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Abstract 

Mutex locks have traditionally been the most popular concurrent programming mechanisms for inter-

process synchronization in the rapidly advancing field of concurrent computing systems that support high-

performance applications. However, the concept of recoverability of these algorithms in the event of a crash 

failure has not been studied thoroughly. Popular techniques like transaction roll-back are widely known for 

providing fault-tolerance in modern Database Management Systems. Whereas in the context of mutual 

exclusion in shared memory systems, none of the prominent lock algorithms (e.g., Lamport’s Bakery 

algorithm, MCS lock, etc.) are designed to tolerate crash failures, especially in operations carried out in the 

critical sections. Each of these algorithms may fail to maintain mutual exclusion, or sacrifice some of the 

liveness guarantees in presence of crash failures. Storing application data and recovery information in the 

primary storage with conventional volatile memory limits the development of efficient crash-recovery 

mechanisms since a failure on any component in the system causes a loss of program data. With the advent 

of Non-Volatile Main Memory technologies, opportunities have opened up to redefine the problem of 

Mutual Exclusion in the context of a crash-recovery model where processes may recover from crash failures 

and resume execution. When the main memory is non-volatile, an application’s entire state can be recovered 

from a crash using the in-memory state near-instantaneously, making a process’s failure appear as a 

suspend/resume event. This thesis proceeds to envision a solution for the problem of mutual exclusion in 

such systems. The goal is to provide a first-of-its-kind mutex lock that guarantees mutual exclusion and 

starvation freedom in emerging shared-memory architectures that incorporate non-volatile main memory 

(NVMM).  
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Chapter 1 

Introduction 

Mutex locks have traditionally been the most popular concurrent programming mechanisms for inter-

process synchronization in the rapidly advancing field of concurrent computing systems that support high-

performance applications. This popularity can largely be attributed to their simplicity in design and ease of 

implementation. The primary objective of a mutex lock is to avoid simultaneous use of shared data by 

labelling certain fragments of code as critical sections. Abundant contributions were made to the research 

work in this field with interests ranging from defining strategies that are correct by design and have good 

performance, to designing sophisticated fine-grained locks which enable highly concurrent access to shared 

data by avoiding a serialization of non-conflicting operations. However, the concept of recoverability of 

these algorithms in the event of a crash or a failure has not been studied thoroughly. 

Several techniques have been proposed to continuously monitor the process state in a system and 

automatically restart a failed process [1], [2]. Popular techniques like transaction roll-backs have been 

widely known for providing fault-tolerance in modern Database Management Systems. Whereas in the 

context of mutual exclusion, none of the prominent existing lock algorithms (e.g., Lamport’s Bakery 

algorithm, MCS lock, etc.) are designed to tolerate crash failures, especially in operations carried out in the 

critical sections. Each of these algorithms may fail to maintain mutual exclusion, or sacrifice some of the 

liveness guarantees in the presence of crash failures. Every time the system experiences a crash, the facts 

that a loss of program data is incurred as any unsaved user data and application settings in the volatile 

memory (DRAM) are lost, and that recording recovery information in disk storage for persistence incurs 

unacceptable overheads and performance degradation on the application, have been the primary obstacles 

in designing efficient crash-recovery systems. However, we have reasons [3] to believe that in the future, 

the Non-Volatile Main Memory (NVMM) systems can provide ways and means to overcome this problem.  
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With the advent of Non-Volatile Main Memory technologies, opportunities have opened up to redefine 

the problem of Mutual Exclusion in the context of a crash-recovery model where processes may recover 

from crash failures and resume execution. When the main memory is non-volatile, an application’s entire 

state can be recovered from a crash using the in-memory state near-instantaneously, making a process’s 

failure appear as a suspend/resume event. While the implementation techniques specific to automatically 

restarting failed processes and bringing them to resume execution from the point of last-known 

configuration lie beyond the scope of our work, we proceed to envision a solution for the problem of mutual 

exclusion in such systems. In this thesis, our goal is to provide a first-of-its-kind mutex lock that guarantees 

mutual exclusion and starvation freedom in emerging shared-memory architectures that incorporate non-

volatile main memory (NVMM). 

1.1 Preliminaries 

Concurrency in a modern multi-processor system allows multiple processors to access a common resource, 

while mutual exclusion guarantees that only one of the contending processors gains an exclusive access to 

the shared resource. Dekker’s algorithm [4] was the first software solution for a 2-process mutual exclusion. 

The problem of n-process mutual exclusion was first formulated by Dijkstra in [5] and later formalized by 

Lamport in [6]. A race condition arises when any two concurrent processes simultaneously modifying the 

value of a shared variable can produce different outcomes, depending on their sequence of operations. To 

avoid such conflicts, the program contains Critical Section (CS), a block of code that can be executed by 

only one process at a time. Formally, Mutual Exclusion (ME) is the problem of implementing a critical 

section such that no two concurrent processes execute the CS at the same time.  

Practical algorithms [7]–[10] for mutual exclusion traditionally have a strong reliance on the Read-

Modify-Write instructions, where a value from a shared variable is read and updated in an indivisible action 

called an atomic step. Generally, processes are required to acquire a mutex, a mutual exclusion lock, to 

access the shared resource protected by the CS. Each process acquires the lock by executing a fragment of 

code called the entry protocol. The entry protocol may contain a wait-free block of code called the doorway, 

which the process completes in a bounded number of its own steps [11]. If the mutex is already being held 

by another process, busy-waiting is performed by a technique called spinning, in which the process 

repeatedly checks on a shared variable to see if a pre-defined condition is true. After completing the CS, 

the lock-holding process releases the lock by executing an exit protocol (EP), wherein one or more of the 

other contending processes are notified that the CS can now be entered.  Actions that do not involve the 
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protected shared resource are categorized under non-critical section (NCS). Any variables accessed in the 

entry and exit protocols, except the process’s program counter, may not be accessed when the process is 

either in the CS or NCS. A concurrent program is thus defined as a non-terminating loop alternating 

between critical and non-critical sections. A passage is a single iteration of such loop consisting of four 

sections of code in a concurrent program with the following structure: 

while true  do 

 NCS; 

 Entry Protocol; 

 CS; 

 Exit Protocol; 

 od 

1.2 Background & Motivation 

1.2.1 Spin-lock algorithms 

In a simple variant of a mutual exclusion algorithm, a process attempts to acquire the lock by repeatedly 

polling a shared variable, e.g., a Boolean flag, with a test-and-set instruction; and releases the lock by 

changing the bit on the flag. The key to these algorithms is for every process to spin on a distinct locally-

accessible flag variable, and for some other process (the lock-holder) to terminate the spin with a single 

remote write operation at an appropriate time. These flag variables may be made locally available either by 

allocating them in the local portion of the distributed shared memory, or through coherent caching [12]. 

Memory references that can be resolved entirely using a process’s cache (e.g., in-cache reads) are called 

local and are much faster than remote memory references (RMRs), the ones that traverse the processor-to-

memory interconnection network (interconnect, for short). Protocols based on test-and-set are designed 

[13] to reduce contention on the memory and the interconnect when the lock is held, particularly in cache-

coherent machines, but a system of 𝑁 competing processes can still induce 𝒪(𝑁) remote memory references 

each time the lock is freed. An alternative solution is to delay or pause between polling operations, and an 

exponential backoff was found [14] to be the most effective form of delay. In a “ticket lock” [15], a process 

acquires the lock by executing a fetch_and_increment instruction on its ticket, a request counter, and 

busy-waits until the value is equal to the lock’s release counter. The release counter is incremented when 

the process releases the lock. Since a first-come-first-serve (FCFS) order is ensured by these counters, the 
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number of fetch_and_Ф operations [16] per lock acquisition can be effectively reduced if the backoff is 

suitably designed to a delay that is proportional to the difference between the requester’s ticket and the 

lock’s release counter.  

The simplest spin locks are generally considered to involve high contention on a single cache line and 

are thus poorly scalable [14]. This issue is addressed by the queue locks. Therefore, the idea of queue-based 

mutual exclusion algorithms has been particularly appealing to researchers in concurrent programming for 

over two decades. Existing literature contains several algorithms [7], [8], [17]–[22] proposed in this context, 

and one of the common underlying features in their lock design is a queue-like shared data structure. 

Fundamentally, in a queue-based lock algorithm, the contending processes “line up” in a queue, which is 

essentially a sequence of processes already busy-waiting in line for the lock, to access the critical resource, 

while only the head of the queue may enter the critical section. The advantage of this approach is that it 

ensures a FCFS order in lock acquisition and release. Each process trying to acquire the lock leaves the 

NCS and enqueues itself at the end of the queue. If it is not the head of the queue, then it links behind its 

predecessor in the queue and busy-waits on a local spin variable until it acquires the lock. A lock-holding 

process dequeues itself from the head of the queue after executing the critical section and signaling its 

immediate successor in the queue (if exists) to stop waiting and proceed to the CS. 

The algorithm used for providing synchronization has a key impact on the performance of applications 

running in multi-threaded or multi-processor environments. Particularly in multi-processor environments, 

choosing the correct type of synchronization primitive and the waiting mechanism used for the 

synchronization delays is even more important [23]. In 1991, Mellor Crummey and Scott proposed the 

MCS lock [15] which generates 𝒪(1) remote memory references per lock acquisition on machines with 

and without coherent caches, independent of the number of concurrent processes that are trying to acquire 

the lock, and requires only a constant amount of space per lock per process. Their lock gained one of the 

most widespread usage and prominence in the multiprocessor computing community. For instance, the 

MCS lock is known to dramatically improve the performance of Linux kernel due to its scalability [24]. 

The key innovation in MCS lock is ensuring that each process spins only on locally-accessible locations, 

i.e., locations that are not target of spinning references by any other processes, making it most resilient to 

contention [25]. The MCS lock is hardware assisted, requiring an atomic fetch_and_store (FAS) 

instruction for the lock acquisition protocol and makes use of a compare_and_swap (CAS) instruction to 

ensure the FCFS order in the lock release protocol. A FAS operation exchanges a register with memory, 

and a CAS compares the contents of a given memory location against the value at a destination and sets a 
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conditional to indicate whether they are equal. Only if both the values are equal, the contents of the 

destination are replaced with a second given value.  

The pseudo-code for the MCS list-based queueing lock is shown in Algorithm 1. In a high-level 

overview, each process trying to acquire the MCS lock allocates a record called qnode containing a queue 

link (next pointer) and a Boolean flag. Portions of the qnode record may be made locally available on a 

cache-coherent multiprocessor. Processes holding or waiting for the lock are lazily chained together in a 

queue by the queue links, i.e., each process in the queue holds the address of the record for the process 

immediately behind it in the queue – the process it should notify when releasing the held lock. The lock 

itself contains a pointer to the record of the process that is at the tail of the queue if the lock is held, or to 

null if the lock is free. The fetch_and_store operation constitutes the doorway instruction, in which, 

every process trying to acquire the lock swaps the tail pointer of the queue to its own qnode and adds its 

own qnode to the end of the queue. The swap operation returns the previous value of pointer L. If that 

pointer is null, then the process knows that it has succeeded in acquiring the lock. Once the CS is executed, 

the process either sets the lock free if there is no contention for it, or passes on the lock to its immediate 

successor in the queue.  So to release a lock, the lock holder must reset the Boolean flag of its successor, or 

if there is no successor, then L is set to null atomically in the CAS operation. The MCS lock thus provides 

an FCFS order by passing the lock to each process in the order that the processes enqueued. The local spin 

in the acquire_lock procedure waits for the lock ownership, while the local spin in release_lock 

compensates for the timing window between the fetch_and_store operation and the pred.next :=  I 

assignment in the acquire_lock procedure.  
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type qnode = record 

next : *qnode                                               //pointer to successor in queue 

locked : Boolean                                         // flag for busy-waiting  

type lock = *qnode                                            //pointer to tail of queue 

// I points to a qnode record allocated in the locally accessible  

//shared memory location of the invoking process. 

procedure acquire_lock  (L: *lock, I: *qnode) 

I.next := null                                                   //initially no successor  

pred : *qnode := FAS (L,I)                         //queue-up for lock (doorway) 

if  pred ≠ null                                                //queue was non-empty 

       I.locked := true                                      //prepare to spin 

       pred.next :=  I                                        //link behind predecessor 

       repeat while I.locked                           //busy-wait for lock 

procedure release_lock (L: *lock, I: *qnode) 

  if  I.next := null                                           //no known successor 

       if compare_and_swap (L, I, null) 

                 return                                            //no successor, lock free 

       repeat while I.next = null                 //wait for successor 

 I.next.locked := false                                //pass lock 

Algorithm 1 MCS Lock 

1.2.2 Crash-recoverable Mutex 

Fault-tolerance is one of the most important issues to take into consideration in designing modern 

asynchronous multiprocessor systems, since it is aimed at guaranteeing continued availability of the shared 

data even if some of the processes in the system experience crash failures due to reasons such as system 

crash, power loss, accidental or intentional termination, heuristic deadlock recovery mechanisms, etc. Each 

failure results in a loss of the shared state stored in the local volatile memory of the failed process. A process 

that crashes in a crash-stop failure model permanently stops the execution of its algorithm and is supposed 

to never recover. However, in a crash-recovery model a failed process may be resurrected after a crash 

failure, and hence the problem of crash-recovery is to restore the lost state in such a way that the whole 
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memory remains in a consistent state. Existing research consists of several crash-recovery techniques 

proposed for general distributed systems in the message passing paradigm [26]–[29] that rely on recovering 

the state information of a crashed process either from its stable secondary storage or from a process on a 

different node. Techniques proposed for crash-recovery in the distributed shared memory (DSM) and 

cache-coherent (CC) models can be classified into two categories: the first consisting of techniques relying 

on checkpointing [30]–[33], and the second approach being message logging [34], both originally 

developed for message-passing systems [35]. However, such techniques are poorly suited for the 

architectures that emphasize volatile main memories such as SRAM-based caches and DRAM-based 

memories [36], because the frequent accessing of a non-volatile secondary storage to save the current state 

of the computation (e.g., a checkpoint) incurs significant overheads and performance degradation in the 

system’s efficiency.  

The possibility of sudden loss of data from the portion of the shared memory protected by the critical 

section in the event of a crash failure is problematic, since it could result in violation of the safety and 

liveness properties guaranteed by the mutual exclusion algorithm. In particular, none of the prominent 

mutual exclusion algorithms (e.g., Peterson’s algorithm, Lamport’s Bakery algorithm, or MCS lock) is 

fault-tolerant, since each of these algorithms may fail if the state of the shared variable used for 

communication among the processes is lost in a crash failure. To that end, these algorithms fail even if 

processes are executing entry and exit protocols all by themselves, i.e., without any contention. Without 

mechanisms for detecting and recovering from crashes, conventional algorithms may lock a shared object 

indefinitely in presence of failures. Therefore, a ‘crash-recoverable mutual exclusion lock’ is needed to 

solve this problem. Among the earlier attempts in this regard [37]–[41], none of the proposed solutions are 

immune to a violation of at least one of the progress properties conventional locks guarantee in the absence 

of failures. Motivated by these observations, this thesis aims at investigating a recovery protocol which 

would overcome the limitations of existing solutions by guaranteeing each of mutual exclusion, fairness, 

starvation freedom and fault-tolerance in presence of failures in a crash-recovery model. 

As a first step towards that solution, we consider the emerging shared memory architectures that 

incorporate a non-volatile main memory (NVMM), which has a promising potential to change the very 

fundamental approach to the 40-year old architectures with fast/volatile and slow/non-volatile levels of 

storage. NVMM systems can be built using a variety of media including phase-change memory (PCM) 

[42], memristors [43], magnetoresistive  RAM (MRAM) [44], and ferroelectric RAM (FeRAM) [45], to 

name a few. The operating systems research community corroborates [3] that the architecture option that 
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entirely replaces DRAM in the current architectures with only a single non-volatile RAM (NVRAM) in a 

flat, non-volatile physical memory space could prove to be the most advanced alternative to the 

conventional CPU, DRAM and disk design. NVMM promises to combine the benefits of the high speed of 

static RAM (SRAM), the density of dynamic RAM (DRAM) and the non-volatility of flash memory [46]. 

The idea of non-volatile memory as a primary storage inspires us to rethink several aspects of how users 

and programmers interact with applications in a concurrent setting. Particularly, this creates a possibility to 

revisit the problem of mutual exclusion in a crash-recovery model.  

Since all execution state can be dissociated from process crashes and power failures by storing it on a 

persistent non-volatile medium, this motivates our research for a new recoverable mutual exclusion 

algorithm dedicated for systems with NVMM. The assumption is that the concurrent datastructures such as 

stacks, queues, and trees used by the mutex lock reside directly in the NVMM and that the lock can access 

them using conventional synchronization techniques. Accordingly, we investigated the dynamically 

scalable, contention-free MCS lock as a potential solution for the recoverability problem. Despite all the 

virtues the MCS lock algorithm has when implemented using the contemporary architectures, we found 

that the “out of the box” protocol of MCS lock as seen in Algorithm 1, is not an end solution for a crash-

recovery model even when augmented with persistent shared memory to store the lock queue. That is, the 

lock could become unavailable if one or more of the contending processes crashes while holding the lock 

or while waiting in a queue to acquire the lock, since each process loses its private state when it resumes 

execution after the crash, i.e., when it recovers. In particular, even if the qnode records in the persistent 

shared memory are preserved across the crash, the process may not resume the program from its last point 

of execution since the state of the program counter is lost in the crash. For that reason, executing the 

algorithm from the beginning each time a process recovers from a crash causes certain violations of the 

liveness and safety guarantees as discussed below. On taking a closer look, the inadequacy of the original 

MCS lock algorithm in a crash-recovery model can be attributed to the following reasons: 

i. Each process executing the MCS lock algorithm dynamically constructs a lock acquisition queue 

using the FAS instruction on the lock pointer L. Since the returned value of the FAS operation is 

only held in a private variable (pred), a process recovering from a crash that occurred 

immediately after the FAS may have no evidence of having ever entered the lock queue since all 

the private state of that process is lost during the crash.   
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ii. As a consequence of (i), a process may recover from its last crash and yet remain oblivious of 

the ownership of the lock. Consequently, even if that process is in the critical section as the lock-

holder, it may try to enter the lock queue again by performing the FAS operation. This 

compromises the integrity of the queue structure. 

iii. Furthermore, a process may execute the acquire_lock procedure again when it recovers, although 

it crashed while executing the release_lock procedure, and thus never relinquishes its ownership 

of the lock. 

iv. As a consequence of (iii), other processes waiting in the queue in their own acquire_lock 

procedures may wait forever for a lock that will never be released. Thus, the progress of the other 

active processes in the system is impeded. 

v. If a process crashes after entering a non-empty queue and before linking behind the previous tail 

of the queue by completing the pred.next := I instruction, then its immediate predecessor in the 

queue can never pass on the lock since the lock-holder is hindered in its operation of flipping the 

Boolean flag ‘locked’ on the crashed process’s qnode record until the ‘next pointer’ link is 

complete. And as a consequence of (i), the crashed process can never complete the link when it 

recovers, since its immediate predecessor in the queue just before it crashed is not known. 

vi. If a process crashes just after it completes the pred.next := I instruction and recovers after its 

predecessor has relinquished the lock by completing the last line of the release_lock procedure 

in its own passage, then the recovered process may execute the I.locked := true instruction again 

since it has no evidence of having already completed that instruction before its last crash, and 

thus never becomes the lock-holder.  

 

It is obvious from the above description that the MCS lock algorithm cannot guarantee safety and liveness 

simultaneously in a crash-recovery model when implemented “out of the box”. Therefore the task that lies 

ahead of us is to modify the algorithm so that the integrity of the queue structure is maintained even in the 

event of multiple crash failures in any number of the contending processes. Informally, a crash-recoverable 

queue lock must ensure the following: 



 

 10 

 No process’s queue entry is lost in the crash. Therefore, no process in the system should starve 

due to a crash. 

 Each process contains at most one instance of its record in the lock queue. 

 At most one process owns the lock. Also, at most one process at a time believes it is the lock-

holder. 

 If a lock-holder crashes, then it should not lose the ownership when it recovers from the crash. 

 No process should wait indefinitely to relinquish its lock ownership. 

1.3 Summary of Contributions 

In an effort to provide a crash-recoverable mutex, we present our queue-based design inspired by the 

popular MCS lock [15]. The research contributions in this thesis include: 

1. A formal specification of the problem of ‘Recoverable Mutual Exclusion’ in a crash-recovery model. 

2. RGLock: a first-of-its-kind spin-lock algorithm that is recoverable by design and preserves the 

properties of recoverable mutual exclusion in systems that incorporate NVMM. 

3. A comprehensive proof of correctness for the specified algorithm.  
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Chapter 2 

Related Work 

Mutual exclusion remains as one of the most important and widely-studied problems in concurrent 

programming and distributed computing in general. In 1986, Michel Raynal published a comprehensive 

survey [47] of existing research outcomes for solving the problem of mutual exclusion in parallel or 

distributed computing. James Anderson et al. supplemented this survey in 2003 [10] by surveying major 

research trends in the mutual exclusion algorithms specific to the shared memory model since 1986. They 

highlight the limitations of earlier shared-memory algorithms that result in performance degradation due to 

the excessive traffic generated on the interconnect network, and discuss how local-spin algorithms 

published since 1986 avoid such problems. Their survey also notes how Lamport [48] became a trend-setter 

for the “fast” algorithms after his publication in 1987 [49]. Other major trends surveyed include a broader 

study of the “adaptive” algorithms [50] that ensure only a gradual increase in their time complexity in a 

proportional manner as the contention increases;  the “timing-based” algorithms that exploit the notions of 

synchrony to reduce time complexity; and the mutual exclusion algorithms with “non-atomic” operations 

[51]. More recently in 2014, Buhr et al.[52] examined the correctness and performance of N-thread 

implementations of the high-performance mutual exclusion algorithms published in over 30 years, along 

with a meticulous interpretation of how each of these algorithms work and the intuition behind their design. 

These surveys inspire much more ambitious work to come in the future years and serve as the strongest 

primers for the topic of mutual exclusion in the shared memory distributed computing literature. 

  The idea of fault-tolerant computing has existed for 50 years now with one of the first publications on 

the subject dating back to 1965 [53]. Randell’s publication in 1975 [54] laid the foundations for facilitating 

software fault-tolerance by introducing the “recovery block” scheme, in which a programmer can exploit 

the knowledge of the functional structure of the system to achieve software error detection and recovery. 

Recovery-oriented computing has become a fundamental requirement in most modern applications, and the 

strong consistency guarantees it offers are often serviced by transactional databases with centralized 

checkpoints and write-ahead logging (WAL) or shadow-paging mechanisms [34] that leverage 

sophisticated optimizations on disk-based persistent storage.  While database tables and indexes are 
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classical long-term storage solutions, many enterprises have been increasingly adopting in-memory data 

management [55] for their transactional and analytical processing needs to offer high performance 

computing, ascertaining that ‘in-memory’ is the new disk. However, the in-memory data structures used 

for synchronization are generally designed for scale-out and performance over fault-tolerance. For instance, 

most in-memory databases rely on a cluster-architecture to avoid a single point of failure, since a stand-by 

node in the cluster rolls back the incomplete transactions on the crashed process and replays the transaction 

logs replicated from the disk or network storage anyway[56]. Therefore, either non-blocking data structures 

such as lock-free [57], wait-free [57] and obstruction-free [58] implementations, or transactional memories 

such as [60], [61] are the usually preferred design choice in these systems since they offer resilience against 

crash-stop failures. 

Designing fault-tolerant algorithms for unreliable memories has found an increasing interest in academia 

over the last four decades [62]. In 1977, Lomet first proposed synchronization and recovery using atomic 

actions and showed how atomic actions can be used to isolate recovery activities to a single process [63]. 

In more recent literature on shared-memory computing, notable contributions were made for making 

algorithms resilient to failure [31], [64]–[67] relying on techniques like coordinated global checkpointing 

and rollback recovery from centralized logs. In [68], Molesky and Ramamritham proposed crash-recovery 

protocols for making locks recoverable in shared memory databases. In the context of mutual exclusion,  

Bohannon et al. [40], [41] pioneered the research aimed at providing fault-tolerance in standard concurrency 

control mechanisms in shared-memory computing environments.  The concept of making a spin lock 

‘recoverable’ in shared-memory models is severely limited by the lack of methods to persistently save 

information regarding the ownership of the spin lock when a process acquires it so that the ownership 

information is potentially useful in restoring the shared resource protected by the spin-lock to consistency 

in the event of a crash failure.  

In [40], the authors emphasize on the importance of processes registering their ownership of the spin lock 

(a test-and-set based algorithm) by writing the process identifiers to a known location in the shared memory. 

The key idea is to take a global picture of the entire memory instead of a local (i.e., per-process) one, which 

enables an examination of all processes that may have tried to acquire the lock before a crash failure so as 

to give enough information about the ownership of the spin lock. A “cleanup_in_progress” flag is used, 

which when raised, prevents any processes that have not registered their interest in the lock before the crash 

failure occurred from acquiring the lock while the recovery actions are being taken, and then an 

“overestimation snapshot” of processes that could already have or could get the lock during the recovery is 



 

 13 

taken. And within the “cleanup” routine the system waits for the situation to resolve by itself, i.e., eventually 

the ownership of the lock becomes known either because the lock is registered with a live process, or 

because no process holds it any longer, i.e., the lock is free.  

In [41], the authors present a Recoverable MCS lock (RMCS-lock), in which each per-process qnode 

structure contains a ‘next’ pointer for forming the queue link, and a ‘locked’ field that indicates whether a 

given process owns the lock. The lock itself consists of a single pointer ‘tail’ which either points to the tail 

of the queue or to null when the lock is free. RMCS-lock comes with a ‘cleanup’ activity in which the 

application can query the operating system whether a particular process has died. Their deviation from the 

original MCS lock lies in the allowed values for the ‘locked’ field viz., WAITING, OWNED or 

RELEASED, each of which is set by the owning process depending on which line of code in the acquire or 

release protocols it executed. Further, they augment each qnode with the following fields:  ‘wants’, a pointer 

to the lock a process sets before executing the entry protocol and is changed only after it releases the lock; 

‘volatile’, a Boolean flag a process raises before modifying the queue structure (e.g., swap operation) and 

resets only when the modification is complete; ‘cleanup_in_progress’, a Boolean flag writable by the 

system/OS during cleanup activities; and ‘clean_cnt’, an integer that determines if the cleanup activity has 

completed. The recovery mechanism is similar to that shown in [40], where the ‘cleanup’ routine prevents 

new processes from entering the lock’s queue when the cleanup_in_progress flag is set and waits until each 

process that already set their ‘wants’ flag before the crash to acquire and release the lock. The cleanup 

routine also checks for the consistency of the queue structure and adds the ‘next’ links where they are 

missing due to failed processes.  

In [37], Michael and Kim presented a fault-tolerant mutual exclusion lock that guarantees recovery from 

process failures in DSM systems using techniques to enable an active process or thread waiting to acquire 

a lock to “usurp” it in case it determines that the previous lock-holder has crashed. Their recovery 

mechanism relies on the programming environment (or the OS) maintaining a log of the status of all 

processes whose failure may lead to a permanent unavailability of the lock. The lock queue contains 

information on three shared variables, namely Head, Tail and Lock-Holder. The Lock-Holder field is used 

as a backup for Head, and identifies whether a process died in its lock release protocol before completely 

releasing the lock. Each process’s qnode record contains four fields: Process ID, Status, Next and 

LastChecked. The Status field has one of the three values in HASLOCK, WAITING, or FAILED. If a given 

process is determined to have crashed when some other process queries the programming environment, 

then the crashed process’s Status is updated to FAILED. The Next field is a pointer for queue formation. 
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The LastChecked field is updated by the owning process itself and records the last time the process was 

alive, an optimization to limit the OS queries, which are expensive with respect to system resources. In 

order to prevent multiple processes attempting recovery simultaneously, the recovery mechanism is 

designed in such a way that if the first N processes in the queue crashed, then only the N+1th process may 

execute the recovery routine and if successful, becomes the new lock-holder, or the N+2nd process 

eventually ‘usurps’ the lock after a certain pre-determined ‘timeout’ has passed.  

In comparison to our goals for a crash-recoverable mutex (as defined in 1.2.2), we found the following 

shortcomings in the recovery mechanisms proposed in the above approaches: 

1) The assumption that the application can query the OS whether a particular process has died 

requires a separate central monitoring process or thread that never crashes, e.g., a fault-tolerant 

lock manager [69]. 

2) Requiring a single process or thread to perform all the required recovery actions is an inefficient 

design choice in large non-homogeneous systems and might not be feasible at all since not all 

processes have the same capabilities and a single process that never crashes and is also capable 

of performing all recovery actions, possibly multiple times, often does not exist [70]. 

3) The ‘cleanup’ routine removes all crashed/dead processes from the queue. This poses a serious 

problem particularly in a crash-recovery model where processes may resume execution after 

recovery, and a process holding or waiting for a lock is not only removed from the queue, but 

also is exempted from acquiring the lock until the ‘cleanup’ is complete. 

4) Processes get killed in the ‘cleanup’ if they do not make progress in a “reasonable” amount of 

time. Particularly, in asynchronous environments, an active process may be removed from the 

queue, possibly many times. 

5) In case a process dies after it has been included in the queue by the ‘cleanup’ routine itself, it 

necessitates a subsequent run of yet another ‘cleanup’ routine. 

6) Any live processes that did not register their interest in acquiring the lock before the crash failure 

are stalled until the ‘cleanup’ is complete. If there are multiple failures occurring frequently, 

some processes in the system may be perpetually denied from acquiring the lock i.e., the 

concurrency mechanism is not starvation free.  

7) The process or thread that runs the ‘cleanup’ routine is assumed to never crash. Therefore it is 

ambiguous how the recovery mechanism deals with a case of system crash, i.e., all processes are 

dead simultaneously, or a case of power loss. 
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8) The ‘cleanup’ routine may choose a new owner for the lock in case it recognizes that the previous 

owner has crashed and therefore, the recovery mechanism does not guarantee an FCFS order in 

the lock acquisition and release even if the previous lock-holder resumes execution while the 

‘cleanup’ is in progress itself. 

9) In recovery activities, the ‘cleanup’ routine requires special mechanisms [71] in the operating 

system to reinitialize the lock and unlock it for other active processes, particularly when a process 

crashes while executing the CS. Therefore, this often necessitates maintaining a mapping of 

addresses pointing to the shared data objects and their values through an additional logging 

mechanism such as [72], which is also expensive in terms of system resources. 

In our work, we wish to address the above mentioned issues by taking advantage of the persistent data 

storage the byte-addressable, non-volatile memories would provide. We make two assumptions in this 

regard: 1. that the future systems support these technologies; and 2. that access to non-volatile memories is 

provided by means of word-sized reads and writes as is the case with conventional memory. Researchers 

believe that non-volatile random access memory (NVRAM), when used as primary storage, i.e., when 

placed directly on the main memory bus, will enable performance-critical applications to harness the fast 

access and strong durability guarantees it provides. Michael Wu and Willy Zwaenpoel [73] proposed eNVy 

in 1993, one of the earliest alternatives to the conventional CPU-DRAM-magnetic disk approach, in which 

the architecture of a large non-volatile memory main memory storage system was built primarily using 

solid-state memory (Flash). A survey of emerging concepts and the main characteristics of new materials 

viz. PCM, FeRAM, MRAM, etc., being developed in the field of non-volatile memory technologies has 

been presented in [74]. Nevertheless, these technologies are not inert to some of the challenges experienced 

in the development of persistent data stores for filesystems and databases, especially in terms of facilitating 

a wear-aware memory allocation that is robust to data corruption, and techniques to provide cache-efficient 

and consistency-preserving updates. Katz et al. [75] proposed a method to detect and correct various data 

errors that may arise due to power loss in non-volatile memory, and particularly to identify if a write 

operation was interrupted due to a power loss and to reconstruct any data that may have become inconsistent 

in the interim. Moraru et al. in [76], proposed a general-purpose and flexible approach to address some of 

these challenges in preventing data loss and corruption, while imposing minimal performance overhead on 

the hardware, OS, and software layers as well.  

In recent years, an abundance of research emphasized on creating consistent and durable non-volatile 

main memory (NVMM) technologies [77]–[83], on redesigning data structures that benefit from persistence 
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[84]–[89], as well as on how application-level interfaces are to be modified to exploit the benefits the 

persistent memories provide when placed on the main memory bus [90]–[93]. While transactional 

memories can be used to implement synchronization structures for high performance, strong consistency 

guarantees and resilience against failures, the fact that the vast majority of such memories are designed 

based on the volatile main memory renders them unusable for recovery from system-wide crashes.  

Recently, Coburn et al. proposed NV-Heaps [94], a system that provides transactional semantics to 

persistent in-memory data while preventing data corruption that may occur due to application and system 

failures. NV-Heaps avoid the operating system overheads by enabling applications to directly access non-

volatile memory and thus exploit the high-speed and performance of NVRAM to build robust and persistent 

objects such as search trees, hash tables, sparse graphs and arrays. Allowing each process to own a set of 

‘operational descriptors’, the fixed-size redo-logs similar to database recovery logs stored in the non-

volatile memory assists the application in avoiding the overheads incurred by maintaining centralized 

recovery log. NV-Heap uses an ‘epoch barrier’ to ensure that a log entry in the operational descriptors is 

durably recorded in the non-volatile memory, and replays only valid log entries when recovering from 

failure, thus adding robustness even in the case of multiple failures. However, NV-Heaps have certain 

shortcomings that need to be addressed before being used for implementing a crash-recoverable 

concurrency control mechanism, such as: all locks being instantly released after a system failure; and 

stalling the transaction system until the recovery is done cleaning up the state of the system.  

The idea is that main memory persistence will eventually be the norm in both enterprise and consumer-

grade computing devices, as the recent advancements in NVRAM technologies position NVMM for a 

widespread deployment in the systems of the future. This advancement has served as a catalyst for our 

innovative algorithm that guarantees mutual exclusion and starvation freedom in a crash-recovery model, 

without the need to transfer the ownership of a lock in the event of a crash failure. We designed a new 

crash-recoverable mutex, RGLock, based on the premise that NVMM can be used to reconstruct and 

recover the in-memory state locally and near-instantaneously after crash failures, and any shared-state 

processes store is protected from data loss throughout recovery. The core of RGLock’s merits is in the fact 

that there is no need to temporarily ‘freeze’ the shared data structure, nor is a ‘cleanup’ activity necessary. 

What particularly sets our lock apart is that there is no assumed requirement for crashes to be restricted to 

non-critical section only, and we consider this as a big leap forward in comparison to existing mutex lock 

algorithms. 
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Chapter 3 

Model Specification 

This chapter presents the execution model and terminology used in RGLock.  

3.1 Hardware Considerations 

The system is a finite number of processors in an asynchronous multi-processor architecture of Cache 

Coherent (CC) model that communicate with each other through a finite number of read-modify-write 

shared variables. For exposition, we abstract each processor in the system as an individual process. The 

processes communicate via shared variables whose values can be modified using atomic primitives such as 

read/write operations and special instructions like 𝑠𝑤𝑎𝑝_𝑎𝑛𝑑_𝑠𝑡𝑜𝑟𝑒 (defined later in 5.2) and 

𝑐𝑜𝑚𝑝𝑎𝑟𝑒_𝑎𝑛𝑑_𝑠𝑤𝑎𝑝. We assume that the main memory modules are based on the persistent and reliable 

Non-Volatile Random Access Memory (NVRAM) medium, i.e., the information stored on the medium is 

never lost or corrupted, and that the caching and memory ordering can be controlled to the point where the 

shared memory operations are atomic and durable [92], [95]–[98].  

The memory locations in a CC model can be read from and written to by any process with the hardware 

maintaining consistency. Specifically, any memory location can be made locally accessible to a process at 

runtime by storing its contents in a local cache, which is maintained up-to-date by means of a cache 

coherence protocol [36] that ensures each modification of the data is atomically propagated across the 

shared memory either through updating or invalidating the copies held in other caches. When a process 

writes to memory, the cache follows one of the two policies: write-through or write-back. In the write-

though policy, when a write occurs, the updates are written to the cache as well as to the lower layers in the 

memory hierarchy, i.e., either another cache or the physical memory itself. Whereas in the write-back 

policy, an update to a memory block is written to lower layers only when the contents of that cache line is 

modified. Although write-through policy incurs heavier traffic on the processor-to-memory interconnect, 

since the transactions with main memory are more often than in write-back policy, it propagates the updates 

to memory blocks to the main memory and the rest of the system more effectively than the latter. 
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Memory references that can be resolved entirely using a process’s cache (e.g., in-cache reads) are called 

local and are much faster than remote memory references (RMRs), the ones that traverse the global 

processor-to-memory interconnect (e.g., cache misses). The time complexity of our algorithm is measured 

by counting the RMRs performed during a passage [99]. In a CC model, the RMR complexity depends on 

the state of each process’s cache and the coherence protocol used for maintaining consistency. In our model, 

we count the first read of a shared variable on the main memory to make a local copy in a process’s cache 

as one RMR, and all the subsequent reads on the cached copy are considered local until some other process 

overwrites it (possibly with the same value as before), which accounts for another RMR.  

3.2 Formalism 

A program is composed of procedures, which are fragments of code comprised of atomic statements in a 

deterministic algorithm. A process is a sequential program consisting of operations on variables. Each 

variable is either private or shared, depending on the scope of its definition; a private variable is defined 

within the scope of a procedure, whereas a shared variable is defined globally across all procedures. A 

variable stored on the global non-volatile shared memory can be made locally accessible by maintaining an 

up-to-date cached copy of its state, and can be modified by any process in the system for inter-process 

communication. Each process also holds in its volatile memory, a special private variable called the 

program counter that determines the next statement to be executed from the program’s algorithm.  

In describing our system, we use a less formal approach to the I/O automata model [100] by defining the 

behavior of processes using a pseudo-code representation. The interactions of processes with shared 

variables through operations applied is represented as a collection of steps. The values assigned to private 

and shared variables during each step are denoted by their state. The statements in the program’s code 

comprise of per-process indivisible set of deterministic steps executed on a finite set of variables. We say 

a process is enabled to execute a given statement, when the process’s program counter (PC) is pointing to 

that statement. Formally, the system is represented as a triple 𝒮 =  (𝒫, 𝒱, ℋ) where a finite set of processes 

with unique identifiers in 𝒫 =  {𝑝1, 𝑝2, … 𝑝𝑁} interact with a finite set of variables 𝒱 in corresponding 

sequence of steps recorded in an execution history ℋ.   

Specifically, an execution history (or history, in short) is defined as a sequence of steps taken by the 

processes, each involving some shared memory operation and a finite amount of internal computation. A 

given statement can be executed multiple times in a history, and each such execution relates to a distinct 
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step. A step in a history corresponds to a statement execution or a crash (formal definition in 3.3). The 

sequence of steps in a history corresponding to some procedural invocation is called an execution of a 

procedure. An execution of a procedure is complete if the last step in the execution is the last statement of 

the procedure.  

For a given history 𝐻, set of process IDs 𝒫’ (where 𝒫’ ⊆ 𝒫) and a set of variables 𝒱, the maximal 

subsequence of a history corresponding to the steps taken by only the processes in 𝒫’ is called a local 

history, denoted by 𝐻|𝒫’ . Henceforth, we use the notation 𝑝𝑖  to refer to a single process in the system in 

general, where 𝑝𝑖 ∈ 𝒫. Likewise, the maximal subsequence of 𝐻 corresponding to only the steps taken by 

a single process 𝑝𝑖 is denoted by 𝐻|𝑝𝑖. For every process 𝑝𝑖 ∈ 𝒫 we define 𝑝𝑖  to be active in a history 𝐻 if 

the local history 𝐻|𝑝𝑖  is non-empty. The notion of fairness in a system is that each individual process in the 

system is given an opportunity to perform its locally controlled steps infinitely often. A history may be 

either finite or infinite. Accordingly, a fair history 𝐻 is either a finite, or an infinite history where every 

process that is active in 𝐻 takes infinitely many steps.  

The formal specification of a protocol consists of a collection of procedural statements for each process. 

Within a passage, a process leaves a protocol when it completes executing all the steps defined in its 

procedure and proceeds to the next protocol. In a fair history, once a process enters the entry protocol of its 

passage, we can depend on it to continue to interact with other processes until it has reached its critical 

section (if ever) and subsequently returned to its non-critical section. A process can remain in its non-critical 

section until it enters the entry protocol in a new passage. For simplicity, we assume that each process’s CS 

and NCS executions are recorded as individual atomic steps in a history.  

3.3 Crash-recoverable Execution 

We consider a crash-recovery model for our system, where any process may crash and eventually recover, 

but the shared memory is reliable. A crash is a failure in an execution of one process where the private 

variables of the crashed process are reset to their initial values and the process simply stops executing any 

computation until it is active again. A system crash is a simultaneous failure in all processes in the system 

which resets all private variable to their initial state. A crash-recovery procedure is the sequence of steps 

taken by a crashed process to reconstruct its state and resume its active execution from the point of failure 

in the algorithm. A process is said to be in recovery until the execution of its crash-recovery procedure is 

complete. We classify the types of steps in our model into the following:  
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1) In a normal step, a process atomically accesses a set of variables in memory, executes some local 

computation depending on its state, and finally changes state as applicable.  

2) In a crash-recovery step (crash step, for short), the program counter of the crashed process is set to a 

pre-defined crash-recovery procedure in the program code and any other private variable is reset to 

an initial state. However, any shared variable recorded by that process in non-volatile memory is 

unmodified. 

3) In a CS step, a process executes the Critical Section of the passage it is in. Therefore, we say a process 

is in the CS if it is enabled to execute the CS step.  

Extending the formalism introduced in 3.2, we define a crash-recoverable execution history 𝐻’ as a fair 

history wherein every process either executes infinitely many passages or crashes a finite number of times. 

Note that permanent crash-stop failures are excluded from our definition of a crash-recoverable execution 

and indefinitely recurrent failures are allowed as long as they do not impede the overall progress in the 

system.  In the absence of failures, 𝐻′ is identical to the 𝐻 defined in 3.2, in that it is just a sequence of 

normal steps. As illustrated in Figure 3.1, a failure-free passage is an iteration of a loop among the NCS, 

entry, CS and exit protocols without any crash-recovery step. A crash-recoverable passage is composed of 

NCS, entry, CS and exit protocols with an invocation of a crash-recovery procedure whenever a crash 

occurs. As indicated by the recovery transitions, a crash-recovery procedure resumes the process’s 

execution based on its state reconstructed from NVMM. Intuitively, whenever a process crashes, it does 

not leave the protocol it crashed in, but only takes a crash-recovery step instead. Once the active execution 

is resumed, it is up to the process’s program to complete each remaining protocol within that passage.  

We assume that the code for critical section is idempotent, i.e., harmlessly repeatable by a process in 

recovery if it has the necessary exclusive access to do so, i.e., even if a process crashes during the execution 

of a CS step and/or if the process repeats the CS step within the same passage more than once when in 

recovery, the program works correctly. This assumption is reasonable since there are no race conditions on 

the shared state protected by the critical section as it cannot be concurrently modified by any other process 

when one process already owns an exclusive access to the critical section (guaranteed by the mutual 

exclusion property discussed later on). Moreover, since the same parameters are applied each time a process 

executes the idempotent operations, there is no inconsistency caused in the program state by some process 

repeating the CS execution within the same passage in recovery, provided it has the necessary exclusive 

access to the shared resource. 
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Figure 3.1 Failure-free and crash-recoverable passages. 

Finally, the assumptions made in our crash-recovery model are as follows: 

A1. A process in recovery reconstructs its state from the shared variables stored in non-volatile memory. 

A2. Process crashes are independent, i.e., failure of one process does not crash other active processes in 

the system.  

A3. Other active processes in the system may read, modify and write to the globally accessible shared 

variables of a process in recovery.  

According to A3, a crashed process can reconstruct its state and resume computation based on the latest 

changes (if any) made to its shared variables by other processes. For example, a busy-waiting process 

𝑝𝑖  could crash in a step immediately before the step in which the existing lock-holder changes the bit on 

𝑝𝑖’s shared variable used for spinning, indicating that 𝑝𝑖 is now the new lock-holder. In recovery, 𝑝𝑖  can 

read this change and then proceed to its critical section. The assumption A1 is crucial to our model in that 

a process in recovery does not restart with its shared state reset to initial values. Resetting shared variables 

in the system each time a process restarts from a crash would render the concept of using persistent memory 

trivial.  
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Chapter 4 

Recoverable Mutual Exclusion 

The challenge in designing a recoverable spin-lock algorithm lies in specifying the correctness properties 

of mutual exclusion for a crash-recovery model where processes can crash at any point within a passage, 

i.e., the algorithm should be tolerant to crashes even within the critical section. Mutual Exclusion is a safety 

property (informally construed as ‘some particular bad things never happen’), which assists in reasoning 

with the correctness of computation in a multi-processor system. Livelock-freedom and starvation-freedom 

are liveness properties, informally stated as ‘something good eventually happens’. While livelock-freedom 

guarantees the overall progress of the system as each process eventually releases the lock held by it, 

starvation-freedom guarantees a per-process progress in the system. Formally, the correctness properties of 

a recoverable mutual exclusion algorithm are stated as the following: 

Mutual Exclusion (ME): No two processes are in the critical section simultaneously. 

First-come-first-served (FCFS): If a process 𝑝𝑖  completes its doorway before another process 𝑝𝑗  enters 

its doorway, then 𝑝𝑗  cannot enter the critical section before 𝑝𝑖  does in their corresponding passages. 

Livelock-freedom (LF): In a crash-recoverable history, if some process is in its entry section, then some 

process eventually enters its critical section.  

Starvation-freedom (SF): In a crash-recoverable history, if a process is in its entry section, then that 

process eventually enters its critical section, i.e., no process in its entry protocol is perpetually denied access 

to the critical section. 

Terminating Exit (TE): In a crash-recoverable history, if a process is in its exit protocol, then it completes 

that protocol within a finite number of steps. 

Finite Recovery (FR): Every crash-recovery procedure invoked in a crash-recoverable history completes 

within a finite number of steps. 



 

 23 

Importantly, although ME is the guarantee that solves the problem of allowing only one process to 

execute the CS at any time, we do not solve the problem of restricting a lock-holder from executing the CS 

more than once per passage in the event of crash failures, based on the assumption that the CS is idempotent. 

FCFS guarantees that when a slow-running process is in recovery there is no accidental ‘usurping’ of its 

lock by other contenders, contrary to the recovery mechanism defined in [37]. While ME and FCFS are the 

same as the conventional properties guaranteed by most existing spin lock algorithms in related literature, 

the properties of LF, SF, TE and FR are refined in our model by introducing the context of crash-recovery. 

The finite recovery (FR) property follows immediately from the definition of crash-recoverable history, 

and is crucial to the overall progress in the system as the absence of which renders little sense to the very 

concept of crash-recovery. Notice that FR does not exempt a process from crashing again while it is already 

in recovery. Instead, it guarantees that the process eventually completes some crash-recovery procedure.  

In our knowledge, RGLock is the first mutual exclusion algorithm for a crash-recovery model that conforms 

to all the properties stated above. 
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Chapter 5 

Algorithm 

In this chapter, our algorithm is presented along with a high-level description of the included procedures. 

RGLock is a new locking mechanism that 

o exploits the benefits of memory persistency in NVMM systems; 

o guarantees FCFS ordering of lock acquisitions; 

o spins on locally accessible memory locations only; and 

o guarantees both safeness and liveness properties of recoverable mutual exclusion even in the 

presence of crash failures. 

5.1 RGLock 

In this thesis, we present a scheme for effectively dealing with the problem faced by conventional MCS 

spin-lock in a crash-recovery model. In particular, the MCS lock suffers from the limitation of the lock 

becoming unavailable whenever one or more of the processes holding or waiting to acquire the lock crash. 

Our solution to the problem is based on maintaining and manipulating information in the persistent shared 

memory. The fundamental idea behind our algorithm is to reconstruct the shared state of the process from 

the persistent memory to perform effective recovery activities in the event of a crash failure. The key novel 

feature of our algorithm is that the integrity of the lock structure i.e., the sequence of processes trying to 

acquire the lock, is preserved even in the presence of failures. In addition to the most commonly available 

read-modify-write atomic primitives, the design of RGLock proposes an atomic 𝑠𝑤𝑎𝑝_𝑎𝑛𝑑_𝑠𝑡𝑜𝑟𝑒 (SAS) 

instruction (described formally in 5.2) that is not supported by current generation of multiprocessors for 

fair lock acquisitions, and benefits from the availability of atomic 𝑐𝑜𝑚𝑝𝑎𝑟𝑒_𝑎𝑛𝑑_𝑠𝑤𝑎𝑝 (CAS) instruction 

in providing strict FIFO ordering. Without the CAS instruction, inspecting if there are any other processes 

waiting in line to acquire the lock and setting the lock free cannot happen atomically. Without the SAS 
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instruction in the entry protocol, the FIFO ordering in lock acquisitions cannot be guaranteed and some of 

the contending processes are prone to starvation when crashes occur. 

Each process using the lock allocates a per-process lock access structure called qnode and appends it to 

a linked-list of qnodes, wherein processes holding or waiting for the lock are chained together by the 

backward pointers (𝑎ℎ𝑒𝑎𝑑 pointers). The lock is represented by a pointer 𝐿, set either to the qnode of that 

process at the tail of the linked-list, or to a predefined 𝑛𝑢𝑙𝑙 when the lock is free. For any process 𝑝𝑖, the 

process that appended its qnode (if exists) to the linked-list immediately before 𝑝𝑖’s completion of the 

doorway instruction is its predecessor and the process that swaps the lock pointer from 𝑝𝑖’s qnode is its 

successor. Each qnode contains the following fields: 

 a checkpoint number 𝑐ℎ𝑘 that signifies the protocol of a passage the process is in, 

 an 𝑎ℎ𝑒𝑎𝑑 pointer to hold the address of the predecessor and act as the variable for busy-waiting, 

 and a 𝑛𝑒𝑥𝑡 pointer to hold the address of the successor. 

The pseudo-code for a failure-free passage and crash-recoverable procedures are shown in Algorithm 5.a 

and 5.b respectively. Our programming notation is largely self-explanatory. At system startup the processes 

running the program initialize their shared variables before their first execution of the default 

procedure, main( ). Once initialized, processes execute the main( ) procedure, which invokes the spin lock 

acquisition and release protocols as shown in the pseudo-code. Therewith, whenever a process takes a 

crash-recovery step, its program counter is reset to the beginning of the main( ) procedure. Throughout the 

pseudo-code, indentation is used to indicate nesting and each statement is labeled for reference. Angle 

brackets (〈… 〉) are used to enclose the operations to be performed atomically. Shared variables stored in 

NVMM are termed ‘non-volatile’ and any additional temporary private variables are declared within the 

procedures they are used in as required. 

At system startup, a process 𝑝𝑖 initializes its qnode accessible by pointer 𝑞𝑖 with the above described 

fields as shared variables in its non-volatile memory. Although the 𝑞𝑖. 𝑐ℎ𝑘 field is treated as a shared 

variable, we assume that only 𝑝𝑖 writes or updates this field in lines of code (e.g., 𝐸2, 𝐸7, 𝐷1, 𝐷4, 𝐷8, etc.) 

that are recorded as steps in the execution history. During execution of a passage, the checkpoint 𝑐ℎ𝑘 is 

updated to an appropriate value from a predefined set consisting of {0, 1, 2, 3} whenever the process is 

transitioning to a new protocol in its passage. This checkpointing variable aids a process taking a crash-

recovery step in invoking the appropriate crash-recovery procedure, depending on the value read. In 
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absence of failures, a process only executes the 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝐹𝑟𝑒𝑒 procedure which contains the entry and exit 

protocols for acquiring the lock, executing the CS, and releasing the lock. The execution of a passage begins 

at line 𝐶𝑅1 and ends immediately after the first execution of line 𝐶𝑅8.  

The head qnode in the linked-list has a 𝑛𝑢𝑙𝑙 predecessor and the tail qnode has a 𝑛𝑢𝑙𝑙 successor. Each 

busy-waiting process spins on its own local variable, i.e., the 𝑎ℎ𝑒𝑎𝑑 pointer on its own qnode, until it 

reaches the head of the list. 𝑆𝑤𝑎𝑝_𝑎𝑛𝑑_𝑠𝑡𝑜𝑟𝑒 instruction enables a process to determine the link to its 

predecessor in the event of a crash. 𝐶𝑜𝑚𝑝𝑎𝑟𝑒_𝑎𝑛𝑑_𝑠𝑤𝑎𝑝 enables a process to determine whether the 

linked-list contains only its qnode while releasing the lock, and if so remove itself correctly as a single 

atomic action. If a lock-holder identifies a non-null successor in the linked-list, then the lock is relinquished 

by promoting the successor, i.e., by resetting the 𝑎ℎ𝑒𝑎𝑑 pointer on the successor’s qnode to 𝑛𝑢𝑙𝑙. A timing 

window exists in the 𝑎𝑐𝑞𝑢𝑖𝑟𝑒_𝑙𝑜𝑐𝑘 procedure between the step in which a process completes the SAS 

instruction i.e., in which it appends its qnode to the linked-list, and the step in which it completes the 

instruction in which it provides information to its predecessor (if applicable) about how to be notified when 

the predecessor is granting it the lock, i.e., by setting the 𝑛𝑒𝑥𝑡 pointer from the predecessor to its own 

qnode. The spin in the 𝑎𝑐𝑞𝑢𝑖𝑟𝑒_𝑙𝑜𝑐𝑘 waits for the lock to become free, and the spin in the 𝑟𝑒𝑙𝑒𝑎𝑠𝑒_𝑙𝑜𝑐𝑘 

compensates for the timing window.  Both the spins in the entry and exit protocols are local. 
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type qnode = record 

non-volatile next : *qnode := 𝑞𝑖 

non-volatile ahead : *qnode := 𝑞𝑖 

non-volatile chk : int := 0 

type lock = *qnode 

/* qi is a qnode record of the invoking process pi. 

 𝑄 is a history variable. 𝑅𝑀𝐸𝑄 is a linked-list of 

qnodes.*/ 

main (L: *lock, 𝑞𝑖: *qnode) 

/* Default procedure that guarantees 

recoverable mutual exclusion for every 𝑝𝑖 ∈ 𝒫 */  

CR1.    cp := 𝑞𝑖.chk 

CR2.    if cp = 1 

CR3.      if recoverBlocked(L,𝑞𝑖)=false 

CR4.                failureFree(L,𝑞𝑖)   

CR5.    if cp = 2   recoverHead(L,𝑞𝑖)  

CR6.    if cp = 3   recoverRelease(L,𝑞𝑖) 

CR7.    else failureFree(L,𝑞𝑖) 

CR8.    Non-Critical Section 

failureFree (L: *lock, 𝑞𝑖: *qnode) 

FF1. acquire_lock(L,𝑞𝑖) 

FF2. Critical Section 

FF3. release_lock(L,𝑞𝑖) 

 

acquire_lock (L: *lock, 𝑞𝑖: *qnode) 

E1. 𝑞𝑖.next := null 

E2. 𝑞𝑖.chk := 1  

E3. ⟨
𝐸3𝑎.  𝑆𝐴𝑆(𝐿, 𝑞𝑖, 𝑞𝑖 . 𝑎ℎ𝑒𝑎𝑑),

𝐸3𝑏.          𝑄 ≔ 𝑄 ∘ 〈𝑝𝑖〉        
⟩  

E4. if  𝑞𝑖.ahead ≠ null  

E5.        𝑞𝑖.ahead.next:= 𝑞𝑖 

E6.        repeat while 𝑞𝑖.ahead ≠ null  

E7. 𝑞𝑖.chk := 2  

E8. return 

release_lock (L: *lock, 𝑞𝑖: *qnode) 

D1.  𝑞𝑖.chk := 3  

D2.  if  𝑞𝑖.next = null 

D3.        ⟨
𝐷3𝑎.  𝐢𝐟 𝐶𝐴𝑆(𝐿, 𝑞𝑖, 𝑛𝑢𝑙𝑙),

𝐷3𝑏.         𝑄 ≔ 𝑄\〈𝑝𝑖〉     
⟩ 

D4.                         𝑞𝑖.chk := 0 

D5.                          return 

D6.        repeat while 𝑞𝑖.next = null 

D7. ⟨
𝐷7𝑎.  𝑞𝑖. 𝑛𝑒𝑥𝑡. 𝑎ℎ𝑒𝑎𝑑 = 𝑛𝑢𝑙𝑙,

𝐷7𝑏.      𝑄 ≔ 𝑄\〈𝑝𝑖〉                  
⟩ 

D8. 𝑞𝑖.chk := 0 

D9. return 

 

Algorithm 5.a Failure-free and main procedures of RGLock 
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Boolean recoverBlocked (L: *lock, 𝑞𝑖:*qnode)  

/* If 𝑞𝑖 ∈ 𝑅𝑀𝐸𝑄 holds, complete the passage and 

return true. Else return false. */ 

RB1.  tailNow: *qnode := L  

RB2.  if  tailNow = null 

RB3.            return false   

RB4.  else if  tailNow = 𝑞𝑖 

RB5.            waitForCS(𝑞𝑖) 

RB6.  else 

RB7.        if  𝑞𝑖.next = null  

RB8.              if  findMe(L,𝑞𝑖)   

RB9.                     waitForCS(𝑞𝑖) 

RB10.   else return false 

RB11.      else waitForCS(𝑞𝑖) 

RB12.  recoverHead(L,𝑞𝑖) 

RB13.  return true 

recoverRelease (L: *lock, 𝑞𝑖: *qnode) 

/* If 𝑞𝑖 ∈ 𝑅𝑀𝐸𝑄 holds, then release the lock. Else 

complete the passage */ 

RR1.   tailNow: *qnode := L 

RR2.   if  tailNow = null 

RR3.         𝑞𝑖.chk := 0  

RR4.         return 

RR5.   else if  tailNow = 𝑞𝑖 

RR6.           release_lock(L,𝑞𝑖) 

RR7.   else  if  findMe(L,𝑞𝑖) 

RR8.          release_lock(L,𝑞𝑖) 

RR9.   𝑞𝑖.chk := 0   

RR10.  return 

recoverHead (L: *lock, 𝑞𝑖: *qnode) 

// execute CS and release the lock. 

RH1. Critical Section 

RH2. release_lock(L,𝑞𝑖) 

RH3. return 

waitForCS (𝑞𝑖: *qnode) 

 //link  𝑞𝑖 behind its predecessor in 𝑅𝑀𝐸𝑄 (if 

applicable) and busy-wait to enter CS 

W1.  if  𝑞𝑖.ahead ≠ null 

W2.       if (𝑞𝑖.ahead≠null ∧ 𝑞𝑖.ahead.next=null)   

W3.               𝑞𝑖.ahead.next := 𝑞𝑖 

W4.       repeat while 𝑞𝑖.ahead≠null 

W5. 𝑞𝑖.chk := 2 

W6.  return 

Boolean findMe (L: *lock, 𝑞𝑖: *qnode) 

/*scans  𝑅𝑀𝐸𝑄 to locate 𝑞𝑖 and returns true if  𝑞𝑖 is 

found. N is total no. of processes in 𝒫 and  run is 

loop iterator*/ 

F1.  temp: *qnode := L 

F2.  run: int := 1 

F3.  while(run<N) 

F4.        temp := temp.ahead 

F5.        if  temp = null 

F6.                return false 

F7.          if temp =  𝑞𝑖 

F8.                return true 

F9.          run := run +1 

F10.  return false 

Algorithm 5.b Crash-recovery procedures of RGLock 
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For exposition, we distinguish a number of phases in which a process may be at the end of an execution 

history. The transitions among these phases are governed by atomic shared memory operations as illustrated 

in Figure 5.1. At system startup, the lock is free, i.e., 𝐿 points to 𝑛𝑢𝑙𝑙, and all processes are in 𝐷𝐸𝐿𝐸𝑇𝐸𝐷 

phase. In the doorway instruction at line 𝐸3, every process 𝑝𝑖  that is trying to acquire the lock appends its 

qnode at the trailing end of the linked-list atomically, and transitions to the 𝐴𝑃𝑃𝐸𝑁𝐷𝐸𝐷 phase. The atomic 

block of statements at line 𝐸3 contains an operation on the history variable 𝑄 at line 𝐸3𝑏. Note that the 

history variable is used only for reasoning about the correctness of the algorithm and does not indicate any 

shared memory operation. The notation 𝑄 ∘ 〈𝑝𝑖〉 denotes appending the ID of a process 𝑝𝑖 to a sequence 𝑄, 

such that 𝑄[|𝑄|] = 𝑝𝑖, where |𝑄| denotes the length of 𝑄.  

 

Figure 5.1 Phase transitions of a process 𝒑𝒊 executing RGLock algorithm. 

If 𝑝𝑖 has a non-null predecessor, then 𝑝𝑖 links behind it by setting the 𝑛𝑒𝑥𝑡 pointer of its predecessor to 

𝑞𝑖 at line 𝐸5, and spins on its own 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑 field, waiting for it to become 𝑛𝑢𝑙𝑙 in the 𝐵𝐿𝑂𝐶𝐾𝐸𝐷 phase. 

Otherwise, 𝑝𝑖 is the head process and becomes the lock holder (𝐻𝐸𝐴𝐷 phase). A process 𝑝𝑖 transitions 

from 𝐵𝐿𝑂𝐶𝐾𝐸𝐷  phase to 𝐻𝐸𝐴𝐷 phase when its predecessor writes 𝑛𝑢𝑙𝑙 to the 𝑎ℎ𝑒𝑎𝑑 field on its qnode, 
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denoted by 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑 ← 𝑛𝑢𝑙𝑙. After executing its critical section, the head process releases the lock in the 

exit protocol defined by the statements 𝐷1 − 𝐷9. There are two cases when the lock-holder releases the 

lock. If the tail pointer 𝐿 still points to the lock-holder’s qnode, then there are no processes waiting to 

acquire the lock and the head process releases the lock by setting 𝐿 to 𝑛𝑢𝑙𝑙 (𝑆𝐸𝑇_𝐹𝑅𝐸𝐸 phase). Otherwise, 

setting the lock free by pointing 𝐿 to 𝑛𝑢𝑙𝑙 in such case violates the FCFS property and could potentially 

introduce starvation. As a counter-measure, the program takes advantage of the 𝑐𝑜𝑚𝑝𝑎𝑟𝑒_𝑎𝑛𝑑_𝑠𝑤𝑎𝑝 

(CAS) instruction for releasing the lock. If the CAS operation at line 𝐷3𝑎 fails, then the lock-holder waits 

in a spin loop (at line 𝐷6) until the successor updates its 𝑛𝑒𝑥𝑡 pointer, in order to avoid the timing window 

where a process has appended its qnode to the linked-list but has not yet linked behind its predecessor. 

When the lock-holder finds a non-null successor, i.e., when 𝑞𝑖. 𝑛𝑒𝑥𝑡 ≠ 𝑛𝑢𝑙𝑙, the lock is relinquished at 

line 𝐷7 by promoting the successor as the new head (𝑃𝐴𝑆𝑆_𝑂𝑁 phase). The notation 𝑄\〈𝑝𝑖〉 at lines 𝐷3𝑏 

and 𝐷7𝑏 denotes the deletion of element 𝑝𝑖 from the sequence 𝑄, where 𝑝𝑖 is the head process at 𝑄[1]. The 

operations on 𝑄 are treated to be executed atomically along with the write, CAS, or SAS operations they 

are enclosed with. The operation at lines 𝐷8 and 𝐸1 are only  house-keeping actions required for the reuse 

of the process’s qnode in subsequent passages. The process is in the 𝐷𝐸𝐿𝐸𝑇𝐸𝐷 phase when executing these 

statements. After releasing the lock a process enters NCS in the 𝐷𝐸𝐿𝐸𝑇𝐸𝐷 phase. A process may remain 

indefinitely in its non-critical section until its subsequent completion of the doorway instruction.  

5.2 Swap and Store 

Consider the atomic 𝑓𝑒𝑡𝑐ℎ_𝑎𝑛𝑑_𝑠𝑡𝑜𝑟𝑒 (swap) based implementation of the entry protocol in the original 

MCS spin lock. Each process appends its qnode to a linked-list via the swap operation and busy-waits until 

it is notified of being the lock owner. The first and most obvious challenge in the event of a crash is tracing 

the ownership of such a spin lock. In particular, when a process attempts to resume execution following a 

failure, the lock acquisition is in an ambiguous state, in that any evidence of it ever swapping 𝐿 is lost in 

the crash. From the ‘enqueue’ operation defined in the MCS lock (see pred : *qnode := swap (L,I) 

instruction in Algorithm 1), if the atomic swap is immediately followed by a write which stores the address 

of its immediate predecessor in its persistent memory, it greatly simplifies the membership (or position) 

tracking of a crashed process in the linked-list when it is in recovery. Unfortunately, the swap operation 

cannot be used to also register the lock ownership atomically using either the basic hardware instructions 

or the non-blocking techniques developed using compare_and_swap [101]. Contemporary architectures 

perform these operations sequentially in two independent steps as a swap followed by a write. However, in 
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case a process crashes immediately after the swap and before the succeeding write, the ambiguity remains 

unresolved in its crash-recovery procedure. In such scenario, the ability of other active processes to acquire 

the lock is restricted, and thus, the overall liveness of the system is also affected. For instance, a process 

cannot release the lock to its successor if the successor crashed while the lock-holder is waiting in its exit 

protocol for the successor to link behind and consequently the successor has no knowledge of its 

membership in the linked-list in recovery, thus causing a permanent delay in lock release.  

Clearly, if the two operations viz. appending to the linked-list and registering the address of the immediate 

predecessor were performed atomically, we could always trace out which process currently holds the lock 

and which processes are busy-waiting in line for the lock. Similarly, if a lock-holder crashes immediately 

after promoting its last known successor, then the recovery mechanism becomes complicated since the 

process in recovery may execute the exit protocol once again causing a safety violation by promoting an 

already promoted process twice. As a first step towards resolving this problem, we propose a special 

instruction as defined below. We assume that the address of a process’s qnode is a pointer to a single word 

that can be written atomically. 

atomic 𝒔𝒘𝒂𝒑_𝒂𝒏𝒅_𝒔𝒕𝒐𝒓𝒆 (SAS):  

In one indivisible atomic step, a swap is immediately followed by a store that writes the result of the 

swap operation to a location in the non-volatile memory. Also, no other write is allowed to that memory 

location between the load and store parts of a swap. Consequently, an FCFS order is ensured in the lock 

acquisitions in RGLock due to the SAS operation in the doorway instruction. Given two elements to swap 

(for e.g., reference to the tail of the linked-list and the qnode to be added to the linked-list, in the doorway 

instruction) and a memory location to store the result of the swap operation atomically, a pseudo-code 

representation of the SAS instruction is shown as:  

function SAS (old_element: address, new_element: value, location: address) 

    atomic { 

     temp: val_type  := *old_element 

     *old_element    := new_element 

     *location       := temp 

         } 
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5.3 Crash-recovery Procedures 

We will now discuss RGLock implementation in a crash-recoverable execution. The primary objective of 

a crash-recovery procedure is to identify the protocol the process executed before the crash. Recall that the 

checkpointing number 𝑐ℎ𝑘 is used for this purpose. As the shared variables stored on the non-volatile 

medium remain persistent during a crash, the process 𝑝𝑖 in recovery can easily identify its qnode through 

its 𝑞𝑖 pointer. Then, the recovery function to be invoked is determined by the checkpoint value read at line 

𝐶𝑅1. If 𝑞𝑖. 𝑐ℎ𝑘 is 1, the process had already completed line 𝐸2 in its entry protocol before crashing. Then 

the recoverBlocked method is invoked at line 𝐶𝑅3, which identifies the position of the process in the 

linked-list, on the following basis: 

a) If the lock pointer 𝐿 is currently 𝑛𝑢𝑙𝑙, it implies that the linked-list is empty and 𝑞𝑖 was not appended 

to it before the crash. 

b) If 𝐿 points to 𝑞𝑖 itself, clearly 𝑝𝑖 is in the 𝐴𝑃𝑃𝐸𝑁𝐷𝐸𝐷 phase, and the next steps in recovery are about 

completing the remainder of the entry and exit protocols in that passage. 

c) If 𝐿 points to some other process’s qnode, further investigation is necessary to verify if 𝑞𝑖 was 

appended to the linked-list before the crash or not. 

Statements RB7-RB11 in 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝐵𝑙𝑜𝑐𝑘𝑒𝑑 method construe case (c). We use the 𝑓𝑖𝑛𝑑𝑀𝑒 function to 

determine the membership of 𝑞𝑖 in the list of qnodes. If 𝑓𝑖𝑛𝑑𝑀𝑒 determines that 𝑞𝑖 is reachable by tracing 

the ahead pointers starting from the qnode of the tail process in the current linked-list, then the 𝑤𝑎𝑖𝑡𝐹𝑜𝑟𝐶𝑆 

method defined in lines 𝑊1 − 𝑊6 identifies 𝑞𝑖’s predecessor (if exists) and emulates the busy-waiting steps 

of the 𝑎𝑐𝑞𝑢𝑖𝑟𝑒_𝑙𝑜𝑐𝑘 procedure so that the process in recovery maintains the liveness of the system. We 

assume that the qnode of a process fits into a single word on the memory and that the read operations in 

W2 incur only one remote memory reference. Particularly, the assumption is that a process 𝑝𝑖 makes a local 

copy of the qnode pointed by 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑 in a temporary variable during the first read of the 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑 value 

and the subsequent read of the value of 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑. 𝑛𝑒𝑥𝑡 is read from the temporary variable itself instead 

of referencing the actual qnode structure on the non-volatile main memory.  

The execution returns from 𝑤𝑎𝑖𝑡𝐹𝑜𝑟𝐶𝑆 when 𝑞𝑖 is promoted (if ever) as the head process, and then 𝑝𝑖 

completes the 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝐻𝑒𝑎𝑑 procedure before returning to NCS at 𝐶𝑅8. As 𝑝𝑖 is already in 𝐴𝑃𝑃𝐸𝑁𝐷𝐸𝐷 

phase in case (b), it is hence a straightforward execution of 𝑤𝑎𝑖𝑡𝐹𝑜𝑟𝐶𝑆 invoked at line 𝑅𝐵5, followed by 
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𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝐻𝑒𝑎𝑑 and 𝐶𝑅8. For case (a), since the lock is free and 𝑝𝑖 still remains in 𝐷𝐸𝐿𝐸𝑇𝐸𝐷 phase as it 

has not completed the doorway instruction before the crash, the crash-recovery procedure invokes the 

𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝐹𝑟𝑒𝑒 procedure at line 𝐶𝑅4 when the process returns from 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝐵𝑙𝑜𝑐𝑘𝑒𝑑 with a 𝑓𝑎𝑙𝑠𝑒 

response, which is essentially an execution of a new failure-free passage.  

If the checkpoint read at 𝐶𝑅1 is 2, it implies that 𝑝𝑖 was the head when it crashed. Then the recoverHead 

procedure is invoked at CR5. As shown in the code, 𝑝𝑖 can then execute the critical section at 𝑅𝐻1 and 

eventually release the lock as it would in a failure-free passage. On the other hand, if the checkpoint at 𝐶𝑅1 

is 3, it indicates that the process had begun executing the exit protocol before crashing and hence, the 

𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑅𝑒𝑙𝑒𝑎𝑠𝑒 method is invoked. Again, there are three possible cases to be considered at this point: 

A) 𝐿 points to 𝑛𝑢𝑙𝑙, which implies that 𝑝𝑖  has already set the lock free, but crashed immediately after 

completing line 𝐷3. Hence, 𝑝𝑖  returns to NCS from 𝑅𝑅4. 

B) 𝐿 points to 𝑞𝑖, which implies that 𝑝𝑖  has not set the lock free before crashing and is still the tail. 

Hence, the 𝑟𝑒𝑙𝑒𝑎𝑠𝑒_𝑙𝑜𝑐𝑘 procedure is invoked at 𝑅𝑅6, following which 𝑝𝑖 returns to NCS at 𝐶𝑅8. 

C) 𝐿 points to some other qnode. In such case it is ambiguous whether 𝑝𝑖 relinquished the lock before 

the crash or not. Hence, the 𝑓𝑖𝑛𝑑𝑀𝑒 method invoked at 𝑅𝑅7 determines 𝑞𝑖’s membership in the 

linked-list. Then 𝑝𝑖 takes the next steps according to the response returned by the 𝑓𝑖𝑛𝑑𝑀𝑒 method 

and finally returns to NCS at CR8.  

Evidently, 𝑓𝑖𝑛𝑑𝑀𝑒 plays a crucial role in both the crash-recovery procedures described above. As seen 

at line F1, the current tail is identified by reading the lock pointer 𝐿 and a temporary variable is assigned to 

it. The idea is to scan through the list of qnodes from the read tail, all the way to the head. Should the scan 

find a match in the queue with the invoking process’s qnode, it returns 𝑡𝑟𝑢𝑒, otherwise it returns 𝑓𝑎𝑙𝑠𝑒. 

The scan loop at 𝐹3 terminates when either the head qnode is reached, or when the number of iterations 

reaches a limit of 𝑁 − 1, where 𝑁 is the number of processes in the system. The reasoning behind limiting 

the loop to 𝑁 − 1 iterations is that in case a process’s qnode is still referenced by some process in the linked-

list, then it takes a maximum of 𝑁 − 1 hops to reach its qnode starting from the tail assuming the worst 

case of all 𝑁 processes having their respective qnodes appended to the linked-list. On the other hand, if the 

qnode of the invoking process does not exist in the linked-list, then allowing the 𝑓𝑖𝑛𝑑𝑀𝑒 scan to run for an 

unbounded number of iterations would result in a non-terminating loop in case other processes in the system 
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pass through CS infinitely often. Specifically, in an asynchronous system, there exists a possibility of the 

𝑓𝑖𝑛𝑑𝑀𝑒 scan never reaching a qnode whose 𝑎ℎ𝑒𝑎𝑑 pointer is 𝑛𝑢𝑙𝑙. 
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Chapter 6 

Correctness 

In this chapter, the RGLock algorithm is proved correct with respect to the correctness properties of 

Recoverable Mutual Exclusion described in Chapter 4. The correctness of our algorithm is derived by an 

induction on the length of the execution history or by contradiction where applicable, following the style 

of the proof for Generic Queue-based Mutual Exclusion algorithm in [102]. 

6.1 Notational Conventions 

The system in consideration is represented as a triple 𝒮 = (𝒫, 𝒱, ℋ) where a finite set of processes with 

unique identifiers in 𝒫= {𝑝1, 𝑝2 … 𝑝𝑁} interact through operations on a finite set of shared variables in 𝒱 =

{𝐿, 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑, 𝑞𝑖. 𝑐ℎ𝑘, 𝑞𝑖. 𝑛𝑒𝑥𝑡} in a sequence of steps recorded in an execution history 𝐻 ∈ ℋ, where ℋ is 

a set of all histories starting from the initial state. Unless stated otherwise, 𝑖 and 𝑗 are integers that range 

over 1 … 𝑁. A step that occurs in 𝐻 is denoted by 𝑠 ∈ 𝐻. For any execution histories G, H ∈ ℋ, 𝐺 ≼ 𝐻 

denotes that G is a prefix of H, and G ≺ H denotes that G is a proper prefix of H. 𝐺 ∘  𝐻 denotes the 

concatenation of 𝐺 and 𝐻 (i.e., elements of 𝐻 appended to 𝐺). If 𝐺 is finite, |𝐺| denotes the length of 𝐺, 

and 𝐺[𝑠′. . 𝑠′′] denotes the subsequence of 𝐺 consisting of every step 𝑠 such that 𝑠′ ≤ 𝑠 ≤ 𝑠′′. The state of 

an object 𝑣 ∈ 𝒱 at the end of 𝐻 ∈ ℋ is denoted by 𝑣𝐻. For instance, qi. 𝑎ℎ𝑒𝑎𝑑𝐻 refers to the state of the 

𝑎ℎ𝑒𝑎𝑑 field on 𝑝𝑖’s qnode at the end of history 𝐻. Finally, 𝑝𝑖@𝑙𝑎𝑏𝑒𝑙 is used to denote the line of code from 

the algorithm with the given label a process 𝑝𝑖 ∈ 𝒫 is enabled to execute.  

 

 



 

 36 

6.2 Preliminaries 

Consider a concurrent system 𝒮 = (𝒫, 𝒱, ℋ) executing the RGLock algorithm. Based on the informal 

description in Chapter 5, processes in 𝒫 start from the initial state where each process has a distinct qnode 

record in the shared memory. An execution of each passage by a process 𝑝𝑖 begins when 𝑝𝑖 is enabled to 

execute line 𝐶𝑅1 and ends immediately after the first subsequent execution of line 𝐶𝑅8. Each concurrent 

execution of the RGLock algorithm is expressed as a history 𝐻 ∈ ℋ in which the shared memory operations 

are atomic. 𝐻 may contain normal steps, CS steps and crash-recovery steps as defined in 3.3. For exposition, 

a history variable 𝑄 is used, whose state at the end of 𝐻 is a sequence of process IDs corresponding to those 

processes contending for the resource in critical section in 𝐻. 𝑄 supports append and delete operations. In 

particular, 𝑝𝑖 is appended to 𝑄 when the corresponding process executes line 𝐸3𝑏 in the entry protocol, and 

is deleted from 𝑄 when the process executes either line 𝐷3𝑏 or 𝐷7𝑏 in the exit protocol. A delete operation 

removes all instances of 𝑝𝑖 in 𝑄 and has no effect if 𝑝𝑖 is not in 𝑄. As shown later on in Lemma 6.2.4-(ii) 

and in Corollary 6.3.3, 𝑄 contains at most one instance of 𝑝𝑖 at all times and processes delete themselves 

from 𝑄 in a FIFO order.  

Definition 6.2.1. For any finite history 𝐻 ∈ ℋ, and any process 𝑝𝑖 ∈ 𝒫, 𝑝𝑖 ∈ 𝑄𝐻denotes that 𝑝𝑖 is in the 

sequence of process IDs corresponding to the state of 𝑄 at the end of 𝐻.  

Definition 6.2.2. Let 𝑅𝑀𝐸𝑄 denote a linked-list of per-process qnode structures (each denoted by 𝑞𝑖) 

whose links are determined by their ‘𝑎ℎ𝑒𝑎𝑑’ pointers. 𝐿 is a pointer to the tail of 𝑅𝑀𝐸𝑄 and 𝐿 is 𝑛𝑢𝑙𝑙 

when the lock is free. If there is a qnode 𝑞𝑖 such that 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑 = 𝑛𝑢𝑙𝑙 and 𝑞𝑖 ∈ 𝑅𝑀𝐸𝑄, i.e., 𝑞𝑖 can be 

reached by following the 𝑎ℎ𝑒𝑎𝑑 pointers from the tail 𝐿, then 𝑞𝑖 is the head of 𝑅𝑀𝐸𝑄. A non-empty 𝑅𝑀𝐸𝑄 

is acyclic (from the result of Lemma 6.2.4-(ii) and Invariant-6.3(𝐻, 𝑝𝑖)-(e)) either since it has only a single 

qnode, or since the head qnode is duly dereferenced by the process itself when it ‘promotes’ its successor. 

Informally, 𝑅𝑀𝐸𝑄 is the shared data structure that facilitates processes in appending their qnodes at the tail 

end for acquiring the lock, and in scanning the list of qnodes from the tail to the head (if required) in a 

crash-recovery procedure. The correctness of the RGLock algorithm is proved based on the abstract 

properties of 𝑅𝑀𝐸𝑄. 
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Lemma 6.2.3. For any 𝐻 ∈ ℋ, and any process 𝑝𝑖 ∈ 𝒫, if 𝑝𝑖 completes line 𝐸3𝑏 in step 𝑠 in 𝐻, then 𝑝𝑖 

does not complete 𝐸3𝑏 again in 𝐻 after 𝑠, unless it first completes line 𝐷3𝑏 or 𝐷7𝑏. 

Proof. The lemma is proved by contradiction. Let step 𝑠 be the first execution of line 𝐸3𝑏 by process 𝑝𝑖 in 

𝐻.  Suppose for contradiction that the hypothesis stated in the lemma is false, i.e., 𝑝𝑖 completes 𝐸3𝑏 again 

in 𝐻 after 𝑠, say in step 𝑠′, without executing 𝐷3𝑏 or 𝐷7𝑏 between 𝑠 and 𝑠′. This supposition is denoted by 

⋆ for convenience.  

Case 1: 𝑝𝑖 does not crash between 𝑠 and 𝑠′. According to the algorithm, a process 𝑝𝑖 appends itself to 𝑄 

only through an execution of line 𝐸3𝑏, and deletes itself from 𝑄 only through an execution of either line 

𝐷3𝑏 or 𝐷7𝑏. As per the lines of code corresponding to a failure-free execution (𝐹𝐹1 − 𝐹𝐹3), once 𝑝𝑖 

completes line 𝐸3𝑏 in a passage, it does not execute 𝐸3𝑏 again until and unless it has completed lines 𝐷3𝑏 

or 𝐷7𝑏, and 𝐶𝑅8, i.e., the process 𝑝𝑖 has to complete the exit protocol associated with that passage before 

the subsequent execution of line 𝐸3𝑏, which contradicts ⋆.  

Case 2: 𝑝𝑖 crashes between 𝑠 and 𝑠′, say in step 𝑠′′. Without loss of generality, suppose that 𝑠′′ is the last 

crash-recovery step taken by 𝑝𝑖 after 𝑠 and before 𝑠′. Then 𝑝𝑖’s steps from 𝑠′′ to 𝑠′ are failure-free. Since 

𝑝𝑖 takes a crash-recovery step 𝑠′′ after completing line 𝐸3𝑏 in step 𝑠, the 𝑞𝑖. 𝑐ℎ𝑘 value immediately after 

𝑠′′ depends on the procedures completed by 𝑝𝑖 between 𝑠 and 𝑠′′. Note that 𝑞𝑖. 𝑐ℎ𝑘 is set to 1 only at line 

𝐸2, to 2 only at line 𝐸7 or 𝑊5, to 3 only at line 𝐷1 and to 0 at line 𝐷4, 𝐷8, 𝑅𝑅3, or 𝑅𝑅9 in the code. The 

proof proceeds by a case analysis on the value of 𝑞𝑖. 𝑐ℎ𝑘 immediately after 𝑠′′. 

Subcase 2.1: 𝑞𝑖. 𝑐ℎ𝑘 is 1. Then the next steps by 𝑝𝑖 in recovery in 𝐻[𝑠′′. . 𝑠′] are an execution of 

the recoverBlocked method (lines 𝑅𝐵1 − 𝑅𝐵13) invoked at 𝐶𝑅3. Since 𝑝𝑖 has already completed 

line 𝐸3𝑏 in 𝑠, 𝑝𝑖 ∈ 𝑄 holds in 𝐻[𝑠. . 𝑠′′] unless it deletes itself from 𝑄 by executing line 𝐷3𝑏 or 

𝐷7𝑏 in some step in 𝐻[𝑠. . 𝑠′′], which contradicts ⋆. Since 𝐿 = 𝑞𝑖 by the action of 𝑠, the condition 

at 𝑅𝐵2 holds only if 𝑝𝑖 sets 𝐿 = 𝑛𝑢𝑙𝑙 by completing line 𝐷3 in 𝐻[𝑠. . 𝑠′′], which contradicts ⋆. 

Moreover, the findMe method invoked at 𝑅𝐵8 returns 𝑓𝑎𝑙𝑠𝑒 only if 𝑝𝑖’s qnode is not found in the 

linked-list 𝑅𝑀𝐸𝑄. Since 𝑞𝑖 is appended to 𝑅𝑀𝐸𝑄 in step 𝑠, the only possibility for findMe to return 

false is in case if 𝑝𝑖 completed 𝐷7, or if 𝑝𝑖 set 𝐿 = 𝑛𝑢𝑙𝑙 by completing line 𝐷3 before some other 

processes appended their qnodes to 𝑅𝑀𝐸𝑄, both contradicting ⋆. Consequently, 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝐵𝑙𝑜𝑐𝑘𝑒𝑑 

cannot return false at either 𝑅𝐵3 or 𝑅𝐵10, without contradicting ⋆. Accordingly, 𝑝𝑖 completes the 

𝑤𝑎𝑖𝑡𝐹𝑜𝑟𝐶𝑆 procedure invoked either at 𝑅𝐵5 or 𝑅𝐵9, followed by the 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝐻𝑒𝑎𝑑 procedure 
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invoked at 𝑅𝐵12, which restricts 𝑝𝑖 to complete the passage by executing 𝐷3𝑏 or 𝐷7𝑏 and return 

to line 𝐶𝑅8 before 𝑠′, thus contradicting ⋆. 

Subcase 2.2: 𝑞𝑖. 𝑐ℎ𝑘 is 2. Then the recoverHead procedure at line 𝐶𝑅5 is invoked after 𝑠′′, which 

has code only for executing CS and exit protocol (lines 𝐷1 − 𝐷9), and the process then returns to 

NCS at line 𝐶𝑅8 before reaching 𝐸3𝑏 again in step 𝑠′. Thus, 𝐻[𝑠′′. . 𝑠′] contradicts ⋆. 

Subcase 2.3: 𝑞𝑖. 𝑐ℎ𝑘 is 3. In recovery, the recoverRelease procedure invoked at line 𝐶𝑅6 

determines whether the process has already completed the passage through a series of checks at 

lines 𝑅𝑅2, 𝑅𝑅5, and 𝑅𝑅7. Since 𝐿 = 𝑞𝑖 by the action of 𝑠, the condition at 𝑅𝑅2 holds only if 𝑝𝑖 

sets 𝐿 = 𝑛𝑢𝑙𝑙 by completing line 𝐷3, which contradicts ⋆. And if 𝑝𝑖 reaches 𝑅𝑅5 and if the 

condition at 𝑅𝑅5 holds, then the release_lock procedure invoked at 𝑅𝑅6 will execute 𝐷3𝑎 or 𝐷7𝑏 

between 𝑠′′ and 𝑠′, which also contradicts ⋆. Finally, as argued in Subcase 2.1 above, the findMe 

method invoked at 𝑅𝑅7 after 𝑠′′ cannot return 𝑓𝑎𝑙𝑠𝑒 without contradicting ⋆. Then if findMe at 𝑅𝑅7 

returns 𝑡𝑟𝑢𝑒, then the process deletes itself from 𝑄 by executing the release_lock procedure at 𝑅𝑅8 

and then returns to NCS at 𝐶𝑅8, and thus 𝐻[𝑠′′. . 𝑠′] contradicts ⋆.  

Subcase 2.4: 𝑞𝑖. 𝑐ℎ𝑘 is 0. Then 𝑝𝑖 has already completed line 𝐷4, or 𝐷10, or 𝑅𝑅3, or 𝑅𝑅9 in 

𝐻[𝑠. . 𝑠′′], and this contradicts ⋆ because by the structure of the algorithm, line 𝐷3𝑏 or 𝐷7𝑏 is 

always executed before 𝑝𝑖 executes line 𝐷4, 𝐷10, 𝑅𝑅3, or 𝑅𝑅9.  

□ 

Lemma 6.2.4. For any finite history 𝐻 ∈ ℋ, and any process 𝑝𝑖 ∈ 𝒫, the following hold: 

i. 𝑝𝑖 ∈ 𝑄𝐻  ⟺ there is a step in 𝐻, in whicℎ 𝑝𝑖 has completed line 𝐸3𝑏 and has not completed 𝐷3𝑏 

or 𝐷7𝑏 subsequently since its last execution of 𝐸3𝑏 in 𝐻; and 

ii. 𝑄𝐻 contains at most one instance of 𝑝𝑖. 

Proof.  

Part (i). The proof proceeds by an induction on |𝐻|. 

Base Case: |𝐻|= 0. In such case, every process is in its initial state, has never executed line 𝐸3𝑏, 𝐷3𝑏 or 

𝐷7𝑏; and the queue is an empty sequence, i.e., 𝑄𝐻 = 〈 〉. Therefore Lemma 6.2.4-(i) holds trivially. 
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Induction Hypothesis (IH): For any 𝑘 > 0, assume that Lemma 6.2.4-(i) holds for all histories in ℋ, such 

that |𝐻| < 𝑘. 

Induction Step: Now it is required to prove that Lemma 6.2.4-(i) holds for all 𝐻 such that |𝐻| = 𝑘. Let 𝜎 

be the last step in 𝐻. Perform a case analysis on 𝜎.  

Case 1: 𝜎 is an execution of some line of code other than 𝐸3𝑏, 𝐷3𝑏, or 𝐷7𝑏. Then Lemma 6.2.4-(i) follows 

directly from the IH because the state of 𝑄 does not change by the action of 𝜎, even if 𝜎 is a crash-recovery 

step by 𝑝𝑖.  

Case 2: 𝜎 is an execution of 𝐸3𝑏. Then 𝑝𝑖 ∈ 𝑄𝐻, because 𝑝𝑖 is appended to 𝑄 at line 𝐸3𝑏, and this implies 

Lemma 6.2.4-(i) since 𝑝𝑖 has not executed either line 𝐷3𝑏 or 𝐷7𝑏 in 𝐻 since its last execution of 𝐸3𝑏, 

which occurred in step 𝜎 itself. And for every 𝑝𝑗 ∈ 𝒫 where 𝑗 ≠ 𝑖, Lemma 6.2.4-(i) follows directly from 

the IH, since 𝑝𝑗 is neither appended nor deleted from 𝑄 by the action of 𝜎.  

Case 3: 𝜎 is an execution of 𝐷3𝑏 or 𝐷7𝑏. This implies Lemma 6.2.4-(i) because if 𝑝𝑖 had previously 

completed line 𝐸3𝑏 in 𝐻, then it has completed 𝐷3𝑏 or 𝐷7𝑏 in step 𝜎 after its last execution of 𝐸3𝑏. And 

for every 𝑝𝑗 ∈ 𝒫 where 𝑗 ≠ 𝑖, Lemma 6.2.4-(i) follows directly from the IH, since 𝑝𝑗 is neither appended 

nor deleted from 𝑄 by the action of 𝜎. 

This completes the case analysis for part (i) of Lemma 6.2.4. 

□ 

Part (ii). Proof by induction on |𝐻|. 

Base Case: |𝐻| = 0. In such case, every process is in its initial state, has never executed line 𝐸3𝑏, 𝐷3𝑏 or 

𝐷7𝑏; and 𝑄𝐻 = 〈 〉. Therefore Lemma 6.2.4-(ii) holds trivially. 

Induction Hypothesis (IH): For any 𝑘 > 0, assume that Lemma 6.2.4-(ii) holds for all histories in ℋ, such 

that |𝐻| < 𝑘. 

Induction Step: Prove that part Lemma 6.2.4-(ii) holds for all 𝐻 such that |𝐻| = 𝑘. Let 𝜎 be the last step 

in 𝐻 and let 𝐺 satisfy 𝐻 = 𝐺 ∘ 𝜎. Proceed by a case analysis on 𝜎. 
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Case 1: 𝜎 is not an execution of line 𝐸3𝑏 by 𝑝𝑖. Then 𝜎 does not append anything to 𝑄. In particular, either 

𝜎 has no effect on 𝑄 or 𝜎 removes 𝑝𝑖 from 𝑄 at line 𝐷3𝑏 or 𝐷7𝑏. Suppose for contradiction that Lemma 

6.2.4-(ii) is false at the end of 𝐻. Then 𝑄𝐻 contains at least two instances of some process 𝑝𝑗. Since 𝜎 does 

not add anything to 𝑄, all instances of 𝑝𝑗 are also present in 𝑄𝐺. This contradicts the IH, which implies that 

Lemma 6.2.4-(ii) holds for 𝐺, which has length 𝑘 − 1. 

Case 2: 𝜎 is an execution of line 𝐸3𝑏. Then 𝜎 appends 𝑝𝑖 to 𝑄. It follows from IH that Lemma 6.2.4-(ii) 

holds for 𝐻 unless 𝑝𝑖 ∈ 𝑄𝐺 . Suppose for contradiction that 𝑝𝑖 ∈ 𝑄𝐺 . Then 𝑄𝐺 contains exactly one instance 

of 𝑝𝑖 by the IH. In such case, by Lemma 6.2.4-(i), 𝑝𝑖 completed line 𝐸3𝑏 in 𝐺 and did not subsequently 

complete 𝐷3 or 𝐷7 before executing 𝜎. Since 𝜎 is another execution of 𝐸3𝑏, this contradicts Lemma 6.2.3.  

This completes the case analysis for part (ii) of Lemma 6.2.4. 

□ 

Observation 6.2.6.  For a given state of the history variable at the end of some finite history 𝐻 i.e., 𝑄𝐻, the 

following functions are defined: 

𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐻) ∶= {𝑝𝑖 | 𝑝𝑖 ∈ 𝑄} 

𝑄𝑒𝑚𝑝𝑡𝑦(𝑄𝐻) ∶=  {
true      𝑖𝑓 𝒬 = 〈 〉               
false       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            

 

𝑄ℎ𝑒𝑎𝑑(𝑄𝐻) ∶=  {
𝑄[1]  𝑖𝑓 |𝑄| > 0
𝑛𝑢𝑙𝑙  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑄𝑡𝑎𝑖𝑙(𝑄𝐻) ∶=  {
𝑄[|𝑄|]   𝑖𝑓 |𝑄| > 0
𝑛𝑢𝑙𝑙   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

𝑄𝑝𝑟𝑒𝑑(𝑄𝐻 , 𝑝𝑖) ∶=  {
𝑝𝑗    𝑖𝑓 〈𝑝𝑗, 𝑝𝑖〉 𝑖𝑠 𝑎 𝑠𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑄𝐻 

𝑛𝑢𝑙𝑙                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                       
 

𝑄𝑠𝑢𝑐𝑐(𝑄𝐻 , 𝑝𝑖) ∶=  {
𝑝𝑗    𝑖𝑓 〈𝑝𝑖 , 𝑝𝑗〉 𝑖𝑠 𝑎 𝑠𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑄𝐻

𝑛𝑢𝑙𝑙                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                    
 

Following Lemma 6.2.4-(ii), every process 𝑝𝑖 ∈ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐻) has a unique predecessor and successor 

(unless 𝑛𝑢𝑙𝑙) in 𝑄𝐻, i.e., the values of 𝑄𝑝𝑟𝑒𝑑(𝑄𝐻 , 𝑝𝑖) and 𝑄𝑠𝑢𝑐𝑐(𝑄𝐻 , 𝑝𝑖) are uniquely determined.  
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6.3 Recoverable Mutual Exclusion 

Invariant 6.3. Let 𝑯 be any finite history in 𝓗 and 𝒑𝒊 be some process in 𝓟. Define 𝒍𝒂𝒔𝒕𝑷𝒓𝒆𝒅(𝑯, 𝒑𝒊) as 

the last process appended to 𝑸 before 𝒑𝒊’s last execution of line 𝑬𝟑 in 𝑯, or 𝒏𝒖𝒍𝒍 if no such process exists; 

and 𝒍𝒂𝒔𝒕𝑺𝒖𝒄𝒄(𝑯, 𝒑𝒊) as the process appended to 𝑸 immediately after 𝒑𝒊’s last execution of line 𝑬𝟑 in 𝑯, 

or 𝒏𝒖𝒍𝒍 if no such process exists. Then the following statements hold, collectively denoted Invariant 6.3-

(𝑯, 𝒑𝒊): 

a) if 𝑝𝑖 ∉ 𝒬𝑃𝑟𝑜𝑐𝑠(𝑄𝐻) then  

𝑞𝑖 . 𝑎ℎ𝑒𝑎𝑑𝐻 = null 

𝑞𝑖 . 𝑐ℎ𝑘𝐻 = 0 𝑜𝑟 1 𝑜𝑟 3 

b) if 𝑝𝑖 ∈ 𝒬𝑃𝑟𝑜𝑐𝑠(𝑄𝐻) ∧ 𝑝𝑖 ≠ 𝑄ℎ𝑒𝑎𝑑(𝑄𝐻) then 

 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑𝐻 ≠ null 

       𝑞𝑖. 𝑐ℎ𝑘𝐻 = 1 

c) if 𝑝𝑖 ∈ 𝒬𝑃𝑟𝑜𝑐𝑠(𝑄𝐻) ∧ 𝑝𝑖 = 𝑄ℎ𝑒𝑎𝑑(𝑄𝐻) then 

𝑞𝑖 . 𝑎ℎ𝑒𝑎𝑑𝐻 = 𝑛𝑢𝑙𝑙 

𝑞𝑖 . 𝑐ℎ𝑘𝐻 = 1 𝑜𝑟 2 𝑜𝑟 3  

d) 𝐿𝐻 = 𝑛𝑢𝑙𝑙 if and only if 𝑄𝐻 = 〈 〉 

e) 𝑅𝑀𝐸𝑄𝐻 contains exactly |𝑄𝐻| elements, and the elements of 𝑅𝑀𝐸𝑄𝐻 are the qnodes of the 

processes in 𝑄𝐻, in that order. 

Theorem 6.3.1. For any finite 𝐻 ∈ ℋ, Invariant 6.3 holds for 𝐻. 

Proof. The theorem is proved by induction on |𝐻|. 

Basis: |𝐻| = 0. In such case, every  𝑝𝑖 ∈ 𝒫 is in its initial state, 𝑅𝑀𝐸𝑄𝐻 is empty, i.e., 𝐿𝐻 = 𝑛𝑢𝑙𝑙 and 

 𝑄𝐻 = 〈 〉. Hence, parts (a) and (d) of Invariant 6.3-(𝐻, 𝑝𝑖) hold, because for every  𝑝𝑖 ∈ 𝒫, 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑𝐻 =

𝑛𝑢𝑙𝑙 by initialization, and 𝑄𝐻 = 〈 〉. Since 𝑄𝑒𝑚𝑝𝑡𝑦(𝑄𝐻) = 𝑡𝑟𝑢𝑒, parts (b) and (c) hold trivially because 

their antecedents are false. Part (e) follows since |𝑄𝐻| = 0 and 𝑅𝑀𝐸𝑄𝐻 is empty. 

Induction Hypothesis: For any 𝑘 > 0, assume Theorem 6.3.1 holds for all histories 𝐻 ∈ ℋ, such that 

|𝐻| < 𝑘. 
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Induction Step: Prove that Theorem 6.3.1 holds for all 𝐻 such that |𝐻| = 𝑘. Let 𝜎 be the last step in 𝐻 and 

let 𝐺 satisfy 𝐻 = 𝐺 ∘ 𝜎. Let 𝑝𝑖 be any process executing 𝜎. By the IH, Invariant 6.3-(𝐺, 𝑝𝑖) holds for all 

𝑝𝑖 ∈ 𝒫. Let 𝑠 be the last crash-recovery step taken by 𝑝𝑖 in the current passage, if such a step exists, or ⊥ 

otherwise. Define critical operation as any step by 𝑝𝑖 that modifies the state of 𝑐ℎ𝑘 and 𝑎ℎ𝑒𝑎𝑑 fields on a 

qnode, or the state of 𝐿, 𝑄 and 𝑅𝑀𝐸𝑄. If 𝜎 is not a critical operation, then Invariant 6.3-(𝐻, 𝑝𝑖) holds by 

the IH since the state of 𝐿, 𝑄, and 𝑅𝑀𝐸𝑄 are unmodified by the action of 𝜎. Therefore, it suffices to show 

that the invariant holds when 𝜎 is a critical operation. The proof proceeds by the following case analysis on 

𝜎.  

Case 1: 𝜎 is an execution of line 𝐸2 by 𝑝𝑖. Observe that 𝑝𝑖@𝐸3 holds at the end of 𝐻, by the action of 𝜎. 

Therefore, if 𝑝𝑖 ∈ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐺) holds, then by extending the history 𝐻, it follows that 𝑝𝑖 would eventually 

complete 𝐸3. Consequently, there would be two instances of 𝑝𝑖 in 𝑄 and this contradicts Lemma 6.2.4-(ii). 

Hence, 𝑝𝑖 ∉ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐺) holds. Then since 𝑝𝑖 is not appended to 𝑄𝐺 in step 𝜎, 𝑝𝑖 ∉ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐻) holds. 

Also, 𝑞𝑖. 𝑐ℎ𝑘𝐻 = 1 by the action of 𝜎. Therefore, part (a) of Invariant 6.3-(𝐻, 𝑝𝑖) holds. Parts (b) and (c) 

follow trivially since 𝑝𝑖 ∉ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐻). Moreover, since the state of 𝐿𝐺, 𝑄𝐺 and 𝑅𝑀𝐸𝑄𝐺 remain 

unmodified by the action of 𝜎, parts (d) and (e) follow by the IH. Additionally, for every 𝑝𝑗 ∈ 𝒫\{𝑝𝑖}, 

Invariant 6.3-(𝐺, 𝑝𝑗) immediately implies Invariant 6.3-(𝐻, 𝑝𝑗).  

Case 2: 𝜎 is an execution of line 𝐸3 by 𝑝𝑖. Note that for every 𝑝𝑗 ∈ 𝒫\{𝑝𝑖}, Invariant 6.3-(𝐺, 𝑝𝑗) implies 

Invariant 6.3-(𝐻, 𝑝𝑗). It remains to show Invariant 6.3-(𝐻, 𝑝𝑖). Now, 𝑝𝑖@𝐸3 at the end of 𝐺 implies 𝑝𝑖 

completed 𝐸2 in its last step in 𝐺. Let 𝐹 be a prefix of 𝐺 up to and including the step in which 𝑝𝑖 completed 

𝐸2 for the last time in 𝐺. Then as explained in Case 1, 𝑞𝑖. 𝑐ℎ𝑘𝐹 = 1 and 𝑝𝑖 ∉ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐹) hold. Also note 

that 𝑝𝑖 is appended to 𝑄 only via 𝑝𝑖’s completion of line 𝐸3, which did not occur in any step in 𝐺 after 𝐹. 

Hence, 𝑞𝑖. 𝑐ℎ𝑘𝐺 = 1 and 𝑝𝑖 ∉ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐺) hold by the IH. From the algorithm, the SAS instruction at line 

𝐸3𝑎 sets the lock pointer 𝐿 to qnode 𝑞𝑖 by the action of 𝜎, and 𝑝𝑖 is atomically appended to 𝑄𝐺 within the 

same step at 𝐸3𝑏. Therefore part (d) of Invariant 6.3-(𝐻, 𝑝𝑖) holds since  𝑄𝐻 ≠ 〈 〉 and 𝐿𝐻 = 𝑞𝑖 by the 

action of 𝜎. It remains to show parts (a), (b), (c) and (e). Consider the following subcases for the state of 

the 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑 at the end of 𝐻 by the action of 𝜎. 

Subcase 2.1: 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑𝐻 = 𝑛𝑢𝑙𝑙. Intuitively, 𝐿𝐺 = 𝑛𝑢𝑙𝑙 holds since the SAS instruction at 𝐸3𝑎 

stored 𝑛𝑢𝑙𝑙 in the 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑 field in 𝜎. Then it follows from Invariant 6.3-(𝐺, 𝑝𝑖)-(d) that 𝑄𝐺 = 〈 〉. 

Therefore, since 𝑄𝐻 = 𝑄𝐺 ∘ 〈𝑝𝑖〉 by the action of 𝜎, 𝑄𝑝𝑟𝑒𝑑(𝑄𝐻 , 𝑝𝑖) = 𝑛𝑢𝑙𝑙 holds, i.e., 𝑝𝑖 =
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𝑄ℎ𝑒𝑎𝑑(𝑄𝐻) and implicitly 𝑝𝑖 ∈ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐻). Hence, part (c) of Invariant 6.3-(𝐻, 𝑝𝑖) holds as 

𝑞𝑖. 𝑐ℎ𝑘𝐺 = 1 is unmodified in 𝜎. Parts (a) and (b) follow trivially since 𝑝𝑖 ∈ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐻) and 𝑝𝑖 =

𝑄ℎ𝑒𝑎𝑑(𝑄𝐻) respectively. And since 𝑄𝑝𝑟𝑒𝑑(𝑄𝐻 , 𝑝𝑖) = 𝑛𝑢𝑙𝑙, |𝑄𝐻| = 1 holds as 𝑝𝑖 is the only 

process appended to 𝑄𝐺 = 〈 〉 in 𝜎. As 𝑞𝑖 ∈ 𝑅𝑀𝐸𝑄𝐻 and 𝐿𝐻 = 𝑞𝑖 by the action of 𝜎, the |𝑄𝐻| 

elements in 𝑅𝑀𝐸𝑄𝐻 and 𝑄𝐻 are 𝑞𝑖 and 𝑝𝑖 respectively, which implies part (e) of Invariant 6.3-

(𝐻, 𝑝𝑖).  

Subcase 2.2: 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑𝐻 ≠ 𝑛𝑢𝑙𝑙. Intuitively, 𝐿𝐺 ≠ 𝑛𝑢𝑙𝑙 holds since the SAS instruction at 𝐸3𝑎 

stored some non-null value in the 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑 field in 𝜎. Then by Invariant 6.3-(𝐺, 𝑝𝑖)-(d), 𝑄𝐺 ≠ 〈 〉 

holds, which implies that 𝑄𝑝𝑟𝑒𝑑(𝑄𝐻 , 𝑝𝑖) ≠ 𝑛𝑢𝑙𝑙 since 𝑝𝑖 ∈ 𝑄𝑝𝑟𝑜𝑐𝑠(𝑄𝐻). Recall that 𝑝𝑖 ∉

𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐺) holds, which implies 𝑄𝑝𝑟𝑒𝑑(𝑄𝐻 , 𝑝𝑖) is not 𝑝𝑖 itself. Therefore 𝑝𝑖 ≠ 𝑄ℎ𝑒𝑎𝑑(𝑄𝐻) holds. 

Hence part (b) of Invariant 6.3-(𝐻, 𝑝𝑖) holds since 𝑞𝑖. 𝑐ℎ𝑘𝐻 = 1 holds. Parts (a) and (c) follow 

trivially since 𝑝𝑖 ∈ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐻) and 𝑝𝑖 ≠ 𝑄ℎ𝑒𝑎𝑑(𝑄𝐻) respectively. Invariant 6.3-(𝐺, 𝑝𝑖)-(e) 

implies that the |𝑄𝐺| elements of 𝑅𝑀𝐸𝑄𝐺 are the qnodes of the processes in 𝑄𝐺, in that order. And 

since 𝑝𝑖 ∉ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐺), Invariant 6.3-(𝐺, 𝑝𝑖)-(e) implies that 𝑞𝑖 is not in the elements of 𝑅𝑀𝐸𝑄𝐺. 

Therefore, since 𝑄𝐻 = 𝑄𝐺 ∘ 〈𝑝𝑖〉 and 𝐿𝐻 = 𝑞𝑖  by the action of 𝜎, the |𝑄𝐻| elements in 𝑅𝑀𝐸𝑄𝐻 and 

𝑄𝐻 are 𝑞𝑖 appended to elements in 𝑅𝑀𝐸𝑄𝐺, and 𝑝𝑖  appended to elements in 𝑄𝐺 respectively, which 

implies part (e) of Invariant 6.3-(𝐻, 𝑝𝑖) as no other elements in 𝑄𝐺 and 𝑅𝑀𝐸𝑄𝐺 are modified by 𝜎.  

Case 3: 𝜎 is an execution of line 𝐸7 by 𝑝𝑖. As in the previous case, for every 𝑝𝑗 ∈ 𝒫\{𝑝𝑖}, Invariant 6.3-

(𝐺, 𝑝𝑗) immediately implies Invariant 6.3-(𝐻, 𝑝𝑗) and it remains to show Invariant 6.3-(𝐻, 𝑝𝑖). Now, 

𝑝𝑖@𝐸7 at the end of 𝐺 implies 𝑝𝑖 completed line 𝐸4 or 𝐸6 by reading 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑 = 𝑛𝑢𝑙𝑙 in its last step in 

𝐺. As per the lines of code in the algorithm, notice that only 𝑝𝑖 can delete itself from 𝑄 by its completion 

of either 𝐷3 or 𝐷7, which did not occur in any step in 𝐺 after its last completion of line 𝐸3, i.e., 𝑝𝑖 ∈

𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐺) holds. Then 𝑞𝑖 ∈ 𝑅𝑀𝐸𝑄𝐺 holds by Invariant 6.3-(𝐺, 𝑝𝑖)-(e). And since only 𝑝𝑖 can overwrite 

𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑 to a non-null value by completing 𝐸3, which did not occur in any step after 𝑝𝑖’s last step in 𝐺, 

𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑𝐺 = 𝑛𝑢𝑙𝑙 holds. Hence, 𝑞𝑖 is the head of 𝑅𝑀𝐸𝑄𝐺, by the definition of a head qnode in 𝑅𝑀𝐸𝑄. 

Therefore, it follows from part (e) of Invariant 6.3-(𝐺, 𝑝𝑖) that  𝑝𝑖 ∈ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐺) holds and also 𝑝𝑖 =

𝑄ℎ𝑒𝑎𝑑(𝑄𝐺). Thus, part (c) of Invariant 6.3-(𝐺, 𝑝𝑖) applies. Since 𝜎 does not modify the 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑 field, 

𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑𝐻 = 𝑛𝑢𝑙𝑙 holds by the IH. Also 𝑝𝑖 = 𝑄ℎ𝑒𝑎𝑑(𝑄𝐻) holds since 𝑝𝑖 is not deleted from 𝑄𝐺 in step 

𝜎. Hence, part (c) of Invariant 6.3-(𝐻, 𝑝𝑖) holds as 𝑞𝑖. 𝑐ℎ𝑘𝐻 = 2 by the action of 𝜎. Parts (a) and (b) follow 

trivially since 𝑝𝑖 ∈ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐻) and 𝑝𝑖 = 𝑄ℎ𝑒𝑎𝑑(𝑄𝐻) respectively. Parts (d) and (e) hold by the IH, since 
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|𝑄𝐻| = |𝑄𝐺| and since the elements in 𝑅𝑀𝐸𝑄𝐻 and 𝑄𝐻 are exactly the same as in 𝑅𝑀𝐸𝑄𝐺 and 𝑄𝐺 

respectively.  

Case 4: 𝜎 is an execution of 𝑅𝑅3 by 𝑝𝑖. Note that 𝑝𝑖@𝑅𝑅3 at the end of 𝐺 implies 𝑝𝑖 completed 𝑅𝑅2 in its 

last step in 𝐺, reading 𝐿 = 𝑛𝑢𝑙𝑙. Let 𝐹 be a prefix of 𝐺 up to and including the step in which 𝑝𝑖 completed 

𝑅𝑅2 for the last time in 𝐺. Then 𝐿𝐹 = 𝑛𝑢𝑙𝑙 implies 𝑞𝑖 ∉ 𝑅𝑀𝐸𝑄𝐹. Therefore 𝑞𝑖 ∉ 𝑅𝑀𝐸𝑄𝐺 also holds at the 

end of 𝐺 since only 𝑝𝑖 can append 𝑞𝑖 to 𝑅𝑀𝐸𝑄 by completing line 𝐸3, which did not occur in any step in 

𝐺 after 𝐹. Then by part (e) of Invariant 6.3-(𝐺, 𝑝𝑖), 𝑝𝑖 ∉ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐺) holds. And since 𝑝𝑖 ∉ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐺), 

Invariant 6.3-(𝐺, 𝑝𝑖)-(a) implies 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑𝐺 = 𝑛𝑢𝑙𝑙. Therefore 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑𝐻 = 𝑛𝑢𝑙𝑙 and 𝑝𝑖 ∉ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐻) 

also hold since 𝜎 does not modify the 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑 field nor does it append 𝑝𝑖 to 𝑄𝐺. Then part (a) of Invariant 

6.3-(𝐻, 𝑝𝑖) holds since 𝑞𝑖. 𝑐ℎ𝑘𝐻 = 0 by the action of 𝜎. Parts (b) and (c) follow trivially since 𝑝𝑖 ∉

𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐻). Parts (d) and (e) follow by the IH, since 𝑄𝐻 = 𝑄𝐺 and 𝑅𝑀𝐸𝑄𝐻 = 𝑅𝑀𝐸𝑄𝐺.  

Case 5: 𝜎 is an execution of 𝑅𝑅9 by 𝑝𝑖. Note that 𝑝𝑖@𝑅𝑅9 at the end of 𝐺 implies that either the conditions 

at 𝑅𝑅2 and subsequently at 𝑅𝑅5 and 𝑅𝑅7 were not satisfied when 𝑝𝑖 executed those lines for the last time 

in 𝐺 after its last completion of 𝐸3 (i.e., 𝑞𝑖 and 𝑝𝑖 were already removed from 𝑅𝑀𝐸𝑄 and 𝑄 respectively 

before 𝑝𝑖 invoked the 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑅𝑒𝑙𝑒𝑎𝑠𝑒 procedure), or that 𝑝𝑖 has returned after the completion of the 

𝑟𝑒𝑙𝑒𝑎𝑠𝑒_𝑙𝑜𝑐𝑘 procedure invoked at either 𝑅𝑅6 or 𝑅𝑅8 (if the condition at 𝑅𝑅5 does not hold) after its last 

completion of 𝐸3 in 𝐺. Let 𝐹 be a prefix of 𝐺 up to and including the step in which 𝑝𝑖 completed 𝐷3/𝐷7 

for the last time. Then 𝑝𝑖 ∉ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐹) holds. And as per the lines of code in the algorithm, since 𝑝𝑖 does 

not append itself to 𝑄 by completing 𝐸3 in any step in 𝐺 after 𝐹, 𝑝𝑖 ∉ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐺) holds, which implies 

𝑞𝑖 ∉ 𝑅𝑀𝐸𝑄𝐺 by part (e) of Invariant 6.3-(𝐺, 𝑝𝑖). The analysis from this point is as in Case 4. 

Case 6: 𝜎 is an execution of line 𝑊5 by 𝑝𝑖. Note that for every 𝑝𝑗 ∈ 𝒫\{𝑝𝑖}, Invariant 6.3-(𝐺, 𝑝𝑗) 

immediately implies Invariant 6.3-(𝐻, 𝑝𝑗) and it remains to show Invariant 6.3-(𝐻, 𝑝𝑖). Notice that 𝑝𝑖 

invokes 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝐵𝑙𝑜𝑐𝑘𝑒𝑑 after its last crash step 𝑠 in 𝐺 only if 𝑞𝑖 . 𝑐ℎ𝑘 = 1 immediately after 𝑠, which 

implies 𝑝𝑖 completed 𝐸2 but did not subsequently complete 𝐸7 or 𝑊5 before 𝑠. And since 𝑞𝑖. 𝑐ℎ𝑘 is not 

modified in any line of code in the execution path of 𝐶𝑅3 − 𝑅𝐵5/𝑅𝐵9/𝑅𝐵11 – 𝑊5, 𝑞𝑖. 𝑐ℎ𝑘𝐺 = 1 holds. 

Furthermore, if 𝑝𝑖@𝑊5 at the end of 𝐺 via 𝑅𝐵5, then since the condition at 𝑅𝐵4 is satisfied only if 𝐿 = 𝑞𝑖, 

𝑞𝑖 ∈ 𝑅𝑀𝐸𝑄𝐺 holds as 𝑞𝑖 is not deleted from 𝑅𝑀𝐸𝑄 in any step in 𝐺 after 𝑝𝑖’s last execution of 𝑅𝐵4. 

Similarly, if 𝑝𝑖@𝑊5 at the end of 𝐺 via 𝑅𝐵9, then the fact that the condition at 𝑅𝐵8 is satisfied implies 

that the 𝑓𝑖𝑛𝑑𝑀𝑒 method found 𝑞𝑖 is reachable in the sequence of qnodes starting from 𝐿, i.e., 𝑞𝑖 ∈ 𝑅𝑀𝐸𝑄. 
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And since 𝑞𝑖 is not deleted from 𝑅𝑀𝐸𝑄 in any step in 𝐺 after 𝑝𝑖’s last completion of 𝑅𝐵8, i.e., in the 

execution path of lines 𝐶𝑅3 − 𝑅𝐵5/𝑅𝐵9/𝑅𝐵11 – 𝑊5, 𝑞𝑖 ∈ 𝑅𝑀𝐸𝑄𝐺 holds. On the other hand, if 𝑝𝑖@𝑊5 

via 𝑅𝐵11, i.e., if 𝑞𝑖. 𝑛𝑒𝑥𝑡 ≠ 𝑛𝑢𝑙𝑙 holds when 𝑝𝑖 executes 𝑅𝐵7 for the last time in 𝐺, it follows that some 

process 𝑝𝑗 = 𝑙𝑎𝑠𝑡𝑆𝑢𝑐𝑐(𝐺, 𝑝𝑖) ≠ 𝑛𝑢𝑙𝑙 has set 𝑞𝑖. 𝑛𝑒𝑥𝑡 to a non-null value in some step, say 𝑠′, in 𝐺 after 

𝑝𝑖’s last completion of 𝐸3. Let 𝐹 be a prefix of 𝐺 up to and including 𝑠′. Then 𝑝𝑖 ∈ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐹) holds. 

Next,  𝑞𝑖. 𝑐ℎ𝑘𝐺 = 1 implies that 𝑝𝑖 did not complete either 𝐸7 or 𝑊5 in any step in 𝐺 after 𝐹. Therefore, 

𝑝𝑖 ∈ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐺) holds since 𝑝𝑖 does not complete 𝐷3/𝐷7 from the exit protocol unless it completes 𝐸7 

or 𝑊5 first, which did not occur in any step in 𝐺 after 𝐹. Hence, 𝑞𝑖 ∈ 𝑅𝑀𝐸𝑄𝐺 holds by Invariant 6.3-

(𝐺, 𝑝𝑖)-(e).  

Since 𝑝𝑖 is enabled to execute 𝑊5 at the end of 𝐺, it follows that 𝑝𝑖 completed either 𝑊1 or 𝑊4 in its last 

step in 𝐺 by reading 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑 = 𝑛𝑢𝑙𝑙. Observe that the 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑 field can subsequently be overwritten 

to a non-null value only via 𝑝𝑖’s completion of 𝐸3, which did not occur in any step in 𝐺 after 𝑝𝑖’s last step 

in 𝐺. Hence, 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑𝐺 = 𝑛𝑢𝑙𝑙 holds by the IH.  Moreover, 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑𝐺 = 𝑛𝑢𝑙𝑙 implies 𝑞𝑖 is the head of 

𝑅𝑀𝐸𝑄 and 𝑝𝑖 = 𝑄ℎ𝑒𝑎𝑑(𝑄𝐺) holds by Invariant 6.3-(𝐺, 𝑝𝑖)-(e). Since 𝜎 does not modify 𝑄 or 𝑅𝑀𝐸𝑄, it 

follows that 𝑞𝑖 is the head of 𝑅𝑀𝐸𝑄𝐻 and 𝑝𝑖 = 𝑄ℎ𝑒𝑎𝑑(𝑄𝐻). Hence, Invariant 6.3-(𝐻, 𝑝𝑖)-(c) holds as 

𝑞𝑖. 𝑐ℎ𝑘𝐻 = 2 by the action of 𝜎. Parts (a) and (b) follow trivially since 𝑝𝑖 ∈ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐻) and 𝑝𝑖 =

𝑄ℎ𝑒𝑎𝑑(𝑄𝐻) respectively. Parts (d) and (e) follow by the IH since 𝑄𝐺 and 𝑅𝑀𝐸𝑄𝐺 are unmodified in 𝜎.  

Case 7: 𝜎 is an execution of line 𝐷1 by 𝑝𝑖. Note that 𝑝𝑖 is enabled to execute line 𝐷1 in 𝜎 if 𝑝𝑖 invoked the 

𝑟𝑒𝑙𝑒𝑎𝑠𝑒_𝑙𝑜𝑐𝑘 procedure at either 𝐹𝐹3, 𝑅𝐻2, 𝑅𝑅6 or 𝑅𝑅8 at the end of 𝐺. From the structure of the 

algorithm, if 𝑝𝑖@𝐷1 at the end of 𝐺 via 𝐹𝐹2 or 𝑅𝐻2 then 𝑞𝑖. 𝑐ℎ𝑘𝐺 = 2 holds, or 𝑞𝑖. 𝑐ℎ𝑘𝐺 = 3 otherwise. 

Intuitively, 𝑝𝑖 appended itself to 𝑄 for the last time in some step 𝑠′ in 𝐺, since line 𝐸3 always precedes the 

line of code in which 𝑞𝑖. 𝑐ℎ𝑘 is set to 2 or 3. Now, suppose for contradiction that 𝑞𝑖 ∉ 𝑅𝑀𝐸𝑄𝐺. Then by 

Invariant 6.3-(𝐺, 𝑝𝑖)-(e), 𝑝𝑖 ∉ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐺). However, since only 𝑝𝑖 can delete itself from 𝑄, 𝑝𝑖 ∉

𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐺) implies that 𝑝𝑖 has completed 𝐷3/𝐷7, say in step 𝑠′′, after its last completion of 𝐸3 in 𝐺. Let 

𝐹 be a prefix of 𝐺 up to and including 𝑠′′. Then 𝑞𝑖. 𝑐ℎ𝑘𝐹 = 3 holds since 𝑝𝑖 is in its exit protocol in step 

𝑠′′. And as per the lines of code in the algorithm, 𝑝𝑖 can subsequently overwrite 𝑞𝑖. 𝑐ℎ𝑘 to 2 by the end of 

𝐺 only if it executes either 𝐸7 or 𝑊5 in 𝐺 after F. And since 𝑝𝑖’s completion of 𝐸3 always precedes its 

execution of 𝐸7 or 𝑊5, 𝑞𝑖. 𝑐ℎ𝑘𝐺 = 2 contradicts step 𝑠′. Then as 𝑝𝑖 does not reset the 𝑞𝑖. 𝑐ℎ𝑘 value to 2 in 

any step in 𝐺 after 𝑠′′, 𝑞𝑖. 𝑐ℎ𝑘𝐺 = 3 holds. Now if 𝑝𝑖@𝐷1 at the end of 𝐺 via 𝐹𝐹3 or 𝑅𝐻2, then it contradicts 

𝑝𝑖’s completion of 𝑠′′ in 𝐺 after 𝑠′, since 𝑞𝑖. 𝑐ℎ𝑘 is always 2 when 𝑝𝑖@𝐹𝐹3/𝑅𝐻2. On the other hand, if 
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𝑝𝑖@𝐷1 at the end of 𝐺 via 𝑅𝑅6 or 𝑅𝑅8,  then the fact that the condition at 𝑅𝑅5 or 𝑅𝑅7 is satisfied 

contradicts the hypothesis that 𝑞𝑖 is deleted from 𝑅𝑀𝐸𝑄 by the action of 𝑠′′ and remains deleted till the end 

of 𝐺.  

Therefore, 𝑞𝑖 ∈ 𝑅𝑀𝐸𝑄𝐺 holds and 𝑝𝑖 ∈ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐺) also holds by Invariant 6.3-(𝐺, 𝑝𝑖)-(e). And since 

𝑞𝑖. 𝑐ℎ𝑘𝐺 is 2 or 3, Invariant 6.3-(𝐺, 𝑝𝑖)-(c) implies that 𝑝𝑖 = 𝑄ℎ𝑒𝑎𝑑(𝑄𝐺) and 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑𝐺 = 𝑛𝑢𝑙𝑙. Then 

since 𝑝𝑖 is not removed from 𝑄𝐺 and since the 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑 field is unmodified in step 𝜎, 𝑝𝑖 = 𝑄ℎ𝑒𝑎𝑑(𝑄𝐻) 

and 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑𝐻 = 𝑛𝑢𝑙𝑙 hold, which implies Invariant 6.3-(𝐻, 𝑝𝑖)-(c) since 𝑞𝑖. 𝑐ℎ𝑘𝐻 = 3 by the action of 

𝜎. Parts (a) and (b) follow trivially since 𝑝𝑖 ∈ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐻) and 𝑝𝑖 = 𝑄ℎ𝑒𝑎𝑑(𝑄𝐻) respectively. Since 𝜎 

does not modify the state of 𝑄 and 𝑅𝑀𝐸𝑄, parts (d) and (e) hold by the IH. Additionally, for every 𝑝𝑗 ∈

𝒫\{𝑝𝑖}, Invariant 6.3-(𝐺, 𝑝𝑗) immediately implies Invariant 6.3-(𝐻, 𝑝𝑗).  

Case 8: 𝜎 is an execution of line 𝐷3 by 𝑝𝑖. Since 𝑝𝑖@𝐷3 at the end of 𝐺 succeeds 𝑝𝑖’s completion of 𝐷1, 

it follows from the analysis of Case 7 that 𝑝𝑖 ∈ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐺), 𝑝𝑖 = 𝑄ℎ𝑒𝑎𝑑(𝑄𝐺), 𝑞𝑖 ∈ 𝑅𝑀𝐸𝑄𝐺, 

𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑𝐺 = 𝑛𝑢𝑙𝑙, and 𝑞𝑖. 𝑐ℎ𝑘𝐺 = 3 hold since 𝑝𝑖 and 𝑞𝑖 are not removed from 𝑄 and 𝑅𝑀𝐸𝑄 respectively, 

in any step in 𝐺 after 𝑝𝑖’s last completion of 𝐷1. Note that for every 𝑝𝑗 ∈ 𝒫\{𝑝𝑖} Invariant 6.3-(𝐺, 𝑝𝑗) 

immediately implies Invariant 6.3-(𝐻, 𝑝𝑗). It remains to show Invariant 6.3-(𝐻, 𝑝𝑖). Since 𝜎 does not 

modify the 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑 and 𝑞𝑖. 𝑐ℎ𝑘 fields, 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑𝐻 = 𝑛𝑢𝑙𝑙 and 𝑞𝑖. 𝑐ℎ𝑘𝐻 = 3 hold. Now, the state of 𝑄 

and 𝑅𝑀𝐸𝑄 at the end of 𝐻 depends on the result of the CAS operation at 𝐷3𝑎 in 𝜎. Consider the following 

subcases for the same. 

Subcase 8.1: CAS returns 𝑡𝑟𝑢𝑒. Then the CAS is followed by the delete operation on 𝑄 within the 

same step at 𝐷3𝑏. Therefore, part (a) of Invariant 6.3-(𝐻, 𝑝𝑖) holds since 𝑝𝑖 ∉ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐻) by the 

action of 𝜎 and since 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑𝐻 = 𝑛𝑢𝑙𝑙. Parts (b) and (c) follow trivially as 𝑝𝑖 ∉ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐻). 

Observe that the CAS at 𝐷3𝑎 in 𝜎 succeeds only if 𝐿𝐺 = 𝑞𝑖, i.e., if 𝑙𝑎𝑠𝑡𝑆𝑢𝑐𝑐(𝐺, 𝑝𝑖) = 𝑛𝑢𝑙𝑙. Then 

since 𝑞𝑖 is the tail of 𝑅𝑀𝐸𝑄𝐺, it follows from Invariant 6.3-(𝐺, 𝑝𝑖)-(e) that 𝑝𝑖 is also the tail element 

of 𝑄𝐺. Also, by Lemma 6.2.4-(ii), 𝑄𝐺 contains at most one instance of 𝑝𝑖. Therefore, parts (d) and 

(e) of Invariant 6.3-(𝐻, 𝑝𝑖) follow since 𝐿𝐻 = 𝑛𝑢𝑙𝑙 and 𝑄𝐻 = 〈 〉 hold, as 𝜎 removes the only element 

from both the sequences 𝑅𝑀𝐸𝑄𝐺 and 𝑄𝐺, and thus |𝑄𝐻| = 0.  

Subcase 8.2: CAS returns 𝑓𝑎𝑙𝑠𝑒. In such case, the subsequent delete operation at line 𝐷3𝑏 is not 

executed, i.e, the state of 𝑄 is not modified, which implies 𝑝𝑖 ∈ 𝒬𝑃𝑟𝑜𝑐𝑠(𝑄𝐻) holds by the IH since 

𝑝𝑖 ∈ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐺). Since 𝑝𝑖 = 𝑄ℎ𝑒𝑎𝑑(𝑄𝐺) and as 𝑝𝑖 is not deleted by the action of 𝜎,  𝑝𝑖 =
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𝑄ℎ𝑒𝑎𝑑(𝑄𝐻) holds, which also implies 𝑄𝐻 ≠ 〈 〉. Therefore part (c) of Invariant 6.3-(𝐻, 𝑝𝑖) holds 

since 𝑞𝑖. 𝑐ℎ𝑘𝐻 = 3 and 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑𝐻 = 𝑛𝑢𝑙𝑙. Parts (a) and (b) follow trivially since 𝑝𝑖 ∈ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐻) 

and  𝑝𝑖 = 𝑄ℎ𝑒𝑎𝑑(𝑄𝐻), respectively. And since 𝑅𝑀𝐸𝑄𝐺, 𝐿𝐺 and 𝑄𝐺 are unmodified by the action of 

𝜎, parts (d) and (e) hold by the IH.  

Case 9: 𝜎 is an execution of 𝐷4 by 𝑝𝑖. Since 𝑝𝑖 reaches 𝐷4 in step 𝜎 only if it completed 𝐷3, and particularly 

if the CAS at 𝐷3𝑎 succeeds, in its last step in 𝐺, it follows from the analysis of Case 8 (specifically from 

Subcase 8.1) that 𝑝𝑖 ∉ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐺) and 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑𝐺 = 𝑛𝑢𝑙𝑙. Also note that 𝑝𝑖 is added to 𝑄 only via 𝑝𝑖’s 

completion of 𝐸3, which did not occur in any step after 𝑝𝑖’s last step in 𝐺. Therefore, 𝑝𝑖 ∉ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐻) 

and 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑𝐻 = 𝑛𝑢𝑙𝑙 hold. Hence, part (a) of Invariant 6.3-(𝐻, 𝑝𝑖) holds since 𝑞𝑖. 𝑐ℎ𝑘𝐻 = 0 by the action 

of 𝜎. Parts (b) and (c) hold trivially since 𝑝𝑖 ∉ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐻). Parts (d) and (e) hold by the IH since the state 

of 𝑄𝐺, 𝐿𝐺 and 𝑅𝑀𝐸𝑄𝐺 remain unmodified in 𝜎. Additionally, for every 𝑝𝑗 ∈ 𝒫\{𝑝𝑖} Invariant 6.3-(𝐺, 𝑝𝑗) 

immediately implies Invariant 6.3-(𝐻, 𝑝𝑗). 

Case 10: 𝜎 is an execution of line 𝐷7 by 𝑝𝑖. Note that 𝑝𝑖@𝐷7 at the end of 𝐺 implies that 𝑝𝑖 invoked the 

𝑟𝑒𝑙𝑒𝑎𝑠𝑒_𝑙𝑜𝑐𝑘 procedure at either 𝐹𝐹3, 𝑅𝐻2, 𝑅𝑅6 or 𝑅𝑅8 after its last completion of 𝐸3 in 𝐺 and as 

explained in Case 7, 𝑞𝑖 ∈ 𝑅𝑀𝐸𝑄𝐺 holds. Moreover, 𝑝𝑖@𝐷7 at the end of 𝐺 holds only if 𝑝𝑖 did not 

successfully complete 𝐷3 (if ever reached) in 𝐺 after its last completion of 𝐸3, which also implies 𝑞𝑖 ∈

𝑅𝑀𝐸𝑄𝐺. Therefore by Invariant 6.3-(𝐺, 𝑝𝑖)-(e),  𝑝𝑖 ∈ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐺) holds. Also, 𝑞𝑖. 𝑐ℎ𝑘𝐺 = 3 holds since 

𝑞𝑖. 𝑐ℎ𝑘 is not overwritten by any process in any step in 𝐺 after 𝑝𝑖’s last completion of 𝐷1, and hence, by 

part (c) of Invariant 6.3-(𝐺, 𝑝𝑖), 𝑝𝑖 = 𝑄ℎ𝑒𝑎𝑑(𝑄𝐺) and 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑𝐺 = 𝑛𝑢𝑙𝑙 hold. Furthermore, 𝑝𝑖@𝐷7 

implies 𝑝𝑖 completed either 𝐷2 or 𝐷6 in its last step in 𝐺, reading 𝑞𝑖. 𝑛𝑒𝑥𝑡𝐺 ≠ 𝑛𝑢𝑙𝑙. Since the 𝑞𝑖 . 𝑛𝑒𝑥𝑡 field 

is set to a non-null value only by 𝑙𝑎𝑠𝑡𝑆𝑢𝑐𝑐(𝐺, 𝑝𝑖) when it completes 𝐸5 or 𝑊3 in its own passage, 𝑝𝑗 =

𝑙𝑎𝑠𝑡𝑆𝑢𝑐𝑐(𝐺, 𝑝𝑖) ≠ 𝑛𝑢𝑙𝑙 holds. And since 𝑄𝑠𝑢𝑐𝑐(𝑄𝐺 , 𝑝𝑖) = 𝑝𝑗 applies by the order of the append operations 

executed by 𝑝𝑖 and 𝑝𝑗 in 𝐺, 𝑞𝑗. 𝑎ℎ𝑒𝑎𝑑 = 𝑞𝑖 holds by Invariant 6.3-(𝐺, 𝑝𝑖)-(e), i.e., 𝑝𝑗 sets 𝑞𝑖. 𝑛𝑒𝑥𝑡 = 𝑞𝑗 

when it completes 𝐸5 or 𝑊3 in its own passage, for the last time in 𝐺. As 𝑝𝑖 overwrites 𝑞𝑖. 𝑛𝑒𝑥𝑡 to 𝑛𝑢𝑙𝑙 

only when it completes 𝐸1, which did not occur in any step in 𝐺 after 𝑝𝑖’s last completion of 𝐸3, 

𝑞𝑖. 𝑛𝑒𝑥𝑡𝐺 = 𝑞𝑖 holds. Furthermore, 𝑝𝑗 ∈ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐺) implies 𝑄𝐺 ≠ 〈 〉, and hence 𝐿𝐺 ≠ 𝑛𝑢𝑙𝑙 by Invariant 

6.3-(𝐺, 𝑝𝑖)-(d). 

Now, observe that 𝑝𝑖 promotes 𝑝𝑗 by the operation at 𝐷7𝑎 in 𝜎 and deletes itself from 𝑄𝐺 at 𝐷7𝑏. Hence, 

𝑝𝑖 ∉ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐻) holds by the action of 𝜎. And since the 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑 and 𝑞𝑖. 𝑐ℎ𝑘 fields are unmodified in 
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𝜎, 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑𝐻 = 𝑛𝑢𝑙𝑙 and 𝑞𝑖. 𝑐ℎ𝑘𝐻 = 3 hold, which implies part (a) of Invariant 6.3-(𝐻, 𝑝𝑖). Parts (b) and 

(c) follow trivially since 𝑝𝑖 ∉ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐻). Note that 𝑙𝑎𝑠𝑡𝑆𝑢𝑐𝑐(𝐻, 𝑝𝑖) = 𝑄ℎ𝑒𝑎𝑑(𝑄𝐻) holds and 

specifically, 𝑄𝐻 ≠ 〈 〉. Moreover, since 𝐿𝐺 ≠ 𝑛𝑢𝑙𝑙 is unmodified by 𝜎, 𝐿𝐻 ≠ 𝑛𝑢𝑙𝑙 holds, which implies part 

(d) of Invariant 6.3-(𝐻, 𝑝𝑖). Finally, since each process has at most one instance of its process ID in 𝑄𝐻 (by 

Lemma 6.2.4-(ii)), the sequences 𝑄𝐻 and 𝑅𝑀𝐸𝑄𝐻 are the same as 𝑄𝐺 and 𝑅𝑀𝐸𝑄𝐺 with their head elements 

𝑝𝑖 and 𝑞𝑖 removed by the action of 𝜎, respectively. Hence part (e) of Invariant 6.3-(𝐻, 𝑝𝑖) holds.  

Next, consider Invariant 6.3-(𝐻, 𝑝𝑗). Recall that by the action of 𝜎, 𝑝𝑗 = 𝑄ℎ𝑒𝑎𝑑(𝑄𝐻) and 𝑞𝑗. 𝑎ℎ𝑒𝑎𝑑𝐻 =

𝑛𝑢𝑙𝑙 hold. Therefore part (b) of Invariant 6.3-(𝐺, 𝑝𝑗) applies as 𝑝𝑗 ≠ 𝑄ℎ𝑒𝑎𝑑(𝑄𝐺), and hence 𝑞𝑗. 𝑐ℎ𝑘𝐺 =

1 holds. Then by the result of the operation in 𝜎, part (c) of Invariant 6.3-(𝐻, 𝑝𝑗) holds, since 𝑞𝑗. 𝑐ℎ𝑘𝐻 = 1 

is the same as 𝑞𝑗. 𝑐ℎ𝑘𝐺.  Parts (a) and (b) follow trivially since their antecedents are false. And the analysis 

for parts (d) and (e) of Invariant 6.3-(𝐻, 𝑝𝑗) is similar to the analysis for parts (d) and (e) of Invariant 6.3-

(𝐻, 𝑝𝑖). Additionally, for every 𝑝𝑘 ∈ 𝒫\{𝑝𝑖, 𝑝𝑗}, Invariant 6.3-(𝐺, 𝑝𝑘) immediately implies Invariant 6.3-

(𝐻, 𝑝𝑘).  

Case 11: 𝜎 is an execution of line 𝐷8 by 𝑝𝑖. Note that 𝑝𝑖@𝐷8 at the end of 𝐺 implies 𝑝𝑖 completed 𝐷7 in 

its last step in 𝐺. Then following the analysis of Case 10, 𝑝𝑖 ∉ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐺) holds since 𝑝𝑖 is not appended 

to 𝑄 in any step in 𝐺 after 𝑝𝑖’s last completion of 𝐷7. And since 𝑝𝑖 not appended to 𝑄𝐺 by the action of 𝜎, 

𝑝𝑖 ∉ 𝑄𝑃𝑟𝑜𝑐𝑠(𝑄𝐻) holds. Therefore, part (a) of Invariant 6.3-(𝐻, 𝑝𝑖) holds since 𝑞𝑖. 𝑐ℎ𝑘𝐻 = 0 by the action 

of 𝜎. Parts (b) and (c) follow trivially since their antecedents are false and parts (d) and (e) hold by the IH 

as the state of 𝑄 and 𝑅𝑀𝐸𝑄 remains unmodified in 𝜎. 

Case 12: 𝜎 is a crash-recovery step by 𝑝𝑖. By the definition of a crash-recovery step, only the program 

counter of 𝑝𝑖 is reset to line 𝐶𝑅1 at the end of 𝐻 by the action of 𝜎 and hence the state of 𝑝𝑖’s qnode, 𝑅𝑀𝐸𝑄 

and 𝑄 remain unmodified in 𝜎. Since no shared variable is modified by 𝜎, Invariant 6.3-(𝐻, 𝑝𝑖) holds by 

the IH.  

□ 

Corollary 6.3.2. The RGLock algorithm satisfies Mutual Exclusion. 

Proof.   Say process 𝑝𝑖 ∈ 𝒫 is in the CS in passage 𝑚 at the end of a finite history 𝐻 ∈ ℋ. Then according 

to the algorithm, if 𝑝𝑖 is enabled to execute the CS step at 𝐹𝐹2 or 𝑅𝐻1 at the end of 𝐻, it follows that 𝑝𝑖 
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completed either 𝐸7 or 𝑊5 in its last step in 𝐻. Therefore, 𝑞𝑖. 𝑐ℎ𝑘𝐻 = 2. Moreover, 𝑝𝑖 is in the CS at the 

end of 𝐻 if its qnode 𝑞𝑖 is the head of 𝑅𝑀𝐸𝑄𝐻, i.e., if 𝑞𝑖 ∈ 𝑅𝑀𝐸𝑄𝐻 and 𝑞𝑖 . 𝑎ℎ𝑒𝑎𝑑𝐻 = 𝑛𝑢𝑙𝑙. Then by part 

(c) of Invariant 6.3-(𝐻, 𝑝𝑖), 𝑝𝑖 = 𝑄ℎ𝑒𝑎𝑑(𝑄𝐻) holds. This implies the corollary, since no two processes can 

simultaneously be the head of the sequence 𝑄𝐻. 

□ 

Corollary 6.3.3. The RGLock algorithm satisfies First-Come First-Served. 

Proof.  Suppose for contradiction that there exists a finite history 𝐻 ∈ ℋ in which process 𝑝𝑖 ∈ 𝒫 completes 

line 𝐸3 in passage 𝓂 and process 𝑝𝑗 ∈ 𝒫\{𝑝𝑖} completes line 𝐸3 in passage 𝓃 such that 𝑙𝑎𝑠𝑡𝑆𝑢𝑐𝑐(𝐻, 𝑝𝑖) =

𝑝𝑗, and at the end of which, 𝑝𝑗 is in the CS in passage 𝓃 but 𝑝𝑖 has not completed the CS step in passage 

𝓂. In particular, 𝑝𝑖 has not executed line 𝐷7 in passage 𝓂 in 𝐻. In such case, based on the order of 

completion of line 𝐸3 by the processes, 𝑄𝑝𝑟𝑒𝑑(𝑄𝐻 , 𝑝𝑗) = 𝑝𝑖 holds since the sequence 𝑄𝐻 contains the 

elements 〈𝑝𝑖, 𝑝𝑗〉 appended in that order. Whereas, by Theorem 6.3.1 and Invariant 6.3(𝐻, 𝑝𝑖)-(c), if 𝑝𝑗 is 

in the CS at the end of 𝐻, then 𝑄ℎ𝑒𝑎𝑑(𝑄𝐻) = 𝑝𝑗, which contradicts with the order of elements in 𝑄𝐻 since 

𝑝𝑖 did not complete line 𝐷7 in any step in 𝐻.  

□ 

Lemma 6.3.4.   In a crash-recoverable execution, the 𝑓𝑖𝑛𝑑𝑀𝑒 method terminates in a finite number of 

steps. 

Proof.   In a crash-recoverable history 𝐻 ∈ ℋ in which some process 𝑝𝑖 begins executing the 𝑓𝑖𝑛𝑑𝑀𝑒 

method in some passage 𝑚, the scanning loop in 𝐹3 − 𝐹9 either terminates when the qnode of the invoking 

process is found as identified by the condition 𝑡𝑒𝑚𝑝 = 𝑞𝑖 at 𝐹7, or when the loop reaches the head qnode 

in 𝑅𝑀𝐸𝑄 as identified by the condition at 𝐹5, or when the loop performs a maximum of 𝑁 − 1 iterations 

as identified by 𝑟𝑢𝑛 < 𝑁 at 𝐹3. Hence, the lemma holds. 

□ 

Theorem 6.3.5. The RGLock algorithm satisfies Starvation Freedom. 

Proof.  Suppose for contradiction that there is an infinite crash-recoverable history 𝐻 ∈ ℋ starting from an 

initial state, in which some process 𝑝𝑖 begins the entry protocol in some passage 𝑚 and never reaches the 
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CS step in passage 𝑚. This hypothesis is denoted by ‡, for convenience. Consider the following cases for 

the type of passage 𝑝𝑖 is in at the end of 𝐻. 

Case 1: 𝑚 is a failure-free passage for 𝑝𝑖 in 𝐻. Then according to the hypothesis, 𝑝𝑖 loops forever at line 

𝐸6 in passage 𝑚, reading 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑 ≠ 𝑛𝑢𝑙𝑙 repeatedly. Say 𝑝𝑖 completed its doorway (line 𝐸3) for the last 

time in 𝐻 in step 𝑠𝑖 and line 𝐸4 in 𝑠𝑖′. Let E be a prefix of 𝐻 up to but not including step 𝑠𝑖 and 𝐹 be a 

prefix of 𝐻 up to and including step 𝑠𝑖′. Choose 𝑝𝑖 so that |𝐸| is minimal. If 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑 in step 𝑠𝑖′ is 𝑛𝑢𝑙𝑙, 

then 𝑝𝑖 branches to line 𝐸7 in 𝐻 immediately after 𝑠𝑖′. As 𝑝𝑖 does not execute line 𝐸6 in such case, passage 

𝑚 contradicts ‡. Now suppose that 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑𝐹 = 𝑞𝑗, where 𝑞𝑗 is the qnode of process 𝑝𝑗 =

𝑙𝑎𝑠𝑡𝑃𝑟𝑒𝑑(𝐹, 𝑝𝑖) as per Invariant 6.3-(𝐹, 𝑝𝑖)-(e). Note that since 𝑝𝑖 loops at 𝐸6 as per the hypothesis, 𝑝𝑖 has 

already completed 𝐸5 in 𝐻 after 𝑠𝑖 and thus 𝑝𝑗 does not loop forever at 𝐷6 in its own passage. Also note 

that 𝑝𝑗’s last execution of 𝐸1 precedes step 𝑠𝑖 and hence 𝑞𝑗. 𝑛𝑒𝑥𝑡 field is not overwritten by 𝑝𝑗 unless 𝑝𝑗 

subsequently completes 𝐷7 first after its last completion of 𝐸3. Then, since 𝐸 is minimal and 𝐻 is fair, 𝑝𝑗 

eventually executes line 𝐷7 in its own passage, say in step 𝑠𝑗 in 𝐻. Now let 𝐺 be a prefix of 𝐻 up to and 

including step 𝑠𝑗, such that 𝐹 ≼ 𝐺 ≼ 𝐻. Then 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑𝐺 = 𝑛𝑢𝑙𝑙 by the action of 𝑠𝑗, which contradicts 𝑝𝑖 

looping forever at line 𝐸6 in passage 𝑚 in 𝐻 after the prefix 𝐺. 

Case 2: 𝑚 is a crash-recoverable passage for 𝑝𝑖 in 𝐻. Then by the structure of the algorithm, 𝑝𝑖 may loop 

forever at either line 𝐸6, or 𝑊4 in passage 𝑚, depending on which line in the entry protocol (lines 𝐸1 −

𝐸7) 𝑝𝑖 crashes at. Note that by the result of Lemma 6.3.4, the 𝑓𝑖𝑛𝑑𝑀𝑒 method invoked within the 

𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝐵𝑙𝑜𝑐𝑘𝑒𝑑 method terminates in a finite number of steps and hence 𝑝𝑖 does not loop forever at 𝐹3 

if it ever invoked the 𝑓𝑖𝑛𝑑𝑀𝑒 method after its last completion of 𝐸3 in 𝐻. Moreover, since the 

𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝐻𝑒𝑎𝑑 and 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑅𝑒𝑙𝑒𝑎𝑠𝑒 methods are invoked in passage 𝑚 immediately after its last crash-

recovery step in 𝐻 only if 𝑝𝑖 crashes after completing line 𝐸7 or 𝑊5, and line 𝐷1 respectively, it follows 

that 𝑝𝑖 is either enabled to execute the CS step (as 𝐹𝐹2 is always executed immediately after 𝐸7, and 𝑅𝐻1 

is always executed after 𝑊5 in the algorithm), or that the CS step has already been taken in passage 𝑚 (as 

either 𝐹𝐹2 or 𝑅𝐻1 is always executed immediately before 𝐷1 in the algorithm). Hence, cases where the 

𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝐻𝑒𝑎𝑑 and 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑅𝑒𝑙𝑒𝑎𝑠𝑒 methods are invoked immediately after 𝑝𝑖’s last crash are not 

considered in this section as they contradict the original hypothesis. In particular, 𝑝𝑖 must loop forever 

either at 𝐸6 in 𝑎𝑐𝑞𝑢𝑖𝑟𝑒_𝑙𝑜𝑐𝑘 or at 𝑊4 in 𝑤𝑎𝑖𝑡𝐹𝑜𝑟𝐶𝑆 invoked via 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝐵𝑙𝑜𝑐𝑘𝑒𝑑. Say 𝑝𝑖 completed its 

first step in passage 𝑚 in 𝑠, and 𝑠′ is the last crash-recovery step taken by 𝑝𝑖 in 𝐻. The proof proceeds by a 

case analysis on 𝑝𝑖’s execution before 𝑠′. 
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Subcase 2.1: 𝑝𝑖 did not complete line 𝐸2 in 𝐻[𝑠. . 𝑠′]. Then since 𝑞𝑖. 𝑐ℎ𝑘 is not set to 1 in any step in 

𝐻[𝑠. . 𝑠′], the 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝐵𝑙𝑜𝑐𝑘𝑒𝑑 method is not invoked even if 𝑝𝑖 crashed in any step before 𝑠′. 

Therefore, since 𝑞𝑖. 𝑐ℎ𝑘 = 0 at the beginning of passage 𝑚, the 𝑞𝑖. 𝑐ℎ𝑘 value remains unmodified in 

𝐻[𝑠. . 𝑠′] since 𝑝𝑖 did not complete 𝐸2 in any step in 𝐻 after 𝑠 and moreover, 𝑝𝑖 cannot execute any 

of the lines 𝐸7, 𝐷1, 𝐷4, 𝐷8, 𝑊5, 𝑅𝑅3 or 𝑅𝑅9 in passage 𝑚 unless it completes 𝐸2 first. Hence the 

𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝐹𝑟𝑒𝑒 procedure is invoked immediately after 𝑠′.The analysis from this point is as in Case 1. 

Subcase 2.2: 𝑝𝑖 completed line 𝐸2, but did not complete 𝐸3 in 𝐻[𝑠. . 𝑠′]. Note that since 𝑝𝑖 did not 

complete line 𝐸3 before its last crash, its qnode is not appended to 𝑅𝑀𝐸𝑄. Hence, the 

𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝐵𝑙𝑜𝑐𝑘𝑒𝑑 method invoked immediately after 𝑠′ returns 𝑓𝑎𝑙𝑠𝑒 either when the condition at 

line 𝑅𝐵2 is satisfied or when the 𝑓𝑖𝑛𝑑𝑀𝑒 method invoked at 𝑅𝐵8 returns false. In particular, since 

𝑝𝑖 did not complete 𝐸3 in 𝐻 before 𝑠′, and since 𝑞𝑖 is not appended to 𝑅𝑀𝐸𝑄 after 𝑠′ at any line in 

the 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝐵𝑙𝑜𝑐𝑘𝑒𝑑 procedure, the 𝑓𝑖𝑛𝑑𝑀𝑒 scan (if ever invoked in 𝐻 after 𝑠′) cannot locate 𝑞𝑖 in 

𝑅𝑀𝐸𝑄. Consequently, 𝑝𝑖 then executes the 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝐹𝑟𝑒𝑒 procedure invoked at 𝐶𝑅4. Therefore, the 

analysis from this point is as in Case 1. 

Subcase 2.3: 𝑝𝑖 completed line 𝐸3, but did not complete 𝐸7 in 𝐻[𝑠. . 𝑠′]. Then the 𝑞𝑖. 𝑐ℎ𝑘 value 

immediately after 𝑠′ is 1 and the 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝐵𝑙𝑜𝑐𝑘𝑒𝑑 method invokes 𝑤𝑎𝑖𝑡𝐹𝑜𝑟𝐶𝑆, say in step 𝑠′′, when 

the condition at either line 𝑅𝐵4 or 𝑅𝐵8 is satisfied or when the condition at 𝑅𝐵7 is not satisfied and 

𝑅𝐵11 is reached. Let 𝐹′′ be a prefix of 𝐻 up to but not including 𝑠′′. If the last step by 𝑝𝑖 in 𝐹′′ is an 

execution of 𝑅𝐵4, the condition at 𝑅𝐵4 holds only if 𝑞𝑖 is the tail of 𝑅𝑀𝐸𝑄𝐹′′
. Consequently, when 

𝑤𝑎𝑖𝑡𝐹𝑜𝑟𝐶𝑆 is invoked in 𝑠′′,  if 𝑞𝑖 . 𝑎ℎ𝑒𝑎𝑑𝐹′′
= 𝑛𝑢𝑙𝑙, then 𝑝𝑖 branches to 𝑊5. And since 𝐻 is fair, 

𝑝𝑖 is eventually enabled to execute the CS step at 𝑅𝐻1 in the 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝐻𝑒𝑎𝑑 procedure invoked at 

𝑅𝐵12, which contradicts ‡. Whereas, if the condition at 𝑊1 is satisfied, i.e., if 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑𝐹′′
≠ 𝑛𝑢𝑙𝑙, 

it follows that 𝑙𝑎𝑠𝑡𝑃𝑟𝑒𝑑(𝐹′′, 𝑝𝑖) ≠ 𝑛𝑢𝑙𝑙 (by Invariant-6.3(𝐹′′, 𝑝𝑖)-(e)) and particularly, 

𝑙𝑎𝑠𝑡𝑃𝑟𝑒𝑑(𝐹′′, 𝑝𝑖) has not completed 𝐷7 in its own passage in 𝐹′′ since 𝑠′ because if  

𝑙𝑎𝑠𝑡𝑃𝑟𝑒𝑑(𝐹′′, 𝑝𝑖) completed 𝐷7, then subsequently 𝑝𝑖 would not loop forever at 𝐸6 or 𝑊4 in 𝐻, 

which contradicts ‡. And since 𝐻 is fair, 𝑝𝑖 loops at line 𝑊4 only until 𝑙𝑎𝑠𝑡𝑃𝑟𝑒𝑑(𝐹′′, 𝑝𝑖) executes 

line 𝐷7 in its own passage (observe that 𝑝𝑖 completes 𝐸5 or 𝑊3 as per the hypothesis and hence 

𝑙𝑎𝑠𝑡𝑃𝑟𝑒𝑑(𝐹′′, 𝑝𝑖) does not loop forever at 𝐷6 in its own passage), in which the 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑 field is set 

to 𝑛𝑢𝑙𝑙, contradicting the hypothesis that 𝑝𝑖 loops forever at line 𝑊4 in passage 𝑚 in 𝐻 after the 

prefix 𝐹′′. Similarly, if 𝑝𝑖 invoked 𝑤𝑎𝑖𝑡𝐹𝑜𝑟𝐶𝑆 at 𝑅𝐵9 or 𝑅𝐵11, then 𝑝𝑖 reaches line 𝑊4 only if the 
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condition at 𝑊1 is satisfied, which implies that 𝑞𝑖 has a non-null predecessor in 𝑅𝑀𝐸𝑄, and hence 

𝑝𝑖 loops at 𝑊4 only until that predecessor completes line 𝐷7 in its own passage, which also 

contradicts the hypothesis that 𝑝𝑖 loops forever at 𝑊4 in passage 𝑚 after 𝐹′′ in 𝐻. 

□ 

Corollary 6.3.6. The RGLock algorithm satisfies Livelock Freedom. 

Proof.   The result follows directly from Theorem 6.3.5. 

□ 

Theorem 6.3.7. The RGLock algorithm satisfies Terminating Exit. 

Proof.   Suppose for contradiction that there is an infinite crash-recoverable history 𝐻 ∈ ℋ in which some 

process 𝑝𝑖 begins executing its exit protocol and never completes the exit protocol in some passage 𝑚. 

Specifically, since the exit protocol contains only atomic operations other than the waiting loop at 𝐷6,  it 

follows from the hypothesis that 𝑝𝑖 loops forever at line 𝐷6 because 𝑝𝑖 crashes only a finite number of 

times in the crash-recoverable history 𝐻. Say 𝑝𝑖 executed line 𝐷1 for the last time in 𝐻 in step 𝑠 and let 𝑠′ 

be the first subsequent execution of line 𝐷6 by 𝑝𝑖 in passage 𝑚. Let 𝐺 be a prefix of 𝐻 up to and including 

the step in which 𝑝𝑖 completed 𝐷2 for the last time in 𝐻 (if 𝑞𝑖. 𝑛𝑒𝑥𝑡 ≠ 𝑛𝑢𝑙𝑙 at 𝐷2) or up to and including 

the step in which 𝑝𝑖 executed 𝐷3 for the last time in 𝐻 (if 𝑞𝑖. 𝑛𝑒𝑥𝑡 = 𝑛𝑢𝑙𝑙 at 𝐷2). And if 𝑝𝑖 executed 𝐷2 

or 𝐷3 in its last step in 𝐺, then by the result of Theorem 6.3.1 and Invariant-6.3(𝐺, 𝑝𝑖)-(c) that 𝑝𝑖 =

𝑄ℎ𝑒𝑎𝑑(𝑄𝐺). Therefore 𝑞𝑖 ∈ 𝑅𝑀𝐸𝑄𝐺 holds by Invariant-6.3(𝐺, 𝑝𝑖)-(e). 

Intuitively, 𝑝𝑖 executed step 𝑠′ as a result of the condition at 𝐷2 not holding, or as the CAS instruction at 

𝐷3 (if ever executed in 𝐻[𝑠. . 𝑠′]) returning 𝑓𝑎𝑙𝑠𝑒, which implies that 𝐿𝐺 ≠ 𝑞𝑖, i.e., 𝑙𝑎𝑠𝑡𝑆𝑢𝑐𝑐(𝐺, 𝑝𝑖) ≠ 𝑛𝑢𝑙𝑙. 

Let 𝑝𝑗 = 𝑙𝑎𝑠𝑡𝑆𝑢𝑐𝑐(𝐺, 𝑝𝑖). Then the SAS instruction at 𝐸3𝑎 sets 𝑞𝑗. 𝑎ℎ𝑒𝑎𝑑 = 𝑞𝑖 when 𝑝𝑗 completed 𝐸3 

after 𝑝𝑖’s last execution of 𝐸3 in 𝐺. Since 𝐻 is fair, 𝑝𝑗 eventually executes line 𝐸5 in some step 𝑠′′ in 𝐻, in 

which it sets 𝑞𝑗. 𝑎ℎ𝑒𝑎𝑑. 𝑛𝑒𝑥𝑡 = 𝑞𝑗, which contradicts the hypothesis that 𝑝𝑖 repeatedly reads 𝑞𝑖. 𝑛𝑒𝑥𝑡 =

𝑛𝑢𝑙𝑙 forever at 𝐷6 after step 𝑠’’ in 𝐻. Moreover, note that 𝑝𝑖 resets 𝑞𝑖. 𝑛𝑒𝑥𝑡 back to 𝑛𝑢𝑙𝑙 at 𝐸1 after 𝑝𝑗’s 

completion of 𝐸5, only when it begins executing the entry protocol in a new passage, which contradicts the 

original hypothesis.  

□ 
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Theorem 6.3.8. The RGLock algorithm satisfies Finite Recovery. 

Proof.   Suppose for contradiction that in some crash-recoverable history 𝐻 ∈ ℋ, some process 𝑝𝑖 crashes 

for the last time in 𝐻 in step 𝑠 while executing a passage 𝑚 and never reaches NCS at line 𝐶𝑅8. Then 

following the result of Lemma 6.3.4, Theorem 6.3.5, and Theorem 6.3.7, 𝑝𝑖 completes any of the crash-

recovery procedures invoked immediately after 𝑠 and eventually reaches line 𝐶𝑅8 in a finite number of 

steps without looping forever at any of the lines 𝐸6, 𝑊4, 𝐹3, or 𝐷6, which contradicts the original 

hypothesis. 

□ 

Theorem 6.3.9. The RGLock algorithm incurs 𝒪(1) RMRs per process per failure-free passage.  

Proof.    Note that since any write operations on the 𝑎ℎ𝑒𝑎𝑑, 𝑐ℎ𝑘, and 𝑦𝑖𝑒𝑙𝑑𝑒𝑑 fields on a qnode incur at 

most one RMR each, and the number of such operations outside of any loops in a failure-free passage is 

𝒪(1). Therefore, it suffices to show that a process incurs at most 𝒪(1) RMRs in a failure-free passage in 

the busy-waiting loops at lines 𝐸6 and 𝐷6 in the entry and exit protocols respectively. A process 𝑝𝑖 ∈ 𝒫 

executing the busy-wait loop (if ever) at line 𝐸6 incurs one RMR for establishing a local cached copy of 

𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑 and an unbounded number of local reads of the cached value until some process 𝑝𝑗 ∈ 𝒫\{𝑝𝑖} 

overwrites the 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑 field in the main memory by completing 𝐷7 in its own passage and invalidates 

𝑝𝑖’s cached copy. Therefore a subsequent cache miss for 𝑝𝑖 implies that the value in the main memory has 

been modified. Note that 𝑝𝑗 can write only to its own 𝑞𝑗. 𝑎ℎ𝑒𝑎𝑑 field when it executes line 𝐸3 and does 

not affect 𝑞𝑖. 𝑎ℎ𝑒𝑎𝑑 field. Hence, 𝑝𝑖 terminates the busy-waiting loop after at most two RMRs in total. 

Similarly, in the exit protocol, a process waiting (if ever) at line 𝐷6 for its successor, say 𝑝𝑘, to update the 

𝑞𝑖. 𝑛𝑒𝑥𝑡 field by completing 𝐸5 in its own passage, incurs at most two RMRs in total. Note that 𝑝𝑘 only 

writes to the 𝑛𝑒𝑥𝑡 field on its own qnode in 𝐸1. 

□ 
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Chapter 7 

Conclusion and Future Work 

In this thesis, we introduced RGLock, an innovative locking mechanism for guaranteeing mutual exclusion, 

fairness and liveness in presence of crash failures in a crash-recovery model of emerging shared memory 

systems that incorporate a dedicated non-volatile main memory. Earlier attempts at making spin-locks 

recoverable suffer from a variety of shortcomings, such as a lock-holder losing ownership of the lock when 

crashed within the Critical Section, violation of starvation freedom in lock acquisitions and/or the inability 

to maintain the first-come-first-serve ordering. To the extent of our knowledge, our work is the first of its 

kind to formalize ‘Recoverable Mutual Exclusion’ as a novel correctness property for lock data structures 

whose state can be recovered from the non-volatile main memory following the failure of one or more of 

the contending processes in the system.  

Despite their simplicity and having only a small number of lines of code, several existing mutex lock 

designs for multiprocessor computing contain very subtle aspects that make them difficult to prove 

correctness [52]. Our work presented a comprehensive proof of correctness for the proposed locking 

mechanism based on the assumed execution model. We believe that the ability to recover a spin lock is 

particularly valuable in transaction processing systems, which are intended to run indefinitely. Especially 

in long-running high performance computing applications, it may add a distinct advantage to exploit the 

benefits of recoverable in-memory computing. This chapter summarizes our contributions and identifies 

some potential avenues for further research. 

7.1 Summary 

In Chapter 1, we began by motivating the need for finding alternatives to the existing mutual exclusion 

algorithms when implementing highly concurrent data structures in a crash-recovery model. We give an 

account of spin-lock designs in existing literature and recount the benefits the scalable queue-based local-

spin algorithm of MCS lock provides. Furthermore, we reiterate the limitations of the original MCS lock 



 

 55 

algorithm in a crash-recovery model when implemented “out of the box” in a system augmented with a 

non-volatile main memory, and finally set forth our objectives for a new crash-recoverable mutex. 

In Chapter 2, we discussed the related work in the field of mutual exclusion algorithms as well as the 

advancements in development of media, concurrent data structures, and application interfaces which can 

exploit the persistence offered by non-volatile random access memory. We also recapitulate the 

shortcomings in prior efforts to design a crash-recoverable mutex, showing that they are impractical for our 

objectives due to the unrealistic constraints they place on the operating system and due to an inability to 

avoid a violation of at least one of the fairness or liveness properties in presence of crash failures. We 

highlight the significance of the performance potential of non-volatile main memory systems as a catalyst 

for inventing a crash-recoverable mutex that overcomes the limitations in prior work. 

In Chapter 3, we present our execution model for the emerging multiprocessor systems that incorporate 

non-volatile main memory on a cache-coherent platform. We state our assumptions for the layout of the 

shared memory and the atomic primitives that are used by the processes in the system for accessing the 

shared objects, followed by a discussion of the terminology and definitions used in the failure-free and 

crash-recoverable execution histories. The uniqueness in our model is in the reliance on a persistent storage 

medium that preserves the shared state of each process irrespective of the number of crash failures occurring 

in multiple processes in the system.  

In Chapter 4, we formalize the correctness properties of a recoverable mutual exclusion algorithm and 

highlight the importance of any crash-recoverable algorithm conforming to each of these properties. 

Specifically, we do not lay any constraints with respect to crash failures being restricted to occur only 

outside the critical section of the program. This distinguishes our correctness property from almost every 

prior attempt at creating a recoverable mutex lock in the existing work, as outlined in Chapter 2.  

In Chapter 5, we present the main contribution of this thesis: the first crash-recoverable mutual exclusion 

algorithm for modern multiprocessor architectures with non-volatile main memory. We propose a special 

atomic instruction called swap_and_store (SAS) as an alternative to the existing fetch_and_store operation 

used in the doorway instruction, to facilitate the contending processes in joining a linked-list of per-process 

lock access structure as well as atomically registering either their ownership of the lock or their position in 

the sequence of processes lined up for acquiring the lock within a single step. Finally, in Chapter 6, we 

prove the correctness of our algorithm and justify the objectives laid out in the thesis for a crash-recoverable 

mutual exclusion lock.  
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7.2 Future Research 

RGLock creates a scope to think beyond the traditional algorithms to maintain mutual exclusion and 

liveness properties in the context of crash-recovery. Nevertheless, there is limitation in our model that may 

have to be addressed to create more readiness among the practitioners to implement the algorithm in their 

architectures. It is not yet clear that the atomic SAS instruction will allow efficient implementation of a 

richer set of data structures, keeping in mind the advancements in software and hardware transactional 

memories. Specifically, the transactional semantics of the SAS instruction places an unusual requirement 

on contemporary multiprocessor architectures, and practitioners might favor implementations with 

transactional memories combined with some fault-tolerance mechanism such as write-ahead-logging, 

checkpointing, etc., over having to modify existing atomic primitives supported by the hardware in current 

generation computers. Further investigation of programming techniques and analysis of suitable schemes 

is required to find an appropriate implementation for the proposed atomic instruction and presenting these 

abstractions to programmers without much dependence on transactional memories, for that dissolves the 

very purpose of lock-based concurrency control.  

Finally, in our initial quest to find one of the best known mutual exclusion algorithms that is also suitable 

for a crash-recovery model, we have considered Lamport’s Bakery algorithm [11] as a potential candidate 

solution for the desirable liveness and fairness properties it offers. Particularly, the Bakery algorithm is one 

of the first mutual exclusion algorithms that considered failures in any individual components. The notion 

of fault-tolerance in this algorithm is that any process that fails, halts in its NCS, and may eventually restart 

with its shared variables reset to their default values. At the outset, this lock might seem trivially recoverable 

since the state of any process with respect to the lock following a crash failure may be determined 

immediately by inspecting the state information of its spin variable (‘number’, as labeled in [11]), provided 

that the shared variables are stored in the non-volatile memory. However, restricting a process from leaving 

the procedure it executes each time it crashes requires a carefully designed recovery protocol that is beyond 

trivial. Moreover, the Bakery algorithm also uses unbounded registers for ‘number’. Nonetheless, for its 

sheer elegance, the Bakery algorithm is indeed an interesting solution to pursue in a crash-recoverable 

context, given that it satisfies all of the desired properties such as starvation freedom, doorway-FIFO, and 

wait-free exit, besides guaranteeing mutual exclusion. 
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