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Abstract 

Brain-computer interfacing (BCI) is a new method of human-machine 

interaction.  It involves the extraction of information from the electroencephalogram 

(EEG) through signal processing and pattern recognition.  The technology has far 

reaching implications for those with severe physical disabilities and has the potential 

to enhance machine interaction for the rest of the population.  In this work we 

investigate time-frequency analysis in motor-imagery BCI.  We consider two 

methods for signal analysis: adaptive autoregressive models (AAR) and wavelet 

transform (WAV).  There are three major contributions of this research to single-

trial analysis in motor-imagery BCI.  First, we improve classification of AAR 

features over a conventional method by applying a temporal evidence accumulation 

(TEA) framework.  Second, we compare the performance of AAR and WAV under 

the TEA framework for three subjects and find that WAV outperforms AAR for two 

subjects.  The subject for whom AAR outperforms WAV has the lowest overall 

signal-to-noise ratio in their BCI output, an indication that the AAR model is more 

robust than WAV for noisier signals.   Lastly, we find empirical evidence of 

complimentary information between AAR and WAV and propose a fusion scheme 

that increases the mutual information between the BCI output and classes.   
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Chapter 1 

Introduction 

Brain-computer Interfacing (BCI) is an exciting new technology for 

communication and interaction with machines.  It has far reaching benefits for 

persons with severe physical disabilities and has the potential to enhance machine 

interaction for the rest of the population.  This technology bridges several disciplines 

of study: computer and systems engineering in the form of signal processing, pattern 

recognition, and machine intelligence; electrophysiology; neuroscience; cognitive 

science; and psychology.    In this chapter we provide an introduction to the 

technology.  This includes an overview of the BCI system itself as well as major 

developments in the field with reference to literature.  Finally, based on the major 

developments that are identified, the scope of this thesis is defined.   
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1.1 Introduction to Brain Computing 

Interaction with computers, whether in the form of a PC or embedded in the 

myriad of devices people use on a daily basis, is ubiquitous in modern society.  The 

primary challenge is for the user to convey their intentions to the machine in an 

efficient manner.  Advances to this end not only have significant impact on the 

productivity of society, but also quality of life, as the barriers to communication with 

the devices upon which we have come to rely cause frustration and stress.  

Conventional interfaces, such as a keyboard and mouse, make use of a fraction of 

the information that humans can convey.  Other forms of communication that have 

been integrated into human-machine interfaces (HMI) more recently include speech, 

hand gestures and even facial expression has received attention from researchers [1]-

[3].  Another pressing challenge in HMI is improving accessibility to all persons.  

Much like buildings have been revamped to accommodate persons with disabilities 

in latter decades, HMIs must undergo a similar revolution to improve accessibility in 

modern society. 

 Brain computing involves the extraction of information directly from the 

brain through real-time analysis of its electrical activity.  In this endeavor, the HMI 

ascertains the intention of the user by converting electrical activity of the brain into a 

control signal for devices.    In their full potential, brain-computer interfaces (BCI) 
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are the epitome of user-centric design.  They ascertain the will of the user directly 

from the source, the mind. 

 BCI’s have much to contribute in addressing the challenges of developing 

HMI’s that employ multi-modal information to increase efficiency and information 

throughput.  All of the other modalities originate from the brain; perhaps extracting 

information from the brain directly can provide some redundancies to improve the 

overall reliability of the system as well as provide some complimentary information 

to improve performance [4].   BCI’s have a more pressing role in HMI’s designed 

for those with severe physical disabilities resulting in locked-in syndrome.  

Numerous diseases disrupt the neural pathways that control muscles: Amyotrophic 

lateral sclerosis (ALS), muscular dystrophies, cerebral palsy, multiple sclerosis and 

brain and spinal cord injury.   Two million people suffer from these disorders in the 

United States alone [5].  BCI’s can provide a revolutionary means for such persons 

to access and interact with the world around them that most or none of the other 

modalities can offer. 

This research area has been active for ten to fifteen years and successful 

rudimentary control of devices has been achieved [6]-[8].  The full potential of the 

technology is yet to be realized.  When it is realized the benefits to society will be 

far reaching. 
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1.2 The Electroencephalogram 

The encephalogram (EEG) is a recording of electrical activity originating 

from the brain.  It is recorded on the surface of the scalp using electrodes made of a 

highly conductive metal.  In this research, the EEG is the signal from which 

information is extracted to ascertain the intention of the user.  All of the data used in 

this work was retrieved non-invasively (on the surface of the scalp).  In this section 

some background information is provided about the EEG signal.  Although the 

content in the rest of this thesis is focused on signal processing and pattern 

recognition, in this section some biological, historical and other information about 

the signal is presented to provide a context for the signal processing challenges. 

1.2.1 The Biology of EEG 

The brain consists of billions of neurons making up a large complex neural 

network.  Below is a diagram of a neuron.  It has several components: the soma is 

the cell body of the neuron and contains the nucleus, which houses genetic 

information; the dendrites extend from the soma and receive chemical messages 

from other neurons; the axon transmits electro-chemical signals to other neurons; 

the myelin sheath consists of fatty tissue cells that insulate the electrical current 

flowing through the axon; finally the bouton is responsible for converting an 

electrical signal to a chemical signal to be received by other neurons [9].  
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Figure 1-1- The Neuron: the most basic unit in the neural-network of the brain 
 

The processing of information takes place by the firing or pulsing of many 

individual neurons.  The pulse is in the form of membrane depolarization traveling 

along the axons of neurons.  A series of pulses in the neurons, also known as a spike 

train, encodes the information processes of the neural network [10].  The EEG is the 

electrical field potential that results from the firing of many neurons.  Thus, there is 

a relationship between the spike train and the EEG and the latter also provides 

information about neural-network activity [11]. 

1.2.2 A Brief History of EEG 

The first recordings of human EEG on chart paper can be traced back to the 

Austrian psychiatrist Dr. Hans Berger who published his work in 1929 [12].  In his 

work he made 73 recordings from a single subject and found regular oscillations at 
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10 Hz.  He named this rhythm the a wave and found that the best recordings came 

from the occipital region (over the visual cortex at the lower rear of the skull) with 

another reference electrode on the forehead.  Since then neurologists and clinicians 

have found that scalp-recorded EEG has a frequency range of 0.5 to 40 Hz.  The 

most common categorization of EEG sub bands is ? (0 - 4 Hz), ? (4 – 8 Hz), a (8 – 

13 Hz) and ß (13-38 Hz) [13].  

EEG has had wide medical applications, from studying sleep stages to 

diagnosing neurological irregularities and disorders.  It was not until the 1970’s that 

researchers considered real-time analysis of EEG, which implied the signal could be 

used for communication and control.  With the computer advances that ensued, 

active research in EEG utilization for communication has occurred in the last ten to 

fifteen years. 

1.2.3 Signal Conditioning Challenges 

There are many complications in acquiring good quality recordings of EEG.  

The signal itself is very week, in the order of 5-100 µV.  At the scalp, EEG is no 

longer a direct expression of brain activity.  Between the brain and scalp are layers 

of cerebrospinal fluid, bone, and skin, all of which attenuate the signal.  This causes 

poor signal-to-noise ratio.  In addition to attenuation, these layers alter the signal 

more fundamentally through volumetric conduction.  This scenario lends itself well 
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to rather complex inverse problem modeling; however, the computational demands 

of such an approach are not well suited for real-time processing. 

For consistent recordings it is important to maintain integrity in the contacts 

between the electrodes and the scalp, otherwise contact impedance can hamper the 

quality of the signal.  A conductive paste is used to decrease contact impedance and 

electrode migration.  High-gain amplifiers are used to bring the signal levels up to 

the required level for analog-to-digital converters.  Unfortunately, this also 

significantly amplifies background electrical noise at 60 or 50 Hz depending on the 

part of the world the system is used.  Fortunately, for most brain-computing 

applications the frequencies of interest are between 0.5 to 40 Hz.  However, due to 

the low signal-to-noise ratio careful analog filter design is required to properly 

attenuate the background electrical noise. 

There are a myriad of other noise sources, commonly referred to as artifacts 

in the literature, introduced by the body itself.  Movement of eyes during recordings 

produces the electrooculogram (EOG) signal, which can be detected by EEG 

sensors, particularly those that are at the front of the scalp.  Muscle activity in the 

head emits an electromyogram (EMG) that can also interfere with the EEG signal.  

Other artifacts are caused by the electrocardiogram (ECG) (electrical activity from 

heart tissue), sweat, and head and body movement.  These artifacts are often within 
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the frequency ranges that coincide with EEG.  EOG is particularly a concern as its 

amplitude is quite large compared to EEG.   

It is apparent that signal conditioning and pre-processing of the EEG in and 

of itself is a difficult problem.  To address this challenge noise cancellation is often 

used.  In this approach, an electrode is placed just above the eyes to acquire the EOG 

and subtract it from the electrode.  More sophisticated approaches, based on 

information theory, model the problem as blind source separation and use 

Independent Component Analysis (ICA) [15], [16].  This method has been used 

successfully and has the advantage of not requiring additional electrodes, yet 

identifying artifacts that are statistically independent of EEG processes.  EEG 

preprocessing is an area of research on its own.  In this work, pre-processing is not 

the focus and the datasets used have undergone some minimal pre-processing that 

will be further discussed in section 2.3. 

1.2.4 The International 10-20 System for Electrode Placement 

The most common selection for the location of electrode placement is based 

on an international standard termed the Ten-Twenty system.  This standard was 

established by an international committee and published in 1958 [17].  The positions 

of the electrodes are relative to landmarks on the skull, mainly the inion, naison and 

mastoid processes.  The term Ten-Twenty stems from the fact that the distance 
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between bony points, such as the inion and nasion, is divided into segments that are 

either 10% or 20% of the total length.  Thus, the placement specification is scaleable 

to accommodate all head sizes [18].  Figure 1-2 depicts the arrangement for 19 

electrodes.  Each electrode is assigned a letter and number describing its position on 

the skull.  The letter describes the area of the brain to which the electrode 

corresponds such as frontal (F), central (C), and temporal (T).  The number refers to 

the side of the head the electrode is located, where odd numbers indicate the left side 

and even numbers denote the right side.   

 The standard specifies the relationship between the electrodes and the parts 

of the brain.  The correspondences between electrodes and the brain were 

determined in two ways. Metal clips were placed along the fissures of the brain 

during open brain surgery and X-rays were taken while the electrodes were on the 

scalp. Secondly, using cadavers, holes were drilled through the skull to the brain at 

the designated electrode positions.  Ink was applied to the holes and the brain was 

removed from the skull to analyze the markings [18].  For more details on the Ten-

Twenty system refer to [17] and [18]. 
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Left fronto-polar 
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Right fronto-polar 

F3   Left superior frontal 

F4   Right superior frontal 
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F8   Right anterior 

Fz   Mid frontal 

C3 
3 

Left central or rolandic 

C4 Right central or rolandic 

Cz Vertex 

T3 Left mid temporal 

T4 Right mid temporal 

T5 Left posterior temporal 

T6 Right posterior temporal 

P3 Left parietal 

P4 Right parietal 

Pz Mid parietal 

O1 Left occipital 

O2 Right occipital 
 

 

 

 

Figure 1-2 – The Ten-Twenty system for electrode placement  

1.3 Overview of the Brain-Computer Interface 

A brain-computer interface (BCI) is a direct communication channel between 

a person's brain and a computer or machine.  The goal of EEG-based BCI research is 
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to identify the user's intentions from their EEG and translate these commands into a 

control signal for a device such as a wheelchair, mouse cursor, or prosthesis.  The 

motivation for this research is to enable severely physically disabled people to 

access the world around them.  In the longer-term BCI technology may be a useful 

modality for the public at large.   Figure 1-3 illustrates the major components of a 

BCI as well as the flow of information.   

 

 

 

 

 

 

Figure 1-3 - The brain-computer interface 
 

The EEG is acquired via electrode(s) placed on the scalp of the subject.  See 

section 1.2.3 for information about the required signal conditioning upon EEG 

acquisition. Next the signals must be amplified considerably. The majority of 

relevant information resides in a frequency range of 0.5-40Hz and band pass 

filtering is desirable to remove irrelevant frequencies.  The signal is ready for 

processing by a computer, but first it must be discretized by an analog-to-digital 
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(A/D) converter.  Once acquired by the computer, the signal is processed to extract 

features that provide some insight into the user's intention.  These features are 

classified to determine which of a finite number of user intentions, for a given BCI 

system, the user is communicating.  Once the user intention is determined a control 

signal can be applied to a device, such as a wheel chair.  In Figure 1-1 a feedback 

loop connects the output of a BCI back to the user.  This feedback loop may or may 

not exist depending on the application of the BCI, but proves to be very useful.  In 

control theory closed-loop systems generally outperform their open loop counter 

parts.  Similarly, the feedback in Figure 1-3 enables the user to adjust their thought 

process to improve the performance of the system, thus, the learning process is a 

harmonious one: the system learns to accommodate the user while the user learns to 

use the system.  One of the objectives in BCI research is to minimize the burden on 

the user to adapt to the system.  In most cases the feedback is inherent to the activity.  

For example, if the user is employing the BCI to move a mouse cursor on a 

computer screen, the resulting movements are the feedback.   
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1.4 Cognitive Tasks and Methods in EEG 
Communication 

Currently, BCI’s fall into four major categories based on what aspect of the 

EEG they analyze and which part of the brain the signal originates.  Consequently, 

each type of BCI requires a different set of mental tasks.  In this section, we provide 

an overview of each of the cognitive tasks. 

1.4.1 Visual Evoked Potentials 

In visual evoked potentials (VEP) the communication occurs through the use 

of visual information by analyzing the EEG originating from the visual cortex (O1 

and O2 in Figure 1-2).  The evoked potential is a change in the EEG resulting from 

an external stimulus [19].   The first use of VEP can be traced back to the work of 

Jacques Vidal in the 1970’s [20].  In this work, VEP is analyzed to detect changes in 

eye gaze.  This tracking of eye gaze can be used, for example, to move a cursor. 

 Other research efforts, more recently, employ systems that present the user 

with several symbols or buttons [21], [22].  In [21], they present 64 symbols with 

different colour alterations in the visual interface.  The user focuses on the symbol 

they would like to select.  The system determines the user’s selection by comparing 

the resulting VEP to those acquired during training.  In [22], they present several 

buttons to the user on a screen, each flashing at a different frequency.  The photic 
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driving response over the visual cortex is assessed by the system.  This response will 

closely match the frequency of the button under the user’s gaze.  

1.4.2 P300 Evoked Potential 

P300 or ‘oddball’ BCI’s take advantage of a response in the EEG that occurs 

when the user observes sporadic stimulus among routine stimuli.  The stimuli can be 

auditory, visual, or somatosensory.  The response occurs 300 ms after the anomaly 

and can be detected in the EEG over the parietal cortex (P3 and P4 in Figure 1-2) 

[23], [24].  One example of a BCI that uses the P300 property is described in [25].  

In this system the user manipulates a virtual keyboard through a matrix of letters 

displayed on a screen.  A single row or column flashes every 125 ms and the user is 

instructed to pay attention to the key of their choice by counting the number of times 

it flashes.  A P300 response in the EEG occurs after the row and column of the 

desired letter flashes.  The results in [25] imply an achievable communication rate of 

1 word per minute (4.8 symbols/min with 90% accuracy).  Other work increases this 

communication rate to 5.45 symbols/min with 92% accuracy [26].  Research efforts 

in P300 based BCIs utilize tactile and auditory input [27].  This work is particularly 

beneficial for those with visual impairment.   

1.4.3 Slow Cortical Potentials 

Slow cortical potentials (SCPs) are low frequency amplitude changes in the 
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EEG that occur over 0.5 to 10 s.  SCPs are generated in the cortex and result from 

thoughts relating to movement, such as imagining maneuvering in a familiar room.  

When the cortex is active a reduction in the SCP is observed and when it is inactive 

an increase occurs [28].  Initial work in SCPs has resulted in the BCI commonly 

referred to as the “thought translation device” (TTD) [29].  Typically, SCP based 

BCIs allow the user to make binary decisions by either activating or deactivating the 

cortex.  In [29] each trial is 4 seconds long and the system provides the user with 

feedback in the form of a cursor that moves to the top or bottom of the screen.  The 

user can move the cursor up or down by controlling their SCP.  In this study, ALS 

patients use the technique with considerable success; it is used to spell words on a 

screen using a binary decision tree to select letters of the alphabet.  This system 

produces a low information transfer rate of 0.15-3 letters per minute.      

1.4.4 µ-Rhythm and Motor Imagery 

The EEG rhythm known as µ is related to processes in the motor cortex, 

which comprises brain activity related to movement of body parts.  The µ-rhythm 

has components in a and ß and is observed over the motor cortex in most people 

above the age of two years [30].  Activity in the µ-rhythm most relevant to BCIs is 

event-related (de)synchronizations (ERD/ERS).  An ERD is attenuation in the µ-

rhythm that accompanies movement or preparation of movement.  The ERS is an 



Chapter1 - Introduction   
 

16 

16

 

amplitude increase, which occurs after the completion of movement-related thought 

[31].  ERD occur even when one thinks about or imagines movement of body parts, 

commonly referred to as motor-imagery.  This feature makes the cognitive task 

suitable to those with physical disabilities who cannot actually move their limbs.  

Typical cognitive tasks in such BCI’s are imagination of left vs. right hand 

movements [32]-[35].  Other work has involved motor imagery involving other 

somatosensory output [36], [37].  In these communication protocols, the user 

conveys their intention in predefined time intervals ranging in length from 4 seconds 

to 9 seconds.  Each cycle has an initial idle period and then a cue is presented to the 

user to indicate that the system is ready classify their intention.  After the cue the 

system knows that it is analyzing task-relevant EEG and deciphers the motor 

imagery (e.g. left vs. right imagined hand movement).  This interface provides a 

binary control signal that can be used for a simple switch or navigating through a 

menu.  Some of the systems not only facilitate binary classification but also assign 

magnitude to decisions [37], [38].  This feature enables some subjects to control the 

magnitude, which is useful for applications such as maneuvering a cursor [36]. 

1.4.4.1 Asynchronous Communication Protocols 

 All of the cognitive-task protocols that have been presented above in sections 

1.4.1 to 1.4.4 are synchronous.  That is they depend on predefined widows of time 
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where the system knows the user is providing meaningful input.  Such protocols 

have two glaring drawbacks: (1) they limit the flexibility of the user and (2) they 

limit the information transfer rates.    Recently, however, there is research that 

demonstrates promise for asynchronous protocols within motor-imagery BCIs [39]-

[41].  In this work, methods are developed to detect motor events relevant to the 

system’s context.  Thus, the system detects the onset of relevant input and can 

automatically distinguish idle and meaningful periods.  During periods of relevant 

input, the system can apply pattern recognition algorithms for distinguishing the type 

of motor event.  These methods make use of an EEG feature known as movement-

related potential (MRP), which are DC EEG spikes that occur at the onset of planned 

movement.  

1.5 Scope 

Although all four of the major types of BCIs have been successful in 

achieving rudimentary control by subjects, the work in this thesis focuses on motor-

imagery.  There are several reasons for investigating motor-imagery over the other 

areas.  This section outlines those reasons in a preamble to defining the scope of this 

work. 

A glaring weakness of the P300 and VEP approaches is that they require a 
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stimulus to interact with the user.  Fundamentally, these systems have primary 

control over user interaction.  This drawback limits the use of these approaches in 

asynchronous communication protocols, because the user cannot provide input 

spontaneously.  This in turn limits the application domain of the approach.   

SCP communication not related to motor-imagery also has potential to 

function in an asynchronous environment since they do not require stimuli from the 

system.  However, to the best knowledge of this research, a method has not yet been 

proposed for asynchronous communication in these methods.  Hence, a compelling 

reason for furthering motor-imagery BCI is its proven feasibility in asynchronous 

protocols [39]-[41].  Another advantage of motor-imagery, over SCP, is that its 

cognitive task is more closely related to BCI tasks: moving a cursor left or right; or 

turning a wheelchair left or right.   

Although there are good reasons to favour motor-imagery over other 

approaches, there has been little work to compare the performance of the four BCI 

types in their current state.  In [42] they compare left vs. right motor-imagery to 

imagination tasks related to SCP for the same set of subjects in a synchronous 

protocol.  The results for ten subjects age 29-54 indicate that motor-imagery has 

lower classification performance.  Given the promise motor imagery has in other 

aspects, this is a compelling reason to further improve classification performance.    
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This thesis specifically investigates classification of left. vs. right hand 

movements.  The analysis is performed off-line on pre-recorded EEG.  Current time-

frequency analysis and pattern recognition techniques in motor imagery are assessed 

and compared.  Several novel approaches are proposed and investigated.  For a 

detailed problem statement refer to section 3.1.      
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Chapter 2 

Background 

In the last chapter we provide compelling reasons for further investigating 

motor-imagery based BCI’s.  In this chapter we present a review of the literature 

specific to this area.  In particular, we review current time-frequency and spatial 

feature extraction techniques and several voids in the research are identified.  At the 

very least, the reader should be familiar with electrode nomenclature of the 

International Ten-Twenty System (section 1.2.4) and EEG characteristics related to 

motor imagery (section 1.4.4) prior to reading the material in this chapter. 

2.1 Developments in Time-Frequency Analysis of 
Motor Imagery EEG 

In EEG motor-imagery analysis researchers employ time-frequency analysis 

to identify the occurrence of ERD/ERS and MRP.  There are two major time-

frequency paradigms that are in common use.  One is the autoregressive (AR) 
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model, its variant the adaptive autoregressive (AAR) model, and, more recently, 

wavelet analysis.  This section reviews the research trends in each as applied to 

motor-imagery EEG.  For a detailed description and formulation of AR, AAR, and 

wavelet refer to sections 4.1, 4.2, and 5.1 respectively. 

Autoregressive modeling has a long-standing tradition in EEG analysis and 

its origins can be traced back to the late 1960’s and early 1970’s [43]-[46].  There 

are several reasons AR modeling prevails in EEG signal processing: it is a maximal 

entropy spectral estimator and only a few parameters are required to describe 

spectral information [69]; it does not require a priori knowledge of relevant 

frequencies, as they can vary from subject-to-subject or even within the same 

subject; it describes the stochastic nature of EEG quite well; and the methods for 

their computation are well studied [47].  Conventional approaches to AR coefficient 

estimation assume the signal to be wide-sense stationary, such as the Burg and Yule-

Walker methods [48].  These methods can be applied to non-stationary signals, such 

as EEG, by windowing the signal and approximating it to be stationary   within the 

window.  Depending on the size and shift of the window, traditional AR estimation 

algorithms can become computationally intensive.  Furthermore the stationary 

assumption within the window is often poor and choosing the size of window is 

problematic with respect to the uncertainty principle in time-frequency analysis.  
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Instead, dynamic estimation techniques using Kalman filtering and other recursive 

least-square estimators are more computationally efficient [49] and suitable in real-

time.  These techniques allow the parameters to adapt with each sample of the 

signal, which is a better model of the EEG.  In BCI literature, this approach to 

estimating autoregressive parameters is commonly referred to as adaptive 

autoregressive (AAR) modeling.   

AAR modeling has been used with some success in BCI [32], [33].  In these 

studies the tasks to be distinguished are motor imagery of the dominant hand versus 

mental arithmetic using EEG from C3 and C4.  Autoregressive parameters are 

adapted over time using a lattice-filter approach to minimizing the mean square 

error.  The autoregressive coefficients are used as features and a Bayesian learning 

framework classifies them.  They use a latent-space smoothing approach to ascertain 

certainty in decisions and reject low confidence decisions.  In the strictest rejection 

they achieve an average performance of 86.5% over 7 subjects.  An obvious 

drawback in this approach is the information loss in ignoring trials.  Another 

disadvantage is that the two distinguishing tasks are not very intuitively related to 

each other or a particular application. 

A significant number of studies have investigated Kalman filtering estimation 

of AAR parameters to distinguish left versus right imagined hand movements by the 
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Graz BCI group [50]-[56].  These studies are predominantly off-line and assess 

performance through cross-validation of many single trials.  In each trial, however, 

an on-line classifier provides the user with feedback during data collection.  Thus, 

the work investigates performance with feedback and in [53] classification accuracy 

of 85% to 95% is achieved for four subjects.  There are three major contributions 

throughout these publications over previous AAR EEG analysis.  Firstly, unlike [33] 

where they use completely different categories of cognitive tasks to improve 

separability, the Graz BCI achieves significant separability within the same 

cognitive-task (imagined hand movements).   Secondly, in this work there is 

attention to assessing how long it takes to reach a decision.  They accomplish this by 

performing cross-validation of the features collected at each instant in time over the 

trial.  This assessment is very relevant to real-world applications of BCI where 

response time is of concern.    Thirdly, they propose using the mutual information 

(MI) between the BCI output signal and the motor-imagery classes to assess the 

quality of communication.  This analysis gives more insight into the reliability of the 

algorithm in a real on-line BCI.   

AAR estimation techniques, such as Kalman filtering, do not yet have a 

direct and well-verified means for selecting optimal time-frequency resolution.  

Furthermore, no methods exist that offer a tractable multi-resolution approach in 
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AAR modeling.  As discussed in section 1.4.4 relevant ERD features occur both in 

the µ and ß bands, therefore, multi-resolutional analysis should be beneficial.  It is a 

natural progression for research efforts to consider wavelet analysis in motor-

imagery BCI [39], [58], [63], [65], [68].  In [39] they use the wavelet transform 

coefficients to characterize MRP in asynchronous motor-event detection.  In [63] 

they use wavelet analysis on subdural implants and achieve nearly 100% accuracy.  

This success can be largely attributed to a much higher signal-to-noise ratio in these 

invasive recordings.  Also, EEG recorded directly from the surface of the brain has 

more information across the spectrum making multi-scale analysis very beneficial. 

There is little work that has applied wavelet analysis to non-invasive EEG in single-

trial motor imagery using performance measures proposed in [56].  A notable 

contribution in this regard is in [58].  They apply wavelets scaled appropriately for 

the µ-rhythm a and ß bands and use the coefficients as features.  Furthermore, they 

propose a method for combining decisions made over the trial to accumulate 

evidence.  For a single subject they achieve 89.3 % accuracy in cross-validation.    
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2.2  Prospects and Challenges in Motor Imagery 
BCI 

There has been little work to compare the performance of AAR and wavelet 

features in motor-imagery EEG.  In [65] they compare AR and wavelet for three 

subjects for three mental states: relaxed, right, and left motor imagery.  They suggest 

that AR is better based on the overall confusion matrix.  However, distinction 

between left and right motor imagery was near random for both feature sets, which 

makes the comparison less credible.  Also the wavelet approach was better at 

distinguishing the relaxed and motor-imagery states.  Thus, the comparison is not 

conclusive.  The proposed wavelet approach in [58] was the winning entry in the 

BCI Competition 2003 and competed with AR-based methods.  However, it is 

unclear if the approach in [58] performed better because of one or more of the 

following reasons: (1) it used wavelet features;  (2) it used  temporal evidence 

accumulation which none of the other approaches used; or (3) the AR 

implementations were not as good as they could be (even the competition organizers 

comment on the variability in the quality of submissions and none of the other AR 

methods were published [64])  Therefore, the best time-frequency paradigm 

(wavelet vs. AAR) continues to be debatable and inconclusive. 

Another aspect that requires attention is the utilization of all information the 
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EEG provides about motor imagery.  MRP and ERD/ERS contribute complimentary 

information about motor imagery tasks [66].  In addition, the locations of ERD 

activation in regions of the motor cortex give insight into the imagined tasks.  The 

method of common spatial patterns (CSP) can capture this information effectively 

[67]. In [68], they demonstrate that combining these complimentary features, 

particularly MRP and ERD (via AAR features), at the classifier level improves the 

information transfer rate.  This is encouraging, since the information transfer rate is 

the single greatest drawback in non-invasive EEG based BCI’s.  Perhaps another 

question worth answering is whether or not there are complimentary features 

available within one or more of the information sources discussed above.  The 

hierarchical structure of this idea is illustrated in Figure 2-1. 
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Figure 2-1 – This hierarchical structure demonstrates the fusion of various sources of information 
from the EEG related to motor-imagery.  The novel idea is in the bottom layer, i.e. the suggestion that 
wavelet and AAR features could have complimentary information with respect to ERD. 
 
  

2.3 Description of Data Set 

Although data was analyzed off-line in this study, all signal processing is 

causal and applicable on-line. We consider three subjects imagining left and right 

hand movements using similar protocols as in [58]. The subjects are referred to as 

C1, B2, and A3.  The dataset was provided by the Department of Medical 

Informatics, Institute for Biomedical Engineering, University of Technology, Graz, 

Austria. For subject C1, the EEG was sampled at 128 Hz from three biopolar 

channels (C3, Cz, and C4) that were band-pass filtered allowing frequencies 

MRP ERD CSP 

Motor Imagery 

Wavelet? AAR? 
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between 0.5 to 30 Hz. The dataset consists of 280 trials that are 9 s long each. Figure 

2-2 depicts the protocol for each trial.  The first 3 s is an idle preparation period, at 

which point a visual cue in the form of an arrow appears pointing either to the left or 

the right. The user was instructed to perform the imagination task according to the 

direction of the arrow for the next six seconds. During this time the system provided 

the user with visual feedback using an on-line classifier.  Subjects B2 and A3 had 

exactly the same protocol except their trial length was 8 s and feedback started after 

4s. 

0 1 2 3 4 5 6 7 8 9 sec

Trigger
Beep

Feedback period with Cue

 

Figure 2-2 – The 9 second protocol for each imagined left/right hand movement.  
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Chapter 3 

Overview of Research 

In this section we discuss the research direction of this thesis with regard to 

advancing time-frequency pattern analysis in motor-imagery.  We discuss how the 

objectives of this research fill various voids in current research. 

3.1 Problem Statement 

This thesis seeks to advance current methods of ERD analysis in motor-

imagery classification.  As discussed in Chapter 2, there are two major approaches to 

time-frequency analysis: adaptive autoregressive (AAR) models and wavelet 

analysis.     In section 2.2 we briefly describe an approach that uses wavelet analysis 

and enhances classification by combining decisions over time, thus accumulating 

knowledge about the trial [58].  We propose that the AAR approach could benefit 

from a similar scheme that we refer to as the temporal evidence accumulation (TEA) 
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framework (section 4.3.2).  We implement the TEA approach and compare its 

performance to that of a conventional method for classifying AAR features.  The 

TEA approach to classification of both AAR and wavelet features is an interesting 

context in which to compare the two features sets.  This has never been done in the 

literature and can provide valuable insight regarding individual strengths of each 

approach. 

As discussed in the previous chapter, the literature suggests that AAR 

features model non-invasive EEG quite well.  The strength of this feature set is 

perhaps its robustness to the large amount of noise present in non-invasive EEG.   

However, the obvious strength of the wavelet transform is its multi-resolution time-

frequency analysis approach.  This suggests that each approach offers different 

attributes in signal analysis. Therefore, after comparing the two feature sets under 

the TEA framework we investigate complimentary information between the two 

approaches.  If adequate complimentary information exists, then there is good reason 

to investigate fusion to improve performance.  Figure 3-1 summarizes the flow of 

investigation in this thesis.  
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Figure 3-1 – Overview of Research Path in this Thesis  
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3.2 Thesis Organization 

The remaining chapters carry out the investigation depicted in Figure 3-1.  

Chapter 4 describes the adaptive autoregressive model, the TEA framework, and 

how the framework can be applied to AAR parameters.  It then compares the 

performance of TEA to a conventional classification approach.  Chapter 5 presents 

the wavelet approach, under the TEA framework, for motor-imagery analysis and 

presents results for the three subjects.  Chapter 6 compares the performance of 

wavelet and AAR under the TEA framework and investigates complimentary 

information between the two.  Furthermore, an approach for fusing the methods is 

proposed to take advantage of complimentary information.  In Chapter 7, 

conclusions from the various experiments are drawn and future work is 

recommended. 
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Chapter 4 

Feature Set 1 – Adaptive 

Autoregressive Model 

 In the previous chapter we establish that two methods of spectral analysis are 

considered in this work: adaptive autoregression (AAR) and wavelet; in this chapter 

we focus on the former.  We provide background theory in autoregression and 

describe a commonly used technique for extracting AAR parameters from EEG and 

classifying them.  Finally, we propose a classification scheme that improves 

performance over the aforementioned conventional approach. 

4.1 The Autoregressive Model 

A stochastic process is a random variable that evolves over time.  Therefore, 
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the process evolves according to probabilistic laws and cannot be predicted exactly 

[48].  According to this description, EEG may be modeled as a stochastic process.  

In order to detect and characterize an ERD and ERS one must estimate the power 

spectral density of the EEG.  There are a myriad of techniques to estimate the power 

spectrum of a wide-sense stationary random processes.  Although EEG is not 

stationary (see section 2.1), the stationary assumption is the starting point for this 

discussion on power spectral estimation.  The existing estimation procedures can be 

broadly categorized as parametric and non-parametric.  In pattern recognition 

applications parametric methods are particularly attractive because they summarize 

information concisely and translate well to feature vectors.  The autoregressive (AR) 

model is one such approach that has been well studied in EEG analysis.     

In autoregression, the model infers the way in which a random process y(n) is 

synthesized [48];  y(n) may be generated by applying an all-pole filter to a white-

noise process w(n) with zero mean and variance 2
yσ .  The idea is illustrated in the 

block diagram of Figure 4-1.  Notice that the signal under analysis is actually the 

output of the system.  This is in contrast to other spectral analysis techniques in 

which the signal of interest is decomposed as the input to filter(s).  The filter 

coefficients am, therefore, provide information about the spectral content of y(n) and 

are referred to as AR parameters.  Equation (4.1) describes the relationship between 
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the spectral density of y denoted as Sy and the AR parameters for a pth order AR  

model [69]. 
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Figure 4-1 – The AR Process, where w(n) is the input (zero-mean white noise) and y(n) is the output 
(the signal to be modeled) 
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In the EEG analysis context the AR parameters are, of course, unknown.  

There are several methods to estimate AR parameters for a wide-sense stationary 

process such as the Yule-Walker and Burg’s methods [48].  We do not further 

discuss these approaches because they apply to stationary processes.  The estimation 

method used in this research is discussed in section 4.2. 

The AR model itself is not an intuitive description of the process that actually 

occurs to produce EEG. The signal is a result of the firing of many neurons, not the 

all-pole filtering of zero-mean white noise.  The AR model seems to characterize 

EEG well (see chapter 2), nonetheless, and there are good reasons for using it as 

discussed below.  Firstly, the AR spectrum is closely related to the spectrum that can 

be estimated by the maximum entropy method (MEM) [69].  In fact, the two spectral 

estimation techniques are mathematically equivalent (see [69] for a proof).  MEM is 

known to give the power spectrum that is associated with the most random time 

series possible for a given autocorrelation matrix.  Thus, the AR parameters provide 

a lot of spectral information with few parameters.  Secondly, AR modeling is rather 

robust with regard to noise, with which non-invasive EEG is significantly corrupted.  

This notion is quite intuitive since the model itself is driven by noise and because it 

is a maximal entropy estimate.  Lastly, a priori information about relevant 
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frequencies is not required to estimate the AR coefficients.  This is powerful because 

if the relevant frequencies change the same implementation is applicable.  This is a 

concern in BCI since the EEG characteristics may change for a given subject over 

time. 

4.2 The Adaptive Autoregressive Model 

In the previous section the AR model is described for a wide-sense stationary 

process.  EEG, however, is non-stationary and the AR parameters change with time.  

Conventional approaches to address non-stationary behavior of EEG have been to 

apply a moving window of AR estimates.  Depending on the size and shift of the 

window, traditional AR estimation algorithms can become computationally 

intensive. Instead, we may estimate non-stationary AR parameters by inferring a 

dynamic model and using Kalman filtering [70].  Such an approach is referred to as 

adaptive autoregressive modeling (AAR) and has been successfully used in left-right 

single-trial motor imagery classification [50]-[55].  This section introduces the 

technique as applied to EEG signal processing. 

4.2.1 Introduction to Kalman Filtering 

The Kalman Filter is a dynamic, recursive estimator that uses a state-space 

model to represent an estimation problem.  The state, at any given time n, changes; 
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we are interested in estimating the state vector, which consists of the fewest number 

of parameters to specofy the state.  We may infer the state at time n from 

measurements in the system (in this case the EEG) at time n as well as the history of 

states in the system.  The advantage of the Kalman Filtering formulation is its 

recursive nature, which requires knowledge of the previous state only.  Therefore it 

is an attractive tool because it is computationally efficient and is a least-squares 

estimate of the unknown state. 

There are two major components to the Kalman Filtering formulation: (1) a 

process model and (2) a measurement model.  The process model describes the 

dynamics of the state and is given by 

)()1()1|()( p nvnnnn +−−= zFz ,  (4.2) 
 

where z is a column vector of the state parameters, F is a matrix representing the 

dynamics of the state, and vp is zero-mean white noise with a Gaussian distribution.  

The role of vp in the model depends several contexts :  (1) the dynamics that govern 

z may be purely stochastic (F=I), in which case vp is the driving force for the 

dynamics; (2) if the system is believed to be deterministic and there is no noise term 

measurements would be completely ignored, in this case a small noise term vp 

preserves the adaptability by restricting the confidence of the estimator; and (3) the 

mathematical model for F may only be an approximation of the actual dynamics and 
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vp provides flexibility to accommodate unaccounted variations in the model.  In 

order to initiate the recursion a boundary condition is necessary, namely 

0)]0([ zz =E  and 00 )cov( Pz = . (4.3) 
 

The dynamics matrix F, which models the state transitions, has two noteworthy 

properties: 

1. Product Rule - ),(),(),( lnlmmn FFF =  

2. Inverse Rule -  ),(),(1 nmmn FF =−  

where l,m, and  n are integers. 

The measurement model is given by    

)()()()( nvnnn m+= zCy ,  (4.4) 
 

where y is a column vector of length M of the M-dimensional measurements, z is a 

column vector of the state parameters, C is the measurement matrix and vm is zero-

mean white Gaussian noise. 

 For a complete derivation of the solution for the unknown state using the 

process and measurement equations refer to [69].  Here we highlight the key 

parameters that provide conceptual insight into Kalman filtering and summarize the 

algorithm.   

1. The Innovations Process 
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The innovations process is defined as  

)|()()( 1−−= nnnn γυ yy ,  (4.5) 
 

where υ  is the innovations process and )|( 1−nn γy is the minimum mean-square 

estimate of the observed measurement y(n) given all past observations denoted by 

1−nγ .  Notice that )(nυ quantifies new information in the observed data y(n). 

There are three important properties of the innovations process [69]: 

1. According to the principle of orthogonality, The innovations process is 

orthogonal to all past observations y(n) described as 

0=)]()([ * kynE υ , 11 −≤≤ nk .  (4.6) 
 

2. The innovations )1(υ , )2(υ , )3(υ …. )(nυ are orthogonal to each other 

(white) described as 

 0=)]()([ * knE υυ , 11 −≤≤ nk .  (4.7) 
 

3. There is a one-to-one correspondence between the observations y(1), y(2), 

y(3),….. y(n) and )1(υ , )2(υ , )3(υ …. )(nυ . 

2. Correlation of the Innovations Process and Predicted State Error 

The correlation matrix for the innovations process is a necessary parameter and can 

be calculated by  
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)()()1,()()( nnnnnn H RCPCQ +−= ,  (4.8) 
 

where R = cov(vm) and P(n, n-1) = )]|()(cov[ 1−− nnn γzz , i.e. it is the correlation of 

the predicted state error.  P(n, n-1) may be found recursively using the Riccati 

equation given by 

 )()()1()()1,( nnnnnn H RFPFP +−=− .  (4.9) 

P(n-1) is the updated estimate of P(n-1,n-2), i.e. P(n-1) = ))|()(cov( nnn γzz −  and 

may be calculated as  

 )2,1()()()()2,1()1( −−−−−=− nnnnnnnn PCGFPP .  (4.10) 

G(n) is the Kalman gain and is further discussed below. 

3. The Kalman Gain 

The Kalman gain represents the algorithms confidence in new information provided 

by measurements and is given by 

 )()()1()()( 1 nnnnn H −−= QCPFG .  (4.11) 

 

4. Estimation of State 

Finally, the estimate of the state parameters at time n can be calculated using the 

following 

 )()()1()()( nnnnn υGzFz +−= .  (4.12) 
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The parameters and algorithm are concisely summarized in Table 4.1 and Table 4.2. 

 

Table 4.1 – Summary of Kalman Filter Parameters 

Symbol Definition ∗Dimensions 

z(n) State at time n M by 1 
y(n) Measurement at time n N by 1 
F(n) State transition matrix from time n-1 to n M by M 
C(n) Measurement matrix at time n N by M 
W(n) Correlation matrix of process noise M by M 
R(n) Correlation matrix of measurement noise  N by N 

)(nz  Estimate of the state at time n M by 1 

G(n) Kalman gain at time n M by N 
)(nυ  Innovation process at time n M by N 

Q(n) Correlation matrix of the innovations 
process at time n 

N by N 

P(n,n-1) Correlation matrix of the error in 

)|( 1−nn γz  

M by M 

P(n) Updated Correlation matrix of the error 

in )|( nn γz   

M by M 

 

                                                 
∗ M and N refer to the number of dimensions in the measurement and state, respectively  
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Table 4.2 – Summary of the Kalman Filter Algorithm 

Input: 
   Measurements = {y(1), y(2), ….. , y(n)}  
 
Known Parameters: 
   Transition matrix = F(n) 
   Measurement matrix = C(n) 
   Correlation matrix of process noise = W(n) 
   Correlation matrix of measurement noise = R(n) 
 
Computations: 
   1)]()()1,()()[()1()()( −+−−= nnnnnnnnn HH WCPCCPFG  
   )|()()( 1−−= nnnn γυ yy  
   )()()1()()( nnnnn υGzFz +−=  
   )2,1()()()()2,1()1( −−−−−=− nnnnnnnn PCGFPP  
   )()()1()()1,( nnnnnn H RFPFP +−=−  
 
Initial conditions: 
   )]0([)0( zz E=  
   ])])1([`)1()])(1([)1([()0,1( HEEE xzzzP −−=  
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4.2.2 Estimating AAR parameters using Kalman Filtering 

A pth order AAR model can describe a 1-D EEG signal using 

( ) ( ) * ( 1) v ( )T
my n n n n= − +z Y , (4.13) 

where n is the discrete time index; y is the EEG sample; z is a p-element column 

vector of the autoregressive coefficients; Y is a column vector of the last p EEG 

samples; and vm is a zero-mean, white-noise process . Notice that the autoregressive 

coefficients change with time to capture the dynamics of the EEG. In the context of 

the Kalman Filter, the EEG signal is the measurement and the autoregressive 

features comprise the state parameters.  Thus, equation (4.13) is the measurement 

model where the measurement matrix C from equation (4.4) is a column vector of 

the last p samples of the EEG signal y.  The process model is given by  

       ( ) ( 1) v ( )pn n n= − +z z . (4.14) 

where vp is zero-mean white noise. In the context of the Kalman filter the dynamics 

matrix is identity, thus, the system is modeled as a random walk with small changes 

in the state. 
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1Table 4.3 – Summary of Kalman Filter Parameters for AAR model 

Symbol Definition Dimensions 

W(n) Process noise variance  scalar 
R(n) Variance of measurement 

noise  
scalar 

)(nz  Estimate of AAR parameters 
(state) 

p x 1 

Y(n) Measurement matrix (last p 
samples of y) 

p x 1 

G(n) Kalman gain p x 1 
?( )n  Innovation process scalar 
Q(n) Innovation process variance scalar 
P(n) Predicted state-error 

correlation matrix 
p x p 

uc Update coefficient scalar 
   

The Kalman filtering algorithm for AAR parameter estimation is given below 

(see Table 4.3 for description of parameters): 

)1(*)1()( −−= nQucnQ  (4.15)  

( ) ( 1) ( ) / ( )n n n Q n= − ⋅G P Y  (4.16) 

( 1) ( ) ( ) ( )n n n nυ+ = +z z G) )  (4.17) 

 pntraceucnW /))1((*)( −= P  (4.18) 

T( ) ( 1) ( ) ( 1) ( 1) ( )n n n n n W n= − − ⋅ − ⋅ − +P P G Y P  (4.19) 

The reader should notice that there are several simplifications from the 

general Kalman filtering equations given in the previous section.  Since the state 

                                                 
1 Note that the dimensions of the parameters are given specifically for the AAR estimation problem and have been 

simplified from Table 4.1 
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transition matrix is identity in this application, and the innovations process is scalar 

(the innovations correlation is simply a variance) equation (4.11) simplifies to 

equation (4.16).  The identity transition matrix also simplifies equation (4.9) making 

two steps (update and prediction) for calculation of the state error correlation matrix 

unnecessary.  Instead, we combine equations (4.9) and (4.10) (the updated and 

predicted steps) into one calculation to form equation (4.19).   

There are other deviations in the above algorithm from the original Kalman 

filtering formulation that stem from the fact that the measurement and process noise 

variance is unknown; the algorithm given in Table 4.2 assumes these parameters are 

known, therefore, a slightly different approach is necessary.  Calculation of the 

innovations process variance, Q(n), requires the process noise variance, R(n) (see 

equation (4.8)).  There are several alternatives to calculate Q(n) recursively without 

prior knowledge of R(n) [47].  Based on findings in [47], where they compared these 

alternatives in EEG analysis for several subjects, we use equation (4.15).   Equation 

(4.18) estimates the unknown measurement noise variance and is among the better 

performing methods among those studied in [47].  Note that in equations (4.15) and 

(4.18) the parameter uc (update coefficient) is introduced; in the above algorithm the 

unknown parameters can be traced back to the model order p and update coefficient 

uc.  These parameters are significant and their selection governs the time-frequency 
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resolution of the analysis.  Section  4.2.3 describes a method for selecting these 

parameters.  

4.2.3 The REV Criterion and Time-Frequency Resolution 

The update coefficient uc and model order p are to be selected so that the 

AAR estimates best describe the EEG signal y. In  [71], they propose the relative 

error variance (REV) as a minimization criterion for selecting these parameters and 

it is given by 

2( )
/var( )

n
REV y

N

υ
=

∑
, (4.20) 

which is the mean squared error (innovation process) normalized by the signal 

variance. N is the total number of samples in the trial.  The innovation process is a 

measure of the dynamics that the system could not predict.  In essence it is a 

measure of the goodness-of-fit of the model and is, therefore, a good criterion to 

consider when selecting p and uc.  In this work the REV criterion is used as a 

guideline for selecting p and uc but we do not necessarily use the parameter values 

that minimize the REV.  Marginally lower REV values do not justify larger model 

orders if the increase in complexity and computation do not significantly improve 

classification performance. 

 An important realization is the implication of the model order and update 

coefficient on the time-frequency resolution and the principle of uncertainty.  The 



Chapter 4 – Feature Set 1: Adaptive Autoregression    
 

48 

48

 

model order corresponds to the frequency resolution and the update coefficient is 

related to the time resolution [47].  Therefore, for a given update coefficient there is 

an optimal model order and vice versa. 

 

4.3 Method 

This section describes two methods for classifying AAR features as either 

left or right-hand imagined movements.  Section 4.3.1 presents the conventional 

method (CONV) that has been used in several studies [50]-[56].  Section 4.3.2 

describes a novel framework for temporal classification and demonstrates how the 

framework can be applied to AAR features.  The objective is to classify the trial with 

a significant degree of certitude as quickly as possible starting from the time of 

feedback (see section 2.3 for a description of the protocol used in these trials). 

4.3.1 Conventional Method (Linear-Discriminant Analysis) 

Linear Discriminant Analysis (LDA) identifies the best discriminating (n-1)-

dimensional hyper plane between two classes C1 and C2 in an n-dimensional feature 

space - for a more detailed discussion of (LDA), see [61].  Despite the simplicity of 

the method it continues to be a strong pattern analysis technique in BCI and 

performs better than or the same as more complicated and dynamic techniques such 

as Hidden Markov Models (HMM) [72]; the main problem in HMM’s in BCI is 
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adequate a priori information for the topology.  LDA classification of left/right 

motor-imagery may be performed by training (i.e. finding the linear discriminant for 

the training set) at each discrete instant in time.  We may use cross-validation to 

assess performance over time by examining the error rate and other measures that 

will be discussed in section 4.4.1.  In a BCI implementation of this algorithm a time 

during the trial would be selected, based on the cross-validation analysis, when 

decision making is at its best and the system would wait until that time to classify 

the trial. 

Let )(3, ntz and )(4, ntz  denote row vectors of the estimated pth order AAR 

parameters for trial t at time n for electrodes C3 and C4, respectively.  We 

concatenate the two vectors to form a single 2p-dimensional feature vector giving                         

])(,)([)( 4,3, ttt nnn zzz = . (4.21) 

Using the LDA weight vector wt and offset w0, the classification decision 

Dt(n) may be obtained by  

0)()()( wnnnD ttt −⋅= zw , (4.22) 

where Dt(n) > 0 classifies trial t as right and Dt(n) < 0 as left at time n.  The 

magnitude of Dt is an indication of the certitude of the decision.   
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4.3.2 Temporal Evidence Accumulation Framework 

In the previous section we introduce a conventional approach using LDA that 

classifies the trial at each discrete instant in time independently from one another. 

We propose that this approach does not take advantage of the accumulated evidence 

the AAR features are providing over time. We apply a temporal evidence 

accumulation framework based on one proposed in [58], and investigate its success 

with AAR features. 

Labeled training data from 10-fold cross validation of the dataset is used to 

infer a class conditional p-D Gaussian distribution for both classes Left (L) and 

Right (R).  Thus we have the probability density for the feature set zt(n): 

           
1/2

, 1
, , ,2

| | 1
( ( ) | ) exp{ ( ( ) ) ( ( ) )}

4 2
n c T

n c n c n cp n c n nµ µ
π

−
−∑

= − − ∑ −z z z ,       (4.23)  

where { , }c L R∈ .  The mean ,n cµ and covariance ,n c∑ are estimated from the 

training data for c .  We may classify ( )t nz  by calculating the probability of 

belonging to a class using        (4.23) and Bayes theorem as 

( ( ) | )
( | ( ))

( ( ) | ) ( ( ) | )
p n c

p c n
p n L p n R

=
+

z
z

z z
. (4.24) 

In order to combine information throughout time the decision made at the 

current time n = nt is a weighted average of all the decisions for n = nt; thus we have 
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( | ( ))
( | (1)... ( )) t

t

n n t
t

n n t

w p c n
p c n

w
≤

≤

=
∑

∑
z

z z , 

 

(4.25) 

 
where wt  reflects our certitude in the decision making ability of the classifier at time 

nt, and is derived from the probability of misclassification [58]. Although we cannot 

find the probability of misclassification directly we may calculate its upper limit 

using the Chernoff bound; an advantage of using an explicit probabilistic approach 

to classification.  The weight wt is defined as 

         

∫ −

≤≤

−= dzRtzpLtzpw tt

t

t
γγ

γ

1

10

)|)(()|)((1 min . 
(4.26) 

Since we infer a Gaussian distribution, this integral can be expressed in closed form 

and the minimum solution can be found analytically or numerically.  The Chernoff 

bound was chosen over the Bhattacharyya bound (see [61]) because, in general, it is 

a tighter bound.  Although the Bhattacharyya method can be slightly more 

computationally efficient, we prioritize the tighter bound since Chernoff calculations 

are done in the training stage, which does not have real-time demands. For the 

derivation of the Chernoff bound and other details regarding its relationship with the 

Bhattacharyya bound see Appendix A.   
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4.4 Results 

In this section we compare the performance of the conventional approach 

(CONV) described in section 4.3.1 to the temporal evidence accumulation (TEA) 

approach described in section 4.3.2 for the three subjects in this study.    The REV 

criterion is used to select the model order and update coefficient. 

4.4.1 Performance Measures 

We employ three measures of performance using 10-fold cross validation: the 

time course of the percent misclassified (%Err); the signed decision magnitude, 

D(n); and the mutual information, I(n) [38].   

D(n) reflects both the classifier’s decision by its sign (D(n) > 0 à R, D(n) < 

0 à L) and certitude by its magnitude . For CONV, the signed decision magnitude 

DCONV(n) is the shortest  distance between z(n) and the LDA boundary (see equation 

(4.22)) and, for TEA, DTEA(n) is defined as  

       ( ) 1 2 ( | (1)... ( ))TEA cD n p L n= − ⋅ z z . (4.27) 

The reasons for examining D(n) are two-fold:  it gives a good indication of 

the separability of classes and the classifier’s confidence in its decision; second, it 

collapses the problem into a single dimension lending itself well to computational 

simplicity and efficiency for information theoretic measures. D(n) can be modeled as 
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having two processes: one being the motor imagery task and the other being noise 

[38]. Information theory may be used to evaluate how much information D(n) 

provides about the motor imagery task. The entropy of D(n) is a measure of its 

uncertainty at time n  and, inferring a Gaussian distribution, is defined as 

     21
( ( )) log(2 s )

2
H D n eπ= , (4.28) 

where  2s  is the variance of D(n) (see Appendix B for derivation in the Gaussian 

case and other details). The reduction in entropy from H(D(n)) to the within-class 

entropy H(D(n)|c) is the mutual information [38]. It is a measure of how closely 

related D(n) is to the motor imagery classes, and thus, quantifies the amount of 

information in D(n) that is relevant to the problem. The mutual information can be 

calculated by 

     
2

2 2
L R

1 s
( ( )) log[ ]

2 0.5(s s )
I D n =

+
, (4.29) 

where 2
Ls and 2

Rs  are the class conditional variances of D(n), assuming the noise 

process for D(n) is also Gaussian.  If this assumption is incorrect, I(D(n)) in equation 

(4.29) is in fact the upper limit on the mutual information [38].  See appendix B for 

more details on mutual information. 
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4.4.2 REV plots and selection of Model Order and Update 
Coefficient 

We calculate the REV criterion over a range of model orders and update 

coefficients.  Figure 4-2 shows plots for model orders ranging from 3 to 6.  In 

general the REV criterion did not improve for model orders greater than 6 so we do 

not plot them in the figure.  The update coefficient is set to a range of 2-14 to 2-7 as 

the Kalman Filter exhibited instability at approximately uc > 2-7 for all three 

subjects.  For all subjects and model orders minimum REV values occur close to 2-7 

and this value was chosen for the update coefficient.  Since only minor 

improvements in the criterion occur for larger model orders we select a 3rd order 

AAR model.  To check this selection, after the 3rd order model classification results 

were produced (section 4.4.3), we ran the experiments for higher model orders and 

the results were worse or as good as the 3rd order model.  
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Figure 4-2 – REV criterion plot for several model orders over a range of update coefficients for (a) 
subject C1, (b) subject B2, and (c) subject C3 

(a) (b) 

(c) 
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4.4.3 Performance Comparison 

The time course of the classification results and mutual information for both 

experiments are depicted in Figure 4-3 to Figure 4-5, for subjects C1, B2, and A3, 

respectively.  

For subject A1 The TEA method reaches a minimum error of 14.3% while 

CONV achieved a very inconsistent minimum of 18.2%. If one were to consider a 

moving average of the CONV error curve the minimum would be 21.6%. More 

significant than the reduction in minimum error is the substantial difference in 

variability throughout the time course. This is an important improvement in the TEA 

approach for enhanced predictability of the BCI system.    

The advantages of the TEA approach are more compelling in the plot of 

mutual information. Notice that ITEA(n) reaches a maximum of 0.53 compared to 

0.41 for ICONV(n).  The latter maximum is inconsistent as there is more variability in 

ICONV(n).  If we again consider a moving average of the curve, ICONV(n) has a 

maximum of only 0.33.  In addition to attaining higher maximal mutual information, 

ITEA demonstrates a more rapid rate of increase.  This is a useful improvement in 

BCI applications where timely response to user input is desirable. 

 The time course of DTEA(n) and DCONV(n) are depicted in figure 2.  Notice 

the greater consistency in DTEA(n) and faster rate at which the classification problem 
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is more separable. 

The results for both TEA and CONV reflect an improvement in the 

separability of the classes over time followed by degradation.  For CONV this is 

evident both in %Err and ICONV(n) in Figure 1 (a) and (b), respectively. For TEA this 

is evident in the Chernoff bound.  This may be a result of a decrease in concentration 

and focus on the part of the user.  There is an important difference in the way the 

two algorithms handle this problem.  The CONV approach does not make use of the 

knowledge the training data provides about this degradation.  The TEA method, 

however, measures uncertainty in the training data enabling it to predict the 

degradation in features in the latter part of the trial.   

For subject B2 The reduction in error rate over time in TEA is much more 

consistent then CONV (see Figure 4-4 (a)).  TEA reaches its minimum error rate of 

27% 1.2 seconds before CONV reaches its minimum of 25%.  Although CONV’s 

minimum is lower it is only for an instant in time. In an actual BCI it would be 

difficult to predict the optimal response time for CONV.  Furthermore, since 

response time is a concern in a BCI, the TEA’s faster descent is attractive in many 

applications.  The mutual information plot in Figure 4-4 (b) also demonstrates the 

more rapid increase in class relevance of the BCI task for TEA.  In the latter part of 

the trial the mutual information is sustained in TEA and declines in CONV, also 
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demonstrating the robustness of the TEA algorithm. Although the average 

magnitude of the decision output for CONV is greater in the latter part of the trial 

(see Figure 4-3 (c) and (d)), it is inconsistent; the mutual information plot, which is 

directly related to the variance of the decision output, reflects this.  Similar trends 

are observed for subject A3, but the improvements in the TEA approach are even 

more compelling (see Figure 4-5). 
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Figure 4-3 – SUBJECT C1: (a) Time course of percent error from 10-fold cross validation for the 
TEA and CONV approaches to classification, (b) the time course of the Chernoff bound (dotted line) 
and the mutual information between the decision output and classes for TEA (thick line) and CONV 
(thin line) methods,   (c) time course of left and right decision outputs for the CONV (d) and TEA (b) 
methods. For CONV the distance to classification boundary has been scaled to be numerically 
comparable to TEA.  

(a) (c) 

(b) (d) 
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Figure 4-4 –  SUBJECT B2: (a) Time course of percent error from 10-fold cross validation for the 
TEA and CONV approaches to classification, (b) the time course of the Chernoff bound (dotted line) 
and the mutual information between the decision output and classes for the (thick line) and CONV 
(thin line) methods,   (c) time course of left and right decision outputs for the CONV (d) and TEA (b) 
methods. For CONV the distance to classification boundary has been scaled to be numerically 
comparable to TEA. 
 

(a) 

(b) 

(c) 

(d) 
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Figure 4-5 –  SUBJECT  A3: (a) Time course of percent error from 10-fold cross validation for the 
TEA and CONV approaches to classification, (b) the time course of the Chernoff bound (dotted line) 
and the mutual information between the decision output and classes for the TEA (thick line) and 
CONV (thin line) methods,   (c) time course of left and right decision outputs for the CONV (d) and 
TEA (b) methods. For CONV the distance to classification boundary has been scaled to be 
numerically comparable to TEA.  
 

(a) 

(b) 

(c) 

(d) 
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Chapter 5 

Feature Set 2 – Wavelet Transform 

In this chapter we consider the second method of spectral analysis: the 

wavelet transform.  We present some fundamental wavelet theory and describe a 

method for extracting wavelet coefficients from motor-imagery EEG.  We then 

apply the TEA framework discussed in the previous chapter to classify the wavelet 

features and analyze the results. 

5.1 Introduction to The Wavelet Transform 

According to Fourier theory a continuous signal can be expressed as a 

weighted integral of complex sinusoids of varying frequency [59]:  

∫
∞

∞−
= ωω

π
ω dejFtf tj)(

2
1

)(  ,     (5.1) 
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where f(t) is the time domain signal and F(j? ) is the weight function for the complex 

sinusoids, also known as the frequency domain of the signal.  Therefore, the 

frequency domain provides a measure of activity in the signal throughout the 

frequency spectrum and is defined as  

∫
∞

∞−

−= dtetfjF tjωω )()(  .     (5.2) 

The major shortcoming in Fourier analysis is that, although it provides information 

about the frequency content of a signal, it does not indicate when frequencies occur 

in a signal.  In EEG signal analysis we are interested in how the frequency content of 

the signal changes with time, known as time-frequency analysis.  To overcome this 

disadvantage of the Fourier Transform (FT) the Short-Term Fourier Transform 

(STFT) was proposed.  In this approach, the Fourier transform is applied to 

segments of the signal in time.  An important consideration is how large to make the 

window of analysis.  The smaller the window the more precise the information is 

with respect to time.  Suppose we apply the most precise window of time possible, 

the Dirac impulse.  This is equivalent to convolution of the Dirac impulse with the 

signal in the time domain, and corresponds to multiplication in the frequency 

domain.  In the frequency domain the Dirac pulse contains all possible frequencies 

so the frequency information of the signal is corrupted.  Therefore, there is a tradeoff 
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between time and frequency resolution.  This is known as the Heisenberg Principle 

of Uncertainty as applied to time-frequency analysis.   

 The wavelet transform addresses the shortcomings of the FT and STFT with 

respect to the principle of uncertainty.  Specifically, the modulated window that is 

shifted along the signal is done so at various scales [60].  Therefore, high 

frequencies are measured at sharper time resolutions than low frequencies to 

establish a compromise between the time-frequency resolution trade-off.  The 

continuous wavelet transform may be applied as   

∫
∞

∞−
= dtttfsw s )()(),( *

,τψτ  ,     (5.3) 

where w is the wavelet coefficient that corresponds to the frequency associated with 

the scale s and time t  of the wavelet function )(, ts τψ .  The wavelet function is scaled 

and shifted versions of a mother wavelet )(tψ : 

)(
1

)(, s
t

s
ts

τ
ψψ τ

−
=  .     (5.4) 

The mother wavelet function is not specified in equation (5.4) as it can take many 

forms that suit the specific application.  For details regarding the types of common 

mother wavelets and the properties they all must satisfy refer to [60]. 
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5.2 Method of Wavelet Analysis in Motor Imagery 
EEG 

As discussed in section 1.4.4, motor imagery response can be found in the a 

band over the post central motor cortex and the ß band over the pre central motor 

cortex.  Furthermore, there seems to be complimentary information in these two 

frequency bands and, thus, merit in exploiting both features [57]. With this in mind, 

we employ a method of wavelet analysis based on the work presented in [58].  In 

order to take full advantage of wavelet analysis it is useful to obtain a priori 

information 

 

 

Figure 5-1 – The Morlet Wavelet 
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information about the dominant frequency within the aforementioned bands.  This 

allows us to scale the mother wavelet precisely for these two relevant frequency 

bands.  Therefore, the a priori knowledge allows us to limit the feature space to just 

two wavelet coefficients per electrode.  In this study we use the Morlet mother 

wavelet, which is a modulated Gauss impulse (see Figure 4-1) and is given by 

     
2

0 )(
2
1

)(
4
11

)( s
n

s
n

i
ee

s
n

ττ
ω

πψ
−

−
−

−
= , (5.5) 

where n is the discreet time index; s is the scaling factor corresponding to the target 

frequency; t is the temporal shift of the wavelet; and ?0 is the eigenfrequency of the 

wavelet. 

 The scaling factor governs the time-frequency resolution and is given by 

      
f

fs
π

ωω
4

2
)(

2
00 ++

=  , (5.6) 

where f is the target frequency.  Note that increasing the eigenfrequency ?0 sharpens 

the frequency resolution while decreasing the time resolution. 

 The effective widths in the time and frequency domain are given by 

     steff 2=  , (5.7) 
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1)2(2 −= sfeff π  , (5.8) 

where teff is also known as the e-folding time and refers to the length of the wavelet 

(in time) after a 
2

1
e

 reduction in the power of the wavelet, and feff is the 

corresponding width in the frequency domain. 

As discussed in section 5.1, the wavelet coefficients w(t,f) are the 

convolution of the signal with the mother wavelet: 

     ||)()(||
1

),( tty
s

fw ψτ ∗=  , (5.9) 

where y(t) is the 1-D EEG signal from a given electrode.  In the application of this 

algorithm to the subjects in this study, the feature vector wv consists of four 

coefficients at each discreet time n:   

     

T
CCCCv fnwfnwfnwfnwnw )),(),,(),,(),,(()( 4433 βαβα=  . 

(5.10) 

where C3 and C4 refer to the corresponding electrodes in the international 10-20 

system.   

 In order to make the off-line algorithm implemented in this work applicable 

on-line, all analysis is causal.  To meet this requirement the extension of the 

wavelets in the time domain is limited to four times the e-folding time.  Therefore, a 
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delay is required and is governed by the most course resolution in the time domain, 

that which corresponds to α.  Hence, The feature vector wv(n) is not available until 

time n+2teff.  The idea is depicted in Figure 5-2.  Due to the necessary delay, 

classification of the trial does not occur until 2teff seconds after the start of feedback. 

 

 

 

 

 

 

 

 

 

 

Figure 5-2 – Causal delay of coefficients due to windowing by wavelet 
 

 We perform cross-validation of the feature vector at each discrete instant in 

time over the 280 trials for each subject.  The same performance measures are used 

to evaluate the approach as described in section 4.4.1.  For classification, we apply 

the TEA framework as described in section 4.3.2.   

n n+teff n+2teff ………. n-teff ………  . 

Coarsest time domain 
window width (that 
corresponding to a) 

wv(n) becomes available   

Voltage  

Time  

n-2teff 

EEG   
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5.3 Results 

In this section we apply the wavelet transform method, described in the 

previous section, to the three subjects C3, B2, and A1.  As in Chapter 4, three 

performance measures are used: the time course of the percent misclassified (%Err); 

the signed decision magnitude, D(n); and the mutual information, I(n) [38] (see 

section 4.4.1). 

For most people relevant frequency bands in motor-imagery tend to be at 

Hzf 10=α and Hzf 20=β ; we scale the mother wavelet appropriately according to 

equation (5.6).  We perform 10-fold cross-validation on several model parameter 

settings based on the prominent frequencies.  The performance for the WAV method 

is presented in Figure 5-3, Figure 5-4, and Figure 5-5.  The TEA framework 

classifies the wavelet features successfully with minimum error rates of 12%, 19%, 

and 29% for subjects C1, A2, and B3 respectively.  Further insights into the results 

below will be discussed in the next chapter where the performance is compared to 

the AAR-based TEA method of Chapter 4. 
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Figure 5-3 – SUBJECT C1: (a) Time course of percent error from 10-fold cross validation for the 
TEA approach using wavelet features, (b) the time course of the mutual information between the 
decision output and classes (c) time course of left and right decision outputs  

(a) (b) 

(c) 
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Figure 5-4 – SUBJECT B2: (a) Time course of percent error from 10-fold cross validation for the 
TEA approach using wavelet features, (b) the time course of the mutual information between the 
decision output and classes (c) time course of left and right decision outputs  

(a) (b) 

(c) 
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Figure 5-5 – SUBJECT A3: (a) Time course of percent error from 10-fold cross validation for the 
TEA approach using wavelet features, (b) the time course of the mutual information between the 
decision output and classes (c) time course of left and right decision outputs  

(a) (b) 

(c) 
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Chapter 6 

AAR vs. Wavelet: Comparison, 

Complimentary Information, and 

Fusion 

In the previous two chapters we present two methods of motor-imagery 

analysis: wavelet and adaptive autoregression.  Recall that both feature sets are 

classified using the TEA framework discussed in section 4.3.2. Herein, we refer to 

the wavelet method as WAV and the adaptive autoregressive method as AAR; these 

terms encompass both the time-frequency feature extraction method as well as the 

TEA classification framework, unless otherwise specified.  In this chapter we 

compare the performance of the two methods for all three subjects.  The strengths 

and weaknesses of each algorithm are highlighted with reference to results.  Based 
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on these findings and empirical evidence of complimentary information, we propose 

a fusion scheme that improves performance. 

6.1 A Comparison of Performance 

For convenience and ease of comparison the results for AAR and WAV from 

Chapter 4 and Chapter 5 are presented on the same plots in Figure 6-1, Figure 6-2, 

and Figure 6-3, for subjects C1, B2, and A3, respectively.  WAV outperforms AAR 

in terms of accuracy and mutual information for subjects C1 and B2.  Not only does 

WAV achieve a lower minimum error, but also the error drops off more quickly.  

Similarly, the mutual information increases more quickly.  This has significant 

implications in BCI applications where the system should ascertain the intention of 

the user as quickly as possible.  Despite better performance for WAV for these two 

subjects, its Chernoff bound is higher than AAR (see (c) of Figure 6-1 and Figure 

6-2).  Recall that the Chernoff plots in these figures are representative of the data 

prior to application of the TEA framework since the bound is used to weight 

decisions made over time.  The fact that the classes in WAV are less separable than 

AAR without TEA (indicated by the Chernoff bound) and more separable than AAR 

with TEA (indicated by the mutual information) suggests that WAV benefits from 

TEA considerably more. 



Chapter 6 – AAR vs. Wavelet:Comparison, Compl. Inf., and Fusion.   
 

75 

75

 

For subject A3, AAR outperforms WAV.  In general the mutual information 

for subject A3 is considerably lower than the other two subjects.  The signal-to-noise 

ratio (SNR) is highly related to the mutual information (see Appendix B).  An 

interesting notion that these results may support is that for noisier signals, AAR 

outperforms WAV because of its inherent robustness to noise. 

In general AAR seems to have larger average decision magnitudes as 

depicted in (d) of Figure 6-1, Figure 6-2, and Figure 6-3.  This characteristic is 

desirable, however, the mutual information for AAR is lower for subjects C1 and B2 

indicating that the signed decision magnitude for AAR has high variability, which is 

undesirable.   
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Figure 6-1 – SUBJECT C1: (a) (a) Time course of percent error from 10-fold cross validation for 
the AAR (thick line) and WAV (thin line), (b) the time course of the mutual information between the 
decision output and classes for AAR (thick line) and WAV (thin line), (c) time course of the Chernoff 
bound for AAR (thick line) and WAV (thin line) used for TEA decision weighting, (d) the signed 
distance to classification boundary for AAR (thick line) and WAV (thin line) for Left (negative) and 
Right (positive) 
 

(a) (b) 

(c) (d) 
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Figure 6-2 – SUBJECT B2: (a) (a) Time course of percent error from 10-fold cross validation for 
the AAR (thick line) and WAV (thin line) feature sets, (b) the time course of the mutual information 
between the decision output and classes for AAR (thick line) and WAV (thin line) methods, (c) time 
course of the Chernoff bound for AAR (thick line) and WAV (thin line) used for TEA decision 
weighting, (d) the signed distance to classification boundary for AAR (thick line) and WAV (thin 
line) for Left (negative) and Right (positive) 
 
 

(a) (b) 

(c) (d) 
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Figure 6-3 – SUBJECT A3: (a) (a) Time course of percent error from 10-fold cross validation for 
the AAR (thick line) and WAV (thin line) feature sets, (b) the time course of the mutual information 
between the decision output and classes for AAR (thick line) and WAV (thin line) methods, (c) time 
course of the Chernoff bound for AAR (thick line) and WAV (thin line) for TEA decision combining, 
(d) the signed distance to classification boundary for AAR (thick line) and WAV (thin line) for Left 
(negative) and Right (positive) 
 

(a) (b) 

(c) (d) 
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6.2 Complimentary Information in the Feature Sets 

The idea of combining information provided by wavelet and AAR features is 

introduced in section 2.2.  In section 3.1, we informally eluded to some general 

theoretical motivations for considering fusion.  In this section, we seek experimental 

evidence that each feature set contributes some information about the signal that the 

other does not. As an initial investigation into this idea, we assess complimentary 

classification.  In particular, we consider what percentage of misclassified trials in 

one feature set the other classifies correctly.  Figure 6-4 depicts this analysis 

throughout the duration of the trial for each subject. 

 For the initial part of the trial classification for both feature sets is not much 

better than random, so the percentages during this time give little meaning.  After 

this time there is consistent indication that a percentage of misclassified data is 

correctly classified by the other feature set.  It is not surprising that this percentage 

tends to be lower for the higher performing method (WAV for C1 and B2, AAR for 

A3).  The period of particular interest is just after the better-than-random 

classification.  This earlier time slot is of greater interest because of two reasons: (1) 

we are primarily interested in improving performance near the beginning of the trial 
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to decrease the response time of the system, and (2) the algorithms are achieving 

lower accuracies during this time and the percentages of correctly classified trials by 

the other method, if exploited, translate to significant improvements in accuracy. 
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Figure 6-4 - % of misclassified data that was correctly classified by the other feature set for each of 
AAR and Wavelet: (a) subject C1, (b) subject B2, and (c) subject A3 

(a) (b) 

(c)  
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6.3 Motivation for a Fusion Approach 

Multi-resolution time frequency analysis is an important tool to address the 

principle of uncertainty between frequency and time [60].  This is the primary 

motivation for wavelet analysis. In contrast, the AAR method does not adequately 

address the problem of time-frequency resolution.  In section 4.2.3, we discuss the 

connection between time-frequency resolution and the AAR model through two 

Kalman Filtering parameters: (1) the AAR model order p and (2) the update 

coefficient uc.  In the formulation of the AAR estimation algorithm employed in this 

study, these parameters are constant throughout the entire trial.  Therefore, there is 

only one time-frequency resolution in this approach and it has the limitation of not 

being optimally set for both frequencies of interest, a and ß. 

An advantage of the AAR model is its robustness with regard to noise.  As a 

noise driven model, it has an inherent quality of extracting information even in noisy 

environments.  In this study we see evidence of this in the Chernoff bound of Figure 

6-1 (c), Figure 6-2 (c), and Figure 6-3 (c).  Although superior in overall performance 

for subjects C1 and B2, WAV is not robust to the high variability of the signal 

without the TEA framework.  In contrast the AAR Chernoff bound is slow and 

steady inferring certainty more consistently. 



Chapter 6 – AAR vs. Wavelet:Comparison, Compl. Inf., and Fusion.   
 

83 

83

 

Another strong indication of the potential for fusing the two feature sets is 

the difference in the misclassified trials described in section 6.2.  The sum of all of 

these factors offers good reason for investigating fusion.  In the rest of this chapter 

we propose a fusion approach and assess its performance for all three subjects.  

6.4 Proposed Method of Fusion 

The goal of the fusion method is to combine information provided by both 

the AAR and WAV feature sets.  Since the TEA framework effectively extracts 

information from the features over time, we continue to employ the framework 

within the fusion scheme.  Thus, each feature set AAR and WAV are classified 

using the TEA method as described in section 4.3.2.  The output of each TEA 

classifier is the signed magnitude distance D(n) (see equation (4.27)).  Therefore, the 

output not only reflects the classifier’s decision but also the confidence in its 

decision.  This information may prove to be useful in fusion, since each feature set 

has different strengths to offer at different times during the trial.  By training a 

classifier to learn when and how to trust the decisions by these two experts, we may 

enhance the results.  The idea is illustrated in Figure 6-5.  

For the fusion classifier we infer a 2-D Gaussian distribution on the output of 

the two classifiers.  Note that the Gaussian assumption for D(n) is consistent with 
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previous assumptions made in section 4.4.1 when evaluating the mutual information 

for the classifier output.  Therefore, in the fusion stage we employ the probabilistic 

classifier defined in section 4.3.2, more specifically in equations        (4.23) and 

(4.24). 

 

 

 

 

 

 

 

Figure 6-5 – Proposed fusion scheme 

TEA 
Framework 
using AAR 

TEA 
Framework 
using WAV 

Probabilistic 
Decision Fuser 

Final Decision 
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6.5 Results 

To measure the performance of the fusion method, referred to as FUS herein, 

we employ the mutual information, percent error, and signed decision magnitude - 

all using 10-fold cross-validation.  The results for subjects C1, B2, and A3 are 

depicted in Figure 6-6, Figure 6-7 and Figure 6-8, respectively.  

For all subjects FUS improved the mutual information; subject C1’s mutual 

information increased by 20%.  Recall from section 4.4.1 the significance of this 

measure.  It has strong implications for the overall reliability and consistency of the 

BCI.  Furthermore, notice the rather large increase in the signed decision magnitude 

for all of the subjects using FUS.  The large improvement in both of these measures 

indicates that the BCI output is more relevant to the classes.  For this reason, there 

are benefits in fusing WAV and AAR in terms of the overall reliability and 

consistency of the system.  However, the percent error for FUS in subjects C1 and 

B2 is similar throughout the trial to WAV (see (b) of the figures).  It is important to 

recognize that the error is calculated from cross-validation and is specific to this data 

set.  The fact that the mutual information for FUS is significantly higher implies that, 

in general, FUS should perform as good as or better than the best of WAV and AAR. 
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Figure 6-6 – SUBJECT C1: comparison of time-course performance for AAR, WAV, and FUS 
methods for (a) the mutual information, (b) the percent error, and (c) the signed decision magnitude. 

(a) 

(b) (c) 
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Figure 6-7 – SUBJECT B2: comparison of time-course performance for AAR, WAV, and FUS 
methods for (a) the mutual information, (b) the percentage error, and (c) the signed decision 
magnitude. 

(a) 

(b) (c) 
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Figure 6-8 – SUBJECT A3: comparison of time-course performance for AAR, WAV, and FUS 
methods for (a) the mutual information, (b) the percent error, and (c) the signed decision magnitude. 
 

(a) 

(b) (c) 
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Chapter 7 

Conclusion 

 In this chapter we summarize the findings and contributions in this research.  

Furthermore, the implications of the work in the field of BCI at large are discussed. 

Finally, we consider possible future work for extending and further investigating the 

contributions in this thesis.   

7.1 Contributions to Motor-Imagery Analysis in 
BCI 

There are three major contributions in this work to the field of EEG motor-

imagery analysis.  They are each discussed below. 
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TEA Framework and AAR features 

We proposed the TEA framework for AAR features and in doing so 

demonstrated considerable performance improvement over conventional 

classification approaches.  The key to this approach is its ability to ascertain 

certainty in decisions made throughout the trial and to consider decisions made in 

the past accordingly.  Unlike conventional classification techniques, TEA makes use 

of prior knowledge obtained from the training data to ignore ambiguous parts of the 

trial that would otherwise degrade performance. 

 

AAR vs. Wavelet 

With regard to EEG motor-imagery analysis there has been very little 

research to compare AAR and WAV under the same study.  In particular, to the best 

knowledge of this research they have never been compared within the TEA 

framework, as application of TEA to AAR features is proposed in this work.  We 

apply TEA to both feature sets and demonstrate that WAV outperforms AAR for 

two out of the three subjects.  Interestingly, the subject for whom AAR 

outperformed WAV had lower signal-to-noise ratio; this implies that AAR is more 

robust to noise than WAV. 
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Fusion of Wavelet and AAR 

 We presented compelling reasons for fusing WAV and AAR to improve the 

performance of a BCI; there are two major reasons: (1) WAV offers multi-resolution 

time-frequency analysis to better address the principle of uncertainty; and (2) as a 

noise driven model, AAR handles the heavily corrupted EEG quite well.  We 

propose a scheme that applies the TEA framework to each feature set separately and 

uses a third classifier to fuse these decisions.  This approach results in higher mutual 

information between the BCI output and the classes.  Therefore, we may conclude 

that fusion of WAV and AAR produces more relevant output to the motor-imagery 

classification task. This in turn yields a more reliable and consistent BCI. 

7.2 Future Work 

Although in this research we have been able to improve the mutual 

information of the BCI using fusion, there is potential to take more advantage of 

complimentary information provided by WAV and AAR.  This is perhaps most 

notable in the earlier part of trials: when classification is significantly better than 

random and there is a large proportion of correctly classified data that the other 

method misclassifies, yet there is little improvement in the performance of FUS.  

This suggests that more research is worthwhile into more sophisticated fusion 



Chapter 7  –  Conclusion.   
 

92 

92

 

schemes that take full advantage of the available complimentary information.  

Another approach worth investigating is fusing the strengths of wavelet analysis and 

autoregressive analysis at a more fundamental level.  If AAR’s strength is its 

robustness to noisy signals and the method of wavelet analysis excels in its multi-

resolution approach to time-frequency investigation, perhaps the formulation of a 

multi-scale AAR approach could be a good alternative.  In such an approach, the 

AAR features would be extracted in several time-frequency resolutions to get more 

accurate spectral information. 

In this work we have assumed Gaussian distributions for the feature sets for 

computational convenience and because it has been used with some success in 

previous work.  However, it is expected to be erroneous to some extent because EEG 

amplitudes are bounded and for many subjects marginal distributions have been 

found to be asymmetric [58].  Perhaps a more characteristic distribution can be 

inferred using a Gaussian Mixture Model (GMM) and estimating its parameters 

using the expectation-maximization (EM) algorithm.  In such an approach, the 

derivation of the Chernoff bound (the measure of certainty) used in this work would 

not be applicable.  Some other measure of certainty would have to be derived to use 

the TEA framework. 

Asynchronous communication protocols have obvious benefits in BCI; they 
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allow the user to interact with more spontaneity and flexibility.  Other future work 

should consider the methods proposed in this work in an asynchronous paradigm.   

In such an approach a motor-event could be detected using methods in [39], 

followed by classification using algorithms in this research. 
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Appendix  

A The Chernoff Bound 

The material in this section is based on Chapter 2 of [61]. We may quantify 
the uncertainty of a classification system by estimating its probability of error.  
Figure A1 depicts the probability of error for a two-class classification problem with 
Gaussian distributions.   Notice that the classification boundary minimizes the 
probability of error by always selecting the class with greater posterior; this is 
known as the Bayes optimal classifier.  The posterior is given as 
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and the decision rule is: decide c1 if )|()|( 21 zz cPcP > , otherwise decide c2. 
 
There are two ways in which a classification error may occur: (1) an observation z 
falls into the region R1 and it belongs to C2 or (2) an observation z falls into the 
region R2 and belongs to C1 (see Figure A1).  For simplicity the figure illustrates the 
1-D case but the idea extends to multi-dimensional problems.  The probability of 
error may be given as 
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The calculation for the probability of error, equation (A1), is difficult and 
computationally intensive.  However, for the two-class case, we may calculate an 
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upper bound on the error known as the Chernoff bound.  Given that another way to 
state the probability of error is  
 
                                  )]|(),|(min[)|( 21 zzz cPcPerrorP =       (A2) 
we may derive a bound on the error using the following inequality: 

 
Figure A-1 – Probability of error (shaded region) for a two-class problem  with Gaussian 
distributions.  
 

ββ −≤ 1],min[ baba  for 0, ≥ba  and 10 ≤≤ β .  We may apply this inequality to 
equation A2: 
 
 

                 ∫ −−≤ zzzz dcpcpcPcPerrorp )|()|()()()|( 2
1

12
1

1
ββββ                (A3) 

 
In the experiments of this research each class is equally likely to occur: 

5.0)()( 21 == cPcP .  For the case where the conditional distributions are Gaussian, 
as they are throughout this research, the integral in equation A3 may be evaluated 
analytically, yielding 
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The Chernoff bound on P(error) may be found by finding the value of ß that 
minimizes e-k(ß) (analytically or numerically) and substituting the result into equation 
(A3).  A powerful feature of this approach is that the optimization of ß is in one-
dimension regardless of the dimensionality of the feature space.   

In general, the bound tends to be looser for extreme values of ß (ßà0, ßà1).  
Another well known bound on the probability of error is the Bhattacharyya bound 
[61], which is equivalent to simply setting ß = 0.5 in equation (A3). Since the 
optimal setting for ß tends to be mid-ranged values between 1 and 0 this is a 
computationally efficient guess.  However, since the minimum value of e-k(ß) does 
not necessarily occur at ß = 0.5 the Chernoff bound is considered to be a tighter 
bound on P(error). 
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B Information Theory 

The Shannon entropy of a random variable is a measure of the uncertainty and 
variability in the data and, therefore, quantifies its information capacity [73].  It 
measures the average amount of possibilities in the data; the more possibilities the 
more information that can be conveyed by the random variable.  For a random 
variable x with probability density p(x) the entropy is defined as  
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In this research we assume the random variables have Gaussian distributions, 
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 and the entropy formula may be reduced by the following 
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Substituting the above logarithm into equation (B1) we get                     
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For the task of assigning a random variable x to a class c, we may quantify the 
relevance of x to c using the mutual information.  This is a measure of the reduction 
in entropy between x and the class conditional x.  It is defined as 
 

)|()( cxHxHI −=                                                                           (B4) 
where H(x|c) is the conditional entropy and is defined as 
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 In this application we infer a Gaussian distribution on p(x|c) and have two 
classes L (left) and R (right) that are equally likely.  Using a derivation similar to 
the one used to obtain equation (B3) the mutual information defined in (B4) can 
be expressed as 
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where 2
Lσ  and 2

Rσ  are the class conditional variances of x for class L and R, 
respectively. 
 
Signal-to-Noise Ratio 
 
For a given process with noise, such as the signed decision magnitude D(n), it 
can be decomposed into a signal process y and a noise process v such that  
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For independent Gaussian distributions the variance 2
Dσ  of D is 

222
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We may define the signal-to-noise ratio as 
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The noise variance 2
vσ  is the average within-class variance and, therefore, has 

the following relationship with mutual information according to equation (C6) 
}1{log*5.0 2 SNRI += .             (B13)
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Abbreviations 
AAR – Adpative Autoregression: this term is not only used to describe the signal  
processing technique, but also the Brain-Computer Interfacing approach that uses 
AAR parameters as features. 
 
BCI – Brain Computer Interface 
 
CONV – Conventional: refers to a method that is commonly used for classification 
of AAR parameters in BCI and is defined in section 4.3.1 
 
FT – Fourier Transform 
 
LDA – Linear Discriminant Analysis  
 
FUS – Fusion: refers to the BCI method proposed in this thesis that involves fusion 
of AAR and Wavelet features 
 
WAV – Wavelet: refers to the BCI method that uses wavelet features 
 
WT – Wavelet Transform 


