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Abstract

Discrete Dislocation Dynamics (DD) models provide a framework to advance the un-

derstanding of plasticity. However, existing DD models currently do not account for mul-

tiphysical effects. Multiphysical phenomena are often present during plastic deformation.

Two particular examples are the electromechanical behavior of plastically deformed piezo-

electric materials and the thermomechanical behavior of metals under high strain rate

plastic deformation. Thus, I present two new DD models, that take these behaviors into

account.

The basic carriers of plastic deformation are dislocations, which are crystallographic

defects. Therefore, in the two new DD models, dislocations are directly modeled as crys-

tallographic line defects in an elastic continuum. These models are based on the Extended

Finite Element Method (XFEM), which is a versatile tool used to analyze discontinuities,

singularities, localized deformations, and complex geometries. The XFEM captures the

slip from edge dislocations by way of Heaviside step enrichment function.

This paper starts with the first fully coupled two-dimensional electromechanical Dis-

crete Dislocation Dynamics model (EM–XFEM–DD) for anisotropic piezoelectric crys-

talline solids undergoing plastic deformation. The strong, weak, and discrete forms of

the boundary value problem for the coupled system are presented. The computation of

the Peach–Koehler force, the force driving dislocation motion, using the J–integral is dis-

cussed. The EM–XFEM–DD model for a domain with a single edge dislocation was verified
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by comparison with the solution obtained using the Finite Element Method (FEM) with

Lagrange Multipliers. The piezoelectrical effect on the Peach-Koehler force on a single

dislocation in a finite domain is evaluated. This effect is significant and can affect both

the direction and magnitude of the force. The motion of a network of dislocations under

different electrical and mechanical loads is simulated. The simulations demonstrate that

for piezoelectric materials, the plastic response differs considerably when various electric

potential differences are applied. In addition, the simulations illustrate that the physics

of plasticity under electromechanical loads are more complex than in purely mechanical

systems.

Next, the first fully coupled two–dimensional thermomechanical Discrete Dislocation

Dynamics model (TM–XFEM–DD) is developed. Since high strain rate plastic deformation

leads to significant temperature rises due to the rapid rate of heat generation by dislocation

motion, each dislocation is considered as a moving heat source. The strength of each heat

source is the work done by the Peach–Koehler force on each dislocation. The TM–XFEM–

DD model also accounts for the temperature dependence of dislocation drag. Parametric

studies show that the temperature dependence of dislocation drag does not significantly

impact the observed stress-strain response at low loading rates, but it is significant at

higher loading rates. The simulations using TM–XFEM–DD qualitatively capture the

salient properties of high strain rate plastic deformation, such as the increased importance

of thermal effects with increased strain rate. Higher temperature increase is observed in

vi



specimens deformed at higher strain rates. In addition, the predicted stress–strain response

of the TM–XFEM–DD model is softer than that predicted by a purely mechanical DD

model. This softening effect is found to be stronger in the case of the adiabatic heating

versus fixed temperature change on the boundary of the domain. Overall, the development

of these two models that incorporate electro- and thermomechanical coupling will allow for

a more accurate and comprehensive analysis of plastic deformation at the mesoscale.
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Chapter 1

Introduction

Investigating different material properties for the purposes of improving their use is one of

the continuing goals of material science and engineering. Thus, it is advantageous to predict

and control, as accurately as possible, material behavior. Material properties arise from

phenomena that occur at different spatial and temporal scales, and understanding these

materials’ behaviors can be achieved by modeling them at different scales, see Fig. 1.1.

This figure illustrates the spacial and temporal boundaries for different modeling methods

that are used to analyze materials. In addition, the interactions of those scale intrinsic

phenomena should be taken into consideration when modeling material behaviors in order

to accurately predict their responses. The findings, concepts, and techniques associated

with each scale (atomic, dislocation, micro, and marco) can be studied in unison to generate

a more comprehensive understanding of material behaviors.

Orowan highlights the difficulty of modeling materials with imprecise models or im-

proper scaling [1]:”The macroscopic behavior we observe is built up of the intricate, com-
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plex interactions between mechanisms operating on a wide range of length and time scales.

Studying a material from only the largest of scales is like studying a pocket watch with only

a hammer; neither method will likely show us why things behave as they do. Instead, we

need to approach the problem from variety of observational and modeling perspectives and

scales [2].”

Figure 1.1: Multiscale modeling. Modified from [3].

Even though plastic deformation of crystalline solids has received considerable atten-

tion, especially in small structures, there is still significant work that needs to be done in

terms of developing more precise models. When Erik van der Giessen outlined the theory

2



of plasticity in 21st century, dislocations were identified as the basic carrier of plastic de-

formation [4]. Discrete dislocation dynamics provides a framework for developing models

that directly simulate the motion and interactions of dislocations at the mesoscale, the

length scale between crystal plasticity models and molecular dynamics models. Develop-

ing models at the mesoscale opens up several new possibilities [5]: first, the simulations

of dislocation dynamics bridge the fundamental nature of the microstructure with realis-

tic material deformation and failure by providing quantitative input for phenomenological

constitutive rules in crystal plasticity. Second, and perhaps more importantly, is that such

simulations are expected to become a major tool in the analysis of plasticity problems at

the scale of micron and less. Analyzing plasticity problems at such a scale is increasingly

important as we see the ongoing progress of component miniaturization in this century [4].

Furthermore, multiphysical phenomena are often present during plastic deformation. Such

phenomena involve multiple simultaneous physical processes, see Fig. 1.2, which should be

accounted for when modeling plastic material behavior. Therefore, developing methods to

model dislocation dynamics contributes significantly to the field of plasticity.

My thesis focuses on improving two main areas within existing discrete dislocation

models. The rationale being that existing models do not account for multiphysical effects,

and therefore, do not accurately bridge the gap between molecular dynamics and crystal

plasticity. The benefit of bridging this gap is that it provides a more accurate representation

of materials at the mesoscale.
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Figure 1.2: Physical phenomena of a Multiphysics model.

The first contribution lies in modeling the plastic piezoelectric material behavior at the

dislocation level. Due to the characteristic multiphysical effects that take place between

electric and mechanical fields, piezoelectric materials play a key role in the development

of micro-electro-mechanical systems (MEMS): the technology of very small devices. It has

been observed that dislocations degrade the performance of electronic devices, including

components used in MEMS [6]. The deformations and electrical fields produced by dislo-

cations affect the conductivity and other electrical properties of materials, causing them to

degrade [7]. Current discrete dislocation dynamics models do not incorporate electrome-
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chanical effects when modeling plastic behavior of piezoelectric materials, and thus, I have

constructed a model that includes electromechanical effects.

The second contribution lies in the accurate modeling of high strain rate plastic de-

formation of crystalline solids. High strain rate plastic deformation is known to cause

significant local temperature rise and thermal softening [8], due to the fact that a large

number of dislocations generate a significant amount of heat when they move under high

strain rates deformation. It is not uncommon to observe temperatures rise more than

800 K in shear bands during localization [9, 10]. Empirical continuum plasticity models

(e.g., Johnson-Cook [11]) often incorporate softening terms into the flow stress definition

based on the assumption of adiabatic heating. Crystal plasticity models with thermal

softening have also been developed on the basis of adiabatic heating [10]. It is impor-

tant for high strain plasticity models to incorporate thermal softening in some way. At

the nanoscale, molecular dynamics simulations inherently incorporate thermomechanical

coupling by explicitly modeling the lattice vibrations and the motion of individual atoms.

However, unlike models at both larger and smaller length scales, current discrete dislo-

cation dynamics models do not incorporate thermomechanical effects of high strain rate

plastic deformations.

Therefore, the goal of this research project is to bridge the gap between two scales,

molecular dynamics and crystal plasticity, incorporating the effect of multiphysics during

plastic deformation of piezoelectric materials and high strain rate plastic deformation of
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any crystalline solids. Bridging the gap between the two scales is achieved by means

of the discrete dislocation dynamics framework. Two new discrete dislocation dynamics

model variants are developed based on eXtended Finite Element Method. The models are

implemented in Matlab. One is the first fully coupled electromechanical discrete dislocation

dynamics model for plastic deformation of anisotropic piezoelectric crystalline solids. The

second one is the first fully coupled thermomechanical discrete dislocation dynamics model

for high strain rate crystalline solids plastic deformation. Thus, the main objectives of the

current research for the first model are:

• Develop the strong, weak, and discrete forms of the boundary value problem for the

coupled electromechanical system in the presence of dislocations.

• Solve the coupled electromechanical boundary value problem using eXtended Finite

Element method.

• Take the electromechanical effect into account when calculating the driving force on

each dislocation in a piezoelectric media.

• Simulate the nucleation and motion of a network of the dislocations using the devel-

oped fully coupled electromechanical dislocation dynamics model.

• Study the effect of electromechanical coupling on plastic deformation of anisotropic

piezoelectric crystalline solids.

The main objectives of the current research for the second model are:
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• Develop the strong, weak, and discrete forms of the boundary value problem for the

coupled thermomechanical system in the presence of dislocations.

• Solve the coupled thermomechanical system using eXtended Finite Element method.

• Take the thermal effects into account when calculating the driving force on each

dislocation, heat generated by dislocation motion under the high strain rate plastic

deformation, and temperature dependence of dislocation drag.

• Simulate the nucleation and motion of a network of the dislocations using the devel-

oped coupled thermomechanical dislocation dynamics model.

• Study the effect of thermomechanical coupling on high strain rate plastic deformation

of crystalline solids.

The thesis has the following structure: in Chapter 2, the basic elements of dislocation

theory are explained, which includes discussion of two types of dislocations, different mech-

anisms of dislocation motion and nucleation, and driving force on a dislocation. Then the

literature review of the methods to describe a dislocation is given. After that, the main

classes of discrete dislocation dynamics models with their major advantages and difficulties

are reviewed. Particular attention is given to the eXtended Finite Element Method, since

this is the method used in the two new discrete dislocation dynamics models proposed

within this current work. The unique properties of piezoelectric materials and the effect of

dislocations on electric field in such materials are discussed in the following section. The
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chapter ends with a description of thermal effects due to dislocation motion under high

strain rate deformation.

In Chapter 3, the first fully coupled electromechanical discrete dislocation dynamics

model, based on the eXtended Finite Element Method, is developed for plastic deforma-

tion of anisotropic piezoelectric crystalline solids. Derivation of the theoretical formula-

tion, including strong, weak, and discrete form of the coupled electromechanical system

is presented. Then, verification of the model is presented, for a single edge dislocation

in the middle of a domain, by comparing it with the solution obtained using Finite El-

ement Method with Lagrange multipliers. The verification of the numerical calculation

for Peach–Koehler force on a dislocation, using J–integral, is presented in the following

section. After that, the phenomenological rules for the dislocation dynamics are presented.

The Chapter ends with a numerical example, that illustrates the motion of many edge

dislocations in a small anisotropic piezoelectric domain under mechanical and electrical

loads and demonstrates the effects of electromechanical coupling on material behavior.

In Chapter 4, the first fully coupled thermomechanical discrete dislocation dynamics

model, based on the eXtended Finite Element Method, is developed for high strain rate

plastic deformation of crystalline solids. Derivation of the theoretical formulation, including

strong, weak, and discrete form of the coupled thermomechanical system is presented.

Then, the time integration scheme is discussed. Different thermal effects associated with

dislocation dynamics, such as calculation of the heat generated by dislocations motion,
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a Peach–Koehler force calculation in the presence of thermal field, and dislocation drag

temperature dependency are described in the following section. Lastly, the simulation

results and parametric studies are used to demonstrate the effects of boundary conditions,

dislocation drag, and loading rate.

Finally, conclusions and recommendation for future work are presented in Chapter 5

and Chapter 6 respectively.
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Chapter 2

Literature Review

This chapter provides an overview of dislocation modeling. I will start with a brief intro-

duction to the basic concept of dislocation theory, followed by an in-depth exploration of

those theories used in this work. After which, I will provide an overview of current disloca-

tion modeling methods. Next, the strength and limitations of various discrete dislocation

dynamics models are presented. The eXtended Finite Element Method, used to model

the discrete dislocation dynamics, is presented in greater detail, since this is the preferred

method used in this work, due to it’s ability to model dislocations dynamics without hav-

ing to refine or reconstruct the finite element mesh. In addition, this chapter provides a

literature review on modeling the plastic deformation of the piezoelectric materials at the

mesoscale, the length scale between crystal plasticity models and molecular dynamics mod-

els. Lastly, I will explain the thermal effects of dislocation motion under high strain rate

deformation in order to show the importance of including these thermal effects when mod-

eling the plastic behavior of material at the mesoscale. This chapter provides an overview
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of the modeling of dislocations. It starts with a brief introduction to the basic concept of

dislocation theory with an emphasis on those used in the current work. Then, an overview

of current dislocation modeling methods is presented. Next, the strength and limitations of

various discrete dislocation dynamics models are presented. The eXtended Finite Element

Method to model the discrete dislocation dynamics is presented in greater detail, since this

is the preferred method used in this work. In addition, the chapter provides a literature

review on modeling the plastic deformation of the piezoelectric materials at the mesoscale.

Lastly, the explanations of thermal effects due to dislocation motion under high strain rate

deformation are presented.

2.1 Elements of dislocation theory

Dislocations are crucial in determining the mechanical behavior and properties of crys-

talline solids. A crystalline solid (crystal) is a solid material whose elements, such as

atoms, molecules or ions, are arranged in a highly ordered microscopic structure, form-

ing a crystal lattice that extends in all directions [12]. Most metals are polycrystals, i.e.

a blend of microscopic crystals. An ideal crystal has every atom in a perfect and exact

repeating pattern. However, in reality, most crystals are not perfect and have crystallo-

graphic defects. The lattice dislocations are one of these crystallographic defects. In 1934,

Taylor[13], Polanyi[14] and Orowan[15, 16, 17]presented independent papers, exposing lat-

tice dislocation (or just dislocation) as the crystallographic unit responsible for the plastic
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deformation of crystalline solids. Since this discovery, it has been a key goal of materials

research to understand the role dislocation nucleation and dynamics have in understanding

the plastic behavior and strength of crystalline solids [18]. Without such an understanding,

the design and optimization of new metals with tailored properties is is extremely limited

[19, 20]. Detailed description of the dislocations and their properties can be found in many

introductory books, for example, [21, 22, 23, 24]. However, I will discuss only the most

relevant concepts related to my thesis.

2.1.1 Types of dislocations and Burgers vector

Figure 2.1: An edge dislocation in a single crystal. Modified from [19].

The illustration of an edge dislocation in a single crystal is given in Fig.2.1. The

location of the dislocation core is where the distortion of the perfect lattice is the greatest,

see Fig.2.2. A screw dislocation is more complex and is demonstrated in Fig.2.3. A
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dislocation can be seen as a line discontinuity in the crystal structure. An edge dislocation

is an the insertion (or removal) of an extra half plane of atoms in the crystal structure.

Whereas, a screw dislocation changes the character of the atom planes. The atoms form a

surface that spirals from one end to the other end of the crystal[19].

Figure 2.2: The core region of an edge dislocation in a single crystal. [19].

Burgers vector is used to characterize a dislocation. It represents the magnitude and

direction of a lattice distortion, see Fig.2.1 for an edge dislocation and Fig.2.3 for a screw

dislocation. In order to help provide a visual example, consider a circuit A-B around an

edge dislocation, see the left side of the Fig.2.4. If we put a circuit with the same atom-

to-atom sequence in a perfect crystal, the starting point A and the ending point B are not

the same atom, see the right side of the Fig.2.4. The vector needed to close this circuit

is the Burgers vector of this dislocation. The Burgers vector is usually labeled with b.

The direction of the Burgers vector depends on the slip plane of dislocation, which will be
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Figure 2.3: A screw dislocation in a single crystal [19].

defined in the next section.

2.1.2 Dislocation movements

Dislocation motion along a crystallographic direction is called glide. When a dislocation

moves, or glide, the individual atoms slip in the direction parallel to the Burgers vector; the

dislocation itself moves in a direction perpendicular to the dislocation line in the slip plane.

Therefore, the glide occurs in the direction of the Burgers vector for the edge dislocation;

whereas the glide is perpendicular to the Burgers vector for the screw dislocation. Yet, the

total plastic deformation of both edge and screw dislocations is the same, see Fig 2.6. In

order to visualize how glide occurs see the Fig:2.5.

The consequence of the glide of many dislocations is a slip, which is the manifestation
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Figure 2.4: A circuit around an edge dislocation [22]. Left: The circuit with matched

starting point A and the ending point B. Right: The circuit with mismatched starting

point A and the ending point B.

Figure 2.5: Edge and screw dislocations lines. Dislocation slip plane. Burgers vectors.

Modified from [25]
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Figure 2.6: An edge and screw dislocations glide. Modified from[22].

of the plastic deformation in crystalline solids. Under loading conditions, dislocations move

more easily on specific slip planes that have the most dense atomic packing (the greatest

planar density). The slip occurs in the specific directions that are most closely packed

with atoms (highest linear density). The combination of slip plane and slip direction is

called the slip system. Different crystal structures have different sets of slip systems. For

example, in Fig:2.7, one of the preferred slip planes and three slip directions on it are

schematically shown for the face centered cubic (FCC) crystal. This crystal has four slip

planes with three directions in each, which gives twelve slip systems.

Dislocation glide allows plastic deformation to occur at a much lower stress than would

be required to move an entire plane of atoms past another [27]. Calculations confirm the
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Figure 2.7: Left: slip plane–most dense atomic packing. Right: Slip directions (pink

arrows)–highest density of atoms. Modified from [26]

fact that slip is the result of dislocation motion [24]. This enhances the need to study in

depth the mechanism of the dislocation motion and its effect of plastic deformation.

It is observed experimentally that slip occurs when resolved the shear stress, τ , acting in

the slip direction on the slip plane, reaches some critical value, the critical resolved shear

stress, τcr. This critical shear stress represents the stress required to move dislocations

across the slip plane and is a property of the material that determines when yielding

occurs. To visually relate the tensile stress, σ, applied to a sample to the resolved shear

stress, see the Fig:2.8. The resolved shear stress on the slip plane parallel to the slip

direction is therefore given by:
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τ =
F

A
cosφ cosλ (2.1)

Figure 2.8: Illustration of the geometry of slip. Modified from [22]

where F is the applied force, A is the cross–sectional area, φ is the angle between F

and the normal to the slip plane, and λ is the angle between F and the slip direction. The

Eq.(2.1) is known as the Schmid’s law and the quantity cosφ cosλ is known as the Schmid

factor.

Even though I will not be analyzing this mechanism, it is still pertinent to note that

there is an alternative mechanism for dislocation glide that allows the dislocations to move

out of their current slip plane. For an edge dislocation this process is called climb, and

it is controlled by core diffusion. Dislocation climb allows an edge dislocation to move
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perpendicular to its slip plane. Schematically, the climb is shown in Fig:2.9. Due to the

fact that deformation process is very fast compared to diffusion, the dislocation climb is

neglected in this work. Although dislocation climb is a notable element of dislocation

behavior, future research should be completed to also include such a mechanism.

Figure 2.9: Schematic illustration of the dislocation climb. Modified from [28].

2.1.3 Frank–Read source

There are different mechanisms of dislocation generation [19]. However, at present it is

not possible to determine which one is more important. Moreover, several mechanisms

might operate at the same time. In my thesis, a Frank-Read source is assumed to be the

predominant mechanism of dislocation generation [29]. As was described in the previous

section, when the shear stress reaches some critical value τcr, the dislocations glide on

specific planes. Thus, the dislocations source must be activated at this τcr and in those

specific planes.

Consider an initial straight dislocation segment of a Frank–Read source in an arbitrary
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Figure 2.10: A two–dimensional Frank-Read source.

slip plane. With increasing resolved shear stress, τ , the segment of a Frank–Read source

bends out until a critical Frank–Read arrangement is formed and leaves behind a dupli-

cate of itself. Thus, the Frank–Read source is defined by a critical resolved shear stress

for activation of the mechanism, or nucleation strength, τcr = τnuc, the time to form a

critical configuration, tnuc, and the diameter of the generated dislocation loop Lnuc, which

is a distance between dislocations of the dipole. The two–dimensional Frank–Read source

mechanism is displayed in Fig. 2.10 similar to [5]. The dipole consists of two opposite

dislocations with the same magnitude, but in opposite directions of the Burgers vector,

which is determined by the direction of τ . The distance between two dislocations, Lnuc, is

taken to be such that the attractive force is balanced by the internal stress.
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The values of the nucleation strength, the time to form a critical configuration, and

the diameter of the generated dislocation loop depend on the length of initial straight

dislocation segment of a Frank–read source, the elastic properties, and the drag coefficient

[5]. Dislocation drag is a material property and is related to the interaction between

dislocations and lattice vibration. The fact that this parameter is temperature dependent

is often neglected when modeling the dislocations dynamics, see Sec.2.5. In this work, a

model that accounts for such temperature dependency is developed and described in Ch.4.

2.1.4 Peach–Koehler force

The driving force for dislocation motion is Peach–Koehler force. This force is one of the

key aspects when modeling the motion of the dislocations, which is why it is introduced

in more detail below.

In 1950 Peach and Koehler developed a general equation for such force, Fα, per unit

length of a dislocation line and its unit tangent vector is ξα:

Fα = ξα × (σ̂ · bα) (2.2)

where σ̂ is the stress on a dislocation α from all sources, such as surface traction, other

dislocations, or any other strain-producing defects except the self-stress of dislocation α.

bα is the Burgers vector of the dislocation [30].

By nature the Peach–Koehler force can be classified as a configurational, or material,

force. According to Maugin [31], material forces are generated by a displacement on the
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material manifold. In other words, it is generated by a infinitesimal displacement of a

dislocation line. The material manifold is the group of material points that build up the

body. Thus, material forces may act on an empty set of that group, e.g. singularities, such

as dislocations. The material forces can be computed once the standard field equations are

solved.

Figure 2.11: Conventions for the calculation of the Peach–Koehler force on a dislocation

α using the J–integral

In 1951 Eshelby introduced the force acting on elastic singularities by examining the

energies of the system [32]. The singularity in mathematical sense is the point where

internal stress is infinite and the derivative of the stress is not defined. The force on a

singularity can be calculated by an integral over a surface enclosed in a simple curve.

Therefore, the Peach–Koehler force driving the dislocation can be also computed by such
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an integral, as an alternative to Eq.(2.2). For the linear case, as proposed by Eshelby, the

Peach–Koehler force is

Fk =

∮
Γαc

[
1

2
σijεijδlk − u>i,lσik]nldΓαc (2.3)

where Γαc is any closed contour about the dislocation α, n is the unit outward normal to

Γαc , see Fig.2.11; σij, εij, and ui,l are the components of stress, strain, and displacement

respectively. This integral Eq.(2.3) is known as path-independent J-integral in fracture

mechanics [33], [34] and is viewed as a configurational force acting on a defect.

2.2 Modeling dislocations

The first model for defects, in general, was proposed by Volterra in 1907 as a mathematical

thought experiment [35]. Volterra defined all possible basic deformation cases of a con-

tinuum (including crystals) before the concept of crystal defects was ever conceived. In

the Volterra model, a cut is made in an elastic solid; two surfaces separated by the cut

are moved relative to each other by Burgers vector, permitting elastic deformation of the

lattice in the region around the dislocation line. The material is then restored by welding

together the cut surfaces. The Volterra model for edge dislocation is illustrated in Fig.

2.12, mainly because this dislocation type is of great interest for the purposes of this paper.

Such a dislocation model is based on the theory of elasticity [21, 19, 23, 36]. Here a

dislocation is presented as a line in a continuous medium, while the details of the atomic
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Figure 2.12: Volterra model for a edge dislocation.

structure are overlooked. The strain and stress fields are sufficiently described by the

continuum dislocation theory when the dislocation core is more than a few Burgers vectors

lengths away. Otherwise, these fields become singular at the core, because the dislocation

core is a small region, where the atomic structure is greatly distorted. The elastic energy

density diverges at the dislocation itself due to the incompatibility created at the core by

continuum theory. Inside the dislocation core, the crystal structure can be best described

by atomically informed models [37, 38, 39].In the case of atomically informed models, the

main interest switches to discovering properties associated with the core, as opposed to the

continuum models. Such properties and their impact on dislocation motion, and thus on

plastic deformation, can be adequately understood when the atomic structure is sufficiently

accounted for.

Together, the information from atomically informed models can be incorporated into

continuum models to improve one another. Such models are called hybrid models [22, 19];
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the most well known one being Peierls–Nabarro model [40, 41]. This model incorporates

atomic effects into the continuum model, which provides a way to understand the core

structure and the dislocation drag. The latter of these two plays an important role when

modeling the dislocation dynamics, as will be shown in Ch.4. Peierls [41] obtained a way to

determine the critical resolved shear stress, which is an essential parameter in dislocation

dynamics modeling. Many other efforts have been made to improve and generalize Peierls–

Nabarro model by including more atomic information [38, 42, 43, 44, 45, 46, 47, 48, 49].

Modifications to use the anisotropic elasticity rather than the isotropic one have been also

made in [50, 51, 52].

Overall, the atomic and hybrid models bring significant insights into modeling the

dislocations in an elastic continuum. In this thesis, continuum models were developed for

dislocations based on a discrete dislocation dynamics approach and with a minimal amount

of direct atomic input.

2.3 Discrete Dislocation Dynamics (DD)

Much of the current literature on plastic deformation pays particular attention to Discrete

Dislocation Dynamics [53, 54, 5, 55, 56, 37]. Discrete Dislocation Dynamics is known as

the direct simulation of interactions between and motion of individual dislocations within

an elastic continuum. Such simulations average out the atomistic nature of the material

and offer insights into crystal plasticity [57, 58] by reproducing the physics of plastic de-
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formation at the mesoscale. In Discrete Dislocation Dynamics, the evolution of dislocation

configurations takes place through discrete steps: one, the sequence of equilibrium solu-

tions is obtained with evolving dislocations, two, the total stress of the domain is calculated

for a given distribution, number and geometry of the dislocations at each step. In order to

determine the distribution, number and geometry of the dislocations for the next step in

DD, it is necessary to establish the variety of different mechanisms that govern dislocation

nucleation, interaction and evolution. The phenomenological equation of motion for each

dislocation determines the exact velocity, and therefore, the position of the dislocation for

the next step.

Discrete Dislocation Dynamics methods provide an important opportunity to advance

the understanding of material plasticity and failure. Modeling material behavior for a

large number of dislocations is a computationally intensive task, and it is still in a state of

continued improvement due to the ongoing evolution of efficient computational methods

and computer technologies. Nevertheless, several dislocation dynamics methods have been

developed. Currently, the simulations can be carried out in a system containing a relatively

large number of dislocations and one in which the size is of the order of ten microns [59].

The challenges in dislocation dynamics arise from the fact that different physical process are

associated with the evolution of dislocation structures. First, the motion and interaction

of dislocations depend on long–range interactions between dislocations. These interactions

are very complicated and depend on the positions of all dislocation ensembles relative
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to each other, as well as the directions of their Burgers vectors. Second, the short–range

interactions of dislocations - such as the dislocation nucleation, climb, and annihilation that

have an atomic scale nature - have an essential role in the behavior of a dislocation network.

As a result, accurate analytical descriptions, the development of numerical approximations,

in addition to rules for the analysis of long- and short-range interactions are all pivotal for

overcoming the difficulties and advancement of dislocation dynamics modeling. Currently,

several dislocation dynamics methods are developed accounting for complicated geometries

of the dislocations and simulating the motion and interactions of many dislocations [60,

61, 62, 63, 64, 65].

The existing models for dislocation dynamics can be categorized into three classes:

smeared models, models based on superposition, and the eXtended Finite Element Method

(XFEM).

2.3.1 Smeared models

This class of dislocation dynamics models can be called smeared models. The smeared

model class includes the models based on a phase field description of dislocations, as

proposed by Khachaturyan, Wang and co–workers [66]. Phase field methods directly model

the dislocation field, but represent the discontinuities of the dislocations by smearing (i.e.,

regularization). There is no need to track the evolution of dislocation lines and their

topology, since the dislocations only appear as a result of post-processing the continuously
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evolving phase-fields. The modeling of the dislocations is possible in three dimensions.

However, a rather coarse mesh is employed. The elastic interactions of the dislocations are

determined using well-established fast Fourier transform methods. In addition, anisotropic

crystals can be modeled without considerable loss of computational efficiency. However, in

this model the total energy of a dislocation system contains a term not normally present

in dislocation theory, but must be included within the phase field model to prevent the

dislocation core from expanding. Another weakness of this model is that the model requires

the phase field on all mesh nodes to be updated at every step of the simulation, which can

result in inefficiency.

In [67], a Level Set Method for dislocation dynamics was proposed by Xiang and co–

workers using fast Fourier transform methods. The Level Set Method is a means to model

the evolution and complexity of the geometries (such as dislocation structures), which is

achieved using a straightforward functional representation [68, 69]. Xiang et.al successfully

applied this method to simulate three-dimensional motion of dislocations and to account

for dislocation glide, cross-slip and climb. However, due to the fact that both of dislocation

dynamics methods of Khachaturyan et. al. and Xiang et.al have limitations for the mesh

size, such models could suffer from the loss of resolution and as a result, the Frank-Read

sources could remain inactive leading to unrealistic dislocation densities[56]. An alternative

method was proposed by Lemarchand [70], which directly approximates the displacement

field. The effect of the dislocations in the continuum was introduced through a plastic
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strain. The biggest disadvantage of this alternative method is that it has limitations

regarding the dimension of the simulated configurations, and the number of the dislocations

(although the density of the dislocations can be very high).

2.3.2 Models based on superposition

Another class of dislocation models is based on superposition, where the continuum model

solution is obtained by the superposition of infinite domain analytical solutions. In two

dimensions, such analytical solutions are known for isotropic materials; however, in three

dimensions they take the form of integral equations. The assumption of lattice isotropy is

known to lead to errors as large as 20-30% [19] and it is preferred to avoid it in quantitative

simulations. Since the material typically has a finite size, there is an interaction between

the boundary of the material and the dislocations, which results in the image force on

the dislocations. Thus, the boundary conditions are imposed on free surfaces using the

concept of stress field superposition corresponding to the dislocations in an infinite elastic

domain, and the stress field of the finite domain without dislocations, which is obtained

by solving a complementary problem where the corresponding boundary conditions are

applied [5, 62]. In other words, the solution on a finite domain is obtained by applying the

image traction from the infinite domain solutions of all dislocations to the boundary of the

domain, see the Fig:2.13. Although, the image field solutions are quite smooth and do not

require high resolution. The complementary problem is typically solved by using the finite

element method. The Peach-Koehler force at each dislocation is obtained by adding the
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effect of all other dislocations. When dislocations cross the material boundary, the image

stress given by the Peach–Koehler formula becomes singular at the intersecting points. In

order to deal with singularity, virtual dislocations were introduced outside the material in

such a way that the dislocations form closed loops before the complementary problem is

solved [62].

Figure 2.13: Principal of Superposition. Infinite fields are denoted with .̃ Image fields are

denoted with .̂ Modified [5]

One main weaknesses of these type of models is that Green’s functions for the compli-

cated geometries, material interfaces and anisotropic materials may not always exist. An-

other main weakness is the high computational cost typically associated with these type of

models. Nevertheless, with the development of the Green’s functions the method of super-

position is likely to be widely used, due to its relative ease of use. Recently, the simulations

incorporating anisotropic elasticity into the model were presented in [71, 72, 73, 74].
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2.3.3 The eXtended Finite Element Method

This category of dislocation dynamics models is based on a technique that has been re-

cently developed and is capable to model material anisotropy, arbitrary interfaces and grain

boundaries [75]. The eXtended Finite Element Method (XFEM) is the base of this tech-

nique. This technique allows for the modeling of the non-smooth solutions independent

of the finite element mesh [76, 77]. The non smooth solutions are the functions that do

not have derivatives of all orders in the defined domain, and therefore, can include arbi-

trary discontinuities, high gradients, or singularities of different orders[78]. Moreover, the

XFEM methodology can be used to treat the evolution of non smooth features (singulari-

ties, discontinuities, etc.) without remeshing. The XFEM was initially developed to deal

with linear elastic fracture mechanics [79]. Later, the XFEM was extended to some other

problems, e.g. to nonlinear fracture mechanics [80], multi-material[81] and multi-field [82]

problems, two–phase flow [83].

The XFEM has been successfully used to model the dislocation dynamics of two–

dimensional [75] and three–dimensional materials [84, 85]. This method provides a conve-

nient way to model a dislocation using Volterra’s concept described in Sec. 2.1 [75]. The

XFEM allows for the modeling of dislocation dynamics without having to refine or recon-

struct the finite element mesh [86]. In the classical Finite Element Method (FEM), the

mesh has to conform to the discontinuities created by the dislocations. The construction of

such meshes is a challenging task, especially, when modeling many dislocations. More so,
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the FEM mesh has to be reconstructed when dislocations move, whereas the XFEM mesh

is independent of dislocation location and geometry, therefore reconstruction is not needed

[78]. The difference in mesh layout has been visualized for the case of grain boundary

problem, where the construction of XFEM mesh is highly advantageous (See Fig.2.14).

Figure 2.14: FEM(left) and XFEM(right) mesh for the grain boundary problems [87].

The two new dislocation dynamics models (Ch.3) and Ch.4) presented in this thesis are

developed based on XFEM, and so this particular type of methodology is presented here

with detail greater than any others considered thus far.

The work of Ventura et al. [88] had a particular influence on the development of this

method. Their dislocation model is based on the Partition of Unity Method (PUM), that

was proposed and proofed to converge by Melenk and Babuška [89]. The functions Ňi(x)

form a partition of unity in n-dimensional domain Ω, when:
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∑
i∈Š

Ňi(x) = 1 (2.4)

where Š is the set of mesh nodes. This property is vital for XFEM in terms of convergence

and the patch test. The partition of unity empowers the finite element approximation of

the solution to reproduce the rigid body motion precisely.

In XFEM, a displacement function u(x), x ∈ Ω is modeled by adding a so called enrich-

ment, which is accomplished through partition of unity, to the finite element polynomial

approximation , i.e.:

uh(x) =
∑
i∈S

Ni(x)ui +
∑
i∈Š

Ňi(x)ψ(x)ai (2.5)

The first term of the right side of the Eq.(2.5) is the standard finite element approxima-

tion. The second term is the enrichment. The function ψ(x) is the enrichment function,

that incorporates some knowledge about the physics of the problem (e.g. singularities,

jumps, etc.) and information from asymptotic solutions into the approximation space.

It was shown in [89] that by partition of unity property, the approximation Eq.(2.5) can

represent any enrichment function, ψ(x), exactly. In Eq.(2.5), Ni(x) and Ňi(x) are the

standard finite element shape functions, which are often, but not necessarily, chosen to be

the same, i.e. Ni(x) = Ňi(x). The coefficients ui are the standard degrees of freedom,

ai are the additional nodal unknown parameters. The values ai adjust the enrichment

to its finest approximation. For example, as it will be shown later in Ch.3 and Ch.4, in

the displacement approximation without core enrichment, these nodal unknowns are the
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Burgers vectors magnitudes of the dislocations, which are prescribed. It is important to

Figure 2.15: An arbitrary dislocation structure with step enriched (gray) and core enriched

(purple) elements. The crosshatched elements are the blending elements. Modified from

[87]

notice here, that the approximation Eq.(2.5) is enriched locally, i.e. Š ∈ S (the circled

and squared nodes in Fig.2.15), where S is the set of all mesh nodes. This is typical

for the XFEM method, since the phenomena, or in our case the dislocations, are usually

locally present and it is not computationally efficient to enrich every node of the mesh,

i.e. globally. However, there could be some difficulties in the blending elements, which

are the elements where only some nodes are enriched [81, 90]. The functions Ňi(x) satisfy

the partition of unity property only when all element’s nodes are enriched, otherwise the

enrichment function, ψ(x), is not guaranteed to be represented exactly. However, different
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strategies have been developed to take care of the blending elements and they seemed to

work effectively without a significant lost in convergence rate [91, 92, 93]. It should be

noted that for piece–wise constant enrichment function there are no problems in blending

elements, since the enrichment disappears along its edges. This is particularly important

for the current work, which utilizes a Heaviside step enrichment function (defined later in

Ch.3) that is used in displacement field approximation. Thus, it is a piece–wise constant

function, and so there will be no need in treatment of the blending elements, which could

possibly cause the reduction of the optimal XFEM convergence rate. To visualize the

enriched and blending elements for the arbitrary dislocation, see Fig.2.15.

Note that in order for the enrichment function to disappear at the edges of all elements,

so that uh(x) = ui, the approximation Eq.(2.5) has to have the property of Kronecker-δ.

This can be done by shifting the approximation as was proposed by Belytschko et. al.[77],

i.e.

uh(x) =
∑
i∈S

Ni(x)ui +
∑
i∈Š

Ňi(x)[ψ(x)− ψ(xi)]ai (2.6)

This approximation is still able to reproduce the enrichment function, ψ(x), exactly [78].

When the shifting is performed the essential boundary conditions are met at the very node.

At this time, the Eq.(2.6) can be officially called the standard eXtended Finite Element

approximation.

Another difficulty that may arise while implementing the XFEM is the quadrature of

weak form. The derivation of the weak forms will be given in details for the two multi-
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physical dislocation dynamics models in Ch.3 and Ch.4 respectively. Here, it is enough to

mention that a weak form is represented by integral equations. So, when the approximation

space is enriched, the smoothness of the integrable function can suffer due to the presence

of the discontinuities and singularities. Thus, the standard Gauss quadrature method that

is usually used in FEM to resolve the integrals can not be easily applied. However, several

techniques have been developed to perform the integration accurately without affecting

the convergence performance of XFEM [79, 94, 95]. Furthermore, in the case of the step

function enrichment in the presented work, a simple mapping into equivalent polynomi-

als is done, which allows the integration to be performed by standard Gauss quadrature

method [93].

In the XFEM, the Level Set Method is used to describe the evolving geometry of the

dislocations. As it was mentioned in Sec.2.3.1, the level set approach proved to be quite

successful when modeling the dislocation dynamics. In addition, this method continues

to find its new applications, such as modeling multiphysical phenomenon that are often

present during plastic deformation. The detailed theoretical formulations of two such

multiphysical models, developed in the current work, are presented in Ch.3 and Ch.4.

2.4 Dislocations in piezoelectric materials

Now that the basic concepts have been introduced and the main existing methods of

modeling dislocations and discrete dislocation dynamics have been reviewed, the matter of
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multiphysical phenomena can now be discussed.

Because interest in physical properties of piezoelectric materials has become so great,

both in terms of their performance and practical application, the need to model the be-

havior of such materials at each length scale has arisen. Piezoelectric materials are certain

solid materials, including crystalline solids (crystals) and ceramics, that exhibit the ef-

fect of piezoelectricity, which is defined as the electricity or electrical charge produced by

mechanical strain. The cause and effect of this phenomenon is known as the direct piezo-

electric effect. It is closely related to the converse (or inverse) effect, where a piezoelectric

material becomes strained when electrical charge is applied by the amount proportional to

the electrical field. Both effects are manifestations of the same fundamental property of

the piezoelectric material [96]. Schematically the direct and converse piezoelectric effects

are shown in Fig.2.16 and Fig.2.17 correspondingly.

Figure 2.16: Direct piezoelectric effect.
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Figure 2.17: Converse piezoelectric effect.

Piezoelectricity was discovered in 1880 by French physicists and brothers Jacques and

Pierre Curie. They took the name from the Greek word piezein, which means to squeeze or

press. The converse effect was mathematically deduced from fundamental thermodynamic

principles by Gabriel Lippmann in 1881. Brothers Curies confirmed the existence of the

converse effect and quantitatively proved it. Only noncentrosymmetric crystals exhibit

the piezoelectric effect. Noncentrosymmetric crystals have no center of symmetry, i. e.,

a point through which the crystal structure displays inversion symmetry. When such

a crystal is deformed, the noncentrosymmetry results in nonuniform charge distribution

within a crystal’s unit cells.

A typical noncentrosymmetric crystal structure of an engineered piezoelectric material,

for example lead zirconate titanate (PZT), has a net non-zero charge in each unit cell of

the crystal, see Fig.2.18. A positive ion is located slightly off-center inside the unit cell,
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which creates an electrical polarity, turning the unit cell into an electric dipole. When

a mechanical stress is applied, the position of the positive ion changes causing a change

in the polarity of the crystal. This is the origin of the direct piezoelectric effect. When

the electrical field is applied, the position of the positive ion also changes causing the

mechanical distortion of the unit cell, which is the origin of the converse piezoelectric

effect.

Figure 2.18: Lead zirconate titanate unit cell. Electrical polarity, P [97].

In order for an inorganic piezoelectric material to exhibit strong piezoelectric properties,

the dipoles in crystalline structure should be more or less oriented in the same direction,

which is done by poling it, see Fig.2.19. The direction along which the dipoles align is

known as the poling direction. Conventionally, the poling direction is considered to be

the the z-axis of the material coordinate system. When the crystal’s principal directions

are aligned with the material coordinate system, or spatial directions, the material prop-
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erties can be used without any changes. However, it is important to take material spatial

orientation and poling direction into account in order to correctly interpret the material

properties. During poling a strong electric field is applied across the material, which ori-

ents all the dipoles in the direction of the field. After poling the orientation of the dipoles

becomes roughly the same.

Figure 2.19: Poling. Arrows represent the dipoles [98].

Due to the inherent multiphysical effects that takes place between electric and me-

chanical fields, piezoelectric materials have been widely used as sensors, transducers, and

actuators, which are key components of many very small electronic devices. However, the

dislocations become barriers to charge carriers, as schematically shown in Fig. 2.20. This

phenomena leads to the change in plastic behavior by creating additional forces that either

opposes or drives deformation.

Improving the reliability of electronic devices depends in part on developing a more
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in-depth understanding of dislocations. Moreover, it has been found that the electric field

influences the grain growth [99], rates of recrystallization (a process by which deformed

grains are replaced by a new set of undeformed grains that nucleate and grow until the orig-

inal grains have been entirely consumed) [100], and even superplasticity (a state in which

solid crystalline material is deformed well beyond its usual breaking point) [101]. The

aforementioned phenomena belong to crystal plasticity scale, and so modeling mesoscale

behavior of piezoelectric materials is an essential tool in providing insights for understand-

ing these phenomena. Ultimately, such modeling is pivotal for the design of any devices

subject to both electrical and mechanical loads.

Figure 2.20: Dislocation as a barrier for the electric field.

Merten [102] was the first to investigate the effect of a dislocation on an electric field

in piezoelectric materials. However, in his study, the converse piezoelectric effect was

neglected and isotropy of the materials was assumed. The first analytical solutions for a
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dislocation in an infinite two–dimensional piezoelectric media were developed by Barnett

and Lothe in 1975, based on an extension of the Stroh formalism (a mathematical method

for analysis of the anisotropic elasticity equations) [103]. For a straight line defect, i.e.

dislocation, these solutions require the numerical evaluation of an integral and so are

significantly more computationally complex than the isotropic elasticity solutions often

used in two-dimensional discrete dislocation dynamics simulations. The problem of a single

moving dislocation in an infinite piezoelectric material was studied analytically [104], [105],

[106]. A moving edge dislocation in an anisotropic piezoelectric crystal was considered in

[107] using Green’s theorem and Fourier integral transformations, where the electro-elastic

fields were expressed in an integral form. Later, the exact and explicit solutions for a

moving screw dislocation and an edge dislocation in hexagonal piezoelectric crystalline

solids were derived using eigenstrain theory and Fourier integral transformations ([108]).

However, their solutions do not satisfy the jump conditions of the elastic displacement

across the slip plane ([106]). It is clear from the literature, that the electromechanical

coupling and its inherent anisotropy add significantly to the mathematical difficulties of

the problem. The known solutions are very complicated even for simple geometries and

isotropic materials and are largely for single material infinite domain systems. This can be

contrasted with the finite dimensions, material interfaces and anisotropic materials used in

electronic devices. Even though, as was mentioned in Sec.2.3, discrete dislocation dynamics

simulations are widely used to model the material behavior at mesoscale, they are purely

43



mechanical and consider neither direct nor converse piezoelectric effects. The current work

proposes a new discrete dislocation dynamics model variant which allows simulation of

the anisotropic piezoelectric materials behavior at the mesoscale. This model captures the

multiphysical effects between electric and mechanical fields in the presence of many moving

dislocations, see Ch.3.

2.5 Dislocation dynamics and thermal effects

The strain rates in discrete dislocation dynamics simulations are typically high, varying

from 103 s−1 to 106 s−1 [109]. When a large number of dislocations glide under high strain

rates, they generate a significant amount of heat. At atomic scale, the heat generation can

be explained by relieving the internal strain energy. Plastic deformation, or dislocations

movement, stretch and then break the bonds between atoms. The energy gets released

and converted into heat, which causes the local heating. Under high strain rate plastic

deformation the heat generation rate is much higher than the heat conduction rate, which

causes the local heating in the area of high dislocation concentration. In [10], for example,

the maximum local temperature of about 1273 K was observed during the dynamic torsion

test in titanium alloys. It happened inside shear bands (a narrow zone of intense shearing

strain which develops during high strain deformation and characterized by massive collec-

tive dislocation activity) that formed just before failure of the materials. In [110], the local

temperature effects associated with twinning (crystal deformation mechanism accompa-

44



nied by intergrowth of two separate crystals) at room temperature were studied. The local

temperature rise due to formation and motion of dislocations that accommodate twinning

was observed in this study as well.

It was emphasized in [111], that when heat generation during dislocation motion is

significant, the equilibrium equations should be solved together with the equation of heat

conduction and Fourier law in order to more accurately model high strain rate plasticity.

Thus, it is important to consider the energy converted into heat when plastic deformation

occurs [112]. The influence of substantial heat generation on the plastic behavior of metals

at high rate deformation has been incorporated into some constitutive laws and energy

balances [113, 114, 115, 116]. However, in order to gain in–depth knowledge of such thermal

phenomena and its effects on material response, it is critical to develop mesoscale models

capable of tracking every dislocation and capturing the heat generated when the dislocation

moves. Recently, Tang and Marian conducted dislocation dynamics simulations in single

crystal of iron at several high strain strain rates and temperatures [109]. The temperature-

dependent dislocation mobility relations were used to account for thermal effects. However,

the coupling effect between thermal and mechanical fields was not considered. The restraint

of the existing dislocation dynamics models is that the thermal effects are accounted only

through certain temperature dependent parameters, such as dislocation drag and critical

resolved shear stress. Those parameters are calculated at different temperatures, then

the purely mechanical simulations are performed considering only corresponding thermal
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expansion [117, 118, 119].

Figure 2.21: Thermal effect on dislocation drag in copper single crystal [120].

The first step in creation of a model for the rate dependent thermoplastic system is to

develop discrete dislocation dynamics models which incorporate heat transfer. As it was

mentioned in the previous section, existing discrete dislocation dynamics models are purely

mechanical. Such mechanical models have several error sources due to their neglect of

thermomechanical physics. First, the local elastic stresses are overestimated. For example,

for a modest local temperature rise of 500 K, a metal with E=50 GPa and a linear coefficient

of thermal expansion of 10 · 10−6 K−1 would actually result in a local stress reduction of

250 MPa due to thermal expansion. Second, dislocation drag is underestimated. It has

been observed that in most metals, the drag coefficient increases with temperature increase

by one order of magnitude over the temperature range 100–700 K [121], [122]. For example
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see Fig.2.21, where the dislocation drag increases with temperature up to 400 K for copper

single crystal. In addition, the effect of dislocation drag increases with increase of strain

rate [123]. The current work proposes a new discrete dislocation dynamics model variant

to address these kinds of error sources, capture the heat generation effect, and incorporate

heat conduction, see Ch.4.

2.6 Concluding remarks

The literature review on research into the modeling of dislocations was presented. The

basic elements of dislocation theory were explained, which included two types of disloca-

tions and their Burgers vectors, different mechanisms of dislocation motion, a Frank–Read

source mechanism for dislocation generation, and driving force on a dislocation. The main

methods to model a dislocation were described. After that, the main classes of discrete

dislocation dynamics models with their major strengths and limitations were reviewed.

In particular, attention was given to the eXtended Finite Element Method, which is the

method used in the current work. The inherent multiphysical properties of the piezoelectric

materials under electrical and mechanical loads were defined. The effect of the dislocation

on electric field was discussed. In addition, thermal effects due to dislocation motion under

high strain rate deformation were determined. Thus, two main areas for improvement to

existing discrete dislocation models were identified respectively. The first area is related

to the modeling of plastic piezoelectic material behavior accounting for the inherent multi-
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physical phenomena. The second area is related to the modeling of high strain rate plastic

deformation of crystalline solids accounting for thermal effects associated with dislocation

motion.
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Chapter 3

Electromechanical Dislocation

Dynamics model

The first fully coupled two-dimensional electromechanical (EM) Discrete Dislocation Dy-

namics (DD) model is developed in this chapter. The eXtended Finite Element Method

(XFEM) is used to develop DD simulations for the coupled electromechanical system. This

EM–XFEM–DD model bridges the gap between two scales, atomic- and micro-scale, in-

corporating the inherent multiphysical effect of piezoelectric materials. The deformation

process is assumed to be quasi-static and involves small strains leading to the nucleation,

motion, and interactions of the dislocations.

The chapter has the following structure: in the first section, the strong and weak

formulations for the EM–XFEM–DD model are developed and the discrete equations are

derived. In the second section, the verification of the EM–XFEM–DD model is presented

for a single edge dislocation in the middle of a domain. Then, the computation of the
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Peach–Koehler force using the J-integral is discussed. The piezoelectric effect on the Peach–

Koehler force near a free surface is studied. Thereafter, phenomenological rules for the

dislocation dynamics are presented. Next, the nucleation and motion of a network of

the dislocations in an anisotropic piezoelectric material under electrical and mechanical

loads are simulated. The effect of the electromechanical load on material response is

quantitatively presented and discussed. Finally, in the last section, concluding remarks are

given. The EM–XFEM–DD model formulation and the results presented in this chapter

were published in [124].

3.1 Theoretical formulation of the coupled EM–XFEM–

DD model

In this section, the strong and weak forms for a discrete dislocations model are developed

and the discrete equations are derived. The strong form consists of the governing equations

and the boundary conditions for a physical system. The weak form is an integral form of

these equations, which is needed to formulate the eXtended Finite Element Method.

3.1.1 Strong form of the coupled electromechanical system

We start by determining the strong form of the equations for the coupled electromechanical

problem in a two-dimensional case. Consider a domain Ω bounded by Γ as shown in

Fig.3.1. The domain contains nd dislocations (surfaces of discontinuity). The boundary Γ
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is decomposed into the sets Γu,Γϕ,Γt, and Γq̂, such that

Γu ∩ Γt = ∅ and Γu ∪ Γt = Γ (3.1)

Γϕ ∩ Γq̂ = ∅ and Γϕ ∪ Γq̂ = Γ (3.2)

Figure 3.1: Domain definition and notation.

The internal surface of discontinuity α is denoted by Γαd , where α is from 1 to nd and

nd is the total number of dislocations in the domain. Surfaces Γαd are the active parts of

slip planes. We set Γd = ∪αΓαd . Let Ωd = ∪αΩd
α. Here, Ωd

α is the core region, where the

strain energy is unbounded; whereas the strain energy in Ω/Γd is bounded. Since we are
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considering a coupled problem, two sets of governing equations should be solved together;

the equilibrium equation and Gauss’ law respectively:

∇ · σ + g = 0 (3.3)

∇ ·D = ρ (3.4)

where σ is the Cauchy stress, g is the body force, D is the electric flux density vector

(electric displacement), and ρ is the body charge density.

The constitutive equations for the coupled system are given by

σ = C : ε− e · E (3.5)

D = e> : ε+ ε · E (3.6)

where C is the tensor of the elastic moduli, or stiffness constants, measured in a constant

electric field, ε is the strain, e is the piezoelectric tensor, and ε is the dielectric tensor.

The piezoelectric tensor, e, is a third-rank tensor. Recall, certain crystals develop an

electric charge when strain is applied. The magnitude of this charge is proportional to the

applied stress. This is known as the direct piezoelectric effect. On the other hand, when

an electric field is applied in a certain crystals, the shape of the crystal changes. This is

known as the converse piezoelectric effect. Its existence is a thermodynamic consequence of

the direct piezoelectric effect. The coefficients connecting the electrical field and the strain

in converse piezoelectric effect are the same as those connecting the stress and polarization
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in the direct piezoelectric effect. They are called piezoelectric moduli and these are what

the piezoelectric tensor, e, consist of.

The dielectric tensor, ε, is the second-rank tensor. Its components are the ratio of

the dielectric permittivity and vacuum permittivity. In other words, it is the ratio of

the amount of electrical energy stored in a material by an applied electrical potential

difference relative to that stored in a vacuum. In this formulation, the displacement, u,

and the electrical potential, ϕ, are taken to be the independent variables. The strain, ε,

and the electric field, E, have the following relations with these variables:

ε = ∇su (3.7)

E = −∇ϕ (3.8)

where ∇s is the symmetric part of the gradient matrix operator:

∇s =

 ∂/∂x 1/2(∂/∂x+ ∂/∂y)

1/2(∂/∂y + ∂/∂x) ∂/∂y

 (3.9)

The coupled problem is complete when appropriate boundary conditions for the dif-

ferential equations Eq.(3.3) and Eq.(3.4) are stated. The Dirichelet boundary condition,

where the displacement u and the electric potential ϕ on the corresponding boundaries are

known, are:

u = u on Γu (3.10)

ϕ = ϕ on Γϕ (3.11)
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The Neumann boundary condition, where the surface traction t and surface charge q̂ are

imposed on applicable boundaries, are:

σ · n = t on Γt (3.12)

D · n = −q̂ on Γq (3.13)

When the domain contains the internal surfaces of discontinuities, the system is also

subjected to internal boundary conditions as follows:

[|u|] = bα on Γαd (3.14)

where |u| is the jump in displacement and bα is the Burgers vector of dislocation α.

This condition comes from the fact that Burgers vector represents the lattice distortion

magnitude of the dislocation.

To summarize, the strong form of the boundary value problem comes down to finding

u ∈ C1(Ω/Γd) and ϕ ∈ C1(Ω), such that Eq.(3.3) and Eq.(3.4) are satisfied under the

boundary conditions Eqs.(3.11) - (3.14).

In the general case, Cr(Ω) denotes the space of continuous functions on Ω that have

continuous first r ∈ Z derivatives on the same Ω. Space Z is the set of integers.

Notice that in order for the coupled solution of the strong form equations to exist and

to be unique, the corresponding smoothness of the functions is a necessary requirement.

However, the integral form of the equations eases the requirements on the solution, and

thus is derived below.
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3.1.2 Weak form of the coupled electromechanical system

We derive the weak form of the coupled electromechanical system starting with multiplying

the equilibrium equation Eq.(3.3) by an arbitrary function φ ∈ Υ and integrating over the

domain Ω. After integrating by parts, substituting the constitutive model for the stress

Eq.(3.5), using Eq.(3.7) and Eq.(3.8) we have:

∫
Ω

∇φ> ·C : (∇su)dΩ +

∫
Ω

∇φ> · e∇ϕdΩ =

∫
Γt

φ> · tdΓ +

∫
Ω

φ> · gdΩ,∀φ ∈ Υ, (3.15)

where

Υ =
{
φ|φ ∈ H1(Ω/Γd | φ = 0 on Γu

}
(3.16)

Next we multiply the governing equation Eq.(3.4) and boundary condition Eq.(3.11)

by an arbitrary function ψ ∈ Ψ, where

Ψ =
{
ψ|ψ ∈ H1(Ω/Γd | ψ = 0 on Γϕ

}
(3.17)

Integrating by parts over the domain Ω, substituting the constitutive model for the electric

displacement Eq.(3.6), using Eq.(3.7) and Eq.(3.8) we obtain:

∫
Ω

∇ψ> · e> · (∇su)dΩ−
∫

Ω

∇ψ> · ε∇ϕdΩ = −
∫

Γq̂

ψ>q̂dΓ−
∫

Ω

ψ>ρdΩ,∀v ∈ Ψ (3.18)

The above mentioned Sobolev space Hm(Ω) is defined by:

Hm(Ω) = {u : Dαu ∈ L2(Ω);∀α such that |α| ≤ m} , (3.19)
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where m ∈ Z and ≥ 1, Dαu denotes the αth derivative of the function u on Ω. When

m = 0, Hm(Ω) = L2(Ω). The space L2 is Lebesgue space. For a real number p ≥ 1, the

p-norm,or Lp norm, of x ∈ <n is defined by:

||x||p = (|x1|p + |x2|p + ...+ |xn|p)1/p (3.20)

It is important to notice that every strong solution is also a weak solution. However,

there may be weak solutions which do not satisfy strong formulation. Therefore, it is

important to correctly define the space where we are looking for the existing and unique

solution in order for the weak form to be equivalent to the strong form of the equations.

To summarize, the weak form of the coupled system of the equations comes down to

finding u ∈ H1(Ω/Γd) and ϕ ∈ H1(Ω) such that Eqs.(3.15), (3.18) are satisfied under the

boundary conditions Eqs.(3.11) - (3.14) for ∀φ ∈ Υ and ψ ∈ Ψ.

3.1.3 Discrete form of the coupled electromechanical system

To describe the XFEM approach to dislocation dynamics, we first define the geometry of

the dislocations. We consider an edge dislocation, which is described by the location of

its core and the orientation and location of its glide plane, as illustrated in Fig. 3.2. The

glide plane of dislocation α is represented by the zero contour of the function fα(x), i.e.

fα(x) = 0. The function fα(x) is taken as the signed distance to the glide plane. The

intersection of the glide plane fα(x) = 0 with another plane gα(x) = 0 defines the location
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of core α. The function gα(x) is defined as the signed distance to the core, such that

fα(x) ⊥ gα(x). The active part of the glide plane is defined by fα(x) = 0, gα(x) ≤ 0.

These definitions may be extended to three dimensions in a straight forward way [84]. Such

a way to define the dislocations is called level set description and have been previously used

to model dislocations dynamics, but using a different method than the one proposed here

[67].

x

||b||

y

g(x)=0

g(x)<0
g(x)>0

f(x)=0
f(x)<0

f(x)>0

active glide plane

core

Figure 3.2: Description of an edge dislocation by functions f(x) and g(x). Dashed line

represents the glide plane, and the b is the Burgers vector [124].

The XFEM displacement approximation used here for a domain which contains nd edge

dislocations with Burgers vectors bα has the following form:

uh(x) =
∑
I∈S

NI(x)dI +

nd∑
α=1

bα
∑
J∈Sα

NJ(x)[H(fα(x))−H(fα(xJ))], ∀x ∈ Ω (3.21)

where NI are the standard finite element shape functions, dI are the nodal displacement

degrees of freedom, S is the set of all nodes, and Sα is the set of enriched nodes (i.e. nodes
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of elements that are completely cut by the glide plane α, as shown in Fig. 3.3) xJ are the

coordinates of enriched node J . The second term in Eq.(3.21) is called an enrichment and

introduces the interior discontinuities into displacement field.

The Heaviside step function is given by

H (z) =


1 if z > 0

0 otherwise

. (3.22)

The node with coordinates xJ is enriched, i.e. belongs to Sα, when gα(xJ) < 0 and the

Figure 3.3: Illustration of the enriched nodes. Dark squares represent nodes in the Sα

[124].

support of node xJ is intersected by fα(x) = 0.

Although the displacement field approximation in Eq.(3.21) is discontinuous, the strain

and stress fields are continuous. Thus, it is necessary to consider how the approximation
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Eq.(3.21) with the chosen enrichment introduces the discontinuity into displacement field,

and so we calculate the jump in the displacements across glide plane α:

[|u(x)|] = u+(x)− u−(x), x ∈ Γαd (3.23)

where u+(x) and u−(x) are the displacements above and below the glide plane, respectively.

Substituting the approximation Eq.(3.21) into Eq.(3.23) and simplifying, we have:

[|u(x)|] = [H+(x)−H−(x)]bα
∑
J∈Sα

NJ(x), x ∈ Γαd (3.24)

where H+(x)and H−(x) are the values of the Heaviside step function above and below the

glide plane, respectively. Therefore, it follows from Eqs.(3.24), (3.22) and the partition

unity property of the NJ(x) that:

[|u(x)|] = bα on Γαd (3.25)

The slip across the glide plane is captured with approximation Eq.(3.21) and is equal to

bα; therefore, the internal boundary conditions Eq.(3.14) are satisfied. Taking partial

derivatives of Eq.(3.25), it is clear that the strains are continuous across Γαd since bα is

constant.

The electric potential is approximated by:

φh(x) =
∑
I∈S

N̄I(x)φI , ∀x ∈ Ω (3.26)

where, N̄I are standard finite element shape functions, φI are nodal electric potentials .

Following Galerkin’s method [125], the test functions, w(x) and v(x), are taken to be the
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same form as Eq.(3.21) and Eq.(3.26), respectively, i.e.

w(x) =
∑
I∈S

NI(x)wI +

nd∑
α=1

∑
J∈Sα

NJ(x)[H(fα(x))−H(fα(xJ))]cα, ∀x ∈ Ω (3.27)

v(x) =
∑
I∈S

N̄I(x)vI , ∀x ∈ Ω (3.28)

Substituting the approximations Eq.(3.21) and Eq.(3.26), and the test functions Eq.(3.27)

and Eq.(3.28) into the weak form of the Eq.(3.15) and Eq.(3.18), obtained in the previous

Sec.3.1.2, and evoking the arbitrariness of the nodal degrees of freedom wI , cα and vI the

following discrete equations are obtained:
Kdd Kdb Kdφ

Kdb> Kbb Kbφ

Kdφ> Kbφ> Kφφ




d

b

φ


=


f ext

f extb

qext


(3.29)

where d = [d>1 ,d
>
2 , ...d

>
n ]> are the standard displacement nodal degrees of freedom, φ =

[φ1, φ2, ...φn]> are the degrees of freedom that correspond to the electrical potential at each

node, n is the number of nodes. The vector b = [b1>,b2>, ...bnd>]> consists of the slips

along the glide planes, where nd is the number of dislocations.

Since the slips along the glide planes are known, we can modify and then solve the

system of the equations Eq.(3.29) with respect to the unknown nodal displacements d and

nodal electrical potentials φ, as shown:

 Kdd Kdφ

Kdφ> Kφφ




d

φ

 =


f ext −Kdbb

qext −Kbφ>b

 =


f ext − fD

qext − qD

 (3.30)
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The submatrices from the system Eq.(3.29) and Eq.(3.30) are

Kdd
IJ =

∫
Ω

B>I CBJdΩ, I, J ∈ S (3.31)

Kdφ
IJ =

∫
Ω

B>I eB̄JdΩ, I, J ∈ S (3.32)

Kφφ
IJ = −

∫
Ω

B̄>I εB̄JdΩ, I, J ∈ S (3.33)

Kdb
Iα =

∫
Ω

B>I CBαdΩ, I ∈ S, α = 1, 2, ..., nd (3.34)

Kbb
αβ =

∫
Ω

B>αCBβdΩ, α, β = 1, 2, ..., nd (3.35)

Kbφ
Iα =

∫
Ω

B̄>I eBαdΩ, I ∈ S, α = 1, 2, ..., nd (3.36)

f ext =

∫
Γt

N>t dΓ−
∫

Ω

N>g dΩ (3.37)

qext = −
∫

Γq̂

N̄> q̂ dΓ−
∫

Ω

N̄>ρ dΩ (3.38)

fD =

nd∑
α=1

∫
Ω

B>I CBαbαdΩ, I ∈ S (3.39)

qD =

nd∑
α=1

∫
Ω

B̄>I e>BαbαdΩ, I ∈ S (3.40)

where

BI =


NI(x),x 0

0 NI(x),y

NI(x),y NI(x),x

 (3.41)
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B̄I =

 NI(x),x

NI(x),y

 (3.42)

and

Bα =
∑
J∈Sα


NJ(x),x(H(fα(x))−H(fα(xJ))) 0

0 NJ(x),y(H(fα(x))−H(fα(xJ)))

NJ(x),y(H(fα(x))−H(fα(xJ))) NJ(x),x(H(fα(x))−H(fα(xJ)))

(3.43)

N =

 NI(x) 0

0 NI(x)

 (3.44)

N̄ =

[
NI(x)

]
(3.45)

Note that all terms on the left side of Eqs.(3.30) are independent of dislocations in terms

of their location, number and geometry and, therefore, do not change for a given mesh as

the dislocations move or as new dislocations are nucleated. If a nonlinear constitutive

law was used instead of Eq.(3.5) and Eq.(3.6), this stiffness matrix would depend on the

number and location of the dislocations, and so would have to be updated at each step

and iteration of the simulations. Importantly, the mechanical effect of the dislocations

appears as a force on the right hand side of the equations and is captured with the XFEM

dislocation dynamics model.
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3.2 Verification of the electromechanical XFEM dis-

location model

In this section, we present an example where the electromechanical XFEM model is verified

for the problem of a single edge dislocation.

3.2.1 Theoretical formulation of FEM with Lagrange multipliers

In order to verify the XFEM dislocation model, we used another numerical method, namely,

the finite element method with Lagrange multipliers. We used Babuška’s idea [126], where

he applied the Lagrange multipliers to approximate essential boundary conditions in the

Dirichlet problem. Below we show the mathematical derivations that are applied to the

simple problem of the one edge dislocation in the middle of the domain.

To find the solution of our problem subjected to the internal boundary conditions we

define a functional, or so called Lagrangian of the problem, Λ :

Λ = H(u,ϕ) +G(λ,u,ϕ) (3.46)

The first term of the Lagrangian is the potential energy, H(u,ϕ), that we need to minimize

over all functions satisfying the prescribed internal boundary conditions, or so called con-

straints, G(λ,u,ϕ). We do not have internal constraints on potential field, therefore the

functional G does not depend on the variable ϕ. However, in order to satisfy the internal

boundary condition for the displacement field, 3.14, we construct G as:
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G(λ,u) =

∫
Γd

Υ(x) · (u+(x)− u−(x)− b)dΓd (3.47)

Υ(x) =
∑
L∈µ

λLδ(x− xL), xL on Γd (3.48)

Finding the stationary points for the Lagrangian creates the solution for our initial problem.

Above, the displacement function on upper side of the boundary Γd is denoted with a ”+”

and belongs to Γ+
d ; on the lower side with ”-” and belongs to Γ−d . Fig.3.4 schematically

shows the boundaries and the nodes. Index L is the number of Lagrange multipliers λL

that is equal to the number of the nodes of the mesh µ on the glide plane. For each node

L there is a pair of displacements uI and uJ, where I and J correspond to the upper side

of and lower side of the glide plane respectively.

Using the property of the delta function:

∫
f(t)δ(t− τ)dt = f(τ) (3.49)

and substituting (3.48) in (3.47), we get:

G(λ,u) =
∑
L∈µ

λL · (u+(xL)− u−(xL)− b) (3.50)

The FEM approximation for the displacements on the internal boundary will be the fol-

lowing:

u+(xL) =
∑
I

NI(xL)uI = uIδIL (3.51)

u−(xL) =
∑
J

NJ(xL)uJ = uJδJL (3.52)
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Γ+
d

Γ−
d

Γd

L nodes
I nodes

J nodes

Γd

Figure 3.4: Glide planes and the nodes for the approach with Lagrange multipliers.

where

δIL =


1 if I 6= L,xI = xL

0 otherwise

(3.53)

δJL =


1 if J 6= L,xJ = xL

0 otherwise

(3.54)

Therefore, after substituting (3.53) and (3.54) in (3.50) we have:

G(λ,u) =
∑
L∈µ

λL · (uJδJL − uJδJL − b) (3.55)

The solution will be determined by the equations defining the critical points of the Lagrange
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functional, namely 

∂Λ

∂uk

∂Λ

∂ϕk

∂Λ

∂λL



= 0 (3.56)

or 

∂H

∂uk
+
∂H

∂ϕk
+
∂G

∂uk

∂G

∂λL


= 0 (3.57)

Minimizing the potential energy H(u,ϕ) leads to the weak form of the coupled system

(3.15) and (3.18). After applying the standard FEM approximations for the displacement

and potential fields the standard discrete equations are obtained:

 Kdd Kdφ

Kdφ> Kφφ




d

φ

 =


fext

qext

 (3.58)

However, it is necessary for clarity purposes to present the partial derivatives of G(λ,u)
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here in greater detail, as it is not so obvious:

∂G

∂uk
=

∂

∂uk
(
∑
L∈µ

λL · (uIδJL − uJδJL − b))

=
∑
L∈µ

λL · (
∂uI
∂uk

δIL −
∂uJ
∂uk

δJL)

=
∑
L∈µ

λL(δIkδIL − δJkδJL)

=
∑
L∈µ

λL(δIL − δJL) (3.59)

Remark 1. Even though I and L are not the same, the physical locations xI and xL are;

J and L are not the same, but the physical locations xJ and xL are;

Remark 2. If node I is on the upper side Γ+
d of the boundary Γd and L ∈ µ then δIL = 1

and δJL = 0;

Remark 3. If node J is on the lower side Γ−d of the boundary Γd and L ∈ µ then δJL = 1

and δIL = 0;

Therefore, (3.59) becomes:

∂G

∂uk
=


∑

L∈µ λLδIL I is on Γ+
d , L ∈ µ

−∑L∈µ λLδJL J is on Γ−d , L ∈ µ
(3.60)

In matrix form we can rewrite it as:

∂G

∂uk
= [Gk][λL] (3.61)

The derivative with respect to λL is straightforward:

∂G

∂λL
=

∂

∂λL
(
∑
L∈µ

λL · (uIδJL − uJδJL − b))

=
∑
L∈µ

(uIδJL − uJδJL − b) (3.62)
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Or in matrix form:

[G>k ][uk] = [bL] (3.63)

Now we can rewrite (3.56) as:
Kdd Kdφ G

Kdφ> Kφφ 0

G> 0 0




d

φ

λ


=


fext

qext

bL


(3.64)

The terms of the system Eq.(3.64) were defined in section 3.1.3.

3.2.2 Numerical example

Consider an 1µm × 1µm simply supported domain containing an edge dislocation in the

middle of the domain as shown in Fig.3.5.

The boundary is traction and surface charge free. Defining a two dimensional Cartesian

coordinate system (x1,x3), the domain is 0 6 x1 6 1µm and 0 6 x3 6 1µm. The glide

plane is horizontal and follows along the direction of the line defined by x3 = 0.5µm.

The core is located at (0.5µm, 0.5µm). The x3 axis is chosen to be directed along the

six fold axis of symmetry of a hexagonal piezoelectric crystal. Slip occurs along the basal

plane with Burgers vector a/3, where a = 4Å. Lead Zirconate Titanate(PZT-4) is the

material considered for this example, and has the following properties that are taken from

[127]; the elastic constants are c11 = 13.9 × 1010Nm−2, c12 = 7.78 × 1010Nm−2, c13 =
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x1

x3

0.5µm

0.5µm

1µm

1µm

Figure 3.5: Edge dislocation in a simply supported domain [124].

7.43×1010Nm−2, c33 = 11.5×1010Nm−2, c44 = 2.56×1010Nm−2; the piezoelectric constants

are e31 = −5.2Cm−2, e33 = 15.1Cm−2, e15 = 12.7Cm−2; the dielectric constants are ε11 =

6.46 × 10−9FV −1m−1, ε33 = 5.62 × 10−9FV −1m−1. The piezoelectric tensor corresponds

to the crystal class 26 for which the poling direction was the same as the direction of the

third axis, thus forming a positive coordinate system with (x1,x3) [96]. A uniform mesh

with 100× 100 quadrilateral elements is used.

The displacements and potential fields obtained using XFEM are identical to the so-

lution that was obtained using standard FEM with Lagrange Multipliers, enforcing the
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(a) FEM solution for displacement, m (b) XFEM solution for displacement, m

(c) FEM solution for potential, V (d) XFEM solution for potential, V

Figure 3.6: Comparison of the FEM and XFEM solutions for a single stationary edge

dislocation. a) Displacement in the x1-direction using FEM. b) Displacement in the x1-

direction using XFEM. c) Potential using FEM. d) Potential using XFEM.

constraint Eq.(3.14) , see Fig.3.6 (a)-(d). In addition, the nodal values for the displace-

ment and electric potential were compared to conclude that the FEM and XFEM solutions

are equal. This agreement allows us to rely on the developed method with confidence.
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Initial effort to validate the XFEM formulation focused on comparison to the analytical

solution given in [128]. It was later discovered that this solution was erroneous and so an

alternative method for validation was sought [124].

The FEM solution requires that element edges be aligned with the slip plane. For a

single stationary edge dislocation with a horizontal slip plane this is a straight forward

task. However, limitations of standard FEM become apparent, when applied to a domain

which contains many moving dislocations of multiple slip planes. The standard FEM will

become overly complex and computationally expensive, since a new mesh that aligns with

all slip planes must be constructed at each step of the analysis. In this respect the XFEM

model presented is greatly preferred.

3.3 Peach–Koehler force for the coupled electrome-

chanical model

The next step towards the modeling the motion of the dislocation network is to calculate

the driving force on each dislocation, or Peach–Koehler force. This force plays significant

role when modeling the motion of the dislocations, since it directly effects the velocity of

each dislocation and, therefore, the plastic deformation of the material.

As was previously mentioned in Sec.2.1.4 of Ch.2, the Peach–Koehler force can be cal-

culated by two methods: (1) direct computation using the Peach–Koehler formula Eq.(2.2)

and (2) by the contour integral Eq.(2.3). Due to the fact that we use the XFEM, where
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the total stress is calculated, it is not possible to try to subtract the self stress and di-

rectly apply the Peach–Koehler formula to calculate the driving force on a dislocation [86].

Furthermore, when the singular core enrichment is not included in the displacement ap-

proximation as it is in this work, the total stress field becomes singular at the core. Thus,

it is impossible to separate the stresses from other dislocations [87], and so the contour

integral approach becomes necessary. Hence, we calculate the Peach–Koehler force by the

contour integral for the static elastic continuum, as initially proposed by Eshelby Eq.(2.3)

[32], and later extended to electrostatics by Pak and Herrmann [129], i.e.:

Fk =

∮
Γαc

[Hδjk − u>i,kσik +DjEk]njdΓαc (3.65)

where Γαc is any closed contour about the dislocation α, and n is the unit outward normal

to Γαc . Here the potential energy density function, or so called the electric enthalpy density

is [129]:

H =
1

2
ε> : C : ε− 1

2
E> · ε · E− ε> : e · E (3.66)

The main limitation of the contour integral is that the integral has to be taken over

a domain that does not contain any other dislocation cores. In [86], the minimum radius

of this contour is discussed. They showed that in order to obtain accurate Peach–Koehler

forces, the mesh size must be smaller than one third of the distance separating two disloca-

tion cores. This imposes a constraint on mesh coarseness and leads to very fine meshes in

the vicinity of dislocation core. Constructions of such meshes is relatively straight forward

since the mesh can be constructed independently of the location and orientation of the
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slip planes. While not discussed in the present work, core enrichments as in [84] can also

be introduced to allow for the use of much coarser meshes. However, the core enrichment

functions are not always feasible for the anisotropic and nonlinear materials, whereas the

enrichment in the form of Eq.(3.21) is applicable for modeling such materials.

3.3.1 Verification of the calculation of the Peach–Koehler force

in the absence of electric field

In this section, we compare numerical calculation, referred in Eq.(3.65), with an analytical

solution to verify accuracy of Peach–Koehler calculations. In the case of an edge dislocation

in a semi-infinite domain near a free surface (see Fig.3.7) in the absence of electric effects

([130]), we have:

F = b2µ/L(4π(ν − 1)) (3.67)

where L is the distance from the dislocation core to the free surface. We adjusted our

model for the isotropic material and the case of the plane strain. The following coefficients

were used: Poisson’s ratio ν = 0.34; Lame coefficient µ = E/2(1 + ν); Young’s modulus

E = 1214.1 GPa. The glide plane is parallel to x1 and perpendicular to the free surface.

A domain of comparison was done for L = 10he, where he = 10−2µm is the element

size. The difference in numerical calculations and the analytical solution was about 1.3%.

It is considered as the convergence of the numerical and analytical results. If needed, the

difference in the solutions could be reduced with decrease of element size.
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Figure 3.7: An edge dislocation in a semi-infinite domain, near free-surface

3.4 Piezoelectric effect of the Peach–Koehler force on

a dislocation near free surface

In this section, we give an example that demonstrates the effect of the piezoelectric con-

stants order on the dislocation driving force near a free-surface. We calculate the Peach–

Koehler force by the contour integral Eq.(3.65). To demonstrate the piezoelectric effect on

the Peach–Koehler force, we introduce the parameter γ into the constitutive laws. This

parameter is a scaling factor used to adjust the magnitude of the piezoelectric tensor, which

is coupling term between mechanical and electrical phenomenon. Thus, it is responsible

for showing the influence of the electrical field in a coupled model on the stress field and

the strain on the electric displacements, and so too on the Peach–Koehler force. To study
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this effect we consider a constitutive model of the form

σ = C : ε− γe · E (3.68)

D = γeT : ε+ ε · E (3.69)

In this example we have one edge dislocation and Γαc is a circle of radius r = 5he, where

he = 10−2µm is the element size.

Lead Zirconate Titanate(PZT-4) crystal is the material chosen to study, since it is often

used in MEMS devices. Material size we use here is identical to that previously used to

compare XFEM and FEM with Lagrange multipliers in Sec.(3.2.2). The material properties

are also given in Sec.(3.2.2). An applied potential difference ∆φ = 1V is prescribed between

the upper and lower surface, of the domain, as shown in Fig.3.8. Such applied voltage is

typical for the piezoelectric materials like PZT-4. The electrical stress created by the

voltage of such order eliminates the electric fatigue and failure of the sample [131]. A

uniform mesh with 100×100 quadrilateral elements is used. The boundary is traction and

surface charge free.

The parameter γ is varied from 0 to 1. The results are shown in Fig.3.9. In Fig.3.9(a)

the Peach–Koehler force, F , was calculated at different distances, L, from the boundary

for three values of parameter γ. The Fig.3.9(b) shows the relative change in the force

with respect to the force calculated with no coupling effect, F0, which corresponds to the

parameter γ = 0. We also calculated the force for a dislocation in the middle of the domain,
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Figure 3.8: Edge dislocation in a simply supported domain under electrical load

where the Peach–Koehler force is expected to be zero, to verify our numerical calculation;

it approaches zero as would be expected.

For PZT-4, which is known for its piezoelectric effect, γ = 1, the difference in the Peach–

Koehler force for the coupled model is around 80% when a dislocation is 7he = 0.07µm from

the boundary. Obviously, such large changes in Peach–Koehler force will effect the speed

of the dislocation significantly. Similar electrical field influences were observed through

experiments on the plastic deformation of metals and ceramics ([132]).

Even more interesting is the observation that the Peach–Koehler force changed direc-
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Figure 3.9: a) Peach–Koehler force for different γ at different distances from the boundary .

b) Normalized Peach-Koehler force for different γ at different distances from the boundary

[124].

tion when L > 0.1µm for γ = 1. The electric field drives the dislocation towards the center

of the domain, whereas the free surface boundary attracts the dislocation. The increas-

ing/decreasing nature of the Peach–Koehler force is caused by the competition between
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these processes. This suggests that while surface effects may still dominate dislocation

behavior close to a free surface, the electromechanical coupling effect can dominate bulk

behavior. In pure mechanical model, the curve would be monotonic. The discovery and

quantitative representation of such an effect is very important when applied to the ma-

terials that usually are used in microelectrimechanical systems (MEMS). The behavior of

these materials in existing theories is predicted by models that ignore coupling. We can

see from the example that even in the case of a single dislocation, the effect of the electric

field should be taken into account when dealing with materials that are under electrical

and mechanical loads.

3.5 Phenomenological rules for the dislocation dynam-

ics

The last step before we can model the motion of the dislocations is to define the rules and

set up the laws that govern the dislocation nucleation, motion and evolution. We use a

phenomenological equation of motion as in [5]:

Fα = B · vα (3.70)

where vα is the velocity of the dislocation α. B is the tensor of the dislocation drag or the

inverse of the dislocation mobility tensor. Therefore, the next position of the dislocation

α, xαnext, can be calculated as:

xαnext = xαcur + vαdt (3.71)
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where xαcur is the position of the dislocation α at the current moment and dt is the in-

crement in time. The selection of dt was informed by the annihilation criterion, as this

criterion imposes the strongest constraint on the time increment. Two edge dislocations

with opposite Burgers vectors of the same magnitude will annihilate each other when they

are within a material-dependent critical distance, Lan [19]. They annihilate, or cancel,

each other because the distortion of one dislocation is exactly the negative of the other.

In order to properly capture the dislocations annihilation, and to also capture when two

dislocations pass each other without annihilating, the time increment is limited to

dt =
1

2

Lan
vα

(3.72)

where vα is the maximum of all dislocations velocities, Lan is the the distance of annihi-

lation.

We will restrict the motion to the glide plane, so B = Bαbα⊗n. Here, bα is the Burgers

vector of dislocation α, n is the normal to the glide plane and Bα is the drag coefficient of

dislocation α.

New dislocations can be nucleated through the operation of Frank–Read sources. The

source is characterized by the critical stress for activation of the Frank-Read mechanism,τnuc =

τcr, the time to form a critical configuration, tnuc and the diameter of the generated dislo-

cation loop, Lnuc, see Fig.3.10 for the visualization of the nucleation process. The distance

between two dislocations is taken to be such, so that the attractive force is balanced by
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Figure 3.10: Nucleation of the network of the dislocations.

the internal stress in the absence of an electric field:

Lnuc =
E

4π(1− ν2)
· b

τnuc
(3.73)

where ν is Poisson’s ratio, E is Young’s modulus, and b is the magnitude of the Burgers

vector [5]. The obstacles to dislocation motion are implemented through the pinning

mechanism. Each obstacle, which could be, for example, a vacancy void or a precipitate,

is modeled as a fixed point on a slip plane. When a dislocation reaches the vicinity of an

obstacle, it becomes fixed and cannot glide further. Pinned dislocations get released by the

obstacles when their Peach-Koehler force exceeds the pinning force of the obstacle, Fobs :

Fobs = τobs · b (3.74)

where τobs is the strength of the obstacle.
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3.6 Nucleation and motion of many dislocations

In this section, we use the developed coupled electromechanical XFEM model to study

the motion of dislocations under electrical and mechanical loads. We demonstrate the

importance of accounting for the multiphysical phenomena when modeling the materials

in the presence of different nature loads.

2L

W

x1

x3

U

α

Figure 3.11: Single crystal specimen [124].

The single anisotropic crystal is used in our example to investigate the effect of piezo-

electricity on the behavior of the dislocations, i.e. the plastic deformation. The geometry,

elastic properties and boundary conditions that we use are similar to those in [133]. Plane

strain conditions are assumed in the x1–x3 plane. The crystal has the following properties:

Poisson’s ratio ν = 0.33, Young’s modulus E = 70GPa; the piezoelectric constants are

e31 = −5.3 × 10−3Cm−2, e33 = 15.5 × 10−3Cm−2, e15 = 13.0 × 10−3Cm−2; the dielectric
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constants are ε11 = 6.37 × 10−9FV −1m−1, ε33 = 5.53 × 10−9FV −1m−1. In this example,

a material with piezoelectric constants similar to a lead zirconate titanate is considered

[134]. One slip system at an angle of α = 60◦ to the positive x1 axis is considered. The slip

planes are spaced 100b apart, where b = 0.25nm is the magnitude of the Burgers vector of

each edge dislocation. As in [135], we located the slip planes in the in the middle of the

domain. As we mentioned in the previous Sec.3.5, Frank–Read source mechanism is used

to nucleate new dislocations. The sources are randomly distributed on the slip planes with

a density ρsource = 125µm−2. The nucleation strength, τnuc, is randomly assigned to each

source using a Gaussian distribution with an average strength of 50MPa and standard

deviation of 1MPa. The nucleation time for the sources, tnuc, is taken to be 2.5ns. When

the resolved shear stress exceeds the critical value, τnuc, during a time period of tnuc a new

dislocation dipole is generated. The obstacles are randomly distributed at the slip planes

with a density of ρobs = 30µm−2. The obstacle strength is set to be τobs = 150 MPa [133].

The mobility constant B is 10−2Pa ·s. Annihilation of two dislocations with opposite signs

occurs when they are by a distance Lan = 8.5nm. The crystal is dislocation and stress

free at the beginning of simulation. A uniform mesh with 99 × 33 quadrilateral elements

is used.

It is worth emphasizing, that two criteria are used to control the process of nucleation

when the shear stress exceeds the critical value. To use only the constraint on nucleation

time was not sufficient; the geometry of the dislocations had to be considered as well. The
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next dipole is not nucleated unless the previous dipole has a critical distance from the

source. We chose this distance to be big enough to accurately calculate the Peach–Koehler

force around the dislocation cores, i. e. 4.24nm .

We consider a specimen with dimensions 2L×W with the tensile axis aligned with the

x1 direction, see Fig.3.11. In this example L = 0.75µm. Tension is imposed by prescribing

displacements at x1 = 2L to be U and putting rollers along x1 = 0. The loading rate

U̇

L
= 2000s−1 was used to obtain a strain of 0.005. To constrain rigid body motion of

the specimen we fixed the displacements at the point (0, 0). Applied potential differences

∆φ = 1V and ∆φ = −1V were prescribed between the upper and lower surfaces. As

mentioned before, such applied voltage is typical for the piezoelectric materials like PZT-4.

The electrical stress caused by this voltage prevents the electric fatigue and failure of the

sample [131].

Fig.3.12 shows the tensile stress, σ, versus strain, U/L, responses of the specimen

under applied potential of ∆φ = −1 and time step dt = 0.5ns for different meshes. The

mesh convergence study was performed to obtain an accurate solution with a mesh that is

sufficiently dense and computationally efficient. The linear elastic response is identical for

all meshes and is not shown. A 120× 40 mesh is found to be sufficiently dense to capture

the material response. A coarser mesh was chosen to qualitatively illustrate the effect of

the electric field on the material response and dislocation density.

The tensile stress, σ, versus strain, U/L, responses of the specimen under different
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Figure 3.12: Mesh resolution sensitivity analysis

applied potentials are plotted in Fig.3.13(a). Evolution of the dislocation density, ρdisl,

with tensile strain is shown on Fig.3.13(b). The dislocation density is calculated as the

amount of the dislocations per unit area. Since the slip planes are only located in the

middle of the domain like in [135], all dislocation activity occurred in central area of the

domain. Therefore, ρdisl = nd/((2/3)L ×W ) , where nd is the amount of dislocations at

the current calculation step.

From Fig.3.13(a), we can see how the electrical field effects the response of the specimen.

In both figures the linear elastic response is not shown. As we can see, in both cases the

first dislocation activity occurs at the stress that is consistent with the critical value of

the source strength at a strain of 0.3%. In the beginning of the dislocation activity, we

observe a similar response, but with the increasing load the effect of the electric field
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Figure 3.13: Tensile response for different applied electric potential difference [124]. a) The

applied stress versus strain. b) Dislocation density at different tensile strain.

becomes clearly visible. The applied stress is generally higher for the case of ∆φ = 1V,

meaning that the applied electric potential acts to oppose plastic deformations, whereas

when ∆φ = −1V, the electric potential acts to drive plastic deformations. The maximum
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Figure 3.14: Rate of change of applied electric flux density versus applied strain [124]

difference in applied stress for the two considered cases reaches 65MPa at a strain of about

0.37%.

In Fig.3.13(b), the evolution of the dislocation density for the same two cases of applied

potential difference is shown. We can see that the behavior of the dislocation densities

for both cases is quite complex. It is interesting to note, that the point where the two

dislocation density curves cross is near to where the difference in applied stress is at a

maximum. At a strain of about 0.4%, the two curves depart from one another and do not

cross afterwords.

In Fig.3.14, the percent change in the electric flux density, D, through the top surface

with respect to initial electric flux density, D0, is plotted against the applied strain for

both cases. Here, we observe a significant change in the flux density for both cases beyond

a strain of about 0.35%. The different behavior of a plastic zone is caused by the coupling
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effect of this model. The maximum difference in electric flux for two cases is 0.12% and

corresponds to the same strain where the maximum difference in the applied stress occurs.

It is important to note, that if a material has stronger piezoelectric properties, the electrical

effect is expected to be considerably more substantial.

The simulations in this section illustrate that the effect of the electric field on the

material response is significant and needs to be carefully considered when dealing with

electronic devices. The presented results are dependent on the location of randomly dis-

tributed Frank–Read sources and their randomly assigned strength. Differing origins and

strengths may lead to slightly different results; however, the overall trends are expected to

be unchanged. Such parameters like slip plane directions, the distribution and the num-

ber of dislocation sources, the source length, obstacle density and strength, and mobility

constant are important when evaluating the performance of electronic small–scale devices

([136], [137], [138]). In the current calculations, we only permit dislocation activity on a

single slip system. However, it is known that presence of the other slip system can influence

the dislocation evolution on the initial one ([135], [139]). The inertia effects are assumed

to be negligible in the presented formulation; however, it is a common assumption when

modeling dislocation dynamics. The possible directions for the future improvement of this

developed model are recommended in Ch.6.
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3.6.1 Electromechanical XFEM-DD algorithm

The main computation steps for solving the coupled electromechanical problem using

XFEM-DD are given below:

START:

compute Kdd, Kdφ, Kφφ from (3.31–3.33)

for each loading step from n to nsteps do

compute f ext using (3.37)

compute qext using (3.38)

compute fD using (3.39)

compute qD using (3.40)

compute dn and φn from (3.30)

compute Peach-Koehler force, Fα, for each dislocation α, using (3.65)

compute vα using (3.70)

update the position of each dislocation α on a slip plane

apply DD rules (nucleation, annihilation, pinning/unpinning, removing from the do-

main)

end for

END.
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3.7 Concluding remarks

A discrete dislocation dynamics model based on the eXtended Finite Element Method

was developed for a network of the dislocations under mechanical and electrical loads. In

order to incorporate the effect of multiphysics, the equilibrium equation is coupled and

solved together with Gauss’ law. The discontinuity in the displacement field across the

glide planes was modeled by introducing additional basis functions into the approximation.

The calculation of the driving force on a dislocation was done using the J–integral. In the

first example, the XFEM model for a domain with a single edge dislocation was verified

by comparing with the solution obtained using the FEM with Lagrange Multipliers. In

the second example, we illustrated the piezoelectric effect on the Peach–Koehler force

on a dislocation near a free surface. The effect is significant and can affect both the

direction and magnitude of the force. Moreover, this effect is seen to be very important

in the bulk of a material. Lastly, the motion of many edge dislocations in a small domain

under mechanical and electrical loads was simulated. The simulations demonstrated that

for piezoelectric materials, the plastic response of the material considerably differs when

various electric potential differences are applied and illustrates that the physics of plasticity

under electromechanical load is more complex than in purely mechanical systems. The

developed framework has great potential to be an important tool to study the behavior

of the piezoelectric materials widely used in design of the micro-electro-mechanical system

and other electronic devices.
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Chapter 4

Thermomechanical dislocation

dynamics model for high strain rate

plastic deformation

The first fully coupled two–dimensional thermomechanical (TM) Discrete Dislocation Dy-

namics (DD) model is developed in this chapter. The model is based on the eXtended

Finite Element Method (XFEM) and incorporates the equilibrium equations that is cou-

pled with the heat conduction equation. This TM–XFEM–DD model bridges the gap

between two scales, atomic- and micro-scale, incorporating thermal effects during high

strain rate plastic deformation at the mesoscale.

The chapter has the following structure: in the first section, the strong and weak forms

for the TM–XFEM-DD model that captures the heat generation effect and incorporates

heat conduction are developed; the discrete equations are derived. In the second section,

the calculation of the Peach–Koehler force in the presence of thermal effects is explained;
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the temperature dependency of dislocation drag is introduced; the calculation of the body

heat source is shown; dislocation dynamics phenomenological rules and computational steps

are discussed. In the third section, the examples illustrating different plasticity induced

thermal effects, including the effects of boundary condition of the heat equation, dislocation

drag, and loading rate on plastic behavior of the DD are given. The chapter ends with

concluding remarks in the forth section.

4.1 Theoretical formulation of the coupled TM–XFEM–

DD model

In this section, the strong, weak, and discrete forms of the coupled thermomechanical

system of the equations are derived.

4.1.1 Strong form of the coupled thermomechanical system

Consider a domain Ω bounded by Γ, as shown in Fig.4.1. The boundary Γ is decomposed

into the sets Γu, ΓT , Γt, and Γh, such that:

Γu ∩ Γt = ∅ and Γu ∪ Γt = Γ (4.1)

ΓT ∩ Γh = ∅ and ΓT ∪ Γh = Γ (4.2)

The body Ω contains nd dislocations. Let the active part of the slip plane of dislocation α

be denoted by Γαd . The core region Ωα
d is the region where the strain energy is unbounded.

92



Γt

t

Ω

h

Γh

Γu

ΓT

Γ1d
Γ2d

Γnd

d

Γu ∪ Γt = Γ

ΓT ∪ Γh = Γ

x

y

Ω1
d

Ω2
d

Ωnd

d

Figure 4.1: Domain definition and notation.

We denote Γd = ∪αΓαd and Ωd = ∪αΩα
d , where α is from 1 to nd. The strain energy in

Ω/Ωd is bounded.

The differential equations that govern the coupled thermomechanical dislocation dy-

namics model are the equilibrium equation and heat equation:

∇ · σ + g = 0 (4.3)

CpρΘ̇ +∇ · q = S (4.4)

where σ is the Cauchy stress tensor, g is the body force vector, q is the heat flux density,

S = S(x, t) is the body heat source, and Θ = Θ(x, t) is the absolute temperature change

from the stress free reference temperature Θ0 at the point x ∈ Ω at the moment t. The
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strain, ε, can be expressed in terms of displacements u as:

ε = ∇su (4.5)

where ∇s is the symmetric part of the gradient operator, see Eq.(3.9). The specific heat

capacity and mass density are denoted by Cp > 0, and ρ > 0 respectively. The superposed

dot denotes the material time derivative. The heat equation equation Eq.(4.4) is classi-

fied as a parabolic equation. The equilibrium equation Eq.(4.3) is classified as elliptical.

However, the classification might not be important when the coupling through different

constitutive dependencies is involved, as well as when dealing with numerical method of

solving the partial differential equations.

The constitutive equation for the stress is:

σ = C : ε− λΘ (4.6)

where C is the tensor of the elastic moduli, λ = C : γ, and γ is the tensor of the coeffi-

cients of thermal expansion.

The constitutive equation for the heat flux, q, is Fourier’s law that was formulated empir-

ically in 1822:

q = −k∇Θ(x, t) (4.7)

where k is a symmetric tensor of the coefficients of thermal conductivity.
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One unique feature of our thermomechanical dislocation dynamics model is the origin

of the body heat source, S(x, t), in Eq.(4.4). This function is defined over the domain Ω,

varies with time and coordinates, and represents the heat generated by the motion of the

dislocations in the domain. Each dislocation acts as moving heat source. Thus, S(x, t) is

a linear combination of dirac-delta functions:

S(x, t) =
nd∑
α=1

sα(t)δ(x− xα(t)) (4.8)

where sα(t) is the heat generated by the motion of dislocation α at time t. The position,

xαd (t), is the position of dislocation α. The calculation of sα(t) is discussed at greater

length in Sec. (4.2). The coupled problem will be completed when appropriate boundary

conditions are stated. The Dirichelet and initial boundary conditions are:

u = u on Γu (4.9)

Θ(x, t) = Θ on ΓT (4.10)

Θ(x, t0) = T0 in Ω (4.11)

The Neumann conditions, where the surface traction t and heat flux h are imposed on

applicable boundaries, are:

σ · n = t on Γt (4.12)

q · n = h on Γh (4.13)

In addition to the conditions above, the system is also subjected to the internal boundary
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conditions:

[|u|] = bα on Γαd (4.14)

where |u| is the jump in the displacement across Γαd and bα is Burgers vector of the

dislocation α. The internal conditions come from the fact that Burgers vector represents

the magnitude of a lattice distortion in the presence of the dislocation.

To summarize, the strong form of the coupled thermomechanical problem is:

find u ∈ C1(Ω/Γd) and Θ(x, t) ∈ C1(Ω) ∩ C0(0 < t < τ) such that equations (4.3) and

(4.4) are satisfied under the conditions Eqs.(4.9)-(4.14).

Thus, the strong form of the coupled thermomechanical problem is stated by Eqs.(4.3)-

(4.14).

4.1.2 Weak form of the coupled thermomechanical system

The weak form of the coupled thermomechanical system is derived from the strong form

by following the standard procedure. We start by multiplying the governing equation (4.3)

by an arbitrary function ς ∈ Σ and integrating over the domain Ω.

∫
Ω

ς · ∇ · σdΩ +

∫
Ω

ς · gdΩ = 0,∀ς ∈ Σ (4.15)

where

Σ =
{
ς|ς ∈ H1(Ω/Γd) | ς = 0 on Γu

}
(4.16)
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After integrating by parts, substituting the constitutive model for the stress (4.6), using

(4.5) and boundary condition Eq.(4.12) we get:

∫
Ω

∇ς> ·C : (∇su)dΩ−
∫

Ω

∇ς> · λΘdΩ =∫
Γt

ς> · tdΓ +

∫
Ω

ς> · gdΩ, ∀ς ∈ Σ

(4.17)

Next, we choose an arbitrary weight function v̂ ∈ V̂, then we multiply the heat transfer

equation (4.4) by it and integrate over the domain Ω:

∫
Ω

v̂CpρΘ̇(x, t)dΩ =

∫
Ω

v̂k∇Θ(x, t)dΩ +

∫
Ω

v̂S(x, t)dΩ,∀v̂ ∈W (4.18)

where

V̂ =
{
v̂|v̂ ∈ H1(Ω)|v̂ = 0 on ΓT

}
(4.19)

Further, integrating by parts and using the (4.13) give us:

∫
Ω

wCpρΘ̇(x, t)dΩ +

∫
Ω

∇wk∇Θ(x, t)dΩ =∫
Ω

wS(x, t)dΩ−
∫

Γq

whdΓ,∀w ∈W

(4.20)

Therefore, the weak form of the coupled thermomechancal problem is to find u ∈

H1(Ω/Γd) and Θ(x, t) ∈ H1(Ω) ∩H0(0 < t < τ) such that the equations Eq.(4.17) and

Eq.(4.20) are satisfied under the conditions Eqs. (4.9)-(4.14) for ∀ς ∈ Σ and w ∈W.

We defined the Sobolev space Hm, where m ∈ Z by the Eq.(3.19) in Sec.3.1.2.
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4.1.3 Discrete form of the coupled thermomechanical system

As we saw in Sec. 3.1.3, in the XFEM approach to dislocations dynamics, a standard local

displacement approximation is extended by the discontinuities that dislocations create. We

use level set functions to describe the locations of the active part of each slip plane like

in [140, 84]. Edge dislocations are considered in our model. Each dislocation is described

by the location of its core and the orientation and location of its glide plane. We define

the glide plane of dislocation α by affine function fα(x) = 0. The function is taken as the

signed distance to the glide plane, i.e., fα(x) = α0 + αixi. The intersections of the glide

plane fα(x) = 0 with another plane gα(x) = 0, defines the location of the core α. The

affine function gα(x) = β0 + βixi is defined as the signed distance to the core, such that

fα(x) ⊥ gα(x). The active part of the glide plane is defined by fα(x) = 0, gα(x) ≤ 0. See

Fig.3.2 to visualize the level set definition of edge dislocation, since we used it in Sec. 3.1.3

The XFEM displacement approximation for a domain with nd edge dislocations and

Burgers vectors bα is:

uh(x) =
∑
I∈S

Nu
I (x)dI+

nd∑
α=1

bα
∑
J∈Sα

Nu
J (x)[H(fα(x))−H(fα(xJ))], ∀x ∈ Ω/Ωd

(4.21)

where Nu
I are the standard finite element shape functions, dI are the nodal degrees of

freedom, and xJ are the coordinates of node J . We denote S as the set of all nodes, and

Sα as the set of enriched nodes. The enriched nodes are the nodes of the elements that
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are completely cut by the active part of the glide plane as shown in Fig.4.2. The second

term in Eq. (4.21) is called an enrichment and introduces the jump across the glide plane

with magnitude and direction of the Burgers vector [141]. Though the displacement field

approximation in (4.21) is discontinuous, the strain and stress fields are continuous, except

at the dislocation core, see [142]. In Sec. 3.1.3 we showed how the slip across the glide

plane is captured with such approximation Eq. (4.21). This slip is equal to the Burger’s

vector and is constant, which assures the continuity of the stress and strain fields across

the glide plane.

The Heaviside step function is given by:

H (z) =


1 if z > 0

0 otherwise

. (4.22)

The temperature field is discretized over the domain Ω as follows:

Θh(x, t) =
∑
I∈S

NΘ
I (x)ΘI(t), ∀x ∈ Ω (4.23)

where NΘ
I are the standard finite element shape functions and ΘI(t) are time-dependent

nodal temperature change.

Following Galerkin’s method [125], the test functions, ς(x) and v̂(x), are taken to be

the same form as Eq.(4.21) and Eq.(4.23), respectively, i.e.:

ς(x) =
∑
I∈S

Nu
I (x)ςI +

nd∑
α=1

∑
J∈Sα

Nu
J (x)[H(fα(x))−H(fα(xJ))]aα, ∀x ∈ Ω (4.24)
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Figure 4.2: Illustration of the enriched nodes. Dark squares represent nodes in the Sα.

v̂(x) =
∑
I∈S

N̄Θ
I (x)v̂I , ∀x ∈ Ω (4.25)

After substituting the approximations Eq.(4.21) and Eq.(4.23) and the corresponding

approximations of the Galerkin’s test functions Eq.(4.24)and Eq.(4.25) into the weak forms

Eq.(4.17) and Eq.(4.20), recalling the arbitrariness of the nodal degrees of freedom ςI , aα,

and v̂I , we obtain the following semi–discrete system of equations:

 0 0

0 CΘ


 ḋ

Θ̇

+

 Kdd KdΘ

0 KΘΘ


 d

Θ

 =

 fext

qext

−
 fD

qTM


(4.26)

where d = [d>1 ,d
>
2 , ...d

>
n ]> are the standard displacement nodal degrees of freedom, Θ =
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[Θ1,Θ2, ...Θn]> are the degrees of freedom that correspond to the time–dependent nodal

temperature changes, and n is the number of the nodes. The vector b = [b1>,b2>, ...bnd>]>

consists of a vector of Burgers, and nd is the number of dislocations. In the DD model,

the Burgers vectors are known at every step of the simulation.

The submatrices from the system of the equations Eq.(4.26) are:

Kdd
IJ =

∫
Ω

Bu
I
>CBJdΩ, I, J ∈ S (4.27)

KdΘ
IJ =

∫
Ω

Bu
I
>λNΘ

J dΩ, I, J ∈ S (4.28)

KΘΘ
IJ =

∫
Ω

BΘ
I

>
kBΘ

J dΩ, I, J ∈ S (4.29)

CΘ
IJ =

∫
Ω

CpρN
Θ
I

>
NΘ
J dΩ, I, J ∈ S (4.30)

f ext =

∫
Γt

Nu>t dΓ−
∫

Ω

Nu>g dΩ (4.31)

qext = −
∫

Γh

NΘ> h dΓ (4.32)

fD =

nd∑
α=1

∫
Ω

Bu
I
>CBuαbαdΩ, I ∈ S (4.33)

qTM =

∫
Ω

NΘ>S(x, t) dΩ (4.34)
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where

Bu
I =


Nu
I (x),x 0

0 Nu
I (x),y

Nu
I (x),y Nu

I (x),x

 (4.35)

Bθ
I =

 NΘ
I (x),x

NΘ
I (x),y

 (4.36)

Buα =
∑
J∈Sα


Nu
J (x),xHα

J 0

0 Nu
J (x),yHα

J

Nu
J (x),yHα

J Nu
J (x),xHα

J

 (4.37)

and

Hα
J = H(fα(x))−H(fα(xJ)) (4.38)

Notice, that Kdd, KdΘ, KTT and CΘ are independent of the location, number and

geometry of the dislocations and, therefore, do not change for a given mesh as dislocations

evolve.

The developed model captures the mechanical effect of the dislocations through fD and

the thermal effect of the dislocations with qTM .

4.1.4 Time integration scheme

We integrate Eq.(4.26) using the Crank-Nicolson sheme [143]. This algorithm has proven

to be unconditionally stable for the heat equation [144]. In order to discretize the transient
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term in (4.26), Taylor series are used, neglecting the second- and higher–order terms, which

gives the first order accuracy in time approximation:

(
∂Θn

∂t
) ≈ Θn+1 −Θn

∆t
+O(∆t) (4.39)

where n ∈ {0, 1, ...N}, N is the total number of time steps, ∆t = τ/N . Isolating the time

dependent variables from Eq.(4.26), we get:

CΘΘ̇ + KΘΘΘ = qext − qTM (4.40)

Now we introduce the parameter ϑ such that:

Θn+ϑ = ϑΘn+1 + (1− ϑ)Θn (4.41)

Substituting Eg.(4.41) into Eq.(4.40), using Eq.(4.39) and rearranging, we obtain:

(CΘ + ϑ∆tKΘΘ)Θn+1 = (CΘ − (1− ϑ)∆tKΘΘ)Θn+

∆t(ϑ(qext − qTM)n+1 + (1− ϑ)(qext − qTM)n

(4.42)

The equation (4.42) gives the nodal values of the temperature change at the n+1 time level,

using the n time level values. Both the n+ 1 and n time level values of the forcing vector

(qext − qTM) have to be known. By varying the parameter ϑ, different numerical schemes

can be constructed. We chose parameter ϑ = 1/2 which corresponds to the Crank-Nicolson

sheme.
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4.2 Thermomehcanical Dislocation Dynamics

In this section, the thermomechanical behavior of moving dislocations is described.

4.2.1 Peach–Koehler force

The Peach–Koehler force determines dislocation motion and, as we deliberated in Sec.3.3,

in the case when the singular core enrichments are not included in the displacement ap-

proximation, should be calculated by a contour integral. The contour integral for the

Peach–Koehler force has been extended to the case of two–dimensional thermoelasticity

by Kishimoto and coworkers [145] and is given by:

Fk =

∮
Γαc

[W − u>i,kσik]nkdΓαc +

∫
A

γ1σjjΘ,kdA (4.43)

where Γαc is any closed contour about dislocation α, n is the unit outward normal to Γαc ,

and A is the area bounded by Γαc . For plane stress problems γ1 = γ, whereas in case of

plane strain γ1 = (1 + ν)γ, where ν is Poisson’s ratio. The elastic energy density W is

defined by:

W =
1

2
(σij(εij − δijγ1Θ)) (4.44)

The Peach–Koehler force represents the energy release rate. In the case of thermocoupling

it consist of two integrals; an integral taken along a closed contour and a domain integral for

the thermal contributions. The main limitation of the contour integral is that it has to be
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taken over a domain that does not contain any other dislocation cores. In [86] the minimum

radius of this contour is proposed. It was shown that in order to obtain accurate Peach–

Koehler forces, the mesh size must be smaller than one third of the distance separating

two dislocation cores. Even though this imposes a constraint on mesh coarseness in the

vicinity of dislocation cores, it is not difficult to construct such meshes. This is due to the

fact that in XFEM the mesh can be built independently of the location and orientation

of the slip planes. However, as it was already discussed in Sec. 3.3, it is possible to use

coarser meshes if core enrichments are introduced in displacement approximation like in

[84].

4.2.2 Dislocation velocity and dislocation drag

We calculate the velocity vα of dislocation α from a phenomenological equation of motion

Fα = B · vα (4.45)

where Fα is the Peach–Koehler force acting on dislocation α, and B is the tensor of the

dislocation drag. The next position of each dislocation α, xαnext is determined using the

Eq.(3.71) from Sec. 3.5. We will restrict the motion to the glide plane, so that B = Bb⊗n.

Here, n is the normal to the glide plane and B is the drag coefficient.

In order to incorporate the effect of mobility change with temperature, we represent

the drag coefficient of each dislocation α as

Bα = B1Θα(t) +B0; B1 > 0 (4.46)
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where Θα(t) is the temperature rise from the reference temperature Θ0 at the location of the

dislocation α at the moment t, and B0 is the drag of the dislocation corresponding to the

reference temperature. The parameter B1 determines the rate at which the drag coefficient

of each dislocation grows with increase of the temperature. It is the first time when such

linear approximation of the dislocation drag is incorporated in dislocation dynamics. By

varying B1 we can study the effect of the temperature through the drag coefficient on

material response. In general each dislocation in our model will be subject to a different

drag.

We based the suggestion of Eq.(4.46) on the phonon drag mechanism, where the drag

coefficient, B, is linearly proportional to temperature, T [121]. This mechanism is consid-

ered as dominant, except at very low temperatures, and takes the form [121]:

B ∼= (kT/Ω · ωa) (4.47)

where k is the coefficient of thermal conductivity, ωa is the atomic frequency, and Ω is the

atomic volume.

Several studies have been made validating such an assumption. It was experimentally

confirmed that the drag increase with temperature can be well approximated by a linear

function when the temperature is above 250 K [120, 146]. In addition to experimental

works, such linear dependency was observed in recently conducted DD simulations (Fig.1

of [109]). With temperature rises attributable to shear bands, the drag coefficient can

double in magnitude [147]. However, when the velocities of the dislocations exceed the

106



speed of sound, dislocation-phonon interactions become more complex and a different drag

mechanism is involved [148].

4.2.3 Heat source calculation

In order to calculate the heat, sα(t), generated by each moving dislocation α, we calculate

the rate of work done by the Peach–Koehler force on the dislocation, i.e.:

sα(t) = β (Fα(t) · vα(t)) = β
Fα(t) · Fα(t)

Bα(Θα(t))
(4.48)

where Fα is the Peach–Koehler force on dislocation α, vα is the velocity of the dislocation

α, and Bα is the drag of dislocation α. We assume that at the initial moment of the

simulations, the rate of work is zero due to the absence of the dislocation motion.

The coefficient β is introduced to represent the fraction of the work that is converted

into heat. There are studies using continuum models where the amount of plastic work

converted into heat is found to be dependent on strain and strain rate [115]. However, it is

more common to use a constant ratio of plastic work converted into heat to be a constant

between 0.8 and 1, which is independent of strain and strain rate[149, 150]. Values of β,

0 ≤ β ≤ 1 may be introduced to discount the heat generated by a moving dislocation, due

to the emission of phonons or other physical phenomena not incorporated directly into the

XFEM-DD model.
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4.2.4 Nucleation, annihilation and pinning of the dislocations

We use the same phenomenological rules for the dislocation dynamics like in Sec. 3.5. A

two dimensional Frank–Read sources mechanism to create a new dislocation dipole, similar

to [5]. The source is defined by a critical resolved shear stress, or nucleation strength, τFRnuc ,

for activation of the mechanism, the length of the dislocation loop, LFRnuc, which is a distance

between dislocations of the dipole, and the time to form a critical configuration, tnuc.

The pinning mechanism is implemented through the obstacles to dislocation motion.

Obstacles release pinned dislocations if the Peach–Koehler force on it surpasses the pinning

force of the obstacle, Fobs.

4.2.5 Thermomechanical XFEM-DD algorithm

The main computation steps for solving the coupled thermomechanical problem using

XFEM-DD are given below:

START:

compute Kdd, KdΘ, KTT and CΘ from (4.27–4.30)

enforce Initial Conditions Eq.(4.11) and calculate Θ0

for each time step from n to nsteps do

compute qext using (4.32)

compute f ext using (4.31)

compute fD using (4.33)
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compute qTM using (4.34)

compute Θn and dn from (4.26)

compute Fα using (4.43)

update Bα using (4.46) given Θn

compute sα(t)n using (4.48) given Fα and Bα

compute vα using (4.45)

compute updated position of each dislocation, xnα

apply DD rules (nucleation, annihilation, pinning/unpinning, removing from the do-

main)

end for

END.

4.3 Simulation results and parametric studies

Consider a two–dimensional specimen with dimensions L×W with the tensile axis aligned

with the x1 direction, see Fig.4.3. In this example L = 1.5µm and W = 0.5µm. Tension

is imposed by prescribing the load on the boundary x1 = L in the x1 direction. A time

step 12.5ns was used. To constrain rigid body motion of the specimen, we fixed the

displacements at the point (0, 0) and put rollers along x1 = 0. Initial change in temperature

is T0 = 0 K. Plane strain conditions are assumed. We chose to model the face–centered

cubic crystal of copper-like material with the following well known properties: thermal
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conductivity, k = 385 W/(m · K); material density, ρ = 8960 kg/m3; mass specific heat

capacity: Cp = 385 J/(kg K); elastic modulus, E =117 · 109 Pa; Poisson’s ratio: ν= 0.36;

coefficients of the linear thermal expansion, γ = 17 · 10−6 1/K.

L

W

x1

x2

t

60◦

Initial condition: T0

Figure 4.3: Single crystal specimen and boundary conditions

For simplicity, we only consider one slip system orientated at an angle of α = 60◦

to the positive x1 axis, as in [135]. The Frank–Read sources are randomly distributed

on slip planes with a density of ρsrc = 125µm−2. The slip planes are spaced 100b apart,

where b = 0.25nm is the magnitude of the Burgers vector. The nucleation strength, τFRnuc , is

randomly assigned to each source using a Gaussian distribution with an average strength of

50 MPa and standard deviation of 1 MPa. The nucleation time, tnuc, for a new dislocation

dipole to be generated by a source is 62.5ns. The length of the dislocation loop, LFRnuc, is

approximated by:

LFRnuc =
E

4π(1− ν2)
· b

τFRnuc
(4.49)
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which neglects thermal effects [5]. The obstacles are randomly distributed at the slip planes

with a density of ρobs = 30µm−2. The obstacle strength is set to be τobs = 150 MPa [133].

When the Peach–Koehler force on obstacle exceeds τobsb the dislocation becomes mobile

again. Annihilation of two dislocations with opposite signs occurs when they are separated

by a distance Lan = 8.5nm.

Fig.4.4 shows the stress-strain curve at loading rate 0.12MPa · ns−1 and time step

dt = 12.5ns for different meshes. The dislocation drag is taken to be constant and equal

to 10−4 Pa · s. This mesh convergence study was performed to obtain an accurate solution

with a mesh that is sufficiently dense and computationally efficient. A 60×20 mesh is found

to be a mesh when the results converge, as shown in Fig.4.4. The selection of time step was

informed by the annihilation criterion, as this criterion imposes the strongest constraint

on the time increment, dt. The Eq.(3.5) was used to calculate dt. The Crank–Nicholson

scheme was used to integrate the heat equation in time. This scheme is unconditionally

stable; therefore, no additional requirements were imposed on the time increment.

4.3.1 Effect of boundary conditions

In this section, the effects of the boundary conditions of the heat equation on plastic behav-

ior of the DD model are studied. Two types of boundary conditions are considered (a) flux

free boundary or adiabatic and (b) no temperature change on the boundary, corresponding

to q · n = 0 and Θ(x, t) = 0 on Γ respectively. We imposed tension t = σ · n, such that
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Figure 4.4: Mesh resolution sensitivity analysis.

σ̇ = 0.24 MPa·ns−1.

The temperature distributions for the boundary conditions (a) and (b) at a strain of

0.002 are given in Fig.4.5 and Fig.4.6, respectively. In the case of zero heat flux on the

boundary, we observe close to a uniform temperature distribution over the domain. The

high conductivity of the material enhances this behavior of the temperature field. In the

case of no temperature change on the boundary, the heated zone is localized in middle of

the domain where high dislocation activity occurs. In both cases, the temperature rise is

significant and reaches up to 600 K at the reported strain value.

The corresponding stress-strain curves are shown in Fig.4.7. The response of the ma-

terial, neglecting thermal effects, is shown for comparison in the same figure. Evidently,
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neglecting thermal effects leads to underestimating the softening in the plastic zone by at

least 50 MPa. Such significant softening due to rapid heat generation remains underes-

timated by existing thermally modified theories [151]. The stress–strain behavior of the

adiabatic simulations is softer that that of the no temperature change on the boundary

Θ̄ = 0 simulation. Much of the difference in the stress-strain behavior comes from differ-

ence in the amount of thermal expansion between the two cases. Similar softening behavior

due to increase in thermal expansion was reported by Tang et. al. [109].
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Figure 4.5: Temperature rise distribution in K over the domain under Neumann conditions.

113



0 0.5 1 1.5

x 10
−6

−2

0

2

4

6

8
x 10

−7

m

m

 

 

0 100 200 300 400 500 600

Figure 4.6: Temperature rise distribution in K over the domain under Dirichlet conditions.

4.3.2 Effect of dislocation drag

In this section, the effect of the parameter B1 is studied. B0 is set to 10−4 Pa · s [5].

To study the role of the temperature dependence of the dislocation drag coefficient, B1 in

(4.46) was taken to be 0, 0.5 ·10−7, 10−7 (Pa ·s)/K. We based the choice of B1 range values

on the results of two experimental works, Fig.7 in [120] and Fig.5 in [148], where dislocation

drag was measured as a function of temperature. Two sets of simulations were performed

at different loading rates, one at a loading rate of σ̇ = 0.12 MPa·ns−1 (yielding a strain

rate of ε̇ = 5.6 · 103s−1 at ε = 0.002) and one at σ̇ = 0.24 MPa·ns−1 ( ε̇ = 1.1 · 104s−1 at
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Figure 4.7: Stress vs. Strain for different boundary conditions on the heat equation.

ε = 0.002). The results are presented in Fig. 4.8 and Fig.4.9. The response of the material

without thermocoupling is also shown in both figures to demonstrate the softening behavior

in the presence of thermal effects. The temperature change on the boundary was fixed to

Θ̄ = 0 K for all the simulations here and in the following section.

The temperature dependence of dislocation drag does not have a significant effect on

the stress-strain response of the specimen at a lower loading rate. However, B1 has a

noticeable effect in the case of the higher loading rate. The increase of dislocation drag

with temperature causes thermal hardening. The larger B1, the more drag a dislocation

will experience at a given temperature, leading to lower dislocation velocities. When
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Figure 4.8: The stress-strain curve for the initial drag B0 = 10−4Pa · s at the loading rate

σ̇=0.12 MPa ·ns−1.

dislocation velocities are lower, then less heat is generated for the same Peach–Koehler

force. The maximum temperature rise for each simulation is also reported in Fig. 4.8 and

Fig.4.9, where it can be observed that increasing B1 leads to more hardening and a lower

maximum temperatures.

We observe the most softening when B1 = 0, which corresponds to the simulation with

the most generated heat. Our model is in qualitative agreement with the results obtained

by Zirelli et al. in [123], where they showed that the effect of constant dislocation drag is
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Figure 4.9: The stress-strain curve for the initial B0 = 10−4Pa · s at the loading rate

σ̇=0.24 MPa ·ns−1.

negligible at strain rate of 103s−1 and is significant at a strain rate of 2 · 103s−1.

4.3.3 Effect of loading rate

In this section, the effect of the loading rate on plastic deformation is studied, both with

and without thermomechanical coupling. Loading rates of 0.06MPa·ns−1, 0.12MPa·ns−1,

0.24MPa · ns−1 , and 0.32MPa · ns−1 are studied. The strain rate at strain of 2 · 10−3 is

given for the corresponding loading rate in Table 4.1.

The former case is shown in Fig.4.10, and demonstrates how an increase in the loading
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Loading rate, σ̇ (MPa·ns−1) Strain rate, ε̇ (s−1)

0.06 9.1·102

0.12 5.6·103

0.24 1.1·104

0.32 4.8·104

Table 4.1: The strain rates at strain ε = 2 · 10−3 for the corresponding loading rates.

rate leads to an increase in the flow stress, as observed in experiments [152]. This trend

is also consistent with effect of the Zener-Hollomon parameter on copper experimentally

studied in [153]. The latter case is shown in Fig.4.11 where the flow stress increases with

increasing loading rate, but the overall response is softer. Furthermore, we observe that

the loading rate significantly influences the magnitude of the localized temperature rise.

The maximum temperature rise is reported in Fig.4.11 and varies from 489K for a loading

rate of 0.06MPa · ns−1 to 1131K for a loading rate of 0.32MPa · ns−1 . The temperature

rises observed in these simulations are of the same order as those reported in experimental

studies of high strain rate plasticity [110, 154]. The observed response is attributed to

the increase deformation rate, thus causing an increase in the rate of heat generation that

exceeds the rate of increase in heat conduction.

The developed DD model targets high strain rate plastic deformations; however, we

have neglected inertial forces in our governing equations, which is a common assumption

in DD. Such limitation was recently discussed in a dislocation dynamics study, where it was

pointed out to have only limited impact when the dynamics are governed by dislocation
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generation and annihilation [109]. However, at high loading rates this assumption may be

invalid and requires further investigation before it can be considered conclusive.

The presented results are dependent on location of randomly distributed Frank–Read

sources and their randomly assigned strength which means that a different distribution

of the sources and their strength may lead to slightly different results. Nonetheless, the

overall trends are expected to be unchanged.

Simulations were carried out with strain rates which are commonly used in DD, whereas

the typical experimental strain rates are of the order of 10−3 to 10−4 s−1; which makes the

direct comparison with simulations challenging. However, the observed softening behavior

and temperatures rises are consistent with the expected trends and observations from other

DD studies [10, 109, 155].

4.4 Concluding remarks

The first fully coupled two–dimensional thermomechanical dislocation dynamics model

based on eXtended Finite Element Method was developed. The distinct feature of this

model is that the equilibrium equations are coupled with the heat equation, where the

heat source is a function of the work done by the motion of dislocations. The work done

by each moving dislocation is calculated using the Peach–Koehler force and dislocation

velocity at every step of the simulation. The results of our simulations showed that during

high rate deformation, common in DD, the significant local heating is present. Further-
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Figure 4.10: The stress-strain curve at the different loading rates without thermocoupling.

more, the heat equation should be incorporated into DD models to avoid overestimation

of the stresses. The hardening of the material was observed due to temperature dependent

dislocation drag. The simulations showed that the effect of temperature dependent drag

increases with deformation rate. The softening effect was found to be stronger in the case

of the adiabatic heating versus isothermal conditions on boundary of the domain. It was

also observed that higher deformation rates resulted in both higher flow stresses and higher

temperature rises. The proposed two–dimensional coupled thermomechanical discrete dis-

location dynamics model provides a framework for further investigation of multiphysical

phenomena of plastic deformation. It takes a first step in addressing concerns related to
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Figure 4.11: The stress-strain curve at the different loading rates.

the underestimation of thermal softening effects at high strain rates as well as the induced

inter-play of temperature, dislocation drag, and hardening.
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Chapter 5

Conclusions

Two new Discrete Dislocation Dynamics (DD) models that incorporate the effect of mul-

tiphysics were developed based on the eXtended Finite Element Method (XFEM). The

discontinuities in the displacement field across the glide planes created by the dislocations

were modeled by introducing additional basis functions into the approximation. The driv-

ing force on a dislocation, or Peach–Koehler force, in both models was calculated using the

J-integral. The main contributions of this thesis are:

� The first fully coupled two-dimensional electromechanical (EM) Discrete Dislocation

Dynamics model for the plastic deformation of anisotropic piezoelectric crystalline

solids was developed.

• The piezoelectric effect on the Peach–Koehler force is found to be significant

and can affect both the direction and magnitude of the force. As a result, it was

discovered that the piezoelectric effect is important when modeling the plastic
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behavior of piezoelectric materials in the presence of electrical and mechanical

fields.

• The simulations of the motion of many edge dislocations in a small domain

demonstrated that, for piezoelectric materials, the plastic response of the mate-

rial differs considerably when various electric potential differences are applied,

illustrating that the physics of plasticity under electromechanical load is more

complex than in purely mechanical systems.

• The developed EM–XFEM–DD model has great potential as a tool to study the

behavior of the piezoelectric materials.

� The first two–dimensional fully coupled thermomechanical (TM) Discrete Dislocation

Dynamics model for high strain rate plastic deformation of crystalline solids was

developed.

• The TM–XFEM-DD model is able to simulate the heat generated by the motion

of the dislocations under the high strain rate plastic deformation.

• The TM–XFEM–DD model takes the temperature dependency of dislocation

drag into account. As a result, the simulations showed that the effect of tem-

perature dependent drag increases with deformation rate.

• The softening effect predicted by TM–XFEM–DD is stronger in the case of adi-

abatic heating versus fixed temperature change on the boundary of the domain.
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• The simulations showed that higher deformation rates resulted in both higher

flow stresses and higher temperature rises.

• The developed TM–XFEM–DD is the first model to address concerns related

to the underestimation of thermal softening effects at high strain rates at the

mesoscale.

The thesis has qualitatively shown that when modeling plastic deformation of piezoelec-

tric materials at the dislocation dynamics level, the coupling effects between electric and

mechanical fields should be taken into account. The developed EM–XFEM–DD model is

the first DD model that is able to account for such electromechanical coupling effects. I

have also shown that when modeling the high strain rate plastic deformation of crystalline

solids on dislocation dynamics level, the thermal effects can not be neglected. The perfor-

mance of the crystalline solids under a high rate of strain is different than the performance

under quasi-static conditions. The developed TM-XFEM-DD model is the first DD model

which incorporates thermal effects, including heating induced by dislocation motion, and

can be used to more effectively study the plastic behavior of metals under high strain rate

deformation than the previous DD models.

To summarize, the goal of this thesis was achieved with the development of the EM–

XFEM–DD and TM–XFEM–DD models. These new DD models bridge the gap between

two scales, atomic- and micro-scale, by incorporating the effect of multiphysics, enabling the

analysis of plastic phenomena in crystalline solids at the mesoscale, which was previously
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not possible.
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Chapter 6

Future work

In this chapter the recommendations are given regarding a future work for the extension

of the developed fully coupled electromechanical (EM) and thermomechanical (TM) Dis-

crete Dislocation Dynamics (DD) models, based on the eXtended Finite Element Method

(XFEM):

• In the current calculations for both models, dislocation activity is only permitted

on a single slip system. However, it is known that presence of another slip system

can influence the dislocation evolution on the initial slip system [135, 139]. Such

additional slip systems could be accounted for in the models to better represent the

material behavior.

• The developed TM–XFEM–DD model assumes a constant critical resolved shear.

In general, the critical resolved shear stress decreases with increases in temperature

[119, 156]. In addition, the temperature dependence varies with the strain rate and
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slip system [156, 157]. In the future, such data could be incorporated in the model

in a straight-forward manner through a non-constant critical resolved shear stress.

• The TM–XFEM-DD model assumes that the thermal conductivity and specific heat

of the material are constant. Given the large temperature changes observed in the

simulations, the impact of this assumption should be revisited in order to ensure the

accuracy of plastic material behavior analyses.

• The biggest limitation of the presented EM-XFEM-DD and TM-XFEM-DD models is

that they are currently only implemented in two dimensions. Thus, the development

of a three-dimensional EM-XFEM-DD and TM-XFEM-DD models is greatly desired.
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