RGLock: Recoverable Mutual Exclusion for
Non-Volatile Main Memory Systems

by

Aditya Ramaraju

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Applied Science
in

Electrical and Computer Engineering (Computer Software)
Waterloo, Ontario, Canada, 2015

©Aditya Ramaraju 2015

AUTHOR'S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any

required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Aditya Ramaraju.

Abstract

Mutex locks have traditionally been the most popular concurrent programming mechanisms for inter-
process synchronization in the rapidly advancing field of concurrent computing systems that support high-
performance applications. However, the concept of recoverability of these algorithms in the event of a crash
failure has not been studied thoroughly. Popular techniques like transaction roll-back are widely known for
providing fault-tolerance in modern Database Management Systems. Whereas in the context of mutual
exclusion in shared memory systems, none of the prominent lock algorithms (e.g., Lamport’s Bakery
algorithm, MCS lock, etc.) are designed to tolerate crash failures, especially in operations carried out in the
critical sections. Each of these algorithms may fail to maintain mutual exclusion, or sacrifice some of the
liveness guarantees in presence of crash failures. Storing application data and recovery information in the
primary storage with conventional volatile memory limits the development of efficient crash-recovery
mechanisms since a failure on any component in the system causes a loss of program data. With the advent
of Non-Volatile Main Memory technologies, opportunities have opened up to redefine the problem of
Mutual Exclusion in the context of a crash-recovery model where processes may recover from crash failures
and resume execution. When the main memory is non-volatile, an application’s entire state can be recovered
from a crash using the in-memory state near-instantaneously, making a process’s failure appear as a
suspend/resume event. This thesis proceeds to envision a solution for the problem of mutual exclusion in
such systems. The goal is to provide a first-of-its-kind mutex lock that guarantees mutual exclusion and
starvation freedom in emerging shared-memory architectures that incorporate non-volatile main memory
(NVMM).

Acknowledgements

This thesis wouldn’t have been possible without the expertise, guidance, and the incredible patience of my
advisor Prof. Wojciech Golab. The precision and non-dualism in everything that he says and writes is
something | have continuously strived to inculcate throughout the duration of my MASc program. | shall
always remain as the greatest admirer of his vast knowledge and skills in many areas, among which his
technical writing is a class apart. Few people can inspire interest and passion towards the subject of
Distributed Computing better than he does. | am deeply indebted to him for mentoring, educating,
employing, and in a way, tirelessly parenting me during the last two years that made a significant difference
in my life and shaped me as a better individual. I sincerely doubt that | will ever be able to express my
appreciation fully, but I owe him my eternal gratitude. Every academic and professional achievement | ever
make, starting with RGLock, is only a dedication and tribute to him.

| owe my gratitude to Prof. Rajay Vedaraj at VIT University for all the knowledge sharing, constant
encouragement, and inspiration he provided ever since my undergrad days. My sincere thanks to my friend
Kartik Josyula for motivating me to pursue higher studies in Canada, and special thanks to Ankur Agarwal
and Krunal Barot, my supervisors at IBM India, for duly encouraging me in this regard. | am also very
thankful to my close friends, particularly Youcef Tebbal and Nicholas Petroff, for making my time in
Waterloo so wonderful with as many thought-provoking discussions as the numerous mindless debates we
ran into. | must also acknowledge the important role of my brother, Ramakrishna Rao Ramaraju, in being
the primary source of inspiration for everything | have ever learnt about computers, not to mention the

readily available financial assistance he provided whenever required.

Finally, | am ever grateful to my parents for all their support and the sacrifices they have made for
providing me with high quality education at only the best schools in every stage, of which, home remains

my most favorite.

Dedication

To Annaya,
and

To my Guru.

Table of Contents

AUTHOR'S DECLARATION ...ttt sttt ettt bbb bt et b ettt e e b eees ii
AADSITACTt E bbbttt iii
ACKNOWIEAGEMENTSc.viiiicie ittt e s et e e be s ae st e beaae et e sbeesbesbeese e besseeseesbeaseesrenteensens iv
DIBUICALION ...t b b bbb bbb e b bR bbbt bbb v
TADIE OF CONMTENTS ...t bbbttt b bbbttt e e b ens Vi
LIST OF FIQUIES ... et b bbbt bbb et b bbbt bt e bt e b ans viii
LST OF ALGOTTENMS ...t bbbttt b bbb nn et iX
Chapter 1 INTFOUUCTION ...ttt b bbbttt ettt b e bbb e 1
1.0 PEIIMINAIIES ...ttt bbbt b bbb b b e et b bt bbbt 2
1.2 Background & MOTIVALIONoiiiiiiiiteiieieieee bbbttt 3
1.2.1 SPIN-10CK @IGOTTINMS ... 3
1.2.2 Crash-reCoVErable IMULEXciiiiiiieiieieee et bbb 6

1.3 SUMMATY OF RESUILS ...ttt 10
Chapter 2 REIAIEA WOTK.......ccuiciieiececc et sttt et e be e besbeebeesbesreenrenre e 11
Chapter 3 Model SPECITICALIONeciiiiiiiii ettt s be e re e sbesreesresre e 17
3.1 Hardware CONSIABIALIONS..........cceiuiiririir ettt sn e 17
B2 FOIMEAIISITI ...t r et 18

Vi

3.3 Crash-TECOVETADIE EXECULIONvvvveiirreiee ittt e setseeeesettetesseteeeeesasseeeesesseeeesasseeeesassseeesasseesesasrreeesaneeees 19

Chapter 4 Recoverable Mutual EXCIUSIONccoiiiiiiiiicic s s 22
(@8 =T TSI AN [0 112 o SR 24
5.1 RGLOCK ...ttt bbb E bbbt 24
5.2 SWAP AN STOTE ..ot b bbb ettt b e b n e 30
5.3 Crash-TECOVETY PIOCEUUIESeiuiiuerieteieiteiieit sttt sttt sttt bttt bbb 32
CRAPTET 6 COITEOINESS ...tttk ettt bbbttt b ke b bbbt et e bbbt bbb enes 35
6.1 NOtatioNal CONVENTIONSc.oiiiiiiitiite ettt b 35
6.2 PIEIIMINAITES ...ttt b bbbt bbbt e st b e bbbt nnen e 36
6.3 Recoverable Mutual EXCIUSTONciuiiiiiiiiiisess e 41
Chapter 7 Conclusion and FULUIE WOTKcooiiiiiiiieieeeee s 54
7.1 SUMIMIBIY .ottt bbbt h e btk e s e e bt b e e Rt eb e e et R e e R b e ARt e b e e n b e eh e e b e e b e e bt e st eb e e s b e nr e et e e nnenre s 54
7.2 FULUIE RESEAICH ...ttt bbbttt bbb 56

vii

List of Figures

Figure 3.1 Failure-free and crash-reCoVerable PaSSAgES.cierrerreieiriririse st 21

Figure 5.1 Phase transitions of a process p; executing RGLock algorithm. ... 29

viii

List of Algorithms

AIGOTTNM L IMCS LOCK ...ttt b e r e nn e n e 6
Algorithm 5.a Failure-free and main procedures 0f RGLOCKcccooiiiiiiiiiniieiceeeses e 27
Algorithm 5.b Crash-recovery procedures 0f RGLOCK..........c.ccovviiiiiiiiie i 28

Chapter 1

Introduction

Mutex locks have traditionally been the most popular concurrent programming mechanisms for inter-
process synchronization in the rapidly advancing field of concurrent computing systems that support high-
performance applications. This popularity can largely be attributed to their simplicity in design and ease of
implementation. The primary objective of a mutex lock is to avoid simultaneous use of shared data by
labelling certain fragments of code as critical sections. Abundant contributions were made to the research
work in this field with interests ranging from defining strategies that are correct by design and have good
performance, to designing sophisticated fine-grained locks which enable highly concurrent access to shared
data by avoiding a serialization of non-conflicting operations. However, the concept of recoverability of

these algorithms in the event of a crash or a failure has not been studied thoroughly.

Several techniques have been proposed to continuously monitor the process state in a system and
automatically restart a failed process [1], [2]. Popular techniques like transaction roll-backs have been
widely known for providing fault-tolerance in modern Database Management Systems. Whereas in the
context of mutual exclusion, none of the prominent existing lock algorithms (e.g., Lamport’s Bakery
algorithm, MCS lock, etc.) are designed to tolerate crash failures, especially in operations carried out in the
critical sections. Each of these algorithms may fail to maintain mutual exclusion, or sacrifice some of the
liveness guarantees in the presence of crash failures. Every time the system experiences a crash, the facts
that a loss of program data is incurred as any unsaved user data and application settings in the volatile
memory (DRAM) are lost, and that recording recovery information in disk storage for persistence incurs
unacceptable overheads and performance degradation on the application, have been the primary obstacles
in designing efficient crash-recovery systems. However, we have reasons [3] to believe that in the future,

the Non-Volatile Main Memory (NVMM) systems can provide ways and means to overcome this problem.

With the advent of Non-Volatile Main Memory technologies, opportunities have opened up to redefine
the problem of Mutual Exclusion in the context of a crash-recovery model where processes may recover
from crash failures and resume execution. When the main memory is non-volatile, an application’s entire
state can be recovered from a crash using the in-memory state near-instantaneously, making a process’s
failure appear as a suspend/resume event. While the implementation techniques specific to automatically
restarting failed processes and bringing them to resume execution from the point of last-known
configuration lie beyond the scope of our work, we proceed to envision a solution for the problem of mutual
exclusion in such systems. In this thesis, our goal is to provide a first-of-its-kind mutex lock that guarantees
mutual exclusion and starvation freedom in emerging shared-memory architectures that incorporate non-

volatile main memory (NVMM).

1.1 Preliminaries

Concurrency in a modern multi-processor system allows multiple processors to access a common resource,
while mutual exclusion guarantees that only one of the contending processors gains an exclusive access to
the shared resource. Dekker’s algorithm [4] was the first software solution for a 2-process mutual exclusion.
The problem of n-process mutual exclusion was first formulated by Dijkstra in [5] and later formalized by
Lamport in [6]. A race condition arises when any two concurrent processes simultaneously modifying the
value of a shared variable can produce different outcomes, depending on their sequence of operations. To
avoid such conflicts, the program contains Critical Section (CS), a block of code that can be executed by
only one process at a time. Formally, Mutual Exclusion (ME) is the problem of implementing a critical

section such that no two concurrent processes execute the CS at the same time.

Practical algorithms [7]-[10] for mutual exclusion traditionally have a strong reliance on the Read-
Modify-Write instructions, where a value from a shared variable is read and updated in an indivisible action
called an atomic step. Generally, processes are required to acquire a mutex, a mutual exclusion lock, to
access the shared resource protected by the CS. Each process acquires the lock by executing a fragment of
code called the entry protocol. The entry protocol may contain a wait-free block of code called the doorway,
which the process completes in a bounded number of its own steps [11]. If the mutex is already being held
by another process, busy-waiting is performed by a technique called spinning, in which the process
repeatedly checks on a shared variable to see if a pre-defined condition is true. After completing the CS,
the lock-holding process releases the lock by executing an exit protocol (EP), wherein one or more of the

other contending processes are notified that the CS can now be entered. Actions that do not involve the

protected shared resource are categorized under non-critical section (NCS). Any variables accessed in the
entry and exit protocols, except the process’s program counter, may not be accessed when the process is
either in the CS or NCS. A concurrent program is thus defined as a non-terminating loop alternating
between critical and non-critical sections. A passage is a single iteration of such loop consisting of four

sections of code in a concurrent program with the following structure:

while true do
NCS;
Entry Protocol,;
CS;
Exit Protocol;
od

1.2 Background & Motivation

1.2.1 Spin-lock algorithms

In a simple variant of a mutual exclusion algorithm, a process attempts to acquire the lock by repeatedly
polling a shared variable, e.g., a Boolean flag, with a test-and-set instruction; and releases the lock by
changing the bit on the flag. The key to these algorithms is for every process to spin on a distinct locally-
accessible flag variable, and for some other process (the lock-holder) to terminate the spin with a single
remote write operation at an appropriate time. These flag variables may be made locally available either by
allocating them in the local portion of the distributed shared memory, or through coherent caching [12].
Memory references that can be resolved entirely using a process’s cache (e.g., in-cache reads) are called
local and are much faster than remote memory references (RMRS), the ones that traverse the processor-to-
memory interconnection network (interconnect, for short). Protocols based on test-and-set are designed
[13] to reduce contention on the memory and the interconnect when the lock is held, particularly in cache-
coherent machines, but a system of N competing processes can still induce O (N) remote memory references
each time the lock is freed. An alternative solution is to delay or pause between polling operations, and an
exponential backoff was found [14] to be the most effective form of delay. In a “ticket lock” [15], a process
acquires the lock by executing a fetch_and_increment instruction on its ticket, a request counter, and
busy-waits until the value is equal to the lock’s release counter. The release counter is incremented when

the process releases the lock. Since a first-come-first-serve (FCFS) order is ensured by these counters, the

number of fetch_and_o operations [16] per lock acquisition can be effectively reduced if the backoff is
suitably designed to a delay that is proportional to the difference between the requester’s ticket and the

lock’s release counter.

The simplest spin locks are generally considered to involve high contention on a single cache line and
are thus poorly scalable [14]. This issue is addressed by the queue locks. Therefore, the idea of queue-based
mutual exclusion algorithms has been particularly appealing to researchers in concurrent programming for
over two decades. Existing literature contains several algorithms [7], [8], [17]-[22] proposed in this context,
and one of the common underlying features in their lock design is a queue-like shared data structure.
Fundamentally, in a queue-based lock algorithm, the contending processes “line up” in a queue, which is
essentially a sequence of processes already busy-waiting in line for the lock, to access the critical resource,
while only the head of the queue may enter the critical section. The advantage of this approach is that it
ensures a FCFS order in lock acquisition and release. Each process trying to acquire the lock leaves the
NCS and engueues itself at the end of the queue. If it is not the head of the queue, then it links behind its
predecessor in the queue and busy-waits on a local spin variable until it acquires the lock. A lock-holding
process dequeues itself from the head of the queue after executing the critical section and signaling its
immediate successor in the queue (if exists) to stop waiting and proceed to the CS.

The algorithm used for providing synchronization has a key impact on the performance of applications
running in multi-threaded or multi-processor environments. Particularly in multi-processor environments,
choosing the correct type of synchronization primitive and the waiting mechanism used for the
synchronization delays is even more important [23]. In 1991, Mellor Crummey and Scott proposed the
MCS lock [15] which generates O(1) remote memory references per lock acquisition on machines with
and without coherent caches, independent of the number of concurrent processes that are trying to acquire
the lock, and requires only a constant amount of space per lock per process. Their lock gained one of the
most widespread usage and prominence in the multiprocessor computing community. For instance, the
MCS lock is known to dramatically improve the performance of Linux kernel due to its scalability [24].
The key innovation in MCS lock is ensuring that each process spins only on locally-accessible locations,
i.e., locations that are not target of spinning references by any other processes, making it most resilient to
contention [25]. The MCS lock is hardware assisted, requiring an atomic fetch_and_store (FAS)
instruction for the lock acquisition protocol and makes use of a compare_and_swap (CAS) instruction to
ensure the FCFS order in the lock release protocol. A FAS operation exchanges a register with memory,

and a CAS compares the contents of a given memory location against the value at a destination and sets a

conditional to indicate whether they are equal. Only if both the values are equal, the contents of the

destination are replaced with a second given value.

The pseudo-code for the MCS list-based queueing lock is shown in Algorithm 1. In a high-level
overview, each process trying to acquire the MCS lock allocates a record called gnode containing a queue
link (next pointer) and a Boolean flag. Portions of the gnode record may be made locally available on a
cache-coherent multiprocessor. Processes holding or waiting for the lock are lazily chained together in a
gueue by the gqueue links, i.e., each process in the queue holds the address of the record for the process
immediately behind it in the queue — the process it should notify when releasing the held lock. The lock
itself contains a pointer to the record of the process that is at the tail of the queue if the lock is held, or to
null if the lock is free. The fetch_and_store operation constitutes the doorway instruction, in which,
every process trying to acquire the lock swaps the tail pointer of the queue to its own gnode and adds its
own gnode to the end of the queue. The swap operation returns the previous value of pointer L. If that
pointer is null, then the process knows that it has succeeded in acquiring the lock. Once the CS is executed,
the process either sets the lock free if there is no contention for it, or passes on the lock to its immediate
successor in the queue. So to release a lock, the lock holder must reset the Boolean flag of its successor, or
if there is no successor, then L is set to null atomically in the CAS operation. The MCS lock thus provides
an FCFS order by passing the lock to each process in the order that the processes enqueued. The local spin
in the acquire_lock procedure waits for the lock ownership, while the local spin in release_lock
compensates for the timing window between the fetch_and_store operation and the pred.next := 1

assignment in the acquire_lock procedure.

type qnode = record

next : *gnode /Ipointer to successor in queue
locked : Boolean /I flag for busy-waiting
type lock = *qnode /Ipointer to tail of queue

/'l points to a gnode record allocated in the locally accessible
//shared memory location of the invoking process.

procedure acquire_lock (L: *lock, I: *qnode)

Lnext := null /finitially no successor

pred : *qnode := FAS (L,I) /lqueue-up for lock (doorway)

if pred # null /lqueue was non-empty
Llocked := true /lprepare to spin
pred.next:= | /link behind predecessor
repeat while [.locked //busy-wait for lock

procedure release_lock (L: *lock, I: *qnode)

if Lnext:= null /Ino known successor

if compare_and_swap (L, [, null)

return /Ino successor, lock free
repeat while L.next = null /Iwait for successor
Lnext.locked := false /Ipass lock

Algorithm 1 MCS Lock
1.2.2 Crash-recoverable Mutex

Fault-tolerance is one of the most important issues to take into consideration in designing modern
asynchronous multiprocessor systems, since it is aimed at guaranteeing continued availability of the shared
data even if some of the processes in the system experience crash failures due to reasons such as system
crash, power loss, accidental or intentional termination, heuristic deadlock recovery mechanisms, etc. Each
failure results in a loss of the shared state stored in the local volatile memory of the failed process. A process
that crashes in a crash-stop failure model permanently stops the execution of its algorithm and is supposed
to never recover. However, in a crash-recovery model a failed process may be resurrected after a crash

failure, and hence the problem of crash-recovery is to restore the lost state in such a way that the whole

memory remains in a consistent state. Existing research consists of several crash-recovery techniques
proposed for general distributed systems in the message passing paradigm [26]-[29] that rely on recovering
the state information of a crashed process either from its stable secondary storage or from a process on a
different node. Techniques proposed for crash-recovery in the distributed shared memory (DSM) and
cache-coherent (CC) models can be classified into two categories: the first consisting of techniques relying
on checkpointing [30]-[33], and the second approach being message logging [34], both originally
developed for message-passing systems [35]. However, such techniques are poorly suited for the
architectures that emphasize volatile main memories such as SRAM-based caches and DRAM-based
memories [36], because the frequent accessing of a non-volatile secondary storage to save the current state
of the computation (e.g., a checkpoint) incurs significant overheads and performance degradation in the

system’s efficiency.

The possibility of sudden loss of data from the portion of the shared memory protected by the critical
section in the event of a crash failure is problematic, since it could result in violation of the safety and
liveness properties guaranteed by the mutual exclusion algorithm. In particular, none of the prominent
mutual exclusion algorithms (e.g., Peterson’s algorithm, Lamport’s Bakery algorithm, or MCS lock) is
fault-tolerant, since each of these algorithms may fail if the state of the shared variable used for
communication among the processes is lost in a crash failure. To that end, these algorithms fail even if
processes are executing entry and exit protocols all by themselves, i.e., without any contention. Without
mechanisms for detecting and recovering from crashes, conventional algorithms may lock a shared object
indefinitely in presence of failures. Therefore, a ‘crash-recoverable mutual exclusion lock’ is needed to
solve this problem. Among the earlier attempts in this regard [37]-[41], none of the proposed solutions are
immune to a violation of at least one of the progress properties conventional locks guarantee in the absence
of failures. Motivated by these observations, this thesis aims at investigating a recovery protocol which
would overcome the limitations of existing solutions by guaranteeing each of mutual exclusion, fairness,

starvation freedom and fault-tolerance in presence of failures in a crash-recovery model.

As a first step towards that solution, we consider the emerging shared memory architectures that
incorporate a non-volatile main memory (NVMM), which has a promising potential to change the very
fundamental approach to the 40-year old architectures with fast/volatile and slow/non-volatile levels of
storage. NVMM systems can be built using a variety of media including phase-change memory (PCM)
[42], memristors [43], magnetoresistive RAM (MRAM) [44], and ferroelectric RAM (FeERAM) [45], to

name a few. The operating systems research community corroborates [3] that the architecture option that

entirely replaces DRAM in the current architectures with only a single non-volatile RAM (NVRAM) in a
flat, non-volatile physical memory space could prove to be the most advanced alternative to the
conventional CPU, DRAM and disk design. NVMM promises to combine the benefits of the high speed of
static RAM (SRAM), the density of dynamic RAM (DRAM) and the non-volatility of flash memory [46].
The idea of non-volatile memory as a primary storage inspires us to rethink several aspects of how users
and programmers interact with applications in a concurrent setting. Particularly, this creates a possibility to

revisit the problem of mutual exclusion in a crash-recovery model.

Since all execution state can be dissociated from process crashes and power failures by storing it on a
persistent non-volatile medium, this motivates our research for a new recoverable mutual exclusion
algorithm dedicated for systems with NVMM. The assumption is that the concurrent datastructures such as
stacks, queues, and trees used by the mutex lock reside directly in the NVMM and that the lock can access
them using conventional synchronization techniques. Accordingly, we investigated the dynamically
scalable, contention-free MCS lock as a potential solution for the recoverability problem. Despite all the
virtues the MCS lock algorithm has when implemented using the contemporary architectures, we found
that the “out of the box” protocol of MCS lock as seen in Algorithm 1, is not an end solution for a crash-
recovery model even when augmented with persistent shared memory to store the lock queue. That is, the
lock could become unavailable if one or more of the contending processes crashes while holding the lock
or while waiting in a queue to acquire the lock, since each process loses its private state when it resumes
execution after the crash, i.e., when it recovers. In particular, even if the gnode records in the persistent
shared memory are preserved across the crash, the process may not resume the program from its last point
of execution since the state of the program counter is lost in the crash. For that reason, executing the
algorithm from the beginning each time a process recovers from a crash causes certain violations of the
liveness and safety guarantees as discussed below. On taking a closer look, the inadequacy of the original

MCS lock algorithm in a crash-recovery model can be attributed to the following reasons:

i. Each process executing the MCS lock algorithm dynamically constructs a lock acquisition queue
using the FAS instruction on the lock pointer L. Since the returned value of the FAS operation is
only held in a private variable (pred), a process recovering from a crash that occurred
immediately after the FAS may have no evidence of having ever entered the lock queue since all

the private state of that process is lost during the crash.

ii. As aconsequence of (i), a process may recover from its last crash and yet remain oblivious of
the ownership of the lock. Consequently, even if that process is in the critical section as the lock-
holder, it may try to enter the lock queue again by performing the FAS operation. This
compromises the integrity of the queue structure.

iii. Furthermore, a process may execute the acquire_lockprocedure again when it recovers, although
it crashed while executing the release_lock procedure, and thus never relinquishes its ownership
of the lock.

iv. As a consequence of (iii), other processes waiting in the queue in their own acquire lock
procedures may wait forever for a lock that will never be released. Thus, the progress of the other
active processes in the system is impeded.

v. Ifaprocess crashes after entering a non-empty queue and before linking behind the previous tail
of the queue by completing the pred.next := I instruction, then its immediate predecessor in the
queue can never pass on the lock since the lock-holder is hindered in its operation of flipping the
Boolean flag ‘locked’ on the crashed process’s qnode record until the ‘next pointer’ link is
complete. And as a consequence of (i), the crashed process can never complete the link when it

recovers, since its immediate predecessor in the queue just before it crashed is not known.

vi. If a process crashes just after it completes the pred.next := I instruction and recovers after its
predecessor has relinquished the lock by completing the last line of the release lock procedure
in its own passage, then the recovered process may execute the L.locked := true instruction again
since it has no evidence of having already completed that instruction before its last crash, and

thus never becomes the lock-holder.

It is obvious from the above description that the MCS lock algorithm cannot guarantee safety and liveness
simultaneously in a crash-recovery model when implemented “out of the box”. Therefore the task that lies
ahead of us is to modify the algorithm so that the integrity of the queue structure is maintained even in the
event of multiple crash failures in any number of the contending processes. Informally, a crash-recoverable

queue lock must ensure the following:

- No process’s queue entry is lost in the crash. Therefore, no process in the system should starve
due to a crash.

- Each process contains at most one instance of its record in the lock queue.

- At most one process owns the lock. Also, at most one process at a time believes it is the lock-
holder.

- Ifalock-holder crashes, then it should not lose the ownership when it recovers from the crash.

- No process should wait indefinitely to relinquish its lock ownership.

1.3 Summary of Contributions

In an effort to provide a crash-recoverable mutex, we present our queue-based design inspired by the
popular MCS lock [15]. The research contributions in this thesis include:

1. A formal specification of the problem of ‘Recoverable Mutual Exclusion’ in a crash-recovery model.

2. RGLock: a first-of-its-kind spin-lock algorithm that is recoverable by design and preserves the
properties of recoverable mutual exclusion in systems that incorporate NVMM.

3. A comprehensive proof of correctness for the specified algorithm.

10

Chapter 2

Related Work

Mutual exclusion remains as one of the most important and widely-studied problems in concurrent
programming and distributed computing in general. In 1986, Michel Raynal published a comprehensive
survey [47] of existing research outcomes for solving the problem of mutual exclusion in parallel or
distributed computing. James Anderson et al. supplemented this survey in 2003 [10] by surveying major
research trends in the mutual exclusion algorithms specific to the shared memory model since 1986. They
highlight the limitations of earlier shared-memory algorithms that result in performance degradation due to
the excessive traffic generated on the interconnect network, and discuss how local-spin algorithms
published since 1986 avoid such problems. Their survey also notes how Lamport [48] became a trend-setter
for the “fast” algorithms after his publication in 1987 [49]. Other major trends surveyed include a broader
study of the “adaptive” algorithms [50] that ensure only a gradual increase in their time complexity in a
proportional manner as the contention increases; the “timing-based” algorithms that exploit the notions of
synchrony to reduce time complexity; and the mutual exclusion algorithms with “non-atomic” operations
[51]. More recently in 2014, Buhr et al.[52] examined the correctness and performance of N-thread
implementations of the high-performance mutual exclusion algorithms published in over 30 years, along
with a meticulous interpretation of how each of these algorithms work and the intuition behind their design.
These surveys inspire much more ambitious work to come in the future years and serve as the strongest

primers for the topic of mutual exclusion in the shared memory distributed computing literature.

The idea of fault-tolerant computing has existed for 50 years now with one of the first publications on
the subject dating back to 1965 [53]. Randell’s publication in 1975 [54] laid the foundations for facilitating
software fault-tolerance by introducing the “recovery block” scheme, in which a programmer can exploit
the knowledge of the functional structure of the system to achieve software error detection and recovery.
Recovery-oriented computing has become a fundamental requirement in most modern applications, and the
strong consistency guarantees it offers are often serviced by transactional databases with centralized
checkpoints and write-ahead logging (WAL) or shadow-paging mechanisms [34] that leverage

sophisticated optimizations on disk-based persistent storage. While database tables and indexes are

11

classical long-term storage solutions, many enterprises have been increasingly adopting in-memory data
management [55] for their transactional and analytical processing needs to offer high performance
computing, ascertaining that ‘in-memory’ is the new disk. However, the in-memory data structures used
for synchronization are generally designed for scale-out and performance over fault-tolerance. For instance,
most in-memory databases rely on a cluster-architecture to avoid a single point of failure, since a stand-by
node in the cluster rolls back the incomplete transactions on the crashed process and replays the transaction
logs replicated from the disk or network storage anyway[56]. Therefore, either non-blocking data structures
such as lock-free [57], wait-free [57] and obstruction-free [58] implementations, or transactional memories
such as [60], [61] are the usually preferred design choice in these systems since they offer resilience against

crash-stop failures.

Designing fault-tolerant algorithms for unreliable memories has found an increasing interest in academia
over the last four decades [62]. In 1977, Lomet first proposed synchronization and recovery using atomic
actions and showed how atomic actions can be used to isolate recovery activities to a single process [63].
In more recent literature on shared-memory computing, notable contributions were made for making
algorithms resilient to failure [31], [64]-[67] relying on techniques like coordinated global checkpointing
and rollback recovery from centralized logs. In [68], Molesky and Ramamritham proposed crash-recovery
protocols for making locks recoverable in shared memory databases. In the context of mutual exclusion,
Bohannon et al. [40], [41] pioneered the research aimed at providing fault-tolerance in standard concurrency
control mechanisms in shared-memory computing environments. The concept of making a spin lock
‘recoverable’ in shared-memory models is severely limited by the lack of methods to persistently save
information regarding the ownership of the spin lock when a process acquires it so that the ownership
information is potentially useful in restoring the shared resource protected by the spin-lock to consistency

in the event of a crash failure.

In [40], the authors emphasize on the importance of processes registering their ownership of the spin lock
(a test-and-set based algorithm) by writing the process identifiers to a known location in the shared memory.
The key idea is to take a global picture of the entire memory instead of a local (i.e., per-process) one, which
enables an examination of all processes that may have tried to acquire the lock before a crash failure so as
to give enough information about the ownership of the spin lock. A “cleanup in_progress” flag is used,
which when raised, prevents any processes that have not registered their interest in the lock before the crash
failure occurred from acquiring the lock while the recovery actions are being taken, and then an

“overestimation snapshot” of processes that could already have or could get the lock during the recovery is

12

taken. And within the “cleanup” routine the system waits for the situation to resolve by itself, i.e., eventually
the ownership of the lock becomes known either because the lock is registered with a live process, or
because no process holds it any longer, i.e., the lock is free.

In [41], the authors present a Recoverable MCS lock (RMCS-lock), in which each per-process gnode
structure contains a ‘next’ pointer for forming the queue link, and a ‘locked’ field that indicates whether a
given process owns the lock. The lock itself consists of a single pointer ‘tail” which either points to the tail
of the queue or to null when the lock is free. RMCS-lock comes with a ‘cleanup’ activity in which the
application can query the operating system whether a particular process has died. Their deviation from the
original MCS lock lies in the allowed values for the ‘locked’ field viz., WAITING, OWNED or
RELEASED, each of which is set by the owning process depending on which line of code in the acquire or
release protocols it executed. Further, they augment each gnode with the following fields: ‘wants’, a pointer
to the lock a process sets before executing the entry protocol and is changed only after it releases the lock;
‘volatile’, a Boolean flag a process raises before modifying the queue structure (e.g., swap operation) and
resets only when the modification is complete; ‘cleanup_in_progress’, a Boolean flag writable by the
system/OS during cleanup activities; and ‘clean_cnt’, an integer that determines if the cleanup activity has
completed. The recovery mechanism is similar to that shown in [40], where the ‘cleanup’ routine prevents
new processes from entering the lock’s queue when the cleanup_in_progress flag is set and waits until each
process that already set their ‘wants’ flag before the crash to acquire and release the lock. The cleanup
routine also checks for the consistency of the queue structure and adds the ‘next’ links where they are

missing due to failed processes.

In [37], Michael and Kim presented a fault-tolerant mutual exclusion lock that guarantees recovery from
process failures in DSM systems using techniques to enable an active process or thread waiting to acquire
a lock to “usurp” it in case it determines that the previous lock-holder has crashed. Their recovery
mechanism relies on the programming environment (or the OS) maintaining a log of the status of all
processes whose failure may lead to a permanent unavailability of the lock. The lock queue contains
information on three shared variables, namely Head, Tail and Lock-Holder. The Lock-Holder field is used
as a backup for Head, and identifies whether a process died in its lock release protocol before completely
releasing the lock. Each process’s gnode record contains four fields: Process ID, Status, Next and
LastChecked. The Status field has one of the three values in HASLOCK, WAITING, or FAILED. If a given
process is determined to have crashed when some other process queries the programming environment,

then the crashed process’s Status is updated to FAILED. The Next field is a pointer for queue formation.

13

The LastChecked field is updated by the owning process itself and records the last time the process was

alive, an optimization to limit the OS queries, which are expensive with respect to system resources. In

order to prevent multiple processes attempting recovery simultaneously, the recovery mechanism is

designed in such a way that if the first N processes in the queue crashed, then only the N+1™ process may

execute the recovery routine and if successful, becomes the new lock-holder, or the N+2" process

eventually “usurps’ the lock after a certain pre-determined ‘timeout’ has passed.

In comparison to our goals for a crash-recoverable mutex (as defined in 1.2.2), we found the following

shortcomings in the recovery mechanisms proposed in the above approaches:

1)

2)

3)

4)

5)

6)

7)

The assumption that the application can query the OS whether a particular process has died
requires a separate central monitoring process or thread that never crashes, e.g., a fault-tolerant
lock manager [69].

Requiring a single process or thread to perform all the required recovery actions is an inefficient
design choice in large non-homogeneous systems and might not be feasible at all since not all
processes have the same capabilities and a single process that never crashes and is also capable
of performing all recovery actions, possibly multiple times, often does not exist [70].

The ‘cleanup’ routine removes all crashed/dead processes from the queue. This poses a serious
problem particularly in a crash-recovery model where processes may resume execution after
recovery, and a process holding or waiting for a lock is not only removed from the queue, but
also is exempted from acquiring the lock until the ‘cleanup’ is complete.

Processes get killed in the ‘cleanup’ if they do not make progress in a “reasonable” amount of
time. Particularly, in asynchronous environments, an active process may be removed from the
gueue, possibly many times.

In case a process dies after it has been included in the queue by the ‘cleanup’ routine itself, it
necessitates a subsequent run of yet another ‘cleanup’ routine.

Any live processes that did not register their interest in acquiring the lock before the crash failure
are stalled until the ‘cleanup’ is complete. If there are multiple failures occurring frequently,
some processes in the system may be perpetually denied from acquiring the lock i.e., the
concurrency mechanism is not starvation free.

The process or thread that runs the ‘cleanup’ routine is assumed to never crash. Therefore it is
ambiguous how the recovery mechanism deals with a case of system crash, i.e., all processes are

dead simultaneously, or a case of power loss.

14

8) The ‘cleanup’ routine may choose a new owner for the lock in case it recognizes that the previous
owner has crashed and therefore, the recovery mechanism does not guarantee an FCFS order in
the lock acquisition and release even if the previous lock-holder resumes execution while the
‘cleanup’ is in progress itself.

9) In recovery activities, the ‘cleanup’ routine requires special mechanisms [71] in the operating
system to reinitialize the lock and unlock it for other active processes, particularly when a process
crashes while executing the CS. Therefore, this often necessitates maintaining a mapping of
addresses pointing to the shared data objects and their values through an additional logging

mechanism such as [72], which is also expensive in terms of system resources.

In our work, we wish to address the above mentioned issues by taking advantage of the persistent data
storage the byte-addressable, non-volatile memories would provide. We make two assumptions in this
regard: 1. that the future systems support these technologies; and 2. that access to hon-volatile memories is
provided by means of word-sized reads and writes as is the case with conventional memory. Researchers
believe that non-volatile random access memory (NVRAM), when used as primary storage, i.e., when
placed directly on the main memory bus, will enable performance-critical applications to harness the fast
access and strong durability guarantees it provides. Michael Wu and Willy Zwaenpoel [73] proposed eNVy
in 1993, one of the earliest alternatives to the conventional CPU-DRAM-magnetic disk approach, in which
the architecture of a large non-volatile memory main memory storage system was built primarily using
solid-state memory (Flash). A survey of emerging concepts and the main characteristics of new materials
viz. PCM, FeERAM, MRAM, etc., being developed in the field of non-volatile memory technologies has
been presented in [74]. Nevertheless, these technologies are not inert to some of the challenges experienced
in the development of persistent data stores for filesystems and databases, especially in terms of facilitating
a wear-aware memory allocation that is robust to data corruption, and techniques to provide cache-efficient
and consistency-preserving updates. Katz et al. [75] proposed a method to detect and correct various data
errors that may arise due to power loss in non-volatile memory, and particularly to identify if a write
operation was interrupted due to a power loss and to reconstruct any data that may have become inconsistent
in the interim. Moraru et al. in [76], proposed a general-purpose and flexible approach to address some of
these challenges in preventing data loss and corruption, while imposing minimal performance overhead on

the hardware, OS, and software layers as well.

In recent years, an abundance of research emphasized on creating consistent and durable non-volatile

main memory (NVMM) technologies [77]-[83], on redesigning data structures that benefit from persistence

15

[84]-[89], as well as on how application-level interfaces are to be modified to exploit the benefits the
persistent memories provide when placed on the main memory bus [90]-[93]. While transactional
memories can be used to implement synchronization structures for high performance, strong consistency
guarantees and resilience against failures, the fact that the vast majority of such memories are designed
based on the volatile main memory renders them unusable for recovery from system-wide crashes.
Recently, Coburn et al. proposed NV-Heaps [94], a system that provides transactional semantics to
persistent in-memory data while preventing data corruption that may occur due to application and system
failures. NV-Heaps avoid the operating system overheads by enabling applications to directly access non-
volatile memory and thus exploit the high-speed and performance of NVRAM to build robust and persistent
objects such as search trees, hash tables, sparse graphs and arrays. Allowing each process to own a set of
‘operational descriptors’, the fixed-size redo-logs similar to database recovery logs stored in the non-
volatile memory assists the application in avoiding the overheads incurred by maintaining centralized
recovery log. NV-Heap uses an ‘epoch barrier’ to ensure that a log entry in the operational descriptors is
durably recorded in the non-volatile memory, and replays only valid log entries when recovering from
failure, thus adding robustness even in the case of multiple failures. However, NV-Heaps have certain
shortcomings that need to be addressed before being used for implementing a crash-recoverable
concurrency control mechanism, such as: all locks being instantly released after a system failure; and
stalling the transaction system until the recovery is done cleaning up the state of the system.

The idea is that main memory persistence will eventually be the norm in both enterprise and consumer-
grade computing devices, as the recent advancements in NVRAM technologies position NVMM for a
widespread deployment in the systems of the future. This advancement has served as a catalyst for our
innovative algorithm that guarantees mutual exclusion and starvation freedom in a crash-recovery model,
without the need to transfer the ownership of a lock in the event of a crash failure. We designed a new
crash-recoverable mutex, RGLock, based on the premise that NVMM can be used to reconstruct and
recover the in-memory state locally and near-instantaneously after crash failures, and any shared-state
processes store is protected from data loss throughout recovery. The core of RGLock’s merits is in the fact
that there is no need to temporarily ‘freeze’ the shared data structure, nor is a ‘cleanup’ activity necessary.
What particularly sets our lock apart is that there is no assumed requirement for crashes to be restricted to
non-critical section only, and we consider this as a big leap forward in comparison to existing mutex lock

algorithms.

16

Chapter 3

Model Specification

This chapter presents the execution model and terminology used in RGLock.
3.1 Hardware Considerations

The system is a finite number of processors in an asynchronous multi-processor architecture of Cache
Coherent (CC) model that communicate with each other through a finite number of read-modify-write
shared variables. For exposition, we abstract each processor in the system as an individual process. The
processes communicate via shared variables whose values can be modified using atomic primitives such as
read/write operations and special instructions like swap_and_store (defined later in 5.2) and
compare_and_swap. We assume that the main memory modules are based on the persistent and reliable
Non-Volatile Random Access Memory (NVRAM) medium, i.e., the information stored on the medium is
never lost or corrupted, and that the caching and memory ordering can be controlled to the point where the

shared memory operations are atomic and durable [92], [95]-[98].

The memory locations in a CC model can be read from and written to by any process with the hardware
maintaining consistency. Specifically, any memory location can be made locally accessible to a process at
runtime by storing its contents in a local cache, which is maintained up-to-date by means of a cache
coherence protocol [36] that ensures each modification of the data is atomically propagated across the
shared memory either through updating or invalidating the copies held in other caches. When a process
writes to memory, the cache follows one of the two policies: write-through or write-back. In the write-
though policy, when a write occurs, the updates are written to the cache as well as to the lower layers in the
memory hierarchy, i.e., either another cache or the physical memory itself. Whereas in the write-back
policy, an update to a memory block is written to lower layers only when the contents of that cache line is
modified. Although write-through policy incurs heavier traffic on the processor-to-memory interconnect,
since the transactions with main memory are more often than in write-back policy, it propagates the updates

to memory blocks to the main memory and the rest of the system more effectively than the latter.

17

Memory references that can be resolved entirely using a process’s cache (e.g., in-cache reads) are called
local and are much faster than remote memory references (RMRs), the ones that traverse the global
processor-to-memory interconnect (e.g., cache misses). The time complexity of our algorithm is measured
by counting the RMRs performed during a passage [99]. In a CC model, the RMR complexity depends on
the state of each process’s cache and the coherence protocol used for maintaining consistency. In our model,
we count the first read of a shared variable on the main memory to make a local copy in a process’s cache
as one RMR, and all the subsequent reads on the cached copy are considered local until some other process

overwrites it (possibly with the same value as before), which accounts for another RMR.

3.2 Formalism

A program is composed of procedures, which are fragments of code comprised of atomic statements in a
deterministic algorithm. A process is a sequential program consisting of operations on variables. Each
variable is either private or shared, depending on the scope of its definition; a private variable is defined
within the scope of a procedure, whereas a shared variable is defined globally across all procedures. A
variable stored on the global non-volatile shared memory can be made locally accessible by maintaining an
up-to-date cached copy of its state, and can be modified by any process in the system for inter-process
communication. Each process also holds in its volatile memory, a special private variable called the

program counter that determines the next statement to be executed from the program’s algorithm.

In describing our system, we use a less formal approach to the 1/0 automata model [100] by defining the
behavior of processes using a pseudo-code representation. The interactions of processes with shared
variables through operations applied is represented as a collection of steps. The values assigned to private
and shared variables during each step are denoted by their state. The statements in the program’s code
comprise of per-process indivisible set of deterministic steps executed on a finite set of variables. We say
a process is enabled to execute a given statement, when the process’s program counter (PC) is pointing to
that statement. Formally, the system is represented as a triple § = (P, V, H) where a finite set of processes
with unique identifiers in P = {p;,p,, ...py} interact with a finite set of variables V in corresponding

sequence of steps recorded in an execution history H'.

Specifically, an execution history (or history, in short) is defined as a sequence of steps taken by the
processes, each involving some shared memory operation and a finite amount of internal computation. A

given statement can be executed multiple times in a history, and each such execution relates to a distinct

18

step. A step in a history corresponds to a statement execution or a crash (formal definition in 3.3). The
sequence of steps in a history corresponding to some procedural invocation is called an execution of a
procedure. An execution of a procedure is complete if the last step in the execution is the last statement of
the procedure.

For a given history H, set of process IDs P’ (where P’ € P) and a set of variables V, the maximal
subsequence of a history corresponding to the steps taken by only the processes in P’ is called a local
history, denoted by H|P’ . Henceforth, we use the notation p; to refer to a single process in the system in
general, where p; € P. Likewise, the maximal subsequence of H corresponding to only the steps taken by
a single process p; is denoted by H|p;. For every process p; € P we define p; to be active in a history H if
the local history H |p; is non-empty. The notion of fairness in a system is that each individual process in the
system is given an opportunity to perform its locally controlled steps infinitely often. A history may be
either finite or infinite. Accordingly, a fair history H is either a finite, or an infinite history where every

process that is active in H takes infinitely many steps.

The formal specification of a protocol consists of a collection of procedural statements for each process.
Within a passage, a process leaves a protocol when it completes executing all the steps defined in its
procedure and proceeds to the next protocol. In a fair history, once a process enters the entry protocol of its
passage, we can depend on it to continue to interact with other processes until it has reached its critical
section (if ever) and subsequently returned to its non-critical section. A process can remain in its non-critical
section until it enters the entry protocol in a new passage. For simplicity, we assume that each process’s CS

and NCS executions are recorded as individual atomic steps in a history.

3.3 Crash-recoverable Execution

We consider a crash-recovery model for our system, where any process may crash and eventually recover,
but the shared memory is reliable. A crash is a failure in an execution of one process where the private
variables of the crashed process are reset to their initial values and the process simply stops executing any
computation until it is active again. A system crash is a simultaneous failure in all processes in the system
which resets all private variable to their initial state. A crash-recovery procedure is the sequence of steps
taken by a crashed process to reconstruct its state and resume its active execution from the point of failure
in the algorithm. A process is said to be in recovery until the execution of its crash-recovery procedure is

complete. We classify the types of steps in our model into the following:

19

1) In a normal step, a process atomically accesses a set of variables in memory, executes some local
computation depending on its state, and finally changes state as applicable.

2) Inacrash-recovery step (crash step, for short), the program counter of the crashed process is set to a
pre-defined crash-recovery procedure in the program code and any other private variable is reset to
an initial state. However, any shared variable recorded by that process in non-volatile memory is

unmodified.

3) InaCS step, aprocess executes the Critical Section of the passage it is in. Therefore, we say a process

is in the CS if it is enabled to execute the CS step.

Extending the formalism introduced in 3.2, we define a crash-recoverable execution history H’ as a fair
history wherein every process either executes infinitely many passages or crashes a finite number of times.
Note that permanent crash-stop failures are excluded from our definition of a crash-recoverable execution
and indefinitely recurrent failures are allowed as long as they do not impede the overall progress in the
system. In the absence of failures, H' is identical to the H defined in 3.2, in that it is just a sequence of
normal steps. As illustrated in Figure 3.1, a failure-free passage is an iteration of a loop among the NCS,
entry, CS and exit protocols without any crash-recovery step. A crash-recoverable passage is composed of
NCS, entry, CS and exit protocols with an invocation of a crash-recovery procedure whenever a crash
occurs. As indicated by the recovery transitions, a crash-recovery procedure resumes the process’s
execution based on its state reconstructed from NVMM. Intuitively, whenever a process crashes, it does
not leave the protocol it crashed in, but only takes a crash-recovery step instead. Once the active execution

is resumed, it is up to the process’s program to complete each remaining protocol within that passage.

We assume that the code for critical section is idempotent, i.e., harmlessly repeatable by a process in
recovery if it has the necessary exclusive access to do so, i.e., even if a process crashes during the execution
of a CS step and/or if the process repeats the CS step within the same passage more than once when in
recovery, the program works correctly. This assumption is reasonable since there are no race conditions on
the shared state protected by the critical section as it cannot be concurrently modified by any other process
when one process already owns an exclusive access to the critical section (guaranteed by the mutual
exclusion property discussed later on). Moreover, since the same parameters are applied each time a process
executes the idempotent operations, there is no inconsistency caused in the program state by some process
repeating the CS execution within the same passage in recovery, provided it has the necessary exclusive

access to the shared resource.

20

Legend:
Failure-free passage el

Crash-recovery step
Recovery transitions — ==——p

Non-
Critical
Section

Entry Critical
Protocol Section

crash -TECOVErY

procedure

Figure 3.1 Failure-free and crash-recoverable passages.

Finally, the assumptions made in our crash-recovery model are as follows:

Al. A process in recovery reconstructs its state from the shared variables stored in non-volatile memory.

A2.Process crashes are independent, i.e., failure of one process does not crash other active processes in

the system.

A3. Other active processes in the system may read, modify and write to the globally accessible shared

variables of a process in recovery.

According to A3, a crashed process can reconstruct its state and resume computation based on the latest
changes (if any) made to its shared variables by other processes. For example, a busy-waiting process
p; could crash in a step immediately before the step in which the existing lock-holder changes the bit on
p;’s shared variable used for spinning, indicating that p; is now the new lock-holder. In recovery, p; can
read this change and then proceed to its critical section. The assumption Al is crucial to our model in that
a process in recovery does not restart with its shared state reset to initial values. Resetting shared variables

in the system each time a process restarts from a crash would render the concept of using persistent memory

21

Chapter 4

Recoverable Mutual Exclusion

The challenge in designing a recoverable spin-lock algorithm lies in specifying the correctness properties
of mutual exclusion for a crash-recovery model where processes can crash at any point within a passage,
i.e., the algorithm should be tolerant to crashes even within the critical section. Mutual Exclusion is a safety
property (informally construed as ‘some particular bad things never happen’), which assists in reasoning
with the correctness of computation in a multi-processor system. Livelock-freedom and starvation-freedom
are liveness properties, informally stated as ‘something good eventually happens’. While livelock-freedom
guarantees the overall progress of the system as each process eventually releases the lock held by it,
starvation-freedom guarantees a per-process progress in the system. Formally, the correctness properties of

a recoverable mutual exclusion algorithm are stated as the following:
Mutual Exclusion (ME): No two processes are in the critical section simultaneously.

First-come-first-served (FCFS): If a process p; completes its doorway before another process p; enters

its doorway, then p; cannot enter the critical section before p; does in their corresponding passages.

Livelock-freedom (LF): In a crash-recoverable history, if some process is in its entry section, then some

process eventually enters its critical section.

Starvation-freedom (SF): In a crash-recoverable history, if a process is in its entry section, then that
process eventually enters its critical section, i.e., no process in its entry protocol is perpetually denied access

to the critical section.

Terminating Exit (TE): In a crash-recoverable history, if a process is in its exit protocol, then it completes

that protocol within a finite number of steps.

Finite Recovery (FR): Every crash-recovery procedure invoked in a crash-recoverable history completes

within a finite number of steps.

22

Importantly, although ME is the guarantee that solves the problem of allowing only one process to
execute the CS at any time, we do not solve the problem of restricting a lock-holder from executing the CS
more than once per passage in the event of crash failures, based on the assumption that the CS is idempotent.
FCFS guarantees that when a slow-running process is in recovery there is no accidental ‘usurping’ of its
lock by other contenders, contrary to the recovery mechanism defined in [37]. While ME and FCFS are the
same as the conventional properties guaranteed by most existing spin lock algorithms in related literature,
the properties of LF, SF, TE and FR are refined in our model by introducing the context of crash-recovery.
The finite recovery (FR) property follows immediately from the definition of crash-recoverable history,
and is crucial to the overall progress in the system as the absence of which renders little sense to the very
concept of crash-recovery. Notice that FR does not exempt a process from crashing again while it is already
in recovery. Instead, it guarantees that the process eventually completes some crash-recovery procedure.
In our knowledge, RGLock is the first mutual exclusion algorithm for a crash-recovery model that conforms

to all the properties stated above.

23

Chapter 5

Algorithm

In this chapter, our algorithm is presented along with a high-level description of the included procedures.
RGLock is a new locking mechanism that

o exploits the benefits of memory persistency in NVMM systems;
o guarantees FCFS ordering of lock acquisitions;
o spins on locally accessible memory locations only; and

o guarantees both safeness and liveness properties of recoverable mutual exclusion even in the
presence of crash failures.

5.1 RGLock

In this thesis, we present a scheme for effectively dealing with the problem faced by conventional MCS
spin-lock in a crash-recovery model. In particular, the MCS lock suffers from the limitation of the lock
becoming unavailable whenever one or more of the processes holding or waiting to acquire the lock crash.
Our solution to the problem is based on maintaining and manipulating information in the persistent shared
memory. The fundamental idea behind our algorithm is to reconstruct the shared state of the process from
the persistent memory to perform effective recovery activities in the event of a crash failure. The key novel
feature of our algorithm is that the integrity of the lock structure i.e., the sequence of processes trying to
acquire the lock, is preserved even in the presence of failures. In addition to the most commonly available
read-modify-write atomic primitives, the design of RGLock proposes an atomic swap_and_store (SAS)
instruction (described formally in 5.2) that is not supported by current generation of multiprocessors for
fair lock acquisitions, and benefits from the availability of atomic compare_and_swap (CAS) instruction
in providing strict FIFO ordering. Without the CAS instruction, inspecting if there are any other processes

waiting in line to acquire the lock and setting the lock free cannot happen atomically. Without the SAS

24

instruction in the entry protocol, the FIFO ordering in lock acquisitions cannot be guaranteed and some of

the contending processes are prone to starvation when crashes occur.

Each process using the lock allocates a per-process lock access structure called gnode and appends it to
a linked-list of gnodes, wherein processes holding or waiting for the lock are chained together by the
backward pointers (ahead pointers). The lock is represented by a pointer L, set either to the gnode of that
process at the tail of the linked-list, or to a predefined null when the lock is free. For any process p;, the
process that appended its gnode (if exists) to the linked-list immediately before p;’s completion of the
doorway instruction is its predecessor and the process that swaps the lock pointer from p;’s gnode is its

successor. Each gnode contains the following fields:

« acheckpoint number chk that signifies the protocol of a passage the process is in,
e an ahead pointer to hold the address of the predecessor and act as the variable for busy-waiting,

« and a next pointer to hold the address of the successor.

The pseudo-code for a failure-free passage and crash-recoverable procedures are shown in Algorithm 5.a
and 5.b respectively. Our programming notation is largely self-explanatory. At system startup the processes
running the program initialize their shared variables before their first execution of the default
procedure, main(). Once initialized, processes execute the main() procedure, which invokes the spin lock
acquisition and release protocols as shown in the pseudo-code. Therewith, whenever a process takes a
crash-recovery step, its program counter is reset to the beginning of the main() procedure. Throughout the
pseudo-code, indentation is used to indicate nesting and each statement is labeled for reference. Angle
brackets ({...)) are used to enclose the operations to be performed atomically. Shared variables stored in
NVMM are termed ‘non-volatile’ and any additional temporary private variables are declared within the

procedures they are used in as required.

At system startup, a process p; initializes its gnode accessible by pointer g; with the above described
fields as shared variables in its non-volatile memory. Although the gq;.chk field is treated as a shared
variable, we assume that only p; writes or updates this field in lines of code (e.g., E2, E7, D1, D4, D8, etc.)
that are recorded as steps in the execution history. During execution of a passage, the checkpoint chk is
updated to an appropriate value from a predefined set consisting of {0, 1, 2, 3} whenever the process is
transitioning to a new protocol in its passage. This checkpointing variable aids a process taking a crash-

recovery step in invoking the appropriate crash-recovery procedure, depending on the value read. In

25

absence of failures, a process only executes the failureFree procedure which contains the entry and exit
protocols for acquiring the lock, executing the CS, and releasing the lock. The execution of a passage begins

at line CR1 and ends immediately after the first execution of line CR8.

The head gnode in the linked-list has a null predecessor and the tail gnode has a null successor. Each
busy-waiting process spins on its own local variable, i.e., the ahead pointer on its own gnode, until it
reaches the head of the list. Swap_and_store instruction enables a process to determine the link to its
predecessor in the event of a crash. Compare_and_swap enables a process to determine whether the
linked-list contains only its qnode while releasing the lock, and if so remove itself correctly as a single
atomic action. If a lock-holder identifies a non-null successor in the linked-list, then the lock is relinquished
by promoting the successor, i.¢., by resetting the ahead pointer on the successor’s qnode to null. A timing
window exists in the acquire_lock procedure between the step in which a process completes the SAS
instruction i.e., in which it appends its gnode to the linked-list, and the step in which it completes the
instruction in which it provides information to its predecessor (if applicable) about how to be notified when
the predecessor is granting it the lock, i.e., by setting the next pointer from the predecessor to its own
gnode. The spin in the acquire_lock waits for the lock to become free, and the spin in the release_lock

compensates for the timing window. Both the spins in the entry and exit protocols are local.

26

type gnode = record

non-volatile next : *gnode := g;
non-volatile ahead : *gnode := g;
non-volatile chk : int:=0

type lock = *qnode

/* gi is a gnode record of the invoking process pi.
Q is a history variable. RMEQ is a linked-list of
gnodes.*/

main (L: *lock, g;: *qnode)

/* Default procedure that guarantees
recoverable mutual exclusion for every p; € P */

CR1. cp:=gq;.chk

CR2. ifcp=1

CR3. ifrecoverBlocked(L,q;)=false

CR4. failureFree(L,q;)

CR5. ifcp =2 recoverHead(L,q;)

CR6. ifcp =3 recoverRelease(L,q;)

CR7. else failureFree(L,q;)

CR8. Non-Critical Section

failureFree (L: *lock, g;: *qnode)

FF1. acquire_lock(L,q;)
FF2. Critical Section
FF3. release_lock(L,q;)

acquire_lock (L: *lock, g;: *qnode)

El.
E2.

E3.

E4.
E5.
Ee6.

E7.
E8.

g;-next := null

g;.chk:=1
<E3a. SAS(L,q;, q;. ahead),>
E3b. Q:=0Q°(p)

if g;.ahead # null

g;-ahead.next:= g;

repeat while g;.ahead # null
g;.chk :=2
return

release_lock (L: *lock, g;: *qnode)

D1

D2
D3.

D4.
D5.
Deé.

D7.

D8.
D9.

q;.chk:=3
if g;.next =null
<D3a. if CAS(L, q;, null),>

D3b. Q= Q\{pi)
qi-chk:=0
return

repeat while g;.next = null
<D7a. q;-next.ahead = null,>

D7b. Q= Q\(pi)
qi-chk:=0
return

Algorithm 5.a Failure-free and main procedures of RGLock

27

Boolean recoverBlocked (L: *lock, g;:*qnode)
/*If q; € RMEQ holds, complete the passage and
return true. Else return false. */

RRB1. tailNow: *qnode := L
RB2. if tailNow = null

RB3. return false

RB4. elseif tailNow = gq;
RB5. waitForCS(q;)
RB6. else

RB7. if g;next =null
RBS. if findMe(L,q;)
RBY. waitForCS(q;)
RB10. else return false
RB11. else waitForCS(q;)

RB12. recoverHead(L,q;)
REB13. return true

recoverRelease (L: *lock, g;: *qnode)

/*1f q; € RMEQ holds, then release the lock. Else
complete the passage */

RR1. tailNow: *qnode := L
RRZ2. if tailNow = null
RR3. gi-chk:=0

RR4. return

RR5. elseif tailNow = g;
RRE6. release_lock(L,q;)
RR7. else if findMe(L,q;)
RR8. release_lock(L,q;)
RR9. q;.chk:=0

RR10. return

recoverHead (L: *lock, g;: *qnode)

/l execute CS and release the lock.

RH1. Critical Section
RHZ. release_lock(L,q;)
RH3. return

waitForCS (g;: *qnode)

/Mlink g; behind its predecessor in RMEQ (if
applicable) and busy-wait to enter CS

W1. if q;.ahead # null

W2. if (q;.ahead#null A g;.ahead.next=null)
Ws. g;-ahead.next := q;

W4. repeat while g;.ahead#null

W5. q;.chk := 2

Wé. return

Boolean findMe (L: *lock, g;: *qnode)

[*scans RMEQ to locate g; and returns true if gq; is
found. N is total no. of processes in P and run is
loop iterator*/

F1. temp: *qnode :=L
F2Z. run:int:=1
F3. while(run<N)

F4 temp := temp.ahead
F5. if temp = null

Fe. return false

F7. iftemp = g;

F8. return true

F9. run:=run +1

F10. return false

Algorithm 5.b Crash-recovery procedures of RGLock

28

For exposition, we distinguish a number of phases in which a process may be at the end of an execution
history. The transitions among these phases are governed by atomic shared memory operations as illustrated
in Figure 5.1. At system startup, the lock is free, i.e., L points to null, and all processes are in DELETED
phase. In the doorway instruction at line E3, every process p; that is trying to acquire the lock appends its
gnode at the trailing end of the linked-list atomically, and transitions to the APPENDED phase. The atomic
block of statements at line E3 contains an operation on the history variable Q at line E3b. Note that the
history variable is used only for reasoning about the correctness of the algorithm and does not indicate any
shared memory operation. The notation Q o {p;) denotes appending the ID of a process p; to a sequence Q,
such that Q[|Q|] = p;, where |Q| denotes the length of Q.

[DELETED]17
I r)

SAS(L.g;, g;ahead)
| |

APPENDED

3
=
I
=
_ SET FREE S
q;-ahead # null q;-ahead = null <
g;-next = null +,;
false §
| BLOCKED | — &
shead € null g;-next # null v
qi.ahead € nu)
’ PASS ON

Figure 5.1 Phase transitions of a process p; executing RGLock algorithm.

If p; has a non-null predecessor, then p; links behind it by setting the next pointer of its predecessor to
g; at line E’5, and spins on its own q;. ahead field, waiting for it to become null in the BLOCKED phase.
Otherwise, p; is the head process and becomes the lock holder (HEAD phase). A process p; transitions

from BLOCKED phase to HEAD phase when its predecessor writes null to the ahead field on its gnode,

29

denoted by g;. ahead < null. After executing its critical section, the head process releases the lock in the
exit protocol defined by the statements D1 — D9. There are two cases when the lock-holder releases the
lock. If the tail pointer L still points to the lock-holder’s gnode, then there are no processes waiting to
acquire the lock and the head process releases the lock by setting L to null (SET_FREE phase). Otherwise,
setting the lock free by pointing L to null in such case violates the FCFS property and could potentially
introduce starvation. As a counter-measure, the program takes advantage of the compare_and_swap
(CAYS) instruction for releasing the lock. If the CAS operation at line D3a fails, then the lock-holder waits
in a spin loop (at line D6) until the successor updates its next pointer, in order to avoid the timing window
where a process has appended its gnode to the linked-list but has not yet linked behind its predecessor.

When the lock-holder finds a non-null successor, i.e., when gq;. next # null, the lock is relinquished at
line D7 by promoting the successor as the new head (PASS_ON phase). The notation Q\(p;) at lines D3b
and D7b denotes the deletion of element p; from the sequence @, where p; is the head process at Q[1]. The
operations on @ are treated to be executed atomically along with the write, CAS, or SAS operations they
are enclosed with. The operation at lines D8 and E1 are only house-keeping actions required for the reuse
of the process’s gqnode in subsequent passages. The process is in the DELETED phase when executing these
statements. After releasing the lock a process enters NCS in the DELETED phase. A process may remain

indefinitely in its non-critical section until its subsequent completion of the doorway instruction.
5.2 Swap and Store

Consider the atomic fetch_and_store (swap) based implementation of the entry protocol in the original
MCS spin lock. Each process appends its gnode to a linked-list via the swap operation and busy-waits until
it is notified of being the lock owner. The first and most obvious challenge in the event of a crash is tracing
the ownership of such a spin lock. In particular, when a process attempts to resume execution following a
failure, the lock acquisition is in an ambiguous state, in that any evidence of it ever swapping L is lost in
the crash. From the ‘enqueue’ operation defined in the MCS lock (see pred : *qnode := swap (L,I)
instruction in Algorithm 1), if the atomic swap is immediately followed by a write which stores the address
of its immediate predecessor in its persistent memory, it greatly simplifies the membership (or position)
tracking of a crashed process in the linked-list when it is in recovery. Unfortunately, the swap operation
cannot be used to also register the lock ownership atomically using either the basic hardware instructions
or the non-blocking techniques developed using compare and swap [101]. Contemporary architectures

perform these operations sequentially in two independent steps as a swap followed by a write. However, in

30

case a process crashes immediately after the swap and before the succeeding write, the ambiguity remains
unresolved in its crash-recovery procedure. In such scenario, the ability of other active processes to acquire
the lock is restricted, and thus, the overall liveness of the system is also affected. For instance, a process
cannot release the lock to its successor if the successor crashed while the lock-holder is waiting in its exit
protocol for the successor to link behind and consequently the successor has no knowledge of its

membership in the linked-list in recovery, thus causing a permanent delay in lock release.

Clearly, if the two operations viz. appending to the linked-list and registering the address of the immediate
predecessor were performed atomically, we could always trace out which process currently holds the lock
and which processes are busy-waiting in line for the lock. Similarly, if a lock-holder crashes immediately
after promoting its last known successor, then the recovery mechanism becomes complicated since the
process in recovery may execute the exit protocol once again causing a safety violation by promoting an
already promoted process twice. As a first step towards resolving this problem, we propose a special
instruction as defined below. We assume that the address of a process’s qnode is a pointer to a single word

that can be written atomically.
atomic swap_and_store (SAS):

In one indivisible atomic step, a swap is immediately followed by a store that writes the result of the
swap operation to a location in the non-volatile memory. Also, no other write is allowed to that memory
location between the load and store parts of a swap. Consequently, an FCFS order is ensured in the lock
acquisitions in RGLock due to the SAS operation in the doorway instruction. Given two elements to swap
(for e.g., reference to the tail of the linked-list and the gnode to be added to the linked-list, in the doorway
instruction) and a memory location to store the result of the swap operation atomically, a pseudo-code

representation of the SAS instruction is shown as:

function SAS (old_element: address, new_element: value, location: address)

atomic {
temp: val_type := *old_element
*o0ld_element := new_element
*location 1= temp
}

31

5.3 Crash-recovery Procedures

We will now discuss RGLock implementation in a crash-recoverable execution. The primary objective of
a crash-recovery procedure is to identify the protocol the process executed before the crash. Recall that the
checkpointing number chk is used for this purpose. As the shared variables stored on the non-volatile
medium remain persistent during a crash, the process p; in recovery can easily identify its gnode through
its g; pointer. Then, the recovery function to be invoked is determined by the checkpoint value read at line
CR1. If q;.chk is 1, the process had already completed line E2 in its entry protocol before crashing. Then
the recoverBlocked method is invoked at line CR3, which identifies the position of the process in the

linked-list, on the following basis:

a) Ifthe lock pointer L is currently null, it implies that the linked-list is empty and q; was not appended

to it before the crash.

b) If L pointsto g; itself, clearly p; is inthe APPENDED phase, and the next steps in recovery are about
completing the remainder of the entry and exit protocols in that passage.

c) If L points to some other process’s qnode, further investigation is necessary to verify if q; was

appended to the linked-list before the crash or not.

Statements RB7-RB11 in recoverBlocked method construe case (c). We use the findMe function to
determine the membership of g; in the list of gnodes. If findMe determines that g; is reachable by tracing
the ahead pointers starting from the gnode of the tail process in the current linked-list, then the waitForCS
method defined in lines W1 — W6 identifies g;’s predecessor (if exists) and emulates the busy-waiting steps
of the acquire_lock procedure so that the process in recovery maintains the liveness of the system. We
assume that the gnode of a process fits into a single word on the memory and that the read operations in
W?2 incur only one remote memory reference. Particularly, the assumption is that a process p; makes a local
copy of the gnode pointed by q;. ahead in a temporary variable during the first read of the g;. ahead value
and the subsequent read of the value of g;. ahead. next is read from the temporary variable itself instead

of referencing the actual gnode structure on the non-volatile main memory.

The execution returns from waitForCS when q; is promoted (if ever) as the head process, and then p;
completes the recoverHead procedure before returning to NCS at CR8. As p; is already in APPENDED

phase in case (b), it is hence a straightforward execution of waitForCS invoked at line RB5, followed by

32

recoverHead and CR8. For case (a), since the lock is free and p; still remains in DELETED phase as it
has not completed the doorway instruction before the crash, the crash-recovery procedure invokes the
failureFree procedure at line CR4 when the process returns from recoverBlocked with a false

response, which is essentially an execution of a new failure-free passage.

If the checkpoint read at CR1 is 2, it implies that p; was the head when it crashed. Then the recoverHead
procedure is invoked at CR5. As shown in the code, p; can then execute the critical section at RH1 and
eventually release the lock as it would in a failure-free passage. On the other hand, if the checkpoint at CR1
is 3, it indicates that the process had begun executing the exit protocol before crashing and hence, the
recoverRelease method is invoked. Again, there are three possible cases to be considered at this point:

A) L points to null, which implies that p; has already set the lock free, but crashed immediately after

completing line D3. Hence, p; returns to NCS from RRA4.

B) L points to g;, which implies that p; has not set the lock free before crashing and is still the tail.

Hence, the release_lock procedure is invoked at RR6, following which p; returns to NCS at CR8.

C) L points to some other gnode. In such case it is ambiguous whether p; relinquished the lock before
the crash or not. Hence, the findMe method invoked at RR7 determines g;’s membership in the
linked-list. Then p; takes the next steps according to the response returned by the findMe method
and finally returns to NCS at CR8.

Evidently, findMe plays a crucial role in both the crash-recovery procedures described above. As seen
at line F7, the current tail is identified by reading the lock pointer L and a temporary variable is assigned to
it. The idea is to scan through the list of gnodes from the read tail, all the way to the head. Should the scan
find a match in the queue with the invoking process’s gnode, it returns true, otherwise it returns false.
The scan loop at F3 terminates when either the head gnode is reached, or when the number of iterations
reaches a limit of N — 1, where N is the number of processes in the system. The reasoning behind limiting
the loop to N — 1 iterations is that in case a process’s qnode is still referenced by some process in the linked-
list, then it takes a maximum of N — 1 hops to reach its gnode starting from the tail assuming the worst
case of all N processes having their respective gnodes appended to the linked-list. On the other hand, if the
gnode of the invoking process does not exist in the linked-list, then allowing the findMe scan to run for an

unbounded number of iterations would result in a non-terminating loop in case other processes in the system

33

pass through CS infinitely often. Specifically, in an asynchronous system, there exists a possibility of the
findMe scan never reaching a gnode whose ahead pointer is null.

34

Chapter 6

Correctness

In this chapter, the RGLock algorithm is proved correct with respect to the correctness properties of
Recoverable Mutual Exclusion described in Chapter 4. The correctness of our algorithm is derived by an
induction on the length of the execution history or by contradiction where applicable, following the style
of the proof for Generic Queue-based Mutual Exclusion algorithm in [102].

6.1 Notational Conventions

The system in consideration is represented as a triple s = (P, "V, H) where a finite set of processes with
unique identifiers in P ={p4, p, ... py} interact through operations on a finite set of shared variables in V =
{L,q;.ahead, q;.chk, q;.next} in a sequence of steps recorded in an execution history H € H', where # is
a set of all histories starting from the initial state. Unless stated otherwise, i and j are integers that range
over 1...N. A step that occurs in H is denoted by s € H. For any execution histories G, He H, G < H
denotes that G is a prefix of H, and G < H denotes that G is a proper prefix of H. G o H denotes the
concatenation of G and H (i.e., elements of H appended to G). If G is finite, |G| denotes the length of G,
and G[s'..s"'] denotes the subsequence of G consisting of every step s such that s" < s < s”’. The state of
an object v € V at the end of H € # is denoted by v!. For instance, q;. ahead® refers to the state of the
ahead field on p;’s gnode at the end of history H. Finally, p;@label is used to denote the line of code from

the algorithm with the given label a process p; € P is enabled to execute.

35

6.2 Preliminaries

Consider a concurrent system § = (P,V,H) executing the RGLock algorithm. Based on the informal
description in Chapter 5, processes in 2 start from the initial state where each process has a distinct gnode

record in the shared memory. An execution of each passage by a process p; begins when p; is enabled to

execute line CR1 and ends immediately after the first subsequent execution of line CR8. Each concurrent
execution of the RGLock algorithm is expressed as a history H € H in which the shared memory operations
are atomic. H may contain normal steps, CS steps and crash-recovery steps as defined in 3.3. For exposition,
a history variable Q is used, whose state at the end of H is a sequence of process IDs corresponding to those
processes contending for the resource in critical section in H. Q supports append and delete operations. In
particular, p; is appended to Q when the corresponding process executes line E3b in the entry protocol, and
is deleted from Q when the process executes either line D3b or D7b in the exit protocol. A delete operation
removes all instances of p; in Q and has no effect if p; is not in Q. As shown later on in Lemma 6.2.4-(ii)
and in Corollary 6.3.3, Q contains at most one instance of p; at all times and processes delete themselves
from Q in a FIFO order.

Definition 6.2.1. For any finite history H € 7, and any process p; € P, p; € Qfdenotes that p; is in the

sequence of process IDs corresponding to the state of Q at the end of H.

Definition 6.2.2. Let RMEQ denote a linked-list of per-process gnode structures (each denoted by q;)
whose links are determined by their ‘ahead’ pointers. L is a pointer to the tail of RMEQ and L is null
when the lock is free. If there is a gnode q; such that g;.ahead = null and q; € RMEQ, i.e., q; can be
reached by following the ahead pointers from the tail L, then g; is the head of RMEQ. A non-empty RMEQ
is acyclic (from the result of Lemma 6.2.4-(ii) and Invariant-6.3(H, p;)-(e)) either since it has only a single

gnode, or since the head gnode is duly dereferenced by the process itself when it ‘promotes’ its successor.

Informally, RMEQ is the shared data structure that facilitates processes in appending their gnodes at the tail
end for acquiring the lock, and in scanning the list of gnodes from the tail to the head (if required) in a
crash-recovery procedure. The correctness of the RGLock algorithm is proved based on the abstract
properties of RMEQ.

36

Lemma 6.2.3. For any H € #, and any process p; € P, if p; completes line E3b in step s in H, then p;

does not complete E3b again in H after s, unless it first completes line D3b or D7b.

Proof. The lemma is proved by contradiction. Let step s be the first execution of line E3b by process p; in
H. Suppose for contradiction that the hypothesis stated in the lemma is false, i.e., p; completes E3b again
in H after s, say in step s’, without executing D3b or D7b between s and s'. This supposition is denoted by

* for convenience.

Case 1: p; does not crash between s and s’. According to the algorithm, a process p; appends itself to Q
only through an execution of line E3b, and deletes itself from Q only through an execution of either line
D3b or D7b. As per the lines of code corresponding to a failure-free execution (FF1 — FF3), once p;
completes line E3b in a passage, it does not execute E3b again until and unless it has completed lines D3b
or D7bh, and CR8, i.e., the process p; has to complete the exit protocol associated with that passage before

the subsequent execution of line E3b, which contradicts x.

Case 2: p; crashes between s and s, say in step s". Without loss of generality, suppose that s is the last
crash-recovery step taken by p; after s and before s’. Then p;’s steps from s’ to s’ are failure-free. Since
p; takes a crash-recovery step s’ after completing line E3b in step s, the g;. chk value immediately after
s'" depends on the procedures completed by p; between s and s”. Note that g;. chk is set to 1 only at line
E2,to 2 only at line E7 or W5, to 3 only at line D1 and to O at line D4, D8, RR3, or RR9 in the code. The

proof proceeds by a case analysis on the value of g;. chk immediately after s"’.

Subcase 2.1: q;.chk is 1. Then the next steps by p; in recovery in H[s"'..s'] are an execution of
the recoverBlocked method (lines RB1 — RB13) invoked at CR3. Since p; has already completed
line E3b in s, p; € Q holds in H[s..s"] unless it deletes itself from Q by executing line D3b or
D7b in some step in H[s..s"'], which contradicts . Since L = g; by the action of s, the condition
at RB2 holds only if p; sets L = null by completing line D3 in H[s..s"], which contradicts *.
Moreover, the findMe method invoked at RB8 returns false only if p;’s gqnode is not found in the
linked-list RMEQ. Since q; is appended to RMEQ in step s, the only possibility for findMe to return
false is in case if p; completed D7, or if p; set L = null by completing line D3 before some other
processes appended their gnodes to RMEQ, both contradicting x. Consequently, recoverBlocked
cannot return false at either RB3 or RB10, without contradicting . Accordingly, p; completes the

waitForCS procedure invoked either at RB5 or RB9, followed by the recoverHead procedure

37

invoked at RB12, which restricts p; to complete the passage by executing D3b or D7b and return

to line CR8 before s', thus contradicting *.

Subcase 2.2: q;.chk is 2. Then the recoverHead procedure at line CR5 is invoked after s”', which
has code only for executing CS and exit protocol (lines D1 — D9), and the process then returns to
NCS at line CR8 before reaching E3b again in step s’. Thus, H[s"'.. s'] contradicts *.

Subcase 2.3: g;.chk is 3. In recovery, the recoverRelease procedure invoked at line CR6
determines whether the process has already completed the passage through a series of checks at
lines RR2, RR5, and RR7. Since L = q; by the action of s, the condition at RR2 holds only if p;
sets L = null by completing line D3, which contradicts x. And if p; reaches RR5 and if the
condition at RR5 holds, then the release_lock procedure invoked at RR6 will execute D3a or D7b
between s'" and s’, which also contradicts *. Finally, as argued in Subcase 2.1 above, the findMe
method invoked at RR7 after s’ cannot return false without contradicting . Then if findMe at RR7
returns true, then the process deletes itself from Q by executing the release_lock procedure at RR8

and then returns to NCS at CR8, and thus H[s"'..s'] contradicts x.

Subcase 2.4: g;.chk is 0. Then p; has already completed line D4, or D10, or RR3, or RR9 in
H[s..s"'], and this contradicts = because by the structure of the algorithm, line D3b or D7b is

always executed before p; executes line D4, D10, RR3, or RR9.

Lemma 6.2.4. For any finite history H € ', and any process p; € P, the following hold:

i. p; €QY < thereisastepin H, in which p; has completed line E3b and has not completed D3b

or D7b subsequently since its last execution of E3b in H; and

i. QF contains at most one instance of p;.

Proof.

Part (i). The proof proceeds by an induction on |H|.

Base Case: |H|= 0. In such case, every process is in its initial state, has never executed line E3b, D3b or

D7b; and the queue is an empty sequence, i.e., Q¥ = (). Therefore Lemma 6.2.4-(i) holds trivially.

38

Induction Hypothesis (IH): For any k > 0, assume that Lemma 6.2.4-(i) holds for all histories in 7, such
that |H| < k.

Induction Step: Now it is required to prove that Lemma 6.2.4-(i) holds for all H such that |H| = k. Let o

be the last step in H. Perform a case analysis on o.

Case 1: o is an execution of some line of code other than E3b, D3b, or D7b. Then Lemma 6.2.4-(i) follows

directly from the IH because the state of Q does not change by the action of g, even if ¢ is a crash-recovery
step by p;.

Case 2: o is an execution of E3b. Then p; € Q¥ because p; is appended to Q at line E3b, and this implies
Lemma 6.2.4-(i) since p; has not executed either line D3b or D7b in H since its last execution of E3b,
which occurred in step o itself. And for every p; € P where j # i, Lemma 6.2.4-(i) follows directly from

the IH, since p; is neither appended nor deleted from Q by the action of .

Case 3: ¢ is an execution of D3b or D7b. This implies Lemma 6.2.4-(i) because if p; had previously
completed line E3b in H, then it has completed D3b or D7b in step o after its last execution of E3b. And
for every p; € P where j # i, Lemma 6.2.4-(i) follows directly from the IH, since p; is neither appended

nor deleted from Q by the action of o.

This completes the case analysis for part (i) of Lemma 6.2.4.

Part (ii). Proof by induction on |H|.

Base Case: |[H| = 0. In such case, every process is in its initial state, has never executed line E3b, D3b or
D7b; and Q¥ = (). Therefore Lemma 6.2.4-(ii) holds trivially.

Induction Hypothesis (IH): For any k > 0, assume that Lemma 6.2.4-(ii) holds for all histories in ', such
that |H| < k.

Induction Step: Prove that part Lemma 6.2.4-(ii) holds for all H such that |H| = k. Let o be the last step

in H and let G satisfy H = G o ¢. Proceed by a case analysis on a.

39

Case 1: ¢ is not an execution of line E3b by p;. Then o does not append anything to Q. In particular, either
o has no effect on Q or o removes p; from Q at line D3b or D7b. Suppose for contradiction that Lemma
6.2.4-(ii) is false at the end of H. Then Q¥ contains at least two instances of some process pj. Since o does
not add anything to @, all instances of p; are also present in Q¢. This contradicts the IH, which implies that

Lemma 6.2.4-(ii) holds for G, which has length k — 1.

Case 2: ¢ is an execution of line E3b. Then o appends p; to Q. It follows from IH that Lemma 6.2.4-(ii)
holds for H unless p; € Q. Suppose for contradiction that p; € Q¢. Then Q¢ contains exactly one instance
of p; by the IH. In such case, by Lemma 6.2.4-(i), p; completed line E3b in G and did not subsequently
complete D3 or D7 before executing a. Since o is another execution of E3b, this contradicts Lemma 6.2.3.

This completes the case analysis for part (ii) of Lemma 6.2.4.

Observation 6.2.6. For a given state of the history variable at the end of some finite history H i.e., Q¥, the

following functions are defined:
QProcs(Q™) == {p; | p; € Q}

true ifQ=¢()

false otherwise

Qempty(Q™) == {

Qhead(QM) := {0[1] if 1@ >0

null otherwise

Qtail(Q") := {Q[IQI] if 1Q1>0

null otherwise

if (pj,pi) is a subsequence of Q"

red(QH,p,) := {pj
Cp @"%p) null otherwise

. . n.)i H
Osucc(Q", p;) = {pj if {pi,p;) is a subsequence of Q
null otherwise

Following Lemma 6.2.4-(ii), every process p; € QProcs(Q¥) has a unique predecessor and successor

(unless null) in Q¥ i.e., the values of Qpred(Q¥,p;) and Qsucc(Q¥, p;) are uniquely determined.

40

6.3 Recoverable Mutual Exclusion

Invariant 6.3. Let H be any finite history in H and p; be some process in 2. Define lastPred(H,p;) as
the last process appended to Q before p; ’s last execution of line E3 in H, or null if no such process exists;
and lastSucc(H, p;) as the process appended to Q immediately after p; ’s last execution of line E3 in H,

or null if no such process exists. Then the following statements hold, collectively denoted Invariant 6.3-
(H, pi):

a) ifp; & QProcs(Q™) then
q;. ahead™ = null
q;.chk =0or1or3

b) if p; € QProcs(Q") Ap; # Qhead(Q™) then
q;- ahead® # null
q;.-chkf =1

c) ifp; € QProcs(Q") Ap; = Qhead(Q™) then
q;. ahead” = null
q;.-.chk® =1o0r2or3

d) LY = nullifand only if Q = ()

e) RMEQH contains exactly |Q*| elements, and the elements of RMEQH are the gnodes of the

processes in Q*, in that order.
Theorem 6.3.1. For any finite H € #{, Invariant 6.3 holds for H.
Proof. The theorem is proved by induction on |H|.

Basis: |H| = 0. In such case, every p; € P is in its initial state, RMEQ" is empty, i.e., L¥ = null and
Q" = (). Hence, parts (a) and (d) of Invariant 6.3-(H, p;) hold, because for every p; € P, q;.ahead” =
null by initialization, and Q = (). Since Qempty(Q") = true, parts (b) and (c) hold trivially because

their antecedents are false. Part () follows since |Qf| = 0 and RMEQ* is empty.

Induction Hypothesis: For any k > 0, assume Theorem 6.3.1 holds for all histories H € H, such that
|H| < k.

41

Induction Step: Prove that Theorem 6.3.1 holds for all H such that |H| = k. Let o be the last step in H and
let G satisfy H = G o g. Let p; be any process executing . By the IH, Invariant 6.3-(G, p;) holds for all
p; € P. Let s be the last crash-recovery step taken by p; in the current passage, if such a step exists, or L
otherwise. Define critical operation as any step by p; that modifies the state of chk and ahead fields on a
gnode, or the state of L, Q and RMEQ. If ¢ is not a critical operation, then Invariant 6.3-(H, p;) holds by
the IH since the state of L, @, and RMEQ are unmodified by the action of . Therefore, it suffices to show
that the invariant holds when ¢ is a critical operation. The proof proceeds by the following case analysis on

ag.

Case 1: o is an execution of line E2 by p;. Observe that p; @E3 holds at the end of H, by the action of o.
Therefore, if p; € QProcs(Q) holds, then by extending the history H, it follows that p; would eventually
complete E3. Consequently, there would be two instances of p; in Q and this contradicts Lemma 6.2.4-(ii).
Hence, p; € QProcs(Q%) holds. Then since p; is not appended to Q¢ in step o, p; € QProcs(Q™) holds.
Also, g;.chk™ = 1 by the action of o. Therefore, part (a) of Invariant 6.3-(H, p;) holds. Parts (b) and (c)
follow trivially since p; € QProcs(Q). Moreover, since the state of L, Q¢ and RMEQ® remain

unmodified by the action of o, parts (d) and (e) follow by the IH. Additionally, for every p; € P\{p;},

Invariant 6.3-(G, p;) immediately implies Invariant 6.3-(H, p;).

Case 2: o is an execution of line £3 by p;. Note that for every p; € P\{p;}, Invariant 6.3—(G,pj) implies
Invariant 6.3-(H, p]-). It remains to show Invariant 6.3-(H, p;). Now, p;@E3 at the end of G implies p;
completed E2 in its last step in G. Let F be a prefix of G up to and including the step in which p; completed
E2 for the last time in G. Then as explained in Case 1, ;. chk¥ = 1 and p; € QProcs(QF) hold. Also note
that p; is appended to Q only via p;’s completion of line E3, which did not occur in any step in G after F.
Hence, q;.chk® = 1 and p; € QProcs(Q%) hold by the IH. From the algorithm, the SAS instruction at line
E3a sets the lock pointer L to gnode g; by the action of o, and p; is atomically appended to Q¢ within the
same step at E3b. Therefore part (d) of Invariant 6.3-(H, p;) holds since Q* = () and L¥ = g; by the
action of a. It remains to show parts (a), (b), (c) and (e). Consider the following subcases for the state of

the g;. ahead at the end of H by the action of .

Subcase 2.1: g;.ahead®™ = null. Intuitively, L = null holds since the SAS instruction at E3a
stored null in the g;. ahead field in . Then it follows from Invariant 6.3-(G, p;)-(d) that Q¢ = ().
Therefore, since Qf = Q% o (p;) by the action of o, Qpred(Q¥,p;) = null holds, i.e., p; =

42

Qhead(Q™) and implicitly p; € QProcs(Q"). Hence, part (c) of Invariant 6.3-(H,p;) holds as
q;-chk® = 1 is unmodified in o. Parts (a) and (b) follow trivially since p; € QProcs(Q™) and p; =
Qhead(Q™) respectively. And since Qpred(Q¥,p;) = null, |Q*| =1 holds as p; is the only
process appended to Q¢ = () in 0. As q; € RMEQ" and Lf = g; by the action of o, the |Q¥|
elements in RMEQH and Q' are g; and p; respectively, which implies part (e) of Invariant 6.3-

(H' pl)

Subcase 2.2: g;.ahead" # null. Intuitively, L¢ # null holds since the SAS instruction at E3a
stored some non-null value in the g;. ahead field in . Then by Invariant 6.3-(G, p;)-(d), Q¢ # ()
holds, which implies that Qpred(QY,p;) # null since p; € Qprocs(Q™). Recall that p; ¢
QProcs(Q%) holds, which implies Qpred(Q*, p;) is not p; itself. Therefore p; = Qhead(Q™) holds.
Hence part (b) of Invariant 6.3-(H,p;) holds since g;.chk* = 1 holds. Parts (a) and (c) follow
trivially since p; € QProcs(Q") and p; # Qhead(Q") respectively. Invariant 6.3-(G,p;)-(e)
implies that the |Q¢| elements of RME Q¢ are the gnodes of the processes in Q¢, in that order. And
since p; € QProcs(Q%), Invariant 6.3-(G, p;)-(e) implies that g; is not in the elements of RMEQC.
Therefore, since QF = Q¢ o (p;) and L¥ = q; by the action of o, the |Q*| elements in RMEQ* and
Q" are q; appended to elements in RMEQ®, and p; appended to elements in Q¢ respectively, which

implies part (e) of Invariant 6.3-(H, p;) as no other elements in Q¢ and RMEQ¢ are modified by o.

Case 3: o is an execution of line E7 by p;. As in the previous case, for every p; € P\{p;}, Invariant 6.3-
(G, p,) immediately implies Invariant 6.3-(H,p;) and it remains to show Invariant 6.3-(H,p;). Now,
p;@E7 at the end of G implies p; completed line E4 or E6 by reading q;. ahead = null in its last step in
G. As per the lines of code in the algorithm, notice that only p; can delete itself from Q by its completion
of either D3 or D7, which did not occur in any step in G after its last completion of line E3, i.e., p; €
QProcs(Q¢) holds. Then g; € RME Q¢ holds by Invariant 6.3-(G, p;)-(e). And since only p; can overwrite
qi-ahead to a non-null value by completing E3, which did not occur in any step after p;’s last step in G,
q;-ahead® = null holds. Hence, g; is the head of RMEQ¢, by the definition of a head gnode in RMEQ.
Therefore, it follows from part (€) of Invariant 6.3-(G,p;) that p; € QProcs(Q%) holds and also p; =
Qhead(Q%). Thus, part (c) of Invariant 6.3-(G, p;) applies. Since o does not modify the g;. ahead field,
q;- ahead® = null holds by the IH. Also p; = Qhead(Q™) holds since p; is not deleted from Q¢ in step
. Hence, part (c) of Invariant 6.3-(H, p;) holds as q;. chk® = 2 by the action of ¢. Parts (a) and (b) follow
trivially since p; € QProcs(Q™) and p; = Qhead (Q™) respectively. Parts (d) and (e) hold by the IH, since

43

|Q"| = |Q¢| and since the elements in RMEQ and QF are exactly the same as in RMEQ® and Q¢

respectively.

Case 4: ¢ is an execution of RR3 by p;. Note that p; @RR3 at the end of G implies p; completed RR2 in its
last step in G, reading L = null. Let F be a prefix of G up to and including the step in which p; completed
RR2 for the last time in G. Then LF = null implies q; ¢ RMEQF . Therefore q; ¢ RMEQ€ also holds at the
end of G since only p; can append gq; to RMEQ by completing line E3, which did not occur in any step in
G after F. Then by part (e) of Invariant 6.3-(G, p;), p; € QProcs(Q°) holds. And since p; € QProcs(Q%),
Invariant 6.3-(G, p;)-(a) implies q;. ahead® = null. Therefore q;. ahead” = null and p; ¢ QProcs(QH)
also hold since o does not modify the g;. ahead field nor does it append p; to Q¢. Then part (a) of Invariant
6.3-(H,p;) holds since g;.chk =0 by the action of . Parts (b) and (c) follow trivially since p; ¢
QProcs(Q™). Parts (d) and (e) follow by the IH, since Q¥ = Q¢ and RMEQ¥ = RMEQF°.

Case 5: ¢ is an execution of RR9 by p;. Note that p; @RR9 at the end of G implies that either the conditions
at RR2 and subsequently at RR5 and RR7 were not satisfied when p; executed those lines for the last time
in G after its last completion of E3 (i.e., q; and p; were already removed from RMEQ and Q respectively
before p; invoked the recoverRelease procedure), or that p; has returned after the completion of the
release_lock procedure invoked at either RR6 or RR8 (if the condition at RR5 does not hold) after its last
completion of E3 in G. Let F be a prefix of G up to and including the step in which p; completed D3/D7
for the last time. Then p; &€ QProcs(QF) holds. And as per the lines of code in the algorithm, since p; does
not append itself to Q by completing E3 in any step in G after F, p; € QProcs(Q%) holds, which implies
q; € RMEQC by part () of Invariant 6.3-(G, p;). The analysis from this point is as in Case 4.

Case 6: o is an execution of line W5 by p;. Note that for every p; € P\{p;}, Invariant 6.3-(G,p;)
immediately implies Invariant 6.3-(H,p;) and it remains to show Invariant 6.3-(H, p;). Notice that p;
invokes recoverBlocked after its last crash step s in G only if g;.chk = 1 immediately after s, which
implies p; completed E2 but did not subsequently complete E7 or W5 before s. And since q;.chk is not
modified in any line of code in the execution path of CR3 — RB5/RB9/RB11 - W5, q;.chk® = 1 holds.
Furthermore, if p; @W5 at the end of G via RB5, then since the condition at RB4 is satisfied only if L = g;,
q; € RMEQ® holds as g; is not deleted from RMEQ in any step in G after p;’s last execution of RB4.
Similarly, if p;@W5 at the end of G via RB9, then the fact that the condition at RB8 is satisfied implies
that the findMe method found g; is reachable in the sequence of gqnodes starting from L, i.e., g; € RMEQ.

44

And since g; is not deleted from RMEQ in any step in G after p;’s last completion of RBS, i.e., in the
execution path of lines CR3 — RB5/RB9/RB11 - W5, q; € RMEQC holds. On the other hand, if p;,@W5
via RB11, i.e., if q;.next # null holds when p; executes RB7 for the last time in G, it follows that some
process p; = lastSucc(G, p;) # null has set q;.next to a non-null value in some step, say s’, in G after
p;’s last completion of E3. Let F be a prefix of G up to and including s’. Then p; € QProcs(QF) holds.
Next, q;.chk® = 1 implies that p; did not complete either E7 or W5 in any step in G after F. Therefore,
p; € QProcs(Q%) holds since p; does not complete D3/D7 from the exit protocol unless it completes E7
or W5 first, which did not occur in any step in G after F. Hence, q; € RMEQC holds by Invariant 6.3-
(G, pi)-(e).

Since p; is enabled to execute W5 at the end of G, it follows that p; completed either W1 or W4 in its last
step in G by reading q;. ahead = null. Observe that the g;. ahead field can subsequently be overwritten
to a non-null value only via p;’s completion of E3, which did not occur in any step in G after p;’s last step
in G. Hence, q;.ahead® = null holds by the IH. Moreover, q;.ahead® = null implies g; is the head of
RMEQ and p; = Qhead(Q®) holds by Invariant 6.3-(G, p;)-(€). Since o does not modify Q or RMEQ, it
follows that g; is the head of RMEQ" and p; = Qhead(Q"). Hence, Invariant 6.3-(H, p;)-(c) holds as
q;.chk™ = 2 by the action of o. Parts (a) and (b) follow trivially since p; € QProcs(Q*) and p; =
Qhead(Q™) respectively. Parts (d) and (e) follow by the IH since Q¢ and RME Q¢ are unmodified in o.

Case 7: o is an execution of line D1 by p;. Note that p; is enabled to execute line D1 in o if p; invoked the
release_lock procedure at either FF3, RH2, RR6 or RR8 at the end of G. From the structure of the
algorithm, if p;@D1 at the end of G via FF2 or RH2 then q;.chk® = 2 holds, or q;.chk® = 3 otherwise.
Intuitively, p; appended itself to Q for the last time in some step s’ in G, since line E3 always precedes the
line of code in which g;. chk is set to 2 or 3. Now, suppose for contradiction that q; € RMEQC¢. Then by
Invariant 6.3-(G,p;)-(e), p; € QProcs(Q%). However, since only p; can delete itself from Q, p; &
QProcs(Q°) implies that p; has completed D3/D7, say in step s, after its last completion of E3 in G. Let
F be a prefix of G up to and including s”. Then g;.chkf = 3 holds since p; is in its exit protocol in step
s"". And as per the lines of code in the algorithm, p; can subsequently overwrite q;.chk to 2 by the end of
G only if it executes either E7 or W5 in G after F. And since p;’s completion of E3 always precedes its
execution of E7 or W5, q;.chk® = 2 contradicts step s’. Then as p; does not reset the g;. chk value to 2 in
any step in G afters”, q;. chk® = 3 holds. Now if p;@D1 at the end of G via FF3 or RH2, then it contradicts
p;’s completion of s’ in G after s’, since q;. chk is always 2 when p;@FF3/RH2. On the other hand, if

45

p;i@D1 at the end of G via RR6 or RR8, then the fact that the condition at RR5 or RR7 is satisfied
contradicts the hypothesis that g; is deleted from RMEQ by the action of s’ and remains deleted till the end
of G.

Therefore, g; € RMEQ® holds and p; € QProcs(Q%) also holds by Invariant 6.3-(G, p;)-(e). And since
q;-chk@ is 2 or 3, Invariant 6.3-(G, p;)-(c) implies that p; = Qhead(Q%) and q;.ahead® = null. Then
since p; is not removed from Q¢ and since the g;. ahead field is unmodified in step o, p; = Qhead(Q™)
and q;. ahead™ = null hold, which implies Invariant 6.3-(H, p;)-(c) since g;.chk™ = 3 by the action of
o. Parts (a) and (b) follow trivially since p; € QProcs(Q*) and p; = Qhead(Q™) respectively. Since o
does not modify the state of @ and RMEQ, parts (d) and (e) hold by the IH. Additionally, for every p; €

P\{p;}, Invariant 6.3-(G, p;) immediately implies Invariant 6.3-(H, p;).

Case 8: ¢ is an execution of line D3 by p;. Since p;@D3 at the end of G succeeds p;’s completion of D1,
it follows from the analysis of Case 7 that p; € QProcs(Q%), p; = Qhead(Q%), q; € RMEQC,
q;-ahead® = null,and q;.chk® = 3 hold since p; and g; are not removed from Q and RMEQ respectively,
in any step in G after p;’s last completion of D1. Note that for every p; € P\{p;} Invariant 6.3—(G,pj)
immediately implies Invariant 6.3—(H, pj). It remains to show Invariant 6.3-(H,p;). Since o does not
modify the q;.ahead and gq;. chk fields, q;. ahead” = null and g;.chk™ = 3 hold. Now, the state of Q
and RMEQ at the end of H depends on the result of the CAS operation at D3a in . Consider the following

subcases for the same.

Subcase 8.1: CAS returns true. Then the CAS is followed by the delete operation on Q within the
same step at D3b. Therefore, part (a) of Invariant 6.3-(H, p;) holds since p; € QProcs(Q™) by the
action of o and since g;. ahead®™ = null. Parts (b) and (c) follow trivially as p; € QProcs(Q™).
Observe that the CAS at D3a in o succeeds only if L¢ = q;, i.e., if lastSucc(G, p;) = null. Then
since g; is the tail of RMEQC, it follows from Invariant 6.3-(G, p;)-(e) that p; is also the tail element
of Q¢. Also, by Lemma 6.2.4-(ii), Q¢ contains at most one instance of p;. Therefore, parts (d) and
(e) of Invariant 6.3-(H, p;) follow since L = null and Q¥ = () hold, as o removes the only element
from both the sequences RMEQ¢ and Q¢, and thus |Q*| = 0.

Subcase 8.2: CAS returns false. In such case, the subsequent delete operation at line D3b is not
executed, i.e, the state of Q is not modified, which implies p; € QProcs(Q*) holds by the IH since

p; € QProcs(Q%). Since p; = Qhead(Q¢) and as p; is not deleted by the action of o, p; =

46

Qhead(Q™) holds, which also implies Qf # (). Therefore part (c) of Invariant 6.3-(H, p;) holds
since q;. chk™ = 3 and q;. ahead"” = null. Parts (a) and (b) follow trivially since p; € QProcs(Q™)
and p; = Qhead(Q™), respectively. And since RMEQ®, L¢ and Q¢ are unmodified by the action of
o, parts (d) and (e) hold by the IH.

Case 9: g is an execution of D4 by p;. Since p; reaches D4 in step ¢ only if it completed D3, and particularly
if the CAS at D3a succeeds, in its last step in G, it follows from the analysis of Case 8 (specifically from
Subcase 8.1) that p; € QProcs(Q%) and g;. ahead® = null. Also note that p; is added to Q only via p;’s
completion of E3, which did not occur in any step after p;’s last step in G. Therefore, p; € QProcs(Q™)
and q;. ahead" = null hold. Hence, part (a) of Invariant 6.3-(H, p;) holds since g;. chk® = 0 by the action
of o. Parts (b) and (c) hold trivially since p; € QProcs(Q™). Parts (d) and () hold by the IH since the state
of Q¢, L¢ and RMEQ® remain unmodified in o. Additionally, for every p; € P\{p;} Invariant 6.3-(G, p)

immediately implies Invariant 6.3—(H, pj).

Case 10: o is an execution of line D7 by p;. Note that p;@D7 at the end of G implies that p; invoked the
release_lock procedure at either FF3, RH2, RR6 or RR8 after its last completion of E3 in G and as
explained in Case 7, q; € RMEQ® holds. Moreover, p;@D7 at the end of G holds only if p; did not
successfully complete D3 (if ever reached) in G after its last completion of E3, which also implies q; €
RMEQ°®. Therefore by Invariant 6.3-(G,p;)-(e), p; € QProcs(Q%) holds. Also, g;.chk® = 3 holds since
g;- chk is not overwritten by any process in any step in G after p;’s last completion of D1, and hence, by
part (c) of Invariant 6.3-(G,p;), p; = Qhead(Q%) and q;.ahead® = null hold. Furthermore, p;@D7
implies p; completed either D2 or D6 in its last step in G, reading q;. next® # null. Since the g;. next field
is set to a non-null value only by lastSucc(G, p;) when it completes E5 or W3 in its own passage, p; =
lastSucc(G, p;) # null holds. And since Qsucc(Q¢,p;) = p; applies by the order of the append operations
executed by p; and p; in G, q;.ahead = g; holds by Invariant 6.3-(G,p;)-(e), i.e., p; sets q;.next = q;
when it completes E5 or W3 in its own passage, for the last time in G. As p; overwrites g;. next to null
only when it completes E1, which did not occur in any step in G after p;’s last completion of E3,

g;.next® = q; holds. Furthermore, p; € QProcs(Q%) implies Q¢ # (), and hence L® # null by Invariant

6.3-(G, pi)~(d).

Now, observe that p; promotes p; by the operation at D7a in o and deletes itself from Q¢ at D7b. Hence,

p; € QProcs(Q™) holds by the action of . And since the g;. ahead and gq;. chk fields are unmodified in

47

0, q;.ahead® = null and g;. chk® = 3 hold, which implies part (a) of Invariant 6.3-(H, p;). Parts (b) and
(c) follow trivially since p; € QProcs(Q"). Note that lastSucc(H,p;) = Qhead(Q™) holds and
specifically, Q' (). Moreover, since L¢ # null is unmodified by o, L # null holds, which implies part
(d) of Invariant 6.3-(H, p;). Finally, since each process has at most one instance of its process ID in Q¥ (by
Lemma 6.2.4-(ii)), the sequences Q# and RME Q" are the same as Q¢ and RME Q¢ with their head elements

p; and g; removed by the action of o, respectively. Hence part (e) of Invariant 6.3-(H, p;) holds.

Next, consider Invariant 6.3-(H, p;). Recall that by the action of o, p; = Qhead(Q") and q;. ahead" =
null hold. Therefore part (b) of Invariant 6.3-(G,p]-) applies as p; # Qhead(Q%), and hence qj- chk® =
1 holds. Then by the result of the operation in g, part (c) of Invariant 6.3—(H, pj) holds, since q;. chkf =1
is the same as q;. chk©. Parts (a) and (b) follow trivially since their antecedents are false. And the analysis
for parts (d) and (e) of Invariant 6.3—(H, pj) is similar to the analysis for parts (d) and () of Invariant 6.3-

(H, p;). Additionally, for every p, € P\{p;, p;}, Invariant 6.3-(G, p,) immediately implies Invariant 6.3-
(Hr pk)

Case 11: ¢ is an execution of line D8 by p;. Note that p; @D8 at the end of G implies p; completed D7 in
its last step in G. Then following the analysis of Case 10, p; & QProcs(Q¢) holds since p; is not appended
to Q in any step in G after p;’s last completion of D7. And since p; not appended to Q¢ by the action of o,
p; € QProcs(Q™) holds. Therefore, part (a) of Invariant 6.3-(H, p;) holds since g;. chk = 0 by the action
of . Parts (b) and (c) follow trivially since their antecedents are false and parts (d) and (e) hold by the IH

as the state of Q and RMEQ remains unmodified in o.

Case 12: ¢ is a crash-recovery step by p;. By the definition of a crash-recovery step, only the program
counter of p; is reset to line CR1 at the end of H by the action of o and hence the state of p;’s qnode, RMEQ
and Q remain unmodified in ¢. Since no shared variable is modified by o, Invariant 6.3-(H, p;) holds by
the IH.

Corollary 6.3.2. The RGLock algorithm satisfies Mutual Exclusion.

Proof. Say process p; € P is in the CS in passage m at the end of a finite history H € H. Then according
to the algorithm, if p; is enabled to execute the CS step at FF2 or RH1 at the end of H, it follows that p;

48

completed either E7 or W5 in its last step in H. Therefore, q;. chk® = 2. Moreover, p; is in the CS at the
end of H if its gnode g; is the head of RMEQY i.e., if g; € RMEQ" and q;. ahead® = null. Then by part
(c) of Invariant 6.3-(H, p;), p; = Qhead(Q™) holds. This implies the corollary, since no two processes can

simultaneously be the head of the sequence Q.

Corollary 6.3.3. The RGLock algorithm satisfies First-Come First-Served.

Proof. Suppose for contradiction that there exists a finite history H € H in which process p; € P completes
line E3 in passage 7 and process p; € P\{p;} completes line E3 in passage = such that lastSucc(H, p;) =
p;, and at the end of which, p; is in the CS in passage » but p; has not completed the CS step in passage
m. In particular, p; has not executed line D7 in passage # in H. In such case, based on the order of
completion of line E3 by the processes, Qpred(QH,pj) = p; holds since the sequence Q' contains the
elements (p;, p;) appended in that order. Whereas, by Theorem 6.3.1 and Invariant 6.3(H, p;)-(c), if p; is
in the CS at the end of H, then Qhead (Q") = pj» Which contradicts with the order of elements in Q™ since

p; did not complete line D7 in any step in H.

Lemma 6.3.4. In a crash-recoverable execution, the findMe method terminates in a finite number of

steps.

Proof. In a crash-recoverable history H € H in which some process p; begins executing the findMe
method in some passage m, the scanning loop in F3 — F9 either terminates when the gnode of the invoking
process is found as identified by the condition temp = g; at F7, or when the loop reaches the head gnode
in RMEQ as identified by the condition at F5, or when the loop performs a maximum of N — 1 iterations

as identified by run < N at F3. Hence, the lemma holds.

Theorem 6.3.5. The RGLock algorithm satisfies Starvation Freedom.

Proof. Suppose for contradiction that there is an infinite crash-recoverable history H € H starting from an

initial state, in which some process p; begins the entry protocol in some passage m and never reaches the

49

CS step in passage m. This hypothesis is denoted by I, for convenience. Consider the following cases for

the type of passage p; is in at the end of H.

Case 1: m is a failure-free passage for p; in H. Then according to the hypothesis, p; loops forever at line
E6 in passage m, reading q;. ahead # null repeatedly. Say p; completed its doorway (line E3) for the last
time in H in step s; and line E4 in s;’. Let E be a prefix of H up to but not including step s; and F be a
prefix of H up to and including step s;’. Choose p; so that |E| is minimal. If q;. ahead in step s;" is null,
then p; branches to line E7 in H immediately after s;’. As p; does not execute line E6 in such case, passage
m contradicts 7. Now suppose that g;.ahead? = qj, Where g; is the gnode of process p; =
lastPred(F,p;) as per Invariant 6.3-(F, p;)-(e). Note that since p; loops at E6 as per the hypothesis, p; has
already completed E5 in H after s; and thus p; does not loop forever at D6 in its own passage. Also note
that p;’s last execution of E1 precedes step s; and hence q;.next field is not overwritten by p; unless p;
subsequently completes D7 first after its last completion of E3. Then, since E is minimal and H is fair, p;
eventually executes line D7 in its own passage, say in step s; in H. Now let G be a prefix of H up to and
including step s;, such that F < G < H. Then g;. ahead® = null by the action of sj, Which contradicts p;

looping forever at line E6 in passage m in H after the prefix G.

Case 2: m is a crash-recoverable passage for p; in H. Then by the structure of the algorithm, p; may loop
forever at either line E6, or W4 in passage m, depending on which line in the entry protocol (lines E1 —
E7) p; crashes at. Note that by the result of Lemma 6.3.4, the findMe method invoked within the
recoverBlocked method terminates in a finite number of steps and hence p; does not loop forever at F3
if it ever invoked the findMe method after its last completion of E3 in H. Moreover, since the
recoverHead and recoverRelease methods are invoked in passage m immediately after its last crash-
recovery step in H only if p; crashes after completing line E7 or W5, and line D1 respectively, it follows
that p; is either enabled to execute the CS step (as FF2 is always executed immediately after E7, and RH1
is always executed after W5 in the algorithm), or that the CS step has already been taken in passage m (as
either FF2 or RH1 is always executed immediately before D1 in the algorithm). Hence, cases where the
recoverHead and recoverRelease methods are invoked immediately after p;’s last crash are not
considered in this section as they contradict the original hypothesis. In particular, p; must loop forever
either at £6 in acquire_lock or at W4 in waitForCS invoked via recoverBlocked. Say p; completed its
first step in passage m in s, and s’ is the last crash-recovery step taken by p; in H. The proof proceeds by a

case analysis on p;’s execution before s’

50

Subcase 2.1: p; did not complete line E2 in H[s..s']. Then since q;. chk is not set to 1 in any step in
HJ[s..s'], the recoverBlocked method is not invoked even if p; crashed in any step before s'.
Therefore, since g;. chk = 0 at the beginning of passage m, the g;. chk value remains unmodified in
H[s..s'] since p; did not complete E2 in any step in H after s and moreover, p; cannot execute any
of the lines E7, D1, D4, D8, W5, RR3 or RR9 in passage m unless it completes E2 first. Hence the
failureFree procedure is invoked immediately after s’.The analysis from this point is as in Case 1.

Subcase 2.2: p; completed line E2, but did not complete E3 in H[s..s']. Note that since p; did not
complete line E3 before its last crash, its gnode is not appended to RMEQ. Hence, the
recoverBlocked method invoked immediately after s’ returns false either when the condition at
line RB2 is satisfied or when the findMe method invoked at RB8 returns false. In particular, since
p; did not complete E3 in H before s’, and since g; is not appended to RMEQ after s’ at any line in
the recoverBlocked procedure, the findMe scan (if ever invoked in H after s”) cannot locate g; in
RMEQ. Consequently, p; then executes the failureFree procedure invoked at CR4. Therefore, the
analysis from this point is as in Case 1.

Subcase 2.3: p; completed line E3, but did not complete E7 in H[s..s']. Then the g;.chk value
immediately after s’ is 1 and the recoverBlocked method invokes waitForCS, say in step s”’, when
the condition at either line RB4 or RB8 is satisfied or when the condition at RB7 is not satisfied and
RB11 is reached. Let F'"’ be a prefix of H up to but not including s". If the last step by p; in F"" is an
execution of RB4, the condition at RB4 holds only if g; is the tail of RMEQF". Consequently, when

waitForCS is invoked in s”, if g;.ahead® = null, then p; branches to W5. And since H is fair,
p; is eventually enabled to execute the CS step at RH1 in the recoverHead procedure invoked at
RB12, which contradicts §. Whereas, if the condition at W1 is satisfied, i.e., if q;. ahead? =+ null,
it follows that lastPred(F",p;) #null (by Invariant-6.3(F",p;)-(€)) and particularly,
lastPred(F",p;) has not completed D7 in its own passage in F'' since s’ because if
lastPred(F",p;) completed D7, then subsequently p; would not loop forever at E6 or W4 in H,
which contradicts 1. And since H is fair, p; loops at line W4 only until lastPred(F",p;) executes
line D7 in its own passage (observe that p; completes E5 or W3 as per the hypothesis and hence
lastPred(F",p;) does not loop forever at D6 in its own passage), in which the g;. ahead field is set
to null, contradicting the hypothesis that p; loops forever at line W4 in passage m in H after the

prefix F"'. Similarly, if p; invoked waitForCS at RB9 or RB11, then p; reaches line W4 only if the

51

condition at W1 is satisfied, which implies that g; has a non-null predecessor in RMEQ, and hence
p; loops at W4 only until that predecessor completes line D7 in its own passage, which also

contradicts the hypothesis that p; loops forever at W4 in passage m after F' in H.

Corollary 6.3.6. The RGLock algorithm satisfies Livelock Freedom.

Proof. The result follows directly from Theorem 6.3.5.

Theorem 6.3.7. The RGLock algorithm satisfies Terminating Exit.

Proof. Suppose for contradiction that there is an infinite crash-recoverable history H € in which some
process p; begins executing its exit protocol and never completes the exit protocol in some passage m.
Specifically, since the exit protocol contains only atomic operations other than the waiting loop at D6, it
follows from the hypothesis that p; loops forever at line D6 because p; crashes only a finite number of
times in the crash-recoverable history H. Say p; executed line D1 for the last time in H in step s and let s’
be the first subsequent execution of line D6 by p; in passage m. Let G be a prefix of H up to and including
the step in which p; completed D2 for the last time in H (if q;. next # null at D2) or up to and including
the step in which p; executed D3 for the last time in H (if q;. next = null at D2). And if p; executed D2
or D3 in its last step in G, then by the result of Theorem 6.3.1 and Invariant-6.3(G, p;)-(c) that p; =
Qhead(Q%). Therefore q; € RMEQC holds by Invariant-6.3(G, p;)-(e).

Intuitively, p; executed step s’ as a result of the condition at D2 not holding, or as the CAS instruction at
D3 (if ever executed in H[s..s']) returning false, which implies that L¢ # q;, i.e., lastSucc(G, p;) # null.
Let p; = lastSucc(G,p;). Then the SAS instruction at E3a sets q;.ahead = q; when p; completed E3
after p;’s last execution of E3 in G. Since H is fair, p; eventually executes line E5 in some step s” in H, in
which it sets q;. ahead.next = q;, which contradicts the hypothesis that p; repeatedly reads q;. next =
null forever at D6 after step s” in H. Moreover, note that p; resets q;. next back to null at E1 after p;’s
completion of E'5, only when it begins executing the entry protocol in a new passage, which contradicts the

original hypothesis.

52

Theorem 6.3.8. The RGLock algorithm satisfies Finite Recovery.

Proof. Suppose for contradiction that in some crash-recoverable history H € ', some process p; crashes
for the last time in H in step s while executing a passage m and never reaches NCS at line CR8. Then
following the result of Lemma 6.3.4, Theorem 6.3.5, and Theorem 6.3.7, p; completes any of the crash-
recovery procedures invoked immediately after s and eventually reaches line CR8 in a finite number of
steps without looping forever at any of the lines E6, W4, F3, or D6, which contradicts the original

hypothesis.

Theorem 6.3.9. The RGLock algorithm incurs O(1) RMRs per process per failure-free passage.

Proof. Note that since any write operations on the ahead, chk, and yielded fields on a gnode incur at
most one RMR each, and the number of such operations outside of any loops in a failure-free passage is
0(1). Therefore, it suffices to show that a process incurs at most 0(1) RMRs in a failure-free passage in
the busy-waiting loops at lines E6 and D6 in the entry and exit protocols respectively. A process p; € P
executing the busy-wait loop (if ever) at line E6 incurs one RMR for establishing a local cached copy of
q;-ahead and an unbounded number of local reads of the cached value until some process p; € P\{p;}
overwrites the g;. ahead field in the main memory by completing D7 in its own passage and invalidates
p;’s cached copy. Therefore a subsequent cache miss for p; implies that the value in the main memory has
been modified. Note that p; can write only to its own q;.ahead field when it executes line E3 and does
not affect q;. ahead field. Hence, p; terminates the busy-waiting loop after at most two RMRs in total.
Similarly, in the exit protocol, a process waiting (if ever) at line D6 for its successor, say py, to update the
q;-next field by completing E5 in its own passage, incurs at most two RMRs in total. Note that p, only

writes to the next field on its own gnode in E'1.

53

Chapter 7

Conclusion and Future Work

In this thesis, we introduced RGLock, an innovative locking mechanism for guaranteeing mutual exclusion,
fairness and liveness in presence of crash failures in a crash-recovery model of emerging shared memory
systems that incorporate a dedicated non-volatile main memory. Earlier attempts at making spin-locks
recoverable suffer from a variety of shortcomings, such as a lock-holder losing ownership of the lock when
crashed within the Critical Section, violation of starvation freedom in lock acquisitions and/or the inability
to maintain the first-come-first-serve ordering. To the extent of our knowledge, our work is the first of its
kind to formalize ‘Recoverable Mutual Exclusion’ as a novel correctness property for lock data structures
whose state can be recovered from the non-volatile main memory following the failure of one or more of

the contending processes in the system.

Despite their simplicity and having only a small number of lines of code, several existing mutex lock
designs for multiprocessor computing contain very subtle aspects that make them difficult to prove
correctness [52]. Our work presented a comprehensive proof of correctness for the proposed locking
mechanism based on the assumed execution model. We believe that the ability to recover a spin lock is
particularly valuable in transaction processing systems, which are intended to run indefinitely. Especially
in long-running high performance computing applications, it may add a distinct advantage to exploit the
benefits of recoverable in-memory computing. This chapter summarizes our contributions and identifies

some potential avenues for further research.
7.1 Summary

In Chapter 1, we began by motivating the need for finding alternatives to the existing mutual exclusion
algorithms when implementing highly concurrent data structures in a crash-recovery model. We give an
account of spin-lock designs in existing literature and recount the benefits the scalable queue-based local-

spin algorithm of MCS lock provides. Furthermore, we reiterate the limitations of the original MCS lock

54

algorithm in a crash-recovery model when implemented “out of the box” in a system augmented with a

non-volatile main memory, and finally set forth our objectives for a new crash-recoverable mutex.

In Chapter 2, we discussed the related work in the field of mutual exclusion algorithms as well as the
advancements in development of media, concurrent data structures, and application interfaces which can
exploit the persistence offered by non-volatile random access memory. We also recapitulate the
shortcomings in prior efforts to design a crash-recoverable mutex, showing that they are impractical for our
objectives due to the unrealistic constraints they place on the operating system and due to an inability to
avoid a violation of at least one of the fairness or liveness properties in presence of crash failures. We
highlight the significance of the performance potential of non-volatile main memory systems as a catalyst

for inventing a crash-recoverable mutex that overcomes the limitations in prior work.

In Chapter 3, we present our execution model for the emerging multiprocessor systems that incorporate
non-volatile main memory on a cache-coherent platform. We state our assumptions for the layout of the
shared memory and the atomic primitives that are used by the processes in the system for accessing the
shared objects, followed by a discussion of the terminology and definitions used in the failure-free and
crash-recoverable execution histories. The uniqueness in our model is in the reliance on a persistent storage
medium that preserves the shared state of each process irrespective of the number of crash failures occurring
in multiple processes in the system.

In Chapter 4, we formalize the correctness properties of a recoverable mutual exclusion algorithm and
highlight the importance of any crash-recoverable algorithm conforming to each of these properties.
Specifically, we do not lay any constraints with respect to crash failures being restricted to occur only
outside the critical section of the program. This distinguishes our correctness property from almost every

prior attempt at creating a recoverable mutex lock in the existing work, as outlined in Chapter 2.

In Chapter 5, we present the main contribution of this thesis: the first crash-recoverable mutual exclusion
algorithm for modern multiprocessor architectures with non-volatile main memory. We propose a special
atomic instruction called swap_and_store (SAS) as an alternative to the existing fetch_and_store operation
used in the doorway instruction, to facilitate the contending processes in joining a linked-list of per-process
lock access structure as well as atomically registering either their ownership of the lock or their position in
the sequence of processes lined up for acquiring the lock within a single step. Finally, in Chapter 6, we
prove the correctness of our algorithm and justify the objectives laid out in the thesis for a crash-recoverable

mutual exclusion lock.

55

7.2 Future Research

RGLock creates a scope to think beyond the traditional algorithms to maintain mutual exclusion and
liveness properties in the context of crash-recovery. Nevertheless, there is limitation in our model that may
have to be addressed to create more readiness among the practitioners to implement the algorithm in their
architectures. It is not yet clear that the atomic SAS instruction will allow efficient implementation of a
richer set of data structures, keeping in mind the advancements in software and hardware transactional
memories. Specifically, the transactional semantics of the SAS instruction places an unusual requirement
on contemporary multiprocessor architectures, and practitioners might favor implementations with
transactional memories combined with some fault-tolerance mechanism such as write-ahead-logging,
checkpointing, etc., over having to modify existing atomic primitives supported by the hardware in current
generation computers. Further investigation of programming techniques and analysis of suitable schemes
is required to find an appropriate implementation for the proposed atomic instruction and presenting these
abstractions to programmers without much dependence on transactional memories, for that dissolves the

very purpose of lock-based concurrency control.

Finally, in our initial quest to find one of the best known mutual exclusion algorithms that is also suitable
for a crash-recovery model, we have considered Lamport’s Bakery algorithm [11] as a potential candidate
solution for the desirable liveness and fairness properties it offers. Particularly, the Bakery algorithm is one
of the first mutual exclusion algorithms that considered failures in any individual components. The notion
of fault-tolerance in this algorithm is that any process that fails, halts in its NCS, and may eventually restart
with its shared variables reset to their default values. At the outset, this lock might seem trivially recoverable
since the state of any process with respect to the lock following a crash failure may be determined
immediately by inspecting the state information of its spin variable (‘number’, as labeled in [11]), provided
that the shared variables are stored in the non-volatile memory. However, restricting a process from leaving
the procedure it executes each time it crashes requires a carefully designed recovery protocol that is beyond
trivial. Moreover, the Bakery algorithm also uses unbounded registers for ‘number’. Nonetheless, for its
sheer elegance, the Bakery algorithm is indeed an interesting solution to pursue in a crash-recoverable
context, given that it satisfies all of the desired properties such as starvation freedom, doorway-FIFO, and

wait-free exit, besides guaranteeing mutual exclusion.

56

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

F. M. David and R. H. Campbell, “Building a self-healing operating system,” Proceedings - DASC
2007: Third IEEE International Symposium on Dependable, Autonomic and Secure Computing, pp.
3-10, 2007.

G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox, “Microreboot-A Technique for Cheap
Recovery.,” OSDI, pp. 31-44, 2004.

K. Bailey and L. Ceze, “Operating system implications of fast, cheap, non-volatile memory,”
Proceedings of the 13th USENIX conference on Hot topics in operating systems. USENIX
Association, pp. 2-2, 2011.

E. W. Dijkstra, Co-Operating Sequential Processes. 1968.

E. W. Dijkstra, “Solution of a problem in concurrent programming control,” Communications of the
ACM, vol. 8, no. 9, p. 569, 1965.

L. Lamport, “The mutual exclusion problem: part |---a theory of interprocess communication,”
Journal of the ACM, vol. 33, no. 2, pp. 313-326, 1986.

M. Michael and M. Scott, “Simple, fast, and practical non-blocking and blocking concurrent queue
algorithms,” Proceedings of the fifteenth annual ACM symposium on Principles of distributed
computing. ACM, pp. 267-275, 1996.

P. Magnusson, A. Landin, and E. Hagersten, “Queue locks on cache coherent multiprocessors,”
Proceedings of 8th International Parallel Processing Symposium, pp. 165-171, 1994.

T. Johnson and K. Harathi, “A prioritized multiprocessor spin lock,” IEEE Transactions on Parallel
and Distributed Systems, vol. 8, no. 9, pp. 926-933, 1997.

J. H. Anderson, Y. J. Kim, and T. Herman, “Shared-memory mutual exclusion: Major research
trends since 1986,” Distributed Computing, vol. 16, no. 2-3, pp. 75-110, Sep. 2003.

L. Lamport, “A new solution of Dijkstra’s concurrent programming problem,” Communications of
the ACM, vol. 17, no. 8, pp. 453-455, Aug. 1974.

J. Goodman, “Using cache memory to reduce processor-memory traffic,” ACM SIGARCH
Computer Architecture News, 1983.

L. Rudolph and Z. Segall, Dynamic decentralized cache schemes for MIMD parallel processors.
1984.

57

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

T. E. Anderson, “Performance of spin lock alternatives for shared-memory multiprocessors,” IEEE
Transactions on Parallel and Distributed Systems, vol. 1, no. 1, pp. 6-16, 1990.

J. Mellor-Crummey and M. Scott, “Algorithms for scalable synchronization on shared-memory
multiprocessors,” ACM Transactions on Computer Systems (TOCS), vol. 9, no. 1, pp. 21-65, 1991.

C. P. Kruskal, L. Rudolph, and M. Snir, “Efficient synchronization of multiprocessors with shared
memory,” ACM Transactions on Programming Languages and Systems, vol. 10, no. 4, pp. 579-
601, 1988.

G. Graunke and S. Thakkar, “Synchronization algorithms for shared-memory multiprocessors,”
Computer, vol. 23, no. 6, pp. 60-69, 1990.

T. E. Anderson, E. D. Lazowska, and H. M. Levy, “Performance implications of thread management
alternatives for shared-memory multiprocessors,” IEEE Transactions on Computers, vol. 38, no. 12,
pp. 1631-1644, 19809.

T. S. Craig, “Queuing spin lock algorithms to support timing predictability,” 1993 Proceedings
Real-Time Systems Symposium, 1993.

M. L. Scott and W. N. Scherer, “Scalable queue-based spin locks with timeout,” ACM SIGPLAN
Notices, vol. 36, no. 7, pp. 44-52, 2001.

T. S. Craig, “Building FIFO and Priority-Queueing Spin Locks from Atomic Swap,” Technical
Report 93-02-02, University of Washington, Seattle, 1993.

H. Lee, “Local-spin mutual exclusion algorithms on the DSM model using fetch&store objects,”
2004.

B. H. Lim and A. Agarwal, “Reactive synchronization algorithms for multiprocessors,” ACM
SIGOPS Operating Systems Review, vol. 28, no. 5, pp. 25-35, 1994,

S. Boyd-wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich, “Non-scalable locks are
dangerous,” Proceedings of the Linux Symposium, 2012.

R. Myers, “Everything You Always Wanted to Know About Synchronization but Were Afraid to
Ask,” Legal Information Management, vol. 11, no. 01. pp. 19-23, 2011.

Y.-I. Y. Chang, M. Singhal, and M. T. M. T. Liu, “A Fault Tolerant Algorithm for Distributed
Mutual Exclusion,” Proceedings Ninth Symposium on Reliable Distributed Systems, pp. 146-154,
1990.

D. Agrawal and A. El Abbadi, “An efficient and fault-tolerant solution for distributed mutual
exclusion,” ACM Transactions on Computer Systems, vol. 9, no. 1, pp. 1-20, 1991.

P. Jayanti, T. Chandra, and S. Toueg, “Fault-tolerant wait-free shared objects,” Journal of the ACM
(JACM), 1998.

58

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

M. K. Aguilera, W. Chen, and S. Toueg, “Failure Detection and Consensus in the Crash Recovery
Model,” Distributed Computing, vol. 13, no. 2, pp. 99-125, 2000.

E. Elnozahy and W. Zwaenepoel, “Manetho: Transparent roll back-recovery with low overhead,
limited rollback, and fast output commit,” IEEE Transactions on Computers, 1992.

M. Prvulovic, Z. Z. Z. Zhang, and J. Torrellas, “ReVive: cost-effective architectural support for
rollback recovery in shared-memory multiprocessors,” Proceedings 29th Annual International
Symposium on Computer Architecture, pp. 111-122, 2002.

D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. a. Wood, “SafetyNet: improving the availability of
shared memory multiprocessors with global checkpoint/recovery,” Proceedings 29th Annual
International Symposium on Computer Architecture, pp. 123-134, 2002.

G. Janakiraman and Y. Tamir, “Coordinated checkpointing-rollback error recovery for distributed
shared memory multicomputers,” Proceedings of IEEE 13th Symposium on Reliable Distributed
Systems, pp. 42-51, 1994,

C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz, “ARIES: a transaction recovery
method supporting fine-granularity locking and partial rollbacks using write-ahead logging,” ACM
Transactions on Database Systems, vol. 17, no. 1. pp. 94-162, 1992.

E. N. (Mootaz) Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A survey of rollback-
recovery protocols in message-passing systems,” ACM Computing Surveys, vol. 34, no. 3, pp. 375—
408, 2002.

D. Patterson and J. Hennessy, Computer organization and design: the hardware/software interface.
2013.

M. Michael and Y. Kim, “Fault tolerant mutual exclusion locks for shared memory systems,” US
Patent 7,493,618, 2009.

U. Abraham, S. Dolev, T. Herman, and I. Koll, “Self-stabilizing I-exclusion,” Theoretical Computer
Science, vol. 266, no. 1-2, pp. 653-692, Sep. 2001.

P. J. Denning, Mutual exclusion. 1991.
P. Bohannon, A. Si, S. Sudarshan, J. Gava, T. B. Laboratories, M. Avenue, and M. Hill,
“Recoverable User-Level Mutual Exclusion,” Parallel and Distributed Processing, 1995.

Proceedings. Seventh IEEE Symposium on. IEEE, pp. 293-301, 1995.

P. Bohannon, D. Lieuwen, and a. Silbershatz, “Recovering scalable spin locks,” Proceedings of
SPDP °96: 8th IEEE Symposium on Parallel and Distributed Processing, 1996.

S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C. Chen, R. M. Shelby, M. Salinga, D.

Krebs, S.-H. Chen, H.-L. Lung, and C. H. Lam, “Phase-change random access memory: A scalable
technology,” IBM Journal of Research and Development, vol. 52, no. 4.5, pp. 465-479, 2008.

59

[43]

[44]

[45]

[46]
[47]

[48]

[49]

[50]

[51]

[52]

[53]
[54]
[55]

[56]

[57]

[58]

D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing memristor found.,”
Nature, vol. 453, no. 7191, pp. 80-83, 2008.

S. Tehrani, J. M. Slaughter, M. Deherrera, B. N. Engel, N. D. Rizzo, J. Salter, M. Durlam, R. W.
Dave, J. Janesky, B. Butcher, K. Smith, and G. Grynkewich, “Magnetoresistive random access

memory using magnetic tunnel junctions,” Proceedings of the IEEE, vol. 91, no. 5, 2003.

G. R. Fox, F. Chu, and T. Davenport, “Current and future ferroelectric nonvolatile memory
technology,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer
Structures, vol. 19, no. 5, p. 1967, Sep. 2001.

R. Weiss, “Flash memory takes over,” Electron Des, pp. 5664, 2001.
M. Raynal, “Algorithms for mutual exclusion,” 1986.

J. H. Anderson, “Lamport on mutual exclusion,” Proceedings of the twentieth annual ACM
symposium on Principles of distributed computing - PODC 01, pp. 3-12, 2001.

L. Lamport, “A fast mutual exclusion algorithm,” ACM Transactions on Computer Systems, vol. 5,
no. 1, pp. 1-11, 1987.

J. H. Anderson and Y.-J. Kim, “Nonatomic mutual exclusion with local spinning,” Distributed
Computing, pp. 3-12, 2002.

L. Lamport, “Proving the Correctness of Multiprocess Programs,” IEEE Transactions on Software
Engineering, vol. SE-3, no. 2, 1977.

P. A. Buhr, D. Dice, and W. H. Hesselink, “High-performance N -thread software solutions for
mutual exclusion,” Concurrency and Computation: Practice and Experience, 2014.

W. Pierce, Failure-tolerant Computer Design. 1965.
B. Randell, System structure for software fault tolerance, vol. 10, no. 6. 1975.
H. Plattner and A. Zeier, In-Memory data management: Technology and applications. 2012.

P. A. Bernstein and N. Goodman, “An algorithm for concurrency control and recovery in replicated
distributed databases,” ACM Transactions on Database Systems, vol. 9, no. 4. pp. 596-615, 1984.

G. Barnes, “A method for implementing lock-free shared-data structures,” Proceedings of the fifth
annual ACM symposium on Parallel algorithms and architectures, ACM, pp. 261-270, Aug. 1993.

M. Herlihy, “Wait-free synchronization,” ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 13, no. 1, pp. 124-149, 1991.

60

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

M. Herlihy, V. Luchangco, and M. Moir, “Obstruction-free synchronization: double-ended queues
as an example,” Distributed Computing Systems, 2003. Proceedings. 23rd International Conference
on. IEEE, pp. 522-529, 2003.

M. Herlihy, J. Eliot, and B. Moss, Transactional Memory: Architectural Support For Lock-free
Data Structures, 2nd ed. 1993.

N. Shavit and D. Touitou, “Software transactional memory,” Distributed Computing, 1997.

I. Finocchi, F. Grandoni, and G. Italiano, “Designing reliable algorithms in unreliable memories,”
Computer Science Review, 2007.

D. B. Lomet, “Process structuring, synchronization, and recovery using atomic actions,” ACM
SIGSOFT Software Engineering Notes, vol. 2, no. 2. pp. 128-137, 1977.

K. L. Wu, W. K. Fuchs, and J. H. Patel, “Error recovery in shared memory multiprocessors using
private caches,” IEEE Transactions on Parallel and Distributed Systems, vol. 1, no. 2, pp. 231-240,
1990.

N. Neves, M. Castro, and P. Guedes, “A checkpoint protocol for an entry consistent shared memory
system,” PODC ’94: Proceedings of the thirteenth annual ACM symposium on Principles of
distributed computing, pp. 121-129, 1994,

R. E. Ahmed, R. C. Frazier, and P. N. Marinos, “Cache-aided rollback error recovery (CARER)
algorithm for shared-memory multiprocessor systems,” [1990] Digest of Papers. Fault-Tolerant
Computing: 20th International Symposium, pp. 82—88, 1990.

G. Bronevetsky, D. Marques, K. Pingali, P. Szwed, and M. Schulz, “Application-level
checkpointing for shared memory programs,” ACM SIGOPS Operating Systems Review, vol. 38,
no. 5, p. 235, 2004.

L. D. Molesky and K. Ramamritham, “Recovery protocols for shared memory database systems,”
ACM SIGMOD Record, vol. 24, no. 2, pp. 11-22, 1995.

R. Chopra, “Fault Tolerant Distributed Lock Manager,” US Patent 20,130,174,165, 2013.

U. Helmich, A. Kohler, K. Oakes, M. Taubert, and J. Trotter, “Method and system to execute
recovery in non-homogenous multi processor environments.,” US Patent 7,765,429. 27, 2010.

A. Kumar and D. Stein, “Robust and recoverable interprocess locks,” US Patent 6,301,676, 2001.

S. Lee, B. Moon, C. Park, J. Hwang, and K. Kim, “Accelerating In-Page Logging with Non-Volatile
Memory.,” IEEE Data Eng. Bull., vol. 33, no. 4, pp. 41-47, 2010.

M. Wu and W. Zwaenepoel, “eNVy: a NonVolatile main memory storage system,” Proceedings of
IEEE 4th Workshop on Workstation Operating Systems. WWOS-I11, pp. 25-28, 1993.

61

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

R. Bez and A. Pirovano, ‘“Non-volatile memory technologies: Emerging concepts and new
materials,” Materials Science in Semiconductor Processing, vol. 7, no. 4-6 SPEC. ISS., pp. 349—
355, Jan. 2004.

R. H. Katz, D. T. Powers, D. H. Jaffe, J. S. Glider, and T. E. Idleman, ‘“Non-Volatile Memory
Storage of Write Operation Identifier in Data Storage Device,” 1993.

I. Moraru, D. Andersen, M. Kaminsky, and N. Binkert, “Persistent, protected and cached: Building
blocks for main memory data stores,” Work. 2011.

B. Lee, P. Zhou, J. Yang, Y. Zhang, and B. Zhao, “Phase-change technology and the future of main
memory,” IEEE micro, 2010.

P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A Durable and Energy Efficient Main Memory Using
Phase Change Memory Technology,” ACM SIGARCH computer architecture news. ACM., vol. 37,
no. 3, pp. 14-23, 2009.

J. Zhao, “Rethinking the Memory Hierarchy Design With Nonvolatile Memory Technologies,” The
Pennsylvania State University, 2014.

S. Lai, “Current status of the phase change memory and its future,” Electron Devices Meeting, 2003.
IEDM’03 Technical Digest. IEEE International. IEEE, pp. 10-1, 2003.

H. Volos, A.J. Tack, and M. M. Swift, “Mnemosyne : Lightweight Persistent Memory,” Asplos, pp.
1-13, 2011.

M. Baker, S. Asami, E. Deprit, J. Ouseterhout, and M. Seltzer, “Non-volatile memory for fast,
reliable file systems,” ACM SIGPLAN Notices, vol. 27, no. 9, pp. 10-22, 1992.

J. Ouyang, C.-W. Chu, C. R. Szmanda, L. Ma, and Y. Yang, “Programmable polymer thin film and
non-volatile memory device.,” Nature materials, vol. 3, no. 12, pp. 918-922, 2004.

J. D. Coburn, “Providing Fast and Safe Access to Next-Generation, Non-Volatile Memories,”
UNIVERSITY OF CALIFORNIA, SAN DIEGO, 2012.

S. Venkataraman and N. Tolia, “Redesigning Data Structures for Non-Volatile Byte-Addressable
Memory,” in Proceedings of USENIX Conference on File and Storage Technologies (FAST’10),
2010.

S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell, “Consistent and Durable Data
Structures for Non-Volatile Byte-Addressable Memory.,” in Proceedings of the 9th USENIX
Conference on File and Storage Technologies - FAST’, 2011.

D. Li, J. S. Vetter, G. Marin, C. Mccurdy, C. Cira, Z. Liu, and W. Yu, “Identifying opportunities for
byte-addressable non-volatile memory in extreme-scale scientific applications,” Proceedings of the
2012 IEEE 26th International Parallel and Distributed Processing Symposium, IPDPS 2012, pp.
945-956, 2012.

62

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

A. M. Caulfield, A. De, J. Coburn, T. I. Mollov, R. K. Gupta, and S. Swanson, “Moneta: A high-
performance storage array architecture for next-generation, non-volatile memories,” Proceedings of
the Annual International Symposium on Microarchitecture, MICRO, pp. 385-395, 2010.

A. Akel, A. M. Caulfield, T. I. Mollov, R. K. Gupta, and S. Swanson, “Onyx: a protoype phase
change memory storage array,” HotStorage’l1 Proceedings of the 3rd USENIX conference on Hot
topics in storage and file systems, p. 2, 2011.

A. N. Jacobvitz, R. Calderbank, and D. J. Sorin, “Coset coding to extend the lifetime of memory,”
Proceedings - International Symposium on High-Performance Computer Architecture, pp. 222—
233, 2013.

W. Enck, K. Butler, T. Richardson, P. McDaniel, and A. Smith, “Defending against attacks on main
memory persistence,” in Proceedings - Annual Computer Security Applications Conference,
ACSAC, 2008.

J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and D. Coetzee, “Better 1/0
Through Byte-Addressable, Persistent Memory,” Proc. ACM SIGOPS 22nd symposium on
Operating systems principles, pp. 133-146, 2009.

X. Wuand a. L. N. Reddy, “SCMEFS: A file system for Storage Class Memory,” 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis (SC), pp. 1-11,
2011.

J. Coburn, A. Caulfield, and A. Akel, “NV-Heaps: making persistent objects fast and safe with next-
generation, non-volatile memories,” in Proceedings of the sixteenth international conference on
Architectural support for programming languages and operating systems, 2011.

J. C. Mogul, “Operating System Support for NVM + DRAM Hybrid Main Memory,” HotOS, pp.
1-5, 2009.

S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory persistency,” Proceedings - International
Symposium on Computer Architecture, pp. 265-276, 2014.

I. Jeremy, C. Edmund, B. N. Doug, and B. Thomas, “Dynamically Replicated Memory : Building
Reliable Systems from Nanoscale Resistive Memories,” Memory, vol. 38, no. 1, pp. 3-14, 2010.

S. Park, T. Kelly, and K. Shen, “Failure-Atomic msync(): A Simple and Efficient Mechanism for
Preserving the Integrity of Durable Data,” Proceedings of The European Professional Society on
Computer Systems (EuroSys), pp. 225-238, 2013.

R. Danek and W. Golab, “Closing the complexity gap between FCFS mutual exclusion and mutual
exclusion,” Distributed Computing, vol. 23, no. 2, pp. 87-111, Mar. 2010.

[100] N. A. Lynch and M. R. Tuttle, “An Introduction to Input / Output Automata,” CWI Quaterly, vol.

2, no. September 1989, pp. 1-30, 1988.

63

[101] T. Harris, “A pragmatic implementation of non-blocking linked-lists,” Distributed Computing.
Springer Berlin Heidelberg, pp. 300-314, 2001.

[102] W. Golab, “Deconstructing Queue-Based Mutual Exclusion,” Oct. 2012.

64

