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Abstract

A template tracker is a tracker based on matching a pre-initialised view of an object with

the object’s view in an image sequence. Using an error function, the intensity difference

between the template view and the templated region in the image is measured. This

error measure is used as the basis for a template alignment algorithm that will adjust the

template’s pose to more accurately register the template view with the view of the object

in the image.

Some significant problems present themselves with this simple tracker. Extraneous, or

non-object, pixels within the template boundaries can cause bias in the registration of the

template. Partial occlusions of the object’s view in the image can also cause serious bias

in the template’s pose. Beyond simple occlusions there are transits of occlusions across

an object. Occlusion transits are significant because over time they can occlude the entire

object in an incremental fashion. If initially the template view is not completely known

this kind of occlusion can easily cause a total tracking failure for an object.

In this thesis three enhancements of the basic template tracker are proposed: Own-

ership Masks, Cooperative Templates, and Evolving Views. Ownership Masks are aimed

at eliminating the extraneous pixels from the template view. Cooperative templates are

used to separate the intensity probabilities when more than one template covers a pixel.

Building upon both Ownership Masks and Cooperative Templates, Evolving Views update

the template views when occlusion transits are a problem.

With these enhancements we have been able to increase the accuracy of tracking objects

where large portions of a template contain background pixels. Also occlusions and some

types of unocclusions can be detected and discriminated. Finally, some failures in the basic

tracker due to occlusion transits have been overcome.
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Chapter 1

Introduction

Tracking is used in many applications and fields from security systems to robotics to ges-

ture recognition and air traffic control systems. Accuracy and robustness in tracking are

important to allow for accurate interpretation of the given data and to prevent miscon-

struing one tracked object for another. Without accuracy a robot may run into objects or

people, or fall down stairs; aircraft may come too close to others on their flight paths, and

security systems may not register an intrusion by a criminal. Systems must be robust to

occlusions and other signal noises such as background clutter to prevent inaccurate track-

ing, loss of tracking or tracking the wrong object. With the tracker described in this thesis

we attempt to increase the accuracy of a simple template tracker to cope with some typical

problems encountered in visually tracking objects as well as increase its robustness in the

presence of some types of occlusion.

Tracking is the process of identifying and locating an object within a chronological

sequence of sensor readings. Readings can be derived from a variety of sensors including:

cameras, sonars, radars and other devices that return periodic signals representing some

characteristic or aspect of the object of interest.
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Various characteristics of an object may be used to track. In vision-based systems a

predefined view of the object may be used to search for that object in successive frames of

an image sequence. Corners, edges, colour blobs and textures, among other characteristics

have also been used successfully to track.

1.1 Template Tracking

Template tracking, which this thesis deals with, is based on a sequence of camera images

in the visible spectrum. It is based on the registering of a previously defined view of the

object to be tracked within each frame of an image sequence. The registration in the

basic tracker is based on finding the displacement that minimizes the squared error of the

differences between itself and the displacement estimates from each pixel in the template

view. The displacement estimates are derived from the image gradient and the difference

between intensities of the template pixel and the corresponding image pixel, at each pixel

location.

Template trackers work well in a variety of circumstances but are sensitive to a number

of typical visual problems. Both occlusions by other objects and background pixels within

the area of the template view can cause biasing of the template pose away from its correct

position.

In this thesis we modify the simple template tracker to deal with these partial occlusions

and background pixels. The remainder of this chapter provides an introduction to the

problems of the basic tracker, the outline of the proposed modifications that solve these

problems and some details about previous and related work.
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1.1.1 Tracking Problems

To simplify “templating” an object to be tracked, a rectangle or other low degree polygon is

often used to define the templated region. This simplification has its drawbacks, however, if

the region exposes background pixels in its interior. If the proportion of background pixels

within the template is large or an occlusion covers the tracked object, a basic template

tracker can fail (Fig. 1.1). In the top row, the number of extraneous (or non-object) pixels

within the hand template and the strongly textured background cause a tracking bias.

The Coke-Put example (middle row) fails as the hand transits over the pop can because

it obscures the portion of the pop can being tracked (the top of the can). The tracking

on the telephone fails (bottom) due to the incoming occlusion of the hand and the lack of

significant texture on the bottom of the phone.

1.2 Enhancements to Template Tracker

To solve these problems three modifications to the basic tracker were developed. These

we call: Ownership Masks, Evolving Views, and Cooperative Templates. These new tech-

niques are described briefly below and developed further in the following chapters.

1.2.1 Ownership Masks

In a template tracker the algorithm uses a partial or complete view of the tracked object

to register the template within the image. Foreground and background pixels within this

view may have different velocities as the tracked object moves. This difference in velocities

tends to bias the tracker away from the pose of the tracked object. To reduce this effect,

a template should be initialised to be ‘tight’ around the object to minimise the number of

background pixels within the template boundaries.
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File=’coke0025.pgm’ TimeDelta= 0.00 LSQ_TranRot 

TrackTemplate_025.fig Template [Theta=0,x=72,y=78]
Template [Theta=0,x=81,y=62]
Template [Theta=0,x=1,y=1]

File=’hit−0017.pgm’ TimeDelta= 0.00 LSQ_TranRot 

TrackTemplate_017.fig Template [Theta=0,x=16,y=67]
Template [Theta=0,x=1,y=1]

File=’coke0035.pgm’ TimeDelta= 0.00 LSQ_TranRot 

TrackTemplate_035.fig Template [Theta=0,x=117,y=150]

File=’coke0053.pgm’ TimeDelta=37.46 LSQ_TranRot 

TrackTemplate_053.fig Template [Theta=−3,x=127,y=158]
Template [Theta=−3,x=136,y=142]
Template [Theta=0,x=1,y=1]

File=’coke0042.pgm’ TimeDelta=12.76 LSQ_TranRot 

TrackTemplate_042.fig Template [Theta=0,x=117,y=150]

File=’hit−0023.pgm’ TimeDelta=14.79 LSQ_TranRot 

TrackTemplate_023.fig Template [Theta=2,x=19,y=67]
Template [Theta=0,x=1,y=1]

File=’coke0079.pgm’ TimeDelta=33.11 LSQ_TranRot 

TrackTemplate_079.fig Template [Theta=−1,x=129,y=152]
Template [Theta=−5,x=135,y=139]
Template [Theta=0,x=1,y=1]

File=’coke0043.pgm’ TimeDelta=12.22 LSQ_TranRot 

TrackTemplate_043.fig Template [Theta=−1,x=123,y=150]

File=’hit−0031.pgm’ TimeDelta=15.34 LSQ_TranRot 

TrackTemplate_031.fig Template [Theta=7,x=55,y=69]
Template [Theta=0,x=1,y=1]

File=’hit−0045.pgm’ TimeDelta=16.66 LSQ_TranRot 

TrackTemplate_045.fig Template [Theta=3,x=86,y=69]
Template [Theta=0,x=1,y=1]

File=’coke0109.pgm’ TimeDelta=44.77 LSQ_TranRot 

TrackTemplate_109.fig Template [Theta=−11,x=136,y=60]
Template [Theta=−19,x=120,y=102]
Template [Theta=0,x=1,y=1]

File=’coke0050.pgm’ TimeDelta=13.32 LSQ_TranRot 

TrackTemplate_050.fig Template [Theta=−3,x=152,y=132]

Figure 1.1: Problems with basic template tracker. Box-Hit example (top) fails because of

extraneous (non-object) pixels around the hand. A transit of the hand over the tracked part

of the pop can causes problems in the Coke-Pick example (middle). The occlusion by the

hand causes tracking failure on the phone template.
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Simple rectangular bounding boxes around an object are easier to initialize and main-

tain than complex polygons and are therefore preferable. However, in Fig 1.2 we can

see that this can lead to a significant number of background or extraneous pixels within

a template’s bounding box. Thus, simple boundaries present a problem with irregularly

shaped objects: how to eliminate the background pixels and keep the foreground pixels

when making our pose estimate.

FG
BG

BG

BG

BG

BG

FG

Figure 1.2: Ownership Mask and object extent. The template’s rectangular bounding box

and the irregular boundary of the tracked object introduce extraneous background pixels into

the pose estimation.

When a template is initially placed on an image sequence there is no indication what is

to be tracked (other than the rectangle of pixels bounded by the template). The boundaries

of the tracked object may be difficult to find but even if this were not so deciding which of

the objects in the region to be tracked based on the pixel values within that region is not

a simple job for a low level algorithm. People can see the object and distinguish its extent

and boundaries but with a low level tracker (such as a template tracker) there is no high

level knowledge of what constitutes an object.

5



Without this high level knowledge we must look only at the pixels themselves and

perhaps the initial locations and extents of the templates. But even using this low level

information we can, as suggested in Fig 1.2, derive the extent of the tracked object. Simply

having a template encompass an area of the image implies some information about the

extent of the object to be tracked.

When the tracked object starts moving, the template follows and the object pixels

will be static in the view. The background pixels, assuming the background has some

texture, should be varying as the template moves over them. Therefore, the variance of

the background pixels within the template should be large and that of the tracked object’s

pixels small.

A Gaussian distribution was chosen as a good model of pixel intensity noise. Using a

Gaussian to represent the distribution around the mean value of each pixel’s intensity we

can determine which pixels are background. We use the error in pixel intensity 1 to derive

the probability that the two pixel intensities represent the same object point.

Here we assume that the object to be tracked is within the template boundary, and that

it covers a significantly larger portion of the template than the background. Otherwise the

tracker, which is initially based on a consensus of all the template pixels, may be biased

away from the correct location. If initially we have accurate tracking, variance within the

template will come from the change in the background and not from the poor registering of

the template. However, even with initially poor tracking the ownership masks will evolve

properly but will maintain an initial bias.

Ownership Masks are discrete masks that cover the same region as the template view.

They are used to down-weight the pixels that are not part of the tracked object and fully

1The pixel intensity error is the difference between the template view’s pixel intensity and the corre-

sponding pixel in the image sequence
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weight the object pixels when doing the registration calculations. Each of the elements in

the mask is associated with one template pixel and for this reason will be referred to as

“mask pixels”. The mask pixels are set to one wherever we are certain the pixel belongs

to the tracked object in the template view, zero where we are certain it does not belong

and values between these two extremes to suggest our degree of certainty.

In Figure 1.2, ideally the FG pixels would be set to one and the BG pixels to zero.

When the template tracking software is registering the tracked object it uses these

ownership masks to mask out the pixels in the template image that do not correspond to

the object (see Figure 1.3). Here Frame 30 of the Coke-Put sequence is displayed (a) along

with the corresponding ownership probabilities (b) and masks (c) from the three templates

that cover the hand, pop can and background (whole image). Notice in (b) the background

regions are black where the hand and can regions are white.

The ownership probabilities shown for the hand demonstrate how the probabilities

are higher for the finger tips and wrist because the variance in the intensity between the

template and the image is low. The background in the hand template shows as grey

because the background is varying as the hand moves. The middle portion of the hand

and lower portion of the pop can are grey because probability is assigned to each object

equally (more about this in the next section).

Because the non-object pixels are down-weighted or totally eliminated from the tracking

equations their influence in biasing the tracker away from the correct pose should also

be reduced or eliminated. Thus the Ownership Mask should remove the contribution

from these other groups of pixels of different velocities from consideration in the tracking

algorithm.

When a tracked object starts out unoccluded and is then occluded in the course of

the image sequence, we would like the tracker to be able to distinguish which parts of

7



(a)

Ownership Probability

(b) (c)
Ownership Mask

Frame 30 of the Coke−Put Sequence

Figure 1.3: Ownership probability and corresponding ownership mask. Frame 30 of the

Coke-put sequence. In (b) the ownership probabilities for each of the three templates are

shown. The corresponding three ownership masks (c) are derived by thresholding the prob-

abilities. The arrows indicate the corresponding region in the background template where

the smaller templated regions would occur.
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the image correspond to the tracked object and which belong to the occluding object(s)

and the background. The ownership masks should have the same effect in this case: they

should eliminate the occluding and background pixels from the tracking equations that are

causing a tracking bias. Therefore, the tracker should track more accurately even through

partial occlusion events.

1.2.2 Cooperating Templates

Another problem arises when we consider the example given: the hand putting the pop

can down. In this case the pop can is initially occluded and since the two objects (hand

and can) travel together for the first half of the sequence there will be no evidence from the

pixel variance to distinguish the two objects. For this reason another idea was developed:

Cooperative Templates.

Cooperative templates will allow us to take advantage of extra information in the areas

of the image where templates are overlapping. We will use Bayes law to convert the prior

probabilities of each template and the probability that the template pixel intensity matches

the image pixel intensity to derive a segmentation of the image pixel to one of the covering

templates. Cooperative templates will also allow us to distinguish occlusions and different

types of unocclusions as they happen.

In this example, if we assume that initially the occluding objects were templated then

the templates will be overlapping (see Fig 1.4). This overlapping can be used to help

segment the templates. In the areas that are not occluded the templates ‘see’ their tracked

object. Thus the pixels in those areas belong to those templates. Where the objects

occlude, the templates overlap. With no prior knowledge of the segmentation of the pixels

it seems reasonable that the probability for each of the pixels in the overlapping section

should initially be evenly distributed between the templates: the pixels are equally likely

9



to have come from any of the covering templates. Where the hand occludes the pop can

the tracker has, initially, no evidence that the pixel has come from the hand rather than

the pop can. Note that this does not attempt to model depth layers, occlusions or spatial

correlation.

1 3 1

2

2

Figure 1.4: Cooperating templates. When templates overlap they must cooperate when

assigning ownership for the pixels in the common areas. Implicitly the hand template will

track the (1) areas, the can template the (2) areas because no other template covers these

portions of the image. However, the (3) area is covered by both templates. The ‘ownership’

will be shared between the templates until there is evidence that these pixels belong to one

template or the other.

We assume that each template covering an occluded pixel has, as a first approxima-

tion, equal prior probabilities. Using these prior probabilities and the per-pixel Gaussian
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probabilities in Bayes’ theorem we come up with an ownership probability for each pixel in

each frame. This ownership probability is then accumulated in the template’s cumulative

ownership probability array as the image sequence proceeds. The ownership masks are a

thresholded version of the cumulative ownership probabilities.

If a pixel is covered by more than one template then the cooperative template method

will keep the ownership probability low for each template until the pixel variances (as the

template moves) assign more or less probability to that template.

The cooperative template and ownership mask methods also allow us to update our

template views in the case of occlusion and some unocclusion events. When a tracked

object becomes unoccluded the probability of the newly unoccluded pixels will increase 2

for the templates still covering the pixel. Thus the probability of the pixel being owned

by those templates goes up. If this ownership probability goes up enough then we can

conclude that the pixel belongs to the tracked object and hence the template. When we

have determined that the pixel belongs to the template, then the ownership mask for that

template can be updated to reflect this change. The increased area unmasked on the object

will allow for more accurate tracking.

Similarly when the ownership probability drops significantly this is an indication that

an occlusion is in progress. When this happens we refrain from updating the template view

because otherwise the template view would be updated with the image of the occlusion.

This process is displayed in Figure 1.5.

2If the template view was previously known at this pixel. Template view pixel intensities may not be

known if the object has always been occluded.
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(a) Pixel Error (b) Gaussian Pixel Probability

(d) Cumulative Ownership

(f) Template View(e) Template Mask

Pop Can Template

(c) Instantaneous Ownership

Figure 1.5: Evolution of probabilities in the hand template. The per pixel error (a) is used

in a Gaussian distribution to calculate the per pixel probabilities (b). These probabilities

are used in Bayes’ formula to derive the instantaneous ownership probabilities (c) which

are compounded over time into the cumulative ownership (d). A thresholding of the cumu-

lative ownership gives us the template mask (e). Finally the template mask and cumulative

ownership are used to update the template views (f). This template view is then used to

determine the pixel probabilities at the next time step. Note the approximate position of

the pop can template is shown in (b).
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1.2.3 Evolving Views

As alluded to above there are situations where a complete template view cannot be found

initially. Through unocclusion events 3 we can find the portions of the template view for

the previously occluded object that we did not have access to initially. The Cumulative

Ownership probability and Cooperative Template method can be used to our advantage

here. What we have done is used changes in the Cumulative Ownership probability derived

from the Cooperative Templates method to trigger the acquisition of the newly exposed

regions of a previously occluded object.

In the case that the newly exposed area of the object was previously unknown (because

historically it has always been occluded) the pixel probabilities may decrease. This is

due to the newly exposed pixels being part of the tracked object and the template view

pixels being part of the occluding object. An example of this is the “Coke-Put” sequence

where the templates were initialized when the hand occluded the pop can and later in the

sequence a portion of the can not previously seen was exposed. However, since the tracked

objects no longer overlap the templates tracking them may not be overlapping 4. Since the

distribution of probability in the cooperative templates method is inversely proportional

to the number of templates covering these pixels, and this number has decreased, the

probability of that pixel belonging to the newly exposed template increases. This increase

in probability produces a positive change in the cumulative ownership probability and this

is then used to trigger an update to the template view.

The enhanced template tracker has thus ‘learned’ the view of the tracked object in the

3An unocclusion event is when a previously hidden portion of an object is exposed when the occluding

object moves away.
4Due to the margins of background pixels in the template region surrounding a tracked object the

unocclusion of the templates may not occur at the same time as that of the occluding objects.
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initially occluded portion of the object.

With Evolving Views we have attempted to use the change in the cumulative ownership

probability to indicate where the occlusion or unocclusion is occurring in the template and

use this occlusion information to update the template view (see Fig 1.6). When we know

where the unocclusion is occurring we can use the current view of the object in the image

sequence to update the template view. The changes in the ownership mask also allow us

to update the list of pixels which we want the tracker to use to register the template.

1.3 Previous Work

There has been extensive work done on tracking. Much of this work has incorporated

tracking through occlusions implicitly. The following documents some of the more common

tracking methods and highlights those that deal with occlusions.

In Lucas&Kanade’s 1981 paper [20] they describe an image registration method that

has become known as template tracking. They laid out all the basic details including the

error metric that the registration strategy is based upon, the course-fine search strategy

(see also Rosenfeld [27]), and the Newton-Raphson iteration in the intensity gradient space.

This defined the basic template tracker that we use in this paper. However, their tracker

had no means of detecting or dealing with occlusions. It would fail to a greater or lesser

degree depending upon the amount of occlusion.

Earlier Vanderbrug and Rosenfeld [30] had done work to deal with the problem of

articulated objects. They used a two-stage template matching method that first matches

subsections of the object that are less prone to distortion than the whole object (for instance

arm and leg segments when tracking a whole person).

Brunelli and Poggio [6] attacked the pattern deformations problem with matched spatial
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(a) (b)

Figure 1.6: Updated template views. When a tracked object (pop can) is initially occluded

we must use motion information to tell us when to update the template view. In the Coke-

Put sequence (see middle row in Fig. 1.1), the hand has been raised so that it only obscures

the upper half of the pop can. In image (a) the pop can template view’s originally occluded

lower portion is starting to appear. Image (b) shows how the pop can appears in this

orientation.
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filters and achieved some success. They also reviewed and compared a number of other

approaches to template matching. Berger [1] continued to develop Lucas&Kanade’s LSQ

tracker with extensions to error propagation and self diagnosis. Brown [5] has done a

survey of image registration techniques that may be useful. Tian and Huhns [28] continue

this with a survey and analysis of a number of subpixel registration techniques. Meer et.

al. [22] delve more deeply into the problem of making the registration robust in terms of

fitting a model to noisy data.

Black and Jepson [3] use a technique using views to allow them to track rigid and ar-

ticulated objects. Using an eigenspace representation of an object’s view in various poses

they are able to track objects that change appearance in a limited fashion. Using weighted

amalgamations of the eigenspace basis they can reconstruct an approximation to the cur-

rent view of the tracked object. The subspace consistency assumption and corresponding

method extends the eigenspace concept to allow for occlusions, background clutter and

noise. This work generates a mask separating inliers from outliers by thresholding the er-

ror between the image and an eigenspace representation of the tracked object. This mask,

however, assumes a standard variance in the per-pixel error over the entire image. This

paper also makes an implicit assumption of a background model as was done in the Own-

ership Mask chapter and found to be problematic. The Black&Jepson paper also requires

a pre-initialized eigenspace which was seen as a problem because our distant goal is a fully

automated tracker without any sort of bootstrapping.

Jepson et. al. [18] developed a method to deal with occlusions and natural appearance

changes such as facial expressions and changes in 3D pose. Their method was based on a

mixture of a stable model, a wandering model, and an outlier model. The EM-algorithm

was used to adapt the appearance model parameters over time. This system seemed to

deal well with partial occlusions and evolving appearance models. We go beyond the goals
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of this paper in one direction. For our Evolving Views technique we assume that initially

we do not have a complete view of the tracked object. This can happen when one object,

partially obscuring another object, carries it into the image sequence. Thus we not only

track the object but also extract an appearance model which will be useful in further work

when we initialize the tracker from motion clues alone.

Wren et. al. [32] develop a multi-class statistical model using region-based features of

colour and shape to obtain a 2D representation of a human’s hands, arms and body in

motion.

Segmentation has been addressed by a number of people. Collins et. al. [7] developed

a tracking system called VSAM (Video Surveillance and Monitoring). This system uses

three-frame differencing to detect motion and initialise tracking and adaptive background

subtraction.

The Kalman filter has been used extensively in the past to track objects. A good

introduction to the Kalman filter is Welch&Bishop’s introduction [31].

Based upon the Kalman filter and Reid’s algorithm for tracking multiple objects [26]

is the Multiple Hypothesis Tracking (MHT) algorithm of Cox and Hingorani [8] and [10].

This algorithm tracks a number of image features (such as corners) from one frame to

another and uses a hypothesis tree and Reid’s algorithm to take care of the uncertainty

in associating points with tracks. The MHT algorithm takes care of track initialisation,

termination and occlusion of tracks for a limited period. The MHT algorithm is further

developed in [9], [10], [23] and [11].

Working from the basis of particle filtering, Isard&Blake developed the Condensation

([16],[15]) method of tracking. This method uses a cluster of points to represent a non-

standard density distribution. This method has been useful where keeping simultaneous

alternate hypotheses of the object’s position is necessary (in situations where there is
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dense visual clutter in the background). This method is robust in the case of temporary

occlusion but does not identify objects with their tracks when multiple indistinguishable

objects are being tracked and may drift with time. MacCormick and Blake [21] attack this

problem using a probabilistic exclusion principle which prevents a single piece of image from

independently contributing to similar hypothesis for different targets. Isard later extended

Condensation with the use of automatic model-switching [17] to satisfy the problem of

abrupt changes in dynamic model. For instance: the cusp in the motion of a bouncing ball

or a three state drawing model where hand motion distinguishes the task being performed.

Further development using the Condensation algorithm was done in [12] and [4].

Elgammal and Davis [13] use a person model that is based on segmenting the body

into regions in order that colour regions can be spatially localised. Modeling these colour

regions depends upon modeling the colour distributions as well as their spatial distribution

with respect the the position of the body. Initialisation of the segmentation is based on

training data. The people being tracked must first have their segmentation initialised before

occlusion occurs. Occlusion reasoning is done by labelling each pixel, after segmentation,

with their model. The elliptical regions corresponding to the people are then compared,

using an error measure, to these labels and the occlusion model corresponding to the

smallest error is selected.

There are many other papers dealing with tracking including the following papers that

present some interesting branches.

Birchfield developed a method [2] to track peoples’ heads modelled by an ellipse. The

ellipse’s pose was continually updated using two global statistic measures: intensity gra-

dients around the ellipse’s perimeter and colour histograms within the ellipse. Global

statistics measures like this have difficulty in the accuracy of the registration of the model

to the image. They also tend to fail when nearby regions have similar statistics (colour or
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grey scale distributions) as the model. However, Birchfield’s method did seem to deal well

with severe but brief occlusions and was tested by Birchfield and appeared to be resistant

to the similar background patterns.

Ju, Black and Yacoob’s [19] paper on Cardboard People demonstrated a method for

tracking parts of an articulated object using connected planar patches. The motion of

these patches was constrained by a distance measure between corresponding points on the

connected planar patches.
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Chapter 2

Basic Template Tracker

Tracking with templates is a method used to register a view of a tracked object with

its corresponding view in each frame of a sequence of images. This is accomplished by

comparing pixel intensities between the template view and the view in the image sequence.

These pixel comparisons are used in an error function which is both a measure of the

registration accuracy and the basis for a iterative registration method that will move the

pose of the template closer to the correct pose.

In this chapter we will go through the basic operation and mathematics of a template

tracker. We will see where the basic tracker performs well and where it fails and why. A

more detailed mathematical treatment can be found in Appendix A.

2.1 The Template

A template consists of a number of basic elements. The template view is the image of the

object to be tracked. In this thesis we initialize the template view automatically using a

template manually placed in the initial image in the video sequence. The template view can
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also be manually initialised off-line with an independent view of the object to be tracked.

Since part of the long term goal is to fully automate this tracking process with methods

to initialise the template view, the automated method was preferred.

The pose is the vector of parameters that define the transformation from the pixel’s

template coordinates to the image’s coordinate system. When the basic tracker is enhanced

in later chapters additional information about the template will be retained.

2.1.1 Pose Transformation

The template’s pixels in the template coordinate system are from (0, 0) in the upper left to

(H −1,W −1) in the lower right where H and W are the height and width of the template

in pixels. These coordinates, �x, are transformed into the image coordinate system using

the template pose transformation, m(�x;�aT ), and the pose parameters �aT (see Figure 2.1)1.

Since this transformation normally takes the template pixel coordinates into non-

discrete locations within the image, an interpolation method must be used to derive an

approximation to the intensity of the template pixel. Bilinear interpolation (see Ap-

pendix B.3) was chosen to interpolate the pixel locations because of its simplicity and

low computational cost.

2.1.2 Error Equation

The basis of a template tracker is the pixel intensity error equation (see Equation 2.1).

1After the template is correctly registered, the template’s transformational parameters define the pose

of the template within the image. Later, in the Cooperative Templates chapter (Chapter 4), the template’s

pose transformation will be used to further develop the Ownership Masks.
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Transformation

Image (I)

Template Coordinate
System

Image Coordinate System

T

T

Pose

xI

yI

xT

yT

x T

y T

(H − 1,W − 1)

(0, 0)

�x = (xT , yT , ΘT )

m(�x,�aT )

Figure 2.1: Pose transformation from the template’s coordinate system to that of the image.

The pose transformation transforms the pixel positions from the template’s own

coordinate system to that of the image.
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E(�a) =
∑
�x∈T

ρ(I(m(�x;�a)) − J(�x)) (2.1)

The total error E(�a), given the current pose �a, is the sum of the individual pixel errors

adjusted by an estimator function ρ, where J(�x) is the pixel intensity in the template

view and I(m(�x;�a)) is the corresponding intensity in the image after the template, T, is

transformed to its position, m(�x;�a), in the image. In our case we consider translation and

rotation only, so the template pose is described by the vector (x, y, Θ). Note that eqn. 2.1

is a nonlinear function of the pose �a and no closed form solution exists. We will use an

iterative registration technique to solve for �a.

This equation is the total error between the intensity of the pixels in the image and

those in the template view. A smaller error between the pixels in the template view and

those in the image suggests a better registration. Generally the total pixel error varies

in proportion to the accuracy of the template’s registration. The exception being when

subsections of the template view match other areas of the image and misleadingly reduce

the total pixel error 2. Since we use an iterative registration method local minima result

and can be a problem. Typically there are numerous minima in which the tracker can get

trapped (see Fig. 2.2). This problem is partially alleviated by the use of a Course-to-Fine

algorithm which is touched upon briefly in a later section.

2.1.3 Estimator

The error equation uses a metric (or estimator) ρ to define a distance measure for the

error in the pixel intensities. Various estimators ρ can be used depending on the criterion

2Such as when tracking a polar bear in a snow storm.
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Figure 2.2: A contour plot of Frame 50 in the Coke-Put sequence showing the variety of

minima. Notice the global minima (left) and a local minima (right) at nearly the same

depth and location (indicated by the white arrows). These can occur since there is little

vertical structure on the hand and its template can slip horizontally without changing the

registration error much.
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of the problem. The basic Least Squares(LSQ) estimator (see Eqn. 2.2) is both simple

mathematically and simple to implement. However, the LSQ estimator has a problem. It

will treat greater pixel intensity errors with a disproportionately larger significance (see

Fig. A.1).

The robust estimator (see Eqn. 2.3) will reduce asymptotically the significance of larger

values of pixel intensity differences. This could be used to reduce the effect of non-object

pixels in the pose calculations if low and high pixel intensity differences could be consis-

tently associated with object and non-object pixels. However, we use the LSQ estimator

for its simplicity.

The LSQ estimator is:

ρ(z) = z2 (2.2)

The Robust estimator is:

ρ(z) =
z2

σ2 + z2
(2.3)

where z is the pixel intensity error, and σ is a constant that defines the x-axis spread

of the function.

2.2 Template Alignment

To find the correct pose for the template we need an algorithm which will find minima in

the surface defined by the error equation (Eqn. 2.1), where the global minimum corresponds

to the correct registration of the template.

A naive approach to template tracking uses a global search method based on this error

equation. However, given a good initial guess to the templates next position it is possible
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to move the template to follow the object. The initial guess can prevent the alignment

algorithm getting caught in a local minima.

The iterative registration procedure is implemented by first deriving a linear approx-

imation to the image intensity at each pixel using the image gradient and a first degree

Taylor’s polynomial:

I(m(�x;�a′)) = I(m(�x;�a + δ�a)) (2.4)

= I(m(�x;�a)) + ∇I(m(�x;�a)) × ∂m(�x;�a)

∂�a
δ�a + O(‖δ�a‖2) (2.5)

Where �a′ = �a+δ�a, I(m(�x;�a′)) is the image intensity after one iteration of the algorithm,

I(m(�x;�a)) is the intensity of the pixel before the update to the initial pose, ∇I(m(�x;�a))

is the image gradient, ∂m(�x;�a)
∂�a

is the derivative of the transformation with respect to the

initial pose, �a, and δ�a is the iteration in the pose parameters that we are after.

This linearization is then substituted into the error equation (Eqn. 2.1) and the deriva-

tive with respect to the change in pose parameters, δ�a, is equated to zero, converted to

matrix form and solved for δ�a giving:

δ�a = −(QT Q)−1QT × (I(m(�x;�a)) − J(�x)) (2.6)

Where

Q =

(
∇I(m(�x;�a))

∂m(�x;�a)

∂�a

)
(2.7)

The solution δ�a is added to the current pose �a and the procedure is repeated either

a fixed number of times or until the change in pose δ�a falls below some threshold. Here

we simply iterate a fixed number of times to avoid the threshold problems induced by the

course to fine algorithm (see Section 2.5).
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2.3 The Basic Tracker In Action

The basic tracker works very well when the number of background pixels is minimal and

where no occlusions occur, or if they do occur the background is mostly uniform (see

Figure 2.3). In the Box-Tip example (top) the box is tracked accurately. The hand also

tracks accurately, even with a large number of background pixels, because the strength

of the background texture is minimal. The bottom example shows that even with the

occlusion of the hand, the pop can template can track reasonably well because the can is

well textured and the background is contrasting.

2.4 The Error Surface

The error surface defined by equation 2.1 can be quite complex with many local minima

in which the tracker can get stuck (see Fig. 2.2). This complexity comes, in part, from the

numerous areas in the image that match subsections of the template view. A solution to

this problem is the Course-to-Fine algorithm (see [20, 24]).

This algorithm’s strategy is to obscure the local minima with a heavy blur of the image

and template view which allows the iterative registration method to ‘jump’ these minima.

As the pose estimate becomes more accurate the blurring can be reduced until no blur is

used and the global minima is reached.

2.5 Course-to-Fine Algorithm

The Course-to-Fine algorithm is a simple method to smooth the image and template view

(which smoothes the error surface) to prevent our iterative registration method from getting

caught in a local minima.
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Template [Theta=54,x=123,y=79]
Template [Theta=0,x=1,y=1]

File=’coke−pick02_00032.pgm’ TimeDelta=13.56 LSQ_TranRot 

TrackTemplate_032.fig
Template [Theta=0,x=150,y=145]

File=’coke−pick02_00049.pgm’ TimeDelta=14.36 LSQ_TranRot 

TrackTemplate_049.fig
Template [Theta=0,x=151,y=145]
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Template [Theta=75,x=157,y=84]
Template [Theta=0,x=1,y=1]
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TrackTemplate_038.fig Template [Theta=1,x=41,y=118]
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Template [Theta=0,x=1,y=1]
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TrackTemplate_061.fig
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File=’coke−pick02_00084.pgm’ TimeDelta=16.67 LSQ_TranRot 

TrackTemplate_084.fig
Template [Theta=−8,x=176,y=62]

Figure 2.3: Examples of basic tracker in operation. Box-Tip example; top. Coke-Pick

example; bottom.
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We use a course to fine algorithm (see Fig. 2.4) that starts with a heavy blur on both

the image and template and reduces it at successive stages until no blur exists. At each

stage the registration technique finds a closer approximation to the global minima. If we

used a pose threshold to stop the iterative registration process we could run into problems.

A pose threshold that is too small during the large blur stage could cause the registration

process to oscillate around the minima. One that was too large during the last blur stage

may cause the registration to halt prematurely. To avoid these problems we just iterate a

fixed number of times.

More about the Course-to-Fine method can be found in Lucas&Kanade’s paper [20].

2.6 Summary

As we have seen in the introduction, the basic tracker does a good job but there are

circumstances where it fails by various degrees. In the following chapters problems with

the basic tracker will be described and examples shown. Three methods will be developed

and incorporated into the basic template tracker to make it more robust in the face of

these problems: Ownership Masks, Cooperative Templates and, based on these, Evolving

Views.
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Figure 2.4: Course to Fine algorithm smoothes local variance to aid registration. In this

synthetic example the image intensity variation (solid black line) is blurred heavily (dotted

blue line) to allow the registration technique to find the minimum at zero. The blur is

reduced (dashed red line) allowing the registration method to find a closer approximation

(approx. -0.7) to the global minimum at -1.0. Finally, with no blur, the registration method

will find the true global minima.

30



Chapter 3

Ownership Masks

As mentioned previously there are a number of sources of error in template tracking:

extraneous pixels, occlusions, lighting/shadows and deformation being some of the more

common. One of the most significant sources is the inclusion of extraneous or outlying

pixels in the template region when registering the template. In this chapter we look at this

source of error and how ownership masks can be used to reduce or eliminate it altogether.

3.1 Motivation

Extraneous, or outlying, pixels are the pixels within the template region which are asso-

ciated with the background or other moving objects and not with the tracked object. In

the comparison of the template view and the current image both the number of outlying

pixels and the magnitude of the individual pixel intensity differences can produce a signif-

icant error in the pose calculations. Elimination of these outlying pixels from the tracking

calculation should produce a noticeable improvement in the robustness of the template

registration.
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But how much do the outlying pixels bias the positioning of the template? Potentially

outlying pixel error may have little influence in a real world tracking example 1. However,

in general the bounding polygon(bordering the template region) can expose a significant

number of outlying pixels and these result in a noticeable amount of bias (see Fig 3.1).

Modifying the bounding polygon so that it covers only pixels belonging to the tracked

object can be difficult when the object’s shape is complex.

Figure 3.1 shows a case where the template incorporates too many outlier pixels in

the bounding polygon due to the irregular boundaries of the tracked object (hand). Pixels

from the background are exposed around the periphery of the hand and in the hole between

the thumb and fingers (see Fig 1.2). A manually placed bounding box is placed in a more

appropriate pose to indicate the magnitude of the error as the tracking progresses.

The bounding polygon around the hand includes about 20-30% of the template image

as background pixels. The result is that the template tracker is trying to track both the

background and the hand and thus tries to accommodate both velocities by averaging

them. This effectively biases the tracking towards the background and away from the

tracked object. In more severe cases, the tracker will appear to track the background and

it will be the pixels associated with the tracked object that will bias the tracking.

The quantity of extraneous pixels affects the registration process but we also have to

consider the pixel intensity differences between the template view and image. This tracking

method uses the pixel’s image intensity gradient and the pixel’s intensity difference to esti-

mate the change in position. The intensity difference and image gradient effectively weight

the significance of the contribution of each pixel to the pose estimation. The estimated

change in pose δ�a is directly proportional to the image intensity difference (I(�x′) − J(�x))

at each pixel. Where the template view is the view of the object to be tracked and is

1When the tracked object is rectangular for instance.
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Template Pose
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Template [Theta=0,x=104,y=105]
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Figure 3.1: Example of template sliding off the tracked object due to the outlier pixels

within the template’s region. biasing the result. The solid (yellow) bounding box shows the

location estimate by the basic tracker. The dashed (green) bounding box is a manually placed

template that follows the tracked object’s position. Because there are more background pixels

within the template region of the hand the tracking of the hand, is biased more heavily.
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often defined as a subsection of the initial image, J(= I0). In the template view the pixel

intensities are defined as J(m(�x;�a)) where m(�x;�a) is the transformation of the template

coordinates �x from the template coordinate system into the image coordinate system using

the transformational parameters �a (see Fig 2.1).

The smaller the gradient for a pixel, the smaller the influence of that pixel on the

calculation of the pseudo inverse and thus the estimated pose. When the gradient is zero

there is no influence from that point at all. This is why tracking with a loose template on

a uniform background is not a problem.

The effect of pixel intensity can be seen in Figure 3.2 where we have two different

sequences. Both templates include roughly the same percentage of background pixels. The

first sequence (a) shows a hand crossing in front of a ‘noisy’ background where there is a

great deal of image variation information and thus large gradients. This noisy background

produces a large intensity error for the pixels that are not part of the hand within the

template region. The result is the template slips off the hand and is biased towards the

stationary background. In the second sequence (b) the hand has a ‘quiet’, or uniform,

background and there is little or no error in the positioning of the template. This lack

of bias is due to the background pixels being roughly uniform across the sequence which

minimises the gradient for these pixels and thus the influence of these pixels.

3.2 Spatially Weighted Templates

A rudimentary LSQ iterative registration tracker is used in conjunction with a course-to-

fine iterative registration technique. This type of tracker normally operates fairly well in

a well defined but limited environment.

For instance, template tracking works well when the tracked object does not vary in
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Figure 3.2: Comparing the tracking accuracy of two sequences: one with a ‘noisy’ and the

other with a ‘quiet’ background. Running the basic template tracker on these two sequences

shows the effect of the extraneous-pixel error-magnitude on the bias of the tracker. When

the background is textured the pixel error-magnitude is large (a) and the resulting bias is

large. Similarly when the background is uniform (b) the error is minimal as is the bias.
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appearance other than the normal rigid affine transformations. Difficulties arise for this

type of tracker when the object is occluded either partially or fully and when the template

region includes a sizeable portion of non-template, or extraneous, pixels.

Spatially weighted templates or ownership masks are proposed as an enhancement for

this simple template based tracking method. The template will weight each pixel within

the template region with a measure of the certainty that the pixel belongs to the tracked

object.

To develop these masks we need to deal with a number of problems. The first problem

that presents itself is that we need some method to distinguish object from non-object

pixels. Assuming perfect tracking for a moment, it seems reasonable to assume that the

object pixels will vary far less than the transient pixels in the background as the object

is tracked. If we start with a sufficiently tight variance measure based on the image from

which the tempate view was derived, the transient pixels in the background should appear

with very low probability as the template pixels cross contrasting parts of the image. For

instance, if our initial background is uniformly black our initial template view will show

black in the background areas. As the template follows the tracked object to an area with

a white background the difference in pixel intensities is large and the background pixels

in the template should show a low probability. This low probability can then be used to

isolate these pixels from the registration calculations thereby reducing the tracking bias.

This, however, assumes perfect tracking. As the positional error of our tracker varies,

the number of pixels that are eliminated from the mask by their intensity variance will

increase. If the tracking becomes poor enough this effect will produce an ill-conditioned

tracker. To circumvent this we will accumulate evidence as we track. Thus a transient

effect will have little impact on the registration process.

When a template travels over a uniform background the extraneous pixels will have
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a high probability of being misinterpreted as part of the tracked object. In Figure 3.3

the background of the tracked blob object (light blue) should give us evidence that the

background pixels are not part of the object of interest.
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Figure 3.3: Changes in the intensity of pixels in the background of the image indicate the

ownership of these pixels is not by the template. Here the background details transit past

the tracked object. The circles represent the pixels that change intensity and the crosses

those that do not.

To develop this mechanism we need to derive pixel statistics from a key image. We

assume that any noise in the pixel intensity will come from small (e.g. a single pixel width)

error in position of the template or camera. The camera is assumed to have a static pose.

3.2.1 Pixel Statistics

To model the ownership of template pixels, a pixel noise model was needed. A Gaus-

sian model of noise was chosen as a good approximation to the discrete distribution that

represents a combination of the camera and real-world noise in the image. It does have

its limitations when the variance measure becomes too small or when the mean value of

the distribution is near to the extremes of the intensity range [0 . . . 255]. However, the
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Gaussian model is simple mathematically and well understood.

Previously all pixles were given an identical variance measure but this was found inap-

propriate as simple camera shake and sharp discontinuities in the image intensity (such as

on the edge of the stack of papers) caused spurious ownership indications.

A single pixel error in positioning was assumed (and detected with a background sub-

traction test) so the pixel variance was based on the eight surrounding pixels (the pixel

neighbourhood). This will define a mean and variance for each template pixel.

These pixel statistics provide a per pixel mean µ(�x)t = 1
9

∑8
i=0 I t

i (�x) and variance

σ(�x)t = 1
8

∑8
i=0(I

t
i (�x) − µ(�x)t)2 where I t

i (�x) is defined by the neighbourhood around the

central pixel (see Figure 3.4).

*
I t
5

I t
7I t

6

I t
0 I t

1

I t
2I t

3I t
4

I t
8

Figure 3.4: The statistics of the 3 × 3 neighbourhood of pixels around the central pixel I t
0

defines the mean and variance. The green circle represents the area a pixel sweeps out as

its position varies by one pixel width.

3.2.2 Ownership Probability

The Ownership Probability is derived using a Gaussian model (Eqn B.1) of the pixel noise

along with the variance and mean measures derived for each pixel in the previous section.

If we assume that the pixel intensity of the pixels on the object will stay constant during
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the transit of the object through the image sequence and that the template is properly

positioned, the pixels in the template corresponding to the object should have zero intensity

error. That is, the pixels of the tracked object match from template view to image frame

for the entire sequence. This is normally an approximation because lighting variations and

shadow effects introduce error. Any interpolation method will also induce a process error

into the system.

The pixels that are not on the tracked object, however, should vary a great deal in

intensity due to the changing background 2. Applying a Gaussian noise model to the

pixel intensity we derive a measure of the probability that a image pixel matches the

corresponding template view pixel:

P (Ii(�x)) =
1

σi(�x)
√

2π
e
− 1

2
(

Ii(�x)−µi(�x)

σi(�x)
)2

(3.1)

Where:

Ii(�x) is the Image pixel intensity corresponding to the point �x in the

template Ti ,

σi(�x) is the estimated pixel intensity variance at this pixel position,

µi(�x) is the estimated pixel mean intensity at this pixel position, and

P (Ii(�x)) is the probability of intensity Ii(�x) at this pixel position.

3.2.3 Accumulation of Evidence

We accumulate the ownership probability over time in a template array called the cumu-

lative ownership using Eqn. 3.2. This is done to solve the problem of transient effects in

2This assumes that the object is moving against a background that has some texture; even a slight

gradient will suffice
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our image sequence 3 Cumulative Ownership Ô(�x) is a temporally averaged function of the

ownership probability O(�x) = P (Ii(�x)).

Ô(�x)t = λÔ(�x)t−1 + (1 − λ)O(�x)t (3.2)

Where:

Ô(�x) is the Cumulative Ownership,

O(�x) is the estimated instantaneous ownership,

λ is the migration constant,

t is the current frame or time step, and

�x is the pixel position in template T .

Experiments show that this eliminates some of the error due to occasional matches for

the background pixels in the template region. It improves the accuracy of the template

positioning problem.

3.2.4 The Mask

Now that we have a measure of the probability that the intensities of the pixels match

between the image and the template we can define a mask. The intent of this mask is to

eliminate non-object pixels from the iterative registration process.

Our first attempt to derive a mask is to use a rudimentary threshold for all pixels. The

idea is to segment the pixel errors into two groups: inliers and outliers by thresholding the

ownership. Inliers are those pixels that have a high probability of being the same pixel

from template to image, outliers are those pixels that have a low probability.

3Transient effects such as minor shadowing.
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The mask is defined as M(�x) = max(0, Ô(�x) − τ) where τ is an arbitrary threshold.

The mask is then normalized to the [0 . . . 1] range to provide a standard range of values

for the iterative registration process.

This method has a few problems. First, not all pixels in the template have the same

variance. These variances were determined for each pixel and depended on the neighbour-

hood of the pixel in the key frame from which the template view was derived.

Furthermore, as the histograms of the pixel standard deviation in Figure 3.5(a,b and c)

show, the distribution of pixel standard deviations varies from template to template. The

problem with this simple threshold method is even more evident in Figure 3.5(d) where the

N(0, σ) distributions are plotted for σ = 1, 5 and 10 with the threshold(=0.06) displayed.

Here the tallest distribution (σ = 1) is divided (x ∈ [−1.95, 1.95]) by the threshold into 95%

inliers and 5% outliers. In the σ = 5 distribution the threshold divides (x ∈ [−3.77, 3.77])

the pixel errors into 55% inliers and 45% outliers. When σ = 10 all points are outliers.

The maximum σ that will allow any inliers (where the peak of the N(0, σ) distribution

touches the threshold) is σ = 6.65.

Thus the threshold has eliminated more pixels in the highly textured areas of the

template than those in the less textured areas. Since tracking of higher texture areas

should lead to more accurate tracking this seems counterproductive. Clearly this is not the

best way to exclude the outliers but it did have some success and showed that eliminating

the non-object pixels could improve the accuracy of the tracking.

The problems alluded to above will be remedied to a degree in the next chapter.

41



0 5 10 15 20 25 30 35
0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6
x 10

4

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

sigma=1 

sigma=5 

sigma=10 

threshold=0.06 

0 5 10 15 20 25 30 35 40 45
0

50

100

150

200

250

300

350

400

(a) Histogram for σ in Hand Template

(c) Histogram for σ in BackGround Template (d) Comparsion of Inlier/Outlier ratios for various σ′s

(b) Histogram for σ in Box Template

Figure 3.5: A common threshold does not work well when the distributions being thresh-

olded have different parameters. In (a,b,c) the difference in distribution of pixel standard

deviations between templates is displayed. The problem with using a rudimentary threshold

to segment pixel errors into inliers and outliers is suggested in part (d) (see text for further

details).
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3.3 Results of using Ownership Masks

If we look at the image sequence in Figure 3.6 we see that the tracking has improved over the

unaided version of the tracker. Some error still remains in the positioning of the template.

Most of this error, however, comes from the time it takes to initialise the ownership mask

and the reduction in the number of tracked pixels. Fewer pixels are tracked because the

threshold used in creating the mask has eliminated a large fraction of the pixels from the

mask and thus from the registration process.

Initially the tracker behaves as it does in the basic tracker. After the tracker has run

for a while the ownership masks develop and the tracking bias settles to constant value.

The video sequence starts with the original template and a dashed rectangle manually

placed after tracking4. As the video sequence progresses, the template wobbles slightly as

the ownership mask evolves. Somewhere between frame 25 and 34 the template has become

steady and thereafter it does not wobble significantly. This is due to the group of pixels

in the ownership mask being reduced to a subset which all have small variance measure.

In the unaided experiment the template bias gets larger and continues to be unstable.

Thus we see that eliminating these outlying pixels by the method of Ownership Masks

has reduced the positioning error in the template tracker. However, this accuracy is de-

pendent on this arbitrary threshold and may degrade over the duration of the tracking.

The corresponding ownership masks for three values of threshold are shown in figures 3.7

(Threshold=0.00), 3.8 (Threshold=0.06) and 3.9 (Threshold=0.10). In Fig. 3.7 the hand

becomes distinguished in mask (bottom insets) but rudimentary thresholding causes ‘mask-

ing out’ of important hand details allowing the background pixels to bias the tracker. In

Fig. 3.8 the harsher thresholding eliminates the background pixels that caused the bias in

previous experiment but also ‘masks out’ more of the pixels that allow accurate tracking

4The dashed rectangle represents the accurate position of an ideal tracker.
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Figure 3.6: Ownership masks appear to have improved tracking accuracy. In the first

sequence (a) the template rapidly falls behind the tracked hand. This is corrected for in

the second sequence (b) where the Ownership Mask keeps the template closer to the correct

position. The small error is due to the delay in forming the ownership mask for the object

being tracked and the small set of pixels remaining in the mask. This error accumulates in

the first few frames but thereafter is fairly constant.
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of the hand. Masking out the pixels in areas of high texture allows the template to ro-

tate on the hand. In Fig. 3.9 the very heavy blur has eliminated most of the pixels on the

hand. Pixels in areas of strong texture are eliminated first in this rudimentary thresholding

scheme. This allows the hand template to slip completely off the hand.
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Figure 3.7: Threshold=0.00. Evolution of hand and box ownerships. The hand becomes

distinguished in its mask (bottom insets) but rudimentary thresholding has not ‘masked out’

the background pixels allowing these pixels to bias the tracker just as in the basic tracker.

Note the red pixels in the mask show pixels completely eliminated by the mask from the

iterative registration process.
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Figure 3.8: Threshold=0.06. Evolution of hand and box ownerships. Harsher thresholding

eliminates the background pixels that caused the bias in previous experiment but also ‘masks

out’ more of the pixels that allow accurate tracking of the hand. Masking out the pixels in

areas of high texture allows the template to rotate on the hand. Note the red pixels in the

mask show pixels completely eliminated by the mask from the iterative registration process.
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Figure 3.9: Threshold=0.10. Evolution of hand and box ownerships. Very heavy blur has

eliminated most of the pixels on the hand. Pixels in areas of strong texture are eliminated

first in this rudimentary thresholding scheme. This allows the hand template to slip com-

pletely off the hand. Note the red pixels in the mask show pixels completely eliminated by

the mask from the iterative registration process.
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Chapter 4

Cooperative Templates

In the previous chapter Ownership Masks were developed to deal with the problem of

background or extraneous pixels within the boundary of the template. Ownership masks

helped solve the extraneous pixel problem. However, there are problems with Ownership

Masks: templates may overlap in the image. When this happens the previously defined

ownership probability is no longer correct.

If more than one template covers an image pixel then that pixel may come from either

template. The ownership probability will be a measure of how accurately the template’s

pixel intensity matches the image’s pixel intensity at that point. If the two intensities

match (no error) for each template covering the pixel the probability of ownership, for that

pixel, will be one for each template. This is not correct.

4.1 Shared Probability

In figure 4.1 there are four templates: the background and templates one through three

TBG, T1, T2, and T3. If we assume all templates views and the image are of the same uniform
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intensity then the probabilities should be distributed to each of the covering templates as

shown. If two templates cover a pixel then they each get 1
2

of the probability and a similar

distribution occurs for other combinations of templates.

TBG

T1

T2

T3

•p(�x) = 1

•p(�x) = 1
2

•p(�x) = 1
4

•p(�x) = 1
3

•p(�x) = 1
2 •p(�x) = 1
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3

Figure 4.1: Cooperating templates are designed to share probability between templates.

When more than one template covers a pixel position that pixel may match closely the

corresponding pixel in more than one of the covering templates. Here the template views

and image are all of the same uniform intensity so the four templates share the ownership

probabilities as shown.

Cooperative templates are just multiple templates that share the probability mass for

each of the pixels that they and other templates cover.

In the Coke-Put video sequence the hand is initially holding the pop can and is thus

occluding the middle and bottom of the can during the first half of the video. Our technique
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of using a key-frame to initialise the template views for the templates has run into a

problem: the templates overlap. We could go back and manually initialise the template

view from a frame where the full template was visible but that may not always be possible.

Furthermore, since our goal is to have a fully automated template tracker, we would like

them to auto-initialise.

In an occlusion event the pixel intensity error typically increases for the pixels that are

being covered by the occluding object because they do not match in intensity. Typically

in an unocclusion event the intensity error significantly decreases as an occluding object

uncovers the tracked object. This is due to the image intensities being similar on the

template view to those in the newly exposed area in the image. This assumes we know the

tracked object’s full view. When we do not have this information, as in the above example

(Coke-Put), the pixel error will increase as in the occlusion event. The reason for this is

that the template view has been initialised with the image of the occluding object and the

true view of the object appears as an occlusion. Thus we have no way of knowing whether

the increase of intensity error is from an occlusion event or an unocclusion event.

Cooperative templates help us in this situation. When we have multiple templates in

an image, part of the task of tracking is being able to segment the tracked object pixels

from the background and other moving, possibly occluding, objects.

With a background template and one or more moving templates we have the situation

where one or more templates are always covering all the pixels in the image. These are

called covering templates. What we would like to do is to segment this group of pixels

between the covering templates so that each pixel is assigned to the template that is

tracking the object from which the pixel came.

If two templates, A and B, cover an area of pixels the probability that a pixel in this area

belongs to template A is not independent of the probability that it belongs to template

51



B. The ownership probabilities, based on the pixel intensity error, we developed in the

Ownership Mask chapter are actually conditional probabilities dependent on the condition

that we know to which template the pixel belongs.

Using Bayes’ rule we can combine these conditional probabilities and the prior proba-

bilities of the templates into a segmentation of the pixels.

4.2 Probabilistic Formulation

When tracking is in progress an image pixel can be assigned to one of N active tem-

plates T1, T2, . . . , TN (which includes the background template). The conditional probabil-

ity of the image pixel intensity value given that it came from a particular template Ti is

P (I(�x)|Ti). Where this is the ownership probability P (I(�x)) from the previous chapter.

4.2.1 Conditional Probabilities

When one or more templates covers a pixel �x, we need to know the prior probability

P (Ti(�x)) that the template is the visible template. Given that the number of covering

templates was defined to be N(�x),
∑N(�x)

i=1 P (Ti(�x)) = 1 and the probability should be

distributed uniformly between the priors, we chose the proir P (Ti(�x)) = 1
N(�x)

.

Now using Bayes’ rule to produce the conditional probability that the pixel came from

template Ti given its intensity is I(�x):

P (Ti|I(�x)) =
P (I(�x)|Ti)P (Ti)∑N

j=1 P (I(�x)|Tj)P (Tj)
(4.1)

In the previous chapter the ownership probability, O(�x), was set to the pixel intensity

probability P (Ii(�x)). Now we can use the more accurate conditional probability P (Ti|I(�x))
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as the ownership probability O(�x) = P (Ti|I(�x)).

4.2.2 New Ownership Mask

Referring back to Fig. 4.1, if the posterior probabilities are equal then the ownership mask

threshold should be inversely proportional to the number of covering templates. This is the

division point where the probabilities P (I(�x)|Ti), that the each template caused the given

image pixel intensity I(�x), are equal. Greater probability for a templates pixel suggests

that this template is the more likely owner and lesser probability suggests the reverse. This

is the new ownership threshold λ(�x):

λ(�x) =
1

N(�x)
(4.2)

Where, N(�x) is the number of covering templates at pixel �x. This is the threshold used

to mask the ownership probabilities when creating the ownership mask.

If the ownership for any pixel in a template exceeds its Ownership Threshold then this

is evidence that the pixel should belong to that template 1. Taking the group of pixels in

a template whose ownership value exceeds the threshold therefore suggests the extent of

the tracked object within the template.

If the ownership is lower than the threshold then probability has moved away from that

template and will be higher on one or more of the other templates covering the pixel.

Thus the ownership, O(�x), minus the ownership threshold, λ(�x), is a measure of how

well the template pixels match those of the corresponding template view. If we have a

1Remember that the threshold is now defined to be that point at which we have no information about

the segmentation. Given P (Ti) = 1
N(�x) and P (I(�x)|Ti) = P (I(�x)|Tj)∀i, j ∈ [1 . . . N ] the conditional

probabilities are P (Ti|I(�x)) = λ(�x).
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positive difference then we use that difference as the raw 2 ownership mask, R(�x) which

we stretch back to the range [0 . . . 1] in the ownership mask M(�x):

R(�x) =




O(�x) − λ(�x) if O(�x) − λ(�x) > 0

0 otherwise
∀�x ∈ Ti (4.3)

M(�x) =
(R(�x) − minx∈T (R(�x)))

(maxx∈T (R(�x)) − minx∈T (R(�x)))
(4.4)

Consider the example of two moving templates and a background template all covering

the same pixel x (see Fig 4.2) where all three template views are initialised from (a).

Evidence of the ownership of a pixel �x by a template Ti is an ownership value greater

than 1
3

(up to unity). Initially the prior probabilities are all equal to 1
3

and the conditional

probabilities P (I(�x)|Ti) are all one because the template pixel intensities were set to this

image’s intensities. Therefore, the posterior probabilities P (Ti|I(�x)) are all equal to 1
3
.

As the tracked objects move we can expect the conditional probabilities to change. In

our example the background template, TBG, has become lighter at pixel �x. The foreground

template T2 has turned darker at pixel �x. Thus their conditional probabilities P (I(�x)|TBG)

and P (I(�x)|TT2) have both decreased. However, P (I(�x)|TT1) has stayed the same because

the intensity error is still zero. Thus the conditional probability P (T1|I(�x)) has gone up

and P (TBG|I(�x)) + P (TT1|I(�x)) + P (TT2|I(�x)) = 1

Similarly if the two moving templates’ conditional probabilities, P (I(�x)|TT1) and P (I(�x)|TT2),

drop for this pixel and the background probability P (I(�x)|TBG) stays high then the pos-

terior probability moves to the background and so does the ownership.

2Before scaling to [0 . . . 1].
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Figure 4.2: Progression of ownership probabilities. Initially (a), before motion evidence,

pixel ownership is evenly distributed between templates. Later (b) as motion clues help to

distinguish pixels in one template from those in the background and other templates, the

ownership probabilities change to reflect this.

4.2.3 Extracting the Probabilities

For each template pixel we must accumulate the probabilities from all the other templates

which cover that pixel. Since the pixel positions do not necessarily correspond from one

template to another, determining which templates cover the current template’s pixels can

be involved. This could be done by interpolation in the image coordinate frame but that

brings up the problem of determining which template pixels are covered by the other

templates. Converting the current template to each of the other templates’ coordinate

system allows us to do simple inequality tests to determine this.

In Fig 4.3 the method used is diagrammed. Assuming we want to accumulate the

probabilities for template T1, we must first convert the pixel coordinates from the T1

coordinate system (a) to the image coordinate system (b) with the forward transformation

m(�x; �aT1). Then we have to apply the reverse T2 transformation m(�x; �aT2) to transform

those coordinates into the T2 coordinate system (c). The T1 pixels that cover T2 are then
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determined with simple inequalities T2x,min ≤ x1 ≤ T2x,max and T2y,min ≤ x2 ≤
T2y,max. If we had chosen instead to work only in the image frame coordinates we would

have had to test each templates’ pixels against all the other template edges to determine

which of these fall within the boundaries of the template.

The probabilities for each T1 pixel �x that are covered by T2 can then be easily determined

using bilinear interpolation. Once this is done for all covering templates, T2, . . . , TN we

have accumulated the total probability
∑N

i=1 P (I(�x|Ti))P (Ti).

Image Coordinate Frame
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Figure 4.3: Cooperative template transformations. Original template T1 with T1 coordinate

system (a). Template T1 in Image coordinate system (b). Template T1 in template T2’s

coordinate system (c) where T2’s extent defines the points to be interpolated (cross-hatched).
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4.3 Summary

4.3.1 Distinguishing Occlusions from Unocclusions

With cooperating templates we can now use ownership probabilities to distinguish occlu-

sions and unocclusions. As was said before, an occlusion will cause a reduction in the

previous version of the ownership probability P (I(�x)|T ). However, in this version of own-

ership probability this is exactly what the unocclusion did when the template view was not

known.

When it comes to distinguishing the type of occlusions and unocclusions we have a new

tool that did not exist in the previous chapter. The ownership probabilities are depen-

dent on the number of covering templates as well as the individual intensity probabilities

P (I(�x)|Ti). When the number of templates covering a pixel decreases, the ownership prob-

abilities on the remaining templates can go up even if the intensity probabilities stay the

same. This new mechanism can work to our advantage.

In the case where we have two templates that have had their template views initialised

from the same key image, the ownership probability will be shared evenly until unocclusion.

If the upper template then moves off, the ownership probability on the unoccluded template

will go up or down depending on how well the occluded template view matches the newly

exposed image. However, since there is only one covering template now the ownership

probability O(�x) (= P (Ti|I(�x))) will go to one; the template pixel must be owned by the

only covering template.

When there are three covering templates we have a different situation. If all templates

have been initialised with the same view we have no way of knowing which template is

the owner. Therefore, they all have the same ownership probability until one of the tem-

plates moves away from the others. If the upper-most template moves away the ownership
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probability will be distributed between fewer templates. Since they have equal intensity

probabilities then their ownership probabilities will go up and the unocclusion has been

detected in both templates.

Although we have not been able to prove mathematically that the ownership proba-

bilities will go up consistently in the case that one of the covering templates has a known

view we do have experimental evidence that this happens in at least some situations.

The evidence that cooperative templates help in occlusion discrimination comes in

Fig. 4.4. Here the hand has released the pop can and has started moving up occluding the

top. The hand is also unoccluding portions of the bottom of the pop can. Originally (a)

this would produce a lowering of the ownership probabilities due to the mismatch between

the template view, which includes the occluding hand, and the true view of the object

in the image. In (b) the cooperative template method has changed the low (dark grey)

probability to a much higher probability (white).

4.3.2 Improvement in Ownership Masks

As we saw in the last chapter, division of pixels into groups of inliers and outliers by using

a single threshold for all template pixels was problematic. The threshold was used on

the ownership probabilities which were simply the probabilities that the pixel intensities

matched from one template to the image. Thus we had no notion of a model for either

the background or other moving objects. In this chapter we have addressed these prob-

lems partially by adding background and other object models and by thresholding pixels

differently.

The other models used now allow us to determine the probability that an image pixel

came from one of the templates by comparing how well the image pixel intensity matched

the intensity of the template pixel in each of the templates. Thus instead of having a high
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probability of matching when the template and image pixels were close in intensity they

now have high probability if that template’s pixel matched the image’s pixel better than

all the other covering templates.

The arbitrary threshold of the last chapter has been replaced by a per-pixel threshold

which is inversely proportional to the number of covering templates N(�x). Thus if each

template’s pixel intensity probabilities P (I(�x)|Ti) are equal then the probabilities that each

of the templates is the owner of that pixel are all equal to 1
N(�x)

.

The results of these two changes can be seen in the improvement in the tracking in

Figure 4.5 and in the corresponding ownership masks in Figure 4.6. The tracking is more

accurate and does not have the angular bias seen in the previous chapter. As the own-

ership masks show the weighting on the hand pixels is now quite high(white) and those

of the background pixels are quite low(black). Thus the registration process is using the

information from the tracked object’s pixels and ignoring the background pixel information.
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Figure 4.4: Results of Cooperative Templates change. The green ellipses highlight the dif-

ference in the ownership probabilities from the basic tracker (b) to the enhanced tracker

(c) as an unocclusion event happens. Cooperative templates have changed the low proba-

bility (dark grey) to a much higher value (white). The schematic in (a) shows where the

unocclusion is occuring.
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Figure 4.5: Ownership masks have made a significant improvement in tracking accuracy.

In the first sequence (a) the template rapidly falls behind the tracked hand. This is corrected

for in the second sequence (b) where the Ownership Mask keeps the template closer to the

correct position. The small error is due to the delay in forming the ownership mask for the

object being tracked. This error accumulates in the first few frames but thereafter is fairly

constant.
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Figure 4.6: Strong spatial partitioning of pixels is evident. The areas of strong(white) and

weak(black) ownership correspond roughly to the tracked-object and background pixels.
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Chapter 5

Evolving Views

In chapter 3 the Ownership Masks described were shown to improve the tracking of the

template tracker in the case where there was substantial background information within the

region of the template. They served to remove most of the bias due to objects with other

velocities within the template. However, there are other sources of error that Ownership

Masks cannot correct. The error induced by the change in the template view as the object

goes through occlusion and unocclusion events can be dealt with effectively with the aid

of the ownership probabilities described in the Cooperative Templates chapter. These

probabilities will allow us to detect occlusion events and modify our template view as it

changes.

5.1 Occlusion and Unocclusion Events

There are many examples of occlusion and unocclusion events in everyday life. Occlusion

events have been dealt with in the Ownership Mask chapter, however, unocclusions are

still problematic. Often separate objects travel together through a scene and then go their
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separate ways: a pedestrian walks out from behind a low wall that had occluded their legs,

a car drives by a telephone pole obscuring successive sections of the car, or perhaps an AI

researcher puts a pop can down and moves his hand out from in front.

In a video sequence the initial segment up until the unocclusion may cause the Own-

ership Masks to incorrectly use the occluding object’s view as if it was part of the tracked

object (see Figure 5.1). When the courses of the two objects diverge, the template tracker

is left with the problem of determining which object to follow. This is essentially the same

problem that was dealt with using Ownership Masks: multiple different velocity sections

within the same template. However, there is a twist: the Ownership Masks are already

defined and the template view will include the occluding object due to its initialization.

When two objects come together and travel in tandem there may be another problem

for a basic template tracker. If the tracked object is occluded when they come together a

simple tracker would not be able to distinguish the occlusion from the tracked object. Part

of the tracked object will be occluded. The occluding pixels will cause a biasing of the

pose estimation away from the occlusions. Again this can occur in many common tasks

such as: walking behind a low wall, picking up and moving a large box, or moving your

hand to pick up a pop can (see Figure 5.2).

5.2 Changing Template View

In template tracking, a view of the object being tracked is kept as a visual model which

can be compared to a subsection of the current image in the image sequence. Often the

view of the object is manually created prior to the video sequence or is predefined to be

a subsection of a key frame. It is then used to determine the object’s pose in the current

frame. The template view is transformed into the image coordinate system to the pose
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Figure 5.1: Unocclusion sequence. While the pop can (tracked object) is moved to the desk-

top by the hand (a) it is being occluded. After the pop can is released (b) the tracked object

becomes completely visible. The tracker must recognize the unocclusion event indicated by

the green dashed line in the inset (c) and must not bias the tracking.
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Frame 32 Frame 47

(a) (b)

(c)

Figure 5.2: Occlusion sequence. Before the hand has reached the pop can (a) the template

view is complete. When the hand grasps the can it also occludes part of the view of the can.

In the inset (c) the difference in the two template views are shown (green dashed line). The

tracker must not be biased by this incursion into the template view.
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that best registers it with the current position of the object. An error function is used

to determine how well the template is registered in the current frame. The smaller the

error the better the registration. However, the actual view of the tracked object in the

image frame generally does not match the template view either before an unocclusion

(Fig. 5.1) or after an occlusion (Fig. 5.2) event. This presents the tracker with the problem

of determining where in the template view the occlusion has occurred, how to maintain

the template view and which pixels should be used to track the object.

In an unocclusion event the tracker needs to update the template view with the new

view information from the exposed part of the tracked object when it becomes available.

In an occlusion event the template view should not be updated because the new in-

formation is from the occluding object and not the tracked object. However, the tracker

should not use the occluded part of the template view to determine the change in pose of

the tracked object because this would induce a bias similar to the bias from extraneous

pixels in chapter 3.

5.2.1 Detecting an Occlusion

For the moment let us assume we have been tracking an object for some time and the

ownership mask has had time to evolve. We will also assume that we have a completely

visible template view. When a tracked object has been occluded the ownership mask

algorithm will detect the occlusion and respond by reducing the ownership probability for

the occluding pixels. This decreases the weighting on these pixels in the pose estimation

and will, as a result, make the tracking more robust against occluding events. This should

prevent the template from being pushed off the tracked object as would happen with a

simple tracker (see Fig. 5.3).

But more information can be derived from this event. As the occlusion is happening the
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File=’coke0050.pgm’ TimeDelta=13.32 LSQ_TranRot 

TrackTemplate_050.fig Template [Theta=−3,x=152,y=132]

File=’coke0035.pgm’ TimeDelta= 0.00 LSQ_TranRot 

TrackTemplate_035.fig Template [Theta=0,x=117,y=150]

(b)(a)

Frame 32 Frame 97

Figure 5.3: Basic template tracker may have problems with occlusions. Here the incursion

of the hand causes the template on the phone to be biased away from its proper position.

ownership probability will drop as the pixels on the occluding object obscure the image

pixels under the template. The falling probability will be reflected in the reduction of

the weights for these pixels in the ownership mask from that of the previous frame (see

Fig. 5.4). When we detect a significant reduction we can conclude that an occlusion event

is in progress. Thus the change in the ownership probabilities can serve to flag an occlusion.

5.2.2 Detecting Unocclusions When View Known

When an unocclusion event is in progress, if we know the template view already, then an

unocclusion results in a higher probability for the unoccluded image pixels because they

match the template view (see Fig 5.5). This causes the ownership mask’s weights for these

pixels to increase. The template view pixels could be updated at this point but they should

be the same as the image pixels anyway.
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Figure 5.4: Changes in ownership mask highlights new occlusions. In the two top frames a

hand passes over the tracked pop can, occluding it. In the bottom frames the mask for the

pop can is shown. The white represents the on-object pixels and the black the background.

When the hand occludes the pop can the ownership mask responds by eliminating those

pixels from the ownership mask. The change between old and new mask indicates where an

occlusion has occurred.

69



5.2.3 Detecting Unocclusions When View Unknown

When an unocclusion exposes a new section of a tracked object there is the problem of

detecting this type of event as well as determining how to extract the newly exposed area

of the tracked object to update the template view.

The ownership mask improvement allowed us to detect unocclusions when the view

was known by using the decreasing ownership probabilities that reflected the increasing

pixel intensity error. However, there was no mechanism to distinguish occlusion events

from unocclusion events when the view was not known. Cooperative templates provide

this mechanism by changing decreasing ownerships to increasing ownerships during an

unocclusion event. Now both versions of unocclusion events will cause an increase in

ownership probabilities. This increase in ownership can then be used to trigger an update

to the template view.

We want to update the template view in these circumstances because the larger the

area of the tracked object being used, the more robust it is to occlusions and errors that

may cause problems in the registration. For instance, in the ‘Coke-Put’ video sequence the

can is carried to the desk top and released. The hand which initially occluded the middle

and bottom of the pop can now starts moving upwards. This causes the hand to occlude

the top of the can. If we only track the top of the can (because it was all we could see

initially), then as the hand moves up it completely occludes the only portion of the can

that is being tracked. This brings about the complete failure of the tracking of the pop

can. Because the basic template tracker searches for the local minima in the error space,

it may move the template completely off the image when what is tracked is completely

occluded. Obviously no matter how well designed your tracker is, the tracked object can

be completely occluded at some time during a video sequence. 1

1An idea to correct for this problem is described in Future Work.
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Figure 5.5: Unocclusions when the view is known or unknown. When a tracked object is

being unoccluded the newly exposed area will have an ownership ∆Ô > 0 if the template

view is already known, otherwise, ∆Ô < 0 in the area the occluding template just vacated.

Care needs to be taken when updating the template view of a tracked object because

if we cannot distinguish tracked from non-tracked pixels, we may inadvertently update

our template view with pixels from the background or the previously occluding object.

This would induce serious tracking problems. When we update the template view pixels

they will be included in the next round of pose determination by the tracker. If we have

incorrectly included background pixels as part of our template then we will have gotten

back into the situation where we are tracking the object as well as the background.

5.2.4 Partial or Full Update of View?

When we know an unocclusion event is occurring we could completely update the template

view. This has the advantage of being simple. However, it has a number of disadvantages.

Changing the entire template view requires us to re-initialise the Ownership Mask, which

induces a time delay before it ‘locks’ onto the tracked object again. This can cause tracking
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bias. This method also suffers because we may lose previously gathered information of the

template view when the occlusion transits across the tracked object (see Fig 5.6).
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Figure 5.6: Occlusion transits make whole-template-view updates unworkable. If we were to

update the entire view when we detected an unocclusion then we would be losing previously

known sections of the template view. In (a) we can see the word ‘Can’ exposed on the

tracked pop can. Later as the had moves up (b) an unocclusion has occurred on the lower

portion but we cannot update the entire view because the upper portion is now obscured.

Instead what we want to do is limit the updates to the newly visible section of the

tracked object (black area in Figure 5.6(b)). This can be done with the help of the cumu-

lative ownership probability as the change in this probability from the previous frame to

the current one indicate which pixels in the bounding box are part of the newly exposed

portion of the tracked object and which are not.

5.2.5 Leading and Trailing Edges

When an unocclusion is occurring within a template’s boundaries the changing ownership

probabilities reflect this change, allowing us to detect where the newly exposed areas of

the template are occurring.

The changes from one frame to the next will highlight two types of changing regions in
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the image. The leading and trailing edges of a moving occluding object will show significant

change. The leading edge will be occluding the template or background pixels that it passes

over. The trailing edge will be exposing previously covered background or other templated

objects. This leaves us with the problem of distinguishing these two types of change.

The leading edge change will be due to the image being occluded by the moving object

and the change in ownership will be negative due to the discrepancy between the intensity

of the image pixels and that of the Template View pixels.

The trailing edges are where the moving object exposes the image pixels of the under-

lying objects. As was said in the previous section, the template view of the underlying

template may be complete or incomplete in this area. If it is complete the ownership mask

values will increase significantly as the template view matches the unoccluded view of the

object in the image. When the underlying template view is incomplete, the exposed section

of the object in the image belongs to one of the templates that cover that pixel and the

cooperative templates fix changes this from the previous negative change in ownership to

a positive change.

5.3 Updating Views When Previously Unknown

If multiple templates mutually occlude each other, the template views of these templates

will include parts of other objects. When the occluding object exposes more of the tracked

object, the newly exposed area of the tracked object does not match the initial template

view.

Evolving the template using the change in ownership probabilities as weights for the

current image and the current template view allows the template view to evolve enough

that a significant unocclusion event may not completely lose tracking as it had before.
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The new template view, Tt+1, is a combination of the old template view Tt and the

current view, Ct, of the tracked object extracted from the image. The proportion of each

being related to the strength of the ownership change:

Tt+1 = (1 − f(∆Ôt))Tt + f(∆Ôt)Ct (5.1)

∆Ôt = Ôt − Ôt−1

f(∆) =




∆ if ∆ > 0

0 otherwise

Where:

T is the Template View,

t is the current time or frame,

Ô is the Cumulative Ownership probabilities, and

C is the Current View derived from the image It.

Equation 5.1 uses the change in ownership to update the template view. A negative

change in ownership would indicate that the current view is not matching the template

view very well. This would occur when an object is being occluded. A positive change

happens when we have an unocclusion of an object that has a complete or incomplete

template view and this will trigger an update of the template view.

The results of the addition of cooperative templates and evolving template view can be

seen in the Figure 5.7. Here the hand holding the pop can occludes most of the middle and

bottom of the can. When the hand releases the can on the desktop it starts unoccluding

the bottom and middle of the can but at the same time occludes the top. A simple
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tracker would lose tracking for the pop can. The pop can template would just follow the

hand Fig. 5.7(a). When we add the cooperative templates, evolving template views and

ownership masks to the basic tracker the pop can template stays with the pop can and

will start tracking the bottom of the pop can as it is exposed, Fig. 5.7(b) . There is still

a little instability that allows the template to wobble as it gains the newly exposed view.

Perhaps this is something for future work.

We see in Figure 5.8 that initially the template view of the pop can includes the

occluding hand. As the sequence progresses the occlusion in the template view is replaced

with the newly exposed view of the pop can. Due to the slight angular bias to the template

as the hand leaves the region the view updates with a bend in the can and some spurious

wedges coming in on the left.
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(a)

Frame 025

Frame 061

Frame 100

File=’coke0025.pgm’ TimeDelta= 0.00 LSQ_TranRot 

TrackTemplate_025.fig Template [Theta=0,x=72,y=78]
Template [Theta=0,x=81,y=62]
Template [Theta=0,x=1,y=1]

Frame 025

Frame 061

Frame 100

(b)

File=’coke0025.pgm’ TimeDelta= 0.00 LSQ_TranRot 

TrackTemplate_025.fig Template [Theta=0,x=72,y=78]
Template [Theta=0,x=81,y=62]
Template [Theta=0,x=1,y=1]

File=’coke0061.pgm’ TimeDelta=31.43 LSQ_TranRot 

TrackTemplate_061.fig Template [Theta=−1,x=128,y=165]
Template [Theta=−3,x=137,y=147]
Template [Theta=0,x=1,y=1]

File=’coke0061.pgm’ TimeDelta=29.21 LSQ_TranRot 

TrackTemplate_061.fig Template [Theta=−2,x=128,y=165]
Template [Theta=−2,x=136,y=148]
Template [Theta=0,x=1,y=1]

File=’coke0100.pgm’ TimeDelta=29.98 LSQ_TranRot 

TrackTemplate_100.fig Template [Theta=−11,x=135,y=68]
Template [Theta=2,x=139,y=143]
Template [Theta=0,x=1,y=1]

File=’coke0100.pgm’ TimeDelta=34.52 LSQ_TranRot 

TrackTemplate_100.fig Template [Theta=−10,x=136,y=67]
Template [Theta=−20,x=119,y=103]
Template [Theta=0,x=1,y=1]

Figure 5.7: Final enhanced tracker can track past occlusion transits. Performance of basic

tracker (a). After adding ownership masks, cooperative templates, and evolving views to

the basic tracker, it tracks successfully past the occlusion problems.
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(Frame 85)

(Frame 70)

(Frame 75)

(Frame 80)

(Frame 90)

(Frame 95)

Figure 5.8: Evolving Views updates the template view in an unocclusion. As the image

sequence progresses the template view for the pop can updates. The view of the occluding

hand is changed to the pop can view.
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Chapter 6

Conclusion

6.1 Summary of Work Done

Template tracking in computer vision has been with us for a long time. A basic template

tracker works well in most circumstances as long as some conditions are met as was seen

in the Introduction.

First, extraneous or non-object pixels have to be kept to a small fraction of the pixels

within the template region. Otherwise they may bias the template away from the tracked

object. Extraneous pixels in the background of a moving template will tend to bias the

template’s motion away from the direction of object movement. A static background tends

to keep the template stationary as the moving pixels of the tracked object pull the pose

estimation in their direction. Often the bias is fairly constant. Other times, depending

upon the nature of the background textures, the template will become unstable and wobble

back and forth.

Second, occlusions of all varieties must not occur. They act to bias the tracker’s pose

estimation away from the incursion of the occlusion. In severe cases an occlusion may
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actually push a template off the tracked object, causing the tracking to fail completely.

The occlusion of a hand reaching to grasp a pop can may cause the template positioned

on the can to be pushed off the can away from the incoming hand.

In this thesis we started from a basic template tracker that uses a combination of

iterative registration and course-to-fine techniques to register the template view within the

image sequence and attacked the above problems one by one.

6.1.1 Ownership Masks

Ownership masks were used to deal with the problem of extraneous or background pixels

within the template boundaries. These extraneous pixels were shown to bias the pose

estimation of the tracker. Highly detailed backgrounds bias the tracker more than uni-

form backgrounds. The greater the percentage of extraneous pixels within the template’s

bounding box the greater the bias in the tracking. Elimination of these extraneous pixels

using the ownership mask technique reduced this bias and steadied the tracker thus making

the pose determination of the tracker more accurate and robust.

6.1.2 Cooperative Templates

The other two problems dealt with occlusions. When another object in the scene occluded

part of the object being tracked, the occluding pixels would cause an area of high error.

This would tend to bias the template away from the correct pose, sometimes pushing the

template completely off the tracked object. In this case the ownership masks provided the

solution by triggering a masking of the occluding object within the template’s boundaries.

Thus the masked pixels’ influence on the pose estimation was reduced and they did not

induce as much bias.
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The other occlusion problem occurred due to the tracked objects being occluded when

the templates were initialised 1. This was not a problem as long as the objects were

travelling with each other but when the occluding object moved away there was the problem

of trying to match the true, previously unseen, view of the tracked object with the template

view which contained portions of the occluding object. This problem was partially solved

using the cooperative templates technique. Using this technique we attempt to segment

the image pixels between the templates by deriving the conditional probability of the pixel

belonging to a template based on the intensity of the image pixel and the template view’s

pixel statistics. Some success was found in applying the cooperative template technique

to this problem. However, the real purpose of the cooperative templates method was to

support the third enhancement: Evolving template views.

6.1.3 Evolving Template Views

When the cooperative templates method was incorporated another problem became obvi-

ous. That problem was an occlusion transit over an initially occluded object. An occlusion

transit occurs when a tracked object has successive portions of itself occluded as the oc-

cluding object moves from one end of the object to the other. What is happening in these

circumstances is that tracker is trying to track only a portion of the full object because it

is partially occluded when tracking starts. As the occlusion transit continues the originally

tracked portion of the object gets occluded and the originally occluded portion becomes

visible. The fraction of the object being used to track goes to zero and the template falls

1This thesis is my first step in making a fully automated tracker. As such, some of the initial conditions

were set with my final goal in mind. One such condition was that tracking would start without any prior

knowledge about what a tracked object would look like. Therefore, one goal was to fill in incomplete

template views of an object. This is a simple attempt at automated model building.
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off the object and tracking is lost.

The evolving template view method was used in conjunction with ownership masks

and cooperative templates to capture the newly exposed view of the object and update the

tracker’s view of what the tracked object looks like. This technique was also found to be

useful and experiments showed that this solved the occlusion transit in the video sequence

tested.

6.2 Evaluation

In the Ownership Mask chapter the masks based on the image intensity probability showed

that eliminating background pixels from the template during the template registration

improved the translational accuracy of template. However, this success was tempered by

the heavy-handed reduction in all pixels within the template leaving the method open to

angular error and potentially eventual tracking failure due to the elimination of too many

object pixels (see Figures 3.7, 3.8 and 3.9).

The Cooperative Templates technique partially solved this problem by using the pos-

terior probabilities, that the pixel belonged to the template, which were based on the

above pixel intensity probabilities. Thus the ownership is now explicitly accounted for by

all the covering templates and not implicitly by some undefined process as was the case

previously. Now the thresholding to produce the template masks could be based on the

ownership levels, where the likelihoods are equal, instead of an arbitrary threshold as it was

before. As well, the Cooperative Templates enhancement allows us to extract information

allowing us to differentiate between occlusions and unocclusions when the view is unknown

in some circumstances (see Figures 4.4, 4.5 and 4.6). This enhancement has thus improved

the tracking problem we had with the above rudimentary ownership masks, improved the
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coherence of these masks, reduced the number of object pixels that are eliminated from

the masks and given us a foundation for the next enhancement: Evolving Views.

The last enhancement, Evolving Views, takes the Cooperative Templates ability to

differentiate between occlusion and some unocclusion events and uses that to trigger an

update to the template’s view in the case where it was previously unknown. This change has

allowed the tracker to avoid the occlusion transit problem discussed in the introduction and

has had some success in completing the missing parts of the template view (see Figures 5.7

and 5.8).

6.3 Future Work

There are a number of directions this work can be taken. This tracker was intended as

the first step in producing a fully autonomous tracker; one that can initialise and maintain

a template throughout the object’s presence in the image sequence and beyond. As was

previously mentioned, there are a number of key areas that present themselves for future

projects.

6.3.1 Object Search

During the development of this tracker, the error surface of Equation 2.1 was explored. As

Fig. 6.1 and the closeup in Fig. 6.2 suggest, the error surface is quite complex and local

minima abound.

A video of a single plane through the 3D error space was made and this showed a

bifurcation of the global minima. Likely this was caused by only exploring a subspace of

the error volume but it would be interesting to explore the error space further and find the

shape of the constant error surfaces. This may lead to further understanding of the global
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Figure 6.1: Inverted error surface in the Coke-Put sequence. The global and a local minima

(the two peaks on the RHS) are highlighted in colour. This local minima is very close in

location and magnitude to the global minima making it a significant problem. Note the

ramp visible on the front two edges is due to the template travelling partially off the image

which induces a higher error by design.
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Figure 6.2: Closer view of neighbouring global and local minima in prevous figure. The

difference in the heights of the minima is small, which may cause a search algorithm to get

caught in the wrong minima.
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minima search problem.

6.3.2 Auto-Initialization

Another challenge is to be able to auto-initialise the templates based upon movement in

the image. A number of techniques to initialise present themselves. Optical flow or the

much simpler frame differencing method can be used to highlight the portions of the image

undergoing movement (see Figures 6.3 and 6.4). Both of these techniques would initialise

template bounding boxes that are fairly loose and have a large number of extraneous pixels.

Ownership masks have been partially developed to solve this problem.

Stationary Object Segmentation

Except for the background, all the templates in the video sequence could be moving at

some point in time and stationary at others. When an object moves, this provides an

opportunity to segment the moving object as well as any stationary objects which may

occlude it. If a hand moves behind a stationary mug sitting on the desk we can invoke the

rule of object permanence again and say the hand did not disappear; it was occluded by

something stationary.

Malleable Templates

Problems with static-sized templates abound. Objects in real world scenes do not behave

the way we would expect they would. Unocclusions may reveal protrusions that cannot be

accounted for within the boundaries of a pre-initialised rectangular template. A rectan-

gular template also may not be refined enough to track an irregular object correctly. The

ownership mask method reduces the effect of extraneous pixels but requires accurate track-

ing while the mask matures. There are circumstances where this is not feasible. However,
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QuiverPlot(Flow) coke0030.pgm

inc=10 scale=1.00 m=0.023 M=87.512

Frame 30

Frame 78

Frame 43

Frame 90

QuiverPlot(Flow) coke0043.pgm

inc=10 scale=1.00 m=0.029 M=170.446

QuiverPlot(Flow) coke0078.pgm

inc=10 scale=1.00 m=0.010 M=89.837

QuiverPlot(Flow) coke0090.pgm

inc=10 scale=1.00 m=0.006 M=194.461

Figure 6.3: Optical Flow run on the Coke-Put sequence. As can be seen by the arrows

in Matlab’s quiver plot the velocity of the movement can also be extracted. The extent of

the moving object is roughly delineated by the larger flow vectors although the flow on the

shadow below the hand (Frame 43) may cause problems. Contours on the image are the

constant velocity contours.

86



86

30 34 38Frame 26

42 46 50 54

58 62 66 70

74 78 82

Figure 6.4: Extent of moving object may be provided by frame differencing. In this sequence

frame differencing is is followed by thresholding and removing the speckling(isolated pixels).
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the optical flow or frame differencing techniques may offer a solution to this problem. They

can provide a raw estimate of the object’s extent. We can then provide a tightly bounding

template to cover the object. Malleable templates would then adjust the boundary of the

object if there was evidence of the object beyond the current boundaries or if the margin

of background around the object is too large.

6.3.3 Object Permanence

Another challenge is the maintenance of the templates as the objects evolve in the image.

Objects coming on screen or going off screen change in size depending upon the percentage

visible at the time. When they have moved off screen they may come back on screen

again. It would be desirable to be able to associate a previous instance of an object with

its current instance. A tracker should have a sense of object permanence.

Full Occlusions and Model Switching

All the problems with occlusions have not been solved. Full occlusions of the tracked object

cause the basic tracker to completely lose tracking. This is because the tracker searches for

a best match for the tracked object in the image. If the object disappears completely then

it is either occluded within the scene or occluded because it moved out of the scene. A

simple threshold on the error function may be useful in detecting these events. Then when

the tracker detects a full occlusion it can switch models to something else: like a constant

velocity model.
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6.3.4 Articulated Objects

Articulated objects present a problem for a template tracker that is based on a rigid

internal model (the template view). But often articulated objects are constructed from

multiple rigid segments joined together. The human body, for instance, is based upon a

skeletal system that is rigid locally but articulated globally. Templates on the arm and leg

segments, the body and the head may be able to track their locally rigid parts. Shannon Ju,

et. al. found in their Cardboard People paper [19] that this could be done with constraints

on the joints. But what conditions would be necessary to discover these constraints in an

auto-initialised tracker?
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Appendix A

Template Tracking Mathematics

A.1 Template Tracking Algorithm

Template tracking works by registering two views of the same object. One, the template

view that the algorithm keeps as a visual model of the tracked object, and the other the

view of the tracked object in the current image.

The object is to find the transformation parameters �a that register the template view

with the view of the tracked object in the current image, It, of a video sequence. This

registration minimises the error function E(�a) between the template view (taken from the

key image, J , in the sequence at some time prior to t) and the corresponding image, It, at

the current time t and transformational parameters �a.

The error in the template T is given by:

E(�a) =
∑
�xεT

ρ(J(�x) − I(m(�x;�a))) (A.1)

Where T is the set of pixels in the template with (0, 0) in the upper left corner and
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aligned with the axes. That is T = {0, . . . ,W − 1} × {0, . . . , H − 1} where W is the

width of the template in pixels and H is the height. The coordinates �x of the pixels are in

the template coordinate system and the coordinates of the pixels in the image coordinate

system are m(�x;�a). The parameters �a define the pose of the template when registered.

A.1.1 The Estimators

The function ρ(. . .) is the estimator or weighting function that weights the contribution of

the error in each pixel’s intensity to the total error E(�a):

LSQ Estimator:

ρ(e) = e2 (A.2)

Robust Estimator:

ρ(e) =
e2

σ2 + e2
(A.3)

Where σ is a constant defining the spread of the function along the x-axis.

The LSQ weighting function has the problem that it weights larger errors more sig-

nificantly than smaller errors. This causes large errors to have larger significance in the

calculation of the total error, which may bias the tracker towards the outliers. The Robust

weighting function asymptotically approaches C from below as e approaches infinity (see

Fig A.1).

In this paper the ownership masks were used to exclude outliers so the Robust weighting

function was avoided in favor of the simpler LSQ function.
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Figure A.1: The LSQ Estimator, Robust Estimator and asymptote.
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The vector �a = (ax, ay, aθ) is a set of parameters that represents the pose of the tem-

plate. In this case it allows for translation and in-plane-rotations (Z-axis rotations) of the

template.

Iterative registration was used. During each step the pose of the template �a is updated

by the estimated change in pose δ�a.

�a ′ = �a + δ�a (A.4)

A.1.2 Linearized Intensity

To solve for the optimal δ�a, we linearize the template image intensity map at each point

by using a first degree Taylor approximation:

I(m(�x;�a ′)) = I(m(�x;�a + δ�a)) (A.5)

= I(m(�x;�a)) + ∇I(m(�x;�a)) × ∂m(�x;�a)

∂�a
δ�a + O(‖δ�a‖2) (A.6)

Where �I(m(�x;�a)) is the gradient of the current image at the template point �x and

initial 1 pose �a . The value ∂m(�x;�a)
∂�a ′ �δa is the full derivative of the transformation m(�x;�a) by

the parameters of the transformation �a. NOTE: In the case of a translational and rotational

transformation �a ′ε	3 and �x is a 	2 vector in the image plane. Therefore, ∂m(�x;�a)
∂�a ′ �δa is a

	2 ×	3 vector (a 2x3 matrix).

The error in the Taylor’s approximation is Θ(‖ �δa‖2) which stays small as long as the

iteration in our pose parameters is small. Therefore, a good pose prediction method is

important to keep the pose increment small and thus the linearization error small.

1For the current image frame and blur level.
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To derive δ�a we need to reformulate the error function in terms of δ�a and linearize it

using the Taylor’s Approximation.

E(�a ′) =
∑
�xεT

ρ(I(m(�x;�a ′)) − J(�x)) (A.7)

=
∑
�xεT

ρ{I(m(�x;�a)) + �I(m(�x;�a))
∂m(�x;�a)

∂�a ′
�δa (A.8)

+Θ(‖ �δa‖2) − J(�x)}

≈
∑
�xεT

ρ{I(m(�x;�a)) + �I(m(�x;�a))
∂m(�x;�a)

∂�a ′
�δa

−J(�x)} (A.9)

= E(�a + �δa) (A.10)

= G( �δa) (A.11)

Where G( �δa) is the total pixel error in the template dependent on �δa, the deviation

from the starting point2.

Now as �δa −→ 0, Θ(‖ �δa‖2) −→ 0 and G( �δa) −→ E(�a ′).

To solve for �δa we have to find the minimum of G( �δa). Where dE
da

≈ dG
d( �δa)

. This can

be done by solving dG
d( �δa)

= 0. To do this we note in Equation A.9 that J(�x) is just the

intensity of the base image pixel �x. I(m(�x;�a ′)) is the intensity of the pixel in the current

image I. �I(m(�x;�a)) is the image intensity derivative. ∂m(�x;�a)
∂�a ′ is the derivative of the

transformation and �δa the variable. Note the parameter to the function ρ(. . .) is linear in

�δa. The value of this vector that minimises G( �δa) is the change in transformation that will

bring the templates closer to the proper alignment.

2For the current image and blur level.
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Note also that since �x after transformation (and possibly before) will have non-integral

component values, we will need to interpolate when calculating the image intensity values

for �x and m(�x;�a ′). This interpolation can be done in a variety of ways, but the simplicity

and speed of bilinear interpolation (see Appendix B.3) makes it an attractive solution.

Other interpolation methods that may be useful for higher order smoothness are: Bicubic

Interpolation and Bicubic Spline (see [25]).

Now using Eqn. A.9 we differentiate and equate to the zero vector to find the �δa for

which the function G( �δa) is a minimum.

G(δ�a) =
∑
�x∈T

ρ({I(m(�x;�a)) + ∇I(m(�x;�a)) × ∂m(�x;�a)

∂�a
δ�a} − J(�x)) (A.12)

For the LSQ estimator ρ(e) = e2 we have:

dG(δ�a)

d(δ�a)
= 2

∑
�x∈T

[I(m(�x;�a)) + ∇I(m(�x;�a)) × ∂m(�x;�a)

∂�a
δ�a − J(�x)]

×∇I(m(�x;�a)) × ∂m(�x;�a)

∂�a
(A.13)

We find the extrema by setting Eqn A.13 to zero and solving for δ�a:

�0 =
∑
�x∈T

[
I(�x ′) + ∇I(�x ′) × ∂�x ′

∂�a
δ�a − J(�x)

]
×∇I(�x ′) × ∂�x ′

∂�a
(A.14)

Where �x ′ = m(�x;�a).

Converting to the matrix form of eqn A.14

�0 =

(
∇I(�x ′) × ∂�x ′

∂�a

)T [
I(�x ′) + ∇I(�x ′) × ∂�x ′

∂�a
δ�a − J(�x)

]
(A.15)

It is instructive to see its dimensional equation (n is the number of pixels in T ):
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[3 × 1] = ([n × 2][2 × 3])T ([n × 1] + [n × 2][2 × 3][3 × 1] + [n × 1])

In this thesis we allow the template to go through two types of pose transformation:

Translation and Z-Rotation (in the plane). The following section is specific to these types

of transformations.

�x ′ = m(�x;�a) =


 mx

my


 = A�x +�b =


 cos aθ −sin aθ

sin aθ cost aθ





 x

y


 +


 ax

ay


 (A.16)

where �x ′ is in the image, �x is in the template, �a = (ax, ay, aθ)
T , and

Which gives:

(
dm(�x;�a)

d�a

)
=




∂mx

∂ax

∂my

∂ax

∂mx

∂ay

∂my

∂ay

∂mx

∂aθ

∂my

∂aθ


 =




1 0

0 1

−xsin aθ − ycos aθ xcos aθ − ysin aθ




A.1.3 Iterative Solution to Registration Problem

Rearranging equation A.15 we get:

(
∇I(�x ′)

∂�x ′

∂�a

)T

(I(�x ′) − J(�x)) = −
(
∇I(�x ′)

∂�x ′

∂�a

)T (
∇I(�x ′)

∂�x ′

∂�a
δ�a

)
(A.17)

Identifying and substituting for the common terms:

(
∇I(�x ′)

∂�x ′

∂�a

)T

(I(�x ′) − J(�x)) = −
(
∇I(�x ′)

∂�x ′

∂�a

)T (
∇I(�x ′)

∂�x ′

∂�a

)
δ�a (A.18)
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Where Q =
(∇I(�x ′)∂�x ′

∂�a

)
and is a n × 3 vector (where n is the number of pixels) and

QT Q is a 3 × 3 matrix. Replacing the bracketed term by Q we get the simpler equation:

QT (I(�x ′) − J(�x)) = −(QT Q)δ�a (A.19)

Solving for δ�a we get:

δ�a = (QT Q)−1QT (I(�x ′) − J(�x)) (A.20)

Its dimensional analysis:

[3 × 1] = ([n × 3]T [n × 3])−1[n × 3]T ([n × 1] − [n × 1])

Thus the solution using the pseudo (or generalised) inverse [14] Q† = (QT Q)−1Q is:

δ�a = −(QT Q)−1QT × (I(�x ′) − J(�x)) (A.21)

This is the least squares solution of the over constrained system. There are other ways

to solve over constrained linear systems (see [29, Appendix A.6]).
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Appendix B

Mathematical Tools

B.1 Gaussian Blurring.

The smoothing, or blurring, of an image can be accomplished with a Gaussian kernel:

G(h, k) = Ce(−h2+k2

2σ2 )

This equation is separable so that:

G(h, k) = Ce(− h2

2σ2 ) × e(− k2

2σ2 ) (B.1)

Then when we convolve Equation B.1 with our image I(h, k) we get:
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IG(i, j) = I ∗ G

=

m
2∑

h=−m
2

m
2∑

k=−m
2

G(h, k)I(i − h, j − k)

= C

m
2∑

h=−m
2

e(− h2

2σ2 )

m
2∑

k=−m
2

e(− k2

2σ2 )

Thus to convolve the full 2-dimensional Gaussian kernel with our image we can apply

a 1-D Gaussian kernel first to the columns and then to the rows of the image.

To create a 1-D discrete Gaussian kernel we need to start with a 1-D continuous Gaus-

sian kernel N(µ, σ). Then the mask width w must be determined. We want the width w

to cover the bulk of the continuous distribution and be symmetrical about the mean.

With an N(0, 1) distribution the CDF at 2.5σ is 0.993790. This gives a coverage of

(0.993790 − (1 − 0.993790)) = 0.98758. Thus w = 5σ gives a 98.76% coverage. (See

[29, page 55]).

B.2 Image Derivatives.

To determine the five-point Central-difference approximations we need to start with the

Taylor approximations:
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f(x + h) = f(x) + hf ′(x) +
1

2
h2f ′′(x) +

1

6
h3f ′′′(x) + O(h4) (B.2)

f(x − h) = f(x) − hf ′(x) +
1

2
h2f ′′(x) − 1

6
h3f ′′′(x) + O(h4) (B.3)

f(x + 2h) = f(x) + 2hf ′(x) + 2h2f ′′(x) +
8

6
h3f ′′′(x) + O(18h4) (B.4)

f(x − 2h) = f(x) − 2hf ′(x) + 2h2f ′′(x) − 8

6
h3f ′′′(x) + O(18h4) (B.5)

Next find the difference between Equations B.2& B.3 and B.4& B.5:

f(x + h) − f(x − h) = 2hf ′(x) +
1

3
h3f ′′′(x) + O(h4)

f(x + 2h) − f(x − 2h) = 4hf ′(x) +
8

3
h3f ′′′(x) + O(h4)

adding the above two equations together we get:

−f(x + 2h) + f(x − 2h) + 8f(x + h) − 8f(x − h) = 12hf ′(x) + O(h4)

Which, when solved for f ′(x), gives:

f ′(x) =
f(x − 2h) − 8f(x − h) + 8f(x + h) − f(x + 2h)

12h
+ O(x4)

For further information on deriving formulae for Numerical Derivatives please see

Trucco&Verri [29, Appendix A.2].
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B.3 Bilinear Interpolation

b

P10

P01

γ

λ

P00

P11I(P00)

I(P01)

I(Px)

I(Pb)

I(Pa)

I(P11)

I(P10)

a

x

Figure B.1: Using bilinear interpolation to get non-grid pixel intensities.

Given the intensities {I00 = I(P00), I10, I01, I11} of the four corners {P00, P10, P01, P11}
of the square in the regular grid that our point of interest �x lies in we can approximate the

intensity of the point itself: I(�x). First we have to find the value I(�x) which is dependent

on I(�a) and I(�b):

I(�x) = λI(�b) + (1 − λ)I(�a) (B.6)

Where λ = ‖�x − �a‖ is the fractional part of �x in the first coordinate.

I(�x) is then the linearly interpolated value between the intensity values of the two

pseudo points �a and �b. These intensity values can be calculated from the four corner point

intensity values as follows:
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I(�a) = γI( �P10) + (1 − γ)I( �P00) (B.7)

I(�b) = γI( �P11) + (1 − γ)I( �P01) (B.8)

Where γ = ‖�a − P00‖ is the fractional part of �x in the second coordinate.

Combining the above three equations we get:

I(�x) = λ(γI( �P11) + (1 − γ)I( �P01))

+(1 − λ)(γI( �P10) + (1 − γ)I( �P00))

= λγI(P11) + λ(1 − γ)I(P01)

+(1 − λ)γI(P10) + (1 − λ)(1 − γ)I(P00) (B.9)

This can also be used to derive the image derivatives ∇I(�x) given the derivatives

{Ix,00 = Ix(P00), Ix,10, Ix,01, Ix,11} and {Iy,00 = Iy(P00), Iy,10, Iy,01, Iy,11} at the corners.

Note that the approximation to the real surface by two triangular planes is fairly coarse

and the first derivatives from neighbouring grid squares will not match.

In terms of calculation efficiency Eqn. B.9 requires 7 add’s/8 mult’s whereas Eqn. B.7

and B.8 requires 4+/4× and substituting the answers into Eqn. B.6 brings the grand total

to 6 + /6× (more efficient).

Matlab’s interp2() function implements bilinear interpolation (among other interpola-

tion methods).
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