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Abstract

Airline planning is a complex and difficult process. The biggest airlines in the world plan

for and operate fleets of over 700 aircraft using tens of thousands of crew members. As

such, small percentages in savings translate to millions of dollars.

In this thesis, we study the pairing and duty generation problem in the context of airline

crew scheduling, and propose approaches to improve the computational speed and the

solution quality. We propose several enumeration algorithms to generate all possible duty

periods of a given schedule to improve on the time required to generate duty periods; and

present a set of column generation models to improve on the solution quality. When tested

on a real test case study, the proposed approaches are found to improve the computational

times from 142 seconds down to less than one second, and the cost savings of 13.7%.
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Chapter 1

Introduction

1.1 Background

The airline crew scheduling problem is defined by the minimization of the cost associated

with flight crews through the development of a schedule which covers all flight legs over a

defined period of time. This problem is a monthly planning process at most airlines, in-

volving the creation of a sequence of flight assignments, starting and ending at a crew-base,

subject to constraints imposed by aviation regulations, collective bargaining agreements

(CBA) and airline policies. The importance of this problem arises from the expense crews

represent in an airline’s budget. Next to fuel costs, crews are the largest direct operating

cost faced by an airline [2], [3], [4], [5]. This means that the research efforts aimed at

reducing this cost, even by small percentages, are easily justifiable.

An airline the size of American Airlines had crew costs in excess of $1.3 billion per year

around 1990 [3], [4], meaning a one percent savings equates to $13 million per year. United

Airlines’ annual savings due to crew scheduling optimization is $16-$18 million on a total

crew payroll of $600 million. These savings are achieved in part by using integer linear

programming over enumeration methods [23], [25]. The magnitude of these figures are not

uncommon. Northwest Airlines had a crew payroll of just over $1 billion [5]. Andersson et

al. [5] report that these figures are representative of European airlines as well.
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As the size of the economic impact implies, the size of the scheduling problem is large

and its solution is difficult. The magnitude of the above figures are a result of the size of

operations. Major US airlines use nearly 500 jets (Delta Airlines has a fleet of over 700

aircraft) to serve more than 150 cities with 2,500 daily flights. This requires some 5,000

cockpit crews and 10,000 flight attendants [24].

There are five characteristics defining the airline crew scheduling problem: distinct

crew categories, the fleet types which the airline operates, the network structure which

the airline operates, all applicable rules and regulations pertaining to crewed operations,

structure of the timetable of flight legs and the crew cost structures.

An airline deals with several distinct crew categories to be able to operate their routes.

Among the flight crew there are captains and first officers and in some cases flight engineers.

Also on board of an aircraft there is a purser, flight attendants and hostesses. All of these

crews require separate scheduling, are not interchangeable and are subject to varying rules

and regulations, which allows the problem to be broken down by crew type. Captains and

first officers are scheduled together but the pilot problem can be broken down by fleet type.

Pilots are trained to operate only one type of aircraft and are not interchangeable. The

cabin crew problem is subject to different rules and can be subject to their own CBAs.

The cabin crew problem at United Airlines, for example, is decomposed by wide-body

fleet, narrow-body fleet requiring more than three flight attendants, and narrow-body fleet

requiring three or less flight attendants [5].

Airlines operate networks which can have various and specific characteristics. The

three main types of networks in use are hub-and-spoke networks, point-to-point networks,

and international long-haul networks. Hub-and-spoke networks allow airlines to connect

a large amount of cities (nodes) with relatively few flying routes (arcs), see figure 1.1.

This means that there must be many connections available at central hubs. As such these

networks are designed with short time periods, in which many flights arrive into one hub

and then subsequently have a period of many flights departing. This achieves the goal of

maximizing the trip origin and destination combinations available, given a limited set of

flying resources. One of the drawbacks is that crews then also have hundreds of connection

possibilities at hubs, increasing the size of the problem. In addition, many hubs are crew
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Figure 1.1: Sample networks of a)hub and spoke network and b)point to point network.

bases, meaning that not only are there many possible connections, it is also possible to end

a crew’s pairing and there are then also many possibilities to start a new crew’s pairing.

Most major airlines operate multiple hubs, making the problem more challenging. Point-

to-point networks tend to be more desirable for the passengers. Airlines attempt to offer

the same travel options but with fewer connections. For example, on a hub-and-spoke

network, panel (a) in figure 1.1, three connected flights may be required to travel from city

A to city C and two flights are required to get from A to B. A point-to-point network tries

to offer direct flights. In panel (b) of figure 1.1, a passenger can travel from A to either B

or C with one flight. In order to offer this benefit, such a network would need to be fully

connected and would require many more flying resources.
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International long haul routes often have an aircraft flying to a destination far away

and returning to the same origin. In some cases the aircraft may fly back to a different

airline hub or base. These types of networks tend to have limited possibilities in terms of

feasible flight sequences for air crews. Therefore, long haul crew planning problems have

unique solution characteristics. For example, in figure 1.1, these pilots would be flying

between D and E and connecting to other hubs in the network.

The crew scheduling problem is generally treated as two separate problems. First

anonymous schedules are created and selected to cover all flights, called the crew pair-

ing problem. Second, these schedules are assigned to specific crew members in the crew

rostering problem [5].

Duties and pairings are subject to a host of complex rules and constraints imposed by

aviation regulations, CBAs, and airline policies. Usually regulations set forth by regulatory

bodies such as the Federal Aviation Administration (FAA) are in place for the safety of

pilots, passengers and anybody who may be impacted by general aviation, including the

public. Collective bargaining agreements are agreements between the airline and the crews

which are intended to protect the crews and ensure reasonable working conditions. The

airline itself will also set scheduling policies to ensure the operability of the created schedule

as well as robustness of the schedule.

Legs in duties and pairings must be sequential in space and time. There are constraints

on maximum and minimum permissible time between legs. There are constraints on the

length of ‘on-duty’ time, and on the amount of actual flying time is allowed to be flown in a

duty period. Pairings must start and end at a crew-base. Pairings generally are generated

to adhere to a prescribed length criteria. This length is typically 1 to 5 days in short to

medium haul domestic operations in North America. American Airlines for example limits

pairings to three days [4]. International long haul problems generally allow longer pairings

[5]. The maximum length of pairings is usually set by airline regulations. For example,

some rules could be that each duty period is at most 12 hours long, a layover is at least 9

hours long or 1.5 times the length of the flying time in the preceding duty period, whichever

is longer. The maximum layover length is 32 hours long [5].
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Figure 1.2: Decision tree illustration of the complexity of crew rest rules as demonstrated
by Lavoie et al. [28].

Within pairings there are complex rest requirements, beyond strict maximums and

minimums, which are a function of the flight time and duty lengths within the pairing.

The 8-in-24 rule is one example of these complex rules. The 8-in-24 rule is a regulation

imposed by the FAA, requiring that if during any given 24 hour period, the flying time

of any crew exceeds 8 hours, that crew must be compensated with extra rest. This 24

hour period is evaluated as a sliding time interval. The violation of the 8 hour limit then

requires a crew to receive an intervening rest period to break up the flying times, which

is a function of the length of flying, as well as a 14 hour rest opportunity immediately

after the flying which violated the rule [24]. Lavoie et al. [28] provide another example of

a complex rule and an excellent decision tree which demonstrates the complexity of rules

associated with rest time requirements. This case is replicated in figure 1.2.

In figure 1.2 rounded boxes indicate states of the pairings, rectangles indicate duty
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periods and arcs with captions indicate duty breaks and their corresponding lengths. There

are three states which a pairing can find itself in, state 1 is a normal state where there are

no rest deficiencies. State 2 is a rest deficiency which occurs when a duty period has more

than six hours of flight time and is followed by less than twelve hours of rest time. This

deficiency state can only be followed by a duty of less than six hours of flight time and

then a compensatory rest period of 20 hours or more. State 3 is a state in which a duty

period of more than six hours is followed by a short rest, less than three time the flying

time. This deficiency state must be followed by less than six hours of flying time and at

least 25 hours of rest time. If the rest time exceeds 35 hours, the deficiency is resolved, but

if the rest time falls between 25 and 35 hours the deficiency is propagated. Given these

various states and conditions for compensating for deficient rest times, it becomes easy to

see the difficulty in mathematically programming such a system.

Costing approaches can also vary from airline to airline. In the case of airlines which

pay crews on monthly salaries, duties can be assigned a cost equal to the number of crews

required to operate that pairing. If the pairing is repeated day to day, the cost would be

equal to the length of the pairing. The solution in this case would be a minimum amount

of crews required to operate all pairings. This should yield a set of pairings with high

utilization, in other words, the pairings would have a maximized number of flight hours

per pairing. This approach is relatively simple but unfortunately is not the predominant

method. Airlines with salaried pilots tend to be European airlines. Crews are generally

paid by flying time. This is the norm in North America. Crews can also be compensated

for excessive ground times and time away from base (TAFB), and may be eligible for per

diem when staying the night away from base. The cost function of a duty period can then

be described as follows:

cd = max(fd × elapse, fly + dh,mgd) (1.1)

where fd is a factor indicating the minimum amount of time a crew-member gets paid for

each hour of duty time, elapse is the duty time, fly is the flight time in the duty period,

dh is the amount of deadhead time for which a crew-member gets paid, and mgd is the
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minimum guaranteed amount of time for which a pilot gets paid if they begin a duty [9].

As can be seen in the duty cost function, pilots receive pay for what the airline sees as

unproductive time, that is, time where the pilot is not flying an aircraft and hence not

contributing directly to revenue generation for the airline. This gives rise to the principle

of pay and credit time. This is a quantity of time defined by the difference between the

time for which a pilot gets paid and the amount of time of actual flying. In equation 1.1

the first term discourages duties which have long or frequent sit times in them and the

third term discourages extremely short duty periods.

The cost function for a pairing can be expressed as follows:

cp = max(fp × TAFB, ndp×mgp,
∑
d∈p

cd) +
∑

d̂,d̄∈p,d̂→d̄

e(d̂, d̄) (1.2)

where fp is the amount of time a crew-member gets paid for every hour away from base,

TAFB is the time away from base in hours, ndp is the number of duty periods in the

pairing, mgp is the minimum guaranteed pay per duty period in the pairing and cd is as

defined in equation 1.1. And where d̂ and d̄ and duty periods in p, d̂→ d̄ indicating that

d̄ is the duty period which immediately follows duty d̂, and e(d̂, d̄) is the cost of the duty

break between duties d̂ and d̄. This cost can include many things such as hotel costs, per

diem costs, meal costs or anything else associated with an overnight duty break.

As can be deduced from the above equations the sources of expensive pairings are long

and frequent sit times, deadheads, and overnight rests. Frequently, pairings balance a

tradeoff between deadheads and over-night stays.

In broad terms, airlines which are based in geographically similar locations use similar

approaches to their operations. As such, traditionally the North American and European

characteristics of the airline crew scheduling problem have been compared. A summary

of the above outlined characteristics and a comparison of European and North American

traits is provided in table 1.1.
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North America Europe

Crew Category Decomposes by crew category
Fleet The pilot problem decomposes by fleet type

but cabin crew does not.
Network Structure Predominant hub-and-

spoke structure. Designed
to make many varying
connections possible.

Less structure, more point-
to-point flying.

Rules and Regulations FAA regulations are most
important and constraining.

Strong and complicated col-
lective bargaining agree-
ments.

Regularity of the Timetable Repeating weekday services
with reduced weekends.

Less regularity in day to day
operations.

Cost Structure Credit hour cost structure. Crews receive fixed salaries.

Table 1.1: Comparison of the properties of the North American and European Crew
Scheduling problems [5]

1.2 Terminology

As noted in section 1.1, one method of decomposing the problem is by aircraft type. A

Wide-body Aircraft is one with two passenger aisles in the seating area. In contrast to this

a Narrow-body Aircraft is one with only one aisle. The number of aisles is dependent on

the fuselage diameter.

The basis for the scheduling of crews is the schedule of flights the airline has chosen to

operate. These services are transportation to destinations given in the Flight Schedule or

Time Table. This is usually set monthly and contains the particulars of the complete set

of flights to be operated over the given time period. The flights themselves can be referred

to as Flight Legs, Flight Segments or Sectors. A flight leg connects two airports referred

to as Stations. A Coterminal is a location where multiple stations are in close proximity

which and connectable by ground transport. This allows crews to fly into one station

and then connect to another airport. This can happen in places like New York where

John F. Kennedy International (JFK), Newark Liberty International (EWR), LaGuardia

(LGA) and Long Island MacArthur (ISP) Airports are within relatively close proximity.
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Additional examples are London, with London Heathrow (LHR), Gatwick (LGW), London

Luton (LTN), London Stansted (STN), London City (LCY) airports and in Paris there are

Paris-Charles de Gaulle (CDG) and Paris-Orly (ORY) airports. These airports could be

connected efficiently by some other means of transportation.

From the flight schedule the Aircraft Routing Plan is created. This is the plan for the

allocation of available aircraft to execute the flights outlined in the flight schedule.

In scheduling, a crew might need to be relocated in order to operate a specific flight.

This is done by transporting them as passengers on another flight. This practice is referred

to as Deadheading. This can be done on the airline’s own flights, called Online Deadheading,

or another carrier can be used, which is called Offline Deadheading. Offline deadheading can

be through alliance partners or tickets may be bought on another airline through alternate

arrangements. Crews can also be moved by other means if airports are sufficiently close

together or otherwise easily connected. This type of crew positioning uses what is referred

to as a Ground Transfer. The modes of transport used for ground transport include car,

bus, water or train. In contrast to deadheading segments which are being operated by the

crew are called Live Segments.

One of the building blocks of a solution the airline crew planning problem is a Duty

Period or Flight Service. This is a legal work day composed of at least one flight leg or

deadhead that can be executed without the requirement for a rest period. Duty periods

are restricted by maximum limits on flight time, landings, time duration. There can be a

large variety of duties that do not involve any flying as an operating crew member, such

as training or other ground duties. Duties that do involve flying as part of an operational

crew are sometimes called Flight Duty Periods. Duty periods and flight duty periods can

be classified into a variety of categories. This may help with, or be important in things

like costing or extra time requirements for things like clearing customs. These categories

can include: domestic duty, international duty, night duty and redeye duty.

Within a duty, there can be many flight legs. Between those flight legs, aircraft need to

be unloaded and reloaded, passengers need to deplane and board again and crew may need

some time. The time between live flight legs is called the Turnaround Time, Connection
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Time or Sit Time.

A series of one or more duty periods is called a Pairing, Trip, Rotation, Sling or a Tour.

A pairing must start and end at an airport where crews are stationed, called a Crew Base.

Within the pairing duty periods are separated by legal Dutybreaks, also called Layovers,

Rest Periods, Night Stops or Stop Time in Call.

In scheduling pilots an important property of a flight leg is the Block Time. This is

the scheduled duration of a flying segment from gate to gate. In general the Segment

Credit Time, the amount of time awarded to a pilot for flying a given leg, is then the same

as the block time however it may vary depending on the airlines and specific legs. The

Synthetic Time or Penalty Time is the time for which a pilot gets paid but does not do

any actual flying. Depending on contract rules this could include deadheading time, or

just time flown below minimum guarantees. Where a Minimum Guarantee is a guaranteed

minimum threshold amount of time paid whenever the pilot goes on duty. This may take

the form of a hard minimum, imposed on each duty period, or a soft minimum, applied

to the average duty period, depending on airline or contract rules. One way of stating

synthetic time is

syn time = max(0, guaranteed minimum− block time + deadhead time) (1.3)

The total Credit Time is the sum of the segment credit times and the synthetic time,

this is what dictates the pilot’s pay and as seen in equation 1.3 cannot be less than the

guaranteed minimum. Additional terms which can influence a pilot’s pay included Duty

Rigs and Trip Rigs. A duty rig is a factor which states that a pilot must receive a minimum

amount of credit time as a function of the length of the duty period. In the statement

‘For every x hours on duty, the crew-member is guaranteed one hour of flight pay’, x is

the parameter referred to as the duty rig. If the guaranteed amount is greater than the

actual total segment credit time in the duty period the crew-member is credited with the

difference. The trip rig is the same principle applied to an entire pairing.
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1.3 Challenges

Aside from sheer size, there are two main challenges in the airline crew pairing problem.

The first is the generation of pairings. Due to the complex non-linear cost structure and

the various rules which dictate feasibility, it is not easily formulated mathematically and

characterization of good or even all feasible pairings mathematically is extremely difficult.

Dealing with all rules, safety regulations, union agreements and company policies while

adhering to sound economics is a large problem. Recall the rules described in section 1.1,

such as the 8-in-24 rule.

The second challenge is the selection of an optimal set of pairings. This is formulated

as a set partitioning problem. The set partitioning problem is a hard problem to solve,

and in the context of the airline crew pairing problem, the number of variables is huge

as well as a considerable number of constraints. Aside from the wide array of rules and

regulations airlines have multiple crew-bases and need to adhere to agreements placing

specific fractions of flying time at each crew base. Crew-base constraints are in place

as a result of collective agreements and crew distributions. This means that the flying

time must be distributed over a set of crew bases within prescribed guidelines. These

rules add one or more constraints per crew-base to the set partitioning problem. Not only

does it make the set partitioning problem more difficult to solve by deviating from the

pure set partitioning problem and adding more constraints, it makes the optimal solution

more complex. These factors further complicate the enormous number of decision variables

(from pairings) that are generated and the large amount of constraints (legs) that make this

difficult to solve. The difficulty of a set partitioning problem appears to increase more with

increased constraints (number of legs) rather than increased variables (columns) [5]. The

solution which comes out of this problem also requires to be an integer solution so integer

programming techniques need to be used rather than linear programming techniques.
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1.4 Industry

The schedule is relatively firm and does not frequently change drastically from one plan-

ning period to the next. As such the crew planning problem receives a lot of attention

by dedicating many man-hours and resources to finding the best possible solution. The

resource planning problem for airlines is an extremely large problem and extends beyond

just crew scheduling. Large airlines operate around 100 flights per day using their small

fleets and anywhere between 500 and 1000 flights for their larger fleets [5]. This is why the

airline resource planning problem is generally broken down into stages. At each stage dif-

ferent considerations are applied and usually an entire department within an airline works

to achieve an ‘optimal’ solution. A common way in which tasks are divided is shown in

figure 1.3.

Figure 1.3: The four stages of the airline resource planning process

As illustrated in figure 1.3 four stages of the planning process include: timetable con-

struction, fleet assignment, pairing generation and crew assignment [5].
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A department in charge of timetabling makes decisions regarding what destinations to

serve, which days and what time flights are to be operated. In these decisions marketing

demand forecasts, flying resources, slot and gate availability, landing rights and network

constraints are considered. The goal is to serve markets which are most in demand. The

output from this department is a dated list of flights to be operated.

After the timetable has been set the fleet has to be assigned to flying the proposed

timetable. Here specific fin numbers (aircraft identifiers) are assigned to legs in the

timetable. In this stage it is important to consider the feasibility of flying the timetable,

the projected demand for flights, the maintenance commitments and requirements of air-

craft and operational limitations. At this stage these first two departments are required

to have maximized the expected revenue of the given timetable with set aircraft routing

plans.

Pairing Optimization then takes the firm timetable and aircraft flows, and applies the

crew rules; CBAs, regulatory and airline. It tries to optimize costs such as the cost of

crews operating flights, hotels and deadheads. This step requires detailed information on

legs, aircraft assignments, hotel costs, deadhead costs and ground transportation costs and

options. The output of this department is a set of anonymous pairings which cover all legs

in the schedule at lowest cost.

Pairing Assignment involves taking the generated pairings and assigning them to in-

dividual crew members. This is generally done through preferential biding, where crew

members can bid their preferences and the schedulers optimize over these bids. This takes

into account set pairings, more crew rules, crew vacation schedules, training activities,

seniority and crew preference bids. This department puts out a set of customized lines for

each crew member outlining a legal combination of flying and training activities for that

month.

Some airlines may break down the resource planning process differently. Barnhart

et al. [9] for example break the problem down to schedule generation, fleet assignment,

maintenance routing and crew scheduling. This scheme covers the same tasks and factors,

the only difference is the grouping of tasks. Regardless of how they are grouped, the stages
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are solved sequentially due to their respective sizes, complexities and unique challenges

[9]. There is some communication up the process, but it’s limited. For example, if a

particular sequence of flights cause consistent crewing and aircraft problems, this may

be communicated to the timetabling department to try to avoid these situations. Some

relatively small amendments may be made later on in the planning cycle which then have

to be accounted for in fleet assignment and crew solutions. It is therefore desirable to be

able to complete the crew planning aspect in as little as time possible in order to have

the solution cover the most recent timetable and aircraft assignment. Amendments can be

costly due to the difficulty of updating a current solution and crew assignments.

Some of the commercial systems and approaches used by airlines include the Carmen

Crew Pairing System which was taken over by Jeppesen which is owned by the major

airframer Boeing, Sabre Airline Solutions, AD-OPT by Kronos and Unisys. Some airlines

have their own crew planning implementations, such as Lufthansa Systems by Lufthansa

and American Airlines had American Airlines Decision Technologies (AADT). Some air-

lines still create schedules manually but they tend to be worse than schedules created by

optimizers and this approach is only practical for extremely small fleets.

The solution to the crew pairing optimization problem is characterized by a set of

pairings which is practically implementable, operationally robust and economically sound,

covering all legs. From the perspective of airlines the most important goals of implementing

advanced crew scheduling procedures are: to find cost savings, to find solutions quickly,

to be able to implement and operate the schedule effectively and to provide crews with

enough flying hours.

As previously mentioned speed is another important parameter. This would allow an

airline to move the planning/scheduling cycle closer to execution dates which allows for the

capture of most recent changes by other departments. Schedules are not always static so

if the pairings can be generated as close as possible to the operational period, the changes

to the schedule can be dealt with in the best possible manner. Performing last minute

changes can be expensive because these extra trips are rarely efficient and often things like

deadheads are required to make them feasible.
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For robustness reasons, it is preferable to keep the crew on the same plane. If plane

changes are required it is generally desirable to increase the amount of time of ground time

between legs but care must be taken not to increase it so much that the pairing becomes

extremely expensive.

1.5 Focus of This Thesis

This thesis deals with the pairing optimization for the airline crew pairing problem. The

goal is to improve the tradeoff between computation time and solution quality. This allows

for the application of this work to save time and money for airline crew schedulers, creating

better schedules and operations, which will improve the passenger’s flying experience. We

propose an enumeration approach for the generation of duty periods, as well as a hybrid

enumeration-column generation scheme. The enumeration approach is improved through

the application of a different search techniques in combination with pre-allocation and

pre-processing. The column generation uses various different sets of previously generated

pairings to solve the restricted master problem and generate better pairings, yielding better

solutions. Various rules and criteria are applied and tested for the selection of enumerated

pairing sets. In addition the column generation approach is modeled using two different

cost functions on the arcs of the sub-problem. The proposed approaches are all tested on

a real case study in order to compare their performance.

This thesis is organized as follows: Chapter 2 presents a review of relevant literature

related to solving the airline crew scheduling problem. Chapter 3 describes the formula-

tion and the proposed approaches. Chapter 4 outlines the computational results achieved

through the application of the proposed approaches. And chapter 4 provides conclusions

based on the work presented in previous chapters and suggests some areas of future research

in the field.
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Chapter 2

Literature Review

There are several classes of literature in the field of airline crew scheduling. Some of the

literature studied includes general information literature, academic surveys, and literature

on the two main approaches used to solve the crew pairing problem, subset approaches and

global approaches. Some of the work within these categories covers subjects such as column

generation, network approaches, and heuristics approaches. There are two pertinent areas

to solving the crew pairing optimization problem, they are pairing generation and pairing

selection (optimization). Pairing selection is a set partitioning problem which is a field of

study on its own. In this section set partitioning will only be covered in the context of

airline crew scheduling and will not cover set partitioning literature itself.

2.1 General Literature and Surveys

Arabeyre et al. [6] are frequently cited as one of the first survey papers on the subject of

airline crew scheduling. Arabeyre et al. [6] survey industry approaches used at that time,

they contrast various airlines documenting the different characteristics of problems faced

by individual airlines. Differences in constraints, requirements, rules, network structures,

etc. They discuss methods airlines used to generate their duties and pairings, how each

airline costs pairings, matrix size reduction techniques, optimization techniques applied
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and rostering linkage procedures. These techniques are all varying heuristics using rules

of thumb from industry experience and some predetermined logic algorithms. All airlines

used heuristics to generate duties and pairings and optimization methods of the day were

sometimes applied in the set partitioning or set covering solution. Airlines then also faced

size issues and had to reduce the matrix size before attempting to optimize, this also was

done heuristically. If the set partitioning or set covering problem was solved heuristically

this reduction step can be skipped. In this era, pilots in Europe tended to be paid a salary,

compared to North America where pilots tended to be paid based on flight hours. Arabeyre

et al. [6] show us that in its infancy, the crew scheduling problem is solved either through

heuristic approaches or through exact approaches of restricted problems, not much has

changed with regard to this fact. This is seen in more recent pieces of general literature

including Andersson et al. [5], Barnhart et al. [9] and Gopalakrishnan and Johnson[24].

Gopalakrishnan and Johnson [24] provide an especially good survey of current methods

used for the problem itself and for algorithms which support the approaches applied.

Andersson et al. [5] focus on the crew pairing problem. It reviews the crew pairing

problem and the formulation and discusses optimization methods previously applied. They

also discuss a commercial pairing construction system called the Carmen Crew Pairing

System.

Ernst et al. [20] provide a review article covering staff scheduling problems from op-

timization to rostering. It covers many areas in transportation systems including airlines,

railways, busses and mass-transit systems, and many other areas as well. It points out gen-

eral solution approaches as outlined in close to 200 papers. Ernst et al. [19] also provide

an annotated bibliography of personnel scheduling and rostering, which references over 700

pieces of literature. These two papers provide an excellent source of a wide range of papers

on the subject.
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2.2 Structure of Solution Approach

Because the pairing optimization problem is such a large one, containing thousands of

flights over a planning horizon, it can be tackled by breaking it down into three stages.

These three stages, the daily, weekly and fully dated problem, are solved sequentially.

2.2.1 Solving the Daily Problem

In solving the daily problem the entire schedule is considered but it is reduced to fit the

assumption that the same flights are operated every day. As such, only a solution of a

single day is required and only pairings as long as the maximum pairing length would

need to be generated. The repetition of the solution to this daily problem would cover the

entire monthly schedule. This approach makes the problem more tractable because it only

considers the number of legs which are operated on a single day and adds regularity to the

pairings which is operationally desirable [4].

To convert the fully dated problem to a daily problem, the flight legs which are repeated

less than four days per week are removed from the problem. A great deal of research focuses

on the solution of the daily problem because it is assumed that this is the basis of a good

solution and this is the most difficult problem to solve [5]. The solution of the daily problem

is especially useful for solving a largely regular schedule, however in the case of an irregular

schedule, the benefits are greatly reduced.

In the daily problem the cost of a pairing, assuming salaried pilots, is the number of

days which the pairing covers, because you would require that many crews to operate that

pairing every day. In the case of pilots which are paid on credit hours, the cost is the

number of credit hours of the pairing as calculated by equation 1.2 on page 7.

Solving the set covering problem of this problem yields an optimal solution which exe-

cutes the same pairings every day. However, these solutions are not always optimal because

the optimal solution may include legs being covered by different pairings on different days.

The linear relaxation may give such a solution to this problem. In the case presented by
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Andersson et al.[5] an example of this is presented. This optimal solution can be found by

solving the linear relaxation of the set partitioning problem. The linear relaxation gives

a lower bound on the non-daily solution but there is no guarantees about it being a good

bound [5]. The impact of using one or the other solution for the next step is not mentioned.

The daily problem can be solved as a standalone problem or it can have a subset

approach applied, such as in section 2.3.

2.2.2 The Weekly Problem

The weekly problem assumes the schedule is repeated on a weekly basis to make up the

full month’s schedule. The aim is to utilize the daily solution as a ’warm starting point’.

The daily problem solution is taken and modified to account for weekly exemptions to

the assumed daily schedule. Again, the repetition of the weekly problem will cover the

assumed fully dated problem. In many North American airline schedules, the daily problem

is relatively consistent throughout the week but only varies on the weekends so the changes

required to go from a daily solution to a weekly solution are minimal. In a much more

irregular schedule, the changes will be much more drastic reducing the value of the daily

solution [5].

2.2.3 The Monthly or Fully Dated Problem

For the fully dated problem, the repeated weekly problem is modified to fit the fully

dated schedule. For North American carriers this generally means adjusting for changes in

timetables and holiday schedules [5].

2.3 The Subset Approach

Traditionally, commercial solvers have used local optimization techniques, employing var-

ious subset approaches. The subset approach is the most commonly used approach to
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solve the airline crew pairing problem. It is employed by the TRIP (Trip Reevaluation and

Improvement Program) system used by American Airlines and Continental Airlines, and

the TPACS system used by United Airlines.

It uses an iterative local improvement algorithm which begins by using an initial work-

able solution. This solution must be feasible to the set partitioning problem. The initial

solution can come from a similar historical solution, in some cases a specialized initial so-

lution generator is used, or a solution is manually constructed [4], [9]. Most approaches to

initial solution generation use a previous solution as a starting point, as usually schedules

only see minor changes from one planning period to the next. From the initial solution

a sub-problem is selected. Gershkoff [23] just uses ‘some heuristic’ because intelligent se-

lection is surprisingly difficult and suggests using random selection is the best approach.

Simply selecting high cost pairings to improve upon doesn’t work [23]. The size of the

sub-problem which is selected can vary and is usually determined by the experience of a

scheduler, and can depend on the stage of optimization. For example, if improvements

become scarcer, the sub-problem size may be increased in order to make larger changes to

the solution possible such that the local minima can be escaped. A system such as the

TRIP system, selects five to ten pairings per iteration [4] and the Trip Pairing for Airline

Crew Scheduling System (TPACS) selects only two or three pairings [25]. The selected

pairings are then broken down, and all the legs which are covered by these pairings are

then used to generate pairings.

The methods applied for the generation of pairings are discussed in section 2.4.

In cases where five to ten pairings are selected, such as with the TPACS system, it is

possible to totally enumerate all pairings. Once generated, all pairings must either already

be known to comply with all rules or they must be checked. In addition, cost can only be

calculated once the pairings are completed because the nature of the cost structure makes

it such that small changes can determine which cost factor dominates (see equations 1.1

and 1.2). Once all pairings are confirmed to be legal and the costs are known, they are

entered into the set partitioning problem. Because the original pairings are also in the

set partitioning problem, and are a feasible solution, they are an upper bound on the

optimal solution. The optimal solution must then be found and entered into the overall
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solution. Because of this upper bound, the overall solution’s cost can only improve with

each iteration.

Figure 2.1: Block diagram of the subset optimization approach

As previously mentioned one of the systems using this approach is the TRIP system

of American Airlines and Continental Airlines [3], [25]. TRIP is a program which is based

on the TPACS program. Anbil et al. [3] report work based on TRIP and report ma-

jor improvements. TRIP solves the set partitioning problem by using a hybrid algorithm

combining linear programming techniques and Lagrangian relaxation. This approach cal-

culates a set of Lagrangian multipliers which are then used in order to efficiently find the

solution to the LP [24]. ALLPS by Unisys is another program which has been likened to

TRIP [24]. This system was used at Northwest Airlines and USAir.

TRIP did not include base constraints, but TPACS did. It wasn’t until Anbil et al. [3]

that it considered these types of constraints. The difference is the formulation of the set
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partitioning problem. The TRIP set partitioning problem is:

min
∑
p∈P

cpxp

st
∑
p∈P

aipxp = 1 ∀i ∈ I

xp ∈ {0, 1}

(2.1)

where cp is the cost of pairing p in the set of pairings P , aip is 1 if leg i is covered by

pairing p, and xp is a binary decision variable taking the value of 1 if pairing p is in the

optimal solution and 0 if it is not. This formulation can be turned into a base constrained

set partitioning problem by adding the following constraint.

Lj ≤
∑
p∈P

bjpxp ≤ Uj ∀j ∈ J (2.2)

where bjp is the value of resources required from base j in order to execute pairing p, Lj

is the lower limit of resources that must be used at base j and Uj is the upper limit or

resources which can be used from base j. TRIP has been developed to use a heuristic to

adjust weighting of the costs of the pairings to steer solutions to satisfy base constraints.

The formulation which TPACS uses is an elastic set partitioning model [25]. This model

is formulated as follows:

min rx + ps− + ps+ + ev+

st Ax + Is− − Is+ = 1

Dx− Iv+ ≤M

xp ∈ {0, 1}
s−, s+, v+ ≥ 0

(2.3)

Where A is the matrix indicating if given legs are in specific pairings, exactly like aip above,

r contains the costs of the pairings, D is the parameter containing base resource constraint

data, where there is a row for each base in the problem, M is the upper limit on base

resources. As above x is the binary decision variable indicating the selection of optimal

pairings, s− and s+ permit the violation of the set partitioning and base resource constraint
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at a penalty cost of p. The last term in the formulation, v+, allows for the violation of the

base resource constraint at penalty cost e.

The approach by Graves et al. [25] is also a sub-problem approach but overlaps some-

what with column generation. They solve the above flexible set partitioning model to

obtain data to generate a limited set of pairings to add to the eventual integer program.

They begin by applying a concept called interior enumeration, as described in section 2.4.2,

to each leg, to obtain an initial solution. The problem is solved, likely yielding a solution

which covers some legs more than once. The set of pairings selected are then reduced to

a set which offers disjoint coverage of legs. The legs which are then not covered are used

as seed legs to generate more pairings. These pairings are then added to the flexible set

partitioning problem, which is solved again. This process is repeated until a disjoint solu-

tion is found. The generation of pairings in this approach is already limited, but can be

limited even further using system parameters they offer. At this stage they perform local

optimization (2-OPT and 3-OPT) taking two or three pairings at a time and performing

total enumerations

Even though a solver such as TRIP can find a global optimal solution for smaller

instances, one of the problems which can be experienced with this approach is that the

solution may get stuck in a local optima. To get out of this local optima larger changes to

the solution may be needed. As alluded to before, increasing the size of the sub-problems

would be one way to exit these local optima, and this technique may be employed once

the solution remains unchanged for a period of time. In the case of the TRIP system, the

sub-problem optimizer can only handle problems up to 100 segments and 10,000 columns

[4]. Another way to avoid local minima is to accept solutions which do not improve the

solution. Anbil et al. [3] have employed two of the techniques mentioned here, they have

implemented increasing the size of sub-problems, and a customized approach to accept

solutions which do not improve the solution. They have also found that often there are

alternative optimal pairings. In simultaneously considering multiple solution paths they

are able to minimize the impact of local minima. Unfortunately, the do not provide very

many details on these approaches.

Some additional previous work using this iterative scheme are presented by Housos
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and Elmroth [26], the authors present an iterative scheme which is reported to be very

successful, Ball and Roberts [8] and Etschmaier and Mathaisel [21].

2.4 Pairing Generation

Literature rarely supplies specifics in this area. Pairing generation is mostly done through

some version of an enumeration technique. There are four options for exhaustive pairing

generation; total generation of all pairings covering all legs, total generation for a limited

set of legs, partial generation for the total problem and partial generation for a partial

problem. Total enumeration is only possible for small problems, and is hence used in local

optimization approaches in section 2.3.

Gershkoff’s [23] approach is to order legs by station and time, beginning with the earliest

departure from crew base station, the algorithm searches for the earliest legal connection

at the arrival station of the last segment added. If the arrival station of the last segment is

the same as the first departure station a pairing has been created, and is written to file. If

the addition of a segment leads to an illegality the branch is terminated at that segment.

This strategy was improved by Minoux [30] with a heuristic pruning algorithm.

2.4.1 Partial Enumeration

Partial Generation is another approach and it aims to generate only good pairings for all

legs. This is difficult because it is difficult to identify what makes a good pairing and what

pairing is going to help the overall problem. This is where column generation and global

approaches comes in. These approaches attempt to remedy this.

One partial enumeration approach which is relatively straight forward is described by

Baker et al. [7]. First legs departing at a crew base are identified to be used to seed

pairings. These legs are now considered partially completed pairings. The set of legs

which do not begin at a crew base is ordered by departure time, the first leg from this set

is selected and a search for a partially completed pairing to attach it to begins. Usually
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several partially completed legs can be identified and five different criteria for selecting

which one to use are proposed. These criteria are selecting the first feasible pairing, the

first feasible pairing with the same aircraft flight number, the first crew in takes the first

flight out, last crew in takes the first flight out or minimum cost assignment of adding that

leg to the partial pairing. The criteria specifying first or last crew in takes first flight out,

maximize and minimize the difference between departure time of the leg and the arrival

time of the partial pairing respectively. Baker et al. [7] reports that the last crew in takes

first flight out and minimum cost assignments yield the best quality solutions.

2.4.2 Interior Enumeration

Interior enumeration is rarely seen in literature but one instance is shown by Graves et al.

[25] and is worth mentioning. A leg is taken and then connections are made backwards

until a crew domicile is reached. To do this one could take the approach by Gershkoff [23]

mentioned above and modify it slightly. Combining with a forward enumeration you can

create pairings. This is designed to create pairings to include specific legs. This feature

may be very useful in improving solutions which have legs that are difficult to cover.

2.5 Global Approach

Anbil et al. [4] describe a global approach which is motivated by the desire to overcome

the local optima problem of a sub-problem approach. They consider the entire problem

instead of focusing on smaller pieces of the problem. The approach does not guarantee

finding the global optimum but takes into consideration the entire problem and constructs

a solution without using the initial solution.

The approach begins by exhaustively generating millions of pairings. Anbil et al. [1]

begin with the generation of 2 million columns. These pairings are then entered into the set

partitioning problem. Solving this integer problem would be impossible. Instead the LP

relaxation is solved, with the objective function minimizing the excess cost of all pairings.
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The LP relaxation may still be difficult to solve. In the case described by Anbil et al. [4] 12

million columns were generated and then reduced to 5 million before the set partitioning

LP relaxation was attempted. The approach which was used to find the optimal solution

was the SPRINT approach by John Forrest. Once the LP solution has been found the best

10,000 to 15,000 columns are taken and entered into the integer set partitioning problem.

These columns are selected based on their reduced costs. In solving the integer problem,

for small set partitioning problems, simply rounding linear variables which were closest to

one yielded good solutions. However, for larger problems, even a regular branch-and-bound

approach failed. A special code which works with branching on follow-ons was developed

to reduce the up to 15,000 columns down to 3,000. When the number of columns is reduced

to this stage, it is solved using an MIP solver. The approach presented by Anbil et al. [4]

was implemented for the schedules of two aircraft types at American Airlines and realized

1.2 million dollars per year in savings over the solutions from the TRIP system.

2.6 Column Generation

In the column generation approach to the airline crew scheduling problem, the master

problem is the set partitioning problem. This ensures that all legs are covered and in

certain cases that base constraints are met. The sub-problem is a typically a shortest path

problem. There are different ways the sub-problem network is modeled. Two possible

network structures are the leg-on-node network, and the leg-on-arc network [17]. Minoux

[30] and Desrosiers et al. [18] use leg-on-arc networks. However, networks can also be

created using duty periods. For instance Barnhart et al. [11], Lavoie et al. [28] and Vance

et al. [33] use duty periods instead of legs to create networks. The process begins by

exhaustively generating all legal duty periods. These duty periods become the nodes of

the network. The arcs on the network are legal overnight rest connections between duties,

which could make up a pairing. Once this has been established, a set of pairings must be

generated which constitute a feasible solution to the set partitioning master problem. A

good way to determine a good starting solution is to have an experienced scheduler create

one by hand, using a previous solution.
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min
∑
p∈P

cpxp

st
∑
p∈P

aipxp = 1 ∀i ∈ I

0 ≥ xp ≤ 1

(2.4)

This allows for the first solution to the restricted master problem (equation 2.4) to be

found by applying the revised simplex method to the continuous linear relaxation of the

set partitioning problem. The dual variables of the optimal solution are then applied to

the cost of the nodes of the sub-problem network. The dual variables correspond to all of

the flight segments, as such the cost of the node is set to be the negative sum of the dual

variables which are in the duty period represented by the node. A shortest path problem

on the network is then solved to get negative reduced cost pairings. A heuristic solution

to the constrained shortest path problem is discussed in Anbil et al. [3], which was then

adopted by IBM and Sabre Decision Technologies for use at American Airlines and USAir.

A subset of these pairings are then added to the restricted master problem, and the process

is repeated until an optimality criteria is reached. This criteria is that no more negative

reduced cost pairings can be found. At this stage the binary integer solution to the set

partitioning problem is found by branch and bound techniques. Lavoie et al. [28] provide

computational results of problems up to 329 legs, which was solved in 1250 seconds finding

a 12% improvement over manual methods, Vance et al. [33] provide results of problems

of up to 174 legs. Desrosiers et al. [18] report a 5% savings over experienced manual

schedulers in cases spanning one to two weeks, with 300 to 500 legs and sometimes 1000

legs. In a case of 313 legs, Desrosiers et al. [18] report a 2.7% savings and in a case of 282

legs a 9.1% savings over other optimizers and claim optimal solutions using the GENCOL

software.

Barnhart et al. [11] apply the column generation technique to the long-haul crew

pairing problem. Their article shows that these problems are solved well by this approach.

The long-haul problem has fewer options for connecting flights and duty periods and even

though the flights are long the network size is small when compared to short-haul problems.

This allows for a sub-problem network to be made of legs instead of duties, and often a duty
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period will only be one leg long. In this class of problem TAFB is a good approximation

for the cost of a pairing.

Graves et al. [25] present a method which is a form of column generation. Along with

local optimization procedures, it incorporates an algorithm to heuristically identify legs

which should be used to generate more pairings. This is done iteratively much like the

approach described in section 2.3.

It is reported that few commercial solvers use the column generation approach. It is

used in ALTITUDE by Ad Opt [16] and has been used by Air France [28]. Commercial

programs favor large-scale heuristics or the subset approach.

Some additional literature which covers column generation include articles such as Anbil

et al. [2] , Chu et al. [14], Crainic and Rousseau [15], Gamache et al. [22] and Lübbecke

and Desrosiers [29].
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Chapter 3

Formulation and Solution

Methodology

This thesis focuses on exploring efficient approaches to generate pairings. The efficiency

sought is characterized by lower cost and solution time. The starting point is a brute force

approach to generation which is developed and improved upon. In brute force enumeration

techniques, the literature suggests four options; total enumeration of the entire problem,

total enumeration of a limited part of the problem, partial enumeration for the total prob-

lem and partial enumeration for a partial problem. These four options are really only two

different approaches: total enumeration and partial enumeration. The only reason they

are stated as four is that they can be applied to different sized problems. In the following

work, the test cases can be interpreted either as an entire small problem or a subset of a

larger problem, but deals with total enumeration. Techniques encompassed by the genre

of partial enumeration will only be dealt with in the context of column generation.

Partial enumeration techniques require a certain level of expertise in airline crew schedul-

ing. This enumeration approach requires rules-of-thumb to limit which areas of the feasible

pairings space should be explored and which can be omitted. To obtain good results with

this technique, familiarity with such factors as network structure, historically difficult legs

to cover, specific crewing cost structures and what makes a poor pairing structure is re-
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quired. Because airlines can vary drastically in network, pay and cost structures, as well

as operational desires, it is difficult to characterize strictly good pairings. The only gen-

eralization that can be made is that it is usually best to have the flying time exceed the

minimum guarantee, and to have the flying spaced close enough together to avoid having

to pay on the duty or trip rig. In addition, some known poor pairings may be required to

allow the set partitioning problem to achieve a better global solution. As such this work

deals with total enumeration methods for the generation of duties, and for pairings total

enumeration is attempted as well as a hybrid column generation approach.

3.1 Duty Periods

A generic search algorithm (algorithm 1) was taken as a basis for the development of a

Depth First Search (DFS) strategy. With a small modification, in its most basic form it

achieves the goal of total enumeration of all duty periods.1 The criteria for creating the

set, LIST , and for selecting node i in algorithm 1 determines the nature of the algorithm.

In both cases nodes are added to the end of the set LIST . In Breadth First Search (BFS)

algorithms node i is always selected from the front of LIST and in DFS algorithms, i is

always selected from the end of LIST .

In the duty period enumeration algorithm a graph is created in which the node set is

defined by all legs in the schedule and the arc set is defined by possible connections between

legs subject to congruency in time and space. The algorithm is repeated using each leg

as a source node in order to create all possible duties. This must be done because duties

do not have to start at a crew-base, there are no restrictions on the starting leg, therefore

any leg can be used to begin a duty period. The algorithm begins at a source node and

seeks to make a connection to the earliest available leg occurring after the current leg in

the algorithm. Parameters such as duty starting station, duty ending station, duty start

time, duty end time, total block time, total TAFB, operating day and the number of legs

are tracked throughout the generation.

1Partial enumeration would require complicating rules and criteria.
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Algorithm 1 Basic search algorithm

1: begin
2: unmark all nodes
3: mark node s;
4: pred(s) := 0;
5: next := 1;
6: order(s) := next;
7: LIST := {s};
8: while LIST6=Ø do
9: begin
10: select a node i in LIST ;
11: if Node i is incident to an arc(i, j) where j is uncovered then
12: begin
13: mark node j;
14: pred(j) := i;
15: next = next + 1;
16: order(j) := next;
17: add node j to end of LIST
18: end
19: else
20: delete node i from LIST ;
21: end
22: end
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Updating duty ending stations and duty arrival time allows the search algorithm to

determine candidate connections for potential future legs. Maximums on the total block

time, TAFB and number of legs can be used for the termination of the search by checking

if the current duty has reached its maximum limit on these parameters. Duty start and

end station, start and end times, and operating day are parameters which are required to

build pairings after the duty generation.

When searching for connecting legs, viable legs are characterized as having a departure

time greater than the arrival time of the current leg plus the minimum sit time and less

than the arrival time plus the maximum sit time. Naturally, the next leg must depart the

same station as the previous leg arrived at.

A general pseudo-code for the DFS duty enumeration algorithm described above is

shown in algorithm 2 on page 33.

The two criteria for stepping back in the search tree are, if the duty time reaches its

maximum allowable limit in any of the aforementioned duty termination parameters, or

if no more legal connections are available in the schedule after the current node. The

deviation from a strict DFS comes in the recording of duties. A DFS search is intended

to find all reachable nodes given a starting node. In this case the search is designed to

determine not only all reachable nodes, but all paths to reachable nodes as well. Every time

a node is added to the sequence, the whole sequences is recorded as a unique duty. This

means that duties which are subsets of other duties are generated as well. For example,

in a case where legs 1, 2 and 3 are a legal flying sequence, we must find a duty flying legs

1 and 2 as well as a duty with flying sequence 1, 2 and 3. Algorithm 2 adds one duty at

a time as the algorithm stepped through the coding, causing many iterations of a loop to

occur.

In order to save computational time the algorithm was furthered by switching to a BFS

like approach. The BFS algorithm was programmed to record all of the potential next legs

at once, significantly reducing the number of loops required. Similar to the criteria for

adding entries to LIST in the generic BFS, the newly created pairings are added to the

end of the list of created duties. The LIST analogue in algorithm 4 is a series of duties, not
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Algorithm 2 Depth First Search Duty Generation Algorithm (Part 1, cont’d on page 34)

1: begin
2: LEGS :=all legs
3: sort LEGS in order of departure time and assign indices
4: while LEGS6=Ø do
5: begin
6: select s from LEGS;
7: start time := departure time of leg s - briefing time required
8: current station := arrival station of leg s
9: current time := arrival time of leg s
10: max time := start time + max duty time
11: legs := 1;
12: LIST := {s};
13: write LIST and vital statistics to Duties
14: possible legs := {LEGS : arrival time ≤ max time − debrief time ∩

departure time ≥ current time + min sit time}
15: Last = Ø
16: while LIST6=Ø do
17: begin
18: conenctions := {possible legs : departure station = current station}
19: conenctions := {connections : departure time ≥ current time+min sit time}
20: conenctions := {connections : departure time ≤ current time +

max sit time}
21: if Last6=Ø then
22: begin
23: connections := {connections : indeces ≥ Last}
24: end
25: if connections6=Ø then
26: begin
27: add first leg in connections to end of LIST
28: update current station
29: update current time
30: legs := legs + 1
31: write LIST and vital statistics to Duties
32: Last = Ø
33: end
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Algorithm 3 Depth First Search Duty Generation Algorithm Continued (Part 2)

34: else
35: begin
36: Last :=index of last entry in LIST
37: remove last entry from LIST
38: update current station
39: update current time
40: legs := legs− 1
41: end
42: end
43: end
44: remove s from LEGS
45: end

just recorded nodes. The algorithm works its way through duties, to check for all possible

connections. If there are n > 0 connections available the current duty is then copied n+ 1

times, recording the unaltered duty and adding n duties, each with a unique connection.

The new connections are added to the end of the set, and the algorithm moves to the

next duty repeating the process. This property also simplifies the back-stepping element

of algorithm 2 by eliminating the need for backtracking and recording which nodes have

already been connected to specific nodes.

Algorithm 4 is not a strict BFS, because a BFS would have LIST in algorithm 1 grow

at the end of the vector, and selecting node i from the front and then removing elements

from LIST , in a First In First Out (FIFO) manner. In algorithm 4 the analogue to LIST is

not reduced in size but just stepped through with an index. The looping criteria therefore

states as long as this index is less than or equal to the number of entries in the list continue

the search.

The area in which algorithm 4 is to save time over algorithm 2, is that the BFS algorithm

records all possible connections at once. In an effort to make this even faster all legs

were preprocessed to find legal connections a priori. This created a list of all legs, with

corresponding indices of possible connections associated to it. This allowed the algorithm

to simply access the current leg in this data set and return all predetermined connections in
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Algorithm 4 Breadth First Search Duty Generation Algorithm

1: begin
2: LEGS :=all legs
3: sort LEGS in order of departuretime and assign indices
4: index current := 1
5: index duties := 0
6: while LEGS6=Ø do
7: begin
8: current := {s : s ∈ LEGS};
9: start time := departure time of leg s− briefingtime
10: current station := arrival station of leg s
11: current time := arrival time of leg s
12: max time := start time + max duty time
13: write current and vital statistics to Duties
14: index duties := index duties + 1
15: possible legs := {LEGS : arrival time ≤ max time − debrief time ∩

departure time ≥ current time + min sit time}
16: while index current≤index duties do
17: begin
18: current := duty in position index current in Duties
19: update current station
20: update current time
21: conenctions := {possible legs : departure station = current station}
22: conenctions := {connections : departure time ≥ current time+min sit time}
23: conenctions := {connections : departure time ≤ current time +

max sit time}
24: numb connects := number of connections found
25: write current, numb conencts times, each instance with one element of

connections added to Duties
26: index duties := index duties + numb connects
27: index current := index current + 1
28: end
29: end
30: remove s from LEGS
31: end
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one step, instead of creating the connections set and checking for connections repeatedly.

Additionally, pre-allocation of a matrix for the recording of the created duties was observed

to have an impact on the computation speed. As such the algorithms were attempted using

various sizes of pre-allocated matrices. The impact of these changes is studied later in table

4.2.

3.2 Pairings

3.2.1 Enumeration

The same search approach was attempted to generate pairings. There is an important

distinction in pairing generation when compared to duty generation. That is the require-

ment that pairings must begin and end at a crew base and the building blocks of pairings

are duty periods as opposed to legs. In the case study duty periods are assumed to be

operating on distinct days. This assumption holds true due to the structure of the sample

problem, but in reality it is possible for duties span days and two distinct duties can both

end and the next one begin on the same calendar day. This feature would require more

complicated rules with respect to continuous duty over-nights, night and red-eye flying.

Because of the exponentially many possible pairings which can be made, this looping

approach was found to be impractical. This approach was abandoned in favor of an ap-

proach exploiting the structure of the data created in the duty generation phase. Matrices

containing indices representing all duties are copied and matched with all other duties.

This generates every combination possible for pairings. However, this includes bad pair-

ings, infeasible pairings and physically impossible pairings. This giant set of pairings is

then reduced by applying filters. These filters check for station continuity and apply duty

break rules, leaving only pairings with legally connecting duties.

The first step in the approaches attempted is to organize the available duties into

separate, distinct sets, based on their starting and ending base, and operating day. This

first step is illustrated in table 3.1.
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One Day Pair-
ings

Starting Duties Ending Duties Middle Duties

Duty Start
Station

Base Base Non-base Non-base

Duty Ending
Station

Base Non-Base Base Non-base

Operating
Day

Any Any except last Any except first Any except first
and last

Table 3.1: Criteria for the division of generated duties to initiate the generation of pairings

One day pairings are already identified through this process and don’t require any

further manipulation or attention. It is important to note that the union of these new sets

creates a subset of all the duties which are available. Some duty periods which for example

start at an out-station, and end at a crew base on the first day of the planning period,

require to be part of a pairing beginning before the current planning period in order to be

used. Similarly, duty periods not ending at a crew-base on the last day of the planning

period require to be part of a duty ending at a crew base outside of the planning period

if they are to be used. These duties are useless for generating pairings over the specified

time period and can be discarded.

This approach of creating all possible combinations is made possible because a pairing

can only consist of a limited number of duties. In contrast to duty periods which can contain

many legs, for example in the schedule used, there are no limitations on the number of legs

permitted in a duty period, where in pairings the number of duty periods cannot exceed

four. In the sample schedule, the legs are operated over four days, as such the number of

duties allowed in a pairing was set to four.

For this matrix concatenation method sets of duties are created and manipulated by

applying a set of filters and generating pairings in order of length, starting with one day

duties and then two day duties and so on. This is largely the purpose of the procedure

described above using the sets in table 3.1. The manner in which these sets are put together

and manipulated in order to generate 1 to 4 day pairings is illustrated in figure 3.2. By

starting with two day pairings, which can cover days 1 and 2 or 2 and 3 or 3 and 4, we
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can simply take sets of duties and further reduce them to be used in three day pairings.

Three day pairings can cover days 1, 2 and 3 or 2, 3 and 4 and four day pairings must

cover days 1, 2, 3 and 4. So two day pairings need duties which start at a base on days

1, 2 and 3, for three day pairings we can reduce this set to those duties which operate in

days 1 and 2, and furthermore for four day pairings starting duties on day 1. Similar steps

can be applied to all sets generated by the criteria in table 3.1. This process is illustrated

in figure 3.1.

Figure 3.1: Manipulations and sourcing of matrices for pairing generation
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Figure 3.2: Swim-lane representation of set flows in the generation of four day pairings

3.2.2 Column Generation

This approach was attempted in this manner because of the exponential computation time

and size for pairings longer than a day or two. The computational result from the previous

section demonstrated the need for longer pairings in order to get proper coverage of the

schedule, for proper implementation, and likely a better objective function in the presence

of penalty costs. The four day pairings generation attempt by previous approaches created

too many pairings to be able to handle and manipulate the matrices. Matrices with 100

million columns for four day pairings alone were not uncommon. These matrices were
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so large that even the cost of pairings couldn’t be calculated. One and two day pairings

can be generated in an acceptable amount of time and can be handled without problem.

Techniques to limit the generation of three and four day pairings without compromising

reasonable solutions are sought.

The master problem is the set covering problem and the sub-problem becomes a shortest

path problem. First an initial linear relaxation of the set covering problem is solved

using a small set of generated columns, by the algorithms discussed above, this is the

restricted master problem. Several different approaches were attempted to select these

starting columns as shown later in tables 4.4 and 4.5. The restricted master problem

is ensured to be feasible by adding penalized pairings containing each leg individually.

Equation 3.1 shows the formulation of the problem solved here.

The solution is obtained using the CPLEX plug-in in MATLAB.

min
∑
p∈P

cpxp

st
∑
p∈P

aipxp ≥ 1 ∀i ∈ I

0 ≤ xp ≤ 1

(3.1)

where cp is the cost of pairing p in the set of pairings P , aip is 1 if leg i is covered by

pairing p, and xp is a binary decision variable taking the value of 1 if pairing p is in the

optimal solution and 0 if it is not.The dual of this problem is;

max
∑
i∈I

yi

st
∑
i∈I

bpiyi ≤ c ∀p ∈ P

yi ≥ 0

(3.2)

The optimal dual variables, yi, correspond to all of the legs, i, which are in the schedule.

These are then used to calculate the costs on the network of the sub-problem. The network

is created out of duty periods generated in the earlier steps from section 3.1.

The sub-problem uses a network in which the arcs represent the generated duty periods
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and legal overnight rests the nodes are the starting legs and the ending legs of duty periods.

This allows for the number of nodes to be limited to a maximum number equal to all the

legs being considered, and the arcs to a maximum of the duties generated plus the number

of legal overnight duty breaks. The overnight rests are to be determined by evaluating

which legs which can be connected by legal duty breaks.

Because computation time is an important aspect in the generation procedure, a pre-

processing step is taken to reduce the size of the sub-problem. The network created contains

many arcs which share both first and last legs. Hence, subsets of duties which are more

expensive paths starting and ending at the same legs can be removed from the network

without effecting the optimal solution. For example, if there are four legs as described in

table 3.2, which are used to create two unique duties as described by the sequences below.

Leg Departing
Station

Arriving
Station

1 A B
2 B D
3 D B
4 B C

Table 3.2: Sample legs

1. leg 1 – sit – leg 4

2. leg 1 – sit – leg 2 – sit – leg 3 – sit – leg 4

These duties have the same start and end legs, and in a shortest path algorithm network

create the same arc. Because of this if a duty period connecting stations A and C is part

of the optimal solution, the lowest cost duty of these two duties will always be chosen. So

this decision is made by pre-processing and treating this as one arc, equal to the lowest

cost option. These duties are grouped and at each iteration, and only the lowest cost duty

is considered in the network.

The sub-problem representing two day pairings contains 409 nodes and 2,715 arcs.

When scaled up to three and four day duties the networks have 566 nodes and 5,674 arcs
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and 298 node and 4,810 arcs, respectively. When reduced, the networks have 2,292, 4,240

and 3,517 arcs, reducing the number of decision variables 16%, 25% and 27% respectively.

The costing of the arcs in a duty period network would simply be the cost as calculated

by the duty cost calculation in the duty generation phase. The goal of the sub-problem

is to use the aforementioned optimal dual variables of the reduced master problem to find

the most negative reduced cost pairings. The reduced cost of a pairing is;

c̄p = cp −
∑
i∈p

yi (3.3)

To calculate the cost values of the arcs in the sub-problem, some literature suggests

using the following reduced cost;

c̄d = −
∑
i∈d

yi (3.4)

This approach simply takes the negative sum of all dual variables corresponding to all

the legs in the given duty and assigning that as the cost on the arc. This cost function may

give a network which does not penalize for duties which have flying times falling below

the minimum guarantee and have flying spread out such that duty rigs are cost factors.

In order to adjust for this, the above cost function was compared to the following cost

function;

c̄d = cd −
∑
i∈d

yi (3.5)

This cost function uses the previously calculated duty cost and adjusts it using the

optimal dual variables from the restricted master problem. In this way duties with many

legs are favored, but pairings with minimum guarantee penalties or duty rig penalties keep

their penalized costs.

The cost c̄d needs to be interpreted as c̄ij where i is the starting leg of duty d and j is

the ending leg of duty d. This will lead to multiple identical i, j combinations, in which
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case, the c̄ij is taken to be the lowest cost of the set available and the corresponding duty

must be noted in case it is part of the optimal solution. Adding the costs of the overnight

rest arcs equal to their length we are able to solve the full formulation of the sub-problem:

min
∑

(i,j)∈A
c̄ijxij

st
∑

j:(s,j)∈A
xsj = 1∑

i:(i,t)∈A
xit = 1∑

j:(i,j)∈A
xij −

∑
j:(j,i)∈A

xji = 0 ∀i

xij ∈ {0, 1}

(3.6)

where xij is the binary decision variable indicating the inclusion of a duty represented by

the starting and ending legs i, j in the optimal solution, A is the arc set of the network

and s and t are the source and sink nodes respectively.

After solving the sub-problem, the optimal pairings are entered into the restricted

master problem and new optimal dual variables are found. This process is stopped once

no more negative reduced cost pairings are found or the solution does not improve after

several iterations.
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Chapter 4

Implementation and Results

4.1 Implementation Details

All models were programmed in MATLAB. The LP’s and IP’s are solved using CPLEX

functions called directly from MATLAB. Because of the nature of set partitioning and

covering problems, the matrix structure used can be described as having a row for each

flight to be covered and a column for each duty or pairing. This matrix is then populated

with a parameter limited to zeros and ones, aij, with aij = 1 indicating that leg i is

covered by pairing j, and takes the value of zero if not. At times, to limit the size of

matrices generated, indices are used instead. For example the composition of a two day

pairing is two rows, each contains the index of a duty. These indices can then be cross

referenced with a matrix as described before, and the addition of the two columns would

create one column indicating all legs covered by the pairing. All time reported in the

following sections are clock times of running MATLAB scripts.

The test case is a schedule taken from real industry data containing 440 legs spread out

over 4 days. There are 14 stations in the network, one of which is taken as the crew base.

All flight legs are between one and three hours long. Aircraft flows are not considered

in these models. Duty periods must allow for a minimum connection time of 30 minutes

between legs up to a maximum of three hours. The minimum duty break given to crew is
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nine hours up to a maximum of 24 hours. The pre-allocation runs were performed with

several different pre-allocation sizes because it is not possible to know a priori how many

duties will be generated.

4.2 Duty Periods

The computational performance of the algorithms described in section 3.1 is studied in

table 4.2. The computation time for each of the algorithms is reported as well as the effect

of pre-allocation (PA) and in the case of the BFS search, pre-processing (PP).

PA
Matrix
Size

Clock Time (s) PA Savings (%) Savings (%)

DFS BFS BFS-
PP

DFS BFS BFS-
PP

Avg.
by
PA

by
BFS

by
PP

1 142.5 64.43 63.93 54.8 0.78
4, 400 107.9 48.75 48.64 24.3 24.3 23.9 24.2 54.8 0.23
7, 500 39.98 17.41 17.34 72.0 73.0 72.9 72.6 56.5 0.40
8, 000 29.05 11.80 11.80 79.6 81.7 81.5 80.9 59.4 0.00

9, 000 0.944 0.584 0.579 99.3 99.1 99.1 99.2 38.1 0.86
10, 000 0.897 0.601 0.565 99.4 99.1 99.1 99.2 33.0 5.99
44, 000 0.998 0.663 0.652 99.3 99.0 99.0 99.1 33.6 1.66
440, 000 1.89 1.5 1.38 98.7 97.7 97.8 98.1 20.6 8.00

Table 4.1: Numerical Results of Duty Generation Tests

The results in table 4.2 are plotted in figures 4.1 and 4.2. Figure 4.1 illustrates that the

performance of the DFS search algorithm is easily outperformed by both of the BFS based

search algorithms, regardless of pre-allocation policies. The effect of the pre-processing is

far less than the effect of switching to the BFS approach. Pre-processing appears to only

improve the performance when the pre-allocation overestimates the final number of duties.

This can be seen by the lines for the BFS and the BFS-PP data in panel (a) of figure 4.1

running very close together, and in panel (b) they diverge as the pre-allocation increases.
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Figure 4.1: Comparison of computation time of DFS, BFS and BFS-PP with pre-processed
matrix sizes below (a) and above (b) final matrix size.

Figure 4.2 shows that the loss in performance of the algorithms when overestimating the

final number of duties is small relative to the gains of accuracy when it is underestimated.

This can be seen by the highly positive slope of the line in panel (a) of figure 4.2 compared

to a much smaller negative slope in panel (b).
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Figure 4.2: Plot of pre-allocation results. a)Effects when allocation falls below final number
of duties b)when allocation falls above the number of duties. With the final number of
duties indicated by the vertical dotted line.

4.3 Pairings

4.3.1 Enumeration

Applying the enumeration to the sample case, using the duty periods generated in section

3.1, 412 one day pairings, 34, 292 two day pairings and 3, 382, 519 three day pairings were

successfully generated. Four day pairings were attempted, however in excess of 2 × 109

combinations can be made after applying preliminary filters. This many combinations is

too much to handle with MATLAB, as MATLAB frequently runs out of memory when

47



attempting to create such large matrices. Even the final number of four day pairings is too

large. It falls in the 100 million range. The matrices that were created contain one row

per day of pairing length. Tables 4.2 and 4.3 show the number of combinations which can

be made in the attempt to generate 4 day pairings using two different approaches. Each

of these combinations requires one column in a matrix in MATLAB. As illustrated, the

number of combinations is very large and impossible to work with using MATLAB.

Start Duties Mid Duties
(Day 2)

Mid Duties
(Day 3)

End Duties

251 1, 469 1, 469 382
368, 719 561,158
Filter Filter
37, 841 65, 447

2.477× 109 (Out of Memory)

Table 4.2: Number of columns in matrices when generating four day pairings

Start Duties Mid Duties
(Day 2)

Mid Duties
(Day 3)

End Duties

251 1, 469 1, 469 382
368, 719
Filter
37, 841

55, 588, 429
Filter

5, 997, 831
2.291× 109 (Out of Memory)

Table 4.3: Lengths of matrices when generating four day pairings combining matrices in a
different order

The number of four day pairings which would be generated is in excess of 100 million

pairings. Even this final size matrix is too large to manipulate and use.

The pairings which were enumerated (up to three days) were then used in a set covering

problem to establish an upper bound on the optimal solution to this problem. Because
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the set of three day pairings, when put in a set covering matrix form, was too large for

MATLAB, a simple heuristic was deployed to attempt a set covering solution. There are

165 legs which are not covered by one day pairings which are covered by two day pairings.

Similarly, there are 18 legs which are covered by three day pairings but not covered by two

day pairings. A further 8 legs require four day pairings to be covered. This phenomenon

was used to select a series of three day pairings which are then known to be in the optimal

solution (of the problem with pairings up to three days long). The duties which cover the

legs which are not covered by shorter pairings are selected and added to the set covering

problem.

The heuristic enumeration bound, using the above heuristic method, is found between

14 and 160 seconds, and has a solution value of 50, 769 minutes. The computation time

was very erratic and unpredictable. This solution leaves 8 legs uncovered and has not been

adjusted with penalty costs for uncovered legs.

4.3.2 Column Generation

Experiments were performed on the same sample schedule as used in previous sections,

using the duty periods generated before. Because short pairings are exhaustively generated

quite quickly the impact of generating various different length pairings while using the

generated sets of shorter sets to start the restricted master problem was studied. These

results are found in table 4.4. In these experiments the sub-problem used a different

network for each of the different lengths pairings which were generated. In the second

column of table 4.4 the length of the generated pairings is indicated, any pairing lengths

which are not mentioned are fully enumerated and added to the restricted master problem

at the beginning. An integer program was run only once at the end to determine the upper

bound on the integer solution.

It can be seen in table 4.4 that this approach slows down significantly when the enu-

merated two day pairing set is added to the restricted master problem. And given the

observation that shorter pairings do not cover the same legs as longer pairings mentioned

on page 48, the same heuristic was applied to reduce the number of columns added to
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SP Cost
Function
(equa-
tion)

Pairings
Gen’d
(days)

ZLP

(mins)
ZIP

(mins)
Average
Iter’n
Time
(s)

Iter’ns Total
Clock
Time
(s)

No.
Starting
Columns

No.
Columns
Gen’d

3.4 1, 2, 3, 4 63, 339 65, 840 0.2100 143 34.40 440 572
3.4 2, 3, 4 59, 796 61, 522 0.2026 126 28.73 852 378
3.4 3, 4 57, 474 58, 635 4.7724 48 237.79 35, 144 98
3.5 1, 2, 3, 4 61, 176 62, 663 0.2332 224 74.14 440 896
3.5 2, 3, 4 55, 966 56, 840 0.2220 198 47.39 852 594
3.5 3, 4 55, 967 56, 533 4.4077 131 586.34 35, 144 262

Table 4.4: Numerical results of column generation runs comparing the effect of sub-problem
cost functions and lengths of pairings generated by the sub-problem

the restricted master problem initially. Now a combination of fully enumerated length of

pairings, a limited set of pairings and generated pairings are used to find a solution. The

goal of this is to reduce the run time by reducing the number of columns in the reduced

master problem but improve the solution quality by adding a set of columns of which we

know one must be in the optimal solution. The experiments performed and their results

are found in table 4.5.

When the data from figures 4.3 and 4.4 are plotted, a clear tradeoff curve is developed.

In the figures, the numbers by the data points refer to the row number to which the data

point corresponds in their respective tables. Techniques which require more computational

time yield better solutions. Even though at low computational times the solution quality

increases rapidly with minor increases in computational time, the magnitude of increase

in solution quality begins to decrease as computation time increases. This phenomenon is

generally consistent with difficult optimization problems.

Figures 4.3 and 4.4 show one outlier below the tradeoff curve. This outlier is part of the

hybrid column generation approach, using the full sub-problem cost function, and generat-

ing two, three and four day long pairings. This test instance has the best tradeoff between

time and solution quality, with computational time falling below 50 seconds, finding an

integer solution of 56, 540 minutes. Figure 4.3 reveals that the hybrid column generation
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SP Cost
Function
(eq’n #)

Pairing Sets ZLP

(mins)
ZIP

(mins)
Avg.
Iter.
Time
(s)

Iter’ns.
Total
Clock
Time
(s)

No.
Start
Columns

No.
Gen’d
Columns

All Cover
Only

Gen.

3.4 1 2 3, 4 57, 444 58, 045 2.18 62 139.33 21, 432 124

3.4 1 2 2, 3, 4 57, 346 58, 468 1.59 68 114.15 21, 432 204

3.4 1 2, 3 3, 4 55, 764 56, 001 20.47 32 679.88 57, 782 64

3.4 1 2, 3 2, 3, 4 55, 795 55, 994 19.89 27 561.47 57, 782 81

3.4 1, 2 3 3, 4 56, 694 57, 398 11.95 32 409.83 48, 246 64

3.5 1 2 3, 4 55, 989 56, 735 2.21 156 352.99 21, 432 312

3.5 1 2 2, 3, 4 55, 934 56, 458 2.16 128 282.33 21, 432 384

3.5 1 2, 3 3, 4 54, 464 54, 862 20.86 87 1842.4 57, 782 174

3.5 1 2, 3 2, 3, 4 54, 490 54, 855 21.84 68 1416.6 57, 782 204

3.5 1, 2 3 3, 4 55, 306 55, 966 12.16 93 1352.7 48, 246 186

Table 4.5: Numerical results of column generation with reduced enumeration pairing sets

approach without adding reduced enumeration sets (table 4.4) consistently performs faster,

with the exception of only generating three and four day pairings, at the expense of solu-

tion quality. The reduced enumerated set contributes to a better solution quality but they

still require considerable computation times. The best result from table 4.5 is achieved by

using the full set of one day pairings, adding two day pairings which cover legs not coved

by one day pairings, and then generating two, three and four day pairings. This is done

in 282.3 seconds find a solution of 56,458 minutes. This saves 75 minutes over adding the

whole two day pairing set, saving 300 seconds of computing time. Similarly, adding partial

sets of two and three day pairings while generating two, three and four day pairings would

save a further 1,985 minutes in the objective value function, at a cost of 1370 seconds

of computation time. This value is also an improvement over the full one and two day

pairing set, generating three and four day pairings by 1678 minutes costing 830 seconds

of computation time. Figure 4.4 compares the two different methods for computing the

cost for the sub-problem. The full sub-problem arc cost function yields the best results,

but the cost function consisting of just the negative sum of the duals yielded the fastest

solution time. While slower the best trials appear to be from using the full cost function
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Figure 4.3: Comparison of computation time vs. solution quality tradeoff between the col-
umn generation approach and the hybrid generation-reduced enumeration sets technique.

from equation 3.5. The best solutions identified from tables 4.4 and 4.5 both use the full

cost function.

The reduced sub-problem network programming reduced the computation time by an

average of 0.21 seconds per sub-problem solved. The shortest path problem appears to be

quite quickly solved using CPLEX and a reduction of problem size of about 25% yields

very little time savings. This magnitude of time savings makes very little difference on a

problem the size of this sample case. However, in larger cases and when applied to the sub-

problem approach the repeated solving of networks these small savings could accumulate

to a significant magnitude.
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Figure 4.4: Comparison of computation time vs. solution quality tradeoff between sub-
problem arc cost functions. Circles indicate data from table 4.4 and squares data from
table 4.5

53



Chapter 5

Conclusions and Future Research

The methods proposed in this thesis for the generation of duty periods were able to reduce

the computation time of 8820 duties from 142.5 seconds to less than one second through

the application of BFS search techniques, pre-allocation and pre-processing techniques.

When generating duties, pre-allocation of data sets should exceed the number of expected

duties. This allows for time savings due to prepossessing to be realized as well. In this

case the number of duties generated are in the order of twenty times the number of legs

in the schedule. Estimations of expected number of can be done aggressively because

overestimation has far less impact on computational time than underestimation.

In the generation of pairings, the column generation approach is a good way to generate

pairings of two days and longer. Computational results showed that generating one day

pairings exhaustively and then generating longer pairings using the column generation

approach was best. The best results were achieved when generating two, three and four

day pairings, while fully enumerating one day pairings. Taking the generation of all pairings

and the arc cost function suggested in literature, c̄d = −
∑
i∈d

yi, as an approximation of other

column generation approaches, the above suggestions, combined with the application of

c̄d = cd −
∑
i∈d

yi as the cost function for duties in the sub problem, saved 9, 000 minutes

(13.7%) in the objective value function, while only taking 13 seconds longer. If the objective

function of this method is to be improved further, adding the partially enumerated set of

54



two day pairings to the restricted master problem, while still generating two, three and

four day pairings will yield a 75 minute better objective value in just over 300 seconds less

than by adding the whole set of two day pairings.

While adding partial sets of enumerated pairings to the restricted master problem did

improve the solutions of the column generation approach significantly, the magnitude of

the increase in computational time makes the tradeoff less palatable. Although, it is better

than adding fully enumerated sets of pairings. The most reasonable improvement was 9,382

minutes (14.3%) down to 56,458, in 282 seconds.

The computational improvements in the duty generation experiments are improvements

due to programming techniques. This shows that it may be beneficial to have program-

ming and computing expertise when designing future implementations. Future studies

should take this into account and perhaps utilize the expertise of computer scientists and

programmers.

Column generation is shown to be a good solution for the generation of pairings, but

more research is required. More complicated rules must be incorporated in order to make

the model created in this thesis commercially usable. Sub-problem networks can designed

to do so through multi-commodity flows and labeling techniques. An alternative way which

may be a good method for starting the restricted master problem is to use a manually

modified previous schedule from a similar period or to have a scheduling expert craft a

starting solution. The current method does not necessarily have an integer feasible starting

point. The starting point has a clear impact on the final solution of the column generation,

this phenomenon could be studied further.

The model presented uses a shortest path to generate one pairing of given length per

iteration, in future work this should be addressed. A sub-problem generating several pair-

ings at once should be attempted. Given one set of optimal dual values from the restricted

master problem, several negative reduced cost pairings can be made. Improvement of the

performance of the column generation approach may be achieved using a method which

takes greater advantage of the dual information passed into the sub-problem.
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