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Abstract

Bran-computer intefacing (BCl) is a new method of human-mechine
interaction. It involves the extraction of information from the eectroencephalogram
(EEG) through sgnd processng and pattern recognition. The technology has far
reaching implications for those with severe physca disabilities and has the potentid
to enhance machine interaction for the rest of the populaion. In this work we
invedigate time-frequency andyss in motor-imagery BCl.  We consider two
methods for dgnd andysis adaptive autoregressve modds (AAR) and waveet
transform (WAV). There are three mgor contributions of this research to single-
trid andyds in motor-imagery BCl.  Fird, we improve dassfication of AAR
features over a conventiond method by gpplying a tempora evidence accumulation
(TEA) framework. Second, we compare the performance of AAR and WAV under
the TEA framework for three subjects and find that WAV outperforms AAR for two
subjects.  The subject for whom AAR outperforms WAV has the lowest overdl
sgnd-to-noise reio in their BCI output, an indication that the AAR modd is more
robus than WAV for noiser sgnds Lagtly, we find empiricd evidence of
complimentary information between AAR and WAV and propose a fuson scheme

that increases the mutua information between the BCI output and classes.
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Chapter 1

| ntroduction

Bran-computer Interfacing (BCl) is an excting new technology for
communication and interaction with machines. It has far reaching bendfits for
persons with severe physcd disabilities and has the potentid to enhance machine
interaction for the rest of the population. This technology bridges severd disciplines
of study: computer and systems engineering in the form of sgnd processng, pettern
recognition, and machine intelligence; dectrophysology; neuroscience; cognitive
science; and psychology. In this chapter we provide an introduction to the
technology. This includes an overview of the BCl sysem itsdf as well as mgor
developments in the fiedd with reference to literature.  Findly, based on the mgor

developments that are identified, the scope of this thesisis defined.
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1.1 Introduction to Brain Computing

Interaction with computers, whether in the form of a PC or embedded in the
myriad of devices people use on a daly bass, is ubiquitous in modern society. The
primary chdlenge is for the user to convey thar intentions to the machine in an
efficient manner.  Advances to this end not only have dgnificant impact on the
productivity of society, but aso qudity of life, as the barriers to communication with
the devices upon which we have come to rdy cause frudration and dress
Conventiona interfaces, such as a keyboard and mouse, make use of a fraction of
the information that humans can convey. Other forms of communication that have
been integrated into human-machine interfaces (HMI) more recently include speech,
hand gestures and even facid expresson has received atention from researchers [1]-
[3]. Ancther pressng chdlenge in HMI is improving accesshility to dl persons.
Much like buildings have been revamped to accommodate persons with disabilities
in later decades, HMIs must undergo a smilar revolution to improve accessibility in
modern society.

Bran computing involves the extraction of information directly from the
brain through red-time andyss of its dectrica activity. In this endeavor, the HMI
ascertains the intention of the user by converting dectricd activity of the brain into a

control sgna for devices In their full potentid, brain-computer interfaces (BCI)
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are the epitome of user-centric design. They ascertain the will of the user directly
from the source, the mind.

BClI’s have much to contribute in addressng the chdlenges of developing
HMI's that employ multi-modd information to incresse efficiency and information
throughput.  All of the other moddities originate from the brain; perhaps extracting
information from the brain directly can provide some redundancies to improve the
oveadl rdiability of the sysem as wel as provide some complimentary information
to improve performance [4]. BCl’s have a more pressing role in HMI's designed
for those with severe physcd disdiliies resulting in locked-in  syndrome.
Numerous diseases disupt the neurd pahways that control muscles Amyotrophic
laterd scleross (ALS), muscular dystrophies, cerebrd pasy, multiple scleross and
brain and soind cord injury.  Two million people suffer from these disorders in the
United States done [5]. BCI’s can provide a revolutionary means for such persons
to access and interact with the world around them that most or none of the other
modalities can offer.

This research aea has been active for ten to fifteen years and successful
rudimentary control of devices has been achieved [6]-[8]. The full potentid of the
technology is yet to be redized. When it is redized the benefits to society will be

far reaching.
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1.2 The Electroencephalogram

The encephdogran (EEG) is a recording of dectricd activity originating
from the brain. It is recorded on the surface of the scalp using eectrodes made of a
highly conductive metd. In this research, the EEG is the sgnd from which
information is extracted to ascertain the intention of the user. All of the data used in
this work was retrieved non-invasvely (on the surface of the scap). In this section
some background information is provided about the EEG dgnd. Although the
content in the rex of this theds is focused on sgnd processing and pattern
recognition, in this section some biologicd, historicd and other information about
the signd is presented to provide a context for the Sgnd processing chalenges.
121 TheBiology of EEG

The brain consgs of hillions of neurons making up a large complex neurd
network. Below is a diagram of aneuron. It has severd components. the soma is
the cdl body of the neuron and contains the nucleus, which houses genetic
informetion; the dendrites extend from the soma and recelve chemica messages
from other neurons, the axon transmits eectro-chemicad sgnds to other neurons
the myelin sheath consds of fatty tissue cdls that insulate the dectrical current
flowing through the axon; findly the bouton is responsble for converting an

electricd sgnd to achemica sgnd to be received by other neurons [9].
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Figure 1-1- The Neuron: the most basic unit in the neural-network of the brain

The processng of information takes place by the firing or pulsng of many
individud neurons. The pulse is in the form of membrane depolarization traveling
adong the axons of neurons. A series of pulses in the neurons, aso known as a spike
train, encodes the information processes of the neura network [10]. The EEG is the
eectricd field potentid that results from the firing of many neurons. Thus there is
a reatonship between the spike tran and the EEG and the latter dso provides
information about neura-network activity [11].
122 A Brief History of EEG

The first recordings of human EEG on chart paper can be traced back to the
Audtrian psychiatrig Dr. Hans Berger who published his work in 1929 [12]. In his

work he made 73 recordings from a single subject and found regular oscillations a
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10 Hz. He named this rhythm the a wave and found that the best recordings came
from the occipitd region (over the visud cortex a the lower rear of the skull) with
another reference dectrode on the forehead. Since then neurologists and clinicians
have found that scap-recorded EEG has a frequency range of 0.5 to 40 Hz. The
most common categorization of EEG sub bandsis ? (0 - 4 Hz), ? (4 — 8 Hz), a (8 —
13 Hz) and 3 (13-38 Hz) [13].

EEG has had wide medicd gpplications, from sudying deep sStages to
diagnosing neurologica irregularities and disorders. It was not until the 1970's tha
researchers consdered red-time andyds of EEG, which implied the sgnd could be
used for communication and control. With the computer advances that ensued,
active research in EEG utilization for communication has occurred in the last ten to
fifteen years.

1.2.3 Signal Conditioning Challenges

There are many complications in acquiring good qudity recordings of EEG.
The sgnd itsdf is very week, in the order of 5100 pV. At the scdp, EEG is no
longer a direct expresson of brain activity. Between the brain and scdp are layers
of cerebrospind fluid, bone, and skin, dl of which attenuate the sgnd. This causes
poor dgnd-to-noise ratio. In addition to atenuation, these layers dter the sgnd

more fundamentdly through volumetric conduction. This scenario lends itsdf well
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to rather complex inverse problem modding; however, the computational demands
of such an approach are not well suited for red-time processng.

For consgent recordings it is important to maintain integrity in the contacts
between the eectrodes and the scalp, otherwise contact impedance can hamper the
qudity of the sgnd. A conductive paste is used to decrease contact impedance and
electrode migration. High-gain amplifiers are used to bring the sgnd levels up to
the required levd for andogto-digitd converters. Unfortunately, this dso
sgnificantly amplifies background dectrical noise a 60 or 50 Hz depending on the
pat of the world the sysem is used. Fortunately, for most brain-computing
gpplications the frequencies of interest are between 0.5 to 40 Hz. However, due to
the low sgnd-to-noise ratio careful andog filter design is reguired to properly
attenuate the background dectrica noise.

There are a myriad of other noise sources, commonly referred to as artifacts
in the literature, introduced by the body itsdf. Movement of eyes during recordings
produces the dectrooculogram (EOG) signd, which can be detected by EEG
sensors, particularly those that are a the front of the scadp. Muscle activity in the
head emits an dectromyogram (EMG) that can dso intefere with the EEG sgnd.
Other atifacts are caused by the dectrocardiogram (ECG) (eectrica activity from

heart tissue), sweat, and head and body movement. These artifacts are often within
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the frequency ranges that coincide with EEG. EOG is particularly a concern as its
amplitude is quite large compared to EEG.

It is apparent that sgna conditioning and pre-processng of the EEG in and
of itsdf is a difficult problem. To address this chalenge noise cancdlation is often
used. In this gpproach, an eectrode is placed just above the eyes to acquire the EOG
and subtract it from the electrode. More sophisticated approaches, based on
information theory, mode the problem as blind source separation and use
Independent Component Analysis (ICA) [15], [16]. This method has been used
successfully and has the advantage of not requiring additiona eectrodes, yet
identifying artifacts that are ddtidicdly independent of EEG processes. EEG
preprocessing is an area of research on its own. In this work, pre-processing is not
the focus and the datasets used have undergone some minima pre-processing that
will be further discussed in section 2.3.

1.2.4 Thelnternational 10-20 System for Electrode Placement

The most common sdection for the location of eectrode placement is based
on an internationd standard termed the TenTwenty sysem. This standard was
established by an international committee and published in 1958 [17]. The podtions
of the dectrodes are rdative to landmarks on the skull, mainly the inion, naison and

mastoid processes.  The term Ten-Twenty sems from the fact that the distance
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between bony points, such as the inion and nason, is divided into segments that are
ether 10% or 20% of the totd length. Thus, the placement specification is scaegble
to accommodate dl head szes [18]. Figure 1-2 depicts the arrangement for 19
electrodes. Each dectrode is assgned a letter and number describing its postion on
the skull. The letter describes the area of the brain to which the eectrode
corresponds such as fronta (F), centrd (C), and tempora (T). The number refers to
the side of the head te eectrode is located, where odd numbers indicate the left sde
and even numbers denote the right side.

The dsandard specifies the relaionship between the dectrodes and the parts
of the brain. The correspondences between dectrodes and the brain were
determined in two ways. Metd clips were placed dong the fissures of the brain
during open bran surgery and X-rays were taken while the eectrodes were on the
scap. Secondly, usng cadavers, holes were drilled through the skull to the brain at
the designated eectrode postions. Ink was applied to the holes and the brain was
removed from the skull to andyze the markings [18]. For more details on the Ten

Twenty system refer to [17] and [18].



Chapter1 - Introduction

10

Electrode
Fpl
Fp2

Fz
C3
c4
Cz
T3
T4
T5
T6
P3
P4
Pz
o1
02

Figure 1-2 — The Ten-Twenty system for electrode placement

1.3 Overview of the Brain-Computer Interface

Brain Region

L eft fronto-polar

Right fronto-polar

L eft superior frontal
Right superior frontal
Left inferior

Right anterior

Mid frontal

Left central or rolandic
Right central or rolandic
Vertex

Left mid tempora

Right mid temporal

L eft posterior temporal
Right posterior temporal
L eft parietal

Right parietal

Mid parietal

L eft occipital

Right occipital

A brain-computer interface (BCI) is a direct communication channe between

a person's brain and a computer or machine. The god of EEG-based BCI research is

10
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to identify the user's intentions from their EEG and trandate these commands into a
control signal for a device such as a whedchair, mouse cursor, or proshess. The
moativation for this research is to enable severdy physicdly disbled people to
access the world around them. In the longer-term BCI technology may be a useful
moddity for the public a large. Figure 1-3 illudrates the mgor components of a

BCl aswdl asthe flow of information

. = » Sgnd _ » A/D
The Bran Conditioning
Feedback
Vehide, Control Signal Signal Processing
Prosthesis, or 1« Feature Extraction PR—
Cursor Pettern Recognition

Figure 1-3 - The brain-computer interface
The EEG is acquired via eectrode(s) placed on the scdp of the subject. See
section 1.2.3 for informatiion about the required sgnd conditioning upon EEG
acquistion. Next the dgnds mus be amplified consderably. The mgority of
rdevant information reddes in a frequency range of 05-40Hz and band pass
filtering is desrable to remove irrdevant frequenciess The dgnd is ready for

processng by a computer, but first it must be discretized by an andogto-digitd

11
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(A/D) converter. Once acquired by the computer, the signd is processed to extract
features that provide some indght into the user's intention. These features are
classfied to determine which of a finite number of user intentions, for a given BCl
sysem, the user is communicating. Once the user intention is determined a control
sgna can be agpplied to a device, such as a whed chair. In Figure 1-1 a feedback
loop connects the output of a BCl back to the user. This feedback loop may or may
not exist depending on the gpplication of the BCI, but proves to be very useful. In
control theory closed-loop sysems generdly outperform their open loop counter
parts. Similaly, the feedback in Figure 1-3 enables the user to adjust their thought
process to improve the performance of the system, thus, the learning process is a
harmonious one: the system learns to accommodate the user while the user learns to
use the sysem. One of the objectives in BCI research is to minimize the burden on
the user to adapt to the system. In most cases the feedback is inherent to the activity.
For example, if the user is employing the BClI to move a mouse cursor on a

computer screen, the resulting movements are the feedback.

12
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1.4 Cognitive Tasks and Methods in EEG
Communication

Currently, BCI's fdl into four mgor categories based on what aspect of the
EEG they andyze and which pat of the bran the signd originates. Consequently,
each type of BCI requires a different set of menta tasks. In this section, we provide
an overview of each of the cognitive tasks.

141 Visual Evoked Potentials

In visud evoked potentids (VEP) the communication occurs through the use
of visud information by anadlyzing the EEG originaing from the visud cortex (O1
and O2 in Fgure 1-2). The evoked potentid is a change in the EEG resulting from
an externd gimulus [19]. The first use of VEP can be traced back to the work of
Jacques Vidd in the 1970's [20]. In this work, VEP is analyzed to detect changes in
eye gaze. Thistracking of eye gaze can be used, for example, to move a cursor.

Other research efforts, more recently, employ systems that present the user
with severd symbols or buttons [21], [22]. In [21], they present 64 symbols with
different colour dterations in the visud inteface. The user focuses on the symbol
they would like to sdect. The system determines the user’s sdection by comparing
the resulting VEP to those acquired during training. In [22], they present severa

buttons to the user on a screen, each flashing a a different frequency. The photic

13
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driving response over the visud cortex is assessed by the syssem. This response will
closaly match the frequency of the button under the user’s gaze.
1.4.2 P300 Evoked Potential

P300 or ‘oddball’ BCI's take advantage of a response in the EEG that occurs
when the user obsarves sporadic simulus among routine simuli.  The stimuli can be
auditory, visual, or somatosensory. The response occurs 300 ms after the anomay
and can be detected in the EEG over the parietal cortex (P3 and P4 in Fgure 1-2)
[23], [24]. One example of a BCI that uses the P300 property is described in [25].
In this sysem the user manipulates a virtud keyboard through a matrix of letters
displayed on a screen. A dngle row or column flashes every 125 ms and the user is
ingructed to pay attention to the key of ther choice by counting the number of times
it flashes. A P300 response in the EEG occurs after the row and column of the
desred letter flashes. The results in [25] imply an achievable communication rate of
1 word per minute (4.8 symbols/min with 90% accuracy). Other work increases this
communication rate to 545 symbolgmin with 92% accuracy [26]. Research efforts
in P300 based BCls utilize tactile and auditory input [27]. This work is particularly
beneficid for those with visud imparment.
143 Sow Cortical Potentials

Sow corticd potentids (SCPs) are low frequency amplitude changes in the

14
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EEG that occur over 0.5 to 10 s. SCPs are generated in the cortex and result from
thoughts rdaing to movement, such as imagining maneuvering in a familiar room.
When the cortex is active a reduction in the SCP is observed and when it is inactive
an increase occurs [28]. Initid work in SCPs has resulted in the BCI commonly
referred to as the “thought trandation device” (TTD) [29]. Typicaly, SCP based
BCls dlow the user to make binary decisons by either activeting or deactivating the
cortex. In [29] each trid is 4 seconds long and the system provides the user with
feedback in the form of a cursor that moves to the top or bottom of the screen. The
user can move the cursor up or down by controlling their SCP. In this study, ALS
patients use the technique with condderable success; it is used to spdl words on a
screen using a binary decison tree to sdect letters of the dphabet. This system
produces alow information transfer rate of 0.15-3 letters per minute.
144 p-Rhythm and Motor |magery

The EEG rhythm known as [ is related to processes in the motor cortex,
which comprises brain activity related to movement of body pats. The p-rhythm
has components in a and 3 and is observed over the motor cortex in most people
above the age d two years [30]. Activity in the prrhythm most relevant to BCls is
event-rdlated (de)synchronizations (ERD/ERS). An ERD is dtenuation in the p-

rhythm that accompanies movement or preparation of movement. The ERS is an
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amplitude increase, which occurs after the completion of movement-related thought
[31]. ERD occur even when one thinks about or imagines movement of body parts,
commonly referred to as motor-imagery.  This feature makes the cognitive task
auitable to those with physcad disailities who cannot actudly move ther limbs
Typicd cognitive tasks in such BCl's ae imagination of left vs right hand
movements [32]-[35]. Other work has involved motor imegery involving other
somatosensory  output [36], [37]. In these communication protocols, the user
conveys ther intention in predefined time intervas ranging in length from 4 seconds
to 9 seconds.  Each cycle has an initid idle period and then a cue is presented to the
user to indicate that the system is ready classfy ther intention. After the cue the
sysem knows tha it is andyzing task-rdevant EEG and deciphers the motor
imagery (eg. left vs right imagined hand movement). This interface provides a
binary control sgnd that can be used for a smple switch or navigating through a
menu. Some of the sysems not only facilitate binary dassfication but dso assgn
magnitude to decisons [37], [38]. This feature enables some subjects to control the
meagnitude, which is useful for gpplications such as maneuvering a cursor [36].
1.4.41 Asynchronous Communication Protocols
All of the cognitive-task protocols that have been presented above in sections

1.4.1to 1.4.4 are synchronous. That is they depend on predefined widows of time
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where the sysem knows the user is providing meaningful input. Such protocols
have two glaing drawbacks (1) they limit the flexibility of the user and (2) they
limit the informetion transfer rates. Recently, however, there is research that
demondtrates promise for asynchronous protocols within motor-imagery BCls [39]-
[41]. In this work, methods are developed to detect motor events relevant to the
sysem’'s context. Thus, the system detects the onset of rdevant input and can
automaticdly diginguish ide and meaningful periods  During periods of reevant
input, the system can agoply pettern recognition dgorithms for distinguishing the type
of motor event. These methods make use of an EEG festure known as movement-
related potentiad (MRP), which are DC EEG spikes that occur a the onset of planned

movement.

1.5 Scope

Although dl four of the mgor types of BCls have been successful in
achieving rudimentary control by subjects, the work in this thess focuses on motor-
imagery. There are severd reasons for invedtigating motor-imagery over the other
aress.  This section outlines those reasons in a preamble to defining the scope of this
work.

A glaring weakness of the P300 and VEP approaches is that they require a
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dimulus to interact with the user.  Fundamentdly, these sysems have primary
control over user interaction. This drawback limits the use of these gpproaches in
asynchronous communiceation protocols, because the user cannot provide input
spontaneoudy. Thisin turn limits the goplication domain of the gpproach.

SCP communication not related to motor-imagery dso has potentid to
function in an asynchronous environment snce they do not require simuli from the
system. However, to the best knowledge of this research, a method has not yet been
proposed for asynchronous communication in these methods. Hence, a compelling
reeson for furthering motor-imegery BCI is its proven feaghility in asynchronous
protocols [39]-[41]. Ancther advantage of motor-imagery, over SCP, is tha its
cognitive task is more closdy related to BCl tasks moving a cursor left or right; or
turning awhedchair left or right.

Although there ae good reasons to favour motor-imagery over other
approaches, there has been little work to compare the performance of the four BCI
types in their current state.  In [42] they compare left vs right motor-imagery to
imagination tasks related to SCP for the same set of subjects in a synchronous
protocol. The results for ten subjects age 29-54 indicate that motor-imagery hes
lower dasdfication performance.  Given the promise motor imagery has in other

agpects, thisis a compelling reason to further improve classfication performance.
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This thess gpecificdly invedigaies cassfication of left. vs right hand
movements. The andysis is peformed off-line on pre-recorded EEG. Current time-
frequency andysis and pattern recognition techniques in motor imagery are assessed
and compared. Several novel approaches are proposed and investigated. For a

detailed problem statement refer to section 3.1.
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Chapter 2
Background

In the last chapter we provide compeling reasons for further invedtigating
motor-imagery based BCI's. In this chapter we present a review of the literature
specific to this area.  In particular, we review current time-frequency and spatid
feature extraction techniques and severd voids in the research are identified. At the
very leadt, the reader should be familiar with €ectrode nomenclature of the
International Ten-Twenty System (section 1.2.4) and EEG characteristics related to

motor imagery (section 1.4.4) prior to reading the materid in this chapter.

2.1 Developments in Time-Frequency Analysis of
Motor Imagery EEG

In EEG motor-imagery andyss researchers employ time-frequency andyss
to identify the occurrence of ERD/ERS and MRP. There are two mgor time-

frequency paradigms that are in common use. One is the autoregressve (AR)
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modd, its variant the adaptive autoregressve (AAR) modd, and, more recently,
waveet anadyss. This section reviews the research trends in each as applied to
motor-imagery EEG. For a detaled description and formulation of AR, AAR, and
wavelet refer to sections 4.1, 4.2, and 5.1 respectively.

Autoregressve modeling has a long-ganding tradition in EEG andyss and
its origins can be traced back to the late 1960's and early 1970's [43]-[46]. There
are sverd reasons AR modding prevails in EEG sgnd processng: it is a maximd
entropy spectrd edtimator and only a few parameters are required to describe
gpectrdl information [69]; it does not require a priori knowledge of reevant
frequencies, as they can vary from subject-to-subject or even within the same
subject; it describes the stochagtic nature of EEG quite well; and the methods for
ther computation are well sudied [47]. Conventional approaches to AR coefficient
edimation assume the signa to be wide-sense dationary, such as the Burg and Yule-
Waker methods [48]. These methods can be applied to non-dationary sgnds, such
as EEG, by windowing the sgnd and approximating it to be dationary  within the
window. Depending on the sze and shift of the window, traditiond AR estimation
dgorithms can become computationdly intensve. Furthermore the dationary
assumption within the window is often poor and choosng the sze of window is

problematic with respect to the uncertainty principle in time-frequency andyss.
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Instead, dynamic edimation techniques usng Kaman filtering and other recursive
least-square estimators are more computationdly efficient [49] and suiteble in red-
time. These techniques dlow the parameters to adgpt with each sample of the
sgna, which is a better modd of the EEG. In BCI literature, this approach to
edimating autoregressve parameters  is commonly refered to as adaptive
autoregressive (AAR) modding.

AAR modeing has been used with some success in BCI [32], [33]. Inthese
gudies the tasks to be diginguished are motor imagery of the dominant hand versus
mentd aithmetic usng EEG from C3 and C4. Autoregressve parameters are
adapted over time usng a lattice-filter gpproach to minimizing the mean square
eror. The autoregressve coefficients are used as features and a Bayesian learning
framework classfies them. They use a latent-gpace smoothing approach to ascertain
certainty in decisons and rgect low confidence decisons. In the drictest rejection
they achieve an average peformance of 86.5% over 7 subjects.  An obvious
drawback in this approach is the information loss in ignoring trids.  Another
disadvantage is that the two distinguishing tasks are not very intuitively related to
each other or a particular application.

A dgnificant number of dudies have invesigatled Kaman filtering estimation

of AAR parametes to didinguish left versus right imagined hand movements by the
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Graz BCl group [50]-[56]. These dudies are predominantly off-line and assess
performance through cross-vdidation of many dngle trids. In each trid, however,
an on-line classfier provides the user with feedback during data collection. Thus,
the work investigates performance with feedback and in [53] classfication accuracy
of 85% to 95% is achieved for four subjects. There are three mgor contributions
throughout these publications over previous AAR EEG andyss.  Firdly, unlike [33]
where they use completdy different categories of cognitive tasks to improve
separability, the Graz BCl achieves dgnificant separability within the same
cognitive-task  (imagined hand movements). Secondly, in this work there is
atention to assessng how long it takes to reach a decison. They accomplish this by
performing cross-vdidation of the features collected a each ingant in time over the
trid. This assessment is very rdevant to red-world applications of BCl where
response time is of concern. Thirdly, they propose usng the mutud informetion
(MI) between the BCI output sgnd and the motor-imagery classes to assess the
qudity of communication. This andyds gives more ingght into the rdiability of the
dgorithmin ared ontline BCI.

AAR edimation techniques, such as Kdman filtering, do not yet have a
direct and wdl-veified means for sdecting optimd time-frequency resolution.

Furthermore, no methods exist that offer a tractable multi-resolution approach in
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AAR modding. As discussed in section 1.4.4 rdevant ERD features occur both in
the u and 3 bands, therefore, multi-resolutiond andysis should be beneficid. It is a
natura progression for research efforts to condder wavelet andysis in motor-
imagery BCI [39], [58], [63], [65], [68]. In [39] they use the waveet transform
coefficients to characterize MRP in asynchronous motor-event detection. In [63]
they use wavelet andysis on subdurad implants and achieve nearly 100% accurecy.
This success can be largely aitributed to a much higher sgna-to-noise ratio in these
invadve recordings. Also, EEG recorded directly from the surface of the brain has
more information across the spectrum meking multi-scde andyss very beneficid.
There is little work that has gpplied wavelet andysis to nonrinvasve EEG in sngle-
trid motor imagery using peformance messures proposed in [56]. A notable
contribution in this regard is in [58]. They apply wavelets scaed appropriately for
the p-rhythm a and 3 bands and use the coefficients as features. Furthermore, they
propose a method for combining decisons made over the trid to accumulate

evidence. For asingle subject they achieve 89.3 % accuracy in cross-vdidation.
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2.2 Prospects and Challenges in Motor Imagery

BCI

There has been little work to compare the performance of AAR and wavelet
features in motor-imagery EEG. In [65] they compare AR and waveet for three
subjects for three mentd dates relaxed, right, and left motor imagery. They suggest
that AR is better based on the overal confuson matrix. However, distinction
between left and right motor imagery was near random for both feature sets, which
makes the comparison less credible. Also the wavelet approach was better at
diginguishing the rdaxed and motor-imagery dates. Thus, the comparison is not
conclusve. The proposed wavelet approach in [58] was the winning entry in the
BCl Competition 2003 and competed with AR-based methods. However, it is
unclear if the gpproach in [58] performed better because of one or more of the
folowing ressons (1) it used wavelet features (2) it used tempora evidence
accumulation which none of the other approaches used;, or (3) the AR
implementations were not as good as they could be (even the competition organizers
comment on the variability in the qudity of submissons and none of the other AR
methods were published [64]) Theefore, the best time-frequency paradigm
(waveet vs. AAR) continues to be debatable and inconclusive.

Another aspect that requires attention is the utilization of dl information the
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EEG provides about motor imagery. MRP and ERD/ERS contribute complimentary
information about motor imagery tasks [66]. In addition, the locations of ERD
activation in regions of the motor cortex give ingght into the imagined tasks. The
method of common spatid patterns (CSP) can capture this information effectively
[67]. In [68], they demondrate that combining these complimentary features,
paticulally MRP and ERD (via AAR fedatures), a the classfier levd improves the
information trandfer rate.  This is encouraging, since the information transfer rate is
the single greatest drawback in nontinvasive EEG based BCl's. Perhgps another
question worth answering is whether or not there are complimentary festures
avallable within one or more of the information sources discussed aove.  The

hierarchical gructure of thisideaiisilludrated in Figure 2- 1.
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Motor Imagery

MRP ERD CSP

AN

Waveet? AAR?

Figure2-1 —This hierarchical structure demonstrates the fusion of various sources of information
from the EEG related to motor-imagery. The novel ideaisin the bottom layer, i.e. the suggestion that
wavelet and AAR features could have complimentary information with respect to ERD.

2.3 Description of Data Set

Although data was andyzed off-line in this dudy, al dgnd processng is
causal and applicable ontline. We condder three subjects imagining left and right
hand movements usng smilar protocols as in [58]. The subjects are referred to as
Cl, B2, and A3. The datasst was provided by the Depatment of Medica
Informetics, Inditute for Biomedicd Engineering, Universty of Technology, Graz,
Austria. For subject C1, the EEG was sampled a 128 Hz from three biopolar

channels (C3, Cz, and C4) that were band-pass filtered dlowing frequencies
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between 0.5 to 30 Hz. The dataset consists of 280 trids that are 9 s long each. Figure
2-2 depicts the protocol for each trid. The first 3 s is an idle preparation period, at
which point a visud cue in the form of an arrow appears pointing ether to the left or
the right. The user was indructed to perform the imagination task according to the
direction of the arrow for the next sx seconds. During this time the system provided
the user with visua feedback usng an ontline classfier. Subjects B2 and A3 had
exactly the same protocol except their tria length was 8 s and feedback started after

4s,

T | Feedback period with Cue
|

Trigger
Beep

>

Figure 2-2 — The 9 second protocol for each imagined left/right hand movement.
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Chapter 3

Overview of Resear ch

In this section we discuss the research direction of this thesis with regard to
advancing time-frequency pattern andysis in motor-imagery.  We discuss how the

objectives of thisresearch fill various voids in current research.

3.1 Problem Statement

This thess seeks to advance current methods of ERD andyds in motor-
imagery classficaion. As discussed in Chapter 2 there are two magjor approaches to
ime-frequency andyss adaptive autoregressve (AAR) modds and waveet
andyss. In section 2.2 we briefly describe an approach that uses wavdet andysis
and enhances classfication by combining decisons over time, thus accumulating
knowledge about the trid [58]. We propose that the AAR approach could benefit

from a amilar scheme that we refer to as the tempord evidence accumulation (TEA)
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framework (section 4.3.2). We implement the TEA approach and compare its
performance to that of a conventiond method for classfying AAR features. The
TEA approach to classfication of both AAR and waveet features is an interesting
context in which to compare the two features sets.  This has never been done in the
literature and can provide vduable indght regarding individud srengths of eech
approach.

As discussed in the previous chapter, the literature suggests tha AAR
features modd noninvasve EEG quite wel. The drength of this festure st is
perhaps its robustness to the large amount of noise present in norrinvesve EEG.
However, the obvious srength of the waveet trandform is its multi-resolution time-
frequency analyss approach. This suggests that each agpproach offers different
atributes in sgnd andyss Therefore, after comparing the two festure sets under
the TEA framework we investigate complimentary information between the two
approaches.  If adequate complimentary information exists, then there is good reason
to invettigate fuson to improve peformance. Fgure 3-1 summarizes the flow of

invedigation in thisthess
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EEG
AAR Wavdet
Conventiona TEA TEA
Classfication _
Best Method
Compare p Compare
Compare |4 Fusion

!

Figure 3-1 — Overview of Research Path in this Thesis
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3.2 ThesisOrganization

The remaning chapters cary out the invesigation depicted in Fgure 3-1.
Chapter 4 describes the adaptive autoregressve moded, the TEA framework, and
how the framework can be applied to AAR parameters. It then compares the
performance of TEA to a conventiond classfication approach. Chapter 5 presents
the wavelet gpproach, under the TEA framework, for motor-imegery andyss and
presents results for the three subjects. Chapter 6 compares the performance of
wavdet and AAR under the TEA framework and investigaies complimentary
information between the two. Furthermore, an gpproach for fusng the methods is
proposed to teke advantage of complimentary information. In Chapter 7,
concdlusons from the vaious expeiments ae drawvn and future work is

recommended.
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Chapter 4

Feature Set 1 — Adaptive

Autoregressive M odel

In the previous chapter we establish that two methods of spectrd anadlysis are
consdered in this work: adaptive autoregresson (AAR) and wavelet; in this chapter
we focus on the former. We provide background theory in autoregresson and
describe a commonly used technique for extracting AAR parameters from EEG and
cdassfying them.  Findly, we propose a classficaion scheme that improves

performance over the aforementioned conventional approach.

4.1 TheAutoregressive M odel

A sochagtic process is a random variable that evolves over time.  Therefore,
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the process evolves according to probabilistic laws and cannot be predicted exactly
[48]. According to this description, EEG may be modeled as a stochastic process.
In order to detect and characterize an ERD and ERS one must estimate the power
spectrd densty of the EEG. There are a myriad of techniques to estimate the power
goectrum of a wide-sense dationary random processes.  Although EEG is not
dationary (see section 2.1), the dationary assumption is the darting point for this
discusson on power spectral estimation. The existing estimation procedures can be
broadly categorized as parametric and non-parametric.  In pattern recognition
gpplications parametric methods are paticularly atractive because they summarize
information concisely and trandate well to feature vectors. The autoregressve (AR)
mode is one such approach that has been well studied in EEG andyss.

In autoregression, the modd infers the way in which a random process y(n) is
gynthesized [48]; y(n) may be generated by applying an dl-pole filter to a white-
noise process w(n) with zero mean and variance s 5 The idea is illudrated in the

block diagram of Figure 4-1. Notice that the sgnd under andyss is actudly the
output of the sysem. This is in contrast to other spectra anayss techniques in
which the sgnd of interest is decomposed as the input to filter(s). The filter
coefficients ay,, therefore, provide information about the spectra content of y(n) and

are referred to as AR parameters.  Equation (4.1) describes the reationship between
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the spectral density of y denoted as S, and the AR parameters for ap™ order AR

mode [69].
Sy
SAR_ é) )
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Figure4-1 — The AR Process, where w(n) isthe input (zero-mean white noise) and y(n) is the output
(the signal to be modeled)
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In the EEG andyds context the AR parameters are, of course, unknown.
There are severd methods to etimate AR parameters for a wide-sense dationary
process such as the Yule-Waker and Burg's methods [48]. We do not further
discuss these approaches because they apply to dtationary processes. The estimation
method used in this research is discussed in section 4.2.

The AR modd itsdf is not an intuitive description of the process that actudly
occurs to produce EEG. The dgnd is a result of the firing of many neurons, not the
dl-pole filtering of zero-mean white noise. The AR modd seems to characterize
EEG wel (see chapter 2), nonetheless, and there are good reasons for using it as
discussed below. Firgtly, the AR ectrum is closely related to the spectrum that can
be estimated by the maximum entropy method (MEM) [69]. In fact, the two spectra
edimation techniques are mathematicdly equivdent (see [69] for a proof). MEM is
known to give the power spectrum that is associated with the most random time
series possible for a given autocorrdaion matrix.  Thus, the AR parameters provide
a lot of spectrd information with few parameters. Secondly, AR modding is rather
robust with regard to noise, with which non-invasve EEG is sgnificantly corrupted.
This nation is quite intuitive Snce the modd itsdf is driven by noise and because it

is a maximad entropy edimae.  Ladly, a priori informaion about reevant
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frequencies is not required to estimate the AR coefficients.  This is powerful because
if the rdevant frequencies change the same implementation is goplicable.  This is a
concern in BCI since the EEG characteristics may change for a given subject over

time.

4.2 The Adaptive Autoregressive M odel

In the previous section the AR modd is described for a wide-sense stationary
process. EEG, however, is non-dationary and the AR parameters change with time.
Conventiona approaches to address non-stationary behavior of EEG have been to
goply a moving window of AR edimates Depending on the sze and shift of the
window, traditiond AR edimaion dgorithms can become computaionaly
intendve. Insead, we may edimate non-daionary AR parameers by inferring a
dynamic modd and usng Kdman filtering [70]. Such an approach is referred to as
adaptive autoregressve modeling (AAR) and has been successfully used in left-right
angle-trid motor imagery dasdficaion [50]-[55].  This section introduces the
technique as gpplied to EEG signd processing.

4.2.1 Introduction to Kalman Filtering
The Kaman Filter is a dynamic, recursve edtimator that uses a State-space

mode to represent an esimation problem. The date, a any given time n, changes,
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we are interested in estimating the state vector, which conssts of the fewest number
of paameters to specofy the state. We may infer the date a time n from
measurements in the system (in this case the EEG) a time n as wdl as the higtory of
dates in the sysem. The advantage of the Kdman Filtering formulation is its
recursve nature, which requires knowledge of the previous state only. Therefore it
is an attractive tool because it is computationdly efficient and is a lees-squares
estimate of the unknown Sate.

There are two magor components to the Kaman Filtering formulation: (1) a
process modd and (2) a measurement model. The process model describes the

dynamics of the gate and is given by

z(n)=F(n[n-1z(n- D +v,(n), (4.2)

where z is a column vector of the State parameters, F is a matrix representing the
dynamics of the dtate, and v, iS zero-mean white noise with a Gaussian distribution.
The role of v, in the model depends severd contexts : (1) the dynamics that govern
z may be purdy gochastic (F=I), in which case v, is the driving force for the
dynamics, (2) if the system is believed to be determinigtic and there is no noise term
measurements would be completely ignored, in this case a smdl noise tem v,
preserves the adaptability by redtricting the confidence of the estimator; and (3) the

mathematicdl mode for F may only be an gpproximation of the actua dynamics and
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Vp provides flexibility to accommodate unaccounted variations in the modd. In

order to initiate the recursion a boundary condition is necessary, namely

E[z(0)] = z, and cov(z,) = P,. (4.3)

The dynamics matrix F, which modds the date trangtions, has two noteworthy
properties:

1. Product Rule- F(n,m)F(m,l) =F(n,I)

2. InverseRule- F*(n,m)=F(m,n)

wherel,m, and n are integers.

The measurement modd is given by

y(n) =C(n)z(n) +v._(n), (4.4)

where y is a column vector of length M of the M-dimensond messurements, z is a
column vector of the date parameters, C is the measurement matrix and vy, IS zero-
mean white Gaussan noise.

For a complete derivation of the solution for the unknown State using the
process and measurement equations refer to [69]. Here we highlight the key
parameters that provide conceptud indght into Kdman filtering and summarize the
dgorithm.

1. The Innovations Process
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Theinnovations process is defined as

u() =y(n)- ¥(nlg,.,), (4.5)

where u is the innovations process and y(n|g, ,)is the minimum meansquare
edimate of the observed measurement y(n) given dl past observations denoted by
g, .- Noticethat u(n) quantifies new information in the observed data y(n).

There are three important properties of the innovations process [69]:
1. According to the principle of orthogondity, The innovations process is

orthogond to dl past observations y(n) described as

Elu(n)y (k)]=0, 1£k£n- 1. (4.6)

2. The innovations u(l), u(2), u(3).... u(n)are orthogond to each other
(white) described as

Elu(nu’(K)] =0, 1EKEn- 1. @7

3. There is a one-to-one correspondence between the observations y(1), y(2),
y(3),..... y(n) and u(1), u(2), u(d).... u(n).
2. Correation of the Innovations Process and Predicted State Error

The correlaion matrix for the innovations process is a necessary parameter and can

be calculated by
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Q(n) =C(n)P(n,n- HC" (n) +R(n), (4.8)

where R = cov(vm) and P(n, n-1) = cov[ z(n) - Z(n|g,.,)] , i.e. it isthe correlation of
the predicted state error. P(n, n-1) may be found recursvely using the Riccati
equation given by
P(n,n- 1) =F(n)P(n- )F" (n) +R(n). (4.9)

P(n-1) is the updated estimate of P(n-1,n-2), i.e. P(n-1) =cov(z(n) - Z(n|g,)) and
may be calculated as

P(n- 1) =P(n-1n- 2)- F(N)G(N)C(n)P(n- 1n- 2). (4.10)
G(n) isthe Kdman gain and is further discussed below.
3. TheKalman Gain
The Kaman gain represents the agorithms confidence in new information provided

by measurements and is given by

G(n) =F(N)P(n- HC" (N)Q*(n). (4.11)

4. Egtimation of State
Findly, the edimate of the date parameters a time n can be caculated using the
following

Z(n) = F(N)z(n - 1) + G(n)u(n). (4.12)
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The parameters and agorithm are concisely summarized in Table 4.1 and Table 4.2.

Table4.1 — Summary of Kalman Filter Parameters

Symbol Definition " Dimensions
z(n) State at timen M by 1
y(n) Measurement at timen N by 1
F(n) State transition matrix from timen-1 ton M by M
C(n) M easurement matrix at timen N by M
W(n) Correlation matrix of process noise M by M
R(n) Correlation matrix of measurement noise N by N
Z(n) Estimate of the state at time n M by 1
G(n) Kamanganattimen M by N
u(n) Innovation process at timen M by N
Q(n) Correlation matrix of the innovations N by N
process at time n
P(n,n-1) Correlation matrix of theerror in M by M
z(n |gn—1)
P(n) Updated Correlation matrix of the error M by M
inZ(n|g,)

" Mand N refer to the number of dimensions in the measurement and state, respectively
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Table4.2 — Summary of the Kalman Filter Algorithm

Input:
Measurements = {y(1), y(2), ....., y(n)}

Known Parameters:
Trangtion matrix = F(n)
Measurement matrix = C(n)
Correlation matrix of process noise=W(n)
Correlation matrix of measurement noise = R(n)

Computations:
G(n) =F(n)P(n- HC" (N)[C(n)P(n,n - DC" (n) + W(n)] *
u(n) =y(n)- y(nlg,.,)
Z(n) =F(n)z(n- 1) + G(n)u(n)
P(n-1)=P(n-1n- 2)- F(n)G(n)C(n)P(n- 1,n- 2)
P(n,n- 1) =F(n)P(n- DF™ (n)+R(n)

Initial conditions:
Z(0) = E[2(0)]

P(1,0) = E[(z(D) - E[z(@])(z(D) - E[xDN"]
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4.2.2 Estimating AAR parametersusing Kalman Filtering
A p™ order AAR model can describe a 1-D EEG signd using
y(n)=z(n) *Y(n-1+v_(n), (4.13)
where n is the discrete time index; y is the EEG sample z is a p-dement column
vector of the autoregressive coefficients, Y is a column vector of the last p EEG
samples; and vy, is a zero-mean, white-noise process . Notice that the autoregressive
coefficients change with time to cgpture the dynamics of the EEG. In the context of
the Kadman Filter, the EEG dgnd is the measurement and the autoregressve
features comprise the date parameters. Thus, equation (4.13) is the measurement
model where the measurement matrix C from equation (4.4) is a column vector of
the last p samples of the EEG signd y. The process modd is given by
z(n)=2zn-1)+v,(n). (4.14)
where v, IS zero-mean white noise. In the context of the Kaman filter the dynamics
matrix is identity, thus, the sysem is modeled as a random wak with smal changes

in the gate.
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Table 4.3 — Summary of Kalman Filter Parametersfor AAR model

Symbol Definition Dimensions
W(n) Process noise variance scalar
R(n) Variance of measurement scalar

noise

Z(n) Estimate of AAR parameters px1

(state)
Y(n) Measurement matrix (last p px1
samples of y)

G(n) Kaman gain px1l
2(n) Innovation process scalar
Q(n) Innovation process variance scalar
P(n) Predicted state-error pxp

correlation matrix

uc Update coefficient scalar

The Kdman filtering dgorithm for AAR paramee edimation is given beow

(see Table 4.3 for description of parameters):

Q(n) =(- uc)*Q(n- 1)

G(n) =P(n- )»¥(n)/Q(n)

Z(n+) =z(n)+G(nu(n)

W(n) =uc* trace(P(n- 1))/ p

P(n) =P(n- 1)- G(n)" *¢ (n- 1) >P(n- 1) +W(n)

(4.15)
(4.16)
(4.17)
(4.18)

(4.19)

The reader should notice that there are severd dmplifications from the

generd Kadman filtering equations given in the previous section.

Since the dae

! Note that the dimensions of the parameters are given specifically for the AAR estimation problem and have been

simplified from Table 4.1
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trangtion matrix is identity in this gpplication, and the innovations process is scdar
(the innovations corrdaion is samply a vaiance) eguation (4.11) smplifies to
equation (4.16). The identity trangtion matrix dso smplifies equaion (4.9) making
two steps (update and prediction) for caculation of the state error correlation matrix
unnecessary.  Ingtead, we combine equations (4.9) and (4.10) (the updated and
predicted steps) into one caculation to form equation (4.19).

There are other deviations in the above agorithm from the origind Kaman
filtering formulation that sem from the fact that the measurement and process noise
variance is unknown; the agorithm given in Table 4.2 assumes these parameters are
known, therefore, a dightly different gpproach is necessary. Cdculation of the
innovations process variance, Q(n), requires the process noise variance, R(n) (see
equation (4.8)). There are severd dternatives to cdculate Q(n) recursvey without
prior knowledge of R(n) [47]. Based on findings in [47], where they compared these
dternatives in EEG analyss for severad subjects, we use eguation (4.15).  Equation
(4.18) edimates the unknown measurement noise variance and is among the better
performing methods among those sudied in [47]. Note that in equations (4.15) and
(4.18) the parameter uc (update coefficient) is introduced; in the above dgorithm the
unknown parameters can be traced back to the mode order p and update coefficient

uc. These parameters are sgnificant and their sdection governs the time-frequency
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resolution of the andyss.  Section 4.2.3 describes a method for sdecting these
parameters.
4.2.3 TheREV Criterion and Time-Frequency Resolution

The update coefficient uc and model order p are to be selected so thet the
AAR edimates best describe the EEG sgnd y. In [71], they propose the relative
eror vaiance (REV) as a minimizaion criterion for sdecting these parameters and
itisgiven by

au(ny’

Ivar(y),

which is the mean squared error (innovation process) normdized by the sgnd
variance. N is the totd number of samples in the trid. The innovation process is a
measure of the dynamics that the sysem could not predict. In essence it is a
measure of the goodness-of-fit of the modd and is, therefore, a good criterion to
condder when sdecting p and uc. In this work the REV criterion is used as a
guiddine for sdecting p and uc but we do not necessarily use the parameter vaues
that minimize the REV. Margindly lower REV vadues do not judify larger mode
orders if the increase in complexity and computation do not sgnificantly improve
classfication performance.

An important redization is the implication of the modd order and update

coefficient on the time-frequency resolution and the principle of uncertainty. The
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model order corresponds to the frequency resolution and the update coefficient is
related to the time resolution [47]. Therefore, for a given update coefficient there is

an optimal modd order and vice versa

4.3 Method

This section describes two methods for classfying AAR features as ether
left or right-hand imagined movements.  Section 4.3.1 presents the conventiond
method (CONV) that has been used in severd sudies [50]-[56]. Section 4.3.2
decribes a nove framework for tempora classfication and demonstrates how the
framework can be gpplied to AAR features. The objective is to classfy the trid with
a dgnificant degree of cetitude as quickly as possble gating from the time of
feedback (see section 2.3 for a description of the protocol used in these trids).

4.3.1 Conventional Method (Linear-Discriminant Analysis)

Linear Discriminant Andyss (LDA) identifies the best discriminating (n-1)-
dimensond hyper plane between two dasses C1 and C2 in an n-dimensond fegiure
space - for a more detalled discussion of (LDA), see [61]. Despite the amplicity of
the method it continues to be a drong peattern andysis technique in BCl and
performs better than or the same as more complicated and dynamic techniques such

as Hidden Markov Modds (HMM) [72]; the man problem in HMM’s in BCl is
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adequate a priori information for the topology. LDA dassfication of Ieft/right
motor-imagery may be peformed by training (i.e. finding the linear discriminant for
the traning set) & each discrete indant in time.  We may use cross-vdidation to
asess performance over time by examining the error rate and other measures that
will be discussed in section 4.4.1. In a BCl implementation of this dgorithm a time
during the trid would be sdected, based on the cross-vaidation andyss, when
decison making is a its best and the sysem would wait until that time to cdassfy
thetrid.

Let z ,(n)andz,,(n) denote row vectors of the estimated p" order AAR

parameters for trid t a time n for eectrodes C3 and C4, respectivdy. We
concatenate the two vectors to form a single 2p-dimensiond fegture vector giving
z,(n) =[z(n),5,z(N) ] (4.21)
Usng the LDA weight vector w; and offsst wp, the dasdfication decison
D:(n) may be obtained by
D, (n) =w, (n) >z, (n)- w,, (4.22)
where Dy(n) > O dasdfies trid t asright and Dy(n) < O as left a time n. The

magnitude of Dy isan indication of the certitude of the decision.
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4.3.2 Temporal Evidence Accumulation Framewor k

In the previous section we introduce a convertiona gpproach using LDA that
classfies the trid a each discrete ingant in time independently from one ancther.
We propose that this approach does not take advantage of the accumulated evidence
the AAR features are providing over time. We apply a tempord evidence
accumulation framework based on one proposed in [58], and investigate its success
with AAR festures,

Labeed training data from 10-fold cross validation of the dataset is used to
infer a class conditiond p-D Gaussan didribution for both classes Left (L) and

Right (R). Thuswe have the probability dengty for the feature set z(n):

S /
|anvC |—12

4p?

p(z0)] )= op(- S0~ m) &, em- m) (429)

where ci {L,R}. The mean m,_ and covariance &, are esimated from the
traning data for c. We may cassfy z(n) by cdculaing the probability of
belonging to aclassusing (4.23) and Bayes theorem as

pmle)
p(z) [L) +p(z(M) |R)

p(clz(n)) = (4.24)

In order to combine information throughout time the decison made a the

current time n = n; isaweighted average of dl the decisons for n = n;; thus we have
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. @ ey W p(c] (M) Lo
P |2(1).2(0) = —=g—— (4.25)

nEn t

where w; reflects our certitude in the decison making ability of the classfier a time
n, and is derived from the probability of misclassfication [58]. Although we cannot
find the probability of misclassfication directly we may cdculate its upper limit
usng the Chernoff bound, an advantage of using an explicit probabiligic approach

to classfication. The weight w; is defined as

. N (4.26)
w, =1- mjn oP(z(t) [ L)* p(zt) |R)™* dz.

0Eg,£1
Since we infer a Gaussan didribution, this integrd can be expressed in closed form
and the minimum solution can be found andyticadly or numericdly. The Chernoff
bound was chosen over the Bhattacharyya bound (see [61]) because, in generd, it is
a ftighter bound.  Although the Bhatacharyya method can be dightly more
computationdly efficient, we prioritize the tighter bound snce Chernoff cdculaions
are done in the traning sage, which does not have red-time demands. For the
derivation of the Chernoff bound and other detals regarding its relationship with the

Bhattacharyya bound see Appendix A.
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4.4 Reaults

In this section we compare the performance of the conventiond gpproach
(CONV) described in section 4.3.1 to the tempora evidence accumulation (TEA)
approach described in section 4.3.2 for the three subjects in this sudy.  The REV
criterion is used to sdlect the model order and update coefficient.

44.1 Performance Measures

We employ three measures of performance using 10-fold cross vaidation: the
time course of the percent misclassfied (%Err); the sgned decison magnitude,
D(n); and the mutua information, I(n) [38].

D(n) reflects both the classfier's decison by its sgn (D(n) > 0 2 R, D(n) <
0 - L) and cetitude by its magnitude . For CONV, the signed decison magnitude
Dconv(n) is the shortest  distance between z(n) and the LDA boundary (see equation
(4.22)) and, for TEA, Drea(n) is defined as

Dea(n) =1- 2xp(L | z(2)...z(n,)) . 4.27)

The reasons for examining D(n) are two-fold: it gives a good indication of
the separability of classes and the classfier’s confidence in its decison; second, it
collgpses the problem into a dngle dimenson lending itsdf wel to computationd

amplicity and efficiency for information theoretic measures. D(n) can be modeled as
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having two processes. one being the motor imagery task and the other being noise
[38]. Informetion theory may be used to evduae how much information D(n)
provides about the motor imagery task. The entropy of D(n) is a measure of its

uncertainty a timen and, inferring a Gaussian distribution, is defined as
H(D(m) = log@es?), (4.28

where s? is the variance of D(n) (see Appendix B for derivation in the Gaussian
caxe and other details). The reduction in entropy from H(D(n)) to the within-class
entropy H(D(n)|c) is the mutud information [38]. It is a measure of how closdy
related D(n) is to the motor imagery classes, and thus, quantifies the amount of
information in D(n) that is relevant to the problem. The mutud information can be

caculated by

2

S
m] : (4.29)

1
1 (D(n)) ==log[
2
where s’and s? are the dass conditiond variances of D(n), assuming the noise

process for D(n) is aso Gaussan. If this assumption is incorrect, 1(D(n)) in equetion
(4.29) is in fact the upper limit on the mutud information [38]. See appendix B for

more details on mutud information.
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442 REV plotsand selection of Model Order and Update
Coefficient

We cdculate the REV criterion over a range of mode orders and update
coefficients.  FHgure 4-2 shows plots for model orders ranging from 3 to 6. In
general the REV criterion did not improve for modd orders greater than 6 so we do
not plot them in the figure. The update coefficient is set to a range of 2** to 27 as
the Kamen Filter exhibited instability a approximady uc > 27 for dl three
subjects.  For al subjects and model orders minimum REV vaues occur close to 27
and this vdue was chosen for the update coefficient. ~ Since only minor
improvements in the criterion occur for larger model orders we sdect a 3™ order
AAR modd. To check this selection, after the 39 order modd dlassification results
were produced (section 4.4.3), we ran the experiments for higher modd orders and

the results were worse or as good as the 3" order model.
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4.4.3 Performance Comparison

The time course of the classfication results and mutud informetion for both
experiments are depicted in Figure 4-3 to Fgure 4-5, for subjects C1, B2, and A3,
respectively.

For subject A1 The TEA method reaches a minimum error of 14.3% while
CONV achieved a very incondstent minimum of 18.2%. If one were to consider a
moving average of the CONV eror curve the minimum would be 21.6%. More
dgnificant than the reduction in minimum eror is the subdantid difference in
vaiahility throughout the time course. This is an important improvement in the TEA
approach for enhanced predictability of the BCl system.

The advantages of the TEA approach are more compdling in the plot of
mutud information. Notice that ltea(n) reaches a maximum of 0.53 compared to
0.41 for konv(n). The later maximum is inconggtent as there is more variability in
lconv(n). If we again condder a moving average of the curve, lconv(n) has a
maximum of only 0.33. In addition to ataning higher maxima mutud information,
Itea demongrates a more ragpid rate of increese.  This is a useful improvement in
BCI gpplications where timely response to user input is desirable.

The time course of Drea(n) and Dronv(n) are depicted in figure 2. Notice

the greater consstency in Drea(n) and fader rate at which the classfication problem
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IS more separable.

The results for both TEA and CONV reflect an improvement in the
separability of the classes over time followed by degradation. For CONV this is
evident both in %Err and konv(n) in Figure 1 (8) and (b), respectively. For TEA this
is evident in the Chernoff bound. This may be a result of a decrease in concentration
and focus on the part of the user. There is an important difference in the way the
two agorithms handle this problem. The CONV approach does not make use of the
knowledge the training data provides about this degradation. The TEA method,
however, measures uncertainty in the training data enabling it to predict the
degradation in features in the latter part of the trid.

For subject B2 The reduction in error rate over time in TEA is much more
consgtent then CONV (see Figure 4-4 (@). TEA reaches its minimum error rate of
27% 1.2 seconds before CONV reaches its minimum of 25%. Although CONV’s
minimum is lower it is only for an ingant in time In an actud BCl it would be
difficult to predict the optimd response time for CONV. Furthermore, since
response time is a concern in a BCI, the TEA’s faster descent is attractive in many
applications.  The mutud information plot in Fgure 4-4 (b) also demonstrates the
more rapid increase in class redevance of the BCI task for TEA. In the latter part of

the trid the mutud information is sudaned in TEA and dedines in CONV, dso
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demondrating the robusness of the TEA dgorithm. Although the average
magnitude of the decison output for CONV is greater in the latter part of the trid
(see Figure 4-3 (¢) and (d)), it is inconsgtent; the mutud information plot, which is
directly related to the variance of the decison output, reflects this. Smilar trends
are observed for subject A3, but the improvements in the TEA approach are even

more compelling (see Figure 4-5).
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TEA (b) methods. For CONV the distance to classification boundary has been scaled to be
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Chapter 5

Feature Set 2 —Wavdet Transform

In this chapter we condder the second method of spectrd anayss the
wavelet transform.  We present some fundamental wavelet theory and describe a
method for extracting waveet coefficients from motor-imagery EEG.  We then
apply the TEA framework discussed in the previous chapter to classfy the wavelet

features and andyze the results.

5.1 Introduction to TheWavdet Transform

According to Fourier theory a continuous sgnd can be expressed as a

weighted integra of complex snusoids of varying frequency [59]:

f(t) = % (i F(jw)e™dw , (5.1)
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where f(t) is the time domain sgnd and F(j?) is the weight function for the complex
snusoids, dso known as the frequency domain of the sgnd. Therefore the
frequency domain provides a messure of activity in the sgna throughout the

frequency spectrum and is defined as

F

F(jw) = Q, f(t)e ™dt . (5.2

The mgor shortcoming in Fourier andyds is that, dthough it provides information
about the frequency content of a Sgnd, it does not indicate when frequencies occur
in adggnd. In EEG sgnd andyss we are interested in how the frequency cntent of
the sgnd changes with time, known as time-frequency andyss. To overcome this
disadvantage of the Fourier Transform (FT) the Short-Term Fourier Transform
(STFT) was proposed. In this agpproach, the Fourier trandform is applied to
segments of the sgnd in time.  An important condderation is how large to make the
window of andyss. The smdler the window the more precise the information is
with respect to time. Suppose we apply the most precise window of time possble,
the Dirac impulse.  This is eguivdlent to convolution of the Dirac impulse with the
dgnd in the time doman, and corresponds to multiplication in the frequency
domain. In the frequency domain the Dirac pulse contains dl possble frequencies

50 the frequency information of the signd is corrupted. Therefore, there is a tradeoff
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between time and frequency resolution. This is known as the Helsenberg Principle
of Uncertainty as gpplied to time-frequency andyss.

The wavelet transform addresses the shortcomings of the FT ad STFT with
respect to the principle of uncertainty. Specificdly, the modulated window that is
shifted dong the dgnd is done s0 a vaious scdes [60]. Therefore, high
frequencies ae measured a sharper time resolutions than low frequencies to
edablish a compromise between the time-frequency resolution trade-off. The

continuous wavelet transform may be applied as

¥

wst) =g, Fy, O, (53
where w is the wavelet coefficient that corresponds to the frequency associated with

the scdle s and time t of the wavelet function y , (t). The wavelet function is scaed
and shifted versons of amother wavelety (t) :

Y o ) =%y (%) : (5.4)

The mother wavelet function is not specified in equaion (5.4) as it can take many
forms that suit the specific gpplication. For details regarding the types of common

mother waveets and the properties they dl must satisfy refer to [60].
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5.2 Method of Wavelet Analysis in Motor Imagery
EEG
As discussed in section 1.4.4, motor imagery response can be found in the a
band over the post central motor cortex and the 3 band over the pre central motor
cortex.  Furthermore, there seems to be complimentary information in these two
frequency bands and, thus, merit in exploiting both features [57]. With this in mind,
we employ a method of waveet andyss based on the work presented in [58]. In

order to take full advantage of waveled andyss it is useful to obtan a priori

Morlet wavelet

Cimensicnless period

Figure5-1 - The Morlet Wavelet
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information about the dominant frequency within the aforementioned bands. This
allows us to scde the mother wavelet precisdy for these two rdevant frequency
bands. Therefore, the a priori knowledge dlows us to limit the feature space to just
two waveet coefficients per dectrode. In this sudy we use the Morlet mother
wavelet, which is amodulated Gauss impulse (see Figure 4-1) and is given by

1 (iwoﬂ) -E(E)Z

1
y(nm=—=p e *e?=° | (55)
Js
where n is the discreet time index; s is the scding factor corresponding to the target

frequency; t is the tempora shift of the wavelet; and ? is the eigenfrequency of the

waveet.

The scding factor governs the time-frequency resolution and is given by
W, + 42+ W,
s(f)=— ° (5.6)
4pf

where f is the target frequency. Note that increasing the eigenfrequency ?o sharpens

the frequency resolution while decreasing the time resolution.

The effective widths in the time and frequency domain are given by

ty =+/2s (57)
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f. =~/2(2ps)*, (5.8)

where tg; IS dso known as the efolding time and refers to the length of the wavelet

(in time) dter a eiz reduction in the power of the waveet, and fer is the

corresponding width in the frequency domain.
As discussed in section 5.1, the wavee coefficdents w(t,f) are the

convolution of the Sgna with the mother waveet:

e, f) = % Iy®)*y O1 59)

where y(t) is the 1-D EEG dgnd from a given dectrode. In the gpplication of this
dgorithm to the sugjects in this sudy, the feature vector w, conssts of four

coefficients at each discreet timen:

(5.10)
W, (n) = (W,(N, £), W (N, ), W (0, £, ) Wi, (0, L))

where C3 and C4 refer to the corresponding electrodes in the internationd 10-20
system.

In order to make the off-line dgorithm implemented in this work applicable
ontling, dl andyss is causd. To meet this requirement the extenson of the

waveets in the time domain is limited to four times the efolding time. Therefore, a
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delay is required and is governed by the most course resolution in the time domain,
that which corresponds to a. Hence, The festure vector wy(n) is not avalable until
time n+2tg. The idea is depicted in Fgure 5-2. Due to the necessary delay,

dassfication of thetriad does not occur until 2te Seconds after the start of feedback.

EEG

l

/! :
ﬂ,,wb,.w[_ ) /b V WVW %J}f{ L«;r'w Vi,
Coarsest time domain

window width (that
Voltage N corresponding to a)

wy(n) becomes available

[ [ | Time
......... = 2test Nes n NHett N+2teff owoveeeee

Figure5-2 — Causal delay of coefficients due to windowing by wavelet
We peform cross-vdidation of the festure vector & each discrete ingant in
time over the 280 trids for each subject. The same performance measures are used
to evauate the approach as described in section 4.4.1. For classfication, we apply

the TEA framework as described in section 4.3.2.
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5.3 Reaults

In this section we apply the waveet transform method, described in the
previous section, to the three subjects C3, B2, and Al. As in Chapter 4, three
performance measures are used: the time course of the percent misclassified (%Err);
the sgned decison magnitude, D(n); and the mutud information, 1(n) [38] (see
section 4.4.1).

For most people reevant frequency bands in motor-imagery tend to be at

f, =10Hzand f, =20Hz; we scde the mother wavelet gppropriately according to

equation (5.6). We peform 10-fold cross-vdidation on severd mode parameter
settings based on the prominent frequencies. The performance for the WAV method
is presented in Figure 5-3, Fgure 5-4, and Figure 5-5. The TEA framework
classfies the wavedet features successfully with minimum error rates of 12%, 19%,
and 29% for subjects C1, A2, and B3 respectively. Further ingghts into the results
below will be discussed in the next chapter where the performance is compared to

the AAR-based TEA method of Chapter 4.
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Figure5-3 - SUBJECT CL1: (a) Time course of percent error from 10-fold cross validation for the
TEA approach using wavelet features, (b) the time course of the mutual information between the
decision output and classes (c) time course of left and right decision outputs
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Figure5-4 — SUBJECT B2: (a) Time course of percent error from 10-fold cross validation for the
TEA approach using wavelet features, (b) the time course of the mutual information between the
decision output and classes (c) time course of left and right decision outputs
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Chapter 6

AAR vs. Wavelet: Comparison,
Complimentary I nformation, and

Fusion

In the previous two chapters we present two methods of motor-imagery
andyss waveet and adaptive autoregresson. Recal that both festure sets are
classfied usng the TEA framework discussed in section 4.3.2. Herein, we refer to
the wavdet method as WAV and the adaptive autoregressive method as AAR; these
terms encompass both the time-frequency feature extraction method as wel as the
TEA dasdfication framework, unless otherwise specified. In this chepter we
compare the performance of the two methods for al three subjects. The strengths

and weskneses of each dgorithm are highlighted with reference to results. Based
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on these findings and empirical evidence of complimentary information, we propose

afuson scheme that improves performance.

6.1 A Comparison of Performance

For convenience and ease of comparison the results for AAR and WAV from
Chapter 4and Chapter 5 are presented on the same plots in Figure 6-1, Figure 6-2,
and Fgure 6-3, for subjects C1, B2, and A3, respectivdy. WAV outperforms AAR
in terms of accuracy and mutud information for subjects C1 and B2. Not only does
WAV achieve a lower minimum error, but adso the error drops off more quickly.
Smilaly, the mutud information increeses more quickly.  This has gSgnificant
implications in BCl gpplications where the sysem should ascertain the intention of
the user as quickly as possble. Despite better performance for WAV for these two
subjects, its Chernoff bound is higher than AAR (see (¢) of Fgure 6-1 and Figure
6-2). Recdl that the Chernoff plots in these figures are representative of the daa
prior to application of the TEA framework snce the bound is used to weght
decisons made over time. The fact that the classes in WAV are less separable than
AAR without TEA (indicated by the Chernoff bound) and more separable than AAR
with TEA (indicated by the mutud information) suggests that WAV benefits from

TEA considerably more.
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For subject A3, AAR outperforms WAV. In generd the mutud information
for subject A3 is consderably lower than the other two subjects. The sgnd-to-noise
ratio (SNR) is highly related to the mutud information (see Appendix B). An
interesting notion that these results may support is that for noider sgnads, AAR
outperforms WAV because of its inherent robustness to noise.

In generd AAR seems to have lager average decison magnitudes as
depicted in (d) of FHgure 6-1, Fgure 6-2, and Figure 6-3. This characteridic is
desirable, however, the mutua information for AAR is lower for subjects C1 and B2
indicating that the sgned decison magnitude for AAR has high variahility, which is

undesirable.

75



Chapter 6 — AAR vs. Wavelet: Comparison, Compl. Inf., and Fusion. 76

whErTraad n [hits |

LB

[} ] ] 5 1 4 1] T 3 1 1 a3 [}

Tura (vi frors wiwd of Fesdbach 1o owsr
Tost: i) i ST o P 1o i

Sheared! Bard
Sagred Decriéan Wagriade

L]

e T et o Swenllesn U opy

Tore (a1} from sierd of Feediack 0 Lo

Figure 6-1 — SUBJECT C1: (a) (&) Time course of percent error from 10-fold cross validation for
the AAR (thick line) and WAV (thin line), (b) the time course of the mutual information between the
decision output and classes for AAR (thick line) and WAV (thin line), (c) time course of the Chernoff
bound for AAR (thick line) and WAV (thin line) used for TEA decision weighting, (d) the signed
distance to classification boundary for AAR (thick line) and WAV (thin line) for Left (negative) and
Right (positive)
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Figure 6-2 — SUBJECT B2: (a) (a) Time course of percent error from 10-fold cross validation for
the AAR (thick line) and WAV (thin line) feature sets, (b) the time course of the mutual information
between the decision output and classes for AAR (thick line) and WAV (thin line) methods, (c) time
course of the Chernoff bound for AAR (thick line) and WAV (thin line) used for TEA decision
weighting, (d) the signed distance to classification boundary for AAR (thick line) and WAV (thin
line) for Left (negative) and Right (positive)

77



Chapter 6 — AAR vs. Wavelet: Comparison, Compl. Inf., and Fusion. 78

@ (b)

=as BAR ¥ ot
=
— AR ] -

s rfoemeson | biv
',
1

] [T] 1 14 2 1] ] ET] [
Tirwet i o sbant o Fessbunoh Tt o e a2l Prooeh

© (d)

a5 a3 .
agf [T
_____ — |
nas il —
1 ﬂ a1

Ciuyred] B
=3
:.-P"'""
i
...
Sayes] Devrs0b VRQREaE
™
.
Y
|

A M
P .M -
i b !.i A M%? h o
- ———
M‘dﬂ i 1. azl -'-""\‘ i S
03 ¢ j: 2 “‘-.k‘ o
= MAR | | TE . sesamsesstssmmsssmemEmessmns
E H e 03 i _“‘-‘"'_,.--"‘
H
M
I f
l-'n:l [ E] 1 14 3 1% & “-‘ 5 1 14 2 15 i 35 0

Figure 6-3 — SUBJECT A3: (a) (a) Time course of percent error from 10-fold cross validation for
the AAR (thick line) and WAV (thin line) feature sets, (b) the time course of the mutual information
between the decision output and classes for AAR (thick line) and WAV (thin line) methods, (c) time
course of the Chernoff bound for AAR (thick line) and WAV (thin line) for TEA decision combining,
(d) the signed distance to classification boundary for AAR (thick line) and WAV (thin line) for Left
(negative) and Right (positive)
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6.2 Complimentary Information in the Feature Sets

The idea of combining information provided by waveet and AAR fedtures is
introduced in section 2.2. In section 3.1, we informdly €uded to some generd
theoreticad motivations for conddering fusion. In this section, we seek experimenta
evidence that each feature st contributes some information about the sgnd that the
other does not. As an initid invedigation into this idea, we assess complimentary
classfication. In particular, we condder what percentage of misclassfied trids in
one feature st the other classfies correctly. Figure 6-4 depicts this andyss
throughout the duration of the triad for each subject.

For the initid part of the trid classfication for both feature sets is not much
better than random, so the percentages during this time give little meaning.  After
this time there is condgent indication that a percentage of misclassfied daa is
correctly classfied by the other feature set. It is not surprisng that this percentage
tends to be lower for the higher performing method (WAV for C1 and B2, AAR for
A3). The period of paticular interest is just after the better-than-random
classfication. This earlier time dot is of greater interest because of two reasons: (1)

we ae primaily interested in improving performance near the beginning of the trid
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to decrease the response time of the system, and (2) the dgorithms are achieving
lower accuracies during this time and the percentages of correctly classfied trids by

the other method, if exploited, trandate to significant improvementsin accuracy.
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6.3 Motivation for a Fusion Approach

Multi-resolution time frequency andyss is an important tool to address the
principle of uncertainty between frequency and time [60]. This is the primary
motivation for wavelet andyss. In contrast, the AAR method does not adequately
address the problem of time-frequency resolution. In section 4.2.3, we discuss the
connection between time-frequency resolution and the AAR modd through two
Kadman Filteing parameters. (1) the AAR modd order p and (2) the update
coefficient uc. In the formulaion of the AAR edimation agorithm employed in this
sudy, these parameters are congtant throughout the entire trid. Therefore, there is
only one time-frequency resolution in this gpproach and it has the limitation of not
being optimally st for both frequencies of interest, aand 3

An advantage of the AAR modd is its robustness with regard to noise. As a
noise driven modd, it has an inherent qudity of extracting information even in noisy
environments.  In this sudy we see evidence of this in the Chernoff bound of Figure
6-1 (c), Fgure 6-2 (c), and Figure 6-3 (). Although superior in overdl performance
for subjects C1 and B2, WAV is not robust to the high varigbility of the sgnd
without the TEA framework. In contrast the AAR Chernoff bound is dow and

Seady inferring certainty more consstently.
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Ancther drong indication of the potentid for fusng the two feature sets is
the difference in the misclassfied trids described in section 6.2. The sum of dl of
these factors offers good reason for investigating fuson. In the rest of this chapter

we propose a fusion approach and assessiits performance for all three subjects.

6.4 Proposed Method of Fusion

The goa of the fuson method is to combine information provided by both
the AAR and WAV feaure sats.  Since the TEA framework effectively extracts
information from the fesiures over time, we continue to employ the framework
within the fuson scheme. Thus each festure st AAR and WAV ae classfied
usng the TEA method as described in section 4.3.2. The output of each TEA
classfier is the sgned magnitude distance D(n) (see equation (4.27)). Therefore, the
output not only reflects the classfier’'s decison but adso the confidence in its
decison. This information may prove to be useful in fuson, snce each feature set
has different drengths to offer a different times during the trid. By traning a
classfier to learn when and how to trust the decisons by these two experts, we may
enhancethereaults. Theideaisillugtrated in Figure 6-5.

For the fuson classfier we infer a 2D Gaussan digribution on the output of

the two classfie's. Note that the Gaussan assumption for D(n) is congsent with
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previous assumptions made in section 4.4.1 when evauating the mutud information
for the classfier output. Therefore, in the fuson stage we employ the probabilistic
classfier defined in section 4.3.2, more specificaly in equations (4.23) and

(4.24).

TEA
Framework

using AAR

Probabilistic

Decison Fuser

I

TEA
Framework

using WAV

Figure 6-5 — Proposed fusion scheme
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6.5 Reaults

To measure the performance of the fuson method, referred to as FUS herein,
we employ the mutud information, percent error, and sgned decison meagnitude -
dl usng 10-fold cross-vdidation. The results for subjects C1, B2, and A3 are
depicted in Figure 6-6, Figure 6-7 and Figure 6-8, respectively.

For dl subjects FUS improved the mutud information; subject C1's mutud
information increased by 20%. Recdl from section 4.4.1 the dgnificance of this
messure. It has strong implications for the overal rdiability and consstency of the
BCI. Furthermore, notice the rather large increase in the signed decison magnitude
for dl of the subjects usng FUS. The large improvement in both of these measures
indicates that the BCl output is more relevant to the classes. For this reason, there
ae benefits in fuaing WAV and AAR in tems of the ovedl rdiability and
consstency of the sysem. However, the percent error for FUS in subjects C1 and
B2 is amilar throughout the trid to WAV (see (b) of the figures). It is important to
recognize that the error is caculated from cross-vdidation and is specific to this data
st. The fact that the mutud information for FUS is dgnificantly higher implies that,

in general, FUS should perform as good as or better than the best of WAV and AAR.
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Chapter 7
Conclusion

In this chapter we summarize the findings and contributions in this research.
Furthermore, the implications of the work in the fidd of BCl a large are discussed.
Findly, we consder possble future work for extending and further investigating the

contributionsin thisthess

7.1 Contributions to Motor-Imagery Analysis in
BCI

There are three mgor contributions in this work to the fidld of EEG motor-

imagery andyss. They are each discussed below.
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TEA Framework and AAR features

We proposed the TEA framework for AAR features and in doing 0
demondrated condderable  performance  improvement  over  conventiond
classfication approaches. The key to this approach is its ability to ascertan
certainty in decisons made throughout the trid and to condder decisons made in
the past accordingly. Unlike conventional classfication techniques, TEA makes use
of prior knowledge obtained from the training data to ignore ambiguous parts of the

tria that would otherwise degrade performance.

AAR vs. Wavelet

With regad to EEG motor-imagery andyss there has been very little
research to compare AAR and WAV under the same study. In particular, to the best
knowledge of this ressarch they have never been compared within the TEA
framework, as application of TEA to AAR features is proposed in this work. We
aoply TEA to both festure sets and demondrate that WAV outperforms AAR for
two out of the three subjects. Interestingly, the subject for whom AAR
outperformed WAV had lower sgnd-to-noise rdio; this implies that AAR is more

robust to noise than WAYV.
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Fusion of Wavdet and AAR

We presented compdling reasons for fusng WAV and AAR to improve the
performance of a BCI; there are two maor reasons. (1) WAV offers multi-resolution
time-frequency andyss to better address the principle of uncertainty; and (2) as a
noise driven modd, AAR handles the heavily corrupted EEG quite wdl. We
propose a scheme that applies the TEA framework to each festure set separately and
uses a third classfier to fuse these decisons. This gpproach results in higher mutud
information between the BCI output and the classes. Therefore, we may conclude
that fuson of WAV and AAR produces more relevant output to the motor-imagery

classfication task. Thisin turn yields amore rdligble and congstent BCI.

7.2 FutureWork

Although in this reseach we have been aile to improve the mutud
information of the BCl using fudon, there is potentid to take more advantage of
complimentary information provided by WAV and AAR. This is perhgps most
noteble in the ealier pat of trids when dasdficaion is dgnificantly better than
random and there is a large proportion of correctly classfied data that the other
method misclassfies, yet there is little improvement in the performance of FUS.

This suggests that more research is worthwhile into more sophisticated fusion
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shemes tha teke full advantage of the avalable complimentary informeation.
Another gpproach worth invedigating is fusang the drengths of wavdet andyss and
autoregressve andyds a a more fundamentd levd. If AAR's drength is its
robustness to noisy sgnds and the method of wavelet andyss exces in its multi-
resolution gpproach to time-frequency invetigation, perhgps the formulation of a
multi-scale AAR approach could be a good dternative. In such an approach, the
AAR features would be extracted in severd time-frequency resolutions to get more
accurate spectra information.

In this work we have assumed Gaussian distributions for the feature sets for
computationd convenience ad because it has been used with some success in
previous work. However, it is expected to be erroneous to some extent because EEG
amplitudes are bounded and for many subjects margind didributions have been
found to be asymmetric [58]. Perhaps a more characteristic distribution can be
inferred usng a Gaussan Mixture Modd (GMM) and edimating its parameters
usng the expectation-maximization (EM) dgorithm. In such an approach, the
derivation of the Chernoff bound (the messure of certainty) used in this work would
not be gpplicable. Some other measure of certainty would have to be derived to use
the TEA framework.

Asynchronous communication protocols have obvious benefits in BCI; they
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dlow the user to interact with more spontaneity and flexibility. Other future work
should condder the methods proposed in this work in an asynchronous paradigm.
In such an approach a motor-event could be detected usng methods in [39],

followed by dassification usng dgorithmsin this research.
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Appendix

A The Chernoff Bound

The materid in this section is based on Chapter 2 of [61]. We may quantify
the uncertainty of a classfication sysem by esimating its probability of error.
Figure Al depicts the probability of error for a two-class dassficatiion problem with
Gaussan didributions. Notice tha the cdlassfication boundary minimizes the
probability of error by dways sdecting the class with greater poderior; this is
known as the Bayes optimd classifier. The podterior is given as

p(c [2) = PZIC)P(E)
p(2)
and the decisonruleis decide ¢, if P(c, | z) > P(c, | z) , otherwise decide c,.

There are two ways in which a classfication error may occur: (1) an observation z
fdls into the region RL and it belongs to C2 or (2) an observation z fdls into the
region R2 and belongs to C1 (see Figure Al). For smplicity the figure illudrates the
1-D case but the idea extends to multi-dimensond problems. The probability of
error may be given as

P(error) =P(zl R,,c,)+P(zl R,c,)
=Pzl R|¢)P(c)+P(zl R|c,)P(c,)

= Q p(z|c)P(c) + Q p(z|c,)P(c,) (A1)

The cdculaion for the probability of eror, equation (Al), is difficult and
computationaly intensve. However, for the two-class case, we may cdculate an
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upper bound on the error known as the Chernoff bound. Given that another way to
date the probability of error is

P(error | 2) =minl P(c,|2), P(c, [2)] (A2)
we may derive abound on the error using the following inequality:
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Figure A-1 — Probability of error (shaded region) for atwo-class problem with Gaussian
distributions.

mi| a,b] £a°b*® for a,b3 0 and 0Eb £1. We may apply this inequdity to
equation A2:

plerror |2) £ PP (¢,)P*°(c,)¢ P° (216) p° (2 c,)dz (A3)

In the expeiments of this research each cdass is equdly likdy to occur:
P(c,) =P(c,) =0.5. For the case where the conditiona distributions are Gaussan,

as they are throughout this research, the integrd in equation A3 may be evauated
andyticdly, yidding
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(P’ (zlc)p* (z|c,)dz=e*® (A4)
where

k(b) =w(mz- m)[bS, +(1- b)S,] (M, - M)

Ly 1S+ D)S, |
2 IS LIS, f

The Chernoff bound on P(error) may be found by finding the vadue of 3 that
minmizes eX® (anayticdly or numericdly) and substituting the result into equation
(A3). A powerful festure of this gpproach is that the optimization of 3 is in one-
dimenson regardless of the dimensiondlity of the feature space.

In generd, the bound tends to be looser for extreme vadues of B (320, R3>1).
Another well known bound on the probability of error is the Bhattacharyya bound
[61], which is equivdent to Smply setting 3 = 0.5 in equation (A3). Since the
optima setting for B tends to be mid-ranged vaues between 1 and O this is a
computationaly efficient guess. However, since the minimum vaue of €*® does
not necessarily occur a 3 = 0.5 the Chernoff bound is consdered to be a tighter
bound on P(error).
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B Information Theory

The Shannon entropy of a random variable is a measure of the uncertainty and
vaiability in the data and, therefore, quantifies its information cgpacity [73]. It
mesasures the average amount of posshilities in the data; the more posshilities the
more information that can be conveyed by the random variable. For a random
variable x with probability densty p(x) the entropy is defined as

¥
H(X) =- gp(x)log,(p(x))dx (BY)
-¥
In this research we assume the random variables have Gaussan distributions,
_ _ 2
exp{ X (82)

1
X) =
P e N
and the entropy formulamay be reduced by the following

1 - (x- m)?
| = I AT

ng(p(x)) Cg(—\/?)'k Og(@(p{ 2 2 })
- (X-

_ 1 2 m*
10g,(p())=- Slog(2ps )+T|09(6)
Subdtituting the above logarithm into equation (B1) we get

H()= 2 100(20 2) QpOgKc+ X2 Bp((x- )

257
H 0 = log(2ps ) + 4
H (x) =%Iog(2ps ’e). (B3)

For the task of assigning a random varidble x to a class ¢, we may quantify the
relevance of x to ¢ udng the mutud information. This is a measure of the reduction
in entropy between x and the class conditiona x. It isdefined as

| =H(xX)- H(x]|c) (B4)
where H(x|c) isthe conditiond entropy and is defined as
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H(x|c)=a Op(xc)log,(p(x|c)dx (B5)

In this gpplication we infer a Gausdan digribution on p(x|c) and have two
clases L (left) and R (right) thet are equdly likdy. Using a derivation smilar to
the one usad to obtain equaion (B3) the mutud information defined in (B4) can
be expressed as

SZ

| =0.5%| ——F}. B6
where s 7 and s 2 are the dass conditiond variances of x for class L and R,

repectively.
Signal-to-Noise Ratio

For a given process with noise, such as the sgned decison magnitude D(n), it
can be decomposed into asigna processy and a noise process v such that

D(n) = y(n) +v(n) (B7)

y=N(m,s ;) (BS)

v=N(m,s ?) (B9)

& (y-u)v-u,)=0 (B10)
For independent Gaussian digtributions the variance s 2 of D is

Sg=S.+S. (B11)
We may define the Sgnd-to-noise ratio as

2 2
S, _S
SNR:S—gzs—'g-l (B12)

The noise variance s 2 isthe average within-class variance and, therefore, has
the following relaionship with mutua information according to equation (C6)
| =0.5*log,{1+ NR}. (B13)
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Abbreviations

AAR — Adpative Autoregression: thisterm is not only used to describe the signal
processing technique, but dso the Brain-Computer Interfacing approach that uses
AAR parameters as features.

BCI — Brain Computer Interface

CONYV — Conventiond: refers to amethod that is commonly used for classification
of AAR parametersin BCl and isdefined in section 4.3.1

FT — Fourier Transform
L DA — Linear Discriminant Andyss

FUS — Fusion: refersto the BCl method proposed in thisthesis that involves fusion
of AAR and Wavelet festures

WAV — Wavdet: refers to the BCl method that uses wavel et festures

WT —Wavdet Tranform
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