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Abstract

Due to the increasing growth and demand for wireless communication services, new

techniques and paradigms are required for the development of next generation systems

and networks. As a first step to better differentiate between various options to develop

future systems, one should consider fundamental theoretical problems and limitations in

present systems and networks. Hence, some common ground between network information

theory and mobile/wireless medium techniques should be explicitly addressed to better

understand future generation trends.

Among practical limitations, a major challenge, which is inherent and due to the physics

of many mobile/wireless setups, is the problem of asynchronism between different nodes

and/or clients in a wireless network. Although analytically convenient, the assumption

of full synchronization between the end terminals in a network is usually difficult to jus-

tify. Thus, finding fundamental limits for communication systems under different types of

asynchronism is essential to tackle real world problems.

In this thesis, we study information theoretic limits that various multiuser wireless

communication systems encounter under time or phase asynchronism between different

nodes. In particular, we divide our research into two categories: phase asynchronous and

time asynchronous systems.

In the first part of this thesis, we consider several multiuser networks with phase fading

communication links, i.e., all of the channels introduce phase shifts to the transmitted

signals. We assume that the phase shifts are unknown to the transmitters as a practical

assumption which results in a phase asynchronism between transmitter sides and receiver

sides. We refer to these communication systems as phase incoherent (PI) communication

systems and study the problem of communicating arbitrarily correlated sources over them.

iii



Specifically, we are interested in solving the general problem of joint source-channel coding

over PI networks. To this end, we first present a lemma which is very useful in deriving

necessary conditions for reliable communication of the sources over PI channels. Then, for

each channel and under specific gain conditions, we derive sufficient conditions based on

separate source and channel coding and show that the necessary and sufficient conditions

match. Therefore, we are able to present and prove several separation theorems for channels

under study under specific gain conditions.

In the second part of this thesis, we consider time asynchronism in networks. In partic-

ular, we consider a multiple access channel with a relay as a general setup to model many

wireless networks in which the transmitters are time asynchronous in the sense that they

cannot operate at the same exact time. Based on the realistic assumption of a time offset

between the transmitters, we again consider the problem of communicating arbitrarily cor-

related sources over such a time-asynchronous multiple access relay channel (TA-MARC).

We first derive a general necessary condition for reliable communication. Then, by the use

of separate source and channel coding and under specific gain conditions, we show that

the derived sufficient conditions match with the general necessary condition for reliable

communications. Consequently, we present a separation theorem for this class of networks

under specific gain conditions. We then specialize our results to a two-user interference

channel with time asynchronism between the encoders.
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Chapter 1

Introduction

Studying the fundamental limits of communications in wireless environments is essential to

understand and design highly demanding future data communication systems. Although

development of basic mathematical tools to meet this objective dates back to Shannon’s

pioneering paper [1], followed by a vast literature connecting wireless communications and

information theory, there are still classes of problems which have emerged as subjects of

further research. In particular, for multi-user systems, such as multiple-access, broadcast,

interference and relaying systems, which form the main body of emerging applications, one

faces more challenging problems due to the many components in the system.

Asynchronism or non-coherence between different nodes of a communication network

is an inherent challenge to modern communication systems, usually due to propagation

delays and/or other physical limitations. In particular, there are major factors in wireless

systems, such as feedback delay, the bursty nature of some applications, and reaction delay

which cause time or phase asynchronism between different nodes of a network [2]. However,

in digital communication systems, synchronization based on time delay estimation and/or
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phase estimation of the transmitted signals at different nodes is usually necessary to adjust

receiver sampling times and properly decode the messages [3]. Thus, synchronization

circuits are essential elements of both single-user and multi-user communications system

structures.

Synchronization between nodes of a communication network is a common assumption

made to analyze and design such networks. In point-to-point wireless systems, using train-

ing sequences and/or feedback, it is possible in principle to achieve synchronization between

the transmitter and the receiver. However, although analytically convenient, full synchro-

nization is rarely a practical, or easily justified assumption. Furthermore, in multi-user

systems, besides synchronization between transmitters and receivers, the large number of

nodes and interference from other sources make synchronization much more difficult and

in some cases theoretically infeasible [4]. As an example, in systems with different trans-

mitters, the different transmitters must use their own locally generated clock. However,

the initialization might be different for each clock and the frequencies at the local signal

generators may not be perfectly matched [5]. Indeed, achieving time, phase or frequency

synchronization in practical communication systems has been a major engineering issue

and still remains an active area of research (see e.g., [2]). Thus, fundamental limits of com-

munication in the presence of time and other types of asynchronism should be explicitly

considered as a tool to better understand and tackle real-world challenges in the context

of multiuser information theory.

The first studies of time asynchronism in point-to-point communications goes back to

the 60’s, [6], [7], where the receiver is not accurately aware of the time that the encoded

symbols are transmitted. The recent work of [2], on the other hand, assumes a stronger

form of time asynchronism, that is, the receiver knows neither the time at which trans-

mission starts, nor the timing of the last information symbol. They propose a combined
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communication and synchronization scheme and discuss information-theoretical limits of

the new method. Also, in multiuser communication settings, the problem of time asyn-

chronism is addressed for example in [8], [9] for the particular case of the multiple access

channels.

The problem of finding the capacity region of multiuser channels with no time synchro-

nization between the encoders is considered in [8], [5], [10], and [11] from a channel coding

perspective for the specific case of multiple access channels (MAC). In [12], a frame asyn-

chronous MAC with memory is considered and it is shown that the capacity region can be

drastically reduced in the presence of frame asynchronism. In [9], an asynchronous MAC

is also considered, but with symbol asynchronism. All of these works constrain themselves

to the study of channel coding only and disregard the source-channel communication of

correlated sources over asynchronous channels. In this thesis, however, we are interested in

both source coding and channel coding aspects for asynchronous communication networks.

Besides time asynchronism [2], which is present in most channels, other forms of asyn-

chronism such as phase uncertainty are important in wireless systems. In fading channels,

the channel state information (CSI) models amplitude attenuation and phase shifts (phase

fading) introduced by the channels between the nodes. In many systems, it is difficult

to know phase shifts at the transmitter side due to the delay and resource limits in feed-

back transmission. In particular, in highly mobile environments, fading in conjunction

with feedback delay may result in out of date phase knowledge by the time it reaches the

transmitters (see, e.g., [13]).

Although the issue of asynchronism has its own specific features, it can be analytically

seen in the larger framework of channel uncertainty, that is, the communicating parties

have to work under situations where the full knowledge of the law governing the channel

(or channels in a multi-user setting) is not known to some or all of them [14]. In order

3



to study this general problem from an information-theoretic point of view, the mathemat-

ical model of a compound channel (or state-dependent channel) has been introduced by

different authors [15], [16], [17]. A compound channel is generally represented by a family

of transition probabilities pθY |X , where the index θ ∈ Θ is the state of the channel and Θ

represents the uncertainty of different parties about the exact channel’s transition proba-

bility. A compound Gaussian multiple access channel (MAC), for example, is considered

in [18] based on the lack of knowledge of the set of active users and their respective chan-

nels. A Gaussian MAC with unknown phase shifts is also a compound channel. Here, the

lack of knowledge of the phase shifts at transmitters is known not to change the capacity

region [19].

The problem of joint source-channel coding (JSCC) for multiuser networks is open in

general. However, numerous results have been published on different aspects of the problem

for specific channels and under specific assumptions such as phase or time asynchronism

between the nodes. In [19], a sufficient condition for lossless communication of correlated

sources over a discrete memoryless MAC is given. Although not always optimal, as shown

in [20], the achievable scheme of [19] outperforms separate source-channel coding. In [21],

however, the authors show that under phase fading, separation is optimal for the important

case of a Gaussian MAC. Also, [22], [23] show the optimality of separate source-channel

coding for several Gaussian networks with phase uncertainty among the nodes. Other

authors have derived JSCC coding results for the broadcast channels [24], [25], interference

relay channels [26], and other multiuser channels [27]. Furthermore, for lossy source-

channel coding, a separation approach is shown in [28] to be optimal or approximately

optimal for certain classes of sources and networks.

In this thesis, we consider the problem of JSCC for a range of Gaussian multiuser

channels under phase or time uncertainty (asynchronism). In particular, in the first part of
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the research contributions, presented in Chapter 3, we address the problem of sending a pair

of correlated sources over several phase asynchronous Gaussian multiuser channels, where

by phase asynchronous we mean the channel-introduced phase shifts are not known to the

transmitters. We consider lossless communication for both cognitive and non-cognitive

phase asynchronous channels. For the case of an interference relay channel, however, we

also study the problem for a lossy communication scheme.

In the second part of the research contributions, presented in Chapter 4, we consider

the problem of sending K correlated sources over a multiple access relay channel with

time asynchronism between the transmitters. In both parts of the research, we first derive

general necessary conditions on reliable communications. Then, using separate source-

channel coding and under specific channel gain conditions we show the same conditions to

be sufficient for reliable communications. Therefore, we are able to prove several separate

source-channel coding theorems for channels under study.

The rest of this thesis is organized as follows. In Chapter 2 we provide basic background

on reliable communication systems and briefly review the literature on compound channels

and channel uncertainty for both single and multiple user settings. Additionally, we review

some existing mathematical models for abstracting asynchronism and channel uncertainty.

In Chapter 3, we state and prove results for various classes of phase asynchronous multiuser

channels, referred to as phase incoherent channels. Specifically, these are multiuser channels

with channel phase shifts unknown to the transmitters. We show that if the phase shifts

are unknown to the transmitters, they can perform no better than the scenario in which

the information sources are independent, i.e., correlation between sources is not helpful. In

Chapter 4, we introduce a general Gaussian multiple access relay network (MARC) where

there is time asynchronism between the transmitters in the sense that they might have

delays in time with respect to each other. We refer to this channel as a Gaussian time
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asynchronous MARC (TA-MARC). We derive a general necessary condition for reliable

communication of K sources over the Gaussian TA-MARC. Then, under specific gain

conditions, using separate source-channel coding, we derive the same conditions as sufficient

conditions for reliable communications. Finally, the conclusion and future potential works

are presented in Chapter 5.
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Chapter 2

Literature Review

Communication over single-user channels as well as multiple-user channels has been tradi-

tionally divided into two separate parts: source coding and channel coding. Besides con-

venience of the two-stage method for both single-user and multi-user case, this separation

is mainly justified by the fact that for the point-to-point single user systems, it is shown

by Shannon [1] that the two-part method is as good as any other method of transmitting

information over a noisy channel when the block length tends to infinity [29, Theorem

7.13.1]. A typical point-to-point communication system’s schematic with separate source

and channel coding is depicted in Figure 2.1. While the source coding block, consisting of

source encoder and decoder, is responsible to compress the information coming out of the

source and remove its redundancy, the channel coding part, consisting of channel encoder

and decoder, adds extra redundancy to the data such that it can be robust against noise

and interference introduced by the channel and other parties. Thus, to completely design

a quality and/or cost efficient communication system, one needs to design both blocks

properly. A brief description of these two fundamental blocks as well as their joint schemes
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follows in the sequel.

Source Coding Channel Coding

Source

User

Source

Encoder

Source
Decoder

Channel

Channel

Encoder

Channel

Decoder

Encoding Block

Decoding Block

Figure 2.1: Point-to-point communication system model.

2.1 Source Coding

For a discrete memoryless source defined by independent and identically distributed (i.i.d)

random variables {Ui}∞i=1 with discrete alphabet U and probability distribution ∼ pU(u), a

source code of rate R is a source encoding mapping f : Uk → {1, 2, · · · , 2nR} and a source
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decoding mapping g : {1, 2, · · · , 2nR} → Uk. The probability of error

P n
e = P

(
g(f(Uk)) 6= Uk

)
, (2.1)

represents the probability that the source output Uk and the reconstructed signal Ûk are

not the same, where the boldface letter Uk denotes a k-length vector. In his pioneered

work [1], Shannon showed a source coding theorem, stating that the source code can

represent the source with arbitrarily small probability of error as the block size k → ∞
(losslessly), if the code rate satisfies

U1

U2

(Û1, Û2)

f1(·)

f2(·)

g(·)

R1

R2

Figure 2.2: Slepian-Wolf (distributed source) coding

R > H(U), (2.2)

where

H(U) = −
∑

u∈U

pU(u) log pU(u), (2.3)

is the entropy of the source. Thus, in order to reliably code a source U , a rate R > H(U)

is sufficient. Moreover, R ≥ H(U) is a necessary condition for reliable source coding.

Beyond the single-user case, constructing good source codes for multi-user systems,

where several information sources are to be jointly compressed, is an important problem
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in source coding. An outstanding work in this regard is [30], where Slepian and Wolf

formulated and proved a source coding theorem for two sources, referred to as distributed

source coding. Namely, as shown in Figure 2.2, for two correlated sources (U1, U2) ∼
pU1,U2(u1, u2) and two encoders f1, f2, with rates R1, R2 respectively, who wish to describe

U1, U2 for a single decoder g, they proved the following theorem [29]:

Theorem 1. Slepian and Wolf: A sequence of source codes of rates R1, R2 and block-

length n can losslessly (i.e., with asymptotically vanishing probability of error) represent

the distributed source (U1, U2) drawn i.i.d. ∼ pU1,U2(u1, u2), if

R1 > H(U1|U2) (2.4)

R2 > H(U2|U1) (2.5)

R1 +R2 > H(U1, U2). (2.6)

Conversely, (2.4)-(2.6), with > replaced by ≥, also describe a necessary condition for loss-

less source coding.

The Slepian-Wolf theorem can also be generalized to the case of K correlated sources

U1, · · · , UK [31]:

Theorem 2. A sufficient condition for distributed lossless source coding of a set of K

correlated sources (U1, · · · , UK) is given by the set of rate tuples (R1, · · · , RK) such that

∑

j∈S

Rj > H(US |USc), ∀S ⊆ {1, · · · , K}, (2.7)

where US , {Ui : i ∈ S}. Moreover, (2.7) also represents necessary conditions for lossless

source coding of (U1, · · · , UK), with > replaced by ≥.
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2.2 Channel Coding

In his celebrated work [1], besides source coding, Shannon considered the problem of send-

ing information over a probabilistically modeled communication channel. Specifically, for

a memoryless channel with discrete input alphabet X , discrete output alphabet Y and

transition probability PY |X(y|x), he showed that the maximum rate at which information

can be reliably sent over the channel is

C = max
pX

I(X ; Y ) = max
pX

I(pX ;PY |X), (2.8)

where

I(X ; Y ) = I(pX ;PY |X) (2.9)

= EX,Y

[
log

PY |X

pY

]
(2.10)

=
∑

x∈X

∑

y∈Y

pX(x)PY |X(y|x) log
PY |X(y|x)
pY (y)

, (2.11)

is referred to as the mutual information between random variables X and Y , pX denotes

the input distribution, and

pY (y) =
∑

x′∈X

PY |X(y|x′)pX(x′), (2.12)

is the output distribution induced on y when the input distribution is pX(·). The distribu-
tion p∗X that maximizes the mutual information in (2.8) is called the capacity achieving or

optimal input distribution.

Remark 1. It can be shown [29] that I(pX ;PY |X) is a convex function of the conditional

distribution PY |X for a fixed input distribution pX , while it is a concave function of pX for

a fixed PY |X .
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W1

W2

(Ŵ1, Ŵ2)

E1(·)

E2(·) PY |X1,X2
(y|x1, x2)

R1

R2

X1

X2

Multiple-access

D(·)Channel
Y

Figure 2.3: Two users, the discrete memoryless multiple-access channel and receiver

Channel coding for multiuser channels has also been widely studied [29] from an

information-theoretic point of view. Among the important multi-user channels are the

multiple-access channel (MAC), interference channel (IC), and broadcast channel (BC),

where all of these can also employ relays to form more complicated channels. Herein, we

briefly discuss a few of the important discrete memoryless multiuser channels as the main

multiuser communication models addressed in this thesis.

A MAC is the channel coding counterpart of the Slepian-Wolf problem for a pair of cor-

related sources. A discrete memoryless MAC (X1×X2,Y , pY |X1,X2
(y|x1, x2)) consists of in-

put alphabets X1,X2, output alphabet Y , and transition probability law pY |X1,X2(y|x1, x2),
as depicted in Figure 2.3.

Definition 1. A (2nR1 , 2nR2, n) code for the discrete memoryless MAC is a pair of encoders

E1 : {1, 2, · · · , 2nR1} → X n
1 and E2 : {1, 2, · · · , 2nR2} → X n

2 and a decoder D : Yn →
{1, 2, · · · , 2nR2} × {1, 2, · · · , 2nR2}.

Using a codebook, the users wish to send independent messages W1,W2 to a common

receiver. The average probability of error for such a code under the assumption that

message indices W1 ∈ {1, 2, · · · , 2nR1},W2 ∈ {1, 2, · · · , 2nR2} are drawn independently and
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according to a uniform distribution is given by

P n
e = P (D(Yn) 6= (W1,W2)) (2.13)

=
1

2n(R1+R2)

∑

w1,w2

P [D(Yn) 6= (w1, w2)|(w1, w2) is sent] . (2.14)

Definition 2. A pair (R1, R2) is said to be achievable if there exists a sequence of (2nR1 , 2nR2, n)

codes for which P e
n → 0, as n→ 0. Furthermore, the closure of set of achievable rate pairs

(R1, R2) is called the capacity region of the MAC.

The capacity region of a 2-user MAC has been fully determined [32, 33] and stated as

the following theorem:

Theorem 3. The capacity region of a discrete memoryless multiple-access channel is given

by the pairs (R1, R2) that satisfy

R1 ≤ I(X1; Y |X2, Q), (2.15)

R2 ≤ I(X2; Y |X1, Q), (2.16)

R1 +R2 ≤ I(X1, X2; Y |Q), (2.17)

for some choice of the joint distribution p(q)p(x1|q)p(x2|q)p(y|x1, x2), where the time-

sharing random variable Q is chosen from a set Q with cardinality |Q| ≤ 4.

The results for the 2-user MAC can also readily be extended to aK-user MAC. Here, we

intend to send independent indicesW1, · · · ,WK over the channel to a common destination.

Definitions of codes, achievability and capacity region are exactly the same as the 2-user

case.

Theorem 4. [31] The capacity region of the K-user MAC is the set of rate tuples

(R1, · · · , RK) such that

RS ≤ I(XS ; Y |XSc , Q), ∀S ⊆ {1, · · · , K}, (2.18)
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for some product distribution p(q)
∏K

j=1 pj(xj |q) with |Q| ≤ K, where RS =
∑

j∈S Rj.

W1

W2

Ŵ1E1(·)

E2(·)
PY1,Y2|X1,X2

R1

R2

X1

X2

Interference
D1(·)

Channel

Y1

Y2

D2(·) Ŵ2

Figure 2.4: Two users, the discrete memoryless interference channel and receivers

In [34], Kramer andWijngaarden introduced the multiple-access relay channel (MARC),

where multiple sources wish to send their information to a common receiver with the help

of a relay. Therein, the authors considered white Gaussian channels and by extending the

coding technique of [35] which is based on block Markov encoding and successive decod-

ing, derived an inner bound on the capacity region. Additionally they computed an outer

bound for the MARC based on the cutset outer bound [29]. Later, inner and outer ca-

pacity bounds were derived for MARC and other relay networks in subsequent papers [36]

and [37]. The bounds were especially computed for wireless channels with phase fading

and it was shown that for some specific geometries the inner and outer bounds meet.

Another type of multiuser channel is the interference channel, where two users want to

send their messages to two separate destinations respectively over a shared channel. The

capacity of the interference channel is not in general known even in the 2-user case. Figure

2.4 depicts a 2-user discrete memoryless interference channel (DM-IC).

An important case in the analysis of the interference channel is when we are in the

strong interference regime. A 2-user DM-IC is in the strong interference regime if

I(X1; Y1|X2) ≤ I(X1; Y2|X2) (2.19)
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Figure 2.5: A 2-user Gaussian interference channel

I(X2; Y2|X1) ≤ I(X2; Y1|X1), (2.20)

for all p(x1)p(x2).

In the wireless medium, the interference channel is modeled by a Gaussian interference

channel depicted in Figure 2.5. The outputs of the Gaussian IC corresponding to the

inputs X1 and X2 are

Y1 = g11X1 + g21X2 + Z1, (2.21)

Y2 = g12X1 + g22X2 + Z2, (2.22)

where gij, i, j = 1, 2 is the complex channel gain from the transmitter i to the receiver j,

and Z1, Z2 are the noise signals.

The strong interference conditions (2.19)-(2.20) reduce to

|g12| ≥ |g11|, (2.23)

|g21| ≥ |g22|. (2.24)

Adding a relay to the interference channel results in an interference relay channel (IRC).

For the IRC, an achievable region for the channel coding only problem is found in [38],
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while capacity results for ergodic phase fading and Rayleigh fading cases under strong and

very strong interference conditions are reported in [39], [40].

The problem of finding the channel coding capacity of multiuser channels with no time

synchronization between the encoders is considered in [8], [5], [10], and [11] from a chan-

nel coding perspective for multiple access channels (MAC). In [12], a frame asynchronous

MAC with memory is considered and it is shown that the capacity region can be dras-

tically reduced in the presence of frame asynchronism. In [9], an asynchronous MAC is

also considered, but with symbol asynchronism. All of these works restrict themselves

to the study of channel coding only and disregard the source-channel communication of

correlated sources over an asynchronous MAC. In this thesis, we are interested in joint

source-channel coding (JSCC) of a set of correlated sources over phase-asynchronous and

time-asynchronous multiuser channels which can include relaying as well.

2.3 Joint Source-Channel Coding

Shannon’s separation theorem establishes that there is no loss in terms of communication

reliability by performing independent source and channel coding for a single point-to-point

system. However, this result is correct under the implicit assumption of asymptotically

large codewords lengths resulting in large system delays. Moreover for multi-user systems

as well as some wireless applications in which the source and/or channel are non-stationary,

the separation theorem might not hold [41]. Based on these observations, it is sometimes

convenient to consider the design of source and channel codes jointly. Such schemes are

generally called joint source channel coding [42]. An interesting work which relates the

multi-user Slepian-Wolf and MAC schemes in a joint source channel coding framework

is [19]. There, the authors show that for correlated sources, it is better to design channel
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codes based on the source outputs directly and thus, as opposed to classical MAC encoding,

make the input distributions of the MAC correlated. Using this encoding scheme, they

show that the achievable region can be enlarged, compared to that of the separate Slepian-

Wolf and MAC coding. Later, by giving a counterexample, Dueck showed in [20] that the

strategy of [19] is not, however, optimal, and can be improved upon.

The problem of JSCC for a network is open in general. Several works, however, have

been published on this issue, e.g., for MAC [19], broadcast channels [24], [25], and other

multiuser channels [26], [27]. In particular, [24] considers broadcasting a set of correlated

sources by the means of some independent encoders to multiple receivers and shows that

while joint source-channel coding at the encoding side is unnecessary, not using joint source-

channel decoding at the decoding side is suboptimal. Also, [25] provides a complete solution

for the JSCC problem of sending a pair of correlated Gaussian sources (also known as a

bivariate Gaussian source) over a Gaussian broadcast channel, where each receiver is only

interested in one component of the source. It is further shown in [25] that for the considered

settings, the Gaussian scenario is the worst scenario among the sources and channel noises

with the same covariances, in the sense that any distortion pair that is achievable in the

Gaussian settings is also achievable for other sources and channel noises.

For lossy source-channel coding, a separation approach is shown in [28] to be optimal

or approximately optimal for certain classes of sources and networks. In [19], on the other

hand, a sufficient condition to losslessly send correlated sources over a MAC is given, along

with a multi-letter expression for the outer bound. Although not always optimal, as shown

in [20], the JSCC scheme of [19] outperforms separate source-channel coding, and thus

separation is not optimal for correlated sources. In [21], [43], however, the authors show

that performing separate source and channel coding for the important case of a Gaussian

MAC with unknown phase shifts at transmitters (also referred to as phase incoherence), is
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optimal. Namely, in [21] and [43], F. Abi Abdallah et. al. showed the following separation

theorem for multiple access channels with both non-ergodic and ergodic i.i.d. phase fading:

Theorem 5. A necessary condition for reliable communication of the source pair (Un
1 , U

n
2 ) ∼

∏
ip(u1i, u2i) over a phase-faded MAC, with power constraints P1, P2 on the transmitters,

and fading amplitudes g1, g2 ≥ 0, is given by

H(Ui|Uj) ≤ log(1 + g2i Pi/N), (i, j) ∈ S, (2.25)

H(U1, U2) ≤ log(1 + (g21P1 + g22P2)/N), (2.26)

where S , {(1, 2), (2, 1)}, and N is the noise power. (2.25)-(2.26) also give a sufficient

condition, with ≤ replaced by <.

Also, the recent work [44] addresses the same problem for an ergodic phase fading

Gaussian multiple access relay channel (MARC) and proves a separation theorem under

some channel coefficient conditions. For the achievability part, the authors use the results

of [45], [37], and [36] based on a combination of regularMarkov encoding at the transmitters

and backward decoding at the receiver [46]. In particular, in order to derive the achievable

region for discrete-memoryless MARC, the authors of [37] use codebooks of the same size

which is referred to as regular Markov encoding. This is in contrast with block Markov

encoding which was introduced by Cover and El-Gamal in [35] for the relay channel. There,

the encoding is done using codebooks of different sizes and is referred to as irregular block

Markov encoding.

2.4 Compound Channels

Shannon’s work does not address the more realistic situations in which the transition

probability (or channel law) PY |X may depend on external parameters, such as channel
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gains, phase, etc. The probability distribution in these cases is usually denoted by P θ
Y |X ,

where θ is a parameter. Hence, the rule governing transmission in such situations is not

unique or even fixed in time, but it is chosen from a class of distributions. The oldest work

addressing coding for a class of channels is [15]. Later, Wolfowitz [17] and Csiszar [16]

formulated the same problem and named such channels as compound channels. A formal

definition of the compound channel is as follows.

Definition 3. As shown in Figure 2.6, a class or family of discrete alphabet channels

(X ,Y , P θ
Y |X) is defined by discrete input and output sets X ,Y, and set of probability dis-

tributions P θ
Y |X , indexed by θ ∈ Θ, where Θ represents the index set. θ is also known as

channel state or parameter. In each time period, the communication is performed over a

specific channel from the class.

Intuitively, the capacity of such a channel can not be greater than the infimum of the

mutual informations of the channels belonging to the class. Since the capacity achieving

input distribution is not the same for each channel, one would intuitively think that the

input distribution should be chosen such that the infimum of all capacities is maximized

resulting in

C = max
pX

inf
θ
I(pX ;P

θ
Y |X), (2.27)

where I(pX ;P
θ
Y |X) denotes actual mutual information of a particular channel in the set.

Indeed, this is correct as will be elaborated in the following discussions.

As opposed to time-varying channels, if the channel over which the communication is

performed is fixed for a block-length n, then the class can be denoted by block repre-

sentation (x ∈ X n, y ∈ Yn, P θ
Y|X (y|x)). For a discrete memoryless class of channels, for

example, we have
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P θ
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θ ∈ Θ

Figure 2.6: Compound channel

P θ
Y |X (y|x) =

n∏

i=1

P θ
Y |X (yi|xi) . (2.28)

For convenience, we shall simply denote such a class of channels by P θ
Y |X .

A block code (E ,D) of length n for a class P θ
Y |X of channels, consists of

1. an encoding function

E : {1, 2, · · · , 2k} → X n, (2.29)

and

2. a decoding function

D : Yn → {1, 2, · · · , 2k}, (2.30)

that divides Yn into 2k disjoint decision subsets Bi, i = 1, 2, · · · , k.

The rate of such a code is

R =
k

n
. (2.31)
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The probability of error for a specific message i ∈ {1, 2, · · · , k} when a code (E ,D) and a

specific channel θ ∈ Θ are used can be written as

P θ
e (i) = P θ

Y |X(Bci | i sent) (2.32)

where a set Ac denotes the complement of A. Therefore the average probability of error

over the message set is given by

P
θ

e =
1

2k

2k∑

i=1

P θ
e (i), (2.33)

and the maximum probability of error is

P θ
e,max = max

i∈{1,2,··· ,k}
P θ
e (i). (2.34)

The definitions of achievable rates and capacity for a class of channels P θ
Y |X which are more

involved than that of Shannon’ channel model are as follows:

Definition 4. [14] A rate R is said to be ε-achievable, 0 < ε < 1, on the compound

channel P θ
Y |X , for maximum (resp. average) probability of error if: for every δ > 0, one

can find an integer N such that for all n > N , there exists a block code (E ,D) of length n

with rate

R− δ <
k

n
(2.35)

and maximum (resp. average) probability of error satisfying

sup
θ∈Θ

P θ
e,max ≤ ε, (2.36)

(resp. sup
θ∈Θ

P
θ

e ≤ ε.) (2.37)
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Definition 5. A rate R is achievable for maximum (resp. average) probability of error if

it is ε-achievable for every 0 < ε < 1.

Indeed, it can be seen that if a rate R is achievable for the class of channels, it will be

achievable for all of the channels {P θ
Y |X}θ∈Θ in the class.

Definition 6. The ε-capacity of a compound channel for maximum (resp. average) prob-

ability of error is the supremum of all the ε-achievable rates as determined by (2.35) and

(2.36) (resp. (2.37)) and is denoted by Cm
ε (resp. Ca

ε )

Definition 7. The capacity of a class of channels for maximum (resp. average) probability

of error is the supremum of all achievable rates for maximum (resp. average) probability

of error and is denoted by Cm (resp. Ca).

Clearly, in general Cm
ε < Ca

ε and Cm < Ca. If the capacities are the same for both

maximum and average probability of error criteria, they are simply denoted by C [14].

Also note that the capacities Cm and Ca can be defined as the limits of the corresponding

ε-capacities as ε→ 0. Namely,

lim
ε→0

Cm
ε = Cm, lim

ε→0
Ca
ε = Ca (2.38)

The capacity expression of the compound discrete memoryless channel (DMC) of (2.28)

is determined in [15, Theorem 1] and subsequent works [47], [16], and [17]. It is assumed

that both encoder and decoder are ignorant of the channel law ruling the communication,

they are only aware of the class Θ to which the law belongs. Obviously, the compound

capacity cannot be larger than any of the individual capacities of the channels belonging to

the class. However, this bound is not tight as the input probability mass functions (pmf)

that achieve capacity for any of the channels in the class may be different. Nevertheless,
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in [17], it is shown that the capacity of the compound channel is positive if and only if

(iff) the infimum of the capacities in the class Θ is positive. We state the capacity of the

compound channel as the following theorem:

Theorem 6. The capacity of the compound DMC P θ
Y |X of (2.28) for both maximum and

average probability of error criteria is given by

C = sup
pX

inf
θ
Iθ(X ; Y ) = sup

pX

inf
θ
I(pX ;P

θ
Y |X), (2.39)

where the subscript θ in Iθ(X ; Y ) demonstrates explicitly that a specific parameter θ is used.

Remark 2. [17], [47] The knowledge of the parameter θ at the receiver side does not

increase the capacity. However, if the channel state information is known to the encoder,

the capacity is increased in general and is equal to the infimum of the capacities of the

channels in class. This is true even though the decoder is unaware of the channel state

information.

2.4.1 Channels with Uncertainty

Compound channel modeling can be seen as a technique of formulating the more general

problem of communication under uncertainty. Indeed, compound channels are subsets of

channels with uncertainty. In real situations, it is very common that the codebook or

decoder should be chosen without having full knowledge of the probabilistic law governing

the channel. By defining a class of channels and confining the knowledge of different nodes

to the class, as opposed to the actual channel used in the course of communication, the

concept of uncertainty can be modeled. For instance, in [48], it is assumed that the encoder

knows only the class of channels over which the communication is done. It is also assumed
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there is no feedback available to the transmitter and thus the codewords should be fixed

before transmission begins. Therein, like Blackwell. et. al. [15], they assumed that the

receiver does not know the channel either and consequently, the decoding rule should not

depend on the actual channel used in communication.

For studying the broad issue of channel uncertainty, one can propose other models, as

well as generalizing the notion of compound channels to more complicated settings, while

still adhering to the concept of a family of channels [14]. A more severe case of uncertainty

than the conventional compound channel defined in Definition 3, for instance, arises when

the channel parameter is not fixed for a whole block, but changes arbitrarily from symbol to

symbol. This channel, firstly introduced by [49] and sometimes referred to as an arbitrarily

varying channel (AVC), can be modeled by defining the set Σ = Θ∞, called state space,

and for the discrete memoryless case, setting

P θ

Y |X (y|x) =
n∏

i=1

P θi
Y |X (yi|xi) , (2.40)

where the transmission block length is n.

The following example of the discrete memoryless AVC is given in [49].

Example 7. Let X = Θ = {0, 1} and Y = {0, 1, 2} and define

P θ
Y |X(y|x) =





1, if y = x+ θ

0, otherwise.
(2.41)

Since all of the transition probabilities are either 0 or 1, such an AVC is referred to as a

deterministic AVC. Note also that it can be equivalently described by the equation

yi = xi + θi. (2.42)
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In the AVC problem, it is usually assumed that the state vector θ is not known to

the either the transmitter or receiver. There are various types of problems pertaining to

determining the capacity of AVCs, depending on whether the maximum or average error

probability criteria and deterministic or randomized coding [14, 49] strategies are chosen.

The cases also differ based on the degree of the mutual knowledge that encoders and

external sources that form state sequences have of each other.

A key communication technique used in different papers for the AVC is randomized

coding. Randomized coding introduces a common source of randomness to both encoder

and decoder. Thus, the input and output signals of the channel can be further dependent

on the outcome of a random experiment. Therefore, the encoding and decoding strategies,

and consequently sufficient tools to prove the corresponding coding theorems, are enriched

by having a probabilistic approach to code design. Note that a randomized code constitutes

a communication technique which should not be confused with random-coding argument

as a proof technique. In particular, random coding is often used to establish the existence

of a deterministic code which yields good performance on a known channel, without actu-

ally constructing the code. To this end, a probability mass function is introduced on an

ensemble of codes and the average performance over such an ensemble is computed. Then,

by arguing that the average performance is good, it is concluded that there must exist at

least one code in the ensemble with good performance. Randomized coding, however, uses

stochastic functions as encoders and decoders. The formal definition of randomized codes

is now stated.

Definition 8. A randomized code (e, d) is a random variable taking values in the set of

all codes (E ,D) of block length n defined by (2.29), (2.30), with the same message set

M = {1, 2, · · · 2k}. The pmf of the RV (e, d) may depend on the knowledge of the class Θ

but should not depend on a specific state θ ∈ Θ ruling a particular transmission or on the
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chosen message to be sent over the channel.

Different error probabilities for randomized codes are defined in a way similar to those

defined for the deterministic codes in (2.32), (2.33), and (2.34). Analogous notions of

ε-capacity and capacity are also defined for the randomized codes. The average and max-

imum probabilities of error, however, lead to the same results for the randomized codes.

Based on this, in the original work of Blackwell. et. al. [49], a coding theorem is proved

for correlated random codes, that is, codes and decoders are chosen by a random experiment

known to both encoder and decoder. Although a powerful tool, it is important however

to note that within the randomized coding framework, there should be a further part in

the system to inform the encoder and decoder of the random experiment’s outcome. Thus,

in [48], for example, deterministic codes with maximum error probability were applied to

the AVC. In order to state the key result on the capacity of the AVC, we give the following

definition [14].

Definition 9. For the AVC of (2.40), let ψ be a pmf on Θ and define by W ψ

Y |X the averaged

channel transition probability with respect to ψ given by

W ψ

Y |X(y|x) =
∑

θ∈Θ

P θ
Y |X(y|x)ψ(θ). (2.43)

The capacity of the AVC (2.40) for randomized codes is analogous to that of the com-

pound DMC. In particular, one should find the input distribution that maximizes the min-

imum of the mutual information over averaged distributions W ψ

Y |X . This result is stated

as the following theorem [49], [50]

Theorem 8. The randomized code capacity of the AVC is given by

C = max
pX

min
ψ
I(pX ;W

ψ

Y |X) = min
ψ

max
pX

I(pX ;W
ψ

Y |X). (2.44)
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In some of the applications involving channel uncertainty, some of the (possibly un-

known) channel parameters are fixed during the course of transmission while certain other

parameters change arbitrarily from symbol to symbol. To model such a situation, one

can introduce a hybrid of compound and AVC channels. Namely, let the state space

Σ = Θ∞ × Φ, where {θi}∞i=1 ∈ Θ∞ represent the varying parameter while φ ∈ Φ represent

a fixed parameter. A hybrid discrete memoryless channel (DMC) can be described by

P θ,φ

Y |X (y|x) =
n∏

i=1

P θi,φ

Y |X (yi|xi) . (2.45)

Also, as another example, in [51], the class of channels involves linear dispersive chan-

nels with unknown dispersive filter, as opposed to the discrete memory channels (DMC)

considered in [15].

In [52], [53], [54], and [55], variations of finite-state channels with memory are considered

to model the effect of fading in mobile wireless communications. Also, in [56], a universal

decoder is proposed which is based on family of channels under consideration, and not on

the individual channel over which the communication takes place. Therein, the authors

show that their proposed decoder can perform as well as a maximum-likelihood decoder

chosen for the actual channel in use, in terms of error exponent.

In [57], communication over a channel PY |X,S with side information S was introduced.

They assumed the side information is non-causally known to the transmitter. In the more

recent work of [58], Mitran et. al. generalized the notion of channels with side information

to the compound channels. Namely, they considered the problem in which a sender wishes

to communicate its message over a channel P θ
Y |X,S, where the non-causal side information

S is only known to the encoder and the channel parameter θ is only known to the decoder.

Furthermore, although the input and output alphabets in compound channels are usually

assumed to be drawn from finite sets, they generalized the discrete-time compound channels
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P θ
Y |XQk

X(X) Qk
Y (Y )X Y

Figure 2.7: Input, output and their quantized versions of a compound channel

to the discrete-time continuous alphabet case, using a quantization/dithering argument.

In particular, they first generate a quantized random variable Qk
X(X) and think of the

original input of the channel X as Qk
X(X) plus a random dither to the quantization cells.

The output Y of the channel is also quantized to form Qk
Y (Y ) and thus an equivalent

discrete alphabet channel from Qk
X(X) to Qk

Y (Y ) is formed (see Figure 2.7). Using this

model, they relate continuous and discrete alphabet channels and show that by letting the

resolution of the quantizers go to infinity, the mutual information of the discrete alphabet

channel converges to that of the continuous alphabet channel:

I(X ; Y ) = lim
k→∞

I(Qk
X(X);Qk

Y (Y )). (2.46)

This result is shown to be very useful to derive certain results for the continuous alphabet

channels, inspired by their discrete alphabet counterparts.

They also derived capacity upper and lower bounds for both discrete and continuous

alphabet compound channels with knowledge of side information, such as interference, at

the transmitter.

2.4.2 Multiuser Channels

Although compoundness in multi-user systems was marginally addressed in [17] and [15],

an early work to formulate multi-user communication under uncertainty was [59]. There,
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an extension of the single-user AVC model for arbitrarily varying multiple-access channels

is proposed, in which the channel state can change in each time slot. Thus, as opposed to

(2.28), the arbitrarily varying multiple access channel (AVMAC) can be described by

P θ

Y |X (y|x1, x2) =
n∏

i=1

P θi
Y |X (yi|x1i, x2i) , (2.47)

where θ is the sequence of states ruling the transmission.

Using a randomized code, based on designing a random experiment outcome which

should be known to both encoder and decoder, Jahn [59] obtains a deterministic code with

a vanishing average probability of error and thus determines the average error capacity

region of an AVMAC. Moreover, in [59], the author formalizes the arbitrarily varying

broadcast channel and derives an achievable region for that.

As far as multi-user settings are concerned, compound channels and communications

under uncertainty have received much more interest recently.

For example, in [18], the authors consider Gaussian compound multiple-access channel

with K transmitters and a common receiver. In each block, only k transmitters are active

and accordingly they assume the following additive Gaussian noise channel

y =
k∑

i=1

gixi + n, (2.48)

where xi’s are the transmitters input signals and y is the received signal. The state of

the channel is described by the vector θ = (g1, g2, · · · , gK) ∈ Θ where the state space of

the MAC is a subset of Θ ⊆ (R+)K . Both the channel gains and number of active nodes

are unknown to all parties. Without giving a rigorous proof, it is stated in [18] that the

capacity region of such a compound multiple access channel is given by the intersection of
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the capacities of the family. Namely, they give the intuitive result that

C =
⋂

θ∈Θ

Cθ, (2.49)

based on the fact that since a Gaussian input distribution simultaneously achieves all

capacities of the class channels (i.e., for each θ), the intersection of the class capacities is

the ultimate capacity.

Furthermore, using polling, channel estimation and feedback techniques, they propose

a protocol which achieves within log(K) bits/s/Hz of the capacity of a K-user Gaussian

multiple access system with perfect feedback.

The recent work of [60], also addresses the compound multiple-access channel where

the encoders can partially cooperate to send their own private messages and a common

message to a single destination. The encoders are free to exchange information not only

about their messages, but also with respect to the channel state information.

2.5 Asynchronism

In practice, the transmitter and receiver systems can never be perfectly synchronized be-

cause of propagation delay. However, using the knowledge of time or phase differences

between nodes, synchronization subsystems are designed to provide the desired synchro-

nism. If the knowledge of time or phase is not available at designated nodes, then the

asynchronism can be analyzed as a communication under uncertainty problem.

The problem of phase asynchronism can be formulated as a special case of compound

channels. Namely, the phase shift terms ejθ will play the role of the channel’s parameter,

where θ denotes the phase introduced by the channel. In this thesis, we have modeled
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multiple access networks with phase uncertainty at the transmitters side, using the notion

of compound channels (refer to Chapter 3 for details).

On the other hand, there have been several works to model and analyze the problem

of time asynchronism in communication systems. One of the earlier works to address time

asynchronism is [6]. Therein, block coding is used to encode the stream of messages and the

blocks are sent successively through the channel. The receiver obtains the channel outputs

only from some random specific time slot on and tries to find the boundary of the next

codeword to decode the subsequent messages. Another well-known model for time asyn-

chronism is introduced in the Dobrushin’s paper [7] which introduces so called insertion,

deletion and substitution (IDS) channel. Abstracting the timing error and irregularity in

communication medium and transceiver hardware, in the IDS channel model, each sym-

bol of the sent codeword is received in the form of different length sequences of symbols,

probably manipulated by channel’s insertion, deletion and substitution of symbols. The

receiver, however, as opposed to [6], knows the time at which transmission begins.

Besides studying and designing the synchronization subsystem as a separate part from

transceiver and coding subsystems, on which the vast majority of the literature focuses,

joint design of synchronization and communication parts is addressed in the recent work

of Tchamkerten et. al. [2]. Indeed, they proposes a universal framework to discuss asyn-

chronism in point-to-point communication systems. In this work, it is assumed that the

receiver knows neither the start time nor the duration of the transmission. In their system

model, transmitter commences to send the message codeword at a randomly chosen point

in time and within a prescribed window. The length of the window scales exponentially

with the length of codeword and the scaling parameter is referred to as asynchronism ex-

ponent. The receiver is only aware of the transmission window and not the transmission

time. The communication rate under discussion is defined as the ratio of the message size
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and the time between beginning of transmission and decoding decision. An interesting

result addressed in this work is that it is possible to achieve reliable communication at all

rates less than the capacity of the synchronized channel (i.e., classical capacity). This is

established by the use of sequential decoding for a specific group of codes. Also, they have

determined the largest asynchronism exponent under which one can reliably communicate

over the channel, regardless of the rate.

For the multiple user channels, and in particular the important class of multiple access

channels, [8] and [9] have shown interesting results. In [9], a continuous-time MAC is

considered under symbol time asynchronism between transmitters. The issue of symbol

synchronism arises in continuous-time channels where a codeword (c1, c2, · · · , cn) modulates

a finite-duration waveform which in general has the form

n∑

i=1

s(t− iT ; ci), (2.50)

where the waveforms s(t; ci) are the waveforms assigned to codeword symbols and vanish

outside the interval [0, T ]. Thus, to correctly decode the codewords, sampling synchro-

nization at the decoder becomes essential. This is indeed the case in most of the standard

digital communication systems. In [9], Verdú considers this issue for a Gaussian MAC

where two users channels have time delays of τ1, τ2 ∈ [0, T ) respectively. Also, each user

modulates linearly a fixed signature waveform sk(t), i.e., sk(t; ci) = cisk(t), where k = 1, 2

is the user index. If the users use the same signature waveforms and τ1 = τ2, it is easy

to see that the channel is equivalent to the standard Gaussian MAC with known capacity

region. Interestingly, it is shown in [9] that this result still holds if the users are not symbol

synchronous, that is τ1 6= τ2, as long as transmitters use the same signature waveforms.

Namely, in this setting, if the transmitters are assigned the same signature waveforms,

asynchronism will not degrade the capacity region of white Gaussian MAC. However, if
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the assigned waveforms are different, the capacity region is changed. In order to derive

the results, an equivalent channel model is obtained with discrete-time outputs and the

lack of symbol asynchronism has been modeled by finite channel memory. To this end, the

results of [12] on the capacity of the discrete-multiple access channels with finite memory

is exploited.

In [8], the authors consider a MAC with no common time base between encoders. There,

the encoders transmit with an unknown offset with respect to each other, and the offset is

bounded by a maximum value dmax(n) that is a function of coding block length n. Using

a time-sharing argument, it is shown that the capacity region is the same as the capacity

of the ordinary MAC as long as dmax(n)/n→ 0. On the other hand, [5] considers a totally

asynchronous MAC in which the coding blocks of different users can potentially have no

overlap at all, and thus potentially have several block lengths of shifts between themselves

(denoted by random variables ∆i). Moreover, the encoders have different clocks that are

referenced with respect to a standard clock, and the offsets between the start of code blocks

for the standard clock and the clock at transmitter i are denoted by random variables Di.

For such a scenario, in [5], it is shown that the capacity region differs from that of the

synchronous MAC only by the lack of the convex hull operation. In [61], Poltyrev also

considers a model with arbitrary delays, known to the receiver (as opposed to [5]). Among

other related works is the recent paper [10] that finds a single letter capacity region for the

case of a 3 sender MAC, 2 of which are synchronized with each other and both asynchronous

with respect to the third one.
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Chapter 3

Phase Asynchronous Systems

3.1 Introduction

In this chapter1, we consider the problem of joint source-channel coding (JSCC) for a

range of compound Gaussian multiuser channels with phase uncertainty. We refer to

such channels as phase incoherent (PI) channels. We assume that the phase shifts over

channels under consideration are stationary non-ergodic phase fading processes which are

chosen randomly and fixed over the block length. The phase information θ (as the channel

parameter) is assumed to be unknown to the transmitters and known at the receiver side(s)

as a practical assumption. However, since it is straight forward for the receivers to estimate

the channel side information, in this chapter, we assume that each receiver knows its own

channels’ phases.

In Section 3.2, we first present the preliminaries and definitions along with a lemma

1The results of this chapter (except for Sections 3.5 and 3.6) are published in the IEEE Transactions

on Communications, vol. 62, no. 8, pp. 2996–3003, Aug. 2014. [22]
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that is useful in the derivation of all the converse results in this chapter.

In Sections 3.3-3.4, we consider the problem of JSCC for a series of phase incoherent

multiuser channels. We examine both cognitive and non-cognitive models. In particular,

we consider phase incoherent multiple access relay channels (PI-MARC), in which one of

the encoders is helped by the other one, either causally or non-causally. These can model,

for example, a cognitive radio communication scenario in which the cognitive user is aware

of the primary user’s message. We refer to such networks as phase-incoherent causal/non-

causal cognitive MARCs or PI-CC-MARC/PI-NC-MARCs for short. Furthermore, we

also consider a phase-incoherent interference relay channel (PI-IRC) under asymmetric

gain conditions. For the IRC, an achievable region for the channel coding only problem

is found in [38], while capacity results for ergodic phase fading and Rayleigh fading cases

under strong and very strong interference conditions are reported in [39], [40].

Furthermore, in this chapter, in Section 3.5, we consider two classes of phase inco-

herent cognitive Gaussian interference channels and study the lossless communication of

primary and secondary sources. We assume the sources to be correlated as may be in

practical situations where the primary and secondary transmit information acquired from

the same environment. In particular, sufficient and necessary conditions for reliable loss-

less communication of two correlated sources over classes of phase asynchronous cognitive

interference channels are derived. Namely, we consider interference channels in which one

of the encoders, i.e., the secondary or cognitive user, is causally or non-causally aware of

the other’s message. We show that, for both classes of causal and noncausal cooperation,

under strong interference conditions, separate source and channel coding is optimal for

reliable communication of both users. Also, we derive necessary and sufficient conditions

for reliable communication of the cognitive radio transmission while the primary is able to

maintain the same information rate it could reliably send in the absence of the secondary.
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To the best of our knowledge, this is the first work to find fundamental limits of lossless

reliable communication for cognitive interference channels.

For all of the channels considered, we derive both necessary and sufficient conditions

for reliable communication. Furthermore, we show that if the phase shifts are unknown to

the transmitters, then the optimal performance of JSCC is no better than the scenario in

which the information sources are first source coded and then channel coded separately.

In particular, correlation between the sources does not change the necessary and sufficient

conditions for reliable communication, as opposed to cases where the transmitters have

knowledge of the phase shifts and could potentially use beamforming, for example, to joint

source-channel code the data and achieve higher rates.

Finally, in Section 3.6, we study the lossy communication of a bivariate Gaussian source

over a phase incoherent interference relay channel (PI-IRC). We derive inner and outer

bounds for the achievable distortion region, where the inner bound is derived under specific

strong interference conditions as well as strong gain conditions between transmitters and

the relay. When the sources are correlated, we find an approximate achievable distortion

region in the high SNR regime. In case of independent sources, the bounds are tight and

by explicitly providing the achievable distortion region, we show that a separation theorem

results for the PI-IRC under strong interference conditions. By removing the relay, the

result also specializes to the lossy source-channel communications of independent sources

over an interference channel.

3.2 Preliminaries and a Useful Lemma

Consider two finite alphabet sources {(U1i, U2i)} with correlated outputs that are jointly

drawn according to a distribution P [U1i = u1, U2i = u2] = p(u1, u2). The sources are
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memoryless, i.e., (U1i, U2i)’s are i.i.d. Both of the sources are to be transmitted to the

corresponding destinations through complex-valued discrete-time memoryless non-ergodic

phase fading Gaussian channel models. Channels are parameterized by the phase shifts that

are introduced by different paths of the network which are not known to the transmitters.

The vector θ is a vector with one element from [0, 2π) for each channel, and denotes the

non-ergodic phase fading parameters. For simplicity, throughout the chapter, we assume

that transmitter node with index i ∈ {1, 2, r} has power constraint Pi and the noise power

at all corresponding receiving nodes is N .

Throughout the chapter, we use the notations Xik, Yk, Yik ∈ C, Zk, Zik ∼ CN (0, N) in

order to show the input and output symbols of corresponding channels along with circularly

symmetric complex Gaussian noise signals respectively. Also note that the first subscript

i ∈ {1, 2, r} denotes the node index while the second subscript k ∈ {1, 2, · · · , n} denotes the
time index, with the exception of Yk, Zk, which have only a time index. Without confusion

Xn
i denotes the length-n vector (Xi1, · · · , Xin). Additionally, we denote the path gains

from node i to node j by gije
θij , where θij shows the phase shift introduced by the path,

unknown at i, and gij represents the amplitude gain that is known to the transmitter node

i, and can model e.g., line of sight path gains. Finally, let S = {(1, 2), (2, 1)}.

3.2.1 Useful Lemma

Let Xm = (X1, X2, · · · , Xm), be a vector of random variables with joint distribution pXm

and maxi E‖Xi‖2 < ∞. Also let the scalar RV V ,
∑m

i=1 gie
jθiXi + Z, where gie

jθi are

arbitrary complex coefficients and Z ∼ CN (0, N).

We now state and prove the following lemma which asserts that the minimum over

θ = (θ1, θ2, · · · , θm) of the mutual information between Xm and V is maximized when Xm
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is a zero-mean Gaussian vector with independent elements, i.e., RVs X1, X2, · · · , Xm are

independent Gaussians with zero mean.

Lemma 1. Let P = {pXm : E‖Xi‖2 ≤ Pi, ∀i}. Then,

max
pXm∈P

min
θ

I(Xm;V ) = log(1+
m∑

i=1

g2i Pi/N),

i.e., when θ is chosen adversarially, the best Xm is a zero-mean Gaussian vector with

independent elements and Var(Xi) = Pi, ∀i.

Proof. By letting E‖Xi‖2 = σ2
i , E(XiXj) = ρijσiσj , it can be easily seen that the RV V

has a fixed variance σ2
V which is equal to

σ2
V = (

m∑

i=1

g2i σ
2
i ) +N + 2

∑

i<j

gigjσiσj <
{
ρije

j(θi−θj)
}
− [E(V )]2

≤ (

m∑

i=1

g2i σ
2
i ) +N + 2

∑

i<j

gigjσiσj <
{
ρije

j(θi−θj)
}

(3.1)

, σ̃2
V .

As for a given variance, the Gaussian distribution maximizes the differential entropy [29,

Thm. 8.4.1], we have

I(Xm;V ) ≤ log(2πeσ̃2
V )− h(Z). (3.2)

Next, note that minθ σ̃
2
V is maximized when ρij = 0, ∀i, j. It can be seen from

(3.1) that if ρij 6= 0, the parameters θ1, θ2, · · · , θm can be chosen such that the term

2
∑

i<j gigjσiσj <
{
ρije

j(θi−θj)
}
is strictly negative. Thus

min
θ

I(Xm;V ) ≤ log(

∑m

i=1 g
2
i σ

2
i

N
+ 1)
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≤ log(

∑m

i=1 g
2
i Pi

N
+ 1), (3.3)

where (3.3) follows since σ2
i ≤ Pi. Finally, note that the bound in (3.3) is achieved by

zero-mean independent Gaussians and the lemma is proved.

Remark 3. For the ergodic setting, where θ is i.i.d. from channel use to channel use,

uniformly distributed over [0, 2π)m, and the averaged mutual information over θ is to be

maximized, a similar result is given in [45, Thm. 8]. Specifically,

max
pXm

EθI(X
m;V ) = log(1+

m∑

i=1

g2i Pi/N).

Note that Lemma 1 applies to the phase incoherent scenario as opposed to an ergodic phase

fading scheme. Also, its statement and proof are different than [45, Thm. 8].

3.3 Phase Incoherent Multiple Access Relay Chan-

nels

In this section, we consider the problem of joint source-channel coding over a series of

PI-MARCs in which the encoders can cooperate in a unidirectional manner, i.e., one of

the encoders can be a cognitive radio. Namely, we first study a MARC in which one of

the encoders has knowledge of the other encoder’s message causally (PI-CC-MARC). We

also consider an ordinary MARC, and a PI-MARC with non-causal cognitive cooperation

between the encoders (PI-NC-MARC), as special cases of PI-CC-MARC.

We first derive a set of necessary conditions for reliable communication over a PI-CC-

MARC which can be considered as a unified outer bound for PI-CC-MARC and other

MARCs under consideration. The outer bound will be presented in the form of a lemma
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from which the converse results for PI-MARC and PI-NC-MARC as special cases of PI-

CC-MARC can be deduced. Afterwards, using separate source-channel coding and under

specific gain conditions, we derive achievability constraints that match with the unified

outer bound for each of the three considered channels. Therefore, we prove separation

theorems under specific gain conditions along with necessary and sufficient conditions for

reliable communication for each channel.

3.3.1 PI-CC-MARC

We now consider sending sources U1, U2 over a PI-CC-MARC which is depicted in Fig-

ure 3.1, and denoted by (X1 × X2 ×Xr,Y1 × Yr ×Y , pθ(y1, yr, y|x1, x2, xr)). The received

signal at the destination is given by

Yi = g1e
jθ1X1i + g2e

jθ2X2i + gre
jθrXri + Zi, (3.4)

and the signal received at the relay can be written as

Yri = g1re
jθ1rX1i + g2re

jθ2rX2i + Zri (3.5)

where Zri is independent of Zi.

As it can be seen from Figure 3.1, the encoder X1 receives a noisy phase faded version

of X2 through the link from node 2 to node 1. Indeed, the first transmitter works as a

relay for the other one while communicating its own information. Here, the relationship

Y1i = g21e
jθ21X2i + Z1i, (3.6)

with Z1i being independent of Zi, Zri, describes the link from node 2 to node 1. The

parameter θ for the PI-CC-MARC is the vector θ = (θ1, θ2, θr, θ1r, θ2r, θ12) ∈ [0, 2π)6. X1i

is a function of the source signal Un
1 and its past received signals Y

(i−1)
1 .
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Figure 3.1: Correlated sources and phase incoherent causal cognitive multiple access relay

channel (PI-CC-MARC).

In the sequel, we state and prove a separation theorem for the PI-CC-MARC under

specific gain conditions. In particular, we first define the settings and afterwards derive an

outer bound for the PI-CC-MARC in the form of a lemma. The outer bound also applies

to the cases of PI-MARC and PI-NC-MARC, thus it is named as the unified outer bound.

Definition 10. Joint source-channel code: A joint source-channel code of length n for a

PI-CC-MARC with correlated sources is defined by

1. Two sets of encoding functions {Eji}ni=1, j = 1, 2. Furthermore, we define relay encod-

ing functions by xri = fi(yr1, yr2, · · · , yr(i−1)), i = 1, 2, · · · , n. The sets of codewords

are denoted by the codebook C = {({E1i(un1 , yi−1
1 )}ni=1, {E2i(un2)}ni=1) : un1 ∈ Un

1 , u
n
2 ∈

Un
2 }.

2. Power constraint P1, P2 and Pr at the transmitters, i.e.,

E (
1

n

n∑

i=1

‖Xji‖2) ≤ Pj , j = 1, 2, r, (3.7)

where E is the expectation operation over the distribution induced by Un
1 , U

n
2 .
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3. A decoding function gn
θ
: Yn → Un

1 × Un
2 .

Upon reception of the received vector Y n, the receiver decodes (Ûn
1 , Û

n
2 ) = gθ(Y

n) as

the transmitted source outputs. The probability of an erroneous decoding depends on θ

and is denoted by P n
e (θ).

Definition 11. We say the source {U1i, U2i}ni=1 of i.i.d. discrete random variables with

joint probability mass function p(u1, u2) can be reliably sent over the PI-CC-MARC, if

there exists a sequence of encoding functions En , {{E1i}ni=1, {E2i}ni=1, f1, f2, · · · , fn} and

decoders gn
θ
such that the source sequences Un

1 and Un
2 can be estimated with asymptotically

small probability of error (uniformly over all parameters θ) at the receiver side from the

received sequence Y n, i.e., sup
θ
P n
e (θ) −→ 0, as n→ ∞.

Note that although our definitions concern the case where source vectors of length n

are mapped into channel vectors of the same length (n), i.e., bandwidth matched case, all

of the results extend easily to the mismatched case as well.

Now, we present a converse result for the PI-CC-MARC which can be considered as a

unified outer bound for all of the MARCs considered in this section.

Lemma 2. Unified converse: Let En, and gnθ be a sequence in n of encoders and decoders

for the PI-CC-MARC for which supθ P
n
e (θ) −→ 0, as n→ ∞. Then

H(U1|U2) ≤ log(1 + (g21P1 + g2rPr)/N), (3.8)

H(U1, U2) ≤ log(1 + (g21P1 + g22P2 + g2rPr)/N). (3.9)
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Proof. First, fix a PI-CC-MARC with given parameter θ, a codebook C, and induced

empirical distribution pθ(u
n
1 , u

n
2 , x

n
1 , x

n
2 , x

n
r , y

n
1 , y

n
r , y

n
r ) by the codebook. Since for this fixed

choice of θ, P n
e (θ) → 0, from Fano’s inequality, we have

1

n
H(Un

1 , U
n
2 |Y n, θ) ≤ 1

n
P n
e (θ) log ‖Un

1 × Un
2 ‖+

1

n
, εn(θ), (3.10)

and εn(θ) → 0, where convergence is uniform in θ. Defining supθ εn(θ) = εn and following

the similar steps as in [19, Section 4], we have

H(U1|U2) =
1

n
H(Un

1 |Un
2 )

(a)
=

1

n
H(Un

1 |Un
2 , X

n
2 , θ)

=
1

n
I(Un

1 ; Y
n|Xn

2 , U
n
2 , θ) +

1

n
H(Un

1 |Y n, Xn
2 , U

n
2 , θ)

(b)

≤ 1

n
I(Un

1 ; Y
n|Un

2 , X
n
2 , θ) + εn

(c)

≤ 1

n
I(Xn

1 ; Y
n|Xn

2 , U
n
2 , θ) + εn (3.11)

≤ 1

n
I(Xn

1 , X
n
r ; Y

n|Xn
2 , U

n
2 , θ) + εn, (3.12)

where (a) follows from the fact that Xn
2 is only a function of Un

2 , and (b) follows from

(3.10), and (c) follows from data processing inequality. Similarly, it can be shown that

H(U1, U2) =
1

n
H(Un

1 , U
n
2 ), (3.13)

=
1

n
I(Un

1 , U
n
2 ; Y

n|θ) + 1

n
H(Un

1 , U
n
2 |Y n, θ)

≤ 1

n
I(Xn

1 , X
n
2 , X

n
r ; Y

n|θ) + εn. (3.14)

We now further upper bound (3.12), (3.14). First, we expand Y n in (3.12) to upper

bound H(U1|U2) as follows:

H(U1|U2) ≤
1

n
I(Xn

1 , X
n
r ; Y

n|Xn
2 , U

n
2 , θ) + εn
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=
1

n
I(Xn

1 , X
n
r ; g1e

jθ1Xn
1 + g2e

jθ2Xn
2 + gre

jθrXn
r + Zn|Un

2 , X
n
2 ) + εn

=
1

n
I(Xn

1 , X
n
r ; g1e

jθ1Xn
1 + gre

jθrXn
r + Zn|Un

2 , X
n
2 ) + εn

=
1

n

[
h(g1e

jθ1Xn
1 + gre

jθrXn
r + Zn|Un

2 , X
n
2 )− h(Zn)

]
+ εn

≤ 1

n

[
h(g1e

jθ1Xn
1 + gre

jθrXn
r + Zn)− h(Zn)

]
+ εn

=
1

n
I(Xn

1 , X
n
r ; g1e

jθ1Xn
1 + gre

jθrXn
r + Zn) + εn

≤ 1

n

n∑

i=1

I(X1i, Xri; g1e
jθ1X1i + gre

jθrXri + Zi) + εn

(a)
= I(X1, Xr; g1e

jθ1X1 + gre
jθrXr + Z|W ) + εn

=
[
h(g1e

jθ1X1 + gre
jθrXr + Z|W )− h(Z)

]
+ εn

≤
[
h(g1e

jθ1X1 + gre
jθrXr + Z)− h(Z)

]
+ εn

= I(X1, Xr; g1e
jθ1X1 + gre

jθrXr + Z) + εn, (3.15)

where (a) follows by defining new random variables

Xj = XjW , j ∈ {1, 2, r}, (3.16)

Z = ZW , (3.17)

W ∼ Uniform{1, 2, · · · , n}. (3.18)

From (4.5), the input signals X1, Xr satisfy the power constraints

E|Xj |2 = E (
1

n

n∑

i=1

‖Xji‖2) ≤ Pj , j = 1, r, (3.19)

and Z ∼ CN (0, N).

Moreover, following similar steps from (3.14), we have

H(U1, U2) =
1

n
H(Un

1 , U
n
2 )
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=
1

n
I(Un

1 , U
n
2 ; Y

n|θ) + 1

n
H(Un

1 , U
n
2 |Y n, θ)

≤ 1

n
I(Un

1 , U
n
2 ; Y

n|θ) + εn

≤ 1

n
I(Xn

1 , X
n
2 ; Y

n|θ) + εn

≤ 1

n
I(Xn

1 , X
n
2 , X

n
r ; Y

n|θ) + εn

=
1

n
I(Xn

1 , X
n
2 , X

n
r ; g1e

jθ1Xn
1 + g2e

jθ2Xn
2 + gre

jθrXn
r + Zn) + εn

≤ 1

n

n∑

i=1

I(X1i, X2i, Xri; g1e
jθ1X1i + g2e

jθ2X2i + gre
jθrXri + Zi) + εn

≤ I(X1, X2, Xr; g1e
jθ1X1 + g2e

jθ2X2 + gre
jθrXr + Z) + εn, (3.20)

where the last step follows with the same RVs as in (3.130)-(3.132).

The constraints defined by (3.15) and (3.20) is an outer bound on the capacity region.

But since it applies for a fixed θ, it is also true for all choices of θ. The proof of the lemma

is completed by taking the intersection of the upper bounds over all values of θ, letting

n→ ∞, and noting by Lemma 1 that the resulting bounds are simultaneously maximized

by choosing X1, X2, Xr to be zero-mean complex independent Gaussians.

Remark 4. Note that to prove Lemma 2 as the converse part for PI-CC-MARC, we do

not need the receiver to know the CSI θ. This is indeed true for other separation theorems

of the chapter as well.

Now, by combining Lemma 2 as the converse part and an achievbility argument as

follows, we state and prove the following separation theorem for the PI-CC-MARC.

Theorem 9. Consider a PI-CC-MARC, and the source pair (Un
1 , U

n
2 ) ∼ ∏

ip(u1i, u2i).

Furthermore, assume the gain conditions

g21rP1 ≥ g21P1 + g2rPr, (3.21)
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Encoder Block 1 Block 2 Block B Block B + 1

1 xn1 (1,W11, 1) xn1 (W11,W12,W21) xn1 (W1(B−1),W1B,W2(B−1)) xn1 (W1B, 1,W2B)

2 xn2 (1,W21) xn2 (W21,W22) xn2 (W2(B−1),W2B) xn2 (W2B, 1)

r xnr (1, 1) xnr (W11,W21) xnr (W1(B−1),W2(B−1)) xnr (W1B,W2B)

Table 3.1: Block Markov encoding scheme for the PI-CC-MARC.

g22rP1 ≥ g21P1 + g22P1 + g2rPr, (3.22)

1 +
g221P2

N
≥ 2−H(U1|U2)

(
1 + (g21P1 + g22P2 + g2rPr)/N

)
. (3.23)

Then, necessary conditions for reliable communication of the correlated sources (Un
1 , U

n
2 )

over such a channel are given by (3.8) and (3.9). Conversely, (3.8) and (3.9) also describe

sufficient conditions with ≤ replaced by <.

Proof. The achievability argument is as follows:

Achievability

For the achievability part, we use separate source and channel coding. We need to show

that given (3.8) and (3.9), we can first losslessly source code the sources to indices W1 ∈
[1, 2nR1],W2 ∈ [1, 2nR2] and then send W1,W2 over the channel with arbitrarily small error

probability.

Source Coding: Using Slepian-Wolf coding [30], for asymptotically lossless representa-

tion of the source (Un
1 , U

n
2 ), we should have the rates (R1, R2) satisfying

R1 > H(U1|U2), (3.24)

R2 > H(U2|U1), (3.25)
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R1 +R2 > H(U1, U2). (3.26)

The source codes are represented by indices W1,W2 which are then channel coded before

being transmitted.

Channel Coding: The channel coding argument for a PI-CC-MARC is based on block

Markov coding with backward decoding as shown in Table 3.1. First fix a distribution

p(x1)p(x2)p(xr) and construct random codewords xn1 , x
n
2 , x

n
r based on the corresponding dis-

tributions. Namely, the first encoder generates 2n(2R1+R2) random codewords xn1 (W1,W
′

1,W2)

according to the distribution
∏n

i=1 p(x1i), the second encoder generates 2n(2R2) random

codewords xn2 (W2,W
′

2) according to the distribution
∏n

i=1 p(x2i), and the relay encoder gen-

erates 2n(R1+R2) random codewords xnr (W1,W2) according to the distribution
∏n

i=1 p(xri).

The message Wi of each encoder is then divided to B blocks Wi1,Wi2, · · · ,WiB of 2nRi bits

each, i = 1, 2. The codewords are transmitted in B + 1 blocks based on the block Markov

encoding scheme depicted in Table 3.1. Since Un
2 is not perfectly and non-causally known to

the first encoder, node 1 needs to first decode W2t after block t from its received signal over

the link between the encoders. In the t-th block, the first transmitter sends the codeword

xn1 (W1(t−1),W1t,W2(t−1)), while the second transmitter uses codeword xn2 (W2(t−1),W2t) and

the relay sends the codeword xnr (W1(t−1),W2(t−1)). We let B → ∞ to approach the original

rates R1, R2.

At the end of each block b, the relay decodes W1b,W2b, referred to as forward decoding

[35]. Indeed, at the end of the first block, the relay decodes W11,W21 from the received

signal Y n
r (W11,W21). In the second block, nodes 1 and 2 transmit xn1 (W11,W12,W21) and

xn2 (W21,W22), respectively. The relay decodes W12,W22, using the knowledge of W11,W21,

and this is continued until the last block.

The decoding at the destination, however, is performed based on backward decod-
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ing [36], [62], i.e., starting from the last block back to the former ones. As depicted in

Table 3.1, at the end of block B + 1, the receiver can decode W1B,W2B. Afterwards,

by using the knowledge of W1B ,W2B, the receiver goes one block backwards and decodes

W1(B−1),W2(B−1). This process is continued until the receiver decodes all of the messages.

Thus, in order to guarantee correct decoding at the relay and correct backward decoding

at the destination when n → ∞, using standard random coding arguments, the following

conditions should be satisfied:

R1 < I(X1; Yr|X2, Xr, θ), (3.27)

R2 < I(X2; Yr|X1, Xr, θ), (3.28)

R1 +R2 < I(X1, X2; Yr|Xr, θ), (3.29)

for decoding at the relay and

R1 < I(X1, Xr; Y |X2, θ), (3.30)

R1 +R2 < I(X1, X2, Xr; Y |θ). (3.31)

for decoding at the destination respectively.

Additionally, to reliably decode the second encoder’s message at the first encoder (which

plays the role of a relay), we need to satisfy the condition

R2 < I(X2; Y1|X1, Xr, θ). (3.32)

Computing these conditions for independent Gaussian inputs and using conditions

(3.21) and (3.22), we find the following achievable region for channel coding:

R1 < log(1 + (g21P1 + g2rPr)/N), (3.33)
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R2 < log(1 + g221P2/N), (3.34)

R1 +R2 < log(1 + (g21P1 + g22P2 + g2rPr)/N). (3.35)

In order to make the inner bounds of (3.33)-(3.35) coincide with the outer bounds (3.8),

(3.9), we need to have

log(1 + (g21P1 + g22P2 + g2rPr)/N)− R1 < log(1 + g221P2/N),

so that we can drop (3.34) from the achievability constraints. But by choosing R1 =

H(U1|U2) + ε, with ε > 0 arbitrary, condition (3.23) makes (3.34) dominated by (3.35)

for the Gaussian input distributions. Therefore, since ε > 0 is arbitrary, one can easily

verify that given (3.8) and (3.9) with ≤ replaced by <, along with the conditions (3.21)-

(3.23), source and channel codes of rates R1, R2 can be found such that (3.24)-(3.26), and

(3.27)-(3.32) simultaneously hold.

We now present the following corollary for a phase incoherent causal cognitive MAC

(PI-CC-MAC) which can be constructed from a corresponding MARC by eliminating the

relay.

Corollary 1. Reliable communication over a PI-CC-MAC: Necessary conditions for reli-

able communication of the sources (U1, U2) over the causal PI-CC-MAC with power con-

straints P1, P2 on transmitters, fading amplitudes g1, g2 > 0, and source pair (Un
1 , U

n
2 ) ∼

∏
ip(u1i, u2i), is given by

H(U1|U2) ≤ log(1 + g21P1/N), (3.36)

H(U1, U2) ≤ log(1 + (g21P1 + g22P2)/N), (3.37)
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provided

1 +
g221P2

N
≥ 2−H(U1|U2)

(
1 +

g21P1 + g22P2

N

)
. (3.38)

Given (3.38), sufficient conditions for reliable communications are also given by (3.48)

and (3.49), with ≤ replaced by <.

Proof. The PI-CC-MAC is equivalent to a PI-CC-MARC where the relay has power con-

straint Pr = 0. As the relay is thus silent, we may assume without loss that g1r, g2r are

arbitrarily large. The conditions (3.21)-(3.22) of Theorem 9 with (3.23) being changed to

(3.38) are then trivially satisfied.

3.3.2 PI-MARC

If the cognitive link in the PI-CC-MARC is silent (g21 = 0), we will have an ordinary

PI-MARC.

Corollary 2. Consider a PI-MARC with the gain conditions

g2irPi ≥ g2i Pi + g2rPr, i = 1, 2. (3.39)

Then, a necessary condition for reliably sending the source pair (Un
1 , U

n
2 ) ∼

∏
ip(u1i, u2i),

over such a PI-MARC, is given by

H(Ui|Uj) ≤ log(1 + (g2i Pi + g2rPr)/N), (i, j) ∈ S, (3.40)

H(U1, U2) ≤ log(1 + (g21P1 + g22P2 + g2rPr)/N). (3.41)
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Figure 3.2: Correlated sources and phase incoherent non-causal cognitive multiple access

relay channel (PI-NC-MARC).

Moreover, (3.40)-(3.41) also describes sufficient conditions for reliable communications with

≤ replaced by <. The sufficient conditions are achieved by separate source-channel coding.

Proof. The converse proof is a direct result of Lemma 2 by intersecting the outer bounds

for PI-CC-MARCs including either directions of the cognitive link. The achievability proof

is similar to that of [44, Thm. 4].

3.3.3 PI-NC-MARC

A PI-NC-MARC is an extension of a PI-MARC, in which the first encoder (cognitive

encoder) has non-causal access to the second source U2. Fig. 3.2 depicts a PI-NC-MARC.

Like PI-CC-MARC, the input/output relationships of the channel for the receiver and the

relay are given by (3.4) and (3.5).

In the sequel, we present and prove necessary and sufficient conditions for the reliable

communications of a pair of arbitrarily correlated sources (U1, U2) over a PI-NC-MARC,

in the form of a separation theorem.
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Theorem 10. Consider a PI-NC-MARC with the gain conditions

g21rP1 ≥ g21P1 + g2rPr, (3.42)

g21rP1 + g22rP2 ≥ g21P1 + g22P2 + g2rPr. (3.43)

Necessary conditions for reliably sending a source pair (Un
1 , U

n
2 ) ∼ ∏

ip(ui, vi), over

such a PI-NC-MARC are given by (3.8)-(3.9). Furthermore, eqs. (3.8)-(3.9) also give the

sufficient conditions for reliable communications over such PI-NC-MARC with ≤ replaced

by <.

Proof. The converse proof is a direct result of Corollary 1 (and in turn Lemma 2), since

PI-NC-MARC can be considered as a PI-MARC with the source pair ((Un
1 , U

n
2 ), U

n
2 ). The

achievability part is again obtained by a separate source and channel coding approach.

Achievability

We now establish the same region (described by (3.8)-(3.9)) as achievable for the PI-NC-

MARC. To derive the achievable region, we perform separate source-channel coding. Again,

as for the PI-CC-MARC, the source coding is performed by Slepian-Wolf coding and the

channel coding argument is based on regular block Markov encoding in conjunction with

backward decoding [37]. Both source coding and channel coding schemes are explained as

follows.

Source Coding: Recall that the first encoder has non-causal access to the second source

Un
2 . From Slepian-Wolf coding [30], for asymptotically lossless representation of the source

((Un
1 , U

n
2 ), U

n
2 ), we should have the rates (R1, R2) satisfying

R1 > H(U1|U2),
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Encoder Block 1 Block 2 Block B Block B + 1

1 xn1 (1,W11,W21, 1) xn1 (W11,W12,W22,W21) xn1 (W1(B−1),W1B,W2B,W2(B−1)) xn1 (W1B, 1, 1,W2B)

2 xn2 (1,W21) xn2 (W21,W22) xn2 (W2(B−1),W2B) xn2 (W2B, 1)

r xnr (1, 1) xnr (W11,W21) xnr (W1(B−1),W2(B−1)) xnr (W1B,W2B)

Table 3.2: Block Markov encoding scheme for a NC-MARC.

R1 +R2 > H(U1, U2).

Channel Coding: Similar to the discussion presented in Section 3.3.1 for the PI-CC-

MARC, an achievable region for a discrete memoryless NC-MARC with 2 users is given

based on the block Markov coding scheme shown in Table 3.2 combined with backward

decoding. Note that the results readily extend to a PI-NC-MARC with phase vector θ

known to the receiver side.

First, fix a distribution p(x1)p(x2)p(xr) and construct random codewords xn1 , x
n
2 , x

n
r

based on the corresponding distributions. The message Wi of each encoder is divided to

B blocks Wi1,Wi2, · · · ,WiB of 2nRi bits each, i = 1, 2. The codewords are transmitted in

B + 1 blocks based on the block Markov encoding scheme depicted in Table 3.2. Using its

non-causal knowledge of the second source, transmitter 1 sends the information using the

codeword xn1 (W1(t−1),W1t,W2t,W2(t−1)), while transmitter 2 uses codeword xn2 (W2(t−1),W2t)

and the relay sends the codeword xnr (W1(t−1),W2(t−1)). We let B → ∞ to approach the

original rates R1, R2.

At the end of each block b, the relay performs forward decoding to reconstructW1b,W2b.

In particular, at the end of the first block, the relay decodesW11,W21 from the received sig-

nal Y n
r (W1b,W2b). In the second block, nodes 1 and 2 transmit xn1 (W11,W12,W22,W21) and

xn2 (W21,W22), respectively. The relay decodes W12,W22, using the knowledge of W11,W21,

and this is continued until the last block. Using random coding arguments and forward
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decoding from the first block, for reliable decoding of messages W1(b−1),W2(b−1) at the relay

after the bth block, when n→ ∞, it is sufficient to have

R1 < I(X1; Yr|X2, Xr, θ), (3.44)

R1 +R2 < I(X1, X2; Yr|Xr, θ). (3.45)

The destination performs backward decoding to sequentially reconstruct

(W1B,W2B), (W1(B−1),W2(B−1)), · · · , (W11,W21),

as shown in Table 3.2. Thus, by applying regular block Markov encoding and backward

decoding based on the configuration shown in Table 3.2, one finds that the destination can

decode the messages reliably if n→ ∞ and

R1 < I(X1, Xr; Y |X2, θ), (3.46)

R1 +R2 < I(X1, X2, Xr; Y |θ). (3.47)

The achievability part is complete by first choosing X1, X2, and Xr as independent

Gaussians and observing that under conditions (3.42) and (3.43), (3.46) and (3.47) are

tighter bounds than (3.140) and (3.141).

As a result of Theorem 10, in the following corollary, we state a separation theorem for

the PI-NC-MAC, i.e., a PI-MAC with non-causal cooperation between encoders.

Corollary 3. Reliable Communication over a PI-NC-MAC: Necessary conditions for reli-

able communication of the source (U1, U2) over a PI-NC-MAC with power constraints P1, P2
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on transmitters, fading amplitudes g1, g2 > 0, and source pair (Un
1 , U

n
2 ) ∼ ∏

ip(u1i, u2i),

are given by

H(U1|U2) ≤ log(1 + g21P1/N), (3.48)

H(U1, U2) ≤ log(1 + (g21P1 + g22P2)/N). (3.49)

Sufficient conditions for reliable communication are also given by (3.48)-(3.49), with ≤
replaced by <.

Proof. The PI-NC-MAC is equivalent to a PI-NC-MARC where the relay has power con-

straint Pr = 0. As the relay is thus silent, we may assume without loss that g1r, g2r are

arbitrarily large, and the conditions (3.42) and (3.43) are trivially satisfied.

Remark 5. Note that although the PI-NC-MARC can be considered as a special case of

the PI-MARC, Theorem 10 is not a special case of the Corollary 2 for the source pair

((Un
1 , U

n
2 ), U

n
2 ). Specifically, because of the channel coding configuration used for the PI-

NC-MARC, the gain conditions (3.42)-(3.43) of Theorem 10 are weaker than the gain

conditions (3.39) of Corollary 2.

3.4 Interference Relay Channel

The network model we consider in this section is an interference channel with two trans-

mitters and a relay referred to as interference relay channel (IRC). We then study the

interference channel (IC) as a special case of the IRC.
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Figure 3.3: Correlated sources and phase incoherent interference relay channel (PI-IRC).

3.4.1 PI-IRC

The PI-IRC (X1×X2×Xr,Y1×Y2×Yr, pθ(y1, y2, yr|x1,x2,xr)) is depicted in Fig. 3.3, and is

described by relationships

Y1i = g11e
jθ11X1i + g21e

jθ21X2i + gr1e
jθr1Xri + Z1i,

Y2i = g12e
jθ12X1i + g22e

jθ22X2i + gr2e
jθr2Xri + Z2i,

Yri = g1re
jθ1rX1i + g2re

jθ2rX2i + Zri,

where parameter θ = (θ11, θ21, θr1, θ12, θ22, θr2, θ1r, θ2r) ∈ [0, 2π)8 represents the phase shifts

introduced by the channel to inputs X1, X2 and Xr, respectively.

In the sequel, we prove a separation theorem, along with the necessary and sufficient

conditions of the reliable communications for the PI-IRC, under some non-trivial con-

straints on the channel gains which can be considered as an asymmetric interference situa-

tion for the IRC. The definitions of joint source-channel codes and reliable communication

for the PI-IRC are similar to the ones given in Section 3.3.1 except for the fact that there

are two decoders gn1θ, g
n
2θ and two error probability functions P n

e1(θ), P
n
e2(θ) in this setup.
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We first state the separation theorem and consequently give the proofs of the converse and

achievability parts.

Theorem 11. Consider a PI-IRC with the gain conditions

g11 = αg12, gr1 = αgr2, α < 1, (3.50)

g21rP1 ≥ g211P1 + g2r1Pr, (3.51)

g22rP2 ≥ g222P2 + g2r2Pr, (3.52)

α2g2r2Pr ≥ (1− α2) g212P1, (3.53)

g221P2 ≥
(
1− α2

)
g212P1 +

(
1− α2

)
g2r2Pr + g222P2. (3.54)

Then, necessary conditions for reliably sending a source pair (Un
1 , U

n
2 ) ∼ ∏

ip(u1i, u2i),

over such PI-IRC are given by

H(Ui|Uj) ≤ log(1 + (g2iiP1 + g2riPr)/N), (i, j) ∈ S (3.55)

H(U1, U2) ≤ log(1 + (g212P1 + g222P2 + g2r2Pr)/N), (3.56)

Moreover, a sufficient condition is also given by (3.55)-(3.56), with ≤ replaced by <.

Note that the gain conditions described by (3.106)- (3.54) imply asymmetric strong

interference gains in the PI-IRC, as g21 is large while g12 can be relatively small. Indeed,

these gain conditions can model, for example, physical proximity between the transmitters

and the opposite receivers, specifically between the second transmitter and the first receiver.

The proof of Theorem 11 is discussed in the two following subsections.
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Converse

Lemma 3. Let En be a sequence in n of encoders, and gn1θ, g
n
2θ be sequences in n of decoders

for the PI-IRC for which sup
θ
P n
e1(θ), P

n
e2(θ) −→ 0, as n→ ∞, then we have

H(Ui|Uj) ≤ min
θ∈Φc

I(Xi, Xr; giie
jθiiXi + grie

jθriXr + Z), (i, j) ∈ {(1, 2), (2, 1)}, (3.57)

H(U1, U2) ≤ min
θ∈Φc

I(X1, X2, Xr; g12e
jθ12X1 + g22e

jθ22X2 + gr2e
jθr2Xr + Z), (3.58)

for some joint distribution pX1,X2,Xr
such that E|X1|2 ≤ P1,E|X2|2 ≤ P2,E|Xr|2 ≤ Pr,

where Φc , {θ : θ11 = θ12, θr1 = θr2}.

Proof. First, fix a PI-IRC with given parameter θ ∈ Φc, a codebook C, and induced

empirical distribution pθ(u
n
1 , u

n
2 , x

n
1 , x

n
2 , x

n
r , y

n
1 , y

n
2 , y

n
r ). Since for this fixed choice of θ,

P n
e1(θ), P

n
e2(θ) → 0, from Fano’s inequality, we have

1

n
H(Un

i |Y n
i , θ) ≤

1

n
P n
ei(θ) log ‖Un

i ‖+
1

n
, εin(θ),

and εin(θ) → 0, i = 1, 2, where convergence is uniform in θ. Defining sup
θ
εin(θ) = εin, i =

1, 2 and following similar steps as those resulting in (3.12), we have

H(Ui|Uj) ≤
1

n
I(Xn

i , X
n
r ; Y

n
i |Un

j , X
n
j , θ) + εin, (3.59)

for (i, j) ∈ S. Noting that (3.59) holds for every choice of θ, as in Section 3.3.1, we can

upper bound (3.59) and derive (3.57). Next, to derive (3.58), we define a random vector

Z̃n
1 ∼ CN (0, (1−α2)NI) with I the n×n identity matrix, and bound H(U1, U2) as follows:

H(U1, U2) =
1

n
H(Un

1 , U
n
2 ) (3.60)

=
1

n
H(Un

2 ) +
1

n
H(Un

1 |Un
2 , X

n
2 )

≤ 1

n
H(Un

2 ) +
1

n
H(Un

1 |Xn
2 )
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=
1

n
I(Un

2 ; Y
n
2 |θ) +

1

n
I(Un

1 ; Y
n
1 |Xn

2 , θ) +
1

n
H(Un

2 |Y n
2 , θ) +

1

n
H(Un

1 |Xn
2 , Y

n
1 , θ)

≤ 1

n
I(Xn

2 ; Y
n
2 |θ) +

1

n
I(Xn

1 , X
n
r ; Y

n
1 |Xn

2 , θ) + ε1n + ε2n

=
1

n
I(Xn

2 ; Y
n
2 |θ) +

1

n
I(Xn

1 , X
n
r ; g11e

jθ11Xn
1 + gr1e

jθr1Xn
r + Zn

1 |Xn
2 ) + ε1n + ε2n

(3.61)

(a)
=

1

n
I(Xn

2 ; Y
n
2 |θ) +

1

n
I(Xn

1 , X
n
r ; g11e

jθ11Xn
1 + gr1e

jθr1Xn
r + αZn

1 + Z̃n
1 |Xn

2 )

+ ε1n + ε2n

(b)
=

1

n
I(Xn

2 ; Y
n
2 |θ) +

1

n
I(Xn

1 , X
n
r ; g11e

jθ11Xn
1 + gr1e

jθr1Xn
r + αZn

2 + Z̃n
1 |Xn

2 )

+ ε1n + ε2n

(c)
=

1

n
I(Xn

2 ; Y
n
2 |θ) +

1

n
I(Xn

1 , X
n
r ;αg12e

jθ12Xn
1 + αgr2e

jθr2Xn
r + αZn

2 + Z̃n
1 |Xn

2 )

+ ε1n + ε2n

(d)

≤ 1

n
I(Xn

2 ; Y
n
2 |θ) +

1

n
I(Xn

1 , X
n
r ;αg12e

jθ12Xn
1 + αgr2e

jθr2Xn
r + αZn

2 |Xn
2 )

+ ε1n + ε2n

(e)
=

1

n
I(Xn

2 ; Y
n
2 |θ) +

1

n
I(Xn

1 , X
n
r ; Y

n
2 |Xn

2 , θ) + ε1n + ε2n

=
1

n
I(Xn

1 , X
n
2 , X

n
r ; Y

n
2 |θ) + ε1n + ε2n, (3.62)

where (a), (b) follows from the fact that by preserving the noise marginal distribution, the

mutual information does not change. The noise term Zn
1 in (3.61) is thus divided into

two independent terms αZn
1 + Z̃n

1 , and then Zn
1 is replaced by Zn

2 . Also, (c) follows from

(3.106) and the fact that in Φc, θ11 = θ12 and θr1 = θr2, (d) follows since reducing the

noise may only increase the mutual information, and (e) follows from the fact that linear

transformation does not change mutual information.

To derive (3.58), we further upper bound (3.62) by a time sharing argument similar to
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the one resulted in (3.15), the fact that the upper bound is true for all θ ∈ Φc, and letting

n→ ∞.

Using Lemma 1, we maximize the upper bounds of Lemma 3 with independent Gaus-

sians and the proof of the converse part is complete.

Achievability

The achievability part is again proved by separate source-channel coding:

Source Coding: Using Slepian-Wolf coding, the source (Un
1 , U

n
2 ) is source coded, requiring

the rates (R1, R2) to satisfy (3.24)-(3.26).

Channel Coding: Using block Markov coding in conjunction with backward decoding

at the receivers (note: both receivers decode all messages) and forward decoding at the

relay, we derive the following achievable region for a compound IRC with 2 transmitters

and a relay r [38]:

Ri < min
{
I(Xi; Yr|Xj, Xr, θ), I(Xi, Xr; Yi|Xj, θ), I(Xi, Xr; Yj|Xj, θ)

}
,

(i, j) ∈ {(1, 2), (2, 1)}, (3.63)

R1 +R2 < min
{
I(X1, X2; Yr|Xr, θ), I(X1, X2, Xr; Y1|θ), I(X1, X2, Xr; Y2|θ)

}
, (3.64)

for some input distribution p(x1)p(x2)p(xr).

Computing the mutual informations in (3.63)-(3.64) for independent Gaussians X1 ∼
CN (0, P1), X2 ∼ CN (0, P2), Xr ∼ CN (0, Pr), we find by (3.104)-(3.53) and (3.54) that

I(Xi; Yr|Xj, Xr, θ) ≥ I(Xi, Xr; Yi|Xj, θ),

I(Xi, Xr; Yj|Xj , θ) ≥ I(Xi, Xr; Yi|Xj, θ),

60



respectively for (i, j) ∈ {(1, 2), (2, 1)}. Also, the conditions (3.51)-(3.53) together result in

I(X1, X2; Yr|Xr, θ) ≥ I(X1, X2, Xr; Y2|θ),

while the condition (3.54) makes

I(X1, X2, Xr; Y1|θ) ≥ I(X1, X2, Xr; Y2|θ).

Hence, due to (3.51)-(3.54), the larger terms will drop off from the constraints (3.63)-(3.64)

and we may rewrite the sufficient conditions as

Ri ≤ log(1 + (g2iiPi + g2riPr)/N), i = 1, 2,

R1 +R2 ≤ log(1 + (g212P1 + g222P2 + g2r2Pr)/N).

Thus, combining the source coding and channel coding, the achievable region is the

same as the outer bound and the proof of Theorem 11 is complete.

3.4.2 PI-IC

We now consider an interference channel as a special case of an interference relay channel.

For the gain conditions of strong interference, we have the following source-channel coding

theorem for the PI-IC:

Corollary 4. Necessary conditions for reliably sending arbitrarily correlated sources (U1, U2)

over a PI-IC with strong interference conditions

g11 ≤ g12, (3.65)

g22 ≤ g21, (3.66)
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are given by

H(Ui|Uj) ≤ log(1 + g2iiPi/N), (i, j) ∈ S (3.67)

H(U1, U2) ≤ min{log(1 + (g211P1 + g221P2)/N), log(1 + (g212P1 + g222P2)/N)}. (3.68)

The same conditions (4.50)-(4.51) with ≤ replaced by < describe sufficient conditions for

reliable communication.

Proof. We note that by using the strong interference conditions, in the converse, one can

argue that both of the receivers can decode both of the sequences Un
1 , U

n
2 (see [63] for

details). Thus, Un
1 , U

n
2 can both be decoded from both Y n

1 , Y
n
2 . Hence, we have the

intersection of two PI-MACs and the result follows from the Theorem presented in the

introduction [21].

As a result, joint source-channel coding is not necessary under non-ergodic phase in-

coherence for the networks and channel gains studied in this section, and separate source-

channel coding can achieve optimal performance.

3.5 Cognitive Interference Channels (CIC)

In this section2, we consider phase incoherent cognitive Gaussian interference channels and

study the lossless communication of correlated primary and secondary sources over them.

In this section, we are interested in finding conditions under which reliable communi-

cation (in the information theoretic sense) can be accomplished for

2The results of this section were presented at the 2012 IEEE Global Communications Conference

(Globecom) [23].
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1. both the primary and secondary users,

2. for the secondary user while it causes no degradation for the primary, i.e., it can still

establish reliable communication using the same conditions and procedures as it did

when the secondary was absent

In both cases, we find necessary and sufficient conditions to reliably send a pair of

correlated sources over phase incoherent cognitive interference channels under strong in-

terference conditions. We prove separation theorems for both phase incoherent non-causal

cognitive interference channel (PI-NCIC) and causal cognitive interference channel (PI-

CCIC). Furthermore, we show that by performing source coding and channel coding sep-

arately, one can asymptotically achieve the best possible performance. To the best of our

knowledge, this is the first work to address lossless joint source-channel coding for cognitive

interference channels.

3.5.1 Non-causal Cognitive Interference Channel (NCIC)

In this subsection, we consider a two-user interference channel with strong interference,

where one of the transmitters knows the message of the other non-causally. In particular,

the message set of the primary is fully available to the secondary encoder. Both of the

transmitters wish to send their own messages reliably to their respective receivers. Further-

more, we assume that the phase shifts are not known to the encoders making the channel

a phase asynchronous one. We refer to such a network as a phase incoherent non-causal

cognitive interference channel (PI-NCIC). The setup is depicted in Fig. 3.4.

A continuous alphabet, discrete-time memoryless interference channel (IC) with phase

fading is denoted by (X1 × X2,Y1 × Y2, pθ1,θ2(y1, y2|x1, x2)) and its probabilistic character-
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Figure 3.4: Correlated sources and phase incoherent noncausal cognitive interference chan-

nel

ization is described by the relationship

Y1i = g11e
jθ11X1i + g21e

jθ21X2i + Z1i, (3.69)

Y2i = g12e
jθ12X1i + g22e

jθ22X2i + Z2i, (3.70)

where X1i, X2i, Yi ∈ C, Zi ∼ CN (0, N) is circularly symmetric complex Gaussian noise,

g11, g12, g21, g22 are non-ergodic complex channel gains, and parameters θ1 , (θ11, θ21) ∈
[0, 2π)2, θ2 , (θ12, θ22) ∈ [0, 2π)2 represent the phase shifts introduced by the channel to

inputs X1 and X2, respectively. Also, we denote by θ the vector (θ1, θ2).

Definition 12. Code: A block joint source-channel code of length n for the PI-NCIC with

correlated sources is defined by

1. Two encoding functions

fn1 : Un
1 → X n

1

fn2 : Un
1 × Un

2 → X n
2 ,
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that map the source outputs to the codewords. The sets of codewords are denoted by

the codebook C = {(fn1 (un1 ), fn2 (un1 , un2 )) : un1 ∈ Un
1 , u

n
2 ∈ Un

2 }.

2. Power constraint P1 and P2 on the codewords.

3. Two decoding functions

gn1 (·|θ1) :Yn
1 → Un

1 , gn2 (·|θ2) : Yn
2 → Un

2 . (3.71)

The estimated vectors gn1 (Y
n
1 |θ1), g

n
2 (Y

n
2 |θ2) are denoted by Ûn

1 , Û
n
2 respectively.

Upon reception of the received vectors Y n
1 , Y

n
2 , using knowledge of the channel pa-

rameter vectors θ1, θ2, the receivers find Ûn
1 = gn1 (Y

n
1 |θ1), and Ûn

2 = gn2 (Y
n
2 |θ2) as the

transmitted source outputs respectively. Thus, the probability of an erroneous decoding is

given by

P n
e1
(θ1) = P{Un

1 6= Ûn
1 |θ1 = (θ11, θ21)}

=
∑

un1∈U
n
1

p(un1 )P{Ûn
1 6= un1 |un1 , θ1}. (3.72)

P n
e2
(θ2) = P{Un

2 6= Ûn
2 |θ2 = (θ21, θ22)}

=
∑

un2∈U
n
2

p(un2 )P{Ûn
2 6= un2 |un2 , θ2}. (3.73)

Reliable communication for both users

Definition 13. We say the source {U1i, U2i}ni=1 of i.i.d. discrete random variables with

joint probability mass function p(u1, u2) can be reliably sent (or is achievable) over the
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PI-NCIC, if there exists a sequence of block codes {fn1 (Un
1 ), f

n
2 (U

n
1 , U

n
2 )} and decoders

gn1 (·|θ1), g
n
2 (·|θ2) such that the output sequences Un

1 and Un
1 of the source can be estimated

with arbitrarily asymptotically small probability of error over all parameters θ1, θ2 at the

receiver side from the received sequences Y n
1 , Y

n
1 , i.e.,

[
sup
θi

P n
ei(θi)

]
−→ 0, as n→ ∞, i = 1, 2. (3.74)

Herein, we find necessary and sufficient conditions under which both of the users can

reliably communicate their own messages to their respective decoders in the sense of Defi-

nition 13.

Remark 6. The following theorem and other theorems in the section can be considered

as joint source-channel coding separation theorems for phase asynchronous cognitive in-

terference channels as all of them prove the separation approach to achieve the optimal

performance.

Theorem 12. Reliable Communication over a PI-NCIC: Consider a phase incoherent cog-

nitive interference channel with non-causal unidirectional cooperation between the encoders

and with power constraints P1, P2 on transmitters, and fading amplitudes g11, g12, g21, g22 >

0 between the transmitters and the receivers. Moreover, assume the strong interference

gain conditions

g22 ≤ g21, (3.75)

g11 ≤ g12, (3.76)

hold.
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A necessary condition for sending a source pair (Un
1 , U

n
1 ) ∼

∏
ip(u1i, u2i), over such a

PI-NCIC is given by

H(U2|U1) ≤ log(1 + g222P2/N), (3.77)

H(U1, U2) ≤ min{log(1 + (g212P1 + g222P2)/N),

log(1 + (g211P1 + g221P2)/N)}. (3.78)

Furthermore, eqs. (3.77)-(3.78) also give the sufficient conditions for reliable communica-

tions over such PI-NCIC with ≤ replaced by <.

Proof. See Appendix 3.A.1.

Cognitive Reliable Communication

In this section, we consider the scenario in which the cognitive user wishes to reliably

communicate its information while the primary can reliably communicate with its receiver

whenever H(U1) ≤ log(1 + g211P1/N). In particular we give the following definition for

cognitive reliable communication.

Definition 14. We say the cognitive source {U2i}ni=1 can be reliably sent over the PI-NCIC,

if there exists a sequence of block codes {fn1 (Un
1 ), f

n
2 (U

n
1 , U

n
2 )} and decoders gn1 (·|θ1), g

n
2 (·|θ2)

such that

1. the output sequence Un
2 can be estimated with arbitrarily asymptotically small proba-

bility of error over all parameters θ2 at the secondary receiver side

2. if

H(U1) ≤ log(1 + g211P1/N), (3.79)
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then the primary can reliably communicate with its decoder in the sense of Definition

13.

Theorem 13. Cognitive reliable communication over a PI-NCIC: Consider a PI-NCIC

with power constraints P1, P2 on transmitters, and strong interference gain conditions

g22 ≤ g21, (3.80)

g11 ≤ g12, (3.81)

as well as the additional condition

min{1 + (g211P1 + g221P2)/N, 1 + (g212P1 + g222P2)/N} ≥ 2H(U2|U1)(1 + g211P1/N). (3.82)

A necessary condition for reliable cognitive communication of Un
2 over such a PI-NCIC

is given by

H(U2|U1) ≤ log(1 + g222P2/N), (3.83)

H(U1, U2) ≤ min{log(1 + (g212P1 + g222P2)/N),

log(1 + (g211P1 + g221P2)/N)}. (3.84)

Furthermore, eqs. (3.83)-(3.84) also give sufficient conditions for cognitive reliable com-

munications with ≤ replaced by <.

Proof. See Appendix 3.A.2

The condition (3.82) depends on the entropy content of the sources U1, U2. We now

specialize Theorem 13 to the following corollary, where we only have two symmetric SNR-

dependant gain conditions.
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Corollary 5. Cognitive reliable communication over a PI-NCIC: Assume the gain condi-

tions

g221 ≥ g222(1 + g211P2/N) (3.85)

g212 ≥ g211(1 + g222P1/N) (3.86)

hold for a PI-NCIC. Then a necessary condition for reliable cognitive communication of

Un
1 over such a PI-NCIC is given by (3.83), and (3.84). Furthermore, eqs. (3.83) and

(3.84) also give the sufficient conditions for reliable communications over such PI-NCIC

with ≤ replaced by <.

Proof. It is straightforward to see that (3.85), (3.86) imply the conditions (3.80), (3.81) of

Theorem 13. Since in the converse part of the proof of Theorem 13, we only used the strong

interference conditions (3.80), (3.81), the necessity part of Corollary 5 is established. For

the sufficiency part, notice that (3.85), (3.86), along with the constraint (3.83), result in

the required additional condition (3.82).

3.5.2 Causal Cognitive Interference Channel (CCIC)

Now, we consider an interference channel with causal unidirectional cooperation between

the encoders. As opposed to the noncausal case, the secondary encoder does not have

noncausal knowledge of the primary’s message. However, there is a unidirectional commu-

nication link from the primary to the secondary which can be used by the secondary in a

causal manner. The setup is depicted in Fig. 3.5.

All the definitions and preliminaries are the same as those presented in Section 3.5.1.

Additionally, the causal channel between the encoders is described by the relationship

Ys = gce
jθcX1 + Zs. (3.87)
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Figure 3.5: Correlated sources and phase incoherent causal cognitive interference channel

Reliable communication for both users

Theorem 14. Reliable communication over a PI-CCIC: Consider a PI-CCIC with power

constraints P1, P2 on transmitters, path gains g11, g12, g21, g22 > 0 between transmitters

and the receivers and gc > 0 between the two transmitters. Moreover, assume the gain

conditions

g21 ≥ g22,

g12 ≥ g11

1 +
g2cP2

N
≥ 2−H(U2|U1)min

{(
1 +

g211P1 + g221P2

N

)
,

(
1 +

g212P1 + g222P2

N

)}
. (3.88)

A necessary condition for reliably sending a source pair (Un
1 , U

n
1 ) ∼

∏
ip(u1i, u2i), over

such a PI-CCIC is given by

H(U2|U1) ≤ log(1 + g222P2/N), (3.89)

H(U1, U2) ≤ min{log(1 + (g212P1 + g222P2)/N),
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log(1 + (g211P1 + g221P2)/N)}. (3.90)

Furthermore, eqs. (3.89)-(3.90) also give the sufficient conditions for reliable communica-

tions with ≤ replaced by <.

Proof. See Appendix 3.A.3.

Cognitive reliable communication

Theorem 15. Cognitive reliable communication over a PI-CCIC: Consider a PI-CCIC

and assume the gain conditions given by (3.80), (3.81), and (3.82) hold. A necessary

condition for reliable cognitive communication of Un
1 over such a PI-CCIC is given by

(3.89), and (3.90). Furthermore, eqs. (3.89)-(3.90) also give the sufficient conditions for

cognitive reliable communications over such a PI-CCIC with ≤ replaced by <.

Proof. See Appendix 3.A.4.

Corollary 6. Cognitive reliable communication over a PI-CCIC: Consider a PI-CCIC.

Assume the gain conditions (3.85), (3.86) hold. Then, a necessary condition for reliable

cognitive communication of Un
2 over such PI-CCIC is given by (3.89)-(3.90). Furthermore,

eqs. (3.89)-(3.90) also give the sufficient conditions for cognitive reliable communications

with ≤ replaced by <.
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3.6 Lossy Communication over a Phase-Incoherent In-

terference Relay Channel

In this section3, we are interested in lossy joint source-channel coding for phase asyn-

chronous wireless networks involving essential elements of wireless communications, i.e,

interference and cooperation. For lossy source-channel coding over interference networks,

a separation approach is shown in [64] to be optimal or approximately optimal to commu-

nicate independent sources. Their results, however, are based on building channel codes

on top of previously existing joint source-channel codes and thus the distortion region (or

inner/outer bounds on it) is not found.

Herein, we consider the problem of sending a pair of correlated Gaussian sources over

a phase-fading Gaussian interference relay channel which manifests both interference and

cooperation in wireless communications. The transmitters encode the continuous sources

and send them over the channel while satisfying certain power constraints. We assume

that the phase shifts over channels under consideration are random but fixed over the

block length. Again, as a practical assumption, we assume that the phases are not known

to the transmitters and the relay while the channel state information (CSI) is available to

decoders. We thus refer to the channel under consideration as a phase incoherent interfer-

ence relay channel (PI-IRC). At the receivers, the sources are intended to be reconstructed

with the best possible minimum square error distortions. The contributions of this section

are as follows:

• We first find a rectangular outer bound to the distortion region which is represented

by constraints on D1 and D2.

3The results of this section were presented at the 2012 IEEE International Symposium on Information

Theory (ISIT) [26].
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• Under specific strong interference gain conditions, and under the extra condition of

strong gains from transmitters to the relay, we find an inner bound to the distortion

region represented by constraints on D1, D2, and D1D2. For a fixed correlation

coefficient between the sources, we show that in the high SNR regime, the constraints

on D1 and D2 of the inner bound coincide with those of the outer bound whereas

the third constraint of the inner bound shrinks a portion of the optimal achievable

distortion region proportional to 1
1−ρ2

where ρ is the correlation coefficient.

• In the case of independent sources (again under strong interference conditions), we

show that the inner bound exactly matches the outer bound and consequently fully

characterize the achievable distortion region. Namely, we find the optimal distortion

region and determine the optimality of separate source and channel coding for the

phase incoherent case, as opposed to cases where the transmitters have knowledge

of the phase shifts and could potentially achieve higher rates using beamforming, for

example.

• Similar inner and outer bounds can be found for an interference channel with an arbi-

trary number of relays under phase asynchronism. Our results can also be specialized

to an interference channel by omitting the relay, i.e., an inner and outer bound to

the distortion region as well as the optimal joint source channel coding distortion

region for independent sources are also found. For the case of no relay (interference

channel), the results hold for both phase coherent and incoherent scenarios.

Although we assume non-ergodic phase shifts throughout the section, as in [21], [45,

Thm. 2], our results also apply to the case where the phases change i.i.d. from symbol

to symbol. Also, in this section, we focus on the strong interference regime, leaving other

interference conditions as considerable future works.
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3.6.1 Problem Statement

Consider a memoryless bivariate Gaussian source consisting of two zero-mean correlated

Gaussian outputs (U1, U2) with covariance matrix

CU1,U2 =


 1 ρ

ρ 1


 ,

where ρ ∈ [−1, 1]. Both of the sources are to be transmitted to the corresponding destina-

tions through a continuous alphabet and discrete-time memoryless non-ergodic Gaussian

interference relay channel shown in Fig. 3.3. The channel is parameterized by the phase

shifts that are introduced by different paths of the network and are, as a realistic assump-

tion for wireless networks, not known to the transmitters. The vector θ denotes the phase

fading parameters. Encoders wish to use codes that are robust for all θ. In our model,

the receiver is fully aware of θ. For simplicity, throughout the section, we assume that

transmitter node with index i ∈ {1, 2, r} has power constraint Pi and the noise power at

all corresponding receiving nodes is N .

The PI-IRC (X1 × X2 × Xr,Y1 × Y2 × Yr, pθ(y1, y2, yr|x1, x2, xr)) and all of its related

definitions are presented in Section 3.4.

Definition 15. Joint source-channel code: A joint source-channel code of length n for the

PI-IRC with correlated sources is defined by

1. Two encoding functions

fn1 : Rn → X n
1 ,

fn2 : Rn → X n
2 ,
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that map the source outputs to the codewords. Furthermore, we define relay encoding

functions by

xri = fi(yr1, yr2, · · · , yr(i−1)), i = 1, 2, · · · , n.

2. Power constraint P1, P2 and Pr at the transmitters.

3. Two decoding functions

gn
θ,1 :Yn

1 → R
n, gn

θ,2 : Yn
2 → R

n. (3.91)

The estimated vectors gn
θ,1(Y

n
1 ), g

n
θ,2(Y

n
2 ) are denoted by Ûn

1 , Û
n
2 respectively.

Definition 16. A distortion pair (D1, D2) is said to be achievable if there exists a sequence

of encoding functions satisfying the corresponding power constraints and decoding functions,

such that the average minimum squared error (MSE) resulting from functions satisfy

lim sup
n→∞

E

[
1

n

n∑

i=1

(Uji − Ûji)
2
)

]
≤ Dj , j = 1, 2.

3.6.2 Inner and Outer Bounds on the Distortion Region

Outer bound

Theorem 16. Let

A = max
{ 1

[1 + (g211P1 + g221P2 + g2r1Pr)/N ]
2 ,

1− ρ2

[1 + (g211P1 + g2r1Pr)/N ]
2

}
, (3.92)

B = max
{ 1

[1 + (g212P1 + g222P2 + g2r2Pr)/N ]
2 ,
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1− ρ2

[1 + (g222P2 + g2r2Pr)/N ]
2

}
. (3.93)

A necessary condition for the pair (D1, D2) to be achievable is given by

D1 ≥ A, D2 ≥ B.

Proof. Let {fn1 (un1 ), fn2 (un2 )}, and gn1θ, g
n
2θ be sequences in n of codebooks and decoders

for the PI-IRC for which (D1, D2) is achievable. Fix a PI-IRC with given parameter θ, a

codebook C, and induced empirical distribution p(un1 , u
n
2 , x

n
1 , x

n
2 , x

n
r )pθ(y

n
1 , y

n
2 , y

n
r |xn1 , xn2 , xnr ).

Then we have

I(Un
1 , X

n
r ; Y

n
1 |Xn

2 , θ) = h(Y n
1 |Xn

2 , θ)− h(Y n
1 |Xn

2 , U
n
1 , X

n
r , θ)

≤ h(g11X
n
1 e

jθ11 + gr1X
n
r e

jθr1 + Zn
1 )− h(Zn

1 )

≤
n∑

i=1

h(g11X1ie
jθ11 + gr1Xrie

jθr1 + Z1i)− h(Zn
1 )

(a)
= n h(g11X1W e

jθ11 + gr1XrW e
jθr1 + Z1W |W )− h(Zn

1 )

(b)

≤ n h(g11X1e
jθ11 + gr1Xre

jθr1 + Z1)− n h(Z1) (3.94)

where (a) and (b) follow by defining new random variables

W ∼ Uniform{1, 2, · · · , n},

Xj = XjW , j ∈ {1, r}, (3.95)

Z1 = Z1W .

Note that from (4.5), the input signals X1, Xr satisfy the power constraints

E|Xj|2 = E

[
1

n

n∑

i=1

‖Xji‖2
]
≤ Pj, j = 1, r,
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and Z1 ∼ CN (0, N).

Since (3.94) can be derived for all values of θ, we have

min
θ

I(Un
1 , X

n
r ; Y

n
1 |Xn

2 , θ) ≤ n max
pX1,Xr

min
θ

h(g11X1e
jθ11 + gr1Xre

jθr1 + Z1)− n h(Z1)

(c)

≤ n log
(
1 + (g211P1 + g2r1Pr)/N

)
. (3.96)

where pX1,Xr
is the joint distribution of (X1, Xr) and (c) follows directly from Lemma 1.

On the other hand,

I(Un
1 , X

n
r ; Y

n
1 |Xn

2 , θ) ≥ I(Un
1 ; Y

n
1 |Xn

2 , θ)

= h
(
Un
1 |Xn

2

)
− h(Un

1 |Xn
2 , Y

n
1 , θ)

≥ h
(
Un
1 |Un

2 , X
n
2

)
− h
(
Un
1 − Ûn

1 )

= h
(
Un
1 |Un

2

)
− h
(
Un
1 − Ûn

1 ). (3.97)

But (3.97) is true for all values of θ. Hence, we have

lim inf
n→∞

min
θ

1

n
I(Un

1 , X
n
r ; Y

n
1 |Xn

2 , θ)
(d)

≥ 1

2
log

(1− ρ2)

D1

, (3.98)

where (d) is a straight forward result of (3.97) following from the achievability assumption

on D1. Thus combining the lower and upper bounds (3.96), (3.98) on

lim inf
n→∞

min
θ

I(Un
1 , X

n
r ; Y

n
1 |Xn

2 , θ),

we have

log

(
1 +

g211P1 + gr1Pr
N

)
≥ 1

2
log

(1− ρ2)

D1
.

Similarly, we derive the same inequality for D2 and therefore two of the inequalities of

Theorem 16 are established.
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Now, by similar arguments and reusing Lemma 1, we derive lower and upper bounds

on

lim inf
n→∞

min
θ

1

n
I(Xn

1 , X
n
2 , X

n
r ; Y

n
1 |θ),

and

lim inf
n→∞

min
θ

1

n
I(Xn

1 , X
n
2 , X

n
r ; Y

n
2 |θ),

as follows:

min
θ

1

n
I(Xn

1 , X
n
2 , X

n
r ; Y

n
1 |θ) ≤ log

(
1 + (g211P1 + g221P2 + g2r1Pr)/N

)
, (3.99)

and

I(Xn
1 , X

n
2 , X

n
r ; Y

n
1 ) ≥ I(Un

1 ; Û
n
1 ) (3.100)

≥ h(Un
1 )− h(Un

1 − Ûn
1 ),

which results in

lim inf
n→∞

min
θ

1

n
I(Xn

1 , X
n
2 , X

n
r ; Y

n
1 ) ≥

1

2
log

1

D1
. (3.101)

Combining (3.99) and (3.101), we have

log

(
1 +

g211P1 + g221P2 + g2r1Pr
N

)
≥ 1

2
log

1

D1

.

The proof of the converse is complete by noting that a similar bound on D2 can be

found by following similar steps for I(Xn
1 , X

n
2 , X

n
r ; Y

n
2 |θ).

Inner bound

The following theorem describes an inner bound on the distortion region for specific gain

conditions that can be thought of as counterparts to the very strong interference conditions
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for the interference channel. In particular, by eliminating the role of the relay, i.e., setting

gr1 = gr2 = 0, the conditions will reduce to the very strong interference conditions for the

Gaussian interference channel.

Theorem 17. Suppose the strong interference gain conditions

g212 ≥g211(1 + g222P2/N + g2r2Pr/N) + g2r1
Pr
P1

(1 + g222
P2

N
+ g2r2Pr/N), (3.102)

g221 ≥g222(1 + g211P1/N + g2r1Pr/N) + g2r2
Pr
P2

(1 + g222
P1

N
+ g2r2Pr/N), (3.103)

as well as the encoders to relay strong gain conditions

g211P1+g
2
r1Pr ≤ g21rP1, (3.104)

g222P2+g
2
r2Pr ≤ g22rP2, (3.105)

min
i∈{1,2}

{
g21iP1 + g2riPr + g22iP2

}
≤ g21rP1 + g22rP2. (3.106)

hold. An achievable distortion region for source-channel communication of (U1, U2) over

the PI-IRC is given by

D1 ≥ A+
ρ2

(1− ρ2)2
·A ·B, (3.107)

D2 ≥ B +
ρ2

(1− ρ2)2
·A ·B, (3.108)

D1D2 ≥
A · B

(1− ρ2)
+ ρ2

A2 · B2

(1− ρ2)4
. (3.109)

Proof. To establish the achievability argument, we follow a separate source-channel coding

scheme based on lossy distributed source coding and reliable channel coding for the PI-

IRC where both of the receivers are forced to estimate both of the sources with respective
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distortions D1, D2. The source coding indices and channel coding rates are denoted by

ω1i, ω2i, and R1, R2 respectively.

Source Coding: An inner regionRin(D1, D2) on the rate regionR(D1, D2) of distributed

source coding of two Gaussian sources for a common decoder is given in [65], [66]. The

inner region can be reexpressed as the following achievable distortion region

Din(D1, D2) =

{
(D1, D2) :

D1 ≥ (1− ρ2)2−2R1 + ρ22−2(R1+R2),

D2 ≥ (1− ρ2)2−2R2 + ρ22−2(R1+R2),

2D1D2

1 +
√

1 + 4ρ2D1D2

(1−ρ2)2

≥ (1− ρ2)2−2(R1+R2)

}
. (3.110)

Channel Coding: Using block Markov coding in conjunction with backward decoding

at the receivers and forward decoding at the relay, as shown in Table 3.3, we can derive

the following sufficient conditions to reliably decode all messages at both decoders for a

compound IRC [22]:

R1 < min
{
I(X1; Yr|X2, Xr, θ), I(X1, Xr; Y1|X2, θ), I(X1, Xr; Y2|X2, θ)

}
, (3.111)

R2 < min
{
I(X2; Yr|X1, Xr, θ), I(X2, Xr; Y1|X1, θ), I(X2, Xr; Y2|X1, θ)

}
, (3.112)

R1 +R2 < min
{
I(X1, X2; Yr|Xr, θ), I(X1, X2, Xr; Y1|θ), I(X1, X2, Xr; Y2|θ)

}
, (3.113)

for some input distribution p(x1)p(x2)p(xr).

For independent Gaussians X1 ∼ CN (0, P1), X2 ∼ CN (0, P2), Xr ∼ CN (0, Pr), the

conditions (3.104)-(3.106) make the first terms of (3.111)-(3.113) larger than the oth-

ers and hence we can drop them from the constraints. Also due to the strong inter-

ference conditions of (3.102) and (3.103), we can drop the mutual information terms
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Encoder Block 1 Block 2 Block B Block B + 1

1 xn1 (1, ω11) xn1 (ω11, ω12) xn1 (ω1(B−1), ω1B) xn1 (ω1B, 1)

2 xn2 (1, ω21) xn2 (ω21, ω22) xn2 (ω2(B−1), ω2B) xn2 (ω2B, 1)

r xnr (1, 1) xnr (ω11, ω21) xnr (ω1(B−1), ω2(B−1)) xnr (ω1B, ω2B)

Table 3.3: Block Markov encoding scheme for an IRC.

I(X1, Xr; Y2|X2, θ), I(X2, Xr; Y1|X1, θ) from (3.111) and (3.112). Hence, for such inde-

pendent Gaussians X1, X2, Xr, the sufficient conditions reduce to

R1 ≤ log(1 + (g211P1 + g2r1Pr)/N), (3.114)

R2 ≤ log(1 + (g222P2 + g2r2Pr)/N), (3.115)

R1 +R2 ≤ min
{
log(1 + (g212P1 + g222P2 + g2r2Pr)/N),

log(1 + (g211P1 + g221P2 + g2r1Pr)/N)
}
. (3.116)

By choosing R1 and R2 as

R1 = min
{
log(1 + (g211P1 + g2r1Pr)/N), log

[√
1− ρ2(1 + (g211P1 + g2r1Pr + g221P2)/N)

]}

(3.117)

R2 = min
{
log(1 + (g222P2 + g2r2Pr)/N), log

[√
1− ρ2(1 + (g212P1 + g2r2Pr + g222P2)/N)

]}
,

(3.118)

and by the strong interference conditions (3.102) and (3.103), the constraints (3.114)-

(3.116) are satisfied and we are guaranteed to have reliable decodings of both the first

and second channel encoders codewords. Furthermore, by replacing R1, R2, as chosen

in (3.117) and (3.118), in (3.110), one obtains the achievable distortion region given by

(3.107)-(3.109).

Remark 7. A similar outer bound and inner bound can be derived for a phase incoherent

interference channel with multiple relays.
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Remark 8. Note that if there are no relays in the network, for deriving the outer bound

in Section 3.6.2, Lemma 1 is not needed since there is only one phase in (3.94) then.

Therefore, as opposed to the case of an interference relay channel, for an interference

channel, the results carry on to the scenario in which the encoders are aware of the phase

shifts as well. Namely, by removing relay dependant terms and redefining A and B in (3.92)

and (3.93), Theorem 16 applies to a general Gaussian interference channel. Theorem 17

can also be specialized to an interference channel with equations (3.102), (3.103) replaced

by very strong interference conditions

g212 ≥g211(1 + g222P2/N), (3.119)

g221 ≥g222(1 + g211P1/N). (3.120)

Approximate inner bound

In the moderate to high SNR regime, i.e., when the noise power N is relatively small,

the second terms in the right hand sides of (3.107)-(3.109) will be negligible compared

to the first terms. The inner bound can thus be approximately (or exactly in the limit)

described by {D1 ≥ A,D2 ≥ B,D1D2 ≥ AB
1−ρ2

}. Therefore, the constraints on D1 and D2

coincide in both the inner region and outer region. The third constraint on D1D2 makes

the inner region restricted by a curve and results in a ρ-dependant gap between the regions.

This can be inferred as approximate optimality of separation for values of the correlation

coefficient that have small magnitude. A typical example is depicted in Fig. 3.6, where the

approximate inner bound practically matches the actual inner bound. We also see that for

ρ = 0, the regions exactly coincide for all SNR regimes.
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Figure 3.6: An achievable distortion region with ρ = 0.3, P1= P2= Pr =5, N = 1. All

channel gains (except for g12, g21, g1r, g2r) are 1. The exact inner bound is sketched with

starred lines whereas dashed lines depict the approximate inner bound.

3.6.3 Optimal Distortion Regions

For the special case of ρ = 0, the inner bound of Theorem 17 will coincide with the outer

bound given in Theorem 16. Therefore, we can fully characterize the optimal distortion

regions for the case of independent Gaussians and state the following separation theorem

as a corollary.

Corollary 7. Provided the gain conditions (3.102)-(3.106) are met, the set of all achievable

distortion pairs (D1, D2) for a PI-IRC with ρ = 0 is given by

D1 ≥
1

[1 + (g211P1 + g2r1Pr)/N ]
2 ,

D2 ≥
1

[1 + (g222P1 + g2r2Pr)/N ]
2 .
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Furthermore, in order to achieve this distortion region, it is sufficient to perform lossy

source coding and channel coding separately.

A similar corollary can be stated for an interference channel:

Corollary 8. Provided the gain conditions (3.119), and (3.120) are met, the set of all

achievable distortion pairs (D1, D2) for an interference channel, with a pair of independent

Gaussian sources, is given by

D1 ≥
1

[1 + g211P1/N ]
2 , D2 ≥

1

[1 + g222P1/N ]
2 .

Furthermore, in order to achieve this distortion region, it is enough to perform lossy source

coding and channel coding separately.
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3.A Appendices

3.A.1 Proof of Theorem 12

The proof of the theorem is divided into two parts: achievability and converse. The

achievability part is obtained by a separate source and channel coding approach. The source

coding part involves Slepian-Wolf coding followed by channel coding based on random

coding arguments. In the channel coding part, the secondary receiver (Y2) decodes both of

the source coded indices making a multiple access channel from the encoders to the second

receiver. The converse and achievability parts of Theorem 12 are discussed and proved in

the sequel.

Converse

We derive an outer bound on the entropy content of U1, U2 for the PI-NCIC under strong

interference gain conditions (3.75), (3.76) and prove the converse part of Theorem 12. The

proof also applies similarly to the converse part of separation Theorem 14 for a PI-CCIC.

Lemma 4. Converse: Let fn1 , f
n
2 , and g

n
1 (·|θ1), g

n
2 (·|θ2) be a sequence in n of encoders and

decoders for the PI-NCIC for which supθi
P n
ei(θi) −→ 0, as n→ ∞ for i = 1, 2. Then

H(U2|U1) ≤ min
θ2

I(X2; g22e
jθ22X2 + Z2), (3.121)

H(U1, U2) ≤ min
θ1

I(X1, X2; g11e
jθ11X1 + g21e

jθ21X2 + Z1), (3.122)

H(U1, U2) ≤ min
θ2

I(X1, X2; g12e
jθ12X1 + g22e

jθ22X2 + Z2), (3.123)

for some joint distribution pX1,X2 such that E|X1|2 ≤ P1,E|X2|2 ≤ P2, with Z1, Z2 ∼
CN (0, N).
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Proof. First, fix a PI-NCIC with given parameters θ1, θ2, a codebook C, and induced

empirical distribution pθ(u
n
1 , u

n
2 , x

n
1 , x

n
2 , y

n
1 , y

n
2 ) by the codebook. Note that by using the

strong interference conditions of (3.75) and (3.76), availability of phase parameters θ1, θ2

at both receivers, and following the fact that there are encoders and decoders such that

each receiver can reliably decode its own source sequence, one can argue that both of the

receivers can decode both of the sequences Un
1 , U

n
2 (see [63] for details). Therefore, from

Fano’s inequality, we have

1

n
H(Un

i |Y n
i , θi) ≤

1

n
P n
ei(θi) log ‖Un

i ‖+
1

n
, εin(θi), (3.124)

and εin(θi) → 0, where convergence is uniform in θi by (4.6) for i = 1, 2. Defining

supθi
εin(θi) = εin and following the similar steps as in [19, Section 4], we have

H(U2|U1) =
1

n
H(Un

2 |Un
1 )

(a)
=

1

n
H(Un

2 |Un
1 , X

n
1 )

=
1

n
I(Un

2 ; Y
n
2 |Un

1 , X
n
1 , θ2) +

1

n
H(Un

1 |Un
1 , Y

n
2 , X

n
1 , θ2)

=
1

n
I(Un

2 ; Y
n
2 |Un

1 , X
n
1 , θ2) +

1

n
H(Un

1 |Y n
2 , θ2)

(b)

≤ 1

n
I(Un

2 ; Y
n
2 |Un

1 , X
n
1 , θ2) + ε2n

(c)

≤ 1

n
I(Xn

2 ; Y
n
2 |Un

1 , X
n
1 , θ2) + ε2n, (3.125)

where (a) follows from the fact that Xn
1 is only a function of Un

1 , (b) follows from (3.124),

and (c) follows from data processing inequality. It can also be shown that

H(U1, U2) =
1

n
I(Un

1 , U
n
2 ; Y

n
1 |θ1) +

1

n
H(Un

1 , U
n
2 |Y n

1 , θ1)

=
1

n
I(Un

1 , U
n
2 ; Y

n
1 |θ1) +

1

n
H(Un

2 |Y n
1 , U

n
1 , θ1) +

1

n
H(Un

1 |Y n
1 , θ1)

≤ 1

n
I(Xn

1 , X
n
2 ; Y

n
1 |θ1) +

1

n
H(Un

2 |Y n
1 , U

n
1 , θ1) + ε1n, (3.126)
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and similarly,

H(U1, U2) ≤
1

n
I(Xn

1 , X
n
2 ; Y

n
2 |θ2) +

1

n
H(Un

1 |Y n
2 , U

n
2 , θ2) + ε2n. (3.127)

We now define the region Cn(θ) as

Cn(θ) =

{
(R1, R2) : R1 <

1

n
I(Xn

2 ; Y
n
2 |Un

1 , X
n
1 ,θ2) + ε2n,

R2 <
1

n
I(Xn

1 , X
n
2 ; Y

n
1 |θ1) +

1

n
H(Un

1 |Y n
1 , U

n
2 ,θ1) + ε1n,

R2 <
1

n
I(Xn

1 , X
n
2 ; Y

n
2 |θ2) +

1

n
H(Un

1 |Y n
2 , U

n
1 ,θ2) + ε2n

}
, (3.128)

for the empirical distribution induced by the nth codebook

n∏

i=1

p(u1i, u2i) p(x
n
1 |un1 )p(xn2 |un1 , un2)

n∏

i=1

pθ(y1i, y2i|x1i, x2i).

Hence, the outer bounds (3.125) and (3.126) can be equivalently described by Cn(θ):

(H(U2|U1), H(U1, U2)) ∈ Cn(θ).

We then note that the outer bound Cn(θ) on (H(U2|U1), H(U1, U2)) applies for all θ

and thus can be tightened by taking the intersection over θ and letting n→ ∞.

First, we expand Y n
2 in the right hand side of (3.125) to upper bound H(U2|U1) as

follows:

H(U2|U1) ≤
1

n
I(Xn

2 ; Y
n
2 |Un

1 , X
n
1 , θ2) + ε2n

=
1

n
I(Xn

2 ; g12e
jθ12Xn

1 + g22e
jθ22Xn

2 + Zn
2 |Un

1 , X
n
1 ) + ε2n

=
1

n
I(Xn

2 ; g22e
jθ22Xn

2 + Zn
2 |Un

1 , X
n
1 ) + ε2n

=
1

n

[
h(g22e

jθ22Xn
2 + Zn

2 |Un
1 , X

n
1 )− h(Zn

2 )
]
+ ε2n
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≤ 1

n

[
h(g22e

jθ22Xn
2 + Zn

2 )− h(Zn
2 )
]
+ ε2n

≤ 1

n

n∑

i=1

h(g22e
jθ22X2i + Z2i)− h(Z2i) + ε2n

=
[
h(g22e

jθ22X2 + Z2|W )− h(Z2)
]
+ ε2n

≤
[
h(g22e

jθ22X2 + Z2)− h(Z2)
]
+ ε2n

= I(X2; g22e
jθ22X2 + Z2) + ε2n, (3.129)

where (a) follows by defining new random variables

Xj = XjW , j ∈ {1, 2}, (3.130)

Zj = ZW , j ∈ {1, 2} (3.131)

W ∼ Uniform{1, 2, · · · , n}. (3.132)

From (4.5), the input signal X2 satisfies the power constraint

E|X2|2 = E

[
1

n

n∑

i=1

‖X2i‖2
]
≤ P2, (3.133)

and Z2 ∼ CN (0, N). Since (3.129) is true for all θ2, by minimizing over all θ2, (3.121)

follows.

Afterwards, we follow similar steps for (3.126), (3.127). The terms 1
n
H(Un

2 |Y n
1 , U

n
2 , θ1),

and 1
n
H(Un

1 |Y n
2 , U

n
2 , θ2) can be upper bounded by ε1n, and ε2n respectively and thus be

vanished when n→ ∞. This is due to the fact that although only θi is available at Y
n
i , but

for the case of θ1 = θ2, Y
n
1 (Y n

2 ) can reliably decode Un
2 (Un

1 ). However, taking minimum

over all θ subject to the constraint θ1 = θ2, does not change the results as it can only

loosen the upper bounds. Hence, we have

H(U1, U2) ≤ I(X1, X2; g11e
jθ11X1 + g21e

jθ21X2 + Z1) + 2ε1n, (3.134)
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H(U1, U2) ≤ I(X1, X2; g12e
jθ12X1 + g22e

jθ22X2 + Z2) + 2ε2n. (3.135)

The constraints defined by (3.129), (3.134), (3.135) form an outer bound on Cn(θ). But

since it applies for a fixed θ, it is also true for all choices of θ. By taking infimum over all

θ and letting n→ ∞, the proof of Lemma 4 is complete.

To prove the converse part of Theorem 12, we note by Lemma 1 that each of the bounds

of Lemma 4 are simultaneously maximized by independent Gaussians. The proof of the

converse is complete.

Remark 9. Note that to prove the converse part of the Theorem 12, we do not need the

receivers to know the CSI θ. This is indeed true for the converse parts of all theorems in

this chapter.

Achievability

Source Coding: Recall that the secondary encoder has non-causal access to the primary

source Un
1 . From Slepian-Wolf coding [30], for asymptotically lossless representation of the

“source pair” ((Un
2 , U

n
1 ), U

n
1 ), we should have the rates (R1, R2) satisfying

R2 > H(U2|U1), (3.136)

R1 +R2 > H(U2, U1). (3.137)

The source codes are represented by indicesW1,W2 which are then channel coded before

being transmitted.

Channel Coding: We use random coding arguments to establish an achievable region

for the CIC. First fix a distribution p(x1)p(x2) and construct random codewords xn1 , x
n
2
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based on the corresponding distributions. In particular, the encoding and decoding parts

are as follows.

Encoding: The primary encoder generates 2nR1 random codewords xn1 (W1) according to

the distribution
∏n

i=1p(x1i). Also, using the knowledge of W1, the secondary encoder gen-

erates 2n(R1+R2) random codewords xn2 (W1,W2) according to the distribution
∏n

i=1p(x2i).

Decoding: We assume θ1, and θ2 are known to the first and second decoders respec-

tively.

At the end of the block, the first decoder decodes Ŵ1, Ŵ2 by finding codewords

Xn
1 (Ŵ1), X

n
2 (Ŵ1, Ŵ2)

such that

(Y n
1 , X

n
1 (Ŵ1), X

n
2 (Ŵ1, Ŵ2))

is jointly typical. By classical random coding arguments and error probability computa-

tions, one needs to have

R1 < I(X1, X2; Y1|θ1), (3.138)

R1 +R2 < I(X1, X2; Y1|θ1) (3.139)

in order to reliably decode W1. Note thatW2 may not be decoded correctly at the primary

decoder.

By applying a similar jointly typical decoding procedure, the secondary claims ˆ̂W1,
ˆ̂W2

as decoded messages. To decode W2 correctly, we need the constraints

R2 < I(X2; Y2|X1, θ2), (3.140)

R1 +R2 < I(X2, X1; Y2|θ2), (3.141)

90



which imply that both the messages should be decoded reliably at the secondary decoder,

making a MAC from the encoders to the second decoder.

Combining all of the constraints, for any distribution p(x1)p(x2), we can describe the

corresponding achievable region by

R2 < I(X2; Y2|X1, θ2), (3.142)

R1 +R2 < I(X2, X1; Y2|θ2), (3.143)

R1 +R2 < I(X2, X1; Y1|θ1). (3.144)

The achievability part of Theorem 12 is complete by first choosing X1, and X2, as

independent Gaussians.

3.A.2 Proof of Theorem 13

Converse

The necessity part of Theorem 13 is a direct part of Theorem 12. Namely, if there exist

sequences of secondary encoders and decoders such that the cognitive reliable commu-

nication is established in the sense of Definition 14, then under condition (3.79), there

exist sequences of primary encoders and decoders for reliable communication for the pri-

mary user. Therefore, by the converse part of Theorem 12, and under strong interference

conditions (3.80), (3.81), eqs. (3.83) and (3.84) hold.

Achievability

We follow the same separation approach, source coding, and channel coding procedures as

in the achievability proof of Theorem 12 in Section 3.A.1. Given eqs. (3.83) and (3.84),
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Encoder Block 1 Block 2 Block B Block B + 1

1 xn1 (1,W11) xn1 (W11,W12) xn1 (W1(B−1),W1B) xn1 (W1B, 1)

2 xn2 (1,W21, 1) xn2 (W21,W22,W11) xn2 (W2(B−1),W2B,W1(B−1)) xn2 (W2B, 1,W1B)

Table 3.4: Block Markov encoding scheme for the PI-CCIC.

by choosing R2 = H(U2|U1), and R2 +R1 = H(U1, U2), the source coding part is complete

from (3.136) and (3.137). For the channel coding part, by noting that all rates H(U1) = R1

satisfying the condition (3.79) should be achieved at the primary, one can see that (3.82)

assures that the choices of R1, R2 satisfy the constraints (3.142)–(3.144).

3.A.3 Proof of Theorem 14

Converse

The converse is the same as the converse part of Theorem 12 presented in Section 3.A.1.

Achievability

Again, the separation approach is adopted. The source coding part is the same as Section

3.A.1. For the channel coding part, the secondary plays the role of a full-duplex relay and

causally decodes the primary message. In particular, by the use of block Markov coding

along with backward decoding [22], [45], the secondary can causally acquire knowledge

about the message of the primary. The block Markov coding scheme performed in B

blocks is shown in Table 3.4. By letting B → ∞ and simple random coding arguments,

the achievable rates can be shown to be given by

R2 < I(X2; Y2|X1, θ2), (3.145)
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R1 < I(X1; Ys|X2, θc), (3.146)

R1 +R2 < I(X2, X1; Y2|θ2), (3.147)

R1 +R2 < I(X2, X1; Y1|θ1), (3.148)

for some distribution p(x1)p(x2). By choosing Gaussian X1, X2 and applying the condition

(3.88), both source coding and channel coding constraints are satisfied.

3.A.4 Proof of Theorem 15

Converse

The necessity part of Theorem 15 is a direct result of Theorem 14.

Achievability

The proof is similar to the proof of the achievability part of Theorem 13 in Section 3.A.2.

The only difference is that we follow the same channel coding procedures as in the achiev-

ability proof of Theorem 14 in Section 3.A.3. In particular, the channel coding part is

based on the block Markov coding with backward decoding presented in Section 3.A.3.
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Chapter 4

Time Asynchronous Systems

4.1 Introduction

In this chapter1, we study the communication ofK correlated sources over a time-asynchronous

MARC (TA-MARC) where the encoders cannot synchronize the starting times of their

codewords. Rather, they transmit with unknown positive time delays d1, d2, · · · , dK+1 ≥ 0

with respect to a time reference. The time shifts are also bounded by d` ≤ dmax(n),

` = 1, · · · , K + 1, where n is the codeword block length. Moreover, we assume that the

offsets d1, d2, · · · , dK+1 are unknown to the transmitters as a practical assumption since

they are not controlled by the transmitters. We further assume that the maximum possible

offset dmax(n) → ∞ as n→ ∞ while dmax(n)/n→ 0.

In [67], we have considered a two user time asynchronous Gaussian MAC with a pair

of correlated sources. There, we have derived necessary and sufficient conditions for reli-

able communication and consequently derived a separation theorem for the problem. This

1The results of this chapter are submitted to the IEEE Transactions on Information Theory.
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chapter extends the work of [67] to a more general setup with K nodes and a relay. In

particular, in this chapter, we first derive general necessary conditions for reliable com-

munication and then derive matching sufficient conditions under specific gain conditions.

Furthermore, we have defined a robust notion of reliable communication in which the sys-

tem should have vanishing error probabilities for all possible values of offsets d1, · · · , dK+1

between transmitters.

It is shown that separate source-channel coding is optimal and the encoders can first

perform source coding and then perform channel coding with independent inputs, with no

loss. Specifically, the encoders have no way to exploit the correlation of the sources to

increase the capacity region. If they plan to correlate the transmitted codewords, since

they are not aware of of the offset values d1, · · · , dK+1, they need to correlate them for all

possible offsets (otherwise for some choices of offsets, they do not achieve any beamforming

gain). But making the transmitted codewords cross correlated under all possible values

of offsets imply that the code letters in a single transmitted codeword should also be

correlated in time. However, the correlated codewords in time carry little information and

as the transmitters encode their corresponding sources, the transmitted codewords can in

turn communicate little information about the sources. Hence, there is a tradeoff between

the gain in information reliably sent about the sources and the information loss due to

the correlation in time needed to accomplish this. As our analysis effectively shows, the

tradeoff is optimized when there is no attempt at correlating the transmissions, i.e., there

is no attempt at beamforming, and thus separate source-channel coding is optimal.

For other multiuser networks such as interference channels and broadcast channels,

JSCC capacity results under phase asynchronism can be found in [23], [26]. Also, the

recent work [68] considers the point-to-point state-dependent and cognitive multiple access

channels with time asynchronous side information.
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Figure 4.1: Gaussian time asynchronous multiple access relay channel (TA-MARC), with

delays d1, · · · , dK+1.
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4.2 Problem Statement and a Useful Lemma

Notations: In what follows, we denote random variables by upper case letters, e.g., X ,

their realizations by lower case letters, e.g., x, and their alphabet by calligraphic letters,

e.g., X . For integers 0 ≤ a ≤ b, Y b
a denotes the b − a + 1-tuple (Y [a], · · · , Y [b]), and

Y b is a shorthand for Y b−1
0 . Without confusion, Xn

` denotes the length-n MARC input

codeword (X`[0], · · · , X`[n− 1]) of the `th transmitter, and based on this, we also denote

(X`[a], · · · , X`[b]) by X
b
`,a. The n-length discrete Fourier transforms (DFT) of the n-length

codeword Xn
` is denoted by X̂n

` = DFT(Xn
` ). Furthermore, let [1, K] , {1, · · · , K}, for

∀K ∈ N.

Consider K finite alphabet sources {(U1[i], U2[i], · · · , UK [i])}∞i=0 as correlated random

variables drawn according to a distribution p(u1, u2, · · · , uK). The sources are memory-

less, i.e., (U1[i], U2[i], · · · , UK [i])’s are independent and identically distributed (i.i.d) for

i = 1, 2, · · · . The indices 1, · · · , K represent the transmitter nodes and the index K + 1

represents the relay transmitter. All of the sources are to be transmitted to a destination

by the help of a relay through a continuous alphabet, discrete-time memoryless multiple-

access relay channel (MARC) with time asynchronism between different transmitters and

the relay. Specifically, as depicted in Fig. 4.1, the encoders use different time references

and thus we assume that the encoders start transmitting with offsets of

0 ≤ d` ≤ dmax(n), ` = 1, · · · , K + 1, (4.1)

symbols with respect to a fixed time reference, where dK+1 is the offset for the relay

transmitter with respect to the time reference.

Hence, the probabilistic characterization of the time-asynchronous Gaussian MARC,

referred to as a Gaussian TA-MARC and denoted by M([1, K+1]) throughout the section,

97



is described by the relationships

YD[i] =
K+1∑

`=1

g`DX`[i− d`] + ZD[i], i = 0, 1, · · · , n+ dmax(n)− 1, (4.2)

as the ith entry of the received vector Y
n+dmax(n)
D

at the destination (D), and

YR[i] =
K∑

`=1

g`RX`[i− d`] + ZR[i], i = 0, 1, · · · , n+ dmax(n)− 1, (4.3)

as the ith entry of the received vector Y
n+dmax(n)
R

at the relay (R), where

• g`D, ` = 1, · · · , K +1, are complex gains from transmission nodes as well as the relay

(when ` = K + 1) to the destination, and g`R, ` = 1, · · · , K, are complex gains from

the transmission nodes to the relay,

• X`[i− d`], ` = 1, · · · , K + 1, are the delayed channel inputs such that X`[i− d`] = 0

if (i− d`)/∈ {0, 1, · · · , n− 1} and X`[i− d`] ∈ C otherwise,

• ZD[i], ZR[i] ∼ CN (0, N) are circularly symmetric complex Gaussian noises at the

destination and relay, respectively.

Fig. 4.1 depicts the delayed codewords of the encoders, and the formation of the received

codeword for the TA-MARC.

We now define a joint source-channel code and the notion of reliable communication

for a Gaussian TA-MARC in the sequel.

Definition 17. A block joint source-channel code of length n for the Gaussian TA-MARC

with the block of correlated source outputs

{(U1[i], U2[i], · · · , UK [i])}n−1
i=0

is defined by
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1. A set of encoding functions with the bandwidth mismatch factor of unity2, i.e.,

fn` : Un
` → C

n, ` = 1, 2, · · · , K,

that map the source outputs to the codewords, and the relay encoding function

xi+1
(K+1) = f i+1

(K+1)(yR[0], yR[1], · · · , yR[i]), i = 0, 2, · · · , n− 2. (4.4)

The sets of encoding functions are denoted by the codebook Cn =
{
fn1 , · · · , fnK , {f i+1

(K+1)}n−2
i=0

}
.

2. Power constraints P`, ` = 1, · · · , K + 1, on the codeword vectors Xn
` , i.e.,

E

[
1

n

n−1∑

i=0

|X`[i]|2
]
= E

[
1

n

n−1∑

i=0

|X̂`[i]|2
]
≤ P`, (4.5)

for ` = 1, · · · , K + 1 where we recall that X̂n
` = DFT{Xn

` }, and E[·] represents the

expectation operator.

3. A decoding function gn(yn+dmax

D
|dK+1

1 ) : Cn+dmax × [0, dmax]
K+1 → Un

1 × · · · × Un
K .

Definition 18. We say the source {(U1[i], U2[i], · · · , UK [i])}n−1
i=0 of i.i.d. discrete random

variables with joint probability mass function p(u1, u2, · · · , uK) can be reliably sent over a

Gaussian TA-MARC, if there exists a sequence of codebooks Cn and decoders gn in n such

that the output sequences Un
1 , U

n
2 , · · · , Un

K of the source can be estimated from Y
n+dmax(n)
D

with arbitrarily asymptotically small probability of error uniformly over all choices of delays

0 ≤d`≤ dmax(n), ` = 1, · · · , K + 1, i.e.,

sup
0≤d1,··· ,dK+1≤dmax(n)

P n
e (d

K+1
1 ) −→ 0, as n→ ∞, (4.6)

2The assumption of unity mismatch factor is without loss of generality and for simplicity of exposition.

Extension to the more general setting with different mismatch factors can be achieved simply by modifying

the final result with a constant factor (cf. Remark 11).
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where

P n
e (d

K+1
1 ) , P [g(Y

n+dmax(n)
D

|dK+1
1 ) 6= (Un

1 , U
n
2 , · · · , Un

K)|dK+1
1 ], (4.7)

is the error probability for a given set of offsets dK+1
1 .

We now present a key lemma that plays an important role in the derivation of our

results. In order to state the lemma, we first need to define the notions of a sliced MARC

and a sliced cyclic MARC as follows:

Definition 19. Let S ⊆ [1, K + 1] be a subset of transmitter node indices. A Gaussian

sliced MARC M(S) corresponding to the Gaussian TA-MARC M([1, K + 1]) defined by

(4.2)-(4.3), is a MARC in which only the codewords of the encoders with indices in S
contribute to the destination’s received signal, while the received signal at the relay is the

same as that of the original Gaussian TA-MARC M([1, K + 1]).

In particular, for the Gaussian sliced MARC M(S), the received signals at the desti-

nation and the relay at the ith time index, denoted by YD(S)[i] and YR(S)[i] respectively, are

given by

YD(S)[i] =
∑

`∈S

g`DX`[i− d`] + ZD[i], i = 0, · · · , n+ dmax − 1, (4.8)

and

YR(S)[i] = YR[i], i = 0, · · · , n+ dmax − 1. (4.9)

Definition 20. A sliced cyclic MARC M̃(S), corresponding to the sliced TA-MARC M(S)
defined by (4.8)-(4.9), is a sliced TA-MARC in which the codewords are cyclicly shifted

around the nth time index to form new received signals at the destination only. Specifically,
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︸︷︷︸ ︸︷︷︸

A BC

︸ ︷︷ ︸︸ ︷︷ ︸

0 dmax − 1 dmax i n− 1 n n + dmax − 1

︸ ︷︷ ︸ ︸ ︷︷ ︸

dmax(n) n− dmax(n) dmax(n)

X`1
[i− d`1]

X`2
[i− d`2]

X`|S|
[i− d`|S|]

YD(S)[i]Y
n+dmax(n)
D(S) :

X`1
[(i− d`1) mod n]

X`2
[(i− d`2) mod ]

X`|S|
[(i− d`|S|) mod n]

ỸD(S)[i]Ỹ
n

D(S) :

Figure 4.2: Codewords of a Gaussian sliced TA-MARC M(S) (top) and the corresponding

sliced cyclic MARC M̃(S) (bottom).
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the corresponding outputs of the sliced cyclic MARC M̃(S) at the destination and the relay

at the ith time index, denoted by ỸD(S)[i] and ỸR(S)[i] respectively, can be written as

ỸD(S)[i] =
∑

`∈S

g`DX`[(i− d`) mod n] + ZD[i], i = 0, · · · , n− 1, (4.10)

and

ỸR(S)[i] =
K∑

`=1

g`RX`[i− d`] + ZR[i], i = 0, · · · , n− 1

= YR[i]. (4.11)

In particular, as shown in Fig. 4.2, the tail of the codewords are cyclicly shifted to

the beginning of the block, where the start point of the block is aligned with the first time

instant. The destination’s output Ỹ n
D(S) of the sliced cyclic MARC is the n-tuple that results

by adding the shifted versions of the codewords Xn
` , ` ∈ S. As indicated in Fig. 4.2, we

divide the entire time interval [0, n+ dmax − 1] into three subintervals A,B, and C where

• A is the sub-interval representing the left tail of the received codeword, i.e., [0, dmax−
1],

• B represents the right tail, i.e., [n, n + dmax − 1],

• C represents a common part between the sliced TA-MARC and sliced cyclic MARC,

i.e., [dmax, n− 1].

Remark 10. In both sliced TA-MARC and sliced cyclic MARC, the observation Y n+dmax

R

of the relay remains unchanged. Therefore, the generated channel input at the relay Xn
K+1

is the same as the original TA-MARC due to (4.4) when the same relay encoding functions

are used.
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The following lemma implies that, for every choice of S ⊆ [1, K + 1], the mutual

information rate between the inputs and the destination’s output in the Gaussian sliced

TA-MARC M(S) and the sliced cyclic MARC M̃(S) are asymptotically the same, i.e.,

their difference asymptotically vanishes. This fact will be useful in the analysis of the

problem in Section 4.3, where we can replace a sliced TA-MARC with the corresponding

sliced cyclic MARC.

Before stating and proving the useful lemma, we define the following notations:

YD(S)[A] , {YD(S)[i] : i ∈ A}, (4.12)

ỸD(S)[A] , {ỸD(S)[i] : i ∈ A}, (4.13)

Xn
S , {Xn

` : ` ∈ S}, (4.14)

~XS [A] , {X`[i− d`] : ` ∈ S, i ∈ A}, (4.15)

~̃XS [A] , {X`[i− d` mod n] : ` ∈ S, i ∈ A}, (4.16)

where S ⊆ [1, K + 1] is an arbitrary subset of transmitter nodes indices. Similarly, we can

define YD(S)[B], YD(S)[C], ỸD(S)[B], · · · , by replacing A with B or C in the above definitions.

Lemma 5. For a Gaussian sliced TA-MARC M(S), and the corresponding sliced cyclic

MARC M̃(S),
1

n

∣∣∣I(Xn
S ; Y

n+dmax

D(S) |dK+1
1 )− I(Xn

S ; Ỹ
n
D(S)|dK+1

1 )
∣∣∣ ≤ εn, ∀ dK+1

1 ∈ [0, dmax(n)]
K+1, (4.17)

for all S ⊆ [1, K + 1], where εn is independent of dK+1
1 and εn → 0, as n→ ∞.

Proof. Noting that the mutual information between subsets of two random vectors is a

lower bound on the mutual information between the original random vectors, we first

lower bound the original mutual information I(Xn
S ; Y

n+dmax

D(S) |dK+1
1 ):

I( ~XS [C]; YD(S)[C]|dK+1
1 ) ≤ I(Xn

S ; Y
n+dmax

D(S) |dK+1
1 ). (4.18)
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Then, by splitting the entropy terms over the intervals A,B, and C as depicted in Fig. 4.2,

we upper bound the same mutual information term I(Xn
S ; Y

n+dmax

D(S) |dK+1
1 ) as follows:

I(Xn
S ; Y

n+dmax

D(S) |dK+1
1 ) = h(Y n+dmax

D(S) |dK+1
1 )− h(Y n+dmax

D(S) |Xn
S , d

K+1
1 )

≤ h(YD(S)[A]|dK+1
1 ) + h(YD(S)[B]|dK+1

1 ) + h(YD(S)[C]|dK+1
1 )

−
n+dmax−1∑

i=0

h(ZD[i])

= I( ~XS [A]; YD(S)[A]|dK+1
1 ) + I( ~XS [B]; YD(S)[B]|dK+1

1 )

+ I( ~XS [C]; YD(S)[C]|dK+1
1 ). (4.19)

Also, the mutual information term I(Xn
S ; Ỹ

n
D(S)|dK+1

1 ) which is associated to the cyclic

MARC can be similarly lower bounded as

I( ~̃XS [C]; ỸD(S)[C]|dK+1
1 ) ≤ I(Xn

S ; Ỹ
n
D(S)|dK+1

1 ), (4.20)

and upper bounded as

I(Xn
S ; ỸD(S)|dK+1

1 ) = h(ỸD(S)|dK+1
1 )− h(ỸD(S)|Xn

S , d
K+1
1 )

≤ h(ỸD(S)[A]|dK+1
1 ) + h(ỸD(S)[C]|dK+1

1 )−
n−1∑

i=0

h(ZD[i])

= I( ~̃XS [A]; ỸD(S)[A]|dK+1
1 ) + I( ~̃XS [C]; ỸD(S)[C]|dK+1

1 )

= I( ~̃XS [A]; ỸD(S)[A]|dK+1
1 ) + I( ~XS [C]; YD(S)[C]|dK+1

1 ), (4.21)

where in the last step, we used the fact that for any S ⊆ [1, K + 1], Ỹ D(S)[C] = YD(S)[C]
and ~̃XS [C] = ~XS [C], as there is no cyclic foldover for i ∈ C.

Hence, combining (4.18)-(4.19), and (4.20)-(4.21), we can now bound the difference

between the mutual information terms as

1

n

∣∣∣I(Xn
S ; Y

n+dmax

D(S) |dK+1
1 )− I(Xn

S ; Ỹ
n
D(S)|dK+1

1 )
∣∣∣
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≤ 1

n
I( ~XS [A]; YD(S)[A]|dK+1

1 ) +
1

n
I( ~XS [B]; YD(S)[B]|dK+1

1 ) +
1

n
I( ~̃XS [A]; ỸD(S)[A]|dK+1

1 ).

(4.22)

But all of the terms in the right hand side of (4.22) can also be bounded as follows.

Consider the first term:

1

n
I( ~XS [A]; YD(S)[A]|dK+1

1 ) =
1

n

[
h(YD(S)[A]|dK+1

1 )− h(ZD[A])
]

≤ 1

n

∑

i∈A

[
h(YD(S)[i]|dK+1

1 )− h(ZD[i])
]

≤ 1

n

∑

i∈A

[
h

(
∑

`∈S

g`DX`[i− d`] + ZD[i]

)
− h(ZD[i])

]

(a)

≤ 1

n

∑

i∈A

log

(
1 +

E
∣∣∑

`∈S g`DX`[i− d`]
∣∣2

N

)

(b)

≤ 1

n

∑

i∈A

log

(
1 +

∑
`∈S |g`D|2 ·

∑
`∈S E|X`[i− d`]|2
N

)

(c)

≤ |A|
n

log

(
1 +

∑
i∈A

[∑
`∈S |g`D|2 ·

∑
`∈S E|X`[i− d`]|2

]

|A|N

)

(d)
=

dmax

n
log

(
1 +

∑
`∈S |g`D|2 ·

∑
`∈S E

[∑
i∈A |X`[i− d`]|2

]

dmaxN

)

≤ dmax

n
log

(
1 +

∑
`∈S |g`D|2 ·

∑
`∈S E

∑n−1
i=0 |X`i|2

dmaxN

)

(e)

≤ dmax

n
log

(
1 +

n

dmax

∑
`∈S |g`D|2 ·

∑
`∈S P`

N

)

, γ

(
dmax

n

)
, (4.23)

where (a) follows by the fact that Gaussian distribution maximizes the differential entropy

[29, Thm. 8.4.1], (b) follows from the Cauchy-Schwartz inequality:
∣∣∣∣∣
∑

`∈S

g`DX`[i− d`]

∣∣∣∣∣

2

≤
(
∑

`∈S

|g`D|2
)(

∑

`∈S

|X`[i− d`]|2
)
, (4.24)
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(c) follows from concavity of the log function, (d) follows from the fact that |A| = dmax,

and (e) follows from the power constraint in (4.5).

Similarly, for the second term in the right hand side of (4.22), it can be shown that

1

n
I( ~XS [B]; YD(S)[B]|dK+1

1 ) ≤ γ

(
dmax

n

)
. (4.25)

Following similar steps that resulted in (4.23), we now upper bound the third term in

the right hand side of (4.22) as follows

1

n
I( ~̃XS [A]; ỸD(S)[A]|dK+1

1 ) =
1

n

[
h(ỸD(S)[A]|dK+1

1 )− h(ZD[A])
]

≤ 1

n

∑

i∈A

[
h(ỸD[i]|dK+1

1 )− h(ZD[i])
]

=
1

n

∑

i∈A

[
h

(
∑

`∈S

g`DX`[(i− d`) mod n] + ZD[i]
∣∣∣dK+1

1

)
− h(ZD[i])

]

≤ 1

n

∑

i∈A

log

(
1 +

E
∣∣∑

`∈S g`DX`[(i− d`) mod n]
∣∣2

N

)

≤ dmax

n
log

(
1 +

n

dmax

∑
`∈S |g`D|2 ·

∑
`∈S P`

N

)

= γ

(
dmax

n

)
. (4.26)

Based on (4.23), (4.25), and (4.26), the absolute difference between the mutual infor-

mations in (4.17) is upper bounded by 3γ(dmax/n). One can see that 3γ (dmax(n)/n) → 0

as n → ∞, since for any a > 0, zn log(1 + a/zn) → 0 as zn → 0, and the lemma is proved

by taking zn = dmax(n)/n and a =
∑

`∈S |g`D|2
∑

`∈S P`/N .
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4.3 Converse

Lemma 6. Consider a Gaussian TA-MARC with power constraints P1, P2, · · · , PK on

the transmitters, and the power constraint PK+1 on the relay, and the set of encoders’

offsets dK+1
1 . Moreover, assume that the set of offsets dK+1

1 are known to the receiver,

dmax(n) → ∞, and dmax(n)/n → 0 as n → ∞. Then, a necessary condition for reliably

communicating a source tuple (Un
1 , U

n
2 , · · · , Un

K) ∼
∏n−1

i=0 p(u1[i], u2[i], · · · , uK [i]), over such
a Gaussian TA-MARC, in the sense of Definition 18, is given by

H(US |USc) ≤ log

(
1 +

∑
`∈S |g`D|2P`

N

)
, ∀S ⊆ [1, K + 1] (4.27)

where S includes the relay, i.e., {K + 1} ∈ S, where by definition UK+1 , ∅, and Sc ,
[1, K + 1]/{S}.

Remark 11. The result of (4.27) can be readily extended to the case of mapping blocks of

source outputs of the average length of m to channel inputs of the average length of n. In

particular, for the average bandwidth mismatch factor of κ , n/m, the converse result in

(4.27), to be proved as an achievability result in Section 4.4 as well, can be generalized to

H(US |USc) ≤ κ log

(
1 +

∑
`∈S |g`D|2P`

N

)
, ∀S ⊆ [1, K + 1]. (4.28)

Since considering a general mismatch factor κ > 0 obscures the proof, in the following we

only present the proof for the case of κ = 1.

Proof. First, fix a TA-MARC with given offset vector dK+1
1 , a codebook Cn, and induced

empirical distribution

p(un1 , · · · , unK , xn1 , · · · , xnK+1, y
n+dmax

R
, yn+dmax

D
|dK+1

1 ).
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Since for this fixed choice of the offset vector dK+1
1 , P n

e (d
K+1
1 ) → 0, from Fano’s inequality,

we have

1

n
H(Un

1 , U
n
2 , · · · , Un

K |Y n+dmax

D
, dK+1

1 ) ≤ 1

n
P n
e (d

K+1
1 ) log ‖Un

1 × Un
2 × · · · × Un

K‖+
1

n
, δn,

(4.29)

and δn → 0, where convergence is uniform in dK+1
1 by (4.6).

Now, we can upper bound H(US |USc) as follows:

H(US |USc) =
1

n
H(Un

S |Un
Sc, dK+1

1 )

(a)
=

1

n
H(Un

S |Un
Sc , Xn

Sc, dK+1
1 )

=
1

n
I(Un

S ; Y
n+dmax

D
|Un

Sc , Xn
Sc, dK+1

1 ) +
1

n
H(Un

S |Y n+dmax

D
, Un

Sc , Xn
Sc, dK+1

1 )

(b)

≤ 1

n
I(Xn

S ; Y
n+dmax

D
|Un

Sc, Xn
Sc , dK+1

1 ) + δn

(c)
=

1

n
h(Y n+dmax

D
|Un

Sc, Xn
Sc , dK+1

1 )− 1

n
h(Y n+dmax

D
|Un

Sc , Xn
[1,K+1], d

K+1
1 ) + δn

(d)

≤ 1

n
h(Y n+dmax

D
|Xn

Sc, dK+1
1 )− 1

n
h(Y n+dmax

D
|Un

Sc , Xn
[1,K+1], d

K+1
1 ) + δn

=
1

n
h(
{K+1∑

`=1

g`DX`[i− d`] + ZD[i]
}n+dmax−1

i=0
|Xn

Sc, dK+1
1 )− 1

n
h(Zn+dmax

D
) + δn

=
1

n
h(
{∑

`∈S

g`DX`[i− d`] + ZD[i]
}n+dmax−1

i=0
|Xn

Sc, dK+1
1 )− 1

n
h(Zn+dmax

D
) + δn

≤ 1

n
h(Y n+dmax

D(S) |dK+1
1 )− 1

n
h(Zn+dmax

D
) + δn

=
1

n
I(Xn

S ; Y
n+dmax

D(S) |dK+1
1 ) + δn (4.30)

where in (a) we used the fact that Xn
Sc is a function of only Un

Sc , in (b) we used the data

processing inequality and (4.29), in (c) we used Xn
[1,K+1] based on the definition in (4.14),

and lastly in (d) we made use of the fact that conditioning does not increase the entropy.
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But (4.30) represents the mutual information at the destination’s output of the Gaussian

sliced TA-MARC M(S) corresponding to the original Gaussian TA-MARC. Thus, using

Lemma 5, we can now further upper bound the mutual information term in (4.30) by

the corresponding mutual information term in the corresponding sliced cyclic MARC and

derive

H(US |USc) ≤ 1

n
I(Xn

S ; Ỹ
n
D(S)|dK+1

1 ) + εn + δn. (4.31)

Now, let D`, ` = 1, · · · , K + 1, be a sequence of random variables that are each uni-

formly distributed on the set {0, 1, · · · , dmax(n)} and independent of {Un
` }K+1

`=1 , {ZD[i]}n−1
i=0 ,

and {ZR[i]}n−1
i=0 . Since (4.31) is true for every choice of dK+1

1 ∈ {0, 1, · · · , dmax(n)}K+1,

H(US |USc) can also be upper bounded by the average over dK+1
1 of I(Xn

S ; ỸD(S)
n|dK+1

1 ).

Hence,

H(US |USc) ≤ I(Xn
S ; Ỹ

n
D(S)|DK+1

1 ) + εn + δn

(a)
= I(Xn

S ;
ˆ̃Y n
D(S)|DK+1

1 ) + εn + δn, (4.32)

where ˆ̃Y n
D(S) = DFT(Ỹ

n

D(S)), and (a) follows from the fact that the DFT is a bijection.

Expanding I(Xn
S ;

ˆ̃Y n
D(S)|DK+1

1 ) in the right hand side of (4.32),

H(US |USc) ≤ 1

n
[h( ˆ̃Y n

D(S)|DK+1
1 )− h( ˆ̃Y n

D(S)|Xn
S , D

K+1
1 )] + εn + δn

≤ 1

n
[h( ˆ̃Y n

D(S))− h(Ẑn
D
)] + εn + δn,

where Ẑn
D
= DFT(Zn

D
) has i.i.d. entries with ẐD[i] ∼ CN (0, N). Recall X̂n

` = DFT(Xn
` ).

Then,

h( ˆ̃Y n
D(S)) = h

(
∑

`∈S

e−jθ(D`) � g`DX̂
n
` + Ẑn

D

)
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≤
n−1∑

i=0

h

(
∑

`∈S

e
−j2πiD`

n g`DX̂`[i] + ẐD[i]

)
,

where e−jθ(D) , (e
−j2πiD

n )n−1
i=0 is an n-length vector, and � denotes element-wise vector

multiplication. Thus,

H(US |USc) ≤ 1

n

n−1∑

i=0

[
h

(
∑

`∈S

e
−j2πiD`

n g`DX̂`[i] + ẐD[i]

)
− h(ẐD[i])

]
+ εn + δn

≤ 1

n

n−1∑

i=0

log


1 +

E

∣∣∣
∑

`∈S e
−j2πiD`

n g`DX̂`[i]
∣∣∣
2

N


+ εn + δn. (4.33)

We now divide the sum in (4.33) into three terms for 0 ≤ i ≤ α(n) − 1, α(n) ≤ i ≤
n− α(n)− 1, and n− α(n) ≤ i ≤ n− 1, where α(n) : N → N is a function such that

α(n)

n
→ 0,

α(n)dmax(n)

n
→ ∞. (4.34)

An example of such an α(n) is the function α(n) = d n
dmax(n)

log dmax(n)e. Consequently, we
first upper bound the tail terms and afterwards the main term in the sequel.

For the terms in 0 ≤ i ≤ α(n)− 1, we have

1

n

α(n)−1∑

i=0

log


1 +

E

∣∣∣
∑

`∈S e
−j2πiD`

n g`DX̂`[i]
∣∣∣
2

N




(a)

≤ 1

n

α(n)−1∑

i=0

log

(
1 +

∑
`∈S |g`D|2 ·

∑
`∈S E|X̂`[i]|2

N

)

(b)

≤ α(n)

n
log


1 +

∑α(n)−1
i=0

[∑
`∈S |g`D|2 ·

∑
`∈S E|X̂`[i]|2

]

α(n)N




(c)

≤ α(n)

n
log

(
1 +

n

α(n)

∑
`∈S |g`D|2 ·

∑
`∈S P`

N

)
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, λn, (4.35)

where (a) follows by the Cauchy-Schwartz inequality (cf. (4.24)), (b) follows by the

concavity of the log function and (c) follows by the power constraints (4.5). Also, for

n − α(n) ≤ i ≤ n − 1, a similar upper bound can be derived by the symmetry of the

problem as follows

1

n

n−1∑

i=n−α(n)

log


1 +

E

∣∣∣
∑

`∈S e
−j2πiD`

n g`DX̂`[i]
∣∣∣
2

N


 ≤ λn. (4.36)

To bound the third component of (4.33) for α(n) ≤ i ≤ n − α(n) − 1, we first obtain

that

E

∣∣∣∣∣
∑

`∈S

e
−j2πiD`

n g`DX̂`[i]

∣∣∣∣∣

2

=
∑

`∈S

|g`D|2E|X̂`[i]|2 +
∑

(`,`
′

)∈S2

`<`
′

2<E
{
e

−j2πi(D`−D
`
′ )

n g`Dg
∗
`′DX̂`[i]X̂

∗
`
′ [i]

}
,

(4.37)

where <(z) is the real part of z ∈ C. Now, the following two cases can occur

i) ` < `′ < K + 1: In this case, both X̂`[i] and X̂
∗
`′[i] are independent of D` and D`′.

ii) ` < `′ = K+1: In this case, X̂`[i] and X̂
∗
`′[i] are independent of D`′ . However, X̂

∗
`′[i],

that corresponds to the channel input of the relay, is a function of {YR[0], YR[1], · · · , YR[i−
1]} and is thus correlated with delays of all transmitters, i.e., D`, ` = 1, 2, · · · , K, due to

(4.3).

In either scenario, we can proceed from (4.37) by separating e
−j2πiD

`′

n from the remaining

terms inside the expectation. Specifically,

E

∣∣∣∣∣
∑

`∈S

e
−j2πiD`

n g`DX̂`[i]

∣∣∣∣∣

2
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=
∑

`∈S

|g`D|2E|X̂`[i]|2 +
∑

(`,`
′

)∈S2

`<`
′

2<
(
E

{
e

−j2πiD
`′

n

}
E

{
e

j2πiD`
n g`Dg

∗
`′DX̂`[i]X̂

∗
`
′ [i]
})

≤
∑

`∈S

|g`D|2E|X̂`[i]|2 +
∑

(`,`
′

)∈S2

`<`
′

2
∣∣∣E
{
e

−j2πiD
`′

n

}
E

{
e

j2πiD`
n g`Dg

∗
`′DX̂`[i]X̂

∗
`
′ [i]
}∣∣∣

=
∑

`∈S

|g`D|2E|X̂`[i]|2 +
∑

(`,`
′

)∈S2

`<`
′

2|g`D||g`′D|
∣∣∣∣∣E
{
e

−j2πiD
`′

n

} ∣∣∣∣∣

∣∣∣∣∣E
{
e

j2πiD`
n X̂`[i]X̂

∗
`
′ [i]
} ∣∣∣∣∣

(a)

≤
∑

`∈S

|g`D|2E|X̂`[i]|2 +
1

dmax(n)| sin(πin )|
∑

(`,`
′

)∈S2

`<`
′

|g`D||g`′D|
(
E|X̂`[i]|2 + E|X̂`′[i]|2

)

(b)

≤
∑

`∈S

|g`D|2E|X̂`[i]|2 +
1

dmax(n)| sin(πα(n)n
)|

∑

(`,`
′

)∈S2

`<`
′

|g`D||g`′D|
(
E|X̂`[i]|2 + E|X̂`′[i]|2

)
,

(4.38)

where the derivation of (a) is presented in Appendix 4.A, and (b) follows from the inequality

sin(
πα(n)

n
) ≤ sin(

πi

n
), for all i ∈ [α(n), n− α(n)− 1]. (4.39)

By summing (4.38) over α(n) ≤ i ≤ n− α(n)− 1, we further obtain

n−α(n)−1∑

i=α(n)

E

∣∣∣∣∣
∑

`∈S

e
−j2πiD`

n g`DX̂`[i]

∣∣∣∣∣

2

≤
n−α(n)−1∑

i=α(n)

∑

`∈S

|g`D|2E|X̂`[i]|2

+
1

dmax(n)| sin(πα(n)n
)|

n−α(n)−1∑

i=α(n)

∑

(`,`
′

)∈S2

`<`
′

|g`D||g`′D|
(
E|X̂`[i]|2 + E|X̂`′[i]|2

)

(a)

≤
∑

`∈S

|g`D|2nP` +
1

dmax(n)| sin(πα(n)n
)|

∑

(`,`
′

)∈S2

`<`
′

|g`D||g`′D|(nP` + nP`′)
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= n

[
∑

`∈S

|g`D|2P` +
ζ(S)

dmax(n)| sin(πα(n)n
)|

]
, (4.40)

where (a) is due to the power constraint in (4.5), and

ζ(S) ,
∑

(`,`
′

)∈S2

`<`
′

|g`D||g`′D|(P` + P`′). (4.41)

Based on the result in (4.40), we upper bound the third component of (4.33) as below

1

n

n−α(n)−1∑

i=α(n)

log


1 +

E

∣∣∣
∑

`∈S e
−j2πiD`

n g`DX̂`[i]
∣∣∣
2

N




(a)

≤ n− 2α(n)

n
log


1 +

∑n−α(n)−1
i=α(n)

[
E

∣∣∣
∑

`∈S e
−j2πiD`

n g`DX̂`[i]
∣∣∣
2
]

N(n− 2α(n))




(b)

≤ n− 2α(n)

n
log


1 +

n

n− 2α(n)

∑
`∈S |g`D|2P` + ζ(S)

dmax(n)| sin(
πα(n)

n
)|

N


 , (4.42)

where (a) follows by the concavity of the log function, and (b) follows from (4.40).

Now, by combining (4.33), (4.35), (4.36), and (4.42) we derive

H(US |USc) ≤ n− 2α(n)

n
log


1 +

n

n− 2α(n)

∑
`∈S |g`D|2P` + ζ(S)

dmax(n)| sin(
πα(n)

n
)|

N


+ 2λn + εn + δn.

(4.43)

To obtain the asymptotic bound, we recall that that due to the choice of α(n) in (4.34),

n− 2α(n)

n
→ 1,

sin

(
πα(n)

n

)
/
πα(n)

n
→ 1,
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1

dmax(n)| sin(πα(n)n
)|

→ n

πdmax(n)α(n)
→ 0,

as n → ∞. Therefore, it can be easily verified from (4.43) that since ζ(S) < ∞, and

λn, δn, εn → 0 as n→ ∞,

H(US |USc) ≤ log

(
1 +

∑
`∈S |g`D|2P`

N

)
, (4.44)

where we recall that the subset S ⊆ [1, K + 1] includes the relay, i.e., {K + 1} ∈ S.

4.4 Achievability

We now focus on demonstrating the achievability of the region that was proved to be an

outer bound on the capacity region in Lemma 6 and thus conclude that the region is indeed

the capacity region. To establish the achievability argument, we follow a tandem (separate)

source-channel coding scheme. Thus, the communication process will be divided into two

parts: source coding and channel coding. In the sequel, we simply state the results for each

of both source and channel coding, and finally by combining them prove the achievability

lemma.

Source Coding: From Slepian-Wolf coding [30], for the correlated source (Un
1 , U

n
2 , · · · , Un

K),

if we have K n-length sequences of source codes with rates (R1, R2, · · · , RK), for asymp-

totically lossless representation of the source, we should have

H(US |USc) <
∑

`∈S

R`, ∀S ⊆ [1, K + 1] : {K + 1} ∈ S, (4.45)

where by definition RK+1 , 0, and UK+1 , ∅.

Channel Coding: Next, for fixed source codes with rates (R1, R2, · · · , RK), we make

channel codes for the TA-MARC separately such that the channel codes can be reliably
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Encoder Block 1 Block 2 · · · Block B Block B + 1

1 xn
1 (1,W11) xn

1 (W11,W12) · · · xn
1 (W1(B−1),W1B) xn

1 (W1B , 1)

...
...

... · · ·
...

...

K xn

K
(1,WK1) xn

K
(WK1,WK2) · · · xn

K
(WK(B−1),WKB) xn

K
(WKB, 1)

K + 1 xn

K+1(1, · · · , 1) xn

K+1(W11, · · · ,WK1) · · · xn

K+1(W1(B−1), · · · ,WK(B−1)) xn

K+1(W1B , · · · ,WKB)

Table 4.1: Block Markov encoding scheme for the Gaussian TA-MARC.

decoded at the receiver side. In particular, we use the block Markov coding scheme used

in [37] on top of the coding strategy used in [8], in order to make reliable channel codes.

Indeed, we directly apply the decoding technique of [8] to a series of block Markov codes

which results in an achievable rate region equivalent to the intersection of two MACs

with encoders as the transmitters with indices 1, · · · , K, and decoders as the relay and

destination. In the sequel, we briefly give some details of the block Markov coding scheme

and the coding strategy for the delayed codewords.

• Block Markov coding: Table I shows the block Markov coding configuration used

to transmit the codewords of the encoders of the Gaussian TA-MARC. First fix a

distribution p(x1) · · · p(xK+1) and construct random codewords xn1 , · · · , xnK+1 based

on the corresponding distributions. The message Wi of each encoder is divided to

B blocks Wi1,Wi2, · · · ,WiB of 2nRi bits each, i = 1, · · · , K. The codewords are

transmitted in B + 1 blocks based on the block Markov encoding scheme depicted

in Table I. After each block, the relay makes a MAC decoding and uses the decoded

messages W1(i−1), · · · ,WK(i−1) to send the codewords in the next block. Also, the

decoding at the destination is performed at the end of the last block and in a backward

block-by-block manner, also known as backward decoding [37]. We let B → ∞ to

approach the original rates R1, · · · , RK .
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• Coding strategy of [8]: The encoders transmit their codewords as shown in Table I

and in B blocks, albeit with delays d1, · · · , dK+1. Note that if the MARC was syn-

chronous, one would obtain the achievable rate region resulting from the intersection

of two MACs. However, using a simply generalized version of the coding strategy

used in [8], it can be seen that the same region is achievable for the time asynchronous

case. In particular, at the end of the ith block, the relay decoder inspects the received

vector Y
n+dmax(n)
R

for the presence of codewords xn1 (W1i), · · · , xnK(WKi), embedded in

it with arbitrarily shifts. Likewise, at the end of the last block, the destination

decoder inspects the received vector Y
n+dmax(n)
D

to first decode W1B, · · · ,WKB and

consequently decode the previous messages in a backward manner. In all of these

decoding cases, like [8], we look for the codewords under all possible shifts up to the

maximum delay dmax such that the shifted codewords and the (n + dmax)-length re-

ceived vector are jointly typical. Therefore, the decoders at the relay and destination

need to look for dmax(n)
K combination of codewords and find the one that is jointly

typical with Y
n+dmax(n)
R

or Y
n+dmax(n)
D

. Following similar error analysis as in [8], now

for a K user system with K delays, and due to the assumption that dmax(n)/n→ 0,

it can be seen that the standard synchronous K user MAC capacity constraints are

derived in order to achieve asymptotically vanishing probability of error.

Hence, for reliable communication of the source indices over the Gaussian TA-MARC,

the following sets of inequalities that represents MAC decoding at the relay and destination

should be satisfied:

RS < I(XS ; YR|XSc), ∀S ⊆ [1, K], (4.46)

and

RS < I(XS ; YD|XSc), ∀S ⊆ [1, K + 1] : {K + 1} ∈ S, (4.47)
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for an input distribution p(x1) · · ·p(xK+1).

By choosing Gaussian input distributions, the constraints in (4.46)-(4.47) will be re-

duced to logarithmic rate functions. It is then straight forward to see that under the gain

conditions

∑

`∈S

|g`R|2P` ≥
∑

`∈S

|g`D|2P`, ∀S ⊆ [1, K + 1] : {K + 1} ∈ S (4.48)

where g(K+1)R , 0, the destination decoding constraints (4.47) will dominate (4.46), and we

can thus derive the following conditions on R1, · · · , RK , as sufficient conditions for reliable

communication of source coded indices over a Gaussian TA-MARC:

∑

`∈S

R` < log

(
1 +

∑
`∈S |g`D|2P`

N

)
, ∀S ⊆ [1, K + 1] : {K + 1} ∈ S. (4.49)

Lemma 7. A sufficient condition for reliable communication of the source (Un
1 , · · · , Un

K)

over the TA-MARC defined by (4.2)-(4.3) is given by (4.27), with ≤ replaced by <.

Proof. From (4.27), it can be seen that there exist choices of R1, · · · , R2 such that the

Slepian-Wolf conditions (4.45) and the channel coding conditions (4.49) are simultaneously

satisfied. Since error probabilities of both the source coding part and channel coding part

vanish asymptotically, then the error probability of the combined tandem scheme also

vanishes asymptotically and the proof of the lemma is complete.

4.5 Separation Theorems

Based on the converse and achievability results presented in Sections 4.3 and 4.4, we can

now combine the results and state the following separation theorem for a Gaussian TA-

MARC
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Ûn
1

Ûn
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Figure 4.3: Gaussian Time-Asynchronous Interference Channel (TA-IC) with Strong In-

terference Gains.

Theorem 18. Reliable Communication over a Gaussian TA-MARC: Consider a Gaussian

TA-MARC with the gain conditions (4.48). Then, necessary conditions for reliably sending

a source (Un
1 , · · · , Un

K) ∼
∏

ip(u1i, · · · , uKi), over such a TA-MARC are given by (4.27).

Furthermore, (4.27), with ≤ replaced by <, also gives a sufficient condition for reliable

communications over such a TA-MARC and can be achieved by separate source-channel

coding.

Theorem 18 can be easily specialized to a MAC if we impose PK+1 = 0 and eliminate

the role of the relay. Thus, the result of [67] for a 2-user TA-MAC is a direct consequence

of Theorem 18. As a result, we can also state the following corollary for a Gaussian time

asynchronous interference channel (TA-IC) with strong interference conditions depicted

in Fig. 4.3. The result of the corollary is based on the fact that in the strong inter-

ference regime, the Gaussian interference channel can be reduced to the intersection of

two Gaussian MACs with no loss. Namely, if each receiver can correctly decode its own

channel input sequence, in the strong interference regime, it can also correctly decode the

other channel input sequence (see [63] for details). In the context of JSCC, we note that

by using the strong interference conditions and the one-to-one mappings between source
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and channel sequences, one can argue that both of the receivers can recover both source

sequences Un
1 , U

n
2 provided there are encoders and decoders such that each receiver can

reliably decode its own source sequence. Specifically, if the first receiver can decode Un
1

and the second receiver can decode Un
2 , this in turn enables each receiver to reconstruct

the channel input Xn
1 from Un

1 or Xn
2 from Un

2 , then Xn
2 from Xn

1 or Xn
1 from Xn

2 , and

finally the source sequence Un
2 from Xn

2 or Un
1 from Xn

1 . Therefore, under the strong inter-

ference regime, the JSCC capacity region (i.e., a set of necessary and sufficient conditions

for reliable communications) is described by the intersection of JSCC capacity regions of

two MACs.

Corollary 9. Necessary conditions for reliably sending arbitrarily correlated sources (U1, U2)

over a TA-IC with strong interference conditions |g11| ≤ |g12|, |g22| ≤ |g21| are given by

H(Ui|Uj) ≤ log(1 + |gii|2Pi/N), (i, j) ∈ {(1, 2), (2, 1)} (4.50)

H(U1, U2) ≤ min{log(1 + (|g11|2P1 + |g21|2P2)/N), log(1 + (|g12|2P1 + |g22|2P2)/N)},
(4.51)

where gij, i, j ∈ {1, 2} represents the complex gain from node i to the receiver j in a two

user interference channel. The same conditions (4.50)-(4.51) with ≤ replaced by < describe

sufficient conditions for reliable communication.
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4.A Appendix

Since D`′ has a uniform distribution over {0, 1, · · · , dmax} we have

∣∣∣E
{
e

−j2πiD
`′

n

}∣∣∣ =
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dmax∑

d=0

1

dmax + 1
e

−j2πid

n

∣∣∣∣∣ (4.52)

=
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1
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e
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n − 1

e
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n − 1
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=
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n

)

sin(πi
n
)

∣∣∣∣∣ (4.54)

≤ 1

dmax| sin(πin )|
. (4.55)

Thus, we obtain the following inequality
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=
1

dmax| sin(πin )|
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(`,`
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2|g`D||g`′D|E
{∣∣X̂`[i]
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(a)

≤ 1

dmax| sin(πin )|
∑

(`,`
′

)∈S2

`<`
′

|g`D||g`′D|(E|X̂`[i]|2 + E|X̂`
′ [i]|2), (4.58)

where (a) follows by the geometric inequality 2
√
ab ≤ a+ b with a = |X̂`[i]|2 and b =

|X̂`′[i]|2 = |X̂∗
`′[i]|2.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we established necessary and sufficient conditions for reliable communication

of correlated sources over several multiuser channels including phase and time asynchronism

between different nodes of the network. Namely, we divided our results into two general

parts: phase asynchronous and time asynchronous networks. For the phase asynchronous

systems, the main assumption was unknown phases of the communication links at the

encoders while for the time asynchronous systems, we assumed that the transmitters cannot

exactly synchronize the timing of their transmissions.

In general, for all of these systems, we first derived necessary conditions for reliable

communications for all possible channel gains and then we derived sufficient conditions for

specific gain conditions. Noting the coincidence of necessary and sufficient conditions un-

der the specific gain conditions, we then stated and proved that under the gain conditions,

a separation approach is optimal for all of these scenarios and one can achieve the opti-
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mal performance by first Slepian-Wolf coding the correlated sources and then performing

channel coding with independent input distributions. Indeed, we showed that under the

specific gain conditions, the correlation between the sources cannot enlarge the achievable

region compared to separate source-channel coding schemes.

Specifically, in Chapter 3, Sections 3.1-3.4, the problem of sending arbitrarily correlated

sources over variations of the phase asynchronous multiple access relay channel and the

interference relay channel with non-ergodic phase fading was considered. Namely, in light

of Lemma 1, outer bounds on the source entropy content (H(U1|U2), H(U2|U1), H(U1, U2))

were first derived under phase uncertainty at the encoders. The outer bounds were then

shown to match the achievable regions obtained by separate source-channel coding under

some restrictions on the channel gains. We also conjecture that the optimality of separation

is true not only for the specific gain conditions we state, but also for all possible values

of path gains. In particular, as implied by Lemma 1, for a general network, independent

channel inputs avoid the reduction in received power caused by adversarial choices of

unknown phases. Therefore, regardless of the channel gains, this suggests that separate

source-channel coding is likely optimal for the considered networks. Hence, we conjecture

that separation is optimal for unrestricted forms of the phase incoherent Gaussian phase

asynchronous channels discussed in Sections 3.1-3.4. The approach we used here to prove

the separation theorems which is based on computing necessary and sufficient conditions

for reliable communication, however, may not be viable to prove the conjecture. Indeed, if

the approach taken here was useful to derive optimal joint source-channel coding regions of

the considered networks for all channel gains, it would imply that we could also compute

their corresponding phase-fading channel coding capacity. However, finding these channel

coding capacities are long standing open problems in network information theory.

In Chapter 3, Section 3.5, we extended the results to the case of Gaussian cognitive
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interference channels. In particular, we derived necessary and sufficient conditions for reli-

able communication of primary and secondary over classes of phase asynchronous cognitive

interference channels. Furthermore, we also derived necessary and sufficient conditions for

reliable communication of secondary while it causes no degradation to the primary, i.e., it

can still establish reliable communication using the same conditions and procedures as it

did when the secondary was absent. Our results hold under strong interference conditions.

In particular, we proved separation theorems for both cases of noncausal and causal unidi-

rectional cooperation between the encoders. This is the first work to address the problem

of joint source-channel coding for cognitive interference channels in the lossless setup, to

the best of our knowledge.

In Chapter 3, Section 3.6, we derived a general outer bound on the distortion region,

for sending a bivariate Gaussian source over an IRC under phase uncertainty at the trans-

mitters. Using a separation approach, we then derived an inner bound for the distortion

region under specific SNR-dependant gain conditions which mainly represent strong inter-

ferences between the transmitters and the unwanted receivers. Next, an approximation to

the inner bound in the high SNR regime was found. Under the specified gain conditions and

phase uncertainty at the transmitters, we consequently characterized the full achievable

distortion region for independent sources and proved a separation theorem. By removing

the relay, our results were specialized to communication of independent Gaussians over an

interference channel with SNR-dependant strong interference gains.

Finally, in Chapter 4, the problem of sending arbitrarily correlated sources over a

time asynchronous multiple-access relay channel with maximum offset between encoders

dmax(n) → ∞, as n → ∞, was considered. Necessary and sufficient conditions for reliable

communication were presented under the assumption of dmax(n)/n→ 0. Namely, a general

outer bound on the capacity region (i.e., a necessary condition on the reliable communica-
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tions) was first derived and then was shown to match the separate source-channel coding

achievable region under specific gain conditions. Therefore, under the gain conditions,

separation was shown to be optimal and as a result, joint source-channel coding is not

necessary under time asynchronism.

5.2 Future Directions

In the following, we list a few possible future directions we plan to pursue. While some of

those are extensions of the time asynchronism problem to other settings such as cognitive

networks or discrete alphabets, others may facilitate new approaches to phase asynchro-

nism.

5.2.1 Extension of the Time Asynchronous Settings to the Cog-

nitive Networks

As we studied the problem of JSCC for phase asynchronous cognitive multiple access

channels, one possible research direction is to examine this problem when we have time

asynchronism in the network. In Chapter 4, all of the results were derived under the

assumption that there is no cooperation/cognition between the encoders. Incorporating

the notion of cooperation/cognition into the problem already studied can be interesting as

it better models emerging systems where cognitive radios and cooperative schemes are to

play key roles.

124



5.2.2 Time Asynchronous Networks with Discrete Alphabets

In Chapter 4, we considered the JSCC problem for a time asynchronous MARC with

complex-valued input and output symbols. Our proof technic relies on the continuous

alphabet and additive nature of the channel, e.g., by computing the DFT of a vector

and using the fact that the DFT conserves the vector’s power. In a general setup, where

the input and output symbols are chosen from a discrete alphabet and their relationship

is characterized by a conditional probability mass function only, a new technic to derive

necessary and sufficient conditions for reliable source-channel communications would be

needed. Therefore, studying a more general setting with arbitrary channel alphabet is an

interesting further step to address the problem of JSCC for asynchronous networks.

5.2.3 Phase Asynchronous Side Information

State dependant channels with known side information at the encoder were first introduced

by Shannon. In [69], Shannon found the capacity of a state-dependant channel with state

causally known to the encoder. Later, Gel’fand and Pinsker [57] found a single-letter

capacity expression for channels with non-causal knowledge of the i.i.d. state at the encoder

and Costa [70] extended their results to an additive continuous setup referred to as dirty

paper coding. Subsequently, other chain of works were published to address the problem

of state-dependant channels with side information available at the encoder for different

settings, such as [71] for cognitive radios, [72] for multiple access channels with channel

side information, and [73] for multiple-input multiple-output broadcast channels.

The usual underlying assumption in the analysis of these channels in the literature

is that the side information signal and the transmitted or received signal are fully syn-

chronized. An exception is [74] where phase faded side information with unknown fading
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coefficient at the transmitter is considered. Since the synchronized side information is not

a practical assumption in many real-world problems, considering state-dependant channels

with some kind of asynchronous side information is an interesting research direction in

network information theory. When the synchronization assumption, either in time, phase

or frequency, does not hold, most of the existing results for the aforementioned channels

are questionable and new models and analysis should be considered. Hence, it is clear that

many different problems can be defined in this context for various setups and topologies.

In the following, we briefly introduce one of these possible problems which can be studied

as a future research direction.

The problem of lossy source coding with side information at the decoder is first ad-

dressed by Wyner and Ziv in [75]. As a future direction, we propose to study the case

where the side information undergoes a random phase shift where the phase in not known

to the decoder side. It is interesting to analyze the upper bound and lower bound on the

distortion and examine whether the lack of phase knowledge renders the side information

useless. It appears that both the converse and achievability parts of the coding theorem

need to be revisited.
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[12] S. Verdú, “Multiple-access channels with memory with and without frame synchro-

nism,” IEEE Trans. Inform. Theory, vol. 35, pp. 605 –619, May 1989.

[13] E. Onggosanusi, A. Gatherer, A. Dabak, and S. Hosur, “Performance analysis of

closed-loop transmit diversity in the presence of feedback delay,” IEEE Trans. Com-

mun., vol. 49, pp. 1618 –1630, Sep. 2001.

[14] A. Lapidoth and P. Narayan, “Reliable communication under channel uncertainty,”

IEEE Trans. Inform. Theory, vol. 44, pp. 2148 –2177, Oct. 1998.

[15] D. Blackwell, L. Breiman, and A. J. Thomasian, “The capacity of a class of channels,”

Ann. Math. Stat., vol. 30, pp. 1229 – 1241, Dec. 1959.

[16] I. Csiszar and J. Korner, Information Theory: Coding Theorems for Discrete Memo-

ryless Systems. New York: Academic, 1981.

[17] J. Wolfowitz, Coding Theorems of Information Theory. New York:Springer-Verlag,

1978.

128



[18] A. Sabharwal, D. Dash, and S. Diggavi, “Compound gaussian multiple access channels

with noisy feedback,” in Proc. 46th Annu. Allerton Conf. Communications, Control,

and Computing, pp. 887–894, Sep. 2008.

[19] T. Cover, A. Gamal, and M. Salehi, “Multiple access channels with arbitrarily corre-

lated sources,” IEEE Trans. Inform. Theory, vol. 26, pp. 648 – 657, Nov. 1980.

[20] G. Dueck, “A note on the multiple access channel with correlated sources (corresp.),”

IEEE Trans. Inform. Theory, vol. 27, pp. 232 – 235, Mar. 1981.

[21] F. A. Abdallah, R. Knopp, and G. Caire, “Transmission of correlated sources over

Gaussian multiple-access channels with phase shifts,” in Proc. 46th Annu. Allerton

Conf. Communications, Control, and Computing, pp. 873 – 878, Sep. 2008.

[22] H. E. Saffar, E. H. M. Alian, and P. Mitran, “Source-channel communication over

phase-incoherent multiuser channels,” IEEE Trans. Commun., vol. 62, pp. 2996–3003,

Aug. 2014.

[23] H. Saffar and P. Mitran, “Phase asynchronous cognitive interference channels: loss-

less source-channel separation theorems,” in Proc. IEEE Global Telecommunications

Conf., pp. 2239 –2245, Dec. 2012.

[24] T. Coleman, E. Martinian, and E. Ordentlich, “Joint source-channel decoding for

transmitting correlated sources over broadcast networks,” in Proc. IEEE Int. Symp.

Information Theory, pp. 2144 –2147, Jul. 2006.

[25] C. Tian, S. Diggavi, and S. Shamai, “The achievable distortion region of sending a

bivariate gaussian source on the gaussian broadcast channel,” IEEE Trans. Inform.

Theory, vol. 57, pp. 6419 –6427, Oct. 2011.

129



[26] H. Saffar, M. Khuzani, and P. Mitran, “Lossy source-channel communication over a

phase-incoherent interference relay channel,” in Proc. IEEE Int. Symp. Information

Theory, pp. 1947 –1951, July 2012.
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