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Abstract

This thesis aims at providing results and insight towards the application

of turbo-codes in digital communication systems, mainly in three parts.

The �rst part considers systems of combined turbo-code and modulation.

This section follows the pragmatic approach of the �rst proposed such system.

It is shown that by optimizing the labeling method and/or modifying the

puncturing pattern, improvements of more than 0.5 dB in signal to noise

ratio (SNR) are achieved at no extra cost of energy, complexity, or delay.

Conventional turbo-codes with binary signaling divide the bit energy

equally among the transmitted turbo-encoder output bits. The second part

of this thesis proposes a turbo-code scheme with unequal power allocation to

the encoder output bits. It is shown, both theoretically and by simulation,

that by optimizing the power allocated to the systematic and parity check

bits, improvements of around 0.5 dB can be achieved over the conventional

turbo-coding scheme.

The third part of this thesis tackles the question of \the sensitivity of the

turbo-code performance towards the choice of the interleaver", which was

brought up since the early studies of these codes. This is the �rst theoretical

approach taken towards this subject. The variance of the bound is evalu-

ated. It is proven that the ratio of the standard deviation over the mean of

the bound is asymptotically constant (for large interleaver length, N), de-

creases with N , and increases with SNR. The distribution of the bound is

also computationally developed. It is shown that as SNR increases, a very

low percentage of the interleavers deviate quite signi�cantly from the aver-
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age bound but the majority of the random interleavers result in performances

very close to the average.

The contributions of input words of di�erent weights in the variance of

performance bound are also evaluated. Results show that these contributions

vary signi�cantly with SNR and N . These observations are important when

developing interleaver design algorithms.
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Chapter 1

Introduction

The history of error-correcting coding dates back to 1948 when Claude Shan-

non published his famous paper titled \A Mathematical Theory of Commu-

nications" [70]. Shannon showed that associated with any communication

channel is a number C (measured in bits per second), called the capacity of

the channel, which has the following signi�cance. Whenever the transmission

rate (in bits per second) in a communication system is less than C, it is pos-

sible to design error control codes that can provide arbitrarily high levels of

reliability at the receiver output. The proof to this theorem was existential,

however, Shannon did not tell us how to �nd these codes.

When the 50th anniversary of the birth of Information Theory was cele-

brated at the 1998 IEEE International Symposium of Information Theory in

Boston, there was a great deal of re
ection on the year 1993 as a critical year.

This was the year in which Berrou, Glavieux and Thitimajshima presented

their conference paper, \Near Shannon Limit Error-Correcting Coding and
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Chapter 1: Introduction 2

Decoding: Turbo Codes" [16]. In their presentation, Berrou et al claimed

that a combination of parallel concatenated convolutional codes and itera-

tive decoding can provide reliable communication at a signal to noise ratio

(SNR) that is within a few tenths of a dB from the Shannon limit.

Nearly �fty years of striving to achieve the promise of Shannon's noisy

channel coding theorem had come to an end. The astonishing performance

of these codes has resulted in a great deal of excitement, among the coding

community. The following few lines, selected from a 1995 article by Divsalar

and Pollara, is an example of such excitement [27]:

Perhaps the most exciting and potentially important development in coding

theory in recent years has been the dramatic announcement of \Turbo-

codes" by Berrou et al in 1993. The announced performance of these

codes was so good that the initial reaction of the coding establishment

was deep skepticism, but recently researchers around the world have been

able to reproduce those results.

This thesis addresses some theoretical and practical issues concerning

turbo-codes for application in digital communication systems. To show the

revolutionary impact of turbo-codes in coding for reliable communications,

we continue this introduction with a brief history of the research in coding

theory, formulation of Shannon's capacity and performance limit, and the

coding gain achieved by turbo-codes, in Section 1.1. Following that, Section

1.2 outlines the research reported in the rest of this thesis and the motivation

for each research subject.
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1.1 Shannon's Theorem and Turbo-Codes

Soon after Shannon's fundamental theorem, much e�ort was devoted to �nd-

ing explicit constructions for codes that would produce the arbitrarily small

probability of error promised by the theorem, but progress was meager. In

the 1960s, coding research began to settle down along two branches: the

algebraic and the probabilistic directions [17].

The algebraic approach has been more successful in the area of block

codes, where polynomial time hard decision algorithms for many block codes

have emerged. The second approach attempted to understand the encoding

and decoding from a probabilistic point of view and these attempts led to

the notion of sequential decoding. This, in turn, led to the introduction of a

class of non-block codes of inde�nite length, which can be represented by a

tree and can be decoded by algorithms searching the tree. The most useful of

these codes are highly structured codes called convolutional codes, invented

by Elias in 1954 [34]. It was not until 1967 that a much simpler algorithm,

the Viterbi algorithm [36], was developed and replaced sequential decoding

for convolutional codes.

The two avenues of coding research were brought together by combining

a convolutional code with an algebraic block code and introducing the con-

catenated codes [35]. Until turbo-codes, this class of error-correcting codes

was known to have the closest performance to Shannon's limit.

The e�ectiveness of an error correcting code is usually expressed in terms

of its coding gain. Coding gain is the di�erence between the SNR per in-

formation bit (Eb=N0) required to achieve a given bit error rate (BER) in a
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coded system and the Eb=N0 required to achieve the same BER in an un-

coded system. When power limitations are more restricted than bandwidth

limitations, binary phase shift keying (BPSK) is the logical choice for modu-

lation given its power eÆciency [39]. An uncoded BPSK system requires an

Eb=N0 of approximately 9.6 dB to achieve a BER of 1� 10�5. The question

of how much coding gain is potentially possible for a given communication

system when used over an additive white Gaussian noise (AWGN) channel

was de�nitively answered by Shannon. Shannon de�ned the capacity of an

AWGN channel to be

C = W log2(1 + Es=N0) (1.1)

where W is the bandwidth in Hertz, Es is the average signal energy in each

two-dimensional signaling interval of duration T = 1=W seconds, and N0 is

the two-sided noise power spectral density. Thus, C is in bits/sec. In this

formulation, the capacity corresponds to a two-dimensional communication

channel. Let us introduce the spectral eÆciency, �, de�ned as the aver-

age number of information bits transmitted per each signaling interval T .

According to the Shannon's theorem, for reliable communication we should

have

� <
C

W
: (1.2)

On the other hand,
Es

N0

= �
Eb

N0

: (1.3)

Combining Eqs. (1.1) and (1.3) and substituting C in non-equality (1.2)

results in
Eb

N0

>
2� � 1

�
: (1.4)
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According to this relationship, for a communication system of spectral eÆ-

ciency 1 there exists a coding/modulation scheme for reliable transmission

with an SNR of at least 0 dB. Thus, a maximum coding gain of 9.6 dB is

possible for this spectral eÆciency.

The NASA/ESA 1 deep space coding standard consists of a Reed-Solomon

code in serial concatenation with a convolutional code [76]. When used with

BPSK modulation, it provides a BER of 1 � 10�5 at an Eb=N0 of approxi-

mately 2.2 dB, i.e., a coding gain of 7.4 dB, but still 2.2 dB from the theo-

retical limit.

Many e�orts were made to close this gap during the 1980s and early

1990s, mostly resulting in serial concatenated systems. Additional gains of a

few tenths of a dB were obtained at a great expense, both in complexity and

delay. However, for almost 50 years after Shannon's paper was published,

the 2 dB gap continued to separate the performance of the most advanced

error control systems from the theoretical limit, until the advent of turbo-

codes in 1993. For a rate 1/2 turbo-code and information block length 216 =

65536, a required Eb=N0 of 0.7 dB was reported, that is only 0.7 dB from

the capacity bound and 0.5 dB from the BPSK bound [24]. A comparison

of the performance and complexity issues of the well known coding schemes

with deep-space applications, including turbo-codes, can be found in [24].

The importance of coding gain can be emphasized from an economical

standpoint by considering that the current value for Deep Space Network is

$80,000,000 per dB of gain [39].

1National Aeronautics and Space Administration/ European Space Agency
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1.2 Outline

Turbo-coding consists of two key design innovations: parallel concatenated

encoding and iterative decoding. The basic principles of turbo-coding and

decoding are described in Chapter 2. For now, it suÆces to mention that

turbo-code is constructed by the parallel concatenation of two (or more)

convolutional component codes that are connected through one (or more)

interleaver(s). The component codes are terminated to the all zero state at

the end of each block of input data. Thus, turbo-code is essentially equivalent

to a block code of usually very large block length. The coded bits consist of

the systematic bits (identical to the information bits) and the parity check

bits corresponding to each component encoder.

Although it is theoretically possible to derive the optimal decoder for

these codes, the complexity of optimal decoding, even for turbo-codes with

relatively short block lengths, is large enough to make it practically im-

possible. Turbo-codes would have been impractical were it not for the very

high performance suboptimal iterative decoding algorithm proposed for these

codes. The decoder consists of a soft-input/soft-output (SISO) component

decoder for each of the component encoders. These decoders take turn in

operating on the received data, forming and exchanging estimates of the

message block. The way these decoders operate on each other's \incom-

pletely decoded" outputs is reminiscent of a turbo charged engine. The name

\turbo-code" is earned for parallel concatenated codes due to their decoding

algorithm not the codes themselves [39].

The basic principles of turbo-codes are described in Chapter 2. More
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emphasis is given to the encoder structure. The details of the SISO decoding

algorithm, developed by Bahl, Cock, Jelinek, and Raviv (BCJR), are given

in Appendix A. A survey of the relevant literature ends this chapter.

Turbo-codes were �rst proposed for binary modulation. The use of BPSK

modulation is well justi�ed for deep-space communication systems with code

rates 1/2 or less, due to several reasons including the abundance of bandwidth

in these channels. However, for applications such as communication over

bandwidth limited channels, or spread spectrum systems, the combination

of these codes with multi-level modulation schemes has been proposed and

studied by researchers. In Chapter 3, we study the system of combined turbo-

code and modulation proposed by Go�, Glavieux, and Berrou in [37], where

the coded bits are simply grouped together and mapped to points from a

signal constellation. For such system of combined coding and modulation,

the labeling method, i.e., how each encoded bit is mapped to a labeling

position of the signal constituent bits, can a�ect the performance of the

overall scheme. Another concern is how correlated noise a�ects the coded

bits mapped to the same signal, and its impact on the performance. The

focus of this chapter is on the study of the above two e�ects.

Back to turbo-code with BPSK signaling, in Chapter 4, we consider the

possibility of improving the code performance by allocating unequal energy

levels to the systematic and the parity check bits. Conventional turbo-codes

assign equal noise margins to the encoder output bits. This would be optimal

if the encoded bits contributed equally to the distance of the low weight

codewords. In this chapter we show that this contribution is di�erent for the

systematic and parity check bits, and that providing the encoded bits with
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unequal noise margins can improve the code performance.

The critical role that the interleaver plays in the high performance achieved

by turbo-codes has been well known to the researchers since the introduc-

tion of turbo-codes and especially since the theoretical work of Benedetto

and Montorsi in [14]. This resulted in an extensive amount of research fo-

cused on the design of good interleavers for turbo-codes, some of which are

mentioned in the literature review in Chapter 2. The e�ect of the choice of

the interleaver on the performance, however, has not been explicitly studied

in these works. In Chapter 5, we �nd the variance of the turbo-code per-

formance bound over all possible interleavers, as an attempt to tackle the

question of the sensitivity of the turbo-code performance to the interleaver

choice.

Finally, Chapter 6 concludes this thesis and suggests research directions

as extensions of this work.



Chapter 2

Turbo-Codes: Basic Principles

and Literature Review

This chapter gives a brief overview of the basic concepts of turbo-codes and

some of the terms and notations used through out this thesis. Sections 2.1,

2.2, and 2.3 explain the basic principles of the encoder, decoder and trel-

lis termination, respectively. A survey of the relevant literature follows in

Section 2.4.

2.1 Turbo-Encoder

The turbo-encoder is composed of the parallel concatenation of two (or more)

recursive systematic convolutional (RSC) codes, connected through one (or

more) interleaver(s). Since RSC codes are one of the main components of

a turbo-code, these codes are explained �rst and following that, in Sec-

9
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tion 2.1.2, the structure of the turbo-encoder is described.

2.1.1 Recursive Systematic Convolutional Codes

As their name says, RSC codes are convolutional codes with a recursive

(feedback) structure. The word \systematic" re
ects the fact that the input

bits are directly included as part of the output codeword. To describe the

structure of RSC codes, we �rst consider a rate r = 1=2, binary, linear, non-

systematic, and feedback free convolutional encoder with constraint length

K. Fig. 2.1(a) gives an example with two memory units or K = 3.

x̂0k

x̂k

(b)

x0k

(a)

+ +

++

DDD
dk

xk

D+
akdk

Figure 2.1: Examples of convolutional encoders of rate 1/2 and K = 3, (a) non

systematic, feedback free, convolutional code, (b) recursive systematic convolu-

tional code.

If we denote the input sequence by d = (d1; d2; : : :) and the two output

sequences by x = (x1; x2; : : :) and x
0 = (x01; x

0
2; : : :), we have

xk =

K�1X
i=0

g1i dk�i g1i = 0; 1

x0k =

K�1X
i=0

g2i dk�i g2i = 0; 1 (2.1)
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where the summations are in modulo 2 arithmetic and g1i's and g2i's are

determined by the structure of the code. Let us de�ne the D-transform of a

sequence x by

X(D) =
X
k

xkD
k; (2.2)

then, Eqs. (2.1) can be written as

X(D) = G1(D)D(D);

X0(D) = G2(D)D(D); (2.3)

where the polynomialsG1(D) =
Pk=K�1

k=0 g1kD
k andG2(D) =

Pk=K�1

k=0 g2kD
k

are called the generator polynomials of the code.

A rate 1/2 RSC code is obtained from a non-systematic feedback free code

by introducing the auxiliary variableA(D) = D(D)=G1(D) =
P

k akD
k, and

by de�ning the new output sequences by

X̂(D) = D(D);

X̂0(D) = G2(D)A(D) =
G2(D)

G1(D)
D(D): (2.4)

G1(D) andG2(D) are referred to as the \backward" and \forward" generator

polynomials, respectively. This gives rise to the encoder structure shown in

Fig. 2.1(b). The output sequences x̂ = (x̂1; x̂2; : : :) and x̂0 = (x̂01; x̂02; : : :) are

called the systematic and the parity check sequences, respectively.

It can be shown that the two encoders in Figs. 2.1 (a) and (b) have the

same trellis structure, in terms of the number of states, branches and the

output labels. This can be veri�ed as follows. First, both codes have the

same constraint length, and thus, the same number of states. Now, assume



Chapter 2 Turbo-Codes: Basic . . . 12

that both codes are in the same state at time k and consider their transition

to the same state at time k+1. To distinguish between the input bits of the

non-recursive and recursive codes for this transition, let us denote them with

dNR
k and dRk , respectively. It can be easily seen that in order for both codes

to transfer to the same state, we have,

ak = dNR
k : (2.5)

As a consequence,

x0k = x̂0k: (2.6)

On the other hand, considering that the add operations are in modulo 2, ak

can be written as

ak = xk + dNR
k + dRk : (2.7)

Combining Eqs. (2.5) and (2.7) and considering that x̂k = dRk ,

xk = x̂k: (2.8)

As a consequence, the two codes have the same free distance and probability

of an error event. The only di�erence between these two codes is in their

input-output relationships, which causes their bit error probabilities to be

di�erent. In particular, in the feedback-free realization of the encoder, two

branches merging to the same state always have the same input labels, while

in the recursive systematic realization of the encoder, two branches merging

in the same state always have di�erent input labels. Fig. 2.2 shows the trellis

structure for the codes shown in Fig. 2.1. The three bits in the labels on

each branch show the input and the two output bits corresponding to that

transition, from left to right, respectively.
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Sk�1
0 0

0 1

1 0
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0 0

0 1

1 0

1 11 1

1/01
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1/00

0/11
1/11
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0/00

0/01
1/10 1 1

1 0

0 1

0 0
SkSk�1

0 0

0 1

1 0

1 1

0/00

1/10

0/01

1/11
1/11

0/00

RSC

0/01
1/10

Figure 2.2: Trellis structure corresponding to the codes shown in Fig. 2.1, (a)

non systematic, feedback free, convolutional code, (b) recursive systematic convo-

lutional code.

An RSC code is determined by its generator polynomials and is usually

denoted by (gf ; gb), where gf and gb are the representations of the forward

and backward generator polynomials in octal form, respectively. Thus the

code shown in Fig. 2.1(b) is a (5,7) RSC code.

An important property of recursive convolutional codes is their in�nite

impulse response (IIR), i.e., a single \1" in the input data results in a non-

terminating output sequence. As we will see later, this property is the main

reason behind using RSC codes as the components of turbo-codes.
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2.1.2 Turbo-Code: Parallel Concatenation of RSC Codes

The turbo-encoder consists of the parallel concatenation of two RSC codes,

referred to as component codes, that are connected through an interleaver of

length N . The �rst component encoder operates directly on the binary infor-

mation bit sequence, d = (d1; : : : ; dN ), producing the systematic and parity

check sequences xs = (xs1; : : : ; x
s
N) and x

1p = (x1p1 ; : : : ; x
1p
N ), respectively. The

second component encoder operates on a re-ordered (interleaved) sequence

of the information bits, dI = (dI1; : : : ; d
I
N). The second encoder output of-

ten only consists of the parity information sequence, x2p = (x2p1 ; : : : ; x
2p
N ),

although in some applications, where low rate data transmission is not a

concern, the second systematic information sequence is also transmitted [29].

Fig. 2.3 shows a schematic example of a rate r = 1=3 turbo-code, employing

two identical component codes with generator polynomials (5,7).

The importance of employing a recursive convolutional code for construct-

ing turbo-codes and the reason behind their high performance can now be

explained based on the presence of the interleaver. If the component codes

are not recursive, a single \1" in the input data stream will have a low weight

codeword in the �rst code and result in a �nite error event. This single bit

will be moved to a new location in the block of the input data after passing

through the interleaver, but will still result in a low weight second codeword.

Thus, the overall codeword will have a low weight. On the other hand, as

mentioned before, RSC codes are IIR codes, thus only input data of weight

two or higher can result in �nite length error events in these codes. If a low
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Interleaver

D

D

xsk

x
2p
k

x
1p
k

+
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+

+

dk

D

D

dIk

Figure 2.3: Turbo-encoder of rate 1/3 and identical RSC codes with generator

polynomials (5,7).

weight input sequence has a pattern that results in a low weight codeword

in the �rst code, it is very likely that the interleaver breaks this pattern

such that the second codeword is of high weight. This phenomenon gets

stronger as the interleaver length increases. The good distance properties

and high performance of turbo-codes are explained in more theoretical detail

in Chapter 4.

In general, the number of component codes can be more than two and

they do not need to be identical. Also, to achieve higher global rates, it

is possible to puncture the encoded bits. For instance, in order to increase

the rate of the code shown in Fig. 2.3 from 1/3 to 1/2, the systematic and

only one of the parity check bits are transmitted for each information bit,

dk. In other words, the transmitted sequence will be (xs1; x
1p
1 ; x

s
2; x

2p
2 ; : : :).
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The receiver inserts the punctured bits, with the value zero into the received

sequence.

2.2 Turbo-Decoder

The output bits of the turbo-encoder are modulated and transmitted through

the channel. Let (ys1; y
1p
1 ; y

2p
1 ; y

s
2; y

1p
2 ; y

2p
2 ; : : : ; y

s
N ; y

1p
N ; y

2p
N ) denote the received

sequence. Assuming an AWGN channel and BPSK modulation, we have

ysk = 2xsk � 1 + n1k

y
1p
k = 2x1pk � 1 + n2k (2.9)

y
2p
k = 2x2pk � 1 + n3k

where fn1kg, fn
2
kg, and fn3kg are independent and identically distributed

(i.i.d.) Gaussian random variables.

If maximum likelihood (ML) decoding were to be used for decoding the

turbo-code, it would be necessary to obtain the so called hyper-trellis of the

overall code [8]. The hyper-trellis consists of 2K1�1 � 2K2�1 states, where K1

and K2 are the constraint lengths of the �rst and second component codes,

respectively. Each step of the hyper-trellis corresponds to N steps of the

individual trellises. The branch labels depend on the speci�c interleaver that

is used. The complexity of this trellis grows very large even for relatively short

interleaver lengths and makes the decoding procedure practically impossible

(e.g., by employing the Viterbi algorithm). Thus, a sub-optimal decoding

algorithm is required to break the decoding procedure into simpler steps.
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Indeed, the availability of such sub-optimum decoding methods is one of the

key points behind the signi�cance of turbo-codes.

The turbo-decoder has an iterative structure and consists of two compo-

nent decoders, which operate in a serial mode, as shown in Fig. 2.4. Each

Dec 1 Inter.

De-
inter.

Dec 2

Decision &
De-inter.

y
1p

k
y
1s
k

L1k

L2k

y
2p

k d̂k

Inter.

Figure 2.4: The structure of the turbo-decoder.

component decoder (Dec1 and Dec2) corresponds to one of the component

codes and thus the complexity of the trellis of each decoder is the same as

that of a single component code. Both decoders receive the systematic bits,

and each decoder receives its corresponding parity check bits. The decoders

employ a soft output decoding algorithm to obtain the logarithm of likelihood

ratio (LLR) for each data bit, dk, as follows,

�i(dk) = log
Pr(dk = 1jobservation)

Pr(dk = 0jobservation)
k = 1; 2; : : : ; N ; (2.10)

where i = 1; 2 refers to Dec1 and Dec2, respectively, and Pr(dk = jjobservation),

j = 0; 1, is the a-posteriori probability (APP) of dk.

In order to explain the iterative procedure, let us start from Dec1. From

each LLR calculated in this component decoder, the so called extrinsic in-



Chapter 2 Turbo-Codes: Basic . . . 18

formation, denoted by L1k in Fig. 2.4, is obtained. The extrinsic information

is then interleaved through an interleaver with the same structure as the one

used in the encoder, and is provided to Dec2. This information is regarded

as the a-priori probability by the second decoder and is used in conjunction

with the information it receives from the channel to in turn provide the �rst

decoder with the extrinsic information, L2k. The iterations continue and at

each iteration the LLRs are updated to more reliable values. At the end of

the last iteration a hard decision is made based on the sign of each LLR, as

follows,

d̂k =

8<
: 0 if �2(dk) � 0

1 if �2(dk) > 0
(2.11)

where d̂k is the decoded value corresponding to dk. For the �rst iteration,

Dec1 assumes the value zero for L2(dk), for all k.

One of the well known soft output decoding algorithms for convolutional

codes, is the BCJR algorithm, otherwise known as the Bahl et al algo-

rithm [1]. This algorithm minimizes the bit error probability and yields

the APP for each decoded bit. For RSC-codes, the algorithm must be modi-

�ed in order to take into account their recursive characteristic. The modi�ed

BCJR algorithm and the mathematical details of the decoding procedure can

be found in Appendix A.

2.3 Trellis Termination

The decoding algorithm of turbo-code is such that each component decoder

requires knowledge of the �rst and the last state of the trellis (refer to Ap-
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pendix A). Therefore, both component codes are required to start and ter-

minate at the all zero state. As a consequence, turbo-codes are equivalent to

block codes.

Since the component encoders of a turbo-code are recursive, it does not

suÆce to set the last K � 1 information bits to zero in order to drive the

encoders to the all zero state. The necessary termination sequence depends

on the state of the encoder after the Nth input bit. Note that, due to

interleaving, the encoders are not in the same state at the end of the input

sequence, and consequently, di�erent termination sequences are required for

terminating the encoders. The problem of trellis termination is not addressed

in [16]. In [66], only the �rst encoder is terminated. This results in a slight

modi�cation in the way the decoder associated with the second encoder is

initialized for the modi�ed BCJR algorithm.

A more precise solution for the problem of trellis termination is given

in [27]. This is shown in Fig. 2.5, where the switch is in position \A" for the

�rst N clock cycles and in position \B" for the K �1 additional cycles. This

method is used for both of the encoders and it is easy to verify that it will

terminate the encoders simultaneously.

Other methods of trellis termination have also been developed, which are

mentioned in Section 2.4.

2.4 Literature Review

During the relatively short time since the introduction of turbo-codes, a con-

siderably large amount of research has been performed on almost every re-
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Figure 2.5: Trellis termination [27].

lated aspect of these codes. The enthusiasm raised among coding researchers

towards investigating and better understanding of turbo-codes was so high

that many closely related and similar research and publications, carried out

independently, can often be found in this area.

Consequently, a thorough literature survey covering the voluminous re-

search on di�erent aspects related to these codes is beyond the scope of this

work. Therefore, this section is intended to brie
y review the main and

substantial published research works in this area, as well as publications

which contain rather large related bibliographies. Obviously, more emphasis

is given to those works related to the research presented in this thesis, and

the corresponding publications are explained in more detail.

Before we proceed with categorized literature review, we should cite the

recently published books on turbo-codes, [39] and [75]. The earlier book

covers the basic principles of turbo-codes and their operation but does not

go into details on theories behind each principle. The more resent book

however, covers di�erent aspects of design and application of turbo-codes in

more detail.
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2.4.1 Basic Principles of Turbo-Codes

The �rst introduction of turbo-codes was in the 1993 short conference article

of Berrou, Glavieux and Thitimajshima [16]. In this paper, the general struc-

ture of the encoder and the iterative decoding scheme are introduced and the

decoding algorithm is brie
y explained. Simulation results performed for a

rate 1/2 turbo-code with component codes of constraint length 5, and block

interleaver size 256 � 256 show an astonishingly high performance which is

very close to the Shannon limit [16]. However, in this work, not much theo-

retical explanation is given on the performance and behavior of the code.

Later, Robertson, explained the behavior of these codes to some extent,

by analyzing the interleaver and calculating approximations to the BER per-

formance of the code for high signal to noise ratios [66]. He also showed how

the iterative decoder can be formulated in a simpler fashion. The decoding

algorithm presented in [66] is used throughout this research for simulation

purposes and is explained in Appendix A.

Serious attempts towards the theoretical understanding and evaluation

of the turbo-code performance appeared �rst in [13] and later in more de-

tail in [14]. There, the concept of uniform interleaver and employing it for

evaluating the union bound on the performance of turbo-codes is introduced.

Their study evaluates the performance bound of a turbo-code with �xed com-

ponent codes, averaged over all possible interleavers of the same length. The

premise is that there exists at least one interleaver that performs as good as

the average. The mathematical derivation of this bound is brie
y explained

in Chapter 4.
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Similar work can be found in [28], where the possibility of applying the

Gallager bound to improve the standard union bound is also mentioned.

Based on this idea, in [32] the authors have derived a new upper bound for

turbo-codes. This bound is tighter than the previous bound for a larger range

of SNRs extending below the channel cuto� rate, which is the region where

the standard union bound diverges from the actual performance.

In [63], the authors provide a semi-tutorial on the reasons behind the

good performance of turbo-codes based on their distance spectrum. This

work includes a rather large reference list of publications related to turbo-

codes.

More recently, a theoretical study of turbo-codes based on their group

properties, when considered as periodic linear systems, was published in [48].

The role of the interleaver in breaking the low weight sequences and the

limitations that exist in this regard are presented in this work.

Other related works considering the distance properties of turbo-codes

for improving their performance can be found in [40, 56, 31]. These works

are based on the e�ect of unequal power allocation (UPA) to turbo-encoder

output bits, on the performance of these codes. The discussions of Chapter 4

are based on this idea. It should be noted that the approach and the results

presented in [31] are very close to our approach and results in [55], and the

two works were carried out independently.
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2.4.2 Turbo Decoding

Without the availability of the iterative algorithm for decoding of turbo-

codes, these codes would perhaps have no practical value. The iterative

decoding algorithms proposed in [16] and later in [66] employ the modi�ed

BCJR algorithm for decoding of each component code, as explained in Sec-

tion 2.2 and Appendix A. Although these algorithms achieve the minimum

bit error probability for the component codes, their realization is rather ex-

pensive due to their relatively high complexity and delay. To overcome this

diÆculty, sub-optimum component decoders have been introduced. In [42],

a sub-optimum decoding scheme is proposed, which is based on a simpli�ed

version of the decoding method of [16]. This algorithm avoids exponential

and logarithmic calculations of [16] and further replaces many of the multi-

plications by summations.

Another version of a simpli�ed maximum a-posteriori (MAP) algorithm

has been proposed in [12]. The algorithm works in a sliding window form, and

can thus be used to decode the transmitted sequences continuously, without

requiring trellis termination.

The a-priori soft output Viterbi algorithm (APRI-SOVA) is another soft-

output decoding algorithm, proposed in [38], which has been employed by

many researchers in their simulations because of the lower complexity of the

algorithm.

In [30], turbo-codes using multiple (more than 2) component codes with

a decoder that works in a parallel mode instead of the serial mode (which is

the case for two component turbo-codes) are proposed.
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Recently, a new turbo-decoding algorithm was proposed based on list de-

coding [61]. This algorithm almost has the same complexity as conventional

turbo-decoding algorithms, but is shown to provide considerable reduction

in the BER especially in the error 
oor region of these codes.

It should be noted that although it is intuitively and commonly expected

that the iterative turbo-decoding algorithms converge to or very close to the

optimal ML decision, in [53] it is shown that for blocks of length N � 3, the

possibility exists that the turbo decoding algorithm is not optimal and the

iterative procedure does not even converge. However, this may only happen

for certain blocks of input data and such problem has not been reported to

happen in practice.

2.4.3 Design of Turbo-Code

Among the research work carried out on the design of the turbo-encoder,

only few investigate the design of the component codes, and the majority of

the research is concentrated on the design of the interleaver.

A rather detailed work on the role of the component codes on the distance

properties of turbo-codes, as well as some guidelines for optimal design of

the component codes, has been published in [15]. In [26], the concept of the

e�ective free distance of turbo-codes is de�ned and studied. This concept is

then used to choose the corresponding component codes. The most recent

results on this subject can be found in [11], where tables of the best RSC

codes of various rates to be used in the construction of the turbo-encoder are

presented.
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The design of the interleaver has been studied from di�erent aspects.

When turbo-codes were �rst introduced, block interleavers were employed

in their structure. In fact, as already mentioned, the simulation results cor-

responding to the astonishingly high performance of these codes, presented

in [16], were obtained by employing a block interleaver.

Later, employing random interleavers, i.e., interleavers designed by gen-

erating random integers without replacement, was considered. Perhaps the

most widely used class of random interleavers currently employed in turbo-

codes is the so called S-random interleaver, introduced in [27]. This type of

interleaver is designed as follows: each randomly selected integer is compared

to S previously selected integers. If the current selection is equal to any of

the S previous selections within a distance of �S, it will be rejected. This

process is repeated until allN integers are selected, whereN is the interleaver

length. It has been observed that choosing S <
p
N=2 usually produces a

solution in a reasonable time. The interleavers used for simulation purposes

throughout this research are developed based on this algorithm.

Other interleaver design techniques have also been proposed, based on the

distance properties of turbo-codes. In [46], an interleaver design technique

is proposed which searches for a random interleaver resulting in the fewest

output sequences with low weights corresponding to input weights of 2 or 3.

The authors then use simulation results to show that for short frame trans-

mission systems and BER of around 10�3, a block interleaver outperforms

the best such found pseudo-random interleaver, and the overall e�ect of the

interleaver is not signi�cant in this range [47]. In [63], however, it is shown

that, for turbo-codes of large interleaver lengths, pseudo-random interleavers
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outperform block interleavers signi�cantly, e.g., 2.7 dB at BER of 10�5.

In [50], a deterministic interleaver design algorithm is proposed based

on linear recursion to produce an initial interleaver which is subsequently

optimized by pair-wise exchange of its elements. These optimized interleavers

show more than 0.5 dB improvement over a randomly selected interleaver and

about 0.2 dB improvement over an S-random interleaver for BERs of less than

10�5 and block length 576.

Most recently, a systematic approach for the design of the interleaver

is proposed in [25]. The method is based on recursively minimizing a cost

function to �nd an interleaver which best breaks a set of a-priori chosen

error patterns. The weight distribution of a turbo-code employing the best

such found interleaver of length 100 shows 0.5-0.9 dB improvement over a

randomly selected interleaver of the same length.

Some other references which have considered issues relevant to the design

of the interleaver are [6, 5, 30, 41, 49].

As can be seen, most of the above research are focused on search algo-

rithms for good interleavers. Only very few conclusions, regarding the e�ect

of di�erent choices of interleavers on the performance, are implicitly stated

in these works or can be drawn from their results. Some of these conclusions

are even somewhat in contradiction with each other! For example, in [63] it

is stated that most pseudo-random interleavers of large lengths result in the

same multiplicity of the free distance codewords, and thus very close perfor-

mances for high SNR. However, in [77], the authors state that at high SNR

it is possible to design interleavers that will ensure that the turbo-code free

distance is increased signi�cantly. In [58] and [59], we �nd the variance of
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the performance bound over all possible interleavers, as a step towards giving

more insight on the sensitivity of turbo-code performance to the choice of the

interleaver. The discussions of Chapter 5 are based on this study.

2.4.4 Applications of Turbo-Codes

For the application of turbo-codes in practical communication systems, sev-

eral proposals have been made on bandwidth eÆcient turbo-code systems,

based on the idea of trellis-coded modulation [72]. The �rst such system and

perhaps the least complicated approach is presented in [37], where the idea is

to map the encoded bits of a standard turbo-code to a certain constellation.

The discussions of Chapter 3 are based on this system.

Another approach is developed in [68], where two trellis codes are concate-

nated in parallel. In this case the interleaver operates on groups of bits. The

decoding algorithm is a generalized version of the standard turbo-decoding

algorithm of [66]. The performance of this system is comparable to the per-

formance of the one presented in [37]. An earlier version of this work is

published in [67].

In [10] and [9], the authors have taken quite a di�erent approach and,

although they suggest the performance of this scheme to be superior to those

of the previous two schemes, it is shown that the di�erence is only about

0.1 dB [2].

Application of turbo-coded modulation systems is not limited to com-

munication over bandwidth limited channels. For transmission over non-

coherent channels, turbo-codes can be combined with orthogonal modula-
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tion. In [23] a system of combined turbo-code and orthogonal signaling is

proposed, which consists of a rate 1=J turbo-code combined with a 2J -ary

orthogonal signaling. The proposed system is simulated over coherent and

non-coherent AWGN channels with or without fading. Based on these results

the author expects that orthogonally mapped turbo-codes will be signi�cant

enough to be considered as a replacement to the current coding schemes em-

ployed in the IS-95 code division multiple access (CDMA) system. In [57],

we study the combination of a rate 1/3 turbo-code and M -ary orthogonal

modulation, and the e�ect of the noise correlation on the performance of

such a system.

So far, the only theoretical approach in the study of combined turbo-

coded modulation systems is presented in [33], where the average union

bound on the ML performance of such systems is evaluated, by assuming

uniform interleaving just as its counterpart for turbo-coding and binary mod-

ulation [14]. This bound is based on introducing two extra interleavers at

the output of the turbo-encoder, again in the form of uniform interleaving,

to eliminate the correlation between the coded bits mapped to the same con-

stellation point. Without these interleavers, the performance of the system

depends not only on the weight distribution of the turbo-code, but also on

the relative positions of the output bits. However, as shown in Chapter 3, it

might be possible to eliminate the extra interleavers for certain modulation

schemes, by optimizing the labeling method in signal mapping. Without the

extra interleavers the approach of [33] will not be applicable.

Application of turbo-codes in CDMA mobile radio systems has also been

considered by several researchers. Examples of early works on this subject
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can be found in [45] and [60]. In these examples, joint detection (JD) [51]

in combination with coherent receiver antenna diversity (CRAD) [43] is as-

sumed. The reported simulation results show gains of the order of 1 dB in

the SNR, over conventional systems which employ convolutional codes.

In the IMT-2000 proposals for the third generation mobile radio systems,

turbo-codes are proposed for data transmission rates higher than 14.4 kbps on

both forward and reverse supplement channels (F-SCH, R-SCH) [74]. Other

related works are presented in [21, 62].

Application of turbo-codes for unequal error protection (UEP), when the

input data fall in di�erent importance classes, have also been proposed [4, 20,

22]. The schemes proposed in [4, 20] achieve UEP by using ad hoc nonuniform

puncturing and interleaving in the encoder. In [22], the authors elaborate the

idea and propose a general method for adding UEP to turbo-codes. These

schemes can be applied when combined source channel coding is performed.



Chapter 3

Combined Turbo-Code and

Modulation for Personal

Communications

Although turbo-codes were originally proposed for binary modulation, their

combination with multi-levelmodulation schemes has also been proposed and

studied by researchers in the area. The application for these systems can be

divided into two main categories: (a) communication over bandwidth limited

channels (e.g., [37, 67, 9]); (b) application in spread spectrum communication

systems such as CDMA systems (e.g., [45, 60]).

The idea of turbo-coded modulation is inspired by the well known method

of trellis coded modulation (TCM) [72]. Di�erent approaches to turbo-coding

combined with modulation have been suggested in literature, which are re-

viewed in Section 2.4.

30
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The original and least complicated approach is presented in [37]. The

idea is to map the encoded bits of a standard turbo-code (possibly after

puncturing some of the parity bits) to a certain constellation. Soft demod-

ulation and turbo-decoding are performed at separate stages as is explained

in Section 3.1. Coding gains of up to 2.6 dB over 64-sate TCM are achieved

for this system, employing a memory 4 turbo-code with interleaver size 4096.

In [68], another approach is developed where the authors concatenate two

simple trellis codes in parallel, called turbo TCM (TTCM). In this case, the

interleaver operates on groups of bits. The decoding algorithm is a gener-

alized version of the turbo-decoding algorithm used for binary turbo-codes.

The performance improvement of about 0.5 dB over that of [37] is due to the

decoding algorithm, otherwise, the two performances are comparable [33].

In [10], a di�erent approach for parallel concatenated TCM (PCTCM) is

adopted. In this case, the information block and the interleaver are divided

into two parts. This allows each half of the information block to be punc-

tured at one of the encoders. The parity bits, however, are generated by

the complete block of information bits. At the output of the encoders, the

systematic and parity check bits are mapped to an appropriate constellation.

Decoding is done by using the MAP algorithm extended to symbols. The

performance improvement over the previous two schemes is about 0.1 dB [2].

A closer look at the above three schemes shows that the proposed systems

in [68] and [10] are special cases of [37]. That is, by restricting the interleaver

structure and the puncturing scheme, one can obtain the other two from the

original scheme. The di�erence in the performance is caused by the decoding

algorithm and is not signi�cant.
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For this reason and also its simplicity and pragmatism, the system of com-

bined turbo-code and modulation proposed in [37] is studied in this chapter.

The focus is on the labeling and puncturing methods and the elimination

of noise correlation among the coded bits mapped to the same signal point.

These two issues are not considered in any of the above mentioned works, and

as is shown in this chapter, they can a�ect the performance depending on the

modulation employed. In Section 3.1, the general structure of a transmission

system employing combined turbo-code and modulation is brie
y described.

Sections 3.2 and 3.3 study systems of combined turbo-code with 8-PSK and

16-QAM, respectively. Finally, Sections 3.4 concludes this chapter.

3.1 General Structure of a System of

Combined Turbo-Code and M-ary

Modulation

Fig. 3.1 shows the block diagram of a system of combined rate 1/3 turbo-

code and modulation. After the appropriate puncturing is performed on the

turbo-encoder output bits to adjust the code rate, each set of J = log2M

coded bits is mapped to a signal point, ym 2 fs0; s1; : : : ; sM�1g. In general,

the labeling bits mapped to the same signal are a�ected by correlated noise.

This obviously can a�ect the performance of the turbo-decoder, since the

LLRs applied to the decoder are no longer independent, as would be the

case if binary signaling were used for transmission. The extra interleaver in

Fig. 3.1 is used to eliminate this correlation. However, as will be shown in
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Figure 3.1: Combined turbo-code and M -ary modulation, (a) the transmitter,

(b) the receiver.
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the following sections, the e�ect of this correlation on the performance of the

code can di�er depending on the modulation scheme used.

The decoding is performed in two separate stages. The �rst stage consists

of a symbol by symbol soft output demodulator. For each received signal, ~ym,

the demodulator calculates the LLR of each of the corresponding J labeling

bits, denoted by �j ; j = 1; 2; : : : ; J . For example, if the kth systematic bit is

mapped to the jth labeling bit of the mth transmitted signal, ym, we have

�1sk = �j = log
Pr(x1sk = 1j~ym)

Pr(x1sk = 0j~ym)
: (3.1)

If S1s
i is a partition of the signal constellation including the signals that

correspond to x1sk = i, for i = 0; 1, then,

�1sk = log
Pr(ym 2 S1s

1 j~ym)

Pr(ym 2 S1s
0 j~ym)

: (3.2)

Other LLRs are evaluated in a similar way. The output of the demodulator

passes through the extra de-interleaver and is then passed to the turbo-

decoder. The decoder interprets this information as channel information and

the decoding algorithm is the same as in the case of BPSK signaling.

It should be noted that the decoding iterations can also include the de-

modulation (de-mapping), similar to the approach proposed in [19] for com-

bined convolutional codes and modulation. Obviously, this adds to the com-

plexity and delay of the receiver. Furthermore, it is shown in [19] that when

Gray mapping is employed, including the demodulation in the iterative pro-

cess, does not improve the performance. In Gray mapping, each two nearest

neighbor constellation points di�er only by a single bit in their labels, and

this mapping is considered through out this section to follow the approach

of [37].
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3.2 Turbo-Code Combined with 8-PSK

Modulation

In the coding system considered here, no puncturing is performed and thus,

each set of the three encoder output bits is mapped to a signal point from the

8-PSK signal constellation, resulting in an spectral eÆciency of 1 (bit/signal).

Fig. 3.2 shows the 8-PSK signal constellation with Gray mapping. In this

�gure, b1; b2, and b3 refer to the three bit positions in the signal labels, from

right to left.

0 0 0

0 0 1

0 1 1

0 1 0

1 1 0

1 1 1

1 0 1

1 0 0

b3b2b1

Figure 3.2: Signal mapping for an 8-PSK Gray code.

Referring to Fig. 3.2, it can be seen that position b1 is protected less

than the other two positions against the channel noise. Assuming that at

the output of the demodulator a hard decision is made for each labeling bit,
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it can be shown that for asymptotically high SNR,

Pe(b1) = p;

Pe(b3) = Pe(b2) =
1
2
p;

(3.3)

where Pe(bi) is the probability that bi; i = 1; 2; 3, is detected with error,

p = 1
2
erfc(

p
Eb=N0 sin

�
8
), and Eb=N0 is the SNR per information bit [64].

The e�ect of this unequal noise protection in a soft-output demodulator is

that the LLRs of the lower protected bits have, on the average, smaller

absolute values and thus are less reliable than those of the higher protected

bits.

For this system, three di�erent labeling methods can be achieved based

on which encoder output bit is mapped to the labeling position with the least

noise protection, i.e., position b1:

� Labeling I: Position b1 is assigned to the second parity check bit. In

this case, because of the higher protection on the systematic bits, the

extrinsic information, which is regarded as the a-priori probability by

each component decoder, and the information about the �rst parity

check sequence are more reliable than the information on the second

parity bits. However, it is expected that in the second decoder, the high

reliability of the systematic information and the soft decision made by

the �rst decoder will compensate for the poor error protection on the

second parity check bit.

� Labeling II: Position b1 is assigned to the systematic bit. the systematic

bits are protected less than the parity bits, thus resulting in less reliable

systematic information than in the �rst mapping, for both encoders.
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� Labeling III: Position b1 is assigned to the �rst parity check bit. This

is similar to Labeling I, only with the �rst and second parity bit posi-

tions switched. It is thus expected that this labeling will result in the

same performance as Labeling I, if the number of decoding iterations

is increased by one.

According to the results shown later in Chapter 4, lower protection over

the systematic bits improves the turbo-code performance when BPSK mod-

ulation is employed. The same e�ect can be expected for multilevel mod-

ulations, only when extra interleaving is performed to eliminate the noise

correlation among the coded bits. However, as will be discussed in the fol-

lowing, eliminating the noise correlation does not necessarily improve the

overall performance.

For the present system, the systematic and �rst parity check bits corre-

sponding to each information bit are a�ected by correlated noise. They are

almost independent from the second parity check bit, due to the interleaving

present in the structure of the turbo-code. When Gray mapping is used, the

correlation between the systematic and �rst parity check bits is such that if

one of these bits is detected with error, the probability that the other bit is

also in error reduces. In fact,

lim
SNR!1

Pe(bijbj) = 0; i; j = 1; 2; 3; i 6= j; (3.4)

where Pe(bijbj) is the conditional probability that the labeling bit bi is de-

tected with error given bj is detected with error. This is because in PSK

signaling with Gray mapping, each signal di�ers only in one labeling bit

from its two nearest neighbor signals. This suggests that it might be to the
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advantage of the decoding performance if the noise correlation between the

systematic and parity check bits is not eliminated in this system, although

the turbo-decoding algorithm is suboptimal due to overlooking this correla-

tion.

Simulations have been performed to compare the performance of di�erent

labeling methods as well as the e�ect of noise correlation for this system. The

results are given in 3.2.1.

3.2.1 Simulation Results

Simulations are performed for a system employing a turbo-code with gener-

ator polynomials (5,7). Number of decoding iterations is equal to 4. For an

AWGN channel, the kth received signal can be represented by:

~yk = yk + nk (3.5)

where nk's are the i.i.d., two dimensional, zero mean, Gaussian noise vectors

with independent components and variance N0=2 over each dimension.

Fig. 3.3 shows the results corresponding to interleaver lengths N = 100,

and 380. The BER performances are shown for the system without extra

interleaving and Labeling methods I and II, and for the system with extra

interleaving. For the system with extra interleaving only the performance

corresponding to Labeling II is shown. The reason is that, in this case, the

correlation between the coded bits is ideally eliminated, and based on the re-

sults shown later in Chapter 4, providing less noise protection to the system-

atic bits than to the parity bits results in a better performance. Simulation

results have also con�rmed that labeling II results in the best performance
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Figure 3.3: Performance of combined turbo-code and 8-PSK modulation for dif-

ferent labeling methods, with and without extra interleaving.
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when the extra interleaver is employed. Results for Labeling III are not pre-

sented here but simulations show that this labeling method performs almost

the same as Labeling I, subject to increasing the number of iterations by one.

As can be seen from the �gure, Labeling I without extra interleaving

results in the best performance for N = 100 for the range of SNRs shown

here and for N = 380 for SNRs up to 3 dB. Above 3 dB for N = 380 Labeling

II, again without extra interleaving, performs better. Extra interleaving does

not improve the performance in either case and can be eliminated.

As the simulation results show, a saving of around 0.3-0.5 dB in energy

can be obtained by optimizing the labeling method, and this is achieved at

no extra cost in energy or complexity. Furthermore, elimination of the extra

interleaver not only improves the BER performance, but also reduces the

time delay and complexity of the system.

3.3 Turbo-Code Combined with 16-QAM

Modulation

For this system, puncturing is performed to gain spectral eÆciency of 2 (bits/signal).

The Gray mapping can be achieved in several di�erent ways. Here, we have

adopted the mapping of [37] where each signal di�ers in only 2 bits with each

of its diagonal neighbors, as shown in Fig. 3.4. For this mapping, it can be

seen that the bit positions b1 and b3 are less protected than b2 and b4. In fact,

assuming asymptotically high SNR and hard decision at the demodulator,
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Figure 3.4: Signal mapping for a 16-QAM Gray code.
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we would have:

Pe(b2) � Pe(b4) � Pe(b1)=2 � Pe(b3)=2: (3.6)

This can be veri�ed by comparing the number of nearest neighbors and near-

est diagonal neighbors that di�er in each of these four positions.

The choice of the labeling method depends on the puncturing pattern.

Conventionally, to achieve spectral eÆciencies higher than 1 (bit/signal) for

combined turbo-code and modulation, the parity check bits are punctured

and the systematic bits are all transmitted (e.g. [37], [33]). For example,

for a spectral eÆciency of 2 (bits/signal), every other parity bit is punctured

and only one parity bit is transmitted per each information bit. It is easy

to deduce that in order to compensate for the punctured parity check bits,

the labeling method should assign the transmitted parity bits to the higher

protected bits. Simulation and analytical results con�rm this deduction [33].

Here, however, we propose a di�erent puncturing approach based on the

results developed in Chapter 4. There, it is shown that the performance of

turbo-codes can be improved by assigning more energy to the parity check

bits than to the systematic bits. This suggests that the performance can be

improved if the desired spectral eÆciency is achieved by puncturing a portion

of the systematic bits as well, rather than only the parity check bits. Thus,

we consider puncturing half the systematic and half the second parity check

bits and transmitting all the �rst parity check bits. However, it should be

noted that the pattern according to which the systematic bits are punctured

is critical and depends on the RSC codes.

For example, consider the (5,7) turbo-code studied here. For the �rst
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RSC code, assume that every other systematic bit is punctured and thus

unknown to the decoder, and that all the parity bits are transmitted. If an

error occurs at some point of the decoded block, the error can propagate

through the rest of the block even if all the transmitted bits from that point

on are correctly received. Fig. 3.5 illustrates this phenomenon.

x
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Figure 3.5: Error propagation in a (5,7) RSC code with punctured systematic

bits.

Fig. 3.5 (a) shows the error state diagram of the code. Fig. 3.5 (b), shows

the state transitions of the transmitted code word and a possible decoded

word. On each transition i=j, i and j indicate the systematic and the parity

check bits of that transition, and the systematic bits marked with a small

\x" on top of them are the punctured bits. Assume that due to an error the

decoder is at state 2 at some point in the decoding procedure, where as the

transmitted codeword is at state 0. From this point on, as can be seen from

the code state diagram, all the punctured bits can be decoded with error,
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even though all the transmitted systematic and parity check bits are received

with no error.

For this reason, here we employ a di�erent puncturing pattern for the

systematic bits. In this pattern, the systematic bits are divided into pairs

and every other pair is punctured, i.e., the transmitted systematic bits follow

the pattern, xs1; x
s
2; x

s
5; x

s
6; x

s
9x

s
10; : : :. In order to prevent more than two con-

secutive punctured systematic bits at the second decoder after interleaving

is performed, we restrict the structure of the interleaver such that the punc-

tured and un-punctured bits are interleaved among themselves. In mapping

the codeword bits to the signal constellation, it is reasonable to assign the

bits belonging to the punctured streams to the labeling positions that are

higher protected, i.e., b2 and b4.

Several other mapping techniques were also examined, some of which

are shown in the simulation results (Section 3.3.1) for comparison. As in

the case of 8-PSK modulation, the use of extra interleaving for elimination

of noise correlation seems unnecessary and even degrades the performance.

Simulation results con�rm this statement as shown in the following section.

3.3.1 Simulation Results

Simulations are performed for a turbo-code with (5,7) RSC component codes.

The number of iterations in this case is equal to 10. Several di�erent punctur-

ing and labeling methods with and without extra interleaving were examined,

three of which are illustrated in Fig. 3.6.

The methods shown here are as follows:
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Figure 3.6: Performance of combined turbo-code and 16-QAM modulation for

di�erent puncturing and labeling methods, with and without extra interleaving.
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� Method I: This method employs the puncturing pattern proposed in

Section 3.3, i.e., puncturing every other pair of the systematic and

parity check bits. The punctured parity check bits correspond to in-

formation bits di�erent from those with punctured systematic bits. In

this way, for every information bit in addition to the �rst parity bit,

either the systematic or the second parity bit is transmitted. The la-

beling method assigns the higher protected labeling positions to the

punctured streams, i.e., the systematic and second parity check bits.

As mentioned before, the interleaver is randomly chosen but with the

restriction that the punctured and un-punctured bits are interleaved

separately.

� Method II: This method follows the conventional method of puncturing

every other parity check bit and transmitting all the systematic bits.

Again, labeling is performed such that the punctured streams, i.e.,

the �rst and second parity check bits are assigned to higher protected

positions. No extra interleaving is performed in this case.

� Method III: This is the method that results in the best performance

among the labeling methods used in [33]. This method uses the con-

ventional puncturing, and uses extra interleavers before signal mapping

to eliminate the noise correlation.

As can be seen from the simulation results, the proposed method, Method I,

results in the best performance among all the methods. The improvement is

in the range of 0.3 dB to more than 0.5 dB over the best results indicated

in literature (Fig. 11 of [33]). The simulation results also re-con�rm our
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Table 3.1: Coding gains for di�erent combined coding and 16-QAM modulation

methods.

System Proposed Turbo Modulation TTCM PCTCM

System [33] [68] [10]

Parameters N = 1000 N = 1000 N = 15000 N = 16384

M = 4 M = 4 M = 8 M = 16

Coding Gain (dB) 2.1 1.6 1.0 3.2

proposition that, when Gray mapping is used, the noise correlation among

the received coded bits is to our bene�t and should not be eliminated.

Finally, for the sake of comparison, Table 3.1 shows the coding gains ob-

tained over 64-state TCM at BER=10�5 [65], for several other proposed sys-

tems employing 16-QAMmodulation with spectral eÆciency of 2 (bits/signal).

The complexity of these systems is similar to or higher than (larger number

of states or larger interleaver lengths) the system proposed here.

3.4 Conclusion

In this chapter, systems of combined turbo-code and modulation are studied.

For a coding scheme which employs 8-PSK modulation, it is shown that the

unequal error protection imposed on the labeling bits should be taken into

account when mapping the encoder output bits to the signal points. With



Chapter 3: Combined Turbo-Code and . . . 48

Gray mapping, the best performance is achieved when the labeling position

with the lower error protection is assigned to the second parity check bit and

the other two labeling positions are assigned to the systematic and the �rst

parity check bits. This can achieve up to 0.5 dB SNR improvement without

any additional complexity or delay.

The second system is the combination of turbo-code with 16-QAM signal-

ing. For this system puncturing is performed to achieve a spectral eÆciency of

2 (bits/signal). A new puncturing method is proposed which, together with

appropriate interleaver and labeling method, results in more than 0.5 dB

improvement over the best results shown in literature for the same system.

Conventionally, extra interleaving is performed after the turbo-encoder

and before signal mapping in order to eliminate the noise correlation in the

received coded bits. For both of the above systems, it is shown that using

extra interleaver(s) either degrades the performance or results in marginal

performance improvement for SNRs of practical interest. Thus, the extra

interleaver has been eliminated in the proposed schemes and as a result the

delay and complexity of the systems have been reduced.



Chapter 4

Unequal Power Allocation to

the Turbo-Encoder Output Bits

Conventional turbo-codes assign an equal noise margin to the encoder output

bits when BPSK modulation is employed. In this chapter, we study the e�ect

of UPA to the encoder output bits on the performance of turbo-codes. This

means providing the two groups of turbo-encoder output bits, namely the

systematic and the parity check bits, with di�erent noise margins in order

to achieve a performance improvement. This problem was �rst addressed

in [40], for very low signal to noise ratios. There, it is suggested that more

power should be allocated to the systematic bits. Here, however, it is shown

that as the interleaver length grows and SNR increases more power should

be allocated to the parity check bits for better performance.

49
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In order to explain the code behavior when UPA is applied, the theoret-

ical performance evaluation of turbo-codes is �rst reviewed in Section 4.1.

Section 4.2 studies the e�ect of UPA on the distance properties and the

BER performance. Simulation results are shown in Section 4.3. Section 4.4

gives some �nal remarks on: i) the problem reformulation for applying this

method when turbo-code is employed in a CDMA system; ii) comparison of

the results of this chapter with those of Chapter 3; and iii) conclusion.

4.1 Average Turbo-Code Performance Bound

The performance of a turbo-code depends on the component codes and the

speci�c interleaver employed in the structure of the code. The presence of the

interleaver, however, makes the theoretical analysis of the performance prac-

tically impossible, even for relatively short interleaver lengths. The idea to

evaluate the average performance bound of a turbo-code over all interleavers

was �rst proposed in [13]. This average performance bound is independent of

the speci�c interleaver employed and depends only on the component codes

and the interleaver length. The idea is based on introducing the so called

\uniform interleaver (UI)". A UI of length N is de�ned as a probabilistic

device, which maps a given input of weight i to any one of its
�
N

i

�
distinct

permutations with equal probability 1=
�
N

i

�
. In [13] the union bound over

the ML performance of a hypothetical turbo-code employing a UI is evalu-

ated and it is shown that this bound is the average performance bound of a
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turbo-code over all possible interleavers of length N .

In the following, the evaluation of this bound is brie
y reviewed. Note

that, because of the trellis termination at the end of each block of N input

bits, turbo-code is considered as the parallel concatenation of two component

block codes, denoted as C1 and C2 in the following.

The input-redundancy weight enumerating function (IRWEF), or WEF

for short, of a systematic block code, C, of length N is de�ned as:

AC(W;Z)
4
=
X
i;j

Ai;jW
iZj; (4.1)

where Ai;j denotes the number of codewords originated by an input word

of Hamming weight i whose parity check bits have Hamming weight j, and

W and Z are dummy variables representing the systematic and parity bits,

respectively. The overall weight of the codeword is then equal to i+ j. The

conditional weight enumerating function (CWEF), given the input weight i,

can be obtained from the WEF as follows

AC
i (Z) =

X
j

Ai;jZ
j: (4.2)

This function enumerates the parity check bits of the codewords correspond-

ing to the input words of weight i. The IRWEF can be obtained from the

CWEF by the following relationship:

AC(W;Z) =
X
i

W iAC
i (Z): (4.3)

If the CWEFs of the component codes, AC1
i (Z) and AC2

i (Z), are known, the

CWEF of the turbo-code employing the UI of length N can be evaluated as

Ai(Z) =
AC1
i (Z)AC2

i (Z)�
N

i

� : (4.4)
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The IRWEF of this code can now be found using Eq. (4.3) and represented

in the same form as in Eq. 4.1,

A(W;Z) =
X
i;j

Ai;jW
iZj: (4.5)

This function depends only on the component codes and the interleaver

length of the turbo-code and is independent of the speci�c interleaver used.

It can be shown that in Eq. (4.5), Ai;j is the expected value of the number of

codewords in the turbo-code with Hamming weights i and j in their system-

atic and parity check bits, respectively, over all possible interleavers of length

N . For this reason, this function is called the average weight enumerating

function (AWEF).

The AWEF can be used in conjunction with the union bound to compute

an upper bound on the average bit error probability for ML decoding of the

code. For an AWGN channel the average union bound is found as

Pb �
X
i;j

i

N
Ai;jW

iZj

�����
W=Z=e�Eb=3N0

(4.6)

where Pb is the average bit error rate and Eb=N0 is the SNR per information

bit and thus is multiplied by the factor 1/3 to incorporate the rate of the

turbo-code. The factor i
N
is multiplied by each term in order to incorporate

the measure of BER. A tighter upper bound can be found using the following

formula [13]

Pb �
1

2

X
i;j

i

N
erfc

 r
Eb

3N0

(i+ j)

!
: (4.7)

The performance obtained by the uniform interleaver is achievable by

at least one deterministic interleaver [13]. In [14], the average performance
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bounds based on the above discussion have been compared with simulation

results for turbo-codes of di�erent interleaver lengths. The results show that

the average bound is very close to those obtainable in practice by employing

randomly chosen interleavers.

4.2 Unequal Power Allocation: Theoretical

Analysis

For any linear block code used over an AWGN channel, the minimumweight

codewords (for the asymptotic case) or the �rst few lowest weight codewords

(for lower SNRs) are dominant in determining the code performance. For

a turbo-code, each codeword consists of two groups, the systematic and the

parity check bits. The role of these two di�erent groups is not necessarily the

same in the weight distribution of the dominant codewords. If one group has

a higher contribution in the weight of the dominant codewords, by allocating

more power to this group (and less power to the other group), the distance

properties, and consequently, the performance of the code can be improved.

To study the performance of turbo-code under the e�ect of UPA, we

consider the average weight distribution and performance bound of these

codes. Consider a turbo-code with two identical RSC codes and interleaver

length N . If the systematic and parity check bits are allocated equal power

in transmission through the channel, a 1 in the systematic part of a codeword

will have the same e�ect in the distance of that codeword, as a 1 in the parity

part. Thus, both W and Z in Eq. (4.5) can be replaced by the same variable,
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e.g. w, to result in

A(w) =
X
i;j

Ai;jw
i+j : (4.8)

Now, suppose that the bit-energy Eb is divided unequally between the

systematic and the parity check bits, such that the energy assigned to each

systematic bit is equal to Es = xEb
3
and the energies given to the �rst and

second parity check bits are equal to Ep = (3�x
2
)Eb

3
, where x 2 [0; 3] (x=1

results in equal power allocation (EPA)) 1. For calculating the bound in

this case, W and Z in Eq. (4.5) should be replaced with wx and w(3�x)=2,

respectively. A codeword of the original form W iZj is now equivalent to a

codeword of distance ix + j(3�x
2
). This will result in the following weight

distribution as a function of x

A(w; x) =
X
i;j

Ai;jw
ixwj( 3�x

2
)

=
X
m

Dmw
m; (4.9)

where in the second equality Dm is de�ned as

Dm
4
=

X
i;j:ix+j( 3�x

2
)=m

Ai;j: (4.10)

It should be noted that, in Eqs. (4.9) and (4.10), m can take non-integer

values for x 6= 1.

To analyze the behavior of turbo-codes when UPA is applied and to

compare this behavior for codes with long and short interleaver lengths, we

1The exact bit energy is equal to M+N

N
Eb, where M is the number of required termi-

nating bits. However, this does not a�ect our discussion.
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consider two turbo-codes with (5,7) RSC component codes and interleaver

lengths 760 and 20 as our examples. The weight distribution and performance

bound of these codes are studied in Sections 4.2.1 and 4.2.2, respectively.

Before proceeding further, it should be noted that although in this dis-

cussion the energies assigned to the parity check bits of both component

codes are considered to be equal, the role of the two parity check bits is not

necessarily the same in determining the performance of the code. However,

when a uniform interleaver is considered these two bits have the exact same

role in the AWEF and the e�ect of allocating unequal power to these bits

cannot be shown by this function.

4.2.1 Average Weight Distribution

As explained in Section 2.1.2, due to the presence of the interleaver, and

the recursiveness of the component codes, if a low weight input word results

in a low weight codeword in the �rst component code, it is likely that it

will result in a higher weight codeword in the second component code after

going through the interleaver. Thus, it is expected that, in a turbo-code, the

contribution of the parity check bits be higher than that of the systematic

bits in codewords with low weight, on average. The multiplicities of the �rst

few lowest weight codewords in the AWEFs of the two turbo-codes, chosen

as examples, are shown in Table 4.1. As can be seen from the table, for

both codes, the expected value of the number of codewords in which the

contribution of the systematic bits is higher (j < 2i, in a codeword of the

form W iZj) is less than those in which the contribution of the parity bits is
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Table 4.1: Multiplicities of the codewords of the form W iZj , with i+ j � 12, in

the AWEFs corresponding to (5,7) turbo-codes with N = 20 and N = 760.

Codeword N = 20 N = 760 Codeword N = 20 N = 760

W 3Z4 0.34 0.01 W 6Z4 0.01 0.00

W 3Z5 0.00 0.01 W 2Z9 0.00 3.99

W 2Z6 0.23 0.00 W 3Z8 6.13 0.20

W 4Z4 0.08 0.00 W 4Z7 0.00 0.07

W 3Z6 1.96 0.05 W 5Z6 0.46 0.01

W 4Z5 0.00 0.01 W 2Z10 4.81 5.98

W 5Z4 0.03 0.00 W 3Z9 0.00 2.30

W 2Z8 2.58 2.00 W 4Z8 4.96 0.15

W 3Z7 0.00 0.10 W 5Z7 0.00 0.05

W 4Z6 0.95 0.02 W 6Z6 0.34 0.00

W 5Z5 0.00 0.01
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higher (j > 2i). This e�ect is much stronger for N = 760 as compared to

N = 20. This agrees with the fact that an increase in the interleaver length

reduces the probability that a low weight input block of data results in low

weight outputs in both component codes, simultaneously [14].

Now, consider the e�ect of the UPA on the weight distribution of these

codes. Fig. 4.1 shows the weight distribution of the �rst few codewords in

AWEFs corresponding to three di�erent levels of UPA for N = 760 and

N = 20. The horizontal axis (weight) shows the total Hamming weight

of the codewords, and the vertical axis (freq.) corresponds to the average

number of codewords at each weight. In the diagrams corresponding to the

same interleaver length, the total number of codewords is the same. For

N = 760, it is easy to see that the distribution of the codewords gets nearer

to the origin for x = 1:4 and further from the origin for x = 0:6 (with respect

to the distribution corresponding to EPA). This suggests that the distance

properties of this code improve as x decreases and degrade as x increases. For

N = 20, however, in both levels of UPA the distribution spreads out in both

directions and it is hard to make a comparison of the distance properties for

di�erent levels of UPA at this point.

4.2.2 Average Performance Bound

The average performance bound for di�erent levels of UPA is obtained ac-

cording to the following formula

Pb(x) �
1

2

mmax(x)X
m=mmin(x)

D̂merfc(

r
m

Eb

3N0

); (4.11)
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Figure 4.1: Weight distributions corresponding to di�erent levels of UPA applied

to (5,7) turbo-codes with N = 760 and N = 20.
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where Pb(x) is the probability of bit error and is a function of x, and D̂m is

de�ned as

D̂m
4
=

X
i;j:ix+j( 3�x

2
)=m

i

N
Ai;j: (4.12)

In Eq. (4.11), mmin(x) is the minimum value of m corresponding to x. In

choosing mmax(x) as the truncation weight of the summation, the following

criteria are considered in order to make a fair comparison of the bounds

corresponding to di�erent levels of UPA:

Criterion 1:

mmax(x) is chosen such that the value of
Pmmax(x)

m=m min
Dm is almost con-

stant for di�erent values of x. This criterion results in roughly the same

number of code words for di�erent values of x in evaluating the uni-

form performance bound. However, since the distribution of the weights

varies with respect to the value of x, this results in di�erent values for

the maximum weight codewords that are incorporated in evaluating

the bound, and this may not necessarily make a fair comparison. Thus

a second criterion is considered as well;

Criterion 2:

Here, mmax(x) is chosen to be equal for all values of x, so that the

union bound is evaluated by incorporating codewords of up to the same

weight, but not necessarily the same number of codewords.

The average of the bounds evaluated based on the above criteria gives

a close approximation of the actual behavior of the turbo-code as will be

seen in the next section. The results for N = 760 with Eb=N0 = 2 dB
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and for N = 20 with Eb=N0 = 3 dB are shown in Table 4.2. In obtaining

these results, mmax(1) is chosen such that the bound is close enough to the

corresponding simulation result.

Table 4.2: Average performance bounds for (5,7) turbo-codes with N = 760 and

N = 20, for di�erent UPA levels.

N = 760; Eb=N0 = 2 (dB) N = 20; Eb=N0 = 3 (dB)

x Criterion 1 Criterion 2 Criterion 1 Criterion 2

1.4 3:3 � 10�5 3:9 � 10�5 7:1� 10�4 7:2� 10�4

1.2 2:3 � 10�5 2:3 � 10�5 6:4� 10�4 6:1� 10�4

1 1:8 � 10�5 1:8 � 10�5 5:8� 10�4 5:8� 10�4

0.8 1:5 � 10�5 9:9 � 10�6 5:6� 10�4 5:8� 10�4

0.6 1:3 � 10�5 9:2 � 10�6 1:1� 10�3 1:1� 10�3

0.4 1:0 � 10�5 5:6 � 10�6 6:9� 10�4 6:7� 10�4

0.2 8:8 � 10�6 4:1 � 10�6 8:6� 10�4 9:4� 10�4

0 5:1 � 10�6 4:9 � 10�6 1:3� 10�3 1:8� 10�3

For N = 760, the WEFs corresponding to every branch in the hyper-

trellis of the turbo-code have been approximated by the WEF corresponding

to the branch which connects the all-zero states in both component codes,

as in [14]. Also, in order to limit the amount of computations in developing

the AWEF, the transfer function corresponding to the component codes has

to be truncated to codewords of Hamming weights less than a threshold.
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Since codewords of large weights do not a�ect and are not incorporated

in developing the average bound, this truncation does not a�ect the bound

for x = 1. However, for x 6= 1, there might exist codewords which should

have been encountered in the summation because of their low e�ective weight

as a result of the value of x, but were excluded from the truncated transfer

function due to their high original weight. For this reason, the threshold

should be appropriately selected to reduce this side e�ect. Here, we have

enumerated codewords of Hamming weights less than or equal to 75 in the

component transfer function. This way, only the bounds corresponding to

values of x < 0:2 will be a�ected by this truncation. Thus, in Table 4.2,

the average bounds shown for x = 0 are under estimated. For N = 20, no

approximation has been used and the component wise transfer function has

been evaluated completely.

As can be seen from Table 4.2, for N = 760, performance improvement is

achieved by reducing the protection of the systematic bits. The two criteria

show slightly di�erent behavior for x < 0:4. For N = 20, the best perfor-

mance is achieved by EPA, or very close to EPA. Fig. 4.2 shows the average

of the union bounds obtained according to these two criteria. As can be

seen, for N = 760, an improvement of about 0.5 in the log10(BER) can be

achieved for x = 0:2. Referring to the �gure, this corresponds to more than

0.5 dB improvement in the signal to noise ratio over the case of equal power

allocation. For N = 20 however, the three lowest bounds, corresponding to

x = 0:8; 1; 1:2, are almost indistinguishable and the bound for x = 0:4 shows

higher BERs.
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Figure 4.2: Average performance bounds of (5,7) turbo-codes with interleaver

lengths 20 and 760 for di�erent levels of UPA.
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4.3 Simulation Results and Discussion

Simulations are performed for signaling over AWGN channels. The decoding

is performed using the modi�ed BCJR algorithm, where the Gaussian distri-

butions of each received bit is based on its assigned noise margin. Fig. 4.3

shows the BER performance for di�erent values of x and several interleaver

lengths. As can be seen, the e�ect of UPA is negligible for a short inter-

leaver length (N = 20). For larger interleaver lengths, better performance is

achieved when the systematic bits are protected less than the parity check

bits and this e�ect gets stronger as the block length increases.

It is also observed that as x decreases to very low values, there is a

sudden rise in the BER of the simulation results. This degradation is due to

the sub-optimum nature of the turbo-decoding algorithm. When the error

protection over the systematic bits becomes too low, the extrinsic information

passed to the second component decoder is very unreliable, and consequently,

the iterative decoding procedure does not converge to (or close to) the ML

performance.

In order to observe the e�ect of UPA for SNRs below the error 
oor of the

performance curves, simulation results for this region are shown in Fig. 4.4.

As can be seen, allocating more power to the parity bits results in better

performance after the waterfall region, and also for x = 0:2 the curve is

much more steep in the waterfall region.
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Figure 4.3: Simulation results corresponding to (5,7) turbo-codes with N =

380; 760, and 1000 at Eb=N0 = 2 dB, and N = 20 at Eb=N0 = 3 dB.
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Figure 4.4: Simulation results corresponding to di�erent UPA levels for (5,7)

turbo-code with N = 760, in the waterfall region.
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4.4 Final Remarks

4.4.1 Application to CDMA Systems [56]

In this section we show an alternative formulation of the proposed system

based on the application of turbo-codes for signaling over a CDMA channel.

A usual practice in CDMA systems for matching of rate is based on repeating

the encoder output bits. This feature provides us with a practical method of

implementing the UPA with only a negligible increase in the complexity.

To achieve UPA, we consider a CDMA system in which the systematic

and the parity bits are repeated ks and kp times, respectively. The e�ective

energies assigned to the systematic and parity bits in this case are then equal

to Es =
ksEb

ks+2kp
and Ep =

kpEb
ks+2kp

, respectively. With this de�nition Eq. (4.9)

can now be written as

A(W;Z) =
X
i;j

Ai;j w
i ks
ks+2kp w

j
kp

ks+2kp : (4.13)

It can be easily veri�ed that this coding scheme is equivalent to a turbo-

code employing a UPA of level x = 3ks=(ks + 2kp).

4.4.2 Comparison with Combined Turbo-Code andMod-

ulation

In Chapter 3, where combined turbo-code and modulation is considered, it

is shown that the best performance of the system, when 8-PSK modulation

is employed, can be achieved by assigning the two labeling positions with

higher noise protection to the systematic and the �rst parity check bits, and
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the labeling position with less protection to the second parity check bits.

This may seem to be in contradiction with the results developed in this

chapter, at �rst glance. However, it should be noticed that the comparison

between the two systems is not a fair comparison to begin with. Note that the

performance of a system of combined turbo-code with multilevel modulation

is determined by the Euclidean distance between the codewords, not the

Hamming distance which is case when BPSK modulation is employed. The

Euclidean weight distribution in a turbo-coded modulation system depends

not only on the weights of the systematic and parity parts of the codewords,

but also on the relative positions of these bits in each codeword, because

every three output bits are grouped together and mapped to one signal.

However, as stated in Chapter 3, when extra interleaving is used to eliminate

the correlation between the bits mapped to the same signal, the results are

consistent with the results developed in this chapter.

4.4.3 Conclusion

In this chapter, the e�ect of applying UPA to the turbo-encoder output bits

is studied. It is shown that the roles of the two groups of turbo-encoder

output bits, the systematic and the parity check bits, are not the same in

determining the code performance and, when binary modulation is employed,

the code performance can be improved by allocating unequal power to these

bits. For turbo-codes of very short interleaver lengths, the protection over the

systematic information should be more than the parity information, although

the performance improvement is negligible. Studying the AWEF suggests
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that as the interleaver length gets larger, the contribution of the parity check

bits in the distance of the low weight codewords increases. Thus, for large

interleaver lengths, higher protection of these bits will improve the code

performance. The theoretical bounds that are obtained for di�erent levels of

UPA agree with the simulation results for a wide range of UPA. Improvements

of about 0.5 in the log10(BER) can be achieved by selecting the proper level

of UPA over EPA. This is approximately equivalent to 0.5 dB improvement

in the SNR, in the range of the BERs of interest for voice transmission

(10�3:5; 10�2:5). Simulation results also show that UPA is most bene�cial

when turbo-code is operating at the beginning of the error 
oor region. The

proposed coding scheme can be applied to CDMA systems by unequally

repeated transmission of the coded bits.



Chapter 5

Variance of the Turbo-Code

Performance Bound

As mentioned before, the interleaver plays a key role in the pseudo-random

nature and consequently the high performance of turbo-codes, by reorder-

ing the input block of data given to the second encoder. Thus, the study

and design of the interleaver has become an attractive subject for many re-

searchers in this area and many publications can be found on the design of

the interleaver, some of which are mentioned in the literature review.

Although these works implicitly suggest some conclusions regarding the

e�ect of di�erent choices of interleavers on the performance of turbo-codes,

they are mainly focused on either search algorithms for the best (or at least

good) interleaver(s) or explaining the behavior of these codes in general. So

far, the only statistical study of the turbo-code performance with respect

to interleavers, considers the upper bound on the ML performance of the

69
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turbo-code, averaged over all possible interleavers (e.g. [14]).

If higher order statistic averages of the turbo-code performance with re-

spect to the interleaver are known, it will be possible to have a more accurate

estimate of the distribution of the performance bound with respect to the

interleaver.

As a �rst step, in this chapter, we study the e�ect of the interleaver on

turbo-codes by looking at the variance of the turbo-code performance bound

with respect to all possible interleavers of the same length. This study is

intended to tackle the question brought up in [14]: \For a given interleaver

length, how sensitive is the performance to the interleaver choice?" and to

give more insight regarding what performance to expect from a turbo-code

with �xed component codes and interleaver length. The results of this study

are also expected to provide an estimate of how well a particular interleaver

performs among the range of all possible interleavers and help to evaluate

the e�ectiveness of an interleaver search algorithm.

The same approach in evaluating the variance of the bound can be used

to evaluate the contribution of codewords of di�erent forms in the variance of

the bound and the correlation between the number of codewords of di�erent

forms. These results can then be used to generate algorithms for interleaver

design, or be considered in existing algorithms. This idea is brie
y presented

later in this chapter.

This chapter is organized as follows. In Section 5.1, the mathematical

formulations for developing the second moments of the WEF and union per-

formance bound for a turbo-code are derived. Asymptotic analysis of the

derived formulas for large interleaver length is presented in Section 5.2. Sec-
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tion 5.3 shows some numerical and simulation results for the non-asymptotic

and asymptotic cases, and explains the approach in deriving those results.

Section 5.4, extends the results of previous sections and proposes general

guidelines for using these results in interleaver design algorithms. Finally,

Section 5.5 concludes the chapter.

5.1 Variance of the Performance Bound

The concept of uniform interleaver as a tool to evaluate the average perfor-

mance bound for turbo-codes was explained in Chapter 4. A similar concept

is used here to evaluate the second order moment of the performance bound.

To do this, however, some new variables and notations need to be introduced.

In order to keep the consistency of the notations in the mathematical formu-

las of this chapter, we start by repeating the main formulas of the AWEF

and average performance bound derived in Section 4.1, incorporating these

new notations.

As mentioned in Chapter 4, the WEF of a turbo-code employing a UI of

lengthN is equivalent to the average weight enumerating function, or in other

words, the expected value of the WEF of the turbo-code over all possible

interleavers of this length. Thus for a rate 1=3 turbo-code of interleaver

length N , the AWEF can be written as

E[A] =
X
i;j1;j2

E[Xi;j1;j2]W
iZ

j1
1 Z

j2
2 (5.1)

whereA is the randomWEF with respect to the interleaver,Xi;j1 ;j2 is the ran-

dom variable representing the number of codewords with Hamming weights
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i; j1, and j2 in the systematic, �rst RSC parity check, and second RSC par-

ity check bits, respectively, and E[�] is the expectation operation over all

interleavers of length N .

The average union bound can then be written as

E[B] =
X
i;j1;j2

i

N
E[Xi;j1;j2 ]Q(i; j1; j2): (5.2)

where B is the performance bound corresponding to a random interleaver

and Q(i; j1; j2) =
1
2
erfc(

q
Eb
3N0

(i+ j1 + j2)). To evaluate the second moment

of the performance bound,

E[B2] =
X
i;j1;j2

X
i0;j01;j

0

2

ii0

N2
E[Xi;j1;j2Xi0;j01;j

0

2
]Q(i; j1; j2)Q(i

0; j01; j
0

2); (5.3)

we start with the mean square of the WEF (MSWEF), which is equal to

E[A2] =
X
i;j1;j2

X
i0;j0

1
;j0
2

E[Xi;j1;j2Xi0;j0
1
;j0
2
]W iZ

j1
1 Z

j2
2 W

0i0Z 0

1

j01Z 0j
0

2

2 : (5.4)

Based on the de�nition of UI, coding with a turbo-code that employs this

interleaver is equivalent to coding with a turbo-code which randomly chooses

an interleaver for each block of input data independently from those of the

previous blocks [14]. Thus, the random variables Xi;j1 ;j2 and Xi0;j01;j
0

2
are

independent unless (i; j1) = (i0; j 01). This, however, is not true when using a

practical interleaver. For a practical turbo-code, if the value of one random

variable (e.g., Xi;j1;j2) is �xed, some restriction is imposed on the structure

of the interleaver and thus on the value of other random variables (e.g.,

Xi0;j0
1
;j0
2
). The assumption of the independence, however, does not a�ect

the validity of Eq. (5.1), since only the �rst moment of these variables is
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evaluated in that case. On the other hand, to evaluate the higher order

statistics of the WEF, the correlation between the above random variables

has to be taken into account. Thus, in evaluating the MSWEF, we assume

that every probabilistic experiment consists of choosing any one of the N !

possible interleavers with equal probability, and �xing it for the rest of that

experiment.

For simplicity in notations, in the following, Xi;j1 ;j2 and Xi0 ;j0
1
;j0
2
are re-

placed with X and X 0, respectively. In order to �nd E[XX 0], the following

de�nitions are made: Let Sx;y be the set of all input words of weight x which

result in codewords of parity weight y from the �rst component code, and

SI
x;y be the set of all input words of weight x which result in codewords of

weight y from the second component code. Also let:

i) sg, 1 � g � G, be the elements of Si;j1,

ii) s0g0, 1 � g0 � G0, be the elements of Si0;j0
1
,

iii) sIk, 1 � k � K, be the elements of SI
i;j2

,

iv) s0Ik0, 1 � k0 � K 0, be the elements of SI
i0;j0

2

.

Letting

Xg =

8<
: 1; if sg is re-ordered to an element of SI

i;j2
by the interleaver

0; otherwise

and

X 0
g0 =

8<
: 1; if s0g0 is re-ordered to an element of SI

i0;j02
by the interleaver

0; otherwise
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we have

X = X1 +X2 + : : :+XG (5.5)

X 0 = X 0

1 +X 0

2 + : : :+X 0

G0

and consequently,

E[XX 0] = E[

GX
g=1

Xg

G0X
g0=1

X 0

g0] =

GX
g=1

G0X
g0=1

E[XgX
0

g0 ]: (5.6)

Since the random variables Xg and X 0
g0 only take values of 0 or 1, we have

E[XgX
0

g0 ] = Pr(Xg = 1 and X 0

g0 = 1)

= Pr[

K[
k=1

K0[
k0=1

(sg ! sIk

\
s0g0 ! s0Ik0)]

=

KX
k=1

K0X
k0=1

Pr(sg ! sIk

\
s0g0 ! s0Ik0) (5.7)

where \!" indicates the re-ordering process using the interleaver,

Pr(sg ! sIk
T
s0g0 ! s0Ik0) is the probability that the randomly chosen inter-

leaver re-orders the input words sg and s0g0 into s
I
k and s0Ik0, respectively, and

the last equality results from the fact that the events (sg ! sIk
T
s0g0 ! s0Ik0)

are disjoint for di�erent values of k or k0. Substituting (5.7) in (5.6), we get

E[XX 0] =

GX
g=1

G0X
g0=1

KX
k=1

K0X
k0=1

Pr(sg ! sIk

\
s0g0 ! s0Ik0): (5.8)

The following theorem evaluates the probability involved in (5.8).

Theorem 1: If sg and s0g0 have r 1's in common positions, and sIk and

s0Ik0 have r
I 1's in common positions, where 0 � r; rI � min(i; i0), then

Pr(sg ! sIk

\
s0g0 ! s0Ik0) =

8<
:

r!(i�r)!(i0�r)![N�(i+i0�r)]!

N !
if r = rI

0 if r 6= rI :
(5.9)
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Int.

Figure 5.1: An example of two input words and their interleaved versions with r

commonly positioned 1's.

Proof

Since sg and s0g0 have r commonly positioned 1's, their interleaved versions

should have the same number of commonly positioned 1's, as well. Thus,

there exists no interleaver that realizes this event when r 6= rI , i.e.,

Pr(sg ! sIk

\
s0g0 ! s0Ik0) = 0; if r 6= rI :

Fig. 5.1 shows a schematic example of sg and s0g0, interleaved to sIk and s0Ik0,

respectively, where r = rI .

In this case the interleaver has the following properties:

� mapping the r positions of the common 1's in sg and s0g0 to the r

positions of the common 1's in sIk and s
0I
k0 ;

� mapping the (i�r) remaining 1's in sg to the positions of the remaining

(i� r) 1's in sIk;

� mapping the (i0�r) remaining 1's in s0g0 to the positions of the remaining

(i0 � r) 1's in s0Ik0;
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� �nally, mapping the [N � (i + i0 � r)] positions of the common 0's in

sg and s0g0 to the positions corresponding to the common 0's in sIk and

s0Ik0.

Within each of the above bit groups, the permutation of the bits does not

matter. Thus, the number of interleavers satisfying the above conditions is

r! (i� r)! (i0 � r)! [N � (i+ i0 � r)]!

and consequently, the probability that one of these interleavers is selected

when randomly picked from the ensemble of all N ! interleavers is

r!(i� r)!(i0 � r)![N � (i+ i0 � r)]!

N !

and the proof is complete. 2

We denote the non-zero part of the probability in Eq. (5.9) with �r(i; i
0).

Note that in (5.8), for each pair of input words (sg; s
0
g0) with r commonly po-

sitioned 1's, only those pairs of input words (sIk; s
0I
k0) which also have r com-

monly positioned 1's result in the non-zero terms �r(i; i
0). Let qr(i; j1; i

0; j01)

and qr(i; j2; i
0; j02) denote the number of input word pairs (sg; s

0
g0) and (sIk; s

0I
k0)

respectively, where each pair has r commonly positioned 1's. Eq. (5.8) can

now be written as

E[XX 0] =

min(i;i0)X
r=0

qr(i; j1; i
0; j01)qr(i; j2; i

0; j02)�r(i; i
0): (5.10)

And �nally, substituting Eq. (5.10) in Eq. (5.3) results in

E[B2] =
X
i;j1;j2

X
i0;j0

1
;j0
2

min(i;i0)X
r=0

ii0

N2
qr(i; j1; i

0; j01)qr(i; j2; i
0; j02)�r(i; i

0)Q(i; j1; j2)Q(i
0; j01; j

0

2)

(5.11)
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The variance of the bound can then be evaluated as

var[B] = E[B2]�E2[B]: (5.12)

5.2 Asymptotic Behavior

In this section we study the MSWEF and E[B2] for a large interleaver length.

The function qr(i; j; i
0; j0), de�ned in Section 5.1, depends on N as well as

the component codes. In the following, this function will be further analyzed

in order to be able to represent the MSWEF and E[B2] in the form of poly-

nomials in N . Once this is achieved, it can be said that, the behavior of

these functions for asymptotically large N is dominated by the terms with

the highest power of N .

A codeword of the form W iZj in each component code, is constructed

by the concatenation of n, 1 � n � bi=2c, error events with possible zeros

in between consecutive error events. Suppose two input words, s and s0,

consisting of n and n0 error events, respectively, have r commonly positioned

1's. Furthermore, assume that these r common bits are contained in m and

m0 error events of s and s0, respectively, where min(1; r) � m � min(r; n) and

min(1; r) � m0 � min(r; n0). We call these error events the tied up events.

The reason for choosing this name is that each of these error events is bound

to be placed in certain position(s) relative to one or more tied up events of the

other codeword, such that the two codewords have r commonly positioned

1's in their corresponding input words. The remaining (n�m) and (n0�m0)

error events (called loose events) can be placed anywhere along the block of
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length N as long as they do not cause extra overlapping 1's between the two

input words. Fig. 5.2 illustrates the above de�nitions, where the horizontal

lines represent the all-zero path and the diverged paths represent the error

events.

Loose events

Tied up eventsTied up events

Cluster

Codeword of s0

Codeword of s

Cluster

Figure 5.2: Schematic illustration of the relative positions of two codewords re-

sulting from input words s and s0 with n = 5; n0 = 4; m = 3; m0 = 2, and c = 2.

The tied up events form c \cluster" of events, min(1; r) � c � min(m;m0).

These c clusters plus the (n�m)+(n0�m0) loose error events can be placed in

di�erent positions along the block of length N by adding zeros between them

or placing them adjacent to each other. This can be done in
�

N�Lt+1

n+n0�m�m0+c

�
ways, where Lt is the summation of the lengths of the clusters and loose

events in both codewords. The length of the cluster is de�ned as the distance

between the point where the �rst error event in the cluster starts, up to the

point where the last error event in that cluster ends. In the following formulas

for asymptotic behavior, Lt is eliminated with respect to N in order to reduce

the complexity of computations.
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Now, qr(i; j; i
0; j0) can be written as

qr(i; j; i
0; j0) =

X
n

X
n0

X
m

X
m0

X
c

q̂r(i; j; i
0; j0; n; n0;m;m0; c)

�
N

n+ n0 �m�m0 + c

�
(5.13)

where q̂r(i; j; i
0; j0; n; n0;m;m0; c) is the number of codeword pairs of the form

(W iZj;W 0i0Z 0j0) with n and n0 error events; these error events have r com-

monly positioned 1's, resulting in m and m0 tied up events which form c

clusters. Note that q̂r depends only on the component codes and not on N .

As a result, Eq. (5.10) can be re-written as

E[XX 0] =
X
r

X
e12E1

X
e22E2

Ce1 fe1(N)Ce2 fe2(N)�r(i; i
0) (5.14)

where E1 and E2 are the sets of the possible 5-tuples (n1; n
0
1;m1;m

0
1; c1) and

(n2; n
0
2;m2;m

0
2; c2), respectively, and

Ce1 = q̂r(i; j1; i
0; j01; n1; n

0

1;m1;m
0

1; c1) (5.15)

fe1(N) =

�
N

n1 + n01 �m1 �m0
1 + c1

�
(5.16)

Ce2 = q̂r(i; j2; i
0; j02; n2; n

0

2;m2;m
0

2; c2) (5.17)

fe2(N) =

�
N

n2 + n02 �m2 �m0
2 + c2

�
: (5.18)

Substituting Eq. (5.14) in Eq. (5.4) and using the approximation
�
a

b

�
�

ab=b! for a� b, we have

E[A2] �
X
t2T

FtN
Gt W iZj1

1 Z
j2
2 W

0i0Z 0

1

j01Z 0j
0

2

2 (5.19)
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where T represents the set of possible 17-tuples of all the variables involved

in the summation,Gt = n1+n
0
1+n2+n

0
2�m1�m

0
1�m2�m

0
2�i�i

0+c1+c2+r,

and Ft is not a function of N . The following theorem �nds the conditions

under which Gt takes its maximum value.

Theorem 2: The maximum value of Gt is equal to 0 and is achieved if

and only if the following conditions hold

i = 2k;

n1 = n2 = i=2 = k;

i0 = 2k0;

n01 = n02 = i0=2 = k0;

r = 2l;

m1 = m2 = m0
1 = m0

2 = c1 = c2 = r=2 = l;

(5.20)

where k; k0 = 1; 2; 3; : : :, and l = 0; 1; 2; : : : ;min(k; k0).

Proof:

It can be easily seen that, in Gt, maximizing the terms corresponding to

subscript 1 and those corresponding to 2 can be performed independently,

i.e.,

(Gt)max = (n1+n
0

1�m1�m
0

1+c1)max+(n2+n
0

2�m2�m
0

2+c2)max�i�i
0+r:

Thus, in this proof, we only �nd M1 = (n1 + n01 �m1 �m0
1 + c1)max as the

maximization corresponding to the second RSC code follows with exactly the

same analogy.

Suppose m1 of the n1 error events of the input word s are tied up with

m0
1 of the n

0
1 error events of the input word s

0, and the tied up events result
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in c1 clusters. Since s and s0 have r commonly positioned 1's, together they

contain i+ i0 � r positions containing a 1. De�ne a \bunch" of events to be

either a cluster or a loose event. The number of bunches is b = c1 + (n1 �

m1)+(n01�m0
1). Since for recursive convolutional codes each error event has

a Hamming weight of at least two in the systematic part, and each bunch

contains at least one error event,

c1 + n1 �m1 + n01 �m0

1 �
i+ i0 � r

2
: (5.21)

The equality holds if and only if each loose event and each cluster contains

exactly two positions containing a 1. This condition is met by codewords

satisfying the following conditions:

� Each codeword is constructed of error events with input weight 2.

� Each error event is either a loose event or exactly matches and is tied

up with an error event of the other codeword.

Similarly,

c2 + n2 �m2 + n02 �m0

2 �
i+ i0 � r

2
(5.22)

with equality holding under the same conditions. As a result,

(Gt)max = 0: (5.23)

2

In addition, Appendix B gives an alternative proof of Theorem 2, which is

mathematicallymore detailed and elaborates on the contribution of codeword

pairs (with di�erent systematic weights and relative positions) to the variance

of the bound.
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Keeping only the terms with the largest power of N and de�ning a new

function ~q(k; j; k0; j 0; l)
4
= q̂2l(2k; j; 2k

0; j0; k; k0; l; l; l) result in the following

formula for the asymptotic MSWEF

E[A2] =
X

(k;k0;j1;j2j
0

1
;j0
2
;l)

(2l)!(2k � 2l)!(2k0 � 2l)!

[(k + k0 � l)!]2

�~q(k; j1; k
0; j01; l) ~q(k; j2; k

0; j02; l)W
iZ

j1
1 Z

j2
2 W

0i0Z 0
1
j0
1Z 0j

0

2

2 : (5.24)

The asymptotic formula for the mean square of the bound is then

E[B2] =
X

(k;k0;j1;j2j
0

1 ;j
0

2;l)

(2k)(2k0)

N2

(2l)!(2k � 2l)!(2k0 � 2l)!

[(k + k0 � l)!]2

�~q(k; j1; k
0; j 01; l) ~q(k; j2; k

0; j02; l)Q(i; j1; j2)Q(i
0; j01; j

0
2): (5.25)

As can be seen from Eq. (5.25), E[B2] is proportional to N�2. On the other

hand, E[B] is proportional to N�1 for asymptotically large N [15]. Thus,

the variance of the performance bound is also proportional to N�2. As a

result, we see that the coeÆcient of variation (cv[B] = stdv[B]=E[B]) of

the performance bound, i.e., the ratio of the standard deviation to the mean,

does not change with N as N approaches in�nity.
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5.3 Numerical Results and Discussion

To reduce the operational complexity, the error functions are replaced with

their exponential upper bounds, in calculating the numerical results of this

section.

5.3.1 Non-Asymptotic Case

For this case, E[B2] is evaluated according to (5.11). We consider a super

error state diagram constructed by the combination of the component code

error digram with itself 1. The super state diagram is constructed as follows:

� The state [S; S0] corresponds to states S and S0 of the RSC code;

� The transition labels from state [S1; S
0
1] to [S2; S

0
2] are in the form of

W iZjW 0i0Z 0j0RrL, where i and j correspond to the systematic and

parity check bits of the transition from state S1 to S2 in the component

code and are evaluated to 0 or 1 accordingly, i0 and j0 correspond to

the transition from S 01 to S02 and are evaluated in the same way, r is

equal to 1 if both i and i0 are equal to 1, and is equal to 0 otherwise,

and L represents the length of the codeword and obviously has power

1 in all transition labels;

� The state diagram starts from the state [0; 0s] and ends at the state

[0; 0f ], where the subscripts are added to distinguish between the start-

1If di�erent component codes are employed, we need to construct two super state

diagrams, each corresponding to one component code.
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ing and the �nishing states. There is no transition to the state [0; 0s]

and no transition from the state [0; 0f ].

Fig. 5.3 shows the trellis diagram and part of the super state diagram corre-

sponding to a (5,7) RSC code, where the brackets in denoting the states are

omitted.

1; 20

WZW
0
RL

W
Z
Z
0 L

0; 10

0; 30

(b)

W

W
Z

Z

3

0

1

2

3

0

1

2

(a)

Figure 5.3: (a) Trellis section of a (5,7) RSC code, (b) Part of the super error

state diagram.

The transfer function of this state diagram enumerates the error events

of the super trellis corresponding to the state diagram. Each error event is

characterized by the number of 1's in the systematic and parity check bits of

each codeword, the number of their overlapping 1's in the systematic part,

and the length of the event from the point where at least one of the codes

diverges from the all zero path to the point where both codes re-merge to

the all zero path. The transfer function is then used to �nd qr(i; j; i
0; j0) for

di�erent i; j; i0; j 0, and r, with an approach analogous to that of �nding the

conditional weight enumerating function explained in [14].
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Table 5.1 shows the coeÆcient of variation of the bound for rate 1/3 turbo-

codes with identical (5,7) RSC component codes and interleaver lengths N =

100 and N = 1000.

Table 5.1: Non-asymptotic results corresponding to turbo-codes with (5,7) RSC

codes.

Eb=N0 N = 100 N = 1000

(dB) cv[B] log10E[B] cv[B] log10E[B]

2 0.45 -2.60 0.44 -4.23

3 0.61 -3.65 0.55 -4.96

4 1.02 -4.50 0.78 -5.17

5 1.36 -5.43 1.10 -6.28

In order to obtain an estimation of the distribution of the performance

bound with respect to di�erent interleavers, the union upper bound has been

calculated for the same codes over a number of randomly selected interleavers.

Figs. 5.4 and 5.5 show the corresponding results.

In these histograms, the x-axis represents the performance bound and the

y-axis represents the number of interleavers which result in that performance.

In calculating these results only input words of weights up to 6 (for N = 100)

and 4 (for N = 1000), resulting in codewords with total weights up to 30,

are considered. These limitations are the cause for the simulation results to

di�er from the theoretical results of Table 5.1. As can be seen from Figs. 5.4

and 5.5 and Table 5.1, the coeÆcient of variation increases with SNR. This is
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Figure 5.4: Distribution of the performance bound with respect to interleavers of

length N = 100 for (5,7) turbo-code, (a) SNR=3 dB, cv[B]= 0.45; (b) SNR=5 dB,

cv[B]= 1.27
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Figure 5.5: Distribution of the performance bound with respect to interleavers of

length N = 1000 for (5,7) turbo-code. (a) SNR=2 (dB), cv[B]=0.33, (b) SNR=3

(dB), cv[B]=0.43, (Cont.)
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Figure 5.5: (Cont.) Distribution of the performance bound with respect to inter-

leavers of length N = 1000 for (5,7) turbo-code, (c) SNR=5 dB, cv[B]= 0.90.
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due to the very low percentage of the interleavers which result in higher BER

bounds. The majority of the interleavers, however, have performances close

to each other. For example, for N = 100 and SNR=5 dB, less than 7% of

the randomly chosen interleavers result in error performance bounds higher

than 10�5; and for N = 1000 and SNR=5 dB, only 0:37% of the interleavers

result in bounds higher than 0:7� 10�6.

5.3.2 Asymptotic Case

In this case, only codeword pairs which satisfy the conditions stated in Theo-

rem 2 are enumerated. For this reason, in the super state diagram only those

paths corresponding to weight 2 in the systematic part of the codewords are

taken into account and the error events are either completely overlapping

(r = 2) or have no overlapping bits. Table 5.2 shows the results of the

asymptotic analysis.

Table 5.2: Asymptotic results corresponding to turbo-codes with (5,7) and (7,5)

component codes.

Eb=N0 (dB) cv[B]

(7,5) (5,7)

2 0.11 0.33

3 0.21 0.41

4 0.27 0.48

5 0.34 0.55
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The asymptotic results for the (5,7) turbo-code follow the trend of Ta-

ble 5.1; the coeÆcient of variation increases with SNR but remains lower

than the corresponding values for �nite interleaver lengths.

In order to compare turbo-codes with primitive and those with non-

primitive feedback polynomials, the asymptotic results corresponding to the

(7,5) turbo-code are shown in Table 5.2 as well. As can be seen from the table,

the performance bound of the non-primitive feedback polynomial turbo-code

has a smaller coeÆcient of variation.

5.4 Contribution of Di�erent Error Patterns

in Turbo-Code Performance

Knowledge of the variance of the turbo-code performance bound with respect

to the interleaver gives an estimation of the degree by which the performance

can vary according to the choice of the interleaver. On the other hand, when

designing or searching for an interleaver, it is not practically possible to

optimize the interleaver by considering more than a few number of codewords

of di�erent weights. For example, the complexity of the algorithm proposed

in [25] is of O(N3) when error patterns consisting of a single error event are

considered in the cost function. The complexity grows to O(N4), if only one

error pattern consisting of double error events is included, and to O(N5), for

triple error patterns and so on. Thus it is important to identify the most

signi�cant codewords to be considered in the interleaver design procedure.
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The second order mean of the bound can be written as follows:

E[B2] =
X
i;j1;j2

i2

N2
E[X2]Q2(i; j1; j2)

+
X
i;j1;j2

X
(i0;j0

1
;j0
2
) 6=(i;j1;j2)

ii0

N2
E[XX 0]Q(i; j1; j2)Q(i

0; j 01; j
0

2): (5.26)

Thus,

var(B) = E[B2]� (E[B])2

=
X
i;j1;j2

i2

N2
var[X2]Q2(i; j1; j2)

+
X
i;j1;j2

X
(i0;j0

1
;j0
2
) 6=(i;j1;j2)

ii0

N2
cov[XX 0]Q(i; j1; j2)Q(i

0; j01; j
0

2) (5.27)

The idea proposed here is to obtain the contribution of the variances

of each codeword of the form W iZj1
1 Z

j2
2 to the total variance and identify

those codewords which have the most signi�cant contribution to the variance.

These are the codewords that lead to the changes in the performance bound as

a result of changing the interleaver. Furthermore, the correlation coeÆcient

between each pair of codewords can also be evaluated:

corr(X;X 0) =
cov(X;X 0)p
var(X)var(X 0)

: (5.28)

The correlation coeÆcient provides a measure of the dependency and the

nature of this dependency between the two codewords. If corr(X;X 0) is
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close to 1, it can be concluded that, by changing the interleaver, the values

of X and X 0 change in the same direction. As a result even if both X and

X 0 have high contributions in the variance, it suÆces to consider only one of

them (preferably the one which results in lower computational complexity) in

the design procedure. Of course, this group of codewords should be given the

appropriate weight to compensate for the eliminated group of codewords. On

the other hand, if the correlation coeÆcient is close to -1, it can be concluded

that the values of X and X 0 change in opposite directions and thus there is

a tradeo� in minimizing one or the other. Consequently, both codeword

groups should be considered in the design procedure if their contributions to

the variance are signi�cant. Finally, when the correlation coeÆcient between

two codewords is close to zero, which indicates lower dependency between

the two, again both codewords should be considered for interleaver design

purposes.

Here, the same experimental approach of Section 5.3 is used to evaluate

the contribution of codewords with di�erent input weights in the mean and

variance of the performance bound. Tables 5.3 and 5.4 show the results cor-

responding to N = 100 and N = 1000, respectively. These results show

the degree by which the choice of the interleaver a�ects the contribution of

codewords with certain input (systematic) weight in the total performance

bound. For example, it can be seen from Table 5.3 that codewords with

input weights 2 and 3 both contribute signi�cantly in the average perfor-

mance bound, however, the contribution of codewords with input weight 3 is

signi�cantly higher in the variance.

For N = 1000 and moderate SNR (Table 5.4, SNR=3 dB), the contribu-
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Table 5.3: Contribution of codewords of di�erent input weights in the mean and

variance of the performance bound for N = 100, SNR=3 dB and SNR= 5 dB.

input weight contribution contribution contribution contribution

to mean to variance to mean to variance

2 0.42 0.13 0.37 0.02

3 0.40 0.72 0.59 0.95

4 0.08 0.02 0.03 0.001

5 0.05 0.00 0.00 0.001

6 0.04 0.00 0.00 0.00

Table 5.4: Contribution of codewords of di�erent input weights in the mean and

variance of the performance bound for N = 1000, SNR=3 dB and SNR=5 dB.

SNR=3 dB SNR=5 dB

input weight contribution contribution contribution contribution

to mean to variance to mean to variance

2 0.83 0.75 0.87 0.28

3 0.09 0.17 0.12 0.73

4 0.08 0.005 0.0013 0.00
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tion of codewords with input weight 2 is higher both in the mean and the

variance. However, for SNR=5, the contribution of codewords with input

weight 2 drops signi�cantly in the variance, although even slightly increased

in the mean. This shows that codewords with a high contribution to the aver-

age of the performance bound do not always contribute highly in the variation

of the performance. In all cases, input words of weights 4 and higher have a

very insigni�cant contribution in both the mean and the variance.

The distributions of the performance bound components corresponding to

codewords of input weights 2 and 3, are shown in Figs. 5.6 for N = 100 and

SNR=5 dB and Fig. 5.7, for N = 1000 and SNR=2 dB. The distributions

of the total bounds corresponding to these �gures are shown in Figs. 5.4 (b)

and 5.5 (a), respectively. As can be seen from Fig. 5.6, the distribution of

the component of the bound corresponding to codewords of input weight 2

is quite concentrated around the mean and does not have a large standard

deviation. The distribution of the component of the bound corresponding to

codewords of input weight 3 mainly follows the shape of the distribution of

the total bound (refer to Fig. 5.4 (b)). On the other hand, it can be seen from

Fig. 5.7 that for N = 1000 and SNR=2 dB, the component of the bound that

is more spread out and resembles the shape of the distribution of the total

bound (refer to Fig. 5.5 (a)) corresponds to codewords with input weight 2.

These results are also expected from Tables 5.3 and 5.4.
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Figure 5.6: Distribution of the (a) weight 2 component and (b) weight 3 com-

ponent of the performance bound, with respect to random interleavers of length

N = 100 for (5,7) turbo-code with SNR= 5 dB.
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Figure 5.7: Distribution of the (a) weight 2 component and (b) weight 3 com-

ponent, of the performance bound, with respect to random interleavers of length

N = 1000 for (5,7) turbo-code with SNR=2 dB.
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5.5 Conclusion

In this chapter, the variance of the turbo-code performance bound over all

possible interleavers is evaluated. It is shown that the coeÆcient of variation

of the bound is asymptotically constant with the interleaver length. Fur-

thermore, this ratio is relatively small for lower SNR values and increases as

the SNR increases. Study of the analytical results and the distribution of

the performance bound over a sample of randomly chosen interleavers shows

that: (a) as the interleaver length increases, cv[B] decreases; (b) as SNR

increases, the distributions get more concentrated around the average per-

formance bound and only a small percentage of interleavers result in high

BERs, which cause cv[B] to increase. These results support the statement

made in [63], where for a turbo-code of length 65536 it is stated that most

pseudo-random interleavers result in the same multiplicity of the free dis-

tance codewords. In addition, it can be observed that the performance of

those interleavers which are not close to the performance of the majority of

the random interleavers, in fact, deviate quite signi�cantly from the average

bound.

Asymptotic results for large interleaver lengths are also evaluated. The

results agree with the non-asymptotic results in terms of the trend of the coef-

�cient of variation when SNR and interleaver length change. The asymptotic

results also show that turbo-codes with non-primitive feedback polynomials

have smaller standard deviations. This may suggest that the choice of the

interleaver has a stronger e�ect on the performance of turbo-codes with prim-

itive than that of those with non-primitive feedback component codes.
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Results of this work can also be extended to evaluate the contribution

of di�erent error patterns in the variance of the bound, and thus to pro-

vide guidelines in identifying the most signi�cant codewords in the design

of turbo-code interleaver. The idea is based on considering the codewords

which contribute highly in the variance of the performance. The correla-

tion coeÆcient between di�erent error patterns can also be evaluated among

these codewords. This can be used to identify the codewords that should be

considered simultaneously or those that can be considered independently in

the interleaver design procedure as stated in Section 5.4.

Interleaver design algorithms which consider optimizing the interleaver

based on a selection of error patterns (e.g. [25]) choose patterns that con-

tribute highly in the mean of the performance bound. However, numerical

results obtained here, show that codewords that contribute highly in the vari-

ance of the performance bound are not necessarily the same as codewords

with high contribution in the mean. This suggests that better interleavers

can be designed by making that selection based on the contribution of error

patterns in the variance of the bound. Moreover, their contribution levels

change according to the operating SNR, again suggesting that an interleaver

which is good at low SNR might not be good at high SNR.



Chapter 6

Conclusion

This thesis aims at providing results and insight towards the application

of turbo-codes in digital communication systems, mainly in three subjects:

coding combined with modulation; performance improvement by employing

UPA; and sensitivity of the code performance towards the choice of the in-

terleaver.

Turbo-codes can be combined with bandwidth eÆcient modulation, to

create a coding scheme applicable for communication over bandwidth limited

channels. Chapter 3 studies these applications by focusing on the puncturing

and signal mapping methods and the presence of noise correlation in these

systems.

When mapping the coded bits to the signals of anM -ary constellation, the

labeling method employed can a�ect the performance of the coding scheme.

This is due to the fact that, in general, the bits mapped to the same signal

are protected unequally from the channel noise, depending on their position

99
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in the labeling bits. Here we have studied examples of turbo-code combined

with 8-PSK and 16-QAM modulations and Gray mapping, to show how the

labeling and puncturing methods can a�ect the performance of the coding

scheme. The labeling methods are optimized for both systems and a new

puncturing method is proposed for the system employing 16-QAM modula-

tion. Improvements of more than 0.5 dB in SNR are achieved over the best

performances so far indicated in literature.

For any multi-dimensional modulation scheme, the labeling bits of the

same signal are a�ected by correlated noise. In [37], this correlation is elimi-

nated by interleaving the encoded bits prior to signal mapping. However, as

shown in Chapter 3 the impact of this correlation is di�erent according to the

modulation scheme and may even be unnecessary. It is shown that, for the

coding schemes employing 8-PSK or 16-QAM modulation, extra interleaving

for eliminating the noise correlation results in no or negligible performance

improvement for BERs of practical interest. This result is important espe-

cially when long delays are not tolerable.

Theoretical analysis of combined turbo-code and modulation is suggested

for future research in order to provide further insight towards the design of

more powerful coding schemes of this type. The presence of the interleaver in

the structure of the code imposes a challenging problem in this regard. Even

the assumption of uniform interleaving does not solve this problem, unlike

when BPSK signaling is used. When a group of encoded bits are mapped

to a signal, the performance of the coding scheme depends not only on the

weight distribution of the turbo-code, but also on the relative positions of the

output bits. The only theoretical approach in this subject so far considers
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extra interleavers in the form of uniform interleavers, which eliminate the

correlation between the coded bits mapped to the same signal [33]. This, in

fact, reduces the problem to a problem very similar to performance evaluation

for turbo-codes with BPSK signaling. However, as shown in Chapter 3, extra

interleaving of the encoded bits is not always justi�ed.

In Chapter 4, a coding scheme based on providing the turbo-encoder out-

put bits with unequal noise margins is proposed. It is shown that the contri-

butions of the systematic and parity check bits in the distance properties of

turbo-codes are not the same. As interleaver length gets larger, the contri-

bution of the parity check bits in the distance of the low weight codewords

increases. Thus, for large interleaver lengths, higher protection of these bits

improves the code performance. Theoretical analysis and simulation results

show improvements of about 0.5 in the log10(BER), equivalent to 0.5 dB in

the SNR, when proper level of UPA is used compared to the conventional

EPA case. It is also shown how the proposed coding scheme can be applied to

CDMA systems by unequally repeated transmission of the coded bits. The

results obtained here can also be applied when multi-level modulation is used

in conjunction with turbo-coding and UPA is automatically imposed on the

coded bits. This, however, is true only when noise correlation has been fully

eliminated by means of extra interleaving as mentioned in Section 4.4.2.

In Chapter 5, the variance of the turbo-code performance bound over all

possible interleavers of the same length is evaluated. This study is a �rst

step towards answering the question of \the sensitivity of the turbo-code

performance towards the choice of the interleaver", brought up in [14].

The variance of the bound is evaluated for both asymptotic (large N) and
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non-asymptotic cases. It is proven that the ratio of the standard deviation

over the mean is asymptotically constant (for large N), and it is shown that

this ratio decreases with N in approaching the constant asymptotic value.

Theoretical results also show that this ratio increases with SNR.

In order to provide an estimate of the shape of the performance distribu-

tion, the performance bound is computationally evaluated for a large number

of interleavers. These results agree with the theoretical results. These dis-

tributions also show that the increase in the ratio of the standard deviation

over the mean for higher SNRs is due to the very low percentage of the in-

terleavers which deviate quite signi�cantly from the mean. The majority of

the randomly chosen interleavers, however, result in performances very close

to the average performance.

Due to high computational complexity, the distributions of the perfor-

mance bounds developed here have the following limitations: the codewords

taken into account in developing the bounds are limited in their input and

overall weight and the number of interleavers for which the performance

bound is evaluated is obviously limited. To obtain a better approximation

of this distribution, theoretical evaluation of higher order moments of the

performance bound with respect to interleavers can be considered as an ex-

tension of this work.

The approach in evaluating the variance is extended to evaluate the con-

tribution of input words of di�erent weights in the variance of the turbo-code

performance. General guidelines are provided for identifying the most sig-

ni�cant codewords in the design of turbo-code interleaver. Numerical results

show that these codewords are not necessarily the same as codewords with
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high contribution on the mean of the performance bound. For example, for

N = 1000 and SNR=5 dB, the contribution of codewords with input weight

2 is higher than those with input weight 3 in the mean of the performance

bound, but drops signi�cantly below that of code words with input weight 3

in the variance.

The above research and the obtained results provide the grounds for fu-

ture research in developing interleaver design algorithms which focus on the

most signi�cant error patterns in optimizing the interleaver. For example,

in [25] experimental results are used to identify error patterns to be consid-

ered in the cost function of the interleaver design algorithm. The selection

is made based on the contribution of the error patterns in the BER but does

not consider how e�ective the choice of the interleaver is on \changing" the

contribution of these error patterns. The results shown in this thesis can be

applied to the above algorithm in search for the most e�ective error patterns

in optimizing the structure of the interleaver.



Appendix A

Turbo-Decoding Algorithm

A.1 Modi�ed BCJR Algorithm [16]

The BCJR algorithm considers the general problem of estimating the a-

posteriori probabilities of the states and transitions of a Markov source, ob-

served through a discrete memoryless noisy channel. This algorithm is opti-

mum in the sense that it minimizes the \bit" error probability, as opposed to

the Viterbi algorithm which minimizes the probability of the \word" error,

for convolutional codes. In the following, we describe the modi�ed version of

this algorithm which is used for the soft decoding of RSC-codes.

Consider an RSC-code with constraint lengthK, i.e.,K�1 memory units.

At time k, the encoder state is denoted by Sk, where Sk 2 f0; 1; : : : ; 2
K�1�1g.

Suppose that the input sequence d consists of N independent bits, dk,

k = 1; : : : ; N . Also, suppose that the initial state S0 and the �nal state SN
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are both equal to the all zero state, i.e.,

S0 = SN = 0 (A.1)

Let us consider the decoder corresponding to the �rst RSC-code. The re-

ceived sequence for this decoder consists of the systematic and the �rst parity

check bit. This is denoted by RN
1 = fR1; : : : ; RNg, where Rk = (ysk; y

1p
k ) is

given in Eqs. (2.9). De�ning the joint probability,

�ik(m) = Pr(dk = i; Sk = mjRN
1 ); (A.2)

the APP of the data bit dk is then equal to,

Pr(dk = ijRN
1 ) =

X
m

�ik(m) i = 0; 1: (A.3)

From Eqs. (2.10) and (A.3), the LLR associated with the k'th bit can be

written as,

�(dk) = log

P
m �

1
k(m)P

m �
0
k(m)

: (A.4)

Using the Bayes rule, the joint probability �ik(m) can be rewritten as,

�ik(m) =
Pr(dk = i; Sk = m;Rk

1; R
N
k+1)

Pr(Rk
1 ; R

N
k+1)

; (A.5)

thus,

�ik(m) =
Pr(dk = i; Sk = m;Rk

1)

Pr(Rk
1)

�
Pr(RN

k+1jdk = i; Sk = m;Rk
1)

Pr(RN
k+1jR

k
1)

: (A.6)

To facilitate the problem formulation, the functions �ik(m), �k(m), and


i(Rk;m
0;m) are de�ned as,

�ik(m) =
Pr(dk = i; Sk = m;Rk

1)

Pr(Rk
1)

= Pr(dk = i; Sk = mjRk
1); (A.7)
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�k(m) =
Pr(RN

k+1jSk = m)

Pr(RN
k+1jR

k
1)

; (A.8)

and,


i(Rk;m
0;m) = Pr(dk = i; Rk; Sk = mjSk�1 = m0): (A.9)

Taking into account that if state Sk is known, the events after time k are not

in
uenced by the observation Rk
1 and the bit dk, it can be readily seen that,

�ik(m) = �ik(m)�k(m): (A.10)

The probabilities �ik(m) and �k(m) can be recursively calculated from the

probability 
i(Rk;m
0;m) in the following way,

�ik(m) =

P
m0

P1

j=0 
i(Rk;m
0;m)�jk�1(m

0)P
m

P
m0

P1

i=0

P1

j=0 
i(Rk;m0;m)�jk�1(m
0)
; (A.11)

and

�k(m) =

P
m0

P1

i=0

i(Rk+1;m;m

0)�k+1(m
0)P

m

P0

m

P1

i=0

P1

j=0 
i(Rk+1;m0;m)�jk(m
0)
: (A.12)

The probability 
i(Rk;m
0;m) can be determined from the transition prob-

abilities of the Gaussian memoryless channel and the transition probabilities

of the encoder trellis. From Eq. (A.9), we obtain,


i(Rk;m
0;m) = p(Rkjdk = i; Sk = m;Sk�1 = m0)�

Pr(dk = ijSk = m;Sk�1 = m0)� Pr(Sk = mjSk�1 = m0);
(A.13)

where p is a probability density function. Given (dk = i; Sk = m;Sk�1 = m0),

ysk and y
1p
k are two uncorrelated Gaussian random variables. Thus, we obtain,

Pr(Rkjdk = i; Sk = m;Sk�1 = m0) =

Pr(yskjdk = i; Sk = m;Sk�1 = m0) Pr(y1pk jdk = i; Sk = m;Sk�1 = m0):

(A.14)
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Since the convolutional encoder is a deterministic machine, Pr(dk =

ijSk = m;Sk�1 = m0) is either 0 or 1. In Eq. (A.13), the state transition

probabilities, namely, Pr(Sk = mjSk�1 = m0), are de�ned by the encoder

input statistics. We assume that, the input data bits are equi-probable, i.e.,

Pr(dk = 0) = Pr(dk = 1) = 1=2. If no further information is available, the

decoder assumes Pr(Sk = mjSk�1 = m0) = 1=2. However, as we will see

later, in the procedure of iterative feedback decoding these probabilities are

determined from the feedback information provided by the other decoder.

In summary, the modi�ed BCJR algorithm receives the noisy version

of the encoded bits, and obtains the LLR for each information bit. The

algorithm can be summarized in the following steps:

Step 0: Initialization

�i0(0) = 1 �i0(m) = 0 8m 6= 0; i = 0; 1

�N(0) = 1 �N(m) = 0 8m 6= 0 (A.15)

Step 1: For each observation Rk, the probabilities �
i
k(m) and 
i(Rk;m

0;m) are

computed using Eqs. (A.11) and (A.13), respectively.

step 2: When the sequence RN
1 has been completely received, probabilities

�k(m) are computed using Eq. (A.12).

step 3: Finally, the LLR associated with each bit dk is computed from Eqs. (A.4)

and (A.10).
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A.2 Turbo-Decoding

Fig. A.1 shows the structure of the turbo-decoder.
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Figure A.1: The structure of the turbo-decoder.

The decoder consists of two component decoders, which operate in a serial

mode. Both decoders receive the systematic bit, and each decoder receives its

corresponding parity check bit. Each component decoder uses the modi�ed

BCJR algorithm to calculate the LLR for each bit. An information called

the extrinsic information is then obtained from each LLR and is provided to

the other decoder. These are denoted by L1k and L2k in Fig. A.1, and their

calculation method will be discussed later in this section. This information is

regarded as the a-priori probability by the decoders and is used to determine

the state transition probabilities as follows [66] (consider the �rst decoder),

Pr(Sk = mjSk�1 = m0) =

8<
:

eL2k

1+eL2k
if m0 dk=1

�! m

1

1+eL2k
if m0 dk=0

�! m
: (A.16)

If state m0 is not connected to state m, then �(Sk = mjSk�1 = m0) is assigned
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arbitrarily. Substituting Eqs. (A.10) and (A.11) in (A.4), we obtain,

�(dk) = log

P
m

P
m0

1(Rk;m

0;m)�k�1(m
0)�k(m)P

m

P
m0

0(Rk;m0;m)�k�1(m0)�k(m)

; (A.17)

where �k�1(m
0) = �0

k�1(m
0) + �1

k�1(m
0). It should be noted that �k(m) can

be calculated by a single recursive equation and there is no need to splitting

it up to �0
k(m) and �1

k(m).

Since the encoder is systematic, i.e., xsk = dk, the transition probability,

Pr(yskjdk = i; Sk = m;Sk�1 = m0) in Eq. (A.14) is independent of the state

values Sk and Sk�1. Therefore, this probability can be factorized in the

numerator and denominator of Eq. (A.17). Using this fact and substituting

Eq. (A.16) in (A.17), it can be shown that,

�(dk) = log

P
m

P
m0

01(y

1p
k ;m

0;m)�k�1(m
0)�k(m)P

m

P
m0

00(y

1p
k ;m

0;m)�k�1(m0)�k(m)
+ L2(dk) +

2ysk
�2

; (A.18)

where 
0i(y
1p
k ;m

0;m) = p(y1pk jdk = i; Sk = m;Sk�1 = m0):P r(dk = ijSk =

m;Sk�1 = m0). The second component in Eq. (A.18) is the extrinsic infor-

mation which was provided by the second decoder. The last component in

Eq. (A.18) is the LLR of the systematic bit, i.e.,

log
p(yskjdk = 1)

p(yskjdk = 0)
=

2ysk
�2

; (A.19)

where �2 is the variance of the white Gaussian noise. The �rst component

in Eq. (A.18) is the extrinsic information of the �rst decoder, L1k, which will

now be regarded as the a-priori information by the second decoder.

At the end of the �nal iteration, a hard decision is made based on the

sign of �(dk), i.e., 8<
: d̂k = 1 if �(dk) > 0

d̂k = 0 if �(dk) � 0;
(A.20)



Appendix A: Turbo-Decoding Algorithm 110

and the decoding is completed.

For the sake of completeness, in the following we give a brief description

of the original turbo-decoding algorithm [16], which is slightly di�erent from

the above algorithm.

In this decoding scheme, the state transition probabilities, �(Sk = mjSk�1 =

m0)'s, are considered to be equal to 1/2 in each iteration. However, the ex-

trinsic information is regarded as one of the observations (independent of

the systematic and parity check information), i.e., the k'th observation vec-

tor for the �rst decoder is, Rk = (ysk; y
1p
k ; L2k). Here, L2k is treated as a white

Gaussian process with variance �2
L. Therefore,

p(L2kjdk = i) / expf
1

�2
L

L2k(2i� 1)g: (A.21)

In this algorithm, the variance of the extrinsic information must be estimated

at each iteration by the turbo-decoder. This is the main drawback of this

approach with respect to the algorithm explained earlier. Using Eqs. (A.17)

and (A.21), we obtain,

�(dk) = log

P
m

P
m0

01(Rk;m

0;m)�k�1(m
0)�k(m)P

m

P
m0

00(Rk;m0;m)�k�1(m0)�k(m)

+
2L2k

�2
L

+
2ysk
�2

: (A.22)

In [16], it is shown that in the �rst iteration, the extrinsic information is poor

about the input bit, dk. Furthermore, the Gaussian hypothesis made for the

distribution of the extrinsic information is not satis�ed. Nevertheless, as the

iteration number increases, the variance of extrinsic information decreases

and its distribution merges to a Gaussian distribution with a mean value of

(2dk � 1).

It has been shown that the performance of the earlier mentioned turbo-

decoding a algorithm is better than the original one [44]. Further more, it
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has a simpler structure because it does not require estimating the variance

of the extrinsic information.



Appendix B

Alternate Proof of Theorem 2,

Chapter 5

In this alternative proof, we elaborate on the contribution of codeword pairs

(with di�erent systematic weights and relative positions) to the variance of

the bound.

Suppose m1 of the n1 error events of the code word W iZj1 are tied up

with m0
1 of the n01 error events of the code word W 0i0Z 0j0

1, and the tied up

events result in c1 clusters. Also, suppose that the above tied up error events

contain (r+ r̂1) and (r+ r̂01) 1's, respectively. Thus, the remaining (n1�m1)

and (n01�m
0
1) loose events contain (i�r�r̂1) and (i

0�r�r̂01) 1's, respectively.

Since for recursive convolutional codes each error event has a Hamming

weight of at least two in the systematic part, we have

(n1 �m1) � b
i� r � r̂1

2
c
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(n01 �m0

1) � b
i0 � r � r̂01

2
c (B.1)

Also,

(m1) � b
r + r̂1

2
c

(m0

1) � b
r + r̂01
2

c (B.2)

and

c1 � min(m1;m
0

1) � min(b
r + r̂1

2
c; b

r + r̂01
2

c): (B.3)

where bxc is the largest integer less than or equal to x. De�ne

M̂1 = (b
i� r � r̂1

2
c+ b

i0 � r � r̂01
2

c+min(b
r + r̂1

2
c; b

r + r̂01
2

c)max (B.4)

which is an upper bound on M1. In the following, we consider the eight

di�erent cases corresponding to i; i0 and r being even or odd integers. M̂1

is evaluated for each case, and �nally it is shown that there exist conditions

under which M1 takes the maximum value found for M̂1.

Case 1:

8>>><
>>>:

i even

i0 even

r even

From (B.4), we have

M̂1 =

�
i� r

2
� b

r̂1 + 1

2
c +

i0 � r

2
� b

r̂01 + 1

2
c+min(

r

2
+ b

r̂1

2
c;
r

2
+ b

r̂01
2
c)

�
max

=
i

2
+
i0

2
�
r

2
+

�
�b

r̂1 + 1

2
c � b

r̂01 + 1

2
c+min(b

r̂1

2
c; b

r̂01
2
c)

�
max

: (B.5)

Assuming that min(b r̂1
2
c; b

r̂01
2
c) = b r̂1

2
c, we have
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M1 =
i+ i0 � r

2
+

�
b
r̂1

2
c � b

r̂1 + 1

2
c � b

r̂01 + 1

2
c

�
max

: (B.6)

It can be easily seen that,

b
r̂1

2
c � b

r̂1 + 1

2
c =

8<
: 0; i� r̂1 even

�1; i� r̂1 odd
(B.7)

and

�b
r̂01 + 1

2
c � 0; \=" i� r̂01 = 0: (B.8)

Thus,

M̂1 =
i+ i0 � r

2
(B.9)

if and only if (r̂1; r̂
0
1) = (0; 0).

It can be easily veri�ed that assuming min(b r̂1
2
c; b

r̂01
2
c) = b

r̂01
2
c results in

the same maximum value for M̂1 under the same condition.

Case 2:

8>>><
>>>:

i even

i0 even

r odd

Assuming that min(b r̂1+1
2
c; b

r̂01+1

2
c) = b r̂1+1

2
c, we have

M̂1 =
i+ i0 � r

2
�

3

2
+

�
�b

r̂1

2
c � b

r̂01
2
c+ b

r̂1 + 1

2
c

�
max

: (B.10)

Also,

b
r̂1 + 1

2
c � b

r̂1

2
c =

8<
: 0; i� r̂1 even

1; i� r̂1 odd
(B.11)

and

�b
r̂01
2
c � 0; \=" i� r̂01 = 0; 1: (B.12)
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It can be easily shown that the maximum value in this case is

M̂1 =
i+ i0 � r

2
�
1

2
(B.13)

and that it is achieved if and only if (r̂1; r̂
0
1) = (1; 1).

Again, assuming min(b r̂1+1
2
c; b

r̂01+1

2
c) = b

r̂01+1

2
c does not a�ect the result.

Case 3:

8>>><
>>>:

i even

i0 odd

r even

In this case,

M̂1 =
i+ i0 � r

2
�
1

2
+

�
�b

r̂1 + 1

2
c � b

r̂01
2
c +min(b

r̂1

2
c; b

r̂01
2
c)

�
max

:

(B.14)

With a similar approach to the previous cases, it can be shown that

M̂1 =
i+ i0 � r

2
�
1

2
(B.15)

if and only if (r̂1; r̂
0
1) = (0; 0); (0; 1).

Case 4:

8>>><
>>>:

i even

i0 odd

r odd

In this case,

M̂1 =
i+ i0 � r

2
�1+

�
�b

r̂1

2
c � b

r̂01 + 1

2
c+min(b

r̂1 + 1

2
c; b

r̂01 + 1

2
c)

�
max

(B.16)

and it can be shown that

M̂1 =
i+ i0 � r

2
� 1 (B.17)
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if and only if (r̂1; r̂
0
1) = (0; 0); (1; 0); (1; 1); (1; 2).

Case 5:

8>>><
>>>:

i odd

i0 even

r even

This case is similar to Case 3 with only the conditions on i and i0

switched. Thus,

M̂1 =
i+ i0 � r

2
�
1

2
(B.18)

if and only if (r̂1; r̂
0
1) = (0; 0); (1; 0).

Case 6:

8>>><
>>>:

i odd

i0 even

r odd

This case is similar to Case 4 with only the conditions on i and i0

switched. Thus,

M̂1 =
i+ i0 � r

2
� 1 (B.19)

if and only if (r̂1; r̂
0
1) = (0; 0); (0; 1); (1; 1); (2; 1).

Case 7:

8>>><
>>>:

i odd

i0 odd

r even

In this case,

M̂1 =
i+ i0 � r

2
� 1 +

�
�b

r̂1

2
c � b

r̂01
2
c+min(b

r̂1

2
c; b

r̂01
2
c)

�
max

(B.20)

and it can be shown that,

M̂1 =
i+ i0 � r

2
� 1 (B.21)
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if and only if (r̂1; r̂
0
1) = (0; 0); (0; 1); (1; 0); (1; 1).

Case 8:

8>>><
>>>:

i odd

i0 odd

r odd

We have

M̂1 =
i+ i0 � r

2
�
1

2
+

�
�b

r̂1 + 1

2
c � b

r̂01 + 1

2
c+min(b

r̂1 + 1

2
c; b

r̂01 + 1

2
c)

�
max

(B.22)

and it can be shown that,

M̂1 =
i+ i0 � r

2
�
1

2
(B.23)

if and only if (r̂1; r̂
0
1) = (0; 0).

As can be seen, Case 1 with the condition (r̂1; r̂
0
1) = (0; 0) results in the

maximum value for M̂1. In other words, M̂1 =
i+i0�r

2
, if and only if the input

words sg and s
0
h are such that their resulting codewords satisfy the following

conditions:

� Each codeword is constructed of error events with input weight 2.

� Each error event is either a loose event or exactly matches and is tied

up with an error event of the other codeword.

Since for every recursive convolutional code, there exists an input word of

Hamming weight two which results in a �nite response, the above conditions

are achievable and under these conditions,

(M1)max =
i+ i0 � r

2
: (B.24)
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Similarly,

(M2)max =
i+ i0 � r

2
: (B.25)

As a result,

(Gt)max = 0: (B.26)

2
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Glossary

APP A-Posteriori Probability

AWEF Average Weight Enumerating Function

AWGN Additive White Gaussian Noise

BCJR Bahl, Cock, Jelinek, and Raviv (algorithm)

BER Bit Error Rate

BPSK Binary Phase Shift Keying

CDMA Code Division Multiple Access

CWEF Conditional Weight Enumerating Function

EPA Equal Power Allocation

IIR In�nite Impulse Response

IRWEF Input-Redundancy Weight Enumerating Function

LLR Logarithm of Likelihood Ratio

MAP Maximum A-Posteriori

ML Maximum Likelihood

MSWEF Mean Square of the Weight Enumerating Function

PCTCM Parallel Concatenated Trellis Coded Modulation

QAM Quadrature Amplitude Modulation

RSC Recursive Systematic Convolutional
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SISO Soft Input Soft Output

SNR Signal to Noise Ratio

TCM Trellis Coded Modulation

TTCM Turbo Trellis Coded Modulation

UEP Unequal Error Protection

UI Uniform Interleaver

UPA Unequal Power Allocation

WEF Weight Enumerating Function


