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Abstract

This thesis consists of three essays on the economics of ramping rate restrictions at hydro

power plants. The first essay examines the impact of ramping rate restrictions imposed

on hydro operations to protect aquatic ecosystems. A dynamic optimization model of the

profit maximizing decisions of a hydro operator is solved for various restrictions on water

flow, using data for a representative hydro operation in Ontario. Profits are negatively

affected, but for a range of restrictions the impact is not large. Ramping restrictions cause

a redistribution of hydro production over a given day, which can result in an increase

in total hydro power produced. This affects the need for power from other sources with

consequent environmental impacts.

The second essay uses a real options approach to study the impact of ramping rate

restrictions on hydro power plants. We consider the effect on profits from electricity gen-

eration in order to inform policy decisions about ramping rate restrictions. A novelty of

the essay is in examining the optimal operation of a prototype hydro power plant with

electricity prices modelled as a regime switching process. We show that profits are nega-

tively affected by ramping restrictions. Interestingly for a large range of restrictions, profit

is not sensitive to ramping restrictions. The results point to the importance of accurately

modelling electricity prices in gauging the trade offs involved in imposing restrictions on

hydro operators which may hinder their ability to respond to volatile electricity prices and

meet peak demands.

The third essay investigates the impact of ramping rate restrictions on hydro power

plants using a three regimes model with multiple jump sizes. We consider how the multiple

jump sizes among these three regimes affect the impact of ramping restrictions on the

prototype hydro power plant. The numerical experiments provide further evidence that

ramping restrictions have a larger impact when the expected variation in price is increased

such as through an increase in the jump size which makes it desirable to change water

release rates relatively frequently.

In both non-stochastic and stochastic settings, these three essays have highly consistent

results on the impact of ramping restrictions on the hydro station’s profit. We observe
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profits are significantly affected (by less than 7% in essay one, by less than 10% in essay

two, and by less than 9% in essay three) in the case of the most severe ramping constraints,

but we also observe a range of less severe ramping restrictions over which profits are not

substantially affected (by less than 2% in essay one, by less than 3% in essay two, and by

less than 2% in essay three). Results from this thesis should facilitate the implementation

of ramping rate restrictions for environmental and economic benefits.
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Chapter 1

Introduction

Hydro power is currently favored as a source of clean energy with several desirable features

including no carbon emissions, low operating costs, the ability to meet peak demands,

significant operational flexibilities and high reliability. In an era of deregulated electricity

markets, global climate change and volatile prices for fossil fuels, these key features of

hydro power become extremely valuable. However, many studies show that hydroelectric

production can also have significant negative effects on the environment including impacts

on the aquatic ecosystem due to changes in in-stream flow rates, reservoir levels, and water

temperatures which cause changes in the chemical and physical composition of the released

water. In addition flow fluctuations can impact beaches and cause bank erosion affecting

shore areas that provide critical wildlife habitat for native fishes and other aquatic flora

and fauna (Edwards et al. [1999]).

There are numerous studies in the biological and environmental sciences literature ex-

ploring these negative consequences of hydro operations. There is a consensus that modified

water flows are affecting fish and fish habitat, but the response varies widely. The extent

of these negative environmental impacts is case specific, depending on the size of hydro

operation and the fragility of the surrounding ecosystem including the characteristics of

the water body that receives the released water. Examples of studies documenting these

effects include Murchie et al. [2008] and Marty et al. [2009]. Niu and Insley [2013] reference

1



numerous other studies which examine the environmental consequences of altered water

flows caused by hydro operations. The consequences for the surrounding ecosystem may

be judged to be serious enough to warrant restrictions on the management of water flows

by a hydro operator. This is an issue that has received attention in numerous jurisdictions

across North America. Currently, in Ontario both electricity producers and the Ontario

Ministry of Natural Resources are interested in testing whether restricting ramping rates

through turbines at hydroelectric facilities can provide ecological benefits without unduly

affecting hydro production (Smokorowski et al. [2009]). Some examples of hydro dams

that operate with ramping constraints include the Glen Canyon Dams in Arizona (Veselka

et al. [1995] and Harpman [1999]); the Sugar Lake Dam in British Columbia (BC Hydro

[2005]); and the Kerr Dam in Montana (Flathead Lakers [2005]).

Hydro operators seeking to maximize profits face a complex dynamic optimization

problem. The production of electricity depends in a non-linear fashion on the speed of

water released through turbines as well as on the reservoir head, which refers to the height

of the water in the reservoir. Releasing water at any given hour reduces the head and

hence negatively affects the amount of power that can be produced in the next hour.

Eventually the released water will be recovered through water inflow into the reservoir.

Maximizing profits over time is thus a balancing act between water inflow to and outflow

from the reservoir while attempting to match changing electricity demands over time. In

additions, hydro power stations are typically required to meet operational, physical and

legal requirements. With no restrictions, hydroelectric facilities will maximize profits by

adjusting water flows so that electricity production is highest when it is most profitable.

This implies hydropower stations will tend to increase the rate of water flow (or ramp up)

when prices/demands are high and decrease the rate of water flow (or ramp down) when

prices/demands are low to let water levels in the dam recover. Any restrictions imposed on

water flows reduce efficiency, profitability, and the ability to react to changes in electricity

demand and price.

Ramping rate restrictions are believed to provide environmental benefits by protecting

downstream fish, fish habitat and the productive capacity of the river. However, to the

extent that hydro production is affected, there will also likely be offsetting impacts on other
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sources of electric power generation such as thermal generation from coal, oil or natural gas.

This would have added environmental consequences since thermal power is associated with

emissions of greenhouse gases, and pollutants such as SO2 and NO2. Hence in evaluating

ramping rate restrictions it is important to study the trade offs between protecting aquatic

ecosystems and the optimal operation of hydropower plants to satisfy electricity demand.

In much of the existing research on electric power scheduling, ramping rate restrictions are

regarded as physical/technical constraints in optimization models,1 rather than legal/policy

constraints. There are currently only a limited number of studies that estimate the extra

costs and associated benefits of restricting ramping at hydroelectric generating stations.

In this thesis, we examine the effect of ramping rate restrictions imposed by a regulatory

authority on a power plant’s operation and profit. Using a model of a prototype hydro plant

we examine the tradeoff between the desire for stricter control of water flows to protect the

aquatic environment and the need to vary water flow in response to changing electricity

demand and price. We also consider the impact of ramping restrictions on the need for

alternate sources of power which may also have undesirable environmental consequences.

This thesis will contribute to our understanding of the economic issues involved in imposing

ramping restrictions on hydro electric facilities.

In the second chapter, we examine the impact of flow regulations on optimal hydro

operations and profitability. We solve a dynamic non-linear model of the profit maximizing

decision by a private hydro operator given restrictions on flow rates imposed by a regulator.

We assume the hydro plant must meet a minimum level of contract electricity demand and

if unable to do so through hydro production, must buy on the spot market. Using data

that are representative of a medium-sized hydro operation in Ontario, we investigate the

operator’s optimal decisions regarding hydro production and power purchases in on-peak

and off-peak periods and examine the sensitivity of profits to ramping rate restrictions.

We abstract from the issue of electricity price uncertainty by assuming on- and off-peak

prices are known and constant.

In principle, the optimal ramping rate restrictions can be identified through a cost

1Thermal units, especially large and efficient units, frequently have the most significant ramp limits in
the system (Svoboda et al. [1997]). In this thesis, we only consider the ramping issue for hydro units.
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benefit analysis which includes the lost profit for the hydro operator, the environmental

impact of changed reliance on thermal power, and the environmental benefit for the river

ecosystem. We assume that any change in hydro production implies an equal offsetting

change in thermal electric generation - either coal or natural gas. We estimate the envi-

ronmental cost or benefit of this change in thermal production due to the resulting change

in air pollution emissions. Currently, there are no studies available to measure the en-

vironmental benefit of ramping restrictions for the river ecosystem in terms of monetary

values. However we undertake to estimate the other two impacts to provide a lower bound

for the environmental benefit of ramping rate restrictions that would be required in order

for them to be worthwhile. This chapter has identified some of the important trade offs

which include the impact on hydro operator profits as well as the environmental impact

of a change in the intensity of use of other types of power. However, these results are

obtained under relatively restrictive assumptions. For example, the optimization model is

solved in a deterministic framework. Uncertain electricity prices as well as water inflows

imply that optimal hydro power operation is best studied in a stochastic framework.

In the third chapter, we investigate the impact of ramping restrictions on hydro plant

operations and profitability using a Markov regime switching model of electricity prices.

Hydro operations are modelled as a stochastic control problem subject to various physical

and environmental constraints. Under the risk adjusted measure, we use the standard

hedging approach in options pricing to derive the Hamilton Jacobi Bellman Partial Differ-

ential Equation (HJB-PDE) for the value of the hydro power station. The optimal ramping

rate for water releases is obtained by maximizing the value of the hydro plant. The opti-

mal control is determined by solving the HJB-PDE numerically using a fully implicit finite

difference approach with semi-Lagrangian time stepping. Using the same prototype hydro

plant as chapter 2, we examine the impact of a range of ramping restrictions on hydro

plant operations and profitability. We focus on how the impact of ramping restrictions

depends on the characteristics of the assumed price process such as the volatility, proba-

bility of regime shift, speed of mean reversion, and long run average price and relies on the

cost of generating hydroelectric power (relative to the price level). For comparison we also

examine results for a single price regime case to determine how the presence of two price
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regimes affects hydro plant value and optimal operations. Given the problematic nature

of estimating the environmental benefits or costs of different ramping rate restrictions, we

seek instead to examine the other side of the equation - the costs of these restrictions in

terms of lost profitability. Knowledge of these costs will help illuminate the trade offs

involved and inform the design of regulations.

In the fourth chapter, we make a further investigation on the impact of ramping re-

strictions by extending the Markov regime switching model in chapter 3 to a model with

multiple jump sizes. In the empirical analysis, we conduct numerical experiments on the

jump sizes by proposing a regime switching model with three regimes: the base regime, the

first spike regime, and the second spike regime. Assuming different jump sizes among these

three regimes allows us to study the effect of multiple jump sizes on the impact of ramping

restrictions on the hydro plant. The different jump sizes among these three regimes could

be viewed as the simplest approximation of the random jump size observed from the data.

The main contribution of the thesis is in providing a comprehensive analysis of the eco-

nomics of ramping rate restrictions of hydro power plants for the purpose of environmental

protection. In both deterministic and stochastic settings, the thesis provides insights into

our understanding of ramping related issues for a hydro power station, including the op-

timal choice of ramping restrictions and possible policy recommendations. This thesis

extents the existing literature as follows:

• The empirical studies in this thesis are based on a unique data set for a prototype

hydro power plant in Ontario.

• Chapter 2’s contribution to the existing literature is in furthering our understand-

ing of the trade offs involved when ramping rate restrictions are imposed at hydro

facilities. In particular, we examine the sensitivity of hydro station profits to ramp-

ing restrictions as well as the potential impact on hydro electricity production and

production from alternative generating facilities.

• Chapter 2 contributes to the literature by using a replacement power approach (as-

suming that any change in hydro production implies an equal offsetting change in
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thermal electric generation) to measure the net cost of ramping rate restrictions (as

the loss in profit from hydro generation net of the value of any implied change in

polluting emissions from thermal plants). This net cost for the prototype hydro plant

may be viewed as the lower bound needed for the value of aquatic ecosystem benefits

of ramping restrictions for these restrictions to be worthwhile.

• Chapter 3 contributes to the literature by studying the impact of ramping restrictions

on hydro plant operations and profitability using a regime switching model of elec-

tricity prices, which we argue provides a more realistic characterization of electricity

prices than other models, such as jump diffusion, used previously in the literature.

• Chapter 3’s contribution to the literature is in furthering our understanding of how

the impact of ramping restrictions depends on the cost of generating hydroelectric

power and the characteristics of the assumed price process such as the volatility,

probability of regime shift, speed of mean reversion and long run average price, and

how the presence of two price regimes affects hydro plant value and optimal operations

and the impact of ramping restrictions on hydro plant.

• Chapter 4 contributes to the literature by empirically investigating the impact of

ramping rate restrictions on hydro plant operations and profitability using a regime

switching model with multiple jump sizes.

The main results of the thesis can be summarized as follows:

• In chapters 2, 3, and 4, for our medium-sized power plant we observe profits are sig-

nificantly affected for the most restrictive ramping constraints, but we also observe

a range of less severe ramping restrictions over which profits are not substantially

affected. This suggests that for some levels of ramping restrictions, the aquatic envi-

ronment can be properly protected while allowing hydro dams to maintain profitable

operations.

• In the second chapter, we find that ramping restrictions negatively affect profits to the

extent that they force a hydro operator to make different choices (on hydro production
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and power purchases) than when no ramping restrictions are imposed. One counter

intuitive result is that ramping restrictions can cause an increase in the total amount

of hydro power produced over a 24 hour period. Assuming that any change in hydro

production implies an equal offsetting change in thermal electric generation, the

increased hydro production constitutes an added environmental benefit of ramping

restrictions from reduced air pollution emissions, in addition to any benefits to the

aquatic ecosystem below the hydro dam.

• In the third chapter, we observe that in most scenarios the optimal control is of a

“bang-bang” type (ramping up or down at the upper limit). The exception to this is

when the dam is up against one of the other constraints such as maximum/minimum

release rates or maximum water content in the dam. We find that ramping restrictions

have a larger effect in an environment where frequent ramping up or down is desired.

A lower speed of mean reversion, higher volatility and more frequent transition to

the spike regime all have the effect of increasing the impact of ramping restrictions.

The results also show that price spikes have a significant effect on the value of the

hydro power plant, however the ramping effect on profits mostly depends on the level

of the price relative to the cost of generation (how long and how frequent the price

is close to or below the cost), but is not very sensitive to the price jumps.

• In the fourth chapter, our numerical experiments provide further evidence that ramp-

ing restrictions have a larger impact when the expected variation in price is increased

such as through an increase in jump size (for the third regime) which makes it desir-

able to change water release rates relatively frequently.

Results from this research should facilitate the implementation of environmental reg-

ulations designed to promote the integrity of river systems, as well as to provide a set of

planning tools regulators and industry can use to negotiate the optimal ramping rate for

environmental and economic benefits.
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Chapter 2

On the Economics of Ramping Rate

Restrictions at Hydro Power Plants:

Balancing Profitability and

Environmental Costs

2.1 Introduction

In this chapter, we examine the effect of ramping rate restrictions imposed by a regulatory

authority on a power plant’s operation and profit. We model profit maximization of a

prototype hydro plant, based on a medium size plant in Ontario. Assuming that the

plant must satisfy a minimum contract demand either through producing hydro power

or purchasing power on the spot market, we investigate the operator’s optimal decisions

regarding hydro production and power purchases in on-peak and off-peak periods. We

abstract from the issue of electricity price uncertainty by assuming on- and off-peak prices

are known and constant1.

1In this chapter, the profit maximization model is kept fully deterministic because it allows us to include
extra control variables and restrictions to implement the replacement power approach. This determinis-
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We also consider the potential impact of ramping restrictions on the need for other

sources of power generation. We assume that any change in hydro production implies

an equal offsetting change in thermal electric generation - either coal or natural gas. We

estimate the environmental cost or benefit of this change in thermal production due to the

resulting change in air pollution emissions.

There are currently no suitable monetary measures available in the literature of the

environmental benefit for the river ecosystem of ramping restrictions. In the absence of

such monetary measures, we determine the net cost of ramping restrictions as the loss in

profit from hydro generation net of the value of any implied change in polluting emissions

from thermal plants. This net cost for the prototype hydro plant may be viewed as the

lower bound needed for the value of aquatic ecosystem benefits of ramping restrictions for

these restrictions to be worthwhile.

This chapter’s contribution to the literature is in furthering our understanding of the

trade offs involved when ramping rate restrictions are imposed at hydro facilities. In par-

ticular, we examine the sensitivity of hydro station profits to ramping restrictions as well as

the potential impact on electricity production from hydro and other sources. Although the

impact of ramping restrictions on firm profits will depend on the specifics of the particular

hydro plant under consideration, as well as the market structure that the plant operates in,

we are able to draw some general conclusions. Ramping restrictions will have a negative

effect on profits to the extent that they force a hydro operator to make different choices

than when no ramping restrictions are imposed. The most obvious choice variable affected

is the allocation of power sales over a given day. Profits are reduced if ramping restrictions

force hydro operators to increase the amount of power sold in off-peak periods when prices

are lower. In our analysis we observe a significant effect on profits for the most restrictive

ramping constraints, but we also observe a range of ramping restrictions over which profits

are not substantially affected.

A more surprising result is that ramping restrictions can cause an increase in the total

tic model is clearly limited since it ignores the stochastic nature of electricity prices and water inflows.
However, in a dynamic optimization model with stochastic electricity prices and water inflows, it would
be notoriously difficult to conduct the replacement power analysis.

9



amount of hydro power produced over a 24 hour period. This is a consequence of hydro

operators’ efforts to maintain profits in the face of constraints. In response to the ramping

constraints, operators increase power production in off-peak periods while at the same

time attempting to maintain production as much as possible in on-peak periods. If the

increased hydro production implies a reduction in power produced by fossil fuel fired plants,

this may constitute an added environmental benefit of ramping restrictions, in addition to

any benefits to the aquatic ecosystem below the hydro dam.

It is important to note, however, that the analysis in this chapter is for a single hy-

dro plant. If ramping rate restrictions were applied to a significant portion of the hydro

generation capacity in the a particular province or state, then the impact on the entire

grid would need to be considered. In this chapter we assume that even though ramping

restrictions constrain the system’s ability to meet peak demand with hydro, it is possible

to meet those peak demands with other electricity sources at little increase in cost. A full

analysis of ramping restrictions on a significant portion of hydro generation would need to

consider the potential for increased cost in meeting peak demands by operating thermal

units less efficiently, or by adding more expensive gas-fired units.

This chapter is organized as follows: in the second section, we provide a brief review of

the related literature; assumptions and model formulation are presented in section three;

then we formally specify the optimization problem; data issues are addressed in section

five; next we calibrate the power generation function and the head function2; section seven

contains the empirical analysis of the hydro plant operation and profit; the environmental

impact of changes in thermal generations is considered in section eight; lastly, conclusions

and directions of future research are given in section nine.

2.2 Literature Review

The literature on hydro dam operations and the associated environmental effects is enor-

mous. The existing research in this area can be divided into three broad categories: the

2The head refers to the difference in height between a dam’s water source and water outflow.

10



power and civil engineering literature; the biology and environmental studies literature;

the energy and environmental economics literature. In this section we survey a selection

of papers from each of these literatures with an emphasis on ramping related issues.

In the power engineering literature, there has been considerable interest in the appli-

cation of mathematical programming methods to scheduling the generation of electricity.

Most of this work has focused on problems of scheduling the generation of hydro-electricity

or thermal electricity, and coordinating thermal electricity generation with hydro-electricity

generation. Much of the interest in electricity scheduling models concentrates on the op-

timal operation of power stations with the objective of producing electric power at the

lowest cost, at maximum profit, at the best efficiency, at maximum potential energy and

so on. In general, these models include many detailed technical specifications and con-

straints are quite complex. Their solution is computationally intensive, requiring special

solution algorithms.3 From the power engineering literature, some of the papers studying

the optimal production scheduling problem for a hydro-electric power producer include:

Hreinsson [1988], Soliman and Christensen [1988], Shawwash et al. [2000], Conejo et al.

[2002] and Deng et al. [2006].

In practice, hydro operators face regulatory requirements for minimum and maximum

water flows and levels, as well as restrictions on ramping rates which are intended to

protect the aquatic environment of the associated rivers and lakes. Some of the studies

discussed above include only minimum flow restrictions in their optimization models as

physical or environmental constraints. A few of them consider ramping rate restrictions

as physical constraints. In the international literature on power engineering, including

the papers mentioned above, relatively little attention has been paid to directly address

ramping rate restrictions as policy constraints for environmental protection. One exception

is Guan et al. [1999], where an optimization-based algorithm is presented for scheduling

hydro power systems with restricted operating zones and discharge ramping constraints.

In the Guan paper the ramping constraints may be imposed on discharges for generation or

spillage through canals or tunnels due to the requirements of navigation, the environment,

recreation, etc. They find that, with ramping constraints imposed, the hydro production

3See Bensalem et al. [2007] for example.
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schedule changes significantly and the costs are generally increased, since the constraints

limit the water release so that downstream power plants may generate less power.

The term ‘hydropeaking’ is used in the literature to refer to the shifting of hydro

production to periods in the day when prices are highest. The environmental effects of

hydropeaking power generation on fish and fish habitat have attracted much attention from

biological and environmental scientists. Most of their studies directly address the effect of

the instream flow rate (the minimum flow rate, the variation of flow rate and the ramping

rates) of regulated rivers on the downstream biological habitat. In Scruton et al. [2003],

hydropeaking or pulse power generation is defined as “reservoir operations, where water

is stored to generate electricity during times of peak demand, leading to diurnally and

annually variable water pulses in the river below the power station resulting in unnatural

flow patterns involving alterations to magnitude, duration, sequence, and frequency of

flows.” They note that hydropeaking often results in “rapid changes in river discharge and

associated habitat conditions over very short time scales (less than a day, or multiple peaks

per day) and changes can be moderate or as large as several orders of magnitude.” There

is a clear consensus that modified flow regimes in regulated rivers mainly for purposes of

hydroelectric generation are affecting fish and fish habitat, but the severity and direction

of the response varies widely. Murchie et al. [2008] conduct a systematic review of available

literature examining the response of fish to fluctuating flow regimes in different systems.

In regulated rivers, the environmental heterogeneity of fish habitat may be aggravated

and unpredictable, depending on hydropower demand and price. One consequence expe-

rienced in many rivers is peaking flow on a daily basis, with suddenly increasing and high

flows in the morning and increasingly higher flows during the day, then decreasing flow in

the evening, and extremely low flow at night. Hvidsten [1985], Cross and DosSantos [1988],

Bradford et al. [1995] and Saltveit et al. [2001] demonstrate that this variable flow pattern

affects the habitat conditions and directly results in stranding of young fish and increased

mortality. The negative impacts of hydropeaking are also documented by Flodmark et al.

[2002], Berland et al. [2004], Scruton et al. [2003], Scruton et al. [2005], Scruton et al.

[2008] and Grand et al. [2006]. Freeman et al. [2001] demonstrate that providing periods

of stable flow conditions below hydropower facilities during appropriate seasons should
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facilitate reproduction by native riverine fishes. Marty et al. [2009] find that there is a

significant effect of a high ramping rate flow regime on the length of the food web. The

operations of waterpower facilities will alter a river’s flow in terms of its magnitude, timing,

frequency, rate of change, and duration. A publication of the Ontario Ministry of Natural

Resources [2003] summarizes some negative effects of this alteration, both from up-ramping

and down-ramping. Specifically this report states that excessive up-ramping could affect

fish holding instream and result in scouring of substrate and infauna (Cushman [1985]),

while slower down-ramping is beneficial for biota by protecting fauna from stranding and

ensuring better conditions for vegetation seeding (Petts and Maddock [1994]).

Relationships between the quantity of suitable fish habitat and flow have been used to

select regulatory minimum flows for numerous rivers (Jager and Smith [2008]). Currently,

there is considerable interest in Ontario in using and evaluating instream-flow-needs (IFN)

methods for fish. Kilgour et al. [2005] provide a review of IFN methods appropriate to

waterpower facilities. Gouraud et al. [2008] estimate the change in brown trout population

under different minimum instream flows. Murchie et al. [2008] suggest that more studies

are needed to evaluate the behaviour of fish during dynamic periods such as flow increase

or decrease (i.e. during the ramping). Jager and Smith [2008] review research on reservoir

optimization problems that explicitly includes environmental objectives. They find that

nearly half of the studies they reviewed addressed environmental flows by including a

constraint on minimum flow releases.

From our survey of the available information it appears that many hydro dams operate

with minimum flow requirements, but very few operate under ramping rate constraints.

Some examples that do face ramping constraints include the Glen Canyon Dams, located

on the Colorado River in Arizona, which are operated under restrictions on maximum

flows, minimum flows, ramp rates, and the daily change in flow (Veselka et al. [1995] and

Harpman [1999]). Located on the Shuswap River, east of Vernon in the southern interior

of British Columbia, the Sugar Lake Dam is operated under ramp rate constraints and

the Wilsey Dam needs to meet the minimum discharge requirement (BC Hydro [2005]).

The Kerr Dam on the Flathead River about five miles southwest of Polson in Montana

faces the following restrictions: minimum flow requirements, maximum between-day flow
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changes and maximum allowable ramping rates (Flathead Lakers [2005]).

In the economics literature, there are very few studies regarding the environmental

effect of ramping and the associated economic impact on hydro power operations. Some of

these studies include Veselka et al. [1995], Edwards et al. [1999], Edwards [2003], Harpman

[1999] and Chen and Forsyth [2008], who treat ramping rate restrictions as environmental

constraints in their optimization models. These papers (except Chen and Forsyth [2008])

assume that the power stations operate under a particular ramping rate regime, but do

not analyze the effect of various levels of ramping rate restrictions on the power station’s

optimal operation and profit. The trade offs involved in the choice of the optimal ramping

rate regime are not addressed. We attempt to fill in this gap in the literature by considering

both the associated benefits and costs of ramping restrictions on hydro profits and on total

daily hydro production and the potential implications for other sources of power.

There are some related cost and benefit studies similar to this chapter. Kotchen et al.

[2006] conduct a benefit-cost analysis of changing daily conditions from peaking to run-of-

river (ROR) flows for two hydroelectric dams in Michigan. They consider three categories

of costs and benefits related to the switch to ROR flow: electricity production costs, air

quality benefits, and recreational fishing benefits. Huppert [1999] estimates the costs of

protecting the endangered and threatened salmon, including the cost of environmental re-

strictions on hydropower operations in the Snake River. Jager and Bevelhimer [2007] review

hydropower projects with license-mandated changes from peaking to ROR operation, and

discuss producer costs and environmental benefits associated with operations: decreased

generation efficiency; higher energy cost of fossil fuels needed to replace hydropower during

peak versus off-peak hours; the negative costs of environmental externalities.

2.3 Assumptions and Model Formulation

The goal of the chapter is to examine the opportunity cost of ramping rate restrictions on

hydro power operations. Our approach is to consider the costs for a representative hydro

power plant. We assume that the hydro plant has signed a binding contract to supply a
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specified amount of power to a certain customer, which implies there is a minimum amount

of power that the plant must produce. Any power which is over and above the contracted

amount can be sold in the spot market. This is similar to the assumption in Veselka et al.

[1995], but contrasts with Edwards et al. [1999] in which the contract demand must be

met exactly with no production allowed over the contracted amount.

This hypothetical contract is a device to permit the estimation of the cost of ramping

restrictions. If ramping restrictions imply that the contract cannot be met at certain times

during the day, then another source of power must be purchased. The additional cost

of this alternative source of power is a measure of the opportunity cost of the ramping

restrictions.

The contract specifies the quantity of electricity exchanged for each time t. The price

is the spot market rate which is assumed known and non-stochastic. This is clearly un-

realistic, since a key feature of electricity prices is their high degree of volatility. In this

chapter we ignore uncertainty in both electricity demand and price, and focus solely on

the opportunity costs of ramping restrictions in a non-stochastic environment. The case

of uncertain demand and price is left for future research.

We also ignore the possibility that the hydro power station could provide any ancillary

services to the electricity market. For example, besides producing electricity, a hydro unit

can also provide spinning reserves, which means that some of its power capacity is put

aside to provide electricity in case of a power shortage somewhere over the network.

A typical hydroelectric generation system can consist of more than one independent

rivers, with one or several generating facilities and reservoirs in a series or in parallel, and

transmission lines to neighboring systems through which electricity may be exchanged.

In addition, reservoir management deals not only with power generation, but with recre-

ation, fishery and irrigation as well. In order to focus on the ramping issue of the station’s

operation, the proposed model will only consider the power generation aspect of one rep-

resentative station and issues related to system transmission and distribution are ignored

in this study. In brief, we will largely follow Edwards et al. [1999] in the theoretical for-

mulation of the model. Specific differences are noted in the model description later in this
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section.

The time horizon of the model is T periods, with each individual period indexed by

t = 1, ..., T . In the empirical example to follow we solve the optimization problem for each

hour over a five day period. In this case t represents one hour and T = 5X24 = 120

hours. We denote the number of days as N where N = 5. Each day is further divided

into on-peak and off-peak periods. We assume that the prevailing spot price during peak

periods will exceed that for off-peak periods. For the prototype hydro power station, there

are three alternative choices available to meet the contract demand: generation of hydro

power only; purchase of electricity on the spot market at prevailing prices and resale to

the consumer; or some combination of these two. The hydro power station operates under

various physical constraints and must also meet environmental and other policy constraints

set by the regulator. Here, we assume that the hydro operation is subject to the following

constraints:

• Maximum hourly up-ramping and down-ramping rates;

• Maximum daily total water release.4

• Maximum and minimum hourly

– water release rates;

– water spill rates;

– head requirements;

– water content;

– hydro power generation;

In addition, contract demand and the water balance equation must be satisfied at all times.

4In this model we do not explicitly include a constraint on the maximum daily change in water flow.
Normally, up-ramping and down-ramping are believed to have more a severe effect on the environment
compared with fluctuations in daily flow. Since our main focus is on the ramping rate, we assume the
allowable fluctuations in daily flow are large enough that our optimization results are not affected.
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The total amount of power provided to the market by the owner of the hydro station

comprises the portion derived from hydro generation and the portion derived from spot

market purchases and resale. For a specific hour, this can be written as follows:

qt = qrt + qht (rt, ht(wt)). (2.1)

where qt is the total electricity supplied by the owner during period t; qrt is the electricity

purchased from the spot market for resale; and qht is the amount of hydro power generated

and sold in period t. Hydro generation is a function of rt, the water release rate during

period t, and ht, the head of the dam which depends on the amount of water in the

reservoir wt. The hydro power production function will be non-linear and is assumed to be

continuous and increasing with respect to both arguments 5,
∂qht
∂rt

> 0 and
∂qht
∂ht

> 0, but the

second order derivatives are assumed to be zero, i.e.,
∂2qht
∂2rt

= 0 and
∂2qht
∂2ht

= 0. We further

assume that qht (0, ht(wt)) = 0 and qht (rt, 0) = 0, meaning that at any level of water head

when there is no water release the hydro power generation will be zero, and at any level

of water release rate, if the water head is zero there will be no power generated. For the

head function ht(wt), it is assumed that ∂ht
∂wt

> 0, ∂2ht
∂2wt

= 0 and ht(0) = 0. The specific

functional form assumed for the hydro production function is given in Section 2.6.

Next, we assume that the equation of motion for water is governed by the following

formula6:

wt+1 = wt + α[it − rt − ft]. (2.2)

This equation states that the total amount of water in the reservoir at time t + 1, i.e.,

wt+1, equals to the total amount of water stored at time t, i.e., wt, plus the water inflows

(coming from snow melting, rain, runoff water and natural river flow) into the reservoir at

time t, i.e., it, minus the water outflows (turbine and spill flows) at time t, i.e., {rt, ft}. α is

5The more realistic hydro power production function is not continuous, but our simplified assumptions
still allow a good approximation of the actual function (see Harpman [1999]). In the empirical studies, we
use the production function given by Equation (2.26). It should be pointed out that for any specific dam,
to apply this production function, both the water release rate and water head should be within certain
limits as described in Equations (2.6) and (2.8)-(2.9). Normally, the upper and lower limits will be different
for various dams.

6This water balance equation differs from the one in Edwards et al. [1999] by the inclusion of spill flows.
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the conversion factor to convert water flow units into water volume units. In this chapter,

water flows are measured in Cubic-feet-per-second (CFS) and water volume is in acre feet.

Reservoir water losses due to seepage and evaporation are neglected 7. Here, the dam

possesses a mechanism to release water with and without hydro power generation. This

general formulation captures the case when it may be necessary to spill a large quantity

of water such as during a period of flooding. In practice the spill flow can be controlled

quite precisely by adjusting gate openings. However, spilling should be avoided as much

as possible, given that no electricity is produced in this case.

In addition, the hydro power station is required to meet contractual obligations for

power at any time of the day, so the sum of hydropower production and the purchased

power for resale must be sufficient to satisfy the contract demand of the day. This load

resource balance can be represented by the following equation:

q̂t≤qrt + qht (rt, ht(wt)). (2.3)

q̂t represents the contract demand during period t of the day.

We assume that the hydro power station is subject to the up-ramping and down-

ramping constraints which will limit its operational ability to increase or decrease the

water release rate in any given period. These two constraints can be expressed as:

rt+1 − rt≤ru. (2.4)

rt − rt+1≤rd. (2.5)

rt refers to water release in period t, which may be an on- or off-peak period. Equation (2.4)

limits the rate at which the water release rate can be increased between periods to ru.8 The

up-ramping limit will be determined by the physical capabilities of the particular hydro

turbine and the ramping rate constraint imposed by regulators to protect the environment.

In this chapter we concern ourselves only with the latter source of ramping restrictions.

7These assumptions are reasonable for a very short term analysis such as five days in this chapter.
8In general the desired ramping restrictions my vary over the hours in a day, and over months and

seasons as well. In this chapter we assume fixed ramping constraints.
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Similarly, Equation (2.5) limits the rate of ramping-down, i.e., the rate at which the water

release rate can be decreased between periods. Again we assume the ramping constraint

is imposed by regulators, although the physical characteristics of a particular hydro unit

may also limit down-ramping.

The hydro station also faces minimum and maximum water release rate requirements,

which can be represented as:

rmin≤rt≤rmax. (2.6)

Equation (2.6) limits the range of water release rate by rmin and rmax. Again we assume

the minimum and maximum water release rates are constant over any day and represent

regulatory requirements to protect the river ecosystem. The minimum release requirement

is loosely defined as the smallest amount of flow that can be left in the river without harming

downstream fish populations (Jager and Smith [2008]). By imposing these constraints, the

hydro power station’s operational flexibility may be significantly affected. Currently, many

hydro power stations operate under the minimum and maximum water release constraints.

Similarly, the station faces minimum and maximum water spill rate requirements (Catalão

et al. [2006]), denoted fmin and fmax respectively. These can be represented as:

fmin≤ft≤fmax (2.7)

In practice, especially during flood periods, spillways may release water so that the water

does not overtop and damage the dam. Spillways provide added flexibility of operations

given variations in water inflow.

Additional operational constraints include that the water level must remain between

specified minimum and maximum values. This implies the station faces minimum and

maximum water head requirements (Equation (2.8)), and upper and lower reservoir storage

constraints (Equation (2.9)), which may vary over the year (Catalão et al. [2006]). These

constraints can be stated as:

hmin≤ht≤hmax (2.8)

wmin≤wt≤wmax. (2.9)
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where, the water head lower bound is hmin and the water head upper bound is hmax. The

reservoir storage lower bound is wmin and the reservoir storage upper bound is wmax.

We further assume that the hydro station is facing minimum and maximum power

production constraints, which can be written as:

qmin≤qht≤qmax. (2.10)

These limits may be technical limits of hydro turbines or may reflect a constraint on the

amount of power that can be transmitted through power lines, perhaps due to congestion.

According to Edwards et al. [1999] and Harpman [1999] hydro dams typically are re-

quired to release a specified quantity of water each month. For example, in the United

States Power Marketing Administrations (PMAs) are required to release specific amounts

of water for each dam during each month of the year (Edwards et al. [1999]). In this

chapter the optimization occurs over 5 days and it is assumed that there is a maximum

that can be released in each 24 hour period. The constraint is given by:

24∑
t=1

αrtj ≤ R, j = 1, ..., N. (2.11)

where α is the conversion factor to convert a water flow into a water volume and j indexes

each day. Additional optional constraints in the model can be easily imposed if required,

such as system reliability and ancillary service requirements; more detailed market condi-

tions; transmission losses and other operational details.

2.4 The Optimization Problem

In this section we formulate the optimization problem for the representative hydro power

station. The owner of the station is assumed to maximize profits subject to various con-

straints described in the previous section. Profit maximization involves determining the

amount of power production which depends in a non-linear fashion on water released
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through the turbine and on dam head, as given in Equation (2.1). Dam head is a reflec-

tion of water content in the reservoir. A hydro operator knows that water released today

reduces dam head and therefore the amount of power that can be produced in the next

period. Profit maximization over time involves choosing the level of water releases so that

the benefit in terms of electricity production today just offsets the opportunity cost in

terms of foregone future production and profits.

In order to keep our optimization problem of manageable size, our empirical analysis

considers a 5 day period 9 of operations. The optimal choices in any single day depend on

initial conditions, and in particular on the initial water content and dam head. To avoid

dependence on arbitrary initial conditions, we look for a steady state solution where the

optimal choice of water release and water level in the dam is unchanging from the previous

day. In our empirical example, we choose initial conditions for water level and the water

release rate that allow us to reach a steady state within the five day period. We then report

the results for a steady state day in all cases.

Our focus in this chapter is on ramping rate constraints, Equations (2.4) and (2.5), and

we measure their cost as the lost profit from having to meet these constraints, net of the

cost of any change in pollutant emissions caused by a change in the economy’s reliance on

thermal power. As noted earlier, we do not attempt to specify the benefits of environmental

restrictions in terms of reduced damages to the aquatic environment. This is beyond the

scope of the current chapter.

The representative hydro station’s power generation is assumed to be small in the

electricity market and hence is a price-taker during each period. The station charges the

spot market price for its power, whether generated by the station, purchased from the

spot market for resale, or some combination of the two. The power purchased for resale is

purchased and sold at the same spot price, so no net revenue is generated. However it is

assumed that an administrative cost is incurred, crt per kWh, so the hydro station incurs

a net loss on this transaction. A similar assumption is made in Edwards et al. [1999].

9This time period is sufficient for the results to reach (or nearly reach) a steady state. In the empirical
studies, the computational time for each case varies from less than an hour to several hours.
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This administrative cost 10 can be an arbitrarily small number, but is required to achieve

a reasonable solution to the optimization problem in that spot market purchases are only

made when needed to meet contract demand. The hydro generation and transmission

(G&T) costs are given by ch per unit of power and are assumed to be the same during

both off-peak and on-peak periods. The spot electricity price is denoted by pt per kWh

during time t.

The minimum amount of power produced or purchased by the hydro plant owner is

specified in the contract. Therefore, whatever the realized market conditions and water

inflows, contract demand must always be satisfied, and purchase for resale may become

necessary at some points in time. The option to purchase power in the spot market is

valuable to the hydro operator, since it means the contract demand can always be met. In

the empirical examples that follow we assume water inflow is deterministic, but in practice

the uncertainty and variability of water inflow due to weather conditions may impact the

amount of electricity that a hydro station can generate in any given period. The stochastic

nature of water flows would give added value to the ability to satisfy contract demand with

spot market purchases. In addition, this option also creates value by giving the operator

the flexibility of hydro-shifting. Hydro-shifting refers to the practice of shifting production

to on-peak periods when prices are highest. In off-peak periods, contract demand can be

satisfied through spot market purchases.

The total profit of providing power over the T periods is given by the following equation:

T∑
t=1

{
(pt − ch)qht (rt, ht(wt))− crtqrt

}
. (2.12)

The first term inside the brace accounts for the total profit from generating hydroelectric

power, given the hourly spot prices. The second term inside the brace represents the net

cost of purchasing power for resale from the spot market. It is the per unit administrative

cost crt multiplied by the quantity of spot market purchases.

The optimization problem is to maximize Equation (2.12) subject to a suite of con-

10Assuming a small administrative cost could avoid spot market purchases when not needed.
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straints. The set of control variables includes the water release rate for power generation,

the water spill rate and the amount of power to purchase for resale for each period t, i.e.,

{rt, ft, qrt }. The state variables is the water content, wt. Exogenous variables including the

water inflow rate, electricity demand, and electricity price for each period t, i.e., {it, q̂t, pt}
are assumed to be known and deterministic. This is a deterministic dynamic non-linear

optimization problem. The objective function and constraints are given below in Equations

(2.13)-(2.24). The constraints 11 are as detailed in Section 2.3, with the addition of the

non-negativity constraint, Equation (2.23).

max
rt,ft,qrt

T∑
t=1

{
(pt − ch)qht (rt, ht(wt))− crtqrt

}
. (2.13)

Subject to

wt = wt−1 − α(rt−1 + ft−1) + αit−1, t = 2, ..., T. (2.14)

q̂t≤qrt + qht (rt, ht(wt)), t = 1, 2, ..., T. (2.15)

rt − rt−1≤ru, t = 2, ..., T. (2.16)

rt−1 − rt≤rd, t = 2, ..., T. (2.17)

rmin≤rt≤rmax, t = 1, 2, ..., T. (2.18)

fmin≤ft≤fmax, t = 1, 2, ..., T. (2.19)

hmin≤ht≤hmax, t = 1, 2, ..., T. (2.20)

wmin≤wt≤wmax, t = 1, 2, ..., T. (2.21)

qmin≤qht≤qmax, t = 1, 2, ..., T. (2.22)

0≤qrt , t = 1, 2, ..., T. (2.23)

11Equations (2.14)-(2.22) and (2.24) represent the equation of motion for water, load resource balance,
maximum up-ramping constraint, maximum down-ramping constraint, minimum and maximum water
release rate requirements, minimum and maximum water spill rate requirements, minimum and maximum
water head requirements, upper and lower reservoir storage constraints, minimum and maximum power
production constraints, and maximum daily release constraint respectively.
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24∑
t=1

αrtj ≤ R, j = 1, ..., N. (2.24)

The Karush-Kuhn-Tucker conditions for this mathematical programming problem can

be easily derived. This type of analysis admits two possible solution forms. The first is

an interior solution characterized by all endogenous variables having positive values at the

optimum (i.e., the dispatcher relies on both thermal power resales and hydro generation

in both periods). The second is a corner solution, in which at least one of the endogenous

variables will take on a zero value at the optimum (e.g., no thermal power is sold or no

hydro power is generated in one of the periods). For the empirical studies in the following

sections, we will specify the optimization problem, and obtain solutions using Matlab.12

2.5 Data Description

The prototype hydro plant used in our empirical example is based on a medium-sized

plant in Ontario. We construct our example using some specifications of an Ontario Power

Generation (OPG) generating station, as well as our own assumptions based on input from

a variety of sources. An example of a medium-sized hydro plant is OPG’s Abitibi Canyon

generating station located on the Abitibi River in northeastern Ontario. Details of the

generating station can be found on the OPG web site,13 and in Statistics Canada [2000]

and Hendry and Chang [2001].14

OPG owns 65 hydro generating stations with a total capacity of 6,963 megawatts (MW).

The Abitibi Canyon station consists of five generating units and has a total generation

capacity of about 336 MW. In terms of water inflow, the combined physical capacity of the

generators is assumed to be about 19 thousand Cubic-feet-per-second (CFS) of water. The

12Using Matlab’s optimization tool fmincon.
13For example, see http://www.opg.com/power/hydro/northeast plant group/abitibi.asp and

http://www.opg.com/power/.
14Hendry and Chang [2001] investigated the composition and structure of fish communities, and habitat

features in the Abitibi Canyon generating station tailwater. Further information about the Abitibi Station
is available in their study.
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storage capacity of the reservoir is assumed to be about 17 thousand acre-feet of water.

We model the optimal operation of the hydro station over a 24 hour period assuming

it faces a contract demand requirement that ranges from 112 MW during the off-peak

period to 336 MW during the on-peak period (Table 2.1). This contract is hypothetical

and mimics the daily pattern of Ontario electricity demand. The contract demand can be

met either by generating hydroelectricity, or purchasing power from the spot market for

resale, or some combination of both.

Consistent with the empirical observations, peak hours are specified as being from 6

AM to 11 PM Mondays through Fridays, and off-peak hours are from 11 PM to 6 AM.

Each 24 hour period begins at 11 PM, with 11 PM - 12 PM labeled as the first hour. This

can be seen in Table 2.1.

Data for the Hourly Ontario Electricity Price (HOEP) from 01 May 2002 to 30 Novem-

ber 2006 is used to determine reasonable assumptions for electricity prices. Based on the

definitions of off-peak and on-peak periods, we calculate the average prices for both periods

using these data. The average spot electricity price is 36.33 $/MWh during the off-peak

period and 62.13 $/MWh during the on-peak period, which will be used in our empirical

analysis (Table 2.1). We also assume that purchase for resale incurs an administrative cost

of 2 $/MWh, which will be paid by the hydro operator. This is the amount assumed in

Edwards et al. [1999]. In addition, the cost of generating hydroelectric power is assumed

constant at 20 $/MWh in both off-peak and on-peak periods for the hydro station.

Actual water inflows are stochastic in nature, but are handled here in a deterministic

manner in this analysis. Based on data for the historical water inflow for the Abitibi

Canyon from 01 January 2001 to 30 November 2006, we calculate an average daily amount

of 6,671 CFS.15 We abstract from fluctuations in water inflow over a typical day, and

assume that inflow is a constant 6,671 CFS for each hour.

15This daily average excludes the months of April and May which are atypical with water inflows
significantly higher than the rest of the year. When calculating the daily average, we also ignore the
seasonal variation of water inflows over the years (excluding the months of April and May). The analysis
for a specific season could be easily conducted by using the daily average corresponding to the season.
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2.6 Modeling Hydropower Generation

In this section, we specify the hydro power production function and the gross head function.

The production function we adopt is standard in the power engineering literature, and is

identical to that used in Philpott et al. [2000]. Water flowing through a turbine generates

electricity by changing its potential energy into electrical energy. The amount of power

available from a hydro power station is proportional to the product of its water flow rate,

its water head and its generation efficiency. The hydro electricity generation function is

determined empirically and is, in general, a non-linear function of the turbine discharge

and the gross head. The amount of electricity produced by each unit (turbine) can be

calculated using the following relation:

qht (rt, wt) ∝ rtht(rt, wt)e(rt, ht). (2.25)

where, qht is the power output, rt is the flow rate, ht is the gross head, e is the efficiency

factor and ∝ means proportion. Gross head refers to the vertical distance between the top

of the penstock that conveys water under pressure and the point where the water discharges

from the turbine. Here, the gross head is a function of the flow rate and the water content,

and can be represented as ht(rt, wt). The generation efficiency in converting water flow to

electrical power is a non-linear function of the flow rate and the gross head of the water

flowing through the turbine, and can be written as e(rt, ht). Due to the complexity of this

nonseparable hydro production function, we have chosen to make a number of simplifying

assumptions about its functional form for our model. Following Harpman [1999], Equation

(2.25) becomes:

qht (rt, ht(wt)) = 0.001 g rt ht(wt) e. (2.26)

where, g is the gravitational constant (32.15 feet-per-square-second) and the factor 0.001

converts qht to MW from KW, rt is in CFS and ht is in feet. According to Equation

(2.26) gross head is only a function of the water content and does not vary with the flow

rate, and the generation efficiency is kept as constant over the course of our (short-term)

planning horizon (Hreinsson [1988]). Energy is always lost when converted from one form
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to another, and all the equipment used to convert power available in the flowing water

to electrical power is less than 100 percent efficient. We use an efficiency factor of 0.87.

Therefore, the right hand side of Equation (2.26) can be rewritten as 0.001×32.15×0.87×
rtht(wt) = 0.028rtht(wt) where rt is in CFS and ht is in feet. This simple formulation of the

hydroelectric generating plant’s production function has the characteristics of convexity,

continuity and smoothness, which implies that standard optimization techniques can be

usefully applied.

The level of head can be expressed as function of the water content in the reservoir.

Due to the unavailability of some key data, following Edwards et al. [1999] we make the

simplifying assumption of a linear functional form which can be written as:

ht(wt) = βwt (2.27)

where, wt is the water content in acre-feet. Then the parameter value of beta can be

approximated using the available data. Under the normal operating range, the calibrated

beta16 value is 0.0089. The advantage of using linear functional form is that only one

parameter needs to be calibrated and it provides a good approximation when converting

from gross head to reservoir storage, particularly for reservoirs with high inflows but small

storage capacities.

2.7 Empirical Analysis

In this section, we examine three optimization cases under various operational and envi-

ronmental constraints. The baseline case optimizes Equation (2.13) subject to Equations

(2.14), (2.15), and Equations (2.19) through (2.24). The second case adds both the mini-

mum and maximum water release requirements given by Equation (2.18). The third case

adds extra up-ramping and down-ramping constraints, which are Equations (2.16)-(2.17).

16If the key data are available, we could specify a more realistic function form for Equation (2.27) and
perform a goodness of fit test of the calibrated model.
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Hourly contract demand, given in Table 2.1, is based on the contract used in Edwards

et al. [1999] but is scaled up to match the production capacity of our medium-sized proto-

type hydro station. For the baseline case the constraints are specified as follows:

• The minimum spill rate is 0 CFS and the maximum spill rate is 10,000 CFS;

• The minimum water content requirement is 7,000 acre-feet and the maximum value

is 17,497 acre-feet;

• Hydro capacity varies from 0 MW to 336 MW;

• A maximum of 13,100 acre-feet of water may be released during a 24 hour period for

power generation;

For the case with release rate constraints the following restrictions are added to the baseline

case:

• The minimum water release requirement is 2,000 CFS and the maximum release

constraint is 15,000 CFS;

For the case with ramping rate constraints the following restrictions are added to the

baseline case:

• Up-ramping and down-ramping constraints are 1,000 Cubic-feet-per-second per hour

(CFS-hr);

• The minimum water release requirement is 2,000 CFS and the maximum release

constraint is 15,000 CFS;

The constraint on the maximum quantity of water release during a 24 hour period for

power generation may be thought of as an environmental constraint ensuring that the dam

will not be drained in any period or it may be a technical constraint of the turbines. Note

that this constraint on total release does not include spillage. Spillage will always be kept
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Table 2.1: Parameter Values Used in the Empirical Examples
Hour Time (Hour) Demand (MW) Water Inflow (CFS) Price ($/MWh)
0 10pm-11pm 199 6671 62
1st 11pm-12pm 159 6671 36
2nd 12pm-1am 112 6671 36
3rd 1am-2am 116 6671 36
4th 2am-3am 116 6671 36
5th 3am-4am 114 6671 36
6th 4am-5am 125 6671 36
7th 5am-6am 128 6671 36
8th 6am-7am 134 6671 62
9th 7am-8am 146 6671 62
10th 8am-9am 164 6671 62
11th 9am-10am 181 6671 62
12th 10am-11am 199 6671 62
13th 11am-12am 226 6671 62
14th 12am-1pm 267 6671 62
15th 1pm-2pm 291 6671 62
16th 2pm-3pm 314 6671 62
17th 3pm-4pm 336 6671 62
18th 4pm-5pm 336 6671 62
19th 5pm-6pm 336 6671 62
20th 6pm-7pm 336 6671 62
21st 7pm-8pm 336 6671 62
22nd 8pm-9pm 291 6671 62
23rd 9pm-10pm 251 6671 62
24th 10pm-11pm 199 6671 62

to a minimum as it does not contribute to profits. In the following examples the constraint

on the maximum quantity of water release is set slightly below the total quantity of water

inflow during the day implying that once the desired water level is obtained in the dam,

it will be necessary to spill a certain amount each day to avoid overtopping.17 In practice

the option to spill allows a hydro operator flexibility in cases where water inflow is higher

than normal. This is not an issue in our empirical example in which water inflow does not

vary from one hour to the next.

We begin the optimization by choosing an initial water release rate and water content.

The optimization proceeds over the 5 day period. Through the choice of optimal hourly

17One CFS for 1 hour converts to approximated 0.082646 acre-feet. Converting the water inflow in each
hour in Table 2.1 and adding over the 24 hour period gives 13,232 acre-feet as the total inflow.
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water releases, the water level in the dam changes over time until a steady state is reached so

that subsequent days are identical to the previous day. The initial conditions are specified

so that a steady state is reached (or nearly reached) within the five day optimization

scenario.18 We report results for the fourth day for all cases. The first 7 hours of any day

represent the off-peak period and the next 17 hours represent the on-peak period.

The results of the optimization are reported in the following sections. We begin with

the baseline which uses the basic operational constraints, but no restrictions on minimum

and maximum releases and ramping. The operational constraints are Equations (2.14)

(water balance), (2.15) (contract demand) and (2.19)-(2.24), which are constraints on water

spillage, head level, water content, hydro production, resale power, and total water release.

Although our focus is on ramping constraints, we first consider the impact of minimum

and maximum flow constraints alone and then add on ramping constraints.

2.7.1 Baseline Optimization

The base case results for a steady state day are reported in Table 2.2 and Figure 2.1. In

Table 2.2, water release is seen to be zero during the off-peak hours. The spillage shown

during off-peak periods is the amount needed to equalize flow into and out of the dam,

so that the water level remains unchanged. During on-peak hours, water releases rise

fairly steadily, peaking at 11,343 CFS at the 24th hour. The largest ramping-up in the

water release rate occurs from the 7th to the 8th hour which is the cross over point from

off-peak to on-peak. Similarly, the largest ramping-down occurs between the 10pm-11pm

and 11pm-12pm periods of the day, which is at the cross point from the on-peak period

to the off-peak period. During the off-peak period contract demand is satisfied only by

purchasing power from the market for resale. During on-peak hours contract demand is

met by hydro power only and for a significant number of hours more hydro electricity

is produced than the contract requires. No thermal power is purchased for resale in this

18An initial water release rate of 7,000 CFS is used in all cases. An initial water content of 14,000
acre-feet is used for the cases without ramping rate restrictions, while 17,000 acre-feet is used for the cases
with ramping rate restrictions. The steady state is optimum since we are solving a convex optimization
problem under the simplified assumptions for the hydro power production function.
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Table 2.2: Baseline Experiment
Hour Time (Hour) Water Con-

tent (Acre-
feet)

Spillway
(CFS)

Water
Release
(CFS)

Hydro
Generation
(MW)

Power
Purchase
(MW)

Total
Power
(MW)

0 10pm-11pm 13768 N/A N/A N/A N/A N/A
1st 11pm-12pm 14307 157 0 0 159 159
2nd 12pm-1am 14817 490 0 0 112 112
3rd 1am-2am 15357 146 0 0 116 116
4th 2am-3am 15888 236 0 0 116 116
5th 3am-4am 16433 85 0 0 114 114
6th 4am-5am 16947 451 0 0 125 125
7th 5am-6am 17497 10 0 0 128 128
8th 6am-7am 17497 0 6671 251 0 251
9th 7am-8am 17497 0 6671 251 0 251
10th 8am-9am 17497 0 6671 251 0 251
11th 9am-10am 17375 0 8147 304 0 304
12th 10am-11am 17175 0 9093 336 0 336
13th 11am-12am 16966 0 9205 336 0 336
14th 12am-1pm 16746 0 9326 336 0 336
15th 1pm-2pm 16516 0 9456 336 0 336
16th 2pm-3pm 16275 0 9596 336 0 336
17th 3pm-4pm 16020 0 9748 336 0 336
18th 4pm-5pm 15752 0 9914 336 0 336
19th 5pm-6pm 15469 0 10095 336 0 336
20th 6pm-7pm 15170 0 10295 336 0 336
21st 7pm-8pm 14853 0 10515 336 0 336
22nd 8pm-9pm 14515 0 10759 336 0 336
23rd 9pm-10pm 14154 0 11033 336 0 336
24th 10pm-11pm 13768 0 11343 336 0 336

period. Clearly, in this case the absence of minimum and maximum release constraints and

ramping constraints allows for rather dramatic changes in water release rates. Figure 2.1

plots the total power (hydro production and resale power), contract demand, hydroelectric

production and power purchase for resale under this baseline case. It shows a clear pattern

of hydro-shifting.
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Figure 2.1: Hydro and Thermal Power Production: Baseline Experiment

These results make sense intuitively and are consistent with Edwards et al. [1999].

Because of the upper limit on the total water flow through the turbine in any one day,

it is in the interests of the hydro operator to release the permitted water flow when the

electricity price is highest, which is during on-peak hours. In addition, the requirement

that sufficient power must be sold during the base period in order to satisfy the demand

requirement, induces the decision maker to purchase and resell thermal power during the

off-peak period to satisfy this contract demand. To maximize the value of hydro resources,

the power station stores water during the off-peak period for release during the on-peak

period, and sells thermal power during the base period to satisfy the demand requirement

of its customers.
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2.7.2 Optimization with Release Rate Constraints

In this second optimization, we impose a minimum release requirement of 2,000 CFS and

a maximum release requirement of 15,000 CFS. Together with the operational constraints

in the first scenario, these constraints cause several major changes in the water release

profile during the representative day (Table 2.3 and Figure 2.2). First, off-peak period

releases increase to satisfy the new minimum release rate constraint and are maintained at

the lower bound of 2,000 CFS from the 1st hour up to the 7th hour of the representative

day. As a result, from the 8th hour to the 24th hour water releases are either slightly lower

than or the same as the baseline case. This indicates that, during the off-peak period, it

is optimal to maintain the minimum release rate and to purchase from the spot market

the remaining power needed to meet the demand requirement. During the on-peak period,

since the electricity prices are much higher, it is desirable to keep the water release rate

similar to the baseline case.

During the off-peak period, at a release rate of 2,000 CFS the produced hydro power

is lower than the contract demand, however during the on-peak period the hydro power

production is either higher than or equal to the contract demand. Correspondingly, power

resales are lower during the off-peak hours than under the baseline case. As in the baseline

case, there are no power resales in the on-peak period.

Also consistent with the baseline case, up-ramping is highest from the 7th to the 8th

hour and down-ramping is highest from 10pm-11pm to 11pm-12pm. However, these ramp-

ing rate peaks have lower magnitudes than in the baseline case. As shown in Table 2.3, the

maximum release constraint is never binding during the on-peak period. Maximum water

release occurs from 10pm -11pm, and at 10,463 CFS is less that in the baseline case. After

imposing the minimum and maximum release constraints, hydro-shifting is still apparent,

but less significant compared with the baseline case, as is illustrated in Figure 2.2. This

indicates that these extra environmental constraints limit the station’s ability to make full

use of the benefit of hydro-shifting, and therefore reduce its value.
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Table 2.3: Case Including Minimum and Maximum Release Constraints
Hour Time (Hour) Water Con-

tent (Acre-
feet)

Spillway
(CFS)

Water
Release
(CFS)

Hydro
Generation
(MW)

Power
Purchase
(MW)

Total
Power
(MW)

0 10pm-11pm 14925 N/A N/A N/A N/A N/A
1st 11pm-12pm 15311 0 2000 66 93 159
2nd 12pm-1am 15697 0 2000 67 45 112
3rd 1am-2am 16083 0 2000 69 47 116
4th 2am-3am 16469 0 2000 71 46 117
5th 3am-4am 16855 0 2000 72 42 114
6th 4am-5am 17241 0 2000 74 51 125
7th 5am-6am 17497 1574 2000 75 52 127
8th 6am-7am 17497 0 6671 251 0 251
9th 7am-8am 17497 0 6671 251 0 251
10th 8am-9am 17497 0 6671 251 0 251
11th 9am-10am 17497 0 6671 251 0 251
12th 10am-11am 17497 0 6671 251 0 251
13th 11am-12am 17497 0 6671 251 0 251
14th 12am-1pm 17419 0 7621 285 0 285
15th 1pm-2pm 17220 0 9069 336 0 336
16th 2pm-3pm 17013 0 9179 336 0 336
17th 3pm-4pm 16796 0 9298 336 0 336
18th 4pm-5pm 16569 0 9426 336 0 336
19th 5pm-6pm 16330 0 9564 336 0 336
20th 6pm-7pm 16078 0 9713 336 0 336
21st 7pm-8pm 15813 0 9876 336 0 336
22nd 8pm-9pm 15534 0 10053 336 0 336
23rd 9pm-10pm 15238 0 10248 336 0 336
24th 10pm-11pm 14925 0 10463 336 0 336
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Figure 2.2: Hydro and Thermal Power Production: Experiment with Minimum and Max-
imum Release Constraints
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2.7.3 Optimization with Ramping Rate Constraints

In this scenario we add up-ramping and down-ramping restrictions, both of which are set

initially at 1,000 CFS-hr. As Table 2.4 and Figure 2.3 illustrate, with ramping restrictions

the highest on-peak water release rate during the representative day reaches the maximum

of 9,621 CFS in the 20th hour, which is lower than the previous two cases. The ramping

constraints reduce the extent of hydro-shifting that is possible. In the off-peak period, the

hydro power station gradually ramps down the water release rate, and then in the on-peak

period gradually ramps up again. However while still in the on-peak period, after the 20th

hour, ramping down has commenced in preparation for the approaching off-peak period.

The change in the pattern of hydro production over the day compared to the previous

scenarios is most easily seen in Figure 2.3 compared to Figure 2.2. With the maximum

allowable release during a day, the increase in hydro production during the off-peak period

implies there will be a reduction during the on-peak period. During the 21st and 22nd

hours a small portion of demand is met by purchases of thermal power. The inability to

fully satisfy peak demand with hydro production will have a negative effect on profits.

2.7.4 Comparing the Three Optimization Scenarios

Figure 2.4 compares water release rates for these three optimization scenarios. From this

graph the shifting of hydro production from the on-peak to the off-peak period is very

evident for the case with minimum and maximum flow constraints compared to the baseline.

This shift is even larger for the case with ramping constraints.
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Table 2.4: Case Including Up-ramping and Down-ramping Constraints
Hour Time (Hour) Water Con-

tent (Acre-
feet)

Spillway
(CFS)

Water
Release
(CFS)

Hydro
Generation
(MW)

Power
Purchase
(MW)

Total
Power
(MW)

0 10pm-11pm 15876 N/A 6490 N/A N/A N/A
1st 11pm-12pm 15974 0 5490 188 0 188
2nd 12pm-1am 16154 0 4490 156 0 156
3rd 1am-2am 16417 0 3490 123 0 123
4th 2am-3am 16762 0 2490 90 27 117
5th 3am-4am 17093 0 2671 98 16 114
6th 4am-5am 17341 0 3671 137 0 137
7th 5am-6am 17497 108 4671 176 0 176
8th 6am-7am 17497 1000 5671 213 0 213
9th 7am-8am 17497 0 6671 251 0 251
10th 8am-9am 17497 0 6671 251 0 251
11th 9am-10am 17497 0 6671 251 0 251
12th 10am-11am 17497 0 6671 251 0 251
13th 11am-12am 17497 0 6671 251 0 251
14th 12am-1pm 17461 0 7110 267 0 267
15th 1pm-2pm 17342 0 8110 302 0 302
16th 2pm-3pm 17140 0 9110 336 0 336
17th 3pm-4pm 16929 0 9225 336 0 336
18th 4pm-5pm 16708 0 9347 336 0 336
19th 5pm-6pm 16476 0 9478 336 0 336
20th 6pm-7pm 16233 0 9621 336 0 336
21st 7pm-8pm 16029 0 9134 315 21 336
22nd 8pm-9pm 15908 0 8134 278 13 291
23rd 9pm-10pm 15870 0 7134 243 8 251
24th 10pm-11pm 15915 0 6134 210 0 210
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Figure 2.4: Comparing Water Release Rates for Hydro Production

The impact of these constraints on profits for a range of ramping constraints is detailed

in Table 2.5 and Figure 2.5 19. In general, the more restrictive the constraint the greater is

the limitation on the station’s operational flexibility and the larger the impact on profits.

Under the baseline case, the total profit from providing power is $226 thousand. For Case

I with the minimum and maximum release constraints, the total daily profit drops to

$223 thousand, representing a 1.1% reduction over the baseline scenario. When ramping

constraints of 5,000 CSF-hr are added in Case II profit drops marginally to $222 thousand

19Case I is min/max release constraints only. Cases II through VIII include min/max release constraints
as well as equal up and down ramping constraints respectively in CFS-hr of 5,000, 4,000, 3,000, 2,000,
1,000, 500, and 250. The percentage change of total profit is shown in Table 2.5.
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which is 1.7% less than the baseline. As ramping rate restrictions are increased profits

continue to drop, until at a restriction of 250 CSF-hr, i.e., the water release rate can

increase or decrease by at most 250 CFS between any two consecutive hours, then the

total profit drops to as low as $208 thousand, which is an 8% decrease relative to the

baseline. From Figure 2.5 we also observe profits fall proportionately more as ramping

restrictions are increased when ramping rates are already quite restrictive - i.e. for rates

of less than 2,000 CFS-hr20.

$225,857

230000

$223,292

$221,659 $221,256 $220,798

$219 295220000

225000
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Figure 2.5: Comparing Profit Levels

20This could be viewed as the threshold between the sensitive and insensitive regions for the impact of
ramping constraints on profits.
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In Table 2.5 and Figure 2.6 21, we report total power sales, hydro power generation,

and spot purchases for resale. Interestingly we observe that total power sales are affected,

implying that the impact of the restrictions is not simply a redistribution from on-peak to

off-peak periods. We observe the largest power production level in the most restrictive case

(ramping rate constraints of 250 CFS-hr). Figure 2.7 gives a clue as to why this is so. In

this figure water content by hour is shown for the baseline case, the case of min/max release

constraints and the cases of 250 and 1,000 CFS-hr up and down ramping restrictions. The

21Case I is min/max release constraints only. Cases II through VIII include min/max release constraints
as well as equal up and down ramping constraints respectively in CFS-hr of 5,000, 4,000, 3,000, 2,000,
1,000, 500, and 250.
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flat portions on the graph are periods when water content is at the upper limit. Starting

at a given initial water content, as optimization proceeds over the 5 day period the optimal

choice of water release and spillage affects the water content of the dam. By the time a

steady state is achieved, the water level profile by hour over a 24 hour period remains the

same from one day to the next and the amount of spillage in one day is chosen so that the

water level in the dam is maintained.

We observe from Figure 2.7 that the optimal water levels for the restricted cases

(min/max release constraints and ramping rate constraints) are greater than or equal to

the water level for the baseline case. Further, the ramping rate case shows a higher water

level than the min/max release constraint case for many hours of the day. The larger

water content is a result of optimal choices necessitated by the restrictions and allows the

operator to generate more power with a given water release rate (recall Equation 2.26).

This is needed in order to produce as much as possible during on-peak periods despite the

ramping constraints.

In Figure 2.6 different levels of restrictions can also be seen to have an impact on the

level of power purchased for resale. The largest amount of resale power occurs in the base

case without restrictions. Resale power is reduced as ramping restrictions are made more

restrictive moving from 5,000 CFS-hr to 1,000 CFS-hr. However for restrictions of 500 and

250 CFS-hr an increase in the purchase of resale power is observed. This purchase happens

in peak period hours, and without it the hydro operator would be unable to meet contract

demand. In summary, we observe that the ramping restrictions have caused an increased

reliance on hydro-power22 and a decreased reliance on purchases for resale compared to the

baseline case. This is a somewhat counter intuitive result.

The results we have shown so far for our prototype Ontario dam are consistent with

Edwards et al. [1999]. Edwards showed that ramping restrictions increase the amount of

hydro sold in the off-peak period and reduce it in the on-peak period and thereby reduce

overall profitability of the hydro operations. Our results differ from Edwards in the finding

that total hydro production may increase as ramping restrictions are imposed. This follows

22Ramping restrictions cause an increase of the water content compared to the baseline case (Figure
2.7), therefore the hydro power generation also increases over a 24 hour period.
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from our assumption that total hydro sales can exceed contract demand, and that as the

hydro operator optimizes water releases over several days the water level in the dam adjusts

until a steady state is reached. The ability to increase hydro production is a means for the

operator to reduce the impact of ramping restrictions on profits. However, profitability is

still affected with the most significant effects coming when ramping is restricted to 1,000

CFS-hr and less.

2.8 Including the Environmental Impact of Changes

in Thermal Generation

In the previous sections, we detailed the impact of ramping restrictions on the profitability

of the firm. However in setting a ramping rate policy a regulator should consider other

potential impacts that will affect the public good. Ideally the determination of an optimal

level of ramping constraints would begin with a comprehensive environmental assessment

of the positive effect of various levels of ramping restrictions on the river ecosystem. Ev-

idence on the benefits for the aquatic ecosystem would be weighed against the negative

effects on hydro station profits as well as the environmental impact of the change in re-

liance on other sources of power generation such as fossil fuels. If one were able to put a

dollar value on each of these effects, the optimal ramping rate restrictions could be chosen.

However, practically it is very difficult to measure the environmental effect of ramping on

the river ecosystem based on biological studies and it is even more challenging to calcu-

late this effect quantitatively in terms of monetary value. Currently, there is very limited

research on this environmental effect and no studies available to provide some appropriate

monetary measure of the environmental benefit of ramping restrictions. In contrast, there

are estimates available of the environmental costs of thermal power generation. In this

section we estimate the difference in environmental damages due to the change in reliance

on thermal generation as a result of ramping rate restrictions and add this to the loss in

hydro profits to get an estimate of the total cost of ramping restrictions.

In this section we investigate the impact of imposing up-ramping and down-ramping

45



restrictions when minimum and maximum flow restrictions are already in place. We will

measure the unit environmental cost ($/MWh) of the replacement power by using an

estimate of the marginal external cost of emissions of a thermal generation plant. These

emissions include SO2, NOx and CO2. We consider two cases for thermal (replacement)

power: (i) replacement power is generated with coal during both the off-peak and on-peak

periods; or (ii) it is generated with coal during the off-peak period and natural gas during

the on-peak period 23.

In the empirical results presented in Section 2.7, we found that in the steady state, when

ramping constraints were imposed, hydro production decreased during on-peak periods and

increased during off-peak periods. Overall total hydro power production increased in the

24 hour period as ramping restrictions became increasingly tight. We assume that total

market demand and production for electricity are not affected by the hydro power plant’s

operation. It follows that every unit change in hydro power production will be exactly

offset by a change in thermal power generation. As a consequence, these flow restrictions

will result in a decrease in polluting emissions from thermal power during off-peak hours

and an increase in on-peak hours. Overall on a daily basis we will observe a reduction in

pollutant emissions from thermal power.

For the first case, this environmental benefit is calculated as the total net increase in

hydro production over the 24 hour period after imposing the ramping restrictions (which

also equals the change in the amount of thermal power) multiplied by the marginal external

costs of emissions for coal. For the second case, the associated total environmental benefit

is calculated as the increase in the amount of hydro power generation during the off-peak

period after imposing the ramping restrictions multiplied the marginal external costs of

emissions for coal, minus the reduced amount of hydro power generation during the on-peak

period after imposing the ramping restrictions multiplied by the marginal external costs

of emissions for natural gas. The benefit of emissions reduction from thermal generation

is subtracted from the lost profit caused by ramping restrictions which gives the net cost

23In Kotchen et al. [2006], they assume that the thermal (replacement) power during peak periods is
generated with fuel oil and natural gas, while thermal power during off-peak periods is generated with coal
only.
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of the ramping restrictions, ignoring any benefits that accrue to the aquatic ecosystem.

This cost estimate provides a lower bound on the level of benefits to the aquatic ecosystem

which would make ramping constraints worthwhile.

We consider the benefits of reduced emissions from thermal plants for the scenarios

examined in the previous section of equal levels of up-ramping and down-ramping con-

straints. For the marginal external costs of emissions, we choose both the high and low

cost estimates.24 For coal, these are 67.18 $/MWh and 45.20 $/MWh. For natural gas,

these are 9.96 $/MWh and 7.44 $/MWh.

The results for the scenario with coal as replacement power under various equal levels of

up-ramping and down-ramping constraints are reported in Figure 2.8 25. As we can observe,

at any given level of ramping restrictions, higher marginal external costs of emissions

always result in higher associated environmental benefits. However the cost in terms of

lost profits nearly always exceeds the benefit from any reduction in pollution from thermal

fired generation. Only for the most restrictive ramping rate (250 CFS-hr) and with the

higher estimate for marginal external costs of pollution do we observe that the benefit

from reduced thermal emissions exceeds the cost from lost profit. If we could measure the

associated environmental benefits for the river ecosystem, these could be directly included

in a cost benefit analysis. The net cost lines show how large this benefit would have to

be to justify ramping restrictions. Using the high marginal external cost estimate (green

lines) we see that the necessary ecosystem benefit actually declines as ramping constraints

are made more restrictive, getting smaller from 1,000 CFS-hr.

24These estimates are first calculated based on the coal generation plant’s marginal external costs (MEC)
in the US in 2004 (Dewees [2008]). We use the Michigan MEC at 34.77 $US/MWh (low MEC scenario),
and the Ohio MEC at 51.68 $US/MWh (high MEC scenario). Then these values are converted to Canadian
dollars at the 2004 exchange rate of 1.3 $CAD/$US. Natural gas emissions and external costs for gas-fired
power plants are much lower than those of coal. The gas-fired power plant’s marginal external cost is 5.72
$US/MWh for Michigan (low MEC scenario) and 7.66 $US/MWh for Indiana (high MEC scenario).

25‘Benefit’ curves show the extra environmental benefit under various levels of ramping rate restrictions
using either 67.18 $/MWh or 45.20 $/MWh as a proxy for the marginal environmental cost of coal fired
power. ‘Cost’ refers to the generator’s cost (reduction of profit) under various levels of ramping rate
restrictions. The ‘net cost’ curves show the ‘cost’ minus ‘benefit’ for the two different estimate of the
marginal environmental cost of thermal power.
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The results for the scenario with coal as replacement power during the off-peak period

and natural gas as replacement power during the on-peak period under various equal levels

of up-ramping and down-ramping constraints are reported in Figure 2.9 26. With more and

26‘Benefit’ curves show the extra environmental benefit under various levels of ramping rate restrictions
using either 67.18 $/MWh or 45.20 $/MWh as a proxy for the marginal environmental cost of coal fired
power and 9.96 $/MWh or 7.44 $/MWh as the marginal environmental cost of natural gas fired power.
‘Cost’ refers to the generator’s cost (reduction of profit) under various levels of ramping rate restric-
tions. The ‘net cost’ curves show the ‘cost’ minus ‘benefit’ for the two different estimate of the marginal
environmental cost of thermal power.
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more restrictive ramping constraints, both the cost curve and the environmental benefit

curves move up steadily, but the environmental benefit curves increase at a slightly faster

rate and are always located above the cost curve. The net cost curves are always below zero

and move down steadily with increasing ramping restrictions. This follows because with

increasing ramping restrictions the environmental benefit gained through the reduction

of thermal power generated using coal in the off-peak period exceeds by an increasing

amount the associated loss of profit and the environmental cost of increased thermal power

generated using natural gas in the on-peak period. In this example, the greater the ramping

restrictions, the greater the net social benefit. Optimal ramping restrictions are shown to be

250 CFS-hr even without any consideration of the potential benefits to the river ecosystem.

Our assumption of a one-for-one replacement of thermal power by hydro power, with no

effects on price, is clearly overly simplistic, but illustrates the importance of looking at the

impact of hydro ramping rates on other sources of electricity generation. In Ontario, coal

generation is being phased out as part of government policy to reduce air pollution. As

the province moves to “greener” sources of power the potential for an associated positive

impact of ramping restrictions on air quality will be reduced.

2.9 Conclusions

The ability of hydro facilities to respond quickly through ramping to changing demand

conditions is one of the benefits of hydro power. However the possibility of negative

consequences of ramping on aquatic ecosystems needs to be considered by regulators. These

negative impacts are case specific, dependent on the ecological conditions of particular

rivers and streams. In cases where ramping rate restrictions are being considered, there

should be a recognition of the costs imposed on hydro operators in terms of lost profits

as well as potential environmental impacts that result from the need to utilize alternative

sources of electricity. Ideally ramping rate regulations would be determined through a

careful analysis of all the potential impacts. This chapter contributes to our understanding

of these impacts and the trade offs involved.
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For a prototype hydro dam we modelled the lost profits for a range of ramping restric-

tions over a five day period. We present results for a typical day once a steady state has

been obtained. We find that profits are significantly affected (by about 8%) in the case of

the most severe ramping constraints. However we also find a range of less severe ramping

constraints for which profits are impacted by less than 3%. We examine the change in

total hydro production, as well as the purchase of replacement power that results from the

restrictions. One counter intuitive result is that total hydro production increases as a result

of the ramping constraints. This result follows from the desire of the hydro operator to

mitigate the effect of the ramping constraints by producing more power in off-peak periods

and in our example resulted in an increase in the average water level in the dam over a

24 hour period. Our assumption is that the increase in hydro production will result in

reduced thermal generation in the economy, which causes an environmental benefit from

reduced air pollution emissions. We calculate a net cost of the ramping restrictions as the

lost profits net of any environmental benefit of reduced air pollution. This net cost can be

compared to expected environmental benefits from an improved aquatic ecosystem.

An important conclusion of the chapter is that ramping restrictions should not be

determined in isolation, but rather using a cost-benefit approach that evaluates the trade

offs involved. This chapter has identified some of the important trade offs that should be

examined more carefully in future research. These include the impact on hydro operator

profits as well as the environmental impact of a change in the intensity of use of other

types of power.

There are several directions for further research. First, we could account for uncertainty

in demand, water inflow and electricity prices through a stochastic dynamic optimization

model assuming these uncertain variables can be modelled as known stochastic processes.

Second, more realistic, but sophisticated hydro power production functions could be used

and the provision of ancillary services such as spinning reserve to the electricity market

could be considered. Finally further efforts are needed to construct a measure of the envi-

ronmental benefits for the river ecosystem gained by imposing these ramping restrictions.
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Chapter 3

An Options Pricing Approach to

Ramping Rate Restrictions at Hydro

Power Plants

3.1 Introduction

Electricity demand tends to follow a marked daily pattern, peaking during the daytime

and early evening hours. It is also subject to seasonal spikes to meet demand for air

conditioning in the summer and/or heating in the winter. Electricity cannot be stored and

the typical base load power sources including coal and nuclear are much more limited than

hydro in their ability to vary generation levels. This results in fairly inelastic supply and

consequent volatile electricity prices, particularly in those regions which rely heavily on

fossil fuel and nuclear power. Price spikes and jumps are not uncommon. Figure 3.1 shows

the hourly German EEX spot price from January 1 to July 24, 2006. Hydro operators can

benefit from this volatility by increasing water release rates (ramping up) in response to

high prices and by reducing water release rates (ramping down) in periods of low prices to

let water levels recover in the reservoir.
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Figure 3.1: German EEX Spot Price, January 1-July 24, 2006

Regulators charged with protecting local ecosystems must consider the consequences of

hydro operations for native flora and fish habitat. Restrictions may be imposed on mini-

mum and maximum water levels in reservoirs and rivers, release rates from reservoirs, and

the rate of change in the release rate (ramping rate). Any restrictions on hydro operations

must be considered in light of the impact on profitability for the hydro operator and on

the capability of the electricity grid to meet peak demands. If there is greater reliance on

fossil fuels for peaking requirements, there would be added environmental consequences

resulting from the harmful emissions from coal, natural gas and petroleum1. The optimal

1This issue is addressed in chapter 2 in a model of optimal hydro production with deterministic prices.
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choice of restrictions would balance the consequences for the ecosystem with the lost profits

to hydro operators and the possible impact on the electricity grid.

Intuitively, ramping restrictions should have the largest impact on profits of hydro op-

erations for which the optimal control without restrictions involves frequent ramping up

or down of water release rates. This would be expected in an environment of frequently

changing prices in which hydro operators are motivated to adjust water release rates ac-

cordingly. It follows that in analyzing the impact of ramping rates it is important to pay

particular attention to accurately modelling the dynamics of electricity prices. The jumps

and spikes that are observed in electricity prices make electricity price modelling particu-

larly challenging. The recent literature on electricity price modelling, reviewed in Section

3.2, suggests that regime switching models hold considerable promise.

In the current literature, there are relatively few studies of the costs and associated

benefits of restricting ramping rates at hydro power plants. This chapter contributes to

this literature by studying the impact of ramping restrictions on hydro plant operations

and profitability using a regime switching model of electricity prices, which we argue pro-

vides a more realistic characterization of electricity prices than other models, such as jump

diffusion, used previously in the literature. Hydro operations are modelled as a stochastic

control problem which results in a Hamilton-Jacobi-Bellman (HJB) equation. The ramping

rate for water releases is chosen to maximize the value of the hydro plant. The optimal

control is determined by solving the HJB equation numerically using a fully implicit finite

difference approach with semi-Lagrangian time stepping.2 We examine the impact of a

range of ramping restrictions for a medium-sized prototype hydro plant in Ontario. We

focus on how the impact of ramping restrictions depends on the cost of generating hydro-

electric power and the characteristics of the assumed price process such as the volatility,

probability of regime shift, speed of mean reversion and long run average price. For com-

parison we also examine results for a single price regime case (using the base regime in the

regime switching model as the single regime) to determine how the presence of two price

2See Chen [2008] for a discussion of finite difference schemes based on a semi-Lagrangian method for
solving stochastic optimal control problems.
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regimes affects hydro plant value and optimal operations. The parameters 3 of the regime

switching model are based on estimates from Janczura and Weron [2009].

Our study is limited in that we do not address the environmental gains to the aquatic

ecosystem, nor the environmental costs of alternate thermal power generation. Specifying

these environmental costs and benefits in monetary terms is problematic and beyond the

scope of this research. Rather we seek to examine the other side of the equation - the

costs of these restrictions in terms of lost profitability. Knowledge of these costs will help

illuminate the trade offs involved and inform the design of regulations.

Individual hydro plants are unique in terms of their size, water flows, physical design

and linkages to the grid. Optimal hydro operations depend on electricity market structure,

demand patterns and reliance on different fuel sources. In this chapter we seek to draw

some general conclusions about when the effect of ramping restrictions on hydro profits

will be most severe. To preview our results, for our medium-sized power plant there is a

significant effect on profits for the most restrictive ramping constraints, but we also observe

a range of ramping restrictions over which profits are not substantially affected. There are

differing effects depending on the characteristics of the assumed price process. We find that

ramping restrictions have a larger impact when the expected variation in price is increased

such as through an increase in volatility which make it desirable to change water release

rates relatively frequently. Ramping rates also have a larger impact if the range of likely

prices includes values at which the hydro plant is operating at a loss. These and other

avenues through which ramping restrictions influence profits are explored in depth in this

chapter.

This chapter is organized as follows: in the second section, we provide a brief review

of the related literature; electricity price models for both the jump diffusion and regime

switching cases are presented in section three; section four describes the modelling of hydro

operations; in section five the Hamilton Jacobi Bellman equation for the regime switching

case is derived; section six describes the prototype hydro plant used in the empirical study

as well as the parameters of the price process; section seven contains the empirical analysis

3We use the estimated parameters by Janczura and Weron [2009] based on the German EEX spot price
since these parameters for the Ontario spot price are not available in the literature.
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of the hydro operation and profit under various ramping restrictions, together with a

comprehensive sensitivity analysis; lastly, conclusions and directions of future research are

given in section eight.

3.2 Related Literature

Early work on the economics of ramping restrictions include Veselka et al. [1995], Edwards

et al. [1999], Harpman [1999] and Edwards [2003], who examine the effect of particular

ramping rate regimes as environmental constraints, but do not provide extensive analysis

of ramping rate restrictions on the power station’s optimal operation and profit. The trade

offs involved in the choice of the optimal ramping rate regime are not addressed in these

papers. In a recent study, Niu and Insley [2013] extend these works by considering both

the associated benefits and costs of ramping restrictions on hydro profits and on total daily

hydro production and the potential implications for other sources of power.

A limitation of these studies is that the optimization models are solved in a deterministic

framework. Uncertain electricity prices as well as water inflows imply that optimal hydro

power operation is best studied in a stochastic framework. Thompson et al. [2004] and

Chen and Forsyth [2008] study the hydro operation and valuation problem in a stochastic

optimal control framework using jump diffusion models for electricity prices. Chen and

Forsyth [2008] also analyze the impact of ramping restrictions on a hydro plant’s value.

In a numerical example they find that imposing the most restrictive ramping constraint

reduces the value of a hypothetical power plant by 37%. The focus of the Chen and Forsyth

[2008] paper is on the efficient solution of the complex stochastic optimization problem.

They do not attempt to determine the best model for electricity prices.

There is a rich literature which addresses the challenges of modelling electricity spot

prices. At the heart of the modelling issues are the inherent properties of electricity which

result in limited transferability over time (storage constraint) and space (transmission

constraint). Key characteristics of electricity prices and loads include strong dependence

on weather and regular daily, weekly, and monthly patterns. Electricity spot prices tend
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to exhibit frequent small jumps and occasionally extreme spikes. They show strong mean

reversion moving rapidly from price spikes to the mean price, and price level and volatility

are highly correlated. Weron [2008] gives a description of these stylized facts.

Weron [2008] provides a good review of the literature on electricity price modelling.

When the objective is derivative pricing and risk management, there are two popular

classes of stochastic processes for electricity prices: mean-reverting jump diffusion models

and mean-reverting Markov regime switching models4. Some examples of jump-diffusion

models include Deng [2000], Geman and Roncoroni [2006], Escribano et al. [2011], Weron

[2008] and Benth et al. [2007]. An issue in using jump diffusion models is how to capture the

return to a more normal price level after a jump. There are various modelling approaches

used in the literature. Chen and Forsyth [2008] in their numerical example model electricity

prices with two jump processes - a positive jump is followed with high probability by a down

jump, bring price back into its normal state. Weron et al. [2004] suggest this represents a

good approximation as spikes typically do not last for more than one day.

It is, however, desirable to be able to capture the situation where price suddenly spikes

upward and then remains in this spike regime for several periods before returning to a more

normal state. This can be observed in the historical data as is shown in Figure 3.2. This

pattern might appear when for some reason the grid cannot respond quickly enough to a

sudden surge in demand or when there is an unanticipated restriction on supply such as

would be caused by grid congestion or an outage in a power station. One way to capture

this phenomenon would be to add more jump terms into a jump diffusion model, but

this would make the parameter estimation and plant valuation quite complex. Another

alternative is the use of Markov regime switching models with base and jump regimes

where there is some positive probability of remaining in the jump regime.

4Another class of model is the threshold autoregressive (TAR) model for electricity prices. Recent work
includes Rambharat et al. [2005] who incorporate an exogenous variable (temperature) in the proposed
TAR model. However, Misiorek et al. [2006] argue that the spot electricity price depends on both fun-
damentals (such as loads and network constraints) and other psychological and sociological factors which
are unquantifiable. They state that “the Markov regime-switching (or simply regime-switching) models,
where the regime is determined by an unobservable, latent variable, seem interesting.”
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Figure 3.2: German EEX Spot Price, January 9-15, July 17-23, December 18-24, 2006

Early results on Markov regime switching models include Ethier and Mount [1998] who

estimate a two-state switching model with both regimes governed by AR(1) processes.

Huisman and De Jong [2003], Weron et al. [2004] and Bierbrauer et al. [2007] make exten-

sions by proposing an independent spike two-regime model using different distributional

assumptions for the spike regime. De Jong [2006] modifies the spike regime by using an

autoregressive process with Poisson jumps. Further extensions are given by Mount et al.

[2006] who allow transition probabilities to depend on the reserve margin and Huisman

[2008] who suggests temperature dependent transition probabilities. In two recent stud-

ies, Janczura and Weron [2009, 2010] introduce median-shifted spike regime distributions
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with heteroskedastic dynamics for the base regime. An overview of the development on

alternative regime switching models can be found in Janczura and Weron [2010]. Some ap-

plications of regime switching models in the valuation of physical assets include Chen and

Forsyth [2010] for natural gas storage valuation, Heydari and Siddiqui [2010] for valuing a

gas-fired power plant and Chen and Insley [2012] for optimal forest harvesting problem.

One common practice with the study of electricity price dynamics is that daily average

log-prices, instead of hourly prices, are used to estimate the chosen models partially because

they are better suited to certain distributions and the estimated parameters have robust

statistical properties. However, this may be problematic for derivative pricing and risk

management since optimal decisions such as power plant operations are made on an hourly

or half hourly basis according to spot electricity prices and demand.

3.3 Electricity Price Models

Both jump diffusion and regime switching models have been used in the literature to

model electricity prices. Chen and Forsyth [2008] and Thompson et al. [2004] employ

jump diffusion models as shown in Equation (3.1).

dP = µ(P, t)dt+ σ(P, t)dW +
N∑
ς=1

ψς(P, t, Jς)dqς . (3.1)

where

• µ(P, t) is the generalized drift;

• σ(P, t) is the generalized volatility;

• dW is the increment of the standard Gauss-Wiener process;

• ψς(P, t, Jς)’s are any arbitrary functions of price and/or time;

• Jς ’s are drawn from some arbitrary distributions Gς(J);
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• dqς ’s are Poisson processes with

dqς =

{
1 with probability ες(P, t)dt

0 with probability 1− ες(P, t)dt

Over the time interval dt, ες(P, t)dt is the probability of dqς = 1, i.e., the price jumps

from P to P +ψς(P, t, Jς). Here ψς(P, t, Jς) determines the jump size of a particular jump,

where J is a random variable. The number of Poisson processes N is arbitrary. In both

Chen and Forsyth [2008] and Thompson et al. [2004] there are assumed to be two types of

jumps, an upward jump and a downward jump. A threshold, P̄ , was specified so that any

price above the threshold was assumed to have arrived there as a result of an up-jump.

A seasonal component is included in the drift term. Parameters are chosen by Thompson

et al. [2004] so that resulting price simulations appear to be a reasonable depiction of

electricity prices. Chen and Forsyth [2008] adopt the same parameter values. Note that

the parameter values are assumed to reflect risk adjusted parameters under the Q measure.

The regime switching price model defines N specific regimes and a different price pro-

cess may be specified for each regime. The transition between regimes is controlled by

a continuous-time Markov chain. A general specification of a regime switching process is

given in Equation (3.2) below.

dP = µı(P, t)dt+ σı(P, t)dZ +
N∑
=1

P (ξı − 1)dXı, ı = 1, ..., N. (3.2)

where

• µı(P, t) is the generalized drift in state ı;

• σı(P, t) is the generalized volatility in state ı;

• dZ is the increment of the standard Gauss-Wiener process;

• ξı is the jump size from state ı to state ;
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• dXı indicates the transition of the Markov chain from state ı to state ;

Let qı be the transition intensity of the Markov chain from state ı to state . Then over

an instant dt, we have

dXı =

{
1 with probability qıdt

0 with probability 1− qıdt

Over the time interval dt, qıdt is the probability of dXı = 1, i.e., the price jumps from P

in regime ı to Pξı in regime . The number of states N is often chosen arbitrarily for ease

of computation, and is set equal to 2 in our empirical study.

Note that in the regime switching model the drift and diffusion terms are specific to

the particular regime, indexed by superscript ı. When a regime change occurs, the price

jumps from P in regime ı to Pξı in regime  and both the drift function and volatility

function will change from µı(P, t) and σı(P, t) to µ(P, t) and σ(P, t). This contrasts with

the common jump diffusion model in which a jump in price does not imply a change in

drift and volatility terms. The regime switching model could approximate a jump diffusion

model if many different regimes are assumed, and each regime involves a different jump

size.

There is no general agreement in the literature as to which model is best able to describe

the characteristics of electricity prices. This is an empirical question and the answer will

be case specific, depending on the nature of a given electricity market. In this chapter we

adopt a regime switching model based on a statistical estimation done by Janczura and

Weron [2009] for German EEX spot prices.

3.4 Modelling Optimal Hydro Operations

3.4.1 Physical and Environmental Constraints

A typical hydro power plant is operated under certain physical and environmental con-

straints including minimum and maximum water release rates, maximum and minimum
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water content in the reservoir, and possibly ramping constraints. We specify similar con-

straints as in Niu and Insley [2013]. The minimum and maximum water release rate

requirements can be represented as

rmin≤r≤rmax (3.3)

where r is the water release rate. Reservoir storage constraints can be stated as

wmin≤w≤wmax (3.4)

where w represents the water content. The equation of motion for water is governed by

the following formula:

dw = a(`− r)dt (3.5)

where a converts water flow rate to the same unit as the water content. Water inflow

rates are stochastic in nature. In order to focus on the stochastic feature of electricity

prices and the impact of ramping restrictions on the valuation and optimal operation of

the hydro power plant, we assume that the inflow rate ` is a positive constant. This

simplified assumption is realistic for a short period of time such as the single week used

in the empirical analysis in Section 3.6. An extension of this chapter would be to model

` by a stochastic differential equation. To prevent the water content falling below wmin

or increasing above wmax, we follow the approach of Chen and Forsyth [2008] using an

augmented equation of motion:

dw = H(r, w)a(`− r)dt. (3.6)

for any w ∈ [wmin, wmax] and r ∈ [rmin, rmax], where H is a smooth function of w and r

satisfying

H(r, w)→ 0 if r > ` and w→wmin,

H(r, w)→ 0 if r < ` and w→wmax,

H(r, w) = 1 otherwise. (3.7)
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In order to satisfy Equation (3.7) it is assumed that function H(r, w) has the following

properties:

H(r, w) = O((w − wmin)ν) if r > ` and w→wmin,

H(r, w) = O((wmax − w)ν) if r < ` and w→wmax,

H(r, w) = 1 otherwise (3.8)

where ν could take any small positive constant value.

The ramping control variable z is defined in the following equation:

dr = zdt. (3.9)

The ramping rate z needs to satisfy the following conditions

z≥0 if r = rmin.

z≤0 if r = rmax. (3.10)

to avoid the water release rate from increasing above the maximum releasing rate or de-

creasing below the minimum releasing rate. As in Chen and Forsyth [2008], in order to

satisfy conditions in (3.10) we will require that

min{z} = O((r − rmin)θ) if r→rmin,

max{z} = O((rmax − r)θ) if r→rmax, (3.11)

where θ could take any small positive constant value. In addition, the up-ramping and

down-ramping constraints can be expressed as

dr ≤ rudt. (3.12)

− dr ≤ rddt. (3.13)
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where ru and rd represent the maximum allowed up-ramping and down-ramping rates

respectively. We rewrite these two equations as

− rddt ≤ dr ≤ rudt. (3.14)

which is

− rd ≤ z ≤ ru. (3.15)

Let Z(r) denote the set of admissible controls that satisfy constraint (3.15) and conditions

(3.11). This gives Z(r) ⊆ [zmin, zmax].

3.4.2 The Optimization Problem

The present value of net revenue from power generation from t = t1 to t = T is given by

the following equation ∫ T

t1

e−ρtq(r, h(w))(P − c)dt. (3.16)

where ρ is the discount rate, q is the amount of power produced which is a function of the

water release rate r and the head h, and c is the unit cost of hydro power production, which

is assumed to be a positive constant. Therefore, q(r, h(w))(P−c) is the instantaneous profit

for the hydro power plant. The objective is to maximize Equation (3.16) subject to the

set of physical and environmental constraints for a hydro power plant described in Section

3.4.1. Let V ı(P,w, r, t1) denote the value of the hydro plant under the optimal control in

regime ı with the risk adjusted (or risk neutral) measure.

V ı(P,w, r, t1) = max
z
EQ

[ ∫ T

t1

e−ρ(t−t1)H(r, w)q(r, h(w))(P − c)dt
]
. (3.17)

subject to

Z(r) ⊆ [zmin, zmax]. (3.18)
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dw = H(r, w)a(`− r)dt. (3.19)

dr = zdt. (3.20)

dP = µı(P, t)dt+ σı(P, t)dZ +
N∑
=1

P (ξı − 1)dXı. (3.21)

where H is a penalty function on profits given by Equation (3.7), so that the profit de-

creases to zero as r > ` and w→wmin or r < ` and w→wmax, and otherwise remains at

H(r, w)q(r, h(w))(P − c). Z(r) specifies the set of admissible controls. In addition, the

electricity price, P , follows Equation (3.21) which is assumed to be a risk adjusted speci-

fication. The transition equations governing water balance and water release are specified

in Equations (3.19) and (3.20) respectively. Note that constraints (3.3) and (3.14) are

incorporated into (3.18) and constraint (3.4) is incorporated into (3.17) and (3.19).

3.5 Hamilton Jacobi Bellman Equations

3.5.1 HJB-PDE for the Regime Switching Model

Following Kennedy [2007], we use the standard hedging approach in options pricing to

derive the HJB-PDE (Hamilton Jacobi Bellman Partial Differential Equation) for the value

of the hydro power station (Appendix A.1.1). Under the risk adjusted measure5 the value

of the hydro plant in regime ı satisfies the following equation

5The hydro plant valuation with the regime switching model for electricity prices is associated with
the regime switching risk, therefore the market is not complete. This indicates that there is no unique
equivalent martingale measure that allows us to move from the physical measure to the risk adjusted
measure. Forsyth and Vetzal [2014] discuss that one way to pin down the measure for pricing is to use
an expanded set of hedging instruments. Then the risk-neutral transition intensity could be uniquely
determined by the prices of these instruments. Our derivation for the HJB-PDE follows this method.
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r̄V ı = sup
z∈Z(r)

(z
∂V ı

∂r
) +H(r, w)a(`− r)∂V

ı

∂w
+

1

2
(σı)2(P, t)

∂2V ı

∂P 2
+ (µı(P, t)− Λıσı(P, t))

∂V ı

∂P

+H(r, w)q(r, h(w))(P − c) +
∂V ı

∂t
+

N∑
=1
6=ı

λQı(V
 − V ı).

(3.22)

where r̄ is the risk free interest rate, Λı is the market price of risk in state ı and λQı is the

risk-neutral transition intensity from state ı to  ( 6= ı). The electricity price given by

Equation (3.2) is used to derive Equation (3.22).

The HJB-PDE can be interpreted as a no-arbitrage condition. In the risk neutral

world the return on the asset must equal the risk free rate, r̄. On the right hand side of

the equation we see all the sources of return on the asset which, from left to right, include

changes due to the optimal choice of the ramping rate, z; changes due to water inflows and

releases which affect the water content, w; changes due to first and second order effects of

electricity price variation, P ; cash flow from electricity sales; changes in V with time; and

lastly the effect on value of the risk of a price regime change.

The domain for Equation (3.22) is (P,w, r) ∈ [0,∞] × [wmin, wmax] × [rmin, rmax]. The

numerical solution is computed in a finite domain: (P,w, r) ∈ [0, Pmax] × [wmin, wmax] ×
[rmin, rmax]. Equation (3.22) is solved backwards in time from t = T to t = t1. It is

convenient to define τ = T − t as the time remaining in the life of the asset. Equation

(3.22) can be rewritten in terms of τ as follows:

∂V ı

∂τ
= CV ı+BV ı+ sup

z∈Z(r)

(z
∂V ı

∂r
)+H(r, w)a(`−r)∂V

ı

∂w
+H(r, w)q(r, h(w))(P −c). (3.23)

where the operators C and B are given by
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CV ı =
1

2
(σı)2(P, t)

∂2V ı

∂P 2
+ (µı(P, t)− Λıσı(P, t))

∂V ı

∂P
− (r̄ +

N∑
=1
 6=ı

λQı)V
ı.

BV ı =
N∑
=1
 6=ı

λQıV
.

We specify a functional form of the electricity price as in Chen and Forsyth [2008] for

both the drift and diffusion terms and assume µı(P, t) = αı(K ı − P ), σı(P, t) = σıP . Now

CV ı is written as

CV ı =
1

2
(σı)2P 2∂

2V ı

∂P 2
+ [αı(K ı − P )− ΛıσıP ]

∂V ı

∂P
− (r̄ +

N∑
=1
6=ı

λQı)V
ı.

A numerical approach is required to solve this non-linear HJB-PDE. We will use a

fully implicit finite difference scheme with semi-Lagrangian time stepping. This numerical

approach converges to the viscosity solution of the HJB equation as is shown in Chen and

Forsyth [2007, 2008]. Details on the numerical algorithms for solving Equation (3.23) are

given in A.1.2.

3.5.2 Boundary Conditions

Boundary conditions are required to fully specify the optimization problem. For the ter-

minal boundary condition at t = T (i.e. τ = 0), we assume the value of the asset is zero,

which is a common assumption in the literature. (See Thompson et al. [2004] for example.)

V ı(P,w, r, τ = 0) = 0. (3.24)

It can be shown that the solution of Equation (3.23) does not require information out-

side of the domains of w and r and hence no special boundary conditions are required.
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At wmin, wmax, rmin, rmax, we simply solve the PDE along the corresponding boundaries.6

However, the computational domain of the price could differ for any two different regimes.

Taking the limit of the PDE equation as P→0, we obtain the boundary PDE for

ı = 1, 2, . . . , N .

∂V ı

∂τ
= C0V

ı+BV ı+ sup
z∈Z(r)

(z
∂V ı

∂r
)+H(r, w)a(`−r)∂V

ı

∂w
−H(r, w)q(r, h(w))c;P→0 (3.25)

where the operator B is the same as above and C0 is given by

C0V
ı = αıK ı∂V

ı

∂P
− (r̄ +

N∑
=1
6=ı

λQı)V
ı.

For P→∞, we apply the commonly used boundary condition V ı
PP = 0 (Wilmott [1998]),

which implies that

V ı'x(w, r, τ)P + y(w, r, τ).

The boundary PDE now is written as

∂V ı

∂τ
= C1V

ı+BV ı+ sup
z∈Z(r)

(z
∂V ı

∂r
)+H(r, w)a(`−r)∂V

ı

∂w
+H(r, w)q(r, h(w))(P−c);P = Pmax

(3.26)

where the operators C1 is given by

C1V
ı = [αı(K ı − P )− ΛıσıP ]

∂V ı

∂P
− (r̄ +

N∑
=1
 6=ı

λQı)V
ı.

We solve the PDE in the region P ∈ (0, Pmax). At the boundaries we solve PDE (3.25) at

6See Chen and Forsyth [2008] for more details.

68



P = 0 and PDE (3.26) at P = Pmax.

3.6 Specification of the Empirical Example

3.6.1 Description of the Hydro Plant

The empirical analysis in this study is done for a medium-sized hydro plant similar to

the Abitibi Canyon generating station in north eastern Ontario owned by Ontario Power

Generation. This station has a generation capacity of 336 MW. For comparison the Sir

Adam Beck I and II generating stations at Niagara Falls have capacities of about 500 MW

and 1,500 MW respectively and the Donzère-Mondragon Dam in France has an installed

capacity of 354 MW. The combined physical capacity (CPC) of the generators at the

Abitibi Canyon station is about 19 thousand Cubic-feet-per-second (CFS) and the storage

capacity of the reservoir is about 17 thousand acre-feet.7

The analysis is conducted for a time horizon of one week8 which is a sufficient time

scale for the questions addressed in this chapter. We abstract from the natural variations in

water inflow and assume a constant inflow of 6,671 CFS,9 which is the average hourly inflow

rate based on data for the historical water inflow for the hydro station from 01 January

2001 to 30 November 2006. As noted earlier this assumption is considered realistic for

the short time horizon we are using. A stochastic mean reverting diffusion water inflow

process could be incorporated into this empirical study, which however would add another

dimension to the HJB-PDE. The cost of generating hydroelectric power is assumed constant

at 20 EUR/MWh for the hydro station.

7Detailed descriptions of the generating station can be found in Statistics Canada [2000], Hendry and
Chang [2001], and http://www.opg.com/power/hydro/northeast plant group/abitibi.asp.

8In two similar studies, the time horizon is 15 days in Thompson et al. [2004] and one week in Chen
and Forsyth [2008]. For the empirical studies in this chapter, the computational time varies with the level
of ramping restrictions and takes from less than a day to one week.

9This only represents the average case in our sample period. The analysis for a specific season (wet or
dry period) could be easily conducted by calculating the average hourly inflow rate in that period.
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We use a standard hydro power production function from the power engineering liter-

ature. The amount of electricity produced can be represented by

q(r, w) ∝ r × h(r, w)× e(r, h). (3.27)

where q is the power output, r is the water release rate, h is the gross head, w is the

water content, e is the efficiency factor and ∝ means proportion. Under some simplifying

assumptions about its functional form from Niu and Insley [2013], the following production

function is used in our empirical analysis

q(r, h(w)) = 0.001× g × r × h(w)× e

= 0.28× r × h(w) (3.28)

where g is the gravitational constant (32.15 feet-per-square-second) and the factor 0.001

converts q to MW from KW, r is in CFS and h is in feet. The efficiency factor is assumed

constant at 0.87. We use a linear functional form between the head and water content in

the reservoir, represented by

h(w) = b× w (3.29)

where w is the water content in acre-feet and b is assumed to be 0.0089.

In the empirical analysis, the operational and environmental constraints and their as-

sociated values for the base case are specified as

• Up-ramping and down-ramping constraints are 3,000 Cubic-feet-per-second per hour

(CFS-hr);

• The minimum water release requirement is 2,000 CFS and the maximum release

constraint is 15,000 CFS;

• The minimum water content requirement is 7,000 acre-feet and the maximum value

is 17,000 acre-feet;

These are similar to the cases examined in Niu and Insley [2013]. The input parameters
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Table 3.1: Parameter Values for the Abitibi Canyon Station
Parameter Value Parameter Value

` 6671 CFS wmax 17000 acre-feet
g 32.15 feet/square-second wmin 7000 acre-feet
ρ 1000 kg/cubic-meter rmax 15000 CFS
b 0.0089 rmin 2000 CFS
e 0.87 qmax 336 MW

CPC 19000 CFS qmin 0 MW
− − ru 3000 CFS-hr
− − rd 3000 CFS-hr

for the hydro power production and hydro dam specifications are reported in Table 3.1.

3.6.2 Specification of the Regime Switching Price Process

We base our Markov regime switching model on the model estimated in Janczura and

Weron [2009], which is parsimonious and can capture pertinent characteristics for electricity

price dynamics. They use the German EEX spot price from 2001-2009 to estimate the

following model10

dP = η(µ1 − P )dt+ σ1

√
PdZ. (3.30)

log(P −m) ∼ N(µ2, σ
2
2), P > m. (3.31)

where the base regime is the CIR (Cox-Ingersoll-Ross) process and the spike regime is

the shifted lognormal distribution (with higher mean and variance than those in the base

regime) which assigns zero probability to prices below the median m. Introducing het-

eroskedasticity through the CIR square root process accounts for the fact that electricity

price volatility generally increases with price level, because positive price shocks tend to

increase volatility more than negative shocks. The shifted spike regime distribution (log-

normal) is used in order to correctly separate spikes from the ‘normal’ price behavior.

Their empirical study shows that these specifications are more realistic for electricity spot

10Janczura and Weron [2009] estimate the Markov regime switching models with shifted lognormal or
Pareto spikes and Vasicek or CIR base regimes. The test results for the base regime show that the CIR
specification is more suitable than the Vasicek specification and the p-values for the spike regime indicate
that the lognormal distribution gives a better fit compared to the Pareto spike distribution.
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Table 3.2: Parameter Values Estimated by Janczura and Weron [2009]
Parameter Value

µ1 47.194 EUR/MWh
µ2 3.44
η 0.36
σ1 0.73485
σ2 0.83066
m 46.54 EUR/MWh
λ12 0.0089
λ21 0.8402

Base regime: dP = η(µ1 − P )dt+ σ1
√
PdZ

Spike regime: log(P −m) ∼ N(µ2, σ
2
2), P > m.

prices and lead to better spike identification and goodness-of-fit than in the standard mean-

reverting Markov regime switching models (i.e. the Vasicek or Ornstein-Uhlenbeck process)

with constant volatility dynamics.

Janczura and Weron [2009] obtain maximum likelihood estimates of the parameters

of Equations (3.30) and (3.31) using the algorithm of Kim [1994]. The mean daily EEX

spot price data is first deseasonalized by removing a long run seasonal trend representing

changing climate and consumptions conditions during the year and long-term non-periodic

structural changes. In addition a weekly periodic component is removed. Table 3.2 shows

the parameter estimates obtained from Janczura and Weron [2009] for the 2001 to 2005

period of their sample. Note that since the estimation is done using daily data, the pa-

rameters can be interpreted using a daily time scale.

The model specified in Equations (3.30) and (3.31) is different than that shown in

Equation (3.2). In particular the spike regime is not modelled as an Itô process. We

adapt the Janczura and Weron [2009] model to conform to standard Itô processes in both

regimes so that it can be incorporated into the HJB equation describing optimal hydro

dam operation. Specifically it is assumed the regime switching process can be specified as

follows for the base and spike regimes respectively:

dP = η(µ1 − P )dt+ σ1

√
PdZ + P (ξ12 − 1)dX12. (3.32)
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dP = σ2(P −m)dz + P (ξ21 − 1)dX21, P > m. (3.33)

The P-measure transition intensities are as defined in Equation (3.2).

Note that Equations (3.32) and (3.33) also include terms at the end which specify the

jump in price level when a regime change happens. The spike regime is only defined for

prices above the median, m. It was thus necessary to assume that when a change in regime

happens from the base to the spike regime there will be a jump up in price level, with the

jump size reflecting the ratio of the long run expected values in the base and spike regimes.

When a transition from the spike to the base regime occurs, a jump down in price will

occur at level of equal but opposite magnitude.

The parameters in Table 3.2 are estimated under the P measure (physical measure).

To derive the option value using the hedging approach as shown in Appendix A.1.1, we

require the market price of risk to convert the P measure to the Q measure. Under the Q

measure Equations (3.32) and (3.33) becomes

dP = [η(µ1 − P )− Λ1σ1

√
P ]dt+ σ1

√
PdẐ + P (ξ12 − 1)dX̂12. (3.34)

dP = σ2(P −m)dẑ + P (ξ21 − 1)dX̂21, P > m. (3.35)

where dẐ and dẑ are the increment of the standard Gauss-Wiener processes under the Q

measure specified by the choice of Λ1 and Λ2 respectively. dX̂12 and dX̂21 indicate the

transition of the Markov chain under the Q measure. In this empirical study we rely on

existing studies of the market price of risk to convert the drift from the physical measure to

the risk neutral measure. However, as there are no current studies converting P-measure

transition probabilities to Q-measure probabilities11, sensitivity analysis is employed to

investigate the impact of changing transition probabilities.

The parameter values adopted for Equations (3.34) and (3.35) are shown in Table 3.3.

The long run price, µ1, median price, m, mean reversion speed, η, and volatilities σ1 and

σ2 are taken from the Janczura and Weron estimates given in Table 3.2. One problem with

11In practice, Q-measure probabilities can be calibrated to the observed prices of traded options for
electricity prices.
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Table 3.3: Parameter Values for the Regime Switching Model
Parameter Value Parameter Value

µ1 47.194 EUR/MWh η 0.36
m 46.54 EUR/MWh c 20 EUR/MWh
σ1 0.73485 σ2 0.83066
ξ12 1.6470 ξ21 0.6072

λQ12 0.0089 λQ21 0.8402
Λ1 -0.2481 Λ2 -0.2481
Pmax
1 200 EUR/MWh Pmax

2 200 EUR/MWh
Pmin
1 0 EUR/MWh Pmin

2 48 EUR/MWh
T 168h r̄ 0.05 annually

Base regime: dP = [η(µ1 − P )− Λ1σ1
√
P ]dt+ σ1

√
PdẐ + P (ξ12 − 1)dX̂12.

Spike regime: dP = σ2(P −m)dẑ + P (ξ21 − 1)dX̂21, P > m.

using these estimates is that our empirical analysis involves hourly control of the ramping

rate. However the parameters from Janczura and Weron [2009] are estimated with mean

daily data. Use of daily averages in this context is clearly not ideal. Any regular daily

patterns are ignored. The chapter undertakes sensitivities to investigate the impact of

these parameter estimates. Estimating parameter values on an hourly basis will be a topic

for future research.

As noted above ξ12 is set equal to the ratio of the spike regime mean price to the base

regime mean price. ξ21 is roughly the inverse of ξ12. So, on average ξ21× ξ12 is around 1 to

avoid arbitrage opportunities. λQ12 and λQ21 represent the regime transition intensities in the

risk neutral world. The risk adjusted probability of switching from regime ı to regime j is

λQijdt. As expected the probability of remaining in the base regime over a single day is very

high, so that the spike regime occurs quite rarely. As was noted earlier, these estimated

transition probabilities12 from Janczura and Weron [2009] are under the P-measure and

we use them as the risk neutral transition probabilities in our empirical study, which is

problematic. However, in the sensitivity analysis we will check the robustness of our results

by assuming different transition probabilities.

12In the literature, constant transition probabilities are usually estimated and used for derivative pricing
and risk management. However, this specification may not be appropriate in our asset pricing model as
the transition probability for electricity prices should not be constant, but depends on some observable
variables such as the demand level.
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Another important parameter is the market price of risk Λ, representing the excess

return over the risk-free rate that the market expects for taking extra risks. The empirical

evidence for the market price of risk in the power markets are mixed in terms of the

magnitude, variability and sign which could be positive or negative. It generally varies

over time and across markets. Some of the empirical estimations are provided by Lucia

and Schwartz [2002], Cartea and Figueroa [2005], Kolos and Ronn [2008] and Weron [2008].

In Weron [2008] the market prices of risk implied from AEO-GB0300 Asian-style options

and GB0300 futures ranges from -0.2 to 0.1 during the period November 1, 1999 - January

28, 2000. In this chapter we assume the market price of risk is a deterministic constant13

and use the estimated value from Cartea and Figueroa [2005], where they use historical spot

data and forward data from the England and Wales electricity market and find the market

price of risk is -0.2481. As Weron [2008] explains “negative value is a higher incentive for

hedging on the demand side relative to the supply side, because of the non-storability of

electricity as compared to the (limited and costly but still existent) storage capabilities of

fuel”.

Table 3.3 also shows the assumed variable cost of electricity production, c, the upper

and lower limits on price in the numerical analysis, Pmin
ı and Pmax

ı , ı = 1, 2, the timeframe

for the analysis in hours, T , and the risk free rate, r̄.

3.7 Empirical Results

3.7.1 Base Case

In this section, we present the numerical results for the base case with ramping constraints

at 3,000 CFS-hr. The value of the hydro power station is a function of electricity price,

water content, release rate, time and regime. We are interested in how these variables

will affect the profit and operation of the power plant under various levels of ramping

restrictions. Due to the high dimensionality of the value function, we can only analyze the

13We could specify the market price of risk that is a linear or nonlinear function of the state variables.
Then the estimated time-varying market price of risk could be incorporated into the HJB-PDE.
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results by looking at various combinations of the variables while holding other variables

constant. So, given any ramping restrictions, for the numerical results we will focus on the

following relationships: power plant value versus price and release rate; optimal ramping

rate versus price and release rate; optimal ramping rate versus price and time; power plant

value versus price and reservoir level; optimal ramping rate versus price and reservoir level.

Figures 3.3(a) through 3.7(b) show the results for this regime switching case when the

constraints for ramping rate, water release rate and water content are imposed. Figures

3.3(a) and 3.3(b) plot the value of the hydro power plant as a function of water release

rate and spot price at time zero for the base regime and the spike regime respectively when

the reservoir level is at the full capacity and the inflow rate is at 6,671 CFS. Note that the

spike regime is only defined for prices above 46.54 EUR/MWh while the base regime is

defined over the complete range shown from 0 to 200 EUR/MWh. In the base regime we

observe that the value of the hydro power plant is increasing with the spot price. However,

the hydro power plant’s value is increasing with the water release rate for prices above

the marginal cost of electricity generation of 20 EUR/MWh and decreasing with the water

release rate for prices below the marginal cost of electricity generation. This is due to the

fact that the power plant makes losses by generating power when the spot price moves

below the marginal cost. But in the spike regime the value of the hydro power plant is

increasing with both water release rate and spot price. Not surprisingly, at any given water

release rate and spot price, the value of the hydro power plant in the spike regime is higher

than its value in the base regime. More specifically, in the base regime the value reaches

the maximum of EUR 1,541,400 when the current release rate is 15,000 CFS and the price

is 200 EUR/MWh and its value reaches the minimum of EUR 1,282,100 when the current

release rate is 15,000 CFS and the price is 0 EUR/MWh. Even at a price of 0 EUR/MWh

the power plant’s value is still positive due to the fact that the price will move up at a

later time and generate positive profits. Similarly, in the spike regime the value reaches

the maximum of EUR 1,580,300 when the current release rate is 15,000 CFS and the price

is 200 EUR/MWh and its value reaches the minimum of EUR 1,340,900 when the current

release rate is 2,000 CFS and the price is 48 EUR/MWh.

Figures 3.4(a) and 3.4(b) show the optimal control strategies corresponding to Figures
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3.3(a) and 3.3(b) respectively. In general, for the base regime the power plant will ramp

up at the maximum limit of 3,000 CFS-hr to generate more power and make higher profits

if the price is high and ramp down at the maximum limit of 3,000 CFS-hr to accumulate

more water in the reservoir for generation at later time if the price is low. However the

constraints on release rates and reservoir size also have an impact on optimal operations,

leading to some complex interactions. In Figure 3.4(a) four regions have been labelled. For

example, I denotes a region where the release rate is high but prices are low. The optimal

action is to ramp down at the maximum rate of 3,000 CFS-hr. This tells us that the high

release rate is non-optimal at these low prices, and ramping down allows the reservoir to

replenish. In Region II prices are low and the release rate is at or near the minimum. The

operator must ramp up to avoid violating the minimum release constraint. However as the

release rate is increased, but remaining at low prices we see a switch in the optimal action

from ramping up to ramping down. In general, ramping down is preferable when prices

are low whenever it is possible, given other constraints. Region III shows an area of high

prices and low release rates, and it makes sense that the optimal action is to ramp up.

Finally Region IV indicates an area which has a high release rate and high prices as well.

The constraint on the maximum release rate prevents ramping up at the maximum rate

in this region. For the spike regime, since the price is much higher the power station will

ramp up at 3,000 CFS-hr whenever possible given the other constraints. If we truncate

Figure 3.4(a) for prices below 48 EUR/MWh, the optimal control strategies for the base

regime and the spike regime are very similar, except the controls in the low price and high

release rate region where the boundaries for ramping up and ramping down are slightly

different for these two regimes.
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(a) Value over Price and Release Rate for the Base Regime

(b) Value over Price and Release Rate for the Spike Regime

Figure 3.3: Value over Price and Release Rate for the Base and Spike Regimes
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 IV

 II

 III

(a) Optimal Ramping Rate over Price and Release Rate for the
Base Regime

(b) Optimal Ramping Rate over Price and Release Rate for the
Spike Regime

Figure 3.4: Optimal Ramping Rate over Price and Release Rate for the Base and Spike
Regimes
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(a) Optimal Ramping Rate over Price and Time for the Base
Regime

(b) Optimal Ramping Rate over Price and Time for the Spike
Regime

Figure 3.5: Optimal Ramping Rate over Price and Time for the Base and Spike Regimes
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Figures 3.5(a) and 3.5(b) plot the optimal operational strategies for the hydro power

plant as a function of time and spot price for the base regime and the spike regime respec-

tively when the reservoir level is at the full capacity, the water release rate is at 8,500 CFS

which is midway between the upper and lower limits. These diagrams allow a better view

of the impact of price on the optimal strategy and also indicate the effect of imposing a

terminal time of one week. For the base regime we can clearly observe that at lower prices

it is optimal to ramp down and preserve the water in the reservoir, whereas for high prices

it is optimal to ramp up thereby increasing the release rate and power generation. More

specifically, for a typical hour there are four operational regions: the power plant will ramp

down at the maximum limit of 3,000 CFS-hr in order to generate less power and keep the

reservoir at full capacity if the price is below 20 EUR/MWh; if the price lies between 20

EUR/MWh and 40 EUR/MWh the station will ramp down at 2,000 CFS-hr; when the

price is between 40 EUR/MWh and 60 EUR/MWh the station will ramp down at 1,500

CFS-hr; as the price moves above 60 EUR/MWh the station will ramp up at the maximum

limit of 3,000 CFS-hr. It may also be observed that the optimal control strategy remains

largely unchanged over time, but behaves quite differently when the time moves close to

the terminal time. Since the terminal boundary condition of zero value is imposed, the

power plant will ramp up at the maximum allowed rate when time is close to the end of

the time horizon. For the spike regime the station will mostly ramp up at the maximum

limit of 3,000 CFS-hr due to higher prices.

Figures 3.6(a) and 3.6(b) plot the value of the hydro power plant as a function of reser-

voir level and spot price at time zero for the base regime and the spike regime respectively

when the release rate is at 8,500 CFS. In both regimes we observe that the value of the

hydro power plant is increasing with both the reservoir level and spot price. At any given

reservoir level and spot price, the value of the hydro power plant in the spike regime is

higher than its value in the base regime. More specifically, in the base regime the value

reaches the maximum of EUR 1,517,400 when the current reservoir level is 17,000 acre-feet

and the price is 200 EUR/MWh and its value reaches the minimum of EUR 1,162,600

when the current reservoir level is 7,000 acre-feet and the price is 0 EUR/MWh. Similarly,

in the spike regime the value reaches the maximum of EUR 1,554,800 when the current
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reservoir level is 17,000 acre-feet and the price is 200 EUR/MWh and its value reaches

the minimum of EUR 1,194,200 when the current reservoir level is 7,000 acre-feet and the

price is 48 EUR/MWh.

Figures 3.7(a) and 3.7(b) show the optimal control strategies corresponding to Figures

3.6(a) and 3.6(b) respectively. For the base regime, in the lower reservoir boundary region

there are two cases. First, if the price is low it is optimal to ramp down at the maximum

limit of 3,000 CFS-hr to let the reservoir accumulate more water. Second, if the price is

high enough it is even optimal to ramp up at the maximum limit of 3,000 CFS-hr to make

more profits, but this is not sustainable since it tends to violate the lower water content

constraint. However, if the initial water content is anywhere above the minimum water

content region, this will not cause any concerns. In fact, it is never optimal to operate

anywhere close to the lower reservoir boundary since the power plant’s value is positively

related to the water content as shown in Figure 3.6(a). In addition, for any water content

above the lower reservoir boundary there is an operational boundary between up ramping

at maximum limit of 3,000 CFS-hr and down ramping at maximum limit of 3,000 CFS-hr.

In the low price and full reservoir region it is optimal to ramp down at rates lower than

the maximum allowed rate to keep the reservoir full. Furthermore, in the low price region,

for any water content below the maximum level the dam will ramp down at the maximum

allowed rate to let the reservoir store more water even though it could make profits at the

current operating mode. For the spike regime, the optimal control strategies are similar to

the base regime for prices above 48 EUR/MWh. We notice that in the high price and lower

reservoir boundary it is also optimal to ramp up at the maximum limit of 3,000 CFS-hr.

However, because the price will quickly switch back to the base regime in this case the

plant will again ramp down at the maximum limit of 3,000 CFS-hr to let the reservoir

accumulate more water and avoid violating the lower water content constraint.

3.7.2 Impact of Changing Ramping Restrictions

In this section, we analyze the implication of the ramping constraints on the value of the

hydro power plant. The impact of these constraints on profits for a range of ramping
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constraints is detailed in Table 3.4, which is represented by Figures 3.8(a) and 3.8(b)

graphically. Figure 3.8(a) plots the case at half release rate and full reservoir level and

Figure 3.8(b) plots the case at full release rate and full reservoir level. In general, the

more restrictive the constraint the greater is the limitation on the station’s operational

flexibility and the larger the impact on profits. However for this particular example profit

is not highly sensitive to ramping rate restrictions. Under the same conditions, higher

initial electricity price always gives higher present value.

Without ramping restrictions the total profit from providing power in the base regime

is EUR 1,367,600 when the initial price is 40 EUR/MWh, the reservoir level is at the

full capacity, the water release rate is at the upper limit and the inflow rate is at 6,671

CFS. With ramping constraints of 5,000 CFS-hr, the total profit drops to EUR 1,361,400,

representing a 0.5% reduction over the scenario without ramping restrictions. As ramping

rate restrictions are increased profits continue to drop, until at a restriction of 250 CSF-hr,

then the total profit drops to as low as EUR 1,254,100, which is a 8.3% decrease relative to

the scenario without ramping restrictions. The reduction of profit in this most restrictive

scenario is similar to what is reported in Niu and Insley [2013] in a deterministic framework

in which they assume each day is divided into peaking and off peaking regimes. In Niu and

Insley [2013] the value of the hydro operation is reduced by 6.9% under the most severe

ramping restrictions. Keeping other conditions the same, if the initial release rate is half of

the upper limit, then the total profit drops to EUR 1,310,700, which is only a 4.3% decrease

relative to the scenario without ramping restrictions. From Figures 3.8(a) and 3.8(b) we

also observe profits fall proportionately more as ramping restrictions are increased when

ramping rates are already quite restrictive - i.e. for rates of less than 1,000 CFS-hr. Similar

results are obtained under other specifications such as different initial price, water release

rate and regime. It is noticed that even if the price jumps to 160 EUR/MWh in the spike

regime, at the most restrictive ramping constraint of 250 CSF-hr the total profit only drops

5.9% over the scenario without ramping restrictions.

One concern regarding Janczura and Weron [2009]’s estimation is that they model daily

average electricity price, instead of the hourly electricity price. We would expect the daily

price spikes and volatility will be smaller than those values for the hourly price, but the
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Table 3.4: Numerical Results Under Various Ramping Restrictions

Total Profit and Change of Total Profit in Regime 1 at Time 0 When the Initial Price is 40 EUR/MWh
Case No Ramping

Restrictions
5000 (CFS-hr) 3000 (CFS-hr) 1000 (CFS-hr) 250 (CFS-hr)

HF Profit 1368900 1364000 1355500 1339800 1310700
%ch N/A -0.4 -1.0 -2.1 -4.3

FF Profit 1367600 1361400 1350700 1318000 1254100
%ch N/A -0.5 -1.2 -3.6 -8.3

Total Profit and Change of Total Profit in Regime 2 at Time 0 When the Initial Price is 80 EUR/MWh
HF Profit 1401100 1395300 1385900 1367500 1337200

%ch N/A -0.4 -1.1 -2.4 -4.6
FF Profit 1403600 1397700 1387700 1358000 1298800

%ch N/A -0.4 -1.1 -3.2 -7.5

Total Profit and Change of Total Profit in Regime 2 at Time 0 When the Initial Price is 160 EUR/MWh
HF Profit 1517300 1509700 1497400 1467700 1428500

%ch N/A -0.5 -1.3 -3.3 -5.9
FF Profit 1529600 1524100 1514900 1490300 1449000

%ch N/A -0.4 -1.0 -2.6 -5.3

Note: HF means half release rate and full reservoir level; FF means full release rate and full reservoir
level. Profit is in Euros and %ch refers to the percent change in profits compared to the case of no

ramping restrictions.

daily mean reverting rate will be higher than the mean reverting rate for the hourly price.

These could cause an under valuation of the hydro power station. In addition, any regular

daily trends are ignored. This shortcoming in the parameter estimates could also affect

the results about the impact of ramping restrictions on hydro plant’s value and operation.

To check the robustness of our results, it is necessary to conduct a sensitivity analysis.
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(a) Value over Price and Reservoir Level for the Base Regime

(b) Value over Price and Reservoir Level for the Spike Regime

Figure 3.6: Value over Price and Reservoir Level for the Base and Spike Regimes
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(a) Optimal Ramping Rate over Price and Reservoir Level for the
Base Regime

(b) Optimal Ramping Rate over Price and Reservoir Level for the
Spike Regime

Figure 3.7: Optimal Ramping Rate over Price and Reservoir Level for the Base and Spike
Regimes
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(a) Total Profit vs Ramping Rate Restrictions at Half Release Rate
and Full Reservoir Level
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(b) Total Profit vs Ramping Rate Restrictions at Full Release Rate
and Full Reservoir Level

Figure 3.8: Total Profit vs Ramping Rate Restrictions at Half Release Rate and Full
Reservoir Level and at Full Release Rate and Full Reservoir Level
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3.7.3 Sensitivity Analysis

Due to the large number of parameters for the regime switching electricity price model

(Table 3.3), we only conduct sensitivity analysis for five key parameters of interest: the

speed of mean reversion in the base regime, the transition intensities in each regime, the

volatilities, the long run mean in the base regime, and the cost of generating hydroelectric

power. A sixth sensitivity is conducted to determine the significance of including the spike

regime. In this case the base regime is modelled as a single regime.

For the first sensitivity, the speed of mean reversion is doubled from 0.36 to 0.72. The

results are shown in Table A.1 (Appendix A.2). The impact of ramping restrictions can be

seen to be similar to the benchmark case. Ramping restrictions affect the profits negatively

and profits fall proportionately more as ramping restrictions are increased when ramping

rates are already quite restrictive. However for this higher speed of mean reversion the

value of the hydro plant is lower, and the impact on profits of increasing ramping rates is

slightly smaller. At the most restrictive ramping restrictions of 250 CFS-hr the profit drops

by 7.6% in the worst scenario compared to the case of mean reverting rate at 0.36, where

the profit decreases by 8.3% in the worst scenario. The higher η implies that price stays

closer to the long run mean, which provides less opportunity for the hydro plant owner

to benefit from an upward movement in price by ramping up and selling more power.

Since the motivation to ramp up (or down) will be reduced, ramping restrictions would be

expected to have a smaller impact.

The next sensitivity involves changing the transition probabilities by increasing the

probability that the price is in the jump regime. Specifically, λQ12 is increased from 0.0089

to 0.02 and λQ21 is decreased from 0.8402 to 0.7402 while keeping η at 0.36. The results are

shown in Table A.2 in Appendix A.2. Again, we observe similar patterns for the impact

of ramping restrictions in these two cases. But with the new transition probabilities the

value is uniformly higher and the ramping impact is slightly larger (but at the same order

of magnitude). At the most restrictive ramping restrictions of 250 CFS-hr the profit drops

by 9.5% in the worst scenario compared to the benchmark case where the profit decreases

by 8.3% in the worst scenario. The change in transition probabilities implies more time is
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spent in the spike regime, which as expected increases the value of the power station. But

with a greater likelihood of being in the spike regime, the imposition of ramping restrictions

limiting the ability to respond to higher prices has a larger impact.

For the third sensitivity, the volatilities for both regimes are increased. In the base

regime the volatility, σ1 is increased from 0.73485 to 0.93. In the spike regime σ2 is increased

from 0.83066 to 1.43. The other parameters are kept at benchmark case values. The results

are given in Table A.3 in Appendix A.2. Compared to Table 3.4, we again observe the

same patterns for the impact of ramping restrictions, but the higher volatilities cause two

major changes. First, the value of the hydro plant is uniformly higher. This is consistent

with the standard result on options pricing, i.e. higher volatility is associated with higher

options value. Second, for higher volatilities the impact of ramping restrictions on the

power plant’s value is slightly larger (but at the same order of magnitude). As Table A.3

shows at the most restrictive ramping restrictions of 250 CFS-hr the profit drops by 9.3%

in the worst scenario compared to the case of low volatilities, where the profit decreases

by 8.3% in the worst scenario. This is caused by the fact that a higher volatility results in

more frequent high prices and low prices. So these restrictive ramping restrictions affect

the plant’s ability to capture profits by ramping up or down quickly in response to more

frequent price changes.

For the fourth sensitivity, the long run mean price for the base regime is decreased

from 47.194 EUR/MWh to 27.194 EUR/MWh. The results are reported in Table A.4 in

Appendix A.2. Compared to the benchmark case, we find similar patterns for the impact

of ramping restrictions. However, a 20 EUR/MWh reduction of the base regime mean

price results in a significantly lower value for the power plant. This is caused by the much

smaller net profit under this lower mean price. In addition, for a lower mean price the

impact of ramping restrictions on the power plant’s value is larger. At the most restrictive

ramping restrictions of 250 CFS-hr the profit drops by 13% in the worst scenario compared

to the benchmark case where the profit decreases by 8.3% in the worst scenario. This is

due to the fact that a lower mean price for the base regime increases the probability that

the price falls below the cost of production. So these restrictive ramping restrictions limit

the plant’s ability to avoid negative profit by ramping down quickly in response to more
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frequent low prices.

For the fifth sensitivity, the cost of generating hydroelectric power is halved from 20

EUR/MWh to 10 EUR/MWh. The results are given in Table A.5 in Appendix A.2. The

impact of ramping restrictions is very similar to the benchmark case. However for this lower

cost of production the value of the hydro plant is significantly higher, and the impact on

profits of increasing ramping rates is slightly smaller. At the most restrictive ramping

restrictions of 250 CFS-hr the profit drops by 7.6% in the worst scenario compared to the

case with cost at 20 EUR/MWh, where the profit decreases by 8.3% in the worst scenario.

A lower production cost means a higher net profit and higher power plant value. Since

this lower cost also reduces the likelihood of negative profit, ramping restrictions would be

expected to have a smaller impact.

In the empirical study above, we examine 6 cases: the benchmark case (Table 3.4)

and 5 cases (Tables A.1 through A.5) from the sensitivity analysis. The results for the

sensitivity analysis are also summarized in Table A.6 (Appendix A.2). The results show

that ramping rates will have a larger effect when the price process is one in which more

frequent ramping up or down is desirable - such as with higher volatilities or more frequent

price spikes. In the empirical example in this chapter, price is mostly above the variable

cost of producing power. This is why ramping restrictions do not have an overly severe

effect on profits even at the most restrictive level. If the price process were such that price

fell below cost frequently, then we expect that ramping restrictions would have a much

more noticeable effect since the hydro operator would be unable to quickly respond to the

low price by ramping down in order to decrease power supply.

In the final sensitivity the base regime is adopted as a single regime. This is done to

determine the importance of the spike regime to the value and optimal operations of the

hydro plant. The results are shown in Tables A.7, A.8, A.9, and A.10 in Appendix A.2.

As expected, the single regime case gives an overall lower value than the two regime case.

However the results are surprisingly close, differing only by 2 to 3 percent. In addition in

the single regime case, ramping restrictions have a smaller impact than in the two regime

case. However the change is again quite small, with the most severe restrictions reducing

profits by 7.5 % in the single regime case compared to 8.3 % in the two regime case.
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Restrictive ramping constraints will limit the power plant’s ability to make profits during

price spikes, therefore the power plant’s value is more severely affected when the spike

regime is included. However, price spikes are still rare events. In addition if the hydro

plant is already operating at full capacity when a spike occurs, no ramping is needed for

the plant to capture the extra profits from the price spike.

These and other additional numerical experiments show that the ramping effect is

largely determined by the level of the price relative to the cost of generation, i.e., how

long and how frequent the price is close to or lower than the cost of hydro power, and is

less sensitive to the price jumps. In other words, in Janczura and Weron [2009] where the

electricity price is almost surely higher than the cost of power generation, the results show

that the effect of ramping restrictions on the power plant’s ability to gain the profit in the

spike regime is minimal. This is because the hydro operation will be optimally operating

somewhere close to the maximum release rate most of the time. Even though the price

jumps frequently, it is still a rare event compared to the base regime. In Janczura and

Weron [2009] the unconditional probability of the spike regime is as low as 0.0104.

This exercise emphasizes the importance of accurately modelling electricity prices in

order to obtain an accurate estimation of the impact of ramping restrictions on hydro

station’s value and operation. However, overall the results are quite robust and we can

draw some general conclusions based on this sensitivity analysis. In the empirical example,

it has been found that profits are significantly affected (by less than 10%) in the case of

the most severe ramping constraints. However we also find a range of less severe ramping

constraints for which profits are impacted by less than 3%.

3.8 Conclusions

The accurate modelling of electricity prices is still a topic of considerable debate in the

literature. Markov regime switching models are becoming more popular as a means of

capturing in a parsimonious manner the major characteristics of electricity prices such as

price spikes. This chapter contributes to the literature by demonstrating the effect of using
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a regime switching model to analyze ramping rate issues in a prototype hydro power plant.

For a prototype hydro dam we valued the power plant and modelled the lost profits

for a range of ramping restrictions for the regime switching model over a one week period.

In most scenarios the optimal control is of a “bang-bang” type, i.e., ramping up at the

upper limit when prices are high and ramping down at the upper limit when prices are

low. The exception to this is when the dam is up against one of the other constraints such

as maximum/minimum release rates or maximum water content in the dam. Profits are

negatively affected by ramping restrictions. We find that profits are significantly affected

(by less than 10%) in the case of the most severe ramping constraints. However we also

find a range of less severe ramping constraints for which profits are impacted by less than

3%. In addition, by using the base regime in the regime switching model as the single

regime, the results show that introducing the spike regime increases the value of the power

plant and also increases the impact of ramping restrictions, but in our empirical example

this impact is not very sensitive to the spike regime.

All of these results will depend on the specifics of the particular hydro plant under

consideration such as the physical structure as well as the market structure that the plant

operates in such as the pricing system. Nevertheless, the sensitivity analysis shows that

these empirical findings are quite robust for this regime switching model for electricity

prices. Notwithstanding price spikes have a significant effect on the value of the hydro

power plant, one conclusion is that the ramping effect on profits mostly depends on the

level of the price relative to the cost of generation (how long and how frequent the price is

close to or below the cost), but is not very sensitive to the price jumps. In general ramping

restrictions have a larger effect in an environment where frequent ramping up or down is

desired. A lower speed of mean reversion, higher volatility and more frequent transition to

the spike regime all have the effect of increasing the impact of ramping restrictions.

An important conclusion of the chapter is that ramping restrictions should not be

determined in isolation, but rather using a cost-benefit approach that evaluates the trade

offs involved. This chapter has identified some of the important trade offs that should be

examined more carefully in future research. These include the impact on hydro plant’s

operation and profit.
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There are several directions for further research. First, we could account for uncertainty

in water inflow assuming it could be modelled as mean reverting stochastic processes, but

this would add another dimension to the HJB-PDE and obtaining the numerical solution

for this problem is nontrivial. Second, this chapter adapted electricity process parameter

estimates found in the literature. Further work is needed in estimating an electricity price

model using hourly data, preferably in the Q-measure to avoid the necessity of determining

an appropriate market price of risk. Third, further efforts are needed to construct a

measure of the environmental benefits for the river ecosystem gained by imposing these

ramping restrictions. Finally, the ramping issue could be better studied through a partial

equilibrium model of hydro-thermal competition. Then we could analyze the impact of

ramping restrictions on the electricity price, production, transmission, associated pollutant

emission of thermal power and social welfare.
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Chapter 4

An Options Pricing Approach to

Ramping Rate Restrictions at Hydro

Power Plants: An Extension to

Three Price Regimes

4.1 Introduction

In the third chapter (Niu and Insley [2014]), the empirical study on the impact of ramping

restrictions on our prototype plant is based on the Markov regime switching model of

Janczura and Weron [2009], where we assume a constant up-jump size when the price

process switches from the base regime to the spike regime and a constant down-jump size

when the price process switches from the spike regime to the base regime. The up-jump

size is set equal to the ratio of the spike regime mean price to the base regime mean price

and the down-jump size is roughly the inverse of the up-jump size. However, when the

regime switching occurs it is highly unlikely that the price will jump up or down at some

constant size. In fact, the fixed jump size used in the third chapter only represents the

average size of a jump when the regime switching happens. Therefore, it is desirable to
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extend the Markov regime switching model of Janczura and Weron [2009] to a model with

multiple jump sizes, which allows us to examine the impact of a random jump size on our

results.

In this chapter, we conduct numerical experiments on the jump size by proposing a

regime switching model with three regimes: the base regime (regime 1), the first spike

regime (regime 2), and the second spike regime (regime 3). Assuming different jump sizes

among these three regimes allows us to study the effect of multiple jump sizes on the

impact of ramping restrictions on the hydro plant. Ideally, we could use more regimes to

approximate the random jump size as close as possible. However, this will significantly

increase the computational complexity for this regime switching model. In fact, different

jump sizes among these three regimes in our proposed model could be viewed as the

simplest approximation of the random jump size observed from the data. To reduce the

computational burden, we further assume that only two possible switches among these three

regimes are permitted: switching between regimes 1 and 2; switching between regimes 1

and 3. In the empirical analysis, the jump size between the base regime and the first spike

regime is the same as the jump size (which represents the average jump size) between the

base regime and the spike regime in chapter 3. We will analyze two cases for the jump size

between the base regime and the second spike regime: a larger than the average jump size;

a smaller than the average jump size.

The empirical results from this chapter show that, even if multiple jump sizes are

incorporated into the regime switching model by adding the third regime, the findings

are very similar to what we get in the third chapter. There is a significant effect on

profits for the most restrictive ramping constraints, but we also observe a range of ramping

restrictions over which profits are not substantially affected. These numerical experiments

provide further evidence that ramping restrictions have a larger impact when the expected

variation in price is increased such as through an increase in jump size (for the third regime)

which makes it desirable to change water release rates relatively frequently.

The remainder of the chapter is organized as follows. In the next section we present the

model and associated parameter values used in the empirical analysis. Sections three and

four contain the results from two numerical experiments: large jump size from the base
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regime to the second spike regime; small jump size from the base regime to the second

spike regime. Section five concludes.

4.2 Empirical Analysis

The empirical analysis in this study is based on the medium-sized hydro plant similar

to the Abitibi Canyon generating station located on the Abitibi River in northeastern

Ontario. Detailed descriptions about this hydro plant are provided in chapter two. The

input parameters for the hydro power production and hydro dam specifications are reported

in Table 3.1 of chapter three. Since adding another regime to the model will significantly

increase the computation time, the analysis is conducted for a time horizon of three days
1.

Similar to the third chapter, we base our regime switching model on the model estimated

in Janczura and Weron [2009]. Under the Q measure, it is assumed the regime switching

process can be specified as follows for the base, the first spike, and the second spike regimes

respectively:

dP = [η(µ1 − P )− Λ1σ1

√
P ]dt+ σ1

√
PdẐ + P (ξ12 − 1)dX̂12 + P (ξ13 − 1)dX̂13. (4.1)

dP = σ2(P −m)dẑ + P (ξ21 − 1)dX̂21, P > m. (4.2)

dP = σ3(P −m)dž + P (ξ31 − 1)dX̂31, P > m. (4.3)

where dẐ, dẑ, and dž are the increments of the standard Gauss-Wiener processes under

the Q measure specified by the choice of Λ1, Λ2, and Λ3 respectively. dX̂12, dX̂21, dX̂13,

and dX̂31 indicate the transition of the Markov chain under the Q measure.

The parameter values used for Equations (4.1), (4.2) and (4.3) are shown in Table 4.1.

The long run price, µ1, median price, m, mean reversion speed, η, and volatilities σ1 and

1In the empirical experiments, the computational time for each case varies from several days to two
weeks.
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Table 4.1: Parameter Values for the Regime Switching Model (Three Price Regimes)
Parameter Value Parameter Value Parameter Value

µ1 47.194 EUR/MWh η 0.36 - -
m 46.54 EUR/MWh c 20 EUR/MWh - -
σ1 0.73485 σ2 0.83066 σ3 0.83066
ξ12 1.6470 ξ21 0.6072 - -
ξ13 1.8470 (1.4470) ξ31 0.6911 (0.5414) - -

λQ11 0.991 λQ12 0.0045 λQ13 0.0045

λQ21 0.8402 λQ22 0.1598 λQ23 0

λQ31 0.8402 λQ32 0 λQ33 0.1598
Λ1 -0.2481 Λ2 -0.2481 Λ3 -0.2481
Pmax
1 200 EUR/MWh Pmax

2 200 EUR/MWh Pmax
3 200 EUR/MWh

Pmin
1 0 EUR/MWh Pmin

2 48 EUR/MWh Pmin
3 48 EUR/MWh

T 72h r̄ 0.05 annually - -

Base regime: dP = [η(µ1 − P )− Λ1σ1
√
P ]dt+ σ1

√
PdẐ + P (ξ12 − 1)dX̂12 + P (ξ13 − 1)dX̂13.

First spike regime: dP = σ2(P −m)dẑ + P (ξ21 − 1)dX̂21, P > m.
Second spike regime: dP = σ3(P −m)dž + P (ξ31 − 1)dX̂31, P > m.

σ2 are taken from the Janczura and Weron estimates. The volatility for the second spike

regime σ3 is set equal to σ2. The up-jump and down-jump sizes between the base and the

first spike regimes ξ12 and ξ21 are the same as the jump sizes between the base and spike

regimes in chapter 3. We examine two cases for the jump size from the base regime to the

second spike regime ξ13: a larger jump size than ξ12 (the average jump size); a smaller jump

size (the value in the bracket) than ξ12. ξ31 refers to the corresponding down-jump size.

λQı , ı,  = 1, 2, 3 represent the regime transition intensities in the risk neutral world. λQ12 is

set equal to λQ13, λQ21 is set equal to λQ31, and λQ22 is set equal to λQ33. The transition intensities

between the first and second spike regimes λQ23 and λQ32 are zero since the transition between

these two regimes is not permitted by assumption. The market price of risk Λ is taken

from Cartea and Figueroa [2005] and assumed the same for the three regimes. Table 4.1

also reports the assumed variable cost of electricity production, c, the upper and lower

limits on price in the numerical analysis, Pmin
ı and Pmax

ı , ı = 1, 2, 3, the timeframe for the

analysis in hours, T , and the risk free rate, r̄.
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4.3 Case I: Large Jump Size from the Base Regime

to the Second Spike Regime

For Case I, we examine in detail the impact of ramping restrictions on our prototype power

plant for a large jump size from the base regime to the second spike regime. In this case,

Table 4.1 shows that the up-jump size ξ13 is 1.8470 and the down-jump size ξ31 is 0.6911.

4.3.1 Base Case for Case I

In this section, we present the numerical results for the base case when both the up-ramping

and down-ramping constraints are set at 3,000 CFS-hr. Similar to the third chapter, we

will report the numerical results for the following relationships: power plant value versus

price and release rate; optimal ramping rate versus price and release rate; optimal ramping

rate versus price and time; power plant value versus price and reservoir level; optimal

ramping rate versus price and reservoir level.

Figures 4.1(a) through 4.5(c) show the results for this base case2 when the constraints

for ramping rate, water release rate and water content are imposed. We first focus on the

value of the hydro plant as a function of water release rate and spot price. In Figures

4.1(b) and 4.1(c) the first and second spike regimes are defined for prices from 46.54 to 200

EUR/MWh. However, in Figure 4.1(a) the base regime is defined for the domain from 0 to

200 EUR/MWh. In the base regime we find that the value of the hydro plant and the spot

price are positively correlated. However, the hydro plant’s value and the water release rate

are positively correlated if the price is higher than 20 EUR/MWh and negatively correlated

if the price is lower than 20 EUR/MWh. When the spot price is in one of the two spike

regimes the value of the hydro plant is positively correlated with both water release rate

and spot price. As expected, at any given water release rate and spot price, the value of

the hydro plant in the second spike regime is higher than its value in the first spike regime

and the hydro plant has a higher value in both spike regimes than in the base regime.

2Figures 4.1(a) through 4.5(c) in this chapter are corresponding to Figures 3.3(a) through 3.7(b) in
chapter three, but include two spike regimes.
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Specifically, in the base regime the hydro plant has the maximum value of EUR 813,250 at

the release rate of 15,000 CFS and the price of 200 EUR/MWh and the minimum value of

EUR 567,090 at the release rate of 15,000 CFS and the price of 0 EUR/MWh. In addition,

in the first spike regime (the second spike regime) the hydro plant has the maximum value

of EUR 853,760 (EUR 880,130) at the release rate of 15,000 CFS and the price of 200

EUR/MWh and the minimum value of EUR 610,040 (EUR 613,080) at the release rate of

2,000 CFS and the price of 48 EUR/MWh.

We plot the optimal control strategies in Figures 4.2(a), 4.2(b), and 4.2(c), which are

corresponding to Figures 4.1(a), 4.1(b), and 4.1(c) respectively. Generally, for the base

regime the power plant will ramp up (ramp down) at the maximum limit of 3,000 CFS-hr

if the price is high (low). Similar to our findings in the third chapter, the constraints on

release rates and reservoir size also have an impact on optimal operations particularly in

the maximum and minimum release rate regions. For example, Figure 4.2(a) shows in the

low price and low release rate region the power plant must ramp up to avoid violating the

minimum release constraint. However as the release rate is increased, but remaining at low

prices the optimal action switches from ramping up to ramping down. Next, in the high

release rate and high price region the operator is not allowed to ramp up at the maximum

rate due to the maximum release rate constraint. The optimal control strategies for the

two spike regimes are virtually the same. Because of the much higher price in the spike

regime it is optimal for the hydro station to ramp up at 3,000 CFS-hr whenever possible

given the other constraints.

Regarding the optimal operational strategies for the hydro power plant as a function

of time and spot price, for the base regime Figures 4.3(a) shows that at low prices it is

optimal to ramp down and for high prices it is optimal to ramp up. The optimal control

strategy remains largely unchanged over time. At any given hour (except the terminal time

region) we observe four operational regions: ramping down at the maximum limit of 3,000

CFS-hr if the price is below 20 EUR/MWh; ramping down at 2,000 CFS-hr if the price

lies between 20 EUR/MWh and 40 EUR/MWh; ramping down at 1,500 CFS-hr when the

price is between 40 EUR/MWh and 60 EUR/MWh; ramping up at the maximum limit of

3,000 CFS-hr as the price moves above 60 EUR/MWh. Interestingly, the optimal control
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strategy changes dramatically in the terminal time region. Given the terminal boundary

condition of zero value, it is optimal to ramp up at the maximum allowed rate as time

moves into the terminal time region. For the two spike regimes (Figures 4.3(b) and 4.3(c))

higher prices make the station mostly ramp up at the maximum limit of 3,000 CFS-hr.

Now, we analyze the results for the value of the hydro power plant as a function of

reservoir level and spot price. In all the three regimes (Figures 4.4(a), 4.4(b), and 4.4(c))

we find that the value of the hydro power plant has positive relationships with both the

reservoir level and spot price. Not surprisingly, at any given reservoir level and spot price,

the value of the hydro plant in the second spike regime is higher than its value in the

first spike regime and the base regime has the lowest value among these three regimes.

Specifically, in the base regime the power plant reaches the highest value of EUR 787,790

at the reservoir level of 17,000 acre-feet and the price of 200 EUR/MWh and the lowest

value of EUR 471,260 at the reservoir level of 7,000 acre-feet and the price of 0 EUR/MWh.

In addition, in the first spike regime (the second spike regime) the power plant reaches the

highest values of EUR 826,490 (EUR 851,360) at the reservoir level of 17,000 acre-feet and

the price of 200 EUR/MWh and the lowest value of EUR 495,950 (EUR 498,720) at the

reservoir level of 7,000 acre-feet and the price of 48 EUR/MWh.

The optimal control strategies corresponding to Figures 4.4(a), 4.4(b), and 4.4(c) are

shown in Figures 4.5(a), 4.5(b), and 4.5(c) respectively. As usual, in the base regime it is

optimal to ramp up at the maximum limit of 3,000 CFS-hr at high prices and ramp down

at the maximum limit of 3,000 CFS-hr at low prices. However, in the low price region the

power plant operates quite differently when the reservoir level is close to or at the minimum

or maximum limit. First, in the low price and low reservoir level region the power plant will

ramp up at the maximum limit of 3,000 CFS-hr, but this tends to violate the lower water

content constraint.3 However, this should not cause any concerns because it is not optimal

for the power plant to operate anywhere close to the lower reservoir boundary. Second, in

the low price and full reservoir region the power plant will ramp down at rates lower than

the maximum allowed rate to keep the reservoir full. In addition, we also observe that there

3These results are obtained for the short time horizon of three days. If the model is run for a longer
time horizon (seven days), we should obtain more stable results similar to our findings in the third chapter.
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are some critical prices and reservoir levels where there is an operational boundary between

up ramping at the maximum limit of 3,000 CFS-hr and down ramping at the maximum

limit of 3,000 CFS-hr. For the two spike regimes, the power plant operates similarly to the

base regime when the price is higher than 48 EUR/MWh.

4.3.2 Impact of Changing Ramping Restrictions for Case I

For the hydro power plant, the numerical results for the impact of ramping constraints on

profits are summarized in Table 4.2, which is plotted in Figure 4.6(a) for the case of half

release rate and full reservoir level and in Figure 4.6(b) for the case of full release rate and

full reservoir level. Similar to what we find in the third chapter, as the constraints become

more restrictive the impact on profits becomes larger. However, these two figures also

show that for a large range of ramping rate restrictions the profit is not very sensitive to

these restrictions. Assuming everything else is held constant, higher initial electricity price

is always associated with higher present value. Given the same initial price, the second

spike regime (with a large jump size from the base regime to the spike regime) always gives

higher present value than the first spike regime (with an average jump size from the base

regime to the spike regime).

Given the initial price at 40 EUR/MWh, the reservoir level at the full capacity, the

water release rate at the upper limit and the inflow rate at 6,671 CFS, with ramping

constraints of 250 CSF-hr the total profit drops 7.9% relative to the scenario without

ramping restrictions. The reduction of profit in this most restrictive scenario is very similar

to what is found in chapter 3 where the total profit is reduced by 8.3% under the most

severe ramping restrictions. If the initial release rate is half of the upper limit while keeping

other conditions the same, then the total profit only drops 5.8% relative to the scenario

without ramping restrictions. Figures 4.6(a) and 4.6(b) show that profits are becoming

more sensitive for the restrictions on ramping rates of less than 1,000 CFS-hr and 3,000

CFS-hr respectively. We obtain similar results for different initial price, water release rate

and regime. When the price jumps to 160 EUR/MWh in the spike regime, the total profit

only drops 8.7% at the most restrictive ramping constraints of 250 CSF-hr.
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(a) Value over Price and Release Rate for the Base Regime

(b) Value over Price and Release Rate for the First Spike Regime

(c) Value over Price and Release Rate for the Second Spike Regime

Figure 4.1: Value over Price and Release Rate for the Base, the First Spike, and the Second
Spike Regimes (Case I)
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(a) Optimal Ramping Rate over Price and Release Rate for the Base

Regime

(b) Optimal Ramping Rate over Price and Release Rate for the First

Spike Regime

(c) Optimal Ramping Rate over Price and Release Rate for the Sec-

ond Spike Regime

Figure 4.2: Optimal Ramping Rate over Price and Release Rate for the Base, the First
Spike, and the Second Spike Regimes (Case I)
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(a) Optimal Ramping Rate over Price and Time for the Base Regime

(b) Optimal Ramping Rate over Price and Time for the First Spike

Regime

(c) Optimal Ramping Rate over Price and Time for the Second Spike

Regime

Figure 4.3: Optimal Ramping Rate over Price and Time for the Base, the First Spike, and
the Second Spike Regimes (Case I)
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(a) Value over Price and Reservoir Level for the Base Regime

(b) Value over Price and Reservoir Level for the First Spike Regime

(c) Value over Price and Reservoir Level for the Second Spike

Regime

Figure 4.4: Value over Price and Reservoir Level for the Base, the First Spike, and the
Second Spike Regimes (Case I)
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(a) Optimal Ramping Rate over Price and Reservoir Level for the

Base Regime

(b) Optimal Ramping Rate over Price and Reservoir Level for the

First Spike Regime

(c) Optimal Ramping Rate over Price and Reservoir Level for the

Second Spike Regime

Figure 4.5: Optimal Ramping Rate over Price and Reservoir Level for the Base, the First
Spike, and the Second Spike Regimes (Case I)
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Table 4.2: Numerical Results Under Various Ramping Restrictions (Large Jump Size from
the Base Regime to the Second Spike Regime)

Total Profit and Change of Total Profit in Regime 1 at Time 0 When the Initial Price is 40 EUR/MWh
Case No Ramping

Restrictions
5000 (CFS-hr) 3000 (CFS-hr) 1000 (CFS-hr) 250 (CFS-hr)

HF Profit 629520 627370 623880 616160 592880
%ch N/A -0.3 -0.9 -2.1 -5.8

FF Profit 628190 624780 618940 594120 578810
%ch N/A -0.5 -1.5 -5.4 -7.9

Total Profit and Change of Total Profit in Regime 2 at Time 0 When the Initial Price is 80 EUR/MWh
HF Profit 662050 659080 654610 644370 619800

%ch N/A -0.5 -1.1 -2.7 -6.4
FF Profit 664670 661570 656540 635530 623470

%ch N/A -0.5 -1.2 -4.4 -6.2

Total Profit and Change of Total Profit in Regime 2 at Time 0 When the Initial Price is 160 EUR/MWh
HF Profit 779940 775230 768060 747290 714710

%ch N/A -0.6 -1.5 -4.2 -8.4
FF Profit 792790 790360 786780 776460 773980

%ch N/A -0.3 -0.8 -2.1 -2.4

Total Profit and Change of Total Profit in Regime 3 at Time 0 When the Initial Price is 80 EUR/MWh
HF Profit 668970 666000 661500 650980 626200

%ch N/A -0.4 -1.1 -2.7 -6.4
FF Profit 671570 668640 663900 644330 633720

%ch N/A -0.4 -1.1 -4.1 -5.6

Total Profit and Change of Total Profit in Regime 3 at Time 0 When the Initial Price is 160 EUR/MWh
HF Profit 799210 794340 786920 764430 729630

%ch N/A -0.6 -1.5 -4.4 -8.7
FF Profit 812460 810120 806730 797610 795770

%ch N/A -0.3 -0.7 -1.8 -2.1

Note: HF means half release rate and full reservoir level; FF means full release rate and full reservoir
level. Profit is in Euros and %ch refers to the percent change in profits compared to the case of no

ramping restrictions.

107



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
5.5

6

6.5

7

7.5

8
x 10

5 Total profit vs ramping rate restrictions at half release rate and full reservoir level

CFS-hr

E
U

R

 

 

Base Regime at 40 EUR/MWh

First Spike Regime at 80 EUR/MWh

First Spike Regime at 160 EUR/MWh

Second Spike Regime at 80 EUR/MWh

Second Spike Regime at 160 EUR/MWh

(a) Total Profit vs Ramping Rate Restrictions at Half Release Rate
and Full Reservoir Level
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(b) Total Profit vs Ramping Rate Restrictions at Full Release Rate
and Full Reservoir Level

Figure 4.6: Total Profit vs Ramping Rate Restrictions at Half Release Rate and Full
Reservoir Level and at Full Release Rate and Full Reservoir Level (Case I)
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4.4 Case II: Small Jump Size from the Base Regime

to the Second Spike Regime

In this section, we investigate the impact of ramping restrictions on our prototype power

plant for a small jump size from the base regime to the second spike regime. Now, the

up-jump size ξ13 is changed to 1.4470 and the down-jump size ξ31 is set at 0.5414 (Table

4.1). We first report the numerical results for the base case with both the up-ramping and

down-ramping constraints at 3,000 CFS-hr and then analyze the impact of the ramping

constraints on the total profit of the hydro plant over a range of ramping constraints. Since

the results for this small jump size case are very similar to the findings for the large jump

size case, we will mainly focus on their differences.

It is noticed that Figures 4.7(a) through 4.11(c) for Case II are corresponding to Figures

4.1(a) through 4.5(c) for Case I. First, Figures 4.7(a), 4.7(b), and 4.7(c) show how the value

of the hydro plant varies with the water release rate and spot price4. As expected, at any

given water release rate and spot price, the hydro plant has a higher value in both spike

regimes than in the base regime, but the value of the hydro plant in the second spike regime

is lower than its value in the first spike regime. Specifically, in the base regime the power

plant reaches the highest value of EUR 801,480 at the release rate of 15,000 CFS and the

price of 200 EUR/MWh and the lowest value of EUR 552,940 at the release rate of 15,000

CFS and the price of 0 EUR/MWh. Furthermore,, in the first spike regime (the second

spike regime) the power plant has the maximum value of EUR 842,130 (EUR 821,560)

at the release rate of 15,000 CFS and the price of 200 EUR/MWh and the minimum

value of EUR 596,020 (EUR 592,050) at the release rate of 2,000 CFS and the price of 48

EUR/MWh.

Figures 4.10(a), 4.10(b), and 4.10(c) shows how the value of the hydro power plant de-

pends on the reservoir level and spot price5. Not surprisingly, at any given reservoir level

4The corresponding optimal control strategies in Figures 4.8(a), 4.8(b), and 4.8(c) are virtually the
same as those shown in Figures 4.2(a), 4.2(b), and 4.2(c) for Case I. In addition, in Figures 4.9(a), 4.9(b),
and 4.9(c) the optimal operational strategies for the hydro power plant as a function of time and spot
price are also very similar to those shown in Figures 4.3(a), 4.3(b), and 4.3(c) for Case I.

5The associated optimal control strategies in Figures 4.11(a), 4.11(b), and 4.11(c) behave similarly as
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and spot price, the value of the hydro plant in the first spike regime is higher than its value

in the second spike regime and the base regime gives the lowest value. In particular, in the

base regime the power plant has the highest value of EUR 775,520 when the current reser-

voir level is 17,000 acre-feet and the price is 200 EUR/MWh and the lowest value of EUR

461,040 when the current reservoir level is 7,000 acre-feet and the price is 0 EUR/MWh.

Additionally, in the first spike regime (the second spike regime) the value is at the highest

level of EUR 814,360 (EUR 794,960) when the current reservoir level is 17,000 acre-feet

and the price is 200 EUR/MWh and at the lowest level of EUR 486,030 (EUR 482,550)

when the current reservoir level is 7,000 acre-feet and the price is 48 EUR/MWh.

Now, we analyze impact of the ramping constraints on the value of the hydro power

plant. The results are reported in Table 4.3 and plotted in Figures 4.12(a) and 4.12(b).

Similar to what we find for Case I, more restrictive constraints have a larger impact on

profits. But, the profit is not very sensitive to ramping rate restrictions. As usual, if we

keep everything else constant, higher initial electricity price always results in higher present

value. However, for the case of small jump size from the base regime to the second spike

regime, given the same initial price the second spike regime (with a small jump size from

the base regime to the spike regime) always gives lower present value than the first spike

regime (with an average jump size from the base regime to the spike regime). As expected,

the small jump size case gives an overall lower value than the large jump size case. In

addition, in the small jump size case ramping restrictions have a smaller impact than in

the large jump size case. However the change is again quite small, with the most severe

restrictions reducing profits by 8.2 % in the small jump size case compared to 8.7 % in the

large jump size case. Restrictive ramping constraints will limit the power plant’s ability to

make profits during price spikes, therefore the power plant’s value is more severely affected

when the spike regime has a large jump size.

those shown in Figures 4.5(a), 4.5(b), and 4.5(c) for Case I.
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(a) Value over Price and Release Rate for the Base Regime

(b) Value over Price and Release Rate for the First Spike Regime

(c) Value over Price and Release Rate for the Second Spike Regime

Figure 4.7: Value over Price and Release Rate for the Base, the First Spike, and the Second
Spike Regimes (Case II)
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(a) Optimal Ramping Rate over Price and Release Rate for the Base

Regime

(b) Optimal Ramping Rate over Price and Release Rate for the First

Spike Regime

(c) Optimal Ramping Rate over Price and Release Rate for the Sec-

ond Spike Regime

Figure 4.8: Optimal Ramping Rate over Price and Release Rate for the Base, the First
Spike, and the Second Spike Regimes (Case II)
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(a) Optimal Ramping Rate over Price and Time for the Base Regime

(b) Optimal Ramping Rate over Price and Time for the First Spike

Regime

(c) Optimal Ramping Rate over Price and Time for the Second Spike

Regime

Figure 4.9: Optimal Ramping Rate over Price and Time for the Base, the First Spike, and
the Second Spike Regimes (Case II)
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(a) Value over Price and Reservoir Level for the Base Regime

(b) Value over Price and Reservoir Level for the First Spike Regime

(c) Value over Price and Reservoir Level for the Second Spike

Regime

Figure 4.10: Value over Price and Reservoir Level for the Base, the First Spike, and the
Second Spike Regimes (Case II)
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(a) Optimal Ramping Rate over Price and Reservoir Level for the

Base Regime

(b) Optimal Ramping Rate over Price and Reservoir Level for the

First Spike Regime

(c) Optimal Ramping Rate over Price and Reservoir Level for the

Second Spike Regime

Figure 4.11: Optimal Ramping Rate over Price and Reservoir Level for the Base, the First
Spike, and the Second Spike Regimes (Case II)
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Table 4.3: Numerical Results Under Various Ramping Restrictions (Small Jump Size from
the Base Regime to the Second Spike Regime)

Total Profit and Change of Total Profit in Regime 1 at Time 0 When the Initial Price is 40 EUR/MWh
Case No Ramping

Restrictions
5000 (CFS-hr) 3000 (CFS-hr) 1000 (CFS-hr) 250 (CFS-hr)

HF Profit 616750 614740 611470 604670 582660
%ch N/A -0.3 -0.9 -2.0 -5.5

FF Profit 615460 612230 606680 583220 569400
%ch N/A -0.5 -1.4 -5.2 -7.5

Total Profit and Change of Total Profit in Regime 2 at Time 0 When the Initial Price is 80 EUR/MWh
HF Profit 649420 646590 642330 632940 609570

%ch N/A -0.4 -1.1 -2.5 -6.1
FF Profit 652120 649190 644430 624760 614090

%ch N/A -0.5 -1.2 -4.2 -5.8

Total Profit and Change of Total Profit in Regime 2 at Time 0 When the Initial Price is 160 EUR/MWh
HF Profit 767400 762840 755890 735830 704220

%ch N/A -0.6 -1.5 -4.1 -8.2
FF Profit 780460 778230 774980 765980 764000

%ch N/A -0.3 -0.7 -1.9 -2.1

Total Profit and Change of Total Profit in Regime 3 at Time 0 When the Initial Price is 80 EUR/MWh
HF Profit 643910 641070 636800 627600 604360

%ch N/A -0.4 -1.1 -2.5 -6.1
FF Profit 646630 643530 638520 617670 605860

%ch N/A -0.5 -1.3 -4.5 -6.3

Total Profit and Change of Total Profit in Regime 3 at Time 0 When the Initial Price is 160 EUR/MWh
HF Profit 752470 748030 741280 722590 692680

%ch N/A -0.6 -1.5 -4.0 -8.0
FF Profit 765230 762940 759510 749410 746840

%ch N/A -0.3 -0.8 -2.1 -2.4

Note: HF means half release rate and full reservoir level; FF means full release rate and full reservoir
level. Profit is in Euros and %ch refers to the percent change in profits compared to the case of no

ramping restrictions.
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(a) Total Profit vs Ramping Rate Restrictions at Half Release Rate
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0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
5.5

6

6.5

7

7.5

8
x 10

5 Total profit vs ramping rate restrictions at full release rate and full reservoir level

CFS-hr

E
U

R

 

 

Base Regime at 40 EUR/MWh

First Spike Regime at 80 EUR/MWh

First Spike Regime at 160 EUR/MWh

Second Spike Regime at 80 EUR/MWh

Second Spike Regime at 160 EUR/MWh

(b) Total Profit vs Ramping Rate Restrictions at Full Release Rate
and Full Reservoir Level

Figure 4.12: Total Profit vs Ramping Rate Restrictions at Half Release Rate and Full
Reservoir Level and at Full Release Rate and Full Reservoir Level (Case II)
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4.5 Conclusions

One of the major features of electricity price spikes is that when a jump occurs the price

tends to jump up or down at a random size. To incorporate this characteristic into the

regime switching model, we make a simple approximation of the random jump size by

proposing a three regimes model (one base and two spike regimes) with multiple jump

sizes. Within this framework, this chapter studies the effect of multiple jump sizes on the

impact of ramping restrictions on a hydro power plant.

Using a prototype hydro dam, we valued the hydro plant for a range of ramping re-

strictions for the three regimes model for a three days period. Two numerical experiments

are conducted for the multiple jump sizes: average jump size between the base regime and

the first spike regime and larger than the average jump size between the base regime and

the second spike regime; average jump size between the base regime and the first spike

regime and smaller than the average jump size between the base regime and the second

spike regime. As expected, these numerical experiments give consistent results as what we

find in chapter 3. For both numerical experiments, we find that profits are significantly

affected by less than 9% in the case of the most severe ramping constraints and for a range

of less severe ramping constraints profits are impacted by less than 2%. In addition, by

introducing multiple jump sizes into the regime switching model, the results show that:

(i) the present value in the spike regime with a large jump size is always higher than the

present value in the spike regime with a small jump size; (ii) the small jump size case

gives an overall lower value than the large jump size case; (iii) in the small jump size case

ramping restrictions have a smaller impact than in the large jump size case.

This chapter adopted the Markov regime switching model and the associated parameter

estimates found in the literature. We also made strong assumptions on other parameter

values such as the transition intensities and the jump sizes. Further work is needed in

estimating an electricity price model in the following directions: estimating the model in

an hourly frequency; estimating the market price of risk; estimating the distribution of the

jump size from one regime to another; improving the timing of spikes.
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Chapter 5

Conclusions

The ability of hydro facilities to respond quickly through ramping to changing demand and

price conditions is one of the benefits of hydro power. However the significant negative

consequences of ramping on aquatic ecosystems needs to be considered by regulators. These

negative impacts are case specific, dependent on the physical structure of the dam and

the ecological conditions of particular rivers and streams. In cases where ramping rate

restrictions are being considered, apart from the environmental gains to the river ecosystem,

there should be a recognition of the costs imposed on hydro operators in terms of lost profits

as well as potential environmental impacts that result from the need to utilize alternative

sources of electricity. Ideally ramping rate regulations would be determined through a

careful analysis of all the potential impacts. This thesis contributes to our understanding

of the impact of ramping restrictions on the hydro station’s operation and profit and the

trade offs involved.

In both non-stochastic and stochastic frameworks, the thesis finds highly consistent

results on the impact of ramping restrictions on the hydro station’s profit. For our medium-

sized power plant profits are negatively affected by ramping restrictions. We observe profits

are significantly affected (by less than 7% in chapter 2, by less than 10% in chapter 3, and

by less than 9% in chapter 4) in the case of the most severe ramping constraints, but we also

observe a range of less severe ramping restrictions over which profits are not substantially
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affected (by less than 2% in chapter 2, by less than 3% in chapter 3, and by less than 2%

in chapter 4).

In chapter two, we examine the effect of ramping restrictions imposed by a regulator

on a hydro power plant’s operation and profit. In a non-stochastic environment, we solve

a dynamic non-linear model of the profit maximizing decision by a prototype hydro plant

over 5 days given physical and environmental restrictions on water release rates. We

assume the hydro plant must meet a minimum level of contract electricity demand through

hydro production, purchasing on the spot market for resale, or some combinations of these

two. Using data that is representative of a medium-sized hydro operation in Ontario,

we investigate the operator’s optimal decisions regarding hydro production and power

purchases in on-peak and off-peak periods where on- and off-peak prices are assumed known

and constant. In particular, we examine the sensitivity of hydro station profits to ramping

restrictions as well as the potential impact on electricity production from hydro and other

sources. The associated benefits and costs of ramping rate restrictions include the lost

profit for the hydro operator, the environmental impact of changed reliance on thermal

power, and the environmental benefit for the river ecosystem. Using the replacement

power approach, we estimate the environmental cost (or benefit) of this change in thermal

production due to the resulting change in air pollution emissions. In absence of monetary

measure for the environmental benefit of ramping restrictions for the river ecosystem, we

estimate the other two impacts to provide a lower bound for the environmental benefit of

ramping rate restrictions that would be required in order for them to be worthwhile.

In this second chapter, our analysis shows ramping restrictions have a negative effect

on profits since a hydro operator is forced to make different choices (on hydro production

and power purchases) than when no ramping restrictions are imposed. In particular prof-

its are reduced if ramping restrictions force hydro operators to increase hydro production

in off-peak periods when prices are lower. A more surprising result is that ramping re-

strictions can cause an increase in the total amount of hydro power produced for a given

day. This result follows from the desire of the hydro operator to mitigate the effect of the

ramping constraints by increasing power production in off-peak periods while at the same

time attempting to maintain production as much as possible in on-peak periods. Under
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the replacement power assumption, the increased hydro production results in a reduction

in air pollution emissions. This constitutes an added environmental benefit of ramping

restrictions, in addition to any benefits to the river ecosystem. We calculate a net cost

of the ramping restrictions as the lost profits net of any environmental benefit of reduced

air pollution. This net cost can be compared to expected environmental benefits from an

improved aquatic ecosystem.

In chapter three, we investigate the impact of ramping restrictions on hydro plant

operations and profitability using a Markov regime switching model of electricity prices.

Hydro operations are formulated as a stochastic control problem subject to various physical

and environmental constraints which results in the HJB-PDE for the value of the hydro

station. The optimal control is obtained by solving the HJB-PDE numerically using a

fully implicit finite difference approach with semi-Lagrangian time stepping. For the same

prototype hydro dam as chapter 2 we value the power plant and model the lost profits for

a range of ramping restrictions for the regime switching model over a one week period. We

pay special attention to how the impact of ramping restrictions depends on the marginal

cost of hydroelectric power and the characteristics of the assumed price process, and how

the presence of two price regimes affects hydro plant value and optimal operations. In the

stochastic environment, it is notoriously difficult to measure the environmental cost (or

benefit) of alternate thermal power generation when ramping restrictions are imposed. In

absence of monetary measure for the environmental benefit of ramping restrictions for the

aquatic ecosystem, we seek to examine the other side of the equation - the costs of these

restrictions in terms of lost profitability. Knowledge of these costs will help illuminate the

trade offs involved and inform the design of regulations.

In this third chapter, we find that in most scenarios the hydro plant will ramp up or

down at the maximum allowed rates. The exception to this is when the dam is up against

one of the other constraints such as maximum/minimum release rates or maximum water

content in the dam. The sensitivity analysis shows that ramping restrictions have a larger

effect in an environment where frequent ramping up or down is desired. A lower speed

of mean reversion, higher volatility and more frequent transition to the spike regime will

increase the impact of ramping restrictions. One conclusion is that the ramping effect on
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profits mostly depends on the price relative to the cost of generation (how long and how

frequent the price is close to or below the cost), but is not very sensitive to the price jumps.

In chapter four, we study the impact of ramping restrictions on hydro plant operations

and profitability by extending the regime switching model in chapter 3 to a model with

multiple jump sizes. Specifically, we propose a regime switching model with three regimes

among which the jump sizes are different. For the same prototype hydro dam as chapter 2

we examine the effect of multiple jump sizes on the impact of ramping restrictions on the

hydro plant’s operation and profit over 3 days. In this fourth chapter, the two numerical

experiments provide further evidence that ramping restrictions have a larger impact when

the expected variation in price is increased such as through an increase in jump size (for the

third regime) which makes it desirable to change water release rates relatively frequently.

All of these results in this thesis will depend on the specifics of the particular hydro plant

under consideration such as the physical structure as well as the market structure that the

plant operates in such as the pricing system. In general, these empirical findings are quite

robust under different specifications for electricity prices. An important conclusion of the

thesis is that ramping restrictions should not be determined in isolation, but rather using

a cost-benefit approach that evaluates the trade offs involved. This thesis has identified

some of the important trade offs that should be examined more carefully in future research.

These include the impact on hydro plant’s operation and profit as well as the environmental

impact of a change in the intensity of use of other types of power.

In practice, to determine the appropriate ramping restrictions for a specific hydro plant

a regulator should consider the following steps. We should start by specifying the functional

form for the generation of hydroelectric power and then estimate the parameter values for

this function using historical data including the power output, water flow rate, water head,

water content and generation efficiency. Next, we can assume and estimate the stochastic

processes for electricity prices based on hourly data from the spot market where the hydro

plant sells its power. Now the associated benefits and costs of ramping restrictions could

be calculated by using the methods proposed in this thesis. These include the lost profit

for the hydro plant and the environmental externality of the replacement thermal power

(using the marginal external cost of emissions for that market). It is noticed that the cost-
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benefit analysis is not complete unless we could put a dollar value on the environmental

benefit of ramping restrictions on the river ecosystem. However, currently there are no

studies available to directly provide monetary measures of the environmental benefit of

ramping restrictions1. To address this issue, one possible option is to use the contingent

valuation (CV) approach to obtain the willingness to pay (WTP) values of restricting the

ramping rate of the hydro operator to protect the river ecosystem. If this experiment at the

policy site is not feasible due to the time and resource constraints, then the benefit transfer

approach could be used to calculate these values when similar studies at another place and

time are available. However, adjustments are normally required for the consistency between

the study and policy sites with respect to commodities, markets, and welfare measures. In

addition, to design the ramping policy the regulator should also consider the environmental

scientists’ views which are based on the scientific evidence from biological studies.

There are several directions for further research. First, we could account for uncertainty

in water inflow and solve the HJB-PDE with two dimensional stochastic processes for

the electricity price and water inflow. Second, further work is needed in estimating an

electricity price model in the following directions: estimating the model in an hourly

frequency; estimating the market price of risk; estimating the distribution of the up- and

down-jump sizes; improving the timing of spikes. Third, further efforts are needed to

construct a monetary measure of the environmental benefits for the river ecosystem when

ramping restrictions are imposed. Fourth, an alternative hydro dam with different physical

structure and power production function could be used. Finally, the ramping issue could

be better studied through a partial equilibrium model of hydro-thermal competition. This

would allow us to analyze the impact of ramping restrictions on the equilibrium price and

production, associated pollutant emission of thermal power and social welfare.

1In this case, it becomes very important to obtain an accurate measure of the associated costs of
ramping restrictions such as the lost profit for the hydro plant. Regulators and industry can use this
information to negotiate the possible compensation for the hydro plant and the optimal ramping rate for
environmental and economic benefits.
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Appendix A

Appendix to Chapter 3

A.1 Derivation and Numerical Algorithms of HJB-

PDE

A.1.1 Derivation of HJB-PDE

Given Equation (3.21), hedging arguments are used to derive the HJB-PDE, Equation

(3.23), describing the value of the hydro dam. The derivation of Equation (3.23) is based

on Kennedy [2007] who analyzes the pricing of financial derivatives under regime switching

prices. This derivation is also based on Chen and Forsyth [2008] who consider optimal

control of a hydro dam assuming prices follow jump diffusion.

A target option V is hedged with a portfolio of N instruments {Γn̄}Nn̄=1 whose values

depend on the underlying electricity price P . There is a bank account B that earns the

risk free rate r̄. The value of the hedge position is

Π = −V +
N∑
n̄=1

$n̄Γn̄ +B. (A.1)

where $n̄ is the weight for the n̄th hedging instrument. If the Markov chain is now in state
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ı, the instantaneous change in the target option over an instant dt is obtained using Itô’s

lemma:

V ı(P + dP,w + dw, r + dr, t+ dt) = V ı + V ı
t dt+ V ı

r dr + V ı
wdw + V ı

PdP +
1

2
V ı
rrdrdr

+
1

2
V ı
wwdwdw +

1

2
V ı
PPdPdP + V ı

PwdPdw

+V ı
PrdPdr + V ı

wrdwdr.

In addition, the profit generated over the instant dt is given by

H(r, w)q(r, h(w))(P − c)dt.

Making the appropriate substitutions in Equation (A.2) for dw, dr and dP , we have

dV = µ̂ıdt+ σ̂ıdZ +
N∑
=1
6=ı

∆V ıdXı. (A.2)

where

µ̂ı =
[∂V ı

∂t
+ z

∂V ı

∂r
+H(r, w)a(`− r)∂V

ı

∂w
+ µı(P, t)

∂V ı

∂P
+

1

2
(σı)2(P, t)

∂2V ı

∂P 2
+H(r, w)q(r, h(w))(P − c)

]
.

σ̂ı = σı(P, t)
∂V ı

∂P
.

∆V ı = V  − V ı.

V κ = V κ(Pξıκ, w, r, t).

(A.3)

Similarly for each of the hedging instruments, we have

dΓn̄ = µ̄ın̄dt+ σ̄ın̄dZ +
N∑
=1
6=ı

∆Γın̄dXı. (A.4)
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where

µ̄ın̄ =
[∂Γın̄
∂t

+ µı(P, t)
∂Γın̄
∂P

+
1

2
(σı)2(P, t)

∂2Γın̄
∂P 2

]
.

σ̄ın̄ = σı(P, t)
∂Γın̄
∂P

.

∆Γın̄ = Γn̄ − Γın̄.

Γκn̄ = Γκn̄(Pξıκ, t).

(A.5)

Now we use equations for dV and dΓn̄ to specify the instantaneous change in the value

of the hedging portfolio which is

dΠ = −dV +
N∑
n̄=1

$n̄dΓn̄ + dB

=
[
− µ̂ı +

N∑
n̄=1

$n̄µ̄
ı
n̄ + r̄B

]
dt+

[
− σ̂ı +

N∑
n̄=1

$n̄σ̄
ı
n̄

]
dZ

+
N∑
=1
6=ı

[
−∆V ı +

N∑
n̄=1

$n̄∆Γın̄
]
dXı. (A.6)

In order to hedge both the diffusion risk (one equation) and the regime switching risk

(N − 1 equations), the following N linear equations need to hold

N∑
n̄=1

$n̄σ̄
ı
n̄ = σ̂ı.

N∑
n̄=1

$n̄∆Γın̄ = ∆V ı  = 1, 2, . . . , N ;  6= ı.

After eliminating both the diffusion risk and the regime switching risk, the hedging portfolio

should earn the risk free rate of return to avoid arbitrage opportunities. This implies that
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dΠ = r̄Πdt. Using Equation (A.1) for the portfolio value Π and Equation (A.6) for its

differential form dΠ, the non-arbitrage condition is given by

N∑
n̄=1

$n̄(µ̄ın̄ − r̄Γın̄) = µ̂ı − r̄V ı.

Now, we have a linear system consisting N + 1 equations and N unknowns.



σ̄ı1 σ̄ı2 · · · σ̄ıN
∆Γı11 ∆Γı12 · · · ∆Γı1N
∆Γı21 ∆Γı22 · · · ∆Γı2N

...
...

. . .
...

∆Γ
ı(ı−1)
1 ∆Γ

ı(ı−1)
2 · · · ∆Γ

ı(ı−1)
N

∆Γ
ı(ı+1)
1 ∆Γ

ı(ı+1)
2 · · · ∆Γ

ı(ı+1)
N

...
...

. . .
...

∆ΓıN1 ∆ΓıN2 · · · ∆ΓıNN
µ̄ı1 − r̄Γı1 µ̄ı2 − r̄Γı2 · · · µ̄ıN − r̄ΓıN





$1

$2

$3

...

...

...

...

$N−1

$N



=



σ̂ı

∆V ı1

∆V ı2

...

∆V ı(ı−1)

∆V ı(ı+1)

...

∆V ıN

µ̂ı − r̄V ı


Hence, this matrix system is over specified. To obtain a solution this system must be

linearly dependent. We assume the following linear combination of the system of equations

Λı ×R1 − λQı1 ×R2 − λQı2 ×R3 − . . .− λQıN ×RN −RN+1. (A.7)

where R refers to the th row of the matrix system above. This means that each element

in (A.7) must be zero for some choice of Λı and {λQı}N=1, 6=ı. Therefore, following Kennedy

[2007] (Appendix A), we obtain another matrix system given by
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

σ̄ı1 ∆Γı11 · · · ∆Γ
ı(ı−1)
1 ∆Γ

ı(ı+1)
1 · · · ∆ΓıN−1

1 ∆ΓıN1

σ̄ı2 ∆Γı12 · · · ∆Γ
ı(ı−1)
2 ∆Γ

ı(ı+1)
2 · · · ∆ΓıN−1

2 ∆ΓıN2
...

...
. . .

...
...

. . .
...

...
...

...
. . .

...
...

. . .
...

...
...

...
. . .

...
...

. . .
...

...
...

...
. . .

...
...

. . .
...

...

σ̄ıN ∆Γı1N · · · ∆Γ
ı(ı−1)
N ∆Γ

ı(ı+1)
N · · · ∆ΓıN−1

N ∆ΓıNN
σ̂ı ∆V ı1 · · · ∆V ı(ı−1) ∆V ı(ı+1) · · · ∆V ıN−1 ∆V ıN





Λı

−λQı1
...

−λQı(ı−1)

−λQı(ı+1)
...

−λQı(N−1)

−λQıN


=



µ̄ı1 − r̄Γı1
µ̄ı2 − r̄Γı2

...

...

...

...

µ̄ıN − r̄ΓıN
µ̂ı − r̄V ı


In this matrix system, the linear equations are independent to each other. We take the

last equation from this matrix and get

Λıσ̂ı −
N∑
=1
 6=ı

λQı∆V
ı = µ̂ı − r̄V ı (A.8)

Substituting µ̂ı, σ̂ı and ∆V ı from Equation (A.3) into Equation (A.8), we get

0 =
∂V ı

∂t
+ sup

z∈Z(r)

(z
∂V ı

∂r
) +H(r, w)a(`− r)∂V

ı

∂w
+

1

2
(σı)2(P, t)

∂2V ı

∂P 2
+ (µı(P, t)− Λıσı(P, t))

∂V ı

∂P

+H(r, w)q(r, h(w))(P − c)− r̄V ı +
N∑
=1
 6=ı

λQı(V
 − V ı).

(A.9)

Following the same procedure, the system of PDE’s for ı = 1, 2, . . . , N could be derived.

Recall that Λı is the market price of risk and is multiplied by the volatility term, σı(P, t),

and deducted from the drift, µı(P, t), giving the risk adjusted drift for price in regime ı.

The λQı ’s ( 6= ı) are the risk adjusted transition intensity of a regime switch. These may

be contrasted with the real world transition intensities, qı specified in Equation (3.2).
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A.1.2 Numerical Algorithms

We use equally spaced grids in P , w and r directions for the PDE discretization, respectively

denoted by [P0, P1, . . . , Pimax ], [w0, w1, . . . , wjmax ] and [r0, r1, . . . , rkmax ] with P0 = 0, Pimax =

Pmax, w0 = wmin, wjmax = wmax, r0 = rmin and rkmax = rmax. When the jump size

is greater than 1, the price may move above Pmax. To avoid the price jumping out of

the computational domain, we use an augmented jump amplitude near Pmax (as done by

Kennedy [2007]) and define ξ̄ı(P ) as follows

ξ̄ı(P ) =

ξı if 0 ≤ P ≤ Pmax

ξı

Pmax

P
if Pmax

ξı
< P ≤ Pmax

Now P ξ̄ı(P ) will remain in [0, Pmax].

Let 0 = 0∆τ < . . . < ℵ∆τ = T be the discrete timesteps and τn = n∆τ denote the

nth timestep. Let V ı(Pi, wj, rk, τ
n) denote the exact solution of the pricing equation when

the electricity spot price is Pi, the water content is wj, the outflow rate is rk, the discrete

time is τn, and the regime is ı. Let V ı,n
i,j,k denote an approximation of the exact solution

V ı(Pi, wj, rk, τ
n).

We use standard finite difference methods to discretize the operator C0V
ı, CV ı and

C1V
ı as defined in Sections 3.5.1 and 3.5.2. Following Chen and Forsyth [2007, 2008], let

(CεV )ı,ni,j,k denote the discrete value of the differential operators C0V
ı, CV ı or C1V

ı at a node

(Pi, wj, rk, τ
n) in regime ı, so that (CεV )ı,ni,j,k is an approximation for (C0V )ı,ni,j,k if Pi = 0, an

approximation for (CV )ı,ni,j,k if Pi ∈ (0, Pmax), and an approximation for (C1V )ı,ni,j,k if Pi =

Pmax. The operators can be discretized using central, forward, or backward differencing in

the P direction to give
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(CεV )ı,ni,j,k = γıiV
ı,n
i−1,j,k + βıiV

ı,n
i+1,j,k −

(
γıi + βıi + (r̄ +

N∑
=1
6=ı

λQı)
)
V ı,n
i,j,k if Pi ∈ (0, Pmax)

= βıiV
ı,n
i+1,j,k −

(
βıi + (r̄ +

N∑
=1
 6=ı

λQı)
)
V ı,n
i,j,k if Pi = 0

= γıiV
ı,n
i−1,j,k −

(
γıi + (r̄ +

N∑
=1
 6=ı

λQı)
)
V ı,n
i,j,k if Pi = Pmax

(A.10)

where γıi and βıi are defined in Appendices A.1.7, A.1.8, and A.1.9. The algorithm uses

central differencing as much as possible at each node since it is more accurate (d’Halluin

et al. [2004]). The use of forward or backward differencing guarantees γıi and βıi satisfy the

following positive coefficient conditions: γıi ≥ 0 and βıi ≥ 0 for i = 0, · · · , imax, ı = 1, · · · , N .

Let (BεV )ı,ni,j,k be an approximation of the operator BV ı at a mesh node (Pi, wj, rk, τ
n).

For BV ı =
∑N

=1
 6=ı

λQıV
, we have

(BεV )ı,ni,j,k =
N∑
=1
 6=ı

λQıχ(Piξ̄
ı(Pi), V

,n
i∗ ,j,k

, V ,n
i∗ +1,j,k). (A.11)

where, V  = V (Piξ̄
ı(Pi), wj, rk, τ

n) is approximated by the linear interpolation using V ,n
i∗ ,j,k

and V ,n
i∗ +1,j,k, written as χ(Piξ̄

ı(Pi), V
,n
i∗ ,j,k

, V ,n
i∗ +1,j,k) with Pi∗ ≤ Piξ̄

ı(Pi) ≤ Pi∗ +1.

A.1.3 Numerical Scheme for Pricing Equations

Following Chen and Forsyth [2007, 2008], we discretize the terms in PDE (3.23) using

a semi-Lagrangian time-stepping. Regarding P as fixed, then in regime ı the total (La-
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grangian) derivative for V ı = V ı(P,w(τ), r(τ), τ) along a trajectory w = w(τ), r = r(τ)

is

DV ı

Dτ
=

∂V ı

∂τ
+
∂V ı

∂r

dr

dτ
+
∂V ı

∂w

dw

dτ

=
∂V ı

∂τ
− ∂V ı

∂r

dr

dt
− ∂V ı

∂w

dw

dt

=
∂V ı

∂τ
− z∂V

ı

∂r
−H(r, w)a(`− r)∂V

ı

∂w
. (A.12)

Here we use the dynamics of w in Equation (3.6) and r in Equation (3.9). Now Equation

(3.23) can be written as

DV ı

Dτ
= CV ı +BV ı +H(r, w)q(r, h(w))(P − c). (A.13)

Let ζ ı,n+1
i,j,k denote the value of the control variable z at the mesh node (Pi, wj, rk, τ

n+1).

At (Pi, wj, rk, τ
n+1), DV ı

Dτ
is approximated by

(
DV

Dτ

)ı,n+1

i,j,k

=
1

∆τ
(V ı,n+1

i,j,k − V
ı,n

i,ĵ,k̂
) + truncation error . (A.14)

where V ı,n

i,ĵ,k̂
is an approximation of V ı(Pi, w

n
ĵ
, rn
k̂
, τn) obtained by linear interpolation with

wn
ĵ

and rn
k̂

given by

wn
ĵ

= min[max[wj +H(rk, wj)a(`− rk)∆τ, wmin], wmax]. (A.15)

rn
k̂

= rk + ζ ı,n+1
i,j,k ∆τ. (A.16)

Equation (A.15) guarantees that wn
ĵ

will remain in the domain [wmin, wmax]. The control

ζ ı,n+1
i,j,k must satisfy the constraint ζ ı,n+1

i,j,k ∈ Z(rk). Let Zk ⊆ Z(rk) denote the set of values

of ζ ı,n+1
i,j,k ∈ Z(rk) such that the resulting rn

k̂
computed from (A.16) is bounded within

[rmin, rmax].
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Now at any discrete mesh node (Pi, wj, rk, τ
n+1), n ≥ 0, PDE (3.23) and the associated

boundary Equations (3.25) and (3.26) can be discretized as

V ı,n+1
i,j,k = sup

ζı,n+1
i,j,k ∈Zk

V ı,n

i,ĵ,k̂
+ ∆τ(CεV )ı,n+1

i,j,k + ∆τ(BεV )ı,n+1
i,j,k + ∆τH(rk, wj)q(rk, h(wj))(Pi − c).

(A.17)

Substituting (CεV )ı,n+1
i,j,k from (A.10) and (BεV )ı,n+1

i,j,k from (A.11) into (A.17), we get

−∆τγıiV
ı,n+1
i−1,j,k + [1 + ∆τ

(
γıi + βıi + (r̄ +

N∑
=1
 6=ı

λQı)
)
]V ı,n+1
i,j,k −∆τβıiV

ı,n+1
i+1,j,k

= sup
ζı,n+1
i,j,k ∈Zk

V ı,n

i,ĵ,k̂
+ ∆τH(rk, wj)q(rk, h(wj))(Pi − c) + ∆τ

N∑
=1
6=ı

λQıχ(Piξ̄
ı(Pi), V

,n+1
i∗ ,j,k

, V ,n+1
i∗ +1,j,k)

if Pi ∈ (0, Pmax)

(A.18)

[1 + ∆τ
(
βıi + (r̄ +

N∑
=1
6=ı

λQı)
)
]V ı,n+1
i,j,k −∆τβıiV

ı,n+1
i+1,j,k

= sup
ζı,n+1
i,j,k ∈Zk

V ı,n

i,ĵ,k̂
−∆τH(rk, wj)q(rk, h(wj))c+ ∆τ

N∑
=1
 6=ı

λQıχ(Piξ̄
ı(Pi), V

,n+1
i∗ ,j,k

, V ,n+1
i∗ +1,j,k)

if Pi = 0

(A.19)
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−∆τγıiV
ı,n+1
i−1,j,k + [1 + ∆τ

(
γıi + (r̄ +

N∑
=1
 6=ı

λQı)
)
]V ı,n+1
i,j,k

= sup
ζı,n+1
i,j,k ∈Zk

V ı,n

i,ĵ,k̂
+ ∆τH(rk, wj)q(rk, h(wj))(Pi − c) + ∆τ

N∑
=1
6=ı

λQıχ(Piξ̄
ı(Pi), V

,n+1
i∗ ,j,k

, V ,n+1
i∗ +1,j,k)

if Pi = Pmax

(A.20)

A.1.4 Solving the Local Optimization Problems

We use the method suggested by Chen and Forsyth [2008] to solve a discrete local opti-

mization problem

sup
ζı,n+1
i,j,k ∈Zk

V ı,n

i,ĵ,k̂
(A.21)

at a mesh node (Pi, wj, rk, τ
n+1) in scheme (A.17). Given a mesh node (Pi, wj, rk, τ

n+1),

wn
ĵ

is fixed in (A.15) and in (A.16) rn
k̂

varies for different values of ζ ı,n+1
i,j,k , where all the

values of rn
k̂

form a closed region, denoted by

Rk =
{
rn
k̂
|rn
k̂

= rk + ζ ı,n+1
i,j,k ∆τ, ∀ζ ı,n+1

i,j,k ∈ Zk
}

From Rk we select a sequence of values, denoted by R̂k, which includes all the discrete grid

nodes in the r direction and the maximum and minimum values in Rk. Then we choose

the rn
k̂
∈R̂k which maximizes V ı,n

i,ĵ,k̂
. This means we now solve an alternative problem

sup
rn
k̂
∈R̂k

V ı,n

i,ĵ,k̂
(A.22)

It is shown in Chen and Forsyth [2008] that the solutions to problems (A.21) and (A.22)
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are consistent.

A.1.5 Matrix Form of the Discrete Equations

We now set up the matrix form of the discrete Equation (A.17). Let

V ı,n+1
j,k =


V ı,n+1

0,j,k

V ı,n+1
1,j,k

...

V ı,n+1
imax,j,k


and

V ı,n

ĵ,k̂
=


V ı,n

0,ĵ,k̂

V ı,n

1,ĵ,k̂
...

V ı,n

imax,ĵ,k̂


Let

V̄ ı,n

i,ĵ,k̂
= sup

ζı,n+1
i,j,k ∈Zk

V ı,n

i,ĵ,k̂

Then we have

V̄ ı,n

ĵ,k̂
=


V̄ ı,n

0,ĵ,k̂

V̄ ı,n

1,ĵ,k̂
...

V̄ ı,n

imax,ĵ,k̂


Let

H̄j,k = H(rk, wj)q(rk, h(wj)).
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The discrete Equation (A.17) may be written in matrix form as

[I +M ı]V ı,n+1
j,k = V̄ ı,n

ĵ,k̂
+ ∆τH̄j,k(P − ιc) + ∆τΞ(V ı,n+1

j,k ). (A.23)

where

[M ıV ı,n+1
j,k ]ith row = ∆τ [−γıiV

ı,n+1
i−1,j,k +

(
γıi + βıi + (r̄ +

N∑
=1
6=ı

λQı)
)
V ı,n+1
i,j,k − β

ı
iV

ı,n+1
i+1,j,k].

I =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1



ι =


1

1
...

1


and

Ξ(V ı,n+1
j,k ) =

[
Ṽ 1,n+1
j,k Ṽ 2,n+1

j,k · · · Ṽ ı,n+1
j,k · · · Ṽ N,n+1

j,k

]


λQı1

λQı2
...

0
...

λQıN


where
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Ṽ ,n+1
j,k =



Ṽ ,n+1
0,j,k

Ṽ ,n+1
1,j,k

...

Ṽ ,n+1
i,j,k

...

Ṽ ,n+1
imax,j,k


and 0 is the ıth element of the column vector. The ith element of vector Ṽ ,n+1

j,k for

 = 1, . . . , N is given by χ(Piξ̄
ı(Pi), V

,n+1
i∗ ,j,k

, V ,n+1
i∗ +1,j,k).

A.1.6 Solution Algorithms

To solve Equation (A.23), we use the fixed point iteration algorithm as described in

Kennedy [2007]. The algorithm is given by

V 0 = Option Payoff

for n = 0, ..., do

for j = 0, ..., do

for k = 0, ..., do

for ı = 0, ..., do

for i = 0, ..., do

V̄ ı,n

i,ĵ,k̂
= supζı,n+1

i,j,k ∈Zk
V ı,n

i,ĵ,k̂

end for

end for

for j = 0, ..., do

for k = 0, ..., do

for ı = 0, ..., do

V ı,n+1,0
j,k = V ı,n

j,k

end for

end for
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end for

s = 0

while Error > Tol do

for ı = 0, ..., do

Solve

[I +M ı]V ı,n+1,s+1
j,k = V̄ ı,n

ĵ,k̂
+ ∆τH̄j,k(P − ιc) + ∆τΞ(V ı,n+1,s

j,k )

end for

Error = maxı

{
maxi

(
|V ı,n+1,s+1

i,j,k −V ı,n+1,s
i,j,k |

max
(

1,|V ı,n+1,s
i,j,k |,|V ı,n

i,j,k|
))}

s = s+ 1

end while

end for

end for

end for

Theorem 1. (Convergence of the Fixed Point Iteration) Assuming the following conditions

are satisfied: γıi ≥ 0; βıi ≥ 0; r̄ ≥ 0;λQı ≥ 0, then the fixed point iteration is globally

convergent, and the maximum error at each iteration satisfies

‖ϑs+1‖∞ ≤ ‖ϑs‖∞

∑N
=1
6=ı?

λQı?∆τ

1 + (r̄ +
∑N

=1
 6=ı?

λQı?)∆τ
. (A.24)

Proof. Let ϑı,si,j,k be the error between the exact solution V ı,n+1
i,j,k and the sth guess V ı,n+1,s

i,j,k

for the sth iteration. This could be written as

ϑı,si,j,k = V ı,n+1
i,j,k − V

ı,n+1,s
i,j,k

Use the fixed point iteration above and Equation (A.23), we obtain

[I +M ı]ϑı,s+1
j,k = ∆τΞ(ϑı,sj,k).

in matrix form. For the ith row we have
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[1 + ∆τ
(
γıi + βıi + (r̄ +

N∑
=1
 6=ı

λQı)
)
]ϑı,s+1
i,j,k

= ∆τγıiϑ
ı,s+1
i−1,j,k + ∆τβıiϑ

ı,s+1
i+1,j,k + ∆τ

N∑
=1
6=ı

λQıχ(Piξ̄
ı(Pi), ϑ

,s
i∗ ,j,k

, ϑ,si∗ +1,j,k)

Let, ‖ϑı,sj,k‖∞ = maxi |ϑı,si,j,k|. Since χ is a linear operator and γıi ≥ 0; βıi ≥ 0;λQı ≥ 0, we get

[1 + ∆τ
(
γıi + βıi + (r̄ +

N∑
=1
6=ı

λQı)
)
]|ϑı,s+1

i,j,k |

≤ ∆τγıi‖ϑ
ı,s+1
j,k ‖∞ + ∆τβıi‖ϑ

ı,s+1
j,k ‖∞ + ∆τ

N∑
=1
6=ı

λQı‖ϑ
,s
j,k‖∞

Let, ‖ϑsj,k‖∞ = maxı ‖ϑı,sj,k‖∞. We can further write

[1 + ∆τ
(
γıi + βıi + (r̄ +

N∑
=1
6=ı

λQı)
)
]|ϑı,s+1

i,j,k |

≤ ∆τγıi‖ϑs+1
j,k ‖∞ + ∆τβıi‖ϑs+1

j,k ‖∞ + ∆τ
N∑
=1
 6=ı

λQı‖ϑsj,k‖∞

Similarly, let ‖ϑsk‖∞ = maxj ‖ϑsj,k‖∞ and ‖ϑs‖∞ = maxk ‖ϑsk‖∞. We get

[1 + ∆τ
(
γıi + βıi + (r̄ +

N∑
=1
6=ı

λQı)
)
]|ϑı,s+1

i,j,k |

≤ ∆τγıi‖ϑs+1‖∞ + ∆τβıi‖ϑs+1‖∞ + ∆τ
N∑
=1
 6=ı

λQı‖ϑs‖∞
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This equation holds for all ı, i, j, k. It is also true for ı?, i?, j?, k? such that |ϑı
?,s+1
i?,j?,k? | =

‖ϑs+1‖∞. Now,

[1 + ∆τ
(
γı

?

i? + βı
?

i? + (r̄ +
N∑
=1
6=ı?

λQı?)
)
]‖ϑs+1‖∞

≤ ∆τγı
?

i?‖ϑs+1‖∞ + ∆τβı
?

i?‖ϑs+1‖∞ + ∆τ
N∑
=1
 6=ı?

λQı?‖ϑs‖∞.

This reduces to

‖ϑs+1‖∞ ≤ ‖ϑs‖∞

∑N
=1
 6=ı?

λQı?∆τ

1 + (r̄ +
∑N

=1
6=ı?

λQı?)∆τ
< ‖ϑs‖∞.

A.1.7 Derivation of Equation (A.10) for Interior Prices

We now derive

(CεV )ı,ni,j,k = γıiV
ı,n
i−1,j,k + βıiV

ı,n
i+1,j,k −

(
γıi + βıi + (r̄ +

N∑
=1
6=ı

λQı)
)
V ı,n
i,j,k if Pi ∈ (0, Pmax)

Discretize the following equation and apply the second order central differencing in the

first and second order derivative terms.

CV ı =
1

2
(σı)2P 2∂

2V ı

∂P 2
+ [αı(K ı − P )− ΛıσıP ]

∂V ı

∂P
− (r̄ +

N∑
=1
6=ı

λQı)V
ı.

Now we have
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(CεV )ı,ni,j,k =
1

2
(σı)2P 2

i

[ V ı,n
i+1,j,k−V

ı,n
i,j,k

Pi+1−Pi
− V ı,n

i,j,k−V
ı,n
i−1,j,k

Pi−Pi−1

Pi+1−Pi+Pi−Pi−1

2

]

+[αı(K ı − Pi)− ΛıσıPi]
V ı,n
i+1,j,k − V

ı,n
i−1,j,k

Pi+1 − Pi + Pi − Pi−1

− (r̄ +
N∑
=1
 6=ı

λQı)V
ı,n
i,j,k

=

[
(σı)2P 2

i

(Pi − Pi−1)(Pi+1 − Pi−1)
− αı(K ı − Pi)− ΛıσıPi

Pi+1 − Pi−1

]
V ı,n
i−1,j,k

+

[
(σı)2P 2

i

(Pi+1 − Pi)(Pi+1 − Pi−1)
+
αı(K ı − Pi)− ΛıσıPi

Pi+1 − Pi−1

]
V ı,n
i+1,j,k

−
[[ (σı)2P 2

i

(Pi − Pi−1)(Pi+1 − Pi−1)
− αı(K ı − Pi)− ΛıσıPi

Pi+1 − Pi−1

]
+
[ (σı)2P 2

i

(Pi+1 − Pi)(Pi+1 − Pi−1)
+
αı(K ı − Pi)− ΛıσıPi

Pi+1 − Pi−1

]
+ (r̄ +

N∑
=1
6=ı

λQı)

]
V ı,n
i,j,k

= γıi,centralV
ı,n
i−1,j,k + βıi,centralV

ı,n
i+1,j,k − (γıi,central + βıi,central + (r̄ +

N∑
=1
6=ı

λQı))V
ı,n
i,j,k

if Pi ∈ (0, Pmax)

where, γıi,central and βıi,central are defined by

γıi,central =
(σı)2P 2

i

(Pi − Pi−1)(Pi+1 − Pi−1)
− αı(K ı − Pi)− ΛıσıPi

Pi+1 − Pi−1

βıi,central =
(σı)2P 2

i

(Pi+1 − Pi)(Pi+1 − Pi−1)
+
αı(K ı − Pi)− ΛıσıPi

Pi+1 − Pi−1

, i = 1, . . . , imax − 1.

If either γıi,central or βıi,central is negative, the discrete scheme will not be monotone. In

this case we need to use first order forward or backward differencing in the first order
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derivative term.

Applying the forward differencing to CV ı, we have

(CεV )ı,ni,j,k =
1

2
(σı)2P 2

i

[ V ı,n
i+1,j,k−V

ı,n
i,j,k

Pi+1−Pi
− V ı,n

i,j,k−V
ı,n
i−1,j,k

Pi−Pi−1

Pi+1−Pi+Pi−Pi−1

2

]

+[αı(K ı − Pi)− ΛıσıPi]
V ı,n
i+1,j,k − V

ı,n
i,j,k

Pi+1 − Pi
− (r̄ +

N∑
=1
 6=ı

λQı)V
ı,n
i,j,k

=

[
(σı)2P 2

i

(Pi − Pi−1)(Pi+1 − Pi−1)

]
V ı,n
i−1,j,k +

[
(σı)2P 2

i

(Pi+1 − Pi)(Pi+1 − Pi−1)

+
αı(K ı − Pi)− ΛıσıPi

Pi+1 − Pi

]
V ı,n
i+1,j,k −

[[ (σı)2P 2
i

(Pi − Pi−1)(Pi+1 − Pi−1)

]
+
[ (σı)2P 2

i

(Pi+1 − Pi)(Pi+1 − Pi−1)
+
αı(K ı − Pi)− ΛıσıPi

Pi+1 − Pi
]

+ (r̄ +
N∑
=1
6=ı

λQı)

]
V ı,n
i,j,k

= γıi,forwardV
ı,n
i−1,j,k + βıi,forwardV

ı,n
i+1,j,k − (γıi,forward + βıi,forward + (r̄ +

N∑
=1
 6=ı

λQı))V
ı,n
i,j,k

if Pi ∈ (0, Pmax)

where, γıi,forward and βıi,forward are defined by

γıi,forward =
(σı)2P 2

i

(Pi − Pi−1)(Pi+1 − Pi−1)

βıi,forward =
(σı)2P 2

i

(Pi+1 − Pi)(Pi+1 − Pi−1)
+
αı(K ı − Pi)− ΛıσıPi

Pi+1 − Pi
, i = 1, . . . , imax − 1.

Applying the backward differencing to CV ı, we have

142



(CεV )ı,ni,j,k =
1

2
(σı)2P 2

i

[ V ı,n
i+1,j,k−V

ı,n
i,j,k

Pi+1−Pi
− V ı,n

i,j,k−V
ı,n
i−1,j,k

Pi−Pi−1

Pi+1−Pi+Pi−Pi−1

2

]

+[αı(K ı − Pi)− ΛıσıPi]
V ı,n
i,j,k − V

ı,n
i−1,j,k

Pi − Pi−1

− (r̄ +
N∑
=1
 6=ı

λQı)V
ı,n
i,j,k

=

[
(σı)2P 2

i

(Pi − Pi−1)(Pi+1 − Pi−1)
− αı(K ı − Pi)− ΛıσıPi

Pi − Pi−1

]
V ı,n
i−1,j,k

+

[
(σı)2P 2

i

(Pi+1 − Pi)(Pi+1 − Pi−1)

]
V ı,n
i+1,j,k −

[[ (σı)2P 2
i

(Pi − Pi−1)(Pi+1 − Pi−1)

−α
ı(K ı − Pi)− ΛıσıPi

Pi − Pi−1

]
+
[ (σı)2P 2

i

(Pi+1 − Pi)(Pi+1 − Pi−1)

]
+ (r̄ +

N∑
=1
6=ı

λQı)

]
V ı,n
i,j,k

= γıi,backwardV
ı,n
i−1,j,k + βıi,backwardV

ı,n
i+1,j,k − (γıi,backward + βıi,backward + (r̄ +

N∑
=1
6=ı

λQı))V
ı,n
i,j,k

if Pi ∈ (0, Pmax)

where, γıi,backward and βıi,backward are defined by

γıi,backward =
(σı)2P 2

i

(Pi − Pi−1)(Pi+1 − Pi−1)
− αı(K ı − Pi)− ΛıσıPi

Pi − Pi−1

βıi,backward =
(σı)2P 2

i

(Pi+1 − Pi)(Pi+1 − Pi−1)
, i = 1, . . . , imax − 1.
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A.1.8 Derivation of Equation (A.10) for the Price at the Lower

Bound

We now derive

(CεV )ı,ni,j,k = βıiV
ı,n
i+1,j,k −

(
βıi + (r̄ +

N∑
=1
 6=ı

λQı)
)
V ı,n
i,j,k if Pi = 0

To discretize the following equation, for i = 0 we apply the forward differencing to evaluate

the first order derivative term in C0V
ı.

C0V
ı = αıK ı∂V

ı

∂P
− (r̄ +

N∑
=1
6=ı

λQı)V
ı.

We get

(CεV )ı,ni,j,k = αıK ı
V ı,n
i+1,j,k − V

ı,n
i,j,k

Pi+1 − Pi
− (r̄ +

N∑
=1
6=ı

λQı)V
ı,n
i,j,k

=
αıK ı

Pi+1 − Pi
V ı,n
i+1,j,k −

[ αıK ı

Pi+1 − Pi
+ (r̄ +

N∑
=1
6=ı

λQı)
]
V ı,n
i,j,k

= βı0V
ı,n
i+1,j,k − (βı0 + (r̄ +

N∑
=1
 6=ı

λQı))V
ı,n
i,j,k if Pi = 0

where, γı0 and βı0 are defined by

γı0 = 0.
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βı0 =
αıK ı

P1 − P0

.

A.1.9 Derivation of Equation (A.10) for the Price at the Upper

Bound

We now derive

(CεV )ı,ni,j,k = γıiV
ı,n
i−1,j,k −

(
γıi + (r̄ +

N∑
=1
 6=ı

λQı)
)
V ı,n
i,j,k if Pi = Pmax

To discretize the following equation, for i = imax we apply the backward differencing to

evaluate the first order derivative term in C1V
ı.

C1V
ı = [αı(K ı − P )− ΛıσıP ]

∂V ı

∂P
− (r̄ +

N∑
=1
 6=ı

λQı)V
ı.

We obtain

(CεV )ı,ni,j,k = [αı(K ı − Pi)− ΛıσıPi]
V ı,n
i,j,k − V

ı,n
i−1,j,k

Pi − Pi−1

− (r̄ +
N∑
=1
6=ı

λQı)V
ı,n
i,j,k

=
[
− αı(K ı − Pi)− ΛıσıPi

Pi − Pi−1

]
V ı,n
i−1,j,k −

[
− αı(K ı − Pi)− ΛıσıPi

Pi − Pi−1

+ (r̄ +
N∑
=1
 6=ı

λQı)
]
V ı,n
i,j,k

= γıimax
V ı,n
i−1,j,k − (γıimax

+ (r̄ +
N∑
=1
 6=ı

λQı))V
ı,n
i,j,k if Pi = Pmax
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where, γıimax
and βıimax

are defined by

γıimax
= −α

ı(K ı − Pimax)− ΛıσıPimax

Pimax − Pimax−1

.

βıimax
= 0.

A.2 Tables for the Sensitivity Analyses
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Table A.1: Numerical Results with Different Mean Reverting Rate

Total Profit and Change of Total Profit in Regime 1 at Time 0 When the Initial Price is 40 EUR/MWh
Case No Ramping

Restrictions
5000 (CFS-hr) 3000 (CFS-hr) 1000 (CFS-hr) 250 (CFS-hr)

HF Profit 1282900 1278600 1271400 1258800 1233000
%ch N/A -0.3 -0.9 -1.9 -3.9

FF Profit 1281700 1276400 1267300 1240400 1184000
%ch N/A -0.4 -1.1 -3.2 -7.6

Total Profit and Change of Total Profit in Regime 2 at Time 0 When the Initial Price is 80 EUR/MWh
HF Profit 1310000 1304800 1296400 1281000 1254000

%ch N/A -0.4 -1.0 -2.2 -4.3
FF Profit 1312900 1307700 1299000 1273400 1220000

%ch N/A -0.4 -1.1 -3.0 -7.1

Total Profit and Change of Total Profit in Regime 2 at Time 0 When the Initial Price is 160 EUR/MWh
HF Profit 1398200 1391000 1379500 1353800 1319100

%ch N/A -0.5 -1.3 -3.2 -5.7
FF Profit 1412300 1407400 1399000 1373900 1329500

%ch N/A -0.4 -0.9 -2.7 -5.9

Note: HF means half release rate and full reservoir level; FF means full release rate and full reservoir
level. Profit is in Euros and %ch refers to the percent change in profits compared to the case of no

ramping restrictions.
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Table A.2: Numerical Results with Different Transition Probabilities

Total Profit and Change of Total Profit in Regime 1 at Time 0 When the Initial Price is 40 EUR/MWh
Case No Ramping

Restrictions
5000 (CFS-hr) 3000 (CFS-hr) 1000 (CFS-hr) 250 (CFS-hr)

HF Profit 1434100 1427400 1416900 1394100 1357400
%ch N/A -0.5 -1.2 -2.8 -5.4

FF Profit 1432700 1424700 1411700 1371000 1296200
%ch N/A -0.6 -1.5 -4.3 -9.5

Total Profit and Change of Total Profit in Regime 2 at Time 0 When the Initial Price is 80 EUR/MWh
HF Profit 1471000 1463500 1451900 1426100 1387800

%ch N/A -0.5 -1.3 -3.1 -5.7
FF Profit 1473400 1465800 1453600 1416000 1346800

%ch N/A -0.5 -1.3 -3.9 -8.6

Total Profit and Change of Total Profit in Regime 2 at Time 0 When the Initial Price is 160 EUR/MWh
HF Profit 1602100 1592700 1578200 1540400 1491500

%ch N/A -0.6 -1.5 -3.9 -6.9
FF Profit 1614000 1606800 1595500 1563400 1514600

%ch N/A -0.5 -1.2 -3.1 -6.2

Note: HF means half release rate and full reservoir level; FF means full release rate and full reservoir
level. Profit is in Euros and %ch refers to the percent change in profits compared to the case of no

ramping restrictions.
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Table A.3: Numerical Results with Different Volatilities

Total Profit and Change of Total Profit in Regime 1 at Time 0 When the Initial Price is 40 EUR/MWh
Case No Ramping

Restrictions
5000 (CFS-hr) 3000 (CFS-hr) 1000 (CFS-hr) 250 (CFS-hr)

HF Profit 1444500 1437900 1427400 1405900 1370700
%ch N/A -0.5 -1.2 -2.7 -5.1

FF Profit 1443100 1435200 1422100 1382600 1308900
%ch N/A -0.6 -1.5 -4.2 -9.3

Total Profit and Change of Total Profit in Regime 2 at Time 0 When the Initial Price is 80 EUR/MWh
HF Profit 1491500 1484100 1472600 1447300 1408800

%ch N/A -0.5 -1.3 -3.0 -5.6
FF Profit 1494000 1486400 1474200 1437600 1370700

%ch N/A -0.5 -1.3 -3.8 -8.3

Total Profit and Change of Total Profit in Regime 2 at Time 0 When the Initial Price is 160 EUR/MWh
HF Profit 1641500 1632400 1618100 1580500 1531000

%ch N/A -0.6 -1.4 -3.7 -6.7
FF Profit 1653100 1646300 1635800 1608600 1565400

%ch N/A -0.4 -1.1 -2.7 -5.3

Note: HF means half release rate and full reservoir level; FF means full release rate and full reservoir
level. Profit is in Euros and %ch refers to the percent change in profits compared to the case of no

ramping restrictions.
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Table A.4: Numerical Results with Different Base Regime Mean

Total Profit and Change of Total Profit in Regime 1 at Time 0 When the Initial Price is 40 EUR/MWh
Case No Ramping

Restrictions
5000 (CFS-hr) 3000 (CFS-hr) 1000 (CFS-hr) 250 (CFS-hr)

HF Profit 353240 349390 344550 335130 325670
%ch N/A -1.1 -2.5 -5.1 -7.8

FF Profit 354010 350210 345400 333960 327760
%ch N/A -1.1 -2.4 -5.7 -7.4

Total Profit and Change of Total Profit in Regime 2 at Time 0 When the Initial Price is 80 EUR/MWh
HF Profit 403830 399100 392940 378800 364600

%ch N/A -1.2 -2.7 -6.2 -9.7
FF Profit 409700 405900 401180 390370 386960

%ch N/A -0.9 -2.1 -4.7 -5.6

Total Profit and Change of Total Profit in Regime 2 at Time 0 When the Initial Price is 160 EUR/MWh
HF Profit 540470 533690 524440 497970 470150

%ch N/A -1.3 -3.0 -7.9 -13.0
FF Profit 557720 554080 549920 542920 542270

%ch N/A -0.7 -1.4 -2.7 -2.8

Note: HF means half release rate and full reservoir level; FF means full release rate and full reservoir
level. Profit is in Euros and %ch refers to the percent change in profits compared to the case of no

ramping restrictions.
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Table A.5: Numerical Results with Different Production Cost

Total Profit and Change of Total Profit in Regime 1 at Time 0 When the Initial Price is 40 EUR/MWh
Case No Ramping

Restrictions
5000 (CFS-hr) 3000 (CFS-hr) 1000 (CFS-hr) 250 (CFS-hr)

HF Profit 1794800 1790600 1782100 1765500 1729300
%ch N/A -0.2 -0.7 -1.6 -3.7

FF Profit 1793400 1787700 1776500 1738400 1657900
%ch N/A -0.3 -0.9 -3.1 -7.6

Total Profit and Change of Total Profit in Regime 2 at Time 0 When the Initial Price is 80 EUR/MWh
HF Profit 1826200 1821200 1811700 1792600 1755700

%ch N/A -0.3 -0.8 -1.8 -3.9
FF Profit 1828500 1823200 1812800 1778000 1702600

%ch N/A -0.3 -0.9 -2.8 -6.9

Total Profit and Change of Total Profit in Regime 2 at Time 0 When the Initial Price is 160 EUR/MWh
HF Profit 1939800 1932900 1920600 1890600 1846000

%ch N/A -0.4 -1.0 -2.5 -4.8
FF Profit 1951500 1946600 1937200 1908200 1852800

%ch N/A -0.3 -0.7 -2.2 -5.1

Note: HF means half release rate and full reservoir level; FF means full release rate and full reservoir
level. Profit is in Euros and %ch refers to the percent change in profits compared to the case of no

ramping restrictions.
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Table A.6: Summary of Results from the Sensitivity Analysis

Base Regime
Case Power Plant Value Ramping Impact on Power Plant Value

η=0.36, λQ12=0.0089, λQ21=0.8402,
σ1=0.73485, σ2=0.83066, µ1=47.194,
c=20 (Benchmark) N/A N/A

η=0.72, λQ12=0.0089, λQ21=0.8402,
σ1=0.73485, σ2=0.83066, µ1=47.194,
c=20 (I) Lower (?) Smaller (?)

η=0.36, λQ12=0.02, λQ21=0.7402,
σ1=0.73485, σ2=0.83066, µ1=47.194,
c=20 (II) Higher (?) Larger (?)

η=0.36, λQ12=0.0089, λQ21=0.8402,
σ1=0.93, σ2=1.43, µ1=47.194,
c=20 (III) Higher (?) Larger (?)

η=0.36, λQ12=0.0089, λQ21=0.8402,
σ1=0.73485, σ2=0.83066, µ1=27.194,
c=20 (IV) Lower (?) Larger (?) (Most Cases)

η=0.36, λQ12=0.0089, λQ21=0.8402,
σ1=0.73485, σ2=0.83066, µ1=47.194,
c=10 (V) Higher (?) Smaller (?)

Spike Regime

η=0.36, λQ12=0.0089, λQ21=0.8402,
σ1=0.73485, σ2=0.83066, µ1=47.194,
c=20 (Benchmark) N/A N/A

η=0.72, λQ12=0.0089, λQ21=0.8402,
σ1=0.73485, σ2=0.83066, µ1=47.194,
c=20 (I) Lower (∗) Smaller (∗) (Most Cases)

η=0.36, λQ12=0.02, λQ21=0.7402,
σ1=0.73485, σ2=0.83066, µ1=47.194,
c=20 (II) Higher (∗) Larger (∗)
η=0.36, λQ12=0.0089, λQ21=0.8402,
σ1=0.93, σ2=1.43, µ1=47.194,
c=20 (III) Higher (∗) Larger (∗)
η=0.36, λQ12=0.0089, λQ21=0.8402,
σ1=0.73485, σ2=0.83066, µ1=27.194,
c=20 (IV) Lower (∗) Larger (∗) (Most Cases)

η=0.36, λQ12=0.0089, λQ21=0.8402,
σ1=0.73485, σ2=0.83066, µ1=47.194,
c=10 (V) Higher (∗) Smaller (∗)

Note: ? and ∗ mean comparing to the benchmark for the base regime and spike regime respectively.
Other benchmark parameter values are given in Table 3.3 and the corresponding results are reported in

Table 3.4.
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Table A.7: Base Regime as Single Regime for the Regime Switching Model

Total Profit and Change of Total Profit at Time 0 When the Initial Price is 40 EUR/MWh
Case No Ramping

Restrictions
5000 (CFS-hr) 3000 (CFS-hr) 1000 (CFS-hr) 250 (CFS-hr)

HF Profit 1329400 1325700 1318800 1307700 1282800
%ch N/A -0.3 -0.8 -1.6 -3.5

FF Profit 1328100 1323300 1314200 1286700 1228700
%ch N/A -0.4 -1.1 -3.1 -7.5

Total Profit and Change of Total Profit at Time 0 When the Initial Price is 80 EUR/MWh
HF Profit 1363900 1359500 1351700 1338900 1315300

%ch N/A -0.3 -0.9 -1.8 -3.6
FF Profit 1366100 1361900 1354300 1334700 1284400

%ch N/A -0.3 -0.9 -2.3 -6.0

Note: HF means half release rate and full reservoir level; FF means full release rate and full reservoir
level. Profit is in Euros and %ch refers to the percent change in profits compared to the case of no

ramping restrictions.

Table A.8: Base Regime as Single Regime for the Regime Switching Model with Different
Mean Reverting Rate

Total Profit and Change of Total Profit at Time 0 When the Initial Price is 40 EUR/MWh
Case No Ramping

Restrictions
5000 (CFS-hr) 3000 (CFS-hr) 1000 (CFS-hr) 250 (CFS-hr)

HF Profit 1249800 1246900 1241300 1233100 1210400
%ch N/A -0.2 -0.7 -1.3 -3.2

FF Profit 1248600 1244800 1237400 1215300 1163200
%ch N/A -0.3 -0.9 -2.7 -6.8

Total Profit and Change of Total Profit at Time 0 When the Initial Price is 80 EUR/MWh
HF Profit 1267900 1264500 1258100 1249000 1227100

%ch N/A -0.3 -0.8 -1.5 -3.2
FF Profit 1270500 1267200 1260800 1242200 1192400

%ch N/A -0.3 -0.8 -2.2 -6.2

Note: HF means half release rate and full reservoir level; FF means full release rate and full reservoir
level. Profit is in Euros and %ch refers to the percent change in profits compared to the case of no

ramping restrictions.
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Table A.9: Base Regime as Single Regime for the Regime Switching Model with Different
Volatilities

Total Profit and Change of Total Profit at Time 0 When the Initial Price is 40 EUR/MWh
Case No Ramping

Restrictions
5000 (CFS-hr) 3000 (CFS-hr) 1000 (CFS-hr) 250 (CFS-hr)

HF Profit 1379900 1374400 1365500 1351100 1324200
%ch N/A -0.4 -1.0 -2.1 -4.0

FF Profit 1378500 1371800 1360500 1329000 1267400
%ch N/A -0.5 -1.3 -3.6 -8.1

Total Profit and Change of Total Profit at Time 0 When the Initial Price is 80 EUR/MWh
HF Profit 1414700 1408400 1398500 1382500 1357000

%ch N/A -0.5 -1.2 -2.3 -4.1
FF Profit 1416700 1410600 1400900 1377400 1323600

%ch N/A -0.4 -1.1 -2.8 -6.6

Note: HF means half release rate and full reservoir level; FF means full release rate and full reservoir
level. Profit is in Euros and %ch refers to the percent change in profits compared to the case of no

ramping restrictions.

Table A.10: Base Regime as Single Regime for the Regime Switching Model with Different
Production Cost

Total Profit and Change of Total Profit at Time 0 When the Initial Price is 40 EUR/MWh
Case No Ramping

Restrictions
5000 (CFS-hr) 3000 (CFS-hr) 1000 (CFS-hr) 250 (CFS-hr)

HF Profit 1755700 1752800 1746000 1733900 1701600
%ch N/A -0.2 -0.6 -1.2 -3.1

FF Profit 1754300 1750000 1740600 1707700 1632600
%ch N/A -0.3 -0.8 -2.7 -6.9

Total Profit and Change of Total Profit at Time 0 When the Initial Price is 80 EUR/MWh
HF Profit 1789100 1785500 1777800 1764600 1734100

%ch N/A -0.2 -0.6 -1.4 -3.1
FF Profit 1791000 1787500 1779800 1755700 1688300

%ch N/A -0.2 -0.6 -2.0 -5.7

Note: HF means half release rate and full reservoir level; FF means full release rate and full reservoir
level. Profit is in Euros and %ch refers to the percent change in profits compared to the case of no

ramping restrictions.
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