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Abstract

The performance of a program can sometimes greatly improve if it was known in ad-

vance the features of the input the program is supposed to process, the actual operating

parameters it is supposed to work with, or the specific environment it is to run on. How-

ever, this information is typically not available until too late in the program’s operation

to take advantage of it. This is especially true for simulation algorithms, which are sen-

sitive to this late-arriving information, and whose role in the solution of decision-making,

inference and valuation problems is crucial.

To overcome this limitation we need to provide the flexibility for a program to adapt

its behaviour to late-arriving information once it becomes available. In this thesis, I study

three adaptation mechanisms: run-time code generation, model-specific (quasi) Monte

Carlo sampling and dynamic computation offloading, and evaluate their benefits on Monte

Carlo algorithms. First, run-time code generation is studied in the context of Monte Carlo

algorithms for time-series filtering in the form of the Input-Adaptive Kalman filter, a dy-

namically generated state estimator for non-linear, non-Gaussian dynamic systems. The

second adaptation mechanism consists of the application of the functional-ANOVA de-

composition to generate model-specific QMC-samplers which can then be used to improve

Monte Carlo-based integration. The third adaptive mechanism treated here, dynamic

computation offloading, is applied to wireless communication management, where network

conditions are assessed via option valuation techniques to determine whether a program

should offload computations or carry them out locally in order to achieve higher run-time

(and correspondingly battery-usage) efficiency. This ability makes the program well suited

for operation in mobile environments.

At their core, all these applications carry out or make use of (quasi) Monte Carlo

simulations on dynamic Bayesian networks (DBNs). The DBN formalism and its associated

simulation-based algorithms are of great value in the solution to problems with a large

uncertainty component. This characteristic makes adaptation techniques like those studied

here likely to gain relevance in a world where computers are endowed with perception
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capabilities and are expected to deal with an ever-increasing stream of sensor and time-

series data.
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Chapter 1

Introduction

In this thesis I study adaptation mechanisms for computations based on the on-line analysis

of their input data, final specification or operating environment. This information is used

to modify the behaviour of the program so as to achieve greater performance. In this

chapter I briefly state the problem that motivates this work, the contributions of this

thesis towards solving it and give a bird’s-eye-view of the thesis organization.

1.1 Problem statement and motivation

A wide range of real-life situations can be mathematically treated as sequential problems

with uncertainty components. A very powerful mathematical and computational frame-

work to express these problems is that of dynamic Bayesian networks (DBNs). A DBN

model is useful in simulation-based algorithms that result in approximate solutions to a

variety of problems. However, these simulation algorithms are highly sensitive to input

data, the operating conditions of the implementation and domain-programmer specifica-

tion. In effect, there is a trade-off between how flexible a simulation algorithm is, and how

much computational and statistical performance it can achieve: high-performance simula-

tion implementations have change points “frozen in” the code, so they are very inflexible,
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whereas to maintain flexibility, a general simulation implementation must pay a consider-

able “interpretational tax” at run-time. More importantly, some information that can be

exploited to improve the execution behaviour of a simulation is available only after that

simulation has started executing, and is therefore too late to make changes. Examples of

this late-arriving information are the features of the input a program is to process, the

concrete operating parameters of its execution, or the specific environment it is to run on.

All of this useful information is left unused at the cost of degraded performance, due to

the means for a program to adapt or reconfigure itself to the features of this data.

Since simulation algorithms are an essential part of systems that carry out decision-

making, inference and valuation problems, any possibility to improve run-time or statistical

efficiency that is left unused is done so at the end-user’s cost in accuracy or run-time

performance.

1.2 Contributions of this work

In this thesis, I address the exploitation of late-arriving information with two adaptation

mechanisms. The first is provided almost by accident by some software components and

libraries that facilitate the programming of parallel software, and it is the ability to incre-

mentally construct, while the program is running, pieces of code that can be re-injected

into the program thus modifying its behaviour. This ability can be directed to analyze the

late-arriving information described above and generate the appropriate customized routines

that specifically target features of this information set. I explore these ideas specifically in

the context of model-based time series filtering, where a number of pre-processing stages

are done on the input data so as to configure the general-solution backend to better adapt

to its features and improve the overall statistical efficiency. I also provide a second imple-

mentation of the same idea making use of more traditional scripting languages, which are

suitable for “gluing” components, but are less often used to generate the components they

are to glue together on-the-fly.
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The second adaptation mechanism is that of dynamic computation offloading. Com-

putation offloading is a general strategy that a program can use to delegate a particular

portion of its workload to an auxiliary device, e.g., accelerating co-processors or remote

servers reachable through the network. For example, a distributed system operating on a

mobile, wireless network environment is often in a position where it could delegate some

or all of its computation to a more generously endowed, fixed server. However, to do

this in a rational way, the decision must be taken according to the specific current cir-

cumstances of the network, local and remote computer loads and other considerations.

This is therefore a complicated optimization problem. The framework of Real Options

analysis, however, provides the concepts and methods to take this decision in a principled

way, based on a dynamic system model of the environment and a (fixed) utility function.

Armed with this machinery, a program running on a resource-constrained computational

node can monitor and analyze its operating environment, and, should the analysis deter-

mine it is cost-effective to do so, delegate part of its workload onto available servers. The

methodology presented here allows for the user to specify what goals to seek, for example,

improved response time, better utilization of scarce resources (for example, battery time),

etc. This behaviour makes the program well suited for operation in mobile environments,

which are typically subject to many sources of uncertainty. Note that the Real Options

Analysis framework is a reformulation of the problem that provides a new point of view

under which to assess the offloading decision in an uncertain environment.

In summary, this thesis advances the state of the art in the following respects:

• It illustrates the value of dynamic code generation in a variety of situations and target

platforms.

• It explores a real-option-driven adaptation mechanism, which is extensible and well-

furnished to deal with complicated operating environments.

• It allows a software construction discipline that relies on the mathematical description

of the environment the software is to operate. A schematic of the kind of architecture

3



Dynamic Bayesian Networks

Decision Simulation Inference

Input analysis

Distributed execution Dynamic code generation Parallel execution

Representation

Problem/Algorithm

Improvement

Implementation

Figure 1.1: DBN-based software construction

I advocate here is presented in Figure 1.1

1.3 Thesis organization and bibliographic notes

The organization of this thesis is as follows:

Chapter 2 presents the dynamic Bayesian network formalism, both in the form of state-

space representation of a dynamic system and as a Markov-chain expression of a sequential

problem. The former is amenable for inference, specifically state-estimation in the light of

an observed trace (i.e., filtering); whereas the latter is well-suited for simulation, be it of

a natural or artificial system. Later in this thesis I make use of such a representation to

conduct valuation of a financial instrument via simulation. In this chapter, I also briefly

explore Monte Carlo algorithms for inference (time-series filtering) and simulation.

Chapter 3 introduces the “code factory” approach to adaptation and illustrates this idea

by developing the Input-Adaptive Kalman filter, a technique to perform state estimation

on a dynamic system given a trace of its behaviour. For the purposes of adaptation, a
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clustering task on the data corresponding to the first measurement is carried out to fit a

Gaussian mixture. The output of this procedure determines the number of filters a Quasi-

Monte Carlo Gaussian-sum filter is to run on the data. These filters are then assembled on

the fly and run over the rest of the data, which improves the filtering process for models

with multi-mode noise. Preliminary ideas to this work appear in [45], whereas a more

detailed exposition and peer-reviewed validation appears in [43].

In Chapter 4, a more sophisticated input analysis is carried out for the purpose of

adaptation via run-time code generation. In effect, a functional ANOVA decomposition

via quasi-regression, a sensitivity analysis technique, is performed on an end-programmer-

specified function. The output of this analysis is then used to generate a Sobol’ sequence

that is tailored to the behaviour of the user-specified function, instead of relying on compile-

time parameters chosen a priori by the builder of the sampling library, or needing to

undergo the lengthy process of compilation via a traditional tool-chain. By using the

resulting sampling scheme, the performance of simulation-based algorithms are improved.

This work is in preparation for submission.

Chapter 5 explores another form of adaptation, dynamic computation offloading in the

context of a workload that is to operate on a wireless, mobile environment. Mobile com-

puting devices have become pervasive in modern life, but they hardly ever make adaptive

use of network-reachable resources even when doing so would result in better performance

or service. In general, mobile workloads are designed to either run fully locally or to com-

pletely rely on a server, not to employ a mixed-operation model. A cost-benefit analysis

in the framework of Real Options is applied to a system that considers the option of of-

floading. Real Option Analysis provides well-understood optimization methods that are

fundamentally extensible, being able to accommodate a great number of restrictions and

utility models. The design is validated on a simulated wireless system under changing

network conditions and limited battery life. This work has been presented and published

[44].

Concluding remarks and potential research directions for future work are presented in
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Chapter 6.
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Chapter 2

Bayesian models and Monte Carlo

methods

Holding a complete and accurate mental picture of the complex interactions that comprise

any real system, be it physical, economic or social, is practically impossible. It is inevitable

to rely on models, simplified representations that try to capture the essential features

of a system, at least to the extent that is sufficient to get at the essence of a specific

question we are trying to answer. A great number of fields of activity, including business

strategy, policy making, and scientific research consist mainly of building, manipulating and

evaluating models. Mathematical models, i.e., models that are expressed in a mathematical

formalism, have proven greatly effective for their richness of expression, their convenience

of manipulation, and their ease of communication. Despite its increasing formalization

and abstraction, Mathematics continues to aid in the construction of progressively more

detailed and accurate models of reality.

Regardless of the phenomenon under study, two aspects are pervasive: that human

beings experience these phenomena unfolded in time (and therefore time and change are an

inextricable aspect that need to be considered in any model) [16], and that it is impossible

for an observer to have perfect knowledge about all but the simplest systems.
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The need to consider the temporal aspect of real-world phenomena was recognized from

the beginnings of the Modern scientific enterprise, and even the earliest mathematical mod-

els present a certain sequential structure to account for the temporal behavior of factors

intervening in a process. The notion of uncertainty, which reflects the lack of complete

information about the phenomenon under observation, took much longer to be explicitly

incorporated in the mindset of mathematical modeling practitioners1. Starting from the

post-World War II work of Wiener [165] and the independent foundational efforts of Kol-

mogorov [138], from the formalizations in the context of information theory developed by

Shannon and Bode [20], and from the feedback control applications of Kalman and others,

the notion of stochastic process not only was established, but has become pervasive in the

mathematical treatment of real-world phenomena [167].

The uncertainty in a particular mathematical model may not be solely due to lack

of information. We may also consider the treatment of uncertainty by randomness as a

notational expression of conditions that are inessential, superfluous, and extraneous to the

aspects of the phenomenon we wish to consider in our model. Furthermore, uncertainty

may be (and often is) an inextricable part of the human perception of the world: the initial

conditions of objects under observation may change imperceptibly to our instruments,

although these small changes may cause significant alterations in the final results; accurate

computation is impossible in practice; even minor disturbances in the phenomena or our

means of observation makes noise tightly linked to our measurements, regardless of the

sophistication of our instruments. In the social realm, specifically the Economic Sciences,

it has become clear in the last couple of decades that economic models capable of addressing

real policy questions must be both stochastic and dynamic. There are fundamental aspects

of the economy that static models cannot capture. Deterministic models, even chaotically

deterministic models, seem unable to explain our observations of the world [11].

Uncertainty is mathematically studied by the field of Probability Theory. In particular,

1Even though occasionally a mathematical model would incorporate hints of uncertain inputs, like

Laplace’s error function or Einstein’s analysis of Brownian motion – the latter recognized by the Nobel

Prize of Physics in 1905.
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the Bayesian school of probability emphasizes the modeling of uncertainty and random-

ness via probability distributions. Although the manner in which probability distributions

evolve in time can be described in terms of differential or difference equations, these rela-

tions are generally very difficult to solve, either analytically or numerically. Difference/d-

ifferential equations can be reinterpreted as a (possibly infinite-state) automaton whose

state represents the possible configurations of the conserved quantity over time. Moreover,

this formulation can relate this posited possible states with a mechanism by which this

state can be observed. This approach, known as state-space formulation or time-domain

method, has its origins in systems theory, and has been proven very useful in working with

models of phenomena over a wide selection of domains of knowledge.

With the means to model and incorporate uncertainty in our models, we now need

methods of analysis to pose and answer questions about them. Regardless of their ir-

regularities and exceptions, observations and experiments on real-world phenomena show

some patterns, a regularity that is termed statistical stability [107]. Our models of these

phenomena should also show this property, and analysis techniques on them search for the

underlying statistical stability. Various forms of statistical stability are formulated as a set

of rules collectively known as “laws of large numbers” [107], and it is rules like these that

underpin most methods of analysis of stochastic systems.

In this thesis we focus on probabilistic models. This type of models encode the re-

lationships among the factors relevant to the phenomenon under consideration using the

notion of conditional probability. I use Section 2.1 to describe in some detail the dynamic

Bayesian network (DBN) formalism, placing particular emphasis on its relationship with

the formalism of Dynamic Systems. Section 2.2 goes into some detail into the uses of DBNs

for modeling Stochastic Differential Equations for the purposes of simulation, as well as

Dynamical Systems for inference purposes. Then, Section 2.3 treats in detail Monte Carlo

(sampling-based) algorithms for simulation, inference and decision-making under uncer-

tainty, methods which we will make use of in later portions of this thesis. Some common

issues when using Monte Carlo algorithms for the tasks outlined above are outlined in

Section 2.4. Finally, Section 2.5 presents a variation of Monte Carlo algorithms known

9



as quasi -Monte Carlo techniques, which make use of especially constructed sequences of

numbers to drive the sampling, towards the general improvement of the performance of

Monte Carlo algorithms.

2.1 Dynamic Bayesian networks

The family of probabilistic graphical models [125] are a representation that has proven very

effective and has given rise to a very active research community. Probabilistic graphical

models combine Graph Theory and Probability, thus providing a rich framework in which

to model large-scale multivariate systems wherein uncertainty is an intrinsic feature. This

representation allows for the formulation of problems and answering of questions that are

amenable to solution by simulation. These models include Markov Random fields (MRFs)

[77], conditional random fields (CRF) [86], and hidden Markov models (HMMs) [142]. In

this work we specifically concentrate on a subset of probabilistic graphical models, variously

known as Bayesian-, belief-, or influence networks.

A Bayesian network (BN) is a directed acyclic graph G = (V,E) where each node

vi ∈ V is associated with a random variable Vi and arcs (vi, vj) ∈ E reflect the existence

of local interactions among neighbouring variables. Although the term Bayesian network

emphasizes the graphical description of the structure of interactions, the formalism is meant

to include the quantitative specification of such relationships, in the form of conditional

probability distributions2. In particular, the BN formalism emphasizes the representation

of conditional independence statements: when presented with a node vi and its parents

Pa(vi) (where parents are defined as Pa(vi) , {Vj : (vj, vi) ∈ E} ⊂ V ), vi is conditionally

independent of the rest of the variables in the graph given its parents, i.e. p(Vi | V ) =

p(Vi | Pa(vi)). In traditional notation for conditional independence (where ‘⊥’ denotes

that the left-hand side is conditionally independent of the right-hand side given the factors

2The ‘Bayes’ in ‘Bayesian networks’ is a metonym for ‘conditional probability’
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after the bar), this is expressed as:

vi ⊥ {vj ∈ V \Pa(vi)}|Pa(vi)

The conditional probability densities can be represented as conditional probability ta-

bles (CPTs) if the neighbouring variables are discrete. In case of neighbouring continuous

nodes, the respective conditional densities are most often described by functional relation-

ships modified by noise, i.e., the distribution p(v | Pa(v)) is represented by the functional

relationship v = f(Pa(v), η), where η is stochastic. As a whole, a BN encodes the joint

density p(V ) = p(v1, . . . , vk, ...),∀vi ∈ V .

The BN formalism allows a complete, clear and concise understanding of the abstrac-

tions and assumptions incorporated into a statistical model. Because BNs directly identify

which variables depend on which other variables and which variables are conditionally in-

dependent, the BN formalism allows the straightforward connection of statistical reasoning

with causal modeling, side-stepping (to some extent) the disclaimer “correlation is not cau-

sation” associated with most statistical inferencing techniques. More importantly, the use

of BNs fosters disciplined thinking: assumptions underlying equations are made explicit

and precise; feedback loops and delays are visualized and formalized; and the causality

relationships underlying a model are made explicit. As for extensibility, BNs allows the

integration of diverse sources of information.

For incorporation of temporal considerations and provisions for change, BNs have been

proven equivalent to the state-space system formulation for time series analysis. The state

space formalism is at the core of the study of dynamical systems, and as such, it forms

the paradigm for modeling and studying phenomena that undergo spatial and temporal

evolution. The state-space formalism was originally proposed by Kalman [73], who re-

stated the well-known model for time series, the vector autoregression model:

zt = Φzt−1 + wt

where zt stands for an observed value at time t. The vector autoregression model explains

one-step-ahead observations zt+1 in terms of the current observation zt, a transition matrix

11
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Figure 2.1: State space representation of a dynamical system

Φ and a stochastic term wt. In this case, if observations are zt, zt+1 ∈ Rp, Φ is a p × p
matrix, and wt is a p column vector.

Kalman’s alternative formalism posits observations zt as noisy projections of unknown

state variables xt, whose dynamics ultimately generate the observed time series {zt}kt=1 ,

z1:k. In this case, the DBN encodes the relationships between the state and observation

variables V = {z1:k,x0:k}, with a structure like the one illustrated in Figure 2.1 [33]. In

this figure, the transition kernel that maps one state to the next is represented by f , and

the projection kernel, which maps each state to its corresponding observation is denoted

by h. Both mappings f and h are stochastic. I will expand on this kind of DBN in Section

2.2.2 and make use of it in later chapters.

There are a great variety of DBNs, with increasingly baroque structures, as illustrated

in Figure 2.2. The best known DBNs models are Hidden Markov Models (HMMs) [130],

Linear Dynamic Systems (LDS) [109] and regime-switching (R-S) models [65]. HMMs and

LDSs can be considered as the simplest DBNs. In the former, the state space is discrete,

whereas the latter features a continuous state-space. Most problems admit modeling by

any of these to some degree, so a common strategy is to start with a simple model and refine

as necessary by the use of more sophisticated ones. What model to choose initially can

in principle be learned from data by non-parametric (unsupervised) Bayesian approaches

such as Gaussian or Dirichlet processes. However, the models so constructed may bear

little resemblance to a human-scale description of the generating process. For the most

part, in this thesis we use models that reflect the physical or social aspects of a system that
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Figure 2.2: The family of dynamic Bayesian networks [110]
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we are interested in exploring. These can serve as a basis from which more sophisticated

models could be derived, without loss of connection to the physical features. Two examples

of such models are shown in Figure 2.3, three time-steps (also called “time slices”) of a

dynamic model with a mixture of Gaussians output, which can stand for a multi-modal

noise description [78], and a single time-step of a multi-variate dynamic system, where part

of the dynamics are described analytically and others have to be treated by simulation [75].

Such systems with hybrid descriptions are normally called “Rao-Blackwellized” systems

[36].

xi−1 xi xi+1

mi−1 mi mi+1

zi−1 zi zi+1

(a) DBN with a Mixture of Gaussians output

xli−1 xli

xni−1 xni

zi

(b) A time slice of a hybrid (Rao-

Blackwellized system)

Figure 2.3: Two more structured Bayesian Networks

Beyond their uses in the description of the evolution of sequential systems, the for-

malism of DBNs can be augmented with the notions of decisions and utility functions,

to form the basis of decision-under-uncertainty frameworks [82]. In effect, the slightly en-
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riched DBN formalism of Dynamic Decision Networks (DDNs) [122] plays such a role, by

augmenting DBNs with the notion of decision nodes and utilities. In this thesis, I use the

slightly different concept of Real Options to use DBNs for decision making in Chapter 5.

In either static or dynamic form, the BN formalism enables the treatment of a wide

array of problems by simulation. Of most interest for this thesis is the treatment of the

simulation and filtering of DBN models. A contribution of this thesis is the improvement

of the statistical efficiency of such algorithms by adapting the sampling regimes to features

in the input model or data.

2.2 Modeling with DBNs

DBNs have applications in a great diversity of fields: Physics, Quality assurance, reliability

modeling, logistics, communication and computer networks, finance, written- and spoken-

language recognition, to name but a few. DBNs allow a richer expression than Markov

chains in the sense that they allow for hidden, or unobservable variables, and that they

are not limited to time-invariant transition kernels. In what follows, we will illustrate this

modeling flexibility in two applications: financial option pricing and time-series filtering.

In particular, we’ll devote this section to describe the mathematical modeling of these

problems within the DBN framework. The next section will be focused on the algorithms

that, taking advantage of the models, compute the solutions to these problems.

2.2.1 Solution to Stochastic Differential Equations

A stochastic differential equation (SDE) is a differential equation in which one or more of

the terms is a stochastic process, thus resulting in a solution which is itself a stochastic

process [66]. As such, SDEs describe the evolution of stochastic systems with time, and are

used to model phenomena such as stock prices or physical systems subject to stochastic

fluctuations (due to thermal conditions, small unpredictable forces, etc.). An ordinary
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Figure 2.4: DBN representation of a stock price

differential equation (ODE) can be considered as a degenerate form of an SDE where there

is no stochastic term.

The inclusion of random fluctuations in models describing physical phenomena into the

mainstream of mathematical modeling was hindered by the lack of proper mathematical

tools. The field of SDEs, as studied today, has its roots in Einstein’s description of the

effects of Brownian motion, but had to wait for Langevin and Itô for a solid foundation

and inclusion in the canon of differential and integral calculus [52]. In these works, the

description of a molecule under Brownian motion needs to include both Newtonian (deter-

ministic) considerations and a stochastic component that transcends the classical Calculus

machinery. Such a description takes the form

dXt = a(t,Xt)dt+ b(t,Xt)dWt

where Xt is the state of the system, the first term is a deterministic function (or drift)

term, which is then perturbed by a noisy diffusive term represented by the second element

in the sum. The diffusion is attributed to a Brownian motion, so it is written in terms of a

Wiener process, where dWt stands for infinitesimal changes in the Brownian motion. The

above SDE should be interpreted as describing the change in a stochastic process

Xt −X0 = a(0, X0)t+

∫ t

0

b(u,Xu)dWu
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where the term
∫ t
0
b(u,Xu)dWu is called an stochastic integral.

The definition given by Ito of this stochastic integral is expressed in terms of a limiting

Riemann sum: ∫ b

a

X(t)dWt ≡ lim
n→∞

n∑
k=1

X(tk−1)(Wtk −Wtk−1
)

Of particular importance in this thesis is the application of SDEs as a model for financial

instruments that constitute underlyings for options and other financial derivative contracts

[170]. At the heart of the option valuation problem lies a description of the evolution in

time of its underlying, usually given as an SDE. For example, the dynamics of the price of

a stock is commonly abstracted by an SDE of the form

dSt = µStdt+ σStdWt

where µ is the drift and reflects each investor’s risk profiles. The above equation is usually

coupled with the stipulation that a riskless asset grows at a continuously compounded rate

r and therefore the risk-free measure that characterizes the dynamics is:

dSt = rStdt+ σStdWt

This equation can be solved by applying the log function and using Ito’s lemma:

d logSt = (r − 1

2
σ2)dt+ σdWt

where r and σ are constant, thereby admitting the solution

logSt = logS0 + (r − 1

2
σ2)t+ σWt

which can be discretized to yield [70]

St = St−1 + (r − 1

2
σ2)∆t+ σzt

√
∆t

where zt ∼ N (0, 1). This structure can be represented as a Markov chain, which is in turn

a DBN, as depicted in Figure 2.4.
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2.2.2 State space models

As briefly stated in Section 2.1, the state-space formalism relates the dynamics of a hidden

or latent state vector xt to an observed noisy projection zt. Mathematically stated, this

model can be described by:

xk+1 = f(x0:k, z1:k, ηk) (2.1)

zk = h(x1:k, z1:k−1, νk) (2.2)

where equations (2.1) and (2.2) are known as plant- and measurement equation, respec-

tively 3. State space models [1] represent both the internal dynamics of the physical process

under consideration and the interaction of the process with the outside world. A diagram-

matic representation of the above equations and restrictions can be found in Figure 2.1.

Here we denote by x0:k a trajectory over state space that the system follows in the period

of time [0, k]. Similarly, z1:k is the trace of the observation process over time [1, k].

From the description above, it can be seen that the mappings f and h are very general

rules that transform the history of the state of the system x0:k, and its observations z1:k,

along with an stochastic component to the next state xk+1, for f and the observation

corresponding to the next step, for h. It is common to impose a Markovian structure

on the relations f and h. In the simplest (but still very useful) latent-space case, the

unobserved process dynamics is set up to be first-order Markovian, while the observation

process is zeroth-order Markovian. This structure can be expressed in terms of conditional

independence:

xk+1 ⊥ x1:k−1|xk
zk ⊥ x1:k−1, z1:k−1|xk

3In control theory, a controlling input term is usually considered as argument to function f . In this

thesis, I elide this term, as the control problem is not my first concern. It should be noted, though, that a

computer system is generally not solely concerned with assessing the state of a system, but it will be most

often in charge of reacting to it in some way, and consequently influencing it as well. Such a computer

system would require the inclusion of the controlling term for its formalization.
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or, in the more familiar notation of (stochastic) functional relationships as:

xk+1 = f(xk, ηk)

zk = h(xk, νk)

State-space systems can be classified according to the characteristics of the mappings

f and h (e.g., whether or not they are linear), the characteristics of the stochastic compo-

nents ηk and νk, or even augmented to accommodate changing dynamics and measurements

fk, hk, among other considerations. For the purposes of this work, the most relevant con-

siderations are whether the system is linear or nonlinear, and whether the randomness

involved can be considered Gaussian or not. Being able to capture the dynamics of the

system with linear relationships f and/or h greatly facilitates (and accelerates) the calcu-

lation. On the other hand more complicated and highly non-linear links may better reflect

effects like trends or seasonal components.

2.3 Monte Carlo for inference and simulation

Traditional mathematical models of realistic systems usually lead to representations that

are not mathematically tractable, so their analysis typically proceeds by simplifying or

approximating the model until it becomes tractable by “classical” (deterministic) methods

for numerical integration and/or optimization. These methods either quickly become too

complicated to implement, or do not have the necessary precision or robustness to deal

with even slightly complicated data. An alternative, more straightforward technique is to

simulate the physical or social processes, usually with the help of a computer. Monte Carlo

simulation methods for such problems originated at the Los Alamos National Laboratory

in the early years after World War II [106], for the solution of neutron scattering problems.

In light of the practical inconvenience and overhead associated with setting up of full-

scale physical experimentation, and the ever-growing available computing power, Monte

Carlo methods have established themselves, along with conventional experimentation, as
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a popular approach to conduct scientific research [166]. Simulation is a powerful approach

even when the system under study is mathematically tractable. Simulation studies typi-

cally build some representation of the system and observe its behaviour under a variety of

circumstances of interest. These representations are often software-based, (in our case, soft-

ware translations of the appropriate DBN model). To generate suitable inputs, a computer

can be programmed to samples the probability distributions associated with the dynamics

and the parameters of model. The output is statistically studied, and conclusions about

the real system can be drawn from those investigations. Because these statistical studies

often ultimately take the form of a multi-dimensional integral:

µ =

∫
[0,1)s

f(x)dx

where f : [0, 1]s → R and s ∈ Z+ denotes the dimensionality of the problem being simu-

lated, they reduce to integration problems. Note that simulation studies very often have as

a goal the evaluation of an integral of the form above. Furthermore, using the unit hyper-

cube as the integration domain does not incur in a loss of generality, as this transformation

is akin to state the problem in terms of the uniform random numbers driving the simulation

[90]. The function f , or model, can be interpreted as the mapping that transforms a set of

s numbers into an observation of the output quantity of interest, and µ is the expectation

of this quantity, i.e. µ = E[f ]. Therefore, we can use Monte Carlo integration techniques,

specifically, performing n independent runs to estimate the quantity µ:

µ̂n =
1

n

n∑
i=1

f(x(i)),x(i) ∈ Pn, Pn ⊂ [0, 1)s ≈ µ

where Pn is a sequence of iid points uniformly distributed in [0, 1]s [90].

When the mathematical model of a problem exhibits high dimensionality, many coupled

degrees of freedom, or significant uncertainty in inputs, Monte Carlo methods are usually

the technique of choice. In this chapter we describe the formulation of the problems of

simulation and inference in terms that makes them amenable to Monte Carlo integration,

the technique that will be used throughout the rest of the thesis.
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2.3.1 Simulation of Stochastic Differential Equations

The Monte Carlo method provides a simple and scalable technique for the solution of

SDEs. Note that by “solving an SDE” we usually mean characterize a functional over

the stochastic process the SDE describes by its distribution, or, most commonly by the

moments of the distribution. For example, to compute E[f(XT )] where Xt, t ∈ [0, T ]

satisfies

dXt = µ(t,Xt)dt+ σ(t,Xt)Wt

we can use the solution outlined in section 2.2.1

We can simulate a discretized version of the SDE, i.e. generate a discretized stochas-

tic process, {Xh, X2h, . . . , Xmh}, where m is the number of time steps, h is a constant

and mh = T . The smaller the value of h, the closer the discretized path will be to the

continuous-time path we are approximating. There are a number of discretization schemes

available, of which the simplest and most popular is the Euler-Maruyama (E-M) scheme

[80]. The E-M scheme is outlined in Algorithm 2.1, where we denote by X̃[i] the discretiza-

tion of process Xt at time i.

Algorithm 2.1 The Euler-Maruyama discretization scheme

Require: Horizon T , number of time steps h

Initialization t← 0, X̃[0]← X0,m← T/h

for j = 1 to n do

for k = 1 to m do

Generate z[k] ∼ N (0, 1)

Propagate X̃[k]← µ(t, X̃[k − 1])h+ σ(t, X̃[k − 1])
√
hz[k]

Tick t← t+ h

end for

end for
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2.3.2 Model-based inference on Dynamical Systems

A common problem in Dynamical Systems is to estimate the state xk given observations

up to time k, i.e. z1:k. At time k an observation is performed, resulting in the value zk.

The term zk is posited to reflect in a more-or-less precise way the state of the system at

time k, xk. The state of the system can be represented as a vector xk within a state space

X , a mathematical space whose axes are the state variables. The state is considered to be

directly unobserved and possibly even unobservable.

The collected results of the observation process form a time series, which is itself a path

or trace on the observation space Z: z1:k , {zi}ki=1 , Zk, where zi ∈ Z. The time indices

where observations of the process were taken form a natural discretization, i.e. k ∈ N is

mappable to the natural numbers. Most often, a uniform sampling rate is assumed. Since

we consider only the discrete-time case, we will use k for the index variable to emphasize

the fact that this is a non-negative integer.

Sequential inference/estimation is the solution to sequential problems. Several problems

can be identified in this context, most notably, those of filtering, smoothing and prediction

[139]. All of these are concerned with the calculation of a specific probability distribution.

The probability densities associated with each sequential estimation problem are stated in

Table 2.1.

The term “filter” is a remnant from the era of crystal radios and vacuum tubes, when

analog circuits filtered out noise from an electronic signal. Both signal and noise were

described by their power spectral densities, a characterization that was abstracted inde-

pendently by Kolmogorov and Wiener into a probability distribution in their mathematical

formalization of the problem. In its modern meaning, filtering is an operation that, given

a time series z1:k and a model, extracts from z1:k information about a quantity of interest

at time k by using data measured up to and including k. In its most basic form, a filter

estimates the instantaneous state of a dynamic system perturbed by noise using (possibly

corrupt, possibly incomplete) measurements z1:k. As such, the distribution that we are
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Problem Distribution

filtering p(x1:k|z1:k)

fixed-interval smoothing p(x1:L|z1:L), for fixed L

fixed-lag smoothing p(x1:k−L|z1:k)

fixed-point smoothing p(x1:k|z1:k+L)

predicting p(x1:k+L|z1:k)

Table 2.1: Posterior distributions of interest

.

concerned about is the so-called filtering distribution:

p(x1:k|z1:k)

The filtering task revives the ages-old distinction between phenomena (what one is able

to observe), noumena (the reality imperfectly perceived by our senses), and the state of

knowledge about the noumena that one can deduce from the phenomena. The process of

filtering can be described within the mathematical framework of Bayesian inference, specif-

ically sequential Bayesian inference. Sequential inference is carried out by (recursively)

updating some estimates about a time-evolving system as observations zk are obtained.

These estimates are typically statistics of the posterior distribution of interest, but in its

most general form, can be expressed as the computation of the full distribution via the

iterative application of the Bayes theorem. In the case of filtering, the recursive Bayesian

estimator [38] can be derived as:

p(xk|z1:k) =
p(z1:k|xk)p(xk)

p(z1:k)

=
p(zk, z1:k−1|xk)p(xk)

p(zk, z1:k−1)
(2.3)

=
p(zk|xk, z1:k−1)p(z1:k−1|xk)p(xk)

p(zk, z1:k−1)p(z1:k−1)
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The Bayesian formulation of p(z1:k−1|xk)

p(z1:k−1|xk) =
p(xk|z1:k−1)p(z1:k−1)

p(xk)

can be substituted in (2.3) to result in:

p(xk|z1:k) =
p(zk|xk, z1:k−1)p(xk|z1:k−1)

p(zk|z1:k−1)
(2.4)

The term p(xk|z1:k−1) can be obtained by marginalization of a transition relationship

(an application of the total probability law):

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (2.5)

which introduces the recursive term p(xk−1|z1:k−1). Expressions (2.4) and (2.5) postulate

the posterior filtering density as the product of the likelihood and the prior (projected)

estimate, modulated by a normalization factor sometimes referred as evidence term.

An algorithm that has proven to be greatly effective for carrying out the task of state

estimation is variously known as “particle filter” or “Sequential Monte Carlo” [32]. Par-

ticle filters are sample-based approximate inference algorithms that encode a Bayesian

approach to state estimation or “tracking”, and owe in great part their popularity to their

ability to handle nonlinear dynamics and observation functions, as well as transitional and

observation distributions that may greatly differ from the Gaussian distribution.

While particle filters can deal with non-linear, non-Gaussian filtering tasks in principle,

their performance often varies significantly due to their stochastic nature. Because of this,

vast number of variations to the basic algorithm have been proposed (recently surveyed in

[37]). The statistical efficiency of the particle filter algorithm, i.e., to obtain similar-quality

solutions using a fraction of the samples, an objective that can be achieved by applying

randomized quasi-Monte Carlo (QMC) sampling techniques.
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2.4 Issues concerning Monte Carlo algorithms

As for most numerical methods, it is important to assess the convergence rates of Monte

Carlo methods, both computationally and statistically. This section discusses these issues.

2.4.1 Algorithmic complexity and estimator quality

The complexity of Monte Carlo algorithms is linear in the number of samples. If the

model f is made more complicated, i.e., more difficult to compute, this clearly affects the

running time of the algorithm, but not its asymptotic behaviour. The number of runs

of the algorithm, i.e., the sample size depends on the required accuracy of the output

distribution.

A major concern of any simulation-driven estimation task is to determine how efficiently

an estimator of a given quality can be computed. This assessment is computed for Monte

Carlo methods via the Law of Large Numbers (LLN) and the Central Limit Theorem

(CLT) [40]. To obtain a Monte Carlo estimator µ̂n of the model f : [0, 1)s → R:

µ̂n =
1

n

n∑
i=1

f(x(i)) ≈ E[f(x)] = µ (2.6)

the standard Monte Carlo algorithm proceeds as follows:

1. Generate {x(i)}ni=1 as iid uniform numbers over [0, 1s]

2. Estimate E[f(x)] by µ̂n

The LLN states that, as long as the expectation E[f(x)] exists and f behaves in a

way that complies with minimal conditions (e.g., that f is integrable), the Monte Carlo

estimator µ̂n converges to the desired expectation as n increases, i.e.,

lim
n→∞

µ̂n = E[f(x)]
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in other words, the Monte Carlo estimator is consistent [69].

Whereas the LLN guarantees the convergence of a Monte Carlo estimator to the correct

answer (as the sample size n becomes infinitely large), the CLT provides the means to

determine how that estimator is distributed for large but finite sample sizes n. The CLT

states, in a nutshell, that the sum of a large number of random variables is normally

distributed, regardless the distribution of each individual summand. This result can be

used to establish that the asymptotic distribution of µ̂n is a Gaussian, information that

can be used to state that √
n

σ
(µ̂n − µ)⇒ N (0, 1)

as n→∞, from where it can be seen that the estimated expected approximation error is

proportional to 1/
√
n.

2.4.2 Variance reduction

It is clear that reducing the variance of the estimator µ̂n would automatically translate

into better estimates. Given two estimators W and Y where E[W ] = E[Y ] = µ, so that,

to estimate µ the researcher is free to choose whether to use W or Y for simulation, it is

clearly beneficial to choose the simulation for which the estimator has less variance. In

fact, a central goal and common theme of research in Monte Carlo methods is design of

estimators of decreasing variance. There are several general patterns for the reduction of

the variance of an estimator, and techniques that make use of those patterns [156]:

Analytically integrate a function that is similar to the model f . Following the gen-

eral principle that, if at any point during an estimation procedure, it is possible to

replace an estimation with an exact value, it is useful to do so, this technique substi-

tutes the original model f with a similar one that may be better suited for analytic

integration, or whose expected value is known. Techniques that follow this idea in-

clude conditional Monte Carlo, importance sampling and the use of control variates.

In particular, the importance sampling method consists in proposing a change of
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probability measure, under which the original system is then simulated, and the bias

introduced by the different measure is systematically corrected. Importance sampling

is a very useful and popular approach. Since we make limited use of it in this thesis,

the interested reader is referred to [133] for a mathematically rigorous treatment of

the subject.

Uniformly placing sample points across the integration domain. The use of sam-

ple regimes that more uniformly sample the integration domain can result in reduced

estimator variance. This is the idea used by the technique of quasi-Monte Carlo

sequences, which is central to the work in this thesis.

Adaptive sampling. Adaptive sampling consists of adaptively controlling the sample

density based on information gathered during sampling. Techniques that exploit this

idea include adaptive sampling and “Russian roulette” methods.

Combine samples of two or more estimators whose values are correlated. This tech-

nique is very popular because of its simplicity. Its use is commonly illustrated by the

method of antithetic variates.

2.5 Quasi Monte Carlo methods

Random point sets generated by Monte Carlo sampling often show clusters of points and

tend to take wasteful samples because of gaps in the sample space [90]. This observation

led to proposing error-reduction methods by means of deterministic point sets, such as

low-discrepancy sequences [90]. Low-discrepancy sequences try to utilize more uniformly-

distributed points. Application of low-discrepancy point sets instead of the pure random

sampling of vanilla Monte Carlo in the context of multivariate integration is usually referred

to as quasi-Monte Carlo (QMC) approaches. QMC methods have been successfully applied

to Computer Graphics [74], Computational Physics [88] and Financial Engineering [124],

among other fields.
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Section 2.5.1 discusses several theoretical aspects of deterministic QMC sequences,

which we will then proceed to explore in more detail by looking at individual construction

methods in section 2.5.2. The important issue of randomization of these constructions is

treated in section 2.5.3.

2.5.1 Discrepancy and low-discrepancy sequences

A low-discrepancy point set is one whose sample points are distributed so as to mimic

as closely as possible the uniform distribution. It is clear, therefore, that any attempt to

construct low-discrepancy point sets requires a way to measure their uniformity. Several

such metrics exist, for example the spectral test used to assess the equidistribution in

some random-number generators (and of which I will talk in more detail in chapter 4).

An alternative approach, which is not specific to any particular construction is to measure

the distance between the empirical distribution induced by the point set and the uniform

distribution, via the Kolmogorov-Smirnov (K-S) statistic [46]:

Dn(Pn) = sup
x∈[0,1)

|F (x)− F̂n(x)|

where F̂n(x) is the empirical cumulative distribution function induced by point set Pn:

F̂n(x) =
1

n

∑
x(i)∈Pn

1x(i)≤x

this is, the proportion of x(i) ∈ Pn that are smaller or equal to x. The quantity F (x) is the

cumulative distribution function of U(0, 1), the uniform distribution function over [0, 1),

i.e. F (x) = x.

The K-S statistic measures the non-uniformity of a sequence of points placed in a unary

interval [0, 1]. The K-S statistic notion can be extended to the multi-variate case, where it

is known as the star-discrepancy of point set Pn, D?
n(Pn) [42]:

D?
n(x(1), . . . ,x(n)) = sup

E(v)

|
s∏
j=1

vj −
1

n

n∑
i=1

1x(i)∈E(v)|,
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this is, for every hyperbox E(v) ⊂ [0, 1)s with a corner at the origin and other corners

defined by v = (v1, . . . , vs), i.e., a region of the form [0, v1)× [0, v2) . . .× [0, vs), we count

the number of points x in Pn that fall inside E(v), divide by n and take the absolute

difference between this quotient and the volume of E(v). The maximum difference is the

star discrepancy D?
n. The “star” qualifier emphasizes the peculiarity that the hyperboxes

E(v) are all anchored at the origin.

The lower the star discrepancy, the more uniformly the point set is distributed. A

sequence x(1),x(2), . . . ,x(n) of points in [0, 1)s is a low-discrepancy sequence if, for any

n > 1

D?
n(x(1), . . . ,x(n)) < c(s)

(log n)s

n

where c(s) is a constant specific to the problem dimension s.

In the context of Monte Carlo-based integration, the integration accuracy relates to

star discrepancy via the Koksma-Hlawka inequality [81]:

|µ− µ̂n| ≤ V (f)D?
n(x(1), . . .x(n))

where µ and µ̂n are as in 2.6 and V (f) < ∞ is the variation of f in the sense of Hardy

and Krause [90]. With an increase in n QMC methods may offer better convergence rates

than straight-up Monte Carlo.

Theoretical analyses as well as empirical studies [123] suggest that the error |µ − µ̂n|
can be significantly lower for QMC methods than under pseudo random sampling. The

error bounds above, O((log n)s/n), are, for fixed dimension s, better asymptotic rates

than Monte Carlo’s O(1/
√
n). Hence, we can expect that QMC methods can approximate

the integral with a smaller error than traditional Monte Carlo if the point set size n is

sufficiently large.

Having determined the theoretical superiority of QMC methods over Monte Carlo’s

sampling strategy, let us proceed to the description of how to construct suitable low-

discrepancy point sets Pn.
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2.5.2 Constructions

Low-discrepancy point sets are constructed based on the notion of sampling a sub-volume

of the volume of interest with the same uniformity as they do the whole volume itself.

Informally, low-discrepancy point sets can be thought of as a stream of self-avoiding points,

where the next point in the sequence is as far away from the earlier members of the sequence

as possible. Note that the term low-discrepancy refers to points sets Pn designed to be more

uniform than a random point set for some measure of uniformity, which does not need to

be the star-discrepancy. Due to their deterministic nature, it seems intuitive that QMC

point sets should be constructed in such a way so as to exhibit the best-possible spread in

the sample space, avoiding the gaps and clusters that arise from (pseudo) random sampling.

There are two main families of low-discrepancy point sets are the digital nets and the lattice

points [90].

Lattice rules

The idea behind lattice rules comes from the observation that quadrature-based point sets,

when projected onto an axis, frequently result in point sets with much fewer points that

the original point set. This is because several points on the higher dimension map to the

same point on the projection. When the quadrature point set is intended to serve as the

driver for numerical integration, this feature of the low-dimensional projections results in

increased integration errors. In an effort to side-step this difficulty, low-discrepancy point

sets Pn are constructed so that their lower-dimensional projections do not degenerate, i.e.,

still have n points. In fact, it is greatly desired that lower-dimensional projections of a

low-discrepancy point set are low discrepancy point sets themselves.

If the quadrature rule is constructed via a generator of the form

s∑
i=1

zivi, |vi| ≤ 1, zi ∈ Z

where the vectors vi are parallel to the axes, it will suffer from poor lower-dimensional
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projections. If instead we construct Pn by taking all the multiples zv mod 1 for z = 0, . . . , n,

where the modulo 1 operation 4 is applied component-wise and the vector v is carefully-

chosen and not parallel to any axis, we can assure that the low dimensional projections of

Pn will have n points. This is the idea behind lattice rules, which in general have the form

Pn = L ∩ [0, 1)s, with an integration lattice L defined by:

L =
{
x =

s∑
j=1

zjvj : z = (z1, z2, . . . , zs) ∈ Zs
}

where the linearly-independent vectors v1, . . . ,vs ∈ Rs are the basis of L, i.e., a lattice is

obtained by taking all integer linear combinations of the vectors in its basis. We assume

that L contains Zs [89]. A lattice point set Pn has a rank, defined as the smallest integer

r such that Pn can be obtained by taking all integer combinations, modulo 1 of r vectors

v1, . . .vr, independent over Rs.

A commonly-used example family of a lattice rules is that of Korobov point sets [83].

Korobov point sets were introduced in the 1960s, and consist of an instantiation of a lattice

rule with basis of the form v1 = (1, a, a2, . . . , as−1)/n mod 1, and vj = êj for j = 2, . . . , s,

where êj is the s-vector of zeros in all components except the jth, which is 1. It can

therefore be seen that Korobov rules have rank 1.

In practice, most lattice rules are based on lattices of rank 1, where the lattice point

set can be written as

Pn =
{ i
n

(z1, . . . , zs) mod 1 | i ∈ [0, n)
}

and (z1, . . . , zs) ∈ Zs is the generator vector, with the parameters z1, . . . , zs to be decided

by the user. Rank-1 lattice rules have a number of advantages, for example, they are fully

projection regular, i.e., each projection Pn(I) contains n distinct points, while lattices of

higher rank do not, in general, feature point sets with this desirable property. Here, we

denote by Pn(I) the projection of the point set Pn over the dimensions specified by the

positive-integer set I,

4The mod 1 operation consists of keeping only the part after the decimal point of a number.
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A widely-used class of lattice rules, Korobov rules, mentioned above, are rank-1 rules.

For Korobov rules, the generator vector (z1, . . . , zs) = (1, a, a2, . . . as−1)/n mod 1, where

a is a positive integer. This means that only one parameter, the generator a, an integer

between 1 and n− 1, of Pn, needs to be specified. The parameter a is chosen to minimize

a discrepancy measure. Tables of good generators a for various values of n are available

[85].

Digital nets

The foundation of digital nets is based on a different rationale than lattice rules. For digital

nets we define the point set Pn = {ui}ni=1 by looking at the expansion of the index i in

a given base b ≥ 2. More precisely, for a non-negative integer i, we first write the base

b-expansion of i:

i =
∞∑
l=0

al(i)b
l

where al(i) denotes the l-th digit in the base b-expansion of i, and infinitely many coeffi-

cients al(i) are zero. Then, we use the radical inverse function in base b, φb(i):

φb(i) =
∞∑
l=0

al(i)b
−l−1

where, by definition φb(i) ∈ [0, 1). The simplest construction, the van der Corput sequence

[], is defined in terms of the radical inverse function:

P vdC
n = {φb(i− 1)}ni=1

The van der Corput sequence dates back to 1935, and serves as a basic building block for

other digital net constructions. At an intuitive level, the points in the van der Corput

sequence are placed in an order that in some sense attempts to never leave wide intervals

in [0, 1) containing no points.
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Most low-discrepancy sequences consist of more sophisticated uses of the van der Corput

sequence. The Halton s-dimensional sequence [63], for example is defined as:

PHalton
n = {ui}ni=1where ui = (φp1(i), . . . φps(i))

where p1, p2, . . . ps are the first s prime numbers. The star discrepancy corresponding to

the Halton sequence is D?
n(PHalton

n ) = O( 1
n
(log n)s).

Other examples of digital nets include the Hammersley [90], Faure [47], Sobol’ [22] and

Niederreiter [90] sequences. These sequences are based in an alternative interpretation of

the construction of the van der Corput sequence [101] in terms of direction numbers. I will

go into much deeper detail in the case of the Sobol’ sequence in Chapter 4. Several low-

discrepancy sequences following this pattern were proposed in the literature early on, (e.g.

the constructions by Halton, Sobol’ and Faure), and were later generalized by Niederreiter,

into a general framework, the so-called (t, d)-sequences [34].

2.5.3 Randomizations

The vanilla Monte Carlo method provides probabilistic assurances on the estimation er-

ror, as well as on the bias characteristics of estimators (typically unbiased estimators are

preferred). One of the main practical concerns to the use of deterministic QMC sequences

in a simulation context is that those guarantees and the techniques that were used to

derive them are not applicable. However, these seemingly insurmountable objections can

be avoided if, instead of using purely-deterministic QMC sequences, one uses randomized

QMC sequences (RQMC). The idea is to randomized a highly-uniform point set Pn so that

each of its points follows the uniform distribution over [0, 1)s, while preserving the high

uniformity of Pn. Many randomization techniques that achieve this have been proposed

and used in practice.

A general formulation for the randomization of low-discrepancy sequences is presented

below. Given the low-discrepancy point set Pn = {ui}ni=1,ui ∈ [0, 1)s and a uniform random
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vector v ∈ Ω, we are interested in finding a randomization function r : Ω× [0, 1)s → [0, 1)s

such that we can construct the randomized low-discrepancy point set P̃n = {ũi}ni=1, ũi =

r(v,ui). The function r should provide the following two properties:

• Every element of the sequence P̃n has a uniform distribution over the unit cube and

• the low-discrepancy properties of the sequence Pn are preserved by the randomized

sequence P̃n

Several randomization techniques exist, of which, the most popular are:

Shift modulo 1 aka Cranley-Patterson method [30]. Sets Ω ≡ [0, 1)s and r(v,u) =

(v,u) mod 1.

Digital shift [90] is the counterpart of the above method for digital nets base b: r(v,u) =

v ⊕b u, again with Ω ≡ [0, 1)s. ⊕b is the coordinate-wise addition of the base b

expansions of vj and uj.

Scrambling is actually a family of randomization techniques. One of the first, and a

representative member of this family is the nested uniform scrambling [121], which

applies uniform random permutations to the digits of each coordinate ui,j in its base

b expansion.

Note that all of these techniques apply to any low-discrepancy construction, but not

to the same level of effectiveness. For example, digital shift and scrambling are better

suited for (t,m, s)-net constructions than other methods. In the remainder of this thesis,

we make extensive use of randomized QMC sequences for a variety of simulation and

inference problems.
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Chapter 3

Adaptation via Code Generation and

its Application to Filtering

In this chapter I propose an adaptive mechanism for domain-specific specialization of a

class of programs dealing with time-series data. This proposal allows a general algorithmic

solution to be customized to the specific input the implementation is to work on. The

mechanism proposed here relies on run-time code generation, since, by generating code on-

the-fly, the customization strategy becomes more flexible than if it, for example, relied on

“canned” alternative strategies already present in the system. Furthermore, a synthesized

algorithm may result in an implementation that, since it is tailored to the input, avoids

costly and repetitive run-time choices. To illustrate the proposed mechanism, I present a

program that implements a non-linear time series filter. For this task, a representation of

a program as a Abstract Syntax Tree (AST) is manipulated to incorporate known filtering

algorithmic building blocks. The output of this manipulation is a filter that is adapted

to the specific input. Furthermore, the generated filter can be re-used for input of similar

characteristics. I find that generated filters exhibit improved statistical performance when

compared to fixed-filter solutions. Moreover, upon changes in the computing environment,

run-time code generation enables the creation of filters with better running times than
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their similarly-adaptive, but “fixed code” (no intervening code generation) counterparts.

3.1 Motivations and Central Idea

The task of programming is to a large extent a balancing act of two concerns constantly

at odds with each other: on one hand, a program needs to model a problem to the point

that this problem is amenable to algorithmic treatment, whereas on the other hand this

algorithmic solution is to make best use of available computer resources. The achievement

of the latter goal is often facilitated by information obtained at the modeling level. The

incorporation of this information into the construction of the end program to improve its

execution by some measure is known as domain-specific program optimization [95].

Domain-specific program optimization is most often carried out by the use of domain-

specific libraries, which are often tightly-coupled to a specific computing platform1. This

approach allows for the efficient execution of an application at the building-block level, but

does not make use of the context in which these building blocks are used. This is explained

by the fact that context information comes late in the process of program execution. In

this chapter, I explore run-time code generation as an alternative technique that can make

use of this late-coming information to drive the construction of a program that is better

adapted to the underlying platform as well as to the input. To illustrate the adaptation

technique in detail, I apply it to the task of state estimation in time series, otherwise known

as the filtering problem.

In the field of non-linear filtering, most algorithms follow the same pattern: a prediction

step is followed by a correction step, a process that continues until the input is consumed

completely. Despite this commonalities, a great number of variations exist to deal with

different features of the input. Different approximations are used to account for non-

linearities in the model, for example, or for different characteristics of the probability

1Examples of such libraries for the field of Computer Vision is OpenCV [8], for the field of Quantitative

Finance is Quantlib [150] and for the field of Signal-Processing and Data Analysis is IPP [29].
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Figure 3.1: Alternative-based adaptation in domain-specific libraries.

distribution of the noise. Likewise, different evaluation strategies may be employed on the

system representation. These differences create multiple points of variation in the basic

predictor-corrector algorithm, each of which is suited to a greater or lesser extent to a

particular input. Most software libraries that cater to the task of non-linear filtering offer

some of the available variations of the algorithm, and leave to the end-user the decision of

which to use in a given situation. This decision is usually taken with limited information,

as the actual features of the system are not usually available until right before the filtering

task starts, i.e., at run-time. In an effort to attain some flexibility, an implementation may

provide implementations of variants of a basic algorithm, more-or-less suited to a particular

kind of input. Which specific variant to use at any given time can be left for the end-user

to choose via configuration switches, environment variables or even run-time adaptation

modules. A graphical depiction of this software architecture is shown in Figure 3.1. In this

design, adaptation decisions must be taken repeatedly with every new input. If, as it is

often the case, the characteristics of the input are similar for the same batch, this process

is unnecessary, as it results in the same choice for all inputs in the batch.

To overcome the shortcomings mentioned above, I present in this chapter an alterna-

tive design in the form of a meta-program, that analyzes the input to be processed, and

assembles a filter appropriate to that particular input from a collection of building blocks.

This strategy is depicted graphically in Figure 3.2, where the block labeled “Factory” ma-
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Figure 3.2: The “code factory” approach to adaptation in domain-specific libraries.

nipulates variant algorithms Ai,α and generates the adapted filter. In the design proposed

in this chapter, the role of the factory is played by a code generator subsystem. The α

configuration directive denotes whatever parameters the variant requires for a concrete in-

stantiation. The actual value of these parameters are obtained from the “Adapter” block.

This stands in contrast with Figure 3.1, where each variant is fully instantiated, and the

adapter module only determines which variant to use. By using such an approach, the end-

user programmer is relieved of the burden to decide which specific variation of non-linear

filter to use, and the choice more closely matches the filtering task, with the associated

gains in statistical performance. This meta-filter makes use of run-time code generation

facilities becoming available in mainstream programming languages and tool chains [31].

The remainder of this chapter is organized as follows: The technique and necessary

support for dynamic code generation is briefly presented in Section 3.2. The filtering

problem, on which the proposed technique is later applied, is introduced in Section 3.3,

where both the basic Kalman filter (KF) algorithm and its variants designed to handle

non-linear dynamics in the presence of non-Gaussian noise are explained. Then, in Section

3.4, we illustrate our proposed system, the “Input-Adaptive” Kalman filter (IAKF), going

into some detail in its operation as well as two possible implementations, both of which

make use of the dynamic code generation facilities, one from a very-high-level language

(Python) and the other from a recent parallelizing framework in C++, Intel’s ArBB. In

Section 3.5, we proceed to evaluate the performance of the IAKF against traditional filters
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both in terms of statistical performance (i.e., estimation error) and running time, carrying

out a number of experiments. I concisely explore other approaches that use code generation

for the creation of filtering (specifically Kalman filtering) solutions in Section 3.6, followed

by concluding remarks in Section 3.7.

3.2 Code Generation for Domain-Specific Adaptation

Dynamic code generation is an umbrella term for any kind of modification to the instruc-

tion stream of a program once that program has started its execution. Moreover, this

modification is often initiated and driven by the program in question. This technique is

one of the ideas in Computer Science that, almost as old as digital computers themselves

[19], comes in and out of fashion and has to be rediscovered continuously. Correspondingly,

it emerges in a multitude of forms and driven by a variety of requirements. In particu-

lar, as the level of abstractions of programming languages has risen, direct dynamic code

generation has been discouraged, insofar as end-user programmers are concerned [126].

In this section, we first present this “traditional” form of code generation, and a variant

that allows more end-user control in subsection 3.2.1. Then, in subsection 3.2.2, we move

on to describe what run-time facilities a programming environment must offer to enable

any kind of run-time code generation. This delineates the applicability of our technique,

as any environment that lacks the functionality described in this part is probably a poor

implementation choice for the methods we here propose. In subsection 3.2.3 we describe

the “user interface” of a run-time code generation and manipulation system. Although

strictly unnecessary as our technique may be used with the infrastructure of subsection

3.2.2 via the facilities described in subsection 3.2.1, the API described in this section allows

much more readable and maintainable code, and is thus the level that we implement our

application.
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3.2.1 Traditional Run-time Code Generation

For programmers of systems software, dynamic code generation, (or similar techniques,

usually going by names like automatic program specialization, binary translation, monkey

patching, etc.) represents a legitimate approach to efficiently implement programs, often

starting from generic components. Used in this way, dynamic code generation bridges the

gap between the often-opposing objectives of generality and efficiency. Even though the

driving motivation of resorting to run-time code generation is efficiency improvement, this

technique has also been used to address other concerns, like energy-usage awareness [153],

safe binary information exchange in distributed systems [9] or user input validation [162].

When the main pursuit is performance improvement, dynamic code generation often ap-

pears in the form of just-in-time (JIT) compilation [15], where the translation or execution

of portions of a program is delayed until enough information to adequately carry out the

translation is deemed collected. JIT compilation can significantly reduce the performance

impact of high-level abstraction constructs and modularity, as well as improve portabil-

ity. Through JIT, some of the following code characteristics can be achieved, resulting in

improved performance:

• Elimination of cost for late binding of functions

• Freezing of control flow once parameters are known

• Freezing the size of dynamically-sized data structures

In higher-level languages, dynamic code generation JIT facilities allows for code that

exhibits both flexibility and acceptable performance. Flexible, portable, readable software,

in particular scientific computing software, is often built from abstract components which

have been independently verified and optimized. Unfortunately, there are performance

costs associated with such modularity: components are deployed outside the context in

which they have been optimized, or even within that context, but in combination with

other, similarly optimized, components that may have conflicting requirements. In this
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situation, JIT can help, as contextual information (for example, the circumstances of the

function call) is available for better-targeted translation to take place [135]. JIT subsystems

have become essential for carrying out cross-component optimization [17]. As such, most

managed programming environments (Java, scripting languages, Matlab) incorporate a JIT

compiler in their runtime. In this incarnation, the dynamic-code generation subsystem is

most often offered as part of the run-time system and kept “under the hood”, away from the

end-user. In contrast, for this investigation, I make use of an alternative design, where the

end-user or library programmer can explicitly manipulate the code that is to be generated

at run-time. The latter approach allows the end-user to take control of the code generation

module and direct code synthesis that may be too domain-specific to be included in the

hidden JIT subsystem.

The circumstances in which this alternative form of run-time code generation most

often appears in mainstream programming practice is when two vastly different program-

ming models need to coexist in a single application. Here, one language acts as a host,

and provides the facilities for execution of the whole application. Embedded in this host

environment, fragments of source code of the second programming language (the guest)

are encoded in the host’s native string representation, and suitably annotated. This form

of code generation, closer to the end-programmer than a hidden run-time JIT system, has

been used for domain-specific libraries to offer specializations of programs that are only

possible at a time after the library has been deployed. The guest representation in this case

takes the form of data structures specific to the problem domain, e.g., regular expressions

[151], plans for Fast Fourier Transforms [53, 54], and sparse [115, 159] and dense [163]

matrices for linear algebra routines. In those investigations, a domain-level representation

D, specified by the end-programmer, undergoes a process of (offline) code generation, to

finally produce code in a host language that is optimized for the case where the input to

the program matches D. By specializing to D, the program can take advantage not only

of the characteristics of the description D, but of its interaction with the underlying com-

puting environment. The generated code is then linked with programs written in the host

language by a traditional tool chain, thereby constituting an off-line, two-stage process. In
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this thesis, domain representations are used, but the code generation stage is done on-line.

The host/guest hybrid program source is very commonly seen in database program-

ming, and is quickly becoming prevalent in the realm of 3D graphics programming, where

a general-purpose language hosts shader program fragments. At suitable times during

the applications lifetime, these shaders will be translated and downloaded onto graph-

ics processing units (GPUs) for execution. Below we present an example of this sort of

application.

program = compile program ("

varying vec3 pos;

void main() {

pos = gl_Vertex.xyz;

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

}

" , "

varying vec3 pos;

void main() {

gl_FragColor.rgb = pos.xyz;

}

" )

# . . .

glUseProgram ( program )

def compile program ( ve r t ex t ex t , f ragment text ) :

program = glCreateProgram ( )

vshader = compi l e shader ( ve r t ex t ex t , GL VERTEX SHADER)

f shade r = compi l e shader ( shader text , GL FRAGMENT SHADER)

glAttachShader ( program , vshader )

glAttachShader ( program , f shade r )

glLinkProgram ( program )

return program

def compi l e shader ( shader text , shader type ) :

shader = glCreateShader ( shader type )
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glShaderSource ( shader , 1 , shade r t ex t )

glCompileShader ( shader )

return shader

In the code above, Python provides the host programming environment and the guest is a

graphics driver’s implementation of OpenGL. Also shown is the host language application

programming interface (API) for the end-programmer to direct when the guest’s source

code is to be prepared, compiled and executed, as well as the means of communication with

the host program. Other examples of popular APIs for this kind of specification in the

realm of high-performance computing graphics programming are Nvidia’s Compute Unified

Device Architecture (CUDA) language [117] and the Khronos group standard OpenCL [76].

3.2.2 Run-time Code Generation Infrastructure

Regardless of the form of the guest source code fragments, for a host programming environ-

ment to support run-time code generation it must provide, at the very least, the following

features:

a dynamic loader, which loads objects into the address space of an application, along

with any dependencies the plugin may have. It can make use of system’s facilities

like dlopen.

a compilation manager, which determines when a particular code fragment needs to

be compiled into a form suitable for loading, and, if it has been compiled already,

whether to cache that code or recompile.

an evaluator mechanism, which constitutes the end-programmer interface to the loader

and compilation manager. It bridges the data-to-code gap by constructing or identi-

fying a data structure as to be suitable for interpretation within the running program.
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This may be done in text form, by using a string as program representation (for exam-

ple, in hosted SQL queries in database interaction or GLSL shader code for computer

graphics applications).

Embedding guest program fragments as string values in the host, despite its immediacy

and simplicity, is not ideal, as the contents of a string are effectively out of the control

of the host programming language environment. In effect, if the fragment is malformed,

the host language is oblivious to it. Moreover, errors are reported in unhelpful ways, and

debugging communication points between host and guest is complex. Clearly, a more

controlled interface for guest specification is needed.

3.2.3 Domain-specific User-level Guest Code Manipulation

Obviously, the syntax idiosyncrasies of the guest are a determining factor in the actual

complexity of the embedding task. Lisp is highly favoured for code generation tasks because

its simple, regular syntax blurs the difference between code and data structures2. With

such a feature, an embedded guest language takes the form of regular host language data

structures, and statements in it can be both stated and manipulated uniformly. The code

generation/injection subsystem is invoked by the use of a special function, (usually called

eval) on the guest program representation. eval is also used when the guest is represented

as host’s string literals:

f u n c t i o n s o u r c e = "f(3) + 40"

# . . .

x = eva l ( f u n c t i o n s o u r c e )

As it can be seen from the example, the variable function source holds (as text) a source

code fragment, which is later executed via eval. The function eval was included from

2In fact, Lisp is the prototypical homoiconic language, where code and data are syntactically indistin-

guishable.
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very early versions of Lisp, and it has made its way to more mainstream programming

languages, mostly due to its success in scripting (e.g. Python, Ruby, R and Matlab) and

managed-runtime languages (like Java).

Not all guest languages enjoy Lisp’s seamless integration with the host, and, as men-

tioned above, incrementally building strings encoding correct and complete programs is

difficult enough. Furthermore, having to deal with dependencies, variables and other book-

keeping that allows communication between host and created subprograms constitutes a

cost that tends to out-weight the possible benefits of multi-stage programming. A solution

that is both more general and safer is to restrict the guest language to a “safe” subset of

the language, or to a completely different language whose safety is known. “Safe” subsets,

or specialized languages are known as domain-specific languages (DSL). This approach

would typically imply the development of a full language processing infrastructure for the

DSL source, translating it to the general-purpose language of the host; this results in two

program fragments in the same language that are linked together by the usual means. The

best-known example of this form of DSL is the pair lex/yacc for lexer/parser generation,

which generates code from the DSL specification at compile time. The results of this code

generation step and the specification of the host program can then be linked together in

using the full general-purpose programming language tool chain, therefore enabling the

host to execute the functionality of the DSL specification via the means provided by the

host language. This process is illustrated in Figure 3.3

The idea of making use of a full programming language infrastructure to support the

creation and execution of guest programs is sometimes known as language embedding [27].

With the inclusion of facilities like operator overloading and generic types, string repre-

sentations are not the only possible way to embed a guest language into a host. Now,

languages like C++, Ruby, Python or Java include the necessary flexibility to allow the

construction of combinator libraries [71], as well as of active libraries [157]. Operator

overloading and templates (generic types) allows the use of constructs that differ in se-

mantics from those provided by the host language, and that can be viewed as a way to

embed another language. Generic types allow the expression of the rules of assembling
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Figure 3.3: Two-stage DSL processing

a code fragment, whereas operator overloading provides a natural way to compose frag-

ments through a non-intrusive notation. All these features can be used to “wrap” the

guest language into a host language API, thus blurring the difference between building a

guest language fragment and incrementally assembling any other kind of data structure.

The following is an example of the use of one such API, constructed in Python around the

Low-level Virtual Machine instruction set [149]. The use of the LLVM is relevant to what

follows since it can be considered as a more general version of the virtual machine the Intel

ArBB library makes use of.

my mod = b u i l d f u n c t i o n ( )

ee = ExecutionEngine . new(my mod)

# feed the input arguments to ’sum ’

t y i n t = Type . i n t ( )

arg1 = GenericValue . i n t ( ty in t , 100)

arg2 = GenericValue . i n t ( ty in t , 42)

# compi le and run

f sum = my mod . get funct ion named ("sum" )

46



r e t v a l = ee . run func t i on ( f sum , [ arg1 , arg2 ] )

def b u i l d f u n c t i o n ( ) :

my module = Module . new(’my_module’ )

# a l l the t ype s i n vo l v ed here are ’ i n t ’ , which i s r epre sen t ed by

# an ins tance o f l l vm . core . IntegerType .

# To create , use the l l vm . core . Type f a c t o r y c l a s s

t y i n t = Type . i n t ( ) # by d e f a u l t 32 b i t s

# Construct f unc t i on s i gna tu r e

# The c l a s s o f f unc t i on s t ha t accep t two i n t e g e r s and re turn an i n t e g e r

i s

# repre sen t ed by an ins tance o f l l vm . core . FunctionType

# return type , l i s t o f input args

ty func = Type . func t i on ( ty in t , [ t y i n t , t y i n t ] )

# Now we need a func t i on named ’sum ’ o f t h i s type . in l lvm−py ,
# func t i on s are not f ree−s tanding , but need to be conta ined in a module .

f sum = my module . add funct ion ( ty func , "sum" )

f sum . args [ 0 ] . name = "a"

f sum . args [ 1 ] . name = "b"

# We need a / ba s i c b l o c k / f o r func t i on sum . A ba s i c b l o c k i s a s e t

# of i n s t r u c t i o n s t ha t end wi th a terminator ( return , branch , &c ) , i . e .

# a s e t o f s t r a i g h t−l i n e code . By convention , the f i r s t b a s i c b l o c k

# i s c a l l e d ” entry ”

bb = f sum . append bas i c b lock ("entry" )

# To add i n s t r u c t i o n s in t o ba s i c b l o c k s we need a ’ b u i l d e r ’ ( an ins tance

o f

# l l vm . core . Bui lder ) a s s o c i a t e d to the ba s i c b l o c k .

b u i l d e r = Bui lder . new(bb)
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# The i n s t r u c t i o n s

# we need to c r ea t e an ’ add ’ i n s t r u c t i o n . ’ add ’ r e turns the sum as a

value ,

# which we w i l l use as re turn va lue

tmp = b u i l d e r . add ( f sum . args [ 0 ] , f sum . args [ 1 ] , "tmp" )

b u i l d e r . r e t (tmp)

# We’ ve completed the d e f i n i t i o n

return my module

\ capt ion {Construct the func t i on ‘ ‘ f ( a , b ) = { a + b}’’ as a guest program

fragment . }

It can be seen that this form of language embedding, despite possibly looking slightly

more cumbersome than simple encoding of guest source language in strings, allows for the

safer manipulation of guest program fragments, opening the door to user-level manipulation

and domain-specific fragment combination. In this chapter, we explore exactly such a use

for the generation of state estimators.

3.3 Non-Linear State Estimation with the Kalman

Filter

As explained in Section 2.3.2, the task of filtering consists of estimating the hidden state

of a dynamical system from a noisy time series. Filtering is a central algorithm in Quan-

titative Finance, Signal Processing, Time Series Analysis and a multitude of other fields,

but in this chapter we concentrate on the filtering algorithms most relevant to the analysis

of results of High-Energy Physics (HEP) experiments. HEP studies the fundamental com-

ponents of matter and radiation, as well as their interactions, thereby addressing questions

crucial for the understanding of the Universe. HEP experiments pose unique challenges

in design, implementation and data analysis. For one, HEP experiments often have to
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sort through the massive data streams produced by particle accelerators. Particle accel-

erators use electromagnetic fields to induce high momenta on sub-atomic particles, whose

collisions among each other generate data that is invaluable to understand matter under

extreme conditions. This data often takes the form of traces, measurements of various

physical aspects of the particle taken along their collision paths at specific detection points

(the “stations”). A considerable portion of the data mining that takes place in a HEP

experiment is spent in the track reconstruction task, which consists of taking the traces

and reconstructing the underlying physical process.

On-line track reconstruction is one of the bottlenecks of the pattern recognition task

in HEP. This problem has been traditionally broken up in the complementary sub-tasks of

track finding and track fitting. Track finding involves associating a set of readings with the

likely trajectory of a specific particle. The “likely trajectory” track finding takes as input

is computed by the track fitting task. Specifically, the goal of track fitting is to estimate

the state of a particle inside a detector moving under the influence of a magnetic field.

For the last twenty or so years the most popular solution to the track fitting problem has

been the Kalman filter (KF). It is well known that the KF is only guaranteed to compute

the optimal estimator if the dynamics of the system are linear and subject to Gaussian

noise. However, these conditions are not met in the track fitting problem, in particular,

the dynamics are strongly non-Gaussian due to effects such as multiple Coulomb scattering

and energy loss. A proposed solution is the “Gaussian sum filter” (GSF) which runs a bank

of KFs to estimate each of the modes of the noise distributions, modeled here as a mixture

of Gaussians. But this solution is limited by the fact that the usual implementation of

the GSF uses the same distribution for every input dataset. To address this issue, we

present in this chapter the Input-adaptive KF (IAKF), which makes use of the dynamic

code generation features of modern software frameworks to create a GSF that matches

the given (observation) noise distribution. The IAKF further deals with non-linearity by

having the generated GSF drive, instead of (linear) KFs, a non-linear filter. Without loss of

generality, for this work we use the recently proposed Quasi-Monte Carlo KF (QMC-KF).

The generated code is not only tailored to the data, but takes advantage of several levels

49



of parallelism in multi-core processors.

In a way, the goal of a track fitting solution is to determine the values that best

conciliate the experimental readings and the mathematical description of the trajectory.

These values, or state are usually denoted by xk ∈ R5, and consist of the exact intersection

point of the particle with each of the detectors, the track direction and the curvature. A

measurement zk is taken at each station k, and a collection of stations represents a model

of the whole detector. Note that the measurements taken at each station constitute noisy

projections of the real parameters, which are what the filter is trying to recover. The

mathematical setting of this problem is to consider the particle accelerator as a nonlinear

dynamic system [72]:

xk+1 = f(xk) + ωk (3.1)

of which the measurement zk is a function, also polluted by noise to form the stochastic

“observation” process:

zk = h(xk) + νk (3.2)

It can be seen from the notation that the system has been discretized in time with

indices k. In the transition between measurement points k−1 and k, the state is considered

to be subject to process noise, which is denoted here by ωk. Moreover, precise observations

are not possible because of the limitations in the measuring model and instruments, a

circumstance which is considered by introducing the measurement noise νk. The precise

probability distributions of ωk and νk heavily depend on the application, but they are

commonly taken to be mutually independent.

To fit the track we need then to filter out the noise, i.e., to calculate the posterior

distribution p(xk | z1:k) at all measurement indices k, where z1:k denotes a sequence of ob-

servations {zi}ki=1. The optimal solution to this problem is given by the recursive Bayesian

estimation algorithm [62], which recursively updates the posterior density of the system

state as new observations arrive. However, it is worth noting that this recursive solution is

only tractable for linear, Gaussian systems, in which case the closed-form recursive solution
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to the Bayesian integral equations is the well-known KF. Because in HEP experiments pro-

cess noise arises from interactions between charged particles and detector materials, the

linearity and Gaussianity assumptions the KF relies on are hardly ever met. The mea-

surement noise νk is also rarely Gaussian, since in real detectors there is an ever-present

possibility of outlying or ambiguous observations. Therefore, approximate solutions need

to be applied to this problem.

Approximate filtering for general dynamic state space systems can be roughly cate-

gorized into two approaches: deterministic and Sequential Monte Carlo-based. The first

approach, which is the focus of this chapter, generalizes the KF, trying to keep its sim-

plicity and well-understood theory [13, 62, 72]. However, these generalizations suffer from

the requirement that filters must be manually constructed from the input data, which

imposes inordinate effort to the user. Furthermore, typically the same filter is applied to

every input dataset, which may degrade the quality of the estimator. To overcome these

disadvantages, we present the Input-Adaptive KF (IAKF), an approximate solution to the

filtering problem based on the KF where an automatically constructed Gaussian mixture

models the measurement noise and a set of non-linear KFs are used for the actual filtering.

3.3.1 Generalizations of the KF

The KF is a prediction/correction scheme with the predicted state and observation be-

ing calculated from the estimate at the previous measurement point (or from the prior

distribution p(x0)):

xk|k−1 = f(xk−1|k−1, ωk)

zk|k−1 = h(xk|k−1, νk)

where ωk and νk are independent and normally-distributed, with zero mean and covariance

matrices Q and R respectively. The mapping f is a stochastic transition kernel from state

xk−1 to state xk and h is a stochastic non-linear mapping from the current state to the
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observation. The state estimate given the observations z1:k−1 is represented by xk−1|k−1,

and the predicted estimate for the next state given the same trace is denoted by xk|k−1.

These predictions are then updated with the innovation, the difference between pre-

dicted and actually observed measurement, modulated with a correcting factor Kk , the

Kalman gain, to render the next state estimate xk|k and corresponding covariance Pk|k:

xk|k = xk|k−1 −Kk(zk − zk|k−1)

Pk|k = Pk|k−1 −Kk(Pz)k−1K
T
k

The KF is optimal (in the least-squares sense) provided process and measurement

mappings are linear, and the associated noise is Gaussian. However, as mentioned above,

this is not the case in HEP experiments. Below, we present two general approaches of

dealing with non-linearities and non-Gaussianity that are particularly relevant to track

fitting.

3.3.2 Dealing with non-linearities

When considering non-linearities, a common simplifying assumption is that the noise dis-

tribution for transition and observation models are Gaussian, i.e.,

p(xk−1 | z1:k−1) = N (xk−1|k−1,Pk−1|k−1)

p(xk | z1:k−1) = N (xk|k−1,Pk|k−1)

This simplification makes the resulting filtering distribution p(xk | z1:k) normally dis-

tributed as well.

A great variety of non-linear filters make use of this simplification. Among them, the

Extended Kalman filter (EKF) is by far the most popular. Despite the advantages in terms

of ease of understanding and implementation of the EKF, there is a considerable risk of

estimation degradation by its use. This risk can be attributed to the EKF’s strategy of lin-

earizing process and measurement equations around the previous estimate. This approach
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does not take into account the statistical properties of the noise, and may ultimately cause

the divergence of the filter [72].

Alternative approaches go back to the definition of first- and second-moments of the

filtering distribution [62]:

xk|k−1 =

∫
xkp(xk | z1:k−1)dxk

=

∫
f(xk−1)p(xk−1 | z1:k−1)dxk−1 (3.3)

Pk|k−1 =

∫
(xk − xk|k−1)(xk − xk|k−1)

Tp(xk | z1:k−1)dxk

A commonly-used family of non-linear filters that is based on this problem re-stating is

the so-called “sigma-point” family, of which the most prominent member is the Unscented

Kalman Filter (UKF) [72]. In Section 3.4 we present the Input-adaptive KF, which makes

use of another member of the same family, the QMC-KF algorithm, to construct filters that

are tailored to the input data, thereby improving the robustness of a track-fitting system

as shown in Section 3.5. The QMC-KF numerically approximates (3.3) using Monte Carlo

or quasi-Monte Carlo integration. QMC-KF [62] relies on the approximation

xk|k−1 =
n∑
i=1

f(x
(i)
k ) (3.4)

where [x
(i)
k ]ni=1 is a low-discrepancy point set of the appropriate dimensionality (in this

work, as in [62], we use randomized Halton point sets) under some transformation that

maps to a Gaussian distribution.

3.3.3 Dealing with non-Gaussianity

Gaussian distributions are not appropriate for the phenomena studied in HEP experiments.

Measurements include outliers and ambiguity that introduce tails in the measurement error

distribution νk, whereas the biggest contributors to process noise, energy loss and multiple
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scattering, are highly non-Gaussian. Forcing a Gaussian distribution to describe these

effects greatly reduces the amount of information that can be recovered from the true

densities, especially in the case of multimodal densities.

A common approach to avoid information loss while remaining within the KF framework

consists of modeling the non-Gaussian distributions by Gaussian mixtures. For example,

measurement outliers can be handled by a Gaussian mixture with a “core” component de-

scribing the “regular” measurements, and one or more components describing the outlier-

induced tails [55] (e.g., by a mixture of Gaussians sharing the mean but with different

covariances). Likewise, ambiguous measurements can be modeled by a mixture of Gaus-

sians with one component per possible value, i.e., with the mean set to the possible value

and identical variances, thus concurrently using all possible meanings of the ambiguous

measurement. As for process noise, we can model the tails of the multiple scattering for

low-energy particles, or the highly asymmetric energy loss of electrons by suitable Gaussian

sums [10]. In principle, every distribution involved in the filtering process (state priors,

measurement and process noise) can be modeled as a Gaussian mixture. Taking this notion

as a guideline, Alspach and Sorenson [13] proposed the Gaussian-sum filter (GSF), where

every component of the mixture is propagated and updated by a standard KF. This is

to say that the GSF consists of a bank of Kalman filters running in parallel. A detailed

specification of a prediction/correction step of the GSF (made up of a combination of Ex-

tended Kalman Filters) is presented in Algorithm 3.1. The quantities Fl and Hl used in

that description are the Jacobians with respect to the state of the process and observa-

tion functions of the system, respectively, where the Jacobians are evaluated at the l-th

component of the estimate.

3.4 The Input-Adaptive Kalman Filter

All the filtering techniques described in the above section assume that the same filter will

be applied to every input, since parameters chosen for the filter are fixed at program con-
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Algorithm 3.1 The Gaussian-sum filter

Require: Estimate p(xk−1 | z1:k−1) ≈ γlk−1
∑G

l=1N (xlk−1|k−1, P
l
k−1|k−1)

A-priori state estimate xlk|k−1 = f(xlk|k)

A-priori state covariance estimate FlP
l
k|k−1F

T
l +Qk

Innovation covariance Ll = HlP
l
k|k−1H

T
l +R

Kalman gain Kl = P l
k|k−1H

T
l (L)−1

A-posteriori state estimate xlk|k = xlk|k−1 +Kl(zk − h(xlk|k−1))

A-posteriori state covariance estimate Pk|k = P l
k|k−1 −KlHlP

l
k|k−1

Mixture weight γlk =
γlk−1β

l
k∑G

g=1 γ
g
k−lβ

g
k

, where βlk ∼ N ((zk − h(xlk|k−1)), Ll)

struction time. This strategy does not take into account the actual system being analyzed,

and may therefore result in inaccurate or divergent filters [160]. Here this issue is addressed

by dynamically building the filter based on the input data. In this section I present the

Input-Adaptive KF (IAKF), a GSF driving QMC-KFs with a preprocessing step of data

clustering, followed by a code-generation step where the needed filter is constructed and

then run. Interposing a learning preprocessing stage to the filtering task is a standard

adaptation mechanism, the novelty of the IAKF is to use the results of such a stage to

direct the subsequent construction of a specialized software module. Figure 3.4 shows the

conceptual diagram of the IAKF, an Algorithm 3.2 presents the same in pseudo-code form.

A detailed description of the components of the system is presented in the following sec-

tions. Specifically, the initial clustering and model selection stages are detailed in Section

3.4.1 and the subsequent code generation tasks are described in Section 3.4.2.

3.4.1 Clustering and model selection for the IAKF

The initial step for the construction of an adapted filter is to determine the observation

noise distribution as a Gaussian mixture. For this, a sample of the tracks at the first

station z1,1:N is read as a training set and assumed to have been generated by a Gaussian
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Algorithm 3.2 Input-Adaptive Kalman Filter

Require: Parameter MAX MODES, Cross-section z1,1:N

Require: Parameter N is the number of traces, each of length T

for m = 2 to MAX MODES do

BIC[m] ← Cluster(m, z1,1:N) {Refer to Section 3.4.1}
end for

G← BICModelSelection(BIC[m]) {Best-fit number of modes for the observ. noise MoG}

GSF← GenerateCode(G) {Refer to Section 3.4.2}
for t = 1 to N do

for k = 1 to T do

xl
′

k|k,t, P
l′

k|k,t, γ
l′

k,t ← GSF(xlk−1|k−1,t, P
l
k−1|k−1,t, γ

l
k−1,t), for l = 2, . . . G {Algorithm

3.1}
xlk|k,t, P

l
k|k,t, γ

l
k,t ← Consolidate(xl

′

k|k,t, P
l′

k|k,t, γ
l′

k,t) {Algorithm 3.3}
end for

end for
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Figure 3.4: Conceptual diagram of the IAKF

mixture density

p(x0) =
G∑
l=1

γlN (µl,Σl) (3.5)

The Gaussian mixture models the notion that the measurement noise is multimodal due

to outliers. It is premature to decide a priori how many terms G the mixture is to

have because of the lack of information on the outlier distribution. Therefore we run

a parameter-estimation task on several candidate component counts (in Algorithm 3.2

denoted by MAX MODES) and use a model selection criterion to choose the best fit among

them. The parameter estimation procedure determines the values for mixture parameters

and proportions. Having determined the appropriate number of components, we generate

the corresponding QMC-KF instances, which will be “baked into” the final filter. The

resulting filter is run on the input to perform the actual state estimation. Note that

the mixing proportion of the Gaussian sum needs to be re-weighted at every iteration to

maintain an accurate estimate. This re-weighting is specified in Algorithm 3.1.

To estimate the parameters of the initial noise density the expectation maximization

(EM) algorithm is used [100]. EM is a maximum-likelihood technique that can estimate
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the parameters Θ of a distribution of a given form that best corresponds to the data. In

the case of a Gaussian mixtures, the parameter vector Θ corresponds to

Θ = (θ1, ...θG, γ1, ...γG−1) (3.6)

and θl = (µl,Σl) for each of the G components of the mixture. The G mixture weights

γl are subject to the additional constraint that
∑G

l=1 γl = 1, so only G − 1 weights need

to be estimated. As the computational load of the GSF is directly related to the number

of components in the mixture, we run EM for a low component count (2 to 5). The

EM algorithm can estimate the parameters of a Gaussian mixture of any (a-priori) given

component count, as long as the algorithm is provided with enough samples for each

component. The model selection criteria we use to determine how many components the

Gaussian mixture should have is the Bayesian information criterion (BIC) [100].

In the GSF, care must be taken to control the possible combinatorial explosion of Gaus-

sian terms in the posteriors. As the IAKF has a fixed number of components, when any of

the component estimates becomes multi-modal, the smaller components are combined in

order to maintain a constant component count. The combination algorithm is taken from

the RAVE track fitting toolkit [129], and is described in Algorithm 3.3. In that description

“closest neighbour” can be chosen according to a user-defined distance metric. A common

choice is the Kullback-Leibler distance.

3.4.2 Run-time code generation of the IAKF

I have built both Python and ArBB implementations of the IAKF, where the number of

components NUM KF that constitute the mixture-of-Gaussians approximation of the non-

Gaussian noise is determined by the clustering procedure described in [100] This infor-

mation is subsequently used to generate as many QMC-GSF instances as necessary, in a

manner sketched by:

for k = 0 ; k < NUM KF; k++) {
f o r ( i = N − 1 , i >= 0 , i−− ) {
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Algorithm 3.3 Combining components in a Gaussian mixture

Require: Input MoG
∑G′

i=1 γiN (µi,Σi)

Ensure: Output MoG
∑G

i=1 γiN (µ′i,Σ
′
i), where G ≤ G′

new comps ← Sort γiN (µi,Σi) by γi

cur count ← G′

while cur count > G do

g1, g2 ← Choose mode with smallest weight γ and its closest neighbour

Remove g1, g2 from new comps

gnew.(γ, µ,Σ)← g1.γ + g2.γ,WeightedMean(g1, g2),WeightedCov(g1, g2)

new comps, cur count ← new comps + gnew, cur count −1

end while

Construct MoG from new comps

// . . . magnetic f i e l d se tup . . .

f i l t e r ( ts , ss , xInfo , t s . hitsX2 . row ( i ) , w,T,C) ;

f i l t e r ( ts , ss , yInfo , t s . hitsY2 . row ( i ) , w,T,C) ;

for ( int j = 0 ; j < 3 ; j++ ) {
H2 [ j ] = H1 [ j ] ;

H1 [ j ] = H0 [ j ] ;

}
z2 = z1 ; z1 = z0 ;

} e n d f o r ;

}

The filter kernels are wrapper functions over multiple parallel function applications,

which result in a parallelization strategy both over tracks and over concurrent QMC-KFs.

Below we present the specific implementation for two host/guest language combinations,

and in Section 3.5 we present the results of some numerical experiments designed to de-

termine the effect of the IAKF strategy on the overall performance of the track fitting

task.
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Code generation in Python

For the purposes of this chapter, we make use of the codepy [79] code generation framework,

designed specifically for generation of OpenCL and CUDA-based modules that can be

automatically connected to the Python runtime. Note that this is not the only code-

generation framework available for Python (a very similar one is Pyinline [140]), but it is

the one that best adapts itself to the task of dynamic code generation. A simple example

of the use of codepy is shown below, where, for the purposes of illustration the generated

module is the Monte Carlo calculation of π.

from cgen import ∗
from codepy . bpl import BoostPythonModule

f o o d e c l = Funct ionDec larat ion ( Value ("double" , "pi_montecarlo" )

[ Value ("unsigned int" , "N" ) ] )

body = [ I n i t i a l i z e r ( Value ("unsigned int" , "cnt" ) , 0) ]

loopbdy = [ ]

loopbdy . append ( I n i t i a l i z e r ( Value ("double" , "x" ) , "(double)rand()/RAND_MAX" ) )

loopbdy . append ( I n i t i a l i z e r ( Value ("double" , "y" ) , "(double)rand()/RAND_MAX" ) )

loopbdy . append ( I n i t i a l i z e r ( Value ("double" , "rad" ) , "sqrt(x*x + y * y)" ) )

loopbdy . append ( I f ("rad <= 1." , Block ( [ Statement ("cnt++" ) ] ) ) )

loop = For ("unsigned int i = 0" , "i < N" , "i++" , Block ( loop body ) )

body . append ( loop )

body . append ( Statement ("return 4 * ((double)cnt / N)" ) )

foo = FunctionBody ( f o o d e c l , Block ( body ) )

mod = BoostPythonModule ( )

mod . add funct ion ( foo )

from codepy . j i t import g u e s s t o o l c h a i n
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cmod = mod . compi le ( g u e s s t o o l c h a i n ( ) , w a i t o n e r r o r=True )

print cmod . p i montecar lo ( i n t (1 e7 ) )

The details of the code generation process (i.e., the box marked “GSF code generation”

in the conceptual diagram in Figure 3.4 ) are hidden from the end-user by a combinator-like

interface, that allows the specification of, for example, a Gaussian-Sum Filter composed of

two QMC-Kalman filters as:

x0s = [ z e r o s (2 ) , array ( [ 0 . 4 , 0 . 5 ] ) ]

P0s = [ eye (2 ) ∗ 0 . 1 , eye (2 ) ∗ 2 0 . 2 ]

g s f s p e c = alpha 1 ∗ QMCKF( x0s [ 0 ] , P0s [ 0 ] ) + alpha 2 ∗ QMCKF( x0s [ 1 ] , P0s [ 1 ] )

Once the filter has been fully specified, it is necessary for the user to specifically generate

the backend code, which can then be used in a traditional-looking filtering loop (which

corresponds to the bottom “IAKF” flow in Figure 3.4):

g s f = g s f s p e c . generate ( )

s = MoGNoiseMixin ( NonLinearSystem ( x0 , d e l t a t ) , means , covs , mix )

for i in range ( n i t e r ) :

obs = s . g e t o b s e r v a t i o n ( )

g s f . s t ep ( obs )

s . s tep ( )

The uses of NonLinearSystem and MoGNoiseMixin instances in the code refer to a

state-based simulator of the system to be estimated and a ‘mixin’ class that injects noise

of certain characteristics to that system, respectively.
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Code generation in ArBB

At a lower level of abstraction, we apply the same principles of run-time code generation

in a C++ implementation of the IAKF. To this end, we make use of Intel’s Array Building

Blocks (ArBB), formerly Ct, library [7]. ArBB is a retargetable dynamic compilation

framework, whose main purpose is to facilitate the exploitation of modern multi- and many-

core architectures. It provides a set of implicitly data-parallel collection data structures and

computational patterns (including map, reduce and prefix sum). A programmer can make

use of this abstract notation and target several levels of parallelism present in multi-core

homogeneous systems, as well as potentially heterogeneous accelerator-based many-core

architectures (for example, GPUs) and computing clusters.

A more complete description of ArBB is best found elsewhere [103]. Here, we focus

on the code-generating aspect. ArBB is a two-stage system, where the programmer works

within the usual confines of the C++ language (the uncaptured environment), but specifies

the functions that are to be run in parallel using library-provided data types, functions and

control flow (the captured environment). The clearest way to describe this architecture is

through a simple example:

// ke rne l d e f i n i t i o n ( captured )

void p l u s o n e k e r n e l ( arbb : : f 32 x , arbb : : f32& y )

{
y = x + arbb : : f 32 (1 ) ;

}

const unsigned int vec l eng th = 128 ;

f loat x [ ve c l eng th ] ;

arbb : : dense<f32> vec x ;

arbb : : dense<f32> vec y ;

// . . . f i l l in array a . . .

arbb : : bind ( vec x , x , v e c l eng th ) ; // bind to captured environment
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// now i t i s p o s s i b l e to opera te in captured environment

arbb : : map( p l u s o n e k e r n e l ) ( vec x , vec y ) ;

// vec y ho l d s the r e s u l t o f v ec x + 1 , which can now be brought back to the

// uncaptured environment

In the above program fragment, float is the usual C++ type and f32 is the corre-

sponding embedded-language version. Functions (aka kernels) that have been written in

terms of ArBB types will be JIT-compiled and executed on demand. In other words, ArBB

types and functions are not executed in the same way as the surrounding C++ code is.

Uses of ArBB types and functions are retained, i.e., stored by the compilation manager,

and compiled and executed should the host program later require the result.

The rationale for this two-level architecture is that captured code can be compiled to

make maximum use of the system it is running on: vectorized ALUs, multiple processors,

accelerators and other system configurations.

Besides analogs of C++ types, ArBB also provides mirrors of C++ control structures,

in the form of the ‘keywords’ if, for, while and do. These allow serial constructs to

be used in a parallel environment. For example, the kernel:

void n r s q r t k e r n e l ( arbb : : f32 a , arbb : : f32& s )

{
i f ( a < 0) { return −1; } e n d i f ;

arbb : : f32 sprev = arbb : : f 32 (0 ) ;

s = a ;

wh i l e ( arbb : : abs ( xprev −x ) > t o l ) {
sprev = s

s = 0 .5 ∗ ( sprev + a / sprev )

} end wh i l e ;

}
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can be the argument of a map operator to find the square root of each (positive) element

in an ArBB array. Each invocation of nr sqrt kernel will execute concurrently.

An interesting side effect of this two-level execution approach can be seen when C++

control flow is used in captured mode. The following code

unsigned int u n r o l l f a c t o r = 4 ;

void f i l l v e c k e r n e l ( arbb : : dense<arbb : : f32>& v , arbb : : f 32 va l )

{
for ( s i z e t i = 0 ; i < u n r o l l f a c t o r ; i++) {

v [ i ] = va l ;

}
}

has the same effect as unrolling the loop:

void f i l l v e c k e r n e l ( arbb : : dense<arbb : : f32>& v , arbb : : f 32 va l )

{
v [ 0 ] = va l ; v [ 1 ] = va l ; v [ 2 ] = va l ; v [ 3 ] = va l ;

}

3.5 Numerical Evaluation

To validate the computational performance of the IAKF implementation, the system is

tested on simulated data. I use the methodology proposed in [60] to simulate the transit

of a charged particle in a magnetic field. In this approach, the function f takes the form

of a 4th-order Runge-Kutta solution (with fixed-step size) to the equation

dp = κq(v ×B)ds/|v|
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where p is the momentum of the particle, q its charge, v its velocity, dt = ds/|v| the

trajectory length, B the magnetic field, and κ is a constant. The state is the 5-tuple

(x, y, tx, ty, q/|p|) where (x, y)z denote the intersection of the trajectory with detecting

surface z, tx(z) = dx/dz and ty(z) = dy/dz indicate the particle’s direction at that point.

The observation function h mimics the way silicon micro-strip detectors carry out mea-

surements, projecting the x, y-coordinates at the intersections with the stations z. An

illustration of a simplified version of the above system is shown in Figure 3.5. The sim-

plifications consist of using an homogeneous magnetic field and a (uni-modal) Gaussian

noise for system noise. The dynamics of the system are encoded in the Runge-Kutta solver

described above.

(a) Dynamics process f (motion of charged par-

ticle in a magnetic field)

(b) Measurement process h

Figure 3.5: Non-linear functions f and h for track fitting

The remainder of this section includes a battery of empirical tests to assess the perfor-

mance, benefits and overheads of the IAKF. Following that I discuss the limitations of the

method.
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3.5.1 Empirical performance analysis of the IAKF

In this section I conduct a series of experiments to explore the behaviour of different filtering

strategies under a variety of circumstances with the goal of determining the benefits and

overheads of the IAKF relative to popularly-used filtering solutions.

Filtering performance on uni-modal, non-linear system

Figure 3.6: Magnitude of the filtering error of the UKF, MCKF and QMCKF (system

under Gaussian noise)

Figure 3.6 shows the difference of performance of uni-modal (i.e, not Gaussian-sum)

filters in a state estimation task of a system under Gaussian noise (specifically, under a

covariance of 0.1). Three filters are tested: the Unscented Kalman filter (UKF) and the

IAKF driving both QMC-KFs and traditional Monte Carlo filters (i.e., a non-linear filter

making use of Monte Carlo integration of the Kalman filter recurrences). Our QMC-KF
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filters are fed by a 1024-randomized Halton sequence of state dimension 5. The particu-

lar randomization method is to use randomized linear scrambling [90]. Note that in this

and the following experiments we measure statistical performance by calculating the L2-

distance between estimated and true states. As all the data arises from a physical system

simulation, we have access to the “true” state, as it comes out of the mathematical descrip-

tion of the system without noise. Performance is reported in the “y” axis of the figures.

The difference of performance between the Unscented Kalman Filter (UKF) and the QMC-

KF (using 1024 samples) is not statistically significant (the p-value corresponding to the

null hypothesis is 0.5191). This undifferentiated performance is expected, as the noise the

system under consideration is subjected to is Gaussian. For this case, these filters are

largely equivalent. This test is carried out by taking the average estimation error over all

iterations of a particular run. The IAKF proposed in this work makes use of the QMC-KF

as a building block, but it is not limited to this choice, as any of the above non-linear filters

could serve as a plug-in replacement.

Impact of multi-modal noise

When the system is not under single-Gaussian observation noise, but under the influence

of a mixture-of-Gaussians (MoG) observation noise, the performance of uni-modal filters

suffers in comparison to that of filters that contemplate multiple-mode noise distributions.

This effect is tested on a system under MoG observation noise with the following charac-

teristics:

xl0 = [(0, 0), (5.5, 5.5), (15.5, 15.5)]

σl0 = (0.1, 20.5, 10.5)

γl = (0.5, 0.4, 0.1)

The system in question is depicted in Figure 3.7, where histograms of the MoG-noise

distribution are plotted besides (to the right) a simulated trajectory (on the left). Outliers
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are simulated by incorporating wide-Gaussians at some distance from the mean of the real

state, thereby forming clusters that make the noise distribution multi-modal.

Figure 3.7: The cross-section of a track generated by a system under mixture-of-Gaussians

observation noise.

The comparative performance of the UKF, QMC-KF (both uni-modal) and IAKF

(multi-modal) is illustrated in Figure 3.8. The IAKF (driving QMC-KFs) shows on av-

erage an about 1.5 times estimation error improvement over a QMC-KF, to a high level

of statistical significance (the null hypothesis is rejected by a p-value of 0.000226 on a

two-sample t-test). In this way, the notion that the filtering task on systems under MoG

noise is best carried out by specialized filters is verified.
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Figure 3.8: Magnitude of the filtering error of the UKF, QMC-KF and IAKF (system

under MoG Gaussian noise)

Adapting vs. not adapting to the mode count

I now turn to the study of the effect of a filter mis-specification, i.e., running a GSF with

the wrong number of components. For this experiment, I use a 3-component MoG to

inject in the system, and test the performance of Gaussian-Sum Filters fixed to look for

2-, 3- and 4-components respectively. As is shown in Figure 3.9, a filter that is specified

correctly, which is, using an accurate number of components, shows on average a 2.43 times

performance improvement over one that “misses low”, i.e., that has less components than it

should (in the figure, the 2-component GSF filter), and a 2.31 times average improvement

over one that “misses high” (uses more components that actual noise does). The filter that

best matches the system is shown in blue in the figure. One of the advantages of the IAKF

is that this kind of mis-specification is avoided. In the IAKF approach, several candidate
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components are tested, and the best one (in this case, the 3-component GSF) is selected

and automatically generated at run-time.

Figure 3.9: Error as a result of mis-specification

Running times of adapted vs. fixed code

Thus far I have been exploring the statistical performance benefits of the adaptation phase

to the filtering process. Now I study the benefits that this adaptation can have in the

running-time of the resulting filter. In the case of the Python-based implementation the

comparison of running times of the adaptive vs. the fixed-filter variations is shown in Figure

3.10. Unsurprisingly, the running time is much shorter on the variation that uses run-time

code generation (the speedup factor is about 18 for the presented run), as the generated

code in question is compiled to a much more efficient language. The improved running

time is then largely attributable to the difference between execution models (the compiled
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C++ vs. the interpreted Python). This gain is obtained despite the costs involved in

copying data across the Python Virtual Machine to the C++ runtime, and the fact that

no compiler optimizations have been specified. Also, no optimized linear algebra routines

have been used on the C++ side. Note that the time incurred in compilation/linking is

not considered in the report as codepy includes a caching feature that avoids unnecessary

recompilation. The measurement was taken on a“warm” run, where the involved code

generation/linking phase had already been performed and did not need to be repeated.

Figure 3.10: Running time of Python implementation of the IAKF for 1024 iterations, at

differing sample count

Comparative performance of generated code on “static” computational envi-

ronments

As stated above, run-time code generation is but one approach to adaptability. The IAKF

algorithm can be implemented without using this technique. In this case, the number
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Component count 3 5 10

Speedup 1.0285 1.0349 1.022

p-value 0.0189 0.0023 0.039

Table 3.1: Speedups of loop-unrolled w.r.t. loop-based pure C++ IAKFs

of modes of the observation noised distribution is calculated as in Section 3.4.1, but the

resulting GSF is computed via a “for” loop. On the other hand, a solution that makes

use of run-time code generation essentially expands (“unrolls”) this loop into a straight-

line code block. In this section, I compare both implementation options in the context

of the IAKF. For this I study two implementations: a pure C++ IAKF and a hybrid

Python/C++ variation.

For this experiment, I set the trace number to be 100, each trace consisting of 500

iterations. I compare the relative performance of both IAKF variations when the number

of modes in the noise observation distribution is 3, 5 and 10. Table 3.1 shows the behaviour

of the pure C++ implementations. The code-generation approach shows some speedup in

this scenario relative to the loop-based technique. These gains are, however, slight. Since

the performance differential between both methods is small, I also report the statistical

significance in the form of the p-value of a two-sample t-test to verify the effect of the

change. The fact that the codegen strategy does not result in significant benefits in this

case is not surprising. On a “static” computational environment, i.e., when the filtering

library has been developed in the same environment as the filters to be executed, an

interposed codegen stage is unlikely to bring big benefits to the table, as the quality of the

code in both implementations is similar. Moreover, loop unrolling is a standard compiler

optimization and is likely to have been carried out anyways.

Note that a static computational environment does not preclude a codegen solution to

achieve clear performance gains over its loop-based counterparts. These benefits, however,

do not derive alone from the loop unrolling, but from avoiding any additional call overhead

the GSF may be subject to. To quantify the achievable gains in this situation, I carried
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Component count 3 5 10

Speedup 3.110 4.8771 8.46883

Table 3.2: Speedups of loop-unrolled w.r.t. loop-based Python/C++ IAKFs

out an experiment with the same settings as the one above, but in the context of a hybrid

Python/C++ IAKF. In this case, the loop-based filter consists of a Python driver looping

over as many C++-based KFs as number of components the mixture of Gaussians has

been estimated to have. Each of these calls carries some overhead. In contrast, a run-

time code-generated solution unrolls this loop in the C++-side, and therefore presents a

specialized GSF filter that only requires one call per iteration from the Python side. Table

3.2 summarizes the relative performance, and shows significant benefits of using a codegen-

based approach. Note that, for the Python/C++ hybrid implementation studied here, the

code generated is serial; further gains could be achieved by having the codegen module

create parallelized code, an interesting topic for future investigation.

The overhead of run-time code generation

To investigate the code construction time cost I compare the performance of a pure-Python

implementation of the GSF-QMC-KF with 3 modes on a 180-iteration run with the equiva-

lent run-time generated configuration that makes use of codepy. A summary of an average

of five trials is provided in Table 3.3. It is worth mentioning that the construction time is a

one-time cost, so running multiple traces through the generated IAKF will not need to incur

in re-compilation overhead. For the problem of track fitting in particular, and time-series

filtering in general, the most common scenario is to run a filter over multiple (oftentimes

many) traces, which amortizes out the construction cost of the customized program. In

mathematical terms, the total run-time savings by using run-time code generation is:

N × (TFC −RCG)− CCG (3.7)
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``````````````````̀Version

Running time (sec)
Construction Running Total

Codegen via codepy 1.453 8.72 10.173

Pure Python 0 159.97 159.97

Table 3.3: Comparative performance of “fixed” vs generated-on-the-fly GSF-QMC-KF

where N denotes the number of work items in general (for track fitting in particular, this

would be the number of traces to process), TFC is the total time per work item for the

“fixed code” version, RCG is the running time (not counting construction time) for the

run-time code generated version, and CCG is the construction time for that same version.

From the expression (3.7) above, it is easy to see that the run time savings come mainly

from the difference between running times of the different implementations. However,

it is important to realize the crucial facilitating role of run-time code generation. This

mechanism enables the system to build code that is better performant than that of the host

language. Without this enabler, the only way to make best use of computational resources

is to resort to a platform-specific module if such exists. Run-time code generation sidesteps

this very stringent requirement by building such a module on the fly.

It is relevant to note that the variant of run-time code generation that I use in this

chapter and other places in the thesis is a template-based metaprogramming system. How-

ever, it is pertinent to clarify that the term metaprogramming has of late taken to mean

template-based metaprogramming in the C++ community. In this latter sense the term

“metaprogramming” takes the more restricted meaning of the kind of code generation that

is made possible by C++ templates. While powerful and interesting in its own right, C++

template metaprogramming is an altogether different mechanism than the one described

here. In this chapter and those that follow, I have only made very restricted use of C++

template facilities, and concentrated on other forms of code generation.
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3.5.2 Limitations of the IAKF

The IAKF belongs to the family of deterministic, approximate, non-linear filters. As

such, it is built upon the framework of the Kalman Filter. This framework is a very

efficient tool for dealing with linear systems under Gaussian noise. With the appropriate

extensions and corrections (e.g. the GSF), this framework can also adequately handle non-

linear systems subject to non-Gaussian noise, as long as this non-Gaussianity can be well

approximated by a mixture of Gaussians. However, when noise distributions are beyond

the MoG representation, more general filters are better suited to the filtering task than the

GSF. The IAKF generates a specialized GSF implementation, and therefore inherits the

limited ability to handle strongly non-Gaussian noise. When noise distributions are not

suitable for MoG form, it is better to use filters like the particle filter [35]. The adapter

module of the IAKF can be extended to warn the user if none of the candidate component

counts of a MoG fits the input noise within a user-defined threshold, giving the user the

option to carry out the filtering or resort to other methods.

3.6 Other Approaches to KF Code Generation

The automatic generation of data analysis programs has been explored for at least a decade.

For example, the AutoBayes program synthesis system [49] generates C++ code from a

declarative specification of the statistical model via deductive synthesis directed by code

templates. As such, it most resembles the lex/yacc-approach of DSLs described above,

where a separate programming language infrastructure is required.

Another example of a system that synthesizes KF and variants code is AutoFILTER

[132], which similarly to AutoBayes, outputs C++ code from a textual specification spe-

cialized to the description of noise distributions and differential equations. An interesting

variation that AutoFILTER includes is that it links against the libraries from the Octave

linear algebra system, within which its output is supposed to be used. This illustrates

another aspect of code generation within C++, its interoperability.
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In contrast to the above-mentioned systems, our work only requires a standard C++

compiler. Furthermore, the generated code under ArBB takes full advantage of the parallel

features of the architecture the program is running on. On the other hand, significant

work has gone into the automated verification and certification of the code generated

by AutoBayes, an aspect of considerable importance, which is not covered here. The

interoperability aspect of AutoFILTER is also a straightforward addition to our system.

3.7 Summary

In this chapter I propose the “code factory” approach to adaptation, an idea that uses

run-time code generation for domain-specific specialization of programs. To give concrete

form to this technique, I introduced the Input-Adaptive Kalman filter (IAKF), a mem-

ber of the deterministic, approximate, non-linear filter family. In contrast with traditional

methods, the IAKF adapts to the input, running as many filters as necessary to best fit the

input data. This feature, validated by numerical results, makes its estimates more accu-

rate. Furthermore, the IAKF is more robust to different input data than its non-adaptive

counterparts. To implement the IAKF, we make use of the run-time code generation and

compilation afforded us by modern parallelism libraries and scripting languages. It is my

contention that furnishing the end-programmer with the ability to tailor the program in

data-driven tasks, such as inferencing, allows for simple and straightforward implementa-

tions that are also able to better cope with realistic scenarios. Having a general framework

that facilitates improved running times can enable the use of computationally-intensive

algorithms in realistic models and data sizes whose complexity may be too great for fixed-

code solutions.
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Chapter 4

Functional ANOVA decomposition

for QMC algorithms on DBNs

The study of numerical integration is central to the transaction of modern day Science

and Engineering, and therefore motivates the effort into techniques that may improve its

performance. These studies vary in focus from general algorithmic improvements to the

use of newly-available hardware platforms, to the study of classes of integrands that may

be subject to treatment by numerical integration. An interesting development in this

latter endeavor, especially when dealing with high-dimensional integrands, is the study of

sensitivity. Sensitivity analysis is the study of how changes in subsets of inputs to the

model relate to changes in its output. The information of what input subsets contribute

the most to output changes can be exploited by numerical integration techniques. Since the

integrand is one of the last pieces of information into a numerical integration framework,

having such a framework adapt to it can result in improved performance.

In this chapter I apply the functional ANOVA decomposition [136], a global sensitivity

analysis technique, to determine the set of input variables that contribute the most to

the variance of a given statistical model. Once these “important” input variables have

been identified, I construct customized sampling sequences that improve the efficiency of
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simulation-based algorithms. This task is carried out with the help of the technique of

quasi-regression. Furthermore, I take advantage of run-time code generation facilities of

modern software libraries to construct these enhanced-sampling driven routines on the fly,

to great improvement in statistical performance as measured by variance reduction. This

method is validated both in application problems, specifically from the field of Financial

Engineering, and on synthetic functions.

4.1 Introduction

It is well-known that the performance of quasi-Monte Carlo techniques are sensitive to

the features of the integrand and to the effect of “important” inputs in the integrand’s

domain, i.e., those input variables which exert greater influence in the model output. This

stands in contrast to “traditional” (pseudo-random number driven) Monte Carlo methods,

which are more resilient to these features. As an illustration of this fact, studies on some

financial applications have reported improvements of QMC over MC inconsistent with their

relative asymptotic errors [124]. These results are now commonly accepted as the effects

of positive interaction between the low-discrepancy sampling sequence and the integrand.

In particular, QMC sampling sequences often have especially well-distributed projections

over the important lower-dimensional sub-space of the integrand. In this chapter, I apply

the functional ANOVA decomposition, a global sensitivity analysis (GSA) technique, to

identify this important set of input variables. I then make use of the technique of quasi-

regression [14] to approximate the function and construct QMC sequences that work well

in the function approximation, which I then use in the original integrand.

The custom-made sampling sequences results in QMC estimators with lower variance

and general improved efficiency of simulation-based algorithms. To the author’s best knowl-

edge, no similar work was been done to date. This novel idea can serve as a foundation for

methods to exploit late-arriving pieces of system specification in a more general setting.

For software libraries that support the implementation of simulation algorithms, the
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strategy proposed above is difficult to accommodate, since the characteristics of the in-

tegrand are part of the information that arrives long after the sampling sequences have

been designed and implemented. However, a very common use case is that the integrand,

most likely a statistical model to be studied under simulation is specified by a domain

expert, an “end user” programmer. End user programmers have only limited access to

the inner workings of the simulation library, and such libraries are often unaware of the

purpose of end programmers, but in the most general of terms. To address this issue, I take

advantage of run-time code generation facilities of modern software libraries to construct

enhanced-sampling driven routines on the fly. This strategy results in increased flexibility

and shorter running times. I test this method in two kinds of problems: the valuation of

a path-dependent financial instruments, and synthetic test functions.

This chapter is structured as follows. In Section 4.2 I briefly review quasi-Monte Carlo

algorithms, emphasizing their application in the solution of the option valuation. Also,

I go into some detail into the construction of the Sobol’ sequence, which is the sampling

scheme that I use for demonstration purposes. Section 4.3 delves into the topic of sensi-

tivity analysis, a technique that identifies those input variables that contribute the most

to the total variance of the problem. Sensitivity analysis can be combined with QMC

for greater statistical efficiency, and I describe this combination to some detail. In this

section I also introduce the technique of quasi-regression [14], an approximation method

that represents high-dimensional integrands through a linear combination over a basis of

orthogonal functions, usually the tensor product of low- or single-dimensional functions.

The coefficients in the approximation are related to the ANOVA decomposition, and ef-

ficient estimators of the components can inform the construction of efficient estimators

of the original integrand. Section 4.4 describes the design and implementation of the

functional-ANOVA-driven QMC constructions. Section 4.5 studies its performance in sim-

ulated experiments, to finally conclude in Section 4.6.
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4.2 QMC for Simulation and Inference

As explained in Section 2.5, the use of low-discrepancy point sets to drive simulation

algorithms instead of the traditional pseudo-random number stream has led to the field of

quasi-Monte Carlo (QMC) methods [90]. QMC methods have been successfully applied in

a large number of fields, like Finance [123, 124] and Computer Graphics [74]. In particular,

QMC methods were introduced in the academic literature for the numerical valuation of

options in the early 1990s [68], and have since become a mainstay for both theoreticians

and practitioners alike, and are usually included in undergrad textbooks that treat financial

Monte Carlo calculations in any extent. Furthermore, it was their application in Finance

that first illustrated the unexpected effectiveness of randomized QMC in high-dimensional

problems [124].

Many low-discrepancy constructions have been used for numerical integration. Among

these, the better known are those by Hammersley, Halton, Faure, Sobol’ or Niederreiter

[90]. Each of these sequences has a different set of construction parameters that can be

“tuned” according to different concerns, to result in better simulation performance. In

the remainder of this chapter, I will concentrate on the Sobol’ sequence, although the

techniques outlined here apply in a more or less direct way to other constructions as well.

A sequence of n points Pn based on the Sobol’ sequence of dimensionality s, i.e. Pn =

[u(i)]ni=1 where u(i) = (ui,1, ui,2, . . . ui,s) ∈ Rs is built by setting the jth coordinate (j =

1, . . . s) of the ith member of the sequence to

ui,j = i0vj,1 ⊕ . . .⊕ ik−1vj,k

where il is the lth digit of the binary expansion of i (typically the elements ui,j ∈ Z[1, 2b−1]

will be mapped to [0, 1) by a transform like xi,j = 2−bui,j). The numbers vj.l ∈ R are the

so-called direction numbers of the sequence. I will detail the role and influence of direction

numbers later in this chapter.

As stated in Chapter 2, the idea of QMC methods is to use the sequence P ′n = {x(i)}
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to drive the approximation to the integral:

µ̂n =
1

n

n∑
i=1

f(x(i)) ≈ µ =

∫
[0,1)s

f(x)dx

One important principle in the application and research on QMC methods is that these

methods, in contrast to traditional Monte Carlo, benefit from some notion of the impor-

tance of domain components and subsets of components of the model f : Rs → R to its

output. I make use of the techniques of global sensitivity analysis (GSA) to incorporate the

idea of component importance into our implementation. In particular, I employ the GSA

method of functional ANOVA decomposition, which I describe in the following section.

4.3 Sensitivity Analysis

Most practical problems involve multi-variate state spaces. Ideally, the task of modeling

includes in the state only those variables that will advance the explanatory power of the

model for a specific application. However, this ideal is usually not achieved in practice.

In Figure 4.1, I illustrate a dynamic Bayesian network where a multivariate state node

has been broken up into components. It is likely that not all components of the state

xk are equally important to the observation zk, as quantified by the likelihood function.

Similarly, for the pricing of derivative instruments, not all innovations on interest rates are

equally relevant to the final value of the asset. In this work, I aim to enable a simulation

implementation to detect those subspaces of the state that are most relevant, and to

construct a Sobol’ sequence that better explores these subspaces.

Sensitivity analysis (SA) techniques are by no means a foreign notion to QMC methods.

In fact, the unexpected fact that these methods outperform traditional Monte Carlo to an

extent that goes beyond the asymptotic bound for approximation error, especially for high

dimensions, is generally accepted as a consequence of a SA-motivated concept, the effective

dimension. The effective dimension [25] encodes the notion that for some problems, the

models in question owe their variance mostly to a small number of variables in their domain,
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Figure 4.1: An explicit representation of multivariate state Each node in a “slice” represents

a component of an input to a model. Taken as a whole each slice represents a multi-variate

state space

and that the highly-uniform point sets used for their integration happen to have good

projections on the subspaces spanned by those variables. The technique of functional

ANOVA decomposition [136] quantifies the contribution of each subset of input variables

to the variance of the model, and is useful to estimate the effective dimension. I will turn

to this technique now, to return to a more detailed explanation of the effective dimension,

and finally to explore a method to incorporate the results of the sensitivity analysis into

the construction of Sobol’ sequences.

4.3.1 The functional ANOVA decomposition

The goal of SA is, given a function

f(u),where u = (u1, . . . us) ∈ Rs

to decompose the variance of f into contributions arising from the components ui and to

assess the magnitude and significance of each component or group of components. Note

that SA assumes that f is square-integrable, i.e.,
∫
[0,1)s

f 2(u)du <∞.
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A commonly used way to carry out a SA is to apply Hoeffding’s functional analysis of

variance (ANOVA) decomposition [41], which describes the contribution to the variation of

a square-integrable function f : [0, 1]s → R of each subset of input variables I ⊂ {1, . . . s}.
The general idea is to express f as a sum of 2s components, each of which depends only

on a subset of input variables:

f(u) =
∑

I⊆{1,...,s}

fI(uI) where uI ∈ R|I|

The ANOVA decomposition can be used to determine which components ui of f are

significant contributors to the total variation. The terms fI are defined by

fI(u) =

∫
[0,1)s−d

f(u)du−I −
∑
J⊂I

fJ(u)

where

−I = {1, . . . , s}\I
d = | − I|

f∅ =

∫
[0,1)s

f(u)du

We know that the total variance of function f is

σ2 =

∫
[0,1)s

f 2(u)du− f 2
∅

and that the ANOVA decomposition is orthogonal, i.e., for two sets I 6= J, I, J ⊂ {1, . . . s}∫
[0,1)s

fI(u)fJ(u)du = 0

If we define the variance of each fI as

σ2
I =

∫
[0,1)s

f 2
I (uI)duI
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for I 6= ∅ and σ2
∅ = 0, the total variance can be expressed as the sum

σ2 =
∑

I⊆{1,...,s}

σ2
I (4.1)

The contribution of each fI can be summarized by normalized ratios σ2
I/σ

2, which are

called the Sobol’ sensitivity indices (SI) [145]. The quantity σ2
I/σ

2 represents the fraction of

the variance of f that is due to fI , and therefore, attributable to the input set with indices

I. This can be taken as a measure of the relative importance of fI . Several methods have

been proposed to estimate Sobol’ indices. In here, I follow that based on quasi-regression

[94], which is described in the next section.

4.3.2 Quasi-regression

The technique of quasi-regression is based on the approximation of a high-dimensional

function f in terms of an orthonormal basis which is created by taking tensor products

of a complete orthonormal univariate basis. For concreteness, consider the complete or-

thonormal univariate basis that is formed by the Legendre (shifted) polynomials [119]:

φm(x) =

√
2m+ 1

m

[
√

2m− 1(2x− 1)φm−1(x)− (m− 1)√
2m− 3

φm−2(x)

]
(4.2)

where φ1(x) =
√

3(2x − 1) and φ0(x) = 1 1. Notice that φm(x) : [0, 1] → R. From the

basis {φm : m = 0, 1, 2 . . .} we construct the multivariate (s-dimensional) basis functions

by applying tensor products. This means that every element of such a basis has the form

φr(u) =
s∏
j=1

φrj(uj)

where r = (r1, . . . , rs) and ri ∈ Z, ri ≥ 0.

1A convenient computer-readable table of shifted Legendre polynomials (albeit not normalized), is

provided by the R package orthopolynom [116]
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In this way, any s-dimensional function f(u) can be expressed as a linear combination

over the infinite basis above:

f(u) =
∞∑
r1=0

∞∑
r2=0

. . .

∞∑
rs=0

βrφr(u) (4.3)

The coefficients βr can be obtained by computing

βr =

∫
[0,1)s

f(u)φr(u)du

An important result [94] links the calculation of coefficients βr and the contribution of

components of subspaces with indices I ⊂ {1, . . . , s} to the variation of function f :

σ2
I =

∑
r∈R(I)

β2
r (4.4)

where R(I) is the set of s-dimensional tuples where every component is 0 but for the ones

in I, i.e.,

R(I) = {(r1, . . . rs) : ri = 0 if i ∈ I; ri > 0 if i /∈ I}

Clearly, the exact value for formula (4.3) is impossible to calculate in practice and some

truncation needs to take place. To this effect, the restricted set R(I, d,m) is introduced

[94]:

R(I, d,m) = {(r1, . . . rs) ∈ R(I) :
s∑
i=1

ri ≤ d; rj ≤ m for j ∈ I}

where the parameters d and m are called degree and order respectively [14].

Furthermore, we are very interested in the fraction of the variance of f that can be

attributed to the input subspaces of a particular dimensionality. To this end, we define

γ(p) :=
1

σ2

∑
I:|I|≤p

σ2
I
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Sense Mathematical expression

Truncation
∑

I⊆{1,...,t} σ
2
I ≥ ασ2

Successive coordinates
∑

I⊆{i,i+1,...,i+t−1} σ
2
I ≥ ασ2

Superposition
∑

I:|I|≤t σ
2
I ≥ ασ2

Table 4.1: Different notions of effective dimension [90]

which quantifies this notion in terms of the user-defined parameter p. By using γ(p) we can

query the variance portion due to components of dimensionality p and lower. This turns out

to be important information about model f , as integrands with large portions of variance

attributable to low p values are better tractable by QMC methods. This relationship is

formalized in the concept of effective dimension, which I treat in the following section.

4.3.3 The effective dimension

We can determine, based on Equation (4.1), a positive integer t for which
∑
|I|<t fI(·)

provides a good enough/acceptable approximation of f(·). I use the SIs to determine the

dimensionality of the components that contribute to a user-defined fraction α of the total

variance. If l-dimensional components with l ≤ t contribute to more than an α fraction of

the variance of f , i.e., ∑
I:|I|≤t

σ2
I ≥ ασ2

we say that f has an effective dimension in the superposition sense of at most t in propor-

tion α [90].

There are alternative criteria to define the effective dimension, illustrated in Table

4.1. The truncation sense captures the notion of f being “almost t-dimensional”, whereas

the superposition and successive-coordinate criteria express that f is “almost” a sum of

t-dimensional functions.
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In general, the effective dimension of a function is a means for assessing the difficulty of

its multidimensional integration. The effective dimension has played an important role ex-

plaining the effectiveness of QMC integration techniques in high-dimensionality problems,

specifically financial problems [123]. When an integrand has low-effective dimension, even

if it has high nominal dimension, a QMC method based on a point set Pn that has good

low-dimensional projections (i.e., for a small |I|, the projection Pn(I) over the subspace of

[0, 1)s indexed by I is well-distributed) can provide accurate estimators for the integral. I

now discuss how to use this idea to construct a low-discrepancy point set, specifically, a

Sobol’ sequence.

4.3.4 Choosing direction numbers

As outlined in section 4.2, the Sobol’ low-discrepancy sequence (not to be confused with

the Sobol’ indices for sensitivity measurement) is constructed based on a set of numbers

known as direction numbers. Each set of direction numbers generates a different Sobol’

sequence.

The canonical implementation of the Sobol’ construction sequence, by Bratley and Fox

[22], provides initial values for the vj,k for values of j ∈ [1, 40]. For dimensions beyond

40, “good” initial values can be found according to a number of criteria for Pn. Several

measures of uniformity by which to judge the quality of 2D projections of a particular

sequence, and by extension the initial values of their constructors have been proposed.

Of these, a popular one is the resolution [91], the so-called uniformity properties A and

A’ [144] and more complicated criteria [5]. The resolution technique is proposed and

applied in the randqmc[91] library. Initial values for vj,k can be chosen by studying specific

2D projections of the generated point set Pn(j − i, j), i = 1, . . . 8, i.e., those values that

interact with previously-constructed dimensions. The strategy I follow for our search is

illustrated in detail in Algorithm 4.1.

To generate direction numbers, I use Algorithm 4.1, which works component-by-component.

If the dimension under consideration at the time has been identified by the GSA stage as
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Algorithm 4.1 DirectionNumberSearch

Require: configuration array R(I, d,m) = (s, d,m, p)

Require: array βr where r ∈ R(I, d,m)

for all i ∈ {1, . . . s} do

indices← rs where rs are rows in array R(I, d,m) where right-most non-zero element

is i

Determine β, the maximum of βr where r ∈ indices
Determine r corresponding to β

Search among 2
g(g−1)

2 possibilities for best direction numbers for component βrf(·)φr(·),
where g is the degree of the primitive polynomial corresponding to dimension i. Since

this search is extensive, only examine a fraction of candidates in proportion to β.

DN [i]← chosenDNs

end for

return DN

important, and the dimensionality allows it (where the dimension under consideration

i < 8) an exhaustive search of all the possible initialization numbers m is conducted. For

dimensions above 8, a random search is conducted over the space of initialization num-

bers in proportion to the value of the coefficient βr of the configuration r corresponding

to the maximum coefficient β among configurations r whose rightmost non-zero value is

dimension i. Notice that the quasi-regression approximation is configured to only explore

components φr of dimensionality of at most 2 (i.e., p = 2) What set of initialization num-

bers to choose from those among the examined is determined by trying the Sobol’ sequence

corresponding to each initialization number set to calculate an estimator of the r compo-

nent of the approximation,
∫
[0,1)s

βrφr(u)du. The initialization numbers whose estimator

exhibit the minimum variance is kept and the procedure continues until dimensionality

i = s is reached.
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Model specification Simulation template

Determination of coefficients β for specified R(I,m, d, p)

Search for suitable direction numbers

Simulation program

Statistical model/integrand Estimates

Figure 4.2: Design of the FANOVA-based Simulation framework

4.4 Functional ANOVA-Based QMC Algorithms

In this section, I make use of the ideas presented above to integrate them into a full

simulation-based application. I will tailor the sampling scheme based on an analysis of

the (multi-dimensional) system under study, i.e, the system to be simulated or carry out

inference on. To follow this approach, two questions need to be answered:

• What dimensions to examine

• How to incorporate the knowledge of “important” dimensions to tailor the QMC

scheme.

Our solution makes use of the algorithms presented above to answer these questions.

4.4.1 General Design

The general design of the numerical integrator based on the ANOVA decomposition is

illustrated in Figure 4.2. The steps in the implementation are as follows:
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1. The user defines the model via an implementation callback or a symbolic expression.

2. Quasi-regression is carried out on the model are calculated to assess the contribution

of each subset of input variables.

3. Algorithm 4.1 is run to create of a set of direction numbers that, in turn, determine

a Sobol’ sequence.

4. The simulation kernel is run. If the problem is an inference query, this requires the

provision by the user of an input time series. For the particular set of experiments

below, I use the (biased) Monte Carlo estimator for βr, but more precise estimators

have been proposed [94] and can be used.

This algorithm can be implemented on any general-purpose programming language. Our

particular implementation uses a combination of Python and C++ code, exhibiting in-

stances of code generation on both sides of the system.

4.4.2 Implementation

For the purposes of this investigation, I have opted for a hybrid Python/C++ implemen-

tation. The Python side of the system is better suited for symbolic manipulation and

computation over combinatorial structures, as well as driving the compilation of gener-

ated code. Quasi-regression and Monte Carlo simulation is computationally intensive, and

therefore it benefits from native (compiled) code for those phases of the process. Below, a

brief description of the implementation of each algorithmic stage is given

Generation of {r : r ∈ R(I, d,m)} for a given p : From the specification of (the di-

mensionality s) of a model f , and user-defined parameters for degree, order and

maximum dimensionality for the components of the quasi-regression p, the set of

tuples r is generated. Note that this process is in many ways largely independent of

the actual model f , so sets r for different values of s, d, m and p can be pre-computed

and stored to be thawed into the system when needed, to improved running time.
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Generation of φr : The creation of the tensor-product base proceeds from a user-defined

“base” uni-dimensional basis. For this chapter, and following other works in the

literature [94], the system uses shifted Legendre polynomials, but it is equipped to

deal with other choices. For this the polynomials are extracted in textual form from

the representation of the orthonompoly R package. The computational mathematics

module for Python sympy [28] is then used to parse this representation into actionable

form. specifically, a list of symbolic expressions, whose index can be mapped to

the corresponding components of tuple r. For this purpose, the single-dimensional

variable of the expression needs to be transformed into an indexed member of a multi-

dimensional vector which is the actual member of the tensor product basis. It is for

this task that the rewriting capabilities of sympy shine. The result of carrying out this

task, still a symbolic expression, must be cast into a format that can be used for the

quasi-regression stage. Therefore, a code generation module is run over the symbolic

expressions, and a C++ library is generated, compiled, and dynamically-linked into

the interpreter.

Quasi-regression : With the library of basis function φr code available, the process

of quasi-regression is now feasible. The only remaining obstacle is the difficulty of

passing executable code (like the model) across address-space boundaries (the C++

library and the Python interpreter). To overcome this, when generating the basis

φr library, a hash table relating each r to the code for φr and a system-generated

function identifier. The Python driver needs only pass in the corresponding index to

calculate the coefficient βr, as the model f and the Monte Carlo estimator calculation

routine are also implemented in C.

Direction number search : Algorithm 4.1, implemented in C but driven by Python

generates the set of direction numbers (on the C side of the system). The output is a

C library that can be used on-line or off-line (the system has the ability to memoize

the direction number structures to disk).

Simulation execution using the generated Sobol’ sampler : The final stage of the
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estimation system consists of running the created Sobol’ sequence on the model f .

As stated earlier, this takes place on the C side of the system. but Python interface

functions are provided to retrieve the results on that environment as well.

Figure 4.3 presents a graphical depiction of the above process. Each of the items in

the algorithm is represented by a block in that diagram. Contrast this workflow with the

one associated with a typical simulation-supporting library, librqmc. The librqmc library

has ample coverage for low-discrepancy sequences and associated randomizations. Its use

requires the use of a special input file with the characteristics of the sampling regime. More

importantly for our case, the direction numbers are provided by the library, and the only

way to change those numbers is through the recompilation of the library from scratch.

This workflow is illustrated in Figure 4.4.

4.5 Evaluation

For the purposes of evaluating our technique, I make use of the problem of pricing an Asian

option under the Black-Scholes model. An Asian option is a financial contract that has

an expiration date T , a strike price K and it depends on the price of an underlying asset

whose value at time t is denoted by St, for 0 ≤ t ≤ T . Assuming the Black-Scholes model

implies that St/S0 has a log-normal distribution with parameters (µt, σ
√
t), where µ is the

mean return on the asset and σ is its volatility. The Asian option depends on the average

value taken by the underlying asset over a predetermined period of time; for the purposes

of experimentation, I consider these periods to consist of s equally-spaced times t1, . . . ts

where t1 = T/s and ts = T . In this case, the final value of the option at the expiration

date is given by

C(T ) = max{0, 1

s

s∑
j=1

Stj −K)

The quantity of interest is µ = E[e−rTC(T )], where the expectation is taken under the

risk-neutral measure, and r represents the risk-free rate in the economy. In this case the
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function that is integrated is:

µ =

∫
[0,1]s

e−rT max(0,
1

s

s∑
i=1

S(0)exp
[
(r−σ2/2)ti+σ

√
T/t

i∑
j=1

Φ−1(uj)
]
−K)du1du2 . . . dus

where Φ is the standard normal distribution.

The results of applying our algorithm to the problem of Asian option pricing are illus-

trated in Figures 4.5 and 4.6. The parameters of the model are set to be S0 = 50, T =

1, r = 0.05 and σ = 0.3. To observe the effect of 2nd-order interactions, the strike price K

is first set to 45, a setting that is known to exhibit this feature [94]. As for s, I use the

values 16 and 32. It can be seen that the FANOVA-based option pricer, which picks which

two-dimensional projections to fully examine offers a consistently lower-variance estimator

than a set of randomly-chosen direction numbers. Specially in the case of s = 16, it can be

seen that the variance reduction effect is significant, in particular as the number of samples

increases beyond 212. Note that the y-axis of the figures in this section quantify the log of

the variance.

Figure 4.5: Asian option s = 16, K = 45
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Figure 4.6: Asian option s = 32, K = 45

As a second problem configuration, I consider the at-the money option situation, where

the strike price is set to K = 50, for a problem with dimensionality s = 16. As it can be

seen in Figure 4.7, the reduction of estimator variance is also significant, and this effect

can be appreciated at a lower sample count (about 211). By comparing Figures 4.5 and 4.7

it shows that the relative performance of both sampling schemes are very similar, which

suggests that the effect of changing the strike price is minimal. The baseline for this

problem, as for the previous experiments, is the Sobol’ sequence with randomly-generated

direction numbers.

It has been pointed out (for example, in [48]), that there are two main approaches of

empirical testing of low-discrepancy sequences. The first one we have illustrated above,

resorting to well-known application problems (in this case, from the field of Financial

Mathematics). Now explore the second method, which consists of making use of synthetic

multi-dimensional test functions with well-known properties and integrals. In this case, I

make use of the class of multiplicative functions described by various authors under the

name of g functions, in particular, the one commonly known as g1 : Rs → R, first proposed
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Figure 4.7: Asian option s = 16, K = 50

by Sobol’ [145]:

g1(x) =
s∏
j=1

| 4xj − 2 | +αj
1 + αj

The integral of g1,

∫
[0,1)s

g1(x)dx can be analytically calculated to be 1 and component-

by-component variance (and correspondingly, the Sobol’ index) is σ2
{j}(g1) = 1

(3(1+aj)2)
[120].

Function g1 can be configured in a number of ways, five of which are shown below:

(i) αj = 0.01

(ii) αj = 1

(iii) αj = j

(iv) αj = j2
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Figure 4.8: Sobol’ function g1 variation (i) with s = 20, comparing FANOVA- and

randomly-generated Sobol’ sequences.

Similarly to the evaluation of the application-specific data points, I measure the per-

formance of the FANOVA-informed Sobol’ DN algorithms by their variance, as calculated

from a 64-randomization policy (using digital shift). For each of the above configurations,

I test over dimensionalities s = 20 and s = 32.

The results are presented in Figures 4.8 to 4.11. Note that the horizontal axis of

these plots starts at a higher number of samples than the ones presented above (211 for

s = 20, and 212 for s = 32) to better show the differences in behavior of both sampling

strategies. As shown in those graphs, the improvements due to the FANOVA-directed

sampling construction are very significant. Note also that estimators of variant (ii) of the

g1 Sobol’ function constructed via FANOVA reach better performance sooner than those

for variant (i). For variant (i), however, the performance is flatter (more consistent) along

sample counts than for variant (ii). Variants (iii) and (iv) of the g1 function are not plotted,

as the FANOVA-directed sampling construction very quickly reaches a variance of 0 (whose

log cannot be plotted). This reflects the fact that these variations are highly sensitive to

two-variable interaction, and that even moderate searches over possible projections results

in significant performance gains.
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Figure 4.9: Sobol’ function g1 variation (ii) with s = 20, comparing FANOVA- and

randomly-generated Sobol’ sequences.

Figure 4.10: Sobol’ function g1 variation (i) with s = 32, comparing FANOVA- and

randomly-generated Sobol’ sequences.
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Figure 4.11: Sobol’ function g1 variation (ii) with s = 32, comparing FANOVA- and

randomly-generated Sobol’ sequences.

4.6 Summary and Future Work

In this chapter I propose a technique to improve simulation algorithms by interposing a

sensitivity analysis stage on the model. This analysis takes the form of a functional ANOVA

decomposition. Based on this analysis and prescribed selection criteria for the construction

parameters of low-discrepancy sequences, the QMC sampling schemes that are created are

tailored specifically to the model under consideration. The incorporation of these schemes

into a simulation-based valuation algorithm results in estimators with lower variance than

similar algorithms with a “blind” selection of QMC-sampling parameters.

The ideas described in this chapter constitute ongoing research, and more extensive

studies are in progress. I have identified three areas of interesting future research. First,

the selection criteria described here are not the only kind of guidance which can be used

to choose parameters for generators based on heavy variance contributors. An alternative

approach defines “weighted spaces” of functions where input components uj are assumed to

have less and less importance as j increases [4]. I plan to use these alternative formulations

to compare with the ones presented here. The second possible line of inquiry is the study
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of ANOVA decompositions of transition models for dynamic systems, an area of recent

interest for ARMA models [64], but less studied when it comes to non-linear state-space

representations. I expect comparable or better statistical improvements from filters that are

aware of the important subspaces of the state variables for both transition and measurement

functions than for the measurement function alone, as presented here. The third, and

probably most general inquiry, corresponds to the study of the computational cost of the

pre-processing stage of the algorithm presented here. Similarly to the considerations of the

run-time code generation aspect of the IAKF of Chapter 3, the time invested in searching

for good direction numbers is amortized later in the integration task. This means that

the up-front cost of searching (run once) is paid off in later executions of the generated

sampler. The higher the number of integration computations, the bigger the payoff. This

feature makes the algorithm suitable for sensitivity analyses of simulation-based models,

such as those in Finance and High-energy Physics. A more careful study of this aspect

of the algorithm is underway, as is the application of techniques that could accelerate the

search. Such techniques include parallelization and the use of symbolic specification and

manipulation of the model.

As a point of interest, note that the separation between programmers that provide

algorithms, and their consumers, is a growing trend. Much has been written of late of the

“domain programmer,” experts in a particular field that program regularly in the process

of conducting their research. This trend makes the techniques presented and used here,

together with any feature that makes generic software better adapted to end users, more

relevant to the current and future computational environment.
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Chapter 5

Real options for mobile

communication management

Mobile computing devices have become pervasive in modern life. They provide applications

that greatly enhance user activities, especially when several devices are used co-operatively.

This communication, however, must be carefully orchestrated to make effective use of

available network resources. In this chapter, we present a principled way for a mobile node

to determine if and when it is cost-effective to offload computation to a remote server. This

approach is based on the framework of Real Options [111], which provides well-understood

decision-guiding methods that are fundamentally extensible, being able to accommodate a

great number of constraints, sources of uncertainty and utility models. The Real Options

approach constitutes a novel formulation of the problem that serves as an alternative to

more traditional decision-making frameworks, such as Markov-decision process settings.

To validate the Real Options design I use a variety of simulated wireless systems under

changing network conditions and limited battery life.
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5.1 Introduction

Modern advances in large-scale transistor integration and cellular communications technol-

ogy have revolutionized the computer landscape over the past few years. Computers are

now of a size that makes a person not only capable, but likely, to carry several with them.

Most small form-factor and embedded computing devices limited in their resources when

compared to their desktop or laptop counterparts. The effects of the limitations of mobile

computing nodes can be ameliorated by taking advantage of the fact that these devices are

continuously connected both to each other and to the Internet. This constant connectiv-

ity allows them to enlist the cooperation of connected mobile- or fixed-position computing

nodes in carrying out their tasks. Applications that, while designed to run on mobile nodes,

make routine use of remote resources are sometimes called “elastic” [168]. Applications

that are likely to benefit from the use of elasticity include Recognition, Mining and Syn-

thesis (RMS) workloads [26], such as voice and activity recognition, Augmented Reality

(AR) workloads, specifically Computer Vision applications, real-time language translation,

route planning and, in general, workloads that consolidate input from the on-board sensors

in a way that is usable at a human-scale level.

While remote servers may be outfitted with more and better computational resources

to carry out most tasks, communicating with them comes at a price (e.g., the battery

drain associated with the use of wireless devices), and runs the risk of network service

interruption. The nature of the radio channel and the access to the shared resource cause

high variance in the available bandwidth and variable packet delay and loss rate. Moreover,

the CPU load on the remote servers, battery charge on the mobile host, and a great number

of other factors are continuously changing.

The most common approach to offloading is delegating some or all of the workload

to a server accessible from the Internet, using the fixed-functional decomposition. This

approach is clearly insufficient, as it does not take into account any of the aforementioned

factors. Mobile nodes require a framework to weigh the advantages of offloading to remote

servers, including how, when and to which remote server to offload.
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The two most common software architectures to deal with unpredictable variations in

the ratio of workload to available resources, i.e., to solve the resource allocation problem

in the face of imperfect information, are (a) a centralized, omniscient job scheduler, or

(b) have programs somehow re-configure themselves to better match the demand they are

under [24]. Approach (a) is ill-suited for mobile wireless networks, as most environments

do not lend themselves to centralized solutions. Approach (b) allocates some of the work-

load to geographically close computing nodes, mobile or otherwise. This mode has several

advantages over traditional strategies: since cooperating computing nodes can communi-

cate with each other directly, less infrastructure and bandwidth utilization are required;

furthermore, since the number of network hops is minimized by assigning work to neighbor-

ing nodes, the need for the more expensive transports like the cellular network, as well as

power consumption, is reduced. The use of strategy (b) requires programs with the ability

to measure current operating conditions against present or forecasted resource demand,

and to adapt themselves to those conditions. In this chapter, we present a framework and

system design that provide these facilities.

The resource allocation problem can be approached by considering programs as agents

in a market economy, since they need to formulate strategies towards goals while acting

under imperfect knowledge, much like people in a real market. The use of market metaphors

to model distributed systems has been found effective in the analysis of infrastructure

systems [24]. In the present work, we apply this analogy to find the most cost-effective

choice a mobile computing node can make when it comes to offload computation to advance

its assigned task. By doing this, I introduce a novel application of the Real Options Analysis

(ROA) methodology for capital budgeting decisions to the analysis of cooperating mobile

systems.

The organization of this chapter is as follows. Section 5.2 introduces the technique of

ROA and relevant valuation algorithms. I develop the mathematical model to frame the

resource allocation problem in terms of ROA in Section 5.3. I also spend some time in

this section to present an alternative, more mainstream formulation of the problem, the

Markov Decision Process (MDP) framework, which I will later use for comparison purposes.

104



Section 5.4 describes the architecture of an implementation of my system and illustrates

its effectiveness by empirical evaluation. Related work in this active area of research is

briefly explored in Section 5.5. We identify possible future lines of research and conclude

in Section 5.6.

5.2 Real Options Analysis

Real Options Analysis (ROA) is a capital-budgeting technique that is informed by the

field of financial options valuation [39]. In Finance, an option is the right, but not the

obligation, to buy or sell an asset (the underlying) up until a certain point in time. The

advantages (or otherwise) of taking such action are measured by the contract’s payoff. The

value of the option is defined as the expected payoff of the contract discounted to the

present.

“Real” option analysis extends the notion of option valuation beyond the realm of

Finance to be general tools for decision-making under uncertainty (“real” is meant to

indicate that the options are on commodities and other assets that are “more real” than

financial or potential assets). The central notion of ROA is that any capital budgeting

decision can be considered an option. The underlying of such an option is any information

that influences the decision of carrying out the capital investment, i.e., all the sources

of uncertainty that put the project under consideration at risk. Table 5.1 presents the

input terms to a financial option pricer and their correspondence in a real options analysis

setting.

ROA has found great use in capital budgeting and other resource-allocation decisions

[84], where the opportunity to invest or commit capital to a given project is equated

to holding an option on that project. For example, a real option can be placed on the

decision to undertake or abandon a project. Of particular interest for the purposes of

this work is the extension of ROA that is used to analyze operating flexibility. Flexibility

is of great value to manufacturing firms, as they find themselves in continuous need to
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Input Financial Option Real Option Offload to server

K exercise price cost to complete the project communication cost

S price of underlying sources of uncertainty current available bandwidth

T time to expiration period when the option is viable decision period

σ variance in underlying risk of the asset bandwidth variance

r risk-free rate of return discount factor discount factor

Table 5.1: Correspondence of financial options, real options and applications to offload

adapt to changing circumstances. A firm that is flexible can compete more effectively in

a world of short product life cycles, rapid product development, and demand and/or price

uncertainty. Similarly, in a mobile distributed system, flexibility is of value as it allows

the system to take the configuration that best suits the current operating environment.

The use of ROA for modeling the flexibility surrounding manufacturing operations is well-

established [84], as this form of analysis can appraise the flexibility of managers to adapt

and revise later decisions in response to unexpected market developments. In this chapter,

we apply the ROA framework to improve the operation of a workload running on a mobile

computing node by having it delegate some of that workload to whatever server the ROA

has determined most effective.

5.2.1 Real options valuation

Early approaches to real option valuation were taken essentially unchanged from their

native field of financial option pricing. Later studies (notably Kulatilaka and Trigeorgis

[84] henceforth KT) demonstrated that such unprincipled transplantation are insufficient,

and proposed a framework general enough to describe a wide variety of decisions that occur

often in project management. In this work, I adapt KT’s model to the resource allocation

problem in mobile networks, specifically the task-offloading problem.

Real options, whose values depend on multiple sources of uncertainty, rarely have closed-
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form solutions so numerical approximation procedures must be used. In particular, the

Longstaff & Schwartz Least-Squares Monte Carlo (LSM) algorithm for American options

[99] has been found effective to implement the KT framework of Real Option valuation.

As an American-style option pricing algorithm, LSM’s main goal is to determine the

optimal exercise time τ , the moment in the lifetime of the option when exercising it yields

the maximum payoff. The details of the LSM algorithm are beyond the scope of this

thesis, but we briefly introduce its fundamentals. The optimal stopping time τ allows the

calculation of the value F (τ, Sτ ) of the option. The first stage in LSM is to approximate the

American option under consideration by a Bermudan-style contract of the same horizon

[0, T ]. This is done by dividing the lifetime of the option in N periods {t1, t2, . . . , tN},
where ti+1 − ti = ∆t = T/N, i = 0, . . . , N − 1, and every ti denotes an admissible exercise

date [134]. Then, M trajectories of the underlying St in state space are generated, i.e.,

the set {si,0:T}i=1,...M is created. A generic path in that set is denoted by ω, the optimal

stopping time in path ω is denoted by τ(ω), and the associated price of the underlying sτ (ω).

The search of the optimal stopping time is pursued by the usual dynamic programming

strategy of backward induction, i.e., starting at maturity T , the algorithm traverses the

list of exercise dates in reverse chronological order, carrying summarized information from

the future that allows it to determine the optimal exercise time between the dates already

traversed and the one currently under consideration. This mechanism continues until the

starting time t = 0 is reached, at which point the currently-optimal exercise time becomes

the global exercise time, and the result of the algorithm. At each possible exercise date,

the algorithm determines whether it is more profitable to exercise the option or to hold

on to it, i.e., compares the payoff with the continuation value. The great innovation of

the LSM algorithm is the way that the continuation value is approximated, namely, by a

least-squares regression on the cross-section of the in-the-money paths at the date currently

under consideration.
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5.2.2 LSM for switching options

A project that consists of several alternative (mutually exclusive) courses of action can be

modeled within the Real Options framework as H mutually exclusive real options. This

scenario applies to a network where there are several servers, only one of which will be

chosen to take on some of the workload currently running on a mobile device. Once the

decision to offload to a selected server has been made, I assume here that it cannot be

canceled, and so the decision can be modeled as an irreversible investment.

We denote the payoffs of the options in the original set of alternatives as Πh, and their

maturities as Th, where h = 1, 2, . . . H, assuming that T1 ≤ T2 ≤ . . . ≤ TH . The value

of real option h is then Fh(t, St). Since the decision of which real option among this set

to choose needs to be made within some time horizon TH and is irreversible, it is clear

that there is an additional timing option involved. Let G(t, St) be the value of this timing

option, i.e., the opportunity to choose the best out of the H alternatives. Assume further

that at least one of the options is American-style (which is adequate to the offloading

problem, as we allow the device to make its decision at any point within some time range).

To calculate the value of the switching option we need to find the control couple (τ, ζ),

where τ is a stopping time in T (t, TH) and ζ takes value in the set {1, 2, . . . H} that satisfies

G(t∗, St∗) = max
(τ,ζ)
{e−r(τ−t)E[Fζ(τ, Sτ )]} (5.1)

Although the opportunity to select the best option seems to depend on the values of the

options, Fh, h = 1, . . . , H, the choice is not made until the time to exercise the most

favorable option has come.

For the decision to offload in a mobile environment, t∗ can be interpreted as the best

offloading time and ζ is the index of the best server to offload to. The expressions Fh are

user-defined utility functions, which will be discussed in Section 5.3.
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Figure 5.1: The distributed mobile computing system

5.3 Problem Setup

In this section I present a model for the operation of a mobile wireless system with the

option to perform a computation on one of H servers Si, i = 1, . . . H. This system is

illustrated in Figure 5.1. The node marked D denotes the mobile device, which can choose

to offload computation to any of the servers in S. The task that D is to carry out can be

divided in stages, each consisting of N work units. The cost of performing the computation

per work unit is denoted by pi where i indicates the node the computation is to take place.

Note that the notion of cost establishes a measure on resources (memory, CPU time,

battery life, network bandwidth), which maps the use of different resources to a common

abstract cost. This quantity allows the characterization of the use of different resources

under a single cost metric.

The goal of this work is to improve the operation of an application running on a mobile

device by offloading computation to one in a set of servers. The challenge is to decide when

and which server to use in the face of constantly changing network dynamics. To facilitate

this decision, first the network conditions are estimated from readily available metrics,

and then use ROA to select the most cost-effective server to offload (if any), reducing the

problem to one of switching option valuation. The summary of this effort is contained in

Table 5.2. In the remainder of this section I introduce the mathematical underpinnings of

my method, and a concrete design in the subsequent section.
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Real Option Distributed Resource

Goal Determine if an investment is worth making Determine if offload is worth performing

Input

market conditions network conditions, battery status, CPU load

initial investment offloading cost

payoff function utility function

Output Time to invest, if any Time to offload, if any

Table 5.2: Application of ROA to computation offloading

5.3.1 Utility function

A utility function, with general form U(s, t), represents a numerical rating assigned to

every possible outcome a decision maker may be faced with. In this case, the utility

function expresses a ranking of remote servers. As it can be seen from the expression, the

utility is a function of the state of the system (in this case the computational context,

including network conditions, CPU load, etc.) and the time when the decision is to be

made. Therefore, the server computation should be offloaded to is the one that maximizes

U(s, t), i.e.,

(τ, ζ) = argmax
(t,h)

U((st, h), t)

where τ is the optimal offloading time, ζ is the index of the best server to offload to, st

is the remainder of the computing context (i.e., the various state variables that define the

computation environment other than the offloading server) and h is the possible choices of

servers. Note that U is the right-hand side of equation (5.1). The utility function encodes

the users’s preferences, i.e., what the user wants to optimize for. In the following, I present

some possible utility functions, optimizing for running time and battery life, respectively.

In real option pricing, the payoff is the difference between the expected returns from

an investment vs. the involved costs. Note that the payoff function is a restricted version

of an utility function, which quantifies the savings (if any) from performing a computation

locally and offloading it. Even though utility functions are general enough to accommodate

110



many performance evaluation strategies, in this work I concentrate on utility functions that

are proportional to payoffs. The payoff takes the form:

{Nspl − (Nrpr + sr + br)}+ (5.2)

where the function {x}+ denotes the maximum between 0 and x.

pl: cost per unit of work on the local device.

pr: cost per unit of work on remote server.

Ns: required number of workload units for a fixed quality of the result 1.

Nr: number of work items calculated remotely at the previous offload engagement.

sr: transmission costs to/from selected remote server.

br: power costs incurred to support the transfer operation

As an example, I optimize for running time. First, I have the payoff measure be the

time that is saved by running the computation remotely. To do this, I apply cost functions

that map the usage of different resources to commensurate quantities. We then set the

utility function to a linear transform of this payoff:

U(s, t) = K
(
Nspl − (Nrpr + sr + br)

)
. (5.3)

In this case, pl and pr reflect how long it takes for a CPU to process a unit of work on

the local and remote devices, respectively. The quantity sr indicates the combination

of latency and transmission time of the inputs to work units, and br reflects the cost of

battery usage (e.g., by expressing usage in terms of battery lifetime drain). Finally, K is

1The term Ns, denoting the number of work units required to achieve a specified quality of computation

implies that the task being carried out has an associated quality that is a linear function of the number of

work items. An example of this is a numerical algorithm that renders an increasingly better precision the

more samples it considers.
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a scaling constant. For the purposes of the numerical evaluation illustrated in section 5.4,

the particular form that Equation (5.1) takes is that of (5.3).

Another metric for which it may be useful to optimize is battery consumption. The

utility function for this purpose can be a nonlinear decaying mapping because the smaller

the battery charge, the more valuable it is. Hence, the utility function can be expressed

as:

U(s, t) = e−sb
(
Nspl − (Nrpr + sr + br)

)
(5.4)

where sb is the remaining battery charge at the beginning of the transmission. The decaying

exponential operates as a increasing penalty the closer the mobile device gets to battery

depletion.

Strictly, the quantities pl, pr, sr and br are stochastic processes. A form for these

processes needs to be chosen and their parameters estimated so as to use them as input for

the option pricer. Below I present such an estimator for the network delay, as this is the

most common cause of concern. How this estimation fits in the overall workflow is detailed

in section 5.4 and illustrated in Figure 5.2.

5.3.2 Estimating transmission costs

The term sr in Section 5.3.1 is a random variable whose behaviour needs to be estimated.

In this subsection I present an approach for estimation of transmission costs based on

round-trip time (RTT). Following [59], I will fit a linear model to describe the network

delays by running a Kalman filter/smoother over suitable measurements to calculate the

parameters Θ of the model. This technique is briefly described in what follows.

Our parameter estimation task uses RTT as the basis of inference. RTT is defined as

the length of time between the moment a package is sent to a node and the moment that

node’s acknowledgment of package reception is detected by the sender. RTT depends on

network equipment, throughput and congestion conditions in the network during packet
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transmission. I use an ICMP (Internet Control Message Protocol)-based tool to measure

punctual RTT.

To actually fit a diffusion model for sr to the RTT readings, I make use of the Kalman

filter (and associated smoother). The Kalman filter is a popular technique for joint state/-

parameter estimation of dynamic systems of the form:

sr(t+ 1) = Asr(t) + ωt (5.5)

RTT(t) = h(sr(t)) + ωRTT
t (5.6)

where sr(t) stands for network delay between the client and a specific server at time t, and

process and measurement noises ωt ∼ N (0, Q) and ωRTT
t ∼ N (0, R) are iid distributed.

As stated above, in this case the observations consist of RTT readings, and the latent

states of network delays. The combination of Kalman filter and smoother form an EM-like

algorithm that can fit the parameters Θ = (A,R,Q, µ0,Σ0) (where st(0) ∼ N (µ0,Σ0)) of

the linear model based on the observed RTT readings [57]. The model estimated thus is

suitable for use in simulations, as required by the LSM algorithm in Section 5.2.2. A recent

article [59] has shown that the combined Kalman filter/smoother is an adequate estimator

for network delays.

In the next section, I present an architecture that implements the components I have

described above, and integrates them into a complete system that is amenable to evaluation

by simulation. Before proceeding to that stage, I will present a Markov Decision Process-

based solution to the optimal decision problem.

5.3.3 An alternative approach to the offloading problem: MDP

A popular mathematical framework for modeling sequential decision problems under un-

certainty is known as Markov Decision Process (MDP) [100]. MDPs formalize the process

a decision-making agent goes through when faced with the choice of what action to take

at a given time. Specifically, the “life” of the agent is a stream of such decisions, each of
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which changes the circumstances of the agent, and may become part of the considerations

for the subsequent decisions. The notion of “circumstances” is formalized in the concept

of state. We can then visualize a series of decisions taken by an agent as a trajectory on

that state space. Every move from state to state of an agent via the performance of an

action may have an associated reward (or cost), sometimes called the “short-term” reward.

The ultimate goal of an MDP formulation is to find a rule that directs an agent to carry

out an action given the current state in such a way that the overall (“long term”) reward

is maximized (respectively, the cost minimized). Any rule that maps actions to states is

called a policy, which are usually denoted by π. A policy that maximizes the long-term

reward is called optimal, and denoted by π∗.

In more formal terms, an MDP is a five-tuple (S,A, P,R, γ), where S is the set of

possible states, A is the set of actions, P is the transition model that informs the dynamics

of the agent in state space, R is the short-term reward model and γ is a real number

γ ∈ [0, 1] called the discount factor. Each policy π is then a mapping π : S → A.

Algorithms that find optimal policies typically associate a value function to each state,

action pair (s, a) where s ∈ S, a ∈ A, and concentrate on the manipulation of such functions

to guide their operation. A value function Qπ(s, a) represents the expected, discounted

total reward starting from state (s, a) if the agent is to follow policy π. In formal terms,

this is expressed as

Qπ(s, a) = E[
∞∑
t=0

γtrt | s0 = s, a0 = a]

where the expectation is taken with respect to the policy π and rt is the expression of the

short-term reward model [100]. An optimal policy maximizes the value function Qπ over

all state-action pairs. Most MDP-solving algorithms then work on value functions in the

search for optimal policies.

MDP-solving algorithms are very sensitive to the size of the state space and the car-

dinality of the action set, and typically become impractical as the state space grows. An

approach that has been found effective to address this concern is the use of approximation

architectures, which consist of using alternative representations of policies, value functions
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and state spaces at the cost of some precision. A very popular and highly effective approx-

imation architecture is the linear architecture, where value functions are represented by a

linear combination of basis functions φ(s, a), modified by suitable weights w [87]:

Q̃π(s, a;w) =
k∑
i=1

φi(s, a)wi

Clearly, to use an approximation framework the basis functions need to be chosen, as

well as a method needs to be agreed upon to fit the weights wi over the chosen basis.

A successful algorithm that works on linear approximations of MDPs is the so-called

Least-Squares Policy Iteration (LSPI) [87]. Starting from a random policy represented

as a set of weights over a chosen basis, LSPI efficiently searches for optimal policies over

the policy space, and can accommodate continuous state- and action spaces [23] by using

sample trajectories in state space. Recent work has applied the LSPI algorithm to value

American Options [96], where the action space is confined to the two singular actions of ex-

ercise immediately or defer the exercise (i.e., opt for the continuation path). Similarly, the

state for this particular application needs to take into account the time at which each state

is reached. In the numerical evaluations, I use this variation of the LSPI algorithm (some-

times called LSPI for continuous-state, fixed action, LSPI-CSFA) as a point of comparison

with the Longstaff-Schwartz LSM.

5.4 System Architecture and Evaluation

In this section I describe a system architecture for making offloading decisions using ROA,

which I will then evaluate using simulation. The overall architecture of the system is

graphically illustrated in Figure 5.2, and described in pseudo-code in Algorithm 5.1.

5.4.1 System architecture
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Figure 5.2: ROA-based offloader workflow

Algorithm 5.1 ROA-based offloader algorithm

Require: Parameter list available servers

Require: Workload WL

for s in available servers do

TransmissionParams[s] ← KalmanFilterSmoother(RTT[s]) {Refer to Section 5.3.2}
end for

for i in Iterations(WL) do

for s in available servers do

ROA[s] ← LSM ( TransmissionParams[s] ) {Refer to Section 5.2.1}
end for

s∗ ← SwitchingOption ( ROA[s] ) {Refer to Section 5.2.2}
Offload WL iteration i to server s∗

end for
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Our system is based on grid architectures, which use a layered design to implement

the services necessary for an application to operate transparently in a distributed-resource

environment. The most notable divergence between the system below and a traditional

grid is that the functionality of the broker, the software agent that maintains a loosely-

coupled system, has been migrated into the application itself. The application running on

the mobile node implements the following services:

• Resource discovery Registers and maintains a list of accessible servers.

• Network traffic estimator Given a list of servers, tracks the transmission delay to

each of them.

• Decision module Given a network behaviour model and the necessary utility and

cost functions, evaluate the cost-effectiveness of performing the offload.

• Offload manager Given an offload decision, transfer the necessary input data to the

remote server, and provide the means to wait and recover it asynchronously. Note

that for the purposes of this thesis, the notion of “offload” consists of transporting

some suitably serialized version of the input data, and does not imply code migration.

The workflow of the system proceeds as follows:

1. As servers come on-line, they broadcast their availability over a suitable broadcast

channel. This message may include the current load of the respective server.

2. The system maintains a list of accessible servers and estimates the network delay to

each of them using the default routing.

3. The modified LSM algorithm for option pricing is run with the network behaviour

model calculated in previous steps to determine the cost/benefit of offloading.

4. Should offloading be deemed the best choice, the offloader module downloads the

necessary input data to the specified remote server.
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5. On the next step, an updated network traffic model is used and the process is repeated

from step 3.

6. As servers prepare go offline they broadcast their intention. This information is used

to keep an updated list of downloading hosts. Moreover, the network conditions

estimation algorithm also serves as a heartbeat monitor to detect when a server has

become inaccessible and should no longer be considered.

This workflow does not consider the eventuality that a server becomes inaccessible during

a computation, in which case this computation would need to be restarted from the be-

ginning. This scenario is subject to future investigations. Note, however, that this is not

a shortcoming of the ROA framework, but an under-specification of the model it uses as

an input.

5.4.2 Evaluation

To evaluate the system I choose three typical scenarios that involves a wireless client

and multiple choices for computation offload, with varying degrees of reachability. These

scenarios are:

(I) A home environment, where a single wireless access point connects the mobile node

with a LAN of desktop/laptop nodes on a home LAN. Bigger servers are available

as part of the “Cloud”, Internet-accessible data centers, which is reachable through

a DSL line. A graphical depiction of this system is shown in Figure 5.3.

(II) A public wifi “Hotspot”, where a single wireless access point supports a number

of wireless and mobile computing nodes. The Internet is also reachable through a

dedicated DSL connection.

(III) A fully-mobile environment, where the Internet (“the Cloud”) is reachable via a LTE

(Long Term Evolution) base station.
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Figure 5.3: Simulated system for the ROA-based offload manager

We use the ns-3 [2] simulation environment to implement the test systems. Without

loss of generality the delays on the wireless 802.11 links and in the Ethernet connections

are set to follow Gaussian distributions. This is a simplification that has been studied in

the literature [59]. The load on each server pi is drawn from a uniform distribution, but

the servers on the wired networks are consistently faster than the mobile node (mobile

nodes are 1.5 GHz, local wired nodes are considered to be 2.6 GHz, and remote servers

in the cloud are set to be 3.0 GHz). More importantly, the variance in different kinds of

nodes are different. For mobile nodes the variance is set according to measurements under

regular loads at 200 ms, whereas the wired nodes, under normal conditions, were measured

to have a variance of 0.2 ms.

The task that the mobile client is to carry out is divided in iterations. At each of

this iteration, the (prospective) client decides whether to carry out the computation cor-

responding to that iteration locally or remotely. This decision is made by running the

modified LSM algorithm (5.1) using the diffusion model of network delay estimated via

the Kalman filter and the payoff function (5.3). Once the best server has been identified,

the offload takes place. The computation costs are then quantified by the transaction time,

which includes the time necessary to offload the input and the time it takes for the remote

server to process and return the results to the client.
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Scenario Variation Always offload Real Options (LSM) LSPI

(I) channel delay= 30[ms] 34% 33.356% 33.351%

channel delay= 60[ms] 65.776% 33.4% 33.41%

(II) channel delay= 30[ms] 38.34% 35.6693% 35.011%

(III) channel type = LTE 39.01799% 38.3491% 37.0125%

Table 5.3: Summary of the experimental results

I compare my method against three strategies: two fixed (a client that at each iteration

offloads to the same hard-coded cloud server, and a client that never offloads), and a

dynamic, MDP-informed strategy. The summary of experiments is contained in Table 5.3.

The running time in the table is reported as a fraction of the running time of the strategy

that never offloads, which I use as a baseline. We can see that for all the scenarios, the

“elastic” strategies result in running times that are consistently and significantly reduced.

Here I specify that the always-offload client always resorts to a specific server in the cloud,

that is, Internet-accessible. This approach accounts for some of its increased running

time when compared to the more flexible mechanisms, which can make use of “closer”

computational nodes. The never-offload client runtimes are computed assuming that the

workload of interest is not the only one running in the device, which introduces some

variation in the running time. The computational task is simulated by scheduling replies

assuming that each work unit carries out the same computation (simulated as an empty

loop of 242 × 106 loops, taking around 3 sec in big cores and 9 sec in a dual-core Atom

at 1.5 GHz), under the current load of the hosting server. The battery life br is set to be

a linear function of the transaction time. The experiment was run 10 times and averages

are presented. Using the never-offload client as a baseline, the average saving times is 6

sec/iteration, i.e., two thirds of the running time. Depending on the total run of the task,

this can represent important savings both in time and in battery life.

The offload decisions in the home environment are clear: even though the Internet-

accessible servers are available, LAN and WLAN “local” nodes are closer, and their com-

puting capabilities are not significantly different from those in the cloud. A consistent
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Figure 5.4: Distributed task load under ROA and fixed-host policies in the home network

environment

theme in these results is that both the Real Options approach and LSPI have very similar

results because both algorithms find the same optimal solution. This can be explained by

the fact that they both look for the best available server, or different servers of similar

characteristics. It is worthwhile noting that only a limited number of servers are offered

as candidates for the algorithm. Subsequent studies on how many choices is worthwhile

maintaining are planned. I manipulate the channel delay of the point-to-point connec-

tion between home network and Internet Service Provider in the second variation of the

home environment (I). The effect of this change is most noticeable in the “always-offload”

strategy. In other approaches, the effect is more contained, since the offload targets are

consistently local nodes. These conclusions are informed by the behaviour of the systems

as illustrated by Figure 5.4.

Figure 5.5 summarizes the comparative behaviour of the different offloading strategies

in a Wifi hotspot situation. For the hotspot scenario we can appreciate that the adaptive
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Figure 5.5: Distributed task load under ROA and fixed-host policies in the “hotspot”

environment

mechanisms now choose servers from the Internet pool as offload targets. In this way,

their effect is closer to the “always offload” policy than for the home network environment.

However, the added flexibility of switching servers still results in improved running times.

Both adaptive techniques LSM and LSPI have similar effects. Part of the increased running

time in this environment is attributable to the increased traffic in the shared wireless access

points in a Hotspot. A working assumption in the simulation of this environment is that

the wireless nodes are fairly stationary in that they do not change APs. The variations

observed in the results of the “always offload” strategy can be explained by variations in

the load on the (fixed) target server, as well as the effects of other mobile clients in the

shared channel.

The final scenario (illustrated in Figure 5.6) depicts servers accessible only through

the cellular network. This brings the performance of the adaptive policies even closer to

the original performance of the “always offload” strategy. In this case, the performance
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(a) Against the “never offload” policy (b) Detailed view of the offloading (fixed and dy-

namic) policies

Figure 5.6: Distributed task load under ROA and fixed-host policies in the “cloud” envi-

ronment

of LSPI and LSM is more differentiated, slightly favouring LSPI by less than 2%. This

may be attributable to the extra time that LSPI spends in improving the policy, which

may reap better results upon less-differentiated choices. This is better appreciated on the

“zoomed-in” Figure 5.6 (b), which depicts the results without the “never offload” policy.

As mentioned above, the variations in the “always offload” policy are also the result of

changes in the load on the target server and bandwith sharing.

5.5 Related Work

The efficient operation of mobile nodes is becoming an increasingly active field of research

due to its obvious relevance to current computing environment. An important data point

in this body of research are Samsung’s “elastic applications”[168]. In contrast with our

work, elastic applications carry out full application migration (code and data) to a virtual

machine hosted on a Internet-connected server. Originally, the decision of whether to
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migrate or not is done heuristically, but more recent research has studied the principled

semi-Markov decision processes (SMDP) formalism [97]. The approach taken here follows

a more restrictive class of MDPs that completely captures the problem, while casting it in

an economic model.

Market metaphors for management of computer resources are as old as time-shared

systems but most recent work has been done in the context of Grid computing, including

the Tycoon system [137], whose design is a direct inspiration for the one presented here.

The market models that underlie systems like Tycoon are most often “spot” markets,

where services are transacted for immediate delivery. Applications of financial markets

of general and derivative instruments in particular to distributed systems include the use

of options to price computational resources [12] (in the computing-as-service model) or in

hedging the risks of distributed computation via mechanisms like advance reservation [105].

The present work uses option pricing in its “real option” variant in a different way: under

the assumption of fully-decentralized operation, I provide means for a mobile application

to rationally value the cost/benefit of offloading, thereby achieving “elasticity” by allowing

mixed local/remote execution. The system requires minimal infrastructure (no pricing of

resources, no advance reservation facilities, etc.), which makes it well-suited for the widely

heterogeneous environment of mobile wireless settings.

5.6 Summary and Future Work

As computation and sensing devices are becoming smaller and more widely available, it is

increasingly clear that different consideration have to be taken into account when design-

ing systems. In particular, a more distributed operation is likely to be the norm, and it is

unrealistic to assume that all the computing nodes involved will be under user control. A

more ‘opportunistic’ regime, where computation takes place between otherwise unrelated

nodes is worth exploring as an alternative strategy. In this setting, market-informed mech-

anisms provide both a mathematical formalism and a viable implementation approach for
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resource-sharing schemes. Furthermore, market analogies allow the efficient and flexible

use of those resources following user-defined high-level strategies.

Following one such analogy, I presented in this chapter a system that applies the insights

of ROA for capital budgeting decisions to applications running on mobile clients, where the

decision in question is whether and to which server to offload. I validate the ROA-based

offloading algorithm by simulation and find that is both effective and flexible. Future work

includes the application of the technique to real applications with varying utility functions.

It is worth noting that the computational cost of running an offload-manager is itself not

negligible, so the strategy proposed here may work better for medium form-factor devices,

such as tablets, rather than the smallest devices available, such as smartphones. This

situation is likely to change in the near future, should the trends in on-board processors

continue. In fact, the presence of multi-core processors on smartphones and tablets may

enable the continuous execution of a generic “offload managing service”, pinned to a single

core and available to all registered applications. The exploration of such a design, as well

as the study of a wider source of variation in our simulations, is also the subject of future

research.
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Chapter 6

Conclusions and future work

In this chapter I conclude the thesis by summarizing main research results and proposing

future work.

6.1 Conclusions

The three research topics presented in this thesis are about one thing: adaptability. Either

adaptability to input data (as in Chapter 3), to programmer’s specifications (as in Chapter

4), or to operating conditions (as in Chapter 5). To some extent or another, each of these

applications carries out a pattern recognition task, and then, through the use of either

dynamic code generation or some other means of self-behaviour modification, reconfigures

itself to be best suited to the workload.

A summary of the results presented in this thesis is as follows:

• The idea of “code factory” as a means for program adaptation was proposed in

Chapter 3, with a concrete illustration in the form of the Input-adaptive Kalman

filter (IAKF). The IAKF carries out an approximate filtering task on a non-linear
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dynamic system. In contrast with traditional methods, the IAKF adapts to the

input, running as many filters as necessary to best fit the input data. By introducing

an adapting pre-processing stage, the accuracy of the state estimates is improved

and the robustness of the filter to different input data is increased when compared

to its non-adaptive counterparts. Furthermore, in the face of changing underlying

computational environment, the run-time code generation capability enables the more

effective use of computational resources.

• In Chapter 4 I studied the effects of the interposition of a sensitivity analysis step

on simulation and inference tasks. This task, in the form of the functional ANOVA

decomposition, results in an evaluation of the factors of the input that contribute

most to the variance of the model. This knowledge is used to tailor the QMC sampling

regime on-the-fly, to improved estimates in the corresponding task. This method

results in estimators with significantly lower variance than mechanisms that use the

“blind” (i.e., non-adaptive) QMC-sampling parameters.

• I studied in Chapter 5 a distributed system designed to operate in a wireless/mobile

environment. Under such circumstances, it is unrealistic to assume that the reach-

able computing nodes will all be under the mobile user’s control, but it is equally

limiting to believe that they cannot be used. The system adopts an ‘opportunis-

tic’ offloading regime, where computation is delegated should it be evaluated to be

cost-effective to do so (where considerations of what is the cost and what are the

criteria to determine whether a cost is acceptable are left to the end user). To carry

out the cost/benefit analysis, I make use of a market-informed analogy of the dis-

tributed system, and bring the expressive technique of Real Option pricing to bear.

Real Options analysis allows the efficient and flexible evaluation of the suitability of

carrying out the computation elsewhere under a variety of circumstances. The use

of this technique results in better use of the computational resources as a whole, and

the better meeting of the mobile user’s performance goals.

From this work, some over-arching conclusions present themselves: from the almost
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accidental inclusion of the ability to generate code as part of a task-specification mechanism

for a run-time system, a powerful form of metaprogramming can be used to effectively adapt

programs to their environment. Furnishing the end-programmer with this or other means

to tailor data-driven programs in response to late-arriving information allows for simple

and straightforward implementation of programs that deal better with realistic scenarios.

Furthermore, the evaluation and monitoring of the operating environment of a program can

be represented, reasoned about, and acted upon through the use of the Dynamic Bayesian

Network formalism.

6.2 Future work

The current trend in computing electronics to furnish mobile nodes with an increasing

number of sensing devices makes for a desirable platform to apply the techniques explored

in this thesis. In effect, the majority of computer users may not even be aware of their

being permanently connected, both to each other and to the Internet, but that expect more

perceptiveness (over sensor data) from the programs they interact with than ever before.

The input of an application consists now of the whole environment of the user: their

geographical location, the landmarks in their field of vision, their activities history and a

myriad other pieces of information available to the application. And it is the application

that is expected to decide what to do with this information, both for the advancement

of the user’s purposes as to ensure the correct and continued operation of the device the

application is running on. The DBN modeling of these sources of information, coupled with

the adaptive execution of inferencing and decision making algorithms seem like a perfect

fit.

In particular, the exploration of distributed systems like that of Chapter 5, where the

offloading is not only of the data that the remote server is to process, but for full code

migration, where the code is being dynamically generated either in the mobile node or in

a reachable computing node. I believe that the not-so-distant future will allow any single
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application to enlist the help of other agents within network range, most likely running on

specialized devices, with specific resource limitations where on-the-fly code generation will

become an imperative.

Finally, another area that I believe is worth exploring is the self-examination of com-

puter code through the techniques explored in this thesis. For example, a program could

monitor its own execution via a DBN expression of its performance model, and dynamically

recompile/reconfigure itself to better respond to changes in the operating environment (for

example to limit the offloading of code to a GPU or other accelerator in the light of dwin-

dling battery supply), or changes in its input data (through some provisions for change

detection in a filtering solution). Such a self-aware application fits the rapidly changing

computer environment we seem to be trending to.

In summary, dynamic code generation, dynamic computation offloading and Monte

Carlo-based algorithms over Dynamic Bayesian network representations constitute a pow-

erful set of tools used individually or in combination for the advancement of novel com-

puting applications that demand adaptability.
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