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Abstract 

Methane cracking on transition metal surfaces is a catalytically important reaction. It is a key step to 

produce hydrogen and carbonaceous nanomaterials, such as carbon nanotubes (CNT) or carbon 

nanofibers (CNF), which display unique mechanical and electrical properties, and have been widely used 

as electronic components, polymer additives, gas storage, and catalyst support materials. Although the 

catalytic methane cracking and CNT/CNF growth have drawn lots of attentions, the understanding of the 

catalytic methane cracking properties and CNT/CNF growth mechanism is still limited. 

To develop a better understanding of the catalytic methane cracking and the CNT/CNF growth 

process, the activation of the C−H bond of methane and the creation C−C bonds on transition metal 

catalysts, especially Ni, have been studied at atomic level using Density Functional Theory (DFT). Ni is 

of particular interest because, among the different metals commonly used in the methane cracking and 

CNT/CNF production, Ni-based catalysts show very good catalytic activity at relatively moderate 

temperatures. In this research, factors that affect the methane dissociation properties, e.g. effects of the 

catalyst structure, carbon deposition, oxide support and alloying, were analyzed using DFT calculations. 

The study of the Ni catalyst surface topology effect on methane dehydrogenation properties was 

conducted on various Ni catalyst surfaces, i.e., Ni (100), Ni (111) and Ni (553). The transition states for 

methane sequential dehydrogenations on the three surfaces were identified. The results show that the 

adsorption of CHx (x=1-3) and H species is favoured on less packed surfaces, e.g., Ni (100) and Ni (553). 

Moreover, it was found that the Ni (553) and Ni (100) promote the dissociation of CHx species by 

lowering the activation barriers when compared to Ni (111).The above study was conducted on clean Ni 

catalyst surfaces. During the reactions, however, there will be carbon atoms deposited on the Ni surface. 

To provide a more realistic modeling of the reaction, the study of Ni catalytic methane cracking is then 

further extended by taking into account the effects of carbon atoms depositions. Methane dissociation on 

clean, surface-carbon, and subsurface-carbon-covered Ni (111) surfaces were investigated. The results 

show that the existence of surface and subsurface C atoms destabilized the adsorption of the surface 

hydrocarbon species when compared to the clean Ni (111) surface. Moreover, it was found that the 

presence of carbon atoms increase the CHx (x=4-1) species activation barriers especially on the surface–

carbon-covered (1/4 ML) Ni (111) surface, where CHx (x=4-1) species encounter the highest energy 

barriers for dissociation due to the electronic deactivation induced by C−Ni bonding. The calculations 

also show that CHx dissociation barriers are not affected by neighboring C atoms at low surface carbon 

coverage (1/9 ML).  
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The DFT study of Ni catalytic methane dissociation, so far, only focuses on Ni catalyst surface. 

However, in the actual process, the Ni catalyst is usually deposited on oxide support; little is known about 

the effect of the support, especially the metal-support interface, on the dissociation properties of methane. 

Therefore, the dissociations of methane and hydrogen on Ni cluster supported on γ-Al2O3 support were 

investigated using DFT calculations. Two systems: Ni4 cluster supported on the spinel model of γ-Al2O3 

(100) surface, S(Ni4), and on the non-spinel model of γ-Al2O3 (100) surface, NS(Ni4), have been used to 

model Ni4/γ-Al2O3. For both models, it was found that CH4 and H2 dissociations are kinetically preferred 

at the particular Ni atoms located at the nickel-alumina interface when compared with the top of the Ni 

cluster. Also, the study of CH3 and H adsorption on different sites of the S(Ni4) and NS(Ni4) show that 

CH3 and H bonded with the Ni atom at Ni4/γ-Al2O3 interface are more stable than at the top site 

adsorption. Hirshfeld charge analysis showed that the surface Al atom works primarily as a charge 

donation partner when CH3 and H are bonded with the Ni atom at the interface. This also resulted in an up 

shift of the d-orbital around the Fermi energy, which finally stabilized the interface adsorption by this Al 

(donor)–Ni–adsorbates (acceptor) effect. The results obtained in the present analysis indicate that the 

metal-oxide interface plays an essential role in the dissociation of methane and hydrogen. 

During the methane cracking process, carbon is deposited on the catalyst. Part of these carbon atoms 

will exists in the form of CNT, and some of them is deposited as encapsulating carbon in the form of 

graphene, which causes catalyst deactivation. To understand the role of metal elements in the growth of 

CNT or graphene, some crucial processes occurs on the (111) surface of different transition metals, i.e., 

Fe, Co, Ni, and Cu was analyzed using DFT. These processes consist of methane cracking to produce C, 

C atoms surface diffusion and C nucleation reactions. This study showed that Ni-based catalyst is a 

suitable substrate for growing CNT: it has a moderate reactivity towards C−H bond activation; low 

energy barrier for C atom surface diffusion, and a relatively high nucleation barrier for the surface C 

atoms. Meanwhile, this study also showed that Cu may be a suitable catalyst for synthesis of graphene 

due to the low diffusion and nucleation barriers of C adatoms on Cu. One key limitation of Cu is the low 

reactivity of this metal towards methane dissociation, which dominates the growth rate and reaction 

conditions of the process. Since Fe and Ni were found more reactive towards C−H bond breaking 

reactions, the results from this study indicate that Cu based alloys, e.g. Cu8Ni, may be a suitable catalyst 

for the mass production of graphene.  

To further extend the understanding regarding the behavior of the carbon atoms during the Ni catalyst 

CNT growth, the structure, nucleation energetics, and mobility of carbon intermediates up to 6 atoms on 
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the Ni (111) surface were investigated. This study showed that carbon clusters were more 

thermodynamically stable than adsorbed atomic carbon, with linear carbon structures being more stable 

than branched and ring structures. The results also showed that carbon chains have higher mobility than 

branched configurations. The transition states and energybarriers for the formation of different carbon 

clusters were also studied. The results suggest that the formation of the branched carbon configurations is 

kinetically favored as it presents lower energy barriers than those obtained for carbon chains. 

Furthermore, based on the above DFT calculations results, a Ni catalytic CNT growth mechanism 

based on carbon species surface diffusion was developed. A multi-scale modeling approach that integrates 

DFT calculations and kinetic Monte Carlo (KMC) simulation was developed, in which the energetic 

results obtained from DFT calculations were used to set-up the kinetic database for the KMC simulation. 

The KMC simulations explicitly follow the elementary steps involved in the CNT growth that include 

CH4 dissociation, C surface and bulk diffusion, C nucleation, C3 trimer diffusion and C and C3 

incorporation into CNT wall. The KMC simulations show that CNT growth is dominated by the C surface 

diffusion. Moreover, it was found that the surface diffusion of the small C cluster, e.g., C3 trimer, is also a 

critical step in the growth mechanism of the CNT. It prevents fast nucleation of the C atoms on the 

catalyst surface, and therefore inhibits the deactivation of the catalyst. The CNT growth rates predicted by 

KMC simulations fit well with the experimental data, verifying the proposed CNT growth mechanism. 

This study will therefore provide insight regarding the mechanism and kinetic properties of Ni catalytic 

methane cracking and CNT growth process. 

In summary, a systematic theoretical investigation of the catalytic methane cracking and CNT growth 

process was performed in this study. It was found the catalyst structure, carbon deposition, and the γ-

Al2O3 support has significant effect on the CHx dissociation properties. Moreover, DFT analysis also 

shows that the reactivity of the catalyst towards C−H bond activation and CNT or graphene growth varies 

with different transition metals. Finally, based on the DFT study of the carbon cluster nucleation, a CNT 

growth model that accounts for carbon cluster diffusion and nucleation was proposed. Using the kinetic 

parameters that obtained by the DFT calculations, a KMC simulation was developed. By comparing the 

CNT growth rate predicted by the KMC simulations with the experimental data, the proposed CNT 

growth mechanism is validated.  
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Chapter 1  

Introduction and Motivation 

Methane catalytic activation is an important reaction step in many chemical processes, particularly in 

methane cracking, and Chemical Vapor Deposition (CVD), in which hydrogen and carbon nanotubes 

(CNT) or nanofibers (CNF) are formed. Methane is also the main component of natural gas and used to 

synthesize CO and hydrogen, via reforming processes (steam reforming, partial oxidation, dry reforming, 

or combination thereof). The hydrogen produced by such reforming processes is mixed with large 

amounts of CO, which may limit its applicability as a potential power source. For example, in proton 

exchange membrane (PEM) fuel cells technology, even a small trace of CO (typically above 10 ppm) will 

poison the electro-catalysts in the fuel cell [1,2]; thus, expensive H2 purification process is needed, 

making methane cracking an attractive alternative for the production of CO-free hydrogen. Methane 

cracking consists in breaking methane into molecular hydrogen and carbon. Experimental observations 

have shown that methane cracking is unlikely to happen (within reasonable time) at temperatures below 

1000°C without the presence of a catalyst. However, catalytic cracking of methane can occur at 

temperatures between 500 and 800°C [3]. Among the different transition metals commonly used in 

catalytic methane cracking, Ni-based supported catalysts show very good catalytic activity at relatively 

moderate temperatures [4-8]. The most frequently used supports are SiO2, Al2O3, and MgO [6,8].  

Typically, the catalytic activity of supported Ni catalysts decreases with time due to the deposition of 

large amounts of carbon on the catalyst. In fact, the deposited carbon, as a co−production in the catalytic 

methane decomposition, can form CNT or CNF. In the past years, these materials have received 

considerable attention due to their extraordinary physical and chemical properties and their potential 

applications in the industry. For example, CNT/CNF with diameters ranging from 2 to 500nm are used as 

catalyst supports, electrodes for fuel cells and lithium ion batteries, adsorbents for hydrogen, polymer 

additives, and as gas storage materials [9-12].  

Although there is an extensive literature on experimental studies for methane dissociation on 

transition metals, little is known about microscale picture of the catalytic methane cracking. For example, 

experimental investigations on the mechanism of catalytic reaction is quite challenging because of the 

difficulty in extracting information at the microscopic scale, e.g., identification of active surface sites, or 

in accurately describing the barrier heights for the elementary reactions. In the past years, theoretical 

studies using e.g. Density Functional Theory (DFT) have been conducted for methane dissociation on 
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various transition metal surfaces [13-22]. These studies, however, have mainly focused on the estimation 

of the CHx chemisorption properties and methane dehydrogenations on low-index (111) Ni, Co or Rh 

surfaces.  

For the study of CNT/CNF production by methane cracking, although significant advances have been 

made through experimentation and simulations, the catalytic CNT/CNF growth mechanism still under 

debate. A mechanism generally accepted for the CNF growth over metallic particles is as follows [23] 

(see Figure 1.1) : i) methane first cracks on the metal surface forming hydrogen and carbon; ii) carbon 

atoms, which can form subsurface carbides, dissolve and diffuse through the bulk of the solid or through 

quasi−liquid metal particles; iii) due to the cooling down of the particles that lower the carbon solubility 

or due to oversaturation, carbon is then expelled and precipitates as more or less perfect polyaromatic 

layers; then the catalyst is lifted up which represent the CNF growth process. This continuous process is 

always used to explain why the metal particles are most often located at the tip of the CNFs.  

 

 

Figure 1.1 Schematics of tip-growth mechanism for carbon filament growth. Reprinted from [23] with 

permission from Elsevier. 

Recently, DFT have been applied to investigate the mechanism of catalytic CNT/CNF growth at the 

atomic-scale [24-27]. It has been found that the energy barriers for carbon atoms diffusion on Ni (111) 

surface are around 0.4~0.5eV, while the bulk diffusion barrier through Ni particle is 1.72 eV [26]. This 

shows that the surface diffusion of carbon atoms on a Ni particle surface is more favorable than the 

diffusion of carbons through the subsurface and bulk Ni. Hence, that study concluded that the most 

probable diffusion process is carbon atoms surface diffusion, which is the dominant process that 

contributes to the growth of CNT/CNF [25-27]. Note that both carbon nanotubes (CNT) and carbon 

nanofibers (CNF) have a hollow structure. The primary differences between the materials are their 

morphology. CNF, also known as Stacked-Cup Carbon Nanotubes (SCCNT), have a unique morphology 

in that graphene planes are canted from the fiber axis, resulting in exposed edge planes on the interior and 
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exterior surfaces of the fiber. CNTs, on the other hand, typically resemble an assembly of concentric 

cylinders of graphene. Although they are different materials, they are produced in a similar manner, and 

mostly depend on the reaction conditions and the size of the catalyst. The study of how the C atoms could 

result in CNT or CNF is beyond the scope of this research. Thus, in this study, when discussing their 

growth process in terms of carbon diffusion and nucleation, it is assumed that the CNT and CNF growth 

follows the same mechanism. 

In summary, most of the previous theoretical studies on methane cracking reaction have focused on 

describing chemisorption properties and dehydrogenation pathways on low-index (111) metal surfaces. A 

systematic investigation of catalytic methane cracking by considering factors that may affect the methane 

dissociation properties, e.g., effects of the catalyst structure, carbon deposition, oxide support and 

alloying, is still lacking in the literature. Concerning the CNT/CNF growth mechanism, the debate is now 

concentrated on the bulk or surface diffusion mechanisms. However, all the studies on this debate have 

focused on the behavior and property of single carbon atoms [24-27]. The property and role of the carbon 

clusters, formed by the nucleation of carbon atoms, on the Ni surfaces during the catalytic growth of 

CNT/CNF have been rarely reported.  

Therefore, in this study, the above mentioned issues will be addressed by theoretical DFT 

calculations. First, methane cracking on clean Ni surfaces with different surface topology was studied 

through DFT calculations. In order to evaluate the effect of carbon deposition and oxide support, the DFT 

study is then extended to methane dissociation on Ni surface covered by C atoms and γ-Al2O3 supported 

Ni clusters. Also, the nucleation of carbon atoms and the diffusion of the formed carbon clusters were 

also studied. Moreover, based on the DFT calculation results for methane cracking, carbon diffusion and 

nucleation, a Ni catalytic CNTs growth mechanism based on carbon species surface diffusion and 

nucleation was proposed. A multi-scale modeling approach that integrates DFT calculations and kinetic 

Monte Carlo (KMC) simulation was developed for a better understanding of the mechanism of methane 

cracking and CNT/CNF growth on Ni catalyst. In this approach, the DFT energetic results for the 

methane cracking, together with the carbon diffusion and nucleation energetics were used to construct the 

kinetic database for the KMC simulation. The simulations explicitly follow the elementary steps involved 

in the CNT growth that include CH4 dissociation, carbon surface and bulk diffusion, carbon atoms 

nucleation, C3 trimer diffusion and C and C3 incorporation into CNT wall. By comparing the KMC 

simulation results with experimental data, it provides validation of the proposed CNT/CNF growth 
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mechanism. It predicts the relative reaction rates of elementary reactions on the catalyst surface at 

industrially relevant temperatures and pressures.  

 

1.1 Research objectives 

Based on the above, the goal of this research is to provide a better understanding of the nature of Ni 

catalytic methane cracking and CNT/CNF growth mechanism. To achieve this goal, a few aspects that 

may reveal the catalyst’s effects on methane dissociation properties and the critical steps that govern 

CNT/CNF growth were explored using DFT calculations. The specific objectives of this study are:  

i) to understand the influence of the Ni catalyst surface topologies by studying methane dissociation on 

different Ni surfaces, e.g. flat and step surface;  

ii) evaluate more realistic kinetic parameters for methane dissociation by studying C−H bond activation 

on various carbon deposited Ni surfaces; 

 iii) understand the role of γ-Al2O3 support, especially the metal-support interface, on the dissociation 

properties of methane using a γ-Al2O3 supported Ni cluster models; 

 iv) provide insights regarding the CNT/CNF growth mechanism by studying the carbon cluster diffusion 

and nucleation properties from DFT calculations;  

v) develop a first-principle-based kinetic Monte Carlo (KMC) model for Ni catalytic methane cracking 

and CNT/CNF growth process.  

The DFT calculations conducted in this study were performed on SHARCNET (www.sharcnet.ca) under 

the umbrella of Compute/Calcul Canada using the program BAND. 

1.2 Research contribution 

To the best of the author’s knowledge, the theoretical study of catalytic methane cracking reported in 

the open literature mainly focus on CHx (x=1-4) dissociation properties on various transition metal 

surfaces. For the study of CNT growth mechanism, the debate is now concentrated on the surface and 

bulk diffusion of the surface C atom. Knowledge about the factors that may affect the stability of these 

CHx species and the activation of the C−H bond, e.g. the effect of catalyst structure, carbon deposition, 

oxide support and the property and role of the carbon clusters in CNT growth mechanism is still limited. 
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Theoretical studies on these topics, however, are essential for a better understanding of heterogeneous 

catalytic methane cracking and CNT growth mechanism.  

This study represents a first systematic investigation of catalytic methane cracking reaction. The 

effect of catalyst structure, carbon deposition and catalyst support, which are critical factors in the 

practical catalytic reaction system, are evaluated by DFT calculations. Moreover, it is the first time that a 

detailed investigation on carbon clusters diffusion and nucleation kinetics was perforemed.Based on the 

DFT investigation on the properties of the carbon cluster, a CNT growth mechanism that involves the 

critical steps during CNT growth, e.g. methane cracking, carbon surface and bulk diffusion and 

nucleation, has been developed. For the first time, the proposed CNT growth mechanism is validated by 

comparing the CNT growth rate obtained by first-principle-based KMC simulation with experimental 

results. KMC simulation proposed here is arguably the most advanced proposed published simulation on 

the CNT growth. 

 

1.3 Outline of the thesis 

This thesis consists of nine chapters as follows: 

Chapter 1 gives the overview of the thesis, including introduction and fundamentals of the catalytic 

methane cracking and CNT growth. The main objectives and contributions of the research are also 

presented in this chapter. 

Chapter 2 reviews and summarizes the literature about catalytic methane cracking and CNT/CNF 

growth. It also gives an introduction to Density Functional Theory (DFT). 

Begin with Chapter 3, factors that may affect the methane dissociation properties in the practical 

catalytic reaction system, e.g. the catalyst structure, carbon deposition, oxide support and alloying, were 

analyzed using DFT calculations. For example, Chapter 3 presents a DFT study on the effect of Ni 

catalyst surface topology on methane dehydrogenation by using three different Ni catalyst surfaces, e.g. 

Ni (100), Ni (111), and Ni (553); effect of carbon atoms depositions was studied in Chapter 4 by 

modeling methane dissociation on clean, surface-carbon, and subsurface-carbon covered Ni (111) surface; 

the role of the γ-Al2O3 support, especially the metal-support interface, on the dissociation properties of 

methane is reported in Chapter 5.  
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The above Chapters focus on only methane cracking reactions, In Chapter 6, CHx dissociation, carbon 

diffusion together with C−C bond coupling are studied together to evaluate the reactivity of different 

metal catalyst, i.e., Fe, Co, Ni, and Cu towards CNTs/graphene growth.  

Following the DFT calculation results reported in Chapter 6, a detailed investigation on the behavior 

of the carbon atoms during the Ni catalyst CNT growth, the structure, nucleation energetics, and mobility 

of carbon intermediates on the Ni (111) surface was presented in Chapter 7.  

In Chapter 8, a comprehensive Ni catalytic CNT growth model was developed. The model incudes 

the critical elementary steps that involved in the CNT growth, e g. CHx dissociation, C surface and bulk 

diffusion, C cluster nucleation and diffusion, etc. Based on this model, a first-principle-based KMC 

simulation was conducted to study the Ni catalytic methane cracking and CNT growth process. In this 

study, the kinetic parameters for methane dissociation on clean Ni (111) surface reported in Chapter 4 and 

carbon nucleation kinetics obtained in Chapter 7 are used to construct the kinetic data base for the KMC 

simulation.  

Chapter 9 concludes the results obtained from this study and provides recommendations for further 

studies. 
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Chapter 2 

Background and Literature Review 

This chapter provides the background to catalytic methane cracking and carbon nanotubes (CNTs) or 

carbon nanofibers (CNFs) synthesis. The first section presents an overview of the topic. Since the study 

will be performed using Density Functional Theory (DFT), a brief introduction of the fundamental theory 

of the quantum mechanical calculations is given in section 2.2. Literature reviews on the studies of 

catalytic methane cracking and CNT/CNF growth are provided in section 2.3 and 2.4, respectively. 

Micro-kinetic study of catalytic methane cracking and CNT/CNT growth are discussed in Section 2.5. 

 

2.1 Overview 

The stability and reactivity of hydrocarbon molecules and fragments on metal surfaces is of great 

importance for the understanding of several catalytic elementary steps. Among the hydrocarbon 

molecules, methane is of most importance. This molecule is of low value as such but could provide a low-

cost energy production source by hydrogen extraction. The reforming of CH4 is a major catalytic reaction 

that has been used to synthesize CO and hydrogen. For several applications where hydrogen is used as a 

power source, the production of highly purified hydrogen is essential. Thus, recently, methane cracking 

has become a topic of increasing importance because it produces CO-free hydrogen and also is important 

for carbon nanotubes (CNTs) or carbon nanofibers (CNFs) synthesis by standard techniques such as 

Chemical Vapour Deposition (CVD) [1,2]. The overall reaction describing methane cracking is as 

follows: 

                                                    molkJH /76298  
                                                       (2.1) 

In this reaction, methane is dissociated on the surface of a catalyst where molecular hydrogen is 

formed whereas the remaining carbon is nucleated to form CNTs or CNFs. These carbonaceous nano-

structured materials display unique mechanical and electrical properties, and have drawn attention in 

various research fields. For instance, CNTs have been suggested for gas storage purposes [3] and as 

catalysts for chemical reactions [4] thanks to their advantageous surface/volume ratio and to the great 

number of possible active sites on the nanotubes walls. CNTs have been used as electronic components, 

polymer additive [5-7]. Therefore, in the past decades, the catalytic growth of CNT/CNF has been 
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extensively studied both theoretically and experimentally [8-15]. The CNT/CNF growth mechanism, 

however, still remains unclear. 

 

2.2 Density Function Theory (DFT) 

The study of the chemical bond between a surface and a molecule is the fundamental basis for 

understanding surface chemical reactivity and catalysis. Experimental investigations on the nature of the 

catalytic surface reactions are challenging because of the difficulty in extracting information at the 

microscopic scale. Quantum chemistry calculations, however, can provide useful and important 

perspectives on chemical reactions that are not accessible through experimental observations. It has been 

used to study the fundamental aspects of the catalytic reactions such as reaction pathway due to the 

theoretical developments, especially accuracy improvement of Density Functional Theory (DFT). 

DFT is one of the most popular and versatile methods available in condensed-matter physics, 

computational physics, and computational chemistry to find an approximated solution for the Schrödinger 

equation, the fundamental equation that describes the quantum behavior of atoms or molecules [16]. 

Within this theory, the properties of a many-electrons system can be determined by using functionals, 

representing spatially dependent electron densities. Hence, the name DFT comes from the use of 

functionals of the electron density. 

The Schrödinger equation is the key equation in quantum mechanics that describes the behavior of a 

particle in a force field. One simple form of the Schrödinger equation is as follows: 

                                                                                                                                                     (2.2) 

where,   is the Hamiltonian operator;    is the wavefunctions, or eigenstates of the Hamiltonian and   is 

the energy of the state  . The Schrödinger equation for multiple electrons systems with defined quantities 

of the Hamiltonian operator, , is generally expressed as follows: 

             ∑
  

 

   

 
    ∑

  
 

  

  
    ∑

  

|     |
 ∑

     
 

|     |
       ∑

   
 

|     |
      

                                                                                                                                             (2.3) 

where, N and Ne are the number of nuclei and electrons respectively, MI and m are the nuclei and electron 

mass, Pi are the momentum, R and r are the coordinates of nuclei and electrons respectively, ZI is the 

charge on the Ith nucleus. The first and second terms (Tn and Te) on the right hand side of the Equation 
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(2.3) are the kinetic energy of nucleus and electrons, respectively. The following three terms (Vee, Vnn, 

Vne) represent the electron-electron, nucleus-nucleus and electron-nucleus interaction potentials, 

respectively. In principle, all the physical properties of atoms and molecules are included in the solution 

of equation (2.2). However, for only a few systems, it can be solved analytically, e.g., H2. There are no 

analytic solutions to the Schrödinger equation for systems with multiple electrons. To solve the 

Schrödinger equation for these systems, approximations have to be introduced. One major approximation 

is the Born-Oppenheimer (BO) approximation. A key observation in quantum mechanics is that the 

atomic nuclei are much heavier than the electrons, and the mass of each proton or neutron is 1,800 times 

heavier than the mass of an electron. That is, the nucleus motion is much slower than the motion of 

electrons. Thus, one can assume that the electrons are moving in a field of fixed nuclei. Accordingly, the 

Born-Oppenheimer approximation states where the electron motion and the nucleus motion can be 

separated. This approximation enables the partition of the Schrödinger equation into two parts, one for the 

nuclei and the other for all the electrons. In the first step, the nucleus kinetic energy is neglected, that is, 

subtracted from the total molecular Hamiltonian. In the remaining electronic Hamiltonian, He, the nucleus 

positions are entered as parameters. The electron-nucleus interactions are not removed and the electrons 

still "feel" the Coulomb potential of the nuclei clamped at certain positions in space. The electronic 

Schrödinger equation that describes the motion of electrons in a field of fixed nuclei is as follows:  

                                                                                                                                       (2.4) 

The quantity   stands for all electronic coordinates and   for all nucleus coordinates. The electronic 

energy    depends on the chosen positions   of the nuclei. In other words,    is a function of the 

positions of these nuclei,    (R1, . . . , RM). This is also known as the Potential Energy Surface (PES), 

     . In the second step of the BO approximation, the nucleus kinetic energy is reintroduced and the 

Schrödinger equation for the nucleus motion (equation 2.5) is solved. 

                                           [        ]                                                                                 (2.5) 

The eigenvalue E is the total energy of the molecule. 

DFT states that the ground-state energy from the Schrödinger equation is a unique functional of the 

electron density     , which uniquely determines all properties, including the energy and wave function 

of the ground state [17]. The latter means that the Schrödinger equation can be solved by finding a 

function of the three spatial variables and the electron density, rather than a function of 3N variables as in 

the wave function. An important property of the functional is defined in the second Hohenberg-Kohn 
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theorem: the electron density that minimizes the energy of the overall functional is the true electron 

density corresponding to the full solution of the Schrödinger equation. The energy functional in DFT is 

formulated as follows [16]: 

 [{  }]  
  

 
∑ ∫  

 
      

   ∫            
  

 
∫∫

     (  )

|      |
                  [{  }]    (2.6) 

The terms on the right-hand side in (2.6) are, in order, the electron kinetic energies, the coulomb 

interactions between the electrons and the nuclei, the coulomb interactions between pairs of electrons, and 

the coulomb interactions between pairs of nuclei, and the last term,    [{  }] , is the exchange-

correlation functional. The latter is defined to include all the quantum mechanical effects that are not 

considered in the other energy terms. The calculation of the right electron density is performed by solving 

a set of equations in which each equation only involves a single electron. This set of equations, also 

known as the Kohn – Sham equation, is as follows [18]: 

                     [
  

  
                    ]                                                                      (2.7) 

The left-hand side of the Kohn-Sham equation considers three potentials, i.e.  ,   , and    . The first 

potential defines the interaction between an electron and the collection of atomic nuclei. The second 

potential, the Hartree potential, describes the coulomb repulsion between the electrons being considered 

in one of the Kohn-Sham equations and the total electron. Finally,    , the exchange-correlation 

potential, includes all the many-particle interactions. 

Solving the Kohn-Sham equation is an iterative procedure that can be summarized as follows: 

i) Define an initial guess for electron density,     . 

ii) Solves the Kohn-Sham equations for the single-particle wave functions,      . 

iii) Calculate a new electron density from the single particle wave functions by using        

 ∑   
       . 

iv) Compare the new calculated electron density,      , with the electron density used in solving the 

Kohn-Sham equation,     . If the two densities are the same, then this is the ground-state electron 

density, and it can be used to compute the total energy. If the two densities are different, then the trial 

electron density must be re-estimated and go back to step ii) again, until a self-consistent solution of the 

Kohn-Sham equations is found. 
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It is worth noticing that solving the Kohn-Sham equations require the specification of the exchange-

correlation function,    [{  }]. One of the approximations to the exchange-correlation energy functional 

is the Local Density Approximation (LDA) [19], which states that the electron density is constant at all 

points in space, so the exchange-correlation energy functional depends solely upon the value of the 

electronic density at each point in space. The other well established approach to approximate the 

exchange-correlation function is the generalized gradient approximation (GGA) [20]. Although it is also a 

local approximation, it takes into account the gradient of the electron density at the same coordinate. For 

systems where the charge density is slowly varying, the GGA has proved to be an improvement over 

LDA [20]. 

 

2.3 Catalytic methane cracking  

The reactivity of methane on metal surfaces is a catalytically important reaction. By catalytic cracking 

reaction, methane goes through different carbonaceous species as intermediates, which are the basic 

chemicals used hydrocarbon synthesis industry. The sequential dehydrogenation of methane is also 

essential for the production of CO-free hydrogen and CNT/CNF.  

2.3.1 Catalysts for catalytic methane cracking 

Non-catalytic methane cracking is a very slow process for practical application at temperatures below 

1000°C, whereas catalytic cracking of methane can occur at temperatures as low as 500°C [21]. The 

experimental studies of methane cracking mainly focus on the development of an effective catalyst and 

the investigation of different factors affecting catalyst activity. Muradov et al. [22] used iron oxide as a 

catalyst for the cracking of methane and reported that equilibrium conversions were achieved at 

temperatures above 800 °C. Zhang et al. [23] reported that methane cracking takes place at low 

temperatures (550°C) over a 16.4wt% Ni/SiO2 catalyst. Takenaka et al. [24] claimed that Ni (40-

wt%)/SiO2 is one of the most effective catalysts for methane cracking. Rahman et al. [25] reported that 

the catalytic decomposition of methane may be carried out at an even lower temperature between 500 and 

550°C on a 5-wt% Ni/γ-Al2O3 catalyst. In most of the studies, nickel has been described as the most 

active catalyst for methane cracking. Cobalt is also a good catalyst for methane cracking, but it has higher 

cost compared to nickel.  

The performance of the metal catalyst is also a function of the electronic state and dispersion. For 

example, Echegoyen et al. [26] and Figueiredo et al. [27] observed improved performance of the Ni-based 
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catalyst with copper addition. Figueiredo et al. [27] attributed the improved stability to an electronic 

promotion effect. The enhanced methane conversion was explained by the influence of copper on the 

dispersion of the nickel by inhibiting the formation of nickel aluminate, which increased the metallic 

nickel phase available for reaction and the nickel surface area subject to reaction. Chesnokov et al. [28] 

developed a nickel-based catalyst with addition of other metals, such as copper and iron (e.g. 70%Ni-

10%Cu-10%Fe/Al2O3) for methane cracking. In that study, they reported that the addition of iron 

increased the optimal operating temperature range from 600−675°C for Ni/Cu/Al2O3 to 700−750°C while 

maintaining good catalyst stability.  

       Previous studies on this subject have also found that the support material can affect the metal surface 

area and the metal’s electronic state [26], and therefore affect the performance of the catalyst [29-30,31]. 

Ermakova et al. [21] studied the effect of magnesia and silica as supports for Ni catalytic methane 

cracking and reported a lower methane conversion using magnesia as compared with that using silica. In 

that study, the authors stated that the low methane conversion using magnesia is due to the formation of a 

solid solution between Ni and magnesium, which reduced the surface area of the Ni catalyst. In another 

study, using X-ray diffraction to characterize nickel on different supports (SiO2, TiO2, graphite, Al2O3, 

MgO and SiO2·MgO), Takenaka et al. [31] found that, for equivalent surface area, the lower the 

interaction between nickel and the support, the higher the methane conversion.  

2.3.2 DFT study of catalytic methane cracking 

Due to their industrial and commercial importance, the adsorption and decomposition of methane on 

transition metal catalysts have been extensively studied [32-45]. Lee et al. [42, 43] studied the activated 

dissociative adsorption of CH4 on Ni (111) by molecular beam techniques coupled with High-Resolution 

Electron Energy Loss Spectroscopy (HREELS). That study reported that the adsorbed CH3 radical and H 

atom were identified as the products of the dissociative reaction. The existence of the chemisorbed CH3, 

CH2 and CH on Ni (111) has also been reported by Secondary Ion Mass Spectroscopy (SIMS) and X-ray 

Photoelectron Spectroscopy (XPS) [44, 45]. Nevertheless, experimental investigations on the nature of 

the decomposition of methane on transition metal surfaces are challenging because of the difficulty in 

extracting information at the microscopic scale, e.g., identification of active surface sites, or in accurately 

describing the barrier heights for the elementary reactions. 

Advances in computational sciences have enabled the application of DFT to study the fundamental 

aspects of the catalytic methane cracking reaction. For example, Au et al. [46] conducted extensive 

cluster-based DFT calculations for methane activation, which includes Ru, Rh, Ir, Pd, Pt, Cu. Kua et al. 
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[47] performed a complete study of CHx (x=0-3) adsorption on Pt, Ir, Pd, Rh, and Ru clusters. These 

metal clusters models suffer from edge effects, which limit the accuracy of these results. Also, 

Henkelman et al. [48] demonstrated that the surface relaxations with specific cluster size can greatly 

influence the DFT calculation results. Thus, with the increase of computational power, more and more 

periodic-slab based DFT calculations have been applied to study methane activation on metals. 

Michaelides [49] reported energies for CHx hydrogenation reactions on Pt (111). Michaelides et al. [50] 

also studied the dehydrogenation of CH3 on Ni (111) by DFT. Zuo et al. [51]
 
studied the dehydrogenation 

of CH4 on Co (111) surface by DFT. They calculated the adsorption energies of the adsorbed CHx (x=0-4) 

species and located the transition states in CH4→CH3→CH2→CH→C reaction pathways. Watwe et al. 

[37] studied the stability of CHx species on Ni (111) and reported that the threefold site is preferred by the 

CHx intermediates. Lai et al. [52] reported an activation barrier of 0.73 eV for the reaction: CH4(gas)→ 

CH3(ads)+H(ads) on Ni (100). Nave et al. [53] analyzed 24 transition states (T s) for the first C−H bond 

breaking of methane on five metal surfaces: Ni (111), Ni (100), Pt (111), Pt (100), and Pt (110). Wang et 

al. [54] presented a comparative study of CHx chemisorption on Ni (111), Ni (100) and Ni (110) surfaces 

using plane wave DFT calculations. In that study, the reaction energies along the methane successive 

dehydrogenation pathway were also calculated. By comparing these thermodynamic schemes of CH4 

dissociation, they reported that Ni (100) is the preferred surface for CH4 dissociation, when compared to 

Ni (110) and Ni (111). However, that study did not include a study on the kinetic properties for methane 

dissociation. 

Recently, DFT calculations and experiments have shown that the step edges in general are more 

reactive towards the adsorption and dissociation of a number of simple molecules such as CO, NO, O2 

and N2 [55-60]. For the study on methane dissociation, Bengaard et al. [61] used a Ni (211) surface to 

study the effects of surface steps on the activation of the first C–H bond breaking in methane. That study 

showed that the activation energy on Ni (211) is 0.20 eV lower than that reported for the Ni (111) surface. 

The higher activity of the step surface over the terraces has been confirmed by Frank Abild-Pedersen et 

al. [62], who investigated CH4(gas)→ CH3(ads)+H(ads) reaction on the terraces and steps of a Ni (111) 

surface by DFT calculations combined with Ultra High Vacuum (UHV) experiments.  

Based on the above, Ni-based catalysts have shown very good activity for catalytic methane cracking 

reaction. Experimental studies also showed that the performance of the catalyst is affected by the nature 

of the support and by doping with other metal elements such as Cu or Fe. For the theoretical investigation 

of catalytic methane cracking reaction, the published study mainly focus on the estimation of the CHx 
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(x=1-4) adsorption and dissociation properties on various metal surfaces, especially the (111) surface.  

Comparative studies of methane dissociative adsorption reactions on low-coordinated Ni (100) and Ni 

(211) step surface were also reported [61]. Nevertheless, there are no systematic DFT studies on the 

complete dehydrogenation energetics for the transformation of CH4 to C and H on Ni as a function of 

catalyst site morphology (flat and step). Moreover, for a comprehensive understanding of the nature of 

this reaction, theoretical studies of the effects of the support and carbon deposited on methane 

dissociation is also necessary. These types of studies, however, are still missing in the open literature. 

 

2.4 Catalytic CNF/CNT growth  

A generally accepted micro-scale process for catalytic methane cracking on catalyst surface is: first, 

methane dissociates into CH3 and H atom on the catalyst surface; adsorbed CH3 further dehydrogenate 

into CH2 and H. The surface dehydrogenation reaction continues until C is produced. Depending on the 

catalyst, catalyst particle size and reaction conditions, the carbon atoms form either CNF or CNT (Figure 

2.1). Due to the extraordinary property of these carbon materials, research in this field has undergone an 

explosive growth. Niu et al. [63] prepared free-standing mats of entangled nanotubes electrodes with an 

open porous structure from carbon nanotubes of high purity and narrow diameter distribution, which is 

highly desirable for high power and long cycle life of electrochemical capacitors. Xie et al. [64] added 

multiwalled carbon nanotubes (MWCNT) into polar liquids, e.g., distilled water, to prepare a nanofuild 

that has higher thermal conductivities than the base fluids. Carbon nanotubes or nanofibres have also been 

applied for gas storage. Gadd et al. [65] used carbon nanotubes to store Argon using a hot isostatically 

pressing (HIPing) technique. Research conducted by Dillon et al. [66] showed that single wall nanotubes 

are good adsorbent for hydrogen storage at ambient temperatures.  
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Figure 2.1 SEM micrographs of a Ni/SiO2 catalyst after exposure to methane. Reprinted from [23] with 

permission from Elsevier. 

 

Since these carbon materials are suitable for different applications, the production of CNF/CNT is of 

great interest. Thus far, there have been a tremendous number of studies on the growth of carbon 

nanotubes. The catalytic Chemical Vapour Deposition (CVD) method [67] is the most widely used 

method to produce carbon naotubes. In CVD, the carbon atoms are sourced from the decomposition of a 

hydrocarbon gas (methane, ethylene, etc.) at the surface of supported catalytic particles (Fe, Co, or Ni). 

Depending on the temperature, different products are obtained. Although there are no general rules, the 

tendency is to obtain multi-walled nanotubes at medium temperatures (between 500 and 900 ) and 

SWNTs at higher temperatures (750–1200 ) [68]. A very important aspect of these studies is on the 

CVD synthesis of high yield CNTs at low growth temperatures. Kong et al. extensively studied the 

growth of high-quality SWCNTs from the CVD of methane [69]. Low growth temperatures were reported 

by Mo et al. [70] who synthesized a mixture of SWCNTs and MWCNTs at 600°C using acetylene as 

carbon source and a mechanically mixed Al2O3/Ni as catalyst. Similarly, other studies have focused on 

the parameters and reaction conditions that affect the growth of CNTs. Mora et al. [71] studied the effect 

of catalyst (Fe-based) composition, hydrocarbon flow rate, and synthesis temperature on the single-walled 

carbon nanotubes (SWCNTs) growth. That study showed that the catalyst composition has a significant 

effect on the catalyst lifetime. Proper modification of its composition with Mo can prolong the catalyst 

lifetime and therefore improve the yield of grown SWCNTs. That study also showed that an increase in 

flow rate or temperature results in an increase of the nanotubes growth rate. Lu et al. [72] found that the 
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diameter of carbon nanotubes in the CVD method can be controlled by the hydrocarbon feeding rate. 

Anna et al. [73] performed a review on the role of metal nanoparticles in the catalytic production of 

single-walled carbon nanotubes, and the effect of various parameters on SWCNT formation, in which it is 

reported that the form of the precipitated carbon is dictated by the catalyst particle size, carbon feed rate 

and reactor conditions. Also, the feed rate of carbon to the metal particles must be controlled in order to 

selectively produce SWCNTs and to avoid accumulation of amorphous carbon. 

Based on the above, many efforts have been made toward unveiling the mechanism of SWNT growth 

in the CVD process to produce SWNTs with high productivity and desired atomic structures [74-78]. 

Despite all these efforts, the growth mechanisms of CNTs still remain somewhat controversial. A general 

four step process has often been proposed (Figure 2.2): i) Gas precursor (ethylene, acetylene, methane) 

first adsorbed on the catalyst surface; ii) the surface reactions, such as methane cracking, produce 

adsorbed carbon and hydrogen atoms; iii) H2 molecules desorb and carbon atoms diffuse through the bulk 

of the catalyst particles; iv) the carbons then nucleate and are incorporated into graphene overlayers for 

the growth of the CNT. The key step in this mechanism is believed to be the diffusion of carbon species 

through the particle from the surface on which the dehydrogenation of hydrocarbons occurs near the rear 

faces [8]; v) during CNT/CNF growth, the deposited carbon on the metal/gas interface can also form a 

layer called encapsulating carbon, which blocks reactant access, and causes catalyst deactivation [79]. As 

a result of carbon deposition on nickel, the catalyst activity changes as the reaction proceeds.  

 

Figure 2.2 Schematic picture of the formation of a full fibre (left) and a hollow tube (right). In the case of 

the fibre, the nucleation has taken place over the entire back of the metal particle; in the case of the tube, 

the nucleation has been restricted to the vicinity of the gas-metal interface. Reprinted from [9] with 

permission from Elsevier. 
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In this mechanism, some studies have suggested that the driving force for carbon bulk diffusion is the 

temperature gradient [80,81], created in the metal catalyst particle by the exothermic decomposition of the 

hydrocarbon at the exposed front faces and endothermic deposition of carbon at the rear faces, which are 

initially in contact with the support surface. Note that for endothermic hydrocarbon decomposition, it is 

argued that the heat is supplied by the radiation from the surroundings to the gas/metal interface [80]. 

There are also other studies that suggest that the carbon diffusion driving force is the carbon concentration 

gradient between the surface and bulk [82-84]. The steady state growth results from a delicate balance 

between dissociation of the carbon-containing gases and carbon diffusion through the catalyst particle, 

and a balance between carbon diffusion through the catalyst particle and rate of nucleation and formation 

of graphitic layers [83]. 

In recent years, atomic-scale environmental transmission electron microscope (ETEM) and in situ 

time resolved X-ray photoelectron spectroscopy (XPS) techniques are used to monitor carbon nanofibre 

growth, which enables the study of these processes at higher resolution. Hofmann et al. [11] studied the 

carbon nanotube growth using C2H2 decomposition over a nickel catalyst, and they suggested that the 

nucleation and growth of graphene layers are associated with the dynamic formation and restructuring of 

monoatomic step-edges at the nickel surface (Figure 2.3). 

 

 

Figure 2.3 (a-d) ETEM image sequence showing a growing CNF in 3:1 NH3:C2H2 at 1.3 mbar and 480 

°C. The video was recorded at 30 frames/s, and the time of the respective pictures is indicated. Reprinted 

from [11] with permission from the the American Chemical Society. 
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Lin et al. [12] reported the formation of bamboo-like multiwalled carbon nanotubes, by in situ high-

resolution transmission electron microscope (HRTEM), via catalytic decomposition of C2H2 on Ni 

catalyst at 650°C. In those experiments, a tip-based growth mode was observed (Figure 2.4) and the 

catalyst particle remained as crystalline metallic Ni at 650°C during the growth process. That study 

showed that the mechanism of CNT growth is not through C precipitation from Ni3C but rather through 

the diffusion of C adatoms followed by nucleation and growth. Two possible diffusion pathways were 

proposed: bulk diffusion and surface diffusion to the boundary of the Ni-graphene growth interface, with 

the latter being the dominant process due to a lower activation energy barrier and lower coordination 

number. Hofmann et al. [13] also reported that the surface diffusion is a low activation energy path for 

nanotube growth (Figure 2.5). 

 

Figure 2.4 A sequence of TEM images showing the formation of an incomplete knot in less than 6s. 

Reprinted from [12] with permission from the American Chemical Society. 
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Figure 2.5 (a) Schematic of the growth process. (b) Bright field image and electron energy loss 

spectroscopy Ni and carbon edge elemental maps of a PECVD CNF at 500°C. Reprinted from [13] with 

permission from the American Physical Society. 

 

In addition to these experimental works, theoretical methods, such as DFT, have also been applied to 

investigate the carbon nanotube growth mechanism. Cinquini et al. [14] studied carbon adsorption and 

diffusion on the surface and subsurface of Ni and Ni3Pd alloy. The DFT calculations showed that, on the 

Ni surface, the diffusion of carbon is fast and the surface diffusion barriers (0.45 eV) are smaller than that 

for penetration through the bulk (1.72 eV). Abild-Pedersen et al. [15] studied the growth mechanisms for 

catalytic carbon nanofibre by ab initio DFT calculations (Figure 2.6). This study showed that nickel step-

edge sites act as the preferential growth centers for graphene layers on the nickel surface. Based on 

different transport pathways of carbon atoms by surface or subsurface diffusion, they proposed three 

mechanisms for graphene growth: i) front growth, ii) base growth by C incorporation and iii) atom-

exchange at the Ni step edge with energy barriers of 1.43, 1.42 and 1.40 eV, respectively. 
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a)   b) c)  

Figure 2.6 Initial, transition, and final states in the front growth mechanism (a) base growth mechanism 

(b) and atom-exchange growth mechanism (c) modeled using DFT calculations. Reprinted from [15] with 

permission from the American Physical Society. 

 

Recently, Ohta et al. [85,86] reported a rapid growth of a single-walled carbon nanotube on an iron cluster 

by performing Density-Functional Tight-Binding molecular dynamics simulations. That study showed 

that the continuous growth of the SWCNs is due to the repetitive insertion and subsequent bridging of the 

carbon fragment (C1,C2) formation resulting in the rapid formation of five-, six-, seven-, and sometimes 

even eight-membered rings, at the C−Fe interface (Figure 2.7). 
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Figure 2.7 Snapshots of growth process trajectory of a seed nanotube on a Fe38 cluster. Reprinted from 

[85] with permission from the American Chemical Society. 

 

2.5 Microkinetic study of catalytic methane cracking and CNT/CNF growth 

A primary goal of research and development in heterogeneous catalysis is the identification of 

catalytic materials and reaction conditions that lead to efficient catalytic processes, which can be 

implemented in industrial practice through appropriate reaction engineering [87]. A micro-kinetic model 

is one of the most powerful tools that can be used to evaluate the performance of these systems. These 

models can be used to predict the reaction rates for each elementary reaction under different reaction 

conditions, determine the rate-limiting steps, and calculate the conversions of reactants or yields of 

productions. Based on this information, the evaluation of the catalyst and the optimization of the reaction 

process or operating conditions can be performed more effectively.  

The kinetics of methane cracking and CNT/CNF growth has been studied extensively over the past 

four decades [88-92]. The derivation of these microkinetic models are based on the bulk diffusion 

mechanism of CNT/CNF growth. The model usually consists of two aspects: the surface reactions with a 

gradual dehydrogenation of methane and the CNT/CNF growth by C bulk diffusion. For example, Snoeck 

et al. [88] developed a kinetic model for the formation of filamentous carbon on a nickel catalyst by 

methane cracking based on the mechanism show in Figure 2.8. The model includes the following steps: 

Surface reactions: 

                                                                                  (2.8) 
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                                                                                   (2.9) 

                                                                               (2.10) 

                                                                              (2.11) 

                                                                             (2.12) 

                                                                                    (2.13) 

Dissolution/segregation: 

                                                                              (2.14) 

Diffusion of carbon through nickel: 

                                                                             (2.15) 

Precipitation/Dissolution of carbon: 

                                                                             (2.16) 

where    is the adsorbed carbon on the Ni surface;       and       are the carbon dissolved in nickel at 

the gas side of the particle and at the support side of the particle, respectively;       is the carbon at the 

carbon filament.  
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Figure 2.8 Mechanism of the formation of filamentous carbon by the methane cracking. Reprinted from 

[88] with permission from Elsevier.  

 

In this model, Snoeck et al. assumed that a segregation/ dissolution equilibrium exists at the gas side 

of the nickel particle between adsorbed carbon (  ) and carbon dissolved in nickel (     ). It is also 

assumed that there is a carbon precipitation/dissolution equilibrium between       and      . In that 

study, the dehydrogenation of the first C–H bond is assumed as the rate-determining step, whereas in 

some other studies, adsorption of methane on the surface of catalyst is treated as the rate-determining step 

[89,90].  

Different from the above mentioned studies, in which the methane dissociation reaction starts with 

methane surface adsorption, there are studies arguing that methane cracking proceeds with a stepwise 

dehydrogenation of the surface species after a direct dissociative adsorption of methane [91,92]:  

                                                                                                               (2.17) 

It was then postulated that both the dissociative chemisorption step and the dehydrogenation of the 

adsorbed methyl group would be rate-determining.  
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2.6 KMC approach  

It can be observed that, to perform microkinetic modelling, one has to make an assumption of the 

reaction mechanism and treat the reaction steps as either being in thermodynamical equilibrium or as 

kinetically hindered one-way reactions. In many studies, only one of the reaction steps is treated in non-

thermodynamical equilibrium making it the rate-limiting step. This will limit the accuracy of the 

microkinetic modelling study in the absence of a good of knowledge about the reaction mechanism as 

well as the physical properties that determine the equilibrium and rate constants of the reactions. 

Moreover, it is known that microkinetic modeling treats adsorbate species using the mean-field 

approximation, expressing reaction rates in terms of species coverages. It neglects the dynamic effects 

such as surface restructuring and possible interactions between adsorbate-adsorbate, which may be 

important parameters in certain systems [93-95]. Kinetic Monte Carlo (KMC) simulation, however, 

models the catalytic surface as a lattice of reaction sites, explicitly performing each reaction on the lattice 

as function of time and processing conditions [96,97]. This approach can explicitly track the diffusion, 

adsorption/desorption and reaction of the reactants/intermediates [98, 99]. In addition, KMC simulations 

also show the rate-determining step and the most abundant reaction intermediate. Moreover, KMC 

simulation is a suitable strategy to bridge the gap between the results obtained by DFT at the molecular 

scale and the macroscopic behavior of catalytic reaction observed in the experiments.  

In the variable time step KMC model, the catalyst surface is simulated using an N×N 2D lattice. Each 

position on the lattice represents active site of the catalyst. The intrinsic kinetic database calculated with 

the DFT analysis, the size of the lattice, and the reaction conditions are the key inputs needed to develop 

the KMC simulation for this process. The simulated system is allowed to evolve according to algorithm 

described in Figure 2.9 and is summarized as follows: 

i) Generate an initial configuration and set the initial time t0. In most of the cases, an empty lattice, which 

represents a clean catalyst surface, is taken as the initial configuration. 

ii) List all possible events that could occur on the current lattice configuration and time t, and then 

determine the rate of each event. Since the kinetic parameters (activation energy, pre-exponential factor) 

for a specific event have been obtained by DFT calculations, the rate for the possible event is calculated 

under the framework of transition state theory, which has been discussed in section 2.2. 

iii) Calculate the total rates R of all these events by summing all possible surface reaction rates, ri, and 

generate two random uniformly distributed numbers    and    that are in the rage of (0,1].  The total rate 
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is subsequently used along with random number the variable time-step equation given below to determine 

the time step at which some possible event on the surface will occur, 

iv) The total rate R is used along with the random number    to pick up an event from the event list 

obtained at step ii). The event is chosen by comparing the cumulative reaction probability distribution 

given below against   : 

                                                           ∑     
 
                                                                            (2.18) 

If the random number    is between      and    , then event i is chosen as the executed  event. 

v) Update the configuration of the system (species on the lattice).  Remove the executed event and add 

new enabled processes.  

vi) A time interval is generate by the variable time-step equation given below to determine the time step at 

which the chosen event on the surface will occur: 

                                                            
 

 
                                                                             (2.19) 

The total time is then updated by adding the calculated variable time step    to the current time t:  

                                                                                                                                             (2.20) 

vii) If the maximum simulated time, tmax, are fulfilled then stop; Otherwise, go back to step ii). 
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Figure 2.9 KMC algorithm flow chart. 

 

As mentioned above, DFT study of the catalytic reaction mechanism allows one to predict the events 

that occur on the catalyst surface at the molecular level, which is quite difficult to be obtained through 

experimental measurements or observations. It can therefore be used to generate a first-principles-based 

kinetic database, e.g. activation energies and pre-exponential factors of the chemical reactions, for the 
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KMC simulations. This combined DFT/KMC approach maintains important atomic features of a catalytic 

metal surface and can therefore offer an efficient strategy to bridge the gap between the results obtained 

by DFT at the microscopic scale and the dynamic behaviors of the working catalyst surface under given 

operating conditions. Previously, this approach was successfully used to study the mechanism of catalytic 

surface reactions, for instance, to examine the decomposition of acetic acid on Pd (111) [100]. 

Aleksandrov et al. [101], studied the ethylene conversion to ethylidyne on Pd (111) and Pt (111) surfaces 

using KMC simulations, on the basis of reaction enthalpies and barriers obtained from DFT calculation. 

The simulations predicted the most plausible pathway and estimate apparent activation energy for the 

formation of ethylidyne that agree well with experimental results. Using KMC simulations, Stamatakis et 

al. [102] provided evidence that the active site for water-gas shift reaction on platinum surfaces may be 

condition specific and may entail multiple individual sites under certain conditions. 

In summary, DFT is a powerful tool that enables the study of the catalytic surface reactions in great 

detail. The DFT calculated kinetic parameters for the proposed reaction steps can be used to construct the 

kinetic data base in KMC modeling, which is usually referred as KMC simulations. Such simulations 

provide accurate prediction of the dynamics of the catalytic reactions under various reaction conditions. 

 eliable statistical estimates of macroscopic reaction rates obtained by KMC simulation can thus be 

compared with experimental data, and therefore provide a validation of the proposed reaction mechanism. 

The resulting KMC model can also be used as a tool for catalyst design and optimization.  
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Chapter 3 

Methane Dissociation on Flat and Stepped Ni surfaces 

In this chapter, effect of catalyst surface structure on methane cracking reactions was study by 

DFT calculations. Ni catalyst was modeled by Ni (100), Ni (111), and Ni (553) surface with either flat or 

stepped surface structures. The stability of CHx species on the three surfaces was evaluated and transition 

states for methane sequential dissociations were identified. The simulation results show that low-

coordinates Ni surface e.g. Ni (553) step surface, is more reactive than the highly-packed Ni (111) 

surface. This chapter is organized as follows: section 3.1 present a background and motivation of this 

study. Details about the DFT calculation method and models are described in section 3.2; DFT 

calculation results are presented in section 3.3. A summary of the DFT simulation is provided at the 

end of this chapter. 

 

3.1 Introduction  

In the past decade, the use of hydrogen as a source of alternative clean energy has attracted much 

attention. Conventionally, hydrogen is produced from steam reforming of natural gas [1-5]. In this 

process, methane reacts with water on a catalyst surface, typically Ni based [6-8], to form hydrogen and 

carbon monoxide (CO). In some applications the presence of CO may be detrimental. For example, CO 

above 10 ppm may completely poison the catalyst in a proton-exchange-membrane (PEM) fuel cell [9, 

10]. The direct cracking of methane as an alternative route for CO-free hydrogen production is a 

promising technology [11-14]. The sequence of CH4 dehydrogenation reactions that transform CH4 to C 

and H on catalyst surfaces are also often regarded as crucial steps for the production of carbon nanotubes 

(CNTs) and carbon nanofibers (CNFs) by Chemical Vapor Deposition (CVD) [15-17]. Accordingly, 

catalytic methane dissociation for hydrogen and CNTs/CNFs production has recently gained increasing 

attention [19-22]. 

Recently, the adsorption and decomposition of methane on Ni-based catalysts have been extensively 

studied [23-36]. Lee et al. [33, 34] studied the activated dissociative adsorption of CH4 on Ni (111) by 

molecular beam techniques coupled with High-Resolution Electron Energy Loss Spectroscopy 

(HREELS). This study reported that the adsorbed CH3 radical and H atom were identified as the products 

of the dissociative reaction. The existence of the chemisorbed CH3, CH2 and CH on Ni (111) has also 



 

 29 

been reported by Secondary Ion Mass Spectroscopy (SIMS) and X-ray Photoelectron Spectroscopy (XPS) 

[35, 36]. Nevertheless, experimental investigations on the nature of the decomposition of methane on 

transition metal surfaces are challenging because of the difficulty in extracting information at the 

microscopic scale, e.g., identification of active surface sites, or in accurately describing the barrier heights 

for the elementary reactions. 

Advances in computational sciences have enabled the application of Density Functional Theory 

(DFT) to study the fundamental aspects of the catalytic methane cracking reaction. Watwe et al. [28] 

studied the stability of CHx species on Ni (111) and reported that the threefold site is preferred by the CHx 

intermediates. Michaelides et al. [37] studied the dehydrogenation of CH3 on Ni (111) using DFT 

analysis. This study showed that the reaction, CH3(ads)→ CH2(ads)+H(ads), is about 0.5eV endothermic 

with an activation energy in excess of 1 eV. Haroun et al. [38] conducted DFT calculations on the 

dissociative adsorption of methane on a Ni (111) surface with and without adatom. This study reported 

that the presence of a Ni adatom facilitates CH4 dissociation with a lower activation energy when 

compared to the flat surface. Wenzhen et al. [39] reported an activation barrier of 0.73eV for the reaction: 

CH4(gas)→ CH3(ads)+H(ads) on Ni (100). Nave et al. [40] analyzed 24 transition states (TSs) for the first 

C−H bond breaking of methane on five metal surfaces: Ni (111), Ni (100), Pt (111), Pt (100), and Pt 

(110). Wang et al. [41] presented a comparative study of CHx chemisorption on Ni (111), Ni (100) and Ni 

(110) surfaces using plane wave DFT calculations. In this study, the reaction energies along the methane 

successive dehydrogenation pathway were also calculated. By comparing these thermodynamic schemes 

of CH4 dissociation, they reported that Ni (100) is the preferred surface for CH4 dissociation, when 

compared to Ni (110) and Ni (111). However, this study did not include a study on the kinetic properties 

for methane dissociation. Recently, DFT calculations and experiments have shown that the step edges in 

general are more reactive towards the adsorption and dissociation of a number of simple molecules such 

as CO, NO, O2 and N2 [42-47]. For the study of methane dissociation, Bengaard et al. [48] used a Ni 

(211) surface to study the effects of surface steps on the activation of the first C–H bond breaking in 

methane. This study showed that the activation energy on Ni (211) is 0.20 eV lower than that reported for 

the Ni (111) surface. The higher activity of the step surface over the terraces has been confirmed by Frank 

Abild-Pedersen et al. [49], who investigated CH4(gas)→CH3(ads)+H(ads) reaction on the terraces and 

steps of a Ni (111) surface by DFT calculations combined with Ultra High Vacuum (UHV) experiments.  

Based on the above, most of the previous theoretical studies on methane cracking reaction have 

focused on the estimation of the CHx chemisorption properties and methane successive dehydrogenations 
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on Ni (111) surface. Methane dissociative adsorption reactions, CH4(gas)→CH3(ads)+H(ads), on low-

coordinated Ni (100), and Ni (211) step surface were also reported. Nevertheless, few theoretical studies 

have systematically analyzed the complete dehydrogenation pathways and the energetics for the 

transformation of CH4 to C and H on these low-coordinated flat and step Ni surfaces. To the authors’ 

knowledge, the investigation of the CH4 successive dehydrogenation that leads to C and H on Ni (100) 

and high-index Ni step surfaces has not been reported in the open literature. That is, a systematic 

comparative study of CHx adsorption and methane dehydrogenation reactions on different flat and step Ni 

surfaces is not currently available. Such a study is fundamental to gain a comprehensive understanding of 

the methane cracking reaction on Ni based catalysts and expected to play an important role in practical 

cases involving polycrystalline Ni systems. 

In the present work, a systematic theoretical study of the activation of methane and its corresponding 

fragments on Ni (100), Ni (111) and Ni (553) surfaces have been performed. The Ni (553) surface is 

chosen because it is a high Miller indices index step surface, which has never studied before. It consists of 

(111) terraces and (111) orientated monoatomic steps. Thus, it provides a different surface topology from 

that of Ni (211) surface considered in previous works which contains (111)-like terraces and (100) steps 

[48]. DFT calculations on the adsorption and diffusion of the CHx and H species on these three Ni 

surfaces have been conducted. Moreover, the TSs and energetics for the CH4 sequential dissociation 

reactions on these surfaces have been identified. Furthermore, comparisons between the adsorption 

properties of the CHx species on Ni (100), Ni (111) and Ni (553) and between the energy profiles of the 

dissociation reactions are presented in this work.  

 

3.2 Computational details  

3.2.1 Calculation methods  

The DFT calculations performed in this study were performed using the program BAND [50, 51] on 

SHARCNET (www.sharcnet.ca) under the umbrella of Compute/Calcul Canada. In BAND, the surfaces 

are modeled by a slab with translational symmetry in two directions. Also, the electron wave functions 

were developed on a basis set of numerical atomic orbitals (NAOs) and of Slater type orbitals (STOs). For 

the core of the atoms (in this case Ni and C), a frozen core approximation was used to reduce the size of 

the basis set. The calculations performed on this study were spin-unrestricted and the Revised Perdew-

Burke-Ernzerhof (RPBE) generalized gradient approximation (GGA) for the exchange and correlation 
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energy terms were employed. It is the revision suggested by Hammer et al. [52] to improve adsorption 

energetics compared to the PBE functional originally developed by Perdew, Burke, and Ernzerhof [53]. 

This functional is applied for the present study because it has been widely used for catalysis applications 

and provides reliable adsorption energetics of the transition metal system (e.g. Pt, Ni) [54-57]. The 

ground-state atomic geometries were obtained by minimizing the forces on each atom to below 0.05 

eV/Å. A characteristic of the BAND program is to perform numerical integrations for all the matrix 

elements [58]. The accuracy of the integration in real space and the sampling of the Brillouin zone for the 

integration accuracy in k-space are the two major numerical parameters in the calculation [59]. The 

general precision parameter for numerical integration in real space in BAND (named: Accuracy) was set 

to 4, which is a reasonable value for this parameter [60,61]. The k-space parameter was set to 3, which 

represents that the quadratic tetrahedron method [62] was used in the present analysis for k-space 

numerical integration. Scalar relativistic corrections were included through the zeroth-order regular 

approximation (ZORA) [63]. The search and verification of the transition states (TS) were conducted 

using the following procedure [64-66]: 

i) A geometry of the transition state is proposed based on the geometries of the reactant and product in a 

particular elementary step. 

ii) Frequency calculations are conducted at the proposed geometric point. The lowest vibrational mode in 

the direction of the transition state (TS) is sought from the frequency calculations. The search for the 

transition state is performed starting from this point (lowest vibrational mode) using the hessian of this 

frequency run.  

iii) Frequency calculations are performed on the transition state obtained from the previous step. The TS 

is confirmed if there is only one imaginary frequency corresponding to a single negative vibrational 

mode. Otherwise, a new geometry is needed, i.e., go back to step i). This procedure continues up until the 

TS with only one negative vibrational mode is identified.  

iv) The TS is further verified by slightly perturbating the TS along the reaction coordinate, corresponding 

to the normal mode with imaginary frequency, in the direction of the product or reactant. 

v) The perturbed transition state geometry obtained in step iv) is then optimized, yielding the 

corresponding geometry of the product or the reactant in a particular elementary step. 

In order to describe the interactions between CHx (x=0-3), H and the Ni surfaces, the adsorption 

energies (Eads) of the adsorbates were defined by the following equation: 
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                              Eads=EA/slab−Eslab−EA,gas,                                                                                        (3.1) 

where EA/slab represents the energy for the slab with the adsorbate A on the surface, Eslab is the energy of a 

clean relaxed Ni slab and EA,gas is the energy of the free adsorbate A in the gas phase. A negative Eads 

corresponds to a stable adsorbate/slab system. Please note that unless otherwise specifically stated, the 

same DFT calculation methods, e.g. functional, basis set and parameters, is used in the DFT calculations 

conducted in other chapters. 

 

3.2.2 Surface models  

The models for the Ni (100), Ni (111), and Ni (553) surfaces are shown in Figure 3.1. Ni (111) has 

the most compact surface with a coordination number of 9 for each surface atom. Ni (100) is a more open 

surface with a coordination number of 8 for the surface atoms. The Ni (553) surface is stepped, consisting 

of (111) terraces and (111) orientated monoatomic steps. The coordination number of the surface atoms is 

9 on the upper terraces, 7 at the step edge, and 11 for atoms at the bottom of the step. The Ni (100) and Ni 

(111) surfaces were modeled using a three layers slab with a 2×2 unit cell. For the relaxation of the Ni 

surfaces, experimental work of Lu et al. [67] found that the relaxation of Ni (111) is less than 2% (with 

respect to the bulk). A previous DFT study by Sautet et al. [29] has also shown that the top layer of Ni 

(111) undergoes only very small inward relaxation (0.6%). For the (100) surface, experimental studies 

[68-70] have shown that the (100) surfaces of different metals (including Ni) do not reconstruct, with a 

probable relaxation of the outer layers of the metal crystals. Therefore, to reduce computational effort, in 

all calculations performed on the Ni (100) and the Ni (111) surfaces, the Ni atoms of the uppermost layer 

and the adsorbed species were allowed to relax whereas the Ni atoms in the remaining layers were 

constrained in their bulk positions with the experimental lattice parameter 3.52 Å [71]. Tests concerning 

the accuracy and convergence with slab thickness were also performed on Ni (111) and Ni (100). That is, 

the adsorption energies of the optimal geometries obtained with three layer slab were recalculated with a 

four-layer slab. The results listed in Table 3.1 show that on Ni (111), the largest deviation was for H 

adsorption, which increased by 0.07 eV when using the four layer model. However, this relative deviation 

is less than 3%. On the Ni (100), the largest deviation (5%) was obtained for CH2 adsorption (see Table 

3.1). This shows that a reasonable convergence of the binding energies is already obtained with a 3-layer 

thick slab. The Ni (553) step surface was represented by a thirteen layers slab of a 2×1 unit cell. The top 

five layers were allowed to relax whereas the bottom layers of metal atoms were constrained in their bulk 

positions also with the experimental lattice parameter 3.52 Å. 
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Figure 3.1 Top views of a) Ni (100), b) Ni (111) and c) Ni (553) surfaces. The upper step Ni atoms on 

Ni (553) are represented by green balls. 

 

3.3 Results and discussion  

3.3.1 Adsorption of CHx and H species  

The three surfaces considered in this study exhibit metal surface atoms with a range of local atomic 

environments. As illustrated in Figure 3.1, the Ni (100) surface has a square arrangement of atoms, 

whereas the Ni (111) surface has a hexagonal structure. The Ni (553) surface can be considered as a 

stepped surface with (111) terraces and (111) step. According to the surface morphology, there are four 

adsorption sites on Ni (111) surface. Atop adsorption is directly above a surface atom whereas a bridge is 

bridging between two surface atoms. The hexagonal close packed (hcp) and face-centered cubic (fcc) 

sites are two different threefold hollow sites, with a surface atom in the second and third layer, 

respectively. The Ni (100) surface exhibits three high-symmetry sites: a fourfold hollow site, a bridge site 

between two Ni atoms, and atop site above a single Ni atom. The adsorption sites on the Ni (553) surface 

are labeled in Figure 3.2. This work will focus on the adsorption sites in the step regions in Ni (553) since 

they exhibit different coordination numbers as compared to the sites on the (111) terrace surface. Thus, 

six adsorption sites near the step Ni atoms on Ni (553) surface were considered in the present analysis. 

Table 3.2 reports the adsorption energies of CHx (x=0-3) and H species on Ni (100), Ni (111), and Ni 

(553) surfaces. The adsorption energies at the most stable adsorption sites are shown in bold; and their 

corresponding adsorption configurations are shown in Figure 3.3-3.5. 

a)      b)  c)   
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Figure 3.2 The adsorption sites considered on a 2×1 unit cell of Ni (553) surface are: (a) upper-step fcc 

site, (b) upper-step hcp site, (c) step top site, (d) step bridge site, (e) lower-step hcp site, and (f) lower-step 

fcc site. The upper step Ni atoms are represented by green balls. 
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Table 3.1 Adsorption energy (eV) of CHx fragments on the three-layer and the four-layer slabs model of 

Ni (111) and Ni (100) 

            Three-Layer   Four-layer       Ref. 

        Ni (111)    

            CH3         −1.33      −1.28  −1.30
[6]

, −1.46
[37]

, −1.81
[41]

 

            CH2         −3.21      −3.25  −3.30
[6]

, −3.26
[37]

, −3.85
[41]

 

            CH         −5.70      −5.69  −5.90
[6]

  −6.35
[41]

 

            C         −6.22      −6.20  −6.00
[6]

  −6.61
[41] 

 

            H         −2.65      −2.72  −2.80
[6]

, −2.60
[37]

, −2.77
[41]

 

        Ni (100)    

            CH3         −1.44      −1.37  −1.84
[41]

 

            CH2         −3.76      −3.58  −4.18
[41]

 

            CH         −6.43      −6.35  −7.05
[41]

 

            C         −7.27      −7.23  −8.08
[41] 

 

            H         −2.67      −2.68  −2.81
[41]

 

[6] A three layer model with top-most layer relaxation (RPBE functional) 

[37] A three layer model with no surface relaxation (PW functional) 

[41] A three layer model with top two surfaces relaxation (PBE functional) 
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Table 3.2 Adsorption energies (eV) of the CHx (x=0-3) and H on various surface models. The energetics 

in bold are the adsorption energies at the most stable adsorption sites. 

  Ni (100)  Ni (111)  Ni (553)  

adsorbate  top bri hollow  top bri hcp fcc  topStep briStep fccU hcpU fccL hcpL  

CH3  −1.33 −1.44   −1.12 −1.10 −1.33 −1.31  −1.22 −1.53 −1.38     

CH2  −2.75 −3.35 −3.76  −2.48 −2.82 −3.21 −3.19   −3.33 −3.30 −3.30 −3.19   

    CH  −4.24 −5.39 −6.43  −3.80 −5.53 −5.70 −5.64   −5.10 −5.40 −5.42 −5.55 −5.65  

    C  −4.36 −5.65 −7.27  −4.21 −5.74 −6.22 −6.12  −5.70 −6.24 −6.36 −6.27 −6.69   

    H  −1.99 −2.67 −2.36  −1.92 −2.37 −2.65 −2.64  −1.69 −2.69 −2.78 −2.73 −2.70 −2.44  

The data that are not reported on some specific adsorption sites indicate that no stable adsorption configurations 

were found at this site. That is, the adsorbed species moved to other adsorption site after geometry optimization. 

 

3.3.1.1 Carbon and hydrogen adsorption 

The most stable adsorption configurations for C on the various Ni surfaces are shown in Figures 3.3b, 

3.4b, and 3.5b. For C on Ni (100), C adsorption at the hollow site (see Figure 3b) has the maximum 

bonding energy (−7.27 eV). Frequency analysis showed that the bridge site adsorption is a first-order 

saddlepoint (transition state) on the potential energy surface for C. Thus, the bridge site can be considered 

as the transition state (TS) for C diffusion on the Ni (100) surface. The estimated diffusion barrier is 

approximately 1.62 eV. Hence, this relatively high energy barrier indicates that the diffusion of C on the 

Ni (100) surface is a highly activated process and may rarely occur. The situation for C adsorption on Ni 

(111) surface is quite similar to that observed on the Ni (100) surface. That is, the most stable 

configuration for the adsorption of C on the Ni (111) surface is a three hollow site with C adsorbed at an 

hcp site (see Figure 4b). The corresponding adsorption energy is −6.22 eV. This is in reasonable 

agreement with that (−6.00 eV) reported by Blaylock et al. [6], as show in Table 3.1. Note that the 

functional (PRBE) and model used in that study are the same as those used in the present study. However, 

Blaylock et al. employed plane wave basis set and ultrasoft pseudopotentials for the description of 

electrons which is expected to cause this small deviation (3.5%). In the present study, C adsorption 

energy on Ni (111) is 1.05 eV lower than the fourfold hollow site C adsorption on Ni (100). The strong 

stabilization of C in the fourfold hollow sites compared to the threefold hollow sites reflects the need of 

the C atom to satisfy its valence. As in the Ni (100) configuration, the C bridge site adsorption on Ni 
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(111) was found to be a diffusion TS. The corresponding diffusion barrier obtained for this process was 

0.48 eV, which is in agreement with the value reported by Cinquini et al. (0.45 eV) [72]. It should be 

noted that Wang et al. [41] reported a higher adsorption energy for C adsorption on Ni (111) (−6.61 eV) 

and Ni (100) (−8.08 eV) using a three-layer model with top-two layer relaxation, as shown in Table 3.1. 

However, Wang et al. [41] used a plane-wave DTF method and a functional (PBE) that are different from 

those used in the present model (STO-DFT, functional: PRBE). Thus, the numerical results obtained by 

Wang and co−workers are expected to be different to the results obtained in the present study since 

different modeling methods were used. Although adsorption energies obtained by the present analysis 

were different than those reported in [41], they were consistent with the present study in terms of the 

strong C bonding energy on Ni (100) as compared with Ni (111). For C adsorption on Ni (553) step 

surface, C is preferentially adsorbed on the threefold hcp site below the step edge with an adsorption 

energy of −6.69 eV (see Figure 3.5b). The DFT calculations showed that carbon diffusion via the step to 

the lower terrace on Ni (553) proceeds with a barrier of 0.66 eV, whereas a barrier of 0.99 eV was 

obtained in the reverse direction. The results obtained for the C adsorption and diffusion among the three 

surfaces show that C on Ni (100) and Ni (553) has higher diffusion barriers due to the strong bonding 

energies on these two surfaces when compared to Ni (111). Moreover, this result may restrict the (100) 

surface from being favored by nucleation for carbon nanofiber or nanotube growth, due to the low 

mobility of these carbon atoms. 

 

 

Figure 3.3 Top views of CHx(x=0-3) and H adsorbed on Ni (100). Blue: Ni, white: H, black: C. 
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Figure 3.4 Top views of CHx (x=0-3) and H adsorbed on Ni (111). Blue: Ni, white: H, black: C. 

 

Figure 3.5 Top views of CHx (x=0-3) and H adsorbed on Ni (553). Blue: Ni, white: H, black: C. 

 

For H on Ni (100) surface, it was found that binding is slightly more favored at the bridge site (see 

Figure 3.3a) than on the hollow site. On the other hand, H adsorption at the bridge site on Ni (111) is a 

less stable configuration than the hcp site adsorption (see Figure 3.4a). As shown in Table 3.2, the hcp 

site H adsorption energy on Ni (111) is −2.65 eV, which is slightly more stable than the fcc site 

adsorption (−2.64 eV). This result is slightly different than the results from the study conducted by 

Michaelides [37], in which the GGA Perdew-Wang functional and a three-layer unrelaxed Ni slab were 

employed. In that study, the H hcp and fcc adsorption energy were reported to be −2.54 and −2.60 eV, 

respectively. However, a good agreement can still be gained if comparison is made in term of H 

adsorption energy on Ni (111). As mentioned above, the H adsorption energy on Ni (111) reported in the 

present study is consistent with the study of Blaylock et al. [6] who reported an adsorption energy of 

−2.80 eV (see Table 3.1). Further frequency analysis shows that H adsorbed at the bridge site on Ni (111) 

surface is a transition state whereas the H adsorbed at the bridge site on the Ni (100) surface is a local 

minimum. The diffusion barrier for H on Ni (111) and Ni (100) is 0.28 and 0.31 eV, respectively. The 
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diffusion barrier was calculated by taking the energy difference between the hollow and bridge H 

adsorption sites. From Table 3.2, it can be observed that the upper fcc site (see Figure 3.5a) on Ni (553) 

surface is more energetically favorable than the two flat surfaces to adsorb H. The diffusion of H from the 

upper to the lower terrace via the bridge site along the step edge needs to overcome a barrier of 0.09 eV. 

These results show that there is no apparent difference for the mobility of H on the Ni (100) and the Ni 

(111) flat surfaces. However, the diffusion of H over the step edge on Ni (553) is a faster process since it 

needs to overcome a relatively low energy barrier. 

3.3.1.2 CH adsorption 

The most stable adsorption configurations of CH on the three different Ni surfaces are shown in 

Figures 3.3c, 3.4c, and 3.5c. CH binding on Ni (100) shows apparent site preference when compared to 

the Ni (111) and the Ni (553) surfaces. As shown in Table 3.2, the adsorption energy of CH at the 

fourfold hollow site is much higher than that observed at the bridge and at the top sites on the Ni (100) 

surface. The diffusion of CH occurs via bridge site adsorption, which has been confirmed as a diffusion 

TS by frequency analysis. The corresponding diffusion barrier is 1.04 eV, which indicates that the CH 

diffusion on Ni (100) is a highly activated process. For CH on Ni (111), the most stable adsorption site is 

the hcp hollow site followed by the fcc adsorption site. This result agrees with a previous HREELS 

experimental study which showed that CH binds most favorably to threefold site in a symmetric structure 

on Ni (111) [36]. Moreover, the calculated CH hcp site adsorption energy (−5.70 eV) is in agreement with 

the one reported by Blaylock et al. [6], i.e., −5.90 eV (see Table 3.1). As on the Ni (100) surface, the CH 

adsorbed at the bridge site on Ni (111) was found to be a TS. The results show that CH diffusion on Ni 

(111) surface needs to overcome a barrier of 0.17 eV, which is a much lower energy barrier than that 

obtained for the CH diffusion on Ni (100). Thus, a higher mobility is expected for CH on Ni (111) 

surface. With regards to the Ni (553) surface, CH tends to chemisorb at the threefold fcc site behind the 

step at the lower terrace. The CH surface diffusion barrier over the edge to the lower terrace is calculated 

to be 0.33 eV. As in the case of the C adsorption atom, these results show that CH is strongly bonded at 

the hollow site on Ni (100) and it has the highest mobility on the Ni (111) surface. 

 

3.3.1.3 CH2 adsorption 

The most stable adsorption configurations of CH2 on Ni (100), Ni (111) and Ni (533) are shown in 

Figures 3.3d, 3.4d, and 3.5d, respectively. As shown in Table 3.2, the most stable CH2 adsorption 
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configuration on Ni (111) is located at the hcp site followed by the fcc site with adsorption energy of 

−3.21 and −3.19 eV, respectively. Michaelides [37] reported a most stable adsorption energy of −3.26 eV 

at the fcc site, followed by −3.22 eV at the hcp site. This shows an agreement with the value obtained in 

this work with respect to CH2 adsorption energy at the threefold site on Ni (111) surface. This result is 

also consistent with the study of Blaylock et al. [6], who reported an adsorption energy of −3.30 eV (see 

Table 3.1). For the configuration of CH2 on the two flat surfaces, one of the two H atoms is bonded to a 

surface metal atom to form the so-called C−H−Ni three-center bond, which is a low energy configuration 

state [73,74], while the other C−H bond is tilted away from the surfaces. As stated by Michaelides et al. 

[75], the decrease in the vibrational frequency (‘soft’ vibrational mode) in hydrocarbons species can be 

attributed to the formation of the three-center bond. As expected, the ‘soft’ C−H vibrational frequencies 

of CH2 were observed upon CH2 adsorption on Ni (100) and Ni (111) surfaces. The ‘soft’ C−H stretching 

frequency occurs at −2579 cm
−1

 on Ni (111) and at −2035 cm
−1

 on Ni (100), which corresponds to 

redshift of approximate 274 cm
−1

 and 818 cm
−1

, respectively, compared to the usual gas-phase C−H 

stretching frequency of −2853 cm
−1
. These ‘soft’ vibrational frequencies indicate a weak C−H bond that 

may consequently affect the dehydrogenation of the fragment. The C−H stretching frequency of CH2 on 

Ni (100) shows a significant shift when compared to that observed on Ni (111). Therefore, the stretching 

C−H bond scission on Ni (100) might be much easier than on the Ni (111) surface. However, the C−H 

bond activation energies on these surfaces cannot be compared fairly because of the different initial 

adsorption geometries of CH2 on Ni (100) (fourfold) as compared to Ni (111) (threefold) and their 

possible different dissociation pathways. Frequency analysis also showed that CH2 adsorbed at the bridge 

sites on Ni (100) and Ni (111) is the TS for CH2 diffusion. The energy barriers for the diffusion process 

were found to be 0.41 eV and 0.39 eV on Ni (100) and Ni (111), respectively. The calculation for CH2 

adsorption on the Ni (553) surface shows that the step-bridge site is the most stable adsorption site. The 

‘soft’ C H vibrational frequency was not observed for Ni (533) indicating that the C−H−Ni three center 

bond is not formed. This can be confirmed by the observed long bond distance (2.59 Å) between the H 

and surface Ni atom (see Figure 3.5d), on the Ni (553) surface. 

 

3.3.1.4 CH3 adsorption 

The most stable adsorption configurations of CH3 on the three different Ni surfaces are shown in 

Figures 3.3e, 3.4e, and 3.5e. On Ni (100), no stable configurations were found for CH3 hollow site 

adsorption, and the C atom always points toward the top site of the adjacent Ni atoms after geometry 
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optimization. CH3 bridge site adsorption with one of the H atoms in the CH3 species pointing toward a 

fourfold vacancy was found to be the most stable configuration. This result is consistent with a previous 

DFT-GGA study [39]. A slight redshift of∼130 cm
−1

 for the C−H stretching frequency was observed 

indicating the formation of a weak C H Ni three-center bond. The diffusion barrier for CH3 on Ni (100) is 

estimated to be 0.11 eV. CH3 is found to be most stable when it is adsorbed on the Ni (111) surface 

through its carbon atom on the hcp site with the three H atoms pointing to the surface atoms to form three 

C−H−Ni three-center bonds. The corresponding adsorption energy is −1.33 eV, which is consistent with 

the results reported by Blaylock et al. (1.30 eV) [6] and Michaelides et al. (−1.48 eV) [37]. Similarly, a 

redshift of∼346 cm
−1

 for the C−H stretching frequencies was observed on Ni (111), which is in good 

agreement with that the value reported in a previous study (~300 cm
−1

) [75]. These results indicate that 

the stretching of C−H bond in CH3 is weakened by the formation of the relatively strong C−H−Ni three-

center bonds on Ni (111) when compared to that on Ni (100). However, the small deviation in the redshift 

suggests that there is no significant difference between the C−H bond strength for CH3 adsorption on the 

two flat surfaces. Frequency analysis showed that the bridge site adsorption is a diffusion TS since 

diffusion of CH3 often occurs via bridge site on Ni (111). The corresponding diffusion barrier was 

calculated to be 0.15 eV. This result indicates that the diffusion of CH3 is favored on Ni (111) and Ni 

(100) surfaces. For the adsorptions of CH3 on Ni (553) step surface, the step−bridge site adsorption was 

found to be the most stable configuration (−1.53 eV). As in the case of the CH2 adsorption, the formation 

of the C−H−Ni three-center bond on Ni (553) was not observed. This can be supported by the long H−Ni 

atom distance 2.69 Å (Table 3.6), indicating no H Ni bond formation. 

The results presented in Table 3.2 enable a comparison of the adsorption behavior on the (100), (111), 

and (553) surfaces. This study showed that the strongest binding energy for C, CH and CH2 was on Ni 

(100). The stepped Ni (553) surface also exhibits higher binding energies for C when compared to Ni 

(111). The highest binding energy for CH3 and H was observed on Ni (553). These calculations show that 

the binding energies of C are stronger on the open Ni (100) and Ni (553) stepped surfaces than on the 

close packed Ni (111) surfaces, while the binding energies for CH3 and H are not very sensitive to the 

surface structure. 

In order to assess the quantitative effect of surface relaxation on the results presented in this study, 

DFT calculations were conducted on a model with the top-two layers of the Ni atoms were relaxed. In 

those calculations, the adsorption energies for C and CH3 on Ni (111) and Ni (100) at their most stable 

adsorption sites were estimated assuming that the top two layers of the Ni atoms were relaxed. The results 
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of these DFT calculations are as follows: i) on the Ni (111) surface, the corresponding adsorption energies 

obtained for C and CH3 were −6.18 and −1.33 eV, respectively. As shown in Table 3.1 the corresponding 

adsorption energies for C and CH3 when only the top most-layer was relaxed on the Ni (111) surface were 

−6.22 and −1.33 eV, respectively. These results show that the relaxation of the top-two layers in the 

model did not change the CH3 adsorption energy and it only resulted in a deviation of 0.6% (0.04 eV) for 

C adsorption with respect to the results obtained when only the top-most layer was relaxed. ii) On the Ni 

(100) surface, the adsorption energies for C and CH3 were (top-two layers relaxed) −7.29 and −1.46 eV, 

respectively. These results are also close to those obtained when only the top-most layer was relaxed, i.e., 

C: −7.27 eV and CH3: −1.44 eV (see Table 3.1). These small deviations introduced by the relaxation of 

the top-two layers of Ni atoms shows the reliability of the results obtained by relaxing only the top most 

layer of the Ni surface. 

The previous results were obtained with slabs using experimental lattice constants in the fixed layers. 

The bulk lattice constant using the same method and parameters described in Section 3.2 were calculated. 

The value obtained from the DFT calculations was 3.51885 Å, which is in very good agreement with the 

experimental lattice constant (3.52 Å). To study the errors introduced by using the experimental and 

calculated bulk lattice constants, CHx and H adsorption on Ni (111), modeled by a three-layer slab with 

the calculated bulk lattice constants, were estimated. The adsorption energies were found to be −1.34, 

−3.29, −5.69, −6.18, and −2.66 eV for CH3, CH2, CH, C, and H, respectively. As shown in Table 3.1, the 

corresponding adsorption energies obtained on Ni (111) using the experimental lattice constants were 

−1.33, −3.26, −5.70, −6.22, and −2.65 eV, respectively. Thus, there is a good agreement between the 

adsorption energies obtained from experimental and calculated bulk lattice constants. 

 

3.3.2 Minimum energy path for methane activation  

The reaction pathways and reaction energetic for the transformations of CH4 to C and H on the Ni 

(100), Ni (111), and Ni (553) surfaces have been systematically studied using DFT analysis. The 

transition states along the reaction coordinates for each elementary reaction were located and presented in 

Figures 3.6–3.8. Estimates for the activation barriers, the reaction energies corresponding to each 

elementary dehydrogenation steps on different surfaces (and the key geometric parameters) are listed in 

Tables 3.3–3.6. A comparison between the reaction profiles on the different surfaces is shown in Figure 

3.10. 
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Table 3.3 Relative energies (eV) of the initial state (I.S), transition State (T.S), and final state (F.S). 

Distances between detached Ha and the nearest C (       ) and Ni (       ) for each elementary step of 

CH4 dissociation on a Ni (100) surface. 

 States E (ev)         (Å)                  (Å) 

 I.S 0.00 1.13  

       

CH4 
T.S           1.23 1.64            1.56 

 F.S 0.67 3.23            1.87 

 I.S 0.00 1.10            2.17 

       

CH3 
T.S 0.62 1.74            1.56 

 F.S 0.09 3.61            1.80 

 I.S 0.00 1.11            1.81 

       

CH2 
T.S 0.22 1.44            1.69 

 F.S         −0.33 2.49            1.79 

 I.S           0.00 1.11            2.62 

       

CH 
T.S 0.64 1.55            1.69 

 F.S         −0.03  2.49            1.79 
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Table 3.4 Relative energies (E) of the initial state (I.S), transition state (T.S), and final state (F.S). 

Distances between detached Ha and the nearest C (      ) and Ni (       ) for each elementary step of 

CH4 dissociation on a Ni (111) surface. 

 States E (eV)        (Å)                (Å) 

 I.S 0.00 1.11  

       

CH4 
T.S 1.31 1.63            1.59 

 F.S 0.91 3.09            1.69 

 I.S 0.00 1.13            2.17 

       

CH3 
T.S 0.89 1.75            1.49 

 F.S 0.16 3.09            1.72 

 I.S 0.00 1.11            2.23 

       

CH2 
T.S 0.41 1.68            1.50 

 F.S         −0.38 2.88            1.74 

 I.S           0.00 1.11            2.69 

       

CH 
T.S           1.38 1.75            1.49 

 F.S           0.42 2.88            1.72 
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Table 3.5 Comparison of CHx Dissociation barriers (in bold) on Ni flat surfaces with previous studies. 

      Reaction               Ni (111)              Ni(100)   

CH4→CH3+H     1.31  1.34
[6]    

1.32
[77]   

1.17
[78]    

1.06~1.10
(40]

    1.23   1.19
[77]    

0.91~0.96
[40]

 

CH3→ CH2+H     0.89   0.68
[6]

   0.82
[78]   

0.79
[79]

                  

CH2→ CH+H     0.41   0.30
[6]

   0.37
[78]  

0.36
[79]

                  

CH→ C+H     1.38   1.40
[6]   

 1.37
[78]  

1.40
[79]

                  

 

Table 3.6 Relative energies (E) of the initial state (I.S), transition state (T.S), and final State (F.S). 

Distances between detached Ha and the nearest C (      ) and Ni (       ) for each elementary step of 

CH4 dissociation on a Ni (553) surface. 

 States E (eV)        (Å)                (Å) 

 I.S              0.00 1.11  

  CH4 T.S              1.08 1.60            1.54 

 F.S              0.08 3.02            1.70 

 I.S              0.00 1.11            2.69 

   CH3 T.S              0.71 1.79            1.52 

 F.S            −0.08 2.52            1.62 

 I.S              0.00 1.11            2.59 

   CH2 T.S              0.15 1.54            1.68 

 F.S            −0.51 3.12            1.74 

 I.S              0.00 1.11            2.36 

    CH T.S              0.47 1.59            1.59 

 F.S            −0.29 3.19            1.71 
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3.3.2.1 Methane dissociation on Ni (100) 

Dissociation of methane on Ni (100) occurs at the top of a surface Ni atom. The geometry of the 

transition state is show in Figure 3.6. In the transition state, the methyl fragment is slightly tilted and the 

H atom moves over the top of the Ni atom. In the TS, the activated C−H bond (denoted as C−Ha 

hereafter) is stretched from 1.11 Å in the gas phase to 1.64 Å in the TS. The C and Ha atoms are bonded 

with the top Ni atom with bond distances of 2.12 and 1.56 Å, respectively. The shorter Ni−Ha distance 

indicates that the hydrogen atom is bonded with the top Ni atom. The final configuration was methyl 

adsorbed in the bridge site and the Ha atom adsorbed in a neighbored hollow site. As shown in Table 3.5, 

the calculated energy barrier is 1.23 eV, which is in very good agreement with the one reported by 

Bengaard et al. [76] (1.19 eV). In that study, DFT calculations were conducted to study the energy barrier 

of CH4 dissociation on Ni (100) with the slab kept rigid to reduce the computational effort. As shown in 

Table 3.3, the reaction energy for this process is 0.67 eV, which suggests that the CH4 dissociation 

reaction on Ni (100) is a highly endothermic process. 

 

Figure 3.6 Geometric structures of the initial state (I.S), transition state (T.S), and final state (F.S) of the 

four steps of CH4 dehydrogenation on Ni (100) surface. Blue: Ni, gray: C, and white: H. 
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In the TS obtained for the dissociation of CH3 on the Ni (100) surface, the activated C−Ha bond is 

stretched from 1.10 to 1.74 Å. The Ha atom is located near an atop site, forming a bond with the surface 

Ni atom with a bond distance of 1.56 Å. The TS has an energy of 0.62 eV above the ground state of the 

reactant. This reaction leads to the production of CH2 and H, which is sited at adjacent hollow sites 

sharing a single common Ni surface atom. The reaction energy for methyl dissociation is 0.09 eV, which 

indicates that the dehydrogenation of CH3 on Ni (100) is nearly thermal neutral. 

The reaction energy and the corresponding activation energy for the dissociation of CH2 on Ni (100) 

are −0.33 and 0.22 eV, respectively. Dissociation occurs over the bridge between the surface Ni atoms 

and results in the CH and H sited on the nearby hollow sites. At the TS, the activated C−Ha stretched from 

1.11 to 1.44 Å. This result shows that the energy for CH2 dissociation is exothermic on the Ni (100) 

surface; the low activation energy indicates that the dehydrogenation of CH2 is kinetically favored on Ni 

(100). 

The dehydrogenation process CH→C+H has an energy barrier of 0.64 eV. The reaction energy is 

calculated to be −0.03 eV. Thus, CH dehydrogenation on Ni (100), as in the case of CH3, is almost a 

thermal neutral process. At the TS, the C H bond is stretched from 1.11 to 1.55 Å, which leads to the 

product C and H, located on two hollow sites. 

 

3.3.2.2 Methane dissociation on Ni (111) 

  As shown in Figure 3.7, the activation of the first C−H bond in methane also occurs over the top of a 

Ni atom on the Ni (111) surface. In the TS, the activated Ha atom points toward the adjacent fcc hollow 

site whereas the CH3 fragment is slightly off the top site. The calculations show that the C−Ha bond 

distance stretched from 1.11 Å in the gas phase to 1.63 Å in the TS. The C and Ha atoms are bonded with 

the top Ni atom with bond distances of 2.18 and 1.59 Å, respectively. As shown in Table 3.4, the 

calculated activation barrier for this reaction is 1.31 eV, which is in good agreement with the study of 

Bengaard et al. [76] and Blaylock et al. [6], who reported a barrier of 1.32 and 1.34 eV for methane 

dehydrogenation on Ni (111), respectively. As mentioned in Section 3.1.1, Wang et al. [41] used a model 

with the top two layers relaxed and reported higher CHx adsorption energies than those obtained with the 

present DFT model. However, the qualitative results from that study are the same to those obtained with 

the present DFT model: i) the adsorption strength of the CHx species are in the same order, i.e., C > CH > 

CH2 > H > CH3 on Ni (111) and Ni (100); ii) the CHx bonding energy on Ni (100) is stronger than on Ni 
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(111), and iii) the dehydrogenation barriers [77] for the CHx species are in good agreement with those 

obtained in the present analysis (see Table 3.5). Furthermore, Nave and coworkers [40] showed that the 

CH4 dissociation on Ni (111) and Ni (100) has a barrier in the range of 1.06−1.10 and 0.91−0.96 eV, 

respectively (see Table 3.5). That study used a plane-wave basis DFT method with a four−layer slab and 

top two layers relaxed, which is different to the present model. Although the numerical results are 

different than those obtained with the present modeling method, both studies reached the same qualitative 

results regarding the reactivity between Ni (100) and Ni (111), i.e., the energy barrier is lower by 0.1−0.2 

eV on Ni (100) when compared to Ni (111). The reaction energy obtained from the present DFT 

calculation is 0.91 eV on Ni (111), which is 0.24 eV higher than that obtained on the Ni (100) surface. 

From a thermodynamic and reaction kinetics point of view, the high reaction and activation energies 

indicate that CH4 decomposition on Ni (111) is not as favorable as on the Ni (100) surface. 

 

 

Figure 3.7 Geometric structures of the initial state (I.S.), transition state (T.S.), and final state (F.S.) of the 

four steps of CH4 dehydrogenation on Ni (111) surface. Blue: Ni, gray: C, and white: H. 
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For the dehydrogenation of CH3 on Ni (111), hydrogen abstraction takes place over the top of a Ni 

surface atom. The CH2 fragment bends and rotates toward the stretched direction but remains adsorbed at 

the hcp site. At the TS, the methyl species is highly distorted and the C−Ha bond stretched from 1.13 to 

1.75 Å. The Ha atom forms a strong bond with the surface Ni atom (bond distance: 1.49 Å). The energy 

barrier for the CH3 dehydrogenation on Ni (111) is approximately 0.89 eV. This is higher than the one 

(0.68 eV) reported by Blaylock et al. [6], but agrees with a previous theoretical GGA-DFT study 

presented by Mueller et al. (0.79 eV) [78], as shown in Table 3.5. This barrier is 0.27 eV higher than that 

for CH3 dissociation on Ni (100) which can be related to the difference of CH3 adsorption configuration 

and its dissociation pathway between the two surfaces. On Ni (111), the CH3 is initially adsorbed on the 

threefold hcp hollow site; the C−Ha bond scission takes place over the top of a Ni surface atom. In the 

case of Ni (100), CH3 dehydrogenation starts from the bridge site adsorption configuration whereas C−Ha 

bond scission occurs slightly off the atop site, which results in a TS with the Ha atom sitting closer to a 

bridge site. The adsorption energy calculations showed that H adsorption at the bridge site (−2.67 eV) on 

Ni (100) is more stable than its top site adsorption (−1.92 eV) on Ni (111). Therefore, the TS is stabilized 

on Ni (100) with a much lower energy than the TS on Ni (111). The reaction energy obtained for CH3 

dissociation on Ni (111) is 0.16 eV (endothermic reaction). 

In the case of the CH2 dehydrogenation reaction on Ni (111), the Ha atom that points to the top of the 

Ni atom is stretched and the CH fragment rotates upwards with the C atom strongly bonded to the three 

Ni atoms at hcp site. At the TS, the C−Ha bond is stretched from 1.11 to 1.68 Å. DFT calculations showed 

that the dehydrogenation of CH2 to CH needs to overcome an energy barrier of 0.41 eV, which is slightly 

higher than that reported by Blaylock et al. [6] (0.30 eV). However, the energy barrier obtained in the 

present analysis (0.41 eV) agrees well with the study presented by Mueller et al. [78] (0.36 eV), as shown 

in Table 3.5. In the present study, it was found that the barrier is 0.19 eV higher than that observed for the 

Ni (100) surface. As in the CH4 dissociation on the Ni (100) surface, the Ha atom is located slightly off 

the ontop site on the Ni (111) surface which leads to the destabilization of the TS and therefore to a higher 

activation energy. The value for the reaction energy is −0.38 eV on Ni (111). The results obtained in this 

work agree with the theoretical study by Mueller et al. [78] who reported a reaction energy of −0.44 eV. 

The subsequent dissociation of CH to C and H is shown in Figure 3.7. During the dissociation 

process, C remains at the hcp hollow site while the Ha moves over the adjacent Ni atom with the C−H 

bond stretched to 1.75 Å in the TS. The results showed that the CH dehydrogenation proceeds with an 

energy barrier of 1.38 eV, which is in good agreement with the study of Blaylock et al. [6] (1.40 eV) and 
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Mueller et al. [78] (1.40 eV) (see Table 3.5). This barrier is much higher than that obtained for the CH 

dissociation (0.64 eV) on Ni (100) surface. This is because the C−Ha bond scission occurs over the top of 

Ni atom on Ni (111). The results also show that the CH dehydrogenation is a strongly structure-sensitive 

process, i.e., the difference in surface atom topology of the catalyst has a strong effect on the reaction 

barriers. The high barriers indicate that CH dehydrogenation on Ni (111) surface is kinetically 

unfavorable, making it the rate-determining step for CH4 dissociation on the Ni (111) surface. 

Furthermore, the reaction CH→C+H on Ni (111) is calculated to be endothermic by 0.42 eV, which 

agrees with a recent theoretical study performed by Mueller et al. (0.50 eV) [78]. 

 

3.3.2.3 Methane dissociation on Ni (553) 

The dissociation of methane on a Ni (553) surface occurs over the Ni atom on the step edge. This 

process has an activation barrier of 1.08 eV. The barrier is lower by 0.23 eV when compared to that 

obtained for the Ni (111) flat surface. As expected, the presence of step sites has a strong influence on the 

activation energy [79-82]. This must be attributed to the strong bonding of CH3 at the step edge. Indeed, 

the results of the adsorption energies show that CH3 is 0.20 eV more stable at the step edge bridge site 

when compared to the flat Ni (111) surface. Moreover, the reaction energy for CH4 dehydrogenation on 

Ni (553) is 0.08 eV. That is, this dehydrogenation process is a nearly thermal neutral process whereas it is 

highly endothermic on the Ni (100) and Ni (111) flat surfaces. 

For the dissociation of CH3, the initial state adopts the favorable bridge site adsorption configuration 

along the step Ni atoms. The final geometry of CH2 is in the bridge position, which is similar to the initial 

CH3 adsorption geometry with the Ha atom adsorbed on an adjacent bridge site (see Figure 3.8). The TS 

for the dehydrogenation process is also depicted in Figure 3.8. As shown in Table 3.6, the energy barrier 

obtained for CH3 dissociation is 0.71 eV. This result is comparable to those for CH3 dehydrogenation on 

the flat surfaces because the C−Ha bond break occurs over the atop site of the surface Ni atom on Ni 

(100), Ni (111), and Ni (533). 
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Figure 3.8 Geometric structures of the initial state (I.S.), transition state (T.S.), and final state (F.S.) of the 

four steps of CH4 dehydrogenation on Ni (553) surface. Green: Ni at upper step, blue: Ni at down the step 

gray: C, and white: H. 

As a result of the CH2 dissociation, the CH fragment becomes adsorbed on the threefold hcp site on 

the lower terrace behind the bridge site to which CH2 was initially adsorbed. As shown in Table 3.6, the 

dissociation of CH2 to CH and H proceeds with a barrier of 0.15 eV on the Ni (553) surface. This energy 

barrier is comparable with that obtained for Ni (100) but much lower than that obtained for Ni (111). This 

can also be explained by the difference in the CH2 dissociation pathways on these surfaces. On Ni (111), 

the C−H bond scission occurs over the top of a surface Ni atom whereas the same scission occurs over the 

bridge site between the step-edge Ni atoms on Ni (553) and Ni (100), respectively. As mentioned above, 

the Ha adsorbed at the bridge site in the TS is often more stable than at the top site, which results in a 

lower energy TS along the reaction coordinates when compared to the TS where the Ha is located over the 

top site. 

In the TS for CH dehydrogenation on Ni (553), the C−H bond bends over toward the upper edge Ni 

atoms and the breaks over the bridge site between these Ni atoms along the edge. This reaction eventually 

leads to a product with the H atom adsorbed at the fcc site on the upper terrace surface, while the C 
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remains adsorbed on the hcp site on the lower terrace to which CH was adsorbed. The activation barrier 

for this process is 0.47 eV. This value is significantly lower than those obtained for the flat surfaces, 

especially for the Ni (111) surface (1.38 eV). The reaction energy for the Ni (553) surface is 0.29 eV 

exothermic whereas the same reaction is thermal neutral on Ni (100) and endothermic on Ni (111), 

respectively. These phenomena can be explained by the analysis of the CH, C and H adsorption energy on 

these three surfaces. The adsorption energy for CH at its initial state on Ni (553) is −5.65 eV while it is 

−6.43 and −5.70 eV on Ni (100) and Ni (111), respectively. The summation of adsorption energies for C 

and H as the reaction products on Ni (553), Ni (100), and Ni (111) are −9.47, −9.94 and −8.87 eV, 

respectively. Then, the difference of adsorption energy between the products (C and H) and the reactant 

(CH) on Ni (553), Ni (100), and Ni (111) is approximately −3.82, −3.51, and −3.17 eV, respectively. 

These results show the stability of the C and H adsorption relative to the CH adsorption on each surface. 

The results showed that CH dehydrogenation on Ni (553) lead to a relatively most stable product, 

followed by dehydrogenations on Ni (100) and on Ni (111). 

 

3.3.3 Electronic structure analysis 

Based on Section 3.3.1, determination of adsorption energies for CHx (x =1-3) and H species on three 

surfaces showed that fragment adsorption are generally favored on less packed surfaces, e.g., Ni (100) 

and Ni (553). This is because of the lower metal-metal coordination numbers as compared to the highly 

packed Ni (111). The differences in the adsorption energies between Ni (111), Ni (100) and Ni (553) 

become significant as the number of H atoms in CHx decreases, particularly for the adsorption of C, 

which has adsorption energies on Ni (100) and Ni (553) significantly higher than on Ni (111). The 

projected density of states (PDOS) and d-band analysis was conducted to provide a physical explanation 

of this phenomenon. The d-band center is a key parameter used to measure the distribution of solid energy 

levels and it characterizes the ability to eject an electron to the adsorbed molecule from the d-band of the 

metal. The average energy of the d-band (also called the d-band center) is calculated as follows [83]: 
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Similarly, the width of the d-band is calculated as follows [83]: 
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where d  represents the density of states projected onto the Ni atom’s d band and Ef  is the Fermi energy. 

The d-band position has been widely used as one of the relevant metrics for characterizing different kinds 

of metals [83-87]. Previous DFT calculations have shown that the valence C atom PDOS was mainly due 

to 2s and 2p electrons for isolated C atom, while it was 4s and 3d electrons for the case of isolated Ni 

atom [88]. Thus, the PDOS plots of the C 2s and 2p orbitals and the 4s and 3d orbitals of the surface Ni 

atoms involved in C adsorption on various Ni surfaces were estimated (see Figure 3.9). The existence of a 

large overlap between the C 2p and Ni 3d orbitals was observed on the three surfaces. This observation 

suggests that the formation of adsorption bonding was mainly due to the mixing between the carbon 2p 

and nickel 3d orbitals. The analysis of the PDOS also revealed the splitting of the C 2p orbitals, indicating 

bonding 2p states just below the Fermi level and antibonding 2p states above the Fermi level. Following 

Figure 3.9, the integration of the overlapped 2p orbitals PDOS curve below (above) Fermi level gives the 

number of occupied (unoccupied) C 2p states. Then, the fractional band filling (the fraction of occupied 

states) for C 2p orbital on Ni (111), Ni (553) and Ni (100) is 0.47, 0.55 and 0.59, respectively. These 

results indicate the progressive filling of the C 2p bonding state of the ‘surface molecule’ formed upon the 

C adsorption on the three Ni surfaces, which result in the progressive increase of the bonding strength 

between C and the Ni surfaces. Moreover, the    and Wd for surface Ni atoms involved in C adsorption 

were calculated (see Table 3.7). The    for the Ni atom on Ni (100) is shifted upward when compared to 

the surface Ni atoms in Ni (553) and Ni (111), respectively. The bandwidth of Ni (100) surface atom is 

also the smallest among the three surfaces followed by Ni (553) and Ni (111). Thus, the change in the 

adsorption energy is mainly due to the electronic effect, where    shifts down and up. Take the    on Ni 

(553) as the reference, the upshift of    of Ni (100) empties more antibonding states and makes the 

interaction between C and Ni stronger. A shift of    of Ni (111) to lower energy leads to more 

antibonding states being occupied and weakens the interaction. This result also explains the higher 

adsorption energy of C on Ni (100) than on Ni (553) and Ni (111). 
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Table 3.7 Average energy (  ) and width (  ) of the d-Band of the surface Ni atoms. 

 Clean surface
a
  Surface + C*

b
 

Surface                   (eV)                       (eV)                                     (eV)                          (eV) 

Ni (111)                −1.78                        2.08                                        −2.11                           2.47 

Ni (100)                −1.64                       1.95                                         −1.87                           2.28 

Ni (553)                −1.57                       1.91                                         −2.03                           2.41 

a
Only the edge atoms are considered for Ni (553). 

b
All the atoms involved in C adsorption are considered. 
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Figure 3.9 Projected density of states (PDOS) for isolated C atom and surface Ni atoms involved in C 

adsorption for the three respective surfaces: the Ni (111), Ni (100) and Ni (553). The vertical green lines 

donate the Fermi level. 
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The energy profile for the dehydrogenation of CH4 on Ni (111), Ni (100), and Ni (553) surfaces is 

shown in Figure 3.10. It can be seen that the highest activation barriers in methane dehydrogenation are 

those for CH4, CH3, and CH dissociation. On Ni (111), CH dehydrogenation proceeds with the highest 

barrier (1.38 eV), which implies that CH dehydrogenation into C and H is the rate-determining step for 

CH4 dissociation. That is to say, CH is the most abundant CHx species of CH4 dehydrogenation on Ni 

(111). On Ni (100) and Ni (553), CH4 dissociative adsorption, CH4→ CH3 + H, was the rate-determining 

step with barrier heights of 1.23 eV and 1.08 eV, respectively. C is the most abundant intermediate 

species on the two surfaces. These results show that CH4 dehydrogenation on the surfaces that contain 

low-coordinated surface atoms is the most preferable reaction pathway in comparison with those on Ni 

(111) surfaces, which agrees with previous theoretical simulation studies [89,90]. The electronic structure 

analysis was conducted to gain insight into the physical origin of the difference in catalytic activity for the 

different Ni surfaces. The projected densities of states (PDOS) of metallic Ni d-band (see Figure 3.11) on 

various Ni surfaces were calculated in this study. In this analysis, only the edge atom on the Ni (553) 

surface was considered in the calculations. In general, the closer the d-band center to the Fermi level, the 

more reactive the surface. Likewise, a decrease of the bandwidth leads to a more reactive surface metal 

atom [83]. The reaction barrier of a specific reaction is related to its reaction pathway and the electronic 

structure of the catalyst surface atoms. Hence, a clear insight of the electronic structure effect on the 

reaction barriers can be gained if reactions with similar reaction pathway are compared. As an example, 

consider the methane dissociative adsorption, CH4→ CH3 + H. As discussed in Section 3.3.2, this reaction 

has similar reaction pathways on the three different Ni surfaces (the C−Ha bond scission occurs over the 

top of a Ni atom). As shown in Tables 3.3–3.6, the corresponding reaction energy barriers on the three 

surfaces for this reaction follow the order: Ni (553) < Ni (100) < Ni (111). As shown in Table 3.5, the d-

band center of Ni (111) surface is farther away from the Fermi level than that observed on the Ni (100) 

and the Ni (553) surfaces. Likewise, Table 3.7 also shows that the step Ni atoms on Ni (553) have the 

highest d-band energy, which is closer to the Fermi level. Accordingly, the reactivity of the Ni atoms on 

these three surfaces follows the order: Ni (553) > Ni (100) > Ni (111). This result is consistent with the 

DFT calculations obtained from the present study since the reaction barriers for CH4 dissociation decrease 

on stepped Ni (553) and Ni (100) when compared to those obtained on Ni (111). 
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Figure 3.10 Reaction energy diagram of reaction paths of the CHx (x=1-4) dissociation reaction on Ni 

(100), Ni (111) and Ni (553) surfaces. 
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Figure 3.11 Projected density of states (PDOS) plots of the d-orbitals of the surface Ni atom for the three 

respective surfaces: Ni (111), Ni (100), and Ni (553). The vertical dashed lines represent the location of 

the corresponding d-band center. The vertical green lines indicate the Fermi level. 

 

3.4 Summary  

A systematic self-consistent periodic DFT study has been presented for methane decomposition on Ni 

(100), Ni (111) and Ni (553) surfaces. The geometry, site preference, and relative stability of adsorbed H 

and CHx (x=0-3) intermediates were investigated. Also, the decomposition mechanisms have been studied 

from energetic and geometrical points of view. The key results obtained by the present simulation study 

can be summarized as follows: 

 i) The preferred sites of the adsorbed species are located on the basis of the adsorption energies. On 

the Ni (100) surface, the hollow site is preferred for the hydrocarbon groups except CH3 and H, which are 

adsorbed at the bridge sites. On Ni (111) surface, the CHx (x=0-3) species and H are more likely to be 

adsorbed at the threefold hcp sites. The preferred sites are different on Ni (553) surface: CH3 and CH2 
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adsorbed on the bridge sites along the step edge are found to be the most stable whereas CH and H prefer 

to bond at the hcp sites on the terrace behind the step edge. Furthermore, the upper terrace on the fcc site 

is preferred for H adsorption. The most-significant difference in adsorption energy of the CHx species 

between the three surfaces is the much-larger adsorption energy of C on both the Ni (100) and the Ni 

(553) surfaces. This significant deviation for C adsorption energy on various Ni surfaces was studied in 

terms of PDOS analysis. This analysis showed that the C–Ni interaction results in the formation of 

bonding and antibonding states between C 2p and Ni 3d orbitals where the bonding states are largely 

occupied on Ni (100) followed by Ni (553) as compared to that on Ni (111). This result explains the 

relatively strong C adsorption energy obtained from the DFT calculations on the Ni (100) and Ni (533) 

surfaces. 

ii) Among the CHx (x=1-3) and H species studied, the DFT calculations showed that CH3 is the most 

diffusive specie on both Ni (100) and Ni (111). The mobility of the CHx fragment and H atom between 

the flat surfaces showed that the C atom has the highest mobility on Ni (111) with a diffusion barrier of 

0.48 eV. The C diffusion on Ni (100) proceeds with a barrier of 1.62 eV, which indicates that the surface 

diffusion of C atom on Ni (100) is a highly activated process and may rarely occur. Similar results were 

obtained for CH, i.e., diffusion barriers on Ni (100) and Ni (1 1 1) are 1.04 and 0.17 eV, respectively. No 

significant differences were calculated for H and CH2 diffusion on Ni (100) and Ni (111) surfaces. 

iii) On the basis of the analysis of activation barriers, it is found that CH dehydrogenation is the rate-

determining step for CH4 dissociation on Ni (111). Similarly, the first C−H bond scission of CH4 on Ni 

(100) and Ni (553) is the rate-determining step. Moreover, CH radical was found to be the most abundant 

fragment on Ni (111), which agrees with the theoretical results reported by Watwe et al. [28]. On Ni (100) 

and Ni (553), C was found to be the most abundant species. This result suggests that the C formation is 

highly likely to occur at the step and the open surfaces. The present study of CH4 dissociation on both flat 

and stepped Ni surfaces indicates that surfaces with low co-ordination number are strongly favored for 

CH4 successive dissociations. This is explained by the investigation of the d-band center of the Ni atoms 

on the three surfaces. The results show that the Ni atoms with low co-ordination number shift the d-band 

center toward the Fermi level and change the width of the d-band, which make the surfaces more reactive.  
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Chapter 4 

Effect of Carbon on the Ni Catalytic Methane Cracking Reaction 

This chapter presents a DFT study of the effect of carbon deposition on the Ni catalytic methane 

cracking reaction.  Three catalyst models were used: Ni (111)−clean, Ni (111)−4Csub, and Ni (111)−Con , 

which represent clean, surface-covered, subsurface-covered Ni (111) surface, respectively. The stability 

of CHx species and the kinetic properties of methane dissociation were studied on the three models. The 

organization of the paper is as follows: an introduction of this study is given in the first section. In section 

4.2, the computational methods and models used in this study are described. The results of the DFT 

calculations performed to describe the adsorption and dissociation properties of the CHx species on the 

three Ni surfaces are presented in section 4.3. Concluding remarks are given at the end of this chapter. 

 

4.1 Introduction 

Methane activation on catalyst surfaces are crucial steps for the production of CO-free hydrogen, 

carbon nanotubes (CNTs) [1-4]. Because of their industrial and commercial importance, the 

decomposition of methane on Ni-based catalysts has been extensively studied by experimentalists [5-9] 

and theoreticians [10-14]. On the theoretical side, most of the studies have focused on CHx adsorption and 

dissociation on different Ni or Ni-based alloy surfaces. Wang et al. [15] presented a comparative study of 

CHx (x=3-0) chemisorption on Ni (111), Ni (100), and Ni (110) surfaces using plane wave DFT 

calculations. Bengaard et al. [16] reported the effects of surface steps on the activation of methane by 

using a Ni (211) step surface. Liu et.al [17] conducted a series of DFT calculations on methane 

dissociation on different pure metals (Fe, Co, Ni and Cu) and bimetals (NiFe, NiCo and NiCu). All these 

studies were conducted on clean surfaces which are far from the actual situation of the transition metal 

catalysts where the reactions take place on surfaces with deposited carbon atoms. These carbon atoms 

may i) chemisorb strongly on the Ni catalysts surface blocking access of reactants to metal surface sites; 

ii) diffuse from the surface to the octahedral sites of the first subsurface layer or dissolution in bulk nickel 

forming carbidic nickel [18,19]; iii) totally encapsulate a metal particle and thereby completely deactivate 

the Ni catalyst and stopping the CNTs growth process [20].  

To the authors’ knowledge, theoretical study of the effect of carbon deposition on the kinetic 

properties of catalytic methane dissociation has not been reported in the open literature. Such a study is 
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fundamental for a comprehensive understanding of the methane cracking reaction on Ni-based catalysts. 

It is also expected to play an important role in the estimation of more realistic kinetic parameters for this 

system, in particular CHx dissociation barriers as a function of carbon deposition, where the effect of the 

deposited C atoms on the rate parameters (including coverage dependencies in activation energies) is 

usually not considered in the analysis [21]. 

In this work, a theoretical study on the activation of methane, and its corresponding fragments on 

carbon deposited Ni (111) surface were performed. The (111) surface was chosen because it is lowest 

energy facets [22], and usually dominate the surfaces of metal nanoparticles [23]. The objective of this 

study is to evaluate the energetics of reactive intermediates caused by the presence of carbon atoms on Ni 

(111). Two models were used to account for the different carbon deposition cases: Ni (111) surface with 

pre-covered C atom, referred to as Ni (111)−Con; and a Ni (111) surface where all subsurface octahedral 

sites are occupied by carbon atoms, referred to as Ni (111)−4Csub (see Figure 3.1). Note that the formation 

of a carbon-rich subsurface layer has been observed by many experimental studies [24-26]. The present 

DFT calculations also show that C at the subsurface of the Ni (111) surface is slightly stable by 0.02 eV 

than the C adsorption on the Ni (111) surface, indicating the thermodynamic stability of the Ni−C 

subsurface alloy. 

The adsorption of the CHx species on clean Ni (111) referred to as Ni (111)−clean, Ni (111)−4Csub, 

and Ni (111)−Con surfaces was first studied. Then, the Transition States (TS) and energetics for the CH4 

sequential dissociation reactions on these surfaces were identified. Since Ni catalytic methane cracking 

reaction usually occurs at temperatures above 773K [27], the corresponding Gibbs free energy barriers at 

this temperature were calculated. Comparisons between the adsorption and the dissociation properties of 

the CHx species on the three surfaces are also presented in this study. 

 

4.2 Computational details  

4.2.1 Calculation methods  

The same DFT calculation method is used as in Section 3.2.1, Chapter 3. The CHx (x=3-0) adsorption 

energies (Eads) were calculated as the difference in total energy between the optimized CHx/Ni complex 

(       ) and the sum of the energies of the optimized bare surface (ENi) and gas-phase CHx molecules 

(    
), i.e., 
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                                       𝑎 𝑠   𝑥      𝑁 ⁄
         

                                                            (4.1) 

Meanwhile, the interactions between adsorbates on the surface is defined by the following equation 

[28] 

                                        𝑡 𝐴 𝐵    𝐴+𝐵          𝑎 𝑠 𝐴   𝑎 𝑠 𝐵                                   (4.2) 

where   𝐴+𝐵     is the total energy of A and B co-adsorbed on the Ni slab,  𝑎 𝑠 𝐴  and  

 𝑎 𝑠 𝐵  are the adsorption energies of A and B adsorbed on separate Ni slabs. A positive Eint A B  

means a repulsive interaction. 

The free energy of the reactions G was calculated as follows [29,30]: for gas-phase species CH4(g), 

                             𝐺       𝑡 𝑡𝑎𝑙     𝐸    0 0      𝑆      

                                             𝑡 𝑡𝑎𝑙     𝐸    0 0      𝑆0          (
 

 0)                   (4.3)            

where  𝑡 𝑡𝑎𝑙 is the total energy determined by DFT calculations.    𝐸  is the zero-point energy, which is 

calculated by 

                                                            𝐸  ∑
 𝐴 𝑣 

 

   6 5 
                                                                     (4.4) 

where  𝐴 is Avogadro’s number, h is Plank’s constant, 𝑣  is the frequency of the normal mode, and    is 

the number of atoms involved in the system.   0 0     is the enthalpy change from 0 K, 𝑆0      is 

the standard entropy at temperature T. Both   0 0     and 𝑆0      can be calculated directly from the 

DFT thermodynamic calculations. 

For adsorbed species (CH3,CH2, et al.), 

                                       𝐺       𝑡 𝑡𝑎𝑙     𝐸   𝑈0 0      𝑆0                                    (4.5) 

                                        𝑈0 0     ∑
 𝐴 𝑣  

 ℎ𝑣  𝑘𝐵𝑇

    ℎ𝑣  𝑘𝐵𝑇
  
                                                               (4.6) 

                                𝑆0    ∑     (  𝑒  𝑣 𝑘𝐵𝑇⁄ )  
 𝐴 𝑣  

 ℎ𝑣 𝑘𝐵𝑇⁄

𝑇(    ℎ𝑣 𝑘𝐵𝑇⁄ )

  
                                        (4.7) 

 

4.2.2 Surface models 

In the present study, the Ni (111) surface was modeled using periodic three-layer slabs with a 2×2 unit 

cell. Convergence with respect to number of metal layers and unit cell dimensions was tested on 2×2 
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four-layer unit cells and 3×3 three-layer unit cells, respectively. Binding energies of CHx species (x=3-0) 

on three layer 2×2 slabs were almost the same with that obtained on four-layer 2×2 slabs, whereas it is 0–

0.33 eV larger compared to that on three-layer 3×3 slabs. A detailed discussion of the comparisons 

between these models is presented in the Section 4.3.1. The Ni (111)−clean, Ni (111)−4Csub and Ni 

(111)−Con surfaces used in the present study are shown in Figure 4.1. The bottom layer of the slab was 

fixed in its bulk positions with a calculated lattice parameter of 3.52 Å, whereas the Ni atoms of the 

remaining layers and the adsorbed species were set free to relax.  

 

Figure 4.1 Top views of the 2×2 unit cell for different Ni surfaces. C atoms are colored gray, H atoms 

white, first-layer Ni atoms green, second-layer Ni atoms cyan, third-layer Ni atoms blue. 

 

4.3 Results and discussion 

4.3.1 Convergence with respect to the slab thickness and unit cell dimensions 

The CHx (x=3-0) adsorption energies of the optimal geometries obtained with a 2×2 three-layer slab 

were recalculated using a 2×2 four-layer slab and 3×3 three-layer slab (see Table 4.1). The results show 

that on a 2×2 four-layer slab, the largest deviation in adsorption energy observed was for the CH3 

adsorption (3.8%). i.e., the fourth layer model decreased the adsorption energy by 0.05 eV with respect to 

the 2×2 three-layer slab model, indicating that three layers are good enough to describe the system. 

Binding energies of CHx species on three-layer 3×3 slabs is about 0.01–0.33 eV smaller compared to that 

obtained on three layer 2×2 slab. For example, the adsorption energy for CH3 is decreased from −1.33 on 

three layer 2×2 slab to −1.11 eV on three-layer 3×3 slab. And for CH adsorption, it is changed from −5.68 

to −5.69 eV. Although there are deviations in the CHx adsorption energies by using different size of the 

unit cells, the goal of the present study is to analyze the C deposition effect on the CHx adsorption and 

dissociation. Hence, the study is focused on the comparisons between the clean Ni (111) surface and C 
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deposited models. As discussed in the revised manuscript, an analysis of CHx dissociation on the three 

layer 2×2 slab and 3×3 slab found that, on the 3×3 slab with C surface coverage of 1/9ML, CHx 

dissociation barriers are not affected by its neighboring C atom. However, on Ni surface with high C 

coverage, e.g., 1/4ML modeled with a 2×2 slab, the deposited C will have significant effect on the CHx 

dissociation kinetics. Accordingly, the three layer 2×2 slab was used as a basis in present study to perform 

the comparisons between the different models. 

Table 4.1 Adsorption energies (eV) of CHx fragments (x =3-0) fragments on the 2×2 three-layer, 2×2 

four-layer and 3×3 three-layer slab model of Ni (111) surface. 

adsorbates 2×2 three-layer 2×2 four-layer 3×3 three-layer 

CH3 –1.33 –1.28 –1.11 

CH2 –3.23 –3.25 –3.04 

                CH –5.68 –5.69 –5.35 

                C –6.18 –6.20 –6.19 

 

 

4.3.2 CHx (x =3-0) adsorption 

The adsorption of CHx (x = 3-0) on Ni (111)-clean, Ni (111)−4Csub and Ni (111)−Con surfaces was 

examined first. The geometries of the most stable adsorption configurations are shown in Figure 4.2, the 

corresponding adsorption energies are listed in Table 4.2. Note that the present models for Ni (111)−4Csub 

and Ni (111)−Con corresponding a carbon with surface coverage of 1/4 monolayer and carbon with 

sublayer coverage of one monolayer, respectively. In the realistic conditions, when the C surface coverage 

is low, e.g. 1/9, CHx (x=3-0) adsorption could occurs either at the neighboring sites of the deposited C 

atom or at the active sites that far away from the deposited C atom. This will result in too many 

adsorption configurations to be considered and makes the DFT calculation very expensive. Most 

importantly is that, the latter case, where the adsorption occurs at the site that far away from the C atom is 

similar as CH3 adsorption at the clean surface. Accordingly, the adsorption of CHx on the low C coverage 

surface will not significantly affected by the deposited C atom. Therefore, a relatively high carbon surface 

coverage, e.g. 1/4 monolayer, was considered in the present study. For the C sublayer model, a more 

realistic scenario is that C atoms will diffusion into both the sublayer and bulk of the catalyst with more C 
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atoms accumulated in the sublayer than in the bulk, due to the high energy barrier for bulk diffusion [31]. 

Moreover, the reactivity of the Ni catalyst top surface will be more likely affected by the C atoms 

deposited at the first subsurface layer. Thus, only C atoms deposited in the first sublayer was considered 

in the present study. The reason why C coverage of one monolayer is considered is that, at low sublayer C 

coverage (<1ML), the sublayer C atoms will have more significant deactivation effect on the Ni atoms 

that it directly bonded with, as compared to the other top surface Ni atoms. This will result in a different 

activity of the surface Ni atoms, and therefore, introduce complexity of the DFT calculations. Therefore, 

to simplify the DFT calculation, the deactivation effect by the C subsurface deposition is studied using a 

model with the one monolayer subsurface C atoms. 

 

 

Figure 4.2 CHx (x = 3-0) adsorption configurations on the different Ni (111) surfaces: (a–d), (e–h), and (i–

l) correspond to the geometries on Ni (111)–clean, Ni (111)–4Csub and Ni (111)–Con, respectively. C 

atoms are colored gray, H atoms white, first-layer Ni atoms green, second-layer Ni atoms cyan, third-

layer Ni atoms blue. 
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Table 4.2 Adsorption energies,  𝑎 𝑠 (eV), of CHx (x =3-0) fragments on various Ni surface models. The 

adsorption energies in the bracket were calculated by using dispersion corrected RPBE-D3 functional. 

Surface CH3 CH2 CH C 

Ni(111)–clean –1.33(–1.90) –3.23 –5.68 –6.18(–6.49) 

Ni(111)–4Csub –1.35(–1.99) –2.84 –4.93 –4.96(–5.23) 

    Ni(111)–Con –0.97(–1.12) –2.73 –5.03 –4.96(–5.22) 

 

As shown in Figure 4.2, the most stable site for CH3 adsorption on both the Ni (111)–clean and Ni 

(111)–4Csub surfaces is the hcp site, with three H atoms pointing towards the surrounding Ni atoms. The 

adsorption energy of CH3 on Ni (111)–clean is –1.33 eV, which is consistent with the result reported by 

Blaylock et al. (1.30 eV) [44] and Michaelides et al. (−1.48 eV) [10]. On Ni (111)–4Csub, the 

corresponding adsorption energy obtained by the present study is –1.35 eV. This shows that the 

introduction of sub-surface carbon atoms has very little effects on the CH3 binding strength with respect 

to that on clean Ni (111). However, on Ni (111)–Con surface, the most favored site for CH3 adsorption is 

changed to the top site and the CH3 adsorption energy decreases to –0.97 eV due to the strong repulsive 

interaction (0.86 eV) between the deposited C atoms and CH3. The less stability of CH3 adsorption on Ni 

(111)−Con can be also supported by the dC−Ni bonding distance. On the Ni (111)−clean surface, the two 

closest dC−Ni bonding distances were found to be 2.29 and 2.26 Å, respectively (see Table 4.3). On the Ni 

(111)−Con model, when CH3 is adsorbed at the hcp site, the corresponding dC−Ni bonding distances are 

longer and changed to 2.32 and 2.38 Å, respectively. 

CH2 was found most stable at the hcp site on the Ni (111)–clean surface. This most favored 

adsorption site is not affected by the presence of carbon on the surface or on the subsurface. On Ni (111)–

clean surface, the corresponding adsorption energy is calculated to be –3.23eV, which is in agreement 

with the adsorption energy value of −3.22 eV reported by Michaelides [10] for CH2 at the hcp site. This 

result is also consistent with the study of Blaylock et al. [44], who reported adsorption energies of –3.30 

eV for CH2 adsorption. The adsorption energy of CH2 on Ni (111)–4Csub was found to be 0.39 eV lower 

than that at the Ni (111)–clean surface. This result indicates that the deposition of C atoms in the surface 

weakens the CH2 adsorption. Similar to the case of CH3 adsorption, CH2 on Ni (111)–Con, the 

corresponding adsorption energy was found to be even lower (–2.73 eV) due to the repulsive interaction 

(0.47 eV) between the adsorbed C and CH2. As shown in Table 4. 2 and 4.4, on the Ni (111)−clean 
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surface, CH2 hcp hollow site adsorption has two closest dC−Ni bonding distance of 1.98 and 2.02 Å, 

respectively. However, on the Ni (111)−Con model, the corresponding dC−Ni bonding distance was found 

to be of 1.95 and 2.21 Å, respectively, showing the less stability of CH2 adsorption on Ni (111)−Con 

model. 

The most favored adsorption site (hcp) for CH adsorption is the same for the three models here. On a 

Ni (111)–clean surface, the CH adsorption energy at the hcp sites was found to be –5.68 eV. This result is 

also in agreement with the study of Blaylock et al. [32], who reported an adsorption energy of –5.90 eV 

for CH adsorption. The CH adsorption energies are –4.93 and –5.03 eV on Ni (111)–4Csub and Ni (111)–

Con, respectively, indicating that the adsorption of CH is predicted to be reduced by the deposition of C 

atoms.  

The most stable configuration for the adsorption of C on the Ni (111)–clean surface is that where C 

was adsorbed at an hcp site (see Figure 4.2d). The corresponding adsorption energy is –6.18 eV. This is in 

reasonable agreement with that reported by Blaylock et al. [32] (–6.00 eV). C adsorption on both Ni 

(111)–4Csub and Ni (111)–Con also favours the hcp site, with the same reduced adsorption energies of –

4.96 eV.  

The conventional DFT functionals do not take into account van der Waals interactions, that is, 

London dispersion. These interactions might crucial for the metal surface adsorption systems [33,34]. To 

evaluate the effect of dispersion correction on the adsorption energy of the hydrocarbon species, CH3 and 

C adsorption on Ni (111)–clean, Ni (111)–4Csub and Ni (111)–Con models were performed using the 

RPBE-D3 functional [35] as well (see Table 4.2). As shown in Table 4.2, the results of this analysis that 

the non-dispersion-corrected calculations underestimate the binding energies between the adsorbates and 

the Ni surfaces. To have a better understanding of the electronic effects between C and Ni, the projected 

density of states (PDOS) of surface Ni atoms over Ni (111)–clean, Ni (111)–4Csub and Ni (111)–Con was 

calculated. As shown in Figure 4.3, there is a significant down shift of the d–orbital for the Ni atom on Ni 

(111)–4Csub when compared to that on Ni (111)–clean surface. This indicates that the hybridization of d-

orbitals with nearby subsurface carbon atoms stabilizes the metal’s d band, shifting it down, away from 

the Fermi level, and therefore making Ni less reactive. The carbon pre-covered surface, Ni (111)–Con, 

shows a similar electronic poisoning effect: Ni d states are stabilized when C is deposited on hcp site of 

the surface. This behavior is also accompanied by a slight downward shift of the d states of surface Ni 

atoms that are bonded with the C atom, whereas the next nearest neighbor Ni atom (Ni 3d
*
) are almost 

unaffected, as shown in Figure 4.3. This shows that the strong chemical bonding between C and Ni could 
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electronically modifies the Ni atoms’ abilities to adsorb or dissociate the CHx species. Meanwhile, it was 

also observed that the downshift of the Ni d state is larger in Ni (111)–4Csub than Ni (111)–Con. Therefore, 

it is expected that the Ni atoms on the Ni (111)–Con to have a higher reactivity than the Ni (111)–4Csub 

surface. However, the adsorption energy results have shown that CHx adsorption on Ni (111)–Con is 

generally less stable than that on Ni (111)–4Csub surface, especially for the larger CH3 and CH2 molecules. 

This effect is due to the strong repulsive interaction between the CHx and the pre-covered C atom under 

the present studied surface coverage. 

 

Figure 4.3 Projected density of states (PDOS) for Ni atoms on the three respective surfaces: Ni (111)–

clean, Ni (111)–4Csub and Ni (111)–Con. Note that Ni 3d* represents the Ni atom that are not bonded the C 

atom on Ni (111)–Con. 
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4.3.3 Methane dissociation 

To elucidate the effect of deposited C on the kinetics of methane dissociation, the successive 

dissociation of CH4 to form surface C and H were investigated in detail on Ni (111)–clean, Ni (111)–4Csub 

and Ni(111)–Con surfaces, respectively. The geometries of the transition states (TS) for the four 

successive dehydrogenation steps are shown in Figure 4.4; the corresponding activation energies and 

reaction energies are listed in Tables 4.3 to 4.5. 

4.3.3.1 Methane dissociation on Ni (111)–clean surface 

Dissociation of methane on Ni (111) occurs at the top of a surface Ni atom. The geometry of the 

transition state is show in Figure 4.4a). In the TS, the methyl fragment is slightly tilted and the H atom 

moves over the top of the Ni atom. The activated C−H bond (denoted as C−Ha hereafter) is stretched from 

1.11 Å in the gas phase to 1.62 Å. The C and Ha atoms are bonded with the top Ni atom with bond 

distances of 2.10 and 1.56 Å, respectively. As shown in Table 4.3, the calculated activation barrier for this 

reaction is 1.23 eV, which is in good agreement with the study of Wang et al. [36], who reported a barrier 

of 1.17 eV for methane dehydrogenation on Ni (111). The reaction energy for this process is 0.65 eV, 

which suggests that the CH4 dissociation reaction on clean Ni (111) surface is a highly endothermic 

process. 

 

Figure 4.4 Geometric structures of transition state (TS) of the four steps of CH4 dehydrogenation on 

different Ni (111) surfaces: (a–d), (e–h), and (i–l) correspond to the TS geometries on Ni (111)–clean, Ni 
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(111)–4Csub and Ni (111)–Con, respectively. C atoms are colored gray, H atoms white, first-layer Ni atoms 

green, second-layer Ni atoms cyan, third-layer Ni atoms blue. 

 

Table 4.3 Relative energies (eV) to the initial state (I.S.) of the transition state (T.S.) and final state (F.S.) 

for each elementary step of CH4 dissociation on Ni (111)–clean surface. Distances between detached Ha 

and the nearest C (       ) and Ni (        ) atoms, as well as the two closest boding distances between 

the C atom in the CHx adsorbates and the surface Ni atoms (    i ) are also shown.  

 States E (eV)      
 

 (Å)      
 

 (Å)        (Å)         (Å)       

CH4 T.S. 1.23  2.10 1.62  1.56 

 F.S. 0.65 2.16 2.18 3.00 1.68 

CH3 I.S. 0.00 2.29 2.26 1.11 2.27 

 T.S. 0.85 2.00 1.92 1.76 1.50 

 F.S. 0.19 2.00 1.90 2.82 1.67 

CH2 I.S. 0.00 1.98 2.02 1.13 2.14 

 T.S. 0.29 1.88 1.85 1.68 1.49 

 F.S. –0.61 1.85 1.85 2.90 1.70 

CH I.S. 0.00 1.85 1.85 1.10 2.27 

 T.S. 1.36 1.79 1.80 1.71 1.51 

 F.S. 0.41 1.78 1.77 2.88 1.70 

 

In the TS obtained for the dissociation of CH3 on the Ni (111) surface, the activated C−Ha bond is 

stretched from 1.11 to 1.76 Å. The Ha atom forms a strong bond with the surface Ni atom (bond distance: 

1.50 Å). The energy barrier for the CH3 dehydrogenation on Ni (111) is 0.85 eV. This result is also in 

good agreement with that reported by Wang et al. [36] (0.82 eV). 

In the case of the CH2 dehydrogenation reaction on Ni (111), the Ha atom that points to the top of the 

Ni atom is stretched and the CH fragment rotates upwards with the C atom strongly bonded to the three 

Ni atoms at hcp site. At the T , the C−Ha bond is stretched from 1.13 to 1.68 Å. DFT calculations showed 
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that the dehydrogenation of CH2 to CH needs to overcome an energy barrier of 0.29 eV, which is slightly 

lower than that reported by Wang et al. [36] (0.37 eV). However, the energy barrier obtained in the 

present analysis agrees well with the study presented by Blaylock et al. (0.30 eV) [32]. As seen in Table 

4.3, this is the lowest energy barrier among all dissociation steps. Hence the dissociation of CH2 is the 

fastest of all dissociations. 

The dehydrogenation process CH→C+H has an energy barrier of 1.36 eV, which is in good 

agreement with the study of Blaylock et al. [35] (1.40 eV). At the T , the C−Ha bond is stretched from 

1.10 to 1.71 Å, which leads to the product C and H, located on two hollow sites. Furthermore, the reaction 

CH→C+H on Ni (111) is calculated to be endothermic by 0.41 eV.  

 

4.3.3.2 Methane dissociation on Ni (111)−4Csub surface 

As shown in Figure 4.4e, the activation of the first C−H bond in methane also occurs over the top of a 

Ni atom on Ni (111)−4Csub surface. In the T , the activated C−Ha bond is stretched from 1.11 Å in the gas 

phase to 1.64 Å. The C and Ha atoms are bonded with the top Ni atom with bond distances of 2.19 and 

1.55 Å, respectively. The dissociation energy barrier is calculated to be 1.46 eV, which is higher by 0.23 

eV when compared to clean Ni (111) surface. The reaction energy obtained from the present DFT 

calculation is 0.79 eV on Ni (111)−4Csub, which is 0.14 eV higher than that obtained on the Ni 

(111)−clean surface. The high reaction and activation energies indicate that CH4 decomposition on Ni 

(111)−4Csub is not as favorable as on the clean Ni (111) surface. 
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Table 4.4 Relative energies (eV) to the initial state (I.S.) of the transition state (T.S.) and final state (F.S.) 

for each elementary step of CH4 dissociation on Ni (111)–4Csub surface. Distances between detached Ha 

and the nearest C (       ) and Ni (        ) atoms, as well as the two closest boding distances between 

the C atom in the CHx adsorbates and the surface Ni atoms (    i ) are also shown. 

 States E (eV)      
 

  (Å)      
 

 (Å)        (Å)          (Å) 

CH4 T.S. 1.46  2.19 1.64 1.55 

 F.S. 0.79 2.29 2.28 2.69 1.68 

CH3 I.S. 0.00 2.27 2.28 1.12 2.28 

 T.S. 1.10 2.11 1.97 2.00 1.53 

 F.S. 0.81 2.07 1.96 2.51 1.64 

CH2 I.S. 0.00 2.06 2.09 1.11 2.22 

 T.S. 0.35 1.95 1.86 1.80 1.55 

 F.S. –0.15 1.85 1.84 2.61 1.65 

CH I.S. 0.00 1.90 1.92 1.10  

 T.S. 1.48 1.85 1.84 1.73 1.58 

 F.S. 1.12 1.85 1.83 2.49 1.68 

 

 

The geometries of TS for the activation of CH3 on Ni (111)−4Csub is similar to that obtained for the 

Ni(111)–clean surface except that the C–H bonds present different orientations. In the TS, CH2 is located 

at the hcp site, and the detached H atom tilted towards the adjacent hcp site (Figure 4.4f). The dissociation 

of CH3 to CH2 and H proceed with a barrier of 1.10 eV on the Ni (111)–4Csub surface, as shown in Table 

4.4. This energy barrier is 0.25 eV higher than that obtained for Ni (111)–clean surface. 

Similar results were obtained for CH2 and CH dehydrogenation. In the configuration of the TS for 

CH2 and CH dehydrogenation, CH and C remain chemisorbed at the hcp site with the detached H atom 

tilted towards the adjacent hcp site. At the TS in CH2 dissociation, the activated C−Ha stretched from 1.11 

to 1.80 Å. The reaction energy and the corresponding activation barrier for the dissociation of CH2 on Ni 
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(111)−4Csub are –0.15 and 0.35 eV, respectively. The CH dehydrogenation on Ni (111)−4Csub has an 

energy barrier of 1.48eV. The reaction energy obtained from the present analysis was 1.12 eV, which 

indicates that CH dehydrogenation on Ni (111)−4Csub is a highly endothermic process. At the TS, the 

C−H bond is stretched from 1.10 to 1.73 Å.  Based on these calculations, one can clearly see that CHx 

dissociation on Ni (111)−4Csub have higher energy barriers as compared with that on Ni (111)–clean 

surface,  showing the deactivation effect caused by the accumulation of C atoms in the subsurface of Ni 

(111) surface. 

 

4.3.3.3 Methane dissociation on Ni (111)–Con surface 

 For CH4 dissociation on the Ni (111)–Con surface, the geometry of the T  is shown in Figure 4i). In 

the T , the lengths of the C–Ni and C–Ha bond on the Ni (111)–Con are 2.09 and 1.68 Å, respectively. The 

energy barrier for the initial activation of methane is calculated to be 1.69 eV (Table 4.5). This is about 

0.46 and 0.23 eV higher than that on the Ni (111)–clean and Ni (111)–Csub surface, respectively. This 

result indicates that the deactivation effect caused by the on−surface C deposition is more significant as 

compared with that of subsurface C, because of the strong repulsion between the surface C atom and CH3.  

Moreover, the observed high activation energy on the Ni (111)–Con and Ni (111)–Csub surface means that 

if the activation energies determined for the clean surface in used any simulation, it will results in a 

overestimation the decomposition rate. 

 In the geometries of the TS for CH3 dehydrogenation on Ni (111)–Con surface, both CH2 and H were 

found slightly off the top site towards to adjacent hcp sites with a C–Ha bond of 1.74 eV. The 

corresponding reaction energy and energy barrier obtained for this system were 1.07 and 1.32 eV, 

respectively. That is, the activation energy barrier obtained on this C pre−covered surface is quite higher 

than that observed on Ni (111)–clean (0.85 eV) and Ni (111)–Csub surface (1.10 eV). 
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Table 4.5 Relative energies (eV) to the initial state (I.S.) of the transition state (T.S.) and final state (F.S.) 

for each elementary step of CH4 dissociation on Ni (111)–Con surface. Distances between detached Ha and 

the nearest C (       ) and Ni (        ) atoms, as well as the two closest boding distances between the C 

atom in the CHx adsorbates and the surface Ni atoms (    i ) are also shown. 

 States E (eV)      
 

 (Å)      
 

  (Å)       (Å)          (Å) 

CH4 T.S. 1.69  2.09 1.68 1.56 

 F.S. 1.38  2.02 2.46 1.75 

CH3 I.S. 0.00  2.01 1.10 2.21 

 T.S. 1.32 2.96 1.90 1.74 1.56 

 F.S. 1.07 2.61 1.96 2.61 1.69 

CH2 I.S. 0.00 1.95 2.21 1.11 2.17 

 T.S. 0.72 1.90 1.85 1.71 1.50 

 F.S. 0.11 1.88 1.86 2.48 1.68 

CH I.S. 0.00 1.87 1.85 1.11  

 T.S. 1.87      1.86      1.78      1.72      1.54 

      F. .     1.39      1.84      1.76       2.46      1.69 

 

      The TS configurations for CH2 and CH dissociation on Ni (111)–Con surface are similar to that 

obtained with the Ni (111)–4Csub surface, on which CH2 (CH) is chemisorbed at the hcp site while the 

detached H atom is tilted towards the adjacent hcp site. The activation energy (0.72 eV) and reaction 

energy (0.11 eV) for CH2 dehydrogenation on Ni (111)–Con is higher than in the other surfaces. The same 

was observed for CH dissociation, i.e., the reaction energy is found to be 1.39 eV and the 

dehydrogenation barrier step is calculated to be 1.87 eV, which are significantly higher than those 

obtained for the Ni (111)−clean and Ni (111)−4Csub surfaces, respectively. These results show that the 

activation energies for the dehydrogenation of CH are significantly increased when the neighboring 

adsorption sites are blocked by C atoms at the present studied C surface coverage.  
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The present Ni (111)−Con model is simulated by a 2×2 unit cell, which represent a surface C coverage 

of 0.25 monolayer (ML). In order to provide more insight regarding the surface C coverage effect on the 

methane dissociation barriers, CH4 and CH dissociation on a clean and C covered (with surface coverage 

of 1/9ML and 2/9ML) Ni (111) surface modeled by a larger 3×3 unit cell was also considered in the 

present study. Only the first and last steps C−H breaking were investigated due to the fact that either CH4 

dissociative adsorption or CH dehydrogenation is usually reported as the rate-determining step in methane 

dissociation [37,38]. The energetic results are presented in Table 4.6. The result shows that both CH4 and 

CH dissociation barriers obtained on the 1/9ML covered surface are very close to those obtained with a 

clean Ni (111) surface. Thus, there is a minor effect of the deposited C on the methane dissociation 

kinetics at low surface carbon coverage. When two C atoms are deposited on the surface (2/9ML), one 

can expect that CH4 and CH dissociation barriers would vary according to the relative positions of the two 

deposited C atoms. To simplify the model, two different configurations with a long C–C distance were 

considered: A) both of the two C atoms sits on the hcp site, referred to as Ni (111)–Con (2/9 ML)–A; B) 

One of the C sits hcp site and the other occupies the fcc site, referred to as Ni (111)–Con (2/9 ML)–B. As 

show in Table 4.6, the CH4 dissociation barrier obtained on these two 2/9 ML models is the same (1.16 

eV) and is very close to that on Ni (111)–clean and Ni (111)–Con (1/9 ML). However, the results on Table 

4.6 also show that, on the two Ni (111)–Con (2/9 ML) model, the reverse process for CH4 dissociation 

(CH4 production) is favored over that on Ni (111)–clean and Ni (111)–Con (1/9 ML), indicating that CH4 

dissociation would be hindered as the C surface coverage increases. For the case of CH dissociation, the 

dissociation barrier obtained with the 2/9 ML models, especially with the configuration A, are 

significantly higher than that on Ni (111)–clean and Ni (111)–Con (1/9 ML). These results clearly show 

the surface C coverage effect on the kinetics of Ni catalytic methane dissociation. 
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Table 4.6 Activation energies of CH4 and CH dissociation on various Ni surfaces modeled by 3×3 unit 

cell. 

Surface 

3×3 unit cell 

CH4 → CH3 + H  CH → C + H 

 𝑎     𝑒    𝑎  𝑎 𝑘 𝑒     𝑎     𝑒    𝑎  𝑎 𝑘 𝑒   

   Ni (111)–clean 1.14 0.65 1.17 1.21 

Ni (111)–Con (1/9 ML) 1.15 0.80 1.20 0.51 

Ni (111)–Con (2/9 ML)–A* 1.16 0.49 1.98 0.75 

Ni (111)–Con (2/9 ML)–B* 1.16 0.57 1.44 0.32 

*A and B represent two models with different C atoms deposition configurations (see Figure 4.5). Note 

that forward/backward activation energy for CH3 and CH2 dissociation on Ni (111)–clean 3×3 unit cell 

are 0.73/0.95 eV and 0.34/1.05 eV, respectively. 

 

 

 

Figure 4.5 Geometric structures of transition state (TS) of the CH4 and CH dissociation on C deposited 

(2/9 ML) Ni (111) surface modeled by 3×3 unite cell: A1 and A2 are the TS geometries on Ni (111)–Con 

(2/9 ML)–A; B1 and B2 are the TS geometries on Ni (111)–Con (2/9 ML)–B. C atoms are colored gray, H 

atoms white, first-layer Ni atoms green, second-layer Ni atoms cyan, third-layer Ni atoms blue. 
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4.3.4 Free energy for CH4 successive dehydrogenation 

The Gibbs free energy barriers for CH4 dehydrogenation elementary steps at 773 K are evaluated by 

the combined DFT calculations and thermodynamic analyses. It is calculated by including the zero−point 

energy correction, thermal energy correction and entropic effect. A free energy diagram along the reaction 

coordinate (including transition states) is presented in Figure 4.6. By comparing the free energy barriers 

shown in Figure 4.6, it is found that CH4 dissociation on the Ni (111)−clean surface is most favorable 

both kinetically and thermodynamically. The free energy barriers for CH4 and CH3 dissociation on the Ni 

(111)−4Csub are comparable with that for on the Ni (111)−clean surface, showing that the deposition of C 

at the sublayer of the Ni catalyst has only a minor effect for the reactivity of catalyst towards CH4 and 

CH3 dehydrogenation. However, after CH3 are dissociatively adsorbed on the Ni surface, the further 

decomposition of CH2 and CH species is more difficult and the generation of C atoms is predicted to be 

hindered because the free energy barriers for the CH2 and CH dissociation are 0.78 and 1.35 eV, much 

higher than those obtained on Ni (111)−clean surface (0.18 and 1.15 eV for the CH2 and CH dissociation, 

respectively). When the C atoms are sitting on the Ni surface, CHx dissociation could be even more 

difficult. For example, for the CH4 dehydrogenation on Ni (111)−Con surface, the free energy barrier and 

reaction energy is substantially increased to 1.51 and 0.82,eV, respectively. The free energy barrier for the 

CH dissociation to generate C is increased to 1.71 eV. Therefore, one can expected that, at the beginning 

of the reaction, CH4 dehydrogenation occurs on the clean Ni catalyst surface. However, as the C atoms 

start to accumulate in the sublayer or on the surface of the Ni catalyst, it will affect the CHx dissociation 

properties. As observed in the experimental studies, during the Ni catalytic CH4 cracking reactions, after a 

certain time of steady growth of the CNT/CNF, the deposited C atoms will slowly deactivate the Ni 

catalyst. At relatively low reaction temperature e.g. 773 K, the deactivation process could even last for 

more than 10h [9]. The results reported in the present study provide support of the delay of the catalyst 

deactivation. That is, the increase of the CHx dissociation barrier will results in a decrease of the C 

deposition rate, and prevents fast deactivation of the catalyst. The observations reported in the present 

study also allow us to consider the effect of C deposition on the CHx dissociation kinetic parameters in the 

microkinetic modeling of the reactions, which is usually not considered in the microkinetic analysis of 

CH4 dehydrogenation involved processes [21,32]. 
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Figure 4.6 Gibbs free energy diagrams for the CH4 dehydrogenation on different Ni (111) surfaces: Ni 

(111)–clean, Ni (111)–4Csub and Ni (111)–Con. 

 

4.4 Summary 

To elucidate the role of the carbon deposition in methane dissociation reaction, a periodic DFT study 

has been presented for methane decomposition on Ni (111)−clean, Ni (111)−4Csub and Ni (111)–Con 

surfaces. The geometry, site preference, and relative stability of adsorbed CHx (x=3-0) intermediates were 

investigated. The results show that CHx (x=3-0) species adsorption on Ni (111)−4Csub and Ni (111)–Con is 

less stable as compared with that on Ni (111)−clean surface, indicating the effects of the deposited C 

atoms on the Ni catalyst.  

The results obtained in the present analysis are in agreement with the predictions from the PDOS 

analysis: carbon incorporation in the surface leads to a down shift of the Ni d band, making Ni less 

reactive. Moreover, the study of the CHx dehydrogenation shows that the presence of carbon increases the 

barrier for CHx activation, especially for CHx dehydrogenation on Ni (111)–Con where the Ni surface was 

pre-covered with surface C atom: CHx (x=4-1) species encounter a highest energy barrier for dissociation 

due to the electronic deactivation induced by C−Ni bonding and the strong repulsive carbon−adsorbates 

interaction. This work can be used to estimate more realistic kinetic parameters for this system, where the 

effect of carbon deposition on the CHx dissociation barriers should be considered in the analysis. 
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Chapter 5 

          Effect of Metal−Support Interface during CH4 Dissociation on Ni/γ-

Al2O3 

      A DFT study of the effect of γ-Al2O3 support on the methane dissociation is presented in this chapter. 

Two different γ-Al2O3 models: spinel and nonspinel model of γ-Al2O3 (100) surface have been used to 

model the supported Ni catalyst system, Ni4/γ-Al2O3. The adsorption of CH3 and H, as well as the 

dissociation of CH4 and H2 are investigated. The results obtained from the DFT calculations indicate that 

the metal-oxide interface plays an essential role in the dissociation of CH4 and H2. This study is organized 

as follows: an introduction of this study is given in the first section. The computational method and the 

models used in this study are described in section 5.2. Results and discussions are given in section 5.3. 

Concluding remarks are stated in section 5.4. 

 

5.1 Introduction  

The dissociative adsorptions of methane and hydrogen in the presence of a catalyst has attracted 

interest in the past decade [1-3] since these processes are crucial in methane steam reforming and methane 

cracking for hydrogen and carbon nanotube production [4-8]. Due to their lower cost and good reactivity, 

supported Ni catalysts are the most widely used catalysts for these reactions [9-11]. Theoretical methods 

based on quantum chemistry can provide electronic and atomic level information that cannot be easily 

obtained by experimental methods. Hence, in the past years, the catalytic dissociation of CH4 and H2 has 

been extensively studied by theoreticians [12-22]. Haroun et al. [17] conducted DFT calculations on the 

dissociative adsorption of methane on Ni (111) surface with and without an adatom. Abild-Pedersen et al. 

[18] studied the effects of poisoning and step defects for methane activation on Ni (111). Studies of CH4 

and H2 decomposition have also been conducted on single Ni atoms and Ni clusters [19-22]. Bin et al. 

[23] studied the influence of the nickel catalyst geometry on the dissociation barriers of H2 and CH4 using 

a Ni13 cluster and Ni (111) surface. Theoretical studies focusing on CH4 and H2 dissociation on various Ni 

plane surfaces or clusters have also been reported in the literature [24-27]. However, most of the 

industrial heterogeneous catalysts are made of small metal nanoparticles supported on various oxide 

substrates, e.g., Al2O3 [28,29]. Recently, DFT studies have shown that the existence of oxide support such 

as γ-Al2O3 may affect the chemical reactivity of the metal catalyst for certain systems [30-34]. Briquet et 

al. [35] found that the aluminum oxide plays an important role in the activation of the adsorbed CO on a 
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Ni cluster. Valero et al. [36] showed that the metal-support interaction changes the CO and C2H4 

adsorption properties on γ-Al2O3 supported Pd4 cluster. Cheng et al. [37] studied the effect of γ-Al2O3 

substrate on NO2 interaction with supported BaO clusters by DFT. That study reported a strong synergetic 

effect between the BaO clusters and the Al2O3 substrate toward NO2 adsorption. A DFT study performed 

by Kacprzak et al. [38] showed that the γ-Al2O3 support promotes the oxidation of Pd nanoparticles at the 

support and nanoparticle interface. These studies have corroborated that the γ-Al2O3 support may play an 

essential role on the overall behavior of certain catalytic reactions. Although Ni/γ-Al2O3 catalysts have 

proven to show good activity for methane and hydrogen reactions in many experimental studies [39-43] 

to the authors’ knowledge, no density functional theory (DFT) studies regarding the effect of the γ-Al2O3 

support on the Ni catalytic CH4 and H2 dissociation has been reported in the literature. 

In order to understand the role of γ-Al2O3 support at the atomic or molecular level, the CH4 and H2 

dissociations on Ni4/γ-Al2O3 were studied using DFT slab calculations. For the γ-Al2O3 structure, two 

models, based on the defective spinel model [44,45] and nonspinel model, [46,47] have been proposed in 

the literature. Due to complexity of the crystallographic bulk structure of this material, a single model 

structure for this support has not been recognized by the scientific community. In fact, the structure of γ-

Al2O3 is still the subject of considerable debate in the open literature [48-53]. Herein, to account for the 

effect of the two predominant models used for γ-Al2O3, two systems, Ni4 cluster supported on the spinel 

γ-Al2O3 [noted S(Ni4)], and Ni4 cluster supported on the nonspinel γ-Al2O3 surface [noted NS(Ni4)], have 

been used to model Ni4/γ-Al2O3. The aim of the present study is to present a comprehensive 

understanding of the CH4 and H2 reaction systems, i.e., adsorption and dissociation properties at different 

sites of the supported Ni cluster. Moreover, previous experimental studies have shown that metal-support 

interaction might play a key role in the carbon nanotube growth mechanism [54-56]. Ni nanoparticles 

have been observed to be detached from the alumina support and were pushed upward by the carbon 

nanotubes. Therefore, the metal-support interaction upon adsorbate adsorption was studied here and used 

to understand the detachment of the Ni particle in the early stage of CNTs growth process. 

In the present work, two Ni4/γ-Al2O3 models were used to study the reactivity of γ-Al2O3 supported 

Ni catalyst. That is, the pathway and energy barriers for CH4 and H2 dissociation at the top and interface 

sites on the γ-Al2O3 supported Ni4 cluster were studied using two models of γ-Al2O3 (100) surface. Also, 

CH3 and H adsorption, and the influence of these species on the metal support interaction, were studied 

and discussed in this work. The reactivity of the top and interface sites on the supported Ni4 cluster was 

identified using the projected density of states (PDOS) method and Hirshfeld charge analysis [57]. 
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5.2 Computational details  

5.2.1 Calculation methods  

The DFT calculation method used in the present study is slightly different from that in Section 3.2.1, 

Chapter 3. That is, the kspace parameter was set to 3 for S(Ni4) model; for the NS(Ni4) model, since a 

large unit cell needs to be specified which increases the computational demands. To reduce the 

computation costs in the calculations, the linear tetrahedron method for the kspace numerical integration 

(k-space parameter = 2) [58] is used for the NS(Ni4) model.  

The adsorption energies (Eads) of the adsorbates were calculated as follows: 

                    Eads(X)=E(X–Ni4/γ-Al2O3)−E(X)−E(Ni4/γ-Al2O3),                                                      (5.1) 

where X represents the adsorbates. To analyze interaction between the cluster and the oxide surface, the 

metal–support interaction energies, EMSI, were computed as follows: 

                   EMSI=E(X–Ni4/γ-Al2O3)−E(X–Ni4)ʹ−E(γ-Al2O3)ʹ,                                                        (5.2) 

where E(X–Ni4)ʹ and E(γ-Al2O3)ʹ represent the energies of the X–Ni4 fragment and the oxide surface kept 

in the deformed geometry of the X–Ni4/γ-Al2O3 system, respectively. Thus, EMSI can be used as a measure 

of the change in the electronic structure at the metal–support interface induced by the adsorption of the 

probe molecules. 

                                                         

5.2.2 Surface models  

As mentioned above, there is still controversy in the literature regarding the γ-Al2O3 crystal structure: 

both nonspinel and spinel-like structures have been proposed. Hence, in the present study, the defective 

spinel and the nonspinel slab model with translational symmetry in two directions were used to model the 

γ-Al2O3 (100) surface. The spinel-like structure of γ-Al2O3 belongs to the Fd3m space group (No. 227) 

with lattice constants a=b=c=7.911 Å [59-61]. In the spinel−like structure (MgAl2O4) of γ-Al2O3, the 

magnesium atoms are substituted by aluminum atoms. Therefore, Al vacancies should be introduced to 

fully match the stoichiometry of γ-Al2O3 [62]. However, there is no general agreement regarding the exact 

localization of the vacancies in the spinel structure [49,63]. To simplify the modeling process, the 

surfaces of spinel-based γ-Al2O3 structures are always cleaved from ideal bulk structure, i.e., no vacancies 

contained in the bulk. Accordingly, the stoichiometry of the surfaces obtained for spinel-based γ-Al2O3 

depends on the direction of cleaving, the number of layers, and the dimension of the unit cell. The (100) 

surface was used in the present study to perform the DFT calculations. To speed up our calculations, the 
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(100) surface was modeled as a five-layer stoichiometric spinel type slab of 40 atoms, 24 oxygen and 16 

aluminum atoms (Figure 5.1). For the nonspinel γ-Al2O3 model proposed by Digne et al. [47,64] a 

periodic γ-Al2O3 (100) surface slab with seven atomic layers was used to represent the model γ-Al2O3 

substrate in the present study (see Figure 5.2). The (100) surface was selected because it is one of the 

most detected and catalytically active surfaces for anchoring deposited transition metal and metal oxide 

particles [65,66]. Note that the γ-Al2O3 (100) model used in the present study is a clean ideal surface, i.e., 

the surface hydroxyl groups are not considered in this model. The experimental work of Digne et al. 

[47,64] found that the surface coverage of hydroxyls on γ-Al2O3 changes as a function of temperature. 

According to that work, γ-Al2O3 shows two main surfaces above 600 K: the fully dehydrated (100) 

surface and the hydrated (110) surface. Since the reaction temperature of methane cracking is in the range 

of 800−1000 K, a dehydrated γ-Al2O3 (100) surface is a suitable relatively simple model that can be used 

to study the behavior of this system. A Ni4 cluster with tetrahedral configuration was used to model Ni 

catalyst in this study. This cluster is the smallest unit which can provide a three-dimensional structure to 

probe both metal-metal and metal-support interactions as reported in many other studies [67-72]. 

Moreover, the study of the stability of the Ni4 clusters shows that the supported 3D Ni4 cluster is the most 

stable configuration, as compared with the 2D planar Ni4 structure. In the present study, the tetrahedral 

Ni4 cluster configuration is found to be less energetically favorable (0.03 eV) than the planar one in the 

gas phase. However, upon binding on the spinel model of γ-Al2O3 (100) surface, the supported 2D square 

planar Ni4 structure is less stable than the 3D structure by 1.55 eV. The same is true for the Ni4 cluster on 

nonspinel model γ-Al2O3 (100) surface; the 3D tetrahedron Ni4 model is more stable than the 2D Ni4 

model by 1.40 eV. Therefore, this tetrahedron Ni4 cluster was chosen in the present study. For both S(Ni4) 

and NS (Ni4), the bottom two layers of the γ-Al2O3 (100) surface were kept frozen in their bulk positions 

whereas the remaining top layers together with the Ni4 cluster and the adsorbates were allowed to relax 

during the DFT calculations. It should be noted that the triple-z polarized “TZP”  TO basis was used in 

the calculations on S(Ni4). Due to computational limitations, a less accurate STO basis sets, namely, 

double-z “DZ”, was employed for the N (Ni4). In order to probe the reliability of the DZ basis set on the 

results obtained on NS(Ni4), test calculations were performed on the CH3 adsorption properties by using 

TZP basis set. The adsorption energies for CH3 top and interface adsorption using the TZP basis set were 

−1.83 and −2.12 eV, respectively, compared to −1.87 and −2.04 eV obtained with the DZ basis set. This 

result suggests that the increase of the basis set size does not lead to substantial alterations in terms of 

adsorption energy (∼2−4% error). Also, the geometrical parameters remained practically unchanged upon 

increase of the basis set from DZ to TZP. 
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Figure 5.1 The optimized spinel type model of γ-Al2O3 (100)–1×1 surface. (a) top view; (b) side view. 

Oxygen atoms are shown in red and aluminum atoms in magenta. 

 

 

Figure 5.2 The optimized non−spinel type model of γ-Al2O3 (100)–2×1 surface. (a) top view; (b) side 

view. 

5.3 Results and discussion  

5.3.1 Ni4 Cluster Supported on the γ-Al2O3 (100) 

Spinel Type Model. For Ni4 cluster adsorption on the spinel type model of γ-Al2O3 (100) surface, 

S(Ni4), different surface sites were investigated and resulted in a number of structures. Figure 5.3 shows 

the most stable configuration obtained for Ni4 cluster supported on S(Ni4). In this configuration, three Ni 

atoms are in direct contact with the surface forming two Ni−O bonds and five Ni−Al bonds. The Ni1 atom 

is located at the top vertex away from the support surface. The adsorption and interaction energy for this 

supported Ni4 cluster obtained for this configuration are −1.84 and −2.27 eV, respectively. 
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Figure 5.3 The optimized structure of Ni4 cluster supported on the spinel type γ-Al2O3 (100) surface, 

S(Ni4). (a) top view; (b) side view. Bond lengths are in Å. Dark blue balls stand for Ni atoms, and others 

are the same as in Figure 5.1. 

Nonspinel Type Model. Figure 5.4 shows the most stable adsorption configuration for Ni4 cluster on 

the nonspinel type model of γ-Al2O3 (100) surface, NS(Ni4). The key feature of this structure is that all of 

the three bottom Ni atoms located at the metal−alumina interface are bonded with the surface O atoms, 

forming three Ni−O bonds and four Ni−Al bonds. The adsorption energy and the metal-support energy 

obtained for this configuration are −2.28 and −2.79 eV, respectively. 

 

 

Figure 5.4 The optimized structure of Ni4 cluster supported on the non-spinel type γ-Al2O3 (100) surface. 

(a) top view; (b) side view. Bond lengths are in Å. 

 

To gain further insight into the nature of the bonding between the supported Ni4 cluster and the 

alumina support, Hirshfeld charges analysis was conducted on the two models. The Hirshfeld charges 
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distribution of the clean (100) alumina surface and the deposited Ni4 cluster over the alumina surface are 

shown in Table 5.1. As shown in this table, the Ni4 clusters have a total charge of +0.330e and +0.078e on 

S(Ni4) and NS(Ni4), respectively. The larger positive charge on the deposited Ni4 cluster in S(Ni4) 

indicates that more charges were transferred from the Ni cluster to the γ-Al2O3 (100) surface than 

NS(Ni4). The results in Table 5.1 also show that, for both S(Ni4) and NS(Ni4), the deposition of Ni4 on the 

γ-Al2O3 (100) surface resulted in an increase of charge density on the surface Al atoms and a decrease of 

the charge density on the O atoms, respectively. Therefore, the interaction observed between the Ni atoms 

and the surface on these configurations is similar to a back-donation interaction [73] where the metal is 

promoting a charge transfer from the surface oxygen to the aluminum. 

 

Table 5.1 Hirshfeld charges of the supported Ni4/ γ-Al2O3 (100) complexes. 

  Spinel γ-Al2O3: S(Ni4)  Non−spinel γ-Al2O3: NS(Ni4)  

  γ-Al2O3 Ni4/ γ-Al2O3  γ-Al2O3 Ni4/ γ-Al2O3  

Ni4   0.330   0.078  

Al1  0.491 0.318  0.589 0.424  

Al2  0.389 0.360  0.591 0.469  

O1         −0.366        −0.314          −0.415          −0.312  

O2         −0.366        −0.313          −0.419          −0.368  

O3             −0.372          −0.349  

 

 

5.3.2 CH3 and H adsorption on Ni4/γ-Al2O3 (100)  

5.3.2.1 CH3 adsorption  

Spinel Type Model. The structures for CH3 fragment adsorbed on different sites of the supported Ni4 

cluster, S(Ni4), are presented in Figure 5.5. The corresponding adsorption energies for these 

configurations are listed in Table 5.2. The results show that CH3 bonded with Ni2 atom located at the 

Ni4/γ-Al2O3 interface, which can be referred to as the interface 1 adsorption site (int1), results in the most 
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stable configuration. It should be noted that CH3 adsorption on the surface O and Al atoms close to Ni 

clusters were also studied. In addition, it was found that no stable adsorption configuration was found for 

CH3 adsorption at the surface O site; e.g., when CH3 is placed on top of O, it is pushed away. However, 

for CH3 on top of the surface Al atom at the interface region, CH3 was found moved toward the Ni atoms 

after geometry optimization forming three bonds with the Al and the two Ni atoms at the interface. The 

adsorption energy at this site is −2.13 eV. It is a little bit less stable than that at the int1 site where CH3 is 

bonded with the Ni2 atom only. To clarify the support’s effects on the CH3 adsorption properties, 

Hirshfeld charge analysis was used to determine the charge redistribution upon CH3 adsorption at the top 

site (Ni1) and at the int1 site (Ni2). Comparison with CH3 top adsorption was chosen, because in this 

adsorption configuration, CH3 is bonded with a single Ni atom (Ni1) which is similar to the case of int1 

adsorption. Note that the charge distribution for CH3 at the interface 2 site (int2) was also reported (see 

Table 5.3). The results show that the charge on the CH3 is −0.191e in the CH3 top site adsorption. For the 

CH3 int1 site adsorption, a charge of −0.291e was transferred to CH3. This gives rise to a strong ionic 

bonding between CH3 and Ni, which results in a stronger adsorption at this interface site than that at the 

top site. A detailed analysis of the charges of the surface Al and O atoms shows that the total charges on 

the substrate surface (especially the Al1 atom) are more positive when CH3 is bonded with Ni2 atom at the 

int1 site (see Table 5.3). This suggests that the Al1 atom works primarily as a charge donation partner at 

the Ni4/γ-Al2O3 interface when CH3 is bonded with the Ni2 atom. Similarly, the Ni2 atom acts as a conduit 

for transferring negative charge to the adsorbate. Thus, the Al (donor)−Ni−CH3 (acceptor) effect 

stabilizes the interface adsorption. For the CH3 at the int2 site where CH3 also is bonded with the surface 

Al3 atom, a charge transfer from CH3 to Al3 atom was observed. This can also be explained by the Al 

(donor)−Ni−CH3 (acceptor) effect. The only difference is that CH3 is bonded with the surface Al atom at 

the other side of the formula, so it is like Al (donor)−Ni−CH3 (acceptor)−Al (acceptor). Accordingly, the 

support’s effect on the chemisorption properties of the supported metal particle depends on the synergy 

between the support-particle and the particle-adsorbate electron transfers. This result provides an 

explanation as to why the CH3 adsorption energy increases more at the interface adsorption site than at 

the top adsorption site. 
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Figure 5.5 Side view of the stable configurations of CH3 adsorbed on spinel type model of Ni4/γ-Al2O3 

(100) surface, S(Ni4). Bond lengths are in Å. Dark blue: Ni, white: H, Grey: C. 

 

 

Table 5.2 The adsorption energies for CH3 and H on the supported Ni4/ γ-Al2O3 (100) complexes. 

 

adsorbate 

           Spinel γ-Al2O3          Non−spinel γ-Al2O3  

    top         bri         hol        int1        int2           top        bri         hol         int1        int2 

CH3                         −1.55     −1.58    −1.25    −2.18     −2.13        −1.87    −1.75    −1.17     −2.04     −2.50 

H                    −1.71     −2.30    −2.21    −2.63    −2.96         −2.00    −2.41    −2.33     −2.34     −2.86 
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Table 5.3 Hirshfeld charges for CH3 adsorbed on supported Ni4/ γ-Al2O3 (100) complexes. 

 

CH3  adsorption 

          Spinel γ-Al2O3                              Non−spinel γ-Al2O3  

   top                int1                int2                    top                int1                 int2 

         CH3                     −0.191         −0.291            −0.184              −0.211          −0.290            −0.125 

   Ni4(cluster)                 0.535           0.581               0.585                0.272            0.225              0.305 

    Al1                        0.319           0.358               0.325                0.420            0.420              0.465 

    Al2                        0.367           0.355               0.386                0.475            0.513              0.529 

    Al3                        0.446           0.474               0.387                0.509            0.513              0.435 

    O1                       −0.314         −0.302             −0.307             −0.317          −0.315            −0.319 

         O2                        −0.310        −0.318             −0.308             −0.368          −0.356            −0.368 

    O3                                                                                                            −0.354           −0.350            −0.340 

 

The electronic factors that control the chemisorption were also corroborated using projected density 

of states (PDOS). This method can be used to analyze the electronic factors that stabilize CH3 adsorption 

at the interface rather than at the top site. As show in Figure 5.6, the bonding between CH3 and the Ni 

atom is indicated by the overlap of the sp-orbital of C with the sp- and d-orbitals of Ni. This binding 

energy can be considered to have two components: one from the coupling to the metal sp states and the 

other due to the extra coupling to the d states [74-77]. The coupling to the d states produces a bonding and 

an antibonding state. As shown in Figure 5.6, there is an upshift of the orbitals (both Ni-d and C-sp) 

located around the Fermi energy when CH3 is bonded with the Ni2 atom at the int1 site. Note that 

comparisons were made between CH3 top and the int1 site adsorption because in both of the adsorption 

configurations, CH3 was bonded with a single Ni atom. As the orbitals shift up around the Fermi energy, a 

distinctive antibonding state appears above the band. Since these] antibonding states are above the Fermi 

level, they are empty; therefore, the bond becomes stronger as the number of empty antibonding states 

increases. Moreover, it is observed that the bonding sp-levels of carbon shift to lower energies for the int1 

site adsorption as compared to that in the top adsorption. This means that more bonding states are 
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occupied which contributed to the stronger adsorption energy at the interface site. Therefore, this analysis 

also supports the stronger adsorption energy of CH3 observed at the interface than at the top site. The d-

band analysis was conducted to provide a quantitative explanation of this phenomenon. Details about the 

d-band analysis method are presented in section 3.3.3, Chapter 3. According to the d-band model, the 

closer the    to the Fermi level, the more reactive the catalyst is expected to be. As shown in Table 5.4, 

the position of    for the top Ni1 atom is identical to the Ni2 atom at the support-Ni interface. 

Accordingly, it is expected that these two Ni atoms may have similar reactivity toward CH3 adsorption. 

However, the adsorption energy results suggest that the bonding strength between CH3 and Ni2 at the int1 

site is stronger than the one observed between CH3 and Ni1 at the top site, which implies that the Ni2 atom 

at the metal support interface has a higher reactivity than that of the Ni1 atom at the atop site. The 

calculation of the    for the two Ni atoms upon CH3 adsorption show that the    for the Ni1 atom in the 

CH3 top adsorption is shifted from −1.20 to −1.59 eV, whereas the    for the Ni2 atom is shifted from 

−1.20 to −1.33 eV (see Table 5.4). The down shift of the    for Ni2 is smaller than that observed for Ni1. 

Note that down shift of    means the down shift of the average energy of the d-orbital that locates below 

the Fermi energy. As mentioned above, the charge analysis shows that there exists an electron transfer 

process from the substrate to the Ni cluster when CH3 is bonded with the Ni2 atom at the int1 site. Thus, it 

is suggested that this small    down shift is originated from the extra electron provided by the substrate. 

This result reflects the fact that the reactivity of the surface metal atom depends not only on its initial 

position of the d-band center, but also on the redistribution of the electrons between the metal cluster and 

the substrate upon the adsorption of the adsorbates (the substrate effect). Consequently, if the metal atoms 

are interacting with a particular substrate atom, then the d-band model may fail to predict the reactivity of 

the catalyst. Instead, the response of the local d-band to the presence of the adsorbate and substrate has to 

be taken into account. 
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Figure 5.6 Projected density of states (PDOS) for C atom and the individual Ni atom involved in CH3 

adsorption on spinel type model of Ni4/γ-Al2O3 (100) surface, S(Ni4): (a) top site adsorption (b) interface-

1 (int1) adsorption. The pink line represents the d orbital of the individual Ni atom before CH3 adsorption. 

 

Table 5.4 The d-band energy (eV) of the Ni atoms involved in CH3 and H adsorption at the top and int1 

sites on the supported Ni4 cluster. 

 

 

             Spinel γ-Al2O3              Non−spinel γ-Al2O3  

        i               i+                    i+         i               i+                      i+     

Ni1(top) −1.20 −1.59 −1.51 −0.94      −1.32    −1.23 

Ni2(int) −1.20 −1.33 −1.28 −1.29      −1.37    −1.27 

 

Nonspinel Type Model. CH3 adsorption configurations on different sites of the NS(Ni4) are shown in 

Figure 5.7. The corresponding adsorption energies obtained from these configurations are shown in Table 

5.2. As in the case of CH3 adsorption on S(Ni4), no stable adsorption configuration was found for CH3 

adsorption at surface O site: it is pushed away after geometry optimization. The two CH3 interface 
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adsorptions are found more stable than the top site adsorption. CH3 int1 adsorption has an adsorption 

energy of −2.04 eV. For CH3 adsorption at the int2 site, where CH3 bonded at the bridge site between Ni 

atoms with the surface Al at the interface, it has an adsorption energy of −2.50 eV. It is more stable than 

that at the int1 site. In order to study the charge redistribution of the system upon CH3 adsorption, 

Hirshfeld charges analyses were also performed for CH3 top and two interface adsorptions on NS(Ni4). As 

shown in Table 5.3, the charge on the CH3 is −0.211e in the CH3 top site adsorption, whereas a charge of 

−0.290e was obtained when CH3 is bonded with the Ni2 atom at the int1 site. The charges on the surface 

Al and O atoms indicate that they are more positive (especially the Al atoms) for CH3 int1 site adsorption 

when compared with that in CH3 top adsorption. As in the spinel type model, this result indicates that the 

electrons are transferred from the substrate (mainly from the Al atoms) to the Ni cluster, and the 

adsorption strength was enhanced for CH3 int1 adsorption due to the extra substrate-mediated electron 

transfer from the support to the adsorbates. For the CH3 at the int2 site where CH3 also is bonded with the 

surface Al3 atom, a charge from CH3 to Al3 atom was also observed, as in the case of CH3 int2 site 

adsorption on S(Ni4) model. 

 

 

Figure 5.7 Side view for the stable configurations of CH3 adsorbed on non−spinel type model of Ni4/γ-

Al2O3 (100) surface, NS(Ni4). Bond lengths are in Å. Dark blue: Ni, white: H, Grey: C. 

 

Figure 5.8 shows the PDOS of the C-sp orbital for CH3 adsorbed on Ni1 atop site and on Ni2 site on 

NS(Ni4), respectively. As in the case of CH3 adsorption on S(Ni4), an upshift of the orbitals (both Ni-d 

and C-sp) located around the Fermi energy was observed when CH3 is bonded with the Ni2 atom at the 

int1 site. The calculated d band center (  ) of the Ni atoms involved in CH3 adsorption at the top and int1 

site are listed in Table 5.3. Before the adsorption of CH3, the    for the top Ni1 atom is 0.35 eV higher 

than that of Ni2 atom at the support-Ni interface. According to the d-band theory, the top Ni1 atom may be 

more reactive toward CH3 adsorption, which does not agree with the calculated adsorption energy results 

presented in Table 5.3. Thus, the d-band model may not be suitable to explain the evaluation of the 
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reactivity of the metal atoms when they are supported on the oxide substrate. Following the idea used in 

the spinel type model, the    for Ni1 and Ni2 atom after CH3 adsorption was calculated and shown in 

Table 5.4. A larger down shift of the    (0.38 eV) for the Ni1 atom in the CH3 top adsorption was 

observed, as compared with that obtained for the Ni2 atom (0.08 eV), which suggests that there is a 

stronger bonding strength of CH3 at the interface which agrees with the DFT results obtained by the 

present study. 

 

 

Figure 5.8 Projected density of states (PDOS) for C atom and the individual Ni atom involved in CH3 

adsorption on non-spinel type model of Ni4/γ-Al2O3 (100) surface, NS(Ni4): (a) top site adsorption (b) 

interface 1 (int1) adsorption. The pink line represents the d orbital of the individual Ni atom before CH3 

adsorption. 

5.3.2.2 H adsorption  

Spinel Type Model. H adsorption on the different sites of the supported Ni4 cluster was studied on 

S(Ni4). The adsorption configurations and their corresponding adsorption energies are shown in Figure 

5.9 and Table 5.2, respectively. The results indicate that the most stable configuration is H bonded with 

the Ni2 and Al3 atoms at the metal support int2 site (−2.96 eV), and then followed by the int1 site 

adsorption (−2.63 eV). No stable adsorption configuration was found for H on top of O: H moved toward 

the Ni atoms after geometry optimization. Hirshfeld charge analysis shows that the charge transferred to 
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H was found to be −0.163e for the H−Ni1 top adsorption whereas the charge transfer to H at the int1 site 

adsorption is −0.190e, as shown in Table 5.5. The Al1 atom at the H int1 site adsorption has the largest 

positive charge (0.339e). This result shows that the Al1 atom facilitates the H adsorption at the interface 

by providing extra charges to the adsorbate. For the H at the int2 site, charge transfer from H to Al3 atom 

was observed again, resulting a more positive charge on H and negative charge on Al3. 

 

Figure 5.9  Side view for the stable configurations of H adsorbed on spinel type model of Ni4/γ-Al2O3 

(100) surface, S(Ni4). Bond lengths are in Å. Bond lengths are in Å. Dark blue: Ni, White: H. 

 

Table 5.5 Hirshfeld charges for H adsorbed on supported Ni4/ γ-Al2O3 (100) complexes. 

 

H adsorption 

Spinel γ-Al2O3        Non−spinel γ-Al2O3  

top                 int1                   int2                top                int1                   int2 

        H                   −0.163           −0.190              −0.172            −0.198          −0.221             −0.133 

       Ni4                   0.492              0.522                0.554              0.234             0.281               0.330 

       Al1                   0.320              0.339                0.322              0.424             0.430               0.452 

       Al2                   0.369              0.372                0.388              0.475             0.511               0.526 

       Al3                   0.447              0.430                0.387              0.511             0.512               0.451 

       O1                  −0.314            −0.310              −0.309           −0.314           −0.316             −0.316 

       O2                  −0.313            −0.311              −0.310           −0.367           −0.358             −0.369 

       O3                                                                                                                                           −0.352           −0.348             −0.344 

 

PDOS of the Ni-d and H-s states for H adsorption on S(Ni4) are shown in Figure 5.10. This figure 

shows that there is a strong orbital mixing of s-orbital of H atom with the sp-orbital and the d-orbital of 
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the Ni atom, which is primarily in the range of −5 to −1 eV below the Fermi level. The upshift of the d-

orbital around the Fermi level was also observed at the H interface adsorption. For the H top adsorption, a 

down shift of the d−orbital around the Fermi level was observed. The d-band center calculation shows 

that the    of Ni2 is shifted to −1.28 eV after bonding with H, whereas the    for the Ni1 is shifted to 

−1.51 eV. This result is in agreement with the increased binding energy of the H interface adsorption. 

 

 

Figure 5.10 Projected density of states (PDOS) for H atom and the individual Ni atom involved in H 

adsorption on spinel type model of Ni4/γ-Al2O3 (100) surface, S(Ni4): (a) top site adsorption (b) interface1 

(int1) adsorption. Note that the Pink line represents the d orbital of the individual Ni atom before H 

adsorption. 

Nonspinel Type Model. The adsorption configurations H on the NS(Ni4) are shown in Figure 5.11. 

The results of the adsorption energies shown in Table 5.2 indicate that H is more stable when bonded with 

the Ni2 and Al3 atoms at the metal support int2 site (−2.86 eV) than the bridge site (−2.41 eV) and the int1 

adsorption site (−2.34 eV). For H on top of O, similar results were found as in the case of S(Ni4) model: 

no stable adsorption configuration was found, H moved toward the Ni atoms after geometry optimization. 

Again, H adsorption at the Ni1 top site is found less stable than the interface sites with an adsorption 

energy of −2.00 eV. The Hirshfeld charge analysis results shown in Table 5.5 reveal a charge transfer of 

−0.168e to H adsorption when it is adsorbed at the top site. A larger amount of charge transfer (−0.208e) 

was observed when H is adsorbed at the int1 site. Thus, it is expected that this large amount of charge 
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transfer to the H atom stabilizes the adsorbed complex at the interface. As in the spinel model, more 

positive charges on the surface Al and O atoms were observed when H is bonded with the Ni2 atom at the 

int1 site, as compared with that in H top adsorption. This indicates that electrons are transferred from the 

substrate (mainly from the Al atom) to the Ni cluster for H interface adsorption, which increases the 

Ni−H adsorption strength. Figure 5.12 presents the PDOS for H adsorption on NS(Ni4). Figure 5.12b 

clearly shows an upshift of the d-orbital around the Fermi level when H is bonded with the Ni2 atom at the 

metal-support interface. The calculated    shows a large down shift (0.29 eV) of the d band energy upon 

H top adsorption. However, a small upshift of 0.02 eV was observed for the Ni2 atom, which explains the 

higher H adsorption detected at the interface. 

 

Figure 5.11 Side view for the stable configurations of H adsorbed on non-spinel type model of Ni4/γ-

Al2O3 (100) surface, NS(Ni4). Bond lengths are in Å. Dark blue: Ni, White: H. 
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Figure 5.12 Projected density of states (PDOS) for H atom and the individual Ni atom involved in H 

adsorption on non-spinel type model of Ni4/γ-Al2O3 (100) surface, NS(Ni4): (a) top site adsorption (b) 

interface 1 (int1) adsorption. The pink line represents the d orbital of the individual Ni atom before H 

adsorption. 

 

To evaluate the size effect of the surface, the adsorption of CH3 and H on the top and the interface site 

on a 1×1 unit cell of the nonspinel γ-Al2O3 (100) surface model was also studied. In the 1×1 unit cell of 

the nonspinel γ-Al2O3 (100) surface model, the supported Ni4 cluster and the adsorbates are more close to 

the clusters and adsorbates in neighboring cells, as compared with that in the 2×1 unit cell model. The 

results show that, as compared with the adsorption energies obtained on the 2×1 unit cell of the nonspinel 

model, CH3 and H adsorption on the 1×1 unit cell generally have smaller adsorption energies: CH3 

adsorbed at the top site has a adsorption energy of −1.60 eV and that at the interface site is calculated to 

be −1.83 eV. For H, the adsorption energies at these two sites are −1.88 and −2.43 eV, respectively. The 

decrease of the adsorption energy may be due to the repulsion between nearest neighbor adsorbates 

because of the smaller size of the unit cell. This result also indicates that the interface adsorption is more 

stable than that on the top adsorption regardless of the unit cell size. Noted that the size effect on the 

spinel γ-Al2O3 (100) surface model are not considered in the present study because of the computational 

limits while using the “TZP” basis set for larger unit cells. 
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The results for CH3 and H adsorption show that, on both S(Ni4) and NS(Ni4), the CH3 and H 

adsorption at the metal support interface is always preferred due to the Al (donor)−Ni−adsorbates 

(acceptor).The PDOS analysis for both models shows an upshift of the d-orbital around the Fermi energy 

when CH3 and H are bonded with the Ni2 atom at the interface. This upshift of the d-orbital pushes an 

antibonding state above the Fermi level that results in a strong bonding between Ni2 and the adsorbates. 

The d band center (  ) analysis reveals that the d-band model may not be appropriate in prediction of the 

reactivity of the supported metal cluster, where the local density of states at the supported metal atoms is 

strongly perturbed by the presence of the adsorbate and the substrate. Accordingly, the effect of the 

adsorbate and the substrate, which causes the redistribution of the electrons between the metal cluster and 

the substrate upon the adsorption of the adsorbates, needs to be considered in the d-band analysis. 

5.3.3 CH3 and H adsorption on Ni5/γ-Al2O3 (100)  

The previous results were obtained on the supported Ni4 cluster. In order to provide support of the 

results presented in this study, DFT calculations for CH3 and H adsorption on a supported Ni5 cluster 

were conducted. First, the Ni5 cluster adsorption on the spinel and non-spinel type model of γ-Al2O3 (100) 

surface was investigated. Figure 5.13 shows the most stable configuration obtained for Ni5 cluster 

supported on the two models. In this configuration, four Ni atoms are in direct contact with the surface 

atoms. The charge analysis of the two models (see Table 5.6) shows that, as in the case of supported Ni4 

cluster, electrons are transferred from the Ni cluster to the alumina surface when the Ni5 cluster is 

deposited on the γ-Al2O3 (100) surface. The adsorption energies for CH3 and H on the top and interface 

sites of this supported Ni5 cluster were calculated. The results were presented in Table 5.7, and their 

corresponding adsorption configurations were shown in Figure 5.14−5.17. The results of these DFT 

calculations are as follows: (i) On the spinel type γ-Al2O3 (100) model, S(Ni5), CH3 adsorbed at the two 

interface sites are generally more stable than that at the top Ni5 cluster site, the corresponding adsorption 

energies were −2.89 (int1 site), −2.17 (int2 site) and −2.14 eV respectively. It should be noted that, at the 

int1 site, CH3 is bonded with the Ni2 atom at the metal support interface. For the int2 site adsorption, CH3 

is bonded at the bridge site of Ni2 and Ni3 atoms. As shown in Table 5.7, similar results were obtained for 

H adsorption at these three sites: −2.93 eV at the int1 site, −2.62 eV at int2 site and −1.79 eV at the top 

site. (ii) On the non-spinel type γ-Al2O3 (100) model, NS(Ni5), similar results were obtained for CH3 and 

H adsorption as in the case of S(Ni5) model: CH3 and H adsorbed at the interface sites are more stable 

than that at the top Ni5 cluster site. Noted that at the int2 site adsorption in the NS(Ni5) model, the 

adsobates are bonded with the Ni2 atom and the surface Al atom at the interface. The CH3 and H 
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adsorption at this int2 site is found most stable, which is consistent with the previous results obtained with 

the supported Ni4 cluster model. Based on the above, it was concluded that the results for the studied 

even-numbered (Ni4) cluster and odd-numbered (Ni5) cluster were transferrable. 

 

Figure 5.13 The optimized structure of Ni5 cluster supported on the spinel (left) and non-spinel (right) 

type γ-Al2O3 (100) surface. Bond lengths are in Å. Oxygen atoms are shown in red and aluminum atoms 

in magenta. Dark blue balls stand for Ni atoms. 

 

Table 5.6 Hirshfeld charges of the supported Ni5/ γ-Al2O3 (100) complexes 

  Spinel γ-Al2O3: S(Ni5)   Non−spinel γ-Al2O3: NS(Ni5)  

     γ-Al2O3             Ni5/ γ-Al2O3       γ-Al2O3                        Ni5/ γ-Al2O3 

Ni5  0.414  0.355 

Al1 0.491 0.298 0.589 0.459 

Al2 0.389 0.351 0.591 0.536 

Al3 0.491 0.372 0.514 0.329 

O1   −0.366      −0.319            −0.415         −0.329 

O2   −0.366      −0.315            −0.419         −0.326 

O3   −0.341      −0.301            −0.372         −0.327 

O4   −0.269      −0.300            −0.337         −0.340 
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Figure 5.14 Side view for the stable configurations of  CH3 adsorbed on spinel type model of Ni5/γ-Al2O3 

(100) surface, S(Ni5). Bond lengths are in Å. Dark blue: Ni, white: H, Grey: C. 

  

 

 

Figure 5.15 Side view for the stable configurations of  CH3 adsorbed on non-spinel type model of Ni5/γ-

Al2O3 (100) surface, NS(Ni5). Bond lengths are in Å. Dark blue: Ni, white: H, Grey: C. 

 

 

Figure 5.16 Side view for the stable configurations of  H adsorbed on spinel type model of Ni5/γ-Al2O3 

(100) surface, S(Ni5). Bond lengths are in Å. Dark blue: Ni, white: H. 
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Figure 5.17 Side view for the stable configurations of  H adsorbed on non-spinel type model of Ni5/γ-

Al2O3 (100) surface, NS(Ni5). Bond lengths are in Å. Dark blue: Ni, white: H. 

 

Table 5.7 The adsorption energies for CH3 and H on the supported Ni5/ γ-Al2O3 (100) complexes  

 

adsorbate 

          Spinel γ-Al2O3   Non−spinel γ-Al2O3  

  top                       int1                   int2             top                    int1                     int2 

CH3                         −2.14                   −2.89                 −2.17         −1.54                −1.85                  −2.31 

H                    −1.79                   −2.93                 −2.62         −1.81                −2.29                 −2.62 

 

5.3.4 Metal-support interaction 

In the present work, the metal support interaction (EMSI) upon CH3 and H adsorption on both S(Ni4) 

and NS(Ni4) was analyzed. As mentioned in Section 5.2.1, the deposition of the Ni4 metal cluster on 

S(Ni4) results in an EMSI of −2.27 eV. Generally, a decrease of the EMSI after CH3 adsorption on the Ni4 

cluster was observed. As shown in Table 5.8, the EMSI decreased to −1.97 eV after CH3 adsorbed at the 

top of the Ni cluster whereas the EMSI decreased to −2.22 eV in the CH3 interface (int1) adsorption 

configuration. Similar results were obtained for the EMSI upon H adsorption. The interaction between the 

Ni4 cluster and the alumina support decreases after H adsorbed at the top, bridge, and hollow sites. 

However, the EMSI was found to be slightly stronger (0.05 eV) after H adsorbed at the interface site. It is 

expected that this slight increase of EMSI is due to the interaction between H and the surface Al atoms, in 

which a bonding distance of 2.53 Å was observed. For the NS(Ni4), the EMSI results presented in Table 5.8 

show that, as in the S(Ni4) model, the EMSI decreases upon CH3 and H adsorption on NS(Ni4). This result 
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shows that the bonding of adsorbates to the cluster affects the cluster structure and its bonding to the 

support. This is in agreement with a previous report that showed that, as the concentration of reactive 

intermediates on Ir4 increases, the cluster-support interface and the metal-metal bond distance in the 

cluster were slightly modified during the hydrogenation reactions of ethene, propene, and toluene [78]. 

Experimental studies have observed that Ni nanoparticle detached from the alumina support and was 

pushed upward by the carbon nanotubes during its growth [54-56]. Thus, this decrease of metal support 

interaction found in the present DFT study might provide an explanation of the detachment of the Ni 

particle in the early stage of CNTs growth process. 

Note that it was found that the changes in metal-support interactions are larger for weaker adsorption 

of CH3 and H. This condition seems to have originated from the way that the metal-support interaction 

was calculated. From the definition of the adsorption energy of adsorbate X (eq 5.1) and the metal- 

support interaction in the present study, it is known that the adsorption energy represents the stability of 

the adsorption system. In addition, the difference of the metal−support interaction between two adsorption 

configurations, e.g., A and B, (ΔEMSI(A‑B)) can be calculated as follows: 

ΔEMSI(A−B)=ΔE(X–Ni4/γ-Al2O3) (A−B)− ΔE(X–Ni4)ʹ(A−B)−ΔE(γ-Al2O3)ʹ(A−B),                                      (5.3) 

where ΔE(X–Ni4/γ-Al2O3)(A−B) represents the difference between the adsorption energies of X for 

configurations A Eads(A) and B (Eads(B)), respectively; ΔE(X–Ni4)ʹ(A−B) and ΔE(γ-Al2O3)ʹ(A−B) are the 

differences in energy for X−Ni4 and γ-Al2O3 between the two configurations. Our calculations show that 

ΔE(X–Ni4/γ-Al2O3)(A−B) is the dominant term in eq. (5.2), which means that stronger adsorption at the 

metal support interface (a more stable adsorption configuration) results in a stronger metal support 

interaction.  

 

Table 5.8 The metal support interaction (EMSI, eV) upon CH3 and H adsorption on S(Ni4) and NS(Ni4) 

 

Adsorbate 

           Spinel γ-Al2O3          Non−spinel γ-Al2O3  

     top          bri          hol          int                    top           bri           hol           int 

CH3                        −1.97      −1.98       −2.14      −2.22                −2.65      −2.51      −2.50       −2.55 

H                   −1.83      −1.93       −2.11      −2.32                −2.46      −2.62      −2.82       −2.38 

*The EMSI for S(Ni4) before CH3 and H adsorption is −2.27 eV and the EMSI for NS(Ni4) before CH3 and H 

adsorption is −2.79 eV 
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5.3.5 CH4 and H2 dissociation on Ni4/γ-Al2O3 (100) 

5.3.5.1 CH4 dissociation 

Spinel Type Model. Based the adsorption results presented above, the present study focuses on CH4 

dissociation on the top Ni1 atom and Ni2 atom at the interface on S(Ni4). The potential energy profile 

following the dissociation pathway is presented in Figure 5.18. The configurations of the transition states 

and the product involved in the process are also shown in that figure. The results indicate that CH4 on top 

of Ni1 has adsorption energy of +0.04 eV, which shows the small repulsive nature of the forces between 

CH4 and the supported Ni cluster. The study of the transition state (TS) suggests that CH4 dissociation 

occurs at the Ni1 atom and proceeds with a barrier of 0.85 eV. As show in Figure 5.18, the activated C−H 

bond (denoted as C−Ha hereafter) is stretched to 1.82 Å at the TS. The C and Ha atoms are both bonded 

with the Ni1 atom with bond distances of 1.97 and 1.46 Å, respectively. The final configuration was CH3 

adsorbed on the top site and the Ha atom at the neighbor bridge site (see Figure 5.18). The reaction energy 

obtained for this process was 0.36 eV. For CH4 dissociation at the cluster oxide interface, it was found 

that CH4 was physisorbed at the Ni2 site with an adsorption energy of −0.13 eV. CH4 dissociates on Ni2 

with an energy barrier of 0.71 eV. In the TS, the activated C−Ha bond is stretched to 1.69 Å. The C and 

Ha atoms are bonded with the top Ni atom with bond distances of 2.01 and 1.46 Å, respectively. The 

dissociation at this site is endothermic by 0.47 eV. These results reveal that CH4 dissociation is preferred 

kinetically at Ni2 site located at the nickel-alumina interface as compared with the top Ni1 site. 
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Figure 5.18 The potential energy profile and geometric structures of the initial state (I.S), transition state 

(T.S), and final state (F.S) for CH4 dissociation on spinel type model of Ni4/γ-Al2O3 (100) surface, S(Ni4), 

at the top site and interface. Dark blue (Ni), gray (C), white (H). 

 

Nonspinel Type Model. The configurations for the CH4 dissociation at the top and at the interface sites 

on NS(Ni4) are shown in Figure 5.19. The energy diagram of the reaction is also sketched in that figure. 

The results show that the CH4 adsorption at the top Ni1 site has an adsorption energy of −0.07 eV. The 

study of the transition state (TS) indicates that CH4 dissociation at Ni1 atom proceeds with a barrier of 

1.08 eV. As show in Figure 5.19, the activated C−Ha bond is stretched to 1.64 Å at the TS. The C and Ha 

atoms are both bonded with the top Ni atom with bond distances of 1.99 and 1.55 Å, respectively. The 

final configuration was methyl adsorbed in the top site and the Ha atom adsorbed in a neighbored hollow 

site. The reaction energy obtained for this dissociation process is 0.52 eV. For CH4 interface dissociation, 

CH4 was first adsorbed with an adsorption energy of −0.42 eV followed by its dissociation on the Ni2 

atom with an energy barrier of 0.76 eV. The activated C−Ha bond is stretched to 1.58 Å in the TS. The C 

and Ha atoms are bonded with the Ni2 atom with bond distances of 2.03 and 1.56 Å, respectively. The 

dissociation at this site is endothermic by 0.39 eV. As in the spinel type model, the results found by the 

present study suggest that the dissociation of CH4 at the metal support interface is much easier than at the 

Ni1 top site. 
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Figure 5.19 The potential energy profile and geometric structures of the initial state (I.S), transition state 

(T.S), and final state (F.S) for CH4 dissociation on non-spinel type model of Ni4/γ-Al2O3 (100) surface, 

NS(Ni4), at the top site and interface. Dark blue (Ni), gray (C), white (H).  

 

5.3.5.2 H2 dissociation 

Spinel Type Model. The energy profile and structures for the dissociation of H2 on S(Ni4) is presented 

in Figure 5.20. As shown in that figure, H2 was found adsorbed on the Ni1 top site with an adsorption 

energy equal to −0.10 eV. Optimization of the isolated H2 molecule resulted in a value of 0.79 Å for the 

H−H bond length. The equilibrium geometry of the adsorbed H2 molecule shows that the H−H bond 

length is 0.82 Å, which suggests the existence of a precursor state for the H2 dissociative adsorption [79]. 

For H2 adsorption at the Ni2 atom located at the metal-support interface, it was found that H2 was 

physisorbed with a H−H distance of 0.89 Å. The corresponding adsorption energy was −0.25 eV. As 

shown in Figure 5.20, when the activation of H2 occurs at the top Ni1 atom, the activated Ha atom points 

toward the adjacent bridge site in the TS. The calculations show that the H−Ha bond distance stretched 

from 0.82 Å at the initial state to 1.47 Å at the TS. The H and Ha atoms are bonded with the Ni1 atom with 

bond distances of 1.53 Å. The activation barrier obtained for this top site dissociation is 0.49 eV and is 

endothermic by 0.18 eV. In the TS for H2 dissociation at the interface, the H−Ha bond distance was 

stretched to 1.56 Å, whereas the two H−Ni distances were found to be 1.50 and 1.52 Å, respectively. The 

dissociation barrier is 0.31 eV, which indicates that the H2 dissociation on S(Ni4) interface is favored as 

compared to that on the Ni1 top site. 



 

 104 

 

 

Figure 5.20 The potential energy profile and geometric structures of the initial state (I.S), transition state 

(T.S), and final state (F.S) for H2 dissociation on spinel type model of Ni4/γ-Al2O3 (100) surface, S(Ni4), 

at the top site and interface. Dark blue (Ni), white (H). 

 

Nonspinel Type Model. The pathway for H2 dissociation on the top and interface sites on the NS(Ni4) 

surface was also studied in this work. The structures of the transition states and products and the potential 

energy profile are presented in Figure 5.21. The results indicate that H2 adsorbed at the top Ni1 site is a 

precursor state with a H−H bond length of 0.84 Å and with an adsorption energy of −0.11 eV. As show in 

Figure 5.21, the activated Ha atom points toward the adjacent bridge site in the TS; the H−Ha bond is 

stretched to 1.17 Å. The study of the energy profile indicates that H2 dissociation at Ni1 atom has a barrier 

of 0.31 eV. The final configuration was H adsorbed at the top site and the Ha atom adsorbed in a 

neighboring bridge site. The reaction energy obtained for this dissociation process is −0.14 eV. For H2 

dissociation at the metal−support interface, it was found that the precursor state of H2 is strongly bonded 

with Ni2 atom with a H−H bond length of 1.01 Å. In the TS for H2 dissociation at Ni2 atom, the H−Ha 

bond distance was stretched to 1.31 Å whereas the two H−Ni distances were found to be 1.53 and 1.54 Å, 

respectively. The dissociation barrier is 0.16 eV, which indicates that the H2 dissociation on NS(Ni4) 

interface is favored as compared to that on the top Ni1 site (0.31 eV). Note that this dissociation step at the 

interface is slightly exothermic by 0.13 eV. 
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Figure 5.21 Geometric structures of the initial state (I.S), transition state (T.S), and final state (F.S) for H2 

dissociation on the top and interface site of the Ni4/ γ-Al2O3 (100). Dark blue (Ni), gray (C), white (H). 

 

Our previous DFT study has found that CH4 dissociation on Ni (111) surface is also an endothermic 

process (0.91 eV) [16]. However, it has a much higher activation barrier (1.31 eV). It is much higher than 

that obtained on Ni4/γ-Al2O3 (100) top Ni site (1.08 eV) and interface site (0.71 eV). It is believed that 

this is a result of the increase of metal coordination from 3 neighbors for the tetramer to 9 Ni neighbors on 

the (111) surface, since transition metals generally exhibit greater reactivity in an environment with low 

coordination number [80] H2 dissociation on single crystal Ni (111) surface was found exothermic by 

−0.71 eV. The energy barrier for H2 dissociation on single crystal Ni (111) surface is calculated to be 0.29 

eV. 

 

5.4 Summary 

In the present study, the dissociation of CH4 and H2 on Ni4 supported on γ-Al2O3 (100) catalyst was 

investigated using density functional theory (DFT) slab calculations. Two systems: Ni4 cluster supported 

on the spinel model of γ-Al2O3 (100) surface, S(Ni4), and on the nonspinel model of γ-Al2O3 (100) 

surface, NS(Ni4), have been used to model Ni4/γ-Al2O3. The dissociation barriers and the adsorption 

properties of the CH3 and H species using these two models were studied. The insights gained by the 

present modeling study are as follows: 
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i) On S(Ni4), CH3 and H bonded with the Ni2 atom at the metal-support interface are the most stable 

configurations with adsorption energies of −2.18 and −2.96 eV, respectively. On NS(Ni4), CH3 interface 

adsorption (−2.50 eV) was found to be the most stable structure. For H on NS(Ni4), the results show that 

H bonded with the Ni2 atom at Ni4/γ-Al2O3 interface is still preferred as compared with the Ni1 top site 

adsorption on NS(Ni4). Hirshfeld charge and PDOS analysis were conducted to provide support of the 

higher reactivity of the Ni2 atom located at the nickel-alumina interface, as compared with the top Ni1 

atom. The Hirshfeld analysis of the charges of the surface Al and O atoms showed that the Al atom works 

primarily as a charge donation partner. Thus, it is expected that the interface adsorption is stabilized by 

the Al (donor)−Ni−adsorbates (acceptor) effect. The PDOS analysis showed an upshift of the d-orbital 

around the Fermi energy when CH3 and H are bonded with the Ni2 atom at the interface, which pushes the 

antibonding state above the Fermi level and results in a strong bonding between the Ni2 atom and the 

adsorbates. 

ii) The decrease of the metal support interaction was also observed upon CH3 and H adsorption on 

both S(Ni4) and NS(Ni4). The present study shows that the bonding of adsorbates to the cluster affects the 

cluster structure and its bonding to the support, resulting in a decrease in the metal-support interaction. 

This observation might provide insight regarding the interaction between the Ni and the γ-Al2O3 support 

and the carbon nanotube growth mechanism, in which the weak metal-support interaction is believed to 

contribute to the tip growth mode of CNTs. 

ii) The potential energy profile and the transition states following the CH4 and H2 dissociation on Ni4 

supported on γ-Al2O3 (100) were identified. On S(Ni4), CH4 dissociates at the interface Ni2 site with an 

energy barrier of 0.71 eV, which is lower when compared to that obtained at the Ni1 top site (0.85 eV). 

For the H2 dissociation, the dissociation barrier (0.49 eV) at the Ni1 top site is higher than that obtained at 

the Ni2 site (0.31 eV). Similar results were obtained for the dissociation of CH4 and H2 on NS(Ni4), i.e., 

the activation barrier for CH4 and H2 dissociation are 1.08 and 0.31 eV, respectively, whereas those at the 

interface are 0.76 and 0.16 eV, respectively. Although the alumina surface was modeled using two 

different structures, i.e., spinel and nonspinel models, the results obtained by the present study were 

consistent and reached the same conclusion: the metal-oxide interface plays an essential role in the 

dissociation of CH4 and H2 on the nickel cluster. 
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Chapter 6 

Effects of Metal Elements in Catalytic Growth of Carbon 

Nanotubes/Graphene 

This chapter presents a DFT study on the effect of metal elements in the growth of CNTs/graphene. 

This effect is analyzed in term of the reactivity of transition metals (Fe, Ni, Co, Cu) towards CHx 

dissociation, carbon diffusion together with C−C bond coupling reactions. The result obtained from the 

DFT calculations indicates that Cu may be an appropriate catalyst for the CVD synthesis of high quality 

graphene. The study also provides support for the fact that Ni-based catalyst is a suitable CVD substrate 

for growing CNT. The study is organized as follows: the first section presents an introduction of this 

study. In section 6.2, the models and computational details are described. The calculated activation 

energies for each elementary step are described in section 6.3. The analysis and discussion of the results 

are also present in this section. Concluding remarks are presented in section 6.4. 

 

6.1 Introduction 

Carbonaceous nanomaterials, e.g. carbon nanotubes (CNTs) and graphene have received an intense 

research interest due to their extraordinary physical and chemical properties and their potential 

applications in the industry [1-3]. These materials have been typically synthesized using Chemical Vapor 

Deposition (CVD), a process on which the carbon atoms are sourced from hydrocarbon gas (methane, 

ethylene) decomposition over supported transition metal nanoparticles (Fe, Co, Ni or Cu) [4-6]. In fact, 

the decomposition of the carbon precursors on the metal surface is only the first step in the growth of 

CNTs/graphene. This is followed by four important processes: (i) carbon diffusion on the nanoparticle 

surface [7-9] or through the bulk of the catalyst [10-12]; (ii) carbon incorporation into the graphene over-

layers on the other side of the catalyst particle producing CNTs; (iii) at the same time, the surface C atoms 

nucleate together on the metal surface forming graphitic fragments; (iv) as the carbon fragments 

nucleation continues, it will finally leads to the catalyst deactivation. The reactivity of the catalyst 

towards the C−H bond breaking reactions dominates the CNTs/graphene growth rate by producing C 

atoms. Meanwhile, one can expect that the catalyst that provides high nucleation barrier for the surface C 

atoms will be more resistant to catalyst deactivation. Similarly, if the surface carbon atoms also have good 

mobility on the catalyst, they are more likely to diffuse to the metal/CNTs edges thus making the catalyst 
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a suitable substrate for the growth of CNTs. On the other hand, if both C nucleation and surface diffusion 

are facilitated on the catalyst surface, the surface C atoms will tend to be more uniformly distributed and 

nucleate easily on the catalyst surface, making this catalyst suitable for graphene production. Therefore, 

by studying the catalyst reactivity towards C−H bond activation, C diffusion as well as the nucleation 

kinetics of surface C atoms, a suitable metal alloy can be designed so that it enhances the growth of either 

CNTs or graphene.  

 

In the past decades, CHx species dissociations on various transition metals (and their corresponding 

alloys) have been extensively studied [13-21]. Theoretical studies for carbon behavior on transition metals 

(i.e. Pd, Pt, Ni, Cu) are also available in the literature [22-26]. These theoretical studies have been mostly 

focused on the adsorption and diffusion characteristics of different carbon species (mainly monomer and 

dimer) at different surface sites. Thermodynamics of graphene growth on Cu and Ni surfaces have also 

been reported [27,28]. However, the kinetic properties for carbon atoms nucleation reactions have rarely 

been studied, i.e., only few studies on the carbon nucleation kinetics on Ni (111) surface are available [29, 

30]. Moreover, a comparative study of the C−C bonding kinetics on transition metals is not currently 

available in the literature. More importantly, the reactivity of the metal catalyst for CHx decomposition or 

C diffusion by itself cannot be used to explain its activity towards the growth of CNTs/graphene product. 

Instead, the CHx dissociation, carbon diffusion and C−C bonding kinetics need to be considered together 

in the analysis to evaluate the reactivity of different catalyst towards CNTs/graphene. As mentioned 

above, the most suitable catalysts for CNT/graphene growth are those that promote C−H activation with a 

balanced reactivity towards surface C diffusion and C−C nucleation reactions. The latter raises the 

question about the effect of metal in the catalytic growth of CNTs/graphene, which has been usually 

explained by the different solubility (or diffusivity) of C in the metals. A few studies have stated that, due 

to the strong C−Ni bonding, surface C atoms may easily dissolve in the bulk Ni and precipitate on the 

other side of the particle promoting the formation of CNTs [31-34]. In the case of Cu, carbon atoms will 

remain on the surface (due to its small solubility in Cu) leading to the growth of graphitic materials [35]. 

Nevertheless, the metal reactivity towards C−H activation, C diffusion and C−C nucleation kinetics, 

which are the critical steps in the catalytic CNTs/graphene growth, were not discussed in those studies. A 

comparative study of metal reactivity towards these critical processes may provide new insights on the 

effect of metals in the catalytic CNTs/graphene growth.  
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In the present study, the role of transition metals (Fe, Ni, Co, Cu) in the growth of CNTs/graphene in 

CVD is investigated using DFT analysis. To the authors' knowledge, the first comparative DFT study on 

carbon atoms nucleation kinetics on different transition metals is presented here. Moreover, the C−H 

bond activation, carbon diffusion together with C−C bonding are investigated together in this study to 

evaluate the reactivity of different catalyst towards CNTs/graphene growth. Note that since either CH4 

dissociative adsorption or CH dehydrogenation is usually considered as the rate-determining step in 

methane dissociation [10,36], only the first and the last step (CH dissociation) were considered in this 

work. The present study provides insights toward the optimal design of catalyst alloys for CNTs/graphene 

growth in the CVD process. 

 

6.2 Computational details  

6.2.1 Calculation methods  

The DFT calculation method used in the present study is the same from that in section 3.2.1, Chapter 

3.  

6.2.2 Surface models 

The catalyst surfaces were simulated using the slab super-cell approach with periodic boundary 

conditions. The lowest energy (111) facets [37], which usually dominate the surfaces of metal 

nanoparticles [38], are considered in this work. The (111) surfaces were constructed using the calculated 

equilibrium lattice constants of 2.857 Å (Fe), 3.508 Å (Co), 3.519 Å (Ni), and 3.668 Å (Cu). These 

estimates agree well with the experimental values of 2.867 Å (Fe), 3.545 Å (Co), 3.524 (Ni), and 3.615 Å 

(Cu) reported in the literature [39]. The Co, Ni and Cu metals with a face centered cubic (fcc) crystal 

structure were modeled using a three-layer slab with 3×3 unit cell. Note that the three-layer slab was 

chosen due to the computational limitation while conducting STO-DFT calculations, however, the 

convergence of using a three-layer slab can be supported by our previous study, where CHx adsorption on 

Ni (111) with 3 and 4-layer 2×2 unit cell was compared [18]. Since the fcc metals structures are very 

similar to each other, only the Ni (111) surface is presented in Figure 6.1a. Among the 3 layers of metal 

atoms, the bottom layer was frozen and top 2 metal layers and the adsorbates were allowed to relax during 

the DFT calculations. The body centered cubic (bcc) Fe (111) surface (Figure 6.1b) was simulated with a 

six-layer 3×2 slab with the bottom two layers frozen.  
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Figure 6.1 Top views of the (111) surfaces of the a) Ni metal; (b) Fe metal. Note that the first layer atoms 

are in darker color. 

 

6.3 Results and discussion 

6.3.1  Dehydrogenation energetics  

The dehydrogenation of CH4 and CH on the (111) surfaces of various transition metals was first 

studied to understand their catalytic reactivity towards the production of C atoms. Figures 6.2a and 6.3a 

show the TS for CH4 and CH dehydrogenation on Fe (111), respectively. The observed TS for both CH4 

dissociative adsorption and CH dehydrogenation on the Co and Ni are quite similar. Therefore, only the 

TS on Ni (111) is shown here for brevity in Figures 6.2b and 6.3b, respectively. In almost all cases, CH4 

and CH dissociation occurs over the top site, with a single dissociating H atom pointing towards the 

surface. Note that the TS for CH decomposition found on Cu is different from that on Co and Ni surfaces. 

On Cu (111), the breaking C–H bond is oriented towards the bridge site as shown in Figure 6.3c. The 

calculated activation energies and some key geometric parameters are listed in Table 6.1.  

 

 

Figure 6.2 Sketches of the TS for CH4 dissociation on the (111) surfaces of the a) Fe; b) Ni. 
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Figure 6.3 Sketches of the TS for CH dissociation on the (111) surfaces of the a) Fe; b) Ni; c) Cu. 

 

Table 6.1 Activation energy, Ea (eV), for the dissociation of CH4 and CH on the (111) surfaces of Fe, Co, 

Ni and Cu. Distances between detached Ha and C (     
) and the nearest Metal (     

) in the TS of 

each elementary reaction step are also shown. 

 CH4→CH3+H  CH→C+H 
 

Surface Ea (eV)      
 (Å)       (Å)  Ea (eV)      

 (Å)      
 (Å) 

 

Fe 0.67 1.61 1.63  0.59 1.49 1.69 
 

Co 1.34 1.64 1.58  1.34 1.65 1.53 
 

Ni 1.15 1.62 1.58  1.17 1.74 1.51 
 

Cu 1.95 1.84 1.64  2.06 1.92 1.64 
 

 

As shown in Table 6.1, the most reactive catalyst for methane dissociative adsorption is Fe, 

with an activation energy barrier of 0.67eV. Ni is the second more reactive metal of those studied 

here. The corresponding activation energy on Ni (111) is calculated to be 1.15eV. In the case of 

Co, the CH4 dissociation barrier is 0.20eV higher than that on Ni. The activation energies of CH4 

on Cu are notably high (about 1.95eV). Thus, dissociation of CH4 to surface CH3 and H is 

challenging on Cu. Similar results were obtained for CH dehydrogenation, i.e., the calculated 

dissociation barriers among these metals vary in the order: Fe (0.59eV) < Ni (1.17eV) < Co 

(1.34eV) < Cu (2.06eV). This corresponds to the order of the catalytic activities over the metals 

in C–H bond activation (Fe > Ni > Co > Cu), which is consistent with the metal reactivity 
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estimated by the d-band center calculation. The d-band center is defined as the average energy of 

the d-band, and is thus calculated from the projected density of states on the surface atoms [40]. 

The closer the d-band center to the Fermi level, the more reactive the catalyst metal is expected 

to be. In the present study, the calculated d-band centers of Fe, Co, Ni and Cu are -1.73, -2.12, -

1.80 and -2.54 eV, respectively. This result explains the higher reactivity of Fe, Ni, Co toward 

C−H activation as compared with Cu. 

 

6.3.2 Mobility of C monomers 

The first step towards a buildup of carbon on the surface is the diffusion of adsorbed C 

atoms. A low energy barrier for C atom surface diffusion on the catalyst surface always favors 

the CNTs/graphene growth process in CVD. The diffusion barriers for monoatomic carbon on 

metallic nanoparticles are listed in Table 6.2. These results show that diffusion of C on Fe (111) 

is the most difficult, with a diffusion barrier of 1.05eV. On the other hand, C is found to be 

highly mobile on the (111) surfaces of Co (0.36eV), Ni (0.29eV) and especially on the Cu (111) 

surface (0.11eV). However, this barrier alone is not an appropriate measure for the coupling of C 

atoms to form various C compounds. Hence, it is also necessary to determine the barriers for 

C−C coupling reactions. 

 

Table 6.2 Carbon monomer (C) diffusion barriers and activation energy, Ea,(eV), for carbon dimer (C2) 

and trimer (C3) nucleation on the (111) surfaces of Fe, Co, Ni and Cu. Distances between activated C−C 

bond (dC−C, Å) a in the TS are also shown. 

  C diffusion  C+C→C2  C2+C→C3  

Metal  Ediff  Ea,for Ea,back dC─C  Ea,for Ea,back dC─C  

Fe  1.05  1.15 1.88 1.80  1.37 0.52 2.21  

Co  0.36  0.86 1.70 1.98  0.86 1.65 2.09  

Ni  0.29  0.84 1.48 1.98  0.97 1.29 2.08  

Cu  0.11  0.27 4.33 2.34  0.35 2.36 2.19  
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6.3.3 Stability of C species and barriers for carbon dimer and trimer nucleation 

C compounds formed on the catalyst surface can block the active sites on the surface thereby 

deactivating the catalyst. To evaluate this effect, the reaction energetics for the formation of the carbon 

clusters (C2 and C3) on the (111) surfaces of Fe, Co, Ni and Cu were calculated to determine the 

possibility of C−C bond coupling on different transition metals. Before investigating the kinetic 

properties of C nucleation on these metals, the thermodynamic stability of these carbon species was first 

studied by calculating the adsorption of atomic C and some small clusters (dimer C2 and trimer C3) on the 

(111) surface of Fe, Co, Ni, Cu. Figure 6.4 shows the most stable adsorption configurations for these 

clusters. On Fe (111) surface, atomic C is found most stable on the bridge (bri) site, while for C2 and C3 

adsorption it is bri-hcp and bri-hcp-bri, respectively (Figure 6.4a). The calculated adsorption structures on 

the (111) surfaces of Co, Ni and Cu are somewhat similar. The most stable site for C, C2 and C3 

adsorption on these metals is the hcp, neighboring hcp-fcc and hcp-fcc-hcp site, respectively (Figure 

6.4b). The corresponding adsorption energies of these carbon species on the metal (111) surfaces are 

listed in Table 6.3. The adsorption energies ( 𝑎 𝑠) of the adsorbates were calculated as follows: 

                            𝑎 𝑠          ⁄
  𝑠𝑙𝑎                                                                            (6.1) 

where        ⁄
 represents the energy between the slab and the adsorbed carbon cluster ( 𝑥) on the surface, 

 𝑠𝑙𝑎  is the energy of a clean relaxed Ni slab,    is the energy of a single carbon atom in its ground state 

whereas    is the number of carbon atoms per unit cell. A negative  𝑎 𝑠 corresponds to a stable 

adsorbate/slab system.  
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Figure 6.4 Sketches of the most stable adsorption configuration of carbon monomer, dimer and trimer on 

the (111) surfaces of the a) Fe; b) Ni. 

 

Table 6.3 The adsorption energy, Eads (eV), of carbon monomer (C), dimer (C2) and trimer (C3) on the 

(111) surfaces of Fe, Co, Ni and Cu.  

  Adsorption energy (eV)  

Surface C C2 C3 

Fe  7.21  7.36  6.90 

Co  6.43  6.70  6.72 

Ni  6.19  6.40  6.44 

Cu  4.19  6.06  5.96 

 

The results obtained by the present study show that C atom has a very strong bonding with Fe (−7.21 

eV), followed by Co (−6.43 eV) and Ni (−6.19 eV). Atomic carbon on a Cu (111) surface has the lowest 

adsorption energy ( 4.19 eV) among all the metals. This suggests that the bonding between C and the 

metal surfaces are directly related to the surface diffusion of C: the stronger the bonding, the lower the 

mobility of the C on the surface. Moreover, the results of this analysis also show that carbon clusters are 

generally more stable than atomic carbon species, suggesting that the formation of carbon clusters is 

always thermodynamically favored on the studied metals. It should be mentioned that the C2 and C3 are 
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considerably more stable than the monoatomic C on Cu (111), indicating the large driving force for 

carbon cluster nucleation on Cu. 

Carbon nucleation barriers would be an appropriate measure to understand if C atoms would nucleate 

into carbon clusters and deactivate the catalyst. Therefore, the nucleation kinetics for the formation of the 

carbon C2 and C3 cluster on the (111) surfaces of Fe, Co, Ni and Cu were studied. The TS along the 

reaction coordinates for each nucleation reaction were identified and are shown in Figure 6.5; the 

corresponding nucleation barriers are presented in Table 6.2. 

 

 

Figure 6.5 Sketches of the TS for C2 and C3 nucleation on the (111) surfaces of the a) Fe; b) Ni.  

 

Figure 6.5a) shows the calculated TS structures on Fe (111). The TS structures of C + C and C2 + C 

coupling reactions on Co, Ni, and Cu surfaces are very similar with each other: at the TS, C is always on 

the hcp hollow site with the other reactants on the edge-bridge site (Figure 6.5b). The key differences 

between the metal nanoparticles are the specific bond lengths reported in Table 6.2. The bond distances 

are longer on Cu than on Co, Ni and Fe. This result agrees with the fact that the lattice constant of these 

metals follows: Cu>Ni≈ Co>Fe. As shown in Table 6.2, the energetic results show that C2 nucleation on 

the Cu (111) surface has the lowest barrier of about 0.27 eV, while that on the Fe (111) surface requires 

the largest activation barrier of 1.15 eV. The overall energy barrier increases in the following order: Cu < 

Ni ≈ Co < Fe. The same behavior was observed for C3 nucleation. That is, the corresponding energy 
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barrier for C3 on Cu is much lower than those on all the other surfaces, and follows the same order, i.e., 

Cu (0.35 eV) < Co (0.86 eV) < Ni (0.97 eV) < Fe (1.37 eV). The low energy barrier indicates that C 

atoms on Cu (111) surface will most likely spontaneously form a carbon dimer/trimer. On the other hand, 

Co, Ni and Fe will be more resistant for C nucleation and therefore to catalyst deactivation.  

6.3.4 Effect of transition metals on CNTs/Graphene growth 

As described in Section 6.3.3, C atoms nucleation on Fe (111) surface is relatively difficult as 

compared with the other metals, making it resistant to C deactivation.  However, as reported in Section 

6.3.1, Fe has the highest reactivity towards CH4 and CH dissociation among the studied transition metals. 

That is, Fe is a very efficient catalyst for a mass production of C atoms. Meanwhile, the diffusion of the 

surface C atoms is found to be difficult for that metal. This implies that even though Fe is relatively 

resistant for C deactivation, its high reactivity for C production and the low mobility of C makes Fe not a 

suitable catalyst for either CNTs or graphene growth. Note that this is concluded by assuming that the 

CNTs growth is based on the surface diffusion of C atoms. In fact, Fe-based catalyst has been reported for 

the growth of carbon filaments (CNFs) [41,42]. The growth process has been explained by the C bulk 

diffusion mechanism, in which the high solubility of C is essential. The study of the solubility of C in Fe 

is beyond the scope of this work, but the strong Fe−C bonding energy (-7.21eV) observed in the present 

study may lead surface C atoms to dissolve easily in the bulk Fe providing insights on the high solubility 

of C in Fe. 

Co (111) and Ni (111) surfaces show similar reactivity for C−H bond activation, C diffusion and 

nucleation. Both Co and Ni have good reactivity towards CH4 and CH dissociation providing carbon 

atoms for the CVD process. In addition, the high C mobility and nucleation barrier on Ni and Co allows C 

to diffuse to the edge site of metal/CNTs before nucleation could take place on the catalyst surface, 

allowing both Ni and Co surfaces to remain active during long periods of reaction time. Therefore, one 

can expect that Co and Ni could be a good substrate for CNTs growth. Note that the lower C diffusion 

barrier on Ni makes this metal a better choice when compared to Co. 

In the case of Cu (111) surface, C has a weak C-metal binding on Cu as mentioned above. 

Meanwhile, it also has the highest mobility and lowest nucleation barrier among these transition metals. 

This indicates that Cu (111) is more likely to produce graphene because C adatoms diffuse very fast and 

prefer to nucleate everywhere. The only drawback for using Cu for graphene production will be its 

limited reactivity towards CHx dehydrogenation. Thus, the kinetics of graphene growth on Cu is expected 

to be strongly dependent on the dissociation of CHx species.  
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6.3.5 Cu8Ni and Cu8Fe alloys for graphene production 

As discussed in Section 6.3.1, Fe and Ni based catalysts have high reactivity for CHx dissociation. If 

one can design a Cu based alloy with only trace amounts of Fe or Ni, the surface Fe or Ni atoms will 

significantly improve the catalyst reactivity towards CHx dissociation, acting as the reaction center for 

CHx dehydrogenation to produce C.  ince the alloy surface remains Cu dominant, the C−C nucleation 

kinetics on this alloy catalyst will be similar as that on the pure Cu surface. Based on the above, two 

bimetallic catalysts, i.e., Cu8Ni (111) and Cu8Fe (111), were modeled by replacing one of the top surface 

Cu atom with a Ni and   Fe atom, respectively. CH4 and CH dehydrogenation on the doped Ni and Fe 

sites of the two bimetallic catalysts surface were studied. For both cases, the TS have similar structure to 

those obtained with pure Ni, i.e., CH4 and CH dissociation occurs over the top site of Ni and Fe, with a 

single dissociating H atom pointing towards the surface. The corresponding reaction barriers for these 

alloys are shown in Table 6.4.  

 

Table 6.4 Activation energy, Ea(eV), for the dissociation of CH4 and CH on the (111) surfaces of Cu8Fe 

and Cu8Ni alloy. Distances between detached H and C (dC−H) and the nearest Metal (dM−H) in the TS of 

each elementary reaction step are also shown. Note that the carbon monomer (C) diffusion barrier is the 

energy for C atom to diffuse away from sitting beside the Fe or Ni atom. 

  CH4→CH3+H  CH→C+H  C diffusion  

Surface  Ea (eV) dC─H (Å) dM─H (Å)  Ea (eV) dC─H (Å) dM─H (Å)  Ediff (eV)  

Cu8Fe  1.16 1.61 1.60  1.15 1.58 1.57  1.37  

Cu8Ni  1.28 1.69 1.54  1.48 1.82 1.52  1.00  

 

As shown in Table 6.4, the reaction barrier on the alloy surfaces represent an intermediate value from 

those calculated from the pure metals: the CH4 dissociation barrier on Cu8Ni (Cu8Fe) decreases to 1.28 eV 

(1.16 eV), which is about 0.67eV (0.79 eV) lower than that of pure Cu (111) surface. Similar results were 

obtained for CH decomposition: the dissociation barrier decreased from 2.06 eV on pure Cu to 1.48 eV 

(1.15 eV) on the Cu8Ni (Cu8Fe) bimetallic catalyst. This implies that both the Cu8Fe and Cu8Ni alloys 

may be suitable catalysts for CHx dissociation than pure Cu, with Cu8Fe being slightly more reactive. In 

addition, the ability for the oncoming C, produced from the previous CH dissociation step, to diffuse 
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away from this doped Fe or Ni site has to be evaluated, i.e., if the C atom is stacked on this site due to the 

strong bonding between C and doped Fe or Ni, it will block this active site and hinder the oncoming 

methane dissociation reaction. The calculations show that C atom sitting at doped site (besides the Fe or 

Ni) needs to overcome a barrier of 1.37 and 1.00 eV to escape on Cu8Fe and Cu8Ni (111), respectively. 

This indicates that C atoms on Cu8Ni will be more likely move away from this reactive center; otherwise 

it will block the doped site and deactivate the CHx dehydrogenation reactions. Therefore, the Cu8Ni (111) 

alloy seems to be a more suitable catalyst as compared with the pure Cu (111) for graphene production 

whereas pure Ni seems to be a suitable substrate for CNTs production as discussed in Section 6.3.4. Note 

that even though the C escape energy barrier (1.00 eV) on Cu8Ni (111) is very high, it is still quite lower 

than the CH4 dissociation energy barrier (1.95 eV) on the pure Cu (111) surface. This means that the 

adsorbed C atom sitting beside the Ni atom will diffuse away before CH4 dehydrogenation occurs on the 

other sections of the Cu surface.  

6.4 Summary  

Periodic, self-consistent DFT calculations have been used to study the effect of the catalyst in the 

catalytic Chemical Vapor Deposition (CVD) of different carbonaceous materials, i.e., CNTs and 

graphene. The growth of these materials in the CVD process was analyzed in terms of the activation of 

CH4 and CH dissociation, the binding of C atom and its mobility, the nucleation of diatomic carbon and 

trimer species on the (111) facets of transition metals (Fe, Co, Ni, Cu).  

This study shows that the (111) surfaces of Fe, Co and Ni have a good reactivity towards CH4 and CH 

dissociation, as compared with that on Cu (111). The order of catalytic activity of the four transition 

metals for C−H activation is as follows: Fe > Ni > Co > Cu, which agrees well the d-band model 

prediction performed in this study. Carbon atoms were found to have good mobility on the Cu, Ni, Co and 

especially on the Cu surfaces. The calculated energy barrier for carbon surface diffusion on the metals 

follows the order: Cu (0.11 eV) < Ni (0.29 eV) < Co (0.36 eV) < Fe (1.05 eV). Similar activity trends 

were observed for C−C and C−C−C coupling reactions; the calculated nucleation barriers follow: Cu << 

Ni ≈ Co < Fe. These results indicate that Fe, Co and Ni will be more resistant to catalyst deactivation than 

Cu, because of the surface C nucleation on these metals. 

These observations provide insights to design suitable catalysts for CNTs and graphene growth in the 

CVD process. The good mobility, together with high C−C nucleation barriers on pure Ni, allows the C to 

diffuse to the CNTs/Ni edge site before they nucleate together and deactivate the Ni surface, making Ni 
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an appropriate CVD substrate for growing CNTs. On the other hand, the particularly low diffusion and 

nucleation barriers for C adatoms on Cu suggest that C atoms tend to be more uniformly distributed on 

the Cu surface and can nucleate everywhere, making Cu suitable for the CVD synthesis of high quality 

graphene. However, because of its limited reactivity towards C−H bond activation, the kinetics of 

graphene growth on Cu will strongly depend on the dissociation of CHx species. Therefore, Cu doped by 

CHx dissociation reactive Fe and Ni atoms, i.e., Cu8Fe and Cu8Ni alloys, were modelled and assessed in 

the present study. The results show that the alloys designed in this study (especially Cu8Ni) increase the 

reactivity for CHx dehydrogenation, indicating the possibility of realizing mass production of graphene. 
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Chapter 7 

Carbon Clusters on the Ni (111) Surface 

This chapter presents a DFT study on the adsorption and nucleation of carbon clusters on Ni catalyst. 

The structure, energetics, and mobility of carbon intermediates up to 6 atoms on the Ni (111) surface were 

investigated. The DFT calculation results obtained in this study, e.g. nucleation kinetics of carbon atoms 

and the mobility of the formed carbon clusters will complement the current CNF growth mechanisms on 

the initial stages of the CNT formation. The study is organized as follows: section 7.1 presents an 

introduction of this study. In section 7.2, computational details including the DFT methods and the 

models are described. The analysis and discussion of the results are present in section 7.3. Concluding 

remarks are presented in section 7.4. 

 

7.1 Introduction  

In the past few years, carbonaceous nanomaterials have received considerable attention due to their 

extraordinary physical and chemical properties [1,2] and their potential applications in the industry [3-6]. 

CNTs are synthesized mainly by Chemical Vapor Deposition (CVD) [7-9], in which the carbon atoms are 

sourced from the decomposition of a hydrocarbon gas (methane, ethylene) at the surface of supported 

catalytic particles (Fe, Co, or Ni). Experimental studies on CNT production have been focusing on the 

synthesis of these materials in CVD systems at low temperature [10-12] and the reaction conditions that 

affect the growth of CNTs, e.g. the effect of catalyst composition, the hydrocarbon flow rate, and 

synthesis temperature [13-15]. In addition to these experimental studies on CNT synthesis, efforts have 

also been made to identify the mechanism of CNT growth in CVD [16-20]. In general, the following 

mechanism has often been proposed for the CNT growth in CVD: (1) C atoms and hydrogen molecules 

are formed with the decomposition of hydrocarbon species such as methane, ethylene, acetylene in the 

presence of Ni, Fe, or Co nanoparticles; (2) carbon atoms diffuse through the bulk of the catalyst particles 

[21-25]; (3) the carbons then nucleate and are incorporated into graphene over-layers on the other side of 

the catalyst particle, which finally lifted up the particle. The key step in this mechanism is believed to be 

the diffusion of carbon species through the metal from the hotter leading surface to the cooler rear faces 

[26,27]. This growth process is commonly referred to as the vapor-liquid-solid growth mechanism [28], in 

which the CNT/CNF growth is generally considered the result of transient evolutions in the carbon bulk 

diffusion and precipitation driven by temperature [29,30]; or carbon concentration gradients along the 



 

 121 

catalyst particle [31,32]. Recently, this mechanism has been challenged by in situ observations made 

using a transmission electron microscope (TEM): the catalyst remains solid and metallic during the 

growth process [33-37]. Based on these observations, Hofmann et al. [35] and Lin et al. [36] proposed 

that the mechanism of CNT growth is not through C precipitation from Ni3C but rather through the 

diffusion of C adatoms followed by the dynamic formation and restructuring of monoatomic step-edges at 

the Ni surface. 

Recently, first principles modeling methods such as DFT have also been used to investigate the 

carbon nanotube growth mechanism at the atomic-scale [37-42]. Cinquini et al. [40] studied carbon 

adsorption and diffusion on the surface and the subsurface of Ni and Ni3Pd alloys using DFT analysis. 

That study concluded that the surface diffusion is the dominant process that contributes to the growth of 

carbon nanofibers by comparing the diffusion barriers of carbon on the Ni surface (0.45 eV) and in the 

bulk (1.72 eV). Similar growth mechanisms for catalytic carbon nanofibers based on the surface or 

subsurface diffusion of carbon atoms are also proposed by other researchers [42]. However, there were 

reports show that the carbon clusters may have a good mobility at the catalyst surface [43] and graphene 

is more likely to grow by adding clusters of about five atoms instead of adding the abundant monomers 

(C adatoms) [44]. This observation suggests that the study of the properties of carbon clusters is necessary 

for acquiring a thorough understanding of this system. Recently, Chen et al. [45] investigated the 

formation of a C dimer on a metal surface as the very initial stage in the nucleation of graphene. Cheng et 

al. [46] and Wang et al. [47] studied the stability and mobility of some small carbon clusters on the Ni 

(111) surface using plane wave based DFT calculations. Gao et al. [48] studied the nucleation of graphene 

on the terrace or near a step edge on a Ni (111) surface using DFT calculations. In the latter study, the 

graphene nucleation barriers were defined as the maximum of the G(N) curve, where G(N) is the Gibbs 

free energies of CNT ground structures on Ni (111) as a function of cluster size. Despite these efforts, a 

detailed study of the kinetic properties of the carbon cluster on Ni, including the transition state, the 

activation barrier for a specific nucleation reaction of these carbon clusters, is not currently available. 

Therefore, very little has been revealed about the diffusion and nucleation kinetics of these carbon 

clusters at the initial nucleation stages of C adatoms. 

In the present study, the properties of the carbon clusters, from linear chains to branched and rings, 

formed by the nucleation of carbon atoms on the Ni surface were studied in order to understand the very 

initial stage of catalytic CNT growth. To be specific, the stability and mobility of carbon clusters with 

different configurations have been analyzed using DFT. The mobility of these clusters is evaluated by 
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their diffusion barriers. The nucleation of these carbon clusters up to C6 is also investigated. The 

corresponding transition states for these nucleation reactions are identified. The nucleation of carbon 

atoms and the diffusion of the formed carbon clusters will complement the current CNF growth 

mechanisms so that they can take into account the initial stages of the CNT formation. 

 

7.2 Computational details  

7.2.1 Calculation methods  

The same DFT calculation method is used as in section 3.2.1, Chapter 3. The adsorption energies 

( 𝑎 𝑠) of the adsorbates on the Ni surface are calculated using equation 6.1, in Chapter 6. Note that the 

carbon adsorption energy  𝑎 𝑠 considers the adsorption strength of carbon on the Ni substrate from 

isolated atomic states, which includes the carbon-metal and the carbon-carbon interactions. To describe 

the interactions between the adsorbed carbon clusters and the Ni substrate alone, the carbon-Ni interaction 

energy,    𝑡, is defined as follows: 

                     𝑡          ⁄
  𝑠𝑙𝑎     

                                                                                    (7.1) 

where    
 is the energy of the C cluster calculated at the adsorbed geometry but without substrate.    

 

results from a single-point calculation with the same parameters as those used for the complete adsorption 

system. Therefore, the difference between    𝑡 and  𝑎 𝑠 provides the interaction energy between the 

carbon atoms within the clusters adsorbed on the surface, which is referred to from heretofore as     . 

 

7.2.2 Surface models  

In the present study, the Ni catalyst was modeled by the most stable Ni surface: Ni (111) [49,50]. The 

Ni (111) surface was modeled using periodic three-layer slabs. One of the limitations of the periodic cell 

approach is that extremely large unit cells are required to fit the carbon structures into the unit cell with 

minimal lateral interactions with neighboring clusters. For this reason, the surface models were set up 

such that carbon atoms in the structures do not share surface Ni atoms with neighboring clusters. 

Therefore, to reduce the computational effort, the stability of most of the large structures, i.e. C5, C6 

adsorption, calculated in the present study was determined using a periodic 3×3 surface unit cell. Note 

that the stability of large linear clusters, e.g. C5(L) and C6(L), was determined using a 2×5 unit cell, since 

a 3×3 unit cell is not big enough to accommodate these linear clusters. For the relaxation of the Ni 
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surfaces, the experimental work of Lu et al. [51] found that the relaxation of Ni (111) is less than 2% 

(with respect to the bulk). A previous DFT study performed by Ledentu et al. [52] has also shown that the 

top layer of Ni (111) undergoes only very small inward relaxation (0.6%). Therefore, in order to reduce 

the computational demands, in all calculations performed on the Ni (111) surfaces, the Ni atoms of the 

uppermost layer and the adsorbed species were allowed to relax whereas the Ni atoms in the remaining 

layers were constrained to their corresponding bulk positions with the calculated lattice parameter of 3.52 

Å. 

 

7.3 Results and discussion  

7.3.1 Adsorption of carbon atoms and clusters (C2–C6) on Ni (111) 

The structures and stabilities of atomic carbon and clusters on the Ni (111) surface with different 

surface coverage θC were studied using DFT analysis. Carbon surface coverage    is defined as the ratio 

between the number of deposited C atoms,   , and the number of surface (upper layer) Ni atoms,   i, per 

unit cell, i.e., 

                                                i                                                                                                 (7.2) 

Thus, one layer that contains more carbon atoms than the surface Ni atoms is characterized by    > 1 

monolayer (ML). 

      Table 7.1 shows the adsorption energies for a single C on different unit cells equivalent to a surface 

coverage     from 1/9 to 1/4 ML. For the different     investigated here, the 3-fold hollow hcp and fcc 

sites were found to be more energetically stable than the bridge and the top sites. This is because the 3-

fold hollow sites have a higher coordination number than the bridge and top site.  The results in Table 7.1 

also indicate that there is no a clear correlation between     and Eads of the single C adsportion. However, 

the results show that C on the hcp site is slightly more stable than on the fcc site for every     tested. 
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Table 7.1 Adsorption energies,     , (eV), of a single C atom at different surface sites of Ni (111) as 

obtained with different surface unit cells and carbon coverages,   : on top of a surface Ni atom (top), 

bridging two surface Ni atoms (bri), at an fcc or hcp three-fold hollow site. 

Unit cell   ,ML fcc hcp bri top 

(2 × 2) 
1
/4 −6.12 −6.22 −5.74     −4.18 

(2 × 3) 
1
/6 −6.13 −6.16 −5.80 −4.07 

(3 × 3) 
1
/9 −6.13 −6.17 −5.69 −4.34 

 

The adsorption of C2 dimer and two single C atoms with different separation distances were studied 

on a 2×2 unit cell of Ni (111) surface, which is equivalent to a surface coverage   =1/2 ML. As shown in 

Table 7.2, the most stable adsorption state is the C2 dimer adsorbed on nearest neighboring hcp and fcc 

sites (Figure 7.1), with a C−C distance of 133 pm. The adsorption energy per C atom for this system is 

−6.40 eV, and the calculated interaction energy between the dimer and the Ni surface is −2.96 eV. As 

shown in Table 7.2, the adsorption of two single C atoms has been found to be much less stable than that 

obtained for the dimer. This result indicates that, at the carbon coverage   =1/2 ML, the formation of C2 

dimers is thermodynamically favored. The C2 dimer and two single C atoms’ adsorption behavior at lower 

carbon coverage     1/3 and 2/9 ML have also been studied and reported on Table 7.3. The results show 

that the C2 dimers are still more stable than the adsorbed two single C atoms at    1/3. That table also 

shows that, at low coverage (2/9), the single C has an adsorption energy of −6.15 eV. As the two single C 

atoms approach each other at a surface coverage of 1/2, the corresponding adsorption energy becomes 

−5.55 eV. This indicates that the single carbon atoms become more unstable as the surface coverage 

increases, due to the strong repulsive interactions between these isolated carbon atoms. Thus, as more 

carbon is deposited on the Ni (111) surface, the carbon atoms thermodynamically tend to aggregate 

together. Table 7.3 also shows that the adsorption energy of a carbon dimer on Ni (111) is independent of 

the surface coverage, indicating that the formation of C−C covalent bonds on Ni surfaces can reduce the 

repulsion at higher coverages. 
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Table 7.2 Adsorption energy per atom for the adsorption of two carbon atoms (named C
1
 and C

2
) on a 

2×2 slab model (θC = 1/2) (Site Occupation and the shortest distance between C atoms,         , are also 

shown) 

adsorbate Site C
1
 Site C

2
         ), Å  𝑎 𝑠,eV    𝑡,eV 

single C fcc hcp 3.88 −5.27  

single C hcp hcp 2.50 −5.55  

single C fcc fcc 2.50 −5.51  

dimer C2 top hcp 1.34 −5.87 −2.45 

dimer C2 top fcc 1.34 −5.83 −2.41 

dimer C2 fcc hcp 1.33 −6.40 −2.96 

 

 

Table 7.3 Adsorption energies per carbon atom for a C2 dimer formed at neighboring fcc and hcp sites 

and two single C Atoms (at the nearby hcp sites) for different θC [        ,  is the C−C distance] 

 

         dimer C2                                single C       

   unit cell            ,ML            𝑎 𝑠,eV              , , Å        𝑎 𝑠,eV              , , Å  

    (2 × 2)                
1
/2                      −6.40              1.33                                 −5.55              2.50 

    (2 × 3)                
1
/3                      −6.40              1.34                                −6.13              3.82 

    (3 × 3)                
2
/9                                   −6.36             1.34                                 −6.15              4.31 
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Figure 7.1 Optimized geometries for selected carbon species on Ni (111): a) atomic carbon C@hcp; b) 

dimer C2@hcp-fcc; c) trimer C3@fcc-hcp-fcc; d) trimer C3@hcp-fcc-hcp; e) three single carbon 3C@hcp-

hcp-hcp; f) three single carbon 3C@fcc-fcc-fcc.    

 

Different arrangements of three carbon atoms on a 3×3 unit cell of Ni (111) surface were also 

optimized, i.e., C3 trimer in a row (Figure 7.1c and d) or in a triangular shape, three single carbon atoms 

with different separation distance on different sites (Figure 7.1e and f). The resulting stable adsorption 

geometries are presented in Figure 7.1. The corresponding adsorption energies for C3 are shown in Table 

7.4. As in in the case of C2 dimer adsorption, the results show that the C3 trimer is more energetically 

stable than the three single adsorbed C atoms, indicating that the formation of C3 trimer is also 

thermodynamically favored over the single C atoms. The most stable trimer is the one with its three 

carbon atoms adsorbed on next nearest neighboring hcp-fcc-hcp site with the middle carbon atom slightly 

lifted.  
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Table 7.4 Adsorption and cluster-metal interaction energies per carbon atom for C3 trimers formed around 

a Ni atom on the (111) surface at a coverage of 1/3 ML, [d(C−C) is the shortest CvC distance between two 

C atoms] 

Adsorption Geometry d(C–C), Å  𝑎 𝑠,eV    𝑡,eV 

trimer C3@fcc-hcp-fcc 1.36 −6.42 −1.60 

trimer C3@hcp-fcc-hcp 1.36 −6.44 −1.58 

single carbon 3C@hcp-hcp-hcp 3.28 −6.12  

single carbon 3C@fcc-fcc-fcc 3.20 −5.92  

 

For carbon aggregates larger than a trimer, the carbon clusters can form linear chains (Cx,L), 

branched (Cx,B) and/or ring (Cx,R) configurations. The present DFT analysis shows that the carbon 

tetramer is most stable in a linear chain configuration, C4(L) since the two end atoms of the carbon’s 

chain are strongly bonded at the hollow sites of the Ni (111) surface (Figure 7.2), which stabilizes the 

chain configuration. As shown in Table 7.5, this structure has an adsorption energy of −6.54 eV/atom. 

The branched structure, C4(B), was found to be less stable by 0.27 eV. Note that the calculated metal-

cluster interaction energy shows that the most stable C2 dimer on the Ni (111) surface has an interaction 

energy of −2.96 eV whereas an interaction energy of −1.60 eV was obtained for the trimer. For the C4(L), 

an even smaller metal-cluster interaction was observed (−1.23 eV). This result shows that, as the size of 

the carbon chain cluster increases, the interaction between the cluster and the Ni decreases. As it is shown 

below, this decrease in the metal-cluster interaction energy also holds for the C5 and C6 clusters. Note that 

the C4(B) has a metal-cluster interaction of −2.33 eV, indicating that the branched clusters are more 

strongly bonded with the metal support than the linear clusters.  

 

 

Figure 7.2 Optimized geometries for tetramer (C4-chain; C4-branch) and pentamer (C5-chain; C5-branch; 

C5-ring) on Ni (111). 
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Table 7.5 Adsorption and cluster-metal interaction energies per carbon atom for selected small carbon 

clusters on the (111) surface. 

    Adsorption Geometry                                         𝑎 𝑠,eV                                𝑡,eV 

           C4(L)                                                          −6.54                                 −1.23 

           C4(B)                                                          −6.27                                 −2.33 

           C5(L)                                                          −6.50                                 −1.01 

           C5(B)                                                          −6.36                                 −1.94   

           C5(R)                                                          −6.29                                 −1.94   

           C6 (L)                                                         −6.55                                 −1.08 

           C6 (B)                                                         −6.36                                 −2.06 

           C6 (R)                                                         −6.43                                 −1.18  

 

The results for carbon pentamer, C5, are similar to those observed for the tetramer C4. That is, the 

C5(L) was found to be the most stable configuration on the Ni (111) surface with an adsorption energy of 

−6.50 eV whereas C5(B) and C5(R) are less stable by 0.14 and 0.21 eV, respectively. Similar results were 

also obtained for C6 clusters: C6(L) is more favored over C6(B) and C6(R) with an adsorption energy of 

−6.55 eV. Moreover, a further decrease of the metal-cluster interaction was observed for these C5 and C6 

clusters, as compared with that obtained for the tetramer. The stable C6 configurations obtained by the 

present analysis are presented in Figure 7.3. 

 

 

Figure 7.3 Optimized geometry for C6 (C6-chain; C6-branch6; C6-ring) on Ni (111). 

 

In summary, the calculation of Eads and Eint for the adsorbed carbon cluster systems shows that carbon 

clusters are more stable than atomic carbon species, indicating that the formation of a carbon cluster is 

thermodynamically favored. For carbon clusters larger than a trimer, a linear (Cx,L) configuration is more 
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favored than the branched (Cx,B) and ring (Cx,R) configurations, which is in good agreement with the 

observations reported by Cheng et al.[46]. Moreover, it was found that, as the carbon cluster becomes 

larger, the interaction between each C adatom and Ni (111) surface decreases while the C–C interaction 

gradually increases. 

To unravel the nature of cluster-metal interaction in terms of electronic structure, the projected 

density of states (PDOS) analysis was conducted for atomic carbon, carbon dimer and trimer adsorption 

when they are in their most stable configurations. The PDOS analysis is shown in Figure 7.4. When a 

single carbon was adsorbed on the Ni surface, there exists a large overlap between C 2p and Ni 3d 

orbitals. This suggests that the C–Ni interaction was mainly due to the mixing between the C 2p and Ni 

3d orbitals. For the case of C2 dimer adsorption, a perfect overlap between 2s and 2p orbitals of the two C 

atoms is observed, indicating the strong C–C bonding. However, this comes with a reduction of the 

overlapping between C 2p–Ni 3d orbitals, which could contribute to a weaker C–Ni interaction as 

compared with that in atomic C adsorption. Regarding the carbon trimer adsorption, the carbon atom in 

the middle, denoted as C(b), is strongly bonded with its two neighboring C atoms, referred to as C(a). As 

shown in Figure 7.4, it was observed that a larger population of the 2p orbital overlap between C(a) and 

C(b) atoms was shifted to the lower energy levels (around −6.0 eV), indicating a much stronger C–C 

bonding than that in the C2 dimer. Meanwhile, a further decrease of the overlap between C 2p and Ni 3d 

orbitals was also observed. Therefore, it can be expected that as the size of the carbon cluster increases, 

more electrons in the C 2p orbitals will be shared in between C–C bonding instead of forming bonds with 

the Ni 3d orbitals, which could result in a decrease of the C–Ni interaction. Note that a stronger C–C 

bonding also determines the arched shape of the carbon chains since the carbon atoms in the middle can 

only weakly interact with the metal substrate after forming strong C–C bonds with two carbon neighbors. 

This strong C–C bonding in the middle of the carbon chains is expected to be a common feature in the 

growth process of graphene or CNTs on metal substrates [53]. 
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Figure 7.4 Projected density of states (PDO ) in atomic C, C2 dimer and C3 trimer adsorption systems. 

The vertical green-dash line donates the Fermi level. Ni (a) and Ni (b) represent two different Ni atoms on 

the metal surface. Ni (a) has only one C−Ni bonding, whereas Ni (b) has two C neighbors (two C−Ni 

bonding). C(a) and C(b) in the C2@Ni(111) system are the two carbon atom in the dimer. In C3@Ni(111), 

C(a) is the one of the two siding C atom in the trimer with one C−C bonding, whereas C(b) is the middle 

C with two C−C bonding. 

 

7.3.2 Mobility of the carbon species on the Ni (111) surface 

Surface diffusion is known to be crucial to understand epitaxial growth [54]. Thus, the elementary 

diffusion mechanisms and the corresponding energy barriers governing their mobility for C clusters on 

the Ni (111) surface were studied. The diffusion pathways were shown in Figure 7.5, and the 

corresponding energy barriers were reported in Table 7.6. The results show that atomic carbon diffusion 

via a bridge site has a diffusion barrier of 0.48 eV, which is in good agreement with previous studies 

reported in the literature (0.45 eV) [40]. For carbon dimers, as shown in Figure 7.5, the dimer is adsorbed 

at the nearby bridge sites in the transition state. The corresponding diffusion barrier was found to be 0.95 
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eV. It was observed that the trimer diffuses via an in-channel sliding mechanism with a substantially 

lower energy barrier (0.21 eV) than the atomic C diffusion. Trimer chains diffusing by sliding are thus 

much more mobile than either dimers or adatoms. C3 trimers can also diffuse on the surface by a 

cross−channel mechanism, which has a higher barrier of 0.48 eV. The results show that the C3 trimer, as a 

small cluster, has a very high mobility on the Ni (111) surface. Figure 7.5 also shows the lowest energy 

diffusion paths for a tetrahedron. The energy barrier for the tetramer chain is 0.62 eV with the in-channel 

sliding mechanism. The mobility of branched tetramer clusters via diffusion on Ni (111) was found to be 

less favorable with an energy barrier of 0.73 eV. 

 

 

Figure 7.5 Pictorial views of the diffusion mechanisms of selected carbon clusters on Ni (111). 

 

According to the energetics results reported in Section 7.3.1, once the Ni surface is saturated with 

monomers, mobile monomers will form small clusters of dimers, trimers and tetramers. The results shown 

in Table 7.6 indicate that the high mobility of the small clusters with respect to monomer hopping may 

play a significant role in the mass transport during CNT growth, i.e., small clusters may easily diffuse 

through the Ni surface and bond with monomers or clusters already deposited on the Ni surface thus 
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contributing to the CNT growth. This mechanism has also been suggested in recent reports [44,55]. This 

result suggests a very different picture for the growth of CNTs than that usually considered in which only 

the atomic C is involved and dominates the mass transport of the CNT growth. 

 

Table 7.6 Diffusion barriers of selected carbon species. 

           Process                                                                          𝑎,eV         

           monomer hopping                                                         0.48 

           dimer diffusion                                                              0.95 

           linear trimer “in−channel” diffusion                             0.21 

           linear trimer “cross−channel” diffusion                        0.48 

           linear tetramer “in−channel” diffusion                          0.62 

           tetramer diffusion                                                          0.73 

 

7.3.3 Carbon cluster nucleation on Ni (111) 

The reaction pathways and reaction energetics for the formation of the carbon clusters on the Ni (111) 

surface are presented in this section. The TS along the reaction coordinates for each elementary reaction 

was identified. Due to computational limitations, only the formation of small carbon clusters Cx(x=2-6) 

was considered in this study. 

C2 dimer formation is the first step for the carbon nucleation on the Ni substrate. As discussed above, 

dimers are much more stable than separated C adatoms by over 0.21 eV at a surface coverage of 2/9 ML 

on Ni (111). The energy barrier for forming a dimer by two neighboring C adatoms was found to be 0.88 

eV. The reverse energy barrier estimated for this reaction was 1.44 eV, indicating that dimer dissociation 

is not kinetically favored. The geometry of the TS of this nucleation reaction is shown in Figure 7.6 

(green dashed-dotted lines), in which one of the C atoms is located over the bridge site. In the TS, the 

activated C–C bond (denoted as C–Ca hereafter) has a bond distance of 1.99 Å. 
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Figure 7.6 Reaction energy diagram of reaction paths for the C cluster (C2~C4) formation on Ni (111) 

surface. All energies are relative to the energy of the coadsorbed [C+C]*. 

 

The transition state that corresponds to the formation of a trimer, by adding a single C to a dimer, is 

also shown in Figure 7.6 (blue dashed lines). The Ca atom is located at the bridge site, forming an 

activated C–Ca bond with a bond distance of 2.20 Å. This process has an energy barrier of 0.97 eV. The 

reverse process, the trimer dissociates into a monomer plus a dimer, has an energy barrier of 1.29 eV. As 

discussed in the previous section, carbon tetramers have two stable configurations: C4(L) and C4(B), with 

C4(L) being more stable than C4(B) on Ni (111). In order to compare the kinetic properties of each of 

these clusters, both the linear and branched tetramer configurations were studied here. Both C4(L) and 

C4(B) can be either formed by two dimers or by a C3 trimer and a C monomer. However, it was found that 

the diffusion of a dimer has an energy barrier that is much higher than that of a trimer and atomic C. This 

will make the dimer less mobile and “trapped” in the adsorption site in most of the reaction time. 

Therefore, carbon tetramer formation by the nucleation of two dimers will be a highly activated process 

and therefore very unlikely to occur. Accordingly, only C4(L) and C4(B) formation by a C3 trimer and 

atomic C nucleation was considered in the present study. The reaction pathway and the energy profile for 

this process are shown in Figure 7.6. A C4(L) forms when an atomic C passes the saddle point 

configuration toward the terminal C atom in the chain trimer (magenta solid lines). This process presents 

a barrier of 1.31 eV. On the other hand, the detachment of a terminal C atom from the linear tetramer, 
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producing thus a trimer, has an energy barrier of 1.89 eV. For the formation of the C4(B) cluster, an 

energy barrier of 1.16 eV has to be overcome (Figure 7.6: cyan dotted lines). This is 0.15 eV lower than 

that for the C4(L) formation. This result shows that the formation of the branched tetramer configuration 

is kinetically favored over the linear chain configuration. Note that the dissociation of C4(B) into C3 and C 

is likely to occur since it has a relatively low energy barrier of approximately 0.43 eV. Isomerization 

between different configurations of the carbon clusters is possible since the reverse process of the 

nucleation reaction may contribute to these isomerization reactions. For example, the transformation of 

C4(L) into C4(B) involves multiple processes: i) bond breaking of one of the carbon atoms in C4(L) with 

the neighboring carbon atoms; ii) carbon atom diffusion; iii) and re-bond with the middle C atom in the 

trimer. The first step can be achieved by C4(L) dissociation into C3 and C, which is the reverse process of 

C4(L) nucleation. The last step is actually the reaction pathway for the formation of C4(B) proposed in the 

present study. 

A C5 cluster on Ni (111) can also have a linear or a branch configuration. For the formation of linear 

C5(L), there are two possible pathways: adding a monomer to a C4(L) or adding a C3 trimer to a C2 dimer. 

The reaction profile diagrams of these reactions are shown in Figure 7.7. Their corresponding TS are 

presented in Figure 7.8. As shown in Figure 7.7, the formation of C5(L) by C4(L) plus C has a barrier 

height of 1.26 eV, whereas the other reaction pathway has an energy barrier of 1.51 eV. For the C5(B) 

cluster, there are also two pathways: adding a monomer to a C4(B) or adding a trimer to a dimer. The 

reaction profile diagram in Figure 7.7 shows that the addition of an atomic C to C4(B) proceeds with a 

relatively low energy barrier (0.23 eV). The reverse process of this reaction has a barrier of 1.18 eV. On 

the other hand, the C5(B) formation by moving a C3 trimer to a C2 dimer has an energy barrier of 0.42 eV, 

whereas the activation energy for the reverse process is as low as 0.29 eV. These results show that, as in 

the case of C4 cluster formation, the formation of a branched C5 cluster is kinetically favored over the C5 

chains. Moreover, the results show that, in addition to adding C to the existing cluster, the nucleation of 

these carbon clusters by adding a C3 trimer is also a feasible process. 
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Figure 7.7 Reaction energy diagram of reaction paths for the C5 cluster formation on Ni (111) surface. All 

energies are relative to the energy of the coadsorbed [C4(L)+C]*. 

 

 

Figure 7.8 Geometric structures of the transition state (T.S.) for the formation of C5(L) and C5(B)  clusters 

on Ni (111) surface: a) C5(L) formation by adding a C atom to a C4 chain; b) C5(L) formation by adding a 

C3 trimer to a C2 dimer; c) C5(B) formation by adding a C atom to a branched C4; d) C5(B) formation by 

adding a C3 trimer to a C2 dimer. 

 

A reaction energy diagram for the formation of linear, branched, and ring C6 clusters was calculated 

and presented in Figure 7.9. A linear C6 can be nucleated from moving a monomer to the C5 chain cluster 
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(Figure 7.10a) by overcoming a barrier height of 1.14 eV. The reverse process, the dissociation of the C6 

chain into a C5 chain and a C, has a barrier of 1.26 eV. Two C3 trimers occupying neighboring sites can 

also react spontaneously to form a linear C6 (Figure 7.10b). The reaction energy and the corresponding 

activation energy were found to be 0.43 eV and 1.22 eV, respectively. Two pathways for the formation of 

a branched C6 cluster were considered here: i) two C3 trimers reach and connect each other by the middle 

C with a barrier of 0.83 eV, and ii) a monomer approaches a branched C5 cluster with a barrier of 0.25 

eV. The formation of a C6 ring by adding an atomic C to a bended C5 chain cluster has a low energy 

barrier of about 0.17 eV. The other nucleation pathway by two C3 trimers has an activation energy of 0.97 

eV. These results show that the formation of C6(B) and C6(R) by adding atomic C to the C5 cluster has 

very low energy barriers, and thus are very likely to occur on the Ni surface. These observed low energy 

barriers can be explained by the stability of these co-adsorbed clusters. As shown in Figure 7.9, the co-

adsorbed branched [C5+C]* and bended [C5+C]* are unstable when compared to the other co-adsorbed 

configurations. This makes these configurations or states to have a very high energy level at the initial 

state, which finally results in a low energy barrier for their nucleation reaction. Therefore, it can be 

expected that at low reaction temperatures, where the reaction is more likely to be thermodynamically 

controlled, the formation of linear carbon chains will dominate the surface reactions. However, at high 

reaction temperatures, where the existence of the unstable branched or the bended carbon cluster is 

possible, the formation of C6(B) and C6(R) will dominate the processes on the Ni (111) surface. 

 

 

Figure 7.9 Reaction energy diagram of reaction paths for the C6 cluster formation on Ni (111) surface. All 

energies are relative to the energy of the coadsorbed [C5(B)+C]*. 



 

 137 

 

 

 

Figure 7.10 Geometric structures of the transition state (T.S.) for the formation of C6(L) and C6(B)  

clusters on Ni (111) surface: a) C6(L) formation by adding a C atom to a C5 chain; b) C6(L) formation by 

adding a C3 trimer to a C3 trimer; c) C6(B) formation by adding a C atom to a branched C5; d) C6(B) 

formation by adding a C3 trimer to a C3 trimer. e) C6(R) formation by adding a C atom to a bended C5 

chain; f) C6(R) formation by adding a C3 trimer to a C3 trimer. 

 

7.4 Summary 

A systematic study of carbon nucleation during the early stages of CNT growth on Ni (111) was 

performed using Density Functional Theory (DFT) calculations. The structure and relative stability of 

adsorbed C intermediates up to 6 carbon atoms, and their mobility on the Ni (111) surface were 

investigated. Moreover, the reaction pathways and energetics for the nucleation of the carbon clusters on 

the Ni (111) surface were also explored. The outcomes of this study are as follows:  

i) Atomic carbons tend to nucleate to form carbon clusters on the Ni (111) surface. There is also a 

thermodynamic preference for different carbon cluster configurations: linear carbon structures are more 

stable than branched and ring carbon configurations of equal sizes. 
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ii) The monomer is not the only mobile species on the Ni (111) surface. Small clusters, at least up to 

the tetramer, are also mobile. The dimer is the least mobile cluster with a diffusion barrier of 0.95 eV. The 

trimer can diffuse with low energy barriers through either a sliding (0.21 eV) or a crossing (0.48 eV) 

mechanism. The sliding diffusion barrier was even lower than the monomer hopping barrier (0.48 eV). 

The linear tetramer can diffuse with a barrier of 0.62 eV. The calculation of the interaction between the 

carbon cluster and the Ni surface shows that branched carbon clusters have stronger interaction with the 

Ni substrate when compared to the carbon chains. This indicates that carbon chains generally have higher 

mobility than branched carbons. This cluster mobility is expected to play an important role in the reaction 

kinetics of C on Ni. 

iii) The formation of branched C species is kinetically preferred as compared with that of the C chain 

cluster. The formation of C chain and branched species by the addition of both the single C atom and C3 

trimer is possible. This new insight into the supported C cluster formation is crucial to understand the 

growth mechanism of CNTs and graphene on transition metal surfaces in CVD experiments. The outcome 

of this research will present a comprehensive picture of the carbon nucleation reactions at the early stage 

of the CNT growth. 
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Chapter 8  

Carbon Nanotube Growth: Kinetic Monte Carlo Simulations 

This Chapter presents kinetic Monte Carlo (KMC) study of the carbon nanotube growth process. A 

brief introduction and the motivation for this study are given in the first section. A comprehensive CNT 

growth model is proposed in section 8.2 and the simulation methods used to develop a KMC simulation 

for CNT growth process are also discussed in this section. Note that since some of the reactions in the 

proposed CNT growth model have been studied in previous Chapters, their kinetic parameters are directly 

used in the present study. For example, the CHx dissociation barrier on Ni is taken from Chapter 3, in 

which the Ni catalyst is modeled by a clean Ni (111) surface with a 3×3 unit cell. The carbon surface 

diffusion and nucleation barriers used in the present study are taken from Chapter 7. In Section 8.3, 

results obtained from the KMC simulations were presented and implications from the KMC simulations 

results were also discussed. Concluding remarks are stated in section 8.4. 

 

8.1 Introduction 

 ince the discovery of carbon nanotubes (CNT), considerable effort has been made to improve the 

CNT’s growth yield and to find out the growth mechanism of these materials [1-3]. Among all the 

methods used for CNT synthesis, Chemical Vapor Deposition (CVD) is one of the most widely used [4,5]. 

In CVD growth of CNT, the carbon atoms are sourced from the decomposition of hydrocarbon precursor 

molecules (CH4, C2H2, C2H4, etc.) at the surface of supported catalytic particles (Fe, Co, or Ni), and their 

growth mechanism is often described by a vapor-liquid-solid model (VL ) [6]. The model assumes that, 

i) the catalyst particles are in the liquid state. This allows rapid bulk diffusion of carbon atoms throughout 

the particle, and forms a super-saturation of the C metal solution; ii) C segregation and incorporation into 

graphene over-layers on the other side of the catalyst particle [7-11], leaving the nanoparticles located at 

the tips or roots of CNT [16-18]; and iii) the bulk diffusion of carbon and precipitation are driven by 

temperature [12, 13] or carbon concentration gradient along the catalyst particle [14, 15].  

 ecently, this mechanism has been challenged by in situ observations made with transmission 

electron microscope (TEM), which supports the evidence that the catalytic particles stay in solid or 

metallic state during the CNT growth [19-23]. Based on these observations, Hofmann et al. [21] and Lin 

et al. [22] have suggested that the mechanism of CNT growth is not through C precipitation from Ni3C 
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but rather through the surface diffusion of C adatoms. The surface diffusion mechanism was supported by 

recent DFT studies [23-25].  urface diffusion of C atoms on a Ni particle surface was found to proceed 

with low energy barriers (0.4~0.5 eV) making it more favorable than diffusion of carbons through the 

subsurface (~1.34 eV) and the bulk (1.6~1.8 eV), respectively. This observation is also consistent with the 

results obtained in recent Molecular Dynamics (MD) simulation studies [26-32], which have found that 

there is only limited number of C atoms were diffused into the bulk of the catalyst particle. 

The aforementioned studies have focused on the behavior of single carbon atoms.  eports have 

shown that they are generally not strongly bonded with the metal catalyst surface [33, 34]. This suggests 

that carbon clusters may have a good mobility at the catalyst surface, and therefore play an import role for 

production of CNT in the CVD process. In fact, the study presented in Chapter 7, have shown that the 

smaller carbon cluster especially C3 trimer can diffuse vary fast on the Ni (111) surface. Therefore, a more 

realistic scenario of the CNT growth will be as follows: in addition of the surface and bulk diffusion of C 

atoms, they will also nucleate together, forming carbon clusters on the catalyst surface; small carbon 

clusters may diffuse on the Ni surface, and together with C atoms can contribute to the CNT growth; 

further nucleation of the small cluster will lead to a graphite monolayer bonded to the surface and 

eventually cause the deactivation of the catalyst. Therefore, a CNT growth mechanism that consists of the 

surface and bulk diffusion of C, as well as the possible carbon cluster surface nucleation and diffusion 

will be more trustworthy.  

As already shown by previous studies [35-38], KMC simulations offer an efficient strategy to bridge 

the gap between the results obtained by DFT at the microscopic scale and the dynamic behavior of the 

working catalyst surface under given operating conditions.  eliable statistical estimates of macroscopic 

reaction rates can thus be compared with experimental observations. In this study, the Ni catalytic growth 

of CNT was investigated KMC simulations. DFT calculations were performed to calculate the reaction 

barriers and pre-exponential factors of the elementary steps in the proposed CNT growth model. The 

calculated kinetic parameters were subsequently incorporated into a novel KMC framework that are 

developed for overcoming large disparities in time scale of the systems, in which conventional KMC is 

inefficient when fast surface diffusion processes exist. The KMC simulations predict the experimental 

dynamical formation process of CNT on Ni nanoparticles from first principles, and therefore provide a 

validation of the proposed Ni catalytic CNT growth mechanism. To the best of the author’s knowledge, 

such a study has not been presented in the open literature. 
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8.2 Simulation details 

As mentioned before, KMC simulation of the catalytic reactions involves both the DFT and KMC 

simulation of the elementary steps in the proposed reaction mechanism. Therefore, in this section, details 

about the models and simulation methods, e.g. tTthe proposed CNT growth model, models used in DFT 

calculation and implementation of the KMC simulation, is discussed. 

8.2.1 CNT growth mechanism  

As discussed in the previous section, in addition to the surface and bulk diffusion of carbon atoms, 

carbon cluster may play a critical role in the CNT growth mechanism. In this study, a CNT growth model 

that consider nucleation and diffusion carbon cluster is developed. The mechanism proposed for the CNT 

growth is sketchily presented in Figure 8.1. The growth of CNT is thought to start with the successive 

CH4 dehydrogenation on Ni nanoparticles, producing C and H atoms. H atoms can move on the catalyst 

surface and H2 may be formed when two H atoms “meet” each other. Note that “meet” means that the two 

atoms are sitting at neighboring sites on the catalyst surface. The C atoms resulted from previous CH4 

dissociation steps can diffuse on the Ni catalyst surfaces or through the bulk of the Ni particles (Figure 

8.1). At the same time, surface C atoms can also nucleate together to form carbon clusters.  ome of the 

small C clusters may also have a good mobility on the catalyst surface. Large C clusters will remain on 

the Ni surface, and therefore block the active sites; their further nucleation will lead to hemispherical caps 

that terminate the growth of CNT. The CNT growth proceeds via the addition and attachment of C 

adatoms and the small movable carbon clusters at the CNT/Ni edge boundary.  
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Figure 8.1 The proposed CNT growth mechanism: a) reaction or processes that occur on the Ni catalyst 

surface; b) reactions that occur on the Ni/CNT growth edge. Some of the important processes were 

labeled, and they correspond to the elementary steps in Table 1. Orange: Ni, white: H, black: C, light 

blue: movable H, dark blue: movable C. 

 

8.2.2 DFT modeling and intrinsic kinetics calculations 

Modeling the Ni catalyst in DFT calculations requires a good understanding of the Ni catalyst 

surfaces in the growth process of CNTs. High-resolution transmission electron microscopy (HRTEM) 

observations reported by Ji et al. [39] show that the Ni catalyst at the tips of CNFs with CH4 as a carbon 

source was found to be dominated by low-energy (111) surface facets. Yao et al. [40] showed that most of 

nickel catalytic particles have a conical shape orientated with a 110 direction along the tube growth axis 

with the (110) and (111) planes as exposed faces. In fact, the (111) and (110) surfaces have similar 

properties towards adsorption and diffusion of carbon [41]. Therefore, in the present study, the DFT 

calculated kinetic parameters that will be used to construct the kinetic data base for KMC simulation are 

obtained on the most stable Ni (111) surface [41, 42].  



 

 143 

The intrinsic kinetics that govern the elementary steps involved in the Ni catalytic CNT growth 

process were calculated using periodic DFT calculations implemented in the BAND program [43,44]. 

Further technical details about the DFT calculations, e.g., functional, search for transition state, can be 

found in section 3.2.1, Chapter 3. The energetics for CHx dissociation is obtained on the Ni (111) surface 

modeled by 3×3 unit cell (see Table 4.6 in Chapter 4). The kinetic properties for C and C cluster diffusion 

and nucleation are taken from Chapter 7. Table 8.1 gives the details of the surface elementary steps 

considered in the reaction mechanism presented in Figure 8.1. The CNT growth reactions are modeled by 

the incorporation reaction of C (or C3) with a pre-covered graphene edge on a 5×2 unit cell of Ni (111) 

surface, in which the bottom layer of the slab was fixed in its bulk positions with a calculated lattice 

parameter of 3.52 Å; the Ni atoms of the remaining layers and the adsorbed species were set free to relax.  

The kinetic rate constant for elementary steps such as surface reaction and diffusion are calculated 

according to transition state theory as follows [45-47]: 

                                            𝑇 𝑇  
𝑘𝐵𝑇
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 𝑣  
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where   is Planck’s constant;  𝐵 is Boltzmann’s constant; T is the absolute temperature;  𝑣  
𝑇  and  𝑣  

  are 

the vibrational partition functions of the TS and reactants, respectively, and  𝑎 is the energy barrier.  

The dissociative adsorption rate for CH4 was determined from the following expression [45]: 
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where P is the gas pressure; m is the mass of the molecule. 

Table 8.1 contains activation barriers and vibrational frequencies for the transition states computed 

from DFT calculations, which are used to calculate the kinetic rate constants. Note that the frequency 

values of the TS in step 12 are for C3+C reaction. Vibrational frequencies (>200 cm
−1

) of gas phase and 

surface species are presented in Table 8.2. Detail discussion about the DFT calculation results and the 

elementary reactions implemented in KMC simulation is described next. 
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Table 8.1 Vibrational frequencies (>200 cm
−1
) of the transition states, forward (Ea,f) and backward (Eb,f)  

activation energy barriers of elementary steps for CNT growth on Ni (111). 

       Elementary step                              Transition state frequencies (cm−1)                                                               Ea,f /Ea,b (eV) 

Methane decomposition reactions 

1) CH4 (gas) →  CH3* + H*                    309, 543, 581, 960, 995, 1134, 1172, 1359, 1392, 2897, 2977, 3034                          1.14/0.65 

2) CH3* → CH2* + H*                            265, 441, 502, 711, 865, 1241, 1846, 2859, 3061                                                        0.73/0.95 

3) CH2* → CH* + H*                             235, 331, 396, 516, 691, 851, 1943, 3136                                                                     0.34/1.05 

4) CH*  → C* + H*                                450, 503, 593, 1847                                                                                                       1.17/1.21      

5) H* + H* →  H2(gas)                           244, 379, 1662, 1853                                                                                                     1.31/0.43 

Surface diffusion of H and C species 

6) H*( 1) → H*( 2)                              1005, 1279                                                                                                                      0.28 

7) C*( 1) → C*( 2)                               635, 663                                                                                                                          0.48 

8) C3*( 1) → C3*( 2)                             ————                                                                                                                       0.48 

C bulk (or subsurface) diffusion 

9) C*( ) → C*(B)                                   ————                                                                                                                       1.80 (1.34) [25 

C nucleation reactions 

10) C*+ C* → C2*                                 332, 456, 537, 560, 609                                                                                                  0.88/1.44 

11) C2*+C* → C3*                                 223, 276, 334, 406, 454, 548, 622, 1435                                                                        0.97/1.29 

12) Cx(x≥3)*+C*(or C3*) → Cx*              249, 261, 295, 324, 371, 403, 455, 462, 481, 507, 1083, 1166, 1394, 1596                  1.31/1.55 

CNT growth reactions 

13) C*(E)+CNT(n)C → CNT(n+1)C       ————                                                                                                                       0.89 

14) C3*(E)+ CNT(n)C → CNT(n+3)C       ————                                                                                                                        0.89 

 ‘–’ signifies lack of a vibrational frequencies at the transition state. The pre-exponential factor “A” in 

process 8, 9 are set up the same as in 7; the pre-exponential factors used in reactions 13 and 14 are taken 

the same as in 12. 
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Table 8.2 Vibrational frequencies (>200 cm
−1

) of gas phase and surface species on Ni (111) used in the 

kinetic model of CNT growth. 

        Species                                                  Frequencies (cm
−1

) 

        CH4 (gas)                      1296, 1296, 1296, 1519, 1519, 2956, 3067, 3067, 3067  

        CH3                               262, 317, 437, 515, 1165, 1196, 1282, 2740, 2884, 2893 

        CH2                               245, 356, 491, 539, 687, 1364, 2579, 3074 

        CH                                414, 425, 617, 685, 719, 3016 

        C                                   504, 518, 599 

        H                                   795, 822, 1205 

        C2                                  306, 307, 309, 425, 438, 1476 

        C3                                  243, 274, 333, 396, 434, 439, 461, 1137, 1442 

 

8.2.3 Elementary steps in KMC simulation 

The elementary steps that are implemented in the KMC simulation are as follows: 

i) Methane decomposition and hydrogen production 

Methane in the gas phase dissociates on to the surface of Ni catalyst, produces CH3 and H atom. CH3 

adsorbed on the Ni surface then undergo a series of hydrogen abstraction reactions, and ultimately results 

in the absorbed C and H atoms. The energy barriers for these dissociation reactions are listed in Table 8.1. 

Note that the barriers for the reverse process of CH3 and CH2 dissociation are much higher than its 

forward process. Moreover, due to the low diffusion barrier of H atoms on the Ni surface (0.28 eV), the H 

surface diffusion is orders of magnitude faster than CH3 and CH2 production reaction, and therefore it will 

more likely diffuse away instead of remaining at the neighboring site of CH3 and CH2 after the 

dissociation. These conditions would make the CH3 and CH2 production process very unlikely to occur. 

Accordingly, the reverse reaction of CH3 and CH2 dissociation were not considered in the present 

analysis.  
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ii) Surface and bulk diffusion  

As show in Table 8.1, the adsorbed H and C atoms have small diffusion barriers, i.e., 0.28 and 0.48 

eV, respectively, and therefore they are assumed to diffuse over Ni surface. Hydrocarbon radicals, e.g. 

CH3, CH2 and CH, produced during CH4 dehydrogenation are assumed to be immobile. This is because 

that, during the evolution of the system, the surface diffusion of these hydrocarbon radicals only 

contributes to the CHx production reaction when they “meet” H atoms on the catalyst surface. However, 

this contribution can be compensated by the fast diffusion of H atoms.  For the carbon cluster, the study 

presented in Chapter 7 have shown that, among the small clusters (C2, C3 and C4) studied, C3 trimer 

diffusion proceeds with a relatively small diffusion barrier (0.48 eV), showing its high mobility on the Ni 

surface. Therefore, in the KMC simulations, the carbon cluster diffusion will be represented by the C3 

trimer diffusion. This cluster was treated as one entity (C3) that diffuses as a whole on the lattice. Note 

that the bulk diffusion of C atoms was also implemented in the model of KMC simulations. Previous DFT 

studies by Abild-Pedersen et al. [25] reported that C subsurface and bulk diffusion to the CNT/Ni 

interface has a barrier of 1.34 and 1.80 eV, respectively. To simplify the KMC simulation model, the 

subsurface and bulk diffusion are treated as one single pathway that lead surface C atoms to the inner 

layers of the CNT. The corresponding diffusion barrier is in the range of 1.34−1.80 eV, which is in 

between the C subsurface and bulk diffusion barriers. 

 

iii) Carbon nucleation  

In addition to the surface and bulk diffusion, C atoms will also nucleate together on the Ni surface 

and form carbon clusters of various size and configurations. As reported in Chapter 7, the nucleation of 

large carbon clusters is very complex: even carbon clusters with the same number of C atoms will have 

different configurations, e.g. chain, branch or ring, with different stabilities. To simplify the KMC 

simulation model, the nucleation of C2 dimer and C3 trimer are explicitly considered, whereas carbon 

clusters larger than the C3 trimer are represented as single unit species (Cx). The kinetics properties of the 

large carbon cluster (Cx) were represented by that of the chain clusters. This is due to the fact that carbon 

chain clusters are more thermodynamically stable than the other configurations, e.g. branch and ring. Due 

to its relatively large size, Cx cluster are assumed to remain on the same lattice site (not movable) on the 

Ni catalyst surface. Since C and C3 are assumed as the only carbon species that can diffuse on the Ni 

surface, the nucleation reactions that can form Cx cluster will be as follows: C3+C→Cx, C2+C3→Cx, 

C3+C3→Cx, Cx+C→Cx, Cx+C3→Cx. These reactions are represented as Cx(x≥3)*+C*(or C3*) → Cx* (see 
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reaction 12 in Table 8.1). To reduce the complexity of KMC simulation model, an energy barrier of 1.31 

eV was used to model these Cx cluster nucleation reactions, as shown in Table 8.1. This energy barrier 

was taken as the average of the nucleation barrier for the formation of C4, C5 and C6 chains, which is 

reported in Chapter 7 (section 7.3.3). Therefore, one can expect that, as more Cx clusters are formed on 

the Ni surface, this will deactivate the Ni catalyst reactivity by blocking the active site towards CH4 

dissociation. When the Ni surface is fully covered by Cx, it stops the CNT growth. Note that the reverse 

C−C bond breaking reaction of Cx cluster has an averaged energy barrier of 1.55 eV; also, the Cx 

nucleation reaction is assumed to be irreversible in the KMC simulations. 

 

iv) CNT growth reactions 

When the adsorbed C and C3 cluster are diffused to the CNT/Ni edge sites (a nearby site of the CNT 

open end), they can be incorporated (or attached) into the CNT wall, and therefore contribute to the CNT 

growth. To model this process, a graphene edge attached on Ni (111) surface is used here to model a 

fraction of the CNT-catalyst interface (see Figure 8.1b). The C and C3 incorporation reactions are then 

studied by DFT calculations. The barriers of incorporating C and C3 into a CNT wall were calculated to 

be 0.76 and 1.02 eV, respectively. To simplify the KMC simulation model, the C and C3 incorporation 

reactions were treated as one single event with an average energy barrier of 0.89 eV. These carbon 

incorporation reactions are assumed to be irreversible. 

8.2.4 Accelerated kinetic Monte Carlo (AKMC) 

As discussed above, in KMC algorithm s, the probability to choose or execute a specific event in the 

KMC simulations is calculated from the event’s rate. Therefore, for systems that involve large differences 

in the rates, most of the computational time will be consumed by the event with the fastest reaction rate, 

and low rate events will rarely occur during the simulation although they might dominate the actual 

kinetics of real catalytic system. This is usually referred as stiff problems, and it represents a major 

challenge in KMC modeling.  

In the past decades, lots of efforts have been done for developing efficient methods to overcome the 

stiff problem in KMC, which have met only partial success. The Poisson and binomial τ-leap methods 

[46–48] can partly solve the underlying challenges by selecting multiple processes in a single KMC 

iteration. However, they are approximate and in some cases τ-leap leads to unphysical results [49].  nyder 

et al. [50] proposed a net-event kinetic Monte Carlo for overcoming stiffness problem for systems 
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involves fast reversible processes. In that study, the fast reversible processes into single was consolidated 

into “net events” and the associated rate of this net-event is calculated as the difference of the rates of the 

forward process and the reverse process. Chatterjee et al. [51] developed a so-called accelerated 

superbasin kinetic Monte Carlo (A -KMC) algorithm, in which the rate constants for processes that are 

observed many times are lowered during the course of a simulation. As a result, rare processes are 

observed more frequently than in KMC and the time progresses faster. An error estimates strategy is 

derived for A -KMC when the rate constants are modified. Guerrero et al.[52,53] introduced a approach 

for solving the stiff problems by using a logarithmic transformation of rates for calculating the 

distributions of event probabilities (abbreviated as Log-KMC). 

For the current CNT growth systems, H and C surface diffusion event proceeds with small energy 

barriers and their rates are orders of magnitude faster than other processes, e.g. CH4 dissociative 

adsorption. Thus, in conventional KMC (referred from heretofore as ConKMC), most of the 

computational effort will be spent on simulating the repetitive motion of H or C on the catalyst surface. 

That is, the simulation is “trapped” in this low barrier surface diffusion process for a large number of 

KMC iterations. This limits the ability to render the long-time evolution of the system. 

In the present study, a rational statistical based approach, named Accelerated Kinetic Monte Carlo 

(AKMC), has been developed to overcome this typical problem in ConKMC. The difference between 

AKMC and ConKMC is the method used to treat the fast surface diffusion events and the evaluation of 

the slow reaction rates in the system. In AKMC, when the system is “trapped” in fast surface diffusion 

process, instead of running the repetitive motion of the surface diffusion event, low rate events are 

executed directly based on their statistical probability. Take the simplest case as an example: when there 

is only one H atom on the lattice, the possible events that could occur on the surface are: CH4 dissociative 

adsorption, H surface diffusion. Based on the kinetic parameters presented in Table 8.1, H diffusion rate 

is estimated about k (≈10
6
)

 
times faster than that of CH4 dissociative adsorption. This means that, from the 

statistical point of view, it will take an average of k H diffusion iterations to pick up one CH4 dissociative 

adsorption event in ConKMC simulations. However, in AKMC, instead of running H diffusion k times, 

CH4 dissociative adsorption is directly executed, and the time step will be updated as        , where 

    is the time spend for one H diffusion event and that was calculated as a priori. The implementation 

becomes more complicated when there is more than one H atom on the lattice. The possible events that 

could occur are H diffusion, CH4 dissociation and H2 production. Their corresponding rates are   ,    and 

   (        ), respectively. However, for H2 production, it will be only possibly to occur when the 
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two H atoms are close to each other during their diffusion on the lattice. this means that the    and    exist 

at every H diffusion step, while the H2 production rate    only occurs at specific situations that H atoms 

are sitting at neighboring sites of the lattice. If one know the probability (P) that having two neighboring 

H atoms on the lattice during H diffusion, the average rate for H2 production for each H diffusion step can 

be scaled to   
     . The probability P can be estimated by Monte Carlo simulations: perform n steps of 

H diffusion step on an N×N square lattice, and the number of times that the two H atoms sitting beside 

each other is counted as  . Therefore, for each H diffusion step,     will be the estimated probability 

(P) for two H atoms sitting at neighboring sites of the lattice. Data regression returns the following 

relation between the probability P and the lattice size N:  

                                                         
 

 66 
 
 0

 
                                                                               (8.6) 

Now, there are three events in the system: H diffusion and CH4 dissociation and H2 production with 

rates of   ,    and   
 , respectively. This means that it will take an average of 𝑆          

  ⁄  H diffusion 

steps to execute either CH4 dissociative or H2 production event in ConKMC simulations. In AKMC, the H 

diffusion event is skipped, and the slow event CH4 dissociation or H2 production will be executed directly 

base on the probability of         
  ⁄  and        

  ⁄ , respectively. Meanwhile, the    will be updated 

as    𝑆   . By doing this, the AKMC allows the simulation get out of the “trap” caused by the surface 

diffusion of H. The same is true when C diffusion event are present in the event list. Therefore, the 

methodology discussed above can be applied to deal with the H+H→H2, C+C→C2, C+H→CH and C (or 

C3)-CNT attachment events since the occurrence of these events also involve the fast surface diffusion of 

surface species like H, C and C3. A detailed discussion on the scaled rates for these events is presented in 

Appendix B. Note that for cases that there exist one or more events whose reaction rate is close to H or C 

diffusion rate, the AKMC will be similar to the ConKMC algorithm. Note that, in the development of 

AKMC, the probability (P) parameter used in the scaled reaction rate is developed by assuming all the 

surface species can move freely on the lattice. If the lattice sites are blocked by non-movable 

intermediates, e.g. large Cx cluster, this will change the probability (P) that two diffusive atoms will 

“meet” each other, and therefore affects the accuracy of the AKMC prediction. This is rise significant 

problem especially at a high Cx surface coverage. In such cases, a more accurate fitting of the P parameter 

is required. This is the main limitation of the present AKMC algorithm. On the other hand, on a non- or 

relatively low Cx blocked surface, the AKMC allows the simulation of the present catalytic system 

10
5
~10

6
 time faster than the ConKMC, thus making this the key benefit of the present approach. A 

comparison between the two approaches is presented in section 8.3. Note that the selected event can be 
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executed according to the reaction patterns presented in the Appendix A. For example, if the CH4 

dissociative adsorption event is chosen, CH3 and H atom are added to two neighboring unoccupied sites 

in the simulation grid.  

8.2.4.1 Size of the lattice 

The KMC simulations will be executed over Ni (111) surface represented by an N×N lattice. The 

edges of the simulation lattice are assumed to be the CNT/Ni intersections. Therefore, no periodic 

boundary conditions were applied at the edge of the simulation lattice. The Ni catalyst is assumed to be a 

sphere particle with a diameter of d nm. During the CNT growth, this sphere particle is lifted up with the 

top half surface exposed to the gas phase CH4. The surface area of this half sphere particle is     ⁄ , 

which is assumed to be equal to the surface area of the lattice  0        nm
2
. Note that the bonding 

distance between two Ni atoms on the Ni (111) surface is about 0.249 nm. This result in a relation 

between the diameter of the particle d and size of the lattice N as follows:  

                                                 0     √
 

 
 nm                          (8.7) 

 

The above equation allows us to predict the CNT growth rate as a function of the size of the Ni 

catalyst particle. 

 

8.3 Results and discussion 

A series of KMC simulations for the Ni catalytic CNT growth was performed at different 

temperatures ranging from 500 to 650   over the Ni (111) surface to predict the CNT growth kinetics. 

The gas phase is pure CH4, and the pressure was set constant at 1 atm. The simulation conditions were 

chosen to mimic those of the experiments of Amin et al. [54], in which porous alumina supported Ni were 

used as the catalysts with 100% methane at a flow rate of 240 ml/min. 

In order to validate the proposed AKMC algorithm, the CNT growth rate at different temperatures 

predicted via ConKMC and AKMC have been compared (Figure 8.3). The results show a reasonable 

quantitative agreement in the solution of the two methods. That is, the CNT growth rate predicted by 

AKMC agrees with that obtained by ConKMC.However, the CPU time consumed by each method differs 

substantially. At T=500  and simulation time t ≈8.2×10
−4 

s, the mean CPU time spend with ConKMC is 
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about 70h. However, the CPU time required by the AKMC is around 0.6s, which is approximately 4×10
5
 

times faster than the traditional KMC method (ConKMC). Note that the mean CPU time is obtained by 

performing multiple runs and that the markers in the figures represent the min/max obtained from these 

multiple simulations. 

Figure 8.3 also shows that the computational speed-up obtained with AKMC depends on the 

temperature of the system. As the temperature increases, the rates of slow events increased more rapidly 

than that of the fast events. This reduces the rate scale separations (ratio of rate constant between the fast 

and slow event) of the systems. For instance, the rate scale separations between C diffusion and CH4 

dissociation is 4.2×10
8
 at T=650 , 8.1×10

8
 at T=600 , and 3.6×10

9
 at T=500 . This shows that the 

CPU time for the AKMC method depend strongly on the rate scale separation. 

 

 

Figure 8.2 CNT growth rate predicted by a ConKMC and AKMC simulation by using the same kinetic 

parameters under different temperature on a 150×150 lattice (d=30nm). 

8.3.1 Validation of the CNT growth model 

The experimental study of Amin et al. [54] was used as a reference in the present AKMC simulations 

to validate the present microkinetic model. In that study, the CNT growth rate at 500, 550, 600 and 650  
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was reported (Figure 8.4), and they observed that the diameters of the Ni particles are in the range of 

20 40 nm at 550 . Therefore, the AKMC simulations were first performed at 550   on a 100×100 and 

200×200 lattice, which correspond to Ni particles with diameters around 20 and 40nm, respectively. The 

corresponding CNT growth rate predicted at T=550  by AKMC simulations are 1.78 and 0.91g
C
/g

Ni
/min 

for the 100×100 and 200×200 lattices, respectively,. These estimates are in the same order with the 

reported experimental growth rate 0.70g
C
/g

Ni
/min. Although the CNT growth rate predicted with the 

microkinetic model was overestimated, this deviation is related to the size of the Ni particle (the lattice) 

and the kinetic parameters (energy barriers) calculated from DFT, which are the key inputs to the model. 

Therefore, the effect of particle size on the CNT growth rate and its sensitivity on some of the important 

kinetic parameters, e.g. the energy barrier for CH4 dissociation, C surface diffusion and C−CNT 

incorporation, were studied and described next 

8.3.2 Ni particle size effect  

As reported in many experimental studies [55−61], as the growth temperature increases, more 

agglomeration occurs resulting in larger-sized catalyst particles and therefore larger diameter nanotubes. 

Fu et al. [56] reported that CNTs synthesized at 500 , 550 , and 700  had outer diameter distribution 

of 15 ∼ 30, 20 ∼ 40, and 20 ∼ 90 nm, respectively. Michalkiewicz et al., [57] reported that the average 

diameters of carbon nanomaterial produced over Ni/ZSM−5 (300) increased from 23 to 57 nm as the 

temperature increased from 450 to 650 . Note that this is only the average diameter of the CNT, i.e., 

there will be a wider range of the size distribution at different temperatures. Based on these experimental 

observations, a size distribution of 20−80nm at reaction temperatures from 500−650  was considered in 

the present study. Figure 8.4 shows the CNT growth rates predicted by the AKMC simulations at 

different temperatures and size of Ni particles. As shown in this Figure, the AKMC simulation follows 

the behaviour exhibited by the experimental data. Moreover, a qualitative agreement between the 

experimental data and AKMC predictions was observed at the following the particle size distribution: 

d=40nm at T=500 , 40~60nm at 550 , 60~80nm at T=600  and ~80nm at T=650 . These results 

suggests that the CNT scheme shown in Table 8.1 captures the essential surface chemistry involved in the 

growth of CNTs on Ni. Moreover, it also validates the proposed CNT growth mechanism by the surface 

diffusion of C atoms and small carbon clusters. 
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Figure 8.3 CNT growth rates obtained at different temperatures predicted by AKMC simulations. The 

experimental data is taken from reference [54]. 

 

8.3.3 Sensitivity on the kinetic parameters 

Thus far, the CNT growth rate predicted by AKMC simulations are obtained by using the kinetic 

parameters directly obtained from DFT calculations. Previous experimental and theoretical studies have 

reported that the activation energies associated with Ni catalytic methane cracking are in the range of 

0.91−1.01 eV [62-64] and 1.06−1.32 eV [65-67], respectively. These discrepancies in the results illustrate 

the uncertainties in the DFT estimation of activation energies, which translates into uncertainties in the 

predicted CNT growth rate. To examine the sensitivity of the predicted CNT growth rates on the 

energetics used in the AKMC simulations, the uncertainty associated with the energetics in the critical 

elementary steps were studied.  

The important elementary steps for Ni catalytic CNT growth are i) CH4 dissociative adsorption, 

which is the rate-determining step for CH4 dissociation on Ni, producing the feeding source of C atoms; 

ii) C surface diffusion, which determines the rate that the C atom can reach the CNT/Ni; iii) C 
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incorporation reaction at the CNT/Ni edges, which determines the rate that C atoms contribute to the CNT 

growth; iv) Cx cluster nucleation, i.e.,  the formation rate of non-movable large Cx cluster that is directly 

related with the deactivation of Ni catalyst. To evaluate the sensitivity of the predicted CNT growth rates 

on the energetics of these reactions, their energy barriers were adjusted with reasonable ranges (±10%). 

Note that the energetic parameters for all the other elementary steps were kept fixed in the analysis. 

Figure 8.5 compares the simulation results obtained at different deviations in CH4 dissociation barriers. 

The results show that CNT growth rate is very sensitive to the CH4 dissociation barrier, i.e., uncertainty in 

the CH4 dissociation barrier of 0.05 eV yields an uncertainty in the CNT growth rate of a factor of 2 at the 

investigated temperatures. This indicates that CH4 dissociative adsorption is the rate-determining step for 

CNT growth. The analysis also show that the deviation (±10%) of the barriers of the C surface diffusion, 

C incorporation reaction and Cx cluster nucleation has only minor effects on the steady state CNT growth 

rate. Since variability is very small, this effect is not show in Figure 8.5.  However, they are expected to 

affect the deactivation of the catalyst. The relative barriers for the C−CNT incorporation and Cx cluster 

formation determined the competition between CNT growth and catalyst deactivation. Low Cx cluster 

nucleation barrier means high probability for Cx cluster formation, which will results in a fast deactivation 

of the catalyst. On the other hand, low barrier for C−CNT incorporation will make the addition of surface 

C atoms in to CNT wall much easier. This reduces the chances for C atoms to remain on the catalyst 

surface and therefore hinders the formation of Cx clusters. However, the study on the uncertainty of these 

barriers on catalyst deactivation is limited by the computational resources, i.e., no deactivation was 

observable while simulating the model for a reasonable CPU time (7days).   
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Figure 8.4 Sensitivity of the CNT growth rates on the CH4 dissociation energetics. The simulations were 

performed on different particle size at different temperatures: d=40nm at T=500  and 550 , d=60nm at 

T=600  and d=60nm at T=650 . 

 

8.3.4 Role of C cluster surface diffusion 

As discussed in section 8.2.1, the C3 trimer surface diffusion and incorporation to the CNT wall were 

explicitly considered in the proposed CNT growth mechanism. To determine the role of cluster surface 

diffusion on the CNT growth kinetics, simulations were carried out in both the presence and absence of 

C3 surface diffusion in the model. Note that in the absence of C3 surface diffusion means that only C 

atoms were allowed to move on the catalyst surface. The results show that the simulations carried out in 

the absence of C3 cluster surface diffusion resulted in an initial CNT growth rate of 0.41g
C
/g

Ni
/min at 

T=500  and d=30nm. The CNT growth rate starts to decrease after t=3s, showing the fast deactivation of 

the Ni catalyst due to the formation of Cx clusters. This is because the relatively small energy barrier for 

C2 dimer and C3 trimer nucleation lead to a relatively easy formation of small C2 and C3 clusters, when 

there is enough C atoms on the catalyst surface. Sine C3 trimer are assumed to remain on the same lattice 

site on the catalyst surface, it will be fast nucleated with oncoming C atoms and be able to form larger 
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carbonaceous clusters (Cx), which will eventually deactivate the catalyst. Simulations carried out in the 

presence of C3 surface diffusion resulted in a same CNT steady growth rate with that obtained in the 

absence of C3 surface diffusion. However, by allowing the C3 cluster to diffuse on the surface and 

nucleate to CNTs, no deactivation is observed during the first 8 mins of the reaction process. Note that the 

CPU times required to reach t=8mins at T=500  and d=30nm is about 130h. The KMC simulation 

indicates that sufficiently rapid C and C3 cluster diffusion is required to avoid the catalyst encapsulation. 

During CNT growth, the deposited C atoms together with the small clusters must incorporate into the 

CNT wall through the CNT-catalyst contact edge.  

 

8.3.5 Carbon bulk diffusion and bamboo−like CNT 

As reported in many studies, CNT can be produced with the bamboo structure [59,60,68,69]. It is 

believed that the surface and bulk diffusions of carbons play an important role in determining their 

structure [68-70]: C atoms surface diffusion forms the walls of the carbon nanotubes from the side surface 

of the catalyst, whereas the inner separation layers were formed by carbon bulk diffusion. Due to 

difference between the rate of carbon surface and bulk diffusion in the catalyst, then a bamboo-like CNT 

will be produced [68].   

As discussed in section 8.2, both surface and bulk diffusion of C atoms is considered in the proposed 

CNT growth mechanism. Therefore, the C atoms surface and bulk diffusion can explicitly tracked during 

the KMC simulation model, and therefore evaluate the effect of particle size and temperature on the 

structure of the bamboo-like CNTs by counting the number of C atoms (Nb) that diffuse through the Ni 

particle and the number of C atoms (Ns) that contributed to CNT walls by surface diffusion. A high 

   𝑠⁄  ratio represents more C atoms was diffused into the bulk of Ni. Figure 8.5 shows the calculated 

   𝑠⁄  ratio at various sizes of particle and temperature. The results show that CNT growth by C surface 

diffusion is favoured with small particle size and low temperature. On other hand, an increase number of 

C atoms will go through bulk diffusion on a large sized particle and high temperature. This is due to the 

fact that, on a small catalytic particle, the surface diffusion of C atoms will be restricted to a limited area. 

This increases the probability that the surface C atoms diffuse to the CNT/Ni edges and then promote the 

C incorporation into CNT wall. For the temperature effect, as discussed in section 8.3 the time scale 

separation decreases as the temperature increases. That is, as the temperature increases, the slow bulk 

diffusion rate increases more rapidly than that of the fast surface diffusion. Consequently, there will be 

more surface C atoms contribute to the CNT growth by the surface diffusion at a low temperature. Since 
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the separation layers are grown mainly by the bulk diffusion of carbons, its rate decreases as the particle 

size or temperature decreases. Consequently, at low temperatures or with a small particle size at which 

bulk diffusion is hampered, one may expect higher spacing between two adjacent bamboo structures; 

whereas at high temperatures or with a large particle, the spacing is relatively short due to the rapidly 

increase of bulk diffusion rate. These results are in good agreements with the experimental observations 

[69-71]. 

 

 

Figure 8.5 The ratio S between number of C atoms that go through bulk diffusion and surface diffusion at 

different temperatures and size of Ni particles. 

 

8.4 Summary 

A KMC model was constructed and used to follow the molecular transformations and the kinetics for 

the CNT growth from CH4 feedstock over the Ni catalyst. The CNT growth kinetics was established from 

first-principles-based DFT calculations over Ni (111) surface. The ab initio results were used to construct 

a kinetic database for a novel variable time step KMC framework that was developed to overcome the 

large disparities in time scale in the present system. The simulations explicitly follow the elementary steps 

involved in the CNT growth that include CH4 dissociation, C surface and bulk diffusion, C atoms 
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nucleation, C3 trimer diffusion and C and C3 incorporation into CNT wall. The KMC simulation matches 

experiment measurements and provide new insights regarding the mechanism of CNT growth. 

The KMC simulations leads to some general conclusions regarding the CNT growth process over Ni 

catalyst: i) the growth of CNT is due to the addition and attachment of C adatoms and small carbon 

clusters, e.g. C3, through surface diffusion at the multistep graphite-Ni edges; ii) the surface diffusion of 

small carbon clusters, e.g. C3 trimer, is crucial for a realistic description of the CNT growth kinetics since 

it prevents further nucleation of the C atoms on the catalyst surface, and therefore inhibits fast 

deactivation of the catalyst; iii) sensitivity analyses reveal that the overall CNT growth rate is dominated 

by the dissociative adsorption of CH4 onto the Ni surface; iv) the activity of the Ni catalyst is controlled 

by the balance of C atoms nucleation on the surface, C and C3 trimer surface diffusion and their addition 

in to the CNT wall at the boundary of the Ni−CNT growth interface. If the mobility and addition of these 

carbon species is not sufficient, the slowly moving C atoms may nucleate into graphitic islands on the 

catalyst surface and eventually encapsulate the catalyst; v) the differences between the rates of C surface 

and bulk diffusion in the catalyst result in the formation of the bamboo-like CNT; its structure depends on 

the size of the Ni particle and temperature of the system. 
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Chapter 9  

Conclusions and Recommendations 

9.1 Conclusions 

The focus of this research was to provide a comprehensive understanding of Ni catalytic methane 

cracking and carbon nanotube/nanofiber growth mechanism by using DFT calculations. The influence of 

the Ni catalyst surface topologies and the carbon depositions on the methane dissociation properties were 

studied first. It was found that the less packed Ni surfaces, e.g. Ni (100) and Ni (553) are generally more 

reactive towards CHx (1-4) adsorption and dissociation than the close packed Ni (111) surface. This is 

explained by the investigation of the d-band center of the Ni atoms on the three surfaces. The results show 

that the Ni atoms with low co-ordination number shifted the d-band center towards the Fermi level and 

changed the width of the d-band, which makes the Ni (553) and Ni (100) surfaces more reactive. The 

results also suggest that the C formation is highly likely to occur at the step and at the open surfaces. For 

the effect of carbon deposition, the results show that CHx species adsorption on C deposited Ni surface is 

less stable as compared with that on Ni (111) clean surface. Moreover, the study of the CHx 

dehydrogenation shows that the presence of carbon increases the barrier for CHx activation, especially for 

CHx dehydrogenation on Ni (111)–Con where the Ni surface was pre-covered with surface C atom: CHx 

species encounter a highest energy barrier for dissociation due to the electronic deactivation induced by 

C−Ni bonding and the strong repulsive carbon-adsorbates interaction. This study provided a more 

realistic estimation of the kinetic parameters for this system, where the effect of carbon deposition on the 

CHx dissociation barriers should be considered in the analysis. 

The study of Ni catalytic methane cracking is then further extended by considering the effect of γ-

Al2O3 support on the energetics of CH4 and H2 dissociation. This study found that CH4 and H2 

dissociations are kinetically preferred at the particular Ni atoms located at the nickel-alumina interface 

when compared with the top of the Ni cluster. The same is true for CH3 and H adsorption. The Hirshfeld 

analysis of the charges of the surface Al and O atoms showed that the Al atom works primarily as a 

charge donation partner. Thus, it is expected that the interface adsorption is stabilized by the Al 

(donor)−Ni−adsorbates (acceptor) effect. The results obtained from the DFT calculations have indicated 

that the metal-oxide interface plays an essential role in the dissociation of CH4 and H2. Moreover, in this 

study, the decrease of the metal support interaction was observed upon CH3 and H adsorption on both 

S(Ni4) and NS(Ni4). The present study shows that the bonding of adsorbates to the cluster affects the 
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cluster structure and its bonding to the support, resulting in a decrease in the metal-support interaction. 

This observation might provide insight regarding the interaction between the Ni and the γ-Al2O3 support 

and the carbon nanotube (CNT) growth mechanism, in which the weak metal-support interaction is 

believed to contribute to the tip growth mode of CNT. 

The carbon atoms, as a result of the methane cracking reaction, can form various carbonaceous 

materials, i.e., CNTs and graphene, depending on the catalyst and reaction conditions. To have a better 

understanding of the role of metal elements in the catalytic growth of these carbonaceous materials, the 

energetics of the crucial steps involved in the growth of CNTs/graphene, e.g., C−H bond activation, C 

atoms diffusion and the nucleation of diatomic carbon and trimer species on the (111) facets of transition 

metals (Fe, Co, Ni, Cu), was investigated using DFT. It was found that Fe is the most active metal for 

CHx dissociation followed by Ni, Co and Cu. Also, the mobility of the surface C atoms follows the order: 

Cu < Ni < Co < Fe. A somewhat similar trend was observed for the carbon nucleation barriers: Cu < Ni ≈ 

Co < Fe. These observations explains why Ni-based catalyst is a suitable CVD substrate for growing 

CNT: the relatively low energy barrier for C−H bond activation on Ni provides an easy source for the C 

atoms; the good mobility of the surface C atoms, together with high C−C nucleation barriers, allows the C 

atoms easily diffuse to the CNTs/Ni edge and contribute to the CNT growth, before they nucleate together 

and deactivate the Ni surface. Meanwhile, this study also showed that Cu may be an appropriate catalyst 

for the CVD synthesis of graphene due to the particularly low diffusion and nucleation barriers of C 

adatoms on Cu, which suggest that C atoms tend to be more uniformly distributed on the Cu surface and 

can easily nucleate the Cu surface. The low reactivity of Cu towards C−H bond activation, however, will 

limit the graphene growth rate. Therefore, Cu-based catalyst doped by CHx dissociation reactive Fe and 

Ni atoms, i.e., Cu8Fe and Cu8Ni alloy, were proposed. The DFT results study show that the designed 

alloys (especially Cu8Ni) increase the reactivity for CHx dehydrogenation, indicating that it can be a 

suitable catalyst for the mass production of graphene. 

Ni-based catalyst has been supported by previous DFT calculations as a suitable substrate for CNT 

growth. To provide more insights regarding the Ni catalytic CNT/CNF growth mechanism, a systematic 

study of the behavior of the carbon atom and cluster during the early stages of CNT growth on Ni (111) 

was performed using DFT calculations. The structure and relative stability of adsorbed C intermediates, 

and their mobility on the Ni (111) surface were investigated in this work. Moreover, the reaction 

pathways and energetics for the nucleation of the carbon clusters on the Ni (111) surface were also 

explored. The calculations show that carbon clusters are more stable than the separated carbon atoms. 
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This indicates that, thermodynamically, atomic carbons tend to nucleate to form carbon clusters on the Ni 

(111) surface. There is also a thermodynamic preference for different carbon cluster configurations: linear 

carbon structures are more stable than branched and ring carbon configurations of equal sizes. This study 

also found that the monomer is not the only mobile species on the Ni (111) surface; small clusters, at least 

up to the tetramer, are also mobile. The calculation of the interactions between the carbon cluster and the 

Ni surface shows that branched carbon clusters have stronger interaction with the Ni substrate when 

compared to the carbon chains. This indicates that carbon chains generally have higher mobility than 

branched carbons. This cluster mobility is expected to play an important role in the reaction kinetics of C 

on Ni. Moreover, it was found that the formation of C chain and branched species by the addition of both 

the single C atom and C3 trimer is possible. These new insights about the properties of C cluster are 

crucial to understand the growth mechanism of CNT.  

Finally, a first principle-based KMC model for CNT growth from CH4 feedstock over the Ni catalyst 

was developed, in which the energetic results obtained from DFT calculations were used to construct the 

kinetic database for a novel KMC framework (AKMC) that are developed for overcoming large 

disparities in time scale of the system. The proposed KMC simulation explicitly follows the elementary 

steps involved in the CNT growth that include CH4 dissociation, C surface and bulk diffusion, C cluster 

nucleation and diffusion, CNT growth contributed by C and C3 incorporation into CNT wall. The first-

principles-based KMC simulation matches experiment measurements verifying the proposed CNT growth 

mechanism. This study provides new insights regarding the mechanism of CNT growth. That is, CNT 

growth is dominated by the surface diffusion of carbon species. Moreover, the surface diffusion of the 

small carbon cluster, e.g. trimer, is also a critical step in the growth mechanism of the CNT. It prevents 

further nucleation of the C atoms on the catalyst surface, and therefore inhibits the deactivation of the 

catalyst.  

 

9.2 Recommendations 

This research represents a promising step towards a clear understanding of methane catalytic cracking 

and CNT growth mechanism. However, there are still many challenges ahead for the development of 

novel catalysts methane catalytic cracking and CNT growth. The following are recommendations for 

future research: 
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i) Catalyst deactivation due to C surface nucleation 

Even though good agreement between the KMC simulated CNT growth rate results and the 

experimental data were obtained, the current KMC simulation is not fully applicable to model the catalyst 

deactivation resulted by the formation of large non-movable Cx clusters. This is due to the limitations of 

the present AKMC algorithm in calculating the scaled reaction rate, which has been discussed in section 

8.2.4, Chapter 8. Therefore, an advanced KMC algorithm and modeling method that can accurately 

describe the catalyst deactivation due to large C cluster formation is needed. This study may provide 

insight for the catalyst deactivation during the CNT growth. 

ii) The effects of alloys  

The present study has shown that methane dissociation and CNT growth properties varies with 

different transition metals (e.g. Ni, Cu, Co and Fe). It has also shown that Ni- catalyst can be good 

candidate for CNT growth. However, knowledge of the alloying effect on the Ni catalytic CNT growth is 

still limited. Theoretical study on this topic is rarely reported in the open literature. Such studies will help 

for a better design of catalyst for CNT growth.  

iii) The role of the oxide supports in the CNT growth  

Regarding the CNT growth mechanism, the current studies have only focused on the carbon diffusion 

and nucleation on the metal catalyst surface. These reactions, however, may also occur on the oxide 

supports. The study on the role of the oxide supports in the CNT growth will further extends the 

understanding of the CNT growth mechanism.  
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Appendix 

Appendix A: Elementary Reaction Patterns 

 

1) CH4 dissociative adsorption: 

CH4(gas)  * * 

 

 

 

 CH3* H* 

 

2) CH4 production: 

CH3* * 

 

 

  

 CH4(gas)  

 

* * 

 

3) CHx (x=1-3) dissociation: 

CHx* * 

 

 

 

CHx-1* H* 

 

4) CH production: 

C* H* 

 

 

 

CH* * 

 

5) H2 production: 

H* H* 

 

 

  

 H2(gas)  

 

* * 

 

6) C2 nucleation reaction: 
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C* C* 

 

 

 

C2* * 

 

7) C3 nucleation reaction: 

C2* C* 

 

 

 

C3* * 

 

8) Cx nucleation reactions: 

C2* C3* 

 

 

 

Cx* Cx* 

 

C3* C* 

 

 

 

Cx* Cx* 

 

C3* C3* 

 

 

 

Cx* Cx* 

 

Cx* C* 

 

 

 

Cx* Cx* 

 

Cx* C3* 

 

 

 

Cx* Cx* 

 

9) H surface diffusion: 

H* * 

 

 

 

* H* 
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10) C surface diffusion: 

C* * 

 

 

 

* C* 

 

11) C3 surface diffusion: 

C3* * 

 

 

 

* C3* 

 

12) CNT growth: 

CNT 

nC 

C @ 

edge 

lattice 

 

 

 
CNT 

(n+1)C 
* 

 

CNT 

nC 

C3 @ 

edge 

lattice 

 

 

 
CNT 

(n+3)C 
* 

 

13) C bulk diffusion: 

C* 

 

 

 

* 

(C disappear on the lattice, and is counted as go into the bulk) 
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Appendix B: Reaction rate in AKMC: 

1) Frequencies ( 𝐴𝐴) that two molecular A sitting as neighboring sites on the lattice.  𝐴 is the total 

number of A on the lattice; N×N is the size of the lattice. 

 𝐴𝐴  
 𝐴

   

 

 

    
 
 0

 
   

Modified reaction rate: 

   𝐴𝐴     𝐴𝐴 

 eactions that applied: H+H→H2; C+C→C2 

2) Frequencies ( 𝐴𝐵) that molecular A and B sitting as neighboring sites on the lattice.  𝐴 and  𝐵 are the 

total number of A and B on the lattice, respectively. 

 𝐴𝐵  
 𝐴   𝐵

    
 
 0

 
   

Modified reaction rate: 

   𝐴𝐵     𝐴𝐵 

Reactions that applied: C+H→CH; C2+C→C3 

3) Frequencies ( 𝐴𝐸) that molecular A reaches the edge sites on the lattice.  

 𝐴𝐸  
 𝐴

  
 
 0

 
  

Modified reaction rate: 

   𝐴𝐸     𝐴𝐸  

Reactions that applied: C*(E)+CNT(n)C → CNT(n+1)C; C3*(E)+ CNT(n)C → CNT(n+3)C 

 


