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Abstract

Pipelined circuits operate as an assembly line that starts processing new instructions while older

ones continue execution. Control properties specify the correct behaviour of the pipeline with re-

spect to how it handles the concurrency between instructions. Control properties stand out as one

of the most challenging aspects of pipelined circuit verification. Their verification depends on the

datapath and memories, which in practice account for the largest part of the state space of the

circuit. To alleviate the state explosion problem, abstraction of memories and datapath becomes

mandatory. This thesis provides a methodology for an efficient abstractionof the datapath under all

possible control-visible behaviours. For verification of control properties, the abstracted datapath

is then substituted in place of the original one and the control circuitry is left unchanged. With

respect to control properties, the abstraction is shown conservative by both language containment

and simulation.

For verification of control properties, the pipeline datapath is represented by a network of registers,

unrestricted combinational datapath blocks and muxes. The values flowing through the datapath

are called parcels. The control is the state machine that steers the parcels through the network.

As parcels travel through the pipeline, they undergo transformations through the datapath blocks.

The control-visible results of these transformations fan-out into control variables which in turn

influence the next stage the parcels are transferred to by the control. The semantics of the datapath

is formalized as a labelled transition system called a parcel automaton. Parcelautomata capture the

set of all control visible paths through the pipeline and are derived without the need of reachability

analysis of the original pipeline. Datapath abstraction is defined using familiarconcepts such as

language containment or simulation. We have proved results that show that datapath abstraction

leads to pipeline abstraction.

Our approach has been incorporated into a practical algorithm that yieldsdirectly the abstract parcel

automaton, bypassing the construction of the concrete parcel automaton. The algorithm uses a SAT

solver to generate incrementally all possible control visible behaviours of the pipeline datapath. Our

largest case study is a 32-bit two-wide superscalar OpenRISC microprocessor written in VHDL,

where it reduced the size of the implementation from 35k gates to 2k gates in lessthan 10 minutes

while using less than 52MB of memory.
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Chapter 1

Introduction

Hardware and software systems have a pervasive presence in our day to day lives. From mass pro-

duced computer chips and embedded software in our computing devices andcars to systems that

control high speed trains, aeroplanes and nuclear plants, our well being and safety is increasingly

dependent on whether such systems behave as intended. The consequences of malfunctioning hard-

ware and software range from the nuisance of continuous operating system updates and firmware

for our computers and gadgets to mass recalls with high economic cost in the order of millions and

billions of dollars and catastrophic accidents that put human life at risk.

The traditional approach to validate hardware and software systems is testing. The testing paradigm

uses input vectors to check the input-output behaviour of the system or todrive the system through

execution scenarios which are checked against the expected behaviour. Black box testing or func-

tional testing checks the input-output behaviour of the system and is oblivious to its internal struc-

ture. White box testing uses the structural information about the system, suchas the control flow

graph of the program code, to craft input vectors that drive it through execution paths that visit

the structural elements such as lines of code or control-flow conditions. The success of testing is

measured using coverage metrics.

For medium to large systems the sheer multitude of possible input values makes anexhaustive ap-

proach intractable. Thus complete validation through testing is not achievableexcept for small scale

systems. Even when complete coverage is achieved it is not a certainty that all system behaviours

have been exercised, since coverage metrics are defined in terms of the structure of the system

while there can be exponentially more behaviours. Achieving reasonable coverage through testing

in modern day microprocessors takes enormous amounts of time. For instance, simulating a few

minutes of a 1GHZ microprocessor takes almost 6 months of simulation time on a largecluster of

workstations [Bentley, 2001].

Formal methods [Clarke and Wing, 1996, Clarke and Kurshan, 1996, Dilland Rushby, 1996, Hall,
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1990] stand for the collection of methods that apply mathematical reasoning to the proof of correct-

ness of hardware and software systems. The application of formal methods to a system is called

formal verification. Formal verification checks a given property holds ofall behaviours of the sys-

tem and is therefore exhaustive, providing a definitive answer to correctness. Formal verification has

been applied successful to a wide range of hardware and software systems [Bentley, 2001, Clarke

et al., 1995, McMillan, 2001, Dill et al., 1992]. In the real world, formal verification and testing co-

exist and techniques from formal verification have been used achieve better testing, creating hybrid

methodologies.

Due to the theoretical complexity of program verification, ranging from NP-hard to undecidable,

with formal verification comes the tradeoff between automation and capacity. In the wide spectrum

of formal methods we distinguish two categories of techniques. At one end we have deductive

methods that provide virtually unbounded capacity, being able to verify infinite systems, but are

also more likely to rely on the intervention of a knowledgeable user to guide the proof. At the

other end we have algorithmic methods that are highly automated but are not directly applicable to

large systems. The gap between the two types of formal methods is bridged using abstraction and

decomposition techniques.

In this thesis we are concerned with using abstraction to improve the capacity of one such automated

technique, called model checking, for the verification of pipelined circuits.In model checking, the

verified system is called a reactive system and the language in which the properties are described

is called temporal logic. To verify properties, model checking performs anexhaustive search of the

state space of the reactive system. The size of the state space is the major challenge that impedes the

direct use of model checking. The capacity problem incurred due to the state space factor is called

the state explosion problem. The state space explosion problem is mitigated usingabstraction and

decomposition. Our research is concerned with abstraction in the applicationdomain of pipelined

circuits.

Pipelining uses the same principle as an assembly line that shifts products simultaneously from one

assembly stage to the next. A pipelined circuit divides the execution of instructions, also called

parcels, into stages. Upon entering the pipeline, the execution of an instruction happens incremen-

tally as it moves from one stage to the next, until it exits the pipeline. To achieve asimilar produc-

tivity increase to the assembly line, the pipeline overlaps the execution of instructions whereby each

execution stage holds a different instruction. Compared to a non-pipelinedcircuit that performs the

same operation, in an ideal linear pipeline that does not have instruction dependencies, the execu-

tion time of individual instructions does not change. However the number ofinstructions processed

per unit of time increases proportionally to the length of the pipeline. The theoretical speedup of a

pipeline is not achieved in practice due to dependencies between instructions [Hartstein and Puzak,

2002].
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A pipelined circuit consists of a network of stages through which the parcels flow, memories and

register files that store instructions and the data operated on, datapath elements that perform the

operation corresponding to each pipeline stage and control circuitry thatorchestrates the execution

of the instructions. The network of stages is linear but only in the simplest circuits. It may contain

branches and loops and the paths taken by instructions may be selected dynamically by the control

based on the current execution context. The concurrent execution ofinstructions leads to possible

race conditions which in pipeline circuits are called hazards.

There are three types of hazards. Data hazards arise due to data dependencies when the operand of

one instruction, the consumer, is created by another, the producer. In such cases, the consumer waits

— it stalls — until the operand is ready. Structural hazards arise from resource contention when

multiple instructions need to transfer to the same next stage. Finally, control hazards happen due to

speculative execution. Instructions that were fetched after a control instruction that is mispredicted,

must be removed from the pipeline.

Because of the synchronization problems it solves, the control circuitry isthe main source of com-

plexity in the pipeline circuit and therefore, the most likely part of the design tocontain design

errors. The size of the controller is often within the verification capacity of model checking tech-

niques. What prevents its direct verification is the size of the memories and datapaths which con-

tribute the largest proportion to the state space of the circuit. Memories are easier to abstract, their

size reduces to what is needed to accommodate the read and write locations ofthe maximum number

of in-flight instructions. Datapaths are more challenging to abstract because they use the parcel’s

value to generate feedback signals to the control circuitry and thus affect the overall execution in

the pipeline.

In this thesis we present a novel datapath abstraction technique. The methodology is described

pictorially in Figure 1.1. At the core of our approach is the use of a mathematical representation,

called parcel automata, to describe the control-visible behaviour of the parcels as they travel through

the pipeline. A parcel’s behaviour is defined by both the control signals it generates at each stage in

the pipeline and the path it takes through the pipeline. In our methodology datapath abstraction is

performed by abstracting the concrete parcel automata and then using the abstract parcel automata

to define abstract datapaths that are then substituted in place of the concrete ones. The process of

replacing the concrete datapath by an abstract one is a form of abstractinterpretation. We show

that the conventional forms to define abstraction of automata, such as simulation and language

containment, carry over to abstract interpretation of the pipeline datapath using parcel automata.

Our contribution is threefold. First, we contribute a formal framework for datapath abstraction using

parcel automata. Within this framework we define pipeline models and parcel automata, abstraction

of parcel automata and prove correctness of pipeline abstraction using abstract parcel automata.

Second, we provide an abstraction algorithm for parcel automata. Our algorithm tackles the state
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Figure 1.1: Overview of abstraction methodology.

explosion problem by the symbolic traversal of the concrete parcel automaton using a satisfiability

solver. And third, our approach is implemented in a prototype. The tool allowsits users to create

pipeline models by specifying the top level structure of interconnected pipeline stages. The datapath

and control are defined directly in VHDL and then referenced from the high-level model. Datapath

abstraction is then performed with the click of a button. As cases studies we used several designs,

spanning from simple 32-bit arithmetic pipelines to an edge detector circuit anda 32-bit superscalar

OpenRISC microprocessor.

1.1 Overview Of Background And Related Work

The most complex pipelined circuits appear in today’s microprocessors. Approaches to formal

verification of microprocessors include deductive methods using theoremproving and automated

techniques using model checking or specialized decision procedures. With any such verification

technique one must specify the correctness criteria and then provide a sound verification strategy.

Often, the correctness statement specifies a relationship described usingconcepts from automata

theory. Simulation states that a relationship between the value of specification variables in the

implementation states and the specification states is preserved after an execution step of the imple-

mentation and specification. Another way to define correctness is through language containment.

In this definition, the sets of implementation traces are compared against the setof traces of the
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specification. Formulating correctness statements for pipelined circuits is madechallenging by the

fact that the implementation variables that correspond to the specification reflect changes by par-

tially executed instructions. The pipelined circuit executes multiple instructions inone step while

the specification is sequential and executes one instruction at a time.

A correctness framework that overcomes the challenges of aligning the implementation and spec-

ification states is called flushing [Burch and Dill, 1994]. In this approach, the implementation

state is run, without fetching new instructions into the pipeline, until all the instructions being cur-

rently executed complete. Verification techniques using flushing have beenperformed using both

deductive and automatic methods. In deductive approaches, the challenge of applying flushing is

identifying proof strategies to deal with the various optimizations of a microprocessor design such

as scoreboarding, execution units with variable latency and branch prediction [Sawada and Hunt,

1997, Hosabettu et al., 1998, Skakkebak et al., 1998]. Automatic techniques use efficient decision

procedures to prove a simulation relation based on flushing [Lahiri et al., 2002, Velev and Bryant,

2000, Manolios and Srinivasan, 2004].

In a hazard based approach [Aagaard, 2003] the top-level correctness is defined with respect to the

three types of pipeline hazards: data, structural and control. Hazard correctness is formulated in

terms of pipeline specific properties and thus are more straightforward to define. Most of these

properties target the control circuitry. The main impediment in the automatic verification of control

properties of pipelined circuits is the large contribution of datapath and memories to their overall

size.

Approaches to datapath abstraction vary in the degree of automation and precision and often per-

form a tradeoff. When a decision procedure is used, datapath abstraction is performed using unin-

terpreted functions. In model checking, datapath abstraction is done by reducing the bitwidth of the

operands. The equivalent of uninterpreted functions in this context is tosever the feedback signals

from datapath to control and replace the datapath implementation by wires [Ho et al., 1998]. How-

ever, imprecise abstractions pose the threat of false counterexamples: traces of the abstract circuit

that violate the property and do not have an equivalent trace in the concrete implementation. The

solution is to refine the abstraction in a refinement loop [Andraus et al., 2006] until the property

passes or a true counterexample is found.

1.2 Approach And Contributions

Our approach to datapath abstraction targets the verification of control properties. We exploit struc-

tural rules in the design of pipelined circuits to derive efficient and accurate abstractions. Our

approach is particularly useful for properties that specify the parcelflow through the pipeline and

are sensitive to the latency of the paths through the pipeline.
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Our contribution is an abstraction technique that leverages a novel mathematical representation for

the pipeline datapath using a type of automata, called parcel automata. A parcel automaton is a

mathematical model for the execution of an instruction. Each state of the automaton represents a

parcel in a pipeline state. A transition denotes the transformation of the parcel by the datapath as it

moves to the next stage. The label of the transition indicates the control visibleeffects. A run of the

parcel automaton corresponds to a run of a single parcel through the pipeline.

Formalizing the datapath as an automaton presents the advantage of clean mathematical reasoning

about datapath abstraction. Simulation and language containment formalize thenotion of equivalent

parcels, parcels that have the same control visible behaviour as they movethrough the pipeline. We

prove in our framework that both simulation and language containment on parcel automata transfer

to pipeline abstraction using parcel automata. Our abstraction algorithm usesa symbolic method

based on SAT to simultaneously traverse all equivalent runs of the parcel automaton. The abstraction

of the pipeline datapath reduces to collapsing the equivalent runs of the concrete parcel automaton

into a run of the abstract parcel automaton. Datapath abstraction is represented as abstraction of

parcel automata and pipeline abstraction for control properties is performed as a form of abstract

interpretation using abstract datapaths derived from abstract parcelautomata.

We have implemented our methodology as part of a verification flow using a prototype tool called

Bluenose II. The tool reads the annotated model that describes the structure of the pipeline as a

network of interconnected stages. The descriptions of the stages reference the VHDL files that

implement the datapaths. Datapath abstraction using a SAT solver is performedby generating CNF

formulas from the netlists obtained by synthesis of the datapath files. From theabstract parcel

automaton the tool generates VHDL for the abstract datapaths which in turn define the abstract

pipeline circuit through abstract interpretation. The abstract circuit is then verified with a model

checker.

1.3 Outline Of Thesis

Chapter 2 introduces known concepts that we use throughout the thesis:labeled state machines,

circuits and model checking. It also discusses related work. Chapter 3 defines the model of pipelined

circuits. In Chapter 4 we present the definition of parcel automata, their abstraction and use in

abstract interpretation of pipelined circuits. Chapter 5 describes parcelmaps and the correctness of

datapath abstraction using parcel automata. Chapter 6 defines path abstraction for parcel automata

and presents abstraction algorithms and case studies. Chapter 7 is a summaryof the thesis and of

our contributions.
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Chapter 2

Background And Related Work

In this chapter we describe several concepts that are used throughout the thesis: labeled transition

system, model checking and circuits. In Section 2.4 we present related work.

2.1 Labeled Transition Systems

2.1.1 Definition(Labeled Transition System). A labeled transition system is a tupleM = 〈Q ,R,T , I 〉:

• Q denotes the set of states

• T is the set of transition labels

• R ⊆ Q × T × Q is the transition relation

• I ⊆ Q is the set of initial states

The languageL(M) of a labeled transitionM is the set of infinite runs represented by functions of

form run : N → Q × T such thatrun k = (qk, tk) andq0 ∈ I ∧ ∀ k. (qk, tk, qk+1) ∈ R.

Consider two labeled transition systemsM1 = 〈Q1,R1,T1, I1〉 andM2 = 〈Q2,R2,T2, I2〉. In

order to formulate criteria of abstraction, we need to compare states and transition labels of the two

transition systems. In general they may belong to disjoint sets and thereforemay not be directly

comparable. Instead of direct equality, for states we use the labeling functions labQ1 : Q1 → LQ

and labQ2 : Q2 → LQ with the same codomainLQ, and, respectively, for transitions uselabT 1 :

T1 → LT andlabT 2 : T2 → LT, sharing the codomainLT.

Abstraction of labeled transition systems is formulated using simulation [Milner, 1971] or language

containment.
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q2 q′2

q1 q′1

//
t2

OO

S

//
t1

OO

S

Figure 2.1: Commuting diagram for the simulation relationS.

2.1.2 Definition (Simulation). A simulation relation betweenM1 andM2 is a relationS ⊆ Q1 ×

Q2 that satisfies the following conditions:

1. S is compatible with the state labeling.

∀ q1 ∈ Q1. ∀ q2 ∈ Q2. (q1, q2) ∈ S =⇒ labQ1 q1 = labQ2 q2

2. S is total over the initial states ofM1.

∀ q1 ∈ I1. ∃ q2 ∈ I2. (q1, q2) ∈ S

3. S is invariant under the transition relations.

∀ q1 ∈ Q1. ∀ t1 ∈ T1. ∀ q
′
1 ∈ Q1.

∀ q2 ∈ Q2.

(q1, q2) ∈ S ∧ (q1, t1, q
′
1) ∈ R1 =⇒

∃ t2 ∈ T2. ∃ q
′
2 ∈ Q2. labT 1 t1 = labT 2 t2 ∧ (q2, t2, q

′
2) ∈ R2 ∧ (q′1, q

′
2) ∈ S

(2.1)

Pictorially, Equation 2.1 is described in Figure 2.1. We say thatM2 simulatesM1 if there exists a

simulation relationS ⊆ Q1 × Q2.

The other way to state abstraction is through language containment. Language containment between

M1 andM2 holds if for everyrun1 ∈ L(M1) there exists an equivalent runrun2 ∈ L(M2):

∀ run1 ∈ L(M1). ∃ run2 ∈ L(M2).

∀ k ∈ N. labQ1 q
k
1 = labQ2 q

k
2 ∧ labT 1 t

k
1 = labT 2 t

k
2

(2.2)

2.1.3 Proposition. Simulation implies language containment.

Proof. LetS be a simulation relation betweenM1 andM2. Considerrun1 ∈ L(M1). We construct
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by induction the sequenceq02, t
0
2, q

1
2, . . ., q

n
2 such that(qn1 , q

n
2 ) ∈ S and for allk ≤ n− 1

labQ1 q
k
1 = labQ2 q

k
2 (2.3)

labT 1 t
k
1 = labT 2 t

k
2 (2.4)

(qk2 , t
k
2, q

k+1
2 ) ∈ R2 (2.5)

If q02 ∈ I2 and Equation 2.5 holds fork ∈ N then the functionrun2 : N → Q2 × T2 defined by

run2 k = (qk2 , t
k
2) is a run ofM2 equivalent torun1.

Base Casen = 0. We chooseq02 such that(q01, q
0
2) ∈ S.

Inductive Casen > 0 By induction we have that(qn−1
1 , qn−1

2 ) ∈ S. Therefore, there existtn−1
2 ∈

T2 andqn2 ∈ Q2 that make the diagram below commute:

qn−1
2 qn2

qn−1
1 qn1

//
tn−1

2

OO�
�

�

�

�

�

�

S

//
tn−1

1

OO

S

The converse of Proposition 2.1.3 is not necessarily true as shown by theexample in Figure 2.2. For

each of the two possible runs ofM1 there exists an equivalent run ofM2. However, there is no state

of M2 that simulates the initial stateq10.

9



q10/a1

q11/b1 q12/c1

t12/b2

t11/a3t10/a2

t13/c2

q20/a1

q21/b1 q23/c1

t21/b2

t22/a3t20/a2

t23/c2

q22/a1

M1 M2

Fig. 2.2a.M1 andM2.

state label transition label
q10 a1 t10 a2
q11 b1 t11 a3
q12 c1 t12 b2

t13 c2

Fig. 2.2b.Labeling ofM1.

state label transition label
q20 a1 t20 a2
q21 b1 t21 b2

q22 a1 t22 a3
q23 c1 t23 c2

Fig. 2.2c.Labeling ofM2.

Figure 2.2: Example showing language containment without simulation.
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2.2 Model Checking

Traditional approaches to verification use deductive methods and focusmainly on the proof of cor-

rectness of sequential systems [Hoare, 1969, Lamport, 1980]. Such techniques rely on precondition

and postcondition properties of smaller programs to derive correctness properties of larger pro-

grams. Model checking uses temporal logic [Pnueli, 1977, Clarke et al., 1986] to specify properties

about systems that run on an ongoing basis and automated techniques to verify such properties.

There are two main approaches in model checking. In the automata theoretic approach [Vardi,

1996], the temporal specification is converted to an automaton, negated andthen intersected with

the automaton for the implementation. The property holds if the language of the intersection is

empty. In the algorithmic approach, the specification is verified directly by graph traversal on the

automaton that represents the implementation. The implementation automaton can be represented

either explicitly by storing its states in memory or symbolically using Boolean functions that repre-

sent their corresponding characteristic function. The latter form is calledsymbolic model checking

[Burch et al., 1992] and the Boolean functions are represented compactly using binary decision

diagrams [Bryant, 1986].

We present a temporal logic calledCTL∗ [Clarke et al., 1986]. The semantics of the logic is

described in terms of a state machine that represents the implementation, called a Kripke structure.

A Kripke structure is a tupleM = 〈Q ,R, I ,AP , L〉 where〈Q ,R, I 〉 represents the state machine

andL : Q → 2AP is a labeling function that describes the set of atomic propositions that hold in a

given state.

atomic

path

state

path operator

path quantifier

Figure 2.3: Structure ofCTL∗ formulas.

The structure ofCTL∗ formulas is described in Figure 2.3.CTL∗ has two types of temporal

formulas. Atomic formulas are those in the setAP . Any atomic formula is also a state formula,
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and any state formula is also a path formula, verified on the first state of the path. Complex path

formulas are constructed using path operators. The application of a path quantifier to a path formula

yields a state formula. The syntax of formulas is defined inductively as follows:

Atomic Formulas If p ∈ AP is a proposition thenp is an atomic formula.

State Formulas

• Any atomic formula is also a state formula.

• If f is a path formula thenE f andA f are state formulas.

Path Formulas

• Any state formula is also a path formula.

• If f is a path formula thenX f , G f , F f are paths formulas.

• If f andg are path formulas thenf U g is a path formula.

E andA are called path quantifiers.E f holds in a state if there exists a path from the state that

satisfiesf . Similarly,A f holds in a state, if for all paths from the statef holds. The formulaX f

is true of a path iff holds on the path starting in the next state.G f holds whenf holds on all

suffixes of the path, i.e. holds globally. Similarly,F f holds if there exists a suffix that satisfiesf ,

i.e. f holds in the future. The formulaf U g states thatf must hold continously on all suffixes of

the path up to, but not necessarily including, the suffix whereg holds.

The transition relation of a Kripke structure is required to be total, i.e. for anystateq there exists a

stateq′ such that(q, q′) ∈ R. If π is an infinite path(q0, q1, . . .) we denote the suffix that starts at

positionk by πk = (qk, qk+1, . . .). Satisfiability ofCTL∗ formulas is defined as follows:

Atomic Formulas

q |= p ≡ p ∈ L(q)

State Formulas
q |= E f ≡ ∃ π = (q0, q1, . . .). q = q0 ∧ π |= f

q |= A f ≡ ∀ π = (q0, q1, . . .). q = q0 =⇒ π |= f

Path Formulas
π |= X f ≡ π1 |= f

π |= G f ≡ ∀ k. πk |= f

π |= F f ≡ ∃ k ∈ N. πk |= f

π |= f U g ≡ ∃ k. πk |= g ∧ ∀ l < k. πl |= f

12



There are two subsets ofCTL∗ that are used in practice.LTL is the subset that consists of formulas

of form A f wheref is a path formula that does not contain path quantifiers. The other subset is

CTL which allows only for formulas in which the occurrence of a path operator ispreceded by a

path quantifier. TheCTL temporal operators becomeEX, EG, EF, EU and respectivelyAX,

AG, AF, AU.

ACTL∗ is a subset ofCTL∗ that does not include existential quantifiers. The temporal proper-

ties ofACTL∗ are preserved by simulation. SinceLTL is a subset ofACTL∗, simulation also

preservesLTL properties. In addition,LTL is also preserved by language containment.

2.3 Circuits

In this section we formalize a language for describing circuits. The syntax and semantics of the

language are similar to the ones provided by model checkers such as NuSMV [Cimatti et al., 2002].

Circuits are defined using a language for bitvector expressions and theirsemantics is given using

labeled transition systems.

A name is a string of characters that begins with a letter or underscore and then continues with zero

or more letters, underscore or digits. An identifier is a sequence of one ormore names separated by

a ‘.’. Primed identifiers, identifiers followed by the prime symbol ‘′’, are used to denote next-state

variables.

2.3.1 Definition(Identifier). The setId of identifiers is defined inductively as follows:

• Any name is an identifier.

• If id1 andid2 are identifiers thenid1 . id2 is also an identifier.

Priming an identifier adds the prime symbol to the identifer. The set of primed identifiers is denoted

by Id′. If id ∈ Id thenid ′ ∈ Id′ denotes its primed version. IfV is a set of identifiers,V ′ denotes

the set{ id ′ | id ∈ V }.

LetB denote the set{ 0, 1 }. Bitvector constants are finite words over the alphabetB.

2.3.2 Definition (Bitvector Constant). For n ≥ 1, let Bn denote the set of bitvector constants of

sizen. The set of all bitvectors
⋃
n≥1

Bn is denoted byB+. Given a bitvector constantw ∈ Bn and

i ≤ n, w(i) denotes thei-th bit ofw.

Variables are identifiers with a type. The type of a variable is the setBn, for somen ≥ 1.
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2.3.3 Definition (Variables). V ⊆ Id is called a set of variables if it is associated with a type

functionTy

Ty : V → {Bn }n≥1

Tyis extended overV ′ ⊆ Id′: Ty(v′) = Ty(v). Primed variables refer to next-state variables. If

v is a current state variable,v′ denotes its next-state version. Similarly, ifv′ ∈ V ′ is a next-state

variable,v denotes its current-state version.

2.3.4 Definition(Environment). An environment over the set of variablesV is a function

e : V → B+

that assigns each variable a value of its type:

∀ v ∈ V. e(v) ∈ Ty(v)

If V1 andV2 are disjoint sets of variables ande1 and e2 are environments defined overV1 and

respectively,V2, their unione1 ∪ e2 is the environment overV1 ∪ V2 defined by

(e1 ∪ e2)(v) =




e1(v) : v ∈ V1

e2(v) : v ∈ V2

Let V ⊆ Id and lete be an environment overV . The environmente′ over V ′ is defined by

e′(v′) = e(v).

Consider a set of variablesV1. We sayV2 is a copy ofV1 if there exists a bijective functionφ :

V1 → V2 such that

∀ v ∈ V1. Ty(v) = Ty(φ(v))

If V2 is a copy ofV1 ande1 ∈ Env(V1) we denote bye1
[
V2/V1

]
the environmente2 ∈ Env(V2)

such that:

∀ v ∈ V2. e2(v) = e1(φ
−1(v))

2.3.5 Definition(Bitvector Expression). Let V ⊆ Id be a set of variables andTy be the associated

type function. Bitvectors are typed expressions over constants inB+ and variables inV . We say

that the bitvectort has typeBn using the typing expressiont : Bn. If t : B we sayt is single-bit.

Base Case

• If v ∈ V is a variable such thatTy(v) = Bn, thenv is a bitvector expression of type

Bn.

• If w ∈ Bn is a constant, thenw is a bitvector of typeBn.
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Inductive Case Bitvector expressions are constructed using a set of operators. For such an operator

op, a type rule is used to denote the type requirements on its operands and the type of its

application:
t1 : B

n1 , . . . , tk : B
nk

op(t1, . . ., tk) : Bn

If t is a bitvector expression thenvars(t) stands for the set of variables that appear syntactically in

t. Similarly, consts(t) denotes the set of constantsw ∈ B+ that appear syntactically int.

Variables are assigned values by an environmente overV . The semantics of a constantw : Bn

is [[w]]e = w. The semantics of a variablev : Bn is [[v]]e = e(v). The semantics of a bitvector

expressiont such thatt : Bn is denoted by[[t]]e ∈ Bn.

Subexpression

Type Rule
t : Bn

(t) : Bn

Semantics [[(t)]]e = [[t]]e

Constant

Type Rule
w ∈ Bn

w : Bn

Semantics [[w]]e = w

Variable

Type Rule
v ∈ V, Ty(v) = Bn

v : Bn

Semantics [[v ]]e = e(v)

Bitwise Operators The bitvector operatorop ∈ {not, and, or, xor, . . . } is defined using the

corresponding Boolean operatorop2 ∈ {not2, and2, or2, xor2, . . . }.

Type Rule
t1 : B

n, t2 : B
n

t1 op t2 : Bn

Semantics [[t1 op t2]]e (i) = [[t1]]e (i) op2 [[t2]]e (i), i = 0, n− 1

Bitwise negation requires only one argument and we present it separately.

Type Rule
t : Bn

not t : Bn

Semantics [[not t]]e (i) =not2

(
[[t]]e (i)

)
, i = 0, n− 1

Subrange Let 0 ≤ l ≤ m. The subrange operator[l : m] extracts the sequence of bitsl, l + 1, . . .

m.

Type Rule
t : Bn, m ≤ n

t[l : m] : Bm−l+1

Semantics [[t[l : m]]]e (i) = [[t]]e (i+ l), i = 0, m− l
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Concatenation The concatenation operator:: appends the second argument to the first one.

Type Rule
t1 : B

n1 , t2 : B
n2

t1 :: t2 : Bn1+n2

Semantics [[t1 :: t2]]e (i) =




[[t1]]e (i) : i < n1

[[t2]]e (i− n1) : i ≥ n1
, i = 0, n1 + n2 − 1

Equality The equality operator= compares its operands for equality.

Type Rule
t1 : B

n, t2 : B
n

t1 = t2 : B

Semantics [[t1 = t2]]e =




0 : if [[t1]]e not equals[[t2]]e

1 : if [[t1]]e equals[[t2]]e

Assignment The assignment operator:= is a special case of equality when the left operand is a

variable.

Type Rule
v : Bn, t : Bn

v := t : B

Semantics [[v := t]]e =




0 : if e(v) not equals[[t]]e

1 : if e(v) equals[[t]]e

Nondeterministic Assignment It is a special case of assignment when the right hand side of the

assignment is the expressionchoice.

Type Rule
v : Bn

v := choice : B
Semantics [[v := choice]]e = 1

If-then-else The operatorif-then-elseinterprets its first operand as a Boolean and selects between

the second and third arguments accordingly.

Type Rule
t1 : B, t2 : B

n, t3 : B
n

if t1 then t2 else t3 : Bn

Semantics [[if t1 then t2 else t3]]e =




[[t2]]e : if [[t1]]e equals1

[[t3]]e : if [[t1]]e equals0

Arithmetic Operators We allow bitvector expressions using the standard arithmetic operatorsop

in the set{+, −, ∗, . . . }. The semantics of arithmetic operations uses two functions that

convert bitvectors to integers and conversely, integers to bitvectors:integer : B+ → Z and

repr : Z × N → B+ such that ifw : Bn then

repr(integer(w), n) = w
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The exact definition ofintegerand repr depends on whether bitvector arguments are inter-

preted as signed or unsigned. For the signed case, two’s complement is a suitable represen-

tation. For unsigned operations we use the binary representation of positive integers. The

choice of these encodings and the semantics of overflowing operations does not influence

upon the remaining work.

Type Rule
t1 : B

n, t2 : B
n

t1 op t2 : Bn

Semantics [[t1 op t2]]e = repr
(

integer([[t1]]e) op integer([[t2]]e), n
)

Relational Operators Bitvectors can be compared using the integer relational operatorsop in the

set{<, ≤, ≥, > }.

Type Rule
t1 : B

n, t2 : B
n

t1 op t2 : Bn

Semantics [[t1 op t2]]e =




0 : if integer([[t1]]e) op integer([[t2]]e)

1 : if not integer([[t1]]e) op integer([[t2]]e)

We fix the precedence of operators from high to low to be the following one:

not

[ : ]

::

∗

+ −

< ≤ = ≥>

and

or xor

if-then-else

:=

2.3.6 Example.ConsiderV = { v1, v2, v3, v4 } ande ∈ Env(V ) defined as follows:

variable Ty e

v1 B1 1

v2 B2 10

v3 B3 011

v4 B4 1011

17



Examples of bitvector expression and their semantics is given below:

expression [[·]]e
v4 1011

v1 :: v3 1011

v4 xor (v1 :: v3) 0000

notv4 0100

(v1 :: v3)[1 : 3] 011

(v1 :: v3)[1 : 3] = v3 1

v3 := 111 0

not(v1 :: v3)[1 : 3] = v3) 0

if not((v1 :: v3)[1 : 3] = v3) then v4 else notv4 0100

v2 + 01 11

v4 ≤ 1100 1

Formulas overV are defined inductively: basic formulas are single-bit bitvectors and complex

formulas are formed from simple ones using Boolean connectives. Semantically formulas identify

with a subset of the single-bit bitvectors.

2.3.7 Definition(Formula).

Syntax

• If t : B is a single-bit bitvector thent is a formula.

• If f , f1, f2 are formulas then¬f , f1 ∧ f2, f1 ∨ f2 are formulas.

Semantics The truth value of a formulaf under a given environmente that valuates its variables

is defined by induction over its structure. Iff is true ine, we writee |= f . We define|= as

follows:

• If f is the Boolean bitvectort then

e |= f if [[t]]e = 1

• If f has form¬f1, f1 ∧ f2, f1 ∨ f2 then

e |= ¬f1 if e 6|= f1

e |= f1 ∧ f2 if |= f1 ande |= f2

e |= f1 ∨ f2 if e |= f1 or e |= f2
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2.3.8 Definition(Circuit). A circuit is a tuple

C = 〈Vr ,Vc ,Ty,Vi ,Vo , Insts, Init,Tr〉

• Vr andVc are disjoint sets of identifiers.Vr denotes the set of register variables (also called

state variables or current-state variables).Vc denotes the combinational variables.Vr
′ de-

notes the next-state variables.

• Ty : Vr ∪ Vc → {Bn }n≥1 is the type function.

• Vi andVo are disjoint subsets ofVr ∪ Vc and represent the input and respectively, output

variables.

• Input variables are required to be combinational:Vi ⊆ Vc .

• Instsis a set of circuit instances.

• Init is a set of assignments to current state variables.

• Tr is a set of assignments to combinational and next-state variables and containsexactly

one assignment of formv := t, wheret is defined over variables inVr ∪ Vc , for each

v ∈ Vr
′ ∪ Vc .

Circuits are defined inductively:

Base caseInsts= ∅

Inductive case Insts= { inst1, . . . , instn }

2.3.9 Definition(Circuit Instance). A circuit instance is a tupleinst = 〈id,C, InputArg,OutputArg〉

where:

• id is an identifier

• C is a circuit

• InputArg is a set of bitvector expressions in bijection withC .Vi and denotes the input argu-

ments

• OutputArgis a set of combinational or next-state variables of the enclosing circuit, in bijection

with C .Vo and denotes the output arguments
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The instanceinst stands for a copyφinst .id(C ) of C with variables and instance names renamed by

the mappingφinst .id : Id ∪ Id′ → Id ∪ Id′ defined by

φinst .id(id) = id . id

The mappingφinst .id naturally extends to bitvector expressions, to formulas, to sets of such objects

and to functions over such sets. Given a bitvectort, φinst .id(t) is obtained by substituting each

occurrence of a variablev in t by φinst .id(v). Renaming preserves the variable types:

φinst .id(Ty)(φinst .id(v)) = Ty(v)

Instancesinst i = 〈id i,Ci, InputArg i,OutputArg i〉 of C are renamed to

φinst .id(inst i) = 〈φinst .id(id i),Ci, φinst .id(InputArg i), φinst .id(OutputArgvi)〉

Let inst be an instance of a circuitC . Let v ∈ inst .C .Vi ∪ inst .C .Vo . We defineArg(C , inst .v)

to be the actual argument toinst .v in C . When the context is clear, we only writeArg(v).

LetC be a circuit and letC .Insts= { inst1, . . . , instn }. We use the notation

Labels(C .Insts) = { inst1.id, . . . , instn.id }

If id ∈ LabelsC .InststhenC .Insts[id ] denotesinst ∈ C .Instssuch thatinst .id = id .

In the next example we introduce syntactic sugar to represent circuits textually.

2.3.10 Example.In Figure 2.4 we describe a 1-bit adder implemented using two half-adders.Lines

1–5 describe the HalfAdder circuit:

Vr = ∅

Vc = { a, b, sum, cout }

Vi = { a, b }

Vo = { sum, cout }

Insts = ∅

Init = ∅

Tr = { sum := a xor b, cout := a and b }

Lines 6–14 describe the Adder circuit:

Vr = ∅
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1 ckt HalfAdder(a, b : bitvec[1])(sum, cout : bitvec[1])
2 assign
3 sum := a xor b;
4 cout := a and b;
5 end

7 ckt Adder (a, b, cin : bitvec[1])(sum, cout : bitvec[1])
8 var
9 sum1, cout1, cout2 : bitvec[1];

10 inst
11 ha1 : HalfAdder(a, b)(sum1, cout1)
12 ha2 : HalfAdder(sum1, cin)(sum, cout2)
13 assign
14 cout := cout1 or cout2;
15 end

Figure 2.4: Adder circuit.

Vc = { a, b, cin, sum, cout , sum1, cout1, cout2 }

Vi = { a, b, cin }

Vo = { sum, cout }

Insts = { 〈ha1,HalfAdder, { a, b }, { sum1, cout1 }〉,

〈ha2,HalfAdder, { sum1, cin }, { sum, cout2 }〉}

Init = ∅

Tr = { cout := cout1 or cout2 }

2.3.11 Definition(Variable Dependency Graph). Let C = 〈Vr ,Vc ,Ty,Vi ,Vo , Insts, Init,Tr〉. The

variable dependency graph is a digraphVarDepGraph(C ) = 〈Nodes,Succ〉:

Nodes ≡ Vr ∪ Vc ∪ Vr
′

Succ ≡ { (v1, v2) | ∃ t ∈ Expr(Vr ∪ Vc ∪ B+). v2 := t ∈ Tr ∧ v1 ∈ vars(t) } ∪ Succinsts

The setSuccinsts is defined inductively. We writev1 �var v2 to denote thatv1 andv2 are in the

transitive closure ofSucc.

Base CaseIf Insts= ∅ thenSuccinsts ≡ ∅.
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Inductive Case

Succinsts ≡
⋃

inst∈Insts
{ (v1, v2) | ∃ vi ∈ inst .C .Vi .

∃ vo ∈ inst .C .Vo .

∃ t ∈ Expr(Vr ∪ Vc ∪ B+).

vi �var vo ∧

t = Arg(vi) ∧

v2 = Arg(vo) ∧

v1 ∈ vars(t) }

In order to simplify the analysis of circuits we require that all circuits have cycle free variable

dependency graphs.

2.3.12 Definition(Circuit Elaboration). Circuit elaboration gives a precise semantics to circuit in-

stantiation. The elaboration of a circuitC , denoted by byElab(C ), is a circuit that has no instances:

Elab(C ).Insts= ∅

Elab(C ) is defined by induction over the structure ofC .

• If C .Insts= ∅ then

Elab(C ) = C

• If C .Insts= { 〈id1,C1, InputArg1,OutputArg1〉, . . . , (〈idn,Cn, InputArgn,OutputArgn〉 }

then

Elab(C ).Vr = C .Vr ∪
n⋃

i=1

(
Elab(φidi

(Ci))
)
.Vr

Elab(C ).Vc = C .Vc ∪
n⋃

i=1

(
Elab(φidi

(Ci))
)
.Vc

Elab(C ).Ty = C .Ty ∪
n⋃

i=1

(
Elab(φidi

(Ci))
)
.Ty

Elab(C ).Vi = C .Vi

Elab(C ).Vo = C .Vo

Elab(C ).Init = C .Init ∪
n⋃

i=1

(
Elab(φidi

(Ci))
)
.Init

Elab(C ).Tr = C .Tr ∪
n⋃

i=1

(
Elab(φidi

(Ci))
)
.Tr ∪ InputAsns ∪ OutputAsns
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where

InputAsns ≡
n⋃

i=1

{
id i.v := InputArg(inst i.v) | v ∈

(
Elab(φidi

(Ci))
)
.Vi

}
(2.6)

OutputAsns ≡
n⋃

i=1

{
OutputArg(inst i.v) := id i.v | v ∈

(
Elab(φidi

(Ci))
)
.Vi

}

Equation 2.6 explains why input variables and the arguments of output variables must be com-

binational: the semantics of input and output arguments to circuit intances is given by variable

assigment, and variable assignment is allowed only to combinational or next-state variables.

2.3.13 Example.We elaborate the adder circuit introduced in Example 2.3.10. The adder hastwo

instancesha1 andha2 of the HalfAdder circuit. The two instances are renamed. By applyingφha1

to HalfAdder we get:

φha1
(HalfAdder).Vr = ∅

φha1
(HalfAdder).Vc = { ha1.a, ha1.b, ha1.sum, ha1.cout }

φha1
(HalfAdder).Vi = { ha1.a, ha1.b }

φha1
(HalfAdder).Vo = { ha1.sum, ha1.cout }

φha1
(HalfAdder).Insts = ∅

φha1
(HalfAdder).Init = ∅

φha1
(HalfAdder).Tr = { ha1.sum := ha1.a xor ha1.b, ha1.cout := ha1.a and ha1.b }

Similarly, applyingφha2
to HalfAdder yields:

φha2
(HalfAdder).Vr = ∅

φha2
(HalfAdder).Vc = { ha2.a, ha2.b, ha2.sum, ha2.cout }

φha2
(HalfAdder).Vi = { ha2.a, ha2.b }

φha2
(HalfAdder).Vo = { ha2.sum, ha2.cout }

φha2
(HalfAdder).Insts = ∅

φha2
(HalfAdder).Init = ∅

φha2
(HalfAdder).Tr = { ha2.sum := ha2.a xor ha2.b, ha2.cout := ha2.a and ha2.b }

Sinceφha1
(HalfAdder).Insts= ∅ andφha2

(HalfAdder).Insts= ∅ we have

Elab(φha1
(HalfAdder)) = φha1

(HalfAdder)

Elab(φha2
(HalfAdder)) = φha2

(HalfAdder)
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We proceed to the elaboration of the Adder:

Elab(Adder).Vr = ∅

Elab(Adder).Vc = { a, b, cin, sum, cout , sum1, cout1, cout2 } ∪

{ ha1.a, ha1.b, ha1.sum, ha1.cout } ∪

{ ha2.a, ha2.b, ha2.sum, ha2.cout }

Elab(Adder).Vi = { a, b, cin }

Elab(Adder).Vo = { sum, cout }

Elab(Adder).Insts = ∅

Elab(Adder).Init = ∅

Elab(Adder).Tr = { cout := cout1 or cout2 } ∪

{ ha1.sum := ha1.a xor ha1.b, ha1.cout := ha1.a and ha1.b } ∪

{ ha2.sum := ha2.a xor ha2.b, ha2.cout := ha2.a and ha2.b }

Given a set of variable assignmentsAsn we define the formula associated with it by

formula(Asn) ≡
∧

v :=t∈Asn

v := t

2.3.14 Definition(Circuit Semantics). The semantics of a circuitC is given as a labeled transition

system

LTS(C ) = 〈QC,RC,TC, IC〉

• The set of statesQC is the set of environments overElab(C ).Vr .

• The set of transition labelsTC is the set of environments overElab(C ).Vc .

• The transition relationRC ⊆ QC × TC × QC is defined by the assignmentsElab(C ).Tr:

(qC, tC, qC
′) ∈ RC ≡ (qC ∪ tC ∪ qC

′
[
Vr

′
/Vr

]
) |= formula(Elab(C ).Tr)

• The set of intial states is defined by the assignmentsElab(C ).Init:

qC ∈ IC ≡ qC |= formula(Elab(C ).Init)

2.3.15 Example.Figure 2.5 and Figure 2.6 describe two two-bit counters. Each figure shows the

circuit description and the corresponding labeled transition system defined in Definition 2.3.14.

Both circuits have a register variable for the counter value; they differ withrespect to the increment.
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1 ckt counter(inc : bool)(count : bitvec[2])
2 assign
3 count ′ := if inc then count + 1 elsecount ;
4 end

inc = 0

inc = 1

inc = 1

inc = 0

inc = 0inc = 0inc = 1 inc = 1

count = 10 count = 01

count = 11 count = 10

Figure 2.5: Counter With Combinational Increment

In one the increment is a combinational input and in the other it is a register. The two counters

have the same language with respect to the value of the counter variable. However they are not

bisimilar: the counter with combinational increment simulates the one with registeredincrement,

but not viceversa.

2.3.16 Proposition.Let C be a circuit such that all its instances are combinational. LetqC ∈ QC,

qC
′ ∈ QC andtC ∈ Env(Vc). If the following conditions hold:

∀ ‘v := expr ’ ∈ Tr. (tC ∪ qC
′
[
Vr

′
/Vr

]
)(v) = [[expr ]]qC∪qC

(2.7)

∀ inst ∈ Insts. ∃ (qI , tI , qI
′) ∈ LTS(inst .C ).RC.

∀ v ∈ inst .C .Vi ∪ inst .C .Vo . tI(v) = tC(Arg(v))
(2.8)

then there existstC1 ∈ TC such thattC ⊆ tC1 and(qC, tC1, qC
′) is a step ofLTS(C ), i.e.(qC, tC1, tC

′) ∈

RC.
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6 ckt counter(inci : bool)(count : bitvec[2])
7 var
8 inc : bool;
9 assign

10 count ′ := if inc then count + 1 elsecount ;
11 inc′ := inci ;
12 end

inci = 0

inci = 1

inci = 1

inci = 0inci = 1

count = 01
inc = 0

count = 00
inc = 1

count = 11
inc = 1

count = 11
inc = 0

inci = 0

inci = 1

inci = 1

inci = 0inci = 1

count = 01
inc = 0

count = 01
inc = 1

count = 10
inc = 1

count = 10
inc = 0

inci = 0 inci = 0

inci = 0

inci = 0

inci = 1

inci = 1

Figure 2.6: Counter With Registered Increment

Proof. We definetC1 as follows:

∀ inst i ∈ Insts. ∀ v ∈ (Elab(inst i.C )).Vc .

tC1(id i.v) = tIi(v)

It follows thatqPc ∪ tC1 ∪ qPc
′
[
Vr

′
/Vr

]
) satisfies all the assignments inElab(C ) since the restric-

tion of tC1 to the variables of each elaborated instance equals the transition label of theinstance.
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2.4 Related Work

Pipelining is a prevalent technique to improve the throughput of hardware circuits. The most ad-

vanced use of pipelining occurs in microprocessors circuits. Formal verification and other validation

techniques that target microprocessors will therefore deal implicitly or explicitly with the challenges

of pipelining. We catalog the well known approaches to microprocessor verification in Section 2.4.1.

We describe pipeline specific approaches in Section 2.4.2. The current body of work on datapath

abstraction is summarized in Section 2.4.3.

2.4.1 Microprocessor Verification

The challenges of microprocessor verfication manifest at two main levels: specification and the state

explosion problem. First, a verfication technique must formulate correctness of the implementation

with respect to a reference specification. Second, such a methodology must address the state explo-

sion problem by casting the correctness problem in a logic with an efficient decision procedure or

decomposition and abstraction techniques.

In the case of microprocessors, the specification is readily available in the form of the instruction

set architecture. At this level, the specification is often thought of as a circuit that executes one

instruction at a time. Each type of instruction is described in terms of the side effects it performs

on the specification state which consists of the programmer visible state holding elements such as

the program counter, register file and memory. A pipelined microprocessoroverlaps the execution

of several instructions at a time and updates to its state holding elements are performed by multiple

instructions in various stages of execution.

One of the well accepted correctness criteria is Milner’s simulation [Milner, 1971]. The challenge

in applying simulation as a correctness statement for microprocessors is to align the specification

state with the implementation state. Microprocessor designs usually allow for an execution mode

called flushing that continues the execution of inflight instructions but prevents new ones from being

fetched and entering the pipeline. Burch and Dill [1994] were the first to use flushing to formulate

a correctness criterion. Their method uses an abstraction function that flushes the implementation

state and then projects out the programmer visibile state: the program counter, register file and

memory. The abstraction function reduces to projectio when the pipeline is in thebeginning and end

state of a computation. Proving the commuting diagram in Milner’s simulation implies correctness

with respect to the programmer visible state.

Burch and Dill model the pipeline datapath using uninterpreted functions andreduce the verification

of the commuting diagram to a decision problem in a restricted logic with uninterpreted functions

and positive equality. The scalability of the approach is limited by the capacity ofthe decision

27



procedure and therefore by the size of the terms that describe the commutingdiagram. The terms

that describe flushing increase proportionally to the number of cycles needed to flush the imple-

mentation. For simple linear pipelines, this corresponds to the number of inflightinstructions. For

complex pipelines with out-of-order execution and variable instruction latencies, flushing becomes

more expensive.

Velev and Bryant [Velev and Bryant, 2000, Velev, 2001] extend the capacity of the Burch-Dill

flushing technique with customized rewrite rules that target the various typesof logic subterms

encountered in flushing the implementation. They also migrate the underlying decision procedure

to a SAT based implementation [Velev and Bryant, 2003]. A similar approach to the verification of

an XScale microprocessor has been applied in Srinivasan and Velev [2003].

Another way to improve flushing is through compositional verification [Levitt and Olukotun, 1997,

Skakkebak et al., 1998, Hosabettu et al., 1998]. The method of completion functions of Hosabettu

et al. decomposes the commuting diagram based on flushing into several commuting diagrams

each dealing with a particular stage of the pipeline. The proof of the diagramfor a particular stage

assumes the correctness of the downstream stages. For a linear pipeline of lengthn, there aren

commuting diagrams. For more complex pipelines, the method suffers from a combinatorial explo-

sion in the number of possible paths through the pipeline. Initially proposed in atheorem prover

setting, the modularity of completion functions was leveraged using an off-the-shelf equivalence

checker on several RTL design [Aagaard et al., 2004]. Equivalence checking techniques were also

used by Appenzeller and Kuehlmann [1995] to verify a PowerPC microprocessor and by Bhagwati

and Devadas [1994] to verify a reduced Alpha design.

The logic of positive equality of Burch and Dill was extended in the UCLID verifier [Lahiri et al.,

2002]. The decision procedure was implemented by translation to SAT. The translation does how-

ever suffer from false negatives and requires manual effort to debug the counterexamples. Proofs

done in UCLID are inductive and in most cases benefit from user generated invariants. Other ap-

proaches to microprocessor verification that use UCLID include that of Manolios and Srinivasan

[2004], Andraus and Sakallah [2004].

General theories for conducting microprocessor correctness proofs in a theorem proving setting have

been presented [Windley, 1995, Huggins and Campenhout, 1998]. Millerand Srivas [1995] describe

using the PVS theorem prover to prove a commuting diagram based correctness statement for an

industrial CISC microprocessor. The effort put in the complete verification was over 3000 hours.

Sawada and Hunt [1997] use the ACL2 theorem prover [Kaufmann andMoore, 1997] to verify an

out-of-order microprocessor with dynamic resolution of data hazards. The toplevel correctness is

stated using flushing. The decomposition of the proof is based enhancing the execution trace of the

microprocessor with a table of history variables called MAETT. The MAETT facilitates the proof

of invariants.
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There are also approaches that use a mix of theorem proving for proofdecomposition and model

checking for the verification of the control. McMillan [1998] extends the SMV model checker

[McMillan, 1992] with support for compositional reasoning and assume-guarantee style proofs. His

approach leverages symmetric data types [Norris IP and Dill, 1996]. A mix oftheorem proving and

model checking with uninterpreted functions is also used by Berezin et al. [1998], Jacobi [2002].

2.4.2 Hazard-Based Verification Techniques

Validation methods that use pipeline hazards fall into several categories: property specification and

correctness statements, decomposition and abstraction, and automatic test pattern generation.

Aagaard [2003] describes a correctness statement that refers at thetoplevel only to the three types of

hazard correctness: datapath, control and structural. Aagaard shows that hazard correctness implies

the widely accepted Burch-Dill flushing correctness criterion. Windley and Coe [1995] uses HOL

[Gordon and Melham, 1993] to define a general theory for the specification and verification of

pipelined microprocessors. Ho et al. [1998] use temporal logic to specifyproperties about structural

and control hazards. They call such properties transmission properties. Their method abstracts

the pipeline datapath using generalized OR gates that output the collection of all the input values.

Transmission properties are then verified using an off-the-shelf model checker.

Mishra et al. [2002] observe that microprocessor verification is made more challenging due to the

adhoc creation of the specification model, usually by reverse engineeringthe RTL design. They

propose a top down approach whereby a ‘golden model’ is created in an architecture description

language (ADL). The ADL specifies how the implementation should handle hazards: e.g. by stalling

the pipeline or by restoring the program counter. The ADL model is then used to generated state

machine like specifications against which which they verify the control circuitry. A similar approach

is described in Higgins and Aagaard [2005].

Due to the fact that pipeline hazards manifest when multiple instructions interact in the pipeline,

coverage of such scenarios using automated test generation is challenging since crafting a suitable

sequence of instructions must take into account instruction dependencies, latency through the exe-

cution units and the structure of the pipeline. Iwashita et al. [1994] propose a methodology for test

case generation using symbolic image computation, similar to reachability analysis inmodel check-

ing. They first perform a reduction of the pipelined design with respect tothe type of properties

mentioned in the test cases. The abstract model has fewer instruction types,and only the latency

of execution units is preserved. Symbolic reachability on the abstract modelis used to derive input

sequences for the original design. Gupta et al. [1997] analyze the conditions under which a test

generation approach based on an abstract model achieves coverageof the original design. Diep and

Shen [1995] use architectural annotations to compute all possible read-after-write (RAW) hazard
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in a pipeline. The need for automated test case generation is further advocated with the use of the

SPEC benchmarks that is found to achieve poor coverage of the hazards. A similar approach using

ADL specifications is taken by Mishra and Dutt [2004], Kohno and Matsumoto [2001].

2.4.3 Datapath Abstraction

There are several approaches to datapath abstraction in formal verification. Exact abstractions [Ho-

jati and Brayton, 1995, Namjoshi and Kurshan, 2000] exploit certain desirable conditions on the

transformations and predicates applied to the data values by the control circuitry. The conditions

under which the abstraction is exact are identified by syntactic examination ofthe circuit. Approx-

imate abstractions vary in the degree of the precision they provide. Ho et al.[1998] replace the

datapath with union gates that preserve the propagation of inputs into outputsbut nothing else. Data

predicates become non-deterministic. Datapaths are abstracted with uninterpreted functions and are

incrementally improved using counterexamples in Andraus et al. [2006]. Other approaches [Paruthi

et al., 1998, Zaraket et al., 2005] aim at preserving the data predicatesbut restrict the data domain

to representative values.

Hojati and Brayton [1995] identify sufficient separation conditions between datapath and control to

ensure that the datapath can be abstracted exactly. When the datapath is restricted to perform only

data movement operations, the controller is called data independent. Data independent controllers

cannot examine any data predicates. With data independent controllers it issound to reduce datapath

variables to a single bit. An extension that generalizes previous work [Norris IP and Dill, 1996] is

to allow both data movement and data equality tests. In their terminology, the circuitis said to have

a data comparison controller. Hojati and Brayton prove negative results for their model in the case

when more than equality tests is allowed.

Bjesse [2008] partitions a word-level netlist into subnets that behave as data comparison controllers.

Data-comparison controller nodes (e.g. , equality, multiplexers, etc. ) are left as word-level opera-

tors. Sub-word operators (e.g. , concatenation, extraction with constant indices, etc. ) are decom-

posed into sub-words. All other operators are exploded into bit-level operations.

A method that generalizes the approach by Hojati and Brayton is presentedby Namjoshi and Kur-

shan [2000]. Their technique calculates the transition relation of each predicate that needs to be

preserved using Dijkstra’s weakest precondition. This in turn leads to thediscovery of new pred-

icates that need to be preserved. Rewrite rules are used to decide if a newpredicate is expressed

using Boolean connectives in terms of the ones discovered previously.

Paruthi et al. [1998] verify datapath and mixed control/datapath properties. They identify three

classes of variables: datapath, control, and mixed. Mixed and control variables are preserved. As

with Hojati and Brayton, control circuitry is allowed only to move the datapath variables. However,
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in this model, the value of datapath variables is allowed to be computed from the value of other

variables using arbitrary operators. They use an interval propagationalgorithm to reduce the width

of numeric signals to the minimum necessary to preserve exactness (i.e. , no underflow or overflow).

Their method does not handle loops with a dynamic count of iterations.

Zaraket et al. [2005] describe an abstraction framework based on bisimulation minimization. Their

algorithm uses graph optimization heuristics to identify suitable components of a bit-level netlist

for which minimization is desirable. The algorithm computes the classes of an input equivalence

that preserves bisimilarity of the subcomponent. Filters of combinational logic are placed to restrict

inputs to selected representatives of the equivalence classes. Their method reduces the size of the

netlist that propagates datapath values to the bitwidth needed to tranfer and store representative

values. The minimized circuit still contains the datapath blocks that transform data values.

Ho et al. [1998] are interested in the verification of parcel-flow properties similar to some aspects

of our work: loss, duplication, and ordering. The main idea is to replace thedatapath circuitry with

wires, replace feedback signals from datapath to control with non-deterministic inputs, and then

verify properties about how “tokens” travel through the pipeline. Theyautomatically separate dat-

apath and control based on manually selected seed control signals. Theyuse abstract interpretation

to show that parcel-flow properties are preserved on the abstracted circuit.

Andraus et al. [2006] use a language of terms with uninterpreted functions. Heuristics are em-

ployed to identify datapath variables based on their width. They use an SMT solver to perform the

verification and refine their abstraction in a counterexample-guided refinement loop.

The pipeline model that we propose shares similarities with the token net approach [Ho et al., 1998].

Our pipeline model consists of a network of parcel variables and a controller that steers the parcels

through the network. In both models, the toplevel movement of the parcels through the network

obeys the rules of data independent controllers identified by Hojati and Brayton [1995], i.e. only

copying is allowed. The properties that are likely to be verfied using our abstraction methodology

are also similar to the ones in the work by Ho et al.. Both our abstraction and theirs are conservative

with respect to parcel flow properties. We differ in how we approach datapath abstraction. They

perform a syntactic transformation of the circuit by replacing datapaths withtoken union gates.

Datapath predicates in the abstract circuit take nondeterministic values, which can influence parcel

flow. Our approach is aimed at preserving datapath predicates and thus less likely to produce false

counterexamples.

Our datapath abstraction technique is based on identifying the equivalences classes of parcel values

as they move through the pipeline, under the various combinations of datapathpredicates. Because

the equivalence holds inductively as the parcels transfer through the pipeline this approach bears

similarity to that of Namjoshi and Kurshan that uses bisimulation minimization. While theirap-

proach works at the program level, ours exploits the pipeline structure ofthe circuit. One difficulty
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in applying the method in Namjoshi and Kurshan [2000] is convergence of the algorithm. Their

algorithm starts with a set of predicates to be preserved and then adds further predicates inductively

until the next-state value of each predicate is expressible in terms of the current state value of the set

of predicates. In the case of pipelined circuits, their method, which uses Dijkstra’s weakest precon-

dition, generates predicates that contain in their definition the datapaths to be abstracted. Identifying

whether the set of predicates is stable is essentially what our method does.
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Chapter 3

Pipeline Models

This chapter presents our model for pipelined circuits. The definition of thepipeline model is given

in Section 3.1. In Section 3.2 we instantiate the concepts of simulation and language containment

for the verification of control properties of pipeline models. In Section 3.3 we discuss abstract

interpretation of pipeline models.

3.1 Pipeline Models

This section describes our formalization of pipelined circuits as pipeline models. Conceptually, a

pipeline model consists of a network of parcel variables and datapath instances. In the network,

parcels are either copied between variables or transformed by datapath instances. The parcel flow

through the network is coordinated by a state machine that represents the control. The datapath

instances are modeled as circuits with annotations describing the parcel andcontrol variables. The

network of variables and datapath modules is formalized using if-then-else parcel expressions.

Our presentation of concepts is illustrated using a pipelined circuit calledDiffAddMult. The struc-

ture of the circuit is described in Figure 3.1.DiffAddMult has one inputvi and two outputsvo1
andvo2. It has four combinational datapath instances:Sub, Neg , Add andMult . There are four

registers to hold the intermediate parcel values:rNeg , rAdd , rMult1 andrMult2. The input values

are tuples of form〈i, j, k,⊙〉 and the output values that are produced correspond to the operation

|i − j| ⊙ k, where⊙∈ {+, ∗ }. According to their values, inputs to the pipeline follow one of

several paths:

• Sub → Neg → Add

• Sub → Neg → Mult
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vo1

v1

Add

pclN

pclP

rAdd

Neg

pclN

pclP

rNeg

Sub

pclP

pclN 1 pclN 2

•

•
•

•

selN

selN

rMult1

• •

Mult

pclP1 pclP2

stateOutstateIn

pclN 1 pclN 2

vo2

rMult2

Control

Figure 3.1: Block Diagram ofDiffAddMult

• Sub → Add

• Sub → Mult

The datatypes of an 8-bit version ofDiffAddMultare described in Figure 3.2.

The Sub instance, described in Figure 3.3 performs the operationi − j. The tuple〈i, j, k,⊙〉 is

encoded in the variablepclP . The valuesi, j are integers represented in 2’s complement andk is

a natural. The circuit produces two datapath outputs in the variablespclN 1 andpclN 2. The output

pclN 1 is meant for theNeg instance and therefore it encodes the operation⊙. On the other hand,
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type op ty is { add, mult };

type sub in ty is
tuple {

i : bitvec[8],
j : bitvec[8],
k : bitvec[8],
op : op ty

};

type neg in ty is
tuple {

i : bitvec[8],
j : bitvec[8],
op : op ty

};

type addmult in ty is
tuple {

i : bitvec[8],
j : bitvec[8]

};

Figure 3.2:DiffAddMultdata types.

1 ckt sub (pclP : sub in ty)(pclN 1 : neg in ty, pclN 2 : addmult in ty, selN : bitvec[3])
2 var
3 diff : bitvec[8];
4 assign
5 diff := pclP .i − pclP .k;
6 pclN 1 := tuple { i = diff , j = pclP .k, op = pclP .op};
7 pclN 2 := tuple { i = diff , j = pclP .k };
8 selN := if diff < 0 then 001
9 else ifpclP .op = add then010

10 else100;
11 end

Figure 3.3:Sub Instance
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pclN 2 is meant to reach directly one of the instancesAdd or Mult and therefore it does not have

to represent⊙. The control outputselN uses a one-hot representation to encodes the next instance

to process the parcel: ifi − j is negative the parcel goes to theNeg instance, otherwise toAdd or

Mult as required by⊙. In our example the path of parcels through the pipeline is encoded by the

selN outputs of theSub andNeg instances. TheselN signals are used by the control circuitry to

drive the muxes of the parcel variables.

PclP

PclN

control inputs control outputs

Figure 3.4: Datapath Module

Datapath modules are annotated combinational circuits. The block diagram for a generic datapath

module is shown in Figure 3.4. The setsPclPandPclNdenote the input and output parcel variables.

The variables inPclPandPclNare defined by the annotated circuit.

3.1.1 Definition (Datapath Module). A datapath moduledp is a tuple〈C,PclP,PclN,Vctrl 〉 such

that:

• C is a combinational circuit

• PclP⊆ C.Vi is the set of input parcel variables

• PclN⊆ C.Vo is the set of output parcel variables

• Vctrl ⊆ C.Vi ∪ C.Vo is the set of control variables

The datapath module forSub is defined as follows:

dpSub = 〈C,PclP,PclN,Vctrl 〉

C = Csub

PclP = { pclP }

PclN = { pclN 1, pclN 2 }

Vctrl = { selN }
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1 ckt neg (pclP : neg in ty)(pclN : addmult in ty, selN : bitvec[2])
2 var
3 abs : bitvec[8];
4 assign
5 abs := 0− pclP .i;
6 pclN := tuple { i = abs, j = pclP .j };
7 selN := if pclP .op = add then01else10;
8 end

dpNeg = 〈C,PclP,PclN,Vctrl 〉

C = Cneg

PclP = { pclP }

PclN = { pclN }

Vctrl = { selN }

Figure 3.5:Neg Datapath Module

TheNeg instance is described in Figure 3.5. Its input parcel variable encodes thetuple〈(i− j), k,⊙〉,

wherei− j < 0. The resulting output parcel is sent toAdd orMult depending on the operation⊙.

1 ckt add (pclP : addmult in ty)(pclN : bitvec[8])
2 assign
3 pclN := pclP .i + pclP .j ;
4 end

dpAdd = 〈C,PclP,PclN,Vctrl 〉

C = Cadd

PclP = { pclP }

PclN = { pclN }

Vctrl = ∅

Figure 3.6:Add Datapath Module

TheAdd instance is described in Figure 3.6. Its input parcel variable encodes thetuple〈|i− j|, k〉.

It produces the result of the operation|i− j|+ k.

The Mult instance is described in Figure 3.7. It works in several stages. The argumentpclP1

holds the parcel received from a previous datapath instance and represents the tuple〈|i− j|, k〉.

The argumentpclP2 holds the result of partial products. The operation interprets the operands as
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1 type mult pp ty is tuple { pp1 : bitvec[4], pp2 : bitvec[4] };
2
3 ckt mult (pclP1 : addmult in ty, pclP2 : mult pp ty, stateIn : bitvec[3])
4 (pclN 1 : bitvec[8], pclN 2 : mult pp ty, stateOut : bitvec[3], done : bool)

5
...

6
7 end

dpMult = 〈C,PclP,PclN,Vctrl 〉

C = Cmult

PclP = { pclP1, pclP2 }

PclN = { pclN }

Vctrl = { stateIn, stateOut }

Figure 3.7:Mult Datapath Module

2-digit hex numbers and multiplies them according to the standard algorithm, which corresponds to

the multiplication of two polynomials:(bx + a) × (dx + c). Each polynomial represents an 8-bit

positive number in the formn = high(n)x + low(n) wherehigh(n) = n ÷ 24 and low(n) = n

mod 24. Multiplying the two polynomials we getbdx2+(bc+ad)x+ac which represents a 16-bit

number. The 8-bit result is thus given by(low(bc+ad)+high(ac))x+ low(ac). Figure 3.8 presents

the implementation of the multiplication operation. Figure 3.8a describes the decisiontree used to

choose the order in which a succession of 4-bit multiplications and additions are performed. The

nodes of the decision tree denote the state of the computation. Thus000 denotes the initial state

and111denotes the final state. The labels on the edges denote the partial arithmetic operations that

are performed and the corresponding condition. The results of the partial operations are returned

in pclN . The current state and the next state are in the control variablesstateIn and stateOut .

Figure 3.8b represents in more detail the operations performed by each step.

A pipeline model defines two types of variables: parcel and control. The modeling enforces a

separation between parcel and control variables according to the view of the pipeline as a network

of parcel variables and datapath instances through which parcels flow as steered by the control.

Parcel values influence control through the control outputs that datapaths produce.

The set of control variables of a pipeline model is denoted byVctrl . In theDiffAddMultexample, the

existence of a valid parcel in one of the parcel registers,rNeg , rAdd , rMult1, rMult2, is represented

using correspondingly named control variables:validNeg , validAdd , validMult1, validMult2. The
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0

a = 0
b × c

000

b = 0 b 6= 0

111 111 011

010001

a 6= 0
a × c

b = 0
a × d

+

b 6= 0
b × c

111

100

111 110

d = 0
+

d 6= 0
a × d

+

111

+

bc

adx+ ac bcx+ ac

(bc+ ad)x+ ac

Fig. 3.8a.Decision Tree
State Condition Operations Next State

000
a = 0 b × c 001

a 6= 0 a × c 010

001
b = 0 111

b 6= 0 111

010
b = 0 a × d 011

b 6= 0 b × c 100
011 low(ad) + high(ac) 111

100
d = 0 low(bc) + high(ac) 111

d 6= 0 a × d ∧ low(bc) + high(ac) 110
110 low(ad) + (low(bc) + high(ad))︸ ︷︷ ︸

previous step

111

Fig. 3.8b.Transition Table

Figure 3.8: Sequential Multiplication
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Variable Value
req i ,Sub input variable
reqSub,Neg req i,Sub ∧ selN Sub = 00
reqSub,Add req i,Sub ∧ selN Sub = 01
reqSub,Mult req i,Sub ∧ selN Sub = 10
reqNeg ,Add validNeg ∧ selNNeg = 0
reqNeg ,Mult validNeg ∧ selNNeg = 0
reqAdd ,o1 validAdd

reqMult ,Mult validMult1 ∧ stateOut 6= 111
reqMult ,o2 validMult1 ∧ stateOut = 111

Table 3.1: Request variables.

Variable Value
accSub,i req i ,Sub
accNeg ,Sub reqSub,Neg ∧ ¬stallNeg

accAdd ,Sub reqSub,Add ∧ ¬(reqNeg ,Add ∨ stallAdd )

accAdd ,Neg reqNeg ,Add ∧ ¬stallAdd
accMult ,Sub reqSub,Mult ∧ ¬(reqNeg ,Mult ∨ reqMult ,Mult ∨ stallMult)

accMult ,Neg reqNeg ,Mult ∧ ¬(reqMult ,Mult ∨ stallMult)

accMult ,Mult reqMult ,Mult

acco1,Add input variable
acco2,Mult input variable

Table 3.2: Accept variables.

transfer of parcels forDiffAddMult is performed through a handshake mechanism. The two parts of

the handshake are requests and accepts. Both accepts and requests are modeled using combinational

variables. Requests denote where parcels need to transfer in the next cycle and are calculated using

control outputs of the datapaths such as theselN output ofSub andNeg or stateOut of Mult .

Table 3.1 describes the request variables used byDiffAddMult. Accepts confirm the request for the

transfer of a parcel and the transfer happens in the current cycle. There is an accept-request pair of

variables for each edge along which parcels can transfer. Table 3.2 describes the accept variables. To

model the stalling of parcels in the parcel registers we use three more variables: stallNeg , stallAdd
andstallMult . Parcels processed byAdd orMult stall if the environment does not accept or in order

to satisfy an ordering property by waiting until an older instruction is done. Aparcel stalls inNeg

if it makes a request that is not granted:

stallNeg = (reqNeg ,Add ∧ ¬accAdd ,Neg) ∨ (reqNeg ,Mult ∧ ¬accMult ,Neg)
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Fig. 3.9a.Both instructions transfer thenB stalls.
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Fig. 3.9b.WhenA is done both instructions exit.

Figure 3.9:B waits untilA finishes processing.

The control circuitry is responsible for ensuring that parcel flow through the pipeline obeys certain

desired properties. Figure 3.9 and Figure 3.10 describe pipeline behaviours in which two instruc-

tions,A andB, have a constrained flow. Figure 3.10 describes an ordering propertyof theDiffAd-

dMult pipeline. InstructionB enters the pipeline after instructionA, in other words, it is younger

thanB, and it must wait for instructions older than it to complete before it can exit thepipeline.

Solid arrows denote that requests are made and granted, dotted arrows denote that requests are made

but not granted. Figure 3.9a describes a first step in which both instructions transfer which is then

followed by a sequence of steps in which instructionB is stalled whileA continues processing.

Figure 3.9b describes the step in which both instructions finish processing.Figure 3.10 illustrates
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Fig. 3.10a.First cycle: the request ofB is not granted.
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Fig. 3.10b.Second cycle:B transfers.

Figure 3.10:B stalls becauseA has higher priority.

the prioritization of requests for theAdd datapath. Figure 3.10a describes both instructionsA and

B requesting to transfer toAdd : the request ofB is not granted and it stalls. Figure 3.10b describes

the immediately following cycle whenB is allowed to tranfer toAdd .
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We gather the actual parcel arguments to the datapath instances into two sets:

PclP ≡ { pclPSub , pclPNeg , pclPAdd , pclPMult1, pclPMult2 }

PclN ≡ { pclN Sub , pclNNeg , pclNAdd , pclNMult1, pclNMult2 }

ForDiffAddMult the set of parcel variables is described by

Vpcl ≡ { vi , vo1, vo2, rNeg , rAdd , rMult1, rMult2 } ∪ PclP∪ PclN

We use the following notation for the interesting subsets of parcel variables. The set of constants

that appear in if-then-else expressions are denoted byConstantPcl.

Set Definition Meaning

CombPcl { vi , vo1, vo2 } ∪ PclP∪ PclN Combinational Variables

RegPcl { rNeg , rAdd , rMult1, rMult2 } Register Variables

NextRegPcl { rNeg
′, rAdd

′, rMult1
′, rMult2

′ } Next State Variables

InputPcl { vi } Input Parcel Variables

OutputPcl { vo1, vo2 } Output Parcel Variables

ConstantPcl { resetMult } Parcel Constants

Because of the separation between datapath and control, the value of a non-input parcel variable

is updated using only the value of another parcel variable. The expressions that can be assigned

to parcel variables are called if-then-else (ITE) parcel expressions. An ITE parcel expression is

identical to a mux tree, the nodes of which represent parcel variables and with select signals given by

expressions over control variables. The simplest type of ITE parcel expressions are parcel variables,

constant andchoice expressions. Inductively, ifb is a Boolean control expression andt1 andt2 are

ITE parcel expressions, thenif b then t1 else t2 is an ITE parcel expression.

Let BExpr(Vctrl ) denote the set of Boolean expressions over the set of control variablesVctrl .

3.1.2 Definition (If-then-else Parcel Expressions). The set of if-then-else parcel expressions over

Vpcl andBExpr(Vctrl ), denoted byITEParcelExpr(Vpcl ,Vctrl ), is defined inductively:

• If v ∈ Vpcl thenv is an ITE parcel expression.

• If w ∈ B+ thenw is an ITE parcel expression.

• choice is an ITE parcel expression.

• If t1 andt2 are parcel expressions andb ∈ BExpr(Vctrl ) thenif b then t1 else t2 is a parcel

expression.
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pclN Sub

pclNNeg

rMult1 choice

accMult ,Sub ¬accMult ,Sub

accMult ,Neg ¬accMult ,Neg

accMult ,Mult ∨ stallMult ¬accMult ,Mult ∨ stallMult

Figure 3.11: Mux tree corresponding to the expression in Equation 3.1.

An example for the expression

if accMult ,Sub then pclN Sub

else if accMult ,Neg then pclNNeg

else if accMult ,Mult ∨ stallMult then rMult1

else choice

(3.1)

is shown in Figure 3.11. In the figure, each internal node corresponds tothe occurrence of an

if-then-elseoperator. The leafs of the tree are either parcel variables or the nondeterministicchoice

operator. The edges of the tree are labeled by the conditions under whichthe corresponding subtree

is selected.

The transition relation ofDiffAddMult contains the following assignments to parcel variables:

pclPSub := vi (3.2)

rNeg
′ := if accNeg ,Sub then pclN Sub else if stallNeg then rNeg else choice (3.3)

pclPNeg := rNeg (3.4)

rAdd
′ := if accAddSub then pclN Sub (3.5)

else if accAdd ,Neg then pclNNeg

else if stallAdd then rAdd

else choice

pclPAdd := rAdd (3.6)

vo1 := pclNAdd (3.7)

pclPMult1 := rMult1 (3.8)
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rMult1
′ := if accMult ,Sub then pclN Sub (3.9)

else if accMult ,Neg then pclNNeg

else if accMult ,Mult ∨ stallMult then rMult1

else choice

vo2 := pclNMult (3.10)

pclPMult2 := rMult2 (3.11)

rMult2
′ := if accMult ,Mult then pclNMult2 (3.12)

else if stallMult then rMult2

else if accMult ,Sub ∨ accMult ,Neg then resetMult

else choice (3.13)

When registers do not hold valid parcel values they are assigned nondeterministically, i.e.choice.

When a new parcel transfers in theMult stage the partial product register is reset to a constant value.

A pipeline model is an annotated circuit with syntactic restrictions. The annotations describe the

types of variables of the pipeline and its datapath instances.

3.1.3 Definition(Pipeline Model). A pipeline modelPipe is a tuple〈C,Vpcl ,Vctrl ,Dps〉 such that:

• C is a circuit.

• Vpcl is the set of parcel variables.

• Vctrl is the set of control variables.

• Dps is the set of datapath modules.

We useCDiffAddMult to denote the circuit for theDiffAddMult pipeline. The pipeline model for

DiffAddMult is the tuple

PipeDiffAddMult = 〈C,Vpcl ,Vctrl ,Dps〉

C = CDiffAddMult

The sets of control and parcel variables are disjoint. Parcel variablesare assigned ITE parcel terms,

control variables are assigned arbitrary expressions over control variables.

∀ ‘v := e’ ∈ C.Tr. v ∈ Vpcl ∪ Vpcl
′ =⇒ e ∈ ITEParcelExpr(Vpcl ,Vctrl )

∀ ‘v := e’ ∈ C.Tr. v ∈ Vctrl ∪ Vctrl
′ =⇒ varse ⊆ Vctrl
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Arguments to datapath parcel inputs and outputs are combinational parcel variables of the pipeline

model. Arguments to control inputs of datapaths are control variables.

∀ dp ∈ Dps. Arg(dp.Vctrl ) ⊆ Vctrl

∀ dp ∈ Dps. Arg(dp.Vpcl ) ⊆ Vpcl

3.2 Abstraction For Control Properties

In this section we specialize the general concepts of simulation and languagecontainment for the

verification of control properties of pipeline models. Simulation and languagecontainment are

defined with respect to the control variables of the pipeline model. Language containment is weaker

than simulation. However, because language containment between parcelautomata carries over to

pipeline models we prove separate results for both simulation and language containment. Simulation

preservesACTL∗ properties and language containment preservesLTL properties.

The definitions of simulation and language containment that preserve control properties are given

with respect to a concrete pipeline modelPipec and an abstract onePipea . In the remainder of the

thesis the concrete pipeline modelPipec is subject to our datapath abstraction methodology and the

abstract model plays the role of a suitable abstraction. The semantics of the two models are defined

by their circuits. We denote the corresponding labeled transitions as follows:

LTS(Pipec .C) = 〈QPc ,RPc ,TPc , IPc〉

LTS(Pipea .C) = 〈QPa ,RPa ,TPa , IPa〉

Since our abstraction is for control properties, the pipeline modelsPipec andPipea are to be defined

over the same set of control variables.

Pipec .Vctrl = Pipea .Vctrl

In the remainder of the thesis,Pipe = 〈C,Vpcl ,Vctrl ,Dps〉 is a pipeline model with its labeled

transition system denoted by:

LTS(Pipe.C) = 〈QP,RP,TP, IP〉
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3.2.1 Simulation

The concept of pipeline model simulation is an instantiation of general simulation (Definition 2.1.2)

to pipeline models by requiring that control variables be preserved in the commuting diagram.

3.2.1 Definition(Pipeline Simulation). A pipeline simulation is a simulation relationSP ⊆ QPc ×

QPa that preserves control variables.

• Related states agree on register control variables.

∀ (qPc , qPa) ∈ SP. qPc =Vctrl
qPa (3.14)

• Commuting diagrams preserve combinational control variables.

∀ (qPc , tPc , q
′
Pc) ∈ RPc . ∀ qPa ∈ QPa .

(qPc , qPa) ∈ SP =⇒

∃ tPa ∈ TPa . ∃ qPa
′ ∈ QPa .

qPa qPa
′

qPc qPc
′

//
tPa

OO�
�

�

�

�

�

�

�

SP

//
tPc

OO

SP with tPc =Vctrl
tPa

(3.15)

• The condition on initial states remains unchanged.

∀ qPc ∈ IPc . ∃ qPa ∈ IPa . (qPc , qPa) ∈ SP (3.16)

We use the notation

Pipec �P Pipea

to denote the existence of a relation satisfying Equation 3.14 up to Equation 3.16.

As an example, consider the concrete pipeline model described in Figure 3.12. The domain of the

parcel variables consists of tuples of two bit numbers of form〈a, b〉. The two datapaths test the

two numbers in their operand for equality and, respectively, inequality. The parcel input is passed

unchanged to the output. The concrete model is defined by:

Vpcl = { i , r , t , o }

Vctrl = { v1, v2 }

Dps = {Dp=,Dp 6= }
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dp 6=
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o

v1

v2

Fig. 3.12a.Block Diagram.

type pcl ty is tuple { a : 0 .. 3,b : 0 .. 3};

ckt Dp=(pclP : pcl ty)(pclN : pcl ty, v : bool)
assign
pclN := pclP ;
v := pclP .a = pclP .b;

end

ckt Dp 6=(pclP : pcl ty)(pclN : pcl ty, v : bool)
assign
pclN := pclP ;
v := not (pclP .a = pclP .b);

end

ckt Pipec (i : pcl ty)(o : pcl ty, v1, v2 : bool)
var
r , t : pcl ty;

inst
dp= : Dp=(i )(t ,v1)
dp 6= : Dp 6=(r )(o,v2)

assign
r ′ := t ;

end

Fig. 3.12b.Implementation

Figure 3.12: Concrete Pipeline Model.

An abstraction for the concrete model is described in Figure 3.13. The abstract model has no input

or output parcel variables and the datapathDp= a produces a nondeterministic parcel output without

reading any input. The pipeline modelPipea has identically defined control variables, however, the

parcel variables differ:

Vpcl = { t , r }

Vctrl = { v1, v2 }

Dps = {Dp= a ,Dp 6= a }
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dp= a

dp 6= a

r

v1

v2

Fig. 3.13a.Block Diagram.

type pcl ty is bool;

ckt Dp= a ()(pclN : pcl ty, v : bool)
assign
pclN := choice;
v := pclN ;

end

ckt Dp 6= a (pclP : pcl ty)(v : bool)
assign
v := not pclP ;

end

ckt Pipea ()(v1, v2 : bool)
var
r , t : pcl ty;

inst
dp= : Dp= a ()(t ,v1)
dp 6= : Dp 6= a (r )(v2)

assign
r ′ := t ;

end

Fig. 3.13b.Implementation

Figure 3.13: Abstract Pipeline Model.

We defineSP as follows:

SP ≡{ (qPc , qPa) | ∃ a ∈ { 0, . . . , 3 }. qPc(r) = 〈a, a〉 ∧ qPa(r) = true }

∪ { (qPc , qPa) | ∃ a ∈ { 0, . . . , 3 }. ∃ b ∈ { 0, . . . , 3 }. qPc(r) = 〈a, b〉

∧ qPa(r) = false ∧ a 6= b }

(3.17)

The commuting diagram in Equation 3.15 is shown to hold for our example for each of the two cases

that defineSP in Equation 3.17. The case whenqPc(r) = 〈a, a〉 andqPa(r) = true is described

in Figure 3.14. There are two types of transitions that the concrete pipeline can make from such a

state. In each of the two, there exists a corresponding transition of the abstract model. Figure 3.15

describes how the transitions of a concrete state of formqPc(r) = 〈a, b〉 with a 6= b are matched by

the simulating abstract state withqPa(r) = false.
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r = 〈a, a〉

r = true

i = 〈b, b〉
v1 = true
v2 = true

t = true
v1 = true
v2 = true

r = 〈b, b〉

r = true

r = 〈a, a〉

r = true

i = 〈b, c〉
v1 = false
v2 = true

t = false
v1 = false
v2 = true

r = 〈b, c〉

r = false

Figure 3.14: Commuting diagrams for the caseqPc(r) = 〈a, a〉.

3.2.2 Language Containment

A run of the pipeline modelPipe is a run ofLTS(Pipe.C), as described in Section 2.1. We denote

such runs byσP : N → QP × TP and use the notationσP(n) = (qnP, t
n
P). According to the definition

of the run, we have:

∀ n ∈ N. (qnP, t
n
P, q

n+1
P ) ∈ RP

The language of a pipeline model is the set of its runs:

L(Pipe) = {σP | σP is a run ofPipe }

Equivalence on runs is defined with respect to a concrete modelPipec and an abstract onePipea .
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r = 〈a, b〉

r = false

i = 〈c, c〉
v1 = true
v2 = false

t = true
v1 = true
v2 = false

r = 〈c, c〉

r = true

r = 〈a, b〉

r = false

i = 〈c, d〉
v1 = false
v2 = false

t = false
v1 = false
v2 = false

r = 〈c, d〉

r = false

Figure 3.15: Commuting diagrams for the caseqPc(r) = 〈a, b〉 with a 6= b.

ConsiderσPc ∈ L(Pipec) andσPa ∈ L(Pipea). Run equality over control variables is denoted by

σPc =P σPa ≡ ∀ n ∈ N.
(
qnPc =Vctrl

qnPa ∧ tnPc =Vctrl
tnPa

)

Language containment of pipeline models is defined by

L(Pipec) ⊆P L(Pipea) ≡ ∀ σPc ∈ L(Pipec). ∃ σPa ∈ L(Pipea). σPc =P σPa

Figure 3.16 describes an abstractionPipea of the concrete pipeline modelPipec from Figure 3.12.

The abstract pipeline model has the property thatL(Pipec) ⊆P L(Pipea). However,Pipec �P

Pipea does not hold because in each of its states, the model described in Figure 3.16 can perform

exactly one transition with labelv1 = b, for someb ∈ { true, false }, since the parcel input todp= a

is a register. The concrete model can perform transitions with bothv1 = true andv1 = false, since
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dp= a

dp 6= a

o

v1

v2

r2

r1

i

Fig. 3.16a.Block Diagram.

type pcl ty is bool;

ckt Dp= a (pclP : pcl ty)(pclN : pcl ty, v : bool)
assign
pclN := pclP ;
v := pclP ;

end

ckt Dp 6= a (pclP : pcl ty)(pclN : pcl ty, v : bool)
assign
pclN := pclP ;
v := not pclP ;

end

ckt Pipea (i : pcl ty)(o : pcl ty, v1, v2 : bool)
var
r1, r2, t1, t2 : pcl ty;

inst
dp= : Dp= a (r1)(t1,v1)
dp 6= : Dp 6= a (r2)(o, v2)

assign
r1

′ := i ;
r2

′ := t1;
end

Fig. 3.16b.Implementation

Figure 3.16: Abstract Pipeline Model.

the parcel input todp= is an input variable of the pipeline model.

In Figure 3.17 we sketch the proof of language containment. The run of theabstract model is chosen

on advanced knowledge of the concrete run. The abstract model matches the concrete pipeline step

(qnPc , t
n
Pc , q

n+1
Pc ) by choosing stateqnPa so thatqnPa(r1) = tnPa(v1). Because the value oftnPc(v1) is

eithertrue or false based on whether the input valuesan+1 andbn+1 are equal, while the value of

tnPa(v1) is fixed and equal toqnPa(r1), no abstract state can simulate a concrete state.

3.3 Abstract Interpretation Of Pipeline Datapath

Abstract interpretation [Cousot and Cousot, 1977] is an abstraction technique that replaces the con-

crete data types of a program with abstract data types and the concrete operations with abstract
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r = 〈an, bn〉

i = 〈an+1, bn+1〉
v1 = cn+1

v2 = ¬cn

r1 = cn+1

r2 = cn

i = 〈an+2, bn+2〉
v1 = cn+2

v2 = ¬cn+1

r = 〈an+1, bn+1〉 r = 〈an+2, bn+2〉

i = cn+3

v1 = cn+2

v2 = ¬cn+1

r1 = cn+2

r2 = cn+1
r1 = cn+3

r2 = cn+2

i = cn+2

v1 = cn+1

v2 = ¬cn

Figure 3.17: Proof Of Language Containment.

ones.

In this section we present the general form of abstract pipeline models created by our abstraction

methodology. Abstractions of the concrete pipeline models have the same structure as the concrete

ones. By structure we mean variable names and variable use in expressions. Abstract pipelines

instantiate abstract datapaths and therefore the domain of the parcel variables is allowed to change.

Intuitively, abstract interpretation of a circuit corresponding to a pipelinemodel allows only for

the modification of the declared types of the parcel variables, the name of theinstantiated datapath

modules and the replacement of a constant’s occurrence in an ITE term withthe occurrence of

another.

We define the equivalence ‘≈ai ’ on ITE parcel expressions so that two ITE parcel expressions are

equivalent if they differ only by occurrences of constants:

• e ≈ai e for any ITE expression.

• If e1 ande2 are constants thene1 ≈ai e2.

• If e1 ≈ai e3, e2 ≈ai e4 andb ∈ BExpr(Vctrl ) then

(if b then e1 else e2) ≈ai (if b then e3 else e4)
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For the remainder of the thesis we use the following notation for the concrete and abstract datapaths:

Dpsc ≡ Pipec .Dps

Dpsa ≡ Pipea .Dps

3.3.1 Definition (Abstract Interpretation). We sayPipea is an abstract interpretation ofPipec ,

denoted by

Pipea = Pipec

[
Dpsa/Dpsc

]

if the following conditions hold:

1. The two pipeline models have the same control and parcel variables.

Pipea .Vctrl = Pipec .Vctrl

Pipea .Vpcl = Pipec .Vpcl

2. There exists a bijective mappingφ : Pipea .C .Insts→ Pipec .C .Instssuch that

∀ inst ∈ Pipea .C .Insts.

inst .id = φ(inst).id ∧

inst .InputArg = φ(inst).InputArg ∧

inst .OutputArg = φ(inst).OutputArg

3. There exists a bijective mappingψ : Pipea .C .Tr → Pipec .C .Tr such that

∀ ‘v := e’ ∈ Pipea .C .Tr.

v ∈ Vctrl ∪ Vctrl
′ =⇒ ψ(‘v := e’) = ‘v := e’

∧

v ∈ Vpcl ∪ Vpcl
′ =⇒ ∃ e′. e ≈ai e

′ ∧ ψ(‘v := e’) = ‘v := e′’

4. Initial conditions on control variables are the same.

∀ v ∈ Vctrl . ‘v := e’ ∈ Pipec .C .Init ⇐⇒ ‘v := e’ ∈ Pipea .C .Init

If Pipea = Pipec

[
Dpsa/Dpsc

]
then the circuits of the two pipelines assign the same variables.

Therefore, anyv ∈ Vpcl ∪ Vctrl is either combinational in both circuits or register in both.

Consider the concrete pipeline model described in Figure 3.12. The abstract pipeline model in

Figure 3.13 is not an abstract interpretation because it does not have theparcel variablesi ando.
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On the other hand, the abstract model in Figure 3.16 is a proper abstract interpretation.

3.4 Summary

We describe the model of pipelined circuits as a network of parcel variables and datapath instances

through which parcels flow as coordinated by the control circuitry. The variables of the circuit are

divided into datapath and control. The separation is enforced by syntacticrestrictions on the type of

expressions that can be assigned to each of the two kinds of variables. Abstract interpretation of the

datapath is performed by replacing the concrete datapaths by abstract ones. The type of the pipeline

parcel variables is adjusted accordingly. The control is left unchanged.
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Chapter 4

Parcel Automata

In this chapter we present a computation model of the pipeline datapath. The model for the pipeline

datapath is a labeled transition system, called a parcel automaton, that describes the behaviour of

the pipeline datapath with respect to the control inputs and outputs of the datapath instances as

parcels move through the pipeline. Abstractions of parcel automata are defined using simulation

or language containment and are shown to preserve the control visible behavior of the datapath.

Abstract parcel automata are used to define abstract datapaths.

A parcel represents a group of related values which are held in parcelvariables during a pipeline

computation. Both the values of the parcel and the corresponding variables change during the

computation of the pipeline model. In a particular pipeline step, the parcel is identified by its

variables, which can be both register and combinational. We define parcelsas non-empty subsets of

Vpcl ∪ NextRegPcl.

During a pipeline computation, the parcel propagates through parcel variables and datapaths. This

execution trace is called a parcel computation. The parcel computation records the transformation

of the parcel’s variables and its interaction with the control circuitry.

In a pipeline computation, multiple parcel computations take place simultaneously. Avery im-

portant characteristic of the parcel computations that coexist during a computation of the pipeline

model is that within a pipeline step, they do not share parcel variables or datapaths. This property

of pipeline computations is called parcel independence and is formalized in thenext chapter.

Section 4.1 describes a complete example for using parcel automata for datapath abstraction. In

Section 4.2 we describe fan-out graphs which model the propagation of aparcel’s variables through

combinational variables and datapaths into next state registers. Section 4.3 illustrates parcel com-

putations with theDiffAddMult example. The definition of parcel automata is given in Section 4.5.
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Section 4.6 adapts the concepts of simulation and language containment to parcel automata. Sec-

tion 4.7 shows how abstract interpretation is performed using abstract parcel automata.

4.1 Overview Of Abstraction Using Parcel Automata

dp1

dp2

r2

vi

vo

v

r1

r3

c
Control

Figure 4.1:AndOr Block Diagram.

We introduce a simple example calledAndOr and use it to provide a high-level description of the

methodology of using parcel automata for datapath abstraction. Our exampledescribes a pipeline

computation and the contained parcel computations, a parcel automaton that models all the possible

parcel computations, and an abstract parcel automaton and an abstractpipeline model obtained by

abstract interpretation using the abstract parcel automaton.

TheAndOr pipeline consists of three parcel registers and two datapaths as shown in Figure 4.1.

There are two control variables, a two-bit registerc and a one-bit combinational variablev. The

implementation of the circuit is given in Figure 4.2. The first datapath,Dp1, is described on lines

1–7. Its input arguments are a two-bit input parcel and a two-bit controlvariable. It produces an

output parcel that consists of four bits obtained by the concatenation of four bit-and operations. The

second datapath,Dp2, is described on lines 9–13. The resulting two-bit parcel value is the bit-or

of the two-bit halves of its input parcel.Dp2 produces a one-bit control output that consists of the

bit-or of the two bits of the output parcel. The pipeline circuit instantiates the twodatapaths. The

state of the control circuitry consists of the two-bit registerc. Its value is updated using the control

output ofDp2. The current value ofc is the control argument provided toDp1.
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1 ckt Dp1(pclP : bitvec[2], v : bitvec[2])(pclN : bitvec[4])
2 assign
3 pclN [0] := pclP [0] and v [0];
4 pclN [1] := pclP [1] and v [0];
5 pclN [3] := pclP [0] and v [1];
6 pclN [4] := pclP [1] and v [1];
7 end
8
9 ckt Dp2(pclP : bitvec[4])(pclN : bitvec[2], v : bitvec[1])

10 assign
11 pclN := pclP [0:1] or pclP [2:3];
12 v := pclN [0] or pclN [1];
13 end
14
15 ckt Pipec (vi : bitvec[2])(vo : bitvec[2])
16 var
17 v : bitvec[1];
18 r1, r3, c, pclP1, pclN 2 : bitvec[2];
19 r2, pclN 1, pclP2 : bitvec[4];
20 inst
21 dp1 : Dp1(pclP1,c)(pclN 1);
22 dp2 : Dp2(pclP2)(pclN 2,v );
23 assign
24 pclP1 := r1;
25 pclP2 := r2;
26 c′ := v :: (not v );
27 r1

′ := vi ;
28 r2

′ := pclN 1;
29 r3

′ := pclN 2;
30 vo := r3;
31 init
32 c := 01;
33 r1 := 00;
34 r2 := 0000;
35 r3 := 00;
36 end

Figure 4.2:AndOr Implementation.

An example of a pipeline computation ofAndOr is provided in Figure 4.3. The top half of the

figure displays a sequence of pipeline model states. Each state is represented by the values of the

three parcel registers, highlighed in distinct shades of grey. In the first state, for instance, the values
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1000

01

11
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1000

00

1100

10

00

1100

10

c = 10

v = 0

c = 01 v = 0

c = 01 v = 1

c = 01 v = 1

c = 10 v = 1

Figure 4.3:AndOr Computation.

of the three registers are:

r1 = 00

r2 = 0000

r3 = 00

The bottom half of the figure lays out the states of the pipeline computation on a diagonal, with the

effect that from left to right one can trace each parcel through the pipeline. For instance, the parcels

in the first state of the computation have the following traces:

r1 = 00 −→ r2 = 0000 −→ r3 = 00

r2 = 0000 −→ r3 = 00

r3 = 00

A more accurate description of the trace of a parcel is to include the controlvalues that influence its

computation. For each parcel, there are two such values,c when the parcel passes throughDp1 and
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v when the parcel goes throughDp2. Two enhanced traces from Figure 4.3 are as follows:

r1 = 00
c = 01
−→ r2 = 0000

v = 0
−→ r3 = 00

r1 = 10
c = 10
−→ r2 = 1000

v = 1
−→ r3 = 10

r2 = 0000 r2 = 0001 r2 = 0100

r3 = 01

r2 = 0010 r2 = 1000

r3 = 10

r1 = 10

r2 = 0011 r2 = 1100

r3 = 11

r1 = 11

∅

finalPAc

r1 = 00 r1 = 01

r3 = 00

c = 10

c = 10

c = 10

c = 10

c = 01

c = 01

c = 01

c = 01

v = 0

v = 1

v = 1

v = 1v = 1

v = 1

v = 1

Figure 4.4:AndOr Parcel Automaton.

A parcel automaton models the traces of parcels through the pipeline as a labeled transition system.

The states of the automaton correspond to parcel values in given parcelregisters and the transitions

correspond to the transfer of parcels from one register to the next. Thetransition labels give the
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control values that influence the parcel during a transition. The parcelautomaton forAndOr is

shown in Figure 4.4. It describes the traces through the pipeline of all possible input parcel values.

The empty state∅ denotes the state of the parcel before entering the pipeline. The final statefinalPAc

represents the parcel after it has exited the pipeline. After a transition from the empty state, the state

of the parcel may be any of the four two-bit values in registerr1. For each such value, and for each

value of the control variablec, the automaton makes a transition to a state that represents the parcel

in registerr2. From such a state the automaton makes a transition to a state representing the parcel

in registerr3. The label of such a transition shows the value of the control variablev because it is

produced by the datapathDp2 based on the value of parcel. A transition to the final state completes

the computation of the parcel automaton.

Datapath abstraction is based on identifying parcel values that have the same control visible be-

haviour through the pipeline. The parcel automaton representation of the datapath allows us to

formulate this problem as a relationship between parcel automaton states. Thereduction of the dat-

apath is performed by collapsing together equivalent states of the parcelautomaton. In our example,

the parcel automaton shows that the states corresponding to three of the input values,01, 10and11

are equivalent. After the reduction step that preserves only the stater1 = 01 and discards the other

two equivalent ones, the automaton is shown in Figure 4.5. The reduced automaton has two more

equivalent statesr2 = 0001andr2 = 0100. After performing a second reduction and representing

the reduced data domain using the abstract values{α1, α2, β1, β2 } we obtain the abstract parcel

automaton shown in Figure 4.6.

Our example showed how a parcel automaton is created to represent the datapath computations.

Conversely, given an abstract parcel automaton we can derive the pipeline datapath that it repre-

sents. Corresponding to the abstractAndOr parcel automaton, the implementations of the abstract

datapaths are shown in Figure 4.7. The abstract datapathDp1 a , shown on lines 4–9, corresponds to

the transitions of the parcel automaton from a state with registerr1 to a state with registerr2. Dp1 a

transformsα1 intoα2 andβ1 into β2. The value of the control input does not influence its computa-

tion. The second abstract datapath is shown on lines 11–19. It, too, encodes two separate transitions

of the parcel automaton, corresponding to parcels moving from registerr2 to r3. Both the value of

the parcel outputpclN and the control outputv are sensitive to the value of the input parcel. The

two datapaths are used to give an abstract interpretation of the original pipeline as shown on lines

21–42 of the listing in Figure 4.7. The abstract pipeline circuit differs fromthe concrete one in the

types of parcel variables, the two datapaths that it instantiates and the initial condition. Figure 4.8

shows the abstract computation that is equivalent to the concrete one in Figure 4.3.
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r2 = 0000

r1 = 00

r3 = 00

c = 10c = 01

v = 0

∅

finalPAc

r2 = 0001 r2 = 0100

r3 = 01

r1 = 01

c = 10c = 01

v = 1v = 1

Figure 4.5:AndOr parcel automaton after one reduction step.
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r2 = α2

r3 = β1

r1 = α1 r1 = β1

r3 = α1

c = 10

c = 10

c = 01

c = 01

v = 0

∅

finalPAa

r2 = β2

v = 1

Figure 4.6:AndOr Abstract Parcel Automaton.
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1 type pcl ty is { α1, α2, β1, β2 };
2 type pcl in ty is { α1, β1 };
3
4 ckt Dp1 a (pclP :pcl in ty, v : bitvec[2])(pclN : pcl ty)
5 assign
6 pclN := if pclP == α1 then α2

7 else ifpclP == β1 then β2
8 elsechoice;
9 end

10
11 ckt Dp2 a (pclP : pcl ty)(pclN : pcl ty, v : bitvec[1])
12 assign
13 pclN := if pclP == α2 then α1

14 else ifpclP == β2 then β1
15 elsepclP ;
16 v := if pclP == α2 then 0
17 else ifpclP == β2 then 1
18 elsechoice;
19 end
20
21 ckt Pipea (vi : pcl in ty)(vo : pcl ty)
22 var
23 v : bitvec[1];
24 r1, r3, c, pclP1, pclN 2 : pcl ty;
25 r2, pclN 1, pclP2 : pcl ty;
26 inst
27 dp1 : Dp1(pclP1,c)(pclN 1);
28 dp2 : Dp2(pclP2)(pclN 2,v );
29 assign
30 pclP1 := r1;
31 pclP2 := r2;
32 c′ := v :: (not v );
33 r1

′ := vi ;
34 r2

′ := pclN 1;
35 r3

′ := pclN 2;
36 vo := r3;
37 init
38 c := 01;
39 r1 := α1;
40 r2 := α2;
41 r3 := α2;
42 end

Figure 4.7:AndOr Abstract Implementation.
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Figure 4.8: AbstractAndOr Computation.
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4.2 Fan-Out Graphs

We use fan-out graphs to give a precise definition of the propagation ofa parcel’s values through

parcel variables and datapaths. A fan-out graph is a directed acyclic graph. The nodes of the graph

are parcel variables and the edges denote the transfer of a value fromthe source of the edge to its

destination. The labels on the edges of the graph stand for the condition under which the transfer

takes place.

4.2.1 Definition(Fan-out Graph). A fan-out graph is a tuple〈Nodes,Succ〉 where:

• Nodesis the set of nodes.

• Succis the successor relation.

• Nodes⊆ Vpcl ∪ NextRegPcl∪ ConstantPcl

• Succ⊆ Nodes× BExpr(Vctrl ) × Nodesis a set of fan-out edges.

pclPSub

pclN Sub2

vi

pclN Sub1

r ′Neg

accNeg ,Sub

Figure 4.9: Fan-out Graph

Figure 4.9 represents a fan-out graph for the transfer of an input parcel into the registerrNeg . Solid

edges in the figure represent parcel copying from one variable to another. Dotted lines denote parcel

transformations by datapaths. The label on an edge denotes the condition under which the transfer

occurs. The omission of a label implies its condition is always true.

Given a fan-out graphfg we refer to the datapaths it references by

datapathsfg ≡ { dp ∈ Dps | Arg(dp.Vpcl ) ∩ fg .Nodes6= ∅ }
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For the example in Figure 4.9 we havedatapathsfg = {Sub }.

The fan-out of a parcel is represented by a fan-out graphfanOut(qP, tP, q
′
P) p that has as roots the

variables inp and as nodes all variables that derive their value transitively from the variables in the

parcel in the pipeline step(qP, tP, q
′
P). When the pipeline step is known from context, we omit it,

and writefanOutp.

4.2.2 Definition(Parcel Fan-out). The fan-out graph of a parcelp in (qP, tP, q
′
P) is the fan-out graph

fg = 〈Nodes,Succ〉 defined inductively:

Base Case

• p ⊆ Nodes

• If w is a constant,v ∈ p, and(w, b, v) ∈ FanOutEdges such that(qP ∪ tP) |= b then

w ∈ Nodes.

Inductive Case If vl ∈ Nodes and there exists a fan-out edge(vl, b, vk) such that(qP ∪ tP) |= b

thenvk ∈ Nodes and(vl, b, vk) ∈ Succ.

Formally, the roots of the fan-out graphfg is the set of variables defined as follows:

rootsfg = { v ∈ fg .Nodes|6 ∃ (v1, b, v) ∈ FanOutEdges. (v1, b, v) ∈ fg .Succ}

They are the roots of the fan-out digraph with the addition of the variables that have an incoming

edge from a constant.

The variables in the fan-out of a parcelp are denoted byp∗:

p∗ ≡ (fanOutp).Nodes∩ (Vpcl ∪ NextRegPcl)

Parcel variables receive their value either by assignment of an ITE parcel expression or by being an

actual parameter for an output of a datapath instance. The meaning of an ITE parcel expression is a

set of pairs of form(expr , cond), whereexpr is a parcel variable, a constant orchoice andcond

is a Boolean control expression, with mutually exclusive conditions, such that expr is the value

of the expression whencond is true. The support function returns the set of expression-condition

pairs for a given expression. Because edges of a fan-out graph are derived using the support of an

expressiont, the definition of the support function ensures that every variable occurs at most once

in the support of an expression.

4.2.3 Definition(Support function). The support of an ITE parcel expressiont is defined using the

auxiliary functionsupport1 t. The functionsupport1 is defined inductively:
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• t = w with w constant thensupport1 t = { (w, true) }.

• t = choice thensupport1 t = { (choice, true }.

• If t = v with v ∈ Vpcl thensupport1 t = { (v , true) }.

• If t = if b then t1 else t2 then

support1 t = { (v , b ∧ b1) | (v , b1) ∈ support1 t1 } ∪ { (v , (¬b) ∧ b2) | (v , b2) ∈ support1 t2 }

• supportjoins the multiple occurrences of the same expressione in support1 t:

supportt ≡ { (e,
∨

(e,b)∈support1 t

b) | ∃ b1. (e, b1) ∈ support1 t }

v1

v2

v3 v1

b1 ¬b1

b2 ¬b2

b3 ¬b3

Figure 4.10: Mux tree for the expressionif b1 then v1 else if b2 then v2 else if b3 then v3 else v1.

For the expression

t = if b1 then v1 else if b2 then v2 else if b3 then v3 else v1

described in Figure 4.10,supportt contains only one occurrence of the variablev1:

(v1, b1 ∨ ¬b1 ∧ ¬b2 ∧ ¬b3)

For the expression in Equation 3.1 on page 44 we have:

supportt = { (pclN Sub , accMult ,Sub),

(pclNNeg ,¬accMult ,Sub ∧ accMult ,Neg),
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(rMult1,¬accMult ,Sub ∧ ¬accMult ,Neg ∧ (accMult ,Mult ∨ stallMult)) }

Since accepts or stalls are mutually exclusive the example above simplifies to:

supportt = { (pclN Sub , accMult ,Sub), (pclNNeg , accMult ,Neg), (rMult1, accMult ,Mult ∨ stallMult) }

Fan-out graphs are inferred from assignments to parcel variables in the transition relation and from

the arguments of parcel inputs and outputs of the datapath instances. Corresponding to each such

case we have a type of fan-out edge. The set of fan-out edges is denoted byFanOutEdges.

Assignments

(e, b, vk) ∈ FanOutEdges =⇒ ∃ t ∈ ITEParcelExpr(Pipe).

‘vk := t’ ∈ C .Tr ∧ (e, b) ∈ supportt

Datapath transformations

∀ dp ∈ Dps.

∀ pclP ∈ Arg(dp.PclP). ∀ pclN ∈ Arg(dp.PclN).

(pclP , true, pclN ) ∈ FanOutEdges

4.3 Parcel Steps InDiffAddMult
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Figure 4.11: Pipeline step(q0P, t
0
P, q

1
P) ∈ RP.
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In this section we recall theDiffAddMult example introduced in Figure 3.1 from Section 3.1.

DiffAddMult uses valid bits to represent whether data held by a parcel register is valid.Invalid

data does not move through the pipeline. In the first state of the run, the parcel registers contain

invalid data:

q0P |= (validNeg = false ∧ validAdd = false ∧ validMult1 = false ∧ validMult2 = false)

As described in Section 3.1, in theDiffAddMult pipeline invalid register values do not generate

requests and therefore do not propagate.

We consider a computation of theDiffAddMult pipeline, the first step of which is described in

Figure 4.11. In this step the pipeline receives an input value that represents parcelpA such that

pA = { vi }. The parcel propagates through theSub instance, the result of which is stored in

registerrNeg . TheSub datapath produces the control outputselN Sub = 001.

pclPSub

vi

pclN Sub2pclN Sub1

accNeg ,Sub

r ′Neg

Fig. 4.12a.Fan-out graph.

Variable Value
vi 〈−30, 10, 5, mult〉
pclPSub 〈−30, 10, 5, mult〉
pclN Sub1 〈−40, 5, mult〉
pclN Sub2 〈−40, 5〉
rNeg

′ 〈−40, 5, mult〉

selN Sub 001

Fig. 4.12b.Parcel and control
environments.

Figure 4.12: ParcelpA = { vi } in pipeline step(q0P, t
0
P, q

1
P).

The fan-out graph of parcelpA and the parcel and control environments are described in Figure 4.12.

The parcel corresponds to the operation| − 30 − 10| × 5. It should therefore take the following

path through the pipeline:

Sub → Neg → Mult → Mult . . .

The fan-out graph shows that the parcel propagates from the input variablevi , through theSub

datapath and into the registerrNeg . There are two environments that describe the parcel step. The

parcel environment valuates the variables in the fan-out of the parcel and expresses the datapath

transformation of the parcel’s values. The control environment valuatesthe control variables that

appear as arguments to the datapaths that process the parcel. In this case, the transformation through

theSub datapath assigns001to the control variableselN Sub .
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Figure 4.13: Pipeline step(q1P, t
1
P, q
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P) ∈ RP.

r ′Mult1

pclPNeg

pclNNeg

rNeg

accMult ,Neg

r ′Mult2

resetMult

Fig. 4.14a.Fan-out graph.

Variable Value
rNeg 〈−40, 5, mult〉
pclPNeg 〈−40, 5, mult〉
pclNNeg 〈40, 5〉
rMult1

′ 〈40, 5〉
rMult2

′ ***
selNNeg 10

Fig. 4.14b.Parcel and control
environments.

Figure 4.14: ParcelpA = { rNeg , rMult2
′ } in pipeline step(q1P, t

1
P, q

2
P).

In the second step, described in Figure 4.13, the pipeline transfers parcel pA from rNeg to rMult1

and inputs a new parcelpB into registerrAdd . The two parcels and the control outputs they generate

are described in Figure 4.14 and Figure 4.15. The newly received parcel pB represents the operation

|12− 10| + 2 and takes the pathSub → Add . In the current step the registerrMult2 is reset. Since

this value is not actually used in the next cycle we display it as*** . Also, note that because the

value assigned torMult2 is not dependent on the parcel’s current values, to reflect its inclusioninto

pA in the next step, we addrMult2
′ to the parcel in the current step.

In the next step, the pipeline computation progresses as described in Figure 4.16. ParcelpC enters

the pipeline and propagates through theSub datapath intorNeg , as described in Figure 4.17. Parcel

pC denotes the operation|2 − 3| + 5. It therefore takes the pathSub → Neg → Add . ParcelpA
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pclPSub

vi

pclN Sub2pclN Sub1

accAdd ,Sub

r ′Add

resetMult

Fig. 4.15a.Fan-out graph.

Variable Value
vi 〈12, 10, 2, add〉
pclPSub 〈12, 10, 2, add〉
pclN Sub1 〈2, 2, add〉
pclN Sub2 〈2, 2〉
rAdd

′ 〈2, 2〉

selN Sub 010

Fig. 4.15b.Parcel and control
environments.

Figure 4.15: ParcelpB = { vi } in pipeline step(q1P, t
1
P, q

2
P).
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Figure 4.16: Pipeline step(q2P, t
2
P, q

3
P) ∈ RP.

proceeds through one round of the multiplication operation. ParcelpB undergoes the addition and

is ready to tranfer out. To preserve ordering betweenpA andpB, the pipeline control stalls parcel

pB. The computation steps of the two parcels are represented in Figure 4.18 and Figure 4.19. The

algorithm described in Section 3.1 performs the 8-bit multiplication by 4-bit multiplications and

additions. For parcelpA, using the notation in Figure 3.8, we havea × c = low(40) × low(5) =

8 × 5. The partial results of the multiplication are stored inrMult2. The fan-out graph of parcelpA
shows that the multiplication uses registersrMult1 andrMult2 as arguments, and in the next state, the

value of registerrMult1 remains unchanged whilerMult2 gets updated with a new value produced

by the multiplier. The parcel environment corresponding topA valuates all variables in the parcel’s

fan-out graph. We do not show values that are inconsistent at this stage of the multiplication, and
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pclPSub

vi

pclN Sub2pclN Sub1

accNeg ,Sub

r ′Neg

Fig. 4.17a.Fan-out graph.

Variable Value
vi 〈2, 3, 5, add〉
pclPSub 〈2, 3, 5, add〉
pclN Sub1 〈−1, 5, add〉
pclN Sub2 〈−1, 5〉
rNeg

′ 〈−1, 5, add〉

selN Sub 001

Fig. 4.17b.Parcel and control
environments.

Figure 4.17: ParcelpC = { vi } in pipeline step(q2P, t
2
P, q

3
P).

denote them by*** . The control environment shows the current and the next control states of the

multiplication.

The fourth step of the pipeline computation is shown in Figure 4.20. In this step the Sub datapath

processes the newly input parcelpD. ParcelpD is a multiplication operation and its request to

the multiplier datapath is not accepted. ParcelpB is once again stalled to preserve ordering with

parcelpA which progresses through another step of the multiplication operation, as described in

Figure 4.22. Because ofpC, pB also stalls, as shown in Figure 4.21.

In the fifth step of the pipeline computation, described in Figure 4.23, parcelpA completes the

multiplication, as shown in Figure 4.25, and therefore, both it and parcelpB transfer out of the

pipeline. The progress of parcelpC is described in Figure 4.24. Since theMult datapath is free,

parcelpD is granted its request and moves intorMult1.
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pclPMult1

pclNMult1

r ′Mult1

rMult1

accMult ,Mult ∨ stallMult

pclPMult2

r ′Mult2
vo2

accMult ,Mult

pclNMult2

rMult2

Fig. 4.18a.Fan-out graph.

Variable Value
rMult1 〈40, 5〉
rMult2 ***
pclPMult1 〈40, 5〉
pclPMult2 rMult2

pclNMult1 ***
pclNMult2 〈a × c = 8 × 5〉
rMult1

′ 〈40, 5〉
rMult2

′ 〈a × c = 8 × 5〉
vo2 ***
stateIn 000
stateOut 010

Fig. 4.18b.Parcel and control
environments.

Figure 4.18: ParcelpA = { rMult1, rMult2 } in pipeline step(q2P, t
2
P, q

3
P).
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vo1 r ′Add

pclPAdd

pclNAdd

rAdd

stallAdd

Fig. 4.19a.Fan-out graph.

Variable Value
rAdd 〈2, 2〉
pclPAdd 〈2, 2〉
pclNAdd 〈4〉
vo1 〈4〉
rAdd

′ 〈2, 2〉

Fig. 4.19b.Parcel and control
environments.

Figure 4.19: ParcelpB = { rAdd } in pipeline step(q2P, t
2
P, q

3
P).
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Figure 4.20: Pipeline step(q3P, t
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P) ∈ RP.
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r ′Neg

pclPNeg

pclNNeg

rNeg

stallNeg

Fig. 4.21a.Fan-out graph.

Variable Value
rNeg 〈−1, 5, add〉
pclPNeg 〈−1, 5, add〉
pclNNeg 〈1, 5〉
rNeg

′ 〈−1, 5, add〉

selNNeg 01

Fig. 4.21b.Parcel and control environments.

Figure 4.21: ParcelpC = { rNeg } in pipeline step(q3P, t
3
P, q

4
P).

76



pclPMult1

pclNMult1

r ′Mult1

rMult1

accMult ,Mult ∨ stallMult

pclPMult2

r ′Mult2
vo2

rMult2

accMult ,Mult

pclNMult2

Fig. 4.22a.Fan-out graph.

Variable Value
rMult1 〈40, 5〉
rMult2 〈ac = 8 × 5〉
pclPMult1 〈40, 5〉
pclPMult2 rMult2

pclNMult1 ***
pclNMult2 〈ac = 8 × 5, low(bc) = 10〉
rMult1

′ 〈40, 5〉
rMult2

′ 〈ac = 8 × 5, low(bc) = 10〉
vo2 ***
stateIn 010
stateOut 100

Fig. 4.22b.Parcel and control
environments.

Figure 4.22: ParcelpA = { rMult1, rMult2 } in pipeline step(q3P, t
3
P, q

4
P).
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Figure 4.23: Pipeline step(q4P, t
4
P, q

5
P) ∈ RP.

r ′Add

pclPNeg

pclNNeg

rNeg

accAdd ,Neg

Fig. 4.24a.Fan-out graph.

Variable Value
rNeg 〈−1, 5, add〉
pclPNeg 〈−1, 5, add〉
pclNNeg 〈1, 5〉
rAdd

′ 〈1, 5〉

selNNeg 01

Fig. 4.24b.Parcel and control environments.

Figure 4.24: ParcelpC = { rNeg } in pipeline step(q4P, t
4
P, q

5
P).
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pclPMult1

pclNMult1

rMult1

pclPMult2

vo2

rMult2

pclNMult2

Fig. 4.25a.Fan-out graph.

Variable Value
rMult1 〈40, 5〉
rMult2 〈ac = 8 × 5, low(bc) = 10〉
pclPMult1 〈40, 5〉
pclPMult2 rMult2

pclNMult1 〈200〉
pclNMult2 ***
vo2 〈200〉

stateIn 100
stateOut 111

Fig. 4.25b.Parcel and control
environments.

Figure 4.25: ParcelpA = { rMult1, rMult2 } in pipeline step(q4P, t
4
P, q

5
P).
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Our example illustrates the concept of parcel step. The parcel is a groupof parcel variables, register,

combinational and next-state — in the case when the parcel incorporates a register variable that is

being assigned a constant orchoice. The parcel step is a record of the parcel’s transformation in

one pipeline step. The fan-out graph of the parcel shows the propagation of the parcel’s values and

the two environments, parcel and control, document the computations of the datapaths.

4.4 Parcel Steps

A parcel computation consists of a sequence of parcel steps, each such step occurring within a

corresponding pipeline step. A parcel step consists of the parcel’s current state, transition label and

next state.

The state of a parcel is a substate of the pipeline model. It is defined as an environment over parcel

registers. The state ofp is qPA ∈ PEnv(RegPcl) such that:

qPA = qP | p ∩ RegPcl

Since the domain ofqP does not contain combinational variables, we haveqP | p ∩ RegPcl= qP | p
and therefore we can write

qPA = qP | p

If a parcel contains no registers then its state is the empty environment∅.

4.4.1 Definition(Parcel Step). A parcel step of parcelp ⊆ Vpcl ∪ NextRegPclis a triplet(qPA, tPA, qPA
′):

• qPA ∈ PEnv(RegPcl) is the parcel’s current state.

• qPA
′ ∈ PEnv(RegPcl) is the parcel’s next state.

• tPA = 〈〈Nodes,Succ〉, epcl , ectrl 〉 is the step label.

• 〈Nodes,Succ〉 is a fan-out graph.

• roots〈Nodes,Succ〉 = p

• epcl ∈ Env(Nodes ∩ CombPcl)

• ectrl ∈ PEnv(Vctrl )

• domqPA = Nodes ∩ RegPcl

• domqPA
′ = { v | v ′ ∈ Nodes ∩ NextRegPcl}
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• Nodes contains all the parcel arguments of the referenced datapaths.

⋃

dp∈datapaths〈Nodes,Succ〉

Arg(dp.Vpcl ) ⊆ Nodes (4.1)

• ectrl valuates exactly the control input and output arguments of the referenced datapaths:

dom(ectrl ) =
⋃

dp∈datapaths〈Nodes,Succ〉

Arg(dp.Vctrl ) (4.2)

A parcel step corresponds to the propagation and transformation of the parcel’s values through the

variables and datapath instances in its fan-out. Propagation consists of copying through variables

and datapath transformations. The transition label of the parcel step describes the parcel between the

two endpoints, its current and next state and captures the behaviour of the datapaths that transform

the parcel. The label consists of a tuple〈fanOutp, epcl , ectrl 〉 whereepcl andectrl are parcel, and

respectively, control environments over the variables in the fan out of the parcel. The transition label

is a full record of the parcel’s effect on combinational variables.

Control

dp1
v1

dp2
v2

r1 r2

•
•

dp3
v3

r3

vi1 vi2

vo

Figure 4.26: Parcelp = { r1, r2 } can have up to 8 distinct fan-out graphs.

We use the pipeline model in Figure 4.26 to illustrate the need to have the parcel’sfan-out graph

on the transition label. The parcelp = { r1, r2 } can propagate into registerr3 in 2 × 2 × 2 = 8

different ways, given that for each datapath there are two differentways to select its input argument.

At a minimum, the label of the parcel’s transition should describe the arguments toeach datapath in
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terms of values derived transitively from the parcel’s values. In our example, the conditions on the

edges of the fan-out graph of the parcel, i.e. the mux select signals, may depend on control variables

that are not derived from the parcel.

In a pipeline step, the parcel’s values move through combinational datapathsand parcel variables,

the results of which propagate into next state parcel registers, which in turn, denote the next state

of the parcel parcel. For a parcelp the parcel step contained in the pipeline model step is a triplet

(qPA, tPA, qPA
′) such that:

• qPA is the parcel’s current state.

• tPA is the step label.

• qPA
′ is the parcel’s next state:

qPA
′ = qP

′ | { v | v ′ ∈ p∗ ∩ NextRegPcl}

• tPA = 〈fanOutp, epcl , ectrl 〉 where:

– epcl ∈ Env(p∗ ∩ CombPcl) is defined by:

epcl = tP | p∗ ∩ CombPcl= tP | CombPcl

– ectrl ∈ PEnv(Vctrl ) where:

domectrl =
⋃

dp∈datapaths(fanOutp)

Arg(dp.Vctrl )

ectrl (v) = (qP ∪ tP)(v)

The parcel’s next state is obtained by projecting out the pipeline’s next state over the next-state

registers in the parcel’s fan-out. The parcel environment is obtained byprojecting out the pipeline

transition label with respect to the combinational variables in the parcel’s fan-out. The control

environment is defined over the actual parameters for input and output control variables of the

datapaths referenced by the fan-out graph. For each variable in its domain, the control environment

returns its value in the pipeline step.

Given a parcelp, we denote its next state bypclNextStatep. The transition label of the correspond-

ing parcel step is denoted bypclTransp. The step itself is denoted bypclStepp.

As an example considerpC = { rNeg } in the pipeline step(q4P, t
4
P, q

5
P), shown in Figure 4.27.

According to the definition we have:

qPA = q4P | rNeg
= 〈−1, 5, add〉
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r ′Add

pclPNeg

pclNNeg

rNeg

accAdd ,Neg

Fig. 4.27a.Fan-out graph.

Variable Value
rNeg 〈−1, 5, add〉
pclPNeg 〈−1, 5, add〉
pclNNeg 〈1, 5〉
rAdd

′ 〈1, 5〉

selNNeg 01

Fig. 4.27b.Parcel and control environments.

rNeg = 〈−1, 5, add〉

rAdd = 〈1, 5〉

pclPNeg = rNeg

selNNeg = 01

rAdd
′ = pclNNeg

Fig. 4.27c.Parcel Step

Figure 4.27: Parcel step for parcelpC.

tPA = 〈fanOutp, epcl , ectrl 〉

qPA
′ = q5P | rAdd

= 〈1, 5〉

epcl (pclPNeg) = 〈−1, 5, add〉

epcl (pclNNeg) = 〈1, 5〉

ectrl (selNNeg) = 01

The parcel step forpC is described graphically in Figure 4.27c. The transition label is described

by a set of assignments that can be used to infer the fan-out graph, the parcel and the control

environments.

The natural generalization of a parcel step contained in a pipeline step is to remove the context of

the pipeline step(qP, tP, q
′
P) and use standalone environmentsepcl andectrl . The parcel environment

83



(qPA ∪ epcl ∪ qPA
′
[

NextRegPcl/RegPcl

]
) must implement value copying correctly:

∀ (vl, b, vk) ∈ (fanOutp).Succ. vl 6∈ PclP

=⇒

(qPA ∪ epcl ∪ qPA
′
[

NextRegPcl/RegPcl

]
)(vk) = (qPA ∪ epcl ∪ qPA

′
[

NextRegPcl/RegPcl

]
)

(4.3)

4.5 Parcel Automata

A parcel automaton is a labeled transition system defined by parcel steps. The transitions of the

parcel automaton have form(qPA, tPA, qPA
′) for a parcel step(qPA, tPA, qPA

′′) such thatqPA
′ ⊆ qPA

′′.

4.5.1 Definition(Parcel Automaton). A parcel automaton is a labeled transition system〈QPA,RPA,TPA, IPA〉

such that:

• QPA ⊆ PEnv(RegPcl) ∪ { finalPA }.

• TPA consists of a subset of parcel step labels and the empty transition label∅.

• RPA ⊆ QPA × TPA × QPA consists of a set of parcel transitions:

{ (qPA, tPA, qPA
′) | qPA

′ 6= ∅ ∧ ∃ qPA
′′. qPA

′ ⊆ qPA
′′ ∧ (qPA, tPA, qPA

′′) is a parcel step} ∪

{ (qPA, tPA, finalPA) | ∃ qPA
′. (qPA, tPA, qPA

′) is a parcel step}

• (finalPA, ∅, finalPA) ∈ RPA

• IPA ⊆ QPA.

We denote the set of parcel automata for a given pipeline modelPipe by Pa(Pipe).

The parcel automaton described in Figure 4.28 and Figure 4.29 models the parcel computation for

parcelpA in our example. In the first step, we havepA = { vi }. Since the parcel consists of a

combinational variable, its state is∅. By reading the label on the outgoing transition from state

∅ we infer that the parcel propagates through theSub datapath into registerrNeg . The datapath

control inputs and outputs are highlighted on the transition label. TheSub datapath has the control

outputselN Sub = 001. The second transition describes the movement of the parcel through the

Neg datapath intorMult1. The assignmentrMult2
′ := resetMult assigns〈0, 0〉 that denotes an 8-bit

number and a 4-bit one. The remaining two transitions of the parcel automatonconclude the parcel

computation. In the last transition, the automaton reaches the final state denoted by finalPA, from

which only the empty transition∅ is possible.

84



pclPMult1 = rMult1

pclPMult2 = rMult2

stateIn = 000

stateOut = 010
rMult1

′ = rMult1

rMult2
′ = pclNMult2

rMult1 = 〈40, 5〉
rMult2 = 〈a × c = 8 × 5〉

pclPMult1 = rMult1

pclPMult2 = rMult2

stateIn = 010

stateOut = 100
rMult1

′ = rMult1

rMult2
′ = pclNMult2

rMult1 = 〈40, 5〉
rMult2 = 〈a × c = 8 × 5, low(bc) = 10〉

rNeg = 〈−40, 5, mult〉

∅

rMult1 = 〈40, 5〉
rMult2 = 〈0, 0〉

vi = 〈−30, 10, 5, mult〉
pclPSub = vi

selN Sub = 001

rNeg
′ = pclN Sub1

pclPNeg = rNeg

selNNeg = 10

rMult1
′ = pclNNeg

Figure 4.28: Parcel automaton for parcelpA.

Figure 4.30 describes the transition of a parcel automaton that models the stallof parcelpC in step

(q3P, t
3
P, q

4
P), previously described in Figure 4.21. During a stall, the state of the parcelautomaton

does not change.
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rMult1 = 〈40, 5〉
rMult2 = 〈a × c = 8 × 5, low(bc) = 10〉

pclPMult1 = rMult1

pclPMult2 = rMult2

stateIn = 100

stateOut = 111
vo2 = 〈200〉

finalPA ∅

Figure 4.29: Parcel automaton for parcelpA (continuation).

r ′Neg

pclPNeg

pclNNeg

rNeg

stallNeg

Fig. 4.30a.Fan-out graph.

Variable Value
rNeg 〈−1, 5, add〉
pclPNeg 〈−1, 5, add〉
pclNNeg 〈1, 5〉
rNeg

′ 〈−1, 5, add〉

selNNeg 01

Fig. 4.30b.Parcel and control environments.

rNeg = 〈−1, 5, add〉
pclPNeg = rNeg

selNNeg = 01
rNeg

′ = rNeg

Fig. 4.30c.Parcel transition for a stall.

Figure 4.30: ParcelpC = { rNeg } in pipeline step(q3P, t
3
P, q

4
P).
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rAdd = 〈246, 5〉

∅

vi = 〈10, 20, 5, add〉
pclPSub = vi

selN Sub = 001

rAdd
′ = pclN Sub2

pclPAdd = rAdd

vo1 = 251

finalPA ∅

Figure 4.31: Parcel automaton illustrating an unreachable parcel computation.
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Parcel automata can also describe computations that do not correspond to actual parcel computa-

tions in the pipeline model. In parcel computations embedded in pipeline computations control

dependencies between control variables are determined by assignments.In the computations of a

parcel automaton, control variables are free and such dependenciesmay not be preserved. The par-

cel automaton in Figure 4.31 describes a parcel computation that is not reachable inDiffAddMult.

The condition on the fan-out edge(pclN Sub , accAdd ,Sub , rAdd
′) is not true whenselN Sub = 001. In

the parcel automaton the variableaccAdd ,Sub appears to be independent ofselN Sub . The addition

operation interprets the tuple〈−10, 5〉 as a pair of two positive 8-bit numbers. In two’s complement

−10 is represented as256− 10 which leads to the addition producing the result246 + 5.

We can characterize parcel steps(qPA, 〈fanOutp, epcl , ectrl 〉, qPA
′) that are consistent with the be-

haviour of the pipeline datapath. The inputs and output arguments of each datapath instance that

appears in a parcel step must be transformed according to a step of the corresponding datapath. For

each datapath instance there exists a step such that the input and output variables on its transition

label are the same as the arguments provided by the environmentepcl ∪ ectrl .

∀ dp ∈ datapaths(fanOutp).

∃ (qD, tD, q
′
D) ∈ LTS(dp.C).RC.

∀ v ∈ dp.Vpcl ∪ dp.Vctrl .

(ectrl ∪ epcl )(Arg(v)) = tD(v)

(4.4)

When Equation 4.4 holds, we say the transition satisfies value propagation through the datapath.

4.5.2 Definition. Consistent Parcel Automaton We call a parcel automatonconsistentif its transi-

tions satisfy value propagation through the pipeline datapaths.

Inconsistent parcel automata are also possible. For instance, the parcel automaton in Figure 4.32 is

perfectly legal even though the subtraction produces the incorrect result 〈4, 2〉 instead of〈5, 2〉.

4.6 Abstractions Of Parcel Automata

Datapath abstraction replaces the concrete datapaths with abstract ones that retain the control visible

behaviour of the datapath. The partial orders on parcel automata such as simulation and language

containment provide our definition of control visible datapath behaviour.

When comparing concrete values to abstract values we must provide the same context. The context

is given by the registers that hold the parcel’s values and the fan-out graph that specifies how the

values propagate. We define the label of parcel automaton states and transitions so that the con-

texts of the values and behaviours they represent are the same. Since thecontrol visible datapath
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rAdd = 〈4, 2〉

∅

vi = 〈10, 5, 2, add〉
pclPSub = vi

selN Sub = 010

rAdd
′ = pclN Sub2

pclPAdd = rAdd

vo1 = 6

finalPA ∅

Figure 4.32: Parcel automaton showing inconsistent datapath behaviour.

behaviour that we are abstracting for appears on the edges of the parcel automaton, the label of the

parcel automaton edge must also contain the values of the control variablesthat appear on the edges

the fan-out of the parcel.

In the remainder of the thesis we use the following notation for the concrete and abstract parcel

automata:

pac = 〈QPAc ,RPAc ,TPAc , IPAc〉

paa = 〈QPAa ,RPAa ,TPAa , IPAa〉

Therefore, parcel states have the same label if they are defined over the same set of register vari-

ables. Transitions have the same label if their fan-out graphs and control environments coincide.

According to the definition of abstract interpretation of pipeline models presented in Section 3.3,

the ITE expressionsec and respectively,ea that are assigned to a parcel variablev satisfy the con-

dition ec ≈ai ea: occurrences of concrete constants inec may be replaced by abstract constants in

ea. We employ ‘≈ai ’ to define equivalence of fan-out graphs.

We use the notation

tPAc = 〈fgc , epclc , ectrlc〉

tPAa = 〈fga , epcla , ectrla〉
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We denote label equality for both states and transitions using the operator ‘=PA’:

qPAc =PA qPAa ≡ (domqPAc = domqPAa) ∨ (qPAc = finalPAc ∧ qPAa = finalPAa) (4.5)

tPAc =PA tPAa ≡






∀ (ec, b, v) ∈ fgc .Succ. ∃ (ea, b, v) ∈ fgc .Succ. ec ≈ai ea

∧

∀ (ea, b, v) ∈ fgc .Succ. ∃ (ec, b, v) ∈ fgc .Succ. ea ≈ai ec

∧

ectrlc = ectrla




∨

tPAc = ∅ ∧ tPAa = ∅




(4.6)

In Equation 4.6 the comparison of the fan-out graphs is made modulo ‘≈ai ’: the fan-out graphs

are identical with the exception of constants. In that equationec andea may only be constants or

variables.

We say an abstract parcel automaton is consistent with respect to constants if the abstract fan-out

edges corresponding to a concrete fan-out edge(wc, b, v) are all identical to(wa, b, v). If the parcel

automaton is consistent with respect to constants, then in abstract interpretation, the constantwc is

replaced bywa.

Figure 4.33 and Figure 4.34 describe an abstract parcel automaton that represents parcel compu-

tations of an abstraction of theDiffAddMult pipeline model. The abstract modelDiffAddMulta
is defined as an abstract interpretation of the concrete one. We denote theabstract datapaths by

Suba, Nega, Adda, Multa. From the parcel automaton we infer that the datapathSuba is non-

deterministic:
pclPSub selN Sub pclN Sub1 pclN Sub2

α0 010 α2 α2

α0 001 α1 α1

α0 100 α4 α4

Abstract multiplication is also non-deterministic. We use ‘*** ’ to denote any constant inB3. When

the parcel automaton is in the abstract stateqPAa defined by

qPAa(rMult1) = α6

qPAa(rMult2) = α7

it can non-deterministically remain in the same state for an arbitrary number of transitions under

any possible combination ofstateIn andstateOut or it can transition to the final state, indicating
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∅

vi = α0

pclPSub = vi

selN Sub = 001

rNeg
′ = pclN Sub1

pclN Sub2 = α1

rNeg = α1

pclPNeg = rNeg

selNNeg = 001

rAdd
′ = pclNNeg

vi = α0

pclPSub = vi

selN Sub = 010

rAdd
′ = pclN Sub2

pclN Sub1 = α2

vi = α0

pclPSub = vi

selN Sub = 100

rMult1
′ = pclN Sub2

pclN Sub1 = α4

pclPNeg = rNeg

selNNeg = 010

rMult1
′ = pclNNeg

pclPMult2 = α5

pclPMult1 = rMult1

stateIn = 000

stateOut = 010
rMult1

′ = rMult1

rMult2
′ = pclNMult2

rMult1 = α4

rMult2 = α5

pclPMult1 = rMult1

pclPMult2 = rMult2

stateIn = 100

stateOut = 111
vo2 = α8

pclPAdd = rAdd

vo1 = α3

finalPA ∅

rMult1 = α6

rMult2 = α7

pclPMult1 = rMult1

pclPMult2 = rMult2

stateIn = ***

stateOut = ***
rMult1

′ = rMult1

rMult2
′ = pclNMult2

rAdd = α2

Figure 4.33: Abstract parcel automaton.
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rNeg = α1

pclPNeg = rNeg

selNNeg = 01

rNeg
′ = rNeg

pclPNeg = rNeg

selNNeg = 10

rNeg
′ = rNeg

pclPAdd = rAdd

rAdd
′ = rAddrAdd = α2

Figure 4.34: Abstract parcel automaton (continuation).

the end of the multiplication. Intuitively, the abstract parcel automaton has equivalent computations

to each of the parcel computations described in Section 4.3.

Simulation on parcel automata is a simulation between labeled transition systems that preserves

label equality on states and transitions.

4.6.1 Definition (Simulation Of Parcel Automata). A simulation relationSPA ⊆ QPAc × QPAa

between the two labeled transition systems is a parcel automata simulation relation if:

• SPA respects the state labeling:

∀ qPAc . ∀ qPAa . (qPAc , qPAa) ∈ SPA =⇒ qPAc =PA qPAa (4.7)

• SPA respects the transition labeling:

qPAa qPAa
′

qPAc qPAc
′

//
tPAa

OO�
�

�

�

�

�

�

�

�

SPA

//
tPAc

OO

SPA =⇒ tPAc =PA tPAa (4.8)

• SPA satisfies the property:

∀ qPAc . ∀ qPAa . (qPAc , qPAa) ∈ SPA =⇒

∀ vars ⊆ domqPAc . (qPAc | vars, qPAa | vars) ∈ SPA

(4.9)
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Equation 4.9 in the definition of simulation of parcel automata is demanded by the fact that parcel

automata states are composites. A transition(qPA1, tPA, qPA
′) ∈ RPA corresponds to a parcel step

which uses only the current state registers inqPA1. It is therefore semantically correct to have the

transition(qPA2, tPA, qPA
′) for any superstateqPA1 ⊆ qPA2. It is also possible that given a substate

qPA2 ⊆ qPA1 the transition(qPA2, tPA, qPA
′) is still well defined. In both cases, such transitions,

though allowed under the definition of the parcel step, might not be part ofRPA. This is exactly the

reason for which Equation 4.9 compensates.

4.6.2 Definition. We call a parcel automatonclosedif it satisfies the following two conditions:

• For each transition(qPA1, tPA, qPA
′) ∈ RPA, the transition relationRPA contains all the similar

well-defined transitions of both substates and superstatesqPA2 of qPA1:

∀ (qPA1, tPA, qPA
′) ∈ RPA.(

∀ qPA2 ∈ QPA.

qPA2 ⊆ qPA1 ∧ (qPA2, tPA, qPA
′) is legal =⇒ (qPA2, tPA, qPA

′) ∈ RPA)

)

∧(
∀ qPA2 ∈ QPA.

qPA1 ⊆ qPA2 =⇒ (qPA2, tPA, qPA
′) ∈ RPA)

)
(4.10)

• For each transition(qPA, tPA, qPA
′) ∈ RPA, the transition relationRPA contains all transitions

to non-empty substatesqPA
′′ of qPA

′:

∀ (qPA,tPA, qPA
′) ∈ RPA.

∀ qPA
′′ ∈ QPA.

qPA
′′ 6= ∅ ∧ qPA

′′ ⊆ qPA
′ =⇒ (qPA, tPA, qPA

′′) ∈ RPA

Closing a parcel automaton is a syntactic operation. It does not add new datapath behaviours.

The following proposition states that we do not need Equation 4.9 in the definition of simulation for

parcel automata if the parcel automata satisfy Equation 4.10.

4.6.3 Proposition. If pac andpaa satisfy Equation 4.10 and there exists a simulation relationSPA

that satisfies Equation 4.7 and Equation 4.8 from the definition of simulation for parcel automata,

then we can defineSPA1 by extendingSPA such thatSPA1 is a simulation for parcel automata.

Proof. We defineSPA1 as follows:

‘
SPA1 ≡ SPA ∪ { (qPAc , qPAa) |∃ (qPAc 1, qPAa 1) ∈ SPA. ∃ vars ⊆ domqPAc 1.

vars 6= ∅ ∧ qPAc = qPAc 1 | vars ∧ qPAa = qPAa 1 | vars }
(4.11)
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By construction,SPA satisfies Equation 4.9. It also preserves labeling of states (Equation 4.7).We

need to show it is a simulation relation that preserves transition labeling.

qPAa qPAa
′

qPAc qPAc
′

//
tPAa

OO�
�

�

�

�

�

�

�

�

SPA1

//
tPAc

OO

SPA1 (4.12)

Case 1(qPAa , qPAc) ∈ SPA. Equation 4.12 is equivalent to Equation 4.13 which holds becauseSPA

is a simulation relation.

qPAa qPAa
′

qPAc qPAc
′

//
tPAa

OO�
�

�

�

�

�

�

�

�

SPA

//
tPAc

OO

SPA (4.13)

Case 2According to Equation 4.11 there existqPAc 1 ∈ QPAc , qPAa 1 ∈ QPAa andvars ⊆ domqPAc 1

such thatqPAc = qPAc 1 | vars andqPAa = qPAa 1 | vars. Sincepac is closed we have(qPAc 1, tPAc , qPAc
′) ∈

RPAc . Since(qPAc 1, qPAa 1) ∈ SPA the following diagram commutes:

qPAa 1 qPAa
′

qPAc 1 qPAc
′

//
tPAa

OO�
�

�

�

�

�

�

�

�

�

SPA

//
tPAc

OO

SPA (4.14)

Since

(qPAc , tPAc , qPAc
′) ∈ RPc

(qPAa 1, tPAa , qPAa
′) ∈ RPa

qPAa ⊆ qPAa 1

it follows that the transition(qPAa , tPAa , qPAa
′) is well defined and sincepaa is closed we have

(qPAa , tPAa , qPAa
′) ∈ RPAa (4.15)

Combining Equation 4.15 with the fact thatSPA ⊆ SPA1 we obtain Equation 4.12.
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Simulation holds between the abstract parcel automaton and the concrete parcel automaton in Fig-

ure 4.28 and Figure 4.29 that models the concrete parcelpA. The simulation relationSPA is defined

by the following concrete-abstract pairs:

Concrete Abstract

∅ ∅

rNeg = 〈−40, 5, mult〉 rNeg = α1

rMult1 = 〈40, 5〉 rMult1 = α4

rMult2 = 〈0, 0〉 rMult1 = α5

rMult1 = 〈40, 5〉 rMult1 = α6

rMult2 = 〈a × c = 8 × 5〉 rMult2 = α7

rMult1 = 〈40, 5〉 rMult1 = α6

rMult2 = 〈a × c = 8 × 5, low(bc) = 10〉 rMult2 = α7

finalPA finalPA

Language containment is defined with respect to the state and transition labelsof the parcel au-

tomata. Parcel runs are denoted byσPA ∈ L(pa). Fork ∈ N we use the notation:

σPA(k) = (qkPA, t
k
PA)

Two runsσPAc ∈ L(pac) andσPAa ∈ L(paa) are equivalent if they specify states and transitions

that have the same label. We overload the ‘=PA’ operator to denote equivalent runs:

σPAc =PA σPAa ≡ ∀ k ∈ N. qkPAc =PA q
k
PAa ∧ tkPAc =PA t

k
PAa

Language containment is defined using run equivalence:

L(pac) ⊆PA L(paa)

≡

∀ σPAc ∈ L(pac). ∃ σPAa ∈ L(paa). σPAc =PA σPAa

Recalling the example used for simulation between parcel automata, for the runof the parcel au-

tomaton that represents parcelpA there exists an equivalent run of the abstract automaton shown in

Figure 4.35.
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∅

vi = α0

pclPSub = vi

selN Sub = 001

rNeg
′ = pclN Sub1

rNeg = α1

pclPNeg = rNeg

selNNeg = 010

rMult1
′ = pclNNeg

pclPMult2 = α5

pclPMult1 = rMult1

stateIn = 000

stateOut = 010
rMult1

′ = rMult1

rMult2
′ = pclNMult2

rMult1 = α4

pclPMult1 = rMult1

pclPMult2 = rMult2

stateIn = 100

stateOut = 111
vo2 = α8

finalPA ∅

pclPMult1 = rMult1

pclPMult2 = rMult2

stateIn = 010

stateOut = 100
rMult1

′ = rMult1

rMult2
′ = pclNMult2

rMult1 = α6

rMult2 = α7

rMult1 = α6

rMult2 = α7

Figure 4.35: Abstract equivalent run corresponding topA.
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4.7 Abstract Interpretation Using Parcel Automata

In this section, we describe how we can obtain abstract interpretations of the concrete pipeline model

using abstract parcel automata. In the previous sections, parcel automata were used to represent

datapath behaviour of the pipeline model. In this section, we examine how the datapath behaviour

represented by parcel automata can be used to define datapath circuits. As a direct application,

abstract interpretations of the concrete pipeline model can be obtained by deriving abstract datapaths

from abstract parcel automata.

We recall the equation that was used to define a consistent parcel step(qPA, 〈fanOutp, epcl , ectrl 〉, qPA
′):

∀ dp ∈ datapaths(fanOutp).

∃ (qD, tD, q
′
D) ∈ LTS(dp.C).RC.

∀ v ∈ dp.Vpcl ∪ dp.Vctrl .

(ectrl ∪ epcl )(Arg(v)) = tD(v)

(4.16)

Equation 4.16 characterizes parcel automaton transitions in terms of datapathbehaviour. By refor-

mulating it, we characterize datapath behaviour in terms of the parcel automaton. We use the parcel

automaton to define the transition relationRD of a labeled transition system that corresponds to a

combinational datapathdp. The transition relationRD is the union of all datapath behaviours that

are specified in the parcel transitions of the parcel automaton:

RD ≡{(∅, tD, ∅) |

∃ (qPA, 〈fg , epcl , ectrl 〉, qPA
′) ∈ RPA.

dp ∈ datapaths(fanOutp) ∧ ∀ v ∈ dp.Vpcl ∪ dp.Vctrl .

tD(v) = (ectrl ∪ epcl )(Arg(v)) }

(4.17)

We illustrate Equation 4.17 using the abstract parcel automaton in Figure 4.33.There are three

transitions of the abstract parcel automaton that mention arguments to theSub datapath. We write

RSub ≡ { (∅, t1, ∅), (∅, t2, ∅), (∅, t3, ∅) }

And the three transition labels are defined by:




t1(pclPSub) = α0

t1(selN Sub) = 010

t1(pclN Sub1) = α2

t1(pclN Sub2) = α2




∧




t2(pclPSub) = α0

t2(selN Sub) = 001

t2(pclN Sub1) = α1

t2(pclN Sub2) = α1




∧




t3(pclPSub) = α0

t3(selN Sub) = 100

t3(pclN Sub1) = α4

t3(pclN Sub2) = α4



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1 type in ty is {α0 };
2 type out ty is {α1, α2, α4 };
3
4 ckt Suba(pclP : in ty)(pclN 1 : out ty, pclN 2 : out ty, selN : bitvec[2])
5 var
6 case : 1 .. 3;
7 assign
8 case :=choice;
9 pclN 1 :=

10 if case == 1then α2

11 else ifcase == 2then α1

12 elseα4;
13 pclN 2 :=
14 if case == 1then α2

15 else ifcase == 2then α1

16 elseα4;
17 selN :=
18 if case == 1then 010
19 else ifcase == 2then 001
20 else100;
21 end

Figure 4.36: Circuit equivalent toRSub .

The transition relationRSub is represented by the circuit in Figure 4.36. We can similarly obtain

the circuitsNega, Adda andMulta that are characterized by the transitions of the abstract parcel

automaton. We have arrived at the point where we can use the abstract parcel automaton to give an

abstract interpretation of the concrete pipeline datapath. We denote the datapaths created from the

parcel automatonpaa by Dpspaa . The abstract interpretation obtained this way is denoted as:

Pipea = Pipec

[
Dpspaa/Dpsc

]

The abstract parcel automaton defines the abstract datapaths. To perform an abstract interpretation

we also replace occurrences of constants in the concrete expressionsby abstract counterparts. If the

abstract interpretation in Equation 4.7 holds, then the abstract parcel automaton is consistent with

respect to constants.
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4.8 Summary

Parcel automata formalize the behaviour of groups of related data values,called parcels, with re-

spect to the pipeline datapath. Abstract parcel automata lead to the definition of abstract datapaths

which are used to create abstract pipeline models using abstract interpretation. The conditions and

correctness of datapath abstraction using parcel automata are described in the the next chapter.
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Chapter 5

Datapath Abstraction Framework

Section 5.1 presents parcel maps and the concept of parcel independence that allows the runs of

the pipeline model to be decomposed into runs of the parcel automaton. Section5.2 describes the

obligations needed to prove a parcel map satisfies the conditions of parcelindependence. Section 5.3

presents additional requirements that must hold of the concrete pipeline model in order to apply

abstraction using parcel automata. The soundness of abstraction using parcel automata is proven in

Section 5.4.

5.1 Parcel Independence

In the previous chapter we described parcel automata as a formalism for the representation of parcel

computations. One of the examples showed the simultaneous parcel computations that were taking

place in the first few steps of a pipeline computation of theDiffAddMult model. Parcel indepen-

dence is a property of pipeline computations that states that the computations can be decomposed

into parcel computations that interact only through control variables. Theparcel computations are

independent of each other if they do not simultaneously use the same parcel variables or datapaths.

In the following we formalize the decomposition of pipeline runs into independent parcel compu-

tations. We first define the decomposition of a pipeline step into parcel steps and then state the

condition under which the parcel steps form parcel computations. Our approach uses a function

PclMap : RP → P(P(Vpcl ∪ NextRegPcl))

that returns the set of disjoint parcels at each step of the pipeline model. There are three properties

that the parcel map must satisfy.
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• Every parcel variable belongs to a parcel’s fan-out.

∀ (qP, tP, q
′
P) ∈ RP.

∀ v ∈ Vpcl ∪ NextRegPcl. ∃ p ∈ PclMap (qP, tP, q
′
P). v ∈ p∗

(5.1)

• Datapaths transform only one parcel at a time.

∀ (qP, tP, q
′
P) ∈ RP.

∀ dp ∈ Dps. ∀ p1 ∈ PclMap (qP, tP, q
′
P). ∀ p2 ∈ PclMap (qP, tP, q

′
P).

Arg(dp.PclP) ∩ p∗1 6= ∅ ∧ Arg(dp.PclP) ∩ p∗2 6= ∅ =⇒ p1 = p2

(5.2)

• The state of a parcel in the current step is part of the next state of a parcel in the previous step.

∀ qP. ∀ tP. ∀ qP
′. ∀ tP

′. ∀ qP
′′.

(qP, tP, q
′
P) ∈ RP ∧ (q′P, t

′
P, q

′′
P) ∈ RP =⇒

∀ p2 ∈ PclMap (q′P, t
′
P, q

′′
P). ∃ p1 ∈ PclMap (qP, tP, q

′
P).

pclStatep2 ⊆ pclNextStatep1

(5.3)

The first two properties of parcel maps ensure that the datapath computations in a pipeline step

decompose into disjoint parcel steps. Since parcels are disjoint, the only way their fan-outs could

not be disjoint is if two input arguments of a datapath were to be in the fan-outof distinct parcels.

The inductive application of the third property ensures that parcel stepsare connected into parcel

computations.

parcel condition
{ vi } ¬accMult ,Sub

{ vi , rMult2
′ } accMult ,Sub

{ rNeg } ¬accMult ,Neg

{ rNeg , rMult2
′ } accMult ,Neg

{ rNeg
′ } ¬(accNeg ,Sub ∨ stallNeg)

{ rAdd } true
{ rAdd

′ } ¬(accAdd ,Sub ∨ accAdd ,Neg ∨ stallAdd )
{ rMult1, rMult2 } true
{ rMult1

′, rMult2
′ } ¬(accMult ,Sub ∨ accMult ,Neg ∨ accMult ,Mult)

Figure 5.1: Parcel map forDiffAddMult.

For DiffAddMult the parcel map is defined in Figure 5.1. In the figure, a given parcelp belongs
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to the parcel map if the pipeline step satisfies the corresponding condition. For instance, given the

pipeline step(q1P, t
1
P, q

2
P) described in Figure 4.13, since

(q1P, t
1
P, q

2
P) |= (¬accMult ,Sub) ∧ (accMult ,Neg) ∧ (¬(accNeg ,Sub ∨ stallNeg))

the parcel map returns the following value:

PclMap (q1P, t
1
P, q

2
P) = { { vi }, { rNeg , rMult2

′ }, { rNeg
′ }, { rAdd }, { rMult1, rMult2 } }

Examining the three properties satisfied by parcel maps we notice that the lasttwo hold vacuously

for singleton parcels. Thus they are automatically satisfied by parcel maps that only return singleton

parcels. In addition, if every datapath has at most one input parcel variable, then the pipeline model

is guaranteed to have a parcel map. We define a parcel map which returnssingleton parcels and thus

only needs to satisfy the first property. The singleton{ v } is a parcel if it is not in the fan-out of

another parcel variable:

{ v } ∈ PclMap (qP, tP, q
′
P) ⇐⇒




v ∈ RegPcl

∨

∃ (w, b, v) ∈ FanOutEdges. (qP, tP, q
′
P) |= b

∨

∃ (choice, b, v) ∈ FanOutEdges. (qP, tP, q
′
P) |= b

∨

∃ dp ∈ Dps. |dp.PclP| = 0 ∧ v ∈ Arg(dp.PclN)




(5.4)

The existence of a parcel map for a pipeline model allows us to perform datapath abstraction using

parcel automata. A parcel map induces a parcel automaton which we use to reason about datapath

abstractions. The transitions of the automaton correspond to the parcel steps induced by the parcel

map.

5.1.1 Definition (Parcel Automaton Induced by Parcel Map). A parcel mapPclMap induces a

parcel automatonpa(Pipe,PclMap) = 〈QPA,RPA,TPA, IPA〉 as follows:

QPA = { qPA | qPA ∈ PEnv(RegPcl) } (5.5)

RPA = { (finalPA, ∅, finalPA) } ∪

{ (qPA, tPA, qPA
′) |

∃ (qP, tP, q
′
P) ∈ RP. ∃ p ∈ PclMap (qP, tP, q

′
P).

qPA = qP | p ∧ tPA = pclTransp ∧ qPA
′ ⊆ pclNextStatep } (5.6)

IPA = { ∅ } ∪ { qPA | ∃ (qP, tP, q
′
P) ∈ RP. qP ∈ IP ∧
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∃ p ∈ PclMap (qP, tP, q
′
P). qPA = pclStatep } (5.7)

5.2 Verification Of Parcel Independence

In this section we describe how we can state the three properties of well-defined maps into proposi-

tional logic. For each property, we describe a propositional formula thatis a tautology if and only if

the property is true.

We use an equivalent representation of the parcel map

PclMapalt : RP → Vpcl ∪ NextRegPcl→ { 0, . . . , |Vpcl ∪ NextRegPcl| }

so that a parcel variable maps to a non-zero value if it belongs to a parcel

∀ (qP, tP, q
′
P) ∈ RP.

∀ v ∈ Vpcl ∪ NextRegPcl.

PclMapalt (qP, tP, q
′
P) v 6= 0 ⇐⇒ ∃ p ∈ PclMap (qP, tP, q

′
P). v ∈ p

and two parcel variables map to the same non-zero value if they belong to the same parcel.

∀ (qP, tP, q
′
P) ∈ RP.

∀ v1 ∈ Vpcl ∪ NextRegPcl. ∀ v2 ∈ Vpcl ∪ NextRegPcl.

PclMapalt (qP, tP, q
′
P) v1 6= 0 ∧ PclMapalt (qP, tP, q

′
P) v1 = PclMapalt v2

⇐⇒

∃ p ∈ PclMap (qP, tP, q
′
P). { v1, v2 } ⊆ p

Recall from Section 2.3 that the transition relationRC of a circuitC is represented by a propositional

formula formula(Elab(C ).Tr). For a pipeline model its transition relationRP is represented by the

formula formula(Elab(Pipe.C).Tr) which we designate by[[RP]]bool . This formula is defined over

current-state register variables, combinational variables and next-state register variables, denoted in

order asVreg , Vcomb , VnextReg . To make explicit the variables that appear in the formula we write

it as[[RP]]bool (Vreg ,Vcomb ,VnextReg). Note that the set of variablesVcomb subsumes the set of input

parcel variablesInputPcl. We also letVstep stand forVreg ∪ Vcomb ∪ VnextReg .

The propositional formula that represents the parcel map is given by[[PclMapalt ]]bool (Vstep ,VpclMap),

whereVpclMap is in bijection with Vpcl ∪ NextRegPcland each variablepclMapv ∈ VpclMap

represents the valuePclMapalt (qP, tP, q
′
P) v . The semantics of the propositional representation is
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summarized by the equation below:

∀ qP ∈ QP. ∀ tP ∈ TP. ∀ qP
′ ∈ QP. ∀ epclMap ∈ Env(VpclMap).

(qP ∪ tP ∪ qP
′
[
VnextReg/Vreg

]
∪ epclMap) |= [[RP]]bool (Vstep) ∧ [[PclMapalt ]]bool (Vstep ,VpclMap)

⇐⇒

(qP, tP, qP
′) ∈ RP ∧ ∀ v ∈ Vpcl ∪ NextRegPcl. PclMapalt (qP, tP, q

′
P) v = epclMap(pclMapv )

Next, we describe how we represent the fan-out of parcels in propositional logic. We use the set of

fan-out variablesVfanOut in bijection with the setVpcl ∪ NextRegPclto represent for each parcel

variable the parcel that contains it in its fan-out. Thus,fanOutv = 0 means that the parcel variable

v is not in the fan-out of any parcel, whilefanOutv = n, with n 6= 0 means thatv ∈ p∗ with

p = { v1 | PclMapalt (qP, tP, q
′
P) v1 = n }.

A parcel’s fan-out is derived transitively using fan-out edges. A fan-out edge(vl, b, vk) ∈ FanOutEdges

corresponds to the assignmentfanOutvk := fanOutvl . Since the assignment is performed only

whenb holds, the propositional formula for the fan-out edge becomes

b =⇒ (fanOutvk := fanOutvl)

Similarly, edges of form(w, b, vk), with w constant, and(choice, b, vk) are encoded as

b =⇒ (fanOutvk := pclMapvk)

Since every combinational and next-state register parcel variable is assigned, for each such variable

there must exist an incoming fan-out edge that is satisfied under any control environment.

The propositional formula that describes the fan-out of parcels is defined as follows:

FanOut(Vstep ,VpclMap ,VfanOut) ≡




∧
v∈InputPcl

(fanOutv := pclMapv )

∧
∧

v∈Vreg

(fanOutv := pclMapv )

∧
∧

(vl,b,vk)∈FanOutEdges

b =⇒ (fanOutvk := fanOutvl)

∧
∧

(w,b,vk)∈FanOutEdges

b =⇒ (fanOutvk := pclMapvk)

∧
∧

(choice,b,vk)∈FanOutEdges

b =⇒ (fanOutvk := pclMapvk)



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We formulate the first two properties of a well-defined parcel map as formulas of propositional

logic.

• Every parcel variable belongs to a parcel’s fan-out.

[[RP]]bool (Vstep) ∧ [[PclMapalt ]]bool (Vstep ,VpclMap) ∧ FanOut(Vstep ,VpclMap ,VfanOut)

=⇒
∧

v∈Vpcl∪NextRegPcl

fanOutv 6= 0

(5.8)

• Datapaths transform only one parcel at a time.

[[RP]]bool (Vstep) ∧ [[PclMapalt ]]bool (Vstep ,VpclMap) ∧ FanOut(Vstep ,VpclMap ,VfanOut)

=⇒

∧

dp∈Dps

( ∧
{ pclP1,pclP2 }⊆dp.PclP

fanOutpclP1
= fanOutpclP2

)

(5.9)

The third property, stated in Equation 5.3 can be reformulated as follows:

∀ qP. ∀ tP. ∀ qP
′. ∀ tP

′. ∀ qP
′′.

(qP, tP, q
′
P) ∈ RP ∧ (q′P, t

′
P, q

′′
P) ∈ RP

=⇒



∀ v1 ∈ RegPcl. ∀ v2 ∈ RegPcl.

∃ p2 ∈ PclMap (q′P, t
′
P, q

′′
P). { v1, v2 } ⊆ p2

=⇒

∃ p1 ∈ PclMap (qP, tP, q
′
P). { v1

′, v2
′ } ⊆ p∗1




(5.10)

In order to state Equation 5.10 into an equivalent propositional logic formula, we need two copies

of each of the following sets of variables:Vstep , VpclMap andVfanOut . We will denote the two

copies ofV by V 1 andV 2. For v ∈ V we denote its two copies asv1 ∈ V 1 andv2 ∈ V 2. The

propositional formula for Equation 5.10 is defined below.
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• The state of a parcel in the current step is part of the state of a parcel in the previous step.




[[RP]]bool (Vstep
1) ∧ [[PclMapalt ]]bool (Vstep

1,VpclMap
1) ∧ FanOut(Vstep

1,VpclMap
1,VfanOut

1)

∧

[[RP]]bool (Vstep
2) ∧ [[PclMapalt ]]bool (Vstep

2,VpclMap
2) ∧ FanOut(Vstep

2,VpclMap
2,VfanOut

2)

∧
∧

v∈Vreg

((v1)′ = v2)




=⇒
∧

v2
1
∈RegPcl2

∧

v2
2
∈RegPcl2

(pclMap2
v2
1

= pclMap2
v2
2

=⇒ fanOut1(v1
1
)′ = fanOut1(v1

2
)′)

(5.11)

5.3 Concrete Pipeline Models And Abstract Interpretation

In Section 3.3 we describe the general form of abstract interpretation ofpipeline models and in

Section 4.7 we explain how abstract parcel automata are used to derive abstract datapaths suitable

for abstract interpretation. In this section we examine the relationship between concrete and abstract

pipeline model states and transitions.

5.3.1 Assumptions About Initial States

We write the initial conditions of the concrete and abstract models as disjoint unions between the

set of assignments to control variables and the set of assignments to parcel variables.

Pipec .Init = Initctrl ⊎ Initpcl c

Pipea .Init = Initctrl ⊎ Initpcl a

In the abstract pipeline model any state that is a disjoint union of initial states ofthe parcel automaton

satisfies the initial parcel variable constraint.

∀ qPa ∈ QPa .(
∃ P ∈ P(RegPcl). RegPcl=

⊎
p∈P

p ∧ ∀ p ∈ P . qPa | p ∈ IPAa

)
=⇒ qPa |= Initpcl a

(5.12)

We require all abstract interpretations to satisfy Equation 5.12. We note thatEquation 5.12 holds

trivially if Initpcl a is empty.
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The concept of induced parcel states is used to describe a property ofthe parcel map with respect

to initial concrete model states. It will also appear when we construct the simulation between the

concrete and abstract pipeline models. Given a concrete pipeline model step(qPc , tPc , q
′
Pc) ∈ RPc

the parcel map induces a set of parcel automaton statesPclStates(qPc , tPc , q
′
Pc) ⊆ QPAc . We use

PclStatesqPc to denote the set of states defined as the union ofPclStates(qPc , tPc , q
′
Pc) over all steps

(qPc , tPc , q
′
Pc) from qPc .

PclStates(qPc , tPc , q
′
Pc) ≡ {pclStatep | p ∈ PclMap (qPc , tPc , qPc

′) ∧ p ∩ RegPcl6= ∅ }

PclStatesqPc ≡
⋃

(qPc ,tPc ,q
′

Pc)∈RPc

PclStates(qPc , tPc , q
′
Pc)

We say that the parcel states are fixed in a stateqPc ∈ QPc if in all steps from stateqPc the parcel

map induces the same set of states:

∀ tPc 1. ∀ qPc 1. ∀ tPc 2. ∀ qPc 2.

(qPc , tPc 1, qPc 1) ∈ RPc ∧ (qPc , tPc 2, qPc 2) ∈ RPc

=⇒

PclStates(qPc , tPc 1, qPc 1) = PclStates(qPc , tPc 2, qPc 2)

(5.13)

Our proof of simulation between the abstract and concrete pipeline models relies on Equation 5.13

to hold for initial states. We therefore provide a way to verify it by giving a translation into propo-

sitional logic. Equation 5.13 rewrites alternatively as follows:

∀ (qPc 1, tPc 1, q
′
Pc 1) ∈ RPc . ∀ (qPc 2, tPc 2, q

′
Pc 2) ∈ RPc .

qPc 1 = qPc 2 ∧ qPc 1 ∈ IPc

=⇒



∀ p1 ∈ PclMap (qPc 1, tPc 1, q
′
Pc 1).

p1 ∩ RegPcl6= ∅

=⇒

∃ p2 ∈ PclMap (qPc 2, tPc 2, q
′
Pc 2).

p1 ∩ RegPcl= p2 ∩ RegPcl




(5.14)

Equation 5.14 states that, for any two pipeline model steps from an initial stateqPc , the set of parcel

states of the former is a subset of the set of parcel states of the latter. Thisis equivalent to stating

that the sets of parcel states of any two pipeline model steps are the same andequal toPclStatesqPc .

We show how Equation 5.14 expresses in term of the alternate representation of the parcel map
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PclMapalt :

∀ (qPc 1, tPc 1, q
′
Pc 1) ∈ RPc . ∀ (qPc 2, tPc 2, q

′
Pc 2) ∈ RPc .

qPc 1 = qPc 2 ∧ qPc 1 ∈ IPc

=⇒

∧

v1∈RegPcl

∧

v2∈RegPcl




PclMapalt (qPc 1, tPc 1, q
′
Pc 1) v1 = PclMapalt (qPc 1, tPc 1, q

′
Pc 1) v2

=⇒

PclMapalt (qPc 2, tPc 2, q
′
Pc 2) v1 = PclMapalt (qPc 2, tPc 2, q

′
Pc 2) v2




(5.15)

Using the approach described in Section 5.2, Equation 5.15 is representedin propositional logic by

the following formula:




[[RP]]bool (Vstep
1) ∧ [[PclMapalt ]]bool (Vstep

1,VpclMap
1)

∧

[[RP]]bool (Vstep
2) ∧ [[PclMapalt ]]bool (Vstep

2,VpclMap
2)

∧
∧

v∈Vreg

(v1′ = v2)

∧

[[IP]]bool (Vreg
1)




=⇒
∧

v1
1
∈RegPcl1

∧

v1
2
∈RegPcl1

(pclMap1
v1
1

= pclMap1
v1
2

) =⇒ (pclMap2
v2
1

= pclMap2
v2
2

)

(5.16)

5.3.2 Fundamental Relationship

Theorem 5.3.1 states the mechanism by which a step of the concrete pipeline model is matched by

a step of the abstract model. We recall theAndOr example from Section 4.1. Figure 5.2 shows

a pipeline model commuting diagram that is derived on the basis of parcel automata commuting

diagrams. The parcel commuting diagrams describe abstract parcel stepsthat match the concrete

parcel steps that happen within one concrete pipeline model step. Given aconcrete pipeline model

state and a control equivalent abstract pipeline model state such that the parcel diagrams commute,

we can construct a matching abstract pipeline model step. The abstract pipeline model step is

constructed using the abstract pipeline automaton steps.

5.3.1 Theorem.LetPipec andPipea be two pipeline models such that

Pipea = Pipec

[
Dpspaa/Dpsc

]
(5.17)
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Fig. 5.2a.Pipeline commuting diagram.
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Fig. 5.2b.Parcel commuting diagrams.

Figure 5.2:AndOr example.

Given

• (qPc , tPc , q
′
Pc) ∈ RPc

• qPa ∈ QPa

• paa ∈ Pa(Pipea)

• pclTransa : PclMap (qPc , tPc , q
′
Pc) → TPAa

• pclNextStatea : PclMap (qPc , tPc , q
′
Pc) → QPAa

such that:

• The pipeline statesqPc andqPa are control equivalent.

qPc =Vctrl
qPa (5.18)
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• The following diagram commutes:

∀ p ∈ PclMap (qPc , tPc , q
′
Pc).

qPa | p pclNextStateap

qPc | p pclNextStatep

//
pclTransa p

OO

=PA

//
pclTransp

OO

=PA

(5.19)

Then there existtPa ∈ TPa andqPa
′ ∈ QPa such that the following diagram commutes:

qPa qPa
′

qPc qPc
′

//
tPa

OO�
�

�

�

�

�

�

�

=P

//
tPc

OO

=P (5.20)

Furthermore,tPa andqPa
′ are constructed usingpclTransa , andpclNextStatea . LetpclTransa p =

(fga p , epcla p , ectrla p). The construction has the following properties:

∀ p ∈ PclMap (qP, tP, q
′
P).

∀ v ∈ p∗ ∩ CombPcl. tPa(v) = epcla p(v)
(5.21)

∀ p ∈ PclMap (qP, tP, q
′
P).

∀ v ′ ∈ p∗ ∩ NextRegPcl. qPa
′(v) = (pclNextStatea p)(v)

(5.22)

Proof. Equation 5.21 definestPa over parcel variables. Similarly, Equation 5.22 definesqPa
′ over

parcel variables. Since the diagram in Equation 5.20 commutes we also have:

tPa =Vctrl
tPc (5.23)

qPa
′ =Vctrl

qPc
′ (5.24)

Equation 5.21 and Equation 5.23 definetPa ∈ TPa over the combinational pipeline variables. Equa-

tion 5.22 and Equation 5.24 defineqPa
′ over the entirety of its domain. We must show thattPa

can be defined over the combinational instance variables so that(qPa , tPa , qPa
′) ∈ RPa . We apply

Proposition 2.3.16. Accordingly, we have two obligations:

∀ ‘v := expra ’ ∈ Pipea .C.Tr.

(tPa ∪ qPa
′
[
VnextReg/Vreg

]
)(v) = [[expra ]]qPa∪tPa

(5.25)
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∀ dpa ∈ Pipea .Dps.

∃ (qDa , tDa , qDa
′) ∈ LTS(dpa .C).RC.

∀ v ∈ dpa .C.Vi ∪ dpa .C.Vo . tDa(v) = tPa(Arg(v))

(5.26)

Part 1 Consider ‘v := expra ’ ∈ Pipea .C.Tr. There are two cases depending on whetherv is a

control variable or a parcel variable.

Part 1a v ∈ (Vctrl ∩ Vc) ∪ (Vctrl ∩ Vr )
′. SincePipea is an abstract interpretation andv is a

control variable we have

‘v := expra ’ ∈ Pipec .C.Tr (5.27)

In this caseexpra is an expression over control variables. Equation 5.18, Equation 5.23 and Equa-

tion 5.24 imply:

(tPa ∪ qPa
′
[
VnextReg/Vreg

]
)(v) = (tPc ∪ qPc

′
[
VnextReg/Vreg

]
)(v) (5.28)

[[expra ]]qPa∪tPa
= [[expra ]]qPc∪tPc

(5.29)

From Equation 5.27 it follows that

(tPc ∪ qPc
′
[
VnextReg/Vreg

]
)(v) = [[expra ]]qPc∪tPc

(5.30)

Equation 5.25 follows from Equation 5.28, Equation 5.29 and Equation 5.30.

Part 1b v ∈ CombPcl∪ NextRegPcl. According to Section 4.7,expra is an ITE parcel expression

that is either equal to a constant or contains onlychoice and parcel variables. Considerp ∈

PclMap (qPc , tPc , q
′
Pc) such thatv ∈ p∗. We apply the commuting diagram in Equation 5.19 to

parcelp. Letting

pclTransp = (fgc p , epclc p , ectrlc p)

pclTransa p = (fga p , epcla p , ectrla p)

we have

fgc p = fga p (5.31)

ectrlc p = ectrla p

Case 1If expra reduces to a constantwa then the assignmentv := wa corresponds to an abstract

fan-out edge(wa, b, v) on the transitionpclTransa p such thatv ∈ p. Therefore

(epcla p ∪ (pclNextStateap)
[
NextRegPcl/RegPcl

]
)(v) = wa
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and thus

[[v ]]
epcla p∪(pclNextStateap)

[

NextRegPcl/RegPcl
]

)
= [[expra ]]epcla p∪(pclNextStateap)

[

NextRegPcl/RegPcl
]

)

which implies Equation 5.25.

Case 2If expra reduces tochoice

[[expra ]](qPa∪tPa )|Vctrl

= choice

then any environment satisfies the assignment ‘v := choice’.

Case 3The final case is whenexpra reduces tou ∈ Vpcl :

[[expra ]](qPa∪tPa )|Vctrl

= u

Consider the assignment ‘v := exprc ’ ∈ Pipec .C.Tr. Since(qPc ∪ tPc) | Vctrl
= (qPa ∪ tPa) |

Vctrl
andexprc ≈ai expra thenexprc must also reduce tou.

[[exprc ]](qPc∪tPc)|Vctrl

= u

Therefore,fgc p contains an edge of form(u, b, v) such that(qPc ∪ tPc) | Vctrl
|= b. Equation 5.31

implies that the same edge exists infga p . According to Equation 4.3 in the definition of a parcel

step we must have

epcla p(v) = epcla p(u) (5.32)

Equation 5.21 and Equation 5.22 imply that

(tPa ∪ qPa
′
[
VnextReg/Vreg

]
)(v) = epcla p(v) (5.33)

SincepclTransa p labels the transition from the parcel stateqPa | p we also have:

(qPa ∪ tPa)(u) = epcla p(u) (5.34)

Equation 5.32, Equation 5.33 and Equation 5.34 imply that

(tPa ∪ qPa
′
[
VnextReg/Vreg

]
)(v) = (qPa ∪ tPa)(u)

Part 2 Considerdpa ∈ Pipea .Dps. Let dpc ∈ Pipec .Dpsbe the corresponding datapath given by

the rules of abstract interpretation. There must exist a parcelp ∈ PclMap (qPc , tPc , q
′
Pc) such that
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the input and output arguments ofdpc belong top∗. The parcel’s step expresses as:

pclStepp =
(
qPc | p, pclTransp, pclNextStatea p

)
(5.35)

Applying the commuting diagram in Equation 5.19 to parcelp we have the matching step:

(
qPa | p, pclTransa p, pclNextStateap

)
(5.36)

Letting

pclTransp = (fgc p , epclc p , ectrlc p)

pclTransa p = (fga p , epcla p , ectrla p)

we have

fgc p = fga p (5.37)

ectrlc p = ectrla p (5.38)

The parcel step in Equation 5.35, satisfies Equation 4.1 and Equation 4.2 in thedefinition of the

parcel step. Therefore, its fanout graphfgc p contains the parcel arguments ofdpc and the domain

of ectrlc p contains the control arguments ofdpc . Equation 5.37 and Equation 5.38 imply thatfga p

contains the parcel arguments ofdpa and that the domain ofectrla p contains the control arguments

of dpa . Therefore, the step in Equation 5.36 contains a computation ofdpa . Sincepaa is consistent

with respect toDpspaa , applying Equation 4.4 we get:

∃ (qDa , tDa , q
′
Da) ∈ LTS(dpa .C).RC.

∀ v ∈ dpa .Vpcl ∪ dpa .Vctrl .

(ectrla p ∪ epcla p)(Arg(v)) = tDa(v)

(5.39)

Since the parcel step in Equation 5.35 is part of(qPc , tPc , q
′
Pc) we have

ectrlc p ⊆ tPc | Vctrl

and also

ectrla p = ectrlc p

tPc | Vctrl
= tPa | Vctrl
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Combining the last two steps we get

ectrla p ∪ epcla p ⊆ tPAa

which is used to rewrite Equation 5.39 to

∃ (qDa , tDa , q
′
Da) ∈ LTS(dpa .C).RC.

∀ v ∈ dpa .Vpcl ∪ dpa .Vctrl .

tPa(Arg(v)) = tDa(v)

which is the desired conclusion.

5.4 General Correctness

We present two correctness theorems that link abstraction of parcel automata to abstraction of

pipeline models. Theorem 5.4.1 states that simulation of parcel automata transfers to simulation

of pipeline models and Theorem 5.4.8 states the similar result for language containment.

5.4.1 Simulation

5.4.1 Theorem(Abstraction Using Simulation). LetPipec andPipea be two pipeline models such

that

Pipec = Pipea

[
Dpsa/Dpsc

]
(5.40)

If

• The abstract automaton simulates the induced parcel automaton:

pa(Pipec ,PclMap) �PA paa (5.41)

then

Pipec �P Pipea (5.42)

Figure 5.3 describes the intuition behind Theorem 5.4.1. A pair of concrete and abstract states are

in the simulation relationSP if for each parcel state in the concrete pipeline model state, there exists

a corresponding abstract parcel state in the abstract pipeline model thatsimulates it. The parcel

commuting diagrams are used to define the abstract pipeline step that makes the diagram commute.
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Fig. 5.3b.Parcel commuting diagrams.

Figure 5.3:AndOr example (simulation).

Proof. We defineSP by the equation

(qPc , qPa) ∈ SP ≡

(qPc =Vctrl
qPa) ∧ (∀ qPAc ∈ PclStatesqPc . qPAc �PA qPa | domqPAc

)
(5.43)

We need to showSP satisfies the commuting diagram in Equation 3.15 and the condition on initial

states in Equation 3.16 of Definition 3.2.1.

Commuting Diagram

Consider(qPc , qPa) ∈ SP and (qPc , tPc , q
′
Pc) ∈ RPc . We need to show the following diagram

commutes:
qPa qPa

′

qPc qPc
′

//
tPa

OO�
�

�

�

�

�

�

�

SP

//
tPc

OO

SP (5.44)
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We apply Theorem 5.3.1 to findtPa ∈ TPa andqPa
′ ∈ QPa so that the following diagram commutes:

qPa qPa
′

qPc qPc
′

//
tPa

OO�
�

�

�

�

�

�

�

=P

//
tPc

OO

=P (5.45)

We then show that

(∀ qPAc
′ ∈ PclStatesqPc

′. qPAc
′ �PA qPa

′ | domqPAc
′) (5.46)

which implies

(qPc
′, qPa

′) ∈ SP

In order to apply Theorem 5.3.1 we need to provide

pclTransa : PclMap (qPc , tPc , q
′
Pc) → TPAa

pclNextStatea : PclMap (qPc , tPc , q
′
Pc) → QPAa

so that the following diagram commutes:

∀ p ∈ PclMap (qPc , tPc , q
′
Pc).

qPa | p pclNextStateap

qPc | p pclNextStatep

//
pclTransa p

OO

//
pclTransp

OO

(5.47)

We have

∀ p ∈ PclMap (qPc , tPc , q
′
Pc).(

qPc | p ∈ PclStatesqPc ∪ { ∅ }
)
∧
(

(qPc | p, pclTransp, pclNextStatep) ∈ RPAc

)

(5.48)
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Using Equation 5.43 and Equation 5.48 we infer that the following diagram commutes:

∀ p ∈ PclMap (qPc , tPc , q
′
Pc).

qPc | p 6= ∅ =⇒




∃ tPAa ∈ TPAa .

∃ qPAa
′ ∈ QPAa .

qPa | p qPAa
′

qPc | p pclNextStatep

//
tPAa

OO

=PA

//
pclTransp

OO

=PA




(5.49)

Since∅ ∈ IPAc , using Equation 5.41 and Equation 5.48 we infer that the following diagram com-

mutes:

∀ p ∈ PclMap (qPc , tPc , q
′
Pc).

qPc | p = ∅ =⇒




∃ tPAa ∈ TPAa .

∃ qPAa
′ ∈ QPAa .

∅ qPAa
′

qPc | p pclNextStatep

//
tPAa

OO

=PA

//
pclTransp

OO

=PA




(5.50)

SinceqPc | p = ∅ it means thatp contains no registers

qPAa = qPa | p = ∅ (5.51)

and therefore we can rewrite Equation 5.50:

∀ p ∈ PclMap (qPc , tPc , q
′
Pc).

qPc | p = ∅ =⇒




∃ tPAa ∈ TPAa .

∃ qPAa
′ ∈ QPAa .

qPAa | p qPAa
′

qPc | p pclNextStatep

//
tPAa

OO

=PA

//
pclTransp

OO

=PA




(5.52)
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Combining Equation 5.49 and Equation 5.52 we get:

∀ p ∈ PclMap (qPc , tPc , q
′
Pc).

∃ tPAa ∈ TPAa . ∃ qPAa
′ ∈ QPAa .

qPa | p qPAa
′

qPc | p pclNextStatep

//
tPAa

OO

//
pclTransp

OO (5.53)

Using Equation 5.53 we can definepclTransa andpclNextStatea so that Equation 5.47 holds.

Initial States

Let qPc ∈ IPc . We show there existsqPa ∈ IPa so thatqPc �P qPa .

On control variables, we must defineqPa so that the following equation holds:

qPc =Vctrl
qPa (5.54)

SincePipea is an abstract interpretation ofPipec , in the two models the initial conditions with

respect to control variables are the same.

On parcel variables, we must defineqPa so that

∀ qPAc ∈ PclStatesqPc . qPAc �PA qPa | domqPAc
(5.55)

SinceqPc ∈ IPc we havePclStatesqPc ⊆ IPAc . Therefore

∀ qPAc ∈ PclStatesqPc . ∃ qPAa ∈ IPAa . qPAc �PA qPAa

Denoting the Skolem constant byf∃, the previous equation expresses as

∀ qPAc ∈ PclStatesqPc . qPAc �PA f∃(qPAc)

Due to the condition that parcel states in initial states are fixed, as stated in Equation 5.14,PclStatesqPc

is a partition ofqPc . We can therefore defineqPa by the following equation:

∀ qPAc ∈ PclStatesqPc . qPa | domqPAc
= f∃(qPAc) (5.56)
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Given that all abstract interpretations satisfy Equation 5.12, using Equation 5.56 we infer that

qPa |= Initpcl a (5.57)

Equation 5.54 and Equation 5.57 imply thatqPa |= Pipea .Init.

5.4.2 Language Containment

We say parcels duplicate if two distinct parcels at the current step are continuations of the same

parcel at the previous step.

∃ qP. ∃ tP. ∃ qP
′. ∃ tP

′. ∃ qP
′′.

(qP, tP, q
′
P) ∈ RP ∧ (q′P, t

′
P, q

′′
P) ∈ RP ∧

(
∃ p1 ∈ PclMap (qP, tP, q

′
P). ∃ p2 ∈ PclMap (q′P, t

′
P, q

′′
P). ∃ p3 ∈ PclMap (q′P, t

′
P, q

′′
P).

p2 6= p3 ∧ pclStatep2 ⊆ pclNextStatep1 ∧ pclStatep3 ⊆ pclNextStatep1

)

(5.58)

Equation 5.58 is reformulated equivalently to Equation 5.59.

∃ qP. ∃ tP. ∃ qP
′. ∃ tP

′. ∃ qP
′′.

(qP, tP, q
′
P) ∈ RP ∧ (q′P, t

′
P, q

′′
P) ∈ RP ∧

(
∃ v1 ∈ RegPcl. ∃ v2 ∈ RegPcl. ∃ p1 ∈ PclMap (qP, tP, q

′
P).

(PclMapalt (q
′
P, t

′
P, q

′′
P) v1 6= PclMapalt (q

′
P, t

′
P, q

′′
P) v2) ∧ v1

′ ∈ p∗1 ∧ v2
′ ∈ p∗1

)

(5.59)

Equation 5.59 holds if and only if the following propositional formula is satisfiable:




[[RP]]bool (Vstep
1) ∧ [[PclMapalt ]]bool (Vstep

1,VpclMap
1) ∧ FanOut(Vstep

1,VpclMap
1,VfanOut

1)

∧

[[RP]]bool (Vstep
2) ∧ [[PclMapalt ]]bool (Vstep

2,VpclMap
2)

∧
∧

v∈Vreg

((v1)′ = v2)

∧
∨

v2
1
∈RegPcl2

∨
v2
2
∈RegPcl2

(pclMap2
v2
1

6= pclMap2
v2
2

∧ fanOut1(v1
1
)′ = fanOut1(v1

2
)′)




(5.60)

We can therefore verify parcel separation using a Boolean solver.
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We formalize the parcel automaton runs that occur within a pipeline model runσP ∈ L(Pipe). In

order to find the parcels that belong to the same run we define the partial order ‘≪
σP

’ on the parcels

of the pipeline run so that ‘≪
σP

’ corresponds to the transitive closure of the relationship of a parcel

continuing another. When parcels do not duplicate, every parcel in the pipeline run belongs to a

unique maximal chain (totally ordered subset) of ‘≪
σP

’. Each such maximal chain in turn corresponds

to a run of the parcel automaton.

5.4.2 Definition(Parcel Order). We define the relation<
σP

over the set(P(Vpcl ) \ ∅) × N:

(pn, n) <
σP

(pn+1, n+ 1) ≡

pn ∈ PclMap (qnP, t
n
P, q

n+1
P ) ∧ pn+1 ∈ PclMap (qn+1

P , tn+1
P , qn+2

P ) ∧

pclStatepn+1 ⊆ pclNextStatepn

(5.61)

The relation ‘≪
σP

’ is the reflexive and transitive closure of ‘<
σP

’.

The relation ‘≪
σP

’ is by definition transitive and reflexive. To show the relation is also antisymmetric,

consider

(pn1 , n1) ≪
σP

(pn2 , n2) (5.62)

(pn2 , n2) ≪
σP

(pn1 , n1) (5.63)

We must haven1 ≤ n2 andn2 ≤ n1 and son1 = n2. The only possibility is to also havepn1 = pn2 .

Given the run in Figure 5.4 of theAndOr example, first described in Section 4.1, we have:

({ r1 }, 0) <
σP

({ r2 }, 1)

({ r2 }, 0) <
σP

({ r3 }, 1)

({ vi }, 0) <
σP

({ r1 }, 1)

({ vi }, 0) ≪
σP

({ r2 }, 2)

Let (pn, n) ∈ (P(Vpcl ) \ ∅) × N. We make the following two observations.

1. If parcels do not duplicate then(pn, n) has at most one successor in Equation 5.61.

2. The third property of parcel maps ensures that(pn, n) has at most one predecessor in Equa-

tion 5.61.
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1100
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c = 01

v = 0

c = 01 v = 0
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c = 01 v = 1

c = 01 v = 1

Figure 5.4:AndOr Computation.

5.4.3 Definition (Chain). C ⊆ P((P(Vpcl ) \ ∅) × N) is a chain of≪
σP

if any two elements are

comparable:

∀ (pn1 , n1) ∈ C . ∀ (pn2 , n2) ∈ C . (pn1 , n1) ≪
σP

(pn2 , n2) ∨ (pn2 , n2) ≪
σP

(pn1 , n1) (5.64)

A chainC is maximal if it does not occur as a strict subset of another chain.

For our example in Figure 5.4, some examples of maximal chains are:

({ r1 }, 0) <
σP

({ r2 }, 1) <
σP

({ r3 }, 2)

({ r2 }, 0) <
σP

({ r3 }, 1)

({ vi }, 0) <
σP

({ r1 }, 1) <
σP

({ r2 }, 2) <
σP

({ r3 }, 3)
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5.4.4 Proposition. If parcels do not duplicate then every element of the set(P(Vpcl ) \ ∅) × N

belongs to a unique maximal chain of ‘≪
σP

’. For (pn, n) ∈ (P(Vpcl ) \ ∅) × N we denote the

corresponding maximal chain bychain(pn, n).

Proof. ExistenceWe define:

chain(pn, n) ≡{ (pn−k, n− k) | (pn−k, n− k) ≪
σP

(pn, n) }

∪ { (pn+k, n+ k) | (pn, n) ≪
σP

(pn+k, n+ k) }
(5.65)

We need to showchain(pn, n) is a chain. Consider two distinct elements

(pn1 , n1) ∈ chain(pn, n)

(pn2 , n2) ∈ chain(pn, n)

We have to show that either of the following holds:

(pn1 , n1) ≪
σP

(pn2 , n2)

(pn2 , n2) ≪
σP

(pn1 , n1)

If

(pn1 , n1) ≪
σP

(pn, n)

(pn, n) ≪
σP

(pn2 , n2)

or

(pn2 , n2) ≪
σP

(pn, n)

(pn, n) ≪
σP

(pn1 , n1)

by transitivity we get the desired conclusion. Consider the case when

(pn1 , n1) ≪
σP

(pn, n)

(pn2 , n2) ≪
σP

(pn, n)
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Therefore, we must have:

(pn1 , n1) = a0 <
σP

· · · <
σP

ai−1 <
σP

ai = (pn, n)

(pn2 , n2) = b0 <
σP

· · · <
σP

bj−1 <
σP

bj = (pn, n)

We show that eithera0 ∈ { b0, . . . , bj } or b0 ∈ { a0, . . . , ai }. Assume by contradiction that that

is not the case. We consider the smallestk ∈ { 1, . . . , i } so thatak = bl for somel ∈ { 1, . . . , j }.

We have

ak−1 <
σP

ak

bl−1 <
σP

ak

It follows thatak has two distinct predecessors, contradicting our first previous observation. The

case when

(pn, n) ≪
σP

(pn1 , n1)

(pn, n) ≪
σP

(pn2 , n2)

is treated similarly, arriving to a contradiction of our second observation.

UniquenessIf C is a chain containing(pn, n) then according to Equation 5.65 we must have

C ⊆ chain(pn, n). SinceC is maximal we must haveC = chain(pn, n).

For our example, the set of maximal chains to which every element(pn, n) belongs to is described

as follows:

({ r1 }, 0) <
σP

({ r2 }, 1) <
σP

({ r3 }, 2)

({ r2 }, 0) <
σP

({ r3 }, 1)

({ r3 }, 0)

({ vi }, n) <
σP

({ r1 }, n+ 1) <
σP

({ r2 }, n+ 2) <
σP

({ r3 }, n+ 3) , n ≥ 0

5.4.5 Proposition. If C ⊆ P((P(Vpcl ) \ ∅) × N) is a maximal chain of≪
σP

then:

• If C is finite thenC has form

C = { (pn, n), . . . , (pn+k, n+ k) } (5.66)

and

∀ j ∈ {n, . . . , n+ k − 1 }. (pj , j) <
σP

(pj+1, j + 1) (5.67)
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• If C is infinite thenC has form

C = { (pn+k, n+ k) | k ∈ N } (5.68)

and

∀ k ∈ N. (pn+k, n+ k) <
σP

(pn+k+1, n+ k + 1) (5.69)

Proof. Since any two elements are comparable by≪
σP

and since the definition of<
σP

implies that if

(pn1 , n1) <
σP

(pn2 , n2) thenn1 < n2 thenC must have form:

(pn, n) ≪
σP

(pn+k1 , n+ k1) ≪
σP

(pn+k2 , n+ k2) ≪
σP
· · ·

where

k1 < k2 · · ·

SinceC is maximal we must have

k1 = 1

k2 = 2
...

5.4.6 Definition(Associated Parcel Automaton Run). Let

C = (pn, n) <
σP

(pn+1, n+ 1) <
σP
· · ·

We define

runPA C : N → QPA × TPA

• C is infinite

runPA C j ≡ (qn+jP | pn+j , pclTranspn+j) (5.70)

• C = (qnPA, n) <σP
· · ·<

σP
(qn+kPA , n+ k)

runPA C j ≡




(qn+jP | pn+j , pclTranspn+j) : j ≤ k

(finalPA, ∅) : j > k
(5.71)
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∅

finalPAc

c = 01

v = 1

r1 = 11

r2 = 0011

r3 = 11

Figure 5.5: Associated parcel automaton run.

The associated run for the chain

({ vi }, 0) <
σP

({ r1 }, 1) <
σP

({ r2 }, 2) <
σP

({ r3 }, 3)

is shown in Figure 5.5.

5.4.7 Proposition. If C = (pn, n) <
σP

(pn+1, n + 1) <
σP
· · · is a maximal chain thenrunPA C ∈

L(pa(Pipe,PclMap)).
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Proof. Let runPA C j = (qjPA, t
j
PA). We need to show

(qjPA, t
j
PA, q

j+1
PA ) ∈ RPA (5.72)

q0PA ∈ IPA (5.73)

If C is infinite, runPA C is defined by Equation 5.70. Therefore, Equation 5.72 is equivalent to

(
qn+jP | pn+j , pclTranspn+j , qn+j+1

P | pn+j+1

)
∈ RPA

which holds because(pn+j , n+ j) <
σP

(pn+j+1, n+ j + 1).

If C = (qnPA, n) <σP
· · ·<

σP
(qn+kPA , n+ k) is finite thenrunPA C is defined according to Equation 5.71.

• j < k Equation 5.72 is equivalent to

(
qn+jP | pn+j , pclTranspn+j , qn+j+1

P | pn+j+1

)
∈ RPA

which holds because(pn+j , n+ j) <
σP

(pn+j+1, n+ j + 1).

• j = k Equation 5.72 is equivalent to

(
qn+jP | pn+j , pclTranspn+j , finalPA

)
∈ RPA

which holds because any parcel automaton state can transition to the final state.

• j > k Equation 5.72 is equivalent to

(finalPA, ∅, finalPA) ∈ RPA

which holds according to the definition of parcel automata.

Equation 5.73 is equivalent to

qnP | pn ∈ IPA (5.74)

We consider two cases:

• n = 0. In this caseq0P ∈ IP and thereforeq0P | p0 ∈ IPA according to the definition of the

induced parcel automaton.

• n > 0. We consider two subcases:

– pn ∩ RegPcl= ∅ It follows thatqnP | pn = ∅. Since∅ ∈ IPA, Equation 5.74 holds.
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– pn ∩ RegPcl6= ∅ This leads to a contradiction sincepn must continue a parcelpn−1 in

the previous step(qn−1
P , tn−1

P , qnP). We therefore have(pn−1, n − 1) <
σP

(pn, n) which

contradicts the fact thatC is maximal sinceC ∪ { (pn−1, n− 1) } is a chain.

5.4.8 Theorem(Abstraction Using Language Containment). Let Pipec andPipea be two pipeline

models such that

Pipec = Pipea

[
Dpsa/Dpsc

]
(5.75)

If the following conditions are met

1. Parcels do not duplicate inPipec .

2. Language containment of parcel automata.

L(pa(Pipec ,PclMap)) ⊆PA L(paa) (5.76)

then language containment of pipeline model holds:

L(Pipec) ⊆P L(Pipea) (5.77)

Figure 5.6 describes the construction we use in the proof of Theorem 5.4.8. We first identify the

maximal chains of≪
σP

, then, corresponding to each chain we have a concrete parcel automaton run.

For each such run there exists an equivalent abstract run. The abstract parcel runs are used to create

the abstract pipeline model run.

Proof. Let σPc ∈ L(Pipec).

We need to show there existsσPa ∈ L(Pipea) such that

σPc =P σPa (5.78)

We will defineσPa : N → QPa × TPa by induction. We recall the notation

σPc n = (qnPc , t
n
Pc)

σPa n = (qnPa , t
n
Pa)
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∅
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∅
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Figure 5.6: Construction in Theorem 5.4.8.

Forn ≥ 0 we will be applying Theorem 5.3.1 toqnPa and derivetnPa ∈ TPa andqn+1
Pa ∈ QPa such
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that the diagram commutes:

qnPa qn+1
Pa

qnPc qn+1
Pc

//
tnPa

OO�
�

�

�

�

�

�

�

=P

//
tnPc

OO

=P (5.79)

If Equation 5.79 holds inductively andq0Pa ∈ IPa thenσPa ∈ L(Pipea) and Equation 5.78 holds.

For eachn ≥ 0 andpn ∈ PclMap (qnPc , t
n
Pc , q

n+1
Pc ) we denote the parcel automaton run associated

with chainpn by σPAc pn :

σPAc pn ≡ runPA (chainpn)

According to Definition 5.4.6, if(pn, n) occurs on positionjn in its chain then

(σPAc pn)(jn) = (qnPc | pn, pclTranspn) (5.80)

SinceL(pa(Pipec ,PclMap)) ⊆P L(paa) there existsσPAa pn ∈ L(pa(Pipea)) so that

σPAc pn =PA σPAa pn (5.81)

We use the notation:

(σPAc pn)(k) = (qkPAc pn , tkPAc pn)

(σPAa pn)(k) = (qkPAa pn , tkPAa pn)

Equation 5.81 implies that the the following diagram commutes:

qkPAa pn qk+1
PAa pn

qkPAc pn qk+1
PAc pn

//

tkPAa pn

OO�
�

�

�

�

�

�

�

�

�

=PA

//

tkPAc pn

OO

=PA (5.82)

Fork = jn we have:

qjnPAc pn = qnPc | pn

tjnPAc pn = pclTranspn

qjn+1
PAc pn = pclNextStatepn
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The diagram in Equation 5.82 becomes

qjnPAa pn qjn+1
PAa pn

qnPc | pn pclNextStatepn

//

tjnPAa pn

OO

=PA

//
pclTranspn

OO

=PA (5.83)

We will defineqnPAa so that:

qnPAa | pn = qjnPAa pn (5.84)

Base case

On control variables we must have:

q0Pa =Vctrl
q0Pc (5.85)

On parcel variablesq0Pa is defined according to Equation 5.84:

∀ p0 ∈ PclMap (q0Pc , t
0
Pc , q

1
Pc). q

0
Pa | p0 = qj0PAa p0 (5.86)

Since parcel automaton runs begin at index0 we have

∀ p0 ∈ PclMap (q0Pc , t
0
Pc , q

1
Pc). q

j0
PAa p0 = q0PAa p0 ∧ q0PAa p0 ∈ IPAa (5.87)

Since abstract interpretations satisfy Equation 5.12, using Equation 5.86 and Equation 5.87 we infer

that

q0Pa |= Initpcl a (5.88)

Equation 5.85 and Equation 5.88 imply thatq0Pa |= Pipea .Init.

Inductive case

We assume the following inductive hypothesis:

∀ pn ∈ PclMap (qnPc , t
n
Pc , q

n+1
Pc ). qnPa | pn = qjnPAa pn (5.89)

qnPa =Vctrl
qnPc (5.90)

In order to apply Theorem 5.3.1 we need to define

pclTransa : PclMap (qnPc , t
n
Pc , q

n+1
Pc ) → TPAa
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pclNextStatea : PclMap (qnPc , t
n
Pc , q

n+1
Pc ) → QPAa

so that the following diagram commutes:

∀ pn ∈ PclMap (qnPc , t
n
Pc , q

n+1
Pc ).

qnPa | pn pclNextStateap
n

qnPc | pn pclNextStatepn

//
pclTransa pn

OO

//
pclTranspn

OO

(5.91)

Using the inductive hypothesis, the diagram in Equation 5.91 becomes:

∀ pn ∈ PclMap (qnPc , t
n
Pc , q

n+1
Pc ).

qjnPAa pn pclNextStateap
n

qnPc | pn pclNextStatepn

//
pclTransa pn

OO

//
pclTranspn

OO

(5.92)

We definepclTransa andpclNextStatea as follows:

pclTransa pn = tjnPAa pn (5.93)

pclNextStatea pn = qjn+1
PAa pn (5.94)

With this definition, the diagram in Equation 5.92 commutes because it is identical to the one in

Equation 5.83.

Applying Theorem 5.3.1 we obtaintnPa ∈ TPa andqn+1
Pa ∈ QPa so that the diagram in Equation 5.79

commutes. It remains to show that we maintain our inductive hypothesis:

∀ pn+1 ∈ PclMap (qn+1
Pc , tn+1

Pc , qn+1+1
Pc ). qn+1

Pa | pn+1 = q
jn+1

PAa pn+1 (5.95)

Parcels at step(qn+1
Pc , tn+1

Pc , qn+2
Pc ) are either combinational or continue continue a parcel at the

previous step. Ifpn+1 is combinational then

qn+1
Pa | pn+1 = ∅

q
jn+1

PAa pn+1 = ∅
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and therefore Equation 5.95 holds.

One of the postconditions of Theorem 5.3.1 (Equation 5.22) implies the following:

∀ pn+1 ∈ PclMap (qn+1
Pc , tn+1

Pc , qn+2
Pc ).

pn+1 ∩ RegPcl6= ∅ =⇒

∃ pn ∈ PclMap (qnPc , t
n
Pc , q

n+1
Pc ). qn+1

Pa | pn+1 = qjn+1
PAa pn

(5.96)

If pn+1 ∩ RegPcl6= ∅ then there existspn ∈ PclMap (qn+1
Pc , tn+1

Pc , qn+1+1
Pc ) so that

pn <
σPc

pn+1

which implies that that the two parcels belong to the same run ofpa(Pipea) and therefore

q
jn+1

PAa pn+1 = qjn+1
PAa pn (5.97)

Equation 5.96 and Equation 5.97 imply that Equation 5.95 holdspn+1 ∩ RegPcl6= ∅.

5.5 Summary

Parcel independence is used to prove Theorem 5.3.1 that states that commuting diagrams between

the concrete and abstract parcel automaton states imply a commuting diagram between the contain-

ing concrete and abstract pipeline states. Theorem 5.3.1 is used to prove soundness of abstraction

using parcel automata for simulation in Theorem 5.4.1 and respectively, forlanguage containment

in Theorem 5.4.8.

132



Chapter 6

Abstraction Of Parcel Automata

This chapter describes an algorithm that abstracts the parcel automatonpac = pa(Pipec ,PclMap)

induced by the parcel map to a parcel automatonpaa such that

pac �PA paa (6.1)

L(pac) ⊆PA L(paa) (6.2)

The abstract parcel automatonpaa is used to produce an abstract interpretation of the pipeline data-

path, resulting in a pipeline modelPipea such that:

Pipea = Pipec

[
Dpsa/Dpsc

]
(6.3)

Applying Theorem 5.4.1 to Equation 6.1 and Theorem 5.4.8 to Equation 6.2 we get:

Pipec �P Pipea

L(Pipec) ⊆P Pipea

Thus the datapath abstraction algorithm preserves control properties.

Section 6.1 formalizes path abstraction and proves that it implies simulation between parcel au-

tomata. In Section 6.2 we define inductively the parcel automatonpac 1 that is an an approximation

of the induced parcel automaton. The parcel automatonpac 1 may also represent unreachable datap-

ath behaviours but is more practical to represent than the induced parcel automaton. Path abstraction

is based on the systematic exploration of the paths through the parcel automaton pac 1. For each

such path there is an equivalent one in the the abstract parcel automaton.

The encoding of the approximate parcel automaton in propositional logic is presented in Section 6.3
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and Section 6.4. An abstraction algorithm that is based on path abstraction ofthe approximate parcel

automaton is presented in Section 6.5. We present experimental results in Section 6.6.

6.1 Path Abstraction

In this section, an abstraction that maps concrete paths to abstract states is shown to be conservative,

i.e. implies simulation, in Lemma 6.1.1. The notion of paths that are not distinguishableby the

control is captured using path equivalence. Finite paths and infinite runs are connected through the

concept of terminating run, which requires that a run consist of a finite prefix in which all state

updating datapath computations are confined, followed by an infinite suffix that contains only value

copying transitions. Lemma 6.1.4 gives sufficient conditions under which path abstraction preserves

language containment.

Given a parcel automaton runσPA ∈ L(pa), we use the following notation for the finite path from

stateq0PA to stateqkPA that occurs in the prefix of lengthk of σPA:

πkPA = q0PA
t0PA−→· · ·

tk−1
PA−→ qkPA (6.4)

Whenk = 0 the pathπkPA reduces toq0PA. The set of all such paths is denoted byΠ(pa):

Π(pa) ≡ {πkPA | k ∈ N ∧ ∃ σPA ∈ L(pa). πkPA is a prefix ofσPA }

Given the pathπkPA in Equation 6.4 we use the notation:

q0PA
πkPA
; qkPA

IPA
πkPA
; qkPA (sinceqkPAa ∈ IPA)

Lemma 6.1.1 describes path abstraction and states its correctness.

6.1.1 Lemma(Correctness Of Path Abstraction). If the abstraction functionψ : Π(pac) → QPAa

satisfies the following properties:

• ψ preserves the label of the last state on the path:

ψ(πkPAc) = qPAa k =⇒ qkPAc =PA qPAa k (6.5)
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• ψ makes the diagram commute:

qPAa k qPAa k+1

πkPAc πk+1
PAc

//
tPAa k

OO�
�

�

�

�

�

�

�

�

�

�

ψ

//
tkPAc

OO

ψ (6.6)

• ψ preserves initial states:

q0PAc ∈ IPAc =⇒ ψ(q0PAc) ∈ IPAa (6.7)

• ψ has the additional property, related to simulation on parcel automata:




πkPAc 1 = q0PAc

t0PAc−→· · ·
tk−1
PAc−→ qkPAc 1 ∧

πkPAc 2 = q0PAc

t0PAc−→· · ·
tk−1
PAc−→ qkPAc 2 ∧

qkPAc 1 ⊆ qkPAc 2




=⇒ ψ(πkPAc 1) ⊆ ψ(πkPAc 2) (6.8)

then

L(pac) ⊆PA L(paa) (6.9)

pac �PA paa (6.10)

Path abstraction is driven by exploration of concrete paths in the parcel automaton. Therefore the

abstraction function is defined on the set of concrete paths onto abstractstates:ψ : Π(pac) → QPAa .

In Figure 6.1 we recall the parcel automaton of theAndOr example that we first presented in

Section 4.1. We use this example to illustrate path abstraction. Figure 6.2 describes an abstract

automaton that satisfies the conditions of Lemma 6.1.1. The abstract automaton has a tree like

structure — with the exception of the transitions leading to its final state, corresponding to the

depth-first-search tree of paths through the concrete parcel automaton.

Table 6.1 describes the mappingψ that maps the paths through the concrete parcel automaton to

abstract states. For instance, line 13 in the table describes the pathπ3 that is composed of the path

π2

∅ −→ r1 = 00
c = 01
−→ r2 = 0000

followed by the transition
v = 0
−→
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r2 = 0000 r2 = 0001 r2 = 0100

r3 = 01

r2 = 0010 r2 = 1000

r3 = 10

r1 = 10

r2 = 0011 r2 = 1100

r3 = 11

r1 = 11

∅

finalPAc

r1 = 00 r1 = 01

r3 = 00

c = 10

c = 10

c = 10

c = 10

c = 01

c = 01

c = 01

c = 01

v = 0

v = 1

v = 1

v = 1v = 1

v = 1

v = 1

Figure 6.1:AndOr Parcel Automaton.

leading to the state

r3 = 00

The pathπ2 in Equation 6.1 is described at line 5 in the table. The mapping of the pathπ3 to an

abstract state isψ(π3) = { r3 = α2 }. Corresponding to Equation 6.11, we have the commuting
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r2 = α1

r3 = α3

r2 = α4

r3 = α5 r3 = α6

∅

finalPAc

r3 = α2

v = 0v = 0

r1 = α0

c = 10c = 01

v = 1 v = 1

Figure 6.2: An abstractAndOr parcel automaton.

diagram:
r1 = α1 r1 = α2

π2 π3

//
v=0

OO

ψ

//
v=0

OO

ψ (6.11)

Proof. We prove Equation 6.10 holds. This implies Equation 6.9 also holds. For simplicity we

assume all states inQPAc are reachable from an initial state. Non-reachable states do not affectthe

behaviour of the parcel automaton so we can safely ignore them.
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# Concrete Path Transition Next StateAbstract State Predecessor
0 ∅ ∅

1 ∅ −→ r1 = 00 r1 = α0 0
2 ∅ −→ r1 = 01 r1 = α0 0
3 ∅ −→ r1 = 10 r1 = α0 0
4 ∅ −→ r1 = 11 r1 = α0 0

5 ∅ −→ r1 = 00
c = 01
−→ r2 = 0000 r2 = α1 1

6 ∅ −→ r1 = 00
c = 10
−→ r2 = 0000 r2 = α4 1

7 ∅ −→ r1 = 01
c = 01
−→ r2 = 0001 r2 = α1 2

8 ∅ −→ r1 = 01
c = 10
−→ r2 = 0100 r2 = α4 2

9 ∅ −→ r1 = 10
c = 01
−→ r2 = 0010 r2 = α1 3

10 ∅ −→ r1 = 10
c = 10
−→ r2 = 1000 r2 = α4 3

11 ∅ −→ r1 = 11
c = 01
−→ r2 = 0011 r2 = α1 4

12 ∅ −→ r1 = 11
c = 10
−→ r2 = 1100 r2 = α4 4

13 ∅ −→ r1 = 00
c = 01
−→ r2 = 0000

v = 0
−→ r3 = 00 r3 = α2 5

14 ∅ −→ r1 = 00
c = 10
−→ r2 = 0000

v = 0
−→ r3 = 00 r3 = α5 6

15 ∅ −→ r1 = 01
c = 01
−→ r2 = 0001

v = 1
−→ r3 = 01 r3 = α3 7

16 ∅ −→ r1 = 01
c = 10
−→ r2 = 0100

v = 1
−→ r3 = 01 r3 = α6 8

17 ∅ −→ r1 = 10
c = 01
−→ r2 = 0010

v = 1
−→ r3 = 10 r3 = α3 9

18 ∅ −→ r1 = 10
c = 10
−→ r2 = 1000

v = 1
−→ r3 = 10 r3 = α6 10

19 ∅ −→ r1 = 11
c = 01
−→ r2 = 0011

v = 1
−→ r3 = 11 r3 = α3 11

20 ∅ −→ r1 = 11
c = 10
−→ r2 = 1100

v = 1
−→ r3 = 11 r3 = α6 12

21 ∅ −→ r1 = 00
c = 01
−→ r2 = 0000

v = 0
−→ r3 = 00 −→ finalPAc r1 = finalPAa 13

23 ∅ −→ r1 = 00
c = 10
−→ r2 = 0000

v = 0
−→ r3 = 00 −→ finalPAc r1 = finalPAa 14

23 ∅ −→ r1 = 01
c = 01
−→ r2 = 0001

v = 1
−→ r3 = 01 −→ finalPAc r1 = finalPAa 15

24 ∅ −→ r1 = 01
c = 10
−→ r2 = 0100

v = 1
−→ r3 = 01 −→ finalPAc r1 = finalPAa 16

25 ∅ −→ r1 = 10
c = 01
−→ r2 = 0010

v = 1
−→ r3 = 10 −→ finalPAc r1 = finalPAa 17

26 ∅ −→ r1 = 10
c = 10
−→ r2 = 1000

v = 1
−→ r3 = 10 −→ finalPAc r1 = finalPAa 18

27 ∅ −→ r1 = 11
c = 01
−→ r2 = 0011

v = 1
−→ r3 = 11 −→ finalPAc r1 = finalPAa 19

28 ∅ −→ r1 = 11
c = 10
−→ r2 = 1100

v = 1
−→ r3 = 11 −→ finalPAc r1 = finalPAa 20

Table 6.1: The path mapψ.

We consider the relationχ ⊆ QPAc × Π(pac) defined by

χ ≡ { (qkPAc , π
k
PAc) | π

k
PAc ends withqkPAc }

We show thatψ ◦ χ is a parcel automata simulation relation.
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Commuting Diagram We show the following diagram commutes:

qPAa k qPAa k+1

qkPAc qk+1
PAc

//
tPAa k

OO�
�

�

�

�

�

�

�

�

�

�

ψ◦χ

//
tkPAc

OO

ψ◦χ (6.12)

The diagram in Equation 6.12 is obtained by combining the two diagrams in Equation6.13. The

lower part commutes according to the definition ofχ and the upper part according to Equation 6.11.

qPAa k qPAa k+1

πkPAc πk+1
PAc

qkPAc qk+1
PAc

//
tPAa k

OO�
�

�

�

�

�

�

�

�

�

�

ψ

//
tkPAc

OO

ψ

OO�
�

�

�

�

�

�

�

�

�

χ

//
tkPAc

OO

χ

(6.13)

Additional Property The relationψ ◦ χ must satisfy Equation 4.9 in the definition of simulation

on parcel automata. For this purpose we use Equation 6.8 satisfied byψ. Consider

(qkPAc 2, qPAa k 2) ∈ ψ ◦ χ (6.14)

qkPAc 1 ⊆ qkPAc 2 (6.15)

We must show there existsqPAa k 1 so that:

qPAa k 1 ⊆ qPAa k 2 (6.16)

(qkPAc 1, qPAa k 1) ∈ ψ ◦ χ (6.17)

From Equation 6.14 we infer there must existπkPAc 2 ∈ Π(pac) such that:

(qkPAc 2, π
k
PAc 2) ∈ χ

πkPAc 2 = q0PAc
t0PAc−→· · ·

tk−1
PAc−→ qkPAc 2 (6.18)

ψ(πkPAc 2) = qPAa k 2
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Equation 6.18 implies that there existsπkPAc 1 ∈ Π(pac) such that:

(qkPAc 1, π
k
PAc 1) ∈ χ

πkPAc 1 = q0PAc
t0PAc−→· · ·

tk−1
PAc−→ qkPAc 1

Applying Equation 6.8 toπkPAc 1 andπkPAc 2 we have that

ψ(πkPAc 1) ⊆ ψ(πkPAc 2)

If we set

qPAa k 1 = ψ(πkPAc 1)

then both Equation 6.16 and Equation 6.17 hold.

Initial States Let q0PAc ∈ IPAc . We must show that there existsqPAa 0 ∈ IPAa so that

(q0PAc , qPAa 0) ∈ ψ ◦ χ

Sinceπ0PAc = q0PAc is a path toq0PAc we have

(q0PAc , q
0
PAc) ∈ χ

Applying Equation 6.7 toq0PAc we have:

ψ(q0PAc) ∈ IPAa

For qPAa 0 = ψ(q0PAc) we get the desired conclusion.

We say two parcel transitions are equivalent if they have equivalent transition labels.

(qPA1, tPA1, qPA1
′) =PA (qPA2, tPA2, qPA2

′) ≡ (tPA1 =PA tPA2)

We define path equivalence between two paths if they both start from equivalent states, have the
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same length and have pairwise equivalent transitions:

πkPA1 =PA π
l
PA2

≡

(k = l) ∧ (domq0PA1 = domq0PA2) ∧(
k > 0 =⇒ ∀ j ∈ { 0, . . . , k − 1 }. (qjPA1, t

j
PA1, q

j+1
PA1) =PA (qjPA2, t

j
PA2, q

j+1
PA2)

)

Path equivalence is related to run equivalence. However, because weuse path equivalence in the

context of closed parcel automata we do not require in its definition that the states at the same index

be equivalent.

Parcel computations are infinite. Termination of the abstraction algorithm we present in Section 6.5

depends on whether the datapath computations that affect the parcel’s state are confined to a finite

prefix of the parcel run . From a point on in the run, a parcel’s state is updated only by copying of

values from the previous state.

StateFanOutk denotes the set of variables in the fan-out of the current state registersat step

(qkPA, t
k
PA, q

k+1
PA ):

Base Case

domqkPA ⊆ StateFanOutk

Inductive Case

∀ (v1, b, v2) ∈ fgk.Succ. v1 ∈ StateFanOutk ∧ v2 6∈ PclN=⇒ v2 ∈ StateFanOutk

6.1.2 Definition (Terminating Run). The runσPA is terminating if it either contains the final state

finalPA or there existsn ≥ 0 such that for allk ≥ n, in the step(qkPA, t
k
PA, q

k+1
PA ) only current state

values are copied into next-state parcel registers.

∀ k ≥ n. domqk+1
PA

[
NextRegPcl/RegPcl

]
⊆ StateFanOutk (6.19)

We can think of Equation 6.19 to cover termination when the parcel exits the pipeline and its state

becomes empty since we can define the domain of the final state to be the empty set.If the runσPA

contains the final state then there existsn ≥ 1 so that

∀ k ≥ n. qkPA = finalPA

∀ k ≥ n. tkPA = ∅

∀ k ≥ n. dom finalPA

[
NextRegPcl/RegPcl

]
⊆ ∅
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Equation 6.19 states that datapath computed values, constants,choice and inputs do not propagate

into the parcel’s next state. For instance, a computation in which a parcel stalls indefinitely is

terminating. As a generalization, the definition could be relaxed to allow propagation of constants.

The notion of the driver of a variable at stepk is used to analyze terminating runs. We define

driver (v2, k) to be(v1, n) such that variablev1 at stepn propagates through copying into the value

of v2 at stepk. The definition is inductive.

6.1.3 Definition(Driver). Base Casek = 0 ∧ v ∈ domq0PA

∀ v ∈ domq0PA. driver (v , 0) = (v , 0)

Inductive Case k ≥ 0

∀ v ∈ (rootsfgk) \ RegPcl. driver (v , k) = (v , k)

∀ (v1, b, v2) ∈ fgk.Succ. v2 6∈ PclN=⇒ driver (v2, k) = driver (v1, k)

∀ (w, b, v) ∈ fgk.Succ. driver (v , k) = driver (v , k)

∀ v ∈ PclN. driver (v , k) = (v , k)

∀ v ∈ domqkPA. driver (v , k + 1) = driver (v ′, k)

We define the equivalence ‘=driver’ on the parcel automaton states of the runσPA.

qk1PA =driver q
k2
PA ≡

(qk1PA =PA q
k2
PA) ∧ ∀ v ∈ domqk1PA. driver (v , k1) = driver (v , k2)

The equivalence is stronger than state equality:

qk1PA =driver q
k2
PA =⇒ qk1PA = qk2PA

We extend ‘=driver’ to transitions:

(qk1PAa , t
k1
PAa , q

k1+1
PAa ) =driver (q

k2
PAa , t

k2
PAa , q

k2+1
PAa ) ≡

(qk1PA =driver q
k2
PA) ∧ (tk1PAa =PA t

k2
PAa) ∧ (qk1+1

PA =PA q
k2+2
PA )

Sincetk1PAa andtk2PAa are equivalent, they specify the same copying of values into next states soit

follows that

(qk1PAa , t
k1
PAa , q

k1+1
PAa ) =driver (q

k2
PAa , t

k2
PAa , q

k2+1
PAa ) =⇒ qk1+1

PA =driver q
k2+1
PA
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Before we present the next lemma, we recall the concept of closed parcel automaton (Defini-

tion 4.6.2). The closure of a parcel automaton does not influence the datapath behaviours it specifies.

Our proofs rely in some cases on the parcel automata to be closed. Since theend result of obtaining

an abstract parcel automaton is to perform abstract interpretation of the datapath, the closure of the

parcel automaton is not implemented. Instead, the closure performed only in proofs.

Lemma 6.1.4 shows that under sufficient conditions, path abstraction preserves language equality.

The essential condition is that for each path in the abstract parcel automaton there exists an equiva-

lent one in the concrete automaton.

6.1.4 Lemma. If the following conditions hold:

• The parcel automatonpac is closed.

• All runs of pac are terminating.

• For every prefix inΠ(paa) there exists an equivalent one inΠ(pac):

∀ πkPAa ∈ Π(paa). ∃ π
k
PAc ∈ Π(pac). π

k
PAc =PA π

k
PAa (6.20)

then

L(paa) ⊆PA L(pac) (6.21)

Proof. ConsiderσPAa ∈ L(paa). We need to show there existsσPAc ∈ L(pac) so that

σPAa =PA σPAc (6.22)

Case 1σPAa is non-terminating. We prove this leads to a contradiction.

If σPAa is non-terminating it has increasingly longer prefixesπkiPAa of form

πkiPAa = q0PAa
t0PAa−→· · ·

tki−1
PAa−→ qkiPAa

such that the number of parcel transitions that contain datapath computations isat leasti.

Applying Equation 6.20 to each prefixπkiPAa we obtain an equivalent prefix inΠ(pac):

πkiPAc = q0PAc
t0PAc−→· · ·

tki−1
PAc−→ qkiPAc

πkiPAa =PA πkiPAc (6.23)
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Equation 6.28 implies that the pathπkiPAc also has at leasti transitions that contain datapath com-

putations. Fori > |QPAc | there exists one stateqjPAc that performs two different transitions both of

which contain datapath computations. The pathπkiPAc expresses as

πkiPAc = q0PAc
t0PAc−→· · ·

tj−1
PAc−→ qjPAc

tjPAc−→· · · qj+lPAc

tj+lPAc−→· · · with qjPAc = qj+lPAc

The following is a non-terminating run ofpac :

q0PAc
t0PAc−→· · ·

tj−1
PAc−→ qjPAc

tjPAc−→· · · qjPAc

tjPAc−→· · ·

Case 2σPAa is terminating.

If it contains the statefinalPAa , then by selecting a prefixπnPAa so thatqnPAa = finalPAa and applying

Equation 6.20 we obtainπnPAc so thatπnPAc =PA π
n
PAa . This concrete path is trivially extended to a

concrete run matchingσPAa .

Consider now the case whenfinalPAa does not appear in the runσPAa . The run then consists of the

finite prefixπnPAa followed by an infinite suffix of transitions that only update the parcel’s stateby

copying.

σPAa = q0PAa
t0PAa−→· · ·

tn−1
PAa−→ qnPAa

tnPAa−→ qn+1
PAa · · ·

πnPAa = q0PAa
t0PAa−→· · ·

tn−1
PAa−→ qnPAa

Since theRPAa is finite, in the infinite suffix

qnPAa
tnPAa−→ qn+1

PAa

tn+1
PAa−→ qn+2

PAa · · ·

we have

∀ k2 ≥ n. ∀ v2 ∈ domqkPAa . ∃ k1 ≤ n. ∃ v1. driver (v2, k2) = (v1, k1)

Since the indicesk1 are bounded byn, there exists an indexs > n such that from then on, all

transitions are ‘=driver’ equivalent to transitions at an index betweenn ands− 1:

∃ s > n.

∀ k ≥ s. ∃ l ∈ {n, . . . , s− 1 }. (qkPAa , t
k
PAa , q

k+1
PAa ) =driver (q

l
PAa , t

l
PAa , q

l+1
PAa)

(6.24)
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Applying Equation 6.20 to the prefixπsPAa we obtainπsPAc such that:

πsPAc =PA πsPAa

πsPAc = q0PAc
t0PAc−→· · ·

ts−1
PAc−→ qsPAc

Sincepac is closed we can assume that the pathπsPAc has the property that

∀ k ∈ { 0, . . . , s }. qkPAc =PA q
k
PAa

We prove by induction that fork ≥ n, πkPAc can be extended to a pathπk+1
PAc that is equivalent to the

prefix path of lengthk + 1 of σPAa .

First, we prove a helping result:

∀ k ≥ s.

πkPAc =PA π
k
PAa

=⇒

∀ l1 ∈ {n, . . . , k }. ∀ l2 ∈ {n, . . . , k }.

(ql1PAa =driver q
l2
PAa) =⇒ ql1PAc = ql2PAc

(6.25)

SinceπkPAc =PA π
k
PAa it means that for anyl ∈ {n, . . . , k } the transitions fromqnPAa to qlPAa have

the same copying effect as the transitions fromqnPAc to qlPAc . Since ‘=driver’ captures the make up

of statesql1PAa andql2PAa in terms of the values in stateqnPAa , it follows that if ql1PAa =driver q
l2
PAa then

ql1PAc = ql2PAc .

Base Casek = n. SinceπsPAc =PA πsPAa andn < s, πkPAc is a prefix ofπsPAc and it therefore

extends so thatπk+1
PAc =PA π

k+1
PAa .

Inductive Case

If k < s thenπkPAc is still a strict prefix ofπsPAc and therefore the extension is done as in the base

case.

If k ≥ s then there existsl ∈ {n, . . . , s− 1 } so that

(qkPAa , t
k
PAa , q

k+1
PAa ) =driver (q

l
PAa , t

l
PAa , q

l+1
PAa)

Using the inductive hypothesis we have:

(qlPAa , t
l
PAa , q

l+1
PAa) =PA (qlPAc , t

l
PAc , q

l+1
PAc) (sincel < k)
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qlPAc = qkPAc (sinceqlPAa =driver q
k
PAa )

We can therefore extend the pathπkPAc with the step(qlPAc , t
l
PAc , q

l+1
PAc):

πk+1
PAc ≡ πkPAc

tlPAc−→ ql+1
PAc

We use the set of paths{πiPAc | i ≥ 0 } to defineσPAc so thatσPAc =PA σPAa .

6.2 Approximating The Induced Parcel Automaton

The parcel automaton induced by the parcel map contains all parcel stepsthat occur in pipeline com-

putations and it describes exactly the datapath computations that arise duringpipeline computations.

Since the steps of the induced parcel automaton are defined by the steps ofthe pipeline, its definition

needs the inductive run of the entire pipeline which is not practical. We therefore approximate the

induced parcel automaton with another one that is defined inductively usingapproximations of the

parcel steps of the induced parcel automaton. This definition is simple and efficient and can be used

in the abstraction algorithm.

The approximate parcel automaton is conservative since its set of states and transitions include the

ones of the induced parcel automaton. Given two parcel automata

pa1 = 〈QPA1,RPA1,TPA1, IPA1〉

pa2 = 〈QPA2,RPA2,TPA2, IPA2〉

We define

pa1 ⊆ pa2 ≡ (RPA1 ⊆ RPA2) ∧ (IPA1 ⊆ IPA2)

6.2.1 Proposition. If pa1 ⊆ pa2 then

pa1 �PA pa2

L(pa1) ⊆PA L(pa2)

A parcel automatonpa ∈ Pa(Pipe) coversthe datapath computations of the pipeline modelPipe if

pa(Pipe,PclMap) ⊆ pa. A parcel automaton that covers the datapath computations is a conserva-

tive approximation according to Proposition 6.2.1. Our approximation is basedon approximations
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of the parcel map and of the parcel steps that occur in the pipeline model computations.

In the remainder of the section we describe a technique to define the approximate parcel automaton

pac 1 that covers the datapath computations:

pa(Pipec ,PclMap) ⊆ pac 1

A parcel step is determined by the parcel’s representation as a set of variables, the parcel’s cur-

rent state, the fan-out graph and the parcel and control environments.A parcel step is executed

within a pipeline step. The control variables that determine the parcel’s execution are constrained

by control assignments and datapath computed control values. In the definition of the states and

steps of the automatonpac 1 we substitute, for the control environment contained in the step of the

pipeline model, an environment that is easier to compute. We denote it in the following equations by

ectrl step ∈ PEnv(Vctrl ∪ NextRegCtrl). The environmentectrl step should respect the assignments

to control variables:

ectrl step |= (Pipec .Tr) | domectrl step
(6.26)

If parcelp has the parcel step(qPAc , 〈fgc , ectrlc , epclc〉, qPAc
′) in the pipeline model step(qPc , tPc , q

′
Pc),

then the fan-out graphfgc is maximal. There are no fan-out edges(vl, b, vk) such thatvl ∈

fgc .Nodesand (qPc ∪ tPc) |= b but vk 6∈ fgc .Nodes. The fan-out graphfgc is maximal under

the environmentqPc ∪ tPc . The following predicate represents maximality of the fan-out graph on

the transition label of the parcel step.

IsMaximalFanOut (qPAc , 〈fgc , ectrlc , epclc〉, qPAc
′) ectrl step ≡

∀ (vl, b, vk) ∈ FanOutEdges.

(vl, b, vk) ∈ fgc .Succ⇐⇒ vl ∈ fgc .Nodes∧ ectrl step |= b

(6.27)

The control environmentectrl step that determines the fan-out graph of the parcel and influences its

datapath computations may contain register variables that in a pipeline computationare influenced

by the previous step of the parcel. If such variables are not constrained in the definition ofectrl step ,

then the automatonpac 1 may have parcel steps and computations that are not reachable in the

induced (precise) parcel automaton. These non-reachable computations do not affect the datapath

circuits thatpac 1 specifies, however they do affect an abstraction algorithm: first, by enlarging the

search space and second, by affecting termination, ifpac 1 has non-terminating runs that are not

possible in the induced automaton.

Figure 6.3 describes two different pipeline models that both have unreachable datapath computa-

tions. In both cases a parcel produces in the current parcel step a control value that later influences

its datapath computation in the next parcel step. For the pipeline model in Figure6.3a, the con-
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Figure 6.3: Pipeline models with unreachable datapath computations.
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trol outputvc1 produced bydp1 and corresponding to a parcelp = { r1 } is saved into the control

registervc2. At the next step, the value ofvc2 influences the parcel step of parcelp = { r2 } as it

propagates throughdp2. Therefore, in a parcel computation, the outputvc1 of dp1 and the inputvc2
of dp2 are the same. The example in Figure 6.3b describes a pipeline model in which thedatapath

performs an iterative operation. Datapathdp1 has both a control input and output. As the schemat-

ics of the pipeline control describe, the output of the datapath in the current step influences both the

the control input in the next step and the fan-out graph, i.e. whether the parcel stalls. The variable

vc2 represents the control state of the datapath computation. In a pipeline computation the variable

converges to a final control state that ends the parcel computation.

The abstraction algorithm requires a set of parcelsParcels ⊆ P(P(Vpcl ∪ NextRegPcl)) that

approximates the parcel map:

∀ (qPc , tPc , q
′
Pc) ∈ RPc . PclMap (qPc , tPc , q

′
Pc) ∈ Parcels (6.28)

We define the parcel step predicatePclStep to be used in the definition ofpac 1. In the defini-

tion below we use the predicateWellDefinedPclStep that stands for the definition of parcel steps

(Definition 4.4.1). Consistency with respect to datapath behaviour (Equation 4.4) is represented by

ConsistentPclStep. The parcel step predicate states whether the triplet(qPAc , 〈fgc , ectrlc , epclc〉, qPAc
′)

is a parcel step that can execute under a control environment that satisfies control assignment con-

straints and maximality of fan-out graphs. The predicate also takes in consideration the propagation

of the parcel’s control state, that represents the control values generated by the parcel’s step.

PclStep (qPAc , 〈fgc , ectrlc , epclc〉, qPAc
′) ectrl step ≡




ectrl step |= (Pipec .Tr) | domectrl step
∧

ectrlc ⊆ ectrl step




∧




WellDefinedPclStep (qPAc , 〈fg , ectrl , epclc〉, qPAc
′)

∧

ConsistentPclStep (qPAc , 〈fg , ectrl , epclc〉, qPAc
′)

∧(
∃ p ∈ Parcels. p ∩ RegPcl⊆ domqPAc ∧ rootsfg = p

)

∧

IsMaximalFanOut (qPAc , 〈fgc , ectrlc , epclc〉, qPAc
′) ectrl step




(6.29)
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The definition of the parcel automaton

pac 1 = 〈QPAc 1,RPAc 1,TPAc 1, IPAc 1〉

is done by induction. The resulting parcel automaton depends on a functionControlEnvDom that

stands for the heuristical choice of the control variables that affect theparcel. When the definition of

PclStep is implemented in the abstraction algorithm,ControlEnvDom will be chosen heuristically

to trim the search space or to provide termination.

We prove thatpac 1 covers the datapath computations independently of the particular heuristic used.

The set of reachable pairs of parcel and control states are denoted by PclStatePairs.

Base CaseThe set of initial states consists of all unconstrained parcel states.

IPAc 1 = { qPAc | ∃ p ∈ Parcels. domqPAc = p ∩ RegPcl} (6.30)

PclStatePairs ⊆ IPAc 1 × { true } (6.31)

Inductive Case The set of states and transitions is defined inductively using the predicatePclStep.

∀ qPAc . ∀ qctrl . ∀ tPAc . ∀ qPAc
′.




(qPAc , qctrl ) ∈ PclStatePairs ∧

∃ ectrl step ∈ PEnv(Vctrl ∪ NextRegCtrl).

domectrl step = ControlEnvDom (qPAc , qctrl , tPAc) ∧

PclStep (qPAc , tPAc , qPAc
′) ectrl step ∧(

qctrl ∪ qctrl
′
[
RegCtrl/NextRegCtrl

] )
⊆ ectrl step




=⇒

(qPAc
′, qctrl

′) ∈ PclStatePairs ∧ (qPAc , tPAc , qPAc
′) ∈ RPAc 1 ∧ qPAc

′ ∈ QPAc 1

(6.32)

The domain of the control environmentectrl step is chosen so that

domqctrl ⊆ ControlEnvDom (qPAc , qctrl , tPAc) (6.33)

As defined by Equation 6.32, the transition relation ofpac 1 contains only parcel steps. The closure

pac 1 of pac 1 includes the parcel transitions for such steps. We use the following notationfor the

closed automaton:

pac 1 = (QPAc 1, RPAc 1, TPAc 1, IPAc 1)

Lemma 6.2.2 states thatpac 1 covers the datapath computations.

150



6.2.2 Lemma.

pa(Pipec ,PclMap) ⊆ pac 1

Proof. The claim is proved by induction. We show that for any pipeline step and anyparcel within

that step, there exists a control state so that the parcel and control state pair is inPclStatePairs.

∀ qPc ∈ QPc .

∀ tPc ∈ TPc . ∀ qPc
′ ∈ QPc .

(qPc , tPc , q
′
Pc) ∈ RPc =⇒




∀ p ∈ PclMap (qPc , tPc , q
′
Pc).

∃ qPAc 1 ∈ QPAc 1. ∃ qctrl ∈ PEnv(RegCtrl).

(qPAc 1 ⊆ qPc) ∧ (qctrl ⊆ qPc) ∧ (pclStatep ⊆ qPAc 1)

∧ (qPAc 1, qctrl ) ∈ PclStatePairs




(6.34)

The other claim we prove by induction is thatRPAc ⊆ RPAc 1.

∀ qPc ∈ QPc .

∀ tPc ∈ TPc . ∀ qPc
′ ∈ QPc .

(qPc , tPc , q
′
Pc) ∈ RPc =⇒

(
∀ p ∈ PclMap (qPc , tPc , q

′
Pc).

(pclStatep, pclTransp, pclNextStatep) ∈ RPAc 1

)

(6.35)

Base CaseqPc ∈ IPc . From Equation 6.30 and Equation 6.31 we have

IPAc ⊆ IPAc 1

IPAc 1 × { true } ⊆ PclStatePairs

Since the parcel states of parcels within pipeline steps from initial pipeline states are initial, it

follows that Equation 6.34 holds whenqPc ∈ IPc .

Inductive CaseLet (qPc , tPc , q
′
Pc) ∈ RPc . By induction, Equation 6.36 holds ofqPc .

∀ p ∈ PclMap (qPc , tPc , q
′
Pc).

∃ qPAc 1 ∈ QPAc 1. ∃ qctrl ∈ PEnv(RegCtrl).

(qPAc 1 ⊆ qPc) ∧ (qctrl ⊆ qPc) ∧ (pclStatep ⊆ qPAc 1)

∧ (qPAc 1, qctrl ) ∈ PclStatePairs

(6.36)
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We prove Equation 6.37 holds for the step(qPc , tPc , q
′
Pc).

∀ p ∈ PclMap (qPc , tPc , q
′
Pc).

(pclStatep, pclTransp, pclNextStatep) ∈ RPAc 1
(6.37)

And that Equation 6.34 holds inductively forqPc
′.

∀ tPc
′ ∈ TPc . ∀ qPc

′′ ∈ QPc .

(q′Pc , t
′
Pc , q

′′
Pc) ∈ RPc =⇒




∀ p ′ ∈ PclMap (q′Pc , t
′
Pc , q

′′
Pc).

∃ qPAc 1
′ ∈ QPAc 1. ∃ qctrl

′ ∈ PEnv(RegCtrl).

(qPAc 1
′ ⊆ qPc

′) ∧ (qctrl
′ ⊆ qPc

′) ∧ (pclStatep ′ ⊆ qPAc 1
′)

∧ (qPAc 1
′, qctrl

′) ∈ PclStatePairs




(6.38)

Part 1 We prove Equation 6.37.

Considerp ∈ PclMap (qPc , tPc , q
′
Pc). Applying Equation 6.36, there existqPAc 1 andqctrl so that

(qPAc 1 ⊆ qPc) ∧ (qctrl ⊆ qPc) ∧ (pclStatep ⊆ qPAc 1) ∧ (qPAc 1, qctrl ) ∈ PclStatePairs (6.39)

We let

dom = ControlEnvDom qPAc 1 qctrl (pclTransp) (6.40)

ectrl step =
(
qPc ∪ tPc ∪ qPc

′
[
Vr

′
/Vr

] )
| dom (6.41)

qctrl
′ ≡ ectrl step | Vr

′ (6.42)

and show that

PclStep (qPAc 1, pclTransp, pclNextStatep) ectrl step = true (6.43)

We prove the following conjunct ofPclStep. The remaining ones are trivial to prove.

∃ p ∈ Parcels. p ∩ RegPcl⊆ domqPAc 1 ∧ roots((pclTransp).fg) = p

We havep ∩ RegPcl⊆ domqPAc 1 sincepclStatep ⊆ qPAc 1.

Equation 6.43 together with Equation 6.32 in the inductive definition ofpac 1 imply

(qPAc 1, pclTransp, pclNextStatep) ∈ RPAc 1 (6.44)

Noting thatroots((pclTransp).fg) ∩ RegPcl= dom(pclStatep) and sincepac 1 is the closure of
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pac 1, Equation 6.44 implies

(pclStatep, pclTransp, pclNextStatep) ∈ RPAc 1

Part 2

∀ (q′Pc , t
′
Pc , q

′′
Pc) ∈ RPc . ∀ p ′ ∈ PclMap (q′Pc , t

′
Pc , q

′′
Pc).

∃ qPAc 1
′ ∈ QPAc 1. ∃ qctrl

′ ∈ PEnv(RegCtrl).

(qPAc 1
′ ⊆ qPc

′) ∧ (qctrl
′ ⊆ qPc

′) ∧ (pclStatep ′ ⊆ qPAc 1
′)

∧ (qPAc 1
′, qctrl

′) ∈ PclStatePairs

(6.45)

To prove Equation 6.45 we use the continuity property (Equation 5.3 on page101) in the definition

of the parcel map. Consider(q′Pc , t
′
Pc , q

′′
Pc) ∈ RPc andp ′ ∈ PclMap (q′Pc , t

′
Pc , q

′′
Pc). Therefore, there

exists a parcelp at step(qPc , tPc , q
′
Pc) so thatpclStatep ′ ⊆ pclNextStatep. Using the induction

hypothesis, there existqPAc 1 andqctrl such that:

qPAc 1 ⊆ qPc

qctrl ⊆ qPc

(qPAc 1, qctrl ) ∈ PclStatePairs

We perform the construction in Equation 6.40 to Equation 6.42. Equation 6.43 together with

Equation 6.32 in the inductive definition ofPclStatePairs imply that (pclNextStatep, qctrl ′) ∈

PclStatePairs. We therefore setqPAc 1
′ = pclNextStatep.

6.2.3 Proposition. If IPAc 1 ⊆ IPAc then

Pipec

[
Dpspac 1/Dpsc

]
�P Pipec

Proof. The parcel automatonpac 1 differs from the induced parcel automaton by representing un-

reachable datapath behaviours. Its closure does not add new behaviours. Unreachable behaviours

are already specified by the datapath circuits and therefore do not change the datapath when per-

forming abstract interpretation.
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6.3 Parcel Steps In Propositional Logic

A path through the concrete parcel automaton consists of a sequence of parcel transitions. Since the

parcel automata we work with are closed we consider only parcel transitions that are parcel steps.

Each such step satisfies the predicatePclStep described in Equation 6.29. The essential part of the

abstraction algorithm is to derive the equivalence classes of the parcel steps(qkPAc , t
k
PAc , q

k+1
PAc ) from

a constrained stateqkPAc , where the constraint requires that the stateqkPAc be reachable by a pathπkPAc

equivalent to the abstract pathπkPAa .

In order to define the representation ofPclStep in proposition logic, we observe that the span of

a parcel step(qkPAc , t
k
PAc , q

k+1
PAc ) (i.e. the parcel variables, datapaths and control variables that it

mentions), is limited by the domain ofqkPAc and by the set of all possible parcelsParcels. We

denote bỹpk our conservative approximation of a possible parcel in step(qkPAc , t
k
PAc , q

k+1
PAc ):

p̃k ≡
⋃

{ p | p ∈ Parcels ∧ p ∩ RegPcl⊆ domqkPAc } (6.46)

The cone of influence of a set of pipeline variablesV is a set of pipeline variablesconeV that

consists of the variables that can be assigned transitively fromV .

6.3.1 Definition(Cone Of Influence). The cone of influence of a parcel is the smallest set satisfying:

Base CaseV ⊆ coneV

Inductive Case

• If vl ∈ coneV and there exists ‘vk := e’ ∈ Pipec .Tr such thatvl ∈ varse thenvk ∈

coneV .

• If dp ∈ Dps andArg(dp.PclP) ∩ (coneV ) 6= ∅ thenArg(dp.PclN) ∪ OutputArg(dp.Vctrl ) ⊆

coneV .

We extend the notation and writedp ∈ conep if any of the input parcel parameters of the datapath

dp is in the cone of the parcel, i.e.Arg(dp.PclP) ∩ (conep) 6= ∅. Similarly, for fan-out edges we

write (vl, b, vk) ∈ conep if vl ∈ conep.

The parcel at stepk is denoted bypk ⊆ p̃k. The representation ofPclStep in propositional logic

requires that variables encode the current state, transition label and next state of parcelpk. In addi-

tion, we also need to represent the associated current and next control states and the fan-out graph

of the parcel. Consistency with the datapath behaviour is specified by the propositional formula

[[Rdp ]]bool that represents the transition relation for each datapathdp ∈ conep̃k. We denote the set

of variables corresponding to a datapath instance byVdp .
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The variables that make up the parcel step variables̃Vstep are defined below:

R̃egPcl ≡ domqkPAc

˜CombPcl ≡ CombPcl∩ conep̃k

˜NextRegPcl ≡ NextRegPcl∩ conep̃k

˜ControlVars ≡
⋃

tkPAc

ControlEnvDom (qkPAc , q
k
ctrl , t

k
PAc)

ṼDps ≡
⋃

dp∈conep̃k

Vdp

P̃arcel ≡ { pclv | v ∈ p̃k }

ṼfanOut ≡ { fanOutv | v ∈ (conep̃k) ∩ (Vpcl ∪ NextRegPcl) }

where

• R̃egPclrepresents the current state of the parcel.

• ˜CombPcldenotes the combinational parcel variables in the cone.

• ˜NextRegPclare the next state parcel registers in the cone ofp̃k.

• ˜ControlVars denotes the upper bound on the domain of possible environmentsekctrl step . This

is chosen heuristically.

• The set of datapath instance variables in the cone of the parcel is denotedby ṼDps .

• The set of variables̃Parcel encode the parcelpk as a subset of̃pk. Forv ∈ p̃k we have that

pclv = true if the parcelpk containsv .

• The set of fan-out variables̃VfanOut represent whetherv ∈ (conep̃k) ∩ (Vpcl ∪ NextRegPcl)

is in the fan-out of the parcelpk. ThereforefanOutv = true if v ∈ (pk)∗.

We define
˜NextRegPcl

k+1
≡
(

˜NextRegPcl
[
RegPcl/NextRegPcl

] )k+1

With the above above sets of variables the set of parcel step variables is described as follows:

Ṽstep

k
= R̃egPcl

k
⊎ ˜CombPcl

k
⊎ ˜NextRegPcl

k+1
⊎ ˜ControlVars

k
⊎ ṼDps

k
⊎ P̃arcel

k
⊎ ṼfanOut

k

We are now prepared to describe the formula[[PclStep]]bool (Ṽstep

k
).
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[[PclStep]]bool (Ṽstep

k
) ≡




[[Assignments]]bool
∧

[[Datapaths]]bool
∧

[[FanOutPropagation]]bool
∧

[[WellDefinedPclStep]]bool




(6.47)

The description ofPclStep in propositional logic consists of four subformulas. The variables that

could occur in the parcel step are constrained by the relevant assignments and datapaths of the

pipeline model. The formula in Equation 6.48 consists of the assignments to parcel and control

variables in the cone of the parcel. The formula in Equation 6.49 ensures theconsistency of the

parcel step with respect to datapath behaviour.

[[Assignments]]bool ≡
[[
(Pipec .C.Tr) | conep̃k

]]
bool

(Ṽstep

k
) (6.48)

[[Datapaths]]bool ≡
∧

dp∈conep̃k

[[Rdp ]]bool (Ṽstep

k
) (6.49)

The following formula propagates the fan-out of the parcel through the fan-out edges in the cone.

The first conjunct represents the base case: the variables that are part of the parcel are also in its fan-

out. The second conjunct corresponds to the inductive case, as the fan-out propagates transitively.

The third case covers the case of parcel variables that are not derived transitively from the parcel.

[[FanOutPropagation]]bool ≡




∧
v∈p̃k

pclkv =⇒ fanOutkv

∧

∧
(v1,b,v2)∈conep̃k

b =⇒ (fanOutkv1 = fanOutkv2)

∧

∧
v2∈conep̃k

(
¬pclkv2 ∧

( ∧
(v1,b,v2)∈conep̃k

¬b
)

=⇒ ¬fanOutkv2

)




(6.50)

The last subformula ensures the parcel step is well defined. A datapath must have either all argu-

ments in the parcel’s fan-out or none at all.

[[WellDefinedPclStep]]bool ≡
∧

dp∈conep̃k

( ∧
{ pclP1,pclP2 }⊆Arg(dp.PclP)

fanOutkpclP1
= fanOutkpclP2

)

(6.51)
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Finally, we provide the semantics of our encoding by defining the satisfiability of [[PclStep]]bool (Ṽstep

k
)

by a parcel step. We use the notationtkPAc = 〈fgk, ekctrl c , e
k
pcl c〉.

6.3.2 Definition(Propositional Semantics Of Parcel Steps). We write

(qkPAc , t
k
PAc , q

k+1
PAc ) |= [[PclStep]]bool (Ṽstep

k
)

if there exists an environmentekstep ∈ Env(Ṽstep

k
) such that:

ekstep |= [[PclStep]]bool (Ṽstep

k
)

qkPAc

[
R̃egPcl

k

/RegPcl

]
⊆ ekstep (6.52)

ekpcl c

[
˜CombPcl

k

/CombPcl

]
⊆ ekstep (6.53)

ekctrl c

[
˜ControlVars

k

/ ˜ControlVars

]
⊆ ekstep (6.54)

qk+1
PAc

[
˜NextRegPcl

k

/RegPcl

]
⊆ ekstep (6.55)

ekstep(pcl
k
v ) =





true : v ∈ rootsfgk

false : v 6∈ rootsfgk
(6.56)

ekstep(fanOutkv ) =





true : v ∈ fgk.Succ

false : v 6∈ fgk.Succ
(6.57)

Proposition 6.3.3 states the correctness of our encoding.

6.3.3 Proposition.

(
(qkPAc , t

k
PAc , q

k+1
PAc ) |= [[PclStep]]bool (Ṽstep

k
)

)
⇐⇒ ∃ekctrl step . PclStep (qkPAc , t

k
PAc , q

k+1
PAc ) e

k
ctrl step

(6.58)

Given an environmentekstep that satisfies[[PclStep]]bool (Ṽstep

k
) we can define the corresponding

parcel step(qkPAc , t
k
PAc , q

k+1
PAc ) so that(qkPAc , t

k
PAc , q

k+1
PAc ) |= [[PclStep]]bool (Ṽstep

k
).

qkPAc = (ekstep | R̃egPcl
k)
[
RegPcl/R̃egPcl

k
]

(6.59)

fgk.Nodes = { v | ekstep(fanOutkv ) = true } (6.60)

fgk.Succ = { (v1, b, v2) ∈ FanOutEdges |
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(fanOutkv1 = true) ∧ (fanOutkv2 = true) ∧ ekstep |= b } (6.61)

ekpcl c = (ekstep | (fgk.Nodes∩ CombPcl)
k)

[
˜CombPcl/ ˜CombPcl

k
]

(6.62)

ekctrl c =

(
ekstep |

( ⋃
dp∈datapathsfgk

Arg(dp.Vctrl )
)k )

[
˜ControlVars/ ˜ControlVars

k
] (6.63)

qk+1
PAc = (ekstep | ˜NextRegPcl

k)
[
RegPcl/ ˜NextRegPcl

k
]

(6.64)

The step formulafkstep stands for an equivalence class of parcel steps
[[
(qkPAc , t

k
PAc , q

k+1
PAc )

]]
=PA

. It

consists of two parts, one subformula for the parcel step and another for that encodes the equivalence

class of the transition labeltkPAc :

fkstep(Ṽstep

k
) ≡

[[[[
(qkPAc , t

k
PAc , q

k+1
PAc )

]]
=PA

]]

bool

(Ṽstep

k
)

[[[[
(qkPAc , t

k
PAc , q

k+1
PAc )

]]
=PA

]]

bool

(Ṽstep

k
) ≡ [[PclStep]]bool (Ṽstep

k
) ∧

[[[[
tkPAc

]]
=PA

]]

bool

(Ṽstep

k
)

[[[[
tkPAc

]]
=PA

]]

bool

(Ṽstep

k
) ≡




∧
(e,b,v2)∈fg

k.Succ

b

∧
∧

(e,b,v2)∈conep̃k\fgk.Succ

¬b




∧
∧

v∈domek
ctrl c

v = ekctrl c(v)

The encoding of the equivalence class of the transition labeltkPAc consists of two parts, correspond-

ing to the fan-out graphfgk and respectively, to the control environmentekctrl c .

6.3.4 Definition(Propositional Semantics of Equivalence Classes Of Parcel Steps). We write

(qkPAc 1, t
k
PAc 1, q

k+1
PAc 1) |= fkstep(Ṽstep

k
)

if there exists an environmentekstep c 1 ∈ Env(Ṽstep

k
) satisfying Equation 6.52 up to Equation 6.57

and

ekstep c 1 |= fkstep(Ṽstep

k
)

6.3.5 Proposition. Step formulas correspond to equivalence classes of parcel steps.

(qkPAc 1, t
k
PAc 1, q

k+1
PAc 1) ∈

[[
(qkPAc , t

k
PAc , q

k+1
PAc )

]]
=PA

⇐⇒ (qkPAc 1, t
k
PAc 1, q

k+1
PAc 1) |= fkstep
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6.4 Path Formulas

Path formulas are propositional formulas that represent equivalence classes of concrete paths in the

parcel automatonpac 1. A path formula is satisfiable if and only if it stands for such an equivalence

class. A path formulafkpath corresponds to pathsπkPAc of lengthk. The path formula describes each

stepi of the path using a step formulaf istep . Corresponding to the inductive definition of a path

π0PAc = q0PAc

πk+1
PAc = πkPAc

tkPAc−→ qk+1
PAc

we have a similar type of definition of path formulas:

f0path = true

fk+1
path = fkpath ∧ fkstep

6.4.1 Definition(Propositional Semantics Of Parcel Automaton Paths). We define

πkPAc |= fkpath(Ṽstep

k
)

by induction:

Base CaseFor paths of length0 we have:

π0PAc |= true

Inductive Case

πk+1
PAc |= fk+1

path

≡

πkPAc |= fkpath ∧ (qkPAc , t
k
PAc , q

k+1
PAc ) |= fkstep

6.4.2 Proposition. Step formulas stand for equivalence classes of parcel automaton paths.

πkPAc 1 ∈
[[
πkPAc

]]
=PA

⇐⇒ πkPAc 1 |= fkpath

The parcel automatonpac 1 described in Section 6.2 is defined inductively. The inductive definition

is exploited in the use of path formulas which are used to explore the control-visible datapath be-

haviours represented by the parcel automaton. The control state associated with the parcel state is

propagated along the path formula by sharing variables between consecutive steps.
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The set ˜ControlVars represents the current and next control states as follows:

domqctrl ⊆ ˜ControlVars

(domqctrl
′)
[
NextRegCtrl/RegCtrl

]
⊆ ˜ControlVars

In thek-th step this corresponds to

domqkctrl

[
R̃egCtrl

k

/RegCtrl

]
⊆ ˜ControlVars

k

(domqk+1
ctrl )

[
˜NextRegCtrl

k

/RegCtrl

]
⊆ ˜ControlVars

k

To propagate the control stateqk+1
ctrl to thek+1-th step, we perform variable substitution in the step

formulafkstep :

A ≡ (domqk+1
ctrl )

[
˜NextRegCtrl

k

/RegCtrl

]

B ≡ A

[
R̃egCtrl

k+1

/ ˜NextRegCtrl
k
]

f̃kstep ≡ fkstep
[
A/B

]
(6.65)

6.5 Abstraction Algorithms

The basic abstraction algorithm constructs an abstract parcel automaton state for each equivalence

class of the set of pathsΠ(pac 1) with respect to the equivalence on paths ‘=PA’. The abstract initial

states correspond to paths of length one, that consist of a single state. The equivalence classes of

such paths correspond to sets of initial states that have the same domain. Theset of domains of

initial states is denoted byInitParcels.

InitParcels ≡ {domqPAc | qPAc ∈ IPAc 1 }

Accordingly, the set of abstract initial statesIPAa is in bijection with the set of domains of the

concrete initial states:

IPAa ↔ InitParcels (6.66)

At the current step the algorithm extends the abstract path

πkPAa = q0PAa
t0PAa−→· · ·

tk−1
PAa−→ qkPAa (6.67)
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The pathπkPAa stands for the non-empty set of concrete statesCurrentStates reachable along equiv-

alent concrete paths:

CurrentStates ≡ { qPAc | ∃ πkPAc ∈ Π(pac 1). IPAc 1
πkPAc
; qPAc ∧ (πkPAc =PA π

k
PAa) } (6.68)

The equivalence class of concrete states thatπkPAa denotes is represented by the path formulafkpath .

At any given time,fkpath is satisfiable.

The algorithm finds all possible extensionsπk+1
PAc 1 of the pathsπkPAc equivalent toπkPAa . For each

equivalence class of the set of pathsπk+1
PAc 1 the algorithm constructs an abstract stateqk+1

PAa and the

pathπk+1
PAa that continuesπkPAa . The correspondence is shown by the following commuting diagram:

πk+1
PAa︷ ︸︸ ︷

IPAa qkPAa qk+1
PAa

IPAc qkPAc 1 qk+1
PAc 1

//
πk

PAa
//

tkPAa

//
πk

PAc

OO�
�

�

�

�

�

�

�

�

SPA

//
tkPAc 1

OO

SPA

︸ ︷︷ ︸
πk+1

PAc 1

(6.69)

Concrete pathsπk+1
PAc 1 of lengthk + 1 extend paths of lengthk that are equivalent toπkPAa if

πk+1
PAc 1 |= fkpath ∧ [[PclStep]]bool (Ṽstep

k
) (6.70)

Equation 6.70 is the basis of the path extension algorithm in Algorithm 6.1.

Each iteration of the while loop in Algorithm 6.1 solves a constrained path formulaof form fkpath ∧

Constraint . Initially, Constraint = [[PclStep]]bool (Ṽstep

k
). The solution to the path formula is

interpreted as a concrete step(qkPAc , t
k
PAc , q

k+1
PAc ) (lines 5–6). At the end of the iteration, the equiv-

alence class corresponding to the current solution is excluded from future solutions by adding the

negation¬
[[[[
tkPAc

]]
=PA

]]
bool

to the constrained path formula (line 19).

Corresponding to the concrete step(qkPAc , t
k
PAc , q

k+1
PAc ), the algorithm constructstkPAa andqk+1

PAa . In

order to make the diagram in Equation 6.69 commute we must have

tkPAc = 〈fgkc , e
k
ctrl c , e

k
pcl c〉

tkPAa = 〈fgka , e
k
ctrl a , e

k
pcl a〉

fgkc ≈ai fgka (equality modulo constants)
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Input : 〈qkPAa , f
k
path〉

Output : Abstract steps:(qkPAa , t
k
PAa 1, q

k+1
PAa 1), (q

k
PAa , t

k
PAa 2, q

k+1
PAa 2), . . .

f := fkpath ∧ [[PclStep]]bool (Ṽstep

k
)1

result := ∅2

while f is satisfiabledo3

epath c := solve(f)4

ekstep := epath c | Ṽstep

k
5

// Use construction in Equation 6.59 up to Equation 6.64

(qkPAc , t
k
PAc , q

k+1
PAc ) := step(ekstep)6

〈fgkc , e
k
ctrl c , e

k
pcl c〉 := tkPAc7

pk := parcel(ekstep | P̃arcel
k)8

ekctrl a := ekctrl c // must be equal9

ekpcl a 1 := createAbstractValues(〈pk, fgkc〉)10

ekpcl a := ekpcl a 1 | Vc
11

// fgka ≈ai fg
k
c

tkPAa := 〈fgka , e
k
ctrl a , e

k
pcl a〉12

if ekpcl a 1 | NextRegPcl6= ∅ then13

qk+1
PAa := (ekpcl a 1 | NextRegPcl)

[
RegPcl/NextRegPcl

]
14

else15

qk+1
PAa := finalPAa16

end17

append(qkPAa , t
k
PAa , q

k+1
PAa ) to result18

f := f ∧ ¬
[[[[
tkPAc

]]
=PA

]]
bool

19

end20

Algorithm 6.1: Path Extension Algorithm

ekctrl a = ekctrl c

We defineqk+1
PAa over the next-state registers that appear in the fan-out graphfg :

domqk+1
PAa = { v | v ′ ∈ fg .Nodes}

It remains to describe howekpcl a andqk+1
PAa evaluate the combinational variables and, respectively,

the next-state parcel variables (lines 2–19) of Algorithm 6.2. The edges of the fan-out graphfgkc
describe value copying or datapath transformations. For each parameterof a datapath output par-

cel variablepclN we create a new abstract value that denotes the corresponding transformation

(line 10). Similarly, a new value is used for inputs (line 3) orchoice assigned variables (line 18).

For each constant variablev we choose an advance an abstract valuewa which we assign tov at
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Input : 〈pk, fgkc〉
Output : Abstract parcel environment:ekpcl a 1

ekpcl a 1 := ∅ // ekpcl a 1 stands for tkPAa ∪ qk+1
PAa1

foreachv ∈ InputPcl∩ pk do2

ekpcl a 1 (v) := newAbstractValue()3

end4

foreach (v1, b, v2) ∈ fgkc .Succdo5

markv26

if v1 6∈ PclN then7

ekpcl a 1 (v2) := (ekpcl a ∪ qkPAa)(v1)8

else9

ekpcl a 1 (v2) := newAbstractValue()10

end11

end12

foreachv ∈ pk ∩ Vc do13

if v is unmarkedthen14

if v is assigned a constant infgkc then15

ekpcl a 1 (v) := wa // wa is the abstract constant for the edge16

(wc, b, v) ∈ fgkc
else17

ekpcl a 1 (v) := newAbstractValue()// v is assigned choice18

end19

end20

end21

Algorithm 6.2: Abstract Value Propagation

line 16.

Formally, we define the environmentekpcl a 1 ∈ Env(fg .Nodes) that stands fortkPAa ∪ qk+1
PAa by

induction:

Base Case

• If v ∈ RegPclthenekpcl a 1 (v) = qkPAa(v).

• If v ∈ InputPclthenekpcl a 1 (v) = newAbstractValue()

• If v is assigned a constantwc thenekpcl a 1 (v) = wa , wherewa is the abstract constant

corresponding to the edge(wc, b, v) ∈ fgkc .

• Otherwise,v is assignedchoice, soekpcl a 1 (v) = newAbstractValue().

Inductive Case

• If v 6∈ PclN then there exists(vl, b, vk) ∈ fg .Succso thatv = vk. We setekpcl a 1 (v) =

ekpcl a 1 (vl).
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• If v ∈ PclN thenv = newAbstractValue().

Usingekpcl a 1k we define:

epcla = ekpcl a 1 | CombPcl (6.71)

qk+1
PAa =




(ekpcl a 1 | NextRegPcl)

[
NextRegPcl/RegPcl

]
: ekpcl a 1 | NextRegPcl6= ∅

finalPAa : ekpcl a 1 | NextRegPcl= ∅
(6.72)

The abstraction algorithm is represented in Algorithm 6.3. It performs a depth-first-search ex-

ploration of the paths in the concrete parcel automatonpac 1. The algorithm maintains a stack

of concrete paths to be explored. The concrete pathπkPAc that is currently explored is repre-

sented by the formulafkpath such thatπkPAc |= fkpath . The entries of the stack consist of tuples

〈qkPAa , dom
k
ctrl , f

k
path〉, where the abstractqkPAa is on the frontier of the on-the-fly construction of the

abstract parcel automaton. It is reached in the abstract parcel automaton by a pathπkPAa equivalent

to πkPAc . For each possible extension of the pathπkPAc of form (qkPAc , t
k
PAc , q

k+1
PAc ), the algorithm

creates a new equivalent transition in the parcel automaton (lines 19–29).

The test at line 23 fails if the stack contains an already visited abstract stateqPAa that subsumes the

newly constructed stateqk+1
PAa . This check ensures termination of the algorithm when the runs of

pac 1 are terminating (Definition 6.1.2). If the abstract stateqk+1
PAa has not been visited before, a new

entry is added to the stack. It is possible the stateqk+1
PAa has been visited before, but it is not on the

stack. In the DFS algorithm(qkPAa , t
k
PAa , q

k+1
PAa ) is called a cross edge. To be sound, the algorithm

must visitqk+1
PAa under the current path constraint.

The abstraction algorithm explores the paths of the concrete parcel automaton pac 1 according to

the inductive definition ofpac 1 on page 150. At line 23 the abstraction algorithm checks whether

the pair of abstract state, control state has been visited on the current path. The termination of the

algorithm is proven if the heuristic functionControlEnvDom has the property that for transitions

that only copy the parcel state, the next control state is empty. This requirement is justifiable since

the purpose of of the next-state control variables inControlEnvDom is to prevent unreachable

computations due to datapath transformations that propagate into the parcel’snext state.

The proof of correctness of Algorithm 6.3 is based on showing that the algorithm performs path

abstraction of the concrete parcel automatonpac 1. From Lemma 6.1.1 we get

L(pac 1) ⊆ L(paa)

pac 1 �PA paa

We begin by showing termination. We show that the algorithm explores a finite number of equiva-
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Input : Pipec
Output : 〈QPAa ,RPAa ,TPAa , IPAa〉

〈QPAa ,RPAa ,TPAa , IPAa〉 := 〈{ finalPAa }, ∅, ∅, ∅〉1

Stack := ∅2

Visited := ∅3

foreachp ∈ InitParcels do4

q0PAa := newAbstractState(p)5

IPAa := IPAa ∪ { q0PAa }6

QPAa := QPAa ∪ { q0PAa }7

f0path := true8

dom0
ctrl := ∅9

pushStack , 〈q0PAa , dom
0
ctrl , true〉10

end11

while Stack 6= ∅ do12

〈qkPAa , dom
k
ctrl , f

k
path〉 := topStack // If k = 0 then fkpath ≡ true13

// The successors of qkPAa have been visited?.

if qkPAa ∈ Visited then14

popStack15

continue16

end17

Visited := Visited ∪ { qkPAa }18

foreachextension(qkPAa , t
k
PAa , q

k+1
PAa ) of 〈qkPAa , dom

k
ctrl , f

k
path〉 do19

QPAa := QPAa ∪ { qk+1
PAa }20

TPAa := TPAa ∪ { tkPAa }21

RPAa := RPAa ∪ { (qkPAa , t
k
PAa , q

k+1
PAa ) }22

// Is (qk+1
PAa , q

k+1
ctrl ) visited on the current path?

// The test holds vacuously for finalPAa
if ¬(domk+1

ctrl = ∅ ∧ ∃ qlPAa ∈ Stack ∩ Visited . qk+1
PAa ⊆ qlPAa ∧ dom l

ctrl = ∅) then23

fkstep := [[PclStep]]bool ∧
[[[[
tkPAa

]]
=PA

]]
bool

24

domk+1
ctrl := ControlEnvDom (domk

ctrl , fg
k
c , e

k
ctrl )25

// Perform the substitution in Equation 6.65

f̃kstep := update(fkstep , dom
k+1
ctrl )26

pushStack , 〈qk+1
PAa , dom

k+1
ctrl , f

k
path ∧ f̃kstep〉27

end28

end29

end30

Algorithm 6.3: Abstraction Algorithm
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lences of concrete parcel automaton paths. The algorithm pushes a new abstract stateqk+1
PAa onto the

stack at line 27 iffk+1
path = fkpath ∧ f̃kstep is satisfiable and

¬(domk+1
ctrl = ∅ ∧ ∃ qlPAa ∈ Stack ∩ Visited . qk+1

PAa ⊆ qlPAa ∧ dom l
ctrl = ∅) (6.73)

We state an equivalent condition in terms of the corresponding concrete paths πk+1
PAc that satisfy

fk+1
path = fkpath ∧ f̃kstep that implies that the negation of Equation 6.73 holds. We show that the

number of concrete paths that do not satisfy this condition is finite. Therefore, Equation 6.73 is true

only for a finite number of cases.

We recall the notion of a variable’s driver introduced on page 142. Thedriver of a variablev2 at

stepk is a variablev1 at stepn such that variablev1 at stepn propagates through copying into the

value ofv2 at stepk.

We say a concrete pathπkPAc is visited if during the execution of the algorithm the stack contains a

tuple〈qkPAa , dom
k
ctrl , f

k
path〉 such thatπkPAc |= fkpath . The stack grows at line 10 or at line 27.

6.5.1 Definition(Explored Path).

ExploredPath πkPAc ≡

¬




∃ n0 ≤ k. ∃ n0 + 1 ≤ n1 < k.

∀ i ∈ {n0, . . . , n1 }. domqi+1
PAc

[
NextRegPcl/RegPcl

]
⊆ StateFanOut i

∧

∀ v ∈ domqn1+1
PAc . driver (v , n1 + 1) = driver (v , n0 + 1)




We define the dual predicateNotExploredPath that characterizes the paths that are not explored:

NotExploredPath πk+1
PAc ≡




∃ n0 ≤ k. ∃ n0 + 1 ≤ n1 < k.

∀ i ∈ {n0, . . . , n1 }. domqi+1
PAc

[
NextRegPcl/RegPcl

]
⊆ StateFanOut i

∧

∀ v ∈ domqn1+1
PAc . driver (v , n1 + 1) = driver (v , n0 + 1)




6.5.2 Lemma(Termination Of Abstraction Algorithm). If the runs of the concrete parcel automaton

pac 1 are terminating then Algorithm 6.3 terminates.

Proof. Part 1 We show that if a path satisfies theNotExploredPath predicate then it is not visited.

To show a path is not visited it suffices to show it has a prefix that is not visited. Therefore, assume
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πk+1
PAc is minimal to satisfyNotExploredPath, i.e. has no strict prefixes that satisfy it. If




∃ n0 ≤ k. ∃ n0 + 1 ≤ n1 < k.

∀ i ∈ {n0, . . . , n1 }. domqi+1
PAc

[
NextRegPcl/RegPcl

]
⊆ StateFanOut i

∧

∀ v ∈ domqn1+1
PAc . driver (v , n1 + 1) = driver (v , n0 + 1)




then sinceπn1+1
PAa is by construction equivalent toπn1+1

PAc we have thatπn1+1
PAa satisfies the similar

property:




∃ n0 ≤ k. ∃ n0 + 1 ≤ n1 < k.

∀ i ∈ {n0, . . . , n1 }. domqi+1
PAa

[
NextRegPcl/RegPcl

]
⊆ StateFanOut i

∧

∀ v ∈ domqn1+1
PAa . driver (v , n1 + 1) = driver (v , n0 + 1)




(6.74)

Given the implication

(∀ v ∈ domqn1+1
PAa . driver (v, n1 + 1) = driver (v, n0)) =⇒ qn1+1

PAa ⊆ qn0

PAa

we obtain thatqn1+1
PAa ⊆ qn0

PAa . And therefore the pathπn1+1
PAa is not visited and sinceπn1+1

PAa is a

prefix ofπk+1
PAa , the latter is not visited either.

Part 2 We show that the set of paths that do not satisfyNotExploredPath is finite:

ExploredPaths ≡ {πkPAc | k ∈ N ∧ ExploredPath πkPAc }

|ExploredPaths| < ∞ (6.75)

The proof of Equation 6.75 is based on showing the claim below, which implies thatExploredPaths

contains only paths of length up to a constantk0 and therefore it is finite.

∃ k0. ∀ k ≥ k0.

∀ πk+1
PAc .

NotExploredPath πk+1
PAc

(6.76)

To prove Equation 6.76 we observe that a pathπk+1
PAc may contain at most|QPAc 1| transitions that

do not exclusively copy the parcel’s state into the next state:

NonCopyTrans ≡ { i | (domqi+1
PAc)

[
NextRegPcl/RegPcl

]
6⊆ StateFanOut i }

|NonCopyTrans| ≤ |QPAc 1| (6.77)
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Equation 6.77 is proven by contradiction. If it does not hold we can construct a runσPAc that

does not terminate. If|NonCopyTrans| > |QPAc 1| then there must be two indicesi1 < i2 in

NonCopyTrans such thatqi1PAc = qi2PAc . We then construct the non-terminating runσPAc as follows:

σPAc ≡ πi1PAc

ti1PAc−→· · ·
ti2−1
PAc−→ qi1PAc

ti1PAc−→· · ·
ti2−1
PAc−→ qi1PAc · · ·

We now return to Equation 6.76. We need to findk0 large enough so thatπk+1
PAc admits a large

enough subsequence of transitions that only copy the parcel’s state:

∃ n < m ≤ k.

∀ i ∈ {n, . . . , m }. (domqi+1
PAc)

[
NextRegPcl/RegPcl

]
⊆ StateFanOut i

(6.78)

For i ∈ {n+ 1, . . . , m } we define the function

driver i = { (v, driver (v , i)) | v ∈ domqiPAc }

Since for all states at indices betweenn+ 1 andm the parcel registers take their value from parcel

values at stepn+ 1, the number of different values thatdriver can take is bounded by

2|QPAc 1|×|QPAc 1|×|domqn+1

PAc | ≤ 2|QPAc 1|×|QPAc 1|×|RegPcl|

Therefore whenm−n−1 is large enough there will existn0 andn1 such thatdriver n0 = driver n1

which implies

∀ v ∈ domqn1+1
PAc . driver (v, n1 + 1) = driver (v , n0)

Denote byt the number of non-copying transitions inπk+1
PAc and bys the largest subsequence of

copying transitions inπk+1
PAc . There are at mostt+1 copying subsequences inπk+1

PAc because copying

subsequences are separated by at least one non-copying transition.We therefore obtain:

(t+ 1) × s+ t ≥ k

s ≥
k − t

t+ 1

s ≥
k − |QPAc 1|

|QPAc 1|+ 1
(sincet ≤ QPAc 1)

The longest subsequence is at least
k − |QPAc 1|

|QPAc 1|+ 1
. Therefore, we choosek0 so that

k0 − |QPAc 1|

|QPAc 1|+ 1
> 2|QPAc 1|×|QPAc 1|×|RegPcl|
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The following theorem states correctness of the abstraction algorithm.

6.5.3 Theorem(Path Abstraction). If the runs of the concrete parcel automatonpac 1 are terminat-

ing then Algorithm 6.3 performs path abstraction of the concrete parcel automatonpac 1.

Proof. We use Lemma 6.5.2 that states that the algorithm visits a finite number of concrete paths,

which implies that if a stateqkPAa is on the stack then there is a point in the execution of the algorithm

whenqkPAa is popped off the stack and extended by Algorithm 6.1.

We prove the following two claims by induction.

(i) If ExploredPath πkPAc then the algorithm creates the abstract stateqkPAa that is reachable along

a pathπkPAa =PA πkPAc and pushes onto the stack the tuple〈qkPAa , dom
k
ctrl , f

k
path〉 such that

πkPAc |= fkpath .

(ii) For anyπkPAc the abstraction algorithm constructs an abstract stateqkPAa which is reachable

along a pathπkPAa equivalent toπkPAc .

Base Casek = 0. The concrete pathπ0PAc consists of a single initial stateq0PAc . At lines 4–11 the

algorithm pushes onto the stack the stateq0PAa =PA q
0
PAc and therefore,π0PAc =PA π

0
PAa .

Inductive CaseWe assume that the two claims are true fori ≤ k and prove it fork + 1.

Claim (i) We need to show that ifExploredPath πk+1
PAc then the algorithm creates the abstract

stateqk+1
PAa that is reachable along a pathπk+1

PAa =PA πk+1
PAc and pushes onto the stack the tuple

〈qk+1
PAa , dom

k+1
ctrl , f

k+1
path 〉 such thatπk+1

PAc |= fk+1
path .

SinceExploredPath πk+1
PAc holds, its prefixπkPAc also satisfies the predicateExploredPath. By

induction, the algorithm puts on the stack the tuple〈qkPAa , dom
k
ctrl , f

k−1
path ∧ ˜fk−1

step 〉 such thatπkPAc |=

fk−1
path ∧ ˜fk−1

step . And further,qkPAa is reachable via a pathπkPAa =PA π
k
PAc .

Since only a finite number of paths are visited, the tuple〈qkPAa , dom
k
ctrl , f

k
path〉 is eventually popped

off the stack at line 13. The stateqkPAa is then extended by abstract steps corresponding to the equiva-

lence classes of concrete paths of lengthk+1 that satisfy the formulafkpath ∧ [[PclStep]]bool (Ṽstep

k
).

SinceπkPAc |= fkpath , πk+1
PAc |= fkpath ∧ [[PclStep]]bool (Ṽstep

k
). The path extension algorithm there-

fore constructs an abstract steptkPAa that is equivalent totkPAc and an abstract stateqk+1
PAa reachable

by a path equivalent toπk+1
PAc . The abstraction algorithm then performs the check at line 27 which

returns false sinceExploredPath πk+1
PAc holds. The tuple〈qk+1

PAa , dom
k+1
ctrl , f

k
path ∧ f̃kstep〉 such that

πk+1
PAc |= fkpath ∧ f̃kstep is then pushed onto the stack.
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Claim (ii) If πk+1
PAc satisfiesExploredPath then this case reduces to the previous one.

Consider the maximal prefixπnPAc of πk+1
PAc such thatExploredPath πnPAc holds. By induction the

algorithm visits the pathπn1

PAc and extends the equivalent abstract pathπn1

PAa so that

πn1+1
PAc =PA π

n1+1
PAa

However, the pathπn1+1
PAc is not visited because




∃ n0 ≤ k. ∃ n0 + 1 ≤ n1 < k.

∀ i ∈ {n0, . . . , n1 }. domqi+1
PAc

[
NextRegPcl/RegPcl

]
⊆ StateFanOut i

∧

∀ v ∈ domqn1+1
PAc . driver (v , n1 + 1) = driver (v , n0 + 1)




(6.79)

Equation 6.79 implies thatqn1+1
PAc ⊆ qn0+1

PAc , therefore

πPAc 1 = πn0+1
PAc

tn1+1
PAc−→ · · ·

tkPAc−→ qk+1
PAc

is a path inpac 1 of length less equal tok. By induction there exists an equivalent abstract path

πPAa 1 =PA πPAc 1. Since the equivalence class of a concrete path is visited only once, the path

πPAa 1 continues the pathπn0+1
PAa .

πPAa 1 = πn0+1
PAa

tn1+1
PAa−→ · · ·

tkPAa−→ qk+1
PAa

We modify the pathπPAa 1 by splicing in the path segment

qn0+1
PAa

tn0+1
PAa−→ · · · qn1

PAa

tn1

PAa−→ qn1+1
PAa

The resulting pathπPAa 2 is equivalent toπk+1
PAc .

πPAa 2 = πn0+1
PAa

tn0+1
PAa−→ · · · qn1

PAa

tn1

PAa−→ qn1+1
PAa

tn1+1
PAa−→ · · ·

tkPAa−→ qk+1
PAa

Because abstract states could be reached on different paths in the DFSalgorithm, due to either back

edges or cross edges, it is not generally the case that

L(paa) ⊆ L(pac 1)
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dp2

r3

vo

r1

vi

r2

dp1
vc1

•

Control

•

dp3

Figure 6.4: Pipeline model with stall and exclusive paths.

We use the example in Figure 6.4 to illustrate the result produced by the abstraction algorithm.

There are two possible paths through the pipeline:

vi −→ r1 −→ r2 −→ r3 −→ vo

vi −→ r1 −→ r3 −→ vo

When the parcel inr1 produces outputvc1 = 0, it transfers tor2. Whenvc1 = 1 it should transfer

to r3. If both the parcel inr1 andr2 need to transfer tor3, the one inr2 is given priority. This means

the parcel inr1 stalls.

The concrete parcel automatonpac 1 is succinctly described in Figure 6.5. The figure represents the

two types of paths that are possible through the pipeline and uses symbolic values. Transition labels

that such thatectrlc = ∅ are not shown. The result of Algorithm 6.3 is shown in Figure 6.6. The two

concrete paths∅ −→ { r1 = a0 } and∅ −→ { r1 = b0 } are indistinguishable during abstraction

and are therefore represented by the same abstract path∅ −→ { r1 = α0 }. The abstract valueα0

stands for botha0 andb0. When the state{ r1 = α0 } is expanded, there are two abstract transitions
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r1 = a0

r2 = a1

r1 = b0

finalPAc

vc1 = 1

∅

vc1 = 1vc1 = 0

vc1 = 0

r3 = a2 r3 = b1

Figure 6.5: Partial representation ofpac 1 using symbolic values.

satisfied bya0 and another two satisfied byb0. Because of the self loops{ r1 = α0 }
vc1 = 0
−→ { r1 =

α0 } and{ r1 = α0 }
vc1 = 1
−→ { r1 = α0 } the abstract automaton can represent paths that are a mix

of distinct paths of the concrete automaton:

∅ −→ { r1 = α0 }
vc1 = 0
−→ { r1 = α0 }

vc1 = 1
−→ { r3 = β0 } −→ finalPAa
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r1 = α1

finalPAa

vc1 = 1vc1 = 0

r3 = α1 r3 = β1

r1 = α0

∅

vc1 = 1vc1 = 0

Figure 6.6: Partial representation ofpaa constructed by Algorithm 6.3.
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In the rest of the section we generalize the idea behind Algorithm 6.3 so thatL(paa) = L(pac 1).

The abstract parcel automaton contains paths that are not possible in the concrete one due to the fact

that constraints corresponding to paths that have a common prefix are solved independently. The

constraint the algorithm uses when expanding an abstract state corresponds to the conjunction of

the step formulas that represent the path currently explored. The natural generalization is to replace

path formulas by a conjunction of formulas representing all the abstract transitions discovered so

far by the DFS procedure.

We recall the representation of parcel steps in propositional logic introduced in Section 6.3. The set

of variables that encode the parcel step is defined as follows:

Ṽstep

k
= R̃egPcl

k
⊎ ˜CombPcl

k
⊎ ˜NextRegPcl

k+1
⊎ ˜ControlVars

k
⊎ ṼDps

k
⊎ P̃arcel

k
⊎ ṼfanOut

k

and the formula that encodes a parcel step from a stateqkPAc is given by[[PclStep]]bool (Ṽstep

k
). The

equivalence class of a parcel step was represented by the formula below:

fkstep ≡ [[PclStep]]bool (Ṽstep

k
) ∧

[[[[
tkPAc

]]
=PA

]]

bool

(Ṽstep

k
)

According to Definition 6.3.4 we write

(qkPAc , t
k
PAc , q

k+1
PAc ) |= fkstep(Ṽstep

k
)

if there exists an environmentekstep c ∈ Env(Ṽstep

k
) satisfying Equation 6.52 up to Equation 6.57

and

ekstep c |= fkstep(Ṽstep

k
)

Given a propositional formulaf , v a variable andV = { v1, . . . , vn } a set of variables, we use the

following standard notation:

(∃ v) f ≡
∨

d∈Ty(v)

f
[
d/v

]

(∃V ) v ≡ (∃ v1) (· · · (∃ vn) f)

It follows that the existence of a step equivalent to(qkPAc , t
k
PAc , q

k+1
PAc ) from stateqkPAc is equivalent

to the satisfiability of the following propositional formula:

[[
HasStep(

[[
tkPAc

]]
=PA

)

]]

bool

(R̃egPcl
k
) ≡ (∃ Ṽstep

k
\ R̃egPcl

k
) fkstep

The path extension procedure (Algorithm 6.1) uses the satisfiability solver toextract all the concrete
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parcel steps

{ (qkPAc , t
k
PAc 1, q

k
PAc 1), . . . , (q

k
PAc , t

k
PAcm, q

k
PAcm) }

that are possible from a concrete stateqkPAc constrained byConstraintk, whereConstraintk =

fkpath in the first version of the abstraction algorithm.

We say the non-empty set of steps

{ (qkPAc , t
k
PAc i1 , q

k
PAc i1), . . . , (q

k
PAc , t

k
PAc ir , q

k
PAc ir) }

is exactif the following formula




Constraintk

∧
∧

j∈{ i1, ..., ir }

[[
HasStep(

[[
tkPAc j

]]
=PA

)

]]

bool

(R̃egPcl
k
)

∧
∧

j∈{ 1, ...,m }\{ i1, ..., ir }

¬

[[
HasStep(

[[
tkPAc j

]]
=PA

)

]]

bool

(R̃egPcl
k
)




is satisfiable.

Note that to represent an exact set of parcel steps in a formulaConstraintk we must have multiple

copies of the set of variables̃Vstep

k
.

Ṽstep

k

j ≡ R̃egPcl
k
⊎ ˜CombPcl

k

j ⊎ ˜NextRegPcl
k+1

j ⊎ ˜ControlVars
k

j ⊎ ṼDps

k

j ⊎ P̃arcel
k

j ⊎ ṼfanOut

k

j

fkstep j ≡ [[PclStep]]bool (Ṽstep

k

j ) ∧

[[[[
tkPAa j

]]
=PA

]]

bool

(Ṽstep

k

j )

The generalized abstraction algorithm is shown in Algorithm 6.4. The actual abstraction is per-

formed by the recursive procedureAbstractRecdescribed in Algorithm 6.5.

The idea in algorithm in Algorithm 6.5 is similar to the one in Algorithm 6.3. The generalized

algorithm finds exact sets of parcel steps that continue the abstract statethat was popped off the

stack. For each such subset it makes a recursive call that passes theupdated DFS state of the current

instance ofAbstractRec. The algorithm makes use of a functionCopyPclthat returns a fresh copy

of the DFS digraph (partially constructed abstract parcel automaton). Ifa recursive call is made the

current instance returns since the recursive calls cover all the possible cases.

6.5.4 Proposition. If the runs of the concrete parcel automatonpac 1 are terminating then Algo-

rithm 6.4 terminates.
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Input : Pipec
Output : 〈QPAa ,RPAa ,TPAa , IPAa〉

〈QPAa ,RPAa ,TPAa , IPAa〉 := 〈{ finalPAa }, ∅, ∅, ∅〉1

foreachp ∈ InitParcels do2

q0PAa := newAbstractState(p)3

dom0
ctrl := ∅4

IPAa 0 := { q0PAa }5

QPAa 0 := { q0PAa }6

RPAa 0 := ∅7

TPAa := ∅8

Constraint0 := ∅9

Stack0 := { 〈q0PAa , dom
0
ctrl 〉 }10

Visited0 := ∅11

AbstractRec〈〈IPAa 0,QPAa 0,RPAa 0,TPAa 0〉,Constraint0,Stack0,Visited0〉12

end13

Algorithm 6.4: Abstraction Algorithm II

Proof. The same technique used in Lemma 6.5.2 to prove termination of Algorithm 6.3 is also

applicable here.

6.5.5 Theorem.If the runs of the concrete parcel automatonpac 1 are terminating then the abstract

parcel automatonpaa has the same language as the concrete parcel automatonpac 1.

Proof. The abstract parcel automaton consists of the union of the parcel automatareturned at

lines 25–28 in Algorithm 6.5. These parcel automata can only share the set of states{ ∅, finalPAa }.

When such a parcel automaton is returned, all the edges of the finite paths that it represents are

encoded in the global constraintConstraintn in the procedureAbstractRec. The invariant of the

algorithm is that the global constraint is always satisfiable. It therefore follows that for each finite

path throughpaa there exists an equivalent one inpac 1. We can apply Lemma 6.1.4 on page 143 to

prove the inclusionL(paa) ⊆PA L(pac 1). The other inclusion holds since the algorithm performs

path abstraction.

It is possible that for the abstract parcel automatonpaa returned by Algorithm 6.4 language equality

between the concrete and abstract pipelines does not hold. This happens when parcel input variables

and parcel variables that are assignedchoice occur in several parcel steps of the abstract parcel

automaton. In this case,Dpspaa returnschoice for a combination of values that does not show up

on the edges of the parcel automaton.

To solve this problem, we need to modify the parcel automata returned at lines 25–28. Instead of a

parcel automaton with abstract valuesAbstractRecreturns one based on a solution to the constraint
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Input : 〈〈IPAa n,QPAa n,RPAa n,TPAa n〉,Constraintn,Stackn,Visitedn〉
Output : updates〈IPAa ,QPAa ,RPAa ,TPAa〉

while Stackn 6= ∅ do1

〈qkPAa , dom
k
ctrl 〉 := popStackn2

foreachset of exact stepsExactStepskn of 〈qkPAa ,Constraintn〉 do3

〈IPAn+1,QPAn+1,RPAn+1,TPAa n+1〉 := CopyPcl〈IPAn,QPAn,RPAn,TPAa n〉 (n+ 1)4

Stackn+1 := CopyPclStackn (n+ 1)5

Visitedn+1 := CopyPclVisitedn (n+ 1)6

ExactStepskn+1 := CopyPclExactStepskn (n+ 1)7

foreach (qkPAa , t
k
PAa j , q

k+1
PAa j) ∈ ExactStepskn+1 do8

QPAa n+1 := QPAa n+1 ∪ { qk+1
PAa j }9

TPAa n+1 := TPAa n+1 ∪ { tkPAa j }10

RPAa n+1 := RPAa n+1 ∪ { (qkPAa , t
k
PAa j , q

k+1
PAa j) }11

fkstep j := [[PclStep]]bool (Ṽstep

k

j ) ∧

[[[[
tkPAa j

]]
=PA

]]

bool
12

dom k+1
ctrlj := ControlEnvDom (domk

ctrl , fg
k
j , e

k
ctrl )13

// Perform the substitution in Equation 6.65

f̃kstep j := update(fkstep j , dom
k+1
ctrlj)14

Constraintn+1 := Constraintn ∧ f̃kstep j15

// Is qk+1
PAa j visited on the current path?

// The test holds vacuously for finalPAa
if ¬(dom k+1

ctrlj = ∅ ∧ ∃ qlPAa ∈ Stackn+1 ∩ Visitedn+1. q
k+1
PAa j ⊆ qlPAa ∧ dom l

ctrl = ∅)16

then
Visitedn+1 := Visitedn+1 ∪ { qk+1

PAa j }17

pushStackn+1, 〈q
k+1
PAa j , dom

k+1
ctrlj〉18

end19

end20

// Recursive call for the current set of successors.
AbstractRec〈〈QPAa n+1,RPAa n+1,TPAa n+1〉,Constraintn+1,Stackn+1,Visitedn+1〉21

end22

// The DFS algorithm was finished by the recursive calls.
return23

end24

// There were no recursive calls
IPAa := QPAa ∪ IPAa n25

QPAa := QPAa ∪ QPAa n26

RPAa := RPAa ∪ RPAa n27

TPAa := TPAa ∪ TPAa n28

Algorithm 6.5: Recursive Abstraction ProcedureAbstractRec.
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Constraintn. We then use a simulator to find out the values produced by datapaths underparcel

input combinations that are not known from the parcel steps.

6.6 Case Studies

This section describes our implementation results in the Bluenose II design andverification tool.

Our abstraction algorithm was tested with several designs: theDiffAddMult arithmetic pipeline, an

edge detector and a two-wide superscalar OpenRISC microprocessor.

6.6.1 Design For Verification UsingPipeNet

•

IntPrev Arbiter

MkReqAcc
Datapath

IntNext IntNReqAcc

DataP ReqP AccP

DataN ReqN AccN

selN

Figure 6.7: Pipeline stage template.

Our case studies were designed using a library of reusable design components calledPipeNet[Hig-

gins and Aagaard, 2005]. The main building block thatPipeNetuses is the pipeline stage. With

PipeNet, the design consists of a collection of interconnected blocks that represent the pipeline cir-

cuit and associated memories, register files and other design components such as hazard detection

units. Within a stage,PipeNetprovides a clean separation between datapath and control. The struc-

ture of a stage is described in Figure 6.7. The parcel that enters the stageis selected by the mux

InterfacePrevand is stored in the stage register. When it eventually exits, its value is copied through

the demuxInterfaceNext.
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Parcel flow through the stage and through the pipeline is coordinated usinga request-accept pro-

tocol. Parcels move from one stage to another by generating requests which, if granted an accept,

lead to the parcel transferring to one of the requested stages. The request-accept protocol has a

distributed implementation. Requests and accepts propagate through the pipeline, without the need

of global control.

Inside a stage, the request accept protocol is implemented by the three remaining blocks:Arbiter,

MakeReqAcc, andInterfaceNextReqAcc. The role of the arbiter is to prioritize the incoming requests

and drive the select signal of theInterfacePrevmux. TheMakeReqAccblock maintains the occupa-

tion status of the stage and calculates whether the stage will be able to accept the request of another

based on whether its own request has been granted. The request thatthe parcel in the current stage

makes, originates as a control output of the stage datapath, which by convention is calledselN .

InterfaceNextReqAccacts as the relay for the request-accept protocol with the downstream stages.

The concept of pipeline models presented in Chapter 3 is a natural generalization of PipeNet. The

PipeNettemplate provides clear boundaries between datapath and control. Betweenstages, parcel

values are only copied through muxes or demuxes, which corresponds tothe assignment of if-then-

else parcel expressions in the pipeline model. Among the generalizations brought by the pipeline

model are the dissolution of stage boundaries and the hiding of the request-accept protocol. The

stage datapaths are replaced by combinational datapath modules with multiple input and output

parcel variables. Datapaths are allowed to consume both primary parcel input variables and parcel

registers. The protocol used byPipeNetto synchronize multicycle datapaths has also been hidden

away.

Stage datapaths can take multiple cycles to compute their result. During this time the pipeline stage

is busy, and it will not generate or accept requests and the enable signal of the stage register is not

asserted. Multicyle datapaths use a simple protocol to start their computation and to signal when

the result is available. An input control signal of the datapath is used to start the computation, and

respectively, an output signal of the datapath is asserted in the cycle when the computation is done.

In the pipeline model, multicycle datapaths are represented by combinational datapaths that take

as additional input and output parameters the registers corresponding tothe internal state of the

multicyle datapath.

In a PipeNetdesign, the parcel map is defined using the pipeline stages or primary input variables.

For combinational datapaths, parcels are singletons that consist of a stage register. For sequential

datapaths, the parcel consists of both the stage register and the additionalparcel registers of the

multicycle datapath. The proof obligations for the parcel map (Section 5.1) are simplified by the

fact that parcels are singletons when they transfer into a stage. The stateof multicycle datapaths is

reset when a new parcel transfers into the stage and therefore, it does not persist after a multicycle

computation ends.
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6.6.2 Implementation

The abstraction algorithm is implemented in Bluenose II [Chan et al., 2007], a tool for the design

and verification of pipelined circuits. The high-level description of a pipeline design is input into the

tool using block diagrams in a visual editor based on the Eclipse Graphical Modeling Framework

or textually using the Groovy Builder syntax [Koenig et al., 2007].

PipeStage(name: ’sub stage’,next : [’neg stage’, ’addstage’, ’multstage’]){
BlkInterface () {

Parcel(name: ’pclIn’, vhdlType : ’pcl sub ty’, direction : ’IN’)
Parcel(name: ’pclOut’, vhdlType : ’pcl neg ty’, direction : ’OUT’)

}

Datapath(name: ’sub’, vhdlId : ’sub’, implFiles : [’sub.vhd’]) {
BlkInterface () {

Parcel(’i data’)
Parcel(’o data’)
SelN(’reqN’)

}
}

}

Figure 6.8: Combinational stage.

We recall theDiffAddMultexample first introduced in Chapter 3. Figure 6.8 and Figure 6.9 illustrate

how a combinational and, respectively, a sequential stage are represented in Bluenose II. The user

describes the parcel ports of the stage and provides annotations for thedatapath. The datapaths have

standalone user provided VHDL implementations which are referenced from model file. Multicycle

datapaths have additional annotations describing the start and finish control ports.

Bluenose II generates hierarchical VHDL for the pipeline model and uses the Mentor Graphics Pre-

cision RTL synthesis tool to create a hierarchical gate-level netlist of the design. At this stage, the

netlist contains black boxes that in a design flow are implemented using the target FPGA technol-

ogy. We have reverse engineered using trial and error close to twenty such black box operators for

which we have provided generic gate-level VHDL implementations. Further rounds of synthesis

are performed to rewrite recursively all the black box operators with gatelevel implementations. A

translation to the NuSMV model checker [Cimatti et al., 2002] is made available byproviding se-

mantics of the primitive gates in the model checker’s language. Identifying thecorrect semantics of

the various types of flip-flops was the most challenging aspect in adding support for NuSMV.

We have implemented the first flavour of path abstraction (Algorithm 6.3) in Bluenose II. Our al-
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PipeStage(name: ’mult stage’){
BlkInterface () {

Parcel(name: ’pclIn’, vhdlType : ’pcl neg ty’, direction : ’IN’)
Parcel(name: ’pclOut’, vhdlType : ’pcl mult res ty’, direction : ’OUT’)

}

SequentialDatapath(name: ’mult’, implFiles : [’mult.vhd’, ’multiplier.vhd’]) {
BlkInterface () {

Parcel(’i data’)
Parcel(’o data’)
Clock(’i clk’)
Reset(’i reset’)
Start(’i start’)
Finished(’o finished’)
SelN(’reqN’)

}
}

}

Figure 6.9: Sequential Stage

gorithm exploits theselN andfinished signals produced by the pipeline datapaths to compute the

possible parcel steps for the abstract state at the top of the stack. TheselN signal uses a one hot-

encoding to represent the stage the parcel needs to go next. The successor states of the parcel state

correspond to the stages that are encoded by a1 in the selN vector. For multicycle stages, when

the value of thefinished signal is0, the next parcel automaton state consists of the current parcel’s

value and the next datapath state. Once abstraction is done, the tool generates VHDL for abstract

datapaths represented by the parcel automaton. Control properties of the resulted pipeline are then

verified using a model checker.

The path formula corresponding to a multiply operation in theDiffAddMult example is shown in

Figure 6.10. The path formula is satisfied by computations of the concrete parcel automaton of

form

Sub
selN Sub = 001

−→ Neg
selN Sub = 10

−→ Mult
finishedMult = 0

−→

Mult
finishedMult = 0

−→ Mult

finishedMult=1
selNMult = 0

−→

In the path formula the first instance of theMult datapath is used to put the datapath in the reset

state. Corresponding to the internal registers of the datapath, the formula contains constraints that
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Neg

selN Sub = 001

selNNeg = 10

Sub

Mult

selNMult

finishedMult

clockMult = 1
resetMult = 1
startMult

Mult

selNMult

finishedMult = 0

clockMult = 1
resetMult = 0
startMult = 1

Mult

selNMult

finishedMult = 0

clockMult = 1
resetMult = 0
startMult = 0

Mult

selNMult = 1

finishedMult = 1

clockMult = 1
resetMult = 0
startMult = 0

•

•

•

•

•

•

•

•

•

Figure 6.10: Example of path formula forDiffAddMult.

ensure updates to the registers in the current cycle propagate into the copy of the registers in the

next cycle.

The abstract parcel automaton forDiffAddMult is represented in Figure 6.11. Our implementation

uses the MiniSat solver [Een and Sorensson]. The datapath of the 32-bit version ofDiffAddMult

has a total of 22881 gates. After abstraction, the total becomes 148. The path problems require 56

SAT problems with a cumulative time of 94 seconds. The maximum memory used is 39.8MB and

maximum time is 5 seconds.

Another example that we used illustrates the ease of applying abstraction with Bluenose II to circuits

that were not designed with verification in mind. We imported with minimal effort thedesign of

a Kirsch edge detector that was originally created for a course project. The circuit consists of a

pipeline that has two multicycle stages. The parcel automaton obtained by abstraction is shown
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(top_0, pcl_0)

(sub_stage, pcl_0)

se lN=1

(neg_stage, pcl_3)

se lN=100

(add_stage, pcl_2)

se lN=010

(mult_stage, pcl_1, 0)

se lN=001

(add_stage, pcl_6)

se lN=10

(mult_stage, pcl_5, 0)

se lN=01

(bot_0, pcl_8)

se lN=1

(bot_1, pcl_9)

f in ished=1,  selN=1

(mult_stage, pcl_5, 1)

f in ished=0

(mult_stage, pcl_5, 2)

f in ished=0

(mult_stage, pcl_5, 3)

f in ished=0

(bot_1, pcl_12)

f in ished=1,  selN=1

(mult_stage, pcl_5, 4)

f in ished=0

(bot_1, pcl_14)

f in ished=1,  selN=1

(mult_stage, pcl_5, 5)

f in ished=0

(bot_1, pcl_15)

f in ished=1,  selN=1

(bot_0, pcl_4)

se lN=1

(bot_1, pcl_7)

f in ished=1,  selN=1

(mult_stage, pcl_1, 1)

f in ished=0

(mult_stage, pcl_1, 2)

f in ished=0

(mult_stage, pcl_1, 3)

f in ished=0

(bot_1, pcl_10)

f in ished=1,  selN=1

(mult_stage, pcl_1, 4)

f in ished=0

(bot_1, pcl_11)

f in ished=1,  selN=1

(mult_stage, pcl_1, 5)

f in ished=0

(bot_1, pcl_13)

f in ished=1,  selN=1

Figure 6.11:DiffAddMultabstract parcel automaton.

in Figure 6.12. The concrete datapath had 2200 gates and was reduced toonly 144 gates, with a

cumulative time of 33 seconds for 32 SAT problems, using less than 3.5MB of memory.

6.6.3 Abstraction Of The OpenRisc Processor

Our OpenRISC processor is a two-wide superscalar pipeline for the ORBIS32 32-bit integer RISC

instruction set; it contains a cyclic path, uses bubble squashing, and executes instructions in program

order. Our OpenRISC design implements 47 of the 52 instructions — all instructions except those

that require operating system support or special-purpose registers.The ORBIS32 instruction set

architecture uses a load/store approach and defines a flag condition code register that is used for

conditional branch operations.

In Figure 6.13, parcel connections are shown as thick lines and normal signals are shown as thin

lines. The three grey parcel connections are secondary paths that can be used to squash bubbles in

the event that the primary path is stalled. For example,IF0 will use the secondary pathIF0 −→ ID1

if ID0 is stalled and there is a bubble inID1. The ALU stage has two groups of multi-cycle instruc-
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(top_0, pcl_0)

(pipeStage1, pcl_0, 0)

se lN=1

(pipeStage1, pcl_0, 1)

f in ished=0

(pipeStage1, pcl_0, 2)

f in ished=0

(pipeStage1, pcl_0, 3)

f in ished=0

(pipeStage1, pcl_0, 4)

f in ished=0

(pipeStage2, pcl_1, 0)

f in ished=1,  selN=1

(pipeStage2, pcl_1, 1)

f in ished=0

(pipeStage2, pcl_1, 2)

f in ished=0

(pipeStage2, pcl_1, 3)

f in ished=0

(pipeStage2, pcl_1, 4)

f in ished=0

(pipeStage2, pcl_1, 5)

f in ished=0

(pipeStage2, pcl_1, 6)

f in ished=0

(pipeStage2, pcl_1, 7)

f in ished=0

(pipeStage2, pcl_1, 8)

f in ished=0

(bot_0, pcl_2)

f in ished=1,  selN=1

Figure 6.12: Abstract parcel automaton of edge-detector
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Instruction Class Instruction Listing

Arithmetic add, addc, addi, mul, muli, mulu, sub
Logical and, andi, or, ori, rori, sll, slli, sra, srai, srl, srli, xor, xori
Control flow bf, bnf, j, jal, jalr, jr
Flag set sfeq, sfges, sfgeu, sfgts, sfgtu, sfles, sfleu, sflts, sfltu, sfne
Load/Store lbs, lbz, lhs, lhz, lws, lwz, sb, sh, sw
Misc nop, movhi
Not implemented trap, rfe, mfspr, mtspr, sys

Table 6.2: ORBIS32 Instruction Set

IF0

IF1

ID0

ID1

Br

ALU LSU

WB0 WB0

PC

Data
Mem

RF

Inst
Mem

Control circuit

Parcel connection Normal signal

Secondary parcel connection

Figure 6.13: OpenRisc pipeline

tions: multiply instructions use a sequential datapath inside the stage and shift/rotate instructions

loop through the stage multiple times. We chose these two different methods of doing multi-cycle

operations to illustrate that our abstraction supports both. Latencies through the ALU vary from one

clock cycle for simple instructions to four clock cycles for multiplications.

Structural reduction [Beer et al., 1994] removes the register file, instruction memory, data memory,
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and program counter. The source end of the parcel connections from the program counter toIF0

andIF1 become unconnected. Similarly, the target end of the parcel connections from the writeback

stages become unconnected. Each unconnected source end is then connected to a top pseudo stage

and each unconnected target end is connected to a bottom pseudo stage.The grey control circuits

are preserved, because they are connected to control circuits within stages, not to the datapaths.

The unconnected source ends on non-parcel data signals to datapaths(e.g. , data outputs from the

register file and memory) become non-deterministic inputs to the datapaths. We then apply our

abstraction algorithm (Algorithm 6.3) to the pipeline, replace the datapaths in thepipeline with the

abstractions, and generate an abstract pipeline.

Figure 6.14: OpenRisc abstract parcel automaton

Figure 6.14 shows the abstract operation graph for OpenRisc. There are a total of 35 paths through

the operation graph, representing the 35 paths through the pipeline. It mayseem surprising that

there are so many distinct paths in this processor, but they really do all exist. The paths include all

possible combinations of an instruction being fetched into IF0 or IF1, primaryand secondary paths

through ID and IF, and multi-cycle operations through ALU.

There are 35183 gates in the concrete processor and only 2047 gates after abstraction. The concrete
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datapath accounts for 30341 gates and the abstract one for 1458 gates. The abstraction algorithm

generated 334 SAT problems. Cumulative SAT solver time is 536 seconds with amaximum of

51.7MB of memory used.

6.7 Summary

Path abstraction performs an implicit DFS like traversal of the concrete parcel automaton using a

SAT solver. The algorithm uses propositional formulas called path formulasthat stand for equiva-

lence classes of finite path prefixes in the concrete automaton. The algorithmmaps a set of equiva-

lent paths of the concrete automaton to an abstract state. Our methodology has been validated with

several datapath intensive pipelined designs. The most complex design is atwo-wide superscalar

OpenRISC microprocessor. There are 35183 gates in the concrete processor and only 2047 gates

after abstraction.
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Chapter 7

Conclusions

Formal methods are techniques that use mathematical reasoning to prove correctness of hardware

and software systems. The main challenges to their wide adoption are automationand capacity.

There are two main directions in formal methods that differ with respect to howthey represent the

behaviour of the system. In the deductive approach the behaviour of thesystem is described by logic

terms that are derived syntactically from the the text of the program. Such methods support reason-

ing about very general implementations, proving correctness about programs that use unbounded

memory or have parameterized implementations with an unbounded number of components. The

difficulty in applying deductive techniques is often due to the fact that the underlying logic is not

decidable and thus algorithmic approaches are not complete. They instead rely on the user to guide

the proof. The other approach in formal verification is to apply automatic reasoning to the finite ex-

plicit representation of the program. This representation is often given asa state machine or Kripke

structure. Automatic verification is performed by exploring the state space ofthe system. In this

approach the challenge is to overcome the state space explosion problem due to the size of the state

space being exponentially larger than the text of the program. In automatic approaches the state

explosion problem is alleviated using abstraction and decomposition.

The most complex hardware designs are found in today’s microprocessors. Commonly encountered

optimizations are out-of-order speculative execution, register renaming and dynamic scheduling.

Pipelining is a ubiquitous technique in these designs whereby the execution ofinstructions is de-

composed into a sequence of operations performed at different stagesin the pipeline. Pipelining

increases the utilization of the circuit and the throughput of instructions, i.e.the rate at which in-

structions come out of the pipeline. Pipelining brings challenges to both designand verification.

Pipeline hazards are the equivalent of race conditions in multi-threaded software. The hazards are

denoted by conditions related to the concurrent execution of instructions. Data and control hazards

refer to the requirement that the overlapped execution of the instructions inthe pipeline have the
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same effect as if the instructions were executed one at a time in program order. Structural hazards

occur due to resource contention in the pipeline. Their incorrect resolution may lead to resource

starvation or deadlocks.

The challenges in the formal verification of pipelined circuits arise in both specification of correct-

ness and verification. The definitions of correctness statements for pipelined circuits, such as the

ones based on simulation, must relate a pipeline state to a specification state. Due topipelining, the

implementation variables that correspond to the specification reflect the overlapped updates made

by the various instructions in the pipeline. It is therefore not straightforward to relate the imple-

mentation with a sequential specification that executes one instruction at a time. Flushing based

correctness [Burch and Dill, 1994] mitigates this factor using a pipeline specific form of abstraction

called flushing. Flushing transforms an implementation state by completing all in-flight instructions

without fetching new ones. Another approach to pipeline correctness is formulated in terms of the

correct resolution of hazards [Aagaard, 2003]. This approach is proven to imply the commuting

diagram based on flushing. Hazard based correctness has the advantage that correctness can be

formulated more easily in terms of pipeline specific behaviour. The state explosion problem in the

automatic verification of pipelined circuits arises mainly due to the presence of wide datapaths and

memories. Abstraction of memories and datapath is the natural approach to the verification of the

control.

Model checking is an automated approach to formal verification. With model checking, correctness

properties are defined in temporal logic and verified by state space exploration. To verify systems

with large state spaces model checking uses symbolic representations of thestate space [Burch et al.,

1992], abstraction and decomposition.

Our work is concerned with datapath abstraction for the verification of the control circuitry of

pipelined circuits using model checking. Due to the interaction between datapath and control, data-

path abstraction must be precise enough so that control properties that are sensitive to the paths and

latencies through the pipeline are satisfied by the abstract pipeline.

In Chapter 4 we formalize the pipeline datapath as a state machine called a parcel automaton. The

parcel automaton describes the execution of a parcel by the pipeline. It captures the paths parcels

take through the pipeline, the transformations that they undergo and the control visible effects they

produce. Consequently, the parcel automaton is a representation of the pipeline datapath and its

abstraction induces an abstraction of the datapath. Parcel automata allow usto reason about abstrac-

tions of the pipeline datapath in terms of simulation and language containment for parcel automata.

Conversely, abstract parcel automata can be thought of representingabstract datapaths. Substitution

of the concrete datapath by the abstract one induced by the abstract parcel automaton is a form of

abstract interpretation. In Chapter 5 we show the soundness of abstraction using parcel automata is

proven by showing that simulation and language containment on parcel automata transfer to sim-
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ulation and language containment between the concrete pipeline and the abstract one obtained by

abstract interpretation.

Chapter 3 describes the model of pipelined circuits as a network of parcelvariables and datapath

instances through which parcels flow as coordinated by the control circuitry. The variables of the

circuit are divided into datapath and control. The separation is enforcedby syntactic restrictions

on the type of expressions that can be assigned to each of the two kinds ofvariables. Control

variables can be assigned only expressions over control variables. Parcel variables on the other

hand, act as output parameters to the datapath instances or can be assigned if-then-else expressions

that correspond to mux trees, the leaves of which are parcel variables,constants or non-deterministic

choice, and the select signals of the mux nodes are Boolean control expressions. The datapath

instances are modeled as combinational circuits with annotations describing theparcel and control

variables. The control and the datapath interact through the control input and output variables of the

datapaths. Abstract interpretation of the datapath is performed by replacing the concrete datapaths

by abstract ones. The type of the pipeline parcel variables is adjusted accordingly. The control is

left unchanged.

A parcel represents a group of related values which propagate togetherduring a pipeline computa-

tion. Both the values of the parcel and the variables that hold them change during the computation

of the pipeline. In a particular pipeline step, the parcel is identified by its variables, which can

be register and combinational. We define parcels as non-empty subsets of parcel variables. Parcel

automata are labeled transition systems that describe parcel computations. The state of a parcel is

an environment over the parcel’s registers. The transitions denote the movement of the parcel from

the current state variables into the the next-state variables in one pipeline step. The transition label

captures the value transformation through the datapaths, the effect on thecontrol variables and the

path through the combinational circuitry.

In a pipeline computation multiple parcel computations take place simultaneously. A very important

characteristic of the parcel computations that coexist during a computation ofthe pipeline model,

is that within a pipeline step they do not share parcel variables or datapaths. This property of

pipeline computations is called parcel independence, or parcel separation and is formalized using

parcel maps. Parcel separation is an inductive property that states thatthe parcel arguments of

each datapath belong to the same parcel. Parcel separation implies that the runs of the pipeline

model decompose into runs of the parcel automaton. The proof obligations for parcel independence

are based on propositional formulas that unfold the pipeline model for oneor two consecutive

steps. Parcel independence is used to prove Theorem 5.3.1 that states that commuting diagrams

between the concrete and abstract parcel automaton states imply a commuting diagram between

the containing concrete and abstract pipeline states. Theorem 5.3.1 is usedto prove soundness of

abstraction using parcel automata for simulation in Theorem 5.4.1 and respectively, for language
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containment in Theorem 5.4.8.

The technique for abstracting parcel automata is called path abstraction andis defined in Chap-

ter 6. Path abstraction performs an implicit DFS like traversal of the concreteparcel automaton

using a SAT solver. The algorithm uses propositional formulas called path formulas that stand for

equivalence classes of finite path prefixes in the concrete automaton. Thealgorithm maps a set of

equivalent paths of the concrete automaton to an abstract state. The abstract state represents all the

concrete states that are reachable by concrete paths in the corresponding equivalence class. The

main property of this construction is stated in Lemma 6.1.1: the abstract automaton thus defined

simulates the concrete parcel automaton. At each iteration, the algorithm findsall extensions of the

path formula at the top of the stack that stands for an equivalence class ofpaths of lengthk. In the

DFS traversal this corresponds to visiting the successors of the currently reached abstract state. If

a variable in the domain of a newly created abstract state is in the fan-out of adatapath, it receives

a fresh abstract value. Otherwise the variable gets its value from a variable in the previous abstract

state. The algorithm terminates if at some point during abstraction new abstract values are no longer

created. This corresponds to the concept of terminating paths in the concrete parcel automaton. A

path is terminating if it has an infinite suffix in which datapath outputs do not fan-out into next state

variables.

Our methodology has been validated with several datapath intensive pipelined designs. The most

complex design is a two-wide superscalar OpenRISC microprocessor. There are 35183 gates in the

concrete processor and only 2047 gates after abstraction. The concrete datapath accounts for 30341

gates and the abstract one for 1458 gates. The abstraction algorithm generated 334 SAT problems.

Cumulative SAT solver time is 536 seconds with a maximum of 51.7MB of memory used.
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