
Mixed Signal Design Flow
A mixed signal PLL case study

by

Ramin Shariat-Yazdi

A thesis

Presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical & Computer Engineering

Waterloo, Ontario, Canada, 2001

 Ramin Shariat-Yazdi 2001

ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Mixed-signal designs are becoming more and more complex every day. In order to adapt

to the new market requirements, a formal process for design and verification of mixed

signal systems i.e. top-down design and bottom-up verification methodology is required.

This methodology has already been established for digital design. The goal of this

research is to propose a new design methodology for mixed signal systems.

In the first two chapters of this thesis, the need for a mixed signal design flow based on

top-down design methodology will be discussed. The proposed design flow is based on

behavioral modeling of the mixed signal system using one of the mixed signal behavioral

modeling languages. These models can be used for design and verification through

different steps of the design from system level modeling to final physical design. The

other advantage of the proposed flow is analog and digital co-design.

In the remaining chapters of this thesis, the proposed design flow was verified by

designing an 800 MHz mixed signal PLL. The PLL uses a charge pump phase frequency

detector, a single capacitor loop filter, and a feed forward error correction architecture

using an active damping control circuit instead of passive resistor in loop filter. The

design was done in 0.18- µ m CMOS process technology.

iv

Acknowledgment

I would like to take this opportunity to thank my supervisor, Professor Jim Barby,

for his help and support throughout the course of this project. I appreciate the

opportunity he has given me to work on an interesting project with which I have

developed experience in many areas.

I would also like to thank Professor Ajoy Opal and Professor Mohamed Elmasry

for reviewing this thesis and Mr. Phil Regier for his support and help while I was

working on this project.

v

Dedication

To Mom and Dad for everything.

To my lovely wife Maryam, for being a real friend , support and help.

To my brother Keyvan, for being a real brother and friend.

vi

Table of Contents

Abstract ………………………………………………………………………………... iii

Acknowledgment ………………………………………………………………………. v

Dedication ……………………………………………………………………………… vi

Table of contents ……………………………………………………………………… vii

List of figures ………………………………………………………………………….. x

Chapter 1 Introduction

 1.0 Introduction…………………………………………………………………1

 1.1 Importance of design methodology in market store…………………….…..1

 1.2 Bottom-up design…………………………………………………….……..4

 1.3 Top-down design……………………………………………….…………..5

 1.4 The role of chip Architect……………………………………….…………6

 1.5 Simulation & Modeling Plans……………………………………………...7

 1.6 Mixed-signal hardware description languages……………………………..9

 1.7 Thesis Organization……………………….………………………………10

Chapter 2 Mixed Signal Design Flow

 2.1 Introduction………………………………………………………………..11

 2.2 Defining different level of abstraction…………………………………….12

 2.3 Modeling Requirement……………………………………………………14

 2.4 Existing Analog and Digital Design Flow………………………………..15

 2.4.1 Digital Design Flow……………………………………………….15

 2.4.2 Analog Design Flow………………………………………………16

 2.5 Mixed Signal Design Flow……………………………………………….17

vii

 2.5.1 Proposed mixed signal design flow……………………………….19

Chapter 3 Charge Pump PLL

 3.1 Introduction……………………………………………………………….32

 3.2 Charge Pump PLL Architecture………………...………………………...33

 3.3 PLL Modeling………...………………………………………………….34

 3.4 Resistorless Charge Pump PLL…………………………………………..39

 3.5 PLL Performance Measure……………………………………………….40

 3.6 Design specification………………………………………………………41

3.7 Package Selection……………………………………….………………..42

Chapter 4 Behavioral Modeling

 4.1 Phase Detector……………………………………………………………..43

 4.2 Charge Pump and low pass filter………………………………………….45

 4.3 Voltage Controlled Oscillator……………………………………………..46

 4.3.1 V-I converter…………………………………….…………………46

4.3.2 Damping Factor Controller………………………………………...46

4.3.3 Current controlled oscillator……………………………………….48

4.3.4 Voltage Level Shifter………………………………………………50

 4.4 Simulation results…………………………………………………………51

Chapter 5 Block Level Design

 5.1 Block Schematic Capture………………………………………………….54

 5.2 Phase Frequency Detector…………………………………………………57

 5.3 Charge Pump………………………………………………...…………….61

 5.4 Voltage Controlled Oscillator……………………………………………..64

 5.4.1 V-I converter……………………………………………………….64

5.4.2 Damping factor control…………………………………………...67

5.4.3 Voltage controlled oscillator (VCO)……………………...……...67

5.4.4 Voltage level shifter………………………………………………70

5.5 Frequency Divider…………………………………………………………72

5.6 Top-level layout design and simulation…………………………………...76

viii

Chapter 6 Conclusion

 6.1 Conclusion…………………………………………………………………79

 6.2 Future work………………………………………………………………..80

Glossary …...…………………………………………………………………………….81

References ..…………………………………………………………………………….82

Appendix Behavioral Model of PLL ……………………………………………… A-1

ix

List of Figures

FIGURE 1.1 Different approaches to design………………………………………….2

FIGURE 1.2 IC process technology is improving faster than IC design technology….4

FIGURE 2.1 Different abstraction level……………………………………………...14

FIGURE 2.2 Analog / Digital co-design……………………………………………..19

FIGURE 2.3 System Level…………………………………….. ……………………21

FIGURE 2.4 Block Design……………………………………...……………………25

FIGURE 2.5 Chip Integration………………………………………………………...30

FIGURE 3.1 Block diagram of a charge pump phase locked loop…………………...34

FIGURE 3.2 PLL Loop……………………………………………………………….36

FIGURE 3.3 Continuous time PLL model……………………………………………37

FIGURE 3.4 Resistorless Charge pump PLL model…………………………………39

FIGURE 4.1 Phase detector simulation………………………………………………44

FIGURE 4.2 Charge Pump………………...…………………………………………45

FIGURE 4.3 Damping factor control block diagram…………………………………47

FIGURE 4.4 CCO structural model…………………………………………………..48

FIGURE 4.5.a Equivalent circuit diagram……………………………………………...49

FIGURE 4.5.b Current controlled oscillator block diagram……………………………49

FIGURE 4.6 CCO F-I curve…………………………………………………………50

FIGURE 4.7 level shifter simulation………………...……………………………….51

FIGURE 4.8 PLL simulation steady state response…………………………………..52

FIGURE 4.9 PLL simulation : Before locking……………………………………….53

FIGURE 5.1 Mixed signal test bench………………………………………………...57

FIGURE 5.2.a Schematic of phase detector……………………………………………58

FIGURE 5.2.b 4 input NOR gate……………………………………………………….59

FIGURE 5.2.c 2 input NOR gate……………………………………………………….59

x

FIGURE 5.3 PFD layout……………………………………………………………...58

FIGURE 5.4 phase detector simulation……...……………………………………….61

FIGURE 5.5 Charge pump circuit…………………………………...……………….62

FIGURE 5.6 Charge pump layout…………………………………………………….63

FIGURE 5.7 Charge pump simulation………………………………………………..63

FIGURE 5.8.a V-I converter and Damping Factor Control…………………………….65

FIGURE 5.8.b Layout view…………………………………………………………….66

FIGURE 5.9 V-I converter input-output characteristics……………………………...67

FIGURE 5.10 CCO input-output characteristics………………………………………68

FIGURE 5.11 VCO characteristic……………………………………………………..69

FIGURE 5.12 VCO layout……………………………………………………………..69

FIGURE 5.13 VCO Transient response………………………………………………..70

FIGURE 5.14.a schematic……………………………………………………………….71

FIGURE 5.14.b layout…………………………………………………………………...71

FIGURE 5.14 Level Shifter……………………………………………………………71

FIGURE 5.15 Level Shifter simulation………………………………..………………71

FIGURE 5.16 Digital design flow……………………………………..……………....73

FIGURE 5.17.a Counter schematic after synthesis……………………...……………...74

FIGURE 5.17.b Layout of counter……………………………………………………….74

FIGURE 5.18 Frequency divider simulation result……………………………………75

FIGURE 5.19 Chip layout……………………………………………………………..77

FIGURE 5.20 Post layout Simulation………………………………………………….78

1

Chapter 1

Introduction

1.1 Importance of design methodology in market share

With the internet and wireless technology as the latest market drivers, the pace of the

electronic market place continues to quicken. New products and new product categories

are being created faster than ever before. In order to keep up with the rapid pace of the

market, designers must get their products to market more quickly than ever. Those that

are successful at bringing significant new capabilities to the market first are usually

rewarded with higher profit margins and greater market share. To understand this,

consider three scenarios for developing a product with Figure 1.1 showing the expected

revenue for each scenario [1]. For the first, consider employing an efficient product

development process and being first to market. For the second, consider using the same

number of developers with an inefficient development process, which causes the product

to be late to market. This results in a much lower return because the product enters a

market where a competitor has already established leadership position and because there

are fewer available customers left. Finally, consider using an inefficient development

process but increasing the number of developers in order to reach the market first. If this

were possible, the development costs are higher, but the total return is almost the same as

in the first case. This is because the returns are expected to be much greater than the

initial development costs.

2

Figure 1.1 Different approaches to design

This example illustrates why it is more important to get a product to the market first than

it is to control development costs. Of course this assumes that the product is the right

product in that it satisfies the customer’s needs, and that it has some new and valuable

capability. With follow on products, the situation is somewhat different. Here; the market

leadership position is largely determined and the need to develop the product in a timely

manner is balanced by the need to control development costs.

Moore's observation that the number of transistors available on an integrated circuit

doubles every 18 to 24 months continues to hold. Competitive pressures compel

designers to use these transistors to provide additional functionality and to increase the

integration level and thereby decreasing the size, weight, power and cost of the product.

As a result, designers are confronted with larger and more complex designs. The

increasing size and complexity of these designs combines with the shrinking time

available to develop and get them to market; making the job of the circuit designer today

much more difficult than in the past.

3

Circuits are getting more complex in two different ways at the same time. First, circuits

are becoming larger. Consider wireless products; 40 years ago a typical receiver

contained between 5 and 10 transistors whereas it is common for a modern cell phone to

contain 10M transistors. Second, the operation of the circuits is becoming more complex.

30 years ago integrated circuits generally consisted of simple functional blocks such as

op-amps and gates. Verification typically required simulating the block for two or three

cycles. Today, mixed-signal chips implement complex algorithms that require designers

to examine their operation over thousands of cycles. Examples include PLLs (Phase

Locked Loop), sigma-delta converters and CDMA (Code Division Multiple Access)

transceivers.

The CAD (Computer Aided Design) tools and computers employed by designers

continually improve, which serves to increase the productivity of designers. However, the

rate of productivity increase is not sufficient to allow the designers to keep up with the

increasing complexity of designs and decreasing time-to-market requirements. The

growing difference between the improvement in productivity needed to satisfy the

demands of the market and the productivity available simply by using the latest CAD

tools and computers is referred to as the Design Productivity Gap, and is shown in Figure

1.2 . To close this gap, one must change the way design is done. A design style that

reduces the number of serial steps, increases the likelihood of first time working silicon,

and increases the number of designers that can work together effectively is needed. If a

design group fails to move to such a design style, it will become increasingly ineffective.

4

Figure 1.2 IC process technology is improving faster than IC design technology

This involves more than simply a cursory design of the circuit block diagram before

designing and then a design of the blocks. Rather, it requires developing and following a

specified verification plan and an incremental and methodical approach for transforming

the design from an abstract block diagram to a detailed transistor-level implementation.

This approach has already been implemented by digital designers and has been used

successfully.

1.2 Bottom-up design

The traditional approach to design is referred to as bottom-up design. In this approach,

the design process starts with the design of the individual blocks, which are then

combined to form the system. The design of the blocks starts with a set of specifications

and ends with a transistor level implementation. At this point, each block is verified as a

stand-alone unit against specifications and not in the context of the overall system. Once

verified individually, the blocks are then combined and verified together. At this point the

entire system is represented at the transistor level.

5

While bottom-up design continues to be effective for small designs, large designs expose

several important problems with this approach [2]:

• Once the blocks are combined, simulation takes a long time so verification becomes

difficult and perhaps impossible. The amount of verification must be reduced to meet

time-to-market goals.

• For complex designs, the greatest impact on the performance, cost and functionality is

typically found at the architectural level. With a bottom-up design style, little if any

architectural exploration is performed so these types of improvements are often

missed.

• Any errors or problems found when assembling the system are expensive to fix

because they involve redesign of the transistor-level blocks.

• Communication between designers is critical, yet an informal and error-prone

approach to communication is usually employed.

• Several important and expensive steps in the bottom-up design process must be

performed serially, which stretches the time required to complete the design.

Examples include system level verification and test development [3,4].

1.3 Top-down design

To address the above issues of bottom-up design, many design teams are looking at the

top-down design methodology. In a basic top-down approach, the architecture of the chip

is defined as a block diagram and simulated and optimized using either an MS-HDL

(Mixed-Signal Hardware Descriptive Language) simulator or a system simulator.

From the high-level simulation, requirements for the individual circuit blocks are derived.

Circuits are then designed individually to meet these specifications. Finally, the entire

chip is laid out and verified against the original requirements

A well-designed top-down design process methodically proceeds from architecture to

transistor-level design. Each level is fully designed before proceeding to the next and

6

each is fully leveraged in design of the next. It acts to partition the design into smaller,

well-defined blocks and so allows more designers to work together productively. This

tends to reduce the total time required to complete the design. A top-down process also

formalizes and improves communication among designers. The formal nature of the

communication also allows designers to be at different sites and still be effective.

Following a top-down methodology also reduces the impact of changes that come late in

the design cycle. If the circuit has to be partially redesigned, the infrastructure put in

place as part of the methodology allows the change to be made quickly. The models can

be updated and the impact on the rest of system can be quickly evaluated. The simulation

plan and the infrastructure for mixed-level simulations are available and can be quickly

applied to verify changes.

1.4 The role of chip architect

The chip architect is the leader of the top-down design process. He or she is expected to

develop the simulation and modeling plans and to coordinate with the other designers to

make sure that the plans are followed. The primary responsibility of the chip architect is

to see that the system operates as expected when finally implemented. This must be a

designer who has experience in the type of system being designed so that he or she can

anticipate and plan for problems that are likely to occur. Preferably, the person's

experience covers aspects of both system and block design.

The chip architect owns the top-level schematic for the design. This schematic must be

captured before any block design begins, even though, it is likely to change before the

design is complete. The top-level schematic specifies the partitioning of the design into

blocks and the interface for each block, so each block should be "pin-accurate", which

means, in the top-level schematic each block and each pin on each block is represented

and the type of each pin is carefully defined and documented. For example, an enable line

on a block may be denoted “3V CMOS active high”. In this way, the top-level schematic

provides clarity of intention to the design team [4].

7

Once the top-level schematic is captured, the top-level models are written and the system

is completely verified according to the simulation plan. The top-level schematic and

models are then distributed to everyone on the design team. As the design progresses, the

chip architect coordinates any changes to the block. As the block designers work, they

provide transistor-level schematics (pre- and post-layout) which are verified with mixed-

level simulation.

During the design phase, the chip architect works with the test engineers to develop the

test plan and test programs. The availability of a working model of the system early in the

design process allows test engineers to begin the development and testing of test

programs early.

1.5 Simulation and Modeling Plans

An important focus in a good top-down design methodology is the development of a

comprehensive simulation plan, which in turn leads to a modeling plan. This is done by

the chip architect with input from the whole design team. The process begins by

identifying particular areas of concern in the design. Plans are then developed for how

each area of concern will be verified. The plans specify how the tests are performed and

which blocks are at the transistor level during the test. For example, if an area of concern

is the loading of one block on another, the plan might specify that one test should include

both blocks represented at the transistor level. For the blocks for which models are used,

the effects required to be included in the model are identified for each test. This is the

beginning of the modeling plan; typically, many different models will be created for each

block.

It is important to avoid writing models that are more complicated than necessary. Start

with simple models and model additional effects only as needed. Also, the emphasis

when writing models should be to model the behavior of the block (behavioral modeling)

rather than modeling the structure. A simple equation that relates the signals on the

8

terminals is preferred to a more complicated model that tries to mimic the internal

working of the block.

It is also unnecessary to model the behavior of a circuit block outside its normal

operating range. Instead, you can add code in a model that looks for inappropriate

situations and reports them. Consider a block that supports only a limited range of input

biases, it is not necessary to model the behavior of the block when the input is outside the

desired range if in a properly designed circuit it will never operate in that mode. It is

sufficient to simply generate a warning that an undesirable situation has occurred.

Following these general rules will result in faster simulations and less time spent writing

models.

A formal planning process generally results in more efficient and more comprehensive

verification, meaning that more flaws are caught early and there are fewer design

iterations. The simulation and test plans are applied initially to the high-level description

of the system, where they can be quickly debugged. Once available, they can be applied

during the mixed-level simulations of the blocks, reducing the chance that errors will be

found late in the design cycle.

System-level design is generally performed by system engineers. Their goal is to find an

algorithm and architecture that implements the required functionality while providing

adequate performance at minimum cost. They typically use system-level simulators, such

as Simulink, that allows them to explore various algorithms and evaluate trade-offs early

in the design process. These tools are preferred because they represent the design as a

block diagram, run quickly and have large libraries of predefined blocks for common

application areas.

This phase of the design provides a greater understanding of the system early in the

process. It also allows a rapid optimization of the algorithm and moves trade-offs to the

front of the design process where changes are inexpensive and easy to make. Unworkable

approaches are discarded early. Simulation is also moved further up in the design

9

process, where it is much faster and can also be used to help partition the system into

blocks and budget their performance requirements.

1.6 Mixed-signal hardware description languages

Both Verilog-AMS and VHDL-AMS have been defined and simulators that support these

languages are emerging. These languages are expected to have a big impact on the design

of mixed-signal systems because they provide a single language and a single simulator

that are shared between analog and digital designers. It will be much easier to provide a

single design flow that naturally supports analog, digital and mixed-signal blocks,

making it simpler for these designers to work together. It also becomes substantially more

straightforward to write behavioral models for mixed-signal blocks. Finally, the AMS

(Analog Mixed Signal) languages bring strong event-driven capabilities to analog

simulation, allowing analog event-driven models to be written that perform with the

speed and capacity inherited from the digital engines.

It is important to recognize that the AMS languages are primarily used for verification.

Unlike the digital languages, the AMS languages will not be used for synthesis in the

foreseeable future because the only synthesis that is available for analog circuits is very

narrowly focused [5,6,7].

Verilog-A is an analog hardware description language patterned after Verilog-HDL.

Verilog-AMS combines Verilog-HDL and Verilog-A into a MS-HDL that is a super-set

of both seed languages [5]. Verilog-HDL provides event-driven modeling constructs, and

Verilog-A provides continuous-time modeling constructs. By combining Verilog-HDL

and Verilog-A it becomes possible to easily write efficient mixed-signal behavioral

models. A unique feature of Verilog-AMS is that it provides automatic interface element

insertion so that analog and digital models can be directly interconnected even if their

terminal/port types do not match. It also provides support for real-valued event-driven

nets and back annotating interconnect parasitics.

10

VHDL-AMS is a superset of VHDL 1076-1993, retaining all the language principles of

VHDL 1076, e.g. modularity and strong typing, while adding new powerful language

elements and mechanisms to describe analog and mixed signal systems.

VHDL-AMS adds continuous time modeling constructs to the VHDL event-driven

modeling language. Like Verilog-AMS, mixed-signal behavioral models can be directly

written in VHDL-AMS. Unlike with Verilog, there is no analog-only sub-set. VHDL-

AMS inherits support for configurations and abstract data types from VHDL, which are

very useful for top-down design [6,7].

1.7 Thesis Organization

Chapter 2 gives an overview of the existing analog and digital design flows and discusses

the need for a mixed signal design flow and finally a mixed signal flow is introduced in

this chapter.

In chapter3, the architecture of charge pump phase locked loops and the basic

mathematical modeling will be introduced.

In chapter 4, the PLL’s components are modeled using VHDL-AMS and simulation

results are discussed.

Chapter 5 covers the circuit design of the PLL components.

Chapter 6 is conclusion and some ideas for future work.

11

Chapter 2

Mixed Signal Design Flow

2.1. Introduction

During the last decade the computer and telecommunication industry has experienced a

huge evolution. Previously communication networks were only available to restricted

groups of users; recently it has become affordable for consumer markets (e.g., cellular

phones, broad band cable applications, PCs, etc.). This on going evolution has led and is

leading to the introduction of new standards and protocols to improve the channel

capacity, robustness and reliability. In addition to economic decisions, a number of

technical barriers had to be crossed to enable these achievements. Former electronic

products were assembled from discrete components and expensive technologies. Thanks

to the huge investments and persisting research, cheaper technologies have become

feasible, and new circuit topologies have emerged that overcome earlier existing

problems with traditional topologies. The use of CMOS technology has recently been

proven feasible for fully integrated transceivers. To address this market expansion, a

telecommunication company will have to increase its production volumes, reduce the

overall costs, and diversify its products. What is even more important is the short time-to-

market of its product to consolidate a large market share.

This has some implications on the design methodology. In a research environment, expert

designers develop much of the analog front-end. This is a very knowledge intensive part

of the design. However, when the product is transferred from the research to the

development department, most of the technological problems have already been tackled.

A broad range of new products now has to be developed that fit to the different existing

standards. Time-to-market is very critical. At this stage, reusability is a key issue to

shorten the design cycle. Reusability is a strict meaning implies a copy-and-paste action

of an existing component into the new design. Here, however, reusability in a broader

12

sense is intended. Reuse starts at a much earlier stage. Starting from existing design

frame works and sets of necessary equations, the decision trajectory of previous designs

is followed as much as possible. This allows tuning of certain design parameters,

studying quickly the influence on the system performance, and tailoring the design to

different applications.

By following a systematic design methodology consistently, the reuse of a large part of

the design can be drastically accelerated. Typically a top-down design and bottom-up

verification method is used [8]. Therefore, different abstraction levels are identified. At

each level, the behavior of the overall circuit is evaluated using models of the composing

blocks. Each model calculates its output variables given the input variables. The format

of these variables depends on the abstraction level. In an analog design environment,

high-level variables might be a complete signal spectrum, or harmonic distortion

components, whereas low-level variables are voltages, currents, widths, and lengths of

transistors. Top-down implementation then implies that lower level model parameters are

assigned a value such that the higher-level model meets its specifications at a minimum

cost (i.e. minimum power consumption or chip area). After having given all variables a

value and having designed and laid out every block, a verification of each

implementation is performed to take lower level second-order effects into account in the

performance at the higher level.

This design methodology is supported by a number of behavioral models at different

levels.

2.2. Defining different level of abstraction

A top-down bottom-up verification methodology starts from the definition of different

abstraction levels. In the digital design methodology, these levels are well defined as seen

in Figure 2.1. At the behavioral level, signal transfers are usually described under the

form of an algorithm. Signals are represented using reals and integers. The next level is

the register-transfer level. The execution time frame of the algorithm is partitioned into

13

clock cycles. Moreover, all data have a binary representation. At the functional level, all

operations are scheduled on a number of functional blocks (multipliers, accumulators,

registers, etc.). Control signals are clearly determined. At the gate level, these functional

blocks are decomposed into elementary logic gates. Finally the logic gates are replaced

by their transistor equivalents at the transistor level.

In the analog domain, these different levels of abstraction are less distinguished as seen in

Figure 2.1. At the functional level, the basic signal flow is described in terms of

mathematical functions. No conservation laws on the interconnecting nodes have to be

satisfied. One level lower, at the behavioral level, these mathematical functions are

replaced by a number of high-level blocks e.g., linear transfer functions, op-amps, A/D

converters, etc. The conservation laws are now enforced. Still one level lower, at the

macro level, the circuit consists of elementary components, such as resistors, capacitors,

controlled sources. By adding more detail to these models, second-order effects (slew

rate, finite gain, etc.) can be taken into account as well. Finally at the circuit level, the

circuit is decomposed into its elementary components and all the design parameters can

be assigned values [8].

14

Figure 2.1 Different abstraction level

2.3. Modeling Requirements

Setting up libraries with models for the different building blocks is a necessary effort.

Fortunately, the availability of an appropriate model library has a number of advantages

to justify all this work. The introduction of hierarchy and abstraction in the digital

domain allows the designer to handle larger degrees of complexity. The complexity of the

analog part also tends to increase employing different types of models at different levels

can then elevate the analog design abstraction.

Digital Analog

Behavioral
Level

Register
Transfer Level

Layout

Functional
Level

Gate Level

Transistor Level

Functional
Level

Behavioral Level

Macro Level

Transistor
Level

Layout

Circuit Level

15

Once analog building-block models are developed, they can be instantiated to perform a

system design. When implementing a lower level of the design, the higher-level

description is used as a specification and reference.

When developing models, some requirements have to be fulfilled. The functionality

should be modeled in a generic, parameterized way. The model can then cover a wide

range of design spaces of underlying lower level implementations.

When one wants to evaluate a certain specification, all circuit aspects that influence this

specification should be included in the model. In general, a tradeoff can be made between

the accuracy of the model and the necessary evaluation time. In the first stages of a top-

down implementation, less accurate models can be allowed to get a rough estimate of the

design space.

Finally, all these models should be implemented in a standardized manner. This will ease

the exchange and reuse of models. In digital designs, the use of VHDL or Verilog is

widespread, both for simulation and synthesis. In the analog domain, however, the

VHDL-AMS and Verilog-AMS standards are about to be finalized and commercial

simulators will soon be released.

2.4. Existing Analog and Digital Design Flow

2.4.1 Digital Design Flow

There are various versions of a digital design flow in industry. Each company or research

lab, bases theirs on available resources, tools and type of design. As such, they come up

with different versions of a design flow. Digital design flows are well established in the

industry and the reason for this is the many CAD tools in the market that can help

designers to complete the design (http://www.cmc.ca/).

In every digital design, the following shows major steps in a digital design :

16

• High-level System Design

• Architectural Exploration

• RTL Simulation

• Design For Test

• Timing-Driven Logic Synthesis with Scan Insertion

• Gate-Level Simulation

• Floorplanning and Timing-Driven Placement

• Extraction and Delay Calculation

• Pre-Clock Tree Synthesis Timing Check

• Clock Tree Generation

• Pre-Route Golden Verilog Netlist Verification

• Routing

• Post-Layout Static Timing Analysis

• Physical Verification (DRC & LVS)

• Manufacturability

• Tape-Out

2.4.2 Analog Design Flow

As already mentioned in the previous section, design flows are dependent on the design

environment’s CAD tools. CMC’s analog design flow was selected for the analog part of

the proposed mixed signal design flow (http://www.cmc.ca/). The steps will be further

described in the next section. The primary objective of the analog design flow is to

produce working parts and the secondary objective is to make the parts re-usable.

The following shows the major steps in a typical analog design flow:

System-Level Design

• Set Design Goals and Priorities

• Preview Spec Gate

• Functional Capture &Architectural Exploration

17

• Packaging Selection

• Verification: Simulation and Test Plan

• Partitioning & Block Behavioral Modeling

• Top-Level & Block Specification Documentation

• First-Pass Gate

Block-Level Design

• Topology Selection & Block Schematic Capture

• Test Plan Update

• Pre-layout Simulation with Estimated Parasitics

• Optmization

• Layout

• DRC/LVS

• Post-layout Simulation

• Block-Level Gate & Risk Assessment

• Block Specification Update

• Pre-top Level Gate

• Top-level Layout Design

• Post-layout Gate

• Complete Documentation & Test Plan

• Create ROL (read only library) & Archive

• Tape Out

2.5. Mixed Signal Design Flow

There are two different approaches for designing mixed signal systems. In the first

approach, the mixed signal system is decomposed into pure digital and pure analog sub-

systems and each of these sub-systems is designed individually using the analog and

digital design methodologies. Because of the interaction between the analog and digital

sub-systems the designer should find an equivalent model of the analog circuit at the

connection port of analog and digital systems. Finding the circuit equivalent of the

18

analog sub-system could be very difficult and in most cases, it is not accuracy enough to

model the actual behavior of the analog circuit. On the other hand, generating digital

signals in an analog simulation environment is difficult and in most of the cases the

designer assumes simplified equivalent control signals. In this approach, the simulation

of the overall system is only possible at the final stage of design and after completing the

layout. Any changes at this stage are difficult and time consuming. Before the post-layout

simulations, designers can only simulate the effect of digital and analog interactions at

the system level.

By comparing different abstraction levels in the digital and analog design flows, we can

see some similarities between the two flows. The second approach for designing the

mixed signal system is based on analog-digital co-design. In this approach, after the

system level design, the behavioral / RTL model of the overall system will be developed

and verified. VHDL-AMS can be used to have a mixed signal model of the chip. The

digital part would be described using a RTL synthesizable subset of the language, while

the analog part would be partitioned into functional blocks at the functional or behavioral

level, e.g. Filters, VCOs, opamps, etc. The whole model can be simulated using test

benches written in VHDL-AMS. The next step is the block design which has different

steps for digital and analog blocks. The digital part of the chip can be synthesized using a

logic synthesizer to produce a gate level netlist. Analog blocks are individually designed

at the transistor level. After completing each block, it is possible to test the block in the

interaction with other blocks using the test benches developed earlier.

Standard cells place and route tools can produce the layout of the digital part from the

gate-level netlist. The layout of the analog block is usually created manually or through

dedicated module generators. From the layout the parasitic elements are extracted. Those

elements related to the digital part are used to compute delays that are stored in SDF

(Standard Delay Format) files. The final simulation can be done using the extracted

layout view of the overall chip. Figure 2.2 shows this approach.

19

Figure 2.2 Analog / Digital co-design

2.5.1. Proposed mixed signal design flow

The proposed mixed signal design flow is based on analog-digital co-design methodology

and has two distinguished levels of abstractions.

• System Level Design

• Block Level Design

VHDL-AMS
simulation

VHDL-AMS Behavioral
Models

Analog
Part

Digital
Part

Logic Synthesis Analog Design

P&R Block Layout

Parastic Extraction

Post layout
Verification

Layout

Back annotation

VHDL-AMS
Test bench

20

System level Design

Figure 2.3 shows this part of design flow. The following major steps shall be followed at

this level:

Set Design Goals

A design process starts with a clear statement of the problem, a search of existing state of

the art solutions, clear objectives of the current design, identification of a possible

solution for achieving the objectives and selection of implementation for the solution. A

marketing or preview spec can be generated at this point on paper for peer review. The

specs should include descriptions of functions, estimated performance metrices (speed,

power, noise, etc.) and projected operating constraints (bias, thermal, I/O impedance,

proximity, etc.).

Preview Spec Gate

With goals and priorities set and resources planned, a peer review should be done to

ensure that the overall scope of the design project is acceptable and the right decisions

have been made before proceeding further.

System Level modeling

The preview system specs are captured with Matlab/Simulink or VHDL-AMS for a more

precise definition and verification of the specs and to allow the exploration of appropriate

architectures by using available modules from existing libraries and/or mathematical

representations created by the designer.

At this stage the use of re-usable (IP) blocks should be considered as their availability can

have a strong impact on the selection of architecture and development time.

21

Figure 2.3 System Level

Set Design Goals

System Level Modeling/
Architectural ExpolarationPackage Selection

Top Level Partitioning
(Analog & Digital Sub-Systems)

Verification:
Simulation & Test Plans

Block Behavioral Modeling (Analog Blocks)
RTL Coding (Digital Blocks)

Mixed Signal Behavioral Verification

Top-Level & Block Specification
Documentation

Bahaviroal Verification
Model Update & Schematic Instantiation

Preview Spec
Gate

Blocks Complete? 1

3

2

No

Yes

See fig. 2.4

See fig. 2.4

See fig. 2.5

22

Packaging Selection

The designer should select the packaging solution early because the design or the final

product will eventually need to interact with the outside world through its packaging and

the packaging chosen may significantly affect the design’s behavior. Considering

packaging effects in the early design stage is crucial. The decision on the packaging can

have a strong impact on design. It can constrain partitioning, improve the accuracy of

behavioral modeling if a packaging model is available and enhance the validity of

simulation/test plans.

Verification: Simulation and Test Plan

In parallel to the architecture exploration, the verification strategy including simulation

plan and test plan should be considered. The issues to be considered include how top

level netlist and each block or sub-block will be modeled and simulated, what types of

simulations (transient, ac, noise, frequency domain) of simulations at each level will be

used, how the stimuli will be created, how the interference between the blocks will be

modeled, what tests to be performed, what test equipment to be used, how to bias the

chip, what supply decoupling is satisfactory, what DFT techniques should be used to

facilitate testing and diagnosis. Some of verification plan details can also be derived after

design partitioning and behavioral modeling. It is an iterative process between

verification planning and partitioning and behavioral modeling.

Top Level Partitioning

The architecture is partitioned into digital and analog blocks and each of the digital and

analog blocks are further partitioned into basic sub blocks. The architecture must be

partitioned in a way that maintains as much hierarchy as possible, makes use of common

implementable functional blocks, minimize critical connections between blocks and must

be consistent with the chosen packaging technology in terms of electrical, mechanical

and thermal characteristics.

Block Behavioral and RTL coding

Behavioral modeling can be done for both analog and digital blocks using VHDL-AMS .

23

The overall behavioral model of the system can be simulated and verified. There could be

different levels of abstraction for each behavioral model starting with simple models and

then designing more complex models. Digital blocks can be modeled both at the

behavioral and RTL levels. Power domain and clock strategy must be considered to

obtain the optimal power distribution and consumption, to enhance routability, reduce

interference among blocks, facilitate clock signal generation and distribution.

Mixed Signal Behavioral Verification

Top level behavioral simulations must be performed to achieve satisfactory functional

and performance results against the preview specs before proceeding further down the

flow. Otherwise the designer needs to go back to structural mapping, partitioning and

behavioral modeling until the targets are met.

Top-Level and Block Specification Documentation

When the results are satisfactory, the designer needs to document the functionality,

performance, interface conditions, physical size and power consumption for the top level

design as well as each autonomous and re-usable block. The documentation is crucial in

tracking the design optimization process, helpful in guiding design convergence and

essential for passing the gating process. It is also required for revision tracking.

Block Level Design

Block level design for digital and analog blocks is different. Design of digital blocks is

based on digital synthesis and standard cell libraries. It is a process that can be done

using available synthesis tools. Designing analog blocks is done by the designer and his

knowledge of analog circuit design. Figure 2.4 shows this part of the design flow. The

steps for each of these design processes are explained briefly.

Analog Block Design

Topology Selection and Block Schematic Capture

A schematic corresponding to the block behavioral description will be created (in

24

Cadence Composer) and it must be properly linked to the behavioral model for later

instantiation. Each schematic must have the proper pins so a symbol can be created from

the schematic and be used to construct a test bench for circuit simulations.

In terms of selecting a circuit topology one needs to decide on which active and passive

devices to use and to take in account several factors including gain, frequency range,

power handling capability, availability of models, etc.

Test Plan Update

This is a good time to revise the test plan since more design details are available at this

point and to take into account all the necessities to test the final circuit.

Pre-layout Simulation with Estimated Parasitics

When constructing the block schematic, the designer needs to consider ways of

incorporating parasitics into the simulations. Therefore, a rough layout for extracting or

estimating critical parasitics prior to schematic simulation is desirable since it would help

identifying problems early and facilitate design convergence. The appropriate circuit

topology can be selected with confidence and necessary circuit adjustment can be made

before spending a significant amount of effort on detailed layout. A rough layout also

helps estimate the block size that can be important in the overall design.

Hspice or Spectre can be used to perform several types of simulations including: DC,

transient, AC (noise), and nonlinear frequency domain analysis. A DC analysis is used to

establish proper biasing.

Optimization

At this point, performance and yield optimization is performed, if necessary, on the

analog design of each block. Performance optimization requires fine tuning of circuit

components and biasing or may be the addition of circuit components. The circuit is

resimulated and adjustments are made to meet the predetermined performance criteria.

25

Figure 2.4 Block Design

Constraints
Area Timing
Power Test

YES

NO

1

Analog Blocks Digital Blocks

Topology selection & Block
Schematic capture

Test Plan Update

Pre-layout Simulation
with estiated parastics

Optimization

Post-layout Simulation

DRC/LVS

Layout

Libraries
Synthesis

Fault Simulation

Gate Level Simulation

Floor Plan

Placement

R/C Extraction

RC Delay Estimation

Meet timing

Clock Tree Synthesis

Routing

Static Timing Analysis

Meet Timing
Block Specifictaion

Update

End Block Diagram

2

Verilog Simulation

SDF

DEF

Verilog test
Bench

SDF

Verilog
Netlist

NoYes

See fig. 2.3

See fig. 2.3

26

Performance optimization tends to maximize the performance margin without

considering manufacturing yield. Even though a nominal design can meet specifications,

a significant number of chips may fail when component values are allowed to vary within

their tolerance. A process called Yield Optimization is used to overcome the weakness of

performance optimization which takes the tolerance of devices into consideration.

Layout

After the schematic has been optimized to meet specifications, Cadence Virtuoso-XL can

be used to perform schematic driven placement for the cells or devices and routing the

layout.

Block layouts are likely to be used as macros for place and route at a higher level.

Therefore, some consistencies regarding what type of metal layers to use and where

power/ground pins are located is desirable. Hierarchial layout style is recommended for

handling the complexity of a large block design.

DRC/LVS

Frequent design rule checks (DRC) on layout, particularly with the ones constructed

manually, picks up errors early and makes debugging simpler. When running DRC be

aware of the various switches that control the turning on or off of particular rule sets in

case designers want to deal with selected DRC problems one at a time. Eventually, the

design must be clean of violations against all rules. For deep sub-micron technologies,

space fill rules and antenna rules, are as critical as other rules and must be observed.

After layout and DRC, Layout Versus Schematic (LVS) verification is performed to

ensure that the netlist created by the schematic and that of the extracted layout match. If

they do not, the errors should be corrected.

27

Post-Layout Simulation

An extraction of the layout followed by post layout simulation ensures that most of the

parasitics are as expected and any unaccounted for parasitics have not significantly

affected the design’s performance. The post layout simulation results may indicate that

some adjustments or optimization is required, perhaps even going back to block

schematic capture.

Digital Block Design

The digital design blocks are mostly the same design flow as in the CMC digital design

flow for synthesis.

Logic Synthesis

This step includes the creation of timing budget for digital blocks; scan insertion,

technology dependent mapping and optimization. If the design’s HDL code is not

synthesizable, the RTL code should be modified. The designer should define the design

environment, constraints, design rules, technology libraries and compile strategy. In this

thesis, the Design Compiler was used to synthesize HDL description into technology

specific gate level implementation. After synthesizing the design into a gate level netlist,

timing analysis was done. This process is interactive and might require modifying the

original HDL code or the synthesis constraints.

A scan chain can be inserted. This process will replace all the flip-flops with their

scannable equivalent. The multiplexed flip-flop scan style is the most commonly used

DFT technique.

Gate Level Simulation

The gate level simulation enables the designer to check the functionality of the structural

netlist against the RTL simulation. The testbench used previously for the RTL simulation

is used here. Using VHDL-AMS, the designer can verify the functionality of the

synthesized block in interaction with analog blocks.

28

Floor planning

This steps involves the creation of rows around the perimeter of the design area for

placing the I/O pad cells, core area with spacing the I/O pads, rows or columns or both in

the core area. The designer may also create a power grid prior to placement. This step

may also include placement of cell groups or macro blocks to optimize the connectivity

between groups and blocks. The automatic placement tests potential placements for the

design and tries to optimize the placement for overlap removal, routing congestion

balancing, power balancing, wire length and timing assurance.

Extraction and Delay Calculation

This step is needed to extract parasitic capacitance and resistance from the layout to

calculate and apply delays in static timing analysis and/or full timing simulation using

Verilog-XL. The parasitic information is extracted from the layout, and interconnects

delays included in the SPF (Standard Parasitic Format) file.

Pre-Clock Tree Synthesis Timing Check

The static timing analysis should be performed using projected parasitics to verify that all

timing goals/constraints set after synthesis are still met.

Clock Tree Generation

The designer has to build a clock tree when a large number of cells are clocked by a

single driver cell. In this case we are trying to control the signal skew at the clocked cell’s

input. It is assumed that the physical library includes timing data in a Timing Library

Format (TLF). All modifications to the netlist are saved in a DEF (Design Exchange

Format) file for back annotation to the original netlist.

Routing

This step includes global and final routing. Global routing usually consists of a coarse

regular wiring layout based on obstructions resulting from special wiring, clock wiring

and placement. Analyzing the routing congestion map before attempting the final routing

29

is recommended. Final routing creates the detailed regular wiring layout. Post layout

timing analysis may be done after routing. It can be done by back annotation of SDF file.

Post Layout Static Timing Analysis

Using SDF, CAP and RES files with accurate timing information post layout simulation

and timing verification can be performed by back annotating the SDF file.

DRC & LVS verification

It is very important to run DRC and LVS on the layout to be sure that the connectivity,

the geometry and the spacing are correct and the layout matches the schematic. This step

includes a flat extraction of the layout.

Block Specification Update

After each block is done, it is possible that an update on the block specs is required and

therefore the respective block documentation will have to be modified.

To verify the updated behavioral model and physical layout of each block, the designer

needs to perform two simulations from the top level, one with and one without circuit

instantiation of the target block. Other blocks should remain at the behavioral or RTL

level for these simulations. The same test bench created at the partitioning and behavioral

modeling stage should be used for this regression simulation.

Top Level Layout Design

At this stage of the flow, the layout of all analog and digital blocks are ready and we have

to integrate them. Cadence Virtuso-XL can be used to perform schematic driven

placement for the blocks at the top level based on the top level schematic created earlier

at the partitioning stage. DRC and LVS are performed to ensure correctness of the layout.

Figure 2.5 shows this part of the design flow. Post layout extraction and simulation are

done to verify the top level parasitic modeling. Any errors revealed by DRC/LVS or any

undesirable parasitics revealed by post layout simulation need to be corrected by going

back to top level layout or block layout.

30

Figure 2.5 Chip Integration

Pre-Top Level
Gate

3

Top-Level Layout

DRC/LVS

Post-Layout Simulation

Post-Layout
Simulation

Test Plan CompleteDocumentation Complete

Read Only
Archive

Tape Out Gate Archive Of Behavioral
Models

Verification of Returned Chip

Archive of Re-usable Hard Block

Check GDSII

See fig. 2.3

31

Post Layout Gate

When the top level design passes post layout simulation, a post layout gating should be

done. Gating is a peer review of the process to ensure that a post layout simulation has

been performed properly and to check on manufacturing issues such as power/thermal

considerations, metal migration issues, power IO to signal IO ratio, ground bounce

problem, proper design ID.

Complete Documentation & Test Plan

In parallel, top level design documentation needs to be completed or updated after

successful post layout simulation and so does the test plan. At this point, the exact test

setup or procedures down to what pin is connected to what instrumentation through what

fixturing can be described. All that will converge back to post layout gating. Complete

design documentation and test plan are essential components of passing the post layout

gate.

Read Only Archive

After passing the post layout gate, a read only library (ROL) should be created to archive

the design. Preferably the design data is archived in a standard data formats such as

GDSII/DEF/LEF. The design must be frozen at this point so the right version of the

design can be used for debugging later on. Archiving designs using consistent format,

style, directory structures makes re-use easier. For re-use purposes, it is even more

important to archive the technology independent behavioral models than the physical data

files. The behavioral models must be properly documented and stored. Before sending

out the GDSII file for fabrication, it is desirable to read the file back into Cadence to

perform an LVS against the original layout to ensure there are no translation problems

occured.

Tape Out

The GDSII file can then be sent out for fabrication.

32

Chapter 3

Charge Pump PLL

3.1. Introduction

Phase locked loops (PLLs) are used in many applications, such as frequency synthesizers,

clock recovery circuits, receiver demodulators and modulators. In particular, as a result of

the boom in wireless communications, the design of the frequency synthesizers has

recently received a lot of attention in both industry and universities. The IC market is

pushing toward a higher level of integration and lower power consumption. The inherent

lower power cost and higher density of CMOS technology make it attractive for mixed

signal devices.

PLLs are for external phase synchronization and clock multiplication, and are widely

used for high speed microprocessor applications. A PLL allows the clock signal to be

generated on-chip. This important feature of the clock generator avoids problems relating

to signal integrity. Another important feature is that the PLL aligns the core clock with

the reference clock frequency by including the clock tree buffers in the feedback loop of

the PLL. This accurate alignment allows synchronous fast and efficient data transfer

between the core and the external world.

However, power-supply noise generated by large switching digital circuits like

microprocessors perturbs the analog circuits used in the PLL. The output clock period

may change with the power-supply noise and with other sources of noise (for example

thermal noise in MOS devices). It is common to refer to this change as jitter, which is a

33

variation of the clock period from one cycle to another cycle compared to the average

clock period. The clock jitter directly affects the maximum running frequency of the

processor because it reduces the usable cycle time. When the clock period is small, the

digital circuits in the critical path may not have enough usable time to process the data in

one period, resulting in the failure of the processor (critical path failure).

The supply noise generated by the switching activity of the processor appears to induce

an important part of the jitter and phase misalignment. This supply noise problem is even

more significant when the microprocessor shares the same substrate as the analog circuits

and when the power consumption of the microprocessor is large.

The power supply noise perturbs the analog circuit in many ways. The most common is

the ripple induced on the supply voltage, which perturbs analog circuits having a high

sensitivity to power supply. Another source of perturbation is the current flowing in the

substrate that creates voltage gradients in the substrate, which modulates the threshold

voltage of MOS devices. As the maximum frequency of the core clock is of primary

concern in this design, the performance of the clock generator in terms of jitter and phase

alignment are crucial [9].

3.2. Charge pump PLL Architecture

A PLL circuit is a negative feedback control system as shown in Figure 3.1. As can be

seen, a charge pump phase locked loop consists of a phase detector, a charge pump, a

loop filter, a voltage-controlled oscillator and a divider. The loop filter can be either

passive or active. The negative feedback adjusts the phase of the of the divided VCO

output to match the input phase and forces the frequency of the divider output to be equal

to the input reference frequency.

The phase detector compares the phase of the reference input to the phase of the feedback

signal, i.e, the divided output of the VCO. Triggered by the rising or falling edge of the

inputs, the phase detector creates a pulse in the two outputs, UP and DOWN,

34

respectively. The difference between the duration of the two pulses is proportional to the

phase difference.

Phase detector output signals, UP and DOWN switches the current flow into or out of the

loop filter. Thus the charge pump with the loop filter performs a conversion from the

digital outputs of the phase detector to an analog voltage to control the VCO frequency.

The phase detector output controls the amount of charge pumped into or out of the loop

filter depending on the relative phase of the inputs. The loop filter converts the charge

into a control voltage that alters the VCO frequency. For example, if the input reference

has a higher frequency, the UP current is turned on to increase the control voltage, which

in turn speeds up the VCO until the VCO frequency becomes N times the input reference

Figure 3.1 Block diagram of a charge pump phase locked loop

frequency. Thus when the loop locks, there is no net charge going into or out of the loop

filter in each comparison cycle. A dc control voltage is maintained to run the VCO at the

lock frequency [10].

3.3. PLL Modeling

Modern high speed microprocessors employ deep-submicron CMOS devices to achieve

gigahertz operating frequencies. As the gate level is shrunk to achieve faster operation,

D N

U P
P ha se
D e te c to r

Cha rg e
P um p

L oop
Filte r

V olta ge
Controlle d
O sc illa tor

D ivide By N

35

the power supply voltage is reduced to avoid break down and reliability failures.

Analog circuit design becomes more difficult for 0.18 µm CMOS process that requires a

1.9 V power supply voltage. Making matters worse, the allowable clock jitter decreases at

higher clock frequencies for a given clock skew tolerance; e.g., a jitter less than 4% of the

clock cycle time is typically required to avoid functional failures in a microprocessor.

Moreover, the high degree of integration leads to the generation of substantial digital

switching noise that is coupled through the power-supply network and the substrate into

noise-sensitive analog circuits [11].

A charge-pump phase-locked loop (PLL) often employs a series RC loop filter where R

is added to form a left-half-plane (LHP) zero that stabilizes the loop. Figure 3.3 shows a

second-order RC loop filter connected to the charge pump circuit. This approach is

limited by process, voltage, and temperature variations of the resistance. Process

variations alone are typically 30% for an ion-implemented resistor in a digital CMOS

process. Since the damping factor is proportional to R [11,13], loop stability changes

dramatically with process, voltage and temperature variations.

The proposed design, as described in the next chapter, is a resistorless architecture. To

stabilize the loop, feed forward current injection was implemented using an auxiliary

charge pump.

There are two region of operation in a PLL. In the unlocked condition when no input is

present, the VCO runs at the free frequency, ω0 , which corresponds to the VCO

frequency with zero applied control voltage. Once an input is applied, the loop operates

in a non-linear fashion to acquire frequency locking by varying the VCO frequency.

When the loop reaches the locked condition, the loop can be modeled as a linear system

with constant gain assigned to each building blocks.

KPD is the phase detector gain in amperes per radian. Zf (s) is the loop filter transfer

function. K0 is the VCO gain in radians/second per volt. N is the divider ratio. Modeling

36

the loop as a feedback system as in Figure 3.2, one can derive the loop transfer function.

Breaking the loop at the VCO output, the open loop gain would be

s

KsZK
sA

fPD 0).(.
)(= (3.1)

The pole at the origin comes from the integration of frequency in the VCO to obtain the

output phase. The order of a PLL is defined by the number of poles in loop transfer

function. Thus, if the passive filter is a second-order filter, the loop associated with it is a

third-order PLL. Using feedback analysis, since the feedback factor, f, is 1/N, the loop

transfer function becomes

)(1

)(.

)(

)(
)(0

sG

sGN

s

s
sH

i +
=

Θ
Θ

= (3.2)

where G(s) is the loop gain.

sN

KsZK
fsAsG

fPD

.

).(.
).()(0== (3.3)

Figure 3.2 PLL Loop

Using feedback analysis, the relationship between the PLL loop bandwidth and the

design parameters can be shown. From equation 3.2, it can be observed that the PLL loop

bandwidth is the unity gain bandwidth of G(s), the loop gain. Zf(s) determines the poles

and zeros of G(s) as they are related by equation 3.3. Figure 3.3 shows the charge pump

circuit with a second-order loop filter. Assuming C1 is much larger than C2 in Figure 3.3,

the location of poles and zeros are as follows.

oθ
iθ

-

KPD Zf(s) K0 1/s

1/N

37

Figure 3.3 Charge pump with second-order loop filter

)1.(

)1.(

)(

2

1
1

p

s
s

z

s
K

sZ f

+

+
= (3.4)

11
1 .

1
CR

z =

21
2 .

1
CR

p =

Usually, C2 is small compared to C1, so that the low-frequency response of the loop filter

is essentially the same as a second-order loop without C2. G(s) contains the poles and

zeros of Zf(s) and an additional pole close to dc from the VCO.

C2

UP

DOWN

Iup

Idown

C1

R1

38

As equation (3.2), shows, the PLL loop bandwidth, PLLω is where the magnitude of loop

gain, G(s), reaches 0 dB. Assuming that C1 is much larger that C2, Zf(s) at the frequencies

around the loop bandwidth is approximately equal to R1. Substituting R1 into Zf(s) and

PLLjω into s in equation (3.3), the PLL loop bandwidth is

N

KRK PD
PLL

0..
=ω (3.5)

Phase angle,)(ωΦ and phase margin,)(ωmΦ , depend on the location of the zeros and

pole.

°−









−










=Φ −− 180tantan)(

21

11

p

PLL

z

PLL

ω
ω

ω
ωω (3.6)











−










=Φ −−

21

11 tantan)(
p

PLL

z

PLL
m ω

ω
ω

ωω (3.7)

Taking the derivative of the phase angle with respect to frequency and setting the

derivative to zero determines the location of the maximum in the phase response. In other

words,

0
)(=

∂
Φ∂

ω
ω

 (3.8)

The result can easily be shown that the location of the maxima is the geometric mean of

the pole and zero.

21
. pzm ωωω = (3.9)

To maximize the phase margin for stability, it is desirable that the maxima of the phase

response occurs at the PLL loop bandwidth. Then the phase margin becomes

2

1

1

2 11 tantan
p

z

z

p

m ω
ω

ω
ω −− −=Φ (3.10)

39

Phase margin increases as the zero and pole are placed further apart [12].

3.4 Resistorless Charge pump PLL

Charge pump PLLs usually have a series RC loop filter where R is added to form a left

hand plane zero that stabilizes the loop. This approach has limitation because of process,

voltage and temperature variations that cause a change of loop stability. The approach in

the proposed design is to stabilize the loop using feed forward current from an auxiliary

charge pump circuit. A block diagram of this PLL is shown in Figure 3.4. It uses a three-

state phase/frequency detector (PFD), and its loop filter capacitor, Cp, is referenced to the

separate analog supply. A PLL that uses a single capacitor loop filter without a resistor is

marginally stable [13].

Figure 3.4 Continuous time PLL model

inΦ

outΦ

IDVCTRL

EΦ

KCH

s
Gm

KDMP

1

s

KCCO

+

+

+

-

IDMP

outω

40

The open loop transfer function of this system is:

s

s

s

KGK

s

K
K

s

GK
sA zCCOmCHCCO

DMP
mCH ω

+
⋅

⋅⋅
=⋅





 +

⋅
=

1

)((3.11)

DMP

mCH
z

K

GK ⋅
=ω (3.12)

From the above equations, note that the PLL with feed forward error correction is

equivalent to a PLL with a loop filter that has a zero at ωz and a pole at the origin. KDMP

is an important parameter that can be varied independently of the natural frequency and

open loop gain. The natural frequency and damping factor of the closed loop system are:

CCOmCHn KGK ⋅⋅=ω (3.13)

mCH

CCODMP

GK

KK

⋅
⋅=

2
ξ (3.14)

As KDMP increases, the zero frequency decreases and the damping factor increases. If the

unity gain frequency is high, the phase margin of the loop increases. The stabilizing loop

zero is created by a feed-forward path from the PFD output to the voltage-to-current (V-I)

converter input of the voltage controlled oscillator (VCO).

3.5. PLL Performance Measures

There are several figures of merit which determine the PLL’s performance. The three

most important figures of merits which were considered are: lock time, jitter and power

consumption.

41

Lock time is the time it takes for the PLL to re-enter the locked condition when switching

from one frequency to another. One of the most successful ways to reduce power in

digital signal processors is to turn off the PLL when it is not in use. Since the time it takes

for the PLL to turn on again could be as much as a few milliseconds, it is important for a

PLL to have a small lock time.

Another figure of merit that is important in PLL design is jitter. Jitter refers to the random

variation in the generated clock period due to various noise sources in the PLL.

The three fundamental sources of noise at each block are:

• Thermal noise

• Coupling of noise from the power supply

• Coupling noise from the substrate

3.6 Design specification

Input:

Amplitude of input signal (Vref) = 1.8 V (± 10 %)

Impedance of signal source (Rs) = 50 Ω

Input frequency (ω ref) = 150 ~ 200 MHz

Power supply : 1.8 V (± 10 %)

Minimum PLL supply voltage (800 MHz): 1.4 v

Operating frequency range (VDD = 1.8 V):

CCO 200 MHz ~ 1 GHz

PLL output 200 MHz ~ 800 MHz

Peak-to-Peak period Jitter (600 MHz): ≈ 60 ps

Loop bandwidth: ~ 2.5 MHz

Power dissipation: ~ 25 Mw

Locking time: < 100 nsec

Thermal environment: 10 °C ~ 80 °C

42

Process technology: 0.18 µ m CMOS

Die size: <2.5 mm x 1.5 mm

3.7 Package Selection

Since there are high frequency nodes connected to the outside world, small packaging

would decrease the effect of parasitics. Package models are available for estimation of

parasitics. Because of low power consumption of the chip, no heat sinking is required.

Cavity size should be greater than 2.5mm x 1.5 mm to accommodate the design. As a

result, the CFP (ceramic flat pack) was selected. The pin count depends on the number of

I/Os, biasing, testing points and power supplies. It is estimated that about 25 pins are

required. Thus, either the 24-pin CFP or the 44-pin CFP could be selected.

43

Chapter 4

Behavioral Modeling

4.1. Phase Detector

Phase Detector, as its name implies, is capable of detecting a phase difference between

two inputs. The output is proportional to the phase difference. The simplest

implementation of a phase detector is an XOR gate. A phase frequency detector, on the

other hand, is capable of detecting both phase and frequency differences.

A type 4, phase frequency detector has been used for this PLL. In this architecture there

are a total of four possible states.

If the frequency of the REF signal is lower than the frequency of the FBK signal, then the

DOWN signal goes high. This is an entirely digital block and can therefore be modeled

behaviorally by identifying the events that result in a change of the state of the phase

detector. The following events were defined to model the phase detector.

Event1: (Rising edge of REF) AND (NOT RESET) sets A after delay.

Event2: (Rising edge of FBK) AND (NOT RESET) sets B after delay.

Event3: (A) AND (B) sets RESET after delay.

Event4: (RESET) resets (A) and (B) after delay.

Event5: (A) sets (NOT UP) after delay.

Event6: (B) sets (DOWN) after delay.

One important issue concerning phase frequency detectors is the phase resolution that

they are able to detect. It is important to model the correct rise time, fall time and delay

associated with the transition of every state. Mismatch in delay in the generation of the

44

UP and DOWN signals results in unequal times in pump-up and pump-down cycles and

hence causes jitter in the feedback clock during phase lock. Delay causes jitter in the

output and locking time of the PLL will be increased. Figure 4.1 shows the simulation

results of the behavioral model of the phase detector. All the simulations in this chapter

were done using the Advance MS (ADMS) simulator.

Figure 4.1 Phase detector simulation

45

4.2. Charge Pump and low pass filter

The charge pump, pumps current into the low pass filter. This action is controlled by the

UP and DOWN signals from phase detector. During phase lock, ideally one would want

equal pump-up and pump-down cycles. The difference between the pump-up and pump-

down currents contributes to jitter in the feedback clock.

The behavioral model of the charge pump is a mixed signal model. The inputs are digital

signals coming from PFD (phase frequency detector) block while current sources and

switches are modeled as analog blocks. Figure 4.2 shows the simplified diagram of the

charge pump.

Figure 4.2 Charge Pump

Idown

Iup

db

ub

d

u

46

A single capacitor and the active damping factor control block represent the low pass

filter in this design. The damping factor controller is modeled as part of the voltage to

current (V-I) converter block. The mixed mode simulation environment of VHDL-AMS

supports the simultaneous simulation of behavioral blocks and analog circuit equations.

In order to be able to model the effect of switching delay in the operation of the charge

pump, turn-on and turn-off delays were considered in the switch model as well as turn-on

and turn-off resistance of the switch.

4.3 Voltage Controlled Oscillator

The VCO comprises of four different sub-blocks:

• V-I converter

• Damping factor controller

• Current controlled ring oscillator (CCO)

• Voltage level shifter

4.3.1 V-I converter

The V-I converter was modeled as a non-ideal voltage controlled current source. In the

actual circuit, a transistor based current source would perform as the V-I converter. The

effect of the following non-idealities were considered :

• Threshold voltage of MOS transistors (Vth)

• Output conductance of the current source (G)

By changing the gain of the current source (Gm) and the above non-linearity factors, one

can model the behavior of the V-I converter with good precision.

4.3.2 Damping Factor Controller

The DFC (damping factor controller) block consists of two parallel voltage controlled

47

current sources and two sets of complementary switches. In terms of behavioral

modeling, we can say that it is a mixed signal block, which has both digital inputs and

analog terminals. Figure 4.3 shows the block diagram of this block. Vcontrol is the same

input to the VI converter block. The digital input signals are UP and DOWN and their

complements are coming from the PFD block. They divert and add current to the input of

the CCO and act as a damping factor controller in the system.

When all four input signals u, ub, d, and db are static (no pulse generated), the left branch

current flows to ground through the drain current source while the right branch current

adds to the main CCO driving current. When pulses are applied to the differential pairs

due to a phase error at the phase detector inputs, both branch currents flow either to

ground or to the CCO, depending on the polarity of the phase error. The amount of

current that is subtracted from or added to the CCO driving current is proportional to the

magnitude of the phase error. The loop stability increases by adding the damping factor

controller block to the loop [13].

Figure 4.3 Damping factor control block diagram

u d dbub

CCO driving
current Idrain

48

4.3.3 Current controlled oscillator

The current controlled oscillator (CCO) used in this design is a balanced five stage,

single-ended ring oscillator shown in Figure 4.4. In order to model this CCO one can

either use the structural model shown in Figure 4.5 or develop a behavioral model based

on the electrical model of the CCO.

The problem with structural model approach is simulation time and convergence of the

oscillator response. On the other hand, this modeling technique does not have enough

accuracy and we can not model input resistance and threshold voltage effect of the

oscillator.

Figure 4.4 CCO structural model

The second method of modeling is based on behavioral modeling, in this method the

current-frequency characteristic of the oscillator is modeled using a linear or non-linear

equation. The input impedance of the oscillator is modeled using a simple resistor. In

order to increase the accuracy of the modeling, a second order equation for I-F

CCO driving
current

49

characteristic was used. The coefficients of this equation can be parameters of the model.

Figure 4.5.a, 4.5.b show the equivalent circuit and block diagram of the current controlled

oscillator and modeling parameters [14,16].

Figure 4.6 shows the frequency-current characteristic of the CCO. This curve was plotted

using the data obtained from CCO circuit simulation. The CCO gain in this figure can be

used for a behavioral model of the CCO.

Figure 4.5.a Equivalent circuit diagram

Figure 4.5.b Current controlled oscillator block diagram

Rin

V0Vctrl

ictrl

Vout

iout

Freq = f(ictrl)

Vosc

i

fimax

i = 0
Trise Tfall

ictrl
Vout

50

Figure 4.6 CCO F-I curve

4.3.4 Voltage Level Shifter

The level shifter (LS) block changes the level of the oscillator as well as buffering the

output of the oscillator before feeding it into frequency divider.

The frequency divider is usually implemented using flip-flops which need fairly sharp

clock edges for triggering. The output of CCO usually does not have such a

characteristic. The other functionality of LS block is to provide sharp edges for proper

functioning of the divider.

The frequency divider is a digital block while the output of the oscillator is an analog

51

signal, the analog to digital transformation is performed in LS block. Figure 4.7 shows

the input and output wave forms of the level shifter.

Figure 4.7 level shifter simulation

.

4.4 Simulation results

Figures 4.8 and 4.9 show the simulation wave forms of the input (ref), output of divider

(fbk), outputs of PFD (up, down) and also the control voltage (vcontrol) of PLL in two

different conditions. In Figure 4.8, the condition after locking is shown, while in Figure

4.9 the PLL is still in transient time before locking.

52

Figure 4.8 PLL simulation steady: after locking

53

Figure 4.9 PLL simulation : Before locking

54

Chapter 5

Block Level Design

5.1 Block Schematic Capture

At this stage of the design flow, schematics have been created corresponding to the

behavioral models developed in the previous chapter. For analog blocks, the circuit

design starts with exploring possible circuit configurations by looking at the required

specifications of the circuit and proceeding based on designer’s experience and

knowledge in analog design.

Digital synthesis maps digital behavior onto digital gates that are arranged in a rather

constrained topology. The simple nature of gates combined with the constrained topology

makes synthesis feasible. With analog circuitry, the fundamental building blocks are

much more complex and varied and the topology is completely unconstrained. These two

factors make analog synthesis a fundamentally much more difficult problem than digital

synthesis. Analog synthesis so far has resisted all attempts at automation except in limited

cases, such as analog filters. Work continues, but having universal analog synthesis is

still in the future.

Without analog synthesis, analog design is done the old fashioned way, with designers

manually converting specifications to circuits. While this allows for more creativity, it

also results in more errors and requires a process of trial and error with running

simulations, which is time consuming.

To overcome this problem, mixed-level simulation is employed in a top-down design

55

methodology for analog and mixed-signal circuits (this represents a significant but

essential departure from the digital design methodology). Mixed-level simulation is

required to establish that the blocks will function as designed in the overall system. To

verify a block with mixed-level simulation, the model of the block in the top-level

schematic is replaced with the transistor level schematic of the block before running the

simulation. The system described at a high level, acts as a test-bench for the block, which

is described at the transistor level. Thus, the block is verified in the context of the system,

and it is easy to see the effect of imperfections in the block on the performance of the

system. Mixed-level simulation requires that both the system and the block designers use

the same simulator and that it be well suited for both system- and transistor-level

simulation.

Mixed-level simulation allows a natural sharing of information between the system and

block designers. When the system-level model is passed to the block designer, the

behavioral model of a block becomes an executable specification and the description of

the system becomes an executable test bench for the block. When the transistor level

design of the block is complete, it is easily included in the system-level simulation by the

chip architect.

Mixed-level simulation is the only feasible approach currently available for verifying

large complex mixed-signal systems. Some propose to use either timing simulators

(sometimes referred to as fast or reduced accuracy circuit simulators) or circuit simulators

running on parallel processors. However, both approaches defer system-level verification

until the whole system is available at transistor level, and neither provides the

performance nor the generality required to verify most mixed-signal systems.

Once a block is implemented, the designer could update the models that represent it to

more closely mimic its actual behavior. This improves the effectiveness of mixed-level

and system-level simulation and is referred to as bottom-up verification. To reduce the

chance of errors, it is best done during the mixed-level simulation procedure.

56

In this way, the verification of a block by mixed-level simulation becomes a three-step

process. First the proposed block functionality is verified by including an idealized model

of the block in system-level simulations following a detailed behavioral model. Then, the

functionality of the block as implemented is verified by replacing the idealized model

with the netlist of the block. This also allows the effect of the block's imperfections on

the system performance to be observed. Finally, the netlist of the block is replaced by an

extracted model. Figure 5.1 shows these steps. By comparing the results achieved from

simulations that involved the netlist and extracted models, the functionality and accuracy

of the extracted model can be verified. From then on, mixed-level simulations of other

blocks are made more representative by using the extracted model of the block just

verified rather than the idealized model.

In a top-down design process, SPICE-level simulation is used in order to get its benefits

without incurring its costs. All blocks are simulated at the transistor level in the context

of the system (mixed-level simulation) in order to verify their functionality and interface.

Areas of special concern, such as critical paths, are identified up front and simulated at

the transistor level. The performance of the circuit is verified by simulating just the signal

path or key pieces of it at the transistor level. Finally, if start-up behavior is a concern, it

is also simulated at the transistor level. The idea is not to eliminate SPICE simulation, but

to reduce the time spent in SPICE simulation while increasing the effectiveness of

simulation in general by careful planning.

57

Figure 5.1 Mixed signal test bench

In the following sections, the circuit level design of PLL block will be described. For

each block, first a simple test bench is setup in the Cadence environment to be able to

design the basic functionality of the block and later, the design will be verified in the

overall system test bench. This will be done for both transistor level and extracted layout

view.

5.2 Phase Frequency Detector

The PLL uses the three-state PFD shown in Figure 5.2.a. The PFD is designed to generate

symmetrical charge-up (u) and charge-down (d) pulses. The potential dead zone is

eliminated by the propagation delay of the four-input NOR gate, which produces a

minimum pulse width at the PFD output even when the phase error is zero [15].

The NOR gates were designed so as to give 3.2% phase error while maintaining low

power design conditions. Figures 5.2.b and 5.2.c show the NOR gates designed for PFD.

KCH

s

entity

architecture

System Behavioral Circuit Layout

Phase
Detector

Charge
Pump

Loop
Filter

Voltage
Controlled
Oscillator

Divide By N

Test Bench

58

Figure 5.2.a Schematic of phase detector

59

Figure 5.2.b 4 input NOR gate Figure 5.2.c 2 input NOR gate

Figure 5.3 shows the layout of phase detector cell. It is necessary to simulate the layout

after extraction to compare the result with schematic design and design specification for

the block. Figure 5.4 shows the simulation result for the transistor and layout view.

60

Figure 5.3 PFD layout

61

Figure 5.4 phase detector simulation

5.3 Charge Pump

The charge pump comprises complementary current sources, switches, and source

followers. Figure 5.5 shows the circuit diagram of the charge pump circuit. The source

followers are driven by the Vcontrol output; their threshold voltages determine the

voltages across the complementary switches when they are OFF. This technique reduces

the current error between charge up and down due to the mismatch of charge sharing

62

effects when the switches are turned ON [16]. Stated another way, the current mismatch

is ideally independent of Vcontrol. Figure 5.6 shows the layout view of the charge pump

cell. Figure 5.7 shows the simulation result. As it can be seen, the effect of mismatch is

reduced in the design.

Figure 5.5 Charge pump circuit

63

Figure 5.6 Charge pump layout

Figure 5.7 Charge pump simulation

64

5.4 Voltage Controlled Oscillator

The VCO comprises four sub-circuits: a V-I converter, current-controlled ring oscillator

(CCO), voltage-level shifter, and damping factor control circuit.

While it is desirable to implement the PLL in differential form so as to suppress the effect

of common mode noise, low supply voltages (<3) limit the headroom, making it difficult

to utilize differential control for CMOS oscillators.

Thus, the PLL circuit is single-ended, but it employs current mode control signals to

lower the sensitivity to supply and substrate noise.

5.4.1 V-I converter

Transistors M1, M4 and M5 (in Figure 5.8a), form a PMOS regulated cascode V-I

converter that sources drive current to the CCO; compensation capacitor C1 stabilizes the

regulated loop and suppresses the injection of high frequency supply noise into the CCO.

Figure 5.8 shows the schematic and layout view of the V-I converter circuit. Owing to the

regulated cascode, the small signal output resistance of the CCO driving current source is

very high. Hence, the driving current is nearly independent of the supply voltage for a

given input voltage Vcontrol, and excellent power supply noise rejection characteristics

are achieved. Figure 5.9 shows the Iout-Vcontrol characteristics for V-I converter [13].

65

Figure 5.8.a V-I converter and Damping Factor Control

66

Figure 5.8.b Layout view

67

 Figure 5.9 V-I converter input-output characteristics

5.4.2 Damping factor control

The damping factor control circuit is biased using PMOS branches driven by Vcontrol

(Figure 5.8.a). When all four input signals u, ub, d and db are static (no pulse generated),

the left branch current flows to ground through the diode-connected NMOS transistor

while the right branch current adds to the main CCO driving current. When pulses are

applied to the differential pairs due to a phase error at the PFD inputs, both branch

currents flow either to ground or to the CCO, depending on the polarity of the phase

error. The amount of the current that is subtracted from or added to the CCO driving

current is proportional to the magnitude of the phase error and to the static current level,

which depends on the operating frequency. The loop stability and equivalent damping

factor increases with the magnitude of the dc bias currents applied to the damping factor

control circuit.

5.4.3 Voltage controlled oscillator (VCO)

The gain of the VCO and the PD/charge-pump circuits are important factors in

68

determining the loop bandwidth (BW). Since the loop filter output voltage is limited in a

low-voltage design, high VCO gain is required to achieve a wide operating frequency

range [14]. The VCO gain is chosen based on a trade off between operating frequency

range and loop bandwidth. The CCO used in the VCO is a balanced five stage, single-

ended ring oscillator. Figure 5.10 shows CCO Lin-Freq characteristic diagram. The

measured VCO gain is 1.75 GHz/V (Figure 5.11) with good linearity over a wide range

of operating frequencies from 100 to 900 MHz. Figure 5.12 shows the the VCO Layout.

Figure 5.10 CCO input-output characteristics

69

Figure 5.11 VCO characteristic

Figure 5.12 VCO layout

70

Figure 5.13 shows the transient response of the VCO (VCO-Output) as well as inputs of

this block.

Figure 5.13 VCO Transient response

5.4.4 Voltage level shifter

Due to the voltage drops across M1 and M5 in Figure 5.8.a, the CCO operates from about

VDD/2 to zero. Hence, a level-shifting buffer circuit follows the CCO to provide a rail-

to-rail output signal. Figure 5.14 shows the schematic and layout view of the voltage

level shifter.

Since the voltage level shifter is a buffer too, it should be able to provide enough current

71

for charging the output load while maintaining sharp edges required for triggering the

counter.

Figure 5.15 shows the simulation results of the level shifter block.

Figure 5.14.a schematic Figure 5.14.b layout

Figure 5.14 Level Shifter

Figure 5.15 Level Shifter simulation

72

5.5 Frequency Divider

The frequency divider is the only pure digital block in the system. It was simply

implemented as a divide by four counter. Figure 5.16 shows the steps required for

designing digital blocks as part of a mixed signal circuit. It starts from writing the RTL

code of the block in VHDL or Verilog and then synthesizing the RTL and then following

the steps shown in Figure 5.16. Figure 5.17 shows the schematic diagram of the counter

after synthesis and the layout; all the cells in this schematic are standard library cells.

Figure 5.18 shows the simulation results for the frequency divider block.

73

Figure 5.16 Digital design flow

YES

NO

Digital Blocks

Libraries
Synthesis

Constraints
Area Timing
Power Test

Fault Simulation

Gate Level Simulation

Floor Plan

Placement

R/C Extraction

RC Delay Estimation

Meet timing

Clock Tree Synthesis

Routing

Static Timing Analysis

Meet Timing

Block Specifictaion
Update

End Block Diagram

Verilog Simulation

SDF

DEF

Verilog test
Bench

SDF

Verilog
Netlist

No

Yes

74

Figure 5.17.a Counter schematic after synthesis

Figure 5.17.b Layout of counter

75

Figure 5.18 Frequency divider simulation result

76

5.6 Top-level layout design and simulation

After the design is verified block by block, top level placement and routing is done in

Cadence/ Virtuso. DRC and LVS are performed to ensure correctness of the layout. The

layout view of the entire chip is shown in Figure 5.19. Post-layout simulation results are

shown in Figure 5.20.

77

Figure 5.19 Chip layout

78

Figure 5.20 Post layout simulation

79

Chapter 6

Conclusion

6.1 Contributions

This research had two major phases, the first phase was a study of the existing digital and

analog design flows and the problems associated with mixed signal system design. The

major goal was defining features of a mixed signal methodology to address those

problems. The second phase of the research was designing a mixed signal PLL based on

the proposed design flow. The following are contributions achieved in this research:

1. A mixed signal design flow was introduced based on existing analog and digital design

methodologies. The major features of the proposed methodology are:

• It is a top-down design and bottom-up verification methodology.

• It is based on analog and digital co-design.

• The same verification environment (test bench) can be used through different

steps in the design. This is major feature for SOC (system on chip) design

methodologies.

• It is based on the VHDL-AMS modeling language.

2. In order to examine the design flow, a charge pump PLL was designed based on the

proposed methodology.

3. A detailed generic behavioral model of the PLL sub-blocks was developed. These

models can be used as generic models for designing charge pump PLLs. This is a major

step in mixed signal design automation.

80

Listed below are the conclusion and some of the facts regarding the use of the proposed

design flow in a real design problem.

• Mixed signal design flow is useful in shortening design cycle.

• Mixed signal design flow can be useful in discovering integration problems at
earlier stages of design.

• VHD-AMS can be used to develop a mixed signal behavioral model and
verification environment.

• The VHDL-AMS simulations at different steps in the design flow would require
standard or user defined packages.

• The detail steps of each design flow depend on the availability of tools and can be
different in different design environments.

6.2 Future work

The digital design flow has already been established for many years and has been

extensively used in industry while analog and mixed signal flow still following their first

steps toward a fully automated and robust flow. In the digital flow, after RTL coding, the

designer can rely on available tools for synthesis and layout. In the analog design, a gap

still exists for moving from system to behavioral and from behavioral to circuit level

design. Research is going on for developing an analog synthesis but still there is a long

way toward a comprehensive analog synthesis solution. The other existing gap is between

system level modeling tools such as Matlab/Simulink and behavioral modeling languages

such as VHDL-AMS and Verilog-AMS. Even though these languages have the capability

of system level modeling, most of system engineers prefer graphical environment of

Simulink and available toolboxes of Matlab environment. Developing a tool that can fill

this gap can be useful in shortening the design cycle period and also faster debugging.

81

Glossary

AMS Analog-Mixed Signal

CAD Computer Aided Design

CCO Current Controlled Oscillator

CDMA Code Division Multiple Access

CFP Ceramic Flat Package

CMC Canadian Microelectronics Corporation

CMOS Complementary Metal Oxide Semiconductor

DEF Design Exchange Format

DFT Design For Test

DRC Design Rule Check

IO Input-Output

LEF Library Exchange Format

LVS Layout Versus Schematic

MOS Complementary Metal Oxide Semiconductor

MS-HDL Mixed Signal Hardware Descriptive Language

PFD Phase Frequency Detector

PLL Phase Locked Loop

ROL Read Only Library

RTL Register Transfer Level

SDF Standard Delay Format

SOC System On Chip

SPF Standard Parasitic Format

TLF Timing Library Format

VCO Voltage Controlled Oscillator

VHDL VHSIC Hardware Descriptive Language

VHSIC Very High Speed Integrated Circuit

82

References

[1] J. Oudinot, C. Vaganay, M. Robbe, and P. Radja, “Mixed-Signal ASIC Top-

Down and Bottom-Up Design Methodologies using VHDL-AMS,”

http://www.mentor.com/dsm/tpapers/ms_asic.html, (current 12 Nov. 2001).

[2] G. Gielen, “Top-Down Design of Mixed Mode Systems: Challenges and

Solutions,” J. Huijsing, R. van de Plassche, and W. Sansen, Ed. Norwell, MA:

Kluwer, 1998, ch. II.6.

[3] J. Holmes, F. James, and I. Getreu, “Mixed-Signal Modeling for ICs,” Integrated

System Design Magazine, June 1997, http://www.isdmag.com/editorial/1997/

coverstory9706.html, (current 12 Nov. 2001).

[4] K. Kundert, “A Formal Top-Down Design Process for Mixed-Signal Circuits,”

http://www.planetanalog.com/story/OEG20001004S0004, (current 12 Nov. 2001)

[5] OVI Working Group, OVI Standard VERILOG AMS: Language Reference

Manual- Analog and Mixed-Signal Extensions, 1998.

[6] IEEE Std 1076.1- 1999 IEEE Standard VHDL Analog and Mixed-Signal

Extensions, 18 March 1999.

[7] IEEE 1076.1 Working Group, IEEE Standard VHDL 1076.1 Language Reference

Manual-Analog and Mixed-Signal Extensions to VHDL 1076, July 1997.

[8] B. Smedt and G. Gielen, “Models for Systematic Design and verification of

Frequency Synthesizers,” IEEE Transaction on Circuits and Systems-II, Vol. 46,

No.10, October 1999, pp. 1301-1308.

 [9] B. Razavi, “Design of Monolithic Phase-Locked Loops and Clock Recovery

Circuits- A Tutorial,” in Monolithic Phase Locked Loops and Clock Recovery

Circuits: Theory and Design. New York: IEEE Press, 1996.

 [10] Floyd M. Gardner, “Charge Pump Phase-Lock Loop,” IEEE Transaction on

Communications, vol. com-28, no. 11, pp. 1849-1858, Nov. 1980.

[11] P. R. Gray and R. G. Meyer, “Design and Analysis of Analog Integrated

Circuits,” third edition, John Wiley & Sons, 1993.

[12] B. Razavi, K. F. Lee and R. H. Yan, “Design of High-Speed, Low-Power

83

Frequency Dividers and Phase-Locked Loops in Deep Submicron CMOS,” IEEE

Journal of Solid State Circuits, vol. 30, no. 2, Feb. 1995, pp.101-109.

[13] H. Ahn, D. Allstot, “A Low-Jitter 1.9-V CMOS PLL for Ultra SPARC

Microprocessor Applications,” IEEE Journal of Solid State Circuits, vol. 35, no.3,

March 2000, pp. 450-454.

 [14] V. von Kaenel, “ A High Speed, Low Power Clock Generator for a

Microprocessor Application,” IEEE Journal of Solid State Circuits, vol. 33, no.11,

Nov. 1998, pp. 1634-1639.

[15] H. Johansson, “A Simple Precharged CMOS Phase Frequency Detector,” IEEE

Journal of Solid State Circuits, vol. 33, no.2, Feb. 1998, pp. 295-299.

 [16] C. Park and B. Kim, “ A Low_Noise, 900 MHz VCO in 0.6-µm CMOS,” IEEE

Journal of Solid State Circuits, vol. 34, no.5, May 1999, pp. 586-591.

 A-1

Appendix

Behavioral Models

library DISCIPLINES, IEEE;
use DISCIPLINES.ELECTROMAGNETIC_SYSTEM.all;
use IEEE.MATH_REAL.all;

entity cco is

 generic (Rin : REAL := 11.1e3; -- CCO input resistanec
 V0 : REAL := 0.84 ; -- input OC voltage
 Vp : REAL := 0.9); -- output peak to peak voltage

 port (terminal in_cco : ELECTRICAL; -- input port
 terminal out_cco : ELECTRICAL; -- output port
 terminal REF : ELECTRICAL -- ref port

);

end entity cco;

architecture bhv of cco is

 constant pi: REAL := math_pi;
 constant ph1: REAL := 0.0;
 quantity v_in across i_ctrl through in_cco to REF;
 quantity v_out across i_out through out_cco to REF;
 quantity phase : REAL;
 quantity freq : REAL;
 quantity v_sin : REAL;
 signal sout : REAL := 0.0 ;

 constant A : REAL := -0.3485; -- poly factor
 constant B : REAL := 45.5585; -- poly factor
 constant C : REAL := 44.5526; -- poly factor

 constant ctrl_limit_low : REAL := 0.0;
 constant ctrl_limit_high : REAL := 35.0e-6;

 constant Trise : REAL := 100.0e-12; -- output pulse rise time
 constant Tfall : REAL := 100.0e-12; -- output pulse fall time

begin

 v_in == Rin* i_ctrl + V0;

 A-2

 if domain = quiescent_domain use
 phase == 0.0; -- initial condition for phi
 else
 if i_ctrl >= ctrl_limit_high use

 freq ==((A* ctrl_limit_high * ctrl_limit_high*
 1.0e12) + (B* ctrl_limit_high * 1.0e6) + C)* 1.0e6;

 elsif i_ctrl <= -ctrl_limit_low use

 freq == 0.0;
 else
 freq ==((A * i_ctrl* i_ctrl * 1.0e12) +
 (B * i_ctrl* 1.0e6) +C)* 1.0e6;
 end use;
 end use;

 break on

 i_ctrl'ABOVE(ctrl_limit_high),i_ctrl'ABOVE(ctrl_limit_low);

 phase'DOT == 2.0* pi* freq;

 v_sin == sin(phase);

 p: process (v_sin'ABOVE(0.0))

 begin

 if v_sin > 0.0 then
 sout <= Vp;

 else
 sout <= 0.0;

 end if;

 end process p;

 v_out == sout'ramp(Trise,Tfall);

end architecture bhv;

library DISCIPLINES;
use DISCIPLINES.ELECTROMAGNETIC_SYSTEM.all;

architecture bhv of cplpf is

 constant Kn : REAL := 303.0e-6 ;
 constant Wn : REAL := 220.0e-6 ;
 constant Ln : REAL := 180.0e-6 ;
 constant vthn : REAL := 0.47 ;
 constant Kp : REAL := 78.0e-6 ;
 constant Wp : REAL := 220.0e-6 ;

 A-3

 constant Lp : REAL := 180.0e-6 ;
 constant vthp : REAL := -0.44 ;

 terminal N1, N3, N4 : ELECTRICAL; -- internal nodes
 quantity vR across iR through N4 to Vcontrol;
 quantity vC across iC through VDD to N4;
 quantity Vout across Vcontrol to REF;

begin

SWNU: entity work.SWN
 generic map (Ron => Ron, Roff => Roff)
 port map (p => Vcontrol, m => N3, CTRL => UP);

SWPU: entity work.SWP
 generic map (Ron => Ron, Roff => Roff)
 port map (p => Vcontrol, m => N3, CTRL => UPB);

SWND: entity work.SWN
 generic map (Ron => Ron, Roff => Roff)
 port map (p => N1, m => Vcontrol, CTRL => DOWN);

SWPD: entity work.SWP
 generic map (Ron => Ron, Roff => Roff)
 port map (p => N1, m => Vcontrol, CTRL => DOWNB);

---- Iu current source

NFET2: entity work.NFET
 generic map (Kn => Kn, Wn => Wn, Ln => Ln, vth => vthn)
 port map (G => VDD, D => N3, S => REF);

NFET1: entity work.NFET
 generic map (Kn => Kn, Wn => Wn, Ln => Ln, vth => vthn)
 port map (G => Vcontrol, D => VDD, S => N3);

---- Id current source

PFET2: entity work.PFET
 generic map (Kp => Kp, Wp => Wp, Lp => Lp, vth => vthp)
 port map (G => REF, S => VDD, D => N1);

PFET1: entity work.PFET
 generic map (Kp => Kp, Wp => Wp, Lp => Lp, vth => vthp)
 port map (G => Vcontrol, S => N1, D => REF);

 vR == R* iR;

 if domain = quiescent_domain use
 vC == 0.0;
 else
 iC == c* vC'DOT;
 end use;
end architecture bhv;

 A-4

library DISCIPLINES, IEEE;
use DISCIPLINES.ELECTROMAGNETIC_SYSTEM.all;
use IEEE.MATH_REAL.all;

entity ls is

 generic (vth : REAL := 0.5); -- threshold voltage
 port (terminal inport, outport, REF : ELECTRICAL;
 signal Sout: out bit); -- bit output

end entity ls;

architecture bhv of ls is

 constant Trise : REAL := 100.0e-12; -- output pulse rise
time
 constant Tfall : REAL := 100.0e-12; -- output pulse fall
time
 constant VDD : REAL := 1.8;
 quantity vin across inport to REF;
 quantity v_out across i_out through outport to REF;
 signal Sout_real : REAL := 0.0;

begin

 P: process
 begin
 if vin'above(vth) then
 Sout <= '1';
 Sout_real <= VDD;

 else
 Sout <= '0';
 Sout_real <= 0.0;

 end if ;

 wait on vin'above(vth);

 end process P;

 v_out == Sout_real'ramp(Trise,Tfall);

end architecture bhv;

library DISCIPLINES;
use DISCIPLINES.ELECTROMAGNETIC_SYSTEM.all;

entity NFET is
 generic (Kn : REAL := 303.0e-6 ;
 Wn : REAL := 220.0e-9 ;
 Ln : REAL := 180.0e-9 ;

 A-5

 vth : REAL := 0.47);

 port (terminal G, D, S : electrical);
end entity NFET;

architecture simple of NFET is

 quantity Vgs across Ig through G to S;
 quantity Vds across Ids through D to S;

begin

if Vgs <= Vth use
 Ids == 0.0;

elsif (Vgs > Vth and Vds < Vgs - Vth) use

 Ids == (Kn/2.0)*(Wn/Ln)*(2.0* (Vgs-Vth)*Vds - Vds*Vds);

else
 Ids == (Kn/2.0)*(Wn/Ln)* ((Vgs-Vth)*(Vgs-Vth));
end use;

Ig == 0.0;

end architecture simple;

library DISCIPLINES;
use DISCIPLINES.ELECTROMAGNETIC_SYSTEM.all;

entity PFET is

 generic (Kp : REAL := 78.0e-6 ;
 Wp : REAL := 220.0e-9 ;
 Lp : REAL := 180.0e-9 ;
 vth : REAL := -0.44);
 port (terminal G, D, S : electrical);

end entity PFET;

architecture simple of PFET is

 quantity Vgs across Ig through G to S;
 quantity Vds across Ids through D to S;

begin

if Vgs >= Vth use

 Ids == 0.0;

elsif (Vgs < Vth and Vds > Vgs - Vth) use

 Ids == -(Kp/2.0)*(Wp/Lp)*(2.0* (Vgs-Vth)*Vds - Vds*Vds);

 A-6

else
 Ids == -(Kp/2.0)*(Wp/Lp)* ((Vgs-Vth)*(Vgs-Vth));

end use;

Ig == 0.0;

end architecture simple;

library PLL;
use PLL.all;
use work.all;

architecture str of phd4 is

 constant td2 : time := delay_NOR2 ; -- delay of nor2 gates
 constant td4 : time := delay_NOR4 ; -- delay of nor4 gates
 constant tdinv : time := delay_INV; -- delay of inverter

 signal RESET, x1, x2, x3, x4, x5, x6, x7, x8, xu, xd : bit;
 signal en : bit := '0';

begin

 G1: entity work.nor2
 generic map (tdelay => td2)
 port map (IN1 => xu, IN2 => REF, nor_OUT => x1);

 G2: entity work.nor2
 generic map (tdelay => td2)
 port map (IN1 => x1, IN2 => x3, nor_OUT => x2);

 G3: entity work.nor2
 generic map (tdelay => td2)
 port map (IN1 => x2, IN2 => RESET, nor_OUT => x3);

 G4: entity work.nor2
 generic map (tdelay => td2)
 port map (IN1 => RESET, IN2 => x5, nor_OUT => x4);

 G5: entity work.nor2
 generic map (tdelay => td2)
 port map (IN1 => x4, IN2 => x6, nor_OUT => x5);

 G6: entity work.nor2
 generic map (tdelay => td2)
 port map (IN1 => FBK, IN2 => xd, nor_OUT => x6);

 G7: entity work.nor2
 generic map (tdelay => td2)
 port map (IN1 => x1, IN2 => x2, nor_OUT => x7);

 A-7

 G8: entity work.nor4
 generic map (tdelay => td4)
 port map (IN1 => x1, IN2 => x2, IN3 => x5, IN4 => x6,
 nor_OUT => RESET);

 G9: entity work.nor2
 generic map (tdelay => td2)
 port map (IN1 => x5, IN2 => x6, nor_OUT => x8);

 INV1: entity work.inv
 generic map (tdelay => tdinv)
 port map (D_IN => x7, D_OUT => UPB);

 INV2: entity work.inv
 generic map (tdelay => tdinv)
 port map (D_IN => x8, D_OUT => DOWNB);

 en <= '1' after 1 ns;
 xu <= en and x7;
 xd <= en and x8;
 UP <= x7;
 DOWN <= x8;

end architecture str;

library DISCIPLINES;
use DISCIPLINES.ELECTROMAGNETIC_SYSTEM.all;

entity SWN is

 generic (Ron : REAL := 1.0e-3 ; -- switch on
resistance
 Roff : REAL := 1.0e12 ; -- switch off resistance
 Tdon : time := 15.0 ps ; -- switch turn on time
 Tdoff : time := 20.0 ps); -- switch turn off time

 port (signal CTRL : in bit ; -- control signal
 terminal p,m : electrical);

end entity SWN;

architecture stepped of SWN is

 quantity Vsw across Isw through p to m;
 signal mode : bit :='0'; -- '0' off, '1' on

begin

switching: process(CTRL)

begin

 A-8

 if CTRL = '1' then
 mode <= '1' after Tdon;

 else
 mode <= '0' after Tdoff;

 end if;

end process switching;

if mode = '1' use

 Isw == Vsw/Ron;
else
 Isw == Vsw/Roff;
end use;

end architecture stepped;

library DISCIPLINES;
use DISCIPLINES.ELECTROMAGNETIC_SYSTEM.all;

entity SWP is

 generic (Ron : REAL := 1.0e-3 ; -- switch on
resistance
 Roff : REAL := 1.0e12 ; -- switch off resistance
 Tdon : time := 15.0 ps ; -- switch turn on time
 Tdoff : time := 20.0 ps); -- switch turn off time

 port (signal CTRL : in bit ; -- control signal
 terminal p,m : electrical);

end entity SWP;

architecture stepped of SWP is

 quantity Vsw across Isw through p to m;
 signal mode : bit :='0'; -- '0' off, '1' on

begin

switching: process(CTRL)

begin
 if CTRL = '0' then
 mode <= '1' after Tdon;

 else
 mode <= '0' after Tdoff;

 end if;

end process switching;

 A-9

if mode = '1' use

 Isw == Vsw/Ron;
else
 Isw == Vsw/Roff;
end use;

end architecture stepped;

library DISCIPLINES, IEEE;
use DISCIPLINES.ELECTROMAGNETIC_SYSTEM.all;
use IEEE.MATH_REAL.all;

entity viconv is

 generic (G : REAL := 0.0; -- viconv output conductance
 vth : REAL := 0.6; -- threshold voltage
 Gm : REAL := 32.4e-6); -- transconductance value

 port (terminal in_vi : ELECTRICAL; -- input port
 terminal out_vi : ELECTRICAL; -- output port
 terminal VDD : ELECTRICAL -- ref port

);

end entity viconv;

architecture bhv of viconv is

 quantity vc across i_in through VDD to in_vi; -- to REF;
 quantity v_out across Ic through VDD to out_vi; -- to REF;

begin

 i_in == 0.0;

 if vc < vth use

 Ic == 0.0;
 else

 Ic == Gm*(vc-vth) + G*v_out;

 end use;

 break on vc'ABOVE (vth);

end architecture bhv;

library DISCIPLINES, IEEE;
use DISCIPLINES.ELECTROMAGNETIC_SYSTEM.all;
use IEEE.MATH_REAL.all;

 A-10

entity dampctrl is

 generic (G : REAL := 0.0; -- viconv output
conductance
 vth : REAL := 0.6; -- threshold voltage
 Gm : REAL := 32.4e-6); -- transconductance value

 port (terminal VDD : ELECTRICAL; -- VDD port
 terminal CTRL : ELECTRICAL; -- control port
 terminal OUT1 : ELECTRICAL; -- output port
 terminal OUT2 : ELECTRICAL; -- output port
 signal IN1 : in bit ;
 signal IN2 : in bit);

end entity dampctrl;

architecture bhv of dampctrl is

 terminal N : ELECTRICAL;
 quantity Vd across Id through VDD to N ;
 quantity vc across i_in through VDD to CTRL;

begin

SWP1: entity work.SWP
 port map (p => N, m => OUT1, CTRL => IN1);

SWP2: entity work.SWP
 port map (p => N, m => OUT2, CTRL => IN2);

 i_in == 0.0;

 if vc < vth use

 Id == 0.0;
 else

 Id == Gm*(vc-vth) + G*vd;

 end use;

 break on vc'ABOVE (vth);

end architecture bhv;

architecture bhv of fdiv is

signal tmp : bit := '0' ;

begin

p: process (pulse_in)

 A-11

variable counter : integer := 0;
variable N1 : integer := N ;
variable N2 : integer := N + 1;

begin

 if pulse_in = '1' then

 counter := counter +1;

 if tmp = '1' then
 tmp <= '0';
 end if;

 if counter = N1 and sc = '0' then

 tmp <= '1';
 counter := 0;

 elsif counter = N2 and sc = '1' then
 tmp <= '1';
 counter := 0;

 end if;
 end if;

end process p;

pulse_out <= tmp;

end architecture bhv;

library DISCIPLINES, IEEE, PLL;
use DISCIPLINES.ELECTROMAGNETIC_SYSTEM.all;
use IEEE.MATH_REAL.all;
use PLL.all;
use work.all;

entity PLL is

port (signal PLL_in : in bit; -- PLL input
 signal PLL_out : out bit; -- PLL output
 terminal PLL_out_analog, REF : electrical);

end entity PLL;

architecture bhv of PLL is

 constant RD : REAL := 1.0e3; -- ground resistor

 signal UP, UPB, DOWN, DOWNB : bit;
 terminal VDDA, Vcontrol : electrical;
 terminal CCO_in, D, CCO_out : electrical;
 signal pulse_div :bit ;
 signal dig_out :bit;

 A-12

 signal sc : bit := '0';
 quantity VD across ID through D;
 quantity Vsupply across Isupply through VDDA ;

begin

 PHD4: entity work.PHD4
 generic map (delay_INV => 1.0 ps, delay_NOR2 => 5.0 ps,
 delay_NOR4 => 5.0 ps)
 port map (REF => PLL_in, FBK => pulse_div, UP => UP,
 UPB => UPB, DOWN => DOWN, DOWNB => DOWNB);

 LPF: entity work.CPLPF

 generic map (Iup => 28.0e-6, Idown => 25.0e-6, R => 0.0,
 C => 1.5e-12, Ron => 1.0e1, Roff => 1.0e12)
 port map (UP => UP, DOWN => DOWN, UPB => UPB, DOWNB =>

DOWNB, VDD => VDDA, REF => electrical_ground,
 Vcontrol => Vcontrol);

 VIC: entity work.VICONV
 generic map (G => 0.0, vth => 0.6, Gm => 32.4e-6)
 port map (in_vi => Vcontrol, VDD => VDDA, out_vi => CCO_in);

 CCO: entity work.CCO
 generic map (Rin => 11.1e3, V0 => 0.84, Vp => 0.9)
 port map (in_cco => CCO_in, out_cco => CCO_OUT,
 REF => electrical_ground);

 LS: entity work.LS
 generic map (vth => 0.5)
 port map (inport => CCO_OUT, REF => electrical_ground,
 Sout => dig_out, outport => PLL_out_analog);

 DIV: entity work.fdiv
 generic map (N => 4)
 port map (pulse_in => dig_out, pulse_out => pulse_div,
 SC => sc);

 VD == RD * ID;
 Vsupply == 1.8;
 PLL_out <= dig_out;

end architecture bhv;

