
Signal Processing for Trace-based
Anomaly Detection in Embedded

Software

by

Mohammad Mehdi Zeinali Zadeh Ranjbar

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2015

c© Mohammad Mehdi Zeinali Zadeh Ranjbar 2015

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Embedded operating systems generate a log of operating system function calls which
we refer to as traces. Trace-based anomaly detection deals with the problem of determining
whether or not an instance of traces represents a normal execution scenario. Most current
approaches focus on application areas outside of the embedded systems domain and thus
do not take advantage of the intrinsic properties of this domain.

This work introduces Signal Processing for Trace Based Anomaly Detection (SiPTA): a
novel technique for offline trace-based anomaly detection that utilizes the intrinsic feature
of periodicity present in embedded systems. SiPTA uses discrete-time Fourier transform
which is a crucial tool of signal processing theory as an underlying method. This Thesis
describes a generic framework for mapping execution traces to channels and signals for
further processing. The classification stage of SiPTA uses a comprehensive set of metrics.
As this thesis demonstrates, SiPTA is particularly useful for embedded systems. More
specifically, we will compare SiPTA with state-of-the-art approaches to trace-based anomaly
detection based on the Markov Model and Neural Networks. This thesis also shows the
technical feasibility and viability of SiPTA through multiple case studies using traces from
a field-tested hexacopter, a mobile phone platform, and a car infotainment unit. In the
experiments, our approach outperformed every other tested method.

iii

Acknowledgements

I would like to firstly thank my supervisor, Professor Sebastian Fischmeister, for his
continuous guidance and support during my MASc. Also I would also like to extend special
thanks to my parents for their unconditional support throughout my life, particularly
during my various academic pursuits.

iv

Dedication

This is dedicated to my "little diamond": my niece, Elina.

v

Table of Contents

Author’s Declarations ii

Abstract iii

Acknowledgements iv

Dedication v

List of Tables ix

List of Figures x

List of Illustrations xii

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 State of the Art . 3

1.3.1 Anomaly Detection . 3
1.3.2 Trace-based Anomaly Detection . 3
1.3.3 Trace-based Anomaly detection using Markov Models 6
1.3.4 Limitations . 7

1.4 Thesis Structure . 9

vi

2 Background 10

2.1 Fast Fourier Transform . 10
2.2 Major Frequency Component Detection . 12
2.3 Minimum-Weight Perfect Bipartite Matching 14
2.4 Hierarchical Clustering . 16

3 Proposed Method 18

3.1 Overview . 18
3.2 Preprocessing . 19
3.3 Feature Extraction . 22

3.3.1 Real Example . 23
3.3.2 Channel Existence . 23
3.3.3 Channel Length . 25
3.3.4 DC Significance . 27
3.3.5 Multi-Peak . 30

3.4 Training . 37
3.4.1 Channel Existence . 39
3.4.2 Channel Length . 39
3.4.3 DC Significance . 40
3.4.4 Multi-Peak . 40

3.5 Analyzing . 41
3.5.1 Channel Existence . 42
3.5.2 Channel Length . 43
3.5.3 DC Significance . 44
3.5.4 Multi-Peak . 44
3.5.5 Label Assigner . 45

vii

4 Experimental Setup 48

4.1 Experimental Setup and Workload . 48
4.2 Evaluation Criteria . 51
4.3 Comparison to Alternative Approaches . 52

4.3.1 Markov Model Technique . 52
4.3.2 Neural Networks Technique . 53

5 Experimental Results 55

6 Discussion 60

7 Conclusion 64

APPENDICES 65

A Configuring MATLAB Implementation 66

References 72

viii

List of Tables

1.1 Trace example . 6

3.1 Read/Write file access example trace T1 . 25
3.2 Read/Write file access example trace T2 . 25
3.3 Number of different channel names between scenarios 26
3.4 Channel Length example . 26
3.5 Channel Length example . 27
3.6 Example 10 DC Significance values . 28
3.7 DC Significance example . 31

5.1 Results summary . 56

ix

List of Figures

1.1 System properties . 4
1.2 Markov chain example . 8

2.1 Bipartite graph example . 15
2.2 Complete bipartite graph example . 15

3.1 SiPTA overview . 19
3.2 Feature Extraction overview . 24
3.3 Example 10 events . 29
3.4 Example 10 spectra . 30
3.5 Example 12 events . 32
3.6 Example 12 spectra . 33
3.7 n.spectrum(T1) and n.spectrum(T ′1) in Example 13 34
3.8 n.spectrum(T2) and n.spectrum(T ′2) in Example 13 35
3.9 n.spectrum(T3) and n.spectrum(T ′3) in Example 13 36
3.10 n.spectrum(T4) and n.spectrum(T ′4) in Example 13 37
3.11 Train engine overview . 38
3.12 Analyze engine overview . 43
3.13 Scores . 46

5.1 ROC for hexacopter . 56
5.2 ROC for QNX car audio play . 57

x

5.3 ROC for QNX car - top command . 58
5.4 ROC for QNX car pinging scenario . 59

6.1 Spectra of parameter THREAD-THREADY-2367525 61
6.2 Spectra of parameter THREAD-THREADY-1 62

xi

List of Illustrations

A.1 element All sub-elements . 67
A.2 element dataBase sub-elements . 68
A.3 element trace sub-elements . 69
A.4 element ser sub-elements . 70
A.5 element levels sub-elements . 70
A.6 element levelNoM sub-elements . 71

xii

Chapter 1

Introduction

In this chapter we explore the reasons why anomaly detection is necessary as a layer for
error detection. Also, we will examine the structure of the rest of my thesis.

1.1 Motivation

The only way to ensure that the system theoretically behaves according to its specifications
is complete formal model checking. Formal model checking is not practical on large systems
as it requires exponential resources on the size of the system [16]. Even if we formally
verify the software there is no guarantee that hardware misbehavior would not occur.
Consequently, there is no guarantee that systems will not misbehave.

These errors can lead to catastrophic failures, especially in safety critical systems such
as Therac-25 [27] and Ariane 5 flight [28] These systems are typically used in medical,
automotive, and energy domains. For safety issues, these systems must comply with stan-
dards that require the use of software monitors to detect anomalies in the development and
production phases, e.g., ISO-26262 [9] for automotive functional safety and DO-178C [23]
for airborne systems.

Safety-critical system usually have a facility to produce logs of operating system calls.
These logs are referred to as traces. In other words, a trace is a timed log of operat-
ing system calls. In such systems, trace-based anomaly detection can act as a monitoring
mechanism and invoke modules responsible for prevention and recovery from failures. In
essence, trace-based anomaly detection aims at detecting execution patterns that do not
conform to the normal system functionality. Anomalous patterns can indicate software

1

bugs or malfunctions, which is convenient as such an analysis treats the system under
scrutiny as a black box. In other words trace-based anomaly detection does not require
knowledge of system internals. This approach leverages the computational power of com-
puter processors to distinguish anomalous traces from normal traces, and the likelihood of
catastrophic failures [45].

The majority of safety-critical systems are embedded systems. Also, we know that
the behavior of embedded software is periodic [35]. On the other hand, the many signal
processing methods work on the periodic features of signals. Hence these methods and
algorithms can (and as we will show, will) be well-suited for anomaly detection in embedded
systems.

1.2 Contributions

The main contribution of this thesis is the introduction of SiPTA, which realizes a novel
technique for offline program trace-based anomaly detection utilizing the intrinsic feature of
periodicity found in embedded systems. As we will later explain, SiPTA uses signal process-
ing algorithms to identify periodic features in an embedded system. Other contributions
are outlined as follows:

• Introducing the concept of using the intrinsic system periodicity for trace analysis.

• Demonstrating the feasibility and viability of using signal processing algorithms for
trace analysis.

• Formalizing a generic framework for modeling traces and mapping them to signals
and channels.

• Specifying a comprehensive set of metrics based on frequency spectra useful for the
classifying traces.

In our study we restrict our attention to traces obtained from embedded devices. We
evaluate SiPTA through the analysis of sets of application-specific traces generated from
QNX RTOS [6] running on deployed commercial platforms (i.e., a hexacopter platform, a
car infotainment system, a phone OS, and an embedded development test kit) covering a
broad range of execution scenarios. We chose to create our dataset, since the established
datasets [7, 1] are ill-suited to embedded systems and are under criticism [31, 17].

2

1.3 State of the Art

There are several state-of-the-art approaches to trace-based anomaly detection. As we will
be using these methods as a bar to compare our method to, we will briefly examine them.

Firstly, however, it is necessary to secure knowledge of anomaly detection and trace-
based anomaly detection. Following these descriptions, we will examine the limitations of
and challenges to anomaly detection and trace-based anomaly detection.

1.3.1 Anomaly Detection

Anomaly detection is the problem of detecting whether or not system specifications define
properties of the system. In other words, anomaly detection observes whether or not
patterns in system behavior deviate from expected system behavioral patterns [13]. In the
case that system specifications do not define system properties, we say that the system
is anomalous. Also, we say that the data on which we detected the anomalies is dirty.
Otherwise, we refer to the system state as normal and the data used for this detection is
clean.

Figure 1.1 illustrates this point. Let R2 be the domain of system properties. And also,
let the regions N1 ⊂ R2 and N2 ⊂ R2 be the sets of normal regions. For every point
n ∈ N1∪N2, n reflects a normal state of the system. Points as a1 and a2, which are outside
of the normal regions, are anomalous system states.

Anomaly detection has a vast range of applications. For example intrusion detection,
which is an application of anomaly detection, is based on detecting anomalies in network
traffic of a website or server [26]. Mammographic computer-aided diagnosis, which is the
diagnosis of breast cancer, can be done by anomaly detection in MRI images of people [39].
The applications even extend to credit card fraud detection [11] and space craft sensor
reading anomaly detection [20] and many more.

1.3.2 Trace-based Anomaly Detection

The focus of this work is trace-based anomaly detection. In other words, traces of the target
system are the means of extracting the target system specification and properties.

To have a grasp on how system specifications and properties relate to traces, we should
define what traces are. Informally speaking, a trace is the sequence of system calls which

3

P
1

-8 -6 -4 -2 0 2 4 6 8

P
2

-8

-6

-4

-2

0

2

4

6

8

A N1

N2 !

A a 1

A a 1

System Property Space

Normal Region 1
Normal Region 2
Normal States
Anomalous States

Figure 1.1: System properties

are generated by the operating system trace logger. Each entry of the system call contains
such information as the time of the system call, the class of the system call, the system
call name, the processor number that processed the system call, the process name and the
process ID of the system call.

To model the data structure that defines traces, we use a bottom-up scheme. In other
words, we respectively model system calls, its attributes, trace entries which include the
real time, and then traces.

Definition 1 (Parameters) Let P0 be the set of possible events. These events represent
the type of operating system calls invoked by processes, user, or operating system itself.
Also, Let the events have m − 1 possible attributes and let Pi be the set of possible values

4

for ith attribute for 1 ≤ i ≤ m − 1. With this, a parameter is an array of length m where
its ith member is selected from Pi, i.e, P = 〈ρ0, . . . , ρm−1〉, where ∀0 ≤ i ≤ m− 1, ρi ∈ Pi,
or equivalently ∀0 ≤ i ≤ m− 1, P (i) ∈ Pi.

As previously mentioned, events occur at a specific and measurable time. In order to
complete the information about an event, we need to include the time information as well.
We refer to the collection of the parameter and its corresponding time as trace entry.

Definition 2 (Trace Entry) A trace entry E is a structure of two members, real time
t, and parameter list P . We say that trace entry E is defined over {P0, . . . ,Pm−1}, if and
only if |E.P | = m, and ∀0 ≤ i ≤ m− 1, E.P (i) ∈ Pi. Also E.t is the real time associated
with the trace entry, i.e., the real time in which E.P (0) with attributes E.P (1 . . .m − 1)
occurred.

A sequence or complete record of an operating system run generates many trace entries.
Definition 3 defines trace as this sequence.

Definition 3 (Trace) A trace T over parameter sets {P0, . . . ,Pm−1} of length n over pa-
rameter sets {P0, . . . ,Pm−1} is a sequence of trace entries Ei for i = 1 . . . n over parameter
sets {P0, . . . ,Pm−1}.

T = 〈E1 . . . En〉

or equivalently,

∀1 ≤ i ≤ n, T (i) = Ei

Also, as the trace is recorded during time, the time values of its entries are non-
decreasing, i.e.:

∀1 ≤ i < j ≤ n : Ei.t ≤ Ej.t

Example 1 provides a better grasp on trace-related definitions.

5

Example 1 (Trace) Consider the usage log of some read-only file. The events that this
log file can contain are open, read, and close. Each event is also invoked by some process,
which can be defined by its process-id. In this scenario P0 = {open, read, close} and P1
is the set of all present process-ids.

Table 1.1 shows a sample trace on this simple scenario, with P1 = {3000, 4000}.
In this case, T (1).P = T (7).P = 〈open, 3000〉, T (5).t = 1110.

Index Time (µS) Event PID
1 1100 open 3000
2 1103 read 3000
3 1105 read 4000
4 1109 read 3000
5 1110 read 3000
6 1112 close 3000
7 1113 open 3000
8 1118 read 4000
9 1121 close 4000

Table 1.1: Trace example

Now let’s assume that Tc is a set of clean traces. In other words, Tc represents a
system that had properties according to its specifications. If we have such a set, we can
conceptually estimate the system specifications. Considering the fact that in this work we
assume that we do not have any prior knowledge of system specifications, Tc is the only
source for knowing system specification in trace-based anomaly detection. A system can
use this knowledge to determine whether or not a new trace like Ta is clean.

1.3.3 Trace-based Anomaly detection using Markov Models

In the context of detection of anomalies from sequential traces, most of research is fo-
cused on the anomaly detection of operating system events. A recent survey paper [14]
summarized the progress in that research area. They discussed two major approaches.
The first method uses Markovian modeling [44] to study the probabilistic characteristics of
event transitions. This approach extends from first-order to higher-order Markov Models
and some equivalent methods as probabilistic suffix trees (PST) and sparse Markov trees

6

(SMT). The second approach models the event transition states through Finite State Au-
tomata (FSA) and Hidden Markov Models (HMM) methods. Example 2 illustrates how
Markov chains model the trace in Table 1.1.

Example 2 (Markov Models) Assume the possible states of trace entries in Table 1.1.
If we create these states via concatenation of event and PID, we will have the following
five states in S:

S = {open::3000, read::3000, read::4000, close::3000, close::4000}

During the training phase, the system estimates the transition probability between each
of these states, and it will construct a Markov chain accordingly. Figure 1.2 depicts this par-
ticular Markov chain, which gives the anomaly detection a reference of how the transitions
should behave. For example, high frequency of transition close::3000 → read::3000 in
a system, considering the fact that the probability of this transition is 0, could signify a
dirty trace.

Different utilization of Markov chains as explained in [14] is so far one of the most
promising approaches to trace-based anomaly detection. That is why we will use these
approaches as a benchmark for analyzing the performance of SiPTA.

1.3.4 Limitations

System traces are not a perfect representation of system properties. Additionally, a set
of clean traces is not representative of clean traces as a whole. These issues and also
the nature of anomaly detection impose the following limitations to trace-based anomaly
detection:

• As system traces are not the perfect representation of system properties, meaning
that they give only partial information about system properties, it is possible that
some anomalies do not have an impact on dimensions of system traces and instead
have an effect on the dimensions that are not represented by system traces. In
other words, the anomaly shows the information about system properties that is not
represented by traces.

7

open: : 3000

r ead: : 3000

cl ose: : 3000

r ead: : 4000

cl ose: : 4000

P=0.5

P=0.33

P=0.5

P=0.33

P=0.33

P=1

P=0.5

P=0.5

Figure 1.2: Markov chain example

For example, the two regionsN1 andN2 in Figure 1.1 are not perfectly normal regions.
P3 could be an additional dimension in system properties that is not equivalent to
P1 or P2. P3 could be an indicator whether or not system behavior is normal. Put
differently, the clean traces that belong to one of the two regions, merely have a low
probability of representing an anomalous system.

• Because we do not have prior knowledge of system specifications, our knowledge
about system specification is limited to training involvingthe clean trace set. In
other words, we cannot have a perfect knowledge of the subsets of property space
that represent clean traces. If we wanted to do a similar thing conceptually, we
should have a set like TA which is the set of all clean traces [13].

8

In addition to these limitations, [13] introduces a list of challenges. The following
challenges from this reference are relevant to trace-based anomaly detection:

• Anomalies can be different in different domains. This fact conceptually affects the size
of the normal regions [13]. In other words, a more lenient notion of anomaly results in
bigger normal regions and more restrictive assumptions mean smaller normal regions.

• This method requires available sets of traces labeled as clean or dirty. these sets are
not always accessible and can become problematic [13].

1.4 Thesis Structure

So far we have talked about our aspirations and contributions. Furthermore, we detail
leading approaches to trace-based anomaly detection as well as their limitations.

In Chapter 2 we review the theoretical background knowledge that SiPTA utilizes to ap-
proach trace-based anomaly detection. Subsequently, Chapter 3 thoroughly examines how
SiPTA approaches this problem. In Chapter 4 we explain the setup for experimenting. The
remaining of the Chapters are dedicated to synthesizing the results from our experiments
and its implications.

Appendix A provides a brief overview of how to setup our implementation of SiPTA in
MATLAB.

9

Chapter 2

Background

There are several concepts utilized in SiPTA: Fourier transform, fast Fourier transform,
major frequency component detection, minimum weight perfect bipartite matching and
hierarchical clustering. This chapter aims to give an in-depth examination of how these
methods work. Should you possess prior knowledge of these concepts, you can proceed to
only read the notations and skip the thorough explanations.

2.1 Fast Fourier Transform

In order to explain fast Fourier transform, we need a brief explanation on time series and
discrete-time Fourier transform.

Definition 4 (Series) Let S be a sequence of complex numbers of length n. It means that
∀0 ≤ j ≤ n− 1, S(j) = x+ yi where x, y ∈ R and i =

√
−1. In this case S is a series.

Also, if ∀0 ≤ j ≤ n− 1, imag(S(j)) = 0, where imag(a) is imaginary part of a, S is a
real series.

If the series S is timed, that is where ∀0 ≤ j ≤ length(S) − 1, S(j) is associated with
time j in some time domain, we refer to S as time series.

Now, we can define discrete Fourier transform (DFT).

Definition 5 (Discrete Fourier Transform) Let S be a time series of length n. And
let F() be discrete Fourier transform which takes a time series as input and returns the

10

frequency series of the input time series. If F = F(S), then the following conditions will
hold.

• length(F) = n, or in other words, f has the same length is S.

• ∀0 ≤ j ≤ n− 1, F (j) = ∑n−1
k=0 S(k)e−i 2π

n
jk, or according to Euler’s formula1 ∀0 ≤ j ≤

n− 1, f(j) = ∑n−1
k=0 S(k)(cos(2π

n
jk)− i sin(2π

n
jk)).

Note that F (j) is multiplication of the time series with cos(2π
n
jk) − i sin(2π

n
jk) which

is a sinusoidal expression with frequency of j
n
.

Theorem 1 (Inverse Discrete Fourier Transform) DFT is invertible and if inverse
DFT is denoted by F−1 and S = F−1(F), the following will hold.

• length(S) = length(F).

• ∀0 ≤ j ≤ n − 1, S(j) = ∑n−1
k=0 F (k)ei 2π

n
jk, or according to Euler’s formula ∀0 ≤ j ≤

n− 1, S(j) = ∑n−1
k=0 F (k)(cos(2π

n
jk) + i sin(2π

n
jk)).

You can find the proof of Theorem 1 in [32]

Definition 6 (Series Orthogonality) We say that series g1 and g2 are orthogonal, if
and only if the following holds.

• length(g1) = length(g2)

• ∑length(g1)−1
j=0 g1(j)g2(j) = 0

Theorem 2 (Different Sinusoidal Orthogonality) Let, 0 ≤ j1 < j2 ≤ n − 1 ∈ Z.
Also, let g1, g2, g3, and g4 be series of length n according to the following definition.

g1(k) = cos(2π
n
j1k)

g2(k) = sin(2π
n
j1k)

g3(k) = cos(2π
n
j2k)

g4(k) = sin(2π
n
j2k)

In any combination of j1 and j2, any two series from {g1, g2, g3, g4} are orthogonal
1eiφ = cosφ+ i sinφ

11

You can find a similar proof of Theorem 2 in [40]. Theorem 2 implies that any two
different frequencies used in DFT and inverse DFT formula are orthogonal. It means that
a time series of length n, can be uniquely rewritten as weighted summation of orthogonal
sinusoidal time series of the same length with frequencies of 0, 1

n
, 2
n
, ..., n−1

n
. As it is evident

in Theorem 1, the coefficients of these sinusoids are determined by frequency series. In other
words, the ith element of f determines the magnitude and phase of frequency component
i/n in the corresponding time series S of length n.

It is obvious that direct calculation of DFT and inverse DFT is O(n2). In spite of
that, it is possible to calculate DFT and inverse DFT using in O(n log(n)) time using Fast
Fourier Transform (FFT) algorithm [32].

If the time series of the signal is a real series, then DFT of the time series is symmet-
ric [32].

Theorem 3 (DFT Symmetry of Real Time-Series) Let S be a real time series of
length n, and let f = F(S). In this case, ∀0 ≤ j ≤ n − 1, F (j) = F (n − j)∗, where
for complex number a, a∗ is the conjugate of a, i.e., if a = x+ iy, then a∗ = x− iy.

This theorem implies that if f is the frequency series of a real time series of length n,
we only need f(0...bn2 c) to have all the information representing f and F−1(f). As SiPTA
deals with real time series, Theorem 3 becomes necessary as it will reduce the calculations
and memory usage, and also simplify the algorithms. So, in this thesis the notation F(S)
refers to F (0...bn2 c).

2.2 Major Frequency Component Detection

As mentioned in Section 2.1 on Page 10, FFT gives the magnitude and phase of different
frequency components of a time series. In other words, if the time series S has a length
of n, and F = F(s), then |F (i)| represents the magnitude of frequency component i

n
in

S. As we later demonstrate, SiPTA will extract the most significant frequency components
of some time series; However, not all frequency components are essential. In fact, SiPTA
will omit some of the frequency components in order to extract more significant ones. To
achieve this goal, SiPTA uses the approach proposed in [41]. In this section we will briefly
describe this approach.

Definition 7 (Periodogram) Let S be a real time series of length n and F = F(S). In
this case, p is the periodogram of F if it is the squared of length(F), i.e.,

12

∀0 ≤ i ≤ bn2 c, p(i) = |F (i)|2

or in shorter form

p = |F |.2

In this case we say p = periodogram(S).

Periodograms are important as they are correlative not with the magnitude, but with
the energy of frequency components.

The proposed method in [41] takes a confidence interval value 0 < ConfIntv < 1,
number of permutations PermCnt and time series s of length n and returns a threshold t
which is a minimum value for a local maximum in p to be qualified as peak which is not
created due to random processes with confidence interval of c.

This method creates PermCnt random permutations of S, {S0, ..., SPermCnt−1}, i.e.,

∀0 ≤ i ≤ PermCnt− 1, Si = permute(S)

Then it calculates their periodograms {P0, ..., PPermCnt−1}. i.e.,

∀0 ≤ i ≤ PermCnt− 1, Pi = periodogram(Si)

Then it constructs a periodogram matrix, PPermCnt×(bn2 c+1) which is by vertical concate-
nation of row vectors {P0, ..., PPermCnt−1}:

PPermCnt×(bn2 c−1) =

P0
P1
...

PPermCnt+1

 (2.1)

After that, the columns of the matrix PPermCnt×(bn2 c+1) will be sorted in ascending order.
Then t will be the bc× PermCntc line of P:

t = P(bc× PermCntc, :)

13

Peaks are then defined as regions of p where p > t. These peaks are not the product
of normal random processes with confidence interval of ConfIntv. The reason that this
process for peak selection is important is that random processes tend to generate random
and unwanted peaks in the periodogram [41].

2.3 Minimum-Weight Perfect Bipartite Matching

In this section we introduce the problem and solution of finding minimum-weight perfect
bipartite matching. For this reason we present bipartite graphs and its different subsets,
and then we go through the problem of minimum-weight perfect bipartite matching.

Definition 8 (Bipartite Graphs) Let G = {V,E} be a graph. This graph is bipartite
if we can partition the vertex set V into two sets V1 and V2 (the bipartition) such that no
edge in E has both endpoints in the same set of the bipartition. Formally,

∃V1, V2, V1∩V2 = ∅∧V1∪V2 = V ∧(∀(v1, v2) ∈ E, (v1 ∈ V1 ⇒ v2 ∈ V2)∧(v1 ∈ V2 ⇒ v2 ∈ V1))

Example 3 gives an example of bipartite graphs.

Example 3 (Bipartite Graphs) Let G = {V,E} depicted as in Figure 2.1. Also, let
V = {vi|1 ≤ i ≤ 7}, V1 = {v1, v2, v3, v4}, V2 = {v5, v6, v7} and E = {(v1, v5), (v1, v6), (v2, v5),
(v2, v7), (v3, v5), (v3, v7), (v4, v6)}. Under these assumptions, G is a bipartite graph.

Definition 9 (Complete Bipartite Graph) Let G = {V1 ∪ V2, E} where V1 ∩ V2 = ∅.
The graph G is a complete bipartite graph if E = {(v1, v2)|v1 ∈ V1 ∧ v2 ∈ V2}. In other
words, a complete bipartite graph is a bipartite graph with every edge from its left sub-
vertices to its right sub-vertices. Example 4 gives an example of a complete bipartite graph.

Example 4 (Complete Bipartite Graph) Let G = {V,E} be the graph in Figure 2.2.
Also, let V = {vi|1 ≤ i ≤ 5}, V1 = {v1, v2, v3}, V2 = {v4, v5} and E = {(v1, v4), (v1, v5),
(v2, v4), (v2, v5), (v3, v4), (v3, v5)}. Under these assumptions, G is a complete bipartite graph.

14

Figure 2.1: Bipartite graph example

Figure 2.2: Complete bipartite graph example

Now that we have the definitions for bipartite graphs, we can define and address the
problem of perfect matching. A matching M ⊆ E is a collection of edges such that every
vertex of V is incident to at most one edge ofM . If a vertex v has no edge of M incident to
it then v is said to be exposed (or unmatched). A matching is perfect if no vertex is exposed;
in other words, a matching is perfect if its cardinality is equal to length(V1) = length(V2).
It is obvious that a perfect matching is possible if length(V1) = length(V2).

In this area SiPTA needs to solve the following problem.

15

Definition 10 (Minimum Weight Perfect Bipartite Matching Problem) Given a
weighted complete bipartite graph G = {V,E,w} with bipartition V1 and V2 such that
length(V1) = length(V2), and given the weight function w : E → R+ ∪ {0}, find a perfect
matching of minimum cost where the cost of a matching M , c(M) is given by the following
formula.

c(M) =
∑
e∈M

w(e)

This problem is also known as assignment problem, where there are n workers and n
tasks. Each worker has a cost for each task and each worker is willing to complete only
one task. The goal is to every task with minimum overall cost.

SiPTA uses the solution presented in [25] which is known as Hungarian method. This
algorithm runs in O(n3) time where n = length(V)

2.4 Hierarchical Clustering

Imagine that we have a set of N points in some space. Let this set be denoted as P =
{p0, ..., pN−1}. Also, the function distance measure the distance of a pair of points, i.e.,
∀p, p′ ∈ P, distance(p, p′) return the distance between two points p and p′. This distance
can be Euclidean distance or any general metric2 for distance.

Then, distance N ×N matrix D is formed via Equation 2.2.

∀0 ≤ i, j ≤ N − 1, Dij = distance(pi, pj) (2.2)

Hierarchical clustering [19] algorithm adheres to the following procedure

1. Assign each element to its own cluster. And assign cluster distance DC = D. Also,
assign n = N which represent the number of clusters. In addition, let H be a cluster
tree of height N and assign the current clusters to H(N − 1).

2. Find the closest pair of clusters and merge them into a single cluster.
2A generic distance d : N×N → R must follow the following properties: d(x, y) ≥ 0, d(x, y) = 0⇔ x = y

and d(x, z) ≤ d(x, y) + d(y, z)

16

3. Compute DC according to new clusters. If DC was of size n × n, now it should be
(n− 1)× (n− 1). Assign n = n− 1 and assign the current cluster to H(n− 1).

4. If n > 1 go to step 2. Otherwise clustering is finished.

Step 2 can be done using different methods. Conventional methods calculate the cen-
troid distance of clusters, the minimum distance of clusters, or the maximum distance of
clusters.

17

Chapter 3

Proposed Method

This chapter aims to examine the proposed method used in SiPTA thoroughly. For this
reason, we first take a look at an overview of SiPTA, and then we will review each part of
SiPTA in more details.

This chapter examines methods employed by SiPTA. We begin with an overview of
SiPTA and proceed to explore this framework in greater depth by in-depth examination of
every SiPTA part.

3.1 Overview

Our work applies to detecting anomalies by analyzing traces from systems with recurring
periodic processes, as are often found in the embedded systems domain [35].

Figure 3.1 shows a generic work-flow of SiPTA. In this workflow a set of traces, which can
be training traces or analyzing traces, are passed to SiPTA as input. In the preprocessing
phase traces are converted to time series and spectra. Then, the feature extraction phase,
extracts different features from those time series and spectra. Next, that in the training
phase normal feature constraints are extracted from training features that represent con-
straints on features for the corresponding trace to be clean. In the analysis phase SiPTA
uses normal feature constraints and analyzing features to assign clean and dirty labels to
the traces corresponding to the analyzing features. This phase does so by checking if the
features of input analyzing trace fit the constraints extracted in the training phase. If it
fits, the label for that trace is clean, otherwise the label is dirty.

18

Trace
Preprocessor

Feature
Extraction

Engine

Time Series

Features

Train
EngineFeatures

Tr
ai

ni
ng

Analyze
Engine

Analyzing

Normal Feature Constrains

Labels for Analyzing Traces

Input

Traces

Output

SiPTA

Figure 3.1: SiPTA overview

SiPTA takes advantage of the periodic behavior exhibited in the traces [29] using signal
processing algorithms and methods. In the area of anomaly detection, previous works also
exploit mathematical concepts that are primarily used in signal processing. For example
[21, 15, 38, 36, 30] use wavelets and wavelet transform as a means for anomaly detection.
Also, [46] utilizes Fourier transform as means of anomaly detection. Their work focuses on
detecting anomalies in network-based systems. In contrast, SiPTA introduces the idea of
using frequency characteristics of event transitions.

Given this information, we can explore different parts of SiPTA in detail.

3.2 Preprocessing

As mentioned in Section 1.3.2, traces are a sequence of trace entries. Also, trace entries
are structured with two members: one member represents the event and another member
represents the time in which that event occurred.

To apply signal processing algorithms to traces, we need to model traces with signals and

19

channels. For this reason SiPTA needs to create multiple channels for the signal associated
with the trace. Then the time series for each channel should be constructed.

Definition 11 (Channel Names) Let Tt be the set of training traces of sizeM . In other
words, Tt = {T t0, ..., T tM−1}. Also, let all traces in Tt be over parameter sets {P0, . . . ,PM−1}.

So, we know that the following holds:

∀T ∈ Tt,∀0 ≤ n ≤ |T | − 1, T (n).P ∈ P0 × . . .× PM−1

In other words, any parameter of any entry of any of these traces are over {P0, . . . ,PM−1}.
Also, let N ⊆ P0 × . . . × Pm−1 be the smallest subset in which ∀T ∈ Tt,∀1 ≤ n ≤

|T |, T (n).P ∈ N holds, meaning, it contains every parameter from every entry of every
trace in Tt, but nothing more. In this case, we refer to N as the set of channel names
associated with Tt.

Now, for the sake of simplicity, we treat these channel names as channel objects from
which SiPTA can extract various information such as their corresponding time series in
some trace.

Definition 12 (Channel Objects) Let N be the set of channel names for some trace set
Tt. We define the following fundamental members for any n ∈ N :

• n: A property from which returns the actual value of the channel name.

• n.exists(T)): A Boolean function for determining the existence of n in T . In other
words,

n.exists(T) =
{

true ∃i, T (i).P = n

false otherwise

• n.timeSer(T): A function that returns a vector containing time series associated
with n from T .

Now, with the foundation of channel objects, we will explain the procedure for building
the time series of these channels.

20

Definition 13 (Channel Time Series) Let N be the set of channel names associated
with trace set T. For some n ∈ N and T ∈ T, let n.exists(T) = true. Then, let In
be all T indices where ∀i ∈ In, T (i).P = n. Let tn be the sequence of times in which
T (i).P = n, i.e., tn = T (In).t. Then, time series associated with n will be defined as
n.timeSer(T) = diff(tn), where diff() is the difference function.

Example 5 gives an example on Definitions 11, 12, and 13.

Example 5 (Time Series) If T contains only the trace given in Table 1.1, and N is the
set of channel names associated with T, the following holds. N = {〈open, 3000〉, 〈read,
3000〉, 〈close, 3000〉, 〈read, 4000〉, 〈close, 4000〉}

n In tn n.timeSer(T)
〈open, 3000〉 〈1, 7〉 〈0, 13〉 〈13〉
〈read, 3000〉 〈2, 4, 5〉 〈3, 9, 10〉 〈6, 1〉
〈close, 3000〉 〈6〉 〈12〉 〈〉
〈read, 4000〉 〈3, 8〉 〈5, 18〉 〈13〉
〈close, 4000〉 〈9〉 〈21〉 〈12〉

Definition 14 (Spectrum) Let the set of channel name objects N be defined upon some
set of traces T. Let Pn be the periodogram of some channel name n ∈ N in some trace
T ∈ T. Also, let n.spectrum(T) represent spectrum of n.timeSer(T). In order to extract
n.spectrum(T), SiPTA needs to normalize Pn. As DC1 value Pn has different information
than other parts of it, SiPTA normalizes Pn regarding non-DC frequencies. This normal-
ization, is done by multiplying Pn by a constant that results the area under the spectrum
to be 1:

Sn = Pn ×
length(n.timeSer(T))− 1∑length(n.timeSer(T))−1

i=1 Pn(i)

Also, every member of above expression has a normalized frequency associated with.
For every index 0 ≤ i < ‖n.timeSer(T)‖, The normalized frequency of ith member of the
above expression is i

‖n.timeSer(T)‖ .

The method n.spectrum(T)(f) takes 0 ≤ f ≤ 1
2 as normalized frequency and outputs

the corresponding spectrum value. It also uses linear interpolation for other frequencies
1DC value is the value of frequency series, periodogram, and spectrum at frequency 0.

21

other than the ones associated with the samples of Pn. If i = f × length(n.timeSer(T)),
then n.spectrum(T)(f) will be defined as follows.

n.spectrum(T)(f) =
{
Sn(i) , i ∈ Z
Sn(die)× (i− bic) + Sn(bic)× (die − i) , otherwise

With the definitions of time series and spectra for channel name classes, we can now
look into different features which classifier uses.

3.3 Feature Extraction

SiPTA uses multiple metrics each of which gives a unique feature. The idea behind different
metrics is to measure different properties of signals that in turn represent different periodic
or non-periodic features of the channel name objects.

As is the case with the other parameters, metrics denote members of channel name
objects. Let N be the set of channels over trace set T. Also, let M represent a generic
metric, which takes some parameters as input and outputs the metric, i.e., n.M(T, Params).
The first parameter is the trace on which M is performing. The generic format of M
includes Params. Some metrics might require additional parameters.

• Channel Existence represents existence of channel names in a trace. This metric
has a boolean evaluation. In the greater context of unprocessed traces this metric
seems if some ρ ∈ P has occurred in the trace or not.

• Channel Length represents the time series length of existing channels in a particular
channel name object and a given trace. This metric is an integer metric. In the
greater context of unprocessed traces, this metric sees how many times some ρ ∈ P
has occurred in the trace

• DC Significance measures the significance of DC value regarding other values in the
spectrum of a particular channel name of a particular trace. Also, an integer number
represents this metric. This metric measures how regularly some ρ ∈ P occurs in the
trace.

22

• Multi-Peaks measures the frequency and magnitude of significant values inside a
the spectrum of some channel name of some particular trace. Depending on how
many peaks this metric extracts, the metric can be an array of different lengths
of pairs of frequency and magnitude. Each of these pairs represents a peak in the
spectrum.

We define metrics as members of channel name objects, i.e., n.M(T) is the metric M
on channel name n. This metric takes T as input and returns the feature value of channel
n of trace T using metric M . Also, the modular design of SiPTA facilitates the integration
of additional metrics, thus supporting classification with additional features.

LetM be the set of m metrics. In other words,M = {M0,M1, ...,Mm−1}. Figure 3.2
gives an overview of how feature extraction works. Every metric M ∈ M takes channel
name object set and configurations as input and extracts the features using that metric
for every channel name and every trace. Then M returns the calculated features that are
passed as input to feature integration block. The feature integration block then integrates
the extracted features with the input channel name objects.

Now that we have the overview of feature extraction, we can delve into each of the
proposed metrics in SiPTA. In these sections we will examine the feature extraction metric.
Then we will give a conceptual example to get a grasp on how that metric works. And
after that we will give a real example of how that metric is useful in one of our datasets.
The source for real examples is roughly explained in section 3.3.1.

3.3.1 Real Example

One of the trace sets that we produced for the purpose of this research was using Beagle-
Bone and BeagleBoneBlack boards running QNX Neutrino Real-Time Operating System.
There are twelve similar scenarios, each of which has over 400 different traces.

These scenarios produce and send random data to some ip address. The difference
between these scenarios are the time intervals and/or some differences in random data
generation functions.

For the following sections, we used these traces as a real examples to give the reader a
better grasp on how feature extraction works in real examples.

3.3.2 Channel Existence

In this section we will examine the feature extraction method: Channel Existence.

23

Input

.....

Channel Name Objects

Config Config Config

Feature Integrator
with Channel

Name Objects

Channel Name Objects

Output

Figure 3.2: Feature Extraction overview

Definition 15 (Channel Existence) Let N be the set of channel name objects over trace
set T. ∀T ∈ T,∀n ∈ N , n.exists(T) is the Channel Existence metric

Example 6 (Channel Existence Conceptual Example) Let T = {T1, T2}, be a set
of traces of a read/write file access. Let T1 be as Table 3.1 and T2 be as trace 3.2. So,
we can say that N = {open::r, open::w, read::, write::, close::} is the set of channel
names. In this case if n = open::w or n = write::, then n.exists(T1) = true and
n.exists(T2) = false. Otherwise, n.exists(T1) = n.exists(T2) = true.

Example 7 (Channel Existence Real Example) Using the QNX Neutrino data de-
scribed in Section 3.3.1, Table 3.3 will give the number of common channels names in the
same scenario and between different scenarios. As you can see in Table 3.3, different sce-
narios tend to have more difference in the channel names than other traces from the same

24

Index Time (µS) File Access Action Read/Write
1 0 open r
2 3 open r
3 5 read
4 9 close
5 20 read
6 21 close
7 23 open w
8 38 write
9 38 close

Table 3.1: Read/Write file access example trace T1

Index Time (µS) File Access Action Read/Write
1 0 open r
2 3 open r
3 5 read
4 9 close
5 20 read
6 21 close

Table 3.2: Read/Write file access example trace T2

scenario. Specially, scenario 6 and 10 with the greatest difference as compared to other
scenarios.

3.3.3 Channel Length

In this section, we will examine the feature extraction method: Channel Length.

Definition 16 (Channel Length) Let N be the set of channels over trace set T. For
some n0 ∈ N and T ∈ T if n0.exists(T) = true, we define n0.length(T) as Channel
Length metric. In this case, n0.length(T) =
len(n0.timeSer(T))/∑ n∈N

n.exists(T)=true
length(n.timeSer(T)). If n.exists(T) = false, n0.length(T)

returns a value representing that it is not a number, meaning a value of NaN that stands
for not a number.

25

Scenario
Number

1 3
2 4 0
3 4 5 4
4 4 3 4 4
5 9 8 10 8 5
6 43 41 44 44 47 2
7 5 3 6 4 9 44 4
8 5 5 6 4 10 44 6 4
9 9 10 9 9 5 49 9 11 4

10 45 41 46 44 49 8 44 46 47 6
11 5 3 5 6 9 42 6 6 9 44 3
12 4 2 5 5 8 41 5 3 10 43 3 0

Scenario 1 2 3 4 5 6 7 8 9 10 11 12
Number

Table 3.3: Number of different channel names between scenarios

Example 8 (Channel Length Conceptual Example) Let T = {T1, T2} as defined in
Table 3.1 and Table 3.2. In this case, Table 3.4 gives the values for channel length.

n ∈ N n.length(T1) n.length(T2)
open::r 1/4 1/3
open::w 0 NaN
read:: 1/4 1/3

write:: 0 NaN
close:: 1/2 1/3

Table 3.4: Channel Length example

Example 9 (Channel Length Real Example) Using the QNX Neutrino data described
in Section 3.3.1, Table 3.5 provides the Channel Length of some channels on twelve differ-
ent scenarios. As you can see the Channel Lengths of same scenarios tend to have more
similar values than when compared to other scenarios.

26

Scenario n.length(T) (×10−5)
Number n1

2 n2
3 n3

4

1 3.55 3.3 4.33 3.76 354 619
2 2.57 2.73 2.91 3.23 834 463
3 2.85 3.62 3.36 4.26 462 504
4 3.85 3.3 4.54 3.76 615 619
5 3.03 3.07 3.58 3.5 369 573
6 3.74 3.72 4.57 4.55 1.41 1.41
7 6.65 6.68 7.83 7.87 537 540
8 4.4 4.3 5.19 5.07 488 476
9 4.68 4.65 5.51 5.47 797 792
10 5.81 5.23 7.28 6.59 3.72 3.57
11 7.89 7.89 9.19 9.2 620 618
12 5.94 0 7 6.99 413 412

Table 3.5: Channel Length example

3.3.4 DC Significance

In this section we will examine the feature extraction method: DC Significance.

Definition 17 (DC Significance) This metric determines the significance of DC value
for some spectrum. Let T be defined over set of channel names N , and let T ∈ T. DC value
is represented by the value of n.spectrum(T) at frequency 0, i.e., n.spectrum(T)(0). We
define n.dcSig(T) as DC Significance metric. for n and T , if n.exists(()T) = false or
n.length(T) < 2, then n.dcSig(T) = NaN. If n.exists(()T) = true and n.length(T) ≥
2, we define this value as Equation 3.1 where N = bn.length(T)

2 c.

n.dcSig(T) = n.spectrum(T)(0)

n.length(T)×
∑N

i=1 n.spectrum(T)(i/n.length(T))
N

(3.1)

In Equation 3.1 the numerator is the DC value of the spectrum. In the denominator,
there are two parameters. The first parameter, n.length(T), is for normalizing the DC

2COMM,MSG_ERROR,
3COMM,MSG_ERROR,bin/sh
4COMM,REC_MESSAGE,proc/boot/pipe

27

value according to the length of the channel. The reason for this normalization is that
the FFT calculates DC by adding all the values in the time series. So, the DC value of
spectrum depends on the length of the time series.

The second parameter,
∑N

i=1 n.spectrum(T)(i/n.length(T))
N

, divides the DC value by the mean
value of other frequency parameters in the spectrum. For example, if other values have
a more significant value, the DC value in comparison to them would relatively decrease.
This normalization puts it into account.

DC Significance measures how regular some event corresponding the channel name
occurs in the trace. For example, if some event regularly occurs with a random interval be-
tween 9µs and 11µs, it would have a higher DC Significance compared to some other event
that occurs at random intervals between 5µs and 15µs. Example 10 gives an conceptual
example to clarify this metric.

Example 10 (DC Significance Conceptual Example) Assume that trace T has two
channel names: n1 and n2. Let n1 represent an event that occur with intervals randomly
between 9µS and 11µS with uniform distribution. Also, let n2 represent an event that oc-
cur with intervals randomly between 5µS and 15µS with uniform distribution. Figure 3.3
depicts a small segment of event series of n1 and n2. Also, Figure 3.4 depicts their corre-
sponding spectra. Table 3.6 depicts the DC Significance values of n1 and n2.

Channel DC Significance value
n1 147.63
n2 6.2033

Table 3.6: Example 10 DC Significance values

As depicted in Figure 3.3, n1 is more regular than n2. Also, as depicted in Figure 3.4,
the DC values of n1.spectrum(T) and n2.spectrum(T) reside around 500. But the rest
of the spectrum in n1 is around 10−3 while the spectrum for n2 is around 10−1 which is
significantly higher than n1. For this reason, n1.dcSig(T) > n2.dcSig(T) which Table 3.6
confirms.

Example 11 (DC Significance Real Example) Using the QNX Neutrino data described
in Section 3.3.1, Table 3.7 gives the DC Significance of some channels of twelve different
scenarios. For each scenario there is for different channel names and for each of those
channel names, there are two different runs. As you can see the DC Significance values

28

time (7s)
0 10 20 30 40 50 60 70 80 90 100

O
cc

ur
re

nc
e

0

1

n
1
 Event Occurrence

time (7s)
0 10 20 30 40 50 60 70 80 90 100

O
cc

ur
re

nc
e

0

1

n
2
 Event Occurrence

Figure 3.3: Example 10 events

of two different runs of the same scenarios and same channel names tends to have more
similar values compared to other scenarios. This means that DC Significance can be good
measure for system properties.

29

frequency (Hz)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

M
ag

ni
tu

de
 (
#

10
-3

)

10 -2

10 0

10 2

10 4

n
1
 Spectrum

frequency (Hz)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

M
ag

ni
tu

de
 (
#

10
-3

)

10 -2

10 0

10 2

10 4

n
2
 Spectrum

Figure 3.4: Example 10 spectra

3.3.5 Multi-Peak

In this section, we will review the functionality of Multi-Peak metric for feature extraction.
For this reason, SiPTA uses the algorithm introduced in Section 2.2. As mentioned in
Section 2.2, this method receives a time series and a confidence interval c as input and
outputs a threshold for peak detection. SiPTA detects peaks by comparing spectrum to

5COMM,MSG_ERROR,bin/sh
6COMM,REC_MESSAGE,proc/boot/pipe
7COMM,REC_MESSAGE,proc/boot/random
8COMM,REC_PULSE,proc/boot/io-pkt-v4-hc

30

n.dcSig(T) (×10−3)
Scenario n1

5 n2
6 n3

7 n3
8

Number run 1 run 2 run 1 run 2 run 1 run 2 run 1 run 2
1 57.7 62.5 0.306 0.172 0.49 0.576 190 127
2 59.5 53.8 0.112 0.343 0.495 0.424 102 156
3 63.7 67.6 0.301 0.368 0.538 0.56 184 180
4 58.9 61.7 0.225 0.178 0.517 0.554 126 128
5 49 57.9 7.77 0.147 0.611 0.615 185 138
6 62.5 63.3 227 230 0.397 0.46 381 380
7 71.3 72.6 0.628 0.612 1.21 1.26 149 149
8 54.6 57.5 0.314 0.316 58.8 58.8 157 156
9 43 43 0.204 0.203 0.409 0.391 59.5 59.2
10 62.9 59.8 41.2 41.2 0.226 0.226 380 376
11 64.6 64.6 0.855 0.853 0.911 0.911 99 98.2
12 60.2 61 0.785 0.784 81.4 81.4 127 126

Table 3.7: DC Significance example

the derived threshold. For the sake of simplicity, we define the threshold finder algorithm
in Section 2.2 as a member of channel name object. Definition 18 gives a formal definition
for this member of channel name objects.

Definition 18 (Threshold Finder) Let trace set T be defined over channel name set
N . for any n ∈ N , T ∈ T, and confidence interval 0 < c < 1, let n.FindThreshold(T, c)
return the peak detection threshold of channel n in trace T with confidence interval of c.

In order to formally define Multi-Peak, we should first define peak.

Definition 19 (Peak) Let y : R → R and ythreshold : R → R be some functions with
domain (xmin, xmax). In this case, p = 〈xp, yp〉 ∈ (xmin, xmax)×R is a peak in y with regard
to threshold ythreshold, if the following holds:

• yp = y(xp)

• yp > ythreshold(xp)

• ∃xm, xM ∈ (xmin, xmax), xm < xp < xM , ∀xm < x0 < xM , x0 6= xp ⇒ y(x0) < xp

31

time (7s)
0 10 20 30 40 50 60 70 80 90 100

O
cc

ur
re

nc
e

0

1

n
1
 Event Occurrence

time (7s)
0 10 20 30 40 50 60 70 80 90 100

O
cc

ur
re

nc
e

0

1

n
2
 Event Occurrence

Figure 3.5: Example 12 events

In other words, p represents the x and y values for local maximums which exceed the
threshold value.

With this definition of peaks, we can define the Multi-Peak metric.

Definition 20 (Multi-Peak) Let T be defined over set of channel names N . For any
n ∈ N , T ∈ T, and 0 < c < 1, if length(n.timeSer(T)) ≥ min-len-for-multi-peak,
n.MultiPeak(T, c) = NaN where min-len-for-multi-peak is the minimum time series
length required for Multi-Peak metric. Otherwise, n.MultiPeak(T, c) is the set of all peaks
(Definition 19) of n.spectrum(T) with regard to threshold n.FindThreshold(T, c).

32

frequency (Hz)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

M
ag

ni
tu

de
 (
#

10
-3

)

10 -2

10 0

10 2

10 4

n
1
 Spectrum

frequency (Hz)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

M
ag

ni
tu

de
 (
#

10
-3

)

10 -2

10 0

10 2

10 4

n
2
 Spectrum

Figure 3.6: Example 12 spectra

Multi-Peak aims to detect multiple frequency components in a spectrum of different
channels. These frequency components estimate the repetition pattern of corresponding
event intervals. For example, if there is a major component in the repetition pattern in
event intervals of length 5, then there would be major frequencies of k/5 (k = 1, 2, ...) in
the spectrum. Of course this metric will also detect features that do not comply with this
type of example, but they tend to remain the same in same scenarios.

Example 12 (Multi-Peak Conceptual Example) Assume that trace T has two chan-
nel names: n1 and n2. Let n1 be some channel that its corresponding events has a repetition
pattern of length 5 and n2 be some channel that its corresponding events has a repetition

33

frequency (Hz)
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

M
ag

ni
tu

de

0

20

40

60

80

100
Scenario 1 - Trace 1 -Spectrum

frequency (Hz)
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

M
ag

ni
tu

de

0

20

40

60

80

100
Scenario 1 - Trace 2 - Spectrum

Figure 3.7: n.spectrum(T1) and n.spectrum(T ′1) in Example 13

pattern of length 3. Some noise is added to the repetition patterns of both n1 and n2. Fig-
ure 3.5 depicts a small segment of event series of n1 and n2. Also, Figure 3.6 depicts their
corresponding spectra.

As depicted in Figure 3.3, the repetition pattern of n1 has the length of 5 and the rep-
etition pattern of n2 has a length of 3. It is evident that major peaks of n1.spectrum(T)
and n2.spectrum(T) are at frequencies k

5 (k = 1, 2) and k
3 (k = 1), respectively. These fre-

quencies align with the repetition pattern periods that are the source of event construction
for these channel names.

Now, we can take a look at Example 13.

34

frequency (Hz)
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

M
ag

ni
tu

de

0

20

40

60

80

100
Scenario 2 - Trace 1 -Spectrum

frequency (Hz)
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

M
ag

ni
tu

de

0

20

40

60

80

100
Scenario 2 - Trace 2 - Spectrum

Figure 3.8: n.spectrum(T2) and n.spectrum(T ′2) in Example 13

Example 13 (Multi-Peak Real Example) Let T, the trace set explained in Section 3.3.1
be over channel name set N . Also, let n ∈ N9 and for any Ti ∈ T represent a scenario
according to subscript i. For example, T1 and T ′1 have same scenarios while T1 and T2 have
different scenarios. Figures 3.7, 3.8, 3.9 and 3.10 depict n.spectrum(T) of four different
scenarios, each of which possess two different traces.

As you can see in the figures provided in Example 13, spectra of different scenarios tend
to have different Multi-Peak values. For example scenario 1 has fewer peaks compared to
other scenarios. Likewise, scenario 4 has higher peaks at frequencies around k × 5× 10−3

9n = COMM,SND_PULSE_EXE,proc/boot/devb-mmcsd-jacinto5

35

frequency (Hz)
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

M
ag

ni
tu

de

0

20

40

60

80

100
Scenario 3 - Trace 1 -Spectrum

frequency (Hz)
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

M
ag

ni
tu

de

0

20

40

60

80

100
Scenario 3 - Trace 2 - Spectrum

Figure 3.9: n.spectrum(T3) and n.spectrum(T ′3) in Example 13

while scenarios 1 and 2 have significant peaks at frequencies k × 1 × 10−2 and scenario 3
has peaks at much smaller frequency intervals.

36

frequency (Hz)
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

M
ag

ni
tu

de

0

20

40

60

80

100
Scenario 4 - Trace 1 -Spectrum

frequency (Hz)
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

M
ag

ni
tu

de

0

20

40

60

80

100
Scenario 4 - Trace 2 - Spectrum

Figure 3.10: n.spectrum(T4) and n.spectrum(T ′4) in Example 13

3.4 Training

The third part of SiPTA that we are going to examine is the Train Engine depicted in Fig-
ure 3.1. This block uses the features of train traces to extract Normal Feature Constraints.

We define normal feature constraints as a member of channel name objects: n.t is a
trainer t for channel name n.

LetM be the set of m metrics. In other words,M = {M0,M1, ...,Mm−1}. Similarly,
let T be a set of m training blocks or trainers, i.e., T = {t0, t1, ..., tm−1}.

Figure 3.11 gives an overview of how training works. Let T = Tt ∪ Ta where Tt is the

37

set of training traces and Ta is the set of analyzing traces. Also, let T be over the channel
name set N . Every trainer t ∈ T takes the set of channel name objects, configurations,
and Tt as input and extracts the normal constraints of the corresponding feature for all
applicable channel names under the assumption that Tt represent normal behavior. Then,
all the normal constraints are integrated with channel name objects.

Input

.....

Channel Name Objects

Config Config Config

Feature Integrator
with Channel

Name Objects

Channel Name Objects

Output

Figure 3.11: Train engine overview

Given this introduction, we can now look into different trainers and normal constrains.
In the following sections we assume that T is the set of traces that can be partitioned into
Tt and Ta, which are training and analyzing sets, respectively. Also, we assume that T is
defined over the channel name set N .

38

3.4.1 Channel Existence

We define the Channel Existence constraint as normally-exists. n.normally-exists
should return the normal constraint of Channel Existence for channel name n if n ∈ N .
Channel Existence trainer partitions N into three groups: all, some, none. These groups
are defined as below:

• all: For any n ∈ N : if ∀T ∈ Tt, n.exists(T) = true then n.normally-exists =
all

• some: For any n ∈ N : if ∃T ∈ Tt, n.exists(T) = true ∧ ∃T ∈ Tt, n.exists(T) =
false then n.normally-exists = some

• none: For any n ∈ N : if ∀T ∈ Tt, n.exists(T) = false then n.normally-exists =
none

3.4.2 Channel Length

For every channel name, normal constraints of Channel Length is average and variance
of Channel Lengths which are represented by length-avg and length-var, respectively.
Definitions 21 and 22 formally define length-avg and length-var.

Definition 21 (Average Channel Length) For any n ∈ N : if ∃T1, T2 ∈ Tt, T1 6=
T2 ∧ n.length(T1) 6= NaN ∧ n.length(T2) 6= NaN, we can calculate the average Channel
Length. Otherwise n.length-avg = NaN. In the case that that n.length-avg is calcula-
ble, Equation 3.2 gives a formal definition of average Channel Length.

∀n ∈ N, n.length-avg = Avg
T∈Tt∧

n.length(T) 6=NaN

(n.length(T)) (3.2)

Definition 22 (Channel Length Variance) For any n ∈ N , if ∃T1, T2 ∈ Tt, T1 6= T2 ∧
n.length(T1) 6= NaN ∧ n.length(T2) 6= NaN we can calculate Channel Length variance.
Otherwise n.length-var = NaN. In the case that n.length-var is calculable, Equation 3.3
gives a formal definition for Channel Length variance.

∀n ∈ N, n.length-var = Var
T∈Tt∧

n.length(T) 6=NaN

(n.length(T)) (3.3)

39

3.4.3 DC Significance

For every channel name, normal constraints of DC Significance is the average and variance
of DC Significances, which are represented by dcSig-avg and dcSig-var, respectively.
Definitions 23 and 24 formally define dcSig-avg and dcSig-var.

Definition 23 (Average Channel Length) For any n ∈ N : if ∃T1, T2 ∈ Tt, T1 6=
T2 ∧ n.dcSig(T1) 6= NaN ∧ n.dcSig(T2) 6= NaN, we can calculate average Channel Length.
Otherwise, n.dcSig-avg = NaN. In the case that n.dcSig-avg is calculable, Equation 3.4
gives a formal definition of average Channel Length.

∀n ∈ N, n.dcSig-avg = Avg
T∈Tt∧

n.dcSig(T) 6=NaN

(n.dcSig(T)) (3.4)

Definition 24 (Channel Length Variance) For any n ∈ N : if ∃T1, T2 ∈ Tt, T1 6=
T2 ∧ n.dcSig(T1) 6= NaN ∧ n.dcSig(T2) 6= NaN, we can calculate Channel Length variance.
Otherwise, n.dcSig-var = NaN. In the case that n.dcSig-var is calculable, Equation 3.5
gives a formal definition of Channel Length variance.

∀n ∈ N, n.dcSig-var = Var
T∈Tt∧

n.dcSig(T) 6=NaN

(n.dcSig(T)) (3.5)

3.4.4 Multi-Peak

For every channel name, normal constraints of Multi-Peak are averages and variances/co-
variances of peaks that are represented by MultiPeak-avg and MultiPeak-cov, respec-
tively. MultiPeak-avg and MultiPeak-cov are sequences of averages and variances/co-
variances of peak frequency and magnitude.

The Multi-Peak train engine algorithm does the following for some 0 < c < 1 and every
n ∈ N

1. Let Pn be a set of peaks of channel n, meaning Pn = {P0, P1, ..., Pm−1} wherem = |P|.
Also, let members of Pn be a tuple of peak location (frequency and magnitude) and

40

a reference to trace that the peak came from. In this case, this step of Multi-Peak
train engine sets the value Pn as equation 3.6.

Pn = {〈p, T 〉|∀T ∈ T, ∀p ∈ n.MultiPeak(T, c) ∧ n.MultiPeak(T, c) 6= NaN} (3.6)

2. A hierarchical cluster tree H (according to section 2.4) is formed regarding the fre-
quency value of the peak member of every P ∈ Pn. In other words, every P ∈ Pn
form cluster tree with regard to P.p.f (recall that P = 〈(f,m), T 〉).

3. The lowest cluster count h is found such that none of the clusters in H(h− 1) have
peaks with peaks of the same trace. Formally, Equation 3.7 describes this step.

h = min(h),@Clusts ∈ H(h− 1),∃p, p′ ∈ Clust, p 6= p′ ∧ p.T = p′.T (3.7)

4. Assign Clusts = H(h− 1), which is a set of h peak cluster.

5. Remove the clusters from Clusts with less that 2 peaks.

6. Assign ClustCnt = |Clusts|, which represents the number of peak clusters.

7. For every 0 ≤ i ≤ ClustCnt− 1, let C = Clusts(i). Let Equation 3.8 and 3.9 assign
the values of n.MultiPeak-avg and n.MultiPeak-cov.

n.MultiPeak-avg(i) = 〈Avg
P∈C

(P.p.f),Avg
P∈C

(P.p.m)〉 (3.8)

n.MultiPeak-cov(i) =

Cov
P∈C

(P.p.f, P.p.m), if the result is invertible

〈Var
P∈C

(P.p.f),Var
P∈C

(P.p.m)〉, otherwise
(3.9)

3.5 Analyzing

The fourth part of SiPTA that we are going to examine is Analyze Engine as illustrated in
Figure 3.1. This block uses the features of train traces, analyze traces and normal feature
constraints to extract Labels for Analyze Traces.

41

LetM be the set of m metrics. In other words,M = {M0,M1, ...,Mm−1}.
Figure 3.12 provides an overview of how analyzing works. Let T = Tt ∪Ta where Tt is

the set of training traces and Ta is the set of analyzing traces. Also, let T be over channel
name set N .

As Figure 3.12 depicts, every feature extraction method has its corresponding analyzer.
Each analyzer takes features, and normal feature constraints as input and outputs a score
value. The block label assigner then takes these scores for training and analyzing traces
and use these scores to score every analyzing trace. The analyzer blocks and the label
assigner block has its set of configurations that are omitted in Figure 3.12 for the sake of
simplicity.

As Section 3.4 showed, normal feature constraints are embedded in channel name ob-
jects. So, virtually all the inputs required for analyze engine is the set of channel name
objects that are updated through train engine. The depiction of three separate inputs in
Figure 3.12 is not necessary but allows for better understanding of the analyze engine.

In this section, we examine how different analyzer blocks produce the score value.
Additionally, we examine how the label assigner block works.

In the following sections, we assume that T is the set of traces which has two partitions
Tt and Ta which are training and analyzing sets respectively. Also, we assume that T is
defined over channel name set N .

3.5.1 Channel Existence

For any T ∈ T, the Channel Existence analyzer return a non-negative integer that represent
how likely it is for T to be anomalous on the sole basis of Channel Existence. Equation 3.10
offers a formal formula for Scoreexists:

Scoreexists(T) = |{n|(n.exists(T) = false ∧ n.normally-exists = all)∨
(n.exists(T) = true ∧ n.normally-exists = none)}|+ 1

(3.10)

As Equation 3.10 explains, Scoreexists(T) counts the number of channel names in T
that exist while they are absent from any of the training traces and the channel names
that exists in all train traces while they do not exist in T .

42

Train
Features

Analyze
Features

Normal
Feature

Constrains

Label
Assigner

Scores Scores
Scores

Labels

Output

Figure 3.12: Analyze engine overview

3.5.2 Channel Length

For any T ∈ T, the Channel Length analyzer return a non-negative real value that repre-
sents how likely it is for T to be anomalous on the sole basis of Channel Length. Equa-
tion 3.11 gives a formal formula for Scorelength.

Scorelength(T) = Avg
n∈N∧

n.length(T)6=NaN∧
n.length-avg6=NaN

(
(n.length(T)− n.length-avg)2

n.length-var

)
(3.11)

43

3.5.3 DC Significance

For any T ∈ T, the DC Significance analyzer return a non-negative real value that rep-
resents how likely it is for T to be anomalous on the sole basis of DC Significance. The
equation for calculating DC Significance score is very similar to Equation 3.11, which
Equation 3.12 gives a formal formula for.

ScoredcSig(T) = Avg
n∈N∧

n.dcSig(T) 6=NaN∧
n.dcSig-avg6=NaN

(
(n.dcSig(T)− n.dcSig-avg)2

n.dcSig-var

)
(3.12)

3.5.4 Multi-Peak

Compared to the other metrics we presented in this thesis, Multi-Peak is the most sophis-
ticated metric in every aspect so far. This sophistication extends to feature extraction and
training.

Assume that for some T ∈ T, and n ∈ N , both n.MultiPeak(T, c) and n.MultiPeak-avg
has at least one peak. Also, under the assumption that pt ∈ n.MultiPeak(T, c) and
pAvg ∈ n.MultiPeak-avg and pCov ∈ n.MultiPeak-cov are average and variance/covari-
ance information of same peaks in Multi-Peak normal constraints. By matching these
peaks together, the cost of pt deviation from normal constraint (ScoreMultiPeak(T, n, pt))
is determined by Equation 3.13. In this equation, S = ScoreMultiPeak(T, n, pt), f = pt.f ,
m = pt.m, f̄ = pAvg.f , m̄ = pAvg.m, and Σ = pCov. In the event that pCov is not a
covariance matrix, fσ2 = pCov.m and mσ2 = pCov.m.

S =

[
f − f̄ m− m̄

]
× Σ−1 ×

[
f − f̄
m− m̄

]
, pCov is covariance

(f − f̄)2

fσ2
+ (m− m̄)2

mσ2
, pCov is two variances

(3.13)

Now, under the assumption that there are kp peaks in n.MultiPeak(T, c) and kn peaks
in n.MultiPeak-avg and n.MultiPeak-cov. Let k = min(kp, kn) and K = max(kp, kn).
We can match k peaks of n.MultiPeak(T, c) to k peaks of n.MultiPeak-avg10. Let us
name the results as S0, ..., Sk−1. The challenge is that to match these peaks in such a way

10Remeber that the number of peaks in n.MultiPeak-cov is equal to the number of peaks in
n.MultiPeak-avg

44

that ∑k−1
i=0 Si minimizes. This matching is not feasible using brute-force algorithm because

there are K!/(K−k)! different combinations.
In order to do so, we make a weighted complete bipartite graph G = {V,E,w}

(see Section 2.3) with 2K vertices. On the left side of this graph there are peaks from
n.MultiPeak(T, c) while on the right side there are peaks from n.MultiPeak-avg and
n.MultiPeak-cov. The remaining nodes on the side with k peaks will have K − k dummy
peaks. Equation 3.13 determines the weight of the edges if none of the vertices on either
side of the corresponding edge is a dummy node; choosing the corresponding peaks from
n.MultiPeak(T, c) and n.MultiPeak-avg and n.MultiPeak-cov as inputs for this equation.
If the edge is connected to a dummy vertex, then its weight is 0. Then Hungarian algorithm
which is explained in Section 2.3 finds the best matching for peaks in n.MultiPeak(T, c)
with regard to n.MultiPeak-avg and n.MultiPeak-cov and outputs the minimum possible∑k−1
i=0 Si.
Let ScoreMultiPeak(T, n) be (K−k+1)

k
× ∑k−1

i=0 Si for minimum value of ∑k−1
i=0 Si if there

is at least one peak in n.MultiPeak(T, c), and n.MultiPeak-avg and n.MultiPeak-cov.
Otherwise, let ScoreMultiPeak(T, n) = NaN. In this case, the Multi-Peak score for T is the
average of all ScoreMultiPeak(T, n) with none-NaNvalues. Formally, Equation 3.14 describes
ScoreMultiPeak(T).

ScoreMultiPeak(T) = Avg
n∈N∧

ScoreMultiPeak(T,n)
6=NaN

(
ScoreMultiPeak(T, n)

)
(3.14)

3.5.5 Label Assigner

The job of the label assigner is to use the scores from Tt and Ta to assign labels to traces
in Ta. Consider the models in Figures 3.2, 3.11, and 3.12. In these models there are m
feature extraction methods. Let Tt = {T0, ..., Tn−1} and assume n > m. In this case, let
the St be the score observation matrix for Tt. Equation 3.15 formally defines St.

St =

ScoreM0(T0) · · · ScoreM0(Tn−1)

...
ScoreMm−1(T0) · · · ScoreMm−1(Tn−1)

 (3.15)

In the current version of SiPTA m = 4, M0 = exists, M1 = length, M2 = dcSig and
M3 = MultiPeak. Also, let Σt = Cov(St). As n > m, except for extremely specific cases,
Σt is going to be invertible.

45

For any T ∈ T, let ST be a column vector of scores from different methods of SiPTA and
let S(T) be the overall score for trace T . Equation 3.16 calculates S(T) using Mahalanobis
distance [34] formulation.

S(T) = S ′T × Σ−1
t × ST (3.16)

Also, let Smax = max{S(T)|T ∈ Tt}. In this case, for any T ∈ T, let s(T) = S(T)/Smax

be the normalized score for T .
Figure 3.13 gives a real example of the values of scores in some test case. In this figure,

Tt = {T1, ..., T5} and Ta = {T6, ..., T15}.

s(T
i
)

10 0 10 1 10 2 10 3 10 4 10 5

i (
T

ra
ce

 in
de

x)

0

2

4

6

8

10

12

14

16
Scores

Training Set - Normal Traces
Analyzing Set - Normal Traces
Analyzing Set - Anomalous Traces

Figure 3.13: Scores

46

As Figure 3.13 depicts, the score values for dirty traces are much higher than clean
traces. If a threshold values r between 8 and 2000 distinct clean and dirty traces, SiPTA
can achieve perfect classification.

47

Chapter 4

Experimental Setup

While SiPTA in theory is well suited to the problem domain of periodic systems, we fol-
lowed up our theory work with an experimental evaluation to provide quantitative results.
The following section describes the conducted experiments used to evaluate the proposed
technique, the evaluation process, and the results.

4.1 Experimental Setup and Workload

Our experiments use the QNX Neutrino 6.4 real-time operating system. While the frame-
work is independent from system traces, we used QNX, because we have three distinct
applications from which we can gather traces: a hexacopter application [8], a QNX CAR
infotainment unit, and Blackberry phones running QNX. This allows us to gather system
traces from very different execution contexts and properly evaluate SiPTA.

To collect data, we used the QNX kernel logging facility for our experiments. The kernel
logging facility provides trace capabilities through QNX tracelogger. A trace collected from
tracelogger contains a chronological order of system events such as system calls, message
passes, interrupts, I/O etc. Every trace entry corresponds to a system event and a set of
additional related information, such as the source/destination of a message pass. A sample
trace is shown in the following snippet:

TIMESTAMP, CPU, EVENT, PID, PROC, Details
t1, 1, PROCCREATE, 1, A, PPID: 0 ...
t2, 1, THCREATE, 1, A, ...

48

t3, 2, INT_ENTR, 1, A, ...
t4, 2, INT_EXIT, 1, A, ...
t5, 1, MSG_SND, 1, A, To: B ...
t6, 1, MSG_RECV, 3, B, From: A ...
.....
tn, 1, KER_CALL, 1, A, SIGKILL ...

The above snippet shows the life-cycle of a process as recorded by the system. The
process A, once created, spawns a thread, addresses an interrupt, sends message to some
other process B before being terminated.

Our experiment uses only a subset of all the information that is contained in a trace.
Specifically, our comparisons only consider the following event attributes: class, event,
time, pid, and process name. This is consistent with related work [13] which reduces the
used attributes to similar lists.

The experimental workload consists of different execution scenarios of the available sys-
tems. Each set contains normal and anomalous traces. The traces are not shared between
the scenarios. Each scenario runs between 10 to 20 seconds. Each trace contains all logging
information for a single scenario, and within one scenario each trace is approximately the
same length in terms of run time. For a given scenario, we split the set of traces arbitrarily
into a training subset and a testing subset where a trace belongs to only one of those sub-
sets. Depending on the detection technique, the training set can contain just normal traces
or it can contain a combination of normal and anomalous traces (e.g., we need anomalous
traces as part of the training set for the comparison with Neural Networks). Similarly, the
testing set can contain a set of normal traces, a set of anomalous traces, or a combination
of both.

The experimental setup and workload is specific for embedded systems. In particular,
we picked four embedded devices (details later in the section), and used some test scenarios
to collect traces. As most events in embedded systems are periodic in nature, our test cases
attempt to cover general cases that exhibit periodicity. Each scenario contained two sets
of traces: Tt and Ta. Of these sets, Tt trains the system with relevant information to be
able to identify anomalous traces from the set Ta. Recall that an anomalous trace is one
that does not conform with the expected behavior learnt from the training traces.

• Hexacopter : The first scenario uses traces from an unmanned aerial vehicle (UAV)
platform, which implements non-trivial software and systems control [8]. The plat-
form runs on beaglebone white with ARM Cortex-A8 processor and comprises a
networked system of hardware and software components. The hexacopter is field

49

tested through several mission-critical applications including iceberg monitoring on
the open sea and creating infrared maps over critical Canadian Solar infrastructure.
For our experiment, we created two test scenarios. In both scenarios, the training
traces correspond to the hexacopter running normally. The classes of anomalous
traces involved, for instance, a periodic recursive listing on the file system1 and get-
ting stuck in a tight loop.

• QNX CAR infotainment device: The second set of scenarios uses QNX CAR [5],
which is the leading in-car infotainment system. The device was running QNX Neu-
trino on an i.MX6Q (Sabre lite) board with an ARM Cortex A9 quad-core processor.
We created the following scenarios on this platform:

Normal trace Anomalies
Idle Induced network traffic, user inputs

Play MP3 Seeking, fast-forward, different song
Play Video Seeking, fast-forward, different video

Run top command Induced network traffic, more shell tasks

• QNX-based BlackBerry Z10 phone: The third set of scenarios uses the BlackBerry
phone. These phones run a modified version of QNX Neutrino, however, the tracel-
ogging facilities are still available. We created the following set of scenarios on this
platform:

Normal trace Anomalies
Record video Zooming and toggling the camera

light on/off
Play youtube video Playing different video,

toggling HD on/off
Play game Change sound, using different controls

Run flash applet Reload page, leave page

• Embedded target: This scenario uses a non-commercial demonstrator platform for
QNX Neutrino [4]. The hardware runs on the i.MX6Q (sabre lite) similar to our QNX
CAR case study. For this scenario, the platform executes a sound alarm application
displaying audio frequencies recorded through the microphone. The normal behavior
runs the system in a quiet setup. The anomalies include producing different loud
sounds nearby.

1while [1]; do sleep 2; ls -lR /; done

50

• Variable delay traces: Finally, we ran SiPTA on a set of traces which were generated
on QNX Car platform by varying the delay between the events. We emulated this
behavior in the traces by inserting delays between two instances of high system
activity. For example, a scenario in which the device pings the network every other
second, and another in which the interval is increased to 5 seconds. Considering the
slow traces as normal and the faster ones as anomalies, SiPTA was able to correctly
identify and appropriately label the traces as we show in Chapter 5.

4.2 Evaluation Criteria

To measure the effectiveness of SiPTA, we need to compare the results to different existing
techniques. The prevalent metric for comparison in anomaly detection is receiver operating
characteristics curve (ROC) analysis [18].

ROC Analysis

ROC analysis is a common technique in research to compare different classifiers based on
their performance [43, 31]. ROC analysis explains the trade-off between the true positive
rate (TPR), plotted on the y-axis, and the false positive rate (FPR), plotted on the x-axis.
To compare different classifiers, the common approach [18] is to consider the classifier with
the higher area under the ROC curve as the better classifier.

Figure 5.1 shows an ROC curve for one of the experiment runs. The algorithm calculates
the values for a point (FPR, TPR) using Equations 4.1 and 4.2 where a classifier threshold
interprets the input probabilities into a binary output of 0 (negative) or 1 (positive).

TPR = Positives correctly classified
Total Positives (4.1)

FPR = Negatives incorrectly classified
Total Negatives (4.2)

To obtain all points for the ROC curve when using Markov Model, the algorithm varies
the threshold over a range of all input probabilities to obtain the corresponding points
(FPR, TPR) plotted in the figure. In SiPTA, this corresponds to varying the value r.

51

In addition to the area under the ROC curve, some important characteristics of the
curve help with the analysis of the classifier performance. For example, point (0, 1) indi-
cates perfect classification while the region under the dotted line TPR = FPR indicates that
the classification is worse than making a random guess.

4.3 Comparison to Alternative Approaches

To evaluate SiPTA, we compare it to other approaches implementing alternative concepts.
For example, one alternative uses a stochastic approach, which assumes that anoma-
lies change the probabilistic characteristics of event transitions in a sequence of system
events. The most popular technique for this approach is the first-order Markov Model
technique [14]. Another alternative that we use for comparison is Neural Networks [10].
The two techniques were chosen due to their popularity in the domain and thus a wider
applicability for existing work. The disadvantage of using Neural Networks however is the
inability to use the ROC analysis to compare its performance to the other techniques, as
discussed later in this section.

4.3.1 Markov Model Technique

Markov Model is a discrete-time stochastic process used to study the probability of the
change of a random variable value. First-order Markov Models are commonly used to study
the probabilistic characteristics of a single transition between two events within the trace
sequence [44, 22, 42, 43].

To compare to the performance of SiPTA, we implemented the anomaly detection engine
using first-order Markov Model. For an input trace sequence, an event represents a Markov
Model state so that the Markov Model will describe the probability of occurrence of a
transition between an event and its first successor. Following the work-flow first-order
Markov Model approach, the preprocessor splits the trace into sub-traces based on the
process name and extracts only the event name and event class attributes. For each sub-
trace, the Markov Model calculates a transition probability matrix [44], which indicates
the probability of transition between any trace entries. The averaged transition probability
matrices calculated for the training set describe the normal behavior of the system.

In the testing phase, the classifier compares the transition probability matrix of the test
trace and the normal behavior matrix to decide if the test trace is normal or anomalous. We
assign an anomaly flag for each transition in the test trace that occurs with a probability

52

value that lies outside a defined region around the mean value of probabilities that describe
the normal behavior of the system. For each experiment, we performed several experiment
runs using different sizes for that region to select the region size that yields the best ROC
curve. For the final binary classification, the percentage of anomalous transitions within
the trace indicates, whether the trace is anomalous or not. Varying a threshold over the
range of the percentages, ranging from 0% to 100%, yields points of ROC curve as described
earlier.

For the sake of simplicity of the implementation, transition probability matrices con-
sider only the transitions in a randomly selected normal trace during the training phase
instead of considering all possible transitions combinations. This consideration reduces the
calculations by excluding the transitions that rarely occur and have no effect on the final
classification result.

4.3.2 Neural Networks Technique

Artificial Neural Networks (NN) are massively connected networks of computational nodes
or “neurons”. The nodes are usually organized into layers (input, output, and hidden
layers) with weighted connections between them [24]. As the network learns, it updates
the weights on the connections to improve classification.

For the purpose of comparison, the Kohonen self-organizing network (KSON) was used.
The network uses unsupervised learning algorithms to cluster inputs into groups with sim-
ilar characteristics. The learning is called unsupervised because the output characteristics
of the network are determined internally and locally by the network itself, without any
data on desired outputs. The nodes distribute themselves across the input space to rec-
ognize groups of similar input vectors, while the output nodes compete among themselves
to be fired one at a time in response to a particular input vector [24]. Thus, due to this
competitive learning, similar input vectors activate physically close output nodes. We want
to take advantage of this characteristic of KSON to classify the traces.

The input vectors for the network are an encoded representation of the events in a
trace. To generate the encoding we extract event names from the trace and then count the
number of occurrences of each event. The count for each event is then scaled by dividing
it by the total number of logged events in the trace. The input vector is thus a collection
of event to count mappings for the trace.

The training sets for the network need to contain both clean and anomalous traces.
When the network is trained with only clean traces, it is not able to classify anomalous
traces as part of a different cluster during testing. Thus, unlike other approaches, Neural

53

Networks imposes constraints on the training set. During the testing phase, the network
determines the cluster that the trace belongs to and thus classifies the trace. The clas-
sification is typically discrete, with the output being either 0 (clean) or 1 (anomalous),
however the value can be within that interval in case of more uncertainty.

The difficulty with using Neural Networks technique for comparison with the other
approaches is the lack of a classifier threshold. The classification takes place within the
internal structure of the network using specialized learning algorithms. We can thus alter
the structure of the network, but cannot alter any thresholds that influence the cluster
that the network will choose. As a consequence, we can only report the detection rate for
this technique but cannot perform an ROC analysis.

54

Chapter 5

Experimental Results

Table 5.1 shows the detection rates (TPR) and false-alarm rates (FPR) for each of the
three approaches, namely SiPTA, Markov Model and Neural Networks. Contrary to Neural
Networks, SiPTA and Markov Model implement a binary classifier. This allows us to use
ROC curves to compare their performance, but a similar comparison cannot be done with
Neural Networks.

As mentioned in Section 4.2, the points (FPR, TPR) asymptotically represent the ROC
curve for each approach. Figures 5.1, 5.2, 5.3, and 5.4 show the ROC curves for the
hexacopter, QNX-Car audio play, QNX-Car run top command, and variable ping speed
experiments, respectively. The remaining experiments yielded ROC curves similar to Fig-
ures 5.1 and 5.2 which show perfect classification for both SiPTA and Markov Model.

ROC curves clearly demonstrate the trade-off between the detection rate and the false-
alarm rate for a binary classifier. ROC curve points closer to (0, 1) indicate better results
with 100% detection rate and 0% false alarm rate. Although such points are most desirable,
for our comparisons in Table 5.1, we favor the detection rate over false-alarm rate. The
reason behind this preference is that for most cases the penalty of false negatives outweighs
false positives.

55

FPR (%)
0 10 20 30 40 50 60 70 80 90 100

T
P

R
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

ROC - Hexacopter

SiPTA
Markov Model

Figure 5.1: ROC for hexacopter

SiPTA Markov Model Neural Networks
Detection False-Alarm Detection False-Alarm Detection False-Alarm

Case studies Rate Rate Rate Rate Rate Rate
Hexacopter 100% 0% 100% 0% 91% 0%
QNX-Car Idle 100% 0% 100% 0% 91% 0%
QNX-Car Play MP3 100% 0% 100% 0% 45% 0%
QNX-Car Play Video 100% 0% 100% 0% 83% 0%
QNX-Car Run top command 100% 0% 80% 20% 26% 0%
Variable speed ping 100% 0% 80% 0% 75% 0%

Table 5.1: Results summary

56

FPR (%)
0 10 20 30 40 50 60 70 80 90 100

T
P

R
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

ROC - QNX Car - Audio Play

SiPTA
Markov Model

Figure 5.2: ROC for QNX car audio play

57

FPR (%)
0 10 20 30 40 50 60 70 80 90 100

T
P

R
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

ROC - QNX Car - Run Top Command

SiPTA
Markov Model

Figure 5.3: ROC for QNX car - top command

58

FPR (%)
0 10 20 30 40 50 60 70 80 90 100

T
P

R
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

ROC - Variable Speed Pinging

SiPTA
Markov Model

Figure 5.4: ROC for QNX car pinging scenario

59

Chapter 6

Discussion

SiPTA outperforms all other approaches. In every studied case, our approach yields
better results than other studied approaches. For instance, as Figures 5.4 and 5.3 indicate,
SiPTA yields perfect classification results for the variable speed ping scenario while other
techniques do not. One conjecture for why SiPTA worked is that a change in the ping
frequency introduces more irregular behavior in the trace (or less depending on the direction
of the rate change). With this irregularity, more noise will appear on the spectra of the
channels. As these spectra are normalized, this noise grows in significance as the peaks
show less magnitude. Because for this case, we consider higher ping speed as anomaly,
the peak-frequency and DC-significance metric to have lower values in anomalous case.
For example, Figure 6.1 shows two spectra for the parameter THREAD-THREADY-2367525;
one plot for a normal and the other for an anomalous case. Figure 6.2 also shows two
spectra, in this case for the parameter THREAD-THREADY-1. The distinction between the
peak-frequency values for the normal and anomalous cases is visible and obvious.

Markov Models fail on certain scenarios. The Markov Model results indicate that
the technique does not work for all experiments as SiPTA does. The Markov Model tech-
nique calculates the probabilities of transitions between events where the classifier aims to
find any irregularities among those probabilities. Although the technique seems to work
reasonably well and is currently the dominantly used one [13], it failed to handle certain
scenarios. We conjecture that Markov Model fails for these scenarios, because the anomaly
has an insignificant effect on the transition probabilities. This is due to events changing
their inter-arrival time without affecting their transitions probabilities, which represents a
whole class of anomalies that SiPTA can detect, however, Markov Model cannot.

60

f
0 0.1 0.2 0.3 0.4

m
ag

ni
tu

de

0

5

10

15

20

25

30
Normal

f
0 0.1 0.2 0.3 0.4

m
ag

ni
tu

de

0

5

10

15

20

25

30
Anomalous

Figure 6.1: Spectra of parameter THREAD-THREADY-2367525

Neural Networks are ill-suited for trace-based anomaly detection. Neural Net-
works is an established technique that is used for detecting anomalies, however, due to
its limitations, it is less suitable for this given problem. The results for Neural Networks
indicate that the technique classifies anomalous traces only for some of the scenarios. Neu-
ral Networks are only able to classify anomalous traces unless trained with at least one
anomaly similar to the one occurring. Table 5.1 shows that Neural Networks have a 0%
false alarm rate throughout the experiments, because when the network is not trained with
anomalous traces, then it will tend to default to classifying traces as normal. So, if the
occurring anomalous trace is not similar enough to any anomalous trace used in training,
then the network will classify the trace as normal. Unlike SiPTA and Markov Model, Neural
Networks require a different training set comprising both normal and anomalous traces.

61

f
0 0.1 0.2 0.3 0.4

m
ag

ni
tu

de

0

2

4

6

8

10

12

14

16

18

20
Normal

f
0 0.1 0.2 0.3 0.4

m
ag

ni
tu

de

0

2

4

6

8

10

12

14

16

18

20
Anomalous

Figure 6.2: Spectra of parameter THREAD-THREADY-1

The concepts are widely applicable. It can be observed that SiPTA has an inherently
modular structure. Each component, namely trace-to-signal modeling, signal processing
algorithm, metrics, and classification technique can be modified to suit application specific
scenarios as long as the modules complement each other. For example, one can use some
alternative method to model trace-to-signal mappings other than assigning channels to each
parameter. Similarly, one can plug-in another signal processing algorithm that exploits
some other domain knowledge.

Threats to validity. Our framework and SiPTA base on the assumption that anomalies
show changes in the periodicity of events in the trace; otherwise such anomalies will pass
undetected. Furthermore, similar to all other approach, SiPTA assumes that the trace

62

contains evidence of the anomaly. Our approach still needs supervised learning from a
labeled trace set, similar to Markov Models. While SiPTA was able to outperform all other
studied approaches and we created a comprehensive set of scenarios and traces, naturally
more evidence is necessary to gain confidence that the system will consistently outperform
other approaches also in other settings. Also, as stated in Section 3.5.5, there is minimum
trace demand for training traces.

63

Chapter 7

Conclusion

Identifying an incorrect behavior is crucial for safety-critical embedded systems. In this
work we demonstrated that, with an appropriate application of signal processing algorithms
on execution traces, one can identify an incorrect system behavior. We demonstrated
the feasibility of such an approach by implementing these algorithms into SiPTA. In our
experiments, we performed a holistic evaluation of SiPTA by running it on execution traces
from varied execution scenarios. To demonstrate the effectiveness of SiPTA, we compared
it with state of art techniques of Markov Model and Neural Networks. The results indicate
that SiPTA outperforms all the studied contemporary approaches.

64

APPENDICES

65

Appendix A

Configuring MATLAB
Implementation

In this chapter, we will delve into how to configure the MATLAB implementation
The implementation of SiPTA in MATLAB uses a single xml [12] file to configure dif-

ferent aspects of the implementation. The xml file contains elements. Each element might
contain multiple other elements or a single text field. There are no attributes used in the
configuration xml file.

Now we will do a breadth-first examination of the configurations in the configuration
xml file.

As depicted at Illustration A.1 the top of the xml tree there is an element with tag All.
This element contains the following sub elements as following.

• mode is the running mode which can take one of the following three values.

– release : In this mode, SiPTA takes the databases containing train and analyze
dataset, and runs the entire anomaly detection from scratch, and then loses all
the data that was produced in the middle.

– debug : Unlike release mode, debug modemode calculates and stores all the
features for a set of input traces as well as all data that was produced in the
middle of calculation. Then this data can be restored and redistributed as the
user wants between training and analyzing sets. It is useful for debugging and
testing different parts of SiPTA and testing the performance of SiPTA as it allows
reusing the results of a greater part of the calculation.

66

– debug2 : This mode is like the debug mode but it also allows spectrum likeli-
hood. The danger with this mode is that the features of spectrum likelihood
uses enormous amounts of memory, so this mode has to be used with caution.

• workerCnt: This number is the number of allowed processors to work on the anomaly
detection. This number must be less than or equal to the number of present CPUs
in the system. If not so, SiPTA will exit with an error.

• dataBase: This element contains sub-elements for configuring how SiPTA should
access trace databases.

• ser: This element contains sub-elements for configuring how SiPTA extracts time
series and spectra.

• trace: This element contain sub-elements which specify the address of different trace
databases.

• levels: This element contains the setting that SiPTA uses which features. In this
context level means feature extraction methods.

• levelNo1 ... levelNoN : These elements contain configurations for different feature
extraction methods specified in element levels.

Illustration A.1: element All sub-elements
<?xml v e r s i o n=" 1 .0 " encoding=" utf−8" ?>
<Al l>

<mode>RunningMode</mode>
<workerCnt>WorkerCount</workerCnt>
<dataBase>

. . .
</ dataBase>
<t r a c e>

. . .
</ t r a c e>
<s e r>

. . .
</ s e r>
<l e v e l s>

. . .
</ l e v e l s>
<leve lNo1>

. . .
</ leve lNo1>
. . .

<levelNoN>

67

. . .
</ levelNoN>

</ Al l>

Now we will examine the configuration in dataBase element as depicted in Illustra-
tion A.2. This element contains children elements that have text fields. These text fields
are then used to configure how SiPTA will access trace databases.

• driver: This setting represents the driver type according to MATLAB [2] database
toolbox [3] configurations. For example, for using SQLite [33] databases on Linux,
database should use JDBC [37]. The correct configuration for driver then has to be
org.sqlite.JDBC.

• urlPrefix: This represents the urlPrefix string which database toolbox [3] needs to
be configured. For example, according to the previous settings, this string should be
jdbc:sqlite:.

• workingDir: As SiPTA is designed to use read-only compressed databases, it requires
a temporary directory in which it can store the extracted databases and connect to
them. This directory is determined by workingDir element.

Illustration A.2: element dataBase sub-elements
<?xml v e r s i o n=" 1 .0 " encoding=" utf−8" ?>
<Al l>

. . .
<dataBase>

<d r i v e r>DriverType</ d r i v e r>
<u r l P r e f i x>URLPrefix</ u r l P r e f i x>
<workingDir>WorkingDirectory</ workingDir>

</ dataBase>
. . .

</ Al l>

Now we will examine the configuration in trace element as depicted in Illustration A.3.
This element contains children elements that have text fields. These text fields are then
used to configure how SiPTA will choose different databases as training, analyzing, clean
and dirty trace sources.

• cleanList: In debug mode or debug2 mode presented in Illustration A.1, this will
point to the text file which contains the addresses to clean trace databases. This field
is not important in release mode.

68

• dirtyList: In debug mode or debug2 mode presented in Illustration A.1, this will
point to the text file which contains the addresses to dirty trace databases. This field
is not important in release mode.

• trainList: This will point to the text file which contains the addresses to train
trace databases. In debug mode or debug2 mode, this list have to be a subset of
cleanList.

• trainList: This will point to the text file which contains the addresses to analyze
trace databases.

Illustration A.3: element trace sub-elements
<?xml v e r s i o n=" 1 .0 " encoding=" utf−8" ?>
<Al l>

. . .
<t r a c e>

<c l e a n L i s t>CleanTraces</ c l e a n L i s t>
<d i r t y L i s t>DirtyTraces</ d i r t y L i s t>
<t r a i n L i s t>TrainTraces</ t r a i n L i s t>
<a n a l y z e L i s t>AnalyzeTraces</ a n a l y z e L i s t>

</ t r a c e>
. . .

</ Al l>

Now we will examine the configuration in ser element as depicted in Illustration A.4.
This element contains children elements that have text fields. These text fields are then
used to configure how SiPTA will construct time series and frequency series.

• src: This will determine what would be the source for construction of time series.
It could be either RealTime or LogicalTime. RealTime means that the sequence of
time is real time in which events occurred and LogicalTime means the index number
of the trace entry is treated as the time source. The proposed method and the results
presented in this thesis, all used the option RealTime

• const: This will determine how the time series will be constructed. for example
the value Diff determines the use of diff function which is the only option used in
SiPTA right now.

• chClm: This will determine which columns of the trace will be used to form {P0, ...,Pn−1}.
In this thesis, we used the columns class,event,pname.

69

• realTimeClm: If the value RealTime is chosen for src, then this will determine the
name of the column which contains the real-time information.

• norm: This will determine the method for normalization and construction of spectra.
In this thesis, we used NormPer which means that spectra are created by normaliza-
tion of periodograms.

• normDC: This is a Yes/No field which determines whether the DC value is included
in the normalization or not.

Illustration A.4: element ser sub-elements
<?xml v e r s i o n=" 1 .0 " encoding=" utf−8" ?>
<Al l>

. . .
<s e r>

<s r c>Source</ s r c>
<const>ConstructionMethod</ const>
<chClm>ChannelColumnList</chClm>
<realTimeClm>RealTimeColumn</realTimeClm>
<norm>NormalizationMethod</norm>
<normDC>IsDCIncludedInNormalization</normDC>

</ s e r>
. . .

</ Al l>

Now we will examine the configuration in levels element as depicted in Illustration A.5.
This element contains children elements that have text fields. These text fields are then
used to configure the metrics that SiPTA will use for feature extraction.

• cnt: This element determines the number of metrics will be used which should be a
positive integer.

• noM : For any 1 ≤ M ≤ LevelCount, this will determine which method will be
as metric number M . The currently implemented methods are ChannelExistence,
ChannelLength, DCSignificance, MultiPeak, and SpectrumLikelihood.

Illustration A.5: element levels sub-elements
<?xml v e r s i o n=" 1 .0 " encoding=" utf−8" ?>
<Al l>

. . .
<l e v e l s>

70

<cnt>LevelCount</ cnt>
<no1>Metric1</no1>
. . .

<noN>MetricN</noN>
</ l e v e l s>
. . .

</ Al l>

The next set of elements are named as levelNo1 through levelNoN where N =
LevelCount where LevelCount is from Illustration A.5. These elements contain configu-
rations of their corresponding metric in sibling levels element These configurations have
similar child elements. As depicted in Illustration A.6, these child elements are general,
train, and analyze which are the configuration of that metric during feature extraction,
training, and analysis, respectively.

Illustration A.6: element levelNoM sub-elements
<?xml v e r s i o n=" 1 .0 " encoding=" utf−8" ?>
<Al l>

. . .
<levelNoM>

<g e n e r a l>
. . .

</ g e n e r a l>
<t r a i n>

. . .
</ t r a i n>
<analyze>

. . .
</ analyze>

</levelNoM>
. . .

</ Al l>

71

References

[1] Audit data from MIT Lincolin lab. http://www.ll.mit.edu/mission/. Accessed:
2014-03-01.

[2] MATLAB. http://www.mathworks.com/products/matlab/. Accessed: 2015-11-25.

[3] MATLAB Database Toolbox. http://www.mathworks.com/products/database/.
Accessed: 2015-11-25.

[4] QNX Accelerator Kits. http://www.qnx.com/products/reference-design/
acceleratorkits.html. Accessed: 2014-01-01.

[5] QNX CAR Platform for Infotainment. http://www.qnx.com/products/qnxcar/. Ac-
cessed: 2014-01-01.

[6] QNX Neutrino RTOS. http://www.qnx.com/products/neutrino-rtos/
neutrino-rtos.html. Accessed: 2014-01-01.

[7] System call dataset from University of New Mexico. http://www.cs.unm.edu/
~immsec/data-sets.htm.

[8] Unmanned Aerial Vehicle (UAV). https://uwaterloo.ca/
embedded-software-group/projects/unmanned-aerial-vehicle-uav-exemplar.
Accessed: 2014-11-10.

[9] ISO-26262, Road Vehicles – Functional Safety. http://www.iso.org/iso/
catalogue_detail?csnumber=43464, 2011.

[10] A. K. Ghosh and A. Schwartzbard. A Study in Using Neural Networks for Anomaly
and Misuse Detection. In Proc. 8th USENIX Security Symposium, pages 23–36.
USENIX, 1999.

72

http://www.ll.mit.edu/mission/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/database/
http://www.qnx.com/products/reference-design/acceleratorkits.html
http://www.qnx.com/products/reference-design/acceleratorkits.html
http://www.qnx.com/products/qnxcar/
http://www.qnx.com/products/neutrino-rtos/neutrino-rtos.html
http://www.qnx.com/products/neutrino-rtos/neutrino-rtos.html
http://www.cs.unm.edu/~immsec/data-sets.htm
http://www.cs.unm.edu/~immsec/data-sets.htm
https://uwaterloo.ca/embedded-software-group/projects/unmanned-aerial-vehicle-uav-exemplar
https://uwaterloo.ca/embedded-software-group/projects/unmanned-aerial-vehicle-uav-exemplar
http://www.iso.org/iso/catalogue_detail?csnumber=43464
http://www.iso.org/iso/catalogue_detail?csnumber=43464

[11] Emin Aleskerov, Bernd Freisleben, and Bharat Rao. Cardwatch: A neural network
based database mining system for credit card fraud detection. In Computational
Intelligence for Financial Engineering (CIFEr), 1997., Proceedings of the IEEE/IAFE
1997, pages 220–226, 1997.

[12] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, and François
Yergeau. Extensible markup language (XML). World Wide Web Consortium Recom-
mendation REC-xml-19980210. http://www. w3. org/TR/1998/REC-xml-19980210,
16, 1998.

[13] V. Chandola, A. Banerjee, and V. Kumar. Anomaly Detection: A Survey. ACM
Computing Surveys (CSUR), 41(3):15, 2009.

[14] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly dtection for dis-
crete sequences: A survey. Knowledge and Data Engineering, IEEE Transactions on,
24(5):823–839, 2012.

[15] X. Cheng, K. Xie, and D. Wang. Network Traffic Anomaly Detection Based on Self-
Similarity Using HHT and Wavelet Transform. In Fifth International Conference on
Information Assurance and Security, IAS, volume 1, pages 710–713. IEEE, 2009.

[16] Edmund M Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT press,
1999.

[17] G. Creech and J. Hu. A Semantic Approach to Host-Based Intrusion Detection Sys-
tems Using Contiguous and Discontiguous System Call Patterns. 2013.

[18] T. Fawcett. An introduction to ROC analysis. Pattern Recognition Letters, 27(8):861–
874, 2006.

[19] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical
learning, volume 1. Springer series in statistics Springer, Berlin, 2001.

[20] Ryohei Fujimaki, Takehisa Yairi, and Kazuo Machida. An approach to apacecraft
anomaly detection problem using kernel feature space. In Proceedings of the eleventh
ACM SIGKDD international conference on Knowledge discovery in data mining, pages
401–410. ACM, 2005.

[21] J. Gao, G. Hu, X. Yao, and R. K. C. Chang. Anomaly Detection of Network TrafïňĄc
Based on Wavelet Packet. In Asia-Pacific Conference on Communications. APCC,
pages 1–5. IEEE, 2006.

73

[22] S. Jha, K. MC. Tan, and R. A. Maxion. Markov Chains, Classifiers, and Intrusion
Detection. In csfw, volume 1. Citeseer, 2001.

[23] Leslie A Johnson. DO-178C, Software Considerations in Airborne Systems and Equip-
ment Certification. Crosstalk, October, 1998.

[24] F.O. Karray and C. De Silva. Soft Computing and Intelligent Systems Design: Theory,
Tools and Applications, volume 1. Pearson Education Limited, 2004.

[25] Harold W Kuhn. The hungarian method for the assignment problem. Naval research
logistics quarterly, 2(1-2):83–97, 1955.

[26] Vipin Kumar. Parallel and distributed computing for cybersecurity. IEEE Distributed
Systems Online, (10):1, 2005.

[27] Leveson, N. G. and Turner, C. S. An Investigation of the Therac-25 Accidents. Com-
puter, 26(7):18–41, 1993.

[28] Lions, J.-L. Ariane 5 flight 501 Failure, 1996.

[29] J. W. S. Liu. Real-Time Systems, 2000.

[30] W. Lu and A. A. Ghorbani. Network Anomaly Detection Based on Wavelet Analysis.
EURASIP Journal on Advances in Signal Processing, 2009, 2009.

[31] S. S. Murtaza, W. Khreich, A. Hamou-Lhadj, and M. Couture. A Host-based Anomaly
Detection Approach by Representing System Calls as States of Kernel Modules. 2013.

[32] Alan V Oppenheim, Ronald W Schafer, John R Buck, et al. Discrete-Time Signal
Processing, volume 2. Prentice-hall Englewood Cliffs, 1989.

[33] Mike Owens and Grant Allen. SQLite. Springer, 2010.

[34] Kay I Penny. Appropriate critical values when testing for a single multivariate outlier
by using the mahalanobis distance. Applied Statistics, pages 73–81, 1996.

[35] Andy D Pimentel, LO Hertzbetger, Paul Lieverse, Pieter Van Der Wolf, and Ed F
Deprettere. Exploring embedded-systems architectures with artemis. Computer,
34(11):57–63, 2001.

[36] S. Rawat and C. S. Sastry. Network Intrusion Detection Using Wavelet Analysis. In
Intelligent Information Technology, pages 224–232. Springer, 2005.

74

[37] George Reese. Database programming with JDBC and Java. " O’Reilly Media, Inc.",
2000.

[38] M. Salagean and I. Firoiu. Anomaly Detection of Network Traffic Based on Analytical
Discrete Wavelet Transform. In 8th International Conference on Communications
(COMM), pages 49–52. IEEE, 2010.

[39] Clay Spence, Lucas Parra, and Paul Sajda. Detection, synthesis and compression in
mammographic image analysis with a hierarchical image probability model. In Mathe-
matical Methods in Biomedical Image Analysis, 2001. MMBIA 2001. IEEE Workshop
on, pages 3–10. IEEE, 2001.

[40] James Stewart. Calculus: Early Transcendentals. Cengage Learning, 2015.

[41] Michail Vlachos, S Yu Philip, and Vittorio Castelli. On periodicity detection and
structural periodic similarity. In SDM, volume 5, pages 449–460. SIAM, 2005.

[42] N. Ye, X. Li, Q. Chen, S. M. Emran, and M. Xu. Probabilistic Techniques for Intrusion
Detection Based on Computer Audit Data. IEEE Transactions on Systems, Man and
Cybernetics, Part A: Systems and Humans, 31(4):266–274, 2001.

[43] N. Ye, Y. Zhang, and C. M. Borror. Robustness of the Markov-Chain Model for
Cyber-Attack Detection. IEEE Transactions on Reliability, 53(1):116–123, 2004.

[44] Nong Ye et al. A markov chain model of temporal behavior for anomaly detection. In
Proceedings of the 2000 IEEE Systems, Man, and Cybernetics Information Assurance
and Security Workshop, volume 166, page 169. West Point, NY, 2000.

[45] Mohammad Mehdi Zeinali Zadeh, Mahmoud Salem, Narendra Kumar, Greta Cutu-
lenco, and Sebastian Fischmeister. SiPTA: Signal processing for trace-based anomaly
detection. In Embedded Software (EMSOFT), 2014 International Conference on, pages
1–10. IEEE, 2014.

[46] M. Zhou and S. D. Lang. Mining Frequency Content of Network Traffic for Intrusion
Detection. In Proceedings of the IASTED International Conference on Communica-
tion, Network, and Information Security, 2003.

75

	Author's Declarations
	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	List of Illustrations
	Introduction
	Motivation
	Contributions
	State of the Art
	Anomaly Detection
	Trace-based Anomaly Detection
	Trace-based Anomaly detection using Markov Models
	Limitations

	Thesis Structure

	Background
	Fast Fourier Transform
	Major Frequency Component Detection
	Minimum-Weight Perfect Bipartite Matching
	Hierarchical Clustering

	Proposed Method
	Overview
	Preprocessing
	Feature Extraction
	Real Example
	Channel Existence
	Channel Length
	DC Significance
	Multi-Peak

	Training
	Channel Existence
	Channel Length
	DC Significance
	Multi-Peak

	Analyzing
	Channel Existence
	Channel Length
	DC Significance
	Multi-Peak
	Label Assigner

	Experimental Setup
	Experimental Setup and Workload
	Evaluation Criteria
	Comparison to Alternative Approaches
	Markov Model Technique
	Neural Networks Technique

	Experimental Results
	Discussion
	Conclusion
	APPENDICES
	Configuring MATLAB Implementation
	References

