
Leakage Power Modeling and Reduction
Techniques for Field Programmable Gate Arrays

by

Akhilesh Kumar

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2006
c© Akhilesh Kumar, 2006



AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy the thesis
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

FPGAs have become quite popular for implementing digital circuits and systems be-
cause of reduced costs and fast design cycles. This has led to increased complexity of
FPGAs, and with technology scaling, many new challenges have come up for the FPGA
industry, leakage power being one of the key challenges. The current generation FPGAs
are being implemented in 90nm technology, therefore, managing leakage power in deep-
submicron FPGAs has become critical for the FPGA industry to remain competitive in
the semiconductor market and to enter the mobile applications domain.

In this work an analytical state dependent leakage power model for FPGAs is devel-
oped, followed by dual-Vt based designs of the FPGA architecture for reducing leakage
power.

The leakage power model computes subthreshold and gate leakage in FPGAs, since
these are the two dominant components of total leakage power in the scaled nanometer
technologies. The leakage power model takes into account the dependency of gate and
subthreshold leakage on the state of the circuit inputs. The leakage power model has two
main components, one which computes the probability of a state for a particular FPGA
circuit element, and the other which computes the leakage of the FPGA circuit element
for a given input using analytical equations. This FPGA power model is particularly
important for rapidly analyzing various FPGA architectures across different technology
nodes.

Dual-Vt based designs of the FPGA architecture are proposed, developed, and evalu-
ated, for reducing the leakage power using a CAD framework. The logic and the routing
resources of the FPGA are considered for dual-Vt assignment . The number of the logic
elements that can be assigned high-Vt in the ideal case by using a dual-Vt assignment
algorithm in the CAD framework is estimated. Based upon this estimate two kinds of ar-
chitectures are developed and evaluated, homogeneous and heterogeneous architectures.
Results indicate that leakage power savings of up to 50% can be obtained from these
architectures. The analytical state dependent leakage power model developed has been
used for estimating the leakage power savings from the dual-Vt FPGA architectures. The
CAD framework that has been developed can also be used for developing and evaluating
different dual-Vt FPGA architectures, other than the ones proposed in this work.

iii



Acknowledgments

I would like to acknowledge the invaluable guidance and encouragement received
from my research advisor Professor Mohab Anis for the work done in this thesis. I
would also like to thank my group members for their suggestions and help.

I am greatly thankful to the readers of my thesis, Professor Mark Aagaard and Pro-
fessor Shawki Areibi.

Thanks are also due to the technical and administrative staff of the Department of
Electrical and Computer Engineering, University of Waterloo.

iv



To my mother, father, sisters, cousins, uncles and aunts.

v



Contents

1 Introduction 1

1.1 Field Programmable Gate Arrays: Leakage Power Challenge . . . . . . 1

1.2 Contributions of this Work . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Overview of FPGA Architecture and CAD Tools 4

2.1 FPGA Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Logic Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Routing Resources . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 I/O Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 CAD Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 VPR and T-VPack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Leakage Power in FPGAs: Background and Related Work 16

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Leakage Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Technology Scaling and Leakage Power . . . . . . . . . . . . . 17

vi



3.2.2 Leakage Power in FPGAs . . . . . . . . . . . . . . . . . . . . 20

3.2.3 Estimating Power Savings . . . . . . . . . . . . . . . . . . . . 21

3.3 Leakage Power Modeling for FPGAs . . . . . . . . . . . . . . . . . . . 21

3.4 Leakage Power Reduction in FPGAs . . . . . . . . . . . . . . . . . . . 23

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Analytical State Dependent Leakage Power Model for FPGAs 29

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Analytical Models for Leakage Currents . . . . . . . . . . . . . . . . . 29

4.3 Leakage in FPGA Circuit Elements . . . . . . . . . . . . . . . . . . . 32

4.4 Leakage Power Model . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Dual-Vt FPGA Design for Leakage Reduction 45

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Technology Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Proposed Dual Threshold FPGA Architecture . . . . . . . . . . . . . . 46

5.3.1 Homogeneous dual-Vt FPGA architecture . . . . . . . . . . . . 46

5.3.2 Heterogeneous dual-Vt FPGA architecture . . . . . . . . . . . 47

5.3.3 Proposed Dual-Vt FPGA CAD Framework . . . . . . . . . . . 49

5.4 CAD framework implementation . . . . . . . . . . . . . . . . . . . . . 49

5.4.1 Stage 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4.2 Stage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4.3 Stage 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4.4 Stage 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4.5 Stage 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4.6 Stage 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5 Evaluation, Results and Discussions . . . . . . . . . . . . . . . . . . . 56

vii



5.5.1 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . 57

5.5.2 Realizing and evaluating different FPGA architectures for leak-
age savings and design tradeoffs . . . . . . . . . . . . . . . . . 58

5.5.3 Design tradeoffs . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.5.4 Distribution of Leakage Savings . . . . . . . . . . . . . . . . . 64

5.6 Designing a Dual-Vt FPGA . . . . . . . . . . . . . . . . . . . . . . . . 66

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Conclusions and Future Work 70

A List of publications from this work 76

viii



List of Figures

2.1 A basic FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Programmable switches used in SRAM-based FPGAs . . . . . . . . . . 5

2.3 A 2-input LUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Basic Logic Element [9] . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5 Cluster based logic block [9] . . . . . . . . . . . . . . . . . . . . . . . 6

2.6 Island style routing architecture [9] . . . . . . . . . . . . . . . . . . . . 7

2.7 Basic CAD flow for FPGAs . . . . . . . . . . . . . . . . . . . . . . . . 9

2.8 Synthesis procedure for FPGAs . . . . . . . . . . . . . . . . . . . . . . 10

2.9 VPR CAD flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Technology Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Leakage power contribution to total power with technology scaling . . . 18

3.3 Leakage currents in a short channel transistor . . . . . . . . . . . . . . 19

3.4 Leakage breakdown among different FPGA elements [4] . . . . . . . . 20

3.5 Power model framework developed in [11] . . . . . . . . . . . . . . . . 22

3.6 Dual-Vt design implementation . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Dependence of Vth on the width of NMOS for CMOS 130nm . . . . . . 32

4.2 Dependence of Vth on drain to source voltage for NMOS in CMOS 130nm 33

4.3 (a) Gate leakage in NMOS (b) Subthreshold leakage in Inverter . . . . . 34

4.4 Multiplexer structure and the corresponding state dependent leakage for
a particular select signal and input vector . . . . . . . . . . . . . . . . . 35

ix



4.5 Leakage in multiplexers is affected by the voltage drop during signal
propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.6 (a) Buffered routing switch. Subthreshold and gate leakage currents un-
der certain input conditions. (b) Pass transistor routing switch. Only gate
leakage is present when the switch is turned on. . . . . . . . . . . . . . 37

4.7 (a) Static current without gate boosting. (b) Reduced static current with
gate boosting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.8 Overall architecture of the leakage power model . . . . . . . . . . . . . . . 39

4.9 Average Leakage distribution for different parts the FPGA for CMOS
130nm and 90nm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.10 (a),(b)Used and unused leakage for different components of FPGA for
the benchmark alu4 for the FPGA architecture with routing channel width
of 100 (c),(d) With routing channel width of 50 . . . . . . . . . . . . . 43

5.1 Proposed homogeneous FPGA architecture. Each CLB has a fixed ratio
of high-Vt and low-Vt subblocks. . . . . . . . . . . . . . . . . . . . . . 47

5.2 Switch block. (a) The overall architecture of a switch block (b) Buffered
pass transistor switch (c) Pass transistor based switch . . . . . . . . . . 48

5.3 Proposed heterogeneous FPGA architecture. Two kinds of CLBs; one
having all high-Vt subblocks, the other having a fixed ratio of high-Vt
and low-Vt subblocks. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4 (a) Typical FPGA CAD flow within VPR and T-Vpack framework. (b)
Proposed generic dual-Vt FPGA CAD flow . . . . . . . . . . . . . . . 50

5.5 Leakage savings for arch2 with 6 high-Vt subblocks per CLB (a) Buffered
switches assigned high-Vt (b) Pass transistor switches assigned high-Vt 61

5.6 Leakage savings for arch4 (a) Buffered switches assigned high-Vt (b)
Pass transistor switches assigned high-Vt . . . . . . . . . . . . . . . . 63

5.7 (a) Leakage contributions of routing resources, logic resources and SRAM
cells for single low-Vt implementation, (b) and (c) after dual-Vt imple-
mentation for alu4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.8 Leakage power for alu4. (a) Single low-Vt implementation (b) dual-Vt
arch3 (c) dual-Vt arch4 with 60% high-Vt pass transistor switches . . . 67

5.9 Realizing a dual-Vt FPGA design . . . . . . . . . . . . . . . . . . . . 67

5.10 A low-leakage Field Programmable SoC . . . . . . . . . . . . . . . . . 69

x



List of Tables

4.1 Comparison of Power Model with the SPICE simulations for CMOS 130nm 33

4.2 Subthreshold and gate leakage for different benchmarks . . . . . . . . . 41

5.1 Leakage savings with logic blocks assigned dual-Vt for a cluster size of
12 for homogeneous and heterogeneous architectures . . . . . . . . . . 59

5.2 Design tradeoffs for homogeneous architecture arch2 with 6 high-Vt
subblocks and 80% high-Vt pass transistor switches, heterogeneous ar-
chitecture arch4 with 80% high-Vt pass transistor switches, and all high-
Vt subblocks architecture. . . . . . . . . . . . . . . . . . . . . . . . . 65

xi



Chapter 1

Introduction

1.1 Field Programmable Gate Arrays: Leakage Power
Challenge

Digital systems have grown immensely complex with the scaling of technology. The
custom VLSI designs have led the growth of high performance digital systems. How-
ever, with increasing complexity of designs, the cost and design cycles of custom VLSI
designs have increased significantly. FPGAs offer an efficient and cost effective option
for implementing digital systems for medium to low volume production. Earlier, FPGAs
were being used only for ASIC prototyping, however with increasing logic density and
performance the FPGAs are getting embedded in the end user products. Digital system
designers can now get the advantages of low time-to-market of the programmable logic
in addition to almost ASIC-like logic density. Commercial FPGAs, such as Stratix from
Altera, and Virtex from Xilinx have on-chip memory blocks and DSP resources, apart
from the programmable logic, making it even more attractive for implementing complete
systems on chip.

Leakage power has been recently recognized as a major challenge in the FPGA in-
dustry. This was primarily because other design challenges, such as performance and
area, were given more attention in the past. With technology scaling, leakage power
has emerged as a key design challenge. The current generation of FPGAs are being im-
plemented in the 90nm CMOS technology, which necessitates devising techniques for
leakage power reduction, because leakage power increases with small geometries. For
the FPGAs to continue to retain its semiconductor market and competitive advantages
over the high performance custom VLSI designs, the FPGA industry must adopt new
techniques for leakage power reduction. The work in [4] showed that a 90nm FPGA con-

1



sumes too much leakage power to be successfully used in mobile applications. Therefore,
for FPGAs to gain popularity in the domains such as wireless personal communication
system, or in the biomedical applications, the FPGAs need to implement techniques for
reducing leakage power.

The increase in complexity of the current generation FPGAs has resulted in more
number of transistors in the FPGAs which directly translate into increased leakage power.
The resource utilization of FPGAs is just over 60%, and the unutilized parts also con-
sume leakage power, which means that reducing leakage power is important both in the
used and the unused parts of the FPGA. The problem of leakage power in FPGAs is more
difficult to handle than in ASICs because of the very nature of programmability of FP-
GAs, which means that the final application which would run on the FPGA is unknown.
Motivated by the above challenges, this work contributes to leakage power management
in FPGAs as outlined in the next section.

1.2 Contributions of this Work

1. Analytical Models for Total Leakage Power for FPGAs: In this work analytical mod-
els for leakage power calculation for FPGAs have been developed. The leakage
power models incorporate BSIM4 models to compute the subthreshold leakage
and gate leakage. These leakage power models have been used for computing
leakage currents through the various FPGA circuit elements.

2. State Dependency for Leakage Power Calculation in FPGAs: The leakage power
model takes state dependency of subthreshold and gate leakage during the compu-
tation of these leakage currents.

3. CAD framework for dual-Vt FPGA designs: A dual-Vt FPGA CAD framework for
designing, developing, and evaluating dual-Vt FPGAs has been proposed. VPR
and T-Vpack [9], the widely used academic research tools for FPGA, have been
used for developing the dual-Vt FPGA CAD framework.

4. Dual-Vt FPGA Architectures: Based on the dual-Vt FPGA CAD framework, dual-
Vt FPGA architectures are proposed, developed and evaluated using the dual-Vt
FPGA CAD framework. These architectures are intended for reducing leakage
power consumption without severe delay penalties.

2



1.3 Organization of the Thesis

This thesis has been organized as follows.

Chapter 2 gives an overview of the FPGA architecture. It discusses the logic block
structure and the routing resources and outlines a general SRAM based FPGA architec-
ture that has been used in this work. It also gives a brief description of the CAD tools
used for implementing digital circuits on FPGAs.

Chapter 3 discusses the leakage power in FPGAs. It gives an overview of power dis-
sipation in FPGAs and discusses previous work on leakage power reduction in FPGAs.

Chapter 4 discusses the work on the analytical, state dependent leakage power model
for FPGAs. It describes the BSIM4 subthreshold and gate leakage equations and explains
the state dependency of the subthreshold and gate leakage in the FPGA circuit elements.
It describes the overall framework used for computing the total leakage power in FPGAs,
using a Leakage Computation Engine (LCE). Finally results are presented for various
MCNC benchmarks.

Chapter 5 explains the dual-Vt FPGA CAD framework that has been developed, fol-
lowed by a description of the proposed dual-Vt FPGA architectures. It explains various
algorithms modified, developed and used in the CAD framework. The different stages
of the CAD framework have been discussed in detail and compared with the traditional
CAD framework for implementing a digital circuit on FPGA. It presents the results of
leakage power savings and design tradeoffs for various dual-Vt FPGA architectures using
the dual-Vt FPGA CAD framework. Guidelines for designing dual-Vt FPGA architec-
tures are also presented.

Chapter 6 concludes the thesis and outlines the future work for leakage power man-
agement in FPGAs.

3



Chapter 2

Overview of FPGA Architecture and
CAD Tools

2.1 FPGA Architecture

A basic FPGA is shown in Fig. 2.1. The FPGA architecture is very regular in structure.
It is made up of two main components - logic blocks (CLBs) and routing resources. The
logic blocks implement the functionality of the given circuit while the routing resources
provide the connectivity for implementing the logic. The logic blocks have the flexibility
to connect to the routing resources surrounding them. The logic blocks and the routing
resources are configurable, so that they can be programmed to implement any logic.
Though many types of architectures have been experimented with, the most popular one
is the SRAM based architecture which is described below and has been used in this work
[9].

2.1.1 Logic Block

The logic block of the SRAM based FPGA is LUT (look-up-table) based and are com-
posed of basic logic elements (BLE). LUT is an array of SRAM cells to implement a
truth table. Fig. 2.3 shows a two input LUT. It has 4 SRAM cells and a multiplexer
to select one of the SRAM cells. The selection is done by the two select signals to the
multiplexer, which serve as inputs to the truth-table. Each BLE consists of a k-input
LUT, flip-flop and a multiplexer for selecting the output either directly from the output
of LUT or the registered output value of the LUT stored in the flip-flop. Fig. 2.4 shows
the basic logic element. Previous works have shown that the 4-input LUT is the most

4



Logic Block I/O Block

Programmable 
Routing

Figure 2.1: A basic FPGA

SRAM

2 SRAM Cells

Pass Transistor Multiplexer

SRAM

Tri-State Buffer

Figure 2.2: Programmable switches used in SRAM-based FPGAs

2 Inputs

4 SRAM Cells Out

Figure 2.3: A 2-input LUT

5



 

 
k- input 

LUT  
DFF 

 

Clock 

Inputs 
Out 

Figure 2.4: Basic Logic Element [9]

 

 

I inputs 

N outputs 

 
BLE 
#1 

 
BLE 
#N 

.

. 

. 

. 

Clock 

Figure 2.5: Cluster based logic block [9]

optimum size as far as logic density, and utilization of resources are concerned, and this
has been widely used. Cluster based logic blocks were investigated in [9] and it was
shown that the cluster based logic blocks are better in speed and area. The structure of a
cluster based logic block is shown in Fig. 2.5. In the cluster based logic block, the logic
block is made up of N BLEs. There are I inputs to the logic block such that each input
can connect to all the BLEs. Also the output of each BLE can drive one of the inputs of
each of the BLEs. The clock feeds all the BLEs. The work in [9] showed that the logic
clusters containing 4 to 10 BLEs achieve good performance. Each subblock is made up
of a BLE and the corresponding LUT input multiplexers.

6



Programmable 
Routing Switch

Logic Block

Connection 
Block

Programmable 
Connection 

Switch

Short Wire 
Segment

Long Wire 
Segment

Switch Block

Figure 2.6: Island style routing architecture [9]

7



2.1.2 Routing Resources

The routing resources are of various types, but the one used in this work is the island-
based architecture. In the island based architecture, the routing resources form a mesh
like structure with the horizontal and vertical routing channels. The horizontal and ver-
tical routing channels are connected by switch boxes which are programmable and thus
provide the flexibility in making the connections. The logic blocks are connected to the
routing channels through the connection boxes which are also programmable. Fig. 2.6
shows the island style routing architecture [9]. The programmable switches used for im-
plementing the interconnections are shown in Fig. 2.2. These programmable switches
have SRAM cells which can be programmed to either turn on or turn off the switch.
Apart from the logic blocks and the routing resources, the clock distribution is assumed
to have a dedicated network. Most of the commercial FPGAs have a structure similar to
the one described above or some variant of the above architecture.

2.1.3 I/O Blocks

The I/O blocks are also programmable so that they can be configured either as input or
as output, or can be tri-stated.

2.2 CAD Tools

To implement a circuit on the current generation FPGAs, CAD tools are needed which
can generate the configuration bits for the SRAM cells of the FPGAs. Usually the circuit
description is provided using Verilog, VHDL, SystemC, or other higher level descrip-
tions. The CAD tools for the FPGAs read this input and output a configuration file for
programming the FPGA. Fig. 2.7 shows the basic CAD flow for implementing a digital
circuit/system on FPGAs [9]. The CAD flow has three main tasks: Synthesis, placement
and routing. In the following sections synthesis, placement and routing for FPGAs are
explained. Since VPR and T-Vpack have been used in this work, the discussion will be
kept in context of these CAD tools. Almost all of the commercial FPGA CAD flows
perform the same basic functions of synthesis, placement and routing.

2.2.1 Synthesis

The synthesis of a netlist involves conversion of a circuit description, usually in hardware
description language (HDL), into a netlist of basic gates. This netlist of basic gates is

8



Circuit Description (VHDL, blif, etc.)

Synthesize to logic blocks

Place logic blocks in FPGA

Route the connections between logic 
blocks

FPGA configuration file

Figure 2.7: Basic CAD flow for FPGAs

then converted into a netlist of FPGA logic blocks. Fig. 2.8 shows the steps involved in
the synthesis of a circuit description into a netlist of logic blocks.

Technology independent logic optimization involves the removal of redundant logic
and simplification of the logic [27] [28]. The optimized netlist is then mapped to look-up
tables, which is a process of identifying the logic gates that would go into a LUT [21].
The final step of the synthesis procedure is the clustering of the LUTs and flip-flops (for
sequential logic) into logic blocks. The goal here is usually to minimize the number of
logic blocks and/or minimize the delay. The work in [29] used a measure of closeness of
LUTs to pack them into a cluster to form a logic block.

The work in [9] uses a timing driven logic block packing tool, called T-VPack. The
tool targets packing the BLEs into a cluster shown in Fig. 2.5. It needs the parameters
such as number of BLEs per cluster, number of inputs per cluster, size of the LUTs, and
number of clocks per cluster. The first stage of the packing procedure simply forms the
BLEs by packing a register and a LUT together. Initially the packing procedure packs
the BLEs greedily into a cluster, followed by a hill climbing phase if the greedy phase is
not able to fill the cluster completely.

To enable a timing driven packing, it is necessary to get an estimate of delays through
various paths of the netlist. To enable this computation three types of delays are mod-
eled: delay through a BLE, LogicDelay, delay between blocks in the same cluster, Intr-
aClusterConnectionDelay, and the delay between blocks in different clusters, InterClus-
terConnectionDelay. The values for these are set as 0.1, 0.1 and 1.0 for LogicDelay,

9



Netlist of basic gates

Technology-independent logic 
optimization

Map to look-up tables (LUTs)

Pack LUTs into logic blocks

Netlist of logic blocks

Figure 2.8: Synthesis procedure for FPGAs

IntraClusterConnectionDelay and InterClusterConnectionDelay, respectively. The In-
terClusterConnectionDelay cannot be determined until the circuit has been implemented
on the FPGA. However, these values represent the correct trend of values, and the perfor-
mance of T-Vpack is not very sensitive to the exact values. The criticality of a connection
is defined as

ConnectionCriticality(i) = 1− slack(i)

MaxSlack
(2.1)

where MaxSlack is the largest slack amongst all the connections in the circuit. A
new cluster is created by selecting a seed BLE having the highest criticality amongst the
un-clustered BLEs. After the seed BLE has been selected, an attraction function is used
to determine the next un-clustered BLE, B, to be added to the current cluster C. The
attraction function is given by:

Attraction(B) = α.Criticality(B) + (1− α)

[
Nets(B) ∩Nets(C)

MaxNets

]
(2.2)

where the first term represents the timing part, and the second term represents the
cost of nets shared between the current cluster and the BLE under consideration. Any
value of α between 0.4 and 0.8 gives good results. The computation of Criticality of a

10



BLE is explained in [9] and also the tie-breaker mechanism used for the case when two
or more BLEs have the same criticality. Essentially, the tie-breaker mechanism selects
that BLE which reduces the length of the largest number of critical paths.

The hill-climbing phase tries to add more BLEs to the cluster in case it is not full. In
this phase adding a BLE to a cluster is allowed even if it leads to more inputs required
for the cluster than the maximum allowable. This is done because in some cases the
BLE being added might have all its inputs from the BLEs in the current cluster and also
might drive the inputs of some of the BLEs in the current cluster. In this case the number
of inputs required for the cluster decreases by one. However, this hill climbing phase
increases the logic utilization only by 1 - 2% in some of the circuits.

2.2.2 Placement

The work in [9] developed the tool VPR for placement and routing. For placement the
FPGA is considered as a set of legal discrete positions at which the logic blocks of the
synthesized netlist can be placed. For placement, the architecture descriptions needed by
VPR are:

1. The number of logic block input and output pins.

2. The number of I/O pads that fit into one row or column of the FPGA.

3. The routing channel width (number of tracks in a routing channel).

The placement technique used in VPR is based on simulated annealing [30], which
imitates the annealing process used to gradually cool a molten metal to produce high
quality metal objects. The simulated annealing works by first starting with an initial
random placement by placing the logic blocks randomly on the available locations in the
FPGA. The placement then proceeds by making a large number of moves to improve the
placement. This is done by selecting a logic block randomly and its new location also
randomly. This would produce a change in the cost function, and if the cost function
improves, the move is always accepted. However, if the cost function worsens, there is
still some probability of acceptance of the move. The probability of acceptance is given
by e−4C/T , where 4C is the change in the cost function and the goal is to decrease
the cost function. The T is the temperature parameter and controls the probability of
acceptance of the moves which worsen the placement. The temperature is initally set to
a high value so that at the beginning of the annealing, virtually all the moves are accepted.
The temperature is gradually decreased as the placement improves, such that finally the
probability of accepting a bad move is almost negligible. The flexibility of accepting bad

11



moves allows the simulated annealing schedule to overcome the local minima in the cost
function.

The VPR sets the initial temperature in the same way as in [31]. The number of
moves attempted at each temperature is done as in [32]. It is set to

MovesPerTemperature = InnerNum.(Nblocks)
4/3 (2.3)

where the default value of InnerNum is 10, and Nblocks is the number of logic blocks in
the netlist. The fraction of moves accepted is kept close to 0.44 for as long as possible,
as it yields better results [32]. However, VPR uses a new method of updating the tem-
perature. The VPR computes the new temperature as Tnew = γ.Told, where the value of
γ depends on the fraction of moves accepted at Told. The idea is to spend maximum time
near the temperatures at which large improvements in placement occur. The annealing
procedure is not very sensitive to the exact value of γ, if it has the right form, γ is close
to 1 if the fraction of moves accepted is close to 0.44, whereas γ is small if the fraction
of moves accepted is near 1 or 0. VPR has a timing driven placement and uses a cost
function to optimize both the timing and the delay. The complete timing driven place-
ment algorithm is explained in detail in [33]. The cost function for the timing driven
placement developed in [33] is given by

4C = λ.
4TimingCost

PreviousT imingCost
+ (1− λ).

4WiringCost

PreviousWiringCost
(2.4)

where 4TimingCost and 4WiringCost represent the change in the timing cost and
the change in the wiring cost, respectively, due to a move. The simulated annealing
procedure is terminated when

T < ε.
Cost

Nnets

(2.5)

where Nnets is the total number of nets in the circuit and the value of ε is set as 0.005.

2.2.3 Routing

The routing of the placed netlist, essentially, determines the switches that need to be
turned on in the routing resources of the FPGA. The routing algorithm in VPR is based
on the Pathfinder algorithm proposed in [34]. The Pathfinder repeatedly rips-up and
re-routes every net in the circuit until all congestion is resolved. One routing iteration
involves ripping-up and re-routing every net in the circuit. The first routing iteration
routes for minimum delay, even if it leads to congestion, or overuse of routing resources.

12



To remove this overuse another routing iteration is performed. The cost of overusing a
routing resource is increased after every iteration. This improves the chance of resolving
the congestion. At the end of each routing iteration all the nets are completely routed,
although with some congestion. Based on this routing, timing analysis can be done to
compute the critical path and also the slack of each source sink connection. The timing
driven router uses an Elmore delay model to compute the delays of all the connections.
The criticality of a connection beteen source of net i and one of its sink j is computed as
follows:

Crit(i, j) = max

([
MaxCrit− slack(i, j)

Dmax

]η

, 0

)
(2.6)

where slack(i, j) is the the slack available to the connection and Dmax is the delay of the
critical path. MaxCrit and η are the parameters which determine how the slack impacts
the congestion delay tradeoff in the cost function. In VPR η is set to 1 and MaxCrit is
set to 0.99.

The VPR creates a routing resource graph to describe the FPGA architecture and
connectivity information. The wire and the logic block pins of the FPGA are represented
as nodes in the routing resource graph, and the switches are represented as directed edges
in the graph. This routing resource graph is used to perform the routing.

The routing of a net is done by starting with a single node in the routing resource
graph, corresponding to the source of the net. A wave expansion algorithm is invoked
(k-1) times to connect the source to each of the net’s (k-1) sinks, in order of the criticality
of the sinks, the most critical sink being the first. The cost for using a node n during this
expansion is given by:

Cost(n) = Crit(i, j).delay(n, topology) + [1− Crit(i, j)].b(n).h(n).p(n) (2.7)

where b(n), h(n) and p(n) are the base cost, historical congestion, and present con-
gestion as explained in [9]. This procedure is repeated for each of the nets to get the
complete routing.

2.3 VPR and T-VPack

This section describes the FPGA CAD tools used in this work. The CAD tools used in
this work are VPR, for placement and routing, and T-VPack for clustering of the BLEs
[9]. VPR is invoked on the command line as follows [40]

vpr netlist.net architecture.arch placement.p routing.r [−options] (2.8)

13



where netlist.net is the circuit description providing the information about the connec-
tivity of the logic blocks, architecture.arch is the architecture file which describes the
architectural parameters of the FPGA. The output of the final placement is written in
placement.p, or, if the circuit is only being routed, the placement information is read
from the file placement.p. The final routing information is written in routing.p. VPR
has two basic modes of operation. In the first mode, VPR places a circuit on the FPGA
and routes it for minimum routing channel width. In the other mode, when the user spec-
ifies the routing channel width, VPR attempts to route the circuit only once and if it is
un-routable it simply aborts, reporting that the circuit is un-routable. The VPR also pro-
vides graphics which shows the actual placement and routing of the logic blocks, along
with the routing switches.

T-VPack reads a netlist in the blif (Berkeley Logic Interchange Format) format hav-
ing look-up tables (LUTs) and flip-flops (FFs) and packs these into logic blocks. The
output of the T-Vpack is in the .net format, which is a netlist of logic blocks. T-VPack
is invoked on the command line by

t− vpack input.blif output.net [−options] (2.9)

where options are used to specify the size of the LUTs, cluster size, inputs per cluster
and various optimization options.

The complete VPR CAD flow is shown in Fig. 2.9. SIS [20] is used for logic opti-
mization of the circuit. FlowMap [21] is used for technology-mapping to 4-LUTs and
flip-flops. FlowMap produces an output in the .blif format. T-VPack packs the netlist
into logic blocks and produces an output in the .net format. VPR is then used for the
placement and routing of the netlist. Other logic optimizers and technology mappers,
instead of SIS and FlowMap can also be used in this CAD flow.

2.4 Summary

This chapter discussed the island based FPGA architecture used in this work. The logic
blocks, programmable switches and routing resources were described. An overview of
the CAD tool based on VPR was given. This CAD tool is used for implementing a circuit
on the FPGA. Synthesis, placement and routing techniques were discussed.

The next chapter discusses the leakage power mechanisms and the related work in
leakage power modeling and reduction techniques for FPGAs.

14



Circuit

Logic Optimization (SIS), Technology Map to LUTs 
(FlowMap)

.blif format of netlist of LUTs and 
FFS

T-Vpack: Pack FFs and LUTs into Logic Blocks

.net format of netlist of logic blocks

VPR

Place the circuit or read an existing placement

Perform either global or combined global/
Detailed routing

Placement and routing statistics

FPGA 
Architecture 
Description

Existing 
placement or 

placement from 
another CAD 

tool

Figure 2.9: VPR CAD flow

15



Chapter 3

Leakage Power in FPGAs: Background
and Related Work

3.1 Introduction

There are two sources of power dissipation in a CMOS circuit: dynamic power and
static power. The dynamic power dissipation has three components: Switching power,
short circuit power and glitching power. The switching power is due to the charging
and discharging of the node capacitances in the circuit. The average switching power
dissipation is given by

Pdyn =
1

2
.V 2

dd.
∑

i

Ci.Ai (3.1)

where Vdd is the supply voltage, Ai is the activity of the node i, Ci is the capacitance
of the node i. The short circuit power is due to the transient current between Vdd and
ground during logic transition. It is around 10% of the switching power. The glitching
power is due to spurious transitions during the logic evaluation in the circuit and is caused
primarily because of unbalanced path delays.

The static power dissipation in a CMOS circuit is due to leakage current. The static
power dissipation is given by

Pleak = Vdd.Ileak (3.2)

where Ileak is the leakage current in the circuit. The leakage power is discussed in detail
in the next section.

Dynamic power management in FPGAs was given more importance earlier , because
the dominant component of total power was dynamic power. The work in [8] evaluated

16



different architectural parameters for designing a power efficient FPGA for reducing both
the dynamic and leakage power. The work in [38] used a clustering technique for reduc-
ing the dynamic power. The work in [36] reduced dynamic power by optimizing the
interconnect architecture and circuit design, and by reducing the voltage swing for the
interconnects. The work in [37], used a dual-voltage scheme for operating pass transistor
networks at low voltage for reducing the dynamic power. The work in [39] used a pro-
grammable dual-Vdd technique for reducing the dynamic and leakage power. The work
in [43] develops a power-aware technology mapping for LUT based FPGAs to keep the
high switching activity nets out of the FPGA routing network, because the routing net-
work has a high capacitance and leads to increased switching power. The work in [42]
reduces switching power by optimizing the technology-mapping, clustering, placement
and routing stages of the VPR CAD flow, by taking into account the activity of the nets
in each stage of the CAD flow.

3.2 Leakage Power

In this section, leakage mechanisms and the impact of technology scaling on leakage
power is discussed. The leakage power of a state of the art 90nm FPGA is also discussed.

3.2.1 Technology Scaling and Leakage Power

Rapid scaling of technology was targeted to increase the performance and logic density.
Fig. 3.1 shows the technology scaling trend projected by ITRS [46]. There has been an
improvement of more than 30% in the delays of the transistors per technology generation.
With this, the supply voltage has been scaling and also the threshold voltage (Vth)of the
transistor, so that sufficient gate overdrive is maintained. This has resulted in significant
increase in subthreshold leakage as shown by the following equation

Isub = I0

[
1− exp

[−Vds

VT

]]
.exp

[
Vgs − Vth − Voff

nVT

]
(3.3)

where VT is the thermal voltage, Voff is the offset voltage which determines the chan-
nel current at Vgs = 0, n is the subthreshold swing coefficient, W, L, µ, q, φs, εsi, are
the width, length, mobility of charge carriers, electron charge, surface potential and per-
mittivity of silicon, respectively, for the transistor. It can be seen that the subthreshold
leakage is exponentially dependent on the threshold voltage, Vth, of the transistor.

Fig. 3.2 shows the active and leakage power trends for the Intel’s process technolo-
gies [41]. The leakage power for the 0.25µm technology is 0.1% of the total power,

17



Figure 3.1: Technology Scaling

0

50

100

150

200

250

0.25um 0.18um 0.13um 0.1um

Technology

W
at

ts

0

10

20

30

40

50

60

70

80

90

100

Po
w

er
 D

en
si

ty
 

Leakage Power
Active Power
Power Density

(W
/c

m
2 )

Figure 3.2: Leakage power contribution to total power with technology scaling

18



Gate

I3, I4

I1

I2

I5

I6

Well

n+n+

Source Drain

Figure 3.3: Leakage currents in a short channel transistor

whereas for the 0.1µm technology, it is almost 25% of the total power. It is projected
that for 65nm technology, the leakage power would be as high as 50% of the total power.
Therefore leakage power management is very important in scaled technologies.

The shrinking geometries has led to other sources of leakage current. Fig. 3.3 shows
the leakage currents through a short channel transistor [13].

I1 is the reverse-bias pn junction leakage current. This current is caused because
of the minority carrier diffusion/drift near the edge of the depletion region, and due to
electron-hole pair generation in the depletion region of the reverse biased junction [13].
In case the n and p regions are heavily doped then band-to-band tunneling (BTBT) starts
to dominate the leakage current in the pn junction. The BTBT leakage current flows
under high electric field conditions, when the electrons from the valence band of p tunnel
into the conduction band of n.

I2 is the subthreshold leakage current. This current occurs between the source and
drain of the transistor due to weak inversion in the subthreshold region, when the gate
voltage is below the threshold voltage Vth [13].

I3 is the gate tunneling current through the gate oxide of the transistor. With the re-
duction of gate oxide thickness the electric field across the gate oxide increases. These
lead to tunneling of electrons from the substrate to gate and from gate to substrate result-
ing in the gate oxide tunneling current [13].

I4 is the current due to injection of hot carriers from substrate to gate oxide. The
short-channel transistors have high electric field near the silicon and gate oxide interface.
This results in holes and electrons gaining sufficient energy to cross interface barrier to
enter the oxide layer, resulting in hot-carrier injection [13].

19



LUTs
16%

Other 12%
Interconnect

34%

SRAM 38%

Figure 3.4: Leakage breakdown among different FPGA elements [4]

I5 is the gate induced drain leakage current (GIDL). This phenomenon occurs be-
cause of high electric field effect in the drain junction of the transistor [13].

I6 is the punch-through current. This occurs in short channel devices because the
source-substrate and drain-substrate depletion regions tend to come closer. When these
depletion regions merge, punch-through occurs [13].

3.2.2 Leakage Power in FPGAs

The work in [4] analyzed leakage power in a state of the art 90nm FPGA using SPICE
simulations with BSIM4 models. The leakage power was reported to be 4.2µW per CLB
at 25 ◦C. With a GSM cell phone’s standby current budget of 300µA, the upper bound
on leakage power would imply only 86 CLBs [4], which is too small for any significant
processing. Hence leakage power is a very big obstacle for FPGAs to enter into mo-
bile applications domain. The leakage power breakdown among different elements of
the FPGA reported in [4] is shown in Fig. 3.4. It shows that leakage power from the
configuration SRAM cells and the routing interconnects form a major part of the total
leakage. Further, it shows that leakage from the unused parts of the FPGA can be as high
as 56% for a small design using 50% of the available CLBs, whereas for a design which
uses all the CLBs, the unused leakage is 35%, still a significant portion of total leakage.
Therefore reducing leakage power in the unused parts of FPGAs is also very important.

20



3.2.3 Estimating Power Savings

The total power consumption can be divided into 2 parts, active power and standby
power. The total average power can be written as

Pavg =
tact × Pact + toff × Poff

tact + toff

(3.4)

T = tact + toff (3.5)

where Pavg, Pact, and Poff are the average, active and standby (off) power. For personal
wireless communication systems, typically the standby time or off time (toff ) is 90% of
the total time (T ) and active time (tact)is 10% of the total time. During the active time
the components of power dissipation can be written as

Pact = [Pdyn + Psckt + Pactleak]used + [Pactleak]unused (3.6)

where Pdyn,Psckt, and Pactleak are the dynamic, short circuit and active leakage power
consumptions respectively. Poff is the standby leakage power consumption of the FPGA,
because during the standby mode, only leakage power is dissipated. Hence, reducing
leakage power during the standby mode for mobile applications would increase the bat-
tery life significantly.

3.3 Leakage Power Modeling for FPGAs

Analytical equations for leakage computation have been studied and developed in de-
tail, which can model the complex behavior of various components of leakage current in
a MOS transistor. These models are based on physical and empirical parameters [25].
Typically, the leakage power consumption of any circuit is not only dependent on the
physical parameters of the circuit, but is also heavily dependent on the inputs to the cir-
cuit. The work in [5] showed that the leakage current can vary by an order of magnitude
depending on the input to the circuit and demonstrated that certain input vectors are the
dominant leakage states for a logic gate.

There have been very few works targeted at modeling leakage power for the FPGAs.
The work in [11] modeled the dynamic and the leakage power in FPGAs. The power
model was integrated into the VPR framework. The power model framework is shown
in Fig. 3.5. It developed an activity estimation tool, using a transition density model to
estimate the activities of the internal nodes of the FPGA for dynamic power computation.

21



Figure 3.5: Power model framework developed in [11]

It used the concept of boolean difference to propagate the signal probabilities which is
given by the following equation for a given boolean function f(x).

df(x)

dxi

= f(xi)⊕ f(xi) (3.7)

The probability of boolean difference, P (df(x)
dxi

) represents the static probability that a
change in xi would produce a change at the output. With an input transition density
(number of transitions per second) of D(xi), the total transition density at the output is
given by [11]:

D(y) =
∑

i

df(x)

dxi

.D(xi) (3.8)

The primary inputs were considered to be uncorrelated having a static probability of 0.5
and transition density of 0.5. The dynamic power is then given by

Pdyn =
∑

all nodes

1

2
.Vdd

2.Cy.D(y).fclk (3.9)

where Cy, and fclk are the capacitance of the node y, and clock frequency, respectively.
The short circuit power was assumed to be 10% of the dynamic power. This work mod-
eled only subthreshold leakage. The subthreshold leakage was modeled using the fol-
lowing equation for a transistor,

Isub = Ion.exp

[
(Vgs − Von).q

n.k.T

]
(3.10)

22



where Von = Vth +n.K.T/q, n is the subthreshold swing coefficient, k is the Boltzman’s
constant, q is the electron charge and Vgs is the gate to source voltage of the transistor,
Ion is the drain current when Vgs = Von. For the inactive transistors, Vgs was considered
as half of the threshold voltage.

However, this work has some major drawbacks in leakage power modeling. This
work considered only subthreshold leakage and did not consider the dependency of sub-
threshold leakage on the state of the circuit, rather it calculated an average leakage con-
sidering that all the transistors were leaking and the Vgs was considered as half of Vth

for leakage computation, which is not accurate. The short channel effects have not been
taken into account in this work. These produce inaccurate estimation of leakage current.
Further, for scaled technologies it is important to model the gate leakage.

The work in [8] and [4] calculated total power using look-up table based approach
based on SPICE simulations to characterize the power of the FPGA circuit elements.
The look-up table stores the leakage power of the circuit elements for different inputs or
an average leakage for each circuit element. The total leakage is computed by adding
the leakage of all the circuit elements. However, this methodology is not accurate as the
leakage power is strongly dependent on the state of the inputs and considering an average
leakage for the circuit elements of the FPGA leads to inaccurate leakage estimation.

Motivated by the above mentioned limitations of the previous works, this work devel-
ops an analytical model for leakage power calculation for FPGAs, that takes into account
the dependency of the leakage power on the state of the circuit. The contribution of this
work on leakage power modeling for FPGAs can be summarized as:

1. Developing analytical models and methodology to compute subthreshold and gate
leakage power for FPGAs, independent of the technology node.

2. Computation of state dependent subthreshold and gate leakage.

3. Analysis of sources of leakage in FPGAs.

3.4 Leakage Power Reduction in FPGAs

In this work reduction of subthreshold leakage reduction is targeted, because the gate
leakage is still orders of magnitude smaller than subthreshold leakage for current gener-
ation technologies. The subthreshold leakage current through a MOSFET can be mod-
eled as shown in equation 4.1. Since the subthreshold leakage current is exponentially
dependent on the threshold voltage, increasing the threshold voltage would decrease the

23



leakage current substantially. However, the high threshold voltage devices have larger
switching delays.

The various leakage current mechanisms and some leakage reduction techniques for
CMOS circuits were discussed in [13][2]. The techniques for reducing leakage power in-
volve static and dynamic approaches. The dynamic approach involves run time decision
making for leakage reduction. One such popular technique is the use of sleep transistors
in MTCMOS circuits for controlling the leakage power [16]. Several optimizations for
MTCMOS circuits involving the use of sleep transistors have been proposed, such as in
[14][15]. However, this technique can reduce only standby leakage power and leads to
performance degradation. The static technique does not involve run time decision mak-
ing for leakage control. The dual threshold voltage design technique, which is a static
approach, has been widely used in the custom VLSI designs for reducing leakage power.
The dual-Vt implementation reduces both, the active leakage and the standby leakage.
Further, there is no performance degradation in a dual-Vt implementation for custom
VLSI designs.

The dual threshold voltage design technique uses two kinds of transistors in the same
circuit. Some transistors have a high threshold voltage, while other transistors have a low
threshold voltage. The high threshold voltage transistors have less subthreshold leakage
power dissipation but also have a larger delay as compared to the low threshold voltage
transistors. Fig. 3.6 shows the concept of dual threshold voltage implementation in
custom VLSI designs. Here, gates on non-critical paths are assigned high-Vt and the
gates on the critical path are assigned low-Vt. The objective is to maximize the number
of transistors having high threshold voltage without sacrificing the performance of the
circuit. Several prior works have proposed algorithms which assign high-Vt and low-Vt
to the logic gates of the given circuit [1][5][17][18]. However the dual threshold voltage
design technique proposed in the literature for custom VLSI designs cannot be used for
FPGAs. This is because the FPGAs are programmable and the circuit that would be
eventually implemented on it is unknown and hence the delays through various paths
of the circuit are not known. In this work a dual-Vt FPGA CAD flow for designing
and evaluating different dual-Vt FPGA architectures is proposed and developed. No
published work has proposed such a CAD flow.

There have been very few works targeted at reducing the leakage power in FPGAs.
The leakage reduction techniques can be broadly divided into techniques that target re-
duction of leakage in logic, routing or both.

The work in [3] used a technique based on the property that the leakage power con-
sumed by a CMOS circuit is dependent on the state of its inputs and used the signal
statistics to alter the state of the inputs in order to reduce the leakage power in such a
way that the functionality of the circuit does not change. It explains that FPGA circuit

24



 

Critical Path 

Non-critical Path 

Low Vt gate 

High Vt gate 

Figure 3.6: Dual-Vt design implementation

elements such as multiplexers and pass transistors should have their inputs and outputs
at logic level 1 to reduce active leakage. For example, the gate leakage of a turned on
pass transistor is more when a logic 0 is being driven as compared to the case when logic
1 is passed through it. The methodology tries to maximize the time that a signal spends
in logic level 1. It uses the concept of static probability of signals to alter the state of
the signal. If the static probability of the signal is less than 0.5, then it is a candidate
for signal inversion. The signal is inverted if it is possible to do so without changing the
functionality of the circuit. It reports an average active leakage savings of 25%. However
this work addressed only active leakage. Standby leakage reduction is very important for
mobile application because mobile devices typically spend almost 90% of the time in
standby mode. Further, this work addressed leakage reduction only in the used parts of
the FPGA, and it was shown in [4] that leakage from the unused parts of FPGA can be
as high as 56% of the total leakage.

The work in [6] approached the problem of reducing leakage power by dividing the
FPGA fabric into small regions with each of the regions being controlled by a sleep
transistor which would be turned on/off depending upon whether that region is being
used or not, thus reducing the leakage power. It uses a region constrained placement
technique to maximize the sleep time. It reports leakage savings of around 20%-30%,
with performance loss of 8%. However, this technique requires extra sleep transistors and
control circuitry for configuration of the control bits, leading to area overhead. Further,
it uses dynamic reconfiguration of SRAM cells, i.e. during the actual run time of the
application, which leads to problems associated with the wake up time for the system,
and an extra overhead. With the extra overhead the leakage energy savings is reported as
19%. Finally, this technique leads to reduction of only standby leakage power.

The work in [7] explored the dual-Vt, body biasing and gate biasing of nMOS pass
transistors for reducing leakage power. The dual-Vt technique used in [7] was based on

25



varying the percentage of high threshold voltage elements in the routing resources of the
FPGA and studying its effect for a number of benchmarks. It did not specify the leak-
age savings obtained, and no detailed evaluation of several possible routing architectures
was presented. Body-biasing technique requires control circuitry and generation of volt-
ages for body biasing. Further, this technique leads to reduction in leakage savings with
technology scaling [19]. The negative gate biasing of nMOS pass transistors has im-
plementation issues and also leads to additional leakage current component, called gate
induced drain leakage.

The work in [22] used a dual-Vdd/Vt architecture to reduce leakage power and dy-
namic power. Only the configuration SRAM cells were assigned high-Vt to reduce leak-
age power. Two types of logic blocks are used, logic blocks with high-Vdd and logic
blocks with low-Vdd. The logic blocks have a fixed pattern on the FPGA. An algo-
rithm is used to assign high-Vdd/low-Vdd to the logic blocks based on slack available
and power sensitivity. It uses a level converter to transfer the logic between high-Vdd
and low-Vdd regions. An overall power savings of around 14% is reported for the dual-
Vdd architectures with non-negligible delay penalties. However, the dual-Vdd approach
requires design of power supply network with two voltage levels and level converters
which lead to area overhead and increased complexity. Further it is difficult to increase
the granularity of the approach because that would imply increasing the complexity of
the power supply network.

The work in [44] uses logic blocks with dual-Vdd supplies which can be config-
ured so that the logic blocks can be assigned high-Vdd/low-Vdd during the configuration
phase for power and performance tradeoffs and leakage power is reduced only in the
logic blocks. This technique reduces both the dynamic and leakage power. It uses three
kinds of logic blocks, H-block having a fixed high-Vdd, L-block having a low-Vdd and
P-block having configurable Vdd. The P-logic blocks are allowed to have a 5% perfor-
mance degradation and the power switch leads to area overhead of 24% for these blocks.
An architecture, arch-DV, is used with H/L/P blocks having the ratio 1/1/3 with an overall
area overhead of 14%. An overall power savings of 9.04% is reported for the arch-DV.
For the architecture having all P-blocks with an area overhead of 24%, an overall power
savings of 14.3% is reported. This work has problems with area overhead management,
and design of supply network with dual-Vdd. No analysis of delay penalties was pre-
sented, rather the comparison with the baseline architecture was done for a number of
fixed clock frequencies. A similar work was done in [39] using configurable dual-Vdd
blocks with a different algorithm to assign high-Vdd/low-Vdd to logic blocks. An aver-
age overall power savings of 61% was reported with leakage savings of 71% with delay
penalty of around 20%. This work has similar design issues as above.

The work in [45] proposes low power routing switch design for reducing the leakage

26



and switching power. The low power switch is designed by having sleep transistors
for the buffer at the output of the multiplexer switch. Two sleep transistors are used in
parallel, NMOS sleep transistor called MNX, and PMOS sleep transistor called MPX,
providing virtual Vdd to the output buffer. In the high speed mode MPX is turned on and
MNX is turned off. In the low power mode MNX is turned on and MPX is turned off. In
the low power mode the virtual Vdd is equal to V dd−Vth, leading to lower output swing
and reduced subthreshold leakage. In an alternate design the body of the PMOS switches
in the buffer is tied to virtual Vdd, leading to reduced threshold voltage and consequently
increased drive strength. This leads to increased leakage, but the buffer can be smaller
in size leading to area reduction. The switches were designed such that the performance
loss is within 5%. It also took advantage of the fact that for most of the routing switches
in FPGAs, significant slacks are available, so that a significant fraction of the routing
switches can be of this type. A leakage power savings of 36% was reported for the switch
in the low power mode versus the high speed mode. For the alternate switch design, a
leakage power savings of 28% was reported. The switching energy was reduced by 29%.
In the sleep mode, a leakage savings of 61% was observed. The proposed switch is 1.3
times larger in area as compared to the traditional switch, whereas the alternate switch is
1.2 times larger in area as compared to the traditional switch. The area overhead for the
complete FPGA is estimated to be around 20%. The main drawback of this work is that
it leads to non-negligible area overhead.

Motivated by the limitations of the leakage power reduction techniques for FPGAs,
a dual-Vt technique and CAD flow that has the following advantages, is proposed in this
work:

1. Reduces both active leakage power and standby leakage power.

2. Provides a CAD framework for developing and evaluating a dual-Vt FPGA imple-
mentation.

3. The inherent area penalty in using sleep transistors is not present in this design
technique.

4. The dual-Vt architecture does not require any modification in the existing place-
ment and routing tools from the perspective of the users.

3.5 Summary

This chapter presented work that has been done on leakage power modeling and reduc-
tion for FPGAs. The methodologies were described and the results were discussed. The

27



drawbacks of these techniques were discussed, which served as the motivation for this
work.

In the next chapter, the leakage power model for FPGAs developed in this work is
explained and results obtained from the leakage power model are discussed. Chapter 5
discusses the dual-Vt FPGA architecture and CAD flow for leakage power reduction.

28



Chapter 4

Analytical State Dependent Leakage
Power Model for FPGAs

4.1 Introduction

In this chapter the leakage power model for FPGAs is explained and discussed. Ana-
lytical models are used for computing leakage current through each of the FPGA circuit
elements. A library of functions is used for this purpose. This library of funtions takes
the input as the probability of state of the FPGA circuit element and the technology pa-
rameters and computes the leakage for the FPGA circuit element. This is repeated for
all the elements in the FPGA and the total leakage current is computed as the sum of the
individual leakage currents.

Analytical models for leakage currents in a transistor are explained in the next section
and leakage models to account for short-channel effects are developed. The leakage
currents in various FPGA circuit elements and their state dependency are discussed in
section 4.3. Section 4.4 discusses the overall framework for computing the leakage power
for FPGAs. Finally, in section 4.5 results obtained from the leakage power model are
discussed.

4.2 Analytical Models for Leakage Currents

The leakage power model considers the subthreshold and the gate leakage. The following
are the subthreshold and gate leakage equations used in the power model [25].

29



Isub = I0

[
1− exp

[−Vds

VT

]]
.exp

[
Vgs − Vth − Voff

nVT

]
(4.1)

I0 = µ
W

L

√
qεsiNDEP

2φs

V 2
T (4.2)

Igc0 =
W.L.A.Vgs.Vaux

T 2
ox

.exp

[
−B.Tox.(

AIGC −BIGC.Voxdepinv

)
.
(
1 + CIGC.Voxdepinv

)]
(4.3)

Vaux = NIGC.VT .log
[
1 + exp

(V gs− Vth0

NIGC.VT

)]
(4.4)

Voxdepinv = K1.
√

φs + Vgs − Vth (4.5)

Igcs =
PIGCD.Vds + exp(−PIGCD.Vds)

PIGCD2.V 2
ds + 2e− 4

− 1 + 1e− 4

PIGCD2.V 2
ds + 2e− 4

(4.6)

Igcd =
1− (PIGCD.Vds + 1).exp(−PIGCD.Vds)

PIGCD2.V 2
ds + 2e− 4

+
1e− 4

PIGCD2.V 2
ds + 2e− 4

(4.7)

The subthreshold leakage (Isub) equations [25] are given by equations (4.1) and (4.2),
where VT is the thermal voltage, Voff is the offset voltage which determines the channel
current at Vgs = 0, n is the subthreshold swing coefficient, W, L, µ, q, φs, εsi, are the
width, length, mobility of charge carriers, electron charge, surface potential and permit-
tivity of silicon, respectively, for the transistor. Since only the gate to channel current
(Igc0)is the dominant gate leakage current, and the gate current for the PMOS is sig-
nificantly smaller than the gate current for the NMOS, only gate to channel current for
the NMOS is modeled [26]. However, the proposed model can be easily extended to
incorporate other gate leakage components and the gate leakage for the PMOS. The gate
leakage equations are given by (4.3)- (4.7), where A, B are physical constants, Tox is the
gate oxide thickness, AIGC, BIGC, CIGC, and NIGC are the empirical parameters,
K1 is the first order body bias coefficient. Equation (4.3) is used for computing Igc0 and

30



equations (4.6), and (4.7) are used for partitioning Igc0 into the source current Igcs and
drain current Igcd, where PIGCD is a parameter for the partitioning.

In this work, industrial CMOS 130nm and CMOS 90nm processes were used for
the leakage analysis of the FPGA using the leakage power model. The deep-submicron
MOSFETs have various short channel effects (SCE) which were not present in long
channel devices. For the CMOS 130nm process that was used, it was observed that the
threshold voltage (Vth) of the NMOS was affected by the reverse narrow width effect
(RNWE) [13], i.e., the threshold voltage of the transistor increased as the width of the
transistor increased from the minimum width, which consequently reduced the leakage
of the transistor. Further, the threshold voltage of the transistors are also affected by the
drain to source voltage (Vds). The threshold voltage of the transistor decreases when the
drain to source voltage is increased. To incorporate these effects into the models, the
experimental data from the SPICE simulation was curve fitted to empirical equations as
follows:

Vth|(Vds=0) = V0

(
1− a.exp(−b1.W − b2.W

2)
)

(4.8)

Vth = Vth|(Vds=0) −m.Vds (4.9)

where W is the width of the transistor, equation 4.8 models the RNWE, and equation
4.9 models the impact of Vds on Vth. For CMOS 130nm NMOS, V0 = 0.412V , a =
0.345003, b1 = 1.01194, b2 = −0.0568004, and m = 0.02125. For CMOS 130nm
PMOS, the RNWE was not too significant, so only the dependence of Vth on Vds was
modeled, with m = 0.02388. These values were determined from curve fitting of the
simulation data. For the CMOS 90nm process a similar RNWE for the NMOS was
observed, and the dependence of Vth on Vds was observed for both NMOS and PMOS.
However, for the CMOS 90nm PMOS a narrow width effect (NWE)[13] was observed,
which results in increasing Vth as the width of the transistor is decreased. The RNWE
and Vds dependence for CMOS 90nm NMOS were modeled using equations (4.8) and
(4.9) with the constants as V0 = 0.320812, a = 0.437178, b1 = 1.2, b2 = −0.068, and
m = 0.0668. For the PMOS, a model using curve fitting to account for the NWE was
developed, as follows:

Vth =
f1 + f2.W + f3.W

2

g1 + g2.W + g3.W 2
(4.10)

where f1 = 0.49, f2 = 1.16679, f3 = −1.51, g1 = 0.318, g2 = 4.3 and g1 = −0.533.
The impact Vds was modeled using equation (4.9), with m = −0.0468. These equations
have been used in our leakage power model to model the reverse narrow width effect
and the dependence of Vth on Vds. Although the constants used in these equations make
it technology dependent, the data can be easily extracted by simulating only one device
under few different widths and drain to source voltages.

31



Figure 4.1: Dependence of Vth on the width of NMOS for CMOS 130nm

For illustrative purposes the dependence of Vth on the width of the transistor and the
drain to source voltage are shown in Fig. 4.1 and Fig. 4.2, respectively for NMOS in
CMOS 130nm. Fig. 4.1 shows the dependence of Vth on the width of NMOS. It shows
that as the width is increased the threshold voltage increases rapidly, and flattens out after
the width of the transistor is 7 times the minimum width. Fig. 4.2 shows the dependence
of Vth on the drain to source voltage. It can be seen that the threshold voltage of the
NMOS decreases linearly with the drain to source voltage.

Table 4.1 shows that the inclusion of the RNWE in the power model greatly improves
the overall accuracy of the power model. The base threshold voltages of the devices were
determined from the SPICE simulation so that various effects can be accounted for in the
model.

4.3 Leakage in FPGA Circuit Elements

This section describes the various leakage current components that have been modeled
in different circuit elements. The inverters were sized for equal rise and fall times, and

32



Figure 4.2: Dependence of Vth on drain to source voltage for NMOS in CMOS 130nm

Table 4.1: Comparison of Power Model with the SPICE simulations for CMOS 130nm
Circuit El-
ement

SPICE
(pW)

Power
Model
(without
SCE) (pW)

Power
Model
(with SCE)
(pW)

Error
(without
SCE)

Error (with
SCE)

Inverter
(2x)

372.7 901.2 411.8 141% 10.5%

4-Binary
Tree

1156 1352 1212 16.9% 4.8%

Buffered
Switch

883.2 1403 873.4 58.8% 1.1%

33



In = 1
Igc

IgcdIgcs
In = 0

Vdd

Gnd

Isub

0 0

(a)

(b)

Figure 4.3: (a) Gate leakage in NMOS (b) Subthreshold leakage in Inverter

for minimizing the delay and area product [9]. All the multiplexers were implemented
with minimum sized transistors, the SRAM cells are considered to have minimum sized
transistors with high-Vth to mitigate subthreshold leakage, and the routing switches were
optimized for area and delay product. Both the PMOS and NMOS in various circuit
elements are considered as the candidates for subthreshold leakage, but only the NMOS
transistors are considered as candidates for gate leakage because the gate leakage in
PMOS is considerably smaller than NMOS [26]. Furthermore, the back gate leakage of
the NMOS transistors is ignored and only the gate current from the gate to channel is
considered, which then gets partitioned, and flows into the source and the drain of the
transistor as shown in Fig. 4.3(a). The methodology that was adopted for computing the
leakage power for each of the circuit elements in the FPGA is described below.

Inverter: The subthreshold leakage of the inverters is modeled in both the states, i.e,
when the input is 0 and when the input is 1 and the gate leakage of the inverter when the
input is 1. With the input at 0, only subthreshold leakage flows through the NMOS of the
inverter and the gate leakage through PMOS is ignored as shown in Fig. 4.3(b). When
the input to the inverter is 1, there is subthreshold leakage through the PMOS and gate
leakage through the NMOS.

Multiplexer: In FPGAs, the multiplexers are implemented with NMOS pass transis-
tor structures. The multiplexer is binary tree implemented using pass transistors. The
leakage currents in the multiplexer is again strongly dependent on the state of its inputs.
The multiplexer leakage under two cases are as follows.

Case1: Fig. 4.4 shows the structure of the multiplexer and the subthreshold and
gate leakages for the select signal (0,0) and the input vector (0010). Only one transis-

34



SRAM SRAMdatadata = 0 data=0 data

Out

In1 = 0

In2 = 0

In3 = 1

In4 = 0

Igate

Isub

Igate

Igate

In = 1
Igc

IgcdIgcs

In = 1

0
1

Isub

Q1

Q2

Q3

Q4

Q5

Q6

Figure 4.4: Multiplexer structure and the corresponding state dependent leakage for a
particular select signal and input vector

tor (Q3) has subthreshold leakage, whereas three transistors have gate leakage currents
(Q2,Q4,Q6). However, when the input vector changes to (0110), keeping the select sig-
nal same, there are three transistors which have subthreshold leakage (Q1,Q3,Q5) and
two transistors have gate leakage (Q1,Q6). Therefore it is quite important to consider the
state dependency of leakage currents in any circuit.

Case2: Another phenomenon that needs to be accounted for in the pass transistor
structures is that of the impact of Vds on the threshold voltage of the transistor. Consider
the case of two cascaded pass transistors as shown in Fig. 4.5. Here, transistor Q2 has
subthreshold leakage. However, the drain terminal of Q2 is not at Vdd, but at a smaller

35



In = 1 In = 0

01

Vdd – V1
IsubI1

Q1 Q2

Vth1

Vth1 > V1

Figure 4.5: Leakage in multiplexers is affected by the voltage drop during signal propa-
gation

value, which is Vdd− V1, where V1 is voltage which is smaller than the threshold voltage
of Q1, (Vth1). This reduced drain voltage increases the threshold voltage of transistor
Q2, which reduces the subthreshold leakage through Q2. It is interesting to note that
V1 < Vth1. This can be explained as follows. When Q1 tries to charge the drain node
of Q2, Q1 has to be turned on, which implies that initially V1 > Vth1 and Q1 is on and
charges the node till V1 = Vth1. After this, Q1 is turned off and subthreshold leakage
current through it charges the drain node of Q2. At steady state Q1 needs to supply only
the subthreshold leakage current which is flowing through Q2. Under this condition,
Q1 need not be turned on fully, i.e., it can operate in the subthreshold region and still
provide sufficient current for the leakage current through Q2. Hence a steady state is
reached when the voltage drop across Q1 is adequate to provide the necessary current.
V1 was assumed a constant value of 0.2V , and 0.1V for CMOS 130nm and CMOS 90nm
respectively. These values have been arrived at, using SPICE simulations and provide
sufficiently accurate results. The leakage value reported in Table 4.1 for the 4 input
binary tree takes this value of V1.

SRAM Cells: The FPGA contains many SRAM cells which are used for configuring
the FPGA. These SRAM cells are configured only once and it remains constant through-
out the run time of the FPGA. The standard six transistor SRAM cell is considered in this
work. The SRAM cells are implemented with high-Vth transistors, because the SRAM
cells are used only in the read mode, and is configured only once, and hence does not re-
sult in any performance penalty. This reduces the subthreshold leakage significantly and
many commercial FPGAs have high-Vth SRAM cells. The leakage through two inverters
connected back to back and gate leakage through one of the access pass transistors have
been modeled.

LUTs: The look-up tables (LUTs) consist of an array of SRAM cells and a multi-
plexer. The array of SRAM cells implement the truth table and the multiplexer selects
the SRAM cell based on the input to the LUT. The leakage for the LUTs would again be

36



SRAM

SRAM

(a)

(b)

In = 1

Vdd

Gnd

S=0

Node = 1

Isub

IsubIgate

Igate

Node = 0Node = 0

S=1

Figure 4.6: (a) Buffered routing switch. Subthreshold and gate leakage currents under
certain input conditions. (b) Pass transistor routing switch. Only gate leakage is present
when the switch is turned on.

state dependent as explained above, for the multiplexers and the inverters.

D Flip-flop: The D flip-flops are again made of latches and pass transistors so the
leakage current for the flip-flops can also be modeled in terms of the basic inverter and
pass transistors with the appropriate sizes of the transistors.

Routing Switches: There are two kinds of routing switches that are present in this
FPGA architecture, namely, buffered routing switches and pass transistor based routing
switches. Both switches have NMOS pass transistors. Fig. 4.6(a) shows the leakage
currents through this switch when it is turned off with the input node at logic 1 and
output node also at logic 1. In this case there is subthreshold leakage through the PMOS
of the inverter and through the pass transistor of the switch. Fig. 4.6(b) shows the gate
leakage current that flows through the pass transistor switch when the switch is turned
on, and logic 0 is being passed through the switch.

The pass transistors in the routing switches have to drive buffers at the end of routing
segments. When logic 1 is being driven through a NMOS pass transistor, it leads to a
Vth drop in the voltage level of the signal. This leads to both the PMOS and NMOS

37



Node = 
1.2 V

1.2 V

Static Current = 1.171nA

Node = 
1.2 V

1.5 V

Static Current = 62.11pA

(a)

(b)

Figure 4.7: (a) Static current without gate boosting. (b) Reduced static current with gate
boosting.

of the driven buffer to get partially turned on leading to large static current. To address
this problem commercial FPGAs employ gate boosting of the NMOS pass transistors to
decrease the static current dissipated in the buffer driven by the NMOS pass transistor as
depicted in Fig. 4.7. In this case the gates of the NMOS pass transistors are driven by
a higher input voltage. Fig. 4.7 shows that the static current gets reduced considerably
when gate boosting is employed.

4.4 Leakage Power Model

In this section, the leakage power model framework is described. The overall architecture
of the leakage power model is shown in Fig. 4.8. The widely used academic and research
tool, VPR [9], has been used for placement and routing of the benchmark circuits. After
the placement and routing of the given circuit, the power model computes the probability
of states for each node of the circuit. For computing the probability of the nodes of
the circuit, the work done in [11] has been used. The probability for each of the nodes
is computed by propagating the static probability of the signals at the input, which are
considered to be independent. The probability of any signal for a boolean function can
be computed using the binary decision diagrams (BDD) [35]. Binary decision diagrams
represent a logic function graphically. A function f(x1, ..., xn) can be written as

38



VPR

Power Model
(Computation 

of probability of 
each state)

Leakage Power 
Computation 

Engine

Technology dependent 
data

Leakage Power 
Results

Figure 4.8: Overall architecture of the leakage power model

f = xi.f(x1, ..., xi−1, 1, xi+1, ..., xn) + xi.f(x1, ..., xi−1, 0, xi+1, ..., xn) (4.11)

using Shannon expansion, where

fxi = f(x1, ..., xi−1, 1, xi+1, ..., xn) (4.12)
fxi = f(x1, ..., xi−1, 0, xi+1, ..., xn) (4.13)

are the cofactors of f and are obtained by replacing xi with logic 1 and logic 0,
respectively, in f . An input xi is represented by a node in the BDD, and the edge coming
out of the node represent the value of the input xi. The value of the function can be
determined by simply traversing the BDD from its root. The calculation of probability
then becomes [35]

P (f) = P (xi).P (fxi) + P (xi).P (fxi) (4.14)

Starting with i = 1, a depth first traversal of BDD would yield the the probabil-
ity P (f). For any boolean logic function f(x), the boolean difference is calculated as
follows:

df(x)

dxi

= f(xi)⊕ f(xi) (4.15)

39



The probability of the boolean function P
(df(x)

dxi

)
, then gives the probability that a change

in xi would produce a change at the output. After the probability of states for each
of the node is computed, the power model looks at each of the circuit elements of the
FPGA and computes the leakage for each of the states of that element using the Leakage
Computation Engine (LCE). The LCE has been implement to compute the leakage for
each of the circuit elements of the FPGA based on given input vector (and the state of
the SRAM cells, if they are present in the given circuit element). The LCE is basically
a library of state dependent leakage calculation functions. This library has the basic
leakage equations for subthreshold leakage and gate leakage and the computation of
the associated parameters, based on equations (4.1)-(4.7). It also has the models for
computing the leakage for each of the FPGA circuit elements for a given input vector. For
the used part of the logic block, the actual probability of states is considered depending
on the input probability. For the unused part of the logic block, it is assumed that all
the SRAM cell configuration bits are programmed to zero and the probability of states is
computed accordingly. In case of used pass transistor switches, they consume only gate
leakage. The used buffered switches have subthreshold leakage power in the buffers and
gate leakage in the pass transistor. For unused switches we consider that all the switches
have different logic level at their two nodes. In this case, the buffers have both the gate
and subthreshold leakage, whereas the pass transistors have only the gate leakage.

The leakage power model takes into account the state dependency of leakage power
by considering the probability of states for each of the circuit element. Consider a circuit
element which has n states and the probability of the states are Prob1,Prob2, ..., Probn,
such that

∑n
i=1 Probi = 1. The leakage power for different states are given as Pleak1,

Pleak2, ..., Pleakn. The average leakage power can then be written as:

Pavgleak =
n∑

i=1

Probi.P leaki (4.16)

4.5 Results and Discussion

For evaluating the leakage power consumption of different benchmarks, a fixed FPGA
architecture for the benchmarks was taken. Smaller benchmarks had 20x20 logic blocks
and a routing channel width of 100. Each logic block is made up of a cluster of 12
sub-blocks. For the larger benchmarks (bigkey, des, dsip), a square array of 35x35 logic
blocks and a routing channel width of 100 was assumed.

Table 4.2 shows the leakage power consumption for different benchmarks. It can
be seen that the dominant leakage for both the technologies is the subthreshold leak-

40



Table 4.2: Subthreshold and gate leakage for different benchmarks
Benchmark Subthreshold

Leak-
age

Gate
Leak-
age

Total
Leak-
age

130nm
(µW )

90nm
(µW )

130nm
(pW)

90nm
(µW )

130nm
(µW )

90nm
µW )

alu4 138.34 596 498 21.7 138.34 617
apex2 152.37 667 502 21.6 152.37 689.46
apex4 131.6 567 509.6 22.1 131.6 589
bigkey 342.5 1455 1445 64.1 342.5 1519
des 347.7 1482 1447 64 347.7 1546
diffeq 140.5 603 486 21.1 140.5 624
dsip 332.3 1403 14351 63.7 332.3 1467
elliptic 187.2 844 517 21.8 187.2 866
ex1010 195.8 912 584 24.2 195.8 936
ex5p 126.6 541 505 22 126.6 563
frisc 185.3 838 525 22.1 185.3 860
misex3 136.5 588 498 21.6 136.5 609
s298 156.7 679 479 20.8 156.7 700
spla 177.5 659 549 21.5 177.5 681
tseng 128.8 547 490 21.4 128.8 569

41



1.5%

64.9%
Routing Leakage

33.6%
Logic Leakage

6%

52.5%
Routing Leakage

41.5%
Logic Leakage

(a) (b)
CMOS 130nm CMOS 90nm

1.5%
SRAM Leakage 

SRAM 
Leakage

Figure 4.9: Average Leakage distribution for different parts the FPGA for CMOS 130nm
and 90nm

age, the gate leakage being orders of magnitude smaller. The subthreshold leakage for
the CMOS 90nm FPGA is almost 4 times greater than the subthreshold leakage for the
CMOS 130nm FPGA. Further, it can be seen that the gate leakage increases exponen-
tially with technology scaling. For the CMOS 90nm FPGA, the gate leakage is orders
of magnitude greater than the gate leakage for CMOS 130nm FPGA. This result is con-
sistent with the fact that the contribution of the gate leakage to total leakage increases
with technology scaling. The state dependency of the leakage is evident from the fact
that the leakage power for different benchmarks are different, even though the same size
of FPGA is considered for benchmarks. It should be noted that the total SRAM leakage
remains constant for all the benchmarks as it is dependent only on the total number of
SRAM cells and since we used a fixed size FPGA for all the benchmarks, the SRAM
leakage remains constant for all the implementations. However, the leakage, especially
in the logic part is strongly state dependent. For example, the logic leakage in case of the
benchmark spla is 72µW, whereas in case of ex5p is 35.72µW, almost half of the logic
leakage of spla (CMOS 130nm). For the CMOS 90nm the logic leakage for spla and
ex5p are 368µW, and 208µW, respectively, again showing a lot of dependency on state.

Fig. 4.9 shows the distribution of average leakage power in different parts of the
FPGA for the CMOS 130nm and CMOS 90nm. The SRAM leakage is very small as
compared to the logic and the routing leakage because the SRAM cells are implemented
with high-Vth transistors. It can be seen that the dominant leakage is the routing leakage

42



U
se

d 
Lo

gi
c 

U
nu

se
d 

Lo
gi

c

U
se

d 
R

ou
tin

g

U
nu

se
d 

R
ou

tin
g

Le
ak

ag
e 

in
 µ
W

U
se

d 
Lo

gi
c 

U
nu

se
d 

Lo
gi

c

U
se

d 
R

ou
tin

g

U
nu

se
d 

R
ou

tin
g

Le
ak

ag
e 

in
 µ
W

(a) (b)

U
se

d 
Lo

gi
c 

U
nu

se
d 

Lo
gi

c

U
se

d 
R

ou
tin

g

U
nu

se
d 

R
ou

tin
g

Le
ak

ag
e 

in
 µ
W

(c)

168
102

30

324

33.1 13.6 4.4
87.9

CMOS 130nm Chan Width = 100 CMOS 90nm Chan Width = 100

33.1 13.6 4.5 43

CMOS 130nm Chan Width = 50

168
102

30.8
157

U
se

d 
Lo

gi
c 

U
nu

se
d 

Lo
gi

c

U
se

d 
R

ou
tin

g

U
nu

se
d 

R
ou

tin
g

(d)
CMOS 90nm Chan Width = 50

Le
ak

ag
e 

in
 µ
W

Figure 4.10: (a),(b)Used and unused leakage for different components of FPGA for the
benchmark alu4 for the FPGA architecture with routing channel width of 100 (c),(d)
With routing channel width of 50

for both CMOS 130nm and CMOS 90nm. However, the contribution of logic leakage
to the total leakage increases from 33.6% to 41.5% when the technology is scaled from
CMOS 130nm to CMOS 90nm. This is because the Vth of the PMOS is CMOS 90nm
suffered from narrow width effect, which consequently reduced it, leading to increased
contribution of leakage from the PMOS. Since most of the PMOS transistors are present
in the logic part, the contribution of the logic leakage to the total leakage increased. It is
evident from Fig. 4.10 that routing leakage is the dominant leakage power for the given
FPGA architecture. Majority of the routing leakage power comes from the unused part
of the routing resources. Further, for most FPGA designs the logic utilization is quite
high, whereas the utilization of routing resources is quite low. In the initial case with
the routing channel width of 100, the routing leakage was considerably larger than the
logic leakage. Almost all the routing leakage comes from the unused routing resources,
whereas the major part of the logic leakage is from the used logic part. However, when

43



the routing channel width is reduced to 50 (alu4 can be placed and routed with a channel
width of 50), the leakage from the routing resources reduces to almost half, as expected.
This results in significant reduction of total leakage. The contribution of the logic leakage
to total leakage becomes slightly more than the routing leakage for the CMOS 130nm.
For CMOS 90nm the logic leakage clearly starts dominating the routing leakage, once the
routing resources is reduced to half. However, the total logic leakage remains constant, as
expected. This clearly shows that FPGA CAD tools should try to increase the utilization
of the routing resources, so that FPGAs can be implemented with lesser routing resources
to reduce the leakage.

4.6 Summary

This chapter discussed the leakage power model developed in this work. Analytical mod-
els based on BSIM4 for computing leakage current were presented and the methodology
for computing leakage through a FPGA circuit element was discusse. It was shown that
the leakage current in a circuit is heavily dependent on the inputs to the circuit element.
This was accounted for in the leakage power model. Finally, some of the dominant short
channel effects were also accounted for, which greatly improves the accuracy of leak-
age computation. Results were presented for CMOS 90nm and CMOS 130nm, which
indicate that the leakage through a CMOS 90nm FPGA is 4 times more than the leakage
through a CMOS 130nm FPGA.

In the next chapter, dual-Vt FPGA architectures are explored, and leakage savings
results are obtained using the leakage power model developed in this chapter.

44



Chapter 5

Dual-Vt FPGA Design for Leakage
Reduction

5.1 Introduction

In this chapter, dual-Vt FPGAs are explored. Dual-Vt FPGA architectures are proposed
and a dual-Vt FPGA CAD framework is proposed for designing the dual-Vt FPGA archi-
tectures. Using the dual-Vt FPGA CAD framework, various parameters for the dual-Vt
FPGA architectures can be optimized and determined. The dual-Vt FPGA can then be
fabricated with these parameters and user can then map the application on to the FPGA.
The dual-Vt design technique has been widely studied for the ASICs and is a very popu-
lar methodology for designing low leakage VLSI circuits in the industry. However, dual-
Vt FPGAs have not yet been investigated. This work proposes several dual-Vt FPGA
architectures and a CAD framework for finding the architectural parameters of dual-Vt
FPGAs.

5.2 Technology Used

An industrial CMOS 0.13µm technology node has been used for the technology depen-
dent data for the FPGA architectures. The methodology proposed in [9] was used to
extract the required technology dependent data. For extracting the delay data for the
logic blocks, SPICE simulation was done. The delay through the subblock is the delay
through the LUT input multiplexer, LUT, flip-flop, and multiplexer for selecting the out-
put of the flip-flop or LUT. The sizing of the buffers was done for equal rise and fall

45



time as proposed in [9]. Metal 3 is used for the routing wires. The sizing of the rout-
ing switches was done for minimum area delay product as proposed in [9]. The regular
MOS models have been used for low threshold voltage implementation. The Vdd for this
technology is 1.2V and V t is 0.2V . The high-Vt transistors have threshold voltage 100
mV higher than the low-Vt transistors. SPICE simulation shows that on increasing the
high-Vt value further, the delays of the subblocks increase without leading to any signif-
icant leakage savings. Since the SRAM cells do not contribute to any run time delay, it is
assumed that they are implemented with high-Vt transistors to reduce the leakage power,
and hence the results for leakage savings do not include any leakage savings from the
SRAM cells in this work[4].

5.3 Proposed Dual Threshold FPGA Architecture

The very nature of programmability of FPGAs makes the dual-Vt design technique for
FPGAs different from dual-Vt custom VLSI designs. This work proposes dual-Vt FPGA
architectures, and then uses a CAD framework for determining the parameters and sub-
sequently evaluating the proposed dual-Vt FPGA architectures. This section describes
the proposed dual-Vt FPGA architectures and the dual-Vt FPGA CAD flow. This work
targets the logic elements within the CLBs and the routing resources as candidates for
dual-Vt assignment. The following architectures are evaluated:

1. Homogeneous Architecture with only subblocks within CLBs considered for dual-
Vt assignment.(arch1)

2. Homogeneous Architecture with subblocks and routing resources considered for
dual-Vt assignment.(arch2)

3. Heterogeneous Architecture with only subblocks considered for dual-Vt assign-
ment. (arch3)

4. Heterogeneous Architecture with the subblocks and routing resources considered
for dual-Vt assignment. (arch4)

The proposed homogeneous and the heterogeneous architectures are described below.

5.3.1 Homogeneous dual-Vt FPGA architecture

This proposed architecture has a certain number of high-Vt subblocks and low-Vt sub-
blocks in each of the CLBs. For a cluster size of N , M (M < N ) subblocks are assigned

46



 

      CLB  

FPGA 

 

 

CLB 
Low-Vt 
Subblock 

High-Vt 
subblock 

Figure 5.1: Proposed homogeneous FPGA architecture. Each CLB has a fixed ratio of
high-Vt and low-Vt subblocks.

high-Vt, whereas (N −M) subblocks are assigned low-Vt in each CLB. For example,
Fig. 5.1 shows a homogeneous dual-Vt FPGA architecture in which each CLB has 50%
high-Vt and 50% low-Vt subblocks for a cluster size of 4. In the case of arch1 only
the subblocks are considered as candidates for dual-Vt assignment. This architecture is
extended to include the routing resources as candidates for dual-Vt assignment, which
leads to the architecture arch2. The switches in the connection blocks and the switch
blocks, which drive the routing segments are considered for dual-Vt assignment. In the
architecture arch2, certain fraction of these switches are assigned high-Vt. Fig. 5.2
shows the switch block and the associated routing switches. The connection block has
similar switches for providing connections between CLBs and routing segments.

5.3.2 Heterogeneous dual-Vt FPGA architecture

This proposed architecture has two kinds of CLBs distributed uniformly throughout the
array. The first type of CLBs has subblocks, all of which have high-Vt and the second
type has a certain number of high-Vt subblocks. These two kinds of logic blocks are
distributed uniformly throughout the array in such a way that the array is regular. If the
logic block cluster size in N , then the proposed FPGA architecture would have two kinds
of logic blocks distributed uniformly. One of those two kinds would have all N high-
Vt subblocks (type1), whereas the second kind of logic blocks would have M high-Vt
subblocks (M < N ), and N −M low-Vt subblocks.

Fig. 5.3 shows the distribution of the two kinds of the logic blocks in the FPGA, such
that 50% of the logic blocks are of type1, whereas the other 50% of the logic blocks are
of type2 for a cluster size of 4. Such an architecture was selected because the number

47



3

2

1

0

         0     1      2      3

3

2

1

0

         0     1      2      3

(a)

Low-Vt (b) High-Vt

(c)Low-Vt High-Vt

Figure 5.2: Switch block. (a) The overall architecture of a switch block (b) Buffered pass
transistor switch (c) Pass transistor based switch

 

CLB (Type 2) 

FPGA 

Low-Vt 
Subblock 

High-Vt 
subblock 

CLB (Type 1) 

  

 

Figure 5.3: Proposed heterogeneous FPGA architecture. Two kinds of CLBs; one having
all high-Vt subblocks, the other having a fixed ratio of high-Vt and low-Vt subblocks.

48



of subblocks assigned high-Vt was very high and so a large percentage of logic blocks
can possibly have all high-Vt subblocks. This heterogeneous architecture is extended to
include the routing resources, leading to the architecture arch4 in the same way as for
arch2.

5.3.3 Proposed Dual-Vt FPGA CAD Framework

Developing and evaluating dual-Vt FPGA architectures as outlined above would require a
CAD framework which can perform dual-Vt assignment to the subblocks and the routing
resources and has a methodology for analyzing different dual-Vt FPGA architectures.
The typical existing FPGA CAD flow within the framework of VPR, for placing and
routing a given netlist, and the proposed generic dual-Vt FPGA CAD flow are shown
in the Fig. 5.4. The proposed dual-Vt FPGA CAD flow has been developed using the
widely used academic research tools VPR and T-Vpack [9], and the state dependent
leakage power model for FPGAs that was developed in this work and discussed in the
previous chapter [10]. The typical FPGA CAD flow involves circuit optimization using
SIS [20] and technology mapping to LUTs using FlowMap [21]. T-Vpack is then used
to do the packing and clustering, which generates the netlist of logic blocks. VPR is then
used for placement and routing. The proposed dual-Vt FPGA CAD framework has 6
stages as shown. The next section describes various stages of the CAD flow.

5.4 CAD framework implementation

The VPR was modified to support the dual-Vt assignment to the subblocks and the T-
Vpack was modified to support re-clustering. Each of the stages of the dual-Vt FPGA
CAD flow (Fig. 5.4(b))is explained below.

5.4.1 Stage 1

In this stage the .net file is generated, which is a netlist of logic blocks, along with the
activity and function files required for the power estimation. The .net file is generated
from the .blif (Berkeley Logic Interchange Format) file based upon the specified FPGA
architecture, such as cluster size, inputs per cluster, LUT size etc., by the T-Vpack. The
activity file generation and function file generation is a part of the power model frame-
work [10][11]. These files serve as inputs to the second stage.

49



 

Stage 6 

Stage 5 

Circuit Logic Optimization 
Technology map to LUTs  

T-Vpack: Pack FFs and LUTs into Logic Blocks 

.net format netlist of logic blocks 

VPR 
Place circuit or read in an existing  

placement 

Perform either global or combined 
global/detailed routing 

Placement and Routing 
output files, Placement and 

Routing statistics. 

Logic 
Blocks 
Parameters 

FPGA 
Architecture 
description 

file 

Existing 
placement 
or 
placement 
from 
another 
CAD tool 

Estimate the delays in various paths of 
the circuit  

Algorithm to assign 
high/low threshold voltage to 

subblocks

Estimate the number of high-Vt 
subblocks per CLB for homogenous 

architecture 
Recluster the BLEs into two kinds of 

logic blocks for heterogenous 
architecture 

Placement / Constrained Placement. 
Routing  

Estimate the leakage power savings 

(a) 

.blif format netlist of LUTs and Flip-
fl

(b) 

Initial Step Stage 1 

Stage 2 

Stage 3 

Stage 4 

Figure 5.4: (a) Typical FPGA CAD flow within VPR and T-Vpack framework. (b) Pro-
posed generic dual-Vt FPGA CAD flow

50



5.4.2 Stage 2

The second stage is a delay estimation stage, which is used to assign high-Vt and low-Vt
to various subblocks based on the slacks available for each path. The delay calculation
can either be accurate or can be based upon some estimation. In this work accurate delay
estimation based on the actual placement and routing of the benchmark has been used. In
this stage it is assumed that all the subblocks are low-Vt and the delay calculation is done
based on the low-Vt delay values for the subblocks and routing resources. VPR does the
placement and routing of the benchmark for delay calculation. Since the leakage power
model is integrated into the VPR, the power for the single low threshold voltage imple-
mentation of the FPGA, for the benchmark, is calculated immediately after placement
and routing. This leakage power consumption result is used in the final stage of the CAD
flow for comparison with the leakage power consumed by the dual-Vt implementation
and calculation of leakage savings.

5.4.3 Stage 3

Initially it is assumed that all the subblocks are low-Vt except the configuration SRAM
cells which are all high-Vt for both, the single low-Vt implementation and dual-Vt imple-
mentation. Based on the delays of various paths of the circuit, computed in the previous
stage, the dual-Vt assignment algorithm assigns high-Vt to various subblocks. The dual-
Vt assignment algorithm is shown in Algorithm 1 [1]. The algorithm is a heuristic and

Algorithm 1 Dual-Vt assignment[1]
Using timinggraph in VPR (after Place and Route)
for each subblock do

Compute the slack available
if slack > 0 then

Assign high-Vt to the subblock
Recompute the slack
if slack < 0 then

Re-assign low-Vt to the subblock
end if

end if
end for

works on the timing graph created by the VPR for placement and routing. The nodes of
the timing graph are levelized starting from the primary outputs and the graph is traversed
level by level. This timing graph contains the information for the delays between various

51



pins of the circuit. For assigning high-Vt to a particular subblock the slack available at
the output pin of the subblock is considered. The assignment of high-Vt would change
the delays through the subblock. This delay value is updated in the timing graph and
the next subblock is then considered for high-Vt assignment. It should be noted that the
dual-Vt assignment is not constrained to keep the CLBs identical in terms of the number
of high-Vt and low-Vt subblocks in each CLB. This kind of dual-Vt assignment, which is
the ideal assignment, would result in a dual-Vt FPGA implementation which would not
have any performance degradation. This dual-Vt assignment gives a theoretical upper
limit for the number of subblocks high-Vt assigned. The dual-Vt assignment produces
an output in which there are different numbers of high-Vt and low-Vt subblocks across
different CLBs. This is, however, not a feasible solution. This information is needed by
the next re-clustering stage to create a feasible netlist for the dual-Vt FPGA architectures.

5.4.4 Stage 4

This stage works within the framework of T-Vpack. For the homogeneous architectures
(arch1 and arch2) the number of high-Vt subblocks per CLB is estimated based upon
the results of the dual-Vt assignment to subblocks in the previous stage. Based on these
results the evaluation of the homogeneous architecture is done with a fixed number of
high-Vt subblocks per CLB.

The heterogeneous architectures (arch3 and arch4) are developed and evaluated in
the following way based on Algorithm 2. The clustering algorithm proposed in [9] has
been modified. The clustering algorithm in [9] picks up a seed BLE and then tries to
build up the cluster by attracting the other BLEs based on an attraction function. The
attraction function used in [9] to add a BLE B to a current cluster C is shown in equation
(5.1)

Attraction = α.Criticality(B) + (1− α)

[
Nets(B) ∩Nets(C)

MaxNets

]
(5.1)

where the criticality represents that part of the attraction function which tries to reduce
the delay of the circuit. For computing the delay of the various paths in the circuit during
the packing stage the intra-cluster delay is assumed to be 0.1, logic delay is assumed to be
0.1 and inter-cluster delay is assumed to be 1 [9]. For the modified clustering algorithm,
the delay of high-Vt BLEs is set to 0.2 to take into account for the increased delays of
high-Vt BLEs. The exact values of these delays are not very important as long as they
represent the correct trend [9]. The methodology for criticality computation is explained
in [9], and its value lies between 0 and 1. The second part of the function tries to cluster
the BLE which share maximum nets with the current cluster. To take into account the

52



high-Vt BLEs and increase the type1 (all high-Vt) clusters the modified cost function is
shown in equation 5.2

Attraction = α.Criticality(B) + (1− α− β)

[
Nets(B) ∩Nets(C)

MaxNets

]
+

β.

[
Hvt.NumHvt + (1−Hvt).NumLvt

ClusterSize

]
(5.2)

where the third part of the equation denotes the attraction of a BLE to a cluster based
on the number of high-Vt/low-Vt BLEs in the current cluster, to increase the type1 logic
blocks. The parameter Hvt takes a value of 1 for a high-Vt BLE, and 0 for a low-Vt BLE.
NumHvt denotes the number of high-Vt BLEs in the current cluster, and NumLvt
denotes the number of low-Vt BLEs in the current cluster. The value of β depends upon
the benchmark, but a value between 0.01 and 0.05 was found to give good results for all
the benchmarks. The value of α was set to 0.8.

The number of low-Vt subblocks, NumLvtBLEs, in the type2 logic blocks is de-
termined as follows

NumLvtBLEs = ClusterSize.

(
SumLvtCrit

NumFracLB

)
(5.3)

where SumLvtCrit denotes the sum of criticality of all low-Vt subblocks, NumFracLB
denotes the number of logic blocks which have at least one low-Vt subblock so that they
can be categorized into type2 logic block. This equation has been used to determine the
number of low-Vt subblocks in type2 CLBs because the criticality measure takes into
account the importance of a subblock with regards to delay, which directly translates to
the threshold voltage of the transistors of the subblock. The next step is to assign high-
Vt/low-Vt to subblocks in type2 logic blocks so that each of the type2 logic blocks have
the same number of low-Vt subblocks. All the subblocks in a logic block are arranged
in the ascending order of criticality. If the logic block has more low-Vt subblocks than
NumLvtBLEs, the BLEs are assigned high-Vt starting with the lowest critical low-Vt
subblock, till the number of low-Vt subblocks is equal to NumLvtBLEs. If the logic
block has low-Vt subblocks less than NumLvtBLEs, some of the subblocks are as-
signed low-Vt, starting with the highest critical high-Vt subblock, so that maximum gain
in performance might be achieved. This method of assigning high-Vt/low-Vt to sub-
blocks during the re-clustering stage is also used for the homogeneous architecture, such
that the value NumLvtBLEs is used for all the logic blocks.

This stage produces an output which gives an estimate of the number of type1 and
type2 CLBs for the heterogeneous architectures (arch3 and arch4) and number of low-
Vt subblocks in the type2 CLBs.

53



Algorithm 2 Recluster
Do clustering based on T-Vpack algorithm with modified attraction function
for each logic block do

if All − subblocks− high− V t then
Mark the logic block as type1

else
Mark the logic block as type2

end if
end for
Determine the number of low-Vt subblocks in type2 CLB based on equation 5.3
for Each type2 logic block do

Arrange the subblocks in ascending order of criticality
if No.− of − low − V t− subblocks < NumLvtBLEs then

while No.− of − low − V t− subblocks < NumLvtBLEs do
Re-assign a high-Vt subblock to low-Vt based on criticality (Highest critical
high-Vt subblock assigned low-Vt first)

end while
else

while No.− of − low − V t− subblocks > NumLvtBLEs do
Re-assign a low-Vt subblock to high-Vt based on criticality (Lowest critical
low-Vt subblock assigned high-Vt first)

end while
end if

end for

54



5.4.5 Stage 5

Homogeneous Architectures: For the architecture arch1, placement and routing is done
in this stage. For realizing the architecture arch2, a certain fraction of routing resources
are assigned high-Vt and then placement and routing is done.

The high-Vt assignment to routing switches is done as follows. Consider a routing
channel width of 100 with two kinds of segments, such that 50 segments are driven by
pass transistor switches in the switch box and 50 segments are driven by buffered pass
transistor switches as defined by the VPR architecture file. The output pins of the CLB
drive all these segments with a buffered switch in the connection box. When high-Vt is
assigned to, say 40% of routing segments driven by pass transistor switches, it means
that 20 segments of those 50 segments will be driven by high-Vt pass transistor switches.
Also, all the output pin switches of the CLBs which drive these 20 segments will be
assigned high-Vt.

Gate boosting for these switches are done to minimize the voltage degradation when
a logic 1 is propagated [9]. Other techniques, such as the use of level restorer, can be
used to eliminate voltage degradation in the routing switches [23]. SPICE simulation
shows that the logic level 1 passing through a high-Vt pass transistor with gate boosting
to 1.5 V (V dd = 1.2V ) degrades to only 1.198 V from 1.2 V. The SPICE simulation
results indicate that with gate boosting only 1.5% extra static leakage current flows in the
driven buffer through a high-Vt pass transistor as compared to the case when there is no
voltage degradation. Therefore the static power dissipation due to voltage degradation in
high-Vt pass transistor switches is sufficiently small to be ignored.

Heterogeneous Architectures: Based on the re-clustering results, for a given FPGA
array, the number of type1 and type2 CLBs are determined. These values are estimated
based on the ratio of type1 and type2 logic blocks in the re-clustered netlist, after pro-
viding sufficient margin to account for the performance degradation because of physi-
cal restriction of FPGA regularity. These CLBs are assumed to be distributed evenly
throughout the FPGA array. For the architecture arch3 constrained placement followed
by routing is done. For arch4, a certain fraction x of the total routing switches are as-
signed high-Vt and then constrained placement followed by routing is done. The value of
x is varied to determine the leakage savings and performance tradeoffs. The algorithm for
constrained placement is shown in Algorithm 3. Since the VPR uses simulated annealing
for timing-driven placement, a very effective placement technique, the basic placement
algorithm has not been modified. However, the delays of the high-Vt and low-Vt parts of
the CLBs and the routing resources are incorporated into the timing graph accordingly,
so that the VPR can optimize the overall placement for performance.

Since the VPR router is timing driven, it optimizes the overall routing. The delays of

55



Algorithm 3 Constrained Placement
P-ratio = (Num type1 CLBs)/(Num type2 CLBs)
Determine physical locations for the two types of CLBs based on P-ratio
Assign high-Vt to frac fraction of routing switches
Initial Random placement for all the CLBs
Start placement based on VPR placement algorithm
Allow the type2 CLBs to be placed on physical locations meant for type1 CLBs and
vice versa
End Placement
for each type2 CLB do

if Logic−Block − not− on− same− type− CLB then
Convert the logic block to type1 or type2 according to its placement

end if
end for

the high-Vt switches would be more than the delays of the low-Vt switches which would
force the router to use more of low-Vt switches. Therefore, the increased delays of the
high-Vt routing switches are provided to the VPR, so that the router can optimize the
overall routing.

5.4.6 Stage 6

This stage computes the results obtained from the previous stages of the CAD flow.
After the computation of delays and power for the dual-Vt FPGA implementation is
over, this stage computes the leakage power savings obtained and the delay penalty for
the benchmark. The leakage power model developed in the previous chapter has been
used for computing the leakage power before and after dual-Vt implementation.

5.5 Evaluation, Results and Discussions

This section describes the realization and evaluation of different FPGA architectures and
their comparison. The method of developing and evaluating these architectures is by
using a number of benchmarks on the proposed dual-Vt FPGA CAD flow to find out
which subblocks can be high-Vt for maximizing leakage savings and reducing the delay
penalties. It would be worthwhile to point out the difference between the physical design
of the FPGA and the mapping of application on the FPGA. The physical resources of an
FPGA are fixed and the applications are mapped later on. The dual-Vt FPGA CAD flow

56



that is outlined above is meant for the actual physical design of the FPGA and later on
after the physical design of the FPGA is complete, for the design of the associated CAD
tools. This dual-Vt FPGA CAD flow is to be used (along with other CAD tools) during
the design of the FPGA, where number of benchmarks are evaluated before a design for
an FPGA is finalized. This CAD flow is not meant for mapping of an application on to
an FPGA chip, as all the logic blocks and routing resources would then be fixed, which
would be a routine job using the standard FPGA CAD tools. Therefore, the dual-Vt
FPGA CAD flow is meant for developing and evolving a dual-Vt FPGA, to determine its
architectural parameters.

5.5.1 Evaluation Methodology

For obtaining the results from the benchmarks the LUT size of 4, and a cluster size of 12
were used. It was shown in [8] that a LUT size of 4 leads to minimization of total power.
It was also shown in [8] that a cluster size of 8 or 12 leads to less power consumption
than other cluster sizes. The inputs per cluster was chosen as K/2(N + 1) , where N
is the number of subblocks per cluster and K is the LUT size [24]. The default routing
architecture present in the FPGA architecture file of VPR, having 50% routing segments
with pass transistor switches and 50% routing segments with buffered pass transistor
switches was used. For computing the leakage savings and performance tradeoffs, a
fixed FPGA array of 20x20 for all the benchmarks was used, except for bigkey, clma,
des, dsip and s38584.1, for which a 35x35 array was used. A routing channel width of
100 was assumed for the FPGA architecture. The fixed FPGA architecture represents a
real world scenario.

Table 5.1 shows the results of the dual-Vt assignment. Based on these results, for
the homogeneous architecture, architectures with 4, 6, and 8 high-Vt subblocks per CLB
were considered for evaluation. The results for the number of type1 CLBs and low-Vt
subblocks in type2 CLBs shown in Table 5.1 corresponds to a minimum sized FPGA
and these values are ideal values which does not consider the regularity of structure of
the FPGAs. Hence, to provide sufficient margin, to prevent severe degradation of final
placement and routing imposed due to the limitation that the FPGA needs to be regular
and uniform in structure, the values for type1 CLBs and number of low-Vt subblocks in
type2 CLBs are set as 50% and 10, respectively.

57



5.5.2 Realizing and evaluating different FPGA architectures for leak-
age savings and design tradeoffs

Table 5.1 shows the results of ideal dual-Vt assignment. This indicates that a high per-
centage of subblocks can be assigned high-Vt. This is because most of the subblocks
have a large slack available with them and a large part of the delay is contributed by the
routing. We explain below the results for the various architectures.

arch1

This is a homogeneous architecture in which all the logic blocks are identical such that
each logic block has a fixed ratio of high-Vt and low-Vt subblocks. A cluster size of 12
was used for these results. Based upon these results 3 different homogeneous architec-
tures were evaluated with CLBs having 8, 6 and 4 high-Vt subblocks in each CLB. After
assigning high-Vt to, say 8 subblocks in each CLB, different benchmarks were placed
and routed to evaluate the leakage savings and performance tradeoffs. Table 5.1 shows
the overall average leakage saving results for these three different cases. The mean per-
formance penalties were 3.7%, 4.8% and 5.04% for the architectures with 4 , 6, and 8
high-Vt subblocks in each CLB. The delay penalties are close to each other because of
two reasons, (1) there are sufficient number of low-Vt subblocks for the critical path(s)
and, (2) the routing contributes to a larger portion of total delay, which means that even
if there are few high-Vt subblocks on the critical path this would not cause a large delay
penalty.

arch2

This is the homogeneous architecture with routing resources considered for dual-Vt as-
signment. The evaluation methodology is same as that of the arch1 case, except that we
vary the fraction of the two kinds of routing resources assigned high-Vt and estimate the
leakage savings and the delay tradeoffs. The evaluation was done for the three cases, viz.
FPGA architecture with 4, 6 and 8 high-Vt subblocks per CLB for a cluster size of 12.

Fig. 5.5, shows the leakage savings and the performance tradeoffs when the fraction
the high-Vt switches are varied over the base architecture having 6 high-Vt subblocks
per CLB. Fig. 5.5(a) shows the case when only the buffered switches are considered
for high-Vt assignment along with the CLB output pin switches which can drive these
segments (i.e., those segments which can be driven by these high-Vt buffered switches),
all the pass transistor switches remaining low-Vt. Fig. 5.5(b) shows the case when pass
transistor switches are considered for high-Vt assignment along with the CLB output pin

58



Table 5.1: Leakage savings with logic blocks assigned dual-Vt for a cluster size of 12 for
homogeneous and heterogeneous architectures

Bench-
mark

No. of
Sub-
blocks
/ BLE

% of
high-Vt
subblocks
for ideal
dual-Vt
Assign-
ment

homogeneous Arch.(arch1) heterogeneous Arch.(arch3)

4
high-
Vt
sub-
blocks
per
CLB

6
high-
Vt
sub-
blocks
per
CLB

8
high-
Vt
sub-
blocks
per
CLB

% of
type1
CLBs

No.
of
low-
Vt
sub-
blocks
in
type2
CLB

Leakage
Sav-
ings

alu4 1522 89.6% 10.79% 16.1% 21.5% 46% 9 18.7%
apex2 1878 97% 11.7% 17.5% 23.4% 82.3% 9 20.75%
bigkey 1707 98% 8.1% 12.2% 16.4% 91.6% 11 13.9%
clma 8383 98% 13.7 20.7% 27.6% 87.7% 9 28.8%
des 1591 99% 8.4% 12.8% 17% 90% 8 14.8%
diffeq 1497 91% 10.5% 15.9% 21.2% 66.4% 8 18.4%
dsip 1370 97.2% 7.8% 11.6% 15.3% 94% 8 13%
elliptic 3604 99% 13.9% 21% 28% 94% 10 23.8%
ex5p 1064 97% 8.4% 12.8% 17.2% 79% 11 14.1%
frisc 3556 97.6% 13.3% 19.9% 26.6% 87.5% 9 23.2%
misex3 1397 97% 9.7% 14.7% 19.6% 83.7% 9 16.7%
pdc 4575 99.5% 12% 17.9% 23.9% 97% 10 20.5%
s298 1931 92.7% 12.3% 18.6% 24.8% 64.5% 12 20.9%
s38584.1 6447 96% 12.8% 19.1% 25.3% 78.3% 10 22%
seq 1750 96% 12.7% 18.3% 23.9% 71.9% 10 20.4%
tseng 1047 93.2% 9.6% 14.3% 19.1% 78% 10 17.2%
Mean - 93.3% 11% 16.5% 22% 93.3% 10 19.3%

59



switches which can drive these segments (i.e., those segments which can be driven by
these high-Vt pass transistor switches), all the buffered switches remaining low-Vt. The
leakage savings increases considerably when the routing resources are assigned high-Vt
with some impact on the performance. This is because a major part of leakage comes
from the routing resources and is discussed further in section 5.5.4. Leakage savings
for both the cases, when the pass transistor switches are assigned high-Vt and buffered
switches are assigned high-Vt, are almost same. Although the buffered switches have
more devices, but the pass transistor switch is 8 times the minimum size, whereas the
pass transistor in the buffered switch is 2 times the minimum size and the buffer is 2
times the minimum sized buffer, which leads to almost similar leakage savings. The
delay penalties for these architectures vary between 10.7% and 3.32%, which shows that
it does not vary much with high-Vt assignment to the routing switches. This can be
attributed to the fact that a large percentage of routing switches are unutilized [4], and
therefore they do not contribute to delay penalties even if they are assigned high-Vt.
Further, the routing optimization effort of the VPR would also increase, tending to use
more of low-Vt switches, which compensates, to some extent, for the increased delay of
the high-Vt switches.

arch3

This is a heterogeneous architecture in which there are two kinds of CLBs in the FPGA.
Table 5.1 shows the leakage savings for this architecture. This architecture takes advan-
tage of the fact that a high percentage of subblocks are assigned high-Vt in the ideal case
and hence there can be many CLBs with all high-Vt subblocks. Since the FPGA archi-
tecture needs to be regular in structure the two kinds of CLBs are distributed uniformly
throughout the array. However, this does not affect the CAD tool for the final mapping
of the application. Based on the clustering results, type1 CLBs was assumed to be 50%
of total CLBs, and type2 CLBs had 10 low-Vt subblocks. Table 5.1 shows that overall
mean leakage savings for this architecture is 19.3%. The mean delay penalty for this
architecture is 6.9%.

arch4

This architecture is realized using the architecture arch3. The base architecture is same
as that of arch3, and over that architecture routing resources are also assigned high-
Vt to realize the architecture arch4. The evaluation methodology is same as that for
arch3, except that the fraction of high-Vt routing resources is varied and the leakage
savings and design tradeoffs are calculated. Fig. 5.6(a) shows the case when only the

60



0

5

10
15

20

25

30
35

40

45
50

%
 L

ea
ka

ge
 S

av
in

gs
 / 

D
el

ay
 P

en
al

ty

1 0.8 0.6 0.4 0.2 0

Fraction of high-Vt buffered Switches

Leakage Savings
Delay Penalty

0
5

10
15
20
25
30
35
40
45
50

%
 L

ea
ka

ge
 S

av
in

gs
 / 

D
el

ay
 

Pe
na

lty

1 0.8 0.6 0.4 0.2 0

Fraction of high-Vt pass transistor 
Switches

Leakage Savings
Delay Penalty

(a)

(b)

Figure 5.5: Leakage savings for arch2 with 6 high-Vt subblocks per CLB (a) Buffered
switches assigned high-Vt (b) Pass transistor switches assigned high-Vt

61



buffered switches are considered for high-Vt assignment along with the CLB output
pin switches which can drive these segments (i.e., those segments which can be driven
by these high-Vt buffered switches), all the pass transistor switches remaining low-Vt.
Fig. 5.6(b) shows the case when pass transistor switches are considered for high-Vt
assignment along with the CLB output pin switches which can drive these segments
(i.e., those segments which can be driven by these high-Vt pass transistor switches), all
the buffered switches remaining low-Vt. The delay penalties vary between 12.4% and
4.8% for different fractions of high-Vt switches. The increase in delay penalty is not
too large when routing switches are assigned high-Vt because a large fraction of routing
resources are unutilized. It can be seen that the leakage savings for this architecture is
about 3% greater than the leakage savings for the arch2 (6 high-Vt subblocks per CLB)
with almost the same delay penalty.

5.5.3 Design tradeoffs

Before deciding upon any dual-Vt FPGA architecture, it is important to consider the
design tradeoffs. In this work two types of architectures were evaluated - homogeneous
and heterogeneous. The design tradeoffs for this approach are the delay penalties, and
the impact on overall power. These were evaluated for all the FPGA architectures. It
was observed that the dynamic power dissipation remains almost constant for all the
architectures.

A dual-Vt custom VLSI design does not lead to any delay penalty. However, because
of the very nature of programmability of the FPGA, there would be some delay penalty
associated with a circuit implemented on a dual-Vt FPGA as compared to single low-
Vt FPGA. The delay penalties would vary with the benchmark. Essentially, the delay
penalty occurs because the critical path of a circuit in the dual-Vt FPGA changes from
that in the single low-Vt FPGA. There are three sources of delay penalties in a dual-Vt
FPGA :

1. The increased delays of the subblocks, some of which might lie on the critical path.

2. The altered placement and routing in the dual-Vt FPGA because of the different
delays through the subblocks which impacts the placement and subsequently rout-
ing.

3. The increased delays of high-Vt routing switches some of which might lie on the
critical path.

62



0

5

10
15

20

25

30
35

40

45
50

%
 L

ea
ka

ge
 S

av
in

gs
 / 

D
el

ay
 P

en
al

ty

1 0.8 0.6 0.4 0.2 0

Fraction of high-Vt buffered Switches

Leakage Savings
Delay Penalty

0
5

10
15
20
25
30
35
40
45
50

%
 L

ea
ka

ge
 S

av
in

gs
 / 

D
el

ay
 

Pe
na

lty

1 0.8 0.6 0.4 0.2 0

Fraction of high-Vt pass transistor 
Switches

Leakage Savings

Delay Penalty

(a)

(b)

Figure 5.6: Leakage savings for arch4 (a) Buffered switches assigned high-Vt (b) Pass
transistor switches assigned high-Vt

63



Table 5.2 shows the leakage savings and the delay penalties for arch2, arch4, and
the all high-Vt subblocks architectures. It can be seen that the leakage savings for arch2
(6 high-Vt subblocks) with 80% high-Vt pass transistor switches is approximately 3%
less than the leakage savings for the arch4 with 80% high-Vt pass transistor switches.
The delay penalties for both these architectures are comparable. These architectures
have a very high percentage of high-Vt switches and would be most susceptible to per-
formance degradation. However, the mean delay penalty for arch2 with 80% high-Vt
pass transistor switches is 6.4% with the maximum delay penalty being 15.3% for a
mean leakage savings of 40.3%. For arch4 with 80% high-Vt switches the mean de-
lay penalty is 5.8% with the maximum delay penalty being 13.6% for a mean leakage
savings of 43.5%. The results of all high-Vt architecture, where all the subblocks in all
the CLBs are high-Vt, have been shown for comparison with other architectures. The
mean leakage savings is 32.6%, the mean delay penalty being 19%, with the maximum
delay penalty as high as 48.5%. It can be seen that keeping all high-Vt subblocks leads
to severe performance degradation in many of the benchmarks. This is because in the
architectures which contain low-Vt subblocks, the placer and the router can search for
low-Vt subblocks to minimize the delay, which is not possible in the case of architecture
with all high-Vt subblocks. The performance degradation in the all high-Vt subblocks
architecture is more pronounced for benchmarks which have large number of subblocks
on the critical path. The benchmark diffeq which has a severe delay penalty of 48.5%,
has 30 subblocks on the critical path for the implementation on the all high-Vt subblocks
architecture. The benchmark bigkey has only 6 subblocks on the critical path and the
routing of the VPR compensates for the increased delay and which leads to almost no
delay penalty. Hence, having an architecture with all high-Vt subblocks would not be a
good design, as expected.

There is almost no area penalty as the dual-Vt technique, inherently does not lead to
any area penalty. In the experimental results for all the benchmarks, the routing channel
width and the number of CLBs were same for both the baseline single-Vt FPGA archi-
tecture and the dual-Vt FPGA architectures. This shows that there is no area penalty
associated with the proposed design of the dual-Vt FPGA architectures.

5.5.4 Distribution of Leakage Savings

In all these evaluations it was assumed that high-Vt SRAM cells are used for both the sin-
gle low-Vt implementation and dual-Vt implementations. The leakage savings is solely
from the logic and routing parts of the FPGA. Fig. 5.7 shows the distribution of leak-
age among the logic blocks and the routing resources. Fig. 5.7(a) shows the leakage
distribution in the single low-Vt implementation for the benchmark alu4. It can be seen

64



Table 5.2: Design tradeoffs for homogeneous architecture arch2 with 6 high-Vt sub-
blocks and 80% high-Vt pass transistor switches, heterogeneous architecture arch4 with
80% high-Vt pass transistor switches, and all high-Vt subblocks architecture.

Benchmark arch2 arch4 all high-Vt subblocks
Leakage
Savings

Delay
Penalty

Leakage
Savings

Delay
Penalty

Leakage
Savings

Delay
Penalty

alu4 40.6% 10% 43.43% 7.5% 32.5% 16%
apex2 40.4% 2% 44.8% 8.4% 43.2% 13.6%
bigkey 41.34% 3.1% 42.8% 1% 24.2% 1%
clma 41% 4.9% 44.2% 6.2% 41% 6.2%
des 41.3% 11.8% 43.5% 1% 25.5% 22.6%
diffeq 40.7% 5.6% 43.9% 1% 31.7% 48.5%
dsip 40.9% 1% 43.1% 1% 22.6% 13.8%
elliptic 40.3%% 10.5% 43.5% 9% 41.2% 31%
ex5p 40% 11.9% 42% 9.2% 25.7% 18.1%
frisc 39.3% 7.1% 42.8% 5.3% 39.8% 21.4%
misex3 40.4% 4.1% 41.7% 10.8% 39.4% 13.6%
pdc 37.1% 15.3% 38.2% 6% 37.9% 25%
s298 41% 8.6% 43.6% 13.6% 37.1% 25%
s38584.1 41.3% 5.4% 44.4% 6.4% 27.9% 28.8%
seq 41.6% 1% 44% 0.02% 36% 1.1%
tseng 40.9% 2% 44% 8.2% 28.3% 42.6%

65



1.5%

64.9%
Routing 
Leakage

33.6%
Logic 

Leakage
1.3%

77.7%
Routing 
Leakage

21%
Logic Leakage

(a) (b)

Single Low-Vt Heterogeneous with only logic 
blocks assigned high-Vt

1.9%

67.1%
Routing 
Leakage

31%
Logic Leakage

SRAM Leakage
1.5%

SRAM Leakage
1.3%

Heterogenous with 60% pass 
transistor switches assigned high-Vt

(c)

SRAM Leakage
1.9%

Figure 5.7: (a) Leakage contributions of routing resources, logic resources and SRAM
cells for single low-Vt implementation, (b) and (c) after dual-Vt implementation for alu4.

that almost two thirds of leakage is from the routing resources. This is because of a
large amount of unused routing resources [4]. SRAM leakage is negligible as they have
high-Vt to reduce the leakage. Assigning dual-Vt to the logic blocks reduces the leakage
component of the logic blocks as shown in Fig. 5.7(b). Fig. 5.7(c) shows the impact
on leakage distribution because of dual-Vt assignment to both the logic blocks and the
routing resources. The contribution of routing leakage to total leakage increases by a
small amount, even though it results in overall leakage savings. This can be explained
by the leakage power results for a benchmark alu4 as shown in Fig. 5.8. For architecture
arch3, the logic leakage reduces by more than 50%, with the routing leakage remaining
the same. When 60% of pass transistors switches are also assigned high-Vt, the routing
leakage decreases by 28%. This results in an overall leakage savings of 37%, with 19%
savings from the logic blocks and 18% savings from the routing resources.

The leakage power model in [10] models both the gate and the subthreshold leakage.
For CMOS 130nm, the gate leakage is 6 orders of magnitude smaller than the subthresh-
old leakage. Therefore, the gate leakage does not impact the methodology proposed in
this work.

5.6 Designing a Dual-Vt FPGA

Designing a dual-Vt FPGA would require selecting a dual-Vt FPGA architecture and
then determining the parameters for the dual-Vt FPGA. The dual-Vt FPGA CAD frame-
work proposed in this work is intended for this purpose. Fig. 5.9 shows the steps in-
volved in the design of a dual-Vt FPGA. The previous sections explored the various
dual-Vt FPGA architectures for leakage power savings and performance tradeoffs. It can

66



0

10

20

30

40

50

60

70

80

90

100

Le
ak

ag
e 

po
w

er
 

(a) (b) (c)

Routing Leakage
Logic Leakage

µW

Figure 5.8: Leakage power for alu4. (a) Single low-Vt implementation (b) dual-Vt arch3
(c) dual-Vt arch4 with 60% high-Vt pass transistor switches

 

Dual-Vt FPGA 
CAD Flow: 
Used during 
development of 
physical FPGA 
architecture, for 
optimizing the 
FPGA 
parameters 

Fabrication of 
FPGA with 
optimized 
dual-Vt FPGA 
parameters 

Mapping of 
application by 
the user on to 
the FPGA. 
Placement 
and routing 
CAD tools 
need not 
change 

Figure 5.9: Realizing a dual-Vt FPGA design

67



be seen from the results of the previous section that architectures with high-Vt switches
lead to significantly increased leakage savings with small increase in delay penalties.
Further, some of the architectures are more suitable for some benchmarks, whereas other
benchmarks are more suitable for another architecture. This is because of the number of
interconnections between the logic blocks are different for different benchmarks. This
implies that for some benchmarks having a large number of high-Vt switches would not
have a large impact on delay because of shorter total wire length in the critical path,
whereas for benchmarks having a high percentage of high-Vt subblocks per CLB would
not have a big impact on performance because there are very few subblocks in the crit-
ical path. homogeneous architectures would, in general, be easier in implementation as
compared to heterogeneous architecture. However, a careful design of heterogeneous ar-
chitectures and the associated CAD tools can lead to increased leakage savings for same
delay penalties as that for homogeneous architectures.

The above discussion leads to what can be called as Field Programmable System-on-
Chip for implementing complete systems. The low-leakage FP-SoC can be made up of a
combination of the above architectures. Fig. 5.10 shows one such design of a Field Pro-
grammable SoC. This architecture is a combination of heterogeneous, homogeneous, all
high-Vt and all low-Vt architectures, where the complete chip is divided into parts, each
having a different design. The extremely critical parts of the circuit can be implemented
on the all low-Vt part of the FPGA, whereas the part of the circuit in which performance
is not a concern, can be implemented on the all high-Vt part of the FPGA. Other parts
of the circuit can be implemented on the homogeneous or heterogeneous architectures,
depending on performance tradeoffs.

5.7 Summary

This chapter presented dual-Vt FPGA architectures and a dual-Vt FPGA CAD frame-
work for designing the dual-Vt FPGA architectures. Two kinds of architectures are
explored, homogeneous and heterogeneous architectures. Logic blocks and routing re-
sources are considered for dual-Vt assignment. Results indicate that leakage savings of
upto 50% can be obtained.

68



Homogenous Architecture with  
fractional high-Vt CLBS

Homogenous architecture with 
all high-Vt subblocks

Heterogenous Architecture 
with type1 and type2 blocks

Homogenous Architecture with all 
low-Vt subblocks

Figure 5.10: A low-leakage Field Programmable SoC

69



Chapter 6

Conclusions and Future Work

This work focused on leakage power, a critical design challenge for deep sub-micron FP-
GAs. With the emergence of highly complex FPGAs, capable of implementing complete
systems, it has become imperative to develop innovative solutions for leakage power
mitigation in FPGAs.

This work developed an analytical state dependent leakage power model for accu-
rately computing the leakage power. Subthreshold and gate leakage were modeled since
they are the major sources of leakage power in the current generation technologies. The
computation of leakage based on the probability of states gives more accurate results
compared to the results presented in [11]. The leakage computation engine (LCE) mod-
els the dominant short channel effects as well. The leakage power model was developed
based on physical and empirical equations for the devices, making it technology indepen-
dent and can be used for rapidly analyzing different FPGA architectures across different
technology nodes. A leakage analysis for FPGAs using an industrial CMOS 130nm and
CMOS 90nm was presented. The results indicate that the leakage power in CMOS 90nm
FPGA is almost 4 times larger than the leakage in the CMOS 130nm FPGA, which is as
expected.

The dual-Vt FPGA architectures explored indicate that on an average leakage power
savings of up to 50% can be obtained by the dual-Vt FPGA architectures. We proposed a
dual-Vt FPGA CAD flow for implementation and evaluation of dual-Vt FPGA architec-
tures. The results show that a high percentage of subblocks are assigned high-Vt for the
ideal dual-Vt assignment. This indicates that a large amount of slack is available with
the logic blocks which can be exploited to reduce the leakage power. We explored two
primary architectures, homogeneous and heterogeneous. Results indicate that there is a
large percentage of unused routing and logic resources such that dual-Vt FPGA architec-
tures can lead to good leakage savings without large delay penalties.

70



The leakage power model developed for FPGAs takes into account the state depen-
dency of leakage power. However, the primary inputs were considered independent.
The future work for the enhancement of the leakage power model would be to consider
the correlation among the inputs. In addition, in sub-100nm designs, process and envi-
ronment variations have become an important design consideration. The model can be
enhanced to compute leakage power under variations.

The main bottleneck in using any leakage reduction technique for FPGAs is the very
nature of programmability of the FPGA, leading to an architecture not very compatible
with leakage reduction techniques, designed specifically for ASICs. For our future work
we intend to develop novel leakage aware FPGA architectures which would be especially
adapted to implement leakage reduction techniques without incurring large delay penal-
ties. Process and environment variations also affects the design of low-leakage FPGAs,
as the leakage power is impacted because of variations. The design challenges for the
dual-Vt FPGAs under process and environment variations can be analyzed to account
for the variations in the design phase. These would essentially relate to the architectural
changes, CAD tool enhancements, and/or development of new CAD tools.

71



Bibliography

[1] L. Wei, Z. Chen, K. Roy, Mark C. Johnson, Y. Ye, and Vivek K. De, “Design op-
timization of dual-threshold circuits for low-voltage low-power applications,” IEEE
Trans. VLSI, Vol. 7, pp. 16-24, March 1999.

[2] J. Kao, S. Narendra, and A. Chandrakasan, “Subthreshold leakage modeling and
reduction techniques,” IEEE Int. Conf. on Computer-Aided Design, pp. 141-148,
2002.

[3] Jason H. Anderson, F.N. Najm, and T. Tuan., “Active leakage power optimization
for FPGAs,” FPGA, pp. 33-41, 2004.

[4] T. Tuan, B. Lai, “Leakage Power Analysis of a 90nm FPGA,” IEEE Custom Inte-
grated Circuits Conf., pp. 57-60, 2003.

[5] S. Sirichotiyakul, T. Edwards, C. Oh, R. Panda, D. Blaauw, “Duet: An accurate
leakage estimation and optimization tool for dual-Vt circuits,” IEEE Trans. VLSI,
Vol.107, pp. 79-90, April 2002.

[6] A. Gayasen, Y. Tsai, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, and T. Tuan,
“Reducing leakage energy in FPGAs using region-constrained placement,” FPGA,
pp.51-58, 2004.

[7] A. Rahman and Vijay Polavarapuv, “Evaluation of low-leakage design techniques
for Field Programmable Gate Arrays,” FPGA, pp. 23-30, 2004.

[8] F. Li, D. Chen, L. He, J. Cong, “Architecture evaluation for power efficient FPGAs,”
FPGA, pp. 175-184, 2003.

[9] V. Betz, J. Rose and A. Marquardt, Architecture and CAD for Deep-Submicron FP-
GAs, Kluwer Academic Publishers, MA 1999, ISBN: 0792384601

[10] A. Kumar and M. Anis, “An Analytical State Dependent Leakage Power Model for
FPGAs,” DATE, 2006, (in press).

72



[11] K. Poon, A. Yan and S.J.E. Wilton, “A flexible power model for FPGAs,” Interna-
tional Conf. on Field Programmable Logic and Applications, pp. 312-321, 2002.

[12] Shekhar Borkar, “Design challenges of technology scaling,” Micro, IEEE, Vol. 19,
pp. 23-29, 1999.

[13] K. Roy, S. Mukhopadhyay, H. Mahmoodi-Meimand, “Leakage current mechanisms
and leakage reduction techniques in deep-submicrometer CMOS circuits,” Proc.
IEEE, Vol. 91, pp. 305-327, 2003.

[14] M. Anis, M. Mahmoud, M. Elmasry, S. Areibi, “Dynamic and leakage power
reduction in MTCMOS circuits using an automated efficient gate clustering tech-
nique,”DAC, pp. 480-485, 2002.

[15] J. Kao, A. Chandrakasan, D. Antoniadis, “Transistor sizing issues and tools for
Multi-threshold CMOS technology,” DAC, pp. 409-414, 1997.

[16] S. Mutah, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, J. Yamada, “1-V power
supply high speed digital circuit technology with multi-threshold voltage CMOS,”
IEEE Journal of Solid State Circuits, vol. 30, no. 8, pp. 847-853, 1995.

[17] N. Kato, Y. Akita, M. Hiraki, T. Tamashita, T. Shimizu, F. Maki, K. Yano, “Random
modulation: Multi-threshold-voltage design methodology in sub-2-V power suppy
CMOS,” IEICE Trans. Electron., vol. E83-C, no. 11, pp. 1747-1754, 2000.

[18] L. Wei, K. Roy, C. Koh, “Power minimization by simultaneous dual-Vth assign-
ment and gate-sizing,” IEEE Custom Integrated Circuits Conf., pp. 413-416, 2000.

[19] Y-F. Tsai, D. Duarte, N. Vijaykrishnan, M. J. Irwin, “Implications of technology
scaling on leakage reduction techniques,” DAC, pp. 187-190, 2003.

[20] E. M. Sentovich et al., “SIS: A system for sequential circuit analysis,” University
of California, Berkeley, 1992.

[21] J. Cong and Y. Ding, “FlowMap: An optimal technology mapping algorithm for
delay optimization in lookup-table based FPGA designs,” IEEE Trans. CAD, pp.
1-12, 1994.

[22] Fei Li, Yan Lin, Lei He, and Jason Cong , “Low-power FPGA using predefined
dual-Vdd/dual-Vt fabrics,” FPGA, pp. 42-50, 2004.

[23] Guy Lemieux and David Lewis,Design of Interconnection Networks for Pro-
grammable Logic, Kluwer Academic Publishers, 2004, ISBN: 1-4020-7700-9

73



[24] E. Ahmed and J. Rose, “The effect of LUT and cluster size on deep submicron
FPGA performance and density,” FPGA, pp. 3-12, 2000

[25] BSIM4 Models, University of California, Berkeley. Available online: http://www-
device.eecs.berkeley.edu/ bsim3/bsim4.html

[26] D. Lee, D. Blaauw, D. Sylvester, “Gate oxide leakage current analysis and reduction
for VLSI circuits,” IEEE Trans. on VLSI, Vol. 12, pp. 155-166, Feb. 2004

[27] A. Sangiovanni-Vincentelli, A. El Gamal, and J. Rose, “Synthesis methods for
Field-Programmable Gate Arrays,” Proceedings of IEEE, pp. 1057-1083, July 1993

[28] R. Brayton, G. Hachtel, and A. Sangiovanni-Vincentelli, “Multilevel logic synthe-
sis,” Proceedings of IEEE, pp. 264-300, Feb 1990

[29] J. Cong, J. Peck, and Y. Ding, “RASP: A General Logic Synthesis System for
SRAM-based FPGAs,” FPGA, pp. 137-143, 1996

[30] S. Kirkpatrick, C. Gelatt and M. Vecchi, “Optimization by Simulated Annealing,”
Science, pp. 671-680, May 13, 1983

[31] M. Huang, F. Romeo, and A. Sangiovanni-Vincentelli, “An efficient general cooling
schedule for simulated annealing,” ICCAD, pp. 381-384, 1986

[32] W. Swartz and C. Sechen, “New algorithms for placement and routing of macro
cells,”ICCAD, pp. 336-339, 1990

[33] A. Marquardt, V. Betz, and J. Rose, “Timing-Driven Placement for FPGAs,” FPGA,
pp. 203-213, 2000

[34] C. Ebeling, L. McMurchie, S. A. Hauck and S. Burns, “Placement and routing tools
for Triptych FPGA,” IEEE Trans. on VLSI, pp. 473-482, Dec. 1995

[35] K. Roy and S. C. Prasad,Low Power CMOS VLSI Circuit Design, Wiley-
Interscience, John Wiley & Sons, 2000, ISBN: 0-471-11488-X

[36] V. George, H. Zhang, and J. Rabaey, “The design of a low energy FPGA,” ISLPED,
pp. 188-193, 1999

[37] E. Kusse and J. Rabaey, “Low-Energy embedded FPGA structures,” ISLPED, pp.
155-160, 1998

[38] A. Singh and M. Marek-Sadowska, “Efficient circuit clustering for area and power
reduction in FPGAs,” FPGA, pp. 59-66, 2002

74



[39] A. Gayasen, K. Lee, N. Vijayakrishnan, M. Kandemir, M. J. Irwin, and T. Tuan, “A
Dual-Vdd low power FPGA architecture,” FPL, August 2004

[40] V. Betz, VPR and T-Vpack User’s Manual (Version 4.30), Available online:
http://www.eecg.toronto.edu/ vaughn/vpr/vpr.html

[41] M. Anis and M. Elmasry, Multi-Threshold CMOS Digital Circuits: Managing
Leakage Power, Kluwer Academic Publishers, MA 2003, ISBN: 1-4020-7529-4

[42] J. Lamoureux and S. J. E. Wilton, “On the interaction between power-aware FPGA
CAD algorithms,”ICCAD, pp. 701-708, 2003

[43] J. H. Anderson and F. N. Najm, “Power-Aware Technology Mapping for LUT-
Based FPGAs,”FPT, pp. 211-218, 2002

[44] F. Li, Y. Lin, and L. He, “FPGA Power Reduction Using Configurable Dual-
Vdd,”DAC, pp. 735-740, 2004

[45] J. H. Anderson and F. N. Najm, “Low-Power Programmable Routing Circuitry for
FPGAs,” ICCAD, pp. 602-609, 2004

[46] International Technology Roadmap for Semiconductors, 2003. Available online:
http://public.itrs.net

75



Appendix A

List of publications from this work

1. A. Kumar and M. Anis, “An Analytical State Dependent Leakage Power Model for
FPGAs,” ACM/IEEE Design Automation and Test in Europe, Munich, Germany,
2006 (accepted for publication).

2. A. Kumar and M. Anis, “Dual-Vt design of FPGAs for subthreshold leakage tol-
erance” IEEE International Symposium on Quality Electronic Design, San Jose,
USA, 2006 (accepted for publication).

3. A. Kumar and M. Anis, “Dual-Vt FPGA design for leakage power reduction,”
ACM International Symposium on FPGAs, Monterey, USA, 2005 (Abstract-Poster).

4. A. Kumar and M. Anis, “Dual threshold CAD framework for subthreshold leakage
power aware FPGAs,” IEEE Trans. on CAD, (accepted after revision).

5. A. Kumar and M. Anis, “Dual-Vt FPGA design for leakage power reduction,”
Proc. of Micronet Annual Workshop, pp. 51-52, Ottawa, Canada, May 2005.

76


