
Resource Management and

Pricing in Networks

by

Sharad Birmiwal

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2012

c© Sharad Birmiwal 2012

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true

copy of the thesis, including any required final revisions, as accepted by my

examiners. Parts of this thesis will appear in [1, 2, 3].

I understand that my thesis may be made electronically available to the

public.

ii

Abstract

Resource management is important for network design and deployment.

Resource management and allocation have been studied under a wide variety

of scenarios — routing in wired networks, scheduling in cellular networks,

multiplexing, switching, and channel access in opportunistic networks are

but a few examples. In this dissertation, we revisit resource management

in the context of routing and scheduling in multihop wireless networks and

pricing in single resource systems.

The first issue addressed is of delays in multihop wireless networks. The

resource under contention is capacity which is allocated by a joint routing

and scheduling algorithm. Delay in wireless networks is a key issue gaining

interest with the growth of interactive applications and proliferation of wire-

less networks. We start with an investigation of the back-pressure algorithm

(BPA), an algorithm that activates the schedule with the largest sum of link

weights in a timeslot. Though the BPA is throughput-optimal, it has poor

end-to-end delays. Our investigation identifies poor routing decisions at low

loads as one cause for it. We improve the delay performance of max-weight

algorithms by proposing a general framework for routing and scheduling al-

gorithms that allow directing packets towards the sink node dynamically.

For a stationary environment, we explicitly formulate delay minimization as

a static problem while maintaining stability. We see similar improved delay

performance with the advantage of reduced per time-slot complexity.

Next, the issue of pricing for flow based models is studied. The increasing

popularity of cloud computing and the ease of commerce over the Internet is

making pricing a key issue requiring greater attention. Although pricing has

been extensively studied in the context of maximizing revenue and fairness,

we take a different perspective and investigate pricing with predictability.

Prior work has studied resource allocations that link insensitivity and pre-

dictability. In this dissertation, we present a detailed analysis of pricing

iii

under insensitive allocations. We study three common pricing models —

fixed rate pricing, Vickrey-Clarke-Groves (VCG) auctions, and congestion-

based pricing, and provide the expected operator revenue and user payments

under them. A pre-payment scheme is also proposed where users pay on

arrival a fee for their estimated service costs. Such a mechanism is shown to

have lower variability in payments under fixed rate pricing and VCG auctions

while generating the same long-term revenue as in a post-payment scheme,

where users pay the exact charge accrued during their sojourn. Our formu-

lation and techniques further the understanding of pricing mechanisms and

decision-making for the operator.

iv

Acknowledgements

I am deeply indebted to Prof. Ravi Mazumdar for his invaluable guid-

ance. His positive attitude and encouragement throughout the four years at

Waterloo helped me immensely to achieve my goal. I will always remember

the experiences he shared with me to help me develop academically and pro-

fessionally. I am equally grateful to Dr. Shreyas Sundaram for his meticulous

attention to detail which gave me greater confidence in my conclusions. This

dissertation would not be complete without the support of my two supervi-

sors.

I would like to thank Prof. D. Manjunath (Indian Institute of Technology

Bombay) and Dr. Sayee Kompalli (Centre of Excellence in Wireless Technol-

ogy) for their invaluable inputs during discussions on Weighted Back-pressure

Algorithms. My special thanks to Prof. Manjunath and Dr. Jayakrishnan

Nair (California Institute of Technology) for their contributions to the static

formulation for delay reduction. I benefited greatly from their passion for

research.

I am grateful to Prof. Peter Marbach (University of Toronto), Prof. Raouf

Boutaba, Dr. Patrick Mitran, and Prof. Weihua Zhuang for serving on my

PhD committee and being accommodating. Their suggestions helped provide

a broader context to my research and cover overlooked issues.

It is my pleasure to thank all my colleagues and friends who shared their

wisdom and experiences. Their company has made my time at Waterloo

unforgettable.

I owe all my achievements to my family. Their unswerving support has

helped me overcome difficult times. I have drawn strength and inspiration

from them and am fortunate to find my role models so close to me in life.

Waterloo, 2012

Sharad Birmiwal

v

Lovingly dedicated to my mother, my symbol of strength.

vi

Table of Contents

List of Figures x

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 2

1.3 Outline . 3

I Improving Mean Delays in Multihop Wireless Net-

works 5

2 The Weighted Back-pressure Algorithms 6

2.1 Introduction . 6

2.1.1 Background and Related Works 11

2.1.2 Outline of this Chapter 15

2.2 Delays in the Back-pressure Algorithm 16

2.2.1 Overworking and Random Walks at Low Loads 16

2.2.2 Richer Topologies Lead to Longer Delays at Low Loads 19

2.2.3 Asymmetric Loads Penalize Low Load Flows 20

2.2.4 Large Networks . 23

2.3 Weighted Back-pressure Algorithms 25

2.3.1 System Model . 25

vii

2.3.2 The Scheduling Algorithm 26

2.3.3 Analysis . 27

2.3.4 Remaining-hops Weighted Back-pressure Algorithm . . 30

2.4 Retaining Throughput Optimality 30

2.4.1 Hybrid Weighted Back-pressure Algorithms 32

2.4.2 Hybrid Remaining-hops Weighted Back-pressure Algo-

rithm . 33

2.5 Simulation Results . 33

2.5.1 Effect of α and z . 34

2.5.2 Large Networks . 35

2.6 Summary . 39

3 A Static Formulation for Reducing Delay 41

3.1 Introduction . 41

3.1.1 Background and Related Works 42

3.1.2 Outline of this Chapter 43

3.2 Static Formulation for Minimizing Delay 44

3.3 Optimal Solutions . 47

3.3.1 Block Descent Algorithm 48

3.3.2 A Class of Iterative Algorithms 49

3.4 Evaluation . 52

3.5 Summary . 54

II Pricing of Resources 56

4 Pricing of Resources 57

4.1 Introduction . 57

4.1.1 Background and Related Works 60

4.1.2 Outline of this Chapter 63

viii

4.2 System Model . 63

4.2.1 A QoS Requirement 65

4.2.2 Review of Insensitive Allocations 65

4.2.3 The Swiss Army Formula 66

4.3 Analysis . 67

4.3.1 The Pricing Models . 72

4.3.2 Post-payments vs. Pre-payments 75

4.3.3 Mean Operator Revenue 75

4.3.4 Post-payments: Exact Charge Accrued by Users 78

4.3.5 Pre-payments: Freezing Prices on Arrival 81

4.4 Simulation Results . 90

4.5 Summary . 95

5 Conclusion 96

5.1 Extensions . 97

Bibliography 99

ix

List of Figures

2.1 Illustration of the end-to-end delay performance of the back-

pressure algorithm (solid line) and a reduced capacity routing

and scheduling algorithm (dashed line). 14

2.2 Both link SA and link SB have unit back-pressures and are

equally likely for activation irrespective of path lengths to des-

tination D. 17

2.3 Scenario demonstrating overworking and random walks at low

loads. 18

2.4 Scenario demonstrating richer topologies lead to longer delays

at low loads. 21

2.5 Scenario demonstrating the effect of asymmetric loads. 22

2.6 Various topologies used for experiments. 24

2.7 The 4×4 grid topology with 2 flows. 35

2.8 The effect of α and z on the topology in Fig. 2.7. 36

2.9 Mean delay of different algorithms. 37

2.10 Performance of various algorithms on a network with short

routes sharing a congested node (see Fig. 2.6c). 38

3.1 Mean end-to-end delay in a 4× 4 grid network (see Fig. 2.6a)

when x and φ are chosen from (P1) and implemented using the

static routing and scheduling schemes. Performance curves of

the schemes of [4] and [5] are also provided. 53

x

4.1 Results on fixed rate pricing. 92

4.2 Results on VCG auction based pricing. 93

4.3 Results on congestion based pricing. 94

xi

Chapter 1

Introduction

A network is an interconnection of resources and resource seekers. To max-

imize the utilization of a network, it is essential to manage resources effi-

ciently. For a resource operator, it is indispensable to predict earnings from

the allocation of resources. This dissertation addresses these two issues.

Capacity is the constraining resource in wireless networks. We focus our

attention on managing capacity efficiently, viz. delay in multihop wireless

networks. To get some perspective, analyzing delay in a network is typically

more difficult than analyzing throughput. Throughput entails characterizing

the rate at which packets leave a network; delay requires calculating the

sojourn times of packets leaving the network. To accurately model end-to-

end delay in a multihop network, the state space of the underlying Markov

chain must be expanded to include arrival times or the ‘age’ process. Another

challenge in modelling is the correlations between different queues in the

network.

We also focus on pricing of a resource sold by an operator or an agent. The

resource can be bandwidth in communication systems or CPU time in a cloud

computing data centre. The analysis exploits the benefit of predictability

ensued by insensitive allocations. Examples of insensitive allocations for a

1

single server system are the processor sharing discipline and the Last-In-

First-Out (LIFO) discipline. We analyze the processor sharing discipline.

1.1 Motivation

The demand for video streaming over the Internet has seen an explosive

growth. Other delay sensitive applications, e.g., IP telephony or exchange of

safety messages in Vehicular Ad hoc Networks (VANETs), are also gaining

popularity. However, research on networks has largely focused on optimiza-

tion of throughput. Foreseeing the future demands for time-sensitive appli-

cations, the widespread adoption of wireless networks, and the growth of

heterogeneous devices necessitate addressing delay in the design of network

algorithms more formally.

The inspiration for studying pricing originates from allowing a resource

operator to project earnings and allow making strategic decisions such as

installing or reducing capacity. A motivating example for studying pricing

and resource allocation is the gaining popularity of cloud computing applica-

tions, e.g., the Amazon Elastic Cloud Computer (EC2) which offers comput-

ing power as a resource or the Amazon Simple Storage Service (S3) offering

storage. Another example is of an Internet Service Provider (ISP) that al-

locates bandwidth to users. We note that in each case, the user is charged

for its resource usage. Considering state-dependent pricing also accurately

reflects congestion costs. Thus, a study of usage-based pricing mechanisms

with insensitive allocations which offer predictability is required.

1.2 Contributions

We present two approaches to improve delay performance of joint routing and

scheduling algorithms in multihop wireless networks. Our main contributions

2

are

• the identification of causes for the poor delay performance of the back-

pressure algorithm,

• the design of a dynamic throughput-optimal framework for max-weight

scheduling like algorithms where flows and links can be prioritized by

assimilating various inputs,

• the analysis of two algorithms that solve a static delay minimization

problem and propose two implementations for optimal routes and sched-

ules.

Both the dynamic and the static approaches demonstrate significantly im-

proved delay performance over the back-pressure algorithm.

The second part of the thesis is related to the issue of capacity and pricing.

We investigate the relation between pricing as a metric and user performance.

This gives rise to a new model and our main contributions are

• studying three pricing models, viz., fixed rate pricing, Vickrey-Clarke-

Groves auctions, and congestion based pricing under processor sharing,

• proposing a unique Quality of Service constraint to encourage fairness,

• characterizing mean user payments and mean operator revenue and

obtaining insights into the structure of the pricing models,

• designing a pre-payment scheme and evaluating the confidence in means

by deriving the second moment of user payments.

1.3 Outline

This dissertation is divided into two parts. The first part focuses on study-

ing delay in multihop wireless networks. We start in Chapter 2 with an

3

investigation of the back-pressure algorithm of [4] — a throughput optimal

algorithm known to have poor delay performance. Chapter 2 also develops

a class of generalizations of the back-pressure algorithm, we call weighted

back-pressure algorithms, that allow prioritization of certain flows and links

in the network. This algorithm is analyzed. An example of the remaining hop

weighted back-pressure algorithm is constructed and evaluated. Chapter 2

also proposes an adaptive behaviour to provably retain throughput optimal-

ity. We refer to this algorithm as a hybrid weighted back-pressure algorithm.

A hybrid variant of the remaining hop weighted back-pressure algorithm is

presented as an example and evaluated.

In Chapter 3, mean delay minimization is addressed directly under sta-

tionary settings. An optimization problem is formulated for obtaining long-

term stochastic averages for routing and scheduling. The chapter is dedicated

to analyzing this formulation, implementing the optimal solutions obtained,

and evaluating its performance.

The second part of this dissertation addresses pricing of resources. Chap-

ter 4 focuses on the processor sharing discipline and explicitly characterizes

the mean of user payments and the mean operator revenue under three pric-

ing models. Two design mechanisms are considered: first, where a user pays

after completing its service and second, where the user pays the operator’s

estimated price on arrival. The chapter studies such pricing structures in

some detail.

Chapter 5 summarizes the dissertation and presents some future direc-

tions and extensions to our work.

4

Part I

Improving Mean Delays in

Multihop Wireless Networks

5

Chapter 2

The Weighted Back-pressure

Algorithms

2.1 Introduction

Designing efficient algorithms for wireless networks has been studied for over

three decades. In most deployments (e.g., WLAN, cellular networks, blue-

tooth), the channel is a shared resource. A sender transmits a message by

broadcasting it on a particular choice of frequency, modulation scheme, and

time instant (the channel). The receiver, also tuned to the same channel,

decodes the message correctly if the received signal is sufficiently noise-free.

In the air medium and a broadcast transmission, several sources of noise

exist. The signal attenuates rapidly compared to, say, copper used in wired

networks. The signal amplifying unit in the receiver to mitigate the loss (gain

control) can introduce noise. Another source of noise is the superimposition

of multiple copies of the transmitted signal by reflections from surrounding

objects. Yet another source of noise is other transmitters, transmitting on

the same frequency, in the vicinity of the receiver. The degradation of the

signal sent by the intended transmitter, caused by other transmitters is called

6

interference.

In particular, since the signal attenuation over space is significant, the

received signal is dominated by transmitters closer to the receiver. An apt

analogy is when two people, call them Alice and Bob, who are equally loud,

converse simultaneously with their respective partners. For Charlie situated

closer to Alice, Alice’s voice will drown out Bob’s voice. Furthermore, Bob’s

voice becomes increasingly inaudible as Bob moves away. This physical layer

effect where the nearest (or the strongest heard) transmitter dominates the

received signal is called the capture effect.

A simplifying assumption often made is that when two nearby transmit-

ters transmit, both transmitted messages are lost due to interference. It is

important to note here that collision of messages occur at the receiving sta-

tion. Such an interference model is called the protocol interference model.

In this model, concentric circles with radius rtx and ri respectively define

the transmission and the interference region. A receiver can decode a mes-

sage successfully only if the transmitter is within rtx distance and if no other

sender transmits within the interference region.

The physical interference model, also known as the Signal-to-Interference

Noise Ratio (SINR) model, models the wireless channel more accurately.

Here, the ratio of the strength of the received signal to the strength of noise

and interferences is evaluated. A successful decoding of the message occurs

if this ratio lies above a certain threshold. This interference model, though

more accurate, suffers from increased complexity.

Several standard mechanisms exist to avoid interference. Frequency Di-

vision Multiple Access (FDMA) is an access mechanism where the available

channel spectrum is shared, simply by splitting it and allocating chunks to

users. FDMA is popular in satellite communication. Time Division Multiple

Access (TDMA) is an access mechanism where users are fully allocated the

entire resource for dedicated time periods. TDMA is widely used in the GSM

7

standard. The sharing is in the temporal domain. Another access mechanism

is Code Division Multiple Access (CDMA) where multiple senders can trans-

mit simultaneously on the same channel but using different, non-interfering

code sequences between transmitter-receiver pairs. CDMA is used as an ac-

cess mechanism in the 4G mobile telecommunication standard. The actual

transmissions are encoded messages using these code sequences.

The scheduling component in network design is to identify which trans-

mitters are allowed to transmit simultaneously. Such a list of transmitters is

called a schedule. A self-evident solution to avoid interference is to allow a

single transmission at a time in the network. Although such a scheme will

work, it underutilizes the available capacity. Consider two pairs of communi-

cating nodes (transmitters or receivers). If they are situated sufficiently far

apart, they can transmit simultaneously without interfering with each other.

Such a reuse of channel is called spatial reuse. Spatial reuse is important to

consider for maximizing the utilization of capacity.

Most present day implementations of wireless networks rely on a central

entity to facilitate coordination and communication. Commonly seen ex-

amples of such controllers include access points in IEEE 802.11 (WiFi) and

IEEE 802.16 (WirelessMAN or WiMax) networks and base stations in cellu-

lar networks. The advantage of an architecture with controllers is simplified

implementation. Such coordinators are feasible when there is a single owner

of the network. A network of networks with multiple ownerships or one lack-

ing central infrastructure will require the nodes to coordinate themselves. It

is envisioned that such distributed implementations will allow performance

to scale with the network size easily. Note that the IEEE 802.11 standard al-

ready defines a Distributed Coordination Function (DCF) mode of operation

in the absence of access points.

In a system with slotted time, another consideration is the amount of

information required to identify an appropriate schedule. For example, an

8

opportunistic scheduling algorithm would consider current backlogs (queue

lengths) at every node to identify the optimal schedule. We call such an

algorithm a dynamic scheduling algorithm. In contrast, algorithms where

the activated schedule depends on long-term time averages are called static

scheduling algorithms.

Another challenge in store-and-forward networks is to identify how to re-

lay messages between two far-apart communicating nodes. The sequence of

nodes a message traverses is called the route or the path taken by the message.

Of course, if the network is small with every node within the transmission

range of every other node, a transmitting node can directly transmit the mes-

sage to the receiving node. In larger networks, this problem is non-trivial. In

wireline networks, Dijkstra’s algorithm and the Bellman-Ford algorithm form

the crux of the standard routing protocols (such as link-state routing pro-

tocols and distance vector routing protocols) that generate routing decisions

from connectivity information. Extending these algorithms to wireless net-

works is non-trivial. The challenges arise due to mobility of nodes, frequent

change in link costs (reliability of links) which are utilized in determining op-

timal paths, the unreliability of communication between peers, and overheads

involved in communication. In truly distributed networks, lack of hierarchi-

cal infrastructure (e.g., addressing) exacerbates the problem even further. In

a cellular network which has a hierarchical design, each mobile node is man-

aged by a nearby base station (the node is associated with the base station).

When a node wishes to communicate a message to another node, it passes

the message to its base station, which using a back-haul network, relays the

message to the base station of the receiver, which passes the message to the

intended receiver. The routing decision here is reduced to simply passing

the message to the associated base station which uses pre-computed routing

decisions to deliver the message to the destination. In systems lacking such

central coordinators, intermediate nodes relay the message to the destina-

9

tion. An example of a routing protocol for such environments is the Ad hoc

On-demand Distance Vector (AODV) routing protocol where the route is

distributedly generated at the time of initiation of communication between

two nodes.

When two nodes communicate, we assume that they require exchanging a

sequence of messages (instead of a single message) that are generated (arrive

into the network) by some governing law. A stream of messages from one

sender node to one destination node pair thus constitutes a flow. A flow itself

may follow a fixed, single path (single path routing) or may split over several

paths (multipath routing) to deliver packets to the destination node.

While designing protocols for networks, it is insufficient to simply schedule

nodes or links and route messages (or packets); the aim is to do so efficiently.

There are numerous performance metrics that may be optimized. A joint

scheduling and routing algorithm is called throughput optimal if it can stabi-

lize the queue backlogs in a network for any traffic profile that is stabilizable.

Stabilizability implies that there exists a joint scheduling and routing algo-

rithm that keeps the backlogs at each queue finite. A throughput optimal

algorithm has the largest capacity region (supported traffic profiles).

Delay is another performance metric of interest. The end-to-end delay

or the sojourn time of a packet is the total time spent by a packet in the

network, i.e., the departure time less the arrival time. Jitter is yet another

metric which measures the variance in the delivery times of packets. Recently,

especially with the increasing demand of live video streaming traffic on the

Internet, delay and jitter have garnered increasingly greater attention.

Here, we first study the back-pressure algorithm (BPA) also known as the

max-weight scheduling algorithm, a dynamic joint scheduling and routing al-

gorithm for multihop wireless networks. This algorithm, though known to be

throughput optimal, has poor end-to-end delay characteristics. We will iden-

tify several reasons for such poor delay performance. We will demonstrate

10

that by introducing multiplicative weights in the back-pressure algorithm, the

mean end-to-end delay characteristics can be improved significantly. We call

a max-weight algorithm with multiplicative weights as the weighted back-

pressure algorithm (WBPA). We propose an adaptive behaviour to retain

throughput optimality and present results obtained via simulations.

2.1.1 Background and Related Works

The seminal work of [4] presented the back-pressure algorithm, a throughput

optimal joint scheduling and routing algorithm for time-slotted, multihop

wireless networks. The back-pressure algorithm proposed in [4] assigned

weights to links based on the difference in queue lengths across the link (and

thus the name back-pressure) and chose the schedule maximizing the sum

of link weights. Throughput optimality is derived via Foster’s criteria by

a suitable choice of a Lyapunov function to prove the stability of the un-

derlying Markov chain. Significant advances have since been made in the

understanding of multihop wireless networks with generalizations to include

ergodic channels in [6, 7], to flow control for utility maximization in [8], and

to input-queued switch models in [9]. Another strand of research has in-

vestigated algorithms that had lower implementation complexity than the

back-pressure algorithm. Many variants of the maximum-weight matching

schedule have been developed, e.g., randomized scheduling in [10], maximal

scheduling in [11], and other suboptimal (but easily implementable in a dis-

tributed manner) schedules in [12]. Most suboptimal schemes reduce the

schedulable region, sometimes by significant (usually a constant) fraction;

see [13] for a formal treatment.

A body of work exists on the Greedy Maximal Scheduling algorithm

(GMS) also known as the Longest Queue First (LQF) scheduling scheme

in the input-buffered packet switch scheduling literature. To determine the

11

schedule to activate, this iterative algorithm is run by first selecting the link

with the longest backlog and eliminating (disabling) all links interfering with

this link. In the next step, the link with the longest backlog in the remaining

links is identified and selected and its interfering links are disabled. This

step is repeated until all links have been either selected or disabled for the

current timeslot. The final set of selected links forms the schedule and is

activated in the timeslot. The algorithm is especially popular because of

ease of finding distributed approximations and implementations. The LQF

scheduling algorithm does not solve the routing problem and is suitable only

for one-hop traffic (destination is within the transmission range of the source

node) in the current form. It is believed to have a reduced capacity region

for general topologies. For topologies where the local pooling condition is

satisfied, the LQF algorithm is known to be throughput optimal (see [12]).

Let L be the set of links in a wireless network and for L ⊆ L, let M [L]

be the set of maximal schedules on L. A schedule s is a 0 − 1 vector with

sl = 1 if link l is activated. A schedule s is maximal if no additional links

can be activated in s without causing collisions. A wireless network topology

satisfies the local pooling property if there exists a constant c > 0 such that

for every for all L ⊆ L and φ ∈ co(M [L]), there exists a vector α such that

αᵀφ = c holds. Here, co(M [L]) denotes the convex hull of M [L]. Vector φ

indicates the capacity or the long term service rate available at each link.

In [14, 15], the idea of local pooling is further generalized to include

networks that do not possess the local pooling property. A generalized local

pooling factor, σ ∈ [0, 1], is defined for any wireless network topology. It is

shown in [14] that the minimum capacity region achieved by a scheduling

algorithm satisfying the σ-local pooling property is a σ fraction of the total

capacity region.

The primary emphasis in much of the early work on multihop wireless

networks has been on analyzing the schedulable region; analysis of the delay

12

performance was not seriously attempted but for some exceptions, e.g., [16].

There is some recent literature in analyzing and understanding the delay

performance in the back-pressure based scheduling algorithms, e.g., [17, 18].

Modifications of the max-weight algorithm have also been suggested to im-

prove mean link delays, e.g., [19, 20]. In [21], a delay bound is obtained by

identifying bottlenecks in a network topology with fixed routing and max-

weight scheduling. In [22], the cause for large delays in the back-pressure

algorithm are identified to be the routing of packets over long routes and use

of separate packet queues for each destination at every node. Simplifications

by considering only one hop flows have also been attempted, e.g., [11, 23].

There have also been some scheduling algorithms proposed to reduce the

end-to-end delays. The work in [24] describes a randomized algorithm to

reduce the per-hop delay while also reducing the schedulable region. In [25],

a network with primary interference constraints is considered to develop an

‘emulation based’ scheduling algorithm. This scheme reduces the schedulable

region by a constant factor. In [26], additional constraints to improve delay

are proposed.

The modified largest weighted delay first scheduling scheme of [27] merges

the idea of delay and max-weight scheduling. The work shows that such

an algorithm is throughput-optimal. In [28], the delay properties of the

exponential scheduling rule is studied and shown to be throughput optimal

and to asymptotically minimize a weighted sum of delay of each queue. Both

models consider one hop traffic only.

Reduced capacity algorithms may perform better at low loads but queue-

ing delays start dominating at lower loads than for the back-pressure algo-

rithm because of the proximity to the reduced capacity boundary. This effect

is illustrated by a simplified view of the delay-throughput curve shown in the

‘concept graph’ in Fig. 2.1. Delay has two significant components in a store-

and-forward multihop network: hop delay is associated with the length of

13

γ C
o

C

D
el
ay

BPAcapacity
Reduced

algorithm

Figure 2.1: Illustration of the end-to-end delay performance of the back-

pressure algorithm (solid line) and a reduced capacity routing and scheduling

algorithm (dashed line).

the path and queueing delay with congestion at each hop. At low loads the

back-pressure algorithm tends to send packets over long routes via a mech-

anism akin to a random walk (as we will see later). This increases the hop

delay significantly. However, as the load increases, sufficient back-pressure

develops and the packets experience a positive drift towards the destination.

The average hop lengths decrease and reduce the end-to-end delay. Further

increase in the load increases the queueing delay and the end-to-end delay

starts to increase again. For suboptimal algorithms, although the delays at

low loads can be low, the delays at moderate loads (relative to the capacity)

can be significant due to an increase in the queueing delays. Thus our work

avoids reducing the stability region.

Schemes that reduce the end-to-end delay without decreasing the capacity

region have also been proposed. In [5], the average path length across all

flows is minimized to improve hop delays. We will demonstrate that in

topologies with shorter routes passing through congested nodes, average path

length minimization pushes more traffic on congested links thereby increasing

14

queueing delays. Another proposed scheme is for the flow-control setting in

[22]. A routing optimization is performed to minimize the total resource

allocation. This is used to develop a scheduling scheme that is expected

to reduce delay in the congestion control setting. However, the trade-offs

between load balancing, path lengths, and queueing delays is not clear in

[22].

In [29], a throughput optimal distributed CSMA algorithm is presented

for scheduling one hop traffic. The work does not consider delay performance.

The work of [30] shows that unless NP ⊂ BPP, there exists no algorithm

that has high throughput, low delay, and low computational complexity for

general network topologies. In [31], a CSMA based algorithm is presented

that is throughput-optimal and has order-optimal delay performance for a

toroidal interference graph topology.

2.1.2 Outline of this Chapter

In Section 2.2, we investigate the causes for high end-to-end delay exhibited

by the back-pressure algorithm. In Section 2.3, we present weighted back-

pressure algorithms (WBPAs) — generalizations of the the back-pressure al-

gorithm which are dynamic joint scheduling and routing algorithms. A lower

bound on the capacity region of a WBPA is shown. Section 2.4 presents

adaptive variants of weighted back-pressure algorithms, that we call hybrid

weighted back-pressure algorithms, which are throughput optimal. The re-

sults are presented in Section 2.5 and the concluding remarks are presented

in Section 2.6.

15

2.2 Delays in the Back-pressure Algorithm

The poor delay performance of the back-pressure algorithm is almost a part

of folklore. However, as discussed in the previous section, there are few stud-

ies to analyze this. This section explores some of the reasons via simulation

models. In [22], it has been argued that there are two reasons for this in-

creased delay. First, packets are typically routed over longer routes even

when shorter routes are not congested. Second, each node keeps separate

queues for packets for each destination. The former phenomenon is explored

in more detail in this section. Specifically, a qualitative feel is obtained for

this phenomena through simulation experiments.

Consider the node exclusive interference model or the primary interference

constraints where a node cannot transmit and receive simultaneously and a

node can receive a message from only one transmitter at a time. All edges are

half-duplex bidirectional links. The scale for end-to-end delay and hop delay

in the following plots is the same where one time slot is the time required for

one hop.

2.2.1 Overworking and Random Walks at Low Loads

The back-pressure algorithm activates a maximum matching in every slot.

The packet at the head of the queue of the sending node of an activated link

is transmitted on the link, irrespective of the packet’s intended destination.

To motivate the consequences, consider the network in Fig. 2.2 at low loads.

In an exaggerated scenario, suppose a single packet at node S destined for

node D and no other packet in the network. Each egress link from node S

has the same back-pressure of 1 packet. Link SA and link SB are equally

likely to be activated and thus the packet can get misrouted, i.e., sent on a

link that is not the shortest path. Packets may also potentially loop in the

network before reaching the destination. Note that a misrouted packet has

16

S

A

B

D

Figure 2.2: Both link SA and link SB have unit back-pressures and are

equally likely for activation irrespective of path lengths to destination D.

to wait to be scheduled a greater number of times. Thus at low loads, hop

delay contributes significantly to end-to-end delay.

The above reasoning is verified by the network topology considered in

Fig. 2.3a. In Fig. 2.3b, the end-to-end delay, average path length (in the

number of hops traversed by a packet), and queueing delay are plotted in the

presence of a single flow from Node 1 to Node 3 in the topology of Fig. 2.3a.

Not surprisingly, at low arrival rates, the mean hops to sink (the hop count) is

greater than the length of the longest path of 4 hops. The packets traverse the

network akin to a random walk. In a hypothetical network where a packet

originating at Node 1 is performing a random-walk, the mean absorption

time at Node 3 is 8 time slots which matches closely with our experimental

result. Fig. 2.3b also shows the monotonically increasing queueing delays in

the network, as expected. As the arrival rate increases, the queue backlogs

start rising. In [22], an argument is presented for the mean queue length to

increase linearly per-hop as the distance to the sink increases. Using the same

argument, the mean backlog at Node 4 is greater than the mean backlog at

Node 2 and thus new arrivals at Node 1 are directed towards Node 2 to reduce

the greater back-pressure. Thus the packets are ‘guided’ by the back-pressure

along shorter routes towards the sink. An alternate view is to interpret the

17

1 2

4

3

5

6

(a) Network with a single flow from

Node 1 to Node 3

0

1

2

3

4

5

6

7

8

9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
e
la

y
 (

ti
m

e
s
lo

ts
)

Arrival rate (pkts/slot)

Delay and hop count vs. arrival rate

Delay (time slots)
Hop count

Queueing delay (delay - hops)

(b) Delay components for the flow in Fig. 2.3a

Figure 2.3: Scenario demonstrating overworking and random walks at low

loads.

18

system as a random walk with a greater drift towards the destination on

shorter paths. This setting up of backlogs and back-pressures at high arrival

rates is indicated by the increase in the end-to-end delay and increase in

the queueing delay but a decrease in the average hop count, as seen in the

experiments.

When the experiments are repeated with the same flow and low traffic

flows between every pair of nodes, similar trends are observed for average

hop count and delay.

2.2.2 Richer Topologies Lead to Longer Delays at Low

Loads

We observe that greater number of egress links at a node leads to greater

opportunities for the packet to get misrouted. This is illustrated with the 2×3

grid network in Fig. 2.4a. A single flow is considered though the direction

of the flow is reversed to obtain two scenarios, i.e., in the first scenario, a

single flow exists from Node 2 to Node 1 and in the second scenario, a single

flow from Node 1 to Node 2 exists. Since there are fewer opportunities to

deviate in the paths for the second flow, it exhibits lower end-to-end delay

as compared to the same flow with reversed source and destination nodes.

The average path length or the hop count is shown in Fig. 2.4b. The results

at low load agree with an analytical model of a single packet performing a

random walk (as in Section 2.2.1). For the first scenario, the mean time

to hit Node 1 is 6.05 hops and the mean time to hit Node 2 in the second

scenario is 3.86 hops.

Once again, similar behaviour was observed when the experiments are

repeated with low background traffic. The asymmetry in this case arises

from the network topology perceived by the packets of the flows. Thus a

‘rich’ topology is not necessarily good for delay. This can be related to

19

the Braess’s paradox which states that introducing additional links (more

capacity) to the network may reduce the performance of the network (see

[32]). We note that additional links introduce greater interference in wireless

networks and do not necessarily increase capacity.

2.2.3 Asymmetric Loads Penalize Low Load Flows

The back-pressure algorithm degrades the delay performance of low load

flows when the arrival rates of flows are asymmetric. Flows with high arrival

rates have greater packets in the network and greater back-pressures, thus

dictating maximal schedules. In comparison, the contribution of low arrival

rate flows in the link weight sum becomes negligible. As a result, high arrival

rate flows get scheduled more often. Further, because of the algorithm’s

overworking tendency, packets of smaller load flows may get misrouted when

instead they should not be scheduled. Thus the propensity of the back-

pressure algorithm to ‘work harder’ also increases the end-to-end delay for

some flows. To illustrate this with an experiment, consider the network in

Fig. 2.5a with a high load of 0.65 packets per time slot from Node 2 to Node

1 and a flow with low varying arrival rate from Node 6 to Node 1.

Following the argument above, the two schedules, {(2, 1), (3, 4)} and

{(2, 3), (4, 1)}, in the loop 1 − 2 − 3 − 4 − 1 typically contributes signifi-

cant weight in the sum of link weights. Either matching in the loop is not

maximal and link (5, 6) is added to make the schedule maximal. A packet at

Node 5 destined for Node 1 thus is sent back to Node 6. In this case, frequent

activation of link (5, 6) leads to the packet vacillating between Node 5 and

Node 6. In Fig. 2.5b, the average hop count for the flow from Node 6 to

Node 1 at varying arrival rates is shown when a flow with high load in the

loop is present and absent. End-to-end delay is significantly high for the flow

from Node 6 to Node 1 in the case of traffic in loop.

20

1 2 3

5 46

(a) Topology considered

0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A
v
e
ra

g
e
 h

o
p
 c

o
u
n
t

Arrival rate (pkts/slot)

Average hop count vs. arrival rate in 2x3 grid network

Single flow from Node 2 to Node 1
Single flow from Node 1 to Node 2

(b) Average hop count for the flows in Fig. 2.4a

Figure 2.4: Scenario demonstrating richer topologies lead to longer delays at

low loads.

21

12 5 6

3 4

(a) Network to demonstrate effect of topology

and asymmetric load

0

2

4

6

8

10

12

14

16

18

0.05 0.1 0.15 0.2 0.25 0.3

D
e
la

y
 (

ti
m

e
s
lo

ts
)

Arrival rate (pkts/slot)

Delay and hop count vs. arrival rate

Delay with traffic in the loop
Hop count with traffic in the loop

Delay without traffic in the loop
Hop count with traffic in the loop

(b) Average hop count for flow from Node 6 to Node 1 in Fig. 2.5a

Figure 2.5: Scenario demonstrating the effect of asymmetric loads.

22

2.2.4 Large Networks

The above ‘truisms’ of delay behaviour are not confined to simplistic networks

but are prevalent more widely. To illustrate this, experiments are performed

on several topologies. We present the results obtained on the topologies in

Fig. 2.6. The end-to-end delay for these networks are shown in Fig. 2.9a,

Fig. 2.9b, and Fig. 2.10a. Note the high hop count at low arrival rates and

the early build up of queues for the back-pressure algorithm in Fig. 2.10b.

We can reduce end-to-end delays at low and moderate loads by reducing

hop count. In other words, by encouraging packets to take shorter routes

based on current congestion levels in the network, the delay performance

of a back-pressure like algorithm can be improved. To this effect, a simple

generalization of the back-pressure algorithm is presented in the next section.

Before presenting the generalization, the proposal of [5] to mitigate delay

in back-pressure like algorithms is briefly discussed. Hop delay is identified

as a significant contributor to end-to-end delay in [5]. To reduce the average

hop delay, [5] first presents a mechanism wherein packet delivery to the sink

in a given feasible number of hops is guaranteed by the addition of hop-length

dependent queues for each flow at each node. Next, an optimization problem

is formulated to minimize the average number of hops taken by all flows in

the network. Reducing the mean path length ensures that the hop delay at

low loads is minimized. However, the trade-off with queueing delays is not

considered. Beyond the assumption of stable arrival rates, [5] requires the

arrival rates for each flow to be known a priori. The optimization problem is

solved once when the network operation begins and needs to be solved every

time a new flow is introduced, a flow departs, or the arrival rates change.

In addition, the assignment of newly arriving packets in the system to hop

length dependent queues is static and independent of queue backlogs on the

paths. The dynamic scheme presented in the next section does not require

knowledge of packet arrival rates.

23

1 2

5

3

6

4

7 8

9 10 11 12

13 14 15 16

(a) 4× 4 grid network

1

3 4 7

86 111215

9

2

1613

5

1014

(b) A sample, randomly generated Erdös-Rényi

graph

1

2

7

12
3

4

5

6

8

9

10

11

13

1415

16

(c) Network topology with flows

on shorter routes passing through

Node 1

Figure 2.6: Various topologies used for experiments.

24

2.3 Weighted Back-pressure Algorithms

We first introduce the required notation before describing a generalization of

the back-pressure algorithm where multiplicative weights for each flow and

each link (call it a flow-link pair) is introduced. This granularity allows for

selectively increasing the priority of certain routes for certain flows. When

designing algorithms for a network, the multiplicative weights can be based

on a multitude of information sources. An example using the number of

hops to the sink for the multiplicative weight is constructed. We will see

that such a dynamic scheme demonstrates reduced end-to-end delays at low

and moderate loads.

It is interesting to compare the above scheme to α-weighted algorithms

where the difference in the α-th power of queue lengths is used as the link

weights. The work of [33] shows that α-weighted algorithms are stable for

any α > 0 and for single hop traffic. The end-to-end delay characteristics

have not been discussed in [33]. Also, α-weighted scheduling uses only queue

length information to schedule packets and is thus myopic to other network

effects.

2.3.1 System Model

The widely used model from [4] is repeated here in short for completeness.

LetN and L be the set of nodes and unidirectional wireless links respectively.

Let N := |N | and L := |L|. Let q(l) and h(l) denote the transmitting and

receiving nodes of link l. Let Le(n) and Li(n) denote the set of all egress

and ingress links at node n. Let S be the set of collision free schedules. A

schedule c ∈ S is an L-dimensional column vector with elements cl = 1 if

link l is active and cl = 0 if link l is inactive in the schedule c. The set

S reflects the constraints imposed by interference in the network. Let S be

the cardinality of S. The triplet (N ,L,S) defines the topology of a single

25

channel multihop wireless network.

Let F be the set of flows characterized by the destination nodes denoted

by df for f ∈ F . Let F be the cardinality of F . Assume that time is slotted

with all packets fitting into a time slot. The queue at node n for flow f is

represented by Qn,f and its backlog (length) at time t is denoted by Xn,f (t).

Let Xf (t) be an N -sized column vector with elements Xn,f (t) and X(t) be

an N×F -sized matrix with elements Xn,f (t). The back-pressure of flow f on

link l is given by Pl,f (t) = Xq(l),f (t)−Xh(l),f (t).

Assume that the packet arrival processes for a flow are independent and

identically distributed and that all arrivals occur at the end of a time slot.

Let An,f (t) be the number of new packets arriving at node n for flow f at

the end of time slot t. Let λn,f = E[An,f (t)] and λ = [λn,f]. Note that λ is

not assumed to be known.

The multiplicative weights are assigned for each flow-link pair. Let βl,f (t) ∈
B be the weight assigned to flow f on link l for time slot t. We assume that B
has finite cardinality and that for all β ∈ B, 1 ≤ m ≤ β ≤M <∞. Let β(t)

be an L×F sized matrix with elements βl,f (t). A choice of β is presented in

Section 2.3.4.

The state of the system at time t is denoted by ξt , (X(t), β(t)) ∈ Ξ

where Ξ = ZN×F+ × BL×F . Let [x]+ = max {0, x}.

2.3.2 The Scheduling Algorithm

The back-pressure algorithm in [4] assigns weights to each link at a time slot

t as

v∗l (t) = max
f∈F

Pl,f (t) (2.1)

and activates the schedule ĉ ∈ S with the maximum sum of back-pressures,

i.e.,

ĉ = arg max
c∈S

∑
l∈L

v∗l (t)
ᵀcl.

26

We generalize the above by introducing multiplicative weights in (2.1) as

follows. Define new flow-link weights as

wl,f (t) = [βl,f (t)× Pl,f (t)]+. (2.2)

Define the link weights as vl(t) , maxf∈F wl,f (t). The optimal schedule ĉ,

given by

ĉ = arg max
c∈S

v(t)ᵀc,

maximizes the sum of weighted back-pressures. Schedule ĉ is executed for

a time slot t by activating a flow on each activated link with the maximum

link weight. Ties are broken arbitrarily.

2.3.3 Analysis

The throughput performance of any given weighted back-pressure algorithm,

with respect to that of the back-pressure algorithm is presented here. A lower

bound on the capacity region of the former is shown.

Proposition 1. If the multiplicative weights βl,f are bounded by m and M ,

i.e., 1 ≤ m ≤ βl,f ≤M , then for all arrival rates λ ∈ m
M
C, the weighted back-

pressure algorithm is stable. Here C is the capacity region of the original

back-pressure algorithm.

Proof of Proposition 1. Take the Lyapunov function as

V (ξt) =
∑
n∈N

∑
f∈F

X2
n,f (t).

The one-step drift is written as Dt = V (ξt+1) − V (ξt) =
∑

f∈F(Xf (t + 1) −
Xf (t))

ᵀ(Xf (t+ 1) +Xf (t)).

Since Xf (t + 1) = Xf (t) + RfEf (t) + Af (t), where Rf is the routing

matrix (as in [4]) for flow f and Ef (t) is an L× 1 indicator vector with ones

27

corresponding to active links of flow f ,

Dt =
∑
f∈F

[RfEf (t) + Af (t)]
ᵀ[RfEf (t) + Af (t)]

+
∑
f∈F

2Xf (t)
ᵀ[RfEf (t) + Af (t)] (2.3)

The expectation of the first term in (2.3), conditioned on ξt, is bounded

as ∑
f∈F

E
[
[RfEf (t) + Af (t)]

ᵀ[RfEf (t) + Af (t)]|ξt
]

≤
∑
f∈F

∑
n∈N

E[A2
n,f (t)] + 2L

∑
f∈F

∑
n∈N

λn,f +NFL2

= b1. (2.4)

Manipulating the expectation of the second term of (2.3) gives∑
f∈F

E
[
2Xf (t)

ᵀ[RfEf (t) + Af (t)]|ξt
]

= 2
∑
f∈F

Xf (t)
ᵀRfgf (ξt) + 2

∑
f∈F

Xf (t)
ᵀλf

≤ − 2

M
v(t)ᵀ

∑
f∈F

gf (ξt) + 2
∑
f∈F

Xf (t)
ᵀλf , (2.5)

where gf (ξt) = E[Ef (t)|ξt].
If λ ∈ m

M
C, the second term above can be bounded as

2
∑
f∈F

Xf (t)
ᵀλf ≤

2

m
v(t)ᵀr̂ =

2

m
v(t)ᵀ

∑
c∈S

αcc, (2.6)

where r̂ is an L × 1 vector with r̂l the total flow on link l, αc ≥ 0, and∑
c∈S αc ≤ 1.

When more packets in a queue are scheduled for transmission than the

backlog, the queue only transmits the backlog length. Thus it appears as the

28

following bound.

max
c∈S
{v(t)ᵀc} ≥ v(t)ᵀ

∑
f∈F

gf (ξt) ≥ max
c∈S
{v(t)ᵀc} − L2 (2.7)

The expectation of the second term of the drift in (2.3) is bounded as∑
f∈F

E[2Xf (t)
ᵀ[RfEf (t) + Af (t)]|ξt]

= 2
L2

M
− 2

M
max
c∈S
{v(t)ᵀc}

[
1− M

m

∑
c∈S

αc

]
(2.8)

Now, by bounding maxn,f{Xn,f (t)} ≥
√

b
NF

and using vl(t) ≥ Pl,f (t), we

show that if V (ξt) ≥ b,

E[V (ξt+1)− V (ξt)|ξt]

≤ − 2

M

(
1− M

m

∑
c∈S

αc

)
1

N

√
b

NF
+ 2

L2

M
+ b1 (2.9)

To complete the proof, take

b = NF

(
MN(ε+ b1 + 2L2/M)

2(1− M
m

∑
c∈S αc)

)2

(2.10)

which gives the required E[V (ξt+1)− V (ξt)|ξt] ≤ −ε for V (ξt) ≥ b.

A similar result was shown in [13]. Therein, an algorithm choosing sub-

optimal schedules with an approximation ratio γ, i.e., schedules c′ such that

v(t)ᵀc′ ≥ γmaxc∈S{v(t)ᵀc} where 0 ≤ γ ≤ 1, were shown to attain at least γ

fraction of the capacity region. The approach used a utility maximization for-

mulation and considered approximations occurring from possibly distributed

implementations. In our approach, the sub-optimality (in their sense) ap-

pears by finding the exact solution to our posed weighted maximization

problem to allow for flow-link prioritization.

29

2.3.4 Remaining-hops Weighted Back-pressure Algo-

rithm

We present a complete joint scheduling and routing algorithm inspired by

the shortest remaining processing time (SRPT) scheduling scheme, which

has the smallest mean sojourn time. The multiplicative weights are chosen

to increase inversely with the shortest path length to sink. By assigning

higher multiplicative weights to links guiding packets closer to the sink, the

packets are guided towards shorter routes. The hops to sink can be obtained

by a distributed implementation of the Bellman-Ford algorithm or Dijkstra’s

algorithm.

Define the multiplicative weights as

βl,f (t) = (N −H(h(l), f))α (2.11)

where H(n, f) is the minimum number of hops from node n to df and α > 0.

It is important to note that this choice of function assigns positive flow-link

weights (wl,f) to all egress links with positive back-pressure — making all

such links probable for scheduling. If the multiplicative weights (β) assigned

to longer links were negative, the algorithm would disallow packets on these

links, making longer routes infeasible thereby reducing the capacity of the

network.

For larger values of α, the algorithm provides higher preference for flows

with fewer hops. Simulation results of the remaining-hops weighted back-

pressure algorithm are presented in Section 2.5. A discussion on improving

the capacity region by a simple adaptive scheme is presented next.

2.4 Retaining Throughput Optimality

Proposition 1 presents a lower bound on the capacity region of a weighted

back-pressure algorithm. To counter a decrease in the throughput perfor-

30

mance, an adaptive algorithm we call the hybrid weighted back-pressure al-

gorithm is proposed next. It is motivated by the following argument. From

the modelling assumptions, ξt is a discrete time Markov chain over a count-

ably infinite state space. The stability of this Markov chain is determined

by its transitions in the ‘higher’ states (when the network is congested with

a large number of packets) of the state space and is not affected by tran-

sition probabilities in the ‘lower’ states. Thus, if the scheduling algorithm

makes the Markov chain stable in higher states, the transition probabilities

can be changed in the lower states without affecting stability. Specifically,

the transition probabilities can be changed to reduce the delay. Note that

the delay behaviour is significantly affected by the behaviour in the ‘lower’

states because the Markov Chain spends most of its time in these states at

low loads.

The above informal discussion is made rigorous. Consider a discrete time

aperiodic and irreducible Markov chain {Xn, n ≥ 1} over a countable state

space X with transition probability law p = (px,y : x, y ∈ X). Suppose a

Lyapunov function V : X → R+ exists such that the drift condition

∆Vp(x) ,
∑
y∈X

px,yV (y)− V (x) ≤

−ε if x ∈ Ac

η if x ∈ A

is satisfied where A is a finite subset of X , and ε, η > 0. The reason for using

p in the subscript will become apparent shortly. The above bound shows

stability of a Markov chain by proving positive recurrence.

Let us define a new transition probability law p′ = (p′x,y : x, y ∈ X) such

that

p′x,y =

px,y if x ∈ Γc

rx,y if x ∈ Γ,

where rx,y are the new transition probabilities and Γ is a finite subset of

X . The new Markov chain {X ′n, n ≥ 1} with transition probability law p′ is

31

required to be aperiodic and irreducible. When the same Lyapunov function

V for {Xn, n ≥ 1} is used for {X ′n, n ≥ 1}, it is seen that

∆Vp′(x) ≤

−ε if x ∈ (A ∪ Γ)c

η′ if x ∈ (A ∪ Γ)

holds for some new η′ > 0. This satisfies the Foster-Lyapunov criterion

for stability. The argument shows that a Markov chain keeps its stability

property when the transition probability law is changed over a finite set

Γ ⊂ X while maintaining aperiodicity and irreducibility.

The above argument for stability holds for any throughput optimal algo-

rithm (with an aperiodic and irreducible underlying Markov chain) with tran-

sition probabilities redefined over a finite subset (call them “petite” states).

Call the remaining state space as “large” states. In the hybrid weighted

back-pressure framework, the back-pressure algorithm is the throughput op-

timal algorithm. The transition probabilities are changed over the petite

set by employing a weighted back-pressure algorithm on petite sets. Hybrid

weighted back-pressure algorithms are discussed next.

2.4.1 Hybrid Weighted Back-pressure Algorithms

Define U(ξt) as

U(ξt) =
∑
f∈F

∑
n∈N

X2
n,f (t). (2.12)

The optimal schedule in a hybrid weighted back-pressure algorithm is chosen

by

ĉ =

arg maxc∈S
∑

l∈L vl(t)
ᵀcl if ξt ∈ χz

arg maxc∈S
∑

l∈L vl(t)
∗ᵀcl otherwise,

(2.13)

where the petite set χz := {ξ ∈ Ξ : U(ξ) < z}. For any real z ≥ 0,

χz is finite. Although our argument holds for any choice of petite set, the

32

choice of U(ξt) makes the proof of stability for the hybrid weighted back-

pressure algorithm immediate. The following proposition proves throughput

optimality of hybrid weighted back-pressure algorithms.

Proposition 2. Any hybrid weighted back-pressure algorithm defined as above

is throughput optimal.

Proof of Proposition 2. Let b be the parameter used in Eq (A.26) of [4]. The

proof is a straight forward extension of the proof of Lemma 3.2 in [4] by

choosing V (ξt) = U(ξt) and characterizing the finite set as χd where d =

max{d, b}.

The complete algorithm is listed in Algorithm 1. The parameter z is

left as a design choice in the algorithm. The effect of varying z is shown in

Section 2.5.

2.4.2 Hybrid Remaining-hops Weighted Back-pressure

Algorithm

A hybrid algorithm is presented here. The remaining-hops weighted back-

pressure algorithm of Section 2.3.4 is used to define weights over petite states.

The petite set is defined as χz. For convenience, this algorithm and the

remaining-hops weighted back-pressure algorithm are referred to as HRH

and RH respectively in the later sections.

2.5 Simulation Results

We compare the back-pressure algorithm, the model in [5] (identified as

the “Ying et al” model in the figures), the remaining-hops weighted back-

pressure (RH) algorithm, and the hybrid remaining-hops weighted back-

pressure (HRH) algorithm via simulations. Poisson arrivals and the primary

33

Algorithm 1 Steps run in an iteration of a hybrid weighted back-pressure

algorithm

{assign weights}
for all l ∈ L and f ∈ F do

wl,f (t) = [Pl,f (t)βl,f (t)]
+

end for

vl(t)← maxf∈F wl,f (t)

v∗l (t)← maxf∈F Pl,f (t)

Solve for ĉ as in (2.13) {identify optimal schedule}

{execute ĉ}
for all l such that ĉl = 1 do

f̂(t)←

arg maxf∈F wl,f (t) if ξt ∈ χz

arg maxf∈F Pl,f (t) otherwise

Activate flow f̂(t) on link l

end for

interference constraints are assumed. The arrival rate (λ) in subsequent plots

is the rate at which traffic is generated for any sink node. The average end-

to-end delay versus λ is plotted. The effect of α and z is first described before

presenting our results on various networks.

2.5.1 Effect of α and z

The RH and the HRH algorithms assign higher priority to shorter paths by

introducing multiplicative weights βf,l as in (2.11) that assign higher weights

to links on shorter paths. As α increases, the maximal schedule activated

in a slot is increasingly determined by the backlogs on shorter flows and

34

1 2 3 4

1211

76

109

5

13 14 15 16

8

Flow 1

Flow 2

Figure 2.7: The 4×4 grid topology with 2 flows.

shorter paths. This is evident as max α
√∑

k y
α
k is dominated by maxk{yk}

as α increases. Consider the network in Fig. 2.7. The effect of varying α is

depicted in Fig. 2.8a. Note that the flows are not restricted to the shortest

paths. We see that the delay on the shorter flow decreases as α increases.

The effect of varying z is accurately reflected in the simulations. For a

given z, the algorithm uses the link weights from the back-pressure algorithm

when the queue backlogs are sufficiently high. Thus, for arrival rates beyond

a certain magnitude, the mean delay resembles that of the back-pressure

algorithm. As z increases, this transitioning arrival rate increases as longer

queue lengths are required before switching to weights from the back-pressure

algorithm. This is reflected in Fig. 2.8b where the transitioning arrival rate

is seen to increase as z increases.

2.5.2 Large Networks

The results presented in this section are representative of results obtained

for various topologies. The algorithm of [5], the RH algorithm, and the HRH

algorithm have comparable performance (see Fig. 2.9) as demonstrated for

the 4 × 4 grid topology in Fig. 2.6a and the random topology in Fig. 2.6b.

35

 1

 2

 3

 4

 5

 6

 7

 8

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
e
a
n
 d

e
la

y
 (

ti
m

e
s
lo

ts
)

Arrival rate per flow (pkts/timeslot)

hybrid remaining hop, α=1, z=25e8
hybrid remaining hop, α=2, z=25e8
hybrid remaining hop, α=3, z=25e8
hybrid remaining hop, α=6, z=25e8

hybrid remaining hop, α=10, z=25e8

(a) Effect of α on mean delay of Flow 2

 0

 5

 10

 15

 20

 25

 30

 35

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
e
a
n
 d

e
la

y
 (

ti
m

e
s
lo

ts
)

Arrival rate per flow (pkts/timeslot)

back-pressure algorithm
hybrid remaining hop, α=10, z=10
hybrid remaining hop, α=10, z=15

hybrid remaining hop, α=10, z=25e8

(b) Effect of z on mean delay

Figure 2.8: The effect of α and z on the topology in Fig. 2.7.

36

0

50

100

150

200

250

300

350

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

E
n

d
 t

o
 e

n
d

 d
e

la
y
 (

s
lo

ts
)

Arrival rate λ (pkts/slot)

BPA
Ying et al model

remaining hop α=4
remaining hop α=10

hybrid remaining hop α=10, z=25

hybrid remaining hop α=10, z=25x10
8

(a) Grid network of Fig. 2.6a

0

500

1000

1500

2000

2500

3000

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

E
n

d
 t

o
 e

n
d

 d
e

la
y
 (

s
lo

ts
)

Arrival rate λ (pkts/slot)

BPA
Ying et al model

remaining hop α=4
remaining hop α=10

hybrid remaining hop α=10, z=25

hybrid remaining hop α=10, z=25x10
8

(b) Random network of Fig. 2.6b

Figure 2.9: Mean delay of different algorithms.

37

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

E
n

d
 t
o

 e
n
d

 d
e
la

y
 (

s
lo

ts
)

Arrival rate λ (pkts/slot)

BPA
Ying et al model

remaining hop α=4
remaining hop α=10

hybrid remaining hop α=10, z=25
hybrid remaining hop α=10, z=25x108

(a) End-to-end delay

0

5

10

15

20

25

30

35

40

45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A
v
e
ra

g
e
 h

o
p

 c
o
u
n

t

Arrival rate λ (pkts/slot)

BPA
Ying et al model

remaining hop α=4
remaining hop α=10

hybrid remaining hop α=10, z=25
hybrid remaining hop α=10, z=25x108

(b) Average hops count

Figure 2.10: Performance of various algorithms on a network with short

routes sharing a congested node (see Fig. 2.6c).

38

The algorithms perform well by reducing the hop count at low and moderate

loads. The topology in Fig. 2.6c is motivated next.

The RH and the HRH algorithms route more packets on shorter paths.

One may suspect the two algorithms to perform poorly when shorter routes

pass through the congested part of the network. This motivates the topology

in Fig. 2.6c where three flows with the shortest path of two hops, exist from

Node 6 to Node 2, from Node 11 to Node 7, and from Node 16 to Node 12.

Note that all shortest paths pass through Node 1, the node expected to be

most congested in the network. All links are half-duplex. Alternate four-hop

long routes also exist between the source and destination nodes. Because

of dynamic routing, the packets may get misrouted to even longer routes

in other loops from Node 1. We find that the RH and the HRH algorithms

perform well though the model of [5] performs poorly at moderate loads. The

algorithm of [5] saturates Node 1 at approximately 0.16 packets/timeslot and

thus the delay rises sharply close to this reduced capacity of the network. This

limit is evident as even under no misrouting of packets, Node 1 is activated

twice for each flow (to receive in one timeslot and transmit to the sink in the

next) and there are 3 flows. This algorithm does not stabilize the network

for higher loads.

2.6 Summary

We identify three causes for the poor delay performance of the back-pressure

algorithm. We observe that the interaction of flows and the topology itself

can lead to poor delay performance. This chapter chiefly addresses the third

causation of the random walk like behaviour by increasing the proclivity

of the packets to take shorter paths to the destination dynamically. This

is achieved by introducing a framework where the priority of certain flows

and links are increased by assigning higher weights. We demonstrate that

39

by leveraging path length information, the delay performance of the back-

pressure algorithm can be improved significantly.

One approach for distributed implementation is following the work in

[34] and the references therein. The cost of distributed implementation is a

possible reduction in the capacity as the activated schedules are sub-optimal

solutions to the weighted matching problem.

40

Chapter 3

A Static Formulation for

Reducing Delay

3.1 Introduction

In non-stationary environments, a max-weight algorithm for routing and

scheduling is suitable since it strives to maintain stability, e.g., the back-

pressure algorithm which is throughput optimal but does not explicitly min-

imize delay. Such algorithms typically entail high per timeslot complexity.

Under stationary settings, a static problem can be formulated for minimizing

mean delays in the network while maintaining stability. In this chapter, we

take this approach for multihop wireless networks. The approach is inspired

by the early works on delay in wired networks. Wired network models invari-

ably assume link capacities to be constants and routing parameters (either

single-path or multi-path) to be the variables in the formulation to minimize

delay. In an extension to wireless networks, interference is one reason for

variable link capacities. This extension, as we will see, becomes non-trivial

since the (delay) objective function is nonconvex.

We take a static approach to route and schedule packets while minimizing

41

delay; the static solution does not depend on the instantaneous network state

information and slows the timescale of routing and scheduling computations

from per slot to the timescale of changes in the network traffic pattern.

3.1.1 Background and Related Works

Multipath routing for mean delay minimization has been extensively studied

for wireline networks, e.g., see [35, 36, 37, 38]. Among other techniques,

these approaches have included the flow deviation method and the projected

gradient method to optimize delay, e.g., [35, 36]. Second derivative based

techniques have been used for faster convergence, e.g., [37]. As has been

noted already, routing was the only variable considered in these formulations

and the delay objective was a convex function. We will see that the objective

is nonconvex when scheduling parameters (link capacities) are variable. Some

standard nonlinear optimization techniques are discussed next.

The flow-deviation method applied to minimize delay in a wired network

(see [35, 39]) requires moving part of the flow from all non-shortest paths

(inferred from the first derivative of delay on a path) to the shortest path.

The algorithm converges to the global minima for convex delay functions.

In the projected gradient method, the direction of steepest descent, −∇f , is

identified first. If even a small step of ε in −∇f direction makes the point

infeasible, the new search direction is set to the projection of the gradient

onto the set of feasible directions (g = P(−∇f)). The iteration completes by

taking an optimally sized step in the search direction. In a similar algorithm,

a step is made in the direction of the steepest descent and the resulting point

is projected back onto the set of feasible solutions. The algorithms converge

to a local minima for nonconvex problems. See [39, 40, 41] for more details.

The block descent algorithm almost surely converges to the global min-

ima for a convex problem and converges to a local minima for a nonconvex

42

problem. A single iteration of the algorithm breaks the task into solving sev-

eral optimization problems over smaller spaces. Specifically, the objective is

sequentially optimized in every block (sub space of the feasible space) in an

iteration; the algorithm repeats this iteration until the algorithm converges.

See [39, 41, 42] for further details.

We mention simulated annealing next, a random algorithm that converges

to the global minima but has a very slow convergence rate (see [43, 44, 45] for

example). The algorithm generates a sequence of states {~xn} that converge

to the global optima in distribution. The stochastic process {~xn} is a time

inhomogeneous Markov process where the transition probability from ~x to

~x′ depends on an external scheduling parameter cn typically referred to as

the temperature. The transition probabilities also depend on the difference

in objective at ~x and ~x′. The algorithm takes a ‘non-greedy’ approach as the

objective can increase in an iteration though such transitions are less likely to

occur than transitions to lower objective values. The role of the temperature

schedule {cn} is to characterize the probability of making upward transitions:

transitions to higher objective values are more likely when the temperature

is high. The convergence guarantees hold when the cooling schedule {cn} is

sufficiently slow. The cooling schedule depends on the size of the domain

and the size of a neighbourhood (see [43, 46]). These reasons are attributed

to the infeasibility of this algorithm to our problem.

3.1.2 Outline of this Chapter

In Section 3.2, we formulate a static model for minimizing delay and present

our analysis. Section 3.3 characterizes the set of local minima and presents

two class of algorithms that solve the optimization problem from Section 3.2.

We present two heuristical implementations and evaluate them in Section 3.4.

Our results are summarized in Section 3.5.

43

3.2 Static Formulation for Minimizing Delay

In this section, we pose a static optimization problem for minimizing average

delay, along the lines of [35, 36, 37]. Here, a flow is defined by the ordered

set of the sending node (sf) and the receiving node (df). Let the packet

arrival rate of flow f be λf . We assume that a queue exists at each node for

each flow. Changes in notation from Chapter 2 are briefly defined. Consider

an ergodic schedule in which schedule s is used for fraction φs of time. We

will say that φ := (φs, s ∈ S) is the scheduling in the network. Clearly,

φs ≥ 0 and
∑

s∈S φs = 1; this defines the set Φ of feasible scheduling vectors.

The capacity (in packets/slot) of link l is thus µl :=
∑

s∈S φssl. We will

assume ergodic routing and let xf,l, f ∈ F and l ∈ L, denote the rate at

which packets of flow f are transmitted on link l. Let xf := (xf,l, l ∈ L),

x := (xf , f ∈ F). We will say that x is the routing in the network. Clearly,

for each f ∈ F , the vector xf is non-negative and satisfies the following flow

conservation constraints: for all i ∈ N and f ∈ F ,

∑
l∈Li(i)

xf,l =


∑

l∈Le(i) xf,l + λf if i = df ,∑
l∈Le(i) xf,l − λf if i = sf ,∑
l∈Le(i) xf,l otherwise.

These constraints define the feasibility set Xf for xf ; let X :=
∏

f∈F Xf . The

rate at which packets arrive for transmission on link l is γl :=
∑

f∈F xf,l.

Let Dl(γl, µl) reflect the mean delay on link l as a function of the packet

arrival rate γl and the mean service rate µl. In general, this function can

depend on other statistical parameters but our interest is in optimizing delay

in these two parameters. Such assumptions have been used in previous work,

e.g., see [36, 37, 47].

The mean packet delay in the network is minimized by minimizing the

average number of packets in the system obtained by Little’s Law, i.e., by

44

minimizing G :=
∑

l γlDl(γl, µl). For numerical evaluation in Section 3.4, we

assume the mean delay function to be identical at each link. This assumption

is made for ease of solving. The exact arrival distribution for modelling

downstream links in a network is difficult to characterize even for simple

Poisson external arrivals.

We make the following regularity assumptions on the link delay function

Dl. Define Z := {(γl, µl) ∈ R2 : µl ≥ ε, 0 ≤ γl < µl}, where ε > 0 is

a small positive constant. We impose a lower bound ε on µl to eliminate a

possible discontinuity at the origin of the function γlDl(γl, µl). Dl is twice

continuously differentiable over Z, and is defined to be ∞ outside this set.

Over its effective domain, Dl(γl, µl) is strictly increasing and convex with

respect to γl and strictly decreasing and convex with respect to µl. Finally,

limγl↑µl Dl(γl, µl) =∞ for all µl ≥ ε. These assumptions are natural to make

and are properties that hold for common queueing systems, e.g., they are

applicable for the M/G/1 server with first come first serve discipline.

We are interested in optimally choosing routing x and scheduling φ to

minimize the mean packet delay in the network. Formally, this optimization

problem can be stated as follows:

min G(x, φ) (P1)

subject to (x, φ) ∈ X× Φ

We assume that the packet arrival rates λf , f ∈ F , are within the capacity

region of the network; this ensures that the above optimization problem is

feasible. Also, note that we do not explicitly include a stability constraint

for each link since the objective function is defined to be∞ if the constraints

are violated.

The function Dl(γl, µl) is meant to model the average delay on link l.

A standard approach would be to model Dl using the Pollaczek-Khinchin

formula for the M/G/1 FCFS queue (as in [36, 37, 47]), with γl and µl

45

denoting the arrival rate and the service rate respectively. Note that in all

these models, limγl→0Dl(γl, µl) = 1
µl
. The following proposition states that

for such ‘standard’ queueing delay models, the average number of packets

in the queue (including the one being served), given by γlDl(γl, µl) is not

jointly convex with respect to γl and µl. This suggests that (P1) is in general

a non-convex optimization problem for standard queueing delay models.

Proposition 3. If Dl satisfies the regularity conditions listed above and

Dl(0, µl) = 1
µl
, then γlDl(γl, µl) cannot be convex over the interior of Z.

Proof of Proposition 3. Let F (γ, µ) := γDl(γ, µ). Pick µ0 > ε. Since ∂Dl(γ,µ)
∂µ

is assumed to be continuous over Z, limγ↓0
∂Dl(γ,µ0)

∂µ
< 0.

A necessary condition for F to be convex over Z is that the determinant

of its Hessian (denoted by det(∇2F)) be non-negative. det(∇2F) is easily

computed as

det(∇2F (γ, µ)) = γ
∂2D

∂µ2

(
2
∂D

∂γ
+ γ

∂2D

∂γ2

)
−
(
∂D

∂µ
+ γ

∂2D

∂µ∂γ

)2

.

Since D is assumed to be twice continuously differentiable over Z, all the

derivatives on the right hand side of the above equation must be bounded

over the compact set {(γ, µ0) : 0 ≤ γ ≤ µ0/2}. Therefore,

lim
γ↓0

det(∇2F (γ, µ0)) < 0.

This implies that for small enough γ > 0, det(∇2F (γ, µ0)) < 0. Therefore,

F cannot be convex over Z.

If we fix the scheduling vector φ, then it is easy to see that (P1) is convex

and reduces to the optimal routing problem of [36, 37]. Similarly, if we fix the

routing x, then (P1) reduces to a convex optimization and is therefore easy

to solve. Proposition 3 above suggests that with both routing and scheduling

as variables, (P1) is in general a non-convex optimization. We now provide

algorithms to compute a local minimum of (P1).

46

3.3 Optimal Solutions

First, we characterize the set of local minimizers of (P1). Define J =

{(x, φ) ∈ X × Φ | G(x, φ) < ∞}, the set of all feasible solutions. Since

we have assumed the optimization in (P1) is feasible, the set J is non-empty.

Define

J∗ =

{
(x̄, φ̄) ∈ J

∣∣∣∣∣ x̄ ∈ arg minx∈XG(x, φ̄)

φ̄ ∈ arg minφ∈Φ G(x̄, φ)

}
,

the set of all optimal solutions.

Lemma 1. J∗ is the set of local minimizers of G over X× Φ.

Proof of Lemma 1. The proof follows easily from the fact that X and Φ are

convex, and that a minimization with respect to either variable x or φ keeping

the other fixed is a convex minimization. Since X and Φ are convex sets, (x̄, φ̄)

is a local minimizer of G over X× Φ iff

∇xG(x̄, φ̄) · (x− x̄) +∇φG(x̄, φ̄) · (φ− φ̄) ≥ 0

∀ (x, φ) ∈ X× Φ

⇐⇒
∇xG(x̄, φ̄) · (x− x̄) ≥ 0 ∀ x ∈ X,

∇φG(x̄, φ̄) · (φ− φ̄) ≥ 0 ∀ φ ∈ Φ

⇐⇒
x̄ ∈ arg minx∈XG(x, φ̄),

φ̄ ∈ arg minφ∈Φ G(x̄, φ).

The preceding lemma states that the set of local minimizers of (P1) are

precisely the tuples (x, φ) satisfying the property that with fixed routing

vector x, the scheduling vector φ is optimal, and vice-versa. Clearly, if G is

convex, then J∗ is the set of global minimizers of G over X× Φ.

We now provide two approaches to compute a local minimizer of (P1).

The first is a block descent algorithm which cyclically performs (convex)

47

optimizations with respect to routing and scheduling. Second is a class of

algorithms that chooses between a routing update and a scheduling update

in each iteration.

3.3.1 Block Descent Algorithm

We now describe an algorithm (see Algorithm 2) for computing a local min-

imum of (P1) based on the block descent algorithm (see Proposition 2.7.1 of

[41]). Let (x0, φ0) ∈ J denote a starting feasible point for (P1). Such a point

is easy to compute since J is defined by linear constraints. The algorithm is

parametrized by a positive constant c.

Algorithm 2 Block descent

for i ≥ 0 do

φi+1 ← arg minφ∈Φ G(xi, φ) + 1
c
‖ φ− φi ‖2

xi+1 ← arg minx∈XG(x, φi+1) + 1
c
‖ x− xi ‖2

end for

Note that the optimizations involved in each iteration of Algorithm 2 are

convex, and hence can be performed by standard techniques. The following

lemma guarantees the convergence of this block descent algorithm.

Lemma 2. The sequence {(xi, φi)} generated by Algorithm 2 converges to

an element of J∗.

Proof of Lemma 2. Invoking Proposition 2.7.1 of [41], the sequence {(xi, φi)}
converges to a local minimum of (P1) if, for any feasible point (x0, φ0) of (P1),

the optimizations

min
x∈X

G(x, φ0) +
1

c
‖ x− x0 ‖2, and

min
φ∈Φ

G(x0, φ) +
1

c
‖ φ− φ0 ‖2

48

yield unique minimizers. The quadratic term is added to the objective func-

tion to guarantee a unique solution by its strict convexity.

3.3.2 A Class of Iterative Algorithms

Next, we introduce another class of iterative algorithms (see Algorithm 3)

that guarantee convergence to J∗. Such an algorithm is specified by two

algorithmic maps: a ‘routing update’ mapping ART : J → X which provides

descent by updating the routing vector and a ‘scheduling update’ mapping

ASC : J → Φ which provides descent by updating the scheduling vector. We

require ART and ASC to be closed maps. Let X, Y be closed sets in J . A

map A : X → Y is closed at x ∈ X if

xk ∈ X xk → x

yk ∈ A(xk) yk → y

}
implies that y ∈ A(x).

The map A is closed on a subset Z ⊂ X if it is closed at each point z ∈ Z.

See [42, Chapter 7] for a discussion on algorithmic maps.

Algorithm 3 describes the algorithm derived from ART and ASC . As be-

fore, we assume that a starting feasible point (x0, φ0) ∈ J is available.

Algorithm 3 Algorithm for solving (P1)

for i ≥ 0 do

if G(ART (xi, φi), φi) ≤ G(xi, ASC(xi, φi)) then

xi+1 ← ART (xi, φi) ; φi+1 ← φi

else

xi+1 ← xi ; φi+1 ← ASC(xi, φi)

end if

end for

In each iteration, the algorithm performs either the routing update or the

scheduling update, whichever produces the greater descent in the objective

49

function value. The following theorem states that so long as the routing

update ART and the scheduling update ASC are continuous, and satisfy the

following descent criteria, the sequence {(xi, φi)} generated by the algorithm

converges to the set J∗. Since J∗ characterizes the set of local minima, the

algorithmic maps ART and ASC are assumed to generate a feasible point

and decreasing objective values. Most importantly, the descent properties

required of the routing and scheduling updates are decoupled implying that

these update rules can be designed independently.

Theorem 1. For any (x̂, φ̂) ∈ J satisfying G(x̂, φ̂) ≤ G(x0, φ0), assume that

the routing update ART satisfies the following descent property.

(a) If x̂ ∈ arg minx∈XG(x, φ̂), then G(ART (x̂, φ̂), φ̂) = G(x̂, φ̂);

(b) if x̂ /∈ arg minx∈XG(x, φ̂), then there exists δ > 0 such that for all

(x̃, φ̃) ∈ X × Φ satisfying ‖ (x̃, φ̃) − (x̂, φ̂) ‖< δ, G(ART (x̃, φ̃), φ̃) <

G(x̂, φ̂).

Similarly, for any (x̂, φ̂) ∈ J, satisfying G(x̂, φ̂) ≤ G(x0, φ0), assume that the

scheduling update ASC satisfies the following descent property.

(a’) If φ̂ ∈ arg minφ∈Φ G(x̂, φ), then G(x̂, ASC(x̂, φ̂)) = G(x̂, φ̂);

(b’) if φ̂ /∈ arg minφ∈Φ G(x̂, φ), then there exists δ > 0 such that for all

(x̃, φ̃) ∈ X × Φ satisfying ‖ (x̃, φ̃) − (x̂, φ̂) ‖< δ, G(x̃, ASC(x̃, φ̃)) <

G(x̂, φ̂).

Then every limit point of the sequence {(xi, φi)} generated by Algorithm 3

lies in J∗.

Proof of Theorem 1. The proof is similar to the convergence proof of The-

orem 7.2.3 in [42]. The descent assumptions on ART and ASC imply that

50

{G(xi, φi)} is a non-increasing sequence (bounded below by the value of G

at the solution of (P1)). Therefore, there exists G∗ ∈ R such that

lim
i→∞

G(xi, φi) = G∗, G(xi, φi) ≥ G∗ ∀ i. (3.1)

Now, since the sequence {(xi, φi)} is contained in the sublevel set {(x, φ) :

G(x, φ) ≤ G(x0, φ0)}, a compact space in X × Φ, it must have a converg-

ing subsequence (xi(n), φi(n))
n↑∞→ (x∗, φ∗). Note that since G is continuous,

G(x∗, φ∗) = G∗. We need to prove that (x∗, φ∗) ∈ J∗.
Let us assume (for the sake of obtaining a contradiction) that (x∗, φ∗) /∈

J∗. Then from the definition of J∗, at least one of the following conditions

must hold.

(i) x∗ /∈ arg minx∈XG(x, φ∗)

(ii) φ∗ /∈ arg minφ∈Φ G(x∗, φ)

Let us say (i) holds. Then from the descent assumption on ART , there

exists ε > 0 such that for all (x̃, φ̃) ∈ X×Φ satisfying ‖ (x̃, φ̃)− (x∗, φ∗) ‖< ε,

we must have G(ART (x̃, φ̃), φ̃) < G(x̂, φ̂). Since (xi(n), φi(n))
n↑∞→ (x∗, φ∗),

there exists n0 ∈ N such that ‖ (xi(n0), φi(n0)) − (x∗, φ∗) ‖< ε, which implies

that

G(ART (xi(n0), φi(n0)), φi(n0)) < G(x∗, φ∗) = G∗. (3.2)

Algorithm 3 picks (xi(n0)+1, φi(n0)+1) such that

G(xi(n0)+1, φi(n0)+1) ≤ G(ART (xi(n0), φi(n0)), φi(n0)). (3.3)

Combining (3.2) and (3.3), we conclude that G(xi(n0)+1, φi(n0)+1) < G∗, which

is a contradiction. This means that Condition (i) above cannot hold. Using

an identical argument, it can be shown that Condition (ii) also cannot hold.

Therefore, (x∗, φ∗) ∈ J∗r .

51

Since (P1) reduces to a convex optimization when either the routing vec-

tor or the scheduling vector is fixed, the update rules ART and ASC may be

designed by standard techniques in convex optimization. In particular, the

projected gradient methods, such as in [41], satisfy the descent requirements

and qualify in this class of iterative algorithms.

3.4 Evaluation

In this section we evaluate the mean delay performance, via simulations,

of the static formulation in (P1). We make the assumption that the delay

at each link is given by 1/(µl − γl). The performance of the algorithms is

compared with that of the back-pressure algorithm, the HRH algorithm, and

the model of [5]. The simulations are run on a 4 × 4 grid topology with 240

flows (see Fig. 2.6a).

The x and φ chosen as a solution to (P1) can be implemented via many

schemes; the delay performance of the routing and scheduling scheme will

depend on the chosen scheme. A simple static routing algorithm suggests

itself. At node i, a packet of flow f is routed on link l with a probability pf,l

independent of all other packets, where

pf,l :=


xf,l∑

l′∈Le(i) xf,l′
if
∑

l′∈Le(i) xf,l′ > 0

0 otherwise.

A simple scheduler, we call the independent scheduler, also suggests itself.

In each slot, schedule s ∈ S is chosen with probability φs independent of all

other slots. In this scheme, the interval of time between the activations of

schedule s has high variance. Reducing this variance can reduce the mean

delays in the network. This leads us to the max-delta scheduler which is a

generalization of the round-robin scheduler. Let Π(t) be the schedule acti-

52

 0

 50

 100

 150

 200

 250

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 0.011

M
e
a
n
 d

e
la

y
 (

ti
m

e
s
lo

ts
)

Arrival rate per flow (pkts/timeslot)

back-pressure algorithm
Ying et al model

static routing, independent scheduling
static routing, max-delta scheduling

hybrid remaining hop, α=10, z=25e8

Figure 3.1: Mean end-to-end delay in a 4 × 4 grid network (see Fig. 2.6a)

when x and φ are chosen from (P1) and implemented using the static routing

and scheduling schemes. Performance curves of the schemes of [4] and [5] are

also provided.

vated in slot t. Define

φ̂s(t) :=
1

t

t−1∑
u=0

1(Π(u) = s),

the fraction of time schedule s has been activated up to time t. The schedule

activated during time slot t is determined by

Π(t) = arg max
s∈S

{φs − φ̂s(t)},

where ties are broken according to some pre-determined rule. Observe that

this gives us a deterministic sequence of schedules which can be pre-computed.

Fig. 3.1 shows the poor delay performance of the back-pressure algo-

rithm. We see that the independent scheduling algorithm with static routing

53

performs significantly better than the back-pressure algorithm at low and

moderate loads because the static routing prohibits random walk like be-

haviour. However, since the schedules are chosen randomly in each slot, the

interval between consecutive link activations can have a high variance. This

and the fact that the schedule in each slot is independent of the queue oc-

cupancies causes the delay to continue to be high (though better than that

of the back-pressure algorithm) for low loads and become worse than that

of the back-pressure algorithm at high loads. The scheme of [5] offers a bet-

ter performance here. The max-delta scheduler with static routing performs

better than the independent scheduler. We attribute this to the reduced

variance of the inter-activation time of the links. Figure 3.1 also shows the

results for the HRH algorithm discussed in Section 2.4.1. This algorithm

performs significantly better than the back-pressure algorithm. Our results

on various topologies indicate the scheme of [5], the HRH algorithm, and the

static routing with max-delta scheduling to perform about the same. The

scheme of [5] however suffers from a reduced stability region as demonstrated

in Section 2.5 under certain topologies.

3.5 Summary

The focus of this chapter is on reducing mean delays in multihop wireless

networks via a static formulation. We prove an interesting result: mean

delay functions are not convex for wireless networks when both capacity and

routing parameters are variables.

Two algorithms are proposed to obtain the solutions to the static delay

problem. The block descent algorithm in Algorithm 2 requires solving for

the unique solution to the two minimization problems in every iteration. In

contrast, the iterative algorithm in Algorithm 3 only requires an improvement

in the objective in every iteration. Although both routing and scheduling

54

updates are calculated, only one is used and the other is discarded. Presently,

the algorithms require the knowledge of the packet arrival rates a priori

and solve optimization problems centrally. Promising leads for distributed

implementations involve estimating traffic arrival rate, e.g., see [48, 49], and

obtaining distributed solutions to optimization problems, e.g., see [36, 50,

51, 52, 53].

We present two self-evident implementations of the static solutions and

show that implementing static schemes can achieve significantly better mean

delays, a benefit aside from the reduced complexity. We benchmark our

results against the popular back-pressure algorithm in [4] and the model of

[5].

55

Part II

Pricing of Resources

56

Chapter 4

Pricing of Resources

4.1 Introduction

A wired or wireless network represents a collection of available resources and

users requiring access to the resources. There are numerous such examples:

an Internet Service Provider (ISP) charges for allocating bandwidth (or ca-

pacity) to its customers, cloud computing data-centers where CPU time of

servers is shared between customers, an online anonymizing proxy service

where the proxy’s capacity is shared between its users concurrently, cellular

networks where again the capacity is shared between end users associated

with the base station, and even examples such as printers shared on a net-

work. Sharing of the access medium itself is another example. In such scenar-

ios, the resource may be available gratis (for example the unlicensed band)

where a user doesn’t have to pay for access, or it may be sold by an operator

for a fee. We focus our attention to shared resource environments where an

operator charges for allocating its resource to users. The question we seek

to answer in this chapter is how to share a resource, hereafter assumed to be

bandwidth, fairly and get predictable revenue without the operator requiring

too much statistical information on users.

57

Our formulation will consist of a server where users arrive, remain until

their service requirements are met, and then depart from the system. The

allocation of the resource to a user is assumed to depend on the number of

users in the system. Such queueing models typically assume the knowledge

of the arrival process and the service requirements for performance analysis.

We wish to obtain results on the revenue of the operator and the user costs

when only the first-order statistical information on the arrival process and

the service requirements are known. Such an allocation mechanism where

the stationary distribution of the underlying Markov chain only depends

on the first-order moments is called an insensitive allocation. Insensitive

allocations offer predictability — predictability of revenue to the operator

and predictability of costs to the customers.

The processor sharing discipline, where a server allocates equal resources

to each user in the system, results in insensitivity. Insensitive allocations also

exhibit product-form distributions that allow explicitly evaluating several

performance metrics such as dimensioning of capacity or throughput. In the

case of a single server system, processor sharing is the socially optimum policy

when the users’ utilities are the logarithm of their allocated bandwidth. The

log utility function is also of interest since its solutions coincide with the Nash

bargaining solution (see [54, 55]), with proportional fairness (see [56, 50]),

and with insensitive allocations in the case of a single server system (see

[57]). We emphasize that the processor sharing discipline, although simple,

is of key interest to us since the insensitivity property offers predictability.

It allows us to gain insights into the structure of the pricing mechanisms.

Numerous pricing models or variations for resource allocations exist. We

assume a usage based pricing model with an implicit assumption of the user

having elastic demand, i.e., the user takes whatever portion of the resource is

allocated to it. This assumption is not too far off from reality, e.g., the Ama-

zon Elastic Compute Cloud (EC2) and the Amazon Simple Storage Service

58

(S3) rely on usage based pricing (see [58]).

We restrict ourselves to three pricing models reflecting three different

ideologies. In the fixed rate pricing model, the price of per-unit bandwidth

decreases as the number of users increases. Contrariwise, the price of per-

unit bandwidth increases with the number of users in the congestion based

pricing model. The third pricing model is the Vickrey-Clarke-Groves (VCG)

auction which we show approximates indifference to the number of users in

the system. The three pricing models are detailed in Section 4.3.1.

We note that processor sharing is not an appropriate model for mod-

elling every shared resource. Clearly, a printer on the network cannot be

shared concurrently between multiple users and is exclusively allocated to a

single user at a time, typically by the First-Come-First-Server (FCFS) dis-

cipline. That said, processor sharing models a computing server’s resource

(e.g., Amazon’s EC2) and bandwidth allocations well. The motivation of our

work stems from the domain of cloud computing where the end-user and the

data center operator require respectively to ascertain their expected costs

and revenue. The results can also be used in modelling large file transfers

over TCP connections through a payment charging proxy or for web applica-

tions where file sizes can have general statistical distributions. Predictability

is attained at the cost of not employing admission control. A simple gen-

eralization of the processor sharing discipline, the discriminatory processor

sharing discipline, is not insensitive and thus its analysis becomes very diffi-

cult (see [59]).

In this chapter, we explicitly characterize the mean revenue earned by

the operator and the mean payments made by the user under the processor

sharing discipline in the three pricing models. The mean payments derived

rely on sample path arguments. We present an alternative scheme where

the operator charges users upfront on arrival. The analysis of this scheme

is based on the stationary measures instead of the sample path arguments.

59

We also provide the second moment of payments by users in such a scheme

which defines the volatility of payments.

4.1.1 Background and Related Works

Utility maximization is a well-known technique used for efficiently sharing a

resource. The model assumes that each user r has a utility function Ur(Λ)

which quantifies the personal worth attributed to Λ amount of resource. The

goal of an efficient sharing policy is to maximize the aggregate of individual

utilities also called as the social welfare, i.e.,

max
∑
r

Ur(Λr) (4.1)

subject to
∑
r

Λr ≤ Total Available Resource.

Utility maximization techniques can achieve certain fairness criteria by their

choice of utility functions. The simplest fairness criterion is of max-min

fairness. An allocation ~Λ = (Λr,∀ r) is max-min fair if the utility of user r

cannot be increased without decreasing the utility of user r′ where Ur′(Λr′) ≤
Ur(Λr).

In [56, 50], proportional fairness is applied to allocations in networks. A

feasible allocation ~Λ is proportionally fair if for any other feasible allocation

~Λ′, ∑
r

Λ′r − Λr

Λr

≤ 0.

This allocation is realized by assuming log utility functions in (4.1). Another

fairness criterion is the (p, α)-proportional fairness proposed in [60]. A feasi-

ble allocation ~Λ is (p, α)-proportionally fair if for any other feasible allocation

~Λ′, ∑
r

pr
Λ′r − Λr

Λα
r

≤ 0.

60

This criterion simplifies to proportionally fair for α = 1 and approaches

max-min fairness as α→∞.

Processor sharing is a sharing discipline used to allocate a resource simul-

taneously between multiple users. It has several advantages when applied to

networks. Processor sharing leads to equal allocation of a resource and is

thus fair. It also restricts users with large service requirements from hinder-

ing other users for a long time (as would be the case with the FCFS policy).

The TCP congestion control mechanism results in processor sharing between

several competing TCP flows with the same Round-Trip-Time (RTT). In

[61], processor sharing discipline is empirically shown to have shorter mean

flow completion time for TCP flows with different RTTs. For analytical re-

sults on the sojourn time distribution and the distribution of the number of

jobs for an M/G/1/∞ processor sharing queue, see [62].

Resource allocation and pricing, along with mechanism design are well

studied problems. Mechanism design relates to the design of pricing schemes

along with their implementation to induce optimal behaviour in a set of users.

In the context of sharing a server in data-centers or sharing bandwidth in

networks, a plethora of pricing based models exist, e.g., [63, 64]. See [65] for

a survey of pricing in homogeneous and heterogeneous wireless networks and

[66] for a survey of pricing mechanisms in cognitive radio networks.

One of the pricing models we analyze is the VCG auction, a generalization

of the second-price auction (see [67]). In a second-price auction of a single

indivisible item, the highest bidder is awarded the item but pays the second

highest bid. This model is efficient in the sense that the bidder with the

highest valuation of the item wins the auction. Second-price auctions have

been used by governments in the sale of wireless spectrum. A generalization

of the second-price auction is also used for the sale of keywords by a search

engine to potential advertisers; advertisers bid to place their advertisement

higher when certain keywords are searched (see [68] for an analysis). While

61

the model may not maximize the revenue for the operator, it is of theoretical

interest since it is incentive compatible. Incentive compatibility implies that

the dominant strategy of bidders is to bid their valuations truthfully (see

[69]).

The VCG auction that we use is a generalization from a single indivis-

ible item to an infinitely divisible commodity (see [70]). Consider a single

auctioneer with a resource of capacity C and R bidders indexed by the set

{1, . . . , R}. Bidder r has the utility function Ur(·). The bidders bid by

submitting a valuation function Wr(x) which may or may not be the true,

privately held valuation function. Since the VCG mechanism is incentive

compatible, the dominant strategy for bidders is to report their true valua-

tion function Ur(·).
The first step by the auctioneer is to obtain the optimal allocation, i.e.,

maximize the social welfare. Given the set of all bids ~W = (W1, . . . ,WR),

the optimal allocation ~ΛV CG(~W) := (ΛV CG
1 (~W), . . . ,ΛV CG

R (~W)) is given by

~ΛV CG = arg max
~Λ

R∑
r=1

Wr(Λr)

subject to Λr ≥ 0 for all r

R∑
r=1

Λr ≤ C.

After identifying the optimal allocation, the price charged to bidder r is

evaluated as

pr = max
~Λ

 ∑
s 6=r|Λr=0

Ws(Λs)

−∑
s 6=r

Ws(Λ
V CG
r). (4.2)

The first summation here is the maximum social welfare when user r is

removed from bidding (denoted by allocating no resource to r). The second

summation is the social welfare when bidder r is present but its utility is not

62

included. The price charged to bidder r is thus the decrease in the social

welfare by it entering the auction.

Another pricing model considered in this work is congestion based pric-

ing which employs the Lagrange shadow prices. In constrained optimization

theory, the dual variables arise naturally and have the interpretation of the

costs associated with hitting the constraints (see [71, 72]). The primal-dual

algorithm relies on these shadow prices and has an easy, distributed imple-

mentation, e.g., [50]. In [63], the shadow prices associated with the congestion

in the maximal clique of a multihop wireless network is used to maximize

social welfare.

4.1.2 Outline of this Chapter

We present the system model in Section 4.2 and analyze the pricing models

in Section 4.3. We present some simulation results in Section 4.4 and present

our concluding remarks in Section 4.5.

4.2 System Model

We model an infinitely divisible resource as a server with M/G inputs, capac-

ity C, and using the processor sharing discipline. The system consists of users

that represent file transfers or flows. Each user arriving to the server belongs

to one of K classes indexed by the set {1, . . . , K}. A class is distinguished by

its arrival and service requirement characteristics. Class k user arrivals are

modelled as a Poisson process with rate λk. Each class k user brings a random

amount of work, independent and identically distributed, with some general

distribution with mean νk. At an instant t, let ~x(t) := (x1(t), . . . , xK(t))

denote the number of users of each type present in the system with xk(t) ≥ 0

denoting the number of class k users. The allocation to a user in the system

63

is C/|~x| and the total allocation to class k is given by Λk(~x) = xkC/|~x|.
Let ~Λ(~x) = (Λ1(~x), . . . ,ΛK(~x)). As discussed in the previous section, pro-

cessor sharing results from maximizing social welfare when each user has a

log utility function. We will assume this utility function when we derive the

payments under VCG auctions and congestion based pricing.

Define αk := λkνk and ~α := (α1, . . . , αK). The traffic intensity of class k

is denoted by ρk = αk/C. Let the total traffic intensity ρ be given by

ρ =
∑K

k=1 ρk. We use the notation ~α~x =
∏K

k=1 α
xk
k for convenience.

Let π be the stationary distribution of the underlying Markov process, PN
be the Palm probability associated with the stationary point process N , and

EN be the expectation with respect to the Palm probability. Palm probability

at arrivals is the same as the stationary measure since we have Poisson arrivals

and due to the Poisson Arrivals See Time Averages (PASTA) property. With

a slight abuse of notation, let E~x be the expectation conditioned on seeing

the arrival state as ~x. Let Φ(~x) be the balance function given as

Φ(~x) =
1

C |~x|

(
|~x|!

x1! . . . xK !

)
(4.3)

for ~x ∈ ZK+ and Φ(~x) = 0 otherwise. See Section 4.2.2 for a discussion on

balance functions. Define χ(~x) := Φ(~x)~α~x. χ(~x) is an invariant distribution

of the underlying Markov process. The stationary distribution π(~x) is then

given by

π(~x) =
χ(~x)∑
~y χ(~y)

. (4.4)

In our analysis, the arrival rate is independent of the number of users

present in the system and subsequently independent of the per unit-time

price. This simplifying assumption makes the notation and analysis easier.

However, one can extend the model to state dependent arrival rates provided

the new rates satisfy the balance property.

We describe a Quality of Service (QoS) constraint that we introduce next.

64

We then review key ideas from insensitive allocations followed by the Swiss

Army formula.

4.2.1 A QoS Requirement

We will see that under VCG auctions and congestion-based pricing, the op-

erator can collect arbitrarily large revenue per unit-time by installing small

capacity, leading to longer sojourn times and greater accrued payments. To

overcome this, we study a QoS requirement defined as follows. A class k

user pays the operator if and only if the rate allocated at time t, C/|~x(t)|, is

equal to or greater than rk. For ease of exposition, all rk are assumed to be

identical, i.e., rmin = rk. The C/|~x| ≥ rmin condition is then equivalent to a

|~x| ≤ n∗ condition where n∗ = bC/rminc. This QoS constraint provides the

motivation for the operator to offer some minimum service rates. Other vari-

ations of the QoS constraint can be easily incorporated into our framework.

For example, to deter users from free riding, one can consider a fixed entry

fee or charge a constant fee when the minimum rate requirement is not met.

4.2.2 Review of Insensitive Allocations

An allocation is said to be insensitive if π(~x) depends only on the first-order

moments of the arrival process (λk) and the service distribution (νk) (see

[57]). For all k, k′ such that xk, xk′ > 0, insensitive allocations satisfy the

following balance property:

Λk(~x− ~ek′)
Λk(~x)

=
Λk′(~x− ~ek)

Λk′(~x)
.

In words, the fractional change in the allocation to class k when a class k′ user

is removed is the same as the fractional change in the allocation to class k′

when a class k user is removed. The balance property is equivalent to the

65

existence of a balance function Φ such that,

Λk(~x) =
Φ(~x− ~ek)

Φ(~x)
,

for all k such that xk > 0 (see [57]). A balanced fair allocation is a maximal,

insensitive allocation. In the case of a single server, a maximal allocation

means that the server’s capacity is fully utilized. For a network of servers,

the balanced fair allocation does not necessarily coincide with either max-

min fair allocations or proportionally fair allocations. In [73], it is shown

that for a processor sharing network, insensitive allocations asymptotically

converge to proportional fairness.

The balance function for a single, processor-sharing server is given in

(4.3). For the single server case, the insensitive allocation with this balance

function is maximal and coincides with both the max-min allocation and the

proportionally fair allocation (see [57]). In our model, a property exhibited

by the balance function is

Φ(~x) =
1

C

K∑
k=1

Φ(~x− ~ek).

The system is stable if the traffic intensity is less than unity, i.e.,

ρ < 1.

Queueing networks with insensitivity were first studied by Kelly and

Whittle and thus are called Whittle-Kelly networks (see [74, 75]). See [74, 76,

77, 78, 73] and the references therein for further discussions on insensitivity

and processor sharing.

4.2.3 The Swiss Army Formula

Consider an ordered, simple point process {Tn}n∈Z with T0 ≤ 0 < T1 and

a simple point process {τn}n∈Z. Let A and D be the counting measures

66

associated with {Tn} and {τn} respectively. In the context of a queueing

server, A and D correspond to the arrival and departure processes. For each

n ∈ Z, we require

Wn := τn − Tn ≥ 0,

i.e., the sojourn time of the nth arrival, Wn, is non-negative. The number

of users in the system at time t, X(t), follows the following conservation

equation.

X(b)−X(a) = A((a, b])−D((a, b])

Define the intensity of arrivals as λA := E[A(0, 1]]. Let {B(t)}t∈R be a cádlág

process and let {Z(t)}t∈R be a non-negative real-valued stochastic process on

the same probability triple. Then, assuming the system is ergodic, the Swiss

Army formula is given as

λAEA
[∫

(0,W0]

Z(s)dB(s)

]
=

1

t
E
[∫

(0,t]

X(s−)Z(s)dB(s)

]
See [79, 80] for further discussions.

4.3 Analysis

We will see that the zeroth, first, and the second moments of the number

of users in the system will play an important role in our analysis of revenue

collected by the operator. Thus, we start by characterizing the following

67

terms that aid in deriving the aforementioned moments.

t(n) =
∑

~x:|~x|=n

χ(~x) (4.5)

sk(n) =
∑

~x:|~x|=n

xkχ(~x) (4.6)

s̄k(n) =
∑
m>n

sk(m) (4.7)

si,j(n) =
∑

~x:|~x|=n

xixjχ(~x) (4.8)

After normalizing the scale invariant distribution, the expressions in (4.5),

(4.6), and (4.8) respectively denote the zeroth moment, the first moment,

and the second moment (if i = j) of the number of users in the system.

We will see that other expressions of interest are manipulated into the terms

above, e.g.,

∑
~x

xkχ(~x) =
∞∑
n=0

sk(n), and

E[|~x|2xi] =
1− ρ
Φ(~0)

∞∑
n=0

n2si(n).

The following lemmas evaluate t(n), sk(n), s̄k(n), and si,j(n).

Lemma 3. Let t(n) be defined as in (4.5). Then, t(n) = Φ(~0)ρn and∑∞
n=0 t(n) =

∑
~y χ(~y) = Φ(~0)

1−ρ .

68

Proof of Lemma 3. By definition, t(0) = χ(~0) = Φ(~0).

t(n) =
∑

~x:|~x|=n

χ(~x)

=
∑

~x:|~x|=n

1

C

K∑
m=1

Φ(~x− ~em)~α~x

=
K∑
m=1

ρm
∑

~x:|~x|=n−1

Φ(~x)~α~x

= ρ · t(n− 1).

Also, ∑
~x

χ(~x) =
∞∑
n=0

t(n) =
Φ(~0)

1− ρ
.

Lemma 4. Let sk(n) and s̄k(n) be defined as in (4.6) and (4.7). Then

sk(n) = nρn−1ρkΦ(~0),

and

s̄k(n) =
Φ(~0)

1− ρ
ρnρk

(
n+

1

1− ρ

)
.

Proof of Lemma 4. We start with

sk(n) =
∑

~x:|~x|=n

xk
C

K∑
m=1

Φ(~x− ~em)~α~x

=
K∑
m=1

ρm

 ∑
~x:|~x|=n−1

xkχ(~x) +
∑

~x:|~x|=n−1

(~em)kχ(~x)


=

K∑
m=1

ρmsk(n− 1) +
K∑
m=1

ρm
∑

~x:|~x|=n−1

(~em)kχ(~x).

69

Or,

sk(n) = ρsk(n− 1) + ρkt(n− 1)

= ρsk(n− 1) + ρkρ
n−1Φ(~0). (4.9)

It is easily shown that sk(n) = nρn−1ρkΦ(~0) is the solution to the recursion

in (4.9). The first part of the result follows. Next,

s̄k(n) = ρkΦ(~0)
∑
m>n

mρm

= ρkΦ(~0)
ρn

1− ρ

(
n+

1

1− ρ

)
.

Lemma 5. Let si,j(n) be defined as in (4.8). Then,

si,j(n) =

n(n− 1)ρiρjρ
n−2Φ(~0) if i 6= j

n ((n− 1)ρ2
i + ρiρ) ρn−2Φ(~0) if i = j.

Proof of Lemma 5. The proof relies on establishing a recursive expression for

si,j(n). The above is the solution of the recursion.

si,j(n) =
K∑
m=1

αm
C

∑
~x:|~x|=n

xixjΦ(~x− ~em)~α~x−~em

=
K∑
m=1

ρm
∑

~y:|~y|=n−1

(~y + ~em)i(~y + ~em)jΦ(~y)~α~y

= ρsi,j(n− 1) + ρjsi(n− 1) + ρisj(n− 1) + 1(i=j)ρit(n− 1).

Note that si,j(0) = 0 for any i, j and that si,j(1) = 0 if i 6= j.

The above three lemmas compute the zeroth, the first, and the second

moment of the number of users in the system under the invariant distribu-

tion χ(~x). Note that Lemma 3 gives the expression for the normalizing term

70

(
∑

~x χ(~x))−1 in (4.4) for obtaining the stationary distribution from the in-

variant distribution. We also define the following terms which are needed for

evaluating prices.

u(n) :=
∑

~x:|~x|>n

(|~x| − 1/2) π(~x) (4.10)

v(n) :=
∑

~x:|~x|=n

|~x|2χ(~x) = n2t(n) (4.11)

gk(n) :=
∑

~x:|~x|=n

xk
|~x|
χ(~x) = sk(n)/n (4.12)

Proposition 4. Let u(n) be defined as in (4.10). Then,

u(n) = ρn+1

(
n+

1

1− ρ
− 1

2

)
.

Proof of Proposition 4.

u(n) =
∑

~x:|~x|>n

(
|~x| − 1

2

)
π(~x)

=
∑

~x:|~x|>n

|~x|π(~x)− 1

2

∑
~x:|~x|>n

π(~x)

=
∑

~x:|~x|>n

(x1 + · · ·+ xK)π(~0)χ(~x)− 1

2

∑
~x:|~x|>n

π(~0)χ(~x).

Using π(~0) = (
∑

~x χ(~x))−1 = (
∑

n≥0 t(n))−1,

u(n) =

∑K
k=1 s̄k(n)∑
m≥0 t(m)

−
∑

m>n t(m)

2
∑

m≥0 t(m)
.

Using Lemma 3 and Lemma 4, we get

u(n) = ρn+1

(
n+

1

1− ρ

)
− ρn+1

2
.

This proposition is useful for evaluating revenue in VCG auctions.

71

4.3.1 The Pricing Models

We implicitly assume that the QoS requirement is always enforced unless

stated otherwise. The first pricing model is the fixed rate pricing where the

user pays a fixed per unit-time, per unit-resource price of β, i.e., if a user is

allocated Λ resource for time T , the user pays βΛT . Thus, the per unit-time

price is

cFk (~x) =


βC
|~x| if 1 ≤ |~x| ≤ n∗

0 otherwise.
(4.13)

The operator’s revenue is the aggregate of user payments. The per unit-time

revenue is

RF (~x) =

|~x|
βC
|~x| = βC if 1 ≤ |~x| ≤ n∗

0 otherwise.

The log utility assumption is important for the next two pricing models.

Under the VCG auction, a user pays the decrease in maximum social welfare

caused by it entering the system. Let r index over the set of users and with

a slight abuse of notation, let Λr indicate the allocation to user r. If |~x| ≥ 2,

this price is calculated as

cVk (~x) = max
~Λ

∑
s 6=r|Λr=0

log(Λs)−
∑
s 6=r

log(ΛPS
s)

= (|~x| − 1) log
C

|~x| − 1
− (|~x| − 1) log

C

|~x|

= (|~x| − 1) log
|~x|
|~x| − 1

,

where, ΛPS
s is the allocation to user s under processor sharing, i.e., ΛPS

s =

C/|~x|. The aggregate per unit-time revenue collected by the operator is given

by

RV (~x) =

|~x|(|~x| − 1) log |~x|
|~x|−1

if 2 ≤ |~x| ≤ n∗

0 otherwise.

72

To gain further insights in the revenue and payment problem, the follow-

ing approximation is shown to hold.

Proposition 5. RV (~x) ≈ |~x| − 1
2

and the approximation error is O(1/|~x|).

|~x| − 1
2

is an upper bound on RV (~x).

Proof of Proposition 5.

RV (~x) = |~x|(|~x| − 1) log

(
|~x|
|~x| − 1

)
= |~x|(|~x| − 1)

∞∑
n=1

(−1)n+1 1

n

(
1

|~x| − 1

)n
Subtract (|~x| − 1/2) from both sides.

RV (~x)−
(
|~x| − 1

2

)
=

1

2
− |~x|

2(|~x| − 1)
+

|~x|
3(|~x| − 1)2

− . . .

= − 1

2(|~x| − 1)
+
∞∑
m=3

(−1)m−1|~x|
m(|~x| − 1)m−1

This proves the O(1/|~x|) approximation. To show (|~x| − 1/2) is an upper

bound, rewrite the m-th term above as

|~x|
m(|~x| − 1)m−1

=
1

m(|~x| − 1)m−2
+

1

m(|~x| − 1)m−1
.

Substitution and simplifying gives

RV −
(
|~x| − 1

2

)
=

∞∑
m=1

(−1)m

(m+ 1)(m+ 2)(|~x| − 1)m

=
∑

m=1,3,...

(−1)m

(m+ 2)(|~x| − 1)m

[
1

m+ 1
− 1

(m+ 3)(|~x| − 1)

]
< 0

as
1

m+ 1
− 1

(m+ 3)(|~x| − 1)
> 0.

Thus, RV − (|~x| − 1/2) < 0.

73

The above approximation for VCG revenue is used throughout this work.

The per unit-time price paid by the user under this approximation is given

by

cVk (~x) =


(

1− 1
2|~x|

)
if 2 ≤ |~x| ≤ n∗

0 otherwise,
(4.14)

and the per unit-time revenue earned by the operator is

RV (~x) =

|~x| − 1/2 if 2 ≤ |~x| ≤ n∗

0 otherwise.

In congestion-based pricing, the Lagrange shadow price or the dual vari-

able in the social welfare maximization problem is charged. This shadow

price has the advantage of leading the system to the social optima in a dis-

tributed implementation. The shadow price under processor sharing is |~x|/C.

Thus, the payment per unit-time made by a class k user is given by

cLk (~x) =


|~x|
C

if 1 ≤ |~x| ≤ n∗

0 otherwise,
(4.15)

and the aggregate per unit-time revenue collected by the operator is

RL(~x) =


|~x|2
C

if 1 ≤ |~x| ≤ n∗

0 otherwise.

Fundamentally, the per unit-time price charged to users under fixed rate

pricing, VCG auctions, and the congestion-based pricing are proportional

to 1/|~x|, to ≈ 1, and to |~x|. The consequence is that a user is charged

less (offered a discounted per unit-time price) at high loads under fixed rate

pricing, offered a constant price under VCG auctions, and is charged more

under congestion-based pricing (high demand implies the resource is precious

and thus the price goes up).

74

4.3.2 Post-payments vs. Pre-payments

All three pricing models discussed in our work charge a user based on the

number of users in the system. A change in the number of users is reflected

in the instantaneous per unit-time price. For a tagged user, the exact charge

accrued is evaluated by tracking arrivals and departures during the user’s

sojourn. We derive the mean of this exact payment incurred by a user using

sample path arguments from Palm probability. The mean of the operator’s

revenue is independently derived. Since the total charge accrued is only

known at the end of sojourn, we refer to such an implementation as the

post-payment scheme.

After deriving the mean revenue and post-payment expressions, we will

investigate a pre-payment scheme where a user is charged a fee upfront based

on the system load (the number of users present in the system) on arrival and

the expected sojourn time observed. Prices are adjusted to ensure the same

mean payment for each class as in the post-payment scheme. A pre-payment

scheme has several benefits. First, the user is aware of the payment upfront

unlike the post-payment scheme where a user may be billed a large fee caused

by sudden high loads during sojourn. Second, the second moment (and thus

the standard deviation) of user payments in the pre-payment scheme can be

exactly characterized.

4.3.3 Mean Operator Revenue

The mean operator revenue is derived under the three pricing models. The

expressions hold under both the pre-payment and the post-payment scheme

since the mean payment by each class remains the same under both schemes.

The revenues are per unit-time.

Proposition 6. The operator’s revenue per unit-time under under the three

75

pricing models is given by

R̄F = βCρ(1− ρn∗) (4.16)

R̄V =
ρ2

2

(
1 +

2

1− ρ

)
− ρn∗+1

(
n∗ − 1

2
+

1

1− ρ

)
(4.17)

R̄L =
1− ρ
C

n∗∑
n=1

n2ρn. (4.18)

Proof of Proposition 6. The mean revenue under fixed rate pricing is given

by

R̄F =
∑

~x:1≤|~x|≤n∗
βCπ(~x)

= βC
1∑

~x χ(~x)

∑
~x:1≤|~x|≤n∗

χ(~x)

= βC

∑n∗

n=1 t(n)∑∞
n=0 t(n)

.

Using Lemma 3,

R̄F = βC
1− ρ
Φ(~0)

Φ(~0)(ρ− ρn∗+1)

1− ρ
= βCρ(1− ρn∗).

The mean revenue under VCG auctions is

R̄V =
∑

~x:2≤|~x|≤n∗

(
|~x| − 1

2

)
π(~x)

= u(1)− u(n∗).

The result for R̄V follows by simplification. The mean revenue under congestion-

76

based pricing is given by

R̄L =
∑

~x:1≤|~x|≤n∗

|~x|2

C
π(~x)

=
π(~0)

C

∑
~x:1≤|~x|≤n∗

|~x|2χ(~x)

=
1

C

∑
1≤n≤n∗ v(n)∑
n≥0 t(n)

.

Using v(n) = n2t(n) and Lemma 3,

R̄L =
1− ρ
C

n∗∑
n=1

n2ρn.

The following identity (for ρ < 1) simplifies the summation.

m∑
n=1

n2ρn =
ρ

(1− ρ)3
[1 + ρ− ρm(m2ρ2 − (2m2 + 2m− 1)ρ+ (m+ 1)2)]

The proof highlights that the mean revenue earned by the operator for

fixed rate pricing, VCG auctions, and congestion-based pricing is respectively

related to the zeroth, first, and the second moment of the total number of

users in the system, i.e.,

R̄F ∝ E[|~x|01(1≤|~x|≤n∗)]

R̄V ∝ E[(|~x| − 1/2)1(2≤|~x|≤n∗)]

R̄L ∝ E[|~x|21(1≤|~x|≤n∗)].

This key insight is attributed to the inherent structure of the pricing models

identified in Section 4.3.1. The mean per unit-time revenue of the operator

without the QoS constraint is obtained next.

77

Corollary 1. Let the operator’s revenue without the QoS be denoted by

R̂F , R̂V , and R̂L under the three pricing models. Then,

R̂F = βCρ

R̂V =
ρ2

2

(
3− ρ
1− ρ

)
R̂L =

ρ(1 + ρ)

C(1− ρ2)
.

The above is an immediate consequence by taking the limit n∗ →∞. We

observe that the operator’s revenue becomes arbitrarily large as ρ → 1 for

VCG auctions and for the Lagrange pricing model.

4.3.4 Post-payments: Exact Charge Accrued by Users

We present the mean of payments made by class k users next.

Proposition 7. The mean payment by class k users under the three pricing

models are given by

c̄Fk = νkβ(1− ρn∗)

c̄Vk =
νk
C

(
ρ

(
1− ρn∗

1− ρ

)
+
ρ

2
−
(
n∗ − 1

2

)
ρn
∗
)

c̄Lk =
νk(1− ρ)

C2

n∗∑
n=1

n2ρn−1.

Proof of Proposition 7. Let Ak be the simple point process marking the ar-

rivals of class k users and W k
0 be the random variable denoting the sojourn

time of the arrival at time 0. The mean of payments by class k users under

fixed rate pricing is given by

c̄Fk = EAk

[∫ Wk
0

0

βC

|~x(t)|
1(1≤|~x(t)|≤n∗)dt

]
.

78

Applying the Swiss Army formula,

c̄Fk =
1

λk

1

t
E
[∫ t

0

xk(s−)βC

|~x(s)|
1(1≤|~x(s)|≤n∗)ds

]
=
βC

λk
E
[
xk
|~x|

1(1≤|~x|≤n∗)

]
=
βC

λk

n∗∑
n=1

∑
~x:|~x|=n

xk
n
π(~x)

=
βC

λk

1∑∞
n=0 t(n)

n∗∑
n=1

gk(n)

= νkβ(1− ρn∗).

Similarly, the mean of payments under the VCG auction by class k users is

given by

c̄Vk = EAk

[∫ Wk
0

0

(
1− 1

2|~x(t)|

)
1(2≤|~x(t)|≤n∗)dt

]
.

Again, using the Swiss Army formula,

c̄Vk =
1

λk
E
[(

1− 1

2|~x|

)
1(2≤|~x|≤n∗)

]
=

1

λk
E[xk1(2≤|~x|≤n∗)]−

1

λk
E
[
xk

2|~x|
1(2≤|~x|≤n∗)

]
. (4.19)

Let J1 and J2 be the first and the second term respectively in (4.19). Then,

J1 =
1

λk

n∗∑
n=2

∑
~x:|~x|=n

xkπ(~x)

=
1− ρ
λkΦ(~0)

n∗∑
n=2

sk(n)

=
νk(1− ρ)

C

n∗∑
n=2

nρn
∗−1,

79

and,

J2 =
1

2λk

n∗∑
n=2

∑
~x:|~x|=n

xk
|~x|
π(~x)

=
1− ρ

2Φ(~0)λk

n∗∑
n=2

gk(n)

=
νkρ

2C
(1− ρn∗−1).

Using the identity
m∑
n=1

nρn−1 =
1− ρm+1 − (m+ 1)(1− ρ)ρm

(1− ρ)2
,

and simplifying provides the required result. For congestion-based pricing,

the mean of payments by class k users is given by

c̄Lk = EAk

[∫ Wk
0

0

|~x(t)|
C

1(1≤|~x(t)|≤n∗)dt

]
.

Applying the Swiss Army formula gives,

c̄Lk =
1

λkC
E[xk|~x|1(1≤|~x|≤n∗)]

=
1

λkC

n∗∑
n=1

∑
~x:|~x|=n

xknπ(~x)

=
1− ρ

λkCΦ(~0)

n∗∑
n=1

nsk(n)

=
νk(1− ρ)

C2

n∗∑
n=1

n2ρn−1,

which shows the required result.

Note that the metering required by the operator for each user in the

system is at the time-scale at which users enter and leave the system. We

provide the mean of payments by class k users under the three pricing models

without the QoS constraint next.

80

Corollary 2. Let ĉFk , ĉ
V
k , and ĉLk be the mean of payments by class k users un-

der the three pricing models when the QoS constraint is not enforced. Then,

ĉFk = βνk

ĉVk =
νkρ

2C

(
3− ρ
1− ρ

)
ĉLk =

νk(1 + ρ)

C2(1− ρ)2
.

We observe that the mean of payments by users can become arbitrarily

large as ρ → 1 under VCG auctions and congestion based pricing models.

This supports the QoS constraint that we impose.

Remark 1. The mean operator revenue per unit-time and mean user pay-

ments are consistent and satisfy a conservation-of-money principle in means.

The aggregate of mean payment per unit-time by class k users is given by

E[xk]
c̄Xk

E[Wk]
= λkc̄

X
k (by Little’s Law). It is easily verified that R̄X =

∑K
k=1 λkc̄

X
k .

4.3.5 Pre-payments: Freezing Prices on Arrival

In this section, a pre-payment mechanism is devised where the user is charged

a price upfront on arrival. The price depends on the underlying pricing

ideology, i.e., per unit-time price behaves similar to fixed rate pricing, VCG

auctions, or congestion-based pricing. However, the price charged to a given

user now only depends on the expected sojourn time at arrival and on the

number of users in the system when that user arrives instead of the varying

number of users during sojourn. The payments are adjusted such that the

mean of payments by class k users remain the same as under post-payments

(see Section 4.3.4).

Let Wk be the random variable denoting the sojourn time of a class k

arrival. Under the pricing mechanism X, where X is a placeholder for F , V ,

or L, let γXk (~x) be the per unit-time price fixed on class k user’s arrival when

81

the arrival observes the system state as ~x. Under the pre-payment scheme,

the price charged to any class k user is given by

pXk (~x) = γXk (~x+ ~ek)E~x[Wk]. (4.20)

Proposition 8. The mean sojourn time for a class k user conditioned on

the starting state ~x is a linear functional of the number of users of each class

xk, i.e., for a processor sharing server with multiclass M/G inputs,

E~x[Wk] = Ak,0 +
K∑
m=1

Ak,mxm.

Proof of Proposition 8. The proposition is an immediate consequence of [81,

Theorem 6]. The argument developed is as follows.

In [81, Theorem 2], a discrete-time round robin approximation of the

discriminatory processor sharing (DPS) discipline is considered. It is shown

that the mean sojourn time of a new tagged arrival (call it user T) can be

decomposed into the sum of |~x|+1 terms. One of the terms is the contribution

of the T and the future users arriving during T ’s servicing (in the round robin

discipline). This term is Ak,0. The remaining terms are the contributions of

each user (and all future users arriving during their servicing) present at T ’s

arrival.

The rest of [81] shows that the round robin approximation converges

almost surely to the continuous-time DPS system. In [81, Theorem 6], it

is shown that a similar decomposition holds for the continuous-time DPS

system.

Based on the structure of fixed rate pricing, VCG auctions, and congestion-

based pricing, we define γXk (~x) as

γFk (~x) = σFk |~x|−1

γVk (~x) = σVk

γLk (~x) = σLk |~x|.

82

Note that γXk (~x) is not zero for |~x| > n∗. Otherwise, arrivals observing the

state in |~x| > n∗ may free ride the system. The constants σFk , σVk , and σLk are

determined by equating the mean payments by class k users to the payments

in Section 4.3.4, i.e.,

E[pXk (~x)] = c̄Xk .

Proposition 9. The constants σFk , σ
V
k , and σLk are

σFk =
νkβ(1− ρn∗)

(1− ρ)

(
Ak,0
ρ

log
1

1− ρ
+

1

ρ2

(
ρ

1− ρ
− log

1

1− ρ

) K∑
m=1

Ak,mρm

)−1

σVk = ρ(1− ρn∗) +
ρ(1− ρ)

2
− (1− ρ)

(
n∗ − 1

2

)
ρn
∗

σLk =
νk(1− ρ)2

C2

∑n∗

n=1 n
2ρn−1

Ak,0 + 2
1−ρ
∑K

m=1 Ak,mρm
.

Proof of Proposition 9. Suppose a class k arrival sees the system state as ~x

on arrival. The fixed rate, pre-payment price charged is

pFk (~x) =
σFk

|~x+ ~ek|

(
Ak,0 +

K∑
m=1

Ak,mxm

)
.

It is required that the mean payment by a class k user equal c̄Fk , i.e.,

E[pFk (~x)] = c̄Fk . (4.21)

Starting with the left hand side (LHS) of (4.21),

LHS =
∑
~x

σFk
|~x+ ~ek|

(
Ak,0 +

K∑
m=1

Ak,mxm

)
π(~x)

= σFk (1− ρ)

[
Ak,0
ρ

log
1

1− ρ
+

(
ρ

1−ρ − log 1
1−ρ

ρ2

)
K∑
m=1

Ak,mρm

]

83

Equating this to c̄Fk gives σFk . Similarly, under VCG auctions,

pVk (~x) = σVk

(
Ak,0 +

K∑
m=1

Ak,mxm

)
,

and

E[pVk (~x)] = σVk
∑
~x

(
Ak,0 +

K∑
m=1

Ak,mxm

)
π(~x)

= σVk E[Wk]

= σVk
νk

C(1− ρ)
.

Equating this to c̄Vk gives σVk . Last, under congestion-based pricing,

pLk (~x) = σLk |~x+ ~ek|

(
Ak,0 +

K∑
m=1

Ak,mxm

)
.

Taking expectation gives

E[pLk (~x)] = σLk
∑
~x

|~x+ ~ek|

(
Ak,0 +

K∑
m=1

Ak,mxm

)
π(~x)

=
σLk

1− ρ

[
Ak,0 +

2

1− ρ

K∑
m=1

Ak,mρm

]
,

equating which to c̄Lk gives σLk .

Since the mean payment by class k users remain the same as under Sec-

tion 4.3.4, the mean revenue collected by the operator is unaffected and is the

same as in Section 4.3.3. The evaluation of the moments of number of users

earlier allows the explicit characterization of the second moment of class k

payments. Define Li2(ρ) :=
∑∞

n=1
ρn

n2 .

84

Proposition 10. The second moment of pre-payments by class k users is

given by

E[(pFk (~x))2] = (σFk)2(1− ρ)A2
k,0

Li2(ρ)

ρ

+ (σFk)2(1− ρ)

(
ρ+ 3 log(1− ρ)− 3ρ log(1− ρ)

ρ3(1− ρ)
+

2 Li2(ρ)

ρ3

) K∑
m=1

A2
k,mρ

2
m

+ (σFk)2(1− ρ)(−Li2(ρ)− log(1− ρ))
K∑
m=1

A2
k,mρm

ρ2

+
2Ak,0(σFk)2(1− ρ)

ρ2
(−Li2(ρ)− log(1− ρ))

K∑
m=1

Ak,mρm

+
(σFk)2

ρ3
[ρ+ 3(1− ρ) log(1− ρ) + 2(1− ρ) Li2(ρ)]

K∑
i=1

K∑
j=1,j 6=i

Ak,iAk,jρiρj

E[(pVk (~x))2] = (σVk)2A2
k,0 +

2(σVk)2

(1− ρ)2

K∑
m=1

A2
k,mρ

2
m +

2(σVk)2

(1− ρ)2

K∑
i=1

K∑
j=1,j 6=i

Ak,iAk,jρiρj

+
(σVk)2

(1− ρ)

K∑
m=1

A2
k,mρm +

2(σVk)2

(1− ρ)
Ak,0

K∑
m=1

Ak,mρm

E[(pLk (~x))2] =
(σLk)2A2

k,0(1 + ρ)

(1− ρ)2
+ (σLk)2

K∑
m=1

A2
k,m

2ρm(2 + 9ρm + 3ρmρ− ρ− ρ2)

(1− ρ)4

+ 2Ak,0(σLk)2 2ρ+ 4

(1− ρ)3

K∑
m=1

Ak,mρm +
(σLk)26(3 + ρ)

(1− ρ)4

K∑
i=1

K∑
j=1,j 6=i

Ak,iAk,jρiρj

Proof of Proposition 10. The steps for deriving the second moment of pre-

85

payments under fixed rate pricing mechanism are outlined here.

E[(pFk (x))2] =
∑
~x

(σFk)2

|~x+ ~ek|2

(
Ak,0 +

K∑
m=1

Ak,mxm

)2

π(~x)

=
(σFk)2(1− ρ)

Φ(~0)

∑
~x

χ(~x)

|~x+ ~ek|2

(
A2
k,0 +

K∑
m=1

A2
k,mx

2
m

+2Ak,0

K∑
m=1

Ak,mxm +
K∑
i=1

∑
j 6=i

Ak,iAk,jxixj

)
(4.22)

Define SF1 , S
F
2 , S

F
3 , and SF4 as the following.

SF1 :=
(σFk)2(1− ρ)

Φ(~0)
A2
k,0

∑
~x

χ(~x)

(|~x|+ 1)2

= (σFk)2(1− ρ)
A2
k,0

ρ

∞∑
n=1

ρn

n2

SF2 :=
(σFk)2(1− ρ)

Φ(~0)

K∑
m=1

A2
k,m

∑
~x

x2
mχ(~x)

(|~x|+ 1)2

= (σFk)2(1− ρ)
K∑
m=1

A2
k,m

∞∑
n=0

n(n− 1)ρ2
mρ

n−2 + nρmρ
n−1

(n+ 1)2

= (σFk)2(1− ρ)
K∑
m=1

A2
k,m

[
ρm
ρ2

(−Li2(ρ)− log(1− ρ))

+ρ2
m

(
2 Li2(ρ)

ρ3
+
ρ+ 3 log(1− ρ)− 3ρ log(1− ρ)

ρ3(1− ρ)

)]

SF3 :=
(2Ak,0σ

F
k)2(1− ρ)

Φ(~0)

K∑
m=1

Ak,m
∑
~x

xmχ(~x)

(|~x|+ 1)2

=
2Ak,0(σFk)2(1− ρ)

Φ(~0)

K∑
m=1

Ak,m

∞∑
n=0

sm(n)

(n+ 1)2

=
2Ak,0(σFk)2(1− ρ)(−Li2(ρ)− log(1− ρ))

ρ2

K∑
m=1

Ak,mρm

86

SF4 :=
(σFk)2(1− ρ)

Φ(~0)

∑
~x

χ(~x)

|~x+ ρk|2
K∑
i=1

∑
j 6=i

Ak,iAk,jxixj

=
(σFk)2(1− ρ)

Φ(~0)

K∑
i=1

∑
j 6=i

Ak,iAk,j

∞∑
n=0

si,j(n)

(n+ 1)2

= (σFk)2(1− ρ)

(
K∑
i=1

∑
j 6=i

Ak,jAk,jρiρj

)
∞∑
n=1

n(n− 1)

(n+ 1)2
ρn−2

=
(σFk)2

ρ3
(ρ+ 3(1− ρ) log(1− ρ) + 2(1− ρ) Li2(ρ))

K∑
i=1

∑
j 6=i

Ak,jAk,jρiρj

Using SF1 , S
F
2 , S

F
3 , and SF4 in (4.22) gives E[(pFk (~x))2].

The steps for deriving the second moment under VCG auctions are out-

lined next.

E[(pVk (~x))2] =
(σVk)2(1− ρ)

Φ(~0)

∑
~x

[
A2
k,0 +

K∑
m=1

A2
k,mx

2
m

+2Ak,0

K∑
m=1

Ak,mxm +
K∑
i=1

∑
j 6=i

Ak,iAk,jxixj

]
χ(~x) (4.23)

Define SV1 , S
V
2 , S

V
3 , and SV4 as the following.

SV1 :=
(σVk)2(1− ρ)

Φ(~0)
A2
k,0

∑
~x

χ(~x)

= (σVk)2A2
k,0

SV2 :=
(σVk)2(1− ρ)

Φ(~0)

K∑
m=1

A2
k,m

∑
~x

x2
mχ(~x)

=
(σVk)2(1− ρ)

Φ(~0)

K∑
m=1

A2
k,m

∞∑
n=0

sm,m(n)

=
2(σVk)2

(1− ρ)2

K∑
m=1

A2
k,mρ

2
m +

(σVk)2

(1− ρ)

K∑
m=1

A2
k,mρm

87

SV3 :=
2(σVk)2(1− ρ)

Φ(~0)

∑
~x

Ak,0

K∑
m=1

Ak,mxmχ(~x)

=
2Ak,0(σVk)2

(1− ρ)

K∑
m=1

Ak,mρm

SV4 :=
(σVk)2(1− ρ)

Φ(~0)

∑
~x

K∑
i=1

∑
j 6=i

Ak,iAk,jxixjχ(~x)

=
2(σVk)2

(1− ρ)2

K∑
i=1

∑
j 6=i

Ak,iAk,jρiρj

Using SV1 , S
V
2 , S

V
3 , and SV4 in (4.23) gives E[(pVk (~x))2].

Last, the steps for deriving the second moment of pre-payments under

congestion based pricing are outlined.

E[(pLk (~x))2] =
∑
~x

(pLk (~x))2π(~x)

= (σLk)2
∑
~x

|~x+ ~ek|2
(
A2
k,0 +

K∑
m=1

Ak,mxm

)2

π(~x)

= (σLk)2
∑
~x

|~x+ ~ek|2A2
k,0π(~x) + (σLk)2

∑
~x

|~x+ ~ek|2
K∑
m=1

A2
k,mx

2
mπ(~x)

+ (σLk)22
∑
~x

|~x+ ~ek|2Ak,0
K∑
m=1

Ak,mxmπ(~x)

+ (σLk)2
∑
~x

|~x+ ~ek|2
K∑
i=1

K∑
j=1,j 6=i

Ak,iAk,jxixjπ(~x)

:= SL1 + SL2 + SL3 + SL4

88

Now, SL1 simplifies to

SL1 = (σLk)2
∑
~x

|~x+ ~ek|2A2
k,0π(~x)

=
(σLk)2A2

k,0(1− ρ)

Φ(~0)

∑
~x

(|~x|+ 1)2χ(~x)

=
(σLk)2A2

k,0(1 + ρ)

(1− ρ)2

Simplify SL2 as,

SL2 = (σLk)2
∑
~x

|~x+ ~ek|2
K∑
m=1

A2
k,mx

2
mπ(~x)

=
(σLk)2(1− ρ)

Φ(~x)

K∑
m=1

A2
k,m

∞∑
n=0

(n+ 1)2sm,m(n)

= 2(σLk)2

K∑
m=1

A2
k,m

ρm(2 + 9ρm + 3ρmρ− ρ− ρ2)

(1− ρ)4
.

For SL3 ,

SL3 = (σLk)2
∑
~x

|~x+ ~ek|22Ak,0

K∑
m=1

Ak,mxmπ(~x)

=
2Ak,0(σLk)2(1− ρ)

Φ(~0)

K∑
m=1

Ak,m

∞∑
n=0

(n2 + 2n+ 1)sm(n)

= 2Ak,0(σLk)2 (2ρ+ 4)

(1− ρ)3

K∑
m=1

Ak,mρm.

89

Last, SL4 is simplified as

SL4 = (σLk)2
∑
~x

|~x+ ~ek|2
K∑
i=1

K∑
j=1,j 6=i

Ak,iAk,jxixjπ(~x)

=
(σLk)2(1− ρ)

Φ(~0)

K∑
i=1

K∑
j=1,j 6=i

Ak,iAk,j

∞∑
n=0

(n+ 1)2si,j(n)

=
6(σLk)2(3 + ρ)

(1− ρ)4

K∑
i=1

K∑
j=1,j 6=i

Ak,iAk,jρiρj.

Combining SL1 , S
L
2 , S

L
3 and SL4 gives the result.

We note that the proofs rely on further metrics such as E[xi|~x|], E[xixk|~x|2]

(higher moments), and E[xixj/|~x|2].

4.4 Simulation Results

To gain some qualitative insights, a server with a single class of users with

λ0 = 0.3 packets/second and ν0 = 1 bits is considered. The service require-

ments are assumed to be exponentially distributed. The QoS constraint is

defined with rmin = 0.1 bits/second. From [82, Corollary 1], the mean sojourn

time for an M/M/1 PS server with a single class of users and conditioned

on x number of users present in the system is given by

E[W0|x users in the system] =
x

λ0(2b− 1)
+

1

λ0(2b− 1))
,

90

where b = 1/ρ0. For a new arrival observing the system to have x number of

users present already, the coefficients {A0,k} are determined as follows.

Ex[W0] = E[W0|x+ 1 users in the system]

= A0,0 + A0,1x, where

A0,0 =
2

λ0(2b− 1)

A0,1 =
1

λ0(2b− 1)

Note that Ex[·] indicates that the new arrival sees the system with x number

of users; the system thus has x+ 1 number of users.

Fig. 4.1a, Fig. 4.2a, and Fig. 4.3a plot the mean payments (from simu-

lations) made by the users under the three pricing models. Note that the

traffic intensity ρ decreases as C increases. The discontinuity in the plots is

attributed to the discontinuity in n∗ = bC/rminc. These plots agree with the

result of Proposition 7.

Fig. 4.1b, Fig. 4.2b, and Fig. 4.3b plot the ratio of the second moment of

payments and the mean payment under the three pricing models and com-

pares the results from simulations with our analysis (Proposition 10). We

observe that under fixed-rate pricing and VCG auctions, the pre-payment

scheme has a smaller second moment than the post-payment scheme. The

operator will prefer the pre-payment scheme under these two pricing models

since it generates the same long-term revenue with greater confidence. Un-

der congestion-based pricing, for certain range of the capacity, the pre-pricing

scheme exhibits higher variability (see Fig. 4.3b). Thus, the operator’s deci-

sion of the pricing mechanism will depend on the capacity installed.

91

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

M
e
a
n
 o

f
p
a
y
m

e
n
ts

Capacity

Mean pre-payment
Mean post-payment

(a) Mean payments under fixed rate pricing from simulations

 0

 0.5

 1

 1.5

 2

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

S
e
c
o
n
d
 m

o
m

e
n
t
o
f
p
a
y
m

e
n
t/
m

e
a
n
 p

a
y
m

e
n
t

Capacity

Second moment of pre-payments (from simulation)/mean payment
Second moment of pre-payments (theoretical)/mean payment

Second moment of post-payments (from simulation)/mean payment

(b) Ratio of second moment of payments and mean payment

Figure 4.1: Results on fixed rate pricing.

92

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

M
e
a
n
 o

f
p
a
y
m

e
n
ts

Capacity

Mean pre-payment
Mean post-payment

(a) Mean payments under VCG auctions from simulations

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

S
e
c
o
n
d
 m

o
m

e
n
t
o
f
p
a
y
m

e
n
t/
m

e
a
n
 p

a
y
m

e
n
t

Capacity

Second moment of pre-payments (from simulation)/mean payment
Second moment of pre-payments (theoretical)/mean payment

Second moment of post-payments (from simulation)/mean payment

(b) Ratio of second moment of payments and mean payment

Figure 4.2: Results on VCG auction based pricing.

93

 0

 5

 10

 15

 20

 25

 30

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

M
e
a
n
 o

f
p
a
y
m

e
n
ts

Capacity

Mean pre-payment
Mean post-payment

(a) Mean payments under congestion based pricing from simulations

 0

 20

 40

 60

 80

 100

 120

 140

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

S
e
c
o
n
d
 m

o
m

e
n
t
o
f
p
a
y
m

e
n
t/
m

e
a
n
 p

a
y
m

e
n
t

Capacity

Second moment of pre-payments (from simulation)/mean payment
Second moment of pre-payments (theoretical)/mean payment

Second moment of post-payments (from simulation)/mean payment

(b) Ratio of second moment of payments and mean payment

Figure 4.3: Results on congestion based pricing.

94

4.5 Summary

The main focus of this chapter is on studying pricing under insensitive alloca-

tions. Specifically, we analyze the processor sharing discipline, a well-studied

and often used model in networks. We provide insights into the structure

of three pricing models: fixed rate pricing, VCG auctions, and congestion-

based pricing. We show that the revenue collected by the operator under the

three models relate to the increasing moments of the number of users in the

system. Under our assumptions, this results in

R̄F ≤ R̄V ≤ R̄L,

in an order sense. We also propose a pre-payment mechanism where a user

is charged upfront on arrival. Besides having an easier implementation, the

revenue earned by the operator in pre-payments is less volatile under fixed-

rate pricing and VCG auctions while generating the same mean revenue. The

pre-payment mechanism is thus preferable over the post-payment mechanism

under these two pricing models.

A criticism of our model is that the users enter the system irrespective

of the per unit-time price and the absence of call admission. However, intro-

ducing call admission invalidates the insensitivity property. One approach

for modelling price based behaviour for users may be by considering Poisson

thinning where the arrival rates satisfy the insensitivity property.

The simulation results in Section 4.4 model a resource with a single class

of users where the coefficients {A0,k} are analytically obtained. For multi-

class users, ascertaining the coefficients {Am,k} is more difficult (see [81]). In

this work, we have tried to understand the role of pricing under insensitivity

in order to obtain insights and statistical robustness. Further work is needed

to advance towards more realistic pricing models.

95

Chapter 5

Conclusion

In this dissertation, we focused on two problems: improving delay perfor-

mance in multihop wireless networks and studying pricing under insensitive

allocations.

In Chapter 2, we identified three reasons for the poor delay performance

of the back-pressure algorithm. Two of the reasons were related to the net-

work flow volumes and the network topology, both of which were considered

to be immutable. We rectified the third reason which is the routing of packets

akin to a random walk by introducing a framework to prioritize select flows

and links to guide packets towards the sink. We emphasized and achieved

improved delay performance without a reduction in the capacity of the net-

work.

The back-pressure algorithm strives to maintain stability and does not

explicitly minimize delay. In non-stationary environments, our generalized

framework was a solution to reduce delays. In Chapter 3, a static mean delay

minimization problem was formulated for stationary environments. We saw

that the static implementation delivered improved delay performance similar

to the remaining hops weighted back-pressure algorithm from Chapter 2. The

implementation of static solutions also had a lower per timeslot complexity.

96

We also proved the non-convexity of the delay function for wireless networks

— a result that restricted our analysis to local optima. We believe static

solutions to be a step towards distributed routing and scheduling algorithms

for multihop wireless networks.

Chapter 4 focused on three pricing models under the processor sharing

discipline. We provided the operator’s mean revenue, which is important for

making functional decisions. As an initial attempt at understanding user

behaviour, user payments were also characterized. A pre-payment scheme of

charging expected costs was proposed as an alternative to a post-payment

mechanism where the users paid the exact cost. The pre-payment scheme

generated the same long-term revenue as the post-payment mechanism. Un-

der fixed rate pricing and VCG auctions, we saw that a pre-payment scheme

is preferable over charging exact payments since the payments in the former

mechanism were predictable with greater confidence.

5.1 Extensions

The framework we develop in Chapter 2, i.e., weighted back-pressure algo-

rithms, are of interest even outside the context of delay. Exploring the class

of other network metrics that can be improved by simply assigning appro-

priate weights is of its own importance. Our observations have shown that

the weighted back-pressure algorithms are throughput optimal without the

adaptive extension. It will be interesting to show whether multiplicative

weights do not reduce the capacity region or if an example with random

arrivals indeed exists for which the capacity is reduced.

In the static formulation, we primarily focused on two implementations

for static scheduling which do not include current network state information

in deciding on the schedule to activate. Extensions to make the algorithm

more opportunistic may further improve the delay. Implementing routing

97

parameters may be another aspect to explore for static formulations. We

also assumed that the traffic arrival rates were known a priori. Extensions

may consider adaptively learning traffic arrival rates, λ, and adapting routing

and scheduling parameters by an online algorithm. Showing that such an

algorithm converges will be a key feature of the new algorithm.

We explore three pricing models in Chapter 4. We assume that the users

do not behave strategically and do not collude. Studying user incentives

would be of interest. In a similar vein, we assume the log utility function in

VCG auctions and congestion based pricing. Under this function, 0 allocation

to a user has negative infinity utility and thus the user has incentive to always

participate. It will be interesting to broaden the class of utilities under

processor-sharing. A natural extension to our model is allowing the operator

to reject arrivals when the QoS constraint is not met but call admission

violates our assumptions.

As noted already, introducing a fee for entering the game or fees relating

to the sojourn times are immediate extensions of our formulation and tech-

niques. We have analyzed the case of a single server. As future work, it will

be interesting to consider cloud computing operators who possess multiple

servers. This extension will add routing of newly arriving users to one of M

servers efficiently as a new dimension to the existing formulation.

98

Bibliography

[1] S. Birmiwal, R. R. Mazumdar, and S. Sundaram, “Predictable revenue

under processor sharing,” in Proceedings of the 46th Annual Conference

on Information Sciences and Systems (CISS), 2012.

[2] S. Birmiwal, J. Nair, D. Manjunath, and R. R. Mazumdar, “Delay min-

imization in multihop wireless networks: Static scheduling does it,” in

10th International Symposium on Modeling and Optimization in Mobile,

Ad Hoc, and Wireless Networks (WiOpt), 2012.

[3] S. Birmiwal, R. R. Mazumdar, and S. Sundaram, “Processor sharing and

pricing implications,” in 24th International Teletraffic Congress, 2012.

[4] L. Tassiulas and A. Ephremides, “Stability properties of constrained

queueing systems and scheduling policies for maximum throughput in

multihop radio networks,” IEEE Transactions on Automatic Control,

vol. 37, no. 12, pp. 1936–1948, 1992.

[5] L. Ying, S. Shakkottai, A. Reddy, and S. Liu, “On combining shortest-

path and back-pressure routing over multihop wireless networks,”

IEEE/ACM Transactions on Networking, vol. 19, no. 3, pp. 841–854,

June 2011.

99

[6] M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic power allocation

and routing for time varying wireless networks,” in Proceedings of IEEE

INFOCOM, vol. 1, 2003, pp. 745–755.

[7] L. Georgiadis, M. J. Neely, and L. Tassiulas, Resource allocation and

cross layer control in wireless networks, ser. Foundations and Trends in

Networking. Now Publishers, 2006.

[8] X. J. Lin and N. B. Shroff, “Joint rate control and scheduling in multihop

wireless networks,” in Proceedings of IEEE Conference on Decision and

Control, Paradise Island, Bahamas, December 2004, pp. 1484–1489.

[9] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand,

“Achieving 100% throughput in an input-queued switch,” IEEE Trans-

actions on Communications, vol. 47, no. 8, pp. 1260 –1267, August 1999.

[10] L. Tassiulas, “Linear complexity algorithms for maximum throughput

in radio networks and input queued switches,” in Proceedings of IEEE

INFOCOM, vol. 2, 1998, pp. 533–539.

[11] M. J. Neely, “Delay analysis for maximal scheduling with flow control

in wireless networks with bursty traffic,” IEEE/ACM Transactions on

Networking, vol. 17, no. 4, pp. 1146–1159, August 2009.

[12] A. Dimakis and J. Walrand, “Sufficient conditions for stability of

longest-queue-first scheduling: Second order properties using fluid lim-

its,” Advances in Applied Probability, vol. 38, pp. 505–521, 2006.

[13] X. Lin and N. B. Shroff, “The impact of imperfect scheduling on cross-

layer rate control in multihop wireless networks,” IEEE/ACM Transac-

tions on Networking, vol. 14, no. 2, pp. 302–315, April 2006.

100

[14] C. Joo, X. Lin, and N. B. Shroff, “Performance limits of greedy maximal

matching in multi-hop wireless networks,” in Proceedings of 46th IEEE

Conference on Decision and Control, December 2007, pp. 1128 –1133.

[15] ——, “Understanding the capacity region of the greedy maximal

scheduling algorithm in multi-hop wireless networks,” IEEE/ACM

Transactions on Networking, vol. 17, no. 4, pp. 1132–1145, August 2009.

[16] G. Sharma, R. Mazumdar, and N. Shroff, “Delay and capacity trade-

offs in mobile ad hoc networks: A global perspective,” in Proceedings of

IEEE INFOCOM, 2006, pp. 1–12.

[17] L. B. Le, K. Jagannathan, and E. Modiano, “Delay analysis of maxi-

mum weight scheduling in wireless ad hoc networks,” in Proceedings of

Conference on Information Sciences and Systems (CISS), March 2009,

pp. 389–394.

[18] G. R. Gupta, S. Sanghavi, and N. B. Shroff, “Node weighted scheduling,”

in Proceedings of ACM SIGMETRICS/Performance, 2009, pp. 97–108.

[19] P. Gupta and T. Javidi, “Towards throughput and delay-optimal routing

for wireless ad-hoc networks,” in Proceedings of the Asilomar Conference

on Signals, Systems and Computers, November 2007, pp. 249–254.

[20] L. Huang and M. J. Neely, “Delay reduction via Lagrange multipliers

in stochastic network optimization,” IEEE Transactions on Automatic

Control, vol. 56, no. 4, pp. 842–857, April 2011.

[21] G. R. Gupta and N. B. Shroff, “Delay analysis for wireless networks with

single hop traffic and general interference constraints,” IEEE Transac-

tions on Networking, vol. 18, no. 2, pp. 393–405, April 2010.

101

[22] L. Bui, R. Srikant, and A. Stolyar, “Novel architectures and algorithms

for delay reduction in back-pressure scheduling and routing,” in Pro-

ceedings of IEEE INFOCOM, 2009, pp. 2936 – 2940.

[23] B. Sadiq, S. J. Baek, and G. de Veciana., “Delay-optimal opportunistic

scheduling and approximations: The log rule,” in Proceedings of IEEE

INFOCOM, April 2009, pp. 1692 – 1700.

[24] M. Lotfinezhad, B. Liang, and E. S. Sousa, “On stability region and de-

lay performance of linear memory randomized scheduling for randomized

scheduling for time varying networks,” IEEE Transactions on Network-

ing, vol. 17, no. 6, pp. 1860–1873, December 2009.

[25] S. Jagabathula and D. Shah, “Optimal delay scheduling in net-

works with arbitrary constraints,” in Proceedings of ACM SIGMET-

RIC/Performance, 2008, pp. 395–406.

[26] L. Huang and M. J. Neely, “Delay efficient scheduling via redundant con-

straints in multihop networks,” Performance Evaluation, vol. 68, no. 8,

pp. 670–689, 2011.

[27] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, R. Vijayakumar,

and P. Whiting, “Scheduling in a queuing system with asynchronously

varying service rates,” Probability in the Engineering and Informational

Sciences, vol. 18, no. 2, pp. 191–217, 2004.

[28] S. Shakkottai, R. Srikant, and A. L. Stolyar, “Pathwise optimality of the

exponential scheduling rule for wireless channels,” Advances in Applied

Probability, vol. 36, no. 4, pp. 1021–1045, 2004.

[29] L. Jiang and J. Walrand, “A distributed csma algorithm for throughput

and utility maximization in wireless networks,” IEEE/ACM Transac-

tions on Networking, vol. 18, no. 3, pp. 960–972, June 2010.

102

[30] D. Shah, D. N. C. Tse, and J. N. Tsitsiklis, “Hardness of low delay net-

work scheduling,” IEEE Transactions on Information Theory, vol. 57,

no. 12, pp. 7810–7817, 2011.

[31] M. Lotfinezhad and P. Marbach, “Throughput-optimal random access

with order-optimal delay,” in Proceedings of IEEE INFOCOM, April

2011, pp. 2867–2875.

[32] T. Roughgarden, The Price of Anarchy. MIT Press, 2005.

[33] D. Shah, J. N. Tsitsiklis, and Y. Zhong, “Qualitative properties of α-

weighted scheduling policies,” in Proceedings of ACM SIGMETRICS,

2010, pp. 239–250.

[34] J.-H. Hoepman, S. Kutten, and Z. Lotker, “Efficient distributed

weighted matching on trees,” in 13th Coll. on Structural Information

and Communication Complexity, 2006.

[35] L. Fratta, M. Gerla, and L. Kleinrock, “The flow deviation network

method: An approach to store-and-forward communication network de-

sign,” Networks, vol. 3, no. 2, pp. 97–133, 1973.

[36] R. Gallager, “A minimum delay routing algorithm using distributed

computation,” IEEE Transactions on Communications, vol. 25, no. 1,

pp. 73–85, January 1977.

[37] D. Bertsekas, E. Gafni, and R. Gallager, “Second derivative algorithms

for minimum delay distributed routing in networks,” IEEE Transactions

on Communications, vol. 32, no. 8, pp. 911–919, August 1984.

[38] J. Tsitsiklis and D. Bertsekas, “Distributed asynchronous optimal rout-

ing in data networks,” IEEE Transactions on Automatic Control, vol. 31,

no. 4, pp. 325–332, April 1986.

103

[39] D. Bertsekas and R. Gallager, Data Networks, 2nd ed. Prentice Hall,

1992.

[40] M. Schwartz and C. Cheung, “The gradient projection algorithm for

multiple routing in message-switched networks,” IEEE Transactions on

Communications, vol. 24, no. 4, pp. 449–456, April 1976.

[41] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.

[42] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming:

Theory and Algorithms, 3rd ed. Wiley-Interscience, May 2006.

[43] S. Anily and A. Federgruen, “Simulated annealing methods with general

acceptance probabilities,” Journal of Applied Probability, vol. 24, no. 3,

pp. 657–667, 1987.

[44] I. O. Bohachevsky, M. E. Johnson, and M. L. Stein, “Generalized simu-

lated annealing for function optimization,” Technometrics, vol. 28, no. 3,

pp. 209–217, 1986.

[45] M. Locatelli, “Convergence properties of simulated annealing for contin-

uous global optimization,” Journal of Applied Probability, vol. 33, pp.

1127–1140, 1996.

[46] K. M. Cheh, J. B. Goldberg, and R. G. Askin, “A note on the effect of

neighborhood structure in simulated annealing,” Computers & Opera-

tions Research, vol. 18, no. 6, pp. 537–547, 1991.

[47] Y. Xi and E. M. Yeh, “Node-based optimal power control, routing, and

congestion control in wireless networks,” IEEE Transactions on Infor-

mation Theory, vol. 54, no. 9, pp. 4081–4106, September 2008.

104

[48] V. S. Borkar and P. R. Kumar, “Dynamic cesaro-wardrop equilibration

in networks,” IEEE Transactions on Automatic Control, vol. 48, no. 3,

2003.

[49] J. Nair and D. Manjunath, “Distributed iterative optimal resource allo-

cation with concurrent updates of routing and flow control variables,”

IEEE/ACM Transactions on Networking, vol. 17, no. 4, 2009.

[50] F. Kelly, A. Maulloo, and D.K.H.Tan, “Rate control for communication

networks: Shadow prices, proportional fairness and stability,” Journal

of Operational Research Society, vol. 49, no. 3, pp. 237–252, 1998.

[51] Y. Xi and E. M. Yeh, “Optimal distributed power control and routing in

wireless networks,” in Proceedings of the IEEE International Symposium

on Information Theory (ISIT), 2006, pp. 2506–2511.

[52] E. Wei, A. Azdaglar, A. Eryilmaz, and A. Jadbabaie, “A distributed

newton method for dynamic network utility maximization with delivery

contracts,” in Proceedings of the 46th Annual Conference on Information

Sciences and Systems (CISS), 2012.

[53] A. Eryilmaz, A. Azdaglar, D. Shah, and E. Modiano, “Distributed cross-

layer algorithms for the optimal control of multihop wireless networks,”

IEEE/ACM Transactions on Networking, vol. 18, no. 2, 2010.

[54] J. F. Nash, Jr., “The bargaining problem,” Econometrica, vol. 18, no. 2,

1950.

[55] H. Yaiche, R. R. Mazumdar, and C. Rosenberg, “A game theoretic

framework for bandwidth allocation and pricing in broadband net-

works,” IEEE/ACM Transactions on Networking, vol. 8, no. 5, pp. 667–

678, 2000.

105

[56] F. Kelly, “Charging and rate control for elastic traffic,” European Trans-

actions on Telecommunications, vol. 8, pp. 33–37, 1997.

[57] T. Bonald and A. Proutiere, “Insensitive bandwidth sharing in data

networks,” Queueing Systems, vol. 44, no. 1, pp. 69–100, 2003.

[58] R. L. Grossman, “The case for cloud computing,” IT Professional,

vol. 11, no. 2, pp. 23–27, 2009.

[59] E. Altman, K. Avrachenkov, and U. Ayesta, “A survey on discriminatory

processor sharing,” Queueing Systems: Theory and Applications, vol. 54,

pp. 53–63, 2006.

[60] J. Mo and J. Walrand, “Fair end-to-end window-based congestion con-

trol,” IEEE/ACM Transactions on Networking, vol. 8, no. 5, October

2000.

[61] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, and N. McKeown, “Pro-

cessor sharing flows in the internet,” in Thirteenth International Work-

shop on Quality of Service (IWQoS), 2005, pp. 271–285.

[62] S. Yashkov, “Processor-sharing queues: Some progress in analysis,”

Queueing Systems, vol. 2, no. 1, pp. 1–17, 1987.

[63] Y. Xue, B. Li, and K. Nahrstedt, “Price-based resource allocation in

wireless ad hoc networks,” in International Workshop on Quality of Ser-

vice (IWQoS), 2003, pp. 79–96.

[64] J. Huang, R. A. Berry, and M. L. Honig, “Auction-based spectrum shar-

ing,” in Proceedings of WiOpt ’04, 2004, pp. 405–418.

[65] D. Niyato and E. Hossain, “Competitive pricing in heterogeneous wire-

less access networks: Issues and approaches,” IEEE Network, vol. 22,

no. 6, pp. 4–11, 2008.

106

[66] S. Maharjan, Y. Zhang, and S. Gjessing, “Economic approaches for cog-

nitive radio networks: A survey,” Wireless Personal Communications,

vol. 57, no. 1, pp. 33–51, 2010.

[67] W. Vickrey, “Counterspeculation, auctions, and competitive sealed ten-

ders,” The Journal of Finance, vol. 16, pp. 8–37, 1961.

[68] T. Roughgarden and M. Sundararajan, “Is efficiency expensive?” in

Third Workshop on Sponsored Search Auctions, 2007.

[69] F. M. Menzes and P. K. Monteiro, An introduction to auction theory.

Oxford University Press, 2005.

[70] S. Yang and B. Hajek, “VCG-Kelly mechanisms for allocation of di-

visible goods: Adapting VCG mechanisms to one-dimensional signals,”

IEEE Journal on Selected Areas in Communications, vol. 25, no. 6, pp.

1237–1243, 2007.

[71] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Uni-

versity Press, 2003.

[72] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Athena Scientific,

1999.

[73] N. S. Walton, “Insensitive, maximum stable allocations converge to pro-

portional fairness,” Queueing Systems, vol. 68, pp. 51–60, 2011.

[74] P. Whittle, “Partial balance and insensitivity,” Journal of Applied Prob-

ability, vol. 22, no. 1, pp. 168–176, 1985.

[75] F. P. Kelly, Reversibility and stochastic networks. Chichester: John

Wiley & Sons Ltd., 1979.

107

[76] T. Bonald and A. Proutiere, “Insensitive bandwidth sharing,” in Pro-

ceedings of IEEE GLOBECOM 2002, vol. 3, 2002, pp. 2659–2663.

[77] ——, “Insensitivity in processor-sharing networks,” Performance Eval-

uation, vol. 49, no. 1/4, pp. 193–209, 2002.

[78] J. W. Roberts, “A survey on statistical bandwidth sharing,” Computer

Networks and ISDN Systems, vol. 45, no. 3, pp. 3199–332, 2004.

[79] P. Brémaud, “A Swiss Army Formula of Palm Calculus,” Journal of

Applied Probability, vol. 30, pp. 40–51, 1993.

[80] F. Baccelli and P. Brémaud, Elements of Queueing Theory: Palm Mar-

tingale Calculus and Stochastic Recurrences, 2nd ed. Springer Verlag,

2003.

[81] K. M. Rege and B. Sengupta, “A decomposition theorem and related

results for the discriminatory processor sharing queue,” Queueing Sys-

tems, vol. 18, pp. 333–351, 1994.

[82] B. Sengupta and D. L. Jagerman, “A conditional response time of the

M/M/1 processor-sharing queue,” AT&T Technical Journal, vol. 64, pp.

409–421, 1985.

108

	List of Figures
	Introduction
	Motivation
	Contributions
	Outline

	I Improving Mean Delays in Multihop Wireless Networks
	The Weighted Back-pressure Algorithms
	Introduction
	Background and Related Works
	Outline of this Chapter

	Delays in the Back-pressure Algorithm
	Overworking and Random Walks at Low Loads
	Richer Topologies Lead to Longer Delays at Low Loads
	Asymmetric Loads Penalize Low Load Flows
	Large Networks

	Weighted Back-pressure Algorithms
	System Model
	The Scheduling Algorithm
	Analysis
	Remaining-hops Weighted Back-pressure Algorithm

	Retaining Throughput Optimality
	Hybrid Weighted Back-pressure Algorithms
	Hybrid Remaining-hops Weighted Back-pressure Algorithm

	Simulation Results
	Effect of and z
	Large Networks

	Summary

	A Static Formulation for Reducing Delay
	Introduction
	Background and Related Works
	Outline of this Chapter

	Static Formulation for Minimizing Delay
	Optimal Solutions
	Block Descent Algorithm
	A Class of Iterative Algorithms

	Evaluation
	Summary

	II Pricing of Resources
	Pricing of Resources
	Introduction
	Background and Related Works
	Outline of this Chapter

	System Model
	A QoS Requirement
	Review of Insensitive Allocations
	The Swiss Army Formula

	Analysis
	The Pricing Models
	Post-payments vs. Pre-payments
	Mean Operator Revenue
	Post-payments: Exact Charge Accrued by Users
	Pre-payments: Freezing Prices on Arrival

	Simulation Results
	Summary

	Conclusion
	Extensions

	Bibliography

