
Virtual Machine-Assisted
Collaborative Junk Object Detection

by

Ming Matthew Ma

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2014

c© Ming Matthew Ma 2014

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Memory leak is unrecoverable software bug that causes performance degradation and re-
liability issues to software applications. Although memory management systems exist in
modern Object Oriented Language to reclaim unused memory store, memory leak can still
happen, and continue to exhaust memory resource. In Java, where there is garbage col-
lection for releasing unused objects, memory leaks manifest itself in the form of unused
object retention. Since Java Programming language allocates objects on heap, the lifetime
of an object deviates from the stack discipline, which can be a challenge in detecting Java
memory leak.

In this thesis, we propose a collaborative approach in detecting Java memory leaks
through verifying Object Lifetime Specification at runtime. We designed a runtime verifier
that leverages Java Virtual Machine technologies to monitor and extract annotated infor-
mation from the user application, and use that information to verify against Java Virtual
Machine events to detect unintentional object retention in the Java application under test.

We implemented our runtime verifier with Maxine Virtual Machine, an open source,
meta-circular virtual machine developed by Oracle Lab, and conducted experiments and
DaCapo benchmark to evaluate its accuracy and performance efficiency. The results show
that the runtime verification tool successfully identifies junk objects for different semantic
cases proposed in this thesis with certain runtime overhead. Through the research and
experimental results, we further make implications on how to improve the performance
overhead associated with current design and implementation methods in detecting unused
object retention, which in the long term constitute memory leak and performance bug.

iii

Acknowledgements

I would like to thank all the people who made this thesis possible. I would like to
thank my advisor, Professor Derek Rayside for providing me guidance throughout the two
years of my graduate study and research. I would also like to express my gratitude to
Professor Werner Dietl for providing me invaluable suggestions and help. I also wish to
thank Mr. Mick Jordan and Mr. Simon Douglas from Oracle Corporation who provided
me insight to Maxine VM design and responded to my issue report to Maxine VM. I thank
all other colleagues from my research lab for discussions and most of all, great friends for
me. Lastly, I would like to express my sincere appreciation to Professor Werner Dietl and
Professor Krzysztof Czarnecki for reading my thesis and providing valuable feedback and
suggestions.

iv

Dedication

This thesis is dedicated to my mother and my father for educating me since I was born,
and educated me to become a responsible and upright person.

v

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Why Java . 2

1.2 Java Memory Allocation . 3

1.3 Runtime Verifier . 4

1.4 Thesis Organization . 4

2 Java Application Performance and Memory Leak 6

2.1 Memory Management and Performance Degradation 7

2.2 Java Memory Leak Examples . 8

2.2.1 Dormant Reference . 8

2.2.2 Scope and Static Field . 10

2.2.3 Java Collection Framework . 10

2.2.4 Inner Class Example . 13

2.3 Challenges . 14

3 Java Application Performance and Java Virtual Machine 15

3.1 JVM Internals . 15

vi

3.2 Just-in-Time Compilation . 18

3.3 Memory Management . 18

3.3.1 Memory Allocation . 20

3.3.2 Garbage Collection . 21

4 Object Lifetime Specifications 23

4.1 Object Lifetime . 24

4.2 Object Lifetime Specification and Annotation 25

4.3 Example . 26

5 Runtime Verifier Design 28

5.1 Concept . 28

5.2 Design Architecture . 30

5.2.1 Design Components . 32

5.3 Implementing Runtime Verifier with Maxine VM 34

5.3.1 Runtime Verifier Interfacing . 35

5.3.2 Event Advice Handling . 38

5.3.3 Runtime Annotation Processing . 40

5.3.4 Recording Object Lifetime Specification 42

5.3.5 Specification Verification . 43

5.4 Alternative Considerations: RVM . 49

5.4.1 Implementations . 50

6 Experiment and Analysis 52

6.1 Accuracy of Runtime Verifier . 53

6.2 Performance Analysis for Runtime Verifier 58

vii

7 Related Work and Future Works 66

7.1 Limitation Analysis and Future Works . 66

7.1.1 VM Event Handling . 67

7.1.2 Annotation . 67

7.1.3 Selection of JVM . 68

7.2 Related Work . 69

7.2.1 Object Lifetime Specification . 70

7.2.2 Profiling . 70

7.2.3 Memory Leak Detection . 71

7.2.4 Existing Java Memory Usage Monitoring Tools 71

8 Conclusion 73

APPENDICES 75

A Maxine VM 76

A.1 Maxine VM Startup Sequence . 76

A.2 T1X Non-optimizing Compiler . 77

A.3 Before Filtering JDK-related Method Callback 77

A.4 After Filtering JDK-related Method Callback 78

B Dacapo Benchmark 79

B.1 Benchmarks . 79

B.2 Garbage Collection Tuning . 80

References 81

viii

List of Tables

2.1 Characteristic of Static and Non-static Inn class 13

5.1 Evaluation of Runtime Verifier Extension Options 37

5.2 Event Advice Handlers . 39

5.3 Alternative JVM Selection . 49

6.1 Custom Annotations . 53

6.2 OpenJDK1.7 vs Runtime Verifier Performance Comparision 62

ix

List of Figures

2.1 Memory Leak due to Dormant Reference . 9

2.2 Memory Leak due to Improper Handling of Collection Element 11

2.3 Memory Leak in Collection . 12

3.1 JVM Internal Structure [48] . 16

3.2 JVM Memory Area . 19

4.1 Object Lifetime Specification with Annotation 26

5.1 Runtime Verifier Control Flow . 31

5.2 UML Diagram for Verifier Design Architecture 33

5.3 Conventional VM and Metacircular VM [32] 34

5.4 Semi-space Collector . 45

5.5 Generational Heap Layout . 47

6.1 Four Case Scenarios . 54

6.2 Example Client Code . 56

6.3 Example Client Code Main . 57

6.4 Maxine VMA Performance in Logarithmic Scale 59

6.5 RuntimeVerifier Performance with Respect to Different Components 61

6.6 JDK1.7 vs Maxine VM SemiSpace GC vs Maxine VM Generational GC 63

6.7 MaxineVMA SemiSpace GC vs MaxineVMA Generational GC 64

x

B.1 Impact of GC Pause Time to Throughput Rate with Different Number of Proces-

sors . 80

xi

Chapter 1

Introduction

Software performance and reliability are important to be considered before putting a soft-
ware program into release. High throughput rate, consistent behavior and deterministic
results are particularly important to software applications that run extended amount of
time, such as server side programs. Software verification and testing are key constituents
in program analysis, and play an integral role in developing reliable bug-free software ap-
plications. While verification can find the satisfiability of the specifications through model
checking, testing can take various forms to uncover software bugs statically or dynamically.
Software bugs are mostly language independent; however, the differences in language de-
sign, resource management and runtime execution strategies would result in distinct branch
of techniques in how the same type of bug is to be detected. For instance, we often use
the term, reachability in memory leak related bugs; however, the role which reachability
takes can be quite different for different programming languages. Memory leak refers to
objects/storage that is no longer needed, but is not released. Those unneeded objects will
be persistent in the program until the program terminates, and if they accumulate, they
will use up the amount of available memory, and cause the system to slow down or crash.
For language, such as C/C++, where explicit memory management is used, memory leak
occurs when an object is allocated but never deallocated due to the lost reference to the
unneeded object. In this case, it is said that the object is no longer reachable and is a
memory leak. On the other hand, in garbage collected language, such as Java, when objects
are still reachable but no longer used, this unintentional object retention is considered as a
constituent to memory leak in long term. Therefore, it can be seen that different method-
ologies and strategies needs to be applied in verification as well as testing to detect and fix
the same type of software bugs.

Computer memory is the fundamental unit in storing data used by the system or

1

application processing unit. Since it is finite, running short of memory not only degrades
performance by lowering throughput rate but also incurs reliability issues. Memory leak
bug can ultimately use up all the memory space allocated, and causes the software to crash
or system to halt. This is extremely undesirable behavior for both the software provider as
well as to the clients for their loss resulted from inefficient software performance, wasted
computing resources and low reliability.

In this thesis, we focus on memory leak in Software programs written in Java, and
investigate the runtime verification approach to detect unused object retention, therefore
eliminating the performance bottleneck caused by memory shortage and its resultant soft-
ware reliability issues. Memory leak in the context of this thesis is both considered as a
design bug as well as a performance bug. However, the way we detect this type of bug is
not through traditional performance monitoring/testing, such as heap analysis and load
test. We develop a runtime verifier to find the discrepancies between user specified Object
Lifetime Specifications and JVM garbage collection events to detect Java memory leak.
Our contribution is developing a collaborative framework between user and JVM, and
apply Object Lifetime Specifications in detecting Java memory leak.

1.1 Why Java

Java was first introduced in 1995. In early 90s, when extending the power of network
computing to the activities of everyday life was a radical vision, Java project was initiated
by a small group of Sun engineers led by James Gosling [46]. Now, Java not only permeates
in the Internet, but also has been the important technology behind many applications and
devices that power people’s everyday life, which Oracle Corporation depicts as ”invisible
force” [47]. Java technology also inspires other programming language, and is widely used
in smartphone, handheld game apps and navigation systems as well as e-business solutions.
Java’s wide application usage has its own reasons. Oracle articulates the design principle
of Java language concisely in the five points listed below[35].

• Simple, object-oriented and familiar

• Robust and secure

• Architecture-neutral and portable

• Execute with ”high performance”

• Interpreted, threaded, and dynamic

2

Simplicity and extensive built-in libraries allows programmer apply theory to the prac-
tice with short startup time. Yet, the language design principle to be object oriented from
day one, give Java the ability to function within increasingly complex computing environ-
ment. Extensive compile-time checking, followed by the runtime checking catches syntactic
errors and even semantic errors which makes Java reliable during software deployment. As
a distinguishing nature, Java uses two-step compilation process; the Java source code is
compiled into bytecode, and then this platform neutral bytecode is executed by Java Vir-
tual Machine (JVM). In other words, Java program can be executed in any platform where
JVM is installed. Portability scarifies code optimization to certain degree; however, with
the Just-in-time (JIT) compilation support from JVM, it is possible to compile the byte-
code to the native instructions of ”hot spot” for the CPU in the deployment platform on
the fly, and consequently improving the program performance. Furthermore, in an Java
interpreted platform, the link phase of a program is simple, incremental, and lightweight.
For all the above nature, Java language has been used widely in different area of software
application, and makes it particularly interesting to study and research on.

1.2 Java Memory Allocation

Java language uses dynamic memory allocation scheme which differs from other object
oriented language, such as C++ where objects can be statically allocated on the stack.
Although primitives and local references are stored on the stack, objects are all allocated
onto heap based on runtime information. Object allocation in the heap is costly in terms
of performance as articulated in other literatures [7, 4]. However, Java runtime takes
advantage of the JVM memory management model to reduce the memory page swapping
and fragmentation. This is further discussed in Section 3.3, nevertheless, it is sound that
memory related activities (desired one and undesired one) work closely with Java runtime
that results from JVM specifications and it has big influence to the software performance,
which is important to be researched on.

3

1.3 Runtime Verifier

Given a specification M, some property φ and satisfaction relation, verification is the pro-
cess of determining whether:

M |= φ (1.1)

Verification contains two subcategories, runtime verification and static verification. Dy-
namic verification is performed during the software program execution, and it is concerned
with monitoring and analysis of software and hardware system. Runtime verification tech-
niques are crucial for system correctness, reliability, and robustness; they are significantly
more powerful and versatile than conventional testing[11], and more practical than ex-
haustive verification approaches. Runtime verification can be used prior to deployment,
for testing, verification, and debugging purposes.

Java language and runtime system are dynamic in their linking stages. Memory al-
location are done dynamically at runtime. In this thesis, we design a runtime verifier to
uncover unused objects in Java. Our runtime verifier tool verify against what is specified in
the Object Lifetime Specifications to the actual JVM events. The design goal of this tool
is to assist debugging and verification in performance testing prior to the deployment. As
a research goal, we also want to find implication on what is recommended program design,
coding structure and potential improvements in language design, that can reduce the risk
of memory leak, and improve the performance of Java applications.

1.4 Thesis Organization

This thesis consists of eight chapters with Chapter 1 being motivation and background
introduction, Chapter 8 being the conclusion.

In Chapter 2, we start our discussion by describing the effect of memory leak to applica-
tion performance. We then provides four types of Java memory leak followed by examples.
We conclude Chapter 2 by articulating the challenges we face with traditional approach in
uncovering memory leak in Java.

Chapter 3 is dedicated to Java Virtual Machine discussion as JVM technologies are crit-
ical to our runtime verifier. We discuss about internal components of JVM, JIT optimiza-
tion that improves the performance of the application, and finally the memory management
system in JVM.

4

Chapter 4 introduces Object Lifetime Specification, which is an important concept we
use in our runtime verification. We start our discussion from describing what is Object
Lifetime, and how we can use it to allow deviation from stack discipline. We also explain
how Group is used to associate objects into a cluster of same Object Lifetime Specification.
We then use an example to show how we can use Java annotation to embed Object Lifetime
Specification into the program code.

In Chapter 5, we start our discussion and analysis on our runtime verifier design and
implementation details. We first brainstorm and propose the design architecture by iden-
tifying key components of the runtime verifier. We then describes our implementation
strategy and methodology of the runtime verifier with a meta-circular VM, Maxine VM;
we provide implementation details with respect to each functional component of the run-
time verifier, and modifications on Maxine VM. Finally, we describe implementation with
Jikes RVM, an alternative JVM used when we had to wait for Maxine project team to fix
a stack related bug which we reported.

In Chapter 6, we conduct experimental analysis on our runtime verifier, in terms of
its semantic accuracy and performance. We show performance evaluation with Dacapo
Benchmark; we identified the major source of performance slowdown, and provide improved
implementation to reduce the amount of overhead associated with our runtime verifier.

In Chapter 7, we discuss and analyze the limitations to our tool that comes from design,
choice of JVM, and provide discussions that leads to future improvement. We also discuss
related works in each major concept that we used in completing our runtime verifier.

Chapter 8 is the concluding paragraph where we summarize our methodologies, imple-
mentation and achievements.

5

Chapter 2

Java Application Performance and
Memory Leak

Software performance is one of the key criterion in software evaluation. As the functionality
and the structure of the software gets more and more complex, and as we employ new
distributed and large scale systems which encompass multiple components and services,
especially in enterprise applications, the performance gain or loss gets enlarged to have
bigger influence to the system. System states determine the way requests are processed;
processor, current system load, network usage, as well as the complexity of the request
and other application factors impact the application’s responsiveness. The characteristics
of responsiveness can be divided into three basic measures to characterize the performance
of the application [54]:

Response time: Response time is a direct measure of how long it takes for the appli-
cation to process a request, and it is one of the most widely used metric for performance
measurements.

Throughput: Throughput is a straightforward count of the number of requests that the
application can process within a defined time interval. Throughput rate can be defined
slightly differently for different applications; for instance, in web related applications, a
count of requests or page impressions per second is used as a measure of throughput rate.

System availability: System availability is usually expressed as a percentage of appli-
cation running time minus the time the application cannot be accessed by users. This is
an indispensable metric, because both response time nor throughput are zero when the
system is unavailable.

6

Performance can also be defined by resource requests and by measuring resource re-
quests in relation to throughput [54]. This becomes a key metric in the context of resource
planning. For example, to know which resources are needed to achieve full application scal-
ing, is directly related to understanding the frequency of requests for each resource type.
Therefore, performance can be seen to have direct correlation with resource consumption
in this resource-centric view.

2.1 Memory Management and Performance Degrada-

tion

Memory is the fundamental resource as an storage in storing data used by the system or
application processing unit. As a finite resource, it can become performance bottleneck,
and can affect the throughput and reliability of a running application. In Java, memory
management involves various components from the JVM, and also runtime information
which makes it complicated to analyze and predict. When a Java application is started,
JVM obtain memory from the operating system. JVM generally has five discrete memory
areas: Text Resident Segment, Permanent Generation, Code Cache, Active Heap and
Garbage Heap (details discussed in Section 3.2). The design of JVM is to insulate user
applications from the host machine platform-specific memory layout, and let it work only
with an isolated memory space, which is known as Java heap memory. Java heap space
is the runtime data area, and is located at bottom of address space which grow upwards.
Whenever Java application creates an object using new operator, the object is allocated
memory from Java heap and when object is no longer referenced by other active objects,
it is garbage collected, and its memory is put back to heap space.

Although the garbage collection process effectively free heap space for new object al-
location it involves determining a safe point and ”lock”(or partially) the heap area that
it is going to operate on. This means it not only incur certain performance overhead in
monitoring and determining the safe point but also inevitably slow down the application
thread as user thread cannot have access to the heap area that is to be garbage collected.
For this reason, JVM has its own garbage collection mechanism to determine when is the
”good time” to do garbage collection, and controls the frequency of garbage collection to
not degrade application performance; in other words, even an object has no reference, it
will not be garbage collated right away. However, if the application heap is continue to
grow to certain limit, garbage collection will take place to free the heap space by releasing
unreferenced objects. Therefore, increased memory footprint incur more frequent garbage
collection, therefore, causing throughput rate to decrease. This leads to our motivation in

7

keeping the heap ”clean” by detecting unused junk object that is retained in heap space
without user’s knowledge.

Unintentional object retention due to design error, misunderstanding of Java language
specification or sheer programmer’s mistake causes heap to be filled with unused objects,
which not only incur performance overhead associated in triggering more frequent garbage
collection, but also potentially cause the application to running out of memory, and leads
to crash or other unstable behavior.

2.2 Java Memory Leak Examples

Memory leak refers to objects/storage that is no longer needed, but is not released. Those
unneeded objects will be persistent in the program until the program terminates, and if
they accumulate, they will limit the amount of available memory, and cause the system to
slow down or crash. For garbage collected language, such as Java, objects are automatically
reclaimed during Garbage Collection; however, memory leak can still occur in a form as
unused objects retention even after their intended lifetime. In Java, memory leak occurs
when the references to unneeded objects are retained so that reference counting-based
approach and reachability test falsefully categorizes the object as active and makes it
ineligible for Garbage Collection (GC).

The type of memory leak that we want to detect in this context is the design bug which
manifest itself in Java applications. Unintentional object retention can be a semantic error
where programmer forgets to null the reference of an obsolete object. This type of memory
leak will silently manifest itself in the program with the effect of low performance caused by
increased memory footprint; it might cause disk paging or program failure due to running
out of memory which incur severe reliability problems [9].

To understand better about the correlation between Java memory leak with applica-
tion performance, and also to study potential occurrences and challenges associated with
detecting unused object retention, we present a subset of Java memory leak led by unused
objects retention. These examples range from Java language specifications to code design
issues which leads to unintentional object retention.

2.2.1 Dormant Reference

An typical memory leak in Java is Dormant reference. As the name indicates, it means
reference to an object persist after its suppose lifetime. This happens when a reference

8

is created when the object is active, and the reference persists after the object becomes
unused. Sample code snippet provided in Figure 2.1 illustrates this. In an imaginary
server application, cdatalog object is used during setup process, and it should be no
longer needed after the setup completes. However, the user fail to abide with the lifetime
specification of cdatalog object, and due to the declaration, cdatalog is persistent until
the belonging instance of SocketServer class is garbage collected. Since the lifetime of
SocketServer instance might be much longer than that of cdatalog, cdatalog object lives
much longer than its intended lifetime. If cdatalog object consists of other data structures,
its size might be large enough to be influential as unneeded memory consumption.

Figure 2.1: Memory Leak due to Dormant Reference

This type of memory leak is the most common and well-known memory management
anti-pattern [52, 14], and the solution is to remove the reference of unused object by setting
it to null or remove the element from the dynamic data structure or use weak references if
necessary.

9

2.2.2 Scope and Static Field

Another type of design related memory leak problem results from misunderstanding in the
scope of a variable. Scope, identify the lifecycle of object. For instance, if user declares a
variable inside a method, this is called a method scoped variable; the variable only exists
while that method is running and is eligible for garbage collection when the method exits.
If user declares a variable inside a class definition, then it is object scoped. The variable
will be garbage collected as soon as there is no reference to that object. Static variable
is unique in the sense that it is class scoped. The classes in java are usually loaded at
startup and its lifetime bounds to the JVM. If user declare a variable as static it will live
for the entire lifetime of the JVM, unless it is individually nulled out. If a static variable
references non static objects, it effectively makes those objects static as well. Therefore,
misuse of static variable leads to memory leak in Java.

Static fields and collections are often used to hold caches or share state across threads.
As discussed, mutable static fields need to be nullified explicitly. If the user does not con-
sider every reference that static variable refers to, the release will not take place, resulting
in a memory leak.

2.2.3 Java Collection Framework

Java Collection Framework is introduced in Java 1.2 to replace legacy class, such as Vector,
and also provide a common interface for existing data structures. It is widely used to hold
caches, page map in various applications. It is also prone to memory leak if object reference
is not dealt appropriately. Since elements in the Collection is often used by other objects,
so it is subjected to Zombie reference, which is a reference to an object that is no longer
used. Rayside et.al pointed out that if a junk object is created, it is possible to exacerbate
the problem through object interactions[52]. For instance, object A has reference to a junk
object, B; object C might also create a reference to B based on the fact that there is A
already points to B. This will make the removal of junk object B harder. Figure 2.2 below
illustrate this.

10

Figure 2.2: Memory Leak due to Improper Handling of Collection Element

In this example of implementing stack using array, the user forget to set the Object to
null after decrementing the size count in the pop method. Although the size of the stack
is reduced by one, the size of memory it holds is unchanged without user’s knowledge.

This problem can be mitigated by using standard data structure from the Collection
framework; remove-related method in standard collection will set the object reference to
null automatically. However, design error can continue to make Collection vulnerable for
memory leak. Consider the use of ArrayList from the Collection framework in the example
below (Figure 2.3). Due to improper boundary selection in deleteData method, one element
in the ArrayList is leaked for each iteration defined in the outer for loop.

11

Figure 2.3: Memory Leak in Collection

12

2.2.4 Inner Class Example

The Java inner class is when a class definition is contained within another class. There are
two types of inner class, the static one and non-static one. The key characteristics of the
two is summarized in Table 2.1 .

Type Static Inner class Non-Static Inner class

Construction
Do not require an instance of
the containing class to be constructed

Require an instance of the
containing class to be constructed

Reference
May not reference the containing
class members without an explicit reference

Automatically have an implicit
reference to the containing instance

Lifetime Have its own lifetime
Lifetime is supposed to be no longer
than that of the container

Table 2.1: Characteristic of Static and Non-static Inn class

The memory leak arises when a non-static inner class lives longer than its container.
Since there is an implicit reference from the inner class to the containing class, the container
object becomes memory leak. This can happen if an object outside of the containing class
keeps a reference to the inner object, without regard to the containing object. This leads
to a situation where the inner object is alive but the references to the containing object has
already been removed from all other objects. Therefore, the inner class object is keeping
the containing object alive with the implicit reference.

This type of memory leak is widely seen in Android Application, in which Activity, View
and Context is used frequently. An Activity is an application component that provides a
screen with which users can interact in order to do some task[1]. Activities contain a lot
of information to be able to run and display. Activities are defined by the characteristic
that they must have a View Tree; each View keeps a reference to the rendered Bitmap that
represents its display. The problem with having non-static inner class in Activity expose
the risk of having reference from inner class even after its lifetime, consequently, the entire
layout hierarchy that Activity holds will be leaked.

13

2.3 Challenges

Traditional preventative approach focus on the stack disciplines to prevent the retention
of unused objects. In extreme example, one can forbid dynamic memory allocation which
forces all objects to be attached to stack frame, and will be guaranteed to be released after
the end of the frame. Less restrictive approach, such as Realtime Specification for Java
allows dynamic memory allocation but forbid object from referencing objects at deeper
stack frame [2]. This limits the expressibility, and also introduce compatibility problem
with standard libraries which restricts developer from general purpose development. On
the other hand, detection approaches researched in previous studies that base on stale-
ness heuristics and inference for object relationship [53] produce weak guarantee by either
underestimate or overestimate the unused objects in the Java program. As an example
discussed in Section 2.2, unused objects (garbage object) that merely serve as a cache in
the hash table might not be identified as junk by staleness heuristics as the hash table
rehashes its elements after the load factor reaches 0.7.

Although anti-patterns are studied, memory leak in Java program is still hard to de-
tect and prevent. One reason is that, it is difficult to distinguish meaningful patterns in
program’s heap; further, implicit memory management adds layers of abstraction within
highly optimized industrial JVM, which makes it difficult to comprehend the traits of mem-
ory leak bug. In next chapter, we articulate and discuss the core JVM technology that
memory management details that are crucial in solving Java memory leak problem and
increase the performance of Java applications

14

Chapter 3

Java Application Performance and
Java Virtual Machine

In previous chapter, we explored the relation of memory leak and Java application perfor-
mance. We presented the performance criterions, impact of memory leak to the application
performance, and we have presented four types of Java memory leak examples derived from
language design and application design. In this chapter, we look into the Java performance
considerations from another perspective, from JVM internals. This is an important part
to consider in addition to memory leak because JVM governs many of the important Java
runtime work which is absent from other object oriented language; further, JVM also plays
an important role in making Java highly portable, scalable and efficient. Last but not least,
we integrate our runtime verifier into a JVM, therefore, understanding JVM is a necessity.

We start our discussion from Java Virtual Machine internals to introduce core parts
of JVM; we then move onto Just-in-time optimization, which is a runtime optimization
engine that drives Java code efficient on targeted platform; lastly, we investigate memory
management scheme of JVM where memory allocation and garbage collection mode are
studied with performance considerations.

3.1 JVM Internals

Each Java application runs inside an entity that is a runtime instance of some concrete
implementation of the abstract specification; such a entity is Java Virtual Machine. In
Java programming language, source code are not directly compiled into a target specific

15

native code; to improve the code mobility, it is first compiled to a intermediate level
abstraction language called bytecode for a virtual machine that is running on the memory
of target platform. JVM acts as a bridge between platform independent bytecode and the
machine specific native code by compiling or interpreting the bytecode to machine specific
instruction sets. With extra layer of abstraction, JVM also enforces type-safe reference
casting, null reference checking, structured memory access and array bounds checking,
which makes Java program secure.

As an abstract computing machine, JVM consists of Thread, Code Cache, Permanent
Generation, Heap Area and their components to run Java application. Figure 3.1 below
illustrates the internal structure of JVM.

Figure 3.1: JVM Internal Structure [48]

16

Java Thread is a single unit of execution in a Java program. While maintaining Java
Thread, JVM also governs JVM System Thread. JVM System Threads are the background
threads that runs with the application main thread. In a HotSpot JVM, JVM System
Thread includes VM Thread, Compiler Thread, GC Thread, Interrupt Thread [49]. Each
thread has a Program Counter which records the instruction to run. Each thread also has
its own stack that holds the frame for each method to be executed. Frame is a container
that holds specific information associated to a method; it contains reference to runtime
constant pool for class of the current method (Figure 3.1), local variables, operands and
the return value. Frame is added to the stack upon method invocation and popped when
method returns.

Code Cache belongs to non-heap memory space, and it holds native code compiled
by Just-In-Time compiler during the JIT compilation process. The reason for having
JIT compilation is to improve the runtime performance; JVM tries to find the frequently
executed code block, and instead of doing interpretation every time it visits that code block,
JIT compiler compiles it optimized machine code specifically for the target platform.

The Permanent Generation memory area is used to store internal metadata required by
the JVM to execute a Java application. Permanent Generation contains interned Strings
and Method Area. Method Area stores class information, such as Classloader Reference;
Runtime class constant pool that holds method reference, field reference and attributes;
field data and method data that has type, modifiers and attribute related information; and
method code which holds method’s bytecode, local variable table and exception table.

Heap area, which is the key focus under Java memory management (discussed in later
section), is used to allocate new objects and arrays. Heap is divided into different part
base on memory management strategies in Garbage Collection. For Generational Garbage
collection scheme, that bases on the hypothesis that most of the objects die in early stage,
heap is divided into Young Generation and Old Generation. Young generation contains
objects that is newly allocated, and they are promoted to Old Generation after they survive
enough times. Note that the benefit of having generation concept is that JVM can apply
different garbage collection algorithm and at different frequency to achieve optimal appli-
cation performance. For example, it is possible to apply simple Mark-and-Sweep collector
at Young Generation frequently to recollect unreferenced objects so that new objects can
be allocated in Eden space, while more thorough garbage collection is done less frequently
in Old Generation to reduce the time for ”stop-the-world” collection.

While running Java application, JVM also does important performance optimizations.
The next section discusses a key optimization engine in JVM, Just-in-Time Compiler

17

3.2 Just-in-Time Compilation

In traditional compiled language, such as C/C++, code optimization is done during com-
pilation process; optimized machine code is generated for host CPU which is aimed to run
in the most efficient way. This brings in one limitation: it only runs on targeted platform.
One notable aspect of JVM that increase Java application performance is the Just-in-Time
compilation process; it can be seen as the second stage of Java compilation which try to
balance the portability and performance of Java program. Java source code is first com-
piled into bytecode which is platform independent. Bytecode is stored in class file, and
is an intermediate code, that needs to be verified, linked and interpreted into platform
specific machine code. The interpretation process can be seen as a dictionary translation,
from bytecode to machine code; there is no optimization done during the interpretation.
Interpretation shows advantages when the method bytecode block is large and infrequently
used, which is common in servelet application. However, with the overhead in branching,
decoding and manipulating stacks, doing interpretation during every run of the frequently
used method and code body is inefficient. To address this problem, most of the JVM, such
as JRocket, Hotspot support JIT compilation, which is to determine the hotspot based on
dynamic runtime information of a Java application, and compile that part of the code to
be machine specific and highly optimized instruction set.

In a nutshell, JIT optimization includes inlining a method, instead of calling method
on an instance of the object it copies the method to caller code to prevent any overhead;
eliminate locks if monitor is not reachable from other threads; replace interface with direct
method calls for method implemented only once to eliminate the overhead of calling virtual
functions ; join adjacent synchronized blocks on the same object; and to eliminate the dead
code.

3.3 Memory Management

In Java, memory management involves various components from the JVM, and also run-
time information which makes it complicated to analyze and predict. JVM generally has
five discrete memory areas: Text Resident Segment, Permanent Generation, Code Cache,
Active Heap and Garbage Heap (Figure 3.2).

The Text Resident Segment memory is the part that contains operating system libraries
as compiled, executable native code (ie. libjvm.so, libnio.so). These libraries are platform-
specific, and is read-only so that it and cannot be modified by the JVM.

18

Figure 3.2: JVM Memory Area

19

The Permanent Generation memory area is used to store internal metadata required
by the JVM to execute a Java application, such as classfile bytecode and class definitions.
Since every time a class is loaded into the JVM, the JVM allocate some of its Permanent
Generation memory area to store the necessary internal metadata and definitions for each
loaded class, Permanent Generation memory size should be adjusted accordingly when a
large number of classes is to be loaded (ie. application that uses many jars, big classpath).

The Code Cache memory area is the memory space used to store all the native code
produced by the JIT compiler during the execution and compilation of the Java application
in runtime. As being described in previous section, JIT is a dynamic compilation techniques
to increase application performance, by compiling or recompiling the ”hotspot” of the
application methods to incrementally improve application performance.

The Java heap is the runtime data area where JVM allocates memory for all of the Java
objects, both scalar and array used by Java application. The Java heap space is the most
frequently tuned feature of a JVM, and is configured with the -Xms and -Xmx command
line options. -Xms indicates the minimum heap size, and -Xmx means maximum heap size.
The reason for having these two parameters is that the Java heap space is by default lazily
allocated by the JVM as the application executes; therefore, it is dynamically growing.
When a Java application is first started the Java heap space is initially very small, and
then over time grows to occupy the full maximum reserved size specified with the -Xms and
-Xmx command line arguments. Java heap can be divided into different parts, live heap and
garbage heap, which as the name indicates, means the heap area for active objects, and
the other heap for garbage collected objects. To improve Java application performance,
heap layout can be also specified into generations which makes objects reclamation more
efficient.

3.3.1 Memory Allocation

Whenever a class instance or array is created in a running Java application, new objects
are allocated onto heap. The Java heap memory area comprises the space taken up by
the currently live objects, objects which are dead but have not yet been garbage collected.
The live-heap memory area is the portion of the Java heap space that contains the live
(reachable) objects currently in active use by the Java application. As an application
executes, the size of the live-heap memory area changes dynamically.

Stack is also a place where memory allocation can happen. When a new execution
thread is created, the Java virtual machine creates a new Java stack for the thread. Java
stack is used to store the thread’s states in discrete frames. Stack frame has three parts:

20

local variables, operand stack, and frame data. The sizes of the local variables and operand
stack are measured in Words, and their size are determined at compile time and included
in the class file data for each method. Those statically allocated memory are bounded by
the scope of stack frame, and they are not part of the automatic memory management
scheme.

Each Java application has its own binding JVM, and there is only one heap in a JVM
instance, which all threads share it. Consequently, there is no possibility of having more
than one Java application compete for single heap resource. This indicates that memory
management happens in each individual Java application, and can be tuned depends on
each application’s memory usage characteristics to attain improve application performance.
Although JVM has instruction to allocate new memory on heap when object allocated, it
does not directly free the memory for garbage objects. This is done by garbage collector.

3.3.2 Garbage Collection

While JVM is responsible for deciding whether and when to free memory, garbage col-
lector’s responsibility is to actually reclaim the memory occupied by an object that is no
longer referenced by root or active object in the running Java application. JVM specifi-
cation does not explicitly states that way memory should be freed. However, it is critical
that finite heap space is used in a sustainable way so that there is memory space available
for Java application to allocate new objects when running.

There are different algorithm in garbage collecting unused objects; each method has its
own advantages and disadvantages, and all of them incur certain overhead to the executing
application. Trade-off exists in a sense that either more computing resource is needed or
application has to record lower throughput rate during garbage collection. For example,
any variation of sequential garbage collection requires to ”lock” heap space to be collected;
this will prevent the Java application to keep on allocating new objects to that space
(application has to wait.). This can be improved by doing ”partial locking”, to collect part
of the heap at a time; however, this requires extra information to remember the part of the
heap space being operated on, and monitor each part of the space to determine which part
requires garbage collection. Further, having heap ”divided” into separate smaller part
for garbage collection requires more frequent garbage collection, consequently, overhead
associated with starting the garbage collection and any safe-point check would be increased.
Another way to reduce the amount of waiting time for sequential collection is to have
multiple garbage collector with support from multiprocessor, and let them do ”parallel
collection”. This will reduce the amount of time to lock the heap, but introduce hardware

21

requirements and also overhead associated for coordinating different garbage collector so
unused objects are reclaimed.

Fragamentaion is also an important factor that garbage collection has to handle to
reduce its impact to the performance of the Java application. The reason for fragmentation
to occur is that objects that are spatially next to each other will not necessarily become
unreachable at the same time. This means that heap space may become fragmented after a
garbage collection, so that the heap become many small free spaces. This incurs problems
when Java application tries to make allocation of large objects that do not fit into the
small free space. In addition, those small free spaces on the heap, if they are smaller than
the minimum thread local area size, they can not be used. The garbage collector discards
them as ”dark matter” until a future garbage collection frees enough space next to them
to create a space large enough for a TLA [50]. This inefficient use of heap, if not dealt
appropriately with garbage collection algorithm will result in reduced space available heap
size for Java application and potentially cause out of memory error.

In this chapter, we analyzed JVM internal structure and its core runtime elements
with respect to Java application performance; specifically we made correlation between
the memory management with performance considerations, which leads to our solution
and strategies discussed in next chapters to improve Java application performance.

22

Chapter 4

Object Lifetime Specifications

To detect the memory leak in Java application, we use an important concept called Object
Lifetime. Object Lifetime is a term used to describe the time interval an object is alive in
the running program. It is different from the term scope because scope defines the range in
which variable is visible and accessible. Further, scope can be also influenced by the access
modifier defined in the language, while Object Lifetime does not. Object Lifetime can be
thought of as a flexible way of defining the usability and life of a dynamic object[20].

In Object Oriented language there are four type of objects that makes up an application
program. Global Object, Automatic Object, Static Object and Dynamic Object. Global
Objects, also referred to as External Object are objects that are persistent and visible
through out the lifetime of the program, and its identities and attribute remain constant
throughout the program. Automatic Objects, also know as local object, are persistent
only in the local scope where it is instantiated. Consequently, Automatic Objects are
automatically destroyed when that particular local scope is about to exit. Static Objects’
lifetime is bounded by its containing class’s lifetime; it is shared among all the instance of
the class where Static Object is declared. Last but most important to our research in this
thesis, is the Dynamic Objects. Dynamic Object’s lifetime can be controlled differently
in different language; however, one thing in common is that there is no static binding
frame/scope to deallocate it, unless otherwise specified by the user.

In this chapter, we present one of the key ideas our runtime verifier uses for detecting
unused objects in Java heap. First, we introduces the concept of Object Lifetime. Next,
we discuss about the way to associate objects to a ”relatively” fixed stack frame using
Group. We then discuss how this is realized in the context of Java programming language
with a feature called Annotation. Towards the end of this chapter, we present an example

23

program code to illustrate how Object Lifetime is embedded into a real Java program.

4.1 Object Lifetime

Object Lifetime indicates the time between when an object is created and destroyed. This
duration in Java is ”fuzzy” especially towards the end because object reclamation can
be influenced by Java runtime, and decision as part of memory management. Further,
conservative approach in determining the root set can also retain dead object alive during
minor collection especially in incremental garbage collection.

In order for an object to be created, Java runtime first has to locate the .class file
on the disk, and load it into main memory. An object is then created from the class
with new keyword. To initialize, Java allocates memory space for the object, and set a
reference to that object so that the Java runtime can make reference of it. Finally, Java
calls the constructor, which initializes the fields and complete other tasks for the object
to be usable. The object will now allow access to its method and state variable following
specified access specifier, and the duration between first-use time and last-use time will be
considered as the active time of that object. An object should become garbage collectable
when it does not have any influence on the output of the program; namely, there is no
more reference to that object. Garbage collection within Java runtime will then remove
the internal reference to that object, and remove the junk object from the main memory
so that memory becomes available again.

In general, knowing when an object becomes garbage is undecidable. Runchiman used
staleness, which is the time between object’s last use and the time when it becomes garbage
to approximate the ”junkness” of an object [53]. However, this approximation is flawed
with overestimation or underestimation, therefore producing weak guarantee. Therefore,
it can be seen that determining the memory leak based on predicting the Object Lifetime
still produce unreliable results. Further information has to be obtained from profiling,
which requires either modifying JVM or dynamically attaching extension, in both cases, it
will result in certain amount of overhead on running Java application, therefore, affecting
the performance.

Thus, in this research, we define the object lifetime to be strictly based on when it is
created and usable, and the time when there is no more reference to it, and is collected by
garbage collector. As we will discuss in next section, we explicitly include the Object Life-
time Specification in Java program with developer written annotations instead of applying
heuristics in approximating or predicting the object’s lifetime.

24

4.2 Object Lifetime Specification and Annotation

In previous section, we introduced the concept of Object Lifetime, and briefly discussed
the limitation of relying on heuristics to predicatively identify junk objects. In this thesis,
we use a methodology to explicitly state the Object Lifetime for objects, and use this
as the property to verify at runtime; in other words, instead of predicting the Object
Lifetime through analyzing profiling data to detect unused junk objects, we specify the
Object Lifetime as a property of objects a head of the time based on user knowledge and
software design requirements, and check the satisfiability of this property during runtime.
We say this is the runtime verification of Object Lifetime Specification. Since the Object
Lifetime information is specified by user, it needs to happen at Java source code level. The
difficulty comes in as there needs to be a way to instrument the user code, and carry over
the Object Lifetime information to runtime without perturbing the program execution and
its internal state. Below, we discuss a Java technology that helps us solve this problem:
Java Annotation.

Java Annotation is introduced in JDK1.5, and it is a form of metadata that provide
information about a program that is not a part of the program itself [36]. Being a meta data,
annotation dose not interfere with normal program execution; however, other components
can use this meta data information to make logical decisions, such as class consistency
check, parameter validity check or compiler instructions. For instance, when dealing with
Java serialization (write an object into a stream to transport over a network, and later being
rebuilt), we traditionally use transient keyword to say a field is not serializable; however,
with the functionality of annotation, we have a generic way of adding information to class,
method or field; these information can be processed by user, compiler and most importantly,
the Java runtime. Java language also has standard annotations, such as @Override to tell
the compiler that a method overrides the corresponding methods in it superclass or an
interface. There are other standard annotations, such as @Deprecated, @SurpresWarnings,
@SafeVarargs [44] that can be used to provide information to compiler, and validity check
at runtime. Annotation provides a wide range of usage, summarized in the following three
categories[36]:

Information for the compiler: Information contained in annotation can be used by
the compiler to detect error or suppress warning

Compile-time and deployment-time processing Annotation information is used
by software tools to generate XML files and code

Runtime processing Available for runtime processing

Java Object Lifetime is runtime information about objects; therefore, we are particu-

25

larly interested in the third usage of Java annotation. We see annotation’s main powerful-
ness as to be able to be carried over to runtime in addition to compilation level processing.
To persist the annotation information, the Retention Policy should be specified to inform
the Java compiler and JVM that, the annotation should be available by reflection at run-
time.

With these features from Java Annotation, our goal is to build a runtime verifier that
lets the developer to embed Object Lifetime information at source code level as a specifi-
cation, and we verify this specification against actual JVM events to determine the satis-
fiability of Object Lifetime Specification at runtime. If the Object Lifetime Specification
is satisfied, we are sound that the objects’ lifetime is ”controlled” in the way user wanted
(specified through annotation), and agree with the actual JVM memory management on
the objects; therefore, there is no memory leak. Otherwise, objects’ lifetime specification is
not satisfied, and it indicates there is a discrepancy between what user’s belief on objects’
lifetime with actual memory management tasks happened inside the JVM. We illustrate
this idea with an example in next section.

4.3 Example

As discussed in previous section, we enable the user to embed Object Lifetime specification
at source code level through annotation, and our tool does runtime verification on the
satisfiability of the property specified. To convert Object Lifetime to a specifiable property,
we note the beginning and the end of the Object Lifetime by introducing custom annotation
@Create and @Release. The usage is shown in Figure 4.1 below.

Figure 4.1: Object Lifetime Specification with Annotation

The example provided in the figure illustrates a simple code snippet of two method
annotated by custom annotation, @Create and @Release. @Create indicates the start of

26

the Object Lifetime and @Release indicates the end time of Object Lifetime of associated
objects. Since the annotation is done on method level, it governs all objects declared in the
method. For instance, node, and objOne is instance variables that is instantiated in allo-
cate a method; therefore, user uses @Create(”GroupA”) to indicate the start of the Object
Lifetime for objects referenced by node and objOne; it has same specification influence to
both node and objOne. To indicate this relation between annotation and objects declared
inside of the annotated method, we use the concept Group to associate objects to a group
[6]. In the example above, node and objOne is associated to GroupA. By associating ob-
jects to group when object is created, we effectively assign a ”tag” to objects with same
Object Lifetime. This becomes useful when we specify the end of Object Lifetime. When
the user specify the end of Object Lifetime to a group of objects, @Release annotation
is used. In the example code snippet, @Release(”GroupA”) is annotated on deallocate a;
by doing so, user is indicating that any objects whose Object Lifetime is associated with
GroupA should be reclaimed and consequently eligible for garbage collection. Observing
into the content of deallocate a method, node is assigned to null while objOne is not; there-
fore objects referenced by objOne is still reachable, and will not be collected in the next
garbage collection cycle. Consequently, the user annotated Object Lifetime Specification
is not satisfied, and we report this as junk object retention to the user for his further
inspection.

27

Chapter 5

Runtime Verifier Design

In previous chapters, we have discussed Java performance considerations in terms of JVM
runtime and Memory Leak. We have defined unused object retention in Java application,
which in the long run constitutes memory leak because of fixed heap size. We have also
studied four types of Java memory leak, looking from language design and code design
perspectives to show how unused junk objects can manifest itself in the code without
being noticed. We have researched into JVM internal components to understand better
about JVM memory management scheme and how our verifier can work with JVM to
improve the Java memory management so that the Java application performance can be
increased. We then identified our main idea to be used for runtime verification, Object
Lifetime Specification. In this chapter, we proceed our discussion into the design and
implementation details of our runtime verifier, and shows how our tool can be applied, and
work with JVM to detect unintentionally retended objects.

5.1 Concept

Solving memory leak in terms of unused object retention is not an easy task for two reasons.
Firstly, real Java application allocates many objects on heap at runtime, thus, heap usage is
dynamic and unpredictable; furthermore, since heap activity is managed by Java runtime,
it is compulsory for our runtime verifier to work with it with minimal perturbance to the
JVM, increasing the requirements for interfacing and modularization. Second, since unused
object retention comes from design error, which can be user’s sheer negligence, there is no
direct and precise template to determine memory leak.

28

With all those factors in considerations. We propose the Java Virtual Machine-assisted
collaborative junk object detection with Object Lifetime Specification. Conceptual-wise,
we move forward from predictive approach of using Object Lifetime to allowing the user
to specify Object Lifetime; user in this context is the developer or performance testing
engineer who have exclusive access to the source code of the Java application as well as
the design documentations. As the unused object retention in Java program results from
design error, we give users the ability to do the Object Lifetime specification. We believe
that user of our tool is the one that is most familiar with the design and semantics of
his Java program; he understands the design factors/goals, requirements, and performance
considerations which is not accessible to the public nor JVM runtime. Consequently, he has
the direct knowledge of Object Lifetime information of the interesting objects in his code.
Note that, we are using the term ”interesting object”, namely because, we give the user the
freedom to choose which objects are of greater significance and should be runtime verified
for memory leak. We foresee the amount of overhead associated to our verification tool, and
we provide guidance but let the user to choose the amount of annotation (specification), he
wish to leverage on his code. Our tool will extract the Object Lifetime specification from
the user annotations in Java source code, and observe the runtime JVM events to verify if
the specifications have been met or not. In the case of property violation, we report this
to user through log.

Based on the design concepts, we delineate the following top-level design goal for our
tool as part of the architectural design considerations and detailed component requirements
discussed in the next section:

1. Clean and Robust: We want our tool to be light-weight based on lean design prin-
ciple, and fault tolerant and can handle exceptions that occur inside of our runtime
verifier.

2. Minimal Perturbation to JVM and User Program: Program under the test is
running within JVM, we do not change or alter the internal state neither JVM nor
the Java program following isolation principle [38].

3. Verification Accuracy:Our runtime verifier should correctly process user specifi-
cations, and can verify Object Lifetime information with actual JVM event.

4. Performance: Overhead is expected, but should be controlled to have minimal
influence to the application performance.

5. Effective Information Report:We imagine our research tool to be used in both
Prototype Verification Test and Engineering Verification Test. Therefore, the infor-

29

mation we report is crucial to the user to determine the source of memory leak, and
must be precise and adequate (not too much and too less)

In the next section, we start our discussions on the design architecture and main com-
ponents of our runtime verifier tool. We leverage our discussion closely to a research
metacircular Java Virtual Machine from Oracle Cooperation of which our runtime verifier
is to be integrated on for experiments and performance evaluations.

5.2 Design Architecture

The design of the runtime verifier is modularized and each components is designed to be
able to communicated with each other. Specific components are also interfaced with JVM
to observe VM events for verification. The design architecture is derived from the runtime
process flow. This process results from normal execution flow of a Java program running on
a JVM, and the runtime verifier will act as an extension to the JVM , without perturbing
the process. The flow chart provided in next page illustrates this (Figure 5.1).

As shown in the Figure 5.1, the lifetime of runtime verifier is started when the JVM
starts running. While the Java application under the test is running, our runtime verifier
observes for the JVM event advice callbacks; we are observing VM events, when method
is invoked and when object is created. When our runtime verifier is notified of method
invocations, we check for if an annotation exists on the invoked method. If the custom
annotation Create is annotated on the invoked method, we extract the annotation value
from it (ie. Group information), and store it into runtime verifier’s data structure, which
will be later retrieved and written into Java Object Header for objects created inside of this
method. If annotation Release exists, we record the annotation value into a static data
structure in our runtime verifier, which keeps track of the groups of objects to be released.
To meet the goal of robustness, we deal invalid annotation by logging the warning message,
and does no operation on it; we do not throw exception nor use stdout to inform user about
this at runtime. While user program is executing, and our runtime verifier process Object
Lifetime Specification, GC thread might become active to do garbage collection. When
GC thread has judged an object as active object (survived), we read from the object’s
header field, and check if this object belongs to the group that needs to be released. If so,
we report to the user about this contradiction between user specified object lifetime to the
actual events happened during JVM memory management.

30

Figure 5.1: Runtime Verifier Control Flow

31

5.2.1 Design Components

In analyzing the above mentioned control flow, we propose the following five major compo-
nents as part of our runtime verifier architecture. We summarize these components below.

1. VerifierMain: VerifierMain is the central module of our runtime verifier. It should:

• determine lifetime of runtime verifier

• create static data structures to be accessible for other modules and JVM

• provide interfaces to facilitate communication between submodules

• handle and recover from erroneous state

2. EventHandler: EventHandler implements Observer Pattern [21] for JVM events.
It should handle:

• new object/object array creation advising

• write annotation value to object header when object is created

• method invocation for virtual/static/special methods

• notice before and after garbage collection

3. AnnotationExtractor:AnnotationExtractor retrieves annotation value if there is
annotation on a method. It should manage:

• annotation interface to supply custom annotations

• @Create annotation and @Release annotation

• convert annotation value into unique and deterministic long value

• store unique long val into VerifierMain’s static data structure

4. JunkReport: JunkReport is used to report junk object information to the user at
runtime. It should:

• log into a user specified log file; display via user interface of the source of junk
objects

32

Note that since our verifier acts as an extension to the JVM, JVM also have to be
modified accordingly to meet the design goal. For instance, Java runtime scheme as to be
modified to instantiate the runtime verifier; object layout has to be modified to set extra
Wort field to record objects’ associated group information; garbage collection also needs to
be intercepted with an extra check on active objects to see if it violates the user specification
of Object Lifetime. These modifications are discussed in depth in the following sections.

To validate the concept and communication between the modules described above,
a test design architecture is created and tested with mock objects; the proposed design
architecture is tested for its conceptual validity. The garbage collection process from Java
runtime, and annotation extraction process is substituted by mock objects in this Design
Verification Test. A UML diagram of the proposed design architecture is provided in the
Figure 5.2 to show the basic interaction between the modules and JVM.

Figure 5.2: UML Diagram for Verifier Design Architecture

33

5.3 Implementing Runtime Verifier with Maxine VM

Maxine Research Virtual Machine is a open source meta-circular JVM created by Oracle
Laboratory. In contrast to industrial VM which is written in multiple languages, Maxine
VM is designed for and written in the Java Programming Language which is aimed to pro-
vide simpler research and experimental platform to the researchers. As being articulated
in the Maxine project wiki, Maxine VM is designed with an emphasis on leveraging com-
ponentized design, and code reuse to achieve flexibility, configurability, and productivity
for academic and industrial virtual machine research [28]. Since Maxine VM is a meta-
circular JVM, its design integrates closely with Oracle’s standard Java Development Kit
packages, and exploits the advanced language features such as annotations, static imports,
and generics, which makes Maxine VM suitable to be studied, and modified with support
from current JDK. Figure 5.3 shows an comparison between conventional VM to meta-
circular VM[32]. From the figure, it can be seen that conventional VM establish itself on
top of C/C++ language and does not use Java language; the interfacing with JDK is also
low compared to meta-circular VM which reside itself in Java Language and JDK. This
meta-circularity allows the JVM itself to benefit from the features it is intended to provide,
and further maintain a co-evolution of features in the itself and the application it is running.

Figure 5.3: Conventional VM and Metacircular VM [32]

34

Although Maxine VM is designed to facilitate JVM research, it is intended to generate
comparable performance to existing industrial JVM. Maxine includes C1X optimizing JIT
compiler, which is an refined version of C1compiler from HotSpot JVM; C1X retains most
of C1’s original design, with some front-end improvements, simplifications, and cleanups
while porting to Java[30]. It should be noted that Maxine VM does not have interpreter;
methods are first compiled with a lightweight baseline compiler, which translates Java
bytecode into preassembled native instructions. Then C1X optimizing compiler is trig-
gered to further optimize methods that are frequently invoked. During JIT optimization,
C1X does optimizations, such as inlining, constant-folding, strength reduction, local value
numbering, and load elimination. In addition to optimized JIT compiler, Maxine also in-
cludes Generational Heap scheme as its memory management strategy. Generational Heap
scheme enables aging mechanisms which makes full garbage collection less frequent, and
therefore improving the throughput of the application performance.

The rationale of choosing Maxine VM is that, first, it is written in Java, and includes
more interface and experimental extension to allow external modification compared to in-
dustrial VM whose implementation is not intended to be modified due to the optimizations
made for high performance. Second, Maxine VM leverages on JDK technologies which
means our runtime verifier can user Java language features to realize our design goals;
moreover, support of JDK enables us to conduct experiments on real Java open source
project with Maxine VM. Although not elaborated in this research, Maxine VM has a VM
level debug assistance tool, called Maxine inspector which helps user to understand VM
level operations in terms of memory management.

During initial experimentation with Maxine VM, it is observed that Maxine VM re-
quires more memory in running a program compared to standard openJDK; however, the
running speed is comparable to highly tuned industrial JVM. The increased memory re-
quirement should mainly come from usage of the internal components of Maxine VM than
the operations associated with the objects from the Java program running. Our investi-
gation to increase the Java program size (more objects and layers of abstractions) did not
significantly increase the total memory consumed.

5.3.1 Runtime Verifier Interfacing

The first step of our implementation starts from researching where in the hierarchy, our
runtime verifier should be inserted in. From the design goal requirement, we want our
verifier to be clean and not interfering with the internal state of JVM nor the program
execution of user program under the test. In this sense, our runtime verifier needs to be

35

well isolated from both JVM and user program. Further, our runtime verifier needs to have
lifetime longer than the user program to be able to capture all annotated specifications but
not more than the JVM itself. We start our research into possible Java technologies that
offers us this capability as well as the extension mechanism Maxine Research VM provides
to us. The options studied and evaluated are described below.

Adding Extension to BootImage

Maxine VM is a meta-circular VM; therefore starting an instance of the Maxine VM
requires the use of a previously constructed boot image through bootstrapping. The boot
image is a near-executable binary VM image that includes an initially populated heap
and compiled code for the target platform[27]; heap is populated with class metadata and
objects implementing the VM itself, and the code cache is populated with code produced
by the optimizing compiler. A small C program from the substrate, maps the boot image
into memory before calling the VM entry point via an indirect call [56]. This effectively
hands control over to Java code that implements the Maxine VM. Bootimage generation
process is intended to have all the classes and methods that are needed to bootstrap the
VM to the point where it can dynamically load further classes from the file system and
compile methods for execution. Since our runtime verifier works closely with Maxine VM’s
core components, such as memory management and runtime information access, it makes
sense that our verifier be included as part of the boot image. From our study into Maxine
VM, we determined that Maxine supports two modes of boot image extension: Static and
Dynamic Extension for the VM bootimage[27]. Static Extension, as the name suggests,
adds extra classes to the boot image during boot image generation process; this is realized
through setting boot image argument shown below:

mx --Jp @-Dmax.vma.handler.class=<Package>.ExtensionClass image

On the other hand, Dynamic Extension loads external class files when running Java
application. A Dynamic Extension needs to be packaged in a jar file, and loaded by the VM
classloader at runtime, just before the main class of the user program is loaded. A special
Manifest file needs to be defined to specify the VMExtension-Class attribute that specifies
the class that is the entry point to the extension[26]. To load the Dynamic Extension, the
following flag has to be set when running Java program:

mx vm -vmextension:acme_vmextension.jar=args TestApplication

While considering extension mechanism offered from the Maxine VM, we also studied
other Java technology that is common to all JVM; the benefit of this is we can have our
verifier work with any JVM through standard technology.

36

Adding Extension as Java Agent Another alternative way of attaching our runtime
verifier is through the use of Java agent. Java agent is introduced in Java5, and is a self
contained component through which application classes can pass in byte code instructions
in the form of byte arrays; this enables Java agent to apply dynamic instrumentation to
the user code[34]. One of the advantage Java agent offers is that it is relatively light
weighted, and has standard support from JVM. However, a major problem we find in Java
agent is that, it does not allow communication between the agent to the JVM which we
require as part of our runtime verifier’s functional requirements; we need to be able to
interact with VM events and Garbage collection which we find it impossible with Java
agent. To determine the precise reason for not being able to reference VM internal class,
we continued our investigation into Java agent, and determined that, although Java agent
shows similarity with Maxine VM’s Dynamic Extension mechanism, Java agents is still
considered application extensions, and it is loaded by the system classloader, whereas a
VM extension is loaded by the VM classloader. Furthermore, it does not have the ability
to reference the VM classes in the boot image while VM extension classes does.

We evaluated (shown in Table 5.1) above mentioned three options of adding our runtime
verifier with respect to the functional requirements and performance considerations of
VerifierMain identified in the previous chapter, and determined that Static Extension is
the best choice for our purpose. Maxine VM’s Static Extension mechanism provides a
gateway to add a set of classes to the bootimage, and allows extension class to reference
Maxine VM classes and its features. Although building extension into boot image results in
increase in spatial overhead, we determined that compared to the existing classes added as
part of boot image for VM startup operation, this size is negligible; through experiment, we
found that the bootimage size on 64 bit machine is roughly 85MB, and our runtime verifier
extension classes has total size less than 1MB. Further, the runtime overhead in loading
extension class during runtime as of the case in Dynamic Extension is also eliminated as
the extension class is build into the bootimage, and is part of the running Maxine VM
when main class of the Java program is loaded.

Extension Options Interact with JVM Space Overhead Runtime Overhead
Static Extension Possible Low-Mid Low
Dynamic Extension Possible Low Low-Mid
Java Agent Not Possible Low Low-Mid

Table 5.1: Evaluation of Runtime Verifier Extension Options

37

5.3.2 Event Advice Handling

JVM event handling is a crucial part in our runtime verifier implementation, because it
is the main venue that we obtain user annotated specification through JVM. However,
before being able to observe, handle and record Object Lifetime specifications, we need to
have a running verifier instance. To ensure the verifier to have correct life span described
section 5.3.1, we engaged in a series of debug trace analysis to determine the appropriate
entry point for Maxine VM’s initialization sequence, particularly focusing on Maxine VM’s
JavaRunScheme. To determine Maxine VM’s startup sequence, we inserted log statement
in VMConfig class, and RunScheme class from com.sun.max.vm.run package. Based on the
analysis of the startup logs (provided in the Appendix A.1), we found that JavaRunScheme
is invoked by the VM after it has started basic services, and is ready to set up and run Java
program; JavaRunScheme from com.sun.max.vm.run.java, starts up normal JDK services
and then loads, and runs the user-specified Java main class. Therefore, we instantiate our
runtime verifier right after the conditional check when the phase of JavaRunScheme is
registered as RUNNING.

After instantiating our runtime verifier, we move forward to start observing the JVM
events. The goal of observing VM event is to retrieve Object Lifetime Specification from
user code, and register this information into each object. To achieve this goal, we observe
the following VM events:

1. New Object Creation: We write associated group information into object header
when the object is created

2. Method Invocation: When a method is invoked, we check if annotation exists

• If @Create custom annotation is found, we store the annotation value (ie. Group
Information)

• If @Release custom annotation is found, we store the to be released group in-
formation into VerifierMain’s static data structure

3. Before Method Entry and Exit: We update the stored annotation content just
before the annotated method exits so that we do not write group information into
objects declared in a method that is not annotated. Further, this allows us to handle
nested method with annotated with different Group Information

For debugging purpose, we also observe before and after garbage collection process.

38

Maxine VM provides a Virtual Machine-level Analysis(VMA) interface to facilitate
the VM event advice handling. Maxine VMA is an experimental extension to support
analysis of the code executing on the virtual machine. The analysis is implemented pri-
marily by advising the execution of the bytecodes. Since the translation of language-level
constructs to bytecodes is well-defined by T1X template-based compiler (details provided
in the Appendix A.2), language-level advising could be achieved with a separate layer
of mapping [45]. VMA shares some similarity with the JVMTI API, most notably the
method entry, exit and field watch capabilities and some of the runtime advice[29]. Max-
ine VMA extension project is currently implemented in the com.oracle.max.vm.ext.vma

and com.oracle.max.vma.tools package. In order to enable the advice mechanism from
VMA, a custom VMA-enabled image has to be built with with:

mx image @vma-t1x

This instructs Maxine VM to build bootimage to include custom VMA schemes, and
use VMA T1X compiler to dynamically compile loaded class with T1X template. The in-
terface that defines the supported VM event advice callback is BytecodeAdvice class from
com.oracle.max.vm.ext.vma package. Another useful abstract class that bridges between
user defined advice handler to BytecodeAdvice is VMAdviceHandler abstract class that ex-
tends RuntimeAdvice which subclass BytecodeAdvice. VMAdviceHandler abstract class
contains a method, initialize(MaxineVM.Phase phase) which must be overridden by
the subclass that handles generated advice calls from the VM. We implemented our own
VM event advice handlers by subclassing VMAdviceHandler with respect to the VM events
we want to observe, which is described earlier in this section. The handler we implemented
is summarized in the Table 5.2 below.

Advice Supported from VMA Event to Observe
adviseAfterNew(int bci, Object obj) New Object Creation
adviseBeforeInvokeVirtual(bci, object, methodActor) Method Invocation
adviseBeforeInvokeStatic(bci, object, methodActor) Method Invocation
adviseBeforeReturn(int bci, Object obj) Before Method Exit
adviseBeforeGC() Before GC Process
adviseAfterGC() After GC Process

Table 5.2: Event Advice Handlers

39

This leads to our discussion on how we are processing user annotated Object Lifetime
Specification at runtime, and associate objects instantiated in the same method into the
same group based on annotated Group Information.

5.3.3 Runtime Annotation Processing

Runtime annotation processing is an important part of our runtime verifier design that
extracts the Object Lifetime specification from the user program. As we described earlier,
we give user the ability to embed Object Lifetime Specification into method level anno-
tations (Figure 4.1). Currently, we support two custom annotations, Create and Release.
Create custom annotation allows user to associate objects created in the method into a
group that has same Object Lifetime, and indicates the start point of the Object Lifetime;
while Release custom annotation allows the user to specify the end time of a collection of
objects’ lifetime.

Java Annotation is a form of metadata that provides information about a program that
is not a part of the program itself [36]. In order to obtain the custom annotation that the
user writes in his Java Program at runtime, we use Java Reflection API to retrieve declared
annotations from the method handle. Specifically, to retrieve the Object Lifetime Specifica-
tion, we reflectively check wheather a method is annotated with annotation; if annotation
exists, we retrieve the value of annotation based on the annotation type (Create and
Release). From the VMA adviseBeforeInvokeVirtual callback, we get three parame-
ters which we can use: int bci, Object obj, MethodActor method. Of three passed-in
parameters, we are interested in the last one, MethodActor for our runtime annotation
extraction process. MethodActor is an Maxine VM internal representation of Java lan-
guage entities[22], and it implements the entity’s runtime behavior; MethodActor can be
seen as a mirror object of the actual method with enhanced reflection. The MethodActor

becomes the entry point for reflection operation, which allows us to introspect the presence
of annotation and its value.

After writing isolated test cases, and validated the methodology in retrieving annotation
at runtime as being discussed above, we inserted our code for runtime annotation extraction
using the API methods offered in java.lang.reflect.Method. We used:

• isAnnotationPresent(Create.class): check if annotation Create is associated
with class methods; used differently from isAnnotation(): which just check if the
tested object represent an annotation type.

40

• getDeclaredAnnotations(): if annotation is present, we obtain all annotations that
are directly present on the method. Note that this method ignores inherited anno-
tations.

• getAnnotation(Create.class): returns the annotation for the specified type. If
the annotation is not present, return null value

When testing the runtime annotation processing in Maxine VM, we noticed that we
were unable to retrieve the annotation because the isAnnotationPresent(Create.class)
check fails with respect to the type of annotation we are providing to the user. We in-
vestigated this issue from different perspectives in MethodActor class capability and an-
notation retention policy. From offline testing, we are certain the way we are retrieving
the annotation from method handle is correct. To determine if we are getting the cor-
rect Create class from reflection, we inspected into the class information by inserting
debug statement, and compared the hash code of the annotation object that we obtained
from getDeclaredAnnotations with hash code of Create.class. The result shows that
two classes have different hash code. We then proceeded to inspect the ClassLoader in-
stance that loaded the Create.class and the ”same” class retrieved through annota-
tion, and determined that they are loaded by different ClassLoader: VMClassLoader and
AppClassLoader. To solve this issue, we studied the reason why the entity is loaded by
different classloaders. Through our investigation, we found that, for meta-circular VM,
any class that might be written into the boot image must first be loaded by the boot
image generator, and the classloading can happen in two ways. First, the class that is
used by the user applications is loaded by the normal host classloading mechanism us-
ing the system classloader. On the other hand, the bootimage generator explicitly loads
classes that might be written into the boot image by scanning the class path and search-
ing for sub-packages of com.sun.max.config that contains a class named Package which
subclasses com.sun.max.config.BootImagePackage. This second set of classes is loaded
by a special classloader, com.sun.max.vm.hosted.HostedVMClassLoader, that performs
additional actions, such as creating the Maxine representation of classes used at runtime.
This explains the reason why our custom annotation class is loaded by VMClassLoader and
the reflectively retrieved annotation class is loaded by AppClassLoader. We proposed two
solutions to this problem: reload class using VMClassLoader or do string level comparison
instead of class entity comparison. We evaluated these two solutions with respect to per-
formance and implementation complexity, and decided to choose the later. The rationale is
that classload operation is managed by Maxine VM hosted internals, and forcing classload
involves going through layers of abstraction; this not only adds overhead to the performance
by dispatching method calls but also poses potential unknown exception problem, because

41

we are not fully following the VM internal procedure in loading the class. We are aware
that there is overhead associated with string comparison, but we prioritize our goal of not
perturbing the internal state of JVM and also want to increase the robustness, Follow-
ing the revised implementation, we successfully retrieved the Object Lifetime Specification
from the annotated methods for both Create and Release custom annotations.

5.3.4 Recording Object Lifetime Specification

After retrieving the Object Lifetime Specification, we need to associate this analysis-specific
information with an object, so that during the Garbage Collection phase, we can retrieve
this information to do specification verification. To do so, we have investigated different
technologies. We first studied the bytecode rewriting technology which is to modify the
objects in bytecode level. Specifically, we studied the approach that uses ASM bytecode
manipulation framework to modify the bytecode stream. However, based our design goal,
we want to follow isolated design principle where we do not intercept user code (keep min-
imal). Further, using ASM framework requires redirection the bytecode stream into ASM
interface library first, and this indirection would cause performance decrease. Interfacing
ASM with object layout also poses problems because there is no object header in bytecode
level. We also studied the approach of using a map to associate objects reference with
its Lifetime information. This approach gives us precise information associated to each
object; however, it introduces significant space overhead in the case of large program. Fur-
thermore, it perturbs the behavior of the garbage collector by keeping the object reachable
from the map. Although weak reference can be used to mitigate the effect of preventing
garbage collecting a unneeded objects, but adds overhead to the memory management on
the heap. After investigating possible approaches, we decided to focus on the approach
of adding Object Lifetime information to Java object object header to see if there is any
innovative approach we can seek after. Since object layout definition can be JVM specific,
we studied into the object representation in Maxine VM.

In Maxine VM, object layout is the lowest level details of memory layout of objects with
respect to headers, contents, and pointers[43]; VM’s specific layout scheme is configured
during boot image creation process through the use of layout flag. In Maxine VM, there
are three object layout scheme, OHM, HOM and XOHM.

1. OhmLayoutScheme: Ohm object layout scheme is described as Origin-Header-Mixed,
and is implemented by class OhmLayoutScheme in package com.sun.max.vm.layout.
ohm[23]. The OHM layout packs tuple objects for minimal space consumption, ob-
serving alignment restrictions.

42

2. HomLayoutScheme: The Hom object layout scheme, described as Header-Origin-
Mixed, is implemented by class HomLayoutScheme in the package com.sun.max.vm.
layout.hom. This layout enables more optimized code on SPARC for accessing array
elements smaller than a word [24].

3. XohmLayoutScheme: Xohm layout is an extended Ohm layout that includes additional
Words in the header field to store analysis-specific state of an object[29].

To record Object Lifetime Specification into an object, we find Xohm useful in our
implementation. Although using Xohm layout scheme increases the header size of an ob-
ject, and might incur more frequent garbage collection due to increased object size, it gives
us the ability to add Object Lifetime information in an isolated way where neither user
nor the JVM uses this information in transitioning from one state to another. Support of
Xohm layout is provided by com.oracle.max.vm.layout.xohm package where interface is
defined in ObjectState class. We modified the XohmGeneralLayuot class, and also pro-
vided concrete implementation of ObjectState in VerifierObjectState class to enable
the mechanism of writing and reading Object Lifetime information into the object header
field. Note that Object Lifetime specification is passed in as group information when ob-
ject is created. The representation of group information is by String type, where header
field expect Word, an unboxed type to represent internal memory by the Maxine VM.
We investigated different mapping strategies from String to Word while being attentive
to the spatial and memory overhead. We finally added a mechanism to translate String

into an unique and deterministic Long in our annotation extraction engine before writing
into the header field. It should be noted that we use the word ”deterministic”, because
group information with same string laterals retrieved at different stage of the verification
would construct new String object, and traditional hash code identification will result in
non-consistent Long representation. Another implementation strategy we took in recoding
Object Lifetime Specification is considering nested method calls. In order to control the
propagation of Object Lifetime Specification, we observe the stack trace element to update
the stored group ID obtained from annotation.

5.3.5 Specification Verification

In previous sections, we described our implementation approach in associating Object
Lifetime Specfication to each object. In this section, we discuss the methodologies we used
to verify the annotated specifications with actual VM event.

43

As being discussed in Chapter 4, we verify user annotated Object Lifetime Specifica-
tion with the actual VM event that takes place. Particularly, we intercept the garbage
collection process which is an important part of JVM memory management. As a brief
review, user can specify the start and end of Object Lifetime through custom annotation
@Create("Group") and @Release("Group"), where ”Group” is a convenient and flexible
way to let user to associate objects with similar lifetime into a collection. Once Release

custom annotation is retrieved, we immediately insert the long representation of the group
information into a static hashset-like data structure (GCIDMap) in our VerifierMain com-
ponent; this indicates that the specified group and all of its associating objects should be
eligible for the next garbage collection. During the garbage collection process, we check
if the objects from specified group is indeed released or not; if it is garbage collected, we
conclude the specification has been satisfied, on the other hand, if the object is marked as
active and promoted to live longer, then we report this as a violation of the specification in
the form of a log. In order to do this verification process, we need to inspect every object
that is marked as active; we do so by reading the Object Lifetime information from these
objects, and compare what is contained in the GCIDMap which holds a list of to-be-released
group ID. Note that, from the garbage collection site, group ID is embedded as long value;
this can be mapped back to string representation using the same radix value, and makes
it more intuitive to the user. When choosing appropriate data structure to hold to-be-
released group ID, THashMap from GNU Trove, a library that provides high speed regular
and primitive collections for Java, has been considered[13]. However, since GCIDMap is
built as part of bootstrapping process, adding external classes to classpath during this
process caused unknown exception.

The checking process is relatively straightforward in terms of ideas; however, the im-
plementation requires us to have a good understanding into the garbage collection mech-
anism offered in Maxine VM. Maxine VM supports different types of garbage collection
algorithms in com.sun.max.vm.heap. Particularly, we considered two types of garbage
collection schemes, Semi-Space collection and Generational collection with stability and
performance factors in mind.

Semi-space Garbage Collection

Semi-space Garbage Collection, also known as Copy Collection, is a garbage collection
strategy to divide the usable heap into two regions; the two regions are generally named
as ”from-region” and ”to-region”. From-region is first used as free heap where object
allocation takes place. Semi-space heap scheme maintains a ”bump” pointer which points
to the end of the last allocated memory, and when a new object is allocated, it bumps
up the pointer to point to the updated end. This type of allocation is very fast because
it involves only moving the pointer similar to the stack pointer. When the from-region is

44

almost full, memory reclamation happens. This involve of enumerating the roots (stack,
main thread), and copying all live objects from from-region to to-region. Note that during
this process, reference for objects are also updated as objects are moved from one memory
region to another. Figure 5.4 shows general methodology of Semi-space collector.

Figure 5.4: Semi-space Collector

This memory remapping process does add certain computational overhead to the GC
but this process also ensures memory compaction; therefore, it not only reduces the frag-
mentation problem (not enough consecutive space to allocate object, and causes frequent
GC), but also maintains good locality of reference, resulting in better cache hit ratios
(faster execution). In Maxine VM, the reference remapping is done by mapRef method
call, which deals with three different state of object reference:

1. Reference points to a not-yet-copied object in ”fromSpace”. The object is copied and
a forwarding pointer is installed in the header of the source object in ”fromSpace”

2. Reference points to a object in ’fromSpace’ for which a copy in ’toSpace’ exists. The
reference of the ’toSpace’ copy is derived from the forwarding pointer and returned

3. Reference points to a object in ’toSpace’. Return the reference.

45

Semi-space collection is the most stable garbage collection scheme in Maxine VM that is
maintained since the first day Maxine project started. Semi-space collector outwin Mark-
and-Sweep collection (also included in Maxine VM) which walks entire heap and has longer
freeze time. However, due to the semi-space nature, Semi-space garbage collection requires
twice as much the heap size of the other collection methods to keep the allocatable heap
size the same. Further, since both ”to” and ”from” regions of the heap is manipulated
during the copy process, potential page-fault might be higher.

Generational Garbage Collection

Generational collection is a garbage collection technique enabled in Maxine Genera-
tional Heap Scheme. The idea of Generational Garbage Collection is to divide heap into
different generations, ”nursery space” and ”old generation space”. The objects survived
each garbage collection will get promoted to the next generation. Since heap is divided
into different regions, it is possible apply different garbage collection method without lock-
ing the entire heap for new object allocation; typically, the young space will use garbage
collection algorithm that allows fast collection (minor collection), and old generation em-
ployes full collection on both you space and old generation space. This garbage collection
approach is based on the hypothesis that most of the objects die young, and if the objects
are promoted to old generation, the chances of it becoming garbage in short time is low[3].
Since full collection involves determining the safe point and lock the heap which reduces
the Java application performance, this garbage collection scheme enables less frequent full
garbage collection, and more effective use of heap. In Maxine VM, generational collection
is governed by GenSSHeapScheme, and it uses two generations: young generation and old
generation. The young generation is a simple bump allocator nursery space without any
aging mechanism, and the old generation space is organized into two semi-space which
swaps its role during full collection. The heap layout is shown in Figure 5.5.

46

Figure 5.5: Generational Heap Layout

Generational heap space can also be defined in the following formula, and configured
by user[25]:

M = Y S + 2OS (5.1)

where M is the heap size specified using the -Xm option; YS is young generation; OS is
tenured generation. It is possible to configure percentage of young space, YP with respect
to the entire heap through -XX:YoungGenPercent option, and effective heap size can be
calculated as:

H = M/(2− Y P) (5.2)

In Maxine VM, GenSSHeapScheme uses two types of garbage collection operation: minor
collections, which only collect the young generation, and full collections, which collect both
young and old generations. Garbage collection, for both generations, employs a Copy
collection-like algorithm to evacuate live objects from the from-region into the to-region.

47

The main difference between the young generation and old generation collections is the
choice of from-space, and the root set. The from-region in young generation is the young
space, and the from-region in the old generation is the from-region of the old generation.
Both young and old space collection use the old generation’s to-region as their to-region.
The old generation collection swaps the old generation’s from-region and to-region, whereas
a young generation collection doesn’t; the young space is re-used as the young allocation
space after collection. The root set for a young space collection is the same as that of the
old space plus additional roots specified by a remembered set through card table. Card
table is a data structure containing array of bits. Each bit indicates if a given range of
memory in old generation that contains a write to a young generation object. Every update
to a reference field of an object ensures that the card containing the updated reference field
is marked dirty by setting its entry in the card table to the appropriate value. Maxine VM
uses CardTableRSet class to implement card marking, which allows mapping from address
to card table entry.

Since Semi-space collection in Maxine VM is more stable than Generational collection,
we decided to intercept on Sesmi-space collection for our verification process. We under-
stand that Semispace collection results in more frequent garbage collection when heap size
is small; however, considering the robustness and stability goal we want to achieve with
our runtime verifier, we decided to focus our implementation with Semi-space collector. In
addition, as been articulated in Wimmer et al.[56], by choosing larger heap size, perfor-
mance difference between Semi-space collector and Generational collector can be reduced.
As we described in previous paragraphs, Semi-space collector copies survived objects to
to-region of the heap. During this process, the reference to the survived objects also has to
be remapped. From inspecting mapRef method in SemiSpceHeapScheme, we determined
that toRef reference variable obtained from getFrowardRef method is the reference of sur-
vived objects. We used this reference variable as input parameter to our read header field
to obtain the Object Lifetime information written into the header when this object is cre-
ated. Note that, during garbage collection process, no new objects can be allocated in the
heap, so we adjusted our reading mechanism for object header access, so there is no local
variable used. Since semispace collector’s mapRef method is also called outside of garbage
collection for defragmentation, we also set lock to ensure that we check object header of
an object just when mapRef method is called during the garbage collection process; we set
the lock in adviceBeforeGC, and unset it in adviceAfterGC. The annotated group value
is of String type, and we have converted it to long before writing into the header; we are
certain that for any objects that has its lifetime information specified via annotation would
have group value greater than zero in its header field (Long.parseLong(string) uses 32
as radix base). The system related objects have their misc header filed initialized to zero,

48

and unassigned object has negative misc header value. Therefore, we also filter the read
object group value by only looking at objects with group value greater than zero during
the garbage collection process, so we do not need to check every survived object against the
specified to-be-released group value. In this approach, we retrieve survived object’s Object
Lifetime information during garbage collection process, and verify against what user has
specified in Release annotation. We tested our runtime verifier with example client code,
and successfully identified the junk object using Object Lifetime Specification.

5.4 Alternative Considerations: RVM

In this section, we present our work done with Jikes RVM, an open source meta-circular
VM that we used as an alternative implementation with our runtime verification for Ob-
ject Lifetime Specification study. During our implementation phase, we noticed a red stack
overflow problem when running test program with VMA enabled image. After investigat-
ing various sources, and doing elimination testings, we determined that this is a bug in
Maxine VMA bootsimage. We proceeded in an attempt to replace the existing advising
mechanism in Maxine VM; however, we determined that the advising mechanism for Max-
ine VM is implemented in bytecode level which means we do not have access to the advising
trigger point in Maxine source code. This posed significant difficulty for us to continue our
implementation with Maxine VM. We reported this red stack overflow problem to Oracle
Lab’s Maxine Project team, and while waiting for their solution, we decided to look for an
alternative VM for our implementation. With available options, we evaluated each JVM
against preliminary criterions that we deemed to be compulsory for a JVM (Table 5.3).

JVM Meta-Circularity
JDK

Compatibility
Documentation EasytoModify

Jikes RVM Yes High Good Yes
HotSpot No N/A Good No
VMKit No Partial (J3) Moderate Moderate

SableVM Yes
Partial

(not with new JDK)
Moderrate Moderate

Table 5.3: Alternative JVM Selection

We investigated four open source JVM, including Jikes RVM, HotSpot, VMKit from
LLVM and SableVM. The four major criterions that we evaluated against alternative VMs

49

are meta-circularity, JDK compatibility and user documentation and if it is modifiable.
After reading the design documentation for each VM, We determined that Jikes RVM is
the potential alternative that should be studied further. The main advantage is that Jikes
RVM has been widely used by academia for garbage collection research due to its ”easy-
to-modify” Memory Manager Toolkit (MMTk), and has been proven to be ”modifiable” in
certain aspect of the research. Since it has been studied and applied in research, Jikes RVM
also have good research mailing list which one can post discussion thread. Furthermore,
Jikes RVM is compatible to the up-to-date JDK, and can run major benchmark to evaluate
its performance. With basic understanding of the characteristics of Jikes RVM, we started
our runtime verifier implementation on RVM sswhile waiting for the response from Maxine
VM team.

5.4.1 Implementations

As being discussed earlier, Jikes RVM provides a flexible open testbed to prototype virtual
machine technologies and experiment with a large variety of design alternatives. Jikes RVM
is also meta-circular VM that provides ease of portability, and a good integration of virtual
machine and application resources such as objects, thread and operating system interfaces.
Our implementation with Jikes RVM started from determining the lifetime of Jikes RVM
bootstrap sequence. We instantiated our runtime verifier in VM class in org.jikesrvm

package after the VM finishes booting. We than modified object layout in MemoryManager

class in org.jikesrvm.mm.mminterface package. Specifically, we increased header size
by an extra Word; changed offset of Misc header; added a read and write utility support
for added Word filed in Misc header. We then proceeded to implement even handler for
the supported event callback from Jikes RVM. Annotation extraction mechanism is also
implemented within each method callback handler to retrieve Object Lifetime Specifica-
tions. Jikes RVM also has a simplified mirror object for Method object, that is similar to
Maxine’s methodActor. From this mirror object, we can get annotation using reflection.

While implementing the callback handlers, we realized certain limitations with Jikes
RVM. Unlike Maxine VM which has comprehensive support in different VM events, Jikes
RVM does not have full event notification support for what we need. For instance, Jikes
RVM does method invoked callback only once. Jikes RVM’s ”method invoked” advice is
done when the method is first compiled, which means that when same method is called
again, it will not issue advice again. In this case, we will have cases where Object Lifetime
Specification does not get stored into an object. Although it is possible to force method
recompile every time by setting certain flags, this will introduce performance problem to
the Jikes RVM, and diminish the purpose of compiling the bytecode at runtime. Another

50

limitation is that Jikes RVM does not have ”New object created” event advice so writing
group information into object header filed is impossible in source code level. We studied the
possibility of using bytecode rewriting strategy, and determined that we cannot instrument
bytecode to directly access object header since it is not a ”field” in the Java sense. To access
object header field from bytecode we will need to add some native routines, or intercept
existing ”magic” routines in Jikes RVM from bytecode to access the header field; this
is because native method would go through JNI like other JVM, and ”magic” methods
are recognized by all the bytecode compilers in Jikes RVM, and the compiler generates
code for them directly. We concluded that in order to realize what we wish to achieve
with runtime verifier, we need to intercept the Jikes RVM compilation process and add
additional abstraction layer in bytecode level. This will potentially change Jikes RVM’s
internal behavior, and is not what we want as stated in our runtime verifier design goal.
With these limitations and design belief we attach to our runtime verifier design, we decided
to stop our implementation attempt with Jikes RVM.

51

Chapter 6

Experiment and Analysis

We described our design principle and implementations of the runtime verifier in previous
chapter. We have articulated our design and implementations with respect to each com-
ponent for the runtime verifier. We designed our tool to be light-weight based on lean
design principle, and fault tolerant in handling exceptions that occur inside of the runtime
verifier. We also implemented our tool in a isolated way through packaging and callbacks
so that we do not change or alter the internal state for neither JVM nor the Java program
under the test. We have used different data structures to dispatch and store annotated user
specifications based on different annotation type, and verified Object Lifetime information
with actual JVM events. Overhead is expected with our runtime verifier, but we try to
control it through design choices and implementation strategies so that our runtime verifier
have less influence to the application performance.

In this chapter, we evaluate our runtime verifier tool for its accuracy in detecting
unintentional object retentions through a example program; we particularly test different
Object Lifetime Specification semantics arise from different inter-procedural method calls.
We also conduct performance experiments with open source benchmarks [5]to determine
the overhead associated with the runtime verifier; to better understand overhead associated
with major component of our runtime verifier, we isolate component based on process
flow, and run benchmarks individually. We also try to draw performance implication by
comparing the performance overhead of our runtime verifier on Maxine VM with OpenJDK,
and Maxine VM with C1X optimizing compiler.

52

6.1 Accuracy of Runtime Verifier

The goal of our runtime verifier is to prove the applicability of collaborative Object Lifetime
Specification approach in determining unused object retention. We enables the user to
specify Object Lifetime Specification in the form of meta-data which keeps the internal
state of the user program untouched but allows us to do runtime verifications with it.
We implemented our runtime verifier with JDK compatible JVM, Maxine VM so that we
can apply our runtime verifier on real-world Java programs. More importantly, the JDK-
compatibility allows us to determine the runtime performance overhead of our runtime
verifier by running existing benchmarks, so we can evaluate and improve the overhead
associated with our tool to make it more appropriate for the use in Prototype Verification
Testing and performance testing of the user program.

To evaluate the accuracy in detecting junk object, we considered different semantics
in using our custom annotations; the currently supported custom annotations in verifying
Object Lifetime Specification is shown Table 6.1 (annotation usage example is provided in
Section 4.1).

Annotation Type Semantic Meaning
@Create Start of object lifetime; associate instanced objects to a group

@Release
End of object lifetime; objects associated to a particular group
should be reclaimed

Table 6.1: Custom Annotations

Based on the meaning of our annotation, we developed four generic structures for the
possible use cases, and tested the correctness of our verifier with respect to the semantics
of intended meaning of the annotated Object Lifetime Specification. Figure 6.1 below
illustrates these four cases.

53

Figure 6.1: Four Case Scenarios

The first case is when a method annotated with Create is stand-alone, and there is no
inter-procedural operations (i.e. no nested method calls). In this case, the Object Life-
time information should be effective only to the objects instantiated in this method. The
second case is when there is an ”un-annotated” method invoked in an annotated method;
in this case, annotated Object Lifetime Specification should be transitive, and therefore
effective to both objects instantiated in the annotated method and also to objects instanti-
ated in method invoked inside of the annotated method. The third case is an unannotated
method calls an annotated method; in this case, objects instantiated outside the anno-
tated method will not carry Object Lifetime Specification, and objects created inside the
annotated method will carry the annotated Object Lifetime information. Since the goal
of dynamic runtime flow is to deviate the Object Lifetime information from the stack, ob-
jects created outside the inner annotated method and onward, will carry Object Lifetime
Specification specified by the inner method’s annotation.The fourth case is when an anno-
tated method calls an annotated method within its method body. Similar to previous case,
objects created inside the inner annotated method and onward will inherit Object Life-
time Specification specified by the inner method’s annotation; any objects created before

54

invoking the inner annotated method will carry Object Lifetime Specification specified by
the outer method’s annotation. We propose the following relational equations to illustrate
the Object Lifetime Specification propagation for respective cases; LifeSpec means Object
Lifetime Specification, M indicates the method, and double arrow and its footnote denote
the propagation of Object Lifetime Specification and its owner.

Case1 : LifeSpec{M1} �m1 M1exit (6.1)

Case2 : LifeSpec{M1} �m1 Mi �m1 M1exit (6.2)

Case3 : M1 → LifeSpec{Mi} �mi
M1exit (6.3)

Case4 : LifeSpec{M1} �m1 LifeSpec{Mi} �mi
M1exit (6.4)

Based on above mentioned four cases, we wrote test programs, where we deliberately
left object reference dangled in method annotated by Release custom annotation. We
run the sample client codes with our runtime verifier under Maxine VM, and successfully
determined junk objects which is not nulled in the method that is annotated with Release.
Note that, in order to verify Object Lifetime specification, we require the garbage collection
process to take place; this is because our verification engine requires input (survived object
reference) from the garbage collector at runtime. To create an environment that potentially
suggest to the Maxine VM that garbage collection should happen, we created dummy
objects to increase the memory footprint. It should be noted that, industrial JVM does
not give user the ability to force garbage collection to happen at a particular point; Java
runtime analyzes the current heap usage and predict the next heap allocation to determine
if garbage collection should take place. This means that we can not detect the junk object at
the instance it is created. However, we assume that garbage collection will eventually take
place at least once for non-trivial Java program, so we can detect the junk object during
the garbage collection. Compared to memory monitoring tools that requires sequence of
heap snapshots for analysis and identification of Java memory leak, we believe our runtime
verifier can detect the junk object faster. An example code is shown in the Figure 6.2.

55

Figure 6.2: Example Client Code

56

Figure 6.3: Example Client Code Main

57

6.2 Performance Analysis for Runtime Verifier

Runtime verification will always add performance overhead to the application; the purpose
of this section is to understand the performance overhead, analyze its roots and improve
the performance of our runtime verification process. In this section, we show the perfor-
mance results and analysis of our runtime verifier evaluated with open source benchmarks.
As we stated earlier, the goal of our runtime verifier is to prove the applicability of col-
laborative Object Lifetime Specification approach in determining unused object retention.
We implemented our runtime verifier with JDK compatible JVM, Maxine VM so that we
can determine the runtime performance overhead of our runtime verifier by running open
source benchmarks.

We evaluated our runtime verifier implemented on Maxine VM with DaCapo Bench-
mark, a tool for Java benchmarking consists of a set of open source, real world applications
with non-trivial memory loads [5]. We chose DaCapo as our benchmarking tool because
it not only includes complex static and dynamic metrics but also contains test programs
to maximize the coverage of application domains and application behavior. Mckinley et
al. from their experimental analysis, states that DaCapo benchmark has much richer code
complexity, class structures, and class hierarchies that real life Java software application
encompasses[8]. Our evaluation strategy distinguishes the performance overhead between
each major functional component of our runtime verifier; we evaluate the overhead as-
sociated with T1X compilation and advice callbacks, annotation retrieval, and garbage
collection interception.

We set SemiSpaceHeap Scheme with minimum heap size 256Mb and maximum heap
size 2Gb, and report the average of four executions of each program, with a warmup
sequence of two iterations. Note that some test in DaCapo benchmark could not be run
due to deoptimization bugs in Maxine VM, and has been taken off. We chose maximum
heap size to be 2Gb because fop and eclipse test run out of memory under 1Gb, and
SemiSpaceHeap scheme only provide half of the heap size as effective allocation heap.
Each test’s description is provided in Appendix B.

We conducted the experiment on Kubuntu 64-bit Linux, Intel Core i7-2600K 3.4GHz
with 15.7Gb of main-memory. Figure 6.4 shows the benchmarking results. Time variable
in Logarithmic scale is provided to illustrate the comparison.

Figure 6.4 shows benchmarking results measured in milliseconds for Maxine VM with
normal boot image versus Maxine VM using VMA-enabled boot image; both of the Max-
ine VM use SemiSpace Heap scheme as garbage collection model. There are two main

58

Figure 6.4: Maxine VMA Performance in Logarithmic Scale

differences between the two presented Maxine VM. First, MaxineVMA is an experimental
extension that does advising for all the bytecodes execution. Further, since bytecode advis-
ing is only limited to code generated by the template JIT compiler, MaxineVMA uses T1X
template-based compiler instead of the normal C1X compiler which supports recompilation
for optimization. From the figure, we observe approximately 20 times performance slow
down associated with Maxine VM with VMA extension compared to normal Maxine VM.
We deem the major slow down comes from the different compiler used for JIT optimization;
this is because compared to C1X compiler, T1X compiler’s performance is expected to be
much slower, as it is considered to be baseline compiler where no optimization is done[33].
Furthermore, there is overhead associated with runtime advising mechanism for bytecode
execution for advice callback-enabled VM image. Comparing with OpenJDK1.7, Maxine
VMA shows about 33 times performance slow down.

From closer inspection of the experimental data, we see significant performance over-
head associated with eclipse, luindex and sunflow. Eclipse test executes some of the
non-GUI jdt related performance tests for the Eclipse IDE, and sunflow test renders a
set of images using ray tracing[5]. Benchmark test luindex displays inconsistent results,
and some times fail for a particular file-not-found exception, so it will be excluded from
our discussion for further analysis. After investigating the eclipse test, we learned that

59

eclipse and sunflow test have more Weighted Methods per Class than other tests, where
weight is assigned to 1. WMC indicates the number of declared methods in a class; there-
fore, the larger the WMC, the program provides more behavior. Further, eclipse has the
largest Response for a Class, which is a measure of the number of different methods that
may execute when a method is invoked. Since one of VMA extension’s major addition to
the Maxine VM is the VM event advising mechanism (such as each method invoked and
classloaded), the benchmarks results for eclipse and sunflow makes sense as it contains
more methods and code complexities. To evaluate the average overhead on non-uniform
data, we used geometric mean, an average calculation used to indicate the central tendency
of a set of numbers by using the product of their values.

Π(Xi)
1
n (6.5)

The geometric mean indicates that the averaged (centeral tendency) performance over-
head associated with VMA-enabled Maxine VM is about 20 time more than the regular
Maxine VM.

In next figure (Figure 6.5), we present the performance result comparisons for VMA-
enabled Maxine VM, AnnotationExtraction-enabled Maxine VM, and AnnotationExtrac-
tion and GarbageCollection intercepted Maxine VM, where the last case is the full com-
ponents of our runtime verifier (they all use VMA-enabled bootimage).

60

Figure 6.5: RuntimeVerifier Performance with Respect to Different Components

Based on experimental results, we found there are performance slow down associated
with annotation extraction. Overhead with annotation extraction was also apparent for
eclipse and sunflow test where Weighted Mehods per Class and Response for a Class are
large. Since we do runtime processing of the annotation to store annotated Object Life-
time information, we check every method invoked to see if there is annotation present. The
overhead associated to this accumulates, and resulted in the performance slow down that
we see from the experiments. There is relatively large overhead increase observed in fop

test, which takes an XSL-FO file, parses it and formats it and generates a PDF file. Fop

test has relatively large coupling between object classes[8], which means that interaction
between objects are substantially more complex. We could not directly infer this fact with
overhead associated to annotation extraction, but we would think that checking if annota-
tion is present in tiered method call from different class based on reflection would be more
complex as it tries to find the class associated with it. Another test that showed bigger
increase in the overhead is pmd test; this is a test that analyzes a set of Java classes for a
range of source code problems[5]. pmd has a large score in Lack of Cohesion in Methods
(LCOM); LCOM counts the methods in a class that are not related through the sharing of
some of the fields [8]. Large LCOM value indicates that method in a class is relatively inde-

61

pendent; in other words, each method have their own functional role. Therefore, number of
invocation on different methods has to increase to perform certain functional task; this will
increase the amount of annotation presence check for pmd test. The geometric mean for the
performance slow down between VMA-enabled Maxine VM to VMA-enabled and annota-
tion component included Maxine VM is approximately 2 times. The last major component
added as part of our runtime verifier is the interception of garbage collection process. The
performance overhead is seen to be increased about 15% after adding this component. The
overall performance overhead compared to VMA-enabled Maxine VM is 2.1 times. We also
conducted same benchmark evaluation on OpenJDK1.7, and we determined that the over-
all performance overhead of our runtime verifier is about 58 times more than OpenJDK1.7.

Test openJDK1.7 Runtime Verifier Delta
Avrora 5310 361781 68.1
Batik 2866 52182 18.2
Eclipse 35757 2819128 78.9
Fop 2075 183651 88.5
Jython 9285 576189 62.1
Luindex 1585 69105 43.6
Pmd 4310 358723 83.2
Sunflow 2521 1072904 425.6
Antlr 2034 155981 66.8
Bloat 3865 116774 30.2
Chart 4120 421769 98.5

Geometric Mean 58.4

Table 6.2: OpenJDK1.7 vs Runtime Verifier Performance Comparision

From the experiment, we concluded that major overhead results from Maxine VMA
extension, which caused more than 30 times performance slow down. Since we require
bytecode advising for our runtime verification, overhead associated with bytecode advising
and T1X compilation (bytecode advising only works with T1X template-based baseline
compiler) is unavoidable. However, when comparing with OpenJDK1.7, there is another
factor that can have big influence to the performance: garbage collection. The type of

62

garbage collection OpenJDK1.7 uses is multi-generation collector; while we used semi-
space collector. As being discussed in previous chapter, we chose SemiSpace heap scheme
to intercept to ensure functional stability with the runtime verifier, while sacrificing the
performance. By experimenting with different garbage collection strategies in Maxine VM,
we see performance gain for Generational Collection to be as follows (Figure 6.6).

Figure 6.6: JDK1.7 vs Maxine VM SemiSpace GC vs Maxine VM Generational GC

From the figure, it can be seen that using Generational collection results in much lower
performance slow down for Maxine VM compared to Semispace collection. Our analysis
shows that, Maxine VM with Semispace GC results in 80% performance slowdown, while
Maxine VM with Generational GC cause only 27% performance slowdown in averrage,
and even better performance than OpenJDK1.7 for some tests. To reduce the overall
performance overhead associated with current implementation, we revisited Generational
Garbage Collection Scheme in Maxine VM. We inserted debug statements into classes in
com.sun.max.vm.heap.gcx package, such as GenSSHeapScheme and Evacuator class. We
particularly looked for the reference update and forward reference mechanism, and inter-
cepted Generational Collector to retrieve the Object Lifetime Specification for evacuated

63

objects. We rerun the same performance benchmark and compared the performance over-
head between our runtime verifier with SemiSpace collector and the case with Generational
collector. We obtained the following results shown in Figure 6.7.

Figure 6.7: MaxineVMA SemiSpace GC vs MaxineVMA Generational GC

The result shows performance improvement for up to 47% (eclipse test), and an av-
erage of 22% performance gain. To understand better about the performance gain with
Generational garbage collection, we looked for quantitative support to analyze the effect
of garbage collection to the performance of the application. From our investigation, we
determined that reducing the GC pause time in multi-threaded program can have signif-
icant impact on the application performance. An experiment (Appendix B.1) presented
in an Oracle GC Tuning article shows that if an application spends 1% of its execution
time on garbage collection, it will loose more than 20% throughput on a 32-processor sys-
tem; further, if the pause time is increased to 2%, another 18% performance slowdown is
observed [39]. Some tests in DaCapo benchmark balance the load onto 8 threads for the

64

test machine; there are four processors on the test machine, so we believe that the effect of
increasing the GC pause time is represented in the region circled in red, shown in Appendix
B.1. From the figure presented in Appendix B.1, we see that the influence of 1 % garbage
collection pause time can be about 7% performance slow down; additional 1% pause time
increase can reduce the throughput by 7%. Since Generational Garbage collector incur less
pause time than Semi-space collector, we infer that the performance improvements with
Generational garbage collection is mainly contributed by less pause time.

Comparing to the OpenJDK, MaxineVMA with Generational Garbage collection results
in 45 times performance slowdown which is much better than the 58 time slowdown that
comes with previous implementation with Semispace collector (previously, we have also
determined that overhead associated with VMA extension itself is a factor of 33).

65

Chapter 7

Related Work and Future Works

In previous chapters, we described our design principle, implementation and experimenta-
tion of our runtime verifier. We have discussed our idea of using Object Lifetime Specifi-
cation to uncover unused object retention in Java application; we have introduced Object
Lifetime concept, grouping and collaborative way to specify Object Lifetime through anno-
tation. We have also proceed detailed description on our design approach, tool architecture
and implementation of our runtime verifier with Maxine VM; we discussed requirements,
control flow, component design and implementation details for each component of our tool
using figures and sample code. We have conducted performance experiments using our
tool, running benchmarks, and evaluated our tool performance with respect to OpenJDK
and Maxine VM without our runtime verifier.

In this chapter, we discuss the limitations and implications of our tool and review
related research from the academia; based on these study, we articulate a direction for our
next step future work to improve our runtime verifier in terms of usability, accuracy and
performance.

7.1 Limitation Analysis and Future Works

Based on experimental results, we found certain performance limitations associated with
our runtime verifier. The overhead mainly comes from three source, VMA extension,
annotation extraction and garbage collection. In this section, we describe limitations we
observed, analyze associated issues with it, and discuss potential improvements that should
be studied in the future.

66

7.1.1 VM Event Handling

Event listener corresponds to VM advising mechanism that we used. From tiered analysis,
we found that advice callback-enabled Maxine VM performs twenty times slower than reg-
ular Maxine VM. Repetitive and frequent method invocation causes more frequent advise
callback which triggers a series of conditional checks in our callback handlers, accumulating
overhead from each procedure.

Currently, we use VM level bytecode advising mechanism provided by Maxine VM’s
VAM extension; VMA-enabled boot image uses the T1X compliler, a baseline template-
based compiler, and does not work with C1X, an optimizing compiler that regular Maxine
VM uses. Therefore, there is no optimizations done to the bytecode to generate platform
specific instruction sets. We believe this has greater impact to the application performance
on top of advice callbacks invoked on every method call. In the future, we would like
to explore the possibility of using C1X, and determined how we can elaborate existing
bytecode advising mechanism to it. We have investigated the possibility of redirecting
bytecode advising to another abstraction layer which communicate with C1X compiler.
However, we found that bytecode advising mechanism and C1X is implemented in different
project, and current Maxine VM bootimage generator does not allow inclusion of both.
Therefore, we believe, the solution to substitute T1X should be sought after with Maxine
Project Team. The major difficulty for creating bytecode advising framework with C1X
compiler is that C1X does more than template lookup; it introduces XIR intermediate
representation, and we do not have complete knowledge and design specifications of what
layers of transformation we need to consider in order to develop a C1X supported advising
mechanism by ourselves. Based on our investigation, we found there is a visualization
tool called Java HotSpot client compiler visualizer[37] which helps the introspection of
intermediate representations from bytecode parsing to machine code generation process.
We believe this tool is worth investigating in solving the above posed problems in the
future.

7.1.2 Annotation

From the benchmark evaluation, we have also seen certain amount of overhead associated
with runtime annotation processing. Currently, annotation is the only method we use to
allow user to specify Object Lifetime information in the program. This is a performance
limitation because for every method call, we check if there is annotation present. We have
considered different level of annotation, such as class level. However, class level annotation
does not allow us to distinguish object allocated in different context (i.e.. different group),

67

therefore, restrict the expressiveness of our Object Lifetime specification. Further, method
level annotation allows us to deviate from the stack frame while class level annotation does
not. Since our research goal is to design a collaborative system for runtime verification,
annotation, as an user input, is necessary. Therefore, the amount of overhead associated
with annotation processing is inevitable. However, we think it should be possible to add
another intermediate step, so that we do annotation processing at compile time, which
might reduce the runtime overhead that comes from annotation processing.

An alternative approach, that is worth study in the future is to design an annotation
compiler, which will parse user annotation during the compile time of Java source code. The
annotation compiler should be designed, such that it retrieves annotated Object Lifetime
specification from the source code, and embed this information as part of the generated
bytecode. The annotation compiler must be able communicate with Java compiler from
the JDK and also Maxine VM, so the object’s lifetime specification is integrated into
the generated bytecode. In this way, runtime verification would only consist of VM event
advice handling and garbage collection interception, which would reduce the overall runtime
overhead.

7.1.3 Selection of JVM

For this thesis, we have integrated our runtime verifier into Maxine VM, a meta-circular
VM developed by Oracle Lab. Maxine VM is well designed in many aspects (refer to
Chapter 5); however, there are a few considerations that should be understand for future
work of runtime verifier.

Meta-Circularity: Firstly, meta-circular VM’s bootstrap process is very complicated
and hard to diagnose if low level exception happens. We have run into problem not being
able to run VMA-enabled Maxine VM with test handler due to JDK dependence problem
of VMA extension, which produced red stack overflow, that pointed us to debugging into
native code trap.c. The debugging process was rather complicated which involved inspect-
ing platform environment, Java environment (we noticed that some Maxine source code
do not work well with JDK 1.6) and VMAConfiguration code. We reported this problem
to our Maxine project contact, and we were informed that the solution to this problem is
to set +VMAXJDK flag to exclude VMA advice mechanism for JDK related calls; in addition,
older version of the Maxine source code should be used as it is considered to be more stable
with VMA extension.

Bytecode to Machine Level Instruction: JVM generally has two choice of gener-
ating platform specific instruction set from bytecode: interpretation or JIT compilation.

68

Interpretation requires the ”dictionary-like” lookup every time a bytecode is visited, and
translated to machine code; while JIT compiler enables the optimization by compiling the
frequently visited bytecode ”hotspot” into highly tuned machine code (refer to Chapter 3).
Although there is performance decrease with interpreter-only JVM, it greatly simplifies
implementing custom VM event advising structure. Since Maxine VM does not have inter-
preter, our choice of implementing VM event listener was limited to using VMA extension
which is not designed specifically for observing object lifetime related VM event.

Garbage Collection: Garbage collection is an important factor that influences ap-
plication’s overall performance. Different garbage collection algorithm results in garbage
collection to take place at different frequency and at different part of the heap (refer to
Chapter 3), therefore introducing different amount of pause time to the application. Max-
ine VM offers different garbage collection algorithms governed by HeapScheme. Of the
provided heap schemes, we investigated two advanced garbage collection schemes, SemiS-
paceHeap Scheme and Generational Heap Scheme. We applied our implementation to
SemiSpaceHeap scheme because Semi-space collector is the most stable collector in Maxine
VM (recommended by our contact from Maxine team). SemiSpace Heap scheme requires
bigger heap space and it is less effective compared to Generational collection as we shawn
in the performance experiment.

From the experiment, we saw major overhead resulted from VMA extension which is
required for our runtime analysis. This overhead has correlation with our JVM selection;
however, to reduce overhead resulted from the Maxine VM itself, we also intercepted
Generational collector to improve the overall performance. One problem associated with
this implementation is that, some time our runtime verifier reports false positive cases for
junk objects. For instance, an object is nulled in the method annotated with @Release

but after the minor collection, we still get a report saying this object is retained as junk.
Our investigation shows that this results from issues with incremental garbage collection
where minor collection retains dead object live owing to the conservative set of roots that
is used. Another problem we observed is, during benchmarking, verifier with Generational
collection scheme crashed more often than Semi-space implementation. Notably, luindex
test wasn’t able to run for runtime verifier using Generational collection. These problems
should be addressed in the future.

7.2 Related Work

In this thesis, we presented our research work in detecting Java memory leak using Ob-
ject Lifetime Specification. We have been inspired from numerous works done by other

69

researchers in the community in terms of concepts and methodology in detecting unused
object retention for Java language. We provided brief discussion on related works when
articulating the challenges associate with detecting memory leak in Java in Chapter 2.
In this section, we review the representative works for the contributions they made as a
conclusion to this chapter.

7.2.1 Object Lifetime Specification

At the foremost, our work would not be possible without Object Lifetime Specification
invented by Professor Derek Rayside, who is also my advisor. Dr. Rayside provided
the direction of having object’s lifetime specified as a property, and determine unused
object retention from the aspect of verification of satisfiability at runtime. Object Lifetime
Specification associates objects that has similar lifetime into a Group upon creation time,
which effectively reduces the amount of work required to do in recording specifications into
each objects. Object’s end time is effectively been considered as when it is getting garbage
collected, and this is the exact place we verify the specified Object Lifetime Specification
with actual JVM object reclamation events.

7.2.2 Profiling

Profiling is an important method used to understand better about object lifetime behavior
for optimization, memory leak detection and developing new garbage collection algorithm.
Particularly we looked through profiling techniques that helps us uncover object lifetime,
usage and ownership. Hertz et al. proposed Merlin object lifetime algorithm which effi-
ciently computes object lifetimes by time-stamping live objects when they lose an incoming
reference and later uses the timestamps to reconstruct the time at which the object be-
came unreachable. Merlin provide precise profiling information, however, since Merlin’s
execution time is proportional to the total allocations plus the number of times each ob-
ject loses an incoming reference, it introduces significant amount of overhead[18]. Since
it is particularly challenging to obtain object lifetimes both precisely and efficiently, tech-
niques, such as Resurrector has been developed to enable tunable profiling strategy based
on mutator execution that explores the middle ground between high precision and high
efficiency[57]. Rayside et al. proposed Object Ownership profiling, the first heap profil-
ing technique to report a hierarchy annotated with quantitative information about time
and space[52]. There are other more progressive profiling techniques that target to elimi-
nate redundant objects through profiling, such as Object equality profiling[31], which tries

70

to discover opportunities for replacing a set of equivalent object instances with a single
representative object to save space. Statistical profiling technique that traces program
allocations/ frees to construct a heap model, and uses adaptive profiling infrastructure to
monitor loads/stores to these objects has also be proposed and implemented[17].

7.2.3 Memory Leak Detection

Memory leak detection in Java involves wide range of research, such as in lifetime ap-
proximation, object usage prediction/traces and others. Object lifetime approximation is
developed as an alternative to reduce the cost of producing the garbage collection traces;
it intends to model the object allocation and object death behavior of actual programs.
The simplest application of object lifetime to quantitative analysis is reference counting,
which associates a count of incoming references with each object, and use that as liveness
check of objects[10], Stefanovic et al described mathematical functions that model object
lifetime characteristics based on the actual lifetime characteristics[55]. Hirzel et al. shows
the quality of the results of a reachability-based leak detection is largely dependent to the
type and liveness accuracy of its reachability traversal[19]. To approximate object usage,
Dufour et al. uses a blended escape analysis to characterize and find excessive use of tem-
porary data structures; by approximating object lifetimes, the analysis has been shown
to be useful in classifying the usage of newly created objects in the ”focused” area[12].
Research that targets to assist releasing garbage objects has also been proposed, such as
Free-me, a static technique that identifies when objects become unreachable, and inserts
calls to free garbage objects[15].

7.2.4 Existing Java Memory Usage Monitoring Tools

Existing tools for Java memory leak detection is also studied during the course of imple-
mentation. Through this process, we gained insight on expected performance criterion and
leak detection effectiveness. Jconsole[51] is a monitoring tool which uses extensive JMX
instrumentation of the Java virtual machine to provide information on performance and
resource consumption of applications running on the Java platform. One can attach Jcon-
sole to the test application, and Jconsole will show the memory consumption at different
memory pool from the Memory Tab of the GUI. VisualVM is a monitoring tool from JDK
where user can set profiler to record allocation stack traces, and take heap snapshot of
object for comparing memory usage[40]. JMap is also useful tools that can be used to gen-
erated and analyze heap dump file which can be an input to VisualVM; JMap can print

71

a memory map tree for all objects for a given process[41]. Eclipse software foundation
also offers Memory Analyzer (MAT) which is used to analyze productive heap dumps with
objects, and calculate retained sizes of objects to determine leaked object[42].

72

Chapter 8

Conclusion

In this thesis, we presented our work of Virtual Machine-assisted Collaborative Junk Object
Detection using Object Lifetime Specification. We developed a runtime verifier that allows
user to specify Object Lifetime Specification in the form of annotation in Java program,
and verify it against actual VM events that takes place during the program execution. We
implemented our runtime verifier on top of Maxine VM, a JDK compatible meta-circular
Virtual Machine developed by Oracle Lab. We modified Java Object Header Layout to
allow insertion of extra state-analysis Word to record Object Lifetime information. We also
implemented runtime annotation extraction based on reflection to retrieve user annotated
Object Lifetime information when a method is invoked. Finally, we intercepted Semi-
space collector to verify Object Lifetime Specification for survived objects to determine if
it belongs to unintentional object retention.

We evaluated our runtime verifier against different Object Lifetime Specification se-
mantics for the correctness, and also experimented our tool with DaCapo benchmark to
determine the associated performance overhead associated to each component of our tool.
The test results shows that our tool correctly identified junk objects under different Object
Lifetime Specification semantics. The benchmarking process showed that our tool adds up
to 58 times slow down to the program compared to OpenJDK 1.7. The major overhead
comes from VMA extension which is a functional restriction by the Maxine VM. To re-
duce this major overhead, we revisited Maxine Generational Heap scheme to see if we can
reduce the amount of overhead by using industrial-strength garbage collection technique,
Generational garbage collection. Our new implementation shows about 22% performance
improvement in average, and up to 45% improvements for some of the tests. Research
comes with limitations and sparks the motivation for future improvement; we analyzed the

73

current limitation of our work, and suggested possible course of studies in improving the
overall performance and accuracy of our runtime verifier.

Through this research, we proved that Collaborative JVM-assisted memory leak detec-
tion is possible with Object Lifetime Specification. We implemented a runtime verifier on
a JDK-compatible JVM by elaborating with JVM technologies. We determined the run-
time overhead of the runtime verifier by experimenting and running DaCapo benchmarks.
We showed that our approach can be potentially used to detect Java unintentional object
retention during Prototype Verification Test.

74

APPENDICES

75

Appendix A

Maxine VM

A.1 Maxine VM Startup Sequence

@m22ma Debug: DirectReferenceScheme @PRIMORDIAL

@m22ma Debug: XOhmLayoutScheme @PRIMORDIAL

@m22ma Debug: ThinInflatedMonitorScheme @PRIMORDIAL

@m22ma Debug: GenSSHeapScheme @PRIMORDIAL

@m22ma Debug: JavaRunScheme @PRIMORDIAL

@m22ma Debug: DirectReferenceScheme @PRISTINE

@m22ma Debug: XOhmLayoutScheme @PRISTINE

@m22ma Debug: ThinInflatedMonitorScheme @PRISTINE

@m22ma Debug: GenSSHeapScheme @PRISTINE

@m22ma Debug: JavaRunScheme @PRISTINE

@m22ma Debug: DirectReferenceScheme @STARTING

@m22ma Debug: XOhmLayoutScheme @STARTING

@m22ma Debug: ThinInflatedMonitorScheme @STARTING

@m22ma Debug: GenSSHeapScheme @STARTING

@m22ma Debug: JavaRunScheme @STARTING

@m22ma Debug: DirectReferenceScheme @RUNNING

@m22ma Debug: XOhmLayoutScheme @RUNNING

@m22ma Debug: ThinInflatedMonitorScheme @RUNNING

@m22ma Debug: GenSSHeapScheme @RUNNING

@m22ma Debug: JavaRunScheme @RUNNING

---Creating ObjectLifeTimeVerifier_Main

76

2014-06-20 12:36:03.016 : ObjectLifeTimeVerifier_Main-Test

---still alive......

2014-06-20 12:36:03.017 : ObjectLifeTimeVerifier_Main-Test

---ObjectLifeTimeVerifier_Main finalize(). GC takes place

@m22ma Debug: DirectReferenceScheme @TERMINATING

@m22ma Debug: XOhmLayoutScheme @TERMINATING

@m22ma Debug: ThinInflatedMonitorScheme @TERMINATING

@m22ma Debug: GenSSHeapScheme @TERMINATING

@m22ma Debug: JavaRunScheme @TERMINATING

A.2 T1X Non-optimizing Compiler

The description of T1X compiler is adopted from Maxine Project Wiki [45].

T1X is template-based baseline compiler and is Maxine’s first line of execution (Maxine
has no interpreter). As such, it’s primary goal is to produce code as fast as possible. Code
quality is of secondary concern. It also closely matches the JVM specification’s execution
models. That is, the JVM operand stack and local variable variable array is modeled
directly. This makes it suitable for implementing bytecode level debugging as well being
the execution mode the de-optimization process uses as its end target.

Having the templates written in Java makes modifying or extending the compiler fairly
easy. More importantly, it also means the compiler is very portable and it mostly relies on
the optimizing compiler. It performs very little direct machine code generation.

A.3 Before Filtering JDK-related Method Callback

@m22ma Debug: VMAJavaRunScheme @RUNNING

@m22maDebug--- in myVerifierVMEventHandler initialize()

@m22maDebug---Creating ObjectLifeTimeVerifier_Main

@m22maDebug--- in adviseBeforeInvokeVirtual(): void println(String)

@m22maDebug--- in adviseAfterNew(): Person

@m22maDebug--- in adviseBeforeInvokeVirtual(): String getName()

@m22maDebug--- in adviseAfterNew(): java.lang.StringBuilder

@m22maDebug--- in adviseBeforeInvokeVirtual(): StringBuilder append(String)

77

@m22maDebug--- in adviseBeforeInvokeVirtual(): StringBuilder append(String)

@m22maDebug--- in adviseBeforeInvokeVirtual(): String toString()

@m22maDebug--- in adviseBeforeInvokeVirtual(): void println(String)

@m22maDebug--- in adviseBeforeInvokeVirtual(): Method getMethod(String, Class[])

@m22maDebug--- in adviseBeforeInvokeVirtual(): Method getMethod(String, Class[])

@m22maDebug--- in adviseBeforeInvokeVirtual(): Method getMethod(String, Class[])

@m22maDebug--- in adviseBeforeInvokeVirtual(): Method getMethod(String, Class[])

@m22maDebug--- in adviseBeforeInvokeVirtual(): Method getMethod(String, Class[])

@m22maDebug--- in adviseBeforeReturn(): Class

@m22maDebug--- in adviseBeforeReturn(): RetentionPolicy

@m22maDebug--- in adviseBeforeInvokeVirtual(): Method getMethod(String, Class[])

@m22maDebug--- in adviseBeforeInvokeVirtual(): Method getMethod(String, Class[])

@m22maDebug--- in adviseBeforeInvokeVirtual(): Method getMethod(String, Class[])

@m22maDebug--- in adviseBeforeInvokeVirtual(): Method getMethod(String, Class[])

@m22maDebug--- in adviseBeforeInvokeVirtual(): Method getMethod(String, Class[])

@m22maDebug--- in adviseBeforeReturn(): Class

@m22maDebug--- in adviseBeforeInvokeVirtual(): void allocatePerson_a()

@m22maDebug--- in adviseBeforeInvokeVirtual(): void println(String)

@m22maDebug--- in adviseAfterNew(): Person

@m22ma Debug: VMAJavaRunScheme @TERMINATING

A.4 After Filtering JDK-related Method Callback

@m22ma Debug: VMAJavaRunScheme @RUNNING

@m22maDebug--- in myVerifierVMEventHandler initialize()

@m22maDebug---Creating ObjectLifeTimeVerifier_Main

@m22maDebug--- in adviseBeforeInvokeVirtual(): void println(String)

@m22maDebug--- in adviseAfterNew(): Person

@m22maDebug--- in adviseBeforeInvokeVirtual(): String getName()

@m22maDebug--- in adviseBeforeInvokeVirtual(): void println(String)

@m22maDebug--- in adviseBeforeInvokeVirtual(): void allocatePerson_a()

@m22maDebug--- in adviseBeforeInvokeVirtual(): void println(String)

@m22maDebug--- in adviseAfterNew(): Person

@m22ma Debug: VMAJavaRunScheme @TERMINATING

78

Appendix B

Dacapo Benchmark

B.1 Benchmarks

avrora: simulates a number of programs run on a grid of AVR microcontrollers

batik: produces a number of Scalable Vector Graphics (SVG) images based on

the unit tests in Apache Batik

eclipse: executes some of the (non-gui) jdt performance tests for the

Eclipse IDE

fop: takes an XSL-FO file, parses it and formats it, generating a PDF file.

jython: inteprets a the pybench Python benchmark

luindex: Uses lucene to indexes a set of documents; the works of Shakespeare

and the King James Bible

pmd: analyzes a set of Java classes for a range of source code problems

sunflow: renders a set of images using ray tracing

antler: parses one or more grammar files and generates a parser and

lexical analyzer for each

bloat: performs a number of optimizations and analysis on Java bytecode files

chart: uses JFreeChart to plot a number of complex line graphs and renders

them as PDF

79

B.2 Garbage Collection Tuning

The following figure shows the effect of GC Pause time to the throughput rate of a Java
application with respect to the different number of processors.

Figure B.1: Impact of GC Pause Time to Throughput Rate with Different Number of Processors

80

References

[1] Android. Activities. http://developer.android.com/guide/components/

activities.html, 2014.

[2] P. Dibble. B. Brosgol, J. Gosling. The Real-Time Specification for Java. Addison-
Wesley, 2000.

[3] Henry G. Baker. Infant mortality and generational garbage collection. SIGPLAN
Not., 28(4):55–57, April 1993.

[4] David A. Barrett and Benjamin G. Zorn. Using lifetime predictors to improve memory
allocation performance. In Proceedings of the ACM SIGPLAN 1993 Conference on
Programming Language Design and Implementation, PLDI ’93, pages 187–196, New
York, NY, USA, 1993. ACM.

[5] DaCapo Benchmark. The Benchmarks. http://www.dacapobench.org, 2009.

[6] Zev Benjamin. Runtime verification of object lifetime specifications. Master’s thesis,
Massachusetts Institute of Technology, 2009.

[7] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. Myths and real-
ities: The performance impact of garbage collection. In Proceedings of the Joint
International Conference on Measurement and Modeling of Computer Systems, SIG-
METRICS ’04/Performance ’04, pages 25–36, New York, NY, USA, 2004. ACM.

[8] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z.
Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss,
Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage,
and Ben Wiedermann. The dacapo benchmarks: Java benchmarking development and

81

http://developer.android.com/guide/components/activities.html
http://developer.android.com/guide/components/activities.html
http://www.dacapobench.org

analysis. In Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-
oriented Programming Systems, Languages, and Applications, OOPSLA ’06, pages
169–190, New York, NY, USA, 2006. ACM.

[9] J. Bloch. Creating and Destroying Objects. Effective Java. Prentice Hall, New Jersey,
second edition, 2008.

[10] George E. Collins. A method for overlapping and erasure of lists. Commun. ACM,
3(12):655–657, December 1960.

[11] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A survey of automated
techniques for formal software verification. IEEE Trans. on CAD of Integrated Circuits
and Systems, 27(7):1165–1178, 2008.

[12] Bruno Dufour, Barbara G. Ryder, and Gary Sevitsky. A scalable technique for charac-
terizing the usage of temporaries in framework-intensive java applications. In Proceed-
ings of the 16th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, SIGSOFT ’08/FSE-16, pages 59–70, New York, NY, USA, 2008. ACM.

[13] Rob Eden. The GNU Trove Library. http://trove.starlight-systems.com, 2012.

[14] David Evans. Static detection of dynamic memory errors. SIGPLAN Not., 31(5):44–
53, May 1996.

[15] Samuel Z. Guyer, Kathryn S. McKinley, and Daniel Frampton. Free-me: A static
analysis for automatic individual object reclamation. SIGPLAN Not., 41(6):364–375,
June 2006.

[16] Samuel Z. Guyer, Kathryn S. McKinley, and Daniel Frampton. Free-me: A static
analysis for automatic individual object reclamation. In Proceedings of the 2006 ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’06, pages 364–375, New York, NY, USA, 2006. ACM.

[17] Matthias Hauswirth and Trishul M. Chilimbi. Low-overhead memory leak detection
using adaptive statistical profiling. SIGPLAN Not., 39(11):156–164, October 2004.

[18] Matthew Hertz, Stephen M. Blackburn, J. Eliot B. Moss, Kathryn S. McKinley, and
Darko Stefanović. Generating object lifetime traces with merlin. ACM Trans. Pro-
gram. Lang. Syst., 28(3):476–516, May 2006.

82

http://trove.starlight-systems.com

[19] Martin Hirzel, Amer Diwan, and Johannes Henkel. On the usefulness of type and
liveness accuracy for garbage collection and leak detection. ACM Trans. Program.
Lang. Syst., 24(6):593–624, November 2002.

[20] Hajime Inoue, Darko Stefanovic, and Stephanie Forrest. On the prediction of java
object lifetimes. IEEE Trans. Comput., 55(7):880–892, July 2006.

[21] Ronald Cohn Jesse Russell. Observer Pattern. Book on Demand, 2012.

[22] Oracle Lab. The Maxine Project: Actor classes in the Maxine VM. https://wikis.
oracle.com/display/MaxineVM/Actors#Actors-MethodActor, 2011.

[23] Oracle Lab. The Maxine Project: Object representation in the Maxine VM. https:

//wikis.oracle.com/display/MaxineVM/Objects#Objects-OHMlayout, 2011.

[24] Oracle Lab. The Maxine Project: Object representation in the Maxine VM. https:

//wikis.oracle.com/display/MaxineVM/Objects#Objects-HOMlayout, 2011.

[25] Oracle Lab. Generational Heap Scheme. https://wikis.oracle.com/display/

MaxineVM/Generational+Heap+Scheme, 2012.

[26] Oracle Lab. The Maxine Project: Dynamic Extension. https://wikis.oracle.com/
display/MaxineVM/Boot+Image#BootImage-StaticExtension, 2012.

[27] Oracle Lab. The Maxine Project: VM Boot Image. https://wikis.oracle.com/

display/MaxineVM/Boot+Image#BootImage-StaticExtension, 2012.

[28] Oracle Lab. The Open Source Maxine VM Project. https://wikis.oracle.com/

display/MaxineVM/Home, 2013.

[29] Oracle Lab. Virtual Machine Level Analysis. https://wikis.oracle.com/display/
MaxineVM/Virtual+Machine+Level+Analysis, 2013.

[30] Oracle Lab. The Maxine Project: C1X Compiler. https://wikis.oracle.com/

display/MaxineVM/C1X, 2014.

[31] Darko Marinov and Robert O’Callahan. Object equality profiling. SIGPLAN Not.,
38(11):313–325, October 2003.

[32] Bernd Mathiske. Systems programming in the maxine vm: how to enable it and how
to get around it. PPPJ08 Principles and Practice of Programming in Java, sep 2008.

83

https://wikis.oracle.com/display/MaxineVM/Actors#Actors-MethodActor
https://wikis.oracle.com/display/MaxineVM/Actors#Actors-MethodActor
https://wikis.oracle.com/display/MaxineVM/Objects#Objects-OHMlayout
https://wikis.oracle.com/display/MaxineVM/Objects#Objects-OHMlayout
https://wikis.oracle.com/display/MaxineVM/Objects#Objects-HOMlayout
https://wikis.oracle.com/display/MaxineVM/Objects#Objects-HOMlayout
https://wikis.oracle.com/display/MaxineVM/Generational+Heap+Scheme
https://wikis.oracle.com/display/MaxineVM/Generational+Heap+Scheme
https://wikis.oracle.com/display/MaxineVM/Boot+Image#BootImage-StaticExtension
https://wikis.oracle.com/display/MaxineVM/Boot+Image#BootImage-StaticExtension
https://wikis.oracle.com/display/MaxineVM/Boot+Image#BootImage-StaticExtension
https://wikis.oracle.com/display/MaxineVM/Boot+Image#BootImage-StaticExtension
https://wikis.oracle.com/display/MaxineVM/Home
https://wikis.oracle.com/display/MaxineVM/Home
https://wikis.oracle.com/display/MaxineVM/Virtual+Machine+Level+Analysis
https://wikis.oracle.com/display/MaxineVM/Virtual+Machine+Level+Analysis
https://wikis.oracle.com/display/MaxineVM/C1X
https://wikis.oracle.com/display/MaxineVM/C1X

[33] Oracle. How much optimization does the baseline compiler do. https://wikis.

oracle.com/display/MaxineVM/FAQ, 2012.

[34] Oracle. JVM Tool Interface Agent Command Line Options. http://docs.oracle.

com/javase/7/docs/platform/jvmti/jvmti.html#starting, 2012.

[35] Oracle. http://www.oracle.com/technetwork/java/intro-141325.html, 2014.

[36] Oracle. Annotation Basics. http://docs.oracle.com/javase/tutorial/java/

annotations/basics.html, 2014.

[37] Oracle. C1 Visualizer. https://java.net/projects/c1visualizer, 2014.

[38] Oracle. Defining Client Access with Interfaces. http://docs.oracle.com/javaee/

1.4/tutorial/doc/EJBConcepts6.html, 2014.

[39] Oracle. Java SE 6 HotSpot Virtual Machine Garbage Collection Tuning. http:

//www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html, 2014.

[40] Oracle. Java VisualVM. http://docs.oracle.com/javase/6/docs/technotes/

guides/visualvm/, 2014.

[41] Oracle. jmap - Memory Map. http://docs.oracle.com/javase/7/docs/

technotes/tools/share/jmap.html, 2014.

[42] Oracle. Memory Analyzer. http://www.eclipse.org/mat/, 2014.

[43] Oracle. Object Layout. https://wikis.oracle.com/display/MaxineVM/Objects#

Objects-ObjectLayout, 2014.

[44] Oracle. Predefined Annotation Types. http://docs.oracle.com/javase/tutorial/
java/annotations/predefined.html, 2014.

[45] Oracle. T1X: A Template-based Baseline Compiler. https://wikis.oracle.com/

display/MaxineVM/T1X, 2014.

[46] Oracle. The History of Java Technology. http://www.oracle.com/technetwork/

java/javase/overview/javahistory-index-198355.html, 2014.

[47] Oracle. The Java Timeline. hhttp://oracle.com.edgesuite.net/timeline/java/,
2014.

84

https://wikis.oracle.com/display/MaxineVM/FAQ
https://wikis.oracle.com/display/MaxineVM/FAQ
http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html#starting
http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html#starting
http://www.oracle.com/technetwork/java/intro-141325.html
http://docs.oracle.com/javase/tutorial/java/annotations/basics.html
http://docs.oracle.com/javase/tutorial/java/annotations/basics.html
https://java.net/projects/c1visualizer
http://docs.oracle.com/javaee/1.4/tutorial/doc/EJBConcepts6.html
http://docs.oracle.com/javaee/1.4/tutorial/doc/EJBConcepts6.html
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
http://docs.oracle.com/javase/6/docs/technotes/guides/visualvm/
http://docs.oracle.com/javase/6/docs/technotes/guides/visualvm/
http://docs.oracle.com/javase/7/docs/technotes/tools/share/jmap.html
http://docs.oracle.com/javase/7/docs/technotes/tools/share/jmap.html
http://www.eclipse.org/mat/
https://wikis.oracle.com/display/MaxineVM/Objects#Objects-ObjectLayout
https://wikis.oracle.com/display/MaxineVM/Objects#Objects-ObjectLayout
http://docs.oracle.com/javase/tutorial/java/annotations/predefined.html
http://docs.oracle.com/javase/tutorial/java/annotations/predefined.html
https://wikis.oracle.com/display/MaxineVM/T1X
https://wikis.oracle.com/display/MaxineVM/T1X
http://www.oracle.com/technetwork/java/javase/overview/javahistory-index-198355.html
http://www.oracle.com/technetwork/java/javase/overview/javahistory-index-198355.html
hhttp://oracle.com.edgesuite.net/timeline/java/

[48] Oracle. The Structure of the Java Virtual Machine. http://docs.oracle.com/

javase/specs/jvms/se7/html/jvms-2.html, 2014.

[49] Oracle. Thread Management. http://openjdk.java.net/groups/hotspot/docs/

RuntimeOverview.html, 2014.

[50] Oracle. Understanding Memory Management. http://docs.oracle.com/cd/

E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html,
2014.

[51] Oracle. Using JConsole. http://docs.oracle.com/javase/6/docs/technotes/

guides/management/jconsole.html, 2014.

[52] Derek Rayside and Lucy Mendel. Object ownership profiling: A technique for finding
and fixing memory leaks. In Proceedings of the Twenty-second IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE ’07, pages 194–203, New
York, NY, USA, 2007. ACM.

[53] Niklas Röjemo and Colin Runciman. Lag, drag, void and use—heap profiling
and space-efficient compilation revisited. SIGPLAN Not., 31(6):34–41, June 1996.

[54] Esen Sagynov. The Principles of Java Application Performance Tuning. http://

java.dzone.com/articles/principles-java-application, 2013.

[55] Darko Stefanović, Kathryn S. McKinley, and J. Eliot B. Moss. On models for object
lifetime distributions. SIGPLAN Not., 36(1):137–142, October 2000.

[56] Christian Wimmer, Michael Haupt, Michael L. Van De Vanter, Mick Jordan, Laurent
Daynès, and Douglas Simon. Maxine: An approachable virtual machine for, and in,
java. ACM Trans. Archit. Code Optim., 9(4):30:1–30:24, January 2013.

[57] Guoqing Xu. Resurrector: A tunable object lifetime profiling technique for optimizing
real-world programs. SIGPLAN Not., 48(10):111–130, October 2013.

85

http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-2.html
http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-2.html
http://openjdk.java.net/groups/hotspot/docs/RuntimeOverview.html
http://openjdk.java.net/groups/hotspot/docs/RuntimeOverview.html
http://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html
http://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html
http://docs.oracle.com/javase/6/docs/technotes/guides/management/jconsole.html
http://docs.oracle.com/javase/6/docs/technotes/guides/management/jconsole.html
http://java.dzone.com/articles/principles-java-application
http://java.dzone.com/articles/principles-java-application

	List of Tables
	List of Figures
	Introduction
	Why Java
	Java Memory Allocation
	Runtime Verifier
	Thesis Organization

	Java Application Performance and Memory Leak
	Memory Management and Performance Degradation
	Java Memory Leak Examples
	Dormant Reference
	Scope and Static Field
	Java Collection Framework
	Inner Class Example

	Challenges

	Java Application Performance and Java Virtual Machine
	JVM Internals
	Just-in-Time Compilation
	Memory Management
	Memory Allocation
	Garbage Collection

	Object Lifetime Specifications
	Object Lifetime
	Object Lifetime Specification and Annotation
	Example

	Runtime Verifier Design
	Concept
	Design Architecture
	Design Components

	Implementing Runtime Verifier with Maxine VM
	Runtime Verifier Interfacing
	Event Advice Handling
	Runtime Annotation Processing
	Recording Object Lifetime Specification
	Specification Verification

	Alternative Considerations: RVM
	Implementations

	Experiment and Analysis
	Accuracy of Runtime Verifier
	Performance Analysis for Runtime Verifier

	Related Work and Future Works
	Limitation Analysis and Future Works
	VM Event Handling
	Annotation
	Selection of JVM

	Related Work
	Object Lifetime Specification
	Profiling
	Memory Leak Detection
	Existing Java Memory Usage Monitoring Tools

	Conclusion
	APPENDICES
	Maxine VM
	Maxine VM Startup Sequence
	T1X Non-optimizing Compiler
	Before Filtering JDK-related Method Callback
	After Filtering JDK-related Method Callback

	Dacapo Benchmark
	Benchmarks
	Garbage Collection Tuning

	References

