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Abstract

Accurate and timely information on road weather and surface conditionstar aasons is a necessity

for road authaties to optimize their wintemaintenanceperations and improve the safety and itityb

of the traveling publicOne of the primary tools for acquiring this information is road weather
information systems (RWISWhile effective in providingeattime and neafuture information on

road weather and surface conditions, RWIS stations are costly to install and operate, and therefore can
only beinstalledat alimited number of locationsl o tackle this challenging tasthis thesis develops
variousdifferentapproachem anattempt to determinthie optimal location and density oweregional

highway networkThe mainresearch findingare summarized as follows

First, aheuristic surrog@ measure baseadethod (SM) has been developdavo types of location
ranking crteria are proposeb formalize various processes utilized in the current practice, including
weatherandtraffic related factors. Consideration of these two types of facaptures the needs to
allocate RWIS stations to the areas with the most severe weather conditions and havingetite hig
number of traveling publicA total of three location selectiaiternatives argenerated andsed to
evaluate the current Ontario R8/network. The findingindicatethat the current RWIS network is

able to provide a reasonalggod coverage on all location criteria considered

Second, @ostbenefit based method (CB) has been proposed to give an explicit account of the potential
benefits of an RWIS network in itscation and density planninghe approach has been constructed

on a basisfoa sensibleassumption that a highway sectiorvered by an RWIS station is more likely

to receive better winter road maintenance (WRM) operatiesse study based on the current RWIS
network in Northern Minnesotshow thathe highest projected 2gear net benefitare approximately

$6.5 millionwith costbenefit ratio of 3.5given thenetwork of 45 RWIS stations.

Third, amore comprehensive and innovative framework has degalopedoy using the weighted

sum of average kriging variance of wintead weather condition®ethodologically, the formlation

of the RWISlocation optimizationproblemis foundational with several unique features, including
explicit consideration of spatial correlation of winter road weather conditions and high travel demand
coverage.The optimization problems then formulated by taking into accourthe dual criteria
representing the value of RWIS information for spatial inferences and travel demand distrithsion.

spatial simulated annealing (SSA) algorithm was employed to solve the combinatorial optimization



problem ensuring convergenck.case study based on four study regiaoseringone Canadian
province Ontario), and three US staté#t§h, Minnesota, and loyaxemplified two distinct scenarios
Tredesign and expansion of the existing RWIS netwditke indings indicate thathe method

developeds very effective in evaluating the existing netwarid delineatingiew site locations.

Additional analyses have been conducted to determine the spatial continuity of road weather conditions
and its relation to # desirable RWIS density based on the case study results of the four study areas.
Road surface tempdrae (RST) was useds a variable of interest, aitd spatial structure for each
region was quantified and modelled via semivariogram. The findings stutige there is a strong
dependency between the RWIS density andatitecorrelationrange- the regions with less varied
topography tend to have a longer spatial correlation range than the rethiomoré varied topography

The approachegproposed andeveloped in this thesgovide alternative ways of incorporating key
road weather, trafficand maintenance factorstanthe planning of an RWIS network in a region.
Decision on which alternative to use depends on availability of data and resdleemsheless, all

approaches can be conveniently implementeddalkworld applications.
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Chapter 1
INTRODUCTION

1.1 Background

During winter monthsmany regions irthe US andCanadaoften experience a high frequency of
inclement weather eventshich can have a detrimental impact on the safety andityaifimotorists.
Generally,road collision rates increase dramatically during inclement weather conditioasto
degraation ofvisibility and traction on the roadwa#. study by Goodwin (2002) indicated that in the
United Statesmore than 22% of totalollisions occurredduring winter weather conditiong/hile a
study by Qiu and Nixon (ZIB a) revealed that snow stormsuld increase the collision rate by 84%.
Ontario Road Safety Annual Reports (MTO, 2@mL0Q showthat vehicle collisionsccurring duing
wet, slushy, snowy, and icy conditions accountedifoto27.5% of total collisions. Wallman (2004)
found that the average collision rate during a winter seasutd be 16 times higher in black ice

conditions than in dry roacbnditions

Thereis alsoextensiveevidence showing that inclement winter evarda significantlyaffecttraffic
mobility. A study byLiang et al.(1998)found thatsnow eventsvould reducethe averageperating
speed by 18.13 km/hwhile Kyte et al.(2001)showedthat snowcould causeup to 50% reductiom
speedA comprehensivanalysis byAgarwal et al(2005) indicated that snogwentsat various severity
levels causa 4.2922.43% and 4.1-13.46% reductions in capacity and average operating speed,
respectively. More ramiy, *Kwon and Fu (2011) antkKwon et al. (20B) confirmed that winter
weather eventgould negatively affect the mobility of road uspthey establisked an empirical
relationship between road conditions, and capacity andltreespeed (FFS) of urban highways. Their
findings indicate that slippery roadsan reduce thecapacity and FFS by 44.24% and 17.01%,
respectively In general, snow storms that tyaliy result in poor road conditions are strongly related
to high collision rates, reduced roadway capacitydreduced vehiclspeed Wallman and A strém,
2002, Datla and Sharma, 2008

1 Kwon, T.J., and Fu, L. (2011). Effect of Inclement Weather Conditions on Macroscopic Traffic Behavior. Paper present@fl at the
International Transportation Specialty Conferer@@anadian Society for Civil EngineerinBdmaton, AB., 2011.

2 Kwon, T.J., Fu, L., and Jiang, C. (2013). Effect of Winter Weather and Road Surface Conditions on Macroscopic Traffier®aramet
accepted for publication ifiransportation Research Recortburnal of the Transportation Research Bollational Research Council.
Washington D.C.
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To minimize these safety and mobility impacts caused by winter weatbetsan effectivesnow and

ice controlprogram is required to deliverarious winter road maintenanservices such asnow
plowing, sanding, and salting. Not only can efficient and effective winter road maintenance programs
reduce the risk of vehicleollisionsbutthey canalso vitalizeandpromote traffic movement. Fu et al.
(2006) and Usman et al. (2012) showed with strong statistical evidence that lower rates of collisions on
roads are associated with better road surface conditions that could fresulimproved winter
maintenance operations such as-amitig, prewetting, and sandingQiu and Nixon (2008explored

direct and indirect causal effectsamfverseveather and wintenaintenancections on mobility irthe
contextof traffic speed andoalume. Their findings confirmed that plowing and salting operations have
significantpositive effects oimcreasing thespeedat which it is safe to drive

While winter roadnaintenancés indispensablgt entailssubstantiafinancialcoss and environmental
damageNorth American transportation authoritiésr instanceexpend more than $3llion annually

on winter roadmaintenanceactivities such agloing snow removal and applying salt and other
chemicalsfor ice control (Ye et al., 2009;Highway Statistics Publications, 2003Jse of these
chemicaldasbecome aincreasingenvironmentatoncerrbecause they couttbntaminatéheground

and surface watedamageoadsidesegetationandcorrodeinfrastructurg and vehicles. To reduce the
costs of winter road maintenance and the usmald§ manytransportation agenciese seeking ways

to optimize their winter maintenance operations and improve the safety and mobility of the traveling

public.

One approach to impraong the decisiormakingprocess for roachaintenancés to make use of real

time information(i.e., for monitoring the current road conditions) and forecasts (i.e., for predicting the
nearfuture road conditionp through utilization of innovative technologiesich asroad weather
information systers (RWIS). Thisthesisis particularly concerned with a problem of locating RWIS

stations in such a way that the benefits to maintenance personnel and road users can be maximized.

1.2 Road Weather Information Systems (RWIS)

RWIS can be defined as a combination of advaneelnologieghat collect,transmit process, and
disseminate road weather and condition information towiglier road maintenanc®{RM) personnel
make timely angbroactivewinter maintenance decisiorithe system collects data using environmental

sensor stations (ESSand nowcast and forecasbadwayrelatedweather and surface conditions

2



Implementation othis information not only enables the use of eefective WRM but also helps

motorists make nte informed decisions for their travel.

There are two types of RWIS ESS (hereafter referred to as RWIS statithrey ardbeing used
interchangeably)namely,stationary and mobile. A stationary RWIS station is installed in situ within
or along a roadwagindcollecss data at a fixed locatignvhile a mobile RWIS station is installed on a
patrolvehicleandcollects data as it travels along the road network. Due to their different data collection
mechanismgsthe stationargystemprovides high temporal but low spatial coveraghile the mobile
provides low temporal but high spatial coveragéerefore the information collected on road
conditions between RWIS stations must be interpolated and/or generated using other souteds (Ye e
2009). An RWIS stationdiscussedh thisthesisconnotes a stationary station, which typically consists

of atmospheric, pavement, and/or wdeasrel monitoring sensors that constantly (everyl50min)
collectroad weather and surface conditioneasurementsFurthermore, each RWIS station reports
road surface condition status based on current observations: areas that experience hazardous road
surface conditions (HRSC), which include snow/ice warning, ice warning, wet below freezing, and

frost, are lagged for a prompt rerd@l winter maintenance action, as summarized in Tallle 1

An RWIS generally consists of pavement and atmospheric sensors, remote processing units (RPU),
central processing units (CPU), and communication hardware (e.g., wired and wireless) as depicted in
Figure 11. The most visible components of stationary RWIS are gioadtowers equipped witma

RPU, to which pavement and atmospheric sensors are connected. Measurements from a typical RWIS
station include but are not limited to air and pavement temperatuined speed and direction
(sub)surface temperature and moistyrecipitation type, intensity and accumulatiersibility ; dew

point, relative humidity and atmospheric pressurblgnfredi et al. 2008. While not commonly
included as part ofraBRWIS station, water level sens@me deployed in floogirone areas to monitor
site-specific characteristics arzbnditions Somestations are also equipped with live webcams to
provide informatioron conditionsat the sensor location. These measurements from RPU can be made
available diretly via a dynamic message sign (DMS) to alert road users ohamgrdousoad
conditions, and/or transmitted t@ervemwhere all data from remote locations precessed;ompiled

and sent téhe end userg-orecasting services from external sourcag be combined with the RWIS

data to generate shdgrm road surface temperature and condition forecasts. RWIS data can also be
accessed directly by maintenanpersonnel viafor instance, web interface for monitoring and

analyzing reatime sitespecific road conditions and trends, and acquiring the latest forecasts.
3



Table 1-1: RWIS Surface Condition Status Definition
(adopted from Mn/DOT SCAN Web, 2015)

Surface Condition Status

Description

Continuous film of ice and water mixture at or below freezingK32
0°C) with insufficient chemical to keep the mixture from freezing

Continuous film of ice and water mixture at or below freezingfk32
0°C) with insufficient chemical t&eep the mixture from freezing

Moisture on pavement sensor with a surface temperature below fre
(32°F / °C)

Moisture on pavement at or below freezing°@B2(°C) with a
pavement temperature at or below the dew geimiperature

Ice Watch

Thin or spotty film of moisture at or below freezing {82 (°C)

Snow/lce Watch

Thin or spotty film of moisture at or below freezing {82 (°C)

Continuous film of water and ice mixture at or below freezingK32

ElnemEE] e 0°C) with enough chemical to keep the mixture from freezing

Wet Continuous film of moisture on the pavement sensor with a surface
temperature above freezing (82 (°C)

Damp Thin or spotty film of moisture above freezing {B2 (°C).

Trace Moisture

Thin or spotty film of moisture above freezing {82 (°C). Surface
moisture occurred without precipitation being detected.

Absorption at Dew Point

Currently not detected

Absence of moisture on the surface sensor

Other Conditions not explicitlyncluded in this table
No Report The surface sensor is not operating properly and requires mainteng
Error The surface sensor is not operating properly and requires mainteng




Atmospheric Sensors
(Air temp, wind speed
and direction, precipitation, etc.)

Network Communication
(Hard wired or wireless)

Information

Dissemination
to users

CPU Server

Dynamic Message Sign
(optional)

o, SLOW

ICE ON
BRIDGE

Figure 1-1: Major componentsof an RWIS station

Since the advendf sensor baseBWIS technolodes in European countidsgetween late 1970s and
early 1980s, the system has gradually eareedgnitionfor being a primary tool to aid and improve
WRM operation decision§ubsequentiyjthe systemwas extensively adopted and usedossEurope
and North America as a means to enhance road weather and contbtiitoing and prediction
capabilities.

1.3 Current Practices on RWIS Network Planning

Transportation agencies that areerested in installing RWIS stations often face two relevant questions:
how many RWIS stations should be installed to cover the road network and where should the new
RWIS stations be placed. Answering the first question is equivalent to determinomgithal density

and spacing of RWIS stations, i.e., determining the number of stations that are required to provide an
adequate coverage of a region of interest. Despite of the importance of this ptbbterare fewools
andguidelines currently avableguiding the decision procesa single reference most widely being

adopted is the RWIS sitting guidelitlevelopedby FHWA in 2008, which recommends an average
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spacing of 3660km along a roadwayanfredi et al 2008). However, this recommendation eqs

to be originated from the existing practice and experience with little scientific justification. Intuitively,
the number of RWIS stations required for a region depends on the spatiotemporal variability of the
region. Regions with winter weather cotialis of high spatial variability would require a higher
number of RWIS stations than thosdathwuniform weather conditionsCurrently, authorities
responsible for RWIS planning have no reference available to assist them deciding the optimal density
for their regions. Their decisions are primarily dictated by available budget with no information on the
adequacy of their RWIS network thus the cost effectiveness of their investment.

In comparison, the problem oélectingsuitablelocations for a given number &WIS stations has

received relatively more attention recently because of its critical rolgowernng the overall
effectiveness of the sensor suite and the representativeness of its observations on various road weather
andconditions.As part ofa Federal Highway Administration (FHWAstudy, Manfredi et al.(2005)

proposed a heuristic procdss choosing the location of RWIS stations. First, weather zone maps that
show regions exhibiting similar weather characteristicpatterns (i.e., regional representativeness)

are examined with the support of meteorologists. Regional representativeness in this context refers to
an area that experiences uniform and stable road weather and surface conditions such that it minimizes
the mssibility of adverse local weather effects and influences from othewaather factors including

heat, moisture, and wind barriers. Once the regions are determined in accordance with regional site
guidelines, local maintenance personnel are consultédemdify the unique characteristics of each

region and provide a general assessment of potential candidate locations. In this stage, planners ensure
that the station would be located to satisfy road weather information requirements. Examples of these

requrements include:

1.  Areas with poor road surface conditions (RSC) such as historically cold spots that are likely

to create slippery conditions, or spots likely to experience significant drifting snow,
2.  Low-lying road segments where surface flooding rmegur,
3.  Areas with low visibility due to, for instance, a large local moisture source, and

4, High-wind areas with frequent occurrences of hurricanes along a confined valley or ridge

top.



Other than those mentioned above, there are other local sitimgjderations such as power,

communication, aesthetics, safety, and security.

Thermal mappingTM) is a technique that has been applieddtermine the location of RWIS stations
at some ofthe hotspots described abo\&ustavsson, 1999)TM is a proces®f identifying the
variation pattern of pavement surface temperature atmaudyvays by creating road surface temperature
(RST) profiles TM makest possible to precisely identifgold trouble spots (i.e., potential location of
RWIS stations) that may rage more frequentonitoring andadditional maintenance treatments
(Zwahlen et al., 2003)Nevertheless, it requiressibstantiahmount of time and effort, particularly for
cities that are in need of a largealed implementation, posing a significant limitation of its
applicability at the regional level.

Fu and Kwon (2012) conducted a sursge AppendixC) to review and examinthe current best
practices for locating RWIS stations. In this survegst of theNorth Americansurveyparticipants
stated thatheywould consider requirements simikarthosementioned above (i.e., hot spots such as
ice and frost) when there was a dde install an RWIS station. The survey alsevealed that
participantavould consider other neweathefrelated requirementscludinghighway class, collision
rate, traffic volume, and frequency of winter maintenance operatchgling salting and pdwing.
These results indicate thatlocating RWIS stations transportation agencies would consitesnly

the meteorologicatepresentativeness but atbe potentiahumber ofusers- travelerswho would be
served. Te survey further showed that magiadecisionon where to locatastation generallgntails

a series of discussions and interviews with many individnalsdingmeteorologistdraffic engineers,
regional/locamaintenanceersonnel, and other industry experts. Despite such eff@teattealways
tradeoffs in choosingnelocationover anothebecause #ocation which satisfies one site condition
may not be optal for another site conditiorzor example, amrea with high winds may ndiave
significant snow accumulation. Another important factor to consider when installing an RWIS station
is the proximity of power and communication utilities to endina the data could be obtained and
processed in real timEurthermore, RWIS statiaeployments ar@always constrained light budgets
(BuchanarandGwartz,2005)



1.4 Factors Affecting Road Surface Conditions

Information on spatial variation of road surface condgi@SC) along a roadway is deemed essential,
particularly for highway authorities and road users to know when and where hazardous conditions are
likely to occur during adverse winter weather events. Likewise, this informaientical when
determiningcandidateRWIS locations as it helps delineate-Bpots as emphasized earlier (e.g., cold

and icy).

The variation of RSC over a road network is affected by many factors, ranging from atmospheric and
climatic, to geographical and topological. For examjtie,likelihood of having black ice or frost is
determined by the energy receipt and loss at the road surface (Shao et al., 1997). This energy flow is
affected by a number of factomsamely,atmospheric conditions (e.g., cloud cover, wind speed, and
precipitation type and rate), climate patterns in both micro and macro levels, geographical features (e.g.,
vegetation cover and presence of buildings/obstructions), topographical settings@atginous, flat,

or rolling), and traffic In addition, locational attributes suchlastude longitude elevation, distance

to coast, andelativetopography have been shown to affect RSC by a significant antenkegonand

Norrman 2001).Vehiculartraffic is another important contributing fact@m increasedolume of

slowly moving vehicle can produce temperature differences of up®® @Vhite et al., 2006)These

factors collated together can causeoasiderableamount ofvariationin RSC fromone location to
another; for instance, winter RSiUring night-time can fluctuate as much as AM along a regional
roadway (Shao et al., 1996).

As mentioned earlieg thermal mapping technique can be utilized to quantify the spatial variations of
noctunal RST on any given stretch of roads. This technique has long béavoirof local RWIS
planners who could amicablxaminethermal fingerprints and install RWIS stationscatmmon
trouble spots. However, thermal mapping can be very laborious ang dostto its nature requiring
in-situ data collection, it remains a challenge to adopt and apisiytechnique for mapping spatial
variation over large regionabad network, which is required for RWIS network planniricherefore,

it is essential to devep an effective methodology for representing and mapping spatial variation of

RSCas an input to the RWIS location optimization process



1.5 Problem Statement

While effective in providingraluableinformation RWIS stations are expensive to install and operate
and, therefore, camly be deployed at a limited numberoéations Considering the vast road network

that often needs to be monitored and the varied road conditions that could develop durin@Wiger,
stations must be placed strategically to ensure they are collectively most informative in providing the
inputs required for accurate estimation of the road weather and surface conditions of the whole highway
network. Currentlyhowever, therare sigificant gaps in knowledge and methodology for effective
planning of RWIS stations over a regional road netwdtie following paragraphs summarizbe
limitations of the currentnethodsandthe needs for neapproaches to the problem of locating RWIS
statons:

1 The current RWIS deployment schemes rastly heuristicdependent heavily on subjective
opinions of maintenangeersonneWwith thelack of rationaleand consistencider choosingone
locationoveranothemwhendetermiring RWIS sensor sites. Thuds critical to formalizehose
heuristic approaches being adopted in practice such that the process of locating RWIS can be

moresystematic

1 While theheuristicapproaches for choosing senkmrationsareintuitive andreflectionof field
experts, an ltimate approach would b® takea full account of the costs and benefits of an
RWIS. There area fewRWIS costbenefit studies conducted in the past; however they do not
provide systematic evidence mfospectivanonetary savings from RWIS installatioAs such,
it is necessary to develop an RWIS ebshefit model by establishing a clear relationship
between the various criteria being used in practice and their associated beR&fitS stations,
and use suchodelsto delineatenew potential RWIS stins locations so as tmaximize the

benefits to all RWIS users

9 Asdiscussed earlier, RWIS information makes possible to perform proactive maigenance
operationssuch as anticing, which reduces the amount of time required to restore the tmads
clearanddry state at lower costSince the largs portion of RWIS benefits lies in the use of
RWiISinformation it is sensible to locatée stations in such a way that would produce the most

accurate prediction on the RSC of the entire networks Téisimilar to the problem of



maximizing the monitoring capabilities of a sensor network, which requires addressing the

challenge ofievelopingcorrelation patterns of RSC based on the spatial RWIS measurements.

1.6 Objectives

As describedroad authoritiegsurrentlyfollow a laborious and timeonsuming, yet subjective and-ad
hoc proceswhendecidng RWIS station locations. Furthermore, decisionsuitableRWIS locations
can ofterbecomechallengng, given that multipléactorsmust beconsideed The primary goal of this
thesis therefore, is to develagnd evaluate alternative approacf@sdetermining the optimal RWIS

stationlocatiors over aregionalhighway networkThis thesishas the following specific objectives:

1. Formalize varias heuristiapproachefor determining theandidateRWIS station locations
by incorporating criteria being considered in practicend evaluate thémplications of

alternative location selection criteria.

2. Construct a cogbenefit based approach to thelglem of findingtheoptimallocationof RWIS
stations bytaking an explicit accountf the benefits of RWIS informatiosuch aseduced

maintenance costs and collisions.

3. Developaspatial inferencbased approach such that the resulting RWIS nktprovides the
optimal sampling patterby considering the spatial variability &by RSCvariables (i.e.,

hazardous road surface conditions) and interactions between candidate RWIS station locations.

4. Evaluate theexistingRWIS network, make recommendation of new potential RWIS station
locations usingheproposednethodologyand demonstrate the effectiveness and applicability
of the proposed methods through caseistud

5. Develop guidelines for determining the optimal RWiSwork size (density or spacing)

based on the spatial variability of road weather conditions of a region.
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1.7 Organization of Thesis

This thesis consists fif/e chapters. The remaining thesis is organized as follows:

In Chapter 2, a literature review isgsenteaovering current RWIS station location selection practices,

RWIS benefits and costgeostatistical analysfer spatial inferenceand facility location models

Chapter 3 dagibes the proposed methodology which consists of three distimottieods including
surrogate measures (SM) based approachpbewstfit (CB) based approach, and spatial inference (SI)

based approach

Chapter 4first presentsa sensitivity analysis of the optimization parameters, and desthibesal
world case studig which encompass study areas, data descriptions and processing, and application of

the three methods developed herein.

Chapter Sighlights the maircortributions of this research and potential extensions for future research.

11



Chapter 2
LITERATURE REVIEW

In pastdecads, several RWIS station location selection strategies have been explored and developed.
Some have used heuristic measures while othersdusstdered the variability of weather conditions

for locating RWIS stationsHowever, therestill exist someresearch gaps and challendbat are
associated witldesigning an optimal RWIS network at a regional leVéis Chapter provides the
literature review otthe past effortenlocating and/or optimizing RWIS stations using different location

criteria.

This chapter is divided to four parts. In the first section, previoggidieson RWIS station location
selection strategiemrepresented.nl the second part, past studies demonstrating the RWIS benefits and
costs are described@he third section explainslkaiging method for making spatial inference, which
forms a foundation fodeveloping an approach that maximizes the monitoring capabilities of an RWIS
network.Finally, thefourth section discusses théscrete facility location problems and several sohuti

algorithms.

2.1 RWIS Station Location Selection Strategies

As previously discussedhe existing guidelines andturrent best practices that most transportation
agencies havadopted for deciding where locate RWIS stationgnay not be optimal ancan ofen
be challengedDespite thesehallenges, very few studies have been conducted to address RWIS

location problems.

Eriksson and Norrmaf2001)undertook atudy on optimally locating RWIS stations in Sweden where
they identified conditions hazardousrtiad transport as @iterion for locating RWIS statioret the
regional level In their study, theydentified 10 different slipperiness types using one wiséason of
RWIS data, and linearly regressed each type \aidation attributes including latitle, longitude,
elevation distance to coast, etc. With the resulting regression mibegi,mapped out the occurrences
of each slipperiness typmver the entire study area. Candidate RWIS sites ree@mmended based
on the estimated slipperiness couwarts four different landuse groups. Although their propasethod

seems to provide a good referencednalysis of station locations with respect to various locational
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attributes and landuse types, it is a heuristic approankidering only one locationitriond road
weathercondition. In addition, those authors did not provide mexglanation/justificatioras to how
their four landusegroups such as forest/water, open/water, forest, and ameais were determined.

Such a categorization schemealeemed gbjective and thus scientifically less persuasive.

Another study byVorld Weather Watck2009 conducted climatologicatudy ondeterminingRWIS
station locationsFocusing onthe general guidelines adopted by many transportation ageriges, t
study reviewed micrometeorological variations by investigating local physiography, topography,
temperature, andnow precipitation amounh a small study area. The study also took into account
hotspotghatrequite regular monitoringasidentified by themaintenance personnel. By combining all
those factors, a list of highisk siteswereidentified as the recommended locations for new RWIS
stations in the region.

Alberta Department of Transportaticonducted aimilar but more inclusive studyin whicha new
approachwas proposedo determine the location of RWIS stations by identifying and analyzing the
RWIS-deficient regions (RDR) and by following general budget guidelines, respediiatkinnon

and Lo, 2009 Similar to what the general guidelinesggest,heir approach consit of two parts:

macroor regionalassessmentand microor local assessments. In the macro assessment phage, the

took into account several factors when determining the RB&orssuch as traffic loads, accident

rates, dmatic zones, availability of meteorological information, and discussions with regional road
maintenance personnel and key stakeholders. In the micro assessment phase, among the selected
subset of new potential RWIS locations, a final site was selectecbibglucting detailed field visits to
ensuresite suitability andprojectfeasibility, for exampleby ensumg appropriate sensor selectiand

configuration,conformance wittbudget,andaccess to power.

Thesetwo studies, while logical in methodologyack scientific and systematic formulation of
justification onhow all those factors/criteria are put together to deterthi@otential highrisk sites.
More importantly, both studiedid notprovide a clear linkage between the considerédria and tk
purposes of RWIS stations. Hostance, the latter study included accident rates as aheiopotential
location selection criteria, but did nestablish a solid rationale as to why such a criterion shzaild
given a priority when choosing a new &bion. Without a validjustification/explanation on why each
location selectiorcriterion is considered and utilized, incorporation of ssekection criteria in the

studies cannot be legitimized.
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Two recent studies hdin et al.(2014)andZhaoet al(2015) attempted to address the RWIS location
problem using a mathematical programming appradiotet al. (2014) used weathedated crash data

and converted to a Safety Concern Index, using which the locations providing a good spatial coverage
were identified as optimal locations. Zhao et al. (2015) appliedctirecept ofinfluencing area to

capture the effects on weather severity and traffic volume, and delineated a list of potential RWIS
stations locatioswith the distance to existing RWIS statsoconsidere@xplicitly. While the spatial
variability is partially accounted in these two studies, the effect of distance and spatial patterns
associated with a particular region are not fully utilized, and furthermore, the models presented do not
accountor the ultimate use of RWIS information for spatial inference.

Currently, the majority of provincial and municipal transportati@gencies relyheavily on the
experience of regional/local maintenangersonnelfor determining the potential RWIS station
locations All of theinformation(e.g., historically icy spots¥ put together throughseries of faceo-
face meetings with key stakeholders &iettl experts to narrow down various candidate locatiorss to
manageable size and decide based on the badggability. Finding a solution through this process is
laboriousand timeconsumingHence, a method, which formalizes all thseristicsfor the purpose

of locating candidate RWIS statiqris of high priority.

2.2 RWIS Benefits and Costs

As statedbriefly earlier, informatioravailablefrom RWIS, forinstance detailed and tailored weather
forecastscan provide substantial benefits to us8esforeRWIS technologywasintroduced, highway
maintenance agencies reacted to current coaditionsor forecasts obtained from only tpeblically
available weather sources. Road patrollers were typically sent out to check road weather conditions,
and when roads became icy or shmavered maintenancepersonnelwere notified This type of
reactive responseas inefficient and expensive in both time and mate(Bdselly, 192). On the other

hand, RWIS provideinformation thatoffers proactiveways of doing businesand thereforemore

efficient and coseffective WRMoperationgan be realized to promotestar and safer road conditions.

Table2-1 identifies and summizes thebenefits ofusingRWIS-enabled winter maintenance practices.
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Table 2-1: RWIS-Enabled Winter Maintenance Practices and Associated Ben&di

(adopted from Boon and Cluett, 2002)

RWIS-Enabled Associated Benefits
practices
Anti-icing A Lower material costs
A Lower |l abor costs
A Higher level of service (im
time savings, and improved mobility
A | mpgafety (&eder crashes, injuries, fatalities, property dama
A Reduced equi pment use hours
A Reduced sand cleanup requir
A Less environment al i mpact (
air quality)
A Road surfacamslwaetmdrequickig d t o b
A Safe and reliable access, i
Reduced Use of Routng A’ Reduced equi pment use hours
Patrols A Il mproved | abor productivity
CostEffective A Reduced | abor pay hours
Allocation of Resources| A R e dveekemdland night shift work
A I mproved employee satisfact
A Reduced maintenance backl og
A More timely road maintenanc
A Ilncreased |l abor producti vit
A Overall higher Il evel of ser
A More effective | abor assign
Provide TravelerBetter |A Bet ter prepared drivers
Information A Safer travel behavior
A Reduced travel during poor
A Fewer crashes, injuries, f a
A Ilncreased customer satisfac
A I mproved mobicdnsumpgion/ reduced
A Safer, more reliable access
Additional Benefits A Share weather data for impr
A Support the devel opment of
A Ilnsurance companies by det er
A U s lengfernrecords and climatological analyses
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Whentailored road weather forecast informatisavailable from RWIS, it becomes possible to predict
nearfuture road weather conditions. With suoformation antiicing chemicals can be applibdfore
asnowstorm hitsto prevent or minimize the formation of the bonded snow and iceslége3HRP,
2000).Whensnow and icareprevented from bonding to the road surfabe,surfacebecomes less
slippery, thus increaisig traffic safety and mobility. Since the treatment is done proactively, a smaller
amount of chemical is required to prevent the bonding than when applied to existing snow and ice
layers,andthusredudng the environmentampact. According to more than 168se studieantiicing

in conjunction with RWIS can result in substantial cost savinggarticularly from reduced
material/labor/equipmentsagg Epps andArdila-Coulson 1997).

Another potential benefit of implementing RWIS technol@ygductionin theneed for routine patrols

for monitoring road conditions (Boselly, 1993). Wikie availability oRWIS informationthenumber

of routine patrols can be reduced significantly by directly observing the site conditions without visiting
the site in persgrthe camera sensor becomes the eyes of road maintengre®gisorsywho cannow
monitor the current situation of the site in a remote area wittxheaustinghe use of road patrols.
Havinga smallenumber of patrols resglin reduced equipment usagedamproved labor productivity
(Boon and Cluett, 2002).

Costeffective allocation of WRM resources is also possihaisingsite-specific road weather and
condition informationavailablefrom individual RWIS stations. &dd maintenancsupervisorscan
betermobilize theavailablecrew and equipmelinh terms oftime and location. Thisfficiencycanlead
to more effective labor assignmenthus increasng labor productivity and impramg employee
satisfaction (Ye et al., 2009).

RWIS makes it possible to disseminatéormation oncurrent and neduture road conditions via
websites anddynamicmessage sigrnsothat travellersan make better decisions on when, where, and
how to travel A recent study oRWIS andvehiclecollisionratesshowed that a well maintained RWIS

networksignificantlyreduce collision rates(Greening et al., 2012)

Implementing RWIS technologyan alsamprove weather forecasts Ibiye sharingof weather data
availablefrom RWIS. Use of additional weatheinformation from individual RWIS stationsan
enhance future weather prediction capability by generating more accurate forecasts. Insurance

companies an also benefit from using RWIS data to help determine risks of potential impacts from
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foreseeable weatheevents. Furthermore, state climatologists and other organizations such as
government andiniversity can use RWIS data for lofigrm climatological analyses and for the

development of road weather forecast models (Manfredi et al., 2005).

Some of the abovementioned benefits, particularly the foreseeable savings frarimgnéchniques,

have been evaluatepantitativelythrough cosbenefitanalysesn alimited number of past studies.

The Strategic Highway Research Program of the Nati@esearch Council initiated a research project

in 1991 to evaluate the cdsénefit effectiveness of RWIEpps and ArdileCoulson 1997). The
authors investigated the potential for reducing collisions and minimizing material, equipment, and labor
costswhen antiicing operations were done before an anticipated adverse weather event. Their study
concluded that under certain conditions, the implementation of RWIS anidiagtstrategies could

result in cost savings to highway agencies and reduce coflibip up to 15 percent. Their study also
claimed that areas not under RWIS coverage would haveaim#® snowcovered pavements for
approximately 50 percent of the time, compared with about 40 percent of time for areas under RWIS

coverage.

Anotherstudy peformed in Milwaukee, Wisconsin evaluated the effectiveness of WRM operations
and the associated economic implications for motorists (Hanbali, 1994). The study found that traffic
collision costs and traffic severity during inclement weather conditionsl dmuteduced by as much

as 88 percent and 10 percent, respectively. In addition, the beredist ratio of winter maintenance

operations was 6.5 to 1.

A more recent study by McKeever et al. (1998) introduced a systematic method for highway agencies
to evaluate the costs and benefits of implementing RWIS technology based on a synthesis of the
preceding results. The authors developed a life cycleberstfit model to account for diremsts (e.g.,

RWIS installationpperatingand maintenance costs)reatit savings (e.g., patrol, labor, equipment and
material savings), and social cost savings (e.g., collision cost savings). The findings suggested that the
incremental net present wortt installing a singleRWIS stationwould be $923,000 over a H@ar

life cycle. These foreseeable benefits were calculated based on some site specific conditions (i.e.,
weather, traffic, and maintenance) with the assumed uniform reductiorhestegwould ot be

applicable to other sites (McKeever et al., 1998).
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As pointedout earlier, one of the maiRWIS benefitsis its ability to allow an agency teansition with
confidence to an aniting strategyFrom late 1980s to early 1990s, many US transportation agencies
documented thbenefitsof RWIS driven anticing operatbns. Although th@pproacheandertaken to
guantitatively assess and/or estimate the benefits are lampguye they provide a good indication of
RWIS benefits associated with aiting operations. Table-2 summarizes the findings reported by

individual agencies.

While the aforementioned studies provstenequantitativeevidence that implementing RWIS is cost
effective relative to having no RW|8specially by the use of RWIS enabled-&itig operationsthe
methodaused in these studieselimited in several waysvith the inability to quantifihe sole benefits
of RWISbeing the primary on&his is a challenging taslecausén practice, in additioto the RWIS
information many other sources of informati@me oftenused in the maintenana@gcision making
process. Tus, thereis a needto developan approach for determining the benefitssociated
exclusively with RWISthat can be incorporated intacastbenefit based modébr finding the most

beneficialRWIS location

Table 2-2: Cost Saving Resulting from Antilcing (adopted from Boselly, 2001)

Agency Reported Cost Savings
1 Sand use decreasby55%. All costsconsidered, winter
Colorado DOT operations now cost $2,5@@r lane mile versus5,200
previously.
1 Saved $12,700 in labour and materials atlonation in the
Kansas DOT i . . L
first eight responses using antt icing strategy.
1 Reduced costs for snow and ice control fig®6 per lane
Oregon DOT , S . .
mile to $24 per lane mile ifneezing rairevents.
Washington DOT 1 Savel $7,000 in labour and chemicals for thtest locations.

1 Accident claims reduced 8% on snow day&amloops, BC:
estimated savings I€BC $350,0066750,000 in Kamloops

1 Potential annual savings of up to ®@lion with reduced
windshield damage.

ICBC (Insurance
Corporation of
British Columbia)
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2.3 Kriging for Spatial Inference

In designingan environmental ometeorologicalmonitoring network, development of efficient
planningproceduress deemed a fundamental task for accuratelgerstandinghe spatial variations

of, for instance, hazardous road surface condit{pt®SCs) which can be readily estimated using
RWIS information(refer to Table 41). The problem can then be formulatedaasoptimalmonitoring
networkdesignwhere the primargoncernis to locatea givenset of RWIS stations such that the best
possible estimation results are guaranteed. Such problem formulation can be justified under a
reasonablassumptiorthatthemore a&curate the RWIS estimationeasurementre, the more benefits

are likely to be obtained hytilizing various efficient winter maintenance operations (e.g.sieini).

Kriging is ageostatisticatechniquewidely used in optimizinga monitoring networkThe techniqués

able to provide a best linear unbiased estimator (BLUE) for variables that have tendency to vary over
space (Yeh et al.,, 2006Jhe main idea behind kriging is that the predicted outputs are weighted
averags of sampledata, and the welgs are determined in such a way that they are unique to each
predicted point and a function of the separation distance (lag) between the observed location, and the
location to be predictedn addition kriging provides estimateand estimation errorat unknown
locations based on a setafailableobservations by characterizing and quantifying spatial variability

overthe area of intereg¢Goovaerts, 1997).

Previousstudiesn a variety of different fields revealed the applicability and usefulness of geostatistics
as a tool for an optial selection of sites for monitoring environmental (e.g., groundwater) and
meteorological (e.g., average air temperature) variables. Fompéxamumber ofauthors usedhe
geostatisticgechnique tooptimize the groundwater observation wells dglineatingthe locations
having maximum kriging error variance (Prakash and Singh, 1998; Cameron and Hunter, 2002; Nunes
et al., 2004Nunes et al.2007;Yeh et al., 2006; Brus and Heuvelink, 2007). Another study conducted
by van Groenigen et al. (1999) employdtkaristicoptimization approach namely simulagathealing

(SA) to determine the optimal soil sampling schemes for obtaining the mikiigalg variance.
Another study by Amorim et al. (2012) addressed the problem of planning a network of weather
monitoring station®bservingaverage air temperature. The authors used the geostatisteatainty

of estimation and indicator formalism tongider in the location process a variable demand surface,
dependingn thespatialarrangementf the stations, where the optimal set of locations were determined

by incorporatingwo heuristicmethods suchs simulateénnealing and generic algorithms.
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The following sections introduce the kriging paradigm and three of its most important variants: simple

kriging, ordinary kriging, and universal kriging.
2.3.1 The Idea of Kriging

Kriging is agenericterm coined by geostatisticians for a family of generalizest-Brpuares regression
algorithms in recognition of thpioneeringwork of a miningengineey Danie Krige (1951)Kriging
provides estimates at unknown locations based on a aetitdibleobservations by characterizing and
guantifying spatial variabilitpf the area of interest. Leandxcbe location vectors for estimation point
and a set of observations at known locations, respectively kwith, . . . ,m, andZ be a variable of

interest. Based om number of observations, we are interested in estimating a condition at any given

location, denoted by_é(x).The expression of a general kriging model isoflews (Goovaerts, 1997):
gx) =m(x) +a /. [Z(x) - m(x,)] 2-1
k=1

wherem(x)andm(x) are expected values (means) of the random vari@btandZ(x,), and/, is a

kriging weight assigned to datufiix.) for estimation locatiom.

The kriging estimator varies depending on the model adopted for the random furfgjidaesf. All

kriging variantsshare the same goal of finding weights that minimize the variance of the estimator:

s2(x) =VanZ(x)- Z(x)} under the constrainE{Z(x) - Z(x)} =0 2.2

The random fieldZ(x) can be decomposed intwd componentfiamely residuatomponeni(x), and

a trendcomponenm(x), and expresseaksZ (X) = R(X) + m(x) with R(x) interpreted as a RF having a

stationary zero mean agdvarianceCg(h):
E{R()} =0, CoR(x),R(x+h)} = E{R(x) GR(x + h)} = C,,(h) 23

wherehis a lag or separation distance between the observed poinGz(Ahid the residuatovariance

function, which is typically obtained from a semivariogram modgh). Under a second order
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stationarityassumptior{(i.e., constant mean, amtvariancds dependent solely on distance vedtor

between any pairs of points), the following expression is satisfied (Goovaerts, 1997):

Ci(h) =C(0) - g(h) =Sill - g(h) 2-4

whereSill denoteghesemivariance value for large lag distances where spatial autocorrelation between
the data appears to be very small thegligible Therefore, the semivariogram that is used in the
kriging system represents the residual component of the variable oftinkzes of three main variants

of kriging can be distinguished according to the model considered for thectneipnentm(x).

2.3.1.1 Simple Kriging (SK)

Simple kriging (SK) assumes the meaifx), to be known and constant over the entire study area as
depictedn Figure 21. Black dotsappearedh this figure can be measured values of, for instance, any
environmental or meteorological variable. The centerline represents the mean of the measurements that
are constant over the global domain (i.e., 0 to 40) whéheagertical dashed lines delineatditrary

local segments or boundaries.
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Figure 2-1: An example of Simple Kriging (SK)
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With such assumptions, Equatiori Zan be rewritten as:

m
Z () =m+ @ /3 ([Z(x) - ] 25
k=1
WherefSK(x) and / ;" (x) are SK estimate at and vector of SK weights for the estimation point,

This estimate is then unbiassthce%® w & T, such thate® %0 W a.

The estimation errotp & & o hcan be regarded as a linear combination of random variables

representing residualB(x) at the estimation point arR{x) at the data point:

£~ 200 =[Z () - M- [2(9) - m]

m % 2-6
=8 /50ORM) - RO) = R - RO

where'Y W w a andY® @ &. Using the variance rules, the estimation error

variances 2 (X) at sitex is shown in Equation-Z (Olea, 1999):

SE(X)=Cr(x%)- 2/, (N Cr(x.0+@ &/, (» /;(X) Cr(X,X;) 2-7
k=1 k=1 j=1
The optimal SK weights, which minimize the estimation error variance, are subsequently dipgained
takingthe derivative of Equation-2 with respect to each of the SK weights and setting each derivative
to zero. This leads to the following system of equations (Goovaerts, 1997):

'a?_/fK(x) Cr(X: %) =Cr(X, %), k=1..m 2-8

j=1

Since SK assumes the constant meanctivarianceunction forZ(x) can be explained in the same
way that for the residual componeR{x), i.e.,C (h) =Cr(h), the SK system can be written directly in
terms ofC(h):

é/jSK(x) C(%.,%;) =C(%,%), k=1..m 2-9

=1

The SK errowariances then given by:
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S2(0=CO)- A /() C(x,X) 210

k=1

For a more compact display of the results, Equatircan beonvenientlyexpressed in a matrix form
as
/ s (X) = G5Ok 2-11

where

/() =[/, /, 2 [/,]" isthe vector of the optimal SK weights for the estimator in Equati&n 2

eC(x,%) 3 Clx.%,)o
G = g 4 6 4 3 is the matrix ofcovariance between data points, and

EC(XmX) 3 C(Xy %)M

Ok =[C(x, %) 3 C(x,,%)]" is the vector ofovariancedetween the data and estimation points.

Once the SK weights are determined via Equatidd 2he kriging estimates can be determined using

Equation 21 and the SK error variance can be computed as:

52(X)=C(0) - /5 (X) ek =C(0) - 95 GixTsk 2-12

2.3.1.2 Ordinary Kriging (OK)

It has been shown that SK entails a strong assumption of known and constant mean over the entire
domain for solving the problem of finding weights that minimize the variance of the estimation error.
Onthecontrary Ordinary kriging (OK) assumes the mearbe unknown but constant over each local
neighboring area as depicted in Figu+2.2

This indicates that OK accounts for local fluctuations of the mean by limiting the donsaatioharity
of the mean to the local neighbourhood (Olea, 1999). Thisvaid assumption particularly when
dealing with environmental eneteorologicalariables that typically show numeridhlctuationsover
space (Goovaerts, 1997; Ahmed et al., 2008).
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Figure 2-2: An example of Ordinary Kriging (OK)

Hence, the kriging estimator can be expressed as (Olea, 1999):

ﬁm:é/umzuo+§-a/uw§ww 213
k=1 k=1

Theunknownlocal mean is filtered from the linear estimator by forcing the OK weights to sum to 1.

The OK estimator can then be written as:

£,(0=8/2() Z(x,)
k=L . 2-14
subjectto g /7¢(x) =1

k=1

Again, the weights are determined such that the estimated variance is minimized unrbi&snon
7V
condition E{Z(X) - Z(X)} = 0. Theabove constrained minimization problem can be transformed into

an unconstrained probteusingLagrangiartransformation as followglea, 199%
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L(/1,/ 53 1M =C(xx)+a a !/ C(x ;)
k=L j=1
2-15

- 2a 1 C(X, ,x)+2maa /
Ck=1 +

where Ck,X) is the variance of z{), C(x, X;) is the covariance betweernxg(and zkj),andt is the

Lagrange multiplierThen the weights that produce the minimum estimation variance are the solution

to
ém
ja /i« C(X, %)+ m=C(x, X)
’I‘k:1
%a /. C(X,X,) + m=C(X,,X)
1 k=1
¥ 3333 2-16
T m
ia /k C(Xk1xm) + /m= C(Xm1x)
| k=1
1 m
1 é':'l/k=1
[ k=1

Unlike in SK whereC(h) = Cr(h) is satisfied so that the SK system can be expressed directly in terms
of C(h), the unitsum constraint on the weighisrmitsOK to be expressed in a form of semivariogram

g(h),instead ofC_(h).Once the OKweightsand Lagrange parameter are determined by solving the

system ofequatioss illustrated in Equation-25, the OK error variance can be defined by Equation 2
17 (Olea, 1999):

S2.(x) =C(0) - /OK(X) C(X,X)- m 2-17

k—l

Again, for a more compact displaf the results, the followingquation expressed amatrix formcan

be used to determirike kriging weights:
/ o (X) =VikVox 2-18
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loc(X)=8/18 Vo =C(%,%) 3 C(x,%X,) 1B Vox =€C(x,X)g
é ., u é U e u
é4u, é 4 6 3 4\, é 4 u
é/ 0 €C(Xn %) 3 C(Xy X,) 1U €C(X,,, X)U
e u e u e u
& /my e 1 3 1 04 é 0

Upon determination of OK weights, the OK error variance can be calculated as:

séK (x) =C(0) - VgKVO_IiVOK 2-19

2.3.1.3 Universal Kriging (UK)

In the last decade, there has been an increasing interest in hybrid interpetdtiogueswhich gained

much attention among gstatisticiansHybrid techniques are referred to as methods kvhambine

two conceptually different approachesiodelingand mapping spatial variability. One of these hybrid
methods is called universal kriging (UK) which is based on point observationegredsiorof the

target variable on spatialgxhaustiveauxliary information(Hengl et al., 2007). It imathematically
equivalentto the method&nown as kriging with externadirift (KED) and regression kriging (RK),
where auxiliary predictors are used to solve the kriging weights (Hengl et al., 2007). Ractdeth

local estimation of the mean in SK and OK allows one to account for any global trend (i.e., constant
mean) in the data over the entire study area. This implies that these algorithms implicitly consider a
nonstationary random function model whereas@l autocorrelation is limited within each search
boundary (Goovaerts, 1997). In sosituations such assumption may not hold true since the local
mean of, for instance, air temperature, could also coherently vary over space with respect to some
auxiliary variables such as elevation, geographical and topographical settings (Amorim et al., 2012).
Furthermore prior research indicated that in many cases, UK has been proved to be superior to the
plain geostatisticatechniquesyielding more detailed ressltandhigher accuracy ofprediction by
incorporatingvarious covariates in modeling the trend component (Bourennane el al., 2000; Hengl et

al., 2004).

Having understood the underlying mechanism of UK, its concept is very similar to OK, except that
insteadof fitting just a local mean of the estimation point of the seamindary a linear or higher

order trend in the, y coordinates arasedto modelthe local trend as depicted in Figur8.2
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Figure 2-3: An example ofUniversal Kriging (UK) with a fitted second-order polynomial trend

Since the trend is typically associated witbnaoothly varyingcomponenbf thez-variability, a linear
combination of coordinates ég@mmonlyemployedo model the trendammponentm(x), which is given
by (Goovaerts, 1997):

M(x) =m(x,y) =8, +a,x+a,y 2-20

where §, y) are the coordinates of the locatirincludingsuch a model in EquationrRinvolves the
same kind of extension used for OK whichfundamental, uses zerothorder trend model instead of
a linear trend model with demand on a pdeterminatiorof trend functions and theovarianceof the

residual componen€g(h) (Bohling, 2005).

2.3.2 Semivariogram

In order to use kriging, one must identify and quantify the underlying spatial structure of the
regionalized random variable to be monitoredgeostatistics, this problem is addressed by assuming
that the correlation or covariance betweaey two locations is a function of separation and orientation
delineated by the two locations. The underlying functional relationship is called semivareaga

can be calibrated in advance using available ddtadevelopmenbf suchsemivariagranis essential
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in most geostatisticahnalyses(Olea, 2006).Assumingan isotropic spatial procesgqual in all
directions) spatial autocorrelationan be expreed as a function afistance between two locations

(i.e., isotropic intrinsic stationary)lf the process is second order stationéapd thus intrinsic
stationary) the covariance between any two random errors depends only on the distance and direction

that separates them, not their exact locat(@vebster and Oliver, 1992
The semivariogram model used for capturing the spatial autocorrelation is expressed as follows:

1 mh

&h) :mél[z(xk +h) - 2(%)] 221

Wherer "Q is the samplesemivariogramz(xs) is a measurement taken at locatiorandm(h) is the

number of pairs of observations separated by thalistgnce,h. The number of pairs included in
semivariogram estimation should, at least, be equal to 30 as set by Journel and Huijbrets (1978).
Likewise, the lag distance of the sample semivariogram should be constrained to half the diameter in
the sampling domain forlladirections of analyses (Journel and Huijbrets, 1978). An important
assumption of the above estimator is the absence of any systematic variations; hence if there exists any
spatial patterns, then they must be removed first to be-freadAn example ahe sample variogram

is illustrated in Figur@-4.

c sill |
.____________E _________ :__I.- _ . -
y(h) e |
f ‘ | ®  Sample Data
G : Fitted Model
L]
. I
I
+ S :
“ _____________________ + I
Cy Range (a) |

+

Figure 2-4: An example of a typicalsemivariogram (adapted/revisedfrom Flatman et al., 1987)
28

Distance in Lags (k)



wheresill, a, C;, Co, andh represent the level of the plateau (if it exists), the lag distance where the
semivariogram reaches tlsdl (i.e., degree of spatial correlation), the partial sill, the nugget effect
which accountsnicro scalevariation andneasuremergrrors (or any spi variability that exists at a
distance smaller than the shortest distance of two measurepmmdsihe lag distancéNote that
identicalresults can also be attained using covariogram or covariance function, which can be easily
derived from semivariogms. Typically, a mathematical model is utilized to describe the sample
semivariance owing to the fact that true spatial structure of a region is never known (Oliver and
Webster, 1990). Therarea larger number of mathematical formulas/equations thabediitedto
describe the semivariances of the sample data, but the most commonly emmpogésiare described

in Table 23 (Olea, 2006).

Table 2-3: Most commonly used semivariogram models (adopted from Olea, 2006)
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Since it is critical to select the model that best replicates the shape of the spatial variability over the
region of interest, one needs to assess the goodness of fit for each mogels€ilsieapproach would
be to pick the best model by simple visuapection. However it can be, at times, difficult to judge

due to thesubjectivenessand hence, another approach involving a quantitative assessment via
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crossvalidation is desiredCrossvalidationis a verification procesin which each observatiors
renoved with replacement to produce an estimatthatsame site of the remov@lea 1999). The

error incurred in this process is measured by taking the difference betwdacttiad valué and the
fiestimated value This process continues until all obsdiwas are tested. Once done, #malystcan

obtain useful information about the semivariogram model parameters, and judge based on some
statistical measures including reoeansquareerror (RMSE), which indicates how closely the fitted
model predicts theneasured values (i.e., smaller the better), and average standard error (ASE) and
mean standardized errors (MSE) which represent the averagepoéthetionstandard errors, and the
mean of thestandardizeerrors (i.e., closer to zero the better), resipely. A selection of the model,
however, must be carried out cautiouscausesrrors are not independent and there could be some
other confounding factors that contribute to the error values (Olea, 2006).

2.4 Facility Location Problems and Solution Methods

Facility location problems have been well studied by operatiessarcherand engineers. Many
innovative modeling techniques and solution algorithms have been developed, varying widely in terms
of fundamentalassumptions, mathematical complexity and computational performance (Klose and
Drexl, 2005). In a broad perspective, there are two main differpestgf facility location models:
discrete and continuou®iscrete facility modelautilize discrae sets of demands and candidate
locations. Continuous models, in contrast, assume that facilities can be located anywhere in the service
area, whereas demands arise only at discrete locations (Daskin, 2008). In this research, discrete facility
location poblems (DFLP) are of particular interest, hence concisely reviewed in the following section

along with a brieflescription on commosolution algorithms.

2.4.1 Discrete Facility Location Problems (DFLP)

As mentioned, discrete facility locatipnoblemsassumehat there are a discrete set of demands to be
serviced by facilities and a discrete set of sites where the facilities could be located. The location
problems ardypically formulated as integer or mixed integer programming problems (Revelle et al.,
2008).Figure 25 summarizes the three broad types of discrete locptmnemsincluding covering

and mediarbased problemsandothers such as dispersion problems
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Discrete Location Problems
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Figure 2-5: Breakdown of discrete locationproblems (adopted from Daskin, 2008)

Coveringbasedproblemsare constructed under the assumption that there is some critical coverage
distance within which demands must be served if they are to be markedvased or fiserved
adequately (Daskin, 2008).Such problemsare typically implemented imlesigningsystems for
emergency services as there expicticaland legislative guidelines for coverage. The location set
covering modehimsto minimize the number of facilities needed to cover all demangls frovide
services to all customers) with constraistipulatingthat each demand node should be covered
(Toregas et al., 1971). However, in solving the set covering problem, the nurfdalitids required

to cover all demand nodes often surpages available budget. Likewise, the model does not

distinguish between the different sizes of demand nodes (i.e., large vs. small).

Acknowledgng these limitations Churchand Revelle (1974) formulatetthe maximum covering
problem in an attempt to locagepre-specified number ofacilities (i.e.,p facilities) such that the
number of covered demands would be maximized. The model differentiates between the big and small
demands and allows some nodes to be left uncovered under a sitvagmn thenumber 6 sites
requiredto cover all nodes exceegslf the number of facilities required to cover all demand nodes
exceeds the available resources, relaxingdbisstraintfor total coverage could be one option (i.e.,

max covering)but alternatively one carhoose to relax the service standard until a standard, which
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allows for total coverage with available resources, is found, an approach knowrmpa®tier model
(Hakimi, 1965). The-center model minimizes the maximum distance between a demand node and the

nearest sited facility (i.e., find the smallpstssiblecoverage distance with every node being covered).

While covering basefdroblemstreat the coverage of a node as binary ddipgnon whether a node is
covered or not covered, theemedian model locateg number of facilities such that the demand
weighted total or average distance between demands and the nearest facility is minimized (Hakimi,
1964). The modetonstraintsstipulae that each node is assigned while limiting the assignments only
to open or selected sites (Daskin, 2008). The drawback of this model ignhaltditly assumes that

the cost of siting a facility at any given candidate location is equal to that kacatibns. Recognizing

such limitation, an extension to this modkh@§wn as the ncapacitatedixed charge or the plant
location model) has been formulated originally by Balinski (1983his modelthe sum of the facility
location costs and the trgwtation costs are minimized under constraitésiticalto those enforced

in thep-median problem, except that the constraint on the number of facilities to locate is removed as

the model automatically penalizes a larger number of facilities (Revelle 2008).

Lastly, there are othgaroblemsthat do not belong to either of those teategoriesnentioned earlier.
P-dispersion model is one of thopeoblemsand itsobjectiveis to maximize the minimum distance
between any pair of facilities. This mglccan be applied when locating, for instance, franchise outlets
in such a way that the cannibalization of @ewn market by another franchisee can be minimized by

controlling the minimum distance between the two (Daskin, 2008).

2.4.2 Solution Algorithms

Prior research has proved that most discrete fadiibation problemsare NRhard (i.e., non
deterministic polynomiatime hard, for whichonly heuristicapproaches argableto solve largesized
problems(Revelle et al., 2008). ¢iristic approachecombine the search of good or fair quality
solutions with the limited computation time for solving complex and faogde problemby removing
the constraint cachieving a globé} optimumsolution (Amorim et al., 2012Many different heuristic
methodsfor solving NP-hard problemshave been introduceémong whichfour most commonly

adopted methods for solving location problemsharefly described below.
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Simulated Annealing(SA) algorithm follows the principles presented by Metropolis et al., (1983) o
statistical thermodynamics, and was first introduced by Kirkpatrick et al. (1983) as an algorithm to
solve weltknown combinatorialoptimization problems. In the searching process, the SA not only
accepts better but also worse solutions based aartan probability in such a way that the risk of
falling prematurely into local minima is reduced (Qin et al., 2012). Therefore, the algorithm is able to
find high quality solutions that are not dependent on the selection of the initial solution compared to
other local search algorithms. Another advantage of the SA is the ease of its implemedniatioa

need for relatively longer processing time remains as its drawback.

Spatial Simulated Annealing (SSA) is a spatial counterpart to simulated annealing, and has gained
popularity over the last decade among operations researfdreits improved performance over its
nonspatial counterparty@n Groeningenl997;van Groenigen and Stein, 1998). In searchimgtfe
optimality, this algorithm utilizes a vectbrto controlthe direction and the length, with which random
perturbation@remade iteratively until some usdefined stopping conditienaremet. It is his unique
generation mechanisthat has made thalgorithm more attractive whettealing withoptimizing a
sensor networln two-dimensional geographic spaderys and Heuvelink2007;Zhu et al., 2010;
Mohammadi et al., 201Z3morim et al.2012 Pereira et al., 2013More in-depth discussions on this

method will be provided in Section 3.2.3 of this thesis.

Genetic Algorithm (GA) is another heuristic search technique which is formulated based on the
analogyof natural evolution into search algorithm (Arifin, 2010). Similar to SA, it is also capable of
computingthe (near) global optimal solutions by avoiding to become trappedbatloptimum. GA

starts witha bottom up approach by creating the initial population of randamaheratedolutions
calledindividuals or chromosomes (the process known as generation) and measures the fitness value
of each individual of populatiothroughan objective function. It then performs recombination and
mutation togenerat@new population, from which the fithess walis checked and the individual with
higher fithess values is evolved to form a new generation. The iterative process continues until stopping
criteria are met, at which the individual with best fithess value is selected as an optimal solution. Like
anyotherheuristicsearch algorithms, there is no absolute assurance that GA will find a global optimum
and it has more parameter to adjust than SA thereby making the implementation more difffoult (

2010.
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Tabu Search (TS), in principle,uses adaptivenemoryandresponsiveexploration todeterminethe

optimal solutions (Glover and Laguna, 199Me adaptivanemorypartof tabu searclenforces a set

of rules anddisqualified solutions (i.e., tabu list) to filter which solutions will be admitted to the
neighborhood to bexploredin local searchResponsive exploration integrates the basiacept of
intelligent searclvheregoodsolution featureareexploitedwhile searching fonew promising regions.

The process iterates until some ugggcifiedcondtions are met (e.g., a time limit or a threshold on the
fitness score), at which, the best solution observed so far during the iterative process is returned. Given
the underlyingmechanisnof the method beingeuristic it may misssomepromising areas athe
searchspacehence the solution found is not guaranteed to be the global op{i@loner, 1989)
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Chapter 3
PROPOSED METHODOLOGY

Recognizing the complexity of the RWIS location planning problem and the variation and limitations
in data availabilitythree distinct approachese proposednd the detailed descriptions of each of the
proposed method are provided in this chafteisis followed by a description of the solution algorithm
considered in thishesis and a comparisoaf the three lernatves. Lastly, a method for evaluating
RWIS location solutiong presented.

3.1 An Overview of RWIS Station Site Selection Framework

To address the complexity of the RWIS location problettmge distinct approachese proposed
differing in system settings,ptimization criteria, and data needse first methods a surrogate
measureqSM) based approaclintended toformalize the current best practices of locating RWIS
statiors using variouseuristicrules capturing not only weatheglated factors (e.gsnowy roads) but

also trafficrelated &ctors (e.g., traffic volume)The second methods a costbenefit (CB) based
approachbased on the assumption that historical maintenance costs and collision data are available
that allowdevelopment ofostbenefitmodek at a patrol route levelhe third approaghalso the most
sophisticated, is apatial inference(Sl) based approachntroduced toincorporatethe spatial
interactions between RWIS stations such that an optimal sampling pattern aehidedgiven a

predefined objective function.

Figure 31 shows the overview of the proposed location selection methatisssedherein. As can be
seen in this figure, there are many different types of data requitadkiethe objectives, and those
are weather (g., RWIS), geographic, highway network, traffic volume, vehicle collision, and winter

maintenance data.

Since large amounts of datasets are tadsimilategdageographicalnformation Systems (G)$ased
platform will be used for an effective data hing. GIS has long beerecognizedas a powerful yet
efficient tool,particularlyfor spatialdata management since it can bring about more rapid handling and
processing of any data with locational attributes (e.g., data with latituderagitide. For tis reason,
GIS is widely adopted biransportatiorand climate research communities where GIS is elected as a

main platform to bettefacilitate modelaccessibility, databasmaintenanceand updating, and
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cartographic display of model results (Alterka2iQ01; Caeiro tal., 2002; Godchild, 2000;
Arampatzisa eal., 2004).

In order to reduce thenathematicalcomplexity of the proposed approachéise region under
investigationwill be discretized and dividethto a grid of equasized zone®r cells According to
FHWAGs sitting guidelines (Manfredi et al., 2008), the spacing of RWIS sites is suggested to be in the
range between 30 and 50 kilometeitiernatively, area per station (i.e., average coverage per one
station) can be used as a proper spacisgdJtheappropriatesize,the grid @vering the entire study
areawill be created, and then major road segmenéssuperimposed onto the grid in such a way that
only the cells containing the road segments can be selected for further analysis.
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Data Data Data
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Develop RWIS Sitting Guidelines
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Figure 3-1: An overview of theproposedmethodology
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There are three primary reasdas adopting this representatidrirst, provision of a point location of

an RWIS station may not tseiitablefor a real world application as there are often several other factors
such as line of sights, riglaf-way, etc. which must also be considered prior to deciding the exact
location.Second, averaging tlodservations (i.e., collision frequencies)he cé level is expecteda
provide a better estimate ekpected collision frequencielsastly, structuring the problem discretely
helpsincrease the computational efficiency.

Thefollowing descriptionsf notationswill commonlybe used when formulating a problem for each
proposed approach. Letdenotesa demand point (e.g., the needs of RWIS information for more
effective and efficient WRM operations leading to an increase in safety and mobility of travelling public)
within 1, ..., N, whereNis a total number of demand points. kdte an RWIS station index witk

N1, ... ,M, whereM is a total number of RWIS stations to be deployed. It is also assumed that the
demand points are the potential sites where RWIS statamiseclocated. LeX be the solution set,
whereXN (xi, ... ,Xu), andxc =i if i is assigned with an RWIS statidfigure 3.2 shows arexample

of adiscretized network witkthe notationslefinedherein.

1 2 3 4
° [ ] ° ]
5 6 7 8
A ° A °
9 10 11 12
L[] L] L] A
13 14 15 16
A [ ] L] °
Figure 3-2: An example withi ={1, ..., 16}k ={1, 2, 3, 4}, andX = {X1, X2, X3, X4}={5,7,12,13}

In this example, there are a total of 16 potential locations direles), 4 of which are allocated with
RWIS stations (i.e., triangles). For example, the RWIS station located at the bottom left corner can be

explained by its notations; it is indexed as tHdR¥VIS station, located at the"1&ell (i.e.,xs= 13).
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Case studies will be conducted to evaluatettteetalternativapproacheand theiisolution setswhich
will then be evaluated talescribe the unique featuresimdiividual solution sets accordingly. For each
solution setthe existingRWIS network (ifavailablg will be used to evaluatthe model outputand
recommend new locatiogettings.A summaryof the assessments will be maaailablefor use as
general guidelines to improve decision support on RWIS installation and gitingmprehensive
descrption on each component of the proposed method is provided in the following sections.

3.2 Proposed Approaches 1 The ldea

In this section, the three proposed alternative approaches, which are béisad@gyate measurés
ficostbenefid, andfispatialinferenc®, are described in details.

3.2.1 Alternative 1: Surrogate Measures (SM) Based Approach

As emphasized earliehé current RWIS deployment schemes are inconsistent, and dependent heavily
on subjective opinions of maintenam@ersonnelvith alack of quantitativerationakesfor choosinga
location. Thusit is of high interest to investigate the feasibility fwirmalizing various heuristic
approaches being adopted in practice such that the process of locatingéti& snoretransparent
consistentand justifiable Figure 33 shows the flowchart of the surrogate meas|fdd) based
approach for choosing provisional RWIS station locations. Three different groups of criteria, which
include weather, traffic, and maintenance factors, are processed andizeatrtcalculate the total
average score in each cell of the grid. Subsequently, a set of solutions for each individual criterion and

combined criterion will be generated for further evaluation.

3.2.1.1 Regional Location Selection Criteria

As discussegreviously, RWIS stations are installed to collect road weather and surface condition data

and their value is reflected in the use of these RWIS data, including improved mobility and safety (i.e.,

benefit for motorists), and reduced winter road mainten@ng@M) costs and salt usage (i.e., benefit

for agency and environment). Therefore, it is critical to clearly define the criteria that can be used to
measure the fgoodnes smRWSfstateon. The follwing islest ofsamogate n st al | i |
location selectioomeasures representing the main criteria considered by maintenance personnel in

planning RWIS installation:
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Figure 3-3: Flowchart of Surrogate-MeasuresBased Approach

Weather-related Factas:

Intuitively, RWIS stations should be placed in locations that experience severe yet less predictable
weather patterns and thus are in need oftiea monitoring. Therefore, it is important to analyze the
spatial distribution patterns of some critieedather variables such as temperature and precipitation.
For example, the variability of surface temperature (VST), and mean surface temperature (MST) are
important factors to be considered as they can provide a definite measure of how much the surface
temperature would vary over time and space. Late November to early December is the time of year
with the highest probabilities of having black ice or frost. The higher elevation and greater distance
away from large water bodies can both contribute to géngraolder surface tempeuses. This
gradually leads tonger winter months with higher likelihood of having frost on road surface, and thus
exposes a great danger to motorists. Note that VST is standard deviation calculated using all available
surfacetemperatte observations. Snowfall water equival€éBWE), which describes the amount of

water contained in snow pack (kgjmand can be aimportant factor as it makes logical sense that an
RWIS station needs to be situated in areas where snowtalisthe most.This is particularly true

when having a better monitoring capability can intuitively increase mobility and safety by performing
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a prompterWRM operation (Ye et al., 2009l is worthwhile noting thatise of SWE as a weather
surrogate measurerthe, at times, misleading becaitgaay not provide sufficient information on the

actual amount of snowfall that is accumulated on the samfhce However, use of discrete grid
covering a large area should minimize this bias and provide a good iodicdtadverse weather
conditions.Other factors such as hazardous road surface conditions (HRSC) such as frost and ice can
also be considered as they provide important information about locations with high probability of such
conditions. Hence, the aboventiened weather factors are proposed to be included in the analysis for
selecting a candidate location of an RWIS station.

Traffic -related Factors

Intuitively greater benefits can be obtained from RWIS when they are placed in locations of a greater
numbe of travelling public. A recent study conducted by Greening et al. (2012) showed that a well
maintained RWIS network would in fact reduce the accident rates by a significant amount, which in
turn would bring huge savings. Notwithstanding the fact tharddctors such as vehicle technology

and weather severity could cofound the effect of-tiead information from RWIS, their work clearly
demonstrated that the use of RWIS information could potentially prevent accidents. Furthermore, the
survey dedicatetb providing the current practices of deployingRWIS system showed that more

than 60% of participated DOTs would also consider highway class along with collision rate and traffic
volume. Their intension for taking highway class into account is sinsilaosidering traffic volume

in the context of providing benefits to a higher number of road users. As such, theataféid factors

such as collision frequency or rate, traffic volume and highway class are included as location selection

criteria.

Maintenancerelated Factors

As discussed, one of the primary reasons for installing an RWIS station is to redo@itenance
costs. The benefits aftilizing additional information received from RWIS can intuitively increase by
situating them in locations whetbhe demand for maintenance operations and tlogss are high.
Implementation of anicing operations, for instance, has been found to reduce thenaitstenance
costs through many castudies(Ketcham et al., 1996; Parker, 1997). Three dominant groups of
maintenance operation costs can be broken down to l@dablrequipmentequip, and materiagimal
costs. Therefore, the costs from these tls@mecescould be included in the analysis as a goodness

measure for locating RWIS stations.
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3.2.1.2 Problem Formulation - SM Based Approach

In order to consider all three types of surrogate location selection factors in a systematic framework, a
weighting schemesiproposed to combine them into a single measure. As a, thguRWIS station
location problem can be formulated to maximizewlegghtedtotal scoreof the three location selection
factors subject tambudget constrainf his problem fundamentally sheara similar trait with covering

based problems in DFLP. More specifically, the problem can be mapped intecoweaing problem,

where facilities provide services (i.e., RWIS information) to each demand point such that the number
of covered demands woutet maximized. As mentioned in Chapter 2, the 1t@axering model is able

to distinguish between big and small demands and allow some locations to be left uncovered when the

number of locations required to cover all sites exceeds predeffaedities.

Consider the problem that a total MfRWIS stationsare to be located over a ieg. LetO x , O O,
andO i denote the scores of weather, traffic, andintenancerespectively, of statiok; the

associated weights are representeddbyd PAT A . Therefore, theproblemfor the surrogate

measure baseapproachs formulated as:

M

Maximize S = ?1 (stka +wst, + Wmsmk) 31
whereSisthe total score function defined as the weighted sum of the scores of all selecteahdites
andxx is the location of an RWIS statidThe weights associated with the location criteria may vary
by regions which may be decided based tre seriesof interviews with regionamaintenance
personnel. The total available budget limits the number of RWIS stations to be located. During
installation the stations may bequipped withdifferent sensors based on varioggjuirements
Furthermore, the annuahaintenance costs for individual sites may also vary depending on the

proximity to maintenance facilities. As suthe budgetconstraint can be formulated as:
M
ac, ¢B 3-2
k=1

where0 and B representindividual installation costt locationxc and total available budget,

respectivelyThe ®lution algorithnfor solving the above optimization problem will be discussed later

in this chapter.
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It is worthwhile mentioning that discrete network representation is considered in all proposed methods
as sructuring the problem discretely hslimcrease the computational efficien&qually important,
provision of a point location of an RWIS station may nosbiablefor a real world application as
there are often several other factors such as line of sights;ofiglaty, etc, which must als be

considered prior to deciding the exact location.
3.2.1.3 Estimating the Surrogate Measures

In order to solve the proposed location problem (i.e., determiningdut$) based on thetal score

function defined in Equation-8, the three aforementioned sigate measures, namely weather, traffic,

and maintenance, need to be known at all demand points (i.e., potential RWIS stations locations) such
that the score for individuabmponentst every site can be calculated. However, it is almost inevitable
that sane factors must be estimated due to the nature of data being unavailable at all locations. For
instance, weather factors are obtained fexistingRWIS stations and/or local weather stations that
their values must be estimated at unobserved locationsm®er of past studies show that weather
variables (e.g., temperature) tend to have a linear relationship with environmental and locational
variables (Hurrell, 1996; Eriksson and Norrmafp@ Stull, 2010; Wang et al., 2011). As such, a
multiple linear rgression (MLR) analysis will be employed to model the variables of interest. A MLR

has a following functional forriGeladi and Kowalsk, 1986)

E(Y[X)=a+bX, +3 +b,X, 3-3

whereY, X,| ,T , andp are response and explanatory variables, intercept, coefficients, and the number
of variables being consideregkspectively. According to the findings of the literature (Eriksson and
Norrman, 2001), variables such as latituth) ( longitude [ong), distance to waterdg), relative

topography at different search radiukilometers(RT. 510,29 will be used as explanatory variables.

3.2.2 Alternative 2: Cost-Benefit (CB) Based Approach

While the heuristicapproaches for choosing sensocationsare basedgrimarily on intuition and
experiencedy field expertsan RWIS cosbenefit model will be de to providea more defendable

way for prioritizing the candidate sensor locations. As stated earlier, there are several RWIS cost
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benefit studies conducted in the past; however they do not provide evideaudiadnt granularity

that can be directlysed for location optimizatiorAs such, it is necessary to develop an RWIS-cost
benefit model by establishing a clear relationship between the various criteria being used in practice
and their associated benefitsRWIS stations. In addition, using thestbenefit model as a basis, an
RWIS location optimization model should be developed to help RWIS planners evaluate and assess
their existing RWIS network, and furthedelineatenew potential locations so as to maximize the
benefits to all RWIS users.

Onre possibleapproachto estimating the expected benefits to RWIS installatisnsomparing the
maintenance costs, and safety and mobility outcomes between highways with and without RWIS
stations nearby. This approach requires information fromxa&tingRWIS network, which can then

be used fodevelopng costbenefit models to estimate benefits and costs in all demand points (i.e.,
potential sites)Figure3-4 shows a flowchart of the propos€® approactior determining the optimal

RWIS station location and density at a regional level. As shown, the method consists of three steps
data preparation and integration, RWB8nefit andcost modeling and analysis of RWIS station

location and densitfi.e., gerrate optimal solutions)

3.2.2.1 RWIS Cost-Benefit Quantification

As shown in Step ih Figure 34, three sources of data are needed for the intendetdeosfit analysis

and location optimization of an RWIStwork. Collision data are filtered in such a wanat only the

wintery collisions derived from RWIS information are retained, which include those that occur during
adverse weather and surface conditions such as icy and slushy. Although collisions could occur for
reasons other than inadequate maintenapegations in areas with no RWIS station, it is assumed that
collisions that occur during hazardous conditions could be considered as preventable, to some extent,
if information from RWIS is available to maintenance personnel to enable them perform groactiv
and/or responsive maintenance actions. Maintenance data include labor, material (salt, sand and brine),
and equipment (plower and salter). Traffic count dataepresented by annual average daily traffic
(AADT), which can be converted to winter averafgaly traffic (WADT), million vehicles kilometer
travelled (MVKT), and bar@avement target regain time (BTRT). All three types of data are integrated
into one data set and expressed in terms of predefined base routes using a GIS for further analysis (to

be discussed more in later sections).
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Figure 3-4: Flowchart of Cost-Benefit Based Approach
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In Step 2modelswill be developed to estimate the total benefit that cbelderived from installation

of an RWIS station at a given highway section as compared to the scenario of no RWIS station, such
as reductions in maintenance costs, collisions and traffic d&ayentioned previously, some RWIS
benefits (e.g., environment) are difficult to quantify, heoaly the first two benefit itemswhich are

also the two largest benefit sourcaie considerednd can be defined by

B[Malhfenanc e — M(:IR\MS _ MQNO RWS 3-4
BiSafety - ACiRWIS _ ACiNO RWS 35

where BVanenance= expectedmaintenance benefit, or, reduced annomlintenance costs due to

installation of @ RWIS station atireai (i.e., demand point)

Bi%Y = expectedsafety benefit, or, reduced annual collision costs due to installation of a
RWIS station at areia

MCRWS= expectedotal annual maintenance cost for the giaessi if there is @ RWIS station
nearby;

MCN° RWIS= expectedotal annual maintenance cost for the gieeaai without an RWIS

station nearby;

ACRWIS= expectedotal annual collision cost for the givameai if there is @ RWIS station
nearby;

ACN° RWIS= expectedotal annual collision cost for the givaneai without ax RWIS station

nearby

As shown in Equations3-4 and 35, the two dependent variables of interest are ekpected
maintenance cost arexpectedollision costfor two distinct scenarios: one with RWIS and the other
without RWIS. The rationale for adopting this method is that a highway section covered by a nearby
RWIS station is more likely to receive more efficient arosteffective WRMs than those far from
RWIS stations. This rationale can be justified in that information coming from RWIS enables
maintenance staff to predict ndature road weather conditions and apply-#eitig chemicals before

a snow storm hitghus preventing or minimizing the formation of bonded snow and ice lagers (

SHRP, 200D Furthermore, since the treatment is done proactively, a smaller amount of chemical is
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needed to prevent bonding than when snow and ice alreadykEpgis, (199Y. Nae that the proposed
method assumes that all winter maintenance personnel use RWIS information in their WRM-decision
making process such that maintenance costs and collision frequency can be fEusastumption

is well supported byour interviews of maintenance personnelyhich hasreveakd that RWIS
information isalways utilized in making more informed decisions whenever such information is

available.

To quantify the sole benefits of RWI8| existingstation locations are buffered, and the rahds fall

into these buffered areas are labeled as RWIS influenced roads and the rest labeled as RWIS
uninfluenced roads. Since the size of diameter desdhieesiaximum distance a single RWIS station
could cover; it is critical to determine the represative size. A simple approach would be to use 30

km1 50 km as suggested by FHVBB®ARWIS sitting guidelines (Manfredi et al., 2008) or useitigting

density. Using the appropriate size of bufteecorresponding data at these two zones will be extract

for further analysis.

Once the data are classified and matched accordingly, a multiple laggassiortechniquewill be
employedto modelthe maintenance and accident costs. Since accident costs are not directly available,
comprehensive costs of nootvehicle crashes by severitfformation(i.e., K-A-B-C scalesFHWA,

1994 will be usedto convert each typef accidents to monetary figur€he average costs for each
severitytype also include many other costs incurred as a consequence of the collisions, and the most
notable components include traffic delays (i.e., extra time, fuel, and pollution) asud-partket
expenses. This indicates that the safety benefit compareemporatedn the proposed model would

alsocapture(at least partially) the mobility benefits of RWIS.

The third step is to divide the region of interest into a grid of equally sized cells, or zones, which are
assumed to be the minimum spatial unit foo@diting a candidate set of RWIS stations. Once the grid
covering the entire region is constructed, the base route is superimposed onto the grid, with only the
cells containing the base route selected for further analysis. This process automaticallyeslithena

unnecessary cells and reduces the degree of complexity by removing {tenclatate cells.
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3.2.2.2 Problem Formulation - CB Based Approach

Based on the costenefit location criteria defined, the RWIS station location problem can be
formulated as to maximize the totatbenefit subject toa budget constraintsing thecostbenefit
models developedhe maintenance and collision costsdach cell with and without RWi&ereadily
estimated, which can then be used to estimate the benefit of RWIS atagamh demand poifdr any
given year.

TheRWIS costxonsidered hereiare summarized belowicKeever et al.1998)
1 Capital CostgTotal system) : $42,010 (every 25 years)
1 Capital Costs (Total system): $10,446 (every 5 years)
9 Total Operation anaintenanceCosts: $5,460 (pgrear)

The followingequationis usedor calculating thenet present value (NPV):

NPV =4 (i

3-6
o (1+7T)"

where r, t, and n represent discount rate, year, and the expected life of RWIS §tatio?s years),
respectively C indicates a cash flow, which can be calculated by taking the difference between the
RWIS benefits and costs.

Once the benefits and costs are assigned to each cell for all candidate cells (i.e. demand points), the
objective function can be formulated insamilar way to the one used for Alternative 1, and is to

maximize the totahetbenefits calculated from the two bengfitind annualized costs:

M .
Maximize B = § (B! +B3* - C, ) 37
k=1

whereB is the objective total benefit function defined as the sum of the benefits of all selected sites
minus the annualized cosés ando are expected benefits from reduction in annual

maintenane and collision costs due to installation of an RWIS station, respectively, as defined in
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Equations 24 and 35.6 denotes the annualized costs associated with installing, operating, and
maintaining a single RWIS statiorgain, the budget constraint used in 8™ approach (i.e.,
alternative 1xanalso beutilized for this formulation(refer to section 3.2.1.2%imilar to Alternative

1, this problem igomparablé¢o a maxcovering problem in DFLP.

Lastly, the recommendeatensity is used as a threshold to decide how many stations are to be deployed
at a region. It should be noted that the further analysis is required to pinpoint the exact location of
individual RWIS stations by considering other local siting requirementduding power,
communications, obstructions, ease in access for maintenance, and etc., as discussed previously.
Furthermore, it is important to recognize that there exist other factors such as human behavior and
vehicle conditions that may contribute tdet occurrence of accidents regardless of the
availability/presence of RWIS information during winter seasons. However, it is believed that the
impact of these factors will likely be minimized by taking the difference of total annual collision costs
betweenthose in RWIS influenced areas and in RWIS uninfluenced areas as the outcomes will
represent the benefits that are expected solely by the presence of RWIS stations.

3.2.3 Alternative 3: Spatial Inference (Sl) Based Approach

While the first two proposedpproaches are intuitive and easy to comprehend, they have some
limitations. For example, SM is a surrogatesed approach that does not explicitly model the benefits

of RWIS, which can only partially captured by the traffic, weather, and maintenancespersarfor

CB, the RWIS benefit models are constructed based on the empirical data (from exiting RWIS stations)
such that the findings may not be applicable to other areas. Likewise, it is challenging to determine all
the underlying benefits (e.g., sociend environmental benefits) associated with RWIS. More
importantly, both approaches do not take into consideration that data from RWIS stations can be
collectively used to make inference about the conditions over a whole iegairjust those that are
covered by RWIS. It is this monitoring capability of RWIS network that is the foundation of the third

method proposed to determine the optimal configuration (or spatial arrangement) of RWIS stations.

As previously discussed, RWIS information makes it a0 perform proactive winter maintenance
operations such as ainting (i.e., applying salt, mostly in liquid form, in advance of an event), which
reduces the amount of time required to restore the roads to awctedry state at lower cosi&hen

the RWIS data are used to infer the conditions of the whole region, the benefits-miraptan be
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equally extended over the whole region and should be considered in location optimization. This
argument remains valid under the assumption that an increastrhation or monitoring capability of
hazardousoad surfaceonditions(HRSCs)will contribute to improving the overall quality of winter

road maintenance operations.

In order to model the monitoring capability of an RWIS netwdrks proposedo amply a popular
geostatistical approach called kriging as described earlier. The monitoring capability of a given RWIS
network is captured by determining the kriging error variances (i.e., the expected estimationferrors).
nice property of the kriging errsiis that they can be determined as part of the estimation process on
the basis of the spatial correlation structure over the domain, which can be obtained as a function of
distance (and perhaps direction) as a psran(Groenigen and Stegit999. In other words, its error
estimate depends entirely on the data configuration and the covariance functions, not on the actual
observations themselves. This indicates that kriging errors can be used as a criterion to aptimize
evaluate an RWIS location sdilen. In addition, another optimization criterion, namely vehicular
collision frequency, is introduced to reflette needs of installing an RWIS station for reducing /

preventing collisions in its vicinity.

Selection of these criteria has been decidegdg@rimarily on the findings from a survey dedicated to
reviewing and examining the current best practices for locating an RWIS station in North AiBeeica (
Appendix G. In this survey, participants responded that they would consider weslttedhot-spots,

such as those commonly encountered when roads are icy, snowy, or frosty, as posing the greatest
potential danger to motorists. Equally important, they would also consider high traffic and accident

prone areas that serve a large number of traveddeyafactors to consider in RWIS station placement.

Therefore, the third method is proposed on the basis of the idea of minimizing the total spatial inference
(i.e., estimation) errors for determining the optimal configuration (or spatial arrangemantiRW¥IS

network in a geographic space. The third approach is the most refined and sophisticated method, but
requires much less data than the first two approaches, and can be conveniently generalized and applied
to other regions. Figur@5 shows the flowlcart of the proposed spatial inference based apprdaeh.
following section provides a detailed description of the kriging method as well as the location

optimization criteria.
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Figure 3-5: Flowchart of Spaial Inference Based Approach

3.2.3.1 Kriging for Spatial Inference

Thecoreideaof kriging is that theestimatedutputs are weighted averageobkervatiordata, and the
optimalweights are determindzhsed on their underlying spatial structure, and assigrted observed

location, and the location to be predicted.

Again,i is a demand poiwherei N 1, ... N, with N being a total number of demand poirkss an
RWIS station index, wheteN 1, ... M, with M being a total number of RWIS stationdie installed

andtheir locations are known and denoted by a veXtarhereX = [xq,

location (cell label) of RWIS statiork. As discussed in Chapter 2, kriging is concerned with the

estimation ofz(i) at any demand poinaénd this could be anymeaningfud variable of interest to be
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estimated froma setof known locationsX. z is a variable of intereswhich is observable at thé
locations, based on whictve are interested in estimatitige condition at any given locatiandenoted
by 6H@D , which is an estimate of the true valug gfven observations & Figure 3.6 illustrates an

example of discretized network and how the condition at any given lo¢ai@onbe estimated.
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Figure 3-6: A discretized sample networki an estimation of any given poini.

The goal of using geostatisticakriging technique is to estimate a value and its associated er(@y of
at an unobserved location using a set of known observations. Recall from Chapter 2 that the kriging
error variance (foordinarykriging) at locations is given by (Goovaerts, 1997),

S7[& )] =CG.i)- A /1 Clxi) - L 33

The krigingweights/ , , can the be determined by Equatior@3which isconveniently expressed in a

matrix form (refer to Section 2.3.1)
/ =V'lv
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where

/=[/, 1, 2 [/,L]" isthe vector of theptimal kriging weights

m?

V=eC(x,%) 3 Clx.X,) le
© 4 6 3 4 . . .
€ U is the matrix otovariancebetween known data points
(X %) 3 C(XyX,) 10
€ 1 3 1 of

v= [C(Xl, 1),C(X,,1),3 C(X1), 1]T is the vector otovariancedetween the data and estimation
points.

As discussed in Chapter 2, semivariogram modeling approdtivevconducted to determine the
underlyingcovariance, followed by the crosgalidation to ensure that the modeled semivariogram is
accurate and representative. Once the kriging weights are determined via Eg9atlmmi8iging error

variance can beomputed as:
SHi|X)]=C(,i)- vV'Vv 3-10

It is worthwhile to note that the method described abousésto solve the kriging system of equations

in terms ofcovariancse, instead obemivariancesThis is primarily forconveniencen handling the
square matrices, despite the slight loss in gener@ikya, 1999) Under a second order stationarity
assumption,both the covariance and semivariogram functions are related and their outputs are

equivalent.
3.2.3.2 Road Collision Frequency

As discussed previously, RWIS stations are installed to collect weather and road surface condition data
and their value is reflectaed the use of these RWIS data to make more informed decisions including
improved mobility and safety (i.e., benefit for motorists), and reduced winter road maintenance costs
and salt usage (i.e., benefit for agency and environnfent)mber of prior studies have suggested that

an RWIS station should be located at higiffic-demand areas (Garrett et al, 2008; Buchanan and
Gwartz, 2005; Mackinnon and Lo, 2009). Such a hypothesis is constructed based on a rational

assumption and inttion that installation at such areas would increase the benefits for road users. For
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this reason, the majority of the North American transportation agencies (and other regions) are inclined

to incorporate macro level traffic criteria such as collisiomdfitrvolume, and highway typeclass

Furthermore, a study conducted by Greening et al. (2012) showed that a well maintained RWIS network
would likely reduce accident rates by a significant amount, which in turn would bringshuiges.
Another recenstudy by*Kwon et. al (2014) provided numerical evidence of significant monetary
benefits for installing an RWIS station in terms of reduction in maintenance costs and collision
frequencyLikewise a group of RWIS network planners from Minnesota (i.egssite) provided a
priority list of factors that should be considered, wherein collision frequency was ranked first. Hence,
in addition to the first criterion representing HRSC frequencies, minimizing collision frequency is
added as another criterion designing a welbalanced RWIS networlt is worthwhile noting that

when collision frequency data are unavailablepmparable measure to collision frequency namely

road classvill be used instead.

3.2.3.3 Problem Formulation T Sl Based Approach

Considering the nature of the proposed problem usingphgal inference oestimation errors, the
RWIS station location problem can be classified asnaegdian facility location problem, where the
demand is defined based on the demardyhted distance all other available RWIS sites (i.e., one

location is interrelated with all other locations).

As discussedaveragekriging variances calculated to reflect the needs for installing RWIS stations
for improvedwinter road maintenanceperations (i.e.Jocations with higher errors require more
attention than others with lower errgrénd sum ofaveragekriging variance should therefore be
minimized. The traffic criterion pertaining to a vehicular collision frequency, on the other hand, should
be maximizd since an RWIS station should be located at-hgkhareas. Therefore, in order to
combinethese two criteriacollision frequency measurements must be investeth that the problem

can be solveds a minimization problem.

3Kwon, T. J., Fu, L. & Jiang, C. (2014). RWIS Statiérié&/here and How Many to Install: A Cost Benefit
Analysis Approach, Canadian Journal of Civil Engineering (CJCE), DOI: 10.1132/@i*0569
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To formulate the problem & integer programming problem, a decision variaklés introduced

wherei k 1,...,N,andkk 1,...,Mwithy= 1 if anRWIS stationk is assigned to cell 0

otherwise Following the previous notation,is related to in X as follows:

X, =4 (yk,i @), "il N," ki M 311

The fitness function (objective function) combining the two location criteria is expresséuk in
following discrete formula:

Min 700 = g s TED 1) + et B i ., 8o,
u

N i C k +
lliI’ N, llkl’ M 3'12
Subject to:
aac.9.¢B "ii Nki M 313
ik
Aay,=M,"il NKki M 214
i k
Y, 1 {0, "il Nkl M 315
where,
w an index set that defines all of the candidate RWIS station locations in the
study area,
X a subset ofV and a solution seX =[x1,  &n},
N a total number of atiighway grid cells
M a total number of RWIS stations to be deployed,
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Cki atotal costof an RWIS statiork at sitei,

B a totalavailablebudget,

s 2[ﬂi) | X)] thesquare root ofhekriging errorvarianceati givenX
m? the inverse of mean collisidrequencyati, and
Wi, W, the weights for criteria 1 and 2

In Equation 312, the objective function represents the sum of average knigirignceof estimating

the HRSC frequency and average collision frequency, gi%ernThe kriging variance term igot-

squared, as appeared in the first part of the objective function so that estimation errors can be expressed
in the same unit as the observatithemselvesThe weighting factors can be viewed as a way to
combine the two measures into a common Urie seconderm of the objective function represents

the sum of averageollision frequencyThe binary decision variablg is there to take accoufr

those measured only when an RWIS station locattimmallocated to site Average collision frequency

is calculated usinghe minimum gridded cell, within each of whjeil collision events are aggregated

It is important to point out that the caddte cells are prdetermined by filtering out those cells that

do not contain any segment of the highway network under investigation. This reduces the solution space
of the optimization model significantly and thus the computational tirhe. constrainprovided in
Equation 3-13 represents the cost limit of installing RWIS stations in the shadyon. During
installation, the stations may be equipped with different sensors based on various requirements.
Furthermore, the annual maintenance costs for itha@f sites may also vary depending on the
proximity to maintenance facilitie$ience cx is added to take account for alipplementargosts in

addition to the cost of installing a single RWIS statkoat sitei. Another constrainthat appears in

Equation 314 ensuresthat a fixed number of RWIS statiorere deployed. The weighting terms,
w;, W, are added so that an RWIS planning department can adjust and/or apply different weights

according to their importance. For simplicity araheeniencéherein a fixed number (and a uniform

cost) of RWIS stationaredeployed
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It is worthwhile noting that some sites may not have access to power and/or communication utilities;
another important factor that must be considered to ensure tltattthean bebtainedand processed

in real time (Manfredi et al., 2008). The optimipat framework introducetherein however, can be

easily extended to take additional factors into account by introducing another binary decision variable
(i.e., 1 if a peential RWIS site has power/communication network in its vicinity, and O otherwise).
Alternatively, the cells that do not satisfy the local requirements can be filtered out first such that only
candidate locationare considered

3.2.3.4 Optimization with Spatial Simulated Annealing (SSA)

The problem formulated previously is a HAamear integer programming (NIP) problem which is
computationally intractabldieuristictechnique are often required soive these types of problems of
realistic sizesIn this researcha variant of one of the most successful techniques capetial
simulatedannealingis used SSA,van Groeningen and Stein, 1998

SSA s an iterative combinatoriaptimization algorithm in whicha sequence of combinations is
producedby deriing a new combination fronslightly and randomly modifying the previous
combination (van Groenigen et al., 19995A isa spatial counterpart to simulated annealing (SA,
Kirkpatrick etal. 1983, specifically designed to optimize sampling designs of enwiental variables

using kriging.SA is a stochastic metaheuristic search algorithm first proposé&debypolis et al.

(1953 and mimics theannealing of metalSA is fundamentally same as Monte Carlo annealing,
probabilistic hill climbing, statistical cooling, and stochastic relaxation (Aarts and Korst, T9%&9).

term Aannealingd is related to the metaltburgical
increase toughness and reduce brigten(Goovaerts, 1997yhe method has a unique generation
mechanism for transforming a randomly chosen sampling point over a Wiedfoe direction chosen

at random, and the length also drawn randomly in thevialt¢d andhmay, thus giving the sampling
scheme the <chance to #Afreezed in its optimal s a
perturbations an Groeningen1997). This method is proven to produce dramatic improvements

compared tdts nonspatialcounterpartgvan Groeningenl997;van Groenigen and Stein, 1998).

In principle, by discretizing the region of interest, krigiragiancefor all possible combinations dfie
station locations could be evaluated and the combination that produces trestsuzdile would be

selected as the optimal solution. Howevhis is impracticalas the number of combinationsuld be
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formidable, meaning that an exhaustive search over all possible outcomes is computationally infeasible
In the search procesSSA notonly acceptsmproving solutionsbut also worseing solutions based

on a certain probabilityhat is defined to minimizéhe risk of falling prematurely into local minima

(van Groeningen and Stein, 1998herefore, the algorithm is able to find high quality solutions that

are not dependent on the selection of the initial solution compared to other local search algorithms.

SSA has gained its populariiye toits robustness aneby implementationparticularly foroptimizing

sampling schemes in situations where observations are spatially correlated in geographic space (Sacks
and Schiller, 1998;an Groenigen et al., 199@euvelink, 2006Brus and Heuvelink2007 Zhu et al.,
2010;Heuvelink et al., 201Melles et al., 2011; Mohammadi et al., 20APorim et al.2012 Pereira

et al., 2013 The workflow ofthe SSAalgorithmis depicted in Figurg-7.

Initial configuration and
cooling schedule

e

A J

Generate new configuration

Better
solution?

Should we
accept?

Y

YES
Keep new configuration Generate new configuration

(a slight perturbation)

I

Update cooling schedule <

Stopping
condition
is met

No

Figure 3-7: Workflow of Spatial Simulated AnnealingAlgorithm
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First of all, there ara fewparameters that must bpecifiedprior to running thalgorithm including
initial probability of accepting an inferior solutign absolute temperatur®, andcooling factoror
cooling temperature. The probabiliy p is set to avoidelection ofocal minima.Absolute temperature

Ta is used as a stopping criteridout one may simply use the number of iterations or alternatively
decide if there is lack of progress in improving the quality measure dambination of kriging
varianceand vehicular frequengyCooling factorc controls the rate at whighdecreases to zerdhus,
smaller coolingfactors would converge slowly whileigher numbers woulg@rovide slow cooling.
Once initial parameters are septimization begins with a randosolution8 N 8 whereX denotes

the collection of possiblsolutionswith m beingthe number obbservationsTheiterationsthen move
forward with a sequence of random perturbati®ns of 8 with a probabilityd & © & of
being accepted. Thusyen if anew solution does not improve the quality measure (i.e. objective
function), the algorithm couldstill acceptit to avoid being trapped in a local optimuas described
above This transition probability followshe principles presented by and defined as Metropolis

criterion (Metropolis et al., 1953):

Pr(X, - X)) =1 it 7(Xp) € F(X,)
3-16

B (X, - Xp) =expie Cnd T TXa) @i )5 r(x )

c C

n_

Wheref is a secalled objective function with/ ((: X" - A*to be optimized (i.e.minimizedin

our case)andc is a positive control parameter (i.e., cooltegnperature Thus, if X1 is accepted,
iterations proceed and the newoling schedulés usedor the next randomly perturbed configuration
Xn+2; iterations continue until thetoppingcondition is metandthe best solution is presented as an
optimal configuration(Aarts and Korst, 1989yan Groenigen et al., 1999The ¢ value of the
Metropolis criterion (Eq. 315) gradually decreasesduring the optimizationusing an Equation
suggested by Aarts and Korst (1989):

C.,=a@, k=12,..., 3-17

where | denotes a constant parameter, generally chosen to be cloge.¢p, D.999)andk denotes
the number of the performed optimization iteratidrtee simplest and most cononly adopted cooling

scheduleof SSA is to configure in such a way thatould exponentiallydecreases a function of
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number of iterationand the initial cooling factaio ensure convergence (Heuvelink et al., 2006; Brus
and Heuvelink, 200Melles et al., 2011

When the SSA algorithm is used to solve the optimization problem formulated earlier, it is critical to
investigate the effect of the parameters setting on the solution as well as the running times. Despite its
importancethere is very limited informatioavailable to decide what rgesof SSA parameters should

be chosen when running the optimization. Thus, a simple yet informative sensitivity analysis method,
namely, oneat-a-time designs (OATDYang et al. 2009)will be carried out to determine the seivgy

of individual SSAparametersn the optimization outcomes.
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Chapter 4
CASE STUDIES

4.1 Study Areas

The proposed approacha®examined vidour case studies covering one Canadian proviGeedfrio),

and three US statebl{ah, Minnesota, and lowaisingvarious dataset provided by each region under
investigationThesefour regions are a good candidate as they already have a well distributed and dense
RWIS network with distinctive and unigue meteorological (lake effect) and topogrdphica
(mountainous) characistics from whichmore reliable assessmen#m be realized’he findings from

each region should provide sensible guidelines and measures as to how the optimal location and density

would vary from one region to another.

Ontario is the second largest @dian province, situated in easintral Canada, and has a continental
climate like most other provinces of Canada. Northern Ontario has long, very cold winters and short
summers whereas the southern part enjoys the tempering effect of the Great Latteges$eun

Ontario is typically flat withmanyrolling hills. To its north containsiainly flat and wet surface. Utah

is situated in the Mountain States (also called the Mountain West) from one of the nine geographic
divisions of the United States. Becausk its geographic location, Utah has extremely varied
topography with a large portion of the State being mountainous. The lowest area is in the southwestern
part with altitude of 750m, while the highest points lies inrtbgheastern pawith altitude hgher

than 4000m. Utah is also known for very diverse climatis instance, there are definite variations

in temperature with altitude and with latitude. Average temperature differences between the southern
and northern counties at around similar al@sidypically range between 6 and 8 degrees with the
northern counties having lower temperatuiidse topographies of lowa and Minnesota, on the other
hand, consist mainly of rolling plain and flat prairie. The differences of their lowest and highed¢sltitu

are also small, ranging from the lowest points of 183m and 146m to the highest points of 702m and
509m for Minnesota and lowa, respectivdlyo wa and Mi nnesotaébés cl i mates,

and interior continental location, are characterizgdnarked seasonal variations.

Ontario, lowa, Minnesota, and Utah currently have 140, 67, 97, and 96 RWIS stations in place,
respectively, andheir RWIS network expansion initiatives are underway to deployadditional

number ofstations over the nexttb 10 years in all regions.
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Figure 4-1: Study areas under investigation and the existing RWIS networks: (a) Ontario, (b)

lowa, (c) Minnesota, and (d) Utah

4.2 Data Descriptions

This section provides a description of various different data sources, afgiokedin the analyses
describedn the later sections
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