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ABSTRACT

This thesis develops methods to exploit static and dynamic instabilities in elec-

trostatic MEMS to develop new MEMS devices, namely dynamically actuated mi-

cro switches and binary micro gas sensors. Models are developed for the devices

under consideration where the structures are treated as elastic continua. The elec-

trostatic force is treated as a nonlinear function of displacement derived under the

assumption of parallel-plate theorem. The Galerkin method is used to discretize the

distributed-parameter models, thus reducing the governing partial differential equa-

tions into sets of nonlinear ordinary-differential equations. The shooting method is

used to numerically solve those equations to obtain the frequency-response curves

of those devices and the Floquet theory is used to investigate their stability.

To develop the dynamically actuated micro switches, we investigate the re-

sponse of microswitches to a combination of DC and AC excitations. We find that

dynamically actuated micro switches can realize significant energy savings, up to

60%, over comparable switches traditionally actuated by pure DC voltage. We

devise two dynamic actuation methods: a fixed-frequency method and a shifted-

frequency method. While the fixed-frequency method is simpler to implement, the

shifted-frequency method can minimize the switching time to the same order as that

realized using traditional DC actuation. We also introduce a parameter identifica-

tion technique to estimate the switch geometrical and material properties, namely

thickness, modulus of elasticity, and residual stress.

We also develop a new detection technique for micro mass sensors that does not

require any readout electronics. We use this method to develop static and dynamic

binary mass sensors. The sensors are composed of a cantilever beam connected to

a rigid plate at its free end and electrostatically coupled to an electrode underneath

it. Two versions of micro mass sensors are presented: static binary mass sensor

and dynamic binary mass sensor.

Sensitivity analysis shows that the sensitivity of our static mass sensor represents

an upper bound for the sensitivity of comparable statically detected inertial mass

sensors. It also shows that the dynamic binary mass sensors is three orders of

magnitude more sensitive than the static binary mass sensor. We equip our mass

sensor with a polymer detector, doped Polyaniline, to realize a formaldehyde vapor

sensor and demonstrate its functionality experimentally. We find that while the

static binary gas sensor is simpler to realize than the dynamic binary gas sensor, it

is more susceptible to external disturbances.
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Chapter 1

Introduction

1.1 Electrostatic MEMS

1.1.1 MEMS

The acronym MEMS stands for Micro-Electro-Mechanical Systems. In these sys-

tems, mechanical elements, sensors, actuators, and electronics are integrated on a

common silicon substrate through micro fabrication technology. MEMS technology

has been adopted from the integrated circuit industry.

MEMS and micro system products have dominated many fields as the technol-

ogy for micro fabrication continues to be developed. In the automotive industry,

applications of MEMS include accelerometers for air-bag systems in automobiles.

Other applications in car industry include position and pressure sensors for sus-

pension systems; fuel pump pressure and fuel injection control; sensors used to

control engine coolant temperature, engine oil pressure and level, tire pressure,

brake oil pressure, and fuel pressure; rider comfort sensors for air quality, airflow,

temperature and humidity control [1].

Applications in the aerospace industry include cockpit instrumentation; pressure

sensors for oil, fuel, transmission, and hydraulic systems; airspeed measurement

devices; safety devices; sensors for fuel efficiency; micro gyroscopes for navigation

and stability control [1].

1



Chapter 1 Introduction

Applications in industrial products include sensors for hydraulic systems, re-

frigeration systems, heating and air conditioning systems, and water level control.

In telecommunications, applications include optical switching, RF switches, and

tunable filters [1, 2].

One of the promising areas for MEMS application is the biological and biomed-

ical field. Applications in health care include lung capacity meters, respirators,

kidney analysis equipment, and catheter tip pressure sensors. Micro pumps for

insulin injection have been employed for years. Other application include micro

systems for DNA identification and biochips for detection of hazardous chemical

and biological agents [1, 2].

1.1.2 Electrostatic actuation

Different actuation methods are employed in MEMS. These methods include ther-

mal, magnetic, piezoelectric, and electrostatic actuation. Among them, electro-

static actuation offers high energy density, high mechanical flexibility, and well-

controlled force over several microns of displacement [3]. Electrostatic actuation

requires higher actuation voltages compared to other actuation techniques, how-

ever, it usually requires very small current. This has an effect of reducing the

overall power requirements of electrostatically actuated micro systems.

The force induced by electrostatic actuation is small compared to that induced

under piezoelectric and thermal actuation. However, electrostatically actuated de-

vices involve simple designs of a pair of electrodes compared to electromagnetic

or piezoelectric actuators which usually require coils and mechanical elements of

complicated topology [2, 4]. Moreover, the fabrication process of electrostatically-

actuated micro systems is built on a well-established technology that has been

employed for years in the fabrication of integrated circuits (ICs).

Electrostatic actuation relies on the attractive force induced between two con-

ductive plates or elements carrying opposite charges [2]. This force depends on

the applied potential between the two elements in addition to dielectric constant of

medium in between and the distance separating them.

2



Chapter 1 Introduction

One complication in the use of electrostatically actuated MEMS is the appear-

ance of the pull-in instability. In some applications such as micro switches, it is

desirable to accurately predict the onset of such instability. In other applications

such as resonators, it is required to extend the limit of such instability, thus extend

the travel range of the resonator.

1.1.3 Pull-in instability

The pull-in instability occurs when the voltage drop across the capacitor reaches a

critical value where the elastic restoring force of the flexible structure can no longer

balance the electrostatic force. Beyond this point, the structure loses stability and

snaps down to touch the fixed electrode. The pull-in instability is a saddle-node

bifurcation where a stable and an unstable solution branches meet and annihilate

each other [5].

A large displacement range can provide the structure with better tuning and a

larger range of travel which is useful in a wide variety of tunable MEMS applications.

In contrast, pull-in instability limits the structure stable displacement range. It

also poses a major safety concern for the operation of electrostatic MEMS where

it occurs as an unintended consequence [6]. In MEMS switches, it constitutes the

border between on and off states of the switch.

To have more insight into the pull-in phenomenon, we introduce a one-dimensional

lumped-mass model to represent an electrostatically actuated MEMS as shown in

Fig. 1.1. The effective stiffness of the structure is modeled by a linear spring with a

spring constant k and the effective mass is lumped into the mass m as shown in the

figure. The initial capacitor gap between the moving flexible plate and the fixed

plate is d and the displacement of the mass is w. The capacitive force between two

identical parallel capacitor plates is given by [1, 7]

Fe =
1

2
εA

V 2

(d− w)2
(1.1)

where A is the surface area of the plate, ε is the electric permittivity of the medium

3



Chapter 1 Introduction

Figure 1.1: A 1-D lumped-mass model.

and V is the voltage drop across the plates. We note from this equation that an

increase in the voltage V would increase the electrostatic force Fe which in turn

increases the displacement w, thus increases the electrostatic force more. At some

voltage, an instability occurs and the electrostatic force exceeds the mechanical

restoring spring force and as a result, the beam snaps down to touch the bottom

electrode. This instability is known as static pull-in [7]. The corresponding voltage

is referred to as static pull-in voltage VSP.

At lower voltage values, equilibrium occurs when the electrostatic force Fe is

equal to the mechanical restoring force

k w =
εAV 2

2(d− w)2
(1.2)

We note that Eq. (1.2) is a third-order polynomial in the beam displacement w.

This equation has three roots. One of the roots is always larger than the capacitor

gap (w > d) which is unphysical, since it requires the upper electrode to penetrate

into the lower electrode, and thus will be discarded. The other two roots correspond

to two equilibrium positions of the mass. The smaller root corresponds to a stable

equilibrium position (node), while the larger corresponds to an unstable equilibrium

(saddle) [6]. Figure 1.2 depicts the force balance underlying these equilibria. A

small displacement away from equilibrium will diminish over time at the lower

equilibrium point since the mechanical restoring force of the bridge is larger than the

electrostatic force at this point. This situation is reversed at the upper equilibrium

4



Chapter 1 Introduction

Figure 1.2: Equilibrium points of the lumped-mass model.

point where any small displacement from equilibrium will increase over time as

the electrostatic force exceeds the mechanical restoring force beyond this point as

shown in Fig. 1.2.

As the applied voltage increases, the two equilibrium points move closer to each

other until they merge into one point at which the two force curves are tangent.

Beyond this point, the movable plate snaps down and touches the fixed plate indi-

cating pull-in. To show this behavior, we rearrange Eq. (1.2) in the form

w (d− w)2 =
εAV 2

2k
(1.3)

where its solution is basically the intersection of the graphs produced by plotting

the two functions on both sides of the equation. We note from Fig. 1.2 that pull-in

occurs when the intersection of the two force curves merge into one point; thus [4]

d

dw

[
w (d− w)2

]
=

d

dw

(εAV 2

2k

)
= 0 (1.4)

5



Chapter 1 Introduction

since the right hand side of the equation does not depend on w. This yields a

travel range of one-third of the gap between the two plates, w = d/3. Upon

substitution of this value of displacement into Eq. (1.2), we obtain a formula for

pull-in voltage [4, 7]

VSP =

√
8

27

d3k

εA
(1.5)

It is worth stressing that this value of the pull-in voltage corresponds to a linear

mass-spring system.

Another version of the pull-in instability occurs in dynamic systems. Under this

scenario, the transient motions or steady-state oscillatory motions of an electrostatic

MEMS grow large enough to approach the stable manifold of the saddle, touch the

manifold which results in the saddle propelling the system response into pull-in

(initial conditions like B in Fig. 1.3. This version of the instability is called dynamic

pull-in [8] and the voltage corresponding to it is dubbed dynamic pull-in voltage

VDP. We note from Fig. 1.3 that the solution trajectory depends on the initial

conditions. For example, initial conditions like A inside the homoclinic orbit home

onto the stable node C.

Nayfeh et al. [8] show that dynamic pull-in results from the addition of a resonant

AC component to the forcing and that it can occur at much lower voltages than

the static pull-in voltage where the excitation is purely a DC force. In particular,

the dynamic amplification obtained by adding a resonant AC actuation force to the

static DC component helps pull-in happen at lower voltages.

Extensive research has been carried on electrostatically actuated devices in order

to enhance their functionality in different applications including MEMS switches

and MEMS resonators. Many papers have been published on this topic in recent

years. Some of them studied the static and dynamic behavior of these systems

either analytically or experimentally [8–11].

Many researchers have presented various designs to improve the performance of

electrostatic MEMS. Hung and Senturia [12] introduced a new structural design to

6



Chapter 1 Introduction

Figure 1.3: Dynamic pull-in in a damped unforced electrostatic oscillator.

increase the travel range of electrostatically actuated micro beams to about 60 % of

the gap at the cost of increasing the actuation voltage. Their idea was to retard the

pull-in instability by applying the electrostatic force to only the portions of doubly-

clamped or cantilever beams close to the supports. Thus, while the electrostatically

actuated portions of the structure deflect less than the pull-in limit, the other

portions of the structure can move through the entire gap.

Busta et al. [13] introduced a design where a conductive shield with an opening

is interposed between the movable beam and the ground electrode. The shield has

the same voltage as the cantilever while it is isolated from the substrate except at

the holes. This results in an electrostatic field that is only effective in the opening

areas while other areas of the electrode are field-free. The design enabled the control

of pull-in forces but also resulted in an increase of pull-in voltage requirements.

Rosa et al. [14] introduced a novel curved cantilever beam design where the

electrodes are offset from the actuator rather than being positioned directly under-

neath it. This design provided increased range of motion of the cantilever beam.

However, the actuation voltage has increased.
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1.2 Motivation

Although electrostatic actuation suffers from the pull-in instability, it also offers

one of the highest energy densities available today. In fact, the pull-in instability

is not always a drawback. The basic idea of MEMS series and shunt switches is to

drive the switch to the pull-in limit and thus obtain the on/off states of a switch.

The challenge in this case is the high actuation voltage usually encountered in most

MEMS switches.

In this work, we show analytically and experimentally that the actuation voltage

can be significantly decreased if we change the waveform used to actuate the switch.

Reducing the actuation voltage does not only reduce operational requirements, but

also increases the switch lifetime and reduces the effects of dielectric charging.

On the other hand, the pull-in instability causes a perennial problem for MEMS

sensors. In this case, one wants to avoid driving the sensor close to its pull-in

threshold, otherwise it would lose its functionality. This work proposes a technique

to exploit the pull-in instability as a detection mechanism in electrostatic MEMS

sensors. The sensor in this case detects that the measurand has exceeded a threshold

by going into pull-in. The outcome is a binary sensor that dispenses with readout

electronics used in all MEMS sensors. The simplicity of such a sensor makes it a

good competitor to other available MEMS sensors.

1.3 MEMS Switches

Because of its high isolation, small size and weight, and low insertion loss at mi-

crowave frequencies, MEMS switches can replace the GaAs switches in cellular

phones resulting in much lower DC-power consumption and longer battery life. It

is also superior to the conventional solid-state switches based on PIN diodes or

GaAs field effect transistors (FETs) [15]. This is mainly because of the near-zero

power consumption of MEMS switches due to the very small current it consumes.

Moreover, because MEMS switches are fabricated using surface micro machining
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techniques, they are candidates for low cost [16].

MEMS micro switches have many practical applications; RF-MEMS is one of

them. “The term RF-MEMS refers to the design and fabrication of MEMS for

RF integrated circuits and it should not be interpreted as the traditional MEMS

devices operating at RF frequencies. The main uses of RF switches in the telecom-

munication industry are for signal routing, in impedance matching networks, and

for changing the gain of amplifiers. The RF switch can be used to share an antenna

between a transmitter and a receiver. In digital modulation in communication sys-

tems, the switch serves as a gate to pass and stop the signal so that the desired

waveform can be generated” [17]. Moreover, it is also implemented in phase shifters

which are used in telecommunication, automotive, and defense applications [18].

The common type of capacitive micro switches takes the form of capacitive

(metal-insulator-metal) contact. This design consists of four main elements: “a

high-resistivity silicon substrate, coplanar waveguide transmission lines (CPW)

which exhibit low losses at high frequencies, a suspended bridge upon which mo-

tion supplies the on/off states for the switch, and a dielectric layer which serves to

prevent stiction between the bridge and the underlying CPW center conductor, yet

provides a low impedance path between the two metallic surfaces” [19].

The actuation methods of MEMS micro switches can be electrostatic, magnetic

or electromagnetic. The advantage of electrostatic actuation is that there is very

small current consumption. However, its drawback is that it requires a higher

actuation voltage, typically 5-100 V. The advantage of electromagnetic actuation is

the lower actuation voltage but with significantly higher current consumption [17].

There are two main switches used in RF circuit design: the shunt switch and

the series switch. “The shunt switch is placed in shunt between the transmission

line and ground. Thus it either leaves the transmission line undisturbed or connects

it to ground. The ideal shunt switch results in zero insertion loss when no bias is

applied (up-state position) and infinite isolation when bias is applied (down-state

position). Series micro switch geometry follows the same definitions as for the shunt

switch but a cantilever beam is used as an actuator instead of the clamped-clamped
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Figure 1.4: Schematic of a shunt micro switch.
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Figure 1.5: Schematic of a series micro switch.

beam used in shunt switches.

In shunt micro switches, a static DC voltage is applied between the MEMS

bridge and the microwave line. If the DC bias exceeds the static pull-in limit of

the switch, this results in an electrostatic force that causes the MEMS bridge to

collapse on the dielectric layer, largely increasing the bridge capacitance by a factor

of 30-100. This capacitance connects the transmission line to the ground and acts

as a short circuit at microwave frequencies, resulting in a reflective switch. When

the bias voltage is removed, the MEMS switch returns back to its original position

due to the restoring spring forces of the bridge.

In series micro switches, a 40- to 100-µm gap (open circuit) is created in the

microwave transmission line when the switch is in the up-state position resulting in

high isolation. When the switch is activated, it falls down on the transmission line

and creates a short circuit between the open ends. Series switches are DC-contact

switches and can work at low frequencies (1000 MHz or lower). Since the MEMS

switch creates a DC contact with the transmission line when activated, a separate

electrode is needed to actuate the switch. When the bias voltage is removed, the

switch returns back to its original position due to the internal restoring force of the

cantilever” [18]. Schematics of a shunt switch and a series micro switch are shown

in Figs. 1.4 and 1.5, respectively.
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Some factors that negatively affect the performance of capacitive micro switches

are creep, fatigue, stiction to the insulator, and charging and degradation of the

insulator [20]. Moreover, the actuation voltages of RF MEMS switches are usually

high. The high actuation voltages result in a reduction of the lifetime of RF MEMS

switches [21] and often induces malfunction by charge trapping problems [22]. One

of the problems that face electrostatically-actuated MEMS switches is its low me-

chanical stability. The small electrostatic force makes it difficult for the switches to

be mechanically robust and to provide high isolation due to the restriction imposed

on the maximum initial gap [22].

Reliability is the main challenge hindering the commercialization of MEMS

switches. Most RF MEMS switches require high actuation voltages, which de-

grade their lifetime and induce malfunction by dielectric charging in capacitive

switches [22, 23]. Dielectric charging leads to erratic behavior and limits the device

lifetime [24]. In fact, Goldsmith et al. [25] showed that capacitive switches exhibit

exponentially decreasing lifetime with actuation voltage.

There are three routes to dielectric charging [24]: charge distribution throughout

the dielectric material, presence of charges at the interface between the dielectric

and the RF line, and injection of charges from the suspended bridge to the dielectric

material. Peng et al. [26] experimentally showed that dielectric charging is signif-

icant when the suspended electrode comes in contact with the dielectric material.

Further, during switch operation, the electric field across the capacitor can be as

high as 106 V/cm, causing electrons or holes to be injected into and trapped within

the dielectric. Over time, charge builds up in the dielectric, resulting in actuation-

voltage shifts [27, 28]. Charge injection in the dielectric layer also leads to stiction

between the dielectric film and the suspended electrode.

Many designs have been proposed to reduce the actuation voltage of MEMS

switches and hence enhance their reliability. To reduce the voltage requirements

for switching while counteracting self-actuation caused by high RF power in the

transmission line, Peroulis et al. [29] introduced a switch with a small capacitor

gap and serpentine springs in addition to an extra electrode on top of the actuated
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bridge. This design reduces the actuation voltage by 65 %, however, the springs

consume more area and are also hard to model and fabricate.

Cho et al. [22] reported a MEMS switch actuated by a combination of electro-

magnetic (Lorentz) and electrostatic forces. Electromagnetic actuation is used for

the initial gap closing and low-voltage electrostatic actuation is used to hold the

switch in the down state. The DC voltage required is 3.3 V, but the switch uses a

DC current of 49 mA to generate the Lorentz force.

Sadek et al. [30] introduced an electrostatically actuated corrugated bridge sus-

pended over a CPW transmission line operating at 0.1 − 100 GHz. The micro

beam corrugations have the effect of reducing the switch actuation voltage. They

also reported that the addition of holes to the corrugated switch results in a de-

crease in the overall stiffness, thus reducing the actuation voltage further. Other

publications addressing different factors affecting RF switch performance can be

found in [31–33]. It is worth noting that the aforementioned studies introduced

new switch designs to enhance the power handling capabilities and voltage require-

ments of MEMS switches employing static DC voltage as the actuation method for

the switch. This method is referred to as ‘static actuation’.

In the context of micro switch actuation, we distinguish between two modes of

actuation: static and dynamic actuation. In the static actuation, the structure is

merely actuated by a DC voltage and pull-in is referred to as static pull-in, VSP. In

dynamic actuation, the structure is actuated by a biased AC voltage and pull-in in

this case is referred to as dynamic pull-in, VDP. In this work, we exploit dynamic

pull-in to decrease the actuation voltage of MEMS shunt capacitive switches.

The literature lacks extensive experimental work to study the effect of dynamic

actuation, in which an AC forcing component is added to the DC bias voltage,

on the response of electrostatically actuated micro switches. In what follows, we

summarize some of the published work addressing dynamic actuation.

Seeger and Boser [34] proved experimentally that the oscillation of electrostatic

actuators driven near resonance can exceed one-third of the gap distance. They

report measured actuator travel range greater than 56 % of the gap where the
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excitation frequency has been tuned to drive the actuator to maximum oscillations.

Nielson and Barbastathis [35] proved theoretically using an energy-based tech-

nique that the pull-in voltage can be reduced to about 30 % compared to static ac-

tuation if the forcing frequency is modulated at the mechanical resonant frequency

of a switch. Nielson et al. [36] further proved this voltage saving experimentally.

They also reported a switching time of 500 ns.

Nayfeh et al. [8] showed numerically using a reduced-order model and the shoot-

ing method that dynamic pull-in occurs at much lower voltages than static pull-in.

Fargas-Marques and Shkel [37] used energy methods to prove that the travel

range of electrostatic parallel-plate actuators can be extended beyond the one-

third gap limit up to 50% of the gap under DC-AC forcing combination. They also

derived a dynamic pull-in condition that defines a domain of non-resonant actuation

voltages, VDC and VAC, at different values of the quality factor for stable parallel-

plate actuator motion. Their model does not consider geometric nonlinearities in

the system.

Fargas-Marques et al. [38] extended their previous work to study the pull-in

instability under resonant excitation considering the nonlinear spring effect that

appears with large amplitude oscillations. They used energy methods to derive

analytical expressions for static and dynamic pull-in voltages. They also derived

an analytical resonant pull-in condition for a combination of DC-AC actuation to

achieve a maximum stable travel range. They validated these results experimentally

using two doubly-clamped micro beams.

Vummidi et al. [39] implemented dynamic actuation in a lateral contact RF-

MEMS series switch where a voltage saving of about 50 % was experimentally

found.

In this study, we investigate the effect of dynamic actuation on the performance

of MEMS shunt RF-switches. Dynamic actuation employs a harmonic AC voltage

component added to the DC voltage used for biasing the switch. The effect of AC

actuation voltage on the response of resonant micro switches is expected to result

in high energy savings that help operate the switch at much lower DC bias voltages.
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We prove our claim of voltage saving in MEMS shunt switches under DC and

AC forcing conditions by conducting experimental work on doubly-clamped micro

switches. We also present a theoretical model to model the dynamics of the switch

in order to arrive at optimized working conditions for such devices. We show in

Chapter 2 how much voltage saving is obtained when the switch is being operated

under dynamic actuation which can make the switch operate at much lower DC bias

voltages. Numerical and experimental results for MEMS sunt switches are presented

in [40]. A voltage saving of about 60 % under dynamic actuation conditions was

found.

1.4 MEMS Mass Sensors

Micro mass sensors can accurately detect mass variations on the order of nano-

to atto-gram [41]. They are increasingly being used as chemical and biological

sensors after equipping them with a functional material to selectively immobilize a

particular gas, protein, or organism from a fluid pool or stream. The development

of these sensors requires ways to overcome many challenges, including functional

material stability and selectivity and overall sensor detection range, response time,

hysteresis, and cost [42]. Developing better mass sensors will help address problems

of sensitivity, reliability, and cost effectiveness in this new generation of chemical

and biological micro sensors.

Two of the more widely used detection modes in micro mass sensors are static

and dynamic detection. In the static detection mode, mass variation is detected

by measuring the deflection of a micro structure as a result of the mass absorbed

or adsorbed on the surface of the functional material. This deflection of the micro

structure can be measured optically, piezoresistively, or piezoelectrically. However,

most high-resolution systems rely on optical detection [43].

The dynamic detection mode measures the shift in the natural frequency of the

sensor due to the absorbed/adsorbed mass. Resonance-based biosensors have ex-

ceeded the absolute mass detection capabilities of deflection-based devices, thereby
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enabling single cell, virus, and double-stranded DNA molecule detection [44]. Sen-

sors employing these detection modes can be found in many recent papers [42, 43,

45].

We first introduce some of the published work on static detection mode. Datskos

and Sauers [46] investigated the sensitivity of gold-coated V-shaped silicon nitride

micro cantilevers to 2-mercaptoethanol using optical readout. A sensitivity of 0.432

nm/ppb is achieved with a minimum measured deflection of 10 nm which translates

to a sensitivity of 23 ppb.

Jensenius et al.[47] used an integrated piezoresistive readout made of a Wheat-

stone bridge attached to a cantilever beam coated with a polymer film to detect

ethanol and other gases. A detection sensitivity of 10 ppm of ethanol was measured.

There has been a concomitant interest in increasing the sensitivity of the un-

derlying mass sensors. In this regard, dynamic detection mode proves to provide

better mass sensitivity compared to static mode. Zhang et al. [48, 49] showed that

the sensitivity of electrostatically actuated MEMS sensors is highly increased if the

sensor is parametrically excited. The sensor is composed of two sets of parallel

interdigitated comb fingers. They report a mass sensitivity of 1 picogram.

Choi et al. [50] experimentally and numerically using FEM showed that the

nonlinearities in resonant-based sensors have the effect of enhancing the sensitivity

of such systems.

Cleland [51] theoretically investigated the effect of inherent nonlinearities in

electrostatic MEMS on mass detection sensitivity. The case of parametrically ex-

cited cantilever-type resonator was studied.

Tseytlin [52] derived an analytical model for a micro cantilever-based mass

sensor to prove that higher order modes are more sensitive to masses deposited

along the beam length except at the nodal points. He found that the second

bending mode is 40 times more sensitive to mass variation than the first bending

mode and that the sensitivity increases further for higher order modes.

Dohn et al. [53] experimentally investigated the sensitivity of a cantilever beam

mass sensor to the location of the added mass along the beam. They found that
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the highest sensitivity occurs at the beam tip and that the added mass had no

significant effect on the Q-factor of the sensor. They also found that the sensitivity

of a fourth bending mode dynamic mass sensor is 300 times that of a sensor using the

first bending mode. They concluded that sensitivity increases with mode number

due to a decrease in the effective mass and an increase in the Q factor as the mode

number increases.

Lobontiu et al. [54] developed a lumped-mass model for the dynamics of micro

bridge mass sensors. They found that the frequency of the first bending mode is

more sensitive to the position of the deposited mass along the beam than the first

torsional mode. Lobontiu et al. [55] extended this work to cantilever beam mass

sensors. They presented an analytical model to estimate the resonance frequencies

of the first bending and torsion modes and their sensitivities to variations in the

mass. Their results show that the first torsional mode is more sensitive than the

first bending mode to variations in the mass and its position along the beam. These

results were verified experimentally on micro- and nano-scale cantilevers.

Xie et al. [56] investigated sensitivity of dynamic mode cantilever beam micro

mass sensors. They presented a model to predict the shift in the frequency of the

first torsional mode as a function of the mass and attachment position of micro

and nano objects. They also conducted an experiment to investigate the sensitivity

of the frequencies of the first and second flexural and first torsional modes in air

to a ragweed pollen located at different positions along the beam. Their experi-

mental results showed that the sensitivity of the first torsional mode is an order of

magnitude higher than that of the first bending mode.

Younis and Alsaleem [57] presented two devices using micro clamped-clamped

and micro cantilever beams operating near dynamic pull-in: a switch triggered

by mass detection (STMT) and a mass sensor amplified response (MSAR). The

STMT utilizes the escape from a potential well phenomenon under primary reso-

nance to drive the micro beam to pull-in. The MSAR uses the jump phenomenon

of a pitchfork bifurcation to sense an added masses. They verified these results

experimentally using a micro cantilever beam with proof mass.
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Figure 1.6: Schematic of a cantilever-type micro sensor.

To achieve even higher mass sensitivity, NEMS-based sensors have also been

introduced. Ilic et al. [41] used a resonating mechanical nanocantilever for virus

detection. A mass of 3× 10−15 grams was detected.

Cantilever-based mass sensors show potential for very high mass resolution [43].

In this study, we investigate two versions of a cantilever-based binary gas sensor.

The first version is a static sensor while the second is a dynamic sensor. The detec-

tion mechanism in both versions is built on measuring the change in a bifurcation

point due to added mass. Numerical results show a minimum detectable mass

of 3 nanograms for the static sensor and 1 picogram for the dynamic sensor. A

schematic of a cantilever-type micro sensor is shown in Fig. 1.6.

1.5 Scope

The objective of this study is to exploit instabilities in electrostatically actuated

MEMS to devise new switching and sensing mechanisms. Specifically, we investigate

the use of the dynamic pull-in instability to design low-voltage micro switches and

static and dynamic pull-in to design simple micro gas sensors.

• We propose a method to actuate MEMS switches using a combination of DC

and AC excitation forces. Our hypothesis is that addition of a well-tuned

AC component to the actuation signal has the effect of reducing the voltage

requirements of the switch compared to pure DC excitation.

• We also propose a parameter identification routine to estimate experimentally
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the micro switch model parameters.

• We develop a theory and practice for dynamic switching. Further, we intro-

duce practical switching methods for such mode.

• We investigate the use of the pull-in instability to increase the sensitivity and

simplify the configuration of MEMS mass sensors. The idea is rooted in two

characteristics of the pull-in instability:

– the sensitivity of electrostatic MEMS is at a maximum near pull-in,

– pull-in is a binary detector that classifies disturbances into those that

pass the threshold required to trigger pull-in and those that do not.

• Thus, we operate the sensor very close to pull-in and track the sensor response.

Pull-in in this case indicates that accumulation of absorbed/adsorbed mass

on the sensor are equal or larger than that required to trigger pull-in. This

new detection methodology has the advantage of simplifying the sensor setup

by eliminating the need for readout electronics since the detector is the mere

fact of pull-in itself. This is valuable not only because of the savings in the

electronics but also because the integration of MEMS and electronics requires

either building MEMS in CMOS or wire bonding after the fabrication of each.

• We develop two versions of this binary mass sensor. The first version uses

static pull-in as a detection mechanism, while the second version uses dynamic

pull-in as a detection mechanism. This mass detection method is different

from the commonly practiced methods of detecting the deflection or the shift

in frequency of a structure due to an added mass.

1.6 Thesis Outline

This thesis is organized into four chapters. In Chapter 1, an introduction to MEMS

and its actuation techniques is presented. The pull-in instability is discussed and
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explained. Literature review of MEMS switches and MEMS sensors is then pre-

sented.

In Chapter 2, we present a mathematical model of a shunt MEMS micro switch.

We discuss methods to identify the geometric and material parameters of the switch.

We use the model predictions and experiments to design dynamic actuation tech-

niques for MEMS switches. We also identify the damping mechanisms available in

the switch and study dielectric charging during switching.

In Chapter 3, we present a mathematical model for a binary micro mass sensor

composed of a plate suspended at the end of a cantilever beam. We design static

and dynamic versions of the binary mass sensor and demonstrate the static version

of the sensor. We investigate the factors affecting the sensor sensitivity including

its geometric and material properties.

In Chapter 4, we draw conclusions from our findings in this work and provide

recommendations for future work on the exploitation of electrostatic MEMS insta-

bilities in actuation and sensing.
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Chapter 2

Dynamic Switching

In this chapter, we investigate the effect of dynamic switching on the performance

of electrostatically actuated capacitive micro switches. We derive the equation of

motion and the associated boundary conditions governing the nonlinear response

of a capacitive shunt micro switch to electrostatic actuation. The switch is com-

posed of a fixed-fixed micro beam suspended over a fixed bottom electrode. We

use Hamilton’s principle as a variational approach to derive the equation of motion

and give a brief introduction to reduced-order modeling. We base our reduced-

order models on the Galerkin method. With the Galerkin method, the governing

nonlinear partial-differential equation in space and time is discretized into a set

of nonlinearly coupled ordinary-differential equations in time only. The linear un-

damped free vibration mode shapes, around the statically undeflected position of

the beam, are used as basis functions in the Galerkin method. We also present the

experimental results we obtained using a laser vibrometer and compare them with

the numerical results achieved from the model. Our model as well as numerical and

experimental results for the capacitive MEMS shunt switch are summarized in [40].

2.1 Switch Model

We model the MEMS shunt switch as a straight beam of uniform cross-section and

homogeneous material with mass per unit length m, length L, thickness h, width b,
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Figure 2.1: Schematic of the shunt micro switch.

cross-section area A, moment of inertia I, and modulus of elasticity E. The bridge

is anchored to two ground lines on either side of a coplanar waveguide (CPW)

transmission line of width W and held at a distance d above the CPW, as shown in

Fig. 2.1. The distance between the signal line of the CPW and each of the ground

lines is denoted as G.

Although MEMS dimensions are in the microscale, the theory of continuum

mechanics is still applicable. According to Luan and Robbins [58], the applicability

of continuum mechanics is valid even at a few atomic diameters which are of the

nanoscale. The beam is modeled according to the Euler-Bernoulli beam theory.

The main assumptions of this theory are [59]

- Planes remain plane after deformation, i.e., the in-plane strains are negligible.

- Straight lines normal to the midplane of the beam remain straight and normal

after deformation, i.e., transverse shear strains are ignored and consequently

the rotation of cross-sections is only due to bending.

- Straight lines in the transverse direction of the cross-section do not change

length, i.e., the out-of-plane strains are ignored.

Moreover, the electrostatic force between the micro beam and the bottom electrode

is modeled according to the parallel-plate theory. According to this theory, the

micro beam shape is assumed to be always straight and parallel to the bottom

electrode at any forcing level. This is a reasonable assumption since the ratio of

beam deflection to its span is in the order of 1/100.
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Figure 2.2: A segment of the micro beam before and after deformation [59].

We follow Emam [59] in the derivation of the equation of motion governing

the transverse vibrations of the micro beam. We consider a differential element

of length dx̂, located at point P a distance x̂ form the origin, in the undeformed

configuration of the microbeam. After deformation, the point P moves to a new

location P ∗ of coordinates

x∗ = x̂+ û and y∗ = ŵ (2.1)

where û and ŵ are the displacements along the x̂ and ŷ directions, respectively, as

shown in Fig. 2.2. The element has a length ds in the deformed configuration given

by

ds =
√
dx∗2 + dy∗2 (2.2)

Differentiating Eq. (2.1) with respect to x̂, we obtain

dx∗ = (1 + û′)dx̂ and dy∗ = ŵ′dx̂ (2.3)

where primes denote derivative with respect to x̂. The length of the element in the

deformed configuration can be expressed as

ds =
√

(1 + û′)2 + ŵ′2 dx̂ (2.4)
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The elongation of the differential element is given by

e = dŝ− dx̂ =
(√

(1 + û′)2 + ŵ′2 − 1
)
dx̂ (2.5)

The angle of rotation θ is given by

sin θ =
dy∗

ds
=
dy∗

dx̂

dx̂

ds
=
ŵ′

λ

cos θ =
dx∗

ds
=
dx∗

dx̂

dx̂

ds
=

1 + û′

λ

(2.6)

where λ is the stretch ratio defined as

λ =
ds

dx̂
=
√

(1 + û′)2 + ŵ′2 (2.7)

Differentiating Eqs. (2.6) with respect to x̂ assuming small rotation yields

sin θ ≈ θ =
ŵ′

λ
=⇒ θ′ =

λŵ′′ − λ′ŵ′

λ2

cos θ ≈ 1 =
1 + û′

λ
=⇒ λ′ = û′′

(2.8)

Thus the rotation gradient θ′ takes the form

θ′ =
(1 + û′)ŵ′′ − û′′ŵ′

λ2
(2.9)

The curvature of the midplane is given by

κ =
dθ

ds
=
dθ

dx̂

dx̂

ds
=

θ′√
1 + 2û′ + û′2 + ŵ′2

(2.10)

Substituting Eq. (2.9) into Eq. (2.10), we obtain

κ =
(1 + û′)ŵ′′ − û′′ŵ′

[1 + 2û′ + û′2 + ŵ′2 ]
3
2

(2.11)

To obtain a formula representing the mid-plane stretching of the microbeam,
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we expand Eq. (2.5) in a Taylor series as

e =

[
1

2

(
2û′ + û′

2

+ ŵ′
2
)
− 1

8

(
2û′ + û′

2

+ ŵ′
2
)2

+ · · ·
]
dx̂ (2.12)

where the higher-order terms are neglected. Retaining up to quadratic terms in the

displacement gradient, we obtain

e ≈
(
û′ +

1

2
ŵ′

2
)
dx̂ (2.13)

which gives the elongation of the differential element assuming small-strain and

moderate-rotation approximations. Integrating Eq. (2.13) over the domain, we

obtain the micro beam midplane stretching

∆ = û(L)− û(0) +
1

2

∫ L

0

(
∂ŵ

∂x̂

)2

dx̂ (2.14)

where û(0) and û(L) are the axial displacements at the beam ends. For a fixed-

fixed micro beam configuration, there are no axial displacements at both ends. As

a result, the total midplane stretching is given by

∆ =
1

2

∫ L

0

(
∂ŵ

∂x̂

)2

dx̂ (2.15)

The induced axial force due to the mid-plane stretching can be expressed as

S =
EA

L
∆ =

EA

2L

∫ L

0

(
∂ŵ

∂x̂

)2

dx̂ (2.16)

where EA/L is the axial stiffness of the beam. The total axial tensile force on the

beam is given by

St = N̂ +
EA

2L

∫ L

0

(
∂ŵ

∂x̂

)2

dx̂ (2.17)

where N̂ represents the axial force due to residual stresses that may be present in

the beam which is negative if the residual stresses are compressive.
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To obtain the bending moment at any location of the beam, we expand Eq.

(2.11) in a Taylor series as follows:

κ = ŵ′′ − û′′ŵ′ − 2ŵ′′û′ + · · · (2.18)

For small curvature approximation, the curvature of the midplane is given by

κ ≈ ŵ′′ (2.19)

The bending moment M(x̂) at any location x̂ of the beam is given by

M(x̂) = EIκ = EIŵ′′ (2.20)

where EI is the bending stiffness of the beam.

The potential energy due to bending is given by

Vb =
1

2

∫ L

0

M(x̂) κ dx̂

=
EI

2

∫ L

0

(
∂2ŵ

∂x̂2

)2

dx̂ (2.21)

The potential energy due to the axial force N̂ is given by

Va = N̂ ∆ =
1

2
N̂

∫ L

0

(
∂ŵ

∂x̂

)2

dx̂ (2.22)

The potential energy due to midplane stretching is given by

Vs =
1

2
S∆ =

EA

8L

[∫ L

0

(
∂ŵ

∂x̂

)2

dx̂

]2
(2.23)

Therefore, the total potential energy can be expressed as [59]

V =
1

2
EI

∫ L

0

(
∂2ŵ

∂x̂2

)2

dx̂+
1

2
N̂

∫ L

0

(
∂ŵ

∂x̂

)2

dx̂+
EA

8L

[∫ L

0

(
∂ŵ

∂x̂

)2

dx̂

]2
(2.24)
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The kinetic energy of a differential element of density ρ, cross-sectional area A,

and length dx̂ is

dT =
1

2
ρA

(
∂ŵ

∂t̂

)2

dx̂ (2.25)

Integrating Eq. (2.25) over the length of the beam gives the total kinetic energy

T =
1

2
m

∫ L

0

(
∂ŵ

∂t̂

)2

dx̂ (2.26)

where m is mass per unit length of the micro beam.

The electrostatic force per unit beam length between the beam and the bottom

electrode is expressed as [1]

Fe =
1

2
ε b

V (t̂)2

(d− ŵ)2
(2.27)

where ε is the dielectric constant of the medium between the bridge and the bottom

electrode and V (t̂) is the applied potential difference across them.

Hamilton’s principle is a powerful variational technique for deriving the equa-

tions of motion and the associated boundary conditions of distributed-parameter

systems. Hamilton’s principle states that the variation of the Lagrangian of the

system plus the line integral of the virtual work done by nonconservative forces

during the time interval from t0 to tf must be equal to zero; that is

∫ tf

t0

(δ£ + δWnc) dt = 0 (2.28)

where £ is the Lagrangian defined by

£ = T − V (2.29)

where T is the kinetic energy, V is the potential energy, Wnc is the work done by

nonconservative forces, and δ is a differential operator denoting the first variation.

Using Hamilton’s principle, the equation of motion governing the transverse
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vibrations of a fixed-fixed micro beam subjected to transverse electric forces can be

expressed as [59, 60]

m
∂2ŵ

∂t̂2
+ (ĉ+ ĉs)

∂ŵ

∂t̂
+ EI

∂4ŵ

∂x̂4
=
[
N̂ +

EA

2L

∫ L

0

(∂ŵ
∂x̂

)2
dx̂
]∂2ŵ
∂x̂2

+
1

2

ε b V (t̂)2

(d− ŵ)2
S

(2.30)

and the associated boundary conditions are

ŵ(x̂, t̂) = 0 and
∂ŵ(x̂, t̂)

∂x̂
= 0 at x̂ = 0 and x̂ = L (2.31)

where ŵ(x̂, t̂) is the transverse deflection of the micro beam.

The voltage difference between the bridge and the CPW is defined as

V (t̂) = VDC + VAC cos(Ω̂t̂) (2.32)

where VDC is the magnitude of DC voltage and VAC and Ω̂ are the amplitude and

frequency of AC voltage. To account for the electrostatic fringing field, we replace

the width of the micro beam b with an effective width [61] in the electrostatic force

term; that is

be =

(
1 + 0.65

d− ŵ
b̂

)
b̂ (2.33)

The unit-step function S accounts for the incomplete overlap between the trans-

mission line and the bridge

S =

1 for 1
2
(L−W ) ≤ x̂ ≤ 1

2
(L+W )

0 elsewhere

(2.34)

The sources of damping in the switch are (a) energy losses through the supports,

(b) acoustic losses to air, (c) structural damping represented by the viscous damping

coefficient ĉ, and (d) squeeze-film damping due to the air trapped under the bridge

represented by the coefficient ĉs. The effect of squeeze-film damping is quantified
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using the formula [62]

ĉs =
µ̂ b̂3

(1 + 6Kn)(d− ŵ)3
(2.35)

where µ̂ is the air viscosity, Kn = λ/d is the Knudsen number, and λ = 60 nm is

the mean free path of air molecules at ambient pressure.

Dimensional analysis gives a compact way of model representation and reduces

the complexity of physical variables where these variables are lumped into a num-

ber of nondimensional groups. For convenience, we introduce the nondimensional

variables

x =
x̂

L
, w =

ŵ

d
, and t =

t̂

T
(2.36)

where T is a time scale. Substituting Eq. (2.36) into Eqs. (2.30) and (2.31), we

obtain the nondimensional equation governing the transverse vibrations of a micro

beam subjected to internal axial forces and DC-AC voltage combination

∂2w

∂t2
+ (c+ cs)

∂w

∂t
+
∂4w

∂x4
=
[
N + α1Γ(w,w)

]∂2w
∂x2

+ α2
(VDC + VAC)2

(1− w)2

(
1 + 0.65

1− w
b/d

)
S (2.37)

subject to the boundary conditions

w(x, t) = 0 and
∂w(x, t)

∂x
= 0 at x = 0 and x = 1 (2.38)

The integral operator Γ(f1, f2), for two functions f1(x, t) and f2(x, t), is defined as

Γ(f1, f2) =

∫ 1

0

∂f1
∂x

∂f2
∂x

dx (2.39)
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The parameters appearing in Eq. (2.37) are

N =
N̂L2

EI
, T =

√
mL4

EI
, c =

ĉL4

EIT
, µ = µ̂

(
b

d

)3
T

m
,

cs =
µ

(1 + 6Kn)(1− w)3
, α1 = 6

(
d

h

)2

, α2 =
6 ε L4

Eh3d3
, Ω = Ω̂T (2.40)

We simplify the squeeze-film damping coefficient cs by expanding one factor of

1/(1− w)3 in a Taylor series, dropping higher-order terms, and obtaining

cs ≈ (µe + µe w)
1

(1− w)2
(2.41)

where µe = µ/(1 + 6Kn). The sources of nonlinearity in the system represented by

Eq. (2.37) are the midplane stretching, the electrostatic force, and the squeeze film

damping quantified by the parameters α1, α2, and cs, respectively.

2.1.1 Reduced-order model

The solution of the free and forced vibration of continuous systems can be repre-

sented by an infinite series expressed in terms of the principal modes of vibration.

In many applications, high-frequency modes of vibration may not have a signifi-

cant effect on the solution of the vibration problem. As a result, the contribution

of these high-frequency modes can be neglected and the solution may be repre-

sented in terms of a finite number of modes or in terms of assumed polynomials

that describe the shape of deformation of the continuous systems [63].

We use the Galerkin method, which is one of the weighted residual methods, to

discretize the governing equation of the micro beam. The weighting functions are

chosen to be the same as the trial functions according to the Galerkin method [63].

In the present study, we use as trial functions in the Galerkin method the mode

shapes of the linear undamped free vibration problem governing the vibrations of

the micro beam about its statically undeflected position.

In order to obtain the discretized equations governing the static problem, we

need first to solve for the linear undamped free vibration mode shapes of the micro
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beam and use these modes as basis functions in the Galerkin discretization. In the

discretization, we use as trial functions the mode shapes of the linear undamped free

vibration problem governing the vibrations of the micro beam around its straight

undeflected position. This is done by dropping the nonlinear, damping, and forcing

terms from Eq. (2.37). Thus we obtain

∂2w

∂t2
+
∂4w

∂x4
−N ∂2w

∂x2
= 0 (2.42)

We solve for the vibration mode shapes governed by Eq. (2.42). Assuming a solution

of this equation in the form

w(x, t) = φn(x) eiωnt (2.43)

Thus Eq. (2.42) reduces to

φiv
n −Nφ′′n − ωn

2φn = 0 (2.44)

and

φn = 0 and φ′n = 0 at x = 0 and x = 1 (2.45)

Solving Eq. (2.44) gives the linear vibration mode shapes of the undeflected micro

beam

φn(x) = c1 cos k1x+ c2 sin k1x+ c3 cosh k2x+ c4 sinh k2x (2.46)

where the ci are constants and

k1 = ±
√
−N

2
+

1

2

√
N2 + 4ωn

2 and k2 = ±
√
N

2
+

1

2

√
N2 + 4ωn

2 (2.47)

Substituting the boundary conditions given by Eq. (2.45) into Eq. (2.46) yields four
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algebraic equations in the ci as follows:

c1 + c3 = 0 (2.48a)

c2k1 + c4k2 = 0 (2.48b)

c1 cos k1 + c2 sin k1 + c3 cosh k2 + c4 sinh k2 = 0 (2.48c)

−c1k1 sin k1 + c2k1 cos k1 + c3k2 sinh k2 + c4k2 cosh k2 = 0 (2.48d)

This system of equations represents an eigen-value problem for ωn. Equating the

determinant of the coefficient matrix of these equations to zero yields an equation

for ωn. With this value of ωn and the ci values, we obtain the linear vibration mode

shapes φn(x) of the micro beam around the undeflected position.

To obtain the reduced-order model for the MEMS switch under the combina-

tion of DC and AC forcing, we use the linear undamped eigen-value problem of the

beam in the undeflected position as a weighting function in the Galerkin discretiza-

tion. Moreover, we multiply both sides of Eq. (2.37) by (1 − w)2 to keep all the

nonlinearities in the governing equation [60].

The solution of Eq. (2.37) is assumed in the following form:

w(x, t) =
N∗∑
i=1

φi(x) qi(t) (2.49)

where φi(x) are the trial functions and qi(t) are generalized coordinates in time.

Substituting Eq. (2.49) into Eq. (2.37), multiplying the result by φn and integrating

the outcome from x = 0 to x = 1 then simplifying using Eq. (2.44), we obtain a
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system of ordinary differential equations in time in the form

q̈n − 2
N∑

i,j=1

q̈iqj

∫ 1

0

φiφjφndx+
N∑

i,j,k=1

q̈iqjqk

∫ 1

0

φiφjφkφndx+ (c+ µe) q̇n + ω2
nqn =

α2 S (VDC + VAC)2
(

1 +
0.65

b/d

)∫ 1

0

φndx−
0.65

b/d
α2 S qn

+ 2
N∑

i,j=1

qiqjω
2
n

∫ 1

0

φiφjφndx−
N∑

i,j,k=1

qiqjqkω
2
n

∫ 1

0

φiφjφkφndx

+ (µe − 2c)
N∑

i,j=1

q̇iqj

∫ 1

0

φiφjφndx− c

N∑
i,j,k=1

q̇iqjqk

∫ 1

0

φiφjφkφndx

+ α1

N∑
i,j,k=1

qiqjqkΓ(φi, φj)

∫ 1

0

φ′′kφndx (2.50)

− 2α1

N∑
i,j,k,l=1

qiqjqkqlΓ(φi, φj)

∫ 1

0

φkφ
′′
l φndx

+ α1

N∑
i,j,k,l,m=1

qiqjqkqlqmΓ(φi, φj)

∫ 1

0

φ′′kφlφmφndx,

n = 1, 2, 3, · · · , N∗

where N∗ is the number of modes retained in the discretization.

2.2 Experiment

Ploytec MSV-400 laser vibrometer [64] was used to measure the bridge motions.

The laser vibrometer system uses the Doppler effect to measure the velocity or

displacement of a point of the bridge. A helium neon laser beam is pointed at the

target point and the back-scattered laser beam is measured using a photodetector.

The motion of the target point modulates the frequency or shifts the phase of the

scattered laser beam. The frequency or phase shift is then measured and used

to calculate the velocity or displacement of the target point. The vibrometer is

mounted on a test station, Fig. 2.3. A vacuum port is used to fix the test specimen

to the chuck of the test station. A probe is used to carry the actuation signal to
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a pad at the end of the transmission line, while another probe is used to ground a

pad connected to the two ground lines. It is worth noting that for the experimental

results that follow, VDC is the magnitude of DC voltage and VAC is the amplitude

of AC voltage of excitation.

Figure 2.3: Switch under testing.

2.2.1 Switch fabrication

The switch, Fig. 2.1, is composed of an electroplated gold bridge fabricated on

top of a 50-ohms CPW with dimensions G/W/G = 19/45/19 µm on a 500 µm Si

substrate with a 2 µm LPCVD silicon nitride isolation layer. The CPW carries the

actuation signal in addition to the RF signal. An SEM picture depicting the switch

and CPW is shown in Fig. 2.4.

Figures 2.5(a)– 2.5(d) illustrate the procedure used to fabricate the MEMS

switch. The CPW line was first defined using a lift-off process by evaporating a

500/2500 Å layer of Cr/Au. A 1500 Å SiN dielectric (PECVD) layer was then de-

posited and patterned. Then, a 1.5 µm thick sacrificial layer of photoresist (S1813)

was deposited and patterned. This layer defines the gap between the bridge and
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Figure 2.4: SEM picture of the switch.

the signal line and also defines the anchors, as shown in Fig. 2.5(c). A blanket

of 450/750/300 Å Ti/Au/Ti seed layer was evaporated and later patterned with

photoresist above to define the switch thickness and its width. The thickness of

the electroplated Au layer is 1.7 µm. The sacrificial layer was removed using a

photoresist stripper after the etch back of the seed layer stack (Ti/Au/Ti) and

the switch was released. A critical point dryer was used to avoid stiction between

the electroplated switch and the signal line below during removal of the sacrificial

layer [65].

2.2.2 Parameter estimation

The model requires estimates of the beam dimensions and axial load to predict

the switch behavior. A white light optical profilometer, Wyko-NT1100 [66], was

used to obtain the beam surface topography shown in Fig. 2.6. The beam length

and width listed in Table 2.1 were measured from this profile. The combined beam

thickness and capacitor gap was also measured as hT = h+d = 3.4 µm. Further, we
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(a)

(a)

(b)

(b)

(c)

(c)

(d)(d)

Figure 2.5: Fabrication procedure of the capacitive shunt switch: (a) CPW pat-
terning; (b) Dielectric layer, PECVD SiN, deposition and patterning; (c) Sacrificial
layer deposition, anchors patterning, and seed layer (Ti/Au/Ti) deposition by evap-
oration; and (d) Au electroplating and sacrificial layer removal followed by Critical
Point Dryer release [65].

obtained initial estimates of the beam thickness h̃ and capacitor gap d̃ by measuring

the height of the structural gold layer over the ground lines in the post area, Fig. 2.6.

The curvature shown in the figure may be due to anti-clastic curvature induced by

the Poisson’s effect or possibly due to the thermal stresses within the structure.

The use of electroplating leads to surface roughness and uncertainties in the

thickness h and gap distance d. Residual stresses σ may also occur during fabri-

cation, resulting in axial forces in the bridge. A parameter identification routine

was developed to estimate these parameters by matching the experimental results

to model predictions of the natural frequency as a function of the DC voltage.

The eigenvalue problem describing the free vibrations of the beam around a
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Figure 2.6: Beam profile using a white light profilometer showing the measured
parameters.

statically deflected position ws(x) is given by [67]

φiv
n − [N + α1Γ(ws, ws)]φ

′′
n − 2α1Γ(ws, φn)w′′s =

(
ω2
n +

2α2V
2
DC

(1− ws)3

)
φn (2.51)

subject to the boundary conditions

φn = 0 and φ′n = 0 at x = 0 and x = 1

where φn and ωn are the mode shape and natural frequency of the nth bending

mode around the equilibrium position ws(x). The second term on the right-hand

side of Eq. (2.51) accounts for the drop in the natural frequency with increasing

the DC voltage as seen in Fig. 2.7. For an unactuated bridge (VDC = 0), Eq. (2.51)

reduces to

φiv
n −Nφ′′n − ω2

nφn = 0 (2.52)

Inspection of Eq. (2.52) shows that the natural frequency ωn depends solely on

the axial force N at VDC = 0. Therefore, N can be estimated by matching the

natural frequency predicted numerically to that measured experimentally at the y-
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Figure 2.7: Variation of the fundamental natural frequency with the DC voltage.

intercept of the natural frequency-DC voltage curve, Fig. 2.7. Assuming an average

gold density ρ = 19320 kg/m3 and modulus of elasticity E = 80 GPa, we estimated

the tensile stress σ = 17 MPa.

To obtain the natural frequency-DC voltage curve experimentally, we excited

the switch with a small AC voltage and a fixed DC bias VDCi
. As the beam oscillated

around the corresponding static equilibrium wsi(x), the laser vibrometer was used

to measure the velocity of the bridge midpoint. To take advantage of the reduced

noise floor in the frequency domain, we obtained the amplitude of the midpoint

velocity from the peak in the FFT at the excitation frequency Ω. We increased the

frequency of excitation in discrete steps and recorded the excitation frequency where

the maximum velocity amplitude was obtained as the natural frequency ωi at VDCi
.

The bias voltage was then increased and this process was repeated sequentially to

obtain the curve shown in Fig. 2.7.

We used the initial estimates of the beam thickness h̃ and capacitor gap d̃ in the
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model, Eq. (2.51), to calculate ωn as a function of VDC. The curve representing this

function was then compared to the experimentally obtained curve and the values

of h̃ and d̃ were updated iteratively until the difference between the experimen-

tally obtained and numerically predicted curves fell within a predefined tolerance,

Fig. 2.7. At this point, the values of h̃ and d̃, shown in Table 2.1, were adopted as

refined estimates of the beam thickness h and capacitor gap d.

To summarize the previous results, we list in Table 2.1 the dimensions of the

beam and the underlying fixed electrode measured using the white light profilometer

in addition to the other estimated parameters.

Table 2.1: Switch properties and dimensions.

L (µm) b (µm) h (µm) d (µm) E (GPa) ρ (kg/m3) σ (MPa)

225 20 1.7 1.7 80 19320 17

2.2.3 Damping estimation

The quality factor Q of the switch is the ratio of the energy stored in the bridge

to the energy lost in one cycle of oscillation. The quality factor can be estimated

experimentally from the frequency-response curve as the ratio of the resonance

frequency fr to the bandwidth at half-power level [68]; that is

Q =
fr
∆f

(2.53)

Figure 2.8 shows the experimentally obtained frequency-response curve for the

waveform (VDC = 10, VAC = 17) V. The curve was obtained by sweeping the

excitation frequency from 75 to 130 kHz in small discrete steps. The velocity of the

bridge midpoint was measured using the laser vibrometer after the transient part

of the response due to frequency shift had decayed. The FFT was obtained with

the midpoint velocity averaged over 30 periods of the excitation frequency. The

root-mean square of the velocity VRMS was obtained from the peak in the FFT at

the excitation frequency Ω. We calculated the quality factor from this figure using
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Figure 2.8: Experimental frequency-response curve for the RMS velocity of the
beam midpoint at (VDC = 10, VAC = 17) V.

Eq. (2.53) as Q = 12.5 which quantifies the overall damping in the system.

We first assume the dominance of a linear dissipation mechanism lumping all

dissipation mechanisms into an equivalent viscous damping. The predicted re-

sponse under this assumption matches well the experimentally measured frequency-

response curve for the waveform (VDC = 50, VAC = 6.5) V for small motions (around

VRMS = 100 mm/s), Fig. 2.9, however it overestimates the response as its ampli-

tude grows near resonance. This is the domain of large motions where the nonlinear

dissipation mechanism of squeeze-film damping becomes significant.

We used the model in Eqs. (2.37) and (2.38) to account for the linear and

nonlinear dissipation mechanisms. The frequency-response curve of the midpoint

velocity was obtained numerically by applying the shooting method [5] to a three-

mode reduced-order model of the switch [8]. We iteratively estimated the viscous

damping coefficient c by matching the numerically obtained frequency-response
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curve to the experimental curve shown in Fig. 2.9; they are in good agreement

for all motions. The quality factor due to the linear dissipation mechanisms was

calculated from the converged value of c and the formula [68]

Qv =
ωn

c
(2.54)

as Qv = 250.

We can also obtain an estimate of the quality factor due to squeeze-film damping

valid only for the excitation waveform (VDC = 10, VAC = 17) V by observing that

the overall quality factor Q derived from the frequency-response curve in Fig. 2.8

combines the effects of the viscous Qv and squeeze-film Qs quality factors according

to

1

Q
=

1

Qv

+
1

Qs

(2.55)

Therefore, the quality factor due to squeeze-film damping at this excitation level

can be calculated using the formula

Qs =
Qv Q

Qv −Q
(2.56)

as Qs = 13. Comparing the values of Qv and Qs to the overall quality factor

Q = 12.5, we conclude that for moderate and large motions, squeeze-film damping

is dominant for the switch under study. It is worth noting that packaging the switch

in vacuum would eliminate the effects of squeeze-film damping.

2.3 Experimental Results

The switch was actuated by a biased AC voltage. To trigger dynamic pull-in [8, 69],

we set the bias voltage to a fixed value VDC and restrict the frequency of excitation to

the neighborhood of the fundamental natural frequency ωn of the switch measured

in Section 3. Two procedures were used to induce dynamic pull-in:
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Figure 2.9: The frequency-response curve of the bridge midpoint RMS velocity at
VDC = 50 V and VAC = 6.5 V obtained experimentally (diamonds) and analytically
with (solid lines) and without squeeze-film damping (dashed lines).

(1) A force sweep in which the frequency of excitation was held at Ω = ωn, while

the amplitude VAC was increased until dynamic pull-in occurred. This method

is similar to that used by Fargas-Marques et al. [38].

(2) A frequency sweep in which VAC was held constant, while the excitation fre-

quency was swept up and down in the neighborhood of ωn using the exper-

imental procedure described in Section 2.2.2. The value of VAC was then

increased in small steps and the frequency sweeps were repeated until pull-in

occurred.

Pull-in was detected as a sudden drop in the measured RMS velocity to the noise

floor.
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The effective nonlinearity of the switch is composed of a hardening component

due to midplane stretching in the bridge and a softening component due to the

electrostatic field. The effective nonlinearity changes character from a positive

(hardening) nonlinearity at low DC voltage to a negative and increasingly softening

nonlinearity as the DC voltage increases. As the effective nonlinearity increases,

regions of multivaluedness appear and expand in the frequency-response curves, as

shown in Fig. 2.10. As a result, the experimentally realizable part of the frequency-

response curve is broken into left and right branches. A forward frequency sweep

was used to obtain the left branch of the curve, while a backward frequency sweep

was used to obtain the right branch of the curve.

Figure 2.10(a) shows the frequency-response curves obtained experimentally

(diamonds) for (VDC = 20, VAC = 27.5) V and numerically (solid lines) for (VDC =

24.5, VAC = 26.5) V. Figure 2.10(b) shows the experimental frequency-response

curve (diamonds) for (VDC = 50, VAC = 6.5) V and the corresponding numerical

curve obtained for (VDC = 56, VAC = 5.8) V. The discrepancy between the experi-

ment and simulation excitation levels is due to dielectric charging and divergence

of the electrostatic field due to the doubly-curved configuration of the bridge under

study, Fig. 2.6, from the parallel-plate assumptions. Dielectric charging, due to

charge trapping in the silicon nitride insulation layer, increases the effective bias

voltage across the bridge [26].

All of the frequency-response curves shown in Fig. 2.10 are bent to the left,

indicating an effective softening nonlinearity. In each case, we found that dynamic

pull-in occurred in backward sweeps beyond the peak point of the curve.

Two excitation conditions are examined in Fig. 2.10:

(1) low bias voltage and high AC voltage, Fig. 2.10(a)

(2) high bias voltage and low AC voltage, Fig. 2.10(b)

The velocity of beam oscillations is significantly larger under condition (1) than it

is under condition (2) for the same excitation frequency. At low DC voltage, the

stable equilibrium is away from the equilibrium saddle, resulting in a larger basin of
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(a)

(b)

Figure 2.10: The frequency-response curves of the midpoint RMS velocity for (a)
low bias voltage and high AC voltage (VDC = 20, VAC = 26.5) V and (b) high bias
voltage and low AC voltage (VDC = 50, VAC = 6.5) V.
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Figure 2.11: The nonlinear resonance frequency ωnr as a function of the amplitude
of AC voltage VAC for different bias voltages VDC.

attraction, and thereby larger orbits and higher velocities, than those available at

high DC voltage [69]. As a result, the orbits of beam oscillation have more room to

grow with AC voltage under condition (1) than they do under condition (2) before

touching the stable manifold of the saddle which precipitates pull-in.

Holding the bias voltage VDC, and therefore the effective nonlinearity, con-

stant while increasing the AC voltage VAC extends the softening frequency-response

curves further to the left. Therefore, the peak of the frequency-response curve, the

nonlinear resonance frequency ωnr, is a function of VAC. Figure 2.11 shows the

ωnr − VAC curves for different bias voltages VDC. The lowest point in each curve

indicates the largest experimentally realizable frequency-response curve before dy-

namic pull-in interrupts the backward sweep.

It can be seen from Fig. 2.11 that the AC voltage at which the backward sweep

was interrupted is counter proportional to the magnitude of the bias voltage VDC.
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Figure 2.12: Combinations of VDC and VAC required for dynamic pull-in for pro-
cedure 1 (circles) and procedure 2 (triangles).

In fact, various combinations of VAC and VDC can be used to induce dynamic pull-

in in a backward frequency sweep (procedure 2) and in a force sweep (procedure

1). Figure 2.12 shows the combinations of VDC and VAC at the onset of dynamic

pull-in under procedures 1 and 2. The figure shows that a smaller AC amplitude

can induce dynamic pull-in at the nonlinear resonance frequency, procedure 2, than

is required at the fundamental natural frequency, procedure 1.

We define a figure of merit FoM to quantify the efficiency of various actuation

methods used to induce pull-in compared to static actuation as

FoM =
VSP − VDP

VSP
× 100 (2.57)

where VDP =
√
V 2
DC + 1

2
V 2
AC. Figure 2.13 compares the efficiency of dynamic actua-

tion procedures 1 (circles) and 2 (triangles). The static pull-in of the switch under
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Figure 2.13: The figure of merit FoM representing the efficiency of dynamic
actuation procedures 1 (circles) and 2 (triangles) compared to static actuation.

study is VSP = 68.5 V. Both procedures are superior to static actuation. This ad-

vantage increases as the bias voltage VDC decreases, thereby opening more space

for dynamic actuation procedures to take advantage of the dynamic amplification

available at resonance. Further, procedure 2 outperforms procedure 1 for low bias

voltages VDC and yields 58.5 % voltage savings at VDC = 20 V compared to static

actuation.

2.4 Switching Methods

In this section, we propose two methods to realize dynamic actuation. These meth-

ods are designed to avoid the requirements imposed by using a force sweep or a

frequency sweep as a dynamic switching method. Instead, these methods use either

a fixed excitation frequency or a single shift of the excitation frequency.
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Figure 2.14: Frequency-response curve for (VDC = 56, VAC = 5.8) V, show-
ing touch-down regions for different switching methods. Region A represents the
fixed-frequency switching while regions B1, B2, andB3 represent the shifted-frequency
switching.

We also calculate the switching time of the fixed-frequency and shifted-frequency

actuation methods in order to compare their performance. We define the switching

time as the time the bridge takes to move from an elevated steady-state position

(ON-state) until the midpoint touches the transmission line (OFF-state). A shunt

switch is normally ON; that is, the RF signal can be transmitted through the

signal line when the bridge lies unactuated at rest. When the actuation waveform

is applied, the beam closes the air gap and provides a low impedance path for the

RF signal to be shunted to ground. This is considered the OFF-state of the switch.

The switching time is a critical performance parameter for RF switches.

In the fixed-frequency switching method, we excite the bridge with a fixed fre-

quency starting from rest. In a narrow frequency range in the neighborhood of the
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resonance frequency, this method triggers touch-down. We found numerically that,

for a waveform defined by (VDC = 56, VAC = 5.8) V, switching can be achieved us-

ing this method in the frequency interval A = [68.75, 75.97] kHz in Fig. 2.14. The

switching time decreases as the excitation frequency approaches the cyclic-fold bi-

furcation point. A phase portrait of the bridge response at an excitation frequency

of Ω = 70.6 kHz is shown in Fig. 2.15. The figure shows in blue dashed lines the

homoclinic orbit of the saddle in the absence of the forcing and damping. It repre-

sents the stable and unstable manifolds of the saddle intersecting non-transversally

away from the saddle [5]. In the presence of the forcing and damping, the homo-

clinic orbit is destroyed. Starting at rest, the midpoint describes larger orbits as it

oscillates under the influence of the waveform. Although small and large stable pe-

riodic orbits are available for most of this frequency interval, as shown in Fig. 2.14,

the transient response of the bridge is interrupted before it settles on either orbit

when it intersects the stable manifold of the saddle. The orbit, then, follows the

stable manifold to approach the saddle and is propelled to pull-in. The switching

time in this case was calculated to be 62 µs. This relatively high switching time is

due to the high damping in the switch (Q = 12.5). It results in the bridge spending

significant time as the response amplitude grows slowly over multiple excitation

periods until it intersects the stable manifold of the saddle. The maximal switching

times for this switching method, found at the edges of the frequency interval A,

were calculated as 114 µs at Ω = 68.75 kHz and 91 µs at Ω = 75.97 kHz. This is

comparatively larger than the pull-in time calculated under pure static actuation,

7.7 µs at the static pull-in voltage VDC = 68.5 V.

The switching times throughout this subinterval are too long for RF applica-

tions. It can be reduced by redesigning the switch to decrease the overall damping.

One method to achieve this goal is to reduce the effect of squeeze-film damping, the

dominant damping source, by reducing the bridge width or the ambient pressure

through encapsulation and partial air evacuation. It is also possible to minimize the

effect of squeeze-film damping by adding holes to the structure of the bridge [70].

Therefore, it is feasible to manage the overall damping of the bridge in order to
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Figure 2.15: The phase portrait of fixed-frequency switching for (VDC = 56, VAC =
5.8) V and Ω = 70.6 kHz. The blue dashed lines depict the homoclinic orbit.

minimize the switching time.

We calculated the switching time as the damping coefficient was reduced from

µe to Rµe for a common excitation frequency of Ω = 69 kHz and the waveform

(VDC = 56, VAC = 5.8) V. Table 2.2 shows that the switching time is reduced from

91 µs down to 31 µ as the damping coefficient µe is reduced by 30 %. It should be

noted that the switching time decreases in discrete steps as the damping reduction

decreases the number of excitation periods required for the peak bridge response to

reach a size similar to that of the homoclinc orbit. Moreover, reducing the damping

coefficient would have an extra advantage of reducing the dynamic pull-in voltage.

Table 2.2: Switching time for the waveform (VDC = 56, VAC = 5.8) V and Ω = 69
kHz as a function of the squeeze-film damping reduction ratio R.

R 1 0.9 0.8 0.7
Switching time (µs) 91 61.5 46.7 30.8
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In the shifted-frequency switching method, an excitation signal is introduced at

a frequency in the neighborhood of the natural frequency and held for a set period

of time t◦. This signal is not intended to cause pull-in and the only requirements

placed on the voltage waveform (VDC, VAC) are that

• the corresponding frequency-response curve exhibits multivaluedness

• the initial and shifted frequencies belong to an interval B of the frequency

spectrum.

The frequency of excitation is then shifted by δΩ.

To demonstrate this switching method, we use the same waveform used for fixed-

frequency switching (VDC = 56, VAC = 5.8) V and a frequency shift of δΩ = 0.1Ω◦.

We found numerically that the interval B can be subdivided into three subintervals

B1, B2, and B3, Fig. 2.14, depending on the frequency shift direction. In the first

subinterval, B1 = [63.7, 68.75] kHz, the only available stable responses lie on the

lower branch of the frequency-response curve. An excitation frequency shift from

Ω◦ ∈ B1 to Ω◦ + δΩ triggers pull-in due to the fact that the frequency shift leads

the system response to seek the larger stable orbits on the upper branch, thus ap-

proaching and intersecting the stable manifold of the saddle under the influence of

the transient response. The phase portrait and time history for shifted-frequency

switching starting from an initial excitation frequency Ω◦ = 67.5 kHz in the subin-

terval B1 are shown in Fig. 2.16. The hold time was t◦ = 203 µs and the switching

time was calculated to be 59 µs. We note that the phase portrait depicts the relation

between the nondimensional switch midpoint displacement w and the dimensional

midpoint velocity ẇ in mm/s; the velocity units are chosen in accordance with the

experimental data.

In the second and third subintervals, B2 = [76, 79.7] kHz and B3 = [79.7, 84.1]

kHz, the only available stable responses lie on the upper branch of the frequency-

response curve. A shift-down from an initial excitation frequency in the subinterval

B3, Ω◦ ∈ B3, triggers pull-in as the response wanders around its initial large orbit

and ends up intersecting the stable manifold of the saddle under the influence
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(a) (b)

Figure 2.16: (a) The phase portrait and (b) time history of shifted-frequency switch-
ing for the waveform (VDC = 56, VAC = 5.8) V starting from an initial excitation
frequency Ω◦ = 67.5 kHz in the subinterval B1.

of this transient behavior. The phase portrait and time history for the shifted-

frequency switching starting from an initial excitation frequency Ω◦ = 83.2 kHz in

the subinterval B3 are shown in Fig. 2.17. The hold time was t◦ = 203 µs and the

switching time was calculated to be equal to 72 µs.

It follows from Figs. 2.16 and 2.17 that a significant fraction of the switching

time is consumed as the response orbit wanders prior to intersecting the stable

manifold of the saddle. This process is strongly influenced by the switch damping

as was the case for fixed-frequency switching. Therefore, the switching time of

shifted-frequency switching can also be reduced by reducing the damping.

For initial excitation frequencies in the subinterval B2, Ω◦ ∈ B2, we found that

the frequency can be shifted up or down Ω◦ ± δΩ to trigger pull-in. For example,

using an initial excitation frequency Ω◦ = 76.92 kHz and a hold time of t◦ = 228 µs,

we obtained a switching time of 12.5 µs, as shown in Fig. 2.18. The switching

time throughout this subinterval is the smallest compared to those obtained in the

subintervals B1 and B3 and the interval A because the hold orbit in this case is the

closest to the homoclinic orbit, which minimizes the time required for the transients
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(a) (b)

Figure 2.17: (a) The phase portrait and (b) time history of shifted-frequency switch-
ing for a waveform of (VDC = 56, VAC = 5.8) V starting from an initial excitation
frequency Ω◦ = 83.2 kHz in subinterval B3.

to cause an intersection with the stable manifold of the saddle.

2.5 Dielectric Charging

We observed dielectric charging during our experiments. The high potential differ-

ence (∼ 70 V) applied to the switch pads led to a buildup of trapped charges on

the silicon nitride insulation layer protecting the CPW. The charge build up was

particularly high subsequent to pull-in, in agreement with the finding of Yuan et

al. [27]. We found that the voltage drop across the insulation layer was in the range

of 1−2 V before pull-in and increased to 5−10 V after pull-in. The recombination

time of these charges was very long extending to several days, in agreement with

the experimental results reported by Goldsmith et al. [25].

We devised a method to measure the change in the potential difference across

the switch due to dielectric charging. To this end, we note that the electrostatic
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(a) (b)

Figure 2.18: (a) Phase portrait at VDC = 56 V and VAC = 5.8 V starting from an
orbit at Ω = 76.92 kHz and (b) time history with the frequency step function shown.

force Fe is proportional to the square of the applied voltage; that is,

Fe ∝ (VDC + VAC cos(Ωt))2

∝ (V 2
DC +

1

2
V 2
AC) + 2VDCVAC cos(Ωt)− 1

2
V 2
AC cos(2Ωt) (2.58)

Therefore, the spectrum of the forced response of the bridge to a DC-AC waveform

will exhibit peaks at Ω and 2Ω. On the other hand, the spectrum of the forced

response to an AC signal will have a peak at 2Ω and no peak at Ω. In the presence

of trapped charges on the insulator, an AC signal will produce a peak at Ω, pro-

portional to the DC potential drop due to those charges, in addition to the peak at

2Ω.

We used this observation to measure the potential difference due to insulator

charging across the bridge. We add an opposite polarity DC voltage to the AC

signal and gradually increase the DC voltage until the peak at Ω disappears from

the frequency spectrum, leaving only the peak at 2Ω. At this point, we take the

opposite polarity DC voltage as an estimate of the voltage drop across the capacitor
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due to the trapped charges on the insulation layer. This estimate is taken into

account in matching the experimental results to the simulations.
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Binary Micro Gas Sensors

We propose two micro-mass sensing mechanisms based on the pull-in instability,

namely static sensing and dynamic sensing. We use these mechanisms to design

threshold mass sensors that operate by triggering pull-in once the mass absorbed by

or adsorbed to a functional material exceeds a threshold value. These sensors are of

particular value as safety sensors that can detect, for example, noxious gases in air

or pollutants in water. We use these sense mechanisms to develop two classes of gas

sensors: static and dynamic. We realize and validate a static threshold formalde-

hyde sensor. We discuss the sensor design considerations in addition to sensor

model and introduce some preliminary experimental results. The mathematical

model and numerical results for the sensor are summarized in [71].

3.1 Pull-in as a Sensing Mechanism

Most commercially available gas sensors provide continuous measurement of the

concentration of a target analyte. The quantification of the analyte concentration

is not relevant to most safety sensors, since the only information of interest here

is whether the analyte, for example carbon monoxide, concentration is above or

below the safety threshold. In a sense, these sensors are over-engineered for their

purpose. Threshold sensors that seek merely to produce a binary output of ‘true’

or ‘false’ are more appropriate for this application. The fact that they do not
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attempt to quantify the measured concentration reduces the requirements on the

sensor electronics which can be translated into advantages in cost and robustness.

Pull-in is a binary process where the system response can only fall into a ‘true’ or

‘false’ category. We, therefore, seek to use pull-in to develop and realize threshold

type gas sensors. The main concept of the proposed sensor is based on making

use of the high sensitivity nature of electrostatically actuated sensors near pull-in.

Tiny masses of gas molecules can drive the sensor under this state of actuation

to pull-in. The sensor now operates in a binary on-state and off-state which is a

discrete process.

For electrostatic actuation, there are two distinct regions of operation. Under

low voltages, the resistance between the plate and the bottom electrode is infinite

and the capacitance is finite. The displacement is also small at low voltages, 30 %

of the gap in linear operation. At higher voltages exceeding the pull-in limit, the

situation is reversed. Resistance decreases and capacitance increases significantly.

The plate snaps down to the bottom electrode and the displacement is much larger

than in the first case. This defines two distinct regions of operation for the sensor

around the pull-in critical limit. The large difference in systems characteristics

between the two regions allows for sensitive mass detection.

We are proposing two modes of sensing: static and dynamic. In static sensing,

a cantilever is actuated under pure DC voltage near the static pull-in limit where

the sensor sensitivity is high. Tiny masses of the target gas stick to the surface of

the sensor driving it to pull-in. In the dynamic sensing mode, the sensor is actuated

under a biased AC voltage near the dynamic pull-in limit. The frequency of the

harmonic component of excitation due to AC voltage is tuned close to the resonant

frequency of the switch for maximum sensitivity. Tiny masses of the target gas

adsorbed to the surface of the sensor modify the natural frequency of the switch to

lower values, thus driving the sensor to pull-in.
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Figure 3.1: Schematic of the gas sensor.

3.2 Sensor Model

The gas sensor is composed of a micro cantilever beam attached to a micro plate

at its free end, as shown in Fig. 3.1. To actuate the plate, an electrode is set under

the plate at a distance d. We adopt the mathematical model developed by Nayfeh

et al. [45] to study the sensor. The model treats the micro beam as an elastic

continuum and the plate as a rigid body. The micro beam is modeled according to

Euler-Bernoulli beam theory. The beam has the following characteristics: width b,

thickness h, cross-sectional area A, and a moment of area I. The micro plate mass

is m̂p and its mass moment of inertia around the center of mass is Jc = 1
3
m̂pL̂

2
c ,

where L̂c is the distance from the beam end to the plate center.

The equation of motion of the micro beam-micro plate system is derived using

Hamilton’s principle which states that

∫ t2

t1

(δT − δV + δWnc) dt = 0 (3.1)

The rotation angle of the plate is assumed to be equal to that of the micro beam

tip ŵx̂(L, t̂). Hence, the total kinetic energy of the beam and the plate is given by

T =
1

2

∫ L

0

ρAŵ2
t̂ (x̂, t̂)dx̂+

1

2
M
[
ŵt̂(L, t̂) + L̂cŵx̂t̂(L, t̂)

]2
+

1

2
Jŵ2

x̂t̂(L, t̂) (3.2)

where ŵ(x̂, t̂) is the beam displacement at location x̂ and time t̂ and the subscripts

x̂ and t̂ denote, respectively, the partial derivatives with respect to x̂ and t̂.
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Figure 3.2: Local coordinate system attached to the micro plate [45].

The total potential energy V is the sum of the potential energy due to the micro

beam elastic deformation

VD =
1

2

∫ L

0

EIŵ2
x̂x̂(x̂, t̂)dx̂

and the potential energy due to the electrostatic field between the micro plate and

electrode

VE = −εbp
2

(VDC + VAC)2
∫ 2L̂c

0

ds

d− ŵ(L, t̂)− ŵx̂(L, t̂)s

=
εbp

2ŵx̂(L, t̂)
(VDC + VAC)2 ln

d− ŵ(L, t̂)− 2L̂cŵx̂(L, t̂)

d− ŵ(L, t̂)

where ε is the permittivity of air, VDC and VAC are the DC and the AC voltage

components applied between the electrode and the micro plate, and s is a local

coordinate originated at the cantilever free end and attached to the micro plate as

shown in Fig. 3.2. Applying Hamilton’s principle and taking the plate weight into

account, we obtain the equation of motion of the sensor in the form [45]

EIŵx̂x̂x̂x̂ + ĉ ŵt̂ + ρAŵt̂t̂ = 0 (3.3)
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subject to the following boundary conditions:

ŵ(0, t̂) = 0 (3.4a)

ŵx̂(0, t̂) = 0 (3.4b)

EIŵx̂x̂(L, t̂) = m̂pgL̂c − m̂pL̂cŵt̂t̂

(
L, t̂
)

− (m̂pL̂
2
c + J)ŵx̂t̂t̂(L, t̂) +

εbp

2(ŵx̂(L, t̂))2
(VDC + VAC)2×[ 2L̂cŵx̂(L, t̂)

d− ŵ(L, t̂)− 2L̂cŵx̂(L, t̂)
− ln

( d− ŵ(L, t̂)

d− ŵ(L, t̂)− 2L̂cŵx̂(L, t̂)

)]
(3.4c)

EIŵx̂x̂x̂(L, t̂) = m̂pŵt̂t̂(L, t̂) + m̂pL̂cŵx̂t̂t̂(L, t̂)− m̂pg

− εbp

2ŵx̂(L, t̂)
(VDC + VAC)2×[ 2L̂cŵx̂

(d− ŵ(L, t̂))(d− ŵ(L, t̂)− 2L̂cŵx̂(L, t̂))

]
(3.4d)

where ŵx̂ is the displacement of the plate midpoint, ĉ is the damping coefficient,

and m̂p is the plate mass.

For convenience, we introduce the nondimensional variables

w =
ŵ

d
, x =

x̂

L
, t =

t̂

T
(3.5)

where T is a time scale. Substituting Eq. (3.5) into Eq. (3.3) and Eqs. (3.4a)–(3.4d),

we obtain the nodimensional equation of motion in the form

wtt(x, t) + c wt(x, t) + wxxxx(x, t) = 0 (3.6)
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subject to the boundary conditions

w(0, t) = 0 (3.7a)

wx(0, t) = 0 (3.7b)

wxx(1, t) = MpLc −MLcwtt(1, t)−
4

3
ML2

cwxtt(1, t)

+
α(VDC + VAC)2

w2
x(1, t)

×[ 2Lcwx(1, t)

1− w(1, t)− 2Lcwx(1, t)
− ln

1− w(1, t)

1− w(1, t)− 2Lcwx(1, t)

]
(3.7c)

wxxx(1, t) = −Mp +Mwtt(1, t) +MLcwxtt(1, t)

− 2α(VDC + VAC(t))2

wx(1, t)

Lcwx(1, t)

(1− w(1, t))(1− w(1, t)− 2Lcwx(1, t))
(3.7d)

where

α =
εbpL

4

2EId3
, T =

√
ρAL4

EI
, c =

ĉL4

EIT
,

Lc =
L̂c

L
, M =

m̂p

ρAL
, and Mp =

m̂pgL
3

EId
(3.8)

and Mp accounts for the effect of the sense-plate weight.

3.3 Static Sensor

The sensor concept is built around the distinction between two sensor states: before

and after pull-in. When the sensor is actuated using a DC voltage close to but less

than the pull-in voltage, a small mass added to the sense-plate would drive the

sensor into pull-in. This mass sensor can then be configured as a gas sensor by

depositing a functional material on top of the sense-plate. As the concentration

of the target gas in air increases, the number of gas molecules captured by the

functional material will increase. The captured gas molecules serve as ‘added mass’

and the DC voltage is set so that a gas concentration above the safety level will

result in an added mass that will trigger pull-in. The difference between the sensor
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resistance, capacitance, and/or impedance before and after pull-in can then be used

as a metric to detect a gas concentration below or above the safety threshold.

3.3.1 Model

We develop a closed-form expression for the static deflection, denoted by ws(x), of

the system under DC voltage excitation and estimate the maximum range of travel.

The static problem can be formulated by setting the time derivatives and the AC

forcing term in Eqs. (3.7a)-(3.7d) equal to zero which yields

wiv
s (x) = 0 (3.9)

subject to the boundary conditions

ws(0) = 0 (3.10a)

w′s(0) = 0 (3.10b)

w′′s (1) = MpLc +
αV 2

DC

w′s(1)2

[
2Lcw

′
s(1)

1− ws(1)− 2Lcw′s(1)
− ln

( 1− ws(1)

1− ws(1)− 2Lcw′s(1)

)]
(3.10c)

w′′′s (1) = −Mp −
2αV 2

DC

w′s(1)

[
Lcw

′
s(1)

(1− ws(1))(1− ws(1)− 2Lcw′s(1))

]
(3.10d)

where the primes denote derivatives with respect to x.

The general solution of Eq. (3.9) can be expressed as

ws(x) = Ax3 +B x2 + C x+D (3.11)

Using the two boundary conditions in Eqs. (3.10a) and (3.10b) yields C = D =

0. The remaining boundary conditions result in the following nonlinear algebraic

61



Chapter 3 Binary Micro Gas Sensors

equations:

6A+ 2B = MpLc +
αV 2

DC

(3A+ 2B)2

×
[

2Lc(3A+ 2B)

1− A−B − 2Lc(3A+ 2B)
− ln

1− A−B
1− A−B − 2Lc(3A+ 2B)

]
6A = −Mp −

2αV 2
DC

3A+ 2B

[
Lc(3A+ 2B)

(1− A−B)(1− A−B − 2Lc(3A+ 2B))

]
(3.12)

which can be numerically solved for A and B.

As a case study, we consider a micro sensor with the following geometric and

material properties [45]:

- beam length L = 250µm, width b = 5µm, and thickness h = 1.5µm,

- plate length Lp = 50µm, width bp = 20µm, and thickness hp = 1.5µm,

- capacitor gap distance d = 4µm and air permittivity ε = 8.854× 10−12 F/m,

and

- the sensor structural material is polysilicon with ρ = 2300 Kg/m3 and E =

160 GPa.

Figure 3.3 shows variation of the static deflection ws + Lcw
′
s of the micro plate

center of mass with the DC voltage drop across the capacitor. The lower branch of

solutions (solid line) is stable, whereas the upper branch of solutions (dashed line)

is unstable. The figure also shows the pull-in limit Vpi beyond which there is no

equilibrium position for the system. This critical point occurs at Vpi = 8.3 V and

ws + Lcw
′
s = 0.328 of the initial capacitor gap.

The static sensor operates by setting the voltage across the capacitor to a DC

value V◦ close to but below Vpi. The threshold added mass is the smallest mass

required to load the sense-plate enough to trigger pull-in. The closer the set voltage

V◦ is to Vpi, the smaller is the required added mass resulting in a higher sensitivity

sensor.
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Figure 3.3: Deflection of the plate center versus VDC.

3.3.2 Sensitivity analysis

In this section, we investigate sensitivity of static detection in an inertial electro-

static MEMS sensor to changes in the plate mass due to an absorbed/adsorbed

mass. The sensitivity of the mass sensor is the ratio of the change in the static

deflection of the plate δw to the change in mass δm

Sm =
δw

δm
(3.13)

Therefore, the sensitivity of the static mass sensor is obtained by perturbing the

plate mass toMp+δm, evaluating the perturbed deflection ws+δw, and substituting

the result in Eq. (3.13). We note that w and Mp are normalized.
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The static deflection of the center of mass of the plate takes the form

w = ws(1) + Lcw
′
s(1) (3.14)

where

ws(x) = Ax3 +Bx2 (3.15)

Substituting Eq. (3.15) into Eq. (3.14), it simplifies to

w = (1 + 3Lc)A+ (1 + 2Lc)B

Small changes in plate mass δm would result in changes in parameters A and B

δw = (1 + 3Lc) δA+ (1 + 2Lc) δB (3.16)

Substituting Eq. (3.16) into Eq. (3.13), we obtain

Sm = (1 + 3Lc)
δA

δm
+ (1 + 2Lc)

δB

δm
(3.17)

The perturbed terms in Eq. (3.17) are determined analytically in Appendix A.

Using Eqs. (A.13) and (A.14) to substitute for the perturbed terms in Eq. (3.17),

we obtain

Sm =
−2− 12AαV 2

DCLc
2 − 12BαV2

DCLc
2

|C|
+

12 + 12AαV 2
DCLc + 12BαV2

DCLc

|C|

+ 3Lc
−2

|C|
+ 2Lc

12 + 12AαV 2
DCLc + 12BαV2

DCLc

|C|

=
10 + 18Lc + 12αV 2

DCLc(A + B) + 12αV2
DCLc

2(A + B)

|C|
(3.18)

where terms of order higher than O(10−2) have been neglected and |C| is defined

in Eq. (A.7).

Equation (3.18) describes the sensitivity of cantilever beam-based deflection-
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Figure 3.4: Sensitivity versus static voltage VDC.

detected inertial mass sensors. This analytical formula indicates that increasing

the ratio Lc of the sense-plate length Lp to the cantilever beam length L increases

sensitivity, since it increases the moment arm of the sense-plate mass with respect

to the cantilever beam end. Further, the equation indicates that the sensitivity is

proportional to the strength of the electrostatic field as represented by the nondi-

mensional potential difference αV 2
DC and the effective capacitor gap (1− w).

We used Eq. (3.17) to calculate the sensitivity of the case study sensor shown in

Fig. 3.4 as a function the operating voltage VDC. Our results show that sensitivity

increases noticeably near the pull-in limit. This means that a small mass added

to the plate is more detectable near pull-in than away from it. Therefore, it is

advantageous to operate the sensor as close as possible to the pull-in limit. In fact,

the sensitivity of the static version of the binary mass sensor represents the upper

bound on the sensitivity of deflection-detected electrostatic MEMS mass sensors.
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Figures 3.3 and 3.4 can be used to create a calibration table for the binary

mass sensor. A threshold mass, minimum detectable mass, can be calculated by

setting the DC voltage V◦ to a value near the pull-in limit. On the vertical axis

of Fig. 3.3, we calculate δws as the difference between the deflection at pull-in and

the deflection at V◦. Next, we find the sensitivity Sm of the sensor at the operating

voltage V◦ from Fig. 3.4. Finally, we use Eq. (3.13) to find the threshold mass as

δm.

The calibration table for the test case mass sensor is given in Table 3.1. Clearly,

the sensor becomes more sensitive as the operating voltage V◦ approaches the pull-

in limit, Vpi = 8.2935 V. The minimum detectable mass is reduced more than 150

folds as the operating voltage is increased from V◦ = 8.0 to 8.292 V. A minimum

detectable mass of 3 nanograms, Table 3.1, can be sensed under a static voltage

VDC = 8.292 V. It is worth noting here that 3 nanograms correspond to a sphere

of radius equal to 9 µm. The sensor resolution depends on the regulator used to

stabilize the voltage supply V◦ and external disturbances available in the environ-

ment.

Table 3.1: The static binary mass sensor calibration table.

Set voltage Threshold mass
V◦ (V) δm (ng)

6.000 2460
7.000 1637
8.000 481
8.100 331
8.200 170
8.250 82
8.270 46
8.290 7
8.292 3
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3.3.3 Sensor design

The sensor is composed of a polysilicon cantilever with a plate at its free end. A

polysilicon electrode is set under the plate to act as ground for the electrostatic field

as shown in Fig. 3.5. The following design considerations were taken into account

in building the sensor:

- A plate is added to the end of the cantilever to increase the surface area used

to deposit the functional material and decrease the actuation voltage.

- The electrostatic field is applied only under the plate to reduce leakage current

and simplify the analysis.

- The cantilever dimensions are small compared to the plate dimensions to

reduce the sensor stiffness which would reduce the actuation voltage.

The prototypes were fabricated using the PolyMUMPs fabrication process. Fig-

ure 3.6 shows all the layers available in PolyMUMPs. The silicon nitride layer serves

as insulation between the carrier wafer and the first polysilicon layer, Poly 0 used

as a ground plane. The first silicon oxide layer is the first sacrificial layer between

Figure 3.5: Picture of the sensor under microscope.
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the substrate and second polysilicon layer, Poly 1. The second oxide layer is the

second sacrificial layer between the second and third polysilicon layers, Poly 1 and

Poly 2, respectively. The metal layer deposited on top of Poly 2 is 50 nm gold

metalization layer [72].

Figure 3.6: Schematic of PolyMUMPs layers [72].

A functional material with affinity to a target gas has to be deposited on top

of the sense-plate to transform our mass sensing platform into a gas sensor. The

gas then adheres to the functional material which increases the sense-plate mass.

In this work, we develop a formaldehyde vapor sensor. Formaldehyde is a toxic

volatile organic compound that pollutes indoor air. It can be inhaled or absorbed

through the skin and eyes which has the potential to cause health problems [73].

The functional material used to realize the gas sensor is a specially doped

polymer developed in a companion project to this effort [73]. In that work, it

was experimentally found that Polyaniline (PANI) doped with nickel oxide (NiO)

and aluminum oxide (Al2O3) provided the highest sensitivity and selectivity for

formaldehyde at concentrations above 1 ppm [73].

PANI is a solid-state polymer. It is dissolved in an alcoholic base (ethylene

glycol) to facilitate deposition of the polymer solution on top of the sense-plate

surface. The concentration of PANI in the solution was increased, 0.0138 g of

PANI was suspended in 15 mL of ethylene glycol, in order to increase its viscosity

and reduce the number of drops required to deposit PANI on the sense-plate. Once

the solution is exposed to air, ethylene glycol evaporates and polymer residue is left

on the sense-plate.
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Several techniques were devised to deposit the polymer solution to the sense-

plate. Initially, we tried to inject drops of the solution on top of the sense-plate using

a syringe and a micro tip needle. The minimum tip needle available commercially

had an inner diameter of approximately 160 µm (30 gauge needle). This diameter

is larger than the sense-plate dimensions. As a result, the injected droplets were

large and overflowed the sense-plate surface resulting in stiction of the plate to the

substrate once the solution dried out.

Another technique was to dip a micro probe inside the polymer solution and

withdraw it with a micro drop that would attach to it as a result of contact forces

between the solution and the probe. A specially designed probe was developed to

obtain a probe tip smaller than the size of the sense-plate with surface properties

that will promote adherence of the solution to the probe. The probe was made using

a 500 µm fiber glass rod dry etched with hydrogen fluoride gas (HF) to reduce its

diameter to about 30 µm. HF etching also roughened the probe surface enhancing

the stiction forces between the solution and the probe glass surface. The probe was

attached to a flexible copper probe fixed to a probe holder. This method proved

successful in acquiring 30-40 µm diameter drops from the solution beaker. The

probe holder was used to deposit the drops above the sense-plate, then approach

and touch the sense-plate with the fiber glass probe. The probe was then withdrawn

leaving the solution on top of the sense-plate.

3.3.3.1 First generation sensor

A schematic of the first generation prototypes is shown in Fig. 3.7. The sensors were

made out of 10 µm wide cantilever beams with lengths of 100 µm and 125 µm. The

sense-plate dimensions were set to 100×100 µm and 100×120 µm for all prototypes.

The beams and plates were made out of the second polysilicon structural layer,

Poly 2, with a thickness of 1.5 µm. Prototypes were fabricated with capacitor gaps

of 0.75 µm and 2.75 µm using the second sacrificial layer and the first and second

sacrificial layers, respectively.

Gold metalization lines were deposited on top of the sense-plate in order to
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Figure 3.7: Schematic of the first generation sensor.

reset the sensor to 0-state after detection of formaldehyde. Application of a voltage

difference between the two anchor pads at the end of the gold line loop pass a

current through the line that heats the sense-plate through Joule heating. PANI

is deposited on top of the gold lines and is known to release absorbed/adsorbed

formaldehyde molecules upon heating to 100◦C [73]. The gold lines were fabricated

in zig-zag shape in order to increase heat generation and obtain a more uniform

heat distribution over the sense-plate.

The fabrication yield of this generation was low because of design flaws. Many

of the sensors showed evidence of sense-plate warping and stiction. Fabrication

imperfections, which are always present, apply torsional moments to the support

cantilever beam. The torsional stiffness of the support beam was low due to its

small cross-sectional area compared to that of the plate. The large width of the

plate amplify the torsional moment due to imbalance and means that even a small

rotation angle will result in stiction of the plate to the substrate. Figure 3.8 shows

a white light profilometer picture of a sensor failed due to warping and stiction of

the plate to the substrate. This problem was so widespread that none of the 0.75

µm capacitor gap prototypes was functional.

Another drawback of this design was that residual stresses due to the differ-

ence in thermal conductivity between polysilicon and gold meant that sensors that

did not fail due to stiction were bent-up as shown in Fig. 3.9. While these proto-

types did not suffer functional failure, they demonstrated parametric degradation.

Specifically, the elevated position of the sense-plate increased the pull-in voltage of
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Figure 3.8: White light profilometer picture showing warping and stiction of the
sense-plate.

Figure 3.9: White light profilometer picture showing a bent-up sensor.

the prototypes from the a range 5-10 V to 15-30 V.

3.3.3.2 Second generation sensor

To overcome these problems, the design of the sensors were re-designed to maximize

the torsional stiffness of the support beams. Second generation prototypes featured

two cantilever beams instead of one. To maintain the same bending stiffness, the

thickness of the beams was kept constant while their width (5 µm) was set equal to

half of the first generation beam width. To increase the torsional stiffness, the beams

were set as far apart from each other as possible in the width direction, thereby

71



Chapter 3 Binary Micro Gas Sensors

Figure 3.10: A schematic of a second generation sensor.

located at the edges of the sense-plate as shown in Fig. 3.10. The plate dimensions

and capacitor gap were kept the same as those of the first generation sensors.

The sensor redesign was successful in increasing the fabrication yield eliminating

warping and stiction of the sensors. Figure 3.11 shows a successfully released second

generation sensor.

However, upon polymer deposition the sense-plate invariably stuck to the bot-

tom electrode once ethylene glycol evaporated. It appears that the reason for that

was solution leakage through the etch hole and onto the substrate. We postulate

that as ethylene glycol evaporated, the meniscus of fluid between the lower surface

of the sense-plate and the substrate shrunk to bring the two surfaces into contact

with the polymer acting as an adhesive between the two surfaces.

3.3.3.3 Third generation sensor

The third generation sensors kept the same design as that of the second generation

but removed release holes. Since etch holes are necessary, per design rules, for

successful release of structures with lateral dimensions larger than 30 µm, it was

necessary to reduce the size of the sense-plate in order to eliminate etch holes.

Therefore, the sense-plate dimensions were decreased to 30×30 µm and 30×60 µm.

We found that third generation sensors did not suffer stiction to the substrate

during fabrication or after polymer deposition except in cases where the solution

drops rolled over the side of the plate and onto the substrate. Figure 3.12 shows

a picture of the sensor under microscope after polymer deposition. The polymer
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Figure 3.11: SEM picture of a second generation sensor.

Figure 3.12: Picture of a third-generation sensor after polymer deposition.

seen as scattered black spots on the sense-plate is the residue of the deposition of

one solution drop.

We also eliminated the gold metalization lines to avoid bending of the sensors
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upward and achieve the targeted low actuation voltage. However, we maintained

the gold pads at the roots of the two support beams so as to apply a voltage between

them to drive a current through the semi-conductive polysilicon layer and heat the

sense-plate through Joule heating to reset the sensor. It is worth noting that yield

for this generation was more than 90 % of the released sensors.

3.3.4 Sensor realization

3.3.4.1 Driving circuit

Stabilizing the actuation voltage is necessary to reduce the noise floor of the sensor

and approach the higher sensitivity zone of a few nano-grams indicated in Table 3.1.

A low noise driving circuit was designed [74] in order to regulate the actuation

voltage.

The low noise driving circuit consists of a USB-serial converter, a micro con-

troller, a DAC (Digital-to-Analog Converter), a buffer, a non-inverting amplifier,

a voltage reference, a negative bias generator, and a charge pump providing an

actuation from 0 V to 10 V with a voltage error tolerance of 1 mV/V [75].

- The USB-to-Serial Converter provides a serial interface between PC and a

micro controller through an USB interface and supplies 5 V unregulated power

to the circuit board.

- The micro controller controls a DAC through SPI (Serial Peripheral Interface)

based on user commands from PC.

- The DAC defines its output voltage from 0 V to 4.096 V with the resolution

of 62.5 µV according to the command sent by a micro controller.

- The buffer provides a low impedance input to a non-inverting amplifier in

order to minimize a loading effect.

- The non-inverting amplifier amplifies a input voltage with a gain of 3 to

provide its output voltage from 0 V to 10 V.
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Figure 3.13: Schematic of the sensor driving circuit and the contact detection
circuit [74].

- The voltage reference provides a low noise reference voltage of 4.096 V with

low temperature drift.

- The negative bias generator supplies a negative power rail of −0.23 V so that

a non-inverting amplifier can drive its output down to 0 V.

- The charge pump generates 12 V from 5 V unregulated voltage from the PC.

The contact detection circuit is composed of a current-sensing amplifier, and a

comparator. When a gas sensor touches the underlying bottom electrode, this

contact can be modeled as a resistance in a electrical circuit and sinks higher

current than that before the contact. This increase in the current is measured by a

current-sensing amplifier and is compared to the threshold value by a comparator

with hysteresis. If the current is higher than the predetermined threshold value,

a comparator drives its output to logic high, indicating that contact occurs [74].

A schematic of the low noise precision actuation circuit and the contact detection

circuit is presented in Fig. 3.13.

3.3.4.2 Experimental technique

The laser vibrometer is used to measure the sensor response to the actuation signal

supplied by the driving circuit. In order to determine the pull-in voltage, a trian-

gular waveform was applied to the sensor. The low-frequency actuation ensures a
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quasi-static response. The maximum voltage of the waveform was increased until

pull-in was achieved. A screen capture of the laser vibrometer software interface is

shown in Fig. 3.14. The figure shows the laser spot positioned over the sense-plate

and the measured plate displacement as function of time.

Figure 3.14: A screen shot of the laser vibrometer interface showing pull-in and
pull-out cycles.

The figure shows the response to a triangular waveform with a maximum of

8.8 V and a period of 1 s. The sense-plate moves down towards the substrate as

the voltage increases linearly. It pulls in at the maximum point of the waveform

and continues to touch the substrate as the voltage drops until it approaches 0 V.

After several pull-in and pull-out cycles, we found that the waveform was no

longer enough to trigger pull-in. The screen shot of the laser vibrometer interface

software in Fig. 3.15 shows this process. While the sense-plate goes through pull-in

and pull-out during the first cycle, it merely deflects downward and upward without

pull-in during the second cycle. Upon increasing the amplitude of the waveform,

we regained the same cyclic pattern of pull-in and pull-out. However, the same
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drift process continues to occur after several cycles and disappears upon increasing

the waveform amplitude again.

We postulate that this drift is a result of charge leakage into a dielectric layer

on top of the substrate electrode. The exposure of polysilicon to air creates a

thin film of dielectric silicon oxide over time [76]. Leaked charges captured in this

layer reduce the effective voltage drop seen by the sensor capacitor. This effect is

counteracted by increasing the amplitude of the actuation waveform.

Figure 3.15: A screen shot of the laser vibrometer interface showing drift during
cylcing.

3.3.4.3 Parameter identification

There is uncertainty in the sensor dimensions due to fabrication tolerances. Since

the third generation sensor prototypes use cantilever beam supports, they do not

suffer from residual stress effects as was the case with the micro switch. Further, as

discussed in Chapter 2, uncertainties in the in-plane dimensions of the beams and

plates are insignificant compared to uncertainties in the thickness and gap distance.
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The laser vibrometer measurements of the sense-plate displacement provide a

good estimate of the gap distance as the difference between the plate height at 0 V

and its height during pull-in. As seen in Fig. 3.16, the gap distance was found to

be equal to 2.74 µm which is close to the design value of 2.75 µm.

To estimate of the beam thickness we matched the voltage-displacement curve

predicted by our model to that measured experimentally as shown in Fig. 3.16. The

beam thickness required to obtain matching between the experimental and model

predicted curves was h = 1.44 µm. Our estimate of the beam thickness compares

well with the design value h = 1.5 µm and is in agreement with the standard

fabrication tolerance of 0.05 µm for the polyMUMPs process [72].
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Figure 3.16: The experimentally measured (dashed line) and model predicted (solid
line) sense-plate displacement as a function of voltage.
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3.4 Dynamic Sensor

Like the static sensor, the dynamic sensor concept is built around the distinction

between two sensor states: before and after pull-in. However, the difference is how

pull-in is reached in both cases. The dynamic sensor is actuated using a DC-AC

waveform and is allowed to reach a sustained periodic orbit at a certain excitation

frequency. The frequency of excitation is chosen to be close to the cyclic-fold

bifurcation point of the sensor. A small mass added to the sense-plate would drive

the sensor into pull-in. A requirement for stable operation of the dynamic sensor

is to have a frequency-stabilizing circuit. In this regard, Karkkainen et al. [77, 78]

introduced a MEMS-based AC voltage reference that has an AC error tolerance of

about 1.7 µV/V.

3.4.1 Model

The Galerkin method is used to discretize the distributed-parameter model Eq. (3.6),

thereby transforming it from a partial-differential equation into a set of nonlinear

ordinary-differential equations. Following Nayfeh et al. [45], we implemented the

discretization in the Lagrangian of the system. Taking into account the inertia of

the beam and plate, we express the Lagrangian in the following nondimensional

form:

£ =

∫ 1

0

w2
t dx+M

[
wt(1, t) + Lcwxt(1, t)

]2
+

1

3
ML2

Cw
2
xt(1, t)−

1∫
0

w2
xxdx+ 2Mb

∫ 1

0

w(x, t)dx

+ 2MMb

(
Lcwx(1, t) + w(1, t)

)
(3.19)

− 2α
(VDC + VAC(t))2

wx(1, t)
ln
(1− w(1, t)− 2Lcwx(1, t)

1− w(1, t)

)
where Mb = ρgAL3/(EId) accounts for the beam weight effect which turns out to

be negligible compared to the plate weight.
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The response of the system is composed of a static ws(x) and a dynamic com-

ponent u(x, t). We assume that the displacement can be expressed as

w(x, t) = ws(x) +
N∑
i=1

φi(x) qi(t) (3.20)

where the φi(x) are the mode shapes of the beam-plate system and the qi(t) are

generalized coordinates. The mode shapes for the undamped free vibration problem

take the form [45]

φi(x) = b1 cos βix+ b2 sin βix+ b3 cosh βix+ b4 sinh βix (3.21)

where βi =
√
ωi and the coefficients bi depend on the applied voltage and can be

determined from the boundary conditions.

Substituting Eq. (3.20) into Eq. (3.19) and writing the Lagrange equations, we

obtain the following n-dimensional reduced-order model:

n∑
j=1

(Mij q̈j + Cij q̇j +Kijqj) = −
∫ 1

0

w′′s (x)φ′′i (x)dx

+
α

Γ

(
VDC + VAC

)2
ln
[
κ−

n∑
j=1

(
φj(1)− 2Lcφ

′
j(1)

)
qj

]
− α

Γ

(
VDC + VAC

)2
ln
(
χ−

n∑
j=1

φj(1)qj

)
(3.22)

+
2αLc

Λ
(VDC + VAC)2

[
χφ′i(1) + w′s(1)φi (1)

+
n∑

j=1

(
φ′j(1)φi(1)− φj(1)φ′i(1)

)
qj

]
, i = 1, 2, . . . , n
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where χ = 1− ws(x), κ = 1− ws(x)− 2Lcw
′
s(x), and

Mij =

∫ 1

0

φi(x)φj(x)dx+ 1
3
ML2

cφ
′
i(1)φ′j(1)

+ 1
4
M
[
2φi(1) + 2Lcφ

′
i(1)
][

2φj(1) + 2Lcφ
′
j(1)

]
Kij =

∫ 1

0

φ′′i (x)φ′′j (x)dx+Mb

∫ 1

0

φi(x)dx

+MMb

[ n∑
i=1

φi(1) + Lc

n∑
i=1

φ′i(1)
]

Cij = c

∫ 1

0

φi (x)φj (x)dx

Γ =
[ n∑

j=1

φ′j(1)qj + w′s(1)
]2

Λ =
[
χ−

n∑
j=1

φj(1)qj

]2[ n∑
j=1

φ′j(1)qj + w′s(1)
]

×
{
κ−

n∑
j=1

[
φj(1)− 2Lcφ

′
j(1)

]
qj

}

3.4.2 Numerical results

We perform a convergence study to determine the number of modes sufficient to

capture the full dynamics of the system. We use the systems parameters of the

case study in Section 3.3.1. We plot in Fig. 3.17 the limit cycles obtained from

one- and two-mode approximations for VDC = 5 V and VAC = 0.9 cos(ω1t) V, where

the excitation frequency is set equal to the natural frequency ω1 = 1.41 of the

first bending mode. The two limit cycles are indistinguishable and hence were

presented in two subfigures. Since this oscillatory motion describes a fairly large

response, we conclude that a one-mode approximation is sufficient to capture the

system dynamics. Therefore, the reduced-order model described in Eq. (3.22) can
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(a) (b)

Figure 3.17: The limit cycles described by the plate center at VDC = 5 V and
VAC = 0.9 cos(1.41t) V obtained using (a) 1-mode and (b) 2-mode approximations.

be simplified to

M11q̈j + C11q̇j +K11qj = −
∫ 1

0

w′′s (x)φ′′1(x)dx

+
α
(
VDC + VAC

)2(
φ′1(1)q1 + w′s(1)

)2 ln
(κ− (φ1(1) + 2Lcφ

′
1(1))q1

χ− φ1(1)q1

)
(3.23)

+
2αLc

(
VDC + VAC

)2[
χφ′1(1) + w′s(1)φ1(1)

]
(χ− φ1(1)q1) (φ′1(1)q1 + w′s(1)) [κ− (φ1(1) + 2Lcφ′1(1))q1]

We use the shooting method [5] to numerically calculate limit cycles of the

ordinary-differential equations governing the dynamic response and use Floquet

theory [79] to investigate their stability. The frequency-response curves are gener-

ated by calculating the limit cycles of the reduced-order model using the shooting

method and ascertaining their stability by using Floquet theory. The quality factor

of the sensor was taken to be Q = 300 in all the cases discussed henceforth [45].

In Fig. 3.18, we show the maximum steady-state displacement of the plate center

(ws + Lcw
′
s)max for VDC = 7 V and VAC = 0.1 cos(Ωt) V.

The left-side of the curve consists of two branches: a stable branch and an

unstable branch meeting at a cyclic-fold bifurcation. Both the stable and unstable
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Figure 3.18: The frequency-response curve for VDC = 7 V and VAC = 0.1 cos(Ωt) V.

branches correspond to orbits in the phase plane. The cyclic-fold bifurcation is

indicated by a slope approaching infinity in the frequency-response curve and a

Floquet multiplier exiting the unit circle in the complex plane along the positive

real axis. The cyclic-fold bifurcation point is tracked as mass is added to the system

(where it moves to the left) and is used as a means of mass sensing.

We note that a cyclic-fold bifurcation occurs at Ω = 1.08 where stable and

unstable branches of solutions meet. We also note that the natural frequency of the

sensor decreases as the plate mass increases. We use this fact to devise a threshold

mass sensor. We let the sensor operate at a point just to the left of the cyclic-fold

bifurcation point. As mass is absorbed by or adsorbed to the functional material,

the cyclic-fold bifurcation frequency is gradually shifted to the left until enough

mass is added to move the bifurcation frequency to the left of the sensor operating

point. As a result, the sensor will go into dynamic pull-in, thereby creating a binary
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mass sensing mechanism.

3.4.3 Sensitivity analysis

We investigate the sensitivity of the dynamic version of the binary mass sensor to

changes in the sense-plate mass. In this regard, we find the normal form of the

cyclic-fold bifurcation. Towards that end, we expand the equation of motion of the

sense-plate for small oscillations qd(t) around its static equilibrium position qs to

obtain (see Appendix B)

Me q̈d + C q̇d − k1 qd − k2 q2d − k3 q3d = λVAC cos(Ωt) (3.24)

where Me and C are the lumped mass and damping coefficients, k1, k2, and k3, are

the linear, quadratic, and cubic stiffness coefficients, and λ is the electro-mechanical

coupling coefficient.

Under primary resonance excitation, the frequency-response equation of the

Generalized Duffing Oscillator described by Eq. (3.24) takes the form [79]

( λ
2ω

)2
= 4µ2 a2 + A2 a6 − 2Aa4 σ + a2 σ2 (3.25)

where ω =
√
k1/Me is the natural frequency, µ = C/Me, σ = Ω− ω is a detuning

parameter which expresses the nearness of the excitation frequency to the natural

frequency, and a is the response amplitude defined by [79]

qd(t) = a cos(Ωt− ε2σt) + · · · (3.26)

Higher order terms in the response have been neglected and the term ε2σt represents

nonlinear drift in the response phase angle over long time ε2t.

The coefficient of effective nonlinearity A is defined as [79]

A =
9
(

k1
Me

)(
k3
Me

)
− 10

(
k2
Me

)2
24
(

k1
Me

)3/2 (3.27)
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A cyclic-fold bifurcation occurs at points in the frequency-response curves where

an infinite slope occurs. This condition corresponds to [5]

∂σ

∂a
= 0 (3.28)

Applying the condition to the frequency-response equation, Eq. (3.25), yields

σ◦ = Aa2◦ (3.29)

where (a◦, σ◦) are the amplitude and frequency of the cyclic-fold bifurcation.

Sensitivity of the dynamic mass sensor is the ratio of change in the location of

the cyclic-fold bifurcation δσ◦ to change in the sense-plate mass δM

Sm =
δσ◦
δM

(3.30)

Perturbations in mass M would result in perturbations in the sensor natural fre-

quency and response amplitude a, thus from Eq. (3.29) and Eq. (3.36)

δσ◦
δM

= a2◦
δA

δM
+ 2a◦A

δa◦
δM

(3.31)

We note from Appendix B that

Me ∝M (3.32)

k1
Me

∝ 1

M
(3.33)

k2
Me

∝ αLc

M
V 2
DC (3.34)

k3
Me

∝ αLc

M
V 2
DC (3.35)

For weakly nonlinear systems, the term (k2/Me)
2 is small compared to (k1/Me)(k2/Me),
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thus, we can infer from Eq. (3.27) that

A ∝ αLc√
M
V 2
DC (3.36)

therefore

δA

δM
∝ αLc

M
√
M
V 2
DC (3.37)

Substituting Eq (3.29) into the frequency-response equation, Eq. (3.25), we obtain

( λ
2ω

)2
= 4µ2 a2◦ (3.38)

Thus, we can write

a◦ =
λ

4ω µ
(3.39)

We note from Appendix B that

C ∝ 1

Q
(3.40)

λ ∝ αLcVDC (3.41)

therefore

a◦ ∝ αLcVDCQM
√
M (3.42)

and

δa◦
δM
∝ αLcVDCQ

√
M (3.43)

Substituting Eqs. (3.36), (3.37), (3.42), and (3.43) into Eq. (3.31), we obtain

an expression for the sensor sensitivity in terms of the nondimensional system

86



Chapter 3 Binary Micro Gas Sensors

parameters

Sm =
δσ◦
δM
∝ αV 2

DC (αVDC)2L3
c M

3
2 Q2 (3.44)

Equation (3.44) indicates that the dynamic sensor is more sensitive to the strength

of the electrostatic field and the length of the moment arm of the sense-plate mass

than the static sensor. Specifically, the term αV 2
DC represents the contribution

to sensitivity by the static component of the waveform, while the term (αVDC)2

represents the contribution to the sensitivity by the dynamic component of the

waveform. It is also sensitive to increase in the mass ratio of the sense-plate to

the cantilever beam. Finally, it is quadratically sensitive to the quality factor. In

contrast, frequency-shift mass sensors use the sensor displacement as a detector

and, therefore, their sensitivity is linearly proportional to the quality factor.

Further, using Eqs. (3.8), we can rewrite the sensor sensitivity in terms of the

sensor dimensional parameters as

Sm ∝
V 2
DC

d3

(VDC

d3

)2( L3

EI

)3(m̂p

m

) 3
2
A3

pQ
2 (3.45)

where m̂p and m are the sense-plate mass and the cantilever beam mass, respec-

tively, and Ap = Lp bp is the surface area of the sense-plate. In addition to the

observations above, this equation reveals that that the sensitivity of the sensor

is proportional to the cube of the surface area of the sense-plate. Moreover, the

equation shows that the sensor sensitivity is counter proportional to the cube of

the stiffness of the cantilever beam. We contrast this result with the conclusion

of Thundat et al. [80] that sensitivity is inversely proportional to the thickness for

cantilever beam frequency-shift sensors.

As a quantitative example, we track the location of the cyclic-fold bifurcation

frequency as mass is added to the plate. We add a small mass δm = 35 picogram

to the plate and plot the frequency-response curve for VDC = 7 V and VAC =

0.1 cos(Ωt) V. We found that the bifurcation point is shifted by 4 Hz.

We then study the effect of decreasing the beam thickness h on the sensitivity of
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Figure 3.19: The cyclic-fold bifurcation point of the modified sensor (h = 1.3µm)
operating with VDC = 6 V and VAC = 0.03 V with (dashed line) and without (solid
line) an added mass of δm = 30 picogram.

the sensor. Equation (3.45) shows that the sensitivity of the micro cantilever mass

sensors is inversely proportional to h9. We decrease the structural thickness of the

beam from h = 1.5µm to h = 1.3µm, thereby decreasing the static pull-in voltage

to Vpi = 6.7 V. We excite the sensor using VDC = 6 V and VAC = 0.03 cos(Ωt) V. In

Fig. 3.19, we plot the frequency-response curves with and without an added mass

of δm = 30 picogram. The shift in the location of the bifurcation point is 29 Hz,

one-order of magnitude larger than that for the thicker beam. In fact, an added

mass of δm = 1 picogram produces a shift of 3 Hz in the location of the bifurcation

point, Fig. 3.20, for the thinner beam. It is worth noting here that 1 picogram

corresponds to a sphere of diameter equal to 1 µm.

It is practical to measure frequency shifts on this order. However, the overall
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resolution of the threshold mass sensor will depend on the stability of the waveform

provided by the reference excitation source. The dynamic sensor does not suffer

from external disturbances since the environment noise has low frequency (usually a

few Hertz) that is attenuated by the sensor being driven at much higher frequencies.

Figure 3.20: The cyclic-fold bifurcation point of the modified sensor (h = 1.3µm)
operating with VDC = 6 V and VAC = 0.03 V with (dashed line) and without (solid
line) an added mass of δm = 1 picogram.
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Chapter 4

Conclusions and Future Work

4.1 Concluding Remarks

We summarize and discuss here the most important findings in this work focused on

the use of the pull-in instability in electrostatic MEMS for actuation and sensing.

4.1.1 MEMS micro switch

We developed methods to dynamically actuate capacitive shunt CPW switches. The

switches were made of electroplated gold bridges on CPWs fabricated on silicon

substrates. The lower bound on static actuation, static pull-in voltage VSP, was

found to be 68.5 V. Dynamic actuation was investigated using force and frequency

sweeps in the vicinity of the switch natural frequency. We quantified the voltage

savings of dynamic actuation VDP over static actuation using a Figure of Merit

defined as

FoM =
VSP − VDP

VSP

Greater voltage savings were obtained using a frequency sweep, FoM = 60 %,

than those obtained using a force sweep, FoM = 40 %. Dynamic switching using a

force sweep requires increasing the voltage amplitude at a constant frequency until

dynamic pull-in occurs. On the other hand, dynamic switching using a frequency

sweep requires, in addition, a down-sweep past the nonlinear resonance frequency
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to trigger pull-in.

It is obvious that as the FoM increases, the switching time will also increase

since higher FoM occurs at lower DC voltages. To address this shortcoming, we

are proposing to implement dynamic switching using transient switching methods

in order to obtain a shorter switching time of the same order as that obtained

using static switching. We developed two switching methods to facilitate the use

of the lower actuation voltage realized by the frequency-sweep technique. A fixed-

frequency method simply sends a sudden waveform of the same order as those shown

in Fig. 2.11 in the CPW at an excitation frequency within a narrow band around

the cyclic-fold bifurcation. A shifted-frequency method maintains a waveform of

the same order as those shown in Fig. 2.11 in the CPW for a few excitation periods

before shifting the excitation frequency up or down by a discrete amount δΩ. The

fixed-frequency method is simpler to implement. The shifted-frequency method

requires an additional step while providing a wider actuation frequency band and

the minimum realizable switching time for actuation frequencies within subinterval

B2.

The switching time obtained using dynamic actuation was always longer than

that obtained using static actuation except for shifted-frequency switching when

used in subinterval B2 where the two switching times were comparable.

We adopted a reduced-order model to characterize the switch response. The

model accounts for midplane stretching, electrostatic forcing due to non-overlapping

parallel plates, and squeeze-film damping. We developed an identification routine

to estimate the thickness and residual stress of the bridge and the capacitor gap.

These parameters were used to update the model and arrive at the most accurate

representation of the problem.

We found that squeeze-film damping is the dominant damping mechanism in the

switch under study even for small motions. Accounting for squeeze-film damping

effects using a linear damping model leads to erroneous results for large motions. We

found that damping is the dominant factor in reducing the switching time obtained

using dynamic actuation except for the subinterval B2 where the switching time is
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already close to the minimum switching time obtained for static actuation.

Finally, we developed a technique to measure the change in the voltage drop

across the shunt switch due to charge trapping on the insulation layer in the switch.

Our technique uses the FFT of the measured bridge response to estimate the voltage

change.

4.1.2 Binary micro gas sensors

We developed a binary mass sensing technique that uses the pull-in instability as

a detection mechanism. The sensor indicates when an added mass has exceeded

a threshold amount by going into pull-in to switch from non-contact, 0-state, to

contact with the substrate, 1-state. This sensing mechanism has two advantages.

First, it is simple since it dispenses with the need for readout electronics which

reflects upon the overall cost and complexity of the sensor. Second, it enhances

the sensitivity of the mass sensor compared to similar-sized sensors using static

deflection and frequency-shift detection methods.

We developed static and dynamic versions of this mass sensor. Both versions

employ a common structure made of a sense-plate supported by a micro cantilever

beam and actuated by an electrode under the sense-plate. The static version uses

static pull-in as a detection mechanism. The dynamic version uses dynamic pull-in

subsequent to a local, cyclic-fold, bifurcation as a detection mechanism.

We investigated sensors sensitivity analytically and developed formulas describ-

ing the dependence of the static and dynamic mass sensors as functions of the

sensors parameters. We found that the sensitivity of the static version of the bi-

nary mass sensor represents the upper bound on the sensitivity of statically detected

electrostatic MEMS mass sensors. The formula indicates that the sensitivity of the

static mass sensor is proportional to the strength of the electrostatic field repre-

sented by the nondimensional potential difference αV 2
DC and the effective capacitor

gap (1 − w). Moreover, the sensitivity is proportional the ratio of the sense-plate

length Lp to the cantilever beam length L since it increases the moment arm of the

sense-plate mass with respect to the cantilever beam end.

92



Chapter 4 Conclusions and Future Work

For the dynamic mass sensor, the formula for sensitivity indicates that the

dynamic sensor is more sensitive to the strength of the electrostatic field and the

length of the moment arm of the sense-plate mass than the static sensor. The sensor

is also sensitive to increase in the mass ratio of the sense-plate to the cantilever

beam. The formula also shows that the sensor is quadratically sensitive to the

quality factor. In contrast, frequency-shift mass sensors use the sensor displacement

as a detector and, therefore, their sensitivity is linearly proportional the quality

factor. Finally, it was found out that the sensitivity of the sensor is proportional

to the cube of the surface area of the sense-plate while it is counter proportional to

the cube of the stiffness of the cantilever beam.

The sensitivity formula of the static mass sensor was used to create a sensor

calibration table. The table shows that the sensor can detect an added mass as

small 3 nanograms. A study of the dynamic mass sensor using a reduced-order

model found that it can detect an added mass as small as 1 picogram. This is three

orders of magnitude better than the static mass sensor.

The static sensor is more susceptible to external disturbances than the dynamic

sensor. It is required that the static sensor be excited very close to pull-in. Isolating

the sensor from external disturbances helps improve the sensor stability. On the

other hand, the stability margin for the dynamic sensor is wider than for the static

sensor since it is only required to stabilize the frequency of excitation. The envi-

ronment noise usually has low frequency which is attenuated by the sensor being

driven at much higher frequencies.

We used the binary mass sensors as platforms to realize a formaldehyde vapor

sensor by depositing doped polyaniline on a sense-plate. Three generations of the

sensor were fabricated and tested in order to optimize the sensor design.

Finally, experimental findings indicate that the static sensor suffers from sensi-

tivity to external disturbances in a manner similar to that seen for inertial sensors

that uses static detection. Deploying the static sensor will require a design to de-

couple the response of the sensor to changes in the mass of the sense-plate from

external disturbances. On the other hand, the dynamic sensor does not suffer from
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this shortcoming in a manner analogous to inertial sensors that use frequency-shift

as detection method.

4.2 Publications

• Khater M., Abdel-Rahman E., and Nayfeh A., “A Mass Sensing Technique

for Eletcrostatically-Actuated MEMS”, Proceeding of the ASME 2009 Inter-

national Design Engineering Technical Conferences & Computers and Infor-

mation in Engineering Conference - IDETC/CIE, California, USA, 2009.

• Vummidi K., Khater M., Abdel-Rahman E., Nayfeh A., and Raman s., “Dy-

namic Pull-in of Shunt Capacitive MEMS Switches”, Proceedings of Eurosen-

sors XXIII conference, Lausanne, Switzerland, 2009.

• Khater M., Vummidi K., Abdel-Rahman E., Nayfeh A., and Raman s., “Dy-

namic switching of MEMS Shunt Switches”, Proceeding of the ASME 2010

International Design Engineering Technical Conferences & Computers and In-

formation in Engineering Conference IDETC/CIE 2010, Montreal, Canada,

2010.

• Khater M., Vummidi K., Abdel-Rahman E., Raman S., and Nayfeh A., “Dy-

namic actuation methods for capacitive MEMS shunt switches”, Journal of

Micromechanics and Microengineering, Vol. 21, pp. 1–12, 2011.

4.3 Future Work

4.3.1 MEMS micro switch

A proposed plan for future work on the micro switch follows:

1. Conduct an experiment on multiple-bridge switches to investigate whether

mechanical coupling occurs between the bridges in this case and how much

94



Chapter 4 Conclusions and Future Work

it affects the performance of the switch. A proposed experimental proce-

dure is to test a three-bridge switch and compare the performance of the

middle bridge, which is affected symmetrically by the two bridges on either

side, to the bridges either side, which are asymmetrically affected by a single

neighboring bridge. If no difference in response are observed, we can then

infer that mechanical coupling between the bridges has insignificant effect on

switch dynamics.

2. Conduct an experiment to measure the motions in the bridge posts and com-

pare the results across different post designs. Posts can be a significant source

of damping in switches. Damping is a crucial factor for the performance of

dynamically actuated switches. Higher damping requires higher actuation

voltages to drive the switch to pull-in.

3. Study experimentally and analytically post pull-in dynamics of the switch

using the models developed by Vyasarayani et al. [81]. This effort will offer

insight into factors affecting the switching time and switch failure mecha-

nisms.

4. Conducting the experiment under vacuum would have the advantage of elim-

inating the effects of squeeze-film damping.

4.3.2 Binary micro gas sensors

A proposed plan for future work on the MEMS binary mass sensors follows:

1. Experimentally demonstrate the static version of the mass sensor.

2. Investigate techniques to enhance the robustness and stability of the static

version of the mass sensor against external disturbances.

3. Experimentally demonstrate the dynamic version of the mass sensor.

4. Investigate sensor drift in both versions.
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5. Design and demonstrate binary mass sensors using paddle structures (fixed-

fixed beams supporting a center sense-plate) and compare their performance

to the cantilever supported sensors.
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Appendix A

Sensitivity Analysis for the Static

Gas sensor

In this appendix, we analyze the sensitivity of the static binary sensor. We lin-

earize Eqs. (3.12) in terms of A and B and perturb the equations around the static

equilibrium values of A and B to obtain a matrix equation in the formC11 C12

C21 C22

  δA

δB

 =

 Lc

−1

 δMp (A.1)

where the elements of the linear system matrix [C] are given by

C11 =23040AB2αV 2
DCLc

6 + 23040AB2αV2
DCLc

5 +
4608

5
B2αV2

DCLc
5

+
13824

5
ABαV 2

DCLc
5 + 8880AB2αV2

DCLc
4 + 768B2αV2

DCLc
4

+ 216AαV 2
DCLc

4 + 2016ABαV2
DCLc

4 + 144BαV2
DCLc

4

+ 1600AB2αV 2
DCLc

3 + 224B2αV2
DCLc

3 + 96AαV2
DCLc

3 (A.2)

+ 512ABαV 2
DCLc

3 + 80BαV2
DCLc

3 + 16αV2
DCLc

3

+ 120AB2αV 2
DCLc

2 + 24B2αV2
DCLc

2 + 12AαV2
DCLc

2

+ 48ABαV 2
DCLc

2 + 12BαV2
DCLc

2 + 4αV2
DCLc

2 − 6
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C12 =23040A2BαV 2
DCLc

6 +
6912

5
A2αV2

DCLc
5 + 23040A2BαV2

DCLc
5

+
9216

5
ABαV 2

DCLc
5 + 1008A2αV2

DCLc
4 + 144AαV2

DCLc
4

+ 8880A2BαV 2
DCLc

4 + 1536ABαV2
DCLc

4 + 96BαV2
DCLc

4

+ 256A2αV 2
DCLc

3 + 80AαV2
DCLc

3 + 1600A2BαV2
DCLc

3 (A.3)

+ 448ABαV 2
DCLc

3 + 64BαV2
DCLc

3 +
32

3
αV2

DCLc
3

+ 24A2αV 2
DCLc

2 + 12AαV2
DCLc

2 + 120A2BαV2
DCLc

2

+ 48ABαV 2
DCLc

2 + 12BαV2
DCLc

2 + 4αV2
DCLc

2 − 2

C21 =− 13824AB2αV 2
DCLc

5 − 14400AB2αV2
DCLc

4 − 576B2αV2
DCLc

4

− 1728ABαV 2
DCLc

4 − 5920AB2αV2
DCLc

3 − 512B2αV2
DCLc

3

− 144AαV 2
DCLc

3 − 1344ABαV2
DCLc

3 − 96BαV2
DCLc

3

− 1200AB2αV 2
DCLc

2 − 168B2αV2
DCLc

2 − 72AαV2
DCLc

2 (A.4)

− 384ABαV 2
DCLc

2 − 60BαV2
DCLc

2 − 12αV2
DCLc

2

− 120AB2αV 2
DCLc − 24B2αV2

DCLc − 12AαV2
DCLc

− 48ABαV 2
DCLc − 12BαV2

DCLc − 4αV2
DCLc − 6

C22 = −13824A2BαV 2
DCLc

5 − 864A2αV2
DCLc

4 − 14400A2BαV2
DCLc

4

− 1152ABαV 2
DCLc

4 − 672A2αV2
DCLc

3 − 96AαV2
DCLc

3
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DCLc
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DCLc
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2 − 8αV2
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DCLc − 12AαV2
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DCLc − 4αV2
DCLc
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The solution of Eq. (A.1) can be written in the form

 δA

δB

 =
Cadj

|C|

 Lc

−1

 δMp (A.6)

We note that for sensor geometries of interest in this work, Lc is of order O(10−1),

A and B are of order O(10−2), and αV 2
DC is of order O(1). We consider terms

of order higher than O(10−2) negligible and write the determinant of the system

matrix |C| as

|C| =− 12 + 16αV 2
DCLc + 48αV2

DCLc(Lc + A + B)

+ 16αV 2
DCLc

2(4Lc + 15A + 240B) (A.7)

and the matrix of cofactors Cadj as

Cadj =

Cadj
11 Cadj

12

Cadj
21 Cadj

22

 (A.8)

where

Cadj
11 = −8αV 2

DCLc
2 − 12AαV2

DCLc − 12BαV2
DCLc − 4αV2

DCLc (A.9)

Cadj
12 = 2− 4αV 2

DCLc
2 (A.10)

Cadj
21 = 12αV 2

DCLc
2 + 12AαV2

DCLc + 12BαV2
DCLc + 4αV2

DCLc + 6 (A.11)

Cadj
22 = −6 + 4αV 2

DCLc
2 (A.12)

Therefore, the sensitivity terms in Eq. (3.17) can be written as:

δA

δMp

=
−2− 12AαV 2

DCLc
2 − 12BαV2

DCLc
2

|C|
(A.13)

δB

δMp

=
12 + 12AαV 2

DCLc + 12BαV2
DCLc

|C|
(A.14)

where terms of order higher than O(10−2) have been neglected.
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Sensitivity Analysis for the

Dynamic Gas Sensor

In this appendix, we analyze the sensitivity of the dynamic binary sensor. We

expand in Taylor series the electrostatic force terms in the one-mode equation of

motion Eq. (3.23) and retain terms up to order three in q to obtain

2 q̈ + 8.82M q̈ + 27.4MLc q̈ + 28.5ML2
c q̈ +

0.999

Q
q̇

+ 26.3q − 0.405α
(
285.88L3

c + 271.5L2
c + 85.92Lc

)
(VAC + VDC)2 q

− 0.45α
(
1883.3L4

c + 2384.3L3
c + 1131.95L2

c + 238.85Lc

)
(VAC + VDC)2 q2

− 0.48α
(
12406.1L5

c + 19633.2L4
c + 12428.1L3

c + 3933.58L2
c + 622.5Lc

)
× (VAC + VDC)2 q3 = 0.3α

(
43.4L2

c + 27.47Lc

)
(VAC + VDC)2 (B.1)

where Q is the quality factor. Ordering q at O(ε), Lc at O(ε), α at O(ε2), VDC

at O(1/ε), and VAC at O(ε) and retaining terms up to order O(ε4), we obtain a
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consistently expanded equation of motion in the form

2 q̈ + 8.82M q̈ + 27.4MLc q̈ + 28.5ML2
c q̈ +

0.999

Q
q̇ + 26.3 q

− 115.7αL3
cV

2
DC q − 109.9αL2

cV
2
DC q − 34.8αLcV

2
DC q − 69.6αLcVDCVAC q

− 515.5αL2
cV

2
DC q

2 − 108.77αLcV
2
DC q

2 − 302.388αLcV
2
DC q

3 (B.2)

= 13.2αL2
cV

2
DC + 8.34αLcV

2
DC + 26.4αL2

cVDCVAC + 16.7αLcVDCVAC

where ε is a small bookkeeping parameter. We re-write the modal coordinate q(t)

as the summation of a static component qs due to the DC force and a dynamic

component qd(t) due to AC forcing

q(t) = qs + qd(t) (B.3)

Under a DC force, Eq. (B.2) reduces to

26.3 qs − 115.7αV 2
DCL

3
c qs − 109.88αV 2

DCL
2
c qs − 34.7786αV 2

DCLc qs

− 108.77αLc q
2
s − 515.5L2

cαV
2
DC q

2
s − 302.4αLcV

2
DC q

3
s (B.4)

= 13.1752αL2
c V

2
DC + 8.34LcαV

2
DC

Substituting for q with Eq. (B.3) and using Eq. (B.4) in Eq. (B.2), to eliminate

the static deflection qs terms, we obtain an equation representing the motion of the

sense-plate around the equilibrium position qs in the form

Me q̈d + C q̇d − k1 qd − k2 q2d − k3 q3d = λVAC (B.5)
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where

Me = 8.82M + 27.4MLc + 28.5ML2
c + 2 (B.6)

C =
0.999

Q
(B.7)

k1 = − 26.3 + 34.8αV 2
DCLc + 115.7αV 2

DCL
3
c + 109.9αV 2

DCL
2
c + 1030.98αqsV

2
DCL

2
c

+ 907.16αq2sV
2
DCLc + 217.54αqsV

2
DCLc + 69.56αVDCVACLc (B.8)

k2 = 108.77αLcV
2
DC + 515.5αL2

cV
2
DC + 907.2αLcqsV

2
DC (B.9)

k3 = 302.4αLcV
2
DC (B.10)

λ = 16.68αVDCLc + 26.35αVDCL
2
c + 69.5572αqsVDCLc (B.11)

We note that for a sensor with geometric specification similar to our class of sensors,

the first term in each of these expressions is the dominant term of the expression.
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