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Abstract

Robotic automation has been the major driving force in modern industrial developments.

High speed pick-and-place operations …nd their place in many manufacturing applications.

The goal of this project is to develop a class of high speed robots that has a planar workspace.

The presented robots are intended for pick-and-place applications that have a relatively large

workspace.

In order to achieve this goal, the robots must be both sti¤ and light. The design strate-

gies adapted in this study were expanded from the research work by Prof Khajepour and Dr.

Behzadipour. The fundamental principles are to utilize a parallel mechanism to enhance robot

sti¤ness and cable construction to reduce moving inertia. A required condition for using cable

construction is the ability to hold all cables under tension. This can only be achieved under

certain conditions.

The design phase of the study includes a static analysis on the robot manipulator that

ensures certain mechanical components are always held under tension. This idea is extended

to address dynamic situations where the manipulator velocity and acceleration are bounded.

Two concept robot con…gurations, 2D-Deltabot, and 2D-Betabot are presented. Through a

series of analyses from the robot inverse kinematic model, the dynamic properties of a robot

can be computed in an e¤ective manner. It was determined that the presented robots can

achieve 4g acceleration and 4m/s maximum speed within their 700mm by 100mm workspace

with a pair of 890W rotary actuators controlling two degrees of freedom.

The 2D-Deltabot was chosen for prototype development. A kinematics calibration algo-

rithm was developed to enhance the robot accuracy. Experimental test results had shown that

the 2D-Deltabot was capable of running at 81 cycles per minute on a 730mm long pick-and-

place path. Further experiments showed that the robot had a position accuracy of 0.62mm

and a position repeatability of 0.15mm, despite a few manufacturing errors from the prototype

fabrication.
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Chapter 1

Introduction

Industry always thrives for higher quality and more economical processes. Robotic automation

has been the primary driving force for improving modern manufacturing processes. A fast and

accurate pick-and-place operation is a desired robotic application for many industrial sectors.

Typical pick-and-place applications such as packaging, assembly, and part sorting require ma-

nipulation of an object on a ‡at surface. It is a common practice to stack multiple planar

manipulators together while using a conveyor to feed a matrix of objects in a direction normal

to the manipulator workspace. This approach usually saves precious manufacturing space in an

industrial environment. In this work, a new type of 2D cable-based parallel manipulator is in-

troduced that is intended for high speed pick-and-place applications that require manipulation

of light objects.

The primary requirements for pick-and-place operations are high accuracy, high speed, and

high repeatability. High accuracy can only be attained if the robot construction is sti¤ enough

to suppress deformation; high speed, on the other hand is limited by the actuator power and

the robot inertia. Since high sti¤ness usually comes at the expense of increasing inertia,

a designer must …nd the right balance for his/her particular solution. The most common

industrial robotic manipulators nowadays are Cartesian tables and Articulated manipulators.

These types of con…gurations append independent motions from one link to another in a serial

fashion, hence they are classi…ed into the serial robot family. Due to the nature of the design,

the robot actuator, or at least the power chain that is connected to the actuator must move

with the manipulator. As a result, a serial robot trends to have a large moving inertia to
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payload ratio regardless of the size of the actuator.

A new type of robotic design, parallel mechanisms has emerged from recent robot de-

velopments. This type of robot is constructed by attaching multiple independently actuated

kinematic chains to a mobile platform. Since the kinematic chains do not stack from one to

another, any force that is applied to the mobile platform is distributed amongst multiple link-

ages. This e¤ectively increases the sti¤ness of the robot structure. Moreover, the actuators

of each chain can be …xed on to a base, and they do not become part of the moving inertia.

These two properties provide parallel mechanisms with an inherent advantage on sti¤ness and

inertia over their serial counterparts. With the advantage of sti¤ness and low inertia, parallel

mechanisms have quickly found their way into many high speed pick-and-place applications.

Among which, the Delta con…guration is arguably the most successful design in the last decade.

Most of the recent parallel robot designs can achieve 150 cycles per minute 1.

If the underlying principle of the success in high speed pick-and-place robots is light and

sti¤, there must be other methods to improve robot performance by further reduction in moving

inertia without compromising too much on structural sti¤ness. This thesis document expands

the design principles from the research work by Prof. Khajepour and Dr. Behzadipour. The

fundamental design strategy is to improve the sti¤ness to inertia ratio by replacing rigid linkages

of the kinematic chain with ‡exible cables. Mechanical cable, which is virtually massless,

possesses a relatively high mechanical strength under tension. The fundamental principle of

this design approach is to replace the heavy linkages with cables. An additional advantage of

using cables is that they can replace revolute joints, which are relatively costly and unreliable

due to their limited life expectancy. Furthermore, there are several design issues that must be

addressed when using cables in a mechanism.

The layout of this thesis is as follows: Chapter 2 presents the literature review of some

parallel mechanisms and design considerations that are speci…c to cable-based mechanisms.

Chapter 3 introduces the conceptual design and the theoretical development for this new class

of cable based robots. It also addresses the primary design requirements that satisfy the design

constraints. Chapter 4 discusses detailed design strategies and optimization processes. It also

o¤ers a systematic methodology that requires only the inverse kinematic equations for the

1for more information, refer to http://www.abb.com/robotics
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development of this class of robots. Chapter 5 provides a more detailed design implementation

of two robots that use the design approach introduced in Chapter 4. The inverse kinematic

equations of both robots are developed along with the design procedure. Chapter 6 then shows

the kinematic calibration and the experimental evaluations of a prototype that was built during

the course of this project. Chapter 7 gives concluding remarks of this work and highlights future

research directions.
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Chapter 2

Literature Review

2.1 Introduction of Parallel Manipulators

This thesis work focuses on two aspects - Parallel Mechanisms and Cable-Based Manipulators.

Before introducing these design concepts, it is appropriate to introduce parallel mechanisms

in this chapter. Parallel Mechanisms, or sometimes referred as closed chain mechanisms is a

relatively new concept in industry. However, the actual theoretical work can be dated centuries

ago 1. Tsai, a pioneer in recent parallel manipulator developments has once compared di¤erent

types of parallel mechanisms, and described them to be “a mechanism that is typically consists

of a moving platform that is connected to a …xed base by several limbs” [30]. For many parallel

manipulators, all the limbs (kinematic chains) are of the same kind and the orientational and

translational degrees of freedom are usually coupled.

Early parallel mechanisms were usually targeted for 6 degrees of freedom. The simplest

implementation is the Gough Platform designed by Gough and Whitehall in 1947 [33]. In that

design, the moving platform is actuated by 6 linear actuators that connect the base and the

moving platform through spherical joints. The Stewart platform, a later version of the Gough

Platform is shown in Figure 2-1. Similar con…gurations have been used in ‡ight simulators [5]

and Ingersoll’s milling machines [13]. One of the most successful implementation of parallel

mechanisms is the Delta invented by Clavel in 1990s [28]. In the Delta, the moving platform is

1Interested reader are referred to http://www.parallemic.org/Reviews/Review007.html for more details
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Figure 2-1: Schematic of Stewart Platform

actuated by three pairs of synchronized elementary chains. Each pair is driven independently

by a rotary actuator as illustrated in Figure 2-2. This con…guration eliminates any rotational

degree of freedom and hence produces a three translational DOF manipulator.

Ever since Clavel published his invention, a signi…cant amount of research activities have

been conducted to improve the design of Delta and many other similar parallel con…gurations [4],

[9], [10], and [26]. Some of the research works are directed towards a 2 translational degrees of

freedom (DOF) version of the parallel mechanism. Ghorbel developed Rice Planar Delta Robot

(RPDR) in 1990s to demonstrate various control and analysis techniques for parallel robots [8].

RPDR is kinematically similar to Delta as shown in Figure 2-3, and it was originally designed

for experimental purposes. The orientational DOF in RPDR is coupled with the translational

DOF, which limits its applications. This shortcoming has been overcome by another design

by Huang et al [12]. In that design, a pair of parallel links is used to connect the moving

platform to the …rst link, much like the original Delta design. This planar Delta robot with

only translational DOF was intended for high speed pick-and-place operations.

From a development point of view, some of these research projects introduced analytical

methods to analyze the complex forward kinematics of parallel robots [14] [24]; others addressed
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Figure 2-3: Schematic of Rice Planar Delta Robot
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more subtle issues such as internal singular con…gurations [23]. However, these analytical tools

are subject to certain speci…c conditions, and there is still no universal systematic method to

analyze parallel mechanisms.

2.2 Cable-Based Mechanisms

While there are already a signi…cant number of parallel manipulator designs in recent literature,

one class of parallel mechanisms that uses cables in its kinematic chains is of particular interest

in this thesis work. A cable-based parallel manipulator usually has a lower moving inertia and

lower manufacturing cost when compared to its rigid link counterpart. Moreover, the ‡exibility

of a cable allows the replacement of mechanical joints in the design. However, a cable-based

robot design has a few shortcomings. Cable is only useful if it is held under tension. Some

of the research has been directed towards the tensioning of cables in cable-based robots. Such

research includes work from Ming and Higuchi who performed an earlier study on the tension

distribution in high DOF cable-based manipulators [2]. Behzadipour et al performed a study

on the tensionable cable robot con…gurations by geometric interpretation [29]. Another design

is from Tadokoro et al, who designed cable wire robots using 8 cables, all under tension (with

2 redundant cables) for 6 DOF motion [32].
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Early cable-based parallel robots were designed mainly for speed enhancement. Landsberger

developed a 3 DOF cable-based manipulator that is somewhat an extension to the Stewart-

Gough platform. In Landsberger’s design, three cables were attached to a telescopic compression

member as shown in Figure 2-4. The lengths of the cables were independently controlled

by winches for positioning the end-e¤ector in 3D space [31]. Early implementations of the

Landsberger robot were capable of reaching a speed of 3.5m/s.

 

Figure 2-5: Schematic of Falcon

Another cable-based manipulator that features a high DOF and a large workspace is the

Falcon. Falcon is designed for positioning applications [18]. There are 7 cables (6+1 for

redundant kinematic chain that induces the tension to other cables) as shown in Figure 2-5.

Due to the low inertia design, Falcon is capable of achieving 43g of acceleration and a peak

velocity of 13m/s. This is a cable-based manipulator that demonstrates high mobility and fast

dynamic characteristic.

Over the past two decades, cable-based manipulators have proven to be a suitable choice

for high speed applications. This thesis work focuses on the development of a class of planar

cable-based parallel mechanisms that are compact and are capable of achieving an even higher

dynamic operational speed for industrial applications.

8



Chapter 3

Robot Design Overview

The essence of a high speed manipulator design is to reduce the moving inertia whilemaintaining

the sti¤ness. E¤ective sti¤ness can be increased if the extraneous forces are transmitted through

multiple paths. Parallel mechanisms apply this principle e¤ectively, which produces an inherent

advantage on sti¤ness and allows it to be constructed with lighter components. In order to

further reduce the moving inertia, this work proposes to construct some of the linkages with

cable wires. This method can be applied to most common parallel robot con…gurations with

simple kinematic chains. However, there are a few issues that need to be addressed to avoid

mechanical failure.

The key issue that requires attention is maintaining tension in the cable. This chapter

…rst introduces the proposed cable-robot design in Section 3.1 and analyses the cable tension

properties as a static problem in Section 3.2. The result of this analysis is a set of linear

equations relating tension (T) to loads (L), i.e. T = JL. However, this analysis is not

useful until it examines the dynamic behaviour of the cable-robot. Section 3.3 addresses this

problem by conservatively estimating the load vector as a function of the end-e¤ector kinetics

(L = L(x; _x; Äx)). This allows analysis the cable tension under di¤erent dynamic environments.

3.1 Conceptual Design

The proposed cable-based design is a planar manipulator. The basic design consists of a …xed

base, a pair of parallel cables, a third cable, a telescopic spine (central pose), and an end-e¤ector

9



as illustrated in Figure 3-1. The focus of this design was on the mobile end of the manipulator

where a pick-and-place tool and the cable linkages are to be mounted on the moving platform.

The spine is attached to the end-e¤ector by a revolute joint with its pivoting axis perpen-

dicular to the plane of action. The objective of the spine is to induce a tensile force on the

cables. There is also a pair of cables attached to the end-e¤ector. These paired cables are

separated by a …xed distance and they form a parallelogram when they are held under tension.

Due to the geometric constraint on this parallelogram, the orientation DOF is controlled. In

this work, this pair of parallel cables is de…ned as a parallel cable joint.

End-effector 

Fixed Base 

Spine 

Actuator for the 
single cable 

Actuator for the 
paired cable 

Paired Cable Single Cable 

Figure 3-1: Schematic of the Proposed Cable-Based 2DOF Planar Mechanism

De…nition 1 A parallel cable joint is a joint made of two parallel cables attached to a rigid

element E. The centerline direction of the cables is OO¤ and can vary in time, see Figure 3-2.

The rigid element E represents the end-e¤ector in the context of this work. The cables are

assumed to be held under tension (positive T1 and T2).

There are two distinct types of assembly in the proposed robot design. The cable is part

of the kinematic chain that connects these two assemblies together. A natural classi…cation

would be based on their function:
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T1 T2 

O* 

E 

Figure 3-2: Schematic of a Parallel Cable Joint

De…nition 2 The upper robot assembly is the portion of the robot that is responsible for the

actuation of the manipulator. This portion of the robot includes the …xed base, the actuators,

and the …rst part of the kinematic trains.

De…nition 3 The lower robot assembly is the portion of the robot that is responsible for the

proper manipulation of the end-e¤ector. Since it has a relatively large amount of motion, it

usually dominates the dynamic characteristic of the manipulator. This portion of the robot is

composed of the end-e¤ector and the spine.

While the proposed robot could have many di¤erent upper assembly designs to suit the

particular application, the lower assembly design remains virtually unchanged. Some of the

essential aspects on the lower assembly design are discussed in Section 3.2.

3.2 Theoretical Development of 2D Cable-Based Robot

Parts of the robot kinematic chain introduced in Section 3.1 are constructed from cable instead

of rigid linkage. A solid linkage can withstand tension, compression and bending. Depending

on the length, slender linkages usually have a low compressive strength even with high mass.

Similarly, bending sti¤ness is usually poor for slender linkages. Therefore, it is highly bene…cial

to operate linkages under tension only. Under the assumption that a mechanical component
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operates under tension, there is little di¤erence whether that component is a piece of cable

or a rigid slender linkage. As a result, there is an element to provide tension to the cables

in cable-based manipulators. This element is called the spine, and it can be another cable,

a pneumatic cylinder, or a spring. This section discuss the position of the spine to ensure

the cable can be held under tension. Before investigating the detailed aspect of the necessary

operation conditions for these cable-based robots, it is appropriate to discuss a few concepts

that allow a cable-robot to behave as if it were constructed with rigid elements.

De…nition 4 Rigid pose A cable-based manipulator is considered to be in a rigid pose, if the

manipulator is not at a singular pose and all of the cables are held in tension under a given set

of external loads. Therefore, a cable-robot that is in a rigid pose is considered as a structure.

De…nition 5 Tensionability A non-singular pose is tensionable if and only if for any arbi-

trary external load, there exists a …nite spine force to make the manipulator rigid. Tensionabil-

ity, the ability to apply tension to a mechanical component (in this case, the cable) is a necessary

condition to maintain a cable-based manipulator in a rigid pose regardless of any other external

load.

Since a useful manipulator must be able to guarantee its rigidity everywhere within the

workspace, it is necessary to seek some insight into the tensionability of a manipulator. This

chapter discusses a design strategy that always satis…es the tensionability criterion of a 2D

cable-based manipulator.

When a manipulator is in a rigid pose, it does not translate nor rotate. Assuming the

cable axes are independent and two of the cables form a parallel cable joint, the manipulator

will not be in a singular position. In order for a manipulator to be considered as a structure,

the tensionability is the only remaining condition that needs to be satis…ed. Since the cable

tensions are heavily dependent on the spine, the very …rst condition that shall be examined

is the spine location to ensure tensionability. The investigation begins with a simple non-

translating end-e¤ector setup. This setup leads to a necessary spine position that produces

a tensionable con…guration under no external load. The analysis is then extended for the

tensionability condition under which the manipulator is tensionable for any …nite load (and

torque) and a generalized end-e¤ector con…guration.
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3.2.1 Tensionable Con…guration

A) Zero Translational Requirement (with a speci…c external load)

Suppose two cables are attached to point O of the end-e¤ector under an external load P

as seen in Figure 3-3, the end-e¤ector will not translate if the tension in cables TA and TB can

balance the external load P . This in fact indicates that if the manipulator is tensionable, there

exists a set of positive TA and TB to balance the external force P . If P lies between the cables

bases, (OL01 and OL0
2), it can be projected onto the bases axis with a positive component. As a

result, there exists a set of positive cable tensions to cancel out the component of force resolved

in each of the cable axis. Therefore, the manipulator is tensionable as long as P lies inside the

OL01 ¡ OL02 envelope. A corollary is that the negation of the force vector P that lies between

the cable axes must also lies inside the positively linearly dependent space spanned from TA

and TB (TA > 0, TB > 0). Also note that an increasing P monotonically increases TA and TB

as the magnitude of the force component increases.

 L2 

End- effector 

P 

O 

TA 
TB 

L1 

L1´ 
 

L2´ 
 

Figure 3-3: Zero Translational Platform

B) Translational and Rotational Requirement (In the absence of external load and torque)

Suppose a parallel cable joint is attached to an end-e¤ector such that its centerline coincided

with the third cable and a spine as shown in Figure 3-4, the point where all components coincide

is de…ned to be point O. The assembly is completely in a rigid pose (all cables are in tension,
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zero translation and zero rotation) if and only if the spine axis, OL3 is between the cable axes,

OL1 and OL2 and the spine exerts a compressive force FC onto the rigid body at point O.

This con…guration is an extension to Case A. Let TA =TA1 +TA2, there exists positive TA

and TB for any value of FC that constrains the translational DOF as shown in Case A. To

satisfy the torque equilibrium condition,
P

M = 0 (in the absence of any external torque), TA1

and TA2 are selected to be:

TA1 = TA2 =
TA
2

(3.1)

 

End-effector 

L1 
 

L3 

O 

TA1 FC 

TA2 

L2 
 TB 

Figure 3-4: Zero Translational and Rotational End E¤ector Under No Load

C) Zero Translational Requirement with any arbitrary external load

Suppose two cables with axes OL1 and OL2, and a spine with axis OL3 orientated between

the cable axes are connected to the end-e¤ector as shown in Figure 3-5, this con…guration can

balance any …nite external force P , in any arbitrary direction. Therefore, it is a tensionable

con…guration.

Although this result can be directly observed if one realizes the axes OL1, OL2, and OL3

form a positively linearly dependent basis on a 2D plane, it is worthwhile to quantitatively
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O 

FC 

L3 

L2 

End- effector 

P 

TA 
TB 

L1 

L1´ 
 

L2´ 
 

 

 

t 
n

Pt 

Pn 

Figure 3-5: Zero Translational End E¤ector under any arbitrary load. Note the the spine
angle, ° is shown in the negative direction.

analyze the problem. The external force can be resolved into an orthogonal basis that is

aligned to axis OL3. The component that is parallel to the OL3 is P t, and the component that

is normal to OL3 is Pn. Using the superposition of forces, the system is in force equilibrium

(translational rigidity) if both components of the external force can be balanced by the applied

load FC, TA, and TB, all with a positive magnitude (tensionable).

The tangential component, P t produces a tensionable con…guration if it is positive (pointing

away from the cables) as explained in Case A. If the force component is negative, a contribution

of FC is needed to force the sum of the forces to become positive. Therefore, the tangential

component always forms a tensionable con…guration.

As for the normal component, P n, it can either lie between OL01 and OL02 or outside the

OL01-OL02 envelope. If it were the former case, the situation is identical to Case A and the

system is tensionable. If it were the latter case, a positive component of FC is needed to bring

Pn onto OL02 if P n is positive, and OL01 if Pn is negative (see Figure 3-5). Therefore, the
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normal component also forms a tensionable con…guration.

Note that it is possible to compute the cable tensions at this point. Let F 0
C be the summation

of FC and P t, it can be shown through geometry and force equilibrium that the cable tensions

TA and TB can be computed by a set of linear equations. The force equilibrium in a static case

shows:
X

Fx = TA cos(¯A) +TB cos(¯B) +F 0
C sin(°) + Pn cos(°) = 0

X
Fy = TA sin(¯A)+ TB sin(¯B) ¡F 0

C cos(°) +P n sin(°) = 0

In matrix form:

2
4 cos(¯A) cos(¯B)

sin(¯A) sin(¯B)

3
5

8
<
:

TA

TB

9
=
; =

2
4 ¡ sin(°) ¡ cos(°)

cos(°) ¡ sin(°)

3
5

8
<
:

F 0
C

Pn

9
=
;

Rearrange and simplify the equilibrium equations using trigonometric identities produce:

8
<
:

TA

TB

9
=
; =

1
sin(¯B ¡ ¯A)

2
4 ¡ cos(° ¡ ¯B) sin(° ¡ ¯B)

cos(° ¡¯A) ¡sin(° ¡ ¯A)

3
5

8
<
:

F 0
C

Pn

9
=
; (3.2)

Also note that the static assumption does not restrict the dynamic analysis, as the applied

forces can be replaced by the inertia force from the robot component. A more comprehensive

analysis is shown in Section 4.

D) Zero Translational and Rotational Requirement with arbitrary load

The cable-robot in Figure 3-6 is shown to be in a rigid con…guration for any external force,

P and torque, M with a …nite amount of spine force FC .

The end-e¤ector forms a rigid con…guration if there exists a set of positive TA1, TA2, TB,

and FC for any given applied loads that satis…es the force equilibrium equations:

X
F = 0

X
MO = 0
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Suppose the tension forces TA1 and TA2 are replaced with an equivalent force TA and a

torque MA at point O. Note that TA is also aligned to the cable axis A. By applying the

superposition principle on the translational system (i.e. ignoring the torque), it can be observed

that the translational sub-system is identical to Case C. Therefore there exists a spine force,

FC that induces a tensile force on the cables.

 

End-effector 

L1 
 

L3 

O 

TA1 FC 

TA2 

L2 
TB 

P 

Pn 

Pt 

 B 

M 
t 

n

 

Figure 3-6: Zero Translational and Rotational End E¤ector under Arbitrary Load and Moment

As for the rotational system, consider the parallel cable joint in Figure 3-7. The system is

tensionable for a …nite amount of applied torque, M . The torque capacity of a parallel cable

joint - the amount of applied torque that a parallel cable joint can balance is dependent on the

amount of the total tension on both cables. The equations of the force / torque equilibrium

about point O are:

P
Fy = 0 : TA = TA1 +TA2 (3.3)

P
MO = 0 : M = TA1d sin(¯A) ¡ TA2d sin(¯A) (3.4)

17

γγγγ 

ββββ
A ββββ



 

O 

TA1 

TA2 M 

PA 

dc 

dc 

y 

x 

d d 

Figure 3-7: Torque capacity of a parallel cable joint. PA is an applied force that is equal in
magnitude, but opposite in direction when compared to the equivalent cable tension, TA

If both of TA1 and TA2 are positive, and knowing neither TA1 nor TA2 is bigger than TA,

it can be concluded that the maximum torque that can be applied to the parallel cable joint

without losing the cable tension must satisfy the following inequality:

¡TAd sin(¯A) · M · TAd sin(¯A) (3.5)

Note that the torque capacity is heavily dependent on TA, which in turn holds a linear

relationship with FC from Case B. Therefore, an increase in FC would generally result in a

larger torque capacity on the parallel cable joint. It can be concluded that there exists a …nite

spine force to generate a large enough torque capacity to form a rigid pose for the rotational

system. Therefore, the entire system is tensionable.

It is important to compute the minimum necessary spine force and the cable tension quanti-

tatively in the design process. Solving Equations (3:3) and (3:4) simultaneously and appending

TB in the system produces:

8
>>><
>>>:

TA1

TA2

TB

9
>>>=
>>>;

=

2
6664

0:5 0 1
2d sin(¯A)

0:5 0 ¡ 1
2d sin(¯A)

0 1 0

3
7775

8
>>><
>>>:

TA

TB

M

9
>>>=
>>>;

(3.6)
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Here, two sets of force that are important to the dynamic behaviour of the robot should be

de…ned:

fTg =

8
>>><
>>>:

TA1

TA2

TB

9
>>>=
>>>;

(3.7)

fLg =

8
>>><
>>>:

F 0
C

P n

M

9
>>>=
>>>;

(3.8)

The cable tension vector (3:7), which consists of the tension of the individual cable, and

the load vector (3:8), which is a set of external load and moment applied to the end-e¤ector

typically from the inertia force of a moving body.

Appending the applied moment, M to Equation (3:2) produces a mapping function that

involves L: 8
>>><
>>>:

TA

TB

M

9
>>>=
>>>;

=

2
6664

¡cos(°¡¯B)
sin(¯B¡¯A)

sin(°¡¯B )
sin(¯B¡¯A) 0

cos(°¡¯A)
sin(¯B¡¯A) ¡ sin(°¡¯A)

sin(¯B¡¯A) 0

0 0 1

3
7775

8
>>><
>>>:

F 0
C

Pn

M

9
>>>=
>>>;

which is also compatible with Equation (3:6). Once it is substituted back into Equation (3:2),

it can be shown that T is also linearly related to L by a set of linear equations. The linear

mapping matrix will be referred as the J matrix:

8
>>><
>>>:

TA1

TA2

TB

9
>>>=
>>>;

=

2
6664

0:5 0 1
2dsin(¯A)

0:5 0 ¡ 1
2d sin(¯A)

0 1 0

3
7775

2
6664

¡ cos(°¡¯B )
sin(¯B¡¯A)

sin(°¡¯B )
sin(¯B¡¯A) 0

cos(°¡¯A)
sin(¯B¡¯A) ¡ sin(°¡¯A)

sin(¯B¡¯A) 0

0 0 1

3
7775

8
>>><
>>>:

F 0
C

Pn

M

9
>>>=
>>>;

(3.9)

fTg = [J] fLg

E) General tensionability condition with arbitrary load

All of the con…gurations that have been investigated so far are restricted to a triple inter-

secting point between the cable axes and the spine axis. There are cases when these axes may

not be able to intersect all the time. The cable-robot shown in Figure 3-8 is the most general

con…guration for this type of robot. For the general case, let point O be the pivot point of the
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spine, ±x be the horizontal eccentric distance measured from the axis of the parallel cable joint

to point O (positive if the intersection is between the spine axis and cable B; note that the ±x

is negative as shown in the Figure 3-8), and ±y to be the vertical eccentric distance measured

from the axis of cable B and point O (positive if the intersection is below point O). This

generalized setup is tensionable for any external force and torque by a …nite value of spine force

if the following conditions are met:

C1 : ¯A ¡¯B < 180± (3.10)

C2 : 180± > ¯B > ° +90± > ¯A > 0± (3.11)

C3 :
¯̄
¯̄±x + ±y

cos(° ¡¯A)
cos(° ¡ ¯B)

cos(¯B)
cos(¯A)

¯̄
¯̄ < d (3.12)

   

End - effector   

L 1   
  

L 3   

O   

T A1   

F C   

T A2   

L 2   
  

T B   

  P   

P n   

P t   

      

  
M   

t   

n 
t   

  

   
  

    
  

Figure 3-8: General cable-robot con…guration with eccentric distance. Note that ±x is negative
and ±y is positive as shown in the picture.
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These conditions are necessary to ensure a monotonic relationship between the cable tensions

and the spine force. The equilibrium equations of the end-e¤ector show that the cable tensions

are linearly related to the applied loads. Of all three components in the load vector, the e¤ective

spine force, F 0
C is the only directly controllable load. Since the objective is to obtain a positive

cable tension with a positive spine force, one must ensure all cable tensions monotonically

increase with the spine force. Mathematically speaking, the derivatives of the cable tensions

with respect to the spine force must be positive.

The introduction of the eccentric distance generates a bias torque about point O. The

e¤ect is two additional terms introduced in Equations (3:4). Therefore, the load to tension

mapping function can be re-derived with the necessary update from Equations (3:6) and (3:9)

accordingly. Incorporating the eccentricity terms in Equation (3:4) produces:

M = (TA1 ¡ TA2)d sin(¯A)+ (TA1 + TA2) (±y cos(¯A) ¡ ±x sin(¯A)) + TB±y cos(¯B) (3.13)

With the new moment equilibrium equation, Equation (3:6) becomes:

8
>>><
>>>:

TA1

TA2

TB

9
>>>=
>>>;

=

2
6664

1
2
¡
1 ¡ ±x

d
¢ 1

2
±y
d

cos(¯B )
sin(¯A)

1
2d sin(¯A)

1
2
¡
1 + ±x

d
¢

¡1
2
±y
d
cos(¯B)
sin(¯A)

¡ 1
2d sin(¯A)

0 1 0

3
7775

8
>>><
>>>:

TA

TB

M

9
>>>=
>>>;

(3.14)

Finally Equation (3:9) can be modi…ed with the update from Equation (3:14) to obtained:

8
>>><
>>>:

TA1

TA2

TB

9
>>>=
>>>;

=

2
6664

1
2
¡
1 ¡ ±x

d
¢ 1

2
±y
d

cos(¯B)
sin(¯A)

1
2d sin(¯A)

1
2
¡
1 + ±x

d
¢

¡1
2
±y
d
cos(¯B)
sin(¯A)

¡ 1
2d sin(¯A)

0 1 0

3
7775

2
6664

¡ cos(°¡¯B)
sin(¯B¡¯A)

sin(°¡¯B )
sin(¯B¡¯A) 0

cos(°¡¯A)
sin(¯B¡¯A) ¡ sin(°¡¯A)

sin(¯B¡¯A) 0

0 0 1

3
7775

8
>>><
>>>:

F 0
C

P n

M

9
>>>=
>>>;

(3.15)
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The product of the middle matrix in Equation (3:15) forms the new J matrix. After some

simpli…cation, each column of the J matrix becomes:

J =
h

Ji1 Ji2 Ji3
i

Ji1 =
1
2d

cos(° ¡¯B)
sin(¯B ¡¯A)

2
6664

¡
h
d ¡ ±x ¡ ±y cos(¯B)

sin(¯A)
cos(°¡¯A)
cos(°¡¯B)

i

¡
h
d + ±x + ±y cos(¯B)

sin(¯A)
cos(°¡¯A)
cos(°¡¯B)

i

2dcos(°¡¯A)
cos(°¡¯B )

3
7775

Ji2 =
1
2d

sin(° ¡ ¯B)
sin(¯B ¡¯A)

2
6664

h
d ¡ ±x ¡ ±y cos(¯B )

sin(¯A)
sin(°¡¯A)
sin(°¡¯B)

i
h
d + ±x + ±y cos(¯B )

sin(¯A)
sin(°¡¯A)
sin(°¡¯B)

i

¡2d sin(°¡¯A)
sin(°¡¯B)

3
7775

Ji3 =
1
2d

1
sin(¯A)

2
6664

1

¡1

0

3
7775 (3.16)

Due to the linear relationship between the cable tensions and the spine force, the derivatives

of the cable tension with respect to the spine force are embedded in the …rst column of the

J matrix in Equation (3:16). The tensionability condition ensured when Ji1 are positive for

i = 1::3 is synonymous with satisfying the inequalities in Equations (3:10) to (3:12). Conditions

C1 and C2 in Equations (3:10) and (3:11) are geometric constraints that must be met in setting

up the end-e¤ector con…guration. They are also conditions that were inspired by Case C in this

subsection. Satisfying these conditions automatically guarantees @TA1@F0C
, @TA2@F 0C

to be positive in

the absence of any eccentric distance, and they also set @TB@F 0C to be positive without any further

restriction. The eccentric distance terms in Equation (3:16) can be interpreted as biases that

shift the tension distribution amongst the parallel cable joint. Inequality Equation (3:12) in

Condition C3 is designed to establish a minimum bound on the horizontal cable separation

distance, d so that it can tolerate this shift in tension.
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3.3 Application of the Tensionability Conditions and the Equa-

tions of Motion

The tensionability criteria investigated above emphasizes one common feature; there exists a

minimum, …nite spine force, FC that generates rigid manipulator con…gurations for a given

bound on the external load. The design strategy is to …nd that minimum necessary spine force

and apply it to the entire workspace of the manipulator. The exact analysis would include the

kinematic model of the entire robot. The cable tensions can be determined by Equation (3:15).

A design optimization procedure usually includes …nding some mechanical parameters such as

the maximum and minimum cable tensions, actuator torque powers given some constraints on

the desired speed and acceleration. This can be accomplished by evaluating the equations of

motion and the equation of tensions using the minimum spine force at discrete points on the

workspace. Once all of the relevant mechanical properties have been identi…ed, one can compute

the design cost (or merit) of the con…guration and apply standard optimization procedure to

…nd the optimal robot con…guration. A detailed design procedure is discussed in Chapter 4.

3.3.1 Insight into Tensionability Equations

There are only three (end-e¤ector) kinematical independent parameters in these equations,

F 0
C , P n, and M; these parameters form the load vector. The cable tensions equation can be

considered as a 3 by 3 transformation matrix that maps the dynamic force to the cable tensions.

There are two important insights to the cable tensions equation. Firstly, the eccentric distances,

±x and ±y provide bias in the cable tensions of the parallel cable joint. The eccentric distances

will always increase the range of the cable tensions under di¤erent dynamic and operating

conditions. Therefore, eccentric distances should be avoided at all times. Secondly, the

horizontal cable separation distance, d reduces the e¤ect of any applied torque and all other

eccentric loads. This e¤ectively reduces the asymmetric e¤ect on the system. One major

drawback of a large d is its association to the end-e¤ector size, which usually causes a larger

inertia load. Therefore, the optimal design must be a balance between the cable separation

distance and other constraints. Thirdly, the e¤ect of the applied torque is magni…ed with a

small cable axes angle, ¯A. Another geometric interpretation of a small ¯A is that the distance

23



between the cables in the parallel cable joint approaches to zero. This is e¤ectively a region

that is close to the singular con…guration of the system. The minimum cable tension condition

is expected to occur when the end-e¤ector is close to this critical point.

3.3.2 Rewriting the Load Vector in terms of the End-E¤ector Kinematics

Although tensionability is a feature that is associated with the statics loading on the end-

e¤ector, it is important to ensure that all cables in the cable-robot are held under tension

under a given velocity and acceleration. Moreover, there should be a minimum cable tension

speci…cation for safety purposes. Under the conditions listed in Section 3.2.1, there exists a

minimum spine force to put the manipulator in a rigid pose. It is necessary to …nd this spine

force before evaluating other mechanical performance indicators.

The static equations stated in Equation (3:15) would be a good start. However, the load

vector does not constitute a good choice of independent variable as there is no a priori knowledge

regarding the Pn and the M acting on the end-e¤ector. Better choices of independent variables

are the kinematic parameters such as maximum velocity and acceleration, as they are the natural

measures of the robot performance. Therefore, it would be more convenient to express the cable

tension vector from these kinematic parameters. In anticipation that a pneumatic cylinder is

to be employed for the spine, this work derives the load vector from the inertia force that is

produced by cylinders. This analysis is equally valid for any other revolute-prismatic-revolute

(RPR) types of spine that produces a constant spine force. The friction and dampening e¤ect

of the pneumatic cylinder are ignored for simplicity. The lower robot would now be composed

of three rigid bodies: the cylinder body, the cylinder piston, and the end-e¤ector (the cables

are considered as massless).

When a pneumatic cylinder is used as a spine, it can be considered as a RPR linkage. The

equations of motion can be derived from the Newton’s equations. Figure 3-9 shows the free

body diagram of the two rigid bodies. In the FBD, F oC denotes the force from the pressurized

air, FC is the force that the piston delivers to the end-e¤ector, and it is the equivalent to

the spine force discussed in Section 3.2.1. Mc is the moment that is transmitted through the

piston. Pcy is the normal force that the cylinder exerts on the piston interface, and P np is the

normal force that the piston exerts on the end-e¤ector. Note that P np does not represent the
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Figure 3-9: Free body diagram of the pneumatic cylinder as the spine element. All linear
dimensions are measured from the pivot point O’

Pn in the load vector, it is merely a contribution of Pn.

Starting from D’Alembert’s principle, the acceleration of the cylinder can be calculated

from the applied force and the inertia property. Then, isolate the forces, FC and P tp that the

piston exerts onto the end-e¤ector. The mathematical details are shown below. The mass

component, Mcy, Mp, are the mass of the cylinder and piston respectively; similarly the inertia

component Iocy, Iop , are the second moment of inertia of the cylinder and the piston with respect

to the pivot point O0. The dynamic force associated with the pneumatic cylinder is discussed

below:

For the tangential force, apply the force equilibrium on the piston:

FoC ¡FC + Mpg cos(°c) ¡ Mp( ÄLc ¡Lp _°2) = 0 (3.17)

FC = F oC + Mp
h
Lp _°2 ¡ ÄLc + gcos(°c)

i
(3.18)

For the normal force, apply the moment equilibrium on cylinder and the piston about pivot
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point O0:

¡Mc¡ PncyLcp¡ Mcyg sin(°)Lcy¡ IocyÄ° = 0 (3.19)

Mc +PncyLcp¡ Mpg sin(°)Lp¡ Pnp Lc¡ IopÄ° ¡ 2MpLp _Lp _° = 0 (3.20)

Adding Equation (3:19) and Equation (3:20) together produces:

¡(McyLcy + MpLp)g sin(°) ¡P np Lc ¡
¡
Iocy + Iop

¢
Ä° ¡ 2MpLp _Lp _° = 0 (3.21)

The normal force can be isolated from Equation (3:21):

Pnp = ¡ 1
Lc

h¡
Iocy + Iop

¢
Ä° + 2MpLp _Lp _° + (McyLcy +MpLp)g sin(°)

i
(3.22)

The other contribution of the load vector comes from the end-e¤ector. Consider ¢x and

¢y to be the eccentric distances between the center of gravity of the end-e¤ector that mass Me

and the pivot point O (see Figure 3-10), one can compute the gravitational (static) and the

inertia (dynamic) force that is associated with the end-e¤ector. The magnitude and direction

of the end-e¤ector acceleration is denoted by a and Áa; the magnitude and the direction of the

end-e¤ector velocity is denoted by v and Áv . This inertia force can be translated to point O

and resolved into the tangential component P t, and normal component P ne . The rotary e¤ect

can be compensated by an equivalent torque, which turns out to be the applied moment, M in

the load vector:

P t = Me[a sin (Áa ¡ °) + gcos (°)] (3.23)

Pne = ¡Me[a cos (Áa ¡°) + g sin(°)] (3.24)

M = ¡Me [a [cos(Áa)¢y + sin(Áa)¢x] + g¢x] (3.25)

By the principle of superposition, the total applied load vector (F 0
C , P n, M) is the summa-

tion of the force contributions from the cylinder in Equations (3:18) and (3:22) and the dynamic

force from the end-e¤ector in Equations (3:23) to (3:25). The following equations summarizes
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Figure 3-10: Free Body Diagram of the End-E¤ector

the computation of the load vector:

F 0
C = P t + Fc

F 0
C = Mea sin(Áa¡ °) + Mp

h
Lc _°2 ¡ ÄLc

i
+[Me +Mp]g cos(°c) + FoC (3.26)

Pn = P ne + Pnp

Pn = ¡Mea cos (Áa ¡°)¡
"¡

Iocy + Iop
¢

Lc
Ä° +2M

Lp
Lc

_Lp _°

#
¡ (Me +Mcy

Lcy
Lc

+Mp
Lp
Lc

)g sin(°)

(3.27)

M = ¡Mea [cos(Áa)¢y + sin(Áa)¢x] + Meg¢x (3.28)

3.3.3 Identifying the Minimum Spine Force and the Maximum Cable Ten-

sion

The objective of this analysis is to identify the minimum cylinder force that should be applied

to the cylinder and the maximum cable tension that can occur at the cables. It is necessary

to identify the worst case parameters that minimizes the cable tensions. Since the cylinder is

kinetically dependent on the end-e¤ector, the kinetics of the cylinder should be expressed as the
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velocity and acceleration of the end-e¤ector. Unfortunately, the complexity of the kinematic

equations makes this problem a computationally intensive optimization process. Hence, it is

not feasible to compute the exact tension minimizer. However, one can calculate the upper

and lower limit from the maximum allowable end-e¤ector velocity, Vmax and acceleration, Amax

on a term by term basis. The idea is to identify the range of the cylinder acceleration terms (Ä°,
ÄLc, _°2, and _Lc _°) in Equations (3:18) and (3:22). The enveloping load values can be computed

using the extreme values of each acceleration component.

Let the origin of the cylinder be point O0 to track the other end of the cylinder at point O

located at (x; y) relative to O0. The velocity and the acceleration of the end-e¤ector is denoted

according to Figure 3-10. Expressions for Lc and ° can be derived from trigonometry:

Lc =
p

x2 + y2 (3.29)

° = arctan
³
¡y

x

´
(3.30)

For the time derivatives of _Lc, apply implicit di¤erentiation on L2 = x2 +y2, and substitute

Lc sin(°), ¡Lc cos (°), v cos (Áv), and v sin(Áv) for x, y, _x, and _y respectively. A simple

expression of _Lc is:

_Lc =
x
Lc

_x +
y
Lc

_y

= v
Lc

[x cos (Áv) + y sin(Áv)]

= v [sin(°) cos (Áv) ¡ sin (°) cos (Áv)]

= ¡v [sin(Áv¡ °)] (3.31)

For ÄLc, take the derivative on the …rst step of Equation (3:31), and use the same substitution
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on x and y, but substitute a cos (Áa) and a sin(Áa) for Äx and Äy. A simple expression of ÄLc is:

ÄLc =
_x2

Lc
+

x
Lc

Äx +
_y2

Lc
+

y
Lc

Äy ¡
_L2
c

Lc

=
a
Lc

[x cos (Áa) + y sin(Áa)] +
v2

Lc
¡ v2 sin2 (Áv ¡°)

Lc

= a [sin(°) cos (Áa) ¡ cos (°) sin(Áa)] +
v2

Lc

£
1 ¡ sin2 (Áv¡ °)

¤

= ¡a sin (Áa ¡°) +
v2

Lc
cos2 (Áv ¡°) (3.32)

Similarly, for _°, take the derivative using the chain rule, and use above substitutions. A simple

expression of _° is:

_° =
1

1 +
¡y
x
¢2

·
¡ _y

x
+

y
x2

_x
¸

=
1
L2
c

[y _x¡ x _y]

= ¡ v
Lc

[cos (°) cos (Áv) + sin (°) sin(Áv)]

= ¡ v
Lc

[cos (Áv¡ °)] (3.33)

For Ä°, apply derivative on Equation (3:33) before the substitution. Then, use the same sub-

stitutions described above. A simple expression of Ä° is:

Ä° = ¡2 _Lc
L3
c

[y _x¡ x _y] +
1

L2
c

[yÄx ¡xÄy]

=
2 _Lc
L2
c

v [cos (°) cos (Áv) + sin(°) sin(Áv)] ¡
a

L2
c

[cos (°) cos (Áa) + sin(°) sin (Áa)]

=
2 _Lc
L2
c

v [cos (° ¡Áv)] ¡
a
L2
c

[cos (° ¡Áa)]

= ¡2v2

L2
c

sin (Áv ¡ °) cos (° ¡ Áv) ¡ a
L2
c

[cos (° ¡ Áa)] (3.34)

It is convenient to have the expressions for _°2 and _Lc _° because these terms appear frequently

in Equations (3:18) and (3:22) as the centrifugal and Coriolis accelerations. From Equations

29



Table 3.1: Parameter to calculate the Extreme Load Vector

Load Eq’n Value Centrifugal Coriolis Tangential Angular End-E¤ector
_°2 2 _Lc _° ÄLc Ä° (dynamic)

F 0
c 3.26 Min Lower N/A Upper N/A ¡MeAmax

Max Upper N/A Lower N/A MeAmax
P n 3.27 Min N/A Upper N/A Upper MeAmax

Max N/A Lower N/A Lower ¡MeAmax

Mo 3.28 Min N/A N/A N/A N/A ¡MeAmax

¯̄
¯̄ ¢x

¢y

¯̄
¯̄

Max N/A N/A N/A N/A ¡MeAmax

¯̄
¯̄ ¢x

¢y

¯̄
¯̄

(3:31) and (3:33), these expressions are:

_°2 =
v2

L2
c

cos2 (Áv ¡°) (3.35)

_Lc _° =
v2

Lc
sin(2 (Áv ¡°))

2
(3.36)

Since sin(µ) µ [¡1; 1] and cos2(µ) µ [0; 1], the extreme accelerations can be computed from

Equations (3:32) to (3:36). The ranges of these acceleration terms are:

0 · _°2 · V 2
max
L2
c

(3.37)

¡V 2
max
Lc

· 2 _Lc _° · V 2
max
Lc

(3.38)

¡Amax · ÄLc · Amax +
V 2
max
Lc

(3.39)

¡
µ

V 2
max
L2
c

+
Amax

Lc

¶
· Ä° · V 2

max
L2
c

+
Amax

Lc
(3.40)

The enveloping load value can be computed by applying the upper (lower) bound of the

acceleration on Equations (3:26), (3:27), and (3:28). Table 3.1 summarizes the combination of

these acceleration terms in computing the extremum of the load vector. The overall mechanical

quantity can be computed using the values in the J matrix and the extremum value found in

Table 3.1.

The linearity properties of the dynamic equations guarantees that the minimum spine force
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exists at the extremum of the load parameters. By rearranging Equations (3:15) and (3:26),

one can compute a set of linear equations to …nd the minimum necessary cylinder force, Fmin
C

(highest lower bound of the cylinder force). The following procedure 1 can be used to identify

the Fmin
C of a particular robot pose given a certain value of minimum cable tension, Tmin.

Step 1: Calculate F¤
C = (Mp+ Me) (g cos (°) ¡ Amax) ¡ Mp V

2
max
Lc

Step 2: for k=1..3 for each cable, set

P nk =

8
<
:

max Pn if Jk2 · 0

min P n otherwise

9
=
;

Mok =

8
<
:

max M if Jk3 · 0

min M otherwise

9
=
;

Step 3: Calculate Fmin
C = min

workspace

³
maxk

³
Tmin
k ¡Jk;2Pn¡Jk;3Mk

Jk;1
¡ F¤

C

´´

Proof. The minimum necessary cylinder (spine) force is the force that set the cable tension

to a minimum tension Tmin. From Equation (3:15), Tk = bJkc fLg, or F 0
C = Tmin

k ¡Jk;2Pn¡Jk;3Mk
Jk;1

.

The cylinder force, F oC can be isolated from Equation (3:26), which produces:

FoC =
Tmin
k ¡ Jk;2P n¡ Jk;3Mok

Jk;1
¡F ¤

C (3.41)

where F¤
C is computed in Step 1, and Equation (3:41) is similar to the expression in Step 3. A

tensionable cable system implies Jk;1 > 0. Therefore, the minimum necessary cylinder force

occurs when the normal force and the moment terms take the most negative value as illustrated

in Step 2. However, Equation (3:41) computes the minimum cylinder force for just one cable.

It is necessary to …nd the biggest F oC amongst the three cables to ensure all three cables meet

the minimum cable tension requirement. Therefore, the minimum necessary cylinder force is

the maximum of all FoC.

Another important quantity is the maximum cable tension Tmax when the minimum nec-

essary cylinder force is applied to the end-e¤ector. Unlike the computation of the minimum

necessary cylinder force, the maximum cable tension analysis requires the load vector to maxi-

mize its value. Therefore, its process is almost opposite to the computation of Tmin. Equation

(3:15) suggests the following procedure to calculate Tmax:

Step 1: Calculate F 0
c = maxF 0

c

1This procedure assumes the tensionablilty condition described in previous sections has been met.
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Step 2: for k=1..3 for each cable, set

P nk =

8
<
:

min Pn if Jk2 · 0

max Pn otherwise

9
=
;

Mok =

8
<
:

min M if Jk3 · 0

max M otherwise

9
=
;

Step 3: Calculate Tmax
k ·

0
BBB@bJkc

8
>>><
>>>:

F 0
C

Pnk
Mk

9
>>>=
>>>;

1
CCCA
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Chapter 4

Design Considerations and

Optimization Method

Since a general purpose programmable manipulator generally does not have any preference in

operating orientation, it is reasonable to expect the optimal design will have some symmetry

about the Y-axis. From a functional point of view, the robot must be both sti¤ and light

enough to satisfy the cycle rate and repeatability requirements. Moreover, the robot should

not take up too much space, yet its workspace should be relatively large for di¤erent operating

environments. All of these factors pose di¤erent con‡icting design factors, which a designer

must compromise. This chapter explores the process of obtaining optimal robot design pa-

rameters X, that mostly consists of robot dimensions. Section 4.1 presents typical design

considerations and performance indicators (PI) for the proposed planar manipulator. Section

4.2 introduces the design optimization as a process involving a feasibility test to ensure the

resulting design is tensionable. This feasibility test is performed across the robot workspace,

and it is implemented as an inner loop nested within an outer loop that optimizes the robot

design parameters. Section 4.3 and Section 4.4 detail these inner and outer loops respectively.

4.1 Design Constraints and Criteria

Two design constraints are the usable workspace and the tensionability within the workspace.

The former constraint is purely a geometric issue, and it involves the overall robot topology. The
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latter constraint is local to the end-e¤ector and is addressed in Chapter 3. A typical workspace

is speci…ed as a rectangle by its width and height. The actual dimension of the workspace is

heavily dependent on the application. In this work, the dimension of the workspace is set to

be rectangular in shape. Another design constraint is the robot cycle period; the manipulator

should be driven at high speed with a minimal amount of power. As far as cycle period

is concerned, the ability to accelerate would be a better indicator since the acceleration and

deceleration phases are likely to dominate a cycle period for high speed operations. Another

advantage of using acceleration over speed as an indicator is that acceleration provides other

mechanical conditions that are useful for evaluating the cost function. A set of robot design

parameters are considered to be infeasible if they do not meet either the design constraints or

the tensionability constraint.

As for the performance, spatial consideration such as machine footprint should also be

integrated in the decision process. This is because space is usually a precious resource in a

typical industrial environment. The relevant geometrical measurements include the robot width

and the robot height. Other performance indicators (PI) of interest are mostly mechanical

properties. The performance indicators are listed as follow:

² The footprint (width) of the design, w

² The height of the design, h

² The minimum cylinder force, Fmin
c

² The maximum cable tension, Tmax

² The maximum actuator power, Wmax

² The maximum actuator torque, Mmax

² The maximum position error factor, ±Pmax

The cost of a particular robot design (a set of dimension to de…ne a robot) would be a

function of these performance indexes. The computations of the mechanical parameters

are discussed in Section 4.3.
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Figure 4-1: Generalized Block Diagram for the Optimization Process

4.2 Optimization Methods Overview

The proposed optimization algorithm consists of two loops as indicated in Figure 4-1; the inner

loop concerns the tensionability issue and mechanical properties, while the outer loop optimizes

the robot design parameters X. A cost function that is a function of the design criteria

(C = C(PI)) is constructed to compare two di¤erent sets of design parameters. Section 4.3

and Section 4.4 give details on this general optimization structure and the computation of the

performance indexes from a robot design parameter (PI = PI(X)).

Since tensionability is a system constraint, the inner optimization loop must be able to iden-

tify the global extremum for its targeted parameters. While modern optimization algorithms

are relatively e¢cient on global convergence, they do not guarantee to converge to the global
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extremum [3]. Unless a particular robot has a convex feasibility function, modern optimization

algorithm may converges to a local extremum and does not produces the most conservative

result. Therefore, a sequential search method would be a more appropriate choice for the inner

optimization loop.

As for the outer optimization loop, geometric parameters are the parameters of interest.

Since they are the criteria for comparison purpose only, an e¤ective optimization algorithm

should be used to …nd the optimal or a near optimal solution. In order to increase the

possibility of obtaining the global optimal design parameters, the outer optimization loop has

to be repeated multiple times at di¤erent starting points for a complete optimization search.

A set of mechanical indicators are evaluated for each set of robot design parameters, the

overall cost function can be a weighted sum of these cost indicators. Some of them, namely the

mechanical indicators described in Section 4.3 can be measured by the extreme value and the

mean of the extreme value. The extreme values are of particular importance as they dictate

the speci…cation of the mechanical components. The mean extreme values should also be

considered as they are better representations of the mechanical resource requirements for the

maximum robot performance.

In this work, the proposed optimization scheme is performed in two phases. The …rst phase

computes a set of the local optimal design parameters from a random set of starting design

parameters, the cost function uses the extreme indicator values only. In the second phase, the

inner optimization loop performs a higher resolution search. Furthermore, the mean extreme

indicator values as well as the absolute extreme indicator values are used for computing the

design cost. The starting points of the second phase optimization are the local optimal design

parameters obtained in the previous phase.

4.3 Computation of the Necessary Mechanical Indicators - The

Inner Optimization Loop

The purpose of the inner optimization loop is to produce the feasibility information and the

mechanical performance indexes listed in Section 4.1. This can only be accomplished by

calculating various properties across the workspace.
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The …rst computation is the robot feasibility, which can be ensured if the manipulator is

tensionable across its entire workspace. Under certain conditions enlisted in Section 3, the

manipulator is always tensionable regardless of the external load. Hence, they will be in a

rigid pose as long as there is a su¢cient amount of cylinder force to balance the external load.

As explained in Subsection 3.2.1, this work assumes a particular design parameter fails to meet

the tensionability criterion if there is a negative entry in the …rst column of the J matrix at

anywhere within the designed workspace. When such a violation occurs, the inner loop should

either terminate the whole optimization process (hard constraint), or output an exponentially

large value as the search approaches to the boundary of the infeasible region of the robot

con…guration space (barrier function). The implementation of the actual inner optimization

loop needs to match the designs of the outer optimization loop.

As mentioned above, it is critical to …nd the global optimizer on several mechanical prop-

erties (Fmin
c , Tmax, Wmax) in the inner optimization loop. It is more appropriate to solve this

problem by a sequential search. The idea is to discretize the workspace into a lattice of vertices,

and evaluate the mechanical properties at each and every vertex until the extreme values are

found. This particular implementation calls for a pneumatic cylinder as the spine element. It

is assumed that the cylinder force is held constant across the entire workspace. To implement

the algorithm in a computationally e¤ective manner, it is advantageous to have an initial pass

to compute J matrix by Equation (3:15) at each vertex. Tensionability and other mechanical

indicators can be computed easily from J matrix afterward.

4.3.1 Inverse Kinematics and the Computation of the Basic Mechanical

Properties

Before executing the inner optimization loop, one should derive the inverse kinematic model

and the cable axis expressions, which are needed when computing J matrix. Both of these

expressions map the workspace coordinate to its respective space coordinate:

µ = µ(x;y); µ µ f : R2 ! R2 (4.1)

¯ = ¯(x;y); ¯ µ f : R2 ! R2 (4.2)
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The inverse kinematics equation, µ in Equation (4:1), and the cable axes equation ¯ in

Equation (4:2) are dependent on the upper robot assembly and the robot design parameters.

Moreover, the computation of the equation of motions also require the cylinder length Lc in

Equation (3:29) and the spine axis angle ° in Equation (3:30), which are independent from the

upper robot assembly assuming a RPR type of spine is used. In the initial pass of the inner

loop, one should calculate J matrix at each vertex of the grid. If the design parameters were

not inherently tensionable (as described in Case E of Section 3.2.1), the inner optimization loop

should store the minimum value of Ji1. This is needed later for a global convergence. At

the same time, the minimum cylinder force, Fmin
c can be computed by the procedure shown in

Section 3.3.3.

Once J matrix has been obtained and the Fmin
c has been determined, other basic mechan-

ical properties can be computed hereafter. It is essential to compute the global Fmin
c before

computing other mechanical indicators such as the maximum cable tension (using the biggest

minimum necessary cylinder force of all poses) as most of these indicators monotonically in-

creases with the cylinder force. A typical scenario is to …nd the worst case mechanical indicators

at a bounded end-e¤ector acceleration. In this case, the dynamic e¤ect of the cylinder (cen-

tral assembly) could be signi…cant. A possible procedure to compute the minimum required

cylinder force and the maximum cable tension at a given pose is shown in Section 3.3.3.

4.3.2 Computation of the Position Error Factor

Another important performance index is the position error factor, ±P . The position error factor

is de…ned to be the maximum amount of the position error (~x, ~y ) in the workspace coordinate

due to a slight deviation of actuator angle (~µ1; ~µ2) in the robot actuator space. In this work,

a …rst order approximation technique is used to approximate the error. The mathematical

formulation is:

±P = 1¯̄
¯
¯̄
¯
j
~µ1 ~µ2

k¯̄
¯
¯̄
¯

0
@ sup

kb~µ1 ~µ2ck<"

°°°°°°

8
<
:

~x

~y

9
=
;

°°°°°°

1
A (4.3)

where b:c denotes a row matrix, f:g denotes a column matrix, and k:k denotes a general vector

norm.

The position perturbation term in Equation (4:3) can be estimated by …rst order on ap-

38



proximation:

8
<
:

~x

~y

9
=
; =

8
<
:

x(µ1 +~µ1; µ2 + ~µ2)

y(µ1 + ~µ1; µ2 +~µ2)

9
=
; ¡

8
<
:

x(µ1; µ2)

y(µ1; µ2)

9
=
;

=

8
<
:

x(µ1; µ2)

y(µ1; µ2)

9
=
; + 5

8
<
:

(µ1; µ2)

(µ1; µ2)

9
=
;

8
<
:

~µ1
~µ2

9
=
; ¡

8
<
:

x(µ1; µ2)

y(µ1; µ2)

9
=
; + O(2)

¼
2
4
dx
dµ1

dx
dµ2

dy
dµ1

dy
dµ2

3
5

8
<
:

~µ1
~µ2

9
=
;

Note that the mapping matrix is the velocity Jacobian matrix of the manipulator, Jv . There-

fore, ±P simpli…es to:

±P ¼
sup

°°°°°°
Jv

8
<
:

~µ1
~µ2

9
=
;

°°°°°°
°°°
j
~µ1 ~µ2

k°°°
= kJvk (4.4)

in this case kJvk is the matrix norm of Jv

One small problem is that the forward kinematics equations for parallel mechanism are

usually derived as a set of implicit equations, or a set of relatively complex explicit expressions.

This may raise runtime issues when they are computed many times in the sequential search, and

the computation of the Jacobian matrix is likely going to be more time consuming. Fortunately,

it is possible to derive the Jacobian matrix from the inverse kinematics using inverse velocity

analysis [16]. Moreover, it turns out that part of this computation is also required in computing

the maximum actuator torque and power in Section 4.3.3. Therefore, this indirect approach

does not add too much computation burden in the overall analysis.

Suppose Equation (4:1) has been derived, the …rst order approximation on some small

perturbation in the workspace coordinate suggests a set of equivalent equations that is similar
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to Jv:

8
<
:

µ1(x+ ~x;y + ~y)

µ2(x+ ~x;y + ~y)

9
=
; =

8
<
:

µ1(x;y)

µ2(x;y)

9
=
; + 5µ

8
<
:

~x

~y

9
=
;

8
<
:

~µ1
~µ2

9
=
; =

2
4
dµ1
dx

dµ1
dy

dµ2
dx

dµ2
dy

3
5

8
<
:

~x

~y

9
=
; (4.5)

It follows that the manipulator Jacobian matrix, Jv is the inverse of the inverse kinematics

gradient function, [5µ]¡1:

Jv = [5µ]¡1 (4.6)

From Equation (4:4), it follows that the position error factor is some form of the norm

of [5µ]¡1. This work assumes the position deviation is caused by an independent normally

distributed random error in the actuators. As a result, the norm to be employed is the (matrix)

euclidean norm, which makes ±P become a proportional constant between the position deviation

and the standard deviation of a normally distributed actuator errors:

±P =
°°°[5µ]¡1

°°°
2

(4.7)

In some applications, a designer may be required to design a manipulator against the worst

case scenario. In those cases, a 1-norm would be a more appropriate choice as it makes ±P

become a measurement of position deviation due to a uniformly distributed random actuator

errors.

Since the position error factor is to be evaluated at every node of the inner optimization

loop, it is suggested to simplify the computation as much as possible. Mathematically speaking,

the euclidean norm is the same as the largest singular value of the [5µ]¡1, which is also equal

to the square root of the largest eigenvalue of
£
5µ¡1

¤T £
5µ¡1

¤
. Since

£
5µ¡1

¤T £
5µ¡1

¤
=

£
5µT 5 µ

¤¡1 is a positive de…nite matrix providing the manipulator is not in a singular pose, it

can be shown that the matrix inversion step in Equation (4:7) is not necessary. An equivalent
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equation is:

±P =
1q

min
¡
eig

¡5µ 5 µT
¢¢ (4.8)

where eig is the function that calculates the eigenvalue of a square matrix.

4.3.3 Computation of the Maximum Actuator E¤ort and Power

Another mechanical indicator to be explored is the maximum actuator e¤ort and power based

on the desired maximum velocity. The following analysis is based on a rotary actuator and

the rotary e¤ort - Torque. The same analysis is equally valid with linear actuator and linear

e¤ort - force. Unlike other mechanical parameters, the actuator e¤orts and powers involve a

signi…cant amount of dynamic force from the upper robot assembly. Consider a cable attached

to a rotary actuator i through a rigid linkage, the torque that the actuator delivers to the

system, Mi and the power that the actuator delivers to the system Wi can be calculated by the

following equations:

Mi = Ti £Li + IiÄµi + mi ¹Li cos (µ) g (4.9)

Wi = Mi _µi (4.10)

where, µi is the direction of rotation measured from horizontal

Ti is the cable tension

Li is the length of the moment arm of the rigid linkage
¹Li is the distance between the center of mass of the rigid linkage and the pivot point

Ii is the mass moment of inertia of the rigid linkage

mi is the mass of the rigid linkage

This torque is the summation of the applied torque from the cable, the inertia torque from

the rigid linkage, and the gravitational force from the mass of the linkage. The actual maximum

joint torque is di¢cult to compute in general, however it is possible to establish an upper bound

on the joint power by assuming the maximum applied torque coexists with the maximum inertia

torque. Since there is no limitation imposed on the joint speed and acceleration, it is necessary

to relate the joint kinetics to the workspace kinetics. Expressions can be obtained by taking
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the time derivative of the inverse kinematic equation (4:1) as shown below:

_µi = 5µi (x;y)

8
<
:

_x

_y

9
=
;

=
j
@µi
@x

@µi
@y

k
8
<
:

_x

_y

9
=
; (4.11)

Äµi = 5µi (x;y)

8
<
:

Äx

Äy

9
=
; +

j
_x _y

k
H (µi (x;y))

8
<
:

_x

_y

9
=
;

=
j
@µi
@x

@µi
@y

k
8
<
:

Äx

Äy

9
=
; +

j
_x _y

k
2
4
@2µi
@x2

@2µi
@x@y

@2µi
@x@y

@2µi
@y2

3
5

8
<
:

_x

_y

9
=
; (4.12)

Since the magnitude of the end-e¤ector velocity and acceleration are bounded by Vmax

and Amax, the maximum actuator velocity and acceleration can be obtained by solving the

constrained optimization equations. First consider the joint velocity, it is in a linear form with

respect to the end-e¤ector velocity. From linear algebra, the least upper bound (supremum)

and the biggest lower bound (in…mum) of the expression is §k5µik2 Vmax.

As for the joint acceleration expression in Equation (4:12), it consists of two linearly inde-

pendent expressions. The extremum of Äµi exists at the extreme value of these expressions. The

…rst expression is related to the direct acceleration, and it is in a linear form with respect to the

end-e¤ector acceleration; therefore, the magnitude of the …rst term is bounded by k5µik2Amax.

The second joint acceleration expression is related to Christo¤el symbols, and it is in a quadratic

form with respect to the end-e¤ector velocity. Since the Hessian of a smooth function is always

symmetrical, the extreme values from the second expression are related to the eigenvalues, ¸

of the Hessian matrix. There are several possibilities on the resulting extremum values in a

quadratic form listed in Table 4.1:

An observation from Table 4.1 shows that the extremum values of the second expression

are V 2
max max( ;̧ 0) and V 2

max min(¸;0). The following equations concisely compute the joint
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Table 4.1: The extremum value from the second joint acceleration expression

Case Positive De…niteness Eigenvalue Least Upper Bound Biggest Lower Bound

1 Positive De…nite ¸1 > 0
¸2 > 0 V 2

max¸1 0

2 Positive Semide…nite ¸1 > 0
¸2 = 0 V 2

max¸1 0

3 Inde…nite ¸1 > 0
¸2 < 0 V 2

max¸1 V 2
max¸2

4 Negative Semide…nite ¸1 = 0
¸2 < 0 0 V 2

max¸2

5 Negative De…nite ¸1 < 0
¸2 < 0 0 V 2

max¸2

kinetics extremum:

_µ+i = Vmax k5µik2 (4.13)

Äµ+i = Amax k5µik2 + V 2
max max(¸max;0) (4.14)

_µ¡i = ¡Vmax k5µik2 (4.15)

Äµ¡i = ¡Amax k5µik2 + V 2
max min(¸min;0) (4.16)

where _µ+i , Äµ+i represent the upper bound of the joint velocity and acceleration respectively,

and
_µ¡i , Äµ¡i represent the lower bound of the joint velocity and acceleration respectively.

Typical actuators do not have a preference on the operating direction, except for double

acting cylinders, which provide slightly more force in the pushing direction than in the pulling

direction. Therefore, it is reasonable to assume that the torque capacity of the actuator is

the bigger of the forward torque and the reverse torque. From the computational point of

view, it is slightly more e¢cient to compute the reverse torque to be a positive value in the

reverse direction. Since the tension component always provides a forward torque, a maximum

reverse torque must occur with a minimal tension and the most negative acceleration. The

above arguments result in the following equation that computes the maximum actuator torque
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requirement that always produces a positive torque:

Mmax
i = max

n
Tmax
i £L + IiÄµ

+
i +mi¹Li cos (µ) g;¡Tmin

i £L ¡ IiÄµ
¡
i ¡mi¹Li cos (µ) g

o
(4.17)

If it is further assumed the amount of the sinking power be the same as the amount of the

sourcing power in the actuator, the maximum power requirement of the actuator i would be the

higher of the sinking power and the sourcing power. In this case, the reverse torque should be

considered as a negative torque in the forward direction as indicated in the following equation:

Wmax
i = max

n³
Tmax
i £ L + IiÄµ

+
i + mi¹Li cos (µ) g

´
_µ+i ;

³
Tmin
i £ L + IiÄµ

¡
i + mi¹Li cos (µ) g

´
_µ¡i

o

(4.18)

Note that the 2nd term in Equation (4:18) produces a positive power by multiplying a

negative torque with a negative velocity; it is needed for comparison purposes.

4.4 Computation of the Desired Geometrical and Performance

Indicators - The Outer Optimization Loop

The objective of the outer optimization loop is to …nd a set of robot design parameters that has

a low design cost. Since this optimization does not require the global optimal result, a simple

and e¤ective direct search optimization algorithm is used to identify a set of optimal or near

optimal robot design parameters. The simplex method was chosen to implement in this work.

This step requires the kinematic model of the entire robot, hence, the topology of the upper

robot must be known. A simplex algorithm and other direct search methods are described in

[21].

Direct search algorithms typically do not produce the global optimal solution. Thus, this

outer optimization is run multiple times to increase the probability of obtaining a set of the

global optimal design parameters. The n-parameters that are required to constrain a robot

design is denoted to be X ½ Rn. In this work, a variation of the simplex algorithm is chosen

for optimization purposes. To set up a simplex algorithm, an initial robot design parameter

X0 should be randomly chosen in the …rst phase of optimization. Feasibility should be checked

for the initial design parameters. If the design parameters are feasible, a set of n + 1 robot
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design parameter that forms a convex-hull near to X0 is chosen as the initial simplex. One way

to choose such a set of design parameter is to randomly add a small normalized deviation to

X0. The small deviation can be generated by a Gaussian distribution routine (and normalized

afterward) for an unbiased result. The resulting simplex does not always inscribe X0, but

its centroid will be closed to the feasible design parameter. Regardless of how these robot

parameters were generated, it is essential to check for feasibility at each and every single design

parameter. This is because there is no guarantee that the newly generated design parameters

are also laying inside the feasible region of the design con…guration space. Once the initial

simplex is chosen, the simplex algorithm can begin to execute. Upon the convergent of the

simplex, the best design parameter amongst the n+1 points in the con…guration space is saved

for the second phase of analysis.

4.4.1 Modi…ed Dynamic Simplex Algorithm

Simplex algorithm, just like any other direct search method can guarantee a global convergence

to a stationary point only if there is a su¢ciently rich set of feasible search directions available

in the algorithm [22]. This is particularly challenging if there is a non-linear and/or if there is

no a priori knowledge on the constraint function. Although modern direct search algorithms

that utilize stochastic techniques provide a stronger convergent characteristic [15], they are

relatively di¢cult to implement and often require several expert parameter selections for the

…nest performance. Therefore, this work implements a simple dynamic simplex algorithm with

L1 logarithmic penalty function to achieve a near optimal result.

Instead of establishing the entire constrained optimization method, it is more straight-

forward to introduce the unconstrained simplex search algorithm. Let F(X) be the design cost

function to minimize and Y i be the cost value of the ith robot design parameter in the simplex

set Xi, the Nelder and Meld simplex algorithm calls for successive re‡ection on the most costly

set of design parameters [17]. For the purpose of completeness, the algorithm is reproduced

with speci…c elaborations on this design problem.
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The Nelder and Meld Simplex:

Set K = 0

Step 1 Re‡ection Step:

Let Xmin and Xmax be the least and most costly design parameter and ¹X be

the centroid (mean) of all n+ 1 design parameters, compute

Xref = 2 ¹X ¡ Xmax .

Step 2: Contraction / Expansion Step:

case 1: If F (Xref) < F (Xmin), attempt expansion :

0
@ Xnew

K

1
A =

8
>>>>>><
>>>>>>:

0
@ 2Xref ¡ ¹X

0

1
A if F

¡
2Xref ¡ ¹X

¢
< F (Xref)

0
@ Xref

0

1
A otherwise

9
>>>>>>=
>>>>>>;

case 2: if F (Xref) > F (Xmax), attempt contraction

0
@ Xnew

K

1
A =

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

0
@
Xref+¹X

2

0

1
A if F

³
Xref+ ¹X

2

´
< F(Xmin)

0
@
Xref+¹X

2

K +1

1
A if F(Xmin) · F

³
Xref+ ¹X

2

´
< F (Xmax)

0
@ Xref

n + 1

1
A otherwise

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

Step 3: Replace the vertex

If K < n +1, replace Xmax with Xnew

otherwise contract the entire simplex: set Xi =
(Xi+ ¹X)

2

Step 4: Check for convergence

Here the characteristic norm of the simplex is de…ned to be the largest

Euclidean distance between the simplex centroid and its vertices. If the

characteristic norm is below a certain prede…ned threshold ¾max, the simplex

algorithm is said to be converged and the result of the search is Xmin.

Otherwise, go back to Step 1
However, the design problem requires a constrained optimization algorithm. In order to

avoid hitting the infeasible region, a modi…ed objective function that takes the degree of the
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admissibility into consideration is employed. This approach is known as the L1 penalty method

[21]. The underlying principle is to add a penalty cost as the searching sequence approaches to

the boundary of the admissible region, but the penalty is de-weighted as the sequence converges

[21]. Let F(X) and C(X) be the cost function to be minimized and the constraint function for

which a feasible robot design parameter would produce a positive value, the e¤ective objective

function can be written as a weighted sum between F(X) and C(X):

G(x) = F (X) +¹ log (C (X)) (4.19)

The weighting parameter ¹, is designed such that it will asymptotically approach to zero as the

search sequence converges. In this case, the weighting parameter can be the characteristic norm

of the simplex described in Step 4 of the presented simplex algorithm. This penalty approach

prevents the search sequence from stepping over the constraint boundary, while introducing

minimal amount of disturbance to the cost function during the search. The natural choice of

the constraint function for the tensionability requirement would be the smallest value of the

column of J matrix as the system becomes untensionable when the …rst column of J matrix

becomes zero. The simplex algorithm enlisted above can be adopted by simply replacing F (X)

with G (X).

4.5 Summary of the Optimization Process

There are two phases in the optimization process. In the …rst phase, the optimization outlined

in Figure 4-2 is run multiple times with di¤erent randomly selected starting design parameters,

Xo. It is recommended to perform at least 200 iterations in the …rst phase of the optimization

process. Within each call of this outer optimization loop, an inner optimization loop is called

several times as indicated by the shaded blocks in Figure 4-2. The inner loop is shown in Figure

4-3. In this inner loop, a sequential search technique is employed to calculate the mechanical

parameters within the workspace. The local optimal design parameters X¤ that are computed

in the …rst phase are saved for the 2nd phase optimization.

The second phase of the optimization process is similar to the …rst phase with two key

changes:
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1. The inner loop of the second phase uses a denser mesh and looks for the mean of the

mechanical performance indicators to compute a design cost.

2. The second phase analysis begins with the promising local optimal design parameters

that are obtained from the previous phase. Since the second phase of the optimization

process begins with relatively good starting points, it does not require as many iteration

as in the …rst phase of the optimization process. It is recommended reprocess the best

25% of the local optimal design parameters.

The overall optimal design is the design parameter that has the lowest cost value in the

second phase.
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Figure 4-2: Outer Optimization of Geometric Parameters
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Chapter 5

Mechanical Design of Cable-Based

Planar Robot

Even with a good conceptual design and a sound implementation strategy, this work would

not be completed without showing some typical optimal design results. The purpose of this

chapter is twofold, …rstly it gives comprehensive examples of the proposed parallel cable-robot

implementation; secondly, it provides the design parameter (dimension) of the optimal robot so

that it can be built and evaluated experimentally. Section 5.1 and 5.2 explore two completed

implementations of the proposed cable-based robot design. Both of these designs utilize a

pneumatic cylinder as the spine and two rotary actuators to manipulate the end-e¤ector. In

each design, there is a comprehensive study on the robot kinematics, the design weighting, and

the optimal robot performance documented in their respective sections. Due to some historical

background of this project, the actual prototype does not have the optimal design parameters

presented in this chapter.

This analysis assumes that the spine force is held constant across the entire workspace. The

inverse kinematic equations for these designs are discussed for deriving the actuator torque and

power equations. The workspace considered in this study is a 700mm by 100mm rectangle and

the maximum velocity and acceleration of the end-e¤ector are set to 4:0m=s and 4g respectively.

Also, the operating cable tension is set to be no less than 1N. The performance indexes that

are used in this design are the same as those listed in Section 4.1
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There are some standard mechanical components, which are heavy enough to have a consid-

erable amount of e¤ect on the dynamic behaviour of the robot. In both designs, it is assumed

that a 25:4mm diameter, 2mm wall thickness aluminium cylinder tube is used. The length of

the cylinder tube is set to be the same as the distance measured from the top of the workspace

to the cylinder upper pivot. The center of mass is assumed to be at its geometric center. The

cylinder piston is to be constructed by two 6:35mm diameter steel rods, and they should be

long enough to cover the necessary stroke. The end-e¤ector is assumed to be a 40mm wide

by 5mm thick aluminium plate, and its length is set to be equal to twice the horizontal cable

separation distance, d. The horizontal and vertical distance measured from the pivot point O

to the combined center of mass of the end-e¤ector and 500g payload should be within §1cm

and §5cm respectively.

One important tool that has been neglected in this work is a general strategy to come

up with the inverse kinematic equations for this kind of parallel mechanism, which has been

partially addressed in the recent literature. A general workspace analysis of a broad class of

2D parallel manipulators can be found in [14] and [24].

5.1 Design 1: 2D-Deltabot

The …rst design uses a pair of rotational linkages to actuate the end-e¤ector. In this design,

the cables do not change in length, and we will refer to them as passive cables [19],[20]. Figure

5-1 is a pictorial view of the proposed design. This con…guration is kinematically similar to

Delta, and this document will refer to it as 2D-Deltabot [20].

Section 3.3 discusses the negative impacts of the end-e¤ector eccentric distances. In this

design, these eccentric distances are eliminated by attaching the cables to the end-e¤ector

through revolute joints. The design parameters of this mechanism include the motor separation

distance (L0), the length of the …rst linkage (L1), the length of the cable (L2), the minimum

operation height (Y min), the top cylinder operating o¤set (dHc), and the cable separation

distance (d). In anticipation that the optimal design is symmetrical about its center axis,

the linkage on both actuators are assumed to be the same size. From the kinematics point

of view, the synchronized linkage can be replaced with an equivalent linkage midway between
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L0  L1  
dHc 

Figure 5-1: Pictorial View of 2D-Deltabot

the paired linkages. The reachable workspace of this design is shown in Figure 5-2. Note that

2D-Deltabot has a convex workspace boundary at the bottom and a concave boundary at the

top [12]. A concave work space boundary is disadvantageous as it is ine¢cient to allocate a

rectangular workspace inside the concave space.

The kinematic model for 2D-Deltabot is similar to the Rice Planar Delta Robot [14] [8].

Derived from geometry, the inverse kinematic equation for the kinematic chain of side A (the

parallel cable joint side) is:

µA(X;Y ) = arccos

0
@ L2

1 + Y 2 +(L0 ¡X)2

2L1

q
Y 2 +(L0 ¡X)2

1
A +arctan

µ
Y

L0 ¡ X

¶
¡ ¼ (5.1)

Due to the symmetry about the Y-axis, the second inverse kinematic equation, µB(X; Y ) is

µA(¡X;Y ) .
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Figure 5-2: Workspace Analysis of 2D-Deltabot

Section 4.3 discussed a method to calculate the limiting bound of the mechanical power

using the Gradient and the Hessian of the inverse kinematic equations. Let A =
p

X2 + Y 2,

and Qa = L21¡L22¡A2q
4L1A2¡(L21¡L22+A2)

2 , the corresponding equations for side A of 2D-Deltabot are:

5µA = ¡ 1
A2

0
@Qa

8
<
:

Lo¡ X

¡Y

9
=
; +

8
<
:

Lo¡ X

Y

9
=
;

1
A
T

(5.2)

H11 = 2
L0 ¡ X

A2

·
@µA
@X

¡ Qa (L0 ¡X)
L2
1 ¡ L2

2 ¡ A2

µ
1 + Q2

a
L2
1 + L2

2 ¡ A2

L2
1 ¡ L2

2 ¡ A2

¶¸
+

Qa
A2 (5.3)

H12 = ¡2
Y
A2

·
@µA
@X

¡ Qa (L0 ¡ X)
L2
1 ¡L2

2 ¡A2

µ
1 +Q2

a
L2
1 +L2

2 ¡A2

L2
1 ¡L2

2 ¡A2

¶
¡ 1

2Y

¸

H22 = ¡2
Y
A2

·
@µA
@Y

¡ QaY
L2
1 ¡L2

2 ¡A2

µ
1 +Q2

a
L2
1 +L2

2 ¡A2

L2
1 ¡L2

2 ¡A2

¶¸
+

Qa
A2

Due to symmetry, the corresponding Gradient and Hessian equations for side B can be derived
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Table 5.1: Weighting on various perfomance indexes of 2D-Deltabot

Geometric Mechanical Properties
w h Fmin

c Tmax Wmax Emax

unit /mm /mm /N /N /W r=mm
Abs 0.5 0.1 5 1 1 50
Mean N/A N/A N/A 10 10 20

the corresponding equations from side A as:

5µB(X;Y ) =
j

¡@µA@X (¡X; Y ) ¡@µA@X (¡X; Y )
k

(5.4)

HB(X; Y ) =

2
4

@2µA
@X2 (¡X; Y ) ¡ @2µA

@X@Y (¡X; Y )

¡ @2µA
@X@Y (¡X; Y ) @2µA

@Y 2 (¡X; Y )

3
5 (5.5)

5.1.1 Design Weighting and Optimization Results for 2D-Deltabot

The weighting for the design merit in the initial study is tabulated in Table 5.1. Typical mid-

size servo DC brushless motor delivers 3Nm to 8Nm of torque. This is not enough to drive this

robot setup. Therefore, a gear-reducer is a necessary component in this design. As a result, the

maximum actuator torque is not critical. The best 60 (distinct) set of robot parameters from

the initial optimization process were reprocessed with a …ner inner mesh resolution. Table 5.2

shows the top 6 distinct set of robot parameters based on the established cost function. Since

most of these optimal results are very close to one to another, it is reasonable to assume that

the global optimal result has been reached. The optimal 2D-Betabot design requires 127N

of central cylinder force. Using a 25:4mm pneumatic cylinder as the spine element, the robot

operates roughly on 2:5bar of compressed air. Furthermore, the upper bound of the cable

tension is 127N. A Ø2mm steel cable wire can easily withstand this level of force [1]. As for

spatial performance, the footprint of the robot is 983mm for a 700mm wide workspace. This

is more than 75% spatial e¢ciency.

Although the design procedure is targeted to minimize the absolute as well as the average

cable tension and actuator power, a study in the critical tension distribution over the workspace
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Table 5.2: The top 10 con…gurations and the associated performance indexes for 2D-Deltabot

Con…guration Performance
L0 L1 L2 dHc Y min d w h Fmin

c Tmax Wmax Emax

mm mm mm mm mm mm mm mm N N W mm=r
1 202 239 688 29 -574 101 983 574 127 127 648 93
2 195 238 683 28 -571 98 964 571 119 128 648 95
3 177 235 666 23 -599 89 913 559 124 130 651 99
4 190 235 672 25 -560 95 945 560 121 289 653 94
5 162 233 659 19 -557 81 871 557 128 132 652 105
6 196 236 674 27 -559 98 962 559 119 128 657 92

provides some insight into the design. Figure 5-3 and 5-4 shows the contour plot of the maxi-

mum tension on the cable and the maximum actuator power of side B. Due to the symmetry

about the Y-axis, the cable tension on side B is the same as the equivalent cable tension on the

parallel cable joint when the end-e¤ector is on the opposite side of the workspace. Since there

is only one cable on side B (the single cable size), the maximum cable tension will always be

carried by Cable B; hence it carries the critical tension. A simulation of the optimal actuator

power shows that the worst case actuator power occurs at the top of the workspace near to the

actuator and the opposite lower corner of the workspace. The actuator power is profoundly

dependent on cable tension; as a result, the maximum cable tension occurs near to the region

where maximum actuator power occurs.

5.2 Design 2: 2D-Betabot

The second design utilizes a winch to actuate the end-e¤ector. In this design, the cable lengths

are controlled by the winch, and we will refer to them as active cables [19],[20]. Figure 5-5 is a

pictorial view of the proposed design. This document will refer this design as 2D-Betabot [20].

Moreover, there will be a round bending surface at the cable attachment points. If there

are two di¤erent cable bending radii on the upper and lower attachment points, there are 6

design parameters in this design (see Figure 5-7): the motor separation distance (L0), the upper

bending radius (Ru), the lower bending radius (Rl), the minimum operation height (Y min), the

top cylinder operating o¤set (dHc), and the cable separation distance (d). The bending surface
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Figure 5-4: Maximum actuator power [W] of side B for the optimal 2D-Deltabot con…guration.

57



Figure 5-5: Pictorial View of 2D-Betabot. Note the bending radius is not shown for simplicity.

can be constructed from a cable pulley. This feature eliminates the need for revolute joints

and increases the reliability of the mechanism. The radius of curvature for the bend should

be at least 45 times bigger than the radius of the steel cable to avoid bending fatigue [1].

However, this bending radius introduces eccentric distances at the end-e¤ector. From Section

3.3, this feature is going to compromise the cable joint torque capacity. As a result, there is a

competing factor between a thicker cable and a smaller bending radius. The problem is that

the cable thickness is determined by maximum cable tension, which in turn is a¤ected by the

kinematics of the robot. Instead of solving this implicit constraint analytically, one alternative

approach is to force a logarithmic barrier of the minimum bending radius constraint on the cost

function. This approach is similar to the penalty method implemented in the optimization

process, which prevents the search sequence from stepping over a constraint boundary without

adding a signi…cant impact on the cost function.

Since the kinematics of this robot is new to the best of the author’s knowledge, a detailed
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Figure 5-6: Equivalent cable length can be obtained by translating the bending radius.

derivation of the kinematic equations is needed in this work. Analogous to the workspace

analysis of 2D-Deltabot, the parallel cable joint is replaced by an equivalent linkage in this

analysis. The two bending radii can be simpli…ed by perpendicularly translating the cable by

Rl (from L1 to cL1). This equivalent cable wraps around an equivalent pulley with radius RT .

Hence, it has the same overall length as the original cable. Due to the geometric constraints,

this equivalent cable always passes through the center of the lower bending radius, see Figure

5-6 for illustration.

Figure 5-7 shows the reachable workspace of the robot. Unlike 2D-Deltabot, 2D-Betabot

has a convex workspace. There are three limiting boundaries on the reachable workspace.

The top boundary is established by a horizontal line that is RT below the center of the upper

bending radius; similarly, the left and right boundaries are established by the two vertical lines

that are RT away from the upper bending radii. The robot violates condition C1 in Equation

(3:10) if the end-e¤ector is on or above the top boundary and the end-e¤ector disengages from

the pulleys if it is not between the left and right boundaries. The lower bound of the workspace

is limited by the amount of cable in the winch or the stroke length of the pneumatic cylinder

only.

The total cable length is determined from two sections, the straight cable Lx1and the wrap-

around cable Lx2, x µ fA; Bg. On side A, consider the triangle formed by the joint center,
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Figure 5-7: Workspace Analysis of 2D-Betabot

the cable take o¤ point, and the center of the end-e¤ector, the straight section of the cable can

then be derived from the distance equation as:

LA1 =
q

(L0 ¡ X)2 + Y 2 ¡ R2
T (5.6)

The calculation of the wrap-around section requires computing the angle that the cable is

in contact with the pulley. Using the same triangle, the wrap-around cable length on side A is:

LA2 = RT
·
¼ ¡ arctan

µ
¡ Y

L0 ¡ X

¶
¡ arctan

µ
LA1
RT

¶¸
(5.7)

Due to the symmetry about the Y-axis, the equivalent cable length of side B, LB is

LA(¡X; Y ): The Gradient and the Hessian matrix of the cable length can be computed from

the sum of Equations (5:6) and (5:7). Let A be the distance between the center of a pulley
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pair, the Gradient and the Hessian of 2D-Betabot can be computed by the following equations:

A =
q

(L0 ¡X)2 +Y 2

5LA =
1
A

0
@LA1

8
<
:

X ¡ L0

Y

9
=
; + RT

8
<
:

Y

L0 ¡X

9
=
;

1
A
T

(5.8)

HA =

2
4
L0¡X
A2

³
2@LA@X + L0¡X

LA1
+ LA1
L0¡X

´
¡ YA2

³
2@LA@X + L0¡X

LA1
¡ RT
Y

´

¡ YA2
³
2@LA@X + L0¡X

LA1 ¡ RT
Y

´
Y
A2

³
¡2@LA@Y + Y

LA1 + LA1
L0¡X

´

3
5 (5.9)

In this design, pivot point O is misaligned with the cable axes as shown in Figure 3-8.

Assuming the pivot point coincides with the center of the lower pulley of side B, the horizontal

cable eccentric distance, ±x can be computed by extending the equivalent cable A to the hori-

zontal line that passes through the pulley center axis. Using the sign convention from Section

3.2.1, this eccentric distance is always positive. Similarly, the vertical cable eccentric distance,

±y is the intersection of Cable B and the vertical line that passes though the pulley center axis.

This distance is also positive in sign. The numerical calculation of these eccentric distances

are:

±x =
Rl

sin(¯A)
(5.10)

±y = ¡ Rl
cos (¯B)

(5.11)

Since the e¤ect of eccentric distances shows up as several residual terms on J matrix,

substituting Equations (5:10) and (5:11) to Equation (3:15) shows that the magnitude of the

cable axis angles, ¯ has a signi…cant contribution to the torque capacity. Therefore, it is

expected that the operating workspace should be further below the upper pulley’s level to

maximize the torque capacity. Moreover, it is possible to reduce this side e¤ect by placing the

pivot point closer to the cable take o¤ points of the lower pulleys. However, this approach will

introduce two additional design parameters in the optimization process and increase the search

magnitude by two full orders. As an initial study, it was decided that no eccentric distance

compensation should be made on the end-e¤ector design.
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5.2.1 Design Weighting and Optimization Result for 2D-Betabot

Table 5.3 tabulates the design weighting for 2D-Beta design parameters and Table 5.4 shows the

top 6 (distinct) set of robot parameter based on the established cost function. The optimal 2D-

Betabot design requires 157N of cylinder force. Assuming a 25:4mm pneumatic cylinder is to be

used, the mechanism operates on approximately 45psi of compressed air. While the 2D-Betabot

design has compatible mechanical indicators such as maximum cable tension and actuator power

when compared to the 2D-Deltabot counterpart, the 2D-Betabot performs poorly from the

spatial performance point of view. The optimization results show that the 2D-Betabot design

requires up to 50% more footprint and a 300% wider end-e¤ector when compared to the optimal

2D-Deltabot design. Furthermore, the pulley radius is concentrated at the lower end of the

allowable limits. It is clear that the wide foot print is primarily due to a signi…cantly larger

end-e¤ector, which in turn is caused by a lower torque capacity.

Table 5.3: Weighting on various perfomance indexes of 2D-Betabot

Geometric Mechanical Properties
w h Fmin

c Tmax Wmax Emax

unit /mm /mm /N /N /W mm=mm
Abs 0.5 0.1 5 1 1 500
Mean N/A N/A N/A 10 10 200

Table 5.4: The top 10 con…gurations and the associated performance indexes for 2D-Betabot

Con…guration Performance
L0 RU RL dHc Y min d w h Fmin

c Tmax Wmax Emax

mm mm mm mm mm mm mm mm N N W mm=mm
1 610 34 33 302 -669 285 1593 669 157 177 890 1.27
2 630 33 34 320 -680 270 1641 680 159 178 894 1.24
3 584 34 34 279 -654 274 1529 654 161 180 900 1.30
4 571 34 34 266 -644 305 1495 644 149 180 904 1.32
5 559 34 33 257 -638 315 1456 638 149 180 905 1.35
6 549 34 34 242 -627 292 1440 627 155 182 912 1.35

Note that the bending radius always converges to the lower end of the tolerance limit.

This indicates that the bending radius should be kept at the minimum level. A contour plot
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Figure 5-8: Maximum cable tension [N] (occurs on side B) for the optimal 2D-Betabot con…g-
uration.

for the maximum cable tension and actuator power for the optimal 2D-Betabot design are

shown in Figure 5-8 and Figure 5-9 respectively. Unlike the optimal 2D-Deltabot design, the

maximum cable tension in 2D-Betabot occurs in one location only. More importantly, there is

no stationary point (rT = 0) inside the workspace. As a result, the maximum cable tension

could have been identi…ed easily by conventional optimization algorithms, and the result would

still be the global maximum. This would be a major improvement on the computational

e¢ciency for the design optimization.

5.3 Prototype: 2D-Deltabot

5.3.1 Prototype Design and Speci…cations

Due to the past success in the development of the Deltabot, a cable-based version of the

Delta, the 2D-Deltabot was implemented for prototyping. While the design speci…cation is

reasonable for most industrial applications, the production of the prototype was limited by the

existing equipment, which includes three 0:47kW Kollmorgen servo motor and three Thompson

Industries 12:1 right angle gear-reducer. The rated torque for this drive system is 36N-m
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Figure 5-9: Maximum actuator power [W] of side B for the optimal 2D-Betabot con…guration.

[7]. With the limited actuator power, none of the optimal designs could satisfy the power

requirements. As a result, the maximum end-e¤ector speed was lowered to 2:0m=s and the

optimal set of the design parameters is listed below:

L0 = 150mm

L1 = 240mm

L2 = 525mm

dHc = 0mm

Ymin = 392mm

dP l = 75mm

With a reduction in the required maximum end-e¤ector speed, the maximum required actu-

ator power is reduced to 0:35kW and the maximum cable tension is reduced to 149N as shown

in Figure 5-10 and Figure 5-11. Since the maximum end-e¤ector velocity a¤ects both the dy-

namic cable force and the actuator speed, this is reasonable to have more than 50% reduction

in actuator power when the required end-e¤ector velocity is halved.

Another limiting factor in the prototype design is the limited amount of the available ac-

tuator torque. The prototype requires just under 36Nm to operate at the rated speci…cation.
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Figure 5-10: Maximum cable tension (occurs on the Side B) [N] for the Prototype 2D-Deltabot
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Figure 5-11: Maximum actuator power [W] of side B for the prototype 2D-Deltabot
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Figure 5-12: Maximum actuator torque [W] of side B for the prototype 2D-Deltabot

Figure 5-12 shows the maximum actuator torque distribution of the prototype. A comparison

between the maximum actuator torque (Figure 5-12) and the maximum cable tension (Figure

5-10) shows that the actuator torque is more sensitive to the cable angle than to the cable

tension. More importantly, the maximum actuator torque occurs in a di¤erent location from

the maximum torque. This indicates that there will be di¤erent limiting resources at di¤erent

locations of the workspace. Nonetheless, it is worthwhile to investigate the region where the

manipulator can provide performance that is better than the design speci…cations.

5.3.2 Prototype Theoretical Performance Analysis

Since the cylinder force is held constant throughout the workspace to ensure minimum tension

at the rated performance, there are regions in the workspace which may lose rigidity when it is

driven beyond its designed speci…cations. A study on the minimum cable tension distribution

would be necessary to determine the critical region where the manipulator loses it rigidity.

Figure 5-13 is a contour plot of the minimum cable tension in the robot workspace. Note that

the minimum cable tension occurs in side A and its trend is virtually a mirror image from the

maximum cable tension contour in Figure 5-10.

Since the minimum tension occurs in the upper left corner (when the e¤ective cable sepa-
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Figure 5-13: Minimum cable tension [T] of side A for the prototype 2D-Deltabot

rating distance, d sin (¯A) is the smallest), it is expected that the manipulator cannot perform

any better than the speci…cations at that location. Figure 5-14 shows the maximum velocity

of the end-e¤ector under the worst case condition in the robot workspace. As expected from

previous observations, the limiting speed of the prototype robot is signi…cantly lower in the

upper left (opposite to the parallel cable joint) corner of the workspace, where the cable tension

reaches minimum. Also, the speed is also limited towards the center of the workspace where

the maximum actuator torque occurs.

In the most optimal pick-and-place trajectory, the end-e¤ector should reach its maximum

speed at the center of the path. Therefore, it is reasonable to expect that the limiting speed

is the maximum allowable speed near the upper center of the workspace. In the prototype

design, it is approximately 2:5m=s. At this limiting speed, the robot can complete a 1:8m

pick-and-place cycle (up 0:1m, across 0:7m, down 0:1m and goes back to the starting position)

in 0:84s. This translates to approximately 71 cycles / minute.
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Figure 5-14: Maximum Velocity [m/s] for the prototype 2D-Deltabot

68



Chapter 6

Robot Experimental Evaluations

There were numerous tests and calibrations performed on the prototype 2D-Deltabot. Most of

these tests were designed to measure the robots operating performance, others were designed

to address the reliability of individual mechanical components. This chapter is focused on the

experiments that were aimed to evaluate the kinematic performance of 2D-Deltabot. From

the kinematic point of view, the two important metrics to gauge the robot quality were the

accuracy and the repeatability. While repeatability is almost a built-in trait of a robot that

cannot be altered substantially, the robot accuracy can be signi…cantly improved by means of

careful calibration. Section 6.1 of this chapter introduces a computationally e¢cient algorithm

to calibrate 2D-Deltabot. Section 6.2 then presents the kinematic accuracy experiment that

evaluates the prototype robot accuracy after the kinematic calibration. Section 6.3 presents

the repeatability experiment that evaluates the repeatability of the robot in a typical high speed

pick-and-place motion.

6.1 Kinematic Calibration

Kinematic calibration of a parallel mechanisms has been addressed in recent literature [11], [25].

The fundamental objectives of existing techniques are to identify the design parameters includ-

ing all possible deviations. These existing methods apply optimization techniques to …nd the

optimal set of design parameters that minimizes the position error in world coordinates [25].

While this generalized approach works well theoretically in a general robot con…guration, it
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could be computationally intensive to solve the kinematic chains of a parallel manipulator that

has 2 or 3 degrees of freedom. Consider the Delta con…guration as an example, it has 3DOF

and requires 24 design parameters after several assumptions. The number of measurements

involved in a calibration process increases exponentially with the number of DOF in the manip-

ulator. If there are 10 measurements taken for each dimension of Delta, a complete calibration

process could require 1000 measurements. This is equivalent to solving a set of 24 parameter

equations 1000 times per each cost function evaluation. Therefore, it is of a great interest

to utilize a computationally e¢cient method to solve this optimization problem. This work

presents a relatively straight forward and versatile algorithm to calibrate a wide class of par-

allel mechanisms. The calibration algorithm is based on the least square error techniques,

and it requires the …rst order information from the full robot kinematic model. Subsection

6.1.1 presents the formulation of the proposed calibration algorithm and some implementation

considerations including the measurement errors and numerical singularity issues. A numerical

simulation was performed to evaluate the robustness of the algorithm in Subsection 6.1.2.

6.1.1 Formulation of the Calibration Algorithm

The fundamental principle of kinematic calibration is to reduce the errors between the mea-

sured end-e¤ector position and the modeled position. This falls into an optimization problem.

Modern optimization algorithms show superior convergent properties if the objective function

is at least twice di¤erentiable. Most of the e¢cient algorithms require knowledges of the …rst

derivative information to increase the algorithm convergent rates. Due to the nature of parallel

mechanisms, a complete analysis (including the 1st and 2nd order information) of the forward

kinematic model is virtually impractical. Therefore, it is advantageous to develop a new strat-

egy to solve the optimization problem. The proposed calibration method is based on the Least

Square Error (LSE) algorithm with two distinct characteristics. Instead of minimizing the po-

sition error of the manipulator, the algorithm minimizes the error on one of the robot geometric

parameters (i.e. a dimension of the robot). Moreover, the problem can be formulated to obtain

a closed form solution. This allows linearization on the error function at each measurement

point to solve the overall error model analytically. However, the calculation must be repeated

multiple times to account for this approximation.
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Linearization and Least Square Error Method

The di¢culty of a conventional parallel manipulator calibration routine arises when one wants

to compute the Jacobian matrix of the forward kinematic equations. In a calibration routine,

all manipulator parameters must be taken into consideration. Depending on the manipulator

con…guration and assumptions made in the analysis, the size of the resulting Jacobian matrix

may range from 20 entries to a few 100 entries [25]. Furthermore, parallel robots usually have

several unsensed joints in its kinematic chains. The states in these unsensed joints can only

be solved as a system of implicit equation. This complicates the forward kinematic equations,

which in turn increases the level of complexity in obtaining the …rst order information for

optimization purpose. In the proposed algorithm, this problem is avoided by solving the

distance equation that has the unsensed joints. Consider 2D-Deltabot as an example, there

is one pair of unsensed joints in each of the kinematic chain as shown in Figure 6-1. The

position of both ends of the joint can be computed by conventional forward kinematic analysis

techniques. These points will be represented by a set of vector
¡!
P1 (Base Side) and

¡!
P2 (End-

e¤ector side). The distance between them, L2 is the length of the cable, and it can be calculated

by the distance equation:

L2
2 =

³¡!
P2 ¡ ¡!

P1

´T ³¡!
P2 ¡ ¡!

P1

´
(6.1)

The rest of the analysis requires estimating and measuring several robot parameters. For the

remaining analysis, the notation convention outlined in Table 6.1 will be used to distinguish

various interpretations to a dimension quantity (e.g. true length, estimated length, a non-

deterministic measured length).

In a calibration process, the position of
¡!
P1 relative to the robot origin can be computed

using 7 parameters. These parameters are the robot parameters to be calibrated. Since
¡!
P2 is

rigidly attached to the end-e¤ector, it can be measured directly by the external measurement

system. Let L2 be the estimated cable length and fL2 be the distance between the cable joints

as computed by the kinematic parameters and the measured end-e¤ector position, the di¤erent
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Table 6.1: The Notation Convention of Di¤erent Quantities

Modi…er Representation eg

None X A True Deterministic
Scalar Quantity or Function L2 represents the true cable length

Vector
¡!
X A True Deterministic

Vector Quantity or Function

¡!
P1 represents the true position of the
base side cable attachment point

Bar X An Estimated Deterministic
Quantitiy (scalar or vector)

L2 represents the estimated cable length
in the kinematic model
P1 represents the estimated position
of the base side cable attachment point
based on the kinematic model

tilde eX

A Non-Deterministic
Quantitiy or a quantity
that is estimated by a
non-deterministic quantity
(scalar or vector)

fL2 represents the cable length measured
indirectly through the measurment system
fP2 represents the position of the end
-e¤ector side cable attachment point with
the measurment errors

 

Base 

Rotary Actuators 
(sensed joint) 

Unsensed 
Spherical Joints 

P1 

P2 

x 

y 

End-Effector 

L2 

Figure 6-1: The Unsensed Joint and the Cable Points of 2D-Deltabot
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between these values is the residual of the kinematic equations R:

R = L2 ¡ fL2 (6.2)

Given ½ is the list of the kinematic parameters, and eÂ is the measured position. The value

of R can be estimated by the …rst order approximation method:

R(½;eÂ) »= R(½; Â) +
@R
@½

(½ ¡ ½) +
@R
@Â

(~Â ¡Â) (6.3)

It is reasonable to assume that the bias in the measurement device is negligible; hence,

the third term of Equation (6:3) is equal to zero. Furthermore, the residual of a perfectly

calibrated robot (i.e. the residual are computed using the true parameter values) should also

be zero. Therefore, Equation (6:3) can be simpli…ed to:

R(½) = 5½R(½) ±½ (6.4)

where R is the function that estimates the kinematic residual, 5½R is the gradient function of

R with respect to the parameter only, and the parameter errors ±½ is the di¤erent between the

the estimated parameter ½ and the true parameter ½ (±½ = p¡ ½).

Equation (6:4) would be a close approximation if the estimated parameters are close to the

true parameters. In practice, the manufacturing tolerance of the robot is usually tight enough

for a fair approximation. If measurements were taken at multiple locations on the same robot

setup, the data can be grouped together in matrix form and Equation (6:4) becomes:

8
>>>>>><
>>>>>>:

R1

R2

::

Rn

9
>>>>>>=
>>>>>>;

=

2
6666664

5½R1

5½R2

::

5½Rn

3
7777775

±½

R = 5R±½ (6.5)

note that the subscript ½ is dropped in the residual gradient matrix for simplicity.

One can use the LSE technique to …nd a set of robot parameters that minimizes the residual.
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This is the essence of the calibration process. The closed form solution for ±½ is:

±½ =
¡
5RT5R

¢¡1 5RTR (6.6)

Once the parameter errors, ±p are computed, the estimated robot parameter values, ¹p can be

updated for a better approximation. This process is to be repeated until the norm of the

residual converges to a satisfactory value.

Full Robot Kinematic Analysis

At this point, it is appropriate to discuss the full kinematic model of 2D-Deltabot. This will

be used for the computation of R and 5R. The full forward kinematic model of any parallel

mechanism can be calculated by many di¤erent ways. Depending on the analysis, the forward

kinematic equations can be based on di¤erent robot parameter sets. This work classi…es three

types of parameter in the kinematic equation:

- the basic parameter that de…nes the position of the robot regardless of its pose

- the sensed joint parameter that can be measured directly by the actuator

- the unsensed joint state (typically in a spherical joint) that can only be solved in con-

junction with other kinematic chains in the robot.

The architecture of the calibration algorithm has been designed to avoid requiring any

information from the unsensed joint state, which signi…cantly simpli…es the analysis. The …rst

step of computing R requires the computation of the cable point locations. These locations

can be described by 7 consecutive elementary transformations that map the position of the

cable points relative to the robot base frame. It takes 3 elementary transformations (hence 3

robot parameters) to identify the motor origin with respect to the robot base. Two additional

orientation transformations are needed to describe the motor axis with respect to the robot

coordinate system. The last two transformations represent the amount of rotation on the

motor and the amount of translation from the motor origin. This seven step transformation

can be divided in to two almost identical transformations. Figure 6-2 shows the …rst four

elementary transformations that partially align the motor axis to the robot coordinate system.
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Figure 6-2: Transformation of Robot Base Frame to the Motor Axis

Note that the analysis does not follow the Denavit-Hartenberg convention. The method shows

several symmetries that simplify the analysis.

The …rst step of the transformation is to line up the X-axis so that it points to (but is not

aligned with) the motor revolute joint. From the parameterization point of view, this can be

achieved by two successive rotation about the Y-axis and the Z-axis.

T2
0 = Rot (Y0; °1)Rot(Z1; Á1)

Now that the X-axis points to the motor joint, the next step is to translate the frame by

the motor separation distance, L0 along the X-axis. A secondary rotation about the X-axis is

needed for lining up the resulting Z-axis to the motor revolute joint:

T 4
2 = Trans (X2;L0)Rot(X3; ³)
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The overall transformation up to this point can be represented by a transformation opera-

tion:

T 4
0 (°1; Á1; ³;L0) = Rot (Y0; °1)Rot(Z1; Á1)Trans (X2;L0)Rot(X3; ³)

=

2
6666664

C°1CÁ1 ¡C°1SÁ1 + S°1S³ C°1SÁ1S³ + S°1C³ L C°1CÁ1
SÁ1 CÁ1C³ ¡CÁ1S³ L SÁ1

¡S°1CÁ1 S°1SÁ1C³ + C°S³ ¡S°1SÁ1S³ + C°1S³ ¡L S°1CÁ1
0 0 0 1

3
7777775

(6.7)

where Cµ and Sµ are the short hands for cos (µ) and sin (µ) respectively.

The next phase of the analysis is to bring the frame to the cable point. The idea is to line

up frame 4 with the motor axis, rotate the frame by the required joint angle, Á2 and translate

the frame by the length of the arm in the kinematic chain. If Z4 were to be aligned with the

motor axis, this would have been the same transformation operation described by Equation

(6:7) with only the change in the parameter values. In this case:

T7
4 = Rot (Y4; °2)Rot(Z5; Á2)Trans (X6; L1)Rot (X7;0)

The overall frame transformation, T 7
0 is the product of T 4

0 and T7
4 . It coincides with the top

cable points, P1 and the position of the frame is embedded in its translational submatrix:

P1 =

8
>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

L0C°1CÁ1 + L1(C°1CÁ1C³C°2CÁ2 ¡ C°1SÁ1C³CÁ2
+S°1S³SÁ2 ¡ C°1SÁ1S³S°2CÁ2 ¡S°1C³S°2CÁ2 )

L0SÁ1 +L1
¡
SÁ1C°2CÁ2 ¡CÁ1C³SÁ2 +CÁ1C³S°2CÁ2

¢

¡L0S°1CÁ1 + L1(¡S°1CÁ1C°2CÁ2 + S°1SÁ1C³SÁ2
+C°1S³SÁ2 +S°1SÁ1S³S°2CÁ2 ¡ C°1C³S°2CÁ2)

9
>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

(6.8)

Although this analysis uses 7 parameters to compute the kinematic chains, the cable length,

L2 (distance between two unsensed joints in general) is never used. This is generally true for
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this type of analysis. While it may be computationally more e¢cient and less susceptible to

numerical issues if the cable length were treated as a separate parameter, this document work

includes the cable length as the 8th kinematic parameter to maintain consistency throughout

the analysis. The next step in the full kinematic analysis is the computation of the residual

gradient. From Equation (6:1), the implicit partial derivative of the cable distance is:

@L2

@½
=

³¡!
P2 ¡¡!

P1

´T

L2

@
@½

³¡!
P2 ¡ ¡!

P1

´
(6.9)

Since the true value of L2 is unknown, the best approximation that can be used is L2.

Similarly,
¡!
P1 and

¡!
P2 can only be computed using an estimated value or measured from noisy

data. Therefore, their value can only be approximated by P1 and fP2. Moreover,
¡!
P2 is

obtained through measurements that are independently of calculations involving the kinematic

parameters. Therefore, Equation (6:9) leads to:

@fL2

@½
= ¡

³
fP2 ¡P1

´T

L2

@P1

@½
(6.10)

The estimation of the residual gradient in Equation (6:2) becomes:

R(½) =

8
<
:

(P1¡fP2)T
L2

5½ P1 if ½ 6= L2

1 if ½ = L2

¯̄
¯̄
¯̄ (6.11)

The remaining work is to take the partial derivative of Equation (6:8), and back-substitute

into Equation (6:11). Although it involves a fair amount of algebra to calculate the gradient

from Equation (6:8), such a closed form expression can be manipulated easily with a symbolic

solver. Appendix B consists of a sample MatlabTM code that performs symbolic partial

derivative by the symbolic toolbox that has internal call to a MapleTM symbolic solver.

Measurement Error Consideration

One minor item that has been ignored in the above analysis is the noise in the measurement

system. This a¤ects the value of
¡!
P2 and leads to uncertainty in the calibration process.
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Figure 6-3: A graphical representation of measurement error e¤ect on the kinematics chain

The e¤ect of the noise can be compensated if one knows the characteristic distribution of the

measurement noise. This subsection describes a compensation method for a Gaussian white

measurement noise that is characterized by a measurement variant of ¾2. This analysis would

be more complex if the measurement noise is correlated. The sphere in Figure 6-3 represents

an isoprobability surface of the measured end-e¤ector position, fP2. The …gure has shown

qualitatively that Gaussian white noise imposes a positive bias on the measured cable length
fL2 as there is a larger region on the isoprobability sphere; this would make fL2 appear to be

further away from the true dimension.

A quantitative estimate of this bias is possible by taking the expectation of fL2. Let el, em,

and en, be three orthogonal random deviation with a ¾2 variant, and el be the deviation that is

parallel to L2. From Equation (6:1), the measured cable length for fL2 is expected to be:

E
h
fL2

i
= E

"r³
fP2 ¡ P1

´T ³
fP2 ¡ P1

´#
(6.12)

Equation 6.12 is a non-linear equation, that cannot be solved analytically. The following
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analysis uses a …rst order approximation to estimate the numerical value of fL2:

E
h
fL2

i
= E

"r³
fP2 ¡ P1

´T ³
fP2 ¡P1

´#

=

vuuuuuut

0
BBB@

¡!
P2 +

8
>>><
>>>:

el
em
en

9
>>>=
>>>;

¡ P1

1
CCCA

T 0
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¡!
P2 +

8
>>><
>>>:

el
em
en

9
>>>=
>>>;

¡P1

1
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2
66664
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>>>=
>>>;

+ 2
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As an approximation, the zero bias estimation of the cable length is:

L2 ¼ fL2

Ã
1
2

+

s
1
4

¡ 3
2

¾2

fL2
2

!
(6.13)
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Singularity Consideration

While the LSE approach is simple to implement, it has some drawbacks in its robustness. As

the calibration routine executes, there are situations when the columns of the residual gradient

matrix, 5R in Equation (6:6) start to align with one to another and the gradient matrix

gradually loses its rank. Although it is rare to have a complete loss of rank in 5R, it does pose

numerical issues when solving the system iteratively. To avoid those problems from occurring,

it is vital to avoid updating any set of kinematic parameters that is close to the null space

of 5R. A singular value decomposition (SVD) technique would be a numerical technique to

address the problem. Every N £ M matrix Q can be transformed into:

Q = USV T

with two orthonormal (unitary if Q contains imaginary element) matrices U and V , and S µ
RM;N is a diagonal matrix whose elements, ¸ are the singular values of Q.

The singular values of Q is analogous to the eigenvalues of a square matrix, and they are a

reliable quantitative measure of the rank of Q. Singular values are usually sorted in descending

order. As a general rule of thumb, a matrix is said to be ill-conditioned if the magnitude of

the condition number (the ratio of the largest and the smallest singular value) is larger than

or approximately equal to the precision of the computation. An ill-conditioned matrix is

susceptible to numerical error and they should be avoided. This leads to solving the system

of equations only on the directions that are well de…ned in the range of Q [27]. Suppose the

maximum allowable condition number is 108 1 and ¸m is smallest singular value that satis…es

the condition, the parameter update of Equation (6:6) can be computed by:

±½ = V

2
6666666664

1
¸1

1
2̧

::
1
¸m

0M¡m

3
7777777775

2
4 Im

0M¡m

3
5UTR (6.14)

1It is more convenient to implement this condition as the min(¸)=max(¸) > 10¡8
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where i̧ are the singular values of 5R, Im is the identity matrix of size m and 0M¡m is the

zero matrix of size M ¡ m:

The proof of Equation (6:14) requires two additional mathematical facts about the SVD of

a matrix 5R µ RN;M that has more row than column (N > M):

– The ith column of U is a basis that is associated with ¸i. If i̧ is non-zero, it represents

a basis of the range space of 5R.

– The SVD can be written in a “reduced form” with S begin a diagonal matrix containing

the singular value of 5R, and a Ur µ RN;M , which composes the …rst M columns of R. Note

that the orthonormal property of U implies that UTr Ur = IM

Applying the reduced form of SVD to 5R, Equation (6:5) becomes:

R=Ur

2
6666664

¸1

¸2

::

¸M

3
7777775

V T ±½

it can be rearranged to:

UTr R=

2
6666664

¸1

¸2

::

¸M

3
7777775

V T ±½

Since it is assumed that the computer cannot distinguish between zero and all singular values

that is smaller than ¸m, the useful range space of 5R consists of the …rst m columns of Ur.

Therefore, anything beyond the mth column is meaningless. Equivalently, all elements of UTr R

that is below the mth row can be rounded to zero without losing any useful information. The

product of

2
4 Im

0M¡m

3
5UTR in Equation (6:14) served that purpose.

The solution of this system of equations can be obtained by pre-multiplying V and the

inverse of S. However the singular values that are beyond ¸m are small, which leads to a

1/0 error. This can be avoided if one takes only the inverse of the non-singular portion of

S and appends a 0M¡m matrix to maintain the dimension. Note that the elements that are
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arti…cially appended to the matrix inverse do not a¤ect the …nal results as these numbers would

be multiplied by a zero in the lower part of UTr R.

The following algorithm summarizes the LSE calibration algorithm:
Step 1: Set k = 0, and the initial parameter estimate ½ [0] to be the designed robot

parameter. Then obtain a list of the measured end-e¤ector positions Â

and the corresponding sensed joint angles, Á2.

Step 2: Calculate R by Equation (6:2), compensate the residual by the expectation

of the measurement error if possible. Also compute 5R by Equation

(6:11). Evaluate both expressions by the most updated parameter

estimates at each of the measurement point.

Step 3: If the norm of R is smaller than a predetermined value, the calibration

goal is considered to be reached. Return the estimated robot parameters

and exit the algorithm.

Step 4: Computed the singular value decomposition 5R and calculate the

parameter error, ±p by Equation (6:14)

Step 5: Update the parameter estimate ½ [k +1] = ½ [k] + ±p, then update

k = k +1. go to Step 2

6.1.2 Convergence Study

In an iterative algorithm, the convergence rate is an important measure of the system e¢ciency.

A good optimization algorithm must be able to converge to the minimum point quickly. While

the convergent properties are di¢cult to measure experimentally, this work studies the con-

vergent properties of the presented algorithm through numerical simulation. The …rst study

imposes random errors on the presented 2D-Deltabot. A set of 800 measurement points were

computed using the true kinematic parameters and randomly generated joint angle. A nor-

mally distributed random error is used to contaminate the …rst 400 true measurement points.

The LSE calibration algorithm was applied on the contaminated measurements. The e¤ective-

ness of the algorithm is based on comparison between the predicted position computed from

the resultant parameters and the other 400 true measurement points. This study requires

the full forward kinematic model of 2D-Deltabot, and it can be found in Appendix A of this
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Figure 6-4: Convergence Study at Various Measurment Noise Level

thesis work. Figure 6-4 shows a typical convergent graph for the LSE algorithm with di¤erent

noise variance. While the initial prediction error varies depending on actual random deviations

being applied to the model, the convergent rate and the convergent point of the algorithm is

repeatable. If there is no measurement noise, the presented algorithm appears to converge to

the true robot parameters. For the Contaminated measurement data, the presented algorithm

is capable of converging to a set of robot parameters with an accuracy approximately equal to

10% of the standard deviation of the measurement noise. This is considered acceptable as the

calibration algorithm is capable of rejecting more than 90% of the noise to produce a solution

that is even more accurate than the measurement scheme. Since the average prediction error

declines linearly on a semi-log scale until the system converges, it is hypothesized that the cali-

bration algorithm makes the position error declines exponentially with respect to the iteration.

Although it takes relatively large amount of iterations to achieve a good calibration result, the

error is acceptable if it is below 0:01mm in practice.
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Convergence alone does not justify the e¤ort of implementing a new optimization algorithm,

the other factor that needs to be taken into consideration is the time required to obtain a

solution. As mentioned early in this section, kinematic calibration is usually performed with

direct kinematic model and standard optimization algorithm. MatlabTM optimization toolbox

box is one of the most popular optimization tools available in the market. It has features that

automatically select the most suitable algorithm for the objective function. The second study

is to benchmark the presented algorithm against the MatlabTM optimization toolbox. This

study compares both the time and the convergent performances of the two methods in 100 test

cases. The same test cases were minimized by both methods on the same computer. This

minimizes the uncertainty due to the computer performance. The test procedure is similar

to the …rst study except the number of iterations has been capped and the amount of random

deviation has been reduced to minimize the computational time. Figure 6-5 shows the resulting

average prediction error between the two methods. It has been shown that the LSE algorithm

produces a better approximation of the robot parameter than the MatlabTM optimization

toolbox. Furthermore, the LSE approach produces a result every 2 minutes, while MatlabTM

optimization toolbox needs between 17 and 18.25 minutes for each computation. Note that

this is not to say the LSE method is superior than the MatlabTM toolbox in general. The

large di¤erence in performance is mainly due to the availability of the …rst order information

in the LSE approach, whereas the MatlabTM toolbox is constrained with a direct line-search

algorithm. Therefore, the LSE approach is more suitable for this analysis.

6.2 Accuracy Test

With a reliable calibration algorithm, it is now more meaningful to perform the accuracy test to

check if the robot is capable of reaching its intended position. An optical measurement system,

Krypton Rodym6D coordinate measuring machine was used for an accurate measurement of

the end-e¤ector position. The Krypton system consists of 3 cameras that track the position of

high frequency LEDs. It provides a reference for comparison between the actual robot position

and the modeled position. As per the OEM speci…cations, the accuracy and the repeatability
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Figure 6-5: Comparison Between Di¤erent Calibration Methods

of the Krypton Rodym6D is 0.1mm and 0.01mm respectively 2 . While it was not possible to

verify the accuracy of the measuring system, a separate test that used the camera to track a

stationary object showed the standard deviation of the camera signal noise was approximately

7¹m.

One problem in setting up the camera system is the di¢culty in lining up the camera

to the robot coordinate frame. Instead of accurately positioning the camera system in the

laboratory, the orientation of the camera relative to the robot coordinate frame was measured

using statistical methods. The idea is to jog the robot within its workspace while measuring

the end-e¤ector position in an arbitrary camera frame. Since the 2D planar robot has a planar

rectangular workspace, the measurement data has a distinct spread along three orthogonal

directions. Since the spread of a set of data is characterized by the covariant matrix of the data,

one can determine the three characteristic directions (principal directions) by analyzing the

covariant matrix of the measured data. It turns out that these directions are the eigenvectors of

the covariant matrix; and the amounts of the data scatter (spread) along these eigenvectors are

proportional to the associating eigenvalues. This establishes the spatial relationship between

2Refer to www.krypton.be. for more details
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Table 6.2: Root Mean Square Position Error of 2D-Deltabot

Before Calibration After Calibration
In-plane 4.54mm 0.304mm
Out-of-Plane 0.435mm 0.439mm
Overall 4.56mm 0.540mm

the camera coordinate frame and the robot coordinate frame.

6.2.1 Experimental Procedure and Results

In the accuracy test, the manipulator is jogged to di¤erent locations in the workspace. The

measurement points were taken inside a 700mm by 65mm rectangle, and they were separated by

14mm in the horizontal direction and 8.125mm in the vertical direction. There were 459 points

used in the experiment. A motion program was written to move the end-e¤ector amongst

these points in a spiral-in pattern. There was a 200ms dwell period allocated for the camera

to capture the end-e¤ector position. The camera was setup to collect data at 50Hz. This

resulted in about 6-8 measurements during the stoppage phase of the end-e¤ector. The entire

experiment was performed at a relatively low speed and the motor following error was negligible.

In the …rst part (calibration phase) of the testing, half of the measurement points were

randomly selected and used for robot calibration, the remaining points were not used. In the

second part (veri…cation phase) of testing, the entire robot path was recalculated with the full

kinematic parameters obtained from the calibration phase.

Figure 6-6 shows the end-e¤ector position error of 2D-Deltabot before the calibration .

There is a signi…cant amount of position error in the manipulator. Table 6.2 tabulates the

characteristics of the robot position error. The overall RMS robot position error was 4.56mm

before the calibration. The in-plane inaccuracy accounted for most of the position error.

The robot was only accurate within 6.3mm in the horizontal direction, 3.5mm in the vertical

direction, and 1.1mm in the out-of-plane direction. The large amount of inaccuracy of the

robot was believed to be due to the poor tolerance in the cable length.

Figure 6-7 shows the end-e¤ector position error of 2D-Deltabot in the veri…cation phase

(after the calibration). The overall RMS accuracy for the robot was reduced to 0.540mm.
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Table 6.3: The Calibrated Robot Parameters

Designed Values Side A Side B
L0 150mm 147:0mm 150:9mm
L1 240mm 238:0mm 239:7mm
L2 525mm 519:7mm 530:3mm
³ 0± ¡0:66± ¡1:20±

°1
0± (Side A)
180± (Side B) ¡0:36± 181:25±

°2 0
±

1:56
±

0:11
±

Á1 0± 4:69± 3:24±

Á2 0± ¡0:07± 1:60±

While the in-plane position error had been reduced by almost 95%, the out-of-plane error

remained virtually unchanged. This is not surprising as the out-of plane motion is constrained

solely by a passive RPR (cylinder) link. Its error is dictated by the quality of the hardware

used in the robot and cannot be adjusted by any software calibration. This result shows that

the calibration method is e¤ective, but it is limited by the out-of plane accuracy of the robot.

Table 6.3 tabulates the calibrated parameters of the robot after the calibration process.

The large amount of in-plane rotations, Á1 suggest that the robot coordinate frame used in

the analysis may be misaligned with the designed robot coordinate frame. This is possible as

the camera reference frame (analysis frame) was established by the uncalibrated robot mea-

surements. However, this is not a concern as long as the …nal robot kinematics are consistent

with the reference frame. When the robot is mounted on an assembly line, the calibration

process should be preformed using measurements that are accurate with respect to the rest of

the operating environment. The calibration process would then adjust the robot parameter to

compensate any installation error that may have occurred.

As a pick-and-place tool, the con…dence level of the position error is sometimes a better per-

formance metric to gauge robot accuracy. The in-plane position errors of these measurements

(in the second test) are plotted in Figure 6-8. The maximum standard deviation of the position

error is 0.24mm. In order to provide a better representation of the manipulator accuracy, a

probability density function of the position error is constructed using the Parizen method with

a Gaussian window function. The numbers on the isoprobability curves in Figure 6-8 show
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Figure 6-6: The Accuracy of the Prototype 2D-Deltabot before Calibration.
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Figure 6-7: The Accuracy of the Prototype 2D-Deltabot after Calibration
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Figure 6-8: Position Error of the Prototype 2D-Deltabot after Calibration

the con…dent levels of the position error that falls inside the respective encirclements. The

covariant of the Gaussian window used in this study is set to be 0:004mm2 (0.063mm standard

deviation or roughly one quarter of the maximum standard deviation of the overall position

error). Since the probability density function is constructed by a relatively conservative win-

dow function, the con…dent level is also conservative. For instance, approximately 62% of the

measurements fall inside the 43% con…dent level curve. Based on the experimental results, it

has concluded that the accuracy of the prototype is §0:62mm (0:024").

6.2.2 Observations

After further examinations on the prototype and the measurement data, it is believed that the

accuracy problem is most likely caused by an out-of-plane motion due to a pair of imperfect

clevis bushings on the upper cylinder revolute joint. The original bushings were loose and

misaligned. This results in a free-play on the revolute joint. The defect caused up to 1.2mm

out-of-plane motion on the end-e¤ector, which was never modelled in the kinematic analysis.

Further enhancement on the prototype includes replacing the clevis joint with an Ø10mm
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bearing to improve the performance of the robot.

6.3 Repeatability test

Similar to the robot accuracy, the robot repeatability is also an important metric to gauge the

quality of a robot. The objective of the repeatability test is to check if the robot is capable of

reaching the same point repeatedly under the normal operating conditions. It is important to

have the robot operate at a high speed in this test to produce meaningful results. In this test,

the manipulator was commanded to move along a path that was 76.2mm up, 635mm across, and

76.2mm down. One repetition consisted of commanding the end-e¤ector to go from one end of

the path to the opposite end and then return to its starting point. There was a 100ms dwell

time allocated at the end of the path for the camera to capture the end-e¤ector position. The

overall motion time including the dwell period was 0.902s. If a typical of 20ms dwell period

were used in the trajectory, the manipulator would have operated at 81 cycles per minute.

The test was preformed with a properly tuned motor and a well designed trajectory pro…le as

illustrated in Subsection 6.3.1. The experiment result is presented in Subsection 6.3.2.

6.3.1 PMAC and Trajectory Generation

Unlike the accuracy test where the manipulator moves slowly over a short distance, the large

displacement in the repeatability test could lead to serious structural damage if the actuators

were not tuned properly. The tuning of the actuators was performed through the Program-

mable Multiple Axis Controller (PMAC), a powerful industrial motion controller for robotic

applications. PMAC has a PID and feed forward controls structure that controls the motors

to perform coordinated motions. It has several options to generate the command motion pro-

…le. The command generator chosen for this experiment is Spline1, which uses cubic spline to

interpolate successive command points in the motion pro…le.

In addition to the actuator control, it is vital to plan the trajectory (time associated path

of motion) ahead to avoid excess acceleration or jerk during the motion. A trajectory planning

program has been developed in MatlabTM to generate the command points for PMAC. The core

of the program is to generate a non-dimensional trajectory for a generalized time-space mapping.

90



0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

Non Dimensional Time

N
D

 D
is

pl
ac

em
en

t, 
S

pe
ed

, A
cc

el
 (

no
t t

o 
sc

al
e)

Displacement
Velocity
Acceleration

Figure 6-9: Trajectory Pro…le for High Speed Motion

The trajectory has a triangular acceleration pro…le and the subsequent kinetics (velocity and

displacement) were derived assuming zero initial conditions. A triangular acceleration pro…le

ensures a …nite jerk and smooth velocity pro…le on the end-e¤ector, which is easier to track

by the motors. Figure 6-9 shows the trajectory pro…le for the manipulator. The vertices in

the acceleration pro…le are the tunable setting that were determined experimentally. Once the

trajectory is generated, eleven characteristic points were picked from the displacement pro…le

evenly in the time domain. These points would be mapped to the actual motion path for the

PMAC motion program. Figure 6-10 shows how the control points were selected from the

displacement pro…le at every 10% interval of the motion time. The path shown in the …gure

represents a motion from one end of the path (point A) to the opposite end (point B); the

return trajectory assumes a symmetrical pro…le.

Figure 6-11 shows two typical cycles of the commanded joint trajectory and the resulting

joint error after some …ne tuning on the motors. There are still considerable amount of following

error during the middle of the motion, but the error settled down near the dwell points 3. This

3Dwell point is a PMAC terms that represents the stall portion of a trajectory [6].
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Figure 6-10: Selection of the control point for PMAC motion program. a) The joint angle
expressed in the path space. b) The time expressed in the path space

indicates a stable condition for the robot, at least from the joint space point of view. This was

considered safe to run the repeatability test for a long period of time.

6.3.2 Experiment Procedure and Results

In the repeatability test, the manipulator was run unsupervised along the testing trajectory for

approximately 20 minutes. While the camera measured the end-e¤ector position at 100Hz, it

was stopped once every 2 minutes to prevent data over‡ows. The end-e¤ector was considered

to be ‘stalled’ if the measured position is less than 0.1mm away from its previously measured

position. Once a stalled point is detected, the subsequent measurements would be placed in an

array of stalled position until the end-e¤ector started to move again. At this point, the length

of the array would be checked, and the array is considered to represent the robot dwell position

if and only if the array contains between 8 and 12 measurements. The measurement that is

at the center of the array is registered as the dwelled position. These measured dwelled points

are placed in two groups (A and B) for either end of the path. The position repeatability is
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Table 6.4: The Repeatability of the Prototype 2D-Deltabot

Group A Group B Total
Number of Measurements 805 802 1607

Principle Variants
397¹m2

1406¹m2

2266¹m2

432¹m2

1622¹m2

2658¹m2

415¹m2

1516¹m2

2456¹m2

Repeatability 0:143mm 0:155mm 0:149mm

calculated as follows:

CX =
¡
X ¡ ¹X

¢T ¡
X ¡ ¹X

¢

NX ¡ 1
vX = eig(CX)

RP = 3
p

max(vx)

where CX is the covariance matrix of the measurement.

¹X is the mean position of the measurement group.

NX is the number of measurement in the group.

eig computes the eigenvalues of a matrix. The eigenvalues of the covariance

matrix represent the principal variance of the data.

RP is the repeatability of the robot.
Table 6.4 summarizes the results of the repeatability test. This experiment found that

repeatability of the robot is 0:15mm. This is about one …fth of the accuracy of the robot.

It was observed that the robot supporting pillars were not sti¤ enough to hold the structure

stationary when the robot is running at the operating speed. The end-e¤ector is likely to

vibrate considerably when the structural vibration is coupled with the free-play in the clevis

bushing. A sti¤er supporting pillar should replace the existing units before further repeatability

tests are conducted on the robot.

94



Chapter 7

Conclusions

The goal of this thesis work was to investigate and validate the design and implementation of a

class of 2D cable-based parallel manipulators. This thesis work expands the research work by

Prof. Khajepour and Dr. Behzadipour that uses cable as a mechanical component in a parallel

manipulator design. The fundamental design strategy was to constrain the orientation of the

end-e¤ector by cables so that the robot had only two pure translational degrees of freedom

in a plane. With a light weight cable construction, the resulting robot had little inertia and

was able move rapidly within its workspace. Two new robot designs, 2D-Deltabot and 2D-

Betabot were introduced to illustrated this concept. This work proved that certain manipulator

con…gurations were inherently tensionable. Those tensionable members could be constructed

by cable wire to reduce moving inertia. This work also showed that some features in the

end-e¤ector had direct impact on the overall performance of the robot.

Although it was useful to know if certain robot con…gurations were inherently tensionable,

the robot implementation would not be successful if the design parameters were not optimized

properly. This work illustrated a straight forward and computationally feasible method to

calculate various limits on the robot dynamic characteristics. The analysis was based on

inverse kinematic model and it does not require the complicated forward kinematic analysis.

The resulting information provided the building blocks for constructing the cost function of a

given set of robot parameters. The rest of the optimization process was simply to combine the

cost function with a direct search method. This work showed that the proposed 2D-Betabot

was able to achieve 4g acceleration everywhere within its workspace with a pair of 890W rotary
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actuators, and the 2D-Deltabot could do the same with a pair of 648W rotary actuators. The

2D-Deltabot had been chosen for prototyping and it was designed and fabricated over the course

of this study.

Upon completing the robot fabrication, the 2D-Deltabot went through a series of tests

to evaluate its accuracy and repeatability. In light of the possibility that numerous robot

designs could be derived from this work, a general calibration algorithm was developed for a

quick calibration procedure. The presented calibration algorithm converged to the true robot

model in simulation, and it was an order of magnitude faster than the conventional standard

optimization methods. The experimental evaluations showed that:

1. The robot matched fairly accurately to its commanded position that was predicted by

the kinematic model. The 95% con…dent level of the robot accuracy was determined

to be within 0.62mm. There were considerable amounts of out-of-plane motion in the

end-e¤ector that limited the accuracy of the robot. This problem was purely due to

fabrication error, and it should be addressed through hardware replacement.

2. The robot arms were capable of tracking the commanded path at high speed after tuning

the motors. The arms tracked a 730mm long path within 0.7± in the joint space at

67 cycles per minute (81 cycles per minute for a shorter dwell cycle). The majority of

the region where a large tracking error occurred was concentrated at the middle of the

trajectory. Those were the regions in the pick-and-place path where tracking ability was

not a primary concern.

3. The position of the robot end-e¤ector is marginally repeatable. The repeatability of the

robot was determined to be 0:15mm. The error was likely due to the vibration on the

robot and the free-play in the cylinder revolute joint. The repeatability was expected to

be improved once the mechanical problems were resolved.

With a few mechanical design changes, the 2D-Deltabot could become a very accurate and

reliable pick-and-place robot. The inherently low inertia design in the presented cable based

robots give them a major advantage on speed enhancement and cost reduction in the design.

The potential for these manipulators to improve the speed and increase productivity for many

industrial applications is substantial.
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Appendix A

Full Direct Kinematic Model of the 2D-Deltabot

 

Base 
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(sensed joint) 

Unsensed 
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y 
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L2 

Figure 7-1: The Cable Points Needed for the Full Direct Kinematic Model

Each kinematics chain of the 2D Deltabot has 8 parameters; therefore, the full direct kine-

matics equation of the 2D-Deltabot consists of 16 parameters. The …rst step in the kinematics

equation is to locate the cable arm-side attachment points,
¡!
P1. as shown in 7-1. This can be

done by conventional direct kinematic analysis method.

The full kinematic equations can be constructed by intersecting the Z plane with two spheres

centered in these cable points with their respective cable length as their radius. The intersection

of two sphere is a circle, this can be computed by forming a triangle with the a line that connects

the cable points, and the two cable length. The circle of intersection is formed by revolving

the corner of cable intersection by its opposite side. The triple intersection is the intersection

of the circle and the Z plane. The following Matlab code computes the triple intersection.

%Inputs:
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%P: 3X2 matrix that contains the coordinate of the cable point

%L: 1X2 matrix that contains the cable length

%Output:

%Pos: the coordinate of the end-e¤ector

function Pos=IntersectPt(P,L)

%Calc The Center(c_int12), Radius2(r_int12sq), and Normal(dP12) of Sphere A intersect

Sphere B

dP12=P(:,1)-P(:,2);

LdP12sq=dP12’*dP12;

%cos of the angle on the intersection 12, oppositite to side 3

cqint12_o3=(LdP12sq+L(2)^2-L(1)^2)/(2*sqrt(LdP12sq)*L(2));

rsq=L(2)^2*(1-cqint12_o3^2); %Radius Sq

c=P(:,2)+L(2)*cqint12_o3*dP12/sqrt(LdP12sq); %Center

k=dP12/sqrt(LdP12sq);

l=cross(k,[0;0;1]);

l=l/norm(l);

r=sqrt(rsq);

C=r*(l(1)*k(1)+l(2)*k(2))*k(3)+c(3);

B=r*l(1)*k(2)-r*l(2)*k(1);

sq=C/B;

cq=sqrt(1-sq^2);

vq=1-cq;

M=[[k(1)^2*vq+cq k(1)*k(2)*vq-k(3)*sq k(1)*k(3)*vq+k(2)*sq];

[k(1)*k(2)*vq+k(3)*sq k(2)^2*vq+cq k(2)*k(3)*vq-k(1)*sq];

[k(1)*k(3)*vq-k(2)*sq k(2)*k(3)*vq+k(1)*sq k(3) 2̂*vq+cq];];

Pos=sqrt(rsq)*M *l+c;
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Appendix B

Getting 1st order information by symbolic solver
This sample code illustrates how to use Matlab to solve complex but close form partial

derivative equations, such as the one required for the LSE calibration process. It requires

the Matlab symbolic toolbox, which invokes a Maple symbolic engine internally. Let there

be n homogenous transformation matrix, Ti, each requires 1 free parameters xi. The overall

transformation is:

T =
Y

Ti

The …rst step in the setting up the solver is to de…ne the parameter symbolically. This can

be done by a Matlab command:

syms x1x2 x3 x4 ... xn

Then, the individual transformation matrix can be de…ned symbolically by the usual com-

mand. For instance, a rotation about the Z-axis by x1 radian is:

T1= [[cos(x1) -sin(x1) 0 0];

[sin(x1) cos(x1) 0 0];

[0 0 1 0];

[0 0 0 1]];

The primary interest in this work is the translational sub-matrix. Therefore, it should be

extracted from the total frame transformation:

P1=T1*T2*T3. . .T4

P1=P1(1:3,4)

The partial derivative of the total translational sub-matrix can be obtained by:

diP1diX1= di¤(P,x1);

diP1diX2= di¤(P,x2);

.. .

The inline and the char function are sometimes convenient to setup the problem. However,

be aware of the maple command when using the char function. For matrix equations, …lter

out the …rst 7 (“Matrix(”) and the last (“)”) characters returned by the char function:

diP1diX1_txt= char(di¤(P,X1));
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diP1diX1= inline(diP1_diX1_txt(8:end-1));
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