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Abstract

The development of wireless technologies has been stimulated by the ever increasing

network capacity and the diversity of users’ quality of service (QoS) requirements.

It is widely anticipated that next-generation wireless networks should be capable of

integrating wireless networks with various network architectures and wireless access

technologies to provide diverse high-quality ubiquitous wireless accesses for users.

However, the existing wireless network architecture may not be able to satisfy ex-

plosive wireless access request. Moreover, with the increasing awareness of environ-

mental protection, significant growth of energy consumption caused by the massive

traffic demand consequently raises the carbon emission footprint. The emerging of

green energy technologies, e.g., solar panel and wind turbine, has provided a promis-

ing methodology to sustain operations and management of next-generation wireless

networks by powering wireless network devices with eco-friendly green energy.

In this thesis, we propose a sustainable wireless network solution as the prototype

of next-generation wireless networks to fulfill various QoS requirements of users with

harvested energy from natural environments. The sustainable wireless solution aims

at establishing multi-tier heterogeneous green wireless communication networks to

integrate different wireless services and utilizing green energy supplies to sustain

the network operations and management. The solution consists of three steps, 1)

establishing conventional green wireless networks, 2) building multi-tier green wireless

networks, and 3) allocating and balancing network resources.

In the first step, we focus on cost-effectively establishing single-tier green wireless
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networks to satisfy users’ basic QoS requirements by designing efficient network plan-

ning algorithm. We formulate the minimum green macro cell BS deployment problem

as an optimization problem, which aims at placing the minimum number of BSs to

fulfill the basic QoS requirements by harvested energy. A preference level is defined as

the guidance for efficient algorithm design to solve the minimum green macro cell BSs

deployment problem. After that, we propose a heuristic algorithm, called two-phase

constrained green BS placement (TCGBP) algorithm, based on Voronoi diagram.

The TCGBP algorithm jointly considers the rate adaptation and power allocation to

solve the formulated optimization problem. The performance is verified by extensive

simulations, which demonstrate that the TCGBP algorithm can achieve the optimal

solution with significantly reduced time complexity.

In the second step, we aim at efficiently constructing multi-tier green heteroge-

neous networks to fulfill high-end QoS requirements of users by placing green small

cell BSs. We formulate the green small cell BS deployment and sub-carrier alloca-

tion problem as a mixed-integer non-linear programming (MINLP) problem, which

targets at deploying the minimum number of green small cell BSs as relay nodes to

further improve network capacities and provide high-quality QoS wireless services

with harvested energy under the cost constraint. We propose the sub-carrier and

traffic over rate (STR) metric to evaluate the contribution of deployed green small

cell BSs in both energy and throughput aspects. Based on the metric, two algorithms

are designed, namely joint relay node placement and sub-carrier allocation with top-

down/bottom-up (RNP-SA-t/b) algorithms. Extensive simulations demonstrate that

the proposed algorithms provide simple yet efficient solutions and offer important
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guidelines on network planning and resource management in two-tier heterogeneous

green wireless networks.

In the last step, we intend to allocate limited network resources to guarantee

the balance of charging and discharging processes. Different from network planning

based on statistical historical data, the design of resource allocation algorithm gen-

erally concerns relatively short-term resources management, and thus it is essential

to accurately estimate the instantaneous energy charging and discharging rates of

green wireless network devices. Specifically, we investigate the energy trading issues

in green wireless networks, and try to maximize the profits of all cells by determining

the optimal price and quantity in each energy trading transaction. Finally, we apply a

two-stage leader-follower Stackelberg game to formulate the energy trading problem.

By using back induction to obtain the optimal price and quantity of traded energy,

we propose an optimal algorithm, called optimal profits energy trading (OPET) algo-

rithm. Our analysis and simulation results demonstrate the optimality performance

of OPET algorithm.

We believe that our research results in this dissertation can provide insightful

guidance in the design of next-generation wireless communication networks with green

energy. The algorithms developed in the dissertation offer practical and efficient

solutions to build and optimize multi-tier heterogeneous green wireless communication

networks.
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Chapter 1

Introduction

It is anticipated that next-generation wireless networks will provide ubiquitous wire-

less services in the near future. A variety of wireless networks, e.g., long-term

evolution/long-term evolution-advanced cellular networks (LTE/LTE-A) [3, 4], cloud

radio access networks (C-RANs) [5, 6], vehicular ad-hoc networks (VANETs) [7, 8],

wireless mesh networks (WMNs) [9, 10], wireless wide area networks (WWANs) [11,

12], wireless local area networks (WLANs) [13, 14], wireless personal area networks

(WPANs) [15, 16], wireless metropolitan area networks (WMANs) [17, 18], wireless

body area networks (WBANs) [19, 20], and etc., has been emerging to provide var-

ious network services for people all over the world. However, it is challenging to

satisfy users’ ubiquitous wireless access requirements with existing network architec-

ture. First, the capacity of existing wireless networks may not be sufficient to support

diverse network services in the future. Second, different types of wireless networks

have various application scenarios, network architectures, quality of service (QoS) re-
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Figure 1.1: Next-Generation Wireless Networks.

quirements and underlying communication technologies, which make these networks

fundamentally different from each other. Therefore, how to enhance the network

capacity and let various network services co-exist has become an open issue in the

design of next-generation wireless networks.

Besides network capacity and scalability issues, energy related issues have become

another dimension considered in wireless networks. With the increasing concerns on

environmental protection and the preservation of natural resources, energy conserva-

tion and reduction of CO2 emissions have become consensus all over the world. The

rapid development of wireless communication technologies significantly increases the

energy consumption. It is reported that the power consumption of information and
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communication technologies (ICT) is growing over 15% every year [21, 22]. More-

over, the expanding network capacity and scalability in next-generation wireless have

boosted the deployment of broadband devices. However, the higher the frequency

or bandwidth, the more electricity is required. Thus, how to ensure the sustainable

development of wireless communication with environmentally sound technologies has

become another major concern in the design of next-generation wireless networks.

In this chapter, we first present the motivations and challenges of the research

in Section 1.1. After that, a sustainable wireless network solution is proposed in

Section 1.2, followed by the outline of this thesis in Section 1.3.

1.1 Research Motivations and challenges

1.1.1 Research Motivations

The diverse high-quality wireless service requirements have boosted the study of next-

generation wireless communication networks to address both network capacity and

energy consumption issues. On one hand, it is reported that the volume of the net-

work capacity and the variety of wireless applications will dramatically increase in the

near future to fulfill users’ QoS requirements. According to the estimation of Cisco in

Fig. 1.2(a), the global mobile data traffic is expected to reach 15.9EB in 2018, which

will grow at a compound annual growth rate (CAGR) of 61 percent from 2013 to 2018;

it is also anticipated in Fig. 1.2(b) that 15 percent of all global devices and connec-

tions will be 4G capable, which will co-exist with 2G- and 3G-capable devices. The
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(a) Global mobile data traffic

(b) Global Mobile Devices and Connections

Figure 1.2: Prediction of global mobile trend by Cisco [1].
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Figure 1.3: China mobiles energy consumption and wireless base station growth [2].

booming wireless services supported by various wireless networks have shown one of

promising methods to provide ubiquitous high-quality wireless accesses for users, i.e.,

constructing multi-tier heterogeneous network architecture as next-generation wire-

less networks to improve network capacity and scalability, which should be capable

of integrating fundamentally different wireless networks [23].

On the other hand, the energy consumption dramatically increases with the growth

of deployed base stations (BSs) and traffic load. As shown in Fig. 1.3, the growth

of energy consumption is much faster than the increase of BS deployment due to

significant raise of each BS’s traffic load. It has also been reported that devices of

the network infrastructure have contributed almost 60 percent energy consumption

of the whole system, even when devices are idle [24]. Therefore, in response to

sustain the network operations and protect the environment, it is essential to power

the network infrastructure in a sustainable way. Recent advances in green energy

technologies provide an alternative energy source, e.g., energy harvested from solar,
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Figure 1.4: An example of green wireless BSs.

wind, and etc., to power wireless network infrastructures as shown in Fig. 1.4. With

green energy technologies, research projects on communications with green energy

have sprung up worldwide in recent years, such as OPERANET [25], EARTH [26],

Green Touch [27] and Green Radio [28]. As green wireless network devices, i.e.,

network devices powered by green energy, are powered by replenishable energy, it is

one of promising methods for next-generation wireless networks to sustain its network

operation and management.

1.1.2 Research Challenges

Green energy provides clean and sustainable energy for network devices, and causes

the minimal detrimental threats to the environment. Moreover, in some developing
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countries and rural areas without electrical grid, the deployment of wireless network

devices with traditional energy supplies may be infeasible due to high cost and related

issues to the electrical cable installation. Comparing to wireless network devices with

fixed power supplies, green wireless network devices do not have to connect to the

electrical grid, which makes them much cheaper and easier be installed and moved.

However, it is very challenging to efficiently exploit the green energy sources for

providing ubiquitous wireless services in green wireless networks. This is because,

unlike stable energy supplies from the electrical grid, availability and capacity of

green energy harvested from natural resources are highly dependent on the local

environment and may vary with time [29]. For example, solar panels can provide

relatively continuous power supply comparing with the intermittent energy supplies

from wind turbines, but the charging capability of each solar energy supply also

varies with the radiation levels of sunshine across a day. When the harvested energy

could not sustain users’ QoS requirements, the service provisioning will be interrupted

and users will experience degraded QoS. Therefore, the most important fundamental

design criteria and performance metric in green wireless networks have been shifted

from energy efficiency to energy sustainability of the network infrastructure, i.e., the

harvested energy can sustain the network operations and management.

Moreover, the relative high cost of green energy supplies is another challenging

issue for green wireless networks. Generally, the cost of green energy supplies includes

four parts, i.e., equipment, installation, rent of land occupation and maintenance cost.

Although the green wireless network devices do not have to connect to electrical grid,

the installation cost of traditional energy supplies is not expensive in most urban areas
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with existing electrical grid system. For the cost of equipments, the technology of

green wireless network devices is not as mature as ones with electrical grid, which leads

to relatively high market price. In addition, green energy supplies need additional

land occupation for energy harvest, and the rent depends on the location and their

power consumption, which may have very high cost in urban areas. Overall, the total

cost of deploying green wireless network devices is relatively expensive than that of

wireless network devices with electrical cables. Thus, how to save cost is one of the

major concerns in the design of green wireless communication networks.

1.1.3 Research Issues

Based on the analysis of research challenges, we present challenging research issues

in the design of green wireless communication networks as follows.

• Capacity and scalability: The booming wireless applications lead to the ever-

growing density and scale of wireless networks. In addition, the widely applied

ad-hoc technologies, e.g., peer-to-peer (P2P), device-to-device (D2D), machine

to machine (M2M), etc., have generated a tremendous volume of information

sharing and exchange. Green wireless network devices can provide wireless

accesses with eco-friendly green energy supplies. However, without elaborate

design, the dynamic charging capabilities of green energy may become the bot-

tleneck of network capacity and scalability in green wireless networks. Thus, it

is critical to fully utilize the harvested green energy to push up the limitation

of the number of users and network scale.
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• Massive traffic demands and diverse QoS requirements: The emergence of di-

verse wireless applications has provided ubiquitous wireless accesses, while var-

ious wireless services have different QoS requirements and evaluation criteria.

For instance, interactive media such as video conference and live chat are sen-

sitive to the latency while bulky data transfer like file transfer protocol (FTP)

transmission concerns more about its link throughput. Therefore, how to satisfy

the massive and diverse QoS requirements of users are essential in the design of

green wireless communication networks.

• Network infrastructure: The infrastructures of traditional wireless networks are

normally powered by electrical grid, and thus network device deployment in

such kind of networks needs to consider the cable deployment and the coverage

of users. Different from traditional wireless networks, infrastructures of green

wireless networks are powered by the harvested energy from natural environ-

ment, thus there is no cable deployment issue. Instead, the dynamic charging

and discharging capabilities become one of the most challenging issues in the

network architecture design of green wireless networks. Therefore, it is impor-

tant to re-visit the network planning in green wireless networks to satisfy the

diverse QoS requirements of users with harvested energy.

• Sustainable network performance: In green wireless networks, wireless devices

are powered by green energy supplies, which are highly dependent on the lo-

cal weather, position and time. The residual energy of the network device will

be used up when the harvested energy is not enough to support the QoS re-
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quirements of users. The ceases of green wireless devices will degrade the users’

quality of experience (QoE), and may further cause network partition and affect

the normal operations of green wireless networks. Thus, energy sustainability,

i.e., sustaining the network performance with harvested energy, has become the

most essential performance metric in the design of green wireless communication

networks.

1.2 Sustainable Wireless Network Solution

In this thesis, we propose a sustainable wireless network solution as a prototype of

next-generation wireless networks to address both traffic and energy issues. A sus-

tainable wireless network consists of users and network infrastructure devices, where

the infrastructure devices are powered by harvested energy from natural resources.

The network infrastructure will be multi-tiered heterogeneous green wireless network-

s, which are composed of a variety of wireless network devices, e.g., macro cell BSs,

micro cell BSs, small cell BSs, access points (APs), sensor nodes, etc., powered by

green energy supplies. Based on such kind of network infrastructure, green wireless

networks can allow different kinds of wireless networks to provide diverse high-quality

wireless services to different or the same user(s). In addition, eco-friendly green energy

can help minimize the CO2 emissions and take care of our environment.

Our sustainable wireless network solution utilizes network planning and resource

allocation to cost-effectively build multi-tier heterogeneous green wireless networks.

Given a set of users and their QoS requirements, we separate the construction of
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sustainable wireless networks into three steps: 1) establishing single-tier green wire-

less networks, 2) building multi-tier green wireless networks, and 3) allocating and

balancing network resources. In the first step, green macro cell BSs are deployed to

establish single-tier wireless networks, which consist of users and green macro cell

BSs. This step aims at cost-effectively satisfying users’ basic QoS requirements by

placing green macro cell BSs into networks. After that, we deploy small cell BSs to

construct multi-tier green wireless networks to further improve the network through-

put and the diversity of network services. These two steps are based on the charging

and discharging statistics to simplify the problem. Finally, we consider to effectively

allocate network resources to balance the uneven distribution of network resources.

We focus on maximizing the network sustainability based on the estimation of instan-

taneous energy charging and discharging rates. As such, the constructed multi-tier

wireless communication with green energy should be able to provide various high-

quality network services to users and sustain the network by harvested energy from

natural environment.

Specifically, the main contributions of this dissertation to construct and manage

multi-tier heterogeneous green wireless communication networks are listed as follows.

• By exploiting the particular characteristics of green energy supplies, we present

fundamental design criteria and performance metric for network planning and

resource management in green wireless networks. Based on the design crite-

ria, we propose a sustainable wireless network solution to construct multi-tier

heterogeneous green wireless networks, such that diverse high-quality wireless
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services can be supported by eco-friendly replenishable green energy. Then, we

divide our sustainable wireless network solution into three steps.

• First, we aim at cost-effectively establishing single-tier green wireless networks

to satisfy users’ basic QoS requirements. We formulate the constrained mini-

mum green macro cell BSs placement problem as an optimization problem. Our

objective is to select a set of candidate locations to deploy the minimal number

of green macro cell BSs such that users’ traffic demands can be fulfilled by the

harvested energy. We design a preference level for each user to determine the

relationship between the user and potential placed green macro cell BSs, which

reflects the connection priority and relative data rate between the user and

corresponding BSs. Based on the preference level, we propose a heuristic algo-

rithm, namely two-phase constrained green BS placement (TCGBP) algorithm,

to find an optimal green macro cell BS deployment by jointly considering power

control and rate adaptation. Extensive simulation results show that TCGBP

algorithm approaches the optimal solution under a variety of network settings

with significantly reduced time complexity.

• Second, we focus on constructing multi-tier green wireless networks by deploying

green small cell BSs. We study joint green small cell BS placement and sub-

carrier allocation problem, which is formulated as a mixed-integer non-linear

programming (MINLP) problem. Our objective is to minimize the number of

green small cell BSs by allocating appropriate numbers of sub-carriers to each

green BS, such that the network can be fully connected and the high-end QoS
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requirements of users can be fulfilled by the harvested energy based on the cost

threshold. As formulated problem is non-deterministic polynomial-time (NP)-

hard, we intend to design effective heuristic algorithms to solve the problem. A

novel metric, referred to as sub-carrier and traffic over rate (STR), is introduced,

which characterizes the throughput and energy demands of each user associated

with a green BS. Based on the STR, two low-complexity algorithms, namely

RNP-SA with top-down/bottom-up (RNP-SA-t/b) algorithms, are proposed.

Extensive simulations show that both algorithms provide simple yet efficient

solutions and offer important guidelines on network deployment and resource

allocation in green wireless networks.

• Finally, our target is to balance the uneven distribution of network resources by

conducting resource allocation based on the estimation of instantaneous ener-

gy charging and discharging rates. We consider the energy trading problem in

heterogeneous green wireless networks, and formulate the problem as a Stack-

elberg game. Our objective is to find the optimal trading price and quantity

of the green energy purchase/sale for each cell, such that all cells’ profits are

maximized and the energy demands in each cell are satisfied, considering the

dynamic energy charging and discharging processes. By analyzing the formulat-

ed problem, we derive closed-form expressions of the optimal price and quantity

for energy trading. After that, we propose an optimal algorithm, called optimal

profits energy trading (OPET) algorithm, to optimize the profits of all cell-

s by using the maximum weighted bipartite matching algorithm. Finally, we

prove that the proposed OPET algorithm can achieve the optimal solution with
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polynomial time complexity.

1.3 Outline

The remainder of the thesis is organized as follows. Chapter 2 reviews related works in

green wireless communication networks. In Chapter 3, we first formulate an optimal

green BS placement problem in single-tier green wireless networks, which aims at

deploying the minimal number of BSs on a set of candidate locations, subject to

the constraints that QoS requirements of users can be fulfilled with the harvested

energy. After that, we propose a simple yet efficient heuristic algorithm to solve the

formulated problem. In Chapter 4, the joint green relay node placement and sub-

carrier allocation problem in two-tier green wireless networks is investigated. Our

objective is to minimize the number of green small cell BSs and allocate appropriate

numbers of sub-carriers to each macro cell and small cell BS, such that the network

can be fully connected and the QoS requirements of users can be fulfilled by the

harvested energy along with the allocated sub-carriers based on the cost threshold.

To this end, we define a novel metric to guide the algorithm design, and propose

two heuristic algorithms based on the metric. In Chapter 5, the energy trading

problem in heterogeneous green wireless networks is formulated as a Stackelberg game.

Based on the estimation of instantaneous charging and discharging rates, closed-form

expressions of the optimal price and quantity for energy trading transactions are

derived. Then, an optimal algorithm is proposed to achieve the maximal profits of

all cells. Finally, Chapter 6 gives concluding remarks and outlines of future work.
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Chapter 2

Background and Literature

Recently, wireless communication networks powered by green energy sources have

provided a promising method to sustain the network performance, which have raised

great attention in both industry and academia [30–32]. Because of the dynamic

charging and discharging processes of green wireless network devices, the fundamental

design criteria and performance metric of green wireless networks have been shifted

from energy efficiency to energy sustainability, i.e., to ensure that the harvested energy

can sustain the traffic demands of network users. Therefore, it is necessary to review

previous works related to both energy efficiency and energy sustainability issues.

In this chapter, we first introduce related works on wireless network planning in

Section 2.1. After that, we review previous works related to energy modeling and

resource allocation in Section 2.2 and Section 2.3, respectively.

15



2.1 Network Planning

Network planning has been extensively studied in the context of different wireless

networks, for example, cellular networks, IEEE 802.16 WiMAX and sensor network-

s [33–39]. It is usually formulated as device deployment optimization problems, aiming

to maximize the network capacity [40, 41] or to minimize the cost of device deploy-

ment and/or network operation [42–44]. According to the methodologies to solve

the optimization problem, these works can be further classified into two types, i.e.,

continuous and discrete cases. In the continuous case, it is assumed that there is no

physical constraints and wireless network devices can be deployed at any location of

the network region [45, 46]. Such problems can be solved by using some optimization

algorithms like direct search and quasi-Newton methods [47]. However, in reality,

wireless devices usually can only be placed at some candidate locations due to the

physical constraints. Such problems can be formulated as the discrete cases of de-

vices deployment problems. The discrete problems are normally modeled as a mixed

integer optimization problem to find out the optimal placement of devices in a given

region (or among a set of users), such that all the users in the region can be served

by the deployed network devices [43, 48, 49]. In [49], a relay node placement problem

was investigated with the physical constraints of sensor nodes. In [43], how to place

the minimal number of APs was studied under the physical and protocol interference

models; and it was found that the underlying interference models have a significant

impact on the AP placement problem. In [44], the optimization of base stations’

number and locations was investigated in order to minimize the energy consumption
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of a cellular network, considering a practical case of non-uniform user distributions.

There have been limited works on network planning in sustainable wireless net-

works [50], which mainly focus on how to minimize the cost and network outage, i.e.,

some green wireless devices do not have sufficient energy to support normal device

operation or data transmission. The possibility and advantages of deploying green

energy powered wireless devices are reported in [51]. It is shown that solar or wind

powered APs provide a cost-effective solution in wireless local area networks (WLAN-

s), especially for APs installed in off-grid locations. In [29, 52], the traditional AP

placement problem was revisited with green power supplies. Their works focus on

placing the minimal number of green energy powered APs on a set of candidate lo-

cations to ensure that the harvested energy is sustainable to serve wireless users and

fulfill their QoS requirements. The minimum-cost placement of solar-powered data

collection BSs was considered in [53]. BSs are placed in a wireless sensor network,

such that the outage-free operation of the sensor nodes can be obtained. In [54], au-

thors jointly considered allocating transmitting power and deploying the green APs

based on the harvested energy. In their work, a closed-form power allocation scheme

and an AP placement metric were proposed, and their theoretical analysis showed a

dramatically improvement on overall throughput by using the proposed scheme.

2.2 Energy Modeling

The development of sensing technologies have boost the deployment of wireless net-

works consisting of battery-powered wireless network devices. One of the effective
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methods to prolong the network life is to enhance the energy efficiency by designing

an accurate analytic energy model [55–58]. In [59], a model which integrates typical

WSNs transmission and reception modules with realistic battery models was pro-

posed. Based on the battery models, authors proposed two battery power-conserving

schemes for two M-ary orthogonal modulations. In [60], authors designed time divi-

sion multiple access medium access control protocols for healthcare applications in

wireless body-area monitoring networks. They found that their proposed schemes

can extend the lifetime of sensor nodes and reliability and delay-bound QoS demand

for the wireless body-area monitoring networks based on the theoretical analysis and

simulations.

Sustainable wireless sensor networks with solar energy supplies [61–63] is one of

issues closely related to green wireless networks. In [64] and [65], authors showed

that such kind of prototypes can achieve near-perpetual operation of sensor nodes.

In modern wireless networks, the solar/wind powered AP is believed to be a more

efficient method to save energy than energy efficient schemes in traditional AP, espe-

cially when the traditional power supply is not easy to be installed. Different from

traditional energy resources, we need to consider the inherently dynamic character-

istics in both energy charging and discharging processes. Therefore, it is essential

to characterize the variations in the analytical model of energy conditions. In [66],

authors proposed a framework to model the remaining power of sensor nodes with

and without green energy, and then the expression of network lifetime was derived

based on the energy model. In [67], the transmission policies for rechargeable nodes

were considered to maximize the short term throughput, which refer to the amount
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of data transmitted in a finite time horizon. Based on the renewable energy model

with discrete packets of energy arrivals, their proposed algorithm can successfully

generate an optimal transmission policy, which can achieve the maximum short-term

throughput and the minimum transmission completion time. In [32], the sustainable

wireless sensor networks were proposed, where mobile chargers can charge multiple

sensors from candidate locations. To minimize the selected number of locations, an

optimization model was developed based on the energy recharging requirements of

the sensors. Other works, such as [50, 68], mainly focus on the battery capacities

and solar panel sizes of the BSs or APs, with an objective to mitigate the network

outage by using the minimal cost of energy according to the recorded historical solar

insolation traces.

2.3 Resource Allocation

It is recognized that efficient resource management [69–76] can significantly improve

the resource utilization. Many studies have been conducted in various aspects of re-

source allocation, which include traffic scheduling and routing [77–79], optimal power

management [80–82], energy efficient communication and cooperation [83–85], adap-

tive sleep control of mobile devices [86–88], and etc. Resource allocation [42, 89, 90]

in network infrastructure with traditional energy supplies can be formulated as an

optimization problem such that the network performance, e.g. network throughput

and network lifetime, can be maximized with fixed yet limited energy resources, under

various constraints including network connectivity, throughput, energy consumption
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and etc. The energy in these works was normally considered as a limited resource,

thus these works generally target at maximizing the energy efficiency.

In green wireless networks, the energy is sustainable in the long term yet dynamic

in the short term, which may lead to intermittent energy supply in wireless network

infrastructure devices [29]. Moreover, since green wireless devices highly depend on

their locations, which leads to uneven distribution of charging capabilities. Thus, in

order to balance the harvested energy and traffic demands, we should concern charac-

teristics of green wireless networks. So far, only a few works on resource management

in wireless networks with green energy [91–94] focus on maximizing the network sus-

tainability, and most existing works aim at mitigating the node outage or minimizing

the cost. In [50], authors studied solar panel sizing problem of the BSs or APs based

on the historical solar insolation traces, such that the network outage can be mitigat-

ed with the minimal cost. In [95], the problem of traffic scheduling for infrastructure

of vehicular wireless networks was formulated into a mixed integer linear program

with minimizing energy consumption as the objective. In [96], authors proposed a

framework by jointly considering integrated admission control and routing under the

multi-hop green wireless networks. Then, routing algorithms were proposed to im-

prove network performance by using available energy. In [97], statistical power saving

mechanism was proposed under solar-powered WLAN mesh networks. To balance

the energy consumption with energy charging capability for each node, a control al-

gorithm was developed to match the future load conditions and solar insolation for

maintaining outage-free operations of the node.
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Chapter 3

Green BS Deployment and Power

Control in Conventional Green

Wireless Networks

Green energy can provide clean and sustainable energy support for wireless network

devices. However, different from wireless devices with traditional energy supplies,

green-energy-powered wireless devices have dynamic charging capabilities and rel-

atively high cost. Therefore, it is critical to consider the characteristics of green

wireless network devices in the network design. In this chapter, our concern is to

build conventional-architecture green wireless networks consisting of green macro cell

BSs and users to fulfill basic QoS requirements of users. Considering the character-

istics of green energy, we re-visit the minimum green macro cell BS deployment and
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power control issues in single-tier green wireless networks to improve the sustainable

network performance.

The reminder of the chapter is organized as follows. In Section 3.1, we present

the system model and formulation of constrained minimum green BS deployment

problem. Our proposed algorithm, called two-phase constrained green BS placement

(TCGBP) algorithm , is introduced in Section 3.2. Numerical results are presented

in Section 3.3. Finally, we summarize the chapter in Section 3.4.

3.1 System Configuration and Problem Formula-

tion

In this section, the system model and formulation of constrained green macro cell BS

placement problem are presented. Due to relatively expensive price for macro cell

BSs with green energy supplies, we aim at minimizing the cost of green macro cell

BS deployment and fulfilling the QoS requirements of users with harvested energy

from environment. To simplify the expression, we use (green) BSs to denote green

macro cell BSs in this thesis. The introduction of the system model is presented in

Subsection 3.1.1, and then we formulate the minimum green macro cell BS deployment

problem as an optimization problem in Subsection 3.1.2. Finally, the QoS and energy

sustainability constraints are described in Subsection 3.1.3.
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3.1.1 System Model

We consider single-tier green wireless communication networks with a collection of

wireless users and macro cell BSs as shown in Fig. 3.1. In the network, macro cell

BSs are powered by green energy, and each wireless user connects to a green BS for

wireless access. Wireless users and BSs can set different transmission power from a

finite set of power levels by employing the promising adaptive modulation and coding

technique. For simplicity, we assume the same transmission power is used by a BS

and its users in each cell, while different BSs may select different power levels. Thus,

the network may have various sizes of coverage area. The transmission links between

a BS and its users are symmetrical, and BSs use orthogonal channels to communicate

with each other for the sake of avoiding inter-cell interference. Due to the physical

geographical constraints, green BSs can only be placed on limited locations in realistic

constrained network scenarios. A set of candidate locations are provided for green

macro cell BS deployment. As the charging capabilities of renewable energy supplies

highly depend on the environment of geo-locations, green-energy-powered macro cell

BSs placed on different candidate locations may have different charging rates. The

notations used in system model are shown in Table 3.1.

We build a network communication graph G(U ∪ B,E) to model the network

topology, where U and B are the set of users and green macro cell BSs, respectively,

and E is the set of communication links between any two nodes. Let P− denote the

set of power levels that can be selected by green BSs and users, and Dub denote the

distance between user u and green BS b. As communication links are symmetric,
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Figure 3.1: Single-tier green wireless networks with renewable power supplies.
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Table 3.1: Notations for system model in Chapter 3

U The set of users
B The set of BSs
G(U ∪B,E) The network topology with users, BSs and links
E The set of communication links
u User u in the set of users U
b BS b in the set of BSs B
P− The set of power levels that can be selected
Dub The distance between a pair of nodes, u and b
(u, b) The link consists of node u and node b
SNRub The received signal to noise ratio of link (u, b)
α The path loss exponent
ℵ The background noise power
P−u The adopted power of user u
cub The achievable data rate of link (u, b)
B The bandwidth of the channel

(u, b) equals (b, u), we can express the received signal strength, SNRub of link (u, b),

as following [98],

SNRub =
P−u ·Dub

−α

ℵ
, (3.1)

where α, ℵ and P−u denote the path loss exponent, the background noise power and

the adopted power of user u, respectively. The achievable data rate of link (u, b),

denoted by cub, is

cub = B log2 (1 + SNRub), (3.2)

where B is the bandwidth of the channel.
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Table 3.2: Notations for problem formulation in Chapter 3

|B| The number of BSs
E+b The consumed energy by node b during a unit time
E−b The harvested energy by node b during a unit time
βub The achieved throughput from node u to b
β′ub The throughput requirement of node u for link (u, b)
eub The connection status of node u and node b
[0, T ] A scheduling period
tu A share of time T for user u to transmit data
Sb The set of users served by BS b
γu The traffic demand of user u
P+
b The average energy charging rate of node b

3.1.2 Problem Formulation

Our green macro cell BS deployment problem aims at placing the minimum number

of green-energy-powered BSs on a set of candidate locations, such that users’ QoS

requirements can be fulfilled with the harvested energy. Given a set of users and their

QoS requirements, we need to find the optimal placement of BSs on a set of candidate

locations, with adjustable transmission power levels at each BSs, such that the number

of BSs is minimized, while energy sustainability and users’ QoS constraints can be

satisfied. Notations used in problem formulation are shown in Table 3.2.
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The green macro cell BS placement problem can be generally formulated as:

Minimize |B|

Subject to : eub ∈ {0, 1}, ∀u ∈ U,∀b ∈ B∑
b∈B eub = 1, ∀u ∈ U

βub ≥ β′ub, ∀eub = 1

E+b ≥ E
−
b , ∀b ∈ B,

(3.3)

where E−b and E+b denote consumed energy and harvested energy of BS b, while eub,

βub, and β′ub denote the connection status, throughput and traffic demand of link

(u, b), respectively. When eub is equal to 1, it means the connection of link (u, b) is

established. The first two conditions show that each user must be connected to only

one BS [99]. The third condition indicates that the achieved throughput should be

larger than the throughput of each user. The last constraint is the energy sustainabil-

ity condition, which guarantees the charged energy should be able to sustain energy

consumption of users.

3.1.3 QoS and Energy Sustainability Constraints

In this subsection, we further specify the energy and QoS constraints defined in

Eq. (3.3). During a scheduling period [0, T ], each user u is allocated a share of T , tu,

for its own data transmissions. Therefore, to guarantee the fulfillment of user’s traffic
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demands, we have the following equation,

cubtu
T
≥ γu,∀ u ∈ Sb, (3.4)

where Sb is the set of users served by green macro cell BS b, and γu is the traffic

demand of user u. Substituting Eq. (3.2) into Eq. (3.4), the QoS constraint can be

obtained as follows,

tu ≥
γuT

B log2 (1 + SNRub)
,∀ u ∈ Sb. (3.5)

Suppose the average charging rate of BS b is P+
b . The harvested energy during a

period T , denoted as E+b , is

E+b = P+
b T. (3.6)

Similarly, we can obtain the energy consumption of green BS b during a period T as

E−b . The BS allocates time slots for users to satisfy their throughput demands, and

the allocated slots should be bounded by the total time slots T ,

T ≥
∑
u∈Sb

tu. (3.7)

Then, we have

E−b = P−b T ≥
∑
u∈Sb

P−u tu, (3.8)

where P−b = P−u for u ∈ Sb. To ensure the energy sustainability of BSs, the harvested

energy should be no less than the consumed energy for each BS in a period T . Thus,
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we can obtain the energy sustainability constraint as follows,

∑
u∈Sb

tu ≤ min {P
+
b T

P−b
, T}. (3.9)

Notice that, tu plays a critical role in both QoS and energy sustainability constraints

defined in Eq. (3.5) and Eq. (3.9). In other words, based on the allocated time slots

of each user, we can determine whether its traffic demand can be satisfied, and its

BS can sustain the users’ traffic demands with harvested energy or not.

3.2 Constrained Green Macro Cell BS Placement

Algorithm

The formulated problem is NP-hard, because even the subproblems, such as optimal

placement of BSs and optimal power control, are NP-hard in general [100]. Therefore,

we design an effective heuristic algorithm to approach the optimal solution with the

reduced time complexity. In this section, our heuristic algorithm, called two-phase

constrained green BS placement (TCGBP) algorithm, is presented in Subsection 3.2.1,

followed by time complexity analysis in Subsection 3.2.2.

3.2.1 TCGBP Algorithm

Intuitively, in order to place the minimal number of green macro cell BSs, each BS

should serve as many users as possible. This may lead to strategies of placing BSs in
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a dense area or making BSs use a large power for data transmission. If green macro

cell BSs are placed in a dense area, the burden of users’ throughput requirements can

be relieved. However, the harvested energy of BSs may not be sufficient to support

the network devices, which may lead to outage of BSs and further cause the cease

of network operations. If green macro cell BSs are deployed in a place far away

from users, BSs have to use a high transmission power level to fulfill the throughput

requirements of users. This may also cause the outage of BSs and the cease of network

operations. Therefore, either strategy may violate the constraints in Eq. (3.5) and

Eq. (3.9).

Based on the analysis of BS deployment strategies, we focus on cost-effectively de-

signing simple yet efficient heuristic algorithms to satisfy the basic QoS requirements

of users by deploying the minimal number of green BSs. We propose the TCGBP

algorithm, which can be separated into two phases. In the first phase, we place one

green macro cell BS in each candidate location. The whole network region is par-

titioned into several Voronoi Polygons (VPs), while wireless users are also divided

into different clusters. Each wireless user is assigned a VP vector to determine the

relationship between each user and potential BSs. Then, communication links are

established between each BS and the users inside its VP region. In the second phase,

cross-polygon selection of wireless users is permitted, so that green macro cell BSs

can establish links with wireless users located in neighboring VP regions. Redundant

BSs are deleted for the case that there is no user in their VP region. The notations

used in TCGBP algorithm are shown in Table 3.3.

Initially, each candidate location is placed with a green BS, and the minimal power
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Table 3.3: Notations for TCGBP algorithm in Chapter 3

V Pb The VP region of BS b
L The set of candidate locations
|L| The number of candidate locations
plub The preference level of user u with BS b
tub The active time of the link (u, b)
P 0 The initial transmission power of all nodes
|P | The number of adjustable transmission power levels
|U | The number of users

level, denoted as P 0, is assigned to all BSs and users. The VP region is determined by

the relative distance between the user and deployed BSs. Let x denote an arbitrary

point in the region, and Dxb be the distance between x and BS b. The VP region of

BS b, denoted by V Pb, is defined as follows,

V Pb = {x|Dxb ≤ Dxb′ , b
′ ∈ L, b′ 6= b}, (3.10)

where L stands for the set of candidate locations. Based on the definition of VP

region, we can divide the whole region into |L| Voronoi polygons. Thus, wireless

users located inside the region are also partitioned into different VP regions, where

each VP region is centered by a BS. Each BS establishes links with users located in

its VP region one by one. We define the preference level for BSs to determine the

selection order of wireless users. Let plub denote the preference level of user u with

BS b, which can be expressed as,

plub =
tub
T
. (3.11)
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In Eq. (3.11), tub is the least required active time of the link (u, b) to satisfy the QoS

requirement of user u in Eq. (3.5). Each BS b sorts the connection priority of wireless

users in the increasing order of plub, u ∈ V Pb. Then, BSs connect users one by one

until one of following conditions is met:

1. All wireless users in V Pb have been connected;

2. QoS and energy sustainability constraints defined in Eq. (3.5) and Eq. (3.9)

cannot be held.

In the second phase, users are allowed to connect to BSs in neighboring VP regions.

We start from the BS b∗ with the largest number of users in its VP region, i.e.,

|V Pb∗ | ≥ |V Pb′|,∀b′ ∈ B. This is because the objective of second phase is to remove

redundant BSs, and the BS with the largest number of users may have less chance

to be removed. Then, we calculate the preference level of each user u, u /∈ V Pb∗

with BS b∗, which is plub∗ , u /∈ V Pb∗ . Users outside b∗’s VP region are sorted in the

increasing order of plub∗ , u /∈ V Pb∗ . Then, BS b∗ connects users one by one until

the QoS and energy sustainability constraints cannot be held. Since we consider

multiple power levels, each BS can select a transmission power level P−b , P
−
b ∈ P− for

communication. For each link, and the power level that can support the maximum

number of users is selected by BS b∗. After that, we update the graph, and discard

all the links of (u, b∗), ∀u /∈ V Pb∗ . Then, the TCGBP algorithm repeats the above

operations in second phase until BSs cannot find more users to add. An example of

TCGBP algorithm is shown in Fig. 3.2, and the algorithm description is shown in

Algorithm 1.
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(a) Voronoi polygons. (b) In-polygon selection of wireless users.

(c) Cross-polygon selection of wireless users.

Figure 3.2: Illustration of TCGBP.
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Algorithm 1 Two-phase Constrained Green BS Placement algorithm (TCGBP)

B ← ∅;
P 0 ← min (P−);
for all b ∈ L do

for all u ∈ U do
P−u ← P 0; P−b ← P 0;
Determine the VP region of BS b, V Pb;

end for
for all u ∈ V Pb do

Establish link (u, b);
if QoS and energy constraints cannot be met then

BREAK;
end if

end for
end for
while Any BS can connect more users do
b∗ ← {b|max (|Sb|)};
for all P−b∗ ∈ P− do

for all u ∈ U, u /∈ V Pb∗ do
Calculate preference level plub∗ ;

end for
Sort users in increasing order of plub∗ ;
for all Sorted u ∈ U, u /∈ V Pb∗ do

Establish link (u, b∗);
if QoS and energy constraints cannot be met then

BREAK;
end if

end for
Record (P−b∗ ,Sb∗);

end for
Assign power level {P−b∗ |max (|Sb∗ |)} to BS b∗;
Establish and delete links according to Sb∗ ;
B ← b∗;
Delete b∗ from L;

end while
RETURN |B|;

34



3.2.2 Time complexity of the TCGBP

The TCGBP algorithm has time complexity of O(|L||P ||U |2), where |L|, |U | and |P |

are the number of candidate locations, wireless users, and adjustable power levels,

respectively.

The TCGBP algorithm consists of two sequential phases: 1) establishing links

inside each VP region, and 2) connecting users to BSs in other VP regions and

removing redundant BSs. In the first phase, there are two sequential steps: i) it

takes O(|L||U |) for partitioning the whole region, ii) checking the feasibility of each

VP region requires O(|L||U |) time. Thus, the time complexity of the first phase is

O(|L||U |). In the second phase, there are three sequential steps: i) the time complex-

ity of calculating preference level is O(|L||P ||U |), ii) It takes O(|P ||U | log |U |) to sort

the preference levels in increasing order, iii) the worst case of link connections and

deletions needs O(|L||P ||U |2) time, which includes power allocation and constraints

verification. Thus, the time complexity of the algorithm is determined by the step

with the highest order of time complexity, i.e., step 2, and is O(|L||P ||U |2).

3.3 Simulation

In this section, we compare average deployed BS number of the proposed TCGBP

algorithm with that of the optimal solution using the exhaustive search algorithm.

Then, we evaluate the performance of the TCGBP algorithm for various system

parameters, including different numbers of users, the variable traffic demands of each
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user, different numbers of candidate locations, and the variable charging capabilities

of each BS, and etc.

3.3.1 Simulation Configurations and Performance Evaluation

We set up single-tier green wireless networks with a number of wireless users and can-

didate locations randomly distributed in a 1000 m×1000 m region. The transmission

power of wireless users can be adjusted in three discrete levels, i.e., 10mW (10dBm),

32mW (15dBm), and 100mW (20dBm). Green macro cell BSs deployed at differ-

ent candidate locations have various charging rates, which is uniformly distributed

over [20, 30] mW. The bandwidth is set as 40 MHz. The path loss exponent α is

4, and the background noise power ℵ is −20 dBm. A time duration of T = 1000

time slots is used for network planning and scheduling. We repeat each simulation

experiment 1000 times with different random seeds and compute the average values

for performance evaluation. The simulator is generated by Java.

We first compare the performance of our proposed algorithm with the optimal

solution achieved by exhaustive search as shown in Algorithm 2. In exhaustive search,

we need 2|L| for checking all |L| candidate locations, |P ||L| for checking |L| BSs with

|P | power levels, |U ||L| for checking all combinations of client-BS connections, and |U |

for checking the user QoS and energy sustainability constraints. The worst case time

complexity of exhaustive search is O(2|L||P ||L||U ||L|+1), which is much higher than the

TCGBP algorithm.

The minimal number of BSs required to serve a given number of users is shown in
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Algorithm 2 Exhaustive Search Algorithm

for all BS placements do
for all combinations of BSs’ power do

for all combinations of client-BS connections do
if Energy and traffic constraints can be met then

Return |B|; {The minimum cost is found}
end if

end for
end for

end for

Fig. 3.3. We have 5 candidate locations and a number of users, each of which has a

0.3 Mbps throughput requirement. We can observe that more BSs are deployed when

the number of users increases, and our proposed algorithm approaches the optimal

solution well. In Fig. 3.4, we have 5 BS candidate locations and 30 wireless users

with varying traffic demands. The required number of BSs increases with the growth

of traffic demands. By exhaustively searching all combinations, the exhaustive search

algorithm can always find the optimal solutions with the minimal number of BSs,

while our proposed algorithm stops when all users can be connected to a BS that

satisfies both users’ QoS and energy sustainability constraints. It shows that the

exhaustive search algorithm slightly outperforms our proposed algorithm at the cost

of significantly increasing time complexity.

We study the number of candidate locations impacting on deployed number of

BSs in Fig. 3.5. 100 wireless users are deployed in single-tier green wireless networks.

As shown in Fig. 3.5, for a larger number of candidate locations, it is more likely to

find a feasible solution that satisfies both the users’ QoS and energy sustainability

requirements. The required number of BSs drops with the decreasing candidate loca-
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Figure 3.3: Performance comparison for different numbers of users.

Figure 3.4: Performance comparison for different user demands.
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Figure 3.5: Impact of the number of candidate locations.

tion number. The impact of the charging capacities of placed BSs is shown in Fig. 3.6.

The average charging rate of each BS changes from 10mW to 120mW. Similarly, with

a higher average charging rate at each BS, i.e., a BS can sustain greater traffic de-

mands of users, the number of BSs to serve all users is reduced accordingly. When

the charging rate is sufficiently large, the number of BSs for a given user demand does

not vary much, and BSs are required to cover the area where users are located.

3.4 Summary

In this chapter, we have investigated the network planning issue in single-tier green

wireless communication networks to satisfy the basic throughput requirements of

users. The main accomplishments of this chapter are summarized as follows:
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Figure 3.6: Impact of charging capabilities.

• By exploiting the particular characteristics of sustainable energy supplies, we

have presented design criteria for the green macro cell BS deployment in a single-

tier green wireless network. We have formulated the constrained minimum green

BSs placement problem as an optimization problem, which aims at selecting a

set of candidate locations to deploy the minimal number of green BSs such that

users’ basic traffic demands can be fulfilled by the harvested energy of the green

BSs.

• We have analyzed possible strategies for the minimum green macro cell BSs

problem. Based on the strategy analysis, a preference level has been assigned to

each user for determining the relationship between the user and potential placed

BSs. This metric is a function of distance between a user and all candidate

locations of BSs, which reflects the connection priority and relative data rate
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between the user and corresponding green BSs.

• By jointly considering power control and network planning, a heuristic algorith-

m, called two-phase constrained green BS placement (TCGBP) algorithm, has

been proposed to find the optimal BS deployment according to different traffic

demands of users and charging capabilities of BSs. Based on Voronoi diagram

and preference levels of users, the TCGBP algorithm can achieve the minimal

number of green BSs by adjusting transmission power level to guarantee the

satisfactory of both energy sustainability and users’ QoS requirements. Exten-

sive simulation results have shown that the proposed algorithm approaches the

optimal solution under a variety of network settings with significantly reduced

time complexity.
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Chapter 4

Joint Green Small Cell BS and

Sub-carrier Allocation in Two-tier

Green Wireless Networks

After the construction of single-tier green wireless networks, the basic QoS require-

ments of users can be satisfied with harvested energy. However, some wireless services,

such as layered video, have different levels of users’ traffic demands. Therefore, it is

always desirable to fulfill users’ high-end throughput requirements and further im-

prove the network sustainable performance. In this chapter, our target is to establish

multi-tier green wireless communication networks to improve the network capacity

with green energy. Considering high-end traffic demands of users, we envision net-

work planning and resource allocation as two tightly related issues that have mutual
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impact on each other to improve the network throughput and to achieve long term

energy sustainability. Specifically, we jointly address the green small cell BS deploy-

ment and sub-carrier allocation problems in two-tier wireless networks with green

energy supplies, taking into account the throughput, cost and energy sustainability

constraints.

The reminder of the chapter is organized as follows. The system model of a two-

tiered wireless network with sustainable energy is described in Section 4.1. Based on

the system model, a joint green small cell BS placement and sub-carrier allocation

problem is formulated as an MINLP problem in Section 4.2. Two heuristic algorithms

are proposed in Section 4.3. The performance of our algorithms is compared with

that of a greedy algorithm in various network scenarios in Section 4.4, followed by

the conclusions in Section 4.5.

4.1 System Model

We consider two-tiered green wireless networks, which are composed of green multiple

macro cell BSs, green small cell BSs and wireless users, as shown in Fig. 4.1. The

network architecture is motivated by the explosive growth of the network density and

traffic intensity, which requires the deployment of extra green small cell BSs in the

single-tier green network infrastructure to improve the network capacity and QoS

provisioning capabilities. In single-tier green wireless networks, green macro cell BSs

have been a priori installed in Chapter 3, while green small cell BSs can be deployed

on a set of candidate locations. By employing solar panels or wind turbines, green
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marco cell and small cell BSs can harvest energy from the environment while wireless

users use traditional power sources, e.g., battery, to power their personal devices due

to the hardware and cost constraints. As green energy sources are inherently variable

and dependent on the time, locations and weather, green BSs, i.e., the marco cell and

small cell BSs powered by green energy supplies, distributed at different locations

have various charging capabilities. Such kind of network scenario is common in real

life. For example, we consider a community with several macro cell BSs powered by

green energy. Each building is referred to as a user and has people work or live in it.

Green small cell BSs can be installed on the roof of some buildings, which are marked

as candidate locations. The traffic demand of each user and solar insolation or wind

speed level of each candidate location can be obtained from the historical statistics.

Since green small cell BSs help relay the traffic between users and green macro cell

BSs, we use (green) BSs and (green) RNs to denote green macro cell BSs and green

small cell BSs to simplify the descriptions, respectively. The notations used in system

model are shown in Table 4.1.

In two-tiered green wireless networks, each RN is associated with a BS, while each

user can be served by either a BS or a RN. When a user connects to a RN, the RN

needs to relay the user’s traffic to a BS. Therefore, a two-hop transmission is involved

when a user is associated with a RN; while a direct link transmission is used when

a user is connected to a BS. All nodes in the network share a set of sub-carriers,

denoted as S. A sub-carrier can be re-used by users in the space domain if and only

if sub-carriers occupied by users are sufficiently far away from each other, and thus

cause negligible interference to each other. As users with different traffic demands
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Figure 4.1: Two-tiered green wireless networks.
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Table 4.1: Notations for system model in Chapter 4

S The set of sub-carriers shared by all nodes
G(V = U ∪R ∪B;E) The network topology with users, RNs, BSs and links
V The set of all nodes
E The set of communication links
U The set of users
R The set of RNs
B The set of BSs
Dxy The distance between a pair of nodes, x and y
P T
x The transmission power of node x

(x, y) The link consisting of node x and node y
SNRxy The received signal to noise ratio of link (x, y)
α The path loss exponent
ℵ The background noise power
cxy The achievable data rate of link (x, y)
W The bandwidth of each sub-carrier
Sxy The set of sub-carriers allocated to link (x, y)
|Sxy| The number of allocated sub-carriers to link (x, y)
si The sub-carrier si in S
θ The received signal strength threshold
Iy The interference collision set of node y
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are distributed over the network and various candidate locations provide different

charging capacities, it is essential to appropriately select locations of green RNs and

allocate a proper set of sub-carriers to green RNs based on energy charging capacities

and users’ traffic demands, so that the allocated bandwidth can be fully utilized by

a node without energy outage.

We build a network communication graph G(V = U ∪ R ∪ B;E) to model the

topology of two-tier green wireless networks, where V is the set of all nodes, i.e., green

BSs, green RNs and users, and E is the set of communication links between any two

nodes. U , R and B stand for the set of users, RNs and BSs, respectively. Let Dxy

denote the distance between a pair of nodes, x and y, and P T
x be the transmission

power of node x. The received signal to noise ratio of link (x, y), called SNRxy, is

SNRxy =
P T
x ·D−αxy
ℵ

, (4.1)

where α is the path loss exponent, and ℵ is the background noise power. Let cxy

denote the achievable data rate of link (x, y), then we have

cxy = |Sxy|W log2 (1 + SNRxy), (4.2)

where W is the sub-carrier bandwidth. Let Sxy represent the set of sub-carriers

allocated to link (x, y), and |Sxy| be the number of allocated sub-carriers. The set of
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sub-carriers allocated for each link can be expressed as



Sxy =



s1

s2

...

sm


,∀(x, y) ∈ E

m = |S|

si ∈ {0, 1},

(4.3)

where si = 1 represents that sub-carrier si is allocated to link (x, y), and si = 0

otherwise.

We allocate sub-carriers to each green BS and RN so that users associated with

the BS/RN can use the same set of sub-carriers to communicate with its BS/RN. x

is in the interference range of y if the received signal strength of x from y, SNRyx,

exceeds a threshold θ, i.e.,

SNRyx ≥ θ. (4.4)

We define the interference collision set of node y as the set of nodes within the

interference range of y, which is denoted by Iy. Nodes within the same interference

collision set are not allowed to transmit at the same time.
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4.2 Problem Formulation

Our joint relay node placement and sub-carrier allocation (RNP-SA) problem focuses

on placing the minimal number of green RNs into the network and allocating an

appropriate number of sub-carriers to each green BS/RN to provide full coverage,

i.e., any user in the network is served by either a BS or a RN, and users’ throughput

requirements can be fulfilled by the harvested energy along with the allocated sub-

carriers based on the cost threshold. Generally, RNs are required when the charging

capacities of the BSs cannot sustain the traffic demands of users. By cooperating

with green RNs, some users can achieve a higher throughput, and reduce the energy

consumption at the BSs. With more allocated sub-carriers, a higher throughput

can be achieved at the cost of higher energy consumption over a wider spectrum

band. Due to the limited charging capabilities of green BSs/RNs, the number of

allocated sub-carriers should be jointly determined by the users’ traffic demands and

the charging capacities of BSs/RNs. This is because, for a green BS/RN with a

low energy level, allocating a large number of sub-carriers will drain out its energy

quickly and cause the green BS/RN to be temporarily out of service, which degrades

the utilization efficiency of the spectrum band and is not desirable. Therefore, it is

important to carefully formulate a joint optimization problem to achieve satisfactory

sustainable network performance.

The notations used in problem formulation are shown in Table 4.2. We study the

RNP-SA problem for a given set of users (U), a set of existing BSs (B), the charging

capacities of BSs, the expected charging capacities of RNs at various candidate loca-
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Table 4.2: Notations for problem formulation in Chapter 4

|R| The number of deployed RNs
|R′| The budget of RN deployment
u User u in the set of users U
r RN r in the set of RNs R
b BS b in the set of BSs B
βux The achieved throughput from user u to node x
β′ux The throughput requirement of node u for link (u, x)
E+x The consumed energy by node x during a unit time
E−x The harvested energy by node x during a unit time
exy The connection status of node x and node y
txy The active time of the link (x, y)
L The set of candidate locations
γupu The uplink throughput requirement of user u
γdnu The downlink throughput requirement of user u
P+
x The average energy charging rate of node x
PR
x The power consumption of user x to receive and decode the signal
TI(x) The active time of the allocated sub-carriers of user x
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tions, the throughput requirement of each user, the cost threshold and the available

set of sub-carriers. We formulate the RNP-SA problem as an MINLP problem as

follows,

Minimize |R|

Subject to :
∑

x∈R∪B eux = 1, ∀u ∈ U∑
b∈B erb = 1, ∀r ∈ R

βux ≥ β′ux, ∀eux = 1

E+x ≥ E−x ∀x ∈ R ∪B

|R| ≤ |R′|

exy ∈ {0, 1}, ∀x, y ∈ V

(4.5)

The first and second constraints indicate that each user should be served by one BS

or RN, and each RN should be connected to one BS. The third constraint indicates

that the achieved flow throughput from node u to x, βux, should not be less than the

user’s throughput requirement on link (u, x), β′ux. The fourth constraint ensures the

energy sustainability of node x such that the harvested energy, E+x , should be able to

sustain traffic demands of x’s users, E−x . The fifth constraint guarantees that the cost

of deployed RNs should not exceed the determined cost threshold. Finally, we define

exy = 1 to represent node x to be associated with node y, and exy = 0 otherwise.

4.2.1 QoS and Energy Sustainability Constraints

In this subsection, we further specify the energy sustainability constraint and through-

put requirement defined in Eq. (4.5). Denote txy as the active time of link (x, y) during
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a unit time. For all two-hop uplink transmissions, e.g., from users to BSs via RNs,

the input traffic of RNs should be equal to its output traffic, which is given by

∑
u∈U

eurcurtur =
∑
b∈B

erbcrbtrb, ∀r ∈ R. (4.6)

Let γupu and γdnu be the uplink and downlink throughput requirements of user u,

respectively. To meet the uplink throughput requirements of users, we have

∑
r∈R

eurcurtur +
∑
b∈B

eubcubtub ≥ γupu ,∀u ∈ U. (4.7)

The first item in the left hand side (LHS) of Eq. (4.7) is the achieved uplink through-

put of user u if the user is connected to a RN for eur = 1 and eub = 0; The second

item in the LHS is the achieved user throughput if the user is connected to a BS for

eub = 1 and eur = 0.

Similarly, the input traffic of RNs should be equal to its output traffic in the

downlink, and we have

∑
u∈U

erucrutru =
∑
b∈B

ebrcbrtbr, ∀r ∈ R. (4.8)

To meet the downlink throughput requirements of users, we need to ensure

∑
r∈R

erucrutru +
∑
b∈B

ebucbutbu ≥ γdnu ,∀u ∈ U. (4.9)

Suppose the average energy charging rate of node x is P+
x . Denote PR

x as the
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power consumption of user x to receive and decode the signal. In order to satisfy

the energy sustainability constraint, the charged energy should be greater than the

energy required for transmitting and receiving the traffic to and from other nodes,

P+
x ≥ P T

x

∑
(x,y)∈E

txy + PR
x

∑
(y,x)∈E

tyx,∀x ∈ R ∪B. (4.10)

Finally, to avoid harmful interference from concurrent transmissions, users in one

interference collision set should transmit data in different time slots. Let Ix denote

the interference collision set of node x and TI(x) be the active time of the allocated

sub-carriers of user x, we have

TI(x) =
∑
y∈Ix

∑
z∈V

(tyzSyz + tzySzy) ≤ 1,∀x ∈ V. (4.11)

The equation shows the summation of occupied time in each sub-carrier. It indicates

that the total active time of all links associated within the same interference collision

set should not exceed a unit time.

4.3 RNP-SA Algorithms

The formulated RNP-SA problem is NP-hard, because one of subproblems of RNP-

SA problem, the relay node placement (RNP) problem, is a well-known NP-hard

problem as proved in [101], and there is no efficient polynomial-time solution to

address it now. In this chapter, we resort to efficient heuristic algorithms for the
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RNP-SA problem. To this end, we first study the key parameters that affect the

throughput and energy sustainability constraints. By placing a RN close to a BS,

there may be little throughput gain for a user to transmit to the BS via the RN

due to long distance between the RN and users, but the energy consumption of the

BS can be significantly reduced as the BS only needs to communicate with the RN

which is close to it. By deploying a RN in a candidate location with high traffic load

but far away from the BS, there may be little energy saving as the communication

distance of the BS and the RN is long, but throughput requirements of users can

be fulfilled as users can communicate with a close RN at a high data rate. Thus,

to efficiently deploy green RNs, we need to well balance the throughput gain and

energy consumption of green BSs. By jointly considering the energy and bandwidth

requirements, we design a novel link metric, referred to as the sub-carrier and traffic

over rate (STR). Based on the STR metric, we propose two low-complexity heuristic

algorithms, namely, RNP-SA with top-down/bottom-up (RNP-SA-t/b) algorithms.

The overview of our algorithms is introduced in subsection 4.3.1. After that,

we present the design of link metric which is used for choosing relay locations and

connecting users in subsection 4.3.2. The details of RNP-SA-t/b algorithms are de-

scribed in subsections 4.3.3 and 4.3.4. Finally, the time complexity of the proposed

RNP-SA-t/b algorithms is analyzed in subsection 4.3.5.
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4.3.1 Algorithms overview

The objective of RNP-SA algorithm is to find the minimal number of green RNs

to fulfill users’ traffic demands under the energy sustainability and cost constraints.

In order to meet the throughput requirements of users, an intuitive method is to

place green RNs to the candidate locations with the heaviest traffic load. However,

under this strategy, it is possible that some candidate locations far away from BSs are

selected for RNs. In this case, the deployed RNs may not be able to efficiently relieve

the energy demands at BSs, as BSs still need to communicate with faraway nodes.

On the other side, to guarantee the energy sustainability of BSs, another intuitive

method is to place RNs close to BSs. Nevertheless, under this strategy, wireless users

communicating with the RN may achieve similar one-hop throughput as with BS,

but need an extra hop transmission from RN to BS. This implies that wireless users

may not be able to achieve a higher throughput by cooperating with RNs, and more

RNs may be required to fulfill the traffic demands, which may lead to violation of

cost threshold. Thus, we design a link metric, i.e., STR, which characterizes the

throughput and energy demand of each user associated with a RN or BS, and thus

strikes a balance between the energy consumption and users’ throughput for placing

RNs in the network.

Based on the proposed metric, we then propose two heuristic algorithms to deploy

the minimal number of RNs with top-down and bottom-up algorithms. In the top-

down algorithm, we first place RNs in all candidate locations. All links (e.g., links

between users and RNs, users and BSs, and RNs and BSs) are established in an
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Table 4.3: Notations for RNP-SA algorithms in Chapter 4

γu The traffic demand of user u, which is the summation of γupu and γdnu
STRux The Sub-carrier and Traffic over Rate of link (u, x), where x ∈ B ∪R
STRrb The Sub-carrier and Traffic over Rate of link (r, b)
(u, r, b) (u, r) and (r, b)
STRurb STRur + STRrb

li,lj,lk The link li, lj and lk in the network, respectively
bx The BS that x is associated with including the BS itself
γIz Summation of users’ traffic demand within z’s interference range, z ∈ L
Sx The sub-carriers allocated to node x
|Sx| The number of sub-carriers allocated to node x
|S| The number of all available sub-carriers shared by all nodes
|L| The number of candidate locations
|U | The number of users
|B| The number of BSs
P T The transmission power of all nodes
PR The receiving power of all nodes

ascending order of STR until the RNs’ charging capabilities cannot sustain users’

traffic demands. We calculate the least number of sub-carriers required for meeting

users’ traffic demands and allocate them to users. Then, we delete RNs one by one

based on the STR of links until any of cost, energy or throughput constraints cannot

be guaranteed. In the bottom-up algorithm, we first connect each user to the closest

BS and calculate the least number of required sub-carriers. We check whether the

current placement is a feasible solution or not, i.e., all of the cost, energy and QoS

constraints can be satisfied. If not feasible, we place one more RN on a candidate

location and add users to the RN according to their STR values until constraints

cannot be held. The notations used in problem formulation are shown in Table 4.3.
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4.3.2 Sub-carrier and Traffic over Rate

To solve the RNP-SA problem, the foremost issue is to decide where to place the RNs

and how to establish connections between users and RNs or BSs. Since our objective

focuses on minimizing the number of RNs, we let each RN partake in serving as

many users as possible to relief BSs’ burden of energy and traffic demands. Since

decoupling the energy and QoS constraints may not lead to an effective solution, we

propose a metric that jointly considers energy consumption and users’ throughput

requirements. Let γu be the summation of γupu and γdnu . The definition of our metric

is given as follows:

Sub-carrier and traffic over rate of link (u, x) or (r, b):


STRux = |Sux|γu

cux
,∀u ∈ U, x ∈ B ∪R

STRrb =
|Srb|

∑
u∈{u|(u,r)∈E} γu

crb
, ∀r ∈ R, b ∈ B.

(4.12)

Combining Eq. (4.12) with Eq. (4.2), we can derive STR metric as


STRux = γu

W log2 (1+SNRux)
, ∀u ∈ U, x ∈ B ∪R

STRrb =
∑

u∈{u|(u,r)∈E} γu

W log2 (1+SNRrb)
,∀r ∈ R, b ∈ B.

(4.13)

STR is the quotient of users’ throughput requirements and achievable throughput of

the link with a single subcarrier, which represents the minimal required active time

for data transmission. A link with a smaller STR implies that this link consumes

less energy and/or achieves a higher rate compared with other links using the same
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(b) Bottom-up sub-carrier allocation

Figure 4.2: Top-down and bottom-up sub-carrier allocation.

number of sub-carriers.

4.3.3 RNP-SA with top-down algorithm

The detail of our RNP-SA-t algorithm is shown in Algorithm 3. Initially, RNs are

deployed on each candidate location. We first connect each user to a RN or BS

with the minimum STR, and then connect each RN to the BS with the minimum

STR. Given that the total active time of all connected links, which are in the same

interference collision set, should be smaller than a unit time, we calculate the least

number of required sub-carriers. Then, we allocate the least used available sub-

carriers to each link. An example of top-down sub-carrier allocation is shown in

Fig. 4.2(a). Suppose that the total number of sub-carriers is 5, while the least number

of required sub-carriers of link li, link lj and link lk are 2, 3 and 2, respectively. Based

on the sub-carrier allocation sequence li, lj and lk, the least used sub-carriers are

allocated first, as shown in Fig. 4.2(a). After that, we check the cost, energy and QoS

constraints for each node. If the energy and/or QoS constraints can not be satisfied

and the cost constraint is violated, the algorithm will return no feasible solution. If
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all constraints, i.e., cost, energy and QoS constraints are satisfied, we then calculate

the STR of each RN, and delete a RN with the least contribution of total STR, which

is defined as the difference of total STR with or without the RN. In other cases, the

algorithm will stop and return the current number RNs. After deleting the RN, we

connect its users to other RN or BS with the minimum STR and calculate the total

value of STR of all associated links. The difference of total STR with or without

the RN refers to the RN’s contribution. Thus, we delete the RN with the least

contribution of total STR as this node makes the least contribution in the network.

The RNs are repeatedly deleted until any of cost, energy and/or QoS constraints is

violated. If deleting n+ 1-th RN will violate the constraints, the algorithm returns a

placement of n RNs in the last round.

4.3.4 RNP-SA with bottom-up algorithm

We design the RNP-SA-b algorithm to further reduce the time complexity compared

with the RNP-SA-t algorithm. The detail of our RNP-SA-b algorithm is shown in Al-

gorithm 4. In the bottom-up algorithm, we first generate a graph by connecting each

user to the closest BS. Similar with the RNP-SA-t algorithm, we calculate the least

number of required sub-carriers under the cost, energy and throughput constraints.

Then, we assign unused sub-carriers to each link by bottom-up sub-carrier alloca-

tion without time domain multiplexing. Thus, bottom-up sub-carrier allocation can

achieve a lower time complexity compared with the top-down sub-carrier allocation

at the cost of reduced spectrum utilization. An example of the bottom-up sub-carrier
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Algorithm 3 RNP-SA-t:RNP-SA with top-down algorithm

Place RNs on all candidate locations;
while R 6= ∅ do

Connect (u, r, b)or(u, b) with min(STRurb, STRub), ∀u ∈ U, r ∈ R, b ∈ B;
if P+

r < P−r ∨ P+
b < P−b then

Connect u to the closest r or b with enough energy;
end if
Calculate the least required |Sx|, ∀x ∈ V ;
Conduct top-down sub-carrier allocation;
if |R| = |R′| ∧ energy and/or QoS constraints cannot be kept then

Return no feasible solution;
end if
if Cost, energy and QoS constraints can be kept then

Save the current topology;
for all r ∈ R do
U∗ ← {u : (u, r) ∈ E};
STR1 ←

∑
(u,r,b)∈E STRurb;

Delete r and disconnect its links;
for all u ∈ U∗ do

Add (u, r, b)or(u, b) with min (STRurb, STRub);
STR2 ← STR2 + min (STRurb, STRub);

end for
STR∗ ← STR2 − STR1;
Load the topology;

end for
Delete r with min (STR∗);

else
Return relay node number of last loop;

end if
end while
Return 0;
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allocation is shown in Fig. 4.2(b). Link lk cannot be scheduled for transmission as

there is no available sub-carriers at this time. After allocating sub-carriers, we check

whether the current placement is feasible or not, under the cost, energy sustainability

and throughput constraints. If the cost constraint is violated, we stop the program

and return the number of RNs; if the energy constraint is violated, we need to place

one more RN in the network on the location closest to the BS; if the throughput con-

straint is violated, one more RN should be placed on the location with the heaviest

traffic demand. Then, we sort users by STR of user-relay links in an ascending order.

The user-relay-BS link is established only when the cost constraint is not violated,

while the placement of the RN can help to reduce the energy consumption of BSs

and the throughput constraint of users can also be satisfied. If the energy and/or

QoS constraints cannot be kept and the cost constraint is violated, the algorithm will

return no feasible solution.

4.3.5 Time complexity analysis of the RNP-SA algorithms

In this subsection, we analyze the worst case time complexity of the proposed RNP-

SA-t/b algorithms without cost threshold, i.e., the cost threshold is always large

enough to get a feasible deployment. Assume that the number of BSs in two-tired

green wireless networks is much smaller than that of RNs and candidate locations.

The time complexity of RNP-SA-t/b algorithms is analyzed as follows.

The time complexity of RNP-SA-t algorithm is O(|S||L|(|U | + |L|)2 + |U ||L|3).

For each round, the time complexity of generating a new topology is O(|U ||L|) +
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Algorithm 4 RNP-SA-b:RNP-SA with bottom-up algorithm

Connect each user to the closest BS;
Calculate the least required |Sx|, ∀x ∈ V ;
Conduct bottom-up sub-carrier allocation;
if Cost, energy and QoS constraints can be kept then

Return 0;
else

while P+
x < P−x ∨

∑
(x,y)∈E |Sxy| > |S| do

if Cost constraint cannot be kept then
Return the number of placed RNs;

else
b∗ ← bx;
if P+

b∗ < P−b∗ then
r ← z with min (Db∗z), ∀z ∈ L ∧ SNRb∗z ≤ β;

else
r ← z with max (γIz ), ∀z ∈ L ∧ SNRb∗z ≤ β;

end if
U∗ ← sort users by STRur in increasing order;
for all u ∈ U∗ do

Replace (u, b) by connecting (u, r, b);
if P+

r < P−r ∨ P−b∗ is increased then
Replace (u, r, b) by connecting (u, b);

end if
end for
Calculate the least required |Sx|, ∀x ∈ V ;
Conduct bottom-up sub-carrier allocation;
if |R| = |R′| ∧ energy and/or QoS constraints cannot be kept then

Return no feasible solution;
end if
if Cost, energy and QoS constraints can be kept then

Return the number of placed RNs;
end if

end if
end while

end if
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O(|L||B|). As the number of BSs is much smaller than that of RNs and candidate

locations, O(|U ||L|) + O(|L||B|) is the same as O(|U ||L|). For each node the sub-

carrier allocation and checking feasibility are conducted at the same time, which

needs the time complexity of O(|S|(|U |+ |L|)). There are total O(|U |+ |L|) nodes to

be checked, thus the time for the algorithm to do sub-carrier allocation and checking

feasibility is O(|S|(|U |+|L|)2). For checking the energy constraint of each BS, it needs

O(|B|(|U | + |L|)). The step of removing an RN needs O(|U ||L|2), which consists of

investigating all candidate locations and its attached users, O(|U ||L|), and rearranging

them O(|L|). Since all the steps are sequential and there are at most |L| rounds, the

total complexity of RNP-SA-t algorithm is

O(|L|)[O(|U ||L|) +O(|S|(|U |+ |L|)2) +O(|B|(|U |+ |L|)) +O(|U ||L|2)]

= O(|S||L|(|U |+ |L|)2 + |U ||L|3).

The time complexity of RNP-SA-b algorithm isO(|B||L|2+|L||U | log |U |+|B||U ||L|).

For each round, the time complexity is O(|B||L|) to determine which candidate lo-

cation to place the newly added RN. Then, it takes O(|U | log |U |) to sort users in

increasing order of STRur. Adding users to the newly added RN needs O(|U |), and

allocating the sub-carriers for those newly connected links requires O(|U |). Finally,

the time complexity of checking the constraints for each BS needs O(|B|(|U |+ |L|)).

Since all the steps are sequential and there are at most |L| rounds, the total complexity
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of RNP-SA-b algorithm is

O(|L|)[O(|B||L|) +O(|U | log |U |) +O(|U |) +O(|U |) +O(|B|(|U |+ |L|))]

= O(|B||L|2 + |L||U | log |U |+ |B||U ||L|).

Therefore, the RNP-SA-b algorithm has a lower time complexity than the RNP-

SA-t algorithm.

4.4 Simulation Results

In this section, we compare the performance of the proposed RNP-SA-t/b algorithms

to a traffic load oriented greedy algorithm with and without cost threshold. We first

evaluate the minimal number of relay nodes that is required to fulfill the network

requirement. Furthermore, when a cost threshold is set to limit the maximal number

of relay nodes, we analyze the average network lifetime, which is defined as the time

duration from the beginning until one of the network infrastructure nodes, either a

BS or RN, drains out its energy and becomes out of service. The performance is

evaluated under various network settings, e.g., diverse energy charging capabilities

of candidate RNs at various locations, different traffic demands of users, variable

transmission powers, and different numbers of users or BSs.
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4.4.1 Simulation configurations

We set up two-tiered green wireless networks with 4 BSs, 150 wireless users and

50 candidate locations of RNs within a 200m × 200m region. BSs are evenly dis-

tributed, while candidate locations and users are randomly distributed in the region.

All nodes use the same transmission power, P T = 0.5 W, and the reception power,

PR = 0.05 W, to communicate with each other. Different BSs and RNs distributed on

different candidate locations have various charging capabilities, and the energy charg-

ing rates of BSs and RNs are uniformly distributed over [0.2, 0.4] W and [0.05, 0.1] W,

respectively. The total number of sub-carriers in the network is 50, where the band-

width of each sub-carrier is 2 MHz. The path loss exponent is 2, the background noise

power ℵ = 10−4 W, and the interference signal threshold is 1. Different users have

different throughput requirements, which is randomly distributed over [25, 55]kbps,

and the downlink traffic demand is 9 times of that in the uplink. We repeat each

simulation experiment 1000 times with different random seeds and compute the av-

erage values for performance evaluation. The simulator is developed by using Java

and Matlab. The parameters used in the simulation are tabulated in Table 4.4.

4.4.2 Traffic load oriented greedy algorithm

We compare the performance of the proposed algorithms with a traffic load oriented

greedy algorithm as a benchmark. For the greedy algorithm, initially, we first connect

each user to the closest BS. After that, the minimal number of required sub-carriers

under the energy and throughput constraints is allocated to each user, which is similar
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Table 4.4: Table of Parameters
region size 200m× 200m
number of BSs 4
number of users 150
number of candidate locations 50
number of sub-carriers 50
maximal network lifetime 200 time slots
transmission power 0.5W
receiving power 0.05W
charging capability of BSs [0.2, 0.4]W
charging capability of RNs [0.05, 0.1]W
bandwidth of single sub-carrier 2MHz
pass loss exponent 2
background noise power 10−4W
interference signal threshold 1
data-rate demand of users [25, 55]kbps
γdnu /γ

up
u ,∀u ∈ U 9

to that in the RNP-SA-b algorithm. With the greedy algorithm, a RN is always placed

on the candidate location with the heaviest traffic load, i.e., the sum of the traffic

load within the interference range of the RN candidate location is higher than that of

any other locations. The closest users to the RN are then connected to the deployed

RNs iteratively, given that the placement of the RN can help reduce the energy

consumption of the BS, while the deployment cost, energy, and QoS constraints of

RNs can be fulfilled. The detail of traffic load oriented greedy algorithm is shown in

Algorithm 5.

Assuming that the cost threshold is large enough and the number of BSs is much

smaller than the number of RNs or candidate locations, the worst case time complexity

of the traffic load oriented greedy algorithm can be calculated as follows.
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Algorithm 5 Traffic load oriented greedy algorithm

Connect each user to the closest BS;
Calculate the least required |Sx|, ∀x ∈ V ;
Conduct bottom-up sub-carrier allocation;
while Cost, energy and QoS constraints cannot be kept do
r ← z with max (γIz ), ∀z ∈ L;
b∗ ← b with min (Drb),∀b ∈ B;
Connect (r, b∗);
U∗ ← sort users by Dur,∀u ∈ U ;
for all u ∈ U∗ do

Replace (u, b∗) by connecting (u, r, b∗);
if P+

r < P−r ∨ P−b∗ is increased then
Replace (u, r, b) by connecting (u, b);

end if
end for
Calculate the least required |Sx|, ∀x ∈ V ;
Conduct bottom-up sub-carrier allocation;

end while
Return the number of placed RNs;
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The worst case time complexity of the traffic oriented greedy algorithm isO(|L|2(|L|+

|U |)). For each round, it takes O(|L|(|L|+ |U |)) time to find out the candidate loca-

tion with heaviest traffic load. The time complexity of sorting users is O(|U | log |U |),

and connecting users to the newly added RN needs O(|U |). Then, allocating the sub-

carriers for those newly connected links requires O(|U |). Finally, it needs O(|B|(|U |+

|L|)) to check the energy constraints for all the BSs. Since all these steps are sequen-

tial and there are at most |L| rounds, the total complexity of the traffic oriented

greedy algorithm is

O(|L|)[O(|L|(|L|+ |U |)) +O(|U | log |U |) +O(U) +O(U) +O(|B|(|U |+ |L|))]

= O(|L|2(|L|+ |U |)).

Therefore, the traffic load oriented greedy algorithm has the same worst case time

complexity as the RNP-SA-b algorithm.

4.4.3 Performance evaluation

We first evaluate the minimal number of required RNs with different algorithms.

The number of RNs required to fulfill throughput demands of users is plotted in

Fig. 4.3. It can be seen that more RNs are required when the traffic demands of

users increase. The greedy algorithm is designed to help relieve the traffic burden of

the BSs, without considering the energy consumption; while our algorithms jointly

consider the impact of energy sustainability and users’ traffic demands, and thus
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achieve better performance. The impacts of variable energy charging capabilities of

RNs are illustrated in Fig. 4.4. It is shown that the number of required RNs decreases

with the increasing charging capabilitiy of RNs. A high capacity RN can serve more

users, and thus a smaller number of RNs is required to serve a given number of

users. The impacts of transmission power are shown in Fig. 4.5. Generally, when

BSs use a higher transmission power to serve users, more energy is consumed at BSs

and thus more RNs are required to help release the energy burden of BSs. In all

cases, our proposed algorithms outperform greedy algorithm significantly. We also

observe that the RNP-SA-t algorithm achieves better performance than the RNP-SA-

b algorithm at the cost of a higher time complexity. This is because the RNP-SA-t

algorithm uses the top-down method to iteratively remove RNs based on the network

topology information, including all of the relay candidate locations; while the RNP-

SA-b algorithm is only based on the current topology, thus achieves a slightly lower

performance than the RNP-SA-t algorithm with the reduced time complexity.

After that, we evaluate the network lifetime performance of different algorithms

under a certain cost threshold. The network lifetime of RNP-SA-t, RNP-SA-b and

greedy algorithms under various cost thresholds and the number of users is shown in

Fig. 4.6, Fig. 4.7 and Fig. 4.8, respectively. A longer network lifetime is achieved with

a higher cost threshold or a smaller number of users for all algorithms. A higher cost

threshold allows more RNs to be deployed, and more RNs can help balance the energy

consumption and traffic demands of BSs, which can improve the energy sustainability

of the network. Similarly, a smaller number of users implies a lower demand for both

energy and bandwidth, and thus a longer network lifetime can be achieved. However,
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Figure 4.3: Relay number of various user demands without cost threshold.
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Figure 4.4: Relay number of various charging capabilities without cost threshold.
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Figure 4.5: Relay number of various transmission power without cost threshold.

as the greedy algorithm only considers the throughput constraint but ignores the

energy constraint, it cannot ensure high network sustainability performance. It is

shown in Fig. 4.8 that the network lifetime increases slightly with the growth of

cost threshold. Our proposed algorithms jointly consider the energy and throughput

constraints by employing the STR metric for green small cell BS deployment. It can

be seen that the increase rate of network life time of RNP-SA-t/b is much higher

than that of the greedy algorithm as shown in Fig. 4.6 and Fig. 4.7.

We further study the impacts of the number of BSs on the network lifetime in

Fig. 4.9. The cost threshold is set to allow the deployment of up to 5 RNs. The

network lifetime improves significantly with the increasing number of BSs as shown in

Fig. 4.9. Similarly, our proposed RNP-SA-t/b algorithms significantly outperform the

greedy algorithm. This is because the greedy algorithm always chooses the candidate

71



2
4

6
8

10
12

14
16

18
20

50
60

70
80

90
100

110
120

130
140

150

40

60

80

100

120

140

160

180

200

Relay Number ThresholdUser Number

A
ve

ra
ge

 N
et

w
or

k 
Li

fe
tim

e

Figure 4.6: Network lifetime of RNP-SA-t algorithm with various cost thresholds and
user numbers.
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Figure 4.7: Network lifetime of RNP-SA-b algorithm with various cost thresholds and
user numbers.
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Figure 4.8: Network lifetime of greedy algorithm with various cost thresholds and
user numbers.

location with the heaviest traffic load to deploy RNs. This strategy is not energy-

efficient, especially when the heaviest load area is far away from the BSs.

In summary, our proposed algorithms significantly outperform the traffic oriented

greedy algorithm because both the energy sustainability and users’ traffic demands

are considered. The RNP-SA-t algorithm performs slightly better than the RNP-SA-

b algorithm at the cost of higher time complexity for building and maintaining the

overall network topology.

4.5 Summary

In this chapter, we have investigated the establishment of multi-tier green wireless

communication networks to fulfill high-end QoS requirements of users. We have con-

sidered a realistic two-tiered green wireless network scenario, in which green macro
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Figure 4.9: Network lifetime of various numbers of BSs.

cell BSs are deployed a priori while green small cell BSs can be placed at a set of

candidate locations. Green macro cell and small cell BSs distributed over various

locations have different charging capabilities, and can serve a limited number of users

with diverse traffic demands. The main accomplishments of this chapter are summa-

rized as follows:

• We have jointly studied the minimum green small cell BS placement and sub-

carrier allocation problem, which has been formulated as a mixed-integer non-

linear programming problem. our main objective is to minimize the number of

deployed green small cell BSs and allocate appropriate number of sub-carriers to

each green macro cell or small cell BS, such that full coverage of the network can

be guaranteed and the QoS requirements of users can be fulfilled by harvested

energy along with the allocated sub-carriers based on the cost threshold.
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• Since the formulated MINLP problem is NP-hard, we have designed a novel met-

ric, called sub-carrier and traffic to rate, as a guidance for heuristic algorithm

design, which is the quotient of users’ throughput requirements and achievable

throughput of the link with a single subcarrier. The STR of a link can charac-

terize the throughput and energy demand of each user associated with a green

macro cell or small cell BS, i.e., a link with a smaller STR implies that this link

consumes less energy and/or achieves a higher rate, compared with other links

using the same number of sub-carriers.

• Based on the STR metric, we have proposed two low-complexity yet efficient

heuristic algorithms. Our algorithms have used top-down or bottom up method

to deploy the minimal number of small cell BSs until all of the cost, energy

sustainability and the QoS constraints can be satisfied. In the meantime, we

have calculated the number of sub-carriers that are required to fulfill the QoS

requirements of users under the energy sustainability constraint. Our extensive

simulation results have demonstrated that by allowing each green small cell BS

to serve as many users as possible, we can significantly decrease the number

of green small cell BSs that are required to fulfill the network traffic demand

based on the cost threshold, compared with the greedy algorithm.
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Chapter 5

A Game Theoretical Approach for

Energy Trading in Heterogeneous

Green Wireless Networks

Since the energy charging capabilities of green BSs are highly dependent on the dy-

namic local environment, different cells may have different energy charging rates.

In addition, the traffic demands of various users may be different from each other,

and the traffic demand of the same user may change from time to time. Therefore,

it is essential to allocate limited energy resources in real time to balance the dy-

namic uneven distribution of energy charging and discharging capabilities. In this

chapter, we investigate the resource allocation issue in heterogeneous green wireless

communication networks. Specifically, we study the topic of local energy trading in
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heterogeneous wireless networks powered by green energy supplies to maximize the

energy sustainability and benefits of all cells, considering the instantaneous charging

and discharging rates.

The remainder of the chapter is organized as follows. In Section 5.1, the system

model is presented, including network model, energy model, energy trading model

and profit model. Based on the system model, the energy trading problem and the

energy trading cooperation are described in Section 5.2. The optimal trade algorithm

is proposed in Section 5.3, followed by simulation results in Section 5.4. Concluding

remarks and future work are discussed in Section 5.5.

5.1 System Model

In this section, we present the system model which includes network model, energy

model, energy trading model, and profit model.

5.1.1 Network Model

We consider heterogeneous green wireless networks in a community area, e.g., a resi-

dence community, where access points, femotocell BSs or small cell BSs are installed

in each building to provide wireless access. These network devices are powered by

green energy supplies, such as solar panels or wind turbines. To simplify the descrip-

tion, we use green small cell BSs to represent different kinds of wireless infrastructure

devices with green energy. To make green energy usable, each green small cell BS
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is equipped with a battery to store the charged energy. The harvested energy can

be used for powering green small cell BSs and serving the users’ traffic demands in

the cell. Basically, green small cell BSs may install batteries with various sizes, and

their charging capabilities are also different from each other, as the charging capacity

is not only determined by the number of solar panels or wind turbines installed for

energy harvesting, but also dependent on the installation location and the weather.

Due to different energy charging capacities and energy consumption demands in each

cell, some cells may have excess energy for sale while some others may be short of

energy and need to buy it from either neighboring cells or electricity grid. Usually,

a community area cannot deliver the charged energy to the grid due to the limited

power to pass through buses of the electricity grid, and thus they cannot sell energy

back to the electrical grid. As shown in Fig. 5.1, APs and green small cell BSs can

communicate with each other to negotiate the price and quantity for energy trading,

and green energy will be transferred after the energy trade transaction decision is

made. The notations for system model are shown in Table 5.1.

5.1.2 Energy Model

We can model the battery equipped by each green small cell BS as a G/G/1 queue,

where the energy charging and discharging are random processes with arbitrary distri-

butions. Denote the mean and variance of the inter-charging and discharging intervals

as µa and va, and µs and vs, respectively. Basically, energy charging process is location

dependent and weather sensitive, while the energy discharging is mainly determined
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Figure 5.1: Heterogeneous green wireless networks.
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Table 5.1: Notations for system model in Chapter 5

µa The mean of inter-charging intervals
va The variance of inter-charging intervals
µs The mean of inter-discharging intervals
vs The variance of inter-discharging intervals
X(t) A continuous process approximating the discrete buffer size
G(t) A white Gaussian process with zero mean and unit variance
σ The drift coefficient
ς The diffusion coefficient
x0 The initial energy buffer size
D(x0) The buffer depletion time for a given x0
E[D;x0] The mean of depletion time
T The trading period
δ The threshold of a cell’s mean of depletion time
x′0 The remaining or residual energy after energy trading transaction
psb The price of the energy trading transaction between s and b
qsb The quantity of the energy trading transaction between s and b
xb0 The remaining or residual energy of the buyer before the transaction
xs0 the remaining or residual energy of the seller before the transaction

xb
′
0 The remaining or residual energy of the buyer after the transaction

xs
′
0 the remaining or residual energy of the seller after the transaction
σb The drift coefficients of the buyer
σs The drift coefficients of the seller
qMIN The minimum quantity of energy that the buyer has to purchase
qMAX The maximum quantity of energy that the seller can sell
f(x) The utility function for energy consumption
k A system parameter reflecting the system energy efficiency

<s(xs0, xs
′
0 ) The utility gain of a seller for the energy trading transaction

<b(xb0, xb
′
0 ) The utility gain of a buyer for the energy trading transaction

Us The profit gain a seller can earn during the energy trading transaction
Ub The profit gain a buyer can earn during the energy trading transaction
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by the energy demand of the cell. By applying diffusion approximation, we analyze

the transient evolution of an energy buffer [91]. Specifically, the discrete buffer size is

approximated as a continuous process X(t) such that the incremental change of the

buffer size over a small time interval follows normal distribution,

dX(t) = X(t+ dt)−X(t) = σdt+G(t)
√
ςdt, (5.1)

where G(t) is a white Gaussian process with zero mean and unit variance, and σ and

ς are drift and diffusion coefficients defined by

σ = 1/µa − 1/µs (5.2)

and

ς = va/µ
3
a + vs/µ

3
s, (5.3)

respectively.

Denote D(x0) as the buffer depletion time for a given initial energy buffer size x0,

i.e., the duration from X(0) = x0 until the energy buffer is depleted and no longer

usable for services,

D(x0) = inf(t ≥ 0|X(t) = 0, X(0) = x0). (5.4)
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In other words, D is the first passage time of X(t) from x0 > 0 to 0, which satisfies


X(0) = x0,

X(t) > 0, for ∀t, 0 < t < D.

X(D) = 0,

The conditional p.d.f. of D can be derived from the diffusion equation with the

absorbing barrier in the origin,

fD(t;x0) (5.5)

= − d

dt
Q(
x0 + σt√

ςt
)− exp{−2σx0

ς
}Q(
−x0 + σt√

ςt
)

=
x0√
2πςt3

exp{−(x0 + σt)2

2ςt
}

Based on the p.d.f. of D, the mean of depletion time, i.e., the time that the energy

will be used up, denoted E[D;x0], can be expressed as:

E[D;x0] =
x0
σ
. (5.6)

5.1.3 Energy Trading Model

To further improve the utilization of green energy, energy trades are allowed among

different cells. Denote a time duration T as the trading period, during which only

one energy trading transaction can be made for each cell. In a trading period, each

green small cell BS needs to decide whether the remaining energy in the battery
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or the energy buffer is sufficient to support the minimal required energy demands

of served users. To ensure this, the mean of energy depletion duration should be

larger than a threshold E[D;x0] ≥ δ, i.e., given a certain threshold δ, each cell

can determine whether it needs to buy additional energy or it can sell some of its

excessively redundant energy to a neighbor. In other words, if E[D;x0] > δ, the cell

will perform as a seller and some of the redundant energy can be sold, while ensuring

that E[D;x′0] ≥ δ still holds after the energy trading transaction, where x′0 equals x0

minus the energy for sale. If E[D;x0] < δ, the cell will become a buyer that needs to

buy extra energy from its neighbors, and it should have E[D;x′0] ≥ δ after the energy

trading transaction, where x′0 equals x0 plus the purchased energy.

Let psb and qsb denote the price and quantity of the energy trading transaction

between a seller s and a buyer b, respectively. Based on the discussion above, we can

conclude that the range of qsb should be lager than the minimum requirement of the

buyer and smaller than the maximum available energy of the seller. Therefore, the

mean of depletion time of both the seller and the buyer should be no less than the

required threshold δ after the energy trading transaction, which can be expressed as

E[D;xs0 − qsb] ≥ δ

E[D;xb0 + qsb] ≥ δ

⇒ σbδ − xb0 ≤ qsb ≤ xs0 − σsδ, (5.7)

where σb and σs denote drift coefficients of the buyer and the seller, respectively.

Let qMIN and qMAX denote the minimum quantity of energy that the buyer has to

purchase and the maximum quantity of energy that the seller can sell, i.e., qMIN =
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σbδ − xb0 and qMAX = xs0 − σsδ, respectively. The energy trading transaction fails

when qMIN > qMAX , which means either the seller or the buyer will fail to meet their

energy requirements after the energy trading transaction.

Once the cell decides to be a seller or a buyer, it cannot change the character

nor initialize another energy trading transaction in each trading period. For each

energy trading transaction, the quantity and price will be decided by the seller and

the buyer directly. As long as the energy trading transaction is made, the price

and quantity of the energy are determined, no modification during this transaction

is allowed. If trading negotiation between the seller and the buyer fails, no energy

trading transaction will be made and no energy will be transferred between them.

Our goal is to determine the optimal price and quantity to maximize the profits of

both sellers and buyers, and the detail model of the profit and utility will be discussed

in the following subsection.

5.1.4 Profit Model

Basically, by selling the excess energy to other cells, the seller will gain some re-

wards and its overall profit is the gained reward minus the cost of energy trading

transaction. Similar to utility functions for bandwidth allocation, we apply a utility

function f(x) for energy consumption [102–104], i.e., x energy units are used for pro-

viding network services to achieve a certain utility gain. We define a utility function

f(x) = k ln (1 + x) as an example, where x is the energy level required for achieving

the utility and k is a system parameter reflecting the system energy efficiency. The u-
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tility curve with k = 20 is shown in Fig. 5.2. The obtained energy utility is a function

of the consumed energy, and a higher energy consumption corresponds to a higher

utility. Usually, we can achieve a high utility gain when the energy demand increases

from the low level, but less utility gain after a certain threshold. The utility may

saturate at some point when the energy demands are fully satisfied, and thus more

available energy may not lead to a higher utility. Let xs0 and xb0 denote the remaining

or residual energy of the seller and the buyer before the transaction, respectively.

Denote <s(xs0, xs
′
0 ) = f(xs

′
0 )− f(xs0) as the utility gain based on different levels of the

remaining energy in the energy buffer, where xs0 and xs
′
0 are the remaining energy

levels of the seller in the energy buffer before and after energy trading transaction,

respectively. For each seller who sells its residual energy after its basic requirement

is satisfied, its profit Us can be obtained according to the reward in the energy trade

and the loss of utility gain due to the energy trade as follows,

Us = psbqsb + <s(xs0, xs
′

0 ), (5.8)

where 0 ≤ qsb ≤ qMAX .

For each buyer, its profit can be derived as a function of <b(xb0, xb
′
0 ), which consists

of the utility gain with the purchase of the energy, psbqsb the total cost the buyer pays

for the energy purchase, and ct the energy delivery cost due to distant energy transfer

between the seller and buyer. Thus, we have

Ub = <b(xb0, xb
′

0 )− psbqsb − ct, (5.9)
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Figure 5.2: Utility function f(x).

where qsb ≥ qMIN .

5.2 Energy Trading Cooperation

In this section, we first formulate the energy trading problem as a Stackelberg game.

By analyzing the game, we can obtain the closed-form expressions of the optimal

price and quantity for each energy trading transaction.

5.2.1 Energy Trade Procedure

In the system, all cells, i.e., buyers and sellers, are rational and selfish. All sellers

and buyers aim at maximizing their profits, as defined in Eq. (5.8) and Eq. (5.9).

Before initiating an energy trading negotiation, each cell first decides whether it needs
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to buy or sell energy, based on its current energy x0, its charging capacity and the

energy demands in its cell. After all cells determine their roles, the buyer can select

a seller to inquiry the price and the maximum volume of the energy that the seller

can provide. The buyer includes its own residual energy level xb0 and the minimum

volume of the energy in the inquiry message. Upon receiving the inquiry from the

buyer, the seller replies with its optimal price and the maximum volume of the energy

it can sell. After the buyer receives the seller’s reply, it first compares the selling price

with the energy price from electricity grid. If the selling price is higher than that of

the electricity grid and/or the minimum required energy of buyer is more than the

maximum volume that seller can provide, the buyer notifies the seller that the energy

trading transaction cannot be made, and the seller will close the negotiation session.

Otherwise, the buyer proceeds to determine the optimal quantity and sends it to

the seller. The trading procedure is a two-stage leader-follower game, which can be

formulated by the Stackelberg game. In our problem, the seller acts as a leader and

the buyer becomes a follower. By letting the seller decide the price based on both the

seller and the buyer’s profit functions, we can obtain the optimal price and quantity

for both the seller and the buyer in the transaction. The procedure of energy trades

is shown in Fig. 5.3. We list the notations of energy trades in Table 5.2.

5.2.2 Energy Trade Analysis

In this subsection, we analyze the formulated Stackelberg game and derive the optimal

energy price and quantity for energy trading transactions. In the game, the price
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Figure 5.3: Procedure of energy trading transaction.

Table 5.2: Notations for energy trades in Chapter 5

ct The energy delivery cost between the seller and the buyer
p∗sb The optimal price of the energy trading transaction
q∗sb The optimal quantity of the energy trading transaction
p′sb The optimal price of the energy trading transaction when q∗sb < qMIN

q′sb The optimal quantity of the energy trading transaction when q∗sb < qMIN

p′′sb The optimal price of the energy trading transaction when q∗sb > qMAX

q′′sb The optimal quantity of the energy trading transaction when q∗sb > qMAX

C The central controller
B The set of buyers
S The set of sellers
pg The energy price of electricity grid
N The set of cells
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of energy from electricity grid is known to all cells. As a result, the seller should

determine a price which is lower than the price of energy from electricity grid to

encourage buyers to make the energy trading transaction; otherwise the buyer will

buy the energy directly from the grid. Based on the profit functions defined in

Eq. (5.8) and Eq. (5.9), we can use backward induction to derive the optimal price

and quantity of the Stackelberg game.

Given the optimal price of energy set by the seller, the buyer aims at maximizing

its profit, which is given by

max
qsb

Ub(psb). (5.10)

Solving Eq. (5.10), we can obtain the best response function of the buyer based on

the given price from the seller,

q∗sb =
k − psb − xb0psb

psb
. (5.11)

Applying the best response function of the buyer into the seller’s profit function, we

can obtain the optimal price for the energy trading transaction provided by the seller,

denoted p∗sb,

p∗sb =
k(xb0 + 1 + Φ)

2[2 + xb0x
s
0 + xs0 + (xb0)

2 + 3xb0]
, (5.12)
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where

Φ =
√

(1 + xb0)(5x
b
0 + 4xs0 + 9).

Then, we can derive the optimal quantity q∗sb according to the optimal price p∗sb, which

is given by

q∗sb =
(1 + xb0)(x

b
0 + 2xs0 + 3− Φ)

xb0 + 1 + Φ
. (5.13)

After obtaining the optimal price and quantity of the energy trade (p∗sb and q∗sb),

we check whether the derived solution satisfies the quantity requirement of the energy

trading transaction, i.e., the energy trading quantity should not be greater than the

maximum energy that the seller can provide nor smaller than the minimum energy

that the buyer requires to fulfill the energy demands in its cell, qMIN ≤ q∗sb ≤ qMAX .

From the analysis, we have three cases, 1) qMIN ≤ q∗sb ≤ qMAX , 2) q∗sb < qMIN , and

3) q∗sb > qMAX . For the first case, (p∗sb, q
∗
sb) is the optimal price and quantity for the

transaction. We analyze the problem according to the best response function of the

buyer in Eq. (5.11). An example of the best response function of the buyer based on

the given price is shown in Fig. 5.4, where k = 20 and xb0 = 100 units of energy. We

can find that the quantity monotonically decreases with the increase of the price.

Let the pMIN and pMAX denote the minimum and maximum price determined by

the seller, which correspond to the qMAX and qMIN energy units that the buyer wants

to purchase, respectively, based on the monotonically decreasing function as shown
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Figure 5.4: The best response function of the buyer.

in Fig. 5.2. If q∗sb < qMIN , the seller knows that if the price is higher than pMAX the

buyer will not accept the energy trading transaction and may purchase energy from

other sellers or electrical grid. Thus, the price should be set according to the qsb and

the best response function in Eq. (5.11). The optimal price and quantity (p′sb, q
′
sb)

under the case q∗sb < qMIN are given by


p′sb = k

σbδ+2xb0+1

q′sb = σbδ − xb0.
(5.14)

For the case q∗sb > qMAX , as the seller cannot sell more than qMAX energy, the seller

will not set the price lower than pMIN . Therefore, the price should be set according to

the qsb and the best response function in Eq. (5.11). The optimal price and quantity
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(p′′sb, q
′′
sb) under the case q∗sb > qMAX can be derived as


p′′sb = k

xs0+x
b
0+1−σsδ

q′′sb = xs0 − σsδ.
(5.15)

5.3 Optimal Profits Energy Trading Algorithm

In this section, we present our algorithm, namely, Optimal Profits Energy Trading

(OPET) algorithm, to maximize the Profits of all sellers and buyers. In our algorithm,

there exists a central controller, e.g., a community center, to help allocate the energy

trades between sellers and buyers. Initially, in each trading period, buyers inquiry

the price and the quantity, which each seller can provide, to all the sellers with its

information including the remaining energy and the minimum required energy. Then,

each seller replies buyers with the optimal price and quantity based on the profit

functions of both the seller and the buyer. After that, buyers send their information,

including prices and quantities provided by all sellers, to the central controller. The

central controller matches the optimal pairs of the seller and the buyer for energy

trading transactions based on the information sent by all buyers, using the maximum

weighted bipartite matching algorithm. Specifically, the central controller generates

a graph, where each cell is a vertex and the profit summation of each pair of the

seller and the buyer is the weight of the edge, based on the information sent by all

buyers. In the graph, sellers and buyers can be divided into two groups, and thus

the central controller can apply the maximum weighted bipartite matching algorithm
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Figure 5.5: An example of green energy trades.

to get the optimal matching, which maximizes the total profits of all cells. After

obtaining the matching results, the central controller sends quantity, price and the

ID of the buyer to the corresponding seller. Finally, each seller sends the negotiated

quantity of energy to the buyer and receives the profit from the buyer. Let C, B,

S and pg denote the central controller, the set of buyers, the set of sellers and the

energy price of electricity grid, respectively. An example is shown in Fig. 5.5, and the

detail of the OPET algorithm is shown in Algorithm 6.
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Algorithm 6 Optimal Profits Energy Trading Algorithm

The trading session is started;
for all b ∈ B do

for all s ∈ S do
b sends inquiry and (qMIN , x

b
0) to s;

s replies (p∗sb, q
∗
sb)→ b;

b stores (p∗sb, q
∗
sb);

end for
b sends {s ∈ S|(p∗sb, q∗sb)} → C;

end for
C calculates the optimal allocation;
for all s ∈ S do
C sends (p∗sb, q

∗
sb, b) → s;

s transfers q∗sb energy to b and obtain p∗sbq
∗
sb;

end for
The trading session is closed;

The OPET algorithm can achieve the optimal solution with time complexity |N |2,

where N denotes the set of cells. For each energy trading transaction between a seller

and a buyer, we can obtain the optimal price and quantity according to the analysis in

Subsection 5.2.2. Based on the information sent by the buyer, the central controller

obtains the optimal price and quantity of all the energy trading transactions. By

applying the maximum weighted bipartite matching algorithm, it can generate the

optimal matching for all cells based on the optimal price and quantity of each energy

trading transaction. Thus, the OPET algorithm can achieve the optimal solution.

In the OPET algorithm, each buyer needs to inquiry all sellers and send the

optimal price and quantity of each energy trade to central controller, which requires

O(N2) time. The central controller solves the maximum weighted bipartite matching

algorithm in O(|S||B|) time, and sends the result to each seller, which takes O(|S|)
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time. Therefore, the total time complexity of the OPET algorithm is O(|N |2).

5.4 Simulation Results

In this section, we conduct extensive simulations to verify the performance of the

proposed energy trading algorithm and investigate the impacts of important param-

eters on the performance. As the maximum weighted bipartite matching algorithm

is used to maximize the total profits, the optimal matching will be allocated based

on the energy trade of each pair of the seller and the buyer. Thus, the optimality

of our algorithm depends on the performance of energy trading transaction between

each pair of the seller and the buyer. We set k = 100 profit unit per kW·h, and

σs = σb = 0.5. The required energy threshold δ is 32, and ct = 1 profit unit per

(kW·h).

The optimal quantity of energy trades according to the residual energy is shown

in Fig. 5.6. We can observe that the buyer with a lower residual energy have to

buy more to fulfill its energy requirement. The trading quantity increases when the

seller has more energy for sale with a lower price. When the seller has insufficient

redundant energy for sale to meet the energy demand of the buyer, the energy trading

transaction will fail because either the seller or the buyer will violate the basic energy

requirement after the energy trade. In the case that the seller has limited redundant

energy but can meet the basic energy requirement of the buyer, the energy price may

be relatively high and the buyer will only purchase the necessary quantity of energy

to fulfill its requirement. When the redundant energy of the seller is in high volume,

95



Figure 5.6: Energy of the seller vs. trading quantity.

the energy reward decreases according to the utility function. In this case, the seller

will decrease the trading price, and thus will motivate the buyer to purchase more

than necessary quantity as it can store the redundant energy for future use. This will

result in a higher profit gain of the seller and a higher utility gain of the buyer.

The profit summation of the seller and the buyer with different levels of residual

energy is shown in Fig. 5.7. We can observe that the profit summation of the seller and

the buyer increases with the decrease of the buyer’s residual energy. This is because

the buyer is willing to pay a higher price when its energy level is low, because the

buyer is able to gain more profits with the purchased energy based on the utility

function. When the redundant energy cannot fulfill the requirement of either the

seller or buyer, the energy trading negotiation fails and no transaction will be made.

Similarly, when the seller has abundant available energy for sale, it will decrease the

price, which motivates the buyer to purchase more energy.
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Figure 5.7: Residual energy of the seller vs. profits.

5.5 Summary

In this chapter, we have investigated the resource allocation issues in heterogeneous

green wireless communication networks. Specifically, we have studied the local energy

trading issue in community-area heterogeneous wireless networks powered by green

energy supplies, where network infrastructure devices are installed in each building to

provide wireless access. In the system, the network infrastructure devices of cells can

obtain the information and send the messages from/to their green energy supplies.

The main accomplishments of this chapter are summarized as follows:

• Considering the dynamic and uneven distribution of charging and discharging

capabilities in heterogeneous green wireless communication networks, we have

exploited the energy trading issue between network cells with different resid-
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ual energy and dynamic charging/discharging capabilities. We have presented

the system model and the procedure of energy trading, and defined the profit

functions of both buyers and sellers based on the utility function. After that,

we have formulated the local energy trading problem in heterogeneous green

wireless networks. Our objective is to maximize the benefits of both buyers and

sellers by improving the energy sustainability of all cells.

• To solve the formulated problem, we have separated the local energy trading

problem into two subproblems, i.e., 1) the energy trading between each pair of

the buyer and the seller, and 2) matching buyers and sellers into pairs to conduct

energy trading transactions. The former problem is a two-stage leader-follower

Stackelberg game. To solve it, we have derived the expression of the optimal

price and quantity for energy trading transaction by using back induction. After

that, we use the maximum weighted bipartite matching algorithm to match the

energy trades between buyers and sellers to maximize the profits of all cells in

the other problem.

• We have proposed an algorithm, called optimal profits energy trading algorith-

m, to maximize the profits of all cells by conducting energy trades between

cells. We have analyzed the performance of the OPET algorithm and have dis-

cussed two special cases, i.e., i) optimal trading quantity less than the minimum

required energy, and 2) optimal trading quantity more than the maximum avail-

able energy. Based on our analysis, we have proofed that the proposed OPET

algorithm can obtain an optimal solution with polynomial time complexity.
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Our simulation results have verified the optimality performance of the OPET

algorithm.
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Chapter 6

Conclusion and Future Work

The dissertation aims at cost-effectively constructing multi-tier heterogeneous green

wireless networks to sustain the network operations and management. In this chapter,

we first summarize this dissertation and present our major research contributions in

Section 6.1. After that, we introduce our future work in Section 6.2

6.1 Major Research Contributions

We have proposed a sustainable wireless network solution as one of promising pro-

totypes for next-generation wireless networks to address the energy and network ca-

pacity issues. In the solution, we have divided the establishment of multi-tier het-

erogeneous green wireless networks into three steps, i.e., 1) establishing conventional-

architecture green wireless networks, 2) building multi-tier green wireless networks,
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and 3) allocating and balancing network resources. In this section, we present the

major contributions in each step.

6.1.1 Establishment of Conventional-architecture Green Wire-

less Networks

The advances of green energy technologies have provided an alternative energy source

to power wireless network devices with eco-friendly renewable energy. With the re-

plenishable characteristic of green energy, it is possible to sustain the network oper-

ations and management of green wireless networks. However, the establishment of

green wireless networks is challenging due to relative expensive price of green wireless

network devices and dynamic charging capabilities. As such, we have re-visited the

network planning issue in single-tier green wireless communication networks. Our

main contributions in this step are shown as follows.

• We have analyzed the characteristics of green energy, and have presented the

utmost concern, energy sustainability, in the design of green wireless networks.

Considering green energy characteristics including relative expensive cost and

dynamic charging capabilities, we have formulated the constrained minimum

green macro cell BS placement problem. The energy and throughput constraints

have been defined, which guarantee the harvested energy is sufficient to support

the traffic demands of users. Subject to the energy and throughput constraints,

our formulated problem targets at deploying the minimal number of green macro
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cell BSs on a set of selected candidate locations to provide a full coverage of the

network region.

• To solve the constrained minimum green macro cell BS placement problem, we

have investigated the possible strategies in previous works. We have found that

the commonly used strategies for network planning in electrical-grid-powered

wireless networks, i.e., place macro cell BSs in a dense area, may not be ap-

plicable for single-tier green wireless networks. This is because the harvested

energy of BSs in dense area may not be sufficient to serve a large number of

users. To this end, we have designed a preference level, which is a function of

distance between each user and all candidate locations of BSs, to represent the

connection priority and relative data rate between the user and corresponding

green BSs.

• We have proposed a heuristic algorithm, namely two-phase constrained green

BS placement algorithm, to provide one of simple yet efficient solutions for the

constrained minimum green macro cell BS placement problem. The TCGBP

algorithm jointly considers power control and green macro cell BS deployment,

which can be separated into two phases. In the first phase, we have partitioned

the whole network into several VPs and established connections in each VP

based on the preference level of each user; In the second phase, we have built

the cross-polygon connections and deleted redundant BSs. We have analyzed

the time complexity of the TCGBP algorithm, and have compared it with the

optimal solution. Extensive simulation results have shown that the proposed
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algorithm approaches the optimal solution under a variety of network settings

with significantly reduced time complexity.

6.1.2 Construction of Multi-tier Green Wireless Networks

The explosion of diverse wireless applications has boosted the deployment of different

types of wireless networks. By letting various wireless networks co-exist with each

other, it is possible to provide ubiquitous wireless services for users with different

QoS requirements at anytime and anywhere. As one of promising solution, multi-tier

network architecture is promising to accommodate an enormous number of different

wireless networks in next-generation wireless networks. Based on the characteristics

of green energy, we have re-visited the network planning and resource allocation in

the second step to construct two-tier green wireless networks. Our main contributions

in this step are shown as follows.

• We have investigated the establishment of two-tier green wireless networks on

the base of the generated single-tier green wireless networks in the first step.

By considering both network planning and resource allocation issues, we have

formulated joint green small cell BS deployment and sub-carrier allocation prob-

lem. In the problem, our objective is to place the minimum number of small

cell BSs as relay nodes into networks, such that wireless services can cover the

whole network region, subject to the energy sustainability, throughput and cost

constraints, where the cost threshold has been defined as the budget for the

equipment and installation cost of green small cell BSs.
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• We have analyzed the commonly used strategies for green small cell BS deploy-

ment to solve the formulated problem: i) close to the macro cell BS to release

its energy burden, and ii) close to users to improve their throughput. We have

found that both strategies may lead to violating the constraints and are not ap-

plicable in green wireless networks. Therefore, to solve the formulated MINLP

problem, we have designed a novel metric, namely sub-carrier and traffic to

rate, to help elaborate efficient heuristic algorithms. The metric can show both

throughput requirement and energy demand of each user served by a macro cell

or small cell green BS.

• We have proposed top-down and bottom-up heuristic algorithms to solve the

formulated RNP-SA problem based on the STR metric. The top-down algo-

rithm deploys RNs in all candidate locations, and then deletes each RN in each

round according to its STR value until any of the constraints is violated; The

bottom-up algorithm places each RN with best total STR value into the net-

work until all the constraints can be held. After that, we have calculated the

time complexity of our algorithms, and have conducted extensive simulations.

The results have demonstrated that our algorithms can achieve the minimal

number of small cell BSs to provide full coverage, subject to energy, throughput

and cost constraints with polynomial run-time complexity. We have also found

that the top-down algorithm performs slightly better than the bottom-up algo-

rithm at the cost of higher run-time complexity for building and maintaining

the overall network topology.
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6.1.3 Network Resources Allocation

Unlike traditional electrical grid, green energy is harvested from natural environment,

which is highly dependent on the local weather, local time and position. The vagaries

of the weather make the estimation of dynamic charging capabilities become a chal-

lenging task. Moreover, different cells may install different numbers of solar panels

or wind turbines, and thus have different charging capacities; while the energy de-

mand in each cells is also dynamic, and is different from each other. As a result,

some cells with high energy charging capacities and low energy demands will have

residual energy stored in the battery while some other cells with low energy charging

capacities but high energy demands may use up the harvested energy and become out

of service [51]. Therefore, to efficiently utilize green energy, it is desirable to allow

energy trading among neighboring cells. We have exploited energy trading between

different cells in heterogeneous green wireless networks to balance the charging and

discharging capabilities. Our main contributions in this step are shown as follows.

• We have developed a framework for energy trading within a community-area

heterogeneous green wireless networks. In the framework, each cell is equipped

with a green energy supply and a battery for buffering energy. The mean

of each cell’s depletion time, i.e., the duration until the energy will be used

up, has been estimated based on its residual energy and charging/discharging

capabilities, which is used to determine the role of each cell in energy trading

during a trading period. After that, The profit functions of both buyers and

sellers are defined based on the utility function. We have formulated the local
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energy trading problem in heterogeneous green wireless networks, which intend

to maximize the profits of all cells and sustain the network performance by

ensuring the energy sustainability of each cell.

• Based on the role of each cell, the procedure for buyers and sellers to conduct

energy trading transaction has been presented. It has been separated into two

sub-problems: i) the energy trading between each pair of buyer and seller, and

ii) matching buyers and sellers into pairs to conduct energy trading. In the first

sub-problem, each pair of a buyer and a seller decides the price and quantity

for the energy trading transaction. In the second sub-problem, buyers and

sellers are matched as pairs to conduct energy trading, such that the profits

of all cells can be maximized. We have applied a two-stage leader-follower

Stackelberg game and the maximum weighted bipartite matching algorithm to

solve formulated sub-problems, respectively.

• Based on the solutions for sub-problems, we have proposed an optimal profits

energy trading algorithm to maximize the profits of all cells. We have obtained

the optimal matching for buyers and sellers to conduct energy trading transac-

tions, and the optimal energy trading price and quantity for each pair of the

buyer and the seller to maximize total profits. After that, we have analyzed the

performance and calculated the time complexity of the OPET algorithm. Our

analysis have shown that our OPET algorithm can achieve the maximum total

profits for all cells with polynomial run-time complexity. Moreover, we have

conducted the simulations to evaluate the performance of our OPET algorithm,
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which have verified the optimality performance of it.

6.2 Future Work

The advances of green energy have raised a possible solution to provide sustainable

energy support for wireless network devices, which is one of the promising methods

to sustain network operations and management in next-generation wireless networks.

Different from electrical grid, the dynamic energy harvesting has introduced another

dimension, i.e., energy charging capability, to the design of green wireless networks,

which also leads to many new challenging research issues under the scenario of green

wireless networks [23, 30, 31]. We close this chapter by presenting our future works

as research directions in this field.

6.2.1 Network Planning in Mobile Green Wireless Networks

With the emerging of diverse wireless applications, how to establish ubiquitous wire-

less services for mobile users has become one of hot topics. Different from traditional

network infrastructure, green wireless networks have to consider not only the diverse

QoS requirements of mobile users but also the charging capabilities of different green

wireless devices. Moreover, the mobility of users in the network makes the estimation

of energy discharging process become much more difficult, and thus it is challenging

to design network planning strategies to guarantee the network sustainability. In or-

der to predict the energy discharging process, we will investigate the characteristics
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of mobility models for different network scenarios [105–107], e.g., the vehicle mobil-

ity pattern in VANET is highly dynamic but predictable. Based on the mobility

model and estimation of movement, we can divide the network region into several

areas and analyze QoS requirements of users in each area. The green wireless device

deployment algorithm can be designed in each area based on the prediction of charg-

ing capabilities of different candidate locations. Since the mobility of users varies

the connections frequently, it is also critical to design topology control algorithms to

modify the topology of networks according to the movement of users. Thus, green

wireless device deployment and topology control should be jointly considered in the

network planning of green wireless networks.

6.2.2 Cross-layer Resource Allocation in Multi-tier Hetero-

geneous Green Wireless Networks

Usually, the QoS requirements of users are various and varying based on capacities

and usage of their terminal devices [91, 108, 109]. By constructing multi-tier hetero-

geneous green wireless networks, the massive and diverse QoS requirements of users

could be fulfilled by the harvested eco-friendly green energy. However, the dynamic

characteristics of green energy lead to a variety of charging capabilities for green net-

work devices, which have significant impact on the allocation of network resources.

Thus, efficient resource allocation methods, e.g., admission control, rate adaptation,

scheduling, and etc., are required to allocate the limited network resources to provi-

sion satisfactory services for each user. To ensure the energy sustainability and satis-
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factory of throughput demands in multi-tier heterogeneous green wireless networks,

resource allocation should be conducted in multiple network layers. Nevertheless,

resource allocation algorithms in different network layers may have impacts on each

others. Thus, it is of critical to design cross-layer resource allocation algorithms in

multi-tier heterogeneous green wireless networks. For example, a cross-layer resource

allocation scheme, including sub-carrier allocation, power control and transmission

scheduling algorithms, can be applied to guarantee the network sustainability and to

satisfy dynamic users’ requirements with harvested energy.

6.2.3 Routing Scheme Design in green wireless networks

Routing scheme design is one of essential topics in various network scenarios [110,

111]. In wireless networks with traditional energy supplies, routing scheme design

is mainly used to balance the distribution of traffic all over the whole network; in

green wireless networks, design of routing scheme has to consider not only the traffic

distribution but also the residual energy and charging capabilities of all relay nodes

on the routing path. This is because the uneven energy consumption of users and

charging capabilities of BSs may make some routers overdraw its energy buffer and

may further lead to network system breaking down. Therefore, to guarantee the

normal operations of green wireless communication networks, routing scheme should

be carefully designed to prevent the transmission going through the node which has

not sufficient remaining energy in its energy buffer. Moreover, The routing scheme

should be able to determine the proper route for each transmission, such that the
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QoS requirement of each transmission can be guaranteed and the remaining energy

and harvested energy in energy buffer can support the transmissions.
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