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Abstract

The literature comprises many approaches and results for the formation control of multi-

vehicle systems; however, the results established for the cases where the vehicles contain

parametric uncertainties are limited. Motivated by the need for explicit characterization

of the effects of uncertainties on multi-vehicle formation motions, we study distributed

adaptive formation control of multi-vehicle systems in this thesis, focusing on different

interrelated sub-objectives. We first examine the cohesive motion control problem of min-

imally persistent formations of autonomous vehicles. Later, we consider parametric uncer-

tainties in vehicle dynamics in such autonomous vehicle formations. Following an indirect

adaptive control approach and utilizing the features of the certainty equivalence princi-

ple, we propose control laws to solve maneuvering problem of the formations, robust to

parametric modeling uncertainties. Next, as a formation acquisition/closing ranks prob-

lem, we study the adaptive station keeping problem, which is defined as positioning an

autonomous mobile vehicle A inside a multi-vehicle network, having specified distances

from the existing vehicles of the network. In this setting, a single-integrator model is as-

sumed for the kinematics for the vehicle A, and A is assumed to have access to only its

own position and its continuous distance measurements to the vehicles of the network. We

partition the problem into two sub-problems; localization of the existing vehicles of the

network using range-only measurements and motion control of A to its desired location

within the network with respect to other vehicles. We design an indirect adaptive con-

trol scheme, provide formal stability and convergence analysis and numerical simulation

results, demonstrating the characteristics and performance of the design. Finally, we study

re-design of the proposed station keeping scheme for the more challenging case where the

vehicle A has non-holonomic motion dynamics and does not have access to its self-location

information. Overall, the thesis comprises methods and solutions to four correlated forma-

tion control problems in the direction of achieving a unified distributed adaptive formation

control framework for multi-vehicle systems.
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Chapter 1

Introduction

Many creatures in nature behave collectively with the others of the same kind. Birds, ants,

and fish show great examples of this behavior. Every one acts in a way that the whole group

constitutes a combined structure or shape for advancing some objectives while avoiding

collisions. In biological swarms, it is an inherent property that each creature in the swarm

makes its movements needed to achieve the desired formation. Among the most interesting

instances, there are ants that carry foods from a point to a target point, each keeping a

part of the food, an objective which is almost impossible for a single ant. Another amazing

instance is a school of fish where every fish moves very close to the others without colliding.

Inspired by this kind of behavior, researchers have worked on setting up swarm ar-

chitectures to be used in the motion control of multiple mobile systems. Literature com-

prises many different techniques on this subject. A computer simulation of a flock be-

havior was introduced in [103], defining the ‘rules’ that make a group of individuals a

swarm: all the members move in the same direction, with the same speed; avoid collisions;

and move close to each other. Later, the concepts of control theory and graph theory

have been applied to construct coordination schemes that achieve various formation con-

trol tasks for mobile robot swarms, including formation acquisition, flocking, consensus,

rendezvous, rigid formation maintenance. The methodologies used to solve these prob-

lems include virtual-leader based control [93,123], behavior based formation control [6,11],

leader-follower formation control [12, 32,33,44,45,113,126]. Typical modeling and control

tools are brought from the complex systems [83, 117], adaptive control [38, 65, 68, 69, 137],

graph theory [1, 17,44,45] frameworks.
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Formation control application areas range from multi-robot teams to solving linear

algebraic equations. The idea of fractionated space structures is an example to formation

control applications. Instead of a monolithic and huge spacecraft, a number of small, but

more responsive and effective, spacecrafts are projected to be launched into space. This

way, the technical, environmental, and requirement uncertainties will be reduced [15, 16].

These structures are supposed to be integrated by wireless communication in order to

make the replacement of a single spacecraft become easier in case of any failure. The

problems of information consensus between the spacecrafts and regulation of disturbances

need to be studied in parallel as well. Beyond that, another motion problem appears:

formation acquisition and maintenance of these structures. Another formation control

problem which is not studied explicitly in this thesis is consensus control. Solving systems

of linear equations by parallel computers that are coordinated in a distributed way is an

application area of consensus control of multi-agent systems (MAS ) [4, 97–99]. Given a

system Ax = b with the known non-singular matrix A and known vector b, the aim is to

solve for the unknown vector x in a distributed fashion. In that setting, each computer tries

to find the vector x by solving only a subset of the equation system and communicating

with other computers. The distributed way of solving the linear systems of equations brings

big advantages in security and computation time [4].

1.1 Motivation

Even though there are numerous theories, methods, and applications on MASs, the control

frameworks proposed for MAS motion in a rigid formation are commonly established to be

valid for two or three-vehicle formations. However, how the stability is affected when the

number of the vehicles increase is not obvious. In fact, the term ‘stability of a MAS’ has

been interpreted dissimilarly in different works; according to some works stability corre-

sponds to stability of the individual vehicles and should be searched for at each individual

member, while some others consider this term as having a stable swarm width as time pro-

gresses. According to researchers who study formation control of MASs, stability is much

related to interactions between vehicles in the formation. As will be discussed in Chapter 2,

the difficulty in analyzing the stability properties of a formation control algorithm comes

from the lack of convenient and compact formation models in the literature. Derivation of

a dynamic model for a formation is not trivial indeed. This fact has motivated the authors

2



to use a system theoretical perspective and study on deriving dynamic models for forma-

tions utilizing the features of the graph theory in order to better understand the inherent

properties of the formations and ease future control algorithm designs.

There are some dynamical systems that can be modeled by high-order input-affine

dynamic model. For this type of systems, consensus and tracking problems have been

examined in many works with and without parametric uncertainty, and noisy and time-

delayed measurements. When some parameters of the dynamic model are not known

exactly, an adaptive or robust method is being used either to estimate the parameters and

use this estimation within the controller (indirect method) or to design a controller based

on the Lyapunov’s theorem achieving the goals even when the parameters do not converge

to their correct values (direct method). One witnesses that most of the works in direct or

indirect adaptive control structures employ neural or fuzzy approaches in the control design

procedure of MASs, which are universal approximators and infamous when it comes to the

number of neurons or logics needed to be generated. Sliding mode control technique has

also been applied to overcome the effects of uncertainties in dynamic modeling. Although

sliding mode control results in a robust system, it leads to high control actions. On the

other side, indirect adaptive control approaches rely on the certainty equivalence principle

and are advantageous in implementation for several reasons. The inspiration of Chapter 4

is utilizing the properties of the certainty equivalence principle through application of the

indirect adaptive control approaches to construct systematic adaptive formation control

structures when there are parametric modeling uncertainties in vehicle dynamics.

Formation acquisition, or station keeping, problem is defined as merging an autonomous

vehicle to a multi-vehicle system so that the new vehicle is positioned at desired distances

from the existing vehicles. A related objective, the signal source localization, has been

treated by many researchers from the control theory and signal processing communities.

Advanced results on the target localization problem as well as the problem of reaching to

that target exist in the literature. The localization problem is defined as follows: Given a

signal source or a target at an unknown location, the main goal is to localize the source in

a global coordinate frame by a mobile vehicle using measurements such as position of the

mobile vehicle, and the distance to the target or the power of the signal received from the

source. In station keeping objective, the target location that the vehicle tries to reach is

assumed to be implicitly defined by a multi-vehicle system such that the target point for

the mobile vehicle is at desired distances from the existing vehicles. The station keeping

objective has been solved for the case of three stationary vehicles on two-dimensional

3



space, but no result has been established for the N -vehicle case yet in the literature. The

motivation of Chapter 5 is to propose a solution method to the station keeping problem for

the general, N -vehicle case in both two and three-dimensional space utilizing the modularity

and adaptive properties of the certainty equivalence principle.

In some real-life application scenarios, a mobile non-holonomic vehicle might be required

to achieve the station keeping objective in a GPS-denied environment under the assumption

that it does not have access to its own position. In this case, the control techniques derived

for systems with the assumption of having the vehicle’s own position do not directly apply.

So, the control algorithm needs to either employ an adaptive technique or use additional

measurements to achieve the objective. In fact, one witnesses that no solution for the target

capture problem has been established in the literature for the same measurement setting,

i.e., under the assumption that the non-holonomic vehicle cannot sense its self-location

information. On the other hand, some control approaches for circumnavigation around a

target location by a non-holonomic vehicle for the same measurement setting have recently

been established. The motivation of Chapter 6 is to analyze whether the control approaches

recently established for the circumnavigation problem can be modified and employed to

the target capture and station keeping problems under the same assumptions.

1.2 Contributions of the Thesis

The results of this thesis contribute to the adaptive formation control of multi-vehicle

systems literature in many different aspects. Firstly, the background chapter, Chapter 2,

summarizes the recent literature on this topic, then four subsequent chapters propose

methods for four different, correlated formation control objectives as follows:

Chapter 3: This chapter studies the cohesive motion control problem formally, reviews

some formation control approaches integrated to the adaptive control methods in the sub-

sequent sections, and derives a compact state-space motion model for a special class of

formations. We formulate the cohesive motion control problem for MPFs of vehicles. We

derive a state-space dynamic model for MPFs of agents with holonomic point agent kine-

matics, and reformulate the cohesive motion control problem as a multivariable regulation

problem. We obtain agent speed conditions in a rigid formation as well.

Chapter 4: We study the cohesive motion control problem of vehicles modeled by high-

order dynamics with parametric uncertainty. We integrate the LS parameter estimation
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algorithm, which is a commonly used estimation method with well-established convergence

results, with a feedback linearization control law to achieve trajectory tracking problem

under uncertainty. We prove that the vehicle perfectly tracks any smooth trajectory with

the proposed controller. Further, we integrate the tracking control law derived for a single

vehicle with the virtual-leader based formation control and CFSFC laws, and propose

adaptive formation control schemes for the aforementioned types of vehicles. The vehicle

dynamics need not be homogeneous in the formation, i.e., every vehicle can have different

parameter values in the high-order dynamic model.

Chapter 5: We examine the adaptive formation acquisition, or station keeping, problem

of a holonomic vehicle. We propose an indirect adaptive control framework which combines

the LS estimation algorithm and gradient based motion control law. We use a cost function

whose unique minimum corresponds to the target location that the vehicle is desired to

reach. We provide formal stability and convergence results for the proposed controller. We

provide simulation results for different design coefficients and application scenarios.

Chapter 6: We study the station keeping problem for a more realistic scenario where

the mobile vehicle is modeled by the non-holonomic dynamics and does not have its self-

location information. In connection with the station keeping problem setting, we first

establish convergence results for the target capture problem for the same measurement

setting. The proposed control schemes can be easily employed on non-holonomic vehicles

in applications where the vehicle is equipped with only low-cost range sensors.

On the whole, this thesis comprises four different problems and their solution methods,

namely, cohesive motion control of MPFs, indirect adaptive formation control of holo-

nomic vehicles with parametric uncertainty, adaptive station keeping, and station keeping

of non-holonomic vehicles without self-location information. The key idea of this thesis

is (i) the need for a compact dynamic model that defines the motion behavior of a for-

mation; (ii) the applicability of the certainty equivalence principle to formation control

problems through indirect adaptive control architectures; and (iii) analysis of formation

acquisition for practical scenarios. These topics are inter-dependent topics such that all

can be combined under one framework and each can serve as a tool in a cohesive motion

control structure for particular application scenarios.

Results of this thesis have been presented in journal and conference papers as well as in

a book chapter. The comparative literature survey on formation control algorithms given in

Chapter 2 has been published in the book chapter [66]. Adaptive formation control studies
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given in Chapter 4 have been demonstrated in [65,69]. The adaptive station keeping results

of Chapter 5 has been demonstrated in [64]. The base localization algorithm of Chapter 5

has been presented in [39] in the context of adaptive source localization. The range-based

target capture and station keeping results of Chapter 6 have been presented in [67].

1.3 Organization of the Thesis

The thesis mainly consists of five chapters including the background chapter. A chapter is

devoted to each of the four topics mentioned so far. Numerical simulation results, discus-

sions, and summaries are provided in each chapter to make every chapter self-contained.

In Chapter 2, basic preliminaries about the graph theory are given in detail. Then,

previous works on formation control problem are provided with discussions on how they

are related with the current work. Problems that have been considered, assumptions that

have been made, and the approaches that have been followed in the literature are presented

in detail. Some key results on stability analysis of formations are also given, specifying the

drawbacks and applicability to real-time systems.

Chapter 3 is on the cohesive motion control problem of minimally persistent formations.

We first state the cohesive motion control problems for minimally persistent formations

formally. Then, we review major formation control laws established for general classes of

formations in the literature. Later, we derive the system dynamics for formations of agents

modeled by point agent kinematics, and convert the cohesive motion control problem to

a regulation problem. We then propose an exponentially stabilizing control law to the

regulation problem. Finally, we obtain results on agent speed relations in a rigid formation

and propose a modified hierarchical leader-follower formation control law.

In Chapter 4, we study vehicles with high-order input-affine dynamics and parametric

uncertainty. A special form of dynamic model that is seen in many real-time systems is

considered, assuming some parameters in the model are not known. Feedback linearization

method together with an indirect least-squares parameter estimation algorithm is employed

to make the vehicles track given specified trajectory. We propose two different adaptive

formation control frameworks for MASs of these vehicles: the first is based on virtual leader

and the other is based on the combined formation shape and flocking control approach of [3].

Finally, formal stability and convergence analysis are provided and numerical simulation

results are demonstrated.
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Chapter 5 combines two basic algorithms, namely, station keeping and target localiza-

tion, to derive a systematic framework for the adaptive station keeping problem. Specifi-

cally, a mobile sensory vehicle is desired to be added into a network of vehicles by driving

the mobile vehicle to a target location which is assumed to be unknown, but uniquely spec-

ified by its distances to the stationary vehicles in the network. Only the mobile vehicle’s

own position and its distances to the stationary vehicles in the network are assumed to

be known by the mobile vehicle. Stability and convergence analysis of the algorithm is

provided.

Chapter 6 studies the closely related problems of target capturing and station keeping

by an autonomous non-holonomic vehicle within the limitations of having access to the

measurements of distance from the target only. First, a control law is designed for the

target capture problem using the mobile vehicle-target range and range-rate measurement

information. Later, the target capture control law is integrated with a linear filter to relax

the assumption of range-rate signal availability. Finally, the target capture control law is

modified for solving the station keeping objective under the same assumptions. Simulation

results for both target capture and station keeping objectives are provided.

Chapter 7 offers conclusions and discussions on the proposed methods.
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Chapter 2

Background

In this chapter, we first present the notation used throughout the thesis. We then give

some essentials of the graph theory and formation control problem definitions. Later, we

review the earlier works on formation control and localization with the open problems in

the literature. This chapter is designed based on the book chapter [66].

2.1 Preliminaries and Notation

We now present the notation used throughout the thesis. <n denotes the n-dimensional

real space. Matrices are represented by capital letters, e.g., A ∈ <n×m denotes an n ×m
dimensional matrix A. Its transpose and inverse are represented by A> and A−1, respec-

tively. We denote 0n×m ∈ <n×m with all entries zero as zero matrix. In stands for the

n-dimensional identity matrix. For a square matrix A ∈ <n×n, λi(A), i = {1, · · · , n},
denotes the eigenvalues of A, and we assume that the eigenvalues are ordered such that

Re{λ1(A)} < · · · < Re{λn(A)}. We will denote the minimum λ1(A) and maximum λn(A)

eigenvalues of A by λmin(A) and λmax(A), respectively. ‖x‖p ∈ < where p ∈ Z+ denotes

the p−norm of the vector x ∈ <n. Specifically, we represent the 2-norm of the vector x by

‖x‖ dropping the subscript. a , b means ‘a equals b by definition’.

x̂(t) ∈ <n denotes the estimation of the actual vector x ∈ <n at time instant t. The

term “estimation” refers to a process of updating a vector by some rules to get the best

approximation of the actual vector x which can be time-varying based on specific quadratic
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cost functions. In this thesis, the estimation processes are the commonly known gradient

and least-squares parameter estimation schemes.

2.1.1 Graph Theoretical Modeling of Multi-Vehicle Systems

This section gives some definitions from the graph theory and is intended to be the base

for the rest of the work. The definitions given here can be found in any book on basic

graph theory such as [10]. We start with the description of graphs.

Consider an MAS S composed of N agents A1, · · · , AN which is required to maintain

a certain formation. For this formation control task, S is represented by a graph G(V , E),

with the vertex (or node) set V = {1, · · · , N} and an edge (or link) set E . Each agent Ai is

represented by the vertex i ∈ V . The edge set E characterizes the agent interactions in S.

Here what is meant by “interactions” needs to be well specified for the particular problem

setting as well as whether the interaction between a pair of agents is one way or mutual.

Typically, the interaction can be sensing, communication, or formation constraint, leading

G(V , E) to be the sensing graph Gs(V , Es), communication graph Gcom(V , Ecom), or constraint

graph Gc(V , Ec) of S, respectively. In an MAS S, Gs is the supergraph of Gc. A one way

interaction between agents Ai and Aj is represented by a directed edge (i, j), and a mutual

interaction between Ai and Aj is represented by an undirected edge (i, j). Accordingly,

based on considering the interactions being one way or mutual, the graph G(V , E) can be

selected to be a directed graph (or digraph) or undirected graph, respectively. For example,

if the communication graph Gcom of an MAS is undirected, it means that any pair of agents,

say {Ai, Aj}, connected with the communication link (i, j) ∈ Ecom communicate with each

other, that is, both send data to and receive data from each other by communication.

In a digraph Gc, the in-degree d−i and out-degree d+
i represent the number of edges that

are incoming to and outgoing from a vertex i, respectively. If d+
i = d−i for all i in a graph,

the graph is said to be balanced. If there is an edge from every vertex to every other,

then the graph is called strongly connected, or a complete graph. The analogue of strongly

connected graph in undirected graphs is simply termed as connected graph. A cycle C in

a digraph is the set of vertices and edges in the order such that there is a directed closed

path from the first element to the last element of the set.

A formation F of S additionally represents the structure the agents form in the space,

which is characterized by the constraint graph Gc and the configuration P = [p1, . . . , pN ]> ∈
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<Nn of the formation, where pi ∈ <n is the position vector of Ai. A configuration P that

satisfies all constraints in the formation (such as distances between agents or angles between

agents in the formation) is called desired configuration. Ni, the set of neighbors of an agent

Ai, denotes the group of agents with which the agent Ai has an interaction, i.e., has an

edge towards them in Es.

The out-degree d+
i is also indicator of another phenomenon, namely degree-of-freedom

(DOF), which shows how many constraints agent Ai is supposed to fulfill when it moves.

Specifically, on <2, an agent with d+
i = 0 has 2−DOF, meaning that it can move freely in

the plane without concerning the other agents. A 1−DOF agent has one out-degree and is

assumed to satisfy one constraint. Finally, an n−DOF agent, n ≥ 2, has zero out-degree,

restricting the motion to only satisfying the inter-agent constraints with the agents its

outgoing edges point.

The formation control problem is the problem of controller design for individual agents

to achieve predefined control objectives. In this notion, normally there is a formation F
with Gc and configuration P whose initial value is P0 at the initial time instant. In its

most basic form, the formation control objective is to steer the agents Ai so that the agents

acquire the desired formation structure, where the inter-agent constraints defined by Gc are

satisfied, either in finite time or in the asymptotic sense, and maintain this formation as

time progresses. The agents are not necessarily kept stationary after the desired formation

is acquired, they may be assumed to move through a given trajectory. There are many types

of the formation control problem, to name a few, formation acquisition (or stabilization),

flocking, and cohesive motion control can be counted. Avoiding obstacles during the motion

and achieving the formation objectives with switching network topology can be counted as

sub-objectives appearing in real-life scenarios.

The problem of steering all agents in an MAS to a desired formation shape is named

formation stabilization (or formation acquisition). For this objective, speed of the algo-

rithm is an important factor since the main task is to maintain the desired formation shape

in the corresponding space (which is <2 or <3 in real-life applications) as fast as possible,

and the paths the agents travel are not of concern as long as the agent motions are stable

(here the term ‘stable’ means that the distances between any pair of agents connected

by a link does not grow unbounded with time). This problem has been studied in many

works including [2, 91]. A vast majority of the works in this direction assumes distance

or bearing measurements as the only sensing capability and applies gradient control to
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achieve the stabilization objective for the formations of single and/or double integrator

agents, by defining a potential function for the overall system and minimizing it through

gradient approach at each agent in a decentralized sense. One of the main drawbacks that

appear in this approach is existence of stable false minima which specifically can drive the

formation to an undesired arbitrary line formation where the potential function still takes

its minimum value.

Swarm aggregation task is defined as steering all the individual agents into a hyper-ball

asymptotically [49, 53–55]. In other words, the agents are driven so that the following

inequality holds:

lim
t→∞
‖pi(t)− pj(t)‖ ≤ ε ∀i, j ∈ {1, · · · , N},

where ε > 0 is a small design coefficient. This objective is achieved in finite-time by

applying the specifically designed artificial potentials [53–55], or sliding-mode controls

[49]. In these works, the agents are assumed to be holonomic points with single-integrator

kinematics, and the radius of the desired hyper-ball can be adjusted using the parameters

of the swarm model. The extension to swarms of agents with double-integrator dynamics

is also considered in [85,86]. Usually, swarms in nature show this behavior while they move

towards a favorable region where the living conditions for individuals are supportive or run

away from hostile regions or predators.

Flocking is defined as achieving the common desired velocity for all agents in the for-

mation. This common velocity may be predefined and the agents may be informed with

this velocity information, or the agents may reach an arbitrary common velocity by aver-

aging their velocity with their neighbor agents. Flocking is generally combined with the

formation shape stabilization task to accomplish formation control objectives. Since the

flocking objective is related with controlling the agent velocities, it is necessary to have

the ability of controlling the acceleration level, which in turn requires each agent having

at least a second order plant model. The case where the agents are not informed with

the predefined common velocity information is also examined in the literature and will be

covered in the subsequent sections as an adaptive formation control framework.

2.1.2 Rigidity and Persistence of Multi-Vehicle Formations

The term ‘rigid motion’ means an object moving in space without deforming its shape.

This motion corresponds to changes in the translations and rotations of the whole object.
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The rigidity concept has found many applications in the formation controls as well. A

formation F with the undirected constraint graph Gc is rigid if the continuous motions

of F alters positions of the agents so that the whole formation only translates or rotates

in the space. This can only be achieved provided Gc is rigid. Accordingly, rigid graph

theory [1, 84], is employed to analyze whether a formation is rigid.

As an immediate result one can easily conclude that in a rigid formation, if the distance

constraints are satisfied for the edges in the set Ec, the formation will move as a rigid

object and no flexibility will occur between the agents. On the other hand, a non-rigid

formation may be deformed after some agents in the formation move even if all the distance

constraints are satisfied during the motion. Rigid formations are not necessarily strongly

connected, which would require (N2−N)/2 links for N agents. For an N agent formation,

one can obtain a 2-rigid constraint graph (viz., rigid for a 2-D realization) with 2N − 3

edges, and 3-rigid constraint graph (viz., rigid for a 3-D realization) with 3N − 6 edges.

Minimally rigid formation is the one that is rigid and has the property that removal

of any edge in the formation leads to a non-rigid formation. Accordingly, minimally 2-

rigid and minimally 3-rigid formations for N agents are made up with 2N − 3 edges and

3N − 6 edges, respectively. Further details on rigid formations can be found in [1], which

also provides a detailed description on how to test whether a formation is rigid (Rigidity

Matrix Theorem), and how to construct a rigid graph from the beginning (Henneberg

construction). Flip ambiguity denotes the case where the shape of a rigid formation can

change while maintaining rigidity, which is depicted in Fig. 2.1. The following example

illustrates the definitions and nomenclature given above.

A4

A1

A2

A3
(a) (b)

A1

A2

A3

A4

Figure 2.1: Flip ambiguity: A4 can be positioned in two different locations in the formation,

both satisfying the rigidity constraints.
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Example 2.1.1. Consider the 4-agent constraint graphs Gi, i = 1, 2, 3, 4, 5, in Fig. 2.2.

G1, G2, G3 are directed and G5 is undirected, while G4 is neither directed nor undirected.

Only G2 has cycles, C1 = {1, 3, 4} and C2 = {1, 3, 4, 2}. Observe that only G3 is strongly

connected and only G5 is a balanced graph as all undirected graphs are naturally balanced.

Among them G1 and G4 are not rigid while the rest are rigid graphs. One can directly

observe that moving the nodes 1 and 2 in G1 without violating distance constraints may

destruct the shape of the graph, or exhibits flexibility.

G1 G2

G3 G4

G5

A1

A2

A3

A4

A1

A2

A3

A4

A1

A2

A3

A4

A1

A2

A3

A4

A1

A2

A3

A4

Figure 2.2: Five different constraint graphs with four agents

While in some applications, it is desirable to change the formation shape during the

motion, in some other applications, the agents may be supposed to reach to a desired

formation shape and keep this formation during the rest of the motion (formation main-

taining). This behavior can be seen in the animals such as bird flocks migrating from a
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place to another, moving as a group at a same altitude. They constitute a V-like shape

while flying and do not change it until they arrive at the goal location. This type of motion

is called as cohesive whole motion. We study on formation control algorithms for cohesive

motion in Chapter 3 and Chapter 4.

2.1.3 Minimally Persistent Formations

Satisfying the rigidity constraints in a formation F with a rigid constraint graph Gc sim-

ply corresponds to maintaining the distances between the agent pairs represented by the

directed edges in Ec of Gc during motion. The analogy of rigidity to directed graphs is

persistence; however these two terms do not directly give the same meaning, [1, 44]. If

every vehicle in F can satisfy its formation objective such as maintaining the distances to

its all leader vehicles at their desired values at the same time, then the formation is called

constraint consistent. A minimally rigid and constraint consistent formation is called min-

imally persistent formation (MPF) [1]. Since minimally persistent formations of vehicles

require the minimum number of edges between a given number of vehicles, a vehicle is

required to satisfy the minimum number of motion constraints in a minimally persistent

formation.

An acyclic MPF F has exactly 2N − 3 directed edges on <2. In an acyclic MPF F ,

there is a vehicle with 2−DOF, meaning that it can move freely in the plane without

concerning the other agents, a 1−DOF vehicle which is assumed to satisfy one constraint,

and N − 2 vehicles with 0−DOF whose motions are restricted to only satisfying the inter-

agent constraints to their leader vehicles.

2.1.4 Agent Model Classification

From a modeling point of view, we may classify the agent models into the following cat-

egories: point agent model, point mass (double integrator) model, non-holonomic vehicle

model, Euler-Lagrange vehicle model, and high-order dynamic model. This classifica-

tion is also related with the space where the motion of the agents flows. Non-holonomic

agent models are generally used to describe the motion of wheeled ground vehicles on two-

dimensional Euclidean plane, while point or high-order dynamic models are generally used
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A4
x

y

A1

A2

A1

A2

A3

A1

A2

A3

(a) (b) (c)

Figure 2.3: Constructing an acyclic minimally persistent formation using the Henneberg con-

struction method: (a) Initial two agent (leader and first follower) formation; (b) Addition of the

third (ordinary) agent; (c) Addition of the fourth (ordinary) agent.

to describe the motion of robots moving in a 3D space such as quadrotors and satellites.

We now give a brief description for these models.

Definition 2.1.1 (Holonomic point agent and point mass models). The holonomic point

agent (kinematic) model is a first-order one where the motion of the agent in every axis

is independent from each other, and thus the agent can move to any point directly in the

corresponding space. The model is generally represented by

ṗi = vi, i ∈ {1, . . . , N}, (2.1)

where pi, vi ∈ <n, n ∈ {2, 3}, are the position and the velocity vectors of agent Ai,

respectively. The input is the velocity vector. Likewise, the point mass model is described

by

ṗi = vi, v̇i = ui, i ∈ {1, . . . , N}, (2.2)

with ui the acceleration input.

Holonomic point agent kinematics is a high-level model. This model is commonly

used to simplify the analysis of the overall MAS formation behavior. Real-time systems

such as robot vehicles usually have more complicated dynamics such as non-holonomic

and fully-actuated Euler-Lagrange dynamics. For real-time implementations, one has to

consider these complicated models to characterize the behavior of the robotic system under

consideration.
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Definition 2.1.2 (Non-holonomic and Dubins vehicle model). On <2, the non-holonomic

agent model is given by

ẋi = vi cos(θi) (2.3)

ẏi = vi sin(θi) (2.4)

θ̇hi = ωi, i ∈ {1, . . . , N}, (2.5)

where vi, θhi, ωi ∈ < are the linear speed, heading angle, and angular speed of the agent

Ai. Position of the center of the vehicle is denoted by pi = [xi, yi]
> ∈ <2. The general

configuration of this vehicle model for one agent is represented in Fig. 2.4. If the vehicle

speed vi is constant, it is named Dubins vehicle model.

A1 θh1

v1

x

y

x1

y1

Figure 2.4: Non-holonomic vehicle model

Definition 2.1.3 (Euler-Lagrange vehicle model). The general fully-actuated Euler-Lagrange

vehicle model for Ai is given by

Ci(pi)p̈i +Ni(pi, ṗi) = ui, (2.6)

where Ci ∈ <n×n, ui ∈ <n, and pi, ṗi ∈ <n are the mass matrix, input vector, and output

vectors (position and velocity) of Ai, and Ni ∈ <n denotes the nonlinear effects such as

centripetal and coriolis forces, and gravity effects.

Euler-LaGrange model is derived directly from the physical characteristics of the vehicle

using kinetic and potential energy conversions. It comprises the coupling forces between

different parts of the vehicle, which makes it one of the most comprehensive vehicle model.
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Definition 2.1.4 (High-order Dynamic Model). On <n, the high-order dynamic model for

the agent Ai is given by

ẋi,k = xi,k+1, k = 1, . . . , r − 1; r ≥ 2

ẋi,r = αi(xi, t) + βiui

yi = xi,1,

where xi = [x>i,1, . . . , x
>
i,r]
> ∈ Rrm. xi,j, ui, yi ∈ Rm, j = 1, . . . , r are the state, input, and

the output vectors, respectively. αi and βi are called the parameter vector and gain matrix

in the corresponding dimensions.

2.2 Literature on Formation Control

The literature comprises many different techniques and control approaches applied to MASs

to achieve the formation objectives. Naturally, a technique performs its job on some

certain classes of agents, since any small difference in an agent model requires redesign

of the controller. Similarly, assumptions made on sensing and communication topology of

the formation separate the earlier works into different classes. For example, a controller

designed under the assumption that every agent senses its relative position to its neighbor

agents may not be directly applied to formations where agents are only able to sense

distances to their neighbors. This section is intended to give a brief summary of the earlier

works on MAS formation control, especially the ones of the recent years, mentioning about

the assumptions on the agent dynamics and sensing topologies, and their applicability to

real-time systems. We classify the earlier works on the formation control of MASs into two

groups based on the formation constraint graphs: undirected graphs and directed graphs.

2.2.1 Formation Control Methodologies with Undirected Con-

straint Graphs

When every agent pair throughout a formation makes mutual effort to maintain their

desired inter-agent behaviors, it becomes possible to define a total potential function for

the overall formation and derive a control law which employs the gradient of this function

at every single agent. Such potential function definition leads to a compact dynamics
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representation for the overall formation. In general, the stability analysis of formations

with undirected sensing and constraint graphs relies on the mutual behavior between the

agent pairs and, in most cases, results in a stable closed-loop dynamics for connected

graphs. In this subsection, we review the previous works on the control systems derived

for formations with undirected graphs, providing some observations on the results.

[53] studies the swarm aggregation problem, and analyses the stability of multi-agent

systems from the ‘swarm’ perspective. The ultimate objective is forming a cluster around

a point. Assuming perfect sensing of each individual member and its neighbors’ global po-

sition information, it directly designs a control rule for the individuals and further analyses

the stability of the whole system using Lyapunov analysis. It is finally shown that in a

limited time all the members are driven into a hyperball radius of which can be adjusted

changing the parameters of the control signal. It is also proven that the agents become

stationary as time progresses. The work gives concrete results on the overall stability of

swarms of agents of the same kind. On the other hand, since the objective of the work

is forming a group around a point, transient motion of the agents while achieving the

aggregation objective is not mentioned. For this reason, the result of the work cannot be

directly used in translation of agents from a point to another while achieving formation

objectives (cohesive motion).

[91] considers the formation stabilization (or formation acquisition) problem of point

agent formations with infinitesimal rigid constraint graphs. Sensing graph and constraint

graph are chosen the same. It is shown that for undirected formations, a decentralized

gradient-based controller results in a locally stable equilibrium for the formation if the

constraint graph is infinitesimally rigid. The key tool applied is the center manifold theory.

The result of undirected formations is validated by simulating a polygon example. An

extension of the result to the minimally persistent formations constructed by Henneberg

insertion technique is also considered. It is shown that if the collinear initial positions are

excluded, the same control approach for the minimally persistent formations leads to a

closed-loop system equilibrium point which is locally asymptotically stable.

If the objective is to steer a finite number of agents such that they satisfy both for-

mation acquisition and velocity alignment (or synchronization), then it becomes necessary

to work with a double integrator agent model [125], [3]. It follows from the fact that in

the point agent model case the control input is the velocity vector in the same dimension

as the position vector, so it is not possible to achieve the control of the velocity dynam-
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ics using the velocity vector itself. [125] considers double integrator agents moving on a

two-dimensional plane with the objective of both formation acquisition and flocking under

randomly switching network topology. Assuming undirected graph structure, the authors

apply the summation of two control terms as the control input: first is the well-known

gradient control law for cohesion while the second term is for velocity alignment. They

prove the convergence of the velocities of the agents to their average value under switching

network topology. [3], inspired by [125], applies the same control rule for formations with

double integrator agents, introducing a leader. The work is the same as [125] except that a

leader agent is added to the formation, and the links between the leader and its neighbors

(actually all the other agents are neighbors of the leader) are made directed to the leader,

while the other links remain undirected. It is shown that for this kind of formations,

assuming the leader velocity is constant, a slight modification of the control law of [125]

achieves both the formation acquisition and flocking at the same time.

In [5], the author has used passivity approach to achieve distributed cooperative control

for formations with undirected graphs. Specifically, a group of agents are controlled so that

they achieve two objectives: (i) The velocity vectors of all agents are driven to a common

velocity vector asymptotically, and (ii) the so called difference variables of neighbor agents

are driven to a compact invariant set. The former objective is the synchronization of the

output variables, while the latter corresponds to the formation stabilization (or inter-agent

distance maintaining). The work proposes a systematic way to design a generic passivity-

based controller to achieve both objectives. The ability to choose the design functions

freely as long as they satisfy the given criteria makes the design procedure quite flexible.

The desired velocities for all the agents are the same in that work and satisfy a design

criterion. However, one may not wish to choose exactly the same desired velocities for all

the agents for some objectives. In the hierarchical structure, speed of a follower agent is

affected from the agent(s) it follows, and is updated accordingly. Thus, the method of [5]

does not fit to formations with digraphs unless some modifications take effect. The results

of [5] are extended to include the cases where the reference velocity is not informed to the

agents. This extension leads to an adaptive formation control framework and is reviewed

in detail in Section 2.3.

Another instance of the works that consider both the synchronization of position vari-

ables problem and the velocity alignment problem for N -agent systems is [81]. Using the

results of [118], a general class of nonlinear agent models is converted to a suitable form.

Combining that model with the results of [5], which applies passivity theorems, [81] solves
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both objectives in a centralized manner.

[105] proposes two algorithms for flocking of agents. All the results obtained are

for double-integrator agents connected by undirected formation graph, and independent

of the number of agents in the formation. Since the control of an agent requires only

information about agent’s neighbors, the control scheme can be considered as distributed.

The first algorithm is on the control of accelerations, that is, for an agent, generated

by summation of the gradient control of inter-agent distances and the velocity alignment

terms. A potential function to be minimized is then designed based on a new norm function

defined to overcome the convexity problem of the commonly used norm functions. The

gradient control term is employed so that agent Ai considers others that are within a

specified radius of the ball centered at the position of Ai as neighbors and tries to satisfy

the inter-agent distance constraint with those agents. It is proved that with the first

algorithm all agents achieve inter-agent distance objective as well as velocity alignment

and collision avoidance (i.e., satisfy all three conditions of [103]); however, they are still

subject to fragmentation group-by-group since they are not navigated. To make the agents

achieve a group objective (or flocking) the other algorithm is designed by modifying the

control term so that it contains a term related with the group objective. In fact, this

addition can be interpreted as an addition of a perfect leader agent to the formation. As

opposed to our definition in Section 2.1.1, cohesiveness in this work is defined as formation

flow such that agents are within a boundary during motion, regardless of the behavior of

the inter-agent metrics.

The case where the inter-agent distance constraints cannot be satisfied is also studied

in some works. For instance, [35] mentions about feasibility of formations of agents mod-

eled by single-integrator (2.1) and non-holonomic dynamics (2.3). The feasibility concept

is defined as ‘being able to satisfy the distance constraints for all edges in a connected

graph’. The authors propose controllers for both agent models. For feasible formations of

single-integrator agents, the work proposes a control law that achieves inter-agent distance

constraints of the formation. It further shows that for infeasible formations the control

law makes all the agents reach to specified common velocity, but may not achieve distance

constraints even for some agents. The work further shows similar results for the formations

of non-holonomic agents.
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2.2.2 Directed Constraint Graphs: More Hierarchy

The literature on the control of formations with undirected constraint graphs has generic
1 stability results thanks to the the symmetry the mutual interaction between the agents

brings into the formation. In some engineering applications, especially in the control of

autonomous mobile vehicles, it may be desirable to construct a formation with directed

constraint graph where the agents decide on their motions in a hierarchical framework.

This is achieved by introducing a set of so-called leaders that direct the formation, and

the rest of the formation follows this leader with control actions designed based on their

degrees in the hierarchy. Since the stability analysis of a formation mostly based on the edge

dynamics, which completely depend on the mutual interactions of agent pairs, analyzing the

closed-loop control system of a directed formation lacking these mutual interactions is not

a trivial one, and in some cases even intractable. The following intuitive example presents

the difficulty of the control design for formations of digraphs: there are two vehicles where

one is the leader while the other is the follower whose goal is to follow the leader vehicle at

some distance. If the leader moves freely on its own path regardless of the follower vehicle’s

motion and if the follower vehicle has no a priori information on the leader’s path, then

no control approach can be derived directly for the follower vehicle to achieve this simple

goal. Hence, the works concerning digraphs have to either make some assumptions on the

sensing structure or design an adaptive or robust control scheme. Control systems derived

for digraphs are mostly for three or four-agent formations. In what follows, we give some

control approaches some of which are still lacking full stability analysis.

Point agent formations have been studied heavily in the literature and many techniques

have been applied to get strong stability results which are intractable when it comes to

more complicated agent models such as non-holonomic ones. We start with the method

of [44] which is further developed in [45] integrating it with camera applications. As in

many other leader-follower (LF) formation structures, [44] constructs control rules for the

agents in a hierarchical fashion; first the control for the first agent is developed, then the

control rules for the follower agents are developed consequently. It considers a three-level

hierarchical system: there is a leader (A1), its first follower (FF) (A2), and the ordinary

followers (OF) (A3, . . . , AN) (for specific definitions see [44]). Dynamics of all agents are

assumed to be holonomic point agent kinematics (2.1) in two-dimensional Euclidean space.

The work assumes that each agent is capable of obtaining global position information of

1where by ‘generic’ we mean ‘systematic’ or ‘for an arbitrary number of formation members’.
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its own as well as of its leaders. A1 is required to move to a predefined ‘final point’ p1f

with a proportional control law fed back by the distance to p1f , integrated with a switching

threshold function aiming to prevent chattering around a small neighborhood of the final

point p1f . For A2, the same control law is used with the only difference that the feedback

signal is the difference between the actual and desired relative positions of A2 with respect

to A1. Each of A3, . . . , AN with a similar control law, aims to track the closest intersection

point of the two circles centered at the two agents it follows with radii corresponding to

the inter-agent distance requirements. Since the final points for the agents are assumed

to be constant, small neighborhoods of the final points constitute compact discs and fulfill

the compact set requirement of Lyapunov stability analysis. In [44], a formal Lyapunov

analysis is given to show the stability of A1 in a sense that it enters the ε1 neighborhood

of its final point, for an arbitrarily small positive design constant ε1, and stays there in the

limit. A Lyapunov analysis for A2 and the ordinary followers (A3, . . . , AN) are given in [45]

where for simplicity the velocity vector of the leader agent A1 is assumed to be calculated

via interpolation and is added to the control term of A2. [45] also presents a real-time

implementation of the control system on a non-holonomic mobile robot formation. In that

paper, follower robots obtain relative position measurements to their leaders using cameras

mounted on the vehicles.

When there are cycles in the formation graph, the control design requires more ef-

fort [2], [139]. In [2], the inter-agent distance maintaining problem is studied for three

point agents, each having 1-DOF and named co-leaders, in a cyclic formation, relaxing the

assumption of relative position measurement. Instead, the analysis is based on the inter-

agent distances and the orientation of the neighbor agents. Each agent has a unique neigh-

bor, i.e., without loss of generality, it is assumed that N1 = {A2}, N2 = {A3}, N3 = {A1}.
A decentralized control scheme is applied to control the orientations of the agents. An-

other example work that considers cyclic graphs is [139]. The authors of [139] consider

minimally persistent formations of point agents with directed graphs containing cycles on

a two-dimensional plane and examines the response of the agents to small disturbances that

move agents from correct shape by small amounts. The assumption on sensing is relative

position measurement through either distance and direction measurements, or distance

measurements and communication between certain agents. The agents are supposed to

start from positions that form the correct shape and they are disturbed ‘sufficiently’ small.

After disturbance take effect, the leader agent does not move and serves as a reference

point for the follower agents. Then, the follower agents make their movements obeying the
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hierarchy so that the formation stabilization problem is solved for the resultant simplified

dynamics by a suitable gain matrix. Even though the objective is only formation stabi-

lization, the work is important in that it proposes a linear closed-loop dynamic model for

the directed cyclic graphs and employs rigidity matrix in finding the gain matrix.

There is a set of pioneer studies by researchers at the University of Pennsylvania that has

studied the practical implementations of MASs formed by mobile non-holonomic robots,

and introduced some new concepts on LF formation control [29, 33, 126]. To name a few,

we may mention the so-called l − l and l − ψ control schemes. [33] proposes two types of

controllers, l−l and l−ψ, for LF formation of non-holonomic robots. The focus is on a pair

of non-holonomic mobile robots modeled by (2.3). The system model is then converted

to distance l and bearing ψ dynamics, in which the dynamics of both the robots are

present explicitly. In order to eliminate the nonlinear effects in the new dynamics, input-

output linearization method is applied, so the control law of the follower robot includes

the linear and angular speeds of the leader robot. However, no methodology to obtain this

information is mentioned in the work. In [33], it is established that if the leading robot

moves through a circle path, i.e., with a constant linear and angular speed, then the heading

angle of the follower robot locally asymptotically converges to a specified constant. It is

further established that when the leading robot moves through a straight path, heading

angle of the follower converges to the heading angle of the first robot, a better result for a

stronger assumption as expected. It is also stated in [33] that with the distance-distance

l − l control law, when the first two robots move on a straight line with constant linear

velocity and zero angular velocity, heading angle of the third robot exponentially converges

to the initial heading angle of the first two robots. As in l − ψ control, it is assumed that

the speeds of the first and second robots as well as their heading angles are available to

the third agent without proposing how to obtain them.

The LF control approach of [33] has been developed and integrated with camera ap-

plications in [29]. [29] has examined formation control of non-holonomic mobile robots

equipped with omni-directional camera systems as only sensor on the robots. Each robot

relies on its decentralized control structure, which mainly consists of input-output feed-

back linearization along with estimation algorithms. The inter-agent distances and bearing

angles are chosen as states, thus the linearization procedure requires the knowledge of the

control signal of the leader agent as well as the agent itself, as in [33]. Extended Kalman

filter is applied to derive the estimation of the required signals. Later, in [126], a stability

notion is defined with the name “leader-to-formation” stability (LFS), which is an analogue
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to input-to-state (ISS) stability in single-input-single-output (SISO) systems. In that work,

directed LF formations are considered, and it is aimed to show how the initial conditions of

the formation members and the inputs of the leaders affect the error propagation inside the

formation, demonstrating this feature to be a robustness property of formations. A group

of agents are assigned as leaders of the formation and the others are assigned as their fol-

lowers. The leaders are assumed to be controlled with feedback stabilizing controllers and

stabilized perfectly. It is proposed that if the follower agents are LFS with respect to the

leaders, then the whole formation becomes LFS. The result of this work provides a safety

bound on the errors propagated in a LF formation, or conversely, tells about the initial

condition bounds for satisfying prescribed safety features. Applications to non-holonomic

mobile robots are also given in that work.

The well-known internal model principle has been used as a tool to synchronize MASs

of agents with linear system dynamics in a series of works [132–134]. Assuming a complete

graph, [134] provides an internal model-based controller for N heterogeneous agents. The

models for all agents and their controllers are chosen as linear systems and all the systems

are assumed to be stabilizable and detectable. The work also assumes the availability of all

the outputs to all the agents. It is shown that if the matrices for the regulation problem of

the well-known internal model principle exist, then the outputs synchronize exponentially

to a configuration determined by the internal-model principle. The works [132, 133] are

also in the same direction.

Besides the numerous works in continuous-time, formation stabilization problem has

also been studied in discrete-time domain. [27] has studied global shape stabilization for

formations of agents modeled as rigid body dynamics in discrete-time domain: first, the

agents equalize their local coordinate frames under the assumption that in the constraint

graph there exists a globally reachable vertex. Then, a cost function is introduced in terms

of the Laplacian matrix of the graph. By the aid of the so-called Jacobi over-relaxation

method, it is shown that the formation with undirected graph globally stabilizes to the

desired set with the proposed controller. Further, robustness of the algorithm against the

initial frame orientation errors and measurement errors is discussed. Another example work

to formation stabilization control in discrete-time is [21], where the authors have analyzed

the formation control of MASs with minimally rigid constraint graphs. Assuming all the

agents have common clock and range-only measurements to their neighbors, the so-called

cyclic stop-and-go strategy is proposed. Applying the vertex-coloring method, the vertices

are partitioned into subsets such that no two vertex with the same color are connected

24



by an edge. Using these two techniques, the work has studied minimization of an energy

function whose minimum corresponds to the desired formation if the initial configuration

of the agents is inside the neighborhood of the desired equilibrium. Hence, the result is

local.

2.2.3 A Discussion on Distributed Controllers in Literature

Previous works on formation control of MASs have mainly focused on the design of control

algorithms for each individual agent for the purpose of achieving desirable agent interac-

tions throughout the formation. On the other hand, stability and convergence analyses are

examined from the overall system perspective instead of the agent level. Even though there

are numerous theories, methods, and applications on MASs, the control frameworks pro-

posed for MAS motion in rigid formations are commonly established for two or three-agent

formations. However, how the stability is affected when the number of the agents increase

is not obvious. In fact, the term stability of an MAS has been interpreted dissimilarly in

different works; according to some works stability corresponds to stability of the individual

agents and should be searched for at each individual member, while some others consider

this term as having a stable swarm width as time progresses. It is also certain that there

is a close correlation between the two points of view.

Motion control for formations with undirected constraint graphs has been studied ex-

tensively from different perspectives. Most of the works on this specific topic apply the

gradient control taking the advantage of the mutual interactions between agents. As a

drawback of the non-convex cost functions considered, there arises the undesired equi-

librium issue that mostly correspond to line formations. On the contrary, even though

it requires more effort to synthesize systematic control frameworks, formations with di-

rected constraint graphs are more robust to communication failures and more scalable to

large number of vehicles in formations. Especially, LF scheme is a very structured control

method for directed formations. However, the methods derived for directed formations

do not conclude sound stability results for cohesive motion control. Due to the one-sided

control laws of vehicles in the formation, the results are heavily based on assumptions such

as ‘if the leader agent moves on a circle or a line’ or ‘if the leader agent moves with a

specified speed’. So, one needs to observe these restrictions when designing the formation

hierarchy and assigning control objectives to agents.
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2.3 Literature on Adaptive Formation Control

2.3.1 Perspectives

The term ‘adaptive formation control’ can be interpreted in various ways. We may classify

the recent works on this topic roughly into two parts: (i) The agents which do not know

the common objective of the formation learn this objective and adapt itself with respect

to this objective, and (ii) every agent in the formation has parametric or non-parametric

uncertainties in its system dynamics and makes use of estimation algorithms together with

adaptive controller to eliminate the effects of the uncertainties. The latter is in fact the

main intention which the adaptive control field has built on for uncertain SISO and MIMO

systems. Implementing either of the two categories above in the context of formation

control for MASs is challenging although it may seem straightforward at first glance. In

this part, we revise some recent results on the adaptive formation control.

We first review the adaptive formation control approaches in the first category. In [70],

an adaptive control framework is designed to control spacecraft formation flying. It is

assumed that external constant disturbances in a known form enter into each spacecraft

system. First, dynamics of the spacecraft system is presented, and how the disturbance

enters into system equations is explicitly shown. Then, the adaptive control rule is derived

via direct adaptive approach using Lyapunov stability theory.

[8, 9] and Chapter 3 and 4 of [7] translate the word ‘adaptation’ to mean that some

agents inside a formation do not have the common objective information, which is specif-

ically the reference velocity vector that all agents are desired to achieve. Generating the

estimate of this vector using the other available information, each agent tries to achieve the

common goal. In those works, the results of [5] are further developed for stronger assump-

tions. Chapter 3 of [7] considers the case where the reference velocity of the formation is

known by only the leader agent of the formation. The reference velocity is assumed to be

generated by an exo-system of the form v(t) = Hη(t), where the state vector η is generated

by a marginally stable system η̇ = Aη. It is assumed that the matrix A is skew-symmetric

and thus produces constant or periodic η, and is available to all the agents. For each

agent, a linear estimation model for the reference velocity is proposed where the matrix

A is used as an ‘internal model’. Two control designs are then synthesized that integrate

the estimation algorithm with the passivity-based design of [5]. The first one shows that
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passivity of the closed-loop control system is preserved and the agents converge to an equi-

librium set where the distance constraints are satisfied. However, in the first design, the

convergence of the velocities to the actual reference velocity of the formation is proved only

when v(t) is constant and the formation objective is agreement. In the second (augmented)

design, besides the results of the first design, the convergence of all the agents’ velocities

to the reference velocity is satisfied for any reference velocity at the expense of using the

relative velocity information in the control rule, which in real-life scenarios may require

synchronous communication between agents.

Adaptive methodologies can be used also in systems in which the multi-agent coordi-

nation problem can be formulated as an output regulation (i.e., servomechanism) problem.

For example, as discussed in [134], the distributed agreement problem can be formulated

as if the agents are tracking a trajectory (the agreement trajectory) generated by an exo-

system. Then provided that the agents possess an internal model of the exo-system then

agreement can be achieved. However, in general it is really a strong assumption to assume

that all the agents know the exo-system (or possess an internal model of it). Instead,

it is more realistic to assume that the exo-system is unknown and adaptively construct

an internal model to it. This can be done independently in a distributed manner by the

agents using their local agreement errors. Such an idea can be used also for the problem of

tracking a moving target in a geometric formation. Such an approach is used in a series of

studies in [52,61–63] utilizing earlier result on adaptive internal models in [115]. In [61] the

problem of formation control and trajectory/target tracking by a group of agents with non-

linear dynamics, unknown parameters, and local external disturbances is considered and

adaptive internal model based procedure is developed. This work is later extended in [63]

by considering switched exo-systems which allow tracking more complex trajectories as

well as various formation maneuvers such as formation expansion/contraction, formation

rotation, formation reconfiguration.

[8] and the Chapter 4 of [7] propose parameterization-based velocity estimation model

for the same purpose. In these works, the reference velocity is assumed to be gener-

ated by the following model v(t) =
∑r

j=1 φ
j(t)θj, where φj is the time-dependent regres-

sor signal available to each agent, and θ = [θ1, · · · , θr]> is the parameter vector. The

agent Ai, (i = 1, . . . , N) tries to find the reference velocity by estimating the vector

θ̂i =
[
θ̂1
i , · · · , θ̂ri

]>
. As in the internal model-based approach of the Chapter 3 of [7], the

formation maintaining objective is achieved with the update rule
˙̂
θi = Λ(Φ⊗I2)ui, where Λ
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is the adaptive gain, Φ = [φ1(t), · · · , φr(t)]> , and ui is the control input of Ai. Further, for

the constant reference velocities, convergence of the velocity estimates to the actual ones

is proved. [130] also considers the tracking control of a linearly parameterized trajectory

by the agents with uncertain high-order dynamics assuming the agents can communicate

under a communication graph structure.

[9] proposes another augmented design and claims perfect estimation and tracking of

any reference velocity. A new directed, strongly connected, and balanced graph Gv for the

communication of velocity information is defined in the formation. Then, it is assumed

that an agent has the relative velocity information to its neighbors in Gv. This information

is used in the control law of the agent and due to the strongly connectedness of the graph

Gv, both the convergence of estimate v̂(t) to the actual reference velocity v(t) objective

and the formation maintaining objective are satisfied. However, this design still requires

that each agent is aware of the control signal of its neighbors in Gv.

[25] considers the LF formation control of two non-holonomic vehicles, where the linear

speed of the leader vehicle is not known by the follower. The follower uses the so-called

smooth projection algorithm to estimate the time-varying speed of the leader vehicle. The

work proves the uniformly boundedness of the relative distance and bearing between the

vehicles with the help of the Lyapunov stability theory, and contributes to the literature

of LF framework of non-holonomic vehicles as an adaptive approach.

Adaptive trajectory tracking for double integrator agents is studied in [79]. Although

the graph structure is said to represent a LF framework, the overall graph scheme evokes

the conventional virtual leader one since the sub-graph representing the followers is bidi-

rectional while the leader connects to that graph with unidirectional links. Adaptivity

comes from the need for eliminating the effect of disturbances that are assumed to linearly

enter into the system dynamics at the acceleration level and are assumed to be linearly

parameterized. Assuming the acceleration of the leader is also parameterized as a lin-

ear combination of known basis functions, the work employs an identifier-based adaptive

controller together with a consensus controller to synchronize the accelerations of the fol-

lowers and the leader. So, the work can be considered as a contribution to the adaptive

synchronization in MAS literature, rather than LF formation control literature. The same

approach for almost the same problem setting is introduced in [138], with a globally uni-

formly asymptotically convergent result. A drawback that is seen in both works, which

appears as a really important phenomenon in real-life applications, is the assumption of the

28



availability of the instant relative position error descriptions of the agents to their neigh-

bors without delay. In addition, linear parameterization of the non-linear agent dynamics

in [138] may not be always straightforward.

In the second category of adaptive formation control approaches, it is assumed that in

the MAS the vehicle dynamics contain uncertainties. Here, we review [49, 59, 68, 69, 136]

in this direction. [49,136] consider swarms composed of agents with fully actuated vehicle

dynamics in the form of Euler-Lagrange model (2.6). The functions Ni(pi, ṗi) represent the

disturbances and non-linear effects, and are assumed to be in the form Ni(pi, ṗi) = fki +fui ,

where fki , f
u
i are the known and unknown parts, respectively. Moreover, it is assumed that

the positive definite matrices Ci(pi) are unknown with known lower and upper bounds.

Sliding-mode control together with the potential function approach is applied to achieve

the formation control and the target tracking objectives. The relative position of the target

is assumed to be measured by all the agents and the sensing graph is chosen as complete,

i.e. every agent senses the relative position to all other agents in the formation. It is shown

that the objectives are achieved despite the uncertainties in the agent dynamics. In [59]

the results are extended to swarms composed of agents with the non-holonomic vehicle

dynamics, containing uncertainties. Note that the case of swarms with non-holonomic

vehicle dynamics is in general more involved than the case of swarms with fully actuated

agents.

Similar to [49, 136], in [68, 69] the authors use the tools of adaptive control theory to

overcome the uncertainties in the system dynamics at the agent level. [68] considers for-

mation control of three UAVs with parametric uncertainties and applies the direct MRAC

scheme at each agent. [69] studies a dynamic model in Brunovsky canonical form with

parametric uncertainties. Using the feedback linearization technique and least-squares pa-

rameter estimation algorithm in an indirect adaptive control scheme formation objectives

are achieved for the vehicles with parametric uncertainty. In Chapter 4, we present the

approach of [65] where the results of [69] are extended and formal stability analysis are

provided.

There are some other adaptive formation control frameworks that are not considered

in either of the two categories mentioned above such as [100,101]. Observing the need that

agents have to acquire their own positions in real time for some specific objectives without

using positioning systems such as GPS, [100, 101] propose formation maintaining control

together with an estimation algorithm for localizing the agents. In these works, each agent
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localizes its own position using its sensor information and data obtained from its neighbor

agents through communication. The convincing simulation results show the effectiveness

of the controller under the given assumptions, and the work is one of the limited works

that connect localization with formation control. However, how advantageous applying

this approach is uncertain when compared to similar works. Firstly, since the estimation is

performed on each agent separately, i.e. in a decentralized fashion, how the desired agent

positions are assigned and how the agents are informed with this data are not obvious.

Secondly, the work requires a communication topology between agents.

Some researchers have interpreted adaptivity as changing the formation shape during

motion based on environmental conditions such as obstacle avoidance. [72] interprets the

term adaptivity as having a swarm of autonomous mobile robots avoiding obstacles during

motion based on local interactions of individual robots. This is achieved by assigning

two neighbor agents to every agent in the formation, leading to multiple rigid triangle

formations. The agents fragmentize and move accordingly when to avoid obstacles on the

path.

2.3.2 Intelligent Adaptive Approaches

Besides the conventional adaptive control techniques, there are also approaches utilizing

intelligent methods such as neural network and fuzzy logic based adaptive controllers for

achieving group coordination and/or formation control [38], [131]. In case the uncertainties

in the agent or overall swarm dynamics cannot be parameterized conventional techniques

based on parametric uncertainties cannot be applied. Neural networks and fuzzy systems

are known to be universal approximators [110,121], which have the property of being able

to approximate any smooth function with arbitrary accuracy on a compact set (provided

that the parameters of the system are set properly). This property makes them powerful

tools which can be employed in function approximation as well as function approximation

based adaptive control. In particular, they can be employed to approximate the modeling

uncertainties, [120,121], and eliminate their adverse effects over the system dynamics and

controller design. In principle, intelligent adaptive methods can be applied both on agent

level and on MAS level. However, most of the works in the literature utilizing such methods

on dynamic MAS problems are on the agent level. In other words, most of the neural and/or

fuzzy-based formation control or coordination approaches and therefore the corresponding

control laws are designed at the agent level and these tools are used to overcome the
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uncertainties in the individual agent dynamics such that to achieve the overall swarm

coordination and control objectives.

An example work which utilizes an intelligent control approach for multi-agent co-

ordination is [137], where the authors study the containment problem of formations of

agents with nonlinear dynamics. The sensing graph is assumed to be directed and the

followers need only the position information of their leaders to achieve the formation ob-

jective. Neural network based function approximation is applied to estimate the nonpara-

metric uncertainty in the agent dynamics, which may be intractable with the conventional

identifier-based adaptive control methods. However, as a deficiency of the utilized function

approximation based method, a small function approximation error occurs at steady-state.

Such errors can be overcome by adding a robustness signal to the control law as in [78].

A related study is [128] where the output synchronization problem is solved by combining

cooperative control, game theory, and reinforcement learning. [111] also makes use of neu-

ral network based identifiers to overcome the uncertainties at the agent level and achieve

formation control objectives.

A series of studies has also considered the distributed agreement problem (which is

known also as the consensus or synchronization problem in the literature) and the for-

mation control problem in a class of multi-agent dynamic systems composed of agents

containing non-parametric model uncertainties. In [36], a fuzzy logic based direct adaptive

control approach has been developed to solve the MAS formation control problem. In this

work a class of multi-agent dynamics systems composed of agents in normal form with

model uncertainties is assumed to acquire and maintain a predefined geometric formation

as well as to track a reference trajectory. This work utilized earlier results in [120] to

suppress the effects of uncertainties and to achieve group objectives. The adaptive term

was also augmented with bounding and sliding mode terms in order to achieve robustness.

Later, [58] further extended the results by incorporating the high-gain observer in order to

estimate the derivatives of the agent errors (which constitutes an important relaxation).

Moreover, [58] considered various formation maneuvers such as expansion/contraction, ro-

tation, and formation reconfiguration. Similarly, [50] considered the distributed output

agreement problem and utilized similar strategy in order to achieve agreement despite the

uncertainties in the agent dynamics.
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2.3.3 The Limitations

Despite its settled and solid base, adaptive control theory has not been applied in formation

control literature well enough. The fact that in the literature there is no generic system

model for persistent formations of MASs may be considered as a reason for this deficiency.

Since most of the generic results of the adaptive control theory admit plant dynamics with

certain assumptions, either in the time or frequency domain, it appears that there is a

need for such a motion model for persistent formations in order to apply the tools of the

adaptive control theory and get the most out of its features.

Regarding the discussion on the classification of the adaptive control schemes above,

one may expect the future roles of adaptive control theory into formation control in at least

two different aspects. The first approach would be overcoming the uncertainties inside the

individual agent models by employing the indirect adaptive approach. Here, we should

emphasize a disadvantage of the application of this method, since most of the estimation

algorithms rely on the persistence of excitation of the regressor signals as a requirement of

the parameter convergence, it may be hard to fulfill this condition for every single agent in

the formation. The second approach would be the implementation of the direct adaptive

control methods [82] in formation models.

In addition, in applying both the indirect and direct adaptive approaches in formation

control, another important phenomenon that needs to be taken into consideration is the

speed of convergence of parameter estimates or the outputs. Since most adaptive control

tools guarantee parameter convergence ‘in the asymptotic sense’, the initial conditions on

the system parameters or outputs would be crucial for transient performance of the overall

formation. Besides, although having not been derived generically yet, dynamic models for

formations tend to be time-varying. Observing that the adaptive control algorithms derived

for time-varying systems have some limitations, controlling a formation with these algo-

rithms would carry the same limitations as well. In summary, although utilizing adaptive

control theory into formation control schemes seems promising to overcome the modeling

uncertainties and yield better convergence results for formations of agents with uncertain

models, it would bring a lot of restrictions and narrow the spectrum of the agent dynamics

considered to conclude guaranteed convergence results.
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Chapter 3

Cohesive Motion Control: Rigid

Formation Maintenance

3.1 Introduction

When a group of vehicles is required to show a cooperative behavior when they move, a

formation control algorithm needs to be applied on the individual vehicle controllers. An

example to such behaviors is moving the formation of vehicles from an initial to a final

configuration preserving the shape (geometry) of the formation, named cohesive motion

control [1, 12, 44, 45, 113, 139]. The main goal in the design of cohesive motion control

structures is to maintain the inter-agent distance constraints between vehicles which are

connected by artificial links of the constraint graph of the formation.

Cohesive motion is much related to formation rigidity. For instance, a formation of

robots moving in a plane or in a three dimensional space can achieve distance maintaining

for all agents in the formation if the constraint graph of the formation is rigid, and all

the constraints are satisfied during the motion. The works [29,32,33] have studied forma-

tion maintenance of multiple non-holonomic mobile robots using LF formation structures.

Assuming the availability of relative position measurements between agents, feedback lin-

earization based distance-distance and distance-bearing controllers have been synthesized

in these works to achieve desired inter-agent behaviors. Although these works present ef-

fective simulation and real-time experimental results, the methods do not conclude with a
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comprehensive stability result for cohesive motion of formations, and are prone to singular-

ity issues. In another series of works [12,44,45,113], the task of moving a rigid multi-agent

formation to reach a final configuration cohesively, i.e., maintaining the formation rigidity

during motion, has been studied. These works also use LF formation structures and pro-

pose a set of distributed control schemes for such structures. The leader agent is driven

to follow a trajectory or a sequence of way-points which are generated by path planning

algorithms, and the followers are required to maintain the inter-agent distances to the

agents they follow. To prevent chattering around equilibrium points, switching techniques

are employed. Even though [12,44,45,113] present efficient simulation results for the afore-

mentioned control system and have convergence analysis of the leader agent, they still lack

the full stability analysis of the overall system. In [44] it is shown that with the proposed

control scheme, the leader agent converges to its desired position asymptotically. In [45],

stability analysis of the FF agent is also provided, assuming that the FF agent has the

knowledge of the velocity vector of the leader agent on-line via interpolation or other tech-

niques. However, no bound on the propagation of the distance keeping errors in the MAS

has been established in these works.

In this chapter, we study cohesive motion control of MPFs. We first state the cohesive

motion control problems in a formal way for acyclic MPFs. Then, we do a critical review of

the formation control approaches in the literature. Later, we derive the system dynamics

for formations of agents modeled by point agent kinematics and convert the cohesive motion

control problem to a regulation problem in order to ease further control design processes.

Then, we design a distributed control law for the acyclic MPF, which results in a simple

proportional control law for each agent. Finally, we obtain results on agent speed relations

in a rigid formation.

3.2 Problem Definition

We consider a 2-dimensional acyclic MPF F of an MAS S = {A1, · · · , AN}. Assume that

each agent is modeled to have single integrator motion kinematics (2.1). The directed

constraint graph Gc of F is assumed to be acyclic and minimally persistent. As is common

in the literature, the leader agent A1 is assumed to be equipped with a GPS, and has

more sensing capabilities than the other agents. It is assumed that A1 knows its own

position, p1(t), for all t ≥ t0 in the global coordinate frame. The desired trajectory p∗1(t)
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that A1 is required to follow is assumed to be generated by an exogenous system which

we are not concerned in this chapter. We assign the agent A2 as the FF and the agents

Ai, i = {3, · · · , N}, as the ordinary followers (OF). We emphasize here that to maintain

a minimally persistent formation on <2, it is necessary and sufficient for each OF agent

to follow two agents [44], which we call its leaders. Although different assignments for the

leader sets of OF agents Ai, i ≥ 4 are possible, in this chapter we assume that the leader

set of an OF agent Ai, i = {3, · · · , N}, is {Ai−1, Ai−2}.

The sensing graph Gs of F is assumed to be the supergraph of the constraint graph

Gc, that is, if there is an edge (i, j) ∈ Ec, then we have (i, j), (j, i) ∈ Es. So, Gs is

bidirectional and rigid. We assume that the leader A1 can sense the distances to its

followers A2, A3; the LF agent A2 senses the relative position to the leader A1; and the

OF agents Ai, i = {3, · · · , N}, senses the distances to its two leaders Ai−1 and Ai−2. We

denote the actual and desired relative positions from Aj to Ai by rij , pi − pj and r∗ij.

The actual and desired distances between Aj to Ai are represented by dij , ‖rij‖ and

d∗ij , ‖r∗ij‖. The sensing graph being bidirectional means that sensing is mutual, i.e., the

agent Ai senses relative position rji to the agent Aj and the agent Aj senses the relative

position rij to Ai.

A1

A2
A4

A3x

y

Figure 3.1: Sensing and constraint graphs for a 4-agent formation; solid directed arrows form

the constraint graph and dashed undirected arrows form the sensing graph, respectively.

The following design constraint is assumed in this chapter: there are constant maximum
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speed bounds v̄i > 0 for every agent Ai, i = {1, . . . , N}. We define the vector

Γ(F) = [v̄1, · · · , v̄N ]> (3.1)

as the speed profile of the formation F . One of the objectives of the current work is to

analyze the behavior of the formation during motion under the LF scheme, and to analyze

the effects of Γ(F) on the motion behavior.

The main control task is to design an individual controller producing the velocity of each

agent in an acyclic minimally persistent, LF formation F , in order to move the formation

to given final position cohesively, i.e., without deforming the shape or violating the distance

constraints during the motion. We have the following assumption on the initial formation

configuration.

Assumption 3.2.1. At the initial time instant t = t0, the formation configuration P(t0)

satisfies the inter-agent distance constraints defined by Gc.

Assumption 3.2.1 together with a suitable control rule that keeps the formation config-

uration inside the neighborhood prevents the flip-ambiguity during motion. We are inter-

ested in a distributed and hierarchical control design. Here what is meant by distributed

control design is designing control law for each level of the formation in a hierarchical

order. To facilitate such a design, we consider a leader-first follower-ordinary follower

control/constraint architecture. Considering this structure we pose the following problem.

Problem 3.2.1 (LF Formation Cohesive Motion Problem). Consider an LF formation F
with N ≥ 3 agents A1, · · ·AN , the acyclic minimally persistent two-dimensional constraint

graph Gc, and rigid, bidirectional sensing graph Gs. Assume that each agent is modeled to

have single integrator motion kinematics with the position vector pi and the control input

vi. Design a distributed control scheme producing v1, . . . , vN such that

i. A1 tracks p∗1(t) asymptotically.

ii. The relative position error
∫ t
t0
‖r12(τ)− r∗12‖dτ between A1 and A2 is minimized, that

is, A2 follows A1 with the desired relative position r∗12.

iii. Ai, i = 3, . . . , N, maintains desired distances d∗i,i−1 and d∗i,i−2 to its leaders Ai−1 and

Ai−2, minimizing
∫ t
t0
‖di,i−1(τ)− d∗i,i−1‖dτ and

∫ t
t0
‖di,i−2(τ)− d∗i,i−2‖dτ .
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An important question arises immediately: What would be the velocity bounds for

specific agents and how is it related with the level of the agent in the hierarchy? The

following problem states this question formally and we search for the answer of this question

in the subsequent sections.

Problem 3.2.2 (Agent Speed Bound Problem). Given an LF formation F with N ≥ 3

agents A1, · · ·AN , the acyclic minimally persistent two-dimensional constraint graph Gc,
and rigid, bidirectional sensing graph Gs. Assume that each agent is modeled to have single

integrator motion kinematics with the position vector pi and the control input vi. Find the

conditions on the speed profile Γ(F) so that Problem 3.2.1 is solvable.

3.3 Cohesive Motion Control Design

In this section, we review the major formation control approaches in the literature appli-

cable to the LF Formation Cohesive Motion Problem. Two of the approaches presented

in this chapter, virtual-leader based formation control and combined formation shape and

flocking control approaches, will be extended in Chapter 4, following an indirect adap-

tive control design procedure, for the more realistic problem setting where the high-order

dynamics and parametric uncertainties in vehicle motion are taken into account.

3.3.1 Virtual Leader-based Formation Control

Virtual leader-based formation control approach aims to achieve the goals of Problem 3.2.1

by individual agent tracking of certain assigned reference trajectories. Within the general

framework of this approach, which is applicable to settings other than the LF setting as

well, a virtual leader Av is defined inside the formation to well-define the trajectories. As

depicted in Fig. 3.2, the desired trajectory p∗i (t) for agent Ai is defined as

p∗i (t) = p∗v(t) + r∗iv, (3.2)

where p∗v is the desired trajectory of the virtual leader and r∗iv is the desired relative position

of Ai with respect to Av. Relative positions r∗iv are assigned to define the formation to be

maintained, and are assumed to guarantee collision-free motion of S.
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A3

A2

A1

A4

VL

r2v* pv(t)*

Figure 3.2: Trajectory generation using virtual leader for a four-agent formation.

In the LF formation control approaches, the virtual leader is assumed as the leader

agent of the formation, and the follower agents connect to the leader by certain directed

edges of the formation constraint graph. For instance, in the formation shown in Fig. 3.1,

the leader agent is the virtual leader as well, e.g., A1 = Av, and it tracks its trajectory

p∗1(t) without concerning the control laws of its followers A2, A3. The aim of the follower

A2 is to maintain the desired relative positions r∗12 as in the virtual leader-based control

scheme. However, the aim of the follower A3 is to maintain the relative positions r∗13 and

r∗23, instead of maintaining relative position to one leader.

3.3.2 Combined Formation Shape and Flocking Control

Combined formation shape and flocking control (CFSFC) of systems of multiple double

integrator agents with undirected sensing graphs is formally studied in [125]. [3] extends

the results of [125] for systems with acyclic directed graphs. Here, we review the framework

of [3], and in Chapter 4 we develop an adaptive version of it for vehicles with uncertain

dynamics. In [3], a swarm S of N agents with the double integrator model (2.2) is con-

sidered. Two constraint graphs have been considered to achieve the formation shape and

flocking control: flocking graph Gf (V , Ef ) and formation shape graph Gsh(V , Esh).

The directed flocking graph Gf represents the velocity information interaction between

the agents. Without loss of generality, the agent A1 is selected as the flocking leader and

all the links lfi1 ∈ Ef associated with A1 are assumed unidirectional and traversed towards

A1, while the other links are assumed to be bidirectional. It is assumed that A1 tracks its

38



predefined trajectory p∗1(t) with a piecewise constant velocity v1. Let N f
i denote the set

of neighbors of Ai in Gf . The unidirectional edges lfi1 ∈ Ef between the leader A1 and its

neighbors Ai ∈ N f
1 mean that Ai ∈ N f

1 can sense the leader velocity, but the converse is

not true. The bidirectional edges lfij ∈ Ef between Ai and Aj ∈ N f
i , i, j 6= 1 mean that Ai

is informed with vj(t) and Aj is informed with vi(t) at all times. The flocking objective is

defined for the followers Ai, i = (2, . . . , N) as asymptotic tracking of the velocity of the

leader. An example of Gf for a four agent formation is illustrated in Fig. 3.3.

A3

A2

A1

A4

Figure 3.3: An example Gf for a four-agent formation: All edges associated with A1 are unidi-

rectional and traversed towards A1, while the rest of the edges are bidirectional.

On the other hand, the formation shape graph Gsh governs the inter-agent distance

constraint structure of the formation. It is assumed that Gsh is undirected and the corre-

sponding formation is rigid. Let N sh
i denote the set of neighbors of Ai in Gs. Undirected

Gsh is interpreted as both Ai and Aj are informed with the desired distance d∗ij if there is

a link lshij to be maintained between Ai and Aj in Esh.

Denote

vr ,
[
(v2 − v1)>, · · · , (vN − v1)>

]>
, (3.3)

pr ,
[
(p2 − p1)>, · · · , (pN − p1)>

]>
.

For CFSFC problem, that is, the problem of converging the velocities vi, i 6= 1, to v1 and

maintaining the formation shape defined by Gsh, [3] proposes the following CFSFC law for

the follower agents Ai, i ∈ {2, . . . , N}:

v̇r = −
(
L̄ ⊗ I2

)
vr −∇V (pr), (3.4)

where L̄ is the matrix formed by deleting the first row and first column of the Laplacian

matrix L [3] of the flocking graph Gf , and V (pr) is a potential function invariant to trans-
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lation, rotation, and reflection, and having its minimum at zero, pr being minimizer if and

only if it satisfies the rigid formation constraints defined by D∗d.

Consider a formation F of three agents {A1, A2, A3} with the flocking graph Gf and

formation shape graph Gs as shown in Fig. 3.4. An example CFSFC control law for F is

given by:

ṗ1 = v1, v̇1 = 0,

ṗi = vi, (3.5)

v̇i = −
∑
j∈N fi

(vi − vj) + 4
∑
j∈N si

(
(d∗ij)

2 − d2
ij

)
(pi − pj) ,

where i = 2, 3. In [3], it is proven that for the formation setting above, with the control

law (3.5), velocities of all follower agents converge to v1, and all the distance constraints for

the links in the edge set Esh are satisfied, that is, flocking and formation shape objectives

are achieved.

A3

A2

A1

Gf
Gs

Figure 3.4: The flocking graph Gf (blue solid) and formation shape graph Gs (red dashed) of the

example three-agent formation.

3.3.3 Hierarchical Cohesive Motion Control

In [44], a distributed control law is proposed to solve Problem 3.2.1. The method of [44]

is further enhanced in [45], providing further analysis and vision-based robotic implemen-

tation, and in [12] for UAVs with more complex dynamics. In [12], assuming the desired

trajectory p∗i (t) for each agent Ai, i = {1 · · ·N}, is calculated online based on the rigid
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formation constraints, the following control law is proposed for Ai:

vi(t) = v̄iγ(δi(t))ei(t), (3.6)

ei(t) =
δi(t)

‖δi(t)‖
,

δi(t) = p∗i (t)− pi(t),

where v̄i is the constant maximum speed of Ai, ei(t) is the unit vector directed towards

the desired trajectory at every time instant t, and the switching function γ(t) is defined

for a function of time x : <+ → <2 and a small positive scalar εf as follows:

γ(r) =


0, r < εf
r−εf
εf
, εf ≤ r < 2εf

1, r ≥ 2εf

(3.7)

In [44], it is assumed that the aim of the leader A1 is to reach its (predefined) desired

final point p1f , and a formal Lyapunov analysis is given to show the stability of A1 in a sense

that it enters a small neighborhood of p1f and stays there in the limit. A Lyapunov analysis

for A2 and the ordinary followers (A3, . . . , AN) are given in [45] where for simplicity the

velocity vector of the leader agent A1 is assumed to be calculated via interpolation and is

added to the control term of A2. [45] also presents a real-time implementation of the control

system on a non-holonomic mobile robot formation. In that paper, follower robots obtain

relative position measurements to their leaders using cameras mounted on the vehicles.

3.3.4 Sliding Mode Based Formation Control

In [23], first-order and second-order sliding-mode observers have been proposed to estimate

the position and velocity of the virtual leader in the formation for tracking objectives. [31]

further extends the results of [23] to achieve formation shape and flocking control when an

agent is assigned as the leader and there are obstacles in the formation. Both works assume

that the sensing graph in the formation is directed and an agent can sense the relative

position of its leaders. Here, we translate the control law of [31] for the obstacle-free,

minimally persistent formation, and <2 case. The agents are modeled to have holonomic

point agent kinematics (2.1). The leader A1 is assumed to move on a trajectory such that
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ṗ1(t) = f1(t), where f1 is a predefined smooth function. For the first follower A2, the

following control law is proposed:

v2(t) = αe2(t) + βsgn(e2(t)), (3.8)

where α ≥ 0, β > 0 are design constants, and

e2(t) = r12(t)− r∗. (3.9)

For the ordinary follower A3, the following control law is proposed:

vi(t) = αei(t) + βsgn(ei(t)), (3.10)

where α ≥ 0, β > 0 are design constants, and

ei(t) =
(
ri,i−1(t)− r∗i,i−1

)
+
(
ri,i−2(t)− r∗i,i−2

)
. (3.11)

3.4 Cohesive Motion Control as a Regulation Prob-

lem

In this section, we re-define Problem 3.2.1 as a more generic multivariable regulation prob-

lem, deriving the system dynamics of the acyclic MPF F , in order to facilitate application

of various other (more generic) approaches. We then design a distributed control law to

solve the regulation problem. At the end of this section, we give the simulation results of

the synthesized control approach for a five-agent system.

The motion dynamics of the formation will be formulated in state-space, using the

lumped state

ζ =
[
ζ>1 , . . . , ζ

>
N

]> ∈ <2N , (3.12)

where the state ζi ∈ <2 for each agent Ai is selected as described in the sequel, representing

the relative position constraints for rigid formation maintenance together with the assumed

single integrator motion kinematics (2.1). ζi are defined such that the cohesive motion

control goal of Problem 3.2.1 is perfectly met at time instant t if and only if ζ(t) = 0. That
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is, the desired value for the lumped state vector ζ will always be zero, leading to a state

regulation problem formulation.

The leader agent A1 has 2-DOF and moves freely in the space to track its desired

trajectory. The state for A1 is selected to be the tracking error in position, i.e.,

ζ1(t) , p1(t)− p∗1(t), (3.13)

and to meet its trajectory tracking task, we assert

ṗ1(t) = v1(ζ1(t), v1,d(t)) = v
′

1(ζ1(t))− v1,d(t), (3.14)

where v1,d = ṗ∗1, and v
′
1(·) is a static smooth function defining the control law that steers

the leader agent according to the tracking error ζ1(t).

Assuming a similar state function control law assignment for the FF agent A2, we

derive the dynamics of the relative position r12 between the leader and the FF agent,

whose desired value is a constant vector, r∗12. We write

ṙ12(t) = v1(t)− v2(ζ2(t)) (3.15)

where the state

ζ2(t) , r̃1,2 , r12(t)− r∗12, (3.16)

of A2 is defined in terms of the relative distance tracking error, and v2(·) is a static smooth

function defining the control law that steers the FF agent A2 towards its equilibrium point

at each time instant t, at which the relative position constraint is satisfied.

For each OF agent Ai, (i ≥ 3), which by the notation convention follows Ai−1 and

Ai−2, the state is defined as

ζi , r̃i−1,i , ri−1,i − r∗i−1,i, (3.17)

considering the relative position of Ai−1 with respect to Ai. For the relative position of

Ai−2 with respect to Ai, we have

r̃i−2,i , ri−2,i − r∗i−2,i

= (ri−2,i−1 + ri−1,i)− (r∗i−2,i−1 + r∗i−1,i)

= r̃i−2,i−1 + r̃i−1,i

= ζi−1 + ζi. (3.18)
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Noting that (3.16) is also in the form (3.17), the equations (3.17),(3.18) are valid for

all i ∈ {2, . . . , N}.

Remark 3.4.1. As clearly seen in (3.13),(3.16), A1 and A2 have access to ζ1 and ζ2,

respectively. Further, for all i ∈ {3, . . . , N}, the sensing graph Gs introduced in Section 3.2

guarantees that Ai can calculate ζi−1, ζi using (3.17),(3.18).

Using (3.13),(3.17), we obtain the dynamics

ζ̇1 = v1,

ζ̇2 = v1 − v2,

ζ̇3 = v2 − v3,

...

ζ̇N = vN−1 − vN ,

which can be written in the following compact form:

d

dt
ζ = Bu, (3.19)

where u =
[
v>1 , · · · , v>N

]> ∈ <2N and

B =



I2 0 0 0 · · · 0 0

I2 −I2 0 0 · · · 0 0

0 I2 −I2 0 · · · 0 0
. . .

0 0 · · · I2 −I2


∈ <2N×2N . (3.20)

The output y =
[
y>1 , . . . , y

>
N

]> ∈ <4N−4, of the system is defined as follows:

y1 = ζ1, (3.21)

y2 = ζ2, (3.22)

yi =
[
ζ>i−1, ζ

>
i

]>
, for i ∈ {3, . . . , N}. (3.23)

Recall Problem 3.2.1 where the objectives are given in more general terms. We now

reformulate this problem as an equivalent regulation problem:
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Problem 3.4.1. Consider an acyclic minimally persistent two-dimensional leader-follower

formation F , satisfying the constraint, control, sensing, and agent dynamics properties

asserted in Section 3.2. For the dynamics (3.19), find a control law u that achieves

lim
t→∞

ζ(t) = 0.

Problem 3.4.1 is equivalent to Problem 3.2.1 in the sense that any control law u that

solves Problem 3.4.1 is also a solution of Problem 3.2.1. Various regulation control methods

in the literature can be employed to solve Problem 3.4.1. A linear state-space dynamic

model similar to (3.19) has been derived in [139] for MPFs in general, including those having

cycles in the constraint graph. In [139], using first-order approximation, a control law is

proposed to achieve formation acquisition of agents which are assumed to be perturbed from

their equilibrium configuration by small amounts. (3.19) is based on the relative position

errors during motion, while the dynamic model in [139] is established for regulation of

distance errors caused by small perturbations. In the next subsection, we design a linear

distributed output feedback control scheme for the system (3.19)–(3.23) aiming at solving

the cohesive motion problem.

3.5 Control Design for the Regulation Problem

3.5.1 Control Design

In this subsection, we design a linear distributed output feedback control scheme to solve

Problem 3.4.1. We consider the state feedback control law

u = Kζ, (3.24)

where

K =



−k1I2 0 0 · · · 0

0 k2I2 0 · · · 0
...

. . .
...

0 kN−1I2 0

0 · · · 0 kNI2


, (3.25)
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with

k1, . . . , kN > 0. (3.26)

Theorem 3.5.1. The control law (3.24) with the gains selected as in (3.26) solves Prob-

lem 3.4.1 exponentially.

Proof. (3.19),(3.24) result in the closed loop dynamics

d

dt
ζ = BKζ, (3.27)

=



−k1I2 0 0 0 · · · 0 0

−k1I2 −k2I2 0 0 · · · 0 0

0 k2I2 −k3I2 0 · · · 0 0
. . .

0 0 · · · kN−1I2 −kNI2


ζ.

Since the matrix BK is lower block triangular and ki > 0 for all i, we have that BK is

Hurwitz. Hence, ζ = 0 is exponentially stable.

Note that the control law (3.24) only requires the availability of the state vector ζi for

agent Ai, making it completely distributed.

Remark 3.5.1. For the implementation of the control law (3.24), it is sufficient for Ai to

have the state ζi, which is guaranteed by the structure of the sensing graph Gs. Actually, an

OF agent Ai, i = {3, · · · , N} has access to the state ζi−1 as well, as indicated in (3.23).

This, in a sense, adds robustness into the system such that in case of a failure in sensing the

leader Ai−1, the agent Ai, i = {3, · · · , N} can switch to sensing only Ai−2 for a continuous

operation.

3.5.2 Simulations

In this part, we simulate the behavior of the control system design of Section 3.5.1. Consider

an MPF F of a five-agent system S = {A1, · · · , A5} with the edge set

Ec = {(2, 1), (3, 1), (3, 2), (4, 2), (4, 3), (5, 3), (5, 4)} ,
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Figure 3.5: The constraint graph Gc of the 5-agent formation used in simulations.

and with the relative position constraints r∗12 = r∗34 = [1,−1]> , r∗23 = r∗45 = [0, 1]> . The

constraint graph Gc used in simulations is depicted in 3.5. The desired trajectory for A1 is

p∗1(t) = [2 + 0.1t, 2 cos(t)] . The system is simulated for 50 seconds. The gains are chosen

as follows:

k1 = 10, k2 = 6, k3 = 8, k4 = 10, k5 = 12.

The state vector ζ is bounded and there are periodic relative position errors due to the

fact that the leader’s trajectory p∗1(t) has a sinusoidal component.

3.6 Results on the Speed Limitations

In this section, we address Problem 3.2.2 in two parts. The first part is on the speed

relations between agents modeled by point agent kinematics moving in a rigid formation.

In the second part, we design a hierarchical LF formation control approach for two agents,

which is a modified version of the Hierarchical Cohesive Motion Control approach given in

Section 3.3.3.

3.6.1 Agent Speed Relations in a Rigid Formation

Consider the rigid triangle of the three agents A1, A2, A3 of Fig. 3.1 moving in a two or

three-dimensional space. We seek for a relation between the agent velocities. Denote

d̃i,i−1(t) ,
1

2

(
d2
i,i−1(t)− (d∗i,i−1)2

)
. (3.28)
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Figure 3.6: Motion of the five-agent system with the control law (3.24): The leader A1 tracks

its desired trajectory while the FF and OF agents follow their leaders to satisfy the constraints

imposed by Gc.

The time derivative of d̃ in (3.28) is given by:

˙̃dij(t) =
d

dt

1

2

(
d2
ij − (d∗ij)

2
)

= r>ijvij (3.29)

= (ri − rj)> (vi − vj) .

Using (3.29) for the agent pairs {A1, A3} and {A2, A3}, we obtain the following:[
r>31

r>32

]
v3 =

[
r>31v1

r>32v2

]
. (3.30)
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Figure 3.7: The state vector ζ under the control law (3.24): Small, bounded tracking errors are

caused by the sinusoidal component of the desired trajectory of A1.

Lemma 3.6.1. For the rigid triangle {A1, A2, A3} of Fig. 3.1, there holds

‖v3‖2 ≤ d2
13‖v1‖2 + d2

23‖v2‖2

λmin(r31r>31 + r32r>32)
. (3.31)

Proof. (3.30) further yields the equation (3.32).

v>3 Rv3 = v>1 R1v1 + v>2 R2v2, (3.32)

with

R = R1 + R2

R1 = r31r
>
31, R2 = r32r

>
32.

It then follows that

λ1‖v3‖2 ≤ v>3 Rv3 ≤ λ2‖v3‖2,
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and thus

v>3 Rv3

λ2

≤ ‖v3‖2 ≤ v>3 Rv3

λ1

, (3.33)

where λ1 := λmin(R) and λ2 := λmax(R) are the minimum and the maximum eigenvalue of

the matrix R. Note that since the rigid motion assumption eliminates the collinear agent

positions in <2 and coplanar agent positions in <3, we have det(R) 6= 0, thus λ1 > 0.

(3.32) also implies that

0 ≤ v>3 Rv3 ≤ λmax(R1)‖v1‖2 + λmax(R2)‖v2‖2 (3.34)

Since λmin(Ri) = 0 and λmax(Ri) = d2
i3 for i = {1, 2}, we conclude

‖v3‖2 ≤ d2
13‖v1‖2 + d2

23‖v2‖2

λ1

.

3.6.2 Speed Control for Rigid Formation Maintenance

In Section 3.3.3, the formation control approach of [44] established for acyclic MPFs is

presented. In [44], a leader agent is not affected by the control decision of its followers. Here,

we propose an LF formation control law introducing a spring-like action between agents,

which is intended to satisfy the feasibility concept within the formation. Specifically,

we propose the control law such that the speed of an agent is affected by its followers

during motion, which makes the formation robust to the cases where the initial inter-

agent distances are much greater than their desired values. We first give definition of the

backward function that is employed in the control law: Define the function of time for

some fij : <+ → <+ as

fij(r) = e
−
r2

2σ2 , (3.35)

where σ is design coefficient. Consider Problem 3.2.1 for an acyclic 3-agent MPF F . The

control rule for the agent Ai is composed of a speed term si and a direction term ei such

that

vi(t) = si(t)ei(t), (3.36)
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where the speed term satisfies 0 ≤ si(t) = ‖vi(t)‖ ≤ v̄i for all i, t, and the unit vector ei is

the direction term which heads the agent towards its desired position.

Assumption 3.6.1. Every agent Ai in F knows the structure of the function fij with the

constant σ, and the speed bounds v̄j of Aj for all j ∈ N c
i .

Next, we study the sub-objectives described in Problem 3.2.1-(i) and −(ii), considering

only agents A1 and A2. The leader agent A1 is required to reach the predefined point p1f .

We propose the following control law for the leader agent, which is a revised version of the

control law of [44], as follows:

v1(t) = s1(t)e1(t) (3.37)

s1(t) = v̄1f12(δ12(t)) β(δ1f (t)), e1(t) =
−δ1f (t)

‖δ1f (t)‖
,

where f12 is as in (3.35), the switching term γ(δ1f (t)), defined in (3.7), prevents chattering

due to small but acceptable errors in the final position of A1, and

δij(t) , [x̃ij, ỹij]
>. (3.38)

A1 moves with two-degree-of-freedom, however, its maximum speed is affected by the

relative position r12 due to the function f12.

Remark 3.6.1. Positive definiteness property of f12 allows the leader to reach its desired

position under the control law (3.37). At the same time, it will decelerate dramatically

when the relative position error increases to help the agent A2 in maintaining the relative

position r12 at their desired values.

We assume that A2 can sense the relative position r12. We take advantage of this

assumption in the design of the speed profiles of both of these agents. The goal in Prob-

lem 3.2.1−(ii) is to design a control system so that lim
t→∞

r12(t) = r∗12 = [x∗12, y
∗
12]>, where

r∗12 is assumed to be a constant vector. For the FF agent we propose control rule

v2(t) = s2(t)e2(t) (3.39)

s2(t) = (v̄1 + (1− f12)α2) β(δ12(t)), e2(t) =
δ12(t)

‖δ12(t)‖
,

where α2 > 0 is a small design constant. Note that v̄2 = v̄1 + α2. We have the following

result for the two-agent formation.
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Lemma 3.6.2. Consider Problem 3.2.1 for a minimally persistent formation F with leader

agent A1 and first follower agent A2. Consider the control laws (3.37)-(3.39) for A1 and

A2, respectively. Then, we have the following:

i. The equilibrium x̃1f = ỹ1f = 0 is globally asymptotically stable,

ii. The equilibrium x̃12 = ỹ12 = 0 is globally asymptotically stable,

iii.

lim
t→∞

s1(t) = lim
t→∞

s2(t) = v̄1. (3.40)

Proof. See Appendix B.

Remark 3.6.2. Note that the convergence of the FF agent is independent of the conver-

gence of the leader agent to its final point p1f since the control rule (3.39) only uses the

speed profile of the leader agent, regardless of its rotation which is determined by e1.

Remark 3.6.3. The convergence of the FF agent’s error to zero implies that the FF agent

converges to its final destination p2f asymptotically if the leader agent converges to its final

destination p1f . Note that in [44], it is also assumed that the FF agent knows p2f , and the

control law uses this knowledge. Here, we relax that assumption.

3.7 Summary and Remarks

In the first part of this chapter, we have formally defined the cohesive motion problem

of acyclic MPFs on a two-dimensional plane and reviewed the major formation control

algorithms established for this problem. Motivated by the lack of convenient motion models

for MPFs, in the second part, we have derived the linear system model (3.19), introducing

new state variables with the inter-agent motion variables throughout the formation. This

linear multivariable system has allowed us to convert the cohesive motion control problem

to a multivariable regulation problem. This conversion is advantageous, because it is a

known fact that more generic control structures are available for the regulation problem in

the literature. The model (3.19) sets a base for future control derivations for the cohesive

motion control problem.
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We have designed a linear, easy-to-implement distributed control law for N -agent

acyclic MPFs assuming holonomic point agent kinematic models. Taking advantage of

the special structure of the system matrix, a completely distributed proportional control

scheme has been proposed to regulate the dynamics (3.19). Utilizing the linearity of the

system and control gain matrices, exponential convergence rate has been established. Fi-

nally, we have analyzed the agent speed relations in rigid body motion. In that context,

we have proposed a distributed control law for a two-agent system. Adjusting the speeds

of the agents with the introduction of special functions in the control law, feasibility and

stability of the system have been established.

Derivation of advanced control laws for the regulation problem stated in Section 3.4

and extending the results of Section 3.6.2 to cover the more general, N−agent forma-

tions are promising research areas. Further, the system model (3.19), which defines the

kinematics of agents, can be integrated with the motion dynamics of agents for real-time

implementations.
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Chapter 4

Cohesive Motion Control: Uncertain

Vehicle Dynamics

4.1 Introduction

In a formation, dynamics of vehicles may vary from vehicle to vehicle and contain uncertain

parameters. When there are modeling uncertainties or unknown disturbances acting on

the agent dynamics, robust or adaptive control strategies are found to be more convenient

and effective. Some formation control works in that direction can be found in [49, 59,

60, 136], where the potential functions method is combined with the sliding mode control

technique in order to improve performance and robustness. Similarly, other robust control

techniques such as H∞ based design can also be effectively employed [104]. An alternative

approach is to use adaptive techniques and asymptotically overcome or compensate for

the adverse effects of the uncertainties and disturbances without a need for high control

actions and achieve desired system behavior [82]. Example works on utilizing adaptive

techniques for formation control and coordination in multi-agent dynamic systems can

be found in [9, 24, 70, 88, 92, 94, 122]. For the cases in which the uncertainties or the

disturbances are parametric, the controller can be accordingly parameterized and these

parameters can be updated based on the measured errors to achieve the desired objectives.

Accordingly, various identification algorithms, such as gradient based and LS based ones,

can be used together with adaptive controller. In contrast, if it is not feasible to properly

parameterize the uncertainties and/or the controller, universal approximators, such as
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polynomials, neural networks, and fuzzy systems, can be used to estimate and to counter

effect the uncertainties [120]. Such universal approximators have been utilized in the

multi-agent dynamic systems literature for solving various problems including formation

control [36,51,112,129] and distributed agreement [50].

In this chapter, we first study the control problem of tracking a predefined smooth

trajectory by a single mobile dynamic agent, e.g., an autonomous vehicle, with dynam-

ics in Brunovsky canonical form having parametric uncertainties. Utilizing the certainty

equivalence principle, we design a new indirect adaptive control scheme composed of two

parts: (i) an LS algorithm with modification for estimating the system parameters with

guaranteed performance, and (ii) a Luenberger observer and feedback linearization based

trajectory tracking controller. Taking advantage of the fast and robust convergence proper-

ties of the LS algorithm, we prove perfect tracking of any smooth trajectory by the mobile

agent without any requirement on the persistence of excitation of regressor signals.

Afterwards, we consider the formation control and maintenance problem for swarms

of the aforementioned type of mobile vehicles. The overall agent controllers are required

to satisfy not only the motion control objectives of the agents but also the desired geo-

metric formation constraints despite the uncertainties in the agent dynamics. We study

distributed extension of the proposed adaptive control scheme for the formation control

problem using virtual leader approach. As an alternative approach, for the special case of

systems of relative degree two, we associate our adaptive control design with the CFSFC al-

gorithm of [3] which was originally derived for double integrator dynamics. We show that,

with the proposed controller, the approach of [3] also applies to the systems of relative

degree two and with parametric uncertainties, and formation acquisition and maintenance

results are established under the same sensing/communication frameworks in the forma-

tion. Utilizing the adaptive and robustness feature of the proposed approach, adverse

effects of the uncertainty can be overcome in real-time implementations.

4.2 Trajectory Tracking with Parametric Uncertain-

ties

In this section, we present the trajectory tracking control design problem for a single holo-

nomic agent with parametric uncertainties. Many holonomic systems such as quadrotors,
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or some of their components, are modeled by the Brunovski canonical form under certain

assumptions. We first focus on the objective of trajectory tracking for a single agent. We

follow indirect adaptive control approach, that is, we first estimate the unknown parame-

ters and then use these estimated parameter values in the classical feedback linearization

law. We use an LS algorithm with modification for parameter estimation. Assuming the

desired trajectory is smooth and its derivative is bounded, we prove asymptotic conver-

gence of the single agent to its desired trajectory. A similar problem has been solved by

the same method in [127] where the result is said to be valid if the persistence of excitation

is assumed, which cannot be directly concluded. We relax that assumption here.

4.2.1 Agent Dynamics

Consider a single holonomic mobile agent A having the following dynamics with relative

degree r:

η̇ = f0(η, x) (4.1)

ẋk(t) = xk+1(t), k = 1, . . . , r − 1; r ≥ 2 (4.2)

ẋr(t) = α(t) + βu(t)

y(t) = x1(t)

where u ∈ Rm is the input vector, x = [x>1 , . . . , x
>
r ]> ∈ Rrm is the state vector, and

xj ∈ Rm, j = 1, . . . , r. The output y ∈ Rm is typically a position vector, i.e., y(t) =

x1(t) = p(t). η ∈ Rn−rm is the state of the zero dynamics. α : R → Rm is unknown,

possibly nonlinear, continuous vector function of time. The constant matrix β ∈ Rm×m is

the unknown high-frequency gain. Note that (4.1)-(4.2) is a special case of the high-order

dynamics (2.7) where α is a function of time only, and β is constant. We have the following

assumptions on the system dynamics.

Assumption 4.2.1.

i. The matrix β is diagonally dominant and the signs of βii are known.

ii. There exists a very small positive constant εM such that |βii| ≥ Mi,1 for all i and

|βij| ≤Mi,2 for all i, j, i 6= j and for some Mi,1, where Mi,2 =
Mi,1

m−1
− εM .
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iii. The agent dynamics (4.1), (4.2) are minimum phase, internally stable, and have well-

defined vector relative degree {r, . . . , r}. Therefore, the input u always shows up in

the r − th derivative of y since the nullity of β is zero.

iv. The entries of α are either constant or slowly time varying, satisfying ‖α(t)‖ ≤ c1

and ‖α̇(t)‖ ≤ c2 for all t ≥ 0 and for some finite constants c1, c2 > 0.

Assuming internal stability of the zero dynamics we separate it from the rest of the

dynamics (4.2) and ignore it in further controller design process. Moreover, from the

Gershgorin circle theorem [14], the set of matrices β obeying Assumption 4.2.1-(i) are

nonsingular. As a note, the case βii = 0 is naturally excluded by the same assumption.

The lower and upper bounds Mi,1, Mi,2 can be selected arbitrarily large based on a priori

information.

4.2.2 Trajectory Tracking Problem

Consider the system described by the dynamics (4.1) and (4.2), and the objective of track-

ing a desired reference trajectory p∗(t). Assume p∗(t) is available for all t. Therefore, the

control law aims to ensure that

e(t) = p(t)− p∗(t) (4.3)

converges to zero asymptotically.

Problem 4.2.1. Design a control law u(t) that drives the tracking error e(t) in (4.3) of

the system (4.2) to zero as t→∞.

In the sequel, we propose an indirect adaptive control design approach to solve Problem

4.2.1. The solution requires an adaptive algorithm in the controller design process since

the tracking problem setting contains uncertainties in the system dynamics.

4.3 Indirect Adaptive Controller Synthesis

In this section, we design an indirect adaptive controller to overcome the uncertainties and

meet the tracking goal. In the context of this section, we denote channel j of the mobile
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agent A by the vector [x1,j, x2,j, . . . , xr,j]
>, j = {1, . . . ,m}. We use a decentralized control

approach and design an individual controller for each channel of the agent. The agent

dynamics (4.2) contains nonlinear terms α and β, which constrains the diversity of the

controller to be designed unless we apply linearization. For this reason, we first linearize

the agent dynamics using feedback linearization. It is a fact that provided the vector α(t)

and the matrix β are known exactly, the feedback rule

u?(t) = β−1 [−α(t) + ν(t)] , (4.4)

where ν(t) is the control input to the linearized agent dynamics, perfectly linearizes (4.2),

resulting in the following linear model for channel j:

ẋk,j = xk+1,j, k = 1, . . . , r − 1; r ≥ 2 (4.5)

ẋr,j = νj,

yj = x1,j = pj.

However, since we do not know exact values of α(t), β, we perform an adaptive control

design to generate the control signal u(t) as an estimate of (4.4). Fundamentally, this

can be done in two ways: the first is to estimate α(t), β as α̂(t), β̂(t) and then use these

estimates correspondingly to generate the control signal

u(t) = β̂−1(t) [−α̂(t) + ν(t)] , (4.6)

and the second is to estimate the optimal control input u? directly. In this section, we

design an indirect adaptive controller, the former approach, with slight modifications for

the single holonomic agent A to solve Problem 4.2.1. The general scheme of the controller

we propose is shown in Fig. 4.1.

4.3.1 Parameter Estimation

We now design an estimation algorithm to generate the estimates of the unknown vector

α and the unknown matrix β. From the agent dynamics (4.5), we have

srpj = αj + β>j u, j = 1, . . . ,m, (4.7)
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Figure 4.1: The block diagram of the jth channel of the controlled agent system: The parameter

estimation vector θj formed by α̂(t) and β̂(t) is generated in a separate block to be used in the

feedback linearization based control law.

where s is the differentiation operator, αj is the jth entry of the vector α and β>j is the

jth row of β, i.e., β = [β1 . . . βm]>. We treat the entries of α as piecewise constants and

consider the following parametric model:

zj = θ∗>j φ, (4.8)

with

zj =
λrfilts

r

(s+ λfilt)r
[pj], θ∗j = [αj, β

>
j ]>,

φ =

[
λrfilt

(s+ λfilt)r
[1],

λrfilt
(s+ λfilt)r

[u>]

]>
,

where θ∗j and φ are named the parameter vector and the regressor vector of the jth channel,

respectively.

In estimation of the matrix β, if the matrix estimate β̂(t) converges to a singular matrix,

the control input u in (4.6) becomes unbounded. In the literature, the matrix β is generally

estimated with neural or fuzzy algorithms, and researchers guarantee boundedness of u

using a switching algorithm in the control rule (4.6) such that in the region where det(β̂)

approaches zero, a bounded signal is used in place of the feedback controller u. Such rules

result in a discontinuous control signal, which may cause chattering and lead to intractable
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stability analysis. σ-modification is used together with neural network estimation algorithm

for single input systems in [135], which leads to a continuous control u. [114] assumes that

there is a known set Ω in which the estimated matrix β̂ lies such that Ω = {β̂| det(β̂(t)) 6=
0 ∀t}. This rule can be implemented by embedding some projections for the estimated

matrix β̂. In Assumption 4.2.1-(i) and (ii), we impose upper and lower bounds on the

entries of the matrix β. We use this a priori information and apply parameter projection

in the LS update rule of the estimated matrix β̂ to guarantee the nonsingular property of

β̂(t) for all time.

In light of the above discussion, we apply the following LS algorithm with parameter

projection for estimation of α and β:

˙̂
θj(t) = Proj {P (t)εj(t)φ(t)} , (4.9)

Ṗ (t) = −P (t)
φ(t)φ(t)>

ψ2(t)
P (t), P (tr+) = µI,

εj(t) =
zj(t)− ẑj(t)

ψ2(t)
, ψ2(t) = 1 + φ>(t)φ(t),

where θ̂j(0) = θ̂j,0, θ̂j = [α̂j, β̂
>
j ]> is the parameter estimate vector, P ∈ R(m+1)×(m+1) is

the covariance matrix, P (0) = P0, and ψ is the normalizing signal. We apply covariance

resetting [82] in the algorithm such that for all time t after tr, the time instant where

λmin(P ) < µI, µ > 0, we settle the covariance matrix at P (tr+) = µI, which guarantees

P (t) ≥ µI for all t. Proj{.} stands for the parameter projection operator, which is defined

for a vector v ∈ <m+1, a convex function g : <m → <, and the sets S0, δ(S) as follows:

Proj
{
β̂j, v

}
=


v, if β̂j ∈ S0

or β̂j ∈ δ(S) and v∇g ≤ 0

vpr, β̂j ∈ δ(S) and v∇g ≥ 0

(4.10)

where S0 =
{
β̂j | g(β̂j) < 0

}
and δ(S) =

{
β̂j | g(β̂j) = 0

}
denote the interior and the

boundary of S which is defined by the following:

S = S1 ∩ S2,

S1 =
{
β̂j | sgn(βj,j)β̂j,j ≥Mj,1

}
,

S2 =
{
β̂j | −Mj,2 ≤ β̂j,k ≤Mj,2

}
,
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with Mj,1 Mj,2 obeying the relation in Assumption 4.2.1-(ii). Here, g is a convex function

formed by the parameter constraints such that g(β̂j) ≤ 0. vpr is the modified vector

obtained from the original vector v with the following rule: If β̂j,k(t) is not in S2, then the

(k + 1)st entry of v is made zero, and if β̂j,j(t) is not in S1, then the (j + 1)st entry of v is

made zero. The estimation model is then given by

ẑj(t) = θ̂j(t)
Tφ(t). (4.11)

Remark 4.3.1. The estimation algorithm (4.8)-(4.11) with the parameter projection rule

guarantees that the estimated parameters are always inside the given bounds. Since the

projection rule is constituted by the convex function g(β̂j), the estimation algorithm with

projection preserves all its convergence properties of the pure least-squares algorithm, [82].

We denote the parameter estimation error vector as θ̃j = θ̂j − θ∗j , noting that θ̃>j φ =

−εjψ2. The following lemma is a direct consequence of the estimation algorithm defined

by (4.8)-(4.11).

Lemma 4.3.1. [82] Consider Problem 1. The estimation algorithm (4.8)-(4.11) applied

to the plant model (4.2) has the following properties:

i. εj, εjψ,
˙̂
θj ∈ L2 ∩ L∞ and θ̂j, P ∈ L2.

ii. |β̂ii| ≥Mi,1 for all i and |β̂ij| ≤Mi,2 for all i, j, i 6= j.

iii. The vector of the estimated parameters θ̂j converges to a constant vector.

iv. If φ/ψ is persistently exciting (PE), i.e., for every T , there exist positive constants

c3, c4 such that

c3I ≤
t+T∫
t

φ(t)φ>(t)

ψ2(t)
≤ c4I,

then θ̂j → θ∗j as time goes to infinity.

Lemma 4.3.1 states boundedness of the parameter estimates and other internal signals

within the parameter estimation loop (4.8)-(4.11). Convergence to actual parameters re-

quires the PE condition in Part (iv), but such convergence is not necessary for asymptotic

tracking, as will be established in Section 4.3.3.
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Remark 4.3.2. Parameter projection applied inside the estimation algorithm guarantees

nonsingularity of the estimated matrix β̂(t) for all time. This further guarantees the bound-

edness of the control rule (4.6). Although assuming upper and lower bounds on the entries

of an unknown matrix brings restriction on the variety of system dynamics to which the

approach can be applied, projecting parameters in the LS algorithm is an explicit approach

where each entry of the matrix is updated based on the a priori information.

Remark 4.3.3. Number of the gains P (t) to be calculated increases “linearly” with the

number of the estimated parameters.

4.3.2 Tracking Error Dynamics and Observer Design

Substituting (4.6) in (4.2) we obtain

ẋk,j = xk+1,j, k = 1, . . . , r − 1, r ≥ 2, (4.12)

ẋr,j = αj + β>j β̂
−1(−α̂ + ν),

yj = x1,j = pj,

remarking the notation α = [α1, . . . , αm]>, β = [β1, . . . , βm]>. Hence,

ẋr,j = αj + (βj − β̂j + β̂j)
>β̂−1(−α̂ + ν) (4.13)

= νj + (αj − α̂j)− β̃>j β̂−1(−α̂ + ν)

= νj − θ̃>j φ̄,

where φ̄ = [1, u>]> ∈ <m+1 corresponds to the unfiltered version of the regressor signal φ.

From (4.3) and (4.13), we have

e
(r)
j = p

(r)
j − p

∗(r)
j (4.14)

= νj − θ̃>j φ̄− p
∗(r)
j .

Next, we design a Luenberger observer based state-feedback controller to generate an

asymptotically stabilizing control signal νj:

νj = p
∗(r)
j − c>Êj, (4.15)
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where Êj is the estimate of the state vector

Ej = [ej, ėj, . . . , e
r−1
j ]>, (4.16)

and c = [c0, c1, . . . , cr−1]> is chosen such that ∆(s) = s(r) + cr−1s
(r−1) + . . . + c1s + c0 is

Hurwitz. The error dynamics based on (4.14), (4.15), and (4.16) can be summarized as

Ėj = AcEj + b
(
νj − θ̃>j φ̄− p

∗(r)
j

)
(4.17)

= AcEj − bc>Êj − bθ̃>j φ̄,

Ac =

[
0r−1×r−1 Ir−1

01,r−1 0

]
∈ <r×r, b =


0
...

0

1

 ∈ <r.

Defining the state estimation error Ẽj = Êj − Ej, (4.17) can be rewritten as

Ėj = AEj − bc>Ẽj − bθ̃>j φ̄, (4.18)

where A = Ac − bc>. The Luenberger observer design will aim to drive Ẽj and Ej to

zero asymptotically. Similar to c, define h = [hr−1, . . . , h1, h0]> such that ∆h(s) = s(r) +

hr−1s
(r−1) + . . .+h1s+h0 is Hurwitz, with faster poles than ∆(s). Define cc = [1, 0, . . . , 0]>

and Ao = Ac − hc>c . Then, defining the observer law

˙̂
Ej = AoÊj + hej + b

(
νj − p∗(r)j

)
, (4.19)

we obtain the following state estimation error dynamics by subtracting (4.17) from (4.19):

˙̃Ej = AoẼj + bθ̃>j φ̄. (4.20)

(4.18) and (4.20) can be combined in a single equation as follows:[
Ėj
˙̃Ej

]
= AT

[
Ej

Ẽj

]
+

[
−b
b

]
θ̃>j φ̄, (4.21)

AT =

[
A −bc>

0 Ao

]
.
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4.3.3 Stability and Convergence

In this section, we discuss the stability and convergence properties of the adaptive tracking

control design of Section 4.3.1 and 4.3.2.

Theorem 4.3.1. Consider Problem 4.2.1. The adaptive control scheme (4.6) with (4.8)-

(4.11), (4.15), and (4.19) steers the output vector p to p∗ asymptotically.

Proof. The main objective, deriving the output vector and its derivatives up to the order

r to their desired values asymptotically, is integrated into the equation (4.21). Note that

(4.21) is a linear time-invariant system driven by the parameter estimation error term θ̃>j φ.

From Lemma 4.3.1, we have that with the LS estimation algorithm (4.8)-(4.11), the term

θ̃>j φ = εjψ
2 converges to zero asymptotically for all j ∈ [1, · · · ,m]. Since AT is block

diagonal and since A, Ao are Hurwitz by definition, we have that Ej, Ẽj → 0 for all

j ∈ [1, · · · ,m] as t→∞. Thus, p(t)→ p∗(t) as t→∞.

Remark 4.3.4. For the convergence of the output vector y to its desired value, it is suf-

ficient to employ an estimation algorithm which leads to boundedness of signals in the

closed-loop system and convergence of the signal θ̃>φ to zero. Gradient and least-squares

estimation algorithms satisfy this requirement. Observe that convergence of the estimated

parameter θ̂ to its actual value θ∗ is not a condition for the tracking objective.

4.4 Adaptive Formation Control

In this section, we study formation control of swarms of agents of type considered in

Section 4.2 and 4.3. Since we employ indirect adaptive control approach, each agent

overcomes the parametric uncertainty independently. This choice brings some advantages

when we consider the formation control of these agents, specifically it makes the design of

decentralized formation control schemes for the formation possible.

We consider a swarm S of N holonomic agents. For convenience, we denote the ith

agent and its state by Ai and xi (i = 1, . . . , N), respectively. The system dynamics is given
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by (4.1), (4.2), with proper re-indexing of (4.2) for each Ai as follows:

ẋi,k = xi,k+1, k = 1, . . . , r − 1; r ≥ 2 (4.22)

ẋi,r = αi(t) + βiui

yi = xi,1 = pi,

where xi,k, ui, pi, αi ∈ <m, and βi ∈ <m×m. We assume that every agent Ai knows the

vectors xi,1 and xi,2, which, for the r = 2 case, corresponds to that every agent knows

its own position and velocity vectors. The main objective of the swarm is to move as a

cohesive whole from a start point to a final point. We propose two different formation

control schemes. In the first approach, we apply the control law derived in Section 4.3 to

steer each agent to a reference trajectory generated to satisfy the formation requirements

for cohesive whole motion of the agents in n-dimensional space. The second approach

employs the combined shape control and flocking algorithm of [3] for systems with relative

degree two and in two dimensional Euclidean space.

4.4.1 Adaptive Virtual Leader Based Formation Control

In Section 3.3.1, we summarized the virtual-leader based formation control of S. We now

integrate it with the adaptive tracking control law of a single vehicle. For agent Ai, we

propose the control rule (4.6) together with (4.8)-(4.11), (4.15), and (4.19). The term p
∗(r)
j

in (4.15) is replaced by p
∗(r)
i,j , the jth entry of the reference trajectory p∗i in (3.2). We reach

the following corollary for this setting.

Corollary 4.4.1. For every agent dynamics we have the convergence result of Theo-

rem 4.3.1, that is, every agent Ai tracks its desired trajectory p∗i despite the uncertainties.

Hence, the cohesive whole motion of the formation is achieved in the asymptotic sense with

the virtual leader-based formation scheme.

Simulation results for this setting are given in Section 4.5. We emphasize that adaptive

virtual leader based formation control of a multi-agent system is a straightforward extension

of the trajectory tracking control law of single vehicle with parametric uncertainty and it

is intended to be a base for further formation control algorithm studies. It can be further

integrated with other formation control algorithms such as gradient based and sliding-

mode based ones to accomplish other formation control objectives such as collision/obstacle
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avoidance, formation expansion/contraction, rotation, and formation reconfiguration under

parametric uncertainty in vehicle dynamics.

4.4.2 Adaptive CFSFC

We now relate the adaptive control algorithm of Section 4.3 to the CFSFC law (3.4) which

is described in Section 3.3.2. Let A1 be the flocking leader with the double integrator

dynamics (2.2) setting u1 = 0 and v1(0) = vc where vc is a constant vector. Each follower

agent Ai, i = (2, . . . , N) is assumed to have the special case of the dynamic model (4.22)

where r = 2. Observe that (4.22) with r = 2 and xi,2 = vi is equivalent to the double

integrator agent model (2.2) where the acceleration input is not free, but a function of

unknown parameters.

Further, we choose the flocking graph Gf and the formation shape graph Gsh as described

in Section 3.3.2. Let νi be the linear control term of agent Ai, i = (2, . . . , N). For agent

Ai, i = (2, . . . , N), we propose the control rule (4.6) together with (4.8)-(4.11), and the

linear control term νi generated as follows:

ν̄(t) = [ν2(t), · · · , νN(t)] (4.23)

= −
(
L̄⊗ I2

)
vr(t)−∇V (pr(t)),

where pr, vr are defined in (3.3). Convergence properties of the algorithm is summarized

in the following proposition.

Proposition 4.4.1. Consider the adaptive CFSFC system of N > 2 agents with the flock-

ing and formation shape graphs as described in Section 3.3.2. Let the agent A1 be the leader

with the velocity vector vc. Then, the velocities of agents Ai, i = {2, · · · , N}, asymptoti-

cally converge to vc, and the desired formation shape is converged asymptotically.

Proof. For the special case r = 2 assumed in this section, the dynamics of agent Ai
controlled by (4.6) is

ṗi,j = vi,j,

v̇i,j = νi,j − θ̃>i,jφ̄i.

From Lemma 4.3.1, we have that θ̃>i,jφ̄i converges to zero asymptotically for all i, j. Com-

bining this fact with the perfect convergence property of the linear control term (4.23), we

conclude the result.
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In Section 4.5, we simulate the behavior of a three-agent system driven by the afore-

mentioned decentralized control law applied at each agent.

4.5 Simulations and Results

In this section, we give the simulation results of the adaptive formation control schemes

designed in Section 4.4.

Virtual Leader-based Control Scheme:

Consider a three-agent formation system with the agent dynamics (4.22) with r = 2 and

m = 3. Assume pi, vi ∈ R3. The values of the unknown functions αi and βi are chosen as

follows:

αi(t) =


0.1 cos(0.1t)

0.2 cos(0.05t)

0.2 cos(0.05t)

 , βi =


0.8 0.1 0.3

0.03 2 0.5

0.08 0.2 1

 ,
for all i = {1, 2, 3}. The time variations in the entries of αi are very small, obeying Assump-

tion 1-iv. It is worth to note that the entries of αi do not need to be periodic signals, they

can be any bounded signals such as piece-wise constants. We also emphasize that different

αi, βi can be selected for different vehicles. The initial positions for the agents are chosen

such that they constitute a triangular shape: p1(0) = [9, 5, 0]>, p2(0) = [1, 5, 0]>, p3(0) =

[3, 8, 0]>. This initial formation configuration is also the desired configuration of the three

agent system. Since the main aim of the adaptive virtual leader-based formation control

scheme is formation maintaining and cohesive whole motion, it is suitable to initiate the

formation with the desired configuration. The reference path for the virtual leader is given

as follows:

p∗v(t) =


5.05 + 0.3t− 0.05 cos(2t)

8.8− 3.8 cos(0.5t)

1− cos(0.5t)

 .
Parameter values for the linear control law (4.15) are chosen as c1 = 15, c0 = 25
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resulting in the following control vector for each agent Ai:

νi(t) =


0.2 cos(2t) + c1

˙̂ei,1 + c0ei,1

0.95 cos(0.5t) + c1
˙̂ei,2 + c0ei,2

0.25 cos(0.5t) + c1
˙̂ei,3 + c0ei,3

 ,
where ˙̂ei,j are generated with the Luenberger observer as explained in Section 4.3.2. Initial

values of the estimated parameters are chosen as

α̂i(0) =


0.09

0.18

0.17

 , β̂i(0) =


0.9 0.15 0.25

0.02 2.2 0.5

0.1 0.17 1.1

 ,
for i = 1, 2, 3. In Fig. 4.2, 4.3, and 4.4, the simulation results are illustrated. Although

the formation is dispersed at the first few seconds because of the uncertainties in agent

dynamics, the agents form the formation in finite time again and track their trajectories

perfectly.

Adaptive CFSFC:

In this part, we simulate the adaptive formation control scheme proposed in Section 4.4.2

for a three-agent formation system. The agent A1 is selected as the flocking leader with

the double integrator dynamics (2.2) and the dynamics of the follower agents A2 and A3

are given by (4.22) with r = m = 2. Assume pi, vi ∈ R3. The values of the unknown

functions αi and βi are chosen as

αi(t) =

[
0.1 cos(0.05t)

0.2 cos(0.01t)

]
, βi =

[
0.8 0.5

0.5 1.5

]
for i = {2, 3}. Notably, time variations in the entries of αi are very small, obeying As-

sumption 1-iv. The initial positions for the agents are chosen as p1(0) = [1, 0]>, p2(0) =

[4, 0]>, p3(0) = [5
2
, 3
√

3
2

]>. Desired configuration of the formation is a triangular shape with

edge length 3, i.e., d∗12 = d∗23 = d∗13 = 3. Since the main aim of the adaptive CFSFC is

formation maintaining and cohesive whole motion, it is suitable to initiate the formation

with the desired configuration. Initial values of the estimated parameters are chosen as

α̂i(0) =

[
0.15

0.27

]
, β̂i(0) =

[
0.75 0.45

0.02 1.2

]
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Figure 4.2: Adaptive virtual leader based controller: Movement of the three-agent system.

for i = {2, 3}. The velocity of A1 is given as vc = [3, 3]>. In Fig. 4.5, 4.6, and 4.7, the

simulation results are illustrated. It is clearly observed from the simulation results that

the velocities of the followers A2, A3 converge to that of the leader, and at the same time

they form the desired equilateral triangular formation shape in a small amount of time.

The agents achieve these tasks despite the uncertainties in the agent dynamics.

4.6 Summary

In this chapter, we have studied adaptive formation control algorithms utilizing the fea-

tures of the certainty equivalence principle. First, we have developed an indirect adaptive

control framework for vehicles with high-order dynamics and parametric uncertainty to

achieve reference signal tracking. Least-squares algorithm is used to estimate the uncer-

tain parameters. Then, output feedback linearization based control law is applied in an

indirect adaptive control scheme using the certainty equivalence principle. Derivative(s) of
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Figure 4.3: Adaptive virtual leader based controller: Output errors (e1, e2 and e3).

the position errors have been obtained by Luenberger observer. Later, we have analyzed

the adaptive formation control of these vehicles. As a straightforward extension of the

single vehicle control case, we have considered the adaptive virtual-leader based formation

control. As a more specific and realistic case, we have proposed the adaptive CFSCF con-

trol law for vehicles with second order uncertain dynamics. The indirect adaptive control

method, that is, separation of the estimation and motion control parts, brings advantages

in applications on different vehicle models. The adaptive control scheme covered in this

chapter can further be applied to other formation control approaches such as sliding-mode

and hierarchical cohesive motion control structures described in Chapter 3.
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Chapter 5

Formation Acquisition and Adaptive

Station Keeping

5.1 Introduction

In Chapter 3 and Chapter 4, we consider the formation control of multi-vehicle systems.

In connection with those chapters, here we study the problem of adding a mobile vehicle to

a network of multi-vehicle system. We are interested in acquiring a new network of mobile

vehicles by the addition of the mobile vehicle to the existing vehicles. Specifically, we con-

sider the following scenario: Given an autonomous multi-vehicle system S = {A1, · · · , AN}
with vehicle positions pi, the goal is to steer and add the mobile vehicle A to S in a way

that A has distance d∗i to each vehicle Ai. In this regard, we consider the following problem

given in abstract terms.

Problem 5.1.1. Consider a mobile sensory vehicle A with position pA ∈ <n, n ∈ {2, 3},
which is required to join a rigid formation of N vehicles S , {A1, · · · , AN}, N > n, with

unknown position pi ∈ <n for each Ai, and an unknown target position p∗A ∈ <n for A

within the formation. Assume that Ai are not collinear for n = 2 and not coplanar for

n = 3. Assume also that the desired inter-vehicle distances d∗i , ‖p∗A − pi‖, the actual

inter-vehicle distances di(t) , ‖pA(t) − pi‖, and self-position pA are available to A. The

task is to define a control law to generate ṗA(t) such that for any given initial position

pA(0) = pA,0, pA(t) converges to p∗A asymptotically.
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Remark 5.1.1. There may also be the cases where the agents in S are persistently drifting

in a rigid formation without violating distance constraints. As a result, the target point p∗A
may be persistently drifting and represented as a function of time, e.g., p∗A(t); however, we

do not study that case in this chapter.

It is worth to emphasize the second interpretation of Problem 5.1.1 in real-life appli-

cations as follows: There are N sensor stations with unknown positions pi and a target

signal source with unknown position p∗A. A mobile sensory vehicle is desired to be steered

to the target signal source autonomously, using the station-target distance measurements

d∗i , and the station-vehicle distance measurements di(t).

Problem 5.1.1 is a special case of target capture (or docking) problem where a mobile ve-

hicle is required to reach a specified target location autonomously using its sensing and/or

communication capabilities such as continuous range measurements or bearing measure-

ments or both, [18–20, 41]. Since the target location to be reached is not directly known

in problems like Problem 5.1.1, one needs to follow an adaptive control approach. In [18]

and [20], an adaptive switching control approach is applied to solve the second interpre-

tation of Problem 5.1.1 for N = 3 and n = 2, without assuming the knowledge of the

vehicle’s own position y. It is assumed in these works that the mobile vehicle is modeled

by single integrator kinematics and there exist small errors on the parameters d∗i and the

measurements di(t). An analogue to this problem is considered in the localization literature

where the objective is to estimate the unknown location of a signal source using distance

measurements between the source and a set of sensors with known positions. [40] and [43]

examine the geometric location set for the target that would guarantee certain gradient

based localization algorithms to converge for given sensor station settings. The geometric

sets are established to be nontrivial ellipsoidal and polytopic regions surrounding the sen-

sor stations. In these papers, the performance of the gradient algorithms, which are based

on a non-convex cost function, under noisy measurement cases is presented as well.

Circumnavigation, i.e., reaching a neighborhood of a target location and navigating

around the target with a certain radius, is another research problem that is by nature closely

related to target reaching and station keeping. [116] integrates the concepts of localization

and motion control, as done in this chapter, to achieve a circumnavigation objective around

a stationary target. A persistently drifting target situation is also considered in [116] with

well-established convergence analysis, and this extension exhibits, in a sense, the robustness

of the algorithm derived. [26] proposes an algorithm that steers a non-holonomic vehicle,
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by controlling only its angular velocity, to a source to which the vehicle cannot measure

its distance, but receives a signal from the source in the form of an unknown function

of the distance. Employing extremum seeking and the techniques of averaging theory,

circumnavigation around the target is achieved in that work.

In this chapter, we study Problem 5.1.1 assuming that the dynamics of the mobile au-

tonomous vehicle is modeled by a single integrator kinematics. We partition the problem

into two sub-problems; (i) localization of the stationary vehicles using range-only measure-

ments, and (ii) motion control of the mobile vehicle. In the localization and the motion

control parts, we employ least-squares (LS) based parameter estimation and a gradient

control law, respectively. Using the certainty-equivalence approach, we then combine the

two algorithms and synthesize an indirect adaptive control algorithm to achieve the objec-

tive. Our approach differs from [20] in that we assume N stationary vehicles with unknown

positions and the position information of the vehicle with respect to some reference frame,

while [20] solves the second interpretation of Problem 5.1.1 for the three sensor case without

the assumption that the position of the mobile vehicle is known to it. As an advantage of

the current work over [20], we may show the modularity property following from the nature

of the indirect adaptive algorithm. To put it differently, any localization algorithm that

achieves asymptotic convergence of the stationary vehicles position estimates to the correct

values can be employed in place of the LS parameter estimation algorithm, while one may

consider the replacement of the gradient-based motion control law by another controller

which uniquely defines the target point based on the stationary vehicles locations.

The remainder of the chapter is organized as follows. In Section 5.2, a gradient-based

control law which minimizes a convex cost function is synthesized for the fictitious case as

if the locations of the stationary vehicles are known. Then, in Section 5.3, the localization

algorithm used to localize the N stationary vehicles positions is presented. In Section 5.4,

the localization algorithm and the motion control law are combined to derive the indirect

adaptive control approach to solve Problem 5.1.1. Formal stability and convergence anal-

ysis take place in that section as well. Section 5.5 demonstrates the performance of the

proposed controller via simulations, and finally, Section 5.6 offers conclusions.
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5.2 Control Law Design: Known Station Positions

Case

5.2.1 Problem Definition

Having the control and parameter identification parts of our design as specified in Section

5.1, we use a certainty equivalence approach to solve Problem 5.1.1. Accordingly, for control

law construction, we first consider the fictitious case where the locations p1, · · · , pN ∈ <n
are perfectly known by the vehicle A. Following is the corresponding control problem

statement for this fictitious case, which differs from Problem 5.1.1 only in the assumption

on the vehicle’s knowledge of stationary vehicle positions:

Problem 5.2.1. Consider a mobile sensory vehicle A with position pA ∈ <n, n ∈ {2, 3},
which is required to join a rigid formation of N stationary vehicles S , {A1, · · · , AN}, N >

n, with “known” position pi ∈ <n for each Ai, and an unknown target position p∗A ∈ <n
for A within the formation. Assume that Ai are not collinear for n = 2 and not coplanar

for n = 3. Assume also that the desired inter-vehicle distances d∗i , ‖p∗A − pi‖, the actual

inter-vehicle distances di(t) , ‖pA(t) − pi‖, and self-position pA are available to A. The

task is to define a control law to generate ṗA(t) such that for any given initial position

pA(0) = pA,0, pA(t) converges to p∗A asymptotically.

In Fig. 5.1, the scenario described in Problem 5.2.1 is depicted for the four stationary

vehicles case. Two problems that are mathematically equivalent to the discrete-time version

of Problem 5.2.1 have been defined (within localization context instead of motion control)

and solved in [40,43]. In these works, the non-convex weighted cost function

J(pA) =
1

4

N∑
i=1

λJi
(
d2
i − d∗2i

)2
, (5.1)

is used together with the gradient descent law to determine the ellipsoidal regions where

practical localization of the signal source is achieved globally using only target-sensor dis-

tance measurements (the second interpretation of Problem 5.1 is solved in those works

indeed, assuming the target and the stationary vehicles as the signal source and sen-

sor stations, respectively). In (5.1), λJi > 0 are certain design weights and each term

λJi (d
2
i − d∗2i )

2
penalizes the difference between di and d∗i . The weights λJi can be chosen
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Figure 5.1: Depiction of the scenario in Problem 5.2.1 for a four-vehicle case.

based on the any additional a priori information that maybe available. For example, if it

is known that certain d∗i information is more reliable than others, then the corresponding

λJi can be chosen larger.

Here we use an approach similar to [40, 43], using an alternative convex cost function

in place of (5.1) and applying the derivations in continuous time instead of discrete time,

noting that one could also apply different techniques of extremum seeking literature. It is

established in [46] that the cost function

J(pA) =
1

2

N−1∑
i=1

[
(pA − ξi)>ei

]2
, (5.2)

where

ei , pi − pN , (5.3)

ξi , pN + aiei,

ai ,
‖ei‖2 + d∗2N − d∗2i

2‖ei‖2
.

is convex, and hence has a unique minimum, making it useful in many gradient search

applications. The idea is based on defining the unique target point p∗A as the intersection
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of certain lines instead of intersection of circles with origins at stationary vehicle positions,

for the sake of convexity.

Consider the stationary vehicle localization setting in Fig. 5.2. Specifically, in the

formulation (5.3), we choose pN as the reference point and denote the vector traversed from

the pN to the pi by ei. We note that selection of pN among N vehicles is done randomly

and the selection does not have any effect on the algorithm. Let liN denote the line passing

through the two intersection points of the two non-concentric circles C(pi, d∗i ) and C(pN , d∗N),

viz., the circle with center pi and radius d∗i and the circle with center pN and radius d∗N ,

respectively. This line is called the radical axis of the circle pair C(pi, d∗i ), C(pN , d∗N) [87],

and has the property that any point x on liN has equal powers with respect to the circles

C(pi, d∗i ), C(pN , d∗N), i.e.,

‖x− pi‖2 − d∗2i = ‖x− pN‖2 − d∗2N . (5.4)
 

 

   

 
 
 

 

     

 

   

   
  
  

  
  

    

Figure 5.2: Illustration of the formulation (5.3) [46].

The intersection of the N − 1 radical axes l1N , · · · , lN−1,N is y∗, which is the unique

point satisfying

(pA − ξi)> ei = 0, ∀i = {1, · · · , N − 1}. (5.5)

Hence, we have the following lemma.
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Lemma 5.2.1. For the setting of Problem 5.2.1, p∗A is the unique, global minimum of the

cost function (5.2).

Proof. This result for the 2D case is already established in [46]. The 3D extension is

straightforward observing that the cost function (5.2) with the vectors ei, ξi of (5.3) is

the same as in 2D and it carries the same properties as in the 2D case. Nevertheless, it is

worth noting that in the 3D case, the radical axes are replaced by radical planes and the

cost function (5.2) is minimized at the intersection of the N − 1 radical planes.

Remark 5.2.1. [46] uses an alternative convention for pairing the stationary vehicles,

where radical axes for circle pairs C(pi, d∗i ), C(pi+1, d
∗
i+1) are used to uniquely determine

the target location. This selection leads to ei = pi+1 − pi and ξi = pi + aiei, where

ai =
‖ei‖2 + d∗2i − d∗2i+1

2‖ei‖2
, as an alternative to (5.3). We emphasize that further alternative

formulations exist. Leaving the optimal selection for the graph structures of the stationary

vehicle set as a future work, we use the formulation (5.3) in this chapter.

Observe that with the cost function (5.2), the gradient based control rule for vehicle

velocity to reach y∗ is given by

ṗA = −∂J(pA)

∂pA
= −

N−1∑
i=1

[
(pA − ξi)>ei

]
ei (5.6)

= −ApA + b,

where

A ,
N−1∑
i=1

eie
>
i = EE>, b ,

N−1∑
i=1

eie
>
i ξi = EZ, (5.7)

E , [e1, . . . , eN−1] , Z ,
[
e>1 ξ1, . . . , e

>
N−1ξN−1

]>
.

Note that the control law (5.6) requires only the knowledge of the stationary vehicle posi-

tions pi and the desired distances d∗i , i = 1, · · · , N .

Proposition 5.2.1. The control law (5.6) with the parameters being defined in (5.3) solves

Problem 5.2.1.
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Proof. Since the cost function (5.2) is convex, the only minimum of J is global. Hence,

the vector pA converges to the global minimum in the limit with the gradient rule (5.6)

regardless of the initial condition.

Corollary 5.2.1. The unique minimum of the quadratic cost function (5.2) is given by

p∗A = A−1b. (5.8)

In (5.8), since we assume noncollinear and noncoplanar stationary vehicle positions, it

follows from the geometry of the stationary vehicles that the matrix A is invertible.

5.2.2 Comparison with Other Cost Functions

The cost function (5.1) can be considered as an alternative to (5.2) and the corresponding

gradient vehicle velocity control rule for employing (5.1) is found as

ṗA = −∂J(pA)

∂pA
=

N∑
i=1

λJi
(
d∗2i − ‖pA − pi‖

2) (pA − pi). (5.9)

It is established in [40,43] that (5.9) leads to global convergence of pA to p∗A, provided

that p∗A is within a certain ellipsoidal region defined by p1, · · · , pN . However, when p∗A is

outside of this region, (5.1) has multiple stable local minima; and depending on the value

of pA(0), pA may converge to one of the false stable minimizers instead of p∗A [40, 43, 109].

Hence, the control law (5.9) does not provide a global solution to Problem 5.2.1 for certain

p∗A settings.

5.3 Adaptive Signal Source Localization

If the mobile vehicle A knows the stationary vehicle positions pi, it will converge to the

target point described by the unique minimum of the function (5.2) with the gradient

control law (5.6). However, in the setting of Problem 5.1.1, the stationary vehicle positions

pi are unknown. The vehicle A can only measure the distances di to the stationary vehicles.

Accordingly, we propose use of a scheme that first estimates the (relative) stationary vehicle

positions and then uses the produced estimates in place of the actual positions p1, · · · , pN ,

80



applying the certainty equivalence principle [82]. We revisit the adaptive source localization

algorithms covered in [28] and [40] to comply with this objective. A formal definition of

the localization task is described in the following.

Problem 5.3.1. Consider a set of vehicles S = {A1, · · · , AN} with unknown positions

p1, · · · , pN ∈ <n, where n ∈ {2, 3} and N > n, and a mobile sensory vehicle A with known

position pA ∈ <n. Generate the vehicle position estimates p̂1, · · · , p̂N using the vehicle’s

own position pA, and the inter-vehicle distance measurements di(t) = ‖pA(t) − pi‖, i =

1, · · · , N .

Problem 5.3.1 has been addressed and solved with adaptive estimation methods based

on gradient and LS approaches in [28, 39, 41]. In [28], the problem (for a single stationary

vehicle Ai) is solved for mobile sensory vehicle A with single-integrator kinematics, using

a gradient-based localization algorithm. In [28], both stationary and slowly drifting S

cases are studied. In [41], the vehicle not only localizes S, but also moves to reach S. We

generate the station position estimates p̂1, · · · , p̂N , employing N identical estimators using

the localization algorithm of [39,41], where estimator i is fed by di for i = 1, . . . , N .

5.3.1 The Localization Algorithm

We first revisit the LS based localization algorithm proposed in [39] in parallel to the

gradient algorithm of [41] for estimating position pi of each Si in Problem 5.3.1. We first

assume that pi is constant. The linear parametric model developed in [39, 41] is based on

the identity

1

2

d

dt

(
‖pA(t)‖2 − d2

i

)
= p>i ṗA(t). (5.10)

The implementation of a localization algorithm based on (5.10) would require generating

the derivative of di(t), however, this would bring some numerical problems especially when

the noise level in measurements is high. Instead, we use the following filtered version of

(5.10) as a parametric model:

zi(·) ≡ p>i φ(·), (5.11)

zi(t) , ζ̇i(t) = −αζi(t) +
1

2

(
p>A(t)pA(t)− d2

i (t)
)
, (5.12)

φ(t) , ϕ̇(t) = −αϕ(t) + pA(t), (5.13)
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where the notation f1(·) ≡ f2(·) for two functions f1, f2 indicates that there exist M1, M2 >

0 such that for all t ≥ 0, ‖f1(t)− f2(t)‖ ≤ M1e
−M2t; α > 0, ζi(0) ∈ <, and ϕ(0) ∈ <n are

arbitrary design parameters.

We propose use of the following modified form of the localization algorithm proposed

and analyzed in [39], for Problem 5.3.1 (and for Problem 5.1.1), considering parametrization

(5.11):

˙̂pi(t) = ProjR,p̂i(t) (P (t) (zi(t)− ẑi(t))φ(t)) , (5.14)

Ṗ (t) =

{
βP (t)− P (t)φ(t)φ(t)>P (t), λmax(P (t)) < ρmax

0, otherwise,
(5.15)

P (t+r ) = P0 = ρ0I,

ẑi(t) = p̂>i (t)φ(t), (5.16)

with arbitrary initial estimate p̂i(0) satisfying ‖p̂i(0)‖ ≤ R for a pre-set upper-bound R,

where β > 0 is the constant forgetting factor, P is the adaptive gain matrix with the initial

condition P (0) = P0 = ρ0I, and t+r is the resetting time instant defined by the condition

λmin(P (tr)) = ρmin for some design coefficients ρ0 > ρmin > 0. The modified LS gain update

rule (5.15) with resetting guarantees that ρminI ≤ P (t) ≤ ρmaxI for all t ≥ 0 [82]. In (5.14),

ProjR,p̂i(·) stands for a parameter projection operator [82] used to satisfy ‖p̂i(t)‖ ≤ R for

all t, and is defined for a given estimate vector θ, raw adaptive law input v (having the

same dimension as θ), and scalar threshold Mθ > 0 by

ProjMθ,θ
(v) =


v

if ‖θ‖ < Mθ,

or if ‖θ‖ = Mθ and v>θ ≤ 0,

v − θθ>

M2
θ

v otherwise.

Above and in the sequel, where we propose an alternative parametric model/estimation

setting to reduce computational cost, we make the following assumption:

Assumption 5.3.1. The target position p∗A, the global station positions pi, and the relative

positions ei = pi − pN satisfy ‖p∗A‖ ≤ R, ‖pi‖ ≤ R and ‖ei‖ ≤ R for some known R > 0.

Depending on the accuracy of the a priori information, R in Assumption 5.3.1 can be

selected arbitrarily large.
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5.3.2 Direct Estimation of ei

The localization algorithm (5.14) generates the estimates of the N stationary vehicle posi-

tions. In this subsection, in order to reduce computational cost, we introduce an alterna-

tive parametric model to generate the estimates of the relative positions ei = pi − pN , i ∈
{1, . . . , N − 1}. Evaluating (5.10) for i = N , one has

1

2

d

dt

(
‖pA(t)‖2 − (dN(t))2

)
= p>N ṗA. (5.17)

For i ∈ {1, . . . , N − 1}, subtracting (5.17) from (5.10) gives

1

2

d

dt

(
(dN(t))2 − (di(t))

2
)

= e>i ṗA. (5.18)

Analogously to Section 5.3.1, we use the following filtered version of (5.18) as the

parametric model:

ziN(·) ≡ e>i φ(·), (5.19)

ziN(t) , ζ̇iN(t) = −αζiN(t) +
1

2

(
(dN(t))2 − (di(t))

2
)
, (5.20)

where φ is defined in (5.13).

Based on Assumption 5.3.1, we propose use of the following localization algorithm for

estimation of ei based on the parametric model (5.19):

˙̂ei(t) = ProjR,êi(t) (P (t) (ziN(t)− ẑiN(t))φ(t)) , (5.21)

ẑiN(t) = ê>i (t)φ(t),

with arbitrary initial estimate êi(0) satisfying ‖êi(0)‖ ≤ R, where P is the adaptive gain

matrix driven by (5.15) and ProjR,êi(·) is as in (5.17). The estimate p̂N is generated using

the parametric model (5.11),(5.12) and applying (5.14) for i = N directly, i.e.,

zN(·) ≡ p>Nφ(·), (5.22)

zN(t) , ζ̇N(t) = −αζN(t) +
1

2

(
p>A(t)pA(t)− d2

N(t)
)
, (5.23)

˙̂pN(t) = ProjR,p̂N (t)

(
P (t)

(
zN(t)− p̂>N(t)φ(t)

)
φ(t)

)
. (5.24)
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Based on the estimates êi and p̂N generated by (5.21), (5.24), we set the estimates Â, b̂

of A, b in (5.8) as follows:

Â =

{
ÊÊ>, if λmin(ÊÊ>) > εA

ÊÊ> + (εA − λmin(ÊÊ>))I, otherwise
(5.25)

b̂ = ÊẐ (5.26)

Ê = [ê1, . . . , êN−1] , Ẑ =
[
ê>1 ξ̂1, . . . , ê

>
N−1ξ̂N−1

]>
ξ̂i = p̂N + âiêi

âi =
‖êi‖2 + d∗2N − d∗2i

2‖êi‖2
.

where εA > 0 is a small design constant. Noting that ÊÊ> is positive semi-definite,

the switching law (5.25) guarantees that Â is a continuous function of time, and Â(t) is

positive definite with minimum eigenvalue λmin(Â(t)) ≥ εA for all t ≥ 0. The system

matrix estimates Â and b̂ in (5.26) will be used in Section 5.4.1 for dynamic reference

trajectory generation within the adaptive control scheme to be designed.

5.3.3 Stability and Convergence of the Localization Algorithm

In this subsection, we present the stability and convergence properties of the localization

algorithm of Section 5.3.2, which will later be used in determining the control laws and

design of the overall adaptive control scheme. We denote the filtering errors by

δi(t) , e>i φ(t)− zi(t), i ∈ {1, . . . , N − 1}, (5.27)

δN(t) , p>Nφ(t)− zN(t), (5.28)

and the estimation errors by

ẽi(t) , êi(t)− ei, i ∈ {1, . . . , N − 1}, (5.29)

p̃N(t) , p̂N(t)− pN . (5.30)

Convergence properties of the localization algorithm are stated in the following lemma.
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Lemma 5.3.1. Consider the localization algorithm (5.21), (5.24) with the parametric mod-

els (5.19), (5.22). Then the following properties hold:

i. δ̇i(t) = −αδi(t), and hence δi(t) exponentially converges to zero as t → ∞ for i =

1, . . . , N .

ii. ˙̃ei(t) = −P (t)φ(t)φ>(t)ẽi(t) − P (t)φ(t)δi(t) for i = 1, . . . , N − 1, and ˙̃pN(t) =

−P (t)φ(t)φ>(t)p̃N(t)− P (t)φ(t)δN(t).

iii. For all t ≥ 0, P (t) is symmetric positive definite and satisfies ρminI ≤ P (t) ≤ ρmaxI

where ρmin and ρmax are as in (5.14).

iv. The error signals ẽi, x̃N , and the estimates êi, p̂N , Â, b̂ are bounded.

v. The n× n matrix Â(t) (∀t ≥ 0) is symmetric positive definite.

vi. If the regressor signal φ is persistently exciting, i.e., if for every t ≥ 0 and for some

T0 > 0 there exist some constants α1, α2 such that

α1I ≤
∫ t+T0

t

φ(τ)φ(τ)>dτ ≤ α2I, (5.31)

then ẽi(t) (i = 1, . . . , N − 1) and p̃N(t), and hence Ã , Â−A and b̃ , b̂− b converge

to zero exponentially as t→∞.

Proof. In [39], (i),(ii), and (vi) are proven for the case of estimating the vector pi by

a single estimator. We invoke the result of [39] and state that those properties of the

localization algorithm also hold here for ei for all i ∈ {1, . . . , N − 1} and pN without loss

of generality, and noting that the introduced modifications do not affect these properties.

(iii) is a direct corollary of the initialization P0 = ρ0I, the symmetry preservation property

of the LS algorithm (5.14), and the bounding modification and covariance resetting used

in this algorithm. Parameter projection guarantees (iv). (v) follows by definition of Â in

(5.25).

Remark 5.3.1. By (5.13), the relation between the signals φ and ẏ is given by:

φ̇(t) = −αφ(t) + ṗA(t).
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Note that the persistence of excitation condition (5.31) on φ also requires the persistence of

excitation of ṗA. This can be interpreted as the signal ṗA should persistently span <n, n =

{2, 3}, and avoid linear trajectories in <2 and planar trajectories in <3. However, this is

contrary to the main goal which is reaching the target and stopping. We deal with this issue

in the next section.

5.4 Adaptive Motion Control for Unknown Station

Positions

In this section, we combine the motion control law of Section 5.2 and the parameter

estimation (or localization) algorithm of Section 5.3.2 to constitute the adaptive controller

as in Fig. 5.3 and propose a systematic solution for Problem 5.1.1.

Plant
Dynamics

Adaptive
Controller

Parameter
Estimation

Sensing

pA

Closed-loop
System

ṗAê i , p̂N

d 1
A ...d N

A

Figure 5.3: The indirect adaptive control scheme.

5.4.1 The Adaptive Control Scheme

Note that the control law (5.6) requires only the signals ei, i = 1, · · · , N − 1, and pN ,

and the distance measurements di, i = 1, · · · , N . We design our adaptive control scheme

based on this control law, Proposition 5.2.1, and certainty equivalence principle; replacing
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the signals e1, · · · , eN−1, pN by their estimates generated by the localization algorithm in

Section 5.3.2. We define a new (estimate) cost function, which can be defined in terms of

these estimates, as

Jest(pA) =
1

2

N−1∑
i=1

[
(pA − ξ̂i)>êi

]2

. (5.32)

Based on (5.32), we generate the following trajectory, starting at an arbitrary initial loca-

tion p̂A(0) = p̂pA,0:

˙̂pA(t) = −∂Jest(p̂A)

∂p̂A
= −Â(t)p̂A(t) + b̂(t), (5.33)

where Â and b̂ are defined in (5.25)-(5.26).

The aim in the remainder of the design will be forming a control law which will generate

ṗA such that (i) pA and ṗA are bounded; (ii) the persistence of excitation condition in

(5.31) is satisfied, and hence exponential convergence of Â and b̂ to A and b, respectively,

is guaranteed; and (iii) y asymptotically tracks p̂A. To meet all of these requirements, we

propose the following control law:

ṗA(t) = ˙̂pA(t)− κ(pA(t)− p̂A(t)) + f (‖D∗ −D(t)‖∞) σ̇a(t) (5.34)

σ̇a(t) = H(t)σa(t), (5.35)

where D∗ = [d∗1, · · · , d∗N ]> , D = [d1, · · · , dN ]>, κ > 0 is a design constant. The auxiliary

signal σa in the control law (5.34)-(5.35) is introduced for the purpose of the persistence of

excitation of ṗA(t), being motivated by the design procedure of [41] and [116], where the

function f and the matrix H are selected to satisfy the following assumptions.

Assumption 5.4.1. f : <+ → <+ is a strictly increasing, differentiable, bounded function

that satisfies f(0) = 0 and f(x) ≤ x, ∀x > 0.

Assumption 5.4.2. i. There exists a T > 0 such that for all t ≥ 0

H(t+ T ) = H(t). (5.36)

ii. H(t) is skew-symmetric for all t and differentiable everywhere.

iii. The derivative of σa in (5.35) is persistently exciting for any nonzero value of σa(0),

that is, there exist positive T1, αi such that for all t ≥ 0 there holds

α1‖σa(0)‖2I ≤
∫ t+T1

t

σ̇a(τ)σ̇a(τ)>dτ ≤ α2‖σa(0)‖2I.
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iv. For every θ ∈ <n, and every t ∈ [0,∞), there exists a time instant t1(t, θ) ∈ [t, t+T1]

such that θ>σ̇a(t1) = 0.

Some matrices H satisfying Assumption 5.4.2 are given in [41] and [116] for both 2D

and 3D cases. For instance, in 2D, the matrix H ∈ <2×2 can be chosen in the form of

H = hJ, h ∈ {< \ {0}}, J =

[
0 1

−1 0

]
. (5.37)

A constant 3 by 3 matrix cannot however be found which satisfies the requirements of

Assumption 5.4.2. In [41] and [116], the following switching matrix is given as an example

to matrices satisfying Assumption 5.4.2 in 3D:

H(t) =



g
(
rT1 (t)

ρ

)
H1, 0 ≤ rT1(t) ≤ T̄1

H1, T̄1 ≤ rT1(t) ≤ T̄2(
1− g

(
rT1 (t)−T̄2

ρ

))
H1, T̄2 ≤ rT1(t) ≤ T̄3

g
(
rT1 (t)−T̄3

ρ

)
H2, T̄3 ≤ rT1(t) ≤ T̄4

H2, T̄4 ≤ rT1(t) ≤ T̄5(
1− g

(
rT1 (t)−T̄5

ρ

))
H2, T̄5 ≤ rT1(t) ≤ T̄6

(5.38)

Here, for a suitably small ρ > 0,

T̄1 = ρ, T̄2 = ρ+
π

|h1|
, T̄3 = 2ρ+

π

|h1|
,

T̄4 = 3ρ+
π

|h1|
, T̄5 = 3ρ+

π

|h1|
+

π

|h2|
,

T1 = T̄6 = 4ρ+
π

|h1|
+

π

|h2|
, (5.39)

and rT1(t) = t−KT1(t)T1 where KT1(t) is the largest integer k satisfying t ≥ kT1,

H1 =

[
0 0

0 h1J

]
, H2 =

[
h2J 0

0 0

]
,

h1, h2 are real nonzero scalars, J is as in (5.37), and

g(t) =


0, t < 0
1
2
(1− cos(πt)) 0 ≤ t ≤ 1

1 t > 1.
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Lemma 5.4.1. Consider σa(t) : < → <n, n = {2, 3} in (5.35), with H(t) : < →
<n×n, n = {2, 3} and T1 defined as follows:

• For n = 2, H(t) is defined as in (5.37) with T1 = π
h

.

• For n = 3, H(t) is defined as in (5.38) with T1 as in (5.39).

Then, σa(t) obeys Assumption 5.4.2.

Proof. The result is a direct corollary of Theorem 5.1 and Theorem 5.2 of [41], and Section 8

of [116].

We have the following lemma.

Lemma 5.4.2 ( [41]). Consider (5.35) with σa : < → <n and H(t) : < → <n×n, n =

{2, 3}, satisfying Assumption 5.4.2. Then,

i. ‖σa(t)‖ = ‖σa(0)‖ for all t.

ii. There exists a finite constant σ̄a such that ‖σ̇a(t)‖ ≤ σ̄a for all t.

Assumption 5.4.3. κ is such that κ > σ̄a.

5.4.2 Stability and Convergence

In Section 5.3.3, we have established that the signals p̃N , ẽi, i ∈ {1, . . . , N − 1}, and êi, δi
for all i are bounded. In this subsection, we show that the output vector pA and the

regressor signal φ are also bounded, and prove the convergence of the vehicle to the target

location.

Before stating the main stability and convergence result, observe that for the target

tracking error

εA(t) , pA(t)− p∗A, (5.40)

by applying the triangular inequality to the sides of the triangle with vertices pA(t), p∗A, pi,

one has ‖εA(t)‖+ d∗i ≥ di(t) and ‖εA(t)‖+ di(t) ≥ d∗i for all i ∈ {1, · · · , N}. Thus,

‖εA(t)‖ ≥ max
i∈{1,··· ,N}

|d∗i − di(t)| = ‖D∗ −D(t)‖∞. (5.41)
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Theorem 5.4.1. Consider Problem 5.1.1 and use of the adaptive control scheme composed

of the localization algorithm (5.21), (5.24); the trajectory generation law (5.33); and the

control law (5.34),(5.35) to solve this problem. Let Assumptions 5.3.1, 5.4.1, 5.4.2, 5.4.3

hold. Furthermore assume that there exists a time instant trm > 0 after which no covariance

resetting occurs in update of P (t) in (5.21), (5.24). Then:

i. All the closed loop signals, including p̂A, pA, ˙̂pA, ṗA, φ, φ̇, are bounded.

ii. pA(t) converges to p∗A asymptotically.

Proof. See Appendix A.

5.5 Simulations

In this section, we present the simulation results of the adaptive control system synthesized

in Section 5.4, combination of the gradient control rule of Section 5.2 and the localization

algorithm of Section 5.3. We assume there is a set S = {S1, S2, S3} of three stationary

vehicles which are positioned at the following locations:

p1 = [2, 0]> , p2 = [10, 0]> , p3 = [6, 6]> .

For all simulations, the estimation parameters are chosen as follows:

β = 0.9, ρ0 = 10, ρmin = 0.001, ρmax = 100, R = 5000,

εA = 0.01.

In what follows, we simulate the system for different cases of system and controller param-

eters. For all cases, we show the motion of the mobile vehicle, the distance error ‖pA−p∗A‖
between the mobile vehicle and the target, and the distance errors between the estimated

parameters and their actual values, ‖pA − p̂A‖, ‖ei − êi‖, (i = 1, 2), and ‖p3 − p̂3‖.

Case 1:

In this scenario, we assume the target is at the interior of the triangle that the stationary ve-

hicles constitute by letting p∗A = [8, 2]>, resulting in the distance values d∗1 = 6.3246, d∗2 =
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2.8284, d∗3 = 4.4721 between the target and the stationary vehicles. The initial estimation

parameter values are chosen as follows:

p̂1(0) = [2, 3]> , p̂2(0) = [2, 3]> , p̂3(0) = [2, 1]> ,

pA(0) = [−10, − 20]> .

The design coefficients are chosen as follows:

κ = 10, σa(0) = [2, 0]> , H = J,

where J is as in (5.37). With these values, we get the responses in Figures 5.4 and 5.5. It is

clearly observed from these results that the mobile vehicle converges to the target location

with the proposed control algorithm asymptotically.
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Figure 5.4: Case 1: No noise, non-collinear stationary vehicle positions, κ = 10, H = J . Agent

motion and the stationary vehicle positions.

Case 2:

In order to present the global convergence property of the proposed control law, we now

assume that the target is located outside the triangle that the sensor stations constitute

by letting p∗A = [7, − 2]>. We also change the initial location of the vehicle to pA(0) =
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Figure 5.5: Case 1: No noise, non-collinear stationary vehicle positions, κ = 10, H = J . The

vehicle converges to the target point asymptotically.

[−10, 20]>. The other variable values are kept the same as in Case 1. The results for

this setting are illustrated in Figures 5.6 and 5.7. Since the proposed convergence result is

global, the mobile vehicle converges to the target regardless of the initial location of the

vehicle or the target’s location.

Case 3:

In this case, we simulate the system for κ = 50 by letting all other variable values the

same as in Case 1. The results are shown in Figure 5.8 and 5.9. As κ determines how the

position pA of the vehicle converges to its estimate p̂A, increasing this coefficient fastens

the convergence of the distance ‖pA − p̂A‖ to zero.

Case 4:

Here, we keep the variable values the same as in Case 1 except for H = 5J . In Figures 5.10

and 5.11, the simulation results are depicted. As expected, this increased the oscillations

on the motion of the mobile vehicle in both x−axis and y−axis, thus resulting in circular

paths with diminishing radius on the x− y graph of the motion. As the control law (5.34)
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Figure 5.6: Case 2: No noise, non-collinear stationary vehicle positions, κ = 10, H = J . Agent

motion and the stationary vehicle positions for different initial and target locations.

suggests, since the magnitude of the f function diminishes with time, the effect of the

oscillations caused by the σ̇a term disappears asymptotically, therefore the mobile vehicle

converges to the target.

Case 5:

This scenario tests the robustness of the proposed control law to noise. We assume all

coefficient values are as in Case 1, and the distance measurements di(t) for all i = {1, 2, 3}
are corrupted by a zero-mean Gaussian noise such that dcori (t) = di(t) + X(t), where

X(t) ∼ N (0, 0.05). The results are depicted in Figures 5.12 and 5.13. Even though

noise adds small ripples to the motion of the vehicle, the vehicle eventually converges to a

neighborhood of the target asymptotically.

Case 6:

In Problem 5.1.1 of Section 5.2, we assume non-collinear stationary vehicles on <2 or non-

coplanar stationary vehicles on <3. The best scenario in which this assumption is satisfied
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Figure 5.7: Case 2: No noise, non-collinear stationary vehicle positions, κ = 10, H = J . The

vehicle converges to the target point asymptotically regardless of the initial and target locations.

for a three-vehicle case is when the stationary vehicles constitute an equilateral triangle,

and in the simulations so far we let the three stationary vehicles form a triangle close to an

equilateral one. In this scenario, we consider an “almost” collinear stationary vehicles case

under noisy measurements. We assume the target is at p∗A = [12, 0.5]> and the stationary

vehicles are positioned at the following locations:

p1 = [2, 0]> , p2 = [9, 1]> , p3 = [16, 0]> .

We keep all other coefficient values the same as in Case 1 and add measurement noise to

di(t) for all i = {1, 2, 3} as in Case 5. The results are depicted in Figure 5.14 and 5.15.

The distance error in the transient part of the motion is large compared to the previous

cases, and the terms ei (i = 1, 2) do not converge to their actual values. One reason for

this transient behavior is that e1 and e2 are almost parallel, and hence, the matrix A in

(5.7) is close to a singular one.
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Figure 5.8: Case 3: No noise, non-collinear stationary vehicle positions, κ = 50, H = J . Agent

motion and the stationary vehicle positions with increased κ.

5.6 Summary

We synthesize an indirect adaptive control scheme for an autonomous mobile vehicle with

known position to reach an unknown target location whose distances to a set of stationary

vehicles are measured and broadcast to the vehicle. Employing the modularity and flex-

ibility properties of the indirect adaptive control technique, we decompose the main task

into two sub-objectives: localization of the target and motion control of the mobile vehicle.

We apply the LS estimation algorithm for the localization objective, and gradient-based

control law for the motion control objective. Lyapunov stability analysis is the tool we

employ to obtain the globally asymptotically convergence results which are valid for both

the two and three-dimensional space.

Robustness to measurement noise is well observed in numerous simulations. Even

for the almost collinear stationary vehicles case, we obtain acceptable simulation results.

Nevertheless, formal robustness analysis and modification of the proposed algorithm for

enhancing robustness is left as a future work item. One may consider minimization of

other alternative convex cost functions that can uniquely define the target. Convergence
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Figure 5.9: Case 3: No noise, non-collinear stationary vehicle positions, κ = 50, H = J .

Increasing κ fastens the convergence of y to ŷ.

properties for these alternatives can also be obtained accordingly.

Results of this chapter can easily be applied to real-life scenarios where vehicle-target

distance measurements are not directly obtained by the mobile vehicle. In this regard,

extension of the results obtained in this chapter to cover the persistently drifting vehicles

case is certainly a good path to continue.
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Figure 5.10: Case 4: No noise, non-collinear stationary vehicle positions, κ = 10, H = 5J .

Increasing h causes an increase in the artificial oscillation on the x − y graph comparing to the

H = J case.
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Figure 5.11: Case 4: No noise, non-collinear stationary vehicle positions, κ = 10, H = 5J .

There are ripples in the transient motion, but the vehicle converges to the target asymptotically.
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Figure 5.12: Case 5: With noise, non-collinear stationary vehicle positions, κ = 10, H = J .

Agent motion and the stationary vehicle positions when noise exists in measurement.

time[sec]
0 5 10 15 20

jy
!

y
$
j

0

10

20

30

time[sec]
0 5 10 15 20

jy
!

ŷ
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ê i
j

0

5

10

15

time[sec]
0 5 10 15 20

jx
3
!

x̂
3
j

0

2

4

6

8

Figure 5.13: Case 5: With noise, non-collinear stationary vehicle positions, κ = 10, H = J .

Noise added to the measurements di(t) causes chattering on the vehicle motion; however, the

vehicle converges to the target’s neighborhood.
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Figure 5.14: Case 6: No noise, almost collinear stationary vehicle positions, κ = 10, H =

J . Agent motion and the stationary vehicle positions when stationary vehicles form an almost

collinear triangle.
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Figure 5.15: Case 6: No noise, almost collinear stationary vehicle positions, κ = 10, H = J .

Transient behavior of the vehicle is worse than previous cases because of the almost collinear

stationary vehicle positions. The vehicle still reaches to a close neighborhood of the target.
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Chapter 6

Station Keeping without

Self-Location Information

6.1 Introduction

In Chapter 5, we have proposed a motion control law that achieves the station keeping

of an autonomous mobile vehicle A with single integrator kinematics. With this control

law, the mobile vehicle A is added to a stationary multi-vehicle network S to form a new

multi-vehicle system by steering it to a target location which is implicitly defined by its

distances to vehicles in the network whose positions are also unknown. In Chapter 5, A

has been assumed to have the stationary vehicle-target distances d∗i , stationary vehicle-

mobile vehicle distances di(t), and its self-position pA(t). In this chapter, we redesign the

proposed station keeping scheme for the more challenging case where the vehicle A has

non-holonomic motion dynamics, does not know its self-location pA(t), but has access to

inter-agent distance measurements di(t). In practical autonomous vehicle settings, this

corresponds to consideration of unavailability of GPS. As the first step to solve this objec-

tive, we start with solving the target capture (also referred to as target docking or target

pursuit) problem under the same measurement assumptions, then we modify the target

capture control law for solving the station keeping problem.

The target capture problem has been studied in a collection of recent works, see for

example [26,41], and the references therein. [41] combines the localization algorithm of [28]
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and a motion control law to solve the target capture problem, assuming the availability of

the range measurement to the target and the vehicle’s own position in a reference frame.

Our solution to the target capture problem differs from [41] in that we ask the question

of how would it be if one applies a range-based motion control approach without localiza-

tion algorithm to the target capture problem of a non-holonomic vehicle. We propose a

switching-based control law inspired by the control approach of [22,74] for the target cap-

ture problem. The switching between the control rules is based on the range measurement

and the range rate signal. We first present the control law for a general case where the

range measurement and its time derivative are available to the controller. We then present

the stability and convergence properties of the control system. Later, we use linear filtering

approach to acquire the range rate and use this filtered version of the range rate signal in

the control law. Finally, we derive the station keeping control law by modifying the target

capture control law such that the error signal is redefined as the difference between the

actual and desired mobile vehicle-stationary vehicle distances.

Rest of the chapter is organized as follows. In Section 6.2, the target capture problem for

the non-holonomic agent setting without self-location information is defined formally and

the motion control law assuming perfect range-rate measurement for the non-holonomic

vehicle is proposed. Stability and convergence results of the proposed control law are given

in the same section. In Section 6.3, the way the range-rate is obtained and the modified

motion control law are presented. In Section 6.4, the station keeping of the non-holonomic

vehicle is considered. Section 6.5 demonstrates the performance of the control designs via

simulations. Section 6.6 is on the conclusions and future directions.

6.2 Target Capture Problem and Control Design

In this section, we give the formal definition of the target capture problem and present the

proposed control law to solve this problem for a mobile non-holonomic vehicle assuming

that the range and range-rate measurements are available to the vehicle.
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6.2.1 Problem Definition

Consider a non-holonomic vehicle A with the dynamics

ṗA = v [cos(θh), sin(θh)]
> , θ̇ = ω, (6.1)

where pA(t) , [xA(t), yA(t)]> : <+ → <2 and θh(t) : <+ → [0, 2π) are the unknown

position vector and the known heading angle of the vehicle in the global coordinate frame,

and u(t) , [v(t), ω(t)]> : <+ → <2 is the control input of the vehicle. Consider also

a target T with unknown constant position pT = [xT , yT ]> ∈ <2. We denote the range

(distance) between A and T by

dAT (t) , ‖pA(t)− pT‖ , (6.2)

and we assume that dAT (0) > εd where εd is a very small threshold to be defined in

the sequel. This configuration is illustrated in Fig. 6.1. Another representation of the

y

x

pA

pT

θT
θh

d AT

Figure 6.1: Illustration of the vehicle-target configuration.

dynamics (6.1) uses a time-varying coordinate system centered at A, and the unknown

angle θT ∈ [0, 2π) from the vector pT − pA to the current heading of A [22]:

ḋAT (t) = −v(t) cos(θT (t)), (6.3)

θ̇T (t) = ω(t) +
1

dAT (t)
v(t) sin(θT (t)). (6.4)
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We focus on driving the non-holonomic vehicle A to the εd-neighborhood of the target

for sufficiently small εd > 0 and stop the vehicle in this region. Let this region be denoted

by Bεd(T ) := {p(t) | ‖p(t)− pT‖ ≤ εd} .

Problem 6.2.1. Consider a non-holonomic vehicle A with motion dynamics (6.1) and

a stationary target T with unknown location pT . Given the range measurement dAT (t)

in (6.2), with dAT (0) > εd, and its time derivative ḋAT (t), find a control law u(t) =

[v(t), ω(t)]> so that A asymptotically converges to the εd neighborhood Bεd(T ) of T .

A similar problem is considered in [26] in the context of extremum seeking, carrying

expense of added sinusoid search signals. Here we will follow a more direct approach similar

to that of [22,74] for the target capture problem.

6.2.2 Control Law

In this subsection we derive the base control law we propose, assuming that range-rate

ḋAT (t) is perfectly available for measurement. In later sections we will discuss the im-

plementation without having ḋAT information directly. Inspired by the circumnavigation

control design in [22,74], we propose the control law

u = [v, ω]> , (6.5)

where

v(t) =

{
v̄, if dAT (t) > εd

0, otherwise,
(6.6)

ω(t) =


(

sgn(ḋAT (t)) + 1 + 2
v(t)

dAT (t)

)
σ

(
−ḋAT (t)

v(t)

)
, dAT (t) > εd

0, otherwise,

(6.7)

with

σ(x) =

{
1− eγ(x+εθ−1), if x < 1− εθ
0, otherwise,

(6.8)

Here σ
(
−ḋAT/v(t)

)
= σ(cos(θT )) is a function that satisfies the regulation of the angle

θT , v̄ can be considered as the maximum speed that the vehicle can reach, and γ > 0.
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The function sgn is defined such that sgn(x) = 1 for x > 0, sgn(x) = −1 for x < 0, and

sgn(0) = 0. The coefficients εd, εθ > 0 are sufficiently small and serve as thresholds. To

put it differently, if the vehicle enters the disc Bεd , which is a very small region, the vehicle

is desired to stop. Section 6.2.3 provides detailed description on these coefficients.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

x

σ(
x

)

Figure 6.2: The σ function.

6.2.3 Stability and Convergence

In this subsection we provide stability and convergence analysis of the proposed control

law (6.5)–(6.8), together with a formal discussion of the intuition behind the selection of

switching rules (6.6)–(6.8). The key component in the control law is the steering ω law

(6.7). The aim is to drive θT to zero, corresponding to the direction in which the approach

rate −ḋAT is maximized. This aim can be reformulated as maximizing cos(θT ), which is

indirectly measured in terms of ḋAT and v via (6.3) as

cos(θT ) =
−ḋAT
v(t)

. (6.9)

The function σ is used to penalize the deviation of θT from its desired value zero, as

depicted in Fig. 6.2. (6.7) guides the agent A to rotate with a rate dependent on dAT , v,
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and the sign of ḋAT as long as A is outside the target vicinity ball Bεd(T ), unless θT gets

sufficiently close to zero, which is quantified by comparing (6.9) with 1− εθ. The switches

to zero in the control inputs (6.6) and (6.7) assure that the vehicle stops once it enters the

disc Bεd(T ).

We now present the main result of this section.

Proposition 6.2.1. Consider Problem 6.2.1 and the control law (6.5)-(6.8) for the vehicle

A. Then, the following properties hold:

(i) The dynamics of θT has an isolated equilibrium at θT = 0, and a unique stable

equilibrium at θT = θε ∈ (0,
π

2
), which satisfies

sin(θε) = 2σ(cos(θε)) (6.10)

and

cos(θε) < 1− θε. (6.11)

(ii) The vehicle A asymptotically converges to the disc Bεd(T ).

Proof. (i) By assumption of Problem 6.2.1, we have dAT (0) > εd. Substituting (6.7) into

(6.4) gives

θ̇T (t) = (1− sgn(cos(θT )))σ(cos(θT (t))) +
v(t)

dAT (t)
(2σ(cos(θT (t))) + sin(θT (t))) . (6.12)

We now analyze θ̇T (t) for different cases for the parameter θT (t) for any t:

1. θT (t) = 0: θ̇T (t) =
v(t)

dAT (t)
(2σ(1) + 0) = 0.

2. θT (t) ∈ (0,
π

2
): θ̇T (t) =

v(t)

dAT (t)
(2σ(cos(θT (t))) + sin(θT (t)))) > 0.

3. θT (t) =
π

2
: θ̇T (t) = σ(0) +

v(t)

dAT (t)
(2σ(0) + 1) > 0.
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4. θT (t) ∈ (
π

2
,
3π

2
):

θ̇T (t) = 2σ(cos(θT )) +
v(t)

dAT (t)
(2σ(cos(θT (t))) + sin(θT (t)))

> 2σ(0) +
v(t)

dAT (t)
(2σ(0) + sin(θT (t))) > 0.

5. θT (t) =
3π

2
: θ̇T (t) = σ(0) +

v(t)

dAT (t)
(2σ(0)− 1) > 0.

6. θT (t) ∈ (
3π

2
, 2π): θ̇T (t) =

v(t)

dAT (t)
(2σ(cos(θT (t))) + sin(θT (t))) .

We further examine the behavior of θ̇T when θT ∈ (
3π

2
, 2π) by partitioning this interval

into three sets: θT ∈ (
3π

2
, 2π− θε), θT = 2π− θε, and θT ∈ (2π− θε, 2π), where the unique

θε satisfies (6.10):

6.a. θT (t) ∈ (
3π

2
, 2π − θε): θ̇T (t) =

v(t)

dAT (t)
(2σ(cos(θT )) + sin(θT (t)))) > 0.

6.b. θT (t) = 2π − θε: θ̇T (t) = 0.

6.c. θT (t) ∈ (2π − θε, 2π): θ̇T (t) < 0.

Thus, θε is a stable equilibrium of the θT dynamics. Considering all of the six possible

cases, Cases 1-6, above we have that either θT (0) = 0 and thus θT (t) = 0 for all t ≥ 0, or

θT (0) 6= 0 and thus θT → 2π − θε.

(6.10) is established by the θ̇T properties for cases 3, 4, 6. (6.11) and uniqueness of

θε ∈ (0,
π

2
) follows from direct analysis of the function 2σ(cos(θε))− sin(θε).

(ii) It follows from (i) that if θT (0) = 0 then θT (t) = 0 for all t ≥ 0, so ḋAT (t) = −v̄ and

there necessarily exists a time instant Tf > 0 such that dAT (Tf ) ≤ εd. If θT (0) ∈ (0, 2π−θε),
then θT (t) monotonically increases for all t ≥ 0, and there holds θT (t) → 2π − θε and

ḋAT (t) → −v̄ cos(θε) as t → ∞. If θT (0) ∈ (2π − θε, 2π), then again θT (t) → 2π − θε and

thus ḋAT (t)→ −v̄ cos(θε) as t→∞.
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For the analysis of the transient behavior of dAT , one can take the integral of both sides

of (6.3):

dAT (t) = dAT (0)−
∫ t

0

v(τ) cos(θT (τ))dτ, (6.13)

which, when the vehicle is outside Bεd(T ), amounts to

dAT (t) = dAT (0)− v̄
∫ t

0

cos(θT (τ))dτ. (6.14)

It is easily seen that since v̄ > 0, the range term dAT (t) increases when θT ∈ (
π

2
,
3π

2
),

decreases when θT ∈ (0,
π

2
) or θT ∈ (

3π

2
, 2π), and remains constant when θT =

π

2
or

θT =
3π

2
. From the analysis above, we have that ḋAT eventually converges to −v̄ cos(θε) and

monotonically decreases afterwards. Hence, depending on the initial condition dAT (0), the

range term dAT may increase in some finite time interval, but eventually starts decreasing

and satisfies dAT (t) ≤ εd, for all t ≥ tε, for some finite time instant tepsilon. Therefore, we

conclude that the vehicle A asymptotically converges to the disc Bεd(T ).

The phase portrait of θT is illustrated in Fig. 6.3. All the solutions starting from the

initial condition θT 6= 0 converges to θT = θε.

θϵ

θT

Figure 6.3: The phase portrait of θT : There are two equilibrium points one of which is at θT = 0

and the other is at θT = θε.
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6.3 Control without Range Rate Information

The control design in Section 6.2 has assumed that the range rate ḋAT is available. This, in

general, is not the case due to sensing limitations of the vehicle agent A. When the range

rate information is not available, one possible attempt is approximating ḋAT via digital

signal processing of dAT measurement samples. However, it is a well known fact that

this process is not an efficient way since even small noise on the measurement data may

cause the ḋAT approximation errors become significantly large. Other typical approaches

to obtain first and higher order derivative estimates of a measured signal include high gain

and sliding mode observer design [89]. In [22], the range rate estimates are proposed to be

obtained using a sliding mode observer. Here, we propose use of a first order filter instead,

as a simpler and lower gain solution.

Consider the following first order filtering:

z(t) = ζ̇(t) = −αζ(t) + αdAT (t), (6.15)

where ζ, z ∈ < are the states of the linear filtering with arbitrary scalar initial conditions

and α > 0 is a design coefficient. Observe that the signals ζ and z are the filtered version

of the signals dAT and ḋAT , respectively. We use these signals in place of dAT and ḋAT
inside the control law (6.5) to eliminate the range-rate signal requirement, i.e., we propose

the control law (6.5) with (6.6), (6.8), and the modified angular velocity control

ω(t) =


(

sgn(z(t)) + 1 + 2
v(t)

ζ(t)

)
σ

(
−z(t)

v(t)

)
, dAT (t) > εd

0, otherwise.

(6.16)

6.4 Range-Based Station Keeping

6.4.1 Problem Definition

In this section, we adapt the control algorithm derived in Section 6.3 to the station keeping

problem defined in Problem 5.1.1 for the setting where the vehicle A has non-holonomic

motion dynamics and cannot measure its self-location. For having the problems well-

defined and for convenience of the analysis, we focus on 2-dimensional case n = 2. The
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main task is steering A to the target location p∗A asymptotically using only the continuous

mobile vehicle-stationary vehicle range information di(t). For this setting, we write the

system dynamics as

ḋi(t) = −v(t) cos(θhi(t)), (6.17)

θ̇hi(t) = ω(t) +
1

di(t)
v(t) sin(θhi(t)).

where i = {1, · · · , N} and θhi ∈ [0, 2π) is the angle from the vector (xi − y) to the current

heading of A. Here, di and θhi can be considered as the analogue of the range term dAT
and the angle θT of (6.3)-(6.4). We define the error term to be minimized in magnitude

as the difference between the desired and actual values of the inter-vehicle distances of A,

i.e., we use

eA(t) ,
1√
N
‖D(t)−D∗‖ , (6.18)

where D,D∗ are as defined in (5.34), and the term
√
N
−1

serves as the normalization

signal. We derive the time derivative ėA of eA by filtering in a similar way to (6.15).

Remark 6.4.1. In the error definition (6.18), infinity norm of the distance differences,

i.e., ‖D(t)−D∗‖∞, can also be used. In that case, the normalization term
√
N
−1

can be

eliminated.

We consider the following problem:

Problem 6.4.1. Consider a mobile non-holonomic vehicle A with position pA ∈ <2 and

heading angle θh ∈ [0, 2π) which is required to join a rigid formation of N vehicles S =

{A1, · · · , AN}, N > 2, with unknown constant positions pi ∈ <2 for each Ai, and an

unknown target position p∗A ∈ <2 for A within the formation. Assume that Ai are not

collinear. Assume also that only the desired inter-vehicle distances d∗i and the the actual

inter-vehicle distances di(t) are available to A. The task is to define a control law to

generate u = [v, ω]> such that for any given initial position pA(0), pA(t) converges to p∗A
asymptotically.
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6.4.2 Control Law

We use the control law derived in Section 6.2 with some modifications to solve Problem 6.4.1

as follows:

u = [v, ω]> , (6.19)

where

v(t) =

 v̄

(
1− σ

(
−ėA
v̄

))
, if eA(t) > εd

0, otherwise,

(6.20)

ω(t) =


(

sgn(ėA(t)) + 1 + 2
v(t)

eA(t)

)
σ

(
−ėA(t)

v(t)

)
, eA(t) > εd

0, otherwise.

(6.21)

In (6.20)-(6.21), the function σ(·) and the terms v̄ > 0, εd are as defined in Section 6.2.2.

Since we have N different stationary vehicles, the idea of converging the angle θhi to

the vicinity of zero by controlling the angular velocity ω while keeping the translational

velocity v constant as in Section 6.2 does not apply here directly. Instead, we design the

control term v such that the translational velocity of A decreases if the error term eA starts

increasing, otherwise it moves with the maximum translational speed v̄. Leaving the full

stability and convergence analysis of the closed-loop system as a future work, we present

the simulation results of the proposed control law (6.20), (6.21) in the next section.

6.5 Simulations

In this section, we present the simulation results for the target capture and station keeping

of A with the proposed controllers.

Target Capture: For the target capture objective, the following parameter values are used:

pT = [20, 30]>m, pA(0) = [0, 0]>m, (6.22)

εd = 0.2m, εθ = 0.1, γ = 3, α = 20, v̄ = 2m/sec.
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Fig. 6.4-6.6 represent the behavior of A with the control law (6.5)-(6.8) for 100 seconds.

The vehicle successfully achieves the objective, i.e., it enters the disc Bεd(T ) in a finite time

(22 seconds) and stops as soon as it reaches there. Fig. 6.5 shows the range measurement

dAT (top), and the range rate ḋAT and the filtered signal z (bottom).
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Figure 6.4: Vehicle motion on the plane with the control law (6.5)-(6.8).

Station Keeping: We assume there are three sensor stations located at the following posi-

tions:

p1 = [20, 20]>m, p2 = [25, 20]>m, p3 = [23, 25]>m.

The target location is at p∗A = [23, 22]>m. As can be seen in Fig. 6.7 and 6.8, the vehicle

reaches the target location while the error eA decays asymptotically.

6.6 Summary

In this chapter, we have considered the station keeping problem for a non-holonomic vehicle

where the self-location information is not available to the vehicle. We have initially studied
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Figure 6.5: The range measurement r (top), and the derivative of the range measurement ṙ and

the filtered signal z (bottom).

the target capture problem for the same measurement settings. For the target capture task,

we have proposed a switching-based control law that requires only the continuous range

measurements between the agent and the target. The switching between the control rules

are based on the range measurement and the range rate, where the range rate is obtained

via filtering of the range measurement signal. The full stability and convergence analysis

is presented for the target capture part. Later, we have considered the station keeping

problem where the target location is not sensed by the vehicle directly, but it is known

by the vehicle that the target is at specified distances to vehicles in a rigid formation

whose positions are also unknown. By redesigning the target capture control law, we

have synthesized a controller for the station keeping task that uses only the inter-vehicle

distances. Studying the stability and convergence properties of the station keeping control

law proposed in this chapter is a worthy topic to pursue on.

112



0 20 40 60 80 100
0

2

4

6

8

[r
a

d
]

 

 

θ
θ

T

0 20 40 60 80 100
−10

0

10

20

30

t [sec]

 

 

v [m/sec]

ω [rad/sec]

Figure 6.6: The heading angle θh in the global coordinate frame and the control input u.
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113



0 50 100 150 200 250 300
0

10

20

30

e

0 50 100 150 200 250 300
−5

0

5

10

time t

d
e
/

d
t

Figure 6.8: The error term e and its time derivative ė.
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Chapter 7

Concluding Remarks

We have considered the adaptive formation control of multi-vehicle systems by addressing

different particular subproblems. The literature on this subject has been analyzed in de-

tail, and some of most effective works have been presented with discussions on the results

and their applicability to the real-time systems. A rich literature exists for formations ac-

cepting undirected sensing and constraint graphs in terms of both formation stabilization

and flocking. However, it has been observed that less results have been proposed for the co-

hesive motion control problem of acyclic minimally persistent formations for general cases,

i.e., formations with four or more agents. Only a few of these works demonstrate lim-

ited stability and convergence results without giving transient error analysis for individual

vehicles.

In this thesis, we have focused on deriving adaptive control frameworks for a set of inter-

related formation control problems. We have defined the problem of cohesive motion control

of minimally persistent formations formally and reviewed the recent results on this topic.

With carefully selected state variables representing inter-agent behaviors in the formation,

a linear system model has been derived assuming each vehicle is modeled by holonomic

point agent kinematics. The cohesive motion control problem has been converted to a

regulation problem in the interest of gaining new perspectives on the objective and defining

the system well for controller derivations. We have established an exponentially stabilizing

control law which is completely distributed. Speed limitations on the vehicles and possible

control methods to solve the problem have also been studied.

Additionally, we have discussed the formation control problem for the case of high-order
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vehicle dynamics with parametric uncertainties. Deriving a parametric model from the

system dynamics, we have followed the indirect adaptive control approach that estimates

the uncertain parameters by least-squares estimation algorithm and employ these estimates

in the adaptive motion control law, applying the certainty equivalence principle. The

control law is composed of feedback linearization together with a linear control law. Full

stability analysis for individual agents have been provided. Simulation results show that the

designed controller perform well in tracking of reference signals for each individual vehicle.

Later, we have studied a distributed extension of the proposed adaptive control scheme to

the cohesive motion control problem of the aforementioned type of mobile vehicles using

two different approaches. We have concluded that the vehicles achieve the formation control

objectives with the proposed controllers even in the existence of parametric uncertainties in

vehicle system dynamics.

Furthermore, we have examined the formation acquisition objective in the context of

station keeping control. We have studied the objective of adding an autonomous mobile

vehicle to a multi-vehicle system so that the new vehicle is positioned at desired distances

from the existing vehicles. The mobile vehicle is assumed to have some restrictions on sens-

ing: It only has its own position and continuous distance measurements to the vehicles in

the multi-vehicle network. At the high level, we have studied this implicitly defined prob-

lem in two parts: localization and motion control. We have derived an estimation method

and a control law to address each part and then combined them in an indirect adaptive

control scheme, establishing formal stability and convergence results. The proposed con-

trol approach is modular and adaptive in the sense that different localization algorithms

and motion control laws can be employed in the proposed control law as long as the new

algorithms satisfy certain conditions by virtue of the certainty equivalence principle.

Finally, we have studied the station keeping problem for a non-holonomic vehicle with-

out self-location information, as a more-realistic scenario of the station keeping objective.

At the outset, using an alternative system dynamics formulation, we have proposed a con-

trol law to the target capture problem establishing convergence of the mobile vehicle to

a small neighborhood of the target point. We have then modified the target capture mo-

tion control law for the station keeping problem. The proposed control laws therein can

be applied in real-time application scenarios where the mobile vehicle bears non-holonomic

constraints and low-cost range sensors are mounted on the mobile vehicle instead of com-

plicated sensors such as GPS.
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On the whole, this thesis comprises four different, correlated formation control problems

and their solution methods with formal analysis. The results can be enhanced for more

specific application scenarios. Some possible future works are listed below:

The linear system dynamics (3.19) is a base motion model describing the inter-agent

motion behaviors at the high-level. (3.19) can be integrated with low-level control algo-

rithms for more specific application scenarios. In addition, further distributed control laws

can be designed to solve the regulation problem in Section 3.4 in an optimal and robust

fashion.

Real-time experiments are planned to be performed, having the proposed algorithms

implemented on ground robots and quadrotors. In those experimental settings, uncertain

constant parameters in the dynamics of the ground robots or quadrotors can be handled

on-line using the approach in Chapter 4.

The results established in this thesis are mostly based on the assumption of perfect

sensing of measured quantities such as distances and relative positions for the vehicles.

In real-time applications, sensor measurements are prone to noise. The results can be

extended with filtering techniques so that the proposed methods would be robust in the

case of noise-corrupted measurement cases.

In Chapter 5, we have proposed a control algorithm for the adaptive station keeping

problem of a point agent kinematics to constitute a base for further extensions. The

algorithm is shown to be robust to measurement noise in simulations, but formal robustness

analysis is left as a future work.

In Chapter 6, we have studied the station keeping objective for the non-holonomic vehi-

cle model assuming self-location information is not available to the vehicle. The adaptive

station keeping results can be extended to cover more specific and complex vehicle dy-

namic models which carry non-holonomic kinematic constraints. For instance, the angular

velocity control of the vehicle is given in (6.21); if there is a dynamic constraint on the

angular velocity, it can be controlled with an integrated low-level control law producing

the desired angular velocity.
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Appendix A

Proof of Theorem 5.4.1

(i) Boundedness of the parameter estimates êi, p̂N , Â, b̂ and the estimation errors ẽi, p̃N , Ã, b̃

has already been established in Lemma 5.3.1. Boundedness of σa and σ̇a has been estab-

lished in Lemma 5.4.2. To see the boundedness of p̂A and ˙̂pA, consider the Lyapunov

function

VpA(t) =
1

2
p̂>A(t)p̂A(t).

The time derivative of VpA is derived as

V̇pA(t) = −p̂>A(t)Â(t)p̂A(t) + p̂>A(t)b̂(t).

Since, from Lemma 5.3.1 (iv), ‖b̂(t)‖ ≤ bmax for some bmax > 0 and for all t, (5.25)

guarantees that

V̇pA(t) ≤ −εAp̂>A(t)p̂A(t) + bmax‖p̂A(t)‖ (A.1)

= − (εA‖p̂A(t)‖ − bmax) ‖p̂A(t)‖.

(A.1) implies that V̇pA(t) < 0 for ‖p̂A(t)‖ > bmax

εA
, and hence p̂A is bounded. This, together

with boundedness of Â and b̂, implies that ˙̂pA is bounded as well.

To establish boundedness of pA and ṗA, define ep(t) , pA(t)− p̂A(t) and rewrite (5.34)

in terms of ep:

ėp(t) = −κep(t) + f (‖D∗ −D(t)‖∞) σ̇a(t). (A.2)
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In (A.2), by Assumption 5.4.3, the constant κ satisfies κ > σ̄a > 0; and by Assumption

5.4.1 and Lemma 5.4.2, f (‖D∗ −D(t)‖∞) σ̇a(t) is bounded. Hence, we have ep and ėp are

bounded. Since p̂A and ˙̂pA are bounded, this further implies boundedness of pA and ṗA.

Consequently, boundedness of φ and φ̇ follows from (5.13).

(ii) We examine the trajectories of the signals ẽi, p̃N over time, for t ≥ trm, following

the steps of the proof of Theorem 4.1 of [41] with minor modifications. Consider the

Lyapunov-like function

V (t) =
N−1∑
i=1

(
3

α
δ2
i (t) + ẽ>i (t)P−1(t)ẽi(t)

)
+

3

α
δ2
N(t) + p̃>N(t)P−1(t)p̃N(t), (A.3)

with γδ >
ρmin

4α
> 0. Using the system equations in Lemma 5.3.1 (ii), the time derivative

of V is derived as

V̇ (t) =
N−1∑
i=1

(
−3δ2

i (t)− ẽ>i (t)

(
2φ(t)φ>(t)− dP−1

dt

)
ẽi(t)− 2ẽ>i (t)φ(t)δi(t)

)
− 3δ2

N(t)− p̃>N(t)

(
2φ(t)φ>(t)− dP−1

dt

)
p̃N(t)− 2p̃>N(t)φ(t)δN(t) (A.4)

Defining νi , ẽ>i φ for i = 1, . . . , N − 1 and νN , p̃>Nφ, and noting that, from (5.15), for

t ≥ trm

dP−1

dt
=

{
−βP−1 + φφ>, if λmax(P (t)) < ρmax,

0, otherwise,

(A.4) implies that

V̇ (t) ≤
N−1∑
i=1

(
−3δ2

i (t)− ν2
i (t)− 2νi(t)δi(t)

)
− 3δ2

N(t)− ν2
N(t)− 2νN(t)δN(t)

≤
N∑
i=1

(
−δ2

i (t)−
1

2
ν2
i (t)

)
≤ 0, ∀t ≥ trm; (A.5)

and further for any t ≥ trm at which λmax(P (t)) < ρmax and, hence, dP−1

dt
6= 0,

V̇ (t) ≤
N∑
i=1

(
−δ2

i (t)−
1

2
ν2
i (t)

)
− β

N−1∑
i=1

ẽ>i (t)P−1(t)ẽi(t)− βp̃>N(t)P−1(t)p̃N(t) ≤ −kV V (t)

(A.6)
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for kV = min (α/3, β). Using (A.5),(A.6), from LaSalle-Yoshizawa Theorem, we have that

the lumped signal
[
δ1, · · · , δN , ẽ>1 , · · · , ẽ>N−1, p̃

>
N , φ

>]> converges to the set

Ω =
{[
δ1, · · · , δN , ẽ>1 , · · · , ẽ>N−1, p̃

>
N , φ

>]> | V̇ = 0, δi = 0, νi = 0
}
. (A.7)

Note that on Ω we have

˙̃ei(t) = ˙̂ei(t) = −P (t)φ(t)φ>(t)ẽi(t)− P (t)φ(t)δi(t) = 0,

˙̃pN(t) = ˙̂pN(t) = −P (t)φ(t)φ>(t)p̃N(t)− P (t)φ(t)δN(t) = 0.

Therefore, ẽi(t) = ēi and p̃N(t) = p̄N , for some constant vectors ēi, p̄N . This further

implies that Â(t) = Ā and b̂(t) = b̄, for a constant matrix Ā and a constant vector b̄.

Furthermore, because of continuity of Â and the fact that λmin(Â(t)) ≥ εA for all t, Ā is

positive definite as well, and hence

p̂A(t)→ Ā−1b̄, ˙̂pA(t)→ 0 (A.8)

asymptotically as well.

We now show that along the trajectories on Ω, pA(t) converges to p∗A asymptotically.

Taking the time derivative of ē>i φ and p̄>Nφ on Ω yields

d

dt

(
ē>i φ(t)

)
= ē>i φ̇(t) = 0 ∀i ∈ {1, · · · , N − 1}, (A.9)

and

d

dt

(
p̄>Nφ(t)

)
= p̄>N φ̇(t) = 0. (A.10)

This, together with (5.13), leads to

−αē>i φ(t) + ē>i ṗA(t) = ē>i ṗA(t) =
d

dt

(
ē>i pA(t)

)
= 0 ∀i ∈ {1, · · · , N − 1}, (A.11)

and

−αp̄>Nφ(t) + p̄>N ṗA(t) = p̄>N ṗA(t) =
d

dt

(
p̄>NpA(t)

)
= 0 (A.12)

on Ω.
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Hence, with (5.34), (A.8), (A.11), and (A.12), on Ω there holds:

ē>i (ṗA − ˙̂pA) = −κē>i (pA(t)− p̂A(t)) + f(D∗, D(t))ē>i σ̇a(t) = 0 ∀i ∈ {1, · · · , N − 1},
(A.13)

p̄>N(ṗA − ˙̂pA) = −κp̄>N(pA(t)− p̂A(t)) + f(D∗, D(t))p̄>N σ̇a(t) = 0. (A.14)

(A.13) and (A.14) imply that

f(D∗, D(t))ē>i σ̇a(t) = m1, (A.15)

f(D∗, D(t))p̄>N σ̇a(t) = m2, (A.16)

where m1, m2 are finite constants. Because of Assumption 5.4.2-(iv), m1 = m2 = 0, that

is

f(D∗, D(t))ē>i σ̇a(t) = f(D∗, D(t))p̄>N σ̇a(t) = 0 (A.17)

on Ω. To see that

ēi = p̄N = 0, (A.18)

we use contradiction. Assume that (A.18) does not hold. Then, because of Assump-

tion 5.4.2-(iii), we necessarily have that f(D∗, D(t)) = 0 which is equivalent to pA = p∗A.

Thus, by the equation κē>i (pA(t)− p̂A(t)) = 0, there holds ē>i = p̄>N = 0, which contradicts

the assumption.

Now, in order to conclude that pA(t) asymptotically converges to p∗A along the trajec-

tories in Ω, we define the Lyapunov function

L(t) =
1

2
ε>p (t)εp(t), (A.19)

where εp is defined in (5.40). Then,

L̇ = −2κL+ f(D∗, D(t))εpσ̇a (A.20)

≤ −2κL+ f(D∗, D(t))‖εp‖‖σ̇a‖ (A.21)

≤ −2κL+ ‖εp‖2‖σ̇a‖ (A.22)

= −2 (κ− ‖σ̇a‖)L, (A.23)

where we have applied (5.41). Under Assumption 5.4.3 we have that L̇(t) ≤ 0. Since the

largest invariant set satisfying (A.23) in Ω is constituted by pA(t) = p∗A, from LaSalle’s

Invariance Principle, we conclude that εy(t) converges to 0 and hence, pA(t) converges to

p∗A asymptotically.
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Appendix B

Proof of Lemma 3.6.2

(i). To show the exponential stability of the leader agent to the way-point p1f [k], we

consider

V1(t) =
1

2

(
δ>1f (t)δ1f (t)

)2
(B.1)

as the Lyapunov function candidate. The time derivative of (B.1) is

V̇1(t) = δ>1f (t)δ̇1f (t) (B.2)

= v̄1f12δ
>
1f (t)

−δ1f (t)

‖δ1f (t)‖
(B.3)

= −v̄1f12‖δ1f (t)‖ (B.4)

≤ 0. (B.5)

Since, by definition, f12(t) > 0 for all t, the largest invariant set inD1 :=
{

[x̃1f , ỹ1f ]
> | V̇1(t) = 0

}
is D1 itself. From the LaSalle Invariance Principle [71], δ1f asymptotically convergences to

zero.

(ii). Consider the positive definite, radially unbounded Lyapunov function

V2(t) =
1

4

(
δ>12(t)δ12(t)

)2
. (B.6)
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The time derivative of (B.6) is

V̇2(t) =
(
x̃2

12 + ỹ2
12

) (
x̃12

˙̃x12 + ỹ12
˙̃y12

)
(B.7)

=
(
x̃2

12 + ỹ2
12

)(
x̃12

(
v̄1f12

x1f

‖δ1f‖
− ẋ2

)
+ ỹ12

(
v̄1f12

y1f

‖δ1f‖
− ẏ2

))
(B.8)

Substituting the control rule (3.39) into (B.7) we get

V̇2(t) =
(
x̃2

12 + ỹ2
12

) [
x̃12

(
v̄1f12

x1f

‖δ1f‖
− v̄1f12

x̃12

‖δ12‖
− α2

x̃12

‖δ12‖

)
(B.9)

+ ỹ12

(
v̄1f12

y1f

‖δ1f‖
− v̄1f12

ỹ12

‖δ12‖
− α2

ỹ12

‖δ12‖

)]
=
(
x̃2

12 + ỹ2
12

)(
v̄1f12

(
x1f

‖δ1f‖
x̃12 +

y1f

‖δ1f‖
ỹ12

)
−

(v̄1 + (1− f12)α2)

(
x̃2

12

‖δ12‖
+

ỹ2
12

‖δ12‖

))
≤
(
x̃2

12 + ỹ2
12

)(
v̄1f12

∥∥∥∥ x1f

‖δ1f‖
x̃12 +

y1f

‖δ1f‖
ỹ12

∥∥∥∥− (v̄1 + (1− f12)α2) ‖δ12‖
)

≤
(
x̃2

12 + ỹ2
12

)(
v̄1f12

∥∥∥∥ 1

‖δ1f‖
[x1f , y1f ]

>
∥∥∥∥ ‖δ12‖ − (v̄1 + (1− f12)α2) ‖δ12‖

)
= ‖δ12‖3 (v̄1f12 − v̄1 − (1− f12)α2)

≤ 0. (B.10)

The last inequality follows from that ‖δ12(t)‖3 ≥ 0, (v̄1f12 − v̄1) ≤ 0, and− (1− f12)α2 ≤
0 for all t. Consider the set

D2 :=
{

[x̃12, ỹ12]> | V̇2(t) = 0
}
. (B.11)

Note that in D2 we have x̃12 = ỹ12 = 0, and the largest invariant set contained in D2

is itself. Then, from the LaSalle Invariance Principle [71], asymptotic convergence of δ12

follows.

(iii). Since in the limit we have that ‖δ12(t)‖ converges to zero and since f12 = 1 ⇐⇒
‖δ12(t)‖ = 0, it follows that f12 converges to 1 as t→∞. This implies (3.40).
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[60] V. Gazi, M. İ. Köksal, and B. Fidan, “Aggregation in a swarm of non-holonomic

agents using artificial potentials and sliding mode control, ” in Proc. European Control

Conference, pp. 1485–1491, Kos, Greece, July 2007.

[61] E. Gül and V. Gazi, “Adaptive internal model based formation control of a class of

multi-agent systems, ” in Proc. American Control Conference, pp. 4800–4805, 2010.

[62] E. Gül and V. Gazi, “Adaptive internal model based distributed output agreement in

a class of multi-Agent dynamic systems, ” in Proc. Special International Conference

on Complex Systems: Synergy of Control, Computing, and Communications, 2011.

130



[63] E. Gül and V. Gazi, “Adaptive internal model based formation control of a class

of multi-agent systems with switched exosystems, ” in Proc. Chinese Control and

Decision Conference, pp. 6–13, May 2012.
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