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Abstract 

Simple and rapid detection of pathogens is crucial for preventing and treating infectious diseases. 

Conventional methods for pathogen detection are based on cell cultures and could require several 

days. The use of nanotechnology and specifically, gold nanoparticles has facilitated the development 

of biosensors that can potentially be used at the point-of-care because they provide a colorimetric 

output. 

A systematic literature review demonstrates that most instances of gold nanoparticles are in the 

detection of amplified nucleic acids but these methods require specialized equipment. There is a 

growing drive for making the biosensors simpler and more sensitive such that they could be employed 

outside the laboratory.  

This thesis focuses on the development of a gold nanoparticle-based biosensor that has the potential 

to rapidly detect and identify pathogens at the point-of-care. The biosensor consists of cationic gold 

nanoparticles that aggregate around target bacteria and produce a color change, which can be 

observed visually and quantified spectrophotometrically. Combining nanoparticles with various sizes 

and shapes creates a “chemical nose” biosensor, which uses a unique combination of responses to 

represent each target of interest, in a manner similar to the human sense of smell. This “chemical 

nose” biosensor can discriminate between bacterial species based on their cell wall components. This 

approach produces a versatile biosensor that can be deployed for a variety of applications as opposed 

to biofunctionalized nanoparticles, which are typically limited to a single target.  

Development of the biosensor begins with the synthesis of gold nanostars because this shape allows 

control over size and degree of branching, both of which govern the optical properties of the 

solutions. Gold nanostars are synthesized by a surfactant-assisted seed-mediated growth method. 

Increasing the surfactant concentration increases the degree of branching while increasing the amount 

of seed decreases the particle size. The cationic surface facilitates electrostatic aggregation of the 

nanostars on the negatively charged bacterial cell wall. This aggregation allows a rapid visual 

detection of Staphylococcus aureus, a model Gram-positive pathogen. The colorimetric response of 

gold nanostars depends on the intrinsic size and morphology of particles. 

Discriminating between bacteria of different species is important for accurate diagnosis. The ability 

of gold nanostars to identify the species of bacteria is explored by targeting ocular pathogens that are 

currently affecting contact lens wearers. Using two different degrees of branching of gold nanostars, a 
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“chemical nose” biosensor is developed, where colorimetric response from each type of nanostar is 

different for each bacterial species. The biosensor is able to discriminate between saline control and 

four species of bacteria at the same concentration with 99% accuracy. Transmission electron 

microscopy demonstrates that this discrimination in colorimetric responses is because of different 

degrees and patterns of aggregation of gold nanostars around bacteria.  

In addition to identifying the species of bacteria, some applications require detection at various 

concentrations. Thus, the “chemical nose” was tested for the detection of eight species of bacteria at 

three different concentrations and an accuracy of 89% was obtained by analyzing the absorption 

spectra of the gold nanoparticles. Additionally, the potential of the “chemical nose” to detect 

polymicrobial infections was demonstrated by measuring the colorimetric response of mixtures of 

bacteria. The “chemical nose” was able to discriminate between Staphylococcus aureus, Escherichia 

coli, Pseudomonas aeruginosa, and their binary and tertiary mixtures with 100% accuracy.  

Implementation of the “chemical nose” biosensor at the point-of-care requires a rapid response. 

This is possible by acquiring absorption spectra at a faster rate. Using a portable charge-coupled 

device spectrophotometer, the “chemical nose” was able to distinguish between mixtures of bacteria 

within two minutes of data acquisition. This was possible by exploiting the kinetics of color change, 

which is unique for each bacterial species and their mixtures. Additionally, within each mixture, the 

bacteria seem to maintain their patterns and extent of aggregation of gold nanoparticles as confirmed 

by transmission electron microscopy.  

Finally, the effect of morphology was further studied using two Gram-positive and two Gram-

negative bacteria. Gold nanoparticles with different shapes – nanospheres, nanostars, nanocubes, and 

nanorods – were incubated with the bacteria to obtain a concentration dependent response. While the 

responses were similar for Gram-positive bacteria, there were significant differences for Gram-

negative ones with the order of decreasing response being: nanostars> nanocubes> nanospheres > 

nanorods. Additionally, the concentration of gold nanoparticles determines the range of concentration 

of bacteria that can be detected.  

This thesis demonstrates that detection, identification, and quantification of bacteria could be 

possible using gold nanoparticles for applications in food, water, and environmental contamination. In 

these applications, gold nanoparticles have exploited intrinsic properties of the nanoparticles and 

analytes to provide specific responses. Thus, gold nanoparticles exemplify the tremendous potential 

offered by nanotechnology.  
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Chapter 1 

Introduction 

1.1 Overview 

Pathogens cause infections in a variety of forms and can have consequences ranging from blindness 

to death [1, 2]. In order to treat such infections, it is necessary to first diagnose them rapidly and 

accurately. Detection of pathogens has conventionally been performed using culture-based methods 

which tend to be slow, tedious, and insensitive [2, 3]. These drawbacks have inspired the 

development of biosensors that could be used for faster and more sensitive detection of pathogens. 

While these biosensors have demonstrated significant advancements to provide even subcellular 

characterization [4], they are mostly limited to be used in a laboratory environment because they 

require specialized equipment and technical expertise. There is a growing need for simple methods of 

detection that could be used by the general public or at the point-of-care [5, 6].  

Nanotechnology plays an important role in facilitating sensors that could be used in simple assays. 

Nanoparticles exhibit unique physical, chemical, and optical properties in comparison to their bulk 

counterparts [7]. Some of these properties are a result of the high surface area to volume ratio while 

others are due to confinement of electrons at the nanometer scale. Specifically, gold nanoparticles 

have generated tremendous interest for use as biosensors because of their strong color, aggregation 

dependent optical properties, and thiol-reactivity [8-10]. The optical properties of gold nanoparticles 

depend on their particle size, shape, and environmental conditions. This dependence has been 

exploited to produce a variety of different colors of gold nanoparticles by using shapes such as 

spheres, shells, rods, prisms, hexagonal plates, cubes, and stars [11]. In the context of pathogens, gold 

nanoparticles have been used for the detection of nucleic acids, proteins, lipopolysaccharides as well 

as whole cells. Functionalizing the gold nanoparticles with small molecules, proteins, and nucleic 

acids enables their wide range of applications but yet, most studies focus on the detection of a single 

pathogen.  

A variety of pathogens are often responsible for contaminating food, water, or hospitals [2]. Thus, 

an ideal biosensor would be able to detect many different pathogens specific to an application of 

interest. Using typical “lock and key” recognition strategies, where the target analyte is detected using 



 

 

 

 2 

specific biomolecules like aptamers or antibodies, can limit the number of pathogens that can be 

detected because each biomolecule is usually specific to a single analyte [12]. This limitation is 

currently being overcome by a new class of biosensors, which can identify the analytes based on a set 

of unique responses rather than depending on a single response [12-14]. Since these biosensors 

function in a manner similar to our sense of smell, where a set of specific receptors are activated in 

the presence of an odor molecule, they are often called “chemical nose” biosensors. Such a “chemical 

nose” biosensor has been designed for detecting bacteria but it requires the modification of gold 

nanoparticles with a variety of small molecules and it also employs a fluorescence spectrophotometer 

[15, 16], which can limit its use at the point-of-care. Existing “chemical nose” biosensors have not 

demonstrated the ability to detect mixtures of bacteria and hence there is a need for simpler and more 

versatile system.  

This research project exploits the unique tools provided by nanotechnology to produce a simple 

colorimetric biosensor using the intrinsic properties of gold nanoparticles and bacteria and the 

interactions between the two. The synthesis of gold nanoparticles has been studied here to gain an 

understanding of the parameters that can change the size and morphology of nanoparticles. 

Additionally, the impact of these physical properties of gold nanoparticles on their ability to detect 

bacteria is explored. Then, the gold nanoparticles are deployed as a “chemical nose” platform to 

differentiate between various pathogenic bacteria that can contaminate contact lenses, food, water, 

and hospitals. In order to bring the biosensor closer to point-of-care, the speed of detection has been 

increased by incorporating the kinetics of the colorimetric response. Some of the avenues that will be 

pursued in future studies are improved sensitivity, detection in complex media, and specific 

understanding of the components of bacteria causing the colorimetric response.  

1.2 Research Objectives 

Developing a biosensor for use at the point-of-care requires that it is simple, versatile, cost-effective, 

rapid, and portable. This research focuses on developing a biosensor based on gold nanoparticles such 

that a simple colorimetric output is provided. Controlling the size and shape of nanoparticles can 

determine the colorimetric response and hence provide versatility to the biosensor. Cost-effectiveness 

is achieved by avoiding the use of biomolecules such as aptamers and antibodies and instead, using 

intrinsic properties of gold nanoparticles for obtaining unique responses. A rapid and portable system 
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is designed by coupling the biosensor with a portable spectrophotometer. The specific objectives for 

the project are as follows: 

1. Demonstrate the capabilities of gold nanoparticles to act as colorimetric biosensors for detection 

of bacteria 

 Determine the effect of size and branching on the colorimetric properties of gold 

nanostars 

 Study the effect of size and morphology of gold nanostars on the biosensing ability in the 

presence of model Gram-positive bacterium Staphylococcus aureus  

2. Develop a “chemical nose” biosensor for detection and identification of ocular pathogens  

 Select optimal formulations from the library of nanostars to obtain a set of unique 

responses for each ocular pathogen 

 Test the ability of “chemical nose” to distinguish between bacteria using emerging 

contaminants affecting contact lens wearers 

3. Enhance the “chemical nose” biosensor for quantification of bacteria and detection of 

polymicrobial mixtures 

 Determine the effect of concentration of bacteria on the detection capabilities of the 

“chemical nose” by including pathogens that contaminate food, water, and hospitals 

 Determine the possibility of detecting and discriminating between mixtures of bacteria 

4. Exploit the kinetics of color change for rapid detection of bacteria using “chemical nose” 

 Determine if the rate of color change of nanoparticles is unique for each bacterial species 

and for mixtures 

 Characterize the color change using a portable spectrophotometer to enable the 

possibility of point-of-care diagnosis 

5. Explore the effects of other shapes on the interactions between gold nanoparticles and bacteria 

surface 
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 Synthesize gold nanoparticles with various shapes: nanospheres, nanostars, nanorods, and 

nanocubes 

 Determine the performance of each shape as a “chemical nose” biosensor by 

characterizing the colorimetric response in the presence of various Gram-positive and 

Gram-negative bacteria.  

1.3 Thesis Outline 

The thesis consists of one chapter on literature review followed by five research-based chapters. 

Additionally, the final chapter presents the conclusions and recommendations for future work. 

Chapter 1 is an introduction to the thesis, where the research problem is presented and specific 

objectives are outlined.  

Chapter 2 reviews current literature specific to the use of gold nanoparticles as biosensors for 

detection of pathogens affecting food, water, and hospitals. The review highlights that previously the 

focus of gold nanoparticles has been on improving existing nucleic acid based technologies, while 

emerging biosensors are focusing on the detection of proteins, small molecules, and also whole cells 

to minimize detection time and enhance detection limits. The review demonstrates that versatile 

biosensors for detecting multiple species of bacteria are lacking.   

Chapter 3 explores the synthesis of gold nanostars and the control of morphological parameters 

using synthesis conditions. The effects of nanoparticle features are also related to their colorimetric 

response in the presence of model Gram-positive bacterium Staphylococcus aureus. This chapter lays 

the foundation for the “chemical nose” biosensor since it demonstrates that the size and branching of 

gold nanostars determine the colorimetric response obtained in the presence of bacteria.  

Chapter 4 utilizes the knowledge of differential response from Chapter 3 and uses it to build a 

“chemical nose” biosensor, where a set of responses is obtained by using a mixture of gold 

nanoparticles with varying morphologies. This chapter provides proof-of-concept for implementing 

cationic gold nanoparticles for differentiating between four different species of ocular pathogens 

without the use of biomolecules such as antibodies or aptamers. 
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Chapter 5 enhances the “chemical nose” developed in Chapter 4 by extracting additional responses 

from the nanoparticle solutions and detecting eight different species of pathogenic bacteria affecting 

food, water, contact lenses, and hospitals. This chapter exemplifies the versatility of the “chemical 

nose” by differentiating between bacteria at three different concentrations and by detecting 

polymicrobial mixtures containing two or three different species of bacteria mixed together.  

Chapter 6 highlights how the “chemical nose” biosensor could be translated to point-of-care use by 

coupling the biosensor with a portable spectrophotometer for rapid acquisition of absorption spectra. 

Using the kinetics of color change, rapid detection of bacteria is possible within two minutes. This 

design brings the gold nanoparticle-based biosensor a step closer to deployment with the end user. 

Chapter 7 revisits the question of the effect of shapes on the response of “chemical nose” 

biosensors by using nanospheres, nanostars, nanocubes, and nanorods. The chapter provides design 

guidelines for selecting the concentration of nanoparticle depending on the desired range of bacteria 

to be detected. This chapter paves the way for expanding the applications of the “chemical nose” 

biosensor by suggesting that using additional shapes could help discriminate between more species of 

bacteria.  

Finally, chapter 8 presents the conclusions drawn from this research project and based on these 

conclusions, provides recommendations for future research avenues. One of the key avenues of 

research is exploring methods of enhancing the response such that the sensitivity of the biosensor can 

be increased. Another important area is the testing of the “chemical nose” biosensor in complex 

media such as food products or blood samples. Additionally, to expand the application of “chemical 

nose” to a variety of other pathogens, an understanding of the interactions between nanoparticles and 

cell wall components needs to be established.  
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Chapter 2 

Literature Review 

2.1 Summary 

Rapid detection of pathogens is crucial to minimize adverse health impacts of nosocomial, foodborne 

and waterborne diseases. Gold nanoparticles are extremely successful at detecting pathogens due to 

their ability to provide a simple and rapid color change when their environment is altered. Here, we 

review general strategies of implementing gold nanoparticles in colorimetric biosensors. First, we 

highlight how gold nanoparticles have improved conventional genomic analysis methods by lowering 

detection limits while reducing assay times. Then, we focus on emerging point-of-care technologies 

that aim at pathogen detection using simpler assays. These advances will facilitate the implementation 

of gold nanoparticle-based biosensors in diverse environments throughout the world and help prevent 

the spread of infectious diseases. 

2.2 Introduction 

Mankind has been fascinated by gold nanoparticles for centuries and the Lycurgus cup is a prime 

example of their unique optical properties. In the 21st century, research involving gold nanoparticles 

has witnessed significant growth with applications in drug delivery [17-19], photothermal therapy 

[20-22], diagnostic imaging [23-25], and biosensors [26-28]. Along with being the most stable 

metallic nanoparticles [29], gold nanoparticles flaunt several outstanding features, including facile 

reactivity with biomolecules, high surface area to volume ratios, and environment dependent optical 

properties, which make them the ideal candidate for use in colorimetric biosensors [7].  

Pathogens—including bacteria, viruses, fungi, and protozoa—are a leading cause for loss of lives 

in the developing world, as well as rural areas of developed countries, due to lack of infrastructure 

and resources [2]. Since pathogens can be transmitted via plants, animals, and humans, infectious 

diseases can spread exponentially and lead to a pandemic if left unchecked [30]. The most effective 

method for preventing the spread of infectious diseases is early diagnosis, which is challenging using 

conventional methods because of expensive equipment, specialized sample preparation, and slow data 
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output [2]. Modern biosensors have overcome these obstacles by miniaturizing devices and providing 

simple rapid output that can be analyzed at the point-of-care without specialized training [31-33].  

In addition to point-of-care diagnostics and early treatment of infectious diseases in humans, 

microbial pathogens are also a concern at various levels of the food industry. Many bacterial genera 

are associated with food-borne illness such as Salmonella, Listeria, and Escherichia. Infections are 

typically caused by consumption of food or drink contaminated with these pathogens, and may lead to 

various inflammatory conditions including gastroenteritis, meningitis, and sepsis. Serious infections 

may require hospitalization and can be fatal for more vulnerable segments of the population (e.g. 

immunocompromised patients) [34]. While low levels of bacteria and other microbial life are 

sometimes tolerable, high concentrations are frequently associated with food-borne illnesses [35]. 

Various agencies have implemented guidelines for food production, preparation, and distribution, 

which aim to keep pathogen loads at acceptable levels. Often these guidelines have stringent 

concentration requirements and hence, screening assays require excellent detection limits.  

Gold nanoparticles have been implemented for the detection of pathogens, which contaminate food, 

water, and hospital surfaces [2, 7, 8, 10, 13, 36, 37]. A major focus of research is to improve 

conventional genomic analysis methods using gold nanoparticles such that the assays have lower 

detection limits and faster response times (Figure 1). Concurrently, novel methods of detection have 

been developed independent of gene amplification and the most popular strategy is based on the 

surface modification of gold nanoparticles with antibodies, which has led to several commercially 

available products for easy and timely testing of pathogens in complex samples such as plant extracts, 

foods, and bodily fluids. An emerging strategy is to exploit the intrinsic surface properties of gold 

nanoparticles and pathogens which leads to electrostatic interactions and a color change. 
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Figure 1: Colorimetric detection of nucleic acids using non-functionalized and functionalized 

gold nanoparticles, adapted from [38, 39]; a) the use of a single non-thiolated probe with non-

functionalized gold nanoparticles, b) use of single thiolated probe with non-functionalized 

nanoparticles, c) use of a pair of thiolated probes for functionalizing gold nanoparticles.  

2.3 Conventional methods for pathogen detection 

The importance of pathogen detection in several sectors has led to continuous improvement in 

detection technologies. Currently, conventional methods for pathogen detection can be roughly 

divided into three categories: culture and colony counting, immunological assays, and polymerase 

chain reaction (PCR)-based methods [35]. These methods offer high sensitivity and specificity, 

providing both quantitative and qualitative information, which is often a necessity. However, some 

key drawbacks, chief of which being required processing times, clearly indicate a need for better 

solutions. 
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Colony counting is widely considered to be the gold standard for pathogen detection in settings 

ranging from clinical diagnosis to food pathogen measurement [31, 35, 40]. This process involves 

isolation and growth of a suspect pathogen, followed by visual inspection. Due to the inherent 

amplification during colony growth, this method is good for identifying very low levels of organisms 

(i.e. single cells). Unfortunately, turn-around times for results are very slow using this technique due 

to long incubation periods and the need for intensive labor. Depending on the pathogen, initial results 

often require at least 2 days, with conformation after 7-10 days [35, 40]. Furthermore, colony 

counting methods require a pathogen to be culturable, which may not always be the case given 

stringent environmental or nutritional requirements. 

Immunological assays are very common for pathogen detection due to their adaptability for a wide 

variety of pathogens including bacteria and viruses. The enzyme-linked immunosorbent assay 

(ELISA) method is an example of a well-known immunological assay. These assays rely on antibody 

recognition of antigens and other biomolecules specific to the target. Once antibodies are identified 

and available, the primary advantage of immunological assays over colony counting is reduced assay 

time while maintaining high specificity. ELISA has the ability to provide an optical response and 

hence is widely deployed in clinical laboratories with the use of commercially available ELISA kits. 

The technique still suffers from the drawbacks of requiring multiple steps, specialized training, and 

several hours of runtime [31, 41]. Antibody-labelled gold nanoparticles have been able to overcome 

these challenges by using an immunochromatographic strip (ICS) format and unique products are 

available for testing of foods and clinical samples. The testing of food products is facilitated by 

Merck Millipore’s Singlepath® and Duopath® products (Billerica, MA, USA), but these products 

require selective enrichment of bacteria before the sample is analyzed, which is necessary because of 

low sensitivity and the need to detect low concentration of pathogens in food. Thus, the assay requires 

several hours for completion even though the ICS can respond within 20 minutes. In a clinical 

diagnostic setting, ICS-based assays have been developed by Coris Bioconcept (Gembloux, Belgium) 

for the detection of viruses and bacteria in stool, urine, and blood samples [42]. Current challenges 

faced by ICS-based assays include the variability caused by user sample preparation and cross-

reactivity of analytes, yet ICS has been the biggest commercially available success of colloidal gold 

nanoparticles because of their ability to analyze samples in a complex media with minimal 
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purification. We will highlight how emerging technologies have adopted the success of antibody-

labeled gold nanoparticles in later sections of this chapter. 

PCR-based methods constitute a wide variety of detection schemes relying on nucleic acid 

amplification to increase the concentration of the detection target. Amplification of target 

deoxyribonucleic acid (DNA) sequences lends PCR-based conventional methods a high degree of 

sensitivity, even capable of detecting single gene copies. It is important to note that unlike colony 

counting, this sensitivity is achieved without a prolonged incubation time since bacteria do not need 

to be grown [41]. Specificity is achieved through the design of primers and probes that target 

sequences that are unique to the pathogen of interest. However, interference from non-pathogenic 

genetic material may lead to misleading results due to mismatch or non-specific amplification [35, 

41]. Precise genetic information is therefore required for confidence in results. Following target 

amplification, samples are traditionally separated by gel electrophoresis but complex sample 

preparations and manipulations increase labor cost and processing times [31]. Newer technologies 

such as real-time PCR and fluorescent molecular probes aim to reduce these factors. Perhaps the main 

drawback of traditional PCR-based methods for pathogen detection is the inability to distinguish 

viable and non-viable cells, since both contain the amplification target [35]. To address this issue, 

assays have been developed that employ reverse trascription PCR (RT-PCR) to target rapidly 

degrading messenger ribonucleic acid (mRNA) strands present during the cell’s growth cycle [35, 

43]. 

2.4 Principles of gold nanoparticle sensing 

The unique optical properties of gold nanoparticles make them very popular for pathogen detection. 

Most of these assays rely on the basic principle of surface plasmon resonance to detect changes in 

nanoparticle aggregation states [29]. The peak absorbance of gold nanoparticles depends on their size 

and shape. Spherical nanoparticles with mean particle sizes ranging from 9 – 99 nm have been 

observed with absorbance peaks from 517 – 575 nm, respectively [29]. Gold nanorods exhibit two 

absorbance peaks: one corresponding to transverse band (about 520 nm) and another corresponding to 

the longitudinal band (in the infrared region). The longitudinal band is typically more sensitive when 

gold nanorods are used in biosensors [44]. Star-shaped gold nanoparticles have also been used for the 

colorimetric detection of pathogens, where the absorption peak is governed by the particle size and 
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degree of branching [9]. Smaller particles are more colloidally stable but bigger particles can be more 

sensitive. Thus, optimization of particle size is important but rarely explored for pathogen detection 

[9, 45]. Most commonly, spherical gold nanoparticles in the size range of 13 – 20 nm with absorbance 

peak around 520 nm have been employed in biosensors due to ease of synthesis. 

The peak absorbance wavelength is sensitive to the distance between particles. Upon aggregation, 

the surface plasmon resonance of individual particles become coupled and shifts the absorbance 

spectrum [46]. This shift can be large enough to produce a visible color change, which makes the 

techniques favorable for rapid point-of-care diagnostics. Peak absorbance wavelengths exhibit a red-

shift with increases in size, typically giving stable (non-aggregated) nanoparticles a red color, while 

aggregated nanoparticles appear blue (Figure 2) [47]. Use of an ultraviolet-visible spectrophotometer 

can help quantify the shift in the surface plasmon resonance peak.  

 

Figure 2: Typical colors of gold nanoparticles. Aggregation of nanoparticles causes a shift from 

red to blue, adapted from [47] 

Gold nanoparticles are typically stabilized electrostatically, where citrate-capped nanoparticles are 

negatively charged and cetyltrimetylammonium bromide (CTAB)-coated nanoparticles are positively 

charged. The electrostatic repulsion between nanoparticles can be shielded by the addition of salts 

(most commonly sodium chloride), which then leads to the aggregation of nanoparticles and hence, a 

color change [48].  
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Optical effects of surface plasmon resonance have been implemented for pathogen detection by 

either inducing particle aggregation or stabilization. These effects are governed by target ligands, 

nanoparticle functionalization, competitive binding sites, or salts. The specific combinations of these 

factors make up the wide variety of applications investigated in this chapter. 

2.5 Gold nanoparticles for amplified nucleic acids  

2.5.1 Techniques for amplification of nucleic acids 

DNA amplification refers to the process of increasing the copy number of a particular DNA sequence. 

Amplification is a common strategy in molecular diagnostics in order to increase signal strength. 

While other signal amplification strategies amplify by manipulating reporter molecules, DNA 

amplification increases the concentration of the target analyte directly, thereby increasing the 

response. 

Ribonucleic acid (RNA) amplification can be used instead of DNA amplification when 

transcriptional information is of particular interest. While less chemically stable than DNA, RNA 

transcripts are commonly used in the area of functional genomics since they provide information on 

cellular activities and can change in response to life-cycle or stimulus events. RNA amplification of 

transcripts exclusive to cell growth phases have been used to differentiate between viable and dead 

cells [43].  

Various methods used for the amplification of nucleic acids have been highlighted in molecular 

diagnostic reviews [49-51]. Here, we briefly describe the methods that are used in combination with 

gold nanoparticles for detection of pathogens. One of the most common techniques for nucleic acid 

amplification is PCR. The general principle behind PCR is the extension of nucleic acid primers using 

deoxyribonucleotide triphosphates (dNTPs) and polymerase enzymes. The entire process can be 

separated into three stages. During the denaturation phase, high temperatures are used to break apart 

double-stranded structures of DNA. Lower temperatures during the annealing phase allow short 

nucleotide sequences known as primers to attach to the separated strands. Polymerase enzymes can 

then reconstruct the complementary strand using dNTPs in solution, reforming double stranded DNA. 

The process is then repeated, increasing the DNA copy number exponentially each cycle. A common 
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way to visualize the final product is by polyacrylamide gel electrophoresis (PAGE), whereby DNA 

strands are separated by size and stained for observation. 

Real-time (a.k.a. quantitative) PCR is an alternative to PCR followed by PAGE, where DNA is 

amplified and copy numbers simultaneously quantified. A common method for DNA quantification is 

the use of fluorescent probes. Complementary nucleotide probes can be designed with fluorophores 

and quencher dyes so as to produce a fluorescent signal upon binding to target DNA (i.e. molecular 

beacon probes) or upon degradation by polymerase enzymes (i.e. TaqMan probes). As copy number 

increases, so does the availability of binding regions for probes, thereby increasing the fluorescent 

signal. 

Many variations of traditional PCR and real-time PCR exist for specific targets and amplification 

conditions. RT-PCR is used to amplify RNA targets into complementary DNA sequences, such as 

when studying transcriptional levels. This technique is similar to PCR but incorporates a reverse 

transcription step at the beginning to obtain complimentary DNA. Asymmetric PCR can be used 

when amplifying a target for sequencing. In order to amplify the coding strand preferentially over the 

non-coding strand, one primer is used in excess. This arithmetic amplification is slower than 

traditional PCR, but ensures a higher copy number for the coding strand. Rolling circle amplification 

(RCA) is an isothermal amplification technique commonly used for circular DNA sequences such as 

plasmids and bacterial chromosomes. Nucleic acid sequence-based amplification (NASBA) is another 

isothermal method used to amplify RNA which combines reverse transcriptase and RNase digestion 

of the RNA template to generate RNA amplicon [52]. NASBA has the advantage of being isothermal 

as compared to RT-PCR and hence can be more versatile for out-of-laboratory field applications. 

2.5.2 Non-functionalized gold nanoparticles 

Non-functionalized gold nanoparticles are usually used for the detection of amplified products by the 

addition of salt. In the presence of salt, typically gold nanoparticles will aggregate and change color 

from red to blue unless they can be stabilized by nucleic acids. Two primary strategies can be utilized 

for stabilizing the gold nanoparticles: adsorption of nucleic acids on the surface or reaction with thiol 

probe, which has been hybridized with the target nucleic acids (Figure 1 a, b). Another approach 

involves the use of cationic gold nanoparticles, where the interactions between nucleic acids and the 

surface of gold nanoparticles lead to aggregation of the nanoparticles. This approach is similar to the 
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one explained in Figure 1 c, except the gold nanoparticles are not functionalized with a thiol-probe 

but rather coated with the probe using electrostatic interactions. 

DNA from bacteria and viruses has been used for detection by adsorption on the surface of gold 

nanoparticles. Salmonella spp. are troublesome for causing foodborne illnesses. Regulatory levels 

published by the United States Food and Drug Administration (FDA) and United States 

Environmental Protection Agency (EPA) for food safety require complete absence of Salmonella spp. 

in a 25 gram sample [53] It is therefore important for detection assays to have high sensitivity to very 

low (individual) pathogen levels. Salmonella spp. has been detected by targeting the stn gene where a 

oligonucleotide probe was designed to be complementary to the PCR product [54]. Here, 23 nm gold 

nanoparticles were able to produce a detection limit 10x more sensitive than gel electrophoresis. Also, 

a sensitivity (true positive rate) of 89.15% and specificity (true negative rate) of 99.04% was obtained 

for various food samples as compared to conventional culture methods. Detection of Bacillus 

anthracis, the causative agent of anthrax, is possible by using a similar strategy. Here, it was 

demonstrated that when the DNA is longer than about 100 nt (single-stranded DNA, ssDNA) or 100 

bp (double-stranded DNA, dsDNA), it can prevent salt-induced aggregation of 15 nm gold 

nanoparticles [55] and the colorimetric response is visible by the naked eye. When considering 

viruses, Hepatitis B virus (HBV) is notorious for causing acute and chronic liver diseases worldwide. 

HBV has been detected by designing a probe targeting the rtM204M wild type gene [56]. A 

colorimetric response from 13 nm gold nanoparticles was able to distinguish between target DNA and 

single base pair mismatched DNA. On the other hand, RCA has been used for the detection of H1N1 

viral DNA, where long ssDNA curled into balls and could not stabilize 13 nm gold nanoparticles 

[57].  

The use of thiol-modified probes coupled with non-functionalized nanoparticles has primarily been 

used for detection of bacterial DNA. Chlamydia trachomatis is responsible for most of the bacterial 

sexually transmitted diseases worldwide. The gene encoding virulence proteins was targeted with 

thiolated probes and detected in human urine samples using 13 nm gold nanoparticles [38]. Listeria 

monocytogenes and Salmonella enterica are notorious for contaminating foods and causing fatalities. 

FDA regulations have a “zero-tolerance” policy of no detectable L. monocytogenes in two 25 g 

samples of food or beverage [58]. The detection of these food-borne bacteria has been possible by 
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designing thiolated probes to target the hly and hut genes for L. monocytogenes and S. enterica 

respectively. This assay was able to detect bacteria in contaminated milk samples using 13 nm gold 

nanoparticles and the specificity was confirmed by a lack of response from Escherichia coli [59].  

The detection of DNA from human immunodeficiency virus type 1 (HIV-1) has been possible 

using cationic gold nanorods. The probe is designed to target sections of the HB-hp3-LTR1.8 DNA 

and in the presence of the target, aggregation is induced [60]. The specificity of this assay was 

confirmed by comparing results against genes from Mycobacterium tuberculosis and genes encoding 

for Bacillus glucanase. It was possible to perform detection under physiological conditions because 

the assay is tolerant to high salt concentrations. Another use of gold nanorods is for the detection of 

Leishmania major, a protozoan parasite that has led to 1.5 million cases of cutaneous leishmaniasis 

annually worldwide. The disease can lead to disabilities and even death. The detection of the parasite 

using culture-based methods is extremely slow and insensitive. Thus, molecular diagnostics can offer 

an improved method for detection. NASBA has been employed for the detection of 18S ribosomal 

RNA (rRNA) of L. major by designing the appropriate primer [61]. After amplification, the NASBA 

amplicons are incubated with gold nanorods leading to aggregation. Clinical skin biopsies were tested 

using this method and a sensitivity of 100% and specificity of 80% was obtained as compared to RT-

PCR and gel electrophoresis.  

Non-functionalized gold nanoparticles have the advantage of providing rapid response as compared 

to gel electrophoresis. Additionally, the equipment necessary for gel electrophoresis is not needed 

since a simple colorimetric response is obtained, which can be visually observed with minimal 

training. The synthesis of non-functionalized nanoparticles can often be executed in a single step, 

which simplifies the assay. The main limitation to this approach is that the conditions for detection 

often need to be optimized such that the appropriate concentrations of salts and reagents are used to 

avoid unnecessary aggregation of gold nanoparticles. The optimization of assay conditions demands 

extra efforts for each target in question. The studies using non-functionalized gold nanoparticles for 

amplified nucleic acids have been summarized in Table 1. They are divided by pathogen type: 

bacteria, viruses, and protozoa, and then sorted chronologically.  
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Table 1: Nucleic acid amplification followed by interaction with non-functionalized gold 

nanoparticles 

Pathogens of 

interest 

Sample 

type 

Analysis time Detection limit 

(copies/µL DNA) 

Working range 

(copies/µL DNA) 

References 

Chlamydia 

trachomatis 

Urine 1 hr post-

amplification 

20 20-20,000 [38] 

Salmonella spp. Culture <8 hr 2 x 109 

 

2x109 – 2x1011  [54] 

Listeria 

monocytogenes 

and Salmonella 

enterica 

Food 3 – 4 hr 2.1 x 104 (L. 

monocytogenes) 2.6 

x 104 (S. enterica) 

2.1 x 104 – 2.1 x 1011 

(L. monocytogenes) 2.6 

x 104 – 2.6 x 1011 (S. 

enterica) 

[59] 

Bacillus anthracis Nucleic 

acids 

- ~3.9 x 106a  ~3.9 x 106 – 3.9 x 108a [55] 

HIV-1 Nucleic 

acids 

<5 min  post-

amplification 

4.8 x 107 1.0 x 108 – 7.0 x 109 [60] 

Hepatitis B virus Serum - 3 x 109 3 x 109 – 3x 1011 [56] 

H1N1 virus Nucleic 

acids 

3 h 6.02 x 105 6.02 x 105 – 6.02 x 

1010  

[57] 

Leishmania major Skin 

biopsy 

- - - [61] 

aa mixture of ssDNA and ds DNA was used, molecular weight of ssDNA was used for calculations.  

2.5.3 Functionalized gold nanoparticles 

Gold nanoparticles can be easily functionalized with nucleic acid probes by using thiol-gold 

chemistry. There are two primary approaches to detection, which are governed by the number of 

probes used. In one scenario, salt is used to induce aggregation of probe-conjugated gold 

nanoparticles. Only one type of probe is used for binding to the target sequence. This approach is 

similar to the illustration in Figure 1 b, except the gold nanoparticles are conjugated to the thiolated 

probe before hybridization. In this situation, binding of the target to the probe results in double helix 

formation and particles can remain stable under higher salt conditions. Consequently, absence of the 

target would lead to particle aggregation at similar salinity. In another scenario, two probes are used 

such that each probe can bind to the same nucleic acid strand. There are two main methods within the 

two-probe approach. In one method, gold nanoparticles are functionalized with each of the two 

probes separately and then mixed together. The presence of the target causes particle aggregation by 

cross-linking gold nanoparticles together. In the absence of the target sequence or the presence of a 

mismatched sequence, aggregation does not occur and particles remain stable in suspension (Figure 1 
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c). Another method using two probes is called gold label silver stain. Here, one probe is immobilized 

on a glass slide and another on the gold nanoparticles. The target nucleic acid binds to the glass slide 

first, followed by the addition of the gold nanoparticles and then silver for signal enhancement [62]. 

In recent studies, the probe immobilized on gold nanoparticle has been replaced by streptavidin and 

the PCR product has been functionalized with biotin for facilitating binding via streptavidin-biotin 

interactions instead of hybridization.  

Using the one-probe approach, Mycobacterium tuberculosis has been detected by designing probes 

targeting the rpoB gene and immobilizing them on 14 nm gold nanoparticles [63]. The design is able 

to discriminate against the non-tuberculosis causing Mycobacterium kansasii. This design has also 

been implemented in a paper format, by using wax-based ink for making a 384-well paper microplate 

[64]. The assay has been adapted for differentiating between Mycobacterium bovis and M. 

tuberculosis by targeting the gyrB gene [65]. Three probes were designed to target specific segments 

of the gyrB gene and immobilized on gold nanoparticles. Each strain of Mycobacterium interacted 

differently with the probes and hence allowed accurate identification. Another notorious pathogen 

methicillin-resistant Staphylococcus aureus (MRSA) has been responsible for numerous persistent 

infections. It has been possible to detect MRSA by using probes towards 23S rRNA and mecA genes 

[66]. In this study, the sensitivity and specificity were comparable to real-time PCR assays but with a 

lower cost per reaction. RNA has also been targeted using the one-probe approach. One example is 

the detection of dnaK messenger RNA of Salmonella enterica serovar Typhimurium after 

amplification by NASBA [67]. The probe was immobilized on 17 to 23 nm gold nanoparticles and the 

assay was able to distinguish between RNA from S. Typhimurium and Bacillus firmus.  

The two-probe approach has also gained popularity for a variety of bacterial and viral targets. 

Helicobacter pylori is responsible for several gastric conditions such as chronic gastritis, gastric 

adenocarcinoma and gastric ulcers. Detection of H. pylori is possible by designing probes towards the 

ureC gene and immobilizing them on gold nanoparticles. Target DNA was amplified using 

thermophilic helicase-dependent isothermal amplification and the assay was able to distinguish 

between H. pylori, E. coli, and human DNA [68]. While some strains of E. coli can be harmless, 

Shiga toxin producing E. coli O157:H7 can cause disease outbreaks when it gets transmitted via food 

or water. FDA and EPA regulations for clams, mussels, oysters, and scallops require E. coli levels to 
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be below 330/100g as determined by the Most Probable Number method, which translates to 

approximately 3.3 colony forming unit (CFU)/g [53]. The detection of E. coli O157:H7 has been 

achieved by designing a pair of probes targeting the stx2 gene and immobilizing them on gold 

nanoparticles for a visible color change [69]. Another food-borne pathogen is S. Typhimurium, which 

can be detected by targeting the invasion (inv A) gene. [70]. The specificity of this assay was 

confirmed by comparing response to PCR products of other non-Salmonella spp. bacteria. The assay 

can provide better sensitivity compared to gel electrophoresis [70]. While most studies have focused 

on detection of a single species of bacteria, it is also possible to design gold nanoparticles for the 

detection of multiple bacteria, including the non-pathogenic ones. This is especially important in 

blood components because of the zero-tolerance policy. The 16S rDNA sequence is present in most 

bacteria and hence can be used as a target for detection [71]. A pair of 12-mer probes have been 

designed to target the 16S rDNA sequence and immobilized on gold nanorods. This method was 

tested for detection of the following species of bacteria in platelet concentrates: Pseudomonas 

aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella pneumoniae, Serratia 

marcescens and Bacillus cereus. It was found that the assay was most sensitive for the detection of S. 

marcescens. The assay provides a simple method for giving a yes/no result in contamination of blood 

components, but it does not identify the species of contamination.  

A slightly different two-probe approach has been adapted for the detection of human 

papillomavirus (HPV) type 16 (HPV-16) and type 18 (HPV-18). These viruses are responsible for 

over 70% of cervical cancer cases and hence fall under the “high risk” category. Two pairs of 

thiolated oligonucleotide probes have been designed to target the L1 gene of HPV-16 and HPV-18. 

These probes were immobilized on 13 nm gold nanoparticles, which aggregate in the presence of 

asymmetric PCR products. In the presence of the target, gold nanoparticles remain stable under high 

salt conditions because they are spaced apart by the target DNA [72].   

Modifications of gold label silver stain method have been implemented for detection of viruses and 

bacteria. HIV-1 and Treponema pallidum are prominent causes of sexually transmitted diseases and 

their prevalence has been rising. Amino-terminated oligonucleotide probes have been designed to 

target the gag gene for HIV-1 and 47k Ag gene for T. pallidum and immobilized on glass surfaces. 

The target genes were amplified and biotinylated by multiplex asymmetric PCR and then detected 
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[73]. A similar approach has been deployed for the detection of Acinobacter baumannii, which is 

responsible for a high incidence of bacteremia in hospitals. The specificity of the assay has been 

determined by comparing the response to other strains within the species (positive control), other 

species within the same genus (negative control), and bacteria from other genera (negative control) 

[74]. In order to test a large number of samples simultaneously, the assay has been incorporated in 

microarrays. Typical biotin-tyramine microarray designs do not provide sufficient accumulation of 

gold nanoparticles and hence 1.4 nm gold nanoparticles have been modified with 3,3’-

diaminobenzidine (DAB), which is a substrate for horseradish peroxidase (HRP) [75]. Here, the HRP 

is modified with streptavidin, which binds to biotinylated PCR products that are immobilized on the 

glass surface via a probe. The presence of DAB promotes the accumulation of gold nanoparticles and 

simplifies the assay by reducing an incubation step compared to biotin-tyramine based microarrays. 

This approach was deployed for the detection of Salmonella enterica serovar Typhi, which is 

responsible for causing typhoid fever (a life-threatening infection, especially in developing countries) 

[75].  

Finally, biotin-streptavidin interactions have also been exploited for implementing gold 

nanoparticles in an ICS format for the detection of influenza H1N1 virus. An ICS format is ideal for 

detection because of its portability and easy readout. In this design, gold nanoparticles were 

functionalized with anti-hapten antibodies and added to the conjugate pad. RT-PCR products labelled 

with biotin and Texas Red (a hapten) are added to the conjugate pad, where they attach to the gold 

nanoparticles. The test line contains streptavidin while the control line contains anti-mouse IgG and 

thus, the gold nanoparticles attach to test line only if the biotin labelled RT-PCR products are present 

[76].  

Functionalized gold nanoparticles share the advantage of eliminating the need for gel 

electrophoresis as was the case with non-functionalized nanoparticles. Additionally, functionalization 

widens the scope of formats in which the assays are implemented ranging from solution-based 

methods to strip-based methods. The major limitation of functionalization is that the gold 

nanoparticles need to be modified for each analyte of interest and then purified before use. These 

additional processing steps can require additional time and technical expertise and also lead to loss of 
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nanoparticle yield. The studies employing functionalized gold nanoparticles for amplified nucleic 

acids have been summarized in Table 2.  

Table 2: Nucleic acid amplification followed by interaction with functionalized gold 

nanoparticles 

Pathogens 

of interest 

Sample type Analysis 

time  

Detecti

on 

limit 

Worki

ng 

range 

Sensitivity Specificity Referen

ces 

Helicobacte

r pylori 

Gastric biopsy <1 h 10 

CFU/m

L 

 

10-

10,000 

CFU/m

L 

92.5% 

(culture) 

100% 

(histology) 

95.4% 

(culture) 

98.8% 

(histology) 

[68] 

Escherichia 

coli 

O157:H7  

Culture - 2.2 x 

105 

copies/

µL 

DNA  

2.2 x 

105 – 

2.2 x 

107 

copies/

µL 

- - [69] 

Mycobacteri

um 

tuberculosis 

Respiratory samples 15 min 

post-

amplificat

ion 

4.5 x 

1010 

copies/

µL 

DNA 

- 84.7% 

(AccuProb

e®) 

100% 

(AccuProb

e®) 

[63-65] 

Acinetobact

er 

baumannii 

Culture ~ 4 h post-

amplificat

ion 

1.07 x 

107 

copies/

µL 

DNA 

1.07 x 

107 – 

3.57x1

010 

copies/

µL 

- - [74] 

Salmonella 

enterica 

serovar 

Typhi 

Culture ~ 1 hr 

post-

amplificat

ion 

103 

CFU/m

L 

103-105 

CFU/m

l 

- - [75] 

Pseudomon

as 

aeruginosa, 

Staphylococ

cus aureus, 

Staphylococ

cus 

epidermidis, 

Kelbsiella 

pneumoniae

, Serratia 

marcescens 

and Bacillus 

cereus 

Spiked platelet 

concentrates 

0.8 hr 

post-

amplificat

ion 

~3 x 

106 

copies/

µL 

DNA 

~3 x 

106 – 6 

x 109 

copies/

µL 

- - [71] 
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Pathogens 

of interest 

Sample type Analysis 

time  

Detecti

on 

limit 

Worki

ng 

range 

Sensitivity Specificity Referen

ces 

Salmonella 

enterica 

serovar 

Typhimuriu

m 

Culture ~8 h ~3.6 x 

1011 

copies/

µL 

- - - [67, 70] 

Staphylococ

cus aureus 

(methicillin-

resistant) 

Blood culture, urine, 

respiratory samples, 

wound swabs, pus 

and body fluids 

~ 20 min 

post-

amplificat

ion 

 

~8 x 

1010 

copies/

µL 

DNA 

- 97.14% 

(Culture) 

91.89% 

(Culture) 

[66] 

HIV-1 and 

Treponema 

pallidum 

Serum ~5h post-

amplificat

ion 

10 

copies/

µL 

DNA 

- 100% 

(ELISA & 

real-time 

PCR) 

100% 

(ELISA & 

real-time 

PCR) 

[73] 

HPV-16 and 

HPV-18 

Ectocervical/endoce

rvical cell samples  

20 min 

post-

amplificat

ion 

8.4 x 

107 

copies/

µL 

DNA 

 

8.4 x 

107 – 

8.4 x 

1011 

copies/

µL 

95% (real-

time PCR) 

90% (real-

time PCR) 

[72] 

Influenza 

H1N1 virus 

Nucleic acids 2.5 hr 2.58 x 

108 

copies/

µL 

RNA 

2.58 x 

108 – 

2.58 x 

109 

copies/

µL 

- - [76, 77] 

 

2.6 Emerging biosensors without nucleic acid amplification 

While several strategies have been presented for the detection of nucleic acid amplification products, 

it is possible to detect pathogens without the use of these amplification processes. Non-functionalized 

gold nanoparticles can use the native surface charges of nanoparticles and bacteria for producing a 

color change. Functionalizing gold nanoparticles with nucleic acids, proteins, or small molecules can 

facilitate the detection of unamplified nucleic acids, lipopolysaccharides, or even whole cells.  

2.6.1 Non-functionalized gold nanoparticles for pathogen detection 

As-synthesized gold nanoparticles can exert surface charges and hence be used directly for detection 

without specific functionalization. Most of the studies that incorporate this strategy depend on the 

color change of gold nanoparticles from red to blue due to their electrostatic aggregation behavior. 
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Two common coatings are present on as-synthesized nanoparticles: citrate for providing a net 

negative charge and CTAB for providing a net positive charge. Another approach is to modulate the 

growth conditions of nanoparticles, which controls the size and morphology of the nanoparticles and 

hence their color.  

Citrate capped nanoparticles have been used for the detection of nucleic acids in a manner similar 

to the illustration in Figure 1 a, where nanoparticles aggregate when the target is present. This 

approach has been implemented in the detection of hepatitis C virus RNA by designing probes 

targeting the 5’UTR region and using them with 15 nm gold nanoparticles [78]. Another approach is 

to design aptamers for specific targets and allow them to adsorb on the surface of gold nanoparticles. 

In the presence of the target, the aptamers get stripped from the surface of gold nanoparticles and bind 

to the target, which destabilizes the gold nanoparticles in high salt conditions. This strategy has been 

applied for the detection of E. coli O157:H7 and S. Typhimurium, where aptamers were selected 

against these bacteria and adsorbed on 15 nm gold nanoparticles. The specificity of the assay was 

confirmed by testing the interaction with seven other species of bacteria and a significant response 

was observed only when the desired target was present [79].  

In addition to nucleic acids and whole cells, citrate-capped nanoparticles have also been used to 

detect proteins. β-Lactamases are bacterial enzymes that cleave β-lactam antibiotics and hence render 

them ineffective towards bacterial infections. The detection of β-lactamase activity can assist in 

designing better antibiotics. Enterobacter cloacae is a pathogen responsible for producing class C 

P99 β-lactamase, which can cleave cephalosporin derivatives and produce products with free thiols 

and positively charged amino groups. These products can replace some citrate ions on the surface of 

gold nanoparticles and then lead to their aggregation due to electrostatic interactions. With the help of 

16 nm citrate capped gold nanoparticles, P99 β-lactamase could be detected [80]. The same method 

has also been used for detection of class A β-lactamases as well, which are produced by E. coli, B. 

cereus and K. pneumoniae [81]. Another notorious enzyme is the immunoglobulin A1 protease 

(IgA1P) produced by Streptococcus pneumoniae, which allows the bacterium to infect the lower 

respiratory tract, ear, or bloodstream and lead to diseases such as pneumonia, otitis media, sepsis, and 

meningitis. The protease cleaves human IgA1 and coats the bacterium with Fab fragments to act as a 

shield against the immune response and also to assist invasion into epithelial cells. Thus, IgA1P 
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serves as a promising antibacterial target to curb the infection. The detection of IgA1P has been 

achieved using IgA1 and 20 nm citrate-adsorbed gold nanoparticles. In the presence of IgA1P, the 

IgA1 is cleaved to produce positively charged Fab regions, which is detected by the aggregation of 

the anionic nanoparticles. The specificity of the assay was confirmed by the lack of response in the 

presence of IgA2, which is not cleaved by IgA1P [82].  

CTAB-coated gold nanoparticles have been used for the detection of DNA as well as whole cells. 

When detecting DNA, the idea is similar to Figure 1 c, except instead of using thiolated probes, the 

probes are electrostatically adsorbed. Detection of HIV-1 and B. antharcis has been possible by 

designing probes to target the U5 long terminal repeat sequence of HIV-1 and cryptic protein and 

protective antigen precursor genes of B. anthracis. The probes were adsorbed on 16-30 nm gold 

nanoparticles for obtaining a color change from red to purple [83]. Whole cell detection has been 

achieved using CTAB-coated gold nanostars with a size range of 31 nm to 113 nm [9]. Here, the 

positive charges on gold nanostars interact with the negative charges on bacterial cell walls presented 

by teichoic acids, lipopolysaccharides, and phospholipids. This strategy produced a unique degree of 

color change for different species of bacteria when testing the ocular pathogens: S. aureus, 

Achromobacter xylosoxidans, Delftia acidovorans, and Stenotrophomonas maltophilia. An accuracy 

of 99% was obtained for identifying randomized samples of the four bacteria [84].  

ELISA has been used in a variety of applications for highly specific and sensitive detection of 

target molecules. Typically, a color change is obtained at the end of the assay because of enzymatic 

conversion of the substrate into a colored molecule, which is then detected by a spectrophotometer. 

The color change could also be obtained using growth of gold nanoparticles such that it would be 

visually detectable. In the absence of target molecules, a high concentration of hydrogen peroxide is 

present, which rapidly reduces gold ions and forms spherical non-aggregated nanoparticles, producing 

a red color. In the presence of target molecules, hydrogen peroxide is consumed by the enzyme and 

hence growth of the gold nanoparticles is slower, which results in aggregated particles with a blue 

color. This approach has been used for detection of HIV-1 capsid antigen p24 with the naked eye. 

This method presents an extremely sensitive assay, which performs better than existing established 

methods based on nucleic acid detection. [85].  
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Eliminating nucleic acid amplification provides major advantages in the required analysis time and 

equipment. Specifically, the use of non-functionalized nanoparticles simplifies the synthesis of gold 

nanoparticles and thus the entire assay. As compared to conventional methods for pathogen detection, 

the non-functionalized gold nanoparticles provide a dramatic colorimetric output, which can often be 

visualized by the naked eye. The most important limitation of this strategy is that various interferents 

from the environment can cause aggregation of nanoparticles and hence a false positive response, 

since the target analyte is often very general. The studies using non-functionalized gold nanoparticles 

for detection have been summarized in Table 3. 

Table 3: Non-functionalized gold nanoparticles for detection without nucleic acid amplification 

Pathogens of interest Sample 

type 

Analysis 

time 

Detection 

limit 

Working range Refer

ences 

Escherichia coli, Bacillus cereus and 

Klebsiella pneumoniae 

Culture ~ 1 hr ~ 108 CFU/mL - [81] 

Enterobacter cloacae β-

lactamase 

~ 35 min 16 fmol/mL of 

P99 β-

lactamase 

15 – 80 fmol/mL [80] 

Escherichia coli O157:H7 and 

Salmonella enterica serovar 

Typhimurium 

Culture 20 min 105 CFU/mL 

 

105 – 108 

CFU/mL 

[79] 

Streptococcus pneumoniae Culture ~ 20 hr - - [82] 

Staphylococcus aureus, 

Achromobacter xylosoxidans, Delftia 

acidovorans, Stenotrophomonas 

maltophilia  

Culture ~ 5 min ~ 1.5 x 106 

CFU/mL 

- [9, 

84] 

Hepatitis C virusa Serum 30 min 2.5 copies/µL 

RNA 

 

~ 2.5 – 100 

copies/µL 

[78] 

HIV-1 and Bacillus anthracis Nucleic 

acids 

~ 30 min 6 x 107 

copies/µL 

DNA 

6 x 107 – 3 x 109 

copies/µL 

[83] 

HIV-1 Serum ~ 21 hr 10-15 g/µL 

capsid antigen 

p24 

10-15 – 10-18 g/µL  [85] 
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aSensitivity 92% and specificity 88.9% compared to RT-PCR 

2.6.2 Gold nanoparticles functionalized with nucleic acids 

Unamplified nucleic acids can be detected by functionalizing gold nanoparticles with specific 

thiolated probes. Three main strategies have been employed for implementing this method: 

functionalizing with a single probe (Figure 1 b), functionalizing with two probes (Figure 1 c), and the 

use of DNA enzymes (DNAzymes). As compared to amplification-based methods, these assays are 

simpler and faster.  

A thiolated nucleic acid probe has been designed for the detection of Mycobacterium spp. by 

targeting the 16s-23s DNA region of mycobacterial species. The probe was immobilized on 15-20 nm 

gold nanoparticles and the presence of target DNA stabilized the nanoparticles upon addition of HCl 

(Figure 1 a). Specificity of the assay was confirmed by comparing the response from non-

mycobacterial species [86]. Detection of E. coli genomic DNA has been possible by targeting the 

malB gene and immobilizing the obtained probe on 20 nm gold nanoparticles. In this assay, the 

enzymatic degradation of DNA before hybridization improved the detection limit of the assay by 5 

times. Specificity was confirmed by comparing the response to other pathogenic bacteria [87].  

Aggregation of nanoparticles by target DNA can also be used for the colorimetric detection if a pair 

of appropriate probes is designed (Figure 1 c). One example of this approach is the detection of 

Kaposi’s sarcoma-associated herpesvirus (KSHV). KSHV is responsible for Karposi’s sarcoma, an 

infectious cancer most commonly occurring in HIV positive patients. The detection of KSHV is 

challenging because several other diseases present similar symptoms and histopathological features. 

One such confounding disease is bacillary angiomatosis, which can be caused by Bartonella quintana 

and Bartonella henselae. Thus, distinction between these pathogens is necessary and has been 

achieved by designing pairs of thiolated oligonucleotide probes targeting the DNA that codes for 

vCyclin in KSHV and conserved regions of Bartonella strains. The probes for KSHV and Bartonella 

were then immobilized on 15 nm gold and 20 nm silver nanoparticles respectively to obtain different 

color changes [88]. Another study has demonstrated the detection of genomic DNA of Salmonella 

enterica by the use of probes targeting the invA gene. Here, the mechanism of detection was unclear 

because detection of genomic DNA was possible using both one-probe and two-probe approaches. 

Additionally, the thiolated probes were first incubated with the genomic DNA and then incubated 
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with 15 nm gold nanoparticles. In this study, the absence of target DNA allows gold nanoparticles to 

maintain stability, which is most likely because of high coverage of the probe molecules on the 

surface of the nanoparticles. In the presence of the target, the probes hybridize with the target DNA 

and hence, are probably unable to cover the gold nanoparticles sufficiently to stabilize them. This 

leads to the aggregation of gold nanoparticles and hence detection of the target DNA. This assay 

allowed the detection of dsDNA at room temperature [89].  

DNAzymes are nucleic acids that can catalyze the cleavage of other nucleic acids with multiple 

turnovers and hence are capable of providing amplification in an assay. Multicomponent nucleic acid 

enzyme (MNAzyme) is a type of DNAzyme that can be designed to perform catalysis specifically in 

the presence of the target DNA. Gold nanoparticle cross-linkers can be used as MNAzyme substrates 

such that aggregation of gold nanoparticles can be modulated by the presence of target DNA. This 

approach has been applied for the detection of AF-1 and genetic sequences from Neisseria 

gonorrhoeae, Treponema pallidum, Plasmodium falciparum, and HBV. In the absence of target 

DNA, the cross-linker remained intact and led to aggregation of 13 nm gold nanoparticles. Designing 

the appropriate MNAzymes allows this method to detect multiple targets, which is useful for 

diagnosing co-infections [90]. Another example of DNAzymes is the detection of dengue viruses. 

Dengue viruses cause periodic explosive epidemics and can lead to 50-100 million infections 

annually. These viruses are typically carried by mosquitoes and can lead to dengue fever or 

potentially fatal dengue hemorrhagic fever. DNAzymes have been designed and immobilized on 15 

nm gold nanoparticles to cleave dengue virus RNA in the presence of magnesium ions. The cleaved 

RNA leads to aggregation of gold nanoparticles in the presence of salt and heat [91].  

Functionalizing gold nanoparticles with DNAzymes has allowed the incorporation of signal 

amplification during detection and hence provided excellent detection limits. The major limitation of 

this approach has been the requirement of nucleic acid extraction, since it can increase the assay time 

by several hours. The studies employing gold nanoparticles functionalized with nucleic acids are 

summarized in Table 4. 

  



 

 

 

 28 

Table 4: Gold nanoparticles functionalized with nucleic acids 

Pathogens of interest Sample 

type 

Analysis 

time 

Detection limit Working range References 

Mycobacterium spp.a Goat 

faeces 

~ 15 min 

post-

extraction 

18.8 ng/µL 

mycobacterial 

DNA 

18.8 – 1,200 

ng/µL 

[86] 

Escherichia colib Spiked 

urine 

< 30 min 

post-

extraction 

5.4 ng/µL 

genomic DNA  

5.4 – 43 ng/µL [87] 

Kaposi’s sarcoma-associated 

herpesvirus and Bartonella 

Nucleic 

acids 

2 h post-

extraction 

1 x 109 copies/µL 

DNA 

1-10 x 109 

copies/µL 

[88] 

Neisseria gonorrhoeae, 

Treponema pallidum, 

Plasmodium falciparum and 

hepatitis B virus 

Nucleic 

acids 

~ 1.5 h post-

extraction 

3 x 107 copies/µL 

model DNA  

3 x 107 – 6 x 

108 copies/µL 

[90] 

Salmonella enterica Nucleic 

acids 

~ 15 min 

post-

extraction 

2.2 x 104 

copies/µL 

genomic DNA 

2.2 x 104 – 3.8 x 

105 copies/µL 

[89] 

Dengue virus Culture 5 min post-

extraction 

4 x 107 copies/µL 

RNA 

4 x 107 – 4 x 

1012 copies/µL 

[91] 

aSensitivity 87.5%, specificity 100% (real-time PCR). bspecificity 100% (PCR) 

2.6.3 Gold nanoparticles functionalized with proteins  

Gold nanoparticles are often functionalized with antibodies that can target specific sites on the surface 

of pathogens. This antibody-antigen association leads to aggregation of gold nanoparticles around the 

pathogen of interest and can thus generate a colorimetric response (Figure 3). Another common 

approach is to use aggregation of antibody-functionalized gold nanoparticles as a labelling method 

followed by amplification of the signal using the growth of silver or gold around the initial seeds. 

Finally, these nanoparticles have been widely implemented in an ICS format as a replacement for 

ELISA.  
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Figure 3: Gold nanoparticle functionalized with antibodies aggregate around bacteria and lead 

to color change, adapted from [92]. 

The aggregation of gold nanoparticles around bacteria has been used for the detection of multi-drug 

resistant S. Typhimurium DT104. The bacterium presents a great challenge in health care because of 

its persistent survival. The detection was possible by functionalizing 30 nm popcorn-shaped gold 

nanoparticles with monoclonal M3038 antibody against S. Typhimurium DT104. The response was 

specific to the drug resistant S. Typhimurium as compared to other Salmonella or E. coli strains. [93].  

Colorimetric response from the aggregation of nanoparticles can often have insufficient sensitivity. 

Thus, the growth of gold or silver is used for signal amplification. This strategy has been deployed for 

the detection of protozoa and bacteria. The detection of intestinal protozoan Giardia lamblia is 

possible by first separating it from solution using centrifuge filtration (0.45 µm pore size) and then 

incubating it with a solution of anti-G. lamblia antibody-coated 15 nm gold nanoparticles. The 

unbound gold nanoparticles are removed by centrifuge filtration followed by the addition of a gold 

growth solution, which changes color depending on the concentration of gold nanoparticles. Since the 

assay uses centrifugation for concentration, it is possible to implement this assay in large sample 

volumes [94]. The filtration approach can be combined with magnetic nanoparticles to allow 

detection in complex media. This approach has been used for the detection of S. aureus in milk. 

Magnetic nanoparticles were first coated with bovine serum albumin (BSA) and then with 10 nm gold 

nanoparticles. Anti-S. aureus antibodies were then adsorbed on the surface of gold nanoparticles. This 

hybrid system of nanoparticles was incubated with the sample contaminated with bacteria, 

magnetically separated, and then filtered through a 0.8 µm cellulose acetate membrane. The magnetic 

separation retained all the nanoparticles and bacteria that were attached to the nanoparticles. The filter 

retained bacteria and attached nanoparticles while allowing free nanoparticles to pass through. 



 

 

 

 30 

Finally, the color of nanoparticles on the filter was enhanced by a gold growth solution. The 

specificity of the assay was confirmed by comparing the response to samples contaminated with other 

pathogenic bacteria [95].  

In addition to nucleic acid detection, gold label silver staining has also been implemented for 

antibody-functionalized nanoparticles. This method has been used for the detection of Campylobacter 

jejuni by using monoclonal antibodies against the bacterium and coating them on 18 nm gold 

nanoparticles. In order to implement this method, a glass slide functionalized with streptavidin is first 

conjugated with biotinylated polyclonal antibodies against C. jejuni. This is followed by the addition 

of the bacteria and then the functionalized gold nanoparticles. Then, the gold growth solution is added 

followed by silver enhancement. The silver enhancement is stopped by immersing the slide in 

deionized water. Using this method, specificity was confirmed by comparing the response obtained 

from C. jejuni to that of Salmonella enteritidis and E. coli [96].  

Immobilization of antibodies has also been extended to nitrocellulose paper, which is followed by 

the addition of the target and then the protein-functionalized gold nanoparticles. This has been used 

for the detection of Vi antigen of S. Typhi by adsorbing anti-Salmonella antibodies on 30 nm gold 

nanoparticles. This assay has a potential of detecting typhoid early because it can not only detect the 

whole bacterial cell, but also just the Vi antigen [97]. Similarly, ICS-based assays have been 

developed for the detection of P. aeruginosa and S. aureus by using polyclonal antibodies against the 

bacteria and conjugating them to ~20 nm gold nanoparticles. The test line in these assays had 

monoclonal antibodies against the bacteria and produced a red color in the presence of the target 

bacteria [98]. Another example of ICS is the detection of toxic metabolites produced by the 

microscopic fungi Aspergillus. These metabolites, such as ochratoxin A, can lead to nephrotoxicity, 

hepatotoxicity, and carcinogenicity in humans. In this scenario, a competitive assay was developed by 

immobilizing a BSA conjugate of ochratoxin A on the test zone and immobilizing monoclonal 

antibodies against ochratoxin A on 27 nm gold nanoparticles. In the presence of target ochratoxin A, 

gold nanoparticles do not bind to the test line and hence there is no color [99].  

A unique strategy using switchable linkers has been deployed for detection by functionalizing gold 

nanoparticles with streptavidin. The switchable linker specifically binds to the target of interest and 

also contains biotin, which would lead to aggregation of streptavidin-coated gold nanoparticles. 
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Changing the concentration of the target will change the number of free switchable linkers available 

and hence change the degree of aggregation of gold nanoparticles. If there is a high concentration of 

the switchable crosslinker, they occupy all the binding sites on the gold nanoparticles and prevent 

crosslinking. Therefore, there is a specific concentration of crosslinker and target within which the 

color changes. When biotinylated anti-E. coli polyclonal antibodies are used as the switchable 

crosslinker, E. coli can be easily detected at low concentrations [100].  

Antibody-labeled gold nanoparticles have facilitated the detection of whole cells, which minimizes 

the efforts required for sample preparation and yet provides faster response compared to culture-based 

methods. As compared to ELISA, methods employing functionalized gold nanoparticles immobilized 

on paper substrates (eg. ICS) are simpler to deploy in the field since the strips can be easily 

transported and require minimal training. Two major limitations exist for gold nanoparticles 

functionalized by proteins: the assays often require antibodies for specific targets, which can increase 

the cost of the assay, and many assays require centrifugation or filtration, which is often only 

available in laboratories. The studies that utilize gold nanoparticles functionalized with proteins have 

been summarized in Table 5. 

Table 5: Gold nanoparticles functionalized with proteins 

Pathogens of interest Sample 

type 

Analysis 

time 

Detection limit Working range References 

Campylobacter jejuni Culture Overnight 106 CFU/mL  106 – 109 CFU/mL [96] 

Salmonella enterica serovar 

Typhimurium DT104 

Culture < 5 min 103 CFU/mL 103 – 104 CFU/mL [93] 

Pseudomonas aeruginosa 

and Staphylococcus aureus 

Culture 3 min 5 x 102 

CFU/mL 

5 x 102 – 5 x 103 

CFU/mL 

[98] 

Salmonella enterica serovar 

Typhi 

Spiked 

blood 

~ 1 h 102 CFU/mL 102 – 107 CFU/mL [97] 

Escherichia coli Culture - 102 CFU/mL 102 – 106 CFU/mL [100] 

Staphylococcus aureus Spiked 

milk 

40 min 1.5 x 107 

CFU/mL (milk) 

1.5 x 105 

CFU/mL (PBS) 

1.5 x 107 – 1.5 x 

108 CFU/mL 

(milk) 

1.5 x 105 – 1.5 x 

108 CFU/mL (PBS) 

[95] 

Aspergillus Plant 

extracts 

10 min 5 ng/mL 

ochratoxin A 

5 – 50 ng/mL [99] 

Giardia lamblia cysts Culture - 1.088 x 103 

cells/mL 

103 – 104 cells/mL [94] 

Sensitivity and specificity were not reported for any of the studies 
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2.6.4 Gold nanoparticles functionalized with small molecules 

Besides proteins and nucleic acids, small molecules can also be used for detection of pathogens by 

exploiting the electrostatic, covalent, or receptor-mediated interactions. In a typical case, the small 

molecule is immobilized on gold nanoparticles, which allows their aggregation around the pathogen 

of interest and hence leads to a color change. Electrostatic interactions have been possible by 

modifying the surface of nanoparticles to make them cationic. Covalent interactions have been 

exploited by using phenylboronic acid and its ability to bind to diol groups in bacterial 

polysaccharides. Receptor-mediated interactions are possible by functionalizing gold nanoparticles 

with sialic acids, which exhibit binding to haemagglutinin present on the surface of viruses.  

Cationic nanoparticles have been used for the detection of lipopolysaccharides and whole cells. 

Lipopolysaccharides are present on the surface of Gram-negative bacteria and provide a high negative 

charge to these surfaces. The detection of lipopolysaccharides is important because they can lead to 

sepsis or septic shock. When gold nanoparticles are modified with cysteamine, they aggregate in the 

presence of lipopolysaccharides and hence allow their detection as compared to other biological 

anions. These nanoparticles could also interact with lipopolysaccharides on the surface of E. coli 

055:B5, which was confirmed by observing their aggregation using transmission electron microscopy 

[101]. This modification has also been used for colorimetric detection of E. coli O157:H7 [102]. 

Whole cells can be detected by using cationic gold nanoparticles obtained by using a variety of small 

molecules with varying alkyl chain lengths and hydrophobicity. This approach was used for detecting 

E. coli XL1. An enzyme (β-galactosidase) is first adsorbed on the gold nanoparticles by electrostatic 

interactions. Then, in the presence of E. coli, gold nanoparticles aggregate around the bacteria and 

release the enzyme, which catalyzes the hydrolysis of chlorophenol red β-D-galactopyranoside and 

causes a color change [103].  

Covalent interactions have been used for the detection of a variety of bacteria. In one of the studies 

involving E. coli O157:H7, gold nanoparticles were first coated with platinum and then functionalized 

using 4-mercaptophenylboronic acid. The platinum on the surface of gold nanoparticles acts as a 

peroxidase mimic and can catalyze oxidation of 3,3’,5,5’-tetramethylbenzidine (TMB) by hydrogen 

peroxide. Thus, when functionalized gold nanoparticles are mixed with E. coli O157:H7, they 

aggregate around the bacteria. After purification by centrifugation, the bound nanoparticles were 
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mixed with hydrogen peroxide and TMB, which led to a color change depending on the concentration 

of bacteria present. The specificity of this method was shown by demonstrating the lack of response 

from S. aureus [104]. In contrast to this study [104], another group functionalized 13 nm gold 

nanoparticles with dithiodialiphatic acid-3-aminophenylboronic acid and achieved the detection of S. 

aureus. In this case, the functionalized gold nanoparticles were allowed to interact with S. aureus and 

then the bacteria were separated by centrifugation. The separated bacteria had a red color 

characteristic of the gold nanoparticles. The specificity was confirmed by comparing the response 

from S. aureus to that from E. coli, Bacilus subtilis, and Enterobacter cloacae. The difference 

between the two studies is most likely because of the different configurations of phenylboronic acid 

used and also because of additional functionalization of gold nanoparticle with a pentapeptide for 

stabilization in the detection of S. aureus [105]. 

In addition to bacteria, influenza viruses can be detected using gold nanoparticles functionalized 

with sialic acids. Influenza viruses present haemagglutinin on the surface, which recognizes sialic 

acids on host cells for infecting the cells. Haemagglutinin has been used as a target for detecting 

viruses because they can facilitate aggregation of functionalized gold nanoparticles. To achieve 

detection, 16 nm gold nanoparticles were functionalized with trivalent α2,6-thio-linked sialic acid and 

mixed with human influenza virus X31 (H3N2) to observe a color change. This method was able to 

distinguish between human influenza virus and avian influenza virus (H5N1) because the human 

strain binds to α2,6 residues, whereas the avian strain binds to α2,3 residues. Detection was also 

possible in influenza allantoic fluid, which demonstrates the possibility of detection in clinical 

samples [106]. A similar method has been employed for the detection of influenza B/Victoria and 

influenza B/Yamagata, where 20 nm gold nanoparticles were synthesized and stabilized using sialic 

acid using a one-pot method [107].  

Gold nanoparticles modified with small molecules have typically provided some of the fastest 

response times while maintaining excellent detection limits. Small molecules are typically cheaper 

than proteins or nucleic acids and hence the overall cost of the assay is lower. The major limitation of 

this approach is that small molecules target general components of the pathogens and hence cross-

reactivity is likely. Thus, the assay might provide a false positive response if a closely related 
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pathogen was present instead of the targeted one. All the studies using gold nanoparticles 

functionalized with small molecules have been summarized in Table 6. 

Table 6: Gold nanoparticles functionalized with small molecules 

Pathogens 

of interest 

Sample type Analys

is time 

Detection limit Workin

g range 

Small molecule 

used 

Referenc

es 

Escherichia 

coli XL1 

Culture ~ 10 

min 

102 CFU/mL 

(solution) 

104 CFU/mL 

(test strip) 

102 – 

107 

CFU/m

L 

(solutio

n)  

104 – 

108 

CFU/m

L (test 

strip) 

Several different 

cationic molecules 

 

[103] 

Staphylococc

us aureus 

Spiked milk, 

urine, lung fluid 

~ 2 h 50 CFU/mL 5 x 102 

– 5 x 

106 

CFU/m

L 

dithiodialiphatic 

acid-3-

aminophenylboronic 

acid 

[105] 

Escherichia 

coli 

O157:H7 

Culture < 40 

min 

7 CFU/mL 7 – 6 x 

106 

CFU/m

L 

4-

mercaptophenylboro

nic acid 

[102, 

104] 

Escherichia 

coli 055:B5 

Lipopolysacchari

des 

~ 5 min 330 fmol/mL 

lipopolysacchari

des 

5 – 90 

pmol/m

L  

cysteamine [101] 

Human 

influenza 

virus X31 

(H3N2) 

Allantoic fluid ~30 

min 

~1 µg/mL virus ~1 – 2 

µg/mL 

trivalent α2,6-thio-

linked sialic acid 

[106] 

Influenza 

B/Victoria 

and 

Influenza 

B/Yamagata 

Culture ~ 10 

min 

0.156 vol% 

dilution of 

Hemagglutinatio

n assay titer 512 

virus 

0.156 – 

1.25 

vol% 

sialic acid (N-

acetylneuraminic 

acid) 

[107] 

Sensitivity and specificity were not reported for any of the studies 

2.7 Comparison of gold nanoparticles to conventional methods 

Conventional and gold nanoparticle-based pathogen detection assays can be compared using a variety 

of metrics reflecting assay performance. The main criteria by which we will be evaluating the 
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advantages and disadvantages of the previously mentioned assays are time, limit of detection, 

specificity, technical complexity, and specific limitations. These parameters have been grouped by 

detection principle, and are summarized in Table 7.  

2.7.1 Analysis Time 

Analysis times were generally much longer for conventional methods than those using gold 

nanoparticles. Colony counting was by far the most time-consuming method, due to the need for 

colonies to be grown on selective media prior to visual identification [108]. Of the organisms 

presented, the longest culture time was reported for Campylobacter, where culture methods require 4 

– 9 days for negative results and 14 – 16 days for positive confirmation [35, 109]. In contrast, protein-

functionalized gold nanoparticles have been used to detect Campylobacter following overnight 

incubation [96]. 

The fastest conventional methods are typically PCR-based assays, which can deliver results in 5 – 

24 hours, depending on the mode of analysis and pathogen of interest [31]. This processing time is 

heavily dependent on the time required for sample enrichment and nucleic acid amplification, and is 

related to the detection limit [110, 111]. Amplification-based techniques with gold nanoparticles can 

improve upon conventional PCR-based methods by generating rapid color changes in response to 

pathogens, thereby simplifying the detection of target amplicon, and reducing the time required to 

obtain a result. Furthermore, emerging biosensors which do not involve the time-consuming step of 

nucleic acid amplification reported the shortest processing times with several groups reporting results 

within an hour (Table 3, 5, and 6). 

2.7.2 Limit of detection 

Despite advances in analysis time, reducing detection limits remains a key challenge for gold 

nanoparticle-based assays. Conventional methods of colony counting and PCR are typically capable 

of detecting pathogens at concentrations in the range of 1 CFU/mL or 10 copies/µL DNA (Velusamy 

et al. 2010; Lazcka et al. 2007). Nanoparticle-based methods reported a wide variety of detection 

limits, ranging from 7 – 108 CFU/ml or 101 – 3 x 1011 copies/µL DNA depending on the target [67, 

70, 73]. While some groups reported detection limits much higher than those for conventional 
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methods, particularly those assays without target amplification, other nanoparticle-based assays were 

comparable in terms of detection limit. 

2.7.3 Specificity 

Specificity of colony counting methods is dependent on the ability to selectively isolate and culture 

particular pathogen strains. Due to the use of morphological and physiological characteristics for 

pathogen identification, specificity may be lower for closely related strains which are less 

distinguishable based on phenotypic traits. Similarly, immunological assays may suffer from low 

specificity if antibodies are selected for target analytes that are present on more than one pathogen 

variety. However, with proper antibody selection and species enrichment, immunological assays have 

good specificity. PCR-based methods achieve specificity by targeting nucleic acid sequences with 

selected primers and/or probes. Excellent assay specificity can be achieved when the sequences 

targeted by PCR are unique to the strain of interest since single base pair mismatches can often be 

discriminated. 

Specificity of gold nanoparticle-based assays is determined by either nucleic acids or antibodies in 

most cases. Thus, the specificity of these assays is comparable to the methods based on PCR and 

immunological assays. In the case of small molecule modified nanoparticles and non-functionalized 

nanoparticles, the assays detect general targets and hence, the specificity suffers. One method for 

overcoming this specificity challenge is to adopt a “chemical nose” type system, where each analyte 

presents a unique set of responses and hence can be distinguished [84, 103]. The limitation of a 

“chemical nose” approach is that the system needs to be trained for each analyte of interest before 

attempting the detection.  

2.7.4 Technical requirements 

Procedures for bacterial plating, colony counting, and species identification vary according to the 

target organism. Generally, the first step involves serial dilution of a sample or automatic plating 

[108] onto agar plates with selective media. Plates must then be incubated to allow for colony growth 

to a visually detectable level. This incubation period is dependent on the bacterial species and growth 

conditions. The number of resulting colonies is counted to infer pathogen concentration in the original 

sample. This is a time consuming step which can be done by hand or using automated systems [108]. 
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Pathogen identity is determined using various morphological and biochemical tests. The colony 

counting method is good for workers in microbiology laboratories due to its reliability and use of 

common laboratory equipment and reagents, however the laborious process is not adequate for rapid 

diagnostics and requires specialized training. 

Immunological assays rely primarily on specificity of antibodies to antigens from the target 

pathogen. A wide variety of characterized antibodies and kits are available for most pathogens and 

complexity is dependent on the particular detection strategy [108]. While common immunological 

methods (e.g. ELISA) do not require specialized lab equipment, they typically require some form of 

sample enrichment due to decreased sensitivity [109]. 

PCR-based methods are typically less laborious and time-consuming than previously mentioned 

conventional methods [31]. Specific DNA or RNA sequences amplified using PCR can be 

subsequently visualized using a number of ways, depending on the type of PCR. The most common 

methods are sample separation using gel-electrophoresis and fluorescence observation during real-

time PCR with probes. Primer and probe selection is dependent on the target pathogen being 

investigated. While traditional PCR-based methods require access to a thermal cycler, advances in 

lab-on-a-chip and isothermal amplification techniques are reducing this barrier to out-of-laboratory 

field applications. 

Some of the main aims of nanoparticle assays are to simplify assay procedure, reduce the need for 

complex lab equipment, and minimize labor. Nucleic acid amplification-based techniques require 

either thermal cycling or isothermal amplification equipment which is a significant issue for point-of-

care or field applications. However, emerging amplification-free techniques require only basic 

laboratory equipment. In these cases, the primary technical requirement remains the ability to extract 

and purify the target analyte (i.e. nucleic acids, proteins, or whole cells) from the sample. 
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Table 7: Comparing conventional and nanoparticle-based assays 

Category Detection 

principle 

Analys

is time 

Detectio

n limit 

Specifici

ty 

Technical 

requirements 

Limitations Refere

nces 

Conventio

nal 

Colony 

counting 

1 - 16 

days 

100-101 

CFU/mL 

Good Basic 

microbiology 

lab equipment 

and training 

Only culturable 

strains are detected 

[108, 

109] 

Immunologi

cal assay 

1 - 5 

days 

103-106 

CFU/mL 

Good Specific 

antibodies for 

pathogen 

Sample enrichment 

is often necessary 

for high sensitivity 

[31, 

108] 

PCR 5 - 48 

hours 

< 10 

copies/µ

L 

Excellen

t 

Thermal 

cycling or 

isothermal 

amplification, 

gel 

electrophoresis 

equipment 

Distinguishing live 

and dead cells, 

presence of 

inhibitors in 

complex media 

[31, 

110, 

112] 

Nucleic 

acid 

amplificati

on-based 

gold 

nanopartic

le assays 

Non-

functionaliz

ed 

3 - 8 

hours 

2 x 101 – 

3 x 109 

copies/µ

L DNA 

Excellen

t 

Thermal 

cycling or 

isothermal 

amplification 

equipment 

Need to design 

specific probes for 

every pathogen of 

interest 

[38, 

54, 56] 

Functionali

zed (nucleic 

acid) 

1.5 - 8 

hours 

101 – 3 x 

1011  

copies/µ

L DNA 

Excellen

t 

Thermal 

cycling or 

isothermal 

amplification 

equipment 

Functionalization 

requires 

purification, can 

affect stability and 

yield of 

nanoparticles 

[67, 

70, 73] 

Gold 

nanopartic

le assays 

without 

nucleic 

acid 

amplificati

on 

Non-

functionaliz

ed 

5 

minute

s - 21 

hours 

2.5 – 6 x 

107 

copies/µ

L 

RNA/D

NA 

105 – 108 

CFU/mL 

Good 

 

Minimal 

equipment 

Nanoparticle 

stability in 

detection media 

can be limited 

[78, 

79, 81, 

83] 

Functionali

zed (nucleic 

acid) 

5 

minute

s – 2 

hours 

2.2 x 104 

- 1 x 109  

copies/µ

L DNA 

Excellen

t 

Basic lab 

equpiment for 

nucleic acid 

extraction 

Nucleic acid 

extraction can 

consume 

considerable time 

compared to assay 

time 

[88, 

89, 91] 

Functionali

zed 

(protein) 

3 

minute

s - 

overnig

ht 

102 – 1.5 

x 107 

CFU/mL 

Good Often need 

filtration or 

centrifugation 

equipment 

Throughput limited 

by 

filtration/centrifuga

tion 

[95-98] 

Functionali 5 7 – 102 Poor Minimal Cross-reactivity is [103, 
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zed (small 

molecule) 

minute

s – 2 

hours 

CFU/mL  equipment often present 104] 

2.8 Conclusions 

Gold nanoparticles with a variety of surface features have been used for the colorimetric detection of 

pathogens either by detecting nucleic acids, surface proteins, or whole cells. While the majority of the 

literature has focused on the use of gold nanoparticles as a replacement for gel electrophoresis after 

nucleic acid amplification, there is a growing body of work in detecting unamplified targets. There is 

a growing drive towards developing methods or devices that could be used at the point-of-care or in 

the field by providing a simple visual output. Overall, although gold nanoparticles have facilitated the 

development of simple and sensitive assays that are replacing conventional methods of pathogen 

detection, current technologies are not yet ready to be translated directly to the point-of-care or field 

use because the current methods require extensive sample processing before analysis. Additionally, 

current biosensors with gold nanoparticles suffer from lower sensitivity when complex media are 

involved because of non-specific adsorption, which can be mitigated in the future by modifying the 

surface of gold nanoparticles with non-fouling coatings.  

This chapter highlights that non-functionalized gold nanoparticles hold great potential because of 

their ability to provide a rapid response and detect a variety of targets. Yet, very few studies have 

explored non-functionalized nanoparticles for pathogen detection. In the following chapters, we will 

exploit the dependence of colorimetric properties of gold nanoparticles on their size, shape, and 

aggregation state for the detection and identification of pathogenic bacteria.  
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Chapter 3 

CTAB-coated gold nanostars for the colorimetric detection of 

Staphylococcus aureus 

3.1 Summary 

Rapid detection of pathogenic bacteria is challenging because conventional methods require long 

incubation times. Nanoparticles have the potential to detect pathogens before they can cause an 

infection. Gold nanostars have recently been used for colorimetric biosensors but they typically 

require surface modification with antibodies or aptamers for cellular detection. Here, CTAB-coated 

gold nanostars have been used to rapidly (<5 min) detect infective doses of a model Gram-positive 

pathogen Staphylococcus aureus by an instrument-free colorimetric method. Varying the amounts of 

gold nanoseed precursor and surfactant can tune the size and degree of branching of gold nanostars as 

studied here by transmission electron microscopy. The size and morphology of gold nanostars 

determine the degree and rate of color change in the presence of S. aureus. The optimal formulation 

achieved maximum color contrast in the presence of S. aureus and produced a selective response in 

comparison to polystyrene microparticles and liposomes. These gold nanostars were characterized 

using UV-Visible spectroscopy to monitor changes in their surface plasmon resonance peaks. The 

visual color change was also quantified over time by measuring the RGB components of the pixels in 

the digital images of gold nanostar solutions. CTAB-coated gold nanostars serve as a promising 

material for simple and rapid detection of pathogens. 

3.2 Introduction 

Gold nanostars are an interesting class of materials because of their excellent performance in 

colorimetric biosensors [93, 113-115], surface enhanced Raman spectroscopy [116-122], imaging and 

therapy [123, 124], as well as recently in solar cell power conversion [125]. The optical and electrical 

characteristics of gold nanostars are governed by their size and degree of branching [122, 126]. 

Hence, control over these parameters is essential and has previously been demonstrated using 

methods such as seed-free growth [127], the use of poly(vinylpyrrolidine) [122, 128, 129], and even 

surfactant-free synthesis [123], but a systematic study of seed-mediated synthesis assisted by the 
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surfactant, cetyltrimethylammonium bromide (CTAB) is lacking. The use of nanoseed precursor and 

surfactant offers the opportunity to control the size and degree of branching of the nanostars using 

these two simple parameters. The morphology of nanostars determines the peak wavelength of light 

absorption and hence the color of gold nanostars. The peak of absorption in gold nanoparticles 

changes with their aggregation state. The shift in this peak causes a drastic color change that is 

detectable by the naked eye and is ideal for application in a biosensor. Furthermore, nanoparticles 

have increased kinetics in solution when compared with their microparticle counterparts, suggesting 

that rapid detection may be feasible using a biosensor platform at the nano-scale [130, 131]. 

Food poisoning continues to cause severe illness around the world and leads to hospitalization of 

unsuspecting patients. The concentration of pathogens necessary for successfully infecting the host is 

known as the infective dose. Simple and rapid detection of foodborne pathogens at their infective 

dose is a key step in preventing the spread of contamination [132]. As mentioned in Chapter 2, 

conventional methods for the detection of food-borne pathogens include culture counting, 

immunology, and polymerase chain reaction, but these methods suffer from the drawbacks of long 

incubation time, interference from contaminants and the requirement of specialized equipment, 

respectively [35]. 

These shortcomings have inspired the advancement of biosensors that utilize optical, 

electrochemical and mass-based transduction. Typically, these biosensors involve the use of 

specialized equipment such as a spectrophotometer, electrochemical cell, or quartz crystal 

microbalance and hence cannot be easily implemented outside the laboratory [35, 131, 133]. Thus, 

there exists a need for a simple and rapid method of pathogen detection that does not require 

specialized training or expensive equipment [134]. We chose S. aureus, a Gram-positive bacterium, 

as a model pathogen for testing the detection capabilities of our gold nanostars. S. aureus often causes 

food poisoning by producing enterotoxins which induce symptoms of sudden vomiting, diarrhea, 

nausea, malaise, abdominal cramps, and pain. Since the main mechanism of infection for S. aureus 

involves secreted toxins that need to diffuse out of the bacterium, it is considered a distant action 

pathogen. Such pathogens require a high concentration (105 to 106 CFU/mL for S. aureus) in the 

inoculum to successfully infect the host [135]. 
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We expect that aggregation of gold nanostars can be induced by the presence of S. aureus via 

electrostatic interactions between the positively charged CTAB-coated gold nanostars and negatively 

charged cell walls of S. aureus. Such aggregation will lead to a rapid and drastic color change. This 

principle has been demonstrated in the literature when gold nanoparticles were modified by either 

antibodies [93] or aptamers [136] specific to the pathogen of interest. While a recent detection 

method of S. aureus claims to be rapid, it still requires 1.5 hours, complex modification of gold 

nanoparticles, and specialized equipment [136]. The control of the assembly/disassembly of non-

functionalized gold nanoparticles has led to detection of small molecules, metal ions, DNA, and 

proteins but not whole cells. Studies suggest that cationic gold nanoparticles might aggregate around 

bacteria [137, 138] but the effect of size and morphology of gold nanostars on the aggregation 

kinetics has not been explored before. Here, we demonstrate that CTAB-coated gold nanostars can be 

used for rapid (<5 min) instrument-free colorimetric detection of pathogens in solution. We 

hypothesize that the degree and rate of color change of gold nanostars in the presence of S. aureus 

will be defined by the degree of branching and the particle size. 

3.3 Experimental 

3.3.1 Materials 

Gold (III) chloride hydrate (HAuCl4•xH2O), Hexadecyltrimethylammonium bromide (CTAB), 

sodium borohydride, silver nitrate, and L-ascorbic acid were purchased from Sigma-Aldrich 

(Oakville, ON, Canada). Trisodium citrate dihydrate was purchased from Thermo Fisher Scientific 

(Burlington, ON, Canada). All materials were used without further purification. Transparent 96-well 

microplates, BD trypticase soy agar (TSA) culture plates, BD nutrient broth, sodium chloride (ACS 

grade), Nalgene sterilization filter units and calcium alginate swabs were purchased from VWR 

(Mississauga, ON, Canada). Polybead® Carboxylate Microspheres 3.00 µm, 1.00 µm and 0.10 µm 

were purchased from Polysciences, Inc. (Warrington, PA, USA) and used as model negatively 

charged polystyrene microparticles. 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-

dimyristoyl-sn-glycero-3-phospho-(1’-rac-glycerol) (DMPG) and 1,2-dimyristoyl-sn-glycero-3-

phosphoethanolamine (DMPE) phospholipids were purchased from Avanti Polar Lipids, Inc. 

(Alabaster, AL, USA). 400 mesh formvar/carbon coated copper grids were obtained from Canemco 
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Inc (Gore, QC, Canada). S. aureus (ATCC 6538) was purchased from Cedarlane (Burlington, ON, 

Canada). The vials used for gold nanostar synthesis were rinsed with Millipore water before use. 

3.3.2 Synthesis of gold nanoseed precursor 

The gold nanoseed precursor was synthesized using a modified version of a previously described 

simple two-step one pot process [124]. First, a gold (III) chloride hydrate and trisodium citrate 

dihydrate solution was prepared with final concentrations of 2.5 x 10-4 M and 10-4 M, respectively, in 

20 mL of Millipore water. Then, under moderate stirring, freshly prepared ice-cold solution of sodium 

borohydride (0.1 M, 60 µL) was quickly added. Immediately, the solution turned brown-pink and 

slowly developed into its final red color. The sample was stored overnight in the dark under ambient 

conditions. The solution was then filtered (0.2 µm) and stored at 4 °C until use. Gold nanoseed 

solutions were found to be stable for weeks at this temperature. Uniform spherical gold nanoparticles 

approximately 4-5 nm in diameter were produced. 

3.3.3 Synthesis of CTAB-coated gold nanostars 

Gold nanostar samples were synthesized using CTAB as a negative template using a modified 

procedure [124]. The amount of CTAB and gold (III) chloride hydrate were varied to yield the entire 

nanostar set (n = 30) with varying sizes and morphologies. CTAB (7.33 mM; 125 mg CTAB in 46.88 

mL Millipore water) was dissolved by probe sonication (2 seconds on, 1 second off; 25% amplitude) 

for 20 minutes. This concentration was designated as 125 mg CTAB, based on the initial dissolved 

amount, for ease of naming convention. After this, the 125 mg CTAB solution was diluted with 

Millipore water 1:5 (1.466 mM, designated 25 mg CTAB), 2:5 (2.932 mM, designated 50 mg 

CTAB), 3:5 (4.398 mM, designated 75 mg CTAB), and 4:5 (5.864 mM, designated 100 mg CTAB) 

for 30 total samples (15 mL, 6 per CTAB concentration). In these dilution ratios and other instances 

when dilution is mentioned in the thesis, the first number refers to the volume of aliquot added and 

the second number refers to the total volume of diluted solution. Gold (III) chloride hydrate (0.64 mL, 

11 mM) and silver nitrate (0.096 mL, 0.01 M) were added to the CTAB solution under vigorous 

stirring for 1 minute. Then, L-ascorbic acid (0.103 mL, 0.1 M) was added dropwise. Upon addition of 

the last drop of L-ascorbic acid, the solution turned clear, and the appropriate volume of gold 

nanoseed was immediately added. For each CTAB concentration 400, 320, 240, 160, 80, or 32 µL of 
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gold nanoseed was added for 15 mL of initial CTAB solution, resulting in a final 5 x 6 set. After seed 

addition, each sample was allowed to stir for another 1.5 minutes. The samples were left in the dark in 

ambient conditions until use. Gold nanostars were found to be stable in the dark at room temperature 

for months. 

3.3.4 Characterization of gold nanostars  

The gold nanostars were characterized using transmission electron microscopy (TEM) for sizing and 

Ultraviolet-Visible (UV-Vis) spectrophotometry for absorbance spectra. TEM and UV-Vis 

spectrophotometry were performed using a Philips CM10 and BioTek Epoch Microplate 

Spectrophotometer, respectively. TEM samples were prepared by drying 5 µL of the samples 

described above overnight on formvar/carbon coated copper grids. UV-Vis absorbance spectroscopy 

was performed in duplicates for 300 µL samples in a 96-well plate. Zeta potential was measured 

using Malvern Zetasizer and gold nanostars as well as bacteria were suspended in 0.85% saline (with 

~0.006% broth) to mimic the testing conditions. 

TEM images (92,000x) of the all gold nanostars were sized manually with National Institutes of 

Health ImageJ software (n = 10 each). Calibrated by the scale bars, nanostars were profiled, and five 

particularities were measured for each nanostar: branch length (Figure 6 a), branch width (Figure 6 b), 

minor diameter (Figure 6 c), and total diameter (Figure 6 d) as highlighted in Figure 4 b. Total 

diameter was defined as the longest total length of a nanostar given that the length passes through its 

geometric center. Conversely, minor diameter was defined as the shortest length through the 

geometric center. A branch was defined as an extrusion from the expected curvature of a nanostar 

given that the branch width is less than or equal to half the minor diameter. Branch length and width 

were defined as the measurement from the expected curvature of the nanostar to the branch tip and 

the perpendicular width at half the branch length, respectively (Figure 4 b). The number of branches 

were also counted and are presented along with their distribution in Figure 7. 

3.3.5 Staphylococcus aureus culture  

S. aureus was cultured on TSA plates by using alginate swabs and incubating the plates at room 

temperature for two nights. A 2.55% saline solution was prepared and sterilized by using Nalgene 

filters and ~0.006% of nutrient broth was added to the saline to preserve S. aureus during tests [139]. 
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Since 0.85% saline is considered isotonic [140] and the bacterial solution is diluted 3x when the gold 

nanoparticles are added, a 2.55% saline solution was chosen for suspending bacteria to maintain 

isotonic nature in the final mixture of bacteria and gold nanoparticles. S. aureus was transferred to 

saline solution by adding 5 mL of saline (with ~0.006% broth) to the TSA plate and using alginate 

swabs to dislodge the bacteria from the plates. S. aureus was washed with saline (with ~0.006% 

broth) solution seven times by centrifugation at 4,000 rpm for 10 minutes. The stock solution of S. 

aureus was diluted 100 times in saline (with ~0.006% broth) and used for testing with gold nanostars. 

The concentration of S. aureus was determined by direct plate counts method. 

3.3.6 Colorimetric detection of Staphylococcus aureus using various gold nanostars 

All 30 of the gold nanostars synthesized were tested to characterize their potential as an instrument-

free colorimetric detection platform. 200 µL of each nanostar solution was added into a 96-well 

microplate placed on top of an X-ray film viewer for homogenous white light illumination. The 

nanostars were arranged such that columns corresponded increasing (25 to 125 mg from left to right) 

CTAB amount, while rows corresponded to decreasing (400 to 32 µL from top to bottom) seed 

volume. The nanostars were then imaged using a Canon EOS Rebel T3 with constant settings. 

Subsequently, 100 µL of 5x105 CFU/well S. aureus was added to each well at time = 0. The color 

change was then imaged for 2 hours using intervals of about 25 seconds. The image for each 

subsequent time point was normalized by subtracting the initial image without S. aureus using 

MathWorks MATLAB®. The red, green, blue (RGB) values of the subtracted images were extracted 

from 200 pixels per well. These values were averaged for each time point and plotted against time for 

obtaining Figure 10 c. After determining the optimal formulation of gold nanostars, the effect of 

purification and excess CTAB concentration on bacteria detection was evaluated. The gold nanostars 

were centrifuged at 10000 rpm for 15 minutes. The supernatant was discarded and the precipitate was 

resuspended in either Millipore water (0 mg CTAB) or solutions with CTAB concentrations matching 

those used during synthesis (25, 50, 75, 100, 125 mg). Next, 100 µL of saline (with ~0.006% broth) 

or S. aureus with a normalized absorbance of 0.1 at 660 nm was added to 200 µL of each of the gold 

nanostar solutions and incubated overnight. Photographs were then obtained using the digital camera.  
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3.3.7 Comparison of Staphylococcus aureus to charged particles 

In order to demonstrate selectivity, a solution of S. aureus was prepared in saline (with ~0.006% 

broth) to obtain normalized absorbance of 0.1 at 660 nm and this results in a concentration of 

approximately 8 x 106 CFU/well as determined by plate counts method. Since bacteria and particles 

cannot be exactly at the same concentration, they were compared by preparing the solutions at the 

same normalized absorbance of 0.1 at 660 nm. Polystyrene particles were diluted in saline (with 

~0.006% broth). Liposomes were prepared according to manufacturer’s recommendation. DMPC was 

dissolved in chloroform at a concentration of 10 mg/mL, while DMPG and DMPE were dissolved in 

a mixture of chloroform:methanol:water (65:35:8 v/v/v) at a concentration of 10 mg/mL. The 

phospholipid solutions were first dried under nitrogen and then in vacuo overnight. Saline (with 

~0.006% broth) was added to the vials containing DMPC and DMPG at 30 °C, and DMPE at 60 °C. 

The phospholipids were allowed to rehydrate for several hours at the respective elevated 

temperatures. Size reduction was performed by sonicating each of the samples using a Branson probe 

sonicator for 10 minutes at 25% amplitude and 1 second on, 0.5 second off pulses. Each of the 

solutions were diluted in saline (with ~0.006% broth) to obtain the appropriate absorption. 100 µL of 

the particle solutions were then added to the 200 µL of optimal gold nanostar solution in a 96-well 

microplate. The solutions were incubated overnight and UV-Vis absorption spectra were obtained. 

3.4 Results and Discussion 

3.4.1 Synthesis of gold nanostars and morphology characterization 

Gold nanostars were synthesized at room temperature via a seed-mediated growth mechanism using 

CTAB surfactant as a template [124]. The mechanism of anisotropic growth in gold nanoparticles is 

currently being investigated and often the growth of gold nanostars is compared to that of gold 

nanorods, because both morphologies use CTAB surfactant as a negative template and silver ions for 

creating active sites [141-145]. Twin defects have been observed in gold nanoparticles, where two 

crystals share some of the same crystal lattice points [143]. In the case of nanostars, twin defects on 

the surface of the seed are postulated to weaken the binding of the positively charged CTAB 

surfactant, which allows the growth of branches at these sites [143]. Also, silver can be deposited on 

the surface of the seed by underpotential [142] and produce additional defects, which in turn act as 
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active sites for growth of branches [143, 144, 146]. We hypothesize that the surface morphology and 

particle size of gold nanostars can be controlled by changing the amount of gold seed precursor (32, 

80, 160, 240, 320 or 400 µL) and CTAB (25, 50, 75, 100, 125 mg) added to the formulation. To test 

this hypothesis, we synthesized 30 types of gold nanostars by using all possible combinations of these 

two parameters, while keeping the amount of silver nitrate, L-ascorbic acid, and gold salt in solution 

constant. These nanostars were characterized using transmission electron microscopy (TEM) to 

determine their size and surface morphology and using UV-Vis spectroscopy to determine their 

absorption spectra. We then demonstrated that the gold nanostars change color drastically in the 

presence of S. aureus as compared to a saline (with ~0.006% broth) control. 

The TEM images of the 30 samples of gold nanostars show that the total size of nanostars is mostly 

controlled by the amount of gold nanoseed added, while the degree of branching and branch length 

are controlled by the CTAB amounts (Figure 4 a). Increasing the amount of seed decreases the total 

size because more growth sites are present and the total amount of gold available for growth in 

solution is kept constant. Increasing the amount of CTAB increases the branch length and the average 

number of branches because the number of CTAB micelles per seed increases, ranging from 

approximately 104 to 106 assuming an aggregation number of 60 for CTAB micelles [147]. CTAB is 

expected to form a bilayer around the gold nanoparticles in a manner similar to that observed for gold 

nanorods [148] and this is shown in Figure 4 b. We quantified the size and degree of branching for 

each of the 30 samples by measuring the minor diameter, total diameter, branch length, and branch 

width, as defined in Figure 4 b. We also quantified the number of branches and some sample images 

are presented in Figure 5 for the nanoparticle using 125 mg CTAB and 240 µL seed. Since TEM can 

only provide 2D images of 3D nanoparticles, the number of branches is an underestimate of the actual 

number of branches but the trends between different nanoparticles can be extrapolated from 2D to 

3D. The minor diameter (Figure 6 c) and total diameter (Figure 6 d) showed similar dependence on 

seed and CTAB concentration, as diametric and branch growth occurs simultaneously when gold is 

available in solution. This also leads to the relatively uniform growth of branch width under the same 

conditions as growth of the stars (Figure 6 b). The total diameter ranged from 31 nm to 113 nm for 

400 µL and 32 µL seed sets respectively, while the length of branches ranged from 3 nm to 17 nm for 

25 mg CTAB and 125 mg CTAB sets respectively (Figure 6 a, d). The changes in surfactant and seed 

not only affect the dimensions of the branches but also the average number of branches, which ranges 
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from one to six (Figure 7 a). We believe this is because the higher concentration of CTAB per seed 

allows better adsorption of CTAB, which in turn promotes anisotropic growth at multiple sites. The 

concentration of CTAB used in all conditions is above the critical micelle concentration of 1 mM and 

thus, CTAB would be present in the micellar form. At room temperature, the concentration of CTAB 

used is well below 25 % (w/v) and thus, CTAB is expected to be in micellar phase and not undergo 

any other phase transitions [149]. Additionally, the distribution of stars with increasing number of 

branches also varies with the amount of seed and CTAB. Low seed volumes and high concentration 

of CTAB are necessary for a higher fraction of highly branched nanostars (Figure 7 b-d). Although 

there are some rare outliers in the TEM images of single nanostars due to the nature of selecting 

individual nanoparticles, the trends of size and branching are clearly visible in the images (Figure 4) 

as well as the plots that follow (Figure 6). 

 

Figure 4: a) Transmission electron microscopy (TEM) images of thirty nanostar samples (scale 

bar: 50 nm). The mass of CTAB represents the mass added to 46.88 mL of Millipore water such 
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that 125 mg CTAB is 7.33 mM. b) Schematic showing a CTAB-coated gold nanostar and the 

definition of various parameters for characterizing a gold nanostar.  

 

Figure 5: Sample TEM images of gold nanostars synthesized with 125 mg CTAB and 240 µL 

seed, showing different number of branches ranging from 2 to 5. 
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Figure 6: Various parameters defined in Figure 4 b, measured from the TEM images for 

nanostars: a) Branch length (n = 10; mean ± S.E) b) Branch width (n = 10; mean ± S.E), c) 

Minor diameter (n = 10; mean ± S.D.), d) Total diameter (n = 10; mean ± S.D.) 

 



 

 

 

 52 

 

Figure 7: The distribution of branches for the entire 30 nanostar set was characterized using 

TEM images, and is recorded above, corresponding to a) average number of branches, and bins 

of b) 0-2 branches, c) 3-5 branches, and d) 6+ branches. 

3.4.2 Colorimetric characterization of gold nanostars 

The color of gold nanoparticles is determined by the size of the particles because of their surface 

plasmon resonance. A change in the surface plasmon resonance of the particles can be characterized 

by the absorption peak of UV-Vis spectroscopy [143, 145, 150]. As seen in Figure 8 a), varying size 

and the degree of branching yields nanostars with different solution colors. The lowest CTAB, 

highest seed sample yields a red color. This sample lacks significant branching and thus is found to 

have a more spherical morphology, as we previously described. Spherical gold nanoparticles have 

been extensively studied in the past, and as we observed, give the solution a distinct red color [151]. 
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Figure 8: Optical properties of gold nanostars: a) Photograph showing the color of gold 

nanostars b) UV-Visible absorption spectra for four of the gold nanostars with varying seed and 

CTAB concentrations. Effect of CTAB and seed concentrations on c) UV-Visible absorbance 

peaks (n = 6, mean ± S.D.), and on d) Full Width Half Maximum (FWHM) (n = 6, mean ± S.D.) 

 Decreasing seed and increasing CTAB causes the gold nanostar solutions to be violet and then 

blue, resulting from a shift in plasmon resonances caused by increased degree of branching and 

general star-like morphology [124, 152]. A similar color shift from red to blue can happen when 

spherical nanoparticles aggregate, but our case the color shift is because of growth as we have 

confirmed from TEM images and dynamic light scattering measurements (DLS). In TEM images, we 

did not observe aggregates of small gold nanoseeds, instead we observed gold nanostars (Figure 4 a). 

DLS measurements are not reliable for anisotropic nanoparticles such as gold nanostars because the 

technique assumes a spherical particle and because light absorption from solution is assumed to be 
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minimal. Both of these assumptions fail in the case of gold nanostars and hence, an accurate estimate 

of sizes cannot be obtained but DLS can show if nanoparticles are aggregating and we observed that 

the particle sizes were in the range of 35-80 nm (Figure 9), similar to those from TEM measurements. 

The dependence of absorption peak and width on the degree of branching has rarely been explored 

[123]. We repeated the synthesis of the 30 stars three times and measured the absorption spectra from 

300 nm to 900 nm with a step size of 1 nm. As an example, we plotted the complete spectra of the 

four extreme synthesis data points (Figure 8 b). We also extracted the peaks and full width half 

maximum values (FWHM) from the spectra of all the nanostars (Figure 8 c,d). The relatively small 

standard deviations and consistent trends in absorption spectra suggest that the synthesis of 

nanoparticles is reproducible. Increasing size of the nanostars by decreasing seed leads to a red shift 

in the absorption peak and also broadens the width. Additionally, there is a significant jump in the 

peak and FWHM when increasing the CTAB from 25 to 50 mg even though the size of the particles 

only varies slightly. This jump suggests that a minimum concentration of CTAB is necessary for 

changing the morphology of nanoparticles from spheres to stars and causing a shift in absorbance 

peak of about 60 nm as observed in literature [124]. Interestingly, a characteristic drop in the peak 

position and FWHM occurs at the highest CTAB concentration for all seed volumes when the number 

and length of branches is the highest. This drop is in agreement with previously modeled data, where 

a slight blue shift in absorbance peak is observed when the number of branches was increased from 

four to ten [123]. The drop in the FWHM at highest CTAB concentration also suggests that the size 

distribution of nanostars is narrower [123]. This is most likely because a higher concentration of 

CTAB allows for more homogenous adsorption of CTAB on the seeds, thereby synthesizing more 

monodisperse gold nanostars. Here, DLS could not be used for characterizing the distribution of 

particles because of the limitations of DLS in measuring solutions that absorb light and have 

irregularly shaped particles. Other components that could exist in solution are CTAB micelles, gold 

nanoseeds and unreacted salts. CTAB and other salts do not significantly absorb visible light and 

hence would not contribute to the UV-Visible absorbance spectra. Gold nanoseeds produce a strong 

absorption peak at 520 nm and the presence of excess unreacted gold nanoseeds could also cause the 

drop in absorption peak at the highest CTAB concentration but this would not explain the drop in 

FWHM because the distribution of nanoparticles and hence FWHM should have been broader.  
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Figure 9: Dynamic light scattering (DLS) measurements of gold nanoparticles for various 

CTAB and seed concentrations (n = 3, mean ± S.D.) 

3.4.3 Colorimetric detection of Staphylococcus aureus  

Next, we tested the ability of each of the gold nanostars to detect Gram-positive bacteria S. aureus by 

adding them to gold nanostars in 96-well microplates. S. aureus was suspended in 2.55% saline 

solution (with ~0.006% broth) and thus this saline was used as a negative control. Figure 10 a) shows 

that the stars synthesized with the lowest seed amounts turn clear in saline (with ~0.006% broth) 

solution. This color change can be explained by the colloidal instability of larger gold nanostars. In 

contrast, nanostars synthesized with higher seed values are more stable and only change color in the 

presence of S. aureus. While qualitative color change is intense and can be easily observed using the 

naked eye, quantification of the color was achieved by measuring the RGB components of each 

sample. We collected several images over two hours at an interval of about 25 seconds while leaving 

the samples undisturbed and then normalized each image with S. aureus by subtracting the initial 

image of gold nanostars. We measured the RGB values from each well and determined the maximum 

change in each component. The red component of RGB model showed the maximum change in 

intensity. Thus, the red component was plotted against the CTAB and gold seed amounts (Figure 10 

b).  This observation correlates closely with the light absorption peak and FWHM measured 
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previously (Figure 8 c, d). The green and blue components also change in a similar manner but the 

magnitude of change is smaller (Figure 11). Figure 10 b) suggests that more branched and larger 

nanostars show a greater color change in the presence of S. aureus. Interestingly, the general trend 

shown in Figure 10 b) matched the trend throughout our findings in both absorbance peak and 

FWHM, suggesting a consistent theme that the size and degree of branching of nanostars significantly 

impact optical properties and govern detection performance in a similar manner. We also studied the 

evolution of color change over time for each of the nanostars. Initial onset of color change was 

immediate and visually discernible in less than 5 minutes for most samples. This is seen in Figure 10 

c) as the contour plot shows a change of up to 60 units of intensity within 300 seconds in the red 

component for the most sensitive gold nanostars. We observed that the color changes saturated after 

about 40 minutes. The plot confirms that the highest seed volume nanostars with smallest sizes and 

least branching show negligible color change due to high colloidal stability, while the most rapid 

color change occurs in nanostars synthesized using lowest seed volumes with biggest sizes and 

highest branching. This is in part because branching increases effective surface area and spatial 

extent, allowing gold nanostars to aggregate around the bacteria and therefore produce a more 

substantial change in color. While Figure 10 b) shows the change of gold nanoparticles from their 

initial state upon addition of S. aureus, the ideal formulation of nanostars would not only need to 

change color drastically in the presence of S. aureus but also be stable in saline. We quantified this 

criterion by subtracting the two images in Figure 10 a) and determining the RGB values of the 

subtracted image. Since the red component demonstrates maximum change, the well with the highest 

difference in red provides the best formulation for application in pathogen detection. The resulting 

RGB values from subtracting images in Figure 10 a) were different from the results presented in 

Figure 10 b). We observed that the nanostar solution synthesized using 125 mg CTAB and 240 µL 

gold nanoseed precursor provided the most difference between saline and bacteria solutions. These 

nanostars have a small enough size to be stable in high salt concentrations and yet are branched 

enough to aggregate around S. aureus and cause a drastic color change. This optimal formulation of 

gold nanostars was used to test the effect of excess CTAB concentration on the detection of S. aureus. 

The results, seen in Figure 12, demonstrate that there was negligible change between different 

concentrations of excess CTAB used. If the solution was devoid of CTAB (as in the Millipore water 

resuspension) after synthesis, gold nanostars would aggregate and change color in saline control as 
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well. Thus, a small amount of CTAB is indeed necessary in solution after synthesis to prevent 

aggregation of the gold nanostars in saline (with ~0.006% broth).  

 

Figure 10: Color change of gold nanostars in the presence of Staphylococcus aureus: a) 

Significant visible color change in the presence of 5x105 CFU/well S. aureus in a 96-well 

microplate; b) the final, maximum color change in the red component of RGB color model 

plotted against the gold seed and CTAB amounts; c) Evolution of the change in intensity of red 

component of color over time for each sample. 
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Figure 11: Maximum change in RGB values for color change in the presence of S. aureus is 

plotted against gold nanostar sample. The red component (solid red line) was found to have the 

greatest representation of color change for the nanostars. The blue (solid blue line) and green 

(solid green line) components were found to correspond to the red components, as expected due 

to overall color change in the wells. 
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Figure 12: The effect of CTAB concentration on the ability to detect bacteria. Saline (with 

~0.006% broth) was used as control and S. aureus was prepared at a normalized absorption of 

0.1 at 660 nm. 

3.4.4 Selectivity of gold nanostars: UV-Visible absorption spectra 

In order to better understand the cause of aggregation of CTAB-coated gold nanostars around S. 

aureus, we tested the interaction of gold nanostars with a variety of charged particles. Polystyrene 

microparticles functionalized with carboxylic acid were used to provide a negative surface charge, 

which have the potential to aggregate the positively charged CTAB-coated gold nanostars. Three 

different sizes of polystyrene microparticles were used to explore the effect of size on the aggregation 

of gold nanostars, where the 1 µm microparticles are most similar in size to S. aureus. We also used 

three different kinds of liposomes to explore the interaction between gold nanostars and charged 

phospholipids which could be responsible for the attraction between bacteria and gold nanostars. 

DMPC and DMPE terminate in a choline and ethanolamine group respectively and thus are 
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zwitterionic. DMPG terminates in a glycerol group and hence the phosphate causes the liposomes to 

be overall negatively charged. Figure 13 a) shows the UV-Vis spectra of the optimal formulation of 

gold nanostars (125 mg CTAB, 240 µL gold seed) in the presence of water, saline, S. aureus, 

polystyrene microparticles, and phospholipid liposomes. The spectra in Figure 13 a) demonstrate 

minimal change in saline, polystyrene microparticles, and DMPC and DMPE liposomes, while 

highlighting a drastic broadening and flattening of the peak in S. aureus and DMPG liposome 

solutions which confirms the shift in plasmon resonance of the gold nanostars. These spectra are 

consistent with the observed color change in the microplates from solid blue to a translucent grey in 

the presence of S. aureus. We confirmed that the color change of gold nanostars was due to near 

complete aggregation around the S. aureus (Figure 13 b) by imaging the samples using TEM. This 

aggregation is caused by electrostatic interactions between the CTAB-coated gold nanoparticle 

surface that is positively charged (zeta potential of +38.0 mV) and the cell wall of S. aureus that is 

negatively charged (zeta potential of -24.2 mV). Our results are in agreement with the work of Berry 

et al. where they explained that the mechanism of aggregation of CTAB-coated gold nanorods around 

Gram-positive Bacillus cereus is the strong electrostatic interactions between positively charged 

CTAB molecules and negatively charged teichoic acids on the surface of bacteria [137]. Teichoic acid 

is expressed on the surface of Gram-positive bacteria and it includes several phosphate groups, which 

provide a polyanionic surface with a high density of negative surface charge. As demonstrated by 

Figure 13 a), a polyanionic surface is necessary for the aggregation of CTAB-coated gold nanostars 

since only negatively charged DMPG liposomes led to substantial aggregation. On the other hand, 

polystyrene particles with monoanionic carboxylic acid and zwitterionic liposomes had insufficient 

negative charge to cause a significant color change. Since only DMPG liposomes cause a color 

change comparable to bacteria, the aggregation of gold nanostars requires interaction with several 

negatively charged groups. Thus, the aggregation and color change of CTAB-coated gold nanostars is 

selective to bacteria and polyanionic particles in comparison to other particles with only monoanionic 

or zwitterionic charges. This work avoids the use of antibodies and aptamers and only exploits 

electrostatic interactions for colorimetric detection. Thus, there are some limits to specificity but since 

the distribution of charges is expected to be different in different strains of bacteria, these interactions 

are exploited for differentiating between bacteria in the following chapters. 
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Figure 13: Selectivity of the optimal formulation of gold nanostars: a) UV-Visible absorption 

spectra of gold nanostars in water, in saline with ~0.006% broth, in the presence of S. aureus, in 

the presence of 3 µm, 1 µm, and 0.1 µm carboxylic acid functionalized polystyrene particles, in 

the presence of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes, 1,2-

dimyristoyl-sn-glycero-3-phospho-(1‘-rac-glycerol) (DMPG) liposomes, and 1,2-dimyristoyl-sn-

glycero-3-phosphoethanolamine (DMPE) liposomes; b) Transmission electron microscopy 

image of gold nanostars (blue arrows) aggregating around S. aureus (red arrows). 

3.5 Conclusion 

We demonstrated that the size and degree of branching of gold nanostars can be controlled by varying 

the amount of gold nanoseed precursor and CTAB added to the formulation. We used CTAB-coated 

gold nanostars for rapid (<5 min) instrument-free colorimetric detection of S. aureus at its infective 

dose without the use of any targeting ligands such as antibodies or aptamers. The size and branching 

of gold nanostars control the rate and degree of color change in the presence of S. aureus. An optimal 

formulation of gold nanostars (125 mg CTAB and 240 µL gold nanoseed precursor) provides 

maximum contrast in color between S. aureus and saline (with ~0.006% broth) and also a selective 

response in comparison to polystyrene microparticles and liposomes. TEM confirmed that the 

mechanism of color change was indeed the aggregation of gold nanostars around the bacteria caused 
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by electrostatic interactions. Thus, CTAB-coated gold nanostars are a promising platform for rapid 

colorimetric detection of pathogens at the relevant infective dose. 
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Chapter 4 

“Chemical nose” for the visual identification of emerging ocular 

pathogens using gold nanostars 

4.1 Summary 

Ocular pathogens can cause severe damage in the eye leading to severe vision loss and even blindness 

if left untreated. Identification of pathogens is crucial for administering the appropriate antibiotics in 

order to gain effective control over ocular infection. Herein, we report a gold nanostar-based 

“chemical nose” for visually identifying ocular pathogens. Using a spectrophotometer and nanostars 

of different sizes and degrees of branching, we show that the “chemical nose” is capable of 

identifying the following clinically relevant ocular pathogens with an accuracy of 99%: S. aureus, A. 

xylosoxidans, D. acidovorans and S. maltophilia. The differential colorimetric response is due to 

electrostatic aggregation of cationic gold nanostars around bacteria without the use of biomolecule 

ligands such as aptamers or antibodies. Transmission electron microscopy confirms that the number 

of gold nanostars aggregated around each bacterium correlates closely with the colorimetric response. 

Thus, gold nanostars serve as a promising platform for rapid visual identification of ocular pathogens 

with application in point-of-care diagnostics.  

4.2 Introduction 

Microbial keratitis poses a great risk for vision loss [1]. Contact lenses are the most common risk 

factor that predispose wearers to keratitis [153-159]. The fundamental challenge in mitigating 

keratitis is detecting these pathogens early and more importantly, identifying the species for designing 

a more effective treatment regimen [160-162]. As reviewed in Chapter 2, the current gold standard for 

identifying the pathogens relies on microbial cultures or genomic analysis, which must be done in a 

central laboratory [3]. Recent advances in biosensors offer the potential to perform these tests at the 

point-of-care [5, 6]. Common approaches employ a colorimetric method [98, 163] or microelectronics 

for sensing [164-167]. A recent study has shown improvement of detection capabilities to allow sub-

cellular measurements of individual cells [4]. However, a major challenge remains to be solved: 

identifying species of bacteria at the point-of-care, which is crucial because of growing antibiotic 
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resistance [1] and unique drug susceptibility profiles of pathogens [168]. Lately, the prevalence of 

Gram-negative Achromobacter [169-171], Stenotrophomonas [172], and Delftia [173] has been 

emphasized because of their innate ability to form biofilms in contact lenses and their accompanying 

lens cases. Moreover, these pathogens present an increasing problem due to their capability to survive 

in contact lens care solutions [174] and cause microbial keratitis [158]. Hence, there exists a need for 

a platform that rapidly identifies multiple pathogens affecting contact lens wearers. 

Gold nanoparticles have been used extensively as colorimetric biosensors due to their high 

extinction coefficients, enhanced scattering, unique localized surface plasmon resonance and high 

surface area to volume ratio [8, 175, 176]. The optical properties of gold nanoparticles can be further 

exploited by varying their shape, size and surface characteristics. As demonstrated in Chapter 3, gold 

nanostars are an interesting class of nanoparticles; their optical properties can be fine-tuned by 

altering the size and degree of branching [9, 122, 126]. Nanostars coated with specific antibodies 

have demonstrated the colorimetric detection of a single species of bacteria [93], but a ubiquitous 

platform for the colorimetric detection and identification of bacteria is rare. A small body of work is 

present on the use of cationic nanoparticles coupled with fluorescent polymers for identification of 

bacteria using a “chemical nose” approach, where a unique set of responses is obtained for each 

species of pathogen [15, 16]. The existing methods require the modification of gold nanoparticles 

with multiple ligands and the use of a fluorescent spectrometer, which is not easily accessible in a 

point-of-care setting. In Chapter 3, a library of gold nanostars was developed with tunable color 

change in the presence of S. aureus [9]. Here, we show that gold nanostars can be used as a “chemical 

nose” not only for detecting bacteria but also identifying their species without the use of antibodies or 

aptamers. The specificity of the “chemical nose” is a result of the ability of cationic gold nanostars to 

electrostatically aggregate around bacteria and provide a colorimetric response based on intrinsic 

physicochemical differences between bacteria, such as surface charge, surface area, and morphology 

[9].  
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4.3 Materials and Methods  

4.3.1 Materials 

All the chemicals and containers used in this study were from the same sources as those mentioned in 

Chapter 3. Additionally, Staphylococcus aureus (ATCC 6538), Achromobacter xylosoxidans (ATCC 

27061), Delftia acidovorans (ATCC 15668), and Stenotrophomonas maltophilia (ATCC 13637) were 

purchased from Cedarlane Labs (Burlington, ON, Canada). All procured chemicals were used without 

further purification. The vials used for gold nanoseed synthesis were rinsed with Millipore water and 

air dried before use.  

4.3.2 Synthesis of gold nanostars 

The gold nanoseed precursor was synthesized using the simple two-step one pot process described in 

Chapter 3 [9, 124]. Briefly, 60 µL of 0.1 M freshly prepared ice-cold sodium borohydride was added 

to 20 mL of a gold (III) chloride hydrate (2.4 x 10-4 M) and trisodium citrate dihydrate (10-4 M) 

solution under vigorous stirring. The sample was incubated overnight in the dark in ambient 

conditions, filtered (0.2 μm), and stored at 4 oC until use.  

To synthesize the gold nanostars, a scaled-up version of procedure from Chapter 3 employing 

cetyltrimethylammonium bromide (CTAB) as a negative template was used [9]. CTAB (7.33 mM in 

Millipore water) was dissolved at 60 °C and with magnetic stirring for 10 min. After this, the 7.33 

mM CTAB solution was partitioned into two aliquots. The second aliquot was diluted 1:5 (1.47 mM 

in Millipore water). 210 mL of each CTAB solution was used for synthesis: 7.33 mM CTAB for blue 

nanostars and 1.47 mM for red nanostars. Gold (III) chloride hydrate (8.97 mL, 11 mM) and silver 

nitrate (1.34 mL, 10 mM) were added to each CTAB solution under moderate stirring for 1 min. 

Then, L-ascorbic acid (1.44 mL, 100 mM) was added dropwise. Upon addition of the last drop of L-

ascorbic acid, the solutions turned clear, and the appropriate volume of gold nanoseed (2.24 mL for 

blue nanostars and 5.60 mL for red nanostars) was immediately added. After seed addition, each 

sample was allowed to stir for another 1.5 min and sit in ambient conditions for an additional 10 min. 

Centrifugation was then performed at 10,000 rpm for 15 min and the supernatant was removed and 

replaced with 1 mM CTAB solution (in Millipore water). These two nanostars were mixed (1:1 by 

volume) to obtain the purple nanostars. When the term ‘mixed’ is used in this thesis, the ratios refer to 
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the volumes of solutions that were mixed together. For example, when the blue and red nanostars are 

mixed 1:1 by volume, both the nanoparticles are being diluted by a factor of 2. Thus, it is equivalent 

to saying that blue nanostars were diluted 1:2 in red nanostars. Gold nanostars were found to be stable 

in the dark at room temperature for months. 

4.3.3 Bacterial culture 

S. aureus, A. xylosoxidans, D. acidovorans, and S. maltophilia were inoculated on TSA plates and 

incubated at 37 °C for 24 hours. Bacterial cells were harvested using alginate swabs and suspended in 

5 mL of sterile saline (2.55%) with nutrient broth (~0.006%) in a 15 mL centrifuge tube. Each 

bacterial strain was then washed seven times with 2.55% saline (with ~0.006% nutrient broth) by 

centrifugation at 4,000 rpm for 10 min. The bacteria were then diluted to obtain an optical density at 

660 nm (OD660) of 0.1 (~108 CFU/mL [172]). When normalized against blank saline absorbance 

(0.033), this value becomes 0.067. When added to gold nanostars, the solution is diluted 1:3 to obtain 

final OD660 = 0.02 for bacteria. 

4.3.4 Identification of bacterial species 

The assay for identification of bacterial strains was performed in 96-well microplates. The plates were 

prepared by adding 200 µL of blue, red, or purple gold nanostars to the microplate wells. The training 

set was obtained by adding 100 µL of each bacteria (4 strains) to the gold nanostars at final OD660 = 

0.02. Saline (with ~0.006% broth) was used as a control group. Each training group had 7-8 

replicates. In order to obtain unknown samples, 14-18 samples from each group were selected and 

added randomly to a sterile storage microplate, resulting in a total of 79 samples. Each of these 

samples was then added to blue, red, and purple gold nanostar solutions and incubated at room 

temperature overnight along with the training set. In the case of purple nanostar solution, assuming 

the concentration of particles is the same as the amount of seed used, the ratio of nanoparticles to 

bacteria is approximately 104. 

After incubation, the microplates were illuminated by an X-ray film viewer and imaged using a 

Canon EOS Rebel T3 digital camera. For spectrophotometric identification, the UV-Visible 

absorption spectra were obtained for each well in the microplates using a BioTek Epoch microplate 

spectrophotometer while scanning from 300 nm to 900 nm with a step size of 1 nm. 
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After obtaining the absorption spectra, the normalized absorbance values were obtained for all 

samples by using the following equation: 

Normalized absorbance

= (Average saline control absorbance at λ

− Average saline control absorbance at 800 nm) − (Sample absorbance at λ

− Sample absorbance at 800 nm) 

where λ is the wavelength of particular importance: 583 nm peak for blue nanostars, 541 nm peak 

for red nanostars, and 544 nm peak and 583 nm for purple nanostars. The absorbance at 800 nm was 

used as the baseline. The data were then subjected to a classical linear discriminant analysis (LDA) 

using MySTAT (version 12.02) where each population in the training set was assigned a numerical 

identifier and this identifier was used as the grouping variable while the normalized absorbance 

values from the purple nanostars were used as the two predictors. Classification of unknown samples 

was performed by determining the shortest Mahalanobis distance (a measure of the distance between 

a point and a distribution) to the groups generated using the training matrix. During the identification 

of unknown bacteria samples, the experiment preparation and data collection were performed by two 

different researchers resulting in a blinded process.  

4.3.5 Transmission electron microscopy of bacteria and gold nanostars 

Blue gold nanostars were chosen as a representative sample for imaging using transmission electron 

microscopy (TEM). Samples were prepared by adding 5 µL of the overnight incubated bacteria and 

gold nanostars solution to copper TEM grids and allowed to dry under ambient conditions overnight. 

Once dry, the samples were washed by placing 5 µL of Millipore water on the TEM grids for 30 

seconds and then wicking the liquid using filter paper to remove excess surfactants, salts, and 

unbound gold nanostars. The samples were then imaged using Phillips CM10 TEM. The total number 

of gold nanostars aggregated around the surface of each bacterium was manually counted using the 

National Institutes of Health ImageJ software (n = 8).  
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4.4 Results and Discussion 

4.4.1 Visual color change with gold nanostars 

In order to develop a “chemical nose,” we need various gold nanoparticles that can interact with 

bacteria to provide a specific response. We hypothesize that if gold nanostars with different sizes and 

degrees of branching are incubated with a particular species of bacterium, each nanostar will provide 

a unique colorimetric response. To test this hypothesis, we chose the commonly occurring Gram-

positive S. aureus and Gram-negative ocular pathogens A. xylosoxidans, D. acidovorans, and S. 

maltophilia as the pathogens of interest [177] and added them to gold nanostars to obtain a drastic 

colorimetric response. Two types of nanostars were synthesized such that there would be distinct 

differences in color (blue and red), size, and degree of branching based on Figure 4, 6, and 7 from 

Chapter 3. Thus, each nanostar solution should interact differently between species of bacteria 

depending on a species’ surface charge, surface area, and morphology to provide a “chemical nose” 

sensor. The blue nanostars have a greater size and higher degree of branching (Figure 14 a) as 

compared to the red nanostars, which are smaller and more spherical in shape (Figure 14 b). These 

two nanostar solutions were also mixed 1:1 by volume to obtain a third solution of purple nanostars in 

order to investigate the co-operative response from the two nanoparticles. The three nanostar 

solutions were added to adjacent microplate wells and mixed with saline with nutrient broth (as 

control) and different species of bacteria at the same optical density. A sample image is presented in 

Figure 14 c), where the bacterial species are visually discernible. Amongst these species, S. aureus 

and S. maltophilia present the most striking differences as compared to saline. In the case of S. 

aureus, the gold nanostar solutions have a tinge of their respective original color whereas for S. 

maltophilia, the samples lose their original color to nearly clear. This suggests a more complete 

aggregation of gold nanostars in the presence of S. maltophilia as compared to other species of 

bacteria. D. acidovorans and A. xylosoxidans produce a lower degree of color change. In the case of 

D. acidovorans, a color change of the red nanostars is seen to a slight purple, which is unique in 

comparison to other species. Thus, the red nanostars show a more drastic color change as compared to 

blue nanostars which allows for visual distinction between A. xylosoxidans and D. acidovorans. The 

purple nanostar solution behaves similar to blue stars in the case of S. aureus but it appears to be a 

superposition of blue and red nanostar responses in the presence of all other species of bacteria. 
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Figure 14: Transmission electron microscopy images of a) branched blue gold nanostar and b) 

spherical red gold nanostar. c) Change in color of gold nanostars caused by varying degrees of 

aggregation due to the differences in surface charge, surface area and morphology of bacteria. 

The photograph shows the color when species of bacteria prepared at OD660 = 0.02 are added to 

different gold nanostars.  
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4.4.2 Colorimetric identification of bacteria 

The absorption spectra of each gold nanostar solution in the presence of bacteria are presented in 

Figure 15 a-c. The observations from the spectra are consistent with the visual observations where S. 

maltophilia shows the most drastic change in spectra. In the case of blue nanostars, the peak with S. 

maltophilia is almost flattened whereas for red nanostars, there is partial flattening. The purple 

nanostar responses appear to be a linear combination of blue and red nanostars. In the case of D. 

acidovorans, while the absorbance peak does not drop significantly for red and purple nanostars, a red 

shift and drop is observed for blue nanostars (Figure 15 a). In all other bacterial species, the location 

of absorbance peak remains consistent but the absorbance values are reduced. Each gold nanostar 

solution has a unique absorption peak, which resembles the localized surface plasmon resonance 

wavelength. As shown in Figure 15 a-b, blue and red nanostars have peaks at 583 nm and 541 nm 

respectively. Purple nanostars have a peak at 544 nm (close to that of red nanostars); however, the 

absorbance at 583 nm is also of interest to determine the response characteristics from the blue 

nanostars constituents. The absorbance at 541 nm of red nanostars constituents was not found to be 

important since it was close to the natural peak of 544 nm of purple nanostars. The absorbance values 

from these peaks were obtained and normalized against saline with broth as well as baseline 

absorbance at 800 nm. These normalized values are presented in Figure 15 d) and demonstrate that 

each species of bacteria interacts in a unique manner with blue, red, and purple nanostar solutions. 

We further analyzed these normalized values to create a training set for the identification of species of 

bacteria.  
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Figure 15: Response of gold nanostars to saline (with broth) control and different species of 

bacteria at OD660 = 0.02. Absorption spectra of: a) blue nanostars; b) red nanostars; c) purple 

nanostars. d) Normalized absorbance response (n = 7–8; mean ± S.D.) and average number of 

aggregated gold nanostars per bacterium by transmission electron microscopy (n = 8; mean ± 

S.E.). e) Canonical scores plot of the response from linear discriminant analysis of purple 

nanostars (544 nm and 583 nm) for different species of bacteria. 95% confidence ellipses are 

presented for each population. 

Using LDA, we observed that identification of each population of bacteria was possible by using 

the two normalized absorbance values from purple nanostars (544 nm and 583 nm). This is 

demonstrated in Figure 15 e), where each species of bacteria as well as saline control is statistically 

discernable using 95% confidence intervals. LDA is a useful technique in this scenario because it 

maximizes inter-group variance while minimizing intra-group variance. Here, factors are a linear 
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combination of the absorbance values from purple nanostars as determined by their respective 

canonical discriminant functions using MySTAT: 

Factor (1) =  −28.9 + 154.9 ∗ Purple544 nm − 101.8 ∗ Purple583 nm 

Factor (2) =  −3.0 + 325.0 ∗ Purple544 nm − 443.3 ∗ Purple583 nm 

Thus, factor (1) gives a greater weight to the absorbance at 544 nm while factor (2) gives more 

weight to absorbance at 583 nm but the values from both of these wavelengths are required for 

discriminating the populations of bacteria since neither coefficients are negligible as compared to the 

other. This training set was then used to identify unknown samples using MySTAT (p > 0.95), and it 

was demonstrated that 99% (78/79 samples) of the samples could be identified accurately with their 

respective group. Only one of the samples was incorrectly classified as S. aureus when it was 

supposed to be A. xylosoxidans. We are currently investigating this outlier and also methods to 

eliminate misclassification. Overall, these are noteworthy results since only two inputs are being used 

to identify five different populations of samples. It has been demonstrated that the unique surface 

charge on different species of bacteria can be utilized for identification when electrostatic interactions 

are used [15]. Previous work required the modification of gold nanoparticles with a variety of 

molecules to provide unique surface charges and hydrophobicity for enhancing the interaction with 

bacteria. Additionally, these gold nanoparticles are generally coupled with fluorescent polymers to 

provide the response and hence require fluorescence spectrometry. In the present study, identifying 

bacterial species was possible visually as well as spectrophotometrically. We exploit the inherent 

properties of gold nanostars rather than modifying them with specific surface ligands. The CTAB 

surfactant of gold nanostars is present on as-synthesized nanoparticles and serves as the source of 

positive surface charge. We have shown in Figure 13 of Chapter 3 that the CTAB-coated nanostars 

(zeta potential of +38.0 mV) require a polyanionic surface for aggregation and color change [9]. Such 

a polyanionic surface is provided in Gram-positive bacteria by teichoic acids [137, 178] and in Gram-

negative bacteria by lipopolysaccharides and phospholipids [101, 179]. The intrinsically different 

distribution of charges on the surface of bacteria caused by the composition of proteins, 

polysaccharides, and lipids [180-182] is responsible for causing the unique electrostatic interactions 

with gold nanostars. This unique surface composition can be considered to be a fingerprint of the 

bacteria and probed using the gold nanostars to obtain a colorimetric response. It is expected that gold 
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nanostars with significant protruding branches will interact more strongly with the surface of bacteria 

due to higher effective surface area and spatial extent as compared to more spherical nanostars [9]. 

These inherent differences in branching and size provide different colorimetric outputs since their 

localized surface plasmon resonance is sensitive to the degree of aggregation [150].  

4.4.3 Transmission electron microscopy imaging of bacteria 

We used TEM to confirm that the gold nanostars were aggregating around the bacteria of interest 

(Figure 16). It was observed that gold nanostars aggregate around bacteria with different shapes 

(spherical or rod-like) as well as types (Gram-positive or Gram-negative). The TEM samples were 

rinsed with Millipore water once before drying to remove excess gold nanostars and assist in 

visualization. Since gold nanostars remained on the bacteria even after rinsing, the images suggest a 

strong electrostatic interaction, which governs the degree of aggregation and hence the colorimetric 

response provided by the gold nanostars. This is shown in Figure 15 d) since a close correlation is 

observed between the number of blue gold nanostars aggregated per bacterium and the normalized 

absorbance observed for the blue nanostars.  

 

Figure 16: Transmission electron microscopy images of blue gold nanostars aggregating around 

bacteria: a) Staphylococcus aureus, b) Achromobacter xylosoxidans, c) Delftia acidovorans, d) 

Stenotrophomonas maltophilia. Scale bars are 200 nm each.   

In contrast to the results reported in Figure 15 d), at the relevant pH (~7) and electrolytic condition 

(0.85% NaCl, 1:1) one might expect that S. aureus would have a greater number of gold nanostars 
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aggregated – thus greater normalized absorbance – when compared to S. maltophilia due to surface 

charge since the former is Gram-positive and the latter is Gram-negative [183]. Moreover, there 

appears to be a higher density of gold nanostars aggregated around S. aureus than S. maltophilia in 

Figure 16 a) and d), respectively. However, total gold nanostar aggregation response depends on 

surface area in addition to surface charge as previously mentioned. Thus, as seen in the TEM images 

the greater size and rod shape of S. maltophilia leads to a much greater surface area. Despite S. aureus 

being Gram-positive, the combination of greater surface area and relatively high number of 

polyanionic surface charges of S. maltophilia yield to a greater number of total gold nanostar 

aggregated per bacterium and thus a greater normalized response, as was reported in Figure 15 d). 

In addition to the number of gold nanostars per bacterium, the pattern of aggregation also seems to 

be unique. For example, in Figure 16 c), the gold nanostars around D. acidovorans are distributed 

throughout the cell and form a sparse coating. On the other hand, in Figure 16 d), there appear to be 

patches of aggregated gold nanostars in localized areas on the surface of S. maltophilia, while some 

areas are completely devoid of gold nanostars. In a previous study, the aggregation of 6 nm cationic 

gold nanoparticles has shown a unique aggregation pattern around the Gram-positive bacteria 

Bacillus subtilis as compared to the Gram-negative Escherichia coli [138]. It was demonstrated that 

the patterns disappeared once the bacteria were exposed to proteolytic cleavage suggesting the 

importance of surface proteins in the aggregation of gold nanoparticles [184]. We demonstrate that 

aggregation patterns are not limited to Gram-positive bacteria as they also appeared on Gram-

negative S. maltophilia (Figure 16 d). Gold nanostars can thus be used as probes for exploring the 

surface morphology, protein and lipid distribution, and local charge densities of bacteria in future 

studies.   

Additionally, aggregation of gold nanoparticles around bacteria has been observed when modified 

with specific antibodies against the bacteria [93, 185] but these studies typically detect a single 

bacterial species. In past work, biomodification becomes necessary when the detection of multiple 

species of bacteria is involved [186]; however, in the current work we have demonstrated the ability 

to distinguish between species without adding specific ligands to the surface of gold nanostars, while 

relying on the intrinsic response of gold nanostars to bacteria instead. The simplicity and rapid 
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response of the assay gives the potential of implementation in a consumer product or at the point-of-

care. 

4.5 Conclusions 

We demonstrated that gold nanostars are a versatile platform for identifying species of bacteria such 

as S. aureus, A. xylosoxidans, D. acidovorans, and S. maltophilia, where all the species were visually 

discernible and 99% of the samples were identified correctly using a spectrophotometer and LDA. 

The use of two different CTAB-coated gold nanostars provided unique colorimetric outputs 

corresponding to the dependence of electrostatic interactions on size and shape of nanostars and 

surface characteristics of bacteria. TEM was used to show a correlation in the degree and pattern of 

aggregation and the colorimetric response of gold nanostars in the presence of both Gram-positive 

and Gram-negative bacteria. Thus, CTAB-coated gold nanostars are a promising “chemical nose” 

platform for simple visual identification of bacterial contaminants for point-of-care diagnostics. 
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Chapter 5 

Quantification of bacteria and detection of polymicrobial mixtures 

using “chemical nose” 

5.1 Summary 

Rapid and portable diagnosis of pathogenic bacteria can save lives lost from infectious diseases. 

Current biosensor technologies normally require sophisticated instruments and highly skilled 

personnel to detect bacteria with high accuracy. Here, we show that a “chemical nose” based on 

spherical and branched gold nanoparticles can accurately detect pathogenic bacteria in monomicrobial 

and polymicrobial samples. A unique colorimetric response is obtained from the “chemical nose” for 

each pathogen, depending on the size and morphology of gold nanoparticles, the lipid distribution of 

the bacterial membrane, and the surface configuration of the cell wall. The “chemical nose” serves as 

a universal platform for simple colorimetric detection and identification of eight species of bacteria 

across two orders of magnitude of concentration (89% accuracy), as well as binary and tertiary 

mixtures of the three most common hospital-isolated pathogens: Staphylococcus aureus, Escherichia 

coli, and Pseudomonas aeruginosa (100% accuracy). Using transmission electron microscopy and 

blot assays, we demonstrate that extracellular polymeric substances play an important role in 

controlling the degree of interaction between gold nanoparticles and bacterial cell surface. 

Simulations of nanoparticle aggregates using Maxwell-Garnett theory show that distinguishable color 

changes between bacteria are due to different types and extent of aggregation of nanoparticles. We 

present a versatile biosensor that does not require complex modification of gold nanoparticles with 

biomolecules nor expensive equipment and hence can be implemented at the point-of-care. 

5.2 Introduction 

Detecting and identifying multiple bacteria in a complex microbial community is challenging due to 

the large number of possibly interacting components. Conventional biosensors focus on a ‘lock and 

key’ recognition strategy [12], which utilizes biomolecules such as aptamers and antibodies to offer 

high sensitivity and specificity [31, 187-190]. However, detecting multiple pathogens requires the use 

of unique biomolecules for each target of interest, which makes the development of broad-spectrum 
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biosensors cumbersome. An alternative method for developing versatile biosensors involves the use 

of a “chemical nose” where a set of interactions between the pathogen and sensors produce unique 

patterns of response, in a manner similar to the functioning of our sense of smell [12-14]. Designing a 

“chemical nose” biosensor requires minimal prior knowledge of the analyte because the system can 

be ‘trained’ to recognize various analytes [12]. Such “chemical nose” sensors have been used for 

detecting various targets such as amino acids [191], proteins [192], carbohydrates [193], volatile 

organic compounds [194], bacteria [15, 16, 84, 195], and cancer cells [130, 196-198]. 

Typically, nanoparticle-based “chemical nose” biosensors require the modification of nanoparticle 

surface with multiple ligands where each ligand is responsible for a unique interaction with the target 

[13, 16]. These modifications can add complexity to the synthesis of the biosensor. Additionally, 

existing “chemical nose” biosensors are unable to detect and identify mixtures of bacteria, which is 

crucial for diagnosing polymicrobial infections. Here, we show that a “chemical nose” biosensor 

based on gold nanoparticles can be used to detect and identify bacteria at various concentrations and 

combinations. We have utilized a single molecule, cetyltrimethylammonium bromide (CTAB)—a 

typical surfactant used for synthesis of gold nanoparticles—for providing electrostatic interactions 

between nanoparticles with various morphologies and surface features of bacteria. The inherent 

differences in nanoparticle size, shape, and aggregation behaviour produce unique changes in the 

absorption spectra and hence produce a versatile “chemical nose” biosensor. 

In Chapter 3, using a few Gram-positive and Gram-negative organisms, we demonstrated that the 

size and shape of gold nanoparticles can govern the colorimetric response [9, 199]. In Chapter 4, 

using a limited set of four ocular pathogens at a single concentration, we have also shown that 

discriminating between bacterial species requires the use of a mixture of nanoparticles such that each 

type of nanoparticle contributes uniquely to the observed color change [84]. In this chapter, we 

provide a “chemical nose” that is able to not only detect and identify a much larger set of eight 

different species of bacteria at three different concentrations, but also discriminate between 

polymicrobial mixtures by using the entire absorption spectrum instead of just the peaks. We also 

demonstrate the crucial role of extracellular polymeric substances in controlling the response of the 

“chemical nose” to the different bacterial species. Simulations of gold nanoparticle aggregation 
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highlight that different types of aggregates are responsible for producing unique colorimetric 

responses to bacteria. 

5.3 Materials and Methods 

5.3.1 Materials 

All the chemicals and containers used in this study were from the same sources as those mentioned in 

Chapter 3. Additionally, AmershamTM Protran® Supported nitrocellulose (NC, 0.2 μm pore size) 

membrane, lipopolysaccharides (LPS-S) from P. aeruginosa 10, rough strain (Rd) 

lipopolysaccharides (LPS-R) from E. coli F583, peptidoglycan (PepG) from S. aureus, and 

lipoteichoic acid (LTA) from S. aureus were purchased from Sigma-Aldrich (Oakville, ON, Canada). 

BD TSA with 5% sheep blood (TSA II) culture plates and AmershamTM HybondTM polyvinylidene 

difluoride (PVDF, 0.45 μm pore size) membrane were purchased from VWR (Mississauga, ON, 

Canada). Cardiolipin (CL), L-α-phosphatidylglycerol (PG), and L-α-phosphatidylethanolamine (PE) 

from E. coli were purchased from Avanti Polar Lipids (Alabaster, AL, USA). Also, Pseudomonas 

aeruginosa (ATCC 9027), Staphylococcus aureus (ATCC 6538), Escherichia coli (ATCC 10798), 

Achromobacter xylosoxidans (ATCC 27061), Delftia acidovorans (ATCC 15668), Stenotrophomonas 

maltophilia (ATCC 13637), Enterococcus faecalis (ATCC 29212), and Streptococcus pneumoniae 

(ATCC 6305) were purchased from Cedarlane Labs (Burlington, ON, Canada). All procured 

chemicals were used without further purification. The 20 mL vials used for gold nanoseed synthesis 

were cleaned using 12M sodium hydroxide and larger glassware was cleaned using aqua regia as 

described in published protocol [200]. 

5.3.2 Synthesis of gold nanoparticles  

The gold nanoseed precursor was synthesized using the simple two-step one pot process described in 

Chapter 3 and 4 [9, 84, 124]. To synthesize gold nanostars and nanospheres, the procedure from 

Chapter 3 and 4 was used with changes in the amount of silver nitrate to get a greater distinction 

between the morphologies of nanoparticles [9, 84]. Briefly, 210 mL of 7.33 mM CTAB and 1.46 mM 

CTAB were used for nanostars and nanospheres respectively. Gold (III) chloride hydrate (8.97 mL, 

11 mM) was added to each CTAB solution, followed by silver nitrate (1.34 mL for nanostars and 0.67 

mL for nanospheres, 10 mM) under moderate stirring. Then, L-ascorbic acid (1.44 mL, 100 mM) was 
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added dropwise and the solution turned clear. The appropriate volume of gold nanoseed (2.24 mL for 

nanostars and 5.60 mL for nanospheres) was immediately added. The nanoparticles were purified by 

centrifugation at 10,000 rpm for 15 min resuspended in 1 mM CTAB solution. These two gold 

nanoparticle solutions were mixed (1:1 by volume) to obtain the purple “chemical nose” solution.  

5.3.3 Bacterial culture 

P. aeruginosa, S. aureus, E. coli, A. xylosoxidans, D. acidovorans and S. maltophilia were inoculated 

on Trypticase Soy Agar (TSA) plates and incubated at 37 °C for 24 hours. E. faecalis and S. 

pneumoniae were inoculated on TSA II plates and incubated at 37 °C for 24 hours, where S. 

pneumoniae was placed in a 5% CO2 environment. Bacterial cells were harvested using alginate 

swabs and suspended in 5 mL of sterile saline (2.55%) with nutrient broth (~0.006%) in a 15 mL 

centrifuge tube. In the case of S. pneumoniae, cultures from two TSA II plates were combined due to 

low OD660 values of the culture, which is used for normalization. Each bacterial strain was then 

washed seven times with 2.55% saline (with ~0.006% nutrient broth) by centrifugation at 4,000 rpm 

for 10 min. The bacteria were then diluted to obtain an optical density at 660 nm (OD660) of 0.10 ± 

0.005 (~108 CFU/mL) [172]. The wavelength of 660 nm was chosen because it has previously been 

used for similar bacteria [172]. When the bacteria are added to gold nanoparticles, the solution is 

diluted 1:3 to obtain final OD660 = 0.03 for bacteria. The actual concentrations of bacteria were 

determined by plate counts method and is summarized in Table 8. Other concentrations of bacteria 

were obtained by diluting the bacteria solutions 1:5 or 1:25 in 2.55% saline (with ~0.006% nutrient 

broth).  

Table 8: Concentration of bacteria determined by plate counts method when they are 

normalized to OD660 = 0.03. Here, ‘well’ refers to the microplate well which has a volume of 300 

µL 

Bacteria Concentration (CFU/well) 

Pseudomonas aeruginosa (ATCC 9027) 1.2 x 107 

Staphylococcus aureus (ATCC 6538) 7.3 x 106 

Escherichia coli (ATCC 10798) 5.4 x 106 

Achromobacter xylosoxidans (ATCC 27061) 2.2 x 107 

Delftia acidovorans (ATCC 15668) 8.1 x 106 
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Stenotrophomonas maltophilia (ATCC 13637) 1.1 x 107 

Enterococcus faecalis (ATCC 29212) 1.1 x 107 

Streptococcus pneumoniae (ATCC 6305) 4.8 x 104 

  

5.3.4 Identification and quantification of bacteria 

The assay for identification and quantification of bacterial species was performed in 96-well 

microplates. The plates were prepared by adding 100 µL of the bacteria or saline control in replicates 

of eight. This was followed by the addition of 200 µL of the purple “chemical nose” solution. The 

microplates were then placed on a Stovall Life Science Inc. (Peosta, IA, USA) Belly Dancer orbital 

shaker for 2 mins and then incubated overnight at room temperature in the dark. Although the color 

change is visible within five minutes for some samples [9], the color continues to evolve over time. 

The acquisition of absorption spectra for a microplate full of samples requires a few hours. Thus, the 

overnight incubation ensures that changes in spectra during acquisition are insignificant compared to 

the changes during incubation time. After incubation, the UV-Visible absorption spectra were 

obtained for each well in the microplates using a BioTek (Winooski, VT, USA) Epoch microplate 

spectrophotometer while scanning from 300 nm to 999 nm with a step size of 1 nm. 

The training set was obtained by selecting three replicates out of eight and the other five replicates 

were randomized by an independent researcher. The researcher performing data analysis remained 

blind to the identity of the randomized samples. Using MathWorks® MATLAB®, the spectral data 

from the training set was used for performing hierarchical clustering analysis (HCA) on bacteria with 

OD660 = 0.03, using Euclidean distance and Ward’s method and the corresponding dendrogram is 

presented in Figure 21 a. For classification, the training set was used to perform principal component 

analysis (PCA) and obtain the corresponding scores as well as coefficients. These principal 

component scores were used in the training of the linear discriminant analysis (LDA). Since obtaining 

the principal scores requires normalization by the mean of each response (wavelength), the 

randomized samples were normalized by these mean values and then translated to principal scores 

using the coefficients obtained from PCA. The gold nanoparticles show a unique spectral shift for 

each bacterial species and thus, the shape of the absorption spectra is unique for each species. Thus, 

all 700 wavelengths (300-999 nm) were used for PCA instead of selecting specific wavelengths to 
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avoid biasing the data towards one specific pattern. Also, the use of all wavelengths allows this 

analysis to be adaptable if a more complex mixture of nanoparticles is used with multiple absorption 

peaks. PCA will assign a low weight to the wavelengths that do not significantly contribute to the 

variance of responses. The PCA scores were used for determining the group in which the unknown 

samples belonged, by LDA, where each group corresponds to either control or a bacterium at a 

particular concentration.  

Furthermore, a concentration dependent response for each bacterial species was obtained by 

normalizing each species to OD660 = 1.0 ± 0.05, then diluting them in 2.55% saline 16x, 32x, 64x, 

128x, 256x, and 512x. Then, 100 µL of each of these dilutions were added to 200 µL of the purple 

gold nanoparticle solutions and absorption spectra were obtained after overnight incubation. After 

obtaining the absorption spectra, the normalized absorbance values were obtained for all samples by 

using the following equation: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒

= (𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑎𝑙𝑖𝑛𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑎𝑡 540 𝑛𝑚

− 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑎𝑙𝑖𝑛𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑎𝑡 800 𝑛𝑚)

− (𝑆𝑎𝑚𝑝𝑙𝑒 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑎𝑡 540 𝑛𝑚 − 𝑆𝑎𝑚𝑝𝑙𝑒 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑎𝑡 800 𝑛𝑚) 

where absorption at 540 nm is the absorbance at the peak of nanoparticles in saline and absorbance 

at 800 nm serves as a baseline. The normalized absorbance is plotted for each bacteria assuming that 

OD660 = 1.0 has an approximate concentration of 109 CFU/mL [172]. 

5.3.5 Identifying mixtures of bacteria 

Mixtures of P. aeruginosa, S. aureus, and E. coli were prepared by using the OD660 = 0.10 ± 0.005 

solutions and mixing them 1:1 and 1:1:1 by volume for binary and tertiary solutions respectively. 

Saline control and each of the bacteria samples were added to the 96-well microplate as before, and 

then the purple “chemical nose” solution was added and mixed. Three out of eight replicates were 

used as a training set, while the other five were randomized and used for identification. PCA and 

LDA was performed using MATLAB® as before.  
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5.3.6 Removal of extracellular polymeric substances (EPS) 

An EPS extraction protocol was used on S. aureus, E. coli, and A. xylosoxidans with a slight 

modification of published method [201]. The bacteria were first incubated on TSA plates at 37 °C for 

24 hours. Bacterial cells were harvested using alginate swabs and suspended in 10 mL of sterile saline 

(2.55%) with nutrient broth (~0.006%) in 15 mL centrifuge tubes. 60 μL of formaldehyde was added 

to a 5 mL aliquot of the bacterial suspension and the rest of suspension was used as a control. The 

tubes were incubated at 4 °C for 1 hour. Then, 4 mL of 1M sodium hydroxide was added to the 

treatment tube and saline was added to control tubes and incubated at 4 °C for an additional 3 hours. 

In order to remove EPS from the cells, the bacteria were washed by centrifugation at 4000 rpm for 10 

minutes seven times. The bacteria concentration was then normalized to obtain OD660 = 0.10 ± 0.005 

(~108 CFU/mL) [172] as before and 100 µL of bacteria were added to 200 µL of purple “chemical 

nose” solution.  

When extracting EPS for lipid blots, only E. coli was cultured on TSA plates and extracted using 

alginate swabs. First 60 µL of formaldehyde was added to 10 mL suspension of E. coli in saline and 

then treatment with sodium hydroxide was implemented as outlined above. The tubes were then 

centrifuged at 10,000 rpm for 30 minutes. Supernatant containing EPS was collected, filtered (0.2 

μm), and dialysed (3,500 Da) for 24 hours at 4 °C before vacuum drying for 48 hours. 

5.3.7 Cell surface component blotting on membranes 

Phospholipids (PG, PE, CL) were dissolved in chloroform to a final concentration of 2 mM. Other 

cell surface components (LPS-S, LPS-R, LTA , PepG) were dissolved or suspended in Millipore 

water to a final concentration of 2.86 mg/mL. Chloroform-based solutions were blotted onto PVDF in 

2 μL volumes and water-based solutions were blotted onto NC in 2 μL volumes. Chloroform and 

water blanks (2 μL) were included on PVDF and NC blots, respectively. Membranes were then dried 

in the dark for 1 hour under ambient conditions.  

In order to test the effect of EPS, it was dissolved in Millipore water to a final concentration of 2.86 

mg/mL (15x) and 0.191 mg/mL (1x). After drying, PG, PE, and CL blots on PVDF were overlaid 

with 30 μL of 1x EPS solution and vacuum dried for 2 hours. Also, after drying of other component 

blots, 2 μL of 15x EPS solution was blotted overtop the LPS-S, LPS-R, LTA, and PepG blots and 
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dried for an additional 1 hour in the dark under ambient conditions. Control blots of chloroform- and 

water-based solutions were overlaid with 30 μL and 2 μL of Millipore water, respectively.  

Once dried, membranes were transferred into a 10 mL bath of purple “chemical nose” solution and 

incubated on the Belly Dancer orbital shaker for 10 minutes. Following nanoparticle incubation, 

membranes were transferred to 100 mL of Millipore water and washed for 1 minute with gentle 

shaking. Washed PVDF and NC membranes were photographed using a Canon EOS REBEL T3 

digital camera. Image processing and data collection was done using ImageJ (National Institutes of 

Health). Images were first separated into RGB color channels. Background illumination was 

normalized by plotting Mean Green Values for 22-26 empty membrane regions (circular selection, 

150 px diameter) against centroid coordinates. Linear regression was then performed using Microsoft 

Excel to generate x- and y-coordinate correction factors. Mean Green Values were then collected for 

each blot center (circular selection, 150 px diameter). These values were normalized for background 

illumination by applying the following transformation: 

𝑉𝑎𝑙𝑢𝑒𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑉𝑎𝑙𝑢𝑒𝑟𝑎𝑤 − 𝑥𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 ∗ 𝑚𝑥 − 𝑦𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 ∗ 𝑚𝑦 

where x and y are the x and y co-ordinates, mx is the slope of the x co-ordinate vs. background 

green values, and my is the slope of the y co-ordinate vs. background green values.  

Group means and standard deviations for each experimental condition were then determined using 

the corrected values and normalized against the control blots (chloroform + water and water + water, 

for PVDF and NC respectively). Statistical significance was determined in Microsoft Excel using 

one-tailed heteroscedastic t-tests. 

5.3.8 Transmission electron microscopy 

Red gold nanosphere and blue gold nanostar solutions were prepared for transmission electron 

microscopy (TEM) by adding 5 µL to a copper grid and drying under ambient conditions overnight. 

Similarly, mixtures of bacteria and gold nanoparticles (5 µL) were added to formvar coated copper 

TEM grids and allowed to dry under ambient conditions overnight. Once dry, the bacteria samples 

were washed by placing 5 µL of Millipore water on the TEM grids for 30 seconds and then wicking 

the liquid using filter paper to remove excess surfactants, salts, and unbound gold nanoparticles. The 

samples were then imaged using a Phillips (Eindhoven, The Netherlands) CM10 TEM. 
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5.3.9 Modeling of gold nanoparticle aggregation 

The optical characteristic of gold nanoparticle aggregates was estimated using Maxwell-Garnett 

effective medium theory [202]. Here, spherical gold nanoparticles with a radius of 15 nm and six 

different types of aggregates (Figure 17 a) were simulated. Every aggregate was assumed to be a 

compact cluster which was smaller than optical wavelength and well-separated to other aggregates in 

solution. The effective permittivity (εeff) of these six different aggregation types was calculated with 

the Maxwell-Garnett equation: 

𝜀𝑒𝑓𝑓  −  𝜀𝑠

𝜀𝑒𝑓𝑓  +  2𝜀𝑠
= 𝑉𝑎 ×

𝜀𝑎 − 𝜀𝑠

𝜀𝑎 + 2𝜀𝑠
 

where Va is the volume fraction of gold nanoparticles in solution as shown by boxes in Figure 17 a, 

εa is the complex permittivity of gold [203], and εs is the permittivity of water [204]. The absorption 

coefficient (αabs) of the six aggregate types was then calculated [205]: 

𝛼𝑎𝑏𝑠 =
4𝜋

𝜆
𝜅 =

4𝜋

𝜆
√√𝜀1

2 + 𝜀2
2 − 𝜀1

2
 

where κ is the extinction coefficient, λ is the wavelength of light, ε1 and ε2  denotes the real and 

imaginary parts of effective permittivity of aggregates respectively.  
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Figure 17: Different types of nanoparticle aggregates and their modeled absorbance spectra: a) 

schematic of aggregate types, the quadrilaterals in Types 1-3 indicates the volume used to 

calculate volume fraction occupied by the aggregate (Va), a hexagonal close packed structure is 

used for Types 4-6; b) absorbance spectra obtained for various combinations of aggregate types 

detailed in Table 9. 
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The absorption spectrum of partially aggregated colloidal gold solutions was then predicted using a 

gold concentration of 0.10 mg/mL, which resembles the concentration of gold in the “chemical nose” 

after they are mixed with bacterial samples. First, the testing solution with one centimeter optical 

length was divided into many thin layers with a thickness of 120 nm each. The occupied volume and 

the composition of different aggregates were then assigned to each layer based on the information 

presented in Table 9. Then, the volume fraction and absorption coefficient of the free particles in the 

remaining volume were calculated. Finally, the absorption spectrum of the partially aggregated 

colloidal solution was determined using Beer-Lambert Law [206, 207]: 

𝐴 =  − log (
𝐼

𝐼0
) =  − log(𝑒−𝛼𝑧) = −log (𝑒−𝛼1𝑧1−𝛼2𝑧2−𝛼3𝑧3…) 

where A is the absorbance, I0 is the incident light intensity, I is the transmitted light intensity, α is 

the absorption coefficient, and z is the optical length. The optical length z for different types of 

aggregate was weighted by the percent volume occupied by aggregates (Table 9). It should be noted 

that Maxwell-Garnett effective medium theory is suitable for isolated particles where interaction 

between particles is ignored [208]. The model assumes one material as the host and considers the 

volume fraction of the other material. 

Table 9: Volume fractions occupied by the aggregate types shown in Figure 17a and the 

percentage of total solution volume covered by the given aggregate type for various 

combinations 

Aggregate type Volume 

fraction 

(Va) 

Combination 1 Combination 2 Combination 3 Combination 4 

Type 1 0.4189 0.0000000% 0.0003000% 0.0000000% 0.0002000% 

Type 2 0.5236 0.0000000% 0.0000020% 0.0000000% 0.0000200% 

Type 3 0.6046 0.0000080% 0.0000400% 0.0000400% 0.0001000% 

Type 4 0.6910 0.0000070% 0.0000140% 0.0000175% 0.0000700% 

Type 5 0.7255 0.0000050% 0.0000200% 0.0000300% 0.0000500% 

Type 6 0.7441 0.0000065% 0.0000260% 0.0000390% 0.0000650% 
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5.4 Results and Discussion 

5.4.1 Detecting bacteria at various concentrations 

We use a 1:1 volume mixture of CTAB-coated gold nanospheres and nanostars to obtain a purple 

colored solution as a “chemical nose.” The difference in size and morphology of gold nanoparticles is 

chosen such that each set of particles can respond to the various species of bacteria in a unique 

manner and thus provide additional features to the colorimetric response [9, 84]. When the solution of 

gold nanoparticles is added to bacteria, the nanoparticles aggregate around the bacteria due to 

electrostatic interactions between the cationic CTAB and anionic segments of cell walls, which leads 

to a color change due to a shift in the localized surface plasmon resonance. The color change is 

characterized by obtaining absorption spectra in the presence of various bacteria (Figure 18 a, c). The 

spectra demonstrate that the presence of bacteria causes broadening of the absorption peak due to 

higher absorption at longer wavelengths, which is typical when gold nanoparticles aggregate. The 

aggregation of gold nanoparticles on bacteria is mostly caused by teichoic acids in Gram-positive 

bacteria and lipopolysaccharides and phospholipids in Gram-negative bacteria [15, 84, 101, 137, 138, 

178, 179]. The replicates for these responses are plotted in Figure 18 c and they show minimal 

variation within species and a drastic difference between species. This suggests that absorption 

spectra can be used for identification of the organism. Additionally, the colorimetric response 

highlighted by the absorption curves is also concentration dependent, as shown in Figure 18 b, where 

P. aeruginosa was normalized to a final OD660 = 0.03 and then diluted 5x and 25x in saline. Similarly, 

all other bacteria were also diluted and their spectra are presented as contour plots in Figure 19 and 

Figure 20. It can be observed that as the concentration of bacteria decreases, the differences between 

bacteria start to diminish yet subtle unique features are present. These data can now be used as a 

reference for testing the platform’s ability to identify and quantify bacteria. 
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Figure 18: Absorption spectra of gold nanoparticles in the presence of bacteria: a) response for 

saline control and eight different species of bacteria normalized to OD660 = 0.03, b) response in 

the presence of various concentrations (approximately 1x107, 2x106
, and 4x105 CFU/well) of 

Pseudomonas aeruginosa, and c) contour plot of replicates (n = 8) for each bacteria normalized 

to OD660 = 0.03 and saline control, where each band consists of 8 slices (one per replicate). 
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Figure 19: Contour plots of absorption spectra when bacteria (n=8) at OD660= 0.006 are added 

to gold nanoparticles, each band consists of eight slices (one per replicate). 
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Figure 20: Contour plots of absorption spectra when bacteria (n=8) at OD660= 0.0012 are 

added to gold nanoparticles, each band consists of eight slices (one per replicate). 

HCA is a useful technique for visualizing data with multiple dimensions [209]. We performed 

HCA on three out of the eight replicates, using each wavelength for the absorption spectra as a 

variable. The dendrogram resulting from HCA is presented in Figure 21 a for bacteria that were 

normalized to OD660 = 0.03. The dendrogram shows that there is no misclassification, since all the 

replicates have minimal Euclidean distance. In general, the dendrogram seems to separate Gram-

positive and Gram-negative bacteria, where Gram-negative bacteria provide a lower response and are 

clustered closer to saline. Yet, P. aeruginosa and S. maltophilia provide a drastic enough response to 

be clustered together with the Gram-positive bacteria and TEM analysis will shed some light on these 

peculiarities. In order to use these data for identification of unknown samples, PCA is suitable for 
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reduction of the dimensions. PCA on each of the eight bacteria at three different concentrations 

demonstrated that the first three principal components could explain 100% of the variability amongst 

bacterial samples. PCA scores for bacteria normalized to OD660 = 0.03 are presented in Figure 21 b 

and they confirm the observations from HCA by highlighting clustering of the same bacteria species. 

The PCA scores for all other concentrations and the HCA dendrogram derived from these scores are 

presented in Figure 22 and Figure 23 respectively. The principal components were used to classify the 

other five replicates for each of the 25 groups (saline and three concentrations for each of the eight 

bacteria) using the coefficients from PCA model followed by LDA. An accuracy of 89% (111/125) 

was achieved, which is impressive because this suggests that an unknown sample can be 

characterized using the gold nanoparticle based “chemical nose” platform to detect whether there is 

bacteria, identify the species of bacteria, and also approximate the concentration present simply based 

on the colorimetric response. Most of the error in identification results from misclassification of 

bacteria at the lowest concentration samples as indicated by the clusters in Figure 23. The working 

concentration of the biosensor can be expanded since each species of bacteria under consideration 

exhibits unique concentration dependent responses, as highlighted in Figure 24. We hypothesize that 

a more complex mixture of nanoparticles with various sizes, shapes, or functionalities might assist in 

discriminating bacteria at lower concentrations and some of these parameters are explored in a later 

chapter.  
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Figure 21: a) Dendrogram obtained using hierarchical clustering analysis (HCA) on the spectra 

(Ward’s linkage method) of gold nanoparticles in the presence of bacteria normalized to OD660 

= 0.03 and the color threshold was set to 10% of the maximum Euclidean distance using 

MathWorks® MATLAB® b) Principal component analysis (PCA) scores plot of the response of 

gold nanoparticles in the presence of bacteria. The percent variability explained is indicated on 

the axes. PCA model was built by using the spectral data in the range of 300-999 nm using 

MathWorks® MATLAB® 
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Figure 22: Principal component scores of the colorimetric responses of saline control and 

bacteria at different approximate concentrations, indicated by the number next to the names, in 

the units of CFU/well where well corresponds to a microplate well with a volume of 300 µL. 
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Figure 23: Hierarchical clustering analysis dendrogram after analyzing the principal 

component scores used for training sets in linear discriminant analysis. The number in the 

names corresponds to the concentration of bacteria in CFU/well where well corresponds to a 

microplate well with a volume of 300 µL. 

 

Figure 24: Concentration dependent response given by normalized absorbance at 540 nm for 

approximate concentrations of each bacteria which were normalized to OD660 = 1.0 ± 0.05 

(assuming a concentration of 109 CFU/mL) and then diluted 16-512x in saline. Here well 

corresponds to a microplate well with a volume of 300 µL. 

5.4.2 Detection of polymicrobial mixtures 

Hospitals have become a major source of antibiotic-resistant infections and are a threat for 

vulnerable patients. Three of the most common hospital-isolated pathogens are: S. aureus, E. coli and 

P. aeruginosa [210, 211]. These pathogens often exhibit unique antibiotic susceptibility profiles, 

which evolve over time and require timely monitoring using antibiograms [212]. In order to 

administer the appropriate antibiotic therapy, there is an urgent need for a biosensor to distinguish 

between bacterial species. Additionally, the detection of multiple bacterial species is especially 
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important in the diagnosis of polymicrobial infections because certain species such as P. aeruginosa 

can express increased virulence in the presence of other bacteria [213]. The “chemical nose” based on 

gold nanoparticles can detect mixtures of bacterial species once the system is trained. Binary and 

tertiary mixtures of P. aeruginosa, S. aureus and E. coli were prepared (final OD660 = 0.03, 1:1 v/v or 

1:1:1 v/v/v) and then mixed with gold nanoparticles. The responses obtained from these mixtures are 

presented in Figure 25 a and the mixtures appear to be dominated by the bacteria that cause higher 

aggregation. For example, in the case of a binary mixture of P. aeruginosa and E. coli, even though a 

pure E. coli sample does not cause a drastic color change, the mixture does cause a significant drop in 

the absorption peak and yet, the response is distinct from pure E. coli and P. aeruginosa cultures. 

Thus, in the case of infections, the “chemical nose” has the potential to distinguish between 

monomicrobial and polymicrobial instances, which will facilitate a more effective and rapid 

antimicrobial treatment without the need for extensive and lengthy testing of the sample. We analyzed 

these data using PCA and the scores are presented in Figure 25 b, where the variance was explained 

completely by using the first three components. Although the third principal component only 

accounts for 0.4% of the variance, this value is still significant compared to the variance between 

replicates, which is in the range of 0.01-0.04% for the saline and bacterial samples. Once again, three 

replicates were used for training the system and the other five were randomized for blind 

identification and an accuracy of 100% (40/40) was obtained for each of the pure cultures and 

mixtures using LDA. Thus, the “chemical nose” can not only detect and discriminate between pure 

cultures but also identify species in mixed cultures, after it is trained appropriately. Given enough 

training sets, the “chemical nose” platform presented here can identify species within mixtures and 

approximate their concentrations. Adding more nanoparticles with unique shapes such as gold 

nanorods, nanocubes, and nanoprisms can then expand the specificity and range of application for the 

“chemical nose” platform [199].   
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Figure 25: Response of gold nanoparticles in the presence of mixtures of bacteria: a) Contour 

plots of absorption spectra showing replicates for each sample (n = 8), each band consists of 

eight slices (one per replicate) b) principal component analysis scores for three of the replicates 

that were used as training sets in linear discriminant analysis. The variance explained by each 

component is included in parenthesis with axes labels. 

The colorimetric response provided by this “chemical nose” is dependent on the degree of 

aggregation of gold nanoparticles, which varies based on the surface features of the bacteria as well as 

the morphology of the particles as seen in Chapter 4 [84]. In addition to the polyanionic charge 

presented on the cell walls, the amount of extracellular polymeric substances produced by bacteria 

can determine the extent of aggregation of gold nanoparticles. The TEM images of gold nanoparticles 

around bacteria tested here are shown in Figure 26 and it is clear that in the cases of A. xylosoxidans 

and D. acidovorans, there is a layer of polymeric substance around the bacteria which prevents 

extensive aggregation of gold nanoparticles on the surface and hence causes a lower response for 

these bacteria. In other cases, the gold nanoparticles are heavily aggregated around the pathogen and 

adhere to the pathogen despite being rinsed once with water, which suggests strong electrostatic 

binding. Additionally, in cases of P. aeruginosa and S. maltophilia, the nanoparticles seem to 

aggregate around specific sections of the cell instead of evenly distributing throughout the surface, 

which might have led to a greater response compared to other Gram-negative species. This also 

suggests the role of lipid domains that are present around specific proteins [214] or can form in the 
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presence of cationic molecules such as CTAB [215]. Specifically, phosphatidylglycerol and 

diphosphatidylglycerol (cardiolipin) possess an overall negative charge which is expected to be 

probed by the cationic nanoparticles while phosphatidylethanolamine (PE) being zwitterionic would 

show lower affinity as seen with the liposomes in Chapter 3 [9]. Thus, the nanoparticle aggregation 

and hence the colorimetric response is governed by the complex composition and configuration of the 

bacterial cell surface. 

 

Figure 26: Transmission electron microscopy images of gold nanoparticles aggregating around 

bacteria: a) Pseudomonas aeruginosa, b) Staphylococcus aureus, c) Escherichia coli, d) 

Achromobacter xylosoxidans, e) Delftia acidovorans, f) Stenotrophomonas maltophilia, g) 

Enterococcus faecalis, and h) Streptococcus pneumonia 

5.4.3 Role of EPS 

One of the main parameters that determine colorimetric response seems to be the presence of EPS on 

bacteria. In order to confirm the effect of EPS, we executed an EPS extraction protocol for S. aureus 
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(control), E. coli, and A. xylosoxidans as per published methods [201]. S. aureus serves as a control 

because it seems to lack EPS that would prevent binding of nanoparticles. After extraction, the cells 

were mixed with the “chemical nose” solution and their colorimetric response are presented in Figure 

27. A dramatic increase in response is observed for treated E. coli and A. xylosoxidans as compared 

native bacteria while the response of S. aureus does not change drastically. TEM images of the 

treated bacteria and gold nanoparticles (Figure 28) are consistent with the colorimetric response 

where removal of EPS causes increased nanoparticle aggregation around E. coli and A. xylosoxidans 

while a similar coverage of nanoparticles is seen for treated and untreated S. aureus.  

 

Figure 27: Effect of extracting extracellular polymeric substances (EPS) from bacteria. The 

treated bacteria were processed by exposing to formaldehyde and then sodium hydroxide and 

then washed to remove EPS. 
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Figure 28: TEM images of gold nanoparticles aggregating around bacteria with or without the 

extracellular polymeric substances (EPS) extracted. Scale bars are 500 nm each. 

EPS can have an impact on various components of the cell surface such as phospholipids, 

lipopolysaccharides, teichoic acids, and peptidoglycan. EPS typically contain high fractions of 

carbohydrates and proteins [201], which could provide steric hindrance to the nanoparticles and thus 

cause a decrease in binding. In order to study the effects of EPS on these individual components, we 

used blot assays on PVDF and NC membranes to quantify nanoparticle binding. This strategy is 

adapted from protein lipid overlay assays for investigating the binding of proteins to lipids [216]. A 
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similar approach has been used for the detection of glycoproteins by immobilizing antibodies on the 

membrane and using peptide coated gold nanoparticles [217]. PVDF was used for components that 

required chloroform for dissolution while NC was used for water-soluble components due to the 

hydrophobic and hydrophilic nature of PVDF and NC respectively. The visual binding of various cell 

surface components with and without EPS is presented in Figure 29. Digital blot images can be 

characterized by analyzing color using RGB model [218]. Since the “chemical nose” absorbs mostly 

green light, we expect that an increased binding of nanoparticles to the membrane will show a 

decrease in the green component of RGB. The response is normalized by subtracting it from the 

background white color of the membrane. Figure 30 highlights the binding of nanoparticles to various 

components of the cell walls. In the case of phospholipids, it is observed that at the same molar 

concentration, PG and CL demonstrate a higher binding compared to PE (Figure 30 a), which is 

expected because of the anionic nature of PG and CL and zwitterionic nature of PE. On the other 

hand, the water-soluble components have unknown molecular weights and hence cannot be directly 

compared to each other. All cell surface components demonstrate a significant reduction in binding of 

nanoparticles in the presence of EPS, except for rough strain (Rd) lipopolysaccharide (LPS-R) from 

E. coli F583 (Figure 30 a, b). Additionally, to confirm that the reduction in binding is due to the 

presence of EPS, various masses of EPS were added to PG blots by changing the concentration of 

EPS in solution. Figure 30 c highlights that increasing the mass of EPS leads to significant decrease 

in nanoparticle binding. Therefore, the presence of EPS is an important characteristic that determines 

the colorimetric response from the “chemical nose” biosensor.  
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Figure 29: Photos of blots on a) PVDF membrane with phosphatidylglycerol (PG), 

phosphatidylethanolamine (PE), and cardiolipin (CL); b) nitrocellulose membrane (NC) with 

smooth lipopolysaccharides (LPS-S), rough lipopolysaccharides (LPS-R), lipoteichoic acids 

(LTA), and peptidoglyclan (PepG), and c) PVDF membrane with PG and varying mass of 

extracellular polymeric substances (EPS). Scale bars are 2 mm each. 
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Figure 30. Normalized Green intensity values from the RGB color model for images shown in 

Figure 29: a) Polyvinylidene difluoride (PVDF) membrane with L-α-phosphatidylglycerol (PG), 

L-α-phosphatidylethanolamine (PE), and cardiolipin (CL); b) nitrocellulose membrane (NC) 

with smooth lipopolysaccharides (LPS-S), rough strain (Rd) lipopolysaccharides (LPS-R), 
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lipoteichoic acids (LTA), and peptidoglyclan (PepG), and c) PVDF membrane with PG and 

varying mass of extracellular polymeric substances (EPS). All values are reported as means ± 

S.D. (n = 3), ns = not significant (p ≥ 0.05), * p ≤ 0.05, and ** p ≤ 0.01. 

5.4.4 Modeling gold nanoparticle aggregation states 

Different types of gold nanoparticle aggregates are observed in TEM images. Some bacteria lead to 

formation of multiple layers around the cell walls (Figure 26 b), while some have aggregates only in 

specific regions (Figure 26 a, f) and yet, some others have nanoparticles dispersed throughout the cell 

surface (Figure 26 c). In order to determine the relationship between gold nanoparticle aggregation 

type and their colorimetric response, we simulated aggregation of nanoparticles using Maxwell-

Garnett effective medium theory [202], which has previously been implemented for metallic thin 

films [219-221] and particle clusters [222]. Six different types of gold nanoparticle aggregates were 

modeled, as shown in Figure 17 a and their ratios in solution were varied as described in Table 9. The 

expected absorption spectra in Figure 17 b show representative responses for different combinations 

of aggregate types. Each of these combinations shows a characteristic change as seen in Figure 18 a 

for the response of gold nanoparticles to bacteria. The modeled spectra only consider spherical 

nanoparticles with fixed size and one type of aggregate packing (hexagonal close packed) while the 

“chemical nose” consists of a distribution of size and degree of branching of nanoparticles. Thus, the 

model provides coarse predictions compared to the experimental observations but the trends provide 

insight into the relationship between colorimetric response and aggregation on bacteria. Combination 

1 uses a low total percent of aggregation using Type 3-6 aggregates. The obtained absorption 

spectrum correlates to the observed spectrum for A. xylosoxidans (Figure 18 a), which suggests that 

the overall degree of aggregation is low, as confirmed in TEM images (Figure 26 d). As we increase 

the overall percent of volume fraction occupied by aggregates in Combination 2 and introduce Type 1 

aggregates, where nanoparticles are not in contact but rather separated by their radius, a slight peak 

shift is observed in addition to the increase in absorption in the 620 nm and 720 nm regions. The 

obtained absorption spectrum correlates to that of D. acidovorans (Figure 18 a), suggesting that some 

nanoparticles might be close to each other on the bacterial surface but not coming in contact. A 

further increase in planar and multi-layer stacking fraction in Combination 3 shows a significant drop 

of the 530 nm peak and an increase in the absorption at 620 nm and 720 nm, presenting a spectrum 
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similar to the response from E. coli (Figure 18 a). Finally, Combination 4 has a significant fraction of 

nanoparticles aggregated including all types of aggregates and the absorption spectrum broadens 

significantly as is the case with P. aeruginosa, S. aureus, E. faecalis, S. maltophilia, and S. 

pneumoniae. These bacteria have a high fraction of aggregation either due to multiple layers around 

the cell wall (eg. S. aureus Figure 26 b) or due to patterns of aggregation (eg. P. aeruginosa Figure 26 

a). In Combination 4, the absorbance at 530 nm also drops significantly due to the loss of free 

particles. Thus, Maxwell-Garnett effective medium theory provides some insight into how different 

types of nanoparticle aggregates around bacteria could be influencing the observed colorimetric 

changes and thus, how each bacterial species presents a distinguishable color change. 

5.5 Conclusions 

We demonstrated that gold nanoparticles with varying morphologies are a versatile “chemical nose” 

platform for detecting, identifying, and quantifying species of pathogenic bacteria. The “chemical 

nose” can also distinguish between polymicrobial samples of the most prevalent pathogens in 

hospitals. We also determined that EPS play an important role in influencing the degree of 

nanoparticle aggregation around bacteria. Additionally, simulations using the Maxwell-Garnett 

effective medium theory suggest that different aggregation patterns on bacterial cell walls are 

responsible for providing distinguishable colorimetric responses. Successful identification of bacteria 

using differential gold nanoparticle aggregation can be complemented with future investigations into 

nanoparticle-cell surface interactions to improve assay performance and predict response to novel 

bacterial strains. The simplicity of detection in this system allows for field implementation without 

extensive technical expertise or training. Additionally, the use of nanoparticles permits employing 

minimal material for maximum results. Although gold might sound expensive, nanoparticles require 

few milligrams to produce a strong color, which brings the cost to about $0.25/assay at the lab scale. 

This is especially important for developing countries, because of their limited resources and 

education. Thus, gold nanoparticles can be utilized for point-of-care diagnostics in the health industry 

and in-field testing in food and environmental industries by controlling their morphologies and 

training the “chemical nose” system. 
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Chapter 6 

Exploiting the kinetics of nanoparticle aggregation for rapid 

colorimetric detection using “chemical nose” 

6.1 Summary 

Infectious diseases spread rapidly because current diagnostic methods are slow, expensive, and 

require technical expertise. Biosensors have recently been used as devices that can be deployed at the 

point-of-care for rapid and accurate diagnosis. Here, we show that a “chemical nose” biosensor based 

on gold nanoparticles can be coupled with a portable spectrophotometer to detect monomicrobial and 

polymicrobial solutions of pathogenic bacteria within two minutes of data collection. The design 

presented here exploits the rapid kinetics of gold nanoparticle aggregation around bacteria, which 

leads to a dramatic color change. The “chemical nose” produces unique signals based on the surface 

characteristics of the bacteria and hence provides a versatile platform for detection. In this chapter, we 

present a biosensor design that can easily be translated to the point-of-care because of its rapid 

response and simple output.  

6.2 Introduction 

Rapid detection of bacteria is crucial in curbing the spread of infectious diseases and preventing 

epidemics [2, 30]. As highlighted in Chapter 2, current methods for detection of bacteria require 

considerable sample processing, because they detect either nucleic acids or proteins, which need to be 

extracted from the bacteria [223, 224]. Culture-based methods are sensitive but slow because the 

growth of bacteria can require 1-5 days [2]. Additionally, most methods require sophisticated 

instruments and/or extensive technical training [2, 30]. Rapid diagnosis of infectious diseases needs to 

be executed at the point-of-care with limited resources. Colorimetric responses are preferred in 

biosensors because they can be easily deciphered at the point-of-care [2, 7, 10]. Recently, portable 

scanners and smartphones have been used for measuring, analyzing, and reporting colorimetric 

responses when sensing analytes such as proteins [225, 226], viruses [227], and bacteria [228].  

Gold nanoparticles are playing an increasingly important role in providing a colorimetric response 

because their color depends on their aggregation state and their local environment [8]. Using gold 
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nanoparticles for detecting pathogens typically requires biomodification with antibodies or aptamers 

for targeting specific analytes [2, 7, 37]. As mentioned in Chapter 5, this “lock-and-key” approach is 

limited [12] because detecting multiple pathogens in a mixture requires a unique targeting 

biomolecule for each pathogen. A “chemical nose” approach provides a viable alternative to the 

conventional methods because the “chemical nose” can be trained for various analytes, including 

mixtures [12, 13, 103]. Chapter 4 and 5 demonstrated that a “chemical nose” based on gold 

nanoparticles can be used for identification of various unique pathogens and their mixtures once the 

system has been trained [84]. In order to implement this “chemical nose” at the point-of-care, here we 

have exploited the kinetics of the color change of gold nanoparticles in the presence of bacteria. The 

rapid color change provides sufficient data within two minutes to detect bacteria in monomicrobial 

and polymicrobial solutions. The portable spectrophotometer design used here (Figure 31) has the 

potential to be translated easily to point-of-care use with the help of smartphone-based 

spectrophotometers [226, 229].  

 

Figure 31: Schematic illustrating the spectrophotometer setup where sample is a mixture of 

nanoparticles and bacteria. 
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6.3 Materials and Methods 

6.3.1 Materials 

The chemicals, containers, and bacteria used in this study were from the same sources as those 

described in Chapter 5. 

6.3.2 Spectrophotometer design 

A standard optical extinction arrangement (Figure 31) was used in the spectrophotometer design as 

previously described [230]. Briefly, a tungsten-filament lamp with fiber coupling (Ocean Optics HL-

2000, Dunedin, FL, USA) was used as a light source and the light was collimated before passing 

through the cuvette containing nanoparticle solutions. The exiting light was collected into another 

fiber and directed to the portable spectrometer (Ocean Optics USB4000, Dunedin, FL, USA). Micro-

volume disposable polystyrene cuvettes were used for the samples. The entire experimental setup was 

enclosed in a container to minimize external light and dust.  

6.3.3 Synthesis of gold nanoparticles “chemical nose” 

Gold nanoseeds were first synthesized as described in Chapter 3 [9, 84, 124]. Gold nanostars and 

nanospheres were synthesized as described in Chapter 5, where CTAB is used as a negative template 

[9, 84]. The red gold nanosphere and blue gold nanostar solutions were mixed (1:1 by volume) to 

obtain the purple “chemical nose” solution.  

6.3.4 Bacterial culture 

Bacteria were cultured and prepared using the methods described in Chapter 5. Pseudomonas 

aeruginosa, Staphylococcus aureus, and Escherichia coli were inoculated on Trypticase Soy Agar 

(TSA) plates and incubated at 37 °C for 24 hours. Bacterial cells were harvested using alginate swabs 

and suspended in 5 mL of sterile saline (2.55%) with nutrient broth (~0.006%) in a 15 mL centrifuge 

tube. Each bacterial species was then washed seven times with 2.55% saline (with ~0.006% nutrient 

broth) by centrifugation at 4,000 rpm for 10 min. The bacteria were then diluted to obtain an optical 

density at 660 nm (OD660) of 0.10 ± 0.005 (~108 CFU/mL [172]). This provides monomicrobial 

solutions of the bacteria P. aeruginosa, S. aureus, and E. coli. Each of these solutions was mixed 

either 1:1 (v/v) to obtain binary mixtures or 1:1:1 (v/v/v) to obtain a tertiary mixture. The 2.55% 
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saline (with ~0.006%) broth was used as control. This resulted in three monomicrobial and four 

polymicrobial solutions. When the bacteria are added to gold nanoparticles, the solution was diluted 

1:3 to obtain final OD660 = 0.03 for bacteria.  

6.3.5 Detection of monomicrobial and polymicrobial solutions 

Detection of bacteria was performed in polystyrene cuvettes by mixing 1.2 mL of the “chemical 

nose” solution and 0.6 mL of the bacterial solution using a pipette. The cuvette was then transferred 

to the spectrophotometer and spectra were acquired 60 s after the mixing of nanoparticle and bacteria 

solutions. The spectra were acquired using Spectra Suite (Ocean Optics, Dunedin, FL, USA) with an 

integration time of 200 ms, averaging 5 measurements, and with a boxcar width of 5. Spectra were 

obtained every 5 s for 10 minutes and only the first two minutes of data were used, because it was the 

linear region of the response. Principal component analysis (PCA) was performed using MathWorks® 

MATLAB® on the absorbance data for 400-850 nm. The first principal component was extracted and 

fitted using a linear fit for the first 120 s of data. 

6.3.6 Transmission electron microscopy 

Polymicrobial mixtures of bacteria with gold nanoparticles (5 µL) were added to formvar-coated 

copper TEM grids and allowed to dry under ambient conditions overnight. Once dry, the bacteria 

samples were washed by placing 5 µL of Millipore water on the transmission electron microscopy 

(TEM) grids for 30 seconds and then wicking the liquid using filter paper to remove excess 

surfactants, salts, and unbound gold nanoparticles. The samples were then imaged using Phillips 

(Eindhoven, The Netherlands) CM10 TEM. 

6.4 Results 

6.4.1 Rapid colorimetric response from portable spectrophotometer 

The “chemical nose” we have developed consists of a 1:1 (v/v) mixture of gold nanospheres and 

nanostars. These nanoparticles are cationic because of their cetyltrimethylammonium bromide 

(CTAB) coating. The nanoparticles aggregate around the anionic bacteria and then lead to a rapid and 

drastic color change. We have demonstrated the potential of this “chemical nose” in differentiating 

between different species of pathogenic bacteria in Chapter 4 and 5 [84], but rapid detection of 
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polymicrobial mixtures remained unexplored. With the help of a portable charge-coupled device 

(CCD) array spectrophotometer, we are translating the “chemical nose” biosensor to point-of-care 

use. The CCD spectrophotometer provides a rapid response, hence allowing the study of kinetics of 

color change in gold nanoparticles. The changes in the spectra over two minutes after mixing bacteria 

and gold nanoparticles are shown in Figure 32. It is observed that saline shows negligible change in 

the spectra over time, whereas P. aeruginosa and S. aureus show a drastic change. E. coli shows a 

smaller change compared to the other two bacteria, but a difference can be observed when comparing 

the response to that of saline. Between P. aeruginosa and S. aureus, not only is the degree of color 

change different, but also the rate at which the spectra are changing. These differences are also 

observed in the responses obtained from binary and tertiary mixtures of these bacteria. It is important 

to note that the mixtures present a response that can be distinguished from their monomicrobial 

solutions, which implies that a distinction can be made between monomicrobial and polymicrobial 

infections in a manner similar to the observations in Chapter 5.  
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Figure 32: Changes in absorption spectra of gold nanoparticles over time in the presence of 

bacteria: saline was used as a control, monomicrobial species were prepared such that the final 

OD660 of bacteria = 0.03 (approximately 5 x 107 CFU/mL), polymicrobial solutions were 

prepared by mixing 1:1 (v/v) or 1:1:1 (v/v/v) of the monomicrobial solutions. Initial time of zero 

indicates one minute after addition of the nanoparticles.   

It can be challenging for the untrained eye to distinguish between some of the contour plots. Thus, 

the data is simplified using principal component analysis (PCA), where the absorbance values of each 

spectrum are represented by a few principal components. It was determined that the first principal 

component explained 85.1% of the variance and hence this component was plotted over time for each 

of the samples, as shown in Figure 33. A linear fit can be obtained for each sample, with the slope and 

intercept presented in Table 10. The high R2 values observed for all samples confirm good fit of the 
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linear model for the first two minutes of data. A low R2 value is obtained for the saline sample and is 

expected, because the response does not change over time, resulting in a slope of 0. Table 10 

highlights that each sample is defined by a unique line, characterized by its slope and intercept. These 

values can be used for training the “chemical nose” and then for identifying which bacteria or mixture 

is present, as demonstrated in Chapter 4 and 5 [84]. Only two minutes of the spectral data was 

required for generating Figure 33 using the portable spectrophotometer. Thus, if the “chemical nose” 

is coupled with this spectrophotometer design, polymicrobial infections can be rapidly diagnosed at 

the point-of-care.  

 

Figure 33: Linear fit of first principal component (85.1% variance explained) showing unique 

slopes and intercepts for each monomicrobial and polymicrobial samples  
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Table 10: Slopes and intercepts of linear fits of principal components for each of the bacterial 

samples 

Sample Slope Intercept R2 

Saline 0.000 -10.685 0.006 

Pseudomonas aeruginosa 0.046 -2.349 0.980 

Staphylococcus aureus 0.059 -7.211 0.998 

Escherichia coli 0.007 -6.112 0.959 

P. aeruginosa + S. aureus 0.048 -5.468 0.992 

P. aeruginosa + E. coli 0.040 -4.206 0.986 

S. aureus + E. coli 0.031 -7.186 0.999 

P. aeruginosa + S. aureus + E. coli 0.041 -6.124 0.993 

6.4.2 TEM images of bacterial mixtures 

Chapter 3, 4, and 5 demonstrated that the color change in gold nanoparticles is due to their 

aggregation around bacteria [9, 84]. In order to study the nanoparticle aggregation in bacterial 

mixtures, these samples were imaged using TEM and are presented in Figure 34. The TEM images 

highlight that within the mixtures, each bacterial species maintains their affinity to nanoparticles. This 

allows us to identify which bacterium is being observed under the microscope. For example, P. 

aeruginosa shows a unique pattern of aggregation, where some areas are left bare and others show 

high aggregation, which is similar to that seen with Stenotrophomonas maltophilia in Chapter 4 [84]. 

In comparison, S. aureus shows almost complete coverage due to the teichoic acids present on the 

surface. Thus, P. aeruginosa and S. aureus can be easily distinguished in Figure 34 a, not only by 

their size and shape but also due to their affinity for nanoparticles. Similarly, E. coli generally shows 

a lower but relatively uniform aggregation of nanoparticles on its cell walls. This is clear in Figure 34 

b and Figure 34 c, where P. aeruginosa and S. aureus show more aggregation than E. coli 

respectively. Finally, Figure 34 d exemplifies all the qualities of the three bacteria observed together, 

where each bacterial species can still be distinguished. Thus, not only does the “chemical nose” serve 

as a platform for colorimetric detection, it can also be used as a tool for staining bacteria in a 

characteristic manner.  
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Figure 34. Transmission electron microscopy images of gold nanoparticles aggregating around 

bacteria mixtures: a) Pseudomonas aeruginosa (black arrows) + Staphylococcus aureus (red 

arrows), b) P. aeruginosa + Escherichia coli (blue arrows), c) E. coli + S. aureus, d) P. 

aeruginosa + E. coli + S. aureus, Black scale bars are 500 nm, white scale bar is 1000 nm.  

6.5 Discussion 

We employed a CCD spectrophotometer to rapidly acquire absorption spectra [230]. Previously, 

similar designs have been extensively explored for portable detection with the help of smartphones 

and portable scanners [226, 228, 229]. Thus, the results demonstrated here can be easily translated for 

use in a smartphone accessary, which would allow for simple deployment at the point-of-care. 

Additionally, the use of PCA as a mathematical tool overcomes the considerable noise in the spectra, 

because the noise gets eliminated when principal components are calculated. This analysis can be 

incorporated into a smartphone application in a manner similar to that used for label-free detection of 

proteins[226]. An easy-to-use interface will promote the deployment of the detection system in 

developing countries and in rural areas of developed countries, where resources and levels of 

education are limited [224, 231].  

The “chemical nose” produces a distinct degree and rate of color change for each of the bacterial 

samples because of the surface features of bacteria [9, 13, 16, 84, 103, 138]. The cell walls of the 

bacteria contain unique compositions and orientations of lipids, proteins, and polysaccharides, which 

can interact with cationic gold nanoparticles [180-182]. As mentioned in previous chapters, in the 

case of Gram-positive bacteria such as S. aureus, most of the interactions are due to the polyanionic 
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teichoic acids [137, 178], while in the case of Gram-negative bacteria such as E. coli and P. 

aeruginosa, the interactions are governed by lipopolysaccharides [101, 179]. Additionally, the 

extracellular polymeric matrix can play a role in preventing aggregation of the gold nanoparticles as 

may be the case for E. coli [232, 233]. It has also been shown that lipids can exhibit specific domains 

within the cell walls upon addition of a cationic molecule [215] such as CTAB and this would explain 

the specific patterns of aggregation observed in the case of P. aeruginosa. Thus, a unique “smell” in 

the form of spectral response can be obtained for each sample in question for training the “chemical 

nose” and then an unknown spectrum can be matched with the training set, using techniques such as 

linear discriminant analysis to determine its identity.  

6.6 Conclusions 

A versatile “chemical nose” biosensor has been presented here that can diagnose monomicrobial 

and polymicrobial infections rapidly at the point-of-care. This was possible without complex 

modification of gold nanoparticles with biomolecules and by using a simple spectrophotometer 

design. The design can also be translated to a smartphone for widespread use in health, food, and 

environmental applications.  
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Chapter 7 

“Chemical nose” biosensors: effects of nanoparticle shape and 

concentration 

7.1 Summary 

Gold nanoparticles are a versatile platform for “chemical nose” biosensors. In this chapter, we 

demonstrate that the shape and concentration of gold nanoparticles can be used to control the 

specificity and sensitivity in detecting Gram-positive and Gram-negative bacteria. The order of 

decreasing response from various shapes of gold nanoparticles is: nanostars > nanocubes > 

nanospheres > nanorods. Decreasing the concentration of nanoparticles increases the sensitivity and 

shifts the range of detectable concentration of bacteria to lower values.  

7.2 Introduction 

“Chemical nose” biosensors are gaining considerable attention as a replacement to their conventional 

counterparts that often require biomolecules such as aptamers and antibodies [13-16, 84, 103, 209, 

234]. A “chemical nose” has the ability to produce unique patterns in the presence of the analyte, 

which facilitate the identification of the analyte [12]. Gold nanoparticles have been implemented as a 

“chemical nose” biosensor for the detection of proteins [234, 235], cancer cells [12, 196], and bacteria 

[16, 84].  

As shown in previous chapters, a recent strategy for detecting bacteria using gold nanoparticles has 

been the use of electrostatic interactions between bacterial cell walls and the nanoparticle surfaces 

coated with cetyltrimethylammonium bromide (CTAB) [9, 84]. This approach provides a versatile 

platform for applying gold nanoparticles for the detection, identification, and quantification of 

bacteria.  In order to exploit the potential of a gold nanoparticle-based “chemical nose,” an 

understanding of the parameters that control specificity and sensitivity are necessary, but to-date are 

not well-understood. In this chapter, we show that controlling the shape and concentration of gold 

nanoparticles determines the specificity and sensitivity of the “chemical nose” biosensor. We used 

four gold nanoparticle shapes: nanospheres, nanostars, nanocubes, and nanorods to detect two Gram-

positive (Staphylococcus aureus and Enterococcus faecalis) and two Gram-negative (Escherichia coli 
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and Pseudomonas aeruginosa) bacteria. These bacteria are notorious for contaminating food, water, 

and hospital surfaces and leading to antibiotic resistant infections [236]. Detection and identification 

of these bacteria at the point-of-care using a “chemical nose” biosensor will help to prevent such 

infections. 

7.3 Materials and Methods  

7.3.1 Materials 

All chemicals, containers, and bacteria used in this study were from the same sources as in Chapter 5. 

Additionally, gold nanorods (A12-10-780) with 10 nm diameter and 38 nm length were purchased 

from Nanopartz Inc. (Loveland, CO, United States). All procured chemicals were used without 

further purification. As in Chapter 5, the 20 mL vials used for gold nanoseed synthesis were cleaned 

using 12M sodium hydroxide and larger glassware was cleaned using aqua regia as described in a 

published protocol [200]. 

7.3.2 Synthesis of gold nanospheres and nanostars 

When selecting synthesis procedures, it was important to use CTAB-mediated synthesis such that the 

nanoparticles were coated with the surfactant, as the cationic head groups are essential to the 

“chemical nose” for aggregating around bacteria. As described in Chapter 3, the gold nanoseed 

precursor was synthesized using a previously described simple two-step one pot process [9, 84, 124]. 

To synthesize gold nanospheres and nanostars, the methods from Chapter 5 were used [9, 84].  

7.3.3 Synthesis of gold nanocubes 

Gold nanocubes were synthesized using published procedure while aiming for approximately 50 nm 

particles [237]. The gold seeds were first synthesized by adding an aqueous gold (III) chloride 

solution (0.25 mL, 10 mM) to a CTAB solution (7.5 mL, 100 mM) at approximately 30 °C. This was 

followed by reduction of the gold using sodium borohydride (0.8 mL, 10 mM) under vigorous 

stirring. The seed was then left at 30 °C for at least 3 h and then diluted 1:10 in Millipore water and 

filtered with a 200 nm filter before further use. The growth solution of nanocubes required addition of 

CTAB (48 mL, 300 mM) and gold (III) chloride (6 mL, 10 mM) to 240 mL Millipore water. Then, 

28.5 mL of 600 mM ascorbic acid were added and the solution was mixed by inversion. Once the 
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solution turned colorless, 150 µL of the diluted, filtered gold nanoseed were added. The solution was 

mixed by inversion and left undisturbed for 15 minutes.  

Gold nanospheres, nanostars, and nanocubes were purified by centrifugation at 10,000 rpm for 15 

min and then resuspended in 1 mM CTAB solution. In the case of gold nanocubes, half the volume of 

CTAB solution was used for resuspension to increase the concentration of nanoparticles while 

nanospheres and nanostars were resuspended in the same volume as starting solution. 

7.3.4 Bacterial culture 

Bacteria were cultured and washed according to methods from previous chapters [84]. S. aureus, E. 

coli, and P. aeruginosa were inoculated on TSA plates and E. faecalis was inoculated on TSA II 

plates. All bacteria were incubated at 37 °C for 24 hours. Bacterial cells were harvested using alginate 

swabs and suspended in 5 mL of sterile saline (2.55%) with nutrient broth (~0.006%) in a 15 mL 

centrifuge tube. Each bacterial strain was then washed seven times with saline by centrifugation at 

4,000 rpm for 10 min. The bacteria were then diluted to obtain an optical density at 660 nm (OD660) 

of 0.1 (~108 CFU/mL) [172]. When the bacteria were added to gold nanoparticles, the solution was 

diluted 1:3 to obtain final OD660 = 0.03 for bacteria. The bacteria were further diluted serially in 

2.55% saline (with ~0.006% broth) to obtain dilution factors of 2x, 4x, 8x, 16x, 32x, and 64x.  

7.3.5 Response of nanoparticles to bacteria 

The assay for measuring response of the nanoparticles to bacterial species was performed in 96-well 

microplates. The plates were prepared by adding 100 µL of the bacteria or saline control in triplicates. 

This was followed by the addition of 200 µL of the nanospheres, nanostars, nanocubes, or nanorods. 

The microplates were then placed on a Stovall Life Science Inc. (Peosta, IA, USA) Belly Dancer 

orbital shaker for 2 mins and incubated overnight at room temperature in the dark. After incubation, 

the UV-Visible absorption spectra were obtained for each well in the microplates using a BioTek 

(Winooski, VT, USA) Epoch microplate spectrophotometer while scanning from 300 nm to 999 nm 

with a step size of 1 nm. These spectra were plotted using OriginLab® OriginPro®.  

The effect of CTAB concentration was studied by centrifuging the gold nanostars at 10,000 rpm for 

15 minutes, discarding the supernatant and then resuspending the pellet in the appropriate 

concentration of CTAB (100 µM, 1 mM, 10 mM, or 100 mM). 
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The peaks for various nanoparticles are summarized in Table 11. The normalized absorbance 

values were obtained for all samples by using the following equation: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒

= (𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑎𝑙𝑖𝑛𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑎𝑡 𝑝𝑒𝑎𝑘)

− 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑎𝑙𝑖𝑛𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑎𝑡 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

− (𝑆𝑎𝑚𝑝𝑙𝑒 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑎𝑡 𝑝𝑒𝑎𝑘 − 𝑆𝑎𝑚𝑝𝑙𝑒 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑎𝑡 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) 

The normalized absorbance is converted to a normalized response (%) by dividing the normalized 

absorbance for each bacterial sample with their respective saline control. This accounts for the effect 

of different initial starting absorbance values for each of the nanoparticles shapes.  

When testing the response of nanoparticles to saline and Millipore water, the absorbance fraction 

was calculated as follows: 

𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

=
(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑎𝑡 𝑝𝑒𝑎𝑘 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑎𝑡 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) 𝑓𝑜𝑟 𝑠𝑎𝑙𝑖𝑛𝑒

(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑎𝑡 𝑝𝑒𝑎𝑘 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑎𝑡 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) 𝑓𝑜𝑟 𝑀𝑖𝑙𝑙𝑖𝑝𝑜𝑟𝑒 𝑤𝑎𝑡𝑒𝑟

×  100% 

Table 11: Absorption spectra characteristics of various shapes of nanoparticles used 

Nanoparticle Peak wavelength (nm) Baseline wavelength (nm) 

Nanospheres 531 800 

Nanostars 579 800 

Nanocubes 529 800 

Nanorods 777 925 

 

The effect of nanoparticle concentration was studied by adding gold nanostars to 1 mM CTAB 

solutions such that they would be diluted to 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90% of 

the original stock concentration. The stock was used as 100% concentration. These nanostars were 

added to S. aureus and P. aeruginosa as mentioned above and response was measured.   
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7.3.6 Transmission electron microscopy of bacteria and gold nanoparticles 

Gold nanospheres, nanostars, nanocubes, and nanorods were prepared for transmission electron 

microscopy (TEM) by adding 5 µL of the solutions to a copper grid and allowing them to dry under 

ambient conditions overnight. Similarly, mixtures of bacteria and gold nanoparticles (5 µL) were 

added to formvar-coated copper TEM grids and allowed to dry under ambient conditions overnight. 

Once dry, the bacteria samples were washed by placing 10 µL of Millipore water on the TEM grids 

for 30 seconds and then wicking the liquid using filter paper to remove excess surfactants, salts, and 

unbound gold nanoparticles. The samples were then imaged using Phillips (Eindhoven, The 

Netherlands) CM10 TEM. 

7.4 Results and Discussion 

7.4.1 Spectrophotometric responses of each shape to different bacteria 

The UV-Visible absorption spectra—plotted as contour plots in Figure 35—show that the peak width, 

location, and intensity for each nanoparticle solution is different as indicated by the saline controls. 

The peak location is governed by the surface plasmon resonance frequency, which is unique for each 

shape of nanoparticle [238-240]. The peak width depends on the size and size distribution of the 

nanoparticles [123]. The intensity of absorption depends on the concentration and extinction 

coefficient of the nanoparticles [241, 242]. Each of these qualities contributes to a characteristic 

spectrum for the various shapes of gold nanoparticles. When combined with bacteria, a colorimetric 

response is obtained due to the aggregation of the nanoparticles around the bacteria, caused by 

electrostatic interactions between cationic CTAB and anionic cell walls [9, 15, 84, 137, 138]. Figure 

35 exemplifies that the response from each bacterium is unique and distinct for different shapes of 

nanoparticles. While all bacteria present a concentration dependent response for each nanoparticle 

shape, the degree of response varies: P. aeruginosa provides the most change compared to saline and 

E. coli provides the least. 
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Figure 35: UV-Visible Absorption spectra of gold nanospheres, nanostars, nanocubes, and 

nanorods in the presence of saline (n = 12) or bacteria (n = 3 per concentration) at various 

concentrations ranging from approximately 5.2 x 105 CFU/mL to 3.3 x 107 CFU/mL. Each of 

the saline plots is made up of 12 slices (one per replicate) and bacteria plots is made of 21 slices 

(three per concentration). 

In order to quantify the response obtained amongst different nanoparticles and bacteria, the 

absorbance value at the peak (Table 11) was used and normalized against saline and baseline. The 

normalized response demonstrates that the shape of nanoparticles has minimal effect for Gram-

positive bacteria but causes a drastic difference for Gram-negative bacteria (Figure 36). Amongst all 

four bacteria, P. aeruginosa highlights the differences between nanoparticle shapes the most. Figure 
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36 d) also shows that the response decreases in the following order: nanostars > nanocubes > 

nanospheres > nanorods. Although nanorods have previously been used for sensitive detection of 

proteins [44] and nucleic acids [60, 61], they seem to be the least sensitive in the current experiments. 

As seen in the TEM images (Figure 38), this is most likely because the distance between aggregated 

nanorods seems to be larger than the distance between other nanoparticles and hence the particles fail 

to interact with each other and cause a colorimetric response.  

 

Figure 36: Concentration dependent peak response obtained from a) Staphylococcus aureus, b) 

Enterococcus faecalis, c) Escherichia coli, and d) Pseudomonas aeruginosa for different shapes 

of nanoparticles: nanospheres, nanostars, nanocubes, nanorods. Data are presented as mean ± 

S.D. (n = 3). 
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Since the concentration of CTAB could be different for each nanoparticle solution, the effect of 

CTAB concentration on the response needs to be tested. We used gold nanostars as the model 

nanoparticle and S. aureus as the model bacterium, while varying CTAB concentration from a range 

of 100 µM to 100 mM. The normalized response, reported in Figure 37, does not depend on the 

concentration of CTAB. The differences in response for each shape seem to be dependent on the 

roughness of the nanoparticles, which would provide them a higher surface area and hence a higher 

area for interaction with bacterial cell walls. Additionally, particles with more branching (nanostars) 

or edges (cubes) are expected to be more protruding into the functional groups present on the 

bacterial surface [84]. The concentration of salt could also influence the response of nanoparticles to 

bacteria, but in the current experiments the salt concentration was kept constant to obtain isotonic 

solutions of bacteria [140] and prevent lysis. The effect of salt concentration could be explored by 

changing the medium in which bacteria are suspended depending on the application of interest.  

 

Figure 37: The effect of CTAB concentration on the response of gold nanostars to 

Staphylococcus aureus. Data is reported as mean ± S.D. (n = 3). 
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7.4.2 Transmission electron microscopy 

In order to obtain a better understanding of the aggregation of gold nanoparticles, TEM images were 

obtained for all bacteria-nanoparticle combinations. The TEM images show that the sizes of 

nanoparticles are comparable (Figure 38). It is also observed that S. aureus and E. faecalis show 

complete coverage of the cell with nanospheres, nanostars, and nanocubes. In the case of nanorods, 

there are some areas that remain uncovered. Additionally, multilayer deposition is observed for S. 

aureus, which could be an indication of a higher extent of polyanionic teichoic acids [137, 178, 180] 

as compared to E. faecalis. In the case of Gram-negative bacteria, lipopolysaccharides and 

phospholipids are mostly responsible for the negative charge and hence the aggregation of cationic 

nanoparticles [15, 84, 101, 179]. When looking at E. coli, a relatively uniform but sparse distribution 

of nanoparticles is observed for all shapes except nanostars, which is consistent with the colorimetric 

response observed in Figure 36 c). The TEM images of P. aeruginosa highlight an important 

behavior: the nanoparticles aggregate in specific areas of the bacterium as observed for the nanostars 

and nanocubes, while other sections of the surface are completely uncovered. This observation is 

similar to the ones from Chapter 5 and 6. The literature suggests that this localized aggregation would 

be due to the formation of lipid domains around specific proteins [214] or due to the addition of 

cationic molecules such as CTAB [215]. Specifically, anionic lipids such as phosphatidylglycerol and 

diphosphatidylglycerol (cardiolipin) would attract the nanoparticles and lead to aggregation. On the 

other hand, gold nanorods and nanospheres show a relatively uniform adsorption on the surface of the 

bacterium and also a lower response. This also suggests that if the lipid domains are responsible for 

selective aggregation, they might only be accessible via protruding nanoparticles.  
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Figure 38: Transmission electron microscopy images of each of the different shapes of 

nanoparticles aggregating around various Gram-positive and Gram-negative bacteria. White 

scale bars are 50 nm and black scale bars are 500 nm. 
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To exclude the possibility that the differential responses observed for each type of nanoparticle 

were primarily due to their sizes instead of shapes, the colloidal stability of each nanoparticle solution 

was tested by comparing the absorbance in saline and Millipore water. The relative absorbance at 

peak of each nanoparticle is compared instead of the raw absorbance spectra because the absorption 

spectrum of each nanoparticle solution is distinct and any changes would be difficult to compare. If 

the response observed in the presence of bacteria was mainly a result of the size differences, it is 

expected that the nanoparticles would have decreasing colloidal stability and hence, lower peak 

absorbance values [9, 243] in the following order: nanostars < nanocubes < nanospheres < nanorods. 

The results from the saline experiment are presented in Figure 39 and they highlight that there is no 

correlation between the nanoparticle type and aggregation in saline. Thus, the bacterial response 

cannot be attributed to the small differences in the sizes of the various nanoparticles.  

 

Figure 39: Peak response of the gold nanoparticles in the presence of saline. Dashed red 

line indicates gold nanoparticles added to Millipore water. Data is reported as mean ± 

S.D. (n = 3). 
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CTAB-coated nanoparticles can be used as a “chemical nose” by analyzing the response, 

developing a training set and then matching the observed response of an unknown sample to the 

training set as demonstrated in Chapter 4 and 5 [84]. Since each nanoparticle shape provides a unique 

response for different bacteria, this information can be used for increasing the specificity of the assay. 

This is possible if a mixture of shapes of nanoparticle is used. The mixture will have more features in 

the absorption spectrum as compared to a single nanoparticle solution in the form of peaks. Each of 

these additional peaks will respond differently to the bacteria present. When considering the shape of 

nanoparticles for providing drastic responses, it is observed that nanostars provide the greatest 

response for all bacteria tested and hence should be used for applications requiring a dramatic color 

change, such as in point-of-care detection.  

7.4.3 The effect of nanoparticle concentration  

Another strategy for altering the sensitivity and range of detection is to adjust the concentration of 

nanoparticles. We made linear dilutions of the stock gold nanostars in 1 mM CTAB to obtain a range 

of 10% - 100% fractions in increments of 10%. These fractions were then tested with various 

concentration of S. aureus and P. aeruginosa and the normalized peak response is presented in Figure 

40. Interestingly, the concentration of nanostars has a greater impact on S. aureus as compared to P. 

aeruginosa. This could be because the concentrations tested for P. aeruginosa are already on the right 

side of the concentration-dependent response curve, where a saturation is observed. From the S. 

aureus samples, it is clear that the concentration of nanoparticles can be adjusted according to the 

bacteria concentration range of interest, where a lower fraction of nanoparticles is appropriate for a 

lower concentration of bacteria. This is because the colorimetric response is determined by the 

proportion of aggregated nanoparticles to non-aggregated nanoparticles. When there are fewer 

bacteria, this proportion is higher for a lower fraction of nanoparticles. In order to observe the lower 

end of the response from Figure 40 b and to determine the detection limit of the “chemical nose” 

biosensor, the experiment was repeated by using lower concentrations of P. aeruginosa. The linear 

region of normalized absorbance of P. aeruginosa when using 10% fraction of nanoparticles is 

presented in Figure 41. An R2 value of 0.91 is obtained for the line of best fit, with the sensitivity 

(slope) of 1.3x10-7 mL/CFU, limit of linearity of 5.4x105 CFU/mL, and limit of detection of 4.9x104 

CFU/mL (defined as three times the standard deviation of blank sample divided by the sensitivity).  
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Figure 40: The effect of nanoparticle concentration on colorimetric response for a) Gram-

positive Staphyloccocus aureus and b) Gram-negative Pseudomonas aeruginosa. Error bars are 

5% of the normalized response values. 
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Figure 41: Linear region of saline normalized absorbance of Pseudomonas aeruginosa when 

10% fraction of gold nanostars are used. The red line shows linear fit, which is used for 

determination of detection limit.  

7.5 Conclusions 

We have demonstrated that gold nanostars provide the most drastic response for a “chemical nose” 

biosensor and gold nanorods provide the least drastic. A differential response between shapes of 

nanoparticles can be used to improve the specificity of a “chemical nose” biosensor. The 

concentration of nanoparticles can tune the concentration range of bacteria that can be detected. 
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Chapter 8 

Conclusions and Future Work 

8.1 Summary 

This thesis presents new findings in the fields of nanotechnology, microbiology, materials science, 

and chemical engineering. Gold nanoparticles hold tremendous potential as biosensors because their 

optical properties are extremely sensitive to their size, morphology, and aggregation state. Cationic 

surfactant-coated gold nanoparticles are able to detect bacteria by using electrostatic interactions with 

the bacterial cell wall surface. The research presented here demonstrates that the response from such a 

biosensor is dependent on the physical properties of the nanoparticles and the bacteria. This 

dependence allows the biosensor to discriminate between different bacteria when a set of responses is 

combined together in a “chemical nose” approach. Additionally, the kinetics of the colorimetric 

response are also unique for each species of bacteria, which facilitates rapid detection. Thus, this 

thesis provides promising results for using surfactant-coated gold nanoparticles to build “chemical 

nose” biosensors as an alternative to biomolecule-functionalized nanoparticles that are often 

expensive and limited in application.  

8.2 Conclusions 

Gold nanostars can be synthesized using a surfactant-assisted seed-mediated growth where the 

particle size and degree of branching can be directly controlled by the concentration of surfactant 

cetyltrimethylammonium bromide (CTAB) used and amount of gold nanoseeds added. Increasing the 

amount of gold nanoseeds decreases the particle size while increasing the surfactant concentration 

increases the degree of branching. An increasing size and branching causes a red shift in the 

absorption peak of the gold nanoparticle solutions and hence changes the color of the solutions from 

red to purple to blue. In the presence of Gram-positive bacteria, the gold nanoparticles aggregate 

around the bacteria and hence, the solution changes color. The rate and degree of color change are 

dependent on the size and branching of gold nanostars, where bigger and more branched particles 

show faster and greater color change.  
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In the presence of different species of ocular pathogens, a set of unique responses can be obtained 

for each bacterium by using two different types of nanoparticles: red nanostars that have a low degree 

of branching and blue nanostars with a high degree of branching. The nanostars aggregate around the 

bacteria in a unique manner because of differences in the components of the cell walls. Some bacteria 

show a complete coverage with nanoparticles while others show specific patterns of aggregation on 

the surface as observed by transmission electron microscopy (TEM).  

A “chemical nose” biosensor can be developed by mixing nanoparticles with distinct sizes and 

morphologies, for eg. nanospheres and nanostars. The “chemical nose” provides a unique absorption 

spectrum for each of the eight species of bacteria tested. Using the absorption spectrum also allows 

for distinction between different concentrations of bacteria and mixtures of bacteria. TEM confirms 

that each species of bacteria shows a specific degree and pattern of aggregation of nanoparticles, 

which is responsible for the colorimetric response. Additionally, the difference in colorimetric 

response is beyond the distinction of Gram-positive and Gram-negative because some Gram-negative 

bacteria such as Pseudomonas aeruginosa and Stenotrophomonas maltophilia show a higher response 

compared to Gram-positive ones. The extracellular polymeric substances play a role in reducing the 

colorimetric response by shielding the lipids and proteins on the surface of certain bacterial cell walls 

such as Achromobacter xylosoxidans and Delftia acidovorans. Thus, a complex set of interactions is 

involved in governing the colorimetric response from the “chemical nose,” which enables the unique 

responses for each bacterial species and mixtures. 

The absorption spectra of the “chemical nose” can be acquired rapidly when a charge-coupled 

device (CCD) spectrophotometer is used because all wavelengths of light can be measured 

simultaneously. This design permits the use of kinetics of color change for detection whereas 

previous monochromator spectrophotometer could only detect temporally constant spectra. This 

design provided sufficient data for detection within two minutes of acquisition. Each bacterium and 

mixture of bacteria presented a unique rate of change suggesting that the characteristics of 

colorimetric response of a “chemical nose” are observed in the kinetics as well.  

A broader study of shapes and concentrations of nanoparticles showed that nanoparticles with 

sharper features could provide a higher response for Gram-negative bacteria. Specifically, the order of 

response was nanostars > nanocubes > nanospheres > nanorods. Additionally, a lower concentration 
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of nanoparticles allowed the detection of lower concentration of bacteria. The concentration of 

cationic surfactant CTAB did not alter the colorimetric responses to bacteria significantly, but at a 

low concentration of 100 µM, the gold nanoparticles showed higher variability in the responses.   

Overall, cationic gold nanoparticles are an excellent platform for providing a “chemical nose” 

biosensor for detecting bacteria. Mixing different shapes and sizes of nanoparticles promotes 

differential responses in the presence of different species of bacteria. The library of detectable 

bacteria can be expanded by exploring additional shapes, sizes, and surface features of gold 

nanoparticles.    

8.3 Recommendations for future work 

The following avenues are recommended based on the results from this research: 

1. Synthesize additional shapes of gold nanoparticles such as prisms, hexagons, and shells to 

determine if the colorimetric response of these nanoparticles is different from the shapes that have 

already been studied. Additional shapes provide more tools to tackle the discrimination between 

closely related bacteria. Also, only one method was currently used for synthesizing gold 

nanostars. It is possible to obtain higher anisotropy of branches using other methods such as those 

using poly(vinylpyrrolidone). It is recommended that these methods are attempted and then the 

polymeric coating is replaced by CTAB to achieve the cationic nature of nanoparticles. Longer 

branches could provide a higher sensitivity to the biosensor. 

2. Explore the incorporation of capillary electrophoresis for enhanced sensitivity and specificity. 

Electrophoresis could separate bacteria based on the degree of aggregation of gold nanoparticles 

and thus provide additional resolution between bacterial species. It could also increase sensitivity 

since single cell separation has been possible using electrophoresis. Additionally, a 

spectrophotometer with increased pathlength could be useful for higher sensitivity by using lower 

concentration of nanoparticles.   

3. Evaluate the performance of gold nanoparticles “chemical nose” in complex biological media 

such as blood, serum, urine, and saliva as well as food sources to determine the effect of 

interferents on the detection of bacteria. It is possible that some media might cause aggregation of 

gold nanoparticles and thus, prevent the use of nanoparticles for those specific applications. This 
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could be overcome by further stabilizing the nanoparticles using surface modification such as by 

conjugating poly(ethylene glycol) on the surface.  

4. Investigate the specific bacterial cell wall components responsible for aggregation of 

nanoparticles. This is possible by studying the interactions of major lipids present in the cell walls 

with CTAB-coated gold nanoparticles using lipid blot assays. Additionally, optical microscopy 

techniques might enlighten some of the aggregation processes if fluorescent dyes with affinity 

specific to different components of cell walls are used because gold nanoparticles would quench 

the fluorescence upon binding. Another approach is to use a library of single species bacterial 

strains with specific mutations and determine if any of the bacteria provide a change in the 

colorimetric response.  

5. Measure the response of gold nanoparticles in the presence of antibiotic-resistant strains of 

pathogenic bacteria. If a differential response can be obtained for different strains of the same 

species, the “chemical nose” could be employed as a rapid diagnosis tool for prescribing 

appropriate antibiotic therapy.  

6. Investigate advanced machine learning algorithms for expanding the database of bacteria. 

Machine learning and artificial intelligence are very active fields and are increasingly being used 

for carrying out scientific research. These tools will be extremely useful if a versatile “chemical 

nose” biosensor is to be developed.  

7. Develop a portable chip along with a cellphone spectrometer for analyzing colorimetric response. 

Creating a kit for detection can allow rapid diagnosis in clinics. A smartphone application for 

analyzing the colorimetric response based on machine learning algorithms will enable the 

translation of this technology to the end user.  
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