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Abstract

We present high-resolution, two- and three-dimensional direct numerical simulations of
laboratory-scale, fully nonlinear internal solitary waves of elevation shoaling onto and over
a small-amplitude shelf. The three-dimensional, mapped coordinate, spectral collocation
method used for the simulations allows for accurate modelling of both the shoaling waves
and the bottom boundary layer. We focus on wave-induced instabilities during the shoaling
and de-shoaling processes. The shoaling of the waves is characterized by the formation of
a quasi-trapped core which undergoes a spatially growing stratified shear instability at
its edge and a lobe-cleft instability in its nose. Both of these instabilities develop and
three-dimensionalize concurrently, leading to strong bottom shear stress. During the de-
shoaling process, the core breaks up and ejects fluid that forms a vortex-rich region near
the down-sloping portion of the shelf. The flow in this region is highly turbulent and the
bottom shear stress is extremely strong. Experiments with a corrugated bottom boundary
are also performed. Boundary layer separation is found inside each of the corrugations
during the wave’s shoaling process. Our analyses suggest that all of these wave-induced
instabilities can lead to enhanced turbulence in the water column and increased shear stress
on the bottom boundary. Through the generation and evolution of these instabilities,
the shoaling and de-shoaling cycles of internal solitary waves of elevation are likely to
provide systematic mechanisms for material mixing and sediment resuspension. These
mechanisms have significant environmental implications on the near-coastal regions of the
world’s oceans.
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Chapter 1

Introduction

Internal waves are waves that exist in the interior, rather than on the surface, of a strat-
ified fluid. A stratified fluid usually contains several layers of fluid of different physical
properties. For example, through temperature and salinity variation, the Earth’s ocean is
a density stratified medium. Indeed, density stratification is the most commonly consid-
ered type of stratification, which can be either discrete (such as a layer of oil on water)
or continuous. For a continuously stratified fluid, the density profile may contain one or
more regions of rapid change, called pycnoclines, that separate the light fluid in the upper
layer from the heavy fluid in the lower layer. Waves propagating horizontally along the
pycnocline are called vertically trapped internal waves. The structure of internal waves is
determined by the location of the pycnocline: waves of depression are associated with a
pycnocline that is centered above the mid-depth of the water column, whereas waves of
elevation occur when the pycnocline is centered below the mid-depth. Because the density
difference within the same fluid is usually much smaller than that across the interface of
two fluids (e.g. air and water), the restoring forces are also weaker. Hence, for the same
amount of energy, internal waves may attain an amplitude much larger than surface wave
amplitudes, and in some cases form a recirculating, or trapped, core.

Internal solitary waves (ISWs) are commonly observed in the Earth’s atmosphere and
oceans. These waves may propagate over a long distance without changing shape (i.e.
they are solitary-like). ISWs with trapped cores can provide a very effective mechanism
for the transport of fluid and materials, and hence have significant environmental impact
on coastal regions of the world’s oceans. Large-amplitude solitary-like waves of elevation
propagating along the ocean bottom were observed on Oregon’s continental shelf (Kly-
mak and Moum, 2003) and in Massachusetts Bay (Scotti and Pineda, 2004). Trapped
cores transporting parcels of fluid and sediments were found in both observations. Since



waves of elevation are formed close to the ocean bottom, they may contain trapped cores
interacting directly with the bottom boundary layer (BBL). They are thus expected to
provide potential for significant material mixing across the BBL and in extreme cases, sed-
iment resuspension. ISW-induced mixing and resuspension was observed on the California
Shelf (Bogucki et al., 1997), where the wave passage was accompanied by an increased
concentration of particulates in the water column. Since the near-bottom current speed
was much lower than the traditionally expected threshold value for sediment resuspension,
this observation suggests that the ISW and ISW-induced unsteady flow can potentially be
responsible for both mixing and resuspension.

Lamb (2002, 2003) showed that the formation of ISWs with trapped cores is closely
connected to the limiting behaviour of these waves. According to the fully nonlinear theory
(details will be discussed in section 2.2), the maximum displacement of the pycnocline (i.e.
the maximum amplitude) of the wave cannot exceed the mid-depth of the water column.
Hence, large-amplitude waves are usually broad, having a nearly horizontal flow in their
center. Such a flow is called a conjugate flow, and the limiting behavior of the wave in
this case is called the conjugate-flow limit. However, if the maximum horizontal current in
the wave exceeds the wave propagation speed, then the wave is said to reach the breaking
limit and a trapped core will be formed. A large-amplitude solitary wave can reach the
breaking limit if there is significant stratification at the relatively thinner layer (i.e. the
bottom layer in the case of waves of elevation or the surface layer in the case of waves
of depression). In contrast, waves are usually conjugate-flow limited when the surface (or
bottom) layer is well mixed.

In addition to the stratification, other properties of the flow field such as the presence
of a background current may also affect the limiting behavior of internal waves. Stastna
and Lamb (2002) found that, for a given stratification, the presence of a shear background
current does not only change the wave’s width and propagation speed, but also affects the
nature of the upper bound on wave amplitude. In other words, waves that may be broad-
ening limited without a background current could be breaking limited with a background
current and vice versa.

While the theoretical description of trapped cores suggests that they are fairly quiescent
(Derzho and Grimshaw, 1997), during their formation, these cores may generate hydrody-
namic instabilities. Two-dimensional numerical simulations suggest that shear instability
(Helfrich and White, 2010; Carr et al., 2012) and boundary layer instability (Diamessis
and Redekopp, 2005; Stastna and Lamb, 2008) can occur in both waves of elevation and
depression. The shear instability occurs along the edge of the cores and takes the form
of Kelvin-Helmholtz billows, leading to fluid exchange between the cores and the ambient
flow. The boundary layer instability can cause elevated levels of bottom shear stress and



a periodic shedding of coherent vortex structures, thereby contributing to the sediment
resuspension and mixing in the water column. We should point out though, it is unclear
to what extent these instabilities may develop in three dimensions. In fact, depending on
the model setup, three-dimensional flows may behave significantly differently from their
two-dimensional counterparts.

The shoaling of internal waves over bottom topography is one of the most important
mechanisms responsible for the generation of wave-induced instabilities. In the laboratory
experiments performed by Boegman et al. (2005), high-frequency internal wave breaking
was observed along sloping topography, which led to energy transfer from the wind-forced
basin-scale motions to the turbulent motions. Aghsaee et al. (2012) showed, using two-
dimensional numerical simulations, that for waves of depression, boundary layer instability
in the form of separation bubble bursting that leads to vortex shedding can be generated
during shoaling. The instability can eventually reach the pycnocline, modifying the wave
breaking mechanism, though it is unclear to what extent three-dimensional effects will mod-
ify this observation. For periodically forced internal waves, three-dimensional simulations
performed by Venayagamoorthy and Fringer (2007) suggest that interaction of shoaling
waves with the bottom topography results in the formation of upslope-surging vortex cores
of dense fluid, the so-called internal boluses, that propagate as gravity currents onto the
shelf. Behaviour typical of gravity currents, such as the lobe-cleft instability, is observed
in these boluses. The generation of lobe-cleft instability is driven by the propagation of
the gravity current head (or the bolus) together with the presence of a density gradient
in the BBL. A detailed investigation on the lobe-cleft instability is given in Hartel et al.
(2000a,b), and these papers will be discussed in the relevant sections of chapter 4.

Even if the presence of bottom topography does not lead to a shoaling wave, it can
still alter the behavior of the wave and wave-induced instabilities. The interaction of ISWs
with a step topography were studied in Maderich et al. (2010) and Talipova et al. (2013)
using two-dimensional simulations. Waves of depression were considered in the first paper,
which suggests that the wave-step interaction leads to strong eddy generation such that the
fluid from below the step is mixed into the layer overlying the step. In the second paper
where the results are extended to both waves of depression and elevation, quantitative
measurement of energy loss of due to wave-bottom topography interaction is calculated
for different regimes. For smooth topography with much more gentle slopes, Harnanan
et al. (2015) performed three-dimensional simulations and showed that there exist two
qualitatively different modes of instability. The first is a separation instability, which leads
to strong, localized vortex roll-up. This instability has a qualitative similarity to that in
Maderich et al. (2010) and Talipova et al. (2013), though is far less violent. The second
type of instability over broad topography that is far more typical of the field is a vortex



roll up instability. The ISW-induced BBL jet, which occurs behind the wave body, rolls
up after the main wave body passes over the hill, leading to enhanced bottom shear stress,
systematic pumping of fluid out of the BBL, and secondary vorticity production.

1.0.1 Plan of Thesis

This thesis will contribute to the study of ISWs propagating over bottom topography. Fully
nonlinear mode-1 waves of elevation are simulated using high-resolution two- and three-
dimensional simulations based on a spectral collocation method. Both the shoaling and
de-shoaling processes of the waves are studied. As the wave shoals, it forms a quasi-trapped
core, which undergoes a spatially growing stratified shear instability at its edge and a lobe-
cleft instability in its nose. Both of these instabilities develop and three-dimensionalize
concurrently and enhance the bottom shear stress. During the de-shoaling process, the
core breaks up and the fluid ejected from the core forms a vortex-rich region near the down-
sloping portion of the shelf, in which the flow is highly turbulent and the bottom shear
stress is extremely strong. The influence of a rough bottom boundary on the behaviour of
shoaling waves is also studied.

The remainder of the thesis is organized as following. Chapter 2 outlines the theory of
internal waves and briefly describes the numerical model used in this study. The model
setup and two-dimensional simulations with different background stratifications is discussed
in chapter 3. Three-dimensional simulations of two particular cases are performed and
discussed in chapter 4. Chapter 5 summarizes findings of this study and proposes future
research directions.



Chapter 2

Theoretical Background and
Computational Approach

In the study of fluid dynamics, three approaches have been most commonly used: mea-
surement (including field observations and laboratory experiments), theoretical analysis
and numerical simulation. In this chapter we shall focus on the theoretical and numerical
approaches and provide some fundamental tools for analyses to be discussed in this thesis.

The equations governing fluid flows are highly nonlinear, and thus have no analytical
solutions in general. For this reason, theoretical analysis is usually classified as one of the
three categories: linear theory, fully nonlinear theory and weakly nonlinear theory. In the
linear theory, all nonlinear terms in the governing equations are eliminated in order to make
the equations solvable. In other words, the nonlinear effect in the fluid flow is assumed
to be negligible. Since this assumption is rarely true in the real world, in most cases
results predicted by the linear theory do not agree with measurements. Nevertheless, it
does provide some useful insight into the properties of fluid flows. For example, consistent
concepts such as phase and group velocity (Kundu et al., 2012, section 7.5) as well as other
mathematical machinery are developed from the linear theory.

On the contrary, fully nonlinear theory does not make any assumptions with respect
to nonlinearity, and hence the governing equations can only be solved numerically. When
performed correctly, numerical simulations can provide fairly accurate results. There are
limitations as well, primarily due to the available computational resources. Until relatively
recently, well-resolved simulations of nonlinear flows are restricted to two dimensions, espe-
cially at scales relevant for environmental flows. Even with today’s computational power,
three-dimensional simulations are still time consuming, and the output data may require



gigabytes or even terabytes of storage space. In fact, the nonlinearity is one of the key fac-
tors that makes simulations computationally expensive, because the range of length scales
presented in the fully nonlinear theory is often very large.

For flows in which nonlinear effects only play a secondary role, weakly nonlinear theory
is the alternative to fully nonlinear theory. For uni-directional wave propagation with rel-
atively small amplitude, the Korteweg-de Vries (KdV) equation (Korteweg and de Vries,
1895) is probably the most widely used weakly nonlinear model. Derived using the asymp-
totic theory, the KAV equation is a nonlinear partial differential equation (PDE) that can
be solved exactly. As such, the mathematical significance of the KdV theory perhaps out-
weighs its importance in the application of fluid dynamics. However, similar to any other
weakly nonlinear models, we can only expect the KdV equation to perform well within a
restricted set of problems. The solutions of the KdV equation for large amplitude waves
have been shown to be different from wave forms predicted by the full set of governing equa-
tions. For details of the KdV theory and a comparison with the fully nonlinear theory, see
e.g. Lamb and Yan (1996); Lamb (1999).

In this chapter, we will derive internal wave theory based on the fully nonlinear theory,
and briefly outline the numerical model used in this work: Spectral and Pseudo-spectral In-
compressible Navier-Stokes Solver (SPINS). The theory of shear instability and the method
for computing the bottom shear stress will also be introduced in this chapter.

In this work, the numerical simulations are performed on the laboratory scale. The
fluid (i.e. water) is assumed to be incompressible and the effect of the Earth’s rotation
is neglected. Also, we will only consider the Cartesian coordinate system, such that the
position and velocity vectors can be expressed as @ = (x,y, z) and u = (u, v, w), respec-
tively. More specifically, the x, y and z axes are directed along the streamwise, spanwise
and vertical directions, respectively. Along the z-axis, the upstream direction is defined as
the direction toward which the wave propagates (i.e. ahead of the wave, which is positive
infinity in our simulations), and the downstream direction is defined as the reverse direc-
tion. The z-direction is also called the along-topography direction, since we will consider
bottom topography in the z-direction only. Unless otherwise specified, the surface of the
fluid is always fixed at z = 0.



2.1 Equations of Fluid Motion

Under the Boussinesq approximation, the incompressible Navier-Stokes equations are (Kundu
et al., 2012)

Du

i = —Vp + pg +vV3u, (2.1a)
V-u =0, (2.1b)

Dp 2

= _ 2.1

D = VP (2.1c)

where D /Dt is the material derivative defined by

D 0]

Dt—at—l—u«v. (2.2)
Equation (2.1a) is the momentum conservation equation, where u is the fluid velocity, p
is the density, p is the pressure, g = (0,0, —g) with g ~ 9.81 m?/s is the gravitational
acceleration and v is the kinematic viscosity. Note that in this equation both p and p are
scaled by some reference density py, and the dynamic viscosity p is defined by u = pov.
Equation (2.1b) is the continuity equation which describes the conservation of mass for an
incompressible fluid. Equation (2.1c) describes the conservation of energy, where « is the
mass diffusivity.

The Boussinesq approximation (Kundu et al., 2012, section 4.9) states that the density
variation of an incompressible fluid can be neglected except in the gravity term, provided
that the density different in the fluid is small and the vertical length scale is relatively
small. It is applicable in environmental and geophysical fluid flows of water where the
horizontal length scale is usually much larger than the vertical length scale. The Boussinesq
approximation will be used throughout this thesis.

An important concept derived from the governing equations is vorticity dynamics. Vor-
ticity is a vector that measures the circular motion (i.e. rotation) of fluid particle. The
vorticity field of the flow, denoted by w, is defined by the curl of the velocity:

w=V Xxu. (2.3)

Similarly, the vorticity equation is obtained from the curl of the momentum equation:

D
F": = (w-V)u +vViw+V X pg. (2.4)



In this equation, the term (w - V)u represents the stretching and tilting of vortex lines,
vV2w represents the vorticity production due to viscosity, and V x pg is the baroclinic
vorticity. This equation states that the rate of change of vorticity Dw/Dt is determined
by the combined effect of these quantities.

We shall also introduce the buoyancy frequency N(z), the frequency at which a ver-
tically displaced parcel will oscillate within a stratified fluid when it is in hydrostatic
equilibrium. The square of the buoyancy frequency is defined by

) dp

N*(z) = 7.9 (2.5)
where p is the background or unperturbed density distribution and is a function of z only.
Note that for simplicity and consistency, p is also nondimensionalized by the reference
density pp, so that the term 1/py in the standard definition of N? does not appear here.
The buoyancy frequency measures the strength of the stratification: a strong stratification
yields a rapid change in the density field and hence a large value of N2, whereas a weak
stratification leads to a small variation in p and hence a small N?. Note that in a stably
stratified fluid, dp/dz < 0 for all z so that N? is always positive. If dp/dz > 0, then the
stratification is unstable and instabilities may occur.

In two-dimensional flows, additional features are present such that many theoretical
analyses can be further simplified. For example, the two-dimensional continuity equation
can be written as

Uy +w, =0, (2.6)

which is identically satisfied with the introduction of a stream function ¥ (zx, z) such that
(u,w) = (¢, —1,). Hence, the velocity field can be represented by a single variable and
the problem is thus simplified. Here and henceforth, we use subscripts to denote partial
derivatives in scalar equations, unless otherwise specified. As another example, consider
the vorticity field of a two-dimensional flow, in which the only non-zero component is

w=u, —w, = V. (2.7)
The vorticity equation (2.4) also reduces to a single scalar equation:
Wi + uwy + ww, = V(Wep + Wss) + Prg. (2.8)

With these properties, theoretical analyses of fluid flows are much easier to carry out in
two dimensions. In the remainder of this chapter, the theories of internal wave and shear
instability will be presented in two dimensional domains.



While the above equations are in dimensional forms, physical properties of fluid flows
are independent of the units imposed on the variables. In the study of fluid dynamics,
dimensional analysis provides an important technique for problem simplification and scaling
analysis. The Reynolds number, defined by

Re = vL (2.9)
v

where U and L are the characteristic velocity and length scales, is the most commonly
used dimensionless number. It measures the ratio of the inertial force to the viscous force.
A small Reynolds number means that the inertial force is relatively small and the the
viscous force is important in determining the flow properties, whereas a large Reynolds
number suggests that the viscous effect is negligible compared with the inertial force.
Therefore, small Reynolds numbers are often associated with viscous flows, while large
Reynolds numbers are typically found in turbulent flows. The choice of L depends on
the context of the problem. For example, the length scale of the flow away from rigid
boundaries is usually much larger than that within boundary layers, and hence for flows
away from boundary layers the viscous effect can be neglected. With this assumption, the
viscous term can be dropped and equation (2.1a) simplifies to the Euler equation under
the Boussinesq approximation:

= —Vp+pg. (2.10)

Dimensionless numbers other than Re are also important tools to characterize different
flow properties. They will be defined and analyzed where necessary in the thesis.



2.2 Dubreil-Jacotin-Long Equation

Though the equations governing fluid flows are not directly solvable, simplification can
be made under certain circumstances. In the context of internal wave dynamics, such
simplification leads to the Dubreil-Jacotin-Long (DJL) equation (Dubreil-Jacotin, 1932;
Long, 1953), a single nonlinear PDE for the isopycnal displacement. The DJL equation
is equivalent to the full set of stratified Euler equations, and hence its solutions are exact
solitary wave solutions. In this section, we will derive the DJL equation for Boussinesq
fluids in a zero background current, as this is the case that will be considered throughout
the thesis. Derivations of the DJL equation for Boussinesq fluids in a sheared background
current and non-Boussinesq fluids in a constant background current were presented in
Stastna (2001) and Soontiens (2013).

Consider the ISW propagating horizontally with a speed ¢ in the two dimensional
domain shown in figure 2.1. The domain has a finite depth with the top and bottom
boundaries located at z = 0 and H (where H < 0), respectively, and an infinite length in
the horizontal direction. The wave is characterized by the isopycnal displacement 1. An
isopycnal is an isoline along which the density is constant, and the isopycnal displacement
measures the displacement of an isopycnal from its undisturbed state. Suppose that the
density of the fluid in the far field, denoted by p(z), is undisturbed and is a function of z
only, then the isopycnal displacement has the limiting behavior

lim 7n(z,z) =0, (2.11)

r—F00

and the density profile in the near field can be described as

One of the key properties of solitary waves is that they can travel over a long distance
without changing shape. In a reference frame co-moving with the wave, the flow is steady,
and all dependent variables can be expressed as functions of x — ¢t and z. Let u be the
horizontal velocity of the flow relative to ¢, and assume that k = 0, the steady-state version
of the Euler equations under the Boussinesq approximation are

Ully + WU, = —Pyg, (2.13a)
uw, + ww, = —p, — pg, (2.13Db)
upy +wp, =0, (2.13¢)

Uy +w, = 0. (2.13d)
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c: wave speed
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Isopycnal n: isopy<nal displacement

H

Figure 2.1: Schematic diagram of internal solitary wave propagation.

Note that this setup is equivalent to a stationary wave in a constant background current
of speed —c. With the stream function and the vorticity field introduced in the previous
section, we can rewrite equations (2.13) in the equivalent form:

¢zwx - wxwz = Pz9, (214&)

To proceed, we shall introduce the Jacobian operator J(a,b), which is defined by the
determinant of the Jacobian matrix of a and b:

J(a,b) = ab, — a,b,. (2.15)
It has several properties:

1. J(a,b) = 0 implies that a and b are dependent;

2. for general functions f, g and u and constant \,

J(fu) + (g, u) = J(f + g,u),
JAfu) = A (f,u),

i.e. the Jacobian operator is linear;

3. by the chain rule,

J(f(u)g,u) = f(u)J(g,u),
J(g, f(w) = f'(u)J(g,u) = J(f'(u)g,u),

where the primes denote the ordinary derivatives.

11



Then, equations (2.14) can be further rewritten as

J(V2,9) = peg, (2.16a)
J(4, p) = 0. (2.16D)

The fact that V2 = w follows from equation (2.7).

Recall from equation (2.12) that the density field can be described as a function of a
single variable (z — n). Thus, by property 3 of the Jacobi operator, equation (2.16b) can
be written as

plz=m)JW,z=n)=0, (2.17)

which implies that 1) is a also function of (z —n), assuming g’ # 0 everywhere in the fluid.
Note that without the presence of a background current, the velocity field has the limiting
behavior

xkriloo(u, w) = (—¢,0), (2.18)
which implies that
tim_ (= — ) = ¥(z) = —c= 219)

Thus, the explicit form of the stream function is
(2 =n) = —c(z =n). (2.20)
With this expression, equation (2.16a) can be written as
J(=V?n, 2 —n) — p.g = 0. (2.21)
Since p, = —J(2,p) = —J(p'(z —n)z,2 — 1), we can further rewrite equation (2.21) as
J(=VPn, 2 —n) + J(pgz,z —n) = J(=AV?n+ plgz, 2 —n) =0, (2.22)
and this implies that
—VA + gz = Gz — 1) (2.23)

for some function GG. The explicit form of G can be determined by considering the limiting
behavior n = 0 as x — 00 again:

G(z) = lim (—=c*V?n+ plgz) = plgz, (2.24)

r—+o00
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or equivalently,

G(z—n)=pg(z—n). (2.25)
Then, with some algebra, equation (2.23) becomes

N?(z —n)

V2 + S 1=0, (2.26)

where N?(z — ) is the square of the buoyancy frequency.

Equation (2.26) is the DJL equation for a Boussinesq fluid with a zero background
current. Even though it is much simpler than the Euler equations, it is still a fully nonlinear
PDE. To the best of the author’s knowledge, the DJL equation has no analytical solution,
except in the special case of a linear stratification (i.e. N? is constant) such that equation
(2.26) reduces to a linear PDE. In the present work, the DJL equation is solved numerically
using the method described in Dunphy et al. (2011).

13



2.3 Numerical Method and Model Description

Despite the fact that the DJL equation simplifies the full set of Euler equations to a single
PDE while preserving the nonlinearity of fluid flows, it also poses its own challenges. First
of all, the DJL equation is derived from the steady-state theory, which does not describe any
temporal variation in the fluid flows. Second, the DJL theory is limited to inviscid flows,
and hence it only applies to flows away from the boundary layer but features relevant
to boundary layer instabilities are absent. For these reasons, the numerical simulations
presented in this study employ the full set of the stratified incompressible Navier-Stokes
equations under the Boussinesq approximation, whereas the solutions of the DJL equation
are used to initialize the numerical simulations, i.e. as the initial conditions only.

The numerical model SPINS is developed as a PhD project by Christopher Subich.
While this section only provides a brief introduction, a complete description of the model
can be found in his thesis (Subich, 2011) and a companion paper (Subich et al., 2013),
where a detailed validation and accuracy analysis through several test cases is also given.
The model employs a three dimensional spectral collocation method, which yields highly
accurate results at moderate grid resolutions. One of the key features of this model is the
grid mapping technique, which allows problems with irregular (though relatively smooth)
bottom topography to be solved by transforming the physical domain into a rectangular
computational domain. The spatial discretization is implemented with both the Fourier
expansion and the Chebyshev polynomial as appropriate for boundary conditions and
domain mapping. In the vertical direction, the Chebyshev discretization is applied if no-
slip boundary conditions or coordinate mapping is used. The Chebyshev points are defined
by (Trefethen, 2000, chapter 5)

gjzcos(—j), j=0,1,....N (2.27)

on the computational grid £ € [—1, 1], where N is the number of grid points. The Cheby-
shev discretization does not only avoid the Runge phenomenon commonly found in poly-
nomial interpolations using equally spaced grid, but also naturally clusters points in the
boundary layers where instabilities are more likely to develop. In the horizontal directions,
the choice of spectral expansion is more flexible. It can be the Fourier discretization for
periodic boundary conditions, the sine/cosine discretization for free-slip boundary condi-
tions, or the Chebyshev polynomials for no-slip boundary conditions. For time stepping,
the model uses the adaptive third-order Adams-Bashforth method. Compared with other
lower order methods, it requires little additional computational cost but significantly in-
creases the accuracy.

14



2.4 Shear Instability

Stratified shear instability occurs when there is sufficient horizontal velocity shear in a
stratified fluid. It is characterized by the Kelvin-Helmholtz billows growing in the shear
layer, and is also commonly called the Kelvin-Helmholtz instability. It is ubiquitous in the
atmosphere and the ocean, and is easy to generate in the laboratory using a tilted tube
(e.g. Thorpe, 1971). This section will provide the inviscid linear stability analysis leading
to the Taylor-Goldstein (TG) equation (Miles, 1961; Drazin and Howard, 1966) and the
criteria for determining the linear stability. The influence of viscosity on the stability of
a stratified shear flow is beyond the scope of this study, an investigation on this topic is
provided in Defina et al. (1999).

Consider the two dimensional inviscid stratified parallel shear flow whose background
profiles of the horizontal velocity U(z) and density p(z) are illustrated in figure 2.2. The
total velocity, density and pressure profiles are given by

u = (U(2),0) + e(u, w), (2.28a)
p=p(z)+ep, (2.28b)
p=npu(z) +ep, (2.28¢)

respectively, where pg(2) is the hydrostatic pressure and the O(¢) terms represent pertur-
bations to the background states (e is an infinitesimally small parameter). Then, the total
vorticity w can be expressed as

w=U,+ e, (2.29)

where U, is the background vorticity and w’ = u, — w, is the perturbation vorticity.

Under the Boussinesq approximation, the O(e) equations of the Euler equations (as-
suming k£ = 0) are given by

u + Uuy + wU, = —pl, (2.30a)
w; + Uw, = —pl, — p'g, (2.30b)

oy + Upl, +wp, =0, (2.30c)
Uy +w, = 0. (2.30d)

The O(e) vorticity equation, obtained by taking the curl of the momentum equations, is

wy + Uwl, +wU,, = plg. (2.31)
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Figure 2.2: Background profiles of (a) the horizontal velocity and (b) the density for a
two dimensional inviscid stratified parallel shear flow. The resulting Richardson number is
shown in (¢) with the dashed line indicating the critical Richardson number Ri = 0.25.

Here, the term w; represents the rate of change of vorticity in time, Uw!, represents the
horizontal advection of the perturbation vorticity, and wU,, represents the vertical advec-
tion of the background vorticity. Equation (2.31) states that the sum of these physical
quantities is balanced by the baroclinic vorticity production p! g.

If we define the stream function from the perturbation velocity such that (u,w) =
(¢., =) and ' = V21, then equations (2.30c) and (2.31) can be rewritten as

N2
oy +Upl, + %7 =0, (2.32a)

where N? is the squared buoyancy frequency. We shall adopt the method of normal modes
(Kundu et al., 2012, section 11.2) by assuming plane wave solutions of the forms

Pz, z,t) = d(z)e*@=et), (2.33a)
(w, 2,1) = ¢2)e™ ), (2:33b)

where ¢(z) is the vertical structure of waves of disturbance. To investigate the temporally
growing instability, we assume that the wave number £ is real and known, and the phase
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speed ¢ is complex and unknown (here ¢ is not the ISW propagation speed). Substituting
the normal modes into equations (2.32) and canceling the common factors, we obtain

2

N
—ed +dU + = =0, (2.34a)

—(uz — K20) + Uz — K2¢) — Unutp = dy. (2.34b)

These two equations can be further rearranged and combined together, in a process that
yields the TG equation

2 ¢N?
(U - C)(¢ZZ —k ¢) - ¢Uzz + U—_¢c = 0. (235)
The boundary conditions for the TG equation are the no normal flow conditions given by
¢(H) = ¢(0) = 0. (2.36)

The TG equation governs the behavior of perturbations in a stratified parallel shear
flow and provides some general stability criteria. The stability of the flow is determined
by ¢ such that, if the imaginary part of ¢ is positive, then the solutions of p' and ¢ will
grow exponentially with respect to time, until the nonlinear effect becomes dominant. A
well known criterion for determining the linear stability of an inviscid stratified flow is the
Richardson number (sometimes called the gradient Richardson number), defined by

N2
It measures the ratio between the strength of the stratification and the shear stress. A
sufficient condition for the flow to be linearly stable is that the local Richardson number
exceed 0.25 throughout the flow (Miles, 1961; Howard, 1961), but Ri < 0.25 does not
mean the flow is necessarily unstable (the criterion is not sufficient). When the flow is not

a parallel shear flow, the meaning of Ri is not clear. Note that the instability may also
grow spatially, provided that k is complex and the imaginary part of k is negative.

Ri (2.37)

2.4.1 Numerical solutions

We shall solve the TG equation numerically using the Chebyshev polynomials. Consider
equations (2.34) rewritten in the equivalent form

N2p(2) + Ugd(z) = cgd(2), (2.38a)
[U(02 = k) = U..]é(2) — gd(2) = (02 — k*)o(2), (2.38b)
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and the grid mapping defined by

1 2
=_-H(1- =1—-— 2.
2=3 (1-¢) <<= ¢ 7> (2.39)
where z € [H,0] and £ € [—1,1]. Let D? be the second order Chebyshev differentiation
matrix (Trefethen, 2000, chapter 6) with the first and last columns and rows removed (since
we have homogeneous Dirichlet boundary conditions here and thus these entries do not
contribute to the final solutions), and I be the identity matrix, we can write the Chebyshev

discretization of the linear operator (92 — k?) in equation (2.38b) as

4
L= mD2 — k1. (2.40)

The coefficient of D? follows from the fact that
2
0. — €0, — — 20 2.41
£.0 7% (2.41)

implied in the mapping (2.39). Suppose other variables are also evaluated at the Chebyshev
points &; defined in (2.27), then the Chebyshev discretization of equations (2.38) becomes
a single eigenvalue problem, whose matrix form is given by

(oo B ()= 0 (%) i

where 0 denotes the zero matrix, and bold symbols denote the square diagonal matrices
with the elements of the corresponding vectors on the main diagonal.

As an example, consider the background velocity and density profiles given by

—05H
U(z) = 0.1 tanh (—Z o ) (2.43)
0.5H —
p(z) =1+ 0.01 tanh(le), (2.44)

as plotted in figure 2.2. Note that here the bottom boundary is located at H = —0.2, and
the density profile implies that the pycnocline is located at z = 0.5H and has a thickness
of 0.01. The corresponding Richardson number plot suggests that the instability may be
generated at the shear layer located at z = —0.1.

To find the fastest growing wave of disturbance, 30 different wavelengths ranging from
0.1 to 0.35 are tested. The wave number k is defined from the wavelength A such that

_27T

k= (2.45)
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Figure 2.3: Perturbation profiles of the shear flow. Panel (a): growth rate of waves of
disturbance versus wave length. Panel (b): real part of the stream function corresponding
to the fastest growing wave, determined by equation (2.46).

The growth rate is determined by c¢;k where ¢; is the imaginary part of the eigenvalue c.
For each wavelength, only the eigenvalue with the largest imaginary part is relevant in
determining the largest growth rate. These growth rates are plotted against their wave-
lengths in figure 2.3 (a), from which the wavelength that yields the fastest growing wave
can be determined. Assuming a steady state solution (i.e. ¢ = 0), the real part of the
stream function (2.33b) for this fastest growing wave is given by

R(¢) = ¢, cos(k™x) — ¢;sin(k™x), (2.46)

where k* is the wavenumber of the fastest growing wave and ¢, and ¢; are the real and
imaginary parts of the vertical structure function ¢(z), respectively. This quantity is
plotted as filled contours in the two dimensional domain shown in figure 2.3 (b), where a
horizontal shear layer can be clearly seen at z = —0.1.
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2.5 Bottom Shear Stress

An interesting and important feature of shoaling ISWs is that they can interact with
the bottom boundary, resulting in boundary layer instabilities and material mixing. The
bottom shear stress provides a useful diagnostic in the analysis of such interaction. This
section will derive the formula for determining the shear stress on bottom boundaries with
relatively smooth topography using the Cauchy’s stress theorem.

The Cauchy’s theorem (Kundu et al., 2012) states that the traction force ¢ on a surface
(i.e. the bottom boundary) due to fluid motion is given by

t(x;n) = 7(x)n, (2.47)
where

2uuy —p pluy +vg)  p(us +wy)
T= | pluy +vs)  2pvy—p  plve +wy) (2.48)
,U(uz + wm) /’L(/Uz + wy) 2:uw2 -p

is the Cauchy stress tensor for incompressible fluids (Kundu et al., 2012, equation 4.35),
and 7 is the unit normal vector. The shear stress, denoted by %, is defined by the tangential
component of the traction force:

ts = (to, ty) =t (54, 5,), (2.49)

where t, and ¢, are directed along the streamwise and spanwise directions, respectively,
and 5, and §, are the unit normal vectors. Note that although the subscript x is used
here, s, is not necessarily parallel to the x-axis if bottom topography is present in the x
direction. For example, suppose the bottom topography is specified by z = H(z) for some
function H, then these unit vectors are given by

1 —H'(x) 1 1 0
n=——— 0 , Sy = —Y—— 0 , and §,= [1], (2.50)
1+ H'(z)? 1 VIHH @) | (s "o
and the resulting bottom shear stress can be written explicitly as
to(z,y, H(z)) = #W[ZH’(JJ)(@UZ —up) + (1 — H'(2)?) (s + wy)], (2.51a)
1
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Note that since the no-flux and no-slip boundary conditions are used throughout this thesis
and the bottom topography is a function of x only, all y-derivatives of the velocity field
are necessarily zero along the bottom boundary and are thus dropped in equation (2.51).
When the bottom boundary is flat, we have H'(xz) = 0 and w, = 0, and hence equations
(2.51) reduce to

ty = pu,, and t, = pv,. (2.52)

Also note that in two dimensions, since there is no y-velocity, the bottom shear stress is
determined by equation (2.51a) only.

We shall mention that it is extremely expensive to compute the entire derivative field
of w in three dimensions. Nevertheless, equations (2.51) suggest that, without spanwise
variation of the topography, the bottom shear stress is independent of any y-derivatives of
the velocity field. Hence, for each grid point in the y-direction, only the two-dimensional
derivative field on the x-z plane is relevant. Taking advantage of this fact, an algorithm
has been developed to solve for the bottom shear stress as a two-dimensional problem
recursively. Although it may be slower, compared with the method that tries to compute
the entire derivative field it is much more memory efficient and computationally stable.
This technique will be used in the remaining chapters to analyze the evolution of bottom
shear stress due to wave passage, as well as the wave-induced instabilities.
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Chapter 3

Model Setup and Two-Dimensional
Simulations

The breaking of nonlinear internal waves and the formation of trapped cores has been
considered by a number of authors using numerical simulations, laboratory experiments
and field measurements. While the majority of past work has examined waves of depression
(e.g. Lamb, 2002, 2003; Aghsaee et al., 2012; Carr et al., 2012) as they are commonly
observed in oceans and deep lakes, waves of elevation, which occur when the pycnocline
is below the mid-depth, are more typical of shallow waters such as near-coastal regions
(e.g. Klymak and Moum, 2003; Scotti and Pineda, 2004). In these waves, a trapped core is
formed close to the ocean bottom and interacts directly with the bottom boundary layer.
For this reason, waves of elevation are expected to provide a more effective mechanism for
material mixing and sediment resuspension than waves of depression.

In the present work, numerical simulations of laboratory-scale ISWs of elevation shoal-
ing onto a small-amplitude shelf are performed in both two- and three-dimensions. This
chapter focuses on the two-dimensional simulations. The mechanism responsible for the
generation of instabilities during the waves’ shoaling is examined through the variation of
stratification. The behavior of the shoaling wave over bottom topography with short length
scale undulations is also studied. In particular, four cases with different stratification and
bottom topography are discussed in detail. Before presenting the simulation results, the
model setup and parameter space is outline in a separate section.
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3.1 Model Setup and Simulation Parameters

The two-dimensional (henceforth 2D) simulations are performed in a mapped rectangular
domain with an overall length L, =7 m and a depth L, = 0.2 m. The surface of the fluid
is located at z = 0, and the bottom boundary is chosen to represent an asymmetric, small
amplitude shelf, which has a maximum height AH = 0.025 m located at z. = 6 m. The
functional form of the bottom topography is given by the skewed Gaussian distribution

H(x) = —L, + AHe " @1 + ¢(x)], (3.1a)

where h(x) is defined by

~0.5(z = x.))?, if v < x,
h(x) = {[0.5(x — 2 )2+ 0512(x — z.)]®, if x> ., (3.1b)

and e(x) is either zero or 0.1sin(207mx) depending on the smoothness of the bottom bound-
ary. For all simulations, periodic boundary conditions are used in the z-direction, and
no-flux and no-slip boundary conditions are used in the z-direction. As appropriate for
these boundary conditions, the Fourier series expansion is used in the = direction and the
Chebyshev discretization is applied in the 2z direction. The grid size, denoted by N, x V., is
6144 x 256. This gives a constant horizontal grid spacing of about 1 mm and a varying ver-
tical grid spacing of less than 2 mm at the mid-depth with clustering near the boundaries,
so that any instabilities along the bottom boundary can be well resolved.

We focus on flows in a quasi two-layer stratification with a dimensionless density differ-
ence Ap = 0.02, for which the Boussinesq approximation can be adopted. The background
density profile, non-dimensionalized by the reference density py = 10® kg/m3, is given by

_ Z = 20
p(z) =1 0.5Aptanh< 05d ), (3.2)
where zy is the location of the pycnocline, and d is the thickness of the pycnocline. For
the 2D simulations, d is fixed at 0.02 m, while three values of z; are used: —0.1725 m,
—0.16 m and —0.15 m. The parameter space is summarized in table 3.1. The viscosity
and diffusivity are fixed at v = x = 107% m?/s, which give a Schmidt number Sc = 1.
The Schmidt number, defined by S¢ = v/k, measures the ratio between the momentum
diffusivity (i.e. viscosity) and the mass diffusivity.

Each simulation is initialized with a single mode-1 solitary wave, specified by interpo-
lating a solution of the DJL equation onto the left half of the domain (i.e., from = = 0 to
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Figure 3.1: Schematic diagram showing the computational domain and model setup. The
origin is fixed at the upper left corner of the domain, and the unit for both axes is meter.
The bottom topography is given by equation (3.1) with the crest located at (z,z) =
(6,—0.175) m. The pycnocline is centered at z = zy m and has a thickness d = 0.02 m.
The initial wave propagates to the right at a speed c.

Simulation Topography Pycnocline Wave Parameters
6(1’) 20 Tlmax C Unin Umax Wmax

(m) (cm) (cm/s) (em/s) (cm/s) (cm/s)

Base Case 0 —-0.1725  6.69  9.26 —6.85 8.17 2.83
Medium 0 —0.16 2.95  9.35 —5.78  6.50 1.83
Higher 0 —0.15 5.09  9.38 —5.01 5.38 1.23
Rough 0.1sin(207x) —0.16 2.95  9.35 —5.78  6.50 1.83

Table 3.1: List of parameters for 2D simulations, where 7y, is the maximum isopycnal
displacement which measures the wave amplitude, and ¢ is the ISW propagation speed. The
minimum values of w is equal to —wy.x by symmetry. All wave parameters are obtained
from solutions of the DJL equation and are for the initial waves only (i.e. at ¢t = 0 s).
Parameters fixed for all simulations are not shown here.

3.5 m). A schematic diagram of the model setup showing the initial wave and the bottom
topography is given in figure 3.1. The Reynolds number, based on the channel half-depth
and the wave propagation speed (see table 3.1), is approximately Re = 10*. Also shown
in table 3.1 is that, in all simulations, the maximum horizontal velocity uy., is less than
the wave propagation speed. According to the classification of ISW upper bounds in Lamb
(2003), this suggests that none of the initial waves reach the breaking limit and thus no
trapped core is initially present.
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3.2 The Base Case

In the basic 2D case, the center of the pycnocline is located at zgp = —0.1725 m. Note that
since the crest of the bottom topography is located at z = —0.175 m and the width of the
pycnocline is d = 0.02 m, the pycnocline in this case intercepts with the bottom boundary.
An impression of the overall flow structure in the full domain can be gained from figure
3.2, though these plots do not represent the true aspect ratio because the horizontal length
scale of the model is much larger than the vertical length scale. Panel (a) shows that shape
of the initial wave is symmetric about its crest. However, as it propagates and shoals onto
the shelf, the wave becomes narrower and loses the symmetry, as shown in panel (). The
loss of symmetry takes place in a way such that the pycnocline at the front of the wave
gets squeezed together. This results in a sharp transition zone in the density field, in which
instabilities are likely to be generated.

t=235s

099 0992 0994 099 0998 1 1.002 1.004 1.006 1.008 1.01

Figure 3.2: Normalized density contours showing (a) the initial wave and (b) its propaga-
tion and shoaling. Here and henceforth, the color axes of all density plots are saturated at
p=1+£0.01, with dense fluids shown in red, light fluid shown in blue and midrange values
shown in green.
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3.2.1 Shear Instability

Although the amplitude of the wave is large (max = 6.69 cm, or approximately 1/3 of the
channel depth), the wave is still broad due to the aspect ratio. Thus, in the center of the
wave, the flow is nearly horizontal. As the wave shoals, the maximum horizontal velocity
in the center of the wave exceeds the wave propagation speed (uyax = 10.16 cm/s at t = 35
S, Umax = 11.53 cm/s at t = 40 s, whereas the ISW propagation speed is ¢ = 9.26 cm/s),
increasing the shear stress at the edge of the wave and hence, along with any imposed
noise, providing the trigger for shear instability.

t=39s

5 5.1 52 53 5.4 5.5 5.6 5.7 5.8

Figure 3.3: Three panels of shaded density contours showing the propagation and shoaling
of the wave and the development of the core at (a) t =39 s, (b) t =40 s and (¢) t = 41 s.
The dashed line in panel (a) is located at = 5.29 m, along which the analysis of shear
instability is given in figure 3.5. Details of the billow and the wave front as indicated by
the boxes in panel (¢) are plotted in figure 3.4.
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Figure 3.4: Detailed density contours of (a) one of the billows at the edge of the core and
(b) the wave front and the bottom boundary layer at ¢t = 41 s. See figure 3.3 (c).

Detailed density contours showing the evolution of the shoaling wave are given in figure
3.3. This figure suggests that, during shoaling, the wave breaks and begins to form a
recirculating core. In panel (a), the core is beginning to overturn toward the left, while a
high shear region is developing at the edge of the core, yielding Kelvin-Helmholtz billows
that grow as they propagate in the downstream direction (in a reference frame moving with
the wave). In panel (b), these billows have reached their full size, while in panel (¢) the
initial billows have begun to be swept into the bottom boundary layer (BBL), enhancing
bottom shear stress and thereby possibly contributing to sediment resuspension. At the
same time, further billows have begun to grow on the high shear edge of the core. The
detail of one of these billows is shown in figure 3.4 (a).

We shall analyze the instability using the method outlined in section 2.4. In particular,
the analysis is performed along the vertical slice located at * = 5.29 m at ¢ = 39 s, as
indicated by the dashed line figure 3.3 (a). This line corresponds to the location of the wave
crest, where the flow is parallel and nearly horizontal across the whole vertical column.
The background horizontal velocity profile is plotted in figure 3.5 (@), where a shear layer
can be clearly seen at z ~ —0.1 m. Note that although velocity shear is also found along
the top and bottom boundaries due to the no-slip condition, no instability is observed in
these areas. Since the pycnocline is located at z ~ —0.1 m, large buoyancy frequency is
also found in this shear layer, as shown in figure 3.5 (b). Therefore, the background flow
can be considered as a typical stratified shear flow. The minimum local Richardson number
found in this shear layer is Ri = 0.065, much smaller than the critical Richardson number
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Figure 3.5: Analysis of shear instability along x = 5.29 m at ¢t = 39 s (the dashed line
in figure 3.3 (a)). Panel (a): background horizontal velocity profile. Panel (b): squared
buoyancy frequency, where the negative value at z ~ —0.175 m is due to the no-slip
boundary condition (see figure 3.4 (b)). Panel (¢): growth rate of waves of disturbance.
Panel (d): filled contour plot of the stream function showing the 2D structure of the fastest
growing wave.
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Figure 3.6: Analysis of shear instability along x = 5.38 m at ¢t = 39 s. Panel (a): growth
rate of waves of disturbance. Panel (b): filled contour plot of the stream function showing
the 2D structure of the fastest growing wave.

0.25. Applying the numerical method discussed in section 2.4, we find that the fastest
growing wave of disturbance has a wavelength of approximately A = 5 cm, as shown in
figure 3.5 (¢). Although figure 3.3 suggests that the actual wave length (i.e. the distance
between the billows) is slightly larger, this is still a reasonably good estimation, especially
when taking the nonlinear effect and the possibility of an instability that is growing both
spatially and temporally into account. The propagation speed of the fastest growing wave,
determined by c¢,/k where ¢, is the real part of the phase speed ¢, is 8.55 x 107> m/s.
This result is consistent with the observation in figure 3.3, where the billows are essentially
stationary as they grow in the inertial frame of reference. The 2D structure of the fastest
growing wave is shown in the contour plot of the stream function in figure 3.5 (d).

As a comparison, the vertical profile from a further upstream location x = 5.38 m at
t = 39 s is also analyzed, and the results are given in figure 3.6. Panel (a) shows that the
wavelength of the fastest growing wave is still close to 5 cm, though the maximum growth
rate is larger than that shown in figure 3.5 (¢). This is because this location is closer to the
wave front, where the pycnocline is thinner and the flow is more unstable due to shoaling.
On the other hand, the 2D structure of the fastest growing wave shown in panel (b) is
almost identical to figure 3.5 (d). In conclusion, the flow field satisfies all assumptions
of the linear stability theory for a typical stratified shear flow as discussed in section 2.4,
while the simulation results shown in figure 3.3 can be well explained by the solution of
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the Taylor-Goldstein equation. Hence, we conclude that it is the shear instability that
is occurring at the edge of the recirculating core during the wave’s shoaling. We should
point out though, the reason why the linear stability analysis does not agree exactly with
the simulation results but only provides an approximate solution is that the flow about
the wave crest is not exactly parallel, and there exists the possibility of a spatial growing
instability in the flow field.

3.2.2 Bottom Shear Stress

As mentioned earlier, in this case the configuration of the density profile results in a
pycnocline that interacts with the bottom boundary. Consequently, the dense fluid is

t=35s
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Figure 3.7: Evolution of the bottom shear stress during the wave passage. All subplots are
normalized by the maximum shear stress found at ¢ = 35 s (a). The average slope of the
bottom boundary between x = 4.4 m and 6 m is approximately 0.75%.
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absent on the top of the shelf, and the shoaling wave essentially propagates as a gravity
current. Due to the no-slip boundary condition, the dense fluid in the core is then lifted
up and over a small portion of light fluid that is trapped on the BBL, as shown in figure
3.4 (b). This is the typical behavior of a gravity current head. As we shall see in the
three-dimensional simulations in the next chapter, it leads to non-hydrostatic instability
known as the lobe-cleft instability that grows rapidly in the spanwise direction. However,
because the flow is restricted in two dimensions, the instability is not evident here.

Nevertheless, the interaction of the wave front with the BBL significantly increases the
bottom shear stress, as shown in figure 3.7. With reference to the density contours in
figures 3.2 and 3.3, we notice that the location of largest shear stress always corresponds to
the foremost part of the wave. However, the solutions of the DJL equation suggests that
ISWs are symmetric about their crests, which implies that the largest horizontal velocity,
and hence the largest shear stress, would also occur at the wave crest. In fact, as shown
in figure 3.2, the shift of the location at which the maximum bottom shear stress occurs is
consistent with the loss of symmetry as the wave shoals. The change of bottom topography
alters the wave such that it is no longer an exact solitary wave.

On the other hand, while the magnitude of the maximum shear stress at the wave
front increases only slightly during the wave’s shoaling, the secondary high shear region,
located at the back of the wave where the billows interact with the BBL, develops rapidly
over time. As shown in figure 3.7 (¢), the shear stress in this region eventually becomes
comparable with the maximum shear stress. This is a clear indication that in addition to
the shoaling behavior, the development of the Kelvin-Helmholtz billows also contributes
to the bottom shear stress, which provides an additional possible mechanism for boundary
layer mixing and sediment resuspension.
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3.3 Medium and Higher Pycnoclines

In this section we shall consider stratifications with higher pycnoclines. The two simulations
to be discussed are labeled as Medium and Higher in table 3.1, whose pycnoclines are
centered at zgp = —0.16 m and —0.15 m, or 1.5 cm and 2.5 cm above the crest of the
bottom topography, respectively. As a result, no gravity current is generated and the
ISWs maintain their solitary wave-like form throughout the simulation.

We shall first discuss the Medium pycnocline case. The propagation of the wave is
shown in figure 3.8. In contrast to the previous case where the instability is generated
during the shoaling process, here the instability is more relevant behind the main wave
after it passes the shelf. In the rest of this section, the breaking of the wave and the
generation of the instability will be discussed in detail.

Figure 3.8: Shaded density contours of the simulation labeled as Medium showing the wave
propagation at (a) t =50 s, (b) t = 60 s and (c¢) t = 70 s. Note that periodic boundary
conditions are used in the x-direction with a period L, = 7 m.
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3.3.1 Shoaling Behavior

The early stage of the wave propagation (i.e. before ¢t = 50 s) will not be discussed here,
since it follows an evolution similar to the Base Case, except that no shear instability is
generated. At ¢t = 50 s, the wave has just passed over the crest of the bottom topography.
As shown in figure 3.8 (a), no evidence of shear instability has been found at the edge of
the wave yet, though the core has already begun to overturn and break.

To explain the absence of shear instability, consider the Richardson number criterion
given by equation (2.37). As shown in table 3.1, the difference between the maximum and
minimum horizontal velocities of the initial wave is 12.28 cm/s for the Medium pycnocline
case, about 20% less than the difference of 15 cm/s for the Base Case. Hence, the horizontal
velocity gradient u, is also expected to be smaller during the wave’s shoaling (here Uy =
10.07 cm/s at t = 50 s, whereas in the Base Case, tpax = 10.16 cm/s already at ¢ = 35 s).
On the other hand, both cases have the same pycnocline width d and density difference Ap,
meaning that their buoyancy frequency profiles across the shear layer are also identical. The
local Richardson number across the wave crest at ¢ = 50 s is approximately 0.31, much
larger than that in the Base Case (which is about 0.065). Hence, during the shoaling
process the flow is not able to generate enough shear stress to initiate any instability.

In figure 3.8 (a), we also notice that behind the main wave there is a secondary peak of
the pycnocline, located at x ~ 5.7 m. The corresponding vertical velocity plot is given in
figure 3.9, which suggests that the flow pattern in this region is typical of an ISW, despite
the fact that it is much weaker than the main wave (the vertical velocity is approximately
1/30 in absolute value of the maximum /minimum vertical velocity of the main wave). This
implies that a secondary ISW is being fissioned behind the main wave during the shoaling
process.

An explanation of this phenomenon would be that the rise of bottom boundary essen-
tially shifts the pycnocline away from mid-depth, such that the main wave has to change
its shape in order to adjust to the new environment. Since the shoaling wave is narrower
than the initial wave, the extra dense fluid is left behind, from which a second wave is
generated. This hypothesis can be justified by comparing the simulation result with the
solution of the DJL equation. Such comparison is given in figure 3.10, in which the DJL
solution is obtained in a channel with a depth of —0.175 m and the same stratification as
the simulation, but less available potential energy because of the shoaling process. The
resulting density profiles suggest that the DJL solution fits the simulation result almost
exactly, meaning that on the top of the shelf, the shoaling wave still behaves like a solitary
wave, and analyses of ISWs (instead of gravity currents) are applicable.
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Figure 3.9: Vertical velocity plot at ¢ = 50 s. The color axis is saturated at w = +0.3 cm/s,
with positive (upward) velocity shown in red and negative (downward) velocity shown in
blue. Note that the maximum and minimum vertical velocities at ¢t = 50 s are Wy, = 3.84
cm/s and Wy, = —3.37 cm/s, respectively.

Simulation Result

DJL Solution

Figure 3.10: Density contour plots of the wave at t = 50 s obtained from (a) the simulation
result and (b) the solution of the DJL equation with the bottom boundary located at
z = —0.175 m, the crest of the bottom topography in the simulation domain.
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3.3.2 Wave Breaking and the Vortex-Rich Region

More interesting dynamics of the flow occurs after the wave propagates down the shelf. As
shown in panels (b) and (¢) of figure 3.8, after the de-shoaling process the core is completely
broken up and washed out of the main wave, yielding a vortex-rich region of fluid ejected
from the core. In the mean time, the remaining fluid forms a new solitary wave in front of
the broken core, which propagates just like the original wave.

One of the consequences of the wave’s de-shoaling process is that, as the core breaks up,
a portion of the mass and energy carried by the original wave is trapped in this vortex-rich
region, which does not propagates with the wave. As a result, the newly generated wave
has less available potential energy. A comparison between the new wave at ¢ = 80 s and
the initial wave is given in figure 3.11. The most notable difference is that the new wave
appears smaller (or narrower) than the initial wave. Also, due to diffusion the pycnocline
is wider at ¢ = 80 s. In terms of other features, however, the new wave behaves very similar
to the original wave. Some relevant wave parameters obtained at ¢ = 80 s are Uy = 6.72
em/s, Upin = —5.22 cm/s and Wy = 1.73 cm/s; all of which are very close to those for
the initial wave shown in table 3.1.

"0 0.5 1 1.5 2 2.5 3 3.5
r (m)

Figure 3.11: Comparison of the density profiles of (a) the newly generated wave at t = 80
s and (b) the initial wave at t = 0 s. Because of the periodic boundary condition, these
waves are essentially at the same location.
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The evolution of the vorticity field showing the wave’s de-shoaling process and the
formation of the vortex-rich region is given in figure 3.12. Recall from equation (2.8) that
in a 2D flow field, the rate of change of vorticity is determined by the horizontal density
gradient (baroclinic vorticity) and the viscosity (diffusion of vorticity). In this figure, the
baroclinic vorticity (with negative sign) is found along the high shear region at the core’s
edge and the wave crest, whereas the vorticity production due to viscosity (with positive
sign) occurs along the BBL and corresponds to the increasing bottom shear stress during
the wave passage.

Figure 3.12 also suggests that the formation of the vortex-rich region is associated with
the breaking up of the core, which takes place as soon as the main wave propagates down
the shelf. As the core breaks up, mixing of the dense and light fluid occurs across the
deformed pycnocline at the back of the wave, such that the baroclinic vorticity is also
found inside the broken core. At the same time, the positive vorticity from the viscous
boundary layer enters into the core due to boundary layer separation, interacting with the
baroclinic vorticity and creating the vortex-rich region behind the wave. Figures 3.12 (d)
and 3.13 (a) show that, at t = 60 s, these two types of vorticity interact with each other at
the edge of the vortex between x = 6.7 m and 6.8 m, along the deformed pycnocline in the
vortex-rich region. The interaction increases the magnitude of both positive and negative
vorticity significantly (wmax & 22.36 s7! and wyi, &~ —25.74 s71), such that the color map
is over saturated in this area.

The boundary layer separation occurs in the down-slop portion of the shelf, as shown
in the detailed plots in figure 3.13. While positive vorticity is expected in the viscous
boundary layer during the wave passage, panel (a) shows that extremely strong negative
vorticity (with a magnitude of wpy;, ~ —109.7 s_l) is found along the bottom boundary
between x = 6.5 m to 6.7 m. The negative vorticity is induced by the negative horizontal
velocity found in this area, as suggested in the horizontal velocity plot in panel (b). It
indicates that the flow has reversed its direction in the boundary layer and flow separation
has occurred. This downstream flow increases the bottom shear stress significantly. In
panel (c), extremely strong negative shear stress is found near x = 6.7 m. The absolute
value of the shear stress in this point has a magnitude of as much as 3 times that of the
positive stress induced by the wave passage. The separation point, defined as the point
between the forward and backward flow, is found near x = 6.4 m (recall that the crest of
the bottom topography is located at = 6 m), where the bottom shear stress is zero. As
the flow separation grows, vortices are generated along the separation streamline (shown
in figure 3.12 (d)). The vortices then break down into smaller scale instability, and the
mechanical energy carried by these vortices is eventually converted into internal (heat)
energy as the mixing process further breaks the instability down into molecular scale.
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t=>58s

Figure 3.12: Vorticity field plots from ¢t = 54 s to 62 s. The color axis is saturated at
w = +15 s7!, with positive vorticity shown in red (hot), negative vorticity shown in blue
(cold) and irrotational flow shown in black. The pycnocline is not shown here because the
plots will otherwise be too busy. Nevertheless, location of the wave crest can be visualized
by the negative baroclinic vorticity at z ~ —0.1 m. Detail of the vortex-rich region as
indicated by the white box in panel (d) is given in figure 3.13.
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Figure 3.13: Detail of the vortex-rich region and the bottom boundary layer at t = 60 s
given by (a) vorticity field, (b) horizontal velocity and (c¢) bottom shear stress plots. For
panel (a) the color axis is the same as figure 3.12, whereas for panel (b) it is saturated
at 0.1 m/s with positive velocity shown in red, negative velocity shown in blue and zero
velocity shown in green. Panel (c¢) is normalized by the maximum positive bottom shear
stress found in the plot.

The combined effect of core breaking and boundary layer separation makes the vortex-
rich region a hot spot for material mixing, where sediment resuspension is very likely to
occur. In fact, the instability in this region is expected to develop into a completely three-
dimensional state. For this reason, three-dimensional simulation of this case has been
performed and the results will be discussed in section 4.2. Additionally, although no shear
instability is produced along the core’s edge because the shear stress is not strong enough,
in the three-dimensional simulation the lobe-cleft instability is observed during the shoaling
process, despite the fact that the shoaling wave is better described as a solitary wave rather
than a gravity current. Nevertheless, the 2D simulation has provided a reasonably realistic
result in terms of the overall flow structure because the mean flow is two-dimensional.
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3.3.3 The Higher Pycnocline Case

To close this section, let us consider the Higher pycnocline case. The wave’s de-shaoling
process from ¢t = 50 s to 90 s is shown in figure 3.14 with three panels of density contours.
Panel (a) suggests that, when the wave is on the top of the shelf, it behaves very similar
to the wave in the Medium pycnocline case (see figure 3.8 (a) for a comparison). No
shear instability is generated in this case either, because the higher pycnocline makes the
horizontal velocity gradient across the shear layer even smaller than the other cases (at
t =508, Upax = 8.73 cm/s and Uy, = —6.67 cm/s). With the same density gradient, the
shear stress is also smaller. Additionally, for exactly the same reason, the wave becomes
narrower during the shoaling process in order to adjust to the elevated bottom boundary,
and a secondary ISW is fissioned behind it.

t="70s

Figure 3.14: Density contours showing the de-shoaling of the wave and the formation of
the wave train in the Higher pycnocline case at (a) t =50's, (b) t =70 s and (¢) t = 90 s.
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The flow structure becomes different from the Medium pycnocline case after the wave
passes the top of the bottom shelf. Panels (b) and (¢) suggest that, while the break
up of the core still occurs as the main wave propagates down the shelf, the vortex-rich
region is not observed. Instead, as the core moves out of the main wave, the dense fluid
carried by the core forms the narrow wave behind the main wave seen in panel (b), which
further fissions into several even smaller amplitude, broader ISWs shown in panel (¢). The
excess energy is, in part, carried away by the propagation of these waves. Due to loss of
energy, subsequently generated waves have a smaller amplitude and propagate at a slower
speed than their predecessors (as shown in the figure, distances between adjacent waves at
t =90 s are larger than those at t = 70 s).
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3.4 A Corrugated Bottom Boundary

Unlike the laboratory environment, in oceans and lakes the bottom topography is expected
to be non-uniform. Because the trapped core of ISWs of elevation interacts directly with
the BBL during the shoaling process, any perturbation to the bottom topography will
necessarily alter the nature of the flow. A combined experimental and numerical study
of ISWs propagating over a corrugated bottom boundary has been reported in Carr et al.
(2010). In the case of waves of elevation, it is found that two different mechanisms are
responsible for the generation of turbulent mixing in the water column: the boundary layer
separation at the crest of each individual corrugation caused by the ISW-induced current,
from which lee vortices are subsequently formed, and the shear instability in the upstream
portion of the wave, which occurs when the bottom corrugations reach into (or very close
to) the pycnocline at rest.

The present work does not attempt to reproduce the results presented in the previous
literature. The purpose of this investigation is to assess the influence of bottom corrugations
on the behavior of shoaling wave. Since this is a short introductory section, variation of
amplitude and wavelength of the corrugations will not be considered, and attention is
restricted to short length scale undulations of the form

€(z) = 0.1sin(207x), (3.3)

which have a wavelength A = 0.1 m and an amplitude equivalent to 20% of the local
height of the bottom shelf (the definition equations of the bottom topography is given in
equations (3.1)). As a reference, the largest corrugation (which is on the crest of the bottom
topography) has an amplitude of 0.5 cm, which is 2.5% of the total depth or 5% of the
wavelength (peak-to-peak distance). Since the horizontal grid spacing is approximately 1
mm and the vertical grid points are naturally clustered near the bottom boundary because
of the Chebyshev discretization, the flow within each corrugation is well resolved.

The simulation presented in this section is labeled as Rough in table 3.1, which has the
same density profile as the Medium pycnocline case. Since in both cases the overall flow
structure is similar except for the flow in the BBL, the propagation of the wave is not shown
here. Instead, detailed plots of the wave and the BBL at ¢ = 50 s are given in figures 3.15
and 3.16. As expected, the vorticity plot in figure 3.15 shows that baroclinic vorticity is
found along the wave crest and the core’s edge, while vorticity production due to viscosity
is found in the BBL. However, the baroclinic vorticity suggests that the Kelvin-Helmholtz
billows are starting to form along the core’s edge, indicating that the shear stress is strong
enough for the shear instability to be generated in this case. Since this feature is absent
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Figure 3.15: Vorticity field of the Rough bottom boundary case at t = 50 s. The the color
axis is the same as in figure 3.12. The solid curve denotes the location of the pycnocline.
Detail of the flow in the boundary layer is given in figure 3.16.
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Figure 3.16: Detail of the bottom boundary layer at ¢ = 50 s given by (a) vorticity field,
(b) horizontal velocity and (¢) bottom shear stress plots. For panel (a) the color axis is
the same as figure 3.12, whereas for panel () it is saturated at +0.04 m/s with positive
velocity shown in red, negative velocity shown in blue and zero velocity shown in green.
Panel (c¢) is normalized by the maximum positive bottom shear stress found in the plot.
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in the Medium pycnocline case, we conclude that the existence of bottom corrugations
contributes to the shear stress in the upstream portion of the wave and the leading edge
of the core where the billow formation is originated.

On the other hand, figure 3.16 shows that boundary layer separation has taken place
inside the bottom corrugations. In panel (a), negative vorticity is found at the trough
of each corrugation above the bottom boundary. The region of negative vorticity in the
corrugation ‘valleys’ corresponds to the region below the separation streamline, where
negative horizontal velocity is found as shown in panel (b). The corresponding bottom
shear stress profile is plotted in panel (¢). In agreement with the previous results, the
bottom shear stress is dominated by oscillations with a wavelength that corresponds to that
of the bottom corrugations. More specifically, the upstream-directed (positive) shear stress
always occurs at the crest of each corrugation and corresponds to the positive vorticity,
whereas downstream-directed (negative) stress occurs at the trough of each corrugation
and corresponds to the negative vorticity.

Unlike in the experiments and simulations performed by Carr et al. (2010) where vor-
tices are subsequently formed from these corrugations, in our simulation the flow inside
these ‘valleys’ is not energetic enough to self advect away from the boundary layer. In fact,
as shown in figure 3.16, the magnitudes of the negative vorticity, horizontal velocity and
bottom shear stress induced by the downstream-directed flow in the trough of the corru-
gations are only a fraction of those found in the main flow above the boundary layer. The
amount of energy carried by the downstream-directed flow inside the bottom corrugations
is determined by the size and shape of these corrugations, as well as the stratification of the
fluid. A deeper and larger corrugation is expected to have the ability to trap more energy
from the main flow, such that the backward flow inside the boundary layer is stronger and
the the boundary layer separation grows rapidly. An example is the de-shoaling process of
the wave discussed in the Medium pycnocline case, in which a vortex-rich region is formed
in the down-slop portion, or the ‘valley’, of the shelf. Disturbance to the pycnocline behind
the wave may also be more significant if the pycnocline is thicker, because with a thicker
pycnocline there is the opportunity to excite more modes.

We shall mention that while this simulation is performed in the laboratory scale, its
results have many implications for larger scales. Because in the field scale the Reynolds
number is much larger, the flow is expected to be more turbulent. As a result, the viscous
effect is smaller and the boundary layer is thinner. Hence, disturbance to the flow due
to the rough bottom boundary could be stronger. For example, the lee vortices which
are absent in the present simulation may appear in field scale simulations. In addition,
Carr et al. (2010) also suggest that variation of wavelength and amplitude of the bottom
corrugations will affect the resulting turbulent mixing, because these properties are directly
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related to the amount of energy carried by the flow inside these corrugations. Therefore,
to further understand this topic, the next step is to experiment with field scale flows and
various sizes and shapes of bottom corrugations.
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Chapter 4

Three-Dimensional Simulations

Due to the limitation of available computational resources, 2D simulations are much easier
to carry out and analyze compared with their three-dimensional (henceforth 3D) counter-
parts. However, in the real world, 2D flows only describe a small subset of environmental
and geophysical fluid flows. The most directly observable difference is that, because of the
absence of spanwise velocity, vortex stretching and tilting does not occur in two dimensions.
Recall from section 2.1 that the vorticity equation is given by

Dw

T = (w-V)u +vViw+V X pg, (4.1)

where (w - V)u represents the rate of change of vorticity due to the stretching and tilting
of vortex lines. In two dimensions, equation (4.1) reduces to a single scalar equation

Wy + UWy; + WW, = V(wacac + wzz) + Pz9, (42)

in which the term (w-V)u is absent. Since a complete vorticity field is required to properly
describe the development of turbulence, while nearly all macroscopic flows associated with
instabilities are turbulent, 3D dynamics are required to fully understand the generation
and evolution of these instabilities.

Taking advantage of modern, high-performance computers and computer clusters!' (Lo-
ken et al., 2010), 3D simulations of the Base Case and the Medium pycnocline case have

!Computations were performed on the gpc supercomputer at the SciNet HPC Consortium. SciNet is
funded by: the Canada Foundation for Innovation under the auspices of Compute Canada; the Government
of Ontario; Ontario Research Fund - Research Excellence; and the University of Toronto
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Simulation Initial time Width Grid size Diffusivity Result
to(s) Ly (m) N, K (m?/s)

Case 1 41 0.05 48 10-¢ Not physical

Case 2 35 0.05 48 107¢ Gibbs phenomenon
Case 3 35 0.02 48 5x 107%  Billows remain 2D
Case 4 35 0.1 96 5 x 107%  Discussed in section 4.1
Medium 40 0.05 48 5 x 107%  Discussed in section 4.2

Table 4.1: List of numerical parameters and summary of simulation results of 3D simula-
tions. Cases 1-4 are initialized from the 2D Base Case, and Medium is initialized from
the 2D Medium pycnocline case. In summary, in the Base Case the Gibbs phenomenon is
observed in the cases with larger diffusivity, the generation of lobe-cleft instability occurs
before t = 41 s so that Case 1 is physically irrelevant, and the three-dimensionalizaiton of
the Kelvin-Helmholtz billows is absent with small domain width.

been performed, and the results will be discussed in this chapter. The 2D simulations sug-
gest that, since no instability is generated before the wave starts to shoal, the transition of
the flows to a 3D state is not likely to occur prior to shoaling. Hence, for computational
efficiency, all 3D simulations are initialized at some time ty > 0 from the 2D flow fields.
The three-dimensionalization is seeded by a velocity perturbation of 0.1% in the form of
multiplicative white noise applied to the 2D flow fields. The perturbation has no preferred
spatial structure. If instabilities develop somewhat later in time, then the breakdown of
the flows into a fully 3D state will occur naturally.

Since the primary flow is two-dimensional, variation of bottom topography in the span-
wise direction is not considered in this work (in fact, the invariance of topography in the
spanwise direction is one of the limitations of SPINS, see section 2.3). Several test runs
with various initial time ¢;, domain width L,, spanwise resolution NN, and diffusivity &
have been performed of the Base Case. The results (summarized in table 4.1) suggest that
3D flows are more turbulent than their 2D counterparts in general, because the growth
of instabilities is not restricted in a specific direction. As a result, properly resolving all
small-scale features in the flow field becomes more challenging. For this reason, the sim-
ulations to be discussed in the following sections have a diffusivity x = 5 x 1076 m?/s
instead of 107 m? /s, since it is not practical to further increase the resolution. The higher
diffusivity essentially acts as a filter that smooths out any possible Gibbs phenomenon in
the simulations. With the viscosity fixed at v = 107% m?/s, the resulting Schmidt number
is Sc = 0.2. Although Sc¢ = 1 is commonly used in the literature of direct numerical
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simulations, considering the fact that the physical Schmidt number of water is around 500
this does not void the validity of our simulations.

For all 3D simulations, Fourier expansion with periodic boundary conditions is applied
in the spanwise (y) direction. Results of the test runs also suggest that the generation of
lobe-cleft instability occurs with any domain width, whereas the three-dimensionalization
of the Kelvin-Helmholtz billows depends on the domain width such that the 3D structure
of the billows is only observed in Case 4. In this case, the width of the domain is set to be
L, = 0.1 m and is discretized into 96 equally spaced grid point. This gives a grid spacing
of approximately 1 mm, which is the same as in the z-direction. Since this simulation is
most informative while it is well resolved, the first section of this chapter will focus on
this case only. In particular, the emphasis is placed on the generation of the lobe-cleft
instability and the three-dimensionalization of the Kelvin-Helmholtz billows, as well as the
interaction of these instabilities with the bottom boundary layer (BBL).

On the other hand, since the shear instability is less relevant in the Medium pycnocline
case, the domain width is set to be L, = 0.05 m and the grid size is chosen to be N, = 48.
Given the fact that the development of instability is slower and the simulation is more time
consuming, a reduced domain width provides some computational efficiency in this case.
The simulation results are discussed in section 4.2, focusing on the evolution of the vortex-
rich region of fluid ejected from the core after the shoaling and during the de-shoaling
process.
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4.1 The Base Case

Before presenting results of the 3D simulation, let us quickly review some key features of
the Base Case. In this case, the pycnocline is centered at zyp = —0.1725 m with a thickness
d = 0.02 m. As a result, the shelf on the bottom boundary (whose crest is located at
(x,z) = (6,—0.175) m) reaches into the pycnocline, such that the shoaling wave essentially
behaves like a gravity current on the top of the shelf. The 2D flow is characterized by
the shear instability generated at the edge of the core, and the Kelvin-Helmholtz billows
found in this high shear region. In this section, we will first analysis the 3D structure of
the flow in detail, and then discuss the dynamics of the overall shoaling process, including
the evolution of boundary layer instabilities.

4.1.1 Three-Dimensional Flow Structure

The overall 3D structure of the shoaling wave at ¢ = 42 s is plotted as a density isosurface
in figure 4.1, with the main point being that three dimensionalization is most relevant near
the nose of the core as opposed to in the billows. In the nose, interaction between the
core and the BBL leads to the lobe-cleft instability, a typical feature of a gravity current
head (Simpson, 1972; Simpson and Britter, 1979). The instability is generated when the
gravity current head (or the trapped core in this case) enters into the light fluid, resulting
in flow separation such that the dense fluid is lifted up and over a small portion of light
fluid that is trapped on the BBL due to the no-slip condition. Hartel et al. (2000a,b)
found that the stagnation point of the flow is located upstream of the foremost point of
the current in the vicinity of the bottom boundary, and the hyperbolic flow pattern and
unstable stratification between the nose and the stagnation point are jointly responsible
for the generation of the lobe-cleft instability.

We shall mention that although heavy fluid overlying light fluid is also responsible for
the generation of the Rayleigh-Taylor instability, the latter is originally formulated when
the fluids are initially not moving. In the lobe-cleft set up, Hartel et al. (2000a,b) showed
that the flow from the advancing gravity current also plays a role in setting the growth
rate and ‘shape’ of the instability that develops.

The generating mechanism of the lobe-cleft instability in the present work is similar to
that in Venayagamoorthy and Fringer (2007, see figures 2 and 3), where a gravity current
head is formed as a result of the wave shoaling onto a shelf. We should point out though,
due to limited resolution and different model setup (a linear stratification), other features
(in particular, the Kelvin-Helmholtz billows) are absent from their simulation results.
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Figure 4.1: Density isosurface corresponding to p = 1 showing the 3D structure of the
shoaling wave at t = 42 s. The vertical slice in the background shows the shaded density
profile in the z-z plane at y = 0.1 m.

As shown in figure 4.1, while the 3D structure of the flow appears at the foremost part
of the core at t = 42 s, the billows at the back of the wave still maintain a 2D structure and
behave similar to those in the 2D case. However, the density profile in figure 4.2 suggests
that this is no longer the case at t = 44s. As the wave propagates, the disturbance due to
the lobe-cleft instability develops rapidly and eventually reaches the billows, altering the
structure of these billows. At the same time, the shear instability has begun to destroy the
billows and the core, while direct interaction between the billows and the BBL has taken
place. The figure shows that between z = 5.6 m and 5.7 m, two billows are starting to
overlap with each other, whereas between x = 5.5 m and 5.6 m, a larger billow has formed
due to the interaction of two billows at an earlier time. Near z = 5.5 m, deformation of
the pycnocline indicates that the original billows have been swept into the BBL.

The spanwise structure of the flow field at ¢ = 44 s is shown in figure 4.3, where density
variation in the spanwise direction is found in all panels. Several lobe-and-cleft patters
are clearly seen in panel (e), indicating that the lobe-cleft instability is fully developed
and three dimensionalized. Note that the 3D domain has a width of 0.1 m, with periodic
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Figure 4.2: Spanwise average of the density field at ¢ = 44 s. Cross section views of the
density profile corresponding to the dashed lines are given in figure 4.3.
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Figure 4.3: Cross section views of the density field at ¢ = 44 s, with the y-z plane views
showing (a) the billows, (b) the core’s head and (¢) nose, and the z-y plane views showing
(d) the high shear region at the edge of the wave and (e) the bottom boundary layer. The
dashed lines indicate the corresponding locations of the planes in different views.
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boundary conditions used in the spanwise direction. Also visible in panel (e) are the tails
of the clefts left behind the initial instability. The light fluid trapped in the BBL is lifted
up along these tails, generating vortices as it enters into the heavier fluid in the core (shown
in panel (b)). Note that the ‘mushroom caps’ in panel (b) are similar to those found in the
Rayleigh-Taylor instability.

At the same time, the Kelvin-Helmholtz billows have also developed a fully 3D struc-
ture. In particular, panels (a) and (d) show that the billow at (z,2) = (5.51,0.1) m has an
asymmetric structure across the spanwise direction, while in panel (e) evidence of interac-
tion of billows with the BBL is found between x = 5.3 m and 5.5 m. Though the original
billows have already been swept into the BBL, the spanwise structure on the BBL is still
clearly visible.

The vertical velocity profile at ¢ = 44 s is shown in figure 4.4. Recall that for a typical
ISW of elevation, upward flow is found in front of the wave crest, whereas downward flow
is found at the back of the crest (for example, see figure 3.9). In panel (a), while positive
vertical velocity is found in front of the wave crest as expected, the area of negative vertical
velocity behind the wave crest is broken up into several parts by the billows. Strong positive
vertical velocity is found in these billows. In particular, the magnitude of the upward
velocity in the billow between x = 5.5 m and 5.6 m is much larger than that found in front
of the wave crest. This is a clear indication that the shear instability is starting to destroy
the wave.

The spanwise structure of the vertical velocity profile shown in panels (b)-(e) is similar
to that of the density field (see figure 4.3 (d)-(e)). Lobe-and-cleft patterns are clearly seen
in panels (d) and (e). A comparison between these two plots and figure 4.3 (e) suggests
that upward velocity is found in the clefts, whereas downward velocity is found in the lobes.
This is because the light fluid trapped in the BBL is escaping through the clefts, while
the heavy fluid in the lobes is sinking. Such a flow pattern necessarily generates velocity
shear between the lobes and clefts. Because there is density stratification between each
lobe and cleft, when the shear stress is strong enough, instability is initialized. In fact,
the individual vortices in the ‘mushroom caps’ found in figure 4.3 (b) are quite similar to
Kelvin-Helmholtz billows.

On the other hand, panels (b) and (¢) show that asymmetric structure in the spanwise
direction is found in the billow between x = 5.5 m and 5.6 m. Similar structure is also
found in the billows that is formed earlier, which has been absorbed into the BBL between
z =5.3 m and 5.5 m as evident in panels (d) and (e).
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Figure 4.4: Vertical velocity profile at ¢t = 44 s. Panel (a): spanwise average. Panels (b)-
(e): z-y plane views corresponding to the horizontal layers indicated by the dashed lines
in panel (a). Note that due to the topography of the bottom boundary and the mapping
used in the spectral method, these layers are not exactly parallel to the xz-y plane in the
physical domain. Here, the bottom boundary is located at z ~ —0.175 m with an average
slope of 0.46%. The color axis is saturated at £8 cm/s with downward velocity shown in
blue and upward velocity shown in red.
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4.1.2 Shoaling Behavior and Boundary Layer Interaction

In terms of spanwise average, the evolution of the density field during the wave’s shoaling
is similar to that of the 2D flow, and hence is not shown here. Instead, the standard
deviation of the kinetic energy field in the spanwise direction is given in figure 4.5. For a
Boussinesq fluid, the kinetic energy E of each fluid particle in the flow field is determined
from its local velocity such that

- n(fua) us

The standard deviation shown in figure 4.5 measures the variation of the kinetic energy
in the y-direction from its spanwise average. It gives an indication of the degree of three-
dimensionalization of the flow field. A zero spanwise variation in the kinetic energy means
that the flow remains two-dimensional, whereas in a highly three-dimensionalized flow field,
the kinetic energy carried by each fluid particle deviates from the mean value largely.

Figure 4.5 shows that highlights of the standard deviation of the kinetic energy field
are found in the core’s nose and edge, suggesting that three-dimensionalization of the flow
field takes place in the lobe-cleft region and the Kelvin-Helmholtz billows where instability
are developing. The figure also suggests that the 3D structure develops rapidly. In panel
(a), the spanwise variation of the kinetic energy is found close to zero in most of the flow
field, except in the core’s nose where the lobe-cleft instability is initiated. In panel (b), as
the instability develops and the wave propagates, 3D structure is found in the BBL and the
wave front above the core. In the mean time, three-dimensionalization also occurs in the
high shear region at the core’s edge, as the shape of the billows becomes visible. In panel
(¢), as the lobe-cleft instability and the Kelvin-Helmholtz instability further develop, the
entire core region is eventually fully three-dimensionalized. This observation is consistent
with the density profile shown in figure 4.3. In particular, the brightest portions of the
plot are found in the core’s nose and the billow between x = 5.5 m and 5.6 m.

During the wave’s shoaling process, two mechanisms contribute to the boundary layer
interaction, namely the lobe-cleft instability and the billow-BBL interaction. Both of these
mechanisms lead to increased the bottom shear stress. The evolution of the bottom shear
stress is plotted in figure 4.6, featuring a comparison between the 2D case and the 3D case.
Here the magnitude of the bottom shear stress is measured by

[Esl] = /12 + 15, (4.4)

where t, and ¢, are defined in equation (2.51). This figure shows that at ¢ = 40 s, the
bottom shear stress curves produced from the 2D and 3D simulations are almost identical,
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Figure 4.5: Normalized standard deviation of the kinetic energy field in the spanwise
direction at (a) t =40, (b) t =42 s and (c) t = 44 s. The dark regions represent a value
of zero, while the highlights are saturated at 50% of the maximum value found in these
plots.

because at this time most of the flow structure still remains two-dimensional as suggested
in figure 4.5 (a). As the 3D structure develops, significant increase of the bottom shear
stress in the lobe-cleft region is found in the 3D simulation, whereas the maximum bottom
shear stress in the 2D case remains almost the same throughout the shoaling process. At
the same time, increase of bottom shear stress due to billow-BBL interaction is found at
the back of the wave, though there is no quantitative difference between the 2D and the
3D case. From this figure we conclude that the three-dimensionalization of the flow field
does contribute to the increased bottom shear stress, primarily through the generation of
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Figure 4.6: Normalized bottom shear stress at (a) t =40's, (b) t =42 s and (c) t = 44 s.
Solid lines represent results obtained from the 3D simulation, and dashed lines represent
results obtained from the 2D simulation. Spanwise averages are used in the 3D case.

the lobe-cleft instability.

More detailed bottom shear stress plots of the 3D simulation are given in figure 4.7,
where both the streamwise and spanwise components are shown. While the overall bottom
shear stress is dominated by the upstream-directed (positive) stress due to wave passage,
perturbations are also observed in the figure. The lobe-and-cleft patterns are clearly visible
in both the streamwise and the spanwise directions, and interaction between the billows
and the BBL is also evident. In particular, consistent upstream shear stress is observed in
the lobe-cleft region, whereas at the back of the wave, the magnitude of the shear stress
introduced by the billows develops rapidly over time, and eventually becomes twice as
strong as that in the lobe-cleft region (shown in panel (b), between z = 5.6 m and 5.7
m). On the other hand, downstream-directed (negative) stress is found behind the wave,
whose magnitude is a fraction of the upstream-directed stress. At the same time, the
spanwise component of the shear stress plays a secondary role in general, as suggested by
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Figure 4.7: Normalized shear stress histories on the bottom boundary in (a)-(b) the stream-
wise direction and (¢)-(d) the spanwise direction. For all subplots, the color axis is satu-
rated at £60% of the maximum along-hill shear stress observed in panel (b), with positive
values shown in red (hot), negative values shown in blue (cold) and intermediate values
shown in black.

the comparison given in figure 4.7. An exception is that at * = 5.65 m, t = 46 s, the
spanwise shear stress is about half of the magnitude as the streamwise shear stress (shown
in panel (d)).

The combined effect of the lobe-cleft instability and the billow-BBL interaction has
significant environmental implications. In the near-coastal region, such mechanism is likely
to contribute to onshore sediment movement during the wave passage followed by offshore
movement afterwards (Bourgault et al., 2014). While the bottom shear stress mobilizes the
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sediment within the BBL, the turbulence introduced by the instabilities pumps material
out of the boundary layer. For example, field measurements by Richards et al. (2013)
suggest that the trapped core of waves of elevation can produce strong vertical shear while
interacting with the BBL, as evident at ¢ = 16 : 19 in their figure 9. In nature, waves
rarely exist as single waves, and thus motion initialized by the first wave could modify the
subsequent waves in the wave train, magnifying the transport and mixing mechanism. In
addition, for an organic sediment bed, the boundary layer interaction will also contribute
to the dissolved oxygen transfer and affect the marine ecosystem by mechanisms similar
to ‘scarring by coherent structures’ proposed in Scalo et al. (2012).
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4.2 The Medium Pycnocline Case

In the simulation labeled as Medium, the pycnocline is located at z5 = —0.16 m, which is
1.5 cm above the crest of the bottom topography. Since the bottom boundary does not
reach into the pycnocline, the ISW does not behave like a gravity current as it shoals onto
the shelf. Instead, the wave maintains a solitary wave-like form throughout the shoaling
process and adjusts to the elevated bottom boundary by changing its shape. The 2D
simulation suggests that, unlike the Base Case where the instabilities are generated during
the shoaling, in the Medium pycnocline case the instabilities occur behind the main wave
after the shoaling. During the de-shoaling process, the core which had formed in the
original wave breaks up and the fluid ejected from the core forms a vortex-rich region near
the down-sloping portion of the shelf, in which the flow is highly turbulent and the bottom
shear stress is extremely strong. In front of the remnants of the core, a new solitary wave
is formed and propagates away, in a similar manner to the original wave.

The 3D dynamics of the Medium pycnocline case is discussed in this section. In the
3D simulation, the wave behaves in a slightly different manner from the corresponding
2D simulation. In particular, during shoaling a lobe-cleft instability occurs on the leading
edge of the forming core. This occurs despite the fact that the overall flow behaviour
is better described as a solitary wave as opposed to a gravity current. In the remainder
of this section, the lobe-cleft instability will be examined in detail. The formation and
evolution of the vortex-rich region in three dimensions will also be discussed, focusing on
the spanwise structure of the vorticity field that does not exist in the 2D simulation.

4.2.1 Lobe-Cleft Instability

The density profile of the wave as it reaches the top of the bottom shelf is plotted in figures
4.8 and 4.9. The spanwise average of the density field shown in figure 4.8 suggests that
the overall structure of the wave is similar to that in the 2D simulation. More specifically,
there is no shear instability during the shoaling process while the trapped core has already
begun to overturn toward the left. On the other hand, the cross section views shown in
figure 4.9 suggest that the lobe-cleft instability is generated. The lobe-and-cleft patterns
found in panel (d) is very similar to those seen in figure 4.3 (e), while in panel (b) the
‘mushroom caps’ are also observed in the core’s head. In addition, the lobe-cleft structure
in the core’s nose shown in panel (¢) also leads to disturbance found at the edge of the
core, such that a spanwise structure is seen near z = —0.13 m in panel (b). After the wave
passage, the BBL remains in a three-dimensional manner, as shown in panel (a).
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Figure 4.8: Spanwise average of the density field at ¢ = 50 s. Cross section views of the
density profile corresponding to the dashed lines are given in figure 4.9.
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Figure 4.9: Cross section views of the density field at ¢ = 50 s corresponding to the locations
indicated by the dashed lines in figure 4.8, with (a)-(c¢) the y-z plane views showing the
lobe-cleft instability, and (d) the z-y plane view showing the boundary layer located at
3 mm above the bottom boundary. Note that the bottom boundary layer is not exactly
parallel to the x-y plane due to the topography.



This observation suggests that the lobe-cleft instability does not only exist in gravity
currents, but also in shoaling ISWs of elevation. Although figure 4.9 (d) shows that
density gradient exists in the BBL, the overall color tone suggests that the density difference
between the heavy and light fluids is only approximately 0.2% (as a reference, the colorbar is
reproduced in the figure). With such a small density difference, the resulting buoyancy force
is not sufficiently large to provide the trigger for the instability. Hence, this phenomenon
clearly indicates that it is the advancing nature of shoaling waves or gravity currents that
acts as the driving mechanics for the generation of the lobe-cleft instability, whereas heavy
fluid overlying light fluid is only a necessary but not sufficient condition. In Hartel et al.
(2000a,b), direct numerical simulations were performed of a gravity current head. Despite
the different model setup, the lobe-cleft instability was observed and the same conclusion
has been drawn. In particular, a linear stability analysis is provided in section 4 of Hartel
et al. (2000a) to explain this phenomenon.

4.2.2 The Vortex-Rich Region

In three dimensions, an important variable in the discussion of vorticity dynamics is en-
strophy (), which measures the overall strength of the vorticity field in all directions. It is
defined in a way similar to the kinetic energy:

Q= po(%w : w). (4.5)

The evolution of the enstrophy during the wave’s de-shoaling process is given in figure
4.10. Similar to the 2D case (figure 3.12), baroclinic vorticity is found along the wave crest
and the core’s edge, while vorticity production due to acceleration of the fluid during the
wave passage is found along the BBL. The differences from the 2D vorticity field are also
notable. First of all, with the presence of vortex stretching (the term (w - V)u in equation
(4.1)) which does not exist in a 2D flow field, the flow appears to be more turbulent and
the instability is generated more rapidly. The dissipation of energy also occurs within a
shorter period of time, because in the 2D case the vortices stay more coherent. Secondly,
in panel (b) the formation of billows is observed at the edge of the core, indicating that
the shear stress is stronger in the 3D case. This phenomenon is similar to what is observed
in figure 3.15, where the increase of shear stress is due to perturbation of the BBL caused
by the bottom corrugations. For the 3D case, perturbation of the BBL comes from the
lobe-cleft instability. Last but not least, panel (¢) suggests that systematic boundary layer
separation does not occur in the 3D case (although it may occur locally), because the
lobe-cleft instability has already destroyed the BBL during the wave’s shoaling.
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Figure 4.10: Spanwise average of the normalized enstrophy plots showing the wave’s de-
shoaling process. The brightness in these plots is proportional to the magnitude of the
enstrophy field. The pycnocline is indicated by the solid curves.
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Figure 4.11: Spanwise average of the normalized difference between the enstrophy and the
y-component of the vorticity (i.e. the quantity (), defined in equation (4.6)) corresponding
to figure 4.10.
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The three-dimensionality of the flow field can be described by the strength of the x and
z components of the vorticity field, because in a 2D flow the only non-zero component of
the vorticity field is the y-component. Here, we define @), to be the difference between the
enstrophy and the y-vorticity:

Q=0 — 1,oocuz = 1po (wi + wg) (4.6)
202

In this equation, the subscripts denote the individual components of the vorticity field, i.e.
w = (W, wy,w,). Corresponding to the enstrophy plot in figure 4.10, the evolution of @, is
plotted in figure 4.11. In a way similar to the standard deviation plot of the kinetic energy,
in this figure the bright regions indicate a non-zero value of the x and z components of the
vorticity field, which contributes to the spanwise structure of the flow field, whereas the
dark regions consist of mainly the y-component of the vorticity field (or no vorticity at all),
so that the flow is two-dimensional. In figure 4.11, the baroclinic vorticity along the wave
crest and the core’s edge and the vorticity production due to viscosity in the BBL are no
longer seen, suggesting that these types of vorticity are mainly associated with the mean
flow in the along-topography direction. On the other hand, bright regions are found in the
lobe-cleft region (panel (a)) and the vortex-rich region (panel (¢)), indicating that most of
the 3D flow occurs in these regions. Additionally, although the baroclinic vorticity which
leads to the shear instability and billow formation seen in figure 4.10 (b) is generated by
the y-vorticity, three-dimensionalization of these billows is found in panel (b).

Figure 4.12 shows the z-component of the vorticity field at the slice 2 mm above the
bottom boundary, characterizing the evolution of the BBL during the de-shoaling of the
wave. The wave passage can be visualized by the advancing of the high-vorticity region.
This region has the largest overall magnitude when the wave is on the top of the shelf (panel
(a), t = 50 s), which is a clear indication that the dynamics of the BBL is dominated by
the lobe-cleft instability during the wave’s shoaling. As the wave propagates down the
shelf (panels (b) and (¢)), the magnitude of the z-vorticity in the advancing high-vorticity
region slowly decreases. Also, the alternating pattern between the positive and negative
vorticity seen earlier disappears, and the flow field becomes more unpredictable.

The corresponding along-topography component of the bottom shear stress plots are
given in figure 4.13. The lobe-and-cleft patterns are clearly seen in panel (a), where the
clefts correspond to the positive vorticity seen in figure 4.12 (@), and the lobes correspond
to the regions of zero or negative vorticity. The largest magnitude of the positive shear
stress is found in these lobes. Another feature to notice is that unlike the Base Case
(figure 4.7), no down-stream directed stress is observed in this plot, since there are no
Kelvin-Helmholtz billows interacting with the BBL in this case. As the wave propagates
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Figure 4.12: Normalized z-vorticity plots along the slice 2 mm above the bottom bound-
ary showing the evolution of the BBL during the de-shoaling of the wave. The positive
(negative) vorticity is shown in red (blue) with the magnitude indicated by the brightness.
The z-vorticity at the slices indicated by the dashed lines is given in figure 4.14.
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Figure 4.13: Normalized along-topography bottom shear stress. The positive (negative)
stress is shown in red (blue) with the magnitude indicated by the brightness.
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Figure 4.14: Normalized x-component of the vorticity field in the y-z plane at (a) t = 50
s,t=064m, (b)t=54s,x=64m, (c)t=>54s, x=6.6mand (d) t=>58s, xr=06.6m,
corresponding to the dashed lines in figure 4.12. The color axis is the same as figure 4.12.

down the shelf, the lobe-and-cleft patterns disappear, and the overall magnitude of the
shear stress becomes smaller. Down-stream (negative) directed stress eventually appears
over the down-slope portion of the shelf in panel (¢) during the wave passage, which is
similar to the behavior observed in the 2D case (figure 3.13). This suggests that down-
stream directed flow exists in the BBL. In particular, two bright spots are found in this
region of negative stress, indicating that local boundary layer separation is very likely to
occur. The spanwise shear stress is not shown here because it only reaches a fraction of
the along-topography stress throughout the wave’s de-shoaling process, and hence is not
important in this case. This is because in the vortex-rich region, most of the spanwise
mixing occurs above the BBL.

Four panels of the z-vorticity field plots at the slices indicated by the dashed lines in
figure 4.12 are given in figure 4.14. In panel (a), the y-z plane is located at © = 6.4 m,
corresponding to the nose of the core when the wave reaches the top of the bottom shelf.
A comparison with the corresponding density plot, figure 4.9 (¢), suggests that the same
patterns are found near z = —0.16 m, indicating that the lobe-cleft instability does not
only contribute to the z-vorticity along the BBL, but also the z-vorticity in the leading
edge of the core. This explains the fact that in the 3D flow the existence of the lobe-cleft
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instability also plays a role in the generation of the shear instability along the core’s edge
seen in figure 4.10 (b). As the wave propagates away, the lobe-cleft structure is no longer
seen, but vortices still exist on the BBL as shown in panel (b).

The location of the vertical slices shown in panels (¢) and (d) corresponds to the vortex-
rich region (z = 6.6 m). In contrast with panel (b) where a zero vorticity occupies most
of the plot, non-zero vorticity is seen in and above the BBL up to z = —0.14 m in both of
these plots. Moreover, in panel (¢) non-zero vorticity is also found in the region of Kelvin-
Helmholtz billow (near z = —0.1 m), despite its small magnitude compared with the rest
of the plot. An increase of the overall magnitude of the vorticity field is observed in panel
(d), indicating that due to the de-shoaling of the wave, the flow is highly turbulent in
this region. Since figure 4.13 (c¢) suggests that local boundary layer separation also occurs
at this particular point at t = 58 s, we conclude that, in agreement with the result from
the 2D simulation, potential material mixing and sediment movement and resuspension is
highly anticipated in this region. The only difference is that in the 3D case, an additional
driven mechanism is present, namely the stretching and tilting of the vortex lines, which
further contributes to the turbulence of the flow.
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Chapter 5

Conclusions

In this thesis we have presented direct numerical simulations of laboratory-scale, fully
nonlinear ISWs of elevation propagating over bottom topography, focusing on wave-induced
instabilities during the shoaling and de-shoaling processes. The simulations are performed
on a mapped rectangular domain with a small-amplitude shelf on the bottom boundary.
We focus on flows in a quasi two-layer stratification with a 2% density difference. Cases
with three different locations of the pycnocline are considered. In particular, both 2D and
3D simulations are performed of the Bases Case and the Medium pycnocline cases, and a
2D simulation is performed of the Higher pycnocline case. In addition, a 2D simulation
is also performed of the medium pycnocline case with a Rough bottom topography. In
all simulations, the initial waves do not reach the breaking limit in deep water, and the
trapped cores are formed during the shoaling process.

In the Base Case, the pycnocline is very close to the bottom boundary such that it
intercepts the shelf, and the shallowest region is nearly unstratified. As a result, the
shoaling wave essentially behaves like a gravity current as it reaches the top of the shelf.
The 2D flow is characterized by a spatially growing stratified shear instability in the form
of Kelvin-Helmholtz billows at the edge of the core, whereas three-dimensionalization of
the flow is more relevant near the nose of the core where the lobe-cleft instability occurs.
We shall mention that in the numerical experiments performed by Venayagamoorthy and
Fringer (2007), the lobe-cleft instability is also observed but the shear instability is not
present. In fact, our 3D simulation suggests that both of these instabilities develop and
three-dimensionalize concurrently. In the case of the shear instability, the interaction of
the billows and the BBL at the back of the wave leads to strong bottom shear stress. The
magnitude of the along-topography component of the shear stress is found to be comparable
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to that due to the lobe-cleft instability, while the spanwise component has a magnitude of
at least 50% of the along-topography component.

In the Medium and Higher pycnocline cases where the bottom shelf does not reach
into the pycnocline, the waves maintain a solitary wave-like form throughout the shoaling
process and adjust to the elevated bottom boundary by changing their shapes. In these
cases the dominant instabilities are generated behind the main wave during the de-shoaling
process, in contrast with the Base Case where the instabilities occur during the wave’s
shoaling. In the Medium pycnocline case, the core formed in the original wave breaks up
during the wave’s de-shoaling, and the fluid ejected from the core forms a vortex-rich region
near the down-sloping portion of the shelf, leading to highly turbulent flow and enhanced
bottom shear stress in this region. The magnitude of the bottom stress at this region is
found to be negative because of boundary layer separation and has a magnitude as much
as three times that of the positive shear stress induced by the wave passage. In front of the
remnants of the core, a new, nonbreaking solitary wave is formed and propagates away, in
a similar manner to the original wave. In the Higher pycnocline case, the break up of the
core still occurs as the main wave propagates down the shelf, but the vortex-rich region
is not present. Instead, as the core moves out of the main wave, it fissions into a train of
several smaller amplitude, broader ISWs behind the leading wave.

In the 3D simulation of the Medium pycnocline case, the wave behaves in a slightly
different manner from the corresponding 2D simulation during the shoaling, as the lobe-
cleft instability is observed at the leading edge of the core. Given that the overall flow
behaviour is better described as a solitary wave as opposed to a gravity current, this
phenomenon clearly indicates that it is the advancing nature of the shoaling wave (or the
gravity current) that acts as the driving force for the generation of the lobe-cleft instability.
This observation agrees with the conclusion drawn in Hartel et al. (2000a,b), in which a
linear stability analysis is performed to explain this phenomenon. During the de-shoaling
process, with the presence of vortex tilting and stretching (which cannot occur in a 2D
flow field), the flow in the vortex-rich region appears to be more turbulent and small scale
instabilities are generated more rapidly. However, systematic boundary layer separation is
not observed in the 3D simulation, and the largest bottom shear stress is associated with
the lobe-cleft instability instead of the de-shoaling process.

The Rough bottom topography case has the same density profile as the Medium pycn-
ocline case. While with a smooth bottom topography the shear stress at the edge of the
core is not sufficiently strong to produce any instability, with a relatively rough bottom
topography evidence of billow formation is found. This suggests that perturbation of the
BBL can lead to enhanced shear stress in the leading edge of the core where the billow
formation originates. On the other hand, during the wave passage boundary layer separa-
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tion is found inside each of the ‘valleys’ between bottom corrugations. However, because
the amplitudes of these corrugations are very small, the flow is not energetic enough to
self advect away from the boundary layer. As suggested in Carr et al. (2010), the energy
carried by the flow inside these corrugations is determined by the size and shape of these
corrugations, as well as the stratification of the fluid. To further understand the influence a
rough bottom topography on the behaviour of the shoaling wave, experiments with various
types of the bottom corrugations will need to be carried out.

Our numerical experiments showed that all of the wave-induced instabilities can lead
to enhanced turbulence in the water column and increased shear stress on the bottom
boundary. This suggests that in a near-coastal region, the shoaling and de-shoaling cycles
of ISWs of elevation are likely to provide a systematic mechanism for material mixing
and sediment resuspension. As physical phenomena relating to internal waves are rich
while many questions remain unanswered in the present work, further investigation on
the internal wave dynamics is needed to better understand this subject. One of our long
term research goals is to assess the manner in which the present results scale up. Field
scale fluid flows are characterized by a much higher Reynolds number than laboratory
scale flows. Consequently, the flow tends to be more turbulent and the boundary layer is
thinner. Hence, any instabilities generated during the wave passage are expected to result
in even stronger disturbance to the overall flow field. For example, the boundary layer
separation found in the Rough bottom topography case may lead to a global instability in
large scale simulations. Another possible future research direction would be to examine the
influence of instabilities generated by the leading wave on the entire wave train, because in
nature ISWs rarely exist as single waves. Variation of the bottom topography could also
be considered.

An attempt has been made to scale up the rough bottom topography simulation. This
case, labelled as Scale-up, considers a 2D domain with a length of L, = 70 m and a depth
of L, = 2 m. The shelf on the bottom boundary is also scaled up proportionally and has
a crest of height AH = 0.25 m located at x. = 60 m. The functional form of the bottom
topography is

H(z) = —L, + AHe "@[1 4 ¢(z)], (5.1a)
where
~ J0.05(z — x.)]?, if r <z,
he) = {[0.05@ )P 405020z — 2], ifz> ., (5.1b)
and

€(z) = 0.1sin(207x). (5.1c)
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Figure 5.1: Vertical velocity plots for the Scale-up case at t = 40 s. Panel (a): overall flow
structure. Panel (b): surface boundary layer behind the main wave. Panel ¢): bottom
boundary layer underneath the wave.

The grid size is also increased to N, x N, = 12288 x 384 in order to achieve a similar
grid spacing as the laboratory-scale simulation, such that the flow inside the BBL and the
corrugations can be well resolved. The background density profile is given by

plz)=1— 0.5Aptanh(zo‘_520), (5.2)

where Ap = 0.02, zp = —1.6 m and d = 0.2 m. The viscosity and the diffusivity are fixed
at v =107% m?/s and k = 5 x 1077 m?/s, respectively, and the resulting Schmidt number
is S¢ = 2. Based on the channel half-depth and the initial wave propagation speed (which
is ¢ = 29.6 cm/s), the estimated Reynolds number is Re = 3 x 105, which is approximately
30 times the Reynolds number of the laboratory-scale simulation.
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The vertical velocity field of the Scale-up case at t = 40 s is shown in figure 5.1.
Note that due to increased length scale the wave is still far away from the top of the
bottom shelf at this time. The figure shows that the most significant differences from the
laboratory-scale simulations are the vortices generated near the surface behind the main
wave. This phenomenon is very similar to the vortex shedding discussed in Aghsaee et al.
(2012), and is due to the no-slip and no-flux conditions imposed at the top boundary. A
free-slip surface boundary condition will remove the near-surface instability, and altering
the numerical model to allow a no-slip bottom but a free-slip top could be another future
research direction as well. Along the bottom boundary, vortex generation due to the rough
bottom boundary is also found, as shown in panel (c¢), although in the early stages of the
shoaling process these vortices are very small. Further simulation results are needed in
order to determine whether these instabilities can lead to a significant difference in the
wave’s shoaling process.
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