
Dynamic Crowdsourcing Consensus
Tasks with Workers That Can Learn

by

Shengying Pan

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2016

c© Shengying Pan 2016

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Shengying Pan

ii

Abstract

Crowdsourcing has become one of the most popular topics in both academia and in-
dustry in the past few years. By hiring workers online, task assigners can take advantage
of the wisdom of the crowd and solve problems that used to only be solvable by experts
or that are too hard for automated computer algorithms. Consensus tasks are some of
the most common tasks in the crowdsourcing domain, e.g. labeling, classification, pattern
recognition, and etc. To solve consensus tasks, a group of workers are hired to report
possible outcomes, and their opinions are aggregated to produce a final prediction.

When working with consensus tasks, crowd workers’ quality information is always valu-
able for system designers to find better workers and to devise opinion aggregation ap-
proaches that can produce predictions with higher accuracy. Traditional approaches used
in many research literatures either assume every worker has a fixed quality, or the worker
population as a whole has a fixed quality. They calculate worker quality from historical
data, assume it stays as is and use it for estimating existing workers’ future performance
and future workers’ starting performance. We argue this is not true, especially for more
complicated tasks where workers may need time and experience to fathom the idea and
become adequate. We think the learning curve model used in factories and plants to model
traditional workers’ productivity and quality can be adopted to work in a crowdsourcing
context, where workers quality should improve too as they work on more tasks and become
experienced. We modified the hyperbolic learning curve and setup a sleep spindle detection
experiment on Amazon Mechanical Turk to validate our argument. The results proved our
hypothesis that crowd workers do achieve higher quality as they work on more tasks, and
different workers have different quality and learning speed. Moreover, our linear regression
test shows that hyperbolic learning curve is a good fit to model crowd workers’ learning
process. This gives us a more accurate approach to estimate and project crowd workers’
quality.

With the help of learning curve model, we design a new dynamic hiring system that
can make smart tradeoffs between workers’ current quality and future potential, as well
as the accuracy of aggregated prediction and hiring cost. It can take advantage of crowd
workers’ quality improvement, find, train, stay with high potential workers, and reduce the
number of hired workers when some of the top performers stand out. Our system models
the hiring process as a Markov Decision Process, and uses Monte Carlo Planning to find
the best hiring path which optimizes the utility of both prediction accuracy and worker
training. We compared our proposed hiring mechanism against other common methods
such as randomly selecting workers and a bandit based approach which lets all workers
work on a small training set first and picks the best performing ones. From results in both

iii

sleep spindle detection tasks and simulated tasks, our proposed dynamic hiring system
yields a competitive or better performance with significant saving in hiring cost.

Moreover, to handle situations where crowd workers may not always be available and
they are not free to hire to work on tutorial tasks, we extend our dynamic hiring mecha-
nism to incorporate randomization so the system can choose between utilizing high quality
workers and exploring unknown workers. From our simulation tests, the extended hiring
system works as expected and can save even more in hiring cost while providing high
quality predictions. Our dynamic hiring system especially outperforms traditional hiring
approaches when the worker population is mixed where some workers have higher avail-
ability or learning speed. Overall, our dynamic hiring system is always able to find and
take advantage of high potential workers and make hiring decisions adaptively. Our work
opens up a new direction for hiring mechanism design in crowdsourcing settings where the
usage of learning curves enable us to distinguish crowd workers and to model them more
accurately.

iv

Acknowledgements

I would first thank my supervisor, Professor Kate Larson. She is the perfect supervisor
one can ask for, kind, supportive, and give me the freedom to work on something I really
enjoy. I would also like to thank the readers of my thesis, Professor Edith Law and Professor
Robin Cohen, for their constructive and valuable feedback. Moreover, I would like to thank
Josh Bradshaw for his work on implementing and running the sleep spindle detection tasks
on Amazon Mechanical Turk for me.

v

Dedication

To my parents who always support me and believe in me, I could never achieve what I
have done without you in my life. You are the most important ones to me, forever. I also
want to thank all my good friends who filled the non-academic part of my master’s years
with cheer and joy.

vi

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements v

Dedication vi

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Contributions . 2

1.2 Thesis Outline . 3

2 Background 5

2.1 Crowdsourcing Consensus Tasks . 5

2.2 Learning Curve . 9

3 The Learning Model 11

3.1 Learning A Worker’s Quality Curve . 13

3.2 Sleep Spindle Detection Tasks . 14

vii

3.2.1 Overall Performance . 16

3.2.2 Fitting Individual Worker . 19

3.2.3 Predicting Future Quality with Learning Curve 21

3.3 Problems and Challenges . 24

4 A Dynamic Hiring Process 28

4.1 The Markov Decision Process . 28

4.1.1 Defining the MDP . 29

4.1.2 Opinion Aggregation . 30

4.1.3 Defining the reward function . 32

4.2 Solving the MDP . 34

4.3 Challenges and How to Tackle Them . 39

4.3.1 Runtime Limitation . 39

4.3.2 Quality Capping . 40

4.4 The Algorithm . 42

4.5 Simulation Results . 44

4.6 Test on Sleep Spindle Detection Data . 52

5 Extended Hiring Process 57

5.1 Dealing with Unavailable Workers . 57

5.2 Dealing with Fewer Training Tasks . 59

5.3 Extended Dynamic Hiring System . 60

5.4 Simulation Results . 63

6 Conclusion 69

6.1 Future Work . 70

References 72

viii

List of Tables

3.1 Learning Speed, Prior Knowledge, Standard Error and P-Value for Individ-
ual Worker . 20

3.2 Comparing Actual, Fixed, and Estimated F1 Scores, 20 Sample Windows . 22

3.3 Comparing Actual, Fixed, and Estimated F1 Scores, 30 Sample Windows . 24

4.1 Results for simulation withR(x) = f(x; 50, 10, 0,∞) and P (x) = f(x; 40, 5, 0,∞) 46

4.2 Simulation Result for Slow Learning Workers 49

4.3 Simulation Result for Fast Learning Workers 49

4.4 Simulation Result for Workers of Mixed Learning Speed 51

5.1 Simulation Result for 300 Workers, 0.05 Average Availability 63

5.2 Simulation Result for 240/60 Workers, 0.05/0.5 Average Availability 65

5.3 Simulation Result for 240/60 Medium/High Quality Workers 67

ix

List of Figures

3.1 Compare Q(x) and q(x) . 12

3.2 Example of Sleep Spindles . 15

3.3 Sleep Spindles Detection User Interface . 15

3.4 Sleep Spindles Detection Feedback to Worker 16

3.5 Average Cumulative Precision, Recall, F Scores For Worker Crowd 18

3.6 Cumulative F1 Scores For Individual Worker 20

3.7 Cumulative F1 Scores For Individual Worker Projected From 20 Windows . 21

3.8 Cumulative F1 Scores For Individual Worker Projected From 30 Windows . 23

3.9 Learning Speed and Estimated Quality Difference 26

4.1 Bayesian Network for Opinion Aggregation 30

4.2 An Example of MDP and Monte Carlo Planning 38

4.3 Difference between Actual and Estimated Quality 41

4.4 Results for simulation withR(x) = f(x; 50, 10, 0,∞) and P (x) = f(x; 40, 5, 0,∞) 46

4.5 Simulation Result for Slow Learning Workers 48

4.6 Simulation Result for Fast Learning Workers 50

4.7 Simulation Result for Workers of Mixed Learning Speed 52

4.8 Hiring Mechanisms Tested Against Real Data, 15 training tasks 54

4.9 Hiring Mechanisms Tested Against Real Data, 20 training tasks 55

4.10 Hired High Performance Worker for 15 and 20 training Tasks 56

x

5.1 Illustration of the Sigmoid Probability Function 62

5.2 Simulation Result for 300 Workers, 0.05 Average Availability 64

5.3 Simulation Result for 240/60 Workers, 0.05/0.5 Average Availability 66

5.4 Simulation Result for 240/60 Medium/High Quality Workers 67

xi

Chapter 1

Introduction

In the past few years, crowdsourcing has not only become a very popular topic in academic
research, but also been adopted by the market and industry. With the power of crowd-
sourcing, companies and individuals are no longer limited by their internal resources, and
can take advantage of the knowledge, energy, and creativity of a global, online and of-
fline community, to solve problems that are comprised of tedious tasks, or not suitable to
machines and algorithms.

Crowdsourcing can be applied to aid a vast range of activities. There are many different
types of crowdsourcing projects online that utilizes crowd workers to collect geographical
data (e.g. OpenStreetMap), create graphical designs (e.g. 99designs), help scientific re-
search (e.g. Zooniverse), and so on. Additionally, there are general purpose crowdsourcing
platforms like Amazon Mechanical Turk that enables companies and individuals to out-
source specific errands to crowd workers of different backgrounds to help them complete
tasks that are too hard or inefficient for computers.

Among all the crowdsourcing applications and projects, many involve hiring workers
to perform repetitive tasks. For instance, on Zooniverse [1], the crowd workers are asked
to classify sequences of photos of galaxies. When multiple workers are needed to predict
answers to a set of problems, from the task assigner’s perspective, he/she wants to hire
as few workers as possible to save on the cost while still have a good enough aggregated
performance. As a result, he/she would like to employ high quality workers that are more
efficient or accurate at doing the tasks.

Some research has been done to tackle this problem [25] [42], by designing mechanisms
that get workers’ quality information and only hire workers at the top of the quality ranking.
However, such mechanisms assume that the quality of workers is fixed, while in reality, it

1

can be improved by training and learning from doing more work. For example, workers in
factories and production plants become more productive as their work experience increases,
crowd workers’ quality and efficiency can also improve as they get more experienced and
adequate after completing more tasks. Moreover, crowd workers are individuals who may
come from very different backgrounds. They may possess different initial quality and ability
to learn. The mechanisms that only select the top workers from a small set of data may
end up with mediocre workers and ignore new coming workers with high learning potential,
resulting in a solution which is not optimal in the long run.

In this thesis, we propose a new way to model crowd workers’ quality and learning
process with a hyperbolic learning curve model, which has been used in traditional industry
such as manufacturing plants to model factory workers’ quality and productivity for many
decades [5]. We argue that crowd workers follow a similar pattern when doing complex
consensus tasks that require high level understanding of abstract ideas such as sleep spindle
detection tasks, and by using learning curves, we can not only estimate their quality more
accurately, but also be able to project their quality improvement in the future. With the
new model, we then devise a dynamic hiring mechanism which takes advantage of workerss
learning potential and quality improvement, and make smart tradeoffs to save hiring cost
in the long run while providing good performance in predicting correct answers. The thesis
makes the following contributions as listed in the section below.

1.1 Contributions

As the topic of crowdsourcing is becoming more and more popular, the problems asso-
ciated with how to hire crowd workers and aggregate their opinions when crowdsourcing
consensus tasks have been studied actively in the domain of artificial intelligence in the
past few years [7]. For example, many researchers have studied ways to estimate workers’
quality and use collected information to improve the performance of their hiring mecha-
nisms. They adopted machine learning, planning methods in artificial intelligence to solve
crowdsourcing tasks and designed decision theoretic approaches with tools such as Markov
Decision Process and Multi-armed bandit [23] [26] [24] [25] [42]. In this thesis, we created
a new method to model crowd workers’ quality and learning process. Unlike traditional
approaches which assume either the entire worker population has a fixed quality or every
individual worker has a fixed quality, our proposed hyperbolic learning curve model is able
to parameterize each crowd worker’s quality and learning speed. Thus it gives us the abil-
ity to estimate each worker’s quality separately and more accurately, predict their future
quality improvement, and distinguish fast learning workers from their peers. The validity

2

and applicability of this learning curve model is verified by both sleep spindle detection
experiments on Amazon Mechanical Turk (MTurk) and by computer simulation.

Second, with the new learning process model, we devised a dynamic hiring mechanism
which models the hiring process as a Markov Decision Process. It uses Monte Carlo
Planning to search all possible hiring outcomes and find hiring decisions that optimize
the task assigner’s utility by making smart compromises between prediction accuracy and
hiring cost. Unlike other hiring mechanism, our new approach is able to find not only high
quality workers but also high potential workers, get them trained, take advantage of their
quality improvement and reduce the hiring cost in the long run. From experiments on both
on MTurk and by simulation, our proposed hiring mechanism can save up to 50% in hiring
cost while providing competitive or even better performance on prediction accuracy.

Last but not least, to handle more realistic crowdsourcing settings where crowd workers’
availability is uncertain and unknown, and training crowd workers with sample tasks are
not free, we extended our hiring mechanism to add randomness to the decision making
process. The extended dynamic hiring mechanism makes a tradeoff between staying with
existing workers and exploring new workers based on its knowledge of the learnt worker
population and workers’ quality information. It is able to take advantage of high availability
workers and high potential workers while partially exploring the worker population, and
saves even more on hiring cost. It especially yields better performance than other hiring
mechanisms when the worker population is mixed with workers of different characteristics.

1.2 Thesis Outline

Besides the introductory chapter, the rest of this thesis is organized as follows:

In Chapter 2, we give background knowledge on crowdsourcing, consensus tasks, and
the learning curve model. We also talk about problems we are interested in solving, as well
as related research in this area working on similar problems with different approaches.

In Chapter 3, we introduce our learning model that uses a hyperbolic learning curve
to model each crowd worker’s learning process. We use a linear regression approach to
find the parameters for each individual worker. We also provide results from sleep spindle
detection tasks on MTurk and simulation tests to validate our proposed model, as well as
discussing associated problems and challenges we discovered from these tests and how to
handle them.

In Chapter 4, we present our dynamic hiring system that models the consensus task
hiring process as a Markov Decision Process (MDP). We show all the details of the MDP

3

and the algorithms we used for Monte Carlo sampling and worker ranking. The perfor-
mance of our proposed hiring system is tested against MTurk data and simulation tests
and the results are discussed and analyzed.

In Chapter 5, we extended our dynamic hiring system to work in settings where crowd
workers are not always available and we can only run tutorial tasks with workers that
are hired. We added randomization to our hiring mechanism so the system can spend
some of its hiring cost to explore new workers. The extended hiring system is able to take
advantage of high availability workers and high potential workers. We use simulation tests
to verify its performance against different types of worker population.

In Chapter 6, we conclude our work and suggest future research directions to expand
our proposed model and mechanisms.

4

Chapter 2

Background

In this chapter we first give an overview of crowdsourcing problems in general, and then
focus on elucidating the subset of crowdsourcing tasks we are interested in. We also give
an introduction to learning curves, which is the foundation of the method we use to model
crowd workers’ learning potential and process. We talk about related work in this area
tackling similar problems and their limitations in this chapter, too.

2.1 Crowdsourcing Consensus Tasks

Crowdsourcing is a relatively new concept, and there are many varying definitions of it
from different sources. E. Estellés-Arolas et al have done a thorough analysis of existing
definitions to extract common elements and basic characteristics of crowdsourcing initiative
[16]. In general, it is a participative activity in which a task assigner proposes to a group
of individuals to undertake some tasks. The participants receive rewards (monetarily or
virtually) while the task assigner utilizes their effort and benefit from their participation.

The domain and applications of crowdsourcing are broad. It spans from business, to
academia, science, and forth [45] [7] [19] [14]. Organizations use crowdsourcing to gather
knowledge from the general public to create an online encyclopedia e.g. Wikipedia, and
companies such as Instacart use crowd workers to deliver groceries door-to-door to their
customers. Each of these applications faces its own problems and challenges. In this thesis
we focus on a subset of crowsourcing problems called consensus tasks.

A task is classified as a consensus task if its goal is to identify a correct answer that
is not known to the task owner and there exists a population of workers who can make

5

predictions about the correct answer [23]. To put it formally, for any consensus task t,
there exists a set of possible answers A for t, and a correct answer â ∈ A. Each hired
crowd worker w reports a predicted answer aw ∈ A, and the task owner aggregates all the
reported answers to produce a final prediction ā, which is the consensus of the workers.
The prediction is correct if ā = â, and incorrect otherwise. There is a cost cw associated
with hiring worker w, and the task owner may have a budget that limits number of workers
he can hire. Generally speaking, the task owner wants to get a good prediction that costs
as little as possible.

Consensus tasks have many applications in the real world where the task assigner wants
to identify, tag, label, and classify data which is too abstract and complex to be processed
and analyzed by a computer algorithm. Pattern recognition tasks, for example, are more
fitted to human brains and hard for computers to perceive. Projects such as Galaxy Zoo
hires non-expert workers to classify celestial objects [29]. Online crowdsourcing platforms
like MTurk [21] gives companies and individuals the ability to hire low cost crowd workers
and take advantage of the wisdom of the crowd [40], for example, classifying objects into
different categories, labeling venues from pictures, and identifying sleep spindles by reading
electroencephalographic recordings from polysomnography [46]. Many research has shown
that the performance of crowd workers is oftentimes better than using computer algorithms.
For example, in Warby’s paper, crowd workrers are shown to outperform all existing sleep
spindle detection algorithms [46].

Crowdsourcing consensus tasks generally consists of two major parts: how to hire
workers and how to aggregate their opinions. For the latter, research has shown combining
multiple opinions often produce an improved performance of forecasting and labeling tasks
in many domains [12] [39] [10]. There are many different methods to aggregate opinions,
such as majority voting, opinion polling, and quality based Bayesian Network approaches
[11] [9] [47] [22]. In this thesis, as we assume that we have reliable estimation of workers’
quality which is the probability they are making correct/incorrect prediction, and each
worker’s answer is independent from others, this gives us the possibility to use Bayesian
Network to aggregate reported opinions and the details can be found in Chapter 4 when
we introduce our dynamic hiring system.

The hiring process, is the more complicated facet of this task. From the task assigner’s
perspective, he wants a good compromise between the quality of the aggregated consensus
opinion and the cost of hiring workers. As he may have a lot of or even an unlimited amount
of tasks to post, the hiring expense in the long run can be an important constraint to him.
For solving every single consensus task, the task assigner needs to make two decisions: how
many workers to hire and which workers to hire. Generally speaking, he wants to spend his
hiring budget as little as possible while still maintaining a high confidence in the accuracy

6

of the aggregated opinion.

Empirical study has shown not only that the expected accuracy of the aggregate answer
increases as the number of hired agents increase, but also selecting a small group of top
quality agents yields more accurate results than randomly selected agents [8]. Thus, hiring
a proper amount of top performing agents can make the crowdsourcing task more efficient
by both providing high quality aggregate answer and helping the task assigner to save
on the hiring cost. However, the quality information of the workers is often unknown to
the task assigner at the beginning in crowdsourcing setting. As a result, the designed
mechanism must first gather such information before it can make any intelligent decisions.
Long Tran-Thanh et al [42] proposed an approach using bounded a multi-armed bandit
model that first spends portion of task assigner’s budget to sample the quality of available
workers by hiring them to do a small subset of tasks. After quality information is collected,
they then use the leftover budget to hire workers based on observed quality ranking. They
consider the hiring process as a bounded knapsack problem and solved it with a bounded
greedy approximation algorithm. Although their hiring process targeted a different type of
crowdsourcing tasks where the goal was to spend all the budget to hire software developers
to create as many features for software project as possible, their approach to sample agents’
quality is an interesting attempt to solve the problem of observing quality information.

On the other hand, Ece Kamar et al [23] [26] [25] have been working on solving crowd-
sourcing consensus tasks with a dynamic hiring process. They use machine learning to
study agents’ behaviour doing consensus tasks on Galaxy Zoo, and use their learned model
to predict a potential new agent’s behaviour given a classification task and the information
the system has collected from previously hired agents. They model the hiring process as a
Markov Decision Process where the rewards are the system’s belief in the correctness of the
aggregate prediction from the hired workers minus the cost to hire those workers. They use
Monte Carlo Planning to approximate the optimal decision path from sampling. However,
their approach faces the challenge that you must have significant amount of historical data
to train the prediction model, thus it is not applicable to most task assigners where they
are starting afresh. Moreover, their prediction model may not even work for tasks not on
Galaxy Zoo as they are assuming there are certain relationships between tasks, which may
not fit settings where tasks are independent. Furthermore, they assume workers have a
somewhat fixed quality, e.g. if historical data shows workers are 80% correct in one setting,
then a new worker will be 80% correct in the same setting. We argue this is not always true
as crowd workers should have different quality. Their usage of MDP and relating system’s
belief in the aggregate answer to its utility however can still be adopted to design other
hiring processes.

There are also other approaches that can reduce task a assigner’s expense when crowd-

7

sourcing consensus tasks. One is to use a hierarchical crowdsourcing approach to combine
automatic detection/classification algorithms with crowd workers’ manual effort. Rahman
et al [36] [37] have designed a mechanism to identify photos of weeds by first running an
identification algorithm and dynamically make the hiring decision based on the system’s
confidence in the result of the algorithm. By replacing some of the crowd workers with a
no cost automatic algorithm, it can reduce the number of workers needed and improve the
utility of task assigners by saving on hiring cost.

However, all these approaches are oversimplifying the crowd worker population by as-
suming a worker’s quality can either be estimated by averaging his past performance, or
be predicted from other agents’ (in this thesis we use worker and agent interchangeably)
past behavioural history. It is quite unrealistic in crowdsourcing settings where agents can
come and go and many agents may not even have prior knowledge of the tasks they are
working on. When agents can learn from completing more tasks, there is a significant
discrepancy between their quality in the past, their current quality, and their future qual-
ity. This discrepancy is even more significant between an averaged quality from the entire
worker population that have already completed lots of tasks, and a new worker starting
from scratch. Thus some of the approaches discussed above may face the problem of get-
ting stuck with local high quality workers and ignoring high potential fast learning agents
without prior experience that can quickly surpass their peers and help to improve the task
assigners’ utility in the long run. Moreover, their estimation of agents’ quality may not
be accurate enough as they are taking the average value of agents’ learning process. This
will impact the accuracy of the confidence and belief level their systems have upon the
aggregate answer from hired workers.

The goal of our work is to propose a new model to mathematically represent crowd
workers and their learning process. Thus we can have a more accurate estimation of
workers’ quality, and be able to model workers of different learning behaviours. We want
to design a mechanism that can dynamically hire crowd workers and help task assigners
to make smart tradeoffs between hiring current high quality workers and workers have
potential to learn quickly, so they are able to train a pool of high quality workers efficiently
and improve their utility in the long run when they are crowdsourcing a long horizon of
consensus tasks. To achieve this goal, we want to introduce the concept of learning curve,
which is the foundation of our crowd worker learning process model and one of the key
components we build our dynamic hiring process upon.

8

2.2 Learning Curve

One of the features the consensus crowdsourcing tasks share is they hire workers to perform
repetitions of manual-based tasks. Past study in many industrial sectors has shown that
the quality of workers improve as they complete repetitive tasks [3] [33] [35] [2] [43]. There
are multiple factors that may impact the workers’ learning process, and the learning curve
has proven to be an efficient tool to monitor such performance improvement, by providing
means of mathematical models to analyze it.

Crowdsourcing consensus tasks are essentially the same as these production tasks.
Crowd workers are hired to use their cognitive and analytical skills to perform repeti-
tive tasks. For instance, a science enthusiast classifies many photos of galaxies on Galaxy
Zoo. His efficiency and accuracy increases as he completes more tasks and gain more expe-
rience. It’s just that their work place has been moved from production plant and factory
to an online platform. It is natural to migrate knowledge we have on learning curve in
industrial settings to crowdsourcing settings.

In M. J. Anzanello et al ’s literature review [5], they covered most relevant models
of multiple learning curves and discussed their mathematical aspects and applications.
By definition, a learning curve is a mathematical description of workers’ performance in
repetitive tasks [6] [17]. There are a few different ways to measure workers’ performance,
and many different variables are used in learning curve models. One group of learning
curves where they measure a worker’s quality by percentage of non-conforming units in his
overall production [41] [18] is the most interesting one to us. It can be directly translated
to our crowdsourcing setting where non-conforming units are essentially incorrect answers
a crowd worker has reported, and vice versa.

In this group there are many learning curve models proposed by researchers along the
years, including univariate and multivariate models of varying complexity [5]. Among the
univariate models the log-linear, exponential and hyperbolic models are the best known.
In this thesis we mainly focus on the hyperbolic learning curve as it fits the best to our
interests. The hyperbolic learning curve model was proposed by Mazur and Hastie [31]. It
relates the number of conforming units to the total number of units produced. In their pa-
per they provided both 2-parameter and 3-parameter forms. We are more interested in the
3-parameter form since it supports prior knowledge which is important in a crowdsourcing
setting where workers have different starting quality (some workers may be smarter than
their peers or understand the tasks better). The 3-parameter hyperbolic learning curve
looks like the following:

y = k

(
x+ p

x+ p+ r

)
9

where y is the number of items produced in x units of operation time, k is the maximum
performance level (its range depends on the definition of performance), p is a worker’s prior
experience, and r is the learning rate (time to achieve half of the maximum performance
level k) [31] [34], where p and r are units of operation time, too (x, p, and r are all greater
than 0). We will further tweak this model to fit our setting of consensus tasks in next
chapter when we define our learning process model.

It is shown that the 3-parameter hyperbolic model of learning curve presents better
fit, outperform many other models in terms of efficiency, stability, parsimony, and is more
robust in many scenarios [31] [34] [4]. Also, its ability to model learning speed, prior experi-
ence, and complexity of work is a perfect fit to crowdsourcing consensus tasks. Essentially,
for different domains of problems we are crowdsourcing, we should run tests and compare
different learning curve models to check for the fit based on the coefficient of determina-
tion. However, in this thesis we want to provide a generic approach to hire crowd workers
dynamically with knowledge of the underlying learning process. Our later proposed hiring
process, although is designed based on the 3-parameter hyperbolic model, can be easily
modified to cater other learning curve models if they are shown to be better fits to a certain
selection of workers and problems.

In next chapter, we will introduce the modified 3-parameter learning curve for our
learning model, the linear regression approach we use to learn the parameters, and present
results from sleep spindle detection tasks on MTurk to verify its validity. We will also use
simulation tests to discuss the problems and challenges our proposed model faces.

10

Chapter 3

The Learning Model

As we discussed briefly in previous chapter, the traditional way to measure a worker’s
quality is to divide his correct answers by his total number of answers reported. However,
in crowdsourcing scenarios, workers have very different background and prior knowledge,
and are asked to perform repetitive tasks. A worker’s quality is not a constant variable and
improve as he becomes more experienced. By adopting the 3-parameter hyperbolic learning
curve [31], we propose a model where a worker w’s cumulative quality is formulated by
function 3.1:

Qw(x) =
x+ pw

x+ pw + rw
(3.1)

where x is the number of tasks w has worked on, pw is w’s prior knowledge about the tasks,
and rw is w’s learning speed defined as the number of tasks w needs to perform to achieve
a 1

2
cumulative quality, where cumulative quality is defined as the percentage of tasks w

has completed correctly up to x-th task. In 3.1, the units of all x, pw, and rw are number of
tasks (≥ 0). In another word, p measures a worker’s starting quality: assuming his initial
skill, understanding, or past experience of the tasks equals to having completed pw tasks.
Clearly, w has a greater initial quality if he had a greater prior knowledge pw, and is faster
to achieve a higher cumulative quality with a smaller rw, vice versa. With Qw(x) we can
derive w’s actual quality qw(x) at task x for x = 1, 2, 3... as

qw(x) = xQw(x)− (x− 1)Qw(x− 1) (3.2)

When dealing with crowd workers who can learn, if we are estimating an worker’s
quality by using the percentage of his correct answers out of all answers, what we are
getting is actually his cumulative quality. And the difference between one’s cumulative

11

quality (average performance from the beginning to current task) and actual quality (spot
performance at current task) is:

|Qw(x)− qw(x)| = (x− 1)(Qw(x) +Qw(x− 1))

To illustrate this difference, for a worker with a prior knowledge of 5 and is working on
tasks that take him 10 rounds to achieve 50% cumulative quality, the discrepancy between
his cumulative quality function and quality function is about 20% at the widest gap, and
significant cross the span of tasks (around 10% even after completing 200 tasks), as shown
in the following graph (the curve on top is q(x) and the other is Q(x).

Figure 3.1: Compare Q(x) and q(x)

Take this example, if we estimate this worker’s quality by using his cumulative quality
at 10th task, we may think his quality is 60%, while it is actually 75%. If our hiring
system underestimates his quality like this, it may make the decision to hire more workers
to maintain the quality of the final prediction. In fact, in this example, after completing
the first task, Q(x) is always underestimating q(x). Thus in scenarios where agents are
improving, assuming they have a fixed value of quality will add significant amount of error
to ones designed hiring process. Our proposed 3-parameter learning curve on the other
hand will make a better fit and provide more accurate estimation of workers’ quality. We
will validate this statement in a later section in this chapter. Now we need to first explain
how we estimate the parameters in this model.

12

3.1 Learning A Worker’s Quality Curve

As we defined crowd workers’ cumulative quality functions at 3.1, we can learn it from
collecting data of workers’ completed tasks and the numbers of tasks they answered cor-
rectly, since it is available to the system as workers’ past performance data. With collected
data, we can use regression analysis to estimate parameters in ones cumulative quality
function (CQF). As an agent’s CQF is in hyperbolic form, we may first transform it into a
linear function so that it becomes a linear regression problem and we can use more readily
available tools. Letting Z(x) = 1

1−Q(x)
, then we can rewrite 3.1 as

Q(x) =
x+ p

x+ p+ r
= 1− r

x+ p+ r

1−Q(x) =
r

x+ p+ r

1

1−Q(x)
=
x+ p+ r

r

thus
Z(x) = αx+ β (3.3)

where Z(x) = 1
1−Q(x)

, α = 1
r

and β = p
r

+ 1. We can then use linear regression analysis (we

use scipy.stats.linregress in Python) to estimate α and β. In statistics, linear regression is
an approach for modelling the relationship between a a scalar dependent variable and one
or more explanatory variables. Note that the linear regression is giving the least square fit
in 1

1−Q(x)
not Q(x). And the data our system collect is for Q(x), so we need to transform

it to 1
1−Q(x)

, too. Furthermore, the error term ε for Z(x) at Z(x) = αx + β + ε is in fact

Q(x) = x+p+rε
x+p+r+rε

for Q(x). We can then reproduce Q(x) by deriving r and p from α and

β. Once we have the estimated Q(x) we can project an agent’s future cumulative quality,
as well as his immediate quality information q(x) at task x by using 3.2.

However, one may ask here if our learning curve model and the linear regression ap-
proach works in the real world. Although there is an obvious connection between crowd-
sourcing consensus tasks and traditional production tasks in factories and plants, we are
interested in exploring the connection using a concrete example in order to verify whether
our assumption that crowd workers do actually learn and improve with experience. We
found sleep spindle detection tasks to be a good domain for our experiments [46]. The
tasks are not so difficult that crowd workers are unable to provide reasonably accurate
answers, but at the same time the tasks are challenging enough that one would expect to
see improvement over time if workers did actually learn with experience.

13

3.2 Sleep Spindle Detection Tasks

First we briefly go over the definition and features of sleep spindles. As our focus is more
on the learning process of workers, one can refer to Warby’s paper [46] for more details.
Generally speaking, sleep spindles are discrete, intermittent patterns of brain activity that
arises as a result of interactions of several circuits in the brain. Sleep spindles are measured
by electroencephalography (EEG) as brief distinct bursts of activity in the sigma frequency
range (11 - 16 Hz). They have a characteristic waxing and waning shape and are a key EEG
feature used during sleep scoring to define non-rapid eye movement stage 2 sleep [46]. The
formation and frequency of spindles have been used as markers of the developing brain in
infants and change over the lifespan, and they play an important functional role in synaptic
plasticity and memory consolidation during sleep. Moreover, sleep spindles are clinically
important because alternations in spindle density are observed in several disorders and
neurodegenerative diseases. Therefore, detection of sleep spindles in EEGs is very valuable
and important in not only clinical diagnosis and but also many ongoing researches.

Research has shown that sleep spindles can be detected by crowd workers hired online,
and crowd workers can produce results that are better than any current detection algo-
rithm, and even competitive to experts [46]. According to Warby’s paper, a sleep spindle
can be defined based on its shape, speed, duration, and height:

• A sleep spindle is usually shaped like a diamond or football.

• A sleep spindle is a group of waves that oscillate at approximately 12 - 15 cycles per
second.

• Most commonly sleep spindles are around 0.5 to 1.0 seconds in length, but can be as
short as 0.4 seconds and as long as 5 seconds.

• The height of sleep spindles is usually a little larger than the waves around it, although
it’s less important than other criteria.

Some examples of sleep spindle in an EEG sequence can be seen in Figure 3.2, where sleep
spindles are bounded by blue boxes.

We put our tasks onto Amazon Mechanical Turk (Thanks Josh Bradshaw for his imple-
mentation and deployment of the experiment). The EEGs we are using are from Stéphanie
Devuyst’s DREAMS sleep spindles database [13]. For each worker, a task is a 20 seconds
window of EEG sequence which may contain one to many sleep spindles. For each worker
hired on MTurk, we asked him to perform a total of 55 windows (1080 seconds of EEG in

14

Figure 3.2: Example of Sleep Spindles

total). The windows were pre-shuffled to make sure the difficulty level of each window is
mixed enforce some uniformity (as the original sequence of EEG from DREAMS database
is getting harder towards the end). Every worker receives the exact same windows, in the
exact same order. To evaluate each worker’s performance, we compare their submitted
sleep spindles to our gold standard data which is based on an agreement between two
neurologist’s annotations from DREAMS database.

Figure 3.3: Sleep Spindles Detection User Interface

For each 20 seconds window, our user interface on MTurk can be seen in Figure 3.3. A
worker can draw light blue boxes in the window to mark segments they think are spindles.
Once they submit spindles for the current window, they can see feedback before moving
onto next window. The feedback tells them where the actual spindles are in the window
which are marked by dark grey boxes as show in Figure 3.4.

Note that a worker is always given the definition of sleep spindles and some examples
from our gold standard data showing them how to detect them at the bottom of the

15

Figure 3.4: Sleep Spindles Detection Feedback to Worker

web page. Payment-wise, we use a structure of fixed payment plus bonus for additional
work. As it’s quite some work to complete all 55 windows and MTurk users are not often
committed to worker on lengthy tasks, we gave them a fixed amount of money for joining
and completing the first ten tasks, with extra money for the remaining 45. We filtered
out workers who didn’t complete all 55 windows for our tests, as we are only interested
in analyzing their learning process in a longer horizon. Additionally, to stay away from
workers who are possibly spamming, we removed workers who spent too much less time
compared to their peers. More specifically, the average time spent on 55 windows was 18.6
minutes, so we removed workers who spent less than 10 minutes which is 45% less than
average time consumption. In the end, we got a list of 10 crowd workers, which we will
analyze and try to fit with our proposed hyperbolic learning curve in the following sections.

3.2.1 Overall Performance

First of all, we want to test if the worker population as a whole is improving, as our
foremost assumption is that the worker population is going to get better after completing
more tasks in crowdsourcing settings just like in production settings. Our hypothesis is,
although there might be some outliers who are not learning nor improving, if we average
every one as a group, their quality should be trending up and show features of learning
curve. For sleep spindle detection tasks, we are interested in both precision and recall, so
we will analyze them separately.

Since we are conducting our tasks in 20 seconds windows, and workers are only given
feedback after completing each window, our analysis is window based and we only update
workers’ quality information on a per window basis. At the beginning of the tasks, as the
sample size is small, a worker may get lucky or unlucky to get the first few tasks all correct
or incorrect, thus the quality information is not reliable. Since we are only interested in
the general trend, all our analysis is starting from the 10th window to stay away from

16

the such drastic fluctuation. For instance, if a worker got lucky and answered first three
tasks correct, it still doesn’t make sense to assume he has a 100% quality at that time,
and 10 tasks gives a buffer to mitigate the influence of luck. Moreover, as our proposed
hyperbolic learning curve represents the cumulative quality of workers, we will be analyzing
the cumulative precision (percent of segments a worker marked as sleep spindles are truly
sleep spindles), cumulative recall (percent of actual sleep spindles recognized correctly by a
worker), and cumulative f-score, which is a combination of these two. We define a worker’s
reported answer as correct if it overlaps with a sleep spindle in the gold standard dataset.

To analyze the overall performance of the whole worker population, we average cumula-
tive precision, recall, and F-score across all 10 workers by calculating the total percentage
of these values by each window. Since everything is on a per window basis, every dot in our
plot on x-axis is at a number of spindles by the end of a 20 seconds window. For example,
if the first window contains 3 spindles and the second window 2, the cumulative recall is
plotted at 3, 5 spindles, respectively, and so forth.

The results can be seen in Figure 3.5. From top to bottom, left to right are cumulative
precision, recall, F1 and F2 scores, respectively. And we use the common definition for F
scores where

F1 = 2× precision× recall
precision+ recall

and

F2 = (1 + 22)× precision× recall
22 × precision+ recall

F1 score treats precision and recall equally, while F2 score favours recall which could be
important for sleep spindle detection tasks as we are more interested in how many sleep
spindles a worker can find.

The smoother curves are the estimated learning curves derived by running a linear
regression test on the spikier curves (which are the actual averaged cumulative values). For
these four quality measurements, the standard error and p-value from linear regression tests
are 0.0018/6.36× 10−14, 0.0027/8.36× 10−9, 0.0020/1.07× 10−12, and 0.0023/1.41× 10−10,
respectively. Statistically, the p-values are significant and much less than the commonly
used threshold of 0.05, which proves the hyperbolic curve is a good fit to represent the
underlying worker performance. The graph and results give us an empirical proof that
crowd workers are actually learning and improving their quality as they complete more
tasks.

The estimated learning speed r∗ and prior knowledge p∗ are 50/86, 52/116, 50/98, and
51/98, respectively. We expected precision to be the best indicator of crowd workers’ learn-
ing process for sleep spindle detection tasks, as some EEG may contain spindle segments

17

Figure 3.5: Average Cumulative Precision, Recall, F Scores For Worker Crowd

which are difficult to pick up, but once a worker gets better, he is less likely to make any
mistake when he annotates something as a sleep spindle. Surprisingly, the learning speed
for recall is almost identical to its counterpart for precision, while recall even has a better
prior knowledge (starting quality). However, there is a slight drop in performance around
the last 10 windows in the recall graph, and consequently in the two F scores. We don’t
have exact explanation for this phenomenon, but we suspect it’s due to the length and

18

repetitiveness of our tasks, as turkers don’t usually do such long repetitive tasks. Towards
the end some of workers may become too tired to pick up all sleep spindles from the EEG.
This could be an interesting future research direction to setup comparison experiments to
analyze this behaviour, and we will discuss this in future research section at the end of this
thesis.

These experiments show us the crowd worker population as a whole are in fact im-
proving, and their learning process can be modelled by our proposed hyperbolic learning
curve. Moreover, with the learning curve model we are able to measure the difficulty of
the tasks and evaluate a worker’s learning speed quantitatively. For example, our sleep
spindle detection tasks have a learning speed r around 50 for all the quality measurements,
that in another word is saying it takes workers in general 50 tasks to reach 50% quality by
the definition of our learning curve model. This gives us the ability to have a general idea
of how fast the worker population can reach a certain quality level. However, to build a
system that can hire workers dynamically to take advantage of this learning process, we
want to see if this learning curve approach can be applied to crowd workers at an individual
level, as each individual worker may have very different learning behaviour.

3.2.2 Fitting Individual Worker

We will only analyze the F1 score for an individual worker to reduce some redundancy
as it combines both precision and recall scores and our previous experiment has already
shown that workers’ precision and recall curves are very similar. We order all ten workers
from 1 to 10, and their individual F1 curves are shown in Figure 3.6, while their learnt
parameters of estimated learning speed and prior knowledge are shown in Table 3.2.2, along
with standard errors and p-values from their associated linear regression tests.

We can see from Figure 3.6, other than worker 2 and worker 5, the other 8 workers
exhibit clear uptrend quality movement. The 8 workers all have p-values way below 0.05
from their linear regression test which are statistically significant to show strong fitting
of their learning curves. This gives us needed validity to use learning curves to model
individual worker. For the outliers, worker 2 has a drop of quality after 35 task windows,
while worker 5’s quality fluctuates up and down, although remains very high across all 55
windows. Although the hyperbolic learning curve may not be a good fit here for these 2,
the estimated learning speed is so slow that the projected learning curve is almost a flat
line which in fact is a reasonable estimation of worker quality. Thus we think it’s safe to
use such estimated quality when we are aggregating worker opinions in both situations.

19

Figure 3.6: Cumulative F1 Scores For Individual Worker

Worker No. learning speed (r) prior knowledge (p) standard error p-value
1 72 83 0.001 1.7× 10−16

2 450 822 0.004 0.554
3 68 130 0.003 7.2× 10−7

4 37 106 0.005 5.0× 10−7

5 1613 10597 0.009 0.948
6 9 26 0.006 1.1× 10−20

7 58 103 0.001 3.2× 10−15

8 46 51 0.001 1.8× 10−18

9 125 190 0.002 7.4× 10−6

10 28 28 0.003 2.1× 10−17

Table 3.1: Learning Speed, Prior Knowledge, Standard Error and P-Value for Individual
Worker

20

3.2.3 Predicting Future Quality with Learning Curve

Overall, the previous experiment gives us confidence to use hyperbolic learning curves
to model individual crowd worker’s quality. However, to take advantage of their quality
improvement, we want to see if we can use our learning curve model to project their future
quality level so we can make hiring decision based on not only their current quality but
also their future quality, as one goal of our going to build hiring system is to train high
potential workers to benefit in the long run. So we want to test the robustness of using
workers’ performance in first few windows to predict their performance in later tasks. To
show how accurate the prediction is, as well as its relationship to number of samples used
for running linear regression test, we did the following experiments that draw estimation
from both the first 20 and 30 windows. We tried for 10 windows too but found the results
are not too reliable for such small amount of samples.

Figure 3.7: Cumulative F1 Scores For Individual Worker Projected From 20 Windows

The results are shown in Figure 3.7 and Figure 3.8. We can see that for a projected
learning curve from the first 20 windows, about half of them are fitting the actual cumu-
lative F1 score curve pretty well, while the other half overestimate at the end when there

21

appears to be a drop in quality. And for worker No. 5 the curve goes downward due
to downward movement at the first 20 windows. We compare the difference between the
projected cumulative F1 score and the actual cumulative F1 score at both window 45 and
55, as well as the number if we assume crowd workers have a fixed quality (so they will
have the same F1 score at all window 30, 45, and 55). The results are displayed in Table
3.7.

No. F1 at 45 fixed estimated F1 at 55 fixed estimated
1 0.64 0.60 (-6%) 0.63 (-1.5%) 0.66 0.60 (-9%) 0.66 (0%)
2 0.63 0.69 (+9.5%) 0.73 (+15.8%) 0.63 0.69 (+9.5%) 0.79 (+25.4%)
3 0.71 0.72 (+1.4%) 0.74 (+4.2%) 0.71 0.72 (+1.4%) 0.79 (+11.3%)
4 0.79 0.80 (+1.3%) 0.80 (+1.3%) 0.79 0.80 (+1.3%) 0.84 (+6.3%)
5 0.87 0.87 (0%) 0.84 (-3.4%) 0.85 0.87 (+2.4%) 0.79 (-7%)
6 0.88 0.87 (-1.1%) 0.88 (0%) 0.89 0.87 (-2.2%) 0.91 (+2.2%)
7 0.71 0.71 (0%) 0.72 (+1.4%) 0.73 0.71 (-2.7%) 0.76 (+4.1%)
8 0.70 0.66 (-5.7%) 0.68 (-2.9%) 0.68 0.66 (-2.9%) 0.74 (+8.8%)
9 0.64 0.66 (+3.1%) 0.68 (+6.3%) 0.65 0.66 (+4.6%) 0.73 (+12.3%)
10 0.72 0.71 (-1.4%) 0.71 (-1.4%) 0.73 0.71 (-2.7%) 0.78 (+6.8%)

Table 3.2: Comparing Actual, Fixed, and Estimated F1 Scores, 20 Sample Windows

In Table 3.2.3, the fixed cumulative F1 scores are the scores at window 30 (after taking
window 10 - 30 as the learning samples) when we assume workers have a fixed quality (this
is used in many hiring mechanisms which pick best workers from past performance). And
estimated F1 scores are the ones projected by learning curve provided by linear regression
test with the same 10 windows of samples. The percentage numbers in brackets are the
difference from the actual cumulative F1 scores at window 45 and 55, respectively. We can
see from the table that 9 out of 10 workers’ estimated score are within 10% range of the
actual value at window 45 (7 out of 10 within 5%), while 7 out of 10 are with in 10% at
window 55. This shows that it’s more reliable towards the near future than windows far
away, while in general it’s still a decent measurement. Moreover, at window 45, 5 out of
10 workers have estimated score equal or better than their fixed counterparts. However
at window 55 this number decreases to 2 due to a quality drop for some of the workers
at the end. We are not sure if the quality drop is actually due to workers feeling tired
and becoming lazy, or if this is just some fluctuation which will recover if we can get more
tasks. At the moment we cannot deal with recurring workers on MTurk and we are unable
to make workers work on longer tasks (as our tasks are already lengthy). If we can setup

22

a crowdsourcing platform where workers are allowed return, we can design comparison
experiments to analyze this dropping effect, and discuss the results for a longer horizon of
tasks. This could be an interesting research direction for the future.

Figure 3.8: Cumulative F1 Scores For Individual Worker Projected From 30 Windows

For projected cumulative F1 scores learnt from first 30 windows, the ones that were
doing well in Figure 3.7 fit even better, while another two of the workers become well
fitted now. From the graph, seven workers have a well fitted learning curve. The actual
numbers are listed in Table 3.2.3. Now we have 9 out of 10 workers’ cumulative F1 scores
estimated within 10% range of the true value for both window 45 and window 55, except for
worker No. 2 who has a significant performance drop after window 30. This observation
stays inline with our simulation result in next chapter where we found 30 samples is a
good threshold for a linear regression test to provide a mostly reliable learning curve while
20 samples still provide considerable noise. Note that the fixed F1 scores are taken from
window 40 so it’s very close to the true F1 scores at window 45 as they are just 5 windows
away.

However, from both Figure 3.7 and Figure 3.8 we can observe that although workers’

23

No. F1 at 45 fixed estimated F1 at 55 fixed estimated
1 0.64 0.63 (-1.6%) 0.63 (-1.6%) 0.66 0.63 (-4.5%) 0.64 (-3.0%)
2 0.63 0.68 (+7.9%) 0.72 (+14.2%) 0.63 0.68 (+7.9%) 0.74 (+17.4%)
3 0.71 0.73 (+2.8%) 0.74 (+4.2%) 0.71 0.73 (+2.8%) 0.76 (+7.0%)
4 0.79 0.82 (+3.8%) 0.82 (+3.8%) 0.79 0.82 (+3.8%) 0.84 (+6.3%)
5 0.87 0.87 (0%) 0.85 (-2.3%) 0.85 0.87 (+2.4%) 0.85 (0%)
6 0.88 0.87 (-1.1%) 0.89 (+1.1%) 0.89 0.87 (-2.2%) 0.90 (+1.1%)
7 0.71 0.71 (0%) 0.72 (+1.4%) 0.73 0.71 (+2.7%) 0.73 (0%)
8 0.70 0.69 (-1.4%) 0.70 (0%) 0.68 0.69 (+1.5%) 0.72 (+5.9%)
9 0.64 0.65 (+1.6%) 0.67 (+4.7%) 0.65 0.65 (0%) 0.69 (+6.1%)
10 0.72 0.72 (0%) 0.75 (+4.2%) 0.73 0.72 (+1.4%) 0.78 (+6.8%)

Table 3.3: Comparing Actual, Fixed, and Estimated F1 Scores, 30 Sample Windows

quality are trending up generally, their immediate quality may fluctuate from time to time.
If we use a fixed number of tasks to take their averaged quality for future reference, it may
be far off. For example, if instead of using cumulative Fa score at window 30 and 40 for
fixed quality, it can be as much as a 15 - 20% difference for half of the workers if we take
fixed quality from window 15 or 20. And in real world applications it’s almost impossible
to find the perfect stop point, while the estimated quality from learning curve projection
provide a consistently reliable estimation.

The experiments on MTurk have shown us that crowd workers definitely are getting
better and follow the learning curve model when doing more complex tasks such as sleep
spindle detection. It builds the ground for our proposed dynamic hiring process that can
take advantage of their quality improvement and a more reliable and consistent estimation
of workers’ quality from learning curve projection. We will introduce our hiring mechanism
in next chapter, but for now let’s first discuss some of the problems we are facing with this
learning model.

3.3 Problems and Challenges

The first problem we are facing is that we may not have enough data to get a very accurate
estimation of the parameters, especially for brand new tasks where no worker history is
available, even if the workers’ cumulative qualities are perfectly following learning curve
patterns. To illustrate this, we setup a simulation of 1000 workers where their cumulative

24

qualities are generated exactly from 3.1, with each learning speed r drawn from truncated
normal distribution

R(x) = f(x; 50, 10, 0,∞)

and prior knowledge p drawn from truncated normal distribution

P (x) = f(x; 65, 10, 0,∞)

Note that in this thesis a truncated normal distribution is defined as:

f(x;µ, σ, a, b) =

{ 1
σ
φ(x−µ

σ
)

Φ(b−µ
σ

)−Φ(a−µ
σ

)
if a ≤ x ≤ b

0 otherwise

where φ and Φ are probability density function and cumulative distribution function of the
standard normal distribution, and µ and σ are mean and variance of the corresponding
normal distribution. In this simulation we created 500 binary (two outcomes) tasks and
tried to measure the difference between our estimated worker learning speed and quality,
and the true values.

In Figure 3.9, the two graphs in the leftmost columns present the averaged percentage
difference of workers’ estimated values to their true values, while the other three columns
measure percentage of workers whose estimated values are within a certain difference range
from their true values. As we can see, after completing 500 tasks, majority (60%) of
workers’ learning speed can be estimated within 15% range to their true learning speed.
On the other hand, the estimation of workers’ quality is actually much better, in fact
after completing 100 tasks, more than 90% of workers’ quality can be estimated within
the 15% difference range. Moreover, half of them can be estimated within 15% range after
completing 50 tasks. This result tells us we cannot trust the estimated quality nor learning
speed for a worker when his number of completed tasks is low.

There is another challenge we are facing, too. Note here we are making an assumption
that we have true knowledge about the actual answers to all the tasks which are generally
unavailable in settings of crowdsourcing as the goal is to predict them. We may run a few
tutorial tasks first with true answers to kickoff the estimation to mitigate this problem.
But we still want to analyze scenarios where the aggregated opinion we are comparing each
agent’s reported opinion to is not matching the underlying truth. In fact, if we assume
the probability of the aggregate opinion being correct is ρ, and let c denote the number of
tasks the worker predicts correctly, then the data points we collect for a worker’s cumulative
quality becomes:

Q∗(x) =
c− (1− ρ)c+ (x− c)(1− ρ)

x

25

Figure 3.9: Learning Speed and Estimated Quality Difference

Now the estimated number of correct answers is his true correctness in addition to the
answers he gets wrong but are recognized mistakenly by the system minus the answers he
gets correct but are classified incorrectly due to noise introduced into opinion aggregation.
For example, if all workers are working on some really difficult tasks they have never seen
before, they may all report the wrong answer thus the final prediction itself is wrong.
When we are measuring their quality, we will then use the wrong prediction and update
their quality information wrongly in consequence. Once we simplify it, we obtain:

Q∗(x) = (2ρ− 1)
c

x
+ (1− ρ) = (2ρ− 1)Q(x) + (1− ρ) (3.4)

Then with 3.2 we can derive the estimated quality function as:

q∗(x) = xQ∗(x)− (x− 1)Q∗(x− 1)

= x[(2ρ− 1)Q(x) + (1− ρ)]− (x− 1)[(2ρ− 1)Q(x− 1) + (1− ρ)]

26

After simplification, it becomes:

q∗(x) = (2ρ− 1)q(x) + (1− ρ) (3.5)

If we compare it to the actual quality, the difference is

q(x)− q∗(x) = (1− ρ)(2q(x)− 1) (3.6)

Note that when x goes to +∞, limx→∞ q(x) = 1 for any crowd worker with a positive
learning speed r. Thus with 3.5 we get limx→∞ q

∗(x) = ρ. That is, after a long enough
horizon of tasks, the learnt quality from regression analysis will merge to the accuracy of
opinion aggregation. This problem can be mitigated as the accuracy of opinion aggregation
increases as more tasks have been completed by workers and their qualities are improving.
But combined with our observation of the unreliability of linear regression approach for
small sample size, it is wise to not update crowd workers’ learning curves until we collect
enough data.

Now with the learning process model we have all the tools to start designing our dynamic
hiring process. The problems we mentioned above will be handled in next chapter when
we talk about quality estimation in opinion aggregation. We will also discuss the pros and
cons of spending money on doing tutorial tasks and the tradeoff between tutorial tasks and
accuracy of linear regression tests later.

27

Chapter 4

A Dynamic Hiring Process

The core of this thesis is to design a hiring mechanism that makes smart decisions dynam-
ically about when and whom to hire. In this chapter, we propose using Markov Decision
Process (MDP) and Monte Carlo Planning to sample all possible outcomes, and follow the
hiring path that yields maximal utility to make all hiring decisions. We first introduce the
model of MDP and explain how we model the hiring process as a MDP.

4.1 The Markov Decision Process

When solving consensus tasks, the hiring system has two options to choose from at any
time. The first is to hire another worker and let him report his opinion. The other option
is to stop hiring for the current task, aggregate all collected opinions, produce a prediction
to the task, and move onto the next task. To make these decisions, the system is actually
looking for the sweet spot between making more accurate prediction, the costs of paying
additional workers, and the future benefit of improving agents’ quality by training. The
goal of our work is to build a decision theoretic hiring system that can model these decisions
and find the one which optimizes the expected utility, which by definition is the statistical
expectation of the system’s valuation of the outcomes.

For each consensus task, this optimization problem can be formalized as a Markov
Decision Process (MDP). With MDP, each state can store the information the system
collected about its belief in the aggregated answer, as well as crowd workers’ estimated
quality and learning speed. Hiring decisions are made to maximize the system’s net utility
which is a combination of the system’s utility for delivering the predicted answer, the cost
of hiring workers, and the long term reward of having well trained workers.

28

4.1.1 Defining the MDP

The hiring process to solve one consensus task can be formalized as a tuple < S,A, T, R >:

• s ∈ S is a state of the MDP, which is a tuple of < {wi}n1 , {ai}n1 >. Every wi is a
crowd worker with estimated learning speed r∗wi , prior knowledge p∗wi , and quality
function q∗wi(x) all learnt with the learning curve model and regression test discussed
in last chapter. {wi}n1 are all hired workers till current state. And {ai}n1 are reported
answers collected from all hired workers, where ai is the answer reported by worker
wi. S

T ⊂ S is the set of termination states. Once the MDP reaches a termination
state, the system stops hiring and then it aggregates opinions to produce the final
prediction for the task.

• The set of actions are A. An action α ∈ A can either be ¬H not hiring, or Hw hiring
a new worker w from the worker pool. After the system ends up in a termination
state, no hiring action can be taken any more.

• T (s, α, s′) is the transition probability from state s to state s′ by taking action α.
The transition function is determined by the system’s current belief on the aggregate
opinion, and the knowledge it has on crowd workers. We will go back to the details
of estimating the transition probability function later when we introduce the Monte
Carlo planning approach to solve this MDP.

• R(s, α) is the reward associated with taking action α at state s. The reward for
taking hiring action Hw at a state is the benefit the system gets for training worker
w minus the cost of hiring w. On the other hand, taking action ¬H always lead to
a termination state, as we do not allow the system to make pauses between hiring
workers for a single task. When reaching a termination state, the associated reward is
uncertain, and depends on the quality of the aggregate prediction, which is estimated
by the system’s belief on the accuracy of the prediction. We will look into the
details of our opinion aggregation approach and the reward functions in the following
subsections.

Note that we are not using the discount factor in our MDP, or in another word, it’s
always set to 1, as the rewards for hiring all workers and getting the aggregate opinion is
equally important to the system. A policy π specifics the action that the system chooses
at any state s, and an optimal policy π∗ maximizes the system’s utility from any state s:

V π∗(s) =

{
R(s,¬H) if s ∈ ST

maxα∈A(R(s, α) +
∑

s′ T (s, α, s′)V π∗(s′)) otherwise
(4.1)

29

4.1.2 Opinion Aggregation

Before going any further, we need to first explain how we aggregate hired workers’ opinions
and calculate the system’s belief in the generated prediction, as the belief is directly tied
to the reward the system is getting at any termination state.

Once the system has all hired agents’ reported answers and reaches the termination
state, it needs to create a final prediction. Some traditional methods to aggregate these
collected answers are voting, opinion pooling, and etc., where were discussed in artificial
intelligence literatures [11]. However, since we have the estimated quality information
of all our hired workers from our learning curve model, we can instead model their pre-
dicting process as a Bayesian network. In fact, it’s not unrealistic to assume each crowd
worker’s prediction is independent given the true answer to a task. For a task with ground
truth answer â and a set of n hired workers w1, w2, w3, ..., wn and their reported opinions
a1, a2, a3, ..., an, we have a simple Bayesian network that looks like the following:

Figure 4.1: Bayesian Network for Opinion Aggregation

With Bayes’ rule, we can derive the probability of an aggregate answer ā being the true
answer â as:

Pr(â = ā|{ai}n1) = λāPr({ai}n1 |â = ā)Pr(â = ā) (4.2)

where λs are normalizing factors to make sure∑
ā∈A

Pr(â = ā|{ai}n1) = 1

30

To solve Pr(â = ā|{ai}n1), we need to calculate both Pr({ai}n1 |â = ā) and Pr(â = ā).
Since we assume each worker reports his own opinion independently, the first one becomes:

Pr({ai}n1 |â = ā) =
n∏
i=1

Pr(ai|â = ā)

As in this thesis we are only interested in binary tasks that contain only two possible
outcomes, then we have:

Pr(ai|â = ā) =

{
qwi(x) if ai = ā

1− qwi(x) otherwise

In another word, at task x, given the true answer to the task, the i-th worker with
quality qwi(x) has a probability of qwi(x) to predict the correct answer, and a probability
of 1 − qwi(x) to report the wrong one. For tasks with more than two outcomes, we may
need to study and define a probability distribution for all incorrect answers based on the
natural and underlying relations between them.

Now we need to estimate Pr(â = ā), which cannot be calculated from workers’ qualities.
These probabilities are estimated from historical data or observatiosn against the nature
of the underlying tasks if no past history is available. For example, if there are only
two outcomes and in the past outcome a1 happened 30% of times while a2 70%, we then
assume Pr(â = a1) = 0.3 and Pr(â = a2) = 0.7. Of course these probabilities are not set
in stone and need to be updated after every single task to reflect the latest trend. In our
analysis, experiment and simulation after, we assume all tasks are starting fresh and we
have no knowledge of historical performance to make sure everything is generic enough.
So we assume all outcomes are equally likely to happen at the beginning and use Laplace
smoothing [30] to take care of data fluctuation. More specifically, we set the smoothing
factor to 10 and let

Pr(â = ā) =
oā + 10

N + 10× |A|
(4.3)

where N is the total number of tasks the system has observed and oā is the number of tasks
where ā was the final answer.

Now we have all the information to calculate the probabilities of all potential outcomes,
and our system will pick the one with highest probability as the aggregate answer across all
reported answers, where the associated probability is the system’s belief of the likelihood
the aggregate prediction being correct. Note that one problem we face when aggregating
answers from crowd workers is that we want them to report their true opinions. Lying

31

agents not only cause trouble to opinion aggregation, but also to our learning of their true
quality information. There are some proposed methods to reinforce truthful reporting like
using scoring rules [38] [8] [15] [32] [44]. As this is not the focus of this thesis we will not
dive into any details. Additionally, our system proposed in this chapter is independent
to different payment allocation methods and scoring rules. Thus, if you want to ensure
truthful reporting from your hired workers, you may adapt any of the scoring rules as you
like and reallocate payment to hired workers for each task based on the scoring rule you
are applying.

4.1.3 Defining the reward function

In our model, there are two types of rewards. After taking action ¬H and arriving at a
termination state sT , it’s natural to set the reward based on the accuracy of the aggregate
opinion. Ideally, the system should get reward when its prediction is correct and no
reward if it was wrong. However, the system may have no knowledge about the underlying
truth (that’s why we are crowdsourcing these tasks in first place), so we have to make an
estimation based on information we have collected. Recall from our previous discussion,
we can calculate the estimated probability of an outcome being the true answer to the task
from 4.2, given collected reported answers {ai}n1 . In fact, we define such probability as the
system’s belief b in the aggregate opinion ā:

b(ā|{ai}n1) = Pr(â = ā|{ai}n1) (4.4)

where Pr(â = ā|{ai}n1) can be calculated from 4.2. After collecting all hired crowd workers’
opinions, we set the aggregate answer ā to the outcome with the highest Pr(â = ā|{ai}n1),
and then we define the reward function as the following:

R(s,¬H) =

{
bw × (2b(ā|{ai}

n
1) − 1) if b(ā) ≥ bt

0 otherwise
(4.5)

where bw is the associated weight assigned to the belief, and bt is a threshold parameter so
that only answer with probability higher than it gets reward.

The purpose of using weight parameter is to adjust the relative value of an accurate
prediction to the monetary cost we are paying to each hired worker. The exact value of the
weight parameter is determined later to one that optimizes the system’s performance from
the simulation test. The reason to have an exponential (convex) function for the reward is
that improvement in the higher accuracy range is more important than in lower accuracy
range. For example, a predicted answer’s quality improvement from 50% accuracy to 60%

32

accuracy is not as valuable as one improved from 80% to 90%, because it becomes harder
to improve the accuracy of prediction once it gets to a higher level. Of course it depends
on how the task owner views the answer quality. It can be swapped to other functions
according to ones specific needs. In this thesis we stay with the exponential function as we
value higher accuracy predictions.

Moreover, we cut off the reward function at a threshold higher than 50% because when
workers’ qualities are low, it’s very likely the Monte Carlo sampling approach we are later
using will produce conflicting opinions when the number of hired workers is low, thus may
stop the system from hiring more workers. For instance, if we only have a group of workers
with qualities around 50%, two hired workers may produce opposite opinions. In this case,
there is a huge reward drop from one hired worker if reward is assigned to all belief levels,
and it will cause the system to stop hiring after one worker, which is not exactly what
we wanted. When there is a cutoff threshold, hiring one worker and two workers or even
more will produce the same amount of reward for the aggregate opinion unless it hits the
threshold. So it gives us the ability to require a minimal level of confidence in our aggregate
opinion and let the system keep hiring until we hit such a minimum. In case the minimum
cannot be reached, the system will keep hiring up to the upper limit which in turn gets
more workers trained.

The second type of reward is the benefit the system receives in the long run by training
and improving a worker’s quality. At state s, if the action to take is Hw that hires crowd
worker w, then we have w’s estimated quality function q∗w(x) and the number of his com-
pleted tasks xw. Thus, the estimated quality improvement to w for working on the task
is

q∗∆(w) = (2q
∗
w(xw+1) − 1)− (2q

∗
w(xw) − 1)

and the associated reward for hiring action is

R(s,Hw) = qw × q∗∆(w)− cw (4.6)

where cw is the cost to hire worker w. If all agents cost the same amount of money, then
cw can be replaced by a fixed c. Similarly, qw is the monetary weight factor for the quality
improvement. Note that here we are using an exponential function to map workers’ quality,
too, as we think an worker’s quality improvement in the higher range as more valuable to
the system. For example, an improvement from 80% to 90% for a worker may enable the
system to hire fewer workers, which cannot be said to ones improvement from 50% to 60%.
Now we have everything defined for the MDP, we can move on to find a feasible solution
for it.

33

4.2 Solving the MDP

The goal of solving MDP problems is to find the optimal policy at each state. However,
when the state-space is large, as in our case of crowdsourcing consensus tasks, it’s compu-
tationally infeasible to exhaust all possible action paths to find optimal solution. Moreover,
it’s impossible for task assigner to wait too long before making any hiring decisions. As a
result, all we need to do is to design an algorithm which can run in timely fashion to find
a near optimal solution.

One of the few viable approaches is to carry out sampling based lookahead search, and
among them Monte Carlo planning is the most popular one to address such challenges.
Monte Carlo planning is an online planning approach that can explore the search space of
a large MDP efficiently. It uses sampling and builds partial search trees in the exploring
phase to optimize decisions [27]. Along the years, many Monte Carlo algorithms have
been proposed. However, in practice they may not be able to find actions under runtime
limitation, as the amount of work needed to calculate near optimal action at any given
state can be huge. In Kamar’s work [24], she showed the general purpose Monte Carlo
algorithm UCT[28] hits a combinatorial challenge in solving problems with long horizons.

Kamar and et al proposed a MC-VOI algorithm that customizes the sampling method in
Monte Carlo planning to explore long horizons [24]. The MC-VOI algorithm can eliminate
action selection in sampling when no hiring actions lead to termination states. Moreover,
for each sample, it can evaluate the utility of hiring and no hiring simultaneously at each
encountered state, which reduces the number of samples required to explore consensus tasks
with long horizons [25]. The core concept of MC-VOI is to calculate the expected value of
information (VOI) from sequences of observations. In their work, they proposed a solution
to compute VOI for long evidential sequence (LES) tasks. By their definition, a LES task
is a task that focus on identifying the best domain action to take under uncertainty about
the world. It terminates when a domain action is taken, and is assigned a reward based on
the action and the state of the world [24]. Clearly, consensus tasks are LES tasks where
opinions reported by agents are evidential sequences.

We can then adapt and modify their notion of VOI, as in our setting hiring different
workers has different implications. For any given state s and any worker w available at s:

V OI(s, w) = R(s,Hw) +
∑
s′

T (s,Hw, s
′)V π∗(s′)−R(s,¬H) (4.7)

where V π∗(s) is defined in 4.1. V OI(s, w) defines the quantitative value of hiring worker
w at state s. At any state s /∈ ST , the system explores the VOI of the next worker to hire.

34

If the VOI is negative, then not hiring has a higher expected utility than hiring him. In
that case the system goes to the termination state and report the aggregated answer.

We also need to estimate the transition model for the MDP as its structure is not
known to the system. With the quality information we have, we need to come up with a
way to calculate T (s,Hw, s

′) for any s, s′ ∈ S and w ∈ W . In fact, at state s, after taking
action Hw, all possible next states are results of w’s answer aw. In another word, if s is
< {wi}n1 , {ai}n1 >, then all possible next states s′s are < {wi}n1 ∪ w, {ai}n1 ∪ aw >, where
aw can possibly be any answer in the answer space A. We use a function g to simplify the
notation where

g(s, aw) =< {wi}n1 ∪ w, {ai}n1 ∪ aw >
for s =< {wi}n1 , {ai}n1 >. Then 4.7 becomes

V OI(s, w) = R(s,Hw) +
∑
aw∈A

T (s,Hw, g(s, aw))V π∗(g(s, aw))−R(s,¬H) (4.8)

and
T (s,Hw, g(s, aw)) = Pr(aw|{ai}n1)

where Pr(aw|{ai}n1) is the likelihood of worker w reporting aw after the system has already
collected {ai}n1 . Apparently, there is no way to calculate the exact value of Pr(aw|{ai}n1)
as the system has no knowledge about the ground truth nor each worker’s true quality or
behaviour. But recall from 4.2, since we are only dealing with binary tasks in this thesis,
we can estimate these probabilities as:

Pr(aw = aj|â = aj) = qw (4.9)

and
Pr(aw 6= aj|â = aj) = 1− qw (4.10)

We also assume an agent’s answer reporting is independent from others. Now it becomes
a Bayesian network and we can calculate the transition probability as:

T (s,Hw, g(s, aw)) = Pr(aw|{ai}n1)

=
∑
â∈A

Pr(aw, â|{ai}n1)

=
∑
â∈A

Pr(aw|â, {ai}n1)Pr(â|{ai}n1)

=
∑
â∈A

Pr(aw|â)Pr(â|{ai}n1)

∝
∑
â∈A

Pr(aw|â)Pr({ai}n1 |â)Pr(â)

35

or
T (s,Hw, g(s, aw)) = γ

∑
â∈A

Pr(aw|â)Pr({ai}n1 |â)Pr(â) (4.11)

where γ is a normalizing factor to make∑
aw∈A

T (s,Hw, g(s, aw)) = 1

In equation 4.11, Pr(aw|â) can be calculated from 4.9 and 4.10. Although we cannot
get the exact number as we do not have the true quality of a worker, we can use our learnt
estimated quality function q∗w(x) to get a good estimation. Similarly,

Pr({ai}n1 |â) =
n∏
i=1

Pr(ai|â)

and Pr(ai|â) is calculated from 4.9 and 4.10, too. Then we are left with Pr(â), which can
be estimated by keeping track of the distribution of aggregated answers to completed tasks,
i.e. as what we did with Laplace smoothing in 4.3 when we discussed opinion aggregation.

The core idea of our system is the same to Kamar’s MC-VOI algorithm for static LES
tasks proposed in [24]. We sample all the states from top to bottom and evaluate rewards
bottom up. The algorithm builds a partial search tree iteratively sampling the execution
path. All sampling starts from the initial state s0 where no worker has been hired. At
each sampling call, the algorithm keeps hiring new workers and visiting new states until it
hits the horizon (maximal number of workers to hire), then it ends in a termination state.
The fixed horizon length makes sure the algorithm will always terminate. After hiring a
new worker, the execution path reach the next state based on the probability calculated
from 4.11. The algorithm grows the search tree by adding a new node whenever sampling
encounters a new state.

However there is one major differences between our settings and the settings in Kamar’s
MC-VOI algorithm. In Kamar’s setting, when the action is to hire another worker, there
is no difference between all potential workers, as they assume all workers are the same. As
in our system, different workers have different quality and learning speed, theoretically, we
should sample all combinations of potential worker and his opinion at each state, and it can
end up in m|A|+ 1 different states. This is infeasible as the size of the crowd worker pool
can be large (even a very small pool can grow the sampling tree dramatically, as the size of
the tree is exponential to the number of possible outcomes at each state). We will discuss
this problem in the runtime limitation subsection and propose a workaround approach to
handle it.

36

The evaluation phase updates the expected utility and number of visitation at each
state from bottom to top after all the sampling is done. For any state s that is at the
maximal length of the horizon, it can only go to a termination state sT . Thus we set its
optimal expected utility s.utility (this notation means utility is a property of s) to the
immediate reward of aggregating collected opinions R(sT ,¬H), and we store the number
of samples that visited s to s.visitation. For any other non-termination state s, any edge
leading from s to its non-termination child s′ can be defined by the hired worker w with

his answer aw, i.e. s
<w,aw>−−−−−→ s′. The estimated value of information of hiring a worker w

can then be calculated from

V OI∗(s, w) = R(s,Hw) +
∑
aw∈A

T ′(s,Hw, g(s, aw))g(s, aw).utility −R(s,¬H) (4.12)

as the optimal expected utility g(s, aw).utility is already known, and T ′(s,Hw, g(s, aw)) is
the estimated probability from sampling defined as

T ′(s,Hw, g(s, aw)) =
number of samples hired w with reported answer aw at s

number of samples reached s

If V OI∗(s, w) < 0, then no hiring is the optimal action here, and we set s.utility to
R(s,¬H). Otherwise, we set s.utility to

max
w

(R(s,Hw) +
∑
aw∈A

T ′(s,Hw, g(s, aw))g(s, aw).utility)

and set s.tohire to w, where w is the worker we get the optimal utility s.utility from.

After all evaluation is done, we can then perform the actual hiring based on all the
information we have stored into each state. Starting from initial state s0, for each state s
being checked, if s.tohire is not set, the optimal action is to stop hiring, aggregate collected
answers, produce the prediction, and go to a termination state. Otherwise, hire worker
s.W , collect his answer aw and move along the edge < w, aw > to next state s′, keep
repeating this process until we reach a termination state. The core idea of this two phases
approach is illustrated in Figure 4.2 with a simplified example.

In Figure 4.2, we set horizon to 2 and number of samples to 20. Each circle is a state and
the information on top of each edge between two states shows the worker and his reported
answer which lead the execution path in a sample from one state to the other. In every state,
the two lists are hired workers and collected answers to reach it. The number is visitation,
which is the number of samples that ended up passing through each state. Note that in
our approach we are always hiring the same worker from a given state, and the reasoning is

37

Figure 4.2: An Example of MDP and Monte Carlo Planning

explained in next section. In this example, 8 out of the 20 samples reported answer “False”
from initial state, while the other 12 reported “True”. The visitation number at every state
always equals to the sum of visitation numbers of its children. In evaluation phase, we
always start from the terminal states. Suppose state < {w1, w2}, {T, T} > has utility 5 and
state < {w1, w2}, {T, F} > has utility 3 from their aggregated opinions calculated using our
reward function for system’s belief, then we can calculate utility for state < {w1}, {T} >
which is their parent. For state < {w1}, {T} >, the value of information for hiring the
next worker w2 is a proportional sum of its children’s utility 5

8
× 5 + 3

8
× 3, plus the utility

of hiring worker w2 which is the benefit of w2’s quality improvement minus the hiring cost,
and subtract the utility of aggregating collected opinion {T}, as we defined in 4.12. If
the value of information is negative, < {w1}, {T} >’s utility is set to the utility of the
aggregated opinion and its tohire pointer is set to NULL. Otherwise it’s set to the value
of information plus utility of the aggregated opinion (this addition is to remove the third
factor in 4.7, as we are not stopping hiring). This time tohire is set to w2 as hiring worker
w2 yields a better utility. Similarly we can calculate the utility for state < {w1}, {F} >,
and once the utility for < {w1}, {T} > and < {w1}, {F} > are available we can calculate
the utility for the initial state and complete the evaluation phase.

38

4.3 Challenges and How to Tackle Them

There are a few challenges the system may face and we need to take care of them before
we can move onto present the actual algorithm. First of all, as we want our hiring system
to run in real time to guide task assigners on how to hire crowd workers, it must also be
responsive to meet time constraints.

4.3.1 Runtime Limitation

The Monte Carlo planning algorithm proposed above faces some runtime challenges. Unlike
Kamar’s MC-VOI, where each state has only two possible actions and |A| + 1 children
states, hiring m different workers leads to up to m|A| + 1 states in our setting. Even for
a relatively small but realistic number of m, the nodes to visit in sampling grows quickly
to become impossible to solve within reasonable amount of time. In fact, the size of the
sampling tree is O((m(|A|+ 1))l), where l is the horizon (maximum number of workers to
hire). Therefore, we need a filtering phase to reduce the number of workers to consider
when sampling execution path. In fact, we can simplify the procedure of deciding which
worker to hire at each state by ranking all available workers based on their quality and
potential.

Overall, we want a ranking mechanism that orders available workers based on a com-
bination of their immediate quality for short term benefit and future quality for long term
projection. The latter can be estimated by using a crowd worker’s estimated cumulative
quality curve. For worker w at task x, his future quality after n tasks is

q∗w(x+ n)

Therefore, a worker’s priority value at task x with a projection into n future tasks can be
defined with the following weighted function:

priow(x, n) = ωqq
∗
w(x) + ωprojq

∗
w(x+ n) (4.13)

where ωq and ωproj are weights determining if we are more interested in accuracy of the
current task, or training a high potential worker for future. Moreover, we have a constraint
of ωq + ωproj = 1 to make sure priow(x, n) is within the range between 0 and 1 and can be
treated as a mixed quality value, too. The task assigner can set n to the estimated number
of future tasks, or a very large number if he is unsure about the exact number but he is
not ending the tasks any time soon. In our experiments and simulation tests, we set these

39

two weights equally to 0.5 by default. On the other hand, n is set to the number of tasks
left. For example, if the task owner has 500 tasks in total and have already finished 100,
n is then set to 400, and is updated after each task being complete.

As a result, at each task, we can rank all available workers according to their priority
values, and always pick the ones at the top for Monte Carlo sampling, which reduce the
number of children at each state to m+ 1 and the size of the sampling tree to O((m+ 1)l).
For consensus tasks of only two possible outcomes, this is just a 3-ary tree and can be
sampled within a very short amount of time given a reasonable length of horizon. Note
that this projection approach is taking advantage of crowd workers always being available,
as a hired workers can be hired for every future task. We will try to add some randomization
when we relax the availability constraint in next chapter to cope with situations where a
fast learner may not be present at all time.

4.3.2 Quality Capping

Recall from Section 3.3 in Chapter 3, when the worker pool’s quality is low, it introduces
a lot of noise to our aggregated opinions when we are using them to update workers’
performance and learning curve. Moreover, when the number of each worker’s completed
tasks is low, the estimated learning speed and quality from his learning curve may not
be accurate enough. There are two approaches to handle this problem. The first one is
to increase the number of training tasks each worker has to perform before he can start
working on real tasks. As we have ground truth answers to all training tasks from gold
standard, this will remove the noise introduced by incorrect predictions. Furthermore,
more training tasks means workers have higher starting qualities and we have more data
samples to kick start our linear regression test, and the estimated learning curve will as a
result become more accurate, too.

However, we also want to deal with the inaccuracy of our learning curve model system-
atically. So we setup a simulation to analyze the difference between workers’ estimated
qualities and their true qualities. For this simulation, we created 1000 workers with learn-
ing speed r drawn from truncated normal distribution R(x) = f(x; 50, 10, 0,∞) and prior
knowledge p drawn from truncated normal distribution P (x) = f(x; 65, 10, 0,∞) which is
the same as what we did in Section 3.3. Every worker are requested to work on 200 binary
tasks. The results are shown in Figure 4.3.

In Figure 4.3, the average worker quality curve represents the average true quality
across all 1000 workers at any task, while the highest worker quality curve is the highest
true quality among those 100 workers. Average estimated quality and highest estimated

40

Figure 4.3: Difference between Actual and Estimated Quality

quality curves are on the other hand generated from workers’ estimated learning curves.
As we can see, the highest possible estimated qualities stay around the high 90%s, quite
consistently, while the highest actual worker quality is improving from 80% to high 90%s, in
our given population. After 200 tasks the estimated quality will become very accurate. On
the other hand, the average estimated quality is very close the the average true quality. This
is because at the beginning some workers may get lucky (outperform his true quality) or
unlucky, but for the entire population, they offset each other and yield a reliable estimated
quality if we take the averaged value across everyone. In the end, all the curves will merge
after thousands of tasks, but we think 200 tasks is a good threshold as the difference is
small enough, and the quality estimation is within a manageable range.

To take advantage of this observation, we introduce a penalty to workers’ estimated
qualities when the number of samples are small. We limit the maximum and minimum
estimated quality to a certain range from the average value, based on number of tasks that
have been completed. From our observation in Figure 3.9, we can see that after 200 tasks
the estimated quality will become very accurate. As a result, 200 tasks is a good threshold;
after it the estimated quality can be directly used. Before 200 tasks, to put everything in
numbers, we use the following capping function to cap a worker’s estimated quality based

41

on Figure 3.9.
cap(x) = 0.004x+ 0.2 (4.14)

where cap(x) defines the capped quality range and x is the index of current task to do,
thus the hybrid quality we use for opinion aggregation and worker ranking becomes

qh(x) = min(q∗(x), q̄(x)× (1 + cap(x)) (4.15)

where q∗(x) is our estimated quality described previously, and q̄(x) is the average observed
quality from all workers up to time. Note that we do not need to cap workers’ estimated
learning speed, as what we are actually using is their relative ranking among their peers
for learning speed, it will not matter if the entire population’s learning speeds are overes-
timated.

4.4 The Algorithm

Now we are finally ready to present our hiring algorithm. The algorithm has two passes:
sampling and evaluation. In the first pass, the algorithm will keep sampling execution
paths, where an execution path is essentially a path filled by hiring decisions and simulated
reported answers from all workers hired along it. At each state, the sampling path is
generated with the worker picked by the ranking mechanism and an answer randomized
from the transition probability 4.11. We will keep hiring until reach the maximal length of
the horizon, thus every single sampled execution path has the same length as the horizon. In
the second path, the algorithm evaluates task assigner’s utility at each state by aggregating
utilities from its children states with 4.12, and determine if the optimal policy is to hire
another worker and move onto next hiring state, or stop hiring and move to a termination
state. We present the pseudocode of our dynamic hiring algorithm here, and the working
Python version can be found at https://github.com/h2oloopan/dc.

42

https://github.com/h2oloopan/dc

Algorithm 1 Dynamic Hiring Algorithm

1: procedure initialize(task, horizon, samples, workers)
2: root← new State
3: root.visitation← 0
4: root.utility ← 0
5: root.workers← ø
6: root.answers← ø
7: for i = 1 to samples do
8: sample(task, root, horizon, workers)

9: evaluate(root)

And the two key functions for sampling and evaluation are:

1: procedure sample(task, root, horizon, workers)
2: cursor ← root
3: cursor.visitation = cursor.visitation+ 1
4: hired← 0
5: while hired < horizon do
6: worker ← nextWorker(workers) . From priority ranking
7: probabilities← calculate(worker, cursor) . Use 4.11
8: next, answer ← nextState(probabilities) . Randomize with probabilities
9: next.hired← worker
10: next.workers.add(worker)
11: next.answers.add(answer)
12: next.visitation = next.visitation+ 1 . visitation is default to 0 for new state
13: cursor.children.add(next) . If not already added
14: cursor = next
15: hired = hired+ 1

43

1: procedure evaluate(state)
2: if state has no children then . This is a termination state
3: prediction, belief ←aggregate(state.workers, state.answers)
4: state.utility = getAnswerUtility(belief) . Use 4.5
5: state.tohire = NULL . You cannot hire anyone at termination state
6: else . Non-termination state
7: voi←calculateVOI(state, state.children) . Use 4.12
8: prediction, belief ←aggregate(state.workers, state.answers)
9: if voi < 0 then . The best policy is to not hire
10: state.utility =getAnswerUtility(belief)
11: state.tohire = NULL
12: else
13: state.utility = voi+getAnswerUtility(belief)
14: state.tohire = state.children[0].hired . Hired worker to reach a child

The actual hiring part is easy. At any state after hiring a group of workers and collecting
their reported answers, we can find a path from the root of the sampled tree and find the
corresponding node. And the node’s associated tohire pointer will either give you the crowd
worker to hire, or NULL which means the best strategy is to terminate hiring and return
aggregate prediction. Note that after each aggregated opinion is reported, the system will
also update each hired worker’s learning curve based on ones performance against the final
prediction.

4.5 Simulation Results

There are two traditional hiring approaches we are comparing our new hiring mechanism
to. The first one is RandomK, which is the most commonly used hiring mechanism that
randomly picks k available workers and let them work on given tasks. In our simulation, we
combine it with majority voting for opinion aggregation, which is also the most common
way to generate predictions. The second one we are comparing to is the bandit inspired
method TopK, which rank all available crowd workers by their observed quality (calculated
from dividing number of accurate prediction by total number of tasks completed) and
pick the top k workers to work on the next task. TopK is also widely used in quality
based crowdsourcing applications. We use majority voting to predict final answers when
aggregating opinions for our TopK method, too. Moreover, for all of our simulation tests,
we run each hiring algorithm 10 times and record their average performance. And for

44

spot quality, we smooth it by taking the average of accuracy on previous 4, current, and
next 4 tasks. For both TopK and DynamicHiring, all available workers are first asked
to work on 10 training tasks to help the system collect their quality information. In this
thesis, a training task is a task where we have ground truth and can update a worker’s
quality information correctly. In this chapter, a worker may perform a reasonable amount
of training tasks for free, while he is get paid for them in next chapter.

We want to see these three hiring mechanisms’ performance on worker populations of
different quality settings. First, we want to test the case where crowd workers all have a
very slow start, or in another word, they are very inexperienced and are asked to work
on something relatively new to them. To achieve this, we draw workers’ learning speeds
from truncated normal distribution R(x) = f(x; 50, 10, 0,∞), and prior knowledges from
truncated normal distribution P (x) = f(x; 40, 5, 0,∞), thus in average their qualities start
from 44% and become 50% after taking 10 training tasks. The learning speeds are set
around 50 which is what we got in sleep spindle detection tasks in Chapter 3, so it is
representative of a real world problem. We randomly create a total of 1000 binary tasks
whose outcomes are only True/False, and all hired agents can only report True or False
which is randomly generated based on their inherent quality calculated from his assigned
r, p values. Furthermore, we create a pool of 1000 workers from the truncated normal
distribution described above, and every single worker has a fixed hiring cost of 1. We
use such a large worker pool as we are more interested in situations there are tons of
uncertainty.

Nothing else is needed to set for RandomK and TopK other than the k value. We
set k = 3 for TopK and RandomK, as three workers in general can provide very good
results in settings where learning speed is fast overall, and as an odd number this removes
need for any extra tie breaking. For DynamicHiring, we set its hiring horizon to 5 to
take advantage of its adaptive hiring. As a result it can hire up to 5 workers for any
task. Moreover, we set the weight for aggregate opinion belief to 7, and workers’ quality
improvement to 100. These numbers are chosen from simulations as they yield consistent
results across different task and worker settings. Furthermore, we set the cutoff threshold
for opinion aggregation reward function to 0.85 so prediction with belief less than 85% will
not yield any reward. The actual results are shown in Figure 4.4 and Table 4.5.

As we can see from Figure 4.4, the performance of RandomK is basically random.
For 1000 tasks, randomly selected workers in such a large worker pool are not able to get
enough tasks to get any significant quality improvement. TopK on the other hand yields a
very solid performance. After about 200 tasks the predictions are almost 100% correct. In
fact, for a worker population around a certain quality (learning speed), picking any 3 fixed
workers and sticking with them can produce comparable results even if they were not the

45

Figure 4.4: Results for simulation with R(x) = f(x; 50, 10, 0,∞) and P (x) =
f(x; 40, 5, 0,∞)

Hiring Mechanism Correct Tasks Cumulative Quality Hiring Cost Training Tasks
RandomK 468 46.8% 3000 0
TopK 969 96.9% 3000 10000
DynamicHiring 971 97.1% 1200 10000

Table 4.1: Results for simulation with R(x) = f(x; 50, 10, 0,∞) and P (x) =
f(x; 40, 5, 0,∞)

46

ones with best potential as all workers have a similar learning process. It will face some
challenges when we later test on mixed worker population. Our proposed DynamicHiring
system is slightly better accuracy wise, however the saving on hiring cost is significant as
the hiring cost was decreased from 3000 to 1200 (a 60% cost reduction) since it was able
to locate and train a high quality worker and take advantage of his presence. In general,
after 200 tasks one of the top workers was trained to achieve a quality above the 0.85
threshold, and the benefit of hiring any new workers became marginal. As an adaptive
hiring mechanism, DynamicHiring was able to hire more workers at the beginning when
workers’ overall quality is low, reduce number of workers hired when the quality of the top
workers are improving, and hire only one worker when a top worker is well trained. This
is exactly the behaviour we were looking for.

Moreover, DynamicHiring had a better start due to more workers hired at the be-
ginning and more accurate quality estimation from learning curve model. It had slightly
more quality dips when there was only one worker hired since aggregate opinion from three
workers had a slightly better accuracy. However, such quality difference e.g. 99.5% against
99.3% cannot justify the cost of hiring two more workers for most of crowdsourcing appli-
cations. Overall, considering both accuracy and cost efficiency, DynamicHiring is much
better than the two benchmarks we are comparing it to. On a side note, both TopK and
DynamicHiring require training training at the beginning to collect quality information,
which is proportional to the size of the worker pool, and it may introduce additional cost if
we are unable to let workers work on training tasks for free. Furthermore, for all simulation
tests in this chapter all workers are asked to do the training tasks first even if they were
not selected to work on any of the real tasks. This can be enforced in contained settings
where we have full control on the worker pool, e.g. we only ask nurses in a hospital to
work on sleep spindle detection tasks as a mandatory job. However, it may not fit many
other crowdsourcing applications. We will relax this constraint in next chapter when we
extend our dynamic hiring system.

We then want to test the three approaches on tasks which are very hard to learn thus
most workers have a very slow learning speed while they are somewhat decent to start
with. To achieve this, we draw the worker population from R(x) = f(x; 200, 20, 0,∞) and
P (x) = f(x; 300, 20, 0,∞) such that in average the agents start with qualities around 60%
and it in average take one 500 tasks to reach a quality of 80%. Note here we are using larger
sigma values for the two truncated normal distributions so that the worker population is
more diversified. We keep all the other settings for all three mechanisms unchanged.

The result can be seen in Figure 4.5 and Table 4.5. Not too suprisingly, RandomK has
a performance about workers’ average quality like before. DynamicHiring still has the
best quality-wise performance, while TopK is a very close second. We can improve TopK’s

47

Figure 4.5: Simulation Result for Slow Learning Workers

performance by increasing k. In fact set k = 5 will give it a 91.4% cumulative quality after
1000 tasks. But we don’t think such performance improvement are worth hiring 2000 more
workers. Moreover, it only cost DynamicHiring 1107 (a 63.1% cost reduction) to achieve
the best performance. Note that DynamicHiring hired fewer workers now for the first
few tasks (not reaching 5 workers) due to workers’ better starting quality. However, in
this simulation test, we are not hiring more than one worker after about 150 tasks where
the reduction in hiring actually happened quicker than our last simulation which was not
expected. It was because of the system’s suffering from overestimating worker quality as
when workers are learning slowly, the estimated quality of workers are converging slower to
the true value than settings where workers can learn faster. We may increase the number of

48

Hiring Mechanism Correct Tasks Cumulative Quality Hiring Cost Training Tasks
RandomK 654 65.4% 3000 0
TopK 854 85.4% 3000 10000
DynamicHiring 869 86.9% 1107 10000

Table 4.2: Simulation Result for Slow Learning Workers

training tasks or belief threshold to mitigate this problem, but the quality improvement is
not significant as the worker with top potential becomes very good after 150 tasks anyways.
In fact if we increased the belief threshold to 0.95, then hiring one worker would be delayed
to after about 250 tasks, but the cumulative quality improvement was only about 1% in
the end.

We then want to study the setting where workers start with a low quality but are
improving rapidly. To simulate this scenario, we set up with R(x) = f(x; 30, 5, 0,∞) and
P (x) = f(x; 10, 1, 0,∞), or in another word, it takes a worker in average 30 tasks to achieve
50% quality while he has a starting quality of about 25% which is even worse than coin
flipping. The results are shown in Figure 4.6 and Table 4.5.

Hiring Mechanism Correct Tasks Cumulative Quality Hiring Cost Training Tasks
RandomK 228 22.8% 3000 0
TopK 988 98.8% 3000 10000
DynamicHiring 986 98.6% 1333 10000

Table 4.3: Simulation Result for Fast Learning Workers

Clearly, this setting really hurts RandomK, as when workers are randomly selected
from a large pool of poor starting quality, no single one can get enough tasks to improve
even though their learning speed is fast. As a result, what we get are basically just their
starting quality, with slight improvement towards the end. For 1000 workers, 1000 tasks
and 3 hired workers per task let each one get only about 3 tasks to improve his quality.

On the other hand, DynamicHiring has a similarly high performance to TopK,
thanks to fast learning workers and less quality overestimating (as workers become good
quickly enough). Note that in this scenario DynamicHiring hired more workers for the
first few tasks (4-5 workers for about the first 8 tasks), as the workers’ starting quality is
lower and more workers are needed to reach the belief threshold. The cost saving is still

49

Figure 4.6: Simulation Result for Fast Learning Workers

significant as usual. It achieved the same performance level with only 1333 hired worker
(55.6% cost reduction).

Last but not least, we want to test a situation which is very challenging to TopK and
test if DynamicHiring is adaptive and robust enough to handle it. This time we create a
worker population where majority of workers are very slow learners with a better starting
quality, while a small group of workers starts poorly but are faster learners and can out-
perform others quickly. This will mislead TopK to hire slow learners with better starting
quality thus unable to take advantage of faster learners and their future high performance.
We created a worker pool where 900 workers are drawn from R(x) = f(x; 2000, 10, 0,∞)

50

and P (x) = f(x; 2000, 10, 0,∞) and 100 workers are drawn from R(x) = f(x; 80, 5, 0,∞)
and P (x) = f(x; 20, 5, 0,∞). 90% of the worker population are slow learners with an av-
erage starting quality of 50%, while the other 10% are fast learners but they start with an
average quality of 20%.

This setting will cause a lot of troubles to TopK as even after taking 10 training tasks,
the average quality of fast learners are still less than 50%. And since the population of fast
learners is small, it’s almost impossible for one of them to get lucky and perform better
than the slow learners in the 10 training tasks. However, recall our earlier discussion
and Figure 3.9 that the estimation of workers’ learning speed is actually worse than the
estimation of their quality. If we stayed with 10 training tasks, for such a large worker
population, some of the slow learners’ learning speed may get overestimated and surpass
faster learners. To deal with this, we need to increase the number of training tasks to
reduce such overestimation. After some testing, we found that 30 training tasks are good
enough to distinguish fast learners from slow learners, although after completing 30 tasks,
slow learners still have a better average quality than their fast learning counterparts (50%
vs. 38%). To make it fair, we increased the number of training tasks for TopK to 30, too.
And the simulation result can be seen in Figure 4.7 and Table 4.5.

Hiring Mechanism Correct Tasks Cumulative Quality Hiring Cost Training Tasks
RandomK 459 45.9% 3000 0
TopK 587 58.7% 3000 30000
DynamicHiring 884 88.4% 1134 30000

Table 4.4: Simulation Result for Workers of Mixed Learning Speed

We can see from the results, RandomK basically just yield a performance of around
50% as it’s mostly likely picking up slow learners which are just coin flipping, and their
quality will not improve as most workers’ learning speed is too slow. Like what we had
expected, TopK are also stuck with slow learners. Although their quality is still improving
given more tasks, this time the improvement is slow and at the end it’s only getting about
60% tasks correctly. On the other hand, DynamicHiring is able to find and hire the fast
learners as it’s looking for a weighted combination of worker’s current and future quality,
and finding one of the fast learners makes it possible to reduce the hiring cost as well as
perform better once the worker surpasses all of his peers. However, we need 30 training
tasks to wane down noise in linear regression tests which may be a bit too much in real
world applications (at least if we are not paying for training tasks). In next chapter we
want to explore the possibility to add randomness to the worker selecting algorithm in our

51

Figure 4.7: Simulation Result for Workers of Mixed Learning Speed

system so there are always some workers hired regardless of estimated quality and learning
speed to tackle this problem. We will compare the modified system and see if it could
reduce the number of training tasks needed in this type of extreme cases.

4.6 Test on Sleep Spindle Detection Data

After doing simulation tests on different worker population, we want to see how our pro-
posed dynamic hiring system perform against real world data. In this section, we will
compare the performance of RandomK, TopK, and DynamicHiring against the data

52

we collected for sleep spindle detection tasks in Chapter 3. To fit our setting of binary tasks
with only two outcomes, we will only test the recall scores of all expert annotated spindles.
In another word, we let each sleep spindle found by the expert (ground truth) be a task,
where each worker either reported that spindle (answered task correctly) or ignored that
spindle (answered task incorrectly). In this experiment, we test our hiring systems against
all worker data, including the ones we found are suspicious, to make sure the results are
more realistic.

To setup our experiment formally, we take the first t tasks/spindles as training tasks,
as workers were doing them first. We have 15 workers in total. As the tasks were not
overwhelmingly complicated and workers did pretty well according to results in Chapter
3, we set k = 3 for both RandomK and TopK as before so we are not hiring excessive
workers. This time we decrease the horizon of DynamicHiring to 3 too so we will at
most hire 3 workers with it, to test its performance with even less exploration at the start.
For RandomK, we select 3 workers from the 15 randomly for any given task. For TopK,
we compare the averaged cumulative quality of all 15 workers for the first t tasks, and pick
the top 3 for all the remaining tasks. For DynamicHiring, we also use the first t tasks for
training. To compare all these hiring mechanisms fairly, we only test the result for tasks
after first t for RandomK, thus the results are all shown against the exact same tasks.
Moreover, for the quality curve shown in the following figures, each plotted point at task
x is averaged from its 10 neighbour (including and centred at itself) to make the curve
smoother to present the general trend.

In our first experiment, we set t = 15, to show the performance against a minimum
number of training tasks for both TopK and DynamicHiring, The first 15 sleep spindles
are found in the first 7 windows, which is a realistic length for training tasks. After
removing the first 15 sleep spindles, there are a total of 86 tasks left. The results are
shown in Figure 4.8. At the end, RandomK got 61 tasks correctly (70.93% accuracy),
while TopK correctly answered 71 (82.56%). They both hired 258 workers in total. On
the other hand, DynamicHiring answered 64 tasks correctly (74.42%), while only hired
111 workers.

Overall, DynamicHiring achieved a slightly worse performance with less than half of
workers hired by TopK. If we look at Figure 4.8 carefully, DynamicHiring found its top
agent after about 20 more tasks and stopped hiring more workers as it thinks that agent’s
performance will stay high and the benefit of more hiring is just marginal. However, that
specific agent’s performance actually dropped towards the end and the performance of
DynamicHiring therefore suffered, too. The performance of such worker is shown in
Figure 4.10, and we will discuss it later.

53

Figure 4.8: Hiring Mechanisms Tested Against Real Data, 15 training tasks

In our second experiment, we increase t to 20, to give DynamicHiring more tasks
to train. As we have shown previously from simulation even such a small increment in
training tasks should improve the performance of our hiring system vastly due to more
accurate estimation and projection. To make the comparison fair, the number of training
tasks for TopK is also adjusted to 20, and RandomK is starting from the 21st task, too.
Note that now we have 81 tasks in total for our comparison. The results are shown in
Figure 4.9.

Now RandomK got 62 or 76.54% tasks correctly while TopK answered 66 or 81.48%
correctly. This time, DynamicHiring outperformed both by a big margin by finishing
with 72 or 88.88% correctly answered tasks. Moreover, DynamicHiring only hired 81
workers as it found a top performer right in the training tasks while the other two hired
243. In this experiment, our proposed hiring mechanism achieved great performance while
only hiring one third of the workers needed for the other two hiring mechanisms. The

54

Figure 4.9: Hiring Mechanisms Tested Against Real Data, 20 training tasks

result also verified our observation in simulation tests that the more training tasks we have
or more information collected at the beginning, the better performance DynamicHiring
can yield.

Performance of the two solely selected workers at the end by these two experiments
is shown in Figure 4.10. The graph on the left is the recall performance of the worker
hired at the end for our first experiment with 15 training tasks, while the right one is from
the second experiment with 20 training tasks. We denote the one on the left as worker
one and the right one as worker two. As we can see, the performance improvement for
worker one was significant for the first 15 tasks (almost from 0.5 to 0.8), and that was the
reason our hiring system overestimated his learning speed (and quality in consequence).
For worker one, even after a few more tasks, the projected learning curve from linear
regression is still far above the worker’s true performance. When more training tasks
are conducted in our second experiment, the system had more information to analyze

55

Figure 4.10: Hired High Performance Worker for 15 and 20 training Tasks

and was able to find the true top performer worker two. This is the biggest problem for
DynamicHiring. When the number of training or initial information collection is not
enough, the estimated learning curves for workers may not be accurate enough to truly
predict their future performance. As a result, we may need to use our knowledge about
the crowdsourcing tasks and worker population to set a proper number of training tasks
to fully utilize the power of our DynamicHiring mechanism.

Overall, the results from both our simulation test and real world data prove the validity
and advantage of our proposed dynamic hiring system, where it can estimate crowd workers’
quality better, project their learning process, as well as give us some insight into the
properties of tasks we are working on and the worker population. By using dynamic
hiring process, we are able to cut down hiring cost significantly while still providing solid
accuracy performance for consensus tasks, especially for a diversified worker population
where workers’ inner learning process is mixed.

56

Chapter 5

Extended Hiring Process

In this chapter we want to relax some of the constraints and assumptions we have made
previously, and extend our dynamic hiring system to work with more realistic settings
where workers are not always available, can only work on a small set of training tasks for
free, and the task assigner is not allowed to ask workers he is not willing to hire to work
on training tasks.

5.1 Dealing with Unavailable Workers

In most real world crowdsourcing applications, no worker is always available to be hired
for any given task. In fact, only a small amount of the worker pool is available at times.
Therefore, the hiring system may not be able to rely on a few high quality workers as
their availability may indeed be low. As a result, we want a system that can train a
larger group of workers or train the best workers among the highly available group. The
system must make smart tradeoff between current quality, future quality, and availability
among workers. To simulate this setting, we add a availability property (a probability) to
each simulated worker, and at each task, a worker’s presence is randomly decided by his
availability probability. For example, if a worker’s availability property is set to 0.3, for
any given task, he is 30% likely to be present while the other 70% of time he will be absent.
To make it more realistic, the availability of worker population is drawn from a truncated
normal distribution A(x) = f(x; 0.05, 0.04, 0,∞), so in average only 5% of workers are
available at a given task, while different workers have a slightly different availability (with
some up to 10%). Note that in our setting workers’ availability is independent from their
learning speed and prior knowledge. We think this setup is more realistic as we cannot

57

assume high quality workers are more available, nor vice versa. In our simulation tests we
will still run each hiring mechanism 10 times to make sure we are getting the general trend
and mixing everything up.

Since now workers are no longer always available, we have to make some changes to our
benchmark hiring mechanisms. For RandomK, we will first gather all available workers
before each task and randomly select k to hire from the available ones. For TopK, as we
cannot just let all workers work on training tasks at the same time, now we keep track of
each worker’s average quality and number of tasks he has completed. For any new task, we
let all available workers do the training tasks if they have not completed them. We then
rerank workers based on their latest observed quality before making hiring decisions for
the new task. As a result, the top k workers picked for one task may no longer be the ones
for next task. This is a more practical setting to simulate applications in the real world.
For example, on MTurk, you can not let a worker perform any tasks if you are not hiring
him, and you are never able to evaluate the entire potential worker population because
only a small portion of it is online at a given time.

For DynamicHiring, we also have to consider each agent’s availability when we are
looking for one to hire and train. One problem we are facing now is that availability stats
are actually hard to measure, as it may change from time to time, and is subject to many
unknown factors. To tackle this problem, we assume there is a certain general availability
for the entire worker population, and set the availability of each new coming worker to this
general availability by default. If we have some historical data, this general availability
can be estimated from it. For example, if in the past workers are in average 30% available
for a task, we can then set this general availability to 0.3. Then we need to update each
worker’s own availability when his presence information is known to the system after each
task. We use the following function f(w, x) to estimate a worker w’s availability at x-th
task:

f(w, x) =
M + p(w, x)

N + t(w, x)
(5.1)

where function p(w, x) gives the number of tasks where w showed up between his first
appearance and the x-th task, while function t(w, x) gives the total number of tasks from
w’s first appearance till x. The system will keep track of a worker once he become available
for the first time for some task. The two numbers M and N are determined from our
understanding and assumption of the worker population. For instance, if we think 0.3 is a
good default availability for the population, we can then set M = 3 and N = 10. Changing
M and N will change how fast the system is update workers’ availability information.

However, since we won’t be hiring a lot of workers for each task, we may not be able
to get all workers to work on enough tasks to collect their availability information. For

58

instance, for 1000 tasks and 1000 workers, if in average we only hire 3 workers for each
task, even if we distribute tasks evenly, each worker will only get 3 tasks. Moreover, if we
only select top agents, a lot of workers may never get picked by the system to learn their
information. Thus, our system must make a smart tradeoff between the cost of hiring and
information exploration.

5.2 Dealing with Fewer Training Tasks

Another assumption we made in last chapter was that all workers are asked to work on some
training tasks first for the system to learn their quality information, even if they are not
hired for any real tasks. In real world applications, this is not practical. On crowdsourcing
platforms like MTurk, no worker will work on any task without being compensated, and it
is unrealistic to let entire worker population work on a set of training tasks first without
hiring majority of them. In fact, we can not draw clear boundary between training tasks
and real tasks. In this chapter, although we still call them training tasks, we consider
them as real tasks and workers performing them are getting paid as they are working on
real tasks (they will not be told what kind of tasks they are working on, so the only real
difference is that we have ground truth for these training tasks). In our system, a crowd
worker only need to complete training tasks once. If he gets hired again and the system
knows he has already completed training tasks, he will be assigned to work on the real
task right away. This way we can cut down the number of total training tasks, which could
save even more when compared to TopK, as TopK must use training tasks to sample all
available workers to find the top k performers.

Overall, the system now has two goals when hiring workers, one is to find currently
top performing workers to make an accurate and reliable prediction, while the other is
to explore the worker population where quality and learning curve information is still
unknown. Our existing system was able to handle the first one, while we need to add an
exploration phase to it to determine the latter. To achieve this, we are going to replace
the static priority ranking heuristic in Monte Carlo sampling with a randomized approach
which decide between hiring existing workers and exploring new workers based on weights
assigned from a combination of workers’ current quality, future quality, and availability.

59

5.3 Extended Dynamic Hiring System

The core of our dynamic hiring system stays the same, as we still use MDP to model the
entire hiring process, keep the Monte Carlo sampling and backward evaluation phases,
and comparing VOI to make decisions about hiring and termination. There are only two
changes we are making for the new system: how we let workers do training tasks, and
the ranking mechanism to order all available workers before we feed them to Monte Carlo
Planning. To find a sweet spot between accuracy of estimated quality information from
linear regression test and hiring cost on training tasks, we set the number of training tasks
to 20 for the new system (TopK is set to sample 20 training tasks, too). Now we introduce
a confidence score to replace our old priority score in last chapter. This time we still rank
workers by this score, but workers with higher scores may not always be picked before
their peers with lower scores, as randomization is going to be added. The confidence score
is a weighted measurement calculated from a worker’s current quality, future quality, and
availability.

At the very beginning, we assume every worker is of the same quality, learning speed,
and availability, to make sure any one is equally likely to get picked. In fact, for crowdsourc-
ing applications with historical data (or where we can collect some information beforehand),
we should at least have some basic knowledge about the problem domain and worker pop-
ulation, e.g. a rough idea of workers’ quality range and general learning speed. We can
then use the information we have to setup a baseline which we can reasonably assume to
fit many workers. For example, we may assume an average worker has a learning speed of
r = 80 and prior knowledge p = 80 (thus a starting quality of 50%). These numbers are
then used to calculate our baseline score. For any new worker that the system had not
collected any information for, it will assume the worker follows these values. As a result,
any worker the system had hired before with a better performance than this baseline is
likely to outperform a random new worker picked from the population, and should more
likely be picked by the system when it’s looking for the next worker to hire.

Another reasonable assumption is, after hiring many workers, the likelihood of finding
some new worker who is better than the best existing ones will become smaller. There-
fore, after collecting information of enough workers such that the presence of recorded
good quality ones can cover most of the tasks, the incentive to explore more unknown
workers diminishes. However, since there is noise associated to every step of the hiring
mechanism and none of the estimated numbers are absolutely accurate, we still want it to
enter exploration phase and evaluate new workers from time to time, but with a decreased
probability.

To put everything into perspective, for each task, the system first checks all available

60

workers. If none of them were seen before, it hires someone new randomly. Then if all the
ones hired before have confidence scores worse than the baseline score, it hires new workers
randomly, too. But this time the system will lower its expectation of worker population,
e.g. by lowering the baseline score. For all the returning workers with scores higher than
the baseline, there are three problems. First, we do not know if he will come back again.
Second, some of the new workers may outperform the baseline and have a greater potential
Third, our estimation might not be perfect. The last one is taken care of by our quality
capping policy described in Section 3.3.2 so that workers with fewer data samples have a
tighter upper bound of allowed estimated quality. To deal with the first two, the system
calculate a probability based on a worker’s confidence score so that it may actually ignore
the worker with higher score and enter exploration phase to randomly pick an unknown
worker.

The confidence score sw for worker w at task x is defined as:

sw(x) = (1− f(w, x))× q∗w(x) + f(w, x)× q∗w(x+ n× f(w, x)) (5.2)

where f(w, x) is worker w’s availability at x as defined in 5.1, and q∗w(x) is w’s estimated
quality function as before. For future quality projection, we multiply number of estimated
future tasks n by worker’s availability as the worker will only be available for a portion
of these tasks. And the weights of current and future quality are now tied to worker’s
availability as the importance of worker’s future quality is related to how available he is in
the future. Note that the confidence score is a quality score and lies in the range of 0 to 1.
The system updates all recorded workers’ confidence scores after every task.

After ranking all existing workers according to their assigned scores, we still use the
same hiring mechanism described in previous chapter. However, this time we have another
option of exploring new workers. We derive a probability of staying with the selected
worker from his confidence score as

Pr(sw) =
4sw − 2√

1 + (10sw − 5)2
+ 0.6 (5.3)

where sw is the score in 5.2 and Pr(sw) is an algebraic sigmoid function (plotted in Figure
5.1) with a range from 0.2 to 1 for 0 ≤ sw ≤ 1.

The reason we are mapping confidence score to probability with this sigmoid function
is that we want the system to stay with workers whose confidence score is high (in this case
≥ 0.6), and leave workers whose confidence score is low (in this case≤ 0.4). Moreover, there
should be minimal change above and under these two thresholds as the quality (remember
confidence score is weighted quality score) change in these two ranges should not affect

61

Figure 5.1: Illustration of the Sigmoid Probability Function

the system’s behaviour much (worker’s quality is either too low or too high). There is
still the problem of overestimated quality, but the population as a whole should even out
and the ones with higher estimated quality are still more likely to outperform their peers.
Note that the probability has a lower bound of 0.2, because we still want a worker with
low confidence score to have a chance to be selected as his confidence is still greater than
our assumed baseline for the worker pool. The new algorithm (pseudo-code) to pick next
worker to hire in Monte Carlo sampling is shown below in Algorithm 2.

Algorithm 2 Worker Picking Algorithm

1: rankedExistingWorkers = rank(existingWorkers) . From scores defined in 5.2
2: nextWorker = getBestExistingWorker(rankedExistingWorkers)
3: if nextWorker = NULL then
4: nextWorker = getNewWorkerRandomly() . pick an unknown worker randomly
5: else
6: if nextWorker.score < baseline then . baseline was estimated for population
7: nextWorker = getNewWorkerRandomly()
8: else
9: if random(0, 1) > getProbability(nextWorker.score) then . Use 5.3
10: nextWorker = getNewWorkerRandomly()

There are no other major modifications made to the system described in previous
chapter. Since we do not have real world (sleep spindle detection) data for this setting as

62

our experiment on MTurk doesn’t support returning workers, we will use simulation tests to
check the performance of this modified DynamicHiring mechanism against RandomK
and TopK.

5.4 Simulation Results

This time we decrease the size of worker pool to 300 with availability distribution A(x) =
f(x; 0.05, 0.04, 0,∞), that is about 15 available workers at any time for a task. For learning
speed and prior knowledge distribution, we set R(x) = f(x; 80, 10, 0,∞) and P (x) =
f(x; 70, 5, 0,∞) so tasks are more difficult than sleep spindle detection and the workers
have a lower starting quality, because we want to test if DynamicHiring can find workers
to stick to and take advantage of their quality improvement in a thougher environment.
We set number of training tasks for each newly hired worker to 20 for both TopK and
DynamicHiring. We assume we have some basic knowledge of the worker population and
calculate the base line quality and score of unknown workers from r′ = 100 and p′ = 100
which is somewhat close but different from the actual values. We set the system’s default
availability for worker population to 10% which doubles the actual value so most workers
will be less available than system’s expectation. We want to see if the system is robust
enough to handle this kind of discrepancy and uncertainty. We still use 1000 binary tasks
like what we did before. The results for this simulation is shown in Figure 5.2 and Table
5.4. Note that for all the simulations in this section we still run each experiment 10 times
and record its average performance. The ks are still set to 3 for RandomK and TopK
while the horizon for DynamicHiring is still 5.

Hiring Mechanism Correct Tasks Cumulative Quality Hiring Cost Training Cost
RandomK 518 51.8% 3000 0
TopK 753 75.3% 3000 5960
DynamicHiring 775 77.5% 2558 4960

Table 5.1: Simulation Result for 300 Workers, 0.05 Average Availability

Unlike what we saw in the previous chapter, now the hiring cost doesn’t drop as fast
as in the settings where workers are always available. This is because most of workers will
only be available for a small percentage of the 1000 tasks. When trained agents are not
present, the system has to find some new workers to do the job. Moreover, as now we do
not let un-hired workers work on training tasks, workers will not get many opportunities

63

Figure 5.2: Simulation Result for 300 Workers, 0.05 Average Availability

to improve their quality. It becomes harder for the system to locate high quality workers
as more tasks are needed to improve the accuracy of quality and learning speed estimation.
Overall, the system works as expected, after about 500 tasks, when majority of workers
get some tasks to work with, it’s able to find a group of higher quality workers and the
hiring cost decreases in consequence. Unlike TopK which almost run training tasks on all
the workers (5960 training tasks means 298 out of 300 workers were asked to do training
tasks), DynamicHiring has only a training cost of 4960. This behaviour is exactly what
we wanted that we only explored part of the worker population, as from our previous
discussion the benefit of exploring more workers is marginal after we have already collected
information for majority of the worker pool.

64

Overall, if we consider all tasks of the same cost, from Table 5.4, DynamicHiring
yield a slightly performance accuracy-wise compared to TopK for this worker population,
with a total cost of 7518, which is 16.1% less than the total cost of TopK (8960). For
crowdsourcing applications where cost is a big concern, this cost saving is a huge advantage.
And the saving will become even more significant if the amount of tasks is larger, as
DynamicHiring will hire fewer and fewer workers when number of tasks grows, while
TopK with a fixed number of hired worker for each task will not benefit from the improved
worker quality.

We then want to test the hiring mechanisms against mixed worker population. First we
keep the total number of tasks at 1000, but change the availability distribution for 60 (20%
of the population) workers to A(x) = f(x; 0.5, 0.05, 0,∞). Therefore, these 60 workers will
be available for almost half of the tasks. We expect DynamicHiring to find these highly
available workers and save more on hiring cosst. The results in Figure 5.3 and Table 5.4
meets our expectation.

Hiring Mechanism Correct Tasks Cumulative Quality Hiring Cost training Cost
RandomK 576 57.6% 3000 0
TopK 843 84.3% 3000 5980
DynamicHiring 874 87.4% 1430 1180

Table 5.2: Simulation Result for 240/60 Workers, 0.05/0.5 Average Availability

As we can see, the results for RandomK got modestly better. By randomly picking
workers for each task, some of the high availability workers will get trained more and
contribute more from performance improvement. Both TopK and DynamicHiring got
better, too, while DynamicHiring is still outperforming TopK. DynamicHiring now
quickly finds high availability workers and we can see the hiring cost drops significantly
after 200 tasks and towards the end our dynamic hiring mechanism is able to stay with 1
to 2 of these highly available workers. As these high availability workers got more tasks
to work with, they became well trained which also gave a performance boost. Expenses
wise, it now cost 1430 + 1180 = 2610, which is only 29% of the cost forTopK. Note that
now we only need to run 1180 training tasks, which means only 59 workers were explored
before the system find someone to stay with.

We then want to make the settings even more complicated. We want a worker pop-
ulation in which there exists some low availability but high performance workers. We
want our system to find and take advantage of these workers among their peers. To
simulate this scenario, we keep 240 low availability medium performance workers, but

65

Figure 5.3: Simulation Result for 240/60 Workers, 0.05/0.5 Average Availability

replace the other 60 with workers drawn from distribution R(x) = f(x; 50, 10, 0,∞) and
P (x) = f(x; 50, 10, 0,∞). These workers have a slightly better starting quality and a much
faster learning speed. The availability distribution is still A(x) = f(x; 0.5, 0.05, 0,∞) so
about 3 of these workers are available for any given task. The results are shown in Figure
5.4 and Table 5.4.

The performance for both RandomK and TopK are better than the first simulation,
although the improvement is slight, as the fast learning workers are only a small portion of
the worker population and will not help the performance much if they are picked randomly
or be discarded as they are not much better at the beginning. In fact the results are
worse than what we got in second simulation as slower learners with high availability

66

Figure 5.4: Simulation Result for 240/60 Medium/High Quality Workers

Hiring Mechanism Correct Tasks Cumulative Quality Hiring Cost training Cost
RandomK 524 52.4% 5000 0
TopK 774 77.4% 3000 5980
DynamicHiring 786 78.6% 2517 4560

Table 5.3: Simulation Result for 240/60 Medium/High Quality Workers

had more tasks to train themselves to outperform faster learners with less training. For
DynamicHiring, we can see the performance got slightly better than the first simulation,

67

too, although the small number of high performance workers will not help much. The cost
dropped from 7518 to 7077 (-5.8%), and is 21.2% less than TopK. Combined with Figure
5.4 we can see the system was able to find these workers, but it wasn’t able to take much
advantage of them as their presence was very inconsistent.

Overall, our modified dynamic hiring system is able to handle situations where crowd
workers are not always available, and we are not allowed to run free training tasks with
all available workers to gather their quality information beforehand. Furthermore, our
simulation results showed us it is able to pick up high quality workers or high availability
workers from the population, take advantage of their quality improvement, and save signif-
icantly on the hiring cost. It provides competitive or better accuracy at solving consensus
tasks with drastic lower hiring cost when compared to mechanisms where fixed amount of
workers are hired and workers’ qualities are assumed as constants.

68

Chapter 6

Conclusion

In this thesis we studied crowd workers’ learning process in doing consensus crowdsourcing
tasks. We showed with real data from MTurk that crowd workers are actually improving
their quality as they work on more tasks, and each worker may exhibit a different learning
behaviour (speed, prior knowledge) when compared to his peers. We adopted the concept
of learning curves which were used in industrial plants and factories to model real workers’
performance improvement and showed with regression fitting that a modified hyperbolic
learning curve can also be used to describe a crowd worker’s learning process. We showed
that using learning curve to project worker quality is more reliable and accurate than
taking the average across all historical data or assuming all workers have a fixed quality
which was used in many other researches. We also discussed some of the challenges we
are facing with this learning curve model, e.g. relationship between accuracy of estimation
and number of data samples, and the way to handle them.

Having a reliable estimation of worker quality gives us the possibility to use Bayesian
Network based opinion aggregation approach rather than voting which was used in a lot
of crowdsourcing consensus applications. This gives us a good idea of how accurate one
prediction is and we are also enabled to take advantage of crowd workers’ quality im-
provement, which directs us intuitively to reduce the number of workers hired when they
become better and more accurate at predicting the underlying truth. We then proposed a
dynamic hiring system which models the entire hiring process as a MDP and uses Monte
Carlo Planning and backward evaluation to make adaptive hiring decisions for each task.
Our system makes smart tradeoff between quality of answers and hiring cost, as well as
workers’ immediate quality and future quality improvement.

We presented two versions of this dynamic hiring system in this thesis. The first one

69

assumes we have full control of the worker population and can let all potential workers to
work on a set of tutorial tasks first and make the hiring decisions based on the information
we have collected. We compared its performance to other common approaches used in
crowdsourcing consensus tasks with simulation tests and it yielded equal or better perfor-
mance with huge saving in hiring cost, as it was able to locate high quality workers and
high potential workers and take advantage of them in the long run. For mixed worker
population where workers have diversified learning process (a combination of fast and slow
learners), the system was outperforming its peers as it can quickly locate better workers
and stay with them. The validity of this mechanism was also verified by real world sleep
spindle detection tasks. This system can be used in settings where we can enforce partici-
pation, e.g. sleep spindle tests where we only hire nurses from hospitals and clinics, where
all workers’ availability is known and we can mandatorily let all workers work on training
set and only pick the ones we want for real tasks.

To handle more real world applications where workers’ availability is unknown and
we are not allowed to run free tutorial tasks to workers we are not going to hire, we
proposed a modified version which incorporates randomization to make tradeoff between
using existing workers and exploring new workers. From our simulation tests, it still shows
a better performance accuracy wise, and significant saving in hiring cost when compared
to bandit based hiring mechanism that pays workers to work on a subset of tasks first to
collect quality information a.k.a. TopK. Similarly, for a mixed worker population where
part of workers exhibit different learning speed or availability, the dynamic hiring system
had a better performance in both accuracy and cost saving, as it could distinguish different
types of workers and favoured the ones who are better learners or more available.

Overall, this thesis made contribution to recognize and study crowd workers’ learning
process in doing consensus tasks. We opened up a new door to devise dynamic and adap-
tive hiring mechanism that can take advantage of crowd workers’ quality difference and
improvement. Our system can help tasks assigners reduce their hiring cost in the long run
without sacrificing performance, as well as locate high quality and fast learning workers.
Of course, our work is still very preliminary and there are many possible directions for
future research, which we discuss in the following section.

6.1 Future Work

First, it would be very interesting to test the performance of our proposed dynamic hiring
system in a real world application that can run for a longer horizon of tasks. Sleep spindle
detection tasks may be a good candidate, but for this thesis we were only able to get a

70

small data set which verified the learning process of workers. If we can build a system on
MTurk that can allow returning workers and provide thousands of tasks to work with, we
can then verify the performance especially hiring cost saving of our system in the long run.

Second, we are currently only able to work on binary tasks where only two outcomes are
possible for our hiring mechanism and simulation. In the future one can extend it to work
on tasks with more possible outcomes, e.g. classification tasks where multiple labels are
available. To deal with these more complicated tasks, we need to make some assumption
about the relationship between all possible outcomes, as people may be more inclined to
some outcomes but not others when they are making mistakes, which will complicate the
problem dramatically. We may have to add more parameters to the system which we can
fine tune according to the actual problem domain. One may also assume all outcomes are
independent and analyze the performance of such system on data where this assumption
doesn’t hold.

Moreover, for crowdsourcing consensus tasks, some of the tasks can be divided into
smaller sub-tasks, and the final outcome of a task depends on aggregated opinions on all of
its sub-tasks. Our proposed dynamic hiring approach may fit this model nicely, as we may
track and measure a workers’ quality and learning progress on different types of sub-tasks
separately, and make dynamic hiring decisions at a sub-task level.

Also as we have discussed in previous chapters, it would be very interesting to evaluate
and compare the influence of external factors on workers’ learning process. We experienced
quality drop (especially for recall scores) for a few workers in our sleep spindle detection
tasks on MTurk towards the end of the 55 windows. We were suspicious that it might be
caused by workers getting tired, bored and therefore lowered their effort, but we didn’t get
the opportunity to setup a separate experiment to test our hypothesis. One may break
tasks into shorter sections and compare workers’ performance against ones who are working
on longer batches. Additionally, we may test the effectiveness of different training materials
and methods on workers’ learning speed.

Last but not least, in our dynamic hiring system, we were setting a few system pa-
rameters based on understanding and knowledge of worker population and task domain,
e.g. the weights for current and future quality, belief threshold, bias of task outcomes, and
baseline confidence score. It would be interesting to compare our system’s performance
at some extreme settings where our estimated parameters are completely off or extremely
accurate, in both real world experiments and computer simulations.

71

References

[1] Zooniverse: People-powered research. https://www.zooniverse.org/.

[2] Paul S. Adler and Kim B. Clark. Behind the learning curve: A sketch of the learning
process. Management Science, 37(3):267–281, 1991.

[3] John R. Anderson. Acquisition of cognitive skill. Psychological Review, 89(4):369–406,
1982.

[4] Michel J. Anzanello and Flavio S. Fogliatto. Learning curve modelling of work assign-
ment in mass customized assembly line. International Journal of Production Research,
45(13):2919–2938, 2007.

[5] Michel Jose Anzanello and Flavio Sanson Fogliatto. Learning curve models and appli-
cations: Literature review and research directions. International Journal of Industrial
Ergonomics, 41(5):573–583, 2011.

[6] Linda Argote. Organizational learning: Creating, retaining and transferring knowl-
edge. Springer, 1999.

[7] Daren C. Brabham. Crowdsourcing as a model for problem solving: An introduc-
tion and cases. Convergence: the International Journal of Research into New Media
Technologies, 14(1):75–90, 2008.

[8] Arthur Carvalho. Advancements in the elicitation and aggregation of private informa-
tion. PhD thesis, University of Waterloo, 2014.

[9] Arthur Carvalho and Kate Larson. A consensual linear opinion pool. In: Proceedings
of the 23rd International Joint Conference on Artificial Intelligence, pages 2518–2524,
2013.

72

[10] Robert T. Clemen. Combining forecasts: A review and annotated bibliography. In-
ternational Journal of Forecasting, 5(4):559–583, 1989.

[11] Roger M. Cooke. Experts in uncertainty: Opinion and subjective probability in science.
Oxford University Press, 1991.

[12] Morris H. DeGroot. Reaching a consensus. Journal of the American Statistical Asso-
ciation, 69(345):118–121, 1974.

[13] Stéphanie Devuyst. The dreams sleep spindle database.

[14] Anhai Doan, Raghu Ramakrishnan, and Alon Y. Halevy. Crowdsourcing systems on
the world-wide web. Communications of the ACM, 54(4):86–96, 2011.

[15] Edward S. Epstein. A scoring system for probability forecasts of ranked categories.
Journal of Applied Meteorology, 8(6):985–987, 1969.

[16] Enrique Estellés-Arolas and Fernando González-Ladrón de Guevara. Towards an in-
tegrated crowdsourcing definition. Journal of Information Science, 38(2):189–200,
2012.

[17] Guido Fioretti. The organizational learning curve. European Journal of Operational
Research, 177(3):1375–1384, 2007.

[18] Fiorenzo Franceschini and Maurizio Galetto. Asymptotic defectiveness of manufac-
turing plants: an estimate based on process learning curves. International Journal of
Production Research, 40(3):537–545, 2002.

[19] David Geiger, Stefan Seedorf, Thimo Schulze, Robert C. Nickerson, and Martin
Schader. Managing the crowd: Towards a taxonomy of crowdsourcing processes.
In: Proceedings of the 17th Americas Conference on Information Systems, pages 4–7,
2011.

[20] Christian Genest and Kevin J. McConway. Allocating the weights in the linear opinion
pool. Journal of Forecasting, 9(1):53–73, 1990.

[21] Panagiotis G. Ipeirotis. Analyzing the Amazon Mechanical Turk marketplace. Maga-
zine XRDS: Crossroads, the ACM Magazine for Students - Comp-YOU-Ter, 17(2):16–
21, 2010.

[22] Robert A. Jacobs. Methods for combining experts’ probability assessments. Neural
Computation, 7(5):867–888, 1995.

73

[23] Ece Kamar, Severin Hacker, and Eric Horvitz. Combining human and machine intel-
ligence in large-scale crowdsourcing. In: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems, pages 467–474, 2012.

[24] Ece Kamar and Eric Horvitz. Light at the end of the tunnel: A monte carlo approach to
computing value of information. In: Proceedings of the 2013 International Conference
on Autonomous Agents and Multi-agent Systems, pages 571–578, 2013.

[25] Ece Kamar and Eric Horvitz. Planning for crowdsourcing hierarchical tasks. In: Pro-
ceedings of the 2015 International Conference on Autonomous Agents and Multiagent
Systems, pages 1191–1199, 2015.

[26] Ece Kamar, Ashish Kapoor, and Eric Horvitz. Lifelong learning for acquiring the
wisdom of the crowd. In: Proceedings of the 23rd Internation Joint Conference on
Artificial Intelligence, pages 2313–2320, 2013.

[27] Michael Kearns, Yishay Mansour, and Andrew Y. Ng. A sparse sampling algorithm
for near-optimal planning in large markov decision processes. Machine Learning, 49(2-
3):193–208, 2002.

[28] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. Machine
Learning: ECML 2006, 4212:282–293, 2006.

[29] Chris J. Lintott, Kevin Schawinski, Anz̆e Slosar, Kate Land, Steven Bamford, Daniel
Thomas, M. Jordan Raddick, Robert C. Nichol, Alex Szalay, Dan Andreescu, Phil
Murray, and Jan Vandenberg. Galaxy zoo: morphologies derived from visual in-
spection of galaxies from the sloan digital sky survey. Monthly Notices of the Royal
Astronomical Society, 389(3):1179–1189, 2008.

[30] C. D. Manning, P. Raghavan, and M. Schütze. Introduction to information retrieval.
Cambridge University Press, 2008.

[31] James E. Mazur and Reid Hastie. Learning as accumulation: A reexamination of the
learning curve. Psychological Bulletin, 85(6):1256–1274, 1978.

[32] Allan H. Murphy. A note on the ranked probability score. Journal of Applied Meteo-
rology, 10(1):155–156, 1971.

[33] David A. Nembhard and Napassavong Osothsilp. Task complexity effects on between-
individual learning/forgetting variability. International Journal of Industrial Er-
gonomics, 29(5):297–306, 2002.

74

[34] David A. Nembhard and Mustafa V. Uzumeri. An individual-based description of
learning within an organization. IEEE Transactions on Engineering Management,
47(3):370–378, 2000.

[35] Shanthakumar Pananiswami and Ronald C. Bishop. Behavioral implications of the
learning curve for production capacity analysis. International Journal of Industrial
Ergonomics, 24(1-2):157–163, 1991.

[36] Mahbubur Rahman, Brenna Blackwell, Nilanjan Banerjee, and Dharmendra Saraswat.
Weed infestation identification using hierarchical crowdsourcing. Elsevier Computers
and Electronics in Agriculture, 2013.

[37] Mahbubur Rahman, Brenna Blackwell, Nilanjan Banerjee, and Dharmendra Saraswat.
Smartphone-based hierarchical crowdsourcing for weed identification. Journal of Com-
puters and Electronics in Agriculture, 113(C):14–23, 2015.

[38] Leonard J. Savage. Elicitation of personal probabilities and expectations. Journal of
American Statistical Association, 66(336):783–801, 1971.

[39] Victor S. Sheng, Foster Provost, and Panagiotis G. Ipeirotis. Get another label?
improving data quality and data mining using multiple, noisy labelers. In: Proceedings
of the 14th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 614–622, 2008.

[40] James Surowiecki. The Wisdom of Crowds. Random House LLC, 2005.

[41] Charles J. Teplitz. The learning curve deskbook: A reference guide to theory, calcula-
tion, and applications. Praeger, 1991.

[42] Long Tran-Thanh, Sebastian Stein, Alex Rogers, and Nicholas R. Jennings. Efficient
crowdsourcing of unknown experts using bounded multi-armed bandits. Artificial
Intelligence, 214:89–111, 2014.

[43] Jeroen Vits and Ludo Gelders. Performance improvement theory. International Jour-
nal of Production Economics, 77(3):285–298, 2002.

[44] Carl-Axel S. Staël von Holstein. A family of strictly proper scoring rules which are
sensitive to distance. Journal of Applied Meteorology, 9(3):360–364, 1970.

[45] Maja Vuković. Crowdsourcing for enterprises. In: Proceedings of the 2009 Congress
on Services, pages 686–692, 2009.

75

[46] Simon C. Warby, Sabrina L. Wendt, Peter Welinder, Emil G. S. Munk, Oscar Carrillo,
Helge B. D. Sorensen, Poul Jennum, Paul E Peppard, Pietro Perona, and Emmanuel
Mignot. Sleep-spindle detection: crowdsourcing and evaluating performance of ex-
perts, non-experts and automated methods. Natural Methods, 11(4):385–392, 2014.

[47] Jacob Whitehill, Ting fan Wu, Jacob Bergsma, Javier R. Movellan, and Paul L.
Ruvolo. Whose vote should count more: optimal integration of labels from labelers
of unknown expertise. Advances in Neural Information Processing Systems, pages
2035–2043, 2009.

76

	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	Contributions
	Thesis Outline

	Background
	Crowdsourcing Consensus Tasks
	Learning Curve

	The Learning Model
	Learning A Worker's Quality Curve
	Sleep Spindle Detection Tasks
	Overall Performance
	Fitting Individual Worker
	Predicting Future Quality with Learning Curve

	Problems and Challenges

	A Dynamic Hiring Process
	The Markov Decision Process
	Defining the MDP
	Opinion Aggregation
	Defining the reward function

	Solving the MDP
	Challenges and How to Tackle Them
	Runtime Limitation
	Quality Capping

	The Algorithm
	Simulation Results
	Test on Sleep Spindle Detection Data

	Extended Hiring Process
	Dealing with Unavailable Workers
	Dealing with Fewer Training Tasks
	Extended Dynamic Hiring System
	Simulation Results

	Conclusion
	Future Work

	References

