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Abstract

The capacity of multiuser wireless network, unclear for many years, has always been
a hot research topic. Many different operation schemes and coding techniques have been
proposed to enlarge the achievable rate region. And omnidirectional relay scheme is one
of them.

This thesis mainly works on the achievable region of the all-source all-cast network with
omnidirectional relay scheme. In order to better understand this problem, we first describe
the half-duplex model on the one-dimensional and two-dimensional regular networks. And
we present an optimal operation scheme for them to have the maximum achievable rate.
For the one-dimensional general network, we proposed an achievable region that indicates
valued improvement compared to the previous results. In the full-duplex model of the
one-dimensional general network, the maximum achievable rate is presented with a simpler
proof in comparison with the previous results. In this thesis, we also show some discussions
on more general networks.
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Chapter 1

Introduction

C. E. Shannon’s landmark paper “A mathematical theory of communication” [23] has laid
a solid theoretical foundation for information theory. In this paper, he introduced the basic
mathematical concepts and essential models for communication systems. Among them, the
introduction of the concept “capacity” was one of the most significant accomplishments. It
showed that the capacity was the maximum limit of the transmission rates when messages
are being transmitted through a communication channel.

For the single user channel, i.e. point-to-point channel, the capacity was determined,
C = maxp(x) I(X;Y ), where X denotes the input symbol of the channel and Y denotes
the output symbol of the channel[23]. For the multi-user channels, the capacity region, i.e.
the optimal set of rates at which the nodes can communicate reliably with each other, is
still not completely answered. Actually, the nature of the multi-user channel is composed
of multiple access channel[14, 1], broadcast channel [4, 15, 6, 5], relay channel[2, 7, 21]
and many different coding schemes and techniques. Different from the single user channel,
interference and cooperation occur in the multi-user channel and it is also them that
motivates many coding schemes.

[9] developed node cooperation and studied two basic relay schemes: decode-forward
scheme and compress-forward scheme. In the decode-forward scheme, as it is named,
the relay helps by decoding the source’s messages and then forwards to the destination.
In terms of decoding, there are several main decoding techniques: irregular encoding,
successive decoding[2], regular encoding, sliding-window decoding[12], regular encoding,
backward decoding[12]. In the compress-forward scheme, the relay helps by compressing
the source’s messages and then forwards them to the destination. The compress-forward
scheme is similar to the source coding with side information, thus Slepian-Wolf coding [25]
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and Wyner-Ziv[29] coding can be applied. Just for the relay channel, with so many coding
schemes mentioned and unmentioned, its capacity has not been completely determined.

The once hot research topic network coding inspired by computer network applications
was first introduced in [18]. It has great contribution in enlarging the achievable rate
when extended to multiuser channel coding schemes. [24] showed that by linear network
coding, the optimal individual max-flow bound can be achieved at each receiving node. In
[13], an algebraic framework was further presented for the capacity solutions of network
problems. [27, 26] proposed noisy networking coding which combines network coding and
compress-forward for the noisy relay channel.

Two-way communication channel is a simple and classical element of the multi-user
channel. It was first studied in [22] in which the lower and upper bound of its capacity
was found. [10] further shown the general coding scheme with which independent encoders
can achieve the inner bound of the capacity region. Adding one relay in the two-way
channel, [19] made a study on the two-way relay channel. Adding multiple relays in the
channel, [35, 34, 36, 28] made analyses on the two-way multi-relay channel from different
perspectives.

Following the idea of network coding, the technique of random binning[25] was inves-
tigated in [30] to show its advantage in the certain multiuser channels. Random binning
scheme, which will be shown in later chapter, is widely used in encoding of correlated
sources. In this thesis, we focus on the application of random binning technique in the
omnidirectional relay networks.

In the omnidirectional relay networks, each node relays messages in many different
directions. Here, a combination of random binning and decode-forward relay is utilized
in each node. This combining scheme was first introduced in [30] and then had a full
development in [31, 32] for more general networks. In the omnidirectional relay networks,
when each node is an independent source to be transmitted to all the other nodes, then
here comes the all-source all-cast problem[31, 32]. The combining scheme has much benefit
in the all-source all-cast problem because it can cancel out all the interferences eventually.

1.1 Problem and Motivation

Consider the following wireless network as shown in figure 1.1, each round dot denoting a
node that can transmit, relay and receive signals. In figure 1.1, each node is an independent
source to be transmitted to all the other nodes with the omnidirectional relay scheme.
What is the achievable rate? This is all-source all-cast problem. [8] shows the capacity of
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Figure 1.1: general wireless network

the graphical multi-source, multi-cast network when the sets of destination nodes are the
same for every source. In the all-source all-cast problem, the sets of destination nodes are
not the same for each source.

As the study of [16] and [33], we find that the achievable rate region in [16] outperforms
that in [33] when the model in [33] is reduced the same model in [16]. This means that the
greedy omnidirectional relay scheme proposed in [33] is not optimal. Then what kind of
scheduling of the omnidirectional relay can achieve better rates? With this question, we
explored from the regular networks in half-duplex mode to discover a scheduling rule for
the optimal achievable rates.

1.2 Thesis Outline

The content of this thesis is organized as follows:

In Chapter 2, we will introduce some fundamental background information in informa-
tion theory used throughout this thesis. First, some basic concepts on the channel capacity
are given. Then, some relay networks and the core problem “all-source all-cast problem”
are presented. Also, the random binning technique with the idea of network coding is well
explained within the presentation of some relay networks. At the end of Chapter 2, we will
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review some previous results on the all-source all-cast problem with the omnidirectional
relay scheme. And the primary motivation of taking on this research project is stated.

In Chapter 3, we start from the 1-dimensional and 2-dimensional regular network in
the half-duplex mode. Then we propose the achievable regions for some general networks
followed by the proofs for them.

Some Matlab simulations are given in Chapter 4 to clearly present the advantage of the
omnidirectional relay scheme.

Chapter 5 concludes this thesis and states about the future work.
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Figure 2.1: A communication channel

Chapter 2

Preliminaries

In this chapter, we will introduce some basic concepts and fundamental theorems in in-
formation theory. Some of the formal concepts and theorems following are referred from
[3].

2.1 Channel Capacity

We now introduce some related concepts formally in a communication channel shown in
figure 2.1.

Definition 1 A discrete channel, denoted by (X , p(y|x),Y), consists of two finite sets X
and Y and a collection of probability mass functions p(y|x), one for each x ∈ X , such that
for every x and y, p(y|x) ≥ 0, and for every x,

∑
y p(y|x) = 1, with the interpretation that

X is the input and Y is the output of the channel. The channel is said to be memoryless
if the probability distribution of the output depends only on the input at that time and is
conditionally independent of previous channel inputs or outputs.
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Definition 2 The nth extension of the discrete memoryless channel (DMC) is the channel
(X n, p(yn|xn),Yn), where

p(yk|xk, yk−1) = p(yk|xk), k = 1, 2, . . . , n.

Definition 3 An (M,n) code for the channel (X , p(y|x),Y) consists of the following:

1. An index set {1, 2, . . . ,M}.
2. An encoding function Xn : {1, 2, . . . ,M} → X n, yielding codewords Xn(1), Xn(2), . . . , Xn(M).

The set of codewords is called the codebook.

3. A decoding function
g : Yn → {1, 2, . . . ,M},

which is a deterministic rule which assigns a guess to each possible received vector.

Definition 4 Probability of error: Let

λi = Pr(g(Y n) 6= i|Xn = Xn(i)) =
∑
yn

p(yn|xn(i))I(g(yn) 6= i)

be the conditional probability of error given that index i was sent, where I(·) is the indicator
function.

Definition 5 The maximal probability of error λ(n) for an (M,n) code is defined as

λ(n) = max
i∈{1,2,...,M}

λi.

Definition 6 The rate R of an (M,n) code is

R =
logM

n
bits per transmission.

Definition 7 A rate R is said to be achievable if there exists a sequence of (d2nRe, n) codes
such that the maximal probability of error λ(n) tends to 0 as n→∞. We will write (2nR, n)
codes to mean (d2nRe, n) codes.

Definition 8 The capacity of a discrete memoryless channel is the supremum of all achiev-
able rates.

6
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Theorem 1 The channel coding theorem: All rates below capacity C are achievable. Specif-
ically, for every rate R < C, there exists a sequence of (2nR, n) codes with maximum
probability of error λ(n) → 0.

Conversely, any sequence of (2nR, n) codes with λ(n) → 0 must have R ≤ C.

Definition 9 We define the “information” channel capacity of a discrete memoryless
channel as

C = max
p(x)

I(X;Y ), (2.1)

where the maximum is taken over all possible input distributions p(x).

2.2 The Gaussian Channel

The Gaussian channel depicted in Figure 2.2 is the most important continuous alphabet
channel. It is a time discrete channel with output Yi at time i, where Yi is the sum of the
input Xi and the noise Zi. The noise Zi is drawn i.i.d. from a Gaussian distribution with
variance N . Thus

Yi = Xi + Zi, Zi ∼ N (0, N) (2.2)
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The noise Zi is assumed to be independent of the signal Xi. We assume an average power
constraint on the input X. For any codeword (x1, x2, . . . , xn) transmitted over the channel,
we require

1

n

n∑
i=1

x2
i ≤ P

Definition 10 (Capacity of Gaussian channel)

The information capacity of the Gaussian channel with power constraint P is

C = max
p(x):EX2≤P

I(X;Y ). (2.3)

We can calculate the information capacity as follows: Expanding I(X;Y ), we have

I(X;Y ) = h(Y )− h(Y |X)

= h(Y )− h(X + Z|X)

= h(Y )− h(Z|X)

= h(Y )− h(Z), (2.4)

Since Z is independent of X. Now, h(Z) = 1
2

log(2πeN). Also,

EY 2 = E(X + Z)2

= EX2 + 2EXEZ + EZ2

= P +N, (2.5)

since X and Z are independent and EZ = 0. Given EY 2 = P + N , the entropy of Y is
bounded by 1

2
log 2πe(P +N).

So we obtain

I(X;Y ) = h(Y )− h(Z)

≤ 1

2
log 2πe(P +N)− 1

2
log 2πeN

=
1

2
log(1 +

P

N
), (2.6)

Hence the information capacity of the Gaussian channel is

C = max
EX2≤P

I(X;Y ) =
1

2
log(1 +

P

N
),

and the maximum is attained when X ∼ N (0, P ).
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Definition 11 A (M,n) code for the Gaussian channel with power constraint P consists
of the following:

1. An index set {1, 2, . . . ,M}.
2. An encoding function x : {1, 2, . . . ,M} → X n, yielding codewords xn(1), xn(2), . . . , xn(M),

satisfying the power constraint P , i.e., for every codeword

n∑
i=1

x2
i (w) ≤ nP, w = 1, 2, . . . ,M. (2.7)

3. A decoding function
g : Yn → {1, 2, . . . ,M},

Definition 12 A rate R is said to be achievable for a Gaussian channel with a power
constraint P if there exists a sequence of (2nR, n) codes with codewords satisfying the power
constraint such that the maximal probability of error λn tends to zero. The capacity of the
channel is the supremum of the achievable rates.

Theorem 2 The capacity of a Gaussian channel with power constraint P and noise vari-
ance N is

C =
1

2
log(1 +

P

N
) bits per transmission (2.8)

2.3 Omnidirectional Relay Networks

In the omnidirectional relay networks where there are multiple sources, a combination of
random binning and the decode-and-forward relay strategy is utilized at each node. Before
investigating the omnidirectional relay networks, some simple relay networks are to be
presented.

2.3.1 The Relay Channel

The relay channel[7], introduced by Van Der Meulen in 1971, is a communication model
between a sender and a receiver with the help of one or more relay nodes. As shown in
figure 2.3, the relay channel combines a broadcast channel (X to Y and Y1) and a multiple
access channel (X and X1 to Y ).

9



X Y

1 1
:Y X

Figure 2.3: the relay channel

X X(W1) X(W2) X(W3) . . . X(WB)

X1 X1(1) X(Ŵ1) X(Ŵ2) . . . X(ŴB)
Y Y (1) Y (2) Y (3) . . . Y (B)

Table 2.1: Block Markov Coding

Definition 13 A (2nR, n) code for a relay channel consists of a set of integers W =
{1, 2, . . . , 2nR},an encoding function

X : {1, 2, . . . , 2nR} → X n,

a set of relay functions {fi}ni=1 such that x1i = fi(Y11, Y12, . . . , Y1i−1), 1 ≤ i ≤ n, and a
decoding function,

g : Yn → {1, 2, . . . , 2nR}

.

• Decode-Forward Relay

In the decode-forward relaying scheme[9], the relay decodes the source message in one
block and transmits the re-encoded message in the following block. Block Markov
Coding, one of the coding strategies that can be applied in the decode-forward re-
laying schemes, is shown in the table 2.1 to better demonstrate decode-forward relay
scheme.

10



relay

sender receiver

(receiver) (sender)

Figure 2.4: two-way relay channel

A(b1,b2)

B(b2) C(b1)

b1 + b2

b1 + b2b1 + b2

Figure 2.5: The idea of network coding

2.3.2 Two-Way Relay Channel

As shown in figure 2.4, when the receiver is also a sender and the sender is also a receiver,
then the one-way relay channel becomes the two-way relay channel[19]. The relay needs
to help to transmit the messages of two nodes at the same time. Binning Technique with
the idea of network coding is applied in the coding scheme to achieve higher rates.

Network Coding and Random Binning for Multi-User Channels

• The idea of Network Coding

The idea of network coding, first introduced in [18], can be generalized into the simple

11
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Figure 2.6: Random Binning Technique

network[30] in figure 2.5. In figure 2.5, node A wants to send two bits of information
b1 and b2 to node B and node C respectively. When node B knows b2 and node C
knows b1, node A only needs to send one bit of information b1

⊕
b2 to node B and

node C instead of sending two bits of information. Node B can get b1 by calculating
(b1

⊕
b2)

⊕
b2 = b1, and node C can get b2 by calculating (b1

⊕
b2)

⊕
b1 = b2.

Obviously, there is an advantage of one bit less by using network coding.

• Random Binning Technique

Following the idea of network coding, the random binning technique[25] achieves
less bits transmission with the help of side information at the receivers. For exam-
ple,suppose node A wants to send two messages w1 and w2 to node B and node C
respectively, where w1 takes K1 different values and w2 takes K2 different values as
shown in figure 2.6. By randomly throwing K1×K2 different vectors of (w1, w2) into
K ≥ max{K1, K2} bins instead of K1 × K2 bins, node A only needs to send out
messages of K different values. As long as K ≥ max{K1, K2}, the probability for
two vectors containing the same w1 or w2 to be at the same bin is arbitrarily small
as the transmission goes on. Here, the random binning technique realizes the idea of
network coding.

2.3.3 Three-Way Relay Channel

When the relay in the two-way relay channel has its own message to send, it becomes the
three-way relay channel. In the three-way relay channel, as shown in the figure 2.7, each
node sends its messages to the other two nodes and acts as relay and receiver simultane-
ously. Decode-forward relay and random binning technique are applied at each node. That

12



Sender 1

Sender 2 Sender 3

(receiver, relay) (receiver, relay)

(receiver, relay)

Figure 2.7: Three-Way Relay Channel

means, in this channel, each node needs to randomly throw vectors (w1, w2, w3) containing
the messages of three nodes into the bin.

2.3.4 Omnidirectional Relay Networks

Following the three-way relay channel, when there are more nodes located in different di-
rections and each node needs to relay messages for all the other nodes, as shown in figure
1.1, then it becomes the omnidirectional relay networks. Furthermore, in the omnidirec-
tional relay network, when each node is an independent source to be transmitted to all the
other nodes, then here comes the all-source all-cast problem.

Omnidirectional relay shows great coding advantages in the all-source all-cast problem.
Since each node can decode all the other nodes in the network, the all interferences received
by each node will be cancelled out eventually and all signals being transmitted will be
useful.

2.3.5 Previous Results

Consider a wireless network of n nodes N = {1, 2, ..., n}.

We use the standard AWGN multiple access wireless channel model as the following:

Yj(t) =
∑

i∈N ,i 6=j

gi,jXi(t) + Zj(t),∀j ∈ N , t = 1, 2, ... (2.9)

13



where, Xi(t) ∈ C1 and Yi(t) ∈ C1 respectively denote the signals transmitted and received
by node i ∈ N at time t; gi,j ∈ C1 : i 6= j denotes the signal attenuation gains; and Zi(t)
is zero-mean complex Gaussian noise with variance N .

The Key Technical Lemma[31, 32]

For the multiple access channel (2.9), with each source i ∈ N sending a message wi at rate
Ri with power Pi, there always exists some nonempty subset of {w1, w2, . . . , wn} that can
be decoded, as long as the following inequality holds:∑

i∈N

Ri < log(1 +

∑
i∈N |gi,j|2Pi

N
) (2.10)

A Greedy Operation of Omnidirectional Relay[33]

Every node decodes as many messages as possible, and in the next block, relays all of them,
with the restriction of adding at most one new message for each source.

All-Source All-Cast Problem

Consider a network of n nodes N = {1, 2, ..., n}, with the channel modeled by

(X1 × · · · × Xn, p(y1, . . . , yn|x1, . . . , xn),Y1 × · · · × Yn).

At each time t = 1, 2, . . ., every node i ∈ N sends an input Xi(t) ∈ Xi, and receives an
output Yi(t) ∈ Yi, and they are related via p(Y1(t), . . . , Yn(t)|X1(t), . . . , Xn(t)).

Theorem 3 With the greedy omnidirectional relay scheme, a rate vector (R1, R2, . . . , Rn)
is achievable if for any nonempty subset S ⊂ N , there is a node i0 ∈ S, such that∑

j∈Sc
Rj < I(XSc ;Yi0|XS) (2.11)

for some p(x1)p(x2) · · · p(xn), where XSc = {Xj : j ∈ Sc}, and XS = {Xi : i ∈ S}.

Theorem 3 in [33] means that in figure 2.8, for any cut in the network, there is a node
i0 on the part of S that can decode at least one node on the part of Sc.
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Figure 2.9: Two-way Two-relay channel

Two-way Two-relay channel

[16] proposed an achievable rate region for the two-way two-relay channel as shown in
figure 2.9. In this channel, node A and node B work as nodes that have their messages to
send, and node C and node D work as relays that help to transmit messages. The two-way
two-relay channel can be seen as the four-source all-source all-cast problem with the rate
for source C and source D equals 0.

The achievable rate region proposed in [16] shows improvement compared to that
achieved by theorem 3, which indicates that greedy omnidirectional relay scheme is not

15



optimal in the all-source all-cast problem. Therefore, we take on the research on the
achievable rate region of all-source all-cast problem to discover more improvement.
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Chapter 3

Scheduling in Omnidirectional Relay
Networks

3.1 Scheduled Half-Duplex Networks

In the half-duplex networks, for simplicity, we consider a special model where the total
time is divided into blocks of equal length and in each block, only one node is allowed to
transmit. This may be a reasonable choice in practice when power is the most precious
resource in the network, such as some sensor networks, so that bits per unit power rather
than the rate itself (bits per second) becomes the key performance measure.

Consider a wireless network of n nodes N = {1, 2, ..., n}.

We use the standard AWGN wireless channel model as the following:

Yj(t) =
∑

i∈N ,i 6=j

gi,jXi(t) + Zj(t),∀j ∈ N , t = 1, 2, ... (3.1)

where, Xi(t) ∈ C1 and Yi(t) ∈ C1 respectively denote the signals transmitted and received
by node i ∈ N at time t; gi,j ∈ C1 : i 6= j denote the signal attenuation gains; and Zi(t)
is zero-mean complex Gaussian noise with variance N . Note that we are considering the
special model where only one node is transmitting in any block. So for every t, there can
only be one i ∈ N such that Xi(t) is not zero.

We make a general assumption on the signal attenuation following [31, 32]. We assume
that there is a non-increasing function to relate the magnitude of the gains in (3.1) to the
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distance:
|gi,j| = g(di,j), (3.2)

where di,j is the distance between node i and node j, and g(·) is some non-increasing
function. We consider the all-source all-cast problem, in which each node transmits its
messages to all the other nodes. The following definition is from [31, 32].

Definition 14 For each node i, define a set of nodes in its neighborhood as its 1-hop
neighbors, and denote the set as Ni(1). If node j is a 1-hop neighbor of node i, it is said
that j can reach i in one hop. If furthermore, i is a 1-hop neighbor of node l, then it is
said that j can reach l in two hops. Similarly, it can be said that a node can reach another
node in k hops, for any positive integer k. Now, for each node i, its k-hop neighbors is
defined as the set of nodes that can reach it in k hops, but not in any less hops, and denote
this set as Ni(k). Mathematically, Ni(k) can be sequentially defined as

Ni(k) ={j : j ∈ Nl(1) for some l ∈ Ni(k−1),

and j 6∈ i ∪Ni(1) ∪ . . . ∪Ni(k−1)}

It is clear that for any network of a finite number of nodes, there is a finite number Li for
each i ∈ N , such that Ni(k) = ∅ for k > Li.

We operate the network in terms of rounds of blocks. As shown in figure 3.1, every
round consists of n blocks, so that each node can use one block to transmit in every
round. In the first round of n blocks, each node i transmits its own message wi(1), for
any i ∈ N . In the second round of n blocks, each node i transmits its own message
wi(2), plus the first-block message of its one-hop neighbor wNi(1)(1), where wNi(1)(1) stands
for {wj(1) : j ∈ Ni(1)} for simplicity. So in general, in the r-th round, each node i
transmits {wi(r), wNi(1)(r − 1), . . . , wNi(r−1)

(1)}. In the above operation scheme, the order
of transmission by the n nodes in each round can be arbitrary. This flexibility of ordering
the transmissions will not affect the achievable rate as we will show in the proof.

3.1.1 The 1-dimensional regular network

In this section, we consider the 1-dimensional regular network where all nodes are evenly
spaced with distance d0, as shown in figure 1. For this network, we define the 1-hop
neighbors for each node i as Ni(1) = {i − 1, i + 1}, for 2 ≤ i ≤ n − 1; and N1(1) =
{2},Nn(1) = {n− 1}. In general, obviously, the k-hop neighbors for each node i is defined
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1st round

2nd round

rth round
… … … …

Figure 3.1: 1-dimensional regular network

...

1 2 3 4 n-1 n...

d0

Figure 3.2: 1-dimensional regular network

as Ni(k) = {i−k, i+k}, as long as i−k ≥ 1 and i+k ≤ n. For simplicity, the same transmit
power constraint P is assumed for all the nodes. Thus, |gi,j|2P is the corresponding received
power at another node j when a node i is transmitting at its full power. Assume all nodes
are transmitting at a common rate R. Therefore, when a node is transmitting at its full
power P , the corresponding received power at its k-hop neighbors is |g(kd0)|2P , denoted
as Pk.

Theorem 4 For the half-duplex 1-dimensional regular network, with the operation scheme
stated as above, the following average rate is achievable for all the sources.

R <
1

n
· 1

n− 1

n−1∑
i=1

log(1 +
Pi
N

) (3.3)

Obviously, the rate (3.3) is the maximum common rate based on the total power received
by node 1 or node n.

19



(1,1)

(m,m)
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Figure 3.3: 2-dimensional regular network

3.1.2 The 2-dimensional regular network

In this section, we consider the 2-dimensional regular network composed of m ×m nodes
where all nodes are evenly space with distance d0, as shown in figure 3.3. Each node can
be represented by its coordinates (i, j) for any i = 1, 2, . . . ,m, and j = 1, 2, . . . ,m. For this
network, similarly, we define the 1-hop neighbors for each node (i, j) as N(i,j)(1) = {(i −
1, j), (i+1, j), (i, j−1), (i, j+1)} or equivalently, N(i,j)(1) = {(i1, j1) : |i1− i|+ |j1−j| = 1};
and therefore, the k-hop neighbors for node (i, j) isN(i,j)(k) = {(i1, j1) : |i1−i|+|j1−j| = k},
as long as these coordinates are valid, i.e., representing any nodes. For simplicity, the same
transmit power constraint P is assumed for all the nodes. Thus, |gi,j|2P is the corresponding
received power at another node j when a node i is transmitting at its full power. Assume
all nodes are transmitting at a common rate R. When a node (i, j), is transmitting at its
full power P , the corresponding received power at node (i± k, j± l), is |g(

√
k2 + l2d0)|2P ,

denoted as Pk,l.

Theorem 5 For the half-duplex 2-dimensional regular network, with the operation scheme
as stated above, the following rate is achievable for all the sources.

R <
1

m2
· 1

m2 − 1

m−1∑
i=0

m−1∑
j=0
i+j 6=0

log(1 +
Pi,j
N

) (3.4)
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Figure 3.4: 1-dimensional general network

Obviously, the rate (3.4) is the maximum common rate based on the total power received
by node (1,1) or node (m,m).

3.1.3 The 1-dimensional general network with the same trans-
mission rate and power

In this section, we consider the 1-dimensional general network where all nodes are located
on a straight line, with equal transmission rate R and transmission power P , as shown in
figure 3.4. Following the notations in the regular network, we denote Pi,j = |gi,j|2Pi, which
is the corresponding received power at another node j when a node i is transmitting at its
full power.

Theorem 6 For the half-duplex 1-dimensional general network with equal transmission
rate R and transmission power P , the following rate is achievable for all the sources.

R <
1

n
min{ min

1≤i≤n−1

1

n− i

n∑
j=i+1

log(1 +
Pj,i
N

),

min
2≤i≤n

1

i− 1

i−1∑
j=1

log(1 +
Pj,i
N

)} (3.5)

3.1.4 The 1-dimensional general network

In this section, we consider the 1-dimensional general network where all nodes are located
on a straight line, each with transmission rate Ri and transmission power Pi, as shown in
figure 3.4. Following the notations in the regular network, we denote Pi,j = |gi,j|2P , which
is the corresponding received power at another node j when a node i is transmitting at its
full power.
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Theorem 7 For the half-duplex 1-dimensional general network, with the regulated greedy
relay scheme, the following rate is achievable for all the sources. For any set S containing
consecutive nodes, there is a node j outside of set S that satisfies∑

i∈S

Ri <
∑
i∈S

log(1 +
Pi,j
N

) (3.6)

Or the set S can be divided into two subsets S1 and S2 containing consecutive nodes,
S1

⋃
S2 = S, there are two corresponding nodes j1 and j2 outside of set S that satisfies∑

i∈S1

Ri <
∑
i∈S1

log(1 +
Pi,j1
N

) (3.7)

and ∑
i∈S2

Ri <
∑
i∈S2

log(1 +
Pi,j2
N

) (3.8)

Regulated greedy relay scheme: In every round, each node i will help to relay the nodes
it can decode from the nearest to the farthest on every side respectively. For the m-th
message of node i that is h-hop away from node j, node j transmits it at the rh,m round if

node j decodes it earlier. rh,m = 1 + (m− 1)h+ h(h+1)
2

. Node j does not need to wait any
rounds any more until it knows from its decoding that all other nodes between node i and
node j have already decoded and relayed the message of node i. This makes sure that the
round order of the messages it relays decreases according to the distance from it and each
node will be relayed earlier by the node that is nearer to it on every side.

A detailed table 3.1 will explain the worst operation of the regulated greedy relay
scheme. Here, the worst operation means the longest waiting time.

3.2 Half-Duplex Networks under greedy omnidirec-

tional relay scheme

Following the same network model and definition as in 3.1 Scheduled Half-Duplex Networks,
we operate the network in a different way. Same with the operation in the scheduled half-
duplex networks, the network is also operated in terms of rounds of blocks: every round
consists of n blocks, and each node can use one block to transmit in every round. What
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round i a b c h− 4 nodes j
1 i1 a1 b1 c1 j1

2 i2 a2i1 b2 c2 j2

3 a3i2 b3a1 c3 j3

4 b4i1 c4 j4

5 b5a2 c5b1 j5

6 b6i2 c6a1 j6

7 c7i1 j7

... c8b2

r(h, 1) c9a2 jr(h,1)i1
c10i2

...
r(h, 2) jr(h,2)i2

...
r(h,m) jr(h,m)im

Table 3.1: Regulated greedy relay scheme

differs from the scheduled half-duplex network is that in every round, each node transmits
all it can decode in the last round, according to the greedy omnidirectional relay scheme.
The order of transmission by the n nodes in every round can also be arbitrary.

Theorem 8 For the half-duplex 1-dimensional regular network, 2-dimensional regular net-
work and 1-dimensional general network, (3.3), (3.4) and (3.5) is achievable respectively
for all the sources under the greedy relay scheme.

3.3 Full-Duplex 1-dimensional regular Networks

We consider the full-duplex model, where each node can transmit and receive at the same
time.

Theorem 9 For the full-duplex 1-dimensional regular network, the following rate is achiev-
able for all the sources.

R <
1

n− 1
log(1 +

∑n−1
i=1 Pi
N

) (3.9)
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(3.9) was shown in [32] to be achievable by a complicated mathematical analysis. Here, we
prove (3.9) by a simpler argument.

3.4 Proofs

3.4.1 Proof of Theorem 4

We first prove a lemma for a half-duplex multiple-access network similar to Lemma 4.1 in
[32]. Consider a general network where there are m senders and 1 receiver. Consider m
time blocks of equal length where each node i ∈M uses one block to transmit its message
wi at rate Ri. Assume that the corresponding received power is Pi. Then we have the
following result similar to Lemma 4.1 in [32].

Lemma 1 In the above network, there always exists some nonempty subset of {w1, w2, ..., wm}
that can be decoded at the end of the m blocks, as long as the following inequality holds:∑

i∈M

Ri <
∑
i∈M

log(1 +
Pi
N

) (3.10)

Lemma 2 In the case that nodes are helping each other relay previous messages, similar to
Lemma 4.2 in [32], there always exists some nonempty subset of nodes whose transmissions
in the current block can be decoded at the end of every round, as long as (3.10) holds:

Proofs of Lemma 1 and Lemma 2 are analogous to the proofs of Lemma 4.1 and Lemma
4.2 in [32] and are stated briefly here.

Proof of Lemma 1: We use a contradiction argument. Suppose (3.10) does not hold for
some A ⊂M, i.e., ∑

i∈A

Ri ≥
∑
i∈A

log(1 +
Pi
N

) (3.11)

Then by taking the difference between (3.10) and (3.11), we have∑
i∈Ac

Ri <
∑
i∈Ac

log(1 +
Pi
N

) (3.12)
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where, Ac = M\A. Now, by comparing (3.12) with (3.10), we get the same situation as
(3.10) with M replaced by Ac. Similar with the above process, if the inequality∑

i∈Sc
Ri <

∑
i∈Sc

log(1 +
Pi
N

) (3.13)

holds for all nonempty Sc ⊆ Ac, then the subset {wi : i ∈ Ac} can be decoded. If
(3.13) does not hold for all nonempty Sc ⊆ Ac, then it arrives at the same situation with
our previous supposition that (3.10) does not hold for some A ⊂ M. We can continue
decreasing Ac like decreasing M. There must be at least one nonempty subset, all of
whose subsets hold for the inequalities of the type (3.13), and thus the messages of this
nonempty subset can be decoded. Therefore, we proved that if (3.10) holds, there must be
a nonempty subsetM1 ⊆M such that {wi : i ∈M1} can be decoded, while the messages
{wi : i ∈M2} of M2 =M\M1 can not.

Proof of Lemma 2: In the case that nodes are helping each other relay previous mes-
sages, let us consider a two-block decoding situation. In the first block {wi(1) : i ∈
M2} are decoded while {wi(1) : i ∈ M1} are not and in the second block each n-
ode {i ∈ M2} helps to transmit the messages {wi(1) : i ∈ M1} with its own mes-
sages of the second block {wi(2) : i ∈ M2}. At the end of the second block, it is
{wi(2) : i ∈ M2}

⋃
{wi(1) : i ∈ M1} that needs to be decoded. In order to simplify

the notation, we denote wM2(2) = {wi(2) : i ∈ M2}, wM1(1) = {wi(1) : i ∈ M1}, and
{wM2(2), wM1(1)} = {wi(2) : i ∈ M2}

⋃
{wi(1) : i ∈ M1}, following the notations in

[32]. Also, we denote Γi ⊂ M as the set of nodes that node i helps in the second block.
Node i sends a codeword Xi(wi(2), wΓi(1)) by binning these vectors in the second block.
Reversely, denote Λi ⊂ M as the set of nodes that will help node i to relay wi(1) in the
second block.

For any subset S ⊆ M, let S1 = S
⋂
M1, and let S2 = (S

⋂
M2)

⋃
(
⋃
i∈S1 Λi

⋂
M2).

It means that S2 also consists of nodes from M2 that may not be in S, but are helping
transmitting wS1(1).

The corresponding inequality of (3.10) can be written as∑
i∈M

Ri <
∑
i∈M1

log(1 +
Pi
N

) +
∑
i∈M2

log(1 +
Pi
N

) (3.14)

We also use a contradiction argument. Suppose (3.14) does not hold for some A ⊂ M,
i.e., ∑

i∈A

Ri ≥
∑
i∈A1

log(1 +
Pi
N

) +
∑
i∈A2

log(1 +
Pi
N

) (3.15)
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Then taking the difference between (3.14) and (3.15), we have∑
i∈Ac

Ri <
∑
i∈Ac1

log(1 +
Pi
N

) +
∑
i∈Ac2

log(1 +
Pi
N

) (3.16)

where Ac =M\A, Ac1 =M1\A1, Ac2 =M2\A2.

Since A ⊆ A1

⋃
A2, then Ac ⊇ Ac1

⋃
Ac2. Thus,∑

i∈Ac1
⋃
Ac2

Ri ≤
∑
i∈Ac

Ri <
∑
i∈Ac1

log(1 +
Pi
N

) +
∑
i∈Ac2

log(1 +
Pi
N

) (3.17)

∑
i∈Ac1

⋃
Ac2

Ri <
∑
i∈Ac1

log(1 +
Pi
N

) +
∑
i∈Ac2

log(1 +
Pi
N

) (3.18)

This is the same situation as (3.14) with M replaced by Ac1
⋃
Ac2, M1 replaced by Ac1,

M2 replaced by Ac2. As in the case of one-block multiple-access discussed earlier, we can
continue decreasing Ac1

⋃
Ac2 until we find a nonempty subset of {wM2(2), wM1(1)} that

can be decoded.

Therefore, the inequality (3.14) ensures that there always exists a nonempty subset
of {wM2(2), wM1(1)} that can be decoded. When combining the two terms on the right
side of (3.14), (3.14) becomes (3.10). It means that the inequality (3.10) makes sure that
there always exist some messages that can be decoded, no matter whether it is one-block
multiple-access, or two-block multiple-access with relays. Then generally, we get the same
conclusion for K-block multiple-access with relays, which is lemma 2.

Now, we prove Theorem 4. In the half-duplex one-dimensional regular networks which
has n nodes, each node has the same distance with its neighbors as shown in figure 1.

Since we have (3.3), where R, the average transmission rate equals Ri
n

, the instantaneous
transmission rate in Lemma 1 divided by n.

(n− 1)R <
1

n

n−1∑
i=1

log(1 +
Pi
N

) (3.19)

then for 1 ≤ k ≤ n− 1,

kR <
1

n

k∑
i=1

log(1 +
Pi
N

) (3.20)
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Figure 3.5: 2-dimensional regular network in lemma 3

Since in each block time of every round, only one node is transmitting, then we can
consider any set of nodes that have relay relationship without any interference from other
nodes. Considering the nodes on the left of node i, by applying (3.20) with k = i − 1
into Lemma 1 and Lemma 2, node i can decode node i − 1 since it is the nearest one.
Considering the nodes on the right of node i, by applying (3.20) with k = n − i into
Lemma 1 and Lemma 2, node i can decode node i+1 since it is the nearest one. Thus each
node i can decode its one-hop neighbors on both the left side and the right side. Therefore,
each node can decode all the other nodes under (3.3) with the scheduled omnidirectional
relay scheme.

3.4.2 Proof of Theorem 5

Lemma 3 In the two-dimensional m×m regular networks,∑m−2
i=0

∑m−2
j=0,i+j 6=0 Pi,j

(m− 1)2 − 1
>

∑m−1
i=0

∑m−1
j=0,i+j 6=0 Pi,j

m2 − 1
(3.21)

Proof of Lemma 3: As shown in figure 3.5, we denote the set of nodes in the upper
left square (m − 1) × (m − 1) except node (1,1) as set A and the set of nodes on line
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[(m, 1), (m,m)], and line [(1,m), (m,m)] as set B. Thus, the average power received from

set A by node i is
∑m−2
i=0

∑m−2
j=0,i+j 6=0 Pi,j

(m−1)2−1
, denoted as PA and the the average power received

from set B by node i is
∑m−1
i=0

∑m−1
j=0,i+j 6=0 Pi,j−

∑m−2
i=0

∑m−2
j=0,i+j 6=0 Pi,j

2m−1
, denoted as PB. The number

of nodes in set A is denoted as nA and the number of nodes in set B is denoted as nB.

In figure 3.5, the nodes in set A can be divided into several parts, nodes in triangle 0
denoted as set a0, nodes on line 1 in A denoted as set a1, nodes on line 2 in A denoted
as set a2,..., nodes on line m − 2 in A denoted as set am−2. Also, the nodes in set B can
be divided into several parts, nodes on line 2 in B denoted as set b2, nodes on line 3 in
B denoted as set b3,..., nodes on line m in B denoted as set bm. The average power and
number of the nodes in each set is denoted as Psl and nsl respectively, where s ∈ {a, b}
and l ∈ {0, 1, 2, ...,m}.

Then, we have

PA =
na0
nA

Pa0 +
na1
nA

Pa1 + . . .+
nam−2

nA
Pam−2

PB =
nb1
nB

Pb1 +
nb2
nB

Pb2 + ...+
nbm
nB

Pbm

<
nb1
nB

Pb1 +
nb2
nB

Pb2 + ...+
nbm−2 + nbm−1 + nbm

nB
Pbm−2 (3.22)

=
na1
nA

Pb1 + (
nb1
nB

Pb1 −
na1
nA

Pb1)

+
na2
nA

Pb2 + (
nb2
nB

Pb2 −
na2
nA

Pb2) + ...

+
nam−3

nA
Pbm−3 + (

nbm−3

nB
Pbm−3 −

nam−3

nA
Pbm−3)

+
nam−2

nA
Pbm−2 + (

nbm−2 + nbm−1 + nbm
nB

Pbm−2 −
nam−2

nA
Pbm−2)

=
na1
nA

Pb1 +
na2
nA

Pb2 + ...+
nam−3

nA
Pbm−3 +

nam−2

nA
Pbm−2

+ (
nb1
nB

Pb1 −
na1
nA

Pb1) + (
nb2
nB

Pb2 −
na2
nA

Pb2) + ...

+ (
nbm−3

nB
Pbm−3 −

nam−3

nA
Pbm−3)

+ (
nbm−2 + nbm−1 + nbm

nB
Pbm−2 −

nam−2

nA
Pbm−2)

=
na1
nA

Pb1 +
na2
nA

Pb2 + ...+
nam−3

nA
Pbm−3 +

nam−2

nA
Pbm−2
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+ (
nb1
nB
− na1
nA

)Pb1 + (
nb2
nB
− na2
nA

)Pb2 + ...

+ (
nbm−3

nB
−
nam−3

nA
)Pbm−3

+ (
nbm−2 + nbm−1 + nbm

nB
−
nam−2

nA
)Pbm−2

<
na1
nA

Pb1 +
na2
nA

Pb2 + ...+
nam−3

nA
Pbm−3 +

nam−2

nA
Pbm−2 (3.23)

+ (
nb1
nB
− na1
nA

)Pb1 + (
nb2
nB
− na2
nA

)Pb1 + ...

+ (
nbm−3

nB
−
nam−3

nA
)Pb1

+ (
nbm−2 + nbm−1 + nbm

nB
−
nam−2

nA
)Pb1

=
na1
nA

Pb1 +
na2
nA

Pb2 + ...+
nam−3

nA
Pbm−3 +

nam−2

nA
Pbm−2

+ [(
nb1
nB
− na1
nA

) + (
nb2
nB
− na2
nA

) + ...

+ (
nbm−3

nB
−
nam−3

nA
)

+ (
nbm−2 + nbm−1 + nbm

nB
−
nam−2

nA
)]Pb1

=
na1
nA

Pb1 +
na2
nA

Pb2 + ...+
nam−3

nA
Pbm−3 +

nam−2

nA
Pbm−2 +

na0
nA

Pb1

<
na0
nA

Pa0 +
na1
nA

Pa1 +
na2
nA

Pa2 + ...+
nam−3

nA
Pam−3 +

nam−2

nA
Pam−2 (3.24)

=PA

where (3.22) follows from the fact that Pbm < Pbm−1 < Pbm−2 ;(3.23) follows from the

fact that
nbm−2

+nbm−1
+nbm

nB
>

nbm−3

nB
= ... =

nb2
nB

=
nb1
nB

= 2
2m−1

> m−2
(m−1)(m−1)−1

=
na1
nA

>
na2
nA

> ... >
nam−2

nA
and Pbm−2 < Pbm−1 < . . . < Pb2 < Pb1 ;(3.24) follows from the fact that

Pb1 < Pa0 , Pb1 < Pa1 , Pb2 < Pa2 , . . . , Pbm−2 < Pam−2 . Then∑m−1
i=0

∑m−1
j=0,i+j 6=0 Pi,j −

∑m−2
i=0

∑m−2
j=0,i+j 6=0 Pi,j

2m− 1
<

∑m−2
i=0

∑m−2
j=0,i+j 6=0 Pi,j

(m− 1)2 − 1

2m− 1

(m− 1)2 − 1
>

∑m−1
i=0

∑m−1
j=0,i+j 6=0 Pi,j −

∑m−2
i=0

∑m−2
j=0,i+j 6=0 Pi,j∑m−2

i=0

∑m−2
j=0,i+j 6=0 Pi,j
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Figure 3.6: 2-dimensional regular network in lemma 4

1 +
2m− 1

(m− 1)2 − 1
> 1 +

∑m−1
i=0

∑m−1
j=0,i+j 6=0 Pi,j −

∑m−2
i=0

∑m−2
j=0,i+j 6=0 Pi,j∑m−2

i=0

∑m−2
j=0,i+j 6=0 Pi,j

m2 − 1

(m− 1)2 − 1
>

∑m−1
i=0

∑m−1
j=0,i+j 6=0 Pi,j∑m−2

i=0

∑m−2
j=0,i+j 6=0 Pi,j∑m−2

i=0

∑m−2
j=0,i+j 6=0 Pi,j

(m− 1)2 − 1
>

∑m−1
i=0

∑m−1
j=0,i+j 6=0 Pi,j

m2 − 1

Lemma 4 In the two-dimensional m×m regular networks,∑m−x−1
i=0

∑m−1
j=0,i+j 6=0 Pi,j

(m− x)m− 1
>

∑m−1
i=0

∑m−1
j=0,i+j 6=0 Pi,j

m2 − 1
(3.25)

where x < m.

Proof of Lemma 4:

As shown in figure 3.6, we denote the set of nodes in the upper rectangular (m−x)×m
except node (1,1) as set A and the set of nodes in the lower rectangular m × x as set B.
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Thus, the average power received from set A is
∑m−x−1
i=0

∑m−1
j=0,i+j 6=0 Pi,j

(m−x)m−1
, denoted as PA and the

the average power received from set B is
∑m−1
i=0

∑m−1
j=0,i+j 6=0 Pi,j−

∑m−x−1
i=0

∑m−1
j=0,i+j 6=0 Pi,j

mx
, denoted

as PB. The number of nodes in set A is denoted as nA and the number of nodes in set B
is denoted as nB.

In figure 3.6, the nodes in set A can be divided into several parts, nodes in square 0
denoted as set a0, nodes on line 1 in A denoted as set a1, nodes on line 2 in A denoted as set
a2,..., nodes on line x in A denoted as set ax. Also, the nodes in set B can be divided into
several parts, nodes on line 1 in B denoted as set b1, nodes on line 2 in B denoted as set
b2,..., nodes on line x in B denoted as set bx. The average power and number of the nodes
in each set is denoted as Psl and nsl respectively, where s ∈ {a, b} and l ∈ {0, 1, 2, ..., x}.

Then, we have

PA =
na0
nA

Pa0 +
na1
nA

Pa1 + . . .+
nax
nA

Pax

PB =
nb1
nB

Pb1 +
nb2
nB

Pb2 + . . .+
nbx
nB

Pbx

=
na1
nA

Pb1 + (
nb1
nB

Pb1 −
na1
nA

Pb1)

+
na2
nA

Pb2 + (
nb2
nB

Pb2 −
na2
nA

Pb2) + . . .

+
nax
nA

Pbx + (
nbx
nB

Pbx −
nax
nA

Pbx)

=
na1
nA

Pb1 +
na2
nA

Pb2 + . . .+
nax
nA

Pbx

+ (
nb1
nB

Pb1 −
na1
nA

Pb1) + (
nb2
nB

Pb2 −
na2
nA

Pb2)

+ . . .+ (
nbx
nB

Pbx −
nax
nA

Pbx)

=
na1
nA

Pb1 +
na2
nA

Pb2 + . . .+
nax
nA

Pbx

+ (
nb1
nB
− na1
nA

)Pb1 + (
nb2
nB
− na2
nA

)Pb2

+ . . .+ (
nbx
nB
− nax
nA

)Pbx

<
na1
nA

Pb1 +
na2
nA

Pb2 + . . .+
nax
nA

Pbx (3.26)

+ Pbx [(
nb1
nB
− na1
nA

) + (
nb2
nB
− na2
nA

)
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+ . . .+ (
nbx
nB
− nax
nA

)]

=
na1
nA

Pb1 +
na2
nA

Pb2 + . . .+
nax
nA

Pbx

+ Pbx [(
nb1
nB

+
nb2
nB

+ . . .+
nbx
nB

)

− (
na1
nA

+
na2
nA

+ . . .+
nax
nA

)]

=
na1
nA

Pb1 +
na2
nA

Pb2 + . . .+
nax
nA

Pbx

+ Pbx [1− (1− na0
nA

)]

=
na0
nA

Pbx +
na1
nA

Pb1 +
na2
nA

Pb2 + . . .+
nax
nA

Pbx

<
na0
nA

Pa0 +
na1
nA

Pa1 +
na2
nA

Pa2 + . . .+
nax
nA

Pax (3.27)

where (3.26) follows from the fact that
nb1
nB

=
nb2
nB

= . . . =
nbx
nB

= 1
x
,
na1
nA

=
na2
nA

= . . . = nax
nA

=
m−x

m(m−x)−1
≤ 1

x
,
nb1
nB
− na1

nA
≥ 0,

nb2
nB
− na2

nA
≥ 0, . . . ,

nbx
nB
− nax

nA
≥ 0, and Pb1 < Pb2 < . . . < Pbx ;

(3.27) follows from the fact that Pbx < Pa0 ( by lemma 3 ), Pb1 < Pa1 , Pb2 < Pa2 ,. . . ,
Pbx < Pax , then we have PB < PA∑m−x−1

i=0

∑m−1
j=0,i+j 6=0 Pi,j

(m− x)m− 1
>

∑m−1
i=0

∑m−1
j=0,i+j 6=0 Pi,j −

∑m−x−1
i=0

∑m−1
j=0,i+j 6=0 Pi,j

mx

mx

(m− x)m− 1
>

∑m−1
i=0

∑m−1
j=0,i+j 6=0 Pi,j −

∑m−x−1
i=0

∑m−1
j=0,i+j 6=0 Pi,j∑m−x−1

i=0

∑m−1
j=0,i+j 6=0 Pi,j

1 +
mx

(m− x)m− 1
> 1 +

∑m−1
i=0

∑m−1
j=0,i+j 6=0 Pi,j −

∑m−x−1
i=0

∑m−1
j=0,i+j 6=0 Pi,j∑m−x−1

i=0

∑m−1
j=0,i+j 6=0 Pi,j

m2 − 1

(m− x)m− 1
>

∑m−1
i=0

∑m−1
j=0,i+j 6=0 Pi,j∑m−x−1

i=0

∑m−1
j=0,i+j 6=0 Pi,j∑m−x−1

i=0

∑m−1
j=0,i+j 6=0 Pi,j

(m− x)m− 1
>

∑m−1
i=0

∑m−1
j=0,i+j 6=0 Pi,j

m2 − 1
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Figure 3.7: 2-dimensional regular network in lemma 5

Lemma 5 In the two-dimensional m×m regular networks,∑m−1
i=0

∑m−1
j=0,i+j 6=0 Pi,j −

∑m−1
i=m−x

∑m−1
j=m−y,(m−y)(m−x)6=0 Pi,j

m2 − xy − 1
>

∑m−1
i=0

∑m−1
j=0,i+j 6=0 Pi,j

m2 − 1
(3.28)

Proof of Lemma 5:

By lemma 4, it can be seen that in figure 3.7, the average power of nodes in A is larger
than the average power of nodes in B

⋃
C, where A denotes the nodes on the up m − x

lines except node (1,1), B denotes the first m − y nodes on the bottom x lines and C
denotes the later y nodes on the bottom x lines.

Focusing on the nodes in B
⋃
C, we denote the average power of nodes in X on line i,

where X ∈ {B,C}, i ∈ {1, 2, . . . , x}, as PXi . Since obviously, on each bottom line 1,2,. . . ,
x,

PBi > PCi

then the average power of nodes in B is larger than that in C, we denote this by

PB > PC .
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then we have
PB > PB

⋃
C > PC

Also since
PA > PB⋃

C > PC

then
PA

⋃
B > PC

then we have equation (3.28).

When (m− x)(m− y) = 0, (m− x) + (m− y) 6= 0, Lemma 5 becomes Lemma 4

Proof of Theorem 5: By lemma 3 and lemma 4, we can get∑m−a−1
i=0

∑m−b−1
j=0,i+j 6=0 Pi,j

(m− a)(m− b)− 1
>

∑m−1
i=0

∑m−1
j=0,i+j 6=0 Pi,j

m2 − 1
(3.29)

where a < m, b < m.

m2 − 1

(m− a)(m− b)− 1
>

∑m−1
i=0

∑m−1
j=0,i+j 6=0 Pi,j∑m−a−1

i=0

∑m−b−1
j=0,i+j 6=0 Pi,j

(3.30)

Since when x2 > x1 > 0, we have

x2

x1

>
log(1 + x2)

log(1 + x1)

then for any Pi,j, we have

Pi,j∑m−a−1
i=0

∑m−b−1
j=0,i+j 6=0 Pi,j

>
log(1 +

Pi,j
N

)

log(1 +
∑m−a−1
i=0

∑m−b−1
j=0,i+j 6=0 Pi,j

N
)

then, by adding all inequalities for each Pi,j, (3.30) continues to have the following inequal-
ity. ∑m−1

i=0

∑m−1
j=0,i+j 6=0 Pi,j∑m−a−1

i=0

∑m−b−1
j=0,i+j 6=0 Pi,j

>

∑m−1
i=0

∑m−1
j=0,i+j 6=0 log(1 +

Pi,j
N

)

log(1 +
∑m−a−1
i=0

∑m−b−1
j=0,i+j 6=0 Pi,j

N
)

(3.31)

By the concavity of the logarithm function,

log(1 +

∑m−a−1
i=0

∑m−b−1
j=0,i+j 6=0 Pi,j

N
) <

m−a−1∑
i=0

m−b−1∑
j=0,i+j 6=0

log(1 +
Pi,j
N

)
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Figure 3.8: 2-dimensional regular network in theorem 5

Then, (3.31) continues to have the following inequality:∑m−1
i=0

∑m−1
j=0,i+j 6=0 log(1 +

Pi,j
N

)

log(1 +
∑m−a−1
i=0

∑m−b−1
j=0,i+j 6=0 Pi,j

N
)
>

∑m−1
i=0

∑m−1
j=0,i+j 6=0 log(1 +

Pi,j
N

)∑m−a−1
i=0

∑m−b−1
j=0,i+j 6=0 log(1 +

Pi,j
N

)

Then, (3.30) continues to have the following inequality:

m2 − 1

(m− a)(m− b)− 1
>

∑m−1
i=0

∑m−1
j=0,i+j 6=0 log(1 +

Pi,j
N

)∑m−a−1
i=0

∑m−b−1
j=0,i+j 6=0 log(1 +

Pi,j
N

)

By (3.4), we have

((m− a)(m− b)− 1)R <
1

m2

m−a−1∑
i=0

m−b−1∑
j=0,i+j 6=0

log(1 +
Pi,j
N

) (3.32)

By Lemma 5, we have equation (3.28). In other words, as shown in figure 3.8, the
average power of nodes in A′

⋃
B′

⋃
C received by the black focused node (x, y) is larger
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Figure 3.9: 2-dimensional regular network in theorem 5

than
∑m−1
i=0

∑m−1
j=0,i+j 6=0 Pi,j

m2−1
, where A,A′, B,B′, C denotes the set of nodes in its respective

rectangular shown in figure 3.8. When we move the nodes in A′ to A, and the nodes in B′

to B, the power received by node (x, y) becomes larger. So we have for node (x, y)

P −
∑x−1

i=1

∑y−1
j=1 Pi,j

m2 − (x− 1)(y − 1)− 1
>

∑m−1
i=0

∑m−1
j=0,i+j 6=0 Pi,j

m2 − 1
(3.33)

where P denotes the total power received by node (x, y).

By similar analysis of (3.29)∼(3.32), we have for node (x, y)

[m2 − (x− 1)(y − 1)− 1]R <
1

m2

x−1∑
i=1

y−1∑
j=1

log(1 +
P − Pi,j
N

) (3.34)

Following the idea of the half-duplex 1-dimensional network, we prove that in the half-
duplex 2-dimensional network, each node can decode all its four 1-hop neighbors. We take
a node (x, y) inside the network as an example, where 1 ≤ y ≤ x ≤ m

2
. As shown in figure

3.9 with the black node (x, y) focused, by applying Lemma 1 to (3.4), we can see that
node (x, y) can decode at least one node in region 1, 2, 3, 4, 5. If node (x, y) can decode
the hollow node in region 1, then all other nodes in 1 can either be taken away because
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they can be relayed by the hollow node in region 1 or not considered. By applying Lemma
1,2 to (3.34), we can see that node (x, y) can decode at least one more node in region 2,
3, 4, 5. In each region, the hollow node has the advantage of being decoded because it is
the nearest one and the nodes it relays in each block are nearer, compared with the other
nodes in its region. Obviously, its one-hop neighbor on its shortest side, the hollow node
in region 2, has the advantage of being decoded by node (x, y) among all the hollow nodes
in region 2, 3, 4, 5. Then all the nodes in region 2 can be taken out, since they have been
relayed or not considered.

By (3.25) and similar analysis of (3.29)∼(3.32), we have for node (x, y)

[m2 −m(y − 1)− 1]R <
1

m2
[
m−x∑
i=0

m−y∑
j=0,i+j 6=0

log(1 +
Pi,j
N

) +
x−1∑
i=1

m−y∑
j=0

log(1 +
Pi,j
N

)] (3.35)

By applying Lemma 1,2 to (3.35), we can see that node (x, y) can decode at least one
more node in region 3, 4, 5. Obviously, node (x, y) can decode its one-hop neighbor on its
second shortest side, the hollow node in region 3. Then with all the nodes in region 3 taken
out, since they have been relayed or not considered, by applying Lemma 1,2 to (3.32) with
a = x−1, b = y−1, we can see that node (x, y) can decode at least one more node in region
4, 5. Obviously, node (x, y) can decode its one-hop neighbor on its third shortest side, the
hollow node in region 4. Then with all the nodes in region 4 taken out, since they have
been relayed or not considered, by applying Lemma 1,2 to (3.32) with a = y−1, b = m−1,
we can see that node (x, y) can decode at least one more node in region 5. Then its last
one-hop neighbor can be decoded. Therefore, each node in the half-duplex 2-dimensional
regular network can decode the current block message of all its 1-hop neighbors. Similarly,
other cases can be proved. Due to the page limit, the details are omitted here. Since
the network is finite, then each node can decode all the other nodes under the scheduled
omnidirectional relay scheme.

3.4.3 Proof of Theorem 6

The first part of (3.5) guarantees that for each node except the last one, it can decode
its one-hop neighbor on its right side, by similar analysis with that in the half duplex 1-
dimensional regular network. Also, the second part of (3.5) guarantees that for each node
except the first one, it can decode its one-hop neighbor on its left side. Then in total, each
node can decode its one-hop neighbors in both sides. Therefore, each node can decode all
the other nodes by the scheduled omnidirectional relay scheme.
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Figure 3.10: 1-dimensional general network in theorem 7
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Figure 3.11: 1-dimensional general network in theorem 7

3.4.4 Proof of Theorem 7

In the 1-dimensional general network as shown in figure 3.10, firstly we make a supposition:
node h cannot decode all the nodes on its left and suppose the nodes that it cannot decode
are sets S1 and S2. Since node h can decode node g, then if node g can decode some node
in set S1, node h can also decode them by the regulated greedy relay scheme. Therefore,
the supposition can be revised focusing on node g:

Supposition 1 Node g cannot decode all the nodes on its left and suppose the nodes that
it cannot decode are sets S1 and S2.

For any node α, we denote the first consecutive set of nodes on its left that it cannot
decode as Slα, the first consecutive set of nodes on its right that it cannot decode as Srα.

Lemma 6 In the 1-dimensional general network as shown in figure 3.11, if Srk = Slg and
it satisfies the condition in theorem 7, then at least one node in the set can be decoded by
node k or node g. Therefore, Srk or Slg does not exist.

Proof of Lemma 6: In figure 3.11, Srk = Slg, if it satisfies (3.6), which means there is a node
j outside of set Sk that satisfies∑

i∈Srk

Ri <
∑
i∈Srk

log(1 +
Pi,j
N

) (3.36)
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then by applying Lemma 1,2 into (3.36), node k or node j can at least decode one node in
this set. Therefore it cannot be Srk and Slg at the same time.

In figure 3.11, Srk = Slg, if it satisfies (3.7) and (3.8), which means there exist node k
and node g outside of set S1 and S2 that satisfy∑

i∈S1

Ri <
∑
i∈S1

log(1 +
Pi,k
N

) (3.37)

∑
i∈S2

Ri <
∑
i∈S2

log(1 +
Pi,g
N

) (3.38)

By the regulated greedy relay scheme, in the first several rounds when there is no mutual
relay relationship between sets S1 and S2, node k and node g can decode some nodes in
sets S1 and S2 respectively. In round r, the mutual relay relationship between sets S1 and
S2 occurs. As shown in figure 3.12, we denote the node in set S1 that node k can decode
in round r − 1 as node A. It needs to relay w1 of some node denoted as a in S2. Also, we
denote the node in set S2 that node g can decode in round r − 1 as node B. It needs to
relay w1 of some node denoted as b in S1.

As shown in figure 3.12, if node a = node B, since node g decoded node B at the end
of round r − 1, then node g will relay node B at a later round by the regulated greedy
relay scheme. Node k will at least know w1 of node a. So this situation is the same with
that when node A does not relay node a. Node k can still decode node A.

As shown in figure 3.13, if node a is at the right side of node B, since node B is nearer
to node a than node A, then node B will relay node a at some previous round. Since node
g decoded node B at the end of round r− 1, it also decoded node a, then node g will relay
node a at a later round by the regulated greedy relay scheme. Then node k will at least
know w1 of node a. So this situation is the same with that when node A does not relay
node a. Node k can still decode node A.

Therefore, the last possibility is that node a is on the left side of node B. Similarly, it
is only possible for node b to be on the right side of node A, as shown in figure 3.14, if. In
this situation, the only reason that node A relays w1 of node a instead of w1 of node b is
that node A can not decode node b. Similarly, the only reason that node B relays w1 of
node b instead of w1 of node a is that node B can not decode node a. And the reason for
node a to be able to be decoded by node A instead of node B is that node A is nearer to
it than node B. Similarly, for node b, node B is nearer to it than node A. However, from
figure 3.14, this makes contradiction. This situation also does not exist.
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Figure 3.12: 1-dimensional general network in theorem 7
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Figure 3.13: 1-dimensional general network in theorem 7
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Figure 3.14: 1-dimensional general network in theorem 7

r l
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Figure 3.15: 1-dimensional general network in theorem 7
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Figure 3.16: 1-dimensional general network in theorem 7

Lemma 7 In the 1-dimensional general network as shown in figure 3.15, if Srk ⊂ Slg and
it satisfies the condition in theorem 7, then Srk and Slg do not exist.

Proof of Lemma 7:

In figure 3.15, since node k can be decoded by node g, it can also be decoded by node
m. Then Slm ⊆ Srk. Because node k and node m can decode each other. It is the same
with the situation in figure 3.11 for node k and node g. By Lemma 6, Slm cannot be equal
to Srk, thus Slm ⊂ Srk, as shown in figure 3.16.

In figure 3.15, by Lemma 7, if Srk ⊂ Slg and it satisfies the condition in theorem 7, then
Slm ⊂ Srk. Similarly, in figure 3.17, since Slm ⊂ Srk, then Srh ⊂ Slm. Subsequently, Slq ⊂ Srh
as shown in figure 3.17, and Slq does not exist. Srh can be decoded by node q, then by node
h. This situation does not hold.

Proof of Theorem 7

As shown in figure 3.18, by Lemma 6 and Lemma 7, Srk needs to be larger than Slg, which
is Slg ⊂ Srk. Subsequently, Srk ⊂ Slh. By the conditions of theorem 7, node h can decode
at least one node in Slh which contradicts the definition of Slh. Therefore Slg does not exist
and Supposition 1 does not hold.

The conditions in theorem 7 guarantee that each node can decode all the nodes on
its left. With similar analysis, each node can decode all the nodes on its right. Above
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Figure 3.17: 1-dimensional general network in theorem 7
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Figure 3.18: 1-dimensional general network in theorem 7

all, under the conditions in theorem 7, each node can decode all the other nodes by the
regulated greedy relay scheme..

3.4.5 Proof of Theorem 8

Although all nodes are transmitting under the greedy relay scheme, the one-hop neighbors
of every node still have the advantages of being decoded earlier. Thus under the greedy
relay scheme, in the three networks we studied in 3.1.1, 3.1.2, 3.1.3, every node can still
decode the current-block messages of all its one-hop neighbors. With faster pace, all other
nodes can be covered under this greedy omnidirectional relay scheme.
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3.4.6 Proof of Theorem 9

Case 1 : i ≤ n
2

In block b when b ≤ i−1, node i can decode (wi−1(b), wi−2(b−1), . . . , wi−b(1)) and (wi+1(b),
wi+2(b−1), . . . , wi+b(1)) that node i−1 and node i+1 transmit respectively by (3.9) because
they are symmetric, which means they have the same rate, the same transmit power, the
same distance with node i and the same number of messages to transmit.

In block b when b ≥ i, focusing on node i, node i−1 transmits the signal (wi−1(b), wi−2(b−
1), . . . , w1(b−i+2)) which has i−1 messages, node i+1 transmits the signal (wi+1(b), wi+2(b−
1), . . . , wmin{i+b,n}(b−min{b, n− i}+ 1)) which has min{b, n− i} messages. Applying the
Lemma 4.1 in [32] into (3.9), node i can decode node i−1 or node i+ 1 at the end of block
b. Compared with node i + 1, node i− 1 transmits less messages, so node i can certainly
decode node i− 1 at the end of block b.

Since we have (3.9),

(n− 1)R < log(1 +

∑n−1
j=1 Pj

N
) (3.39)

then according to the concavity of the logarithmic function,for 1 ≤ k ≤ n− 1

kR < log(1 +

∑k
j=1 Pj

N
) (3.40)

For any l = 2, 3, 4, ..., i, when k = n− l, we have

(n− l)R < log(1 +

∑n−l
j=1 Pj

N
) (3.41)

Because

log(1 +

∑n−l
j=1 Pj

N
)

= log(1 +

∑n−i
j=1 Pj +

∑n−l
j=n−i+1 Pj

N
) (3.42)

and
l ≤ i < n− i+ 1

Pl > Pn−i+1
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i−1∑
j=l

Pj >

n−l∑
j=n−i+1

Pj

we get

(n− l)R < log(1 +

∑n−i
j=1 Pj +

∑i−1
j=l Pj

N
) (3.43)

By applying Lemma 4.1 in [32] into (3.43) with l = 2, it can be seen that node i can decode
node i − 2 or node i + 1 with the knowledge of node i − 1 at the end of block b. If it is
node i + 1 that can be decoded by node i, then we have come to the point that node i
can decode node i + 1. Otherwise, if it is node i− 2 that can be decoded by node i, then
(3.43) with l = 3 is needed to show that node i can decode either node i− 3 or node i+ 1.
Similarly, if it is not node i + 1 that can be decoded by node i, then (3.43) with l = 4
is consecutively needed to show that node i can decode either node i − 4 or node i + 1.
Until l = i, with the knowledge of all the signals sent from nodes on its left side, node i
can decode block b messages of node i + 1 at the end of block b. Thus in this case when
i ≤ n

2
, node i can decode at least the current-block messages of its left and right one-hop

neighbors.

Case II : i ≥ n
2

+ 1

Node i can also decode the current block messages of both its left and right neighbors by
(3.9). The proof is symmetric with that in case I.

Case III : i = n+1
2

In this case, node i is in the exact middle of the one-dimensional line. Because node
i− 1 and node i+ 1 are totally symmetric to node i, node i can decode the current-block
messages of node i − 1 and node i + 1 under the condition (3.9) applied with the key
technical lemma.

From the above discussion, it can be seen that no matter where node i is on the one-
dimensional line, it can always decode the current-block messages of its two neighbors.
Then under the neighboring omnidirectional relay scheme, node i can cover all the other
nodes.
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Chapter 4

Matlab Simulation

4.1 half-duplex 1-dimensional regular network

By comparing the matlab simulations of the achievable rates of the omnidirectional relay
and the multi-hop relay in the half-duplex 1-dimensional regular network, the advantage
of the omnidirectional relay is clearly stated.

By Theorem 4, the achievable rate for the half-duplex 1-dimensional regular network
with the omnidirectional relay scheme is

R <
1

n
· 1

n− 1

n−1∑
i=1

log(1 +
Pi
N

) (4.1)

The achievable rate for the half-duplex 1-dimensional regular network with the multi-hop
relay scheme is

R <
1

n
· 1

n− 1
log(1 +

P1

N
) (4.2)

Figure A.1 and figure A.2 show rates comparison in half-duplex one-dimensional regular
network. In figure A.1, the dotted line represents the achievable rates with the omnidirec-
tional relay scheme and the line represents the achievable rates with the multi-hop relay
scheme. In figure A.2, when the signal attenuation becomes larger, the dotted line and the
line drop more quickly.
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4.2 half-duplex 2-dimensional regular network

By comparing the matlab simulations of the achievable rates of the omnidirectional relay
and the multi-hop relay in the half-duplex 2-dimensional regular network, the advantage
of the omnidirectional relay is clearly stated.

By Theorem 5, the achievable rate for the half-duplex 2-dimensional regular network
with the omnidirectional relay scheme is

R <
1

m2
· 1

m2 − 1

m−1∑
i=0

m−1∑
j=0
i+j 6=0

log(1 +
Pi,j
N

) (4.3)

The achievable rate for the half-duplex 2-dimensional regular network with the multi-hop
relay scheme is

R <
1

m2
· 1

m(m− 1)
· 2 · log(1 +

P1

N
) (4.4)

Figure A.3 and figure A.4 show rates comparison in half-duplex two-dimensional regular
network. In figure A.3, the dotted line represents the achievable rates with the omnidirec-
tional relay scheme and the line represents the achievable rates with the multi-hop relay
scheme. In figure A.4, when the signal attenuation becomes larger, the dotted line and the
line drop more quickly.

Matlab simulations clearly shows the advantage of the omnidirectional relay scheme.
The advantage in the 1-dimensional network is more significant compared to the 2-dimensional
one. In the 1-dimensional network, the node on the boundary only decodes the signal from
its one-hop neighbor while in the 2-dimensional network the node on the corner decodes
the signal from its two one-hop neighbors. As the distance goes further, the accumulated
power decreases greatly. In the 2-dimensional one, the accumulated power received by the
corner node from all the other nodes does not differ much from the added power received
from its two 1-hop neighbours. So the advantage in the 1-dimensional network is more sig-
nificant. This reason can be verified from the figure that as the attenuation factor becomes
larger, the improvement becomes less obvious in the 2-dimensional network.
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Chapter 5

Conclusion and Future Work

5.1 Conclusions

Based on the previous study[31, 32] of the achievable rate region of the all-source all-
cast problem, the idea behind was questioned that all the subsets of all the nodes in this
network are necessary. We start from the 1-dimensional and 2-dimensional half-duplex
regular network to better understand the general network. Their optimal achievable rates
are derived and proved in this thesis. Then for the general 1-dimensional half-duplex
network, we proposed an achievable rate region with a new regulated greedy relay scheme,
which shows that some consecutive sets may not need to be considered. This also indicates
that greedy relay scheme is not optimal in the all-source all-cast problem. The key reason
that the greedy scheme is not optimal is that offset encoding can help avoid some deadlock,
which is similar as that stated in [20].

5.2 Future Work

Although the achievable rate region of the general 1-dimensional half-duplex network in-
dicates that the greedy relay scheme is not optimal in the all-source all-cast problem, for
the all-source all-cast network, it is still very hard to find the scheduling rule that brings
improvement compared to the greedy relay scheme due to the difficulty of controlling of
many flexible parameters.

The reason that we operate the network in the scheduled half-duplex mode depicted
in 3.1 and figure 3.1 is just to eliminate the interference. This made the wireless network
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kind of like the wireline network, which is one shortcoming of this thesis. The regulated
greedy omnidirectional relay scheme presented in theorem 7 and table 3.1 shows serious
inefficiency before the operation goes to the steady state. This is basically due to the
independence of each node. If there is cooperation in the network, which means if each
node can know the decoding state of other nodes, the network can go into the steady state
much faster. In the communication system, cooperation can always bring efficiency and
rate benefits.

Further study will be done to explore and discover a better scheduling rule for the
general network.
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Appendix A

Matlab Plots and Codes

A.1 half-duplex 1-dimensional regular network

In equation (4.1) and (4.2), in order to simplify the results, we make N = 1, Pi =
|g(id0)|2P0, P0 = 1, d0 = 1, g(x) = 1

xα
.

When α = 2, figure A.1 is the comparison figure.

When α = 4, figure A.2 is the comparison figure.

A.1.1 Matlab codes

N=2:1:20;

K=N-1;

P=1./(K.^4);

F=log2(1+P);

R1=(1./N).*(1./K).*cumsum(F);

R2=(1./N).*(1./K).*F;

plot(N,R1,’:ok’,N,R2);

xlabel(’number of nodes’), ylabel(’rates’);

hold on;

title(’rates comparison in half-duplex one-dimensional regular network’);

legend(’the achievable rates with the omnidirectional relay scheme’,

’the achievable rates with the multi-hop relay scheme’);
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Figure A.1: rates comparison in half-duplex one-dimensional regular network

A.2 half-duplex 2-dimensional regular network

In equation (4.3) and (4.4), in order to simplify the results, we make N = 1, Pi,j =

|g(di,j)|2P0 = |
√
i2 + j2g(d0)|2P0, P0 = 1, d0 = 1, g(x) = 1

xα
.

When α = 2, figure A.3 is the comparison figure.

When α = 4, figure A.4 is the comparison figure.

A.2.1 Matlab codes

D=15;a=2;

X=0:1:D;

Y=0:1:D;

K=X+1;

S=1:1:D;
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Figure A.2: rates comparison in half-duplex one-dimensional regular network

S(1:D)=K(2:D+1);

N=S.^2;

[new_X,new_Y]=meshgrid(X,Y);

P1=new_X.^2+new_Y.^2;

P1(1)=1;

P2=(1./P1).^a;

P3=log2(1+P2);

P3(1)=0;

F=1:1:D;

for T=1:D

F(T)=sum(sum(P3(1:T+1,1:T+1)));

end

R1=1./N./(N-1).*F;

R2=(1./N).*(1./(N-1)).*P3(1,2)*2;
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Figure A.3: rates comparison in half-duplex two-dimensional regular network

plot(S,R1,’:ok’,S,R2);

xlabel(’number of nodes on one side’), ylabel(’rates’);

hold on;

title(’rates comparison in half-duplex two-dimensional regular network’);

legend(’the achievable rates with the omnidirectional relay scheme’,

’the achievable rates with the multi-hop relay scheme’);
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Figure A.4: rates comparison in half-duplex two-dimensional regular network
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