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Abstract

This study examined the role of tile drainage and overland flow in field-scale phosphorus
(P) export from reduced tillage systems, as well as the influence of event type and antecedent
conditions on P export during major runoff events. Three field-scale sites representing a range
of sail, climatic, and management conditions, were monitored intensely for an 18 month period.
Annual P export from the sites ranged between 0.267 and 0.419 kg ha™. The non-growing
season (NGS) was an important period for P export due to the volume of discharge during the
period. Tile drainage contributed the majority of combined annual discharge at all sites (78-
83%). Tile drainage was an equal or dominant contributor to annual total P (TP) export.
Overland flow was the dominant transport pathway for soluble reactive P (SRP) at two of the
three sites. The nature of the discharge events (e.g. rain on soil, rain on snow, and radiation
melt) influenced P speciation in runoff. Particulate P + soluble unreactive P (PP+SUP)
concentrations were highest during events where rain fell on bare soil. The proportion of TP as
SRP in major events appeared to decline over the NGS. Understanding the seasonality of P
export, the relative role of tile drainage and overland flow, and the influence of event type will

improve our ability to manage non-point source P export.
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1.1 Introduction

The environmental impacts of agriculture have long been a topic of public concern
(Skinner, et al. 1997). Common agricultural practices such as subsurface tile drainage, tillage
and nutrient applications have been associated with a range of problems including; habitat
destruction, soil degradation and water quality issues (Foley, et al. 2011, Stoate, et al. 2009).
There has been a concerted effort among agricultural producers, public organizations,
academia and various levels of government to address these concerns, leading to the
recommendation of Beneficial Management Practices (BMPs). However, the management of
agricultural impacts is complicated, and although there have been notable improvements, there
is need for a continued effort to improve or refine BMPs (McRae, et al. 2000). The re-
emergence of algal blooms in Lake Erie has raised concern about phosphorus (P) pollution in
the Great Lakes and St. Lawrence River basins (Joosse and Baker 2011). Previous
conservation efforts in the 1970’s, which addressed point and non-point sources of P were
successful in reducing total P (TP) export (Joosse and Baker 2011, Michalak, et al. 2013,
Scavia, et al. 2014). Improving urban waste water treatment was a major factor, but, on the rural
side, the adoption of no-till (NT) farming, and reduction of P inputs to fields was credited with
part of the success (Joosse and Baker 2011, Michalak, et al. 2013, Scavia, et al. 2014).
However, in the mid-1990’s levels of dissolved P exported to Lake Erie began to increase and
have since exceeded 1970’s levels (Great Lakes Commission Phosphorus Reduction Task
Force 2012, Scavia, et al. 2014). Of particular importance, the increase in P has come from an
increase in the bioavailable form of P, known as soluble (or dissolved) reactive phosphorus
(SRP) (Great Lakes Commission Phosphorus Reduction Task Force 2012, Scavia, et al. 2014),

which has the potential to significantly increase algal production in aquatic systems.

The occurrence of algal blooms along the shores of the Great Lakes is being driven by the
interaction of a humber of factors including ecosystem changes, changing land management
practices, and climate change (Auer, et al. 2010, Joosse and Baker 2011, Scavia, et al. 2014).
Since the mid-1990’s, the population of invasive dreissenid mussels have increased in the Great
Lakes. This has resulted in increased clarity of the water, and has sped up the recycling of P
found in particulate forms in the near shore environment. These ecosystem changes have
contributed to excessive Cladophora growth in areas of the Great Lakes because the system is

now more sensitive to P loading (Auer, et al. 2010).



The Phosphorus Reduction Task Force has identified changes in tillage practices as a
likely contributor to the increase in dissolved P loading (Great Lakes Commission Phosphorus
Reduction Task Force 2012). Reducing the intensity and frequency of tillage is often promoted
as a BMP for reducing erosion and improving soil health. However, the use of these systems
has also been shown to increase SRP and TP losses at many sites (Tiessen, et al. 2010,
Gaynor and Findlay 1995, Hansen, et al. 2000, Puustinen, et al. 2007), both in surface overland
flow (Tiessen, et al. 2010) and tile drain effluent (Gaynor and Findlay 1995). The percentage of
the total cropland acres seeded using NT and reduced tillage (RT) practices has been
increasing in Ontario, moving from 21% in 1996, to 56% in 2006 and 63% in 2011 (Statistics
Canada 2007, Statistics Canada 2013). Similar trends have been observed in watersheds on
the USA side of the Great Lakes. This change in land management coincides with the increase
in SRP export to Lake Erie and has caused managers to question the use of NT or RT as a
BMP (Kleinman, et al. 2011, Michalak, et al. 2013, Smith, et al. 2014) The undesired
consequence of RT demonstrates the complexity of managing the environmental impacts of
agriculture. It is accepted that controlling soil erosion and conserving soil should remain a
priority, as erosion can lead to severe soil degradation and nutrient losses if not addressed
(Hansen, et al. 2002). However, it is also recognized that there is further need to improve
conservation-type tillage systems (NT and RT) to reduce P loading, while maintaining the

demonstrated benefits of these systems.

The Great Lakes Commission Phosphorus Reduction Task Force has also noted changes
to fertilization practices as a contributing factor. Although there is limited data on the subject,
regional observations are that some larger farms have shifted to applying fertilizer in the fall
instead of during the spring time at planting, as is common for smaller operations (Great Lakes
Commission Phosphorus Reduction Task Force 2012). In these NT/RT systems, the fall applied
P is surface broadcast and often not incorporated. This apparent shift in management practices
is potentially significant in terms of P export for two reasons: 1) surface applied applications
tend to stratify nutrients near the surface and increase the long-term risk of losses (Sharpley
2003), and 2) applications made prior to periods which are more susceptible to large runoff
events can significantly increase the risk of P losses associated with fertilizer on the surface
(Allen and Mallarino 2008, Smith, et al. 2007). The timing and method of P applications used in
some RT systems may be a problem from a P export perspective. The Phosphorus Reduction
Task Force has identified the need to improve fertilization practices as one of the management

priorities for reducing P loading. They state that in priority watersheds, all P applications should



be made below the surface, or immediately incorporated in a “non-erosive manner”. This priority
recognizes the benefits of reduced tillage practices in controlling erosion, yet identifies the need
to further improve the management practice by reducing the stratification of nutrients near the

surface.

Changes to the Great Lake’s climate have been identified as another potential source of
the observed increases in P export. Increased frequency of large-magnitude (or extreme)
events, in particular more rain on snow and melt events during the non-growing season (NGS)
could be contributing to changes in P loading (Burkitt, et al. 2011). Major flow events have the
capacity to export large amounts of P from fields. If large events occur shortly after nutrient
applications, there is an elevated risk of SRP losses (Gentry, et al. 2007). It is probable then,
that the interaction between changing hydro-climatic drivers, (e.g. more extreme events during
the NGS), and the evolution of management practices (i.e., no-till and reduced tillage, and more
fall, non-incorporated applications) could lead to increases in SRP loading (Great Lakes
Commission Phosphorus Reduction Task Force 2012, Scavia, et al. 2014).

In cold regions, annual P export is typically dominated by NGS losses (Ontario Ministry of
the Environment: Environmental Monitoring and Reporting Branch 2012, Penn, et al. 2010,
Macrae, et al. 2007). Thus the NGS is a critical period in which to evaluate the efficacy of BMPs.
Despite this, there has been limited evaluation of BMPs over the NGS, in part, due to the
difficulty in monitoring during this period (Penn, et al. 2010). Improving our understanding of this
period will become increasingly important as resource managers plan to adapt BMPs for climate
change. As the climate in Ontario changes, so will the NGS runoff patterns, ground conditions,
and the resulting P export. In order to improve the performance of reduced tillage systems, we
need to monitor these systems year round to understand how they perform under a range of
NGS conditions.

One additional major area of uncertainty is the pathway through which runoff and P leave
fields. P export was historically considered a problem related to overland flow, though numerous
studies have now shown that tiles can be an important source as well (e.g., (Gaynor and Findlay
1995, Dils and Heathwaite 1999, Smith, et al. 2014). Since tiles increase connectivity within a
watershed, not understanding the relative contribution of these pathways makes it difficult to
identify key contributing areas within a watershed. P-Indexes are a widely used tool for
identifying the risk of P losses at the field scale throughout the world including Ontario (Buczko

and Kuchenbuch 2007, Reid, et al. 2012). However, the current Ontario P-index does not



account for tile drainage in a meaningful way. In order to include tile drainage, which may
account for a considerable proportion of field runoff in Ontario (e.g. Macrae et al., 2007) there is
need for increased understanding of the relative contribution of tile drainage to total site losses
(Reid, et al. 2012).

In summary, there are several key gaps in our understanding of P export from agricultural
systems and these affect our ability to strategically target appropriate P management efforts.
Firstly, we need to understand when P is leaving fields, and the transport pathway it leaves in
(Reid, et al. 2012). To do this properly, surface and subsurface P transport pathways must be
monitored simultaneously, and furthermore, monitoring must continue year round to accurately
estimate export (Miles, et al. 2013). Another complicating factor is the influence of tillage
systems on P export, as this has been shown to vary based on region (Tiessen, et al. 2010),
and is further complicated by the impact the chosen system can have on nutrient management
practices. So despite a significant body of research on P export, questions remain about the role
of different transport pathways and the influence of seasonality and land management practices.
Further study will help improve our ability to assess the risk of P loss at the field-scale, and thus

better target conservation efforts to priority areas (Pionke, et al. 2000).

1.1.1 Objectives
This study has the following objectives:

1) Using three field scale sites, examine runoff and P export (Total, Soluble Reactive, and
Particulate+Soluble Unreactive) in tile drainage and overland flow from reduced tillage
fields in Ontario, for a minimum of one full year (12 month period) to:

a. Quantify seasonal and annual discharge from tile drainage and overland flow at
the field scale;

b. Quantify the seasonal and annual speciation and mass of P loss in tile drainage
and overland flow; and,

2) Demonstrate the significance of peak discharge events in P export for a 12 month period
at two sites, through the

a. lIdentification of the seasonal distribution of peak discharge events;
b. Determination of the contribution of peak events to annual P export;
c. Determination of how event type (climate drivers and pre-event (antecedent)

ground conditions) influence the event export and speciation (Total, Soluble



Reactive, and Particulate+Soluble Unreactive) during successive peak discharge
events in the NGS.

1.1.2 Thesis Organization

This thesis is organized into six chapters. Chapter 1 provides an introduction to the study
and presents the thesis objectives. Chapter 2 provides a literature review focused on P cycling
and describes factors that influence P export. Chapter 3 outlines the methodology used for the
entire study including, study overview, instrumentation, sampling procedures, lab analysis and
data analysis. Chapters 4 and 5 address the separate objectives and are intended to form the
basis of two separate manuscripts. Each of these chapters has a separate literature review and
methods section where further explanation is required. Chapter 4 addresses Obijective 1, using
three field scale sites for an 18 month period. Chapter 5 addresses Objective 2, and focuses
event variability in P export observed over the NGS from two sites. Chapter 6 provides the
overall summary and conclusions. The Appendix provides supplementary data including rating
curves and photographs.



2 Literature Review

The purpose of this literature review is to provide an overview of P cycling in agricultural
systems, explain how P is exported from fields via tile drainage and overland flow, and identify
hydro-climatic drivers, and management factors which influence P export from these systems.

2.1 Phosphorus Dynamics in Landscapes

The cycling of P occurs at different temporal scales. At the broadest timescale, the cycling
of P begins with the dissolution of P from rocks containing phosphate, and ends when P is
transferred by water to the ocean where it is deposited. The uplifting of rock begins the cycle
again (Schlesinger and Bernhardt 2013). Given the length of this cycle, P is not considered to
be a renewable resource. However, en route to oceans, P is cycled between soil, water and
organisms on much shorter timescales (Schlesinger and Bernhardt 2013). Understanding P
cycling at these shorter timescales is important to agricultural production and in understanding P
export to surface water. The following is review of field-scale P cycling including the movement
of P between different pools, P inputs, and export pathways (Figure 2-1).

2.2 Phosphorus Pools and Sources

Topsoil contains between 100 to 3000 mg P kg™ (Frossard, et al. 1995, Frossard, et al.
2000). Phosphorus exists in two broad pools within soil, solid state soil P and soil solution P,
with the majority of P being found within the solid state. Phosphorus within the solid state is
found in both organic and inorganic species. Inorganic P can be found in several different pools
of varying plant availability: surface sorbed P, as secondary P minerals including calcium, iron,
or aluminum phosphates, or as primary P minerals such as Apatites (Zaimes and Schultz 2002).
The organic P component can make up between 30-65% of total P within topsoil P (Frossard, et
al. 1995), and is found within soil biomass, organic matter and decaying plant residues.
Microbial P, which is included in soil biomass, accounts for 3-24% of total organic P (Frossard,
et al. 1995). Organic P in the soil matrix is found as phytic acid or inositol hexaphosphates,
phosphate diesters, phosphonates, and polyphosphanates (Zaimes and Schultz 2002) and this
P is not considered immediately available for plants. Solid state P in soil is found in both

inorganic and organic pools, with varying degrees of availability to plants.

A smaller portion of P is found in the soil solution, yet this is an important pool as plants

can only obtain P from the soil solution. Phosphorus in the soil solution is found mostly as
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orthophosphate anions. The species of orthophosphate present in solution is pH dependant,
with H,PO,~ (pH 4-7.2) and HP0,* (pH>7.2) being the most prevalent in pH 4-9 (Holtan, et al.
1988, Pierzynski, et al. 2005). The concentration of P in the soil solution is low because
orthophosphate anions are easily removed from solution into solid state forms (sorbed P and
secondary P) (Pierzynski, et al. 2005). The soil solution P, is a small percentage (<1%) of total
soil P and must be replenished to supply crops with their P requirements (Frossard, et al. 1995,
Frossard, et al. 2000). P in the soil can be described as being in a dynamic equilibrium, where P
can move between various pools, rather than being in static, isolated pools (Frossard, et al.
2000). The processes controlling these transfers will be discussed later in this chapter.

There are internal and external sources of P to soil. P from these sources can be retained
by soil, used by vegetation or be lost in runoff (Figure 2-1). One internal source of P is P that
originates from the dissolution of primary and secondary P minerals (Pierzynski, et al. 2005).
Another internal source is P in plant material as it can be leached from plant residues, or
released during decomposition or through mineralization. Following dissolution, leaching or
mineralization, the released P is available for plant uptake or can quickly react with other soil

components (Pierzynski, et al. 2005).

In agricultural systems, there are also external sources of P (i.e., fertilizers, manures, and
other soil applied amendments) used to maintain P levels sufficient for crop production. The
sources available vary in total P content, inorganic P content and solubility (Shigaki and
Sharpley 2011, Smil 2000). The most commonly applied form of commercial P fertilizer in
Ontario is Monoammonium phosphate (MAP). MAP contains 90-100% water soluble P, and is
100% inorganic. Livestock manure is also used as a P source. A large portion of the P in
livestock manures is present as inorganic P, while a portion is organic P and must be
mineralized before it can be taken up by crops (Bundy, et al. 2005). The rate of mineralization
depends on many factors including soil moisture, temperature and the C:N ratio of the manure
(Bundy, et al. 2005). This variability makes it more difficult to match the plant availability of P to
plant uptake when using manure as a P source (Bundy, et al. 2005). There are a range of
external P sources used in agricultural systems with varying properties which influence their

management and crop benefit.

Soil P fractions respond to inputs of P from external sources. Initially applications result in
increased P concentrations in the solution P pool. These levels decline as P is removed from

solution into reactive and more stable forms of solid state P (Pierzynski, et al. 2005). If P



applications are in excess of crop removal, soil test phosphorus (STP) can be built up above
levels required for crop production (Pote, et al. 1996). If built up, it can take many years without
P applications to lower STP to acceptable levels (Dodd and Mallarino 2005). The annual
reduction of STP is less than the crop removal rate because of the movement from less
available forms of P to more available P. Applications of P must be managed according to crop

removal rates otherwise P levels can become elevated (Sharpley, etal. 2001).

2.3 Internal Cycling of Phosphorus

The movement of inorganic and organic P between the solution and solid phase, as well
as between various solid phases, is seen as a continuum and is controlled by both abiotic and
biotic processes (Frossard, et al. 2000).
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2.3.1 Abiotic Processes

Abiotic processes are responsible for the transfers between soil state P and soil solution
P, as well as transfers between various solid state pools. These transfers are governed by

sorption — desorption and precipitation — dissolution processes (Figure 2-1).

2.3.1.1 Sorption and Desorption

Sorption removes phosphate from the solution pool, limiting P available to plants. Sorption
is a general term referring to the short and long-term removal of P from soil solution and
includes both the adsorption of P molecules to surfaces of soil constituents, and the absorption
of P molecules into a substance by solid or liquid state diffusion (Frossard, et al. 1995, Holtan,
et al. 1988, Pierzynski, et al. 2005). P in solution sorbs to lron (Fe) and Aluminum (Al)
oxides/hydroxides, clay minerals, calcium carbonate, magnesium carbonate and humic
compounds (Holtan, et al. 1988, Frossard, et al. 1995). The initial sorption reaction occurs by
ligand exchange where an OH™ or a H,O molecule in the solid phase is replaced by a phosphate
molecule forming a phosphate surface complex (Frossard, et al. 1995). This can be followed by
subsequent absorption reactions rendering the P less available. The amount and rate of
sorption is influenced by multiple factors including Fe, Al, Ca, Mg content, soil pH, clay content,
organic matter, and phosphorus saturation percentage which are discussed further below.

The ability of soil to buffer inorganic P is strongly related to Fe and Al oxide content
(Frossard, et al. 2000, Gburek, et al. 2005). Fe and Al oxides have the strongest influence on P
sorption in low pH soils, while Ca and Mg become important in neutral and alkaline soils
(Frossard et al. 1995). Fe and Al oxides do maintain a strong influence on initial sorption
reactions in calcareous soils, but calcium carbonates govern the long-term sorption (Frossard et
al. 1995).

Solution pH determines the charge of the Al and Fe hydroxides which affects P sorption.
When the pH is high, H" is disassociated from the Al and Fe oxides resulting in a negative
surface charge. In contrast, at low pH, Fe and Al oxides bind H* resulting in a positive surface
charge. Since orthophosphate is an anion, there is decreasing P sorption with increasing pH,
thus higher sorption at lower pH (Mulder, et al. 1994, Holtan, et al. 1988, Frossard, et al. 1995)

The sorption capacity of a soil is influenced by soil texture. Clay content is positively

correlated with increasing P sorption capacity (Holtan, et al. 1988). There are more binding sites



in clay soils, as phosphate will sorb to either the negatively charged surface of clays, or to the
edge of an Al layer (Frossard, et al. 1995). In low concentrations P is sorbed to the broken edge
of clay lattices by replacing water molecules, but at higher concentrations P can exchange with

hydroxyl groups or displace structural silicate (Holtan, et al. 1988).

The influence of organic matter on P sorption is not always clear. Organic matter can sorb
phosphate when associated with Fe, Al and Ca cations. However, it can also block available
sorption sites (Holtan, et al. 1988, Frossard, et al. 1995). Organic compounds can also prevent
reaction between metals and phosphate by chelating metals (Frossard, et al. 1995). Not
surprisingly, the effect of organic anions differs depending on soil conditions. For example,
Braschi et al. (2003) found that the addition of organic matter reduced the amount of P sorbed
to soil at high solution P in calcareous sails.

The rate of P sorption, or the ability of soils to buffer P in solution, changes with increasing
P sorption or higher P saturation. As the amount of adsorbed P increases, the rate of sorption
decreases because the adsorption of P anions increases the negative charge of the adsorbing

surface (Barrow 1978).

Although orthophosphate anions are readily removed from solution, these sorption
reactions are reversible (Barrow 1983). Phosphorus can re-enter soil solution through
desorption if there is a reduction in the soil solution P concentration or if other competing anions
are introduced into solution (Hinsinger 2001). The quantity of desorbable P is related to the
amount of amorphous Fe and Al oxides in soil and their P saturation (Frossard, et al. 2000). At
higher P saturations, there is a greater rate of P desorption. Lookman et al. (1995) described P
desorption kinetics using two pools, an ‘easily desorbable pool’ and a ‘slowly desorbable pool'.
The slowly desorbing pool was larger than the quickly desorbing pool, and continued to release
for a substantial amount of time suggesting all the P in this pool is desorbable. The reversibility
of the initial sorption reaction means that soil P is not static, and it can move from less available

pools to available pools throughout a growing season (Frossard, et al. 2000).

2.3.1.2 Precipitation - Dissolution

Phosphates are also removed from solution by precipitation processes. Phosphate can
form precipitates with metal cations in solution, primarily Ca, Fe and Al (Frossard, et al. 1995,
Hinsinger 2001). Soil pH regulates which cations will be dissolved in solution and available to

form precipitates (Hinsinger 2001). In calcareous soils, calcium phosphates will form after
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phosphate sorption to calcite. After the initial sorption to calcite a series of reactions takes place
leading to the development of hydroxyapatite (Frossard, et al. 1995). In acid soil Al and Fe
phosphates are precipitated, usually as amorphous Al and Fe — P compounds (Frossard, et al.
1995). Organic acids found in fertilized soils can inhibit crystal growth which works to keep

phosphate in more available forms (Frossard, et al. 1995).

P in secondary and primary minerals can re-enter solution following dissolution under the
appropriate conditions. The dissolution of calcium phosphate (e.g. Apatite) requires a source of
H* and sinks for P and Ca (Frossard, et al. 1995). The rate of dissolution of primary and
secondary minerals is influenced by the morphology and rate of substitution within the crystal
lattice (Frossard, et al. 1995). Phosphate released during dissolution is then available for other
reactions within the environment and is often quickly immobilized into insoluble forms (Smil
2000).

2.3.2 Biotic Processes

The cycling of P between inorganic and organic forms is controlled by biotic processes of
immobilization and mineralization (Figure 2-1) (Condron, et al. 2005). One way inorganic P in
solution can be immobilized is through plant uptake (Condron, et al. 2005). When this occurs a
portion of P removed from solution is synthesised into organic P; however, a portion can remain
as inorganic P. As mentioned above, crop residues which are left on fields following harvest are
an internal source of P to the system. Some of this P is transferred quickly to solid state
inorganic P pools, while some may remain within the organic P pool for a greater length of time.
As plants decay, soluble inorganic P, which can make up between 15-50% of total plant P, will
quickly sorb to soil (Frossard, et al. 1995). Organic P within decaying plant material can also be
released to soil solution, but this transfer involves the process of mineralization by
microorganisms. Microorganisms play an important role in the internal P cycle by moving
organic P from soil pools into plant available forms (Frossard, et al. 2000, Richardson, et al.
2009). Though microorganisms can release P, they also require P for their growth and
development and can compete with plants for P (Richardson and Simpson 2011). For example,
inorganic P is also removed from solution during microbial decomposition of residues with
higher C:P ratios (Condron, et al. 2005). The majority of organic P in residues is quickly taken
up by decomposers and is retained in microbial biomass for over one year in temperate

cultivated systems (Frossard, et al. 1995). The turnover of P through immobilization-
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mineralization processes can be an important part of P requirements for crops (Condron, et al.
2005).

2.4 Forms and Pathways of Phosphorus in Runoff

In most cases, the largest flux of P from the system occurs when P in harvested grain is
removed from the site. Mallarino et al. (2011) found that over an 11 year period, the average
10.67 mt ha™ corn harvest removed 30 P kg ha™ y™ from the system. The removal of P in
harvested crops demonstrates the need to fertilize with external sources of P to replenish
removed P. While crop removal of P mentioned above is a significant removal pathway, the
greatest risk to water quality is the P which is removed via subsurface and overland flow
(Withers, et al. 2005). These pathways will be the focus of this chapter.

2.4.1 Forms of Phosphorus in Runoff

P in runoff is found in a variety of forms. Inorganic and organic species of P are found in
both particulate and soluble forms in water (Jarvie, et al. 2002). The different fractions of P
measured in runoff are operationally defined, and actually measure a combination of P species
(Jarvie, et al. 2002). There are a range of fractions reported in the literature, which vary
somewhat depending on the study’s goals. Common fractions include: Total P (TP), Total
Dissolved P (TDP), Soluble Reactive P (SRP), Soluble Unreactive P (SUP) and Particulate P
(PP). The distinction between particulate and dissolved/soluble fractions is based on filtration,
commonly using a 0.45 um membrane filter, though filter sizes can vary (Jarvie, et al. 2002).
However, it should be noted that P is found associated with a range of colloids which would not
be removed with the standard filter size (Jarvie, Withers and Neal 2002). The Total Dissolved
Phosphorus fraction (TDP or DP), is a combination of dissolved hydrolysable phosphorus, also
called Soluble Unreactive Phosphorus (SUP), and SRP (TDP=SRP+SUP). SUP is commonly
considered an estimate of soluble organic P (Condron, et al. 2005), however others have noted
that this is an over simplification (Anderson and Magdoff 2005). SRP is considered
orthophosphate in solution. The PP fraction is calculated as the difference between TP and
TDP (Jarvie, et al. 2002). Some studies report PP as the difference between TP and SRP. Total
P consists of all the above mentioned fractions and species of P. The different fractions vary in
their bio-availability. SRP is considered to be readily available to plants. While a portion,
typically 20%-30%, of the PP fraction is considered bio-available (Hansen, et al. 2002, Poirier,

et al. 2012). Biologically Available Phosphorus (BAP) is estimated separately from the above
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fractions as it is composed of a variety of P species from dissolved and particulate fractions
(Jarvie, et al. 2002). P forms in water are measured using operationally defined fractions. It is
important to clearly define how the fractions reported are measured as authors often use
different estimations (e.g. PP=TP-SRP vs PP=TP-TDP).

2.4.2 Pathways for Phosphorus Export

Tile drainage and overland flow are two primary export pathways for P. The pathways
function differently in terms of hydrology which influences P export. The following is a review of
subsurface (including tile drains) and overland flow hydrology and their role in P export. These

are described below.

In the subsurface, P can move down through the soil in matrix flow and preferential flow.
Concentrations of P fractions in solution vary between the two pathways (Jarvis 2007). Matrix
flow refers to the typically slow, uniform flow through the soil matrix, while preferential flow, or
non-equilibrium flow, occurs when water close to atmospheric pressure quickly bypasses a drier
soil matrix (Jarvis 2007). There are several types of preferential flow, though the most influential
in terms of P export is flow through macropores, as it results in the least amount of soil-water
interaction. The two main types of macropores include bio-pores and structural cracks or
fissures. Bio-pores are created by living or dead organisms, while structural cracks and fissures
are created by the shrinking and swelling of clays (Beven and Germann 1982). These pores
interact to form complex networks within the soil and provide a conduit where water can bypass
the soil matrix (Shipitalo, et al. 2004). Macropore flow can occur in pores with a cylindrical
equivalent diameter greater than 0.3-0.5mm (Jarvis 2007). The initiation of macropore flow
depends on multiple factors including antecedent moisture conditions, the amount, intensity and
duration of rainfall, and the saturated hydraulic conductivity of the soil (Heppell, et al. 2002,
Jarvis 2007). Macropore flow is initiated when the pressure potential exceeds the water entry
pressure, which will only occur at near saturated conditions. However, this does not mean the
entire soil column must be saturated, as macropore flow can be initiated from small isolated
saturated areas (Jarvis, 2007). The presence of macropore flow enhances P export because
this flow bypasses more of the soil matrix, and thus has less opportunity to react with soil
constituents (Jarvis, 2007). Concentrations of PP and SRP are typically higher in macropore
flow relative to matrix flow. Concentrations of soluble organic P are often higher than soluble

reactive P further down in the soil profile because SRP is quickly removed from solution while
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some organic P compounds are more mobile (Condron, et al. 2005, Anderson and Magdoff
2005).

The subsurface movement of P is altered by the presence of tile drains which are
common practice in Ontario. It is estimated that 63% of non-pasture, agricultural land is drained
in Ontario (Wang, et al. 2012). The drainage systems remove excess water from the rooting
zone, improving growing conditions and offering more flexibility to managers during the spring
and fall periods (Skaggs, et al. 1994). 25% of agricultural land in US and Canada does not have
sufficient natural drainage for agricultural production (Skaggs, et al. 1994). Tile drains are
necessary for agricultural production on many soil types found in Ontario and are a common

practice.

The presence of tile drains alters field scale and watershed scale hydrology and P export.
At the watershed level, tiles can account for 40-50% of discharge, and their role varies
seasonally (Macrae, et al. 2007, King, et al. 2014). In terms of annual runoff, land drained with
tile drains tends to have slightly higher (10%) total discharge when compared to land which is
naturally drained (Blann, et al. 2009). Drains increase the water storage capacity of the soil,
often reducing the instances of overland flow by as much as 60% (Blann, et al. 2009), and
reducing surface erosion (Skaggs, et al. 1994). These changes have been reported to reduce
overall site TP export (McDowell, et al. 2001, Ball Coelho, et al. 2012). Reductions of 30-36% in
TP export have been reported (R. W. McDowell, et al. 2001). This reduction may not be
observed in all situations, for example, in soils that are more permeable and have significant
water storage initially, tile drains can increase the rate at which tile water drains and thus
increase peak flow downstream (Blann, et al. 2009), which could increase downstream erosion
and P export. Another reason that tiles may contribute to P losses is that installing tiles can
increase the amount of land directly connected to surface drainage (Dils and Heathwaite 1999).
Furthermore, since macropores provide a conduit for surface water to enter tile drains (Reid, et
al. 2012), installing tile drains could enhance export by reducing interaction between runoff and
the soil matrix. Macropore flow is often cited as the reason for elevated concentrations observed

in tile drains (e.g. Gaynor and Findlay, 1995; Eastman et al., 2010)

Overland flow has long been recognized as an important P export pathway. There has
been a strong effort to reduce P export in overland flow by promoting practices that reduced
erosion, such as NT and erosion control structures (Sims, et al. 1998). Overland flow is

generated as hortonian overland flow, or as saturated overland flow (Parlance, et al. 1999).
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Hortonian overland flow is generated when the infiltration capacity of a soil is exceeded, which
can occur in intense rainfall events, or where an ice lens has developed restricting infiltration
near the surface. Saturated overland flow is initiated after soil has become saturated, at which
point excess water will flow overland (Parlance, et al. 1999). Once it is generated, overland flow
is capable of exporting PP through erosion of soil particles, as well as exporting DP. Soil erosion
that occurs in overland flow selectively removes finer soil particles which tend to have higher
concentrations of P relative to the bulk soil (Sharpley 1980). Soluble P in overland flow
originates from desorption of reactive P in soil, as well as leaching from crop residues
(McDowell, et al. 2001). Concentrations of PP and SRP are typically greater in overland flow
than in tile drainage (McDowell, et al. 2001). Factors which influence P losses in overland flow
and tile drainage are discussed in the following section.

2.5 Factors Influencing Phosphorus Export

There are a variety of other factors which can influence the amount and speciation of P in
runoff. The review below is organized based on soil properties, land management practices, and
hydro-climatic drivers but it is important to note that ultimately, P export results from the

combined influence of all these factors.

2.5.1 Soil and Management Factors

Soil test phosphorus (STP) and soil P saturation are good indicators of DP concentrations
in runoff. Generally, as STP and P saturation increase, so does the concentration of DP in
runoff. Several agronomic measures have been shown to be good predictors of SRP in runoff,
including the Olsen P test (Wang, et al. 2012, Wang, et al. 2010). The relationship between STP
and DP in runoff varies between different soil types. For example, soils with higher clay content
will release less DRP to runoff relative to sandy soils (Cox and Hendricks 2000). Several studies
have noted rapid increases in the loss of DP beyond a certain STP, referred to as a change
point (McDowell and Sharpley 2001). Change points can vary depending on the soil type so a
range of change points have been reported (e.g. 33 mg Olsen P kg-1 (McDowell and Sharpley
2001), 47.8 mg Olsen P kg-1 (Wang, et al. 2012) and 60 mg Olsen P kg-1 (Heckrath, et al.
1995)).

Given that STP is a good predictor of DP concentrations in runoff, it is important to
manage soil fertility in ways that do not build STP beyond levels required for agricultural

production. STP is often built up in areas that receive annual manure applications. If these
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applications are made based on N requirements, then they can provide P above the crop

requirements and thus P is built up in the soil (Hooda, et al. 2000).

In addition to avoiding the long term buildup of STP levels, particular caution must be
taken to limit the direct losses from recent P applications (Hansen, et al. 2002, Hart, et al. 2004).
Elevated TP and DP losses are seen in rain and melt events that closely follow the P
applications (Macrae, et al. 2007, Gentry, et al. 2007, Hart, et al. 2004, Eastman, et al. 2010).
The losses are referred to as direct fertilizer losses, event specific losses, or incidental losses,
and are important in terms of annual P losses (Hart, et al. 2004). Concentrations in runoff
decrease rapidly with time following application (Hart, et al. 2004). These losses are further
influenced by the source, rate, application method and seasonal timing and frequency.

Source properties influence the amount and speciation of P losses. Nichols, et al. (1994)
compared surface runoff from soils fertilized with manure or commercial fertilizer and found that
concentration of TP in runoff from manure fertilized soil was lower (15.4 mg L™) than
commercial fertilizer fertilized fields (26.2 mg L™) 7 days after fertilization. Heathwaite et al.
(1998) also found TP concentrations were higher in runoff from commercial fertilizer soil (15.3
mg L") compared to soils fertilized with farm yard manure (1.76 mg L™). If heavy rainfall is
avoided following application and manure is incorporated, manure can pose a lower risk to P
losses than commercial fertilizers (D. R. Smith, et al. 2007). Inositol phosphates, a form of
soluble organic P found in high amounts in pig and poultry manure, can displace inorganic P
and release it into solution by competing for binding sites (Condron, et al. 2005, Anderson and
Magdoff 2005). Other organic P compounds are more mobile than inorganic orthophosphate,
this has resulted in greater concentrations of organic P in tile drainage relative to overland flow

due to the fact that inorganic P is quickly sorbed by soil (Condron, et al. 2005).

Higher application rates lead to higher P losses for both incorporated and non-
incorporated sources. Allen and Mallarino (2008) found that P concentrations in surface runoff
from plots fertilized with liquid swine manure increased with increasing application rate in both
incorporated and non-incorporated plots. The rate of increase was less when manure was

incorporated (Allen and Mallarino 2008).

Phosphorus sources are applied in a variety of ways: surface broadcast and incorporated,
surface broadcast and not incorporated, surface banded, subsurface banded, or applied as a

starter fertilizer (Baute 2002). The incorporation or subsurface banding of P fertilizer reduces
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losses of DP in surface runoff (Kleinman, et al. 2002, Allen and Mallarino 2008). Allen and
Mallarino (2008) found that runoff concentrations of SRP, BAP, and TP from non-incorporated
manure were 3.3, 7.7 and 3.6 times higher than incorporated manure plots respectively.
Incorporation of manure can reduce the portion of TP present as SRP and BAP (Allen and
Mallarino 2008). However, if incorporation is not below the depth of surface interaction

incorporation may have no effect (Nichols, et al. 1994).

The presence or absence of vegetation or residue cover influences soil erosion, runoff
and P export. In Ontario, maintaining residue cover year round is promoted as a BMP (Baute
2002). This residue cover is achieved using a range of systems referred to as reduced tillage
(RT) systems. In reduced tillage systems, soil is worked less aggressively, and less often
relative to conventional systems. These systems have been adopted by farmers for a variety of
reasons including reduced operating cost, benefits to soil integrity, improved infiltration, water
retention and erosion prevention. The adoption of reduced tillage practices has often reduced
soil erosion and PP losses (e.g., Chichester and Richardson, 1992).

However, studies have also shown that NT and RT systems can increase the risk of DP
and TP losses (Gaynor and Findlay 1995, Hansen, et al. 2000, Kleinman, Sharpley and
McDowell, et al. 2011). The influence of tillage systems on DP losses was recognized as early
as 1973, by using simulated rainfall (Rémkens, et al. 1973). This increase is attributed the
stratification of P near the surface if nutrients are broadcasted and not incorporated (Delgado
and Scalenghe 2008, Kleinman, et al. 2011). In NT systems, P levels in the top 5cm can be 10-
20 times greater than soil from 5-20cm (Sharpley 2003). Stratification of P allows runoff to
interact with potentially P saturated soils near the surface, increasing the risk of DP losses
(Puustinen, et al. 2007, Kleinman, et al. 2011). Puustinen et al. (2007) found that DP
concentrations in runoff were higher in RT methods relative to fall conventional tillage methods.
Lui et al. (2014) found that TDP and TP concentrations and export in surface runoff could be
reduced by changing conservation tillage systems to rotational tillage system (tilled aggressively
every other year). They attributed the reduction to reductions in Olsen P at the surface, P loss

from residue and in the duration of runoff (Liu, et al. 2014).

There is also seasonal variation in the effectiveness of RT as a BMP due to different
runoff patterns between tillage systems, and the effect of event type and ground conditions on P
export. Uusitalo, et al. (2008) found that the reduced tillage systems exported more PP (TP-

DRP (0.2um filter)) relative to plowed systems because of the greater amount of overland flow
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volume during the winter in reduced tillage systems. Tan, et al. (2002) found that RT fields had
greater surface runoff relative to conventional tilled fields during the NGS and attributed this to
greater snow retention and less surface roughness. Hansen et al. (2000) found that over two
NGS’s RT systems had greater surface runoff and TP losses than conventional tillage plots.
Reduced tillage systems are effective at reducing PP export on thawed soils, however on frozen
soils, DP losses are more important. In both systems, NGS losses are often dominated by DP,
however the RT system had greater DP losses (Hansen, et al. 2000). RT systems increase the
supply of nutrients near the surface (STP and residue P), and the amount of runoff during the
NGS which appears to increase the risk of P losses from reduced tillage systems in cold

climates.

2.5.2 Hydro-Climatic Variables and Event Types

Rainfall intensity affects the speciation of P in runoff by affecting export mechanisms
(erosion and transfer of soluble P). Rainfall impact increases soil erosion and as a result tends
to increase PP concentrations in runoff (Fraser, et al. 1999, Su, et al. 2011). Increased rainfall
intensity is also related to increases DRP concentrations in surface runoff (Shigaki, Sharpley
and Prochnow 2007).

Differences in speciation between winter snow melt and summer time events are often
noted (Ball Coelho, et al. 2012, Hansen, et al. 2000, Macrae, et al. 2007). These differences are
related to the influence of soil conditions and rainfall impact. Higher SRP and TP concentrations
are observed during summer storms when soil is exposed to rainfall impact than during winter
snowmelts (Ball Coelho, et al. 2012). Furthermore, DP represents a larger portion of TP during
snowmelt events relative to rain events due to the absence of raindrop impact and the presence
of frozen soil (Hansen, et al. 2000). P speciation and export is influenced by hydro-climatic

drivers and soil conditions.

The volume of runoff is a major driver in overall P losses (Liu, et al. 2013). Due to the
responsiveness of the flow pathways to rainfall and snow melt, the export of P from agricultural
land is highly episodic. Furthermore, annual totals are often dominated by a small number of
large events (B. Ulén 1995). For example, in colder climates, snowmelt events can be
particularly important in terms of their contribution both to annual runoff and annual P export
(Jamieson, et al. 2003, Tiessen, et al. 2010). In cold climates, runoff is often greater during the
non-growing season (Hirt, et al. 2011) and P export tends to have a seasonal distribution,

related to the seasonal distribution of flow. Antecedent moisture and rainfall characteristics
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influence the volume of runoff generated, which ultimately affects P export. Hirt et al. (2001)
found that tiles responded to 70% of rain events throughout the year, but responded to a higher
percentage during the non-growing season (84%) when conditions were wetter, compared to
the growing season (56%). Hirt et al. (2011) also found that in the summer, it generally required
a greater rainfall intensity to initiate a response, as compared to the winter months. The same is
true for overland flow, where greater rainfall or melting snow is required to generate overland
flow under dry antecedent conditions than is needed under wetter conditions. The partitioning of
discharge is influenced in part by precipitation characteristics. Higher rainfall intensities
increase the likelihood of overland flow events, and thus influence the partitioning of flow
between export pathways (Kleinman, et al. 2006). Although concentrations of P are lower in tile
drainage relative to overland flow, tile drains have been found to make important contributions
to overall site losses due to the high volume of water leaving through this flow path (Ball Coelho,
et al. 2012, Eastman, et al. 2010, Gaynor and Findlay 1995).

The area within a watershed directly contributing to runoff generation can expand and
contract seasonally as well and during individual events. This is referred to as variable source
area concept (Ward 1984). This concept is particularly important when it comes to identifying
areas likely to contribute to P loading within a watershed, as it may only be necessary to identify

areas where a source of P coincides with an area contributing to runoff generation.

2.6 Critical Source Areas and Management Approaches

P export is controlled by the interaction of export pathways and P sources (Gburek and
Sharpley 1998, Kleinman, et al. 2006). Areas with high STP, or with soils that are susceptible to
erosion are not necessarily contributors to P loading at the watershed scale. These areas only
contribute to P loading if there is hydrological connectivity between this P source and a
receiving water body. Pionke et al. (1997) investigated the spatial variability contribution to P
export and found that the >90% of P export to the Chesapeake Basin originated from <10% of
area within the watershed. Due to the overwhelming influence of flow volume on transport, even
modest sources of P may contribute a large percentage of loading within a watershed because
of the site’s hydrology (Sharpley, et al. 2013). Targeting critical source areas has become a
common approach for addressing P export at the watershed scale (Kleinman, et al. 2011). The
lack of targeting has been cited as reason for the benefits of conservation practices not being

observed at the watershed scale (Tomer and Locke 2011).
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There is a recognized need for site specific management approaches for dealing with P
losses (e.g. Ulén and Jakobsson, 2005). Even though sites may have similar STP, soils and
topography, if they generate runoff differently, they may require different management
approaches to control P losses (Daniel, Sharpley and Lemunyon 1998). The recognized need
for site specific assessments, and targeted management efforts, has led to the development of
numerous regional P indices (Ulén, et al. 2011). These P-indexes account for the risk of P
losses based on site specific data and management practices. Unfortunately, existing P Indexes
do not properly account for P losses through tile drainage (Reid, et al. 2012).

2.7 Summary

Managing P in agricultural systems offers several challenges. P exists in soil in varying
degrees of availability to plants. Since the supply of P in the soil solution is low, P must be
cycled between various pools to provide enough P to sustain crop growth. Applications of
external sources of P are used in agriculture to maintain adequate levels of P in soil and to
replenish P removed via crop removal. Soluble and particulate P can be exported from the site
in overland flow and tile drainage. Export of P through these pathways is episodic and has a
seasonal distribution related to the distribution of runoff. Concentrations of P in runoff are
influenced by the interaction of hydro-climatic drivers, site properties and management
practices. These amounts are usually small from an agronomic stand point but can be
significant from an environmental stand point. Thus, there is a need to better manage these
losses to mitigate environmental risk. One of the widely accepted management tools is the P-
Index, however the current Ontario Index does not accurately account for tile drainage. To
include tile drains we must understand the relative contribution of tiles and overland flow to P
export. Other factors specific to Ontario must also be investigated further, including the
performance of tillage systems common in Ontario, and the effect of seasonality in the Ontario

setting.
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3 Site Descriptions and Methods
3.1 Site Descriptions

Overland flow and tile drainage P export from agricultural fields was monitored at three
field-scale sites, one in eastern Ontario (Site 1: UTM 18T 547572m E, 5003684m N) and two
sites in southern Ontario (Site 2: UTM 17T 472219m E, 4767583m N and Site 3: UTM 17T
466689m E, 4832203m N) (Figure 3-1). The sites were selected because they were managed
with reduced tillage (RT) systems, represented a range of climate conditions, and had isolated

overlaying overland and tile catchments within a field.

At each site, hydraulically isolated catchment areas (tile drainage and surface drainage)
with uniform cropping history were selected. The tile drainage catchments were similar in size
(Site 1: 4.266 ha; Site 2: 8.655 ha; and Site 3: 7.773 ha). Each field had existing systematic tile
systems (~75cm depth), though the tile spacing varied between the sites (Site 1 ~11.5m; Site 2
~9m; Site 3 ~14m). The diameter of the main outlet drains for the drainage systems varied
between the sites (Site 1: 6”; Site 2: 8”; Site 3: 6”). Surface drainage catchment areas were,
2.520 ha, 7.787 ha, 8.139 ha for Site 1, Site 2 and Site 3, respectively. These sites were
selected because overland flow exits the fields predominantly in one location in each field rather
than many diffuse exit points, allowing the measurement of surface runoff. However, hydrology
at two of the sites was complicated because of features discovered after the sites had been
selected. Site 1 had several French drains in the fields which allowed for surface water to enter
the tile drainage system. There was some uncertainty about the surface drainage catchment
area at Site 1 because there was one additional outlet that was not monitored, thus not all
surface runoff was captured by the monitoring equipment. The catchment area used in all
calculations represents the largest potential catchment area. Site 2 also had complicating
factors, as the tile drainage system was connected to two catch basins that were located in the
homestead’s driveway. Although these features result in some uncertainties, they are common

practice, and the sites are considered fair representation of real working farms in Ontario.
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Figure 3-1 Locations of monitored sites within Ontario.

3.1.1 Climate

Generally, the three sites are located in a similar climate type; however, there are some
notable differences with regards to average winter temperatures and precipitation (Figure 3-2).
Long-term average daily temperatures are similar at Sites 1 (7.0 °C)(St-Anicet 1) and Site 3 (7.2
*C)(Blyth), but slightly warmer at Site 2 (8.2 "C)(Bear Creek) (Figure 3-2). Monthly temperatures
demonstrate significant seasonality across the year, with cold winters and warm summers.
Temperatures are generally below freezing from December through March in this region.
However, daily maximum and minimum temperatures can be highly variable. Due to the climate,
spring planted crops are seeded in April-June and harvest is typically over by November.
Average annual precipitation amounts are 1004 mm ( St-Anicet 1), 1024 mm (Bear Creek) and
1247 mm(Blyth) for Site 1, Site 2 and Site 3, respectively (Figure 3-2), a portion of which falls as
snow (Site 1: 16%, Site 2: 17% and Site 3: 30%). Precipitation distributions throughout the year
are similar among the sites, except for higher amounts of winter precipitation at Site 3 (Figure
3-2).
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Figure 3-2 Long-term (30 year) mean monthly precipitation totals (bars) and mean monthly temperatures
(lines) for the three study sites.

3.1.2 Soil Physical and Chemical Properties

The sites represent a range of soil types and topographies. A description of each site is
provided below, including topography, soil type, texture, organic matter, pH and soil test
phosphorus levels. Descriptions in this section include a combination of results from soil testing
completed in 2011 for this study, and descriptions from historical county soil surveys. A
description of Olsen P stratification and field variability according to the 2011 sampling results is

also provided.

Site 1 has unique soil physical and chemical properties relative to the other sites. The
area was flat and the soils are poorly drained (Matthews, Richards and Wicklund 1957 ). Based
on the topographic survey completed at the site, slopes in the field range from 0.5 to 3.6%
(Table 3-1). The dominant soil at Site 1 is Bainsville Silt Loam, which is part of the Dark Grey
Gleysolic great soil group (Matthews, et al. 1957). This soil was developed on water deposited
sands and silts, which overlay glacial till (Matthews, et al. 1957). The underlying clay layer
begins approximately 1 meter below the surface (Matthews, et al. 1957). Based on soll
sampling completed in 2011, the average texture in the top 15 cm is Silt Loam (1.2 £ 0.7 %
Clay, 58.4 + 4.6 % Silt, 40.4 + 3.9 % Sand) (Table 3-1). In the top 15 cm, soil organic matter is
4.6 + 0.2 %, and pH was 6.1 + 0.2. Average Olsen P in the top 15 cm is 15 + 5 mg kg™. STP is
vertically stratified with higher concentrations occurring at the surface (Average Olsen P at 0-2.5
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cm: 17 + 3 mg kg™) than at greater depths (Average Olsen P at 60-75 cm: 5 + 1 mg kg™) (Figure
3-3). Olsen P levels in the top 2.5 cm of soil varied across the site (12-22 mg kg™) (Figure 3-3).

Site 2 has undulating topography (Hagerty and Kingston 1992), with slopes ranging from
0.3 to 3% based on a topographic survey completed at the site (Table 3-1). The field at Site 2
consists of soils from the Bryanston association (Bryanston and Thorndale soils) (Hagerty and
Kingston 1992). The Bryanston and Thorndale soils developed on loamy-textured glacial till
(Hagerty and Kingston 1992). Bryanston soil is well drained, while Thorndale soil has imperfect
drainage (Hagerty and Kingston 1992). Soil samples taken from the site indicate the average
texture in the top 15 cm is Silt (Clay 0.5 + 0.6%, Silt 84.4 + 3.3%, Sand 15.1 + 3.4%) (Table
3-1). Due to the surface texture, these soils are susceptible to erosion (Hagerty and Kingston
1992). 50-58 cm below the surface the soil is a loam texture (Hagerty and Kingston 1992). In
the top 15cm the average soil organic matter is 4.1 + 0.7%, and the average pH is 7.7 = 0.3
(Table 3-1). Average Olsen P in the top 15 cm is 15 + 3 mg kg™. STP concentrations are higher
at the surface (Average Olsen P at 0-2.5 cm: 27 + 6 mg kg™) than at greater depths (Average
Olsen P at 60-75 cm: 3 = 1 mg kg™) (Figure 3-3). There is spatial variability in Olsen P levels in
the top 2.5 cm, with levels ranging between 21-36 mg kg™ (Figure 3-3).

Site 3 is located on gently undulating terrain (Hoffman, et al. 1952), with slopes ranging
from 0.2 to 3.5% (Table 3-1). The site is mapped as Perth Clay Loam, which developed on
limestone glacial till, and is in the Grey Brown Podsolic great group (Hoffman, et al. 1952).
These soils have imperfect drainage (Hoffman, et al. 1952). The average texture in the top 15
cm is Silt (Clay 0.9 + 1.3%, Silt 75.7 £ 2.1%, Sand 23.4 = 3.3%) (Table 3-1), whereas the till
40cm below the surface is clay loam textured (Hoffman, et al. 1952). In the top 15 cm the
average soil organic matter is 4.1 + 0.5 % and the average pH is 7.7 + 0.3. Average Olsen P in
the top 15 cm is 12 + 2 mg kg™ . Concentrations of STP are higher near the soil surface
(Average Olsen P at 0-2.5 cm: 22 + 6 mg kg™), than at greater depths (Average Olsen P at 60-
75cm: 4 mg kg™ + 2). The Olsen P levels in the top 2.5 cm ranged between 18-30 mg kg™ at the
site (Figure 3-3).

These sites represent a range of soil properties, however some similarities exists. The
sites have topography ranging from flat to undulating, but none of the sites have steep slopes.
Another similarity is that all sites have soil with poor to imperfect drainage and thus benefit from

tile drainage.
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Table 3-1 Soil properties for the top 15 cm (mean and standard deviation) and slope ranges for all sites.

Site 1 Site 2 Site 3
Sand (%) 404+39 151+34 234+33
Silt (%) 584 +4.6 84.4+£3.3 74.7+2.1
Clay (%) 12+07 05+06  09+13
Organic Matter (%) 46+0.2 41+0.7 41+05
pH 6.1+0.2 7.7+0.3 7.7+0.3
Olsen-P (mg kg'l) 15+5 15+3 12+ 2
Slope 0.5-3.6% 0.3-3.0% 0.2-3.5%
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Figure 3-3 Average Olsen P mg kg'l vs depth for each site.

3.1.3 Management Practices

All sites were located on working farms and thus all management decisions were made by
the farm operators. The tillage systems, fertilization methods, and crop rotations differed
between the sites (Table 3-2). Three different types of RT systems were used (i.e., Ridge, Site
1; Zone, Site 2; and Vertical, Site 3). In this study, RT refers to a range of tillage systems,
including rotational tillage systems, as well as systems where light tillage occurs for each crop.
The sites had different fertilization strategies, application rates and application methods. At all
sites, the long term strategy was to apply P to maintain adequate STP. In each system,
individual applications were intended to supply the needs of multiple crops. Manure was the
only source of P used at Site 1 prior to the study period. Liquid manure (laying hen) and mineral

P fertilizer were used at Site 2. At Site 3 mineral P fertilizer was the only source of P used.
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Within the study period no applications of P were made at Site 1, but fall applications of P were
made at Site 2 and Site 3 in 2011. Starter P fertilizer was applied in 2012 at Site 3. Site 2
incorporated mineral P fertilizer into the tilled zone, and broadcasted liquid laying hen manure
(not incorporated). At Site 3, P fertilizer was broadcast and incorporated with shallow tillage. P
applications at the sites exceeded OMAFRA fertilizer recommendations for the Olsen P levels
observed (Baute 2002); however the rates were intended to match crop removal which is an
accepted agronomic practice. Both Site 1 and Site 3 used a cover crop following wheat in 2011,
while the following winter no cover crops were used at the sites. The length of rotation, as well
as the number and type of crops within rotations differed between the sites (Table 3-2). Site 1
uses a five year rotation of cereal, grain and legume crops. The rotation at Site 2 included, corn,
soybeans, wheat and azuki beans. Site 3’s rotation is corn, soybeans, wheat. Corn was grown
at all sites during the first growing season of the study. These sites are carefully managed with
respect to tillage and P application, all decisions made within this study period were accepted
agronomic practices (Baute 2002).

Table 3-2 Farming practices for all sites. Crop, tillage, application rate and method, and use of cover crops
between October 2011 and April 2013.

Site 1 Site 2 Site 3
2011 Wheat Soybeans Wheat
Crop 2012 Corn Corn Corn
2013 Study period ends in April before planting
2011 Ridge Tillage Post Harvest: Zone Tillage Post Harvest: Vertical Tillage
Tillage Pre-Plant: Vertical Tillage Post

2012 Pre-Plant: Disc Harrow ) .
Harvest: Vertical Tillage

*Laying Hen Manure: 83

P Application Rate 2011 No Applications (Total Manure P,0s: 207) MAP :172
(P,05 kg ha™) MAP: 87
2012 No Applications No Applications MAP: 32

L Manure Surface Broadcast; . .
Application 2011 NA ] MAP Incorporated with Tillage
MAP Incorporated in Zone

Method
2012 NA NA Incorporated with Planter
Oil Seed Radish after
2011 None Red Clover
Cover Crops Wheat
2012 None None None

*P,05 in Manure represents the estimated value available to the next crop (40% of total) (Brown, 2013). Total P,05 content is

also provided.

Residue cover varied across sites and years because of different crop rotations and tillage
practices. No direct field measurements of residue cover were taken during NGS1; however,
based on visual observations, Site 2 (soybeans) had less soil cover than Sites 1 and 3 (wheat)
primarily because of the crops grown that year. Residue cover was lowest after planting at Site

1 and Site 3 because of pre-plant tillage. The residue survey conducted following planting
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indicated there was 20-34% residue cover at the sites (Table 3-3). No measurements were
taken during the NGS2, but based on visual observation, all sites had a high level of corn

residue, with some variances because of minimal fall tillage.

Table 3-3 Percent residue cover from measurements completed after planting, May 2012.

Site % Cover
Site 1 21+9
Site 2 34+6
Site 3 20+3
3.2 Methods

Three isolated watersheds were used for this study. Each site was equipped with a
weather station to collect meteorological variables, as well as flow monitoring and water
sampling equipment to monitor flow and collect samples for water quality analysis (Figure 3-4,
Figure 3-5, and Figure 3-6). The study period began in October 2011 and ended in April 2013.
The exact start dates varied between the sites. Where meteorological equipment was installed
before flow monitoring equipment, it was assumed that no flow was missed based on what had
been observed at other monitoring sites in the province. Monitoring at the sites ended between
April 17 and April 31, 2013. The study period is broken into three periods: the first non-growing
season (NGS1) (October, 2011-April 2012), the first growing season (GS1) (May 2012-
September, 2012), and the second non-growing season (NGS2) (October 2012-April 2013).
This allows for meaningful comparisons of tile drainage discharge and P export between the two
NGSs, as well an accurate partitioning of overland and tile drainage for one 12 month period
(May 2012-April 2013, inclusive). The instrumentation and data collection methods are

described in the following sections.
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Figure 3-4 Site 1 Catchment area and site instrumentation.
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Figure 3-6 Site 3 Catchment area and site instrumentation.

3.3 Meteorological and Soil Environmental Variables

Meteorological data at each site was measured using automated weather stations
equipped with the following sensors (Onset Corporation HOBO Weather Station): tipping bucket
rain gauge (.2mm Rainfall Smart Sensor - S-RGB-M002), air temperature and relative humidity
(12-bit Temperature/RH Smart Sensor - S-THB-M002) with a solar radiation shield, incoming
solar radiation (Solar Radiation Sensor (Silicon Pyranometer) - S-LIB-M003), wind
speed/direction (Wind Smart Sensor Set - S-WSET-A), soil moisture (EC-5 Soil Moisture Smart
Sensor) and soil temperature (12-Bit Temp Smart Sensor - S-TMB-M002) (installed at 10cm,
30cm and 50cm depths). Data was logged at 15 minute intervals using a Hobo U30 GSM logger
(Onset Corporation). Stations were located on the field boundary so they did not interfere with
regular farming operations (Figure 3-4,Figure 3-5, and Figure 3-6). Water table elevation was
monitored using Hobo Level Loggers (U20) at one well (2m depth, 2” ID) per site. Wells were
located midway between tile runs at Site 1 and Site 3 (Figure 3-4, Figure 3-6). The well at Site 2
was located 2m from the main drain (Figure 3-5).
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3.4 Snow Water Equivalent Estimation

Snowfall data from nearby Environment Canada Weather Stations were used to estimate
monthly precipitation as snowfall at each site. Snowfall at Site 1 was estimated using data from
the St-Anicet 1 station in Quebec. Snowfall at Site 2 was estimated using data from Strathroy-
Mullifarry station in Ontario. Site 3 was estimated using data from Wroxeter station in Ontario.
These stations were the closest station with daily snowfall data for the study period. Snow depth
of the snow cover at the sites was monitored throughout the second NGS (NGS2). Snow
surveys were completed between March 7 and March 11, 2013 to determine the SWE prior to
the final melt. To complete this survey, six snow cores were taken from random locations in the
field for determinations of snow density using a 67mm diameter snow tube. Six snow depth
measurements were taken randomly around the location of each snow sample. The measured
density and average snow depth at each location were used to calculate the SWE at each
location. The average SWE of the six sampling locations was used to estimate the SWE at the
site. Snow depth was also recorded prior to and following major events. On ground show
measurements at the Environment Canada weather stations were consistent with field
measurements before and after events. Precipitation in periods prior to showmelt events, snow
depth measurements, and snow surveys were used to estimate SWE available prior to melt

events.

3.5 Tile Drainage Monitoring

At each site a tile drainage monitoring station was constructed near the field edge, above
the main drain exiting the field. Tile drain pipes were accessed using a backhoe, and a section
of the main tile drain was removed and replaced with a custom built piece that allowed direct
access to the tile drain through two riser pipes (Figure 3-7). The custom built piece had the
same diameter as the existing tile at Site 1 and Site 2, but a greater diameter than the existing
tile at Site 3. Excavated soil was subsequently backfilled around the tile drain and riser pipes.
The upstream riser pipe was used for the flow monitoring equipment and the downstream pipe
was used for water sampling. At the downstream end of the custom insert there was a cipolletti
weir located just prior to the tile emptying into a built-in a sampling basin (Figure 3-7). This weir
permitted the estimation of flow during low-flow periods based on measurements of water depth

in the weir (using the same Hach Flo-tote3 sensor) as reliable estimates of velocity are not
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possible with the flowmeter unit at flow depths below 50 cm (discussed further below). Plastic
sheds (10x10ft) were built above the riser pipes to protect the equipment from freezing or

contamination.

Tile Monitoring Unit Hack FL900 data logger and
wireless communication

Flow-Tote 3 water flow sensor

an,
.y

Tile monitoring Unit instalfee
into field tile collector tile

Cipoletti Weir

Figure 3-7 Schematic of the tile drainage monitoring station (R. Brunke, unpublished).

The method used to measure flow within the tile drain was changed mid-way through the
study period. Between Oct 2011 and May 2012 the depth of water in the tile was measured
using a Hobo Water Level Data Logger which was lowered into the drain through the upstream
riser pipe. This logger measured water depth at 15 minute intervals. Between April and May
2012, the Hobo Water Level Data Logger was removed and a Hach Flo-Tote3 sensor was
installed to monitor flow (depth and velocity). Data from the Flo-Tote3 was logged using a Hach
FL-900 at 15 minute intervals. The Flo-tote3 measured depth and velocity and calculated
discharge as:

Q =AV
Where Q@ is discharge, A is cross-sectional area and V is velocity.

Low flow (Site 2: < 80 mm water depth, Site 3: <82 mm water depth) in the tile drain at

Site 2 and Site 3 was calculated using a cipolletti, or trapezoidal, weir because the sensor could
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not achieve a reliable velocity reading at these flow rates. At Site 1 all flow was determined
using the Flo-tote because a section of the tile downstream had a negative grade which caused
there to be standing water at the weir for long periods, even though no flow was occurring. The
weir crest was 25 mm above the bottom of the tile, with a 60 mm crest length, and the sides of

the weir opening were inclined at a 4:1 slope. Total height of the weir was 52.5 mm.
The cipoletti weir equation is:
Q = 0.000588Lh3/?

Where Q is discharge in | s, 0.000588 is the discharge coefficient; L is the length of the
weir crest in cm; and h is the depth of water above the crest of the weir in mm (United States
Department of the Interior Bureau of Reclamation 2001) (Figure 3-8). Water depth measured by
the Flo-Tote3 was used to determine h. Field measurements were taken to determine the depth
of water, at which water began to flow over the crest of the weir. If the level dropped below this
depth, discharge was zero. Above a defined depth, discharge measurements obtained directly
from the Flo-Tote3 was used instead of the weir calculation (Table 3-4). For example, at Site 3,
the weir was used to calculate flow between Flot-Tote3 depth readings > 55 m and < 82 mm,
while flow readings directly from the Flo-Tote3 were used at depths >82 mm (Figure 3-9).

Table 3-4 Tile depths used to determine flow calculation method (No Flow, Weir or Flo-Tote) at each site.
Assumed No Flow  Weir Calculation Flo-Tote Sensor

Site (mm) (mm) (mm)
Site 1 Flo-tote Only Flo-tote Only Flo-tote Only
Site 2 <50 >50and £80 80>

Site 3 <55 >55and <82 82>

Rating curves were created using discharge data collected between May 2012 and
January 2013. These relationships were used to determine discharge for the period prior to the
installation of the Flo-Tote3 sensors (Oct 2011-May 2012). Due to variability within the stage
discharge relationships at Site 1 and Site 2, separate rating curves for the rising and falling
limbs of the hydrograph were developed to better represent major discharge events. These
additional relationships were used to estimate flow for a small number of major flow events at

Site 1 and Site 2. All rating curves that were developed are included in Appendix A.
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Figure 3-8 Picture of the cipoletti weir from inside the tile (picture taken looking upstream).
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Figure 3-9 Switching from the cipoletti weir calculated flow to the Hach Flo-Tote3 calculated flow at Site 2 on
January 28, 2013.
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3.6 Overland Flow Monitoring

Overland flow was measured for the 12 month period. With the exception of the one
unmonitored culvert outlet at Site 1, surface overland flow left each of the study sites via a
single outlet rather than many diffuse points, permitting the measurement of the volume of
overland flow exiting the field. The specific monitoring setup differed slightly between the sites
due to topographic features of the sites; however, the same monitoring instrumentation and
general monitoring approach was used at all three sites. At Site 1 and Site 3 overland flow from
fields was confined using berms at the field edge, and directed into an outlet pipe (0.20m in
diameter at Site 1, 0.46m in diameter at Site 3) where flow could be measured (Figure 3-4,
Figure 3-6 and Figure 3-10). At Site 2 overland flow was collected in a hickenbottom inlet and
measured in a non-perforated pipe (0.20m dia.) installed below ground. The pipe was accessed
through vertical riser pipes identical to those used in the tile drainage design (Figure 3-5).
Overland flow was measured using depth and velocity measurements (Hach Flo-Tote3 sensor)
taken at 15 minute intervals, and logged using a Hach FL900 data logger. If the flow sensor
malfunctioned, discharge was estimated using rating curves established from captured events
combined with water depth measurements from Hobo Water Level Loggers which were installed

as a backup for the flowmeters.
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Figure 3-10 Schematic of overland flow monitoring station (Site 1 and Site 3).

3.7 Tile and Overland Flow Water Sample Collection

Each tile/overland flow monitoring station was equipped with an automated water sampler
(AWS) (ISCO 6712, Teledyne). For tile monitoring, the sampling hose was fed through the tile
monitoring insert’s downstream riser pipe into a basin integrated into the tile monitoring pipe
located just below the cipoletti weir (Figure 3-7). The inlet of the sample hose was positioned so
that the sample was pulled from the center of the collection basin, rather than the bottom where
sediment could accumulate. For overland flow monitoring the sampling hose was positioned

slightly above the bottom of the pipe (Figure 3-10).

Sample collection was a collaborative effort between farm operators and researchers.
The sampling strategy was to capture a range of hydrologic events at high frequency sample
intervals throughout the year when tiles were flowing, including the winter months. In addition,
individual grab samples were taken between events to characterize baseflow concentrations.
Composite samples were used for tile drainage samples between October 2011 and May 2012.
The decision to switch from composite samples to discrete samples was made in May 2012 so

that P export dynamics within events could be carefully studied.

Sampling programs were adjusted throughout the study period to get coverage of the

hydrograph for each sampled event. This involved adjusting the threshold water depth used to
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trigger or enable the AWS, and modifying water quality sampling intervals seasonally, and in
some cases for individual storms. Different mechanisms were used to enable/trigger the AWS.
During the first 10 months of the study period the AWSs were triggered manually prior to events.
Ten (10) months into the study, a circuit was installed that allowed the Hach FI900 to enable the
AWS when a defined flow depth was reached. The triggering depth was adjusted seasonally to
ensure the AWS would be triggered for all significant flow events. Following periods of zero flow,
the trigger depth was lowered to 50 mm in the tile drain in order to capture the first flow events
during the wet up. During the autumn, winter and spring seasons, the trigger depth was
increased to approximately 75 mm in the tile drain because of the occurrence of baseflow during
these periods.

Water quality sampling intervals were changed as needed to provide adequate coverage
of discharge events (i.e. the entire hydrograph). In general, summer events were shorter in
duration than autumn or winter events due to differences in storage in the soil profile.
Consequently, sampling intervals were shorter during summer storms to provide full coverage of
the storm hydrograph. Typically, the sampling interval used for tile flow events in summer
rainstorms was between 1.5-3 hours, while longer drawn out events such as winter melts were
sampled at 4-8 hour intervals. Two part sampling programs (stratified sampling) were used to
collect samples at a higher frequency during the rising limb of the hydrograph, when pulses of P
are known to occur (e.g., Dils and Heathwaite, 1999). Overland flow events were anticipated to
have a shorter duration and were programmed to sample at a higher frequency 0.5-1.5 hours
during the summer, and 1-4 hours in the winter. Two part programs (reduced frequency at later
stages in the event) were also used for overland flow events if events were expected to be of

shorter duration (<24 hours).

During the summer months samples were retrieved from the field within 24 hours of being
collected to minimize the opportunity for bacterial growth within sample bottles in the AWS.
However, samples were left in the AWSs for the length of the sampling program during colder
months of the year (up to one week). This was possible because AWS were housed in sheds
and thus shaded from the sun (and could not be warmed) and the cool air temperatures
‘refrigerated’ or ‘froze’ samples. All samples were frozen upon retrieval until processing and

analysis.

The procedure used to collect, store and ship samples also changed within the study

period to improve the efficiency of the process. Prior to January 2013, the procedure was as
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follows: Samples were transferred from 1000ml Isco bottles into 250ml acid-washed Nalgene
bottles, then stored in a freezer prior to being shipped to the laboratory for processing and
analysis. The 1000ml plastic bottles were then triple rinsed with distilled water before being
reinstalled in the AWSs.

In January 2013, new bottle trays were installed to improve the efficiency of the retrieval
procedure. The bottle trays held 24, 230 ml acid washed bottles. These bottles could be capped
by the cooperators, removed from the AWSs, stored in a freezer prior to shipping to the
laboratory. Cooperators would reload the AWS with a new set of acid washed bottles
immediately following removal of collected samples. These improvements eliminated field
washing of bottles and transferring of samples.

3.8 Processing Samples and Laboratory Analysis

At the laboratory, each sample was thawed and immediately processed. A 50 ml aliquot
was filtered through a 0.45 ym cellulose acetate filter (FlipMate, Delta Scientific) and stored in
the dark at 4°C. A second 50 ml unfiltered aliquot was acidified with H,SO, (0.2% H,SO, final
concentration). Unfiltered samples were digested (acid) for the analysis of Total Kjeldahl P. Both
soluble reactive P (SRP) and Total P (TP) were determined using colorimetric analysis
(ammonium-molybdate ascorbic-acid (Bran Luebbe AA3, Seal Analytical Ltd., G-175-96 Rev. 13
for SRP, Method No. G-188-097 for TP). Five percent of all samples were analyzed in duplicate
and found to be within 6% of reported values. The detection limit for SRP analysis was 1 ug L™

and 10 pg L™ for TP analysis.
3.9 Data Analysis
3.9.1 Hydrograph Analysis

Tile drainage flow was separated into event based and non-event based flow. The start of
an event was defined as a noticeable rise in the hydrograph following a rain or melt event. The
end of the event was determined graphically using a simple two line graphical method described
by Stuntebeck et al. (2008). Briefly, a straight line was drawn on the hydrograph during non-
event flow following the event. A second line was drawn following the hydrograph from the point
where the first straight line diverges from the hydrograph. The point where the second line
diverges from the hydrograph was determined to be the end of an event. Events with multiple

peaks were separated at the lowest flow rate between events, or, combined into a single event if
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separation could not be achieved reliably. Each event and non-event flow period was given a
unique ID (e.g., Eventl, or BF1). Overland flow events were identified based on the tile drainage
event in which they occurred. Multiple peaks within overland flow events were considered one

event.

3.9.2 Phosphorus Load Calculations

During the 18-month period, a number of individual events were captured, representing
between 22-77% of the event-based flow among the sites (Site 1. n=14 (22%), Site 2: n=22
(77%), Site 3: n=17 (60%)). Loading for the captured tile and overland flow events was
calculated by multiplying the concentration of a discrete or composite sample, by the average

flow rate for the sample interval, multiplied by the length of time the sample represented:

n
Event Load = (Z C; QpTi>
i=1

Where C; is the concentration (mg I™*) of a discrete or composite sample. Gp is the mean

discharge (I s™) for the interval between samples. T; is the time interval (s) represented by the
sample. Following the determination of event loading, the Flow-Weighted Mean Concentrations

for events were calculated as:

Event Load

FWMC =
Event Discahrge

To complete the event load and FWMC calculations, it was necessary to estimate
concentrations for certain intervals where samples were missing. These concentrations were
estimated using one of the following interpolation methods: 1) using flow-concentration
relationships from the event or events with similar conditions 2) using the mean concentrations
of the nearest two samples, or 3) the concentration from the closest sample interval if the flow

rates of the two intervals were similar.

Loads for uncaptured tile events were estimated using FWMCs from captured events that
had similar event properties to the event. The approach taken in this study was based on the
methodology used at the Discovery Farms in Wisconsin, described in Stuntebeck et al. (2008).
Uncaptured tile events represented 23-78% of the data set and were not used in statistical
analyses. If there were no captured events with similar properties (season, peak flow, total flow,

and event type), then relationships between FWMC and total discharge, or cumulative flow
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since fertilization were used to estimate the event's FWMC. This method was appropriate due to
the variability between events related to event type, ground conditions, the presence of overland
flow, and the effect of fertilization, which resulted in a poor relationship between discharge and

concentration. The load from uncaptured events was calculated as:
Event Load = Estimated FWMC * Event Discharge

No overland flow events were missed entirely, although some sample intervals were

missed due to equipment malfunctions.

Non-event flow (baseflow) loading was estimated differently because fewer samples were
taken and flow was less variable. Periodic grab samples and samples taken at the tail end of
events were used to calculate the average concentration for each non-event flow period when
tiles were flowing. This average concentration was multiplied by the total flow for the period to
determine the loading. Loading for the entire study period was calculated by adding the loads of

individual events (tile and overland flow), and non-event-based loading.

3.10 Additional Surveys
3.10.1 Soil Survey

Soil samples were collected for chemical and textural analysis. Soil samples were
collected from Site 3 and Site 1 sites in August 2011 following wheat harvest. Samples were
collected from Site 2 in October 2011 following soybean harvest. Stratified random sampling
was used to form composite samples representing five subsections within each catchment area,
which were defined based on elevation and slope. Five sample locations were randomly chosen
within each subsection. At each sample location, soil samples were collected at 8 depth
intervals to capture P stratification (0-2.5cm, 2.5-5cm, 5-15cm, 15-30cm, 30-45cm, 45-60cm,
60-75cm, 75-90cm). Composite samples of each depth were created for each subsection in the
field. The soil core was used to extract the first three depth intervals. Then a 2 1/4” diameter
soil auger was used to sample to greater depths. Subsamples from specified depth intervals
were thoroughly mixed in clean plastic pails and subsequently divided into two plastic bags in
the field. One bag was sent to A & L Laboratories (London, Ontario, Canada) for the analysis of
soil chemistry including soil test P (Olsen P) and the second subsample was kept for particle

size analysis at Wilfrid Laurier University (Horiba LA950, ATS Scientific Inc., Canada).
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3.10.2 Residue Cover

A residue cover survey was conducted at the start of the first growing season. Residue
cover was measured using the line transect method described in Laflen et al.(1981). A minimum
of five random 30m transects were selected in the field and the presence of crop residue was
measured at 100 points (i.e., residue identified at 60 points would mean %60 residue cover) The
average percent cover calculated from all transects provided an estimate of percent residue
cover for each field. In addition, regular field photos were taken to further characterize seasonal

changes in residue cover.
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4 Field-Scale Phosphorus Export via Tile Drainage and Overland

Flow from Three Reduced Tillage Sites in Ontario
4.1 Introduction

Harmful algal blooms (HABs) and eutrophication are problematic globally (Norton, et al.
2012, Schindler, et al. 2012), and have been identified as a priority research area in the lower
Great Lakes region of Ontario, Canada, particularly for Lake Erie (Great Lakes Commission
Phosphorus Reduction Task Force 2012). The number of reported algal blooms in lakes in
Ontario has increased since the mid-1990’s (Winter, et al. 2011), and has been attributed in part
to increased soluble reactive phosphorus (SRP) loading from tributaries to the Great Lakes
(Great Lakes Commission Phosphorus Reduction Task Force 2012). There has been
considerable effort to reduce phosphorus (P) export to the Great Lakes (Great Lakes
Commission Phosphorus Reduction Task Force 2012, Scavia, et al. 2014) as well as other large
water bodies both within North America (Schindler, et al. 2012) and Europe (Helin, et al. 2008).
Agricultural fields have been recognized as an important non-point source of P to water bodies
(Carpenter, et al. 1998) and a likely contributor to the increase in algal blooms observed (Great
Lakes Commission Phosphorus Reduction Task Force 2012, Scavia, et al. 2014), which has

resulted in public pressure to identify ways to manage these agricultural related losses.

Strategies to reduce P loading have evolved in recent years. Historically, overland flow
was thought to be the primary export pathway for P leaving farm fields because of its capacity to
erode soil (Sims, et al. 1998). However, it is now accepted that tile drainage is also an important
pathway for P export (Sims, et al. 1998, Smith, et al. 2014). In fact, studies have shown that tiles
can be a significant pathway for P loss (e.g. Sharpley and Syers, 1979; Smith, et al. 2014), and
can be the dominant pathway in some situations (Gaynor and Findlay 1995).

Beneficial Management Practices (BMPs) such as no-till (NT) have been promoted
extensively to reduce soil erosion via overland flow (Sims, Simard and Joern 1998). However,
NT systems may be problematic for the loss of SRP both in surface runoff (Tiessen, et al. 2010,
Elliott 2013, Hansen, et al. 2000) and in tile drainage (Michalak, et al. 2013) due to the
stratification of P in surface soil (e.g. Sharpley, 2003) and/or increased connectivity between
surface soils and tile drains due to enhanced macropore development (Sims, et al. 1998,
Stamm, et al. 1998). In fact, increases in the loading of SRP to the Western end of Lake Erie

has been attributed to the increased use of conservation tillage strategies (Kleinman, et al.
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2011, Michalak, et al. 2013) as well as the surface broadcasting of fertilizers and autumn
spreading (Michalak, et al. 2013). More recently there is an understanding that P export may be
most effectively addressed by focusing management efforts on critical source areas of P, which
are areas where there is an elevated source of P that is connected to surface water via some
export pathway (Pionke, et al. 2000). Managing P export requires understanding how
management practices increase the likelihood of P movement and the pathways where P is

moved.

Gaps in our current understanding of P export are limiting our ability to manage P loss in
Ontario. To properly identify critical source areas, we must understand the role of the export
pathways. Research from other regions suggests export from tiles will also need to be
addressed to reduce P export (e.g. Smith, et al. 2014). Tile drainage is used extensively in
Ontario, yet the current tool used to assess the risk of P losses at the field scale, the Ontario P
Index, does not account for tile drains as a pathway for P (Reid, et al. 2012). It is important to
understand the relative contribution of overland flow and tile drainage to P export because this
allows managers to properly account for the risks of P losses (Reid, et al. 2012). Another gap is
our limited understanding of how reduced tillage (RT) systems perform as a BMP in Ontario
year round. Much of the previous work on NT and tile drained systems (e.g. Smith et al. 2014)
has not included sampling through the winter months. However, tillage systems do perform
differently in certain climates. In Manitoba, where the flow regime is dominated by spring runoff
on frozen soils, Tiessen et al. (2010) found that NT systems increased P losses relative to
conventional. Soluble P losses were the dominant form during snowmelt, which accounts for the
majority of annual site discharge, and using conservation tillage increased concentrations of
soluble P and the volume of runoff in that environment. On the same sites, Lui, et al. (2014)
later showed that converting no-till systems to rotational tillage systems (aggressively tilled
every other year) reduced P export significantly. However, the work done by Tiessen et al.
(2010) and Lui et al. (2014) focussed on surface runoff and did not include tile drain effluent.
Understanding how export differs seasonally will help us understand which seasons have
greater potential for P export, and will help identify opportunities to manage P applications and

tillage to reduce overall P losses.

In this study, runoff and P export (Total, Soluble Reactive, and Particulate+Soluble
Unreactive) in tile drainage and overland flow from three reduced tillage fields in Ontario were

examined over an 18-month period. The specific objectives of the study were to:
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a. Quantify seasonal and annual discharge from tile drainage and overland flow at
the field scale.
b. Quantify the seasonal and annual speciation and mass of P loss in tile drainage

and overland flow.

4.2 Methods

The methods used for this chapter were described fully in Chapter 3.
4.3 Results
4.3.1 Meteorological Conditions

Conditions experienced over the study period varied between sites and compared to long-
term (30 year) mean conditions recorded at nearby weather stations (Environment Canada,
2014) (Figure 4-1). At all sites, the daily mean temperatures were warmer during the winter
months than the long-term means (Figure 4-1). Site 1 remained cooler in winter than Sites 2 and
3, which is typical for the three study regions (Figure 4-1).The early part of the summer of 2012
was also warmer than the long-term 30-year mean at all the sites (Figure 4-1), although
temperatures did not differ as much between sites in the summer months as they did during the

winter.

Precipitation varied from long-term means and among sites. All sites had below average
precipitation in the 2012-2013 year (Figure 4-1), with 923, 721, and 833 mm of precipitation
falling at Sites 1,2 and 3, respectively, compared to long term means of 1004, 1024 and 1243
mm. The driest period occurred between March and August 2012, when Site 1, Site 2 and Site 3
had just 81%, 56% and 71% of the normal precipitation for the period, respectively. In contrast,
precipitation in the 2012-2013 winter-spring period was near normal or above normal at all sites
(Figure 4-1). Overall the sites experienced similar differences from the long-term means for their

respective areas.

The snow water equivalent (SWE) of the snowpack prior to major melts varied among the
sites and between years. During the first non-growing season (NGS), Site 1 had greater
snowfall and a greater snowpack prior to the spring freshet than Site 2 and Site 3 (visual
observation). Frequent thaw events resulted in little snow accumulation over the first NGS at
Site 2 and Site 3. Site 1 had greater snow accumulation than Sites 2 and 3 in the second NGS,

and, all 3 sites had greater snow accumulation in the second NGS relative to the first NGS due
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to cooler temperatures. The snow survey completed in March 2013 at all sites confirmed the
difference in SWE prior to the final melt at the sites (Table 4-1). Total snowfall at the sites
differed (Site 1 > Site 3 > Site 2) (Table 4-1). However, due to the thaw events during the
second NGS, both Site 2 and Site 3 had even less SWE present prior to the final melt (Table
4-1). Generally, the southwestern sites (Site 2 and Site 3) experienced warmer winters with
more frequent thaw events relative to the eastern Ontario site (Site 1).

Table 4-1 Results of snow surveys conducted at all sites between March 8-11, 2013 prior to the final spring
snow melt. Snowfall prior to survey was calculated from local Environment Canada Weather Station data.

Site Date Snow Fall Prior to Survey SWE (mm)  Survey SWE (mm)
1 2013-03-11 253 148
2 2013-03-08 100 42
3 2013-03-08 214 69
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4.3.2 Runoff Generation

4.3.2.1 Temporal Variability in Runoff Generation

Site discharge and responsiveness of hydrologic pathways varied with time. Tiles
responded to precipitation and melt events throughout the year, but were much less responsive
during the summer months (Figure 4-2, Figure 4-3 and Figure 4-4) when water table position
was lower (Figure 4-5). Tile discharge typically responded quickly following rain events,
increasing from dry conditions or low flow conditions to as high as 9-21 | s™ in larger events.
Tiles would sustain baseflow for long periods during the NGS, but would dry up between events
during the GS (Figure 4-2, Figure 4-3 and Figure 4-4). Overland flow events were rare
(Average: 18% of all events included overland flow) and were restricted to large rainfall events
or snowmelts. These events occurred primarily in the NGS, with just one overland flow event
occurring during the GS (Site 1) (Figure 4-2, Figure 4-3 and Figure 4-4). The overland flow
during the GS at Site 1 occurred following 46 mm of intense rainfall over a period of 75 minutes.
Peak overland flow rates (20-110 | s™) were more variable between sites relative to tile
drainage. The highest rates of overland flow were seen during the summer storm at Site 1 (21 |
s™), a rain on frozen soil event at Site 2 (20 | s™), and rain on snow event at Site 3 (110 | s™). All
events that included overland flow also included a large tile drainage response (Figure 4-2,
Figure 4-3 and Figure 4-4).

Discharge totals and overall runoff ratios differed between the sites during the study
period. Annual discharge (May 2012-April 2013) was 577, 277, and 375 mm for Site 1, Site 2
and Site 3, respectively (Table 4-4). Annual (May 2012-April 2013) runoff ratios were 0.62, 0.32
and 0.33 for Site 1, Site 2 and Site 3, respectively (Figure 4-6). Site 1 had greater combined

annual discharge and a higher runoff ratio than the other sites.
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Figure 4-6 Seasonal (NGS and GS) and annual, runoff ratios for all sites.

4.3.2.2 Seasonal Tile Drainage and Overland Flow Runoff

Generally, the sites had similar seasonal runoff patterns. Between May 2012 and April
2013, the majority of combined runoff occurred during the NGS (83-98%), while a smaller
amount of flow occurred during the GS (2-17%). In terms of the separate pathways, only 2-11%
of annual tile flow occurred during the GS period. Overland flow occurred exclusively during the
NGS at Site 2 and Site 3. Whereas the single overland flow event at Site 1 during the GS
accounted for 56% of the annual overland flow at the site. In general, runoff precipitation ratios
were greater during the NGSs (>0.46) relative to the GS (0.02 — 0.22) (Figure 4-6). Site 1 had
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greater NGS and GS runoff:precipitation ratios (GS: 0.22, NGS: 0.99) relative to Sites 2 (GS:
0.02, NGS: 0.47) and 3 (GS: 0.06, NGS: 0.46) (Figure 4-6).

The distribution of runoff (tile and overland) within seasons differed between the sites
(Figure 4-7, Figure 4-8 and Figure 4-9). In both NGS’s, site discharge at Site 1 was dominated
by spring snowmelt; however, different distributions of runoff occurred during the NGSs at Site 2
and Site 3. During NGS1 discharge at Site 2 and Site 3 was dominated by November-December
events, while during NGS2, discharge at these sites came from a series of rain and thaw events
between December and April. GS monthly discharge totals were relatively low at all sites, with
the exception of June 2012 at Site 1 (Figure 4-7, Figure 4-8 and Figure 4-9). Overall, the flow
regime at Site 1, which was dominated by spring melts, differed from the flow distributions
observed at the southwestern Ontario sites (Site 2 and Site 3).
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4.3.3 Phosphorus Concentrations and Export in Tile Drain Effluent and Overland Flow

Tile drainage samples were collected from all three sites for an 18 month study period.
The number of samples and number of captured events varied between sites due to event
opportunities, equipment failure, as well as cooperator and researcher availability. On average
there were 47 possible runoff events at each site over the study period. On average, 19 events
were captured at each site. The captured events ranged in magnitude and antecedent
conditions, and no large events were missed. No events with overland flow were missed
entirely, although there were some equipment malfunctions within some of these events. The
sampling program captured a range of event types. The variation between event types is
discussed in Chapter 5.

Over the study period, concentrations of TP and SRP in tile drainage showed temporal
and spatial variability (Table 4-2) (Figure 4-2, Figure 4-3 and Figure 4-4). SRP concentrations
were variable at the sites (median, range: Site 1: 0.002, 0.001-0.044 mg I"* ; Site 2: 0.046,
0.001-0.712; Site 3: 0.002, 0.001-0.100 mg I™"). A range of TP concentrations were observed at
the sites (median, range: Site 1: 0.02, 0.01-0.20 mg I ; Site 2: 0.05, 0.01-2.17; Site 3: 0.02,
0.01-0.35 mg I*)(Table 4-2). P concentrations were typically lower in baseflow conditions
(0.001-0.002 mg I* SRP and 0.01-0.02 mg "* TP) and higher and more variable during event
based flow (0.003-0.086 mg I'* SRP and 0.032-0.25 mg I TP) (Table 4-2). The greatest discrete
tile SRP concentrations occurred during a significant rainfall event in late November 2011 at
Site 2 (0.712 mg/l) and Site 3 (0.1 mg/l). These elevated concentrations occurred within major
flow events (November 30, 2011) that happened between 2.5 and 8 weeks after applications of
P were made at the two sites (Liquid laying hen manure and MAP at Site 2; MAP at Site 3)
(Figure 4-3 and Figure 4-4). TP concentrations were also elevated following fertilization as well
as during major flow events (Figure 4-2, Figure 4-3 and Figure 4-4). TP concentrations were
elevated at all sites during the initial wet up events in the fall of 2012 (Figure 4-2, Figure 4-3 and
Figure 4-4). Concentrations of TP and SRP at Site 2 were elevated during most GS events
(May-July), this is assumed to be related to site specific contamination from the farmstead’s
driveway as there is a surface inlet from the driveway that discharges into the tile system. The
flow weighted mean concentrations (FWMCs) of TP and SRP for captured events varied across
all the sites (0.001-0.442 mg I* SRP and 0.01-1.52 mg I* TP) (Table 4-2). Overall, Site 2 had
the highest event flow FWMCs for SRP and TP, while Site 1 had the lowest (Table 4-2).
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Overland flow samples were not collected at the same intensity throughout the study
period because flow monitoring equipment was not installed for overland flow in NGS1. Several
grab samples were collected in NGS1, but no flow data was available for this time period.

Sampling equipment was installed in May 2012, allowing for events to be sampled intensively.

Concentrations in overland flow were higher than concentrations in tile, and like tiles,
showed temporal variability within and among events (Table 4-2) (Figure 4-2, Figure 4-3 and
Figure 4-4). In general, discrete overland flow concentrations ranged 0.001-0.720 mg I* SRP
and 0.021-1.60 mg I"* TP (Table 4-2). The highest concentrations of SRP in overland flow were
from two grab samples taken in NGS1, following P fertilization at Site 3 (SRP 0.72 mg I*). TP
concentrations were elevated in the grab samples following fertilization (Site 3: 1.35 mg I%), but
also in events where rain fell on bare soil in April (e.g., Site 3: 1.6 mg I"") (Figure 4-4). Event P
FWMCs for the sites ranged between 0.015-0.151 mg I* SRP and 0.16-0.58 mg I* TP (Table
4-2).

Table 4-2 Median and range of soluble reactive (SRP) and total phosphorus (TP) concentrations in discrete
samples from tile drainage and overland flow over the study period. Mean and range of flow weighted mean
concentrations during non-event flow (tile only) and event-based flow for all sites (tile and overland flow).

Overland flow grab samples taken before May 2012 are included below the table.
Tile Drainage

Discrete Samples Non-Event FWMC Overall Event FWMC Range of Event FWMC

f 1 T
Site MedianSRP mF?aInge Mediar-lrp m??lange SRPmgl* TPmgl* SRPmgl* TPmgl* SRPmgl* TPmgl*
1 0.002 0.001-0.044  0.02 0.01-0.20 0.001 0.01 0.003 0.03 0.001-0.006  0.01-0.07
2 0.004  0.001-0.712  0.05 0.01-2.17 0.002 0.01 0.086 0.25 0.001-0.442 0.01-1.51
3 0.002 0.001-0.100  0.02 0.01-0.35 0.001 0.02 0.017 0.11 0.001-0.054  0.01-0.21

Overland Flow
Discrete Samples Overall Event FWMC Range of Event FWMC
Site SRP mg I TP mg " 1 1 1 1
Median Range Median Range SRPmgl™ TP mg| SRPmg| TPmgl

1 0.035 0.011-0.224  0.233 0.15-0.79 0.066 0.35 0.023-0.151  0.17-0.58
2 0.01 0.001-0.12  0.187 0.021-0.44 0.031 0.21 0.015-0.107  0.16-0.23
3 0.123 0.042-0.252  0.351  0.07-0.1.60 0.096 0.23 0.059-0.151  0.16-0.50

* Grab samples from March 2012 melt at Site 1 (Mean: 0.031 mg I* SRP, 0.12 mg I'* TP)
* Grab samples from November 2011 event at Site 3 (0.72 mg I"* SRP, 1.353 mg I* TP)

Seasonal (NGS1, GS1, NGS2) and annual (May 2012-April 2013) Tile P FWMC’s were
determined for the study period. Tile seasonal FWMCs differed across years, and across sites
(Table 4-3). There were no seasonal trends consistent between the sites. At Sites 2 and 3, the
tile FWMC of SRP and TP was higher in NGS1, than the subsequent GS1 and NGS2. This
trend was not seen at Site 1. The 2012-2013 annual P FWMCs for the sites ranged between
0.003-0.007 mg I'* SRP and 0.03-0.08 mg I'* TP (Table 4-3).
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Overland flow annual and seasonal P FWMC were calculated for the period when sites
were equipped to monitor overland flow. Overall, annual (2012-2013) overland flow P FWMC
ranged between 0.031-0.096 mg I* SRP and 0.21-0.34 mg I* TP (Table 4-3). There was little
data to compare seasonal values as there was only one overland flow event during the GS.
Based on the one summer event at Site 1, the GS had lower FWMCs of SRP and TP compared
to the NGS (Table 4-3). In NGS2, Site 2 (0.031 mg I'*) had a lower SRP FWMC relative to Site 1
(0.122 mg I'") and Site 3 (0.096 mg I'™"). The NGS2 TP FWMC ranged between 0.21-0.45 mg I*
(Table 4-3). Overall, there was limited overland flow data to compare seasonal differences.

Table 4-3 Summary of tile drainage and overland flow seasonal (NGS1, GS1 and NGS2) flow weighted mean
concentrations (FWMC) of SRP and TP (mg I'l), and SRP:TP ratio. Overland flow was not monitored fully in
NGS1. No flow occurred during GS1 at Site 2 and Site 3.

Site Tile Drainage Overland Flow
NGS1 GS1 NGS2  Annual NGS1 GS1 NGS2  Annual
(FWMC SRP mg I")
Site 1 0.002 0.003 0.003 0.003 NA 0.023 0.122 0.067
Site 2 0.139 0.025 0.007 0.007 NA No Flow  0.031 0.031
Site 3 0.021 0.001 0.007 0.006 NA No Flow  0.096 0.096
(FWMC TP mg I'")
Site 1 0.03 0.06 0.03 0.03 NA 0.26 0.45 0.34
Site 2 0.32 0.14 0.08 0.08 NA No Flow  0.21 0.21
Site 3 0.11 0.03 0.07 0.06 NA No Flow  0.23 0.23
(SRP:TP)

Site 1 0.08 0.05 0.11 0.10 NA 0.09 0.27 0.19
Site 2 0.43 0.17 0.09 0.09 NA No Flow  0.15 0.15
Site 3 0.19 0.05 0.10 0.10 NA No Flow  0.42 0.42

P export from tile drainage was calculated for an 18 month period, while overland export
was only calculated for the final 12 months of the study period. P export was episodic at the
sites. At all sites, the majority of P was exported during event-based flow. For example, at Site 1
during the 2012-2013 water year, 97% of annual TP export occurred in event-based flow.
Furthermore, a large percentage of annual export typically came from a small number of major
discharge events. For example, at Site 3, 63% of 2012-2013 annual TP export came from three

events (a January rain on snow event, a March melt, and an April rain).

Seasonal variability in P export was observed at the sites (Figure 4-7, Figure 4-8 and
Figure 4-9). P export was distributed similarly to discharge which was discussed earlier. Tile P
export occurred primarily in the NGS, except for one significant event at Site 1 in June 2012

(Figure 4-7, Figure 4-8 and Figure 4-9). Site 1 was the only site to experience overland flow
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export during the GS (Figure 4-7, Figure 4-8 and Figure 4-9). Similar to discharge, P export
occurred at different times during the NGS, with the spring melt playing a greater role at Site 1
compared to Site 2 and Site 3 which had more frequent rain and melt events through the winter
(Figure 4-7, Figure 4-8 and Figure 4-9).

Seasonal (NGS1, GS1 and NGS2) and annual (May 2012-April 2013) totals for tile and
overland P export were calculated for the study period. There were obvious differences in tile P
export between NGS1, and the following hydrologic year. In the first NGS, tile P export at the
sites for SRP and TP ranged between 0.006-0.285 kg SRP ha™ and 0.072-0.656 kg TP ha™,
respectively. In the following year, annual tile P export totals (GS1 + NGS2) for SRP and TP
ranged between 0.017-0.018 kg SRP ha™ and 0.169-0.190 kg TP ha™, respectively (Table 4-4).
Annual overland flow SRP and TP export at the sites ranged between 0.011-0.078 kg SRP ha™
and 0.077-0.250 kg TP ha™ (Table 4-4). At Site 1, the only site with GS P export, GS TP export
(0.105 kg ha™) was similar to NGS2 P export (0.144 kg ha™'). NGS2 export at the three sites
ranged between 0.077 — 0.186 kg TP ha™, with the greatest export occurring at Site 3. NGS2
losses of SRP were between 0.011-0.078 kg ha, again with the greatest export occurring at
Site 3 (Table 4-4). Overall, combined annual losses (tile + overland) based on the May 2012 —
April 2013 water year, were greatest at Site 1. The annual export totals from the three sites

were each less than the NGS1 total from Site 2.

Seasonal tile discharge was plotted against tile P export totals to examine the relationship
between seasonal tile discharge and seasonal P export. There is a positive trend between
Seasonal P Export and Seasonal Discharge at all sites when seasons affected by fertilization
are ignored (NGS 1 at Site 2 and Site 3) (Figure 4-10). The influence of fertilization is more
obvious at Site 2, where the loads of SRP (0.285 kg ha™) and TP (0.656 kg ha™) during NGS1
were the highest observed at any site during the study period (Table 4-4). SRP and TP loads
during NGS2 were less than loads during NGS1, despite having higher total discharge in NGS2
(Table 4-4). In contrast, Site 1, which was not fertilized during the study period, had greater SRP
and TP losses in NGS2, corresponding to the higher discharge for the season (Table 4-4). This
plot shows that fertilization can cause seasonal variability in P loads beyond what is explained

by discharge alone.
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Table 4-4 Seasonal (NGS1, GS1 and NGS2) and Annual (GS1+NGS2) runoff, phosphorus (SRP, PP+SUP and
TP) loading totals and partitioning.

Site Tile Drainage Overland Flow Combined
Annual Annual
NGS1 GS1 NGS2 ——o— — NGSL GSL NGS2 —”“a% GS1 NGS2 Annual
Runoff (mm)
Site 1 267 55 450 505 87% NA 40 32 72 13% 95 482 577
Site 2 205 6 234 239 87% NA 0 37 37 13% 6 271 277
Site 3 200 25 269 294 78% NA 0 81 81 22% 25 350 375
SRP (kg ha™)
Sitel 0.006 0.001 0.015 0.017 26% NA 0.009 0.039 0.048 74% 0.011 0.055 0.065
Site2 0.285 0.001 0.016 0.017 60% NA 0.000 0.011 0.011 40% 0.001 0.027 0.029
Site3 0.043 0.000 0.018 0.018 19% NA 0.000 0.078 0.078 81% 0.000 0.095 0.096
PP+SUP (kg ha™)
Sitel 0.066 0.030 0.122 0.152 43% NA 0.096 0.105 0.201 57% 0.126 0.227 0.354
Site2 0.371 0.007 0.166 0.172 72% NA 0.000 0.066 0.066 28% 0.007 0.231 0.238
Site3 0.179 0.007 0.161 0.167 61% NA 0.000 0.109 0.109 39% 0.007 0.269 0.276
TP (kg ha™)
Sitel 0.072 0.032 0.138 0.169 40% NA 0.105 0.144 0.250 60% 0.137 0.282 0.419
Site2 0.656 0.008 0.181 0.190 71% NA 0.000 0.077 0.077 29% 0.008 0.259 0.267
Site3 0.221 0.007 0.178 0.185 50% NA 0.000 0.186 0.186 50% 0.007 0.364 0.371
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Figure 4-10 Seasonal Tile TP Load vs Seasonal Tile Discharge (a) and Seasonal Tile SRP Load vs Seasonal
Tile Discharge (b) for Site 1 (green triangle), Site 2 (blue diamond) and Site 3 (red square).

4.3.4 Partitioning of Runoff and Phosphorus Export between Tile Drainage and

Overland Flow

The partitioning of runoff between overland flow and tile drainage was calculated for the
May 2012-April 2013 water year (Table 4-4). Tile drainage was the primary flow pathway at all
sites. Between May 2012 and April 2013, tile drainage accounted for 78%-87% of annual runoff

(Table 4-4). Thus, annually overland flow contributed 13%-22% to total flow from the sites. Even
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though overland flow events were rare during the study period (i.e.18% of all runoff events had
overland flow), they made notable contributions to annual flow at all sites. In terms of annual
discharge, tile drains were the dominant pathway for water discharge from fields between May
2012 and April 2013 at all sites.

Total site P export was calculated as the sum of tile drainage and overland flow export.
The partitioning of total site losses was calculated for the period between May 2012 and April
2013. During this period total site losses were similar among the sites (0.267-0.419 kg TP ha™)
(Table 4-4). The partitioning of SRP and TP export between tile and overland flow pathways
(2012-2013) was different than the partitioning of discharge, and also varied between the sites
(Table 4-4). Annually, tile drainage was the primary export pathway for TP export at Site 2
(71%), an equal contributor at Site 3 (50%) and Site 1 (40%) (Table 4-4). In terms of SRP,
overland flow was the dominant export pathway at Site 1 (74%) and Site 3 (81%), while
contributing less to annual export at Site 2 (40%) (Table 4-4). Tiles were a major contributor to
TP export at all sites, but overland flow was more important in terms of SRP export at two of the

three sites.

The speciation of P varied seasonally and between flow pathways (Figure 4-11). PP+SUP
was the dominant fraction of P in tile drainage at all sites, with some seasonal variation (Figure
4-11). The SRP:TP ratios in tiles at Site 2 and Site 3 during NGS1 (Site 2 (0.43) and Site 3
(0.19)) were greater than the ratios found in the following year, (0.10 at both sites) (Table 4-3).
SRP:TP ratios in tiles at Site 1 and Site 3 during the second NGS were greater than in ratios at
the sites during the GS, but the opposite trend was observed at Site 2 (Table 4-3). PP+SUP
was the dominant fraction in overland flow as well. However, the portion found as SRP was
greater relative to tile drainage (Figure 4-11). The SRP fraction was greater in the NGS2 than in
the GS at Site 1 (Figure 4-11). Overall, the speciation of P differed between the pathways, with
higher SRP content in overland flow relative to tile drainage.
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Figure 4-11 Seasonal and Annual speciation of phosphorus (SRP and PP+SUP) in Tile Drainage (a) and
Overland Flow (b) for Site 1, Site 2 and Site 3. Note there was no overland flow analysis for NGS1, and no
overland flow occurred during GS at Site 2 and Site 3.

4.4 Discussion

4.4.1 Spatial and Temporal Differences in Runoff from Fields

The seasonal distribution of flow was consistent with other studies in similar climates. The

seasonal distribution of flow was representative of the average distribution for the area (Ontario

Ministry of the Environment: Environmental Monitoring and Reporting Branch 2012), even

though it was an atypical period (low GS precipitation) (Figure 4-1). While there was evidence

that major flow events can occur during the GS (i.e., June 2012 at Site 1), overall, the flow
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pathways were more active during the NGS. Annual discharge is often dominated by the NGS in
colder temperate regions as lower evapotranspiration and higher antecedent moisture
conditions result in greater runoff ratios during this period (Hirt, et al. 2011). This was the pattern
observed at all sites (Figure 4-6), and it is consistent with other studies from cold climates (e.g.
Eastman, et al. 2010). This study confirms that export pathways are most active in the NGS, but

also that extreme GS events can also have an influence on annual discharge in this region.

The differences in the seasonal runoff ratios among the sites can be explained by hydro-
climatic drivers and/or physical site differences. The NGS runoff ratio at Site 1 was quite high
relative to the other sites (Figure 4-6). This could be explained by the timing and magnitude of
the snowmelt event as there was more SWE in the snow pack prior to melts at Site 1 than there
was at the other sites in southern Ontario. Eastman et al. (2010) found a similarly high ratio
(0.88) at their clay site in one year of their study. In that case, the higher ratio resulted from a
very wet spring period where large rains fell on saturated soils. Alternatively, physical site
differences may have been the cause, as surface water would have been able to rapidly enter
the drainage system through French drains within the field at Site 1. However, more field
observations are necessary to confirm this. Another explanation is that the estimated snowfall,
taken from the closest Environment Canada weather station, underestimated the precipitation
as snow fall at the site. In addition to the above factors, there is uncertainty about the actual
contributing area for overland flow discharge. If the contributing area is larger than the area

used to calculate runoff ratios, then the runoff ratios would be lower than reported.

The distribution of discharge within the NGS also differed among the sites. The defined
snowmelt periods at Site 1 were distinctly different from the snowmelt observed at Site 2 and
Site 3 (Figure 4-7, Figure 4-8 and Figure 4-9). Defined spring snowmelt periods, such as the
ones observed at Site 1, often dominate discharge in the NGS (Jamieson, et al. 2003, Tiessen,
et al. 2010); however, during warmer winters, or in lower latitudes, there may be a series major
discharge events throughout the NGS as was observed at Site 2 and Site 3 (Ontario Ministry of
the Environment: Environmental Monitoring and Reporting Branch 2012). The distribution of
discharge did differ spatially in the study period. In colder years, flow distributions between the
sites would likely be similar due to fewer snow melts at the more southwestern sites. This study
shows that the distribution of discharge within the NGS can differ across a range of sites in

Ontario.
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The study provides field-scale examples of the partitioning of overland flow and tile
drainage. The results confirmed that tile drainage is often the dominant flow path in terms of
total water discharge, as has been found in several studies (Eastman, et al. 2010, Gaynor and
Bissonnette 1992). It should be noted that inter-annual variability is expected. In wetter years, a
higher percentage of flow may come from overland flow pathways, while in the absence of
major rainfall events or rapid snow melts, there may be less overland flow than was observed

during this study period.

There was variation in partitioning of flow between the sites, with a greater contribution of
overland flow occurring at Site 3. The variability between sites may be explained by the amount
of SWE in snowpack prior to melt events, and the rate at which the snow melted due to weather
patterns. Weather conditions were favorable for the initiation of overland flow at Site 3. Another
explanation is that the peak discharge at Site 3 (10 mm day™), was lower than rates observed at
Site 1 (17 mm day™) and Site 2 (16 mm day™), suggesting that the tile drainage system had less
capacity than the other systems. There were also other site specific conditions that may have
reduced overland flow at these sites. At Site 1, the outlet of the overland flow monitoring pipe
discharges into an open ditch that receives overland flow from neighbouring areas. During the
NGS this ditch was observed to be full of ice and snow, which resulted in the outlet pipe being
submerged under water and ice. Snow and ice in the ditch likely reduced runoff leaving the field
through the ditch. There are also French drains within low lying areas in the fields, which would
limit the contribution of overland flow to total discharge measured at the monitored outlet. Again,
there is uncertainty around the size of the overland flow contributing area. If this contributing
area is smaller than the area used in the calculations, the role of overland flow in total discharge
would be greater than what has been reported. At Site 2, overland flow is drained through a
hickenbottom, but not all of the ponded water is able to exit the field via the hickenbottom as
some does not reach the outlet and must instead infiltrate into the soil due to the hummocky
nature of the site (Figure 4-12). These physical site differences may explain some of the site
variability in flow partitioning. The variability in the partitioning of discharge may be explained by

hydro-climatic drivers and site conditions, but more observations are required.
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Figure 4-12 Ponding area upstream of hickenbottom outlet (bottom center of the picture) for overland flow at
Site 2.

4.4.2 Phosphorus Concentrations

Tile P concentrations were higher during event flow than in baseflow conditions. This has
been noted in other studies, for example, Dils and Heathwaite (1999) found subsurface TP
concentrations in storm flow greater than 1 mg I, while baseflow concentrations were generally
>0.001 mg I'* . The variability in tile P concentrations observed during various events was
consistent with variability noted in other studies (Dils and Heathwaite 1999). Concentrations
were elevated during peak flow events throughout the year. The surface ponding observed
during these events suggests that macropore flow had occurred, and thus would have
contributed to the elevated concentrations (Jarvis 2007). The elevated TP concentrations
observed during the initial wet up following dry periods observed in this study have also been
reported elsewhere (Dils and Heathwaite 1999). Over the course of the 18 month study period,
the greatest fluctuations in concentrations were related to fertilizer and manure applications at
Site 2 and Site 3. Increases in P concentrations following P applications have also been widely
reported (Djodjic, et al. 2000, Gentry, et al. 2007, Macrae, et al. 2007, Hart, et al. 2004). Overall,

the variability in discrete tile P concentrations was consistent with findings from similar studies.

P concentrations in overland flow were greater than concentrations in tile drainage, which
is consistent with the literature (Gaynor and Findlay 1995, Heathwaite and Dils 2000,
Algoazany, et al. 2007, Eastman, et al. 2010). Gaynor and Findlay (1995) found that average
orthophosphate concentrations in overland flow (0.59 mg I™') were greater than tile drainage

(0.37 mg I'Y). Similarly, in large field plots in Southern Ontario, Tan and Zhang (2011) had
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average DRP concentrations of 0.034mg I and 0.057 mg I for tile drainage and overland flow,
respectfully. In the same study, TP concentrations were 0.480 mg I* and 0.627 mg I"* for tile

drainage and overland flow, respectively.

Olsen P levels have been shown to be related to SRP concentrations in both tile drainage
and overland flow (Heckrath, et al. 1995, Wang, et al. 2010, Wang, et al. 2012). STP levels at
each site were much lower than levels reported in other studies (Wang, et al. 2012), and are
considered a low-moderate risk of SRP losses (Hilborn and Stone 2005). Generally, higher STP
levels can result in higher SRP concentrations in runoff (Wang, et al. 2012, Wang, et al. 2010).
Studies that have looked at the relationship between STP and soluble P in runoff have often
identified change points, a point at which soluble P concentrations begin to increase at a higher
rate per increase in STP. Even the highest STP levels found in the upper most 2.5cm across the
sites were below critical change points reported in other studies (33 mg Olsen P kg™ (McDowell
and Sharpley, Approximating phosphorus release from soils to surface runoff and subsurface
drainage 2001), 47.8 mg Olsen P kg™ (Wang, et al. 2012) and 60 mg Olsen P kg™ (Heckrath, et
al. 1995)). It is noteworthy that even though STP levels were acceptable from an agronomic
standpoint, the concentrations of P in tile drainage and overland flow regularly exceeded the
Ontario Provincial Water Quality Objective for TP of 0.03 mg I"*. It was not appropriate to explain
differences in SRP concentrations at the sites based on STP differences for several reasons.
Soil tests were taken at different times of the year and at different times relative to when
fertilization that took place. Even though there are differences between the sites in Olsen P

values, the differences are low relative to the range of Olsen P values observed in other studies.

4.4.3 Critical Periods for Phosphorus Export

The NGS was a critical period for P export at all sites, in both years. The seasonal
distribution of P export was consistent with studies from similar climates (Withers, et al. 1999,
Gentry, et al. 2007, Ball Coelho, et al. 2012, Eastman, et al. 2010, Gaynor and Findlay 1995).
Ball et al. (2012) noted that despite higher concentrations observed in the GS, greater losses
occurred during the NGS due to higher flow volume. This study also provided evidence that
extreme summer events can produce high losses if they generate a large amount of runoff (i.e.,
June 2012 at Site 1). Eastman et al. (2010) also reported high loadings from summer events,
particularly from overland flow. Identifying periods when P is exported, helps to find
opportunities to improve management practices. This study confirmed that the NGS is a critical

period for P export in Ontario reduced tillage systems.
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Overall, the annual P losses calculated in this study were similar to values reported in the
literature. Ulen and Persson (1999) reported average tile drainage TP export of 0.29 kg ha™ yr™,
Gentry et al. (2007) found TP export between 0.13-1.31 kg ha™ yr', and King et al., (2014)
average tile export of 0.48 kg ha™ yr*, which are comparable to NGS1 tile export of 0.072-0.656
kg ha®, and annual losses (GS1 + NGS2) of 0.169-0.190 kg ha™ yr' at the sites (Table 4-4).
Overland flow losses were also comparable to other studies. Eastman et al. (2010) reported
annual P loads from overland flow ranging from 0.4-1.9 kg ha™. These values were higher than
overland totals during this study (0.077-0.250 kg ha™ yr'). The higher exports reported by
Eastman et al. (2010) occurred on conventionally tilled sites and during higher runoff years.

Combined losses (tile+toverland flow) from all three sites in this study were also
comparable to other studies in the literature. Eastman et al. (2010) found combined losses from
overland and tile drainage from their clay and sandy sites ranged between 1.6-4.2 kg ha™* yr*
and 0.8-0.9 kg ha™ yr*, respectively. The sites in the Eastman et al. (2010) study had greater
amounts of annual runoff, particularly from overland flow, which may explain why annual totals
were higher at their sites. Losses were within values reported in the literature, but notably lower

than values reported in some studies.

Inter-annual variability can be driven by hydro-climatic drivers and management practices.
Wet years/seasons have been shown to increase P export (Gentry, et al. 2007). Since this study
was only 18 months, little can be said about inter-annual variability based on these drivers, but
since the study period included a dry year, greater losses should be expected in years with
greater runoff. This study revealed inter-annual variability related to management practices. P
losses from tile drainage at Site 2 during NGS1 (0.656 kg ha™) were much higher than annual
losses from combined pathways the following year at all the sites (0.267-0.419 kg ha™ yr?),
despite there being less flow volume in NGS1. Though not as great of a difference between the
NGSs, Site 3 losses for tile drainage were also greater in NGS1 (0.221 kg ha™) than in NGS2
(0.178 kg ha™), despite greater flow volumes in NGS2. The losses of P from Site 2 and Site 3
during the November 2011 event were enhanced because of direct fertilizer losses. These types
of losses do not always show up in studies because the magnitude of losses depends largely on
the timing of major rainfall or melt events relative to application (Hansen, et al. 2002, Smith, et
al. 2007). At Site 2 and Site 3, applications of P were made prior to large rainfall events which
occurred between Nov 28-Dec. 4, 2011 (Site 2: manure surface broadcast 7 weeks prior and
MAP incorporated into a band using a zone tillage unit, 2.5 weeks prior; Site 3. MAP

incorporated with vertical tillage, 8 weeks prior). These events resulted in the majority of NGS
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discharge, and consequently had a large influence on NGS P export. At Site 2, the tile export
from the two major discharge events following manure and fertilizer application, accounted for
80% of SRP and 50% of TP export during the entire 18 month study period. Increases in soluble
P concentrations are often associated with recent fertilizer applications (Withers, et al. 2003).
Withers et al. (2003) reported that if direct fertilizer losses occur, they can account for 50-98% of

losses measured at the field edge.

The difference between export totals at the two sites was likely attributed to the timing and
method of application used. At Site 2, the MAP was incorporated into soil, but the manure was
surface applied and not incorporated. In contrast, at Site 3, MAP was broadcast and then
incorporated with a single pass of vertical tillage (depth ~5cm). Tarkalson and Mikkelsen (2004)
found that incorporating broiler manure reduced the P load in surface runoff by 88% in their
simulated rainfall study. Losses from incorporated manure and fertilizer plots were not different
than the control in their study. The source of P can also influence losses, as Tarkalson and
Mikkelsen (2004) found that losses from surface applied manure were significantly greater than
surface applied fertilizers, although only at higher application rates (Tarkalson and Mikkelsen
2004). The difference in application methods used explains the difference in P losses between
Site 2 and Site 3. Incorporation of manure and fertilizer at Site 2, rather than leaving it on the
surface, would likely have reduced P losses in the large discharge events following application,
particularly soluble P losses. However, it is important that incorporation be done in a non-
erosive manner (Great Lakes Commission Phosphorus Reduction Task Force 2012). The timing
of MAP applications at the site may also have contributed to site differences observed. The
MAP application at Site 2 was incorporated similar to MAP at Site 3, but the Site 2 application
was made much closer to the rainfall event and thus the soil and fertilizer would have had less
time to interact. This study confirms the importance of direct fertilizer P losses, highlighting the
susceptibility of unincorporated P sources to losses in systems where full-width tillage cannot be

used for incorporation.

4.4.4 Partitioning of Runoff and Phosphorus Export between Tile Drainage and

Overland Flow

This study aimed to improve understanding of the relative contribution of tile drainage and
overland flow to P export. Tile drainage has been found to make significant contributions to
field-scale losses of P in many studies (Eastman, et al. 2010, Ball Coelho, et al. 2012, Gaynor
and Findlay 1995, Gentry, et al. 2007, Smith, et al. 2014). Although P concentrations are
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typically lower in tile drainage relative to overland flow, the greater flow volume leaving through
tile drainage results in significant P export. This study confirmed the importance of tile drainage
in field-scale P export. Despite lower SRP and TP concentrations found in tile drainage, this
pathway contributed a large percentage of annual export. Tile drainage accounted for 40-71% of
total site TP losses between May 2012 and April 2013. Higher SRP concentrations made
overland flow an important export pathway for SRP at all the sites. Gaynor and Findlay (1995)
found that tile drainage contributed 55-68% of ortho-P exported. In a plot study in Ontario, Ball
et al., (2012) reported that tile drains accounted for 34% of combined annual SRP and 24% of
combined annual TP losses. Eastman et al. (2010) found that overland and tile drainage
contributed equally to TP export in both years at their clay soil site. However at their sandy site,
results were mixed, with overland flow dominating TP export in the first year, then contributing
equally in the second year of the study. Algoazany et al. (2007) found that tile drainage had
higher average soluble P losses than overland, but there was also variability in the partitioning
between sites and between years. In reduced tillage plots, Uusitalo, et al. (2007) found that
overland flow contributed significantly more SRP than subsurface drainage, and subsurface
drainage contributed significantly more PP to combined export (TP- SRP (0.2um filter)). In a
large plot study Tan and Zhang (2011) found that tile drainage was the dominant export
pathway for SRP, SUP, PP and TP, largely because of flow volume. In the Maumee River
watershed, Smith et al. (2014) found that tiles contributed 49% of soluble P and 48% of TP
losses measured at the field edge. They concluded that addressing P loss from tile drainage is
likely necessary to meet the reduction targets for that region (Smith, et al. 2014). Though the
relative contribution of tile drainage to soluble and PP export varies, the results of this study are
consistent with other studies in the literature and confirm that tiles can be an important export

pathway.

The speciation of P in runoff differed between the pathways. The PP+SUP fraction
dominated both tile drainage and overland flow at all sites in this study, with a greater portion of
SRP occurring in overland flow relative to tile drainage. There are no consistent results reported
in the literature as far as dominant forms for particular flow paths. In some studies, the dominant
form differs between pathways. For example, Heathwaite and Dils (2000) found that DP was the
dominant fraction in overland flow, while PP was dominated in tile drain flow. While in other
studies, the dominant form was consistent between the pathways and was influenced by site
specific conditions. For instance, Eastman et al. (2010) reported that soil type influenced

speciation. They found that in clay soil, PP was the dominant form in both overland flow and tile
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drainage, while in sandy soil soluble P was the dominant form in both pathways. Ulen and
Persson (1999) found that PP was the dominant form in tile drainage in clay soils in Sweden.
Several studies reported PP fraction to be dominant in both pathways. In a plot study in
Southwest Finland on clay soil, Uusitalo, et al. (2007) found PP to be the dominant fraction in
overland flow and tile drainage, in the conventional and no-tillage plots. Tan and Zhang (2011)
reported speciation in tile drainage and overland flow similar to results of this study. Tan and
Zhang (2011) reported SRP to be 7% of TP in tile drainage and 8% of TP in overland flow over
5 years in their large plot study. PP was the dominant fraction in both pathways relative to TDP
in their study. SUP was the dominant soluble form relative to SRP in their study. Based on their
results, it is likely that the SUP fraction was a notable portion of PP+SUP measured in this
study. One reason there may have been less SRP in tile drains than in overland flow is because
soluble inorganic P is removed from solution by soil constituents more readily than some forms
of soluble organic P found in the SUP fraction (Condron, et al. 2005, Anderson and Magdoff
2005). Although P fractions measured are not always directly comparable to other studies,

speciation differences between pathways were similar other results reported in the literature.

The speciation did vary throughout the study period and appeared to be influenced by
fertilization and seasonal ground conditions. The greater portion of TP as SRP in runoff
observed following fertilization in this study is consistent with the literature (Hart, et al. 2004). In
addition to management influences on speciation, seasonal trends in speciation are often linked
to ground conditions (Hansen, et al. 2000, Macrae, et al. 2007, Ball-Coelho, et al. 2012).
Macrae et al. 2007 noted that SRP comprised a greater portion of TP during winter events
relative to summer events, a trend which was observed at Site 1 and Site 3, outside of the

period directly affected by fertilization.

4.4.5 Opportunities to Manage Phosphorus Export

This study confirmed that both export pathways are more active during the NGS. In the
study period major flow events in both fall, mid-winter, and spring made important contributions
to P export. This highlights the importance of selecting BMPs that will address P losses during

these periods.

Field-scale studies make it possible to capture the impact of land management practices
that may be lost at the watershed scale. In this study, the influence of direct fertilizer losses was

apparent. In systems that are managed carefully as the ones in this study, it appears there may
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be further opportunity to reduce field-edge P losses by reducing the effect of direct fertilizer

losses.

Given that direct fertilizer losses can be substantial, the frequency and seasonal timing of
applications is another important management consideration. Since higher application rates
carry a greater risk of P losses, splitting applications, thus making multiple smaller applications
has been considered as an alternative management strategy to reduce P losses. However,
Burkitt, et al. (2011) found that there was less risk associated with larger single applications
made in dry periods because there was less probability that applications would align with major
discharge events. In this study, the two fertilized sites, each received a single fall application,
intended to meet P requirements for the following three crops.

It is recognized that fall applications of P carry increased risk because this season, and
the period following, is more conducive to major flow events. McDowell and Catto (2005) found
that direct P losses were less when fertilizer was applied during the dry season as opposed to
the wet season. The risk of applying P prior to wet seasons was apparent in this study.
However, to properly assess the risk associated with multi-crop fall applications, P losses must
be measured for a least one crop rotation/fertilization cycle. Although relatively large losses
occurred in NGS1, there will be no further P applications made for two years, and therefore no
direct fertilizer losses are likely to occur. Based on Burkitt et al., (2011), it is possible that

greater losses could occur if smaller annual P applications were made.

As direct fertilizer losses can be substantial, an increase in high risk application methods
in high risk periods is a potential source of increased P losses observed in tributaries to the
Great Lakes. This study provides direct evidence of this management problem at the field scale.
Although aspects of the fertilization strategies appear to be high risk, these methods are an
accepted agronomic practice and a part of the production system in place. These single fall
applications reduce equipment passes, saving time and reducing input costs. Proposing
changes to these operations would need to balance other priorities, such as soil health benefits,

and management constraints.

4.5 Conclusion

This field-scale study has demonstrated the influence of seasonality and land
management practices on P export from RT systems, as well as the relative contribution of

runoff pathways to annual P export. It was demonstrated that periods of high runoff generation,
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such as the NGS, are capable of exporting relatively large amounts of P. Therefore, particular
attention should be given to management practices prior to these periods. The study provided
two field-scale examples of enhanced P losses as a result of P applications occurring prior to
large runoff events, which highlighted the risks associated with fall applications of P. Both tiles
and overland flow made important contributions to overall TP export. Overland flow contributed
the majority of SRP export at two of the sites. Even though overland flow contributed a small
portion of total runoff, the high SRP concentrations observed in overland flow resulted in
disproportionately higher SRP export. P export from reduced tillage systems measured at the
edge of field occurs primarily during periods of high runoff generation and can be influenced by
P application practices. Improving management of P applications by avoiding fall applications
and incorporating below the surface will likely reduce the risk of losses in reduce tillage systems
in Ontario; however, the benefits of such changes to these systems should be weighed against

other conservation goals.
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5 Variability in surface and subsurface phosphorus export from
agricultural fields during peak flow events over the non-growing

season
5.1 Introduction

In southern Ontario, Canada, discharge from agricultural watersheds occurs primarily
during the non-growing season (NGS) (Ball-Coelho, et al. 2012, Macrae, et al. 2007, Ontario
Ministry of the Environment: Environmental Monitoring and Reporting Branch 2012). Runoff
during this period is often characterized by several major snowmelt or rain events (Ontario
Ministry of the Environment: Environmental Monitoring and Reporting Branch 2012), rather than
a single spring freshet, which is typical in colder regions at higher latitudes (Jamieson, et al.
2003, Tiessen, et al. 2010). In addition to supplying a considerable portion of annual runoff,
NGS events contribute significantly to annual phosphorus (P) loads from agricultural watersheds
(Macrae, et al. 2007, Puustinen, et al. 2007, Jamieson, et al. 2003) and it is now generally
accepted that monitoring hydrology and water quality through the NGS is important for providing
more accurate estimates of P loading in regions that experience “winter” and “snowmelt”
conditions (Miles, et al. 2013). However, relatively few studies accomplish this due to logistical
challenges and equipment failure. P export through the NGS has been reported on at the plot
(Ball-Coelho, et al. 2012) and watershed scales (Macrae, et al. 2007, Su, et al. 2011, Dils and
Heathwaite 1999) but fewer field-scale studies have been completed. Although, seasonal
loadings, or spring snow melt loadings (Su, et al. 2011, Jamieson, et al. 2003, Puustinen, et al.
2007), are often reported, inter-event variability in the partitioning and speciation of P export
through the NGS is reported less often (Penn, et al. 2010). Some studies have used multi-year
datasets to look at factors that influence variability in winter losses at the watershed scale
(Danz, et al. 2013, Su, et al. 2011); however this has not been reported for field-scale studies
that monitored both tile drainage and overland flow simultaneously. Consequently, gaps remain
in our understanding of how P losses are influenced by hydro-climatic drivers, ground conditions
and management practices. Such information is important for improving models, which currently
do not function properly under winter conditions. This chapter characterizes differences in runoff

and P export during major flow events occurring throughout the NGS.

NGS events are important under the current climate conditions in Ontario; however, it is

unclear how this may change under future climate change scenarios. Climate change
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predictions include warmer winter temperatures, more frequent winter thaw events, more
precipitation as rain, more days with unfrozen soils and more extreme precipitation events
(Colombo, et al. 2007, Melillo, et al. 2014). If these predictions are accurate, the changing
climate will likely result in different runoff patterns and pre-event ground conditions during the
NGS. Thus, monitoring runoff and P load responses under a range of NGS conditions and event
types will improve our understanding of this critical period, and, will assist us in predicting how
water quality issues may change with climate change.

This chapter builds on findings from chapter 4, and addresses objective 2 of this thesis, to
demonstrate the significance of peak discharge events in P export for a 12 month period at two
sites, by

Identification of the seasonal distribution of peak discharge events;

b. Demonstration of the contribution of peak events to annual P export;

c. Demonstration of how event type (climate drivers and pre-event (antecedent)
ground conditions) influence the event export and speciation (Total, Soluble
Reactive, and Particulate + Soluble Unreactive) during successive peak

discharge events in the NGS.

5.2 Study Approach and Methods

This chapter focusses on the period where both overland flow and tile drainage pathways
were monitored (May 2012 — April 2013). Only Site 2 and Site 3 were used in this Chapter
because they experienced comparable events (driven by similar weather systems) over the
course of the second NGS (NGS2), making direct comparisons of specific events possible. This
Chapter has a greater focus on inter-event variability (and pre-event conditions leading to this
variability), as opposed to Chapter 4 where more general seasonal trends were described. The
site description, general site setup and data collection methods are described in Chapter 3. The

following describes methods specific to this chapter.

5.2.1 Definition of Flow Events and Classification of Peak Flow Periods

Individual events were characterized based on pre-event conditions, event properties and
event discharge and loading. Field-scale discharge and loading were calculated as the sum of

tile and overland flow losses for individual events, and deeper groundwater fluxes are not
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considered. Events were considered to have commenced when there was a hydrograph
response for overland flow or tile drainage, and concluded when the tile hydrograph returned to
baseflow conditions. In all events, overland flow ceased to flow prior to the cessation of tile
discharge. Overland flow often had several defined peaks over the same period as a single
response in tile drainage (e.g. over multiple days). Such occurrences were combined and
considered a single event for the purpose of this study. After identifying and characterizing alll
events during the study period, the distribution and contribution of peak discharge events to

annual runoff and P losses were determined.

Peak events were defined as events where overland flow occurred, or significant surface
ponding was observed at the site. For the purposes of this chapter, peak events have been
assigned unique identifiers based on the date at which the event began (i.e., December 1, 2012
is identified as D;). At both sites, peak events occurred as the result of regional weather
systems, and thus the temporal distribution of peak events was similar between the two sites.
Similarly timed events are aligned within tables to allow for comparison of these events between
sites. However, due to slight differences between the sites, not all events are paired between
the sites, specifically there were no December events at Site 2, and no January 12" event (J;,)

at Site 3. If there was no comparable event, cells in tables comparing events were left blank.

5.2.2 Characterization of Event Types

This chapter evaluates the influence of event type on P losses. Event types were
classified based on two criteria: (a) event climate driver (i.e. rainfall vs melting snow or a mixture
of the two, described in more detail below) and (b) antecedent ground conditions (i.e.

presence/absence of frozen ground; presence of snow cover).

Classifying the event driver required rainfall and snowfall data. Rainfall was measured
from the tipping bucket rain gauge and SWE was estimated based on nearby weather station
data, infield observations of snow depth, and SWE surveys as described in Chapter 3. Events
were classified as being driven by Rain, Rain and Snow (SWE), or Snow Melt. The relative
contribution of rain to total inputs was also calculated for each event using the ratio of

Rain:Rain+SWE, though it was not used specifically to classify event types.

Two antecedent ground conditions were monitored: (1) the presence of snow cover and
(2) soil temperature. Snow cover was classified as present or not present. Soil temperature data

from the 10 cm depth temperature probe on-site (Onset Systems: 12-Bit Temp Smart Sensor -
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S-TMB-MO002) was used to assess pre-event soil temperature status. This data is used to
classify events into three categories based on soil temperature: Unfrozen (21 °C), Partially
Frozen (0-1 °C), and Frozen (< 0 °C). When soil is 21 °C, soil is presumed to be unfrozen, when
soil temperature is 0-1 °C it is accepted that there is a possibility of some frozen soil between
10cm and the surface, finally, when soil temperature is < 0 °C, soil is expected to be frozen in a
large portion of the field. The presence of frozen soil at the surface was also confirmed with field

visits prior to and during each event.

Based on the classifications above, specific event types were defined (e.g. Rain and SWE
—Unfrozen Soil) (Table 5-1). In this example, the event was driven by rain and melting snow,

and the event occurred on unfrozen soil.

Table 5-1 Event type, properties, and ground conditions, for all peak events from Site 2 and Site 3.

Site 2
Jll Jl3 JZS MlO A9
Event Type Rain and SWE - Rain - Rainand SWE-  Rain and SWE - Rain -
(Driver - Soil Status) Unfrozen Unfrozen Frozen Partially Frozen  Unfrozen
Rain (mm) 18 25 53 21 91
Rain + SWE (mm) 43 25 73 51 91
Rain:Rain+SWE 0.42 1.00 0.72 0.41 1.00
Max mm/Hr 5 5.8 9.6 2.2 14.8
Soil Temperature (°C) 1.2 5.0 -0.9 0.4 5.1
Snow Remained? No NA No No NA
Site 3
Dl D4 J11 '128 MlO A9
Rain and SWE - Rain - Rain and SWE - Rainand SWE-  SWE - Partially Rain -
Event Type
Unfrozen Unfrozen Unfrozen Partially Frozen Frozen Unfrozen
Rain (mm) 25 14 33 44 9 69
Rain + SWE (mm) 30.2 14.4 60.2 89.2 64.4 69.0
Rain:Rain+SWE 0.83 1.00 0.55 0.49 0.14 1.00
Max mm/Hr 5 6 4.2 5.4 2 6.4
Soil Temperature (°C) 1.9 6.7 1.0 0.3 0.8 4.6
Snow Remained? No NA No No Yes NA

5.2.3 Additional Site Description

Sites were described in Chapter 3, the following is supplementary description necessary
for this chapter.

5.2.4 Residue Cover

There was minor variation in residue cover between the sites, which was influenced by
tillage operations. Generally, all sites maintained a high level of residue cover (>30%) during the

NGS. However there were slight differences in residue management following corn harvest. At
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Site 3 corn residue was worked once with a vertical tillage implement to incorporate and size the
residue, though the majority of corn stalks remained upright. While at Site 2, the corn residue

was not tilled following harvest (Figure 5.1).

Site 2: October 14, 2013 Site 3: November 20, 2013

Figure 5-1 Picture of corn residue cover at Site 2 and Site 3 taken following corn harvest and prior to snow
accumulation.

5.3 Results:
5.3.1 Temporal Variability in Runoff Generation

Rain or melting snow resulted in numerous hydrologic responses in tile drains throughout
the year (Site 2: 46, Site 3: 19) as well as a small number of overland flow events (Site 2: 3, Site
3. 5) (Figure 5-2 a, ¢ and Figure 5-3a, c). Generally, greater total atmospheric inputs
(Rain+SWE) leading to an event resulted in greater total event discharge; however, this
relationship was influenced by antecedent moisture conditions (Figure 5-4). For example, when
soil was drier as experienced during the growing season (GS), high rainfall events did not
necessarily yield a large flow response (Figure 5-4).

A series of peak discharge events occurred over the NGS at both sites. A total of five
peak discharge events were identified at Site 2 (Figure 5-2) with six peak discharge events at
Site 3 (Figure 5-3). The combined discharge from overland flow and tile drainage for the peak
events resulted in the majority of annual discharge from each site (65%-72%, Table 5-1). The
temporal distribution of peak discharge events was similar between the two sites because the
sites generally experienced the same regional weather patterns (Figure 5-2 and Figure 5-3).
Notable exceptions were the two early NGS events at Site 3(D; and D,), which occurred
because of a greater snowfall accumulation at the site prior to a warm weather system moving
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through the area. Site 2 did not receive the same snowfall, and as such, the warmer
temperatures did not result in a peak discharge event. Following these initial thaw events at Site
3, the distribution between the sites was similar, although the ensuing peak events differed both
in their event drivers (Rain, Rain and Snow, Radiation Melt), total discharge, and flow path

partitioning (Figure 5-2 and Figure 5-3, Table 5-1).
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Figure 5-2 Site 2 hydro-climatic drivers and total event discharge. Daily rainfall and snow depth (a). Water
table depth and soil water content at 30cm (b), total event discharge for subsurface tile drainage (blue) and
overland flow (red). Peak discharge events are outlined with dashed orange boxes and labeled near the top
of the figure. Water table below 1.45m was not detectable. Gaps in water table data occurred because
sensors were temporarily removed from the well. Snow on ground was estimated using Environment Canada
Weather Station Data.
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Figure 5-3 Site 3 hydro-climatic drivers and event discharge. Daily rainfall and snow depth (a). Water table
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sensors were temporarily removed from the well. Snow on ground was estimated using Environment Canada
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5.3.2 Variability in Pre-Event Ground Conditions for Peak Events

Ground conditions (snow cover and soil temperature) prior to and during peak discharge
events were variable (Figure 5-5 and Figure 5-6). Snow cover was present at the onset of three
out of five peak events at Site 2 (J11, J2s, and Myp) and four out of six peak events at Site 3 (Dy,
Ji1, Jog and My,) (Figure 5-5 and Figure 5-6). The snowpack melted completely in all peak
events (if present at the event’s onset), except for one event at Site 3 (My). Soil temperature
was also variable between these peak discharge events (Figure 5-5 and Figure 5-6, Table 5-1).
The most notable difference was the presence of frozen soil(<0°C) to at least 10 cm depth at
Site 2 during Event J,g, as all other events occurred on unfrozen soil ( Table 5-1). Patches of
frozen soil were observed prior to Event J,g at Site 3; however, soils were not frozen to the
degree observed at Site 2 (Table 5-1). The combinations of event drivers, discussed in Section
5.3.1(e.g. rain, rain and snow melt and radiation melt) and variable ground conditions,
discussed in Section 5.3.2 (snow cover and soil temperature status) led to several distinct event
types over the NGS (Table 5-1). The contribution of these events to site discharge and P export

is discussed below.
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5.3.3 Contribution of Peak Discharge Events to Annual Phosphorus Export

The majority of annual P losses came from the series of peak discharge events occurring
within the NGS (Figure 5-7 and Figure 5-8, Table 5-1). At Site 2, the combined tile and overland
flow losses from the five peak events contributed 86% of TP, 85% of PP+SUP and 90% of SRP
annual losses. At Site 3, combined losses during six events contributed 90% of TP, 88%
PP+SUP and 96% of SRP annual losses (Table 5-1). Although all peak events contributed to
annual P losses, there was some variability in the quantity and speciation of P losses among
these events (Figure 5-7 and Figure 5-8). For example, April rain events (Ag) contributed
disproportionately higher amounts of PP+SUP than all other peak discharge events. SRP export
was greatest in late January events at both sites (J,g), and SRP losses subsequently decreased
over the remaining NGS (Figure 5-7 and Figure 5-8), despite increases in event discharge. In
contrast, TP loading generally increased over the NGS (Figure 5-5 and 5-6), and was positively
related to total site discharge (Figure 5-9 and Figure 5-10). The relationship between SRP event

losses and discharge was not as strong as it was for TP (Figure 5-9 and Figure 5-10). Events
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with overland flow resulted in the greatest event discharge and consequently greater P losses
(Figure 5-9 and Figure 5-10). In one year of data, an approximate threshold appeared showing

that events with discharge > 20mm were likely to be high loss events in terms of TP (Figure 5-9
and Figure 5-10).
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Table 5-2 Peak event phosphorus loading from tile drainage, overland flow, and combined flow for Site 2 and
Site3.

Site 2 Site 3
Til Overland Combined Flow Til overland Combined Flow
e verian e verian
Event . Combined % of . Combined % of
Drainage Flow Drainage Flow
Flow Annual Flow Annual
D, 20 6 26 7%
D4 12 0 12 3%
I 17 0 17 6% 34 6 40 11%
0,
Q(mm) Jis 19 0 19 7%
g 23 6 29 10% 27 26 53 14%
Mo 45 8 53 19% 29 36 64 17%
Aq 57 23 80 29% 40 7 47 13%
> 161 37 198 72% 161 81 242 65%
D, 0.001 0.008 0.009 9%
D, 0.002 0.000 0.002 2%
I 0.001 0.000 0.001 3% 0.004 0.010 0.013 14%
SRP Jis 0.003 0.000 0.003 11%
(kgha™) g 0.008 0.006 0.014 48% 0.002 0.031 0.033 34%
Mo 0.002 0.002 0.004 14% 0.004 0.021 0.025 25%
Aq 0.001 0.003 0.004 15% 0.003 0.009 0.012 12%
> 0.014 0.011 0.026 90% 0.015 0.078 0.093 96%
D, 0.018 0.022 0.040 11%
Dy 0.017 0.000 0.017 4%
I 0.010 0.000 0.010 4% 0.025 0.015 0.040 11%
P
1 Jis 0.014 0.000 0.014 5%
(kgha™)
g 0.024 0.013 0.037 14% 0.019 0.057 0.076 20%
Mo 0.033 0.013 0.046 17% 0.019 0.057 0.076 20%
A, 0.071 0.051 0.123 46% 0.051 0.036 0.088 23%
> 0.152 0.077 0.229 86% 0.149 0.188 0.337 90%
D, 0.017 0.014 0.031 11%
D, 0.015 0.000 0.015 5%
I 0.009 0.000 0.009 4% 0.021 0.005 0.027 10%
PP+SUP Jis 0.011 0.000 0.011 4%
(kgha) g 0.016 0.007 0.023 10% 0.017 0.026 0.043 16%
Mo 0.031 0.011 0.042 18% 0.015 0.037 0.052 19%
A, 0.070 0.048 0.118 50% 0.048 0.028 0.076 27%
> 0.138 0.066 0.204 85% 0.134 0.110 0.244 88%
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Figure 5-9 Site 2 Event TP load (a) and SRP load (b) vs. total event discharge. Blue squares indicated tile
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5.3.4 Influence of Event Type on Phosphorus Export during Peak Events

Event hydrographs, P concentrations, air temperature and rainfall were plotted to show
the temporal variability within individual peak events related to event type. Plots of four events
are included in this chapter to demonstrate the general trends observed, as well as examples of

variable responses related to differing event types (Figure 5-11-Figure 5-14).

Tile drainage was the first flow path to respond in all peak events. However, there was
variability in the lag time between the initial rise in tile flow and the generation of overland flow
(See Figure 5-11, Figure 5-12, Figure 5-14). For example, Event J,g at Site 2 (Figure 5-13)
which resulted from intense rainfall on frozen soil, lead to a more rapid generation of overland
flow in comparison to Event Mo (Figure 5-14) which was caused by a combination of less

intense rain and snowmelt on unfrozen soil.

P concentrations in tile drainage and overland flow varied temporally throughout all
events. Generally, in tile drainage both PP+SUP and SRP reached maximum concentrations
near the onset of the event, either at or prior to peak discharge. However, following the initial
peak in concentrations, there were also subsequent elevated concentrations associated with
additional rainfall, or the onset of overland flow. The response to additional rainfall can be seen
in event Ag at Site 3 (Figure 5-11). The relation between tile concentrations and the onset of
overland flow is clearly seen in the My, event at Site 3 (Figure 5-12). Overland flow
concentrations were also variable within and among events. In general, concentrations of
PP+SUP and SRP in overland flow were elevated near the onset of each event and in response
to further rainfall. Following peak concentrations, there was a general decline in P (SRP and
PP+SUP) concentrations (Figure 5-11, Figure 5-12, Figure 5-13, Figure 5-14).
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Figure 5-11 Site 3 Event Ag Plots including Rain and Air Temperature (a), Tile Flow and Chemistry (SRP and
PP+SUP) (b), Overland Flow and Chemistry (SRP and PP+SUP) (c). The event occurred on unfrozen soil and
was driven by rainfall. Flow, Temperature and Rain are plotted at 15 minute intervals.
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Figure 5-12 Site 3 Event M10 Plots including Rain and Air Temperature (a), Tile Flow and Chemistry (SRP and
PP+SUP) (b), Overland Flow and Chemistry (SRP and PP+SUP) (c). Flow, Temperature and Rain are plotted at
15 minute intervals.
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Figure 5-13 Site 2 Event Jag Plots including Rain and Air Temperature (a), Tile Flow and Chemistry (SRP and
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15 minute intervals. The event occurred on frozen soil and was driven primarily by rain.
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Figure 5-14 Figure 5 14 Site 2 Event M10 Plots including Rain and Air Temperature (a), Tile Flow and
Chemistry (SRP and PP+SUP) (b), Overland Flow and Chemistry (SRP and PP+SUP) (c). Flow, Temperature
and Rain are plotted at 15 minute intervals. The event occurred on frozen soil and was driven primarily by
Rain.

Event PP+SUP flow-weighted mean concentrations (FWMCSs) in both overland flow and
tile drainage varied among the series of NGS peak events (Table-5-3). In tile drainage, the
range in PP+SUP FWMC for all peak events was small relative to what was observed in
overland flow, and was similar between the sites (0.07-0.12 mg/| for Site 2 and 0.05-0.13 mg/I
for Site 3). In comparison, overland flow PP+SUP FWMCs were higher and more variable (Site
2: 0.12-0.22 mg/l, Site 3: 0.08-0.38 mg/l) (Table 5-3). A comparison of PP+SUP FWMC in
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overland flow and tile drainage for individual events showed a general positive trend, and thus
the two pathways showed similar temporal trends over the study period (Figure 5-15) (Table-5-
3). The highest event PP+SUP FWMC for both overland and tile drainage occurred during
events where rain fell on bare, unfrozen soil (e.g. Site 2: Ay, Site 3: D4 Ag). In contrast, rain on
show and radiation melt events ( e.g. Site 3: Jq1, Jog and My,) had lower PP+SUP FWMC (Table
5-3). The ratio of Rain:Rain+SWE was plotted against event FWMC'’s to see if event driver
influenced speciation (Figure 5-16). At Site 3, Rain:Rain+SWE was positively related to
overland flow PP+SUP FWMCs (Figure 5-16 b). Ground conditions and event drivers appear to
influence PP+SUP concentrations.

Event SRP FWMC varied due to event conditions and showed a general seasonal
decline. SRP FWMCs in tile drainage and overland flow were not as clearly related as PP+SUP
FWMCs (Figure 5-15); however, some similarities in temporal patterns were observed. In both
overland flow and tile drain effluent, the highest SRP FWMCs and SRP:TP ratios occurred
between December-January (Di-J,g) (Figure 5-17, Figure 5-18). Following this mid-NGS peak,
the SRP:TP ratio in overland flow declined over the NGS (Figure 5-19). This was driven by
changes in both SRP and TP concentrations as the season progressed. Generally, this decline
did not appear to vary with event type, although a few notable exceptions. For example, Event
J,g at Site 2 was the only event with frozen soil (Table 5-1) and had notably greater SRP FWMC
than subsequent events. My, at Site 3 had a notably lower SRP FWMC. This event had the
highest overland discharge and was the only radiation-driven melt event (Figure 5-18). The
SRP:TP ratio of M;q was consistent with the seasonal decline (Figure 5-19). SRP FWMCs
appear to be influenced by event conditions, and seasonal fluctuations. Time since fertilization

was not considered as applications of P occurred in the previous fall period (2011).
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Table 5-3 Site 2 and Site 3 event tile drainage and overland flow flow-weighted mean concentrations (FWMC)
for SRP, TP and PP.

Site 2 Site 3
Event Tile Overland T.iIe Overland
Drainage Flow Drainage Flow
D, 0.003 0.131
Dy 0.014
SRP Jn 0.004 0.012 0.153
FWMC Jis 0.017
(mgl?) Jog 0.033 0.106 0.008 0.120
My, 0.005 0.023 0.013 0.059
Ag 0.001 0.015 0.008 0.117
D, 0.09 0.37
Dy 0.15
P EWMC I 0.06 0.07 0.24
(mg ) Jis 0.07
Jog 0.10 0.23 NA 0.22
My 0.07 0.16 0.07 0.16
A 0.12 0.22 0.13 0.49
D, 0.09 0.24
D, 0.13
PP+SUP I 0.06 0.06 0.09
FWMC Jis 0.05
(mgl™) I 0.07 0.12 NA 0.10
My, 0.07 0.14 0.05 0.10
A, 0.12 0.20 0.12 0.38
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Figure 5-18 Site 3 temporal changes in SRP flow weighted mean concentration (FWMC) (a), Discharge (b) and
SRP load (c) for high P loss event for tile (blue) and overland flow (red). All events occurred on unfrozen soil.
Event M10 is highlighted as an atypical event.
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Figure 5-19 Temporal variability in SRP:TP over the NGS for tile drainage and overland flow during peak
events at Site 2 and Site 3.

TP FWMCs in peak events varied over the NGS (Figure 5-20 and Figure 5-21) due to
event type (driver and pre-event ground conditions) and seasonal fluctuations. TP FWMCs of
peak events were higher in the first and last events of the NGS, while the lowest TP FWMCs
occurred during the mid-march event at both sites (My,) (Table 5-3, Figure 5-20, Figure 5-21).
The TP FWMCs in the initial events were elevated because of two factors: a higher SRP loss
(Figure 5-17, Figure 5-18), and rain on bare soil event types that resulted in higher PP+SUP
FWMCs (discussed above). In contrast, the higher TP FWMC in the A9 event was driven solely
by the flushing of PP+SUP, likely due to rain on bare soil as SRP concentrations were not

elevated during this event.
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5.4 Discussion

5.4.1 Seasonality in Runoff Distributions and the Prevalence of Peak Flow Events

during the Non-Growing Season (NGS)

The seasonal flow pattern observed in this study is similar to the stream discharge pattern
observed in agricultural watersheds across southern Ontario (Ontario Ministry of the
Environment: Environmental Monitoring and Reporting Branch 2012). The Ontario Ministry of
the Environment (2012) studied 15 southern Ontario streams over a five year period between
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2004 and 2009 and found that a large percentage of annual flow came from the winter months.
They also noted that flow in this period was typically dominated by multiple high discharge
events, driven by melting snow and rainfall (Figure 5-22). The winter experienced during the
current study was somewhat atypical based on the high number of complete snow melts. These
conditions provided an opportunity to evaluate the effect of event type on P export. Furthermore,
the NGS demonstrated conditions that may be representative of future NGS weather based on
climate change predictions.
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Figure 5-22 Stream discharge, rainfall, air temperature and snow on ground for the Little Ausable River in
2008, a small agricultural watershed located between Site 2 and 3. This plot demonstrates the typical
seasonal discharge pattern for that area in southern Ontario. Separation between baseflow and quick flow
shows events where overland flow was probable. Note majority of flow and peak events occur between
October and April (Ontario Ministry of the Environment: Environmental Monitoring and Reporting Branch
2012).

An objective of this study was to determine the contribution of peak discharge events to
annual P mass export. The dominance of peak flow events to annual P losses has been
demonstrated in numerous studies conducted globally (Ulén and Persson 1999, Macrae, et al.
2007, Gentry, et al. 2007). In the current study, the series of peak discharge events over the
NGS at both sites were responsible for the majority of site discharge, and the majority of annual

P export. Other studies have also found that major events during the NGS contribute a large
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portion of annual P export (Tiessen, et al. 2010, Eastman, et al. 2010, Macrae, et al. 2007, Ball
Coelho, et al. 2012, Jamieson, et al. 2003). However, in slight contrast to studies that were
carried out in Manitoba and Quebec, which typically attributed P loads to one or two dominant
events, P export in the current study was derived from multiple peak flow events taking place
over the course of the NGS. Furthermore, peak events in April driven entirely by rain made
significant contributions both to discharge and P export. This is reflective of the different climatic
conditions experienced in southern Ontario relative to the above-mentioned studies.

5.4.2 Inter-Event Variability and the Significance of Antecedent Conditions

Another objective of this study was to determine the influence of event type (event driver
and ground conditions) on P export (P load and P FWMC) during peak discharge events in the
NGS. Lui et al. (2013) looked specifically at antecedent conditions and event properties during
snowmelt events in western Canada and found that several factors had significant relationships
with snowmelt P loading (i.e., duration of runoff, degree days during runoff, cumulative rain,
maximum temperature, cumulative snow, and peak flow rate) and snowmelt P FWMCs (i.e.,
SWE, average flow rate, volume of runoff and precipitation in October). In the Lui et al. (2013)
study, flow volume was the most important factor in determining P load. Interestingly, flow
volume had a negative relationship with P FWMC due to the effect of dilution (Liu, et al. 2013).
The Lui et al. (2013) study also found temperature during the melt, SWE and the duration of
runoff to be critical factors influencing P load and P FWMC which suggests that ground
conditions, and event drivers are also important factors. In this study, the different
combinations of event drivers and ground conditions influenced event export dynamics, and
thus, were a potential source of variability in the relationship between TP loading and discharge
(Figure 5-9, Figure 5-10). In this study, the greatest PP+SUP concentrations occurred in events
which were primarily driven by rain and that occurred on unfrozen soil. These results are
consistent with findings in the literature. Su et al. (2011) reported that more PP export occurred
during the snowmelt period with higher amounts of rainfall, a finding which agrees with the
relationship found in this study between Rain: Rain+SWE and PP+SUP FWMC (Figure 5-16). In
a long-term study in Manitoba, Liu et al. (2013) found that PP in overland flow was higher in the
second half of the snowmelt, and attributed this increase to the reduction in frozen soil, snow
cover and increased susceptibility to soil erosion. Although surface frozen soils are less
susceptible to erosion, as soils thaw there is a greater risk to erosion if subsurface soils remain
frozen (Rudra, Dickinson and Wall 1989). Subsurface soils that are frozen can reduce infiltration

(Kane and Stein 1983), causing increased runoff and erosion of surface soils (Su, et al. 2011) .
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Due to the timing of overland flow relative to thawing soil, and the relatively shallow frost layer
during the study period, this was not observed in this study. The higher PP+SUP concentrations
observed during rain on bare soil events relative to rain on snow events in this study is

consistent with the literature.

The presence of frozen surface soil during a runoff event can increase the rate of soluble
P export. In Manitoba, Tiessen et al. (2010) found that soluble P concentrations were higher in
snowmelt generated overland flow than during rainfall initiated overland flow. They further
suggested that when soils are frozen, crop residue on the soil surface may be a significant
contributor to soluble P losses. The crops in their study were more prone to leaching relative to
corn residue (Lupwayi, et al. 2007); however, corn has also been shown to be a significant
contributor of soluble P to runoff under certain conditions (Cermak, et al. 2004, Gilley, et al.
1997). Cermak et al. (2004) found that, when submerged for a one day period, corn and
soybean residue leached almost all of the extractable PO, within the residue. Furthermore,
when P is leached from residue sitting on frozen soil, there is little opportunity for P to be
removed from solution. Therefore, it is possible that the elevated SRP concentrations during the

event J,g were the result of residue losses.

In addition to the variability related to event drivers and ground conditions, there was a
seasonal trend in SRP concentrations. At both sites, SRP FWMC peaked in January and
declined for the remainder of the NGS. The peak may have been caused by an increase in the
available P pool near the surface caused by the leaching of P from corn residue. Messiga et al.
(2009) reported that, following several freeze thaw cycles, the soil water extractable P was
higher from soils with crop residue applied than soils without. Following the apparent buildup of
P at the surface, concentrations declined, which is consistent with the concept of depletion.
Depletion is more commonly reported following successive storms after fertilization. Although
several studies have noted differences in seasonal speciation in winter events relative to
summer events (Ball Coelho, et al. 2012, Macrae, et al. 2007), no studies have reported a
decline in SRP FWCM over the NGS. Since concentrations of soluble P typically return to
background levels within several months of application (Hart, et al. 2004), the decline of SRP

concentrations during the second NGS is not thought to be related to fertilizer application timing.

The My, event at Site 3 had a notably lower SRP FWMCs than others during the NGS.
The unique event type, or the higher volume of runoff during the event may have caused this.

Mo was the only event where the snowpack remained following the event. This could have
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resulted in less interaction between runoff and the soil, as runoff was seen moving over the
show pack. Another explanation is that the higher volume of runoff during My, caused dilution of
the limited P available to runoff. Lui et al. (2013) observed a negative relationship between
runoff volume and TP FWMC and attributed this to dilution. More data would be required to

establish this relationship at the sites in this study.

5.4.3 Relevance to Climate Change Impact Studies

The series of peak discharge events captured in this study show how pre-event conditions
and event drivers can influence P losses. This information is necessary to better predict how
beneficial management practices (BMPs) will perform in climate change scenarios. Climate
change predictions for southern Ontario involve warmer winter temperatures, similar amounts of
precipitation but with more of the precipitation as rainfall (Colombo, et al. 2007). Based on these
predictions, it is reasonable to expect changes to winter flow regimes. For instance, changes in
the hydro-climatic drivers (rain and SWE) may influence the frequency of overland flow events.
For example, if there is less snow accumulation prior to rain on snow or rapid snow melt events,
total event inputs may be below the threshold required to generate overland flow, which would
potentially result in fewer overland flow events throughout the NGS. Another potential outcome
is more frequent melt events over the NGS, and thus the potential for increased frequency of
discharge events over the NGS, much like the NGS experienced in this study. Another effect of
climate change is the increase in the frequency of extreme precipitation events. This would have
an obvious effect on the occurrence of peak discharge events especially if there is an increased
frequency of these events in the NGS. Given the role of these events in NGS export, changes to
the typical flow regime as a result of climate change will have an effect on P export. P export
within peak discharge events is largely determined by flow volume, and thus export is likely to

increase or decrease in response to increases or decreases in site discharge.

Climate change in southern Ontario not only means potential changes in the flow regime,
but also changes to event drivers and ground conditions within this critical period. Warmer soil
temperatures and less snow cover mean that soil will be more vulnerable to erosion over the
winter than historically has been the case, which will have implications for P export. If a peak
discharge event is generated under these pre-event conditions, PP export may resemble export
typical of the rain on soil events observed in this study (i.e., Ao). If PP export is the primary
concern, maintaining higher levels of residue cover, as is currently done at both sites, would be

a beneficial practice. Some have argued that reduced tillage may be contributing to increased
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export in the NGS, and thus may not be a suitable BMP (Tiessen, et al. 2010, Hansen, et al.
2000, Puustinen, et al. 2007, Liu, et al. 2014). However, this argument is based on P export
alone, and does not weigh the other benefits of the practice. The increased frequency of freeze
thaw cycles predicted as part of climate change may also have impacts of SRP losses,
particularly in systems where crop residue or cover crops remain on the surface. Different
studies have shown an increased risk of SRP losses from soils with residues or cover crops
following multiple freeze thaw cycles (Bechmann, et al. 2005, Messiga, et al. 2010). So an
increase in freeze thaw cycles could result in greater P losses. High SRP losses have been
reported during events that occur on frozen soil (Tiessen, et al. 2010). Warmer winter
temperatures would mean fewer days with frozen soil which could reduce winter losses of SRP.
Phosphorus export is related to numerous factors, so predicting the effect of climate change on
P export is problematic.

5.4.4 Implications for Managing Field-Scale Phosphorus Export

One difficulty in selecting BMPs is that the appropriate management practices may
actually vary between regions. In cold regions, the flow regime is often dominated by NGS
events, and thus greater P losses can also occur in this period. BMPs that are effective during
the GS, are not necessarily effective in the NGS (Hansen, et al. 2000, Puustinen, et al. 2007,
Tiessen, et al. 2010). Tiessen et al. (2010) concluded that BMPs for areas with frozen winter
soils are likely different than BMPs for areas with unfrozen soils. Both Tieseen et al. (2010) and
Hansen et al. (2000) showed P losses from snowmelt driven events are dominated by DP
losses, and that the greatest losses occurred in reduced tillage systems. This study has shown
that in southern Ontario, the problem for producers and resource managers is that a range of
event types are likely to occur between harvest, and next season’s planting. In this way,
designing BMPs for the southern Ontario flow regime is even more complex than for a flow
regime dominated by a distinct snow melt event, or where snowmelt is not a factor.
Furthermore, the spatial variability in snow accumulation and overland flow frequency between
the two sites alone shows that BMP decisions may vary within the region of southern Ontario as

well.

The inter-annual variability at the sites discussed in Chapter 4 adds further complexity to
the issue. In years when fertilizer is applied, there is an increased risk of P export, especially if
applications are made prior to, or within, periods likely to see overland flow. The risks, however,

are reduced if nutrients are incorporated into the soil (Hart, et al. 2004). In these circumstances,
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tillage to incorporate nutrients may be the best practice, even with the increased risk of erosion
following fall tillage. Residue could still be left on the surface over the winter in years where
fertilization does not take place. The solutions appear quite complex as P export is the result of
the combined influence of site characteristics, events drivers, ground conditions, and land
management practices. Appropriate strategies to reduce losses may not only vary depending on
the type of events likely to be experienced, but the timing within the producer’s planned crop

rotation and nutrient applications.

5.5 Conclusions

This study demonstrated the inter-event variability of P export related to event drivers and
antecedent ground conditions over the NGS. P speciation during peak events was variable over
the NGS. Some of this variability appears related to the effect of ground conditions and event
type on PP+SUP FWMCs. Higher PP+SUP and TP FWMCs during rain on bare soil events
shows the importance of protecting soil from erosion by leaving residue in place. SRP export
was enhanced during events where soil was frozen. There was also a seasonal decline in SRP
export through the NGS, suggesting the supply of SRP was limited. This study confirmed soil
conditions and event drivers impact P export, and demonstrated the relative risk of different
NGS event types which are likely to occur more frequently as a result of climate change.
Designing suitable BMPs to be implemented ahead of the NGS in Ontario is problematic, as
conditions are less predictable than other regions. Furthermore, the appropriate BMP may differ
in years when P applications are made, which further complicates the task. This study has
provided an improved understanding of the processes driving runoff and P transport during

critical periods in Ontario
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6 Final Discussion and Conclusion

This study improves our understanding of edge of field phosphorus (P) export from
reduced tillage (RT) systems in Ontario. The year-round monitoring of overland flow and tile
drainage using an event-based sampling strategy provided insight into the relative contribution
of these export pathways and the influence of hydro-climatic drivers, ground conditions, and
land management practices on the seasonality of P export. This is one of the first studies to
demonstrate this using multiple sites and multiple seasons. Chapter 4 demonstrated the
seasonality of discharge and P export over the study period and confirmed that event based
export dominated total annual export. While it may have been an atypical year, the distribution
of discharge and export was representative of general trends for the region as the non-growing
season (NGS) accounted for a greater percentage of annual discharge and P export at all sites.
Chapter 4 also demonstrated that inter-annual variability in P export can be driven by hydro-
climatic drivers and land management practices. In-terms of discharge and export partitioning,
Chapter 4 showed that tiles were the dominant water discharge pathway and an important P
export pathway, but overland flow also contributed a large amount of total P (TP) and soluble
reactive P (SRP) to annual losses. This has important implications for our understanding of the
role of tile drains in P transport. Lastly, although export from the sites were low relative to
fertilizer inputs and crop removal, the concentrations of P leaving these systems during event
flow was elevated above levels associated with eutrophication. Therefore, management

opportunities to further improve efficiencies in these systems should be investigated.

Building on the findings from Chapter 4, Chapter 5 aimed to improve our understanding of
how event type (event driver and ground conditions) influenced P export within peak discharge
events. The second NGS experienced during the study period provided an excellent opportunity
to evaluate the influence of these factors on P export. It was evident that event driver and
ground conditions influenced P speciation within events. In addition to the inter-event variability,
caused by pre-event conditions and event drivers, there was an apparent seasonal trend of
SRP build up and decline. Due to the observed variability in speciation, Chapters 4 and 5
showed the importance of year round monitoring as well as the importance of capturing major
flow events. This thesis has provided critical information and field data regarding processes
occurring over the NGS, including the winter season, which is poorly represented in the current

scientific literature.
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Both chapters highlighted aspects that make managing P export and selecting BMPs
complicated. As other authors have stated, managing P losses requires a suite of BMPs
(Tomer, et al. 2013, Sheng, et al. 2011). Reducing tillage intensity should be paired with
application methods which reduce the stratification of P, and the vulnerability to export during
higher risk periods. Steps taken to manage P losses must also be balanced with other
conservation goals. So although some studies have shown RT systems may increase soluble P
losses (e.g. Tiessen et al. 2010), this undesired consequence must be weighed against the
other benefits. No-till and RT systems have well documented benefits for soil health (Margulies
2012), which should remain a top priority of overall conservation efforts in all environments.

There are several opportunities to reduce P losses at the field scale: 1) avoid soil erosion
2) avoid a buildup of P by maintaining an appropriate level of soil test phosphorus (STP) in soils,
3) minimize export directly related to P applications by applying P below the surface during
periods less susceptible to high runoff events, 4) managing overland flow volume with
structures, and lastly 5) P filtration or removal. All systems in this study are already taking steps
to reduce erosion and have avoided unnecessary buildup of STP. Despite these efforts,
concentrations and loading from these well managed systems are still above levels associated
with eutrophication. Thus there is need for further improvements to these systems. There may
be opportunities to further reduce P export by addressing opportunities #3,#4 and #5 mentioned
above. As discussed in Chapter 4, P export directly related to recent P applications can be
mitigated be using alternative application methods and making applications in periods with lower
risk. However, application during the lower risk period may not be practical because crops are
growing in the field. Certain crops which are harvested earlier in the GS afford the opportunity to
apply P before periods of elevated risk; however, this can increase the risk of nitrogen leaching.
If applications were limited to this time period, the producer may have to increase the use of
these crops in their rotation (e.g. wheat), or sell manure to nearby operations where application
is possible. The window for low risk application could be extended if an appropriate application

method was used.

Alternatively, P export could be reduced by reducing the amount of runoff, by capturing it
in water and sediment control basins, or ponds for irrigation, or by increasing infiltration. Control
basins have been shown to reduce annual P loading (Tiessen, et al. 2011). These structures
are costly to construct, may require land to be taken out of production, as well as potentially
increase the hydrologic connectivity of the landscape. Lastly, efforts can be made to remove P

from runoff using a variety of approaches. The issue with treatment is dealing with the quantity
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of water during peak flows. The ability of soil to buffer P concentrations was apparent in this
study, based on the observed differences in concentrations between the two pathways. Blind
inlets that include a layer of soil may provide a solution. Smith and Livingston (2013) found that
using blind inlets reduced TP loading by 78% relative to hickenbottom inlets. However, the long-

term perform of this BMP is not known, and these systems do not drain water as quickly.

When addressing the challenge of reducing P export we must remember that although
there is potential to reduce losses with on-farm BMPs, P loss from even the best managed
systems is inevitable. To meet water quality targets a suite of BMPs may be required. Tomer et
al. (2013) proposed a conceptual framework for agricultural watershed planning. They
suggested that improving nutrient and water efficiencies in fields should be the first priority.
Practices that improve soil health, such as reducing tillage and using cover crops help to avoid
water quality problems in the first place. The second focus is then on controlling water and
nutrients movement at various scales; in the field, below the field and at the riparian area.
However, all control and treat approaches are more effective and easier to maintain after steps

to improve water and nutrient efficiency are taken at the field-scale (Tomer, et al. 2013).

Efforts at the field and sub-watershed scales may be lost at the larger watershed scale. In
a review of watershed scale benefits of conservation practices, Tomer and Locke (2011) found
that although there were measureable benefits of BMPs at the field-scale, the benefits were not
always observed at the large watershed scale for numerous reasons. They noted the
importance of targeting conservation efforts in critical source pathways. They also noted that
natural stream processes contributed the majority of sediment export rather than in-field
erosion, and further stressed that unless in-field erosion control is accompanied by a reduction
in flow volume, natural stream processes will likely result in enhanced in-channel erosion. The
benefits of BMPs were masked by the changing climate, and legacies of previous poor
management. Lastly, they noted the complexity of addressing numerous water quality
parameters, as there are often trade-offs associated with reducing a particular contaminant
(e.g., implementing no-till to reduce erosion and nitrogen losses can lead to increased P losses

in some environments) (Tomer and Locke 2011).

Future efforts to mitigate P export must outweigh the value of different practices and
conservation targets. The P export from the systems in this study has highlighted that there is
opportunity for further improvement even in operations currently implementing many BMPs. The

complexity in selecting appropriate BMP was also apparent. If further reductions in P losses are
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required on the farms monitored, then careful consideration should be given to adjusting the
timing of P applications, and application methods. Adjustments to these practices would reduce
both tile drainage and overland flow losses. If these adjustments are not suitable to the
operation or not balanced with other conservation priorities, additional improvements could be
made with complementary BMPs to treat runoff at the field edge with water and sediment
control basins (Tiessen, et al. 2011) utilizing blind inlets (Smith and Livingston 2013), or by
capturing runoff and using it for irrigation (Sheng, et al. 2011). Unfortunately, these require a
significant investment, and often require land to be taken out of production. It is clear that P
export from agricultural land results from the combined influence of multiple factors, and that
effectively addressing P export issues will likely require strategically implementing a suite of site
specific BMPs.
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Appendix A

Site 1 Regular Stage-Discharge Curve
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Figure A-0-1 Site 1 Tile stage-discharge curve used between 4.2 and 9.3 inches.
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Site 1 High Flow Stage-Discharge Relationships for Rising and
Falling Limbs: 2 and<200mm
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Figure A-0-2 Site 1 High Flow Stage-Discharge Curves for events that peaked over 200mm. Multiple curves
were used depending if the stage was on the rising or falling limb of the hydrograph and whether the stage
was greater or less than 200mm.
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Site 2 Regular Stage-Discharge Curve: <200mm
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Figure A-0-3 Site 2 Stage -discharge curve for stages <200mm.

Site 2 High Flow Stage Discharge Curves for Rising and Falling Limbs >200mm
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Figure A-0-4 Site 2 High Flow Stage-Discharge Curves for events that peaked over 200mm. Multiple curves
were used depending on if the stage was on the rising or falling limb of the hydrograph, and two different
curves were used for the falling Ilimb. Below 200mm, the regular curve was used
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Site 3 Stage-Discharge Curve: <120mm
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Figure A-0-5Site 3 Tile stage-discharge curve for depths <120mm.

Site 3 Stage-Dischrage Curve: 2120mm
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Figure A-0-6 Site 3 Tile stage-discharge curve for depths 2120mm.
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