
SWordNet: Inferring Semantically Related
Words from Software Context

by

Jinqiu Yang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2013

© Jinqiu Yang 2013

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Code search is an integral part of software development and program comprehension. The
difficulty of code search lies in the inability to guess the exact words used in the code. Therefore,
it is crucial for keyword-based code search to expand queries with semantically related words,
e.g., synonyms and abbreviations, to increase the search effectiveness. However, it is limited to
rely on resources such as English dictionaries and WordNet to obtain semantically related words
in software, because many words that are semantically related in software are not semantically
related in English. On the other hand, many words that are semantically related in English are
not semantically related in software.

This thesis proposes a simple and general technique to automatically infer semantically re-
lated words (referred to as rPairs) in software by leveraging the context of words in comments
and code. In addition, we propose a ranking algorithm on the rPair results and study cross-project
rPairs on two sets of software with similar functionality, i.e., media browsers and operating sys-
tems. We achieve a reasonable accuracy in nine large and popular code bases written in C and
Java. Our further evaluation against the state of art shows that our technique can achieve a higher
precision and recall. In addition, the proposed ranking algorithm improves the rPair extraction
accuracy by bringing correct rPairs to the top of the list. Our cross-project study successfully
discovers overlapping rPairs among projects of similar functionality and finds that cross-project
rPairs are more likely to be correct than project-specific rPairs. Since the cross-project rPairs are
highly likely to be general for software of the same type, the discovered overlapping rPairs can
benefit other projects of the same type that have not been anaylyzed.

iii

Acknowledgements

I would like to take this opportunity to express my biggest thanks to my supervisor Prof. Lin
Tan. From her, I get numerous supports and encouragement in every aspect. I would like to
thank for her insightful guidance and unwavering supports. She is always available when I ask
for help or advice. I learned a lot from Lin, including conducting research, time management,
presentations skills and how to communicate and collaborate with other people. The things I
learned from Lin will extremely benefit my future development.

I am thankful to readers of the thesis, Prof. Ladan Tahvildari and Prof. Mahesh V. Tripunitara,
for spending their valuable time in reviewing my thesis and providing valuable comments.

I would like to thank all of our research group members. Many thanks for the happy time and
discussions in our reading group seminars.

Lastly, I would like to acknowledge my parents and my best friend, partner, and the most
patient audient, Tsehsun Chen. They have been always supporting me under any circumstances.
From them, I perceive the power of love and concern, which have been and will be with me.

iv

Table of Contents

List of Tables vii

List of Figures ix

1 Introduction 1

2 Related Work 6
2.1 Extracting Semantically Related Word Pairs . 6

2.2 Code Search . 8

2.3 Analysis of Natural-Language Text for Software 8

3 Basic rPair Extraction 9
3.1 Parsing Comments and Code . 11

3.2 Clustering Comments and Code . 11

3.3 Extracting Semantically Related Word Pairs . 12

3.4 Refining Semantically Related Word Pairs . 13

4 Improved Version of rPair Extraction 14
4.1 An Improved Similarity Measure . 14

4.1.1 The idf Weight . 14

4.1.2 The New Similarity Measure Definition 15

4.2 The Ranking Function . 15

4.3 Studying Cross-Project rPairs . 16

v

5 Experimental Methods 18

5.1 Experiment: rPair Extraction Accuracy and Comparison with WordNet and a
Dictionary . 18

5.2 Experiment: Search-Related Evaluation . 19

5.3 Experiment: Sensitivity Evaluation . 21

5.4 Experiment: Ranking Evaluation . 21

5.5 Experiment: Cross-Project rPairs Study . 22

5.6 Threats to Validity and Limitations . 22

6 Evaluation Results 24

6.1 rPair Extraction Results . 24

6.2 Search-Related Results . 27

6.3 Sensitivity Results . 31

6.4 Ranking Results . 32

6.5 Cross-Project rPair Results . 33

7 Conclusions 35

References 36

vi

List of Tables

3.1 Learning semantically related word pairs from context. The comment and code
examples are real comments and code segments from the nine code bases used
in our evaluation. 10

5.1 Evaluated Software. LOComment is lines of comments. *The versions of iRe-
port, jBidWatcher, javaHMO, jajuk are the same as [50]. The dates when NetBSD
and OpenBSD were checked out from the version control systems are shown in-
stead of the version numbers. 19

6.1 rPair Extraction Results. Dic denotes Merriam-Webster English Dictionary and
Thesaurus [35] and the computer specific dictionary [10]. The margin of error is
calculated with 95% confidence level, which is to express the random sampling
error in the extraction accuracy. The average accuracy of comment-comment is
56.9%, 33.3% for code-code and 16.5% for comment-code. 25

6.2 rPairs Extraction Results. This table shows the percentage of correct rPairs dis-
tributed among five categories for nine projects. Majority of the correct rPairs
(42.5-100%) belong to the ‘Related’ category. 26

6.3 Search-Related results based on function gold set. We search by “*verb*noun*”,
“*noun*verb*” and combinations of alternative words for ‘verb’ and ‘noun’.
CTX is our context-based technique, CTXT is CTX with transitive rPairs, and
SWUM denotes the previous work by [16]. The function gold set is from [49]. . 28

6.4 Search-Related results on rPairs gold set. CTX is our context-base technique,
CTXT is CTX with transitive rPairs, and SWUM denotes the previous work
by [16]. 29

6.5 The accuracy of rPair extraction with ranking. Top 10 can achieve the highest
accuracy of 60-100%, top 30 achieve the accuracy of 66.7-83.3% and top50 has
the accuracy of 60-80%. 32

vii

6.6 Cross-project rPair Results. 33

viii

List of Figures

1.1 Overview of Our Approach . 5

ix

Chapter 1

Introduction

Code search is an integral part of software development; developers spend up to 19% of their
development time on code search [27]. It becomes more difficult for one developer to understand
and remember every piece of a software project, as software becomes larger and more complex,
software is typically developed by hundreds of or thousands of programmers across decades,
and developers frequently join and depart from the software development process. In order to
find relevant code segments, code search is becoming a crucial part of software development and
program comprehension.

The search for relevant code segments is difficult, because there is a small chance (10-
15%) that developers guess the exact words used in the code [13]. For example, if develop-
ers want to find methods that disable interrupts in the Linux kernel, a simple regular expres-
sion based search “disable*interrupt”1 will miss the functions “disable irq” and “mask irq”.
Both functions disable interrupts. The problem is the mismatches between the words inter-
rupt and irq and between the words disable and mask. Similarly, if we want to find func-
tions which add auctions in jBidWatcher and search for “add*auction” in the code, the method
“AuctionsManager.newAuctionEntry(String)” will not be returned, although it is related to
adding an auction entry.

Researchers proposed to expand search queries with semantically related words (e.g., syn-
onyms and abbreviations) for more effective searches [50]. However, leveraging an English
dictionary [35] and WordNet [44] for obtaining semantically related words is limited in the soft-
ware domain for two reasons. First, many words that are semantically related in software are not

1It is possible to perform a relaxed search to find method names that contain either the word disable or the word
interrupt, but such an approach generally retrieves too many irrelevant matches to be useful.

1

semantically related in English. In the previous example, the words disable and mask are not re-
lated words either in an English dictionary [35] or WordNet [44]. Similarly, interrupt and irq are
not semantically related in the English dictionary or WordNet. A recent study evaluated six well
known techniques for discovering semantically related words in English and showed that these
techniques are limited in identifying semantically related words in software [53]. The best tech-
nique needs to find over 3,000 pairs of words in order to discover 30 out of the 60 semantically
related word pairs in the gold set.

Second, many words that are semantically related in English are not semantically related in
software. For example, the words disable and torture are semantically related in English, but not
semantically related in the interrupt context.

If we can automatically discover semantically related words from software, it would not only
improve search tasks, but also benefit other software engineering tasks. For example, aCom-
ment [56] leverages semantically related words to find comments that have similar meanings in
order to check these comments against source code to detect bugs. Currently, aComment requires
its users to manually specify synonyms and paraphrases, which is challenging since it requires
the users to have domain knowledge about the target software. In addition, the ad hoc process
is likely to miss important synonyms and paraphrases. An automated approach can potentially
discover more synonyms and paraphrases and reduce the manual effort required.

Therefore, we propose to automatically identify semantically related words by leveraging the
context of words in comments and code. This includes relations such as synonyms, antonyms,
abbreviations, related words, etc., all of which are useful for code search. We use semanti-
cally related word pairs or the shorter rPairs to denote a pair of semantically related words
and phrases. Our intuition is that if two words or phrases are used in the same context in
comment sentences or identifier names, then they likely have syntactic and semantic relevance.
For example, by examining the two comment sentences from the Linux kernel—“Disable all

interrupt sources.” and “Disable all irq sources.”, we can learn that the words inter-
rupt and irq are likely to be related because both words appear in the same context. In this par-
ticular case, the two words have the same meaning. Similarly, from the functions, for example,
“void mask all interrupts()” and “void disable all interrupts(. . .)”, we can infer that
the word mask and the word disable form an rPair in this context. In addition to learning nouns
and verbs that have similar meanings, we can learn adjectives with similar meanings. For exam-
ple, we can infer that the two adjectives disabled and off have the same meaning from the fol-
lowing two comments—“Must be called with interrupts disabled.” and “It MUST be

called with

interrupts off.”.

Shepherd et al. [50, 51] extract verb-DO (Direct Object) pairs from software which can be

2

leveraged to identify semantically related words. For example, if they discover verb-DO pairs
(add | element) and (find | element) in iReport, they would suggest the word find to users to
expand their query “add element” in iReport [50], because (add, find) are considered semantically
related. This work differs from the previous work mainly in the following aspects. First, the
previous work relies on heuristics regarding the naming convention and the structure of code
identifiers and comments. For example, they use different heuristics to extract the DO from a
method name, depending on whether a verb exists in the method name, where the verb is, and
what the verb is. Such heuristics are manually designed by the authors and may not generalize if
the naming convention or structure is not followed. Our technique requires no heuristics about
the naming convention or the structure of the code identifiers and comments2, and can potentially
be applied to a broader spectrum of code bases.

Second, the previous technique leverages Natural Language Processing (NLP) techniques,
such as part-of-speech (POS) tagging and chunking, which are trained from general English text
such as the Wall Street Journal, not from software. When applied to the software domain, these
techniques can cause inaccuracies in rPair extraction. For example, it would fail to identify the
verb-DO pair from “newParameter()”, as new is a noun in English. But in the software context,
new is commonly used as a verb to refer to creating memory for a new object. This inaccuracy
prevents the previous techniques from discovering the rPair (new, add) that our technique can
discover, because our technique ignores the part of speech. The detailed comparison is discussed
in Chapter 2.

This thesis makes the following contributions.

• We propose a context-based approach to automatically infer semantically related words by
leveraging the context of words in comments and code. Our technique can be used as a building
block for many other software engineering tasks including code search [18, 50] and software
bug detection [56].

• The proposed technique identifies semantically related words with a reasonable accuracy in
nine large and popular code bases written in C and Java—the Linux kernel, Apache HTTPD
Server, Apache Commons Collections, iReport, jBidWatcher, javaHMO, jajuk, NetBSD and
OpenBSD. We classify the semantically related word pairs into five categories—synonym, re-
lated, antonym, near antonym, and identifier. The majority of the identified semantically re-
lated word pairs cannot be found in WordNet [44], an English dictionary [35] or a computer
specific dictionary [10]. The total number of rPairs discovered by our context-based approach
,which ranges from 111 to 108,571 (comment-comment), from 685 to 606,432 (code-code)
and up to 10,633 (comment-code), shows the feasibility of our technique.

2Except that we break method names into words based on camel case and underscore, which is also used by the
previous work

3

• Our further evaluation against the state of art [16, 50] shows that our overall recall and precision
in discovering semantically related word pairs and locating relevant functions is higher. Since
automatically expanding queries with inappropriate synonyms may produce worse results than
not expanding [53], it may be beneficial to leverage techniques similar to previous work [18,
50] to allow developers to pick from a list of semantically related words. Since our technique
has higher recall (finds more rPairs or more functions) with higher precision (more of the pairs
discovered are truly rPairs or more of the functions found are truly relevent to the search task),
it can help developers find more relevant code segments and comments, as well as find them
more quickly because developers will examine fewer incorrect rPairs.

• We propose and evaluate an algorithm to rank the rPairs from our basic extraction results.
Although our basic technique presents new opportunities to discover more semantically related
words and improves the accuracy of discovering them, the absolute accuracy is relatively low
due to the inherent difficulty of the task. Therefore, we introduce a ranking algorithm to further
improve the extraction accuracy. We evaluate our ranking algorithm on the nine projects using
three ranking slots, i.e., top 10, top 30 and top 50, and find that the ranking algorithm can
significantly improve the accuracy, especially for projects of a large size (i.e., Linux, OpenBSD
and NetBSD). We discuss other techniques that can potentially further improve the accuracy in
Chapter 6.1.

• We study the cross-project rPairs from two sets of projects. The motivation is that if one rPair
occurs in multiple projects, especially projects of similar functionality, the rPair is more likely
to be correct and general, and benefit other projects of the same type. Our cross-project study
shows that we can find overlapping rPairs among different projects of similar functionality, and
that cross-project rPairs are more likely to be correct than project-specific rPairs. Therefore,
whether an rPair is a cross-project rPair may be used to improve the ranking algorithm and
results. Besides, the cross-project rPairs can supplement the rPairs of the projects with the
same kind, which further improves the feasibility of our technique.

Approach Overview
We present the overview of this context-based approach in Figure 1.1. This context-based

approach takes code bases, configuration (parameter settings), the reverse mapping dictionary
(obtained from an on-line dictionary) and the ranking function as input, and produces two types
of output: rPairs (also called “refined rPairs” in Figure 1.1) and the ranked rPairs. The basic
rPairs approach has four steps: parsing, clustering, extracting and refining, which is described in
Chapter 3. Then the ranking algorithm can further improve the accuracy of our approach, and
the details are introduced in Chapter 4.

Thesis Outline The rest of the thesis is organized as follows. Chapter 3 describes our basic
approach to learn semantically related word pairs from software context (comments and code).

4

Parsing
code base

Clustering
comments

& code
Extracting

clusters
Refining

configuration

candidate

rPairs

a reverse mapping dictionary

Ranking

ranking function

refined

rPairs

ranked rPairs

Figure 1.1: Overview of Our Approach

Chapter 4 proposes an algorithm to rank the rPairs learned by our basic approach. Chapter 4.3
presents the motivations of our cross-project rPairs study. Chapter 5 describes how we conduct
the experiments. Detailed results and the analysis of the results are provided in Chapter 6. In
Chapter 2, a discussion of the related work is presented. Finally, we conclude our findings and
discuss about future work in Chapter 7.

5

Chapter 2

Related Work

2.1 Extracting Semantically Related Word Pairs

The closely related work [50, 51] infers semantically related words in software, and leverages
them to build a search tool that outperforms two existing approaches [42]. We have already
discussed the main differences between the previous work and our context-based approach in
Chapter 1, so we only summarize them here and provide more examples. The previous work
relies on manually created heuristics, which may not generalize to other types of software and
software written in different programming languages (e.g., non-object-oriented software such
as the Linux kernel and HTTPD). Our technique requires no such heuristics and is effective in
extracting rPairs from both object-oriented software and non-object-oriented software.

Second, the previous techniques leverage NLP techniques, whose models are trained from
general English text, not from software. When applied to the software domain, these models
can make mistakes. What is worse, comments and code identifiers are generally incomplete and
grammatically incorrect, which may worsen the analysis inaccuracy problem. For example, two
sentences with the same structure are analyzed differently because interrupts is a English word,
while irqs is not. OpenNLP [59] (the same tool used by the previous work [50, 51]) tags the
comment sentence from the Linux kernel “called with interrupts disabled” as

called<V erb> with<Determiner> interrupts<Noun> disabled<V erb>,

and then chunks it as

called<V erbPhrase> [with [interrupts]<NounPhrase>]<PrepositionalPhrase>

disabled<Unknown>.

6

Since the chunker cannot tag the last word disabled with the proper Chunk/Phrase-level tag, the
words called and interrupt will be considered as a verb-DO incorrectly if called is considered
active voice, or no verb-DO will be found if called is considered passive voice (from the previous
paper [51], it is unclear whether the heuristics treat called as active or passive voice; therefore,
we discuss both for completeness). However, a slightly different comment from the Linux kernel
“called with irqs disabled” will be tagged as

called<V erb> with<Determiner> irqs<Adjective> disabled<Adjective>,

and be chunked as

called<V erbPhrase> [with [irqs disabled]<NounPhrase>]<PrepositionalPhrase>.

The verb-DO will be (called | irqs disabled), or no verb-DO is inferred. From these verb-DOs,
previous work may consider interrupts and irqs disabled semantically related words by mistake,
or it infers no semantically related words. Our technique can correctly identify interrupts and
irqs as an rPair. This example shows that our technique is robust despite incomplete and gram-
matically incorrect comments. In addition, NLP analysis adds time complexity, especially POS
tagging and chunking.

Since our technique ignores the part of speech, our technique has higher recall than the pre-
vious techniques. In addition, since we use similarity measures and consider the full context
instead of just the verbs and DOs, our technique can be more precise. For example, from two
comments “initialize the product price” and “initialize the user name”, we would
not consider the phrases product price and user name rPairs, since the similarity is only 50%,
while the previous technique obtains two verb-DOs that share the verb initialize, and considers
the two phrases semantically related.

The authors improved the original verb-DO technique by leveraging phrasal concept and
more advanced heuristics [16, 19]. The latest implementation uses specialized techniques to
address the OpenNLP-related issues. However, the improved technique does not analyze com-
ments, missing the opportunity to detect more rPairs. On the other hand, their approach analyzes
return types and parameters, which may find more rPairs. In addition, the restrictions regard-
ing verb-verb match may help filter out false positives. However, our evaluation in Chapter 6.2
shows that our technique has better overall precision and recall in discovering rPairs than their
latest implementation [16].

Techniques and resources that discover semantically related words in English [7, 26, 32, 33,
35, 44, 45, 65] are limited in discovering semantically related words in software [53]. Other
work splits multi-word identifiers and discovers abbreviations in software [17, 29, 30]. Some

7

other work focuses on discovering the meaning of word phrases of method names [23, 24]. Our
technique finds general semantically related word pairs including abbreviations, which is com-
plementary to the previous work. In addition, while the previous work uses statistical analysis,
heuristics, and English dictionaries, we leverage the context of words in comments and identi-
fiers.

2.2 Code Search

Keyword-based code search techniques have been developed [16, 18, 19, 41, 42, 50]. Since our
technique infers semantically related words from software, it can be leveraged by these search
tools to expand queries to further improve the search effectiveness. In addition, since our tech-
nique provides not only semantically related words but also the context, our technique could be
leveraged by contextual-based search techniques [18] to improve the code search accuracy. Al-
ternatives to keyword-based search include structural search [22, 25, 48, 66]. A recent study [20]
investigates how to effectively combine global and local code search techniques.

2.3 Analysis of Natural-Language Text for Software

Previous work analyzes natural-language artifacts such as bug reports [6, 14, 31, 34, 38, 39,
46, 54, 64], comments [55, 56], API documentation [37, 67], identifier names [5, 8] and mail-
ing lists [38] for purposes such as detecting duplicate bug reports, identifying the appropriate
developers to fix bugs, improving structure-field names, mining source code descriptions, etc.
Recently, by leveraging the fact that programming language is likely to be repetitive and pre-
dictable, researchers [21] work on applying statistical language models to code to help software
tasks, including code completion, concern location and software mining, etc. This thesis ana-
lyzes comments and code to discover semantically related word pairs. Different from some of
these studies [5, 8, 21, 55] that use NLP techniques such as POS tagging, chunking, semantic role
labelling, and n-gram models, this work chooses not to use these advanced NLP techniques for
simplicity, efficiency, and generality. On the other hand, it is conceivable to use NLP techniques
to generate NLP-related context to infer semantically related words, which remains our future
work.

8

Chapter 3

Basic rPair Extraction

Our goal is to automatically learn semantically related words and phrases by leveraging the con-
text of words and phrases in comments and code. Examples in Table 3.1 help illustrate how
semantically related words and phrases can be learned from comments and code. Column ‘Con-
text Type’ shows whether the context is from comments or source code: comment-comment
indicates that both contexts are from comments; code-code means that both contexts are from
source code; and comment-code denotes that one context is from comments, and the other con-
text is from source code. For example, both of the two jajuk comments “None mounted file

for this track.” and “None accessible file for this track.” state that a file asso-
ciated with the track is missing. Since the words mounted and accessible are surrounded by
the same context, “None ... file for this track.”, we consider the word pair (mounted,
accessible) an rPair.

Our analysis technique takes a code base and a stopword list as input, and outputs semanti-
cally related word pairs. The analysis process consists of four steps: (1) parsing comments and
code: given a code base, we first parse it to extract all the comment sentences and method names,
and convert each of them into a sequence of words; (2) clustering comments and code: we cluster
the word sequences based on whether they contain at least one common word to reduce the over-
head of pairwise comparison in the next step, which is a critical step for our technique to scale up
to large code bases such as the Linux kernel; (3) extracting semantically related word pairs: we
calculate the similarity between a pair of word sequences and extract the corresponding rPairs
if the context is similar; and (4) refining semantically related word pairs: we finally refine the
rPairs by using stemming to remove pairs with the same roots, merging duplicate word pairs,
normalizing words, and generating transitive rPairs.

9

Table 3.1: Learning semantically related word pairs from context. The comment and code
examples are real comments and code segments from the nine code bases used in our evaluation.

Context Semantically Related
Word Pairs

Context Type

Must be called with interrupts disabled. (disabled, off) Comment-Comment
It MUST be called with interrupts off.
Disable all interrupt sources. (interrupt, irq) Comment-Comment
Disable all irq sources.
Always called with interrupts disabled. (call, invoke) Comment-Comment
Always invoked with interrupts disabled.
None mounted file for this track. (mounted, accessible) Comment-Comment
None accessible file for this track.
Serializes this map to the given stream (serialize, deserialize) Comment-Comment
Deserializes this map from the given stream (to, from)
Min of spare threads (thread,daemon) Comment-Comment
Min of spare daemons
Empty map with the specified maximum size (size,capacity) Comment-Comment
Empty map with the specified maximum capacity
Gets the value associated with the key (associate, map) Comment-Comment
Gets the value mapped with the key specified
get a node’s parent (parent, left child) Comment-Comment
get a node’s left child
An iovec to store the headers sent before the file (header, trailer) Comment-Comment
An iovec to store the trailers sent after the file (before, after)
it was finally rewritten to a remote URL (remote, local) Comment-Comment
it was finally rewritten to a local path (URL, path)
mask all interrupts() (mask, disable) Code-Code
disable all interrupts(...)
addParameter(...) (add, new) Code-Code
newParameter()
FileTypeFileFilter() (file, directory) Code-Code
DirectoryTypeFileFilter()
Initialize signal names (initialize, setup) Comment-Code
setup signal names(...)
Alloc a net device (alloc, add) Comment-Code
add net device(...)

10

3.1 Parsing Comments and Code

We extract all comment blocks from source code files and use a sentence segmentator to split
them into comment sentences. Each comment sentence is broken down into a sequence of words
by using space as the delimiter. For example, the comment sentence “Called with interrupts

disabled” is represented as a sequence consisting of four words (case insensitive): <called,
with, interrupts, disabled>. Similarly, we extract method names from source code files,
and split them into words based on camel case or underscore. To minimize the dependency on
naming convention and code structure related heuristics, our analysis ignores return types and
parameters.

A sentence segmentator for English sentences does not work well for code comments mainly
because incorrect punctuation is common in comments. Therefore, in addition to regular sen-
tence delimiters, i.e., “!”, “?”, and “;”, we use “.” and spaces together as sentence delimiters
instead of using “.” alone, and consider an empty line and the end of a comment as the end of a
sentence [56].

In order to discover semantically related identifiers and avoid duplicate analysis, we do not
break identifiers in comments into multiple words based on camel case or underscore. For ex-
ample, we can learn that the apr pool clear and apr pool destroy are semantically related
methods in HTTPD from comments “If you do not have apr pool clear in a wrapper”
and “If you do not have apr pool destroy in a wrapper”.

3.2 Clustering Comments and Code

It is expensive to conduct pairwise comparison for a large number of sequences. For example,
the Linux kernel contains 519,168 unique comment sentences. Pairwise comparison requires us
to compare on the order of 100 billion (134,767,706,112) pairs of word sequences to check if we
can find rPairs from them. This is already the number after we filter out sequences that are too
short or too long to as described later in Chapter 3.3. We ran the experiment on an Intel Core 2
Duo 3.06 HZ machine, and the pairwise comparison does not finish in one day.

To speed up the process, we want to reduce the number of pairwise comparisons. Our intu-
ition is that there is no need to compare two sentences that do not share a single word. Therefore,
we group sequences into clusters, one cluster for each word, where each cluster contains all the
sequences that contain the word. We do not build clusters for words in the stopword list, which
are words that appear frequently in English and software such as ‘a’, ‘an’, ‘the’, ‘that’, ‘this’,
etc. Sharing only these non-essential words does not increase the similarity of the context for

11

discovering rPairs. We then conduct pairwise comparisons within each cluster. Since each clus-
ter contains much fewer number of word sequences, this approach can significantly reduce the
number of pairwise comparisons. For example, this step speeds up the analysis process for the
Linux kernel by over 1,000 times: all the comments are divided into 123,404 clusters, and the
total number of pairwise comparisons has been reduced to 90,483,147, which translates to only
one hour on the same machine.

3.3 Extracting Semantically Related Word Pairs

The main step of the extraction process is to calculate the similarity between two word sequences
and extract the corresponding word pairs if the similarity is higher than a given threshold.
Since sequences are not always lined up from the first word, e.g., <must, be, called, with,
interrupts, disabled> and <it, must, be, called, with, interrupts, off>, we apply the
Longest Common Subsequence (LCS) algorithm to find the longest overlapping subsequences
(not necessarily continuous) between two sequences.

We define the similarity measure as

SimilarityMeasure =
Number of Common Words in the Two Sequences
Total Number of Words in the Shorter Sequence

If the similarity measure of a pair of word sequences is greater than or equal to the threshold
(whose default value is 0.7 for the comment-comment context) and not 1 (meaning that the two
sequences are identical), we extract rPairs from the differences between the two subsequences.

Our technique can find semantically related phrases, not only semantically related words.
For example, from the sequences <get, a, nodes’s, parent > and <get, a, nodes’s, left,
child >, we can find that the longest common subsequence of these two sequences is <get,
a, nodes’s >, and that phrases/words (parent, left child) are semantically related, because the
SimilarityMeasure is 0.75, which is greater than the default threshold.

In addition, we can find more than one rPair from two sequences. For example, from the
sequences <an, iovec, to, store, the, headers, sent, before, the, file> and <an, iovec,
to, store, the, trailer, sent, after, the, file>, we can infer two rPairs (header, trailer)
and (before, after).

In addition to the threshold, three additional parameters are used to control the rPair extrac-
tion process: shortest, longest, and gap. Our technique only analyzes word sequences whose
length is greater than or equal to shortest and less than or equal to longest, where sequence
length is defined as the number of words in a sequence. Our technique only performs pairwise
comparisons between two sequences whose length difference is gap or less.

12

3.4 Refining Semantically Related Word Pairs

We finally refine the detected rPairs. First, the rPairs in such format, (<W1, W2>, <W3, W4>)
is separated into two rPairs, (W1, W3) and (W2, W4). Then we remove rPairs that contain words
in the stopword list, e.g., (a, the); and we use stemming 1 to remove word pairs with the same
roots, e.g., (call, called). Stemming is not perfect, e.g., Porter’s stemmer makes mistakes such
as stemming ‘adding’ to ‘ad’ instead of ‘add’. However, it is widely used and works well for our
experiments. We would like to experiment with other stemmers in the future.

In addition, since the same rPairs may be discovered from multiple pairs of sequences, we
merge the word pairs as one rPair. For example, we can learn that (interrupt, irq) is an rPair from
the two relevant comments in Table 3.1, as well as the two sequences <were, called, from,
interrupt, handlers> and <called, from, irq, handlers>. We consider it as one rPair only,
and increase the support for this rPair. The support is not used in our basic extraction technique,
but it is used to rank the rPairs as described in Chapter 4.2.

Lastly, we normalize words to their base forms. For example, we normalize the rPair (called,
invoked) to (call, invoke), and normalize the rPair (threads, daemons) to (thread, daemon). A
typical stemmer is inappropriate for this normalization step, because a stemmer will revert words
to their stems (e.g., invoked to invok), most of which are not words. In addition, stemming can
cause inaccuracies as we discussed earlier regarding Porter’s stemmer. Therefore, we build a
reversely mapped dictionary that can return the base form of a word, given the derived form
(e.g., past participles and plural nouns) of the word. We extract all base forms of English words
and their derived forms from an English dictionary and build the reversely mapped dictionary.
We normalize an rPair only if both words can be normalized. We require that both words can
be normalized based on our observations. For example, the rPair (disabled, off) should not be
normalized to (disable, off) because disabled and off are two semantically related adjectives, but
the verb disable (the base form of disabled) is not a synonym of off.

We introduce transitive rPairs. If (W1, W2) and (W1, W3) are rPairs, (W2, W3) is a transitive
rPair that requires one transition. If (W2, W4) is also an rPair, then (W3, W4) is a transitive rPair
after two transitions. Considering transitive rPairs increases recall but reduces precision; our
evaluation uses no transitive rPairs unless stated otherwise.

1http://tartarus.org/ martin/PorterStemmer/

13

Chapter 4

Improved Version of rPair Extraction

We propose two techniques to improve the rPair extraction accuracy: (1) we design a better
similarity measure; and (2) we use an effective ranking function to rank the rPair results so that
we can achieve a higher accuracy for the top ranked rPairs, i.e., top 10, top 30, and top 50 rPairs.
Chapter 4.1 introduces how we use Inverse Document Frequency (idf) to redefine the Similarity
Measure in Chapter 3.3. Chapter 4.2 briefly describes the ranking function we use.

4.1 An Improved Similarity Measure

In this section, we briefly describe how we adopt the idf technique to define a better similarity
measure.

4.1.1 The idf Weight

By observing the results from our basic rPair extraction experiments, we notice that many false
positives are introduced because many words in the shared context are less meaningful, e.g.,
the words such as ‘both’, ‘via’, and ‘additional’ are less meaningful than the words such as
‘irq’, ‘disable’, ‘kernel’, etc. Since the quality of the shared context could affect the accuracy of
the inferred rPair, we give different weight values to different words to improve our similarity
measure. In our experiment, we leverage the idf technique to assign different scores to every
word. Therefore, those important and unique words are distinguished from those common and
less meaningful words.

14

The idf is the inverse document frequency, and it is a widely-used metric to reflect how
important a word is in a document or a collection of words. Typically, idf(t,D) is defined as

idf(t,D) = logbase
|D|

|d ∈ D : t ∈ d|

where D represents all documents. The idf score ranges from 0 to logbaseD. In our experiment,
we normalize the idf as

normalized idf(t,D) =
eidf(t,D)

1 + eidf(t,D)

to make it within [0, 1) so that idf score is consistent across projects regardless of different
number of methods in different projects.

4.1.2 The New Similarity Measure Definition

Based on the normalized idf scores, we redefine the similarity measure as the following formula.
To distinguish it from the similarity measure defined in Chapter 3.3, this improved similarity
measure is referred to as the new similarity measure. In the following formula, s1 and s2 are
two sentences, sc represents the common part between s1 and s2, ns is the number of words in
sentence s, and S represents all the sentences.

NewSimilarityMeasure =
2×

∑
normalized idf (sc)∑

normalized idf (s1) +
∑

normalized idf (s2)

where ∑
normalized idf

(s) =
ns∑
i=1

normalized idf(ti, S)

4.2 The Ranking Function

Our goal is to design a ranking function to further improve the accuracy of our rPair extraction
results. Two factors can be indicative of the correctness of rPairs: (1) the new similarity measure,
and (2) the number of contexts in which one rPair can be learned, referred to as support. If the
similarity measure of a rPair is higher, it is likely that it is a correct rPair. Similarly, if a rPair can
be inferred from multiple contexts, it is likely that it is a correct rPair. Therefore, we combine
the support and the similarity measure for effective ranking.

15

One common way to perform ranking based on multiple metrics is multi-objective ranking.
We applied the NSGA-II algorithm [11], which is a popular multi-objective ranking algorithm
based on dominance, and find that this ranking algorithm is ineffective in prioritizing correct
rPairs.

Another common way to combine two factors to form a ranking function (if the two fac-
tors both have positive values), is to multiply these two factors. However, in our experiment,
we observe that although the support plays an important role in ranking, the support and the
similarity measure are in different ranges, e.g., the support of rPairs in the Linux kernel can be
greater than 2,000, while the similarity measure is always between 0 and 1. If we simply use the
product of the similarity measure and the support as the ranking function, the ranking function
will be overpowered by the support. Therefore, we use a more balanced way of combining the
NewSimilarityMeasure and the Support, by taking the logarithm of the support. Furthermore, we
normalize the RankingFunction value with the logistic function.

We choose not to normalize the support score to [0, 1); instead, we normalize the Rank-
ingFunction values to be consistent across the projects. We make this decision based on the
observation that support should have a significant contribution in determining the correctness of
rPairs, but a normalized support (e.g., using a logistic function) has limited such contribution.
For example, the normalized support of support=5 has a limited difference from the normal-
ized support of support > 5, which makes the support contribute little to the ranking.

Our ranking function is:

RankingFunction =

{
logbase Support×AV GSimilarity if Support > base
AV GSimilarity if Support ≤ base

where
AV GSimilarity =

∑Support
i=1 NewSimilarityMeasure

Support
.

And the logistic function is:

normalized RankingFunction =
eRankingFunction

1 + eRankingFunction
.

While it is possible to use advanced ranking functions to further improve the accuracy, our
simple ranking algorithm improves the rPair extraction accuracy (Chapter 6.4).

4.3 Studying Cross-Project rPairs

Some rPairs can be extracted from more than one project, which we call cross-project rPairs.
For example, one rPair (dev, device) which appears in Linux, NetBSD and OpenBSD is one

16

cross-project rPair among the three operating system projects. The rPair (dev, device) is inferred
from the Linux kernel comments “disable cir logical dev” and “disable cir logical

device”, from the NetBSD comments “graphics dev is open” and “graphics device is open

exclusive use” and from the OpenBSD comments “scsi dev clear

operation” and “scsi device clear operation”.

Cross-project rPairs have many benefits. First, cross-project results can benefit other software
from the same type of software which have not been analyzed yet. Second, cross-project rPairs
are expected to have a higher accuracy; therefore whether an rPair is a cross-project rPair may
be used to improve the ranking results.

In addition, we rank the cross-project rPairs. Specifically, we combine the average of the
similarity measures and the sum of the supports from all projects the same way as in the ranking
function in Chapter 4.2. We briefly describe how we conduct cross-project study in Chapter 5.5
and detailed cross-project rPair results with ranking are shown in Chapter 6.5.

17

Chapter 5

Experimental Methods

We evaluate our technique on nine open source projects (Table 5.1). Because method names are
typically much shorter than comment sentences, we use different parameters for the comment-
comment, code-code, and comment-code comparisons. For comment-comment comparisons,
the parameter configuration is shortest=4, longest=10, gap=3, and threshold=0.7; for code-code
comparisons, the parameter configuration is shortest=2, longest=4, gap=0, and threshold=0.5;
and for comment-code comparisons, the parameter configuration is shortest=2, longest=6, gap=1,
and threshold=0.6.

We perform five sets of evaluation experiments.

5.1 Experiment: rPair Extraction Accuracy and Comparison
with WordNet and a Dictionary

We randomly sample 300 rPairs from all the rPairs generated for each project—100 rPairs ex-
tracted from the comment-comment context, 100 from the code-code context, and 100 from the
comment-code context. We then manually read these rPairs and the corresponding word se-
quences to verify if the rPairs are correct rPairs. If fewer than 100 rPairs are extracted from
one type of context in a code base, we manually verify all of the rPairs learned from that con-
text in that code base. The accuracy is measured as the number of correct rPairs in a sample
over the total number of rPairs in the sample. We further classify the correct rPairs into five
categories—synonym, related, antonym, near antonym, or identifier, whose definition and exam-
ples are shown in Chapter 6.1. To reduce subjectivity, two people verify these results. In addi-

18

Table 5.1: Evaluated Software. LOComment is lines of comments. *The versions of iReport,
jBidWatcher, javaHMO, jajuk are the same as [50]. The dates when NetBSD and OpenBSD were
checked out from the version control systems are shown instead of the version numbers.

Software Source Description LOC LO- Lang-
& Version Comment -uage
[61] The Linux kernel

Linux 3.3 Operating System 9,823,623 2,135,655 C
[63] OpenBSD

OpenBSD Feb2012 Operating System 2,029,168 487,623 C
[62] NetBSD

NetBSD Nov2008 Operating System 3,003,072 959,409 C
[58] Apache HTTPD Server

HTTPD 2.2.21 Web Server 231,526 70,229 C
[57] Apache Commons

Collections
Collections 3.2.1 Libraries and Utilities 55,398 40,994 Java

[3] iReport
iReport 1.2.2* Report Generator 74,506 18,614 Java

[2] jBidWatcher
jBidWatcher 1.0pre6* eBay Auction Monitor 23,052 5,596 Java

[1] javaHMO
javaHMO 2.4* Media Server 25,988 7,784 Java

[4] jajuk
jajuk 1.2* Music Player 30,679 13,545 Java

tion, we check how many rPairs cannot be found in WordNet [44], an English dictionary [35] or
a computer specific dictionary [10].

5.2 Experiment: Search-Related Evaluation

Previous work [50] builds a code search tool that expands search queries with alternative words
learned from verb-DO pairs. For example, when developers search for “add textfield” in iReport,
the tool will suggest words including element, keyword, and token for developers to select from
to expand the initial query to queries such as add element, add keyword, add token, etc. These
words are direct objects (DOs) that appear together with the verb add in iReport. To evaluate the
technique, they manually identify the methods related to the concern “add textfield” in iReport,

19

referred to as function gold set, and check if such query expansions can improve the search
effectiveness.

We perform two sets of search-related evaluation experiments. Firstly, we mimic the search
process exhaustively by replacing the words in the search queries with rPairs mined by our ap-
proach, and compare our search results with those from SWUM. For example, for search task
“add textfield”, we first mimic the search process by searching with two queries “*add*textfiled*”
and “*textfield*add*”, because it is typical for users to reorder the verb and the noun to re-
trieve more search results. Second, we replace the words in the search queries, e.g., “add” and
“textfield”, with alternative words. To locate as many search results as possible, two words in the
search query can be replaced together to form a new search query, for example,
“*new*reportpanel*” is one valid search query if ‘new’ is alternative to ‘add’ and ‘report-
panel’ is alternative to ‘textfield’. . For the search tasks with more than two words, such as
“Gather Music Files”, we construct initial search queries by “*verb*second noun*”, such as
“*gather*file*”, to locate more matches, because the query “*gather*music*file*” returns noth-
ing in the project . We conducted the search using Eclipses’ default search focusing on method
declarations and constructors.

Secondly, since our technique is a building block for search tools, we compare the precision
and recall of our rPair extraction results with the rPair extraction results of the previous work [50,
51, 16], on the rPair gold set inferred from the same search tasks [49] used by the previous work.
For example, their function gold set for the search task “add auction” in jBidWatcher includes
the following two methods “AuctionsManager.newAuctionEntry(String)” and
“AuctionServer.register- Auction(AuctionEntry)”, which means that when developers
search for “add auction”, these two methods should be matched. A keyword-based search for
“add auction” in source code files will not find these methods. To locate them, we need to expand
the query to “new auction” and “register auction”. Therefore, we add two rPairs, (add, new) and
(add, register), to our rPair gold set for the query word add. Note that the rPairs are added based
on the function gold set. For example, the pair (add, insert) is not in our rPair gold set, because
according to the function gold set, we do not need the word insert to locate the methods related
to “add auction” in jBidWatcher. Since only eight of the nine search tasks from the previous
work [50] require query expansion, we generate the rPair gold set for the eight search tasks.

For a fair comparison, we tune the previous technique to achieve the best performance, i.e.,
the highest recall, since it is harder to guess the words used in code, than to cross off false
positives. First, we compare against their latest and improved version [16] (denoted by SWUM).
Since the improved version analyzes only code but not comments, we can only compare our
code-code analysis against their approach. If we add our comment-comment and comment-code
analysis, our approach could find more rPairs as discussed in Chapter 6.2 and Chapter 2. Second,
we relax one restriction of the SWUM technique to help it find rPairs that it may miss otherwise.

20

For example, for the query “load movie”, the SWUM technique would suggest verbs that appear
together with movie, which do not include start, because start does not appear together with
movie. If the user decides to expand the query with the suggested words, the SWUM technique
would suggest new words based on the new query. Therefore, whether start will eventually be
suggested is uncertain. We relax this restriction so that the SWUM technique can find (load,
start) as an rPair if load and start appear together with some DO, not necessarily movie.

In the first search-related experiment, based on the function gold set, we measure the recall
as the number of methods in the gold set that a technique can discover over the total number of
methods in the gold set. The precision is the number of methods in the gold set that a technique
can discover over the total number of methods discovered by the technique with the expanded
search queries including the original ones, such as “*add*textfield*” and “*textfield*add*” in the
previous example. Similarity, in the second search-related experiment, based on the rPair gold
set, we measure the recall as the number of rPairs in the gold set that a technique can discover
over the total number of rPairs in the gold set. The precision is the number of rPairs in the gold
set that a technique can discover over the total number of rPairs discovered by the technique that
contain the original query word in the gold set (e.g., add and load in the previous examples).

5.3 Experiment: Sensitivity Evaluation

To understand how the threshold affects the performance of the proposed technique, ideally we
want to vary the threshold, regenerate rPairs, and measure the precision and recall on a random
sample of the rPairs. However, as the rPairs generated will be different with different threshold
values, this evaluation approach requires a significant amount of effort on manually verifying the
rPairs in the random samples. Therefore, as an approximation, we use the same random samples
from the rPairs generated with our default threshold values (referred to as default samples), and
measure the recall as the portion of the correct rPairs in a default sample that can be identified by
our technique with a new threshold. The precision is the number of correct rPairs in the default
sample that our technique can discover over the total number of rPairs in the default sample that
our technique can discover.

5.4 Experiment: Ranking Evaluation

To evaluate whether the ranking function helps achieve a higher accuracy, we apply the ranking
algorithm on the combined set of rPairs extracted from all three types of contexts from the nine

21

projects. We manually check the rPair accuracy of three ranking slots, i.e., top 10, top 30 and top
50, and compare the accuracy of these ranking slots with the accuracy from our basic extraction
without ranking.

For each project, we apply the ranking algorithm on the rPair from the combined set of all the
rPairs from the three categories of contexts (comment-comment, etc.). We choose base=10 (both
in the ranking function and idf(t, D)). The accuracy results, which are verified by two people
individually, are shown in Chapter 6.4.

5.5 Experiment: Cross-Project rPairs Study

Studying the overlapping rPairs across projects has many benefits, as discussed in Chapter 4.3.
While our technique can be used to find overlapping rPairs among any projects, two projects of
different types may not share any rPairs, e.g., jajuk and the Linux kernel share no rPairs. These
two projects do not have similar functionality: jajuk is a media player while the Linux kernel is
an operating system. Therefore, we focus on studying the overlapping rPairs among projects of
the same type.

We experiment with two sets of projects of similar functionality. One set is two media play-
ers, i.e., jajuk and javaHMO, and the other set is three operating system projects, which are
Linux, NetBSD and OpenBSD. For each set of projects, we conduct the cross-project study on
the combined set of rPairs extracted from all three types of contexts and use the ranking algo-
rithm described in Chapter 4.2 to rank the cross-project rPairs. In the future, we can apply our
technique on other types of software, e.g., web browser projects such as Chrome, Firefox, etc.

5.6 Threats to Validity and Limitations

The search gold set and rPair gold set (introduced in Chapter 5) may favor a certain technique.
To minimize this threat, we evaluate our technique on the same search gold set used by Shepherd
et al. [50] as we compare against their technique. This is unlikely to favor our technique. In
addition, two authors confirm the rPair gold set to reduce subjectivity.

If a code base contains no comments and the methods are poorly named, our technique may
be less effective. However, given that modern software often contains a large amount of com-
ments [55] and meaningful identifiers, our technique should be applicable to a large body of
software. A large amount of commented code may affect the performance. First, it can add
extra comments to the analysis, which are actually code. Second, analyzing code statements as

22

sentences may produce rPairs with lower accuracy because it is common for code statements to
have many words in common. In the future, we can exclude commented code from our analysis
to address this issue.

Our current implementation cannot tell if an rPair is synonym, related, antonym, near antonym,
or identifier. Although all categories are useful for code search, it would be beneficial to distin-
guish these categories. In the future, we may leverage etymology to classify rPairs into the
categories automatically.

23

Chapter 6

Evaluation Results

6.1 rPair Extraction Results

Table 6.1 shows the overall rPair extraction results on the nine evaluated code bases from the
three types of contexts: comment-comment, code-code, and comment-code. We show the margin
of error with 95% confidence level except for comment-comment of jBidWatcher and comment-
code of HTTPD, iReport, and jajuk, of which we verify all extracted rPairs. We have two people
manually verify the correctness of the rPairs, discuss the disagreements to reach consensus and
report the disagreements statistics accordingly. In total, the two people have disagreements on
83 out of the 2269 verified rPairs. We calculate the Cohen’s kappa value, which is a well-known
statistical measure of inter-rater agreements, based on 6 categories of rPairs (Synonym, Related,
Antonym, Near Antonym, Identifier, Incorrect). The Cohen’s kappa value is 0.8668, which
indicates “almost perfect agreement” according to [28].

We can see that the accuracy of the comment-comment context is the highest (30.0–84.0%)
among the three contexts with an average of 56.9% (not shown in the Table), which is expected
because comment sentences are generally longer than method names, which provides longer
context for learning correct rPairs. In contrast, we learn fewer rPairs from the comment-code
context, due to the disparity between comments and method names. However, the comment-
code context does help us learn meaningful correct rPairs such as (initialize, setup) and (alloc,
add), whose contexts are shown in Table 3.1.

Column ‘Not in Dic or WordNet’ shows the number of rPairs that cannot be found in either
WordNet [44], an English dictionary and thesaurus [35] or an computer science specific dictio-
nary [10]. These words and phrases are semantically related in software, but are not semantically

24

Table 6.1: rPair Extraction Results. Dic denotes Merriam-Webster English Dictionary and
Thesaurus [35] and the computer specific dictionary [10]. The margin of error is calculated
with 95% confidence level, which is to express the random sampling error in the extraction
accuracy. The average accuracy of comment-comment is 56.9%, 33.3% for code-code and 16.5%
for comment-code.

Software rPairs Sample Correct Accuracy #Not in Dic
Size rPairs or WordNet

Comment-Comment
Linux 108,571 100 47 47.0±9.8% 36
HTTPD 1,428 100 47 47.0±9.5% 44
Collections 469 100 74 74.0±8.7% 72
iReport 878 100 84 84.0±9.2% 80
jBidWatcher 111 111 71 64.0% 63
javaHMO 144 100 56 56.0±5.4% 50
jajuk 203 100 69 69.0±7.0% 64
NetBSD 36,485 100 30 30.0±9.8% 30
OpenBSD 27,362 100 40 40.0±9.8 % 40
Code-Code
Linux 606,432 100 25 25.0±9.8% 25
HTTPD 1,727 100 25 25.0±9.5% 24
Collections 3,162 100 41 41.0±9.7% 37
iReport 1,849 100 47 47.0±9.5% 47
jBidWatcher 1,428 100 42 42.0±9.5% 42
javaHMO 685 100 35 35.0±9.1% 35
jajuk 746 100 48 48.0±9.1% 47
NetBSD 354,680 100 20 20.0±9.8% 20
OpenBSD 223,323 100 17 17.0±9.8% 17
Comment-Code
Linux 10,633 100 25 25.0±9.8% 25
HTTPD 43 43 12 27.9% 12
Collections 5 5 0 0 0
iReport 4 4 4 100% 4
jBidWatcher 0 0 0 0 0
javaHMO 0 0 0 0 0
jajuk 6 6 4 66.7% 4
NetBSD 1,169 100 7 7.0±9.38% 7
OpenBSD 703 100 7 7.0±9.08% 7

25

Table 6.2: rPairs Extraction Results. This table shows the percentage of correct rPairs distributed
among five categories for nine projects. Majority of the correct rPairs (42.5-100%) belong to the
‘Related’ category.

Software Syno- Related Anto- Near Identifier
nym nym- Antonym

Comment-Comment
Linux 2.1% 42.6% 2.1% 4.2% 49.0%
HTTPD 2.1% 51.0% 12.8% 2.1% 32.0%
Collections 0 78.4% 5.4% 4.1% 12.1%
iReport 0 50.0% 8.3% 1.2% 40.5%
jBidWatcher 0 66.2% 11.3% 16.9% 5.6%
javaHMO 1.8% 50.0% 7.1% 7.1% 34.0%
jajuk 5.8% 72.3% 8.7% 7.2% 0
NetBSD 0 63.3% 6.7% 0 30.0%
OpenBSD 2.5% 42.5% 2.5% 2.5% 50.0%
Code-Code
Linux 4.0% 84.0% 4.0% 8.0% 0
HTTPD 4.0% 72.0% 12.0% 12.0% 0
Collections 4.9% 82.9% 7.3% 4.9% 0
iReport 2.1% 93.6% 2.1% 2.1% 0
jBidWatcher 2.4% 85.7% 2.4% 9.5% 0
javaHMO 0 94.2% 2.9% 0 2.9%
jajuk 0 89.6% 6.3% 4.1% 0
NetBSD 0 100% 0 0 0
OpenBSD 0 100% 0 0 0
Comment-Code
Linux 0 88.0% 0 12.0% 0
HTTPD 8.3% 91.7% 0 0 0
Collections 0 0 0 0 0
iReport 0 100% 0 0 0
jBidWatcher 0 0 0 0 0
javaHMO 0 0 0 0 0
jajuk 0 100% 0 0 0
NetBSD 0 85.7% 0 14.3% 0
OpenBSD 0 85.7% 0 14.3% 0

26

related in English. This is very valuable because it is almost impossible for developers to guess
all the semantically related words used in a given piece of software. Our results show that 711
out of the 756 (94.0%) correct rPairs in the nine projects cannot be found in either WordNet [44],
an English dictionary [35] or a computer specific dictionary [10].

The breakdown of the correct rPairs into five categories is shown in Table 6.2. Synonym
denotes words that have the same meanings in software (including abbreviations), e.g., (call,
invoke) and (interrupt, irq). Related denotes words that are semantically related but not the same,
e.g., (size, capacity) and (file, directory). Antonym denotes words that have opposite meanings,
e.g., (serialize, deserialize) and (before, after). Near Antonym denotes words that have almost
opposite meanings, e.g., (header, trailer). The full contexts of these rPair examples are shown in
Table 3.1. Identifier denotes words that are semantically related code identifiers, such as method
names, variable names, etc. For example, makeFullMap() and makeEmptyMap() are a pair of
identifier rPairs, which are two function names from Collections. All five types of rPairs are
useful for code search and other software engineering tasks.

False Positives. Despite the challenging nature of the task, our technique has reasonable accu-
racy. However, there is much space to further improve the accuracy. One main cause of false
positives is that the shared context contains many common English words. For example, we
mistakenly consider (match, literal) semantically related, from comments “we have a match”,
and “we have a literal”. Another reason is that our design favors recall over precision; the
threshold and the support (the number of contexts from which the rPairs can be learned) are set
low, and the gap (the length difference between two sequences compared) allowed is high. De-
spite the false positives, our techniques is valuable, because it is much easier for developers to
cross off false positives than to guess the possible semantically related words used in software.

To reduce false positives, we rank rPairs according to the importance of the words in the
shared context (e.g., idf scores) and the support; the results are in Chapter 6.4. In addition, we
could leverage NLP techniques to generate the semantic paths [33] to infer rPairs more precisely.
At the cost of lower recall, users can increase the threshold and decrease the gap to improve the
precision.

6.2 Search-Related Results

Table 6.3 shows the search-related results on the methods gold set. Column ‘Initial Search Query’
shows the initial search queries established based on the search task. We conduct the search
experiments by expanding the initial search queries by replacing the words in the queries with the
words mined by two techniques. For example, for the search task “add auction” in jBidWatcher,

27

Table 6.3: Search-Related results based on function gold set. We search by “*verb*noun*”,
“*noun*verb*” and combinations of alternative words for ‘verb’ and ‘noun’. CTX is our
context-based technique, CTXT is CTX with transitive rPairs, and SWUM denotes the pre-
vious work by [16]. The function gold set is from [49].

Search Task Initial Precision Recall
Search Query CTX SWUM CTXT CTX SWUM CTXT

iReport

“Add Textfield”
*add*textfield* 14.3% 0 5.3% 40.0% 0 60%
*textfield*add*

“Compile Report”
*compile*report 4% 15.8% 0.17% 25% 37.5% 87.5%
*report*compile*

javaHMO

“Gather Music Files”
*gather*file* 28.6% 0.23% 0.5% 50% 50% 75%
*file*gather*

“Load Movie Listing”
*load*listing* 0 0 0 0 0 0
*listing*load*

jBidWatcher

“Add Auction”
*add*auction* 3.7% 0.82% 0.94% 100% 100% 100%
*auction*add*

“Save Auction”
*save*auction* 1.61% 0.52% 0.66% 33.3% 66.7% 77.8%
*auction*save*

“Set Snipe Price”
*set*price* 0 0 0/0 0 0 0/0
*price*set*

jajuk

“Play Song”
*play*song* 0 0 0/0 0 0 0/0
*song*play*

28

Table 6.4: Search-Related results on rPairs gold set. CTX is our context-base technique, CTXT

is CTX with transitive rPairs, and SWUM denotes the previous work by [16].

Search Task rPairs in Gold Set Precision Recall
CTX SWUM CTXT CTX SWUM CTXT

iReport

“Add Textfield”
add->new,drop 3.7% 0 0.3% 50.0% 0 50.0%
TextField 0 0 0 0 0 0
->ReportPanel

“Compile Report” report->directory 0 0 0.3% 0 0 100%
javaHMO
“Gather Music gather->find 0 0 1.1% 0 0 100%
Files” file 3.3% 0.4% 0.6% 100% 100% 100%

->directory

“Load Movie listing 0 0 0 0 0 0
Listings” ->container

load->start 20.0% 5.3% 1.1% 100% 100% 100%
jBidWatcher

“Add Auction”
add->do,new, 5.5% 2.3% 1.0% 100% 66.7% 100%
register

auction->entry 1.8% 0.3% 0.4% 100% 100% 100%
“Save Auction” save->preserve 0 1.6% 0.3% 0 33.3% 33.3%

backup,do

“Set Snipe Price” price->currency 0 0 0/0 0 0 0/0
jajuk

“Play Song”
song->file, 0 0 0/0 0 0 0/0
playlist

play->launch 0 0 0/0 0 0 0/0

we perform two initial search queries—“*add*auction*” and “*auction*add*” to mimic typical
search queries from developers. We expand the query word add with its semantically related
words, new, register, and do, to locate the relevant methods. Column ‘Precision’ shows the
percentage of the functions the two techniques find correctly and Column ‘Recall’ shows the
percentage of the functions in the gold set which the two techniques can find. Column ‘CTX’
is our context-based technique, column ‘CTXT ’ is CTX with transitive rPairs, and SWUM
denotes the previous work [16, 50].

Table 6.4 shows the search-related results on the rPairs gold set. Column ‘rPairs in gold set’
shows all the rPairs in our rPair gold set, which can help expand the search queries to find the

29

relevant methods. Column ‘Precision’ shows the percentage of the rPairs the two techniques find
correctly and Column ‘Recall’ shows the percentage of the rPairs in the gold set which the two
techniques can find.

As stated in Chapter 5, we tune the SWUM technique to reach its best performance. Without
the tuning, the SWUM technique would potentially miss three additional rPairs, (load, start),
(add, do), and (file, directory). Thus SWUM will miss some functions in the function gold set,
such as FileGatherer.gatherDirectory(File, String, FileFilter, Z) for the search task “gather music
files”.

Overall, our context-based approach (CTX) outperforms the SWUM approach on the two
sets of search-related experiments. In the search-related experiment on function gold set, for
three search tasks, both techniques have zero recall. For three out of the five remaining tasks,
our context-based approach has higher recall and precision or same recall with higher preci-
sion. Furthermore, our technique with transitive pairs (at most two transitions allowed CTXT)
can achieve higher recall for all the remaining five tasks and higher precision for four out
of the five tasks than SWUM. SWUM has higher precision and higher recall than our tech-
nique on the search task “compile report” because our technique fails to discover ‘translated
compile directory’ is related to ‘report’. Thus SWUM can locate one more function Main-
Frame.getTranslatedCompileDirectory(). One caveat is that users may not use the full rPairs to
expand the search queries, however we mimic the scenario maximally by leveraging the entire
results.

In the search-related experiment on rPairs gold set, for three search tasks, both techniques
have a zero recall. For four out of the five remaining tasks, our context-based approach has
higher recall and precision or same recall with higher precision. For example, our technique
can find the rPair (add, new) in iReport, but the previous approach will miss it because NLP
tools trained from general English text will not consider new a verb as discussed in Introduction.
One caveat is that using these semantically related words to expand queries may locate more
irrelevant method names. However, recent techniques [18, 19] may be leveraged to restrict the
search context and scope to address this issue.

For the rPairs that both techniques can find, our technique (CTX) has a higher precision (by a
factor of 2.4–8.3). This is because we use similarity measures to filter out irrelevant pairs, and we
do not consider return types or parameters to minimize the dependency on naming convention
and code structure related heuristics. Although these design choices may make our technique
discover fewer rPairs, they did not cause our technique to miss any rPairs in the search-related
rPair gold set that the SWUM technique can find.

Although our technique (CTX) has a higher precision than the SWUM technique, the preci-
sion of both techniques is relatively low, because (1) this is an inherently challenging task, and

30

(2) we only count the particular rPairs in our gold set as true positives, and consider other correct
rPairs discovered by the techniques as false positives, which can be useful for other search queries
nonetheless. We can use the techniques discussed in Chapter 6.1 to improve the precision.

The only case that the SWUM approach has a higher recall than our approach is for the rPair
(save, do). The SWUM approach breaks the method name DoSave into two verbs, and generate
two verb-DOs by combing the method name with the parameter name. Our technique does not
attempt to break one method name into two sequences, therefore misses this rPair. However, our
technique with transitive pairs (CTXT) can find this rPair.

In addition, Table 6.4 shows that by considering transitive rPairs with at most two transitions
allowed (CTXT), we can find three additional rPairs in the gold set with lower precisions, in-
cluding two rPairs that neither the SWUM technique nor our technique without transitive rPairs
(CTX) can find—(gather, find) and (report, directory). If we analyze comments as well, then
an additional rPair (listing, container) will be identified.

6.3 Sensitivity Results

To understand how a higher threshold affects the precision and recall on the comment-comment
analysis, we first experiment with thresholds 0.8, and 0.9. We found that threshold 0.8 signif-
icantly reduces the number of identified rPairs (recalls are lower than 0.5 for all nine projects)
with much higher precision (7.3–56.3% improvement) for all projects except for HTTPD (a
small improvement of 0.6%), and threshold 0.9 finds zero rPairs in our default samples for iRe-
port, HTTPD, and the Linux kernel, and one rPair for the rest 4 projects. Since we favor recall,
we then evaluate a lower threshold 0.75, which, however, still gives us low recalls (less than
0.5 for all projects) with precisions lower than those with threshold 0.8. Since the number of
words in a sentence is integers, thresholds between 0.7 and 0.75 are either equivalent to 0.7 or
0.75; therefore, there is no need to evaluate them. In summary, threshold 0.7 finds more rPairs
with reasonable precisions; therefore, it was chosen as our default value. If higher precision
is preferred and lower recall is acceptable, 0.8 is a good choice. We did not conduct the same
experiment for the comment-code and code-code context because method names are generally
short, e.g., two words, which means that only a small set of discrete similarity measure values are
possible: 0 (no shared word between the two method names), 0.5 (one shared word), and 1 (two
shared words). Threfore, 0.5 is the only reasonable threshold to set, indicating that threshold
tuning is not meaningful.

31

Table 6.5: The accuracy of rPair extraction with ranking. Top 10 can achieve the highest
accuracy of 60-100%, top 30 achieve the accuracy of 66.7-83.3% and top50 has the accuracy of
60-80%.

Software Total Ranking Slots Comment-Comment
Top 10 Top 30 Top 50

HTTPD 3,053 60.0% 66.7% 66.0% 47.0%
Collections 3,535 100.0% 83.3% 70.0% 74.0%
Linux 196,272 90.0% 66.7% 67.0% 47.0%
iReport 7,474 90.0% 83.3% 80.0% 84.0%
jBidWatcher 1,537 80.0% 63.3% 68.0% 64.0%
javaHMO 822 70.0% 73.3% 62.0% 56.0%
jajuk 915 70.0% 73.3% 78.0% 69.0%
NetBSD 391,000 100% 73.3% 60.0% 30.0%
OpenBSD 250,897 100% 83.3% 60.0% 40.0%

6.4 Ranking Results

This chapter shows the accuracy of the ranked rPairs on the nine evaluated code bases. Table 6.5
shows the total number of rPairs for each software using the parameter configuration described in
Chapter 5.4 and the accuracy in the three ranking slots—top 10, top 30 and top 50. The accuracy
is defined as the portion of correct rPairs in the results. Table 6.5 also shows the rPair extraction
accuracy from the comment-comment context on the nine code bases (copied from Table 6.1) for
comparison. Note that the ranking results are performed on all three types of contexts combined,
while the basic extraction results from the comment-comment context is the highest among the
three types of contexts without ranking.

The top 10 rPairs have a much higher accuracy of 60.0-100% for all nine code bases (com-
pared to the 30.0-84.0% from comment-comment without ranking, which has the highest ac-
curacy among the three types of contexts). The top 30 rPairs achieve a higher accuracy of
63.3-83.3% for all nine projects except iReport and jBidWatcher. Even for iReport and jBid-
Watcher, the accuracy is marginally lower (84.0% to 83.3% for iReport and 64.0% to 63.3%
for jBidWatcher). Lastly, the accuracy of the top 50 rPairs is also improved to 62.0-80.0% for
all evaluated projects except Collections (from 74.0% to 70.0%) and iReport (from 84.0% to
80.0%).

Our results show that ranking can significantly improve the rPair extraction accuracy, and the
accuracy improvement is bigger for large projects (i.e., the operating system code bases—Linux,

32

Table 6.6: Cross-project rPair Results.

Software Type Total Top N Accuracy Examples
jajuk Media Player 8 8 87.5% (load, clear)

javaHMO (item, file)
Linux Operating System 8,667 50 68% (dev, device)

(reg, register)
NetBSD (receive, transmit)

(destination, source)
OpenBSD (free, allocate)

NetBSD and OpenBSD). This is probably because the support for larger projects is significantly
bigger, which can help highlight correct rPairs extracted from many contexts in comments and
code. For example, support of rPairs from Linux can be as high as hundreds (i.e., support of
rPair (read, write) is 507), which results in a higher accuracy improvement. Support of rPairs in
small projects is much smaller. For example, the support of most rPairs in jajuk is less than 10.
In this case, the support does not contribute much to the ranking function (since the base is 10
in our experiment setting). Therefore, for small projects i.e., jajuk, jBidWatcher and javaHMO,
the rPairs are ranked based on the similarity measure. Since support plays an important role in
determining the correctness of the rPairs, a hybrid ranking function which combines the support
and the similarity measure is expected to have better ranking results. This explains why our
ranking function has better performance on large projects.

6.5 Cross-Project rPair Results

Table 6.6 shows the cross-project rPair results from two sets of software. One set contains two
media players—jajuk and javaHMO. The other set is three operating systems—Linux, NetBSD
and OpenBSD. We show the total number of overlapping rPairs across projects of the same set
(Column “Total”), the top number of rPairs that we manually verify (Column “Top N”), and the
rPair accuracy from our manual verification. The last column shows some cross-project rPair
examples.

We identify 8 cross-project rPairs from the two media players, and 8,667 cross-project rPairs
from the three operating system projects. For the media players, the extraction accuracy is 87.5%,
which is higher than the project-specific rPair extraction accuracy for both jajuk and javaHMO
rPairs with ranking (the highest accuracy from the three ranking slots is 78% for jajuk and 73.3%

33

for javaHMO). For the operating system projects, the top 50 cross-project rPairs have a higher ac-
curacy (68.0%) than that of the project-specific ranking results (the accuracy of the top 50 rPairs
is 67.0% for Linux, 60.0% for NetBSD and 60.0% for OpenBSD). The results show that cross-
project rPairs have a higher accuracy than project-specific rPairs; therefore, it is promising to
improve the ranking performance by adding “cross-project” as a factor in the ranking algorithm.

We find that most of the correct rPairs in the cross-project results are general for that type of
software. For example, the cross-project rPair (dev, device) found in all three operating system
code bases is general for operating systems (i.e., dev is highly likely to mean device in operating
system code), since operating systems need to manage devices. This rPair is more general than
other project-specific rPairs, e.g., the rPair (use hcd c probe, use hcd sa probe) from Linux,
which are the names of two related functions in Linux.

Cross-project rPairs may be leveraged (for code search, etc.) by projects of the same type that
are not analyzed. For example, we may be confident that dev is the abbreviated form of device
in operating systems that we have not analyzed, e.g., OpenSolaris and Windows. Therefore, we
believe our cross-project rPairs can benefit other media players and operating system projects,
for example, the cross-project rPair (dev, device) can supplement other operating system projects
in which this rPair is not discovered from the comments and code of those projects.

34

Chapter 7

Conclusions

We design and evaluate a general technique to automatically discover semantically related words
in software by leveraging the context of words in comments and code. The proposed technique
identifies semantically related words with a reasonable accuracy in nine large and popular code
bases written in C and Java. Our further evaluation against the state of art shows that our overall
precision and recall in discovering semantically related word pairs is higher.

In addition, we propose a ranking algorithm and evaluate it on the nine projects. Our eval-
uation shows that the ranking algorithm can improve the accuracy of the rPair extraction. The
cross-project rPairs study shows that we can discover general overlapping rPairs across multi-
ple projects of similar functionality and cross-project rPairs are more likely to be accurate than
project-specific rPairs.

This context-based approach and the rPairs discovered are valuable as they can benefit many
software engineering tasks. Firstly, semantically related words from software can help improve
the search effectiveness of keyword-based code search tools [16, 18, 19, 41, 42, 50] by expanding
the search queries. Secondly, semantically related words can improve bug detection tools [37,
43, 55, 56, 67] by expanding the specified rules with synonyms for better software reliability.
Thirdly, other software engineering tasks such as detecting duplicate bug reports and mining
source code descriptions need to analyze natural-language artifacts (e.g., bug reports [6, 14, 31,
34, 39, 46, 54, 64] and mailing lists [38]). They can leverage semantically related words to
improve their work.

In the future, we plan to use our technique to build comprehensive and accurate databases of
semantically related words in software. In addition, we can analyze user manuals and other soft-
ware documents to learn semantically related words. Furthermore, we may leverage etymology
to classify rPairs into different categories, e.g., synonym and antonyms, automatically.

35

References

[1] JavaHMO. http://www.javahmo.sourceforge.net/, 2009.

[2] JBidWatcher. http://www.jbidwatcher.com/, 2011.

[3] iReport. http://jasperforge.org/projects/ireport, 2012.

[4] Jajuk. http://www.jajuk.info/index.php/Main_Page, 2012.

[5] Surafel Lemma Abebe and Paolo Tonella. Natural language parsing of program element
names for concept extraction. In Proceedings of the 2010 IEEE 18th International Con-
ference on Program Comprehension, ICPC ’10, pages 156–159, Washington, DC, USA,
2010. IEEE Computer Society.

[6] John Anvik, Lyndon Hiew, and Gail C. Murphy. Who should fix this bug? In Proceedings
of the 28th international conference on Software engineering, ICSE ’06, pages 361–370,
New York, NY, USA, 2006. ACM.

[7] Satanjeev Banerjee and Ted Pedersen. Extended gloss overlaps as a measure of semantic
relatedness. In Proceedings of the 18th international joint conference on Artificial intel-
ligence, IJCAI’03, pages 805–810, San Francisco, CA, USA, 2003. Morgan Kaufmann
Publishers Inc.

[8] Dave Binkley, Matthew Hearn, and Dawn Lawrie. Improving identifier informativeness
using part of speech information. In Proceedings of the 8th Working Conference on Mining
Software Repositories, MSR ’11, pages 203–206, New York, NY, USA, 2011. ACM.

[9] Raymond P.L. Buse and Thomas Zimmermann. Information needs for software develop-
ment analytics. In Proceedings of the 34th International Conference on Software Engineer-
ing, June 2012.

36

http://www.javahmo.sourceforge.net/
http://www.jbidwatcher.com/
http://jasperforge.org/projects/ireport
http://www.jajuk.info/index.php/Main_Page

[10] Computer Dictionary Online. Computer Science Specific Dictionary. http://www.
computer-dictionary-online.org, 2013.

[11] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic
algorithm: NSGA-II. Trans. Evol. Comp, 6(2):182–197, April 2002.

[12] Zachary P. Fry, David Shepherd, Emily Hill, Lori Pollock, and K. Vijay-Shanker. Analysing
source code: Looking for useful verb-direct object pairs in all the right places. IET Software,
2008.

[13] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais. The vocabulary problem in
human-system communication. Commun. ACM, 30(11):964–971, November 1987.

[14] Michael Gegick, Pete Rotella, and Tao Xie. Identifying security bug reports via text mining:
An industrial case study. In Jim Whitehead and Thomas Zimmermann, editors, MSR, pages
11–20. IEEE, 2010.

[15] Scott Grant, Douglas Martin, James R Cordy, and David B Skillicorn. Contextualized
semantic analysis of web services. In International Symposium on Web Systems Evolution,
2011.

[16] Emily Hill. Integrating natural language and program structure information to improve
software search and exploration. PhD thesis, Newark, DE, USA, 2010. AAI3423409.

[17] Emily Hill, Zachary P. Fry, Haley Boyd, Giriprasad Sridhara, Yana Novikova, Lori Pollock,
and K. Vijay-Shanker. AMAP: Automatically mining abbreviation expansions in programs
to enhance software maintenance tools. In Proceedings of the 2008 international working
conference on Mining software repositories, MSR ’08, pages 79–88, New York, NY, USA,
2008. ACM.

[18] Emily Hill, Lori Pollock, and K. Vijay-Shanker. Automatically capturing source code con-
text of NL-queries for software maintenance and reuse. In Proceedings of the 31st Interna-
tional Conference on Software Engineering, ICSE ’09, pages 232–242, Washington, DC,
USA, 2009. IEEE Computer Society.

[19] Emily Hill, Lori Pollock, and K. Vijay-Shanker. Improving source code search with natural
language phrasal representations of method signatures. In Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software Engineering, ASE ’11, pages
524–527, Washington, DC, USA, 2011. IEEE Computer Society.

37

http://www.computer-dictionary-online.org
http://www.computer-dictionary-online.org

[20] Emily Hill, Lori Pollock, and K. Vijay-Shanker. Investigating how to effectively combine
static concern location techniques. In Proceedings of the 3rd International Workshop on
Search-Driven Development: Users, Infrastructure, Tools, and Evaluation, SUITE ’11,
pages 37–40, New York, NY, USA, 2011. ACM.

[21] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu. On the
naturalness of software. In Proceedings of the 2012 International Conference on Software
Engineering, ICSE 2012, pages 837–847, Piscataway, NJ, USA, 2012. IEEE Press.

[22] Reid Holmes and Gail C. Murphy. Using structural context to recommend source code
examples. In Proceedings of the 27th international conference on Software engineering,
ICSE ’05, pages 117–125, New York, NY, USA, 2005. ACM.

[23] Einar W. Host and Bjarte M. Ostvold. The programmer’s lexicon, volume I: The verbs.
In Proceedings of the Seventh IEEE International Working Conference on Source Code
Analysis and Manipulation, SCAM ’07, pages 193–202, Washington, DC, USA, 2007.
IEEE Computer Society.

[24] Einar W. Host and Bjarte M. Ostvold. Software language engineering. pages 322–341,
Berlin, Heidelberg, 2009. Springer-Verlag.

[25] Doug Janzen and Kris De Volder. Navigating and querying code without getting lost.
AOSD, 2003.

[26] Jay J. Jiang and David W. Conrath. Semantic similarity based on corpus statistics and
lexical taxonomy. CoRR, 1997.

[27] Andrew J. Ko, Htet Aung, and Brad A. Myers. Eliciting design requirements for
maintenance-oriented IDEs: A detailed study of corrective and perfective maintenance
tasks. In Proceedings of the 27th international conference on Software engineering, ICSE
’05, pages 126–135, New York, NY, USA, 2005. ACM.

[28] J. Richard Landis and Gary G. Koch. The measurement of observer agreement for categor-
ical data. Biometrics, 33(1):pp. 159–174, 1977.

[29] Dawn Lawrie and Dave Binkley. Expanding identifiers to normalize source code vocabu-
lary. In Proceedings of the 2011 27th IEEE International Conference on Software Mainte-
nance, ICSM ’11, pages 113–122, Washington, DC, USA, 2011. IEEE Computer Society.

[30] Dawn Lawrie, Dave Binkley, and Christopher Morrell. Normalizing source code vocabu-
lary. In Proceedings of the 2010 17th Working Conference on Reverse Engineering, WCRE
’10, pages 3–12, Washington, DC, USA, 2010. IEEE Computer Society.

38

[31] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and Chengxiang Zhai.
Have things changed now?: An empirical study of bug characteristics in modern open
source software. In Proceedings of the 1st workshop on Architectural and system support
for improving software dependability, ASID ’06, pages 25–33, New York, NY, USA, 2006.
ACM.

[32] Dekang Lin. An information-theoretic definition of similarity. In Proceedings of the Fif-
teenth International Conference on Machine Learning, ICML ’98, pages 296–304, San
Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[33] Dekang Lin and Patrick Pantel. Discovery of inference rules for question-answering. Nat.
Lang. Eng., 7(4):343–360, December 2001.

[34] Dominique Matter, Adrian Kuhn, and Oscar Nierstrasz. Assigning bug reports using a
vocabulary-based expertise model of developers. In Proceedings of the 2009 6th IEEE
International Working Conference on Mining Software Repositories, MSR ’09, pages 131–
140, Washington, DC, USA, 2009. IEEE Computer Society.

[35] Merriam-Webster. Merriam-Webster English Dictionary and Thesaurus. http://www.
merriam-webster.com, 2012.

[36] Oracle Corporation. OpenSolaris. http://hub.opensolaris.org/bin/view/
Main/, 2012.

[37] Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen Oney, and Amit Paradkar.
Inferring method specifications from natural language API descriptions. In Proceedings of
the 2012 International Conference on Software Engineering, ICSE 2012, pages 815–825,
2012.

[38] Sebastiano Panichella, Jairo Aponte, Massimiliano Di Penta, Andrian Marcus, and Gerardo
Canfora. Mining source code descriptions from developer communications. In ICPC, pages
63–72, 2012.

[39] Jin-Woo Park, Mu-Woong Lee, Jinhan Kim, Seung won Hwang, and Sunghun Kim. Cos-
Triage: A cost-aware triage algorithm for bug reporting systems. In Wolfram Burgard and
Dan Roth, editors, AAAI. AAAI Press, 2011.

[40] Denys Poshyvanyk and Andrian Marcus. Combining formal concept analysis with infor-
mation retrieval for concept location in source code. In ICPC, 2007.

39

http://www.merriam-webster.com
http://www.merriam-webster.com
http://hub.opensolaris.org/bin/view/Main/
http://hub.opensolaris.org/bin/view/Main/

[41] Denys Poshyvanyk, Andrian Marcus, and Yubo Dong. JIRiSS - an eclipse plug-in for source
code exploration. In Proceedings of the 14th IEEE International Conference on Program
Comprehension, ICPC ’06, pages 252–255, Washington, DC, USA, 2006. IEEE Computer
Society.

[42] Denys Poshyvanyk, Maksym Petrenko, Andrian Marcus, Xinrong Xie, and Dapeng Liu.
Source code exploration with google. In Proceedings of the 22nd IEEE International Con-
ference on Software Maintenance, ICSM ’06, pages 334–338, Washington, DC, USA, 2006.
IEEE Computer Society.

[43] Michael Pradel, Severin Heiniger, and Thomas R. Gross. Static detection of brittle param-
eter typing. In Proceedings of the 2012 International Symposium on Software Testing and
Analysis, ISSTA 2012, pages 265–275, New York, NY, USA, 2012. ACM.

[44] Princeton University. WordNet. http://wordnet.princeton.edu, 2012.

[45] Philip Resnik. Using information content to evaluate semantic similarity in a taxonomy. In
Proceedings of the 14th international joint conference on Artificial intelligence - Volume 1,
IJCAI’95, pages 448–453, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers
Inc.

[46] Per Runeson, Magnus Alexandersson, and Oskar Nyholm. Detection of duplicate defect
reports using natural language processing. In Proceedings of the 29th international con-
ference on Software Engineering, ICSE ’07, pages 499–510, Washington, DC, USA, 2007.
IEEE Computer Society.

[47] Gerard Salton and Christopher Buckley. Readings in information retrieval. chapter Term-
weighting approaches in automatic text retrieval, pages 323–328. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1997.

[48] Zachary M. Saul, Vladimir Filkov, Premkumar Devanbu, and Christian Bird. Recommend-
ing random walks. In Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The foundations of software
engineering, ESEC-FSE ’07, pages 15–24, New York, NY, USA, 2007. ACM.

[49] David Shepherd. Action-oriented concerns. http://www.eecis.udel.edu/

˜gibson/context/action_oriented_concerns.txt, 2007.

[50] David Shepherd, Zachary P. Fry, Emily Hill, Lori Pollock, and K. Vijay-Shanker. Using
natural language program analysis to locate and understand action-oriented concerns. In

40

http://wordnet.princeton.edu
http://www.eecis.udel.edu/~gibson/context/action_oriented_concerns.txt
http://www.eecis.udel.edu/~gibson/context/action_oriented_concerns.txt

Proceedings of the 6th international conference on Aspect-oriented software development,
AOSD ’07, pages 212–224, New York, NY, USA, 2007. ACM.

[51] David Shepherd, Lori Pollock, and K. Vijay-Shanker. Towards supporting on-demand vir-
tual remodularization using program graphs. In Proceedings of the 5th international con-
ference on Aspect-oriented software development, AOSD ’06, pages 3–14, New York, NY,
USA, 2006. ACM.

[52] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K. Vijay-Shanker.
Towards automatically generating summary comments for Java methods. In ASE, 2010.

[53] Giriprasad Sridhara, Emily Hill, Lori Pollock, and K. Vijay-Shanker. Identifying word
relations in software: A comparative study of semantic similarity tools. In Proceedings of
the 2008 The 16th IEEE International Conference on Program Comprehension, ICPC ’08,
pages 123–132, Washington, DC, USA, 2008. IEEE Computer Society.

[54] Chengnian Sun, David Lo, Xiaoyin Wang, Jing Jiang, and Siau-Cheng Khoo. A discrim-
inative model approach for accurate duplicate bug report retrieval. In Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering - Volume 1, ICSE ’10,
pages 45–54, New York, NY, USA, 2010. ACM.

[55] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. /* iComment: Bugs or bad com-
ments?*/. In Proceedings of twenty-first ACM SIGOPS symposium on Operating systems
principles, SOSP ’07, pages 145–158, New York, NY, USA, 2007. ACM.

[56] Lin Tan, Yuanyuan Zhou, and Yoann Padioleau. aComment: Mining annotations from
comments and code to detect interrupt related concurrency bugs. In Proceedings of the 33rd
International Conference on Software Engineering, ICSE ’11, pages 11–20, New York, NY,
USA, 2011. ACM.

[57] The Apache Foundation. Apache Commons Collections. http://commons.apache.
org/collections/, 2012.

[58] The Apache Foundation. Apache HTTPD Server. http://httpd.apache.org,
2012.

[59] The Apache Software Foundation. Apache OpenNLP. http://opennlp.apache.
org, 2010.

[60] The FreeBSD Foundation. FreeBSD. http://www.freebsd.org, 2012.

41

http://commons.apache.org/collections/
http://commons.apache.org/collections/
http://httpd.apache.org
http://opennlp.apache.org
http://opennlp.apache.org
http://www.freebsd.org

[61] The Linux Kernel Organization, Inc. The Linux Kernel. http://www.kernel.org,
2012.

[62] The NetBSD Foundation. NetBSD. http://www.netbsd.org, 2012.

[63] The OpenBSD Foundation. OpenBSD. http://www.openbsd.org, 2012.

[64] Xiaoyin Wang, Lu Zhang, Tao Xie, John Anvik, and Jiasu Sun. An approach to detecting
duplicate bug reports using natural language and execution information. In Proceedings of
the 30th international conference on Software engineering, ICSE ’08, pages 461–470, New
York, NY, USA, 2008. ACM.

[65] Zhibiao Wu and Martha Palmer. Verbs semantics and lexical selection. In Proceedings of
the 32nd annual meeting on Association for Computational Linguistics, ACL ’94, pages
133–138, Stroudsburg, PA, USA, 1994. Association for Computational Linguistics.

[66] Amy Moormann Zaremski and Jeannette M. Wing. Signature matching: A tool for using
software libraries. ACM Trans. Softw. Eng. Methodol., 4(2):146–170, April 1995.

[67] Hao Zhong, Lu Zhang, Tao Xie, and Hong Mei. Inferring resource specifications from
natural language API documentation. In Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering, ASE ’09, pages 307–318, Washington,
DC, USA, 2009. IEEE Computer Society.

42

http://www.kernel.org
http://www.netbsd.org
http://www.openbsd.org

	List of Tables
	List of Figures
	Introduction
	Related Work
	Extracting Semantically Related Word Pairs
	Code Search
	Analysis of Natural-Language Text for Software

	Basic rPair Extraction
	Parsing Comments and Code
	Clustering Comments and Code
	Extracting Semantically Related Word Pairs
	Refining Semantically Related Word Pairs

	Improved Version of rPair Extraction
	An Improved Similarity Measure
	The idf Weight
	The New Similarity Measure Definition

	The Ranking Function
	Studying Cross-Project rPairs

	Experimental Methods
	Experiment: rPair Extraction Accuracy and Comparison with WordNet and a Dictionary
	Experiment: Search-Related Evaluation
	Experiment: Sensitivity Evaluation
	Experiment: Ranking Evaluation
	Experiment: Cross-Project rPairs Study
	Threats to Validity and Limitations

	Evaluation Results
	rPair Extraction Results
	Search-Related Results
	Sensitivity Results
	Ranking Results
	Cross-Project rPair Results

	Conclusions
	References

