
Multi-Path Link Embedding for
Survivability in Virtual Networks

by

Md Mashrur Alam Khan

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2015

c© Md Mashrur Alam Khan 2015

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Md Mashrur Alam Khan

ii

Statement of Contributions

Most of the portions of this thesis appeared in the following publications:

• Md Mashrur Alam Khan, Nashid Shahriar, Reaz Ahmed, and Raouf Boutaba, “SiM-
PLE: Survivability in Multi-Path Link Embedding” in 11th Conference on Network
and Service Management (CNSM), 9-13 November 2015 (To appear)

• Md Mashrur Alam Khan, Nashid Shahriar, Reaz Ahmed, and Raouf Boutaba, “SiM-
PLE: Survivability in Multi-Path Link Embedding”. Programming of SAVI AGM &
Workshop, 7 July 2015.

iii

Abstract

Internet applications are deployed on the same network infrastructure, yet they have di-
verse performance and functional requirements. The Internet was not originally designed
to support the diversity of current applications. Network Virtualization enables heteroge-
neous applications and network architectures to coexist without interference on the same
infrastructure. Embedding a Virtual Network (VN) into a physical network is a fundamen-
tal problem in Network Virtualization. A VN Embedding that aims to survive physical
(e.g., link) failures is known as the Survivable Virtual Network Embedding (SVNE). A
key challenge in the SVNE problem is to ensure VN survivability with minimal resource
redundancy. To address this challenge, we propose SiMPLE. By exploiting path diversity
in the physical network, SiMPLE provides guaranteed VN survivability against single link
failure while incurring minimal resource redundancy. In case of multiple arbitrary link
failures, SiMPLE provides maximal survivability to the VNs. We formulate this problem
as an ILP and implement it using GNU Linear Programming Kit (GLPK). We propose
a greedy proactive to solve larger instances of the problem in case of single link failures.
In presence of more than one link failures, we propose a greedy reactive algorithm as an
extension to the previous one, which opportunistically recovers the lost bandwidth in the
VNs. Simulation results show that SiMPLE outperforms full backup and shared backup
schemes for SVNE, and produces near-optimal results.

iv

Acknowledgements

First of all, I would thank the almighty Allah, the most beneficent, the most merciful,
for giving me a chance to pursue MMath program at the University of Waterloo.

I would like to express my deepest gratitude to my supervisor, Professor Raouf Boutaba,
for his continuous support in my study and research, and for his patience, motivation, and
knowledge. He always gave me freedom, and helped me all the time of my research and
writing of this thesis. I would also like to thank the readers of this thesis, Prof. Reaz
Ahmed and Prof. Martin Karsten, for providing their valuable feedback and comments on
this work.

I am utterly grateful to my mother and brother for their unconditional love, support,
and sacrifices. My mother has always been the source of strength and motivation for me.
She was always beside me in my hard times, and constantly inspired me until I overcame the
odds. My brother took over a lot of responsibilities in my family so that I can concentrate
on my studies in Canada. It would not have been possible for me to make it this far
without their support.

I would also thank my fellow coworkers, Dr. Reaz Ahmed and Mr. Nashid Shahriar,
for their significant contributions in this work. They constantly helped me and guided me
to make a successful research paper out of this work, which has been accepted in the 11th
International Conference on Network and Service Management in November, 2015.

I would also acknowledge the contribution of the past and present members of the Net-
work Virtualization research group for their feedback on this work, including Prof. Raouf
Boutaba, Dr. Reaz Ahmed, Mr. Nashid Shahriar, Mr. Shihabur Rahman Chowdhury,
Mr. Faizul Bari, Mr. Arup Raton Roy, Dr. Mohamed Faten Zhani, Mr. Md. Golam Rab-
bani, Mr. Zhihong Liu, Mr. Aimal Khan, Mr. Milad Ghaznavi, Mr. Min Feng, Mr. Leonardo
Richter Bays and Mr. Aziz Lahlou.

Finally, I thank the University of Waterloo for providing me with adequate financial
support, and for maintaining an excellent academic environment throughout my MMath
program. This work was supported by the Natural Science and Engineering Council of
Canada (NSERC) in part under its Discovery program, and in part under the Smart
Applications on Virtual Infrastructure (SAVI) Research Network.

v

Dedication

This is dedicated to my family.

vi

Table of Contents

Statement of Contributions iii

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Problem Statement . 2

1.2 Motivation . 3

1.3 Challenges . 3

1.3.1 Maximal Survivability in Virtual Networks 4

1.3.2 Minimal Resource Redundancy . 4

1.3.3 Minimal Path Splitting Overhead 4

1.4 Contribution . 5

1.5 Thesis Organization . 5

2 Background 7

2.1 Virtual Network Embedding . 7

2.1.1 Substrate Network . 7

2.1.2 Virtual Network . 8

2.1.3 VN Embedding . 8

vii

2.1.4 VNE Literature Survey . 9

2.2 Link Failures . 10

2.2.1 Link Failures in Data Center Networks 11

2.2.2 Link Failures in ISP Networks . 11

2.3 Survivable Virtual Network Embedding . 12

2.3.1 Protection . 12

2.3.2 Recovery . 13

2.3.3 Survivability in Other Domains . 13

2.4 Path Splitting . 14

2.4.1 Equal Cost Multi Path Routing . 14

2.4.2 Multipath TCP . 15

2.4.3 Path Splitting in VNE/SVNE . 15

2.5 Summary . 16

3 SiMPLE 17

3.1 The Embedding Concept in SiMPLE . 17

3.1.1 Proactive Allocation . 18

3.1.2 Reactive Recovery . 20

3.2 ILP Formulation . 22

3.2.1 Split and Join Cost . 22

3.2.2 Switching Cost . 24

3.2.3 SLink Cost . 24

3.3 Proposed Solutions . 26

3.3.1 SiMPLE-PR . 26

3.3.2 SiMPLE-RE . 30

3.4 Summary . 33

viii

4 Evaluation 34

4.1 Simulation Setup . 34

4.1.1 Determining Maximum Number of Splits 36

4.2 Baseline Approaches . 37

4.2.1 Full Backup Scheme . 37

4.2.2 Shared Backup Scheme . 37

4.3 Terminology . 37

4.3.1 Path Failure . 38

4.3.2 Affected VLink . 38

4.3.3 Failed VLink and Failed VN . 38

4.4 Performance Metrics . 38

4.4.1 Profit, Ψ . 38

4.4.2 Acceptance Ratio, AR . 39

4.4.3 Average Fraction of Backup Bandwidth, B̂ 39

4.4.4 Average Splitting Overhead, Ŝ . 39

4.4.5 Average Fraction of Survived Bandwidth, F̂ 40

4.4.6 Probability of Simultaneous VN Failures, Prob(ρi) 40

4.4.7 Nine Availability . 40

4.5 Performance Evaluation Results . 40

4.5.1 Profit . 40

4.5.2 Acceptance Ratio . 41

4.5.3 Overhead . 41

4.5.4 Execution Time . 43

4.5.5 Discussion . 43

4.6 Survivability Evaluation Results for SiMPLE-PR 44

4.6.1 Impact of Failures . 45

4.6.2 Availability . 46

ix

4.6.3 Failure Tolerance . 46

4.6.4 Discussion . 46

4.7 Survivability Evaluation Results for SiMPLE-RE 47

4.7.1 Impact of Failures . 47

4.7.2 Profit . 49

4.7.3 Discussion . 49

4.8 Summary . 49

5 Conclusion 51

5.1 Summary of Contribution . 51

5.2 Future Works . 52

References 53

x

List of Tables

3.1 Approximate values for Theorem 3.1.3 . 21

3.2 Notation Table . 23

4.1 Evaluation Environment . 35

4.2 Evaluation Metrics . 39

4.3 Average Execution Time (sec) . 43

xi

List of Figures

2.1 Embedding two VN requests onto an SN 9

3.1 Proactive Embedding in SiMPLE . 18

3.2 Reactive Failure Recovery in SiMPLE . 20

3.3 SiMPLE-PR Embedding Example . 29

3.4 SiMPLE-RE Recovery Example . 32

4.1 Impact of different number of splits for one VLink 36

4.2 Performance Analysis for Fat tree topology 41

4.3 Performance Analysis for Synthetic topology 42

4.4 Survivability Analysis for Fat tree topology 44

4.5 Survivability Analysis for Synthetic topology 45

4.6 Recovery Analysis for Fat tree topology . 48

4.7 Recovery Analysis for Synthetic topology 48

xii

Chapter 1

Introduction

The Internet has to support a wide range of applications having diverse performance and
functional requirements. For example, Audio/Video streaming requires dedicated band-
width and bounded delay, online banking requires security guarantees, while web browsing
and email applications are satisfied with best-effort delivery. Currently, these applications
are deployed on the same network infrastructure, and rely on Internet’s best-effort commu-
nication model that does not provision any guarantee. Network Virtualization (NV) [13]
has been propounded as a promising solution for enabling heterogeneous applications and
network architectures to coexist on the same physical infrastructure (or, substrate network,
SN). NV involves two entities: Infrastructure Providers (InPs) and Service Providers (SPs).
An InP owns and maintains the substrate, e.g., data center networks. An SP, in contrast,
requests network slices from one or more InP(s), and offers customized services to end
users. An InP models a network slice as a Virtual Network (VN), and embeds the VN to
the SN with proper isolation and guaranteed Quality of Service (QoS). In this way, NV
enables multiple SPs to coexist on the same substrate without interference, and satisfies
diverse application needs.

Efficient mapping of VNs onto an SN is known as the VN embedding (VNE) prob-
lem [18]. In its simplest form, the VNE problem is to map virtual nodes and links of a VN
request onto substrate nodes and paths (sequence of physical links), respectively, while sat-
isfying physical resource constraints. The VNE problem is NP-hard and has been studied
extensively in the literature [14], [33], [48]. However, one important aspect of the problem
that received less attention is VN survivability. Finding a VN Embedding that can survive
arbitrary substrate node or link failures is known as the Survivable Virtual Network Em-
bedding (SVNE) problem [39]. A failure in the SN may cause multiple VNs to fail, which
may significantly degrade service performance and availability. In many applications, a

1

service outage can incur high penalty in terms of revenue and customer satisfaction. For
example, online businesses in North America lost 26.5 billion in revenue due to service
downtime in 2010 [1]. Hence, VN survivability is crucial for both InPs and SPs.

Survivability has been thoroughly investigated in non-virtualized networks in the past
[9], [30], [31], [42]. However, these solutions focus on ensuring network connectivity during
failures, whereas in SVNE the focus is to preserve the virtual topology by using mutu-
ally exclusive substrate resources. Hence, existing solutions are not directly applicable
to SVNE. Survivability of VNs is usually achieved through allocation of redundant (i.e.,
backup) resources, which introduces additional challenges to the VNE problem. First, the
failure characteristics and repair time are unpredictable [20], [34]. Reserving the full de-
mand of a virtual link as backup is expensive, since backup resources remain idle when
there are no failures [39]. To minimize resource wastage, shared backup schemes have
been proposed in [22]. However, they do not guarantee the full requested bandwidth of a
virtual link during failure. It is challenging to determine the minimum redundancy level
for guaranteed survivability. Second, primary and backup resources need to be disjoint in
the SN. Embedding each virtual link into multiple disjoint paths mitigates the impact of
failures [35], [36], [46]. Although effective, this approach incurs path splitting overhead in-
cluding packet redirection, increased routing table size, and packet reordering. In general,
it is difficult to find the optimal trade-off between VN survivability, redundancy level, and
path splitting overhead.

1.1 Problem Statement

To address the challenges mentioned in the previous section, we propose SiMPLE for en-
suring Survivability in Multi-Path Link Embedding. SiMPLE presents a multi-path link
embedding strategy by exploiting the path diversity in the SN. Link failures are more fre-
quent than node failures, and node failures can be modeled as multiple link failures [41].
Hence, SiMPLE focuses on survivability against arbitrary substrate link failures. While
embedding, SiMPLE assumes that the nodes in the VN request has already been mapped,
and embeds each virtual link across a number of disjoint substrate paths. SiMPLE guar-
antees to preserve full demand of a VN request in presence of a single substrate link failure
at a time instance. SiMPLE also provides a reactive mechanism to recover each virtual
link affected by substrate link failures.

2

1.2 Motivation

The motivation of this thesis comes from the Infrastructure as a Service (IaaS) [8] business
model, which facilitates provisioning virtualized resources over clouds, data centers, and
ISP networks through the Internet. In addition, it decouples the role of the InPs and
SPs. NV [13] provides an efficient and reliable way to deploy multiple heterogeneous VNs
over the same SN. An InP deploys a large SN, and maintains its physical resources (e.g.,
switches, links, CPU capacity, bandwidth). It also solves one (or more) instance(s) of
the VNE problem to serve the arrived VN request(s). Each VN request comes from an
SP, and has its own requirement (e.g., topology, CPU demand, and bandwidth demand).
While embedded, each VN facilitates its corresponding SP by hosting different application
specific protocols and services for the end users. The VN requests are leased for a specific
amount of time, after which an SP releases the SN resources and leaves. In this way, NV
enables multiple heterogeneous VNs to coexist on the same SN while ensuring resource
isolation, better manageability, security and privacy.

However, the SN is very likely to suffer from failures in its different components. Es-
pecially, the substrate link failures dominate in the SNs today, both in data center and
ISP networks [20], [34]. The failure incidents show random behavior at their arrival rate
and repair time. In a few cases, the links are failed on a planned manner, mostly due
to maintenance reasons. However, as the authors in [34] have illustrated, approximately
80% of the link failures are unplanned, and they fail due to various unavoidable reasons
(e.g., misconfiguration, or fiber cut). In addition, the failed links may take a significant
amount of time to repair. For example, the mean time to repair for a failed link in a data
center may take as long as several hours [20], whereas, in ISP networks, it may take one or
more days [34]. For these reasons, a VN embedding that survives substrate link failure(s)
is often needed by both InPs and SPs. Hence, this work focuses on provisioning maximal
survivability against substrate link failures on the embedded VNs.

1.3 Challenges

In this section, we present the major challenges for SiMPLE: i.e., to design multi-path link
embedding for provisioning virtual network survivability.

3

1.3.1 Maximal Survivability in Virtual Networks

We use the term maximal survivability to denote guaranteed survivability of the VN re-
quests against arbitrary substrate component failures. To find an optimal algorithm for
guaranteeing maximal survivability for VN requests is a challenging research area [18], [24].
This is because the substrate element failures are highly unpredictable [20], [34], and the
exact amount of substrate resources that are needed for survivability is not known in
advance [24]. For this reason, a number of research works consider only substrate link fail-
ures to achieve VN survivability [22], [35], [36], [39]. However, none of these works provide
provable survivability guarantee, in presence substrate link failure(s).

1.3.2 Minimal Resource Redundancy

Survivability in VN request can be achieved through allocating redundant resources in the
SN. This can be straightforward when we allocate a vast amount of redundant resources
(e.g., 100% or more redundancy). However, such an allocation strategy will be very costly,
as well as it can leave a significant amount of resources to be idle when there are no
failures present in the SN. In contrast, to determine the minimal amount of redundancy
for survivability is a challenging problem. A number of factors, including the size of SN
and VN, the unpredictability of failures, and the resource utilization in SN make it hard
to determine both the amount and the allocation of redundant resources in embedding.

1.3.3 Minimal Path Splitting Overhead

We are assuming that the SN supports path splitting, i.e., it can split a single data stream
between the same source and destination across multiple paths. While embedding, path
splitting can create additional overhead in the SN, e.g., source and destination buffers,
additional routing entries, and delays accumulated in multiple paths. If these overheads
contribute too much, it will make VN embedding costly and infeasible. Furthermore, while
minimizing path splitting, we may need to embed a virtual link with a huge demand only
on one route. In the worst case, this route may not have enough residuals, and we may
not have a feasible embedding. For this reason, minimizing the path splitting overhead is
another key challenge in this thesis.

4

1.4 Contribution

The major contributions of this thesis are as follows:

• Key concept. We propose a novel concept to ensure maximal survivability while
reserving only a fraction of the virtual link’s demand as backup. To the best of
our knowledge, SiMPLE is the only approach that provides provable survivability
guarantee in presence of a single link failure without allocating full bandwidth of the
virtual link’s demand as backup.

• Optimization model. The design goal of SiMPLE is to find a trade-off between
maximizing survivability and minimizing redundancy and path splitting overhead,
which has not been considered in the previous studies. We formulate this joint op-
timization problem as an Integer Linear Program (ILP) to achieve the trade-off be-
tween maximizing survivability and minimizing both redundancy and path splitting
overhead.

• Proactive Approach. We present an implementation of the ILP model in GLPK to
find optimal solutions for small scale networks. For larger instances of the problem,
we propose a greedy proactive algorithm that produces near-optimal solutions. We
demonstrate SiMPLE’s effectiveness through extensive simulations and compariosn
with full backup and shared backup schemes for SVNE. Simulation results show
that SiMPLE provides better survivability, requires lesser backup bandwidth, and
generates more profit.

• Reactive Approach. While the proactive approach guarantees survivability against
a single substrate link failure, it may not offer full protection for multiple substrate
link failures. To mitigate the impact of such scenarios, we present a reactive approach
in SiMPLE. This approach recovers the lost bandwidth in each virtual link affected
by physical link failures. Simulation results show that, compared to the proactive
approach, it improves the results by a significant margin in both minimizing failed
VNs and obtaining higher profits for the InP.

1.5 Thesis Organization

The rest of the thesis is organized as follows.

5

• Chapter 2 provides necessary background for this thesis. This chapter contains
discussions on virtual network embedding, link failures, survivable virtual network
embedding, and path splitting.

• Chapter 3 presents the main concept and ILP model for SiMPLE. It also presents
two greedy solutions – one proactive and one reactive – each representing one part
of SiMPLE.

• Chapter 4 presents our evaluation results. In this chapter, we compare SiMPLE
with two existing SVNE approaches – Full Backup Scheme (FBS) and Shared Backup
Scheme (SBS).

• Chapter 5 concludes the thesis with an outline of possible future research directions.

6

Chapter 2

Background

In this chapter, we present the backgrounds studies that are required for understanding this
thesis. In Section 2.1, we explain the virtual network embedding process, with each of its
steps described. In Section 2.2, we present the definition and characteristics about substrate
link failures, both in data center and ISP networks. In Section 2.3, we discuss how we can
provide survivable virtual network embedding (SVNE) to handle link failures. Afterwards,
we present path splitting – its basic concepts, enabling technologies, and applicability in
VNE and SVNE in Section 2.4. Finally, we present a summary of this chapter in Section 2.5.

2.1 Virtual Network Embedding

In this section, we describe the representation of the substrate network (SN), the virtual
network (VN), and discuss the basic approaches to perform virtual network embedding.

2.1.1 Substrate Network

We model the Substrate Network (SN) as an weighted graph GS(NS, ES). In this notation,
NS and ES denote the sets of the Substrate Nodes (SNodes) and Substrate Links (SLinks),
respectively. Each SNode ns ∈ NS has a CPU capacity, c(ns), and each SLink es ∈ ES has
a bandwidth capacity, b(es). The residual CPU and bandwidth resources at ns and es are
represented by r(ns) and r(es), respectively.

7

2.1.2 Virtual Network

Similar to the SN, we model the Virtual Network (VN) as an weighted graph GV (NV , EV).
Here, NV and EV denote the sets of Virtual Nodes (VNodes) and Virtual Links (VLinks),
respectively. The CPU demand of a VNode nv ∈ NV and bandwidth demand of a VLink
ev ∈ EV are denoted by c(nv) and b(ev), respectively.

2.1.3 VN Embedding

The idea of the VN Embedding (VNE) problem is to embed the VN request onto the SN
so that the VN demands are satisfied, and the SN capacities are not exceeded. In VNE,
the key challenge is to use as few resources from the SN as possible, so that more VNs
can be accommodated and a higher revenue is achieved by the InP. Generally, the VNE
problem can be divided into two stages as follows.

Node Embedding

In this stage, each VNode nv ∈ NV from a VN request is mapped to a single SNode
by a node mapping function: ξN : NV → NS, subject to CPU capacity constraints:
∀nv ∈ NV : c(nv) ≤ r(ξN(nv)).

Link Embedding

In this stage, each VLink ev ∈ EV is mapped to a substrate path pe
v ∈ P ev between

ingress SNode ξN(evs) and egress SNode ξN(evd), where evs and evd respectively denote the
source and destination VNodes of ev. The link mapping function is ξE : EV → P ev , subject
to bandwidth capacity constrainst: ∀ev ∈ EV ∧ ∀p ∈ P ev : b(ev) ≤ r(p), where r(p) = min

es∈p
r(es).

Solving the VNE problem is NP-hard, as it is related to the multi-way separator
problem [33]. Even with a given VNode mapping, the problem of optimally allocating
the VLinks to substrate paths reduces to the unsplittable flow problem [27], and is thus
NP-hard as well.

8

9

b c

a

6

8

5 8

4

GV1

e

f

d 6

8

6

8

4

 GV2
65

A

B

C

E

D

F

G

a

b
c

e

f

d

50

70

80

55 70

40

80

65

75

90

90

80

50
60

50

30

GS

Figure 2.1: Embedding two VN requests onto an SN

VNE: An Illustrative Example

Fig. 2.1 depicts the mapping of the two VN requests, GV 1 and GV 2 (on the left) on an
SN, GS (on the right). Here, the SNodes and VNodes are labeled with letters inside the
corresponding node. Node mapping for GV 1 is ξ1N(a) = D, ξ1N(b) = A, ξ1N(c) = F , and link
mapping is ξ1E(ab) = DBA, ξ1E(ac) = DEF , ξ1E(bc) = ACF ; while GV 2 has node mapping
ξ2N(e) = D, ξ2N(d) = G, ξ2N(f) = F , and link mapping ξ2E(ed) = DG, ξ2E(ef) = DEF .

2.1.4 VNE Literature Survey

The VN Embedding literature can be classified based on the coordination between its two
sub-problems – node embedding and link embedding [24]. The first category, i.e., the
uncoordinated VNE, does not take into account the possibility of coordination between
these two sub-problems. One possible example of this category is presented in [46], where
the link embedding is performed after a greedy node embedding. In the link embedding
step, the multi-commodity flow problem formulation is used to find a set of paths between
the substrate hosts for each virtual link. However, this lack of coordination might result into
embedding adjacent virtual nodes towards distant physical nodes, which increases resource
consumption. The second category, i.e., the one-stage coordinated VNE [12], embeds the
virtual links at the same time as the virtual nodes. In this category, at first, a greedy
algorithm (e.g., PageRank [37]) is used to rank the virtual nodes. Then, a virtual node
pair and their intermediate virtual link are embedded. Afterwards, the remaining virtual
nodes and virtual links connecting them are embedded one by one. The third category, i.e.,
the two-stage coordinated VNE, embeds the virtual network into the substrate network

9

into two distinct steps [15]. The first step is to represent a set of preferred substrate nodes
for each virtual node as a meta-node, and perform a relaxed Mixed Integer Programming
(MIP) to calculate the physical hosts of the virtual nodes in the corresponding meta-nodes.
The second step is to find the physical paths corresponding to the virtual links, and this is
solved by the multi-commodity flow problem formulation. In the one-stage and two-stage
coordinated VNE approaches, the coordination between node mapping and link mapping
stages are strong, and the substrate nodes chosen to map the virtual nodes are likely suited
to provide virtual link mappings with low embedding cost.

The VNE approaches described so far are applicable when the virtual network is em-
bedded into only one substrate network. However, in real-world scenario, a large virtual
network may be embedded in a distributed fashion across several autonomous substrate
networks. In the latter case, the virtual network is split into several virtual networks,
each of which are embedded in different substrate networks. The connectivity between the
smaller virtual networks is maintained by the external links among different SN. A good
example of such distributed VNE algorithm is presented in [16].

2.2 Link Failures

An SLink Failure is defined as the event when the connection between two adjacent nodes
(routers or switches) is down in a network. SLink failures are very common in both data
center and in ISP networks, as identified by the authors in [20] and [34], respectively.
According to these studies, a single SLink failure is defined as the event on which only one
SLink is down at a certain time. For example, an SLink ef can be down at time t1, and it
can be repaired at time t2, where t2 > t1. If no other SLink is down during the time interval
[t1, t2], then this incident is called single SLink failure event. The time interval (t2 − t1)
is defined as time-to-repair (TTR). In contrast to the single SLink failure event, there can
be multiple SLink failures in the network, where more than one SLink experience down
events simultaneously. As an instance of multiple SLink failure, consider a router failure,
which can trigger down events for all the connected SLinks. Furthermore, multiple single
SLink failures can have overlapping failure time, which generates another type of multiple
SLink failures. Multiple SLink failures can further be categorized into two separate classes
– simultaneous and concurrent failures. In simultaneous failure scenario, multiple SLinks
fail at the same time, and typically due to the same incident (e.g., router failure). In
concurrent failure scenario, multiple SLinks fail independently, and have an overlapping
TTR.

10

In Sections 2.2.1 and 2.2.2, we will present the characteristics of SLink failures in data
center and ISP networks, respectively.

2.2.1 Link Failures in Data Center Networks

Authors in [20] present some interesting characteristics of failures in data center networks.
In today’s data center networks, a number of factors may contribute to SLink failures,
mostly dominated by hardware (e.g., power supply or fan failure) and software (e.g., BIOS
upgrade, OS reboot) issues. Notably, SLink failures happen about ten times more than
SNode failures per day. Failure events arrive randomly at data center networks, and they
show high variability in their rate of occurrence. However, half of the time SLink failures
are single failure occurrences. The TTR for these failures are also variable in nature.
Statistically, almost 60% of the SLink failures are repaired within five minutes. However,
depending on the type of SLink, the TTR can also be significantly long (e.g., several hours).
In these cases, the SN may experience another random failure, resulting into the multiple
failure scenario. Furthermore, although the data center networks provide redundancies to
prevent packet loss in failure scenario, these mechanisms are only able to reduce the impact
of failures by no more than 40%.

2.2.2 Link Failures in ISP Networks

The characteristics of failures in ISP networks are presented in [34]. An SLink in an
ISP network may not operate properly all the time due to various reasons, such as fiber
cut, maintenance, mis-configuration etc. There are some planned failures for scheduled
maintenance, and these activities are performed periodically by all Infrastructure Providers
(InPs). However, 80% of total SLink failures are unplanned (e.g., not scheduled due to
maintenance) in ISP networks [34]. Note that 70% of these failures are single SLink failures,
whereas the other 30% generate multiple failure events. The TTR in ISP networks can
be significantly higher than that of the data center networks. Most of the failures in ISP
networks can be repaired within an hour. However, depending on the failure and the
affected SLink, the TTR can even be a day or more. In these cases, multiple SLink failures
are very likely to occur.

11

2.3 Survivable Virtual Network Embedding

Survivable Virtual Network Embedding (SVNE) deals with keeping the VNs intact, even
after substrate failures (e.g., SNodes or SLinks). SNode failures are very rare and results
into multiple SLink failures [20], [34], [41]. Hence, majority of the SVNE literature focuses
on SLink failures. Throughout the rest of this thesis, we restrict ourselves on SLink failures.
Two most prominent solutions are common in the SVNE literature [18], [24], namely,
protection, and recovery. We describe each one in context of IP networks in Sections 2.3.1
and 2.3.2, respectively. Finally, in Section 2.3.3, we will present survivability mechanisms
in other domains (e.g., optical, MPLS, and cloud environments).

2.3.1 Protection

In SVNE literature, protection (also known as, proactive allocation) refers to allocating
redundant resources per each VLink while embedding, i.e., before any SLink failure occurs.
To survive against SLink failures, backup resource can be allocated in two ways [24],
namely, SLink protection and path protection. In SLink protection, a primary path p is
associated to each VLink, and each SLink es ∈ p is protected by a detour. Upon an SLink
failure, traffic on that SLink is locally rerouted through its detour. In Fig. 2.1, SLink
DE can be associated with two detours DGE and DBAE for the VLinks ac and ef ,
respectively. In case of the path protection, each end-to-end primary path p is protected
by an SLink disjoint backup path from source to destination. The source activates the
backup path when it is notified about the failure of an SLink along path p. In Fig. 2.1,
the bandwidth demanded by VLinks ac and ef can be reserved in the backup paths DGF
and DBACF , respectively, which are SLink disjoint to the primary path DEF . Hence,
redundant bandwidth has to be allocated in SN for each backup path. However, to minimize
redundancy multiple backup paths can share the same redundant bandwidth in SLinks.

A number of research works contribute to the VLink protection problem. Several
research works, including [10] and [39], formulated two separate LP models for VLink
embedding, which allocate full demand of each VLink along a primary path and a disjoint
backup path. These full backup schemes result into poor bandwidth utilization. Shared
backup schemes, on the other hand, allow multiple VLinks to share backup resources
allocated to each end-to-end path [11] or SLink [22]. However, primary paths are dedicated
to each VN and cannot be shared with other VNs. Since the same backup resources are
shared among multiple VLinks, these approaches do not offer bandwidth guarantee, even in
presence of a single SLink failure. The authors in [22] propose two shared backup schemes

12

to protect against any potential single SLink failure: Shared On-Demand approach and
Shared Pre-Allocation approach. In the first approach, bandwidth resources are allocated
to the primary flows and backup flows upon the arrival of each VN request. Backup
resources can be reused by other VNs to make room for accepting more incoming VN
requests. However, primary flows are dedicated to each VLink and are not allowed to be
shared with other VLinks. In the second approach, backup bandwidth for each SLink is pre-
allocated during the initial phase, i.e., before any VN request arrives. Since the bandwidth
pre-allocation only needs to be done once and not for every VN request, it requires less
processing during the VN embedding phase. The disadvantage of these approaches is that
they can not guarantee recovery of full bandwidth even in the case of single SLink failure.
For example, if multiple VLinks are embedded on the failed SLink, bandwidth recovery of
these VLinks can be compromised due to sharing.

2.3.2 Recovery

The recovery (or, reactive) techniques provide VN survivability without allocating any
backup bandwidth at the beginning. In practice, they react after an SLink fails, and start
the path restoration mechanism. B. Lu [32] proposes such a reactive mechanism where
either a substitute path is searched, or the corresponding VN is remapped after a link
failure. In a highly saturated SN, there may not be enough resources left for finding the
substitute path or remapping the VN.

We discuss two most prominent recovery approaches in SVNE. Rahman et al. [38] [39]
proposes a three-phase hybrid mechanism where a set of possible backup detours for each
SLink is computed before any VN request arrives. Then, node embedding is done for
the arriving request with an existing embedding algorithm [14], [48], followed by a multi-
commodity based link embedding. Finally, in the event of a SLink failure, a reactive
online optimization mechanism reroutes the affected flows along candidate backup detours
selected in the first phase. This approach may demand a long convergence time, leaving
VNs unavailable during such periods. This may cause data loss. Furthermore, since the
substrate resources are not fragmented to serve multiple virtual requests, all proactive and
reactive approaches may suffer from improper load balancing and link underutilization.

2.3.3 Survivability in Other Domains

Network survivability in Optical and Multi-Protocol Label Switched (MPLS) networks is
usually considered during the network design. The solutions in these domains, e.g., [30],

13

[31] assume that traffic demands are known in advance (i.e., offline). In contrast, SVNE is
online; it needs to provide survivability for unpredictable VN request arrivals and demand
patterns. Furthermore, SVNE solutions have to ensure the intactness of all VLinks in
presence of failures. This restriction is not present in Optical/MPLS networks, where the
goal is to ensure connectivity in the network. Hence, these solutions are not suitable for
the NV environment.

Due to the importance of providing high service availability in Cloud environments, re-
cently there is a trend towards designing survivable resource allocation schemes for band-
width constrained data centers [4], [7], [45], [47]. These works aim at improving fault
tolerance by spreading out network elements across multiple failure domains. Xu et al. [43]
proposes a resource allocation scheme for provisioning virtual data centers with backup
virtual machines and links. However, this work do not consider the survivability of physi-
cal machines and links. Bodik et al. [9] proposes an optimization framework for improving
survivability while reducing the total bandwidth consumption. However, this approach
does not consider the heterogeneous failure rates of the underlying physical equipment,
and mitigates the bandwidth bottleneck only in the core of the data center. Zhang et
al. [47] proposes a framework for reliable virtual data center embedding in clouds by con-
sidering heterogeneous failure rates. SiMPLE differs from these works in its objective of
simultaneously optimizing VN survivability, bandwidth usage, and path splitting overhead.

2.4 Path Splitting

Path splitting is a routing strategy to allow one data stream to be splitted across multiple
paths. Path splitting enables an increased resource utilization, failure-tolerance, and better
QoS. Various path splitting techniques, such as, Equal-cost Multipath Routing (ECMP)
and Multipath TCP (MPTCP), have been used in the IP and TCP layers, respectively.
We discuss each of them in Section 2.4.1 and 2.4.2, respectively. Finally, in Section 2.4.3,
we elaborate how path splitting can be utilized in VNE or SVNE context.

2.4.1 Equal Cost Multi Path Routing

Equal Cost Multi Path (ECMP) routing [25] is an extension of the shortest path routing [5],
which allows multiple paths between a source and a destination to forward packets. At
the beginning, just like the shortest path routing protocol, it calculates the shortest paths
between the source and the destination. In contrast to the shortest path routing protocol

14

that randomly selects one of the next hops in case of a tie, ECMP saves all next hops in
the current hop. Afterwards, ECMP forwards packets having the same flow ID (source
and destionation IP addresses, and port numbers) towards the same path. In this process,
ECMP distributes multiple flows across multiple paths to achieve better load balancing.
Since ECMP does not actually split one flow across multiple paths, it has no jitter (i.e.,
delay incurred in different paths carrying the same flow). However, the working principle
of SiMPLE differs from ECMP, because SiMPLE works under the assumption that the SN
can split each flow across multiple paths.

2.4.2 Multipath TCP

The goal of the Multipath TCP (MPTCP) [3], [19], as proposed by the Internet Engineering
Task Force (IETF) is to utilize the network resources by splitting a single data stream across
multiple, potentially disjoint paths. For this purpose, MPTCP assumes the presence of
multiple IP addresses at a host. The presence of multiple network addresses at one host are
used to find multiple paths. At the beginning, MPTCP operates by establishing a regular
TCP connection (i.e., flow) between the source-destination pair. Afterwards, it makes
opportunistic discoveries for additional source-destination paths. If such path(s) are found,
MPTCP divides the flow traffic among the discovered paths (i.e., subflows). The MPTCP
protocol operates between the IP layer and the application layer in the network stack. For
the non-MPTCP-aware applications and/or hosts, MPTCP acts just like the traditional
TCP. The underlying assumption of SiMPLE, i.e., to split each flow across multiple paths,
is very similar to MPTCP. However, in contrast to MPTCP, SiMPLE provisions guaranteed
survivability by ensuring the disjointness constraint among the working paths.

2.4.3 Path Splitting in VNE/SVNE

The notion of path splitting can be used in both VNE and SVNE contexts. The key idea
to use path splitting in VNE or SVNE is to allow multiple paths, instead of just one,
for embedding each VLink. Each path provisions a portion of the demand requested by
the corresponding VLink. In this process, the whole requested demand of the VLink is
obtained by the summation of the resources provided by these paths. In this concept,
the major advantage is that, even if one path is affected by an SLink failure, the other
remaining paths can serve a significant portion of the VLink demand. As an instance of
path splitting in VNE, let us again consider the example presented in Section 2.1.3. In Fig.
2.1, we can embed VLinks ac and ef onto multiple paths such as ξ1E(ac) = {DEF,DGF}

15

and ξ2E(ef) = {DEF,DBACF}. Here, upon the failure of the SLink DE, both VLinks ac
and ef can partially survive through the alternate paths DGF and DBACF , respectively.

A number of works in both VNE and SVNE literatures use path splitting, and we sum-
marize the most prominent ones as follows. The authors in [46] introduced path splitting
in VNE to embed a VLink over multiple substrate paths. For this purpose, they use multi
commodity flow (MCF) based link embedding. In an MCF based solution, any interme-
diate SNode between the end hosts can split the flow. However, in SiMPLE, we assume
that only the source and destination SNodes can split the flow, hence MCF cannot be used
in this context. R. Oliviera et al. [35], [36] proposed an embedding strategy that provides
opportunistic recovery for each VLink via path splitting. In these cases, the authors use
heuristics to find a set of paths between the source and destination SNodes. Upon failure
of each SLink, their proposed algorithm uses any spare capacity in the other existing paths
in SN to recover the lost bandwidth. In this process, this algorithm mitigates the impact
of failure by switching the affected traffic on the failed SLink to alternative paths. In the
worst case, it can salvage a fraction of the VLink’s bandwidth during an SLink failure.
However, these approaches do not guarantee VN survivability in presence of a single SLink
failure.

2.5 Summary

In this chapter, we have presented the necessary background materials for this thesis. We
have introduced the basic concepts of VNE, followed by an illustrative VNE example and
VNE literature survey in Section 2.1. In Section 2.2, we have presented the definition and
characteristics of SLink failures, in context of data center and ISP networks. Afterwards,
we have presented the basic concepts, example, classification, and literature survey on
SVNE in Section 2.3. Finally, in Section 2.4, we have introduced the notion of path
splitting, along with its prominent enabling technologies, and its usage on VNE and SVNE
literatures.

16

Chapter 3

SiMPLE

In the previous chapter, we presented the initial concepts on SVNE. We also discussed that
the existing SVNE approaches do not provide guaranteed protection for a single SLink
failure. In addition, we have seen that SLink failure(s) are a very common phenomena,
both in data center and ISP networks. Motivated by these facts, we propose SiMPLE
(Survivability in Multi Path Link Embedding). SiMPLE consists of two parts – one
proactive allocation strategy to provision guaranteed survivability against a single SLink
failure, and one reactive recovery strategy to opportunistically recover a VLink affected by
an SLink failure.

The remainder of this chapter is organized as follows. In Section 3.1, we describe the
main embedding concept of SiMPLE, and explain its two parts. In Section 3.2, we present
the ILP formulation of SiMPLE. In Section 3.3, we present two solutions for each part in
SiMPLE – SiMPLE-PR and SiMPLE-RE, with illustrative examples. Finally, we provide a
summary of this chapter in Section 3.4.

3.1 The Embedding Concept in SiMPLE

The main concept of SiMPLE embedding consists of two parts – proactive allocation, and
reactive recovery. In this section, we describe the main concepts of these parts.

17

x

x

Base case (Full Backup)

BW Requirement = x + x

Backup BW Saving = 0%

(a) Two splits

x / 2

x / 2

x / 2

BW Requirement = x + x / 2

Backup BW Saving = 50%

(b) Three splits

x / 3

x / 3

x / 3

x / 3
BW Requirement = x + x / 3

Backup BW Saving = 67%

(c) Four splits

BW Requirement = x + x / 4

Backup BW Saving = 75%

x / 4

x / 4

x / 4

x / 4

x / 4

(d) Five splits

Figure 3.1: Proactive Embedding in SiMPLE

3.1.1 Proactive Allocation

The proactive embedding concept of SiMPLE is illustrated in Fig. 3.1. A basic proactive
approach for SVNE, the Full Backup Scheme (FBS), is illustrated in Fig. 3.1(a). In this
case, a VLink with demand x is embedded onto two disjoint paths with sufficient residual
capacity. One of the paths acts as the primary (denoted with solid line), whereas the other
is reserved for the backup (dashed line). When an SLink in the primary path fails, the
backup path serves the VLink traffic. When the failed SLink recovers, the primary path
starts serving the VLink again. However, such technique provisions twice the demand of
each VLink. As a result, the number of accepted VNs and SLink utilization decreases
significantly.

SiMPLE operates according to Fig. 3.1(b) – Fig. 3.1(d). In Fig. 3.1(b), the VLink is
split into three disjoint substrate paths, and x/2 bandwidth is allocated to each of them.
In this case, two paths are used to carry the primary flow, whereas the third path is used
as backup. Since these paths are disjoint, at most one of them can be affected by a single
SLink failure. If an SLink fails, the two unaffected paths deliver the requested bandwidth
x. Note that only half of the requested bandwidth is allocated in the backup path, or, in
other words, 50% backup bandwidth is saved in contrast to FBS. We can extend this idea to

18

a higher number of splits, say k. Fig. 3.1(c) and Fig. 3.1(d) present the VLink embedding
scenario for k = 4 and 5, respectively. As highlighted in these figures, 67% and 75% backup
bandwidth is saved in these two cases, respectively. In addition, the splitting of each VLink
into multiple substrate paths improves the possibility of VN request acceptance; even if the
full requested bandwidth is not available in any of the SLinks, a VLink can be embedded
by splitting the required bandwidth over multiple paths. In other words, it utilizes the
SLinks more efficiently than FBS, and increases the number of accepted VNs. However,
increasing the number of splits introduces additional overhead, which must be taken into
consideration.

There is a trade-off between the number of splits, and VN embedding overhead. In-
deed, each path splitting has a cost in terms of routing entry updates, source and des-
tination buffers, and additional SLink delays. We formulate these costs mathematically
in Section 3.2. If we increase the number of splits too much, these costs may result into
infeasible VN embeddings. In Section 4.1.1, based on our experimental results, we show
that an optimal embedding should not exceed more than five splits, for different workloads.

Theorem 3.1.1. SiMPLE proactive embedding guarantees to preserve the full demand of
every embedded VLink in case of a single SLink failure.

Proof. We prove this Theorem by contradiction. Assume that a VLink ẽv ∈ EV is not
supported with its full demand. According to the SiMPLE working principle, at least two
paths pẽ

v

1 and pẽ
v

2 in ẽv are impacted by a single SLink failure. By definition, pẽ
v

1 and pẽ
v

2

are disjoint, (i.e., they have no common SLink), and this leads to a contradiction.

Theorem 3.1.2. While embedding VNs with same characteristics (e.g., size, demand, and
arrival rate), SiMPLE proactive embedding outperforms FBS in the number of accepted VNs
by a factor of 2

(
k−1
k

)
, where k is the average number of splits in embedding a VLink.

Proof. Assume that FBS and SiMPLE are evaluated for time T , and accepted a series of n
VNs. Each VN has ν VLinks, and each VLink demands x bandwidth. At time T , substrate
bandwidth consumptions of FBS and SiMPLE are given by BTF = 2nl̄νx and BTS = knl̄ν x

k−1 ,

respectively, where l̄ is the average length of the substrate paths used in embedding. The
additional substrate bandwidth used in FBS is given by BTF − BTS = nl̄νxk−2

k−1 . Before

SiMPLE consumes bandwidth BTF , an additional n̂ VNs with same characteristics would
occupy B̂TS bandwidth, where B̂TS = kn̂l̄ν x

k−1 . Since B̂TS = BTF − BTS , we obtain, n̂ = nk−2
k

.

Hence, the number of accepted VNs in SiMPLE is n+ n̂ = 2k−1
k
n.

19

x / 4

x / 4

x / 4

x / 4

x / 4

XX
(a) Affected VLink (crossed line
denotes failed path)

x / 4

x / 4

x / 4

x / 4

x / 4

(b) Provisioning new path

x / 3

x / 3

x / 3

x / 3

(c) Fixed allocation

x / 4 + x2

x / 4 + x1

x / 4 + x3

x / 4 + x4

(d) Variable allocation

Figure 3.2: Reactive Failure Recovery in SiMPLE

3.1.2 Reactive Recovery

The proactive approach described in the previous section guarantees survivability of each
VLink in case of a single SLink failure. However, this approach can be vulnerable in
presence of multiple SLink failures, especially when the failures occur within a very short
time window. This is because multiple failures with overlapping MTTR can affect different
paths used in the embedding of a single VLink.

Theorem 3.1.3. While embedding VNs with same characteristics (e.g., size, demand, and
arrival rate), if two SLink failures are present in an SN, they affect the same VLink with a
probability in [C, αC], where α is the expected number of VLinks embedded onto an SLink,
and C is a constant depending on the SN and VN.

Proof. Assume that k and l denote the average number of splits and average path length
while embedding a VLink, respectively. The first SLink failure will affect α VLinks, each
of which have (k − 1)l critical SLinks. Note that if any of these critical SLinks fail, the
corresponding VLink will be served with less than 100% of its demand. In one extreme,
these α(k − 1)l SLinks may be shared among (k − 1)l SLinks. In the other, they may be

20

Table 3.1: Approximate values for Theorem 3.1.3

Term Value

Number of Splits, k 4− 5
Average Path length, l 4− 5

Average Number of VLink per SLink, α 3− 4
Number of Substrate Links, L 500

totally disjoint. The probability of a second failure in one of these SLinks can be between
C and αC, where L is the total number of SLinks, and C = (k−1)l

L
.

Observation 3.1.1. We conducted experiments to determine approximate values for the
terms presented in Theorem 3.1.3, which are given in Table 3.1. By substituting these
values, we estimate that the probability of two SLink failures affecting the same VLink lies
within 2− 16% on an SN with 500 SLinks.

To handle the impact of multiple failures, we propose a reactive approach in SiMPLE.
This approach, as presented in Fig. 3.2, works for each VLink that are affected by an
SLink failure. In essence, this approach considers each possibility to recover an affected
VLink (a VLink with a failed path, see Fig. 3.2(a)), and selects the most feasible one.
The first possibility, as shown in Fig. 3.2(b), is to provision another link-disjoint path for
the affected VLink. The second and third possibilities, as shown in Fig. 3.2(b) and 3.2(c)
respectively, consider increasing the lost bandwidth by a fixed or variable amount among
the other working paths that had already been used in embedding. Among these possible
alternatives, SiMPLE considers a set of certain criteria (e.g., amount of physical resources
used, load balancing) to evaluate their goodness, or cost. A detailed description of the cost
function can be found in Section 3.2. The embedding contributing to the lowest cost is
chosen by SiMPLE.

Note that, in the worst case, none of these possibilities will work. This implies that
another link disjoint path does not exist, and the existing paths do not have enough residual
capacity to support the bandwidth lost due to the failure(s). In this case, the VLink will
be served with less than 100% of its demand. Nonetheless, we argue that this case can
only arise when a highly congested network is subject to a massive number of failures in a
very short time, which is often less frequent.

21

3.2 ILP Formulation

We use the following notations to represent different aspects of embedding, which are also
summarized in Table 3.2. The set P ev represents a set of disjoint paths {pev1 , pe

v

2 , . . . , p
ev

k }
in SN where a VLink ev is embedded. Note that the number of paths in P ev will be equal
to the number of splits for ev ∈ EV , i.e., |P ev | = ke

v
. Two boolean variables are defined

as follows.

X(nv, ns) =

{
1, if nv is embedded to ns

0, otherwise
(3.1)

Y (pe
v

i , e
s) =

{
1, if the path pe

v

i contains es

0, otherwise
(3.2)

We formulate SiMPLE as an ILP Model. In this model, we optimize both the number of
splits and the set of substrate paths for each VLink of a VN such that the overall embedding
cost is minimized. Afterwards, the corresponding VLinks are mapped to optimal sets of
paths. The VN embedding cost has the following three components.

3.2.1 Split and Join Cost

The first cost is the split and join cost at the source and destination SNodes for a VLink ev.
In SiMPLE, we assume that the SN supports path splitting, and this assumption relies on
the substrate switches. This is because each data stream is split at the ingress switch, and
subsequently joined at the egress switch. Without loss of generality and for simplifying
the formulation, we do not place any cap on the number of splits and joins per SNode.
Let d1(n

s, k) and d2(n
s, k) be the splitting and joining costs into k branches at ns ∈ NS.

The total split and join cost at ns is denoted by D(ns, k) = d1(n
s, k) + d2(n

s, k). We can
represent the total split and join cost as follows in (3.3).

Ï(ev, P ev , ke
v

) =
(
D(ξN(evs), k

ev) +D(ξN(evd), k
ev)
)

(3.3)

22

Table 3.2: Notation Table

GS(NS, ES) Substrate Network (SN)
ns ∈ NS Substrate Node (SNode)
es ∈ ES Substrate Link (SLink)
c(ns) Total CPU capacity of ns ∈ NS

b(es) Total Bandwidth capacity of es ∈ ES

r(ns) Residual CPU capacity of ns ∈ NS

r(es) Residual Bandwidth capacity of es ∈ ES

d1(n
s, k) Split cost into k branches for ns ∈ NS

d2(n
s, k) Join cost into k branches for ns ∈ NS

D(ns, k) Split and Join cost into k branches for ns

D(ns, k) = d1(n
s, k) + d2(n

s, k)

Ï(ev, P ev , ke
v
) Split and join cost for ev

β(ns) Switching cost of ns ∈ NS

S̈(ev, pe
v

i) Switching cost for ev

δ(es) Link delay of es ∈ ES

L̈(ev, pe
v

i , k
ev) SLink cost for ev

GV (NV , EV) Virtual Network (VN) Request
nv ∈ NV Virtual Node (VNode)
ev ∈ EV Virtual Link (VLink)

c(nv) Total CPU demand of nv ∈ NV

b(ev) Total Bandwidth demand of ev ∈ EV

T (GV) Lifetime of GV

ξN Node Mapping function
ξE Link Mapping function
wN Relative weight of the nodes
wL Relative weight of the links
P ev The disjoint path set {pev1 , pe

v

2 , . . . , p
ev

k }
where ev ∈ EV is embedded; |P ev | = ke

v

evs Source VNode of ev

evd Destination VNode of ev

X(nv, ns) 1, if nv is embedded to ns, 0 otherwise
Y (pe

v
, es) 1, if path pe

v
uses es, 0 otherwise

23

3.2.2 Switching Cost

The second cost is the packet switching cost, and it is presented in (3.4) as S̈(ev, pe
v

i).
This cost is associated with each mapped path of ev due to forwarding the fragmented
data stream between the source and destination SNodes. For such a path pe

v

i ∈ P ev , all
intermediate SNodes forward each flow to the next appropriate SNode. Without loss of
generality and for simplifying the formulation, we do not place any cap on the number of
switchings per SNode. The switching cost at ns ∈ NS is denoted by β(ns).

S̈(ev, pe
v

i) =
∑
ns∈pevi

(
c(ns)

r(ns)
β(ns)

)
(3.4)

3.2.3 SLink Cost

The third and final cost component, SLink cost, is given by L̈(ev, pe
v

i) in (3.5). This cost
represents the sum of allocated substrate bandwidth cost and accumulated delays along
the SLinks on pe

v

i . This cost is also defined for each mapped path pe
v

i ∈ P ev for ev. In
(3.5), the term wE represents the relative weight of the SLink delay (δ(es)) compared to
the allocated bandwidth cost (in bandwidth units). In today’s data center networks, the
link delay is usually very small [21]. For this reason, we suggest that wE should take a
fractional value less than one.

L̈(ev, pe
v

i , k
ev) =

∑
es∈pev

(
b(es)

r(es)

b(ev)

kev − 1
+ wEδ(es)

)
(3.5)

A goal in our ILP model is to ensure proper load balancing across SNodes and SLinks.
To this end, each SNode and SLink is associated with a non-linear weight function that
produces low values for under-utilized links, while weight function value increases rapidly
as an SNode’s or SLink’s utilization approaches saturation. The fractions c(ns)

r(ns)
and b(es)

r(es)

give higher privilege to less loaded SNodes and SLinks, respectively, over the saturated
ones. Therefore, in (3.4) and (3.5), these two fractions are chosen as the load balancing

factors for SNodes and SLinks, respectively. The possible alternates, e.g., (1 − r(ns)
c(ns)

) and

24

(1 − r(es)
b(es)

), have a linear relation between utilization and demand, and so cannot be used
for our purpose.

Now we introduce the SiMPLE objective function. The goal is to minimize the cost
presented in (3.6). In this equation, Ï and S̈ have units in MIPS (for split, join, switch-
ing costs involving CPU resources), whereas L̈ has Mbps unit. To unify these different
units, we multiply the split, join, and switching costs with a weight, wN . Furthermore, in
comparison with the bandwidth resources, the CPU resources are cheaper and more avail-
able. Therefore, we propose that wN should be a fraction. In this process, we prioritize
bandwidth in the cost function above other resources.

SiMPLE ILP :

minimize

∑
ev∈EV

Ï(ev, P ev , ke

v

)wN+

∑
pe

v
i ∈P ev

 S̈(ev, pe
v

i)wN+

L̈(ev, pe
v

i , k
ev)

 (3.6)

The constraints for SiMPLE ILP are presented in (3.7) - (3.13). Constraint (3.7) as-
sures that the SNode capacities are not violated. Constraint (3.8) states that the SLink
capacities are always satisfied while embedding each VLink. For accepted VNs, the VNode
demand satisfaction constraint is presented in Constraint (3.9). In our problem, we need
that each VNode must be embedded to exactly one SNode, and this contraint is given in
Constraint (3.10). Constraint (3.11) denotes that each substrate path required to embed
one VLink must be disjoint, which comes from the SiMPLE embedding concept as pre-
sented in Section 3.1. Constraint (3.12) ensures that a total of ke

v
paths are found while

embedding a VLink ev, whereas Constraint (3.13) ensures that ke
v

is an integer between 2
and 5.

∀ns ∈ NS :
∑

nv∈NV

c(nv)×X(nv, ns) ≤ c(ns) (3.7)

∀es ∈ ES :
∑
ev∈EV

b(ev)

kev − 1
× Y (pe

v

, es) ≤ b(es) (3.8)

25

∀ev ∈ EV : Y (P ev , es)× b(ev)

kev − 1
≤ r(es) (3.9)

∀nv ∈ NV :
∑
ns∈NS

X(nv, ns) = 1 (3.10)

∀ev ∈ EV :
∑

pe
v

i ∈P ev

Y (pe
v

i , e
s) ≤ 1 (3.11)

∀ev ∈ EV :
∑

pe
v

i ∈P ev

∑
es∈pevi

1

|p|
× Y (pe

v

i , e
s) = ke

v

(3.12)

∀ev ∈ EV : (ke
v ∈ N) ∧ (2 ≤ ke

v ≤ 5) (3.13)

3.3 Proposed Solutions

The ILP model presented in Section 3.2 can find optimal solution for small instances of
the multi-path embedding problem, but it will not scale with SN and VN size. In this
section, we propose two scalable greedy algorithms for each part in SiMPLE, as introduced
in Section 3.1. The first one is a survivable multi-path proactive embedding approach,
and the second one is a recovery mechanism that operates after each SLink failure. Both
solutions operate under the assumption that the node mapping has already been done,
possibly using one of the greedy approaches (e.g., First Fit or Best Fit approach [26]).

3.3.1 SiMPLE-PR

The proactive solution, SiMPLE-PR, embeds each VLink of a VN request as it arrives. The
algorithm iteratively computes a set of disjoint paths for each VLink, and returns the result
of embedding, or φ if none exists.

26

Algorithm 1 SiMPLE Proactive Allocation, SiMPLE-PR

1: function SiMPLE-PR(GS, GV , ξN)
2: for all ev ∈ EV do
3: ∀k ∈ {2, 3, 4, 5} : P k ← φ ∧ Cost(P k)←∞
4: for k ∈ {2, 3, 4, 5} do
5: ES ← ES

6: for j ← 1, k do
7: Q← Dijkstra (NS ,ES , ξN (evs), ξN (evd),

b(ev)
k−1

)

8: P k ← P k ∪Q
9: ES ← ES − P k

10: end for
11: end for
12: P ∗ ← min(P 2, P 3, P 4, P 5)
13: if Cost(P ∗) =∞ then
14: return φ
15: end if
16: ξE(ev)← P ∗

17: end for
18: ∀es ∈ ES ∩ P ∗ : update r(es)
19: return ξE
20: end function

The input to SiMPLE-PR, as presented in Algorithm 1, is an SN GS, a VN GV , and its
node mapping function, ξN . In SiMPLE-PR, we split each VLink into no more than five
paths. This is because, as illustrated experimentally in Section 4.1.1, a higher number
of splits will cause a very high splitting, joining, routing and delay overheads, which will
eventually make the embedding expensive and infeasible. SiMPLE-PR iteratively works on
each VLink of a newly arrived GV (Lines 2 − 19). The set P k (initially empty) denotes
the set of candidate paths selected for split k, where 2 ≤ k ≤ 5 and k ∈ N (Line 3). At
each iteration of k (Lines 4 − 11), SiMPLE-PR runs the Dijkstra’s weighted shortest path
algorithm to select a candidate path with the sufficient residuals (b(ev) / (k − 1)) between
the source and destination SNodes of the corresponding VLink (Line 7). This path is
added to P k (Line 8). To maintain the disjointness constraint, the SLinks of the path are
temporarily removed from GS (Line 9). At the end of this loop, the discarded SLinks are
restored (Line 5), and the set of paths with the minimal cost, P ∗, is calculated (Line 12).
If no such set is found (i.e., cost of P ∗ is ∞), SiMPLE-PR finds no feasible mapping for
this VLink (and hence GV) and returns φ (Lines 13− 15). Otherwise, it updates the link

27

mapping function ξE(Line 16), and moves on to process the next VLink. If the mapping of
all the VLinks are found in this process, SiMPLE-PR returns ξE (Line 19). In this case, GV

is embedded onto GS, and the residual capacities in the corresponding SLinks are updated
(Line 18).

Theorem 3.3.1. The running time of SiMPLE-PR is O(|EV | × (|NS| · log|NS|+ |ES|)).

Proof. As mentioned in the previous paragraph, SiMPLE-PR iteratively embeds each VLink
of a VN. For each VLink, it runs Dijkstra’s algorithm O(1) times. Since, for i splits,
Dijkstra’s algorithm is invoked i times, where 2 ≤ i ≤ 5. In total, Dijkstra’s algorithm
is called at most 2 + 3 + 4 + 5 = 14 times. The running time of Dijkstra’s algorithm is
O(|NS| · log|NS|+ |ES|). The later operations, e.g., temporarily discarding the SLinks in
the selected path, take O(|ES|) running time. At the end of the iteration, updating the
residual capacities of the SLinks in the optimal path P ∗ also takes O(|ES|) running time.
Therefore, a single VLink is embedded in a running time O((|NS| · log|NS| + |ES|)). In
total, SiMPLE-PR embeds a VN in a running time of O(|EV | × (|NS| · log|NS|+ |ES|)).

SiMPLE-PR in Action

Here we explain SiMPLE-PR as presented in Algorithm 1 with an example. Fig. 3.3(a)
depicts an SN of five SNodes and eight SLinks, and a VN with two VNodes and one
VLink. In this example, we consider small size VN for simplicity, and this same procedure
is applicable for the larger VNs. The numbers beside each VLink and SLink denote their
demand and residual capacities, respectively. The VNodes v1 and v2 are mapped to SNodes
s1 and s5, respectively. Our goal is to embed the VN to the SN. For the sake of simplicity, we
assume that the node capacity and demand constraints are satisfied in the SN. Furthermore,
we assume that each splitting and joining activity has a cost of 3, and each SNode switch
and SLink delay has a cost of 1. We also assume that the node and link weights, wN and
wE, have value 1.

For two splits case (Fig. 3.3(b)), SiMPLE-PR finds two disjoint paths between s1 and
s5 with the requested demand, 20. To achieve this goal, it calculates the weighted short-
est path between these two SNodes. After the calculation of the weighted shortest path
(s1, s2, s3, s5), its SLinks are discarded from ES. Then, SiMPLE-PR runs a similar procedure
to find the second weighted shortest path, (s1, s4, s5). These selected paths, represented
by the path set P 2, is highlighted with dotted lines in Fig. 3.3(b). In this case, the split
and join cost at s1 and s5 is 3 + 3 + 3 + 3 = 12. The switching cost is given by

∑7
i=1 1 = 7,

and the bandwidth cost is
∑5

i=1(20 + 1) = 105. The embedding cost, as returned by the
cost function in (3.6), is 124.

28

v1 20
v2

s1

s3 s5

s2

s4

9

14
24

38

22 36

16 42

Virtual Link

Substrate Network

(a) The SN and VN Request

s1

s3 s5

s2

s4

9

14
4

18

2 16

16 22

P2 = {(s1, s2, s3, s5), (s1, s4, s5)}

Cost = 6 + 6 + (4 + 3) + 5 * 20 + 5 = 124

(b) Two splits embedding

s1

s3 s5

s2

s4

9

4
14

38

12 26

6 32

P3 = {(s1, s2, s5), (s1, s3, s5), (s1, s4, s5)}

Cost = 9 + 9 + (3 + 3 + 3) + 7 * 10 + 6 =

103

(c) Three splits embedding

s1

s3 s5

s2

s4

2.33

7.33 17.33

38

15.33 29.33

9.33 35.33

P4 = {(s1, s5), (s1, s2, s5), (s1, s3, s5), (s1, s4,

s5)}

Cost = 12 + 12 + (2 + 3 + 3 + 3) + 6.67 *

7 + 7 = 88.69

(d) Four splits embedding

Figure 3.3: SiMPLE-PR Embedding Example

29

For three (Fig. 3.3(c)) and four splits (Fig. 3.3(d)) cases, SiMPLE-PR operates in a way
similar to the two splits scenario, but finds three and four shortest paths, respectively. The
set of paths for three and four splits are given by P 3 = {(s1, s2, s5), (s1, s3, s5), (s1, s4, s5)}
and P 4 = {(s1, s5), (s1, s2, s5), (s1, s3, s5), (s1, s4, s5)}, respectively. The embedding costs
for three and four splits are 103 and 88.69, respectively. Note that there is no set of five
disjoint paths between s1 and s5. In this case, the embedding cost is infinite. In this
example, four splits yields the lowest cost, and it is chosen by SiMPLE-PR.

3.3.2 SiMPLE-RE

The reactive recovery mechanism, SiMPLE-RE, performs on each SLink failure as they
arrive. As briefly discussed in Section 3.1.2, SiMPLE-RE recovers a failed substrate path
in an affected VLink by exploring different recovery strategies. In the end, it returns the
recovery embedding with lowest cost, which minimizes the physical resource consumption
while considering load balancing.

Algorithm 2 SiMPLE Reactive Recovery, SiMPLE-RE

1: function SiMPLE-RE(GS, ev, ξN)
2: P ev ← P ev − {pevf }
3: P 1 ← FindNewPath(GS, ev)

4: P 2 ← ∀pev ∈ (P ev − pevf) : alloc (pe
v
, b(ev)

kev−1)

5: P 3 ← ∀pev ∈ (P ev − pevf) : add (pe
v
, b(pe

v

f) · r(pe
v
)∑

r(pev)
)

6: P ∗ ← min(P 1, P 2, P 3)
7: ξE(ev)← P ∗

8: ke
v ← |P ∗|

9: ∀es ∈ ES ∩ P ∗ : update r(es)
10: return ξE
11: end function
12: function FindNewPath(GS, ev)
13: ES ← ES − P ev

new

14: P ev ← P ev∪ Dijkstra (NS,ES, ξN(evs), ξN(evd))
15: return P ev

16: end function

SiMPLE-RE is briefly presented in Algorithm 2. The input to this algorithm are the
substrate network, GS, and the affected virtual link, ev, the node mapping function, ξN .

30

At first, this algorithm discards the failed path, pe
v

f , from the existing paths in ev, P ev (Line
2). Then, it calls the FindNewPath method (Line 3), which finds another link-disjoint path,
adds it to P ev (Lines 11 − 14), and returns this set into P 1 (Line 3). Next, SiMPLE-RE
allocates the fixed amount of bandwidth in the existing paths, and stores the result in P 2

(Line 4). Afterwards, SiMPLE-RE recovers the lost bandwidth, b(pe
v

f), among the existing
paths, P ev . For this purpose, it splits b(pe

v

f) in proportion to residual bandwidth of the
paths in P ev , adds this split bandwidth to these paths, and saves this set into P 3 (Line 5).
After that, SiMPLE-RE chooses the embedding with the lowest cost, P ∗, among P 1, P 2 and
P 3 (Line 6). In the next step, the new embedding of ev is changed to P ∗ (Line 7), and the
number of splits, ke

v
is updated accordingly (Line 8). Finally, the residual capacities of the

SN is updated according to the changed embedding (Line 9), and the resultant embedding
is returned (Line 10).

Theorem 3.3.2. The running time of SiMPLE-RE is O(|NS|log|NS|+ |ES|).

Proof. Note that the steps presented in Lines 3− 5 in SiMPLE-RE are independent of each
other, and can be executed in parallel. Provisioning a new path, as presented in the
FindNewPath method (Lines 11− 14) invokes Dijkstra’s shortest path algorithm, and this
can be run in O(|NS|log|NS|+ |ES|) time. The fixed and variable bandwidth allocations,
as presented in Lines 3−4, are linear operations in the number of physical links, |ES|. Line
6 finds the minimum among the three possible alternative embeddings, which is a constant-
time operation. Lines 7− 8 are also linear in |ES|, since they involve updating the VLinks
and SLinks, respectively. As a result, the running time of SiMPLE-RE is determined by the
FindNewPath method call in Line 3, which is O(|NS|log|NS|+ |ES|).

SiMPLE-RE in Action

The working principle of SiMPLE-RE is explained with an illustrative example in Fig. 3.4.
The notations and different cost values that we use in Fig. 3.4 are the same as the ones
introduced in Fig. 3.3 in Section 3.3.1. Fig. 3.4(a) shows a VN request with VNodes
embedded to an SN, with the VN demand and SN capacities depicted as levels. Fig.
3.4(b) shows a potential embedding chosen by SiMPLE-PR, and it also shows a failed SLink
(s2, s5). At this stage, SiMPLE-RE operates, and recovers the lost path (s1, s2, s5) as follows.
First, it finds a new path (s1, s5), and calculates the new embedding cost, which is 81. This
step is illustrated in Fig. 3.4(c). Second, it considers fixed allocation strategy. However,
it fails to allocate the required bandwidth in the existing paths since (s1, s4) do not have
enough residual bandwidth. In this step, the cost of embedding is ∞. Third, SiMPLE-RE
considers variable allocation strategy as illustrated in Fig. 3.4(d). The lost bandwidth in

31

v1 20
v2

s1

s3 s5

s2

s4

12

14
24

38

22 36

16 42

Virtual Link

Substrate Network

(a) The SN and VN request

s1

s3 s5

s2

s4

12

4
14

38

12 26

6 32

X
X

P = {(s1, s2, s5), (s1, s3, s5), (s1, s4, s5)}

(b) A potential embedding by SiMPLE-PR

s1

s3 s5

s2

s4

2

14
24

38

12 26

6 32

X
X

P1 = {(s1, s5), (s1, s3, s5), (s1, s4, s5)}

Cost = 9 + 9 + (2 + 3 + 3) + 10 * 5 + 5 = 81

(c) Provisioning new path

s1

s3 s5

s2

s4

12

4
14

38

5.33

2.67 28.67

X
X

P3 = {(s1, s3, s5), (s1, s4, s5)}

Cost = 6 + 6 + (3 + 3) + 10 * 4 + 16 * 3.33 /

6 + 42 * 3.33 / 32 + 22 * 6.67 / 12 + 36 *

6.67 / 26 + 4 = 96.71

(d) Variable allocation

Figure 3.4: SiMPLE-RE Recovery Example

32

(s1, s2, s5) is 10, and it is redistributed in (s1, s3, s5) and (s1, s4, s5) as 3.33 and 6.67 units,
respectively. The embedding cost calculated in this process is 96.71. Finally, SiMPLE-RE
chooses the new path strategy as illustrated in Fig. 3.4(c), since it has the lowest cost.

3.4 Summary

In this chapter, we have explained the main working principle of SiMPLE. SiMPLE expects
that the node embedding as input, and performs link embedding. It works in two stages –
proactive allocation, and reactive recovery. In the first step, SiMPLE allocates a number of
disjoint paths between the source and destination SNodes, and divides the VLink demand
across these paths. In the second step, after an SLink failure has occurred, SiMPLE
recovers each affected VLink by either provisioning a new path, or redistributing the lost
bandwidth in the other previously embedded paths. We have proposed an ILP formulation
for SiMPLE, and proposed two heuristic algorithms, SiMPLE-PR and SiMPLE-RE, for these
two steps.

33

Chapter 4

Evaluation

In this chapter, we evaluate different aspects of SiMPLE through simulations. We begin the
discussion with a description of the evaluation environment, then present our main evalu-
ation results. We begin the discussion by describing the simulation setup in Section 4.1.
The baseline approaches that we use to evaluate SiMPLE are discussed in Section 4.2. Our
terminologies and evaluation metrics are then introduced in Sections 4.3 and 4.4, respec-
tively. The evaluation metrics have been chosen to quantify the performance of SiMPLE
in terms of business profit for the InP. The embedding performance evaluation results for
SiMPLE-PR are presented in Section 4.5. The survivability analysis for SiMPLE-PR and
SiMPLE-RE are then presented in Sections 4.6 and 4.7, respectively. Finally, we summarize
this chapter in Section 4.8.

4.1 Simulation Setup

We consider an online version of the SVNE problem, where each VN request is embed-
ded as it arrives. We use Fat tree [6] and synthetically generated topologies as SN to
evaluate the behavior of SiMPLE in data center networks and ISP networks, respectively.
The Synthetic topology connects each SNode at a low probability (≤ 0.1), which repre-
sents an arbitrary ISP network. To demonstrate the SiMPLE scalability, we present the
results on VN embedding performance at small scale experiments, and VN survivability
at large scale experiments. In small scale experiments, we evaluate both SiMPLE-PR and
the optimal solution, SiMPLE-OP, where the later is an implementation of the ILP model
(presented in Section 3.2) using GLPK. This ILP model finds an optimal embedding for all

34

Table 4.1: Evaluation Environment
Characteristics Small Scale Large Scale

Number of SNodes 125 1 500 2

100 3 500 3

SNode Capacity [50, 150] [10, 50]
SNode Switching Cost [2, 7] [2, 7]

Number of SLinks 500 1 4000 2

574 3 4029 3

SLink Capacity [70, 80] [70, 80]
SLink Delay [3, 15] [3, 15]

Splitting Cost 10 per split 10 per split
Joining Cost 10 per join 10 per join

VNodes per VN [2, 6] [2, 10]
VNode Capacity [5, 20] [5, 20]

VLink Conn. Prob. 0.5 0.5
VLink Demand α% of [70, 80] [10, 20]

Total Number of VNs 300 300
Total Simulation Time 15000 15000

VN Arrival Rate, λV Pois{0.05} Pois{0.05}
VN Lifeime Geo{1000} Geo{1000}

Failure Arrival Rate, λF N/A Pois {0.05× γ}
Failure Repair Time N/A Geo{7000}

VLinks of a VN request. To reduce the solution space, the GLPK implementation consid-
ers the first 200-shortest loop-less paths between a pair of SNodes, computed using Yen’s
Algorithm [44]. However, for the large instances, GLPK exceeds memory limits and is un-
able to find any solution. Also note that we evaluate SiMPLE-RE only for the survivability
experiments, since its major focus is failure recovery.

For all experiments, VN requests are generated by varying their size randomly. We
model VN arrival and SLink failure events as Poisson processes. The lifetime of a VN
request is modeled using a Geometric distribution. It is worth noting that, our sim-
ulation setup and choice of different simulation parameters are similar to the previous
works [11], [39] on the SVNE problem. The simulation parameters are summarized in Ta-

110-ary Fat tree topology
220-ary Fat tree topology
3Synthetic topology

35

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 2 3 4 5 6 7 8 9 10

C
os

t

Number of Splits (k)

Legend
α = 20
α = 40
α = 60

Figure 4.1: Impact of different number of splits for one VLink

ble 4.1. In this table, [xmin, xmax] denotes a uniform distribution between xmin and xmax.
Pois{p} and Geo{g} stand for the Poisson and Geometric distributions with mean p and
g, respectively. For our experiments, we use random node mapping, which is less informed
and thus makes the VLink embedding more challenging than the systematic node mapping
approaches (e.g., First Fit [26]).

We run our experiments under different levels of workload, α, defined as the percentage
of the average VLink demand to the average SLink capacity. To observe the impact of dif-
ferent workloads, α is varied from 10% to 60%. Furthermore, since our focus is to mitigate
SLink failures, we measure SiMPLE’s ability to survive different failure levels, expressed as
γ – the ratio of the failure rate to the VN arrival rate. In large scale experiments, we stress
the SN with a lot of failures, even at a rate higher than the VN arrival rate. For this reason,
γ is varied from 1 to 6. In addition, the mean time to repair (MTTR) is significantly higher
than the mean VN lifetime (Table 4.1) to magnify the impact of failures.

4.1.1 Determining Maximum Number of Splits

In this experiment, we measure the impact of the number of splits (k) on VN embedding
cost (given in (3.6)). For this experiment, we have varied the number of splits from 2 to 10
on a dense SN topology, which facilitates having at least 10 paths between its end hosts.
Furthermore, we have varied the load on VN demands to see the impact of the number of
splits. Since we are interested to see the impacts of the number of splits on each VLink, in
this experiment, the VN requests had only two VNodes and one VLink. The experiment
was run on a 12-ary Fat tree [6] topology for α = 20, 40, and 60. The results from this

36

experiment are shown in Fig. 4.1.

Fig. 4.1 shows that, for all α, the embedding cost increases with an increasing number
of splits. When the number of paths increases beyond 5, this behavior becomes more
prominent. For this reason, we restricted the value of k between 2 and 5 for the experiments
in Section 4.

4.2 Baseline Approaches

We compare SiMPLE to two proactive approaches, Full Backup Scheme (FBS) and Shared
Backup Scheme (SBS).

4.2.1 Full Backup Scheme

In FBS, the full demand of each VLink is mapped to two disjoint substrate paths, which
are computed using Dijkstra’s weighted shortest path algorithm. The shorter of these two
paths act as primary, and the other path is reserved as backup.

4.2.2 Shared Backup Scheme

Among the alternatives for proactive shared backup, we choose [22] as it generalizes the
main concept of SBS. The primary and backup path allocation in SBS is similar to that in
FBS. In contrast to FBS, multiple VLinks can share the same resources for their backup
paths. When a failure occurs, the affected VLinks try to recover their full demand from
the backup path. In case of multiple VLinks trying to claim the bandwidth from the same
backup link simultaneously, the fair sharing policy is adopted.

4.3 Terminology

We use the following terms to analyze failure impacts.

37

4.3.1 Path Failure

A path failure event is defined as the failure of one (or, more) SLink(s) belonging to a
spacific path. At this state, the corresponding path cannot carry the flow from the source
to the destination SNode.

4.3.2 Affected VLink

A VLink is affected by a SLink failure if and only if one (or, more) of its substrate paths
fail(s). An affected VLink may still retain its full demand depending on the severity of
failure. For example, both FBS and SiMPLE retain their full demand in presence of a
single SLink failure.

4.3.3 Failed VLink and Failed VN

A VLink is failed if and only if all of its mapped substrate paths fail (i.e., when it meets 0%
of its demand). A VN fails if and only if one (or, more) of its VLinks fail(s). For example, a
VLink failure in Full Backup Scheme implies two different substrate paths failures, whereas,
in SiMPLE, it implies a maximum of five different substrate paths failures.

4.4 Performance Metrics

Unless otherwise specified, the symbols used in this Section have their usual meanings as
described in Section 3.2. The performance metrics are discussed as follows, and summarized
in Table 4.2.

4.4.1 Profit, Ψ

We first define the revenue, Π(GV), for a VN as Π(GV) = c1
∑

ev∈EV b(ev)+c2
∑

nv∈NV c(nv).
Here, c1 and c2 are application-specific constants that represent the relative importance of
bandwidth and CPU. The profit ofGV is defined by Ψ(GV) = T (GV)×

(
Π(GV)− Cost(GV)

)
.

Here, T (GV) is the lifetime of GV , and Cost(GV) represents the total substrate cost for
GV , as represented in (3.6). The overall profit is given by, Ψ =

∑
∀GV Ψ(GV).

38

Table 4.2: Evaluation Metrics

α Workload
λV VN arrival rate
λF Failure arrival rate
γ Failure level

Π(GV) Revenue earned from GV

Ψ(GV) Profit earned from GV

Ψ Total profit for all VNs

B̂ Average fraction of backup substrate resources
AR The acceptance ratio

F̂ Average fraction of survived bandwidth

Ŝ Average splitting overhead
Prob(ρi) Probability of i simultaneous VN failures

4.4.2 Acceptance Ratio, AR

It is the ratio of the number of accepted VNs in the system (|ZA|) to the total number of
arrived VN requests (|ZT|). Formally, AR = |ZA|/|ZT|, where ZA ⊆ ZT.

4.4.3 Average Fraction of Backup Bandwidth, B̂

For ev ∈ EV , Bev is the ratio of its backup bandwidth allocation to its total bandwidth
allocation, i.e., Bev = |pevb |/

∑
pe

v
i ∈P ev |pe

v

i |. Here, |pevb | is the bandwidth consumption for

backup path pe
v

b . The average fraction of backup bandwidth is, B̂ = Avg
∀ev∈EV

(
Bev
)
.

4.4.4 Average Splitting Overhead, Ŝ

The average splitting overhead is given by the average of the total split, join, and switch

cost for all VLinks, i.e., Ŝ = Avg
ev∈EV

(
Ï(ev, P ev , ke

v
) +

∑
pe

v
i ∈P ev S̈(ev, pe

v

i)
)

39

4.4.5 Average Fraction of Survived Bandwidth, F̂

Let ẼV ⊆ EV denote the set of affected VLinks. For an affected VLink ẽv ∈ ẼV , Fẽv

represents the ratio of the available bandwidth to its total demand. The average fraction
of survived bandwidth (F̂) of the affected VLinks is given by, F̂ = Avg

∀ẽv∈ẼV

(
Fẽv
)
.

4.4.6 Probability of Simultaneous VN Failures, Prob(ρi)

Let ρi denote the event of i simultaneous VN failures, and τi be the duration of time
for ρi. Prob(ρi) is denoted as the ratio of its lifetime τi to total simulation time τ , i.e.,
Prob(ρi) = τi/τ .

4.4.7 Nine Availability

The availability of a system is often represented by the number of nines in its uptime
probability; e.g., 1 or 2 nines imply that the probability of the system being available is
0.9 or 0.99, respectively [17]. We compute the nine availability of a failed VN, GV , as(
− log10 ω(GV)

)
, where ω(GV) is the ratio of time GV is in failed state to its lifetime.

4.5 Performance Evaluation Results

We evaluate the VN embedding performances in the following four schemes for Fat tree
and Synthetic topologies.

4.5.1 Profit

In terms of Profit, SiMPLE-PR outperforms both FBS and SBS approaches, and is very
close to the optimal result (SiMPLE-OP). Fig. 4.2(a) and Fig. 4.3(a) show the profits for
different load (or, α) in the Fat tree and Synthetic topologies, respectively. As shown in
these two figures, all approaches achieve similar profits for small load (α ≤ 20). However, at
increased loads, the profits decrease for FBS and SBS. SiMPLE-PR achieves approximately
100− 300% and 50− 120% more profit than FBS and SBS, respectively.

40

 10000

 15000

 20000

 25000

 30000

 10 20 30 40 50

T
ot

al
 P

ro
fi

t

α

Full Backup
Shared Backup

SiMPLE-PR
SiMPLE-OP

(a) Profit, Ψ vs. α

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50

A
cc

ep
ta

nc
e

R
at

io

α

Full Backup
Shared Backup

SiMPLE-PR
SiMPLE-OP

(b) Acceptance Ratio vs. α

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10 20 30 40 50

A
ve

ra
ge

 F
ra

ct
io

n
of

 B
ac

ku
p

B
/W

α

Full Backup
Shared Backup

SiMPLE-PR
SiMPLE-OP

(c) Backup B/W, B̂ vs. α

 0

 200

 400

 600

 800

 10 20 30 40 50

A
ve

ra
ge

 S
pl

it
ti

ng
 O

ve
rh

ea
d

α

Full Backup
Shared Backup

SiMPLE-PR
SiMPLE-OP

(d) Avg. Split Overhead vs. α

Figure 4.2: Performance Analysis for Fat tree topology

4.5.2 Acceptance Ratio

Results for the AR at different α are given in Fig. 4.2(b) and Fig. 4.3(b), respectively.
According to these results, SiMPLE-PR performs as good as FBS and SBS for small loads
(α ≤ 20). However, at larger loads, AR of SiMPLE-PR exceeds the baseline approaches by
roughly 20− 100%, and lies very close to SiMPLE-OP.

4.5.3 Overhead

The overhead of the considered approaches are evaluated from two perspectives – backup
bandwidth allocation and splitting overhead. SiMPLE-PR uses a very small fraction of the
total allocated bandwidth resource as backup. Fig. 4.2(c) and Fig. 4.3(c) show B̂ for

41

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 10 20 30 40 50 60

V
N

 P
ro

fi
t

α

Full Backup
Shared Backup

SiMPLE-PR
SiMPLE-OP

(a) Profit, Ψ vs. α

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60

A
cc

ep
ta

nc
e

R
at

io

α

Full Backup
Shared Backup

SiMPLE-PR
SiMPLE-OP

(b) Acceptance Ratio vs. α

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10 20 30 40 50 60

A
ve

ra
ge

 F
ra

ct
io

n
of

 B
ac

ku
p

B
/W

α

Full Backup
Shared Backup

SiMPLE-PR
SiMPLE-OP

(c) Backup B/W, B̂ vs. α

 0

 100

 200

 300

 400

 500

 600

 700

 10 20 30 40 50 60

A
ve

ra
ge

 S
pl

it
ti

ng
 O

ve
rh

ea
d

α

Full Backup
Shared Backup

SiMPLE-PR
SiMPLE-OP

(d) Avg. Split Overhead vs. α

Figure 4.3: Performance Analysis for Synthetic topology

different α for Fat tree and Synthetic topologies, respectively. These two figures show that
FBS uses more than half of its resources for backup, regardless of α and substrate topology.
On the contrary, B̂ is relatively smaller for both SiMPLE-PR and SiMPLE-OP. The value B̂ for
SBS is always small for all α, since SBS allows sharing the same backup resource between
multiple VLinks, and thus does not guarantee survivability unlike SiMPLE. However, for
heavier loads, SiMPLE uses approximately 40 − 50% less backup bandwidth than FBS,
and performs very close to SBS. The splitting overhead, Ŝ, of these approaches are shown
in Fig. 4.2(d) and Fig. 4.3(d). According to these results, Ŝ in SiMPLE-PR or SiMPLE-OP is
roughly two to three times higher than that in FBS or SBS. But this increase in splitting
overhead comes with the benefits of survivability guarantee and reduced backup overhead.
Moreover, with the built-in path splitting capability, modern switches are expected to
mitigate this impact.

42

4.5.4 Execution Time

The average execution time for embedding a VN request in SiMPLE-OP and SiMPLE-PR are
presented in Table 4.3, which shows that SiMPLE-PR is 50−60 times faster than SiMPLE-OP.
A significant portion of the execution time of SiMPLE-OP is consumed by GLPK in finding
an optimal solution. However, the performance of SiMPLE-PR lies very close to SiMPLE-OP

in all cases, as evident in Fig. 4.2 and Fig. 4.3. For large scale instances with 500 SNodes,
GLPK exceeds memory limits, hence cannot find a solution.

Table 4.3: Average Execution Time (sec)
Topology SiMPLE-OP SiMPLE-PR

Fat tree 61.72 0.95
Synthetic 51.04 0.96

4.5.5 Discussion

Profit vs. AR

From Fig. 4.2(a) and Fig. 4.3(a), we observe that both FBS and SBS suffer from decreasing
profit with increasing α. This reduction in profit is due to the lower AR, as presented in
Fig. 4.2(b) and Fig. 4.3(b). To embed the VLinks, SiMPLE relies on path splitting.
Since SiMPLE spreads the VLink demand across multiple paths, it utilizes the substrate
resources more efficiently, and achieves a higher AR. On the contrary, FBS and SBS do not
rely on path splitting, and fail to achieve satisfactory AR due to resource fragmentation.
SBS utilizes resources more efficiently than FBS because of backup resource sharing, and
achieves slightly better performance.

Profit vs. Overhead

In addition to providing a higher profit as shown in Fig. 4.2(a) and Fig. 4.3(a), SiMPLE
requires a lower fraction of backup bandwidth. This behavior is depicted in Fig. 4.2(c) and
Fig. 4.3(c). SBS has the lowest backup bandwidth over all workloads α, which is mostly
due to the backup resources fair sharing policy. On the contrary, because it is often not
cost effective to split smaller demands, SiMPLE has a slightly higher backup bandwidth
requirement than SBS at lower α. However, with increasing α, the number of splits at

43

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

C
D

F

Simultaneous VN Failures

Full Backup
Shared Backup

SiMPLE-PR

(a) CDF of Prob(pi), γ = 5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 2 3 4 5 6

F
ra

ct
io

n
of

 F
ai

le
d

V
N

s

γ

Full Backup
Shared Backup

SiMPLE-PR

(b) Failed VNs vs. γ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.5 1 1.5 2

C
D

F

Nine Availability

Full Backup
Shared Backup

SiMPLE-PR

(c) Nine availability CDF, γ = 5

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6

F
ra

ct
io

n
of

 S
ur

vi
ve

d
D

em
an

d

γ

Full Backup
Shared Backup

SiMPLE-PR

(d) Survived B/W, F̂ vs. γ

Figure 4.4: Survivability Analysis for Fat tree topology

each VLink increases. Therefore, in SiMPLE, B̂ decreases, and becomes similar to SBS.
At the same time, path splitting allows SiMPLE to achieve a higher profit than FBS and
SBS. However, path splitting brings additional overhead (presented in Fig. 4.2(d) and
Fig. 4.3(d)) to SiMPLE. Nonetheless, this overhead is compensated by larger profit, better
acceptance ratio, and lower backup bandwidth requirement.

4.6 Survivability Evaluation Results for SiMPLE-PR

We conducted experiments to evaluate survivability of SiMPLE-PR, FBS, and SBS in the
event of failures for Fat tree and Synthetic topologies.

44

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

C
D

F

Simultaneous VN Failures

Full Backup
Shared Backup

SiMPLE-PR

(a) CDF of Prob(pi), γ = 5

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6

F
ra

ct
io

n
of

 F
ai

le
d

V
N

s

γ

Full Backup
Shared Backup

SiMPLE-PR

(b) Failed VNs vs. γ

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.5 1 1.5 2

C
D

F

Nine Availability

Full Backup
Shared Backup

SiMPLE-PR

(c) Nine availability CDF, γ = 5

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6

F
ra

ct
io

n
of

 S
ur

vi
ve

d
D

em
an

d

γ

Full Backup
Shared Backup

SiMPLE-PR

(d) Survived B/W, F̂ vs. γ

Figure 4.5: Survivability Analysis for Synthetic topology

4.6.1 Impact of Failures

The impact of failures is evaluated from two perspectives. First, we present the Cumulative
Distribution Function (CDF) for Prob(ρi) – the probability of i simultaneous VN failures,
for i = 0, 1, 2, . . . , imax, where imax denotes the maximum number of simultaneous VN
failures. For γ = 5, the CDF for Fat tree and Synthetic topologies are shown in Fig.
4.4(a) and Fig. 4.5(a), respectively. Second, we measure the fraction of failed VNs to
total accepted VNs in SN. For different γ, these results are shown in Fig. 4.4(b) and Fig.
4.5(b) for Fat tree and Synthetic topologies, respectively. These figures show that, both
simultaneous and total VN failures are less likely to occur in SiMPLE-PR. In contrast, these
quantities are higher in FBS, and the highest in SBS. For larger γ, the number of failed
VNs is approximately 50 − 100% higher in FBS and SBS than that in SiMPLE-PR. These

45

results reveal that SiMPLE-PR provides the best resilience to failures, whereas SBS performs
the worst among these schemes.

4.6.2 Availability

The CDF of nine availability of the failed VNs for γ = 5 are depicted in Fig. 4.4(c) and
Fig. 4.5(c), for Fat tree and Synthetic topologies, respectively. We see that a small fraction
of VNs have low nine availability in SiMPLE-PR. In contrast, this fraction is much higher
in case of FBS and SBS. Therefore, compared to these two schemes, SiMPLE-PR provides
high availability to a higher number of embedded VNs. For example, the number of VNs
with only 68% or less availability (0.5 nines) in FBS and SBS are roughly twice (Synthetic
topology) or four times (Fat tree topology) than that in SiMPLE-PR.

4.6.3 Failure Tolerance

To evaluate the failure tolerance of each of the considered approaches, we measure the
average fraction of survived bandwidth for affected VLinks, F̂. Fig. 4.4(d) and Fig. 4.5(d)
present the changes in F̂ for different values of γ for Fat tree and Synthetic topologies,
respectively. In these figures, we see that the F̂ obtained in SiMPLE-PR is within 5− 10%
of that in FBS for all values of γ. However, F̂ provided by SBS is lower than the other two
schemes. For larger values of γ, F̂ obtained in SBS is approximately 50 − 70% less than
that in SiMPLE-PR, which demonstrates a poor performance of SBS in presence of frequent
failures.

4.6.4 Discussion

Impact of Failures vs. Availability

We see that SiMPLE outperforms FBS and SBS in both minimizing failure impact (Fig.
4.4(a), Fig. 4.4(b), Fig. 4.5(a), Fig. 4.5(b)) and achieving better availability (Fig. 4.4(c),
Fig. 4.5(c)). The superiority of SiMPLE is achieved due to embedding VLinks over multiple
disjoint paths. Since SiMPLE associates more SLinks to each VLink ev, the minimum
number of SLink failures required for ev to fail also increases. In contrast, the number of
associated SLinks to ev in FBS and SBS are lower, because they do not embed VLinks
into multiple paths. Hence, SLink failures are more likely to cause VLink (or, VN) failures
in these two approaches. For SBS, the SLinks in the backup path of a VLink ev1 may

46

already be used by another VLink ev2 suffering from SLink failure, which makes ev1 more
vulnerable. For these reasons, SBS suffers from failures more than FBS, while SiMPLE
outperforms both of these approaches. Again, the number of associated SLinks to each
VLink ev is higher in SiMPLE than that in FBS and SBS. Hence, repairing an SLink is
more likely to restore one of the failed paths associated to ev in SiMPLE. This will make ev

operational by salvaging a fraction of its demand through the restored path. In contrast,
the probability of restoring one of the failed paths in FBS or SBS is lower than SiMPLE.
Therefore, SiMPLE achieves higher availability than these two strategies.

Impact of Failures vs. Fault Tolerance

The correlation between low impact of failures (Fig. 4.4(a), Fig. 4.4(b), Fig. 4.5(a), Fig.
4.5(b)) and high fault tolerance (Fig. 4.4(d), Fig. 4.5(d)) in SiMPLE is also part of its main
concept, i.e., path splitting with minimal backup. In previous paragraph, we have seen
how path splitting increases survivability by associating multiple SLinks to each VLink.
In addition, we notice that the number of operational SLinks in an affected VLink ev is
also high. These fully operational SLinks facilitate ev to retain its full demand (for a single
SLink failure), or a high fraction of it (for multiple SLink failures). In SiMPLE, F̂ is very
close to that of FBS. However, FBS needs dedicated backup path with full demand unlike
SiMPLE. The backup path sharing in SBS makes it vulnerable to multiple and frequent
failures. Therefore, for the affected VLinks, SiMPLE performs identically to FBS, and
outperforms SBS.

4.7 Survivability Evaluation Results for SiMPLE-RE

In this section, we present the simulation results on survivability experiments for SiMPLE-RE.
For Fat tree and Synthetic topologies, these results are shown in Fig. 4.6 and Fig. 4.7,
respectively.

4.7.1 Impact of Failures

The impact of failures is investigated from two perspectives. First, we measure the fraction
of affected VNs to the total number of embedded VNs in the SN, for different values of
γ. These fractions for SiMPLE-PR and SiMPLE-RE are illustrated in Fig. 4.6(a) (for Fat
tree topology) and in Fig. 4.7(a) (for Synthetic topology). These graphs demonstrate that

47

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

A
ff

ec
te

d
V

N
s

γ

 SiMPLE-PR
 SiMPLE-RE

(a) Affected VNs vs. γ

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6

F
ai

le
d

V
N

s

γ

 SiMPLE-PR
 SiMPLE-RE

(b) Failed VNs vs. γ

 10000

 10500

 11000

 11500

 12000

 12500

 13000

 13500

 14000

 1 2 3 4 5 6

P
ro

fi
t

γ

 SiMPLE-PR
 SiMPLE-RE

(c) Increase in Profit vs. γ

Figure 4.6: Recovery Analysis for Fat tree topology

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6

A
ff

ec
te

d
V

N
s

γ

 SiMPLE-PR
 SiMPLE-RE

(a) Affected VNs vs. γ

 0

 0.05

 0.1

 0.15

 0.2

 1 2 3 4 5 6

F
ai

le
d

V
N

s

γ

 SiMPLE-PR
 SiMPLE-RE

(b) Failed VNs vs. γ

 10000

 10500

 11000

 11500

 12000

 12500

 13000

 13500

 14000

 1 2 3 4 5 6
P

ro
fi

t
γ

 SiMPLE-PR
 SiMPLE-RE

(c) Increase in Profit vs. γ

Figure 4.7: Recovery Analysis for Synthetic topology

when SiMPLE-RE is adopted, the total number of affected VNs are always decreased. For
smaller values of γ, SiMPLE-RE successfully recovers all affected VNs in the substrate. The
decrease in the affected VNs is less when γ is large. However, SiMPLE-RE still decreases the
number of affected VNs by a factor of 85% (for Fat tree topology) or 90% (for Synthetic
topology).

Second, we measure the fraction of failed VNs to the total number of embedded VNs
in SN. For Fat tree and synthetic topologies, these numbers are shown in Fig. 4.6(b) and
in Fig. 4.7(b), respectively. These figures state that, for smaller values of γ, the number
of failed VNs are decreased completely, for both Fat tree and Synthetic topologies. For
larger values of γ, this decreasing factor is still close to 90%.

48

4.7.2 Profit

The profit for both SiMPLE-PR and SiMPLE-RE are shown for Fat tree and Synthetic topolo-
gies, in Fig. 4.6(c) and Fig. 4.7(c), respectively. From these two figures, we see that
SiMPLE-RE provides a higher profit than SiMPLE-PR, for all values of γ. Especially, for
higher values of γ, this increase in profit can reach as much as 35%.

4.7.3 Discussion

In comparison with SiMPLE-PR, SiMPLE-RE reduces both the number of affected and failed
VNs, as well as a corresponding increase in profit. For small values of γ, the impact of
failures is relatively low, and SiMPLE-RE recovers each failure successfully. For this reason,
it decreases the number of affected VNs and failed VNs by 100%. For higher values of γ,
the impact of failures are also higher, and, as discussed in Section 3.1.2, there can be cases
when SiMPLE-RE fails to recover. For this reason, this affected or failed VN decreasing
factor is not 100% for higher values of γ. As seen in Fig. 4.6(a), Fig. 4.6(b), Fig. 4.7(a)
and Fig. 4.7(b), the total number of affected VNs are always higher than the total number
of failed VNs. This behavior can be explained from the definitions in Section 4.3, i.e., it
requires all the paths used in a VLink embedding to fail to create an instance of a failed
VN. In contrast, it requires only one path used in a VLink embedding to fail to create an
instance of an affected VN. Therefore, by intuition, the total number of affected VNs will
always be higher than the total number of failed VNs.

Since SiMPLE-RE recovers the affected and failed VNs reactively, it also increases the
profit Ψ. This behavior is more prominent for large values of γ. For a small γ, the number
of affected or failed VNs are small in SiMPLE-PR, and their recoveries do not increase Ψ
more than 15%. However, for a large γ, the number of affected or failed VNs are high,
resulting to a higher profit for SiMPLE-RE. In these cases, even though SiMPLE-RE cannot
recover all the affected or failed VNs, it recovers most of them. As a result, the increase
in Ψ is also larger.

4.8 Summary

In this chapter, we have presented our evaluation results. We have shown that SiMPLE
can be beneficial both in the context of data center and ISP networks. It outperforms both
FBS and SBS in context of VN embedding performance and VN survivability metrics.

49

While SiMPLE guarantees to survive single SLink failure scenario, we demonstrated that
SiMPLE achieves very high survivability against multiple, frequent and arbitrary SLink
failures.

50

Chapter 5

Conclusion

Network Virtualization facilitates multiple heterogeneous virtual networks by allowing their
coexistence in a shared substrate network while providing performance isolation and guar-
anteeing QoS. Since both data center and ISP networks are very likely to suffer from
link failures, they can jeopardize the soundness of the VNs deployed on them. To ensure
VN survivability, one promising approach is to allocate redundant resources (e.g., band-
width) while embedding the VNs, which may create additional overheads. This leads to
the trade-off between provisioning maximal VN survivability while minimizing both the
redundancy level and the overheads. However, improving VN survivability can decrease
the SLA violation and increase the profit earned in context of the InP.

In this thesis, we propose SiMPLE, which achieves VN Survivability in Multi-Path
Link Embedding. In Section 5.1, we summarize the contributions of this thesis. In Sec-
tion 5.2, we provide a list of interesting research directions that can be pursued based on
these contributions.

5.1 Summary of Contribution

In this thesis, we have presented SiMPLE which exploits the substrate network’s path
splitting capability for survivable embedding of virtual network requests. SiMPLE’s de-
sign goal is to reconcile the conflicting objectives of achieving maximal survivability and
minimizing both redundancy and overhead. Compared to existing approaches, SiMPLE
reserves less backup bandwidth, yet guarantees virtual link survivability in presence of a
single substrate link failure. In case of multiple link failures, the survived bandwidth of the

51

affected virtual link(s) is better than that of FBS and SBS. Simulation results demonstrated
that SiMPLE reduces the failure percentage by at least 50% over those two schemes, and
provides better availability of VNs. In addition, backup bandwidth overhead in SiMPLE is
40− 50% less than that of FBS, and lies very close to SBS. The SiMPLE reactive recovery
approach improves profit generated by the SiMPLE proactive allocation by approximately
40%, as well as decreases the number of failed VNs by approximately 90%. Finally, the
path splitting overhead incurred by SiMPLE is compensated by guaranteed survivability,
increased profit, better acceptance ratio and lower backup bandwidth requirement.

5.2 Future Works

• Prototype Implementation. As a future extension of this work, we intend to
evaluate the performance of SiMPLE through a prototype implementation. For this
purpose, we plan to use Software Defined Network (SDN) [29], which proposes a
logically centralized controller to control the switches in data plane remotely. As
introduced in Section 2.4.2, Multipath TCP can be an enabling technology to support
path splitting in the substrate. The whole prototype can be deployed on a designated
SDN testbed, like Distributed OpenFlow Testbed (DOT) [2], [40], or Mininet [23].

• Coordinated Node and Link Mapping. Currently, SiMPLE assumes that a node
embedding is given to it as input, and performs link embedding accordingly. However,
instead of providing the node embedding result, the service providers would tend to
provide a preferred location for each virtual node. In this case, the challenge is to
find both node and link embedding in a coordinated manner. M. Chowdhury [15]
provides some insights to this problem. We also would like to extend SiMPLE towards
a coordinated node and link mapping strategy.

• Nested Network Virtualization. Nested NV means the scenario when a VN is
deployed on top of another VN [28]. In this case, multiple levels of VNs are formed,
where the VNs on level i act as the SN for the VNs on level i + 1. It would be
interesting to extend the idea of SiMPLE to the context of nested NV, with at least
two levels of VNs. Survivability in such a multi-layer NV environment could raise
further challenges since it involves cross layer optimization.

52

References

[1] Available at: http://www.informationweek.com/it-downtime-costs-$265-billion-in-
lost-revenue/d/d-id/1097919.

[2] Dot: A distributed openflow testbed. dothub.org.

[3] Multipath tcp - linux kernel implementation. multipath-tcp.org.

[4] Sharad Agarwal, John Dunagan, Navendu Jain, Stefan Saroiu, Alec Wolman, and
Harbinder Bhogan. Volley: Automated data placement for geo-distributed cloud ser-
vices. In NSDI, pages 17–32, 2010.

[5] Chang Wook Ahn and R. S. Ramakrishna. A genetic algorithm for shortest path
routing problem and the sizing of populations. IEEE Transactions on Evolutionary
Computation, 6(6):566–579, 2002.

[6] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, commodity
data center network architecture. 38:63–74, Oct 2008.

[7] Nikhil Bansal, Ranjita Bhagwan, Navendu Jain, Yoonho Park, Deepak Turaga, and
Chitra Venkatramani. Towards optimal resource allocation in partial fault-tolerant ap-
plications. In The 27th Conference on Computer Communications IEEE INFOCOM,
2008.

[8] Sushil Bhardwaj, Leena Jain, and Sandeep Jain. Cloud computing: A study of in-
frastructure as a service (iaas). International Journal of engineering and information
Technology, 2(1):60–63, 2010.

[9] Peter Bod́ık, Ishai Menache, Mosharaf Chowdhury, Pradeepkumar Mani, David A.
Maltz, and Ion Stoica. Surviving failures in bandwidth-constrained datacenters. In
Proceedings of the ACM SIGCOMM 2012 conference on Applications, technologies,
architectures, and protocols for computer communication, pages 431–442, 2012.

53

[10] Qingyun Chen, Ying Wan, Xuesong Qiu, Wenjing Li, and Ailing Xiao. A survivable
virtual network embedding scheme based on load balancing and reconfiguration. In
IEEE NOMS, pages 1–7, Poland, May 2014.

[11] Yang Chen, Jianxin Li, Tianyu Wo, Chunming Hu, and Wantao Liu. Resilient virtual
network service provision in network virtualization environments. In IEEE ICPADS,
pages 51–58, Shanghai, China, Dec 2010.

[12] Xiang Cheng, Sen Su, Zhongbao Zhang, Hanchi Wang, Fangchun Yang, Yan Luo, and
Jie Wang. Virtual network embedding through topology-aware node ranking. ACM
SIGCOMM Comput. Commun. Rev., 41(2):38–47, Apr 2011.

[13] N. M. Mosharaf Kabir Chowdhury and Raouf Boutaba. A survey of network virtual-
ization. Computer Networks, 54:862–876, Apr 2010.

[14] N. M. Mosharaf Kabir Chowdhury, Muntasir Raihan Rahman, and Raouf Boutaba.
Virtual network embedding with coordinated node and link mapping. In INFOCOM
2009, IEEE, pages 783–791. IEEE, 2009.

[15] N. M. Mosharaf Kabir Chowdhury, Muntasir Raihan Rahman, and Raouf Boutaba.
Virtual network embedding with coordinated node and link mapping. In INFOCOM
2009, IEEE, pages 783–791. IEEE, 2009.

[16] N. M. Mosharaf Kabir Chowdhury, Fady Samuel, and Raouf Boutaba. Polyvine:
policy-based virtual network embedding across multiple domains. In Proceedings of
the second ACM SIGCOMM workshop on Virtualized infrastructure systems and ar-
chitectures, pages 49–56. ACM, 2010.

[17] John R. Douceur. Is remote host availability governed by a universal law? ACM
SIGMETRICS Performance Evaluation Review, 31:25–29, 2003.

[18] Andreas Fischer, Juan Felipe Botero, Michael Till Beck, Hermann de Meer, and Xavier
Hesselbach. Virtual network embedding: A survey. IEEE Communications Surveys
and Tutorials, 15:1888–1906, Feb 2013.

[19] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. Tcp extensions for multipath
operation with multiple addresses, Jan 2013.

[20] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding network fail-
ures in data centers: Measurement, analysis, and implications. In ACM SIGCOMM,
volume 41, pages 350–361, Aug 2011.

54

[21] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula, Changhoon
Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta Sengupta. Vl2: a
scalable and flexible data center network. In ACM SIGCOMM, pages 51–62, 2009.

[22] Tao Guo, Ning Wang, Klaus Moessner, and Rahim Tafazolli. Shared backup network
provision for virtual network embedding. In IEEE ICC, pages 1–5, Kyoto, Japan, Jun
2011.

[23] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz, and Nick McK-
eown. Reproducible network experiments using container-based emulation. In Pro-
ceedings of the 8th international conference on Emerging networking experiments and
technologies, pages 253–264. ACM, 2012.

[24] Sandra Herker, Ashiq Khan, and Xueli An. Survey on survivable virtual network
embedding problem and solutions. In ICNS, pages 99–104, Portugal, 2013.

[25] C. E Hopps. Analysis of an equal-cost multi-path algorithm, Nov 2000.

[26] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-
case performance bounds for simple one-dimensional packing algorithms. SIAM J.
Comput, 3:299–325, 1974.

[27] Stavros G. Kolliopoulos and Clifford Stein. Improved approximation algorithms for
unsplittable flow problems. In IEEE SFCS, pages 426–436, Oct 1997.

[28] Teemu Koponen, Keith Amidon, Peter Balland, Martn Casado, Anupam Chanda,
Bryan Fulton, Igor Ganichev, Jesse Gross, Natasha Gude, Paul Ingram, et al. Network
virtualization in multi-tenant datacenters. In USENIX NSDI, 2014.

[29] Diego Kreutz, Fernando M. V. Ramos, Paulo Esteves Verissimo, Christian Esteve
Rothenberg, Siamak Azodolmolky, and Steve Uhlig. Software-defined networking: A
comprehensive survey, Oct 2014.

[30] William Lau and Sanjay Jha. Failure-oriented path restoration algorithm for surviv-
able networks. IEEE Transactions on Network and Service Management, 1:11–20,
Apr 2004.

[31] Kayi Lee, Eytan Modiano, and Hyang-Won Lee. Cross-layer survivability in wdm-
based networks. IEEE/ACM Transactions on Networking (TON), 19(4):1000–1013,
2011.

55

[32] Bo Lu, Tao Huang, Xiao chuan Sun, Jian ya Chen, and Yun jie Liu. Dynamic recovery
for survivable virtual network embedding. The Journal of China Universities of Posts
and Telecommunications, 21:77–84, Jun 2014.

[33] Jing Lu and Jonathan Turner. Efficient mapping of virtual networks onto a shared
substrate. Washington University (WUCSE) Tech. Rep, 2006.

[34] Athina Markopoulou, Gianluca Iannaccone, Supratik Bhattacharyya, Chen-Nee
Chuah, and Christophe Diot. Characterization of failures in an ip backbone. In
INFOCOM, IEEE, volume 4, pages 123–133, Mar 2004.

[35] Rodrigo R. Oliveira, Leonardo R. Bays, Daniel S. Marcon, Miguel C. Neves, Luciana S.
Buriol, Luciano P. Gaspary, and Marinho P. Barcellos. Dos-resilient virtual networks
through multipath embedding and opportunistic recovery. In SAC, pages 597–602,
Coimbra, Portugal, Mar 2013.

[36] Rodrigo R. Oliveira, Daniel S. Marcon, Leonardo R. Bays, Miguel C. Neves, Luciana S.
Buriol, Luciano P. Gaspary, and Marinho P. Barcellos. No more backups: Toward
efficient embedding of survivable virtual networks. In IEEE ICC, pages 2128–2132,
Budapest, Hungary, Jun 2013.

[37] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank
citation ranking: Bringing order to the web. Technical Report 1999-66, November
1999.

[38] Muntasir Raihan Rahman, Issam Aib, and Raouf Boutaba. Survivable virtual network
embedding. In NETWORKING, pages 40–52, May 2010.

[39] Muntasir Raihan Rahman and Raouf Boutaba. Svne: Survivable virtual network
embedding algorithms for network virtualization. IEEE Transactions on Network and
Service Management, 10:105–118, Feb 2013.

[40] Arup Raton Roy, Md. Faizul Bari, Mohamed Faten Zhani, Reaz Ahmed, and Raouf
Boutaba. Design and management of dot: A distributed openflow testbed. In
IEEE/IFIP Network Operations and Management Symposium (NOMS), Krakow,
Poland, May 2014.

[41] Ajay Todimala and Byrav Ramamurthy. A scalable approach for survivable virtual
topology routing in optical wdm networks. IEEE Journal on Selected Areas in Com-
munications, 25(6):63–69, August 2007.

56

[42] Y. Xiong and L. G. Mason. Restoration strategies and spare capacity requirements in
self-healing atm networks. IEEE/ACM Transactions on Networking (TON), 7(1):98–
110, 1999.

[43] Jielong Xu, Jian Tang, Kevin Kwiat, Weiyi Zhang, and Guoliang Xue. Survivable
virtual infrastructure mapping in virtualized data centers. In 2012 IEEE 5th Interna-
tional Conference on Cloud Computing (CLOUD), pages 196–203, 2012.

[44] Jin Y. Yen. An algorithm for finding shortest routes from all source nodes to a
given destination in general networks. The Quarterly Journal of Pure and Applied
Mathematics, 27:526–530, 1970.

[45] Wai-Leong Yeow, Cedric Westphal, and Ulas C. Kozat. Designing and embedding
reliable virtual infrastructures. ACM SIGCOMM CCR, 41(2):57–64, 2011.

[46] Minlan Yu, Yung Yi, Jennifer Rexford, and Mung Chiang. Rethinking virtual network
embedding: Substrate support for path splitting and migration. In ACM SIGCOMM
CCR, volume 38, pages 17–29, Apr 2008.

[47] Qi Zhang, Mohamed Faten Zhani, Maissa Jabri, and Raouf Boutaba. Venice: Reliable
virtual data center embedding in clouds. In INFOCOM IEEE, pages 289–297, April
2014.

[48] Yong Zhu and Mostafa H. Ammar. Algorithms for assigning substrate network re-
sources to virtual network components. In INFOCOM, IEEE, pages 1–12, 2006.

57

	Statement of Contributions
	List of Tables
	List of Figures
	Introduction
	Problem Statement
	Motivation
	Challenges
	Maximal Survivability in Virtual Networks
	Minimal Resource Redundancy
	Minimal Path Splitting Overhead

	Contribution
	Thesis Organization

	Background
	Virtual Network Embedding
	Substrate Network
	Virtual Network
	VN Embedding
	VNE Literature Survey

	Link Failures
	Link Failures in Data Center Networks
	Link Failures in ISP Networks

	Survivable Virtual Network Embedding
	Protection
	Recovery
	Survivability in Other Domains

	Path Splitting
	Equal Cost Multi Path Routing
	Multipath TCP
	Path Splitting in VNE/SVNE

	Summary

	SiMPLE
	The Embedding Concept in SiMPLE
	Proactive Allocation
	Reactive Recovery

	ILP Formulation
	Split and Join Cost
	Switching Cost
	SLink Cost

	Proposed Solutions
	SiMPLE-PR
	SiMPLE-RE

	Summary

	Evaluation
	Simulation Setup
	Determining Maximum Number of Splits

	Baseline Approaches
	Full Backup Scheme
	Shared Backup Scheme

	Terminology
	Path Failure
	Affected VLink
	Failed VLink and Failed VN

	Performance Metrics
	Profit,
	Acceptance Ratio, AR
	Average Fraction of Backup Bandwidth,
	Average Splitting Overhead,
	Average Fraction of Survived Bandwidth,
	Probability of Simultaneous VN Failures, Prob (i)
	Nine Availability

	Performance Evaluation Results
	Profit
	Acceptance Ratio
	Overhead
	Execution Time
	Discussion

	Survivability Evaluation Results for SiMPLE-PR
	Impact of Failures
	Availability
	Failure Tolerance
	Discussion

	Survivability Evaluation Results for SiMPLE-RE
	Impact of Failures
	Profit
	Discussion

	Summary

	Conclusion
	Summary of Contribution
	Future Works

	References

