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Abstract 

The calibration of water distribution systems networks (WDN) is a complex non-linear problem that 

has traditionally been solved using manual trial-and-error methods.  Over the past few decades, 

automated calibration techniques have been the subject of a great deal of research, and significant 

advancements in the field of WDN calibration have been achieved. Despite these advancements in 

calibration techniques, and the development and application of automated tools in numerous research 

settings, most practitioners still rely on engineering judgment and traditional calibration methods for 

WDN calibration. In an effort to bridge the gap between practitioners and researchers, the value of 

these advanced calibration approaches relative to traditional methods is validated and quantified in a 

real world scenario. 

City X’s WDN model has been manually calibrated by engineers familiar with the system. Their 

calibration procedure was mainly an expert-based approach using judgment and trial-and-error and 

did not rely on automated optimization tools. The purpose of this study is to resolve the 

corresponding calibration problem with optimization tools and compare the calibration solutions in 

terms of quality (closeness to measured data) and calibration parameter values. The calibration 

problem is posed as a multi-objective optimization problem and solved with the PA-DDS algorithm. 

The precise calibration objectives are roughly matched to the manual calibration objectives specified 

by the engineers who calibrated the model. Multi-objective optimization results are compared against 

the manually calibrated model, and the potential benefit of applying an automated approach is 

assessed. The utilization of automated calibration methods is shown to clearly assist in parameter 

error detection and model quality improvement.  

To further improve the quality of the calibrated model, the initial results from the automated 

calibration are used to guide a manual calibration effort. Upon the manual adjustment of macro-

calibration parameters, the automated calibration tools are used again to quantify the parameter 

uncertainty. As such, the calibration approach is iterative, and based upon the effective application of 

automated calibration tools coupled with traditional trial-and-error methods. Several thousand unique 

solutions of approximately equal or greater quality than the existing manually calibrated model are 

generated. 89 of the most robust solutions are identified in an effort to parsimoniously capture the 

model parameter uncertainty. Ideally, this list of candidate solutions can be used in future operational 

studies to ensure that operational decisions are robust to a wide range of potential network conditions. 
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Moreover, particularly uncertain model parameters are identified so as to focus future field studies, 

and data collection efforts.  
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Chapter 1 

Introduction 

Simulations of water distribution network (WDN) models are essential tools for planning, operation 

and maintenance of WDNs. A WDN is designed and built to deliver water from an initial source, 

often a water treatment facility, to customers using a series of pumps, pipes, valves, and tanks. The 

typical components of a WDN are depicted in figure 1.1. It is often impractical, and quite expensive 

to perform operational analyses and experiments on a network directly. Therefore, in lieu of direct 

experimentation, a model describing the physical characteristics of a real network is built and 

simulated. Simulating a model is the process of solving the complex hydraulic equations which 

mathematically represent flow and pressure conditions within the real system (Walski et al. 2003). 

The results generated from WDN simulations are regularly used by professionals in the municipal 

water industry to facilitate infrastructure investment (Engineering Computer Applications Committee 

1999) 

 

Figure 1.1: Common components of a WDN – (Figure adapted from (Mays 2010)) 

Typically, modeling software represents pipes and valves within a network using links, which are 

connected at junctions, or nodes. Customer water usage (demands) along a pipe is often simulated at 

the network nodes. Most models are skeletonized, meaning that not every pipe in the network is 
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included, and often small pipes delivering water to each individual user are omitted; relatively minor 

demands within the network (e.g. individual homes) are grouped and represented by a single node 

(Walski et al. 2003).  Water is distributed through the network links from a storage facility (a 

reservoir, or tank) to the demand nodes through the use of pumping stations. WDN simulations are 

solved using a series of mass balance and energy conservation equations developed at each node and 

link in the network, respectively.  These equations are mathematically defined in equations (1.1) and 

(1.2) which have been adapted from (Walski et al. 2003). 

∑ 𝑄𝑖 − 𝑈 = 0

𝑝𝑖𝑝𝑒𝑠

 
(1.1) 

where Qi represents the inflow to the node in the i-th pipe (M/T); and U represents the water used at 

the end node of the pipe (M/T).  

𝑍1 +
𝑃1

𝛾
+

𝑉1
2

2𝑔
+ ∑ℎ𝑝 = 𝑍2 +

𝑃2

𝛾
+

𝑉2
2

2𝑔
+ ∑ℎ𝑙 + ∑ℎ𝑚  

(1.2) 

where Z represents elevation [L]; P represents pressure [M/L
2
/T

2
]; γ represents the fluid specific 

weight [M/L
2
/T

2
], g represents the gravitation force [L/T

2
]; hp, hl, and hm represent head added at 

pumps, head loss in pipes, and head loss due to minor losses [L].  

Head added by a pump is calculated using a pump head characteristic curve which represents the 

non-linear relationship between pump head and discharge. Pump manufacturers provide this 

information, however pump curves can change over time after prolonged use of the pump. For 

information regarding specific pump head and flow calculations, refer to Walski et. al. (2003). Pumps 

are usually installed at water sources, as well as along pressure zone boundaries. For example if the 

elevation of one zone is significantly lower than an adjacent zone in the network, pumps are installed 

to boost the pressure at which the water is delivered at the higher elevation.  

Minor head losses are caused by turbulence as water travels through bends or valves within the 

network. These losses are significantly smaller than head losses through pipes and are most often 

considered negligible. Head loss through pipes can be calculated using a variety of different 

equations; the most commonly used in North America is the Hazen Williams equation for head loss, 

defined in equation (1.3).   

ℎ𝑙 =
𝐶𝑓𝐿

𝐶1.852𝐷4.87
𝑄1.852  

(1.3) 
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where Cf represents a unit conversion factor (10.7 for SI units); Q represents the flow rate [m
3
/s]; D 

represents the internal pipe diameter [m], L represent the length of pipe (m); and C represents the 

Hazen-Williams C-factor [-]. Within real networks, pipes are subject to corrosion and tuberculation 

effects which effectively reduce the true diameter of the pipe. It is very difficult to calculate the actual 

internal diameter of a pipe following tuberculation effects, so WDN models typically account for 

these effects by altering C-factor settings. The C-factor is a pipe carrying capacity factor which is 

inversely related to pipe roughness. For smooth pipes, or pipes that have not experienced significant 

tuberculation, the C-factor is high, while rougher or severely tuberculated pipes are described using a 

lower C-factor (Walski et al. 2003).  

A great deal of information must be defined within a WDN model to allow for accurate simulations 

of real-world conditions. In addition to the network topology, piping information including link 

diameters, lengths, and internal roughness factors (i.e. Hazen-Williams C-factors) must be defined. 

Moreover, pump and valve hydraulics and controls must be input into the model as well. Often pumps 

and valves are controlled by tank water level elevations, so it is important to also correctly describe 

storage volumes of each tank within a model.  

Once all the necessary information is defined in the model, the network equations can be solved 

and the real conditions can be simulated. In order to simulate network conditions, it is necessary to 

assume that demands are known a priori. Typically, most modeling software used by practitioners 

solves for pressures and flows, while initial demand estimates are assumed static during the 

simulation (Tabesh et al. 2011). This is known as demand-driven analysis. In reality, demands are a 

function of the available pressures in the network, and in pressure deficient conditions, demands are 

reduced. Therefore, demand driven simulations can sometimes be inaccurate under conditions where 

pressures are too low to meet the estimated demands, such as if a pipe in the network has broken and 

is leaking significantly (Muranho et al. 2015). To address these issues, some researchers have begun 

adjusting estimated system demands as a function of the simulated pressures. This is known as a 

pressure driven analysis. Pressure driven analysis can lead to more accurate results, but this type of 

simulation is more complex and is generally limited to leakage assessment simulations. Due to the 

complexity of pressure driven simulation techniques, and the unclear applicability of these techniques 

to real world simulations, most practitioners prefer to use demand driven techniques. Although, this 

may be subject to change in the near future due to the significant amount of recent research focused 
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on pressure driven analysis (Savic et al. 2009; Tabesh et al. 2011; Giustolisi et al. 2014; Muranho et 

al. 2015).   

Further to different analysis techniques, models can also be simulated in a variety of different 

ways. The most commonly used simulations are steady state, extended period, and transient 

simulations (Savic et al. 2009). Steady state simulations solve the hydraulic equations describing a 

network at a single snapshot in time, and the network conditions are assumed static. These types of 

models are typically used by designers to understand how a network might respond to extreme 

conditions. For operational studies analyzing how the network reacts to variable loading conditions, 

an extended period simulation (EPS) is required (Walski et al. 2003). An EPS is essentially a series of 

steady state models simulated at discrete time intervals for a specified period of time. Model results 

from the previous time step are used to set the boundary conditions for the next time step. Transient 

simulations consider unsteady flow conditions and are considered to be the most accurate type of 

simulations (Paluszczyszyn et al. 2015). However, these models are quite complex and are generally 

only utilized by researchers in specialized studies such as leak detection analyses (Savic et al. 2009; 

Paluszczyszyn et al. 2015).  

In addition to the wide variety of simulation techniques available, numerous algorithms and 

software packages have been developed to solve the complex hydraulic equations defining WDN 

simulations (Balut and Urbaniak 2011; Paluszczyszyn et al. 2015). The most commonly used of 

which is the free EPANET (Rossman 2000) software package, which utilizes a global gradient 

algorithm method to solve the network equations (Muranho et al. 2015). Another commonly used 

software package is InfoWater (Innovyze 2015). InfoWater is based on EPANET simulation 

techniques but is integrated with geographical information systems (GIS) to allow modelers to more 

easily represent the physical conditions and topology of the existing network. Both of these software 

packages are utilized in this study.  

Irrespective of the analysis technique, simulation type, or modeling software employed by 

practitioners, the quality of results obtained from any model is dependent on the accurate description 

of the model components described in figure 1.1. Due to large uncertainties associated with many 

model input parameters, it is vital that these parameters are properly calibrated prior to use 

(Engineering Computer Applications Committee 1999). 

Model calibration is the process of adjusting model parameters until the discrepancies between 

model results and field data are minimized to some satisfactory level (Walski 1983). Ormsbee and 
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Lingireddy (1997) suggested the following seven step process for the calibration of hydraulic 

networks:  

1) Identification of the intended use of the model 

2) Determination of initial model parameter estimates 

3) Collection of calibration data 

4) Evaluation of model results 

5) Macro-level calibration 

6) Sensitivity analysis 

7) Micro-level calibration 

Since WDN models are used to aid decision makers in a variety of ways, identifying the intended 

use of a model is crucial to determining the type of model required (static vs. extended period 

simulations, water quality simulations, etc.), collecting the necessary quantity and quality of field data 

needed for calibration, and ensuring that the model is calibrated to the accuracy desired for its 

intended use (Walski 1995).  

Generally, parameters describing the structure of a model (topology, network geometry and 

connectivity, pump hydraulics, and boundary conditions such as tank and reservoir water levels, etc.) 

can be directly measured with reasonable accuracy (Ormsbee 1989). Other model parameters such as 

the internal pipe roughness factors (C-factors) and the temporal and spatial demands throughout the 

network are much more difficult to measure accurately and must be estimated. C-factors are adjusted 

to represent energy losses within a pipe. In the short term, C-factors are considered static. However, 

over longer periods of time, modeled C-factor settings must be adjusted to account for pipe 

depreciation caused by tuberculation and corrosion. These depreciation effects are quite uncertain and 

can vary even within similar pipes in the same network (Lansey et al. 2001). C-factors can be back-

calculated from field C-factor tests and the Hazen-Williams equation describing energy loss in a pipe. 

Unfortunately, field testing is quite expensive and the vast majority of C- factors within a model are 

often estimated based on results from a small sample of field tests and values reported from literature 

(Ormsbee and Lingireddy 1997).   

Spatial and temporal demand distributions within a network are often estimated based on 

information collected from customer metered data (if available), land use characteristics, and total 
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inflow from pumps and tanks in the system (Walski et al. 2003). Often, demand estimates generated 

from customer usage data will underestimate the observed inflow into the system. There are several 

contributing factors, the largest of which can be attributed to network leakage. Average leakage 

within Canadian municipalities is approximately 13 % of total inflow (Renzetti and Dupont 2013). 

High pressures and aging infrastructure within a network are some of the most significant causes of 

leakage. When assigning spatial demand parameters within a model, it is common practice to evenly 

distribute leakage throughout the network. However, if information regarding the age of the network 

infrastructure, and/or pressures within the network are available, then this information can be used to 

better estimate spatial leakage allocations (Walski et al. 2003).  

The quality of a model calibration is heavily dependent on the quality of the field data collected 

(Walski et al. 2004). Typically, data used for model calibration consists of pressures and flows 

collected using pressure gauges and flow recording devices installed at critical locations throughout 

the network. Additionally, most municipal water systems have supervisory control and data 

acquisition (SCADA) systems that provide tank level, pressure, and pump flow rate information at 

select locations in the network (Walski et al. 2003).  

WDNs are generally over-designed to account for potential population growth and peak demand 

conditions, therefore it is important to collect calibration data when the system is stressed (e.g. under 

fire flows or high demand conditions) in order to ensure that the network is actually sensitive to the 

calibration parameters.  When calibrating static simulations it is necessary to also collect data under 

numerous static loading conditions to confirm the robustness of any potential calibration settings 

identified (Ormsbee and Lingireddy 1997).   

The observed field data is compared against model simulation results, and if discrepancies are 

particularly large, it is likely that the data pertaining to the structure of the model was either 

inaccurate, or incorrectly input into the model.  Macro-calibration is the process of reviewing the 

accuracy of the aforementioned data, and validating/correcting these model inputs in order to bring 

the simulated and observed data sets into closer agreement (Ormsbee and Lingireddy 1997). 

Smaller differences between model and field data are likely caused by inaccurate roughness 

settings or spatial demand allocation. The final step in model calibration deals with fine tuning these 

parameters until the model results reach acceptable levels of agreement with field observations. This 

is referred to as micro-calibration (Ormsbee and Lingireddy 1997).  
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Traditionally, micro-calibration has been done manually through a trial and error process. 

However, this is very time consuming, particularly in large networks with many pipes and nodal 

demands to be adjusted. Moreover, the issue of identifiability, in which an underdetermined 

calibration problem is being solved, further complicates this process (Walski et al. 2003). When the 

number of independent field observations is less than the number of calibration parameters, as is the 

case in the calibration of real networks, several combinations of parameters will achieve results of 

roughly the same quality as the correct parameter settings. However, these solutions will contain 

compensating errors (the incorrect adjustment of one model parameter to account for the inaccurate 

setting of another) (Walski et al. 2008).  

Since micro-calibration is quite tedious and prone to compensating errors, it lends itself well to 

automated calibration approaches. In fact, the automated calibration of internal pipe roughness 

settings and demand data has been the focus of a great deal of research over the past few decades 

(Shamir 1974; Ormsbee 1989; Savic and Walters 1995; Savic et al. 2009).  

Several automated calibration approaches have been developed. These can be grouped into three 

general categories; iterative, explicit, and implicit methods (Savic et al. 2009). Iterative procedures 

are essentially automated trial and error methods. Generally, these methods are only effective at 

calibrating very simplified networks, and have slow convergence rates (Bhave 1988). Explicit 

calibration methods solve an extended set of steady state mass balance and energy equations across 

nodes, pipes and loops in the network to generate model parameters (Ormsbee and Wood 1986). 

These methods are severely limited in their use due to the fact that the number of model parameters 

must equal the number of independent observations, there is no way to quantify uncertainty of 

estimated calibration parameters, and these methods generally require a high level of mathematical 

expertise to use. Both iterative and explicit procedures are unable to effectively and efficiently 

characterize large models and have no influence on the current practice of water distribution network 

modeling (Savic et al. 2009).  

The current state of the art in water distribution network model calibration is based on the use of 

implicit methods, which utilize an optimization algorithm/tool coupled to a WDN model. The 

optimization tool sets model parameters (parameter settings are constrained by upper and lower 

bounds pre-specified by the user) in the model, which in turn sends results of the simulation back to 

the optimizer. The algorithm then uses these results to calculate a set of objective function values 

corresponding to this solution, and update the model parameters accordingly (Ormsbee 1989). 
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Defining reasonable bounds for each calibration parameter is essential to identifying high quality 

solutions.  

All implicit calibration approaches use objective functions that are formulated to minimize the 

difference between observed and simulated pressure and flow data. There are several ways to 

accomplish this, as evidenced by the variety of objective functions that are reported in the literature 

(Lingireddy and Ormsbee 1999; Wu and Clark 2009; Tabesh et al. 2011), although the common 

theme amongst researchers is to collapse pressure and flow rate discrepancies into a single 

normalized objective function. Only one exception has been noted in recent literature involving a 

hypothetical WDN calibration research competition. Since the true settings of the hypothetical model 

were known a priori, the competitors were assessed on calibration and prediction errors, as well as the 

errors in calibrated model settings. This type of assessment forced competitors to re-evaluate the 

calibration objectives and many opted to solve a multi-objective calibration problem (Ostfeld et al. 

2012).    

In addition to the variety of applicable objective function definitions, several different optimization 

algorithms have been used to solve implicit calibration problems, including gradient methods which 

iteratively solve for the gradient of the objective function with respect to all calibration parameters  

(Shamir 1974; Lansey and Basnet 1991) Gauss-Newton methods, which approximate the second 

order Hessian matrix of the non-linear least squares objective functions (Liggett and Chen 1994; 

Reddy et al. 1996), as well as several other non-evolutionary methods (Ormsbee 1989; Tucciarelli et 

al. 1999). More recently, approaches aimed at finding approximate optimal solutions to the problems 

through the use of evolutionary methods have been implemented (Savic and Walters 1995; 

Lingireddy and Ormsbee 1999; Marchi et al. 2013). There are tradeoffs to each proposed method and 

no single group of optimization algorithms is unanimously preferred over another, as evidenced by 

the wide array of optimization algorithms utilized in recent WDN calibration literature (Ostfeld et al. 

2012; Marchi et al. 2013). However, evolutionary methods tend to produce better results for larger 

network calibration problems than non-evolutionary approaches, but they are much more 

computationally expensive (Savic et al. 2009).  Recently some of these advanced optimization tools 

have been linked to commercial hydraulic modeling software (Wu and Clark 2009), but these 

software packages are quite expensive (Jamasb et al. 2009).  

Clearly, a great deal of research has been focused on the development of automated calibration 

tools (Shamir 1974; Ormsbee 1989; Lansey and Basnet 1991; Savic and Walters 1995; Reddy et al. 
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1996; Lingireddy and Ormsbee 1999; Walski et al. 2008; Wu and Clark 2009). Much of the research 

is generally focused on the development of new approaches and algorithms to automate WDN 

calibration, with far less attention paid to the application of these tools in real world settings; 

“whereas new algorithms make its appearance into water network field, little attention is paid onto 

real network data and only artificially created network data is used” (Puust and Vassiljev 2014).  

However, some researchers are beginning to address this gap in the literature through the application 

of these automated calibration approaches to real world large-scale WDN calibration problems (Wu 

and Clark 2009; de Schaetzen et al. 2011; Dini and Tabesh 2014; Puust and Vassiljev 2014; Vassiljev 

et al. 2015).  Although, none of these studies have directly compared a manual trial and error 

approach against an automated approach applied to the calibration of a real network. 

1.1 Problem Statement  

Despite the wide availability and successful application of automated water distribution network 

calibration tools in numerous research settings, they are not commonly used in engineering practice 

(Speight and Khanal 2009); with most practitioners relying on engineering judgment and a trial-and-

error approach instead. In an effort to bridge the gap between practitioners and researchers, the value 

of these  advanced calibration approaches relative to traditional methods must be validated and 

quantified in a real world scenario. 

1.2 Objective 

The municipality of a Canadian City (City X) commissioned a local consulting company (Company 

Y) to calibrate the City’s 24 hour EPS model of their water distribution network. The goal of the 

calibration was to update the existing model to include newly built areas, update system demands and 

demand patterns (loading conditions), pump information, pipe roughness coefficients, and update 

pump/valve controls accordingly to match simulated tank/junction pressures, and pump flow rates to 

observed field conditions. This model would then be used in a variety of operational analyses.  

This study builds upon this work by repeating the manual micro-calibration using an implicit 

automated calibration method. The results will be compared against the manually calibrated model, 

and the potential benefit of applying an automated approach will be assessed. No matter which 

method is used, the accuracy of the calibrated model is limited by the quality and quantity of field 

data, and a seemingly calibrated model can be full of compensating errors. Therefore, when limited 

field data exists, generating a single calibrated solution may not be particularly beneficial for 



 

 10 

operational analyses. Instead, a range of feasible candidate solutions will be generated by solving an 

automated multi-objective micro-calibration problem. Ideally, the list of candidate solutions could be 

used in future operational analyses to ensure decisions are robust to several feasible solutions. 

1.3 Scope 

The automated WDN calibration approach applied in this study is limited to only the micro-

calibration phase. Therefore, only internal pipe roughness and nodal demand parameter settings are 

considered in the automated calibration. Field data relating to the network structure, geometry and 

topology is not accessible and is assumed accurate.  

The pareto-archived dynamically dimensioned search algorithm (PA-DDS) is used in the implicit 

calibration approach as it is parsimonious, user friendly, and has already been successfully applied to 

several hypothetical and bench mark water distribution network calibration and problems (Asadzadeh 

and Tolson 2009; Asadzadeh et al. 2011; Asadzadeh and Tolson 2013). PA-DDS is linked to the 

EPANET WDN modeling software through the EPANET programmer’s toolkit (Rossman 1999). 

Both the EPANET software and programmer’s toolkit are freely available and widely used in 

research and practical settings. All calibration results are assessed using demand driven simulations. 

1.4 Outline 

This thesis is outlined as follows: 

Chapter 1 provides the motivation and objective of this study. It briefly describes why hydraulic 

network modeling is crucial for use by municipalities and why proper calibration of these models is 

required. Traditional approaches to hydraulic network calibration are introduced, and the applicability 

of automated approaches to the micro-calibration of hydraulic networks is discussed. Finally, the 

objective and scope of this research is defined.  

Chapter 2 introduces City X’s WDN EPS model and describes in detail how the model was 

manually calibrated. The original manual calibration objectives are defined quantitatively for use in 

an automated calibration procedure. Several automated calibration problems are formulated to assess 

the effects of calibrating to different data sets and different decision variable groupings.  

Chapter 3 presents the results of an initial automated calibration effort and directly compares the 

solutions to the manual calibration results. Trade-off curves are presented, and time series of 

simulated tank levels for select solutions are analyzed. Objectives insensitive to the micro-calibration 
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are examined, and potential inaccuracies in static parameters not included in the calibration are 

identified.  

Chapter 4 uses insights gained from the initial automated calibration approach to guide a manual 

macro-calibration of the network model. Poorly performing calibration objectives insensitive to the 

micro-calibration parameters are addressed, and inaccurate macro-calibration parameter settings are 

manually adjusted. All parameter setting adjustments and their associated effects on the model are 

reported.   

In Chapter 5, the automated micro-calibration analysis is repeated for the adjusted model generated 

in chapter 4. The results are presented in a similar manner as in chapter 3, and used to define a set of 

high quality solutions that could potentially represent the existing network conditions.  

Chapter 6 summarizes the main conclusions and recommendations of this research. Field data with 

the greatest potential to improve calibration results are identified for any future field studies. 

  



 

 12 

Chapter 2 

Manual and Automated Calibration Methods 

City X’s WDN model is depicted in figure 2.1. The network consists of two distinct pressure zones, 

3816 nodes, 600 km of water main modeled using 4705 pipes, nineteen active wells, three elevated 

storage tanks, five in ground storage reservoirs, and nineteen pumping stations comprised of a total of 

forty nine pumps. The model is a 24 hour EPS solved with one minute hydraulic time steps. A 

hydraulic time step defines the times at which the set of mass balance and energy continuity equations 

characterizing pressures and flow within the network are re-calculated. 

In the following sections, the manual calibration methodology is briefly summarized from a 

calibration report prepared by Company Y. The manual micro-calibration approach is then replicated 

in an automated multi-objective optimization problem. Several automated calibration problem 

formulations are presented, and sources of uncertainty inherent to the modeling software and data 

collection methods are discussed. 

 

Figure 2.1: City X WDN model components; pressure zones and demand shift highlighted 
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2.1 Manual Calibration Methods 

Using the City’s GIS data base and a series of field studies, a macro-calibration of the existing 

InfoWater network model was completed. Network connectivity, node elevations, pipe and tank 

geometries, and pump curves were updated and verified. Following this, valve and pump operation 

settings used by the network operators on the calibration date of August 26, 2010 were translated into 

the InfoWater hydraulic modeling software. These settings were incorporated into the model through 

a series of control rules that adjust valve settings and activate/deactivate pumping stations based on 

certain events; most often when water levels in tanks reach a specified threshold.  Some time-based 

rules were implemented to reflect specific operator settings on the calibration date (Company Y 

Consultants 2011).   

The next step in the calibration process involved loading demand conditions within the network 

into the model. In the InfoWater software, pipes are connected at nodes, and the demands along a 

pipe are simulated at these nodes. In EPSs, demands are quantified through the assignment of base 

demands and demand patterns at each demand node within the network. Base demands define the 

average demand observed at the node, while the demand pattern consists of a series of demand 

multipliers (one for each time step of the simulation) which characterize how the water demand 

changes over the course of the simulation. The actual simulated nodal demand at any given time step 

of the EPS can therefore be calculated using equation (2.1). 

𝑄𝑗,𝑡 = 𝑄𝑗 ∗ 𝑀𝑡 (2.1) 

where Qj,t represents the actual demand at node j at time t [l/s]; Qj represents the base demand at node 

j; and Mt represents the unitless demand multiplier applied to the base demand at time t. 

Base demands at each node within the network were established using averaged 2009 customer 

metered data. Then, SCADA data was used in a mass balance analysis to generate two distinct diurnal 

demand multiplier patterns, one for each pressure zone within the city. The patterns define changes in 

demand at each one minute time step of the 24 hour EPS. Leakage was proportionately allocated to 

all demand nodes within the network implicitly through the application of the demand pattern 

multipliers (Company Y Consultants 2011).  

Field studies were then conducted to collect network pressure and flow rate information for 

comparison against the simulated model results. Fourteen pressure data loggers measuring 

instantaneous pressure information on a per minute basis were installed in various fire hydrants 
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throughout the network. Pressure information at all three elevated tanks, and downstream of 14 

pumping stations within the network were collected using the SCADA system. Flow rates from 17 

pumping stations representing flow into and out of each pressure zone in the network were also 

collected by the SCADA system. All of this data was used to assess the accuracy of the model 

simulation. Particular emphasis was placed on accurately simulating the fluctuations in tank water 

levels over the course of the EPS (Company Y Consultants 2011). 

C-factor tests were conducted at thirty four of the 4705 pipes (<1 %) comprising the network. C-

factor tests measure the head loss across a section of pipe at a known flow rate. Figure 2.2 illustrates a 

standard two gauge C-factor test in which temporary valve closures ensure that the discharge (Q) 

observed at the flowed hydrant is drawn entirely from the section of pipe being tested. Static and 

residual pressures are measured at hydrants 1 and 2, and the collected data is used to back calculate 

the internal pipe roughness setting of the measured pipe segment using equations (2.2) and (2.3). 

 

Figure 2.2: Standard C-factor test (Figure from Walski et .al. 2003) 

𝐶 =
𝑄

0.278𝐷2.63 (
ℎ𝑙
𝐿 )

0.54 
(2.2) 

 

ℎ𝑙 = (𝑃1 − 𝑃2) + (𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 − 𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛) (2.3) 

 



 

 15 

where C represents the Hazen-Williams C-factor [-]; Q represents the observed flow rate at the 

flowed hydrant [m
3
/s]; D represents the nominal internal pipe diameter [m]; hl represents the head 

loss observed across the pipe segment [m]; L represents the length of the pipe segment [m]; and P1 

and P2 represent the residual pressures [m] observed at hydrants 1 and 2, respectively. 

Data collected from these tests were utilized in conjunction with the Infowater ‘Calibrator’ tool 

(Innovyze 2015) to automatically adjust C-factor settings in an effort match model data to the field 

SCADA and pressure logger data. The Infowater calibrator tool uses an implicit calibration method 

by linking a genetic algorithm to the Infowater hydraulic solver. The exact problem formulation 

solved by the engineers is unknown, however, the ‘Calibrator’ tool failed to find a solution for this 

network, even after technical support was provided by the Innovyze software developers.  Following 

the ‘Calibrator’ tool’s failure, the results of the C-factor tests were used in a manual micro-calibration 

of the system. Five distinct pipe groupings based on pipe material and diameter were generated. Each 

pipe in the network belonging to a specific group was assigned a roughness value equal to the average 

of all field C-factor tests for that particular type of pipe. These groups, and their associated roughness 

coefficient settings, are presented in Table 2.1 below. In addition to these five groups, 433 pipes of 

unknown material and/or age within the network were assigned a C factor of 130. 

Table 2.1: Manually calibrated C-factor settings 

Pipe Material Diameter (mm) C-Factor (-) # of pipes 

Cast Iron 
<=150 63.8 1344 

>150 87 584 

Ductile Iron All Diameters 132.4 651 

PVC  All Diameters 140.5 1253 

Hyprotec All Diameters 138 445 

 

Upon setting all model parameters as defined above, the calibrated model was simulated and results 

were graphically compared to the field data. The results of the comparison were mostly favorable; 

however, the model did not accurately represent tank filling and draining rates at two of the three 

monitoring locations (V and C elevated storage tanks). In an effort to address this problem, several 

alternative C-factor settings for the five pipe groups were tested, moreover additional roughness 

groupings accounting for the age of the network pipes were considered. These attempts were 

ultimately unsuccessful.  
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Eventually, it was concluded that demands within pressure zone one (depicted in figure 2.1) were 

not appropriately distributed due to the fact that the southern portion (zone 1b) was predominantly 

industrial with some relatively new residential developments, while the northern region (zone 1a) 

consisted of primarily older residential areas. The engineers assumed that during the summer months, 

the new residential areas may require more lawn watering than their older counterparts, and that the 

industrial areas may account for more water demand than originally assumed. Therefore, they shifted 

20 % of the base demands originally allocated to demand nodes within zone 1a, south towards 

demand nodes within zone 1b. New diurnal demand patterns were created for zone 1a and zone 1b 

demand nodes. It is not clear how these demand patterns were generated and the information was not 

contained in the manual calibration report. However, upon reallocating the demands and assigning 

new demand patterns, the simulated results were far closer to the observed field data, and the model 

was considered calibrated enough for use.  

Afterwards, the 2010 calibrated model parameters (C-factors and demand shift) were validated 

against field SCADA data collected on July 21, 2011. Validation data consisted of SCADA tank level 

and flow data collected at the same 3 elevated tanks and 17 pumping stations as in 2010. No pressure 

data was collected. The model boundary and loading conditions were updated to reflect demand and 

pump/valve operational data observed on the validation date, and the differences between observed 

and simulated 2011 results were found to be of similar quality as those achieved for the 2010 model 

calibration exercise. Both the calibration and validation dates were specifically chosen to be during 

the summer months to ensure that the network was sufficiently stressed, and that the model would be 

sensitive to changes in calibration parameters.  

It is important to note that the demand shift required for model calibration was not based on any 

measured information, but rather it was assumed based on the practitioners’ intimate knowledge of 

the system. As such, the engineers who initially calibrated the system are still interested in finding a 

solution that is not reliant on this demand redistribution. 

2.2 Automated Calibration Methodology 

The manual micro calibration approach described in section 2.1 was used to generate numerous 

automated calibration problem formulations.  The calibration objectives and decision spaces of each 

problem are defined in sections 2.2.1 and 2.2.2, respectively. The software and hardware systems 

utilized in both the automated and manual approaches are presented in section 2.2.3. 
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2.2.1 Automated Calibration Objectives 

The goal of the automated calibration was to replicate the manual calibration methodology as closely 

as possible in an automated setting in order to allow for a direct comparison of automated and manual 

calibration results. Thus, the manual calibration objectives had to be quantitatively described for use 

in an optimization procedure. The calibration objectives used in the manual approach were the 

minimization of differences between simulation results and field data collected on August 26, 2010. 

The 2010 field data consists of pressures collected from 14 pressure loggers installed throughout the 

network, as well as SCADA pressure data at 13 junctions and 3 elevated tanks, and SCADA flow 

rates collected at 17 pumping stations. The minimization objectives were achieved through a trial-

and-error process and a graphical inspection of the field data vs. simulated results at each monitoring 

point within the network.  

There are many different ways to formulate and quantify differences between simulated data and 

field data. However, the common theme amongst researchers is to normalize pressure and flow errors 

and combine them into a single minimization objective function (Ormsbee 1989; Walski et al. 2003; 

Wu and Clark 2009). While this method is reasonable for achieving high quality results that reduce 

cumulative errors in the simulation, it does not provide the user with any information regarding how 

pressures and flows individually respond to changes in decision variables. Furthermore, it does not 

afford the user the opportunity to examine objective function tradeoffs of different solutions. To allow 

for a meaningful examination of resulting solutions, separate objectives were defined for nodal 

pressure, tank pressure and flow rate differences between observed and simulated results. These three 

objectives were utilized within a multi-objective optimization approach to generate tradeoff 

information between the objectives.  

When examining differences between simulated and observed pump station flow rates in an EPS, it 

is important to measure discrepancies in both total quantity of water pumped out of each station, as 

well as the times at which the pumps are operational. To quantify both of these errors, the calibration 

objective formulated was based on the minimization of the cumulative absolute errors between 

simulated and observed flows at each one minute interval of the EPS. This is described 

mathematically in equation (2.4). 

𝑄𝐸𝑟𝑟 = ∑ ∑|(𝑄𝑘,𝑡
𝑠𝑖𝑚 − 𝑄𝑘,𝑡

𝑜𝑏𝑠)|

𝑇

𝑡=0

17

𝑘=1

 

(2.4) 
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where QErr represents the flow rate differences between simulated and observed data measurements, 

cumulated over the course of the EPS [l/s]; 𝑄𝑘,𝑡
𝑠𝑖𝑚 and 𝑄𝑘,𝑡

𝑜𝑏𝑠 represent the observed and simulated flow 

rates [L/s] at pump station k and hydraulic time step t [min]; and T represents the total number of 

simulated one minute time steps, 1441 in a one day simulation starting at 12 AM and ending at 12AM 

the following morning. 

Assuming demands are correctly allocated within the model, pump flow rate errors and tank 

volumes are directly related. Once all demands are satisfied, any excess water that is pumped into the 

network will be stored in the tanks for later use. If pump station flows are unable to satisfy demands 

across the network, stored water in the tanks are used to compensate. Therefore, if simulated pumping 

rates are overestimated, then the expectation would be an over estimation in volumetric water storage 

in tanks within the network. Tracking differences in tank water levels independent of pump flow rate 

errors is essential to identifying potential errors in pump operation, and spatial and temporal demand 

allocation within the model. Discrepancies between simulated and observed tank water levels over the 

course of the EPS were quantified using cumulative absolute errors as calculated in equation (2.5). 

While it is acknowledged that differences in tank volumes might be more meaningful to the user, 

minimizing differences in cumulative tank volumes could lead the optimizer to generate solutions that 

favor minimizing water level discrepancies in larger tanks at the cost of misrepresenting water levels 

in smaller tanks. Therefore, tank water levels differences were assessed instead in order to ensure 

calibration efforts were equally spread across all areas of the network. The simulated nodal pressure 

error minimization objective is defined similarly and presented in equation (2.6). 

𝐻𝐸𝑟𝑟 = ∑∑|(𝐻𝑖,𝑡
𝑠𝑖𝑚 − 𝐻𝑖,𝑡

𝑜𝑏𝑠)|

𝑇

𝑡=0

3

𝑖=1

  
(2.5) 

 

𝑃𝐸𝑟𝑟 = ∑∑|(𝑃𝑗,𝑡
𝑠𝑖𝑚 − 𝑃𝑗,𝑡

𝑜𝑏𝑠)|

𝑇

𝑡=0

13

𝑗=1

 

(2.6) 

where HErr and PErr , represent the differences between simulated and observed tank water levels and 

pressure heads, cumulated over the course of the EPS [m]; 𝐻𝑖,𝑡
𝑠𝑖𝑚 and 𝐻𝑖,𝑡

𝑜𝑏𝑠 represent the simulated 

and observed tank water levels [m] at tank i and hydraulic time step  t [min]; 𝑃𝑗,𝑡
𝑠𝑖𝑚 and 𝑃𝑗,𝑡

𝑜𝑏𝑠 represent 

the respective simulated and observed pressure heads [m] at node j and hydraulic time step t  [min]; 

and T represents the total number of simulated time steps. 
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Using equations (2.4) to (2.6), the calibration can be formulated as a multi-objective optimization 

problem presented in equation (2.7). 

minimize F(𝒙⃑⃑ ) =  {𝑓1(𝒙⃑⃑ ), 𝑓2(𝒙⃑⃑ ), 𝑓3(𝒙⃑⃑ )} 

𝑠. 𝑡. 𝑎 ≤ 𝑥 ≤ 𝑏⃑   

(2.7) 

where F represents the multi-objective minimization problem; f1, f2, and f3 represent Qerr, Herr, and 

Perr, respectively; these are the cumulative differences in flow rates [l/s], tank water levels [m], and 

pressures [m] between simulated and observed data, calculated using equations (2.3) through (2.5), 

respectively;  𝒙⃑⃑  represents the parameter settings for a particular solution; and 𝑎  and 𝑏⃑  are the lower 

and upper bounds of the feasible parameter settings comprising the decision space. Two different 

decision spaces, defined in section 2.2.2, are established for use in the automated calibration 

formulations. 

Due to different naming conventions employed by the main contractor, sub-contractor, and city 

officials, it was not clear at the time of this research where the 14 pressure data loggers were installed 

throughout the network. To avoid potential calibration errors, the pressure logger data was not 

included in the automated calibration objective functions. However, it is important to note that the 

minimization of flow and tank level simulation errors is generally more important than the 

minimization of pressure errors when calibrating an EPS (Walski et al. 2003). Therefore, this is not 

too great of a concern.  

The aforementioned calibration objectives were used in conjunction with all relevant 2010 and 

2011 SCADA data to formulate three different calibration objective spaces. The first of which is a tri-

objective function which utilizes equations (2.4) through (2.7) to minimize discrepancies between the 

2010 simulated model results and 2010 field data. This is identified as the ‘2010 objective space’. An 

alternate objective space (the ‘2011 objective space’) is defined to minimize discrepancies between 

the 2011 field data and the model results simulated under 2011 boundary and loading conditions. 

Since no junction pressure data is available for the 2011 calibration date, this objective space is 

reduced to a bi-objective function which uses equations (2.5) and (2.6) to minimize tank level and 

pump flow rate errors in the network.  Both of these objective spaces search for solutions that 

minimize simulation errors (or maximize model performance) in either 2010 or 2011 conditions 

independently of one another.  
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A third objective space is defined to simultaneously calibrate the model simulation results for both 

the 2010, and 2011 network conditions to their respective field data sets. This tri-objective function 

formulation, identified as the ‘aggregate objective space’, is defined using equations (2.4) through 

(2.7). However, the total number of one minute time steps, T, in the tank level and flow rate error 

calculations are increased to 2882, since two full days of tank water levels and flow rate observations 

are used for calibration purposes. The pressure objective is calculated for the 2010 simulation only, 

since no pressure information is available in 2011.  When solving the calibration problem using the 

aggregate objective space, the optimization algorithm identifies a potential solution of model 

parameter settings which are then applied to two unique versions of the network model reflecting both 

the 2010, and 2011 network boundary and loading conditions. The cumulative errors observed in each 

of the model simulations are aggregated and passed back to the optimization algorithm, which uses 

these results to identify a new solution set.  

2.2.2 Decision Variables 

Two different sets of decision variables were generated and applied to solve the automated micro-

calibration objective function formulations defined in section 2.2.1. The first of which consists of five 

continuous decision variables representing C-factor settings for the five pipe groups identified in the 

manual calibration approach, as well as one continuous decision variable representing the percentage 

of demand shifted from zone 1a to zone 1b. These decision variables were selected in order to 

emulate the manual calibration methodology in which the base demand shift and the roughness 

coefficients were the only parameter settings thought not to have been adequately verified in the field.  

It is unclear from the manual calibration report how the demand shift was implemented. Therefore, 

it was assumed that the base demand at each demand node within zone 1a was reduced by 20 % and 

the cumulative demand was reallocated in proportion to the already existing nodal base demands in 

zone 1b. The demand shift was modeled using equations (2.8) through (2.10).  

Demand Decrease: 

𝑄𝑎𝑑𝑗,𝑗
𝑍1𝑎 = ∑(1 − 𝐷𝑠) (𝑄𝑖𝑛𝑖𝑡,𝑗

𝑍1𝑎 )

𝑁1

𝑗=1

 

(2.8) 

 



 

 21 

∆𝑄𝑠 = ∑𝐷𝑠

𝑁1

𝑗=1

∗ 𝑄𝑖𝑛𝑖𝑡,𝑗
𝑍1𝑏

 

(2.9) 

 

Demand Increase: 

𝑄𝑎𝑑𝑗,𝑗
𝑍1𝑏 = ∑𝑄𝑖𝑛𝑖𝑡,𝑗

𝑍1𝑏 ∗  
∆𝑄𝑠

∑ 𝑄𝑖𝑛𝑖𝑡,𝑗
𝑍1𝑏𝑁2

𝑗=1

+ 𝑄𝑖𝑛𝑖𝑡,𝑗
𝑍1𝑏

𝑁2

𝑗=1

  
(2.10) 

where 𝑄𝑖𝑛𝑖𝑡,𝑗
𝑍1𝑎  and 𝑄𝑖𝑛𝑖𝑡,𝑗

𝑍1𝑏
 represent the original, an adjusted (decreased) base demands allocated to 

node j within zone 1a [l/s]; N1 and N2 represent the number of demand nodes in zone 1a and zone 1b, 

respectively; Qtot represents the cumulative base demand transferred from zone 1a to zone 1b [l/s];  

𝑄𝑖𝑛𝑖𝑡,𝑗
𝑍1𝑏

 and 𝑄𝑎𝑑𝑗,𝑗
𝑍1𝑏  represent the original, and adjusted (increased) base demand allocated to node j in 

zone 1b [l/s]; and DS is the decision variable setting representing the fraction of nodal base demand 

shifted from zone 1a to zone 1b.  The DS decision variable was unconstrained in all model 

calibrations; the upper and lower bounds were set from 0 to 100 %. 

The upper and lower bounds of all five C-factor settings were defined so as to match the range of 

C-factor values obtained from all field tests of each pipe group. The C-factor settings of the 433 pipes 

of unknown age/material were kept static at their original setting of 130, since there was no available 

field data to establish alternate C-factor settings. Moreover, since there was very limited information 

available, it was assumed that changing the C-factors of these pipes would likely introduce 

uncertainty and increase the potential for compensating errors in the calibration. This group of 

decision variables, identified as the ‘5 C-factor decision space’ is presented in table 2.2.  

Table 2.2: Automated calibration: 5 C-factor decision space 

Decision 

Variable 
Pipe Material 

Diameter 

(mm) 

Lower 

Bound 

Upper 

Bound 

# of 

pipes 

C-Factor 

Setting 

(-) 

Cast Iron (CI) 
<=150 57 68 1344 

>150 48 94 584 

Ductile Iron All 116 141 651 

Polyvinyl 

Chloride 

(PVC) 

All 130 149 1253 

Hyprotec Coated 

Iron 
All 135 156 445 

Demand Shift (-) NA NA 0 1 NA 
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Generally, the total number of model parameters considered for calibration is directly linked to 

parameter uncertainty in the calibrated model (Mallick et al. 2002). Parameter reduction through 

grouping C-factor settings of pipes of similar age and material is an effective way to reduce 

uncertainty and the potential for compensating errors, as well as deal with the identifiability issues 

arising in WDN calibration problems (Walski et al. 2003). However, grouping can also introduce 

errors in the calibration if pipes within a group should not have the same C-factor settings. Thus, it is 

important to identify pipe groupings that accurately and efficiently capture the full range of pipe 

conditions within the model network.  

The 5 C-factor decision space combines 1928 cast iron pipes into only two groups. Since cast iron 

pipes are most susceptible to depreciation from corrosion and tuberculation (Al-Barqawi and Zayed 

2006), it is unlikely that these pipe groupings accurately reflects the C-factor characteristics of cast 

iron pipes within the network. Therefore, an alternate decision space identified as the ‘13 C-factor 

decision space’, was defined to consider both the age and diameter of cast iron pipes within the 

network.   

The 13 C-factor decision space is identical to the 5 C-factor decision space for the PVC, ductile 

iron, and hyprotec lined C-factor parameters as well as the demand shift decision variable. The only 

difference between both decision spaces lies in the grouping of cast iron pipes within the network. 

The two existing cast iron pipe groupings identified in the 5 C-factor decision space are subdivided 

into ten pipe groupings in the 13 C-factor decision space. Due to the fact that only twelve C-factor 

tests were conducted on cast iron pipes in the field, it was not possible to constrain the ten newly 

created cast iron C-factor calibration parameters using only field data. Instead, these decision 

variables were bounded using literature values from Lamont (1981).  

Lamont (1981) found that depreciation in a pipe is heavily dependent on local conditions, and the 

corrosiveness of the water source. Thus, he characterized different rates of attack on the carrying 

capacity of a pipe using four trends: slight, moderate, appreciable and severe attack. The relevant C-

factors of various cast iron pipes under different rates of attack are presented in Table 2.3. 

Cast iron pipes within the network were grouped by age using the same four categories (new, 30 

years old, 60 years old, and 100 years old) defined in table 2.3. Pipes in the network that were less 

than 15 years old, 15 to 44 years old, 45 to 80 years of old, and greater than 80 years old were 

considered new, 30, 60, and 100 years old, respectively. Each of these age groupings was further sub-

divided by pipe diameter as well. A minimum threshold of ten pipes per group was arbitrarily defined 
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in order to limit the total number of pipe groups, while still accurately characterizing aging 

infrastructure within the WDN. The full list of C-factor decision variables comprising the 13 C-factor 

decision space is defined in table 2.4. 

Table 2.3: Lamont (1981) C-factor settings for cast iron pipes - Adapted from Walski et.al. (2003) 

Hazen-Williams C-Factor Settings (-) for Discrete Cast Iron Pipe Diameters (mm) 

Age and Depreciation of Pipe 

76 

 (mm) 

152 

(mm) 

300 

(mm) 

600 

(mm) 

1220  

(mm) 

New and Smooth 129 133 138 140 141 

30 years old 

Trend 1 - slight attack 100 106 112 117 120 

Trend 2 - moderate attack 83 90 97 102 107 

Trend 3 - appreciable attack 59 70 78 83 89 

Trend 4 - severe attack 41 50 58 66 73 

60 years old 

Trend 1 - slight attack 90 97 102 107 112 

Trend 2 - moderate attack  69 79 85 92 96 

Trend 3 - appreciable attack  49 58 66 72 78 

Trend 4 - severe attack 30 39 48 56 62 

100 years old 

Trend 1 - slight attack 81 89 95 100 104 

Trend 2 - moderate attack  61 70 78 83 89 

Trend 3 - appreciable attack 40 49 57 64 71 

Trend 4 - severe attack  21 30 39 46 54 

 

It is important to note that depreciation effects are often more severe when water hardness levels 

are greater than 300 ppm (James and Shahzad 2003). Since the average hardness of water sources 

supplying the City’s WDN is approximately 460 ppm (Region of Waterloo 2011), it was assumed that 

the carrying capacity of pipes within the network would be subjected to higher rates of attack. The 

upper and lower bounds of C-factor settings generated from literature values were constrained based 

on this assumption.  

New pipes were assumed to exhibit at most mild depreciation effects corresponding to pipes 30 

years of age. No limiting assumptions were made regarding pipes 30 years of age, and the 

optimization algorithm could explore the entire range of depreciation values corresponding to 30 year 

old cast iron pipes. The range of depreciation in all pipes greater than 60 years of age were 
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constrained by the assumption that the depreciation in these older pipes would, at best, exhibit only 

moderate depreciation effects.  

The upper and lower bounds of C-factor settings within each pipe group were also governed by the 

maximum and minimum pipe diameters comprising the group. For example, the lower bound of 

potential C-factor settings assigned to the new cast iron pipe group (comprised of 20 pipes ranging in 

diameter from 150 mm to 300 mm) was defined to include the mild depreciation effects associated 

with 30 year, 150 mm diameter pipes. The upper bound was set to match the C-factors associated 

with new pipes of a 300 mm diameter.  

Table 2.4: C-factor groupings associated with the 13 C-factor grouping decision space 

 

Type of Pipe 
Diameter (mm) C-factor Setting (-) # of 

Pipes Min Max Min Max 

Cast Iron Pipes 

New (<15 years old) 150 300 83 138 20 

30 years old (15-44 year old  

network pipes)  

50 100 41 100 12 

150 200 50 106 217 

250 400 58 112 80 

60 years old (45-80 year old 

network pipes) 

25 100 30 69 312 

150 200 39 79 851 

250 350 48 85 182 

400 600 56 92 43 

100 years old (>80 years old) 

25 100 21 61 69 

150 300 30 78 142 

Ductile Iron 75 1000 116 141 651 

Polyvinyl Chloride 100 1050 140 150 1253 

Hyprotec Coated Iron 50 500 135 156 445 
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The 2010, 2011 and aggregate objective function formulations defined in section 2.2.1, are solved 

with both the 5 and 13 C-factor decision spaces in chapter 5, and only the 5 C-factor decision space in 

chapter 3.  

2.2.3 Software/Hardware Utilized  

The calibration was initially formulated by linking the PA-DDS algorithm to the EPANET toolkit 

using MATLAB software (The Mathworks Inc. 2015b). However, the code consistently failed to 

simulate the EPS. It is unclear why the code failed as MATLAB software has been used to 

successfully solve EPS calibration problems of smaller networks, and the static model of this network 

was successfully simulated in MATLAB. It is speculated that the quantity of data and size of the 

network were too large for computation of an EPS in MATLAB. Therefore, the code was translated 

to C++ (International Organization for Standardization 2015) script and compiled within the Visual 

Studio 2013 (Microsoft 2015) platform.  

The PA-DDS multi-objective heuristic search algorithm was used in the implicit automated micro-

calibration of City X’s WDN model. PA-DDS is very simple relative to alternative global search 

algorithms as it has only one parameter, the perturbation size parameter, which is very robust to a 

wide variety of problems and does not require user fine-tuning (Asadzadeh and Tolson 2009). Despite 

it’s simplicity, PA-DDS has proven to be very effective at solving large complex problems and can 

produce solutions of similar quality to state of the art multi objective algorithms in a fraction of the 

computational budget (Asadzadeh and Tolson 2013). Since PA-DDS is dynamically dimensioned, it 

utilizes its available computational budget very efficiently. At the start of the algorithm’s search for 

optimal solutions, it perturbs all parameters to be exploratory. As the optimization progresses, the 

number of parameter perturbations are reduced and the algorithm searches more locally along the 

existing pareto-front.  

PA-DDS archives all non-dominated solutions as it searches through the decision space. A solution 

is considered non-dominated if none of the objective function values can be improved without 

degrading some of the other objective function values. As such, the non-dominated solution set 

generated at the end of the calibration process are used to approximate the pareto-front of the 

objective space. To generate a new candidate solution, the algorithm selects one solution from the 

archived set of non-dominated solutions and perturbs the parameter settings. If the newly generated 

solution is non-dominated, it is added to the archive and selected for perturbation in the next iteration. 

If the solution is dominated an alternative solution is selected based on one of three available 
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selection metrics, random, crowding distance, and hyper-volume (Asadzadeh and Tolson 2013). The 

crowding distance selection metric is generally preferred to the random metric, while the hyper 

volume metric is generally preferred over both random and crowding distance metrics (Asadzadeh 

and Tolson 2013).  

Unfortunately, at the time of this research the hyper volume metric was only available in MATLAB 

source code and was not yet implemented in C++. Since the complexity of the WDN model 

necessitated the use of C++ script, all calibration formulations were solved using the crowding 

distance selection metric. The perturbation parameter was set at 0.2.  

All analysis was completed using a desktop computer with eight GBs of RAM and an eight core 

AMD FX-8320 processor. 

2.2.4 Summary of Automated Calibration Experiments 

A total of three multi-objective function formulations, and two decision spaces were defined for use 

in an automated micro-calibration approach. The multi-objective functions were defined to analyze 

the impact of calibrating the network to different boundary and loading conditions independently of 

one another, versus calibrating to all network conditions simultaneously. As such, the first objective 

formulation calibrates the network parameters to the 2010 conditions, the second calibrates to 2011 

conditions, and the third calibrates the model parameters to both the 2010 and 2011 network 

conditions simultaneously.  

The 5 C-factor decision space was defined to exactly match the manual calibration parameters. 

This was done to allow for a direct comparison of results achieved from both the manual and 

automated methods. Afterwards, a second decision space consisting of 13 C-factor groupings was 

generated in an attempt to more accurately represent pipe conditions within the network.  

Each calibration objective function is solved with the 5 C-factor decision space in chapter 3, and 

the results are compared against the manual solution. Solving the micro-calibration problem in a 

multi-objective setting allows the user to easily identify insensitive objectives and inaccurate macro-

calibration parameters. The results from this initial automated calibrate are used to update model 

parameters in a manual macro-calibration approach in chapter 4. The updated model is then solved 

with all objective function formulations and both decision spaces for a total of six unique calibration 

problems described in chapter 5. Each problem was solved with a budget of 10 000 iterations, 

corresponding to approximately 14-30 hours (depending on the problem) of computational time. The 
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number of iterations was selected to reflect the amount of time that engineers from Company Y 

would be willing to wait for a high quality solution. 

2.3 Sources of Uncertainty 

There are several sources of uncertainty which must be acknowledged and, if possible, addressed. 

Some of this uncertainty is difficult to quantify in part due to working with network models and data 

sets that are five years old. Additionally, as many parties were involved in the initial calibration phase 

(City officials, contractors and sub-contractors), and naming conventions were not consistent amongst 

each group, some difficulties were experienced when correlating field and model data. Many of these 

problems were addressed but several inaccuracies inherent to the field data, network, and modeling 

software persist. Sources of uncertainty specific to this problem are discussed in the following 

sections. 

2.3.1 Uncertainty Specific to Model Inputs and Field Data 

Prior to working with any model, an extensive analysis of the initial parameter settings was conducted 

in an attempt to revert model parameters to their reported calibration settings, and ensure that all 

boundary conditions were accurately set. During this process it was noted that following demand 

reallocation (the demand shift from zone 1a to zone 1b) in the manual calibration of the 2010 network 

conditions, new diurnal demand patterns were generated for zones 1a and 1b. It is unclear how these 

demand patterns were calculated, however they appear to produce high quality results, and so the 

manual solution was assessed with these new demand patterns.  These new diurnal demand patterns 

characterizing flows in zones 1a and 1b were not included in the 2011 model loading conditions, and 

it was assumed that they were not used/created for the 2011 model validation date. Issues relating to 

diurnal demand patterns will be addressed in greater detail in chapter 4. 

When analyzing the 2011 model, it was clear that the demand shift across zone 1 had already been 

implemented in the 2011 WDN loading conditions provided, and the original demand settings were 

not available. Therefore, original demand settings were back calculated by isolating and solving for 

the original nodal demand parameter variables in equations (2.8) through (2.10), defined in section 

2.2.2. Since the exact method employed for this demand reallocation in the manual calibration was 

not reported, the initial base demand settings used in the 2011 model may not be exactly accurate. For 

the purposes of this study, the back-calculated 2011 nodal demands are assumed equal to the original 

demands.  
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All field data was also analyzed to ensure consistency across all measurements, and check for any 

major errors in the data. When analyzing field C-factor test data, it was noted that the observed 

pressure drops were quite low. While there are no set standards defining minimum observed pressure 

drops required for C-factor tests, Walski et.al. (2003) suggested that the recorded pressure drops 

should preferably be in the range of 20 PSI (~14.1m), with a minimum pressure drop of 5 PSI 

(~3.5m). This is done to ensure that the magnitude of measured head loss data is significantly greater 

than the magnitude of measurement errors. Of the 34 C-factor tests conducted, 12 tests utilized 

pressure drops that were less than the minimum suggested amount, and only 2 test locations forced a 

pressure drop that was equal to or greater than the suggested range. Even though the sub-contractor 

hired to complete these C-factor tests utilized pressure loggers that could accurately record pressures 

within 0.22 m (ADS 2009), the low magnitude of the pressure drops observed was cause for concern. 

To quantify the uncertainty related to pressure measurement errors in these tests, upper and lower 

bounds were calculated for each C-factor test using equation (2.11). 

𝐶𝑙𝑏 =
𝑄

0.278𝐷2.63((ℎ𝑙 + ∆ℎ𝑙) ∗ 𝐿)0.54
  ;  𝐶𝑢𝑏 = 

𝑄

0.278𝐷2.63((ℎ𝑙 − ∆ℎ𝑙) ∗ 𝐿)0.54
 

(2.11) 

 

where Clb and Cub represent the upper and lower bounds of C-factors back-calculated from field tests 

[-]; Q represents the observed flow rate at the flowed hydrant [m
3
/s]; D represents the nominal 

internal pipe diameter [m]; hl represents the head loss observed across the pipe segment [m]; L 

represents the length of the pipe segment [m]; and ∆hl represents the measurement error in the 

observed head loss, assumed constant at 0.22 m. Since the C-factor tests were conducted using 2-

gauge C-factor tests, the measurement uncertainty could actually be as high as 0.44 m, but for the 

purposes of this analysis a measurement error of 0.22 m was used.  

Upon calculating the upper and lower bounds of each of the C-factors, only 23 of the 34 field tests 

produced results that were accurate to within ± 15. Only C-factors calculated from these 23 tests were 

used to define the decision variable ranges.  

Another source of uncertainty is related to the spatial allocation of leakage within this network. 

Unaccounted for water (or leakage) was applied in proportion to the existing demands across all 

nodes within the network. However, more accurate results can be achieved if leakage is allocated 

predominantly to areas within the network that are most likely to exhibit leakage (i.e. older parts of 
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the network and high pressure areas) (Walski et al. 2003).  For the purposes of this study, leakage is 

assumed to be correctly allocated, but it is recommended that leakage allocation is re-assessed.   

Prior to utilizing any SCADA data for model calibration purposes, it is essential to calibrate the 

SCADA instrumentation (Bentley Systems 2004). It is likely that this was done by Company Y or 

City officials; however, no mention of the SCADA system calibration was made in the Company Y’s 

calibration report. For the purposes of this study, it is assumed that the instruments were properly 

calibrated.  

Even if the instrumentation is calibrated, issues still arise due to the fact that the pressures reported 

by the SCADA system are instantaneous observations at each one minute time step. Therefore, this 

data is quite noisy, and the levels must be smoothed prior to use (Bentley Systems 2004). The method 

employed to smooth the data is detailed in chapter 4. Flow data reported by SCADA systems are 

averaged over the course of each one minute interval and were assumed accurate.  

Finally, it is assumed that all network structure information is accurately input into the model. The 

validation of this information is not feasible and not included in the scope of this research. 

2.3.2 Modeling Uncertainty 

Often “significant mathematical assumptions are employed by the simulation software to make the 

simulation computationally tractable, yet allow the simulated results to be meaningful and useful” 

(Walski et al. 2003). Therefore, even if all the field data and model inputs are entirely accurate, it is 

highly unlikely that simulated results will perfectly match observed field conditions (Walski et al. 

2003).  It is important to understand the accuracy and limitations of the specific hydraulic network 

simulation software utilized before making decisions based on the simulated results. 

The EPANET software uses a global gradient algorithm method to solve the set of mass balance 

equations at each node and the energy continuity equations at each link/pipe in the network (Rossman 

2000). EPANET iteratively solves a linearized system of these equations to calculate nodal pressures 

and link flow rates within the system until a specified convergence threshold is satisfied (Muranho et 

al. 2015). Both the number of iterations EPANET employs and the convergence threshold settings are 

user specified (Rossman 2000). In EPSs, hydraulic equations are solved at each time step. Once a 

solution is achieved, EPANET assumes steady state conditions until the next hydraulic time step is 

reached. Real WDNs are actually much more complex and dynamic; however, for operational 

purposes EPS models provide a reasonable representation of network hydraulics (Walski et al. 2003). 
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Generally, hydraulic time steps are defined by the user, but an intermediate time step can be 

introduced in the simulation if during the course of a time step, an event occurs that would change the 

steady state conditions. For example, a pump controlled by a tank water level is switched on/off, or a 

tank becomes empty or full. If the number of intermediate time steps introduced is high, model run 

times increase significantly. This is often a sign of poorly designed control rules (Rossman 2000).  

When extracting simulated flow rate information for comparison with field data, the instantaneous 

flow rates reported by EPANET at each one minute time interval were assumed static over the course 

of the entire minute. That is to say, the effects of the introduction of intermediate time steps on 

pumping flow rates averaged over a 60 second interval were assumed negligible over the course of a 

24 hour EPS. This assumption was validated for several models simulated with a convergence 

accuracy of 0.005. Over the course of an EPS, the average discrepancy between instantaneous and 

averaged flow rates over a one minute interval was observed to be no greater than 0.5 %. For 

particularly unstable solutions in which pump settings are constantly changing over the course of a 

single minute, this assumption may not be valid. However, such a situation would not occur in a real 

WDN. If this occurs in the simulated model, then either the model network parameters or pump 

control rules fail to characterize the system, and a macro-calibration is required.   

Since the network model was manually calibrated using InfoWater software, while the automated 

approach was completed using the EPANET software programmer’s toolkit, the consistency of the 

results generated from both pieces of software was assessed in order to more accurately compare the 

manual and automated calibration methods. To complete this consistency assessment, a calibrated 

2011 model was exported from Infowater to EPANET. The hydraulic time step of this model was set 

to one hour and a 24 hour EPS was run on both pieces of software. All pipe/pump flows and junction 

pressures of both model outputs were compared at each time step and the average relative difference 

between the model junction pressure and pipe flows were found to be approximately 0.06 % and 0.22 

%, respectively. This level of consistency was expected due to the fact that the InfoWater software 

utilizes a ‘modified version of the EPANET hydraulics solver’ (Mala-Jetmarova et al. 2011) and as 

such, results generated from either software should be fairly similar.  

A consistency assessment was also conducted with hydraulic time steps set to one minute. Only the 

agreement between the 3 tanks, 17 pipes, and 13 junctions included in the objective function 

formulation were assessed. The resulting average relative differences between the Infowater hydraulic 

solver and the EPANET solver at each time step were 1.84 %, 2.59 % and 0.67 % for simulated tank 
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levels, pump flow rates, and junction pressures, respectively. Thus, improvements in the objective 

functions were only deemed significant if they were greater than these values. 

When analyzing large, complex networks with several pump/valve operation based on tank water 

level control rules, convergence issues can arise (Paluszczyszyn et al. 2015). In such instances, the 

EPANET hydraulic solver appears to randomly change pump/valve settings in search of a solution. 

Upon completing the simulation, EPANET will produce a summary report warning the user of the 

changes made in order to achieve convergence. Additional warnings include any negative pressures 

observed, or if the system is unstable. These issues can arise if there is a problem in the way the 

network is designed or operated (Rossman 2000). Unfortunately, due to the size/complexity of the 

City’s model and the reliance on tank level based control rules, several of these warnings were 

observed on all attempted model runs. These warnings appeared in both the InfoWater and EPANET 

software packages and could not be addressed.  

Regardless of the modeling software used, some of the simulated results were very sensitive to 

convergence accuracy settings. A sensitivity analysis of the effects of different accuracy settings on 

problematic solutions was completed, and results indicated that the tank level error minimization 

objective varied by as much as 25 % when the accuracy setting was changed from 0.005 to 0.01. 

Variability in the objective function values was greatly reduced at accuracy settings of 0.005 or less. 

Therefore, all automated model calibration analyses were completed at an accuracy setting of 0.005. 

Similar discrepancies were noted when comparing model C-factor settings that were rounded to the 

third significant digit against those that were rounded to four significant digits. Both models appear to 

be quite sensitive to very minor adjustments in C-factor and accuracy settings. This is likely caused 

by the use of tank water level based control rules which activate/deactivate pumps based on simulated 

tank water levels. To account for these sensitivities, the full list of non-dominated solutions generated 

by the implicit automated calibration method was assessed for sensitivities to C-factor settings 

rounded to the nearest single decimal place. All solutions that were not robust to these rounded C-

factor values were removed from the non-dominated solution set. 
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Chapter 3 

Initial Micro-Calibration Results 

Ultimately the goal of any model calibration exercise is to generate robust solutions that can produce 

high quality simulation data under multiple loading conditions. When analyzing initial calibration 

results, it was noted that some of the macro-calibrated model parameters, which were held static in 

the automated micro-calibration, were inaccurate. These parameters greatly affected the quality of 

solutions generated from the micro-calibration, and were adjusted in chapter 4 in order to obtain more 

robust and feasible solution sets. Therefore, this chapter only assesses the initial automated calibration 

solutions’ quality relative to the manually calibrated solution. No attempt was made to identify a 

‘final’ set of feasible model calibrations.   

Three unique calibration problems were solved using the 5 C-factor decision space so as to mimic 

the manual solution methods as closely as possible. Results generated from each of the three 

calibration problems as well as the manually calibrated solution are presented and discussed. For each 

problem, the multi-objective trade-off curves are plotted and compared against the manually 

calibrated solution. The original objectives representing cumulative errors in the system were 

converted into observation weighed average absolute errors (%) in order to allow all readers, even 

those unfamiliar with the system, to practically gauge the magnitude of simulation errors. Moreover, 

each solution’s efficacy to both the 2010 and 2011 objective spaces was simultaneously assessed 

using a new bi-objective function defined in this chapter. In addition to the tradeoff curves, tank water 

level time series plots are generated for both the manually calibrated solution, and select results from 

the automated calibration. These time series are compared relative to the observed tank water levels 

in the field.  Finally, each calibration objective’s sensitivity to the micro-calibration parameters was 

examined, and insensitive objectives were identified for further analysis.  

3.1 Trade-off Curves 

The original cumulative absolute error minimization objectives presented in section 2.2.1 were 

formulated to characterize the simulated model errors as simply and efficiently as possible; user 

comprehension was not initially considered. Therefore, to allow for increased user comprehension of 

the simulated errors, the objective function values of all solutions generated are presented as 

observation weighted average absolute errors (%). The observation weighted errors were calculated a 

posteriori using equations (3.1) to (3.3). Calculating percent errors using these equations implicitly 
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weights errors between larger observed data measurements more highly than errors in smaller 

measurements (i.e. 10 % error in an observed flow rate of 100 l/s is weighted more heavily than a 10 

% error in a flow rate of 10 l/s).  

𝑄%𝐸𝑟𝑟 =

∑ ∑ {|
(𝑄𝑘,𝑡

𝑠𝑖𝑚 − 𝑄𝑘,𝑡
𝑜𝑏𝑠)

𝑄𝑘,𝑡
𝑜𝑏𝑠 |  × 100 % × 𝑄𝑘,𝑡

𝑜𝑏𝑠}𝑇
𝑡=0

17
𝑘=1

∑ ∑ |𝑄𝑘,𝑡
𝑜𝑏𝑠|𝑇

𝑡=0
17
𝑘=1

=
∑ ∑ |(𝑄𝑘,𝑡

𝑠𝑖𝑚 − 𝑄𝑘,𝑡
𝑜𝑏𝑠)|𝑇

𝑡=0
17
𝑘=1

∑ ∑ |𝑄𝑘,𝑡
𝑜𝑏𝑠|𝑇

𝑡=0
17
𝑘=1

× 100% 

(3.1) 

 

𝐻%𝐸𝑟𝑟 =

∑ ∑ {|
(𝐻𝑖,𝑡

𝑠𝑖𝑚 − 𝐻𝑖,𝑡
𝑜𝑏𝑠)

𝐻𝑖,𝑡
𝑜𝑏𝑠 | × 100 % × 𝐻𝑖,𝑡

𝑜𝑏𝑠}𝑇
𝑡=0

3
𝑖=1

∑ ∑ |𝐻𝑖,𝑡
𝑜𝑏𝑠|𝑇

𝑡=0
3
𝑖=1

= 
∑ ∑ |(𝐻𝑖,𝑡

𝑠𝑖𝑚 − 𝐻𝑖,𝑡
𝑜𝑏𝑠)|𝑇

𝑡=0
3
𝑖=1

∑ ∑ |𝐻𝑖,𝑡
𝑜𝑏𝑠|𝑇

𝑡=0
3
𝑖=1

× 100% 

(3.2) 

 

𝑃%𝐸𝑟𝑟 =

∑ ∑ {|
(𝑃𝑗,𝑡

𝑠𝑖𝑚 − 𝑃𝑗,𝑡
𝑜𝑏𝑠)

𝑃𝑗,𝑡
𝑜𝑏𝑠 | × 100 % × 𝑃𝑗,𝑡

𝑜𝑏𝑠} 𝑇
𝑡=0

13
𝑗=1

∑ ∑ |(𝑃𝑗,𝑡
𝑜𝑏𝑠)|𝑇

𝑡=0
13
𝑗=1

= 
∑ ∑ |(𝑃𝑗,𝑡

𝑠𝑖𝑚 − 𝑃𝑗,𝑡
𝑜𝑏𝑠)|𝑇

𝑡=0
13
𝑗=1

∑ ∑ |𝑃𝑗,𝑡
𝑜𝑏𝑠|𝑇

𝑡=0
13
𝑗=1

× 100% 

(3.3) 

 

where Q%err, H%err, and P%err represent the relative percent errors of the simulated flow, tank water 

level, and pressure errors, respectively, between simulated and observed information in the network; 

all other variables have been defined in chapter 2.  

The relative percent errors calculated for the manually calibrated model, simulated under 2010 

loading conditions, were 3.0 %, 9.8 %, and 4.8 % for the tank levels, pump flow rates, and pressure 

observations within the network, respectively. It is clear that the manually calibrated solution is of a 

relatively high quality in both simulated tank levels and pressures. The results of the 2011 simulation 

were significantly worse, as the tank and pump flow rate relative percent errors were found to be 5.5 

% and 23.0 %. In subsequent analysis presented in chapter 4, it is clear that these exaggerated 2011 

simulation errors are caused by inaccurate macro-calibration parameter settings input in the existing 

2011 network model. Given the high quality of the model simulated under 2010 network conditions, 

it is highly unlikely that the 2011 calibration parameters used in this research are representative of the 

solution achieved during initial manual calibration. It is more probable that the 2011 model 

parameters and loading conditions were altered post-calibration and not reverted to their original 

settings. Regardless, in order to allow for a direct comparison of the results, the automated calibration 

was completed using the same macro-calibration parameters and loading conditions that the manual 

calibration results were assessed with.  
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3.1.1 Independent Objective Formulations: 5 C-factor Decision Space 

The 2010 and 2011 objective function formulations were solved in the 5 C-factor decision space, and 

the results are presented in this section. The resulting parameter settings generated from solving the 

2010 calibration problem were validated in the 2011 WDN model conditions, and vice versa. All 

results are presented and compared to the manually calibrated solution in a series of multi-objective 

trade-off plots presented in this section.  

A total of 555 non-dominated solutions were generated when solving the 2010 calibration 

objectives using the five C-factor decision space. 59 of the 555 solutions to the 2010 calibration 

problem dominate the manually calibrated solution in the 2010 objective space, while only 17 

solutions dominate the manual solution in the 2011 objective space. Nine of these solutions dominate 

the manually calibrated objectives in both the 2010 and 2011 objective spaces.  None of the 

automatically generated solutions were dominated by the manually calibrated result in the 2010 

objective space; although 170 solutions were dominated in the 2011 objective space. Clearly, 

calibrating to only one loading condition independently generates high quality results for that 

particular simulation. However, many of these results are not robust to model simulations using 

alternate loading conditions.  

 The 2011 calibration generated only 37 non-dominated results. The large difference in the number 

of solutions generated between the 2010 and 2011 calibrations is likely due to the fact that the 2010 

model is calibrated to tank level, flow rate, and pressure measurements, thus the optimization 

algorithm can explore a three dimensional objective space. The 2011 calibration problem is limited to 

a two dimensional objective space since no pressure data was collected in 2011. In the 2011 

objectives space, only two of these solutions dominate the original manual solution, while 31 of these 

solutions are dominated by the manual solution. This indicates that calibrating to pressure data as well 

as tank levels and pump flows can improve the performance of the automated calibration methods. 

However, the difference in performance between the two calibration problems solved may be 

exaggerated due to the fact that the 2011 model contains significant demand allocation errors.  

Figure 3.1 depicts the 2010 calibration objectives calculated for all 592 solutions to the 

independent 2010 and 2011 calibration problems, while figure 3.2 presents the same solution set in 

the 2011 objective space. 

 



 

 35 

 

Figure 3.1: Non-dominated solutions from the 5 C-factor grouping 2010, 2011, and manual 2010 

calibration formulations presented in the 2010 objective space 
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Figure 3.2: Non-dominated solutions from the 5 C-factor grouping 2011, 2010, and manual 2011 

calibration formulations presented in the 2011 objective space 

A visual inspection of the 2010 calibration results presented in figure 3.1 reveals two discrete 

clusters of solutions. The first cluster is comprised of solutions with low tank level and pressure 

errors, and slightly higher flow rates errors, while the second set of solutions have much higher 

simulated tank level errors and slightly lower flow rate errors. Pressure errors are slightly higher in 

the second cluster than in the first. However, this difference is almost negligible as the simulated 

pressures seem much less sensitive to the calibration parameters than the simulated tank water levels 

and pump station flow rates. The fact that the 2010 solution set is clustered in the objective space 

indicates that the objective space may be discontinuous, or that the optimization algorithm was able to 

identify two local optima. The 2011 results validated in the 2010 simulation are more continuous in 

the objective space than the 2010 solutions, which indicate that the latter is likely and that local 

optima were identified.  

There are several observable tradeoffs in the generated solutions. In figure 3.1, a slight tradeoff 

between tank levels and pump flow rate errors, as well as pump flow rate and pressure errors is 

observed. A more pronounced tradeoff between tank level and junction pressures errors is noted as 

well. In figure 3.2, a clear tradeoff between tank levels and pump flow rates for the 2011 model 

calibration results is presented. In an ideal situation where all field data and macro-calibrated 

parameters are exactly accurate, this would not occur as model calibration should reduce all errors 

simultaneously. However, in a real world scenario, field measurements are never exact and it is 

highly unlikely that all model parameters not considered for calibration are accurate. These 
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inaccuracies are manifested in the micro-calibration results as the PADDS algorithm attempts to bring 

the simulated results closer to reality through the introduction of compensating errors and a trade-off 

curve is generated. Most, if not all solutions along the tradeoff curve will contain compensating 

errors, and any perceived improvements in objective function values may simply be a function of 

these errors. Congruent to ensuring agreement between simulated results and observed field data, the 

goal of any calibration exercise is to also identify solutions with minimal compensating errors.  

Calibrating to only one day of field data can introduce significant compensating errors that reduce 

the robustness of the generated solutions. This is clearly demonstrated by the fact that most 2010 

results perform quite poorly in the 2011 model and vice versa, although the 2010 calibration results 

are slightly more robust than the 2011 results. This indicates that calibrating to pressures in addition 

to flows and tank levels may help reduce the potential for compensating errors. However, the 

difference in quality of the results generated may be slightly overstated due to the fact that the 2011 

model contains significant loading and boundary condition errors. Therefore, this analysis is repeated 

with corrected macro-calibration model parameters in Chapter 5 to verify this observation. The 

manually calibrated network parameters appear to be more robust than most automated calibration 

results generated by calibrating to only one day of data independently.  

3.1.2 Aggregate Objective Formulation: 5 C-factor Decision Space 

Solving the aggregate calibration problem in the 5 C-factor decision space resulted in the generation 

of 179 non-dominated solutions. All non-dominated solutions generated are presented in the 2010 and 

2011 objective spaces in figures 3.3 and 3.4, respectively.  These solutions are directly compared to 

the independent 2010 and 2011 calibration problem results.  

68 of the 179 non-dominated aggregate calibration solutions dominate the manually calibrated 

result in the 2010 objective space, while 32 solutions dominate the manual solution in the 2011 

objective space. 19 of these solutions dominate the manually calibrated objectives in both the 2010 

and 2011 objective space.  Clearly, calibrating to numerous loading conditions simultaneously is 

more effective at finding a larger number of robust solution sets than calibrating to only one loading 

condition.  
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Figure 3.3: Non-dominated solutions from the 5 C-factor grouping 2010, aggregate and manual 2010 

calibration formulations presented in the 2010 objective space 
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Figure 3.4: Non-dominated solutions from the 5 C-factor grouping 2011, aggregate, and manual 2011 

calibration formulations presented in the 2011 objective space 

Comparing the aggregate calibration results against the independent 2010 results, it is clear that the 
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functions defined in equations (3.4) and (3.5). The two new single objective values, representing the 

average relative percent error in the 2010 and 2011 model simulations, respectively, were calculated 

for every solution generated from all calibration problems solved. Then, each solution’s overall 

performance in the 2010 and 2011 network conditions was evaluated in this new bi-objective setting. 

In this bi-objective function formulation, several results within an individual solution set were 

dominated. These resulted were removed, and the remaining non-dominated solutions from each 

calibration problem were used to generate bi-objective trade-off curves assessing each result’s 

performance in the 2010 vs 2011 model simulations. The resulting trade-off curves are presented in 

figure 3.5.  

2010%𝐸𝑟𝑟 =
𝑄%𝐸𝑟𝑟 + 𝑃%𝐸𝑟𝑟 + 𝐻%𝐸𝑟𝑟

3
 

(3.4) 

2011%𝐸𝑟𝑟 =
𝑄%𝐸𝑟𝑟 + 𝐻%𝐸𝑟𝑟

2
 

(3.5) 

where 2010%err and 2011%err represent the average of all relative percent error objectives in the 2010 

and 2011 objective spaces, respectively. Each objective is evenly weighted in this analysis.   

 

Figure 3.5: 2010 vs 2011 bi-objective analysis of non-dominated solutions from the 5 C-factor 

grouping 2010, 2011, and aggregate calibration formulations (solutions circled in red are selected for 

time series analysis) 

For solutions generated in the 5 C-factor decision space, only three aggregate calibration results are 

dominated by the independent 2010 calibration, and no 2011 calibration results dominate the 

aggregate calibration results when assessing 2010 and 2011 model performance simultaneously. The 
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while the aggregate calibration results are more robust than both independent calibration solutions 

sets.  This further validates the effectiveness of an aggregate calibration approach. One solution from 

each of the independent calibration problems solved was selected for time series analysis of the tank 

water levels, or hydraulic grade lines (HGLs). These solutions are circled in red on figure 3.5 

directly. The time series analysis is completed in section 3.2 

3.2 Graphical Time Series Analysis 

The automated calibration objective functions were defined in an effort to quantify the manual 

calibration objectives, which were based on graphical comparisons between simulated and observed 

data.  In order to validate the initial assumption that improvements in the automated objective 

function values translate to improvements in the manual calibration objectives, two automatically 

generated solutions (identified in figure 3.5) were selected for graphical time-series analysis of the 

hydraulic grade lines in each tank. A hydraulic grade lines represents the water level in the tank plus 

the elevation of the tank. The analysis is also used to gain a more thorough understanding of the 

model sensitivity to the automated micro-calibration, and attempt to identify potential macro-

calibration parameters that can be adjusted for solution quality improvement.  

Only high quality solutions to the independent 2010 and 2011 calibration problem formulations are 

plotted, as these results had the greatest positive effects on the tank level objectives. Figure 3.6 

presents the observed and simulated hydraulic grade line time series of the elevated storage tanks C, 

V, and S for one solution generated from the automated calibration of the 2010 network conditions, in 

addition to the manually calibrated model simulated to 2010 network conditions. Figure 3.7 presents 

the same information for an automated solution to the 2011 calibration problem, the manually 

calibrated result simulated in the 2011 network conditions, and the 2011 field conditions.   

The cumulative absolute errors in simulated tank level measurements associated with the 2010 

simulation of the manually calibrated model is 1234 m, which corresponds to a relative percent error 

between simulated and observed conditions of 3.0 %. The error associated with the automated 

solution presented in figure 3.6 is 1004 m, corresponding to a relative percent error of 2.4 %. 

Therefore, improvements are marginal, but this is expected since micro-calibration is the final, fine 

tuning step of a WDN calibration process. 
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Figure 3.6: 2010 C (a), V (b) and S (c) tanks HGL time series of field observations compared to the 

manually calibrated and a select automatically calibrated solution in the 5 C-factor decision space 
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Figure 3.7: 2011 C (a), V (b) and S (c) tanks HGL time series of field observations compared to the 

manually calibrated and a select automatically calibrated solution in the 5 C-factor decision space 
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Storage tanks V and C are approximately 4500 m
3
, while tank S is approximately 2200 m

3
. As 

such, tank S drains and fills at a much quicker rate than tanks C and V and is much more sensitive to 

pumping operations. This is evidenced by the highly variable hydraulic grade line within the tank. It 

seems that water levels in tank C are most sensitive to the calibration parameters. This is expected 

due to the fact that the demand shift parameter was introduced specifically to bring simulated water 

levels of tank C into closer agreement with observed conditions.  

The 2011 manual calibration objective of tank level error was calculated as 2112 m, which 

corresponds with a percent error of 5.4 %. The error associated with the 2011 automated calibration 

solution presented in figure 3.7, is 1826 m, corresponding to a relative percent error of 4.7 %. 

Generally the results were of significantly lower quality than the 2010 network condition model 

simulations, and tank S in particular was highly inaccurate. Again, results are heavily dependent on 

the macro-calibrated model parameters and pump controls, and it is likely that the 2011 loading 

conditions were altered following calibration and not reverted back to the original calibrated settings.  

In general, the potential improvement in the tank water level error minimization objective are 

relatively low. Subsequent analysis of the network pumping rates and control rule settings in 

conjunction with the tank levels indicates that tank levels are most influenced by the pump control 

rules. For example, a major pump station becomes operational when water in tank V reaches a 

hydraulic grade line of approximately 373.8 meters, corresponding to a tank water level of 8.1 meters. 

This significantly alters the water level in the tank and simulated levels vary greatly from the 

observed conditions once this pump becomes operational. This is demonstrated graphically in figure 

3.8, through a time series analysis of the simulated zonal inflows/outflows and tank water levels 

corresponding to the manually calibrated model. Altering the micro-calibration parameters can 

slightly alter the rate at which a tank fills/drains, which in turn affects when a pump is 

activated/deactivated. This can bring simulated results into closer agreement with the observed 

results, however improvements are marginal since the source of the error (pump operation controls) is 

not addressed. Improvements in all micro calibration results are quite limited by the existing pumping 

rules.  

If the pump control rules were set accurate to the given calibration dates, this could indicate a 

problem in demand settings or network structure. It is unclear what the true source of error is, 

however it is clear that the quality of micro-calibration results are severely limited by the existing 

pump controls and macro-calibration parameters. Thus, an analysis of the pump controls is conducted 
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in chapter 4, in an effort to more closely match observed field conditions and increase micro-

calibration solution quality.   

 

 

Figure 3.8: Manually calibrated simulation results vs. field observations relating zonal inflows and 

outflows to tank water levels 
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3.3 Summary Statistics 

The aforementioned automated calibration formulations generate a wide range of non-dominated 

solutions from which a decision maker can perform operational analyses. However, no decision 

maker will be able to identify any decisions that adhere to all solutions, nor should they attempt to do 

so. This solution set should be narrowed to allow for meaningful analyses, and to attempt to remove 

solutions containing compensating errors. Given the fact that the initial results of the automated 

calibrations indicate that the macro-calibrated model parameters are inaccurate, no attempt was made 

to narrow the solution set to a more manageable number of solutions at this stage in the research; this 

is completed using results presented in chapter 5. In this chapter, solution quality is only assessed 

relative to the manually calibrated solution.  

Summary statistics identifying the efficacy of automatically calibrated models relative to the 

manually calibrated model are provided. The number of non-dominated solutions generated in each 

calibration problem is provided in table 3.1. The number of solutions obtained from each calibration 

problem that either dominate, or are dominated by the manually calibrated solution is also presented 

in this table.  

Table 3.1: Automated calibration solution summary 

Solution 

Set 

Total #  

of 

solutions 

Dominating 

Manual 

result in 

2010 

Objective 

Space 

Dominating  

Manual 

Result in  

2011 

Objective 

Space 

Dominating 

Manual 

Result in 

2010 and 

2011 

Objective 

Spaces 

Dominated 

by  

Manual  

Result in 

2010 

Objective 

Space 

Dominated 

by  

Manual 

Result in 

2011 

Objective 

Space 

2010:  

5 C-factor 
555 59 17 9 0 170 

2011:  

5 C-factor 
37 0 2 0 31 0 

Aggregate:  

5 C-factor 
179 68 32 19 19 4 

 

No automatically generated solutions are dominated by the manually calibrated model in both the 

2010 and 2011 objective spaces, while 19 and 9 automatically generated solutions to the aggregate 

and 2010 calibration problems, respectively, dominate the original manual solution in both objective 

spaces.  
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No automatically generated solutions from the 2011 calibration problem dominate the manual 

calibration in both 2010 and 2011 objective spaces. In fact, only 2 of these automatically generated 

solutions dominate the original manual result in the 2011 objective space. The algorithm’s inability to 

identify high quality solutions for the 2011 model simulation, even when only calibrating to 2011 

data, may be due to the fact that no pressure data was used in the calibration, or it could be caused by 

the fact that the macro-calibration parameters may be inaccurate. Considering the inaccurate 2011 

loading conditions it is difficult to draw more meaningful conclusions; however it is clear that the 

optimization algorithm can identify a wide range of solutions, many of which can improve upon the 

quality of a manually calibrated solution. In order to identify the cause of the poor performance of the 

2011 automated calibration results, the macro-calibration parameters were updated and the micro-

calibration analysis was repeated. Results are presented in chapters 4 and 5.   

Statistics summarizing calibration objective performance across the entire range of non-dominated 

solution sets for all three calibration problems are provided in table 3.2. Since the magnitude of 

improvements of a micro-calibration exercise is relatively minor, the performance of each solution is 

measured by the relative percent improvement over the manually calibrated solution objective 

function calculations. The minimum, maximum, and standard deviation of objective function changes 

relative to the manual solution are tabulated. The tank error objective is most sensitive, while flow 

and pressure errors are relatively insensitive to the micro-calibration parameters. The insensitive flow 

rate error objective is based on the existing pump controls. Therefore, these controls are addressed in 

a manual macro-calibration in chapter 4 in order to provide the algorithm the best possible 

opportunity to identify solutions void of compensating errors.  

Simulated pressures are insensitive to the calibration parameters due to the fact that the available 

pressure measurements used for 2010 calibration purposes are obtained a short distance downstream 

of pumps within the network. Therefore, the potential impact of calibrated C-factor settings on these 

pressures is severely limited. It is expected that a greater improvement in the simulated pressures 

would be observed if calibration pressure data was taken further downstream of pump stations at 

various locations throughout the network. For more significant improvements in pressure readings at 

the existing monitoring points, pump operations and hydraulic curves must be adjusted. Neither 

parameter was considered in the micro-calibration analysis.  

More significant improvements in the tank level objectives may be achieved by adjusting macro-

calibration parameters. This is attempted in chapters 4 and 5.  
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Table 3.2: Automated calibration solution objective function change relative to manual Solution 

Solution 

Set 

∆Tank Objective (%) ∆Flow Objective (%) 
∆Pressure Objective 

(%) 

Min Max 
Std 

Dev 
Min Max 

Std 

Dev 
Min Max 

Std 

Dev 

2010:  

5 C-factor 
-46.4 18.5 23.1 -6.8 8.0 3.5 -4.3 1.8 1.5 

2011:  

5 C-factor 
-31.7 -1.4 16.7 1.6 5.6 2.6 NA NA NA 

Aggregate:  

5 C-factor 
-2.4 17.6 5.8 -3.7 3.7 1.9 0.2 2.5 0.7 

 

3.4 Results Summary 

Ultimately, not a great deal of emphasis can be placed on the algorithm’s ability to generate solutions 

robust to different loading conditions as it appears as though one, or maybe both of the models 

contain errors in the previously assumed accurate parameters. It is clear, however, that solving a 

multi-objective implicit automated calibration problem can produce a wide range of solutions 

regardless of loading conditions. Moreover, an analysis of the objective function tradeoffs and 

insensitive objectives can be useful when identifying inaccuracies in exiting parameter settings. A 

total of 28 solutions generated from solving the 2010 and aggregate calibration problems dominate 

the original manual solution in both 2010 and 2011 simulation objective. The benefit of calibrating to 

both days simultaneously has been established, and the C++ script generated can be easily 

manipulated to calibrate to more data as it becomes available.  

The relative percent errors between simulated and observed 2010 data calculated for the manually 

calibrated solution are 3.0 %, 9.8 %, and 4.8 % for the tank levels, pump flow rates, and pressure 

observations within the network, respectively. This indicates that the manual solution is already of 

high quality; however the pump flows appear to be both inaccurate, and insensitive to the micro-

calibration analysis. This greatly hinders the potential improvement in the simulated tank levels. 

Despite these inaccurate settings, a large number of unique automated micro-calibration solutions 

were generated. Given the nature of a micro-calibration, the magnitude of objective function 

improvements in the automatically generated solutions were marginal and severely limited by 

existing model parameter settings.  
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The relative percent errors for the 2011 simulation of the manually calibrated model are 5.4 % and 

23.0 %, for the tank level, and pump flow rate errors, respectively.  It is unlikely that these results 

accurately represent the manual calibration effort and are likely a function of data management issues 

exasperated from working with data sets that are 5 years old. That said, it is clear that results 

generated from calibrating to the 2011 model are of lower quality than those generated from solving 

the 2010 calibration problem, and correcting the 2011 model is crucial to achieving more reasonable 

results.  

Due to the significant error in 2011 loading conditions and pump operations in the 2010 and 2011 

network conditions, it is difficult to derive any more meaningful conclusions from the automated 

results generated in this chapter. A manual macro-calibration of model parameters is completed in 

chapter 4, and the automated micro-calibration is attempted once more with the adjusted model 

parameters in chapter 5. Additional insights are provided using these new results in chapter 5. 
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Chapter 4 

Manual Adjustment of Model Parameters 

The analysis of initial micro-calibration results revealed potential errors in the operation of the 

pumping stations. The existing pump control rules are based on tank water levels, and as such pump 

operation varies in each simulation as C-factors and demand shift parameters are adjusted. These 

rules were implemented to allow for a more robust model which could respond to various loading 

conditions. However, if the water level based controls were inaccurately reported or incorrectly input 

into the model, then the use of these rules could severely hinder any calibration efforts. This adds a 

source of uncertainty to the model parameters and increases the potential of the introduction of 

compensating errors during calibration. Moreover, a significant number of tank water-level based 

control rules in a complex model can cause significant convergence issues in EPANET 

(Paluszczyszyn et al. 2015). For example, solutions can vary significantly by only changing the fourth 

decimal place of modeled C-factor settings. To address these concerns, SCADA data was used to 

create new time-based pump control rules which more accurately characterize pump operation on the 

given calibration dates.  

Following control rule adjustment, erroneous demand pattern multiplier settings were identified 

and new demand pattern curves were created to match available SCADA data. Graphical analysis of 

tank water level time series indicated that further potential improvements in simulated tank levels 

could be achieved through the application of a new demand shift across the network. This demand 

shift was identified for use as a micro-calibration parameter in chapter 5. All model adjustments were 

assessed using the existing manually calibrated C-factor and demand shift settings. 

4.1 Control Rule Adjustment 

The existing network is divided into two pressure zones. The quantity of water flowing into and out 

of each zone is controlled by 17 pump stations and a series of flow control valves (FCVs) and 

pressure reducing valves (PRVs) installed along the boundaries of these zones. The pump stations, 

PRVs, and FCVs are remotely controlled by system operators using controls which activate and 

deactivate pumps and adjust valve settings throughout the day. During the manual calibration, the 

operating control rules employed by the system operators were input in the model network, and the 

micro calibration was completed with these controls. A total of 77 and 75 control rules adjusting 

valve/pump operational settings based on the simulated tank levels were implemented in the 2010 and 
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2011 model networks, respectively. Although these rules match operator reported settings on the 

given calibration dates, they may not accurately reflect network conditions due to inaccurate logging 

of pump switch settings or inaccurate tank or reservoir level sensors (Walski et al. 2003). This source 

of error is both unnecessary and hinders the automated algorithm’s search for calibrated C-factors and 

spatial demand adjustments.  

To address these concerns and more accurately reflect network conditions, new control rules were 

created using information collected from SCADA systems along the boundaries of each zone. Using 

SCADA data, the total quantity of water discharged into each zone, and the time at which it is 

discharged is known a priori and can be modeled explicitly using time based control rules.  

An example pump station (the university pump station) is depicted in figure 4.1. The network 

structure was altered slightly from 2010 to 2011, and the inlet valve depicted in figure 4.1 is a new 

addition to the 2011 model network. This may correspond to a newly installed valve in the real 

system, or an update to the model which was missing in the 2010 network. Regardless, the figure 

represents a typical pumping station for which SCADA data representing zonal inflow and outflow is 

recorded. The data is comprised of averaged flows over a one minute time interval, and is assumed 

accurate. Most pump stations in the network are comprised of several pumps, and the available data 

does not identify which pumps are active; only a total flow rate out of the pump station is provided. 

The actual active pumps at any given time step were corroborated using the total flow rate reported 

from SCADA systems, and the existing pump discharge-head curves input in the model network. 

Generally SCADA data at well pumps was not available, however these pumps only control water 

pumped directly into reservoir storage and not yet introduced to the distribution system. Data is 

available for all inflows and outflows directly along the boundaries of the distribution system, with 

the exception of information at the university inlet valve. At this location, SCADA data was not 

available and the modeled control rules were assumed accurate representations of field conditions.   

Using the SCADA flow data, new pump/valve operational control rules were created. All pump 

start/stop times were explicitly defined using time based control rules. If the observed discharge at 

any given pump station was relatively static, only one control rule was established at the flow control 

valves downstream of the pumping stations, and the flow was set equal to the average flow rate over 

the course of the simulation. If discharges were more variable, the average flow rates at each 15 

minute interval of the 24 hour time period were calculated, and new 15 minute control rules were 

applied to capture the variability in pumping rates. A total of 283 and 275 time based control rules 
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were created to more accurately reflect network conditions in the 2010 and 2011 model boundary 

conditions.  

 

Figure 4.1: University pumping station model components and inflows/outflows 

Of course, controlling pump activity does not guarantee an exact match between simulated and field 

conditions due to inherent differences in the simulated and real pump systems. Moreover, as 

discussed in section 2.3.2, the EPANET modeling software can alter pump controls if it cannot 

converge to a solution under existing conditions. Therefore, an iterative process increased the 

specificity of the control rules until observable improvements in simulated pump operations were 

marginal and remaining errors were assumed inherent to the calibrated pump curves and modeling 

limitations. Using the relative percent flow error calculation defined in chapter 3.1, the percent errors 

of the simulated flows under existing pump controls was 9.8 % and 23.0 %, in the 2010 and 2011 

manually calibrated model simulations, respectively. Upon changing the control rules to time-based 

settings, pump flow errors were reduced to 2.8 % in the 2010 simulation, while the 2011 model 

actually failed to simulate the entire EPS due to the fact that demands were inaccurately set in the 

model. 

Unfortunately the improvement in the 2010 simulated flow objective did not correlate to an 

improvement in simulated tank levels. In fact, tank errors actually increased to 6.7 %. Although, a 

comparison of the tank level time series (provided in figure 4.2) shows that the simulated water levels 
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in tanks C and V more accurately follow the filling and draining patterns observed in the field. The 

simulated results for S tank also more closely resembles the filling and draining patterns observed in 

the field; however the rate at which the tank fills/drains in the simulation is significantly greater than 

the observed conditions.  

Assuming the network structure and field data are accurate, the increased error in 2010 simulated 

tank levels could be due to any number of reasons, including inaccurate C-factor settings along the 

flow paths into/out of the tanks, and/or spatial and temporal demand distributions. The C-factor 

settings, and to a lesser extent the spatial distribution of demands are considered in subsequent micro-

calibration analyses, while the temporal demands are held static. Since temporal demands are not 

considered in the micro-calibration it is important to ensure that these modeled parameter settings are 

as accurate as possible and not a major contributing factor in the simulated tank level errors. 

Therefore, in section 4.2, the zonal demand patterns were re-calculated using the SCADA data of 

zonal inflows and outflows, as well as SCADA tank levels over the course of the simulation. This 

was done to validate the initial calculations and reduce potential sources of error not related to the 

micro-calibration parameters.  

The 2011 simulated tank level time series, provided in figure 4.3, are drastically different in pattern 

and magnitude than the observed field conditions. This is a clear indication that demands are not 

accurately set in the model. The 2011 loading conditions are almost definitely not representative of 

the parameter settings applied in the manually calibrated model, and it is very likely that the demand 

settings have been altered at some point since it was initially calibrated. In any event, the spatial 

variation in base demand settings was consistent with the 2010 model, and therefore it was assumed 

that only the simulated diurnal demand patterns were inaccurate. These are corrected in section 4.2 

and the adjusted 2011 demand settings are more likely attuned to the initial manual calibration efforts.  
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Figure 4.2: C (a), V (b), and S (c) tanks HGL time series for manually calibrated 2010 model with 

original and adjusted control rules 
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Figure 4.3: C (a), V (b), and S (c) tanks HGL time series for manually calibrated 2011 model with 

original and adjusted control rules 
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4.2 Demand Pattern Adjustment 

New zonal demand pattern multipliers were created using SCADA measurements of inflows and 

outflows into each zone, the existing base demand settings at all nodes comprising zones 1 and 2, and 

the instantaneous SCADA measurements of tank water levels for all three tanks within zones 1 and 2.  

Since the SCADA tank level data is comprised of instantaneous measurements at each minute, there 

are several oscillations in the data that prevent it from being directly used in diurnal demand 

calculations. In fact, the noise in the data is so large at some points that if it were used directly in 

diurnal demand calculations at each one minute time step, it would lead to negative demand 

observations; this is clearly inaccurate. Therefore, as is common practice (Walski et al. 2003; Bentley 

Systems 2004), the SCADA data was smoothed to remove the noise.  

Although several literature sources recommend smoothing instantaneous SCADA data, no 

smoothing methods are recommended. For this research, the time series of tank level data was 

smoothed in MATLAB using the locally weighted scatter plot smooth (LOWESS) function (The 

Mathworks Inc. 2015a). This function performs a weighted linear regression to smooth data points 

within a pre-specified span of the data set. The data point being smoothed has the largest weight and 

the most influence on the fit, while the weights of data points further away are reduced as a function 

of their distance from the smoothed data point. The span represents the percent of all 1441 tank level 

time series data points used in the regression. In order to respect the water balance as much as 

possible, the span was iteratively increased by 0.1 % until all calculated demands based on the tank 

levels were non-negative. Spans of 0.3 %, and 0.7 % (corresponding to approximately 5, and 10 

minutes of data, respectively) were required to adequately smooth the 2010 and 2011 tank water level 

information, respectively. Total diurnal zonal demands over the course of each one minute interval 

were calculated using equations (4.1) and (4.2).  

 

𝑉𝑍1,∆𝑡 = (𝑄𝑍1,𝑖𝑛 − 𝑄𝑍1,𝑜𝑢𝑡) ∗ ∆𝑡 − ∆𝑉𝑉 − ∆𝑉𝐶 (4.1) 

 

𝑉𝑍2,∆𝑡 = (𝑄𝑍2,𝑖𝑛 − 𝑄𝑍2,𝑜𝑢𝑡) ∗ ∆𝑡 − ∆𝑉𝑆  (4.2) 

where VZ1∆,t, and VZ2,∆t, represent the volume of water withdrawn from the system in zone 1 and zone 

2, respectively over the course of the one minute time step [m
3
]; QZ1,in, and QZ2,in, represent the 

volumetric flow rate of water discharged into zones 1 and 2, respectively [m
3
/min], these flow rates 
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are assumed static over a one minute time step; QZ1,out, and QZ2,out, represent the volumetric flow rate 

of water pumped out of zones 1 and 2, respectively [m
3
/min]; ∆VV, ∆VC, and ∆VS, represent the 

change in volume of V, C, and S tanks, respectively [m
3
]; and ∆t represents the time step length 

which is set to one minute to match available field data. The total zonal demands over the 24 hour 

simulation period are simply summations of the aforementioned calculations at all one minute time 

steps.  The total zonal inflows and outflows for both the manually calibrated model as well as the 

observed data are provided in table 4.1.  

The base demand parameter settings implemented in each model were used in conjunction with the 

diurnal zonal demands to generate new demand pattern multipliers to model the 2010 and 2011 EPSs. 

The base demands in zones 1 and 2 of the 2010 model were 21.3, and 11.3 m
3
 per minute, 

respectively. The 2011 demands in zones 1 and 2 were 29.2, and 13.5 m
3 
per minute, respectively. 

The new demand pattern multipliers at each time step were calculated using equations (4.3) and (4.4).  

𝑀𝑍1,𝑡 =
𝑉𝑍1,∆𝑡

𝑄𝑍1 ∗ ∆𝑡
 

(4.3) 

 

𝑀𝑍2,𝑡 =
𝑉𝑍2,∆𝑡

𝑄𝑍2 ∗ ∆𝑡
 

(4.4) 

 

where VZ1,∆t, and VZ2,∆t represent the actual volume of water consumed in zones 1 and 2 over the one 

minute time step  ∆t at time t [l/s]; QZ1, and QZ2  represent the base demands in zones 1 and 2; and 

MZ1,t, and MZ2,t represent the unitless demand multipliers applied to the zone 1 and zone 2 base 

demands at time t. A total of 1440 demand multipliers are calculated for each zone in each model, and 

demands are assumed static over the course of a one minute time step. 

Since new control rules and diurnal demand patterns were established, the need to implement the 

demand shift from zone 1a to zone 1b, depicted in figure 4.4, was re-assessed.  The adjusted models 

were simulated with, and without the demand shift implemented to re-evaluate the network sensitivity 

to this parameter. All simulated 2010 and 2011 tank level time series are depicted in figures 4.5 and 

4.6.  
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Table 4.1: Observed zonal flux and demand calculated from 2010 and 2011 SCADA data 

Zonal 

Inflow/Outflow 

and Demands 

Cumulative Observed 

Discharge: 2010 (m
3
) 

Cumulative Observed  

Discharge: 2011 (m
3
) 

Z1 Inflow 44043.8 52186.6 

Z1 Outflow 13404.8 19952.9 

Z1 Tank Inflow   -20.2 -107.1 

Z2 Inflow  16286.5 19388.5 

Z2 Tank Inflow 48.0 13.6 

Z1 Demand 30659.3 32340.8 

Z2 Demand 16238.5 19375.0 

Total Demand 46897.7 51715.8 

 

In general, this demand shift appears to introduce a compensating error to the model network. In all 

cases, the demand shift brings the simulated water levels in C tank into closer agreement with the 

observed tank levels; however the shift reduces the quality of the simulated water levels in V tank. 

This is to be expected due to the fact that demands are shifted away from V tank, and towards C tank, 

as depicted in figure 4.4. This demand shift, which may have appeared necessary under the previous 

control rule settings, demonstrates how easily compensating errors can propagate throughout every 

step of the calibration.  

 

Figure 4.4: Zone 1 demand shift and network tanks 
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Figure 4.5: C (a), V (b), and S (c) tanks HGL time series for the manually calibrated 2010 model with 

adjusted control rules – zone 1 demand shift analysis 

375

376

377

378

379

380

0 200 400 600 800 1000 1200 1400 1600

H
G

L 
(m

) 

Time (minutes) 

Field Data Sim 1: New R

Sim 2: New R + D Pat - Z1 Demand Shift Sim 3: New R + D Pat - No Demand Shift

372.5

373

373.5

374

374.5

375

0 200 400 600 800 1000 1200 1400 1600

H
G

L 
(m

) 

Time (minutes) 

Field Data Sim 1: New R

Sim 2: New R + D Pat - Z1 Demand Shift Sim 3: New R + D Pat - No Demand Shift

389

390

391

392

393

394

0 200 400 600 800 1000 1200 1400 1600

H
G

L 
(m

) 

Time (minutes) 

Field Data Sim 1: New R

Sim 2: New R + D Pat - Z1 Demand Shift Sim 3: New R + D Pat - No Demand Shift

b) 

c) 

a) 

 



 

 60 

 

 

Figure 4.6: C (a), V (b), and S (c) tanks HGL time series for the manually calibrated 2011 model with 

adjusted control rules – zone 1 demand shift analysis 
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Water levels in tanks V and C indicate the need to model at least two unique diurnal demand curves 

per zone to more accurately capture differences in industrial, commercial and residential water usage 

throughout the network. The simulated water levels in each tank modeled without the zone 1 base 

demand shift implemented, are consistently less than observed conditions in the early morning hours 

(12 AM to approximately 9 AM), and higher than observed conditions throughout the rest of the day. 

This correlates with an overestimation of demands in the morning, and under estimation of demands 

in the evening. It is likely that the introduction of new demand patterns based on water users would 

bring the tank levels into much closer agreement with the observed conditions than any shift in base 

demands.  

Since tank S operates in the upper pressure zone (zone 2), the simulated tank levels are relatively 

unaffected by the demand shift. It is clear, however that the base demands in close proximity to the 

tank S may be overestimated as evidenced by the fact that in both 2010 and 2011 simulations, tank S 

water levels are consistently lower than field conditions throughout the entire EPS. Therefore, a new 

shift in base demands within zone 2 is identified and analyzed in section 4.3. 

4.3 Zone 2 Demand Shift Analysis 

During model calibration, initial estimates of demand should be adjusted within reason to match 

field conditions, as it is never exactly known what may have occurred on a particular day (Walski et 

al. 2003).  Since both selected calibration dates occur in the summer months, while the base demands 

are averaged from yearly customer demand data, it is possible that demands distributed near tank S 

are more susceptible to seasonal variation and the average base demands do not accurately capture the 

summer time network conditions. Therefore, the effect of shifting demands from nodes near tank S 

towards nodes further away in zone 2 was assessed.  

When implementing any demand shift, it is important to respect the zonal water balance previously 

calculated in section 4.2. As such, demands could only be shifted within the upper pressure zone. 

Nodal demands within a 3.5 km radius of tank S were assumed to have the largest influence on water 

levels within the tank. Therefore, base demands of nodes located within a 3.5 km radius of tank S 

were shifted to nodal demands in the remainder of the upper zone, in accordance with equations (2.8) 

to (2.10) defined in chapter 2.2.2.  The new demand shift applied to demands within zone 2 is 

depicted in figure 4.7.  
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Figure 4.7: Zone 2 demand shift - decreasing base demands coloured blue; increasing demands 

coloured red 

Using the manually calibrated C-factor settings with adjusted control rules and diurnal demand 

curves, network response to increasing the percentage of demand shifted was assessed. The demands 

were iteratively increased by 1 % using adjusted C++ code, and the network response was measured. 

Implementing a 6 % demand shift across demand nodes within zone 2 resulted in the greatest error 

reduction in simulated tank water levels in both the 2010 and 2011 network conditions. Simulated 

water levels in S tank are provided in figure 4.8. Since tanks V and C are located in zone 1, the 

demand shift in zone 2 had negligible effects on these tanks in the simulation. At this stage, the 

solution quality was very high in both the 2010 and 2011 objective spaces, and it was assumed that 

any additional improvements in solution quality would not be worth the investment in time.  

An attempt was made to revert the updated time based control rules back to the original level based 

rules; however the solution quality degraded significantly. Since it was clear that the tank level based 

controls could not accurately capture the network conditions, the time based controls were re-applied 

and all manual calibration efforts were concluded.  

Tank S 
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Figure 4.8: 2010 (a) and 2011 (b) simulated HGL time series of S tank for the manually calibrated 

model with adjusted control rules and diurnal demand curves – zone 2 demand shift analysis 
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parameters describing diurnal demands were corrected.  Following these model parameter 

adjustments, the shift in demands along zone 1 was identified as a compensating error that was 

initially deemed necessary due to the inaccurate modeling of pump operations. Moreover, it was 

noted that a shift in the demand allocations within zone 2 could significantly improve simulation 
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generate robust and high quality simulation results in both the 2010 and 2011 objective spaces. In the 

2010 objective space, the relative percent error objective function values are 3.0 %, 2.7 %, and 4.6 % 

for the tank level, flow rate and pressure errors, respectively. In the 2011 objective space, the relative 

percent error objective function values are 3.1 % and 3.9 %, for the tank levels and flow rate errors, 

respectively. Applying demand shifts greater than 9 % resulted in a significant degradation of solution 

quality.     

At this stage, an attempt was made to revert the time based control rules back to the initial level 

based controls, however the solution quality deteriorated significantly and it was very clear that the 

tank level based controls did not adequately characterize the network. As such, the time based 

controls were re-applied, and it was deemed that there would be minimal benefit to continuing the 

calibration efforts manually. 

Although this solution was only achieved from insights gained through the initial automated micro-

calibration results, and automated tools were used to aid in the search for appropriate model 

adjustments, this result was still technically generated through a manual trial and error method. 

Moreover, the C-factor parameters were set in accordance with the C-factor settings implemented in 

Company Y’s initial manual calibration efforts. Therefore, these model parameter settings are 

considered manually calibrated.  
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Chapter 5 

Micro-Calibration Results of Manually Adjusted Model 

In an effort to enhance the quality of the manually calibrated solution described in chapter 4, as well 

as quantify parameter uncertainty, six automated micro-calibration problems were formulated and 

solved. The 5 C-factor and 13 C-factor decision spaces described in chapter 2 were adjusted to 

replace the demand shift parameter within zone 1, with a demand shift along zone 2. During manual 

parameter adjustment it was noted that solutions with a zone 2 demand shift setting of greater than 9 

% significantly reduced solution quality; therefore, this parameter was bounded from 0 to 10 %. 

Then, the 2010, 2011 and aggregate objective function formulations defined in chapter 2 were solved 

with the adjusted 5 and 13 C-factor decision spaces. 

Despite manually adjusting the model WDN pump operations to match the observed field 

conditions using time based controls, the discharges at each pumping station can still vary as a 

function of C-factor settings and pressures within the network. Moreover, EPANET can alter pump 

settings in the simulation as it converges to a solution. Therefore simulated pump flow rates are still 

quite variable, and the automated calibration objectives still include the flow rate error minimization 

objective to account for this. 

Results are compared to the manual macro-calibration solution identified in chapter 4, and 

presented in a similar manner as in chapter 3. Since the benefit of solving the aggregate problem has 

already been established, it is only briefly discussed in this chapter. Differences in solution quality 

achieved from calibrating the model with 5 C-factor parameters versus 13 C-factor parameters are 

analyzed using a series of trade off curves. Moreover, each solution’s efficacy to both the 2010 and 

2011 objective spaces was simultaneously assessed using the bi-objective function defined in chapter 

3. Then, the data presented in the trade-off curves is summarized and presented in tabular form. In 

addition to the tradeoff curves, time series plots of zonal inflows/outflows and tank water levels are 

generated for one result from the automated calibration. These time series are compared to the 

observed inflows/outflows and tank water levels in the field.  Finally, a methodology for reducing the 

non-dominated set of solutions to a more manageable number is presented, and a final set of potential 

model calibration solutions is identified for future use.  
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5.1 Trade-off Analysis 

Since the benefit of applying an aggregate calibration has already been established in chapter 3, the 

tradeoffs depicted in this chapter are presented in a manner that demonstrates the difference in 

solution quality obtained from using the 5 C-factor vs the 13 C-factor decision space.  

5.1.1 2010 Calibration – 5 C-factor vs 13 C-factor  

The independent 2010 calibration problem was solved using both the 5 and 13 C-factor decision 

spaces. A total of 1667 non-dominated solutions were generated to the 2010 objective formulation 

problem solved in the 5 C-factor decision space, while 2250 solutions were generated when the 

problem was solved in the 13 C-factor decision space. All automatically generated solutions are 

presented in the 2010 objective space in figure 5.1. Moreover, the manually calibrated solution 

generated in chapter 4 is presented on the same figure to allow for a direct comparison of results. 

Afterwards, the same solutions are validated for 2011 network conditions, and the validation results 

in the 2011 objective space are presented in figure 5.2.  

Analyzing the results presented in figure 5.1, it is clear that all automatically generated solutions 

perform well in the 2010 objective space regardless of the decision space used in the calibration 

formulation. However, the 5 C-factor solution set is much more clustered in the 2010 objective space, 

while the 13 C-factor solutions produce a much wider range of objective function values. The 5 C-

factor solutions seem to perform marginally better in the flow rate objective; however the 13 C-factor 

solutions are of a much higher quality in the pressure objective. The improved pressure performance 

is expected since the C-factors directly impact head loss and pressures throughout the network. The 

validation results presented in figure 5.2 seem to indicate that neither solution set is more robust to 

different loading conditions than the other.  

In the 2010 objective space, 133 and 276 solutions generated in the 5 and 13 C-factor decision 

spaces, respectively, dominate the manually calibrated solution; and no automated solutions are 

dominated by the manual calibration result. In the 2011 objective space, 681 and 895 solutions 

obtained in the 5 and 13 C-factor decision spaces, respectively, are dominated by the manual solution. 

Only one of the 2250 solutions generated in the 13 C-factor decision space dominates the manual 

solution in the 2011 objective space, and none of the 5 C-factor solutions dominate the manually 

calibrated solution. All automatically generated solutions neither dominate, nor are dominated by the 

manually calibrated solution in both objective spaces.  
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Figure 5.1: Non-dominated solutions from the 2010 5 C-factor and 13 C-factor decision space 
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Figure 5.2: Non-dominated solutions from the 2010 5 C-factor and 13 C-factor decision space 

calibration formulations validated in the 2011 objective space 

5.1.2 2011 Calibration: 5 C-factor vs 13 C-factor 

The independent 2011 calibration problem was solved using both the 5 and 13 C-factor decision 

spaces. A total of 145 non-dominated solutions were generated to the 2011 objective formulation 

problem solved in the 5 C-factor decision space, while 132 solutions were generated when the 

problem was solved in the 13 C-factor decision space. All automatically generated results are 

compared to the manually calibrated solution from chapter 4 in figures 5.3 and 5.4.  

 

Figure 5.3: Non-dominated solutions from the 2011 5 C-factor and 13 C-factor decision space 

calibration formulations presented in the 2011 objective space 
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Figure 5.4: Non-dominated solutions from the 2011 5 C-factor and 13 C-factor decision space 

calibration formulations validated in the 2010 objective space 
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The calibration results are presented in the 2011 objective space in figure 5.3, while the validation 

results for the 2010 network conditions are presented in figure 5.4. Analyzing the results presented in 

figure 5.3, it is clear that the manually calibrated solution is located very near the pareto-front of the 

2011 objective space. In fact, none of the automatically generated solutions dominate the manual 

result in the 2011 objective space.  

It is also clear that the 13 C-factor solution set is mostly superior to the 5 C-factor solution set.  In 

general, a network model is most sensitive to changes in C-factor settings when the network is 

stressed (i.e. demands are high) (Ormsbee and Lingireddy 1997; Walski et al. 2003). Since the 2011 

network demands are approximately 10 % greater than the 2010 demand conditions, it is possible that 

the 2011 model is more responsive to changes in C-factor settings. This may explain why describing 

the 2011 network conditions using 13 C-factor settings leads to a more accurate representation of the 

real network than only using 5 C-factor settings. Of course, any increase in performance in the 2011 

conditions could simply be the result of compensating errors and over-calibration to one set of model 

loading conditions. Therefore, it is necessary to examine the validation results and ensure that 

perceived improvements in the 2011 objective space do not lead to a loss of quality in the 2010 

objective space.   

The validation results depicted in figure 5.4 indicate that neither solution set performs particularly 

well in the 2010 objective space. However, the 13 C-factor solutions are slightly more robust to 

simulations in the 2010 network conditions than the 5 C-factor solutions. It is clear that the using 13 

C-factor parameters to describe the 2011 network conditions does not lead to a reduction in model 

robustness. In fact, the quality of the validation results is actually greater when the calibration 

problem is solved in the 13 C-factor decision space.  

In the micro-calibration results presented in chapter 3, it was evident that the independent 2011 

calibration results were of lesser quality than the independent 2010 calibration results. Walski (2008) 

reported that the quality of any calibration results are limited by the quantity and quality of the field 

data collected. As such, it was posited that the difference in result quality could be attributed to the 

fact that the 2011 model is only calibrated to observed tank water levels and flow rates, while the 

2010 network conditions are calibrated to observed tank levels, flows and pressure data within the 

network. This could not be validated given the fact that the 2011 loading conditions were not 

accurately set in the micro calibration analysis presented in chapter 3. Therefore, upon adjustment of 
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the 2011 WDN model parameters, the micro-calibration analysis was repeated in an effort to verify 

this assumption. 

Similar to the results obtained in chapter 3, solutions generated from independently calibrating to 

the corrected 2011 network conditions are generally less robust than those generated from solving the 

2010 network calibration problem. Moreover, none of the solutions generated from solving the 2011 

problem dominate the manual solution in the 2011 objective space. This can be partially attributed to 

the fact that the 2011 calibration objective values associated with the manually calibrated solution are 

very near the pareto-front. However, since several solutions generated from solving the independent 

2010 and aggregate calibration problems dominate the manual result in the 2011 objective space, it is 

clear that solving the independent 2011 calibration problem is less effective than solving the 

independent 2010 or aggregate calibration problems. This could be caused by the difference in 

structure of the objective formulations (bi vs tri-objective), or not calibrating to pressures within the 

network in addition to the tank levels and flow rate information. Based on evidence from the literature 

review (Walski et al. 2008), it is assumed that the missing pressure data is the main contributing 

factor to the deterioration of the results; however this was not conclusively validated due to time 

constraints. This could be validated by solving 2 bi-objective 2010 calibration problems, the first 

combining pressure and tank level errors into one objective, and another which omits the pressure 

errors entirely. The differences in solution quality could be used to isolate the source of the problem.  

5.1.3 Aggregate Calibration: 5 C-factor vs. 13 C-factor 

A total of 1380 and 1618 non-dominated solutions were generated to the aggregate calibration 

problem solved using the 5 and 13 C-factor decision spaces, respectively. All automatically generated 

solutions are presented in the 2010 objective space in figure 5.5. Additionally, the manually calibrated 

solution generated in chapter 4 is presented on the same figure. The same solutions were validated for 

the 2011 network conditions, and the validation results in the 2011 objective space are presented in 

figure 5.6.  

Regarding the efficacy of results generated from solving the aggregate calibration in the 5 and 13 

C-factor decision spaces, the conclusions are very similar to those established from analyzing the 

results to the independent 2010 and 2011 calibration problems. In the 2010 objective space, the 13 C-

factor solutions performed better than the 5 C-factor solution set in the pressure objective; however 

this increased pressure objective performance is associated with a decreased performance in the flow 
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rate objective. In the 2011 objective space, the 13 C-factor results were superior to the 5 C-factor 

results. 

 

Figure 5.5: Non-dominated solutions of the aggregate 5 C-factor and 13 C-factor decision space 

calibration formulations presented in the 2010 Objective Space 
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Figure 5.6: Non-dominated solutions of the aggregate 5 C-factor and 13 C-factor decision space 

calibration formulations presented in the 2011 Objective Space 
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dominated by any of the automatically generated solutions in both objective spaces. Clearly the 

manually calibrated model, which was generated using the results obtained from the initial micro-

calibration analysis, is very near the approximate pareto-front, particularly in the 2011 objective 

space.  

5.1.4 Bi-Objective Trade-off Analysis 

In order to assess each solution’s quality in the 2010 and 2011 network conditions simultaneously, the 

objective functions associated with all calibration results were re-formulated using the bi-objective 

function formulation defined in chapter 3.  All 2010 and 2011 calibration objectives were equally 

weighted and collapsed into two single objective functions representing the overall solution quality in 

the 2010 and 2011 objective spaces, respectively. In this new objective function formulation, all 

dominated results within each solution set were removed, and the remaining non-dominated results 

from each calibration problem are presented in figure 5.7. The remaining non-dominated solutions are 
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These results are plotted in the bi-objective space in figure 5.7.  
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Figure 5.7: 2010 vs 2011 bi-objective analysis of non-dominated solutions from the 2010, 2011 and 

aggregate calibration formulations in the 5 and 13 C-factor decision spaces (solution circled in red 

selected for time series analysis)  

In the bi-objective formulation, the 13 C-factor solutions generally outperform the 5 C-factor 

results from each calibration problem.  In fact, the non-dominated 13 C-factor solutions to the 2010, 

and 2011 independent calibration problems dominate the corresponding 5 C-factor solution sets 
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they were collapsed into a single objective, then the 13 C-factor solution set may not be as dominant. 

The solution with the lowest collective average of 2010 and 2011 simulation errors was selected for 

time series analysis of zonal inflows and outflow as well as simulated tank levels. The analysis is 
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objective surface using a series of two dimensional plots, it difficult to assess how well each solution 

set performs relative to each other from the graphical analysis alone. Therefore, for each calibration 

problem solved in both the 5 and 13 C-factor decision spaces, both solution sets were quantitatively 

compared against each other to identify the number of dominated results in each solution set. The 

number of 5 C-factor solutions dominated by results from the 13 C-factor solution set, and vice versa 

is presented in table 5.1.  

Table 5.1: 5 C-factor vs. 13 C-factor solution set comparison for 2010, 2011 and aggregate objective 

function formulations 

Objective Formulation 
2010 2011 Aggregate 

Decision  

Space 

5  

C-factor 

13  

C-factor 

5  

C-factor 

13  

C-factor 

5  

C-factor 

13  

C-factor 

Solutions Generated 1667 2250 145 132 1379 1618 

Number of Solutions 

Dominated in 2010 

Objective Space by 

Solution Set from 

Alternate Decision Space 

474 229 144 101 841 1113 

Number of Solutions  

Dominated in 2011 

Objective Space by 

Solution set from Alternate 

Decision Space 

1636 2214 135 3 1369 1446 

Number of Solutions  

Dominated in 2010 and 

2011 Objective Spaces by 

Solution set from Alternate 

Decision Space 

446 229 134 1 831 974 

Number of Solutions  

Non-Dominated by 

alternate Decision Space 

Solution Set in at Least 

One Objective Space  

1193 2021 10 129 548 644 

 

In general, there is little difference between the quality of results generated in the 5 and 13 C-factor 

decision spaces. The only exception is in the solutions generated to the 2011 calibration problem. As 

discussed in section 5.1.2, it is likely that the increased demands in the 2011 network conditions 

result in an increased sensitivity to the C-factor parameter settings. In conditions of increased 

demands it seems that using the 13 C-factor decision space to characterize network conditions can 
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lead to higher quality simulations. This should be validated using additional field data results 

collected during peak demands or fire flows.   

5.2 Time Series Analysis 

The automatically generated solution with the lowest average relative percent error in both the 2010 

and 2011 objective spaces was selected for additional analysis. The time series of observed and 

simulated zonal inflows/outflows as well as tank levels within zones 1 and 2 are all provided on the 

same figures. The 2010 and 2011 results are presented in figures 5.8 and 5.9, respectively.  

The simulation results for the selected model parameters have greatly improved upon the initial   

manually calibrated solution, presented in chapter 3.2. The relative percent errors associated of the 

manual solution provided by Company Y, simulated under 2010 loading conditions, were 3.0 %, 9.8 

%, and 4.8 % for the tank levels, pump flow rates, and pressure observations, respectively. The 

simulated errors in the 2010 network conditions for the automatically generated solution presented in 

this section are 2.8 %, 2.8 %, and 4.6 % for the same observations, respectively. Clearly, the results 

have greatly improved in the quantified optimization objectives and the automated result presented 

dominates the original manual solution. This correlates to a significant improvement in the graphical 

time series of simulated tank levels and pump flow rates. The simulated values are much more 

aligned with observed field conditions. However, as previously mentioned in chapter 4, it is quite 

clear that a single demand pattern multiplier for each zone is not sufficient to accurately capture the 

demand conditions within the network. As such, all automatically generated micro-calibration results 

suffer from this limitation, and any objective improvements are limited by the macro-calibration 

settings. When compared to the manual result in chapter 4, the automated result neither dominates, 

nor is dominated by the manually calibrated solution.  

The automated solution presented in this section is just one of several thousand unique 

automatically generated solutions to this problem. Due to the nature of micro-calibration analysis, the 

objective function values of all results are not drastically different from one another, and the vast 

majority of automatically calibrated results are very similar in quality to this solution. However, even 

though the objective function values and simulation results are similar, the parameter values 

associated with each solution are very different. The wide range of different parameter values in all 

automatically generated results represents the significant uncertainty in the micro-calibration 

parameters.  
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Figure 5.8: Zonal inflow/outflow and tank water level time series of observed field data vs. an 

automatically generated solution simulated in 2010 network conditions 
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Figure 5.9: Zonal inflow/outflow and tank water level time series of observed field data vs. an 

automatically generated solution simulated in 2011 network conditions 
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PADDS algorithm. This solution set must be reduced to a more manageable number in order to allow 

for any meaningful hydraulic analyses. 

When narrowing the number of solutions generated, it is most important to ensure that all models 

identified in the reduced solution set describe the real network conditions accurately enough for 

decision makers to rely on the simulated model results; “The true test of model calibration is that the 

end user … of the model results feels comfortable using the model to assist in decision-making” 

(Walski et al. 2003). Since, Company Y’s manually calibrated model was considered effective 

enough to aid in operational analyses; this solution will act as the lower bound for any acceptable 

designs. Only the subset of solutions that are non-dominated by the original manually calibrated 

model are considered for inclusion in the final solution set. Unfortunately, this does not help narrow 

the number of solutions down since all of the automatically generated solutions in this chapter are 

non-dominated by the initial manual calibration solution.  

Since all results generated are of sufficient quality for decision makers, the number of solutions 

representing model uncertainty was filtered using the results from the bi-objective analysis completed 

in section 5.1.4. All 2010 and 2011 objective function values were equally weighted and collapsed 

into two single objective function values. The single objective values corresponding to all solutions 

generated were calculated, and all dominated solutions within each solution set were removed. This 

greatly reduced the number of solutions considered for analysis.  

The remaining 89 non-dominated solutions from all six calibration problems solved were used to 

approximate the bi-objective pareto-front in both the 5 and 13 C-factor decision spaces. Although the 

independent 2010 and 2011 calibration results are not as robust as the aggregate solutions, the 

validation results of each calibration problem are still non-dominated by the initial manually 

calibrated solution. Therefore, these solutions can still be relied upon by decision makers. Moreover, 

including the independent calibration results ensures that the pareto-front generated is wide enough to 

capture the full range of uncertainty in model parameter values.  

A total of 46 and 43 solutions in the 5 and 13 C-factor decision spaces, respectively, were included 

in the final solution set. The minimum, maximum, mean and standard deviation of each parameter 

within the 5 and 13 C-factor results comprising the final solution set are presented in tables 5.2 and 

5.3, respectively.  
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Table 5.2: Final solution set - parameter variability and summary statistics of the 46 unique solutions 

generated in the 5 C-factor decision space 

Paramater Minimum Maximum Average 

Standard  

Deviation 

CI <150  mm (-) 57.0 68.0 62.9 4.6 

CI>150  mm (-) 58.0 94.0 88.8 11.8 

DI (-) 116.0 127.3 118.3 2.7 

PVC (-) 130.0 138.9 131.2 2.1 

Hyprotec (-)  135.0 147.6 136.1 2.8 

Demand Shift (%) 6.1 9.0 7.73 0.76 

 

The parameters in the 5 C-factor decision space are much less variable than the 13 C-factor 

parameter values. This is expected, since uncertainty in parameter settings is generally associated 

with an increase in the number of parameters (Mallick et al. 2002). Using only 5 C-factors implicitly 

limits the range of effective parameter settings; however describing the network using only 5 C-

factors may limit the solution quality in extreme demand conditions, as discussed in section 5.1.2. In 

both the 5 and 13 C-factor decision spaces, the most variable parameter values are generally the cast 

iron pipes groups within the network. The demand shift parameter is consistently in the range of 

approximately 5 and 9 %. This clearly shows that demands near S tank are overestimated as the most 

robust solutions consistently implement a demand shift of at least 5 %. This demand shift was 

assumed from a very limited knowledge of the network and although it is effective in both the 2010 

and 2011 loading conditions, the shift must be validated by practitioners familiar with the system. 

Moreover, additional field data in zone 2 must be collected to identify the cause of this demand shift 

(i.e. leak in the network, differences in summer water usage, etc.) 

The parameter values and objective function values associated with this reduced solution set are 

provided in Appendix A. The remaining automatically generated solutions are not included in this 

report, but they have been archived for future use. Since the entire solution set is archived, any 

decision maker can easily generate a different set of reduced solutions based on their own weighting 

of the initial tri and bi-objective values describing errors in the 2010 and 2011 network conditions. 
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Table 5.3: Final solution set - parameter variability and summary statistics of the 43 unique solutions 

generated in the 13 C-factor decision space  

Parameter Minimum Maximum Average 

Standard  

Deviation 

CI: New (<15 years old) (-) 83.0 138.0 113.8 9.8 

CI: 15 - 44 Years Old < 100 

mm (-) 
41.0 100.0 74.0 16.7 

CI: 15 - 44 Years Old 

>100 mm <=200 mm (-) 
57.1 105.3 80.5 13.2 

CI: 15 - 44 Years Old 

>=250 mm <=400 mm (-) 
61.5 112.0 109.6 8.2 

CI: 45-80  Years Old 

< 100 mm (-) 
30.0 65.1 38.2 8.9 

CI: 45-80  Years Old 

>100 mm <=200 mm (-) 
39.0 79.0 59.1 14.9 

CI: 45-80  Years Old 

>=250 mm <=350 mm (-) 
48.0 85.0 61.9 16.0 

CI: 45-80  Years Old 

>=400 mm <=600 mm (-) 
66.1 92.0 89.5 6.9 

CI: > 80 Years Old 

>=25 mm <=100 mm (-) 
21.0 52.3 28.0 10.1 

CI: > 80 Years Old 

>=150 mm <=300 mm (-) 
30.6 78.0 56.9 11.9 

DI (-) 116.0 132.3 118.8 3.1 

PVC (-) 140.0 149.2 141.2 1.7 

Hyprotec (-) 135.0 153.4 137.2 4.1 

Demand Shift (%) 5.1 8.9 7.4 0.9 

 

5.4 Results Summary 

The manually calibrated solution generated in chapter 4 was found to be very near the approximate 

pareto-front of the 2010 and 2011 objective spaces. Clearly, a manual calibration effort guided by 

results from automated calibration tools can lead to a very high quality solution. However, given the 

limited quantity of available field data, and the identifiability issues inherent to real world calibration 

problems, the uncertainty in the calibrated model parameters is very high. Therefore, even if a single 

high quality solution is manually generated, it is improbable that this solution can be used to 
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accurately simulate various loading conditions. To account for this, the uncertainty in the model 

parameters must be quantified through the generation of a large set of feasible model parameter 

values. 

In order to quantify parameter uncertainty, six calibration problem formulations were solved using 

the PADDS optimization algorithm, and several thousand unique calibration results were generated. 

The quality of all solutions describing the network in the 5 C-factor decision space were directly 

compared to the solutions describing the network in the 13 C-factor decision space. In the 2010 

objective space, the 13 C-factor solutions generally improve model performance in the pressure 

objective; however this improvement coincides with a slight degradation in the flow error 

minimization objective. Describing the model using 13 C-factor parameter settings results in a much 

wider range of solutions in the objective space, whereas the 5 C-factor solutions are much more 

clustered. In the 2011 objective space, the 13 C-factor results consistently improve model 

performance relative to the 5 C-factor solutions. This is likely a function of the increased demands on 

the 2011 calibration date. Moreover, while describing the model using 13 C-factors can lead to more 

accurate simulation results in some cases, the 13 C-factor solution sets contain greater parameter 

uncertainty than the corresponding 5 C-factor solution sets. 

Since neither the 5 C-factor, nor the 13 C-factor decision space was consistently more effective at 

describing model conditions, all automatically generated solutions were analyzed and only the most 

robust solutions generated in both decision spaces comprise the final solution set. Robust solutions 

were identified through a bi-objective trade-off analysis of simulation performance in the 2010 

network conditions relative to the performance in the 2011 conditions. A total of 46 and 43 solutions 

from 5 and 13 C-factor decision spaces, respectively, were identified as the most robust solutions. In 

addition to robustness, these solutions were selected to span a wide range of the bi-objective tradeoff 

surface in an effort to capture and quantify the uncertainty in the model parameter settings.  

The most uncertain model parameters in both decision spaces were the cast iron C-factor settings. 

This is expected given the large number of cast iron pipes of varying ages and diameters within the 

network. Moreover, the uncertainty in this parameter is increased due to the fact that cast iron pipes 

are most susceptible to the non-linear corrosion and tuberculation effects. The most robust results 

were achieved with demand shift parameter settings ranging from 5 to 9 percent. Without having full 

knowledge of system conditions and a clear understanding of the original leakage assessment, it is 

difficult to justify this shift in demands. However, since applying the demand shift produces the 
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highest quality simulation results in both the independent and aggregate calibration problems, it is 

clear that in the existing macro-calibrated network conditions, the demands near S tank are over 

estimated.  

Since the nodal demands were generated from averaged yearly customer information, while both 

calibration dates were specifically selected to be during summer months, it is possible that the 

demand shift could be related to variances in summer and winter usage. Moreover, the demand shift 

could be indicative of a leak in the network in pressure zone 2. It is unclear what the source could be, 

but it is important to investigate this demand shift in the field. Even though the demand shift in zone 2 

appears necessary in this desktop modeling study, it must be validated in the field to ensure that the 

shift is not simply another compensating error introduced into the network. 
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Chapter 6 

Conclusions and Recommendations 

Manual WDN micro-calibration approaches are quite tedious, and prone to compensating errors. 

Moreover, a traditional manual approach will not effectively quantify the uncertainty in calibrated 

model parameters. To account for this, several automated tools have been developed and used in 

research settings, but they are much less used in practice. Company Y attempted to use one of these 

automated tools (the built-in InfoWater calibrator tool) in their calibration effort of City X’s WDN 

model. However, the algorithm failed to identify any solutions to the network, even after technical 

support was provided by InfoWater software developers. Thus, Company Y resorted to a manual 

calibration effort to identify a high quality solution which was subsequently used in operational 

analyses.  

The same calibration problem was resolved automatically using the PADDS optimization 

algorithm and several solutions were generated. However, these solutions only marginally improved 

upon the quality of the initial manually calibrated result. In order to achieve greater improvements in 

the model simulations, the results obtained from the automated micro-calibration efforts were used to 

guide a manual macro-calibration of model parameters. This led to significant improvement in the 

WDN model simulation quality. Moreover, the assumed demand shift within zone 1 was identified as 

inaccurate and a manifestation of compensating errors in Company Y’s manual calibration efforts. An 

alternate shift in demands along zone 2 was analyzed, and it seemed to produce high quality results 

during initial manual analysis.  

In order to validate the proposed zone 2 demand shift, as well as quantify parameter uncertainty, 

the adjusted model was re-calibrated using the automated calibration tools. Several thousand unique 

solutions of similar quality were identified. This solution set was reduced to 89 unique and robust 

solutions describing model parameter uncertainty. The initial manually calibrated model provided by 

Company Y is dominated by 75 of these solutions.  

In all 89 solutions, a demand shift along zone 2 of at least 5 % was implemented. This indicates 

that initial demand estimates in zone 2 are slightly inaccurate, and must be verified in the field. This 

demand shift may be related to initial leakage allocation assessments, and as described in section 

2.3.1, it is recommended that leakage allocation is re-assessed and applied to areas within the network 

that are more likely to exhibit leakage (Walski et al. 2003).  Moreover, since the cast iron pipe C-
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factor settings are very uncertain, it is suggested that additional C-factor tests are conducted on 

several cast iron pipes within the network.  The results generated seem to be very robust and of high 

quality, however any perceived improvements must be validated and justified by practitioners who 

are familiar with the system. It is recommended that experienced modelers review the final set of 

solutions and ensure that all model parameter settings identified could feasibly represent the real 

network conditions.  

This research would not have been possible without the significant work and effort put forth by the 

practitioners who initially calibrated the model. Barring the 2011 simulation results, which were 

likely adjusted a posteriori and not reverted to the original calibrated settings, it is clear that the initial 

calibration effort resulted in a high quality and robust solution. That said, the use of automated tools 

coupled with a manual macro-calibration effort is a very effective and efficient way of improving 

solution quality, identifying errors, and quantifying uncertainty in calibration parameters. The 

PADDS algorithm’s applicability to WDN calibration problems was clearly demonstrated as the 

algorithm generated several robust and high quality solutions to a problem in which other 

optimization algorithms failed. Generating a range of solutions for more experienced practitioners to 

validate and analyze is a key feature of this research.  

Ideally more flow and pressure data should be collected at various locations and peak demand 

times (e.g. fire flow analysis) within the network. The data can be used in a meaningful assessment of 

the difference in simulation quality between models describing network C-factors using 5 parameters, 

and those that use 13 parameters. Moreover, the field data can be used to identify some invalid 

solutions in the final solution set generated, and reduce model uncertainty. Until then, it is 

recommended that decision makers apply decisions that are robust to as many of the potential 

solutions as possible.  

To achieve robust solutions, it is recommended that any future calibration exercises are formulated 

to balance model efficacy across multiple loading conditions (e.g. 2010 vs 2011). This is similar to 

the bi-objective analyses presented in sections 3.1.3 and 5.1.4, where the cumulative errors in both 

2010 and 2011 loading conditions were compared against one another. This calibration framework 

can be easily adjusted to include additional calibration data and model loading conditions.  

In order to reduce uncertainty and the potential for compensating errors in all future calibrations of 

model C-factor and demand parameter settings, pump and valve operations should be modeled using 

time-based control rules.  Additionally, it is recommended that the City officials or engineers at 
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Company Y calibrate the SCADA instrumentation associated with pump operations, as it is clear that 

the level-based pump control rules provided by the network operators do not match the observed 

conditions. This may simply be a typographical error by the operators, or it could be a systematic 

issue relating to the instrumentation. In any event, the effects of pumping controls are very apparent 

in the model simulations and it is crucial that any future control rules input into the model are 

accurate representations of the real network conditions.  

Finally, it is recommended that more data regarding water usage in the network is collected. This 

data is required to establish additional diurnal curves capturing differences between industrial, 

commercial and residential water usage rates in the network. Implementing these additional curves 

would greatly improve simulation quality.  

Whittemore (2001) stated that “Model efficacy depends heavily on experience and, in this sense, 

can be described as an art. While model formulation is more related to science, calibration has aspects 

more related to art. Good calibrations are more than curve fitting exercises that simply align model 

simulations with constituent behavior”. It is clear that automated methods cannot replace the 

judgement of an experienced practitioner, and engineering judgment must be applied to any 

calibration procedure. One cannot simply rely on automated tools to generate robust solution sets. 

Automated calibration procedures are simply tools, which when intelligently applied by experienced 

practitioners can generate robust solutions in an efficient manner.  If the correct tools are applied, and 

the calibration problem is well formulated, automated approaches can greatly reduce calibration time 

and effort and significantly increase solution quality.  
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Appendix A 

Calibration Parameters for Final Solution Set 

5 C-Factor Solutions: 

 

 

Solution  

Set 

Model Parameter Setting 2010 Objective Values 2011 Objective Values 

CI <150 mm 

(-) 

CI>150 mm 

(-) 

DI 

(-) 

PVC 

(-) 

HYP 

(-) 

Demaand 

 Shift 

(%) 

Cumulative 

Tank Errors 

(m) 

Cumulative 

Flow Rate 

Errors (l/s) 

Cumulative 

Pressure 

Errors (m) 

Cumulative 

Tank Errors 

(m) 

Cumulative 

Flow Rate 

Errors (l/s) 

Independent 

2010 

Calibration 

Problem 

Solutions 

68.0 94.0 116.0 130.0 135.0 7.56 1101.0 29829.8 52711.9 1057.0 61511.1 

68.0 94.0 116.0 130.1 135.0 7.42 1101.7 29778.3 52687.8 1094.3 61220.0 

68.0 94.0 116.0 136.4 135.3 7.18 1101.8 29777.9 52700.9 1068.9 61529.0 

67.3 94.0 116.0 131.7 135.0 7.30 1102.0 29755.5 52691.3 1096.6 61190.2 

67.6 94.0 116.0 134.5 135.0 7.18 1102.0 29748.2 52694.3 1097.0 61238.8 

68.0 94.0 116.0 131.4 135.0 7.29 1102.1 29741.6 52650.4 1099.3 61185.6 

68.0 94.0 116.0 130.0 135.0 7.29 1102.5 29722.0 52628.2 1105.9 61134.4 

68.0 94.0 116.0 130.1 135.0 7.17 1103.4 29679.0 52608.5 1115.4 61084.0 

67.6 94.0 116.0 131.4 135.0 6.97 1104.3 29642.3 52610.5 1130.6 60992.9 

67.1 94.0 116.0 132.4 135.0 6.77 1106.4 29580.3 52614.0 1152.0 60873.6 

68.0 94.0 116.0 131.4 135.0 6.70 1107.7 29544.0 52542.5 1166.8 60772.4 

68.0 94.0 116.0 131.4 136.0 6.70 1108.1 29542.5 52527.1 1170.2 60771.2 

68.0 94.0 116.0 130.0 135.0 6.70 1108.7 29517.2 52520.1 1204.1 60621.3 

67.6 94.0 116.0 130.0 147.5 6.20 1121.7 29397.6 52281.6 1295.5 60320.9 
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Independent 

2011 

Calibration 

Problem 

Solutions 

57.0 58.0 117.6 130.0 135.0 9.00 1461.4 35237.1 53863.3 852.7 61186.8 

57.0 58.0 117.6 130.0 135.0 8.80 1466.6 35143.9 53816.6 852.8 60918.7 

57.0 58.0 117.6 130.0 135.0 8.70 1469.7 35100.4 53793.5 853.4 60836.7 

57.0 58.0 117.6 130.0 135.0 8.70 1469.7 35100.4 53793.5 853.8 60831.9 

57.0 62.4 117.6 130.0 135.0 7.90 1429.4 33922.8 53529.7 893.1 59973.7 

57.0 64.5 121.8 130.0 137.3 8.70 1403.0 33961.2 53369.3 935.8 59308.3 

63.9 75.4 127.3 138.9 147.6 6.30 1329.0 31349.7 52010.6 1169.4 56584.3 

58.8 78.2 127.3 136.7 136.2 6.10 1305.0 30879.2 52418.6 1187.8 56389.5 

Aggregate 

Calibration 

Problem 

Solutions 

57.8 94.0 117.3 130.0 135.0 8.50 1115.1 30228.2 53479.4 932.3 61613.6 

57.0 94.0 117.7 130.0 135.0 8.50 1117.9 30236.6 53522.0 931.1 61414.8 

57.0 94.0 117.7 130.0 135.0 8.50 1117.9 30236.6 53522.0 931.1 61414.8 

57.0 94.0 117.8 130.0 135.6 8.50 1118.7 30229.3 53505.6 934.2 61375.0 

60.4 94.0 117.3 130.0 135.0 8.40 1114.5 30179.6 53251.1 944.0 61533.3 

58.1 94.0 118.2 130.0 135.0 8.40 1120.7 30188.9 53372.8 942.4 61159.2 

57.0 94.0 118.5 130.0 135.0 8.40 1122.6 30196.8 53448.6 940.1 61012.6 

60.4 94.0 118.2 130.0 135.0 8.40 1120.7 30182.1 53187.5 951.7 61162.1 

57.8 94.0 118.3 130.5 135.0 8.20 1119.7 30130.0 53360.9 956.3 60823.3 

64.9 94.0 116.0 135.9 135.7 8.10 1105.4 30222.3 53144.2 969.8 62253.0 

59.7 94.0 118.5 130.0 135.0 8.30 1121.7 30149.6 53200.8 953.4 60976.9 

66.6 94.0 117.3 130.0 135.0 8.40 1114.1 30238.3 52930.0 969.4 61615.9 

60.3 94.0 118.2 130.0 135.0 8.20 1118.8 30107.4 53156.0 964.6 60880.4 

61.5 94.0 118.2 130.0 135.0 8.20 1119.0 30105.6 53067.9 968.3 60873.1 

58.8 94.0 119.7 130.0 135.3 8.20 1129.0 30120.6 53167.5 965.3 60423.9 

57.8 94.0 119.9 130.5 135.0 8.20 1130.6 30130.6 53251.6 963.3 60371.3 

62.7 94.0 117.1 130.0 135.0 7.90 1109.4 29980.2 53005.7 1001.3 61128.2 

61.7 94.0 120.5 130.0 135.3 8.00 1132.7 30032.5 52854.9 989.8 60032.1 
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65.0 94.0 119.2 131.7 138.9 7.40 1124.6 29829.9 52593.0 1058.0 60027.6 

65.0 94.0 119.2 131.7 140.0 7.40 1125.1 29819.0 52544.0 1061.9 60017.2 

67.5 94.0 121.3 134.2 135.3 7.20 1136.4 29783.3 52367.1 1063.6 59258.4 

68.0 94.0 119.5 131.4 142.5 7.40 1127.9 29804.1 52322.0 1076.5 59918.9 

67.8 94.0 122.5 131.9 135.0 7.20 1144.1 29747.2 52244.1 1076.8 58768.4 

68.0 94.0 123.1 131.9 135.3 7.20 1147.8 29750.7 52192.0 1081.2 58572.6 

 

 

13 C-Factor Solutions: 

 

Solution 

 Set 

DV Setting 
2010 Objective  

Values 

2011 Objective 

Values 

CI: 

New 

(<15 

years 

old) 

 (-) 

CI: 

15 - 

44 

Years 

Old < 

100 

mm  

(-) 

CI: 

15 - 

44 

Years 

Old 

>100 

mm 

<=200 

mm  

(-) 

CI: 15 

- 44 

Years 

Old 

>=250 

mm 

<=400 

mm  

(-) 

CI: 45-

80  

Years 

Old 

< 100 

mm 

 (-) 

CI: 45-

80  

Years 

Old 

>100 

mm 

<=200 

mm  

(-) 

CI: 45-

80  

Years 

Old 

>=250 

mm 

<=350 

mm  

(-) 

CI: 45-

80  

Years 

Old 

>=400 

mm 

<=600 

mm  

(-) 

CI: > 

80 

Years 

Old 

>=25 

mm 

<=100 

mm  

(-) 

CI: > 

80 

Years 

Old 

>=150 

mm 

<=300 

mm  

(-) 

DI 

 (-) 

PVC 

 (-) 

Hyp 

 (-) 

Demand 

Shift  

(%) 

Tank  

Level  

Errors  

(m) 

Flow 

 Rate 

Errors 

(l/s) 

Pressure 

Errors 

(m) 

Tank  

Errors 

(m) 

Flow 

Rate 

 Errors  

(l/s) 

Independent 

2010 

Calibration 

Problem 

Solutions 

102.3 100.0 87.4 112.0 65.1 78.1 53.7 92.0 21.0 64.9 116.0 149.2 135.7 7.09 1143.2 30522.3 50559.2 1056.3 61097.7 

122.2 44.9 100.0 108.8 47.9 79.0 48.0 92.0 49.1 78.0 116.3 141.5 142.7 7.19 1158.2 30637.8 49694.2 1088.8 60747.7 

136.1 55.9 101.7 112.0 58.5 79.0 48.0 92.0 35.3 60.8 117.0 141.9 138.0 6.46 1165.9 30403.3 49577.7 1149.1 59909.8 

122.2 41.0 105.3 112.0 46.9 78.5 48.0 92.0 51.3 78.0 120.1 140.7 145.6 7.54 1183.6 30795.8 49456.0 1043.1 59506.7 

122.2 71.7 105.3 112.0 46.9 78.5 48.0 92.0 51.3 78.0 120.1 140.7 145.6 7.54 1183.7 30796.2 49455.7 1043.1 59500.8 

122.2 44.9 105.3 112.0 46.9 78.5 48.0 92.0 51.3 78.0 120.1 140.7 145.6 7.13 1183.8 30631.9 49376.8 1086.2 59190.5 

122.2 56.1 105.3 112.0 46.9 78.5 48.0 92.0 51.3 78.0 120.1 140.7 145.6 7.13 1183.8 30628.4 49376.6 1086.2 59232.6 

Independent 83.0 56.7 91.9 112.0 30.0 39.0 48.7 66.1 22.5 58.8 118.5 140.0 135.0 8.90 1405.2 34237.1 54142.2 803.4 60333.6 
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2010 

Calibration 

Problem 

Solutions 

87.5 56.7 90.2 112.0 30.0 39.0 48.7 66.1 22.5 76.1 118.5 140.0 135.0 8.50 1419.2 33960.0 54028.0 835.0 59817.9 

101.4 77.3 68.5 112.0 30.0 39.1 49.5 75.9 39.4 62.8 122.0 140.0 135.0 8.20 1338.9 33085.0 53671.1 888.8 58782.9 

134.8 88.0 89.9 112.0 36.1 53.0 51.2 69.6 22.1 56.5 123.5 144.2 135.0 7.00 1427.7 32573.2 51412.5 1055.2 57149.5 

116.1 76.8 59.3 93.8 47.6 53.1 50.1 77.9 52.3 68.5 129.0 143.0 153.4 7.30 1364.9 32208.7 50908.8 1171.0 56212.0 

99.5 96.7 57.1 61.5 60.6 60.0 70.6 90.4 23.9 72.0 132.3 143.2 137.2 5.10 1268.5 30948.1 51966.6 1260.8 55770.5 

Aggregate 

Calibration 

Problem 

Solutions 

112.2 98.5 86.1 112.0 30.0 39.0 85.0 92.0 21.0 50.5 118.1 140.3 135.0 7.40 1148.8 31063.2 56621.3 839.2 61609.8 

112.2 99.4 87.4 112.0 30.0 39.0 85.0 92.0 21.0 50.5 118.1 140.3 135.0 7.04 1146.2 30863.4 56501.2 846.3 61391.0 

120.3 79.4 96.1 111.8 31.5 39.0 80.6 92.0 22.3 48.0 118.1 140.0 135.0 7.17 1151.9 31051.9 56213.3 843.3 61459.2 

112.2 99.4 74.0 112.0 30.0 41.9 85.0 92.0 21.0 50.5 118.1 140.3 135.0 7.40 1146.4 30966.0 55987.6 843.9 61583.3 

115.5 92.1 98.7 111.6 30.0 41.6 85.0 92.0 21.0 51.7 118.1 140.7 135.0 7.40 1145.4 30946.1 55761.2 847.1 61603.7 

115.5 92.1 84.9 111.6 30.0 41.6 85.0 92.0 21.0 51.7 118.1 140.7 135.0 7.40 1145.7 30960.4 55896.8 846.6 61621.1 

112.2 99.4 74.0 112.0 30.0 44.4 85.0 92.0 21.0 50.5 118.1 140.3 135.0 7.40 1144.0 30898.1 55437.2 857.0 61347.5 

113.0 69.3 91.5 112.0 30.0 49.4 83.5 92.0 21.0 52.7 117.7 140.0 135.0 7.30 1136.9 30648.9 54255.8 871.0 61417.5 

112.2 99.4 74.0 112.0 30.0 44.3 85.0 92.0 21.0 54.9 118.1 140.3 135.0 7.40 1142.6 30800.4 55426.1 860.5 61314.4 

112.2 99.4 74.0 112.0 30.0 44.3 85.0 92.0 21.0 54.9 118.1 140.3 135.0 7.40 1142.6 30800.4 55426.1 860.5 61314.4 

113.0 69.3 91.5 112.0 30.0 49.4 69.3 92.0 25.8 35.0 117.7 140.0 135.0 7.30 1164.8 31472.4 53613.0 853.6 61629.1 

112.2 99.4 73.0 112.0 30.0 44.9 77.3 92.0 21.0 62.4 118.1 140.3 135.0 7.40 1148.3 30838.7 54927.9 867.7 61052.8 

116.5 81.9 74.0 112.0 30.0 55.3 81.6 92.0 21.0 48.0 118.1 140.9 135.0 7.40 1141.3 30698.6 53707.4 879.5 61428.9 

112.0 64.2 70.0 111.0 37.7 55.1 48.8 92.0 25.0 61.6 116.7 141.1 135.0 8.67 1185.4 31954.3 51384.5 861.1 62070.0 

112.0 64.2 70.0 111.0 37.7 55.1 48.8 92.0 25.0 61.6 116.9 141.1 135.0 8.67 1186.4 31953.3 51369.3 858.2 61913.8 

112.0 64.2 70.0 111.0 42.0 55.1 48.8 92.0 25.0 61.6 116.9 141.1 135.0 8.67 1185.4 31927.5 51355.9 865.8 61929.3 

117.3 76.1 78.2 108.5 31.1 68.6 83.7 92.0 32.8 48.0 116.9 140.0 135.0 7.06 1124.4 30345.2 52761.8 924.6 61561.9 

112.0 64.2 70.0 111.0 42.0 61.5 48.8 92.0 25.0 61.6 116.9 141.1 135.0 8.67 1178.9 31772.2 51000.8 875.5 61633.9 

112.0 64.2 70.0 111.0 42.0 65.6 48.8 92.0 25.0 61.6 116.9 141.1 135.0 8.82 1177.4 31750.3 50876.0 882.5 61709.1 

112.0 64.2 70.0 111.0 42.0 65.6 48.8 92.0 25.0 61.6 116.9 141.1 135.0 8.67 1175.5 31634.4 50837.7 887.5 61648.1 

112.0 59.2 70.0 112.0 42.0 77.3 48.8 92.0 25.0 59.3 116.9 140.9 135.0 8.82 1169.6 31501.6 50634.8 902.6 61689.9 
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113.7 64.2 70.0 112.0 34.8 53.1 48.8 92.0 21.0 48.0 119.3 141.1 138.1 8.17 1205.8 31965.7 51269.9 887.0 60614.4 

112.0 64.2 70.0 112.0 34.8 53.1 48.8 92.0 28.5 48.0 119.3 141.1 138.1 8.17 1206.1 31965.1 51259.3 889.4 60609.4 

114.1 76.1 73.4 108.5 34.3 70.1 59.6 92.0 22.3 48.0 119.2 140.0 135.5 7.50 1167.0 30918.0 51367.7 931.3 60374.3 

114.1 69.5 73.4 108.5 34.3 70.1 72.9 92.0 22.3 48.0 119.2 140.0 135.5 6.35 1149.2 30213.5 51982.5 1023.7 59829.4 

112.0 78.6 70.0 112.0 42.0 76.3 48.8 92.0 25.0 30.6 116.9 141.1 138.1 6.48 1174.3 31166.3 50303.8 1017.9 60711.2 

138.0 71.2 78.9 98.3 36.4 79.0 79.8 92.0 27.7 32.4 117.8 146.0 135.5 5.05 1138.5 30217.9 51972.2 1055.8 60469.0 

112.0 64.2 70.0 112.0 42.0 76.3 48.8 92.0 25.0 48.0 116.9 142.9 138.1 6.48 1169.6 30595.8 50120.2 1170.5 59777.0 

112.0 64.2 70.0 112.0 42.0 76.3 48.8 92.0 25.0 48.0 116.9 141.1 138.1 6.48 1170.2 30573.1 50099.8 1173.7 59743.6 

112.0 65.4 70.0 112.0 42.0 76.3 48.8 92.0 25.0 48.0 121.8 141.1 138.1 6.48 1200.2 30605.3 49808.0 1156.6 58034.9 
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