
e
(j)
1 + (2u

(j)
1 u2(j)− a− b)e(j)2 + d2

e
(j+1)
2 − 2e

(j)
2 + e

(j−1)
2

(∆x)2

(4.49)

The largest Lyapunov exponent of system (4.49) is given by λ = 0.0023. Using these values for

µ and λ, one can give an estimate on the maximum impulse duration permissible to achieve

synchronization, provided that a value for the impulse width Q is chosen.

The analysis of the case when the impulses are not applied along the whole spatial dimension

x, is still very similar to the above approach. It is done by applying the method of lines first

to the PDE’s involved in the model, and creating a system of ODE’s which will be used to

find the Lyapunov exponents of the synchronization error. In the previous section, we discussed

one particular example employing two identical Grey-Scott models which was motivated by the

work of Kocarev et al., in [60, 61]. In that example, the spatial derivatives in the two Grey-

Scott models were discretized using the finite difference method and the resulting ODE’s were

integrated numerically using forward Euler integration. The number of spatial points in that

discrete model was 256 points for each given time step ts, s = 1, 2, . . . . The impulsive driving was

done at 32 spatial points of the 256 spatial points generated from discretizing the state variable

v2. In other words, taking K = L/32, the values of the impulses were given by

v2(τ
+
k , κK) = v2(τk, κK) + ε(u2(τk, κK)− v2(τk, κK)), (4.50)

k = 0, 1, . . . and κ = 1, 2, . . . , 32. In the previous section, we showed, through numerical simula-

tions, that the norm of the error dynamics between the two Grey-Scott models approached zero

when ε = −0.5. Now suppose that the value of ε = −1 and the method of lines is applied instead.
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This means that the spatial derivatives are discretized using finite difference method and the

Grey-Scott models are transformed into two systems of 2 × 257 ordinary differential equations.

In this case, 32 equations out of each one of these two systems of ODE’s will be synchronized

impulsively using the impulses described by equation (4.50). These equations that synchronize

are those given by

u̇
(8∗κ)
2 = u

(8∗κ)
1

(
u
(8∗κ)
2

)2
− (a+ b)u

(8∗κ)
2 + d2

u
(8∗κ+1)
2 − 2u

(8∗κ)
2 + u

(8∗κ−1)
2

(∆x)2
(4.51)

at the transmitter end, and, by equation (4.50),




v̇
(8∗κ)
2 = v

(8∗κ)
1

(
v
(8∗κ)
2

)2
− (a+ b)v

(8∗κ)
2 + d2

v
(8∗κ+1)
2 − 2v

(8∗κ)
2 + v

(8∗κ−1)
2

(∆x)2

v2(τ
+
k )(8∗κ) = v2(τk)

(8∗κ) − (u2(τk)
(8∗κ) − v2(τk)(8∗κ)),

(4.52)

for κ = 1, 2, . . . , 32, at the receiver end. Certainly, the other equations are not impulsively

synchronized. If we denote the vector (u
(8)
1 , u

(16)
1 , . . . , u

(256)
1 ) by x and the vector consisting

of the remaining state variables at the transmitter end by y, whereas we denote the vector

(v
(8)
1 , v

(16)
1 , . . . , v

(256)
1 ) by x′ and the vector consisting of the remaining state variables at the

receiver end by y′, then the theory developed in Section 2.3 is applicable. Thus a typical expression

for the response system A2, for t ∈ [kP, kP +Q), k = 0, 1, . . . , will be given by




X = x− x′ = 0

Ẏ = ẏ − ẏ
′
.

(4.53)

The variational equation approximating the error dynamics given by (4.53) can be evaluated and

a fourth order Runge-Kutta method may be used to integrate the resulting variational equation

in order to find its largest Lyapunov exponent. By applying Matlab programming, we found out

that the largest Lyapunov exponent of system (4.53) is given by µ = −0.0242. Unlike the latter

description, when t ∈ [kP +Q+ (k + 1)P ), k = 0, 1, . . . , (i.e., outside the impulse), the response

system will be identical to the response system B obtained in the previous example. Thus the

error dynamics between the ODE’s at the transmitter and receiver are identical to those given

by equation (4.48). This means that the value of λ = 0.0023.

Once more, knowing these values of µ and λ, one may obtain an upper bound on the maxi-

mum impulse duration permissible to achieve synchronization provided that Q, the width of the

impulse, is known.



Chapter 5

Applications

Although chaos synchronization has several important applications, secure communication forms

one of its most fundamentally promising applications among all others. Due to the fact that chaos

exhibits pseudorandom behaviour, secure communications based on chaos have been investigated

for some years, especially in the area of radio-frequency transmissions. Signal encoding and

decoding are achieved using a carrier whose amplitude fluctuates chaotically and both employ

different synchronization techniques some of which have been already presented in Chapter 2.

Compared with conventional data encryption techniques in which the key is a pseudorandom

binary number that controls the encryption algorithm, but which is slow, chaos is used as a

coding key embodied directly in the structure of the carrier.

There are several methods proposed in the literature which combine chaos synchronization

with communication security. Some of these methods are based on chaos masking, chaos switch-

ing, chaos modulation and impulsive related methods (called impulsive cryptosystems). We shall

explain in this chapter how each method functions and give some examples to illustrates each

technique. Due to the fact that impulsive cryptosystems can be combined with conventional

cryptographic techniques, this makes impulsive cryptosystems very promising to build a secure

cryptosystem. We shall evaluate the performance of those methods which deal with impulsive

synchronization and improve on its security and its performance by proposing several modified

approaches to those described in the literature.

In the next section, we shall explain, in detail, several communication security schemes, such

as the methods of chaos masking, chaos switching, chaos modulation and the method based on

impulsive synchronization. In Section 5.2, we shall discuss the performance of the cryptosystems
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which are based on impulsive synchronization in terms of transmission and accuracy, then we

shall investigate its robustness towards parameter mismatch and towards time delay leading to

the construction of a newly proposed secure communication scheme called the induced message

cryptosystem. Finally in Section 5.3, we shall extend the idea of chaos-based secure communica-

tion schemes to employ spatiotemporal chaotic systems generated by partial differential equations.

5.1 Chaos-Based Secure Communication Schemes

As one illustration of potential use of synchronized chaotic systems in communication, a group of

methods were proposed in the literature concerning this matter. We shall discuss here three differ-

ent methods called chaotic masking, chaotic switching and chaotic modulation (spread-spectrum

transmission) [81,82]). This discussion will include the description of each cryptosystem, its per-

formance and its drawbacks. We should bear in mind that the chaotic systems employed in each

of these cryptosystems may be chosen to be one of those systems described by equations (1.5),

(1.6) and (1.7), or even any other system exhibiting chaotic behaviour and possessing synchro-

nization property in the sense of Carroll-Pecora. For simplicity, we shall use the Lorenz system

in the coming discussion.

We start first with the chaotic signal masking method which was proposed in [22–24]. The

basic idea that underlines this method is the addition of a noise-like masking signal to the

information-bearing signal m(t) at the transmitter, then the masking is removed by synchro-

nization at the receiver. This is done by using the received signal to regenerate the masking

signal at the receiver and subtract it from the received signal to recover m(t) (see Figure 5.1).

Experimental results, done by the authors of [24], show that the ability to synchronize, using the

circuit constructed and given in [22–24], is robust, i.e., is not highly sensitive to perturbations

in the drive signal, and thus synchronization can be done with the use of masked signals. Even

though such a property is required to achieve good synchronization results and to prevent the

effect of noise contributed by the public channel connecting the transmitter and receiver, it makes

the system more vulnerable to attacks, since intruders may find the information in the chaotic

noise by using some adaptive filtering technique such as blind signal separation [110]. This prob-

lem can be avoided very easily as we shall see in the applications of impulsive systems. Although

there are many possible variations, we shall consider, for example, a transmitted signal of the

form s(t) = u(t) +m(t). It is assumed that for masking, the power level of m(t) is significantly

lower than that of u(t) to guarantee convergence. The dynamical system at the receiver is similar
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Figure 5.1: Chaotic signal masking system.

to system (2.7), with u(t) replaced by s(t) as a driving signal. When the receiver is synchronized

with the transmitter by using s(t) as a drive signal, then ur(t) ≈ u(t), and consequently m(t) is

recovered as m̂(t) = s(t) − ur(t), as illustrated in Figure 5.1. The performance of this approach

was demonstrated in [22–24]. In Figure 5.2 a segment of a speech from the sentence “He has the

bluest eyes”, is used. The figure shows the original speech m(t) and the recovered speech signal

m̂(t), where these signals were low-pass filtered and down-sampled. Clearly, the speech signal

was recovered and was of reasonable quality in informal listening tests.

We now demonstrate the potential use of chaotic switching in secure communication. In the

previous approach (chaotic masking), a continuous information-bearing signal was encrypted by a

noise-like masking signal; here we describe a quite similar cryptosystem, also proposed in [22–24],

to transmit and recover a binary-valued bit streams. The basic idea of this proposed method is

to modulate a transmitter coefficient with the information-bearing waveform and to transmit the

chaotic drive signal. At the receiver, the coefficient modulation will produce a synchronization

error between the received drive signal and the receiver’s generated drive signal with an error

amplitude that depends on the modulation. Using the synchronization error, the modulation can

be detected (recall that the parameter modulation generated by the unavoidable difference created

in designing identical circuits, can be removed, as mentioned earlier, by implementing cascaded

systems; however, here we are taking an advantage of this parameter mismatch in applying it to

secure communication). This modulation/detection process is illustrated in Figure 5.3. In this

figure, the coefficient b of the Lorenz system of the transmitter, given by (1.5), is modulated by an
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Figure 5.2: Circuit data: Speech waveform. (a) Original. (b) Recovered.
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Figure 5.3: Chaotic switching communication system.
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Figure 5.4: Circuit data: (a) Modulation waveform. (b) Synchronization error power. (c) Recov-

ered waveform.

information-bearing waveform m(t). The information is carried over the channel by the chaotic

signal um(t). The noisy received signal r(t) = um(t) + n(t) serves as the driving input to the

receiver. At the receiver, the modulation is detected by forming the difference between r(t) and

the reconstructed drive signal ur(t). If we assume that the signal-to-noise ratio (SNR) of r(t) is

large, the error signal e1(t) = r(t) − ur(t) will have a small average power if no modulation is

present. However, if, for example, the information-bearing waveform is a binary-valued bit stream

with a ”1” representing a coefficient mismatch and a ”0” representing no coefficient mismatch,

then e1(t) will be large in amplitude during the time period that a ”1” is transmitted and small

in amplitude during a ”0” transmission. The synchronizing receiver can thus be viewed as a form

of matched filter for the chaotic transmitter signal u(t).

To illustrate this technique, we shall use a square-wave for m(t) as shown in Figure 5.4(a).

The square-wave produces a variation in the transmitter coefficient b with the zero-bit and one-

bit coefficients corresponding to b(0) = 4 and b(1) = 4.4, respectively. Figure 5.4(b) shows

the synchronization error power, e1(t), at the output of the receiver circuit. The coefficient

modulation produces significant synchronization error during a ”1” transmission and a very small

error during a ”0” transmission. Figure 5.4(c) illustrates that the square-wave modulation can

be reliably recovered by low-pass filtering threshold test. The allowable data rate is, of course,
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dependent on the synchronization response time of the receiver system. In [24], a low bit rate

was used to illustrate the technique, but one can easily adjust to allow much faster bit rates.

Note that the ability to communicate digital bit streams using this method depend on the

periodic nature of the square-wave used to demonstrate the technique. The results apply to

aperiodic or random bit streams as well. In fact, in [81] and [85], Chua’s oscillator was used for

the process of modulation/detection of random bit streams. To explain how that was done, we

use the same approach but applied on the Lorenz system for the sake of notation. In this case,

the receiver will possess two almost identical chaotic systems that differ only with the value of

the coefficient b, i.e., b has the value 4.4 for the first chaotic system and the value 4 for the second

chaotic system. Thus in order to transmit a binary-valued bit stream, we let b(1) = 4.4 and

b(0) = 4, as before. When the bit ”1” is transmitted, the first system will synchronize; however,

the second system will have a synchronization error. Similarly, if the bit ”0” is transmitted, the

second system will synchronize and the first will not. Defining the quantities ∆0 := u− ur0 and

∆1 := u − ur1 , where ur0 := (ur0 , vr0 , wr0)
T and ur1 := (ur1 , vr1 , wr1)

T are the state variables of

the first and the second chaotic systems, implies that the first system will synchronize if ∆0 = 0

and the second system will synchronize if ∆1 = 0. We let bin(t) denote the binary input signal,

s(t) to be the transmitter signal, a0 to be the 40-points moving average of ∆0, a1 to be the

40-points moving average of ∆1 and ε := 0.1, then the binary output signal bout(t) is recovered

to a very good accuracy using the following rule

bout(t) =





0, bold = 0 for a0 < ε, a1 > ε

1, bold = 1 for a0 > ε, a1 < ε

bold for a0 < ε, a1 < ε

1− bold for a0 > ε, a1 > ε.

The experimental and numerical results were obtained in [82] and [85]. We show in Figure 5.5

some of the simulations obtained in [82] using the above approach, where we can see very clearly

how the binary input signal was completely recovered by the display of the bout(t), using the

above rule.

While the above approach is fascinating and surely warrant further investigation, it may

suffer from serious drawbacks in practice. First, since two matched analogue chaotic circuits are
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Figure 5.5: Transmission of digital signals via chaos switching: (a) Binary input signal. (b)

Transmitted signal. (c) Response ∆0. (d) Response ∆1. (e) Average moving a0. (f) Average

moving a1. (g) Output binary signal.
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Figure 5.6: Schematic diagram of the chaotic modulating communication system.

required at remote locations, there can be serious problems with system performance unless a

method of calibration is used. Second, it may be possible to distinguish one attractor from the

other without locking to the chaotic signal. This can be done by performing an attack, proposed

in [111], based on short-time zero-crossing rate (STZCR) that can recover the digital signal from

the chaotic switching without locking to the chaotic signal, as desired.

We present now another method called chaotic modulation proposed in [39] and [81] that

resembles the above approaches, but adds more complexity and security to the transmitted signals.

The suggested idea is to multiply the information signal by a broad-spectrum, noise-like chaotic

signal. By a broad-spectrum system we mean [40]: “a means of transmission in which the signal

occupies a bandwidth in excess of the minimum necessary to send the information; the band

spread is accomplished by means of a code which is independent of the data, and a synchronized

reception with the code at the receiver is used for despreading and subsequent data recovery”. For

this method, we use Chua’s oscillator, given in equation (1.6), as the chaotic system installed at

the transmitter and the receiver, where very accurate knowledge of the parameters of the circuit,

represented by Chua’s oscillator, is required to generate (or synchronize to) the same chaotic

signal.

We now investigate this technique in the following manner. The basic system used for com-

munication is given in Figure 5.6. It utilizes a Chua’s circuit each for the transmitting and the

receiving system. In the transmitting system, an information-bearing current signal ii(t) is in-



161

jected into Chua’s circuit, thereby modifying its dynamics. The voltage signal vt = v1 of this

Chua’s circuit is then transmitted. The receiving system then uses this transmitted voltage signal

to obtain a detected current signal id(t). The information we want to transmit is in the form of

input information “voltage” signal vs(t) which is then coded in the injected current signal ii(t)

by the invertible coding function C(.) : ii(t) = C(vs(t)). The detected current signal id(t) is then

decoded through vr(t) = C−1(id(t)). For proper operation of the system, we want vr(t) ≈ vs(t).

We also want to choose C(.) so that the injected signal ii(t) is such that the dynamics of the

Chua’s circuit and the transmitted signal vt are still chaotic. To function as a secure commu-

nication, we also want the transmitted signal vt to look the same regardless of the information

signal vs that is being fed into the transmitting system. The voltage across the capacitor C1 is

transmitted through the channel to the receiver circuit and is used as a forcing voltage on the

second Chua’s circuit capacitor C̃1. Assuming that all circuit components of the transmitter and

the receiver are matched exactly, and inserting a voltage buffer to separate the two subsystems,

we will have ṽ1 = v1. Using this condition and subtracting the circuit equations of the drive and

the response, one obtains

id(t)− ii(t) =
1

R
(v2 − ṽ2),

C2
d(v2 − ṽ2)

dt
= − 1

R
(v2 − ṽ2) + (i3 − ĩ3),

L
d(i3 − ĩ3)

dt
= −(v2 − ṽ2).

(5.1)

In [39], it was noticed that the last two equations of system (5.1) are the state equations of a

parallel RLC circuit with positive R,L and C. This implies that the origin is globally asymp-

totically stable. In fact, the eigenvalues of the new system, build from the last two equations of

(5.1), are given by

−1
2C2R

± 1

2

√
1

C22R
2
− 4

C2L
.

Thus, if these two eigenvalues are real, then they are negative, and if they are a complex conjugate

pair, then they both have negative real parts. This implies, in both cases, that the origin is

globally asymptotically stable and v2− ṽ2 −→ 0 as t −→∞. Thus, by the first equation of system

(5.1), we have id(t) −→ ii(t) as t −→ ∞, and hence vr(t) −→ vs(t) as t −→ ∞. This means that

the current flowing into the second Chua’s circuit must equal (maybe after some transient) the
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Figure 5.7: Block diagram of a chaotic modulating communication system.

current injected into the first Chua’s circuit.

The laboratory implementation of such a transmission system was described in [39], where

a division operation C(vs(t)) = vs(t)/v1(t) was chosen as the coding function and multiplication

operation vr = C(vs(t))v1 as the decoding one. Therefore the complexity of the transmitted signal

is increased and the security of the system is enhanced, unlike the case with chaotic masking where

simple addition of the chaotic signal to the transmitted one was applied. The block diagram of

the implemented system is shown in Figure 5.7. This diagram could serve as a general principle

of a transmission system using chaotic modulation.

In [39] and [81], it was realized that the whole range of the chaotic signal spectrum is used

for hiding the information, an advantage that previous methods were lacking. Furthermore, the

sensitivity of this technique to parameter variation between the transmitter and the receiver is a

good feature that will increase the security of the system. Generally speaking, we would rather

seek cryptosystems that must meet two outstanding criteria:

1. Security: The system must be such that an intruder cannot decode the message without

access to the precise system parameter values used by the receiver and the sender. Even a

slight mismatch should make recovery impossible. Further, it should be extremely difficult

for the intruder to obtain the precise parameter values even if a correct message or a correct

key fragment is intercepted.
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2. Robustness: The system should be tolerant of additive noise in the communication channel.

These two requirements are actually rather stringent. We are essentially asking for a system with

extreme sensitivity to parameter mismatch and significant insensitivity to input perturbations.

Typically, chaotic systems will satisfy the first requirement, but not the second. Therefore one

of our major goals in developing impulsive system technique that will be discussed later, is to

achieve the second desired property, namely robustness.

The synchronization principles described above enabled us to build chaotic systems operating

coherently and to use them to solve real communication problems. Understanding synchro-

nization phenomena of simple inter-connections of chaotic oscillators enabled several interesting

developments, especially with the introduction of impulsive synchronization as a technique used

in certain chaos-based communication security schemes. However, the question that remains is:

how would we exploit the property of impulsive synchronization to secure communication? Due

to the fact that low-dimensional chaos-based secure communication systems are not sensitive

enough to the modeling error of the transmitter, as we mentioned before, an intruder can recover

the message signal by using an approximate model with some errors which can be easily removed

by standard filtering methods. Since we shall discuss first three-dimensional systems, we may

enhance the security of low-dimensional chaos-based secure communication scheme by combining

conventional cryptographic schemes with chaotic systems [119]. The purpose of doing so is to

increase the complexity of the transmitted signal and hence improve the sensitivity of the system

to recovering and modeling errors. In this proposed method, the encrypter consists of a chaotic



164

system and an encryption function e(·), as shown in Figure 5.8. The key signal k(t) is one of the

state variables of the chaotic system. Another state variable s(t) is the transmitted signal, which

is transmitted through a public channel to the decrypter. f(t) is the encrypted signal which is

fed back into the chaotic system. The decrypter consists of a chaotic system and a decryption

function d(·). The decrypter can find the key signal when the encrypter and decrypter are syn-

chronized using the received signal s(t) + n(t), where n(t) is the noise added to the transmitted

signal. The encrypted signal is also recovered via synchronization. Then d(·) is used to decrypt

the encrypted signal. It should be noted that in the scheme shown in Figure 5.8, both the key

signal k(t) and the encrypted signal f(t) are not transmitted to the decrypter.

Another goal we would like to pursue is to reduce the redundancy in the transmitted signal.

To achieve this goal, impulsive synchronization offers a very promising approach. An improved

version of the latter approach was proposed in [114–116], and it is illustrated here. The proposed

system consists of a transmitter and a receiver, each of which (see the block diagram in Figure

5.9) possesses a chaotic system identical to the other and a conventional cryptographic scheme

identical to the other. The message signal at the transmitter end is encrypted using one of the

state variables of the chaotic system as a key signal and the complexity of the encrypted signal is

increased by taking a linear combination of all of its components to generate the scrambled signal.

The transmitted signal consists of a sequence of time frames. Every time frame is of length P

seconds and it consists of two regions. As we can see from Figure 5.10, the first region of each time

frame is a synchronization region of length Q seconds consisting of the synchronization impulses

(which are used to synchronize both chaotic systems, as in Corollary 2.1.1). The second region

is the scrambled signal region of length P −Q seconds where the scrambled signal is contained.

To ensure synchronization, we require P < ∆max (see Corollary 2.1.1, inequality (2.19)). These

two regions are combined as shown in Figure 5.10, and transfered through a public channel. At

the receiver end, the decomposition block is used to separate the synchronization region and the

scrambled signal region from each other. The synchronization impulses are used to synchronize

both chaotic systems and thus recover the key signal which is in turn is used to decrypt the

scrambled signal.
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In order to encrypt the message signal m(t), a continuous n-shift cipher, given by

f1(x, k) =





(x+ k) + 2h if −2h ≤ (x+ k) ≤ −h

(x+ k) if −h < (x+ k) < h

(x+ k)− 2h if h ≤ (x+ k) ≤ 2h,

(5.2)

is used in the following manner:

e[m(t)] = f1(. . . f1(f1[m(t), k(t)], k(t)), . . . , k(t)) = y(t),

where k(t) is the key signal obtained from the chaotic system and h is chosen such thatm(t), k(t) ∈
[−h, h]. It should be noted here that the map f1(·, ·), given by equation (5.2), is implemented on

continuous signals, m(t) and k(t), which are rescaled so that they would lie within the interval

[−h, h], unlike before. Obviously, to decrypt the signal f(t), we apply, as before, the transforma-

tion

m(t) = d[f(t)] = f1(. . . f1(f1[f(t),−k(t)],−k(t)), . . . ,−k(t)).

Notice that, in the transmitter and the receiver, we use the same cryptographic scheme block for

purposes of bidirectional communication. In bidirectional communication , every cellular phone

should function both as a receiver and as a transmitter.

In the next section, we shall demonstrate the robustness of communication security schemes,

which are based on impulsive synchronization, in the presence of parameter mismatch and delay.
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Figure 5.11: Chaotic masking-modulating of m(t).

Then we shall further improve on the security of the cryptosystem proposed by Yang et al.

[114–116], described above, and overcome several problems regarding its performance [41,43–45]

by proposing a modified technique for communication.

5.2 Induced-Message Cryptosystem

We are interested in investigating the robustness of communication security schemes, which are

based on chaos synchronization using impulsive methods, towards parameter mismatch and delay.

Due to the fact that it is physically impossible to design two identical chaotic systems and

that the presence of delay in impulsive synchronization, due to transmission of signals (and

impulses) and sampling delay, discussed in Chapter 3, is inevitable, we have to explore the effect

of these factors on cryptosystems based on this method of synchronization. This will be done

by considering a cryptographic scheme which combines masking and modulating methods with

impulsive synchronization for illustrative purposes. The proposed cryptosystem contains two

chaotic systems x and u, not necessarily identical, which are used to mask-modulate and unmask

the message signal m(t), respectively. As shown in Figure 5.11, one chaotic system x = (x, y, z)T

is at the transmitter end and the other u = (u, v, w)T is at the receiver end. The masking-

modulating process of m(t) is done through two operations: addition and multiplication, viz.

f(t) := e(m(t)) = x(t)(m(t) + z(t)), where f(t) is the encrypted signal that will be used to drive

the chaotic system u at the receiver end.

Figure 5.12 shows the cryptosystem structure which is similar to the one given in the previous

section. The message signal is encrypted using the above scheme to generate f(t). s(t) is the
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Figure 5.12: Proposed cryptosystem.

transmitted signal; it consists of the sequence of time frames described in the previous section

and in Figure 5.10. When each time frame of s(t) is decomposed into the encrypted message

f(t) and the synchronizing impulses, the signal f(t) is used to drive the system u, whereas the

impulses are used to impulsively synchronize u with x. By Theorem 2.2.1, the synchronization

between x and u will be achieved, and we will have u(t) ≈ x(t), v(t) ≈ y(t) and w(t) ≈ z(t).

Thus, the decryption process becomes feasible and the two signals, u(t) and w(t), may be used

to recover the original message in the following way

m(t) ≈ m̂(t) = d(f(t)) =
f(t)

u(t)
− w(t).

As a numerical example of the above scheme, we shall try to encrypt the message signals

given by m1(t) = 0.02 sin(t) sin(100t) which possesses high frequency and then we shall do the

same for the message signal m2(t) = 2sin(4t) which possesses small frequency. This will be done

using the two chaotic systems x and u given by (2.25) and (2.26), respectively. We shall start

first with m1(t) and with the case when µ = ν = 0 and Bk = B = −diag(0.1, 0.06, 0.02), for all

k = 1, 2, . . . . The simulations of the original message m1(t) and the decrypted message m1(t) are

shown in Figures 5.13(a) and 5.13(b), respectively. Moreover, and most importantly, in the case
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Figure 5.13: Accuracy of the decryption process: (a) Original message m1(t). (b) Decrypted

message m1(t) for µ = ν = 0. (c) Decrypted message m1(t) for µ = ν = 0.01.
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Figure 5.14: Accuracy of the decryption process. (a) Original message m2(t). (b) Decrypted

message m2(t) for µ = ν = 0.01.
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when µ, ν = 0.01, the encryption and the decryption of m1(t) show excellent and very accurate

results in comparison with the masking method proposed in [22], as shown in Figure 5.13(c).

Accurate results are also obtained for the low frequency-large amplitude signal m2(t), as shown

in Figure 5.14. i.e., this scheme is more robust and performs equally well with low-frequency

and high-power-level type of messages. Clearly, the simulations show very robust results towards

parameter mismatch.

Regarding delay, we shall now construct another cryptosystem very similar to the one just

presented, except that the chaotic signals are generated by hyperchaotic systems installed at the

transmitter and at the receiver ends. We shall apply the results of Sections 3.2 and 3.3, to show

how robust this cryptosystem is towards delay. In particular, Theorems 3.2.1 and 3.2.2, will be

used to provide us with the appropriate tools to verify that the hyperchaos-based cryptosystem

will not be affected when bounded delays are present.

The proposed cryptosystem is shown in Figure 5.15. In this case, two hyperchaotic Chua’s

oscillators x and u, described by equation (1.8), are used to mask-modulate and unmask the

message signal m(t), respectively, and are included in this cryptosystem. The hyperchaotic

system x = (x1, x2, x3, x4)
T is at the transmitter end, whereas the hyperchaotic system u =

(u1, u2, u3, u4)
T is at the receiver end. Identical to the procedure described above, the masking-

modulating process of m(t) is done through two operations: multiplication and addition, viz.

f(t) := e(m(t)) = (−60x2(t)m(t)) + 20[3x1 + 1.6(|x2 − x1 + 1| − |x2 − x1 − 1|)], where f(t) is

the encrypted signal that will be used to drive the hyperchaotic system u at the receiver end.
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Figure 5.16: Binary representation of the text “red apple”.

Binary representation of the English alphabet

Letter Value Binary Letter Value Binary Letter Value Binary

A 10 1010 J 19 10011 S 28 11100

B 11 1011 K 20 10100 T 29 11101

C 12 1100 L 21 10101 U 30 11110

D 13 1101 M 22 10110 V 31 11111

E 14 1110 N 23 10111 W 32 100000

F 15 1111 O 24 11000 X 33 100001

G 16 10000 P 25 11001 Y 34 100010

H 17 10001 Q 26 11010 Z 35 100011

I 18 10010 R 27 11011

Table 5.1: The binary representation of the English alphabet.

Once more, s(t) is the transmitted signal consisting of the sequence of time frames of length P ,

shown in Figure 5.10. At the receiver, each time frame of s(t) is decomposed into the encrypted

message f(t) and the synchronizing impulses. At this point, f(t) is used to drive the system u,

whereas the impulses are used to impulsively synchronize u with x, exactly in the same manner

as the scheme shown in Figure 5.12. When synchronization is achieved, we have x ≈ u. Thus

the decryption process of f(t) becomes feasible by applying the operation

m(t) ≈ m̂(t) = d(f(t)) =
f(t)− 20[3u1 + 1.6(|u2 − u1 − 1| − |u2 − u1 + 1|)]

−60u2
.

We shall present a numerical example involving the above scheme and using the plain text

“red apple”. The basic idea of generating a signal m(t) representing any plain text is to assign
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numbers to the English alphabet. For the letter ’A’, we assign the number 10, for the letter

’B’, we assign the number 11, and so on till we reach the last letter ’Z’ whose assigned value is

35, as shown in Table 5.1. These numbers are transfered to their binary representation and a

piecewise continuous signal m(t) consisting of a sequence of step functions is generated to reflect

these binary representations of any plain text. The way the signal m(t) is constructed is done by

forming a sequence of steps and blocks. Each block consists of 6 steps, where each step has length

0.05 sec. and height (or magnitude) equal to 0 or 1 depending on the value of the binary digit

in the binary representation of the plain text. Each block represents the binary representation of

one English letter only. If the letter has binary representation shorter than six digits (or steps),

the missing steps are assigned the value 0 and placed on the left side of the block. For example,

the letter ’E’ has the binary representation 1110, which has 4 digits. Therefore the block for this

letter will be represented by a set of six steps with the value 001110. The signal m(t) becomes

complete when it is preceded by a block of 0’s (i.e., the first block of m(t) is a set of six steps

of magnitude 0), in order to avoid the transient region (TR) of impulsive synchronization, and

the words are separated by blocks of 0’s. Using the above set up, the binary representation

of the plain text “red apple” becomes the sequence shown in Figure 5.16 and the piecewise

continuous signal m(t), representing this plain text, is shown in Figure 5.16 (a). Certainly, by

implementing the cryptosystem described earlier, there will be two types of delay involved in the

system. Delay in the impulses, denoted by ri, for all i = 1, 2, . . . , and in the differential system,

denoted by r̃, identical to those discussed in Chapter 3. We shall concern ourselves, however, in

this numerical set up with the first type of delay ri. i.e., we shall assume that the transmission

delay is zero and we just have sampling delay. For an accurate decryption of the signal f(t),

identical synchronization between the two hyperchaotic systems, at the transmitter and receiver

ends, is required. Now choosing the matrices Bi, to be −I, where I is the identity matrix, the

delay terms ri = 0.0008 (r̃ = 0) and ∆i = 0.002, for all i = 1, 2, . . . , and using the Runge-Kutta

method of step-size 0.0001 for integration, the numerical simulation of the error dynamics e shows

identical synchronization starting from time 0.004 sec., as predicted by Theorem 3.2.2 (see Figure

5.18). Furthermore, the simulation of m̂(t) is identical to the graph of m(t), as shown in Figure

5.17 (c), where Figure 5.17 (b) shows the transient region (TR). This can be seen in Figure 5.19

which shows the graph of m̂(t)−m(t) decaying to zero as t→∞. When m̂(t) is retrieved at the

receiver end, transferring the signal into a plain text is done through the same procedure as the

one used to construct m(t), i.e, by dividing the signal into blocks of six steps and reading the

steps inside each block. The plain text “red apple” can therefore be recovered.
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After reflecting on the robustness of impulsive cryptosystems, it still remains to improve the

security and the performance of the models discussed in this section and the model described

in the previous section which was first proposed by Yang et al., [114–116]. The basic idea is

to construct a new model that overcomes several issues related to the time-frame transmission

process and improves the security of the transmission. Our following argument and discussion

will depend mainly on Theorem 2.2.2 and the synchronization example employing the Lorenz

chaotic system described afterwards, i.e., involving equations (2.34), (2.35), (2.36) and (2.37).

In Section 2.2, it has been demonstrated that the error dynamics e and ė, given by systems

(2.38) and (2.39), are both uniformly Lagrange stable, for q = 1, provided that the conditions of

Theorem 2.2.2 are satisfied. In other words, limt→∞ e(t) = limt→∞ ė(t) = 0, a property which is

considered to be the cornerstone of several chaos-based secure communication schemes. Certainly,

we are interested in exploring the applications of this property in transmitting secret information

between different parties. Figure 5.20 shows a new proposed cryptosystem, slightly different from

the two cryptosystems shown in Figures 5.9 and 5.12, consisting of a transmitter, a receiver and

a public channel for communication. The transmitter and the receiver each contains a chaotic

system, x and u, respectively, to generate the encrypting key signals and to drive their derivative

systems ẋ and u̇, installed at the transmitter and the receiver ends, respectively. The system

ẋ is used as the encryption block to encrypt the information signal f(t) at the transmitter end.

In addition, the transmitter and the receiver each contains two synchronization impulses blocks.

The first block is used to synchronize u with x and the other is used to synchronize u̇ with

ẋ. The transmitter contains a composition block which combines the synchronization impulses

from the two synchronization impulses blocks. This combining process is done through time

frames each of which has length 2Q seconds. The first Q seconds are loaded with the impulses

to synchronize x and u, whereas the second Q seconds are loaded with the impulses needed to

synchronize ẋ and u̇. These time frames are sent across the public channel and are decomposed

at the decomposition block at the receiver end into two Q seconds. The first Q seconds are fed

into the system u, to recover the key signals, and the second Q seconds are fed into the system

u̇, to induce the encrypted signal. At the decryption block, the recovered key signals are used

to decrypt the induced encrypted information signal by applying the inverse of f , f−1. Then the

decrypted signal m(t) is fed back into the block u̇ for better and faster recovery.

The encryption-decryption process of the above model may be described as follows. The en-

cryption block at the transmitter end applies conventional cryptographic techniques to the infor-

mation signal m(t) to formulate the encrypted signal f(x, m̃(t), 1), where m̃(t) = m(t) exp(−θt),
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for some chosen θ > 0, and f is the nonlinear expression on the right hand side of equation (2.34)

with a = 1. Thus the complexity of the encryption is increased. However, at the receiver end

the chaotic system u̇ is installed to synchronize with the system ẋ through applying impulses

generated by the system ẋ. Meanwhile the system u̇ is self-generated and driven by the compo-

nents of u and the decrypted signal m̃(t), by applying message feedback, so that it will have a

formulation identical to the system ẋ in order for both to impulsively synchronize. By Theorem

2.2.2, the error dynamics ė, given by system (2.39), is uniformly Lagrange stable. It should be

noted that the impulsive synchronization still works for an arbitrary mapping h 6= f , and thus

the complexity of the encryption process of the information signal can be increased by increasing

the complexity and the non-linearity of h. However, by choosing h 6= f , the transmission of the

information signal to the receiver end requires two sequences of synchronizing impulses in addi-

tion to the sequence of impulses needed to recover the key signals (i.e., a total of three sequences

for a complete recovery). This is unlike when h = f , which requires only one sequence to induce

the encrypted signal. In addition, upon choosing h 6= f , we need to consider the total derivative

of h with respect to t when formulating the system x. In other words the encryption block at

the transmitter end will involve the system

ẋ =
∂h

∂t
(x, m̃(t)).

It can be seen that the keys and the encrypted signal are not sent across the public channel.

They are embedded inside the impulses and then induced at the receiver end using the impulses.

The new system is therefore called the induced-message cryptosystem.

One advantage of the induced-message cryptosystem is that it may overcome the problem

arising from the time frame congestion problem presented in [41,43–45,83]. These papers employ

an impulsive cryptosystem whose scheme is identical to the one described in the previous section,

as shown in Figure 5.9, and the transmission is based on the time-frame process, shown in Figure

5.10 [114–116]. Recall that the transmitted signal consisted of a sequence of time frames, each

of which had a length of P seconds, and is made up of two regions. The first region is the

synchronization region of length Q seconds. It consists of the synchronization impulses needed to

impulsively synchronize the two chaotic systems in both the transmitter and receiver. The second

region contains the encrypted message signal and has a length of P −Q seconds. Since Q is taken

to be small compared to T , the lost of time in packing message signals is negligible [115]. The

first experimental results on impulsive synchronization were presented in [83]. In the experiment,

two Chua’s oscillators were effectively synchronized by using narrow impulses (Q/T = 0.16%,



177

1/T = 18kHz). It was found, in [41,43–45], that the minimum length of the interval Q increases

in proportion to the frame length as it increases. In fact, it was experimentally established that for

5 × 10−5s ≤ T ≤ 5 × 10−3s, the ratio Q/T ≥ 50% can achieve almost-identical synchronization,

and thus the lost time in packing the message signals is no longer negligible. It was further

realized that the situation becomes worse when implementing hyperchaotic systems where two

impulsive synchronization regions (each of which is of length Q) are required for almost-identical

synchronization (e.g., for 1.3 × 10−5s ≤ T ≤ 2 × 10−5s, 2Q/T = 100%). Therefore, it is more

desirable to eliminate this problem by not transmitting the encrypted signal in the first place. We

have shown that, in the induced-message cryptosystem proposed above, we are able to accomplish

this property of not transmitting the encrypted signal. Instead, two sequences of synchronizing

impulses are transmitted only. One sequence is needed to recover the key signals and the other

sequence is required to induce the encrypted signal. Thus we reach the objective of increasing

the security of the impulsive cryptosystem and prevent the frames from being congested by the

synchronization region.

In the following simulations, a fourth-order Runge-Kutta method with step size 10−5 is used.

The system parameters are σ = 10, r = 28, b = 8/3, Bk = B = −diag(0.5, 0.6, 0.2), the period

of the impulses is ∆k = ∆ = 0.002, k = 1, 2, . . . , and the initial conditions are (x0, y0, z0) =

(3.07,−2.37, 0.88), (u0, v0, w0) = (1.46,−1.87, 0.5) and (u̇0, v̇0, ẇ0) = (3.9, 0.74,−1.62). In the

first example, we take the information signal m2(t) = 2 sin(4t), which has large amplitude and

low frequency, as shown in Figure 5.14 (a). In this case m̃2(t) = 2 sin(4t) exp(−θt), where θ is

taken to be 1. The encryption process is identical to the one described in Figure 2.8. i.e.,

h(x, m̃2(t)) = f(x, m̃2(t), 1),

given by equation (2.34). With the arguments in Section 2.2 and in this section, we know that

u→ x and u̇→ ẋ. Therefore the key signals x, y and z can be recovered by obtaining the signals

u, v and w. Moreover, with the process of feeding back the decrypted message m̃2(t) into the

system u̇, the state variable v̇ → ẏ = f2(t) = e(m̃2(t)) = rx − y − (z + m̃2(t))x (f2(t) is the

encrypted signal), which will allow m̃2(t) to be recovered by simply using the following operation

m̃2(t) ≈ d(f2(t))−
[
w +

v̇ − ru+ v

u

]
.

Then m2(t) can be obtained by m2(t) = m̃2(t) exp(θt). Figure 5.21 shows the result of the

decryption process of the induced message m2(t) = 2 sin(4t), and Figure 5.22 shows the error
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Figure 5.21: Decrypted message m2(t) = 2 sin(4t).

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0

10

20

30

40

50

60

70

80

90

time (sec)

er
ro

r

Figure 5.22: Exponential decay of the error between the original and decrypted messages, given

by m2(t).
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Figure 5.23: Decrypted message m1(t) = 0.02 sin(t) sin(100t).
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Figure 5.24: Accurate decryption of the message m2(t) = 2 sin(4t) for θ = 0.

between the original message and the decrypted message decaying exponentially with time. Now

similar and accurate results may be obtained when considering the other information signal

m1(t) = 0.02 sin(t) sin(100t), which possesses low amplitude and very high frequency, as shown

in Figures 5.13 (a) and 5.23.

It should be mentioned that the parameter θ has a very significant role in the dynamics

of the induced-message cryptosystem. Increasing the value of this parameter will increase the

accuracy of the decryption process and decrease the error between the real information signal and

the induced one. In other words, the larger the values of θ, the faster the convergence and the

smaller the error. However, due to the software numerical integration errors, the decryption of

the information signals may not be successful. This is due to the fact that, for large θ, exp(−θt)
is driven to zero very fast with time and the information signal may be lost. Therefore the

parameter θ has been chosen to be relatively small in the numerical integration process to recover

the information signal. Figure 5.24 shows that even with θ = 0 and without message feedback,

the message signal m2(t) = 2 sin(4t) can still be accurately recovered. This also indicates that

the induced-message cryptosystem is very robust.

5.3 Generalization to Partial Differential Equations

Due to the fact that PDE’s have inherently complex behaviour associated with them and that it

takes them usually longer to be solved numerically when compared to ODE’s, it is believed that

PDE’s may lead to distinct advantages in masking information for secure communication (e.g.,

many more frequencies are involved in the mask when a PDE is used). Therefore there has been
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several attempts to apply this theory to communication as a promising tool towards securing

information transmission [29, 31, 32]. In this section, we investigate the possibility of making

multichannel (ten channels or a hundred channels, for instance) spread-spectrum communication

by synchronizing spatiotemporal chaos. The communication efficiency can be greatly enhanced

since a large number of informative signals can be transmitted and received simultaneously. To

fulfill this task, the operating spatiotemporal systems must have the following properties.

1. The chaotic motions of two identical systems can be synchronized by using control keys as

infrequently as possible. The most convenient situation is that this spatiotemporal chaos

can be synchronized by using a single key.

2. The chaotic signals transmitted from different channels must be independent (or, say, un-

correlated) from each other, then the interferences between different transmitted signals

can be reduced to the lowest level.

3. The key sequences and the transmitted chaotic signals must be high-dimensional hyperchaos

so that any imitation of keys and attacks against the transmitted signals are extremely

difficult.

It was established in [106,109] that certain PDE systems well possess these properties.

The study of communication security, by employing spatiotemporal chaotic systems generated

by PDE’s, is still under investigation for possible design of a secure communication scheme. It

is still an open research topic with several potential ideas. For example, in [31, 32], the poten-

tial chaotic-optical wavefronts (which exhibits spatiotemporal chaotic behaviour) as information

carriers in parallel communication systems, was investigated. It was shown, numerically, that

broad-area non-linear ring cavities, generate spatiotemporally chaotic signals which may allow en-

cryption and decryption of data in space and time. Furthermore, in [106], chaotic spatiotemporal

chaotic dynamics, generated by non-linear set of coupled partial differential equations which are

synchronized via a scalar complex variable, were used to design communication security schemes

which are high-dimensional . It was established that those schemes were robust to noise. In

addition, it was discovered that the added dimensionality created a new quasisynchronous state,

enabling the transmission of multiple messages through a single scalar complex channel. However,

the idea of implementing impulsive spatiotemporal synchronization in designing communication

security schemes has not been yet investigated.

We shall attempt in this section to present two ways of designing multichannel communica-

tion security schemes based on impulsive spatiotemporal synchronization. These schemes will
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just present the idea of generalizing the concept of impulsive cryptosystems, discussed in the

previous section, to include spatiotemporal chaotic systems instead of low dimensional chaotic

or hyperchaotic systems. Certainly, the questions regarding security, robustness, delay and im-

plementation remain to be checked to see the practicality of these systems and if they provide

better approach towards secure communications.

We begin our discussion by presenting the following cryptosystem shown in Figure 5.25. As

described in the schemes employing low dimensional chaotic and hyperchaotic systems for secure

communication, we shall have, in this case, two identical spatiotemporal chaotic systems: u at

the transmitter end and v at the receiver end. The spatiotemporal chaotic system used in this

model will be the Grey-Scott model, given by (4.26). Furthermore, in the new cryptosystem, the

transmitter and the receiver each possesses an integrator to integrate the solutions of the drive and

response systems, respectively, with respect to the spatial dimension x (the drive and response

systems are the Grey-Scott models). At the transmitter end, the integrated chaotic signal ||u||2
is used to encrypt the message signal m(t) using any complicated conventional cryptographic

technique such as the n-shift cipher, given by equation (5.2). For illustrative purposes, we shall

just apply a masking technique for encrypting m(t). i.e., we shall generate the encrypted signal

f(t) = ||u(t, x)||2+m(t). Recall that, in Section 4.4, we have discussed theoretically the impulsive

synchronization of two identical Grey-Scott models. Then, in Section 4.5, a numerical analysis

of the Lyapunov exponents of the error dynamics between two Grey-Scot models, one of which

drives the other through 32 spatial points out of 256 points (i.e., not along the whole spatial

dimension x) was also investigated. The analysis revealed that the largest Lyapunov exponent

of the error dynamics is negative and the synchronization is feasible provided that the impulse

duration ∆ = 0.1 and impulse magnitude Qk = Q = diag(0,−0.5), k = 0, 1, . . . , which are

applied at 32 spatial points along the spatial dimension x in the direction of e2 only. Investing

this property in our new cryptosystem, we are able to send the values of the 32 spatial impulsive

points at each moment τk, k = 1, 2, . . . , and the encrypted signal f(t) across two separate public

channels to the receiver end. The impulses will be used to drive the response system v at

the receiver end and the two Grey-Scot models will consequently synchronize. The integrator

will generate the chaotic signal ||v||2 which we already know will eventually satisfy the limiting

property limt→∞ ||v||2 = ||u||2. Hence the chaotic signal ||v||2 may be used now to retrieve the

encrypted signal m(t) by applying the operation

m(t) ≈ m̂(t) = f(t)− ||v||2.
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Figure 5.25: Scheme of the spatiotemporal-chaos-based cryptosystem.
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Figure 5.26: Encryption/decryption of m(t) = 0.2 sin(t/200) using masking methods by a spa-

tially integrated spatiotemporal chaotic signal for ∆ = 0.1 and Qk = Q = diag(0,−0.5) with

impulses applied at 32 spatial points in the direction of e2 only: (a) Original message m(t). (b)

Chaotic signal ||u||2 at the transmitter end. (c) Masking the signal m(t) using ||u||2. (d) Chaotic
signal ||v||2 at the receiver end. (e) Retrieved signal m̂(t).
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Figure 5.27: The difference m(t)− m̂(t) decaying to zero.

In Figure 5.26, we have used a forward Euler integration of the finite difference equations

generated from the discretization of the two Grey-Scott models to obtain the simulations. In

the first simulation, Figure 5.26 (a), we show the graph of the original message signal m(t) =

0.2 sin(t/200). In the second and third simulations, Figure 5.26 (b) and (c), we show the graph of

||u||2 and ||u||2+m(t), respectively. Notice the two graphs in (b) and (c) are almost identical. In

the fourth simulation, Figure 5.26 (d), the graph of the response system is shown and finally in

Figure 5.26 (e) the graph of the decrypted signal m̂(t) is displayed showing accurate results away

from the transient region. Figure 5.27 confirms this by showing the convergence of the difference

m(t)− m̂(t) to zero.

The second cryptosystem we shall propose next is based on the idea of transferring the system

of PDE’s to a system of ODE’s, by applying the numerical method of lines, discussed in Section

4.5. As we said before, the idea of the numerical method of lines is to apply finite difference

methods to discretize the spatial partial derivatives and transfer the temporal partial derivative

to ordinary derivatives. The resulting system of differential equations will become a system of

coupled ODE’s whose dynamics is an approximation of the original system of PDE’s. Thus, when

applying the numerical method of lines to a pair Grey-Scott models, with periodic boundary con-

ditions, for example, by discretizing the second spatial partial derivatives ∂2u/∂x2 and ∂2v/∂x2,

at the transmitter and receiver, respectively, the resulting system of 2× 257 coupled ODE’s will
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be given by (see equations (4.51) and (4.52))





u̇
(0)
1 = −u(0)1

(
u
(0)
2

)2
+ a(1− u(0)1 ) + d1

2u
(0)
1 − 5u

(1)
1 + 4u

(2)
1 − u(3)1

(∆x)2

u̇
(j)
1 = −u(j)1

(
u
(j)
2

)2
+ a(1− u(j)1 ) + d1

u
(j+1)
1 − 2u

(j)
1 + u

(j−1)
1

(∆x)2

u̇
(j)
2 = u

(j)
1

(
u
(j)
2

)2
− (a+ b)u

(j)
2 + d2

u
(j+1)
2 − 2u

(j)
2 + u

(j−1)
2

(∆x)2

u̇
(256)
1 = −u(256)1

(
u
(256)
2

)2
+ a(1− u(256)1 ) + d1

2u
(256)
1 − 5u

(255)
1 + 4u

(254)
1 − u(253)1

(∆x)2

(5.3)

at the transmitter end, whereas at the receiver end, we have





v̇
(0)
1 = −v(0)1

(
v
(0)
2

)2
+ a(1− v(0)1 ) + d1

2v
(0)
1 − 5v

(1)
1 + 4v

(2)
1 − v(3)1

(∆x)2

v̇
(j)
2 = −v(j)1

(
v
(j)
2

)2
+ a(1− v(j)1 ) + d1

v
(j+1)
1 − 2v

(j)
1 + v

(j−1)
1

(∆x)2

v̇
(j)
2 = v

(j)
1

(
v
(j)
2

)2
− (a+ b)v

(j)
2 + d2

v
(j+1)
2 − 2v

(j)
2 + v

(j−1)
2

(∆x)2

v̇
(256)
1 = −v(256)1

(
v
(256)
2

)2
+ a(1− v(256)1 )+

d1
2v
(256)
1 − 5v

(255)
1 + 4v

(254)
1 − v(253)1

(∆x)2

v2(τ
+
k )(8∗κ) = v2(τk)

(8∗κ) + ε(u2(τk)
(8∗κ) − v2(τk)(8∗κ)),

(5.4)

for j = 1, 2, . . . , 255, κ = 1, 2, . . . , 32 and ε = −0.5. In other words, the new state variables v
(j)
1

and v
(j)
2 are impulsively synchronized with the state variables u

(j)
1 and u

(j)
2 , for j = 0, 1, . . . , 256,

by impulsively driving v
(8∗κ)
1 and v

(8∗κ)
2 by the discrete values of u

(8∗κ)
1 and u

(8∗κ)
2 , κ = 1, 2, . . . , 32,

at the moments τk, k = 1, 2, . . .. The new system of coupled ODE’s, given by (5.3), has positive
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Lyapunov exponents and exhibits spatiotemporal chaos which is considered more complex than

the behaviour of low dimensional chaotic and hyperchaotic systems. This more complex behaviour

provides a promising tool towards establishing more secure communication schemes. Clearly,

system (5.3) can be used, as we did in Sections 5.1 and 5.2, to design impulsive cryptosystems

identical to those ones illustrated by Figures 5.9, 5.12 and 5.20.

Let us, for example, use the impulsive cryptosystem, shown in Figure 5.9, and masking meth-

ods as a conventional cryptographic technique, to test the ability to combine systems (5.3) and

(5.4) with this cryptosystem. Using the message signal m(t) = 0.2 sin(t/200) and the state

variables u
(92)
1 as a masking signal to generate the encrypted signal f(t) = u

(92)
1 +m(t) and trans-

mitting the resulting signal, together with the impulses to the receiver through public channels,

we obtain the following results. The simulations in Figure 5.28 are obtained by using fourth order

Runge-Kutta method to integrate systems (5.3) and (5.4) with respect to time. The original mes-

sage signal m(t) and the chaotic signal u
(92)
1 (t) are shown in Figure 5.28 (a) and (b), respectively.

In Figure 5.28 (c), the encrypted signal f(t) = u
(92)
1 (t) + m(t) is shown. When the two spa-

tiotemporal chaotic systems (u1(t),u2(t))
T = (u

(0)
1 , u

(1)
1 , . . . , u

(256)
1 , u

(0)
2 , u

(1)
2 , . . . , u

(256)
2 )T , at the

transmitter end, synchronize impulsively with the spatiotemporal chaotic system (v1(t),v2(t))
T =

(v
(0)
1 , v

(1)
1 , . . . , v

(256)
1 , v

(0)
2 , v

(1)
2 , . . . , v

(256)
2 )T , at the receiver end, we will have limt→∞ v

(92)
1 = u

(92)
1 .

The convergence follows from the fact that the largest Lyapunov exponent of the error dynamics

between systems (5.3) and (5.4) is negative, as illustrated in Section 4.5. The simulation of the

signal v
(92)
1 is shown in Figure 5.28 (d) which shows almost identical behaviour to the simulation

of the signal u
(92)
1 . Thus retrieving the signal m(t) becomes feasible by applying once more the

operation

m(t) ≈ m̂(t) = f(t)− v(92)1 (t).

Figure 5.28 (e) shows the propagation of the decrypted signal m̂(t) which exhibits very accurate

decryption process. Finally, Figure 5.29 displays the difference m(t) − m̂(t) decaying to zero to

confirm our prediction of convergence.

Thus, from the above discussion, spatiotemporal chaos may provide us with a better impulsive

cryptosystem in the sense of designing a more secure and more reliable secure communication

schemes. Certainly, it will remain to check if this conjecture is true and see how implementable

such spatiotemporal-chaos-based cryptosystems are. This will open the door for more required

research work in this area that we will leave for future research work.
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Figure 5.28: Encryption/decryption of m(t) = 0.2 sin(t/200) by applying masking methods using

the signal u
(92)
1 for ∆ = 0.1 and ε = −0.5: (a) Original message m(t). (b) Chaotic signal u
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1

at the transmitter end. (c) Masking the signal m(t) using u
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1 . (d) Chaotic signal v

(92)
1 at the

receiver end. (e) Retrieved signal m̂(t).
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Chapter 6

Conclusions and Discussions

It was established in this thesis that we are able to combine impulsive control theory with chaos

synchronization. The theory led us eventually to develop a new technique, called impulsive

synchronization, to externally control the general behaviour of chaotic, hyperchaotic and spa-

tiotemporal chaotic systems. In other words, in the presence of two chaotic, hyperchaotic or

spatiotemporal chaotic systems, the behaviour of one system was manipulated, by applying im-

pulsive synchronization, in such a way that this system, the response system, was forced to be-

have in accordance with the behaviour of the other system, the drive system. The performance of

this method of synchronization was tested to check for robustness towards parameter mismatch

and towards delay, including sampling and transmission delays. We found out that impulsive

synchronization possesses this robustness property under certain conditions when dealing with

chaotic and hyperchaotic systems. Due to the fact that parameter mismatch and delay issues

are inevitable problems, robustness becomes evidently important when dealing with impulsive

synchronization. The conditions required to guarantee this robustness property were expressed

in this thesis as sufficient conditions for convergence of the error dynamics, between the chaotic

and hyperchaotic systems involved, to zero. The mathematical description of convergence was

given in terms of Lagrange stability and/or equi-attractivity in the large property. Depending on

the stability property we had into our consideration, the sufficient conditions, corresponding to

each stability property, were derived to establish theoretically that impulsive synchronization is

robust when dealing with chaotic and hyperchaotic systems. The numerical analysis of impulsive

synchronization employing Lyapunov exponents confirmed our theoretical results and gave an-

other approach to deal with this synchronization method. However, with the presence of delay, it
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still remains to develop a technique to investigate the Lyapunov exponents of the synchronization

errors between the chaotic or hyperchaotic systems involved. This technique will be an extension

of the method developed when delay was neglected.

The application of impulsive synchronization to secure communication were also discussed in

this thesis. We showed that several impulsive cryptosystems can be designed to transmit secret

information across public channel or channels. Due to the ability of impulsive synchronization to

be combined with conventional cryptographic techniques and its robustness, it provided us with

a very promising tool for the purpose of building a communication security scheme. We extended

the work done in this area by proposing the induced-message cryptosystem which provides more

security than the model proposed in [114–116], and solves the time-frame congestion problem.

We finally extended this work to employ spatiotemporal chaotic systems and showed that the

possibility of employing spatiotemporal chaotic systems in impulsive cryptosystems to increase

their security is very feasible and quite promising.

There are still many unanswered questions regarding impulsive synchronization in general and

its applications, in particular when dealing with spatiotemporal chaotic systems. Some of these

questions open the door for more future research work in this are. For example: Is impulsive

synchronization robust in the presence of parameter mismatch when dealing with spatiotemporal

chaotic systems? What happens when delay is present in such systems? How much security

can impulsive cryptosystems, based in spatiotemporal chaos, provide and how implementable are

they? Is it possible to establish the numerical results, obtained concerning the Lyapunov expo-

nents when dealing with spatiotemporal chaotic systems, theoretically? These questions remain

unanswered and require more investigation and more exploration. In fact, the lack of general for-

mulation to describe many spatiotemporal chaotic systems make answering such questions very

hard and require dealing with each spatiotemporal chaotic system individually.
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