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Abstract

The focus of this thesis is optimal path planning. The path planning problem is posed as
an optimal control problem, for which the viscosity solution to the static Hamilton-Jacobi-
Bellman (HJB) equation is used to determine the optimal path. The Ordered Upwind
Method (OUM) has been previously used to numerically approximate the viscosity solution
of the static HJB equation for direction-dependent weights.

The contributions of this thesis include an analytical bound on the convergence rate of
the OUM for the boundary value problem to the viscosity solution of the HJB equation.
The convergence result provided in this thesis is to our knowledge the tightest existing
bound on the convergence order of OUM solutions to the viscosity solution of the static
HJB equation. Only convergence without any guarantee of rate has been previously shown.

Navigation functions are often used to provide controls to robots. These functions
can suffer from local minima that are not also global minima, which correspond to the
inability to find a path at those minima. Provided the weight function is positive, the
viscosity solution to the static HJB equation cannot have local minima. Though this
has been discussed in literature, a proof has not yet appeared. The solution of the HJB
equation is shown in this work to have no local minima that is not also global. A path can
be found using this method.

Though finding the shortest path is often considered in optimal path planning, safe and
energy efficient paths are required for rover path planning. Reducing instability risk based
on tip-over axes and maximizing solar exposure are important to consider in achieving
these goals. In addition to obstacle avoidance, soil risk and path length on terrain are
considered. In particular, the tip-over instability risk is a direction-dependent criteria, for
which accurate approximate solutions to the static HJB equation cannot be found using
the simpler Fast Marching Method.

An extension of the OUM to include a bi-directional search for the source-point path
planning problem is also presented. The solution is found on a smaller region of the
environment, containing the optimal path. Savings in computational time are observed.

A comparison is made in the path planning problem in both timing and performance
between a genetic algorithm rover path planner and OUM. A comparison in timing and
number of updates required is made between OUM and several other algorithms that ap-
proximate the same static HJB equation. Finally, the OUM algorithm solving the bound-
ary value problem is shown to converge numerically with the rate of the proven theoretical
bound.
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(Definition 3.2.4)

Subsolution (Supersolution) to static HJB.

H(x,p) (3.7) Hamiltonian H : Ω × Rn → R, described
(3.6), (3.13): H(x,∇V ) = 0.

u∗, u∗(t), y∗(t) Definition 3.1.3 Optimal direction (at a location x ∈ Ω), con-
trol and trajectory respectively.

G Definition 4.1.1 A grid with orthogonal elements, each with
dimensions 4x1,4x2, ...,4xn.

4x Section 4.1.1 The spacing of the discretization of the rect-
angular element in the x-direction.

X Section 4.1 A (simplicial) mesh.
hmax Definition 4.1.9 The longest edge length of a mesh X.
hmin Definition 4.1.11 The shortest simplex height.
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US(xi) Definition 5.2.4 Updating stencil, set of (n−1)-simplices that
include update from OUM.

H̃[US, φ](xi, φ(xi)) (5.6) Numerical Hamiltonian, approximation of
H.
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Chapter 1

Introduction

Path planning is a widely studied field of robotics and is required in many applications.
Examples of continuous path planning problems include a rover traversing terrain, preci-
sion arm robots on an assembly line, a small robot taking pictures for a colonoscopy and
unmanned aerial vehicles. In contrast, the travelling salesman problem (where one has to
travel between a fixed number of points while minimizing the total distance travelled) is a
discrete path planning problem.

While it is worthwhile to study the geometry and physical capabilities of a robot,
knowledge of its surroundings have significant relevance in its performance of a specified
task. In virtually all path planning problems, obstacles must be avoided, including physical
obstructions and high-risk regions. Obstacles may prevent a robot from completing the
required function in the most direct path. See Figure 1.1. It may be trivial for human
operators to obtain a path that avoids obstacles by inspection. However, the objective is to
achieve complete autonomy. For example in extraterrestrial exploration, instructions from
Earth should be kept to a minimum, with navigation to depend entirely on the algorithms
that are internally programmed. It is important that these algorithms are well-researched
and reliable.

In the global path planning problem, the environment is assumed to be fully known
(by means of a map or a satellite to relay pertinent information), including the locations
and shapes of obstacles. The advantage of global path planning over local path planning
(where the environment is discovered by traversing through it) is that an optimal path
may be found. For rovers, the terrain and location of the sun are also assumed to be
known. The Mars Reconnaissance Orbiter is a satellite that posseses a high resolution
camera. The necessary information for global path planning could be relayed to the rovers
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Figure 1.1: Global continuous path planning problem in R2 - Obstacles are shaded rect-
angles and circles. Left: environment/workspace, Centre: feasible path, Right: another
feasible but not shortest path.

on the ground. For the remainder of the thesis, unless otherwise specified, all path planning
problems will be assumed to be global and continuous. A definition of the global continuous
path planning problem is presented.

Let Ω ⊂ Rn be an open and bounded path-connected set, and let ∂Ω denote its bound-
ary. The closure of Ω is denoted Ω = Ω ∪ ∂Ω. The path planning problem will be solved
on the region Ω.

Definition 1.0.1. The workspace Ω ⊂ Rn is a closed and bounded set of possible locations
of the robot.

Let x0,xf ∈ Ω be the initial and final locations of the desired path respectively. A
common objective is to avoid regions within Ω designated as obstacles. Let there be a finite
number of obstacles i, such that Oi ⊂ Ω is closed for all i. Define O = O1∪O2∪ ...∪Oi ⊂ Ω
the set of all obstacles. For a set A ⊂ Rn, its complement is denoted Ac and is such that
A ∪ Ac = Rn and A ∩ Ac = ∅.

Definition 1.0.2. The continuous path planning problem is to find a path C :
[0, T ] → Rn, T > 0 such that C(0) = x0, C(T ) = xf and C(t) does not encounter
any obstacles. That is, C(t) ∈ Ω ∩Oc for all t ∈ [0, T ].

Definition 1.0.3. A solution to the continuous path planning problem is known as a fea-
sible path.

For surface vehicles such as rovers, the path is usually found on Ω ⊂ R2, or on a
surface. The focus of this work was to find a feasible path, rather than finding the lower
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level controls to follow the path. This is reasonable for rovers as they travel very slowly
(5cm/sec, [56]), and can turn in place. Details on modelling the dynamics of the rover
can be found in [37, 56, 88]. For aircrafts, Ω ⊂ R3 is often used. Manipulator arms
can have a larger number of coordinate dimensions according to the number of joints
it possesses. Many approaches have been developed to find feasible paths for the path
planning problem. In Chapter 2, several algorithms that solve the path planning problem
are presented, including the artificial potential field [45], Rapidly-exploring Random Trees
[52], optimal problems on graphs such as Dijkstra’s algorithm [23], and genetic algorithm
[2, 28]. The review is an introduction to some prevalent ideas found in literature. For a
more comprehensive review, see [51].

Feasible paths are not unique in general; additional objectives such as minimizing time
or distance traveled may be considered in an optimal path planning problem. In the context
of the rovers used in extraterrestrial exploration, safe and efficient paths are important due
to the high costs incurred. The optimal control problem is presented in Chapter 3. The
path planning problem where aspects of the environment are modelled by a weight function
can be posed as an optimal control problem. The control problem is reposed as a partial
differential equation (PDE) of the value function in dynamic programming, known as the
static Hamilton-Jacobi-Bellman (HJB) equation. Differentiable solutions to the static HJB
equation may not exist on the entire workspace Ω, so a weaker notion of solution known
as a viscosity solution [26] is presented.

The optimal path can be found using the solution to the static HJB equation as a
navigation function [69] to guide the rover at each position. Navigation functions in general
may have local minima that are not global minima. A feasible path for a robot at a
configuration corresponding to a local minimum cannot be found [45]. Under a simple
positivity assumption on the weight function, the solution of the static HJB equation is
shown to have no local minima in Chapter 3. The result is that the optimal path is always
found using the solution. Though this property has been previously described for the
simpler Eikonal equation [59], a proof of this property for the viscosity solution has not
yet been found in literature.

Two new criteria specific to rover path planning are modelled in Chapter 3: solar
energy absorption and tip-over stability [63]. The latter depends on the travel direction
of the rover. The tip-over stability was considered using Fast Marching Method (FMM)
[58] by averaging the risk experienced in four predetermined directions. The risk was
not accurately measured. Using a direction-dependent weight, the correct direction that
minimizes the risk is found. Solutions to the static HJB equation with direction-dependent
weights cannot in general be accurately approximated using FMM. A class of direction-
dependent problems can be solved using FMM if the direction-dependence is aligned with
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the axes of a grid [4]. The solar energy abosrption is a new application to rover optimal
path planning. These two criteria are combined additively with shortest length, obstacle
avoidance and soil type.

It is often difficult to describe viscosity solutions analytically, so numerical approxima-
tions are obtained. In Chapter 4, a discretization of the region Ω known as a simplicial
mesh are described. Several algorithms to approximate static HJB equations on sim-
plicial meshes and grids including the Fast Marching Method (FMM) [47] and Ordered
Upwind Method (OUM) [72], which have been used to solve both direction-independent
and direction-dependent rover path planning problems respectively [76] are presented.

A novel algorithmic improvement of OUM [72], OUM-Bi-Directional (OUM-BD), is
made to include a bi-directional search [66]. It is shown that with a slight modification to
the anisotropic weight function, an equivalent problem can be stated, where the algorithm
is initialized from x0 rather than xf . Both instances are executed concurrently, building
individual fronts outwards, stopping when the solutions meet. A brief description of a
bi-directional search used for Fast Marching Method is found in [15]. The Monotone Ac-
ceptance OUM (MAOUM) [5], Buffered Fast Marching Method [20] and the Fast Sweeping
Method [41] are presented. These algorithms are compared in timing and computational
effort in Chapter 6.

A different formulation of the path planning problem is to consider an optimal escape
route out of a region. Rather than planning an optimal path from one point to another, an
optimal path is planned from x0 inside Ω to (any point on) its boundary ∂Ω. An exit-cost
can be defined for each point on the boundary. The resulting static HJB equation is a
boundary value problem (BVP); see Figure 1.2. An application is to find the best escape
route to avoid catastrophic weather conditions in a given area.

In Chapter 5, the OUM solution is proven to converge to the viscosity solution of the
static HJB equation BVP at a rate of at least O(

√
hmax) as hmax → 0 where hmax denotes

the longest edge of the mesh. This is to our knowledge the tightest bound on error thus
far for the Ordered Upwind Method. Only convergence without guarantee of rate has been
previously shown [72]. The OUM convergence rate result is similar to [61] for FMM, which
was proven for uniform unity weight function and zero boundary condition on a square
grid. The proof shown here is for a different algorithm, namely OUM, that solves the
optimal path planning problem for a more general class of weight and boundary functions
on general unstructured meshes. A key step in the proof for the OUM method is the proof
of existence of a directionally complete stencil. Similar ideas have been presented in [5].
The work in Chapter 5 has been submitted for publishing [75].

In Chapter 6, solutions and approximations to the HJB equation described in Chapters
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Figure 1.2: Minimizing the cost of a path from x0 ∈ Ω to the boundary ∂Ω.

3 and 4 are presented. A comparison is made between FMM, FMM-BD (Bi-directional
FMM), OUM, OUM-BD and a genetic algorithm rover path planner [28] in timing and
performance. Comparisons are made between the OUM for timing with the methods
described in Chapter 4. Numerical convergence of the OUM solution to the viscosity
solution is also shown for a particular boundary value problem. The rate of convergence
proved in Chapter 5 is confirmed numerically. The work in Chapters 3, 4 and 6 have been
submitted for publishing [76].

Conclusions and directions for future work are discussed in Chapter 7.
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Chapter 2

Path Planning Strategies

The algorithms presented in this chapter provide a non-optimal solution to the continuous
path planning problem (Definitions 1.0.1 - 1.0.3). The review is not exhaustive, but it
encompasses a wide range of ideas that are found in literature. Though the motivation
for this research is path planning for rovers, the discussed algorithms can be used for
many types of robots including robotic arm manipulators and aerial vehicles. Many of the
algorithms presented in this chapter are related to work found in future chapters. A more
detailed review on non-optimal path planning algorithms can be found in [51].

Considerable attention has been devoted in literature to the use of Model Predictive
Control [31] to solve the finite-horizon discrete optimal control problem. At each time step
tk, a trajectory is found from the current state y(tk) by solving a set of locally optimal
problems, planning intermediate steps to the desired state xf . Only the first step of the
calculated trajectory is executed, and the process is repeated. The result is not globally
optimal [10]. Model Predictive Control has often been employed for linear and quadratic
cost and constraint problems [6, 32]. With this simplification, most path planning problems
in this approach consider only obstacle avoidance when modelling the environment [10, 12,
54, 86]. For Mixed-Integer Linear Programming used with Model Predictive Control [10,
11, 12, 55], obstacles are modelled using a set of linear constraints with binary variables that
determine collision in a constrained optimization problem. Though fully nonlinear models
have been considered, only locally optimal controls may be found. As well, verification of
global minima is not straightforward [40]. A more complicated model for the dynamics can
be considered using linear equality constraints. Modelling the features of the environment
experienced by rovers cannot easily be done using these constraints.

For simplicity, all examples of the algorithms are presented for Ω ⊂ R2. All of the
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presented algorithms generalize easily to Rn.

The artificial potential field will be presented in Section 2.1. Probabilistic methods that
search workspaces with randomized variables are presented in Section 2.2. These include
the Rapidly-exploring Random Trees (2.2.1) and genetic algorithms (2.2.2). Optimal path
planning on discrete graphs including Dijkstra’s algorithm will be presented in Section 2.3.
The optimal solutions on graphs for these problems do not generally extend to the optimal
solutions of continuous path planning problems.

2.1 Artificial Potential Fields

In the Artificial Potential Field method [45] fictitious force fields are used to model the
workspace based on the position of the final goal point xf and obstacle set O. The goal
location acts as an attractor to the robot while obstacles repel it. The artificial potential
function whose gradient gives the resultant field will be used to guide the robot. Define
the shortest distance from a point x ∈ Ω to an obstacle Oi,

ρi(x) = min
x̃∈Oi

‖x− x̃‖ .

Define the attractive and repulsive functions Uatt : Ω→ R+, and Urep : Ω→ R+

Uatt(x) =
1

2
‖x− xf‖2 (2.1)

and

Urep(x) =
N∑
i=1

UOi
(x), (2.2)

where

UOi
(x) =

{
1
2
ηi

(
1

ρi(x)
− 1

ρOi

)2

if ρi(x) ≤ ρOi

0 if ρi(x) > ρOi

(2.3)

and ηi > 0 and ρOi
are the weighting factor and radius of influence of the obstacle Oi

respectively. The region in which UOi
is non-zero is known as the region of influence

of obstacle Oi. As the robot approaches an obstacle Oi, UOi
(x) → ∞. Obstacles with

overlapping regions of influence are resolved through addition (2.2). The artificial potential
field function Uapf (x) : Ω→ R+ is

Uapf (x) = Uatt(x) + Urep(x).
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Figure 2.1: Artificial Potential Field - The obstacles are shaded. A path is planned from
x0 to xf following the field shown with arrows. No local minima were encountered by the
path. Local minima may still exist in the field.

Since UOi
≥ 0, xf is a global minimum of Uapf if it lies outside the region of influence of

the set of all obstacles O.

The gradient (where defined) of the artificial potential function is a force vector field

used to direct the robot. To find a path, the direction − ∇Uapf

‖∇Uapf‖ from the initial location

x0 is followed until a local minimum is reached. If the local minimum is xf , then a feasible
path has been found. Otherwise, a feasible path is not found and the robot has beome
stuck. An example of artificial potential field is shown in Figure 2.1.

2.1.1 Local Minima

Since the path is found by following − ∇Uapf

‖∇Uapf‖ , the algorithm halts at points such that

∇Uapf = 0. The position of the robot can be perturbed at local maxima and saddle points
allowing the search to continue. This cannot be done for local minima, which arise in three
settings. See Figure 2.2. The first is non-convex obstacles, which unless the goal lies within
the convex hull can easily be remedied by considering the convex hull of an obstacle as a
new obstacle. The second is through overlapping regions of influence of multiple obstacles
(2.2). Finally, local minima can occur if an obstacle is in close proximity of the goal, and is
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Figure 2.2: Artificial Potential Field Local Minima - Initial location x0 and desired final lo-
cation xf . Shaded areas represent obstacles. Left: Non-Convex Obstacle, Centre: Multiple
Obstacles, Right: Overpowering Obstacle

weighted to overpower Uatt, shifting the minimum. A new artificial potential function was
proposed in [82] to ensure that the attractive force of the goal overpowers the repulsive
force of any obstacle.

Additional limitations of the original artificial potential field algorithm including oscil-
lations in the presence of obstacles and narrow passages are summarized in [48].

2.1.2 Extensions and Limitations

Many advances have been proposed since the introduction of artificial potential fields. The
artificial potential function is an example of a navigation function [69] that guides robots
based on a vector field. Under a new formulation [69], local minima do not occur if all
obstacles obey a property weaker than convexity known as star-shaped. Harmonic potential
fields [16, 70] have been used to guarantee a potential function free of local minima, but the
workspace is limited to maze-like environments. More recent advances [33] using a finite
element method allow for more complicated shapes in workspace and obstacles. Additional
methods exist to deal with local minima, such as random walks [53] and tangential fields
[57], causing the robot to trace around obstacles. A virtual force [24] based on the location
of the robot in the workspace has been implemented to escape local minima. In general,
the artificial potential field needs only to be calculated locally, and can be used for dynamic
environments with moving obstacles [62].

Optimal paths in general cannot be found with artificial potential fields. The robot
reacts to obstacles only upon approach. Knowledge of obstacle placement is not used to
obtain the shortest path. Genetic algorithm is used in the Evolutionary Potential Field

9



method [81] to produce successively better potential functions according to factors such
as path length, smoothness and obstacle avoidance. Local minima are still present and
escape algorithms are used. The value function in the optimal control problem discussed
in Chapter 3 is a navigation function that is free of local minima and capable of producing
an optimal path.

2.2 Probabilistic Methods

Random variables are used in probabilistic methods to determine the feasibility of paths
or connections in the workspace. In this section, Rapidly-exploring Random Trees and
Genetic Algorithm are presented. In both algorithms, points in the workspace Ω are
randomly sampled, but the methods in which these points are used is quite different.

2.2.1 Rapidly-exploring Random Trees

In Rapidly-exploring Random Trees [87], the workspace Ω is efficiently sampled by adding
collision-free connections to a growing structure known as a tree. Some definitions from
graph theory are required.

Definition 2.2.1. A graph G(V , E) is an ordered pair of sets containing a set of vertices
(points), V , and a set of edges, E whose elements are 2-element subsets of V.

Edges made from two vertices xi,xj ∈ V may be denoted xixj ∈ E . If xixj ∈ E , xi and
xj are said to be connected. The set of edges E describes the connectivity of the set V in
the graph G.

Definition 2.2.2. A path between two vertices xi,xj ∈ V is a sequence of edges in E that
connect xi and xj through any sequence of intermediate vertices in V. A path between xi,xj
is simple if each vertex in the sequence appears only once.

Definition 2.2.3. A graph G(V , E) is connected if for every xi,xj ∈ V, a path on G
exists between xi and xj.

Definition 2.2.4. A tree T (V , E) is a connected graph where for every two vertices xi,xj ∈
V, there is exactly one simple path between them.
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In the Rapidly-exploring Random Tree algorithm, a tree is built starting from the initial
configuration x0. Let d ∈ R+, be the branch length parameter that is small relative to
the size of the workspace Ω. Let T be a tree initialized with V = {x0} and E = ∅. The
algorithm is as follows.

1. Choose a random point xr from a continuous uniform distribution on Ω.

2. Let xc = arg minxk∈V ‖xk − xr‖ (Note xc = x0 in the first step).

3. If ‖xc − xr‖ ≤ d, define xnew = xr, otherwise define

xnew = d
xr − xc
‖xr − xc‖

+ xc.

4. If there is no collision between xc and xnew, add xnew to V and xnewxc to E .

5. If ‖xnew − xf‖ ≤ d and xnewxf does not encounter an obstacle, continue. Otherwise
return to step 1.

6. Add xf to V and xnewxf to E . Terminate the algorithm.

The point xr may be inside an obstacle, but this does not affect the performance of
the algorithm. The output of the above algorithm is a tree that contains a simple path
connecting x0 and xf . An example in R2 is shown in Figure 2.3. The feasible path is found
by backtracking through the tree from xf . The size of the tree at termination is not fixed.
A different path can be found each time the algorithm is executed, hence the produced path
is not optimal. The algorithm is probabilistically complete. A feasible path is guaranteed
after an infinite number of iterations. However, certain configurations of obstacles such as
a narrow corridor can provide slow convergence. To improve convergence, a bi-directional
search and a greedy heuristic have been implemented [49].

Recent improvements include Rapidly-exploring Random Tree-∗ [43] where costs can be
introduced in the context of optimal path planning. The original algorithm is modified to
redefine the connectivity E between vertices in V to lower the cost of paths between vertices
of V and x0 according to a given cost function. Additional sampling results in closer-
to-optimal paths. Asymptotic optimality, that the optimal path is found after infinite
iterations, has been proven. Fast Marching Trees [39] algorithm is also asymptotically
optimal. A tree is built by sampling nearby points and moving outwards. The edges
corresponding to the best paths are kept. The algorithm is reminiscent of the expanding
front used in the Fast Marching Method (Chapter 4).
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Figure 2.3: RRT Algorithm - The tree is completed after about 200 iterations. The feasible
path is shown in bold with maximum branch length d = 25.

The Probabilistic Roadmap Method [44] is another sampling method that solves the
path planning problem in two phases. In the construction phase, connections are tested for
feasibility and a connectivity graph is built. In the query phase, the initial x0 and final xf
locations are added to the graph, and the shortest path is found using Dijkstra’s algorithm
[23] (described Section 2.3). Multiple path planning problems can concurrently be solved
in the same workspace.

Though there are no guarantees of the optimal path being found in finite time, the al-
gorithms described here provide ways to efficiently sample a large portion of the workspace
Ω. Further iterations in asymptotically optimal algorithms improve the path.

2.2.2 Genetic Algorithm

In the binary genetic algorithm [60], the search space of paths from initial configuration x0

and final configuration xf are discretized to a finite set represented by a string of binary

digits (bits). In [2], the workspace Ω is discretized by a fine square grid Ω̃ where each
position on the grid is represented in bits based on location. Paths are limited to up,
down, left and right motions between points. In [28], candidate paths ck are stored as a

binary representation of a sequence of n control points xi ∈ Ω̃: ck = xk1x
k
2 · · ·xkn connecting

x0 to xf . The actual paths are defined as cubic splines between the control points that lie
in between the two fixed end-points x0 and xf . While the context of this presentation is
path planning, the genetic algorithm is a versatile optimization method and can be easily
applied to other problems. Each candidate solution has an associated cost known as a
fitness function f : {ck} → R.
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In each iteration of the algorithm, known as a generation, a population of l ∈ Z+ (where
l is even) candidate solutions are created using the previous generation. These solutions
are created in a manner that mimics the evolutionary processes: selection, crossover and
mutation. The k-th candidate solution at generation t is denoted ckt .

Selection is a mechanism for choosing which candidate solutions in a current generation
is used in producing the next generation. Candidate solutions are selected to “reproduce”
with probability based on its cost. Selection of a candidate solution does not remove it
from the population. A candidate solution with lower cost will be chosen more often. In
selection, two candidate solutions cjt and ckt are selected to undergo crossover and mutation,
returning two new candidate solutions cjt+1 and ckt+1 for the next generation.

In crossover, a random bit in the string is chosen, and the subsequent digits of the
two candidate solutions are swapped. For example, crossover on the fourth digit for
candidates cjt = 0000000000 and ckt = 1111111111 would result in the new candidates
cjt+1 = 0000111111 and ckt+1 = 1111000000. Crossover occurs with probability pc. If
crossover does not occur, then the new candidates are the same as the original candidates.

In mutation, a random bit in the string is chosen and altered with probability pm. For
example, a candidate ckt = 0111010101 is mutated in its 5th digit to ckt+1 = 0111110101.

Both candidates cjt and ckt chosen for reproduction undergo mutation.

The algorithm is terminated once a termination condition, determined by the user,
is reached. Commonly used termination conditions include a limit on the number of it-
erations, a cost threshold for when a particular cost is reached, or a lack of progress in
previous generations. Cost thresholds should be used in conjunction with other termination
conditions if the optimal cost is not known.

The following is the simple binary genetic algorithm [60].

1. Initialize the population of candidates {ci0}, i = 1, ..., l for generation t = 0.

2. Calculate the cost of each candidate f(cit), i = 1, ..., l.

3. Repeat the following steps until a new population of l candidates is produced.

(a) Select two candidates cjt and ckt from the current population in generation t.

(b) Perform crossover on cjt and ckt with probability pc.

(c) Perform mutation on each of cjt and ckt with probability pm.

(d) Add cjt+1 and ckt+1 to the (t+ 1)-th generation of candidates {cit+1}.
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4. If the termination condition is met, terminate the algorithm and return ck∗t+1 ∈ {cit+1}
with the lowest cost. Otherwise, increment t by 1 and go to Step 2.

The success of the binary genetic algorithm is largely dependent on the discretization
of solutions into bits and the choice of the parameters pc, pm, l, n. The best candidate
solution is often kept unchanged in each iteration, ensuring the cost of the best candidate
is nonincreasing in subsequent generations. There are many variants of genetic algorithm
with additional heuristics to improve performance [60]. Continuous genetic algorithms [36]
have been developed to represent candidates using floating point variables rather than bits.
The limitation in terms of the discretized space is now the internal precision used by the
computer. Extensions include the use of line crossover, guided crossover and shrinking
window mutation [68] which alter the candidates in the search-space directly, and decrease
the effect of each operation as the algorithm progresses.

The rover path planning problem has been solved [28] using a genetic algorithm. Due
to the versatility of the algorithm, a wide variety of factors including energy consumption
and regeneration, the force-angle stability margin, soil type and obstacle avoidance were
considered.

Unfortunately, there is no guarantee of optimality in finite time. It is difficult to
estimate a cost threshold that would be close to the global minimum. In Chapter 6, a
comparison of the rover path planner using a genetic algorithm [28] is made with methods
described in Chapter 4.

2.3 Continuous Path Planning Using Graphs

In this section, the optimal path planning problem on graphs is considered. Optimal
solutions on graphs do not in general extend to the optimal solutions of continuous path
planning problems. Some examples are shown.

The workspace Ω can be discretized by a graph G(V , E), where the vertices V represent
possible locations and edges E represent the possible directions of travel. Let the function
g : E → R+ denote the weight associated with traversing an edge in E .

Assume the graph G is connected and let xf ∈ V be the goal vertex. Let N (xi) denote
the set of neighbouring vertices that have an edge in E connecting to xi ∈ V in G. The
optimal cost-to-go function V at a vertex xi is the lowest cost to reach the goal vertex xf .
The vertices in G will be assigned between the following labels based on whether V has
been finalized at those vertices.
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Far - The vertices that have not yet been where the computation for V has not yet begun,
and have tentative values V (xi) = K, where K is a large value.

Considered - The cost-to-go function has not yet been finalized at these vertices, but has
tentative values V < K. These values are updated from neighbouring vertices where V
has been finalized using an update function C : V → R.

Accepted - The cost-to-go function V has been finalized at these vertices.

At any instant of the algorithm, each vertex of V must be assigned exactly one label.
The relabelling of a vertex removes the old label. Dijkstra’s algorithm is as follows.

1. Label all vertices {xi} ∈ V Far with tentative values V (xi) = K.

2. Relabel the goal vertex xf Accepted and set V (xf ) = 0.

3. Relabel all the neighbouring vertices xi ∈ N (xf ) of xf Considered and set V (xi) =
g(xixf ).

4. If there are no vertices labelled Considered, terminate the algorithm. Otherwise, find
the vertex xi = arg min

xi∈Considered
V (xi) and relabel xi Accepted.

5. Relabel the neighbours of xi with Far label Considered.

6. For all the neighbours of xi, labelled Considered {xi}, let C(xi) = V (xi) + g(xixi).
If V (xi) > C(xi), update V (xi) = C(xi). Otherwise, do nothing.

7. Go to step 4.

Paths are found by following the neighbouring vertex of greatest decrease on V from
an initial vertex x0 ∈ V to the goal vertex xf . Many of the algorithms associated with
optimal control presented in chapter 4 are based on Dijkstra’s algorithm.

Though Dijkstra’s algorithm solves a discrete problem, the algorithm can be applied to
the continuous problem. An example of a graph G that discretizes the workspace Ω is a grid
with square elements. The vertices V are the grid points and the edges E connect them in
a grid-like manner. The weighted edges can represent length if the edge does not encounter
obstacles, and a large number otherwise. Though the solution of Dijkstra’s algorithm is
optimal for a discrete graph [23], the optimal paths of this discrete problem do not in
general converge to the optimal path of the continuous problem as finer discretizations are
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(a) Each edge has a weight of 1. (b) Each edge has a weight of 0.5. The finer dis-
cretization does not improve the solution, but in-
creases the number of optimal paths.

Figure 2.4: Dijkstra’s algorithm on grid discretizing Ω - Initial point x0 = (0, 0), goal point
xf = (8, 10). The same optimal paths are shown for two different discretizations. There
are many optimal paths each with length 18 (though only 3 are shown).

used [74]. For example, consider a path planning problem in R2 where the cost is defined
by the length of the path. Let the workspace Ω = [0, 10]2 be discretized by the square grid
G with vertices V = [0, 10]2 ∩ Z2. Each vertex (i, j) is connected to (i ± 1, j), (i, j ± 1),
provided they are in V . Let x0 = (0, 0), xf = (8, 10). See Figure 2.4. Refining the grid by
splitting squares increases the number of optimal solutions, but has no effect on the cost.

A reduction in the cost of the optimal path is observed when diagonal connections
are added. See Figure 2.5. Increasing the connectivity (directions of travel) will improve
the results [64], which is the basis for the Fast Marching and Ordered Upwind Methods
(presented in chapter 4). Despite the solution not converging to the optimal solution of
the continuous path planning problem, Dijkstra’s algorithm will yield a feasible path to
the continuous path planning problem provided one exists along the edges of the graph. If
one does not, a different graph must be used to discretize the workspace.

The discrete path planning problem on the edges of a graph has also been solved
optimally by the A∗ algorithm [35], where a heuristic to guide the search from the start
goal to the end goal is implemented. Another algorithm D∗ [77] is a replanning algorithm
used to produce optimal paths in partially known environments.
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Figure 2.5: Dijkstra’s algorithm discretizing Ω with additional connectivity - Two of the
optimal paths are shown. All optimal paths on the above graph have length 8

√
2 + 2.

Adding more connections (directions of travel) improve the solution. In general, N many
directions are required to obtain the optimal path between any two vertices, where N is
the number of vertices in G.
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Chapter 3

Path Planning using Optimal Control

In this chapter, the optimal path planning problem is formulated. The same continuous
path planning problem presented in Definitions 1.0.1 - 1.0.3 is solved, but with additional
considerations. Rather than finding any feasible path, the best path according to some
criteria is found. Shortest paths while avoiding obstacles have been considered [46, 47]. In
[4], a multi-robot path planning problem is solved using different norms.

The cost of a path is measured by a weighted path integral. The weights used in
the optimal control problem can be dependent or independent of direction. Currents for
underwater autonomous vehicles [64] and wind for ground and air vehicles [5] can be
modelled as direction-dependent weights. Path planning considering a mix of continuous
and discrete states has been performed [71].

New aspects of the environment for rover path planning are modelled. Using the force-
angle stability margin [63], the risk due to tip-over is measured in the direction in which the
rover is facing. In the previous direction-independent model [58], the weight was the average
of the risk experienced in four predetermined directions. Directions that were unsafe for
travel were omitted from the search. Modelling tipover risk as a direction-dependent
weight provided more accuracy. Solar energy is also included here in the modelling of net
consumed energy. As in previous formulations, the shortest path on a surface and obstacle
avoidance are considered.

The optimal control problem in Rn of solving an ordinary differential equation while
minimizing a cost is recast into a partial differential equation of n-spatial variables known
as the static Hamilton-Jacobi-Bellman (HJB) equation [8, 26]. The solution to the HJB
equation is analogous to a continuous version of the discrete cost-to-go function described
in Dijkstra’s algorithm. Solutions of the static HJB equation are rarely differentiable over
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the entire workspace. A weaker sense of solution that satisfies the HJB equation known as
viscosity solutions is presented.

In the context of path planning, the value function that solves the HJB equation is used
as a navigation function [69] to provide a direction of travel at each point to determine
the optimal path. In Section 2.1, the artificial potential function was used as a navigation
function to solve path planning problems. The artificial potential function encountered
local minima, preventing a feasible path from being found. The value function that solves
the static HJB equation will be shown to not possess any local minima given that the
weight is assumed to be positive.

In Section 3.1, the control problem is stated. A brief introduction of the dynamic
programming principle (DPP) and its equivalence to the HJB equation is given. An intro-
duction to viscosity solutions is presented in Section 3.2. It is shown in Section 3.3 that
the solution to the HJB equation cannot have local minima. Aspects that can be used to
model the rover environment will be discussed in Section 3.4.

The new contributions described in this chapter include a proof that the viscosity
solution of the HJB equation do not encounter local minima, as well as the modelling of
tipover risk and solar power using direction-dependent weights in rover path planning.

3.1 Continuous Global Path Planning Problem

Recall the continuous global path planning problem in Definitions 1.0.1 - 1.0.3. In the
context of vehicles, let y : R+ → Rn describe the trajectory of a vehicle, and let u : R+ →
Sn−1, where Sn−1 = {u ∈ Rn| ‖u‖ = 1} define the direction in which the vehicle is facing.
The set of admissible controls is defined U = {u(·) : R+ → Sn−1| u(·) is measurable}. The
path y traced out by the vehicle for t ≥ 0 is

ẏ(t) = u(t), y(0) = x0, x ∈ Ω. (3.1)

Note that y(·) denotes a trajectory (path), and not the controls for a specific vehicle to
follow that trajectory. As rovers travel with a slow maximum speed (5cm/s), and are
capable of turning in place [56], it is reasonable to assume that controls for a rover in R2

to follow the path in (3.1) can be found.

The control problem is to find a control u(·) ∈ U that plans a path from a start position,
x0 ∈ Ω to a final position, xf ∈ Ω under the system (3.1). A trajectory y(·) with initial
point x0 may be written yx0

(·).
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Definition 3.1.1. The exit-time T : Ω× U → R+ is

T (x0,u(·)) = inf{t ∈ R+| yx0
(t) = xf}.

The exit-time is the first time the vehicle reaches xf (from x0) under the influence of the
control u(·).

Definition 3.1.2. The cost function Cost : Ω× U → R+ is

Cost(x0,u(·)) =

∫ T (x0,u(·))

0

g(yx0
(s),u(s))ds, (3.2)

where the weight function g : Ω× Sn−1 → R+ is continuous.

It is assumed that the weight function g is continuous and satisfies g(x,u) > 0 for all
x ∈ Ω and u ∈ Sn−1. Since Ω× Sn−1 is a compact set, there exists Gmin, Gmax ∈ R+

0 < Gmin < gmin(x) ≤ g(x,u) ≤ gmax(x) < Gmax <∞, for every (x,u) ∈ Ω×Sn−1, (3.3)

where gmin(x) = min
u∈Sn−1

g(x,u) and gmax(x) = max
u∈Sn−1

g(x,u).

The environment is assumed to be known and weighted with g. The case g(x,u) ≡ 1,
for all (x,u) ∈ Ω×Sn−1 corresponds to the optimal control problem for shortest time (and
hence shortest path, since the vehicle travels at constant speed).

Definition 3.1.3. The control u∗(·) ∈ U is optimal if it minimizes the cost function (3.2)
subject to (3.1).

Definition 3.1.4. The value function V : Ω → R at x ∈ Ω is the cost associated with
the optimal control u∗(·) ∈ U for reaching the final position xf from x,

V (x) = inf
u(·)∈U

Cost(x,u(·)) = Cost(x,u∗(·)). (3.4)

The control problem is often referred to as static since it is irrelevant of starting time
and the weight does not change with respect to time. The value function satisfies the
following continuous Dynamic Programming Principle (DPP).

Theorem 3.1.5. [26, Section 10.3.2, Theorem 1] For every h > 0, t ≥ 0, such that
0 ≤ t+ h ≤ T (x,u∗(·)),

V (yx(t)) = inf
u(·)∈U

{∫ t+h

t

g(yx(τ),u(τ))dτ + V (yx(t+ h))

}
. (3.5)
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Figure 3.1: Continuous Dynamic Programming Principle for Ω ⊂ R2 - For any x2 on the
optimal path from x1 to xf , the portion of the path from x1 to x2 and x2 to xf must also
be optimal. As well, the concatenation of optimal paths from x1 to x2 and from x2 to xf
must be an optimal path from x1 to xf on Ω.

The continuous DPP over the space Ω states that a control is optimal between two
states if and only if the same control is optimal over all intermediate states along the
trajectory. See Figure 3.1. The value function V (x) can be regarded as the lowest cost for
x ∈ Ω to reach the point xf .

A partial differential equation in terms of the value function can be informally obtained
[83]. Let the control u∗(·) and trajectory y∗(·) be optimal for (3.1) and (3.2).

V (y∗(t)) =

∫ t+h

t

g(y∗(τ),u∗(τ))dτ + V (y∗(t+ h))

0 ≈
∫ t+h

t

g(y∗(t),u∗(t))dτ + V (y∗(t+ h)− V (y∗(t))

0 ≈ g(y∗(t),u∗(t)) +
V (y∗(t+ h))− V (y∗(t))

h
.

The static Hamilton-Jacobi-Bellman (HJB) is obtained in the limit as h→ 0.

min
u∈Sn−1

{(∇V (x) · u) + g(x,u)} = 0,x ∈ Ω\{xf}, (3.6)

V (xf ) = 0,
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where · in the above equation denotes the dot product in Rn. The HJB (3.6) is often
referred to as a source-point problem, for which all paths emanate from the single source
xf . The Hamiltonian H : (Ω\{xf})× Rn → R for this problem is

H(x,p) = − min
u∈Sn−1

{p · u + g(x,u)}. (3.7)

The optimal control is synthesized using the value function V [26, Chapter 10.3]. Com-
bining (3.1) and (3.6),

ẏ(t) = u∗(t) = arg min
u∈Sn−1

{∇V (y(t)) · u + g(y(t),u)},y(0) = x0,x0 ∈ Ω (3.8)

If the weight function is of the form g(x,u) = g(x), then the HJB equation (3.6) reduces
to the simpler Eikonal equation,

‖∇V (x)‖ = g(x), (3.9)

with minimizing control

u∗(t) = − ∇V (y(t))

‖∇V (y(t))‖
.

If the weight function g has dependence on direction u, then the minimizing direction u∗

(3.8) must be solved as a minimization problem.

Definition 3.1.6. The characteristic direction u∗ : Ω→ Sn−1 of x ∈ Ω is the optimizer
of (3.7),

u∗(x) = arg min
u∈Sn−1

{∇V (x) · u + g(x,u)}. (3.10)

Definition 3.1.7. The speed profile at x is

Ug(x) = {u/g(x,u)| u ∈ Sn−1}. (3.11)

In R2, the speed profile is the shape traced out at x in polar coordinates with the speed
1/g(x,u) as the radius and the angle corresponding to the direction u (see Figure 3.2).
The minimizing characteristic direction u∗ at x is unique provided that ∇V (x) is defined
and the speed profile Ug(x) is convex [72]. If g does not depend on direction u, then the
speed profile is circular. See Figure 3.2.

Definition 3.1.8. Let Γ = Gmax

Gmin
, (where Gmin, and Gmax are defined in (3.3)) denote the

global anisotropy coefficient.
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(a) The direction-independent speed profile in R2

is circular as the weight g does not change as di-
rection u is varied. The gradient ∇V (x) and the
characteristic direction u are collinear.

(b) A direction-dependent speed profile in R2, the
weight g changes as the direction u is varied. The
speed profile does not necessarily have to be ellip-
tical, nor symmetrical about x. Note the charac-
teristic u is not necessarily collinear to ∇V (x).

Figure 3.2: Speed Profile at x ∈ R2, Ug = {u/g(x,u)|u ∈ S1}. The gradient ∇V (x) points
outwards, perpendicular to the profile, while the corresponding characteristic u points
inwards towards x.
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A bound on the angle between the characteristic direction u∗ and gradient direction
∇V (x0) at x0 has been proven.

Lemma 3.1.9. [72] Assume ∇V (x) exists. If u∗ optimizes (3.6) at x, and the weight
g(x,u) satisfies the restrictions of (3.3), then

∇V
‖∇V ‖

· u∗ ≤ −Γ−1. (3.12)

Proof. According to (3.6), (3.8), u∗ satisfies

∇V · u∗ + g(x,u∗) = 0.

Since g(x,u) > 0 for all (x,u) ∈ Ω× Sn−1, ∇V · u∗ < 0. Thus

0 =
∇V · u∗

g(x,u∗)
+ 1 ≤

∇V ·
(
− ∇V
‖∇V ‖

)
g(x,− ∇V

‖∇V ‖)
+ 1 ≤ −‖∇V ‖

Gmax

+ 1,

and hence

∇V · u∗ ≤ −‖∇V ‖ g(x,u∗)

Gmax

≤ −‖∇V ‖Gmin

Gmax

= −‖∇V ‖Γ−1.�

Even for smooth g, the value function V may not be differentiable everywhere. A
weaker sense of solution will be presented.

3.2 Viscosity Solutions

The static Hamilton-Jacobi equation for a general Hamiltonian H : Ω × Rn → R, and
boundary function q : ∂Ω→ R is

H(x,∇V ) = 0,x ∈ Ω (3.13)

V (x) = q(x),x ∈ ∂Ω

There are two common formulations of (3.13). In the first, the “boundary” ∂Ω is
defined at a single point (or as a target set) on the interior of Ω and the solution V is found
outwards on bounded subsets of Rn. An example is (3.6) where H(x,p) = −minu∈Sn−1{p ·
u + g(x,u)}, q(x) = 0 and ∂Ω = {xf}.
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The other formulation is the problem of q(x) defined on the outer boundary ∂Ω of a
bounded region in Rn and solving for V on the interior of that region. In this thesis, the
two will be distinguished by calling the former the source-point problem and the latter the
boundary value problem. The latter will be revisited in Chapter 5.

Even for smooth H, ∂Ω and q, the solution to (3.13) may not be differentiable on all
of Ω. Viscosity solutions [17] are used to uniquely describe the solutions of HJB equations
in a weak sense.

A similar discussion as the following on viscosity solutions can be found in [14, 26]. Let
x ∈ Ω = (−1, 1) ⊂ R, and the Hamiltonian of a system be

H(x,p) = |p| − 1.

The static HJB equation H(x, V ′) = 0 is

|V ′(x)| = 1 (3.14)

and boundary condition q : ∂Ω→ R is given by q(−1) = 0 and q(1) = 0.

The only differentiable solutions of (3.14) on (−1, 1) are x + b and −x + b, b ∈ R,
but neither of these solutions can simultaneously satisfy both boundary conditions. Hence
there are no differentiable solutions that satisfy (3.14) on [−1, 1]. A more general sense of
solution is considered. Let A be a closed and bounded subset of Rn.

Definition 3.2.1. A function f : A→ R is Lipschitz-continuous if there exists C ∈ R+

such that
|f(x)− f(y)| ≤ C ‖x− y‖

for all x,y ∈ A.

Definition 3.2.2. A weak solution to (3.13) is a Lipschitz-continuous function V : Ω→
R that satisfies (3.13) almost everywhere.

A weak solution can have countably many points where ∇V is not defined. There are
infinitely many weak solutions to (3.14), see Figure 3.3. To discuss a particular weak solu-
tion that has a particular connection to the optimal control problem presented previously,
the following definitions are considered.

Let C∞(Ω) denote the space of infinitely continuously-differentiable functions on Ω.
This will be the space of test functions used in the definition of viscosity solutions. The
following definitions can be found in [8].
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(a) (b) (c)

Figure 3.3: Weak solutions of (3.14). The left figure (a) is the viscosity solution of (3.14).
The other two (b),(c) weak solutions are eliminated in the definition of viscosity solutions
(Definitions 3.2.3 and 3.2.4).

Definition 3.2.3. A function V : Ω→ R is a viscosity subsolution of (3.13) if for any
φ ∈ C∞(Ω),

H(x0,∇φ(x0)) ≤ 0, (3.15)

at any local maximum point x0 ∈ Ω of V − φ. See Figure 3.4a.

Definition 3.2.4. A function V : Ω → R is a viscosity supersolution of (3.13) if for
any φ ∈ C∞(Ω),

H(x0,∇φ(x0)) ≥ 0, (3.16)

at any local minimum point x0 ∈ Ω of V − φ. See Figure 3.4b.

Definition 3.2.5. A viscosity solution of the HJB (3.13) is both a viscosity subsolution
and a viscosity supersolution of (3.13).

The weak solutions of (3.14) are now examined. Suppose a weak solution V0 of (3.14) has
a local minimum (for example Figure 3.3b and c) at x0 ∈ (−1, 1). Let φ(x) = −(x− x0)2,
then V0 − φ has a local minimum at x0 (see Figure 3.4). On the other hand,

H(x0, φ
′(x0)) = |φ′(x0)| − 1 = 0− 1 < 0.

Hence V0 does not satisfy the definition of a viscosity supersolution, which implies V0 is
not a viscosity solution. Note the only remaining weak solution is V (x) = 1 − |x| which
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(a) Viscosity Subsolution, V (x) ≤ φ(x),
V (x0) = φ(x0) (V − φ has a local maxi-
mum at x0), H(x0,∇φ(x0)) ≤ 0

(b) Viscosity Supersolution, V (x) ≥ φ(x),
V (x0) = φ(x0) (V − φ has a local mini-
mum at x0), H(x0,∇φ(x0)) ≥ 0

Figure 3.4: Viscosity solutions at a point x0 such that ∇V (x0) is not defined.

can easily be verified to be a viscosity solution. The viscosity solution definition isolated
a particular weak solution, which is in fact the value function (3.4) of the optimal control
problem (3.6) [8, 26]. Note that if instead H(x,p) = 1 − |p|, then the viscosity solution
would be V (x) = |x| − 1.

Some standard definitions of viscosity solutions use C1(Ω) as the space of test functions,
for example [8], while others use C∞(Ω) [26]. It was shown in [18] that the space of test
functions C1(Ω) could be replaced with C∞(Ω) for an equivalent definition.

For general Hamiltonians, existence results are established using the vanishing viscosity
argument [26], while uniqueness results for the viscosity solution V in (3.6) come from a
comparison principle argument [8, Theorem IV.2.6].

3.3 Local Minina in Viscosity Solution to HJB

Recall that in Section 2.1, the artificial potential function [45] was used as a navigation
function to find a path. The artificial potential function could encounter local minima, see
Figure 2.2. The value function V (3.4), which is the viscosity solution of the HJB (3.6), is
used as a navigation function in (3.8). It will be shown that V cannot have local minima
on Ω.
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Figure 3.5: Several subgradients are shown for the function f(x) = |x|, x ∈ R. At x = 0,
the set of all subgradients is D−f(0) = [−1, 1].

Some definitions are required. Let Bδ(x) define the open ball around x with radius δ.

Definition 3.3.1. The vector p ∈ Rn is a subgradient of a function f : Ω→ R at x0 ∈ Ω
if there exists δ > 0 such that for any x ∈ Bδ(x0),

f(x)− f(x0) ≥ p · (x− x0).

Let D−f(x0) denote the set of all subgradients of f at x0.

Definition 3.3.2. The vector p ∈ Rn is a supergradient of a function f : Ω → R at
x0 ∈ Ω if there exists δ > 0 such that for any x ∈ Bδ(x0),

f(x)− f(x0) ≤ p · (x− x0).

Let D+f(x0) denote the set of all supergradients of f at x0.

If ∇f(x0) exists, D−f(x0) = {∇f(x0)}. For example, consider f(x) = |x|, x ∈ R. See
Figure 3.5. At x = 0, D−f(0) = [−1, 1]. A line with slope 2 /∈ D−f(0) touching f(0) would
cross f locally. Definition 3.3.1 would not be satisfied. Away from x = 0, D−f(0) = f ′(0).

Lemma 3.3.3. The point x0 ∈ Ω is a local minimum of f if and only if 0 is a subgradient
of f at x0.

The proof is a direct application of Definition 3.3.1.

The following lemma relates the set D−f(x0) to values of ∇φ(x0) of the test functions in
the viscosity supersolution definition given previously.

Lemma 3.3.4. [8, Lemma II.1.7] A vector p ∈ D−f(x0) if and only if there exists φ ∈
C1(Ω) → R such that ∇φ(x0) = p, and f − φ has a local minimum at x0. Similarly, a
vector p ∈ D+f(x0) if and only if there exists φ ∈ C1(Ω)→ R such that ∇φ(x0) = p, and
f − φ has a local maximum at x0.
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Figure 3.6: Lemma 3.3.4 for f(x) = |x| - There exists φ(x) ∈ C1(Ω) such that φ(x) < f(x)
and φ(x0) = f(x0) if and only if p ∈ D−f(x0). Note that p is parallel to ∇φ.

See Figure 3.6 for an illustration for f(x) = |x| where p(0) = ∇φ(0).

Theorem 3.3.5. If V is a viscosity solution of the HJB equation (3.6) where the weight
function satisfies assumption (3.3), then V has no local minima on Ω\∂Ω.

Proof. It will be shown that x0 ∈ Ω\∂Ω is not a local minimum. If ∇V (x0) exists, the
proof is even simpler and ∇V (x0) 6= 0 can be achieved by directly working with (3.6).

The viscosity solution V is a viscosity supersolution (Definition 3.2.4). If there is no
φ ∈ C∞(Ω) that satisfies Definition 3.2.4, then by Lemma 3.3.4, D−V (x0) is empty and
does not contain 0. Hence by Lemma 3.3.3, x0 is not a local minimum. Now suppose such
a φ ∈ C∞(Ω) does exist. Hence,

H(x0,∇φ) ≥ 0,

or
− min

u∈Sn−1
{∇φ(x0) · u + g(x0,u)} ≥ 0.

and let u∗ ∈ Sn−1 be the minimizer, where Sn−1 = {u ∈ Rn| ‖u‖ = 1}

−∇φ(x0) · u∗ ≥ g(x0,u
∗) ≥ gmin(x0) > 0,

‖∇φ(x0)‖ ≥ −∇φ(x0) · u∗ > 0.
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Figure 3.7: Consider the above path planning problem for shortest distance. Local Minima
in the second argument of Cost(x0,u(·)) (3.2) do not imply minima of value function V at
x0. Any point x0 on the line will have two cost-minimizing paths to xf . The value V (x0)
will be the cost of either path. Such x0 are not minimum of V .

Thus ∇φ(x0) 6= 0 which implies by Lemma 3.3.4 that 0 /∈ D−V (x0). By Lemma 3.3.3,
x0 is not a local minimum of V . Since x0 was an arbitrary point on Ω\{xf}, there are no
local minima on Ω\{xf}. �

From Theorem 3.3.5, the solution to (3.8) will not encounter any local minima on
Ω\{xf}. Local minima in U may exist for Cost at x0, such as in Figure 3.7 where multiple
optimal controls u∗(·) exist, but this does not imply x0 is a local minimum of V .

At local minima of navigation functions, no u exists that optimizes (3.8), since g(x,u) >
0. The same is true for strict local maxima and saddle points, but perturbing the solution
(3.8) off of them will allow the path search to continue. Perturbing the solution off of a local
minimum will return it to the minimum. Though local minima do not exist on Ω\∂Ω for
V , this does not imply the same result for a numerical approximation of V . The existence
of local minima for numerical approximations of V are discussed in the next chapter.

3.4 Rover Environment Modelling

Aspects of the environment experienced by rovers that can be modelled using the weight
function g are described in this section. The description will be given in R2. The weight
function g(x,u) ≡ 1, for all (x,u) ∈ Ω×S1 corresponds to the optimal control problem for
shortest time (and hence shortest path, since the vehicle travels at constant speed). The
shortest path may not always be the best.
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(a) Level sets of terrain z(x), two-
dimensional view (xy-plane).

(b) Terrain z(x), three-dimensional view
(yz-plane).

Figure 3.8: Path Length on Terrain - The rover is traversing a hill. The true distance
traversed d1 in the direction of greatest increase is larger than the distance d projected
onto the xy-plane.

The optimal path planning problem formulated in Section 3.1 applies to path planning
for any autonomous vehicle. Weights relevant to rovers including shortest path on terrain,
obstacle avoidance, soil risk, solar energy input and tip-over stability risk are considered.

Path Length on Terrain - The weight g(x,u) ≡ 1 over all Ω × S1 corresponds to the
shortest path on Ω, however the rover must often traverse uneven terrain.

Definition 3.4.1. The terrain z : Ω→ R is a continuously differentiable function repre-
senting the elevation experienced by the rover on the set Ω.

The rover cannot move freely in the z-direction; its position is constrained to (x, z(x)) for
x ∈ Ω. Suppose the rover is on a hill. Travelling a small distance d in the direction of
greatest increase of z on the xy-plane (since Ω ⊂ R2) would represent a greater distance
d1 on the terrain (see Figure 3.8). The shortest path problem on terrain when solved on
Ω ⊂ R2 is dependent on direction. If the problem is solved directly on a three-dimensional
mesh approximating the terrain z(x), then the distance travelled (on the tangent plane)

is the same in all directions. The workspace is extended to Ω̃ = {(x, z(x))|x ∈ Ω}. The

weight g(x) = 1 solved on Ω̃ is independent of direction.
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Obstacles - Obstacles are regions in Ω where travel is forbidden. These include impassable
regions or high-risk zones such as quicksand. Recall O ⊂ Ω is the set of obstacles. An
obvious weight function is to use a large value MO for obstacles, and 0 outside of obstacles.
A buffer zone where the danger decreases gradually away from the obstacle can be included.
Obstacle weights are independent of direction. Another method to model obstacles is to
remove their corresponding regions from Ω.

Soil Risk - The soil risk is a measure of the difficulty to traverse a type of soil. For
example, rocky soils are easier to traverse than soft sand. The weight can be independent
of direction providing only a value for each type of soil. A weight that considers the risk
associated with the slope experienced on a particular soil is dependent on direction.

Solar Energy - Energy absorbed by a solar panel is a source of power for rovers. For
a panel parallel to the frame of the rover, the weight is independent of direction. The
normal vector of the panel is (−∇z(x), 1). The sun, located at (xs, ys, zs), will be at the
same angle to the panel for a position x regardless of direction. The vector from the rover
to the sun is

s(x) = (xs, ys, zs)− (x, z(x)),

while the angle between the vector normal to the tangent plane at z(x) and s(x) is

β(x) = arccos

(
s(x) · (−∇z(x), 1)

‖s(x)‖ ‖(−∇z(x), 1)‖

)
. (3.17)

A smaller angle β(x) will result in more direct sunlight reaching the panel (see Figure 3.9).
If β(x) is obtuse, then no direct sunlight will reach the panel. If the panel is not parallel
to the rover frame, the weight becomes dependent on the direction in which the rover is
facing.

Stability tip-over risk - The risk due to tip-over is dependent on direction. The rover is
in a stable position if the downward projection of its centre of gravity onto the terrain lies
within the convex hull defined by the rover’s contact points (see Figure 3.10). Assume that
the convex hull of the contact points made by the rover on the terrain is rectangular. A
common model for rovers known as the rocker-bogie model [28] satisfies this assumption.
The Mars rovers Spirit, Opportunity and Curiosity use the rocker-bogie model. Assume
also that the centre of mass is at its centroid.

A suitable measure of tip-over risk is the force-angle stability margin described in [63].
Suppose the rover is at a position x facing a direction u. Let the centre of gravity of
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Figure 3.9: Solar energy definitions - The sun is located at (xs, ys, zs). The function β(x) is
the angle in radians between the normal to the tangent plane (−∇z(x), 1) and the vector
between the rover’s panel and the sun s(x).

the rover be pc = (xc, yc, zc) and the four corners of the convex hull be labelled clockwise
(viewed from above): pi, i ∈ {1, 2, 3, 4} (see Figure 3.10a). Let the tip-over axes be

ai = pi+1 − pi, for i = {1, 2, 3}, a4 = p1 − p4.

and âi = ai

‖ai‖ . The normal vector to tip-over axis ai that intersects the centre of gravity is

li = (I3 − âiâi
T )(pi+1 − pc) for i = {1, 2, 3}, l4 = (I3 − â4â4

T )(p1 − pc).

For i ∈ {1, 2, 3, 4}, let l̂i = li
‖li‖ and let f̂g = [0, 0,−1]. The force-angle stability measure

corresponding to each tip-over axis is

θi = σi cos−1(̂fg · l̂i)

where

σi =

{
+1 if

(
l̂i × f̂g

)
· âi < 0

−1 otherwise.

Instability occurs when θi is negative, indicating that the vectors f̂g and l̂i have switched
sides (compared to when θi was positive), projecting the centre of gravity outside of the
convex hull. The overall stability margin α at the position x with direction u is given by

α(x,u) = min
i
θi, i ∈ {1, 2, 3, 4}. (3.18)

The aspects of the environment described above will be used for path planning examples
in Section 6.2, where the specific weights used will be described.
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(a) Convex hull (shaded) of rover contact
points with terrain. The rover has length L,
and width W . The tip-over stability mea-
sure θ1 is shown for the side p1p2. The vec-
tor fg is pointing into the convex hull made
by the contact points. Hence the stability
measure is positive.

(b) A rover is on tilted ground. The
projection of the centre of mass falls
outside of the convex hull made of
the contact points with the terrain,
resulting in tip-over. The stability
margin is the negative angle θ1. A
negative angle indicates that the ori-
entation of the rover is unstable.

Figure 3.10: Tip-over Stability Risk
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3.5 Conclusion

The optimal path planning problem was described as a control problem. An equivalent
formulation was presented using the value function from dynamic programming. Even
for smooth weights and boundary conditions, the solution to the static HJB equation
(3.6) may not be smooth. A weaker sense of solution known as viscosity solutions was
presented. It was shown that given a positive weight function, the value function did not
possess any local minima that were not global minima. These local minima correspond to
points where a path planner solver (3.8) would become stuck, for example with artificial
potential functions.

Several rover path planning objectives were discussed including the tip-over stability
risk and solar energy absorption. Soil risk, obstacle avoidance and shortest length on
terrain were also discussed. These aspects will be explicitly modelled in simulations in
Section 6.2. The only restriction on control given to the path planning problem was that
it be measurable. This assumption is justified for rover path planning due to the slow
maximum speed of the rover and its ability to turn in place. For vehicles where this is not
reasonable, additional constraints can be imposed. One method would be to use a more
realistic model for dynamics in the path planning problem (3.1). For example, a third
dimension can be added to account for the angle of the rover, where the angular velocity
is given a different fixed speed, separate from the translational speed. These dynamics
along with a constraint on angular velocity based on turning radius is modelled in [78].
Raising the dimensionality of a problem results in a significant increase in computation of
approximated solutions. For the rover path planning problem presented here, aspects of
the environment are modelled. Travel is limited to either Ω ⊂ R2 or on a surface, which
allows for faster computation. Integral constraints as described in [50, 59] can be used
to model limited fuel consumption, creating a more realistic model of the path planning
problem.
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Chapter 4

Approximate Solutions of Static HJB
Equations

Analytic solutions to the static HJB (3.6) presented in Chapter 3 are often difficult to
obtain, so approximate solutions are computed. The approximate solution is found on a
discretization of the workspace. In each of the algorithms described in this chapter, an
approximation of the value function Ṽ of V (3.4) is found on each point of the discretization.
The solution is linearly interpolated between solved values to obtain a solution on all of
Ω. One way to characterize the methods is by the scheme used. The scheme refers to the
method in whch the equation used to compute Ṽ is approximated. A computation of the
scheme is also known as an update. The following are two types of finite difference schemes
used to find Ṽ .

Definition 4.0.1. A semi-Lagrangian finite difference scheme approximates the dy-
namic programming principle (3.5) by numerically approximating the characteristic direc-
tion of V .

Definition 4.0.2. An Eulerian finite difference scheme approximates the static Hamilton-
Jacobi equation (3.13) by numerically approximating the gradient of V .

The above definitions are consistent with the terms in literature. There are two semi-
Lagrangian schemes [50] that are commonly used to approximate the dynamic program-
ming principle (3.5). The difference between them is the manner in which the control (3.1)
is approximated. In the first, the approximated control described in (3.1) is assumed to
be held constant within each element of the discretization. These include the Ordered
Upwind Method (OUM) [72], Monotone Acceptance OUM (MAOUM) [5], and Tsitsiklis’
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algorithm [80]. In the second semi-Lagrangian scheme, the approximated control is as-
sumed to be held constant for a small fixed time 4t and can change within an element
of the discretization. Algorithms that use the second scheme include the Semi-Lagrangian
Fast Marching Method [21] and the Buffered Fast Marching Method [20]. An interpola-
tion from nearby points in the discretization is required to reconstruct the state in both
cases. Both semi-Lagrangian schemes can be used to solve direction-dependent problems
provided an appropriate algorithm is used: OUM or MAOUM for the first, and Buffered
Fast Marching Method for the second.

Examples of Eulerian schemes include the Fast Marching Method (FMM) and Fast
Sweeping Method (FSM) for Eikonal equations in [73, 89]. It was shown that a first-
order Eulerian and a first-order semi-Lagrangian scheme used in [72] are equivalent for
direction-independent problems for a particular type of discretization. The equivalence for
problems with direction-dependence was analyzed in [3, 72]. An Eulerian OUM method
was presented in [72].

Aside from the scheme used, methods can be characterized by the order in which the
solution Ṽ is found on the points of the discretization. Iterative methods that solve HJB
equations [8] have existed since the 1980s at the time the theory for viscosity solutions [19]
was introduced. A naive iterative method to solve the DPP (3.5) is to use Gauss-Seidel
iterations to compute the solution on vertices of the discretization in a certain order,
repeating until convergence is achieved. A more efficient iterative method is the Fast
Sweeping Method [41]. The approximate solution is computed at vertices in alternating
predetermined orderings known as sweeps. The correct value at a vertex is calculated from
vertices with already correct values in the direction of the characteristic. The original
presentation [41] had first-order accuracy. Schemes with higher-order accuracy exist for
FSM, including the Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory
schemes, which are higher-order finite-difference schemes. In [85] a fifth-order scheme is
used to solve the static HJB in which a first-order accurate solution is used as an initial
guess.

Another group of methods differ from iterative methods by decoupling the dependencies
of the solution at vertices, solving only for a narrow band of points of the solution at a
time. Examples include the Fast Marching Method, which finds an approximate solution
to the direction-independent Eikonal equation. Extensions have been proposed to extend
the accuracy of FMM to second order [74] by using a (second-order) one-sided update and
to third order [1] in two-dimensional problems by locally rotating the stencil by 45◦ to
obtain more points for derivatives. The Fast Marching Method has been extended [47]
to solve the geodesic problem on triangular discretizations in both two dimensions and
on manifolds. In FMM, the value function is updated in the direction of the gradient.
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For direction-independent weights, the gradient direction at a point is collinear with the
characteristic direction (3.8).

For problems where the weight is dependent on direction, the characteristics of the PDE
are no longer necessarily collinear with the gradient. A bound on the angle between the
gradient and characteristic directions can be described based on properties of the weight
(Lemma 3.1.9), [72]. Using this fact, algorithms such as Ordered Upwind Method (OUM)
[72] and Monotone Acceptance OUM (MAOUM) [5] that search for the characteristic from a
larger set of directions have been developed. Both algorithms achieve a similar decoupling
of the solution on vertices and can be used to solve convex static HJB equations. In
the Buffered Fast Marching Method (BFM), direction-dependent problems are solved by
introducing a buffer set, where updates are kept local, iterating the solution within the
buffer until convergence is reached.

Prior to discussing algorithms that solve the static HJB, the discretizations of the
workspace, namely grids and simplicial meshes will be presented in Section 4.1. In Section
4.2, the FMM using simplicial meshes in R2 will be described. The OUM will be presented
in Section 4.3. An algorithmic improvement of the OUM is proposed in Section 4.3.1. The
MAOUM is described in Section 4.4. The Buffered Fast Marching and the Fast Sweeping
Method will be briefly discussed in Sections 4.5 and 4.6 respectively. These algorithms will
be timed in Section 6.3 on a benchmark problem.

In this chapter, a novel algorithmic improvement for the OUM to include a bi-directional
search [66] (OUM-BD) is introduced. A similar approach is applied to FMM in Section
6.2 (and has been briefly described [15]), MAOUM and BFM. All of the algorithms will be

presented for the source-point problem, where the approximated value function Ṽ will be
built outwards from xf with condition Ṽ (xf ) = 0.

4.1 Discretizations of the Workspace

The workspace Ω will be discretized using a simplicial mesh or a grid and an approximation
of V (3.5) will be found on the discretization. The approximate solution is denoted Ṽ .

4.1.1 Uniform Grids

The region Ω can be discretized using a rectangular grid G, where the solution of (3.6) is
found on the vertices.
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Definition 4.1.1. A grid G is a discretization of Ω ⊂ Rn using orthogonal elements,
where the dimension lengths are4x1, ...,4xn. Each grid point is represented by coordinates
(k14x1, ..., kn4xn) where k = (k1, ..., kn) ∈ Zn.

An square grid in R2 is an example, where all the elements are squares and 4x =
4x1 = 4x2. When discussing grids, the term vertices may be used interchangeably with
grid points.

Grids are simple to implement but have a significant drawback. For the boundary value
problem, if ∂Ω is not a rectangle, then a fine discretization may be required to accurately
capture its details. The same is true for weights that vary over Ω. Non-uniform and
adaptive grids [5, 73], where elements of different sizes have been used. Uniform square
grids are used in the description of the Fast Sweeping Method and Buffered Fast Marching
Method and have been implemented in Section 6.3. Another discretization known as a
simplicial mesh is presented.

4.1.2 Simplicial Meshes

Simplicial meshes are used to discretize general regions of Rn.

Definition 4.1.2. A set of points F = {x0, ...,xk} ⊂ Rn is affinely independent if the
vectors {x1 − x0, ... , xk − x0} are linearly independent.

Definition 4.1.3. A k-simplex (plural k-simplices) is the convex hull of an affinely in-
dependent set of points F = {x0, ...,xk}.

Let the notation x0x1 · · ·xk denote a k-simplex defined by the convex hull of F . The
empty set is a -1-simplex, a single point x0 is a 0-simplex. The line segment x0x1 is a 1-
simplex. The triangle x0x1x2 is a 2-simplex and the tetrahedron x0x1x2x3 is a 3-simplex.
The notation s is used to denote an arbirary simplex of dimension 1 or higher. The notation
xs
i is used to represent a vertex of sk = xs

0x
s
1 · · ·xs

k. A 0-simplex is often referred to as a
vertex, and a 1-simplex an edge.

Definition 4.1.4. Suppose s is a k-simplex defined by the convex hull of F . An m-face
(−1 ≤ m ≤ k) of the k-simplex s is an m-simplex made of the convex hull of a subset of
F containing m+ 1 vertices.

A 2-simplex (triangle) has 8 faces: the empty set (-1-face), three vertices (0-face),
three edges (1-face), one triangle (2-face). The empty set is a -1-face of all simplices. A
k-dimensional simplex has 2k+1 faces.
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Definition 4.1.5. A simplicial mesh, X is a set of simplices such that

1. any face of a simplex in X is also in X,

2. the intersection of two simplices s1, s2 ∈ X is a face of X.

Definition 4.1.6. A k-simplicial mesh is a simplicial mesh where the highest simplex
dimension in X is k.

All lower dimensional faces of simplices in X also belong to X. Any overlap between
two simplices in X must be a simplex of X. For a mesh X ⊂ R2, the discretization is a
2-simplicial mesh, where none of the triangles overlap except on edges. Similarly, edges
only overlap at vertices. A simplicial mesh may simply be called a mesh in the remainder
of this work.

Though each simplex is convex, the collection of all simplices in a simplicial mesh as a
region is not necessarily convex.

Barycentric coordinates are used to uniquely describe a point x on the convex hull of
a simplex s relative to its vertices. The set of barycentric coordinates for a k-simplex is

Ξk =

{
(ζ0, ζ1, ..., ζk) ∈ Rk+1

∣∣∣ k∑
j=0

ζj = 1, ζj ∈ [0, 1] ∀ 0 ≤ j ≤ k

}
. (4.1)

Definition 4.1.7. The barycentric coordinates of x ∈ Rn belonging to a k-simplex s
defined by the convex hull of F is a vector ζ = (ζ0, ..., ζk) ∈ Ξk such that x =

∑k
i=0 ζix

s
i .

Definition 4.1.8. A closed region D ⊂ Rn is contained in a mesh X if for every x ∈ D,
there exists an n-simplex s with vertices {xs

i}ni=0 ⊂ X and barycentric coordinates ζ =
(ζ0, ..., ζn) ∈ Ξn such that x =

∑n
i=0 ζix

s
i .

See Figure 4.1. Under the assumptions in the previous definition, the vector ζ =
(ζ0, ..., ζk) is unique [72]. The computation of barycentric coordinates is shown for R2 but
can be easily generalized to Rn. For a point x ∈ x0x1x2 ∈ X, let ζ = (ζ0, ζ1, ζ2) such that

x = ζ0x0 + ζ1x1 + ζ2x2 and ζ0 + ζ1 + ζ2 = 1.

The previous equations can be rearranged to yield the linear transformation T such that

T ·
(
ζ0

ζ1

)
= x− x2, where T =

(
x0 − x2, x1 − x2

)
.
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Figure 4.1: Ω contained in X - An example Ω ⊂ R2 contained in a (2-simplicial) mesh X.

Because the columns of T are linearly independent (since F is affinely independent), T is
invertible, and ζ = (ζ0, ζ1, ζ2) can be recovered from(

ζ0

ζ1

)
= T−1(x− x2) and ζ2 = 1− ζ0 − ζ1.

For any point x ∈ s = x0x1x2, there exists a unique ζ = (ζ0, ζ1, ζ2) such that

x = ζ0x0 + ζ1x1 + ζ2x2 where ζi ≥ 0 and ζ0 + ζ1 + ζ2 = 1.

The following definitions are used to describe properties of the mesh X ⊂ Rn.

Definition 4.1.9. The maximum edge length hmax of X ⊂ Rn is the longest edge
(1-simplex) in X.

Definition 4.1.10. Let 1 ≤ k ≤ n. A neighbour of a (k−1)-simplex in X, x0x1 · · ·xk−1,
is any vertex xk ∈ X such that x0x1 · · ·xk forms a k-simplex iin X.

Definition 4.1.11. The minimum simplex height hmin of X is the shortest of all
perpendicular distances between any (n− 1)-simplex of X with its neighbours.

If n = 2, then hmin is the shortest triangle height out of all triangles in X. Let X ⊂ Rn

be an n-simplicial mesh with maximum edge length hmax and minimum simplex height
hmin.
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A uniform grid in R2 can be transformed into a simplicial mesh by splitting each
rectangular element into two triangles by connecting either diagonal with an edge. For the
case of a square grid in R2, hmax =

√
24x, and hmin =

√
2

2
4x.

Simplicial meshes can also be used to describe manifolds. For example in R2, a 2-
simplicial mesh X2 can be given a third coordinate based on a continuous function z :
R2 → R, maintaining the same connectivity with its edges. The augmented 2-simplicial
mesh now exists in R3. Generalizations of simplicial meshes can also be made for closed
surfaces, for example spheres and tori.

4.2 Fast Marching Method (FMM)

The Fast Marching Method (FMM) was first introduced by Sethian in [73] to approximate
the value function V of the static HJB (3.6) on rectangular grids for problems where the
weight g did not depend on direction. For such weights, the static HJB reduces to the
Eikonal equation,

‖∇V (x)‖ = g(x),x ∈ Ω, (4.2)

V (x) = q(x),x ∈ ∂Ω.

The algorithm was extended to 2-simplicial meshes on R2 and manifolds [47], which are
discussed here. In the source-point problem, the solution is computed outwards from the
point xf , starting with the condition Ṽ (xf ) = 0. Recall that Ṽ (xi) is the approximate
lowest cost to reach xf from xi.

The same labels for vertices used in Dijkstra’s algorithm from Section 2.3 are used. See
Figure 4.3.

Far - The set of vertices in X where computation of Ṽ has not yet begun. These vertices
have tentative values Ṽ (xi) = K, where K is a large number.

Considered - The set of vertices where Ṽ is being computed, but has yet to be finalized
and Ṽ < K. The computations are performed using an update function C̃ : {xi} ∈
X → R+

Accepted - The set of vertices where Ṽ (xi) has been finalized.

The vertices are first labelled Far, then relabelled Considered and finally relabelled Ac-
cepted. The algorithm is complete when all the vertices of the mesh are labelled Accepted.
These vertices labelled Considered must have at least one neighbour labelled Accepted.
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(a) The value at xk is being updated from vertices

xi,xj labelled Accepted, with Ṽ (xj) ≥ Ṽ (xi).

(b) A tilted the triangle of Figure 4.2a using ver-

tices (xi, Ṽ (xi)), (xj , Ṽ (xj)) and (xk, C̃(xk)). The

update C̃(xk) is found by solving for t.

Figure 4.2: The FMM update from an acute angle

An approximation of (4.2) known as an update formula for FMM will now be described

for acute triangles. The value Ṽ for vertices labelled Considered is computed from vertices
labelled Accepted using a function C̃ : X → R, and updated if C̃(xk) < Ṽ (xk). Recall that
for the Eikonal equation (4.2), the optimizing direction of (3.6) is in the negative direction

of the gradient. To build an approximation Ṽ to (4.2), the gradient ∇V is approximated,

∇Ṽ . The update function C̃ is now derived.

4.2.1 FMM for Acute Triangles

The following description from [47] is provided in R2 for a 2-simplicial mesh X. To approx-
imate (4.2), let xixjxk be a 2-simplex (triangle) and ∠xixkxj an acute angle. See Figure

4.2a. Suppose xk is labelled Considered, and the value C̃(xk) is about to be computed. At
least one of xi and xj must be labelled Accepted. If xi is labelled Accepted and xj is not,
then (4.2) can be approximated by

‖∇V (xk)‖ ≈
C̃(xk)− Ṽ (xi)

‖xk − xi‖
= g(xk),
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and hence
C̃(xk) := ‖xk − xi‖ g(xk) + Ṽ (xi). (4.3)

The gradient ∇V will not in general be aligned with the edges of the mesh. To obtain an
accurate update, consider xi and xj both labelled Accepted and assume Ṽ (xj) ≥ Ṽ (xi).

Let x̃ik be the point along xixk such that Ṽ (x̃ik) = Ṽ (xj). The update can be rewritten

C̃(xk)− Ṽ (xj)

h
= g(xk),

where h is the perpendicular distance from the line segment xix̃ik to vertex xj. Both C̃(xk)

and h are unknown. Let C̃(xk) = Ṽ (xi) + t, and r = Ṽ (xj)− Ṽ (xi). The update to find t

(and hence C̃(xk)) is defined
t− r
h

= g(xk), (4.4)

Let a = ‖xj − xk‖ and b = ‖xi − xk‖. Consider the tilted plane defined by the three points

(xi, Ṽ (xi)), (xj, Ṽ (xj)) and (xk, C̃(xk)). See Figure 4.2b. Using the sine and cosine laws,

h = a sinφ = a
‖xk − x̃ik‖
‖xj − x̃ik‖

sin θ (4.5)

=
a ‖xk − x̃ik‖ sin θ√

a2 + ‖xk − x̃ik‖2 − 2a ‖xk − x̃ik‖ cos θ
. (4.6)

By similar triangles t/b = r
‖xi−x̃ik‖

and hence,

‖xk − x̃ik‖ = b− ‖xi − x̃ik‖ = b− br/t = b(t− r)/t.

Substituting (4.6) into (4.4) and using ‖xk − x̃ik‖ = b(t− r)/t, a quadratic in t is found:

(a2 + b2 − 2ab cos θ)t2 + 2br(a cos θ − b)t+ b2(r2 − g(xk)a
2 sin2 θ) = 0. (4.7)

Solving the quadratic expression for t in (4.7) yields the update. The correct update

direction ∇Ṽ along xkx̃ijk should come from inside the triangle. The value solved in the
above quadratic must satisfy the following inequality,

a cos θ ≤ ‖xk − x̃ik‖ =
b(t− r)

t
≤ a

cos θ
. (4.8)

The inequality can be interpreted geometrically as follows. Let x̃ijk be the point along
xjx̃ik that forms a perpendicular with xkx̃ijk. See Figure 4.2a. If ‖xk − x̃ik‖ = a cos θ, then
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Figure 4.3: Fast Marching Method - Labels of vertices - xf : Black Dot, Accepted : Shaded
area, Considered : Triangles, x̄i: Next Accepted vertex, Far : Unmarked

xkx̃ijk is normal to xjx̃ik and collinear to xkx̃ik. On the other hand, if ‖xk − x̃ik‖ = a
cos θ

,

then xkx̃ijk is collinear to xjxk. If inequality (4.8) is not satisfied, then ∇Ṽ does not lie

inside the triangle. Finally, C̃(xk) must be larger than Ṽ (xj) (since r < t).

If r < t and inequality (4.8) holds, then the update is

C̃(xk) := t+ Ṽ (xi). (4.9)

Otherwise the update must come from an edge of the triangle,

C̃(xk) := min{bg(xk) + Ṽ (xi), ag(xk) + Ṽ (xj)}. (4.10)

The FMM algorithm for the source-point problem (4.2) with ∂Ω = {xf}, q(xf ) = 0 on
a simplicial mesh of acute triangles is as follows. Relabelling a vertex removes the previous
label.

1. Label all vertices {xi} of mesh X Far with tentative value Ṽ (xi) = K where K a is
large value.

2. Relabel xf Accepted and set Ṽ (xf ) = 0.

3. Relabel the neighbours of xf Considered. Compute Ṽ (xi) = C̃(xi) from xf using
equation (4.3).

4. Relabel xi Accepted.
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5. If all vertices are labelled Accepted, terminate. Otherwise, find vertex
xi = arg min

xi∈Considered
Ṽ (xi). If such a xi is not unique, choose one.

6. Relabel all neighbours of xi with Far label to Considered label.

7. Compute C̃(xi) using (4.9) & (4.10) for all vertices neighbouring xi. If Ṽ (xi) < C̃(xi),

then set Ṽ (xi) = C̃(xi). Otherwise, do nothing.

8. Go to Step 4.

Rather than finding the solution iteratively, the solution Ṽ (xi) at a vertex xi only

depends on its neighbouring vertices that have a lower value of Ṽ . The vertices are labelled
Accepted in a nondecreasing manner.

Theorem 4.2.1 ([47]). (Monotone Acceptance) If xj is labelled Accepted after xk, then

Ṽ (xj) ≥ Ṽ (xk).

The Fast Marching Method obeys the following property.

Theorem 4.2.2 (Property 3.6 of [72]). (Causality) Assume that xi, xj, xk are vertices on

X that form an acute triangle. If ∇Ṽ (xi) is defined, and the minimizing u∗ = − ∇Ṽ (xi)

‖∇Ṽ (xi)‖
points into triangle xixjxk, then Ṽ (xi) ≥ max{Ṽ (xj), Ṽ (xk)}.

The FMM algorithm has complexity O(N logN), where N is the number of vertices
in the mesh [73]. The set of vertices labelled Considered is maintained in a minimum-
heap binary array. Updates (4.9),(4.10) are repeated O(N) times and the sorting and
maintaining the minimum-heap array requires O(logN) operations. The FMM algorithm
can be extended to meshes with obtuse triangles, but an additional step is required.

4.2.2 Obtuse Triangulations

The update procedure described for acute triangles may be incorrect when used for obtuse
triangles. In Figure 4.4a, ∇Ṽ (xk) points into the obtuse triangle xixjxk. For small enough

triangles where ∇V (xi) ≈ ∇V (xj) ≈ ∇V (xk), xi is labelled Accepted after xk, Ṽ (xk) is
updated with incorrect direction originating from edge xixj. This cannot occur in an acute
triangulation, see Figure 4.4b.
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(a) Obtuse Angle Triangula-
tion (Triangle xixkxj is ob-
tuse)

(b) Acute Angle Triangula-
tion

(c) Virtual Angle Projection,
xjxkxl acute

Figure 4.4: Obtuse and Acute Mesh Triangulations. The correct update is in the direction
of ∇Ṽ (xk).

To obtain a correct update direction, the obtuse angle ∠xixkxj is split using right
angles with its sides. See Figure 4.4c. The region bounded by the two splittings is searched
outwards from xk until a vertex labelled Accepted is found (xl). The update for xk is then
computed using (4.9) through the virtual triangle xjxkxl. The angle ∠xjxkxl is acute and
will yield a correct update.

For a mesh approximating a surface in R3, the three-dimensional distances when split-
ting must be considered. See Figure 4.5. The middle portion will fold along the triangles
in the mesh to obtain the true distance. When unfolded (see Figure 4.5b), the projected
angle is identical to that on a 2-simplicial mesh.

Aside from finding a virtual acute triangle to calculate the update (4.9), (4.10), the
algorithm is the same as before in the presence of obtuse triangles.

4.2.3 Finding the Path

The function Ṽ is extended from the vertices of X to Ω ⊂ Rn by linear interpolation. That
is, if x ∈ s = xs

0x
s
1 · · ·xs

n, and has barycentric coordinates such that

x =
n∑
j=0

ζjx
s
j,
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(a) The mesh in 3D containing an
obtuse angle. The search for an
update point requires compensat-
ing for folds in the mesh.

(b) Unfolding the mesh to account
for true distances will produce a
point to form an acute triangle
with the correct update direction.

Figure 4.5: The unfolding process for obtuse triangles.

and

Ṽ (x) =
n∑
j=0

ζjṼ (xs
j).

In the context of path planning, an approximated optimal control ũ∗(·) is found by solving

(3.8), with V replaced with Ṽ .

ẏ(t) = ũ∗(t) = − ∇Ṽ (y(t))∥∥∥∇Ṽ (y(t))
∥∥∥ ,

y(0) = x0.

It was shown in Theorem 3.3.5 that the true value solution V does not have any local
minima. From Theorem 4.2.1, and the Fast Marching Method algorithm, it can easily be
shown that Ṽ does not have any strict local minima aside from xf .

4.3 Ordered Upwind Method (OUM)

The Ordered Upwind Method (OUM) was introduced by Sethian and Vladimirsky in [72]

to obtain an approximation Ṽ of V (3.5) on the vertices of a mesh X that discretizes
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Figure 4.6: OUM Update in Ω ⊂ R2- The optimal trajectory at vertex xi exits the edge
s∗ = xs

0x
s
1 at x∗. The point x∗ is found in terms of the barycentric coordinates ζ∗ of s∗

where x∗ =
∑1

j=0 ζ
∗
j x

s
j.

Ω. The advantage of OUM over FMM [47] is that OUM can solve (3.5) for weights that
depend on direction. The presentation of the algorithm will be given in Rn.

As in FMM, the solution in OUM is again built outwards from xf with Ṽ (xf ) = 0.
The vertices of the mesh X are assigned the same labels Accepted, Considered, and Far as
in the FMM algorithm with the same description. Vertices and (n− 1)-simplices made of
vertices with Accepted label are further classified.

Accepted Front - The vertices labelled Accepted that have a neighbour labelled Con-
sidered.

AF - The set of (n−1)-simplices made of Accepted Front vertices that have a neighbouring
vertex (Definition 4.1.10) labelled Considered.

Near Front of xi (NF(xi)) - Let xi be labelled Considered. Then,

NF(xi) =
{

s ∈ AF
∣∣∣ ∃ x̃ ∈ s

∣∣∣ ‖x̃− xi‖ ≤ Γhmax

}
, (4.11)

where Γ = Gmax

Gmin
(Definition 3.1.8). See Figure 4.7. The set of (n − 1)-simplices AF and

NF(xi) change due to vertices being relabelled from Far to Considered to Accepted. It
was proven in [72] that the minimizing direction for xi must come from its Near Front.

The OUM uses a semi-Lagrangian scheme where the control is assumed to be held
constant within each simplex, see Figure 4.6. Let sn−1 = xs

0 · · ·xs
n−1 be the (n−1)-simplex
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for which the optimal trajectory at xi exits the n-simplex sn = sn−1xi at x∗ ∈ sn. See
Figure 4.6. Let ζ∗ = (ζ∗0 , ζ

∗
1 , ..., ζ

∗
n−1) ∈ Ξn−1 be barycentric coordinates of x∗ ∈ s∗ such

that

x∗ =
n−1∑
j=0

ζ∗j x
s
j.

The distance τs between xi and x∗ ∈ s∗ and minimizing direction ũ∗s(xi, ζ
∗) are

τs(xi, ζ
∗) :=

∥∥∥∥∥
n−1∑
j=0

ζ∗j xj − xi

∥∥∥∥∥ = ‖x∗ − xi‖ and ũ∗s(xi, ζ
∗) :=

x∗ − xi
τ(xi, ζ∗)

(4.12)

respectively.

The update for xi provided by the (n− 1)-simplex sn−1 = xs
0x

s
1 · · ·xs

n−1 is a first-order
approximation of (3.5),

C̃sn−1(xi) := min
ζ∈Ξn−1

{
τ(xi, ζ)g(xi,uζ) +

n−1∑
j=0

ζjṼ (xs
j)

}
, (4.13)

where ζ = (ζ0, ζ1, ..., ζn−1) ∈ Ξn−1 (4.1). The optimizing direction is captured by updating
xi from its Near Front [72]. The update formula over all of the Near Front of xi, NF(xi)
is

C̃(xi) := min
sn−1∈NF(xi)

C̃sn−1(xi). (4.14)

The OUM algorithm will now be described. Recall that any vertex xi ∈ X is labelled
only one of Accepted, Considered or Far at any instant of the algorithm. Relabelling a
vertex removes the previous label.

1. Label all vertices of X Far, with Ṽ (xi) = K (where K is large).

2. Relabel xf Accepted, and let Ṽ (xf ) = 0.

3. Relabel all neighbours xi of xf to Considered. Compute the values Ṽ (xi) = C̃(xi)
according to (4.14).

4. Relabel xi = arg minxi∈Considered Ṽ (xi) Accepted. If all vertices in X are labelled
Accepted, terminate the algorithm.
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Figure 4.7: Vertex labels in Ordered Upwind Method (X ⊂ R2) - Unmarked vertices
have Far label. Vertices marked with a triangle have Considered label. Shaded vertices
(including those on the border) have Accepted label. Vertex xi with Considered label is
being updated. The ball BΓhmax(xi) has radius Γ(xi)hmax and centre xi. The Near Front
NF(xi), shown dotted is the subset of edges in AF that contain a point within Γhmax of
xi used in the computation (4.14).

5. Relabel all neighbouring vertices xi of xi with Far label to Considered. For such xi,
compute C̃(xi) using (4.14) and set Ṽ (xi) = C̃(xi).

6. Recompute C̃(xi) for all other xi with Considered label using (4.14) such that xi ∈
NF(xi), using only the subset of (n − 1)-simplices in NF(xi) that contain xi. If

Ṽ (xi) > C̃(xi), then update Ṽ (xi) = C̃(xi). Go to Step 4.

The different labels of Ordered Upwind Method are shown in Figure 4.7. The algorithm
is terminated once all the vertices of X have been labelled Accepted. The solution produced
by the OUM, Ṽ converges to the viscosity solution V of (3.6) as the mesh is refined
(hmax → 0) provided the quantity hmax

hmin
is bounded [72, Theorem 7.7].

To obtain an approximate optimal path, a minimization problem (3.8) is solved for u∗

(replacing V with Ṽ computed by OUM) each time the path exits its current triangle and
enters a new adjacent triangle. The path is not restricted to the edges of the mesh and is
found from y(0) = x0 and complete when y(T ) = xf is reached. The OUM is not a strictly
monotone acceptance algorithm in the sense of Theorem 4.2.1. Vertices are not necessarily
labelled Accepted in nondecreasing value. A weaker property is observed. These properties
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will be stated and used in Chapter 5. Strict local minima away from xf may exist in the

approximation Ṽ computed by OUM. Situations in which this can arise are described in
Section 6.1.3. In practice, such local minima disappear as the mesh is refined as hmax → 0.

The computational complexity of OUM is O(Γn−1N logN) [72]. Recall Γ = Gmax

Gmin

(3.3) and N is the number of vertices in the mesh X. As in FMM, the vertices labelled
Considered are maintained in a minimum binary heap array [73]. The first entry of the
array always contains the smallest value of the vertices labelled Considered. Only O(logN)
operations are required to maintain the heap ordering when a vertex is added, updated or
removed. Additional implementation heuristics for OUM [72] will be discussed in Section
6.1, including the use of a local anisotropy coefficient for the Near Front.

4.3.1 Bi-Directional OUM

While the idea of a bi-directional search on discrete graphs is not new [66], bi-directional

search has not been used previously with OUM. Instead of finding Ṽ on all of Ω, any region
inside Ω that contains the optimal path is sufficient to solve (3.8) to recover the optimal
path. An obvious improvement to the OUM is to terminate the search when the initial
point x0 is labelled Accepted (that is, a unidirectional search from xf ). A likely smaller
limiting region will be found by also considering the path planning problem where the roles
of x0 and xf in (3.1), (3.2) in Section 3.1 are reversed. Let yx0

, ux0 , Tx0 , Costx0 , Vx0 and
gx0 denote the trajectory, control, exit-time, cost, value function and weight respectively
in the optimal control problem described in (3.1), (3.2) and (3.4).

Let
ẏxf

(t) = uxf
(t) (4.15)

y(0) = xf , xf ∈ Ω.

where u(·) ∈ U . The objective is to reach yxf
(Txf

) = x0, where Txf
is the exit-time

(Definition 3.1.1) for (4.15), while minimizing the cost function,

Costxf
(xf ,uxf

(·)) =

∫ Txf (xf ,uxf
(·))

0

gxf
(yxf

(s),uxf
(s))ds (4.16)

where gxf
: Ω× Sn−1 is the weight of (4.15). The value function Vxf

: Ω→ R+ is

Vxf
(x) = inf

uxf
(·)∈U

Costxf
(x,uxf

(·)).
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Figure 4.8: Bi-directional Search - Consider the shortest path problem. The solid circle is
the level set of the single problem when x0 has been reached. The dotted circles are the
respective level sets in each of the problems in the bi-directional problem. The value of
the two level sets are the same. If the initial point x0 and final point xf are far enough
from ∂Ω, the areas between the bi-directional search and original problem are reduced by
a factor of 2. The optimal path (straight line) is shown in grey.

Suppose both problems (3.1) and (4.15) provide the same optimal path. See Figure
4.8. By the optimality principle, the point x̃i representing the lowest sum between the two
problems must be on the optimal path. The points in OUM are finalized in the manner
of an advancing front. The point x̃i is the instance for which the two fronts meet for the
first time. The optimal path is recovered by solving (3.8), using their respective value
functions and the initial condition x̃i for both problems. The following theorem is required
to guarantee that an optimal path for one problem (4.15) is optimal for the other (3.1).

Theorem 4.3.1. Assume gx0(x,u) = gxf
(x,−u). Let u∗x0

(·),u∗xf
(·) ∈ U be optimal controls

for the problems (3.1) and (4.15) respectively. Then the reversed controls −u∗xf
(Txf

− ·)
and −u∗x0

(Tx0 − ·) are also optimal controls in (3.1) and (4.15) respectively.
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Proof.

Vxf
(xf ) = Costxf

(xf ,u
∗
xf

(·)) ≤ Costxf
(xf ,−u∗x0

(Tx0 − ·)),

=

∫ Tx0

0

gxf
(yx0

(Tx0 − s),−u∗x0
(Tx0 − s))ds

=

∫ 0

Tx0

−gxf
(yx0

(v),−u∗x0
(v))dv,

=

∫ Tx0

0

gx0(yx0
(s),u∗x0

(s))ds = Costx0(x0,u
∗
x0

(·)) = Vx0(x0).

Similarly, Vx0(x0) ≤ Vxf
(xf ). Therefore Vx0(x0) = Vxf

(xf ). Hence −u∗xf
(Txf

− ·) and

−u∗x0
(Tx0 − ·) are optimal controls for (3.1) and (4.15) respectively. �

Furthermore, if u∗x0
(·) = −u∗xf

(Txf
− ·), then T = Tx0 = Txf

and the optimal path for

both problems are the same. This may not be the case. If ∇Vx0(x0) or ∇Vxf
(xf ) are not

defined, then multiple optimal paths may exist. See Figure 3.7.

The assumption gx0(x,u) = gxf
(x,−u) in Theorem 4.3.1 is automatically satisfied

for weights that are symmetric about its origin. The two problems (4.15) are solved

concurrently with gx0(x,u) = gxf
(x,−u). Let T̃ be the time at which the fronts in the

problems (4.15) meet. Then the control

u∗(t) =

{
u∗x0

(t), t ∈ [0, T̃ ]

−u∗xf
(T − t), t ∈ (T̃ , T ]

is a solution to the optimal path planning problem for both problems in (4.15) as long as

y∗x0
(T̃ ) = y∗xf

(T − T̃ ). There may be multiple points x∗ where the fronts meet for the first
time, for example in Figure 3.7. In such a case, u∗x0

and −u∗xf
are chosen from the same

point x∗.

The OUM-BD labels and algorithm are as follows. The labels Farx0 , Farxf
, Consideredx0 ,

Consideredxf
, Acceptedx0

and Acceptedxf
are the same labels as described in Section 4.3

for the problems (3.1) and (4.15) respectively.

1. Label all vertices in xi ∈ X in both Farx0 with Ṽx0(xi) = K and Farxf
with Ṽxf

(xi) =
K, where K is a large value.

2. Label xf as Acceptedx0
, setting Ṽx0(xf ) = 0 and label xx0 as Acceptedxf

, setting

Ṽxf
(x0) = 0.
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3. Relabel the neighbours of xf in Consideredx0 and the neighbours of x0 in Consideredxf

and update each from their respective Accepted vertex using (4.14).

4. Let xi be the vertex in {Consideredx0 ∪Consideredxf
} with minimum tentative value

(Ṽx0 or Ṽxf
). Let k ∈ {x0,xf} be the Consideredk label with the minimizing xi.

5. Relabel xi from its respective Consideredk label to its respective Acceptedk label.
Relabel the neighbours of xi with Fark label to Consideredk label.

6. Update the vertices in Consideredk affected by relabelling xi Acceptedk using (4.14).

7. If no vertices have both Acceptedx0
and Acceptedxf

labels, then go to Step 4. Other-
wise, let x̃i be the vertex labelled both Acceptedx0

and Acceptedxf
. Repeat steps 4-6

until all the vertices of the triangles in which the update for xi came from traverses
in both problems become labelled Accepted. Then terminate.

To find the optimal path, the triangles of X which the optimal path traverses must
be made entirely of vertices labelled Accepted. This is guaranteed in the last step. The
optimal path is found by solving (3.8) using Ṽ1 and Ṽ2 with their respective problems and
then connecting the two paths. The vertex x̃i may not lie on the actual optimal path of
either problem in (4.15). However as hmax → 0, Ṽx0 and Ṽxf

will converge to Vx0 and
Vxf

[72, Theorem 7.7]. The two value functions can be solved independently using parallel
processors with the termination condition in the last step of OUM-BD checked periodically.

For the Fast Marching Method, a brief description of a bi-directional search is provided
in [15]. The OUM-BD can easily be modified to a bi-directional FMM algorithm, FMM-
BD. The termination condition in Step 4 is replaced with “once the neighbours of x̃i have
been labelled Accepted”, and the update formula in Step 3 with the FMM update in [47].

In terms of computation saved, the number of vertices labelled Acceptedk is less than the
full problem. As well, the set of vertices labelled Consideredk are smaller in each problem
and have fewer elements for OUM-BD. Fewer operations are required to both maintain the
minimum heap array as well as to solve the update formula (4.13).

The amount of computation saved is dependent on the problem, and location of x0 and
xf relative to the boundary of the workspace ∂Ω. Examples are shown in Section 6.2 that
demonstrate the effectiveness of the algorithm in terms of computation and time.
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4.4 Monotone Acceptance Ordered Upwind Method

(MAOUM)

The Monotone Acceptance Ordered Upwind Method (MAOUM) was developed by Alton
and Mitchell [3], [5] and computes approximate solutions to the same class of Hamilton-
Jacobi-Bellman equations as OUM on a simplicial mesh X.

The MAOUM algorithm is similar to the OUM algorithm. The difference is that the
update is computed from a different set of (n− 1)-simplices. Updates from the OUM are
computed from a dynamically evolving Near Front of xi, NF(xi). On the other hand, the
updates for MAOUM are from a predetermined set of (n−1)-simplices,M(xi) used in the
update is found for each vertex xi ∈ X. The size of the set M(xi) depends on local mesh
sizing, and a measure of local directional dependence

Γ(xi) =
gmax(xi)

gmin(xi)
.

The Near Front in the OUM algorithm depends on Γ(xi), but also on the maximum edge
length hmax over the entire mesh X.

In Section 4.2, the approximate characteristic direction for FMM on simplicial meshes
at xi came from an acute (but possibly virtual) angle. The acuteness of the angles resulted
in monotone acceptance (Theorem 4.2.1) to be maintained [5, 72]. That is, vertices are

labelled Accepted based on nondecreasing values of Ṽ . In MAOUM, the maximum angle
formed with the vertex to be updated xi and any (n−1)-simplex s ∈M(xi) must be small
enough to satisfy a similar bound defined by Γ(xi). Let

Ûs(xi) =

{
u ∈ Sn−1

∣∣∣x ∈ s,u =
x− xi
‖x− xi‖

}
where Sn−1 denotes the set of unit directions in Rn. Let υsi,j denote the angle between

ui,uj ∈ Ûs(xi). Define
υ̂s = max

i,j
υsi,j.

Definition 4.4.1. [5] A (n− 1)-simplex s is anisotropy angle bounded (AAB) for xi
if

υ̂s < arcsin

(
1

Γ(xi)

)
. (4.17)
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The presentation of Definition 4.4.1 has been simplified from its original presentation [5].

Let N (xi) denote the set of neighbouring vertices of xi. The sets Q and Y are subsets
of vertices in X used to determine M(xi). The algorithm to compute the set M(xi) for
each vertex is:

1. Let Q = N (xi) and Y = {xi}.

2. If Q is empty, let M(xi) be the set of (n− 1)-simplices on X made only of vertices
from Y that are AAB with xi and terminate. Otherwise, continue.

3. Let xj be any element of Q. Remove xj from Q and add it to Y .

4. For each (n − 1)-simplex s ∈ X made up of only vertices in Y including xj but not
xi, determine if s satisfies AAB for xi (4.17).

(a) If not, add the neighbour (Definition 4.1.10) of s that is not in Y (if one exists)
to Q. Otherwise do nothing.

5. Go to step 2.

The output of the above algorithm is a set of (n− 1)-simplices,M(xi) that are AAB with
xi. For xi far enough from the boundary xi, the set M(xi) is also directionally complete.
That is, M(xi) contains all possible update directions in Sn−1 for xi.

The MAOUM algorithm follows the same steps as the OUM algorithm, but instead of
using the Near Front of xi, NF(xi) to update xi, the set of (n − 1)-simplices MU(xi) =
Accepted ∩M(xi) is used. Therefore the MAOUM update is

C̃(xi) := min
s∈MU(xi)

min
ζ∈Ξn−1

{
τ(xi, ζ)g(xi,uζ) +

n−1∑
j=0

ζjṼ (xs
j)

}
. (4.18)

The MAOUM update is used when a vertex xi becomes labelled Considered and again
when any xj ∈ M(xi) becomes labelled Accepted. In the second case, only s ∈ MU(xi)
such that xj ∈ s need to be used for the update.

For meshes where M = hmax

hmin
is small (M ≈ 2 to 3), the number of (n − 1)-simplices

used in the update of OUM (NF(xi)) and MAOUM (MU(xi)) are comparable in size. See
Figures 4.9b and 4.10. For meshes with a large value of M , the size of NF(xi) can be much
larger. See Figure 4.11. If a mesh X has a large value of M , MAOUM may perform faster
than OUM in computational speed on the same mesh X [5]. The computational complexity
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(a) The precomputed set M(xi) (b) MU(xi) consists of 5 edges, NF(xi) consists of
6 edges.

Figure 4.9: MAOUM and OUM Updates

of MAOUM is similar to that of OUM [5] given that M = hmax

hmin
is bounded, and is worse off

only by a factor of global anisotropy. As a result of monotone acceptance (Theorem 4.2.1)
and that vertices can be labelled Accepted only if it has a neighbour labelled Accepted, the
approximate value function Ṽ computed by MAOUM cannot contain strict local minima
away from xf .

4.5 Buffered Fast Marching Method (BFM)

The Buffered Fast Marching (BFM) method was introduced by Cristiani and Falcone [20]
to solve (3.5) approximately using a different semi-Lagrangian scheme than the scheme
used in OUM and MAOUM. Rather than assuming the control is constant within each
element of the discretization, the control is assumed to be held fixed for a small time 4t.
The dynamic programming principle (3.5) is approximated

Ṽ (xi) := Ṽ (xi −4tu)−4tg(x,u).

Since the state evolves at unit speed (3.1), the small time 4t can be interpreted as a
small distance 4x.

Ṽ (xi) = Ṽ (xi −4xu)−4xg(x,u). (4.19)
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(a) Γ(xi) = 1 (b) Γ(xi) = 5.3 (c) Γ(xi) = 3.9

Figure 4.10: A mesh with small M = hmax

hmin
- MAOUM Update Set M(xi), and OUM,

BΓ(xi)hmax(xi). The computed stencil M(xi) for MAOUM is the outer edge of the points
marked with black circles. The ratio M = hmax

hmin
≈ 2.5. The vertex xi is marked with a

black circle.

(a) Γ(xi) = 2.9 (b) Γ(xi) = 5.2

Figure 4.11: A mesh with large M = hmax

hmin
, M(xi) compared to BΓ(xi)hmax(xi) used in

OUM for Γ(xi) = 2.9 (left) and Γ(xi) = 5.2 (right). The ratio M ≈ 10.
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The BFM is an extension of the Semi-Lagrangian Fast Marching Method presented in
[21], which like FMM, solves the Eikonal equation using the discretization (4.19).

The static HJB equation (3.6) is related to another PDE which solves the minimum
cost to reach xf for the dynamics given in (3.1). Let the function W : Ω→ [0, 1) be related
to V : Ω→ R+ in (3.6) by the Kruzkov transform,

W := 1− e−V (4.20)

which when combined with (3.6) gives

W (x) + max
u∈Sn−1

{
− u

g(x,u)
· ∇W (x)

}
= 1, (4.21)

W (xf ) = 0.

A similar transform can be made for the approximation W̃ .

W̃ := 1− e−Ṽ (4.22)

where Ṽ is given in (4.19). From (4.19) and (4.22),

W̃ (xi) = min
u∈Sn−1

{e−4xg(x,u)(W̃ (xi −4xu)− 1)}+ 1, (4.23)

which will be used as the update in the BFM algorithm.

The value function V is proven to be the unique viscosity solution of (3.6) using the
Kruzkov transform (4.20) of V to W in [8, IV. Theorem 2.6]. A priori estimates in terms

of rate of convergence of W̃ to W have been established in [9]. These error estimates

are directly applicable to the numerical approximation Ṽ (4.19) for this particular semi-
Lagrangian scheme by using the inverse Kruzkov transform,

Ṽ = − ln(1− W̃ ). (4.24)

The scheme is not the same as (4.13) used for OUM and MAOUM. The error estimates
are not applicable to the approximate solutions computed by OUM and MAOUM.

The following update procedure is described in [20, 21] for Ω ⊂ R2. See Figure 4.12. A

linear approximation is made on the circle of radius 4x to find W̃ (xi −4xu).

Definition 4.5.1. The extended neighbours of a grid point xi,j in a grid G are

EN (xi) = {xi±1,j,xi,j±1,xi±1,j±1,xi±1,j∓1} ∩G. (4.25)
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Figure 4.12: In each update for the Buffered Fast Marching method, the minimum is found
on the circle, where each quadrant is defined by the plane approximated by the W̃ values.

The intersection with G in the previous definition handles the edge cases. In each
quadrant, let f(x, y) = ax+ by+ c, where a, b, c is defined by linear interpolation according

to the value of W̃ at the grid points. For example in the top-right quadrant,

a =

(
W̃2 − W̃3

4x

)
, b =

(
W̃2 − W̃1

4x

)
, c = W̃1 − W̃2 + W̃3.

By taking u = (cos θ, sin θ), θ ∈ [0, π/2], the value on the circle in the top-right quadrant
is

W̃ (xi −4xu) = f(4x cos θ,4x sin θ) = a4x cos θ + b4x sin θ + c.

Similar formulas can be derived for the top-left quadrant using W̃3, W̃4, W̃5, the bottom-
left quadrant using W̃5, W̃6, W̃7 and the bottom-right quadrant using W̃7, W̃8, W̃1. In the
update (4.23), the term W̃ (xi −4xu) is approximated using three points yielding greater
accuracy. However it is more computationally expensive than the equivalent FMM update
[73] on square grids. The minimum of (4.23) is found over all four quadrants.

In addition to using the same definitions of Accepted, Considered and Far as in FMM,
a fourth list is introduced known as Buffer.

Buffer - The set of vertices between the vertices labelled Considered and vertices labelled
Accepted that are iterated using (4.23).
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Characteristics of the solution are computed in the Buffer through iteration. This is a
trade off to keep updates local as opposed to searching a larger set of (n− 1)-simplices for
the characteristic direction as in OUM and MAOUM.

The BFM algorithm is as follows. Recall that relabelling a vertex removes its previous
label.

Initialization

1. Label all grid points of the grid G Far, and set W̃ = 1 at all grid points.

2. Set W̃ (xf ) = 0, and relabel xf Accepted.

3. Relabel the vertices of the extended neighbours (4.25) of xf , EN (xf ), Considered.

4. Iterate the computation (4.23) in EN (xf ) until W̃ at all vertices labelled Considered
has converged.

Main Loop

1. Let xi be the vertex with the smallest value of W̃ with Considered label. Relabel xi
Buffer. Relabel the vertices of EN (xi) in Far to Considered.

2. Update (4.23) all the vertices in the Buffer once.

3. In a copy of the matrix, substitute W̃ = 1 for all the value of the nodes in Considered.
Then iterate the computation (4.23) for all the vertices in the Buffer until the value

W̃ at all of its vertices converge.

4. Repeat the previous step, substituting W̃ = min
xi∈Considered

W̃ (xi) for all values with

Considered label and iterate the computation (4.23) until convergence.

5. Relabel all xi with Buffer label to Accepted label such that their values did not
change in the previous two steps.

6. If there are still vertices labelled Considered, go to step 1, otherwise iterate (4.23) on
all the vertices in the Buffer until convergence, and terminate.

To obtain Ṽ , the inverse Kruzkov (4.24) transform is applied. The implementation
of BFM has been limited to square grids. The extension to general simplicial meshes is
non-trivial and requires additional computation to reconstruct W̃ (xi −4xu).
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4.6 Fast Sweeping Method (FSM)

The Fast Sweeping Method (FSM) was originally proposed in [89] for numerically solving
the Eikonal equation on a grid. It has since been extended to solve more general HJB
equations [41, 42, 79]. The description for square grids in R2 with edge length 4x will be
given here. Let NX and NY denote the number of points on the grid in the x and y direc-
tions respectively. Let Ṽ x

min and Ṽ y
min denote the smaller of the values from neighbouring

points along the x-axis and y-axis respectively. The local approximation of the Eikonal
equation used to solve for Ṽ at xi,j is

Ṽ (xi,j) :=

min{Ṽ x
min, Ṽ

y
min}+ gi,j4x

∥∥∥Ṽ x
min − Ṽ

y
min

∥∥∥ ≥ gi,j4x
Ṽ x
min+Ṽ y

min+
√

2g2i,j4x2−(Ṽ x
min−Ṽ

y
min)2

2
,
∥∥∥Ṽ x

min − Ṽ
y
min

∥∥∥ < gi,j4x
(4.26)

where gi,j = g(xi,j), Ṽ
x
min = min{Ṽ (xi+1,j), Ṽ (xi−1,j)} and Ṽ y

min = min{Ṽ (xi,j+1), Ṽ (xi,j−1)}.
Instead of finalizing the values of Ṽ one vertex at a time as in previous methods, all vertices
have tentative values until the algorithm is finished.

The solution Ṽ at vertices is updated sequentially in a prescribed order known as a
sweep. The sweeping orders P for R2 are

1. Outer Loop: j = 1 : NY , Inner Loop: i = 1 : NX

2. Outer Loop: j = 1 : NY , Inner Loop: i = NX : −1 : 1

3. Outer Loop: j = NY : −1 : 1, Inner Loop: i = NX : −1 : 1

4. Outer Loop: j = NY : −1 : 1, Inner Loop: i = 1 : NX

The first sweeping order is shown in Figure 4.13. By updating the points in this sequence,
the characteristics (from xf ) are updated to the right, then upwards. In higher dimensions
Rn, 2n sweeping orders are used, ith n nested loops in each sweep.

The algorithm is as follows. Let ε be a small value.

1. Set Ṽ =∞ on all grid points.

2. Set Ṽ (xf ) = 0. Set P = 1.
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Figure 4.13: The first sweeping order Outer Loop: j = 1 : NY , Inner Loop: i = 1 : NX.
Performing updates in this order will first further the characteristics to the right, then
upwards.

3. Set Ṽold = Ṽ .

4. Perform a single sweep P , solving (4.26) for Ṽ at each point according to the order
defined above.

5. If
∥∥∥Ṽ − Ṽold∥∥∥

∞
< ε, end. Otherwise, set P = mod(P + 1, 4), and go to Step 3.

Typically, a small value of ε above machine precision is used.

The FSM has a computational complexity of O(N), where N is the number of grid
points [89]. The number of sweeps required to reach convergence is independent of the
number of points in the discretization. However, the constant in the computational com-
plexity is dependent on the problem. If the characteristics are straight lines emanating
outwards from a source point, then only four sweeps (once in each sweeping order) are

required to achieve convergence. Suppose a particular characteristic of Ṽ is shown in Fig-
ure 4.14. In order to accurately obtain the values of Ṽ along that characteristic, 5 sweeps
are required in the specific order as indicated in the figure. Since the algorithm has no
information regarding the shape and curvature of the characteristics, the algorithm must
cycle through the different sweeping orders, yielding a total of 13 sweeps (or 4 cycles of
sweeps) for this example.

An extension has been proposed to extend Fast Sweeping Method to triangular meshes
[79]. A preprocessing step is required to order the points in such a manner to mimic the
sweeping directions. The Fast Sweeping Method can easily be adapted to solve anisotropic
problems by replacing the update (4.26) with the update in OUM (4.13) or BFM (4.23).
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Figure 4.14: Starting from the centre, an example requiring 13 sweeps to achieve the correct
solution Ṽ along this characteristic.

4.7 Conclusion

A number of algorithms that solve the dynamic programming principle (3.5) and HJB
equation (3.6) approximately were presented. In each of the algorithms, the approximated

value function Ṽ was found on the vertices of a discretization.

The Fast Marching Method can solve the Eikonal equation, which can only model
direction-independent weights. The Ordered Upwind Method and Monotone Acceptance
Ordered Upwind Method can solve problems with direction-dependent weights using an
assumption that the control is constant within each element of a simplicial mesh. The
Buffered Fast Marching Method is used to solve the static HJB equation with direction-
dependent weights with a different assumption that the control is held constant on short
intervals of time. The resulting approximated dynamic programming principle is different.
Finally, an iterative algorithm, Fast Sweeping Method, which can handle both assumptions
on control, was presented.

All of the algorithms presented in this chapter can be used for path planning. In path
planning, the gradient of the linear interpolated value function ∇Ṽ is used to solve (3.8) in
place of ∇V , with initial condition y(0) = x0. The resulting path is an approximation of
the true path. The global minimum is at xf . The computation required is O(1/hmax). As
the discretization is refined, the path must traverse more elements. A proof of convergence
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of Ṽ to V as hmax approaches 0 for each of the algorithms discussed in this chapter can be
found in the literature. The convergence of Ṽ to V however does not imply the convergence
of ∇Ṽ to ∇V , which is used in path planning (3.8). A convergence result of the gradients

remains an open problem. Nonetheless, the numerically approximated gradient ∇Ṽ can
be shown to yield good results in path planning. Simulations involving the Fast Marching
Method and Ordered Upwind Method are provided in Chapter 6.

A novel algorithmic improvement, OUM-BD was presented, combining the ideas of bi-
directional search on a graph with OUM. It was shown that under a simple modification
of the weight function, reversing the roles of x0 and xf yielded an equivalent problem.
The two problems are solved concurrently, stopping when they overlap. An area of future
investigation is to apply heuristics such as in A∗ [35] algorithm for graphs in the continuous
setting for OUM. This has already been done for the Fast Marching Method [15].
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Chapter 5

Convergence Rate of OUM

In this chapter, a convergence rate in the infinity-norm is shown for the solution provided
by OUM on a bounded region of Rn with prescribed boundary values. Rather than finding
the optimal path between one point to another as described previously (3.1), (3.2), the
optimal path between a point in a region to the boundary with an exit cost is considered.
See Figure 1.2.

An example of this problem is to find an optimal path to leave a building where the
exit-cost corresponds to the difficulty of leaving at the boundary. Higher exit-costs would
be assigned to walls, and lower costs to doors. With respect to rovers, an application is to
find the quickest escape route out of a region that is about to experience an earthquake.

Additional applications that can be solved using OUM for prescribed boundary values
include optimal escape from an airplane [3], area patrol and perimeter surveillance [30] and
modelling folds in structural geology [38].

The convergence for the OUM problem without rate was shown in [72]. Though ana-
lytic convergence rate results for the OUM have not appeared in literature, a number of
convergence rates have been proven for different discretization schemes to the same and
similar equations. All convergence rates are stated for the infinity-norm. An optimal stop-
ping problem was solved using a simplicial mesh [34] and shown to have a convergence
rate of at leaster O(| log hmax| ·

√
hmax) as hmax → 0. As described in Chapter 4, the

semi-Lagrangian scheme used by OUM assumes that the control is held constant within a
simplex. The convergence rate result will be shown for this semi-Lagrangian scheme.

An error bound O(4t) has been proven for a different semi-Lagrangian scheme (4.19)
if the controls are assumed to have bounded variation [9]. Analytic results for higher-order
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convergence rates for higher-order semi-Lagrangian schemes exist [27]. Iterative algorithms
[8, 20] have been devised that use this discretization. A comparison between algorithms
that use each Semi-Lagrangian scheme is given in Chapter 6. An error bound of O(

√
4t)

for finite-difference schemes to the time-dependent Hamilton-Jacobi-Bellman equations was
proven in [19]. An error bound ofO(

√
hmax) was shown for an approximation to the Eikonal

equation with discontinuous weight function [22].

In Section 5.1, the boundary value problem will be presented. Following some definitions
and results from [5], a numerical Hamiltonian will be defined and shown to be monotonic
and consistent with the Hamiltonian of the problem in Section 5.2. Finally, in Section 5.3,
the approximate solution provided by OUM is proven to converge to the viscosity solution
of the static HJB with prescribed boundary values at a rate of at least O(

√
hmax), as

hmax → 0. The result shown here is for a different algorithm, namely OUM. The proof is
based on the FMM result in [61], but unlike the result in that reference, the weight can
depend on position and direction and the boundary function can depend on position. The
result holds on a simplicial mesh, which are better suited towards handling regions with
complex geometries. A finer discretization may be required to obtain the same accuracy
when the discretization is restricted to grids. Conclusions are provided in Section 5.4.

5.1 Boundary Value Problem

The presentation of the problem here is similar to that of Section 3.1. Though some of the
notation is repeated, the problem presented here is different. The dynamics for a trajectory
y(·) : R+ → Rn and control u(·) ∈ U are the same as (3.1),

ẏ(t) = u(t),y(0) = x0,x0 ∈ Ω. (5.1)

The control problem is to steer y(·) from x0 ∈ Ω to any point on the boundary xf ∈ ∂Ω.
As before, the exit-time is the first time when the control problem is solved from x0 with
a control u(·).

Definition 5.1.1. The exit-time T : Ω×U → R+ is the first time yx0
(·) reaches xf ∈ ∂Ω

under the influence of the control u(·),

T (x0,u(·)) = inf{t|yx0
(t) ∈ ∂Ω}. (5.2)

The cost for the boundary value problem is Cost : Ω× U is

Cost(x0,u(·)) =

∫ T (x0,u(·))

0

g(yx0
(s),u(s))ds+ q(yx0

(T (x0,u(·)))), for x0 ∈ Ω (5.3)
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where q : ∂Ω → R is the boundary exit-cost and g : Ω × Sn−1 → R+ is the weight. The
optimal control problem is to find a control u∗(·) that minimizes (5.3).

As before the value function is the minimizing cost of the optimal control at x ∈ Ω,

V (x) = inf
u(·)∈U

Cost(x,u(·)). (5.4)

The dynamic programming principle (3.5) is satisfied. For h > 0, t ≥ 0, such that 0 ≤
t+ h ≤ T (x,u∗(·)),

V (y(t)) = inf
u(·)∈U

{∫ t+h

t

g(y(τ),u(τ))dτ + V (y(t+ h))

}
. (5.5)

The Hamiltonian is defined H : Ω× Rn → R

H(x,p) = − min
u∈Sn−1

{p · u + g(x,u)}. (5.6)

A similar static HJB to (3.6) but with boundary condition defined on the boundary of a
region (rather than at a source point) is obtained,

min
u∈Sn−1

{∇V (x) · u + g(x,u)},x ∈ Ω, (5.7)

V (x) = q(x),x ∈ ∂Ω.

Theorem 3.3.5 can be used again to assert that there are no local minima on Ω. In the
context of path planning, the optimal escape trajectory for this boundary value problem
can be found by solving (3.8), even though the final point xf is not known beforehand.

5.1.1 Assumptions on the problem

A few assumptions are made on the boundary value problem (5.1), (5.3).

For V to be continuous on Ω, continuity between V on Ω and q on ∂Ω must be estab-
lished. Let L : Ω× Ω be

L(x1,x2) = inf
u(·)∈U

{∫ τ

0

g(yx1
(s),u(s))ds

∣∣∣ yx1
(τ) = x2,yx1

(t) ∈ Ω, t ∈ (0, τ)

}
. (5.8)

The function L is the lowest cost to reach x2 from x1, (ignoring the exit-cost on the
boundary q if either x1 or x2 are on ∂Ω).
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Definition 5.1.2. For (5.7), the exit-cost q is compatible (with the continuity of V ) if

q(x1)− q(x2) ≤ L(x1,x2) (5.9)

for all x1,x2 ∈ ∂Ω.

For example, consider Ω = [−1, 1] with g(x, u) ≡ 1 and boundary conditions q(−1) = 0,
and q(1) = 3. The HJB equation is

|V ′(x)| = 1. (5.10)

There are no weak solutions (Definition 3.2.2) V that satisfy both the boundary conditions
q and (5.10). So q is not compatible (with the continuity of V ).

The boundary value optimal control problem (5.1), (5.3) will be assumed to satisfy the
following statements. Recall the definition of Lipschitz-continuity from Definition 3.2.1.

(P1) Compatibility of the boundary function q : ∂Ω → R. The boundary function q is
compatible with the continuity of V (Definition 5.1.2).

(P2) The weight function g is positive and bounded. A similar assumption (3.3) was used
earlier.

0 < Gmin ≤ gmin(x) ≤ g(x,u) ≤ gmax(x) ≤ Gmax <∞ (5.11)

for all x ∈ Ω and u ∈ Sn−1.

(P3) Lipschitz-continuity in x of weight function g. There exists Lg > 0 such that for
x1,x2 ∈ Ω and u ∈ Sn−1,

|g(x1,u)− g(x2,u)| ≤ Lg ‖x1 − x2‖ . (5.12)

(P4) Convexity of region Ω. For x1,x2 ∈ Ω,

x̂ = λx1 + (1− λ)x2 ∈ Ω, for all λ ∈ (0, 1).

(P5) Convexity of Speed Profile Ug(x). The set

Ug(x) =

{
u

g(x,u)

∣∣∣u ∈ Sn−1

}
is convex. (This is needed to guarantee uniqueness of the optimizing direction in the
approximated problem provided ∇V exists [5, 72])
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Using the above assumptions, the Lipschitz-continuity of q can be shown.

Lemma 5.1.3. The boundary function q : ∂Ω→ R is Lipschitz-continuous.

Proof. Let x1,x2 ∈ ∂Ω and u = x2−x1

‖x2−x1‖ be the control of the trajectory yx1
(·). From (P4),

yx1
(·) from x1 to x2 must lie entirely in Ω. If yx1

(·) ⊂ Ω from x1 and x2, then (P1) yields

q(x1)− q(x2) ≤ L(x1,x2),

≤
∫ ‖x1−x2‖

0

g(yx1
(s),u(s))ds,

≤ Gmax ‖x1 − x2‖ .

Otherwise, Ω is not strictly convex, and yx1
(·) ⊂ ∂Ω. For any ε > 0, there exists a

trajectory of length (1 + ε) ‖x1 − x2‖ from x1 to x2 entirely in Ω except at x1 and x2. Let
this trajecttory be denoted ỹx1

(·). Hence,

q(x1)− q(x2) ≤ L(x1,x2)

≤
∫ ‖x1−x2‖(1+ε)

0

g(ỹx1
(s),u(s))ds,

≤ Gmax(1 + ε) ‖x1 − x2‖ .

The calculation for q(x2)− q(x1) is identical. Hence q is Lipschitz-continuous. �

Note that a suitable Lipschitz constant for q is any value above Gmax. Since q is
Lipschitz-continuous over a compact subset of Rn, it is continuous and hence there exists
qmin, qmax ∈ R such that

qmin ≤ q(x) ≤ qmax. (5.13)

5.1.2 OUM for the Boundary Value Problem

Let the following statements hold for the mesh X ⊂ Rn on which the approximated solution
Ṽ is found.

(M1) Assume M > 0 is fixed. All meshes discussed in this chapter satisfy M ≥ hmax

hmin
≥ 1.

The value M characterizes the worst-case degeneracy for a mesh X, as well as even
refinement of simplices in a mesh.

(M2) The region Ω is contained (Definition 4.1.8) in the mesh X. See Figure 4.1.
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(M3) The mesh X is bounded and has a finite number of vertices {xi} ⊂ X.

Denote Xj, 0 ≤ j ≤ n the set of j-simplices of X.

From (M3), there is a maximal set that can be defined using the barycentric coordinates
of Ξn (4.1) and n-simplices s ∈ X ⊂ Rn. Define this set

ΩX =

{ ⋃
s∈Xn

⋃
ζ∈Ξn

n∑
j=0

ζjx
s
j

}
. (5.14)

From (M2), Ω ⊆ ΩX .

The OUM can be used to find Ṽ : {xi} ⊂ X → R, an approximation of V for the
boundary value problem with only a slight modification from the algorithm presented in
Section 4.3. Recall Ωc = Rn\Ω. Steps 2 and 3 in the OUM algorithm Section 4.3 are
replaced with

2. For vertices xi ∈ X ∩ Ωc, let

x̂ = arg min
x̃∈∂Ω

‖xi − x̃‖ ,

and set Ṽ (xi) = q(x̂). Relabel all vertices xi ∈ X ∩ Ωc Accepted.

3. Relabel all Far label neighbours xi of vertices labelled Accepted to Considered. Com-
pute the values Ṽ (xi) = C̃(xi) according to (4.14).

All other steps of the OUM remain the same. See Figure 5.1. The other algorithms
defined in Chapter 4 can be rewritten into the boundary value problem by setting the
known boundary condition q(x) on vertices on and outside the boundary of the region Ω.

The domain of the value function V and g are extended from Ω to ΩX . For x ∈ Ω
c∩ΩX ,

let
x̂ = arg min

x̃∈∂Ω

‖x− x̃‖ , and V (x) = q(x̂), and g(x,u) = g(x̂,u).

As a result, H in (5.7) is now also defined on ΩX × Rn.
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Figure 5.1: OUM Labels - An example for Ω ⊂ R2 for the boundary value problem. The
vertex xi with Considered label is updated from the set of directions provided by NF(xi).
Vertices labelled Accepted are shaded, including vertices on the edges that make up AF
and the Near Front of xi, NF(xi). Let Γ = Gmax

Gmin
and BΓhmax(xi) have radius Γhmax and

centre xi. Vertices labelled Considered are marked with a triangle. Vertices outside Ω are
also labelled Accepted. Unmarked vertices are labelled Far.

5.2 Monotonicity and Consistency of the Numerical

Hamiltonian

An approximation of the Hamiltonian H (5.6) on the vertices of a mesh X will be defined.
It will be shown to be both monotonic and consistent with the exact Hamiltonian (5.6).
The optimizing direction of the approximated problem from OUM must first be presented.

Let xi be the vertex labelled Considered that is about to be relabelled Accepted in Step
4 of the OUM algorithm. Let NF(xi) be the Near Front of xi (4.11) at this instant. The
distance τs and direction ũs to x ∈ s = xs

0x
s
1 · · ·xs

n−1 from xi are defined

τs(xi, ζ) :=

∥∥∥∥∥
n−1∑
j=0

ζjx
s
j − xi

∥∥∥∥∥ , and ũs(xi, ζ) :=

∑n−1
j=0 ζjx

s
j − xi

τs(xi, ζ)
(5.15)

where ζ = (ζ0, ζ1, ..., ζn−1) ∈ Ξn−1 are the barycentric coordinates (4.1) of x ∈ s.

Definition 5.2.1. The approximated characteristic direction at xi ∈ X ∩ Ω from
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the OUM algorithm ũ∗s : X ∩ Ω× Ξn−1 → Sn−1 is the direction that minimizes

Ṽ (xi) = min
s∈NF(xi)

min
ζ∈Ξn−1

{
g(xi, ũs(xi, ζ))τs(xi, ζ) +

n−1∑
j=0

ζjṼ (xs
j)

}
. (5.16)

Let minimizers of (5.16) be s∗, ζ∗, and let x̃ =
∑n−1

j=0 ζ
∗
j x

s∗
j be on s∗ ∈ NF(xi). Then

ũ∗s(xi, ζ
∗) =

x̃− xi
‖x̃− xi‖

. (5.17)

Definition 5.2.2. [5, Section 2.2] The set of (n − 1)-simplices S ⊂ X is directionally
complete for a vertex xi ∈ X if for all u ∈ Sn−1 there exists x ∈ s where s ∈ S such that

u =
x− xi
‖x− xi‖

.

Definition 5.2.3. An update for a vertex xi ∈ X from a set of (n− 1)-simplices S ⊂ X
is

min
s∈S

min
ζ∈Ξn−1

{
g(xi, ũs(xi, ζ))τs(xi, ζ) +

n−1∑
j=0

ζjṼ (xs
j)

}
. (5.18)

The update from OUM for xi is the update for xi over S = NF(xi) (5.16).

Definition 5.2.4. An updating stencil of xi, US(xi) is a set of (n− 1)-simplices of X
that contain the point x̃ on the (n− 1)-simplex s ∈ US(xi) such that

ũ∗s(xi) =
x̃− xi
‖x̃− xi‖

, (5.19)

where ũ∗s(xi) is the approximated characteristic direction at xi (Definition 5.2.1) from the
OUM.

For example, NF(xi) is an updating stencil of xi.

The numerical Hamiltonian will now be defined.

Definition 5.2.5. Let φ : {xi} ⊂ X ∩ Ω → R. The numerical Hamiltonian of the

OUM, H̃ : X ∩ Ω× R→ R is

H̃[US(xi), φ[US(xi)]](xi, µ) = − min
s∈US(xi)

min
ζ∈Ξn−1

{∑n−1
j=0 ζjφ(xs

j)− µ
τs(xi, ζ)

+ g(xi, ũs(xi, ζ))

}
,

(5.20)
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where US(xi) ⊂ X is an updating stencil of xi ∈ X, s = xs
0 · · ·xs

n−1 ∈ US(xi). The

argument φ[US(xi)] of H̃ denotes the use of the values of φ on the vertices that make up
the (n− 1)-simplices of US(xi) in the optimization of (5.20).

Since xi is an argument of H̃, the notation for the numerical Hamiltonian H̃ will be
abbreviated H̃[US, φ](xi, µ).

The numerical HJB equation is

min
s∈NF(xi)

min
ζ∈Ξn−1

{∑n−1
j=0 ζjṼ (xs

j)− Ṽ (xi)

τs(xi, ζ)
+ g(xi, ũs(xi, ζ))

}
= 0, (5.21)

and is equivalent to
H̃[NF, Ṽ ](xi, Ṽ (xi)) = 0.

The approximated value function Ṽ is said to satisfy (5.21) if the above is satisfied for all
xi ∈ X ∩ Ω.

The following theorem states that the optimizing ζ∗ and s∗ in (5.16) is also optimal for
(5.20). The statement (P5) in Section 5.1.1 is assumed in the proof to provide a unique
solution to (5.21).

Theorem 5.2.6. [5, Prop 5.3] The solution µ̃ to H̃[US, Ṽ ](xi, µ̃) = 0 with H̃ defined by
(5.20) is unique, and is given by

µ̃ = min
s∈US(xi)

min
ζ∈Ξn−1

{
τ(xi, ζ)g(xi,uζ) +

n−1∑
j=0

ζjṼ (xs
j)

}
, (5.22)

where s = xs
0x

s
1 · · ·xs

n−1 ∈ US(xi). Furthermore, s∗ ∈ US(xi) and ζ∗ = (ζ∗0 , ζ
∗
1 , ..., ζ

∗
n−1) ∈

Ξn−1 minimize (5.22) if and only if s∗ and ζ∗ are minimizers of the expression in (5.20).

Hence µ̃ = Ṽ (xi).

Definition 5.2.7. For every xi ∈ X ∩ Ω, let S(xi) be an updating stencil such that

1. NF(xi) ⊆ S(xi).

2. S(xi) is directionally complete for xi.

3. For all (n− 1)-simplices s ∈ S(xi), if a point x ∈ s, then

‖x− xi‖ ≤ (2Γ + 1)hmax.
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(a) After relabelling xi Accepted,
AF3 is no longer part of AF.
Note that AF1 and AF2 are un-
affected, and still contain only
non-Accepted vertices in their in-
teriors.

(b) After relabelling xi Accepted,
the other vertices in the interior
of AF1 are still not yet Accepted

(c) Relabelling xi Accepted splits
AF1 into two regions, each only
containing not yet Accepted ver-
tices in their interiors.

Figure 5.2: Lemma 5.2.8: The vertices that lie in the interior of the region(s) contained by
AF are not labelled Accepted. In each case above, the vertex xi is about to be relabelled
Accepted. After xi has been relabelled Accepted, the updated AF must still contain only
vertices that are not yet Accepted in its interior.

4. H̃[S(xi), Ṽ [S(xi)]](xi, Ṽ (xi)) = H̃[NF(xi), Ṽ [NF(xi)]](xi, Ṽ (xi))

An updating stencil S(xi) satisfying Definition 5.2.7 will be constructed. For r ∈ R+,
define

Br(x) = {x̃ ∈ Rn| ‖x− x̃‖ < r}

and let Br(x) denote its closure. Recall a set A ⊂ Rn has no holes if its complement Ac is
connected.

Lemma 5.2.8. Prior to each instance of Step 4 of the OUM algorithm, (n− 1)-simplices
of AF form the boundaries AFj of j bounded open subsets ΩAFj

⊂ Rn, such that each

Ωc
AFj

is connected and
⋃j
k=1 AFj = AF.

Furthermore, if xi ∈ X ∩ ΩAFk
, then

1. the set of (n− 1)-simplices AFk is directionally complete for xi, and

2. xi is not labelled Accepted.
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Proof :

The property that the set of (n − 1)-simplices AF enclose a finite number of regions
where only non-Accepted vertices lie in their interiors is described in the above lemma.
Each case described in the proof is shown in Figure 5.2.

At the initialization (Steps 1-3) of the OUM algorithm, only xi ∈ X ∩ Ωc are labelled
Accepted. Since Ω is contained in X (M2)and convex (P4), j = 1 and AF1 = AF form
a single boundary that encloses ΩAF1 ⊇ Ω. The set AF for xi ∈ X ∩ ΩAF1 = X ∩ Ω is
directionally complete. None of the vertices in X ∩ Ω are labelled Accepted.

The Accepted Front and AF change only in Step 4 of the OUM. Proof by induction
will be used. The result of the lemma is assumed to hold prior to step 4 of the OUM. Let
vertex xi ∈ X ∩ΩAFk

be relabelled Accepted for some 1 ≤ k ≤ j. All other regions ΩAFj 6=k

will remain unchanged. Only AFk and ΩAFk
must be considered.

If xi has no neighbours in X ∩ ΩAFk
, then the resulting ΩAFk

and X ∩ ΩAFk
are both

empty. The lemma is trivially satisfied.

If xi has a neighbour in X ∩ ΩAFk
which must be labelled Considered, then xi is

added to the Accepted Front. If ΩAFk
remains an open connected subset of Rn, xm ∈

X ∩ΩAFk
\{xi}, AFk remains directionally complete and xm is not labelled Accepted. The

lemma is satisfied.

Otherwise, ΩAFk
is no longer an open connected subset of Rn. Thus, ΩAFk

has been
split into p ≥ 2 non-intersecting open connected regions ΩAFk1

,...,ΩAFk2
, ΩAFkp

with a
subset of the resultant AFki as the boundary of each. Vertices xm ∈ X ∩ ΩAFk

\{xi} are
still not labelled Accepted, and AFkl is directionally complete for xm ∈ ΩAFkl

. �

Consider the OUM algorithm at the instant the vertex xi ∈ X ∩ Ω is about to be
relabelled Accepted. Recall the Near Front of xi at this instant is denoted NF(xi).

Definition 5.2.9. Assume the OUM algorithm is at the instant that xi labelled Considered
be the vertex about to be relabelled Accepted. Let AF(xi) ⊆ AF be the set of (n − 1)-
simplices that contain xi and satisfies Lemma 5.2.8.

An updating stencil S(xi) that satisfies Definition 5.2.7 will now be constructed for
each xi ∈ X ∩ Ωc. Two cases are considered.

Case 1: The set of (n− 1)-simplices AF(xi) is entirely inside B2Γhmax(xi). Let

S(xi) = AF(xi) ∪NF(xi). (5.23)
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Case 2: The set of (n − 1)-simplices AF(xi) is not entirely inside B2Γhmax(xi). Since
xi is labelled Considered, and the longest edge length of X is hmax, there exists
a (n − 1)-simplex s ∈ AF(xi) such that for all x ∈ s, x ∈ B2Γhmax(xi). Thus,
ΩAF(xi)

∩B2Γhmax(xi) is a non-empty compact subset of Rn.

Recall ΩX (5.14) is the largest region of Rn contained in X. If B2Γhmax(xi) ⊂ ΩX ,
define R(xi) ⊂ X the smallest n-simplicial mesh that contains B2Γhmax(xi). Other-
wise there exists x ∈ B2Γhmax(xi) such that x /∈ X. In this case, define R(xi) to be
the smallest n-simplicial mesh that contains ΩX ∩B2Γhmax(xi).

For both instances, define

R̃(xi) =

 ⋃
s∈R(xi)

⋃
ζ∈Ξn

n∑
j=0

ζjx
s
j

 . (5.24)

Let ∂R̃(xi) denote the boundary of R̃(xi).

Let SAFR̃(xi) denote the (n−1)-simplices of X that form the boundary of the compact

region ΩAF(xi)
∩ R̃(xi).

Finally for Case 2,
S(xi) = SAFR̃(xi) ∪NF(xi). (5.25)

See Figure 5.3. The union with NF(xi) ensures that the update for OUM is captured
in S(xi). Other (n− 1)-simplices not part of AF may be part of NF(xi).

By construction, the updating stencil S(xi) trivially satisfies the first three properties

of Definition 5.2.7. Note if x ∈ R̃(xi), then ‖x− xi‖ ≤ (2Γ + 1)hmax.

It remains to show the last property of Definition 5.2.7, that is, the optimizer over all

of S(xi) in (5.20) must come from NF(xi). For xi ∈ X ∩ Ω, let Ṽ
AFxi
min be the minimum

value on the Accepted Front AF just before xi is labelled Accepted.

Lemma 5.2.10. [72, Lemma 7.3(i) and (iii)] Assume the vertex xi ∈ X is about to be
labelled Accepted. Then

1. Ṽ
AFxi
min + hminGmin ≤ Ṽ (xi) ≤ Ṽ

AFxi
min + hmaxGmax.

2. If xi is labelled Accepted before xj then Ṽ
AFxi
min ≤ Ṽ

AFxj

min .
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Figure 5.3: Updating Stencil S(xi) in R2 - Left: Edges of NF(xi), AF(xi) and ∂R̃(xi) are
shown. Right: The updating stencil S(xi) is the union of NF(xi) with the boundary of

the intersection of regions R̃(xi) with AF(xi). Vertices strictly inside S(xi) are not yet
labelled Accepted. The updating stencil S(xi) satisfies Definition 5.2.7.

Lemma 5.2.11. Let s = xs
0x

s
1 · · ·xs

n−1 ∈ X and ζ = (ζ0, ζ1, ..., ζn−1) ∈ Ξn−1 such that

x̃ =
∑n−1

j=0 ζjx
s
j. If xi ∈ X is labelled Accepted before all of xs

0, xs
1, ...,xs

n−1 and ‖x̃− xi‖ >
Γhmax, then

Ṽ (xi) <
n−1∑
j=0

ζjṼ (xs
j) + ‖x̃− xi‖ g

(
xi,

x̃− xi
‖x̃− xi‖

)
. (5.26)

Proof. The vertex xi is labelled Accepted before each of the vertices of s. From Lemma
5.2.10,

Ṽ (xi) ≤ Ṽ
AFxi
min + hmaxGmax,

≤ min{Ṽ
AFxs0
min , Ṽ

AFxs1
min , ..., Ṽ

AFxsn−1

min }+
Gmin

Gmin

·Gmaxhmax,

=
n−1∑
j=0

ζj min{Ṽ
AFxs0
min , Ṽ

AFxs1
min , ..., Ṽ

AFxsn−1

min }+ ΓhmaxGmin.

Since hminGmin > 0, from part 1 of Lemma 5.2.10, Ṽ
AFxs

j

min < Ṽ (xs
j) for j = 1, ..., n − 1.

From (5.11), Gmin ≤ g(x,u) for any x ∈ Ω and u ∈ Sn−1. Finally, Γhmax < ‖x̃− xi‖ was
assumed. Thus,
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Ṽ (xi) <
n−1∑
j=0

ζjṼ (xs
j) + ‖x̃− xi‖ g

(
xi,

x̃− xi
‖x̃− xi‖

)
. (5.27)

� The inequality (5.27) is in the form (4.13). Hence Ṽ (xi) computed by the OUM algorithm
(4.14) must be smaller than an update (5.18) from any (n− 1)-simplex more than Γhmax
away from xi made of vertices labelled Accepted after xi.

The minimizing update in (5.16) from the Near Front NF(xi) is the same as the update
provided over all of AF.

Lemma 5.2.12. [72, Lemma 7.1] Let xi be the vertex with Considered label that is about
to be relabelled Accepted. Let

W̃ (xi) = min
s∈AF

min
ζ∈Ξn−1

{
τs(xi, ζ)g(xi, ũs(xi, ζ)) +

n−1∑
j=0

ζjṼ (xs
j)

}
. (5.28)

Then W̃ (xi) = Ṽ (xi). The minimizing s∗, ζ∗ from (5.28) is the same as (5.16), despite
NF(xi) ⊆ AF.

Theorem 5.2.13. Let Ṽ : X → R be computed by the OUM (5.16) on mesh X, weight
function g and boundary function q. Then for xi ∈ X ∩ Ω,

Ṽ (xi) = min
s∈S(xi)

min
ζ∈Ξn−1

{
g(xi, ũs(xi, ζ))τs(xi, ζ) +

n−1∑
j=0

ζjṼ (xs
j)

}
. (5.29)

A minimizing update from (5.29) over S(xi) comes from NF(xi).

Proof. Let the OUM algorithm be at the instant where vertex xi with Considered label is
about to be relabelled Accepted.

Recall Case 1, where AF(xi) is entirely inside B2Γhmax(xi) and S(xi) = AF(xi) ∪
NF(xi). Since AF(xi) ⊆ AF and NF(xi) ⊆ AF, S(xi) ⊆ AF. By Lemma 5.2.12, NF(xi)
must contain a minimizing update.

Recall Case 2, where S(xi) = SAFR̃(xi) ∪NF(xi). By Lemma 5.2.12, the minimizing
update (5.28) is not from (n−1)-simplices s ∈ AF(xi) that are entirely outside BΓhmax(xi).
The (n− 1)-simplices of AF(xi) that contain a point inside BΓhmax(xi) belong to NF(xi).

The update from (n−1)-simplex s ∈ S(xi)∩∂R̃(xi) (n−1)-simplices outside B2Γhmax(xi)
will be shown to be at least the update from OUM. Because the vertices of s lie on or inside
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AF(xi), they must either be on the Accepted Front or not yet Accepted (Lemma 5.2.8).
The (n− 1)-simplex s is outside B2Γhmax(xi). Three cases are considered.

1. If none of the vertices of s have been labelled Accepted, Lemma 5.2.11 applies. The
update for xi from s ∈ S(xi) ∩ ∂R̃(xi) is greater than Ṽ (xi) from OUM.

2. If the vertices of s are all on the Accepted Front, then s ∈ AF and Lemma 5.2.12
applies. The update from s is at least Ṽ (xi).

3. If at least one but not all the vertices of the (n − 1)-simplex s are on the Ac-
cepted Front, then the remaining vertices must be labelled Considered (a neigh-
bour is labelled Accepted). Let the vertices labelled Accepted and Considered s
be denoted by {xsa

1 , ...,x
sa
l } and {xsc

1 , ...,x
sc
k } respectively. Let s be rewritten s =

xsa
1 · · ·xsa

l xsc
1 · · ·xsc

k where l+k = n since s has n vertices. Let ζ = (ζsa1 , ..., ζ
sa
l , ζ

sc
1 , ..., ζ

sc
k )

be the barycentric coordinates for x ∈ s. By Lemma 5.2.10, for all 1 ≤ j ≤ k,

Ṽ (xi) ≤ Ṽ
AFxi
min + hmaxGmax,

≤ Ṽ
AFxsc

j

min + hmax ·
Gmin

Gmin

·Gmax,

< Ṽ (xsc
j ) + ΓhmaxGmin.

For all 1 ≤ j ≤ k, and 1 ≤ m ≤ l, xsc
j is labelled Considered and xsa

m is on its Near

Front NF(xsc
j ). Thus,

Ṽ (xsc
j ) ≤ Ṽ (xsa

m ) +
∥∥xsa

m − xsc
j

∥∥ g(xsc
j ,

xsa
m − xsc

j∥∥xsa
m − xsc

j

∥∥
)

≤ Ṽ (xsa
m ) + ΓhmaxGmin

Ṽ (xsa
m ) ≥ Ṽ (xsc

j )− ΓhmaxGmin > Ṽ (xi)− 2ΓhmaxGmin.
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Consider the update for xi using (4.13) from (n− 1)-simplex s. For ζ ∈ Ξn−1,

n−1∑
j=0

ζjṼ (xs
j) + τs(xi, ζ)g(xi,us(xi, ζ))

=

(
l∑

m=1

ζsam Ṽ (xsa
m )

)
+

(
k∑
j=1

ζscj Ṽ (xsc
j )

)
+ τs(xi, ζ)g(xi,us(xi, ζ)),

>

l∑
m=1

ζsam (Ṽ (xi)− 2ΓhmaxGmin) +
k∑
j=1

ζscj (Ṽ (xi)− ΓhmaxGmin) + 2ΓhmaxGmin

≥Ṽ (xi),

since
∑l

m=1 ζ
sa
m +

∑k
j=1 ζ

sc
j = 1.

Therefore s ∈ S(xi)∩∂R̃(xi) provides an update larger than OUM. Recall S(xi)\∂R̃(xi) ⊆
AF. By Lemma 5.2.12, a minimizing direction (5.29) in S(xi) must always come from the
Near Front NF(xi) of xi. �

By Theorems 5.2.6 and 5.2.13,

H̃[S(xi), Ṽ [S(xi)]](xi, Ṽ (xi)) = H̃[NF(xi), Ṽ [NF(xi)]](xi, Ṽ (xi)).

Therefore, for xi ∈ X ∩ Ω, an updating stencil S(xi) that satisfies the properties of Defi-
nition 5.2.7 always exists.

The monotonicity and consistency of the numerical Hamiltonian using S(xi) is shown.

Theorem 5.2.14. (Monotonicity) For φ, φ : X → R that satisfy φ(xj) ≤ φ(xj) for all

xj ∈ X ∩ Ω, and φ(xi) = φ(xi) = φ(xi) ∈ R,

H̃[S, φ](xi, φ(xi)) ≥ H̃[S, φ](xi, φ(xi)).

Proof.

H̃[S, φ](xi, φ(xi)) = − min
s∈S(xi)

min
ζ∈Ξn−1

{∑n−1
k=0 ζkφ(xs

k)− φ(xi)

τs(x, ζ)
+ g(xi, ũs(x, ζ))

}
,

≥ − min
s∈S(xi)

min
ζ∈Ξn−1

{∑n−1
k=0 ζkφ(xs

k)− φ(xi)

τs(x, ζ)
+ g(xi, ũs(x, ζ))

}
,

= H̃[S, φ](xi, φ(xi)).

�
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The error between the Hamiltonian H (5.6) and numerical Hamiltonian H̃ (5.20) will
be shown to be O(hmax) as hmax → 0. A similar proof was used in [5, Prop 2.2] for the
Monotone Acceptance OUM.

Theorem 5.2.15. (Consistency) There exists C1 ∈ R+ (not dependent on hmax) for all
xi ∈ X ∩ Ω and φ ∈ C2(Ω), such that

|H̃[S, φ](xi, φ(xi))−H(xi,∇φ)| ≤ C1

∥∥∇2φ
∥∥

2
hmax.

where ‖A‖2 denotes the largest magnitude of the eigenvalues of A ∈ Rn×n.

Proof. Let φ ∈ C2(Ω) and xi ∈ X ∩ Ω. Taylor’s theorem is used. There exists c ∈ Rn on
the straight line between xi and x such that

∇φ(xi) · (x− xi) = φ(x)− φ(xi)−
1

2
(x− xi)

T∇2φ(c)(x− xi). (5.30)

Let ζ = (ζ0, ζ1, ..., ζn−1) ∈ Ξn−1 (4.1) and x ∈ s where x =
∑n−1

j=0 ζjx
s
j and s =

xs
0x

s
1 · · ·xs

n−1. For 0 ≤ j ≤ n− 1, there exists cj ∈ Rn on the straight line between xs
j and

x such that

φ(xs
j) = φ(x) +∇φ(x)T (xs

j − x) +
1

2
(xs

j − x)T∇2φ(cj)(x
s
j − x),

and so

n−1∑
j=0

ζjφ(xs
j) =

n−1∑
j=0

ζjφ(x) + ζj∇φ(x)T (xs
j − x) +

ζj
2

(xs
j − x)T∇2φ(cj)(x

s
j − x).

From (4.1)
∑1

j=0 ζj = 1,
∑n−1

j=0 ζj∇φ(x)T (xs
j − x) = ∇φ(x)T (x− x) = 0. Thus

n−1∑
j=0

ζjφ(xs
j) = φ(x) +

ζj
2

(xs
j − x)T∇2φ(cj)(x

s
j − x). (5.31)

Since S(xi) is directionally complete, the characteristic direction u∗ (3.10) of the Hamil-
tonian H(xi,∇φ) (5.6) at xi can be described by a point x∗ on (n− 1)-simplex s∗ ∈ S(xi)
with barycentric coordinates ζ∗ = (ζ∗0 , ζ

∗
1 , ..., ζ

∗
n−1),

u∗s∗(xi, ζ
∗) =

∑n−1
j=0 ζ

∗
j x

s∗
j − xi

τs∗(xi, ζ∗)
=

x∗ − xi
τs∗(xi, ζ∗)

. (5.32)
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Similarly, let s̃∗ ∈ S(xi) and ζ̃∗ = (ζ̃∗0 , ζ̃
∗
1 , ..., ζ̃

∗
n−1) optimize the numerical Hamiltonian

H̃[S, φ](xi, φ(xi)) (5.20). The approximated characteristic direction (5.17) is

ũ∗s̃∗(xi, ζ̃
∗) =

∑n−1
j=0 ζ̃

∗
j x

s̃∗

j − xi

τs̃∗(xi, ζ̃∗)
=

x̃∗ − xi

τs̃∗(xi, ζ̃∗)
, (5.33)

where x̃∗ =
∑n−1

j=0 ζ̃
∗
j x

s̃∗

j ∈ s̃∗ ∈ S(xi).

From (5.6),
−H(xi,∇φ) = min

u∈Sn−1
{∇φ(xi) · u + g(xi,u)}.

Using (5.30),

−H(xi,∇φ) = min
s∈S(xi)

min
ζ∈Ξn−1

{
∇φ(xi) ·

x− xi
τs(xi, ζ)

+ g(xi,us(xi, ζ))

}
.

= min
s∈S(xi)

min
ζ∈Ξn−1

{
φ(x)− φ(xi)− 1

2
(x− xi)

T∇2φ(c)(x− xi)

τs(xi, ζ)
+ g(xi,us(xi, ζ))

}
, (5.34)

which is minimized with s∗ ∈ S(xi) and ζ∗ ∈ Ξn−1. Because S(xi) is directionally complete,

replacing the minimizing s∗ and ζ∗ in (5.34) with s̃∗ ∈ S(xi), ζ̃
∗ ∈ Ξn−1 yields an equal or

greater expression. Using (5.31),

−H(xi,∇φ) ≤ 1

τs̃∗(xi, ζ̃∗)
· (

n−1∑
j=0

ζ̃∗j φ(xs̃∗

j )− φ(xi)− ...

...−
ζ̃∗j
2

(xs̃∗

j − x̃∗)T∇2φ(c̃∗j)(x
s̃∗

j − x̃∗)− 1

2
(x̃∗ − xi)

T∇2φ(c̃∗)(x̃∗ − xi)) + g(xi, ũs̃∗(xi, ζ̃
∗)),

(5.35)

where c̃∗ is on the line segment between x̃∗i and xi and c̃∗j is on the line segment between

x̃∗ and xs̃∗

j for j = 0, 1, ..., n− 1. The two Hamiltonians (5.6) and (5.20) will be compared.
From (5.20) and (5.35),

H̃[S, φ](xi, φ(xi))−H(xi,∇φ)

= −
∑n−1

j=0 ζ̃
∗
j φ(xs̃∗

j )− φ(xi)

τs̃∗(xi, ζ̃∗)
− g(xi, ũs̃∗(xi, ζ̃

∗))−H(xi,∇φ),

≤ −
∑n−1

j=0

ζ̃∗j
2

(xs̃∗

j − x̃∗)T∇2φ(c∗j)(x
s̃∗

j − x̃∗) + 1
2
(x̃∗ − xi)

T∇2φ(c∗)(x̃∗ − xi)

τs̃∗(xi, ζ̃∗)
.
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The point x̃∗ ∈ s̃∗ ∈ S(xi) is at most (2Γ + 1)hmax from xi and at most hmax away from

any of the vertices of s̃∗. The distance τs̃∗(xi, ζ̃
∗) is at least the minimum simplex height

hmin. Recall M from (M1) satisfies 1 ≤ hmax

hmin
≤M . Thus,

H̃[S, φ](xi, φ(xi))−H(xi,∇φ)

≤ 1

hmin

(∑n−1
j=0 ζ

∗
j

2

∥∥∇2φ
∥∥

2
h2
max +

1

2

∥∥∇2φ
∥∥

2
(2Γ + 1)2

)
h2
max,

≤ M

2

∥∥∇2φ
∥∥

2
(1 + (2Γ + 1)2)hmax.

Recall that −H̃[S, φ](xi, φ(xi)) is minimized (5.33) with s̃∗ ∈ S(xi), ζ̃
∗ ∈ Ξn−1. From

(5.30), (5.31), and s∗ ∈ S(xi), ζ
∗ ∈ Ξn−1 not necessarily minimizers of −H̃[S, φ](xi, φ(xi)),

= H(xi,∇φ)− H̃[S, φ](xi, φ(xi)),

≤ 1

τs∗(xi, ζ∗)

(
(
n−1∑
j=0

ζ∗j
2

(xs∗

j − x∗)T∇2φ(c∗j)(x
s∗

j − x∗)) +
1

2
(x∗ − xi)

T∇2φ(c)(x∗ − xi)

)
,

≤ M

2

∥∥∇2φ
∥∥

2
(1 + (2Γ + 1)2)hmax,

where c∗ is on the line segment from x∗ and xi and for j = 0, 1, ..., n− 1, c∗j is on the line

segment from xs∗
j and x∗. The theorem is proved with C1 = M

2
(1 + (2Γ + 1)2). �

5.3 OUM Error Bound

Boundedness and Lipschitz continuity of both V and Ṽ over ΩX ⊂ Rn (5.14) are required
to show the main result of a bound on convergence of the OUM. The standing assumptions
(P1) - (P5) and (M1) - (M3) will be used. The following lemma is an exercise in [13]
and a similar proof to that given below can be found in [7].

Lemma 5.3.1. The set Ω ⊂ Rn is convex. Let x ∈ Rn, then z∗ = arg minz∈Ω ‖x− z‖ is
unique, and satisfies

〈x− z∗,w− z∗〉 ≤ 0, for all w ∈ Ω. (5.36)

Proof

Uniqueness: If x ∈ Ω, then z∗ = x is trivially the unique minimizer.
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Otherwise, x ∈ Ω
c
. The contrapositive of the statement will be shown. Assume z1, z2 ∈ Ω

and z1 6= z2 both minimize minz∈Ω ‖x− z‖. Let ẑ = 1
2
z1 + 1

2
z2. Consider

0 < ‖(x− z1)− (x− z2)‖2 ,

= 2 ‖x− z1‖2 + 2 ‖x− z2‖2 − ‖(x− z1) + (x− z2)‖2 ,

= 2 ‖x− z1‖2 + 2 ‖x− z2‖2 − 4 ‖x− ẑ‖2 ,

Since ‖x− z1‖ = ‖x− z2‖,

‖x− ẑ‖ < ‖x− z1‖ and ‖x− ẑ‖ < ‖x− z2‖ .

Since ẑ = 1
2
z1 + 1

2
z2 ∈ Ω

c
, Ω is not convex.

Proof of (5.36): If x ∈ Ω, then z∗ = x and 〈x− z∗,w− z∗〉 = 0. Otherwise x ∈ Ω
c
. The

contrapositive will again be shown. Assume there exists w ∈ Ω such that

〈x− z∗,w− z∗〉 > 0.

Let wα = (1− α)z∗ + αw with α ∈ [0, 1],

‖x−wα‖2 = ‖(1− α)(x− z∗) + α(x−w)‖2 ,

= (1− α)2 ‖x− z∗‖2 + α2 ‖x−w‖2 + 2(1− α)(α)〈x− z∗,x−w〉,

Differentiating, and evaluating the expression at α = 0,

d

dα
‖x−wα‖2

∣∣∣
α=0

= −2 ‖x− z∗‖2 + 2〈x− z∗,x−w〉,

= −2〈x− z∗,w− z∗〉
< 0,

since 〈x− z∗,w− z∗〉 > 0.

For α > 0 small enough,

‖x−wα‖ < ‖x−wα‖
∣∣∣
α=0

.

Since |x−wα| = |x− z∗| for α = 0.

‖x−wα‖ < ‖x− z∗‖ .

Hence wα ∈ Ω
c
. But since w, z∗ ∈ Ω, and wα = (1 − α)z∗ + αw ∈ Ω

c
, Ω is not convex.

Therefore for convex Ω, 〈x− z∗,w− z∗〉 ≤ 0 for all w ∈ Ω. �
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Lemma 5.3.2. The value function V in (5.5) is Lipschitz over ΩX . That is, there exists
LV > 0 such that for any x1,x2 ∈ ΩX ,

|V (x1)− V (x2)| ≤ LV ‖x1 − x2‖ .

Proof: Three cases are considered.

Case 1: x1,x2 ∈ ΩX ∩ Ωc. This is an exercise in [13, Exercise 2.8d]. The proof is as
follows. Let

x̃1 = arg min
x1∈∂Ω

‖x1 − x1‖ and x̃2 = arg min
x2∈∂Ω

‖x2 − x2‖ .

From Lemma 5.3.1,

〈x1 − x̃1, x̃2 − x̃1〉 ≤ 0, and 〈x2 − x̃2, x̃1 − x̃2〉 ≤ 0,

〈x2 − x̃2, x̃1 − x̃2〉 − 〈x1 − x̃1, x̃1 − x̃2〉 ≤ 0,
〈x̃1 − x̃2 − (x1 − x2), x̃1 − x̃2〉 ≤ 0.

By the Cauchy-Schwartz inequality,

‖x̃1 − x̃2‖2 ≤ 〈x1 − x2, x̃1 − x̃2〉
≤ ‖x1 − x2‖ ‖x̃1 − x̃2‖ ,

‖x̃1 − x̃2‖ ≤ ‖x1 − x2‖ .

By Lemma 5.1.3, q is Lipschitz-continuous with constant 2Gmax, therefore

|V (x1)− V (x2)| ≤ |q(x̃1)− q(x̃2)| ≤ 2Gmax ‖x̃1 − x̃2‖ ≤ 2Gmax ‖x1 − x2‖ .

Case 2: x1,x2 ∈ Ω. This is shown in [83, Lemma 2.2.7]. Suppose x1,x2 ∈ Ω. Using (5.5),
let u(t) = x2−x1

‖x2−x1‖ and τ = ‖x2 − x1‖,

V (x1) ≤
∫ τ

0

g(yx1
(s),u(s))ds+ V (x2),

V (x1)− V (x2) ≤ Gmax ‖x1 − x2‖ ,

V (x2) ≤
∫ τ

0

g(yx2
(s),−u(s))ds+ V (x1),

V (x2)− V (x1) ≤ Gmax ‖x1 − x2‖ .
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Case 3: x1 ∈ Ω and x2 ∈ Ωc: Let x̃2 = arg minx̃∈∂Ω ‖x2 − x̃‖, and u = x̃2−x1

‖x̃2−x1‖ . By

(P4), V (x2) = q(x̃2) and the definition of V ,

V (x1)− V (x2) = V (x1)− q(x̃2) ≤
∫ τ

0

g(yx1
(s),u(s))ds+ q(x̃2)− q(x̃2)

≤ Gmax ‖x1 − x̃2‖ ≤ Gmax ‖x1 − x2‖ ,

where the last line comes from the use of Lemma 5.3.1 in

‖x1 − x2‖2 = ‖x1 − x̃2‖2 + ‖x2 − x̃2‖2 − 2〈x1 − x̃2,x2 − x̃2〉,
≥ ‖x1 − x̃2‖2 .

Observe that for a,b, c ∈ Ω (5.8),

L(a,b) ≤ L(a, c) + L(c,b). (5.37)

Let yx1
(τ1) ∈ ∂Ω be the point the optimal trajectory starting at x1 reached ∂Ω. Using the

compatibility of q from assumption (P1) and (5.9),

V (x2)− V (x1) = q(x̃2)− L(x1,yx1
(τ1))− q(yx1

(τ1))

≤ L(x̃2,yx1
(τ1))− L(x1,yx1

(τ1))

≤ L(x̃2,x1) ≤ Gmax ‖x1 − x̃2‖ ≤ Gmax ‖x1 − x2‖ .

Combining cases 1-3, for x1,x2 ∈ ΩX ,

|V (x1)− V (x2)| ≤ 2Gmax ‖x1 − x2‖ .

The lemma is satisfied for LV = 2Gmax. �

Lemma 5.3.3. [83, Lemma 2.2.9] Let x ∈ ΩX . Let x̃ = arg minz∈∂Ω ‖x− z‖. The value
function V is bounded by

qmin ≤ V (x) ≤ Gmax ‖x− x̃‖+ qmax.

Proof. For x ∈ Ω, let ũ = x−x̃
‖x−x̃‖ . By the optimality principle (5.5),

V (x) ≤
∫ |x−x̃|

0

g(yx(s), ũ(s))ds+ q(x̃) ≤ Gmax ‖x− x̃‖+ qmax,
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and

V (x) =

∫ T

0

g(y∗x(s),u∗(s))ds+ q(y∗(T )) ≥ Gmin ‖x− x̃‖+ qmin ≥ qmin.

where y∗x and u∗ are the optimal trajectory (with initial condition x) and control. For x ∈
ΩX∩Ωc, V (x) = q(x̂) for some x̂ ∈ ∂Ω. Hence, qmin ≤ V (x) ≤ qmax ≤ Gmax ‖x− x̃‖+qmax.
�

The following two lemmas show the Lipschitz-continuity and boundedness for the ap-
proximated value function Ṽ .

Lemma 5.3.4. [72, Lemma 7.5] For Ṽ : X → R obtained by the Ordered Upwind Method,
and xi,xj ∈ X, there exists LṼ > 0 such that

|Ṽ (xi)− Ṽ (xj)| ≤ LṼ ‖xi − xj‖ .

A possible Lipschitz constant for Ṽ is LṼ = M2Gmax [72], where M is described in
(M1). Similar proof from case 1 and case 3 of Lemma 5.3.2 is valid with a restriction of

x ∈ X and function L (5.8) is replaced with L̃ : X ×X → R,

L̃(x1,x2) = inf
u(·)∈Ũ

{∫ τ

0

g(yx1
(s),u(s))ds

∣∣∣ yx1
(τ) = x2,yx1

(t) ∈ Ω, t ∈ (0, τ)

}
. (5.38)

where
Ũ =

{
ũ(·) ∈ U

∣∣∣ũ(t) = ũi while y(t) ∈ si ∈ X
}
.

Lemma 5.3.5. [72, Lemma 7.2] Let x ∈ s ∈ X and x̃ = arg minz∈∂Ω ‖x− z‖ . Then

qmin ≤ Ṽ (x) ≤ Gmax ‖x− x̃‖+ qmax.

The proof is shown in [72] for x ∈ Ω and is trivial for x ∈ Ω
c
.

The following lemma provides a limit on the magnitudes of the subgradients (Definition
3.3.1) and supergradients (Definition 3.3.2) for a Lipschitz-continuous function. Let A ⊂
Rn be closed and bounded.

Lemma 5.3.6. Let f : A→ R be Lipschitz-continuous with Lipschitz constant C ∈ R+. If
p ∈ D−f(x0) ∪D+f(x0) , then

‖p‖ ≤ C.
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Proof. Let δ > 0. Then for any b ∈ Sn−1, 0 < δ̃ < δ, consider the Lipschitz continuity of
f (Definition 3.2.1) and subgradient p ∈ D−f(x0) (Definition 3.3.1) with x = x0 + δ̃b,

C
∥∥∥x0 + δ̃b− x0

∥∥∥ ≥ |f(x0 + δ̃b)− f(x0)| ≥ p · (x0 + δ̃b− x0),

C
∥∥∥δ̃b∥∥∥ ≥ p · δ̃b,

and hence
C ≥ p · b. (5.39)

Since (5.39) holds for all b ∈ Sn−1, the inequality is true in particular for b = p
‖p‖ . Hence

‖p‖ ≤ C.

The proof for the set of all supergradients, D+f(x0), is similar. For p ∈ D+f(x0)
(Definition 3.3.2), and Lipschitz continuity of f (Definition 3.2.1), with x = x0 + δ̃b,

−C
∥∥∥δ̃b∥∥∥ ≤ |f(x0 + δ̃b)− f(x0)| ≤ p · (δ̃b),

−C ≤ p · b.

Hence,
p · (−b) ≤ C,

which again implies ‖p‖ ≤ C. �

The following lemma states that any point on the boundary ∂Ω must be at most hmax
away from its nearest vertex of X.

Lemma 5.3.7. If x ∈ ∂Ω, there exists xi ∈ X ∩ Ωc such that

‖x− xi‖ ≤ hmax. (5.40)

Proof. From assumption (M2), Ω is contained in X and so the point x belongs to a simplex
of X. Therefore, the distance between x and its nearest vertex xi is less than the length
of the longest edge with length hmax. Therefore xi must be at most hmax away. �.

A similar notion of viscosity solution for the approximated value function Ṽ is presented.

It is now shown that the approximated value function Ṽ is in a sense a viscosity solution
for the numerical HJB equation (5.21).
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Definition 5.3.8. Let x̂ = arg minx∈∂Ω ‖xi − x‖. A subsolution of the numerical

HJB equation (5.21) Ṽ : {xi} ⊂ X → R satisfies{
Ṽ (xi) ≤ q(x̂) for xi ∈ X ∩ Ωc,

H̃[NF, Ṽ ](xi, Ṽ (xi)) ≤ 0 for xi ∈ X ∩ Ω.

Definition 5.3.9. Let x̂ = arg minx∈∂Ω ‖xi − x‖. A supersolution of the numerical

HJB equation (5.21) Ṽ : {xi} ⊂ X → R satisfies{
Ṽ (xi) ≥ q(x̂) for xi ∈ X ∩ Ωc,

H̃[NF, Ṽ ](xi, Ṽ (xi)) ≥ 0 for xi ∈ X ∩ Ω.

Definition 5.3.10. A solution of the numerical HJB equation (5.21) Ṽ is both a
subsolution and a supersolution of the numerical HJB equation (5.21).

For solutions of the numerical HJB equation,

Ṽ (xi) = q(x̂) for x̂ = arg min
x∈∂Ω

‖x− xi‖ for xi ∈ X ∩ Ωc

and
H̃[NF, Ṽ ](xi, Ṽ (xi)) = 0 for xi ∈ X ∩ Ω.

By Theorem 5.2.6, the approximate value function Ṽ produced by the OUM algorithm is a
solution of the numerical HJB equation. Hence, it is both a subsolution and supersolution
of the numerical HJB equation.

Theorem 5.3.11. Let V : ΩX → R be a viscosity solution of (5.7) and Ṽ : {xi} ⊂
X → R be a solution of the numerical HJB equation (5.21). There exist C, h0 > 0, (both
independent of hmax) such that

max
xi∈X
|V (xi)− Ṽ (xi)| ≤ C

√
hmax, (5.41)

for every xi ∈ X and hmax ≤ h0.

Proof. If xi ∈ X ∩ Ω
c
, then

|V (xi)− Ṽ (xi)| = |q(x̂)− q(x̂)| = 0,
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where x̂ = arg minx∈∂Ω ‖xi − x‖. The bound (5.41) is satisfied. Otherwise, xi ∈ X ∩ Ω.
Since Ω ⊂ Rn is bounded, define

dΩ := max
x,x̃∈∂Ω

‖x− x̃‖ , (5.42)

C0 := max{LV , LṼ , |qmin|, dΩGmax + |qmax|}, (5.43)

where LV , LṼ , |qmin|, Gmax, and |qmax| are from Lemmas 5.3.2, 5.3.3, 5.3.4, 5.3.5.

Two parameters λ and ε are used to determine the error bound. For 0 < λ < 1 and
ε > 0, define Φ : Ω×X → R

Φ(x,xi) = λV (x)− Ṽ (xi)−
‖x− xi‖2

2ε
. (5.44)

Let x ∈ Ω and xi ∈ X maximize Φ, over the compact set Ω×X. Let

Mε,λ = max
x∈Ω,xi∈X

Φ(x,xi) = Φ(x,xi). (5.45)

Choose λ such that

λ = 1− 2

Gmin

(
C1

ε
hmax + C0Lgε

)
,

which implies

(1− λ) =
2

Gmin

(
C1

ε
hmax + C0Lgε

)
, (5.46)

where Lg is defined in (5.12), and C1 = M(1+(2Γ+1)2)
2

is defined in Theorem 5.2.15 with M

in (M1) and Γ = Gmax

Gmin
. For xi ∈ X ∩ Ω, V (xi) ≤ C0 from Lemma 5.3.3,

V (xi)− Ṽ (xi) ≤ (1− λ)V (xi) +Mε,λ ≤ C0(1− λ) +Mε,λ. (5.47)

The parameter λ ∈ (0, 1). Note 0, 1 are excluded. It is sufficient to pick hmax in (5.46)
small enough such that 0 < (1− λ) < 1 is satisfied. The parameter h0 is chosen to satisfy
this. The result of the theorem will be true with ε =

√
hmax. Setting (5.46) less than 1,

with ε =
√
hmax yields

hmax <
G2
min

4(C1 + C0Lg)2
.

Let h0 = min{ G2
min

4(C1+C0Lg)2
, 1}. It will be shown that for hmax < h0, the conclusion of the

theorem is true.

The point x must belong to Ω or ∂Ω, while xi must belong to X ∩ Ω or X ∩ Ωc. An
outline of the remainder of proof is as follows.
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1. Show that at most only one of x and xi may be in Ω. The case x ∈ ∂Ω and xi ∈ X∩Ωc

is possible.

2. Find an upper bound for Mε,λ in (5.47) given the restriction in the first step.

3. Find an upper bound on the error in (5.47) by choosing the parameter ε in (5.44) in
terms of hmax.

4. Outline the proof of (5.47) for Ṽ (xi)− V (xi).

Step 1: Define φ : Ω→ R,

φ(x) =
1

λ

(
Mε,λ + Ṽ (xi) +

‖x− xi‖2

2ε

)
and so ∇φ(x) =

1

λ

(
x− xi
ε

)
. (5.48)

From (5.44) and (5.45), it can be shown that V (x) ≤ φ(x) for all x ∈ Ω and V (x) =
φ(x). Therefore, V −φ has a local maximum at x. Therefore by Lemma 3.3.4, p = ∇φ(x) ∈
D+V (x). By Lemma 5.3.6, ‖∇φ(x)‖ is bounded by the Lipschitz constant LV ≤ C0. By
(5.43), and (5.48),

‖x− xi‖ ≤ λ ‖∇φ(x)‖ ε ≤ C0ε.

From (5.46), and using 0 < λ < 1,

(1− λ) >
1

Gmin

(
C1

ε
hmax + λLg ‖x− xi‖

)
. (5.49)

Define ψ : ΩX → R,

ψ(xi) = −Mε,λ + λV (x)− ‖x− xi‖2

2ε
, and so ∇ψ(xi) =

x− xi
ε

.

Let u∗xi
optimize (3.7) for arguments xi and ∇ψ(xi). From (5.49) and Gmin ≤ g(x,u) for

all x ∈ Ω, u ∈ Sn−1, the Lipschitz-continuity of g and definitions of ∇φ and ∇ψ,

(1− λ)g(xi,u
∗
xi

) >
C1

ε
hmax + λ(g(x,u∗xi

)− g(xi,u
∗
xi

)),

g(xi,u
∗
xi

)− λg(x,u∗xi
) >

C1

ε
hmax,

x− xi
ε
· u∗xi

+ g(xi,u
∗
xi

)− λ
(

1

λ
· x− xi

ε
· u∗xi

+ g(x,u∗xi
)

)
>
C1

ε
hmax,
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∇ψ(xi) · u∗xi
+ g(xi,u

∗
xi

)− λ(∇φ(x) · u∗xi
+ g(x,u∗xi

)) >
C1

ε
hmax. (5.50)

Since u∗xi
is not necessarily the maximizer of H(x,∇φ(x)),

− λ(∇φ(x) · u∗xi
+ g(x,u∗xi

)) ≤ λH(x,∇φ(x)). (5.51)

It will now be shown that at most one of xi or x can be in Ω. Following (5.50) and using
(3.7), (5.51), u∗xi

is the optimizer of H(xi,∇ψ(xi)),

−H(xi,∇ψ(xi)) + λH(x,∇φ(x)) >
C1

ε
hmax. (5.52)

Case 1: Let x ∈ Ω. From Definition 3.2.3, H(x,∇φ(x)) ≤ 0. From (5.52),

H(xi,∇ψ(xi)) < −
C1

ε
hmax. (5.53)

Since ψ(xi) ≤ Ṽ (xi) for all xi ∈ X, ψ(xi) = Ṽ (xi), by Theorem 5.2.14 and Definition
5.2.7,

H̃[NF, Ṽ ](xi, Ṽ (xi)) = H̃[S, Ṽ ](xi, Ṽ (xi)) ≤ H̃[S, ψ](xi, ψ(xi)). (5.54)

It will be shown that xi ∈ X ∩ Ωc using proof by contrapositive. Since Ṽ is a solution to
the numerical HJB equation (5.21), it is a supersolution of the numerical HJB equation
(Definition 5.3.9). If xi ∈ X ∩ Ω,

H̃[NF, Ṽ ](xi, Ṽ (xi)) = H̃[S, Ṽ ](xi, Ṽ (xi)) ≥ 0 (5.55)

holds. Furthermore if xi ∈ X∩Ω, Theorem 5.2.15 must also hold. That is, since ‖∇2ψ‖2 =
1
ε
,

|H(xi,∇ψ(xi))− H̃[S, ψ](xi, ψ(xi))| ≤
C1

ε
hmax. (5.56)

It will be shown (5.55) and (5.56) cannot be simultaneously true, implying xi ∈ X∩Ωc.

If (5.55) is true, then by (5.54), H̃[S, ψ](xi, ψ(xi)) ≥ 0. By (5.53),

H(xi,∇ψ(xi))− H̃[S, ψ](xi, ψ(xi)) < −
C1

ε
hmax.

Therefore (5.56) is false.

Otherwise, if (5.56) were true, using (5.53),

H(xi,∇ψ(xi))− H̃[S, ψ](xi, ψ(xi)) ≥ −
C1

ε
hmax > H(xi,∇ψ(xi)).
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Hence with (5.54),

H̃[NF, Ṽ ](xi, Ṽ (xi)) = H̃[S, Ṽ ](xi, Ṽ (xi)) ≤ H̃[S, ψ](xi, ψ(xi)) < 0.

Therefore (5.55) is false. Hence xi ∈ X ∩ Ωc.

Case 2: If xi ∈ X ∩ Ω, from Theorem 5.2.15,

H̃[S, ψ](xi, ψ(xi))−H(xi,∇ψ(xi)) ≤
C1

ε
hmax. (5.57)

From (5.54), and Ṽ is a supersolution of the numerical HJB equation (5.21),

H̃[S, ψ](xi, ψ(xi)) ≥ H̃[S, Ṽ ](xi, Ṽ (xi)) = H̃[NF, Ṽ ](xi, Ṽ (xi)) ≥ 0

From (5.52) and (5.57),

C1

ε
hmax + H̃[S, ψ](xi, ψ(xi))− λH(x,∇φ(x)) <

C1

ε
hmax. (5.58)

Since xi ∈ Ω ∩X, H̃[S, ψ](xi, ψ(xi)) ≥ 0, from (5.58), and 0 < λ < 1,

H(x,∇φ(x)) > 0,

which implies by Definition 3.2.3 of the viscosity subsolution, x ∈ ∂Ω. Hence at most one
of x and xi can belong to Ω.

Step 2: An upper bound on Mε,λ will be found. The cases in this step are the same as
Step 1. The scenario of x and xi both being outside Ω is considered in Case 1 below.

Case 1: x ∈ Ω, xi ∈ X ∩ Ωc.

Let x̌ = arg minx∈∂Ω ‖xi − x‖. Let xi be the point on the line from x and xi intersecting
∂Ω . For x ∈ ∂Ω, xi = x. Since Ω is convex, by Lemma 5.3.1, the angle between vectors
xi − x̌ and xi − x̌ is nonacute.

‖xi − xi‖2 = ‖xi − x̌‖2 + ‖x̌− xi‖2 − 2〈xi − x̌,xi − x̌〉,
≥ ‖xi − x̌‖2 .

‖xi − xi‖ ≥ ‖xi − x̌‖ .

Recall xi is on the line from x to xi, ‖x− xi‖ = ‖x− xi‖ + ‖xi − xi‖. With the triangle
inequality,

‖x− xi‖+ ‖xi − xi‖ ≥ ‖x− xi‖+ ‖xi − x̌‖ ,
‖x− xi‖ ≥ ‖x− x̌‖ .
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By the Lipschitz-continuity of V with constant C0, 0 < λ < 1, the boundedness of |Ṽ | ≤ C0,

and and since Ṽ is a supersolution to the numerical HJB equation (5.21), Ṽ (xi) ≥ q(x̌),

Mε,λ = λV (x)− Ṽ (xi)−
‖x− xi‖2

2ε
,

= λ(V (x)− Ṽ (xi))− (1− λ)Ṽ (xi)−
‖x− xi‖2

2ε
,

≤ λ(V (x)− q(x̌)) + (1− λ)C0 −
‖x− xi‖2

2ε
, (5.59)

If x ∈ Ω, V (x̌) = q(x̌), from (5.59),

Mε,λ ≤ λ(V (x)− V (x̌)) + (1− λ)C0 −
‖x− xi‖2

2ε
. (5.60)

Otherwise x ∈ ∂Ω, and V (x) = q(x), from (5.59),

Mε,λ ≤ λ(q(x)− q(x̌)) + (1− λ)C0 −
‖x− xi‖2

2ε
. (5.61)

The Lipschitz continuity of both q and V with constant C0 in (5.60) and (5.61) and
‖x− xi‖ ≥ ‖x− x̌‖ yield

Mε,λ ≤ C0λ ‖x− x̌‖+ (1− λ)C0 −
‖x− x̌‖2

2ε
, (5.62)

which is quadratic in ‖x− x̌‖. The quadratic is maximized with ‖x− x̌‖ = ελC0. Thus,
with 0 < λ < 1,

Mε,λ ≤ (1− λ)C0 +
C2

0ε

2
. (5.63)

Case 2: x ∈ ∂Ω, xi ∈ X ∩ Ω.

From Lemma 5.3.7, there exists x̂i ∈ X ∩ Ωc such that

‖x− x̂i‖ ≤ hmax. (5.64)

Let x̃ = arg minx∈∂Ω ‖x̂i − x‖. Using 0 < λ < 1, Ṽ (x̂i) ≥ q(x̃), V (x) ≤ q(x) for x ∈ ∂Ω,
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Lipschitz-continuity of q and Ṽ both with constant C0,

Mε,λ = λV (x)− Ṽ (xi)−
‖x− xi‖2

2ε
,

= λ(V (x)− Ṽ (xi))− (1− λ)Ṽ (xi)−
‖x− xi‖2

2ε
,

≤ λ(q(x)− q(x̃) + q(x̃)− Ṽ (xi)) + (1− λ)C0 −
|x− xi‖2

2ε
,

≤ λC0 ‖x− x̃‖+ λ(Ṽ (x̂i)− Ṽ (xi)) + (1− λ)C0 −
‖x− xi‖2

2ε
,

≤ C0(‖x− x̃‖+ ‖x̂i − xi‖) + (1− λ)C0 −
‖x− xi‖2

2ε
,

Using the triangle inequality ‖x̂i − xi‖ ≤ ‖x̂i − x̃‖+ ‖x̃− x‖+ ‖x− xi‖,

Mε,λ ≤ (1− λ)C0 + C0(‖x− x̃‖+ ‖x̂i − x̃‖+ ‖x̃− x‖+ ‖x− xi‖)−
‖x− xi‖2

2ε
.

By Lemma 5.3.1, and the cosine law, ‖x− x̃‖ ≤ ‖x− x̂i‖. From the definition of x̃,
‖x̂i − x̃‖ ≤ ‖x− x̂i‖. Therefore,

Mε,λ ≤ (1− λ)C0 + 3C0 ‖x− x̂i‖+ C0 ‖x− xi‖ −
‖x− xi‖2

2ε
.

From (5.64) and maximizing over the quadratic ‖x− xi‖ as before with ‖x− xi‖ = C0ε,

Mε,λ ≤ (1− λ)C0 + 3C0hmax +
C2

0ε

2
. (5.65)

Step 3: The upper bound of Mε,λ in (5.65) is larger than (5.63). Using (5.47),

V (xi)− Ṽ (xi) ≤ C0(1− λ) +Mε,λ,

≤ 2C0(1− λ) + 3C0hmax +
C2

0ε

2
,

≤ 2C0
2

Gmin

(
C1

ε
hmax + C0Lgε

)
+ 3C0hmax +

C2
0ε

2
,

≤ max

{
4C0C1

Gmin

,
4C2

0Lg
Gmin

+
C2

0

2

}(
hmax
ε

+ ε

)
+ 3C0hmax,
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Since ε =
√
hmax is a global minimum of (hmax

ε
+ ε),

V (xi)− Ṽ (xi) ≤ 2 max

{
4C0C1

Gmin

,
4C2

0Lg
Gmin

+
C2

0

2

}√
hmax + 3C0hmax.

Setting C = (4 max{2C0C1

Gmin
,

2C2
0Lg

Gmin
+

C2
0

2
}+3C0), if hmax < h0 < 1, and hence hmax <

√
hmax,

V (xi)− Ṽ (xi) ≤ C
√
hmax.

Step 4: To complete the proof,

sup
xi∈X

{
Ṽ (xi)− V (xi)

}
≤ C

√
hmax. (5.66)

must be shown. A symmetrical argument using V a viscosity supersolution of (3.6), and

Ṽ a subsolution of the numerical HJB equation (5.21) can be used. Hence,

sup
xi∈X
|Ṽ (xi)− V (xi)| ≤ C

√
hmax

for hmax ≤ h0. �

The convergence over the continuous solution is now shown. Recall ΩX ⊇ Ω (5.14) is
the largest closed region in Rn contained in X. Define V̂ : ΩX → R

V̂ (x) =
n∑
j=0

ζjV (xs
j) for x =

n∑
j=0

ζjx
s
j. (5.67)

On xi ∈ X, V (xi) = V̂ (xi) are equal.

Lemma 5.3.12. There exists D1 > 0 for all x ∈ ΩX , such that

|V (x)− V̂ (x)| ≤ D1hmax. (5.68)

Proof. Let ζ ∈ Ξn and x ∈ s such that x =
∑n

j=0 ζjx
s
j. Using V (xi) = V̂ (xi) for all vertices

xi ∈ X,
∑n

j=0 ζj = 1 and V is Lipschitz-continuous with constant 2Gmax (Theorem 5.3.2),

|V (x)− V̂ (x)| =
∣∣∣ n∑
j=0

ζj

(
V (x)− V̂ (xj)

) ∣∣∣
≤

n∑
j=0

ζj|V (x)− V (xj)|

≤
n∑
j=0

ζj(2Gmax ‖x− xj‖)

≤ 2Gmaxhmax.
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Hence D1 = 2Gmax. �

Corollary 5.3.13. There exists D2 > 0 for all x ∈ ΩX such that

|V (x)− Ṽ (x)| ≤ D2

√
hmax, (5.69)

for hmax < h0 as described in Theorem 5.3.11.

Proof. Let ζ ∈ Ξn and x ∈ s such that x =
∑n

j=0 ζjx
s
j. From Lemma 5.3.12, and Theorem

5.3.11,
−D1hmax + V̂ (x) ≤ V (x) ≤ D1hmax + V̂ (x), (5.70)

D1hmax − V̂ (x) ≥ −V (x) ≥ −D1hmax − V̂ (x), (5.71)

For x ∈ ΩX , Ṽ (x) =
∑n

j=0 ζjṼ (xs
j). From (5.70),

V (x)− Ṽ (x) ≤ D1hmax + V̂ (x)− Ṽ (x)

= D1hmax +
n∑
j=0

ζj(V (xs
j)− Ṽ (xs

j))

≤ D1hmax + C
√
hmax

≤ (D1 + C)
√
hmax,

for hmax < h0. The proof for Ṽ (x)−V (x) is symmetrical using (5.71). Hence D2 = D1 +C.
�

5.4 Conclusion

The rate of convergence of the approximate solution provided by OUM with prescribed
boundary values was shown to be at least O(

√
hmax). The basic idea of the proof was an

extension of that in [61]. A key step was to show the existence of a directionally complete
stencil, discussed in [5]. This led to a proof that the numerical Hamiltonian for the OUM
was both consistent and monotonic. The consistency and monotonicity of the numerical
Hamiltonian was used in a proof similar to the comparison principle in which the error
bound is shown. One extension of this work would be to provide a convergence rate proof
for the single-source point formulation of the static HJB. This is complicated by the lack
of an obvious directionally complete stencil near the source point that yields a consistent
solution.
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Numerical evidence [72] indicates that convergence of the approximating solution com-
puted by the OUM to the exact solution may occur at a rate of O(hmax) for some examples
in the boundary value problem. It would interesting to establish conditions under which
OUM does converge with rate O(hmax), but it is believed that a different technique than
used here is required.
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Chapter 6

Simulations

To illustrate the theory presented in the previous chapters, simulations were performed.
The algorithms described in this section were programmed in MATLAB R©. All timed
computations were performed using tic and toc commands from MATLAB on a Lenovo
ThinkPad E520 Laptop with Intel R© Core TM i5 -2430M CPU Processor (2.4 GHz × 2) with
4GB RAM. The mesh discretizations were generated using Mesh2D [25] available from
MATLAB Central. The meshes were manipulated using functions from the Numerical
Tours Package available online [65].

The optimal path planning problem presented in Chapter 3 considering rover objectives
(Section 3.4) was solved numerically using FMM, OUM and OUM-BD presented in Chapter

4. An approximated solution Ṽ of the dynamic programming principle (3.5) was found.
Solving the ordinary differential equation (3.8), the optimal paths were recovered. The
optimal paths were compared to paths generated by a genetic algorithm based rover path
planner [28] using the cost function (3.2) for the continuous problem. Three examples were
considered. The first was a cluttered environment. The second considered tipover-stability
risk while all of the environment weights including terrain and solar energy were considered
in the third example.

A comparison was made between the algorithms presented in Chapter 4 that could han-
dle direction-dependent weights. The time required and number of updates were compared
on several mesh refinements on the same problem.

In Chapter 5, a convergence rate of O(
√
hmax) was proven for the Ordered Upwind

Method in the context of a boundary value problem. The analytically proven conver-
gence rate will be shown numerically. Additional experiments demonstrating numerical
convergence rate of OUM were presented in [5, 72].
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The chapter is outlined as follows. In Section 6.1, aspects of the implementation of
the Ordered Upwind Method will be described. In Section 6.2, the rover path planning
problem will be considered, and the weights introduced in Chapter 3 will be used. In Section
6.3, algorithms described in Chapter 4 that could handle direction-dependent weights will
be compared in timing and number of updates using discretizations with different-sized
elements. Finally, the rate of convergence for OUM will be shown numerically in Section
6.4 for the types of problems described in Chapter 5. Some conclusions are presented in
Section 6.5.

6.1 Implementation of Ordered Upwind Method

The following algorithmic improvements suggested in [72] were used in the implementation
of both OUM and OUM-BD.

6.1.1 Local Anisotropy Coefficient

Rather than using the global anisotropy coefficient Γ = Gmax

Gmin
(Definition 3.1.8) as the

search radius in the Near Front of xi (4.11), a local anisotropy coefficient was used. At
each xi ∈ X, define

Γ(xi) =
gmax(xi)

gmin(xi)
,

where
gmax(x) = max

u∈Sn−1
g(x,u) and gmin(x) = min

u∈Sn−1
g(x,u).

The minimizing update (4.14) is shown using Lemma 3.1.9 to come from within Γ(xi)hmax
of xi [72]. This computational improvement was especially beneficial for problems where
Γ(xi) in the weight g was not constant throughout the workspace Ω. For direction-
independent problems, Γ(xi) = 1, whereas Γ is larger when Gmin 6= Gmax.

6.1.2 Doubling the Search Radius

The value Ṽ (xi) at xi is updated in two possible instances during the OUM algorithm. The
first is when xi is labelled Considered, and the second is when a vertex xj ∈ BΓ(xi)hmax(xi)
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is relabelled Accepted. In order to eliminate the update in the second case, the Near Front
of xi was widened to

N̂F(xi) =
{

s ∈ AF
∣∣∣ ∃ x̃ ∈ s, ‖x̃− xi‖ ≤ 2Γ(xi)hmax

}
in the initial update. It was discussed in [72, Lemma 3.4,7.3] that if the boundary func-
tion q(x) is compatible (Definition 5.9) the update cannot come from further away than
2Γ(xi)hmax. Updating xi from N̂F(xi) when it is labelled Considered will include the ap-
proximate characteristic direction. Though this does not lead to a substantial reduction
in the number of updates (4.13), the search to detect xj ∈ BΓ(xi)hmax(xi) being Accepted is
no longer required. Since the update may potentially come from farther away than in the
original algorithm, the calculated values may be less accurate. The resulting Ṽ has been
shown numerically [72] to attain the same order of accuracy.

6.1.3 Non-Convex Regions and Varying Weight Function

Recall in the Ordered Upwind Method, a vertex xi is updated from its Near Front NF(xi)
(4.14) in Steps 5 and 6 of the OUM algorithm. If the workspace Ω is not convex, an update
from an (n− 1)-simplex s ∈ NF(xi) may travel outside of Ω (see Figure 6.1a).

Obstacles in the weight function g will exhibit the same behaviour. If the update from
a (n− 1)-simplex travels through n-simplices of X made of vertices labelled Far, then the
update may be incorrect as the weight of intermediate points are not considered. See Figure
6.1. This behaviour is not limited to obstacles, but can occur updates travel through a
region where the weight function g experiences large variations.

In the implementation of OUM, a check is performed to determine if an update from
a vertex on the Near Front would intersect with these problematic simplices. If an in-
tersection occurs, then those vertices are omitted in the construction of the Near Front.
For known obstacles and boundaries, these simplices can be determined ahead of time
separately. Excluding these vertices ensures that the (incorrect) update cannot come from
them. The problem is naturally resolved in the limit as hmax → 0 for Lipschitz-continuous
boundaries for non-convex domains and obstacles since the search radius of the Near Front
of xi decreases linearly with hmax. See Figure 6.2. For implementation purposes, the hmax
required to avoid such situations may be small, especially if Γ(xi) is large. Strict local min-

ima in Ṽ can occur at a vertex xi of X if the minimizing update is from a non-neighbouring
edge s, while its neighbours have smaller Near Front radii that exclude s. Local minima
can arise in both nonconvex domains and a large variation in the weight function g, but
disappear as the mesh X is refined.
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(a) In the source-point formulation above, the re-
gion Ω is not convex. Updates from edges where
the approximations exit Ω are not valid.

(b) The vertices inside the ob-
stacle (shown shaded) are not la-
belled Accepted. The search ra-
dius Γ(xi)hmax for the update

Ṽ (xi) at xi is large enough that
the Near Front of xi, NF(xi), in-
cludes edges that traverse the ob-
stacle, yielding a possibly incor-
rect update.

Figure 6.1: Incorrect updates in R2 - Obstacle regions and non-convex Ω.
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(a) Using a finer discretization that reduces hmax

as in Figure 6.1.

(b) A finer discretization with smaller hmax may
not include edges that enter the obstacle as did
the larger circle seen in Figure 6.1.

Figure 6.2: Incorrect updates in R2 - As hmax → 0 the problem is naturally resolved for
Lipschitz continuous weight and boundary. A small hmax may be required. Instead, these
simplices (edge) were removed when building the Near Front. Note 0 < h1max < h2max.
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The same issue does not occur when updates are only considered from neighbouring
simplices such as in the Fast Marching, Fast Sweeping and Buffered Fast Marching Meth-
ods. Updates travel only between neighbouring simplices.

6.2 Comparison of OUM with FMM and Genetic Al-

gorithm on Rover Objectives

All path planning problems were executed on the square workspace Ω = [−500, 500] ×
[−500, 500] ⊂ R2 discretized by a mesh X made of 16765 vertices and 32888 triangles. The
FMM and FMM-BD (only for direction-independent problems), OUM, OUM-BD, and a
genetic algorithm (GA) path planner for rovers [28] were compared. For the FMM, FMM-
BD, OUM, OUM-BD algorithms, the gradients to obtain the path were approximated
linearly within each triangle of the solution based on the values of Ṽ .

In the GA path planner [28], candidate paths were defined using cubic splines between a
set of control points in Ω. All candidate paths had ends fixed at x0 and xf . A minimization
was performed over the placement of control points according to the cost (3.2). The best
results were obtained when 6-8 control points were used [28]. In the following examples, 8
control points were used with a population of 50 candidate paths. In the initialization of the
50 candidate paths, 9 were initialized randomly, 7 were the same straight line connecting
x0 and xf and the remaining paths were each single arcs with varying curvature. The
crossover factor and mutation probabilities were chosen to be 0.9 and 0.1 respectively. The
best candidate path was returned after 100 generations. Since a different path may be
produced each time the algorithm is executed, both the average cost and the cost of the
best path over 5 trials are presented.

The start and final positions were x0 = (450,−450) and xf = (−450, 450) respectively
in each example. The minimizations in (3.8) and (4.13) were performed using the golden
section search [67, Chapter 10.2]. Each value presented in Table 6.2 was averaged over
5 trials. The performance for all three examples was measured on the optimal path of
the continuous cost function (3.2) using the trapezoidal rule to evaluate the integral, not

the approximated value funtion Ṽ (x0). See Table 6.1. For examples 2 and 3, the rover is
assumed to be rectangular with width 6 units and length 3 units.

Example 1, Cluttered Environment - A hundred circular obstacles with radius 30 were
generated with random locations in Ω. Let the set of obstacle regions be denoted O. The
weight used to model obstacles was go(x) = 106 for x ∈ O, with linear decay to go(x) = 0
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Cost FMM FMM-BD OUM OUM-BD GA
Example 1 1404.1 1405.2 1421.5 1417.8 NFP
Example 2 - - 61.38 61.43 61.87 (61.79)
Example 3 - - 796370 794120 820300 (818940)

Table 6.1: Performance - Costs for GA in all examples were averaged over 5 trials, with the
bracketed value being the lowest cost of the 5 trials. Example 1: Path length with obstacle
avoidance, Example 2: Tip-over stability risk, Example 3: All components. NFP indicates
that no feasible path was found. All costs were measured using the produced path using
(3.2) on the continuous weight g and not the value obtained by the value function Ṽ .

Timings FMM FMM-BD OUM OUM-BD GA
Example 1 17.19 5.99 33.60 11.68 2741
Example 2 - - 85.99 55.70 6510
Example 3 - - 43.56 37.95 5621

Table 6.2: Time required in seconds - All timings were averaged over 5 trials. Example 1:
Path length with obstacle avoidance, the timing for GA was for 8 control points, Example
2: Tip-over stability risk, Example 3: All components. The timings presented for FMM,
FMM-BD, OUM and OUM-BD included the time required to find the approximate optimal
path in addition to computing Ṽ .
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(a) FMM in solid line, FMM-BD in dotted line. (b) OUM in solid line, OUM-BD in dotted line.

Figure 6.3: Example 1 : Cluttered Environment - The GA planner was unable to find a
feasible path. The costs of the paths are approximately the same between FMM, FMM-
BD, OUM, OUM-BD. The difference in paths between OUM and OUM-BD is attributed
to there being more than one optimal path. The section where they do not overlap has
approximately the same length, which is reminiscent of the situation in Figure 3.7. See
Tables 6.1 and 6.2.

at ε = 1 from O. The weight function used was

g(x) = 1 + go(x).

Obstacle locations are shown in Figure 6.3.

The weight associated with this example did not depend on direction. All of FMM,
FMM-BD, OUM and OUM-BD were compared. The cost (path length) between the paths
were approximately the same. See Figure 6.3 and Table 6.1. The GA planner was exe-
cuted using 8 control points (as described above) and using 25 control points. All other
parameters were the same. A feasible path was not found by GA in either case (over any
of the 5 trials for each). Timings are shown in Table (6.2). The OUM is slower than both
the FMM and FMM-BD, as expected. The OUM-BD was only slightly slower than the
FMM algorithm. The time required for the genetic algorithm planner (shown for 8 control
points) is much higher, despite not producing a feasible path.

Example 2 - Tip-over stability risk - Recall that z : Ω → R denotes the terrain
experienced by the rover (Definition 3.4.1). Let ∇z(x)⊥ be one of the level set directions
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of z at x such that ∇z(x) · ∇z(x)⊥ = 0. Using the force-angle stability margin α as

defined in (3.18), let m(x) = α
(
x, ∇z(x)⊥
|∇z(x)⊥|

)
and n(x) = α

(
x, ∇z(x)
|∇z(x)|

)
. Though there are

two possible level set directions, due to symmetry of the rectangular rover, both level set
directions yield the same stability margin m(x).

The tip-over risk weight grisk : Ω× S1 → R+ used was

grisk(x,u) =
1

n(x)

√
1 +

(
n(x)2

m(x)2
− 1

)(
∇z(x)

|∇z(x)|
· u
)2

. (6.1)

The resulting speed profile (3.11) Ugrisk(x) is an ellipse. The stability margins in directions
∇z(x)⊥ and ∇z(x) were

grisk

(
x,
∇z(x)⊥
|∇z(x)⊥|

)
=

1

n(x)
and grisk

(
x,
∇z(x)

|∇z(x)|

)
=

1

m(x)

respectively. The maximum and minimum stability margin α(x, ·) over S1 corresponded
to directions ∇z(x)⊥ and ∇z(x) dependent on the length and the width of the rover. As
the rover approached tip-over, grisk became large. Finally, if either m(x) or n(x) were
negative, then the corresponding weight in (6.1) was given the value 106.

The weight used in example 2 was

g(x,u) = grisk(x,u).

The terrain is shown in Figure 6.4. Since the weight was dependent on direction, FMM
cannot be used. Note the difference between the safest path calculated using the OUM
approach and the shortest path on the terrain in Figure 6.4c and 6.4d. A comparison
is made with GA using the same weight grisk(x,u). Though the costs of the paths were
similar between OUM, OUM-BD and GA (see Table 6.1), the time required to find the
path with GA was much higher. See Table 6.2.

Example 3 - Soil risk, solar energy and path length on terrain were considered in addition
to obstacle avoidance, and tip-over stability risk as described in examples 1 and 2. The
weight gsr : Ω → R+ used to model soil risk was independent of direction. A value was
assigned for each type of soil. The soil and obstacle weight maps from [28] in Figure 6.5
were used. The solar panel was chosen to be parallel to the frame of the rover. The solar
energy weight gso : Ω→ R+ used was

gso(x) =

{
(β(x))4, if β(x) ≤ π

2(
π
2

)4
, if β(x) > π

2
.

(6.2)
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(a) OUM-BD - White, OUM - Dotted, GA - Black (b) OUM-BD - White, OUM - Dotted, GA - Black

(c) Safest Path (OUM-BD) - Solid, Shortest Path
(FMM-BD) - Dotted

(d) Safest Path (OUM-BD) - Solid, Shortest Path
(FMM-BD) - Dotted

Figure 6.4: Example 2 : Tip-over stability risk. The paths found using OUM and OUM-BD
were virtually identical. The safest path is quite different from the shortest path.
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(a) Obstacles go(x) (b) Soil Weight gsr(x), b1 = 0.5, b2 = 1.5 and
b3 = 2.5

Figure 6.5: Example 3 - Weight maps [28].

A quartic was chosen to mimic a drastic drop in energy absorbed for an angle β(x) > π/4.

The weight function used in example 3 was

g(x,u) = 1 + aogo(x) + asrgsr(x) + asogso(x) + ariskgrisk(x,u) (6.3)

where ao, asr, aso, arisk ≥ 0 were chosen to reflect the relative importance of the various
weights.

The parameters asr = 100, arisk = 1000, aso = 10 were chosen. The paths are shown in
Figure 6.6. The cost and timings are presented in Tables 6.1 and 6.2 respectively. The GA
path planner was unable to find a path with lower cost on the other side of the obstacles.

The regions Ω for which Ṽ is found using OUM-BD are shown in Figure 6.7 for each
example. In terms of timing, OUM-BD was always faster than OUM.

6.3 Comparison of Static HJB equation Algorithms

The Ordered Upwind Method (OUM), Monotone Acceptance OUM (MAOUM), Buffered
Fast Marching (BFM) and Fast Sweeping Method (FSM) were compared for a problem with
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(a) OUM-BD/OUM (visually identical) - Black,
GA - White superimposed on the terrain.

(b) OUM-BD/OUM (visually identical) - Black,
GA - White superimposed on the sum of the
direction-independent weights.

Figure 6.6: Example 3 - Optimal path with all terms included in weight g(x,u): asr = 100
(b1 = 1, b2 = 2, b3 = 3), arisk = 1000, aso = 10, with obstacles (go(x) = 106). The rover
has width 6 units and length 3 units. Though OUM-BD and OUM computed visually
identical paths, OUM-BD was faster. The genetic algorithm appears stuck in a local
minimum, unable to find a path with lower cost on the other side of the obstacles.
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(a) Example 1: 5359 of 16765 Vertices (68% sav-
ings)

(b) Example 2: 12410 of 16765 Vertices (26% sav-
ings)

(c) Example 3: 11401 of 16765 Vertices (32% sav-
ings)

Figure 6.7: Bi-directional Fronts: The vertices in OUM-BD labelled Accepted in each
example with the approximate optimal path found. The front found from xf = (−450, 450),
and the front found from x0 = (450,−450) are both shown. The point at which the fronts
met is labelled with a white X. The unmarked areas show the computation that was saved.
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direction-dependent weight. The problem was solved on a workspace of Ω = [−500, 500]×
[−500, 500], with ∂Ω = {xf} and xf = (−450, 450). The weight used was

g(x,u) =
√

1 + (∇z(x) · u)2

where z : R2 → R is defined

z(x, y) = 900 sin
( π

500
x
)

sin
( π

500
y
)
,

and q(xf ) = 0.

The BFM and FSM algorithms presented in Chapter 4 compute approximated solutions
on uniform square grids, while OUM and MAOUM provide approximated solutions on
simplicial meshes. For each simplicial mesh used for OUM and MAOUM, a square grid
with similar properties was used for BFM and FSM. See Table 6.3. For a simplicial mesh
made from diagonals of a square grid, the maximum edge length is hmax =

√
24x and

minimum simplex height is hmin = 4x√
2
, the simplicial meshes and square grids have similar

hmax values, number of vertices and M = hmax

hmin
. In MAOUM, the time taken to execute the

algorithm is presented without the time required to compute the stencil M(xi). To solve
problems where the weight is dependent on direction using FSM, the update is changed
to (4.13) using neighbours on the grid. The termination condition on the error between
iterations for FSM was chosen to be

|Ṽ − Ṽold|∞ < ε = 10−14.

The timings and number of updates required to obtain Ṽ for each algorithm are presented
in Tables 6.4 and 6.5 respectively. The time required by all algorithms were comparable
despite the additional computation required by OUM and MAOUM to process the simpli-
cial meshes. The OUM and MAOUM also required significantly fewer updates than BFM
and FSM to compute a solution on a discretization with similar properties.
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Mesh Vertices Gridpoint Vertices Mesh hmax Grid
√

24x Mesh M
Discretization 1 1121 1089 44.19 44.19 2.50
Discretization 2 4289 4225 24.07 22.09 2.77
Discretization 3 16765 16900 11.99 10.96 3.08
Discretization 4 33147 33124 8.761 7.86 3.36

Table 6.3: Discretizations of Ω - The parameter M = hmax

hmin
provides a measure of con-

sistency in size of the elements in the discretization. A simplicial mesh made of square
elements with side length 4x split on the diagonals will have a value of M = 2 and
hmax =

√
24x. The parameters M , hmax and hmin of the simplicial meshes are shown for

comparison.

OUM MAOUM BFM FSM
Discretization 1 27.13 4.701 30.33 55.91
Discretization 2 70.38 29.38 64.39 69.05
Discretization 3 244.29 242.8 279.4 232.6
Discretization 4 518.27 807.9 932.9 492.7

Table 6.4: Timings of Algorithms in Seconds. The timings between the algorithms are of
the same order of magnitude, despite OUM and MAOUM being solved on a 2-simplicial
mesh. In BFM and FSM, the majority of the time is spent calculating the updates. In
OUM and MAOUM, fewer updates are required, but additional computation is required
to determine which updates to perform.

OUM (4.14) MAOUM (4.14) BFM (4.23) FSM (4.14)
Discretization 1 29251 41573 196672 126324
Discretization 2 122721 192023 598878 304200
Discretization 3 461608 800856 2255836 1149200
Discretization 4 946560 1621924 4360206 2252432

Table 6.5: Update count for Algorithms. Fewer updates are required for the OUM and
MAOUM, since the dependencies of the solution at vertices are in some sense decoupled.
Only a narrow band of points are solved at a time in both algorithms. For iterative
algorithms such as BFM and FSM, additional updates are required as the algorithms do not
use information regarding possible directions of the characteristic, resulting in additional
computation.
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Figure 6.8: Rectangular speed profile Ug(x) with length 6 in the x-direction and 2 in the
y-direction. The distance (radius) from x to the speed profile for a given angle θ in polar
coordinates corresponds to the value 1

g(x,u)
for the direction u = (cos θ, sin θ).

6.4 Numerical Convergence of OUM

In Chapter 5, a result was proven that the OUM algorithm for boundary value problems
must converge at a rate of at least O(

√
hmax). An example of the error computed using

OUM for the boundary value problem is shown below. For Ω = [−500, 500]× [−500, 500],
∂Ω = {(x, y) ∈ Ω||x| = 500 or |y| = 500}, the weight g used corresponded to a rectangular
speed profile centered about x with dimensions 6 in the x-direction and 2 in the y-direction.
See Figure 6.8. The boundary function was q(x) = 0 for x ∈ ∂Ω. Recall that for a direction
u, the radius of the speed profile Ug(x) (3.11) corresponds to 1

g(x,u)
. The same weight was

used for all x ∈ Ω.

For this simple problem, the analytic solution is made up of the concatenation of 4
planes: y + z = 500, x+ 3z = 500, −y + z = 500 and −x+ 3z = 500 within Ω. See Figure
6.9a. Black lines have been used to indicate where the planes are defined. On all of these
lines, the gradient ∇V is not defined. The plot of the error for one of the discretizations is
presented in Figure 6.9c. The error plot for all discretiztaions had the same general shape,
with the error appearing only near areas where ∇V was not defined.

The error values are given in Table 6.6 and a plot is provided in Figure 6.10. The
numerical rate of convergence kp was measured using the Lp norm for p = 1 and p = ∞.
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(a) The exact solution V : a three-
dimensional view.

(b) The exact solution V : a two-
dimensional (birds-eye) view.

(c) The error between the approximated

solution Ṽ and true solution V is greatest
at points where ∇V is not defined.

Figure 6.9: The exact solution V for the static HJB problem with rectangular speed profile
is the concatenation of four planes. In (a) and (b), the separation between the planes is
marked by black lines. The gradient ∇V is not defined on those lines.
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Vertices Triangles hmax L1-Error L∞-Error
4289 8256 24.07 3.93 × 105 10.54
16765 32888 11.99 1.95 × 105 7.45
33147 65652 8.761 1.17 × 105 5.90
66291 131300 6.438 9.85 × 104 5.36
263597 524632 3.483 5.02 × 104 3.80
1051261 2097400 1.785 2.56 × 104 2.74

Table 6.6: Accuracy of OUM for a Boundary Value Problem - The OUM was used to
solve the static HJB problem with a rectangular profile on six meshes. Each was measured
against the exact solution.

The error formula ∥∥∥Ṽ − V ∥∥∥
Lp

= Chkmax,

where V is the true solution and Ṽ is the approximated solution computed using OUM,
was used. Hence

ln
∥∥∥Ṽ − V ∥∥∥

Lp
= k ln(hmax) + ln(C).

For p = 1, the error was measured by finding the error at vertices, then the volume double
integral was computed to obtain the L1-norm. This was easy since V was made of four
planes. For the L∞-norm, the maximum error over all vertices was found. Using polyfit

in MATLAB for the data points above, rates of convergence of k1 = 1.050 and k∞ = 0.519
were obtained for L1-error and L∞-error respectively. Numerical evidence in [72] suggests
that for some examples, the convergence rate of OUM can occur at a faster rate of O(hmax).

6.5 Conclusion

The implementation of OUM was discussed, including two suggested improvements in [72].
As well, the update from incorrect simplices as a result of nonconvex workspace Ω and
obstacles were removed in the building of the Near Front.

The optimal path planning problem was solved considering rover objectives in the
weight function. The FMM, FMM-BD, OUM and OUM-BD were compared against a ge-
netic algorithm path planner [28] in both timing and performance. Using the approximated

value function Ṽ , the optimal path was found using (3.8). The path planning method sug-
gested in [28] did not find a feasible path in a cluttered environment. As expected, the
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Figure 6.10: L1 and L∞-error for OUM Convergence Example - L1-error shown in red
(above), L∞-error shown in black (below). The numerical convergence rates measured for
L1 and L∞-error were k1 = 1.050 and k∞ = 0.519 respectively.

computational time of OUM and OUM-BD were slower than FMM and FMM-BD respec-
tively to obtain paths with approximately the same cost. Significantly more time was
required by the genetic algorithm path planner to obtain a path of comparable cost in the
other examples.

Four algorithms were presented in Chapter 4 that provide an approximation of V in
(3.5) for direction-dependent weights. The time and number of updates required for varying
mesh refinements were shown. The timings in all four algorithms were comparable, despite
the additional computation required to perform calculations on a simplicial mesh in OUM
and MAOUM. It should be noted that further improvements in timing could be achieved
by reprogramming all algorithms in C.

The convergence rate for OUM was numerically tested on a problem with a homo-
geneous weight defined using a rectangular speed profile. The L∞-error converged at a
rate of O(h

1/2
max). The numerical results confirmed the convergence rate proved in Chapter

5. In numerical tests shown in [5, 72], the convergence occured at a faster rate for some
problems. It would be interesting to develop conditions or determine a class of problems
for which a faster convergence rate could be achieved.
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Chapter 7

Conclusions and Future Work

Optimal path planning problems were solved approximately on discretizations of a workspace.
Two novel improvements to the modelling of rover optimal path planning were considered:
solar energy input and tip-over stability risk. Safe paths are important in rover path plan-
ning because of the high costs incurred in unmanned extraterrestrial exploration. The
safest path was shown to be significantly different from the shortest path. Another area of
future investigation is to allow for time-dependence in the weight function as done in [84].
As a rover traverses the environment, the urgency to recharge the solar panels becomes
essential. Including a moving sun (xs(t), ys(t), zs(t)) in the solar energy weight is realistic
as rover speeds are slow and paths are planned across large environments. Negative weights
would allow for more accuracy in the modelling of energy such as in energy regeneration
from downhill travel. Of the algorithms programmed in Chapter 6, only the genetic algo-
rithm can handle weights where some directions are negative. The discussed algorithms
that approximately solve the static HJB require weights cannot handle negative weights.
Integral constraints that limit the fuel used could also be implemented using an extension
of FMM or OUM such as in [50, 59].

The work on path planning in this thesis focused upon finding a path, rather than
finding the controls for a specific vehicle to follow the path. As such, the only restriction
on control given to the path planning problem was that it be measurable. For rover
path planning, where the rover has slow maximum speed and and can turn in place,
controls can be found to follow such a path. For vehicles where this is not reasonable,
additional constraints can be imposed. One method would be to use a more realistic
model for dynamics in the path planning problem (3.1). A constraint on turning radius
was considered in [78] where an additional dimension was given to the angle of the car.
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Raising the dimensionality of a problem results in a significant increase in computation of
approximated solutions.

A variety of different algorithms that found an approximation to the dynamic pro-
gramming principle (3.5) were programmed and compared in timing. The FMM can be
used to solve an approximation of the HJB equation for positive, continuous, direction-
independent weights. The solution found by OUM yielded approximately the same path,
but was slightly slower than FMM. Thus, for problems where either approach could be
used, FMM is preferable. A novel bi-directional search for OUM, OUM-BD specific to
path planning was presented. Depending on the problem, computational savings of 25% to
70% were observed in terms of finalized vertices on a mesh. The OUM-BD search algorithm
could be implemented using parallel processors which would increase its efficiency. The
OUM-BD was approximately 100 times faster than a rover path planner [28] that used
genetic algorithm on the problems tested and the path produced yielded better results
according to the cost function. The GA is capable of handling more general weights, which
include negative weights. However, the faster computational times with FMM and OUM
would allow for re-planning, therefore allowing the algorithm to be executed with real-time
responses towards moving obstacles, and a moving sun. The computational times could be
further reduced with coding in C. Investigation in the use of heuristics such as in A∗ [35]
to guide the search in conjunction with OUM-BD would reduce the domain on which the
solution Ṽ was required even further. Unfortunately, consistent and admissible heuristics
may not be easily obtained for OUM. Depending on the frequency of calculation, OUM-BD
could be programmed into a FPGA and used in real-time path planning.

For FMM, and OUM, a proof of convergence of the approximated value function Ṽ
to the value function V as hmax approaches 0 can be found in the literature. A proof of
convergence for ∇Ṽ to ∇V , which is used in path planning (3.8) remains an open problem.

In practice, the approximation of ∇Ṽ yields good results when used for path planning, as
was shown in the path planning simulations in Chapter 6.

Local minima are known to exist in some navigation functions such as the artificial
potential function. At locations that are local minima but not global minima, the numerical
path finder (3.8) would become stuck. The value function used in optimal path planning
was shown to not have any local minima (aside from a global minimum).

A performance comparison was made between four algorithms that could find solutions
to the static HJB equation. Both timing and the number of updates required to produce
the approximate value function were compared. As the BFM and FSM algorithms have
iterative components, the OUM and MAOUM required significantly fewer updates. How-
ever, for OUM and MAOUM, computational effort and storage were required to determine
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which updates to compute. As well, the OUM and MAOUM were executed on simplicial
meshes, which also increased the amount of storage and computation was required. Sim-
plicial meshes have the benefit of handling complex geometries. From the implementations
used, OUM and FSM are the leading candidates with regard to speed. If OUM was pro-
grammed to make use of a grid geometry for grids and grid-like meshes, it would become
even faster.

The rate of convergence of the approximate solution provided by OUM to the viscosity
solution for a problem with prescribed boundary values on a region was proven to be at
least O(

√
hmax). The basic idea of the proof was an extension of a result in [61]. A key step

was to show the existence of a directionally complete stencil, discussed in [5]. This led to
a proof that the numerical Hamiltonian for the OUM was both consistent and monotonic.
One extension of this work would be to provide a convergence rate proof for the single-
source point formulation of the problem. This is complicated by the lack of an obvious
directionally complete stencil that would yield a consistent solution over vertices near the
source point. The source-point formulation admits additional error near the source point
[29, 79] due to a lack of continuous directions to perform the update. The numerical error
is usually measured away from the source point. It is likely that the technique used here
can be applied to the source-point problem for vertices that are far enough away from the
source point.

Numerical evidence illustrated in Chapter 6 indicates that convergence of the approxi-
mate solution computed by the OUM occurs at a rate O(

√
hmax). It would be interesting

to establish conditions or determine a class of problems under which OUM converges with
rate O(hmax) as described numerically in [72]. It is believed that a different technique than
used here is required.
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