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Abstract 

This thesis aims to address a number of unanswered questions regarding repair and fatigue design of 

welded joints in bridges, including developing and evaluating repair methods for enhancing the fatigue 

behaviour of web stiffeners in steel bridge girders, using local stress-based methods for evaluating the 

effectiveness of various repair methods and predicting the fatigue life of welded joints, and studying the 

effectiveness of high frequency mechanical impact (HFMI) treatments under actual in-service loading 

conditions in the long fatigue life regime. Along with extensive fatigue testing programs and finite 

element (FE) analyse studies, a strain based fracture mechanics (SBFM) model is used to predict the 

fatigue behaviour of repaired welds under realistic loading conditions. Through this research, a 

methodology is developed for generating structural stress design curves for retrofitted highway bridge 

welds based on small-scale fatigue experiments, relatively simple and inexpensive fatigue tests of 

smooth specimens, conventional static materials tests, and laboratory measurements. 

The idea of retrofitting web stiffener ends in steel bridge girders susceptible to distortion-induced fatigue 

using adhesively-bonded fibre reinforced polymer (FRP) angles is introduced through this research. The 

proposed retrofit method is relatively cheap and easy to use and does not require deck removal or any 

other severe modification to the steel girder. Fatigue tests were conducted on specimens designed to 

model the conditions in the region between a web stiffener and a flange in a steel girder bridge. Fatigue 

life increases on the order of several hundred percent were achieved by implementing the proposed 

retrofit. A coarse FE analysis is used to predict the effectiveness of the proposed retrofit methods in 

terms of the reduction in the structural stress value. 

A comprehensive variable amplitude (VA) fatigue testing program and analysis was performed to 

address a number of concerns raised regarding the use of impact treatments for the fatigue enhancement 

of welds in the high cycle (> 10 million cycles) domain. The test results are then used to evaluate a 

number of available recommendations for the fatigue design of impact treated welds. The nominal, 

structural, and effective notch stress approaches are considered.  

An SBFM model was lastly used to predict the effectiveness of an HFMI treatment applied to welded 

details. The model is evaluated using the experimental results and found to be capable of predicting the 

fatigue lives for both the as-welded and impact treated specimens for all of the studied loading 

conditions. The idea of using the analytical structural stress S-N curves to predict the fatigue behaviour 

of welded joints with a similar load carrying condition welds was then explored.  
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Chapter 1 

1 Introduction 

1.1 Background and Motivations 

With an increasing amount of traffic and natural aging, existing steel bridges are faced with serious 

durability problems. Fatigue is considered as one of the main sources of deterioration for steel bridges. 

Fatigue cracking can happen due to both in-plane forces and out-of-plane displacements (the latter is so-

called distortion-induced fatigue). To overcome fatigue problems, different rehabilitation methods have 

been proposed and implemented during the last few decades, e.g.: hole drilling, reinforcing, grinding 

and rewelding, and using post-weld treatments, such as grinding, dressing, or peening. 

Residual stress-based post-weld treatments, including conventional peening methods and high frequency 

mechanical impact (HFMI) treatments (see Figure 1.1) are attracting increasing attention as low cost and 

reliable methods for extending the fatigue lives of existing welded steel bridge structures. The primary 

mechanism by which this life extension is achieved is through the introduction of compressive residual 

stresses near the surface of the treated weld toe, which has the effect of slowing down the growth of 

small fatigue cracks. HFMI treatment effectiveness has been verified in numerous laboratory testing and 

analytical fatigue studies, as well as several field trials. For civil structures, where a considerable portion 

of the total applied stress is due to permanent loads, it is reported that peening should be particularly 

effective. Some concerns have been raised regarding the effectiveness of HFMI treatments under actual 

in-service loading conditions, as most of the reported test-based studies only demonstrate the 

performance improvement either under constant amplitude (CA) loading conditions or under variable 

amplitude (VA) loading spectrums in the short fatigue life domain.  

The S-N curves provided in various standards and design codes are normally used for determining the 

fatigue life of new welded components, and are normally based on the nominal applied stress and the 

weld detail category. However, for complex or unconventional connection details, determination of the 

nominal stress and/or detail category can be difficult or even impossible. Moreover, for rehabilitated 

structures, in which both the geometry and the stress state in the welding area are changed, a method 

capable of accounting for these changes should be used. Alternative approaches such as fracture 
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mechanics and local strain-life methods have been developed to overcome these problems. However, 

these methods generally involve an intense computational effort. Other local approaches, which are 

attracting more attention recently, include the structural and effective notch stress approaches. The 

structural stress (sometimes called the hot-spot stress) approach accounts for the dimensions and stress 

concentrating effects of the detail at the potential crack initiation site and avoids the difficulties 

associated with the nominal stress approach. This approach has been used for existing bridge fatigue 

evaluation under traffic using the finite element method. However, few studies have used this approach 

until now to address the assessment of repaired welded joints.  

The largest category of fatigue cracks observed in steel bridges are those caused by out-of-plane 

distortion [1]. Web gaps between stiffeners and girder flanges are the most common locations of these 

cracks (Figure 1.1). Estimating fatigue life for the distortion-induced fatigue problem is still a challenge 

as the S-N curves provided in different codes and standards cannot be used for web stiffener ends where 

neither a fatigue detail category nor a nominal stress are defined. Thus, another approach is needed for 

the fatigue analysis of those details. Different repair/rehabilitation methods have been proposed and 

implemented during the past few decades to overcome such fatigue problems. However, most of them 

require deck (in most cases concrete deck) removal and/or closing the traffic during implementation at 

the top girder flange. Moreover, the application of residual stress-based post-weld treatments for the 

retrofitting of web stiffeners in steel girder bridges is not well studied. 

 

Figure 1.1: (a) HFMI treatment of a weld toe; (b) distortion-induced fatigue example [2] 
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Neither the nominal stress approach (sometimes called the classification method) nor the available local 

stress approaches provide precise information about crack size and crack growth in different stages of 

the structure’s service life. Moreover, there are a number of fatigue rehabilitation methods, including 

HFMI treatments, which can only be fully understood by using analytical models that can account for all 

of the important parameters. A strain-based fracture mechanics (SBFM) approach can be used to 

account for non-linear material behaviour, which may be significant at the weld toe under high applied 

stress ranges. Thus, SBFM is suitable for considering the effects of the large overloads and underloads 

that may occur under in-service loading histories typical of bridges. Accurate SBFM modelling of 

fatigue crack growth, however, typically requires the determination of several material properties that 

cannot be obtained using conventional tests. In particular, the accurate modelling of crack closure 

effects, which play a key role in the variable amplitude loading behaviour of welds, is a challenging 

issue for a precise fracture mechanics analysis of the fatigue prone welded joints.  

1.2 Research Objectives and Methodology 

Based on the background presented in the preceding section, the research described in the current thesis 

was undertaken with the following objectives: 

1) to evaluate the effectiveness of residual stress-based post-weld treatments for enhancing the 

fatigue behaviour of web stiffener ends in steel girder bridges; 

2) to develop an alternative cost-effective and easy to implement repair method for distortion-

induced fatigue damage, which does not involve deck removal; 

3) to address concerns regarding the effectiveness of HFMI treatments under realistic in-service VA 

loading conditions in the long fatigue life domain (> 10 million cycles); 

4) to use the local approaches (e.g. the structural and effective notch stress approaches) to evaluate 

the effectiveness of fatigue repairs and to predict the fatigue life of welded joints; and 

5) to develop a methodology for obtaining or selecting suitable local stress design S-N curves from 

materials and small-scale testing for the fatigue analysis of welded joints.  

To achieve these objectives, fatigue tests were designed and conducted at three different levels, namely: 

large- and small-scale weld details, and materials (smooth specimen) tests. The large-scale specimens 

were designed to model the conditions in the region between a web stiffener and a flange in a steel 

bridge girder. The small-scale specimens were designed to facilitate fatigue testing at very high 

frequencies of load carrying and non-load carrying welds in bridge structures. The smooth specimens 
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were used to derive the effective strain-life curve and the crack closure parameters for the structural steel 

that was used to fabricate the large- and small-scale specimens. The smooth specimen test results were 

validated by conducting crack growth measurements on compact tension (CT) specimens. The VA 

loading histories used in these fatigue tests were chosen to simulate the in-service traffic-induced 

loading that a typical bridge weld detail undergoes during its service life. 

In conjunction with the conducted experimental research, the finite element (FE) method was used to 

obtain elastic stress distributions in the vicinity of the tested weld details analytically. A strain-based 

fracture mechanics (SBFM) analysis was then conducted using the derived material parameters and FE 

outputs and the analytical results were validated using the small-scale fatigue test results.  

Using the investigated local stress approaches, the fracture mechanics analysis results are used to 

construct the structural and notch stress design S-N curves for the as-received and retrofitted weld 

details. These curves are then used to predict the results of the large-scale fatigue experiments. Based on 

the results of this research, S-N design curves for the fatigue analysis of treated welds are proposed, and 

recommendations are made concerning the use and limitations of these curves.  

The benefits of using the experimental results to validate a fracture mechanics model and then using this 

model to establish or validate the local stress design curves, rather than simply using the test data to do 

this directly are worth noting at this stage. Briefly, the fracture mechanics model is a mechanistic model, 

rather than an empirical one, which means that once it is validated, it can be used with a higher level of 

confidence to extrapolate the test results to other loading histories and connection geometries. The 

model can also be used to better understand the behaviour of the weld specimens in the long life domain, 

where the test data is relatively sparse. This has significant implications in terms of the cost of the 

research, in comparison with the alternative of simply conducting many tests on large-scale weld details 

in both the medium and high cycle (> 10 million cycles) fatigue domains in order to validate an 

empirical model. The validated mechanistic model (the SBFM model, in this case) can also serve as a 

useful tool for better understanding the effects of the various model parameters on fatigue behaviour, 

since they can each be easily varied in the model to see the resulting effect. 

Figure 1.2 provides a general description of the steps employed in this research project. 
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Figure 1.2: Steps employed to develop local stress design curves for repaired bridge welds 
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1.3 Scope 

The fatigue tests for this study were conducted at the University of Waterloo (UW), using an MTS 322 

Material Testing System with load capacity of 500 kN for large-scale specimens. A 100 kN MTS servo-

controlled closed-loop electro-hydraulic testing machine with a process control computer controlled by a 

software developed at UW was used for small-scale and materials testing. The large-scale specimen 

represents a typical steel girder section built during 1970s in Ontario. The small-scale test specimen 

geometries include a load carrying lap joint and a stiffener detail, representing a non-load-carrying 

transverse web stiffener-to-flange connection in a bridge girder. All specimens were made from CSA 

350W steel [3], which is a steel grade commonly used in Canadian bridges. The post-weld treatment 

methods investigated in this study include needle peening for the large-scale specimens, and HFMI 

treatment for the small-scale specimens. The weld treatments were applied following the procedure 

recommended by the International Institute of Welding (IIW), e.g. in [4, 5]. Other assumptions and 

calculations are based on the Canadian Highway Bridge Design Code [6]. 

1.4 Structure of the Thesis 

This thesis is organized in six chapters. Chapter 2 summarizes the literature related to the distortion-

induced fatigue problem in steel highway bridges and then presents the large-scale fatigue tests and FE 

analysis conducted within the scope of the current research project to investigate this problem. This 

chapter also describes and evaluates a novel repair method for this fatigue problem, which employs 

adhesively-bonded fibre reinforced polymer (FRP) stiffeners to reduce the local stresses at the stiffener 

end. The work in Chapter 2 appears in [7] and [8]. Chapter 3 summarizes the previous research on the 

effectiveness of residual stress-based post-weld treatments under VA loading conditions. The current 

design codes and specifications related to residual stress-based post-weld treatments are also discussed 

in this chapter. The small-scale fatigue tests are then described and the results are evaluated using two 

local stress approaches. Chapter 4 reviews the concept of crack closure and then presents the smooth 

specimen testing that was conducted to derive the fatigue crack closure and growth parameters. Residual 

stress measurements and weld toe geometry measurements are also presented in this chapter. This 

chapter also presents FE analyses performed to obtain the local stresses in the small-scale specimens. 

The SBFM model is described in Chapter 5. The validated model is then used to perform analyses under 

a wide range of in-service VA loading histories and to make design recommendations. Finally, in 

Chapter 6, the main findings and conclusions of this research are presented along with recommendations 

for future work in this field.  
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Chapter 2 

2 Fatigue Testing and Finite Element Analysis of the Distortion-induced Fatigue 

Damage in Steel Girders 

2.1 Introduction 

The largest category of fatigue cracks observed in steel bridges are those caused by out-of-plane 

displacements [1]. Web gaps at web stiffener ends near the girder top flanges are the most common 

locations of these cracks. The top flange is held rigidly by the deck slab above, causing an abrupt change 

of stiffness and consequently a steep stress gradient. Distortion-induced fatigue is then caused by large 

secondary stresses in the weak web gap region between the top flange and the web stiffener. This 

problem can occur at non-load-carrying web stiffeners and at web stiffeners serving the dual role of 

stiffening the web and acting as a connection plate between the girder web and cross bracing. Different 

repair/rehabilitation methods have been proposed and implemented during the past few decades to 

overcome such fatigue problems, including reinforcing, hole drilling, grinding (and) rewelding, and the 

use of post-weld treatments (e.g. peening) [1-4]. Among these methods, reinforcement to create an 

alternative load path between the flange and web stiffener (or transverse connection plate) has been 

found to be highly effective in reducing the magnitude of the out-of-plane displacements, and 

consequently, mitigating distortion-induced fatigue damage [1, 5]. Connections between the 

reinforcement and the structure can be made by bolting. However, bolting or welding an angle to the 

stiffener and to the girder flange often requires removal of the deck (in most cases a concrete deck) 

and/or closing the ongoing traffic during implementation of the repair. Recently, a new angle-with-

backing plate retrofit technique was developed as reported in [6], which does not require disturbance of 

the deck. However, distortion-induced fatigue damage often happens in locations that are not easily 

accessible for executing this retrofit approach. This highlights the need for an easy-to-implement and 

cost effective retrofit to inhibit fatigue cracking that does not require deck removal or access to the 

opposite side of the girder. 

Fatigue assessment of repaired welded joints is another challenge in dealing with new and innovative 

retrofit methods. The classification method, which uses conventional S-N curves provided in different 
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standards and design codes, cannot be used for uncommon welded details or out-of-plane distortion 

fatigue problems where the nominal stress is difficult to characterize. Moreover, for rehabilitated 

structural details, in which both the geometry and the stress state in the weld area are changed, a more 

precise method capable of accounting for these changes should be used. The structural or hot-spot stress 

method is a promising one in this respect. The structural stress concept has been used previously to 

compare the efficiency of different retrofit techniques in reducing secondary stresses in the web gap 

regions [6]. Still, the potential of the structural stress method for predicting distortion-induced fatigue 

damage in steel bridges has not been fully explored. By establishing a fatigue class (or classes) for 

structural details susceptible to distortion-induced fatigue cracking, the corresponding structural S-N 

(design) curve can be used to estimate the fatigue life of those details. Moreover, the same design curve 

can be used to evaluate the effectiveness of different retrofit techniques in terms of reducing the 

magnitude of structural stress range at fatigue-critical locations. The structural stress range magnitude 

can be determined by direct (field) measurements, or by using a coarse finite element (FE) model 

following the procedures provided (for example) in [7]. 

Based on the background presented in the preceding paragraphs, the current study was undertaken with 

the goals of: 1) developing a cost-effective and easy-to-implement retrofit method for distortion-induced 

fatigue damage and evaluating its effectiveness, both analytically and experimentally, and 2) using the 

structural stress method to assess the fatigue capacity of both as-welded and retrofitted joints susceptible 

to distortion-induced fatigue damage. 

2.2 Background 

A major focus of the research on Fiber Reinforced Polymer (FRP) composites has been on strengthening 

concrete structures by various means, ranging from reinforcing concrete beams using FRP rebar to the 

confinement of concrete columns by using FRP wraps. FRP-strengthening of steel structures is not as 

common as for concrete structures because of steel’s high elastic modulus and strength. Still, adhesively 

bonding FRP sections to steel has advantages that make this strengthening method attractive in a wide 

range of applications. Compared to welded steel plates, the use of adhesively-bonded FRP sections does 

not introduce unfavourable residual stresses and is less demanding in terms of heavy equipment 

requirements. A major focus of existing research in this field is enhancing the flexural capacity of steel 

beams by FRP strengthening. For example, Carbon Fiber Reinforced Polymer (CFRP) laminates were 

successfully used to strengthen steel composite beams in [8] and later to strengthen steel bridge sections 
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in [9]. In another popular retrofit method, bonded FRP plates are attached to the tension flange to 

strengthen steel girders [10, 11].  

Fatigue retrofitting of steel members using FRP (non-prestressed or prestressed) under cyclic direct 

loading has also been studied and large fatigue life increases were observed. However, often this was for 

members with rivet holes or artificial notches [12, 13] where a significant fatigue life increase was easier 

to achieve with a minimal reinforcement of the structure. However, when applied to welded structures, 

FRP-retrofitting was found to be less efficient as reported in [14]. These less favourable results were 

related to high weld residual stresses and the fact that FRP was not much stiffer than steel. Recently, 

FRP overlay elements were also used to improve the fatigue performance of welded connections by 

increasing stiffness and reducing stress demand at fatigue-prone welds [15]. Increasing steel members 

buckling strength by using FRP-based retrofit techniques has also been studied [16-19]. Steel members 

and elements are typically very slender and a large benefit can be achieved with a relatively small 

change in the cross section properties. In [20], pultruded FRP sections were used to improve cross 

section properties and to inhibit local buckling in shear-controlled steel beams. Debonding has been 

found to be the most common failure mode in strengthened structures using this technique [21, 22].  

Extensive research has been conducted on the bond behaviour of FRP strengthened steel sections and on 

failure behaviour of different adhesives, e.g. [23, 24]. 

In the current study, a retrofit method is proposed based on the idea of using FRP sections to solve a 

fatigue problem resulting from a lack of stiffness in a plate element. When applied to web stiffeners, a 

significant benefit can be achieved because a small change in the section properties at the location of the 

stiffener end can significantly influence local stress levels. 

2.3 Fatigue Test Description 

The specimen geometry employed in this study was designed to model the conditions in the region 

between the web stiffener and flange on a typical steel girder section built during the 1970s in Ontario, 

Canada (see Figure 2.1and Figure 2.2). The typical detail consisted of a 9.5 mm (3/8 in.) thick stiffener 

with a 50.8 mm (2 in.) web gap. The welds were specified as 4.8 mm (3/16 in.) fillet welds with no weld 

return at the stiffener end (see Figure 2.2). The specimen geometry and loading were designed to model 

the field conditions as realistically as possible, within constraints of time and budget appropriate for an 

initial or ‘proof of concept’ study. The specimens were designed with web gaps at each end (while there 

was only a web gap between the bottom flange and the stiffener in the original construction detail). 
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According to a preliminary, coarse FE analysis, loading one end at the proposed load levels has no 

significant effect on the web gap at the other end. This was also confirmed by direct measurements. 

Thus, two fatigue tests could be performed on a single specimen, significantly reducing the testing cost. 

All steel plates and stiffeners were fabricated from Canadian Standards Association (CSA) G40.21 

350W steel. The specimens were fabricated using the FCAW (flux-cored arc welding) welding process. 

 

Figure 2.1: Fatigue test specimen: (a) loading side; (b) web gap side 

Out-of-plane web gap movement was induced by the up and down movement of a jack, which was 

pushing against the specimen during testing (i.e. there were no load reversals). The loading was applied 

at a distance of 152 mm (6 in.) from the inside face of the near flange. Loading was applied using a 

custom-made ball bearing support. Using this system, the loading direction was always normal to the 

web, localized yielding was prevented, and the loading region was too far away from the crack location 

to undesirably affect crack growth. Displacement of the stiffener at a distance of 127 mm (5 in.) from 

the inside face of the near flange was measured by means of a direct-current differential transducer 

(DCDT) mounted under the specimen. Fatigue tests were performed at frequencies between 5 and 10 
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Hz, and strain data and displacements were recorded at 40 Hz. The tests were run until a through crack 

was detected on the opposite side of the specimen from where it initiated (i.e. the side where loading 

was applied).  

 

Figure 2.2: Fatigue test specimen and structural region instrumentation: (a) specimen in testing 

frame; (b) strip strain gauge location; (c) web gap instrumentation 

To locate the fatigue critical locations, FE analysis with a relatively coarse mesh was again used. The 

stiffener weld toes on the web were found to be the most critical location for fatigue cracking, followed 

by the flange weld toe on the web on the opposite side of the stiffener. TML strip (QFXV-1-11-002LE) 

strain gauges were then attached to the specimen close to the weld toe on the web to measure the strain 

at multiple points during testing. Each strip gauge consisted of 5 strain gauges, each with a gauge length 

of 1 mm and a gauge pitch of 2 mm, lined up in the same direction to measure the surface strain normal 

to the weld toe. Two other TML single (FLA-5-11) strain gauges with a 5 mm gauge length were also 

attached close to the other stiffener weld toe on the web and to the flange weld toe on the web (see 

Figure 2.2). 
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To study the effect of loading spectrum, both constant amplitude (CA) and variable amplitude (VA) 

cyclic loading were considered. Tests were conducted under CA cyclic loading with a load ratio (R = 

Lmin / Lmax) of 0.1 and load ranges of 21, 28, and 35 kN. Tests were also conducted under VA cyclic 

loading at the same equivalent load ranges. The variable amplitude loading spectrum involved the 

repetition of 1000 cycle loading blocks, randomly extracted from a larger in-service loading history for 

the mid-span moment in a 40 m long, simply-supported girder. This loading history was generated using 

traffic data from Ontario, Canada obtained from a survey of truck axle spacings and loads conducted in 

1995 with total number of 10198 trucks, as explained in [25]. Miner’s sum was used to calculate the 

equivalent load range for the VA tests, assuming a slope of m = 3 for the design S-N curve (see Figure 

2.3 and Table 2.1). 

 

Figure 2.3: Sample from variable amplitude (VA) loading history 

Table 2.1: Fatigue loading cases 

Loading Type Max. Load (kN) Min. Load (kN) Equivalent Load Range (kN) Symbol 

Constant Amplitude 23.3 2.3 21 C21 

Constant Amplitude 31.1 3.1 28 C28 

Constant Amplitude 38.8 3.8 35 C35 

Variable Amplitude 46.4 2.3 21 V21 

Variable Amplitude 63.2 3.1 28 V28 

Variable Amplitude 78.9 3.8 35 V35 

Fatigue testing in this study was conducted in three phases. Ten fatigue tests were conducted in the first 

phase including six tests on as-welded (AW) specimens and four tests on specimens retrofitted by needle 

peening (NP). Four fatigue tests were conducted in the second phase where cracked specimens were 

repaired using a conventional grinding-and-rewelding (GR) repair method. The procedure used in this 
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study is a modified version of the specification used by CN (Canadian National) Railway as follows: 1) 

preheat the base metal to 150°F, 2) gouge the crack from one side by grinding to approximately one half 

of the plate thickness, 3) clean the groove by rotary disc grinding, completing the required groove radius 

of 3/8" and angle of 20°, 4) after cooling, perform a visual inspection of the groove and groove edges. 5) 

preheat the base metal in the crack area to 250°F before welding, 6) complete root, intermediate, and 

final weld passes with a visual inspection upon completion of each pass, 7) remove slag inclusions after 

each pass, and 8) repeat process for the other side. Needle peening treatment was performed using a 

compressed air needle gun and following the procedure in [26]. All of the welding was performed by the 

same certified welder at the University of Waterloo’s Engineering Machine Shop. 

In the third phase of fatigue testing, nine cracked specimens were repaired using adhesively-bonded FRP 

angles and then cyclically loaded until further crack propagation was detected. Two more uncracked 

specimens were also reinforced in this phase using adhesively-bonded Glass Fiber Reinforced Polymer 

(GFRP) angles and fatigue tested until a through crack was detected. Table 2.2 presents the sequence 

and naming scheme for all fatigue tests conducted in this study. 

Table 2.2: Sequence and ID of fatigue experiments on each specimen 

Specimen 1st Test  2nd Test 3rd Test 4th Test  5th Test 

1/A AW-C35-1A GRNP-C35-1A FRP-1-C21-1A   

1/B AW-C35-1B GRNP-C21-1B FRP-2-C21-1B FRP-2-C28-1B FRP-2-C35-1B 

2/A NP-C35-2A GRNP-V21-2A FRP-3-V21-2A   

2/B AW-V35-2B GR-C21-2B FRP-4-C35-2B FRP-4-V21-2B  

3/A NP-V35-3A FRP-5-V21-3A FRP-5-V35-3A   

3/B AW-C21-3B FRP-5-V28-3B    

4/A NP-C21-4A     

4/B AW-V21-4B     

5/A NP-V21-5A FRP-6-V28-5A    

5/B AW-C28-5B FRP-6-V35-5B    

6/A FRP-5-V28-6AU     

6/B FRP-5-V21-6BU FRP-5-V35-6BU    

Naming convention: retrofit method-loading case-specimen (see Table 2.1 for loading case). AW: as-welded, NP: 

needle peened, GR: gouged-and-rewelded, GRNP: gouged-rewelded and needle peened, FRP-#: FRP angle-

adhesive combinations (see Table 2.5). 

2.4 FRP Angle Retrofit Method 

Considering anisotropic mechanical properties of FRP structural shapes, these sections are particularly 

strong and useful when they are subjected to loadings along their fiber orientation or lengthwise (LW) 
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direction. However, when subjected to a rather complicated loading case, such as the loading that an 

attached angle experiences in a distortion fatigue retrofit, sectional crosswise (CW) mechanical 

properties should be considered. In this study, FRP angles were cut from off the shelf glass fiber 

reinforced polymer (GFRP) I-beam sections. Pultruded Dynaform® Isophthalic Polyester Fire Retardant 

(ISOFR) Resin and Vinyl Ester Fire Retardant (VEFR) Resin fiberglass structural shapes were donated 

by Fibergrate Composite Structures Inc., Canada. These products were chosen because of their fairly 

high crosswise (CW) mechanical properties (see Table 2.3). The FRP angles were cut from a large wide 

flange beam. Two angles were then attached to the specimen’s stiffener and flange using a structural 

adhesive, after roughening the bonding surfaces on both the FRP angles and the specimen using a 

compressed air needle gun and sand blasting, respectively.  

Table 2.3: Mechanical properties of the GFRP angles 

Mechanical Properties* Direction Units Nominal Value* Tension Coupon Test Results† 

Tensile Strength LW MPa 206 350 

 CW MPa 48 48 

Tensile Modulus LW GPa 17.2 24.7 

 CW GPa 5.5 9.0 

Flexural Strength LW MPa 206  

 CW MPa 68  

Flexural Modulus LW GPa 12.4  

 CW GPa 5.5  

* as reported in the product data sheet [27] 
† based on average of two tension coupon tests 

Two types of structural adhesive were studied: a high strength, high modulus adhesive (Sika AnchorFix-

3CA) and a low strength, highly ductile structural methacrylate adhesive (SikaFast®-3131). Mechanical 

properties of these two adhesive types are summarized in Table 2.4. As instructed in the product data 

sheets [28,29], the adhesive was applied using a pneumatic dispense gun to both components and the 

bonded surfaces were then firmly clamped into place for a day, until the adhesive fully cured at room 

temperature. Figure 2.4 shows a retrofitted specimen. The FRP-retrofitted specimens were continuously 

inspected for further crack propagation on the loading side and for FRP / adhesive failure during fatigue 

testing. 
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Table 2.4: Mechanical properties of the adhesives [28, 29] 

Mechanical Properties Units AnchorFix-3CA SikaFast-3131 

Bond strength MPa 20 Not provided 

Strength MPa 751 8.92 

Modulus GPa 3.61 0.12 

Elongation at break % 1 50 

Service temperature range °C Not provided -29 to 85 
1 reported as compressive strength and compressive modulus in product datasheet 
2 reported as tensile strength and tensile modulus in product datasheet 

 

Figure 2.4: FRP-retrofitted test specimen 

In absence of any comparative data, a trial-and-error development process was used to evaluate the 

effect of different parameters, both geometrical and mechanical, on the performance of the proposed 

retrofit. Within this process, a total of 7 fatigue tests were conducted on previously cracked specimens 

(Specimens 1 and 2). Initially, a dye penetrant was used to locate both surface and through cracks and 

specimens were then retrofitted using FRP angles. The marked cracked regions were then continuously 

monitored as the fatigue testing was continued. Fatigue loading was discontinued upon the detection of 

any signs of failure including: further crack propagation, failure in the FRP angle, evidence of adhesive 

debonding, or any increase in the maximum value of the measured out-of-plane displacement (Figure 

2.5). Where no sign of failure was detected after 3 million cycles, loading was discontinued and a new 

test under a higher (more damaging) loading condition was started on the same specimen. Four different 

FRP-based retrofits were tested during this process (FRP-1 to 4 – see Table 2.5). Based on this process, 
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the retrofit FRP-5 was used to retrofit four stiffener ends: two initially uncracked (5/A and 5/B) and two 

cracked (3/A and 3/B). Considering the FRP-5 retrofit as a benchmark, another retrofit was tested to 

evaluate the effect of increasing the thickness of the FRP angles (FRP-6 retrofit). All of these FRP 

retrofits (angle-adhesive combinations) are summarized in Table 2.5. 

 

Figure 2.5: A typical detected through crack (a), propagated through cracks at the stiffener weld 

toe and the flange weld toe on the web (b), and FRP retrofit failure (c) 

Table 2.5: FRP angle-adhesive combinations (also see Figure 2.4) 

   FRP angle dimensions (all dimensions in mm)  

ID l a × b t Resin Adhesive  

FRP-1 102 79 × 140  6.4 ISOFR AnchorFix  

FRP-2 102 107 × 191 9.5 ISOFR AnchorFix  

FRP-3 102 107 × 191 9.5 ISOFR SikaFast  

FRP-4 102 107 × 191 9.5 VEFR SikaFast  

FRP-5 127 107 × 191 9.5 VEFR SikaFast  

FRP-6 127 107 × 191 12.7 VEFR SikaFast  

underline: changed parameter for each FRP retrofit compared to previous FRP retrofit 

2.5 Fatigue Test Results 

2.5.1 Fatigue Life Data 

Fatigue lives (N), failure modes, structural stress (HSS) and displacement (d) ranges for all fatigue tests 

conducted in this study are presented in Table 2.6. Measured ranges at the equivalent load range are 
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reported for VA tests. These results are discussed in two different categories: fatigue tests on initially 

uncracked specimens, followed by the tests on cracked specimens.  

Figure 2.6 presents all 16 fatigue tests conducted on initially uncracked specimens, including as-welded 

specimens, repaired specimens using conventional methods (i.e. needle peening and gouging-and-

rewelding), and FRP-retrofitted specimens. As reported in [4], needle peening resulted in only a modest 

fatigue life increase within the tested load ranges, and the gouged-and-rewelded specimens generally 

had shorter fatigue lives than the as-welded specimens. The FRP-retrofitted specimens, however, had 

fatigue lives on the order of several hundred percent longer in many cases. As Figure 2.6 shows, a more 

than a 400% increase in the fatigue life was achieved in Test 15 (initially uncracked specimen, FRP-5 

retrofit, V28 loading) compared to the average fatigue life curve for as-welded specimens at the same 

loading level. Under V21 loading with an average as-welded fatigue life of under half a million cycles, 

no failure was detected for Test 16 after 3 million cycles, when loading was discontinued. A second test 

(Test 17) was conducted on Specimen 6B by increasing the loading to V35 loading. A failure in the 

GFRP angles was subsequently observed after 20,000 cycles, followed by a through crack detection 

after a total of 80,000 load cycles. This test result is not shown in Figure 2.6 due to the mixed mode of 

failure, which makes it different than the other tests. 

 

Figure 2.6: Fatigue test results: (a) initially uncracked specimens; (b) FRP-retrofitted specimens 

under VA loading; (c) FRP-retrofitted specimens under CA loading 
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Table 2.6: Fatigue test results 

Test ID Repair-L-Specimen N Failure mode(s) HSS (MPa) d (mm)  

1 AW-C35-1A 84,000 TC 458 0.531 
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s 2 AW-C35-1B 72,000 TC 478 0.56 

3 AW-V35-2B 45,000 TC 459 0.55 

4 AW-C21-3B 383,000 TC 314 0.34 

5 AW-V21-4B 461,000 TC 304 0.34 

6 AW-C28-5B 351,000 TC 360 0.49 

7 NP-C35-2A 116,000 TC 449 0.55 

8 NP-V35-3A 49,000 TC 439 0.59 

9 NP-C21-4A 1,100,000 TC 310 0.31 

10 NP-V21-5A 658,000 TC 305 0.34 

11 GR-C21-2B 650,000 TC 324 0.33 

12 GRNP-V21-1B 160,000 TC 330 0.321 

13 GRNP-C35-1A 35,000 TC 464 0.511 

14 GRNP-V21-2A 220,000 TC 265 0.36 

15 FRP-5-V28-6AU 1,520,000 AD-w, FA-f, TC 178 0.32 

16 FRP-5-V21-6BU 3,000,000 N.A. 134 0.23 

17 FRP-5-V35-6BU 80,000 FA-f, TC 2122 0.412 

18 FRP-1-C21-1A 7,500 AD-w N.A. 0.461 
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19 FRP-2-C21-1B 3,000,000 N.A. N.A. 0.45 

20 FRP-2-C28-1B 3,000,000 N.A. N.A. 0.57 

21 FRP-2-C35-1B 888,000 AD-s N.A. 0.79 

22 FRP-3-V21-2A 81,000 FA-s N.A. 0.37 

23 FRP-4-C35-2B 3,000,000 N.A. N.A. 0.43 

24 FRP-4-V21-2B 2,310,000 AD-s N.A. 0.34 

25 FRP-5-V21-3A 3,000,000 N.A. N.A. 0.25 

26 FRP-5-V35-3A 80,000 AD-s N.A. 0.58 

27 FRP-5-V28-3B 380,000 AD-s N.A. 0.53 

28 FRP-6-V28-5A 3,000,000 N.A. N.A. 0.49 

29 FRP-6-V35-5B 230,000 AD-s, AD-f N.A. 0.59 

underline: run-out, AW: as-welded, NP: needle peened, GR: gouged-and-rewelded, GRNP: gouged- rewelded and 

needle peened, N.A.: not applicable, TC: through crack, AD-s: debonding within the adhesive-steel interface at FRP-

to-stiffener connection, AD-f: debonding within the adhesive-steel interface at FRP-to-flange connection, FA-s: FRP 

angle leg attached to stiffener failure, FA-f: FRP angle leg attached to flange failure  
1 Estimated numbers using displacement measurements by the testing machine due to DCDT malfunction during 

testing 
2 Structural stress and displacement ranges right after the beginning of the experiment, i.e. not stabilized 
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According to the results presented in Table 2.6, Test 17 resulted in a failure after only 80,000 cycles 

under V35 loading while no failure was observed in Test 23 with a lighter retrofit after 3 million load 

cycles under C35 loading. This suggests that the maximum load level is a more critical design factor 

than the equivalent load level. Thus, FRP-4, FRP-5, FRP-6, and FRP-6 retrofits were subsequently 

tested under VA loading histories.  

Figure 2.6 summarizes all of the fatigue tests on FRP-retrofitted specimens. The fatigue capacity was 

improved in all cases, while higher improvements were achieved at lower loading levels. It can be seen 

that the fatigue crack propagation period for the FRP repaired specimens was longer than the initial 

fatigue capacity of the uncracked specimens in all cases, except for the FRP-2 retrofit. Generally, higher 

fatigue life improvements were achieved when stiffer FRP angles were used in combination with the 

more ductile adhesive.  Finally, debonding of the adhesive-steel interface at the FRP-to-stiffener 

connection (AD-s) was the most common failure mode observed. 

2.5.2 Measured Strain and Deflection Data 

Inspection of the strain-load data from the tests revealed an essentially linear behaviour after the first 

cycle. Non-linear behaviour during the first load cycle can be explained by initial test setup compliances 

(e.g. support settlement) or the high magnitude of the tensile residual stresses present at the surface due 

to welding. The direct strain measurements for the 21 kN load range and the out-of-plane displacement 

ranges measured by the DCDT are summarized in Figure 2.7. The measured strains for the 28 kN and 35 

kN load ranges had a similar trend to the measured strains for the 21 kN load range. In these graphs, 

results at the equivalent load ranges are reported for the variable amplitude loading tests. As can be seen 

in Figure 2.7, a strong linear relationship is observed in the results, and no significant difference is 

observed between the results for as-welded, peened, and gouged-and-rewelded specimens. On the other 

hand, the magnitudes of both the out-of-plane displacements and strains within the web gap region were 

significantly reduced by the proposed FRP retrofitting method. It can be concluded that the proposed 

method enhances distortion-induced fatigue behaviour of the studied detail through reducing the out-of-

plane displacement of the stiffener end on the web, and consequently reducing the stress ranges 

experienced at the critical weld toe. 
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Figure 2.7: Measured strain ranges for C21 and V21 loading (a) and out-of-plane displacement 

ranges for all loading cases (b) 

2.5.3 Structural Stress Analysis 

Structural stresses for all fatigue tests on initially uncracked specimens were calculated according to [7] 

using linear extrapolation to determine the structural stress. Strains at distances of 0.4·t and 1.0·t (t = 

thickness of the web) from the weld toe were measured using strain gauges. However, the position of the 

five-element strip strain gauges in this study did not coincide exactly with those extrapolation points. 

Linear interpolation was therefore used to establish the required strains. The extrapolated structural 

stresses for all of the fatigue tests are presented in Table 2.6. After the structural stresses are 

extrapolated, fatigue test results can be expressed in terms of structural stress range vs. fatigue life and 

compared to structural stress design curves. Figure 2.8 presents all fatigue tests on initially uncracked 

specimens. A structural stress design S-N curve, the IIW FAT-100 curve, is also plotted for comparison 

purposes. The FAT-100 design curve is proposed for non-load carrying welds in [7]. The IIW FAT-90 

curve is recommended for the structural stress design of load-carrying welds, and may be more 

appropriate in the case of web stiffeners at cross-bracing locations.  

Results for as-welded, needle peened, and gouged-and-rewelded specimens were discussed in [4], 

highlighting the following observations: 1) the fatigue lives for all specimens lie above the IIW FAT-

100 curve, 2) needle peening resulted in only a modest fatigue life increase within the tested structural 

stress ranges, and 3) the gouging-and-rewelding repair method was effective enough to restore the initial 
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design (FAT-100) fatigue capacity, although it resulted in shorter fatigue lives than seen for the as-

welded specimens. While the effectiveness of FRP retrofitting cannot be evaluated using the S-N 

approach, it can be quantified in terms of the structural stress range. The average structural stress results 

for the unreinforced specimens and the FRP-retrofitted specimens for the 21 kN loading range are 

plotted in Figure 2.8. In this figure, the data points represent detecting a through crack on the loading 

side of the specimens. Moreover, according to this figure, the FRP retrofit resulted in a reduction in 

structural stress range greater than 50% in all cases.  

 

Figure 2.8: Measured structural stress range for 21 kN loading range (a) and fatigue test results 

for initially uncracked specimens (b) 

In summary, for the load ranges tested herein, using the structural stress method with the IIW FAT-100 

design curve resulted in a relatively conservative, but reliable prediction of the fatigue life of the web 

stiffeners. This is particularly important because there is no fatigue detail category for welded details 

similar to the one studied herein and the classification method (S-N approach) is therefore not capable of 

predicting the web stiffener fatigue life. It is suspected that the reason the fatigue test results from the 

current study are all above the IIW hot-spot stress design curve is that the web is being subjected to a 

loading with a high degree of bending, rather than axial loading. 
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2.6 Finite Element Analysis 

2.6.1 Model Description 

The FE analysis program ABAQUS was used to determine the local structural stress ranges by 3D static 

analysis of the fatigue test specimen. The specimen geometry (including welds) was modeled using 20-

node quadratic brick elements. Meshing was based on recommendations in [7]. An elastic material with 

E = 200 GPa was assumed for the steel specimen and appropriate boundary conditions were applied. 

The fact that the secondary stresses within the web gap are induced by out-plane displacement of the 

web, which can be directly measured in the field, was considered in defining the loading step. Loading 

was applied so that a displacement range equal to the average measured range under CA loading was 

analyzed. For the as-welded specimens, the displacement ranges were 0.329 and 0.548 mm for 21 and 

35 kN, respectively.  

For design purposes, the structural stress can be determined by FE analysis with a relatively coarse 

mesh. When solid elements are used, according to [7], in most cases only one layer of elements across 

the plate thickness is sufficient to determine the structural stress. However, more precise results can be 

achieved by using a finer mesh. Herein, two layers of solid elements were used across the web thickness. 

A mesh study was also performed and the results are summarized in Figure 2.9. A good agreement 

(±5%) between the experimental and FE results was observed when finer elements (mesh type 4) were 

used. This meshing pattern was then chosen for this study. Default element in-plane dimensions of 30 

mm by 30 mm were assumed. In the hot-spot regions, meshing was managed so that the extrapolation 

values for the structural stress calculation corresponded with nodal points. 

A 3D static analysis of the FRP-5 retrofitted specimen was also performed. The GFRP section and 

adhesive layer were modeled as isotropic elastic materials with E = 5.5 and 0.1 GPa, respectively, based 

on the nominal properties in the product data sheets (Table 2.3 and Table 2.4). It should be noted that the 

GFRP modulus in the weak (CW) direction was conservatively assumed as a simplification in this 

analysis. While, in the actual attachment, a non-isotropic material is being subjected to a complex 

combination of bending and shear loading, it was thought that a simpler material model would be more 

feasible for the design of this type of retrofit in practice.  

The FRP attachments were meshed using 20-node quadratic brick elements. The adhesive was modeled 

as a thin layer (0.5 mm thick) between the FRP section and the steel. Both the FRP attachments and 



 

23 

 

adhesive were meshed using a default element size similar to that of the steel specimen (30 mm by 30 

mm). The adhesive layer was meshed using 8-node quadratic shell elements. The FRP sections, adhesive 

layer, and steel specimen were attached together using tie constraints.  

Figure 2.9 shows the assembled model. As was done in the as-welded specimen analysis, structural 

stress ranges were calculated corresponding with the equivalent displacement ranges for the retrofitted 

specimens, i.e. 0.234 mm and 0.321 mm for 21 kN and 28 kN, respectively.  
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   (c) 

Mesh 

type 

# of elements in each direction 

for each extrapolation point 
Element size 

Length Width Thickness 1st extrapolation point 2nd extrapolation point 

1 1 1 1 0.4·t x t x t 0.6·t x t x t 

2 1 1 2 0.4·t x t x 0.5·t 0.6·t x t x 0.5·t 

3 2 1 2 0.2·t x t x 0.5·t 0.3·t x t x 0.5·t 

4 2 2 2 0.2·t x 0.5·t x 0.5·t 0.3·t x 0.5·t x 0.5·t 

5 3 3 3 0.13·t x 0.33·t x 0.33·t 0.2·t x 0.33·t x 0.33·t 
 

 

 Figure 2.9: FE model assembly: (a) as-welded specimen; (b) FRP-retrofitted specimen; (c) mesh 

sensitivity analysis 
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2.6.2 Finite Element Analysis Results 

Finite element analysis results consisting of the structural stress extrapolation for the as-welded 

specimens at the minimum (21 kN) and maximum (35 kN) load ranges tested in this study are shown in 

Figure 2.10. The structural stress ranges predicted using the FE analysis results were within 5% of the 

values obtained from direct strain measurements.  

 

Figure 2.10: Structural stress extrapolation: (a) as-welded specimens; (b) FRP-retrofitted 

specimens 

For the FRP-5 FE model, experimentally and analytically derived structural stress ranges for 21 kN and 

28 kN load ranges are presented in Figure 2.10. As can be seen in this figure, the analytically derived 

structural stress ranges were close to the values calculated by direct strain measurements and 

conservative for both load levels. The higher error in the FE predictions of structural stress for the FRP-

5 model compared to the unreinforced model may be attributed to the use of the nominal material 

stiffness in the weak (CW) direction for the GFRP material. Tension coupon tests performed for this 

study showed that the actual elastic moduli in the strong (LW) and weak (CW) directions were higher 

than the nominal values (see Table 2.3). In order to study the effects of the stiffness assumptions for the 

GFRP and adhesive on the predicted structural stress ranges, sensitivity studies were performed on these 

parameters. These studies showed that varying the stiffness or thickness of the adhesive layer over a 

wide range (covering the nominal elastic moduli of both tested adhesive products and an estimated 
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practical range for the adhesive layer thickness) had a negligible effect on the predicted structural stress. 

On the other hand, the predicted structural stress was seen to be significantly affected by the assumed 

GFRP elastic modulus. In Figure 2.10, the effects of varying this parameter over a range of ±25% are 

illustrated, showing the importance of this parameter. While further refinements to the FE analysis 

would be beneficial for gaining a better understanding of the behaviour of the GFRP angle and adhesive 

layer, with the presented results, it can be seen that the structural stress method in conjunction with a 

coarse FE analysis offers a practical and reasonably accurate means for verifying the fatigue 

performance of the critical welds before and after retrofitting. 

2.7 Analytical Study of the Efficiency of the FRP Retrofit 

A  similar FE modelling scheme to that used in the previous section was then employed to study the 

effects of a number of the varied geometrical and mechanical parameters on the efficiency of the 

proposed FRP retrofit. These varied parameters included: direction of the applied cyclic loading 

(diagonal loading rather than vertical loading), the geometrical properties of the FRP angles, the elastic 

moduli of both the FRP angle and the adhesive material, and the location where the FRP attachments 

were employed (i.e. attachments bonded to the stiffener and web or to the web and flange instead of 

angles attached to the stiffener and flange). The FE model used for structural stress analysis of the FRP-

retrofitted specimen in the previous section was considered as a benchmark (FE-B). Loading P was 

applied so that a structural stress equal to 100 MPa could be calculated for the FE-B specimen. The 

same load P was then applied to all subsequent analyses. The effect of each parameter was studied 

separately by using an FE model as described in the following paragraphs. 

A diagonal load was applied in model FE-L. In the experimental study, a vertical cyclic load was 

applied through the up and down movement of a jack, as dictated by laboratory constraints. However, in 

actual steel bridges, out-of-plane web displacements are caused by cross frame members, which are 

often diagonal rather than vertical with respect to the web. In the FE-L model, a diagonal loading with 

the same magnitude of P in both the vertical and horizontal directions was applied.  

The FE-M1 and 2 models were used to investigate the effect of the elastic modulus (E) for the FRP and 

adhesive material on the efficiency of the proposed retrofit method. In FE-M1 model, lengthwise (LW) 

flexural modulus of 12.4 GPa was used for the GFRP material (a 125% increase). For FE-M2, a high 

modulus adhesive (SikaFast®-3131) with E = 3.6 GPa was modeled (a 3500% increase). 
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The FE-G1 to 4 models were used to study the effects of geometrical properties of the FRP angle, as 

described in Table 2.7. 

Table 2.7: Models FE-G1 to 4 

FE model 
Varied 

dimension 

New value 

(in.) 

% 

increase 

FE-G1 
a 

(short leg) 
5.2 24 

FE-G2 
b 

(long leg) 
8.5 13 

FE-G3 
l 

(length) 
6 20 

FE-G4 
t 

(thickness) 
0.5 33 

Distortion-induced fatigue damage usually happens in locations that are not easily accessible for 

implementing retrofits. The proposed method may then not be applicable to some structural details. Still, 

FRP attachments can be used at other locations with the goal of reducing the stress demand in the web 

gap region. Two cases were studied herein. In the FE-WS model, FRP angles were attached to the 

stiffener and web to provide more connectivity between the stiffener and the web. In the FE-WF1 and 2 

models, FRP angles were used to create a load path between the flange and web on the stiffener and 

opposite sides (see Figure 2.11). 

 

Figure 2.11: FE model geometries 

Results for the FE-based parametric study are presented in Figure 2.12. In addition to the 11 FE models 

described earlier, FE results for an unretrofitted (as-welded) specimen are added for comparison (FE-

AW). As can be seen, FE-M1 and FE-WS were the most and least efficient methods studied herein, 

respectively.  
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Figure 2.12: FE-based study results 

Results are summarized in Table 2.8. For the FE-M and G models, the proportional benefit is defined as 

the percent variation in the structural stress value per one percent variation in the varied mechanical or 

geometrical parameter. For instance, according to the table, a 1% increase in FRP’s elastic modulus 

resulted in a 0.25% decrease in the structural stress value in FE-M1. 

Table 2.8: Fatigue tests results 

FE model 
% increase in the varied 

parameter (%) 

HSS 

(MPa) 

HSS 

reduction % 

Proportional 

benefit (%) 

FE-AW N.A. 195 N.A. N.A. 

FE-B N.A. 100 N.A. N.A. 

FE-L N.A. 106 -6 N.A. 

FE-M1 125 69 +31 0.25 

FE-M2 3500 100 0 0 

FE-G1 24 97 +3 0.12 

FE-G2 13 99 +1 0.08 

FE-G3 20 96 +4 0.20 

FE-G4 33 89 +11 0.33 

FE-WS N.A. 191 -91 N.A. 

FE-WF1 N.A. 167 -67 N.A. 

FE-WF2 N.A. 171 -71 N.A. 

Based on the results in Table 2.8, the following observations are made: 
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 The HSS increased slightly when a diagonal (45º) load was applied rather than a vertical load 

in FE-B. Although the structural stress did not change significantly, adding a force component 

parallel to the web was seen to induce additional stresses in both the FRP angle and adhesive. 

 Using a higher modulus FRP material resulted in a significant increase in the efficiency of the 

proposed retrofit method. 

 Using a higher modulus adhesive did not change the HSS value. When applied to in-service 

bridges, using a high modulus adhesive will generate higher stresses in the adhesive layer 

which, consequently, will make the retrofit vulnerable to a sudden failure of the adhesive. 

 Among the geometrical properties of the FRP angle, the highest benefit was achieved by 

increasing the thickness, followed by increasing the length. Although increasing two other 

dimensions (a and b) did not affect the HSS value significantly, an angle with bigger legs may 

be needed to provide more bonding area between the FRP angle and steel. 

 Attaching the FRP angles to the stiffener and web, resulted in an almost no reduction in HSS 

comparing to the unretrofitted case (FE-AW). This can be explained by the fact that no extra 

stiffness was provided to the weak web gap region as a result of this retrofit. 

 Attaching the FRP angles to the web and flange was not as efficient as attaching the angles to 

the stiffener and flange. However, some improvement (up to 15% reduction in HSS) was 

achieved compared to the unretrofitted case. When attaching the FRP angles to the stiffener 

and flange is not possible due to geometrical constraints, this method can be used. It is 

expected that higher HSS reductions will be achieved when longer and thicker FRP 

attachments are used. Moreover, the modeled FE-WF2 retrofit can be used in combination 

with the retrofit discussed in FE-B. 

2.8 Conclusions 

The idea of using adhesively-bonded FRP angles as a retrofit method for distortion-induced fatigue 

problems associated with web stiffeners in steel bridge girders is proposed, tested, and analyzed in this 

chapter. Based on the presented research, the following conclusions are drawn: 
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• Significant fatigue life increases on the order of several hundred percent, depending primarily on 

the imposed loading range, were achieved by implementing this retrofit method.  

• Debonding within the adhesive-steel interface was found to be the most common failure mode 

when the FRP angle retrofit method was used, followed by failure in the FRP angles. Using a 

highly ductile adhesive appeared to result in a delayed, gradual failure in comparison with the 

use of a high strength, high modulus adhesive. 

• The hot-spot stress design curve was successfully used to estimate the fatigue life of the as-

welded and retrofitted web stiffener ends. This is of paramount importance, considering the fact 

that the conventional S-N curves provided in different codes and standards are for as-welded 

joints only and cannot be used for unconventional welded joints such as web stiffener ends 

where neither a fatigue detail category nor a nominal stress are defined. 

• The proposed FRP-based retrofit method was found to be significantly more efficient than two 

other conventional repair methods. While the other methods focus on improving the local fatigue 

properties at the weld toe, the FRP-based retrofit method reduces the stresses in the web gap 

region.  

• The efficiency of the FRP angle retrofit method can be determined by using a coarse finite 

element (FE) model before implementation and by direct field measurements after 

implementation. This should enable bridge owners to design case-specific FRP angle retrofits, 

predict their effectiveness, and evaluate them after implementation.  

• The effects of a number of the varied geometrical and mechanical parameters on the efficiency 

of the proposed retrofit method were studied using a finite element analysis. Generally, it was 

found that greater improvements, in terms of reducing the hot-spot stress, can be achieved when 

stiffer FRP angles are used than for other methods. Additionally, using a ductile structural 

adhesive, rather than a high modulus one, was recommended in order to reduce the stresses in the 

adhesive layer, and to avoid a sudden failure due to a possible severe overload. 
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  Chapter 3 

3 High Cycle Fatigue Behaviour of Impact Treated Welds under Variable 

Amplitude Loading Conditions 

3.1 Introduction 

The fatigue performance and durability of welded steel structures can be enhanced by post-weld 

treatments (PWTs). Residual stress-based PWTs (i.e. peening or impact treatments) are proven to be an 

effective, reliable, and economical means for extending the service lives of welded structures [1-3]. 

When these PWTs are applied, a compressive residual stress field is introduced near the surface of the 

treated weld toe, which delays, or even arrests, the growth of small fatigue cracks.  

The effectiveness of a wide variety of PWTs, including conventional peening methods (e.g. needle or 

hammer peening) and high frequency mechanical impact (HFMI) treatments–also known as ultrasonic 

impact treatment (UIT), has been verified in numerous laboratory and analytical fatigue studies [4-8]. 

Using the same mechanism to improve the fatigue strength of welded connections as other residual 

stress-based PWTs, HFMI treatment tools provide a comfortable working condition with less noise and 

vibration compared to low frequency pneumatic tools. This makes HFMI tools easier to operate for 

longer periods of time and, consequently, HFMI treatment is a practical method for enhancing the 

fatigue performance of large welded structures with numerous fatigue-prone weld details. Methods for 

proper execution and quality control of HFMI treatments are being developed [9-11]. Field trials and 

tests of weld details on large-scale girders are reported in [12-14]. It is also being shown that impact 

treatments can be particularly effective when applied to existing structures (welds on steel bridges, for 

example), since the permanent stresses due to the self-weight are imposed prior to the treatment [15, 16].  

Several experimental and analytical studies have been conducted with the goal of generating S-N design 

curves (in terms of both the nominal and structural stress) to include the beneficial effect of HFMI 

treatment in structural design codes [7, 12, 17-19]. The literature in this field includes experimental and 

analytical results for a wide variety of welded details and loading conditions in the mid- to high cycle 

domain (less than 107 cycles). Despite the extensive research conducted in this field, very few, if any, 

studies have investigated the behaviour of treated welds in the ultra-high cycle domain (beyond 107 

cycles). Additionally, the proposed fatigue limits (also called endurance limits) for the treated welds are 
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chosen conservatively in the absence of experimental results. Considering the current design service life 

of steel structures such as bridges (75 to 100 years, with > 4000 truck passages per day possible), more 

experimental results within the 107 to 108 cycle range are needed. 

Recently, the fatigue life increase resulting from impact treatments has been acknowledged in several 

design codes and standards (e.g. [20, 21, 22, 28, 29]). The IIW Recommendations [22, 29] explicitly 

permit an increase in the structural (or “hot-spot”) stress class due to the treatment of non-load carrying 

welds from FAT-100 up to FAT-125. Recent experimental studies have shown these recommendations 

are reasonable in the mid-cycle domain [18], but ‘too conservative’ in other cases, especially in the high-

cycle domain [7, 17]. More than 400 fatigue test results conducted in 18 separate studies were analysed 

in [7] and it was found that the slope of the best fit line through S-N data is typically greater than the m = 

3 used in guidelines. m = 5 was proposed based on the collected constant amplitude (CA) test results, 

mostly with a stress ratio (Smin / Smax = R) of 0.1, and the need for more variable amplitude (VA) test 

results for updating the design curves was highlighted. In another study [19], the existing high stress 

ratio (R = 0.5 to 0.7) CA test results and the limited available VA results on steel specimens were 

evaluated with respect to proposed IIW guidelines [22]. The S-N slopes for the different joint types 

varied between 4.4 and 9.6. It was concluded that a shallower S-N slope is more suitable for the fatigue 

design of the treated weld toes in the mid to high cycle (104 to 107 cycle) domain. 

Available test data and design curves are mostly based on CA loading fatigue studies. It is now well 

known that for a similar stress range, impact treatments effectiveness decreases under CA loading as R 

ratio increases [3, 9, 17, 19]. In other words, the treatment effectiveness is dependent on the mean stress 

of the fatigue loading and, thus, impact treatments may not be suitable for structures operating at applied 

high stress ratios.  For VA loading, however, the extent of the improvement depends on the stress 

history at the weld toe and seems to vary from one application to another. The beneficial effect of 

impact treatment decreases as the maximum applied stress approaches the yield strength of the material 

and the occasional application of severe tensile or compressive stresses on welded components can be 

detrimental in terms of relaxing the compressive residual stress [23]. In the absence of any systematic 

guidelines or test data, it was suggested in [7] that the maximum stress in the VA loading spectrums be 

limited to 80% of the yield strength to ensure the effectiveness of HFMI treatments.  

Interactions between load cycles of different stress ranges also influence the fatigue behaviour of a weld 

toe. Fatigue damage caused by a particular stress cycle under VA loading can be more damaging than 
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under CA loading [5, 24], mainly due to the crack closure mechanisms [25]. As a result, Miner’s sum 

[26] or the root-mean-cube (RMC) method may lead to inaccurate (conservative or non-conservative) 

results. Some of the main parameters influencing the fatigue behaviour of structures under VA loading 

are the occurrence of periodic overloads (or underloads), load cycle arrangement in the load spectrum, 

and the maximum and minimum stress levels. Hence, when determining the effectiveness of impact 

treatments in a specific application, it is of paramount importance that the relevant VA load spectrum is 

considered. For example in highway bridges, where the in-service loading histories typically contain 

overloads (e.g. due to occasional very heavy trucks) followed by smaller load cycles, the frequency and 

magnitude of the overloads should be determined (e.g. by field measurement). 

Another factor that limits the achievable level of fatigue improvement for treated welds is the possibility 

of alternative modes of failure (other than weld toe failure). Welding tensile residual stresses and the 

stress concentration due to the change in the geometry tend to make weld toes the most vulnerable 

location for fatigue crack initiation and propagation in welded joints. When residual stress-based PWTs 

are applied to the weld toe, the tensile residual stresses are replaced with compressive residual stresses 

and, in some cases, the stress concentration is also reduced [9], resulting in a fatigue strength 

improvement at the weld toe. After treatment of the weld toe, the critical failure mode of a welded detail 

may change (for example) to root cracking or fatigue crack growing from sub-surface fabrication flaws 

or material defects in the base metal. Secondary failure modes may then ultimately control the fatigue 

strength of the impact treated joint, particularly for joints containing load-carrying welds. 

Transverse and longitudinal stiffeners are common non-load carrying weld details in steel structures. 

Most of the 414 data points reported in [7] for four specimen types with non-load carrying welds failed 

at the weld toe. In addition, a variety of other failure locations was observed in high strength steel (fy > 

400 MPa) specimens under CA loading condition with an R ratio of -1. Treated non-load carrying welds 

were reported to fail consistently at locations other than the weld toe in [14, 27]. The as-welded 

longitudinal fillet welded joints tested in [14] all failed at the weld toe whereas the treated joints all 

failed in the weld throat (cracks initiated at the weld root). The specimens in [14] were made from 30 

mm thick mild steel (fy = 390 MPa) plates. A similar observation was made in [27], where fatigue 

improvement of high strength steel (HSS) was studied. While all of the as-welded specimens failed at 

the weld toe, almost all of the treated specimens experienced other modes of failure under CA loading 
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including plate edge (base metal) failure, weld start/stop position failure, grip region failure, and root 

side failure. Under VA loading, however, the treated specimens failed at the weld toe.  

Cover plates represent a common load carrying welded detail in steel structures such as bridges. A cover 

plate detail representing AASHTO [28] Det. Cat. E was tested in both the as-welded and treated 

condition in [12]. It was observed that in the high-cycle domain and for smaller weld sizes, fatigue 

cracks in the treated cover-plate welds originated at the weld root; a fatigue resistance corresponding 

with Det. Cat. D was still achieved for treated cover plates. As-welded and HFMI treated cover plates 

were also studied in [6] and an improvement in fatigue life of 25 times was observed. However, the 

treatment again shifted the crack initiation site. Surface cracks in the weld throat near one end of the 

transverse weld were observed in the treated specimens whereas the untreated specimens all experienced 

fatigue cracking at the weld toe. The results for the treated specimens were all well above AASHTO 

Det. Cat. D, which was previously proposed for the treated cover plates in [12]. 

Against this background, the current study was undertaken with the goals of: (1) examining the fatigue 

performance of treated structural steel welds in the high and ultra-high cycle domain under simulated in-

service VA loading conditions, (2) using the experimental results to validate proposed guidelines in the 

literature, (3) using the structural stress approach and the effective notch stress approach to predict the 

fatigue life of the treated welded joints, and (4) making recommendations regarding the effectiveness of 

HFMI treatments when applied to welded steel structures subjected to VA loading conditions. 

3.2 Fatigue Test Description 

Two specimen types (load carrying and non-load carrying welds) subjected to as-welded and treated toe 

conditions were fatigue tested under three load histories including two VA loading spectrums and one 

CA loading with R = 0.1. All of the fatigue tests were conducted in a servo-controlled testing frame with 

the loading frequencies of 30 to 100 Hz, depending on the loading magnitude. The previous research had 

verified that the used range of testing frequencies did not affect the test results. 

3.2.1 Specimens 

The specimens were fabricated from 300 mm wide CSA G40.21 350W steel with a plate thickness t of 

9.5 mm (3/8”). This steel is a mild, weldable structural steel grade with a nominal yield strength of 350 

MPa (50 ksi) and an ultimate strength of 450-650 MPa (65-95 ksi). Tensile coupon testing was 

conducted and the material yield and ultimate tensile strengths were 390 and 606 MPa, respectively. 
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Two different specimen geometries were studied including transverse stiffener specimens with non-load 

carrying fillet welds (Type-X) and lap joint specimens with load carrying welds (Type-L). As-welded 

Type-X specimens represent a nominal detail category of FAT-80 according to [29], a hot-spot fatigue 

class of FAT-100 according to [30], and Det. Cat. C according to AASHTO [28]. As-welded Type-L 

specimens represent a nominal detail category of FAT-63 (parent metal) and FAT-45 (weld throat) 

according to [29], a hot-spot fatigue class of FAT-90 according to [30], and Det. Cat. E’ according to 

AASHTO [28]. The attachments, i.e. transverse stiffeners and laps, were welded to the plates using the 

flux-cored arc welding (FCAW) process with a nominal weld size of 6.4 mm (1/4 in.). All of the 

welding was performed by the same certified welder at the University of Waterloo’s Engineering 

Machine Shop. The welded plates (as-welded and treated) were then cut into 42 mm wide strips and 

‘‘dog-boned’’ (see Figure 3.1) using a computer numerical control (CNC) cutting machine. 

 

Figure 3.1: Fatigue specimen geometries (all dimensions in mm): (a) transverse stiffener (Type-X); 

(b) lap joint (Type-L) 

3.2.2 Treatment 

The treatments were performed manually in three ‘passes’ at angles (with respect to the larger plate) of 

45º, 30º, and 60º with the HFMI tool set to an amplitude of 27–29 μm. The weld toes were inspected 

after the treatment to confirm that there was no visible line at the center along the location of the original 

weld toe (Figure 3.2). The treatment parameters, including the tool, amplitude, and inspection 

procedures, were set to simulate the field treatment of structural steel welds as a retrofitting measure. 
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Figure 3.2: Impact treatment of weld specimens: (a) HFMI tool; (b) treating a weld toe; (c) as-

welded weld toe; (d) treated weld toe 

3.2.3 Loading 

Three different types of fatigue loading were considered and scaled to vary the stress range, including: 

CA loading with R = 0.1, and two simulated in-service VA loading histories. Each VA loading block 

was repeated until the specimen failed. Testing was discontinued if no failure happened after roughly 

100 million load cycles, at which point the test was considered a ‘‘runout”. 

The VA histories were generated using traffic data from a survey of axle spacings and loads conducted 

in Ontario, Canada in 1995 [31], which included a total of 10,198 trucks. Randomly extracted VA 

spectrums blocks (1,000 cycles) of these load histories had been used previously in [5, 18, 32]. In the 

current study, the full VA loading histories were used. As explained in [5], these loading histories were 

generated by successively passing the trucks over influence lines for two locations on simply-supported 

bridge girders with different spans. The two cases considered in this study included the mid-span 

moment of a 40 m girder (VA1) with 10,195 load cycles in each block and the support reaction of a 15 

m girder (VA2) with 6,470 load cycles in each block (after filtering to eliminate very small cycles less 
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than 1/3 of the CAFL). Rain-flow analysis was carried out for the two VA loading histories and the 

results are presented in Figure 3.3. Miner’s sum was used to calculate the CA equivalent stress range 

(ΔSeq) for the VA tests, assuming a slope of m = 3 for the S-N curve. 

      

   

Figure 3.3: VA loading histories: (a) mid-span moment of a 40 m girder (VA1); (b) support 

reaction of a 15 m girder (VA2); (c) VA loading histograms; (d) R histograms 

Significant differences can be seen between the two VA loading histories. Since the girder span is much 

longer than the typical truck length in VA1, only one large load cycle is caused by passing each truck 

over the bridge. In the second case (VA2), where a shorter girder span is considered, each axle load 

causes a small cycle as it comes on or off the end of the bridge. Consequently, VA1 consisted of a series 

of mainly large load cycles (compared to the maximum load level) all with the same minimum stress 

levels. However, VA2 consisted of mainly small load cycles with different minimum stress levels (and 

thus with higher mean stress levels compared to the same stress range in VA1). 
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3.3 Fatigue Test Results 

Results of the 67 fatigue tests conducted in this study are summarized in Table 3.1 and Table 3.2.  

3.3.1 Modes of Failure 

While all of the as-welded specimens failed at the weld toe, various modes of failure were observed for 

the treated specimens. All of the treated Type-X specimens that failed did so as a result of cracks 

initiating at the weld toe and had fatigue lives greater than the as-welded specimens. Five of the treated 

Type-L specimens failed at the weld toe with no fatigue life increase, three exhibited a mixed root / toe 

failure mode, and all of the other treated specimens failed due to cracks initiating at the weld root. In 

other words, the impact treatment resulted in shifting the failure mode (Figure 3.4). 

 

Figure 3.4: Fatigue cracking modes in specimens: toe failures in as-welded lap specimen (a) and 

as-welded and treated cruciform specimens (b and c); root failure in treated lap specimens (d and 

e)   
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Table 3.1: Fatigue test results for transverse stiffener (Type-X) specimens 

As-welded 

Test ID N (103 cycles) ΔSeq
†

 (MPa) Smax (MPa) Smin (MPa) ΔSmax (MPa) ΔSmin (MPa) ΔSmin
* (MPa) 

XAC-1 1,995 108 120 12    

XAC-2 920 144 160 16    

XAV-1 3,843 87 180 10 171 3 11 

XAV-2 1,131 110 229 12 217 3 14 

XAV-3 713 121 252 13 239 4 15 

XAV-4 397 186 387 21 367 6 23 

XAW-1 8,203 61 167 7 162 3 3 

XAW-2 1,921 83 226 9 220 3 3 

XAW-3 1,041 117 319 13 310 5 5 

XAW-4 627 142 387 16 376 6 6 

Treated 

XTC-1 101,080 106 118 12    

XTC-2 25,995 127 141 14    

XTC-3 3,165 155 177 18    

XTC-4 1,255 159 177 18    

XTC-5 2,365 165 177 18    

XTC-6 1,720 170 177 18    

XTC-7 6,450 180 200 20    

XTC-8 4,650 191 212 21    

XTV-1 192,686 66 138 7 131 2 8 

XTV-2 100,685 71 148 8 141 2 9 

XTV-3 101,545 76 159 8 151 2 10 

XTV-4 103,020 82 170 9 161 3 10 

XTV-5 22,327 87 180 10 171 3 11 

XTV-6 45,826 110 229 12 217 3 14 

XTV-7 16,852 121 252 13 239 4 15 

XTV-8 14,283 154 320 17 304 5 19 

XTV-9 625 186 387 21 367 6 23 

XTW-1 21,103 76 207 8 201 3 3 

XTW-2 52,989 83 226 9 220 3 3 

XTW-3 64,693 96 262 11 254 4 4 

XTW-4 13,599 108 295 12 286 4 4 

XTW-5 27,646 117 319 13 310 5 5 

XTW-6 6,592 125 341 14 331 5 5 

XTW-7 1,818 142 387 16 376 6 6 

Note 1: the naming convention is specimen type (X or L), toe condition (A = as-welded; T = treated), loading spectrum       

(C = CA; V = VA1; W = VA2), specimen number 

Note 2: underline = runout (testing was discontinued after roughly 100 million cycles) 
† CA equivalent stress range with m = 3  
* The minimum stress range present in the loading spectrum with at least 1% occurrence in the loading block.  
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Table 3.2: Fatigue test results for lap joint (Type-L) specimens  

As-welded 

Test ID N (103 cycles) ΔSeq
†
 (MPa) Smax (MPa) Smin (MPa) ΔSmax (MPa) ΔSmin (MPa) ΔSmin

* (MPa) 

LAC-1 27 251 279 28    

LAC-2 17 308 342 34    

LAV-1 652 71 148 8 141 2 9 

LAV-2 1,080 76 159 8 151 2 10 

LAV-3 1,651 78 161 9 153 2 10 

LAV-4 468 87 180 10 171 3 11 

LAV-5 56 186 387 21 367 6 23 

LAW-1 9,840 

 

50 136 6 133 2 2 

LAW-2 964 66 179 7 174 3 3 

LAW-3 116 142 387 16 376 6 6 

Treated 

LTC-1 505 180 200 20    

LTC-2 220 253 282 28    

LTC-3 80 300 333 33    

LTC-4+ 55 311 346 35    

LTC-5‡ 25 323 358 36    

LTC-6+ 40 334 371 37    

LTC-7‡ 13 346 384 38    

LTC-8‡ 10 392 435 44    

LTV-1 71,466 66 138 7 131 2 8 

LTV-2 8,156 82 170 9 161 3 10 

LTV-3 11,479 87 180 10 171 3 11 

LTV-4 9,073 92 191 10 181 3 11 

LTV-5 4,373 121 252 13 239 4 15 

LTV-6 1,223 154 320 17 304 5 19 

LTV-7‡ 66 186 387 21 367 6 23 

LTW-1 364,066 43 116 5 113 2 2 

LTW-2 102,824 46 125 5 122 2 2 

LTW-3 28,733 50 137 6 133 2 2 

LTW-4 12,267 58 158 6 154 2 2 

LTW-5 11,451 66 179 7 174 3 3 

LTW-6+ 782 112 306 12 297 5 5 

LTW-7 1,442 125 341 14 331 5 5 

LTW-8‡ 135 142 387 16 376 6 6 

Note 1: the naming convention is specimen type (X or L), toe condition (A = as-welded; T = treated), loading spectrum (C = 

CA; V = VA1; W = VA2), specimen number 

Note 2: underline = runout (testing was discontinued after roughly 100 million cycles) 
† CA equivalent stress range with m = 3  
* The minimum stress range present in the loading spectrum with at least 1% occurrence in the loading block. 
+ Specimen exhibited mixed mode of failure (fatigue cracking at weld root and toe). 
‡ Specimen failed at weld toe.  
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3.3.2 Effect of Large Overloads 

Currently, no benefit for impact treatments can be claimed if the R ratio is higher than 0.4 according to 

[29] and it is assumed that the impact treatment methods are not suitable if the maximum applied stress 

is higher than 0.8·fy  according to [22]. To study the potentially unfavourable effect of large tensile 

overloads on the fatigue behaviour of the treated welds, 18 of the fatigue tests were conducted at 

equivalent stress range levels high enough that the tensile stress peaks in the loading history were greater 

than 0.8·fy (280 MPa) including 12 treated Type-L (LT) and 6 treated Type-X (XT) specimens. All six of 

the XT specimens still exhibited fatigue life improvements. For the LT specimens, however, five 

specimens subjected to overloads larger than fy (350 MPa) failed at the weld toe with no fatigue life 

improvement and three specimens exhibited a mixed (root / toe) mode of failure with a minimal fatigue 

life improvement. The results were not affected by the large overloads for the remaining four specimens 

with 0.8·fy < Smax < fy (Table 3.2). The fact that the treated weld toes in different specimens exhibited 

different types of fatigue behaviour under similar nominal loading highlights the need to define this limit 

based on a local approach (e.g. a structural or effective notch stress approach). 

3.3.3 Effect of High R Ratios 

More than 50% of the load cycles in the VA2 history had R ratios greater than 0.4, while almost all of 

the cycles in VA1 had R ratios between 0 and 0.2. For the treated specimens, VA2 was found to be 

somewhat more damaging than VA1 for both specimen types, indicating the unfavourable effect of the 

high R cycles. However, significant fatigue life increases were still observed under VA2 loading. 

In the following sections, the test results are used to evaluate a number of available recommendations 

for the fatigue design of impact treated welds. The nominal, structural, and effective notch stress 

approaches are considered. An FE analysis is performed to determine the local stresses. A statistical 

analysis of the fatigue test results is also conducted and characteristic S-N curves with slope m=5 are 

proposed for the fatigue design of treated welds under VA loading in the high cycle domain. 

3.4 Nominal Stress Approach 

Stress-life (S-N) results in terms of the nominal stress range for each specimen group are plotted in 

Figure 3.5 and Figure 3.6. The corresponding as-welded design S-N curves from [28, 29, 33] are also 

shown on these figures, along with S-N design curves for impact treated welds from [12, 17, 22, 29]. 
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Figure 3.5: S-N results for transverse stiffener (Type-X) specimen 

As can be seen in Figure 3.5, the as-welded (AW) specimens had fatigue lives close to the relevant as-

welded design curves, namely: the AASHTO Det. Cat. C [28] and the IIW FAT-80 [29] curves. Note 

that there is a knee point in IIW FAT-80 curve at 107 cycles for VA loading and m changes from 3 to 5, 

whereas a constant amplitude fatigue limit (CAFL) is assumed at 107 cycles for the CA loading. No 

significant difference was observed between the as-welded CA, VA1, and VA2 results.  

For the treated specimens, on the other hand, the loading spectrum does appear to affect the results. For 

the same stress range at different levels, CA and VA2 results generally had the longer and the shorter 

fatigue lives, respectively, as was seen previously for needle peening [5]. 

All of the CA failures for treated welds lie above the modified AASHTO design curve for Det. Cat. C/C’ 

with the CAFL for Det. Cat. B (110 MPa). This curve was proposed in [12] for impact treated transverse 

non-load carrying attachments with fillet welds under CA loading and does not consider any fatigue 

improvement in the finite fatigue life domain. The increase in the fatigue strength proposed in [12] is 

limited to CA loading and subject to the condition that either the treatment is applied under permanent 

loads or the stress due to dead (permanent) loads does not exceed 110 MPa. The CA fatigue test results 

obtained in the present study appear to support the validity of this design curve for the ultra-high cycle 

fatigue domain under CA loading. 
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All of the VA results for treated welds lie above the IIW FAT-100 detail curve, which represents treated 

(hammer peened) IIW FAT-80 details and considers a 1.3 times increase in the fatigue strength of the 

treated weld [22, 29]. When plotted in terms of the applied equivalent stress range, this curve was found 

to conservatively estimate the fatigue life for the treated specimens, especially in the ultra-high cycle 

domain (more than 107 cycles). It should also be noted that the CAFL of 60 MPa at 107 cycles according 

to this recommendation (not shown in the figure) was also found to be highly conservative. 

The FAT-125* curve with a slope (m) of 5, instead of the traditional m = 3, proposed in [7] for impact 

treated transverse welds was found to accurately represent the design fatigue strength for the treated 

specimens in the mid- to ultra-high cycle (105 to 108 cycles) domains. Moreover, a more accurate CAFL 

of 90 MPa at 107 cycles (not shown in the figure) can be envisioned when m = 5 is used. 

   

Figure 3.6: S-N results for lap joint (Type-L) specimen  

In Figure 3.6 it can be seen that the as-welded (AW) lap joint specimens had fatigue lives close to but 

generally below the lives predicted by the two relevant design curves, namely: the AASHTO Det. Cat. E 

curve [28] and the IIW FAT-63 curve [29] representing transverse loaded lap joints with fillet welds. 

The suspected reason for this result is the particularly severe nature of the tested fatigue detail, wherein 

the central plate is cut so that the entire load passes through the cover plates via welds with a much 

smaller throat dimension than the cover plate thickness. Similarly to the Type-X specimens, no 
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significant difference was observed between the as-welded CA, VA1, and VA2 results; however, the 

loading type does appear to have a significant effect on the treated weld results.  

All of the CA results for the treated lap joint detail lie above the modified AASHTO design curve 

consisting of a Det. Cat. E curve with the CAFL for Det. Cat. C (69 MPa). This increase in the fatigue 

strength is again limited to CA loading and subject to the condition that either the treatment is applied 

after the permanent loads are introduced or the stress due to these loads does not exceed 69 MPa [12]. 

Again, the CA fatigue test results obtained in the present study appear to support the validity of this 

design curve for the ultra-high cycle fatigue domain under CA loading. 

The IIW FAT-80 design curve, which represents a 1.3 increase in the fatigue strength of the treated 

welds, is also plotted for comparison. It should be noted that this curve only applies to fatigue failures 

initiating at the treated weld toe and thus, cannot be used to design against other failure modes such as 

weld root failures [22, 29]. All except three of the VA tests on the treated welds fell above the IIW FAT-

80 curve. The explanation for this result is that these three specimens experienced periodic tensile 

overloads with magnitudes higher than the nominal material yield strength (350 MPa).  

Since the failure mode for the majority of the treated lap joint specimens was root failure, the FAT-125* 

curve was found inapplicable in this case and was therefore not included in Figure 3.6. 

3.5 Structural Stress Approach 

There are different methods available to determine the structural (or “hot-spot”) stress at welded joints. 

These methods are generally based on: i) extrapolation of stresses at pre-defined reference points on the 

surface close to the weld toe or ii) linearization of the through-thickness stresses. Originally developed 

for and applied in the offshore structures, the structural stress approach aims to obtain the local stress at 

the weld toe using coarse (shell, planar, or 3D) finite element (FE) models or direct measurements. 

Detailed recommendations for hot-spot stress determination and analysis of the welded structures are 

described in [30, 34-36]. Different approaches to determine the structural stress are compared in these 

references and it is shown that depending on the geometry and loading conditions, the calculated 

structural stress may vary [37]. Thus, the method to calculate the structural stress should be carefully 

chosen based on the geometry and loading conditions. The extrapolation method, typically based on 

linear extrapolation of surface stress values at 0.4·t and 1.0·t from the weld toe where t is the plate 

thickness, has been successfully applied to weld details with load-transfer dominated behaviour. 
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However, for joints with localized stress concentration behaviour (i.e. local detail dominated behaviour), 

e.g. welded joints with two-sided transverse attachments under uniaxial loading, the extrapolated 

structural stress may not adequately capture the stress concentration effects (see Figure 3.7).  

  

Figure 3.7: Strain profile in front of the weld toe based on measurements and FE analysis  

To overcome this problem, other structural stress calculation methods have been proposed, including the 

ones described in [38-40], in order to develop a mesh-insensitive definition for the structural stress to be 

used in conjunction with rather coarse FE models. Considering the simple specimen geometries and the 

uniaxial loading condition used in the current study, Dong’s definition of the structural stress [38] was 

used in conjunction with 2D FE models to evaluate the obtained experimental data. According to this 

definition, the corresponding statically equivalent structural stress (σs) at a weld toe is taken as the sum 

of the membrane component (σm) and bending component (σb). Using this definition, the equilibrium 

conditions within the context of elementary structural mechanics theory are satisfied at both the crack 

plane at the weld toe and an adjacent reference plane. The local stress distribution at the reference plane 

can be determined by using a conventional FE model. For solid models with symmetric loading and 

geometry with respect to the neutral axis of the loaded member and with non-monotonic through-

thickness stress distributions (Figure 3.8), the bending and membrane components of the structural stress 

can be calculated using Equation 3.1 and Equation 3.2 [38]. 
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Figure 3.8: Structural stress for through-thickness stress distribution: (a) symmetry with respect 

to plate mid-thickness; (b) structural stress definition 
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0

1 1t

m x

1

y dy
t

     

Equation 3.2:      
2 2

0 0 0
2 6

1 1t t

1 1
m b x xy y

t t
y y dy y dy x x dx



                    

Equation 3.1 represents the force balance in the x direction along R-R, and Equation 3.2 represents 

moment balance with respect to W-W at y = 0. With this definition, the structural stress on the W-W 

plane can be determined using the stress distributions at a reference plane, R-R, as shown in Figure 3.8. 

3.5.1 Finite Element Analysis 

The FE analysis program ABAQUS Version 6.12 was used to determine the structural stresses by 2D 

static analysis of the fatigue test specimens. Linear elastic material behaviour with E = 200 GPa was 

assumed and the specimen geometry was modelled using 8-node biquadratic plane strain quadrilateral 

elements. Typical model geometry and boundary conditions are presented in Figure 3.9. An element size 

(a/b) of 0.4·t / 0.5·t was used, based on [38]. A mesh sensitivity analysis was performed using various 

element sizes, including 0.2·t / 0.16·t and 0.1·t / 0.1·t. A summary of the FE analysis results for the 

Type-X specimen is presented in Figure 3.9.  
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Figure 3.9: FE model for determining the structural stress (Type-X specimen): (a) model 

geometry; (b) coarse FE mesh (0.4·t / 0.5·t); (c) fine FE mesh (0.1·t / 0.1·t); and (d) structural stress 

factors 

Based on the FE results, the structural stress concentration factors (Kst) of 1.35 and 1.85 were calculated 

for Type-X and Type-L specimens, respectively (Table 3.3). 
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Table 3.3: FE-based structural stress concentration factors 

  Type-X Type-L 

σm 1.00 1.00 

σb 0.35 0.85 

σs 1.35 1.85 

Figure 3.10 presents the fatigue test results for both specimen types in terms of their structural stress 

range (ΔSst) where ΔSst = Kst ∙ ΔSnominal. Corresponding structural stress-based S-N design curves, 

according to [29], are also plotted for comparison. It should be noted that these curves are established 

for the structural stress estimated using the reference points and extrapolation equation given in [29]. In 

special cases, this reference also allows the use of alternative methods of estimation of the structural 

stress, including the procedure used in this study from [38], which are compatible with the fatigue 

design resistance data recommended in [29]. IIW FAT-100 and 125 represent as-welded and treated 

non-load carrying welds. FAT-90 represents as-welded load-carrying welds and FAT-112 represent a 

1.3 increase in the fatigue strength of the treated load carrying welds that–similar to the nominal 

approach–cannot be directly applied to failure modes other than weld failure of the treated weld toe.  

       

Figure 3.10: Structural stress S-N results: (a) Type-X specimen; (b) Type-L specimen 

When expressed in terms of structural stress, all of the as-welded results for both specimen types now lie 

on or above the corresponding design curves. In comparison with the nominal stress approach (Figure 

3.5 and Figure 3.6), the structural stress approach results in more accurate fatigue life predictions, in 

particular for the as-welded lap joint specimens. For the treated specimens, however, the assumed 1.3 
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times increase in fatigue strength for the treated welds [22, 29] still seems to be too conservative in both 

cases. Finally, the results for the treated Type-X specimens all lie near or above the modified FAT-180* 

curve, which is the proposed structural stress curve for treated non-load carrying welds [7].  

3.6 Effective Notch Stress Approach 

The notch stress approach for fatigue assessment of welded joints is based on the highest elastic stress at 

the weld toe or root. To account for the variation of the weld geometry parameters or arbitrary stress 

analysis results, the actual sharp toe and root are replaced by an effective (fictitious) notch with a 

reference radius. The effective notch stress is then defined as the total elastic stress at the root of the 

notch. An effective notch root radius of ρ = 1 mm is normally used for structural steels [29]. The 

effective notch stress can be calculated either numerically or by using the FE method for a welded joint 

and then compared with a single effective notch stress S-N curve for fatigue assessment.  

3.6.1 Finite Element Analysis 

The FE analysis program ABAQUS Version 6.12 was again used to determine the effective notch 

stresses by 2D static analysis of the fatigue test specimens. Linear elastic material behaviour with E = 

200 GPa was assumed and 8-node biquadratic plane strain quadrilateral elements were used to model the 

specimens. The effective notch radii were introduced in a way that the tip of the radius coincided with 

the root of the real notches at the weld toes and the end of the unwelded root gap. Model geometries and 

boundary conditions are presented in Figure 3.11. A locally fine mesh with an initial element size of 

0.25 mm (ρ/4) was used in the vicinity of the round notches based on [29].  A mesh sensitivity analysis 

was performed using finer element sizes to accurately model the stress state at the notch roots.  
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Figure 3.11: Determining the effective notch stress: (a) FE model geometry; (b) typical FE mesh 

The notch factor (Kns) was then defined as the ratio of the maximum principal stress at the notch (σns) to 

the remote applied stress (unity here). A summary of the FE analysis results is presented in Table 3.4. 

Both of the specimen types had higher Kns factors at their weld toe than that at the root.  

Table 3.4: FE-based effective notch stress factors (Kns) 

  Type-X Type-L 

Kns-toe 2.37 4.38 

Kns-root 1.78 3.59 

Figure 3.12 presents the fatigue test results for both the X-joint and L-joint specimens in terms of the 

effective notch stress range (ΔSns) where ΔSns = Kns ∙ ΔSnominal. The data points are categorized based on 

their failure modes (failure at the untreated toe, untreated root, or treated toe) and a corresponding Kns 

factor is applied for determining the effective notch stress in each case. The IIW FAT-225 curve is also 

plotted representing the fatigue resistance of the as-welded steel joints [29].  
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Figure 3.12: Effective notch stress S-N results 

As can be seen in Figure 3.12, all of the as-welded toe failure results for the two specimen types lie close 

to the design curve and all of the treated weld toes experience fatigue lives longer than the lives 

estimated by the design curve. Additionally, the effective notch stress method was found to be overly 

conservative for predicting the fatigue life of the weld root for the L-joint specimens.  

3.7 Statistical Analysis and Recommendations for Design 

Following the IIW Recommendation [29], S-N curves associated with 50% and 95% survival 

probabilities were fitted to the fatigue test results by regression analysis. First, the constants of Equation 

3.3 were established by linear regression of the fatigue test results for the data set of interest: 

Equation 3.3:      LOG LOG LOGN C m S     

Next, the mean (xm) and standard deviation (Stdv) of the LOG(C) constant were calculated: 

Equation 3.4: 
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where n is the number of data points. Finally, the characteristic value of the LOG(C) constant (xk) was 

calculated, following the procedure described in the IIW Recommendation [29] for a 95% survival 

probability with a two-sided 75% confidence level in the mean: 

Equation 3.6: k m
x x k Stdv    

where k is the number of standard deviations that the characteristic value lies below the mean.  

Characteristic nominal and structural stress S-N curves for as-welded and treated Type-X and Type-L 

joints were determined and are presented in Figure 3.13 and Table 3.5. Two curves for each specimen / 

treatment combination were produced; one representing the mean results (pf  = 50%) and one 

representing a 95% survival probability (pf  = 95%). Both the CA and VA test results were considered in 

generating these curves. Only the root failures were considered for the analysis of the treated Type-L 

specimens. The toe failures were not included on the basis that the peak tensile stresses for these tests 

were excessive (this point will be revisited in the following discussion). An iterative process was used to 

calculate the equivalent stress range, ∆Seq, for the VA results. Initially, Miner’s sum with m = 3 was 

used, the first round of statistical analysis was performed, and then a new value for m was calculated. 

∆Seq for the VA tests were then re-calculated using the Miner’s sum and the new m, followed by another 

round of statistical analysis. This process was repeated for each case until the assumed and calculated 

values for m converged. The calculated m value and mean fatigue strength at 2 million cycles (ΔS2m) for 

each case are summarized in Table 3.5. As expected, all of the S-N curves corresponding to the as-

welded toe and root failures had m values close to 3. The S-N curve representing the failure at the 

treated weld toe, however, was significantly shallower than the as-welded curve. 
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Figure 3.13: VA fatigue resistance curves (nominal and structural stress) 

VA design S-N curves were then established based on the statistical analysis results. To be compatibile 

with the current design S-N curves, m = 3 was assigned for all four specimen / treatment combinations 

and the resultant FAT class (fatigue strength at 2 million cycles) was then determined. Another set of S-

N curves with m = 5 was also derived for the treated Type-X specimens (see Table 3.5). 

Table 3.5: Characteristic S-N curve data (nominal and structural stress) 

Specimen/ 

Weld toe condition 

Failure 

location 

Calculated 

m 

Calculated ΔS2m 

(pf = 50%) 

Assigned 

m 

FAT class 

(MPa) 

Structural Stress 

FAT class (MPa) 

Lap joint (L)/ As-welded toe 3.13 61 3 41 76 

Lap joint (L)/ Treated root 3.31 122 3 82 151 

Transverse stiffener (X)/ 

As-welded 
toe 2.79 98 3 76 103 

Transverse stiffener (X)/ 

Treated 
toe 4.79 202 

3 113 152 

5 135 182 
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As Table 3.5 suggests, the increase in the fatigue strength due to HFMI treatment was higher than 1.3 

times for both joint types. This increase was 2 times for the lap joint specimens and 1.5 times for the 

transverse stiffener specimens when  m = 3 was used. Moreover, using m = 5 resulted in a greater and 

more accurate prediction of the fatigue improvement due to HFMI treatment. The proposed VA design 

S-N curves are plotted against the experimental data in Figure 3.14.  

  

       

Figure 3.14: Proposed VA fatigue design curves: (a) and (c) Type-X; (b) and (d) Type-L 

A similar statistical analysis was performed on the effective notch stress results and the VA fatigue 

resistance and design curves were similarly established (Table 3.6). 
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Table 3.6: Characteristic S-N curve data (effective notch stress) 

Failure location/ 

Condition 
Calculated m 

Calculated ΔS2m 

(pf = 50%) 
Assigned m 

FAT class 

(MPa) 

Toe/ As-welded 2.84 239 3 175 

Root/ As-welded 3.57 479 3 279 

Toe/ Treated 4.27 487 
3 216 

5 339 

A set of S-N curves with m = 3 for untreated and m = 5 for treated welds is presented in Figure 3.15. 

Similar to the nominal and structural stress approaches, an S-N curve with m = 5 was found to be an 

appropriate effective notch stress design curve for the treated weld toes in the long life domain.  

   

Figure 3.15: Effective notch stress analysis results: (a) VA fatigue resistance curves; (b) proposed 

VA fatigue design curves  

To the further evaluation of the proposed treated weld toe design curves, the curves were plotted against 

the CA (R = 0.1) and CA-UL (CA loading with periodical compressive underload) test results for 

“properly” HFMI treated specimens reported in [9], in addition to the results from the current study. The 

specimens used [9] were fabricated using a similar material and welding process to those used in the 

current study. The specimen geometry had similar dimenssion to the Type-X specimen.  
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Figure 3.16: Proposed fatigue resistance curves for treated weld toes: (a) nominal stress; (b) 

effective notch stress 

As can be seen in Figure 3.16, all of fatigue test results reported for the treated weld toes in [9] also lie 

well above the proposed design curves in both cases, further validating these curves. 

3.8 Discussion and Concluding Remarks 

A comprehensive variable amplitude (VA) fatigue testing program and analysis was conducted, aimed at 

addressing some of the concerns raised regarding the use of high frequency mechanical impact (HFMI) 

treatments for bridge welds in the high and ultra-high cycle regime. Two distinct welded joint types 

representing load-carrying and non-load carrying welds in steel structures such as bridges were studied 

under two simulated in-service VA loading histories typical for highway bridges. Multiple constant 

amplitude (CA) fatigue tests were also conducted for comparison purposes. Various approaches to 

predict the fatigue performance of the treated joints, especially in the long life regime, were evaluated 

using the generated pool of data. Both the nominal and structural stress approaches and the effective 

notch stress approach were considered and finite element (FE) analyses were performed to calculate the 

structural stress and effective notch stress concentration factors.  

For the transverse stiffener (Type-X) specimens, the HFMI treatment resulted in a significant fatigue 

strength improvement in all cases. The failure mode did not change after applying the treatment and all 

of the specimens that failed did so as a result of cracks initiating at the weld toe. The proposed design 

provisions to account for the benefit of the treatment were found to be rather conservative. Based on a 

statistical analysis of the test results, m = 5 was recommended instead of the traditional m = 3 to 

determine the equivalent stress range for treated weld toes under VA loading. Consequently, FAT-180* 
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with m = 5 was proposed for the structural stress design of treated Type-X details. Similarly, FAT-339* 

with m = 5 was proposed for the effective notch stress design of the treated weld toes. 

Treating the weld toe in the lap joint (Type-L) specimens resulted in shifting the failure mode from the 

weld toe to the weld root in cases where the peak tensile stress was not excessive. Significant fatigue life 

improvements were still achieved, despite this shift in the failure mode. FAT-135* with m = 5 was 

proposed for the nominal stress design of treated Type-L details. 

While little or no fatigue improvement is currently considered in [29] for treated weld toes under loading 

histories with high mean stresses, specifically with R > 0.4, significant fatigue life improvements were 

still achieved under a VA loading history (specifically, VA2) where more than 50% of the cycles in the 

loading spectrum had R ratios higher than 0.4. Within the scope of this study, which considered realistic 

loading histories for steel bridges, this parameter did not seem to be a crucial factor. 

The IIW Recommendations [22] currently limit the maximum applied nominal stress to 0.8·fy for impact 

treated welds. Several fatigue tests were conducted under VA loading histories with nominal overloads 

of 0.9, 1.0, and 1.1·fy. While the treated transverse stiffener (Type-X) specimens still exhibited some 

degree of fatigue improvement under these loading conditions, all of the treated lap joint (Type-L) 

specimens that experienced overloads with a magnitude of 1.0·fy or higher failed at their primary failure 

location (i.e. the weld toe), without any fatigue life improvement. In other words, the beneficial effect of 

the treatment at the weld toe was completely undone by the severe overloads. This highlights the need to 

use a local, e.g. structural stress, approach to determine the magnitude of the maximum allowable 

overload (or underload) stress for treated weld details. Within the scope of this paper, it is recommended 

to limit the nominal maximum stress to 1.15·fy / Kst. 

The constant amplitude fatigue limit (CAFL) of 110 MPa (nominal stress) for the treated transverse 

stiffener (Type-X) detail proposed in [12] was found to be a reasonable limit. No CA fatigue test failure 

was observed below this limit and several runout VA tests had a maximum stress range even larger than 

110 MPa. For the treated lap joint specimens, a CAFL of 48 MPa (nominal fatigue strength at 107 

cycles) corresponding to weld root cracking is recommended. 
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Chapter 4 

4 Testing and Measurements to Determine Model Parameters for Fatigue Analysis  

4.1 Introduction 

A strain-based fracture mechanics (SBFM) model is used in Chapter 5 to predict the effectiveness of a 

high frequency mechanical impact (HFMI) treatment applied to welded details. The model is evaluated 

using the experimental results and found to be an effective means for predicting the fatigue lives for 

both the as-welded and impact treated specimens for all of the studied loading conditions reported in 

Chapter 3. Using this analytical model, which is discussed in detail in Chapter 5, requires a number of 

input parameters that can only be determined from laboratory testing and measurement. Towards this 

end, a series of materials tests were conducted to determine accurate material properties and to get a 

better understanding of the material cyclic behaviour.  

Crack growth under variable amplitude (VA) loading can be largely explained through changes in 

fatigue crack closure and crack opening stress. A recently developed methodology [1, 2] was used for 

modelling changes in the crack opening stress level and fatigue damage using data derived from periodic 

underload fatigue tests of smooth specimens. The effective strain-life data, crack closure parameters, and 

effective crack growth data were obtained for the HAZ-simulated 350W steel. Microhardness 

measurements were also made to study the effect of impact treatment on the microstructure of the 

material in the vicinity of the treated weld toe. Weld toe geometry measurements were made to 

characterize the weld shape and weld defects. Finally, residual stress measurements were obtained to 

determine the actual residual stress distribution on and below the weld toe surface. 

4.2 Materials Testing Procedures and Measurements 

A comprehensive materials testing program was carried out to determine several parameters that are 

required to use the analytical modelling approach investigated in this study. Uniaxial and cyclic testing 

were conducted on smooth specimens to derive the effective strain-life curve. Crack closure parameters 

(including the steady state crack opening stress and the crack opening stress parameter μ) were then 

determined. Crack growth experiments were also conducted to determine the fatigue crack growth 

parameters and to validate the employed methodology.  
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4.2.1 Material   

The material used in this study was CSA 350W steel, which is a steel grade commonly used in Canadian 

bridges. The chemical composition for this type of steel should meet the requirements of CSA G40.20/ 

G40.21 [3]. The typical chemical composition is presented in Table 4.1. 

Table 4.1: Chemical composition of 350W steel (percentage by weight) 

C Mn P S Si 

0.23 0.50-1.50 0.04 0.05 0.35 

Fatigue cracks in the welded joints initiate and grow in the heat affected zone (HAZ). The material in 

the HAZ is harder than the original base metal due to the heating cycle that it experiences during the 

welding process [4]. Figure 4.1 shows an etched, cut Type-X specimen. The base metal, weld metal, 

HAZ, and crack initiating at the weld toe are clearly visible. Hardness measurements have shown that 

the HAZ was 8-10% harder, in Rockwell B (HRB) scale, than the base metal.  

A HAZ simulating procedure was explored in this study to mimic the actual properties at the fatigue 

crack initiation site in the materials test samples. In this procedure, the cut but un-machined 9.5 mm 

thick samples were first heated to 990 °C in an oven for 30 minutes. After being removed from the oven, 

the samples were immediately placed between two large circular disks for “mass-quenching” to room 

temperature. In this procedure, the temperature (990 °C) was chosen to simulate the maximum 

temperature that is generated during the welding process, the timing (30 minutes) was chosen for the 

9.5 mm pieces according to the relevant curves to achieve an isothermal condition across the thickness, 

and the two large disks simulated the as-received base metal (non-heated mass) which surrounds the 

HAZ in the welded location. Following this procedure, the hardness in the samples was increased from 

89 to 94 HRB which was close to the increase in the hardness of the actual weldments. 
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Figure 4.1: Typical fatigue cracking and HAZ in test specimens 

4.2.2 Specimen Geometries 

Three pre-cracked compact tension (CT) specimens, fabricated in accordance with the ASTM E647 [5], 

and 40 smooth specimens were fabricated of the same 350W steel used in the fabrication of the small-

scale fatigue specimens. Polished smooth cylindrical, variable width specimens were used for cyclic 

materials testing and the CT specimens were used for fatigue crack growth testing. The specimen 

geometries are presented in Figure 4.2. 

        

 

Figure 4.2: Specimen geometries: (a) 9.5 mm thick smooth specimen; (b) 9.5 mm CT specimen 
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4.2.3  Specimen Gripping and Alignment 

All fatigue tests were conducted using an MTS servo-controlled closed-loop electro-hydraulic testing 

machine. A process control computer controlled by FLEX software [6] was used to output the strain and 

stress amplitudes for strain and stress-controlled tests, respectively. Figure 4.3 shows the typical 

gripping assembly for a smooth cylindrical specimen. The load train alignment including the load cells, 

the grips, the specimen, and the actuator was checked prior to starting the materials testing program. The 

smooth specimens were inserted and secured into the lower grip and the hydraulic actuator was then 

raised until the other end of the specimen was inserted and secured into the upper grip. For strain-

controlled tests, an axial extensometer was mounted and held in place by two wire springs. 

 

Figure 4.3: Test setup for smooth specimens: (a) and (b): grips and extensometer; (c) typical 

hysteresis loop 

Figure 4.4 shows the gripping assembly for the CT specimens. The testing was conducted using the 

same loading frame used for the smooth specimens. The CT specimens were inserted and secured into 

the lower grip and the hydraulic actuator was then raised until the other end of the specimen was 

inserted and secured into the upper grip. The specimens were held by using two custom made bolts, 

which were tightened in the absence of any applied load. A travelling optical microscope (360x 

magnification) was mounted on the machine facing the specimen. A Vernier (with 0.001 mm accuracy) 

was attached to the microscope and used to measure changes in the crack length. 
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Figure 4.4: Test setup for CT specimens: (a), (b), and (c): different parts of the setup including the 

360x short focal length optical microscope; (d) final opened crack in (not included in the results) 
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4.2.4 Static and Cyclic Materials Tests  

The static tension and cyclic materials tests were conducted in accordance with ASTM E8 [7] to 

determine the static and cyclic material properties. All specimens were carefully inspected and their 

dimensions were measured at three different points along the reduced cross section prior to testing.  

Equation 4.1 presents the monotonic Ramberg-Osgood stress-strain relationship where ε is the total (the 

elastic and plastic) true strain, σ is the true stress, E is the elastic modulus, K is the strength coefficient, 

and n is the strain hardening exponent: 

Equation 4.1: 

1/n

E K

 


 
   

 
 

Equation 4.2 presents and the cyclic Ramberg-Osgood model where K’ and n’ are the cyclic strength 

coefficient and the cyclic strain hardening exponent, respectively: 

Equation 4.2: ε 
1/ '

'

n

E K

  
   

 
 

A cyclic Ramberg-Osgood material model is used in Chapter 5 to determine the stresses and strains for 

each load cycle. Equation 4.3 presents the equation for the hysteresis loop where Δε and Δσ are the 

changes in the strain and stress, respectively: 

Equation 4.3: Δε 
1/ '

2
2 '

n

E K

   
   

 
 

Mechanical (monotonic and cyclic) properties of the HAZ-simulated 350W steel were determined as 

discussed in the following two sections. 

4.2.5 Monotonic Tension Tests 

Figure 4.5 shows a typical stress (σ) – strain (ε) curve obtained for the HAZ-simulated 350W steel tested 

in the study. Ramberg-Osgood stress-strain curve constants were determined by graphical curve fitting 

and minimizing the least squares parameters (Equation 4.4 and Table 4.2).  

Equation 4.4: 

1/0.036

208083 494

 


 
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Figure 4.5: Monotonic tension test results 

Table 4.2: Mechanical (monotonic) properties of HAZ simulated 350W steel 

Parameter  Units Magnitude 

Elastic Modulus E MPa 208,083 

Yield strength Sy MPa 356 

Ultimate tensile strength Su MPa 616 

Elongation  % 32 

Monotonic tensile strength coefficient K MPa 494 

Monotonic tensile strain hardening exponent n - 0.036 

Reduction in area  % 49 

True fracture strain εf % 70 

4.2.6 Cyclic Tests 

Fully reversed cyclic loading tests were conducted at ten different prescribed strains (0.1 to 1.0%) on 

two specimens. Figure 4.6 shows the stabilized cyclic stress-strain curve obtained for the 350W steel. 

Additional stabilized σ-ε data obtained during the fully reversed constant amplitude tests (discussed in 

the following section) are included in this figure for comparison. However, they were not used in the 

curve fitting procedure. The Ramberg- Osgood cyclic stress-strain curve constants were determined by 

graphical curve fitting and minimizing the least squares parameters (Equation 4.5 and Table 4.3).  

Equation 4.5: 

1/0.108

208083 812

a a
a

 

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Figure 4.6: Hysteresis test results 

Table 4.3: Mechanical (cyclic) properties of HAZ simulated 350W steel 

Parameter  Units Magnitude 

Cyclic yield strength (0.2% offset) σy MPa 410 

Cyclic tensile strength coefficient K' MPa 812 

Cyclic tensile strain hardening exponent n' - 0.108 

1.1. Determination of the fatigue strain-life and the effective strain-life curves 

The total strain range can be expressed as the sum of the elastic (Δεe) and plastic (Δεp) strain ranges: 

Equation 4.6: 
22 2

pe
 

   

Equation 4.7: 
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where σ'f, ε'f, b, and c are material constants (see Table 4.5) and 2∙Nf is the reversals to failure. Thus, the 

strain-life curve can be expressed as Equation 4.9 and constructed by conducting fully reversed constant 

amplitude tests. 

Equation 4.9: 
Δε

(2N ) ' (2N )
2

f b c

f f f
E


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
 or   ε (2N ) ' (2N )

f b c

a f f f
E


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
 

4.2.7 Strain-life Curve: Fully Reversed Constant Amplitude Tests  

Twenty-one constant amplitude (CA) tests were conducted and the results were used to determine the 

fatigue properties of the HAZ-simulated 350W steel and to generate the total strain-life curve. Axial, 

fully reversed (R = -1) strain-controlled CA fatigue tests were carried out. Throughout each test, the 

stress-strain peaks were read and recorded at logarithmic intervals using a voltmeter. The specimens 

were considered failed when a 50%  drop  in  the  tensile  peak  load  (from  the  peak  tensile  load at  

the estimated specimen half-life) was observed. The loading frequency of the tests varied from 0.5 to 5 

Hz. To increase the testing speed for the specimens with the estimated fatigue lives greater than 105 

cycles, the testing mode was switched to load control after the stress-strain loops (in strain-controlled 

mode) were stabilized. For the load-controlled tests, the loading frequencies were increased to 50 to 100 

Hz and the failure was defined as the separation of the specimen into two pieces. Figure 4.7 presents the 

CA test results.  
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Table 4.4: CA test results (* runout tests) 

Test # Reversals Total strain (%) Elastic strain (%) Plastic strain (%) 

1 1,806 0.815 0.225 0.587 

2 1,834 0.799 0.216 0.579 

3 6,194 0.577 0.217 0.358 

4 7,368 0.412 0.215 0.196 

5 10,812 0.405 0.179 0.225 

6 15,182 0.309 0.202 0.106 

7 20,028 0.307 0.186 0.120 

8 38,672 0.306 0.192 0.114 

9 68,852 0.207 0.175 0.032 

10 81,052 0.204 0.166 0.038 

11 134,038 0.206 0.157 0.049 

12 194,434 0.194 0.160 0.034 

13 229,640 0.184 0.162 0.022 

14 460,164 0.175 0.161 0.013 

15 723,246 0.162 0.154 0.008 

16 1,633,832 0.163 0.155 0.008 

17 3,259,448 0.155 0.151 0.003 

18 4,828,832 0.164 0.154 0.009 

19* 10,000,000 0.134 0.134 0.000 

20* 10,000,000 0.145 0.145 0.000 

21* 10,000,000 0.153 0.153 0.000 

The strain amplitude (50% of strain range) vs. life curve constants were determined by graphical curve 

fitting and minimizing the least squares parameters (Equation 4.10  and Table 4.5).  

Equation 4.10:    
0.072 0.611853

2 0.56  2
208083

a f fN N
 

   
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Figure 4.7: CA test results 

Table 4.5: Strain-life curve constants for HAZ simulated 350W steel 

Parameter  Units Magnitude 

Fatigue strength coefficient σ'f MPa 853 

Fatigue strength exponent b - -0.072 

Fatigue ductility coefficient ε'f - 0.56 

Fatigue ductility exponent c - -0.611 

4.2.8 Effective Strain-life Curve: Underload Fatigue Tests 

The effective strain range, given as the difference between the maximum strain and the greater of the 

crack opening strain or the minimum strain in the cycle, is the range of a strain for which a fatigue crack 

is open during a cycle. The effective strain-life curve can be used to predict fatigue lives under a VA 

loading [2, 8]. In this study, it is also used to calculate the steady state crack opening stresses.  

Previous work at the University of Waterloo [9, 10] introduced the following damage parameter: 

Equation 4.11: *

eff iE E E        

where Δεeff is the effective strain range, Δεi is the material’s intrinsic fatigue limit strain range below 

which a fully open crack will not grow, and Δε* is the part of the strain range that causes fatigue crack 

growth. It was shown later in [11] that Δε* is related to the fatigue life, i.e.: 
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Equation 4.12: * ( )b

fE A N   

where A and b are material constants. Following the methodology described in [1], a series of underload 

(UL) fatigue tests were conducted to determine the constants A and b and then to construct the effective 

strain-life curve for the HAZ simulated 350W steel. When using the UL tests to construct the effective 

strain-life curve, Nf in Equation 4.12 is the equivalent fatigue life for the small CA cycles.  

Nine underload fatigue tests were conducted to construct the effective strain-life curve. These load-

controlled tests were carried out under a loading history consisting of a periodic single underload (UL) 

cycle followed by a number of smaller CA load cycles. The CA load cycles had the same maximum 

stress as the UL cycle. However, the number and the minimum stress of the small cycles were varied for 

each test. This loading history was aimed at creating a closure free crack growth by keeping the opening 

stress below the minimum stress of the smaller load cycles. This was attempted by ensuring that the UL 

cycle occurred frequently enough in the loading spectrum. The UL cycle was set equal to the fully 

reversed CA stress level that corresponded to a fatigue life of 10,000 cycles based on the strain-life 

curve (Equation 4.10), as proposed in [12]. An underload of this magnitude causes a large reduction in 

the crack opening stress without expending an undue fraction of the total damage in the large cycles. 

The number of small cycles was chosen in a way that first, they caused 80 to 90% of the total damage to 

the specimen, and secondly, they were free from crack closure (i.e. the opening stress was lower than the 

minimum stress for all the cycles). After failure, the equivalent fatigue life for the small cycles in the UL 

tests was determined by calculating the damage fraction caused by the UL cycles (1/10,000 per 

occurrence) and subtracting it from unity. The total number of small cycles was then divided by the 

fraction of the damage that they had caused to calculate the equivalent fatigue life for the CA load 

cycles. The CA strain ranges and their corresponding equivalent fatigue lives were used to construct the 

effective strain-life curve (Equation 4.14). Figure 4.8 presents the UL test results.  
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Table 4.6: UL test data (* runout) 

Test 

# 

CA cycles 

strain range (%) 

# of CA 

cycles 

Reversals 

to failure 

Damage % 

by UL cycles 

Damage % 

by CA cycles 

Equivalent 

CA reversals 

1 0.159 100 540,000 26.73% 73.27% 737,027 

2 0.147 200 646,210 16.07% 83.93% 769,984 

3 0.144 250 1,004,000 20.00% 80.00% 1,255,000 

4 0.131 400 1,053,848 13.14% 86.86% 1,213,275 

5 0.120 700 2,381,436 16.99% 83.01% 2,868,716 

6 0.116 1,000 3,900,000 19.48% 80.52% 4,843,548 

7 0.110 2,000 7,454,440 18.63% 81.37% 9,160,803 

8 0.092 4,000 9,607,176 12.01% 87.99% 10,917,986 

9* 0.075 10,000 20,000,000 10.00% 90.00% 22,222,222 

To obtain the A and b constants and construct the effective strain-life curve, first a value was chosen for 

Δεi in such a way that the curve of Δε* versus Nf was linear on a logarithmic scale (Equation 4.12). For 

curve fitting purposes, an additional data point was added to the UL curve. This extra point was added 

by calculating the effective strain range at 2% total strain range assuming that the crack in the 2% strain 

range CA test opens at one half the minimum stress [13]. When the values of A, b, and Δεi were 

determined, the effective strain-life curve was constructed using Equation 4.13: 

Equation 4.13:  
bA

2eff f iN
E

      

The effective strain-life curve constants were determined by graphical curve fitting and minimizing the 

least squares parameters. The curve and the corresponding parameters are presented in Equation 4.14 

and Table 4.7: 

Equation 4.14:   
0.498

56.11 2 0.085eff fN


    
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Figure 4.8: Fitted effective strain-life curve 

Table 4.7: Effective strain-life curve parameters for HAZ-simulated 350W steel 

Parameter Units Magnitude 

Underload cycle MPa ±349 

A/E - 56.11 

b - -0.498 

Δεi % 0.085 

 

4.2.9 Estimating Steady-state Crack Opening Stress 

A formula proposed in [14] was used to model the steady state crack opening stress: 

Equation 4.15: 

2

1  max
opss max min

y

S
S S S 



  
    
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where Sopss is the steady state crack opening under CA loading, Smax and Smin are the nominal maximum 

and minimum stresses in a smooth specimen (or the local maximum and minimum stresses at the notch 

root in a notched specimen, respectively), σy is the cyclic yield stress, and θ and φ are two 

experimentally determined material constants. 
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Along with the described crack closure model, a model proposed in [15] was used to relate the change in 

the crack opening stress in a given cycle (ΔSop) to the difference between the current opening stress (Scu) 

and the steady state crack opening stress (Sopss): 

Equation 4.16:      op opss cuS S S    

where μ is a material constant. 

4.2.10 Using the Effective Strain-life Curve to Calculate the Steady-state Crack Opening Stress 

Following the procedure described in [1], values for θ, φ, and μ can be experimentally determined. In 

this study, the CA and effective strain-life curves were used to estimate the steady state crack opening 

stress. As derived in Equation 4.17, the difference between the strain range at a given fatigue life in a 

fully reversed CA strain-life curve, ΔεCA, and that in the effective strain-life curve at the same fatigue 

life, Δεeff,  is equal to the difference between the CA test minimum strain, εmin, and the estimated crack 

opening strain, Sop, in the CA cycle: 

Equation 4.17:             
op min

CA eff max min max op op min

S S

E
       


          

Thus, the CA crack opening stress, Sop, can be estimated by using the CA and effective strain-life data in 

conjunction with Equation 4.18: 

Equation 4.18:   op min CA effS S E       

The values for Sop can then be used to determine the constants in Equation 4.15 by fitting this equation 

to the data obtained from Equation 4.18.  

Using the constants previously calculated for the strain-life and the effective strain-life data, the 

estimated crack opening stress was calculated (Equation 4.19) and is presented in Figure 4.9 and Table 

4.8. 

Equation 4.19: 

2

0.448  1 0.024 
410
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opss max minS


 
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Figure 4.9: Steady-state crack opening stress for the HAZ-simulated 350W steel 

Table 4.8: Steady-state crack opening stress equation parameters  

Parameter Units Magnitude 

Constant - θ - 0.448 

Constant - φ - 0.024 

4.2.11 Estimating the Crack Opening Stress Parameter μ: Damage Tests 

Following the procedure described in [1], another test series was used to estimate the crack opening 

stress buildup parameter μ in Equation 4.16. This parameter describes the recovery  of  the  crack  

opening  stress  to  its  steady  state  level. Fatigue tests were conducted on smooth specimens under load 

histories consisting an underload cycle which was followed by a number of smaller CA cycles. The 

frequency of occurrence of the underloads was varied for each test by changing the number of small CA 

cycles. The changes in the fatigue lives were tracked during the testing program. These changes in 

damage per loading block (consisting of one UL cycle and the following CA cycles) were then used to 

determine the value of m.   

Eight underload fatigue tests were carried out for this purpose. The underload cycle was set equal to the 

fully reversed constant amplitude stress level corresponding to the fatigue life of 10,000 cycles [12]. The 

small cycles had the same maximum stress as the UL cycle. The stress range of the CA cycles was 
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constant in all of the eight tests and only the number of small cycles per block was varied from test to 

test. These tests were conducted in load control and specimens were considered to have failed when they 

separated into two pieces. After failure, the equivalent damage done by the small CA cycles was 

calculated and the damage per cycle was plotted against the number of cycles per block. Next, this data 

was fitted by iteratively assuming values for μ and using Equation 4.16 to calculate the crack opening 

stress for each small cycle in the loading block. Then, the effective strain range was calculated for each 

cycle using Equation 4.18 and the damage per cycle was calculated using the effective strain-life curve. 

Finally, the average damage per cycle was estimated by summing the damage per cycle (calculated in 

the previous step) and dividing it by the number of small cycles in each block.  

Table 4.9: Damage fatigue test results 

Test 

# 

#of CA 

cycles 

Cycles 

to failure 

Damage % 

by UL cycles 

Damage % 

by CA cycles 

Equivalent 

CA cycles 

Damage 

per cycle 

1 10 85,767 77.97% 22.03% 389,319 2.57E-06 

2 30 152,577 55.67% 44.33% 344,185 2.91E-06 

3 50 38,301 7.51% 92.49% 41,411 2.41E-05 

4 60 55,432 9.09% 90.91% 60,973 1.64E-05 

5 80 146,043 18.03% 81.97% 178,166 5.61E-06 

6 100 460,459 45.59% 54.41% 846,276 1.18E-06 

7 200 650,083 34.83% 65.17% 997,519 1.00E-06 

8 500 522,543 10.43% 89.57% 583,391 1.71E-06 

In this study, each loading block consisted of a UL cycles of ±349 MPa followed by a number of CA 

cycles of ±180 MPa. Considering the data reported in [2] for parameter μ for three different steel grades 

and the experimental results in this section (Figure 4.10), a value of 0.018 for μ seems to be a reasonable 

estimate. However, it is worth noting the high degree of scatter observed for this parameter. 

Equation 4.20:     0.018op opss cuS S S    
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Figure 4.10: Derived crack opening stress buildup data 

4.2.12 Derivation  of  the  Closure  Free  Crack  Growth  Curve  and  Closure  Free  Crack 

Growth Measurements: Crack growth tests 

Three pre-cracked compact tension (CT) specimens, one HAZ-simulated and two as-received, were 

fatigue tested under the stress ratios between 0.8 and 0.9. These stress ratios were high enough that no 

crack closure was observed. The specimen geometry, fabrication process, and fatigue testing procedure 

and parameters all were in accordance with ASTM E647. These tests were conducted to derive crack 

growth parameters (C and m constants) for both the HAZ-simulated and as-received 350W steel used in 

this study. 

Equation 4.21 shows the Paris-Erdogan (1963) crack growth law for a growing crack: 

Equation 4.21: ( )mda
C K

dN
   

where ΔK is the stress intensity factor (SIF) range. Each SIF is determined using Equation 4.22: 

Equation 4.22: K Y a      or  K YE a    

In this equation, Y is a correction factor which accounts for the geometry and crack shape, E is the 

modulus of elasticity of the material, a represents the (crack) depth below the surface, and σ and 𝜀 are 

the local stress and strain, respectively, at this depth.  

The work by Elber in 1970 [16] showed that there exists a threshold SIF range (ΔKth) below which 

fatigue cracks do not propagate. Equation 4.23 is the modified Paris law that accounts for crack closure. 
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Equation 4.23: ''( )m

th

da
C K K

dN
    

When expressed in terms of the effective strain range, the effective strain intensity is defined [17] as: 

Equation 4.24:  0 eff effK FE a a      

Equation 4.25: 

2

0

1 i

i

K
a

FE 

 
  

 
 

where F is a shape factor, Δεeff is the effective strain range, ΔKi is the intrinsic threshold strain intensity, 

and a0 is a constant as defined in Equation 4.25. The effective crack growth curve can then be expressed 

in the following from [18]: 

Equation 4.26:  
*( ) ( )n n

eff i

da
B K K B K

dN
      

where B and n are material constants.  

No significant difference in crack growth behaviour was observed between the HAZ-simulated and as-

received specimens. All the test results were therefore used to determine the crack growth parameters. 

Figure 4.11 presents the crack growth results along with the fitted crack growth curves (Equation 4.21 

and Equation 4.23). The derived equations for the fitted curves are presented in Equation 4.27 and 

Equation 4.28. The constants were determined by graphical curve fitting and minimizing the least 

squares parameters. A summary of the derived parameters is presented in Table 4.10. 

Equation 4.27: 
12 3.064.7 10 ( )

da
K

dN

    for ΔK > 2.54 MPa√m 

Equation 4.28: 
10 2.011.3 10 ( 2.54)

da
K

dN

     

Equation 4.29 and Figure 4.11 present the closure free crack growth curve derived using the effective 

strain-life curve. 

Equation 4.29: 
10 2.101.2 10 ( 2.5)eff

da
K

dN

     
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Figure 4.11: Experimental crack growth rate versus effective SIF range for 350W steel 

Table 4.10: Crack growth curve parameters 

Parameter Units Magnitude 

C (Equation 4.21) N, m 4.7 ∙ 10-12 

m (Equation 4.21) - 3.06 

C’ (Equation 4.23) N, m 1.1 ∙ 10-10 

m’ (Equation 4.23) - 2.01 

ΔKth (Equation 4.23) MPa√m 2.54 

B (Equation 4.26) N, m 1.2 ∙ 10-10 

n (Equation 4.26) - 2.10 

ΔKi (Equation 4.26) MPa√m 2.50 

A procedure based on the methodology described in [1] was followed to derive the closure free crack 

growth curve (Equation 4.29) from the effective strain-life curve (Equation 4.14). In this procedure, a 

crack growth curve that predicted the observed fatigue lives (of the smooth specimens in the materials 

testing program) was chosen. The following steps were used to derive Equation 4.29: 
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1- The log-log linear portion of the crack growth curve (Equation 4.26) was derived from the log-

log linear portion of the effective strain-life curve (Equation 4.12). To start, ΔKi and n were set 

equal to 2.50 MPa√m and 2 as suggested by [18], and an initial value of 2 ∙ 10-12 was chosen for 

B.  

2- ΔK1
* corresponding to a low strain level Δε1

* (e.g. 0.05%) was calculated using Equation 4.24 

and Equation 4.25. Here, the subscript (1) refers to the step number. 

3- (da/dN)1 was estimated for ΔK1
* based on the curve set up in Step 1. 

4- Nf1 was calculated using the following equation, where the final crack (af) was taken as the half 

of the specimen width (2.5mm): 

Equation 4.30:  
0

*1
Δ

fa
n

f

a

N K da
C

   

5- Nf1 was compared with the observed fatigue life for Δε1
* (Equation 4.12). 

6- If the calculated life was different than the actual life, the constant B was changed accordingly 

and Step 5 was repeated until the calculated life matched the observed life. The Constant B was 

found at the end of this step. 

7- To find the slope n, ΔK2
* corresponding to a high strain level Δε2

* (e.g. 0.5%) was calculated 

using Equation 4.24 and Equation 4.25 and (da/dN)2 was determined. 

8- Nf2 was calculated using Equation 4.30 and compared with the observed life. If different, n was 

changed accordingly until the calculated life matched the observed life. 

The curve given by these constants in Equation 4.29 was found to be in good agreement with the fitted 

curve (Equation 4.28) for the effective crack growth curve. 

4.3 Microhardness Measurements and Microstructure  

It has been shown that impact treatments improve the fatigue performance of welds primarily by 

introducing beneficial compressive residual stresses, which cause cracks to grow at a slower rate during 

the early stages of crack propagation. Depending on the treatment method, secondary treatment effects 

such as the modification of the weld toe geometry and near-surface hardness may also affect the fatigue 

behaviour. The effect of impact treatment on the near-surface hardness of the fatigue specimens was 

investigated by conducting microhardness tests on the heat affected zone (HAZ) of the as-welded and 
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treated specimens. Microstructure pictures were also taken to obtain a better understanding of the 

microstructure of a treated weld. 

4.3.1 Microstructure of the Treated Weld 

Two untested fatigue specimens, one as-welded and one treated, were sectioned and cast in epoxy. The 

samples were then prepared in accordance with ASTM E3 [19] by polishing to produce a smooth, pit-

free surface. Prior to microhardness measurements, the specimen surface was etched with a 2% Nital 

solution to reveal the microstructure (grains and grain boundaries). Photos were then taken through a 

microscope at X10-50 magnification to observe grain boundaries in the microstructure of the steel. 

Figure 4.12and Figure 4.13 show the microstructures of the treated specimens. The compressed region 

near the surface is apparent in both figures. A number of defects that can act as the initial crack under 

fatigue testing can also be seen in these figures. Defect depths were defined as the longest dimension 

perpendicular to the surface. 
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Figure 4.12: Microstructure of treated Type-X specimen 
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Figure 4.13: Microstructure of treated Type-L specimen 
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4.3.2 Microhardness Measurements 

Hardness tests were then performed using a Vickers microhardness tester. Following the procedure in 

ASTM E384 [20], indentations were made to a depth of about  0.1 mm below the surface and then every 

0.2 mm up to 2 mm in depth. The indent dimensions were measured using a microscope at X50 

magnification. The Vickers hardness (HV) was then calculated for each depth using Equation 4.31: 

Equation 4.31: 
2

1854.4
P

HV
d

               

where HV is the Vickers hardness number, P is the applied force in grams-force (here P = 200 gf), and d 

is the average diagonal length of the indentation in μm.  

The microhardness measurements are summarized in Table 4.11 and Figure 4.14. 

Table 4.11: Microhardness measurements (HV) 

 As-welded HFMI Base metal 

Depth (mm) Loc.1 Loc.2 Average Loc.1 Loc.2 Average Loc.1 

0.1 218 227 222.5 253 308 280.5 191 

0.3 222 222 222.0 240 276 258.0  

0.5 219 212 215.5 239 269 254.0 195 

0.7 219 195 207.0 230 256 243.0  

0.9 213 197 205.0 205 238 221.5 197 

1.1 203 202 202.5 208 215 211.5  

1.3 202 200 201.0 207 207 207.0 193 

1.5 209 205 207.0 206 211 208.5  

1.7 202 206 204.0 197 205 201.0 193 

1.9 198 195 196.5 204 208 206.0  

2.1 198 199 198.5 208 198 203.0 191 
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Figure 4.14: Microhardness measurements 

As Figure 4.14 shows, using the HFMI treatment resulted in a considerable increase in the near-surface 

hardness. However, the hardness decreases rapidly below the surface, to that of the as-welded HAZ at a 

depth of ~1.0 mm. Similar general trends were reported in [4, 21].  

4.4 Treated Weld Toe Geometry  

A number of geometrical parameters describing the local conditions at the weld toe were measured 

using two different methods. These results were used as an input for the fracture mechanics analysis to 

calculate the stress concentration factors at the as-welded and impact treated weld toes. 

The measured parameters are shown in Figure 4.15.  The radius corresponding with the greatest indent 

depth on the base metal side was considered as the critical weld toe radius (R). Two indent depth 

measurements were taken for each weld toe. Indent depth was defined as the maximum perpendicular 

distance from a straight line to the bottom of the indent. One depth measurement (Db) was taken with 

respect to a best fit line along the base metal surface, which is similar to the depth typically measured 

manually by weld inspectors for checking for undercuts when assessing weld quality. Another depth 

measurement (Dw) was taken with respect to a best fit line drawn along the surface of the weld. The 

average of the base metal and weld side indent depths (Davg) was also calculated for each case. These 

parameters were measured using two non-destructive methods: silicon impression measurement and 

measurements obtained using a handheld 3D laser scanner.  
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Figure 4.15: Weld toe geometry parameters 

4.4.1 Silicon Impression Measurements 

Weld toe parameters were measured by taking silicon impressions of the weld toe and then slicing them 

(Figure 4.16) in a similar way to the one described in [22]. A total of 12 measurements were conducted 

on four (two Type-X and two Type-L) weld toe impressions each at three locations (impression cuts). 

Measurements were also conducted on as-welded toe impressions to set a basis for conducting the 

treated weld toe impression measurements. The results are summarized in Table 4.12. 

 

Figure 4.16: Silicon impression of weld toes 
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Table 4.12: Silicon impression-based measurements 

Specimen Cut Db (mm) Dw (mm) Davg (mm) R (mm) 

LT1 

1 0.066 0.336 0.201 1.68 

2 0.112 0.247 0.180 1.76 

3 0.032 0.329 0.181 1.81 

LT2 

1 0.082 0.206 0.144 1.74 

2 0.171 0.198 0.185 1.92 

3 0.270 0.273 0.272 1.87 

XT1 

1 0.143 0.353 0.248 1.76 

2 0.110 0.283 0.197 1.62 

3 0.203 0.361 0.282 1.68 

XT2 

1 0.184 0.272 0.228 1.94 

2 0.213 0.299 0.256 1.82 

3 0.258 0.275 0.267 1.94 

Average: 0.154 0.286 0.220 1.80 

Sample Standard Deviation: 0.076 0.053 0.045 0.11 

4.4.2 Measurements Using 3D Handheld Laser Scanner 

A recently developed methodology [23] to identify various impact treatment levels applied to a steel 

weld toe was also used to measure the weld toe geometrical parameters. This methodology has a number 

of advantages over the current quality assurance (QA) practices, which are mainly based on visual 

inspection. These advantages include providing quantitative measures for the treatment level, increasing 

ease of use, and providing the capability to document the weld toe profile before and after impact 

treatment for future referencing. 

The geometrical properties of the weld toe were captured using an EXAscanTM handheld laser scanner. 

This scanner is designed for the rapid acquisition of a large number of points on the surface of an object. 

The device does not require an external positioning system as it uses two lines of laser light, three 

cameras, and small, circular, self-adhesive targets to record and register the specimen’s geometry 

(Figure 4.17). One of the benefits of this external positioning system is that it does not require a high-

skilled operator to achieve high accuracy results. The dynamic referencing mode (coordinate system) 

locks onto the object being scanned, thereby maintaining specimen alignment throughout the entire 

scanning process. Prior to the scanning process, an aerosol powder spray was applied to the specimens. 

This is a common method for reducing the reflectivity of scanning targets in order to increase the 

accuracy of the scan points. During the scanning process, a 3D surface geometry is acquired by 
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sweeping the laser scanner, and therefore the field of view of its three cameras, over the weld toe in a 

manner similar to spray painting (Figure 4.17). As the laser moves, it captures the surface geometry of 

the weld toe. The captured geometry is in the form of millions of individual data points consisting of x, 

y, and z coordinates in 3D space. This process is fast and provides a relatively high level of accuracy 

(0.04 to 0.05 mm) [24].  

 

Figure 4.17: Scanning a weld specimen: (a) 3D laser scanner; (b) point cloud data 

A suitable software package is then used to merge the point cloud data points collected into one 3D 

representation of the scanned object. Once the weld toe is scanned, the measured data can be easily 

extracted. Following the acquisition of the point cloud, a number of post-processing steps (described in 

[23]) were executed in order to obtain the desired weld toe profile information. The weld toe profile in 

the middle of the specimen was acquired by intersecting the 3D point cloud and the perpendicular 

middle plane. The geometric parameters were then measured using a computer-aided design (CAD) 

software (here AutoCAD) for the curves obtained in the previous step. The results are summarized in 

Figure 4.18 and Table 4.13. 
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Figure 4.18: HFMI groove measurements for treated specimens 

Table 4.13: Laser scanner-based measurements 

Specimen Db (mm) Dw (mm) Davg (mm) R (mm) 

LT3 0.14 0.26 0.20 1.77 

XT3 0.14 0.34 0.24 1.82 

4.5 Through-thickness Stress Distributions at the Weld Toe 

The through thickness stress profiles for the as welded and treated specimens were determined by finite 

element (FE) analysis. The laser scanned weld toe profiles acquired in the previous section were 

inputted into an FE software package (ABAQUS) to generate the models (Figure 4.19). Linear elastic 

material behaviour with E = 208 GPa was assumed and the specimen geometry was modelled using 8-

node biquadratic plane strain quadrilateral elements. The stress profile at the weld toe (defined as the 

deepest point of the groove for the treated specimens) caused by applying a remote unit stress was then 

determined. The results are summarized in Figure 4.20. As can be seen in this figure, the stress 

concentration reduction at the weld toe after applying the treatment was minimal. 
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Figure 4.19: FE geometry models for specimens: (a): LA; (b): LT; (c): XA; (d) XT 
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Figure 4.20: Through thickness axial stress profiles at weld toe: (a) and (c) axial stress; (b) and (d) 

maximum principal stress 
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4.6 Residual Stresses  

The residual stress state at the weld toe plays a key role in the fatigue performance of the as-welded and 

HFMI treated welded joints. In order to precisely evaluate the residual stress profile induced by the 

peening treatments, a finite element (FE) analysis was undertaken and the effects of different parameters 

on the resultant stress state due to peening at the toe were studied. Direct residual stress measurements 

were also conducted and the final residual stress profile at the treated weld toe, to input into the fracture 

mechanics model, was determined by considering both the FE and measured distributions. 

4.6.1 Finite Element Analysis of Bridge Welds Retrofitted by Peening 

Two-dimensional finite element (FE) models that simulate the treatment process were used to model the 

treatment of the Type-X fatigue specimens. Effects of the plate thickness, indentation depth, and preload 

level on the residual stress distribution induced by peening under load were then studied. A more 

complete version of this analysis is presented in [25]. 

For this study, needle peening was modelled by a 2D static analysis of a single indentation using the 

FEA program ABAQUS. The FE model consisted of a 2D solid indenter impacting the weld toe of a 2D 

plane strain model of a transverse stiffener. In this model, a 2.5 mm diameter elastic steel (E = 200 GPa) 

hemispherical indenter impacted the elastic-plastic base material at the weld toe, imposing a predefined 

indentation depth. In modelling the base material, yield and ultimate stress levels were chosen based on 

the measured values obtained from the materials tests reported in [4]. 

Each analysis is done in three steps: the preloading step, the indenting step, and the unloading step. In 

the preloading step, the predefined preload (if applicable) is applied. Preloading was modelled by 

prestressing the base material and maintaining the same load level throughout indentation and unloading 

steps. In the indenting step, the static indenter impacts the weld toe region and penetrates into the base 

material up to a predetermined indentation depth. Finally, the static indenter returns to its original 

position during the unloading steps. These steps are shown in Figure 4.21. 
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Figure 4.21: Analysis steps: (a) preloading; (b) indenting; (c) unloading 

After unloading (i.e. removing the indenter), the residual stress distribution in the direction of the 

applied load (S11) through the thickness of the plate at the weld toe (“path” in Figure 4.21) is graphed 

against the depth below the surface. 

The model geometry and boundary conditions are presented in Figure 4.22. The weld toe geometry was 

modelled based on the 35 angle and radius measurements reported in [26]. A typical weld toe with weld 

toe angle and radius of 45° and 0.6 mm, respectively, is used in all models. In the current study, the 

effects of preload level and plate thickness are also investigated 

  

Figure 4.22: Model geometry and boundary conditions 

Figure 4.23 represents a typical stress pattern through the thickness of the plate at weld toe region. In 

this figure, red represents the tension and blue means compression. 
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Figure 4.23: Stress pattern through the thickness of the plate at weld toe region: (a) at rest; (b) 

after preloading step; (c) after loading step and before unloading step; (d) after unloading step 

The magnitude and subsurface distribution of the residual stresses induced by peening at the weld toe of 

the tested fatigue specimens was measured using X-ray diffraction techniques for two normally peened 

(not preloaded) fatigue specimens, as discussed in [26]. The results of these measurements were used to 

validate the static indenter model use in this FE study. An envelope of the residual stress measurements 
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is presented in Figure 4.24, along with analysis results for the FE model with various indentation depths 

assumed from 0.05 to 0.3 mm. The specimen naming scheme format in Figure 4.24 and Figure 4.25 is 

FS-P#-I#, where FS stands for “Fatigue Specimen”, P# represents the prestress level in MPa (e.g. P45 

represent a 45MPa prestress level), and I# represents the indentation depth in 10-2 mm (e.g. I05 means 

an indentation depth of 0.05 mm). 

 

Figure 4.24: Residual stress profiles for fatigue specimen. 

As Figure 4.24 indicates, the analysis results for a static indentation depth (d) of 0.05 mm fell between 

upper and lower bounds of the residual stress measurements. Moreover, d = 0.05 mm also predicts the 

compressive residual stress zone depth (~1.5 mm) reasonably well. On the other hand, results for d = 0.1 

mm accurately estimate the value and location for the largest (in magnitude) compressive residual stress. 

Thus it can be concluded that a suitable value for an effective static indentation depth that results in 

good predictions of the measured residual stress distribution will lie somewhere between 0.05 mm and 

0.1 mm.  

Figure 4.25 presents results for the analysis of the fatigue specimen under the various investigated 

prestressing levels for two static indentation depths. Looking at this figure, it can be seen that the peak 

compressive residual stress level is not significantly affected by the 45 MPa prestress. In the case of the 

165 MPa prestress, a reduction in this peak compressive residual stress level is seen. However, in both 

cases, this stress level still exceeds the yield strength of the material. In general, the peak compressive 
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residual stress level was seen to be less sensitive to the prestressing level when the indentation depth is 

increased to 0.3 mm. 

 

Figure 4.25: Effect of prestress on residual stress profile for FS model. 

Based on the results presented in this sections, the following conclusions were drawn: 

 Mainly depending on the indentation depth, the impact treatments can result in a compressive 

residual stress field near the surface at the weld toe with a peak magnitude of as high as two 

times of the material’s yield strength.  

 Subsurface self-equilibrating tensile residual stresses were also generated by applying the impact 

treatment.  

  The treatment-induced residual stress profiles were similar to each other at different preload 

levels when the indentation depth is ~0.3 mm. 

 The peak compressive residual stress level and compressive residual stress zone depth increased 

with an increase in the indentation depth. 

4.6.2 Residual Stress Measurements 

Residual stress measurements were conducted using the X-ray diffraction method. This method was 

chosen because it had an appropriate spatial and volumetric resolution to adequately characterize the 

residual stress distributions. 

The residual stress measurements were performed on two randomly-chosen untested specimens, one as-

welded and one impact (HFMI) treated, at different locations. Thirteen measurements were taken at four 

locations on the treated specimen at the surface and depths of approximately 0.1, 0.3, 0.6 and 1.0 mm 
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below the surface. For the as-welded specimens, five measurements were taken at two locations at the 

surface and depths of approximately 0.1, and 0.3 mm below the surface. Measurements were made using 

the Laboratory X-Ray Diffraction (LXRD) system at Proto Manufacturing Ltd., following the procedure 

recommended in ASTM- E915 [27]. Each measurement location was first electro-polished to the desired 

depth, the measurement was made, and the location was then polished further to reach to the next 

desired depth. Figure 4.26 shows a specimen in the LXRD system.  

 

Figure 4.26: LXRD system for residual stress measurements 

Measured residual stresses for all the samples are summarized in Table 4.14 and Figure 4.27.   

Table 4.14: Residual stress measurements (MPa) 

  Depth (mm) Location 1 Location 2 Location 3 Location 4 

H
F

M
I 

tr
ea

te
d
 

S
p

ec
im

en
 

0.00 -44 ± 10 -238 ± 15 -509 ± 26 -112 ± 16 

0.10 -124 ± 12 -92 ± 7 -203 ± 7   

0.12           -176 ± 8 

0.31 -4 ± 6   -145 ± 10 -360 ± 8 

0.64           -132 ± 8 

1.02             -40 ± 13 

A
s-

w
el

d
ed

 

S
p
ec

im
en

 

0.00 -9 ± 42 -82 ± 21         

0.13 86 ± 17 -57 ± 9       

0.33     -12 ± 46         
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Figure 4.27: Residual stress measurements 

A very large scatter was observed in the residual stress measurements. The measurements previously 

reported in [22, 26] showed that there was an approximately uniformly distributed tensile residual stress 

in the top few millimetres below the surfaces with a magnitude of 15~20 % of yield stress for the 

untreated specimen. The current measurements, however, showed considerable scatter and no clear trend 

with a range of -82 to 86 MPa, with results scattered around an mean of ~zero MPa. 

Impact treatment of the specimen resulted in a significant change in the residual stress distribution 

through the specimen thickness with a high magnitude compressive stress near the weld toe surface. It 

then gradually decreases for about a millimeter below the surface. A self-equilibrating distribution for 

the compressive residual stress in the treated specimens was assumed in the SBFM analysis based on the 

general trends observed in the previous measurements reported in [22, 26]. This distribution (with a 

peak compressive stress of 0.33∙fy near the surface) is also plotted in Figure 4.27. 

4.7 Conclusions 

Several input parameters for the fracture mechanics model (discussed in the next chapter) were 

determined using a comprehensive materials testing plan, FE analysis, 3D laser scanning, and direct 

measurements. A recently developed experimental technique to derive the crack closure parameters and 

the effective crack growth curve by using smooth specimens was used. The results were then validated 

by conducting a series of fatigue crack growth tests on compact-tension (CT) specimens. The effect of 
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impact treatment on the near-surface hardness of the fatigue specimens was investigated by conducting 

microhardness tests on the heat affected zone (HAZ) of the as-welded and treated specimens. 

Microstructure pictures were also taken to obtain a better understanding of the microstructure of a 

treated weld. The as-welded and treated weld toe geometries were determined using silicon impressions 

and also a 3D laser scanner. The FE method was then used to determine the stress concentration factors 

at the weld toes. The FE method was also used to evaluate the residual stress profile induced by the 

peening treatments and the results were compared with the X-ray diffraction -based residual stress 

measurements conducted on the as-welded and treated specimens.  
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Chapter 5 

5 Strain-Based Fracture Mechanics Analysis 

5.1 Introduction 

Various analytical approaches are used to predict the fatigue performance of welded structures and also 

the beneficial effects of residual stress-based post-weld treatments. In most codes and recommendations, 

a variations of the “detail category” or an “S-N curve” approach are employed. Neither the Classification 

method nor the structural stress approach give precise information about crack size and crack growth in 

different stages of the structure’s service life. Fatigue test results have shown that there are other 

parameters, e.g. loading scheme, influencing the fatigue behaviour of structures other than the design 

stress range and the detail geometry. Moreover, there are a number of fatigue rehabilitation methods that 

enhance the fatigue behaviour of the structures and the effect of these methods can only be fully 

understood by using analytical models that can account for all of these variables. Linear elastic fracture 

mechanics (LEFM) is such an analytical tool, with the ability to predict the behaviour of propagating 

cracks in structures. Conventional fracture mechanics deals only with the crack growth in materials by 

calculating a crack driving force and characterizing the material’s resistance to fracture. Basic 

assumptions in linear elastic fracture mechanics are that the material is isotropic and linear elastic. The 

stress field near the crack tip is then calculated using the theory of elasticity. In LEFM, most formulas 

are derived for either plane stress or plane strain conditions, associated with the three basic modes of 

loading on a cracked body: opening, sliding, and tearing. LEFM is valid only when the inelastic 

deformation is small compared to the size of the crack, or under a condition commonly referred to as 

small-scale yielding. If large zones of plastic deformation develop in the vicinity of the crack, other 

methods such as elastic plastic fracture mechanics (EPFM) or strain-based fracture mechanics (SBFM) 

must be used.  

A strain-based fracture mechanics (SBFM) approach, which is similar to LEFM in many ways, can be 

used to account for non-linear material behaviour, which may be significant at the weld toe under high 

applied stress ranges. Thus, SBFM is suitable for considering the effects of the large overloads and 

underloads that may occur under in-service loading histories typical of bridge structures. The 

development and use of a SBFM model is described in this chapter. This SBFM model [1] is able to 

predict two crack growth accelerating mechanisms, which can be particularly severe for impact treated 
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welds. These mechanisms include 1) relaxation of the compressive treatment stresses due to 

compressive under-loads that are large enough to cause a nonlinear material response, and 2) reducing 

the crack opening stress level due to large compressive under-loads or tensile over-loads that results in 

increasing the effective (damaging) portion of the applied stress cycle, for a number of cycles following 

the extreme loading event. Additionally, the SBFM model does not require two stages to model the total 

fatigue life of the weld. The model is developed to model small crack behaviour in notches, where 

material behaviour is nonlinear, and it does not run into the problems of LEFM in this domain. For 

larger crack sizes, the results converge on those predicted by LEFM. Based on previous studies and 

metallurgical analysis, it is thought to be a reasonable assumption that very small defects are present at 

welds prior to loading [1]. 

The strain-based fracture mechanics (SBFM) model is validated using the fatigue test results presented 

and discussed in the previous chapters. This model is chosen because of its ability to model both high-

cycle and low-cycle fatigue problems. Rare and severe overload events can occur in the long life regime 

and the SBFM model is particularly well suited for modelling treated welds as it keeps track of the 

residual stresses following these severe overload events. 

5.2 Strain-based Fracture Mechanics (SBFM) Model 

A strain-based fracture mechanics (SBFM) model is used to analyze the fatigue specimens. An earlier 

version of this model was successfully used in [1] to analyze treated welds under variable amplitude 

(VA) loading conditions. The model’s ability to predict the fatigue performance under different loading 

and treatment conditions typical for highway bridge applications was evaluated by comparing the 

predicted results with the test results on small-scale weld specimens in [1-3]. In this study, several 

changes were made to make the SBFM model compatible with the effective strain-life model described 

in Chapter 4. 

5.2.1 Model Description 

The model used in this research is basically a linear elastic fracture mechanics (LEFM) model that is 

modified to consider non-linear material effects.  By applying the effective crack growth relationship 

derived in the previous chapter, the number of cycles to failure, N, is calculated by numerically 

integrating the following expression over a crack depth range, ai to ac (initial to critical crack depth).  
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Equation 5.1:  ( )m

eff i

da
C K K

dN
    

where a is crack depth, C and m are material constants, and ΔKeff and ΔKi are the effective and intrinsic 

stress intensity factor ranges, respectively.  

Crack closure effects are considered in the calculation of ΔKeff by using the following expression 

Equation 5.2:  eff max op minK K MAX K K     

where Kmax and Kmin represent the stress intensity factors (SIF) at the maximum and minimum load 

levels in each load cycle, respectively, and  Kop is the SIF corresponding to the crack opening stress level 

in that load cycle. 

Each SIF is determined using the following expression: 

Equation 5.3: K YE a   

where Y is a correction factor that accounts for the crack shape, the finite thickness of the plate, and  the 

free surface on one side of the crack, E is the modulus of elasticity of the material, a is the (crack) depth 

below the surface, and 𝜀 is the local strain at that depth.  

A cyclic Ramberg-Osgood material model is used to determine the stresses and strains for each load 

cycle: 

Equation 5.4: Δε 
1/ '

2
2 '

n

E K

   
   

 
 

where Δε and Δσ are the changes in the strain and stress, respectively, and K’ and n’ are material 

constants.  

Neuber’s rule is used to calculate strain histories at various depths below the surface of the weld toe.  

Equation 5.5: Δ𝜀 ∙ Δ σ 

2( S)k

E


  

where k is the (theoretical) stress concentration factor and ΔS is the nominal applied stress range 
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A formula proposed in [4] is used to model the steady state crack opening stresses: 

Equation 5.6: 

2

1  max
opss max min

y

S
S S S 



  
    

    

 

where Sopss is the steady state crack opening under constant amplitude (CA) loading, Smax and Smin are the 

nominal maximum and minimum stresses in a smooth specimen (or the local maximum and minimum 

stresses at the notch root in a notched specimen, respectively), σy is the cyclic yield stress, and θ and φ 

are two experimentally determined material constants. 

Along with this crack closure model, a model proposed in [5] is used which relates the change in the 

crack opening stress in a given cycle (ΔSop) to the difference between the current opening stress (Scu) 

and the steady state crack opening stress (Sopss): 

Equation 5.7:      op opss cuS S S    

where μ is a material constant. 

During the analysis, the material is cyclically loaded at various depths below the surface of the weld toe 

and the strain parameters are determined for each load cycle. As shown in Figure 5.1, the local elastic 

stress (σel) is calculated by adding up the local elastic residual stress (σel,res) due to welding (and HFMI 

treatment in the case of the treated specimens) and the local elastic stress due to the applied load (σel,app).  

 

Figure 5.1: Stress-strain analysis according to SBFM model [1] 
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Using the approach described in [6], a stress concentration factor, kp, that considers the presence of the 

crack in the weld toe, is used to determine the local elastic stresses. The following expression is used to 

calculate kp 

Equation 5.8: el
p

K
k

Y a
  

where kp is the modified stress concentration factor (SCF), kel is the SCF for the uncracked weld toe, and 

Kel is the elastic stress intensity factor that considers the non-uniform stress distribution along the crack 

path. 

To calculate Kel, elastic weight functions, m(x, a), from [7] for edge cracks in a semi-infinite plate are 

used in Equation 5.. The effects of crack shape and finite plate thickness are considered by using the 

proper correction factors in the calculation of the SIF (Y factor in Equation 5.3). 

Equation 5.9:    
0

,

a

elK k x m x a dx   

In this equation, x is the depth below the surface of the plate. 

The local elastic stress (σel) corresponding with S can then be calculated using Equation 5.10:  

Equation 5.10: σel = kp · S    

The stress-strain hysteresis loops are generated by calculating the local nonlinear stress-strain history for 

the given nominal stress history. Each time a hysteresis loop is closed, σmax, 𝜀max, σmin, 𝜀min, σop, and 𝜀op 

are calculated. Using these parameters, ΔKeff and da/dN are then determined. Finally, the fatigue life is 

calculated by a numerical integration of Equation 5.1. 

The model requires the residual stress distributions for the fatigue detail due to both welding and the 

applied post-weld treatment method (if applicable). As a simplification, the residual stresses are 

introduced by shifting the initial stress monotonically from zero to the specified residual stress level. 

The effect of any strain hardening due to the treatment is conservatively ignored in this method. 
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5.2.2 Input Parameters 

The described SBFM model requires a number of input parameters, which can be determined by 

materials testing, finite element analysis, and experimental observations. The required material constants 

were determined in the previous chapter and are summarized in Table 5.1. Finite element (FE) analysis 

was used to determine the stress concentration factors. A number of geometrical parameters concerning 

the crack size and shape were determined based on the experimental observations and the literature in 

this field. The residual stress measurements conducted by using the X-ray diffraction method in 

conjunction with the FE analysis described in the previous chapter were used to determine the residual 

stress distributions due to the HFMI treatment and the welding process. 

Table 5.1: Input parameters for the SBFM model 

Parameter Value Unit Source 

E 208,083 MPa 
monotonic and cyclic         

material testing 
Sy 356 MPa 

σy 410 MPa 

K' 812 MPa cyclic material testing and 

hardness measurements n' 0.108 - 

local K' 1.45∙3.45∙HV* MPa 
[8] 

local n' 0.15 - 

C 1.1∙10-10 MPa, mm 
effective crack growth 

measurements 
m 2.01 - 

ΔKi 80 MPa·√mm 

θ 0.448 - 

effective strain-life model φ 0.024 - 

μ 0.018 - 

ai 0.15 mm [1, 9], microstructure imaging 
*HV: Vicker’s hardness number 

Stress concentration factor (kel) and kp: finite element (FE)-based stress concentration factors (SCF) 

for the as-welded weld toe profiles, presented in the previous chapter, were used to calculate kp. 
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Figure 5.2: SCF distributions: (a) Type-L specimen; (b) Type-X specimen 

Initial crack size: an initial crack size of 0.15 mm is assumed according to the previous studies at the 

University of Waterloo [1, 3] and the microstructure imaging reported in the previous chapter. 

Critical crack size: the critical crack size was calculated based on the average stress over the remaining 

(net) cross section exceeding the tensile strength, and not larger than one  half of the thickness (4.75 

mm). 

Crack shape: based on the observed cracks and similar to [1, 3], a through crack is assumed. An initial 

crack aspect ratio (a/c where c is half of the width of the semi-elliptical surface crack) of 0.6 was 

assumed. This ratio was assumed to linearly vary to zero at a crack depth of 1.0 mm.  

Compressive residual stresses due to HFMI treatment: as described in the previous chapter, a self-

equilibrating residual stress distribution was assumed. Elastic weight functions, m(x, a), from [7] were 

also used to calculate the SIF for the treated specimens.  

Tensile residual stresses due to welding: a uniform zero residual stress was assumed for the as-welded 

specimens.  
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Figure 5.3: Residual stress distribution for treated specimens 

5.3 Comparison of Model Predictions and Test Results 

The model predictions for the fatigue experiments are presented in this section and are compared with 

test results that were presented in Chapter 3. 

5.3.1 Constant Amplitude (CA) Loading 

The SBFM predictions and test results for the as-welded and treated specimens tested under CA loading 

are presented in Figure 5.4. Distinctly different S-N slopes were predicted by the model for the as-

welded and the treated weld toes in both cases. For comparison, a number of additional CA (with R = 

0.1) test results for Type-X specimens are also included in this figure. These additional test results were 

reported in [1, 3] using a similar specimen geometry to the Type-X specimen. 

  

Figure 5.4: SBFM predictions for CA test results 
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As Figure 5.4 suggests, the SBFM model closely predicted the fatigue behaviour of the as-welded and 

the treated Type-X specimens. Close fatigue life predictions were also obtained for the as-welded Type-

L specimens. The fact that no fatigue improvement due to the HFMI treatment was obtained at high 

stress levels (300 MPa and higher) was also correctly predicted by the model. At lower stress ranges for 

the Type-L specimen, however, the test results showed some degrees of fatigue life improvement in the 

form of changing the mode of failure from the toe to the root. These observations were conservatively 

underpredicted by the SBFM model. Finally, in both of the cases, the SBFM results predict an almost 

80% increase in the constant amplitude fatigue limit (CAFL) due to the application of HFMI treatment. 

5.3.2 Effect of Variable Amplitude Loading History 

Figure 5.5 and Figure 5.6 present the SBFM model predictions for the variable amplitude (VA) fatigue 

tests. The equivalent stresses for the VA tests are calculated based on m = 3 in these figures. As the 

figures imply, the VA loading effects on the fatigue lives of the specimens are closely predicted for the 

as-welded specimens in both cases. For the treated specimens, the fatigue lives for both test types are 

underpredicted to some extent in the long life regime. However, several important trends are predicted 

by the model including the early toe failures for the severely overloaded specimens and the lower fatigue 

limit under VA loading histories compared to the CA loading history. 

      

Figure 5.5: SBFM predictions for Type-X specimens: (a) as-welded; (b) treated 
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Figure 5.6: SBFM predictions for Type-L specimens: (a) as-welded; (b) treated 

5.3.3 Re-visiting the Web Stiffener Specimens (Distortion-induced Fatigue) 

Fillet welded joints can be divided into two main groups: details with load carrying fillet welds and 

details with non-load carrying fillet welds. According to the structural (hot-spot) stress method, a single 

design curve can be used for the fatigue design of all the welded details in the same group. Thus, 

theoretically, it is possible to analyse a simpler joint in one group to generate the structural S-N curve for 

the group. This curve can then be used to predict the fatigue strength of a rather complex welded details 

in the same load-carrying weld group.  

As an example, the web stiffener detail which was described in detail in Chapter 2 of this thesis, is a 

welded joint with non-load carrying fillet welds. However, an analytical analysis (e.g. SBFM analysis) 

of the critical weld toes for this detail is very difficult and computationally demanding due to the 

complex loading and geometry conditions and also the complicated fatigue crack shape and growth 

parameters. On the other hand, Type-X small scale specimens in this study represent another welded 

joint with non-load carrying fillet welds with a much simpler loading and geometry conditions and with 

well-known fatigue crack parameters. This simplicity made it possible to employ an analytical method 

(SBFM) to predict the fatigue behaviour of the small scale specimens under different treatment and 

loading conditions. The model predictions for the fatigue strength of as-welded and treated weld toes in 

Type-X specimens were presented in Figure 5.5 in terms of the nominal stress. The model predictions 

can be expressed in terms of the structural stress by multiplying the results (shifting the curve upward) 

by the structural stress coefficient for Type-X specimens (1.35) to derive the structural stress S-N curves. 
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Now, by using the structural stress concept, the obtained structural stress S-N curve can be used to 

estimate the fatigue strength of the web stiffener detail and, virtually, any welded detail with non-load 

carrying fillet welds. This idea is explored in this section. 

Figure 5.7 presents the SBFM-based structural stress curve and the distortion-induced fatigue test 

results. In Figure 5.7a, the test results are expressed in terms of their extrapolated structural (hot-spot) 

stress ranges (reported in Chapter 2). As described in Chapter 3, the web stiffener detail is considered as 

a weld detail with load-transfer dominated behaviour and, thus, the extrapolation method is applicable. 

Figure 5.7b presents the test results in terms of the structural stress definition that was used in Chapter 3 

to calculate the structural stress coefficient for a Type-X specimen based on the definition in [10]. In 

order to calculate the structural stress range based on the definition in [10] for the web stiffener details, 

the same finite element (FE) models that were described and discussed in Chapter 2 were used. The 

sectional forces and moments were then used to calculate the structural stress at the critical weld toe 

(also called the hot-spot). Structural stresses of 107.7 and 72.1 MPa were calculated for the unretrofitted 

and retrofitted specimens, respectively, for a 0.1 mm out of plane displacement (d) of the stiffener at a 

distance of 127 mm from the inside face of the near flange. The structural stresses for all of the 

distortion-induced fatigue test results were then re-calculated based on the FE results and the measured 

out of plane displacement (d) for each test. In all of the cases, the FE-based structural stress ranges were 

20-30% larger than the extrapolated structural stresses. The updated web stiffener test results together 

with the analytical structural stress S-N curve for Type-X specimens are presented in Figure 5.7.  

  

Figure 5.7: SBFM-based predictions for the web stiffener detail: (a) Extrapolated structural stress 

range; (b) FE-based structural stress range 
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As can be seen in this figure, using the SBFM predictions resulted in a close prediction of the fatigue 

strength of the web stiffener detail. Moreover, this approach correctly predicts the ineffectiveness of the 

used impact treatment method (needle peening in this case) at the tested stress ranges which were higher 

than 300 MPa. However, according to the model predictions, significant fatigue life increases can be 

expected at stress ranges lower than 100 MPa. 

5.4 Comparison of Model Predictions and the Experimental Statistical Analysis 

Figure 5.8 compares the SBFM model predictions and the experimental statistical data obtained in 

Chapter 3. According to this figure, the analytical predictions for the treated specimens were close to the 

S-N curves associated with a 95% survival probability, derived based on the experimental results. The 

SBFM predictions for the as-welded samples, however, were found to be closer to the mean test data, 

i.e. close to the S-N curves associated with 50% survival probability, for both specimen types. 

  

Figure 5.8: SBFM predictions and characteristic S-N curves: (a) Type-X; (b) Type-L 

The analytical S-N curve slope (m) for the treated non-load carrying fillet welds was found to be in a 

good agreement with the statistical m. Therefore, m=5 was used to calculate the equivalent stress for the 

VA tests in the succeeding calculations. It should be noted that this assumption was only applied to 

those failures that occurred at treated toes. Root failures were excluded from the subsequent analysis 

since the SBFM analysis and parameters were only applicable to those fatigue cracks that initiate from 

and grow at the weld toe.  
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Figure 5.9 compares the SBFM model predictions and the suggested design S-N curves (in Chapter 3) 

for the VA fatigue behaviour of the treated weld toes for Type-X specimens based on m = 5. As can be 

seen in Figure 5.9, the analytical S-N curves for VA1 and VA2 histories become close to each other and 

lay on the FAT-182* curve for N < 107 when m = 5 is used. Both of the analytical S-N curves deviate 

from FAT-182* curve with a gradually increasing slope at around 20 million load cycles, which may 

indicate reaching to a fatigue threshold. 

 

Figure 5.9: SBFM predictions and experimental S-N curves for non-load carrying treated weld 

toes: (a) nominal stress; (b) structural stress 

5.5 Analytical Studies Performed with the SBFM Model 

After evaluating the SBFM model S-N curves, the model was used to predict the fatigue performance of 

the treated weld toes under other realistic VA loading histories. This analysis was used to make design 

recommendations and provisions regarding the fatigue thresholds, the occasional tensile overloads, and 

the S-N fatigue design curves. 

5.5.1 Simulations for Other Spans and Influence Lines 

The analytical S-N curves for loading histories applicable to other influence lines and bridge spans were 

generated by conducting a number of simulations. A similar methodology was successfully used in [11] 

to study the adequacy of the current design provisions for the fatigue design of aluminum structures. 

Twenty (20) VA load histories were considered consisting of influence lines for five locations of four 

bridge spans of 15, 25, 40, and 60 m. These locations included midspan moment for 1- and 2-span 

girders, intermediate support moment for 2-span girders, and support reactions for 1- and 2-span girders. 
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The selected influence lines and spans were intended to cover a broad range of VA load history 

characteristics that are possible in bridge structures. Each in-service VA load history was generated by 

taking random samples of 1,000 trucks from the larger Ontario database [11]. As described in Chapter 2 

and 3, the Ontario survey data included the axle weight and spacing data for 10,198 trucks measured in 

Ontario in 1995 [12]. Figure 5.10 shows the gross truck weight histogram based on this survey data. A 

similar histogram was used to generate realistic in-service loading histories in a number of previous 

studies, e.g. in [1, 11]. It should be noted that the static weights are used for the truck weights in this 

figure. Thus, to approximate the corresponding dynamic load effects, each axle load should be 

multiplied by an impact factor of 1.25, in accordance with CAN/CSA-S6 [13].  

 

Figure 5.10: Truck weight histogram based on 1995 Ontario survey [1, 12] 

The analysis results are presented in Figure 5.11 to Figure 5.13. In these figures, the results are plotted 

as envelopes in terms of the equivalent stress range, ΔSeq, assuming m=5. The proposed design S-N 

curves for the as-welded and treated specimens, derived in Chapter 3, are also plotted in these figures for 

comparison purposes. 

In Figure 5.11, the analysis results for the treated Type-X specimens are presented. The results show that 

both of the FAT-135* and FAT-182* design curves, for the nominal and structural stresses, respectively, 

lie below the VA loading envelopes for the most part. Based on the results, a significant fatigue life 

improvement cannot be claimed due to the HFMI treatment for N < 106 cycles. The VA loading 

envelopes exhibit a change of slope at around 200 million load cycles which may suggest approaching a 

fatigue threshold.   
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Figure 5.11: Results of the analysis of other spans and influence lines for Type-X: (a) nominal 

stress; (b) structural stress 

The analysis results for the treated Type-L specimens are presented in Figure 5.12. The FAT-41 and 82 

curves for the nominal stress approach (FAT-76 and 151 for the structural stress approach) represent 

design curves for the as-welded weld toe and as-welded weld root, respectively. Two other curves with 

m = 5 are also plotted in this figure including FAT-77* and FAT-143* which represent the treated weld 

toe. These curves were obtained based on the effective notch stress FAT-339* curve by considering the 

structural and effective notch stress coefficients (1.85 and 4.38, respectively).  

  

Figure 5.12: Results of analyses of other spans and influence lines for Type-L: (a) nominal stress; 

(b) structural stress 

The results show that both of the nominal stress FAT-77* and structural stress FAT-143* design curves 

lie below the VA loading envelopes for the most part and provide a good design basis for the studied 
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load carrying weld toes. By comparing the VA loading envelopes and the design curves for root failures 

(FAT-82 and 151), it can be concluded that the failure mode changes from the failure at the treated toe 

for N < 105 cycles to the secondary mode of failure for N > 106. Consequently, a significant fatigue life 

improvement can be claimed due to the HFMI treatment for N > 106 cycles. The VA loading envelopes 

exhibit a change of slope at around 100 million load cycles. This change in the slope, that is not as 

significant as the change observed for Type-X specimens, may suggest approaching a fatigue threshold. 

The analysis results for the treated weld toes for both types of specimens are presented in Figure 5.13 in 

terms of the effective notch stress range. Considering the width of the VA envelopes, the suggested 

FAT-339* design curve provides a good basis for the fatigue design of treated weld toes. Similar to the 

previous conclusions, significant fatigue life improvements can be expected due to HFMI treatment for 

N > 106. 

 

Figure 5.13: Results of analyses of other spans and influence lines for Type-X and L: effective 

notch stress 

By considering the VA loading envelopes in Figure 5.11 to Figure 5.13, it can be concluded that the in-

service VA loading characteristics have a significant influence on the analytical VA loading S-N curve. 

The shapes of the curves, however, followed a general S-shaped trend with two flatter parts in the low 

and high cycle domains with a steeper transitioning part in the middle. The flatter design S-N curve in 

the low cycle domain was found to have resulted from the severe overloads that were present in the VA 

load history, while the flatter portion in the high cycle domain is due to approaching a fatigue threshold. 

Overall, the S-N design curves with m = 5 were found to be the reasonably accurate design tools in all 

cases. 
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5.5.2 Scale Effect and Overload Studies 

Among the factors that influence the VA results and were studied in [11], two factors were chosen for 

further investigation. These factors included increasing the plate thickness and introducing a particularly 

heavy truck at a regular frequency in the traffic history.  

A new VA loading envelope was generated by increasing the thickness of the loaded plate from 9.5mm 

to 25mm. All other parameters for the weld detail, material properties, and the residual stress 

distribution were kept identical to the previous studies. The effects of varying these parameters were 

previously studied and discussed in detail in [3]. This change in the thickness resulted in an increase in 

the stress concentration factor (SCF) along the crack path. As presented in Figure 5.14(a), the result of 

this analysis is a slight downward shift in the VA loading envelope. 

Another new VA loading envelope was produced with an overload truck which was introduced 

every1000th truck. As explained in [11], the overload truck had an axle configuration identical to the 

CAN/CSA-S6 CL-625 truck and a gross vehicle weight (GVW) of 93.75 kN. As shown in Figure 

5.14(b), the addition of this overload truck resulted in a downward shift, more significant than the 

downward shift that resulted from the thickness increase, in the VA loading envelope. 

 

Figure 5.14: Thickness effect and overload study results: (a) thickness study; (b) overload study 

5.5.3 Deign Recommendations 

Based on the results presented in this chapter, the following recommendations were made regarding the 

fatigue design of HFMI treated weld toes. 



 

115 

 

 A set of single-sloped S-N design curves with m = 5 for the nominal, structural and effective 

stress design approaches are recommended for the prediction and design of the fatigue 

performance of the treated weld toes. 

 A complete fatigue analysis of the welded joints with treated weld toes can only be performed by 

analysing the treated weld toe and other possible failure modes including the possible failures in 

weld root, weld throat, and base metal. 

  A reliable and significant fatigue strength improvement cannot be expected under VA loading 

for N < 106. 

 The repeating overloads play a key role in determining the effectiveness of the treatment. The 

test results also showed that a local stress approach is required for determining the maximum 

allowable stress. Within the scope of the current study, it is suggested the maximum structural 

tensile stress be limited to 1.15fy (where fy is the nominal yield strength of the loaded plate). 

5.6 Conclusions 

The influence of the HFMI treatment on the fatigue performance of structural welds under in-service 

variable amplitude (VA) loading conditions was predicted using a strain-based fracture mechanics 

(SBFM) model. The SBFM model predictions were validated by comparing the results to the fatigue test 

results two different types of test specimens under various loading conditions. Both as-welded and 

treated weld toes were considered. The model predictions were then used to generate the structural and 

effective notch stress S-N design curves which then can be used to predict the fatigue behaviour of the 

treated weld toes in other welded details. 

A good agreement was also observed between the analytical and experimental S-N design curves when 

m = 5 was used to calculate the equivalent stress range under VA loading. Application of the SBFM 

model to consider several in-service loading histories that encompassed a wider range of influence lines 

and bridge spans showed that the predicted benefit of the HFMI treatment was highly dependent on the 

loading characteristics. Periodic tensile overloads were shown to be detrimental on the achieved level of 

the fatigue improvement. Increasing the plate thickness and the introduction periodic overload trucks in 

the analysis also resulted in a reduction in the fatigue performance of treated welds. It was concluded 

that the tensile overloads should be limited based on the local stress. It was then recommended to limit 

the maximum structural tensile stress to 1.15 times the yield strength of the material.  
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A set of design recommendations concerning the fatigue behaviour of treated weld toes in the middle to 

ultrahigh cycle domains were made based on the analytical results. A set of single-sloped S-N design 

curves were proposed for the nominal, structural, and the effective notch stress design of the treated 

weld toes. Finally, it was emphasized that a complete fatigue analysis of a welded joint with treated 

weld toes requires accounting for all of the possible failure modes. 
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Chapter 6 

6 Summary, Conclusions, and Recommendations for Future Work 

6.1 Summary and Conclusions 

The summary and conclusions presented in this chapter is divided according to the four main areas of 

this research work including: (i) inhibiting distortion-induced fatigue damage in steel girders, (ii) high 

cycle fatigue behaviour of impact treated welds under in-service variable amplitude (VA) loading 

conditions, (iii) testing and measurements to determine model parameters for fatigue analysis, and (iv) 

fracture mechanics analysis of the as-received and impact treated welds. 

6.1.1  Inhibiting Distortion-induced Fatigue Damage in Steel Girders 

A web stiffener detail was fatigue tested under different cyclic loading conditions. As-welded specimens 

were tested, along with specimens retrofitted by grinding / rewelding and needle peening. The idea of 

retrofitting web stiffener ends in steel bridge girders susceptible to distortion-induced fatigue using 

adhesively-bonded fibre reinforced polymer (FRP) angles was also investigated. The following 

conclusions are drawn based on the results of these tests and the related analysis: 

 The structural (hot-spot) stress approach was found to be a suitable method to identify the critical 

locations and predict the service life of as-welded and retrofitted fatigue specimens. When 

expressed in terms of the extrapolated structural (hot-spot) stress range, the fatigue lives for all 

the tested specimens lay above the FAT-100 design curve.  

 The specimens retrofitted by grinding and rewelding had slightly lower fatigue lives than the as-

received specimens. However, the initial design fatigue capacity (FAT-100) was restored in all 

cases. The shorter fatigue life was explained by the presence of higher tensile residual stresses 

that result from the multiple welding passes and the fact that the extra welding passes shortened 

the web gap in the repaired specimens, thus increasing the local stresses. 

 Given that the structural stress ranges were higher than the material yield strength in most of the 

cases, the cyclic plasticity induced at these stress ranges resulted in residual stress relaxation. 

Thus, retrofitting by needle peening did not result in a significant increase in fatigue life for the 

tested stress ranges. It is expected that peening would be more effective at lower stress ranges. 

This conclusion was subsequently confirmed by fracture mechanics analysis. 



 

118 

 

 Implementing the FRP retrofit method resulted in significant fatigue life increases, with the 

amount depending primarily on the imposed loading range. The proposed retrofit method was 

found to be significantly more efficient than two other conventional repair methods. While the 

other methods focused on improving the local fatigue properties at the weld toe, the FRP retrofit 

method significantly reduced the stresses in the web gap region.  

 Debonding within the adhesive-steel interface was found to be the most common failure mode 

when the FRP retrofit method was used, followed by failure of the FRP angles.  

 The structural stress design curve was successfully used to estimate the fatigue life of the 

retrofitted specimens. Using the structural stress method, the efficiency of the FRP retrofit 

method can be determined using a coarse finite element (FE) model before implementation and 

by direct field measurements after implementation. This feature enables bridge owners to design 

FRP retrofits, predict their effectiveness, and evaluate them after implementation.  

 The effects of a number of the varied geometric and mechanical parameters on the efficiency of 

the FRP retrofit method were studied using a finite element analysis. Greater improvements, in 

terms of reducing the structural stress, were achieved when stiffer FRP angles were used. 

Additionally, using a ductile structural adhesive is recommended to reduce the stresses in the 

adhesive layer and thus avoid sudden failures due to severe overloads. 

6.1.2  High Cycle Fatigue Behaviour of Impact Treated Welds Under In-service VA Loading 

Conditions 

A comprehensive variable amplitude (VA) fatigue testing program and analysis was conducted to 

address a number of concerns raised regarding the effectiveness of high frequency mechanical impact 

(HFMI) treatments for bridge welds in the high cycle domain. Different welded joint types representing 

load carrying and non-load carrying welds in steel structures were studied under two simulated in-

service VA loading histories typical for highway bridges. Various approaches to predict the fatigue 

performance of the treated joints, especially in the long life domain, were evaluated using the generated 

test data. The results were compared with the current design recommendations and provisions. The 

following conclusions are drawn based on these experiments and analyses: 

 For the specimens with non-load carrying welds (Type-X specimens), the HFMI treatment 

resulted in a significant fatigue strength improvement in all cases. The failure mode did not 

change after applying the treatment and consisted of weld toe failure in all cases.  
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 For the specimens with load carrying welds (Type-L specimens), treating the weld toe resulted in 

shifting the failure location from the weld toe to the weld root in most cases. Still, significant 

fatigue life improvements were achieved. The FAT-82 design curve is recommended for the 

nominal stress design of the treated Type-L detail. 

 Constant amplitude fatigue limits (CAFL) of 110 and 48 MPa (nominal stress) for the treated 

Type-X and Type-L specimens, respectively, were found to be reasonable. 

 The current design provisions to account for the benefit of impact treatment were found to be 

rather conservative. Based on a statistical analysis of the test results, m = 5 is recommended to 

determine the equivalent stress range for treated weld toes. Consequently, FAT-180* with m = 5 

is proposed for the structural stress design of treated Type-X details, and FAT-339* with m = 5 

is proposed for the effective notch stress design of treated weld toes. 

 Within the scope of this study, which considered realistic loading histories for steel bridges, a 

frequent occurrence of load cycles with high mean stresses (high R ratios), as seen in the 

investigated VA2 loading history, did not seem to be a crucial factor.  

 It is recommended that a local, e.g. structural stress, approach be used, rather than the nominal 

stress approach, to determine the magnitude of the maximum allowable overload (or underload) 

stress for impact treated welds beyond which the treatment effectiveness is significantly reduced 

due to residual stress relaxation. Based on the results of this study, it is recommended the 

maximum structural stress be limited to 1.15 times the yield strength. 

6.1.3 Testing and Measurements to Determine Model Parameters for Fatigue Analysis 

Several input parameters for the strain-based fracture mechanics model were determined through a 

comprehensive materials testing program, finite element (FE) analysis, and direct measurements. A 

recently developed experimental technique to derive the crack closure parameters and the effective crack 

growth curve with smooth specimen tests was employed for this phase of the research. The following 

conclusions were drawn based on these experiments and measurements: 

 The crack growth parameters derived from the smooth specimen tests were found to be in good 

agreement with the results of direct crack growth tests on compact tension (CT) specimens.  

 Microhardness measurements were conducted on untreated and treated heat affect zone (HAZ) 

material. HFMI treatment resulted in a significant increase in the near-surface hardness. The 

hardness decreased rapidly below the surface to that of the as-welded HAZ at a depth of ~1.2 
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mm. Compressed grain boundaries observed in the images of the near surface microstructure of 

the impact treated welds confirmed the effect of the treatment in this region. 

 The as-received and impact treated weld toe geometries were measured using silicon impressions 

and also using a 3D laser scanner. The finite element (FE) method was then used to determine 

the stress concentration factors (SCFs) at the weld toes. In general, it was found that the two 

techniques for measuring weld toe geometry gave similar results. It is believed that the laser 

scanning technique had not been used previously. It has the advantage of being rapid and it is 

archivable, resulting in an electronic record of the weld toe geometry after treatment. In general, 

impact treatment results in a slight reduction of the SCF at the weld toe. 

 X-ray diffraction measurements revealed that the impact treatment resulted in a significant 

change in the residual stress distribution through the specimen thickness. FE analysis was also 

used to evaluate the residual stress profiles induced by peening treatments, and the results were 

found to compare well with the residual stress measurements. 

6.1.4 Fracture Mechanics Analysis of the As-Received and Impact Treated Welds 

A strain-based fracture mechanics (SBFM) model was used to study the influence of HFMI treatment on 

the fatigue performance of structural welds under in-service variable amplitude (VA) loading conditions. 

The model predictions were validated by comparing the results to the fatigue test results of two different 

types of test specimens under various loading conditions. The model predictions were then used to 

generate design curves. Based on this work, the following conclusions are drawn: 

 Generally, a good agreement was observed between the model predictions and the test results. 

The SBFM model closely predicted the fatigue behaviour of the as-welded specimens of both 

specimen types. While a very good agreement was also observed between the analytical and 

experimental results for the constant amplitude (CA) fatigue tests, the specimens fatigue lives 

under VA loadings were conservatively underpredicted to some extent in the long life regime. 

However, several important trends were still correctly predicted by the model. 

 A good agreement was observed between the analytical and experimental S-N design curves 

when m = 5 was used to calculate the equivalent stress range under VA loading.  

 The SBFM model was used to study the fatigue behaviour of treated welds under several other 

in-service loading histories. It was shown showed that the predicted benefit of the HFMI 
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treatment was highly dependent on the loading characteristics. In particular, periodic tensile 

overloads were shown to decrease the achieved level of the fatigue improvement.  

 A set of single-sloped S-N design curves with m = 5 were proposed for the nominal, structural, 

and the effective notch stress design of the treated weld toes. These curves include FAT*-135 and 

FAT*-182 for the nominal and structural stress design of non-load carrying treated weld toes 

(respectively), FAT*-77 and FAT*-143 for the nominal and structural stress design of load 

carrying treated weld toes (respectively), and FAT*-339 for the effective notch stress design of 

treated weld toes.  

 It is recommended the maximum structural stress be limited to 1.15 times the yield strength. 

 It is highlighted that a complete fatigue analysis of a welded joint with treated weld toes requires 

accounting for all of the possible failure modes, including weld root and base metal failure. 

6.2 Recommendations for Future Work 

The following sections list recommendations for future work resulting from the research presented in 

this thesis, again subdivided into the same four themes as the summary and conclusions. 

6.2.1  Inhibiting Distortion-induced Fatigue Damage in Steel Girders 

 Further research is recommended to assess the performance of the FRP retrofit on full-scale 

girders, including laboratory testing of full-scale girder specimens, FE analysis of actual bridges, 

and field trials.  

 Further work is needed to develop guidelines for the fatigue verification and design of the FRP 

angle and adhesive. The effectiveness of the FRP angle retrofit at extreme high and low 

temperatures needs to be studied, as the adhesive properties may vary disadvantageously under 

severe temperature conditions.  

 An analytical and experimental study of debonding in the adhesive layer is recommended. 

 The proposed FRP retrofit method reduces the stresses in the web gap region, and thus, has the 

potential to be used in conjunction with other fatigue improvement techniques which focus on 

improving the local fatigue properties at the weld toe. Impact treatments are known to be highly 

effective in extending the fatigue lives of welded components, and are found to be particularly 

effective at low stress ranges. Future study of this possibility is recommended.  
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6.2.2  High Cycle Fatigue Behaviour of Impact Treated Welds under In-service VA Loading 

Conditions 

 Further research in the field of high cycle fatigue behaviour is recommended including 

considering other common weld joints and other relevant VA histories. In particular, VA 

histories with severe compressive underloads are recommended for future study. 

 The fatigue tests reported in this thesis were conducted on mild steel samples with a plate 

thicknesses of 9.5 mm (3/8”). Further research is recommended to investigate scale and material 

strength effects on the results and conclusions of the presented research. 

6.2.3 Testing and Measurements to Determine Model Parameters for Fatigue Analysis 

 Conducting a similar materials testing program on other steels is recommended for further 

validation of the methodology described in this thesis and also to contribute to the available data 

for various steel grades and applications. Further investigation of the correlation between the 

hardness of the steel and the crack closure parameters is also recommended. 

 Further extension of the FE analysis of HFMI treatment is recommended. A 2D dynamic FE 

analysis of multiple indentations can simulate the HFMI treatment process more precisely. 

Residual stresses due to welding can also be added to the model for further accuracy. Such an FE 

model could be used to develop an empirical model or another way to quantify the benefits of 

applying residual stress-based post-weld treatments. Having a simple empirical model for 

quantifying the benefit of applying residual stress-based post-weld treatments under load will 

help in determining the fatigue life of repaired components. For instance, using such a model and 

considering the geometry of the welded component, a reasonably accurate on-site estimate can 

be made for a treatment-induced beneficial residual stress magnitude and distribution by 

measuring the groove depth left by an HFMI treatment tool. 

 It is expected that an optimum indentation depth exists for each steel type beyond which further 

treatment does not result in increasing the beneficial near surface compressive residual stresses. 

Further FE and experimental investigations of this idea is recommended. 

6.2.4 Fracture Mechanics Analysis of the As-Received and Impact Treated Welds 

 Further investigation of the systematic under-prediction for the treated welds under VA loading 

is recommended. In particular, the effect of assuming a plane strain state should be further 
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studied. The effects of varying the crack front ratio for different treatment and fatigue testing 

conditions should also be considered in using the fracture mechanics model.  

 The strain-based fracture mechanics model is a powerful tool that facilitates simulation of the 

fatigue behaviour of various welded details under any loading condition. Further development of 

this model is recommended. For example, the model can be modified to consider all modes of 

fatigue failure (including toe, root, and subsurface failures) simultaneously.  
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