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Abstract

Pipelined circuits operate as an assembly line that starts processing newtioss while older
ones continue execution. Control properties specify the correcvimhaof the pipeline with re-
spect to how it handles the concurrency between instructions. Comteégties stand out as one
of the most challenging aspects of pipelined circuit verification. Their eatifin depends on the
datapath and memories, which in practice account for the largest pare atdke space of the
circuit. To alleviate the state explosion problem, abstraction of memories anghtfataecomes
mandatory. This thesis provides a methodology for an efficient abstrauftibe datapath under all
possible control-visible behaviours. For verification of control progsy the abstracted datapath
is then substituted in place of the original one and the control circuitry is fefhanged. With
respect to control properties, the abstraction is shown conservatieth language containment
and simulation.

For verification of control properties, the pipeline datapath is repredémyta network of registers,
unrestricted combinational datapath blocks and muxes. The values flownggththe datapath
are called parcels. The control is the state machine that steers the paroatghtthe network.
As parcels travel through the pipeline, they undergo transformationsghrthe datapath blocks.
The control-visible results of these transformations fan-out into conadables which in turn
influence the next stage the parcels are transferred to by the conteokefantics of the datapath
is formalized as a labelled transition system called a parcel automaton. Rataelata capture the
set of all control visible paths through the pipeline and are derived witiheuneed of reachability
analysis of the original pipeline. Datapath abstraction is defined using famdiarepts such as
language containment or simulation. We have proved results that showatiagath abstraction
leads to pipeline abstraction.

Our approach has been incorporated into a practical algorithm that diedetsly the abstract parcel
automaton, bypassing the construction of the concrete parcel automatmalgbrithm uses a SAT
solver to generate incrementally all possible control visible behaviourggigieline datapath. Our
largest case study is a 32-bit two-wide superscalar OpenRISC micegsar written in VHDL,
where it reduced the size of the implementation from 35k gates to 2k gates thaes$0 minutes
while using less than 52MB of memory.
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Chapter 1

Introduction

Hardware and software systems have a pervasive presence inydior diy lives. From mass pro-
duced computer chips and embedded software in our computing devicesia systems that
control high speed trains, aeroplanes and nuclear plants, our welj Brthsafety is increasingly
dependent on whether such systems behave as intended. The @ntssgof malfunctioning hard-
ware and software range from the nuisance of continuous operattgnsyipdates and firmware
for our computers and gadgets to mass recalls with high economic cost irdégreobmillions and
billions of dollars and catastrophic accidents that put human life at risk.

The traditional approach to validate hardware and software systems igt&dtimtesting paradigm
uses input vectors to check the input-output behaviour of the systendawéothe system through
execution scenarios which are checked against the expected beh&texk box testing or func-

tional testing checks the input-output behaviour of the system and is alditoits internal struc-

ture. White box testing uses the structural information about the systemasuble control flow

graph of the program code, to craft input vectors that drive it thinoexecution paths that visit
the structural elements such as lines of code or control-flow conditions.slitcess of testing is
measured using coverage metrics.

For medium to large systems the sheer multitude of possible input values maelsaarstive ap-
proach intractable. Thus complete validation through testing is not achiexsat#gt for small scale
systems. Even when complete coverage is achieved it is not a certaintyl §yatam behaviours
have been exercised, since coverage metrics are defined in terms afuitters of the system
while there can be exponentially more behaviours. Achieving reasonaieage through testing
in modern day microprocessors takes enormous amounts of time. For instanakating a few
minutes of a 1GHZ microprocessor takes almost 6 months of simulation time on alasger of
workstations [Bentley, 2001].

Formal methods [Clarke and Wing, 1996, Clarke and Kurshan, 1996afillRushby, 1996, Hall,



1990] stand for the collection of methods that apply mathematical reasoning podbf of correct-
ness of hardware and software systems. The application of formal nseth@dsystem is called
formal verification. Formal verification checks a given property holdalidbehaviours of the sys-
tem and is therefore exhaustive, providing a definitive answer toctogss. Formal verification has
been applied successful to a wide range of hardware and softwstars/[Bentley, 2001, Clarke
etal., 1995, McMillan, 2001, Dill et al., 1992]. In the real world, formatification and testing co-
exist and techniques from formal verification have been used achatter kesting, creating hybrid
methodologies.

Due to the theoretical complexity of program verification, ranging fromhdRd to undecidable,
with formal verification comes the tradeoff between automation and capacitye wide spectrum
of formal methods we distinguish two categories of techniques. At one enbawe deductive
methods that provide virtually unbounded capacity, being able to verifyitmfaystems, but are
also more likely to rely on the intervention of a knowledgeable user to guidertid. pAt the
other end we have algorithmic methods that are highly automated but are exitydapplicable to
large systems. The gap between the two types of formal methods is bridggdabstraction and
decomposition techniques.

In this thesis we are concerned with using abstraction to improve the capbaity such automated
technique, called model checking, for the verification of pipelined circtuitsnodel checking, the
verified system is called a reactive system and the language in which therfies are described
is called temporal logic. To verify properties, model checking performextiaustive search of the
state space of the reactive system. The size of the state space is the migogetthat impedes the
direct use of model checking. The capacity problem incurred due tddhe space factor is called
the state explosion problem. The state space explosion problem is mitigatechbstragction and
decomposition. Our research is concerned with abstraction in the applidatoain of pipelined
circuits.

Pipelining uses the same principle as an assembly line that shifts products seaukinfrom one
assembly stage to the next. A pipelined circuit divides the execution of itisingc also called
parcels, into stages. Upon entering the pipeline, the execution of an timtrbeppens incremen-
tally as it moves from one stage to the next, until it exits the pipeline. To achisweikar produc-
tivity increase to the assembly line, the pipeline overlaps the execution ofatistrs whereby each
execution stage holds a different instruction. Compared to a non-pipdlireedt that performs the
same operation, in an ideal linear pipeline that does not have instructiemdiencies, the execu-
tion time of individual instructions does not change. However the numhbestrfictions processed
per unit of time increases proportionally to the length of the pipeline. Theelieal speedup of a
pipeline is not achieved in practice due to dependencies between instsjtiamstein and Puzak,
2002].



A pipelined circuit consists of a network of stages through which the [gafiosy, memories and
register files that store instructions and the data operated on, datapatmtsle¢na perform the
operation corresponding to each pipeline stage and control circuitrpttla¢strates the execution
of the instructions. The network of stages is linear but only in the simplestitsrdt may contain
branches and loops and the paths taken by instructions may be selecaediacblly by the control
based on the current execution context. The concurrent executiostnictions leads to possible
race conditions which in pipeline circuits are called hazards.

There are three types of hazards. Data hazards arise due to datadelegies when the operand of
one instruction, the consumer, is created by another, the producecHmrcases, the consumer waits
— it stalls — until the operand is ready. Structural hazards arise frooures contention when
multiple instructions need to transfer to the same next stage. Finally, connardseshappen due to
speculative execution. Instructions that were fetched after a constoligiion that is mispredicted,
must be removed from the pipeline.

Because of the synchronization problems it solves, the control circuithgimain source of com-
plexity in the pipeline circuit and therefore, the most likely part of the desigeottain design

errors. The size of the controller is often within the verification capacity alehohecking tech-

niques. What prevents its direct verification is the size of the memories aapatlas which con-

tribute the largest proportion to the state space of the circuit. Memories sieg tmabstract, their
size reduces to what is needed to accommodate the read and write locattemakimum number
of in-flight instructions. Datapaths are more challenging to abstract bedhey use the parcel’s
value to generate feedback signals to the control circuitry and thug #ifeoverall execution in

the pipeline.

In this thesis we present a novel datapath abstraction technique. Thedalethois described
pictorially in Figure 1.1. At the core of our approach is the use of a matherhedjmeesentation,
called parcel automata, to describe the control-visible behaviour of thelpas they travel through
the pipeline. A parcel's behaviour is defined by both the control signaénigiates at each stage in
the pipeline and the path it takes through the pipeline. In our methodologyatlatalpstraction is
performed by abstracting the concrete parcel automata and then usirigsttecaparcel automata
to define abstract datapaths that are then substituted in place of theteames. The process of
replacing the concrete datapath by an abstract one is a form of akisteapretation. We show
that the conventional forms to define abstraction of automata, such as simuatiolanguage
containment, carry over to abstract interpretation of the pipeline datapathpercel automata.

Our contribution is threefold. First, we contribute a formal framework &iagath abstraction using
parcel automata. Within this framework we define pipeline models and paroehata, abstraction
of parcel automata and prove correctness of pipeline abstraction Usstrq@ parcel automata.
Second, we provide an abstraction algorithm for parcel automata. Canithlg tackles the state
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Figure 1.1: Overview of abstraction methodology.

explosion problem by the symbolic traversal of the concrete parcel at@oraing a satisfiability
solver. And third, our approach is implemented in a prototype. The tool ailswssers to create
pipeline models by specifying the top level structure of interconnected pgestiiges. The datapath
and control are defined directly in VHDL and then referenced from itjle-fevel model. Datapath
abstraction is then performed with the click of a button. As cases studiesedesaseral designs,
spanning from simple 32-bit arithmetic pipelines to an edge detector circuét 88ebit superscalar
OpenRISC microprocessor.

1.1 Overview Of Background And Related Work

The most complex pipelined circuits appear in today’s microprocessorproAphes to formal
verification of microprocessors include deductive methods using theprewing and automated
techniques using model checking or specialized decision procedurigis.amy such verification
technique one must specify the correctness criteria and then provided gerification strategy.

Often, the correctness statement specifies a relationship describedcasepts from automata
theory. Simulation states that a relationship between the value of specificatiafles in the
implementation states and the specification states is preserved after an exemgiof the imple-
mentation and specification. Another way to define correctness is thronghdge containment.
In this definition, the sets of implementation traces are compared against thietsates of the



specification. Formulating correctness statements for pipelined circuits ischatienging by the
fact that the implementation variables that correspond to the specificatientreflanges by par-
tially executed instructions. The pipelined circuit executes multiple instructionaénstep while
the specification is sequential and executes one instruction at a time.

A correctness framework that overcomes the challenges of aligning thenmaptation and spec-
ification states is called flushing [Burch and Dill, 1994]. In this approach,itfplementation

state is run, without fetching new instructions into the pipeline, until all the iostms being cur-

rently executed complete. Verification techniques using flushing havepm&rmed using both
deductive and automatic methods. In deductive approaches, the cleatieagplying flushing is

identifying proof strategies to deal with the various optimizations of a micregssmr design such
as scoreboarding, execution units with variable latency and branciciiwedSawada and Hunt,
1997, Hosabettu et al., 1998, Skakkebak et al., 1998]. Automatic tedmicge efficient decision
procedures to prove a simulation relation based on flushing [Lahiri etQfl2,2/elev and Bryant,
2000, Manolios and Srinivasan, 2004].

In a hazard based approach [Aagaard, 2003] the top-level toesscis defined with respect to the
three types of pipeline hazards: data, structural and control. Haparectess is formulated in
terms of pipeline specific properties and thus are more straightforwardfiteedeViost of these
properties target the control circuitry. The main impediment in the automaticoatidin of control
properties of pipelined circuits is the large contribution of datapath and mesrori&eir overall
size.

Approaches to datapath abstraction vary in the degree of automationesigigm and often per-
form a tradeoff. When a decision procedure is used, datapath afwsirscperformed using unin-
terpreted functions. In model checking, datapath abstraction is doreslbging the bitwidth of the
operands. The equivalent of uninterpreted functions in this contextsievier the feedback signals
from datapath to control and replace the datapath implementation by wireg o E998]. How-
ever, imprecise abstractions pose the threat of false counterexampltess of the abstract circuit
that violate the property and do not have an equivalent trace in theateriomplementation. The
solution is to refine the abstraction in a refinement loop [Andraus et al.,] 200 the property
passes or a true counterexample is found.

1.2 Approach And Contributions

Our approach to datapath abstraction targets the verification of conbpies. We exploit struc-
tural rules in the design of pipelined circuits to derive efficient and ateuabstractions. Our
approach is particularly useful for properties that specify the pdlm&lthrough the pipeline and
are sensitive to the latency of the paths through the pipeline.

5



Our contribution is an abstraction technique that leverages a novel mathaimepicesentation for
the pipeline datapath using a type of automata, called parcel automata. A gaa®aton is a
mathematical model for the execution of an instruction. Each state of the autonegtesents a
parcel in a pipeline state. A transition denotes the transformation of thel pgrtee datapath as it
moves to the next stage. The label of the transition indicates the control \@ffietts. A run of the
parcel automaton corresponds to a run of a single parcel through glepip

Formalizing the datapath as an automaton presents the advantage of cleamatiatieeasoning

about datapath abstraction. Simulation and language containment formalizgitireof equivalent

parcels, parcels that have the same control visible behaviour as theytmough the pipeline. We
prove in our framework that both simulation and language containment oel@artomata transfer
to pipeline abstraction using parcel automata. Our abstraction algorithmaissesbolic method

based on SAT to simultaneously traverse all equivalent runs of thel patoenaton. The abstraction
of the pipeline datapath reduces to collapsing the equivalent runs of ticeete parcel automaton
into a run of the abstract parcel automaton. Datapath abstraction iseef@ésas abstraction of
parcel automata and pipeline abstraction for control properties is pegtbas a form of abstract
interpretation using abstract datapaths derived from abstract partoehata.

We have implemented our methodology as part of a verification flow usingtatype tool called

Bluenose Il. The tool reads the annotated model that describes thausgro€ the pipeline as a
network of interconnected stages. The descriptions of the stagesmegethe VHDL files that
implement the datapaths. Datapath abstraction using a SAT solver is perfoyrgederating CNF
formulas from the netlists obtained by synthesis of the datapath files. Froeb#teact parcel
automaton the tool generates VHDL for the abstract datapaths which in éfimedhe abstract
pipeline circuit through abstract interpretation. The abstract circuit is Weeified with a model

checker.

1.3 Outline Of Thesis

Chapter 2 introduces known concepts that we use throughout the thedseded state machines,
circuits and model checking. It also discusses related work. Chapédingd the model of pipelined
circuits. In Chapter 4 we present the definition of parcel automata, thsira@gtion and use in
abstract interpretation of pipelined circuits. Chapter 5 describes paeges and the correctness of
datapath abstraction using parcel automata. Chapter 6 defines patltabsfa parcel automata
and presents abstraction algorithms and case studies. Chapter 7 is a swhtharthesis and of
our contributions.



Chapter 2

Background And Related Work

In this chapter we describe several concepts that are used thraubbdbesis: labeled transition
system, model checking and circuits. In Section 2.4 we present relaté&d wor

2.1 Labeled Transition Systems

2.1.1 Definition(Labeled Transition Systemj labeled transition systemis atuplé = (Q, R, T', I):

e () denotes the set of states
e T is the set of transition labels
e RC () x T x (@ isthe transition relation

e [ C () isthe set of initial states

The language (M) of a labeled transitiod/ is the set of infinite runs represented by functions of
form run : N — Q x T suchthatrun k = (¢*,t*) andq® € I AV k. (¢%, 1%, ¢**) € R.

Consider two labeled transition systemf = (@1, R1, Th, 1) and My = ((Qq, Ry, To, ). In
order to formulate criteria of abstraction, we need to compare states asilitnarabels of the two
transition systems. In general they may belong to disjoint sets and therségreot be directly
comparable. Instead of direct equality, for states we use the labelingdositubo; : Q1 — Lo
andlabgs : Q2 — Lo with the same codomaihg, and, respectively, for transitions ugeér; :
T, — Lt andlabrs : To — L7, sharing the codomainr.

Abstraction of labeled transition systems is formulated using simulation [Miln&4,]1® language
containment.



to
qz e > g5

:{ S

t1 ‘/
a1 — q

Figure 2.1: Commuting diagram for the simulation relatfn

2.1.2 Definition (Simulation) A simulation relation between/; and M5 is a relationS C @ x
()2 that satisfies the following conditions:

1. Sis compatible with the state labeling.

Vg€ Q1. Vg € Qo (q1,q2) €S = labo1 q1 = labga ¢2

2. Sis total over the initial states af/;.

Vaeh. 3@ e b (¢1,q2) €S

3. Sisinvariant under the transition relations.

Vql c Ql.th S Tl.Vqll S Q1.

YV qo € (s.
g2 € @ , 2.1)
(q1,92) € S A (q1,t1,q1) € R =
Jta € To. 3¢ € Qo. labr1 t1 = labra ta A (q2,t2,q5) € Ra A (q1,45) €S

Pictorially, Equation 2.1 is described in Figure 2.1. We say Matsimulatesi/; if there exists a
simulation relationS C @ x Qo.

The other way to state abstraction is through language containment. Langpraiginment between
M, and M, holds if for everyrun, € L(M;) there exists an equivalent runany, € L(Ms):

YV runy € L(My). 3 rung € L(My).

(2.2)
Vk € N. labo1 ¢f = laboa g5 A labry t¥ = labra th

2.1.3 Proposition. Simulation implies language containment.

Proof. LetS be a simulation relation betweéd; andM,. Considerrun; € L(M;). We construct

8



by induction the sequencd, 3, q5, . . ., ¢4 such thatq?, ¢4) € Sand forallk <n — 1

labo1 ¢f = laboa g5 (2.3)
labri t8 = labro th (2.4)
(65.15,457") € Ry (2.5)

If qg € I, and Equation 2.5 holds fdr € N then the functionuns : N — (% x T5 defined by
rung k = (g5, t5) is a run of M, equivalent torun; .

Base Caser = 0. We choosey such that¢?, ¢3) € S.

Inductive Casen > 0 By induction we have thatg? !, ¢ 1) € S. Therefore, there exigf ' ¢
Ty andgy € @2 that make the diagram below commute:

—1
gy r a3
S[ S
-1

O]

The converse of Proposition 2.1.3 is not necessarily true as shown byahele in Figure 2.2. For
each of the two possible runs &f; there exists an equivalent run df;. However, there is no state
of M, that simulates the initial statg.



ti0/az

t11/as too/az toa/as

t12/ba ti3/c2 t21/ba ta3/c2

M1 M2

Fig. 2.2a. M, and M.

state| label || transition| label state| label || transition| label
qio | a1 tio az G0 | a1 t20 az
qu1 | b1 t11 ag go1 | b1 to1 ba
q12 | c1 t12 bs G2 | a1 to2 ag
t13 C2 Q23 | cC1 to3 C2
Fig. 2.2b.Labeling of M. Fig. 2.2c.Labeling of Ms.

Figure 2.2: Example showing language containment without simulation.
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2.2 Model Checking

Traditional approaches to verification use deductive methods and riegindy on the proof of cor-

rectness of sequential systems [Hoare, 1969, Lamport, 1980]. Sthutidqaes rely on precondition
and postcondition properties of smaller programs to derive correctmepsrpies of larger pro-

grams. Model checking uses temporal logic [Pnueli, 1977, Clarke e986] 1o specify properties
about systems that run on an ongoing basis and automated techniquefytsuar properties.

There are two main approaches in model checking. In the automata theguetaaeh [Vardi,

1996], the temporal specification is converted to an automaton, negateeanthtersected with
the automaton for the implementation. The property holds if the language of thseictien is

empty. In the algorithmic approach, the specification is verified directly bytgtaversal on the
automaton that represents the implementation. The implementation automaton cprebented
either explicitly by storing its states in memory or symbolically using Boolean furetivat repre-
sent their corresponding characteristic function. The latter form is cajledbolic model checking
[Burch et al., 1992] and the Boolean functions are represented cdmpamng binary decision
diagrams [Bryant, 1986].

We present a temporal logic calledTL* [Clarke et al., 1986]. The semantics of the logic is
described in terms of a state machine that represents the implementation, callpkieasittucture.

A Kripke structure is atupld/ = (Q, R, I, AP, L) where(Q, R, I) represents the state machine
andL : Q — 247 is a labeling function that describes the set of atomic propositions that hold in a

given state.

state

path quantifier

@ path operator

Figure 2.3: Structure o€ TL* formulas.

The structure ofCTL* formulas is described in Figure 2.3CTL* has two types of temporal
formulas. Atomic formulas are those in the sEP. Any atomic formula is also a state formula,
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and any state formula is also a path formula, verified on the first state of the amplex path
formulas are constructed using path operators. The application of aymatlifeer to a path formula
yields a state formula. The syntax of formulas is defined inductively as fsllow

Atomic Formulas If p € AP is a proposition thep is an atomic formula.

State Formulas
e Any atomic formula is also a state formula.

e If fis apathformulathel f andA f are state formulas.

Path Formulas
e Any state formula is also a path formula.

e If fisapathformulatheX f, G f, F f are paths formulas.

e If f andg are path formulas thefi U g is a path formula.

E and A are called path quantifier& f holds in a state if there exists a path from the state that
satisfiesf. Similarly, A f holds in a state, if for all paths from the stgtédnolds. The formul&X f

is true of a path iff holds on the path starting in the next stat@.f holds whenf holds on all
suffixes of the path, i.e. holds globally. SimilarF, f holds if there exists a suffix that satisfigs

i.e. f holds in the future. The formul U g states thayf must hold continously on all suffixes of
the path up to, but not necessarily including, the suffix wigehelds.

The transition relation of a Kripke structure is required to be total, i.e. forstatgq there exists a
stateq’ such that(q, ¢') € R. If = is an infinite path(¢°, ¢!, ...) we denote the suffix that starts at
positionk by 7¢ = (¢*, ¢**1,...). Satisfiability of CTL* formulas is defined as follows:

Atomic Formulas
gEp=peL(g)

State Formulas
qEEf = Fr=(¢"¢",..)q="rnEf
qsEAf = Vr=("¢,..)q="=nEf

Path Formulas
TEXf = 1t Ef
TEGf Vk. 78 = f
TnE=Ff JkeN.7r = f
nEfUg = Jk.abEgAVi<kral=f

12



There are two subsets @TL* that are used in practicET'L is the subset that consists of formulas

of form A f wheref is a path formula that does not contain path quantifiers. The other subset is
CTL which allows only for formulas in which the occurrence of a path operatprdseded by a
path quantifier. TheCTL temporal operators becon&X, EG, EF, EU and respectiveh A X,

AG, AF, AU.

ACTL* is a subset ofCTL* that does not include existential quantifiers. The temporal proper-
ties of ACTL* are preserved by simulation. SInEA'L is a subset oACTL*, simulation also
preserved.TL properties. In addition.TL is also preserved by language containment.

2.3 Circuits

In this section we formalize a language for describing circuits. The symdxsamantics of the
language are similar to the ones provided by model checkers such as\NitSMatti et al., 2002].
Circuits are defined using a language for bitvector expressions ands#mantics is given using
labeled transition systems.

A name is a string of characters that begins with a letter or underscoreemddhtinues with zero
or more letters, underscore or digits. An identifier is a sequence of anerernames separated by
a ‘.. Primed identifiers, identifiers followed by the prime symb@l are used to denote next-state
variables.

2.3.1 Definition (Identifier). The setid of identifiers is defined inductively as follows:

e Any name is an identifier.

e |f id; andidy are identifiers theid; . ids is also an identifier.

Priming an identifier adds the prime symbol to the identifer. The set of primetifidesnis denoted
by Id'. If id € Id thenid’ € Id’ denotes its primed version. ¥ is a set of identifiersy’”” denotes
the set{ id’ | id € V' }.

Let B denote the seft0, 1 }. Bitvector constants are finite words over the alphdbet
2.3.2 Definition (Bitvector Constant) Forn > 1, let B™ denote the set of bitvector constants of
sizen. The set of all bitvectord ] B" is denoted byB™. Given a bitvector constant € B" and

n>1
i < n, w(i) denotes the-th bit of w.

Variables are identifiers with a type. The type of a variable is th88efor somen > 1.

13



2.3.3 Definition (Variables) V' C 1Id is called a set of variables if it is associated with a type
function Ty
Ty: V — {Bn}nzl

Tyis extended ovel’’ C Id": Ty(v') = Ty(v). Primed variables refer to next-state variables. If
v is a current state variable, denotes its next-state version. Similarlypife V' is a next-state
variable,v denotes its current-state version.

2.3.4 Definition(Environment) An environment over the set of variabl&sis a function
e:V—-Bt
that assigns each variable a value of its type:
Vo eV elv) e Ty(v)

If V1 and V4 are disjoint sets of variables anrg ande; are environments defined ovéf and
respectivelyls, their unione; U es is the environment ovér; U V5, defined by

(e1 U e)(v) = eif(lv) tvewn
e2(v) wveVy

Let V C Id and lete be an environment ove¥’. The environment’ over V' is defined by

e (V') = e(v).

Consider a set of variabldg. We sayV; is a copy ofV if there exists a bijective function :
V1 — V5 such that

Vv e Vi Ty(v) = Ty(é(v))
If V4 is a copy ofV; ande; € EnV;) we denote by, [V2/VJ the environmenty, € En(15)

such that:
Voe Vs e(v) = el(gb_l(v))

2.3.5 Definition (Bitvector Expression)Let V' C Id be a set of variables anfy/ be the associated
type function. Bitvectors are typed expressions over constaristimand variables il/. We say
that the bitvectot has typeB™ using the typing expressian B™. If ¢t : B we sayt is single-bit.

Base Case
e If v € V is a variable such thafy(v) = B", thenv is a bitvector expression of type
B".

e If w € B™ is a constant, thew is a bitvector of typeB™.
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Inductive Case Bitvector expressions are constructed using a set of operatorsudfoas operator
op, a type rule is used to denote the type requirements on its operands andedhaf tigp

application:
ti:B™, ..., tp: B"

op(ti,...,ty) : B"

If ¢ is a bitvector expression therarst) stands for the set of variables that appear syntactically in
t. Similarly, constst) denotes the set of constants= B* that appear syntactically in

Variables are assigned values by an environnaemier V. The semantics of a constamt: B"
is [w], = w. The semantics of a variabte: B™ is [v], = e(v). The semantics of a bitvector
expressiort such that : B” is denoted byjt], € B".

Subexpression

t:B"
T Rul
ypeRue e
Semantics [(¢)], = [t].
Constant B
w e B"
T Rul
ype Rule ———o
Semantics [w], = w
Variable VT B
Type Rule ~ €V, Tyv) =
v:B”
Semantics [v], = e(v)

Bitwise Operators The bitvector operatosp € { not, and, or, xor, ...} is defined using the
corresponding Boolean operaip, € { noty, andy, org, xory, ... }.

t1: B™, t5: B"
t1 op ty : B™
Semantics [t; op t2], (i) = [t1], (i) opy [t2], (1), i=0,n—1

Type Rule

Bitwise negation requires only one argument and we present it separately

t:B"
Type Rule _—
not t : B"
Semantics [not t], (i) =not, { [t]. () ) ,i=0,n—1

Subrange Let0 < [ < m. The subrange operatfr: m] extracts the sequence of bitd + 1, . ..

m.
t:B",m<n

t[l : m] : B+l
Semantics [t[l: m]], (i) = [t] (i +1),i =0, m —1

Type Rule
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Concatenation The concatenation operatorappends the second argument to the first one.

t1: B™, ty : B™

Type Rule t i, B
t 7 o< n .
Semantics [t :: to], (i) = 1], () ! ,1=0,n1+ny—1
[[tQ]]e (i—nl) : ian

Equality The equality operator compares its operands for equality.

t1: B™, ty: B"
Type Rule -
yp t1=12:B
0 : if [t1], not equaldt,],

Semantics [t; = t3], =
if [t1], equals[ts],

Assignment The assignment operatos is a special case of equality when the left operand is a

variable. o
v :
T Rul )
ype FHe v:=t:B
0 : if e(v) notequaldt
Semantics [v :=t], = (v) qualgt],
1 = if e(v) equalsft],

Nondeterministic Assignment It is a special case of assignment when the right hand side of the
assignment is the expressiohoice.

v:B"
v := choice : B
Semantics [v := choice], = 1

Type Rule

If-then-else The operato¥f-then-elsanterprets its first operand as a Boolean and selects between
the second and third arguments accordingly.

tltB,tQIBn,tgiBn

Type Rule
yperi if t; thent; else t3 : B"
t . if [t1], equalsl
Semantics [if ¢; then ¢; else t3], = [t2]. [t:]. eq
[ts], : if [t:], equalsD

Arithmetic Operators We allow bitvector expressions using the standard arithmetic opexgbors
in the set{ +, —, *, ... }. The semantics of arithmetic operations uses two functions that
convert bitvectors to integers and conversely, integers to bitvediateger: BT — Z and
repr: Z. x N — BT such that ifw : B™ then

repfintegefw), n) = w
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The exact definition ofntegerand reprdepends on whether bitvector arguments are inter-
preted as signed or unsigned. For the signed case, two’s complementitabdesrepresen-
tation. For unsigned operations we use the binary representation ofvpdaittgers. The
choice of these encodings and the semantics of overflowing operati@ssndt¢ influence
upon the remaining work.

t1:B™, ty: B”
t1 op to : B™
Semantics [t; op t2], = repr( intege([t1],) op intege([t2],), n )

Type Rule

Relational Operators Bitvectors can be compared using the integer relational operafoins the
set{ <, <, >, > }.

tl : Bn, t2 : B”
T Rul -
ype Rule tl OthZBn
0 : if intege(]t op intege((t
Semantics [¢1 op t2], = ge([t].) op getlt].)
1 : ifnotintege([t],) op integef[t2],)

We fix the precedence of operators from high to low to be the following one:

not

[:]

*
+ i
< < = >>
and

or Xor
if-then-else

2.3.6 Example.ConsiderV = { vj, w, v3, s } ande € EnV( V') defined as follows:

variable| Ty

vy B! |1
Uy B2 | 10
v3 B3 | 011
o B*| 1011

17



Examples of bitvector expression and their semantics is given below:

expression [1.
U4 1011
V] i U3 1011
vg XOr (vy :: v3) 0000
notuy 0100
(v1 = wg)[1 : 3] 011
(v1 = wg)[1:3] =3 1

vg =111 0
not(vy :: v3)[1: 3] = v3) 0

if not((v; :: v3)[1 : 3] = v3) then vy else notwv, | 0100
vy + 01 11

v < 1100 1

Formulas overl/ are defined inductively: basic formulas are single-bit bitvectors and lexmp
formulas are formed from simple ones using Boolean connectives. Seaigricmulas identify
with a subset of the single-bit bitvectors.

2.3.7 Definition (Formula)

Syntax
e If ¢t : B is a single-bit bitvector thetis a formula.

o If f, f1, fo are formulas themf, fi A fa, f1 V fo are formulas.

Semantics The truth value of a formulg under a given environmentthat valuates its variables
is defined by induction over its structure. fifis true ine, we writee = f. We define= as
follows:

e If fisthe Boolean bitvectarthen
el fif [t], =1
o If f hasform—fi, fi A fo, f1 V fathen

eE-fiiffelE fi
€|:f1/\f2if |:f1 ande):fQ
eE=fiV foifel= fiorel= fo
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2.3.8 Definition(Circuit). A circuit is a tuple

C =(V,, V., Ty,V;, V,, Insts Init, Tr)

e V. andV, are disjoint sets of identifierd/,. denotes the set of register variables (also called
state variables or current-state variable¥). denotes the combinational variableg,’ de-
notes the next-state variables.

e Ty:V,UV,— {B"},>; is the type function.

e V,; andV, are disjoint subsets df,. U V. and represent the input and respectively, output
variables.

¢ Input variables are required to be combinational:C V..
e [nstsis a set of circuit instances.
e Initis a set of assignments to current state variables.

e Tris a set of assignments to combinational and next-state variables and caxaatly
one assignment of form := ¢, wheret is defined over variables i, U V., for each
veV, UV.,.

Circuits are defined inductively:

Base caselnsts= ()
Inductive case Insts= { inst1, ..., inst, }

2.3.9 Definition(Circuit Instance) A circuit instance is a tuplénst = (id, C, InputArg, OutputArg
where:

idis an identifier

C is a circuit

InputArgis a set of bitvector expressions in bijection withV; and denotes the input argu-
ments

OutputArgis a set of combinational or next-state variables of the enclosing circuit, tibije
with C'.V, and denotes the output arguments
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The instancenst stands for a copy;,s..ia( C') of C with variables and instance names renamed by
the mappingp;,.:.is : Id U Id’ — Id U Id’ defined by

Ginst.id(id) = id . id

The mappingp,s:.ig Naturally extends to bitvector expressions, to formulas, to sets of suatt®bje
and to functions over such sets. Given a bitvectop;,s;.ia(t) is obtained by substituting each
occurrence of a variablein ¢ by ¢;,s:.id(v). Renaming preserves the variable types:

¢mst.id( Ty) (¢inst.id(v)) - Ty(v)

Instancesnst; = (id;, C;, InputArg;, OutputArg;) of C are renamed to

¢inst.id(in5ti) = <¢mst.id(idi>7 Ci7 ¢inst.id<[7LPUtA7"gi>7 ¢mst.id(OUtPUtArg'Ui)>

Let inst be an instance of a circult. Letv € inst.C.V; U inst.C.V,. We defineArg(C, inst.v)
to be the actual argumentiast.v in C. When the context is clear, we only wrifeg(v).

Let C be a circuit and leC'.Insts= { inst1, ..., inst, }. We use the notation
Labelq C.Instg = { insty.id, ..., insty.id}

If id € LabelsC'.Inststhen C'.Instgid] denotesinst € C'.Instssuch thatinst.id = id.

In the next example we introduce syntactic sugar to represent circuitatigxtu

2.3.10 Example.In Figure 2.4 we describe a 1-bit adder implemented using two half-addaes
1-5 describe the HalfAdder circuit:

Ve = 0
V. = {a,b,sum,cout}
Vi = {a,b}
V, = {sum,cout}
Insts = 0
Init = 0
Tr = {sum:= axor b, cout := a and b}

Lines 6—14 describe the Adder circuit;
V, = 0
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ckt HalfAdder(a, b : bitvec[1])(sum, cout : bitvec[1])
assign
sum = a Xor b;
cout ;= g and b;
end
ckt Adder (a, b, cin : bitvec[1])(sum, cout : bitvec[1])

var
sumzi, couty, couts : bitvec[1];
inst
hay : HalfAdder(a, b)(sum1, couty)
has : HalfAdder(sumy, cin)(sum, couts)
assign
cout = couty Or couto;
end

Figure 2.4: Adder circuit.

= {a,b,cin, sum, cout, sumy, couty, couts }

= {a,b,cin}

= {sum, cout }

= {(hai,HalfAdder, { a, b }, { sumq, cout; }),
(hay, HalfAdder, { sumq, cin }, { sum, couts })}

=0

= { cout := couty or couts }

2.3.11 Definition(Variable Dependency Graphlet C = (V,, V., Ty, V,, V,, Insts Init, Tr). The
variable dependency graph is a digraggrDepGraphC') = (Nodes Sucg:

Nodes

Succ

V,uV. UV,
{(v1,v) | It € Expn(V, U V. UBT). vy :=t € TrA v € varst) } U SuCGss

The setSucg,s:s is defined inductively. We write; <., v to denote thaty, andw, are in the
transitive closure oSucc

Base Caself Insts= () thenSucg,,s;s = 0.
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Inductive Case

SucGsis= U {(v,w)]| Fu € inst.C.V,.

instelnsts

Jv, € inst.C.V,.
dt e ExpnV, U V. UBT).
Vi Zpar Vo A
t = Arg(v;) A
vy = Arg(v,) A
v € vargt) }

In order to simplify the analysis of circuits we require that all circuits havelecjree variable
dependency graphs.

2.3.12 Definition(Circuit Elaboration) Circuit elaboration gives a precise semantics to circuit in-
stantiation. The elaboration of a circuit, denoted by byElab( ('), is a circuit that has no instances:

Elab(C).Insts= ()

Elab C) is defined by induction over the structure ©f

e If C.Insts= () then
Elab C) = C

o If C.Insts= { (id1, C1, InputArg,, OutputArg,), ..., ((idy, Cy, InputArg,,, OutputArg,) }
then

=

Elab(C).v, = C.V,u|J( Elaboa(C) ) V>

@
Il
—

ElabC).V, = C.V.U

-

@
Il
—_

( Elabgn,(C)) ) Ve

s

Elab(C).Ty = c.Tyu|J( Elabiéa () ) Ty

]

I
—

Elat(C)Vl = C.V;
Elab(C).V, = C.V,

s

Elab(C).init = C.nit | ( Elat{i,(C) ) Init

—_

C=5

Elab C).Tr = C.TruU

(2

( Elab ¢ig, (C;)) ) .Tr U InputAsns U Output Asns

Il
—
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where

n

InputAsns = U{ id;.v := InputArg(inst;.v) | v € ( Elab(¢ig,(C;)) ) Vi } (2.6)
i=1

n

OutputAsns = U { OutputArdinst;.v) := id;.v | v € ( Elab ¢ig, (C;)) ) Vi }

i=1

Equation 2.6 explains why input variables and the arguments of outpublesianust be com-
binational: the semantics of input and output arguments to circuit intanceses by variable
assigment, and variable assignment is allowed only to combinational or nextsatiables.

2.3.13 Example.We elaborate the adder circuit introduced in Example 2.3.10. The addevbas
instancesia; andhas of the HalfAdder circuit. The two instances are renamed. By applying
to HalfAdder we get:

bna, (HalfAdden.V, = 0
®ha, (HalfAdden.V,. = {hai.a,hay.b,hay.sum, hay.cout }
$ha, (HalfAdden.V; = {hai.a, hai.b}
bha, (HalfAdder).V, = {ha;.sum, hay.cout }
bha, (HalfAdder).Insts = ()
bha, (HalfAdder).Init = ()
Ona, (HalfAdden.Tr = { haj.sum := haj.a xor hay.b, hay.cout := ha;.a and hay.b }

Similarly, applying¢s,., to HalfAdder yields:

®ha, (HalfAdder).V, = 0
®hay (HalfAdden.V, = { has.a, has.b, has.sum, has.cout }
$na, (HalfAdder).V; = {has.a,haz.b}
Phay (HalfAdden).V, = { hag.sum, haa.cout }
bhay(HalfAdder).Insts = )
bha, (HalfAdder).Init = ()
Ona, (HalfAdden.Tr = { hag.sum := hag.a xor hag.b, has.cout := haz.a and hag.b }

Sinceg¢y,,, (HalfAdder).Insts= () and¢y,, (HalfAdder).Insts= () we have

Elab(¢pq, (HalfAdder) = ¢, (HalfAdder)
Elab(¢n., (HalfAdder)) = ¢4, (HalfAdder)
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We proceed to the elaboration of the Adder:

Elab/Adder).V/, 0

Elab(Adden.V. = {a,b,cin, sum, cout, sumy, couty, couts } U

{ hai.a, hay.b, hay.sum, hay.cout } U
{ hay.a, has.b, has.sum, hay.cout }
Elab/Adden.V; = {a,b,cin}
Elab/Adder).V,
Elab(Adder).Insts
Elab(Adder).Init
Elab(Adder). Tr

{ sum, cout }

0
0

{ cout := cout; or couty } U

{ hay.sum := hai.a xor hay.b, haj.cout := haj.a and hay.b } U

{ hag.sum := has.a xor hay.b, has.cout := hay.a and has.b }

Given a set of variable assignmentsn we define the formula associated with it by

formula Asn) = [\ vi=t
v:=tEAsn
2.3.14 Definition(Circuit Semantics) The semantics of a circuit’ is given as a labeled transition

system
LTS(C) = (Qc, Rc, Tc, Ic)

The set of state§)c is the set of environments ov&fab( C'). V..

The set of transition label$¢ is the set of environments ov&fal( C').V,.

The transition relatioRc C Qc x Tc x Qcis defined by the assignmeriab( C'). Tr:

(gc,tc,qc’) € Re= (qcUtc U qc [VT//VT]) = formula Elab(C').Tr)

The set of intial states is defined by the assignmé&ias(C'). Init:

qc € Ic = qc = formula Elab( C').Init)

2.3.15 Example.Figure 2.5 and Figure 2.6 describe two two-bit counters. Each figurgsstie
circuit description and the corresponding labeled transition system définBefinition 2.3.14.
Both circuits have a register variable for the counter value; they differng#hect to the increment.
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1 ckt countergnc : bool)(count : bitvec[2])

2 assign

3 count’ :=if inc then count + 1 elsecount;
4 end

Figure 2.5: Counter With Combinational Increment

In one the increment is a combinational input and in the other it is a register.tvild counters
have the same language with respect to the value of the counter variabhevétahey are not
bisimilar: the counter with combinational increment simulates the one with registemesinent,
but not viceversa.

2.3.16 Proposition. Let C be a circuit such that all its instances are combinational.gket Qc,
qc € Qcandtc € En\V.,). If the following conditions hold:

Vv = expr’ € Tr. (tc U qc [Vr//\/r})(v) = [expr] ,uge (2.7

V inst € Insts 3 (g1, t1,q/") € LTS(inst.C).Rc.
Vo € inst.C.V; Uinst.C.V,. t|(v) = tc(Arg(v))

(2.8)

then there exist&s; € Tesuchthate C e and(qge, ter, qc) isastep ol TS(C),i.e.(qc, tar, tc) €
Re.
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6 ckt countergnci : bool)(count : bitvec[2])

7 var

8 inc : bool;

9  assign
10 count’ :=if inc then count + 1 elsecount;
11 inc' == inci;
12 end

mci = 0

Figure 2.6: Counter With Registered Increment

Proof. We definet; as follows:
V inst; € Insts V v € (Elab(inst;.C)).V..

tei(id;.v) =ty (v)

It follows thatgp. U tcy U gp.’ [VT//VT}) satisfies all the assignmentshitab( C') since the restric-
tion of t¢; to the variables of each elaborated instance equals the transition labelmstdrece.

O]
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2.4 Related Work

Pipelining is a prevalent technique to improve the throughput of hardwargits. The most ad-
vanced use of pipelining occurs in microprocessors circuits. Formiication and other validation
techniques that target microprocessors will therefore deal implicitly dicitkpwith the challenges
of pipelining. We catalog the well known approaches to microprocessifice¢ion in Section 2.4.1.
We describe pipeline specific approaches in Section 2.4.2. The cuéntad work on datapath
abstraction is summarized in Section 2.4.3.

2.4.1 Microprocessor Verification

The challenges of microprocessor verfication manifest at two main leyasifieation and the state
explosion problem. First, a verfication technique must formulate correctri¢he implementation
with respect to a reference specification. Second, such a methodol@aduaress the state explo-
sion problem by casting the correctness problem in a logic with an efficesisidn procedure or
decomposition and abstraction techniques.

In the case of microprocessors, the specification is readily available iotiredf the instruction

set architecture. At this level, the specification is often thought of as aitctitat executes one
instruction at a time. Each type of instruction is described in terms of the sideteft performs
on the specification state which consists of the programmer visible state holdingrés such as
the program counter, register file and memory. A pipelined microprocessolaps the execution
of several instructions at a time and updates to its state holding elementsfarengéerby multiple

instructions in various stages of execution.

One of the well accepted correctness criteria is Milner's simulation [Miln@r1]. The challenge
in applying simulation as a correctness statement for microprocessors isrtdteigpecification

state with the implementation state. Microprocessor designs usually allow foreant®n mode

called flushing that continues the execution of inflight instructions bumtswnew ones from being
fetched and entering the pipeline. Burch and Dill [1994] were the firss&flushing to formulate
a correctness criterion. Their method uses an abstraction function tsla¢$lthe implementation
state and then projects out the programmer visibile state: the program ¢caegister file and

memory. The abstraction function reduces to projectio when the pipeline isletfiening and end
state of a computation. Proving the commuting diagram in Milner’s simulation impliesatoess

with respect to the programmer visible state.

Burch and Dill model the pipeline datapath using uninterpreted functionesalude the verification
of the commuting diagram to a decision problem in a restricted logic with unintetpfenctions
and positive equality. The scalability of the approach is limited by the capacityeofiecision
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procedure and therefore by the size of the terms that describe the commliaimgm. The terms
that describe flushing increase proportionally to the number of cyclededete flush the imple-
mentation. For simple linear pipelines, this corresponds to the number of infigfhictions. For
complex pipelines with out-of-order execution and variable instruction latenitisshing becomes
more expensive.

Velev and Bryant [Velev and Bryant, 2000, Velev, 2001] extend thmac#y of the Burch-Dill
flushing technique with customized rewrite rules that target the various tyfplegic subterms
encountered in flushing the implementation. They also migrate the underlyiigjatheprocedure
to a SAT based implementation [Velev and Bryant, 2003]. A similar approacleteettification of
an XScale microprocessor has been applied in Srinivasan and Velg®][20

Another way to improve flushing is through compositional verification [Levitt ®lukotun, 1997,
Skakkebak et al., 1998, Hosabettu et al., 1998]. The method of complatictidns of Hosabettu
et al. decomposes the commuting diagram based on flushing into several togdiagrams
each dealing with a particular stage of the pipeline. The proof of the diafnraaparticular stage
assumes the correctness of the downstream stages. For a linear pipédingtlon, there aren
commuting diagrams. For more complex pipelines, the method suffers from araionial explo-
sion in the number of possible paths through the pipeline. Initially proposedhiacaem prover
setting, the modularity of completion functions was leveraged using an ofhék equivalence
checker on several RTL design [Aagaard et al., 2004]. Equivalehecking techniques were also
used by Appenzeller and Kuehlmann [1995] to verify a PowerPC micogssor and by Bhagwati
and Devadas [1994] to verify a reduced Alpha design.

The logic of positive equality of Burch and Dill was extended in the UCLIEifier [Lahiri et al.,
2002]. The decision procedure was implemented by translation to SAT. dihgdtion does how-
ever suffer from false negatives and requires manual effort tagléie counterexamples. Proofs
done in UCLID are inductive and in most cases benefit from user ggteinvariants. Other ap-
proaches to microprocessor verification that use UCLID include thataidiios and Srinivasan
[2004], Andraus and Sakallah [2004].

General theories for conducting microprocessor correctnesssiroatheorem proving setting have
been presented [Windley, 1995, Huggins and Campenhout, 1998]. RtiteBrivas [1995] describe
using the PVS theorem prover to prove a commuting diagram based cessdtatement for an
industrial CISC microprocessor. The effort put in the complete verifinatias over 3000 hours.
Sawada and Hunt [1997] use the ACL2 theorem prover [Kaufmanrivaoade, 1997] to verify an
out-of-order microprocessor with dynamic resolution of data hazartls.tdplevel correctness is
stated using flushing. The decomposition of the proof is based enhaneirgdbution trace of the
microprocessor with a table of history variables called MAETT. The MAE&dilitates the proof
of invariants.
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There are also approaches that use a mix of theorem proving for gegomposition and model
checking for the verification of the control. McMillan [1998] extends the\GModel checker

[McMillan, 1992] with support for compositional reasoning and assunarantee style proofs. His
approach leverages symmetric data types [Norris IP and Dill, 1996]. A ntbxemirem proving and
model checking with uninterpreted functions is also used by Berezin dt9818], Jacobi [2002].

2.4.2 Hazard-Based Verification Technigques

Validation methods that use pipeline hazards fall into several categor@senty specification and
correctness statements, decomposition and abstraction, and automatittéestgeneration.

Aagaard [2003] describes a correctness statement that referg@iineel only to the three types of
hazard correctness: datapath, control and structural. Aagaasd that hazard correctness implies
the widely accepted Burch-Dill flushing correctness criterion. Windley @ae [1995] uses HOL
[Gordon and Melham, 1993] to define a general theory for the spewificand verification of
pipelined microprocessors. Ho et al. [1998] use temporal logic to spemfyerties about structural
and control hazards. They call such properties transmission prapefieeir method abstracts
the pipeline datapath using generalized OR gates that output the collectibnhaf imput values.
Transmission properties are then verified using an off-the-shelf mbdeker.

Mishra et al. [2002] observe that microprocessor verification is made oiwllenging due to the
adhoc creation of the specification model, usually by reverse engingeengTL design. They
propose a top down approach whereby a ‘golden model’ is created irchitegture description
language (ADL). The ADL specifies how the implementation should handkrtisze.g. by stalling
the pipeline or by restoring the program counter. The ADL model is thed tecsgenerated state
machine like specifications against which which they verify the control itisclA similar approach

is described in Higgins and Aagaard [2005].

Due to the fact that pipeline hazards manifest when multiple instructions ibiartiee pipeline,

coverage of such scenarios using automated test generation is chajlemgia crafting a suitable
sequence of instructions must take into account instruction dependdatéesy through the exe-
cution units and the structure of the pipeline. Iwashita et al. [1994] pmaasethodology for test
case generation using symbolic image computation, similar to reachability analysisléi check-

ing. They first perform a reduction of the pipelined design with respetiieédype of properties
mentioned in the test cases. The abstract model has fewer instructiondygdesnly the latency
of execution units is preserved. Symbolic reachability on the abstract risoaletd to derive input
sequences for the original design. Gupta et al. [1997] analyze ttditioms under which a test
generation approach based on an abstract model achieves covkttagieriginal design. Diep and
Shen [1995] use architectural annotations to compute all possible fieadvaite (RAW) hazard
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in a pipeline. The need for automated test case generation is furtheradedatth the use of the
SPEC benchmarks that is found to achieve poor coverage of the Ba2asimilar approach using
ADL specifications is taken by Mishra and Dutt [2004], Kohno and Matdorf001].

2.4.3 Datapath Abstraction

There are several approaches to datapath abstraction in formalatarificExact abstractions [Ho-
jati and Brayton, 1995, Namjoshi and Kurshan, 2000] exploit certagiraldle conditions on the
transformations and predicates applied to the data values by the conttétrgirdhe conditions
under which the abstraction is exact are identified by syntactic examinattbie ofrcuit. Approx-
imate abstractions vary in the degree of the precision they provide. Ho [@988] replace the
datapath with union gates that preserve the propagation of inputs into obtputsthing else. Data
predicates become non-deterministic. Datapaths are abstracted with ueiteigfonctions and are
incrementally improved using counterexamples in Andraus et al. [2006gr@fiproaches [Paruthi
et al., 1998, Zaraket et al., 2005] aim at preserving the data predlmatesstrict the data domain
to representative values.

Hojati and Brayton [1995] identify sufficient separation conditions betwaatapath and control to
ensure that the datapath can be abstracted exactly. When the datapsttictedeto perform only
data movement operations, the controller is called data independent. Dgtaridéat controllers
cannot examine any data predicates. With data independent controllesutid to reduce datapath
variables to a single bit. An extension that generalizes previous workifN& and Dill, 1996] is
to allow both data movement and data equality tests. In their terminology, the @ireaitl to have
a data comparison controller. Hojati and Brayton prove negative resultsdir model in the case
when more than equality tests is allowed.

Bjesse [2008] partitions a word-level netlist into subnets that behavatasdmparison controllers.
Data-comparison controller nodes (e.g. , equality, multiplexers, etc. ) faslevord-level opera-
tors. Sub-word operators (e.g. , concatenation, extraction with cdaristhces, etc. ) are decom-
posed into sub-words. All other operators are exploded into bit-le\eriaions.

A method that generalizes the approach by Hojati and Brayton is predentédmjoshi and Kur-

shan [2000]. Their technique calculates the transition relation of eaclicpte that needs to be
preserved using Dijkstra’'s weakest precondition. This in turn leads tdiitevery of new pred-

icates that need to be preserved. Rewrite rules are used to decide if @edioate is expressed
using Boolean connectives in terms of the ones discovered previously.

Paruthi et al. [1998] verify datapath and mixed control/datapath properiidey identify three
classes of variables: datapath, control, and mixed. Mixed and contiables are preserved. As
with Hojati and Brayton, control circuitry is allowed only to move the datapattaiées. However,
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in this model, the value of datapath variables is allowed to be computed from lthe afaother
variables using arbitrary operators. They use an interval propagatorithm to reduce the width
of numeric signals to the minimum necessary to preserve exactness (i.axderfiow or overflow).
Their method does not handle loops with a dynamic count of iterations.

Zaraket et al. [2005] describe an abstraction framework based iomubédion minimization. Their
algorithm uses graph optimization heuristics to identify suitable components ibfevél netlist
for which minimization is desirable. The algorithm computes the classes of ahdgpivalence
that preserves bisimilarity of the subcomponent. Filters of combinational loglaced to restrict
inputs to selected representatives of the equivalence classes. Theadmedhuices the size of the
netlist that propagates datapath values to the bitwidth needed to tranfetoa@depresentative
values. The minimized circuit still contains the datapath blocks that transfaranvdlues.

Ho et al. [1998] are interested in the verification of parcel-flow prope&imilar to some aspects
of our work: loss, duplication, and ordering. The main idea is to replacddtapath circuitry with
wires, replace feedback signals from datapath to control with nonrdigistic inputs, and then
verify properties about how “tokens” travel through the pipeline. Tagypmatically separate dat-
apath and control based on manually selected seed control signalsuSehapstract interpretation
to show that parcel-flow properties are preserved on the abstraated.cir

Andraus et al. [2006] use a language of terms with uninterpreted fusctibleuristics are em-
ployed to identify datapath variables based on their width. They use an 8Mar $o perform the
verification and refine their abstraction in a counterexample-guided maedimeoop.

The pipeline model that we propose shares similarities with the token neteabdido et al., 1998].
Our pipeline model consists of a network of parcel variables and a dientitwat steers the parcels
through the network. In both models, the toplevel movement of the parcelsgithe network
obeys the rules of data independent controllers identified by Hojati aagt@r [1995], i.e. only
copying is allowed. The properties that are likely to be verfied using astraatiion methodology
are also similar to the ones in the work by Ho et al.. Both our abstraction and #ieiconservative
with respect to parcel flow properties. We differ in how we approadhpmdah abstraction. They
perform a syntactic transformation of the circuit by replacing datapathstek#én union gates.
Datapath predicates in the abstract circuit take nondeterministic value$ eandnfluence parcel
flow. Our approach is aimed at preserving datapath predicates and ssuikédy to produce false
counterexamples.

Our datapath abstraction technigue is based on identifying the equivalgasses of parcel values
as they move through the pipeline, under the various combinations of datapdibates. Because
the equivalence holds inductively as the parcels transfer through teéngighis approach bears
similarity to that of Namjoshi and Kurshan that uses bisimulation minimization. While #eir
proach works at the program level, ours exploits the pipeline structutedaircuit. One difficulty
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in applying the method in Namjoshi and Kurshan [2000] is convergenceeodltiorithm. Their
algorithm starts with a set of predicates to be preserved and then attes faredicates inductively
until the next-state value of each predicate is expressible in terms of tlemtstate value of the set
of predicates. In the case of pipelined circuits, their method, which usestiik weakest precon-
dition, generates predicates that contain in their definition the datapathshetbecéed. Identifying
whether the set of predicates is stable is essentially what our method does.
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Chapter 3

Pipeline Models

This chapter presents our model for pipelined circuits. The definition gfitiedine model is given
in Section 3.1. In Section 3.2 we instantiate the concepts of simulation and langolainment
for the verification of control properties of pipeline models. In Section 3e3dmcuss abstract
interpretation of pipeline models.

3.1 Pipeline Models

This section describes our formalization of pipelined circuits as pipeline mo@elsceptually, a

pipeline model consists of a network of parcel variables and datapatiméestaln the network,

parcels are either copied between variables or transformed by datapi@ihces. The parcel flow
through the network is coordinated by a state machine that representsntingl.cd he datapath

instances are modeled as circuits with annotations describing the parc@ranal variables. The

network of variables and datapath modules is formalized using if-then-atsel@xpressions.

Our presentation of concepts is illustrated using a pipelined circuit cBif#8ddMult The struc-

ture of the circuit is described in Figure 3.DiffAddMult has one input; and two outputsy,;
andv,s. It has four combinational datapath instanc8sb, Neg, Add and Mult. There are four
registers to hold the intermediate parcel values.;, 7444, "vurr andry2. The input values

are tuples of form(s, j, k, ®) and the output values that are produced correspond to the operation
li —j| ® k, where®e {+,*}. According to their values, inputs to the pipeline follow one of
several paths:

e Sub — Neg — Add

e Sub — Neg — Mult
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U1
pclP

Sub  selN
pcIN,  pelN,

TNeg X Control
pclP
Neg  selN
pclN
N @E @
N— —
TAdd =——t——— T Multl ¢ L 1 I I 1 TMult2
v ] v__
pclP pelPy pclPo
Add > stateln  Mult stateOut
pclN pclN 4 pclN 4
l l |
Upl Vo2
Figure 3.1: Block Diagram dDiffAddMult
o Sub — Add
o Sub — Mult

The datatypes of an 8-bit version BfffAddMultare described in Figure 3.2.

The Sub instance, described in Figure 3.3 performs the operatienj. The tuple(i, j, k, ®) is
encoded in the variablgclP. The valueg, j are integers represented in 2’'s complement faisl
a natural. The circuit produces two datapath outputs in the variablds andpcIN,. The output
pclN | is meant for theVeg instance and therefore it encodes the operatioOn the other hand,
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type op_ty is { add, mult };

type suhin_ty is
tuple {

i : bitvec[8],

j : bitvec|[8],

k : bitvec[8],

op: op.ty

b

type negin_ty is
tuple {

i . bitvec[8],

j : bitvec[8],

op : op_ty

b

type addmultin_ty is
tuple {
i : bitvec[8],
j : bitvec[8]
b

Figure 3.2:DiffAddMult data types.

1 ckt sub (pclP : suhkin_ty)(pcIN; : negin_ty, pcIN, : addmultin_ty, selN : bitvec[3])
2 var
3 diff : bitvec[8];
4  assign
5 diff .= pclP.i — pclP k;
6 pcIN | :=tuple { i =diff,] = pclP Kk, op = pclP.op};
7 pclN, :=tuple { i =diff,] = pclP K };
8 selN :=if diff < 0then 001
9 else if pclP.op = add then 010
10 else100
11 end

Figure 3.3:Sub Instance
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pclN 5 is meant to reach directly one of the instaneki! or Mult and therefore it does not have

to represent. The control outputelN uses a one-hot representation to encodes the next instance
to process the parcel: if— j is negative the parcel goes to theeg instance, otherwise tddd or

Mult as required by>. In our example the path of parcels through the pipeline is encoded by the
selN outputs of theSub and Neg instances. TheelN signals are used by the control circuitry to
drive the muxes of the parcel variables.

PclP

control inputs _] |, control outputs

PcIN

Figure 3.4: Datapath Module

Datapath modules are annotated combinational circuits. The block diagrangémeric datapath
module is shown in Figure 3.4. The s&s/PandPcINdenote the input and output parcel variables.
The variables irPclPand PcIN are defined by the annotated circuit.

3.1.1 Definition (Datapath Module) A datapath modulelp is a tuple(C, PcIR, PcIN, V) such
that:

Cis a combinational circuit

PclPC C.V; is the set of input parcel variables

PcIN C C.V, is the set of output parcel variables

V. C C.V; UC.V, is the set of control variables

The datapath module fdfub is defined as follows:

dpguy, = (C PCcIRPCIN,V 1)
C = Couw
PclP = {pclP}
PcIN = {pcIN,pciN,}
Ve = {selN}
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1 ckt neg (pclP : negin_ty)(pclIN : addmultin_ty, selN : bitvec[2])
2  var
3 abs : bitvec[8];
4  assign
5 abs := 0— pclP.i;
6 pcIN =tuple {i=abs, | =pclPj };
7 selN :=if pclP.op = add then 01 elsel0,
8 end

deeg = <C’ PCIR PCII\I’ Vctrl>

C = Chy

PclP = {pclP}
PcIN = {pcIN}
Ve = {selN }

Figure 3.5:Neg Datapath Module

The Neg instance is described in Figure 3.5. Its input parcel variable encodesgieé(: — j), k, ®),
wherei — j < 0. The resulting output parcel is sentdad or Mult depending on the operatian

1 ckt add (pclP : addmultin_ty)(pcIN : bitvec|8])
2  assign
3 pcIN = pclP.i + pclP.j;
4 end
dpAdd = <C, PCIR PC”\Ia Vctrl>
C = Cud

PclP = {pclP}
PcIN = {pcIN}
Vet = 0

Figure 3.6:Add Datapath Module

The Add instance is described in Figure 3.6. Its input parcel variable encodéstied|: — j|, k).
It produces the result of the operatipn- j| + k.

The Mult instance is described in Figure 3.7. It works in several stages. Thenarg pclP,
holds the parcel received from a previous datapath instance aresesps the tuplé|i — j|, k).
The argumenpclP, holds the result of partial products. The operation interprets the o
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type mult_pp_ty is tuple { ppl: bitvec[4], pp2: bitvec[4] };

ckt mult (pclP, : addmultin_ty, pclP, : multpp_ty, stateln : bitvec[3])
(pcIN ; = bitvec[8], pclN, : mult_pp_ty, stateOut : bitvec[3], done : bool)

~No ol MAOWDNPRE

end

dpye = (G, PCIR PCIN, Vor)
C = Chu
PclP = {pclP,, pclPy}
PcIN = {pcIN}
Ve = {stateln, stateOut }

Figure 3.7:Mult Datapath Module

2-digit hex numbers and multiplies them according to the standard algorithmh wihticesponds to
the multiplication of two polynomials{bx + a) x (dx + ¢). Each polynomial represents an 8-bit
positive number in the form = high(n)x + low(n) wherehigh(n) = n <+ 2* andlow(n) = n
mod 2*. Multiplying the two polynomials we géiix? + (bc + ad)x + ac which represents a 16-bit
number. The 8-bit result is thus given blew(bc+ ad) + high(ac))x + low(ac). Figure 3.8 presents
the implementation of the multiplication operation. Figure 3.8a describes the detrestomsed to
choose the order in which a succession of 4-bit multiplications and additienseaformed. The
nodes of the decision tree denote the state of the computation. Ollfldenotes the initial state
andllldenotes the final state. The labels on the edges denote the partial arithreetitors that
are performed and the corresponding condition. The results of thelpapé@eations are returned
in pcIN. The current state and the next state are in the control variahlesin and stateOut.
Figure 3.8b represents in more detail the operations performed by epch ste

A pipeline model defines two types of variables: parcel and control. Théelimy enforces a
separation between parcel and control variables according to the Y& pipeline as a network
of parcel variables and datapath instances through which parcels sl@teared by the control.
Parcel values influence control through the control outputs that datapeoduce.

The set of control variables of a pipeline model is denotetty;. In theDiffAddMultexample, the
existence of a valid parcel in one of the parcel registes,, radd, Tamit1, Tvmui2, 1S represented
using correspondingly named control variablesiid g, valid gqq, valid pp, valid ppue. The
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bex + ac

(be + ad)x + ac

Fig. 3.8a.Decision Tree

State| Condition | Operations Next State
000 a=0 bxc 001
a#0 axc 010
001 b=20 111
b£0 111
010 b=0 a xd 011
b#0 bxc 100
011 low(ad) + high(ac) 111
100 d=0 low(bc) + high(ac) 111
d#0 a x d A low(bc) + high(ac) 110
110 low(ad) + (low(be) + high(ad)) | 111
previous step

Fig. 3.8b. Transition Table
Figure 3.8: Sequential Multiplication
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Variable Value

T4 Sub input variable

T4 Sub,Neg T4, Sub A selN g, = 00
reqdsub,Add | T€4i5ub N SN sup = 01

T€q gub, Muit | €4 sup /N S€IN gup = 10

T4 Neg,Add UalidNeg A SelNNeg =0

T€q Neg, Mult validNeg A\ selNNeg =0

T€d Add, o1 valid pqq

req ppit it | V0lid vpaen A stateOut # 111
T€q puit, 02 valid ppue1 N stateOut = 111

Table 3.1: Request variables.

Variable Value

accgup; T€q; Sub

ACC Neg, Sub T€q Sub,Neg N\ 8tall Neg

acc Add,sub | T€q5ub Add /N 7(T€qNeg add V Stall ada)

ACCAdd,Neg T€q Neg, Add A =stall gqq

ace pult,Sub | 7€q gub Muit N 7 (T€q Neg muir V' T€G Mt Muit VSt ppuir)
ACCMult,Neg | T4 Neg, Mult A _‘(reunlt,Mult vV StallMuU)

ACC Mult, Mult | T€4 Mult, Mult
acco1,Add input variable

aCC o2, Mult input variable

Table 3.2: Accept variables.

transfer of parcels fobiffAddMultis performed through a handshake mechanism. The two parts of
the handshake are requests and accepts. Both accepts and reguasideded using combinational
variables. Requests denote where parcels need to transfer in theclexard are calculated using
control outputs of the datapaths such as bV output of Sub and Neg or stateOut of Mult.
Table 3.1 describes the request variables usdditifxddMult. Accepts confirm the request for the
transfer of a parcel and the transfer happens in the current cylogeTs an accept-request pair of
variables for each edge along which parcels can transfer. Tables:@luks the accept variables. To
model the stalling of parcels in the parcel registers we use three morelearisfall .y, stall 4qq
andstall . Parcels processed bild or Mult stall if the environment does not accept or in order
to satisfy an ordering property by waiting until an older instruction is donpareel stalls inVeg

if it makes a request that is not granted:

stall neg = (requ%Add N DaCCAdd, Neg) V (Tequg,Mult A 2GCC Mult, Neg)
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Fig. 3.9a.Both instructions transfer thdB stalls.

-~ =

A A

= ™

S =

3 & 3 3

=| B S| A = =

Fig. 3.9b.WhenA is done both instructions exit.

Figure 3.9:B waits until A finishes processing.

The control circuitry is responsible for ensuring that parcel flow tghothe pipeline obeys certain
desired properties. Figure 3.9 and Figure 3.10 describe pipeline bamaimowhich two instruc-
tions, A andB, have a constrained flow. Figure 3.10 describes an ordering prapfetig DiffAd-
dMult pipeline. InstructiorB enters the pipeline after instructiaX, in other words, it is younger
thanB, and it must wait for instructions older than it to complete before it can exipipeline.
Solid arrows denote that requests are made and granted, dotted agrovis that requests are made
but not granted. Figure 3.9a describes a first step in which both insmadtiansfer which is then
followed by a sequence of steps in which instructris stalled whileA continues processing.
Figure 3.9b describes the step in which both instructions finish procedsigigre 3.10 illustrates
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Neg
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N

Add
Mult
Add
>
Mult

Fig. 3.10a.First cycle: the request @ is not granted.

-~ ~
| B —  |@
> j=2
2 =
3 S 3 s
| A = <| B =

Fig. 3.10b.Second cycleB transfers.
Figure 3.10:B stalls becaus@ has higher priority.

the prioritization of requests for thédd datapath. Figure 3.10a describes both instructirend
B requesting to transfer tddd: the request oB is not granted and it stalls. Figure 3.10b describes
the immediately following cycle wheB is allowed to tranfer toddd.
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We gather the actual parcel arguments to the datapath instances into two sets:

PclP = { pclP gy, pelP neg, PELP pqqy PELP ppyie1 s PELP pyiza }

PcIN = {pClNSubv pClNNega pClNAdd7 pClNMultla pClNMult2 }
For DiffAddMult the set of parcel variables is described by
Vpcl = { Vis Voly, Vo2 T"Negy TAdds TMultls TMult2 } U PclPuU PcIN

We use the following notation for the interesting subsets of parcel variables set of constants
that appear in if-then-else expressions are denotaddmstantPcl

Set Definition Meaning

CombPcl | { v;,ve1, Vo2 } U PclPU PcIN | Combinational Variables
RegPcl { "Negs TAdd> T"Mult1> TMul2 } Register Variables
NextRegPcl { ryey’, Taad’, Tvun’, Taur2’ } | Next State Variables
InputPcl {v} Input Parcel Variables
OutputPcl | { vo1, vo2 } Output Parcel Variables
ConstantPc| { reset yp: } Parcel Constants

Because of the separation between datapath and control, the value wfipoo parcel variable
is updated using only the value of another parcel variable. The expnesthat can be assigned
to parcel variables are called if-then-else (ITE) parcel expressinsITE parcel expression is
identical to a mux tree, the nodes of which represent parcel varialdesidnselect signals given by
expressions over control variables. The simplest type of ITE paxpetssions are parcel variables,
constant an@hoice expressions. Inductively, ifis a Boolean control expression andandt, are
ITE parcel expressions, théhb then t; else ¢ is an ITE parcel expression.

Let BExpr( V) denote the set of Boolean expressions over the set of control varidhle

3.1.2 Definition (If-then-else Parcel Expressionslhe set of if-then-else parcel expressions over

Vet andBEXprH(V .i;), denoted by TEParcelEXptV 1, Vi), is defined inductively:

If v € V, thenv is an ITE parcel expression.

If w € BT thenw is an ITE parcel expression.

e choice is an ITE parcel expression.

If £, andty are parcel expressions abd& BExpr(V..;) thenif b then ¢, else t; is a parcel
expression.
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TMultl choice

ace pule, Mult NV Stall =ace vy, Muit NV Stall pr

pclN Neg

QACC Muylt,Neg

TACC Muylt,Neg
pdNSub

QACC Mult, Sub TACC Muylt, Sub

Figure 3.11: Mux tree corresponding to the expression in Equation 3.1.

An example for the expression

if accaruir,sup then pelN g,
else if accppir, neg then pclNNeg (3.1)
else if ACC Muylt, Mult V stall yru then raz .

else choice

is shown in Figure 3.11. In the figure, each internal node correspontteetoccurrence of an
if-then-elseoperator. The leafs of the tree are either parcel variables or the teondeisticchoice
operator. The edges of the tree are labeled by the conditions underthvbicbrresponding subtree
is selected.

The transition relation oDiffAddMult contains the following assignments to parcel variables:

pclPgy = v (3.2)
rNeg' = if accneg,sup then pclN g, else if stall ., then ry., else choice (3.3)
PelP ney = ThNeg (3.4)
ragd = if accagqSub then pelN g, (3.5)

else if accdd,neg then pclN y,
else if StallAdd then TAdd

else choice

pClPAdd = TAdd (36)
Vo1 = PCIN 444 (3.7)
pelPayrun1 = TMuitl (3.8)
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Tvutl = if acc i, sup then pelN g, (3.9)
else if accppui, Neg then pclN Neg
else if accppu, muir V stall pryy then rypyn

else choice

Vo2 = PCIN ppun (3.10)
PClP prus = TMult2 (3.11)
Tyue = if acc pruit, vt then pelN y 0 (3.12)

else if stall pp,; then ryz0

else if accppuir,sub V accyuir, Neg then reset pry

else choice (3.13)

When registers do not hold valid parcel values they are assigned nondestically, i.e.choice.
When a new parcel transfers in théult stage the partial product register is reset to a constant value.

A pipeline model is an annotated circuit with syntactic restrictions. The annasatiescribe the
types of variables of the pipeline and its datapath instances.

3.1.3 Definition(Pipeline Model) A pipeline modelPipe is a tuple(C, Vi, Vi, DP9 such that:

e Cis acircuit.
e V, is the set of parcel variables.
e V., is the set of control variables.

e Dpsis the set of datapath modules.

We use Chitiaddmult t0 denote the circuit for th®iffAddMult pipeline. The pipeline model for
DiffAddMultis the tuple

Pipepigadamutt = (C, Vpels Verri, DP9

C = CbiftaddMult

The sets of control and parcel variables are disjoint. Parcel variat#esssigned ITE parcel terms,
control variables are assigned arbitrary expressions over coafiiables.

Vivi=e € CTr.v € Vyq U Vyy' = e € ITEParcelEXptV e, Vi)

Viv:i=e € CTr.v € Vyy U Veuy = varse C Vi
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Arguments to datapath parcel inputs and outputs are combinational parzddlgs of the pipeline
model. Arguments to control inputs of datapaths are control variables.

Y dp € Dps Arg(dp.V i)
Y dp € Dps Arg(dp.Vpe)

N

Vctrl
vV

pcl

N

3.2 Abstraction For Control Properties

In this section we specialize the general concepts of simulation and langaatgnment for the
verification of control properties of pipeline models. Simulation and languagéainment are
defined with respect to the control variables of the pipeline model. Lamge@gainment is weaker
than simulation. However, because language containment between gsiam®bata carries over to
pipeline models we prove separate results for both simulation and langusigeceent. Simulation
preserve ACTL* properties and language containment presebfE properties.

The definitions of simulation and language containment that preserve kpraperties are given
with respect to a concrete pipeline mod&pe,. and an abstract onBipe . In the remainder of the
thesis the concrete pipeline mode&be . is subject to our datapath abstraction methodology and the
abstract model plays the role of a suitable abstraction. The semantics ofttheoels are defined

by their circuits. We denote the corresponding labeled transitions as follows

LTS(PZpecC) = <QP(:7 Rpe, T, IPC>
LTS(Pipe,.C) = (Qpa;Rpa; Tpa, Ipa)

Since our abstraction is for control properties, the pipeline ma@ais. and Pipe , are to be defined
over the same set of control variables.

Pipec-vctrl = Pipea'vctrl

In the remainder of the thesi$)ipe = (C, Vi, Ve, DP9 is a pipeline model with its labeled
transition system denoted by:

LTS(Pipe.C) = (Qp, Rp, Tp, Ip)
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3.2.1 Simulation

The concept of pipeline model simulation is an instantiation of general simul@igfinftion 2.1.2)
to pipeline models by requiring that control variables be preserved in thencting diagram.

3.2.1 Definition (Pipeline Simulation) A pipeline simulation is a simulation relatidfp C Qp. X
Qp, that preserves control variables.

e Related states agree on register control variables.
V' (qPe; qPa) € SP. Pe =V, APa (3.14)

e Commuting diagrams preserve combinational control variables.

V (qpe; tre, dp.) € Rpe. ¥ qpa € Qpa.
(qPe; gpa) € Sp=
Jtpa € Tra- Iqps’ € Qpa.
ara T gy (3.15)

A

Sp Sp% with tp. =v,, , tp,

tpc ’
qpc —— qpc

e The condition on initial states remains unchanged.

VYqp:. € Ip.. Aqp, € Ip,. (ch,qpa) € Sp (3.16)

We use the notation
Pipe, =p Pipe,,

to denote the existence of a relation satisfying Equation 3.14 up to Equatian 3.16

As an example, consider the concrete pipeline model described in Fig@eThé domain of the
parcel variables consists of tuples of two bit numbers of fdayb). The two datapaths test the
two numbers in their operand for equality and, respectively, inequalitg. pEncel input is passed
unchanged to the output. The concrete model is defined by:

Vpa = {i,rt,o}
Vctrl = {01,1)2}
Dps = {Dp_,Dp.}
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type pcl-tyistuple{a:0..3,b:0..3};

ckt Dp_(pclP : pclty)(pclN : pclty, v : bool)

assign
pclN = pclP;
. v .= pclP.a= pclP.b;
7
l end
dp_ L ckt Dp_(pclP : pclty)(pcIN : pclty, v : bool)
assign
i pcIN = pclP;
e v :=not (pclP.a= pclP.b);
v end
dp > Uy
l ckt Pipe, (i : pcl-ty)(o : pcl-ty, v, v2 : bool)
var
0 r, t : pclty;
inst

Fig. 3.12a.Block Diagram. dp_: Dp_(i)(t.)

dp t Dp4(r)(o,v2)
assign
=t
end

Fig. 3.12b.Implementation
Figure 3.12: Concrete Pipeline Model.

An abstraction for the concrete model is described in Figure 3.13. Theaabsodel has no input
or output parcel variables and the datap@gh. , produces a nondeterministic parcel output without
reading any input. The pipeline modeipe , has identically defined control variables, however, the
parcel variables differ:

Vpcl = { t, T‘}
Vctrl = { U1, V2 }
Dps = {Dp_,,Dps,}
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—> U1

dp;ﬁ a — U2

Fig. 3.13a.Block Diagram.

type pcl_ty is bool,

ckt Dp_ ,O(pcIN : pcl.ty, v : bool)
assign
pclN = choice
v = pclN;
end

ckt Dp_ ,(pclP : pel.ty)(v : bool)
assign
v = not pclP;
end

ckt Pipe, ()(v1, vo : bool)
var
r, t . pclty;
inst
dp_ 1 Dp_ ,()(¢,01)
dp 4 Dp 4 o(r)(v2)
assign
r' =t
end

Fig. 3.13b.Implementation

Figure 3.13: Abstract Pipeline Model.

We defineSp as follows:

Sp={(qpc,qpa) | Fa € {0, ..., 3}. gpe(r) = {(a,a) A qpy(r) = true }
U{(gpe,qps) | Fa € {0,...,3}.3b€{0,...,3}. gp.(r) = (a,b)

A qpy(r) =false Na#b}

(3.17)

The commuting diagram in Equation 3.15 is shown to hold for our example foraddlee two cases
that defineSp in Equation 3.17. The case whep.(r) = (a,a) andgp,(r) = true is described

in Figure 3.14. There are two types of transitions that the concrete pipainmake from such a
state. In each of the two, there exists a corresponding transition of ttra@hbwodel. Figure 3.15
describes how the transitions of a concrete state of fgitr) = (a, b) with a # b are matched by
the simulating abstract state wigh, (r) = false.
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= false
= true
@«
A .
i = (bc)
= false
= true

Figure 3.14: Commuting diagrams for the casg(r) = (a, a).

3.2.2 Language Containment
A run of the pipeline modePipe is a run ofLTS( Pipe.C), as described in Section 2.1. We denote
suchrunsbyp: N — Qp x Tpand use the notations(n) = (¢p, t}). According to the definition

of the run, we have:
VneN. (¢, thap™") € Rp

The language of a pipeline model is the set of its runs:

L(Pipe) = {op| opis arun of Pipe }

Equivalence on runs is defined with respect to a concrete midge]. and an abstract onipe,, .
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= false
= false
N
i = (cd)
= false :
wn| = false '

Figure 3.15: Commuting diagrams for the casg(r) = (a, b) with a # b.

Consideftop, € L(Pipe,.) andop, € L(Pipe,). Run equality over control variables is denoted by

Opc =P OPa = vn € N ( qgc :Vct'rl qga /\ tTFL’c :Vct'rl t,rFL’a )

Language containment of pipeline models is defined by

L(Pipe,) Cp L(Pipe,) =V op. € L(Pipe.). 3op, € L(Pipe,). op. =p 0py

Figure 3.16 describes an abstracti@ipe , of the concrete pipeline modélipe . from Figure 3.12.
The abstract pipeline model has the property th@Pipe,) Cp L(Pipe,). However, Pipe, <p
Pipe,, does not hold because in each of its states, the model described in Figéiread perform
exactly one transition with label = b, for someb € { true, false }, since the parcel input tdp_ ,
is a register. The concrete model can perform transitions withdgothtrue andv; = false, since
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type pcl_ty is bool,

ckt Dp_ ,(pclP : pcl_ty)(pcIN : pclty, v : bool)

assign
pclN = pclP;
i v = pclP;

end
™

ckt Dp_ ,(pclP : pclty)(pelN : pclty, v : bool)

assign
dp=q — " pcIN = pclP;
v = Nnot pclP;
R — end

dps % ckt Pipe, (i : pclty)(o : pcl-ty, vi, v : bool)

var
l 1, 12, t1, t2 : PCLty;
0 inst
dp— : Dp_ o(r1)(t1,v1)
Fig. 3.16a.Block Diagram. dp : Dp 4(r2)(0, 12)
assign
’/’1/ =
r' =t
end

Fig. 3.16b.Implementation
Figure 3.16: Abstract Pipeline Model.

the parcel input talp_ is an input variable of the pipeline model.

In Figure 3.17 we sketch the proof of language containment. The run absteact model is chosen
on advanced knowledge of the concrete run. The abstract model rmalbeheoncrete pipeline step
(gR., t5., gpTt) by choosing statel, so thatgp, (1) = tp,(v1). Because the value af, (v1) is

eithertrue or false based on whether the input valugs™! andb™*! are equal, while the value of

g, (v1) is fixed and equal tgp, (1), no abstract state can simulate a concrete state.

3.3 Abstract Interpretation Of Pipeline Datapath

Abstract interpretation [Cousot and Cousot, 1977] is an abstractioniteehthat replaces the con-
crete data types of a program with abstract data types and the concestgiaps with abstract
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i = 2 i = nt3
~ o = o

i = <an+17 bn+1> i = <an+2’ bn+2>
~ ot = o2

Figure 3.17: Proof Of Language Containment.

ones.

In this section we present the general form of abstract pipeline modedsedr by our abstraction
methodology. Abstractions of the concrete pipeline models have the santei®ras the concrete
ones. By structure we mean variable names and variable use in expsessibstract pipelines
instantiate abstract datapaths and therefore the domain of the parcblasigallowed to change.

Intuitively, abstract interpretation of a circuit corresponding to a pipetivaelel allows only for

the madification of the declared types of the parcel variables, the name iokthatiated datapath
modules and the replacement of a constant’s occurrence in an ITE terntheitbhccurrence of

another.

We define the equivalencer,;’ on ITE parcel expressions so that two ITE parcel expressions are

equivalent if they differ only by occurrences of constants:

e c =, eforany ITE expression.
e If ¢; andey are constants then ~,; es.

o If e =~y €3, €2 R4 €4 andb € BEXpI(VCtrl) then

(if b then e; else e3) ~,; (if bthen e3 else ey)

53



For the remainder of the thesis we use the following notation for the coneretgstract datapaths:

Dps
Dps

Pipe ..Dps

c

Pipe,,.Dps

a =

3.3.1 Definition (Abstract Interpretation)We say Pipe, is an abstract interpretation dfipe,,
denoted by
Pipe, = Pipe, [DPSQ/DPSC}

if the following conditions hold:

1. The two pipeline models have the same control and parcel variables.

Pipe,. Ve = Pipe,.Viey
Pipe, Vo = Pipe,. Vp

2. There exists a bijective mappiag Pipe,.C.Insts— Pipe..C.Instssuch that

Vinst € Pipe,.C.Insts
inst.id = ¢(inst).id A
inst.InputArg = ¢(inst).InputArg A
inst.OutputArg = ¢(inst).OutputArg

3. There exists a bijective mapping: Pipe,.C.Tr — Pipe,.C.Tr such that

V'v:=e¢e € Pipe,.C.Tr.
v € Vg U Vctrl/ - w("U = el) = v:=e€
A

vVE VUV, = e erg e ANY(vi=e)="v:=¢
4. Initial conditions on control variables are the same.

Vv e Ve 'vi=¢€ € Pipe,.C.Init <= ‘v := ¢’ € Pipe,.C.Init

If Pipe, = Pipe, [Dpsa/DpSJ then the circuits of the two pipelines assign the same variables.
Therefore, any € V., U V4 is either combinational in both circuits or register in both.

Consider the concrete pipeline model described in Figure 3.12. The @bgipaline model in
Figure 3.13 is not an abstract interpretation because it does not hapartted variables and o.
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On the other hand, the abstract model in Figure 3.16 is a proper absteapt@tation.

3.4 Summary

We describe the model of pipelined circuits as a network of parcel vasiainieé datapath instances
through which parcels flow as coordinated by the control circuitry. Tdr&les of the circuit are
divided into datapath and control. The separation is enforced by syntestiictions on the type of
expressions that can be assigned to each of the two kinds of varialblssaét interpretation of the
datapath is performed by replacing the concrete datapaths by abseaciltre type of the pipeline
parcel variables is adjusted accordingly. The control is left uncldange
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Chapter 4

Parcel Automata

In this chapter we present a computation model of the pipeline datapath. Tde foothe pipeline

datapath is a labeled transition system, called a parcel automaton, that eescelbehaviour of
the pipeline datapath with respect to the control inputs and outputs of theattaiagtances as
parcels move through the pipeline. Abstractions of parcel automata anedefsing simulation
or language containment and are shown to preserve the control visitéeibe of the datapath.
Abstract parcel automata are used to define abstract datapaths.

A parcel represents a group of related values which are held in paagables during a pipeline
computation. Both the values of the parcel and the corresponding varielémge during the
computation of the pipeline model. In a particular pipeline step, the parcel isfiddrby its
variables, which can be both register and combinational. We define pascets1-empty subsets of
V,a U NextRegPcl

During a pipeline computation, the parcel propagates through paréables and datapaths. This
execution trace is called a parcel computation. The parcel computatiomsetbe transformation
of the parcel’s variables and its interaction with the control circuitry.

In a pipeline computation, multiple parcel computations take place simultaneousheryAm-
portant characteristic of the parcel computations that coexist duringhauwtation of the pipeline
model is that within a pipeline step, they do not share parcel variabledapaths. This property
of pipeline computations is called parcel independence and is formalized mexhehapter.

Section 4.1 describes a complete example for using parcel automata foattiaddnstraction. In
Section 4.2 we describe fan-out graphs which model the propagatiopestal’s variables through
combinational variables and datapaths into next state registers. Section gtratéls parcel com-
putations with theDiffAddMult example. The definition of parcel automata is given in Section 4.5.
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Section 4.6 adapts the concepts of simulation and language containmentdbagudiotnata. Sec-
tion 4.7 shows how abstract interpretation is performed using abstrad patomata.

4.1 Overview Of Abstraction Using Parcel Automata

==

dp, Control

]

Figure 4.1: AndOr Block Diagram.

We introduce a simple example calldchdOr and use it to provide a high-level description of the
methodology of using parcel automata for datapath abstraction. Our exdegulgbes a pipeline
computation and the contained parcel computations, a parcel automaton theds mibthe possible
parcel computations, and an abstract parcel automaton and an apgtedicie model obtained by
abstract interpretation using the abstract parcel automaton.

The AndOr pipeline consists of three parcel registers and two datapaths as shouguie E.1.
There are two control variables, a two-bit registeand a one-bit combinational variabde The
implementation of the circuit is given in Figure 4.2. The first datap&¥h,, is described on lines
1-7. Its input arguments are a two-bit input parcel and a two-bit cougndhble. It produces an
output parcel that consists of four bits obtained by the concatenatiauobit-and operations. The
second datapath)p,, is described on lines 9—13. The resulting two-bit parcel value is the bit-or
of the two-bit halves of its input parcelDp, produces a one-bit control output that consists of the
bit-or of the two bits of the output parcel. The pipeline circuit instantiates thedfatapaths. The
state of the control circuitry consists of the two-bit registelts value is updated using the control
output of Dp,. The current value of is the control argument provided f2p, .
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ckt Dp,(pclP : bitvec[2], v : bitvec[2])(pcIN : bitvec[4])
assign
pcIN[0] := pelP[0] and v[0];
pcIN[1] := pclP[1] and v[0];
pelN[3] := pelP[0] and v[1];
pcIN[4] .= pclP[1] and v[1];
end

ckt Dpo(pclP : bitvec[4])(pcIN : bitvec[2], v : bitvec[1])
assign
pelN = pelP[0:1] or pclP[2:3];
v := pcIN[O] or pcIN[1];
end

ckt Pipe,. (v; : bitvec[2])(v, : bitvec[2])
var
v . bitvec[1];
r1, 13, ¢, pclPy, pclN 4 : bitvec[2];
r2, pclN{, pclP, : bitvec[4];
inst
dpy : Dp(pclPy,c)(pelNy);
dpy © Dpy(pelPy)(pelN 3,v);
assign
pclPq =1y,
pclPq i=1ry;
¢ =wv :(not v);
r' = v
ro’ 1= pclN y;
r3’ = pclNg;
Vo = T3,
init
c:=01;
r1 =00,
ro :=000Q
r3 =00,
end

Figure 4.2: AndOr Implementation.

An example of a pipeline computation @fndOr is provided in Figure 4.3. The top half of the
figure displays a sequence of pipeline model states. Each state is repdelsg the values of the
three parcel registers, highlighed in distinct shades of grey. In thefate, for instance, the values
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11 ] [00 |
0000 0000 0011 0001 [7000] [71700]
[00 ] [C00 ] [00 ] 11 ] [Co1 ] [0 ]

17 1“=1%7700]

Figure 4.3:AndOr Computation.

of the three registers are:

rr = 00
ro = 0000
rg = 00

The bottom half of the figure lays out the states of the pipeline computation ogandia with the
effect that from left to right one can trace each parcel through theipg For instance, the parcels
in the first state of the computation have the following traces:

r1 =00 — 19 =0000 — 1r3=00
ry = 0000 —s 13 =00
7“3:00

A more accurate description of the trace of a parcel is to include the coattas that influence its
computation. For each parcel, there are two such vatugben the parcel passes throubh, and
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v when the parcel goes throudbp,. Two enhanced traces from Figure 4.3 are as follows:

r=00 =91 . _ 0000 "=9 15 = 00

r=10 ‘=39 1, = 1000 "=t 1y = 10

Figure 4.4:AndOr Parcel Automaton.

A parcel automaton models the traces of parcels through the pipeline asemllabasition system.
The states of the automaton correspond to parcel values in given pegistérs and the transitions
correspond to the transfer of parcels from one register to the nexttrahsition labels give the
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control values that influence the parcel during a transition. The pattematon forAndOr is
shown in Figure 4.4. It describes the traces through the pipeline of allpesnput parcel values.

The empty stat@ denotes the state of the parcel before entering the pipeline. The finalistaig.
represents the parcel after it has exited the pipeline. After a transitiontfre empty state, the state

of the parcel may be any of the four two-bit values in registef~or each such value, and for each
value of the control variable, the automaton makes a transition to a state that represents the parcel
in registerr,. From such a state the automaton makes a transition to a state representirrgéhe pa
in registerrs. The label of such a transition shows the value of the control variabkcause it is
produced by the datapafhp, based on the value of parcel. A transition to the final state completes
the computation of the parcel automaton.

Datapath abstraction is based on identifying parcel values that havertteecsatrol visible be-
haviour through the pipeline. The parcel automaton representation ofathpadh allows us to
formulate this problem as a relationship between parcel automaton stategdlicéon of the dat-
apath is performed by collapsing together equivalent states of the patoehaton. In our example,
the parcel automaton shows that the states corresponding to three ofuhedlyes,01, 10and11

are equivalent. After the reduction step that preserves only therstated1 and discards the other
two equivalent ones, the automaton is shown in Figure 4.5. The redutadaton has two more
equivalent states, = 0001andr, = 010Q After performing a second reduction and representing
the reduced data domain using the abstract vajues «o, 51, 52 } we obtain the abstract parcel
automaton shown in Figure 4.6.

Our example showed how a parcel automaton is created to representdpatdacomputations.
Conversely, given an abstract parcel automaton we can derive thlingiglatapath that it repre-
sents. Corresponding to the abstrdetdOr parcel automaton, the implementations of the abstract
datapaths are shown in Figure 4.7. The abstract datdpath, shown on lines 4-9, corresponds to
the transitions of the parcel automaton from a state with registiera state with register,. Dp, ,
transformsy; into ap and3; into Bs. The value of the control input does not influence its computa-
tion. The second abstract datapath is shown on lines 11-19. It, toajestveo separate transitions
of the parcel automaton, corresponding to parcels moving from register-s;. Both the value of
the parcel outpupcIN and the control output are sensitive to the value of the input parcel. The
two datapaths are used to give an abstract interpretation of the origimdihgigs shown on lines
21-42 of the listing in Figure 4.7. The abstract pipeline circuit differs ftbenconcrete one in the
types of parcel variables, the two datapaths that it instantiates and the ianition. Figure 4.8
shows the abstract computation that is equivalent to the concrete one e Bigu
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Figure 4.5:AndOr parcel automaton after one reduction step.
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Figure 4.6:AndOr Abstract Parcel Automaton.
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type pclty is { a1, az, B1, B2 };
type pclinty is { a1, 1 };

ckt Dp, ,(pclP :pclin_ty, v : bitvec[2])(pcIN : pcl_ty)
assign
pelN = if pelP == oy then as
else if pclP == 31 then 3,
elsechoice;
end

ckt Dp, ,(pclP : pclty)(pclN : pclty, v : bitvec[1])
assign
pelN :=if pelP == an then oy
else ifpclP == 3, then 5,
elsepclP;
v :=if pelP == ay then 0
else ifpclP == 5 then 1
elsechoice;
end

ckt Pipe, (v; : pclin_ty)(v, : pcl-ty)
var
v : bitvec[1];
r1, 13, ¢, pclPy, pclN 4 : pclty;
r9, pcIN , pclP4 : pcl_ty;
inst
dpy : Dp1(pelPy,c)(pelN y);
d]_)2 . Dpo(pclPy)(pelN 5,v);
assign
pelPq =y,
pelPy = 1o,
¢ :=wv :(notv);
r' =g
r9’ = pclNy;
r3’ = pclNg;
Uo ‘= T3,
init
c:=01,
T =1,
T9 = (9,
r3 .= (9,
end

Figure 4.7:AndOr Abstract Implementation.
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Figure 4.8: AbstractlndOr Computation.
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4.2 Fan-Out Graphs

We use fan-out graphs to give a precise definition of the propagatiarpafcel’s values through
parcel variables and datapaths. A fan-out graph is a directed acyapb.gThe nodes of the graph
are parcel variables and the edges denote the transfer of a valuéghiesource of the edge to its
destination. The labels on the edges of the graph stand for the conditienwhiath the transfer

takes place.

4.2.1 Definition (Fan-out Graph) A fan-out graph is a tupléNodes Sucg where:

e Nodess the set of nodes.
e Succis the successor relation.
e NodesC V., U NextRegPcl ConstantPcl

e SuccC Nodesx BExprV..;) x Nodess a set of fan-out edges.

Vg

l

pelP gy,

o N
pClNS’ubl pCZNSubZ

l ACCNeg,Sub

/
N eg

Figure 4.9: Fan-out Graph

Figure 4.9 represents a fan-out graph for the transfer of an inpegigato the registery.,. Solid
edges in the figure represent parcel copying from one variable them®otted lines denote parcel
transformations by datapaths. The label on an edge denotes the conddiemwhich the transfer
occurs. The omission of a label implies its condition is always true.

Given a fan-out graplfy we refer to the datapaths it references by
datapathgg = { dp € Dps| Arg(dp.V,.) N fg.Nodes# () }
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For the example in Figure 4.9 we haslatapathgg = { Sub }.

The fan-out of a parcel is represented by a fan-out gfapPut(qp, tp, ¢p) p that has as roots the
variables inp and as nodes all variables that derive their value transitively from thabkas in the
parcel in the pipeline ste@yp, tp, ¢p). When the pipeline step is known from context, we omit it,
and writefanOutp.

4.2.2 Definition(Parcel Fan-out)The fan-out graph of a parcelin (gp, tp, ¢p) is the fan-out graph
fg = (Nodes, Succ) defined inductively:

Base Case
e p C Nodes

e If wisaconstanty € p, and(w, b, v) € FanOutEdges such that(gp U tp) = b then
w € Nodes

Inductive Case If y; € Nodes and there exists a fan-out edge, b, v;) such thatlgp U tp) = b
thenv, € Nodes and (v, b, v) € Suce.

Formally, the roots of the fan-out graghis the set of variables defined as follows:
rootsfg = { v € fg.Nodes| A (v1,b,v) € FanOutEdges. (v1,b,v) € fg.Succ}

They are the roots of the fan-out digraph with the addition of the variabishtive an incoming
edge from a constant.

The variables in the fan-out of a pargeare denoted by*:

p* = (fanOutp).Nodesn (V. U NextRegPdl

Parcel variables receive their value either by assignment of an I'Tdelpaxpression or by being an
actual parameter for an output of a datapath instance. The meaningTd @aicel expression is a
set of pairs of form(expr, cond), whereezpr is a parcel variable, a constant@ioice and cond

is a Boolean control expression, with mutually exclusive conditions, suatheilpr is the value

of the expression whetond is true. The support function returns the set of expression-condition
pairs for a given expression. Because edges of a fan-out graptesved using the support of an
expressiont, the definition of the support function ensures that every variablers@umost once

in the support of an expression.

4.2.3 Definition (Support function) The support of an ITE parcel expressiois defined using the
auxiliary functionsupport t. The functionsupport is defined inductively:
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t = w with w constant thesupport t = { (w, true) }.

e ¢ = choice thensupporf t = { (choice, true }.

If t = v with v € V¢ thensupporft = { (v,true) }.

If ¢ =if b thent; elsety then

supporft = {(v,b Aby) | (v,b1) € support ty } U { (v, (=b) A ba) | (v,b2) € support ta }

supporfoins the multiple occurrences of the same expressionsupport t:

support = {(e, \/  b)|3b1. (e,b1) € supporft}
(e,b)esupport t

U1

Figure 4.10: Mux tree for the expressiidib; then v, else if b, then vs else if b3 then vs else vy .

For the expression
t = if b; then v; else if by then vy else if b3 then vs else v;
described in Figure 4.1@upport contains only one occurrence of the variabje
(v1,b1 V 2by A —by A —bs3)
For the expression in Equation 3.1 on page 44 we have:

support = { (pcIN g5, accipuit,Sub)-

(PCIN Neg, maCCUIL, Sub N ACCMult,Neg )
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(TMult1, DQCCMult,Sub N TGCC Mult, Neg N (0CC Mt Mutt V Stallppue)) }

Since accepts or stalls are mutually exclusive the example above simplifies to:

support = { (pcIN gy, accuruit,sub)s (PEIN Negs ACCAult,Neg) s (Thuit1, @CCult, Muit V Stall pruit) }

Fan-out graphs are inferred from assignments to parcel variables iretfsition relation and from
the arguments of parcel inputs and outputs of the datapath instancessyiording to each such
case we have a type of fan-out edge. The set of fan-out edgesasedieby FanOutEdges.

Assignments
(e,b,v;) € FanOutEdges => 3t € ITEParcelExpPipe).
‘o =1t € C.Tr A (e, b) € support
Datapath transformations

YV dp € Dps
Y pelP € Arg(dp.PcIP. Y pclN € Arg(dp.PcIN).
(pclP, true, pcIN) € FanOutEdges

4.3 Parcel Steps IrDiffAddMult

;% PA ::> =

S5
3 = S =
|0 S Sl S| 0

Figure 4.11: Pipeline ste@®, t%, ¢b) € Rp.
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In this section we recall th®iffAddMult example introduced in Figure 3.1 from Section 3.1.
DiffAddMult uses valid bits to represent whether data held by a parcel register is uaialid
data does not move through the pipeline. In the first state of the run, thel pagisters contain
invalid data:

¢ = (valid Neg = false A valid pqq = false A wvalid ppy1 = false A valid yy2 = false)

As described in Section 3.1, in tHiffAddMult pipeline invalid register values do not generate
requests and therefore do not propagate.

We consider a computation of tHaiffAddMult pipeline, the first step of which is described in
Figure 4.11. In this step the pipeline receives an input value that reysesarcelp, such that
pa = {wv; }. The parcel propagates through theb instance, the result of which is stored in
registerry.,. The Sub datapath produces the control outpetV 5, = 001

Vi

l Variable | Value

v; (—30,10,5, mult)
pclP g, | (—30,10,5,mult)
pClNS'u,bl <—40, 5, mult>

pClPSub

R .

SN
CIN CIN pelN gupy | (—40,5)
DCLN gyp1 DCUN gyb2 T‘Neg' (~40, 5, mult)
l ACCNeg,Sub selNSub 001
T;Veg

Fig. 4.12b.Parcel and control

Fig. 4.12a.Fan-out graph. environments.

Figure 4.12: Parcela = { v; } in pipeline stef(q®, t%, ¢b).

The fan-out graph of parcely and the parcel and control environments are described in Figure 4.12.
The parcel corresponds to the operatjon 30 — 10| x 5. It should therefore take the following
path through the pipeline:

Sub — Neg — Mult — Mult . ..

The fan-out graph shows that the parcel propagates from the iapiatole v;, through theSub
datapath and into the registet,,. There are two environments that describe the parcel step. The
parcel environment valuates the variables in the fan-out of the pandeb@presses the datapath
transformation of the parcel’s values. The control environment valihéesontrol variables that
appear as arguments to the datapaths that process the parcel. In thiseetrts@sformation through

the Sub datapath assigrn301to the control variableelN g .
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. =)
= —> &
[}
§ pa = 0
S = S| pB E DA
;?: 0 § 0 < =
Figure 4.13: Pipeline ste@}, t, q3) € Rp.
T'Neg
l Variable | Value
T'Ne (—40,5,mult)
IP g
pe Neg PClP yegy | (—40,5,mult)
: PCIN ey | (40,5)
/
pclN Neg reset Nyl TMultl/ 539 5)
T'Mult2
l QACC Mult,Neg l SelNNeg 10
r1/\4ult1 rJ/\Juth
Fig. 4.14b.Parcel and control
Fig. 4.14a.Fan-out graph. environments.

Figure 4.14: Parcela = { r'neg, Taruie’ } in pipeline stef(gp, th, q3).

In the second step, described in Figure 4.13, the pipeline transfers parérom ryeg t0 7az1

and inputs a new parcel into registerr,44. The two parcels and the control outputs they generate
are described in Figure 4.14 and Figure 4.15. The newly receivedIpgycepresents the operation
|12 — 10| 4+ 2 and takes the patblub — Add. In the current step the registey;, ;- is reset. Since
this value is not actually used in the next cycle we display it*ds Also, note that because the
value assigned to,;:2 IS Not dependent on the parcel’s current values, to reflect its inclirdion

pa in the next step, we add;;2’ to the parcel in the current step.

In the next step, the pipeline computation progresses as described ie Bigér Parcepc enters
the pipeline and propagates through g datapath intay,,, as described in Figure 4.17. Parcel
pc denotes the operatid@ — 3| + 5. It therefore takes the patfub — Neg — Add. Parcelpa
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U5

l

pClP gy

R .

PCIN gy

Fig. 4.15a.Fan-out graph.

reset pruit

l

N
PCIN gypo

aCC Add, Sub l

/
TAdd

Variable | Value

V5 (12,10, 2, add)
pclP gy, | (12,10,2, add)
pcIN gup1 | (2,2, 2dd)
pClNSubZ <2a 2>

TAdd (2,2)

selN g | 010

Fig. 4.15b.Parcel and control

environments.

Figure 4.15: Parcelg = { v; } in pipeline step(gp, tp, q3)-

bc

Sub

Neg
=

bB

Add

Mult

PA

—

Sub

y4e

Neg

Add

B

pA

Mult

Figure 4.16: Pipeline stefg3, t2, ¢3) € Rp.

proceeds through one round of the multiplication operation. Paggeindergoes the addition and
is ready to tranfer out. To preserve ordering betwegrand pg, the pipeline control stalls parcel
pg. The computation steps of the two parcels are represented in Figure 4. Fagame 4.19. The
algorithm described in Section 3.1 performs the 8-bit multiplication by 4-bit multifidioa and
additions. For parceda, using the notation in Figure 3.8, we havex ¢ = low(40) x low(5) =

8 x 5. The partial results of the multiplication are stored-ip,;;2. The fan-out graph of parcely
shows that the multiplication uses registegg,;1 andry:2 as arguments, and in the next state, the
value of register),;;1 remains unchanged white,,;;» gets updated with a new value produced
by the multiplier. The parcel environment corresponding fovaluates all variables in the parcel's
fan-out graph. We do not show values that are inconsistent at this sfae multiplication, and
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Uy

l Variable | Value
; 2,3,5,add)
lP UZ < )Yy Yy
p,c SUb pClPSub <27 3a 57 add>
& pelN g1 | (—1,5,add)
o
cIN cIN pelN gy | (—1,5)
DCLN gyp1 PCUN gyp2 7"Neg’ (1,5, add)
l QACCNeg,Sub selNSub 001
T;Veg

Fig. 4.17b.Parcel and control
environments.

Fig. 4.17a.Fan-out graph.

Figure 4.17: Parcelc = { v; } in pipeline step(q3, t3, ¢3).

denote them by** . The control environment shows the current and the next controkstatae

multiplication.

The fourth step of the pipeline computation is shown in Figure 4.20. In this stefuthdatapath
processes the newly input pargah. Parcelpp is a multiplication operation and its request to
the multiplier datapath is not accepted. Pangglis once again stalled to preserve ordering with
parcelpa which progresses through another step of the multiplication operation,sastal in
Figure 4.22. Because @t, pg also stalls, as shown in Figure 4.21.

In the fifth step of the pipeline computation, described in Figure 4.23, paicelompletes the
multiplication, as shown in Figure 4.25, and therefore, both it and pasgdransfer out of the
pipeline. The progress of parcet is described in Figure 4.24. Since théult datapath is free,

parcelpp is granted its request and moves ini@,;1 -
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TMult1

|

ace pyit, Mult V' Stall pyis

/
T Muit1

T Mult2
PP ppupo
e
PN ppur PEIN ppypo
l lachult,Mult
Vo2 'r/
o Mult2

Fig. 4.18a.Fan-out graph.

Variable | Value

T Mult1 (40, 5)

T Mult2 ok

PelP yper | (40,5)

PClP ppuyo | TMuit2

PCIN ppn | ***

PCIN o | (@ X ¢ =8 x 5)
rMultll <40a 5>

TMuth/ <a X =8 X 5>
,Uo2 *kk

stateln 000

stateOut | 010

Fig. 4.18b.Parcel and control
environments.

Figure 4.18: Parcela = { ryui1, "2 i pipeline step(qa, t3, g3).
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T'Add

l Variable | Value
pCZPAdd TAdd <27 2>

' pelP 444 | (2,2)

v pelN 444 | (4)
PeIN pqq Vo1 (4)

!
l stall 144 TAdd (2,2)
Uol Tadd

Fig. 4.19b.Parcel and control
Fig. 4.19a.Fan-out graph. environments.

Figure 4.19: Parcelg = { 7444 } in pipeline steg¢?, t3, g3).

-~ =
S| #o —> &
> &
= | PC = | Pe
v
< 3 S| B S| pa
<| < < =

Figure 4.20: Pipeline stefg3, t3, ¢3) € Rp.
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T'Neg

1P Variable | Value
PCU Neg T'Neg (—1,5,add)
: pclP e, | (—1,5,add)
pClNNeg pClNNeg <17 5>
stall neg TNeg' (—1,5,add)
TJ,Veg selN neg | 01

Fig. 4.21b.Parcel and control environments.
Fig. 4.21a.Fan-out graph.

Figure 4.21: Parcelc = { rne, } in pipeline stef(gp, t3, gp).
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TMult1 T Mult2

| l

PCLP ppui PP ppupo
DR RN
PN ppur PEIN ppypo
ace pyit, Mult V' Stall pyis l lachult,Mult
r ) r
Multl 02 Mult2

Fig. 4.22a.Fan-out graph.

Variable | Value

T Mult1 (40, 5)

T Mult2 (ac =8 x 5)

PelP yper | (40,5)

PP ypuya | T2

PN ppr | *

PCIN o | (ac =8 x 5, low(bc) = 10)
it (40, 5)

TNl (ac = 8 x 5, low(bc) = 10)
’U02 *kk

stateln 010

stateOut | 100

Fig. 4.22b.Parcel and control
environments.

Figure 4.22: Parcela = { razuie1, "auie } in pipeline stefgp, t3, g3).
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= =
S| #o —> &
= j=p
= | Pc = 0
3 3 < | pc =
;% B § pa < =
Figure 4.23: Pipeline stefys, t5, q3) € Rp.
T'Neg
lfl’ Variable | Value
PO Neg T'Neg (—1,5,add)
: PelP yey | (—1,5,2dd)
pClNNeg pCUVV/Neg <17 5>
ace TAdd (1,5)
Add,Neg l selN y. 01
eg

T'Add
Fig. 4.24b.Parcel and control environments.
Fig. 4.24a.Fan-out graph.

Figure 4.24: Parcelc = { rne, } in pipeline ste(gp, tp, q3).
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TMult1

|

l

Vo2

Fig. 4.25a.Fan-out graph.

Variable | Value

TMult1 (40, 5)

TMult2 (ac = 8 x 5, low(bc) = 10)
PelP ypy | (40,5)

PP pruiga | TMule2

PCIN puisr | (200)

PEIN ppupn |

Vo2 (200)

stateln 100

stateOut | 111

Fig. 4.25b.Parcel and control

environments.

TMult2

l

p{:lP Mult2

Figure 4.25: Parcela = { rasuie1, "auia } in pipeline stefgp, tp, g3).

79



Our example illustrates the concept of parcel step. The parcel is a gfpajpcel variables, register,
combinational and next-state — in the case when the parcel incorporagister variable that is
being assigned a constant@ioice. The parcel step is a record of the parcel’s transformation in
one pipeline step. The fan-out graph of the parcel shows the propagéhthe parcel’s values and
the two environments, parcel and control, document the computations cdityeaths.

4.4 Parcel Steps

A parcel computation consists of a sequence of parcel steps, edtlsteycoccurring within a
corresponding pipeline step. A parcel step consists of the parcetsntistate, transition label and
next state.

The state of a parcel is a substate of the pipeline model. It is defined asieonement over parcel
registers. The state @fis gpa € PEn\RegPc) such that:
aPa=ap|, RegPcl

Since the domain afp does not contain combinational variables, we hgypp N RegPcl™ 9P | »
and therefore we can write

QPA:CJP\p

If a parcel contains no registers then its state is the empty envirorfiment

4.4.1 Definition(Parcel Step)A parcel step of parcel C V,; U NextRegPcis a triplet(gpa, tpa, gpa’):

e gpa € PEn{RegPc] is the parcel’s current state.
e gpa' € PEnRegPc] is the parcel’s next state.

o tpa = ((Nodes, Succ), ey, ectri) is the step label.
e (Nodes, Succ) is a fan-out graph.

e roots(Nodes, Succ) = p

e ¢, € En Nodes N CombPc)

® ccri € PENUV 1)

e domgpa = Nodes N RegPcl

e domgps' = {v | v' € Nodes N NextRegPc}

80



e Nodes contains all the parcel arguments of the referenced datapaths.

U Arg(dp.Vye) € Nodes (4.1)
dp€edatapathg Nodes,Succ)

e ¢,y Valuates exactly the control input and output arguments of the refetelatapaths:

dom(ecyr1) = U Arg(dp.V i) (4.2)
dpedatapathg Nodes,Succ)

A parcel step corresponds to the propagation and transformation o&tbel’p values through the
variables and datapath instances in its fan-out. Propagation consistgy@rigthrough variables
and datapath transformations. The transition label of the parcel stejidsste parcel between the
two endpoints, its current and next state and captures the behavioer @dithpaths that transform
the parcel. The label consists of a tugfanOutp, ey, e.1) Wheree,, ande.,,; are parcel, and
respectively, control environments over the variables in the fan ouegddicel. The transition label
is a full record of the parcel’s effect on combinational variables.

U1 V2

dp,y —\ dpo 4 l l
| I Control

é /i:, ] | |
— /<

U3

T3 4

Vo

Figure 4.26: Parcel = { r1, » } can have up to 8 distinct fan-out graphs.

We use the pipeline model in Figure 4.26 to illustrate the need to have the pdacetsit graph
on the transition label. The parcel= { r, » } can propagate into registefin 2 x 2 x 2 =8
different ways, given that for each datapath there are two diffevaps to select its input argument.
At a minimum, the label of the parcel’s transition should describe the argumesashodatapath in
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terms of values derived transitively from the parcel’s values. In oampte, the conditions on the
edges of the fan-out graph of the parcel, i.e. the mux select signals,epapd on control variables
that are not derived from the parcel.

In a pipeline step, the parcel's values move through combinational dategeadhsarcel variables,
the results of which propagate into next state parcel registers, whichnipndenote the next state
of the parcel parcel. For a parcelthe parcel step contained in the pipeline model step is a triplet
(gpa, tpa, gpa’) such that:

qpa is the parcel’s current state.

tpa is the step label.

gpa’ is the parcel's next state:

r
qpa = qp | {v | € p* N NextRegPc}

tpa = (fanOutp, ey, ecyry) Where:

— eper € EnV(p* N CombPc) is defined by:

epel = 1p | p* N CombPcl~ tp| CombPcl

— ectri € PENVV 4y) Where:

dom Ectrl = U Arg( dp . Vctrl)
dp€datapathgfanOutp)
6ctrl(v) = (QPU tp)(?))

The parcel’'s next state is obtained by projecting out the pipeline’'s netet st@r the next-state
registers in the parcel’'s fan-out. The parcel environment is obtainguidjgcting out the pipeline
transition label with respect to the combinational variables in the parcelsdan The control

environment is defined over the actual parameters for input and outptrot variables of the
datapaths referenced by the fan-out graph. For each variable imigidgathe control environment
returns its value in the pipeline step.

Given a parcep, we denote its next state IpcINextStatey. The transition label of the correspond-
ing parcel step is denoted IpglTransp. The step itself is denoted Ipc/Stepp.

As an example consideic = {rne, } in the pipeline stefgp, th, g3), shown in Figure 4.27.

According to the definition we have:

g = qp| TNeg (—1,5,add)

82



T'Neg

l

pclP Neg

\4
pclN Neg

GCCAdd,Neg l
,r,/
Add

Fig. 4.27a.Fan-out graph.

Variable | Value

T'Neg (—1,5,add)
pelP e, | (—1,5,add)
PeIN neg | (1,5)

TAdd, <1, 5>

selN neg | 01

Fig. 4.27b.Parcel and control environments.

pClPNe

TAdd

Fig. 4.27c.Parcel Step

T'Neg

= 01
= pClNNeg

Figure 4.27: Parcel step for parggi.

€pcl (pClP Neg
€pcl (pClN Neg

€ctrl (SEZNNeg

= (fanOutp, eper, ectri)

_ 5 _
= (—1,5,add)
= <175>

= 01
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The parcel step fopc is described graphically in Figure 4.27c. The transition label is described
by a set of assignments that can be used to infer the fan-out graphattel pnd the control
environments.

The natural generalization of a parcel step contained in a pipeline stepemtive the context of
the pipeline stefgp, tp, ¢p) and use standalone environmegjs ande,,;. The parcel environment



(qPa U eper U gpa’ [NextRegP/ oo} ) must implement value copying correctly:

Y (v, b, vg) € (fanOutp).Succ v, ¢ PclP
= 4.3)

(gPa U eper U gpa’ [NextRegP poopd ) (ur) = (gpa U eper U gpa’ [NeXREOPY poop ])

45 Parcel Automata

A parcel automaton is a labeled transition system defined by parcel stepstransitions of the
parcel automaton have for(pa, tpa, gpa’) for a parcel stefqgpa, tpa, gpa”’) such thagpa' C gpa’.

4.5.1 Definition(Parcel Automaton)A parcel automaton is a labeled transition syst&pa, Rpa, Tpa, Ipa)
such that:

e Qpa C PEnVRegPc) U { finalpa }.

Tpa consists of a subset of parcel step labels and the empty transitiorflabel

Rpa € Qpa x Tra x Qpa consists of a set of parcel transitions:

{ (gpastra, qpa’) | arA’ # 0 A 3 qpa’’. qpa’ C gpa” A (qpa, tpa, qra”) is a parcel steg U

{ (qPA, tpa, finaIpA) | 3 qu/. (qu, tpa, qu/) isa parcel step}

(finalpa, 0, finalpa) € Rpa

Ipa € Qpa.

We denote the set of parcel automata for a given pipeline mBielby P& Pipe).

The parcel automaton described in Figure 4.28 and Figure 4.29 modelsrtied gamputation for
parcelpa in our example. In the first step, we hawg = { v; }. Since the parcel consists of a
combinational variable, its state s By reading the label on the outgoing transition from state

() we infer that the parcel propagates through thé datapath into registery.,. The datapath
control inputs and outputs are highlighted on the transition label.Stidedatapath has the control
outputselN g, = 001 The second transition describes the movement of the parcel through the
Neg datapath inta,;;1. The assignmenty .2’ := reset yrr @ssignsg0, 0) that denotes an 8-bit
number and a 4-bit one. The remaining two transitions of the parcel autowatctude the parcel
computation. In the last transition, the automaton reaches the final state diegdtealrs, from
which only the empty transitiofi is possible.
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v; = (=30,10,5,mult)
pclPgy, = v
TNeg = PN gyp1
TNeg = (—40, 5, mult)
pclP e, =  TNeg
Tymutt’ = PCIN pgg
ryul = (40,5)
Tvutz = (0,0)
PelP gy = TMuitl
PelP pypuyy = TMult2
stateln = 000
stateOut = 010
TMultl’ = TMult1
a2’ = PCN ppuo
pClPMultl = TMult1
PelP py = TMult2
stateln = 010
stateOut = 100
TMulf,ll = TMultl
Tauite’ = PCN pu0

TMultl

TMult2

Figure 4.28: Parcel automaton for parpgl.

Figure 4.30 describes the transition of a parcel automaton that models tref piitelpc in step
(g3, t3, qp), previously described in Figure 4.21. During a stall, the state of the panteiaton
does not change.
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TMult1 (40, 5)

TMult2 (a X ¢ =8 x 5, low(bc) = 10)

pelPyppy = TMuitl
PelP ppgs = TMuit2
stateln = 100
stateOut = 111
vo2 = (200)

Figure 4.29: Parcel automaton for parpgl (continuation).

T'Neg
UL Variable | Value
pe . Neg T'Neg (—1,5,add)
: PelP yey | (—1,5,2dd)
pClNNeg pClNNeg <17 5>
stall yeg TNeg' (—1,5,add)
r]/Veg selN ey | 01

Fig. 4.30b.Parcel and control environments.
Fig. 4.30a.Fan-out graph.

pclPNcg =  TNeg
Neg = (—1,5,add) selNyo = 01
T'Neg/ = TNeg

Fig. 4.30c.Parcel transition for a stall.

Figure 4.30: Parcelc = { rne, } in pipeline ste(gp, t3, gp).

86



v, = (10,20,5,add)
pclPgy, = v
Taad" = PeIN gupo
TAdd = (246, 5)
pelP yq0 = TAdd
Vo1 = 251

ﬁnalpA [1}

N

Figure 4.31: Parcel automaton illustrating an unreachable parcel computatio
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Parcel automata can also describe computations that do not correspartdatioparcel computa-
tions in the pipeline model. In parcel computations embedded in pipeline compstatatrol
dependencies between control variables are determined by assigninethis.computations of a
parcel automaton, control variables are free and such dependerayesot be preserved. The par-
cel automaton in Figure 4.31 describes a parcel computation that is nbatdadénDiffAddMult
The condition on the fan-out edgecIN g,;,, acc add,sub, T4dd’) IS NOt true wherselN g,;, = 001 In

the parcel automaton the variablec 444 5,5 appears to be independentwiN g,,. The addition
operation interprets the tuple-10, 5) as a pair of two positive 8-bit numbers. In two’s complement
—10 is represented &6 — 10 which leads to the addition producing the re4i6 + 5.

We can characterize parcel stggsa, (fanOutp, e, eqtri), gea’) that are consistent with the be-
haviour of the pipeline datapath. The inputs and output arguments of esmbath instance that
appears in a parcel step must be transformed according to a step ofrésponding datapath. For
each datapath instance there exists a step such that the input and otighlesan its transition
label are the same as the arguments provided by the envirormment e.,;.

V dp € datapathgfanOutp).
3 (¢p,tp, qp) € LTS(dp.C).Rc.
Voedp.VpyUdp.Vey.
(€ctrt U eper) (Arg(v)) = tp(v)

(4.4)

When Equation 4.4 holds, we say the transition satisfies value propagatoiglththe datapath.

4.5.2 Definition. Consistent Parcel Automaton We call a parcel automatorsistentf its transi-
tions satisfy value propagation through the pipeline datapaths.

Inconsistent parcel automata are also possible. For instance, théaa#meaton in Figure 4.32 is
perfectly legal even though the subtraction produces the incorredt (¢s2) instead of(5, 2).

4.6 Abstractions Of Parcel Automata

Datapath abstraction replaces the concrete datapaths with abstractatmetaih the control visible
behaviour of the datapath. The partial orders on parcel automata sitmalation and language
containment provide our definition of control visible datapath behaviour.

When comparing concrete values to abstract values we must providentbeceatext. The context
is given by the registers that hold the parcel's values and the fan-aphdhat specifies how the
values propagate. We define the label of parcel automaton states asitldnsnso that the con-
texts of the values and behaviours they represent are the same. Simomtited visible datapath
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v = (10,5,2,add)
pclPg,, = v
Tada’ = pclN gupo

pelP p44
Vo1

TAdd

finalpa 0

N

Figure 4.32: Parcel automaton showing inconsistent datapath behaviour.

behaviour that we are abstracting for appears on the edges of thed @atamaton, the label of the
parcel automaton edge must also contain the values of the control vatizdtieppear on the edges
the fan-out of the parcel.

In the remainder of the thesis we use the following notation for the concretastract parcel
automata:

pa, = (Qpac, Rpac, Trac, Ipac)

pa, = (QPaa;RpPaa, TPAa, IPAa)

Therefore, parcel states have the same label if they are defined evsatie set of register vari-
ables. Transitions have the same label if their fan-out graphs and tentiiconments coincide.
According to the definition of abstract interpretation of pipeline models ptedeén Section 3.3,
the ITE expressions. and respectively, that are assigned to a parcel variablsatisfy the con-
dition e, =4; e, occurrences of concrete constantgimmay be replaced by abstract constants in
eq. We employ &,;’ to define equivalence of fan-out graphs.

We use the notation

tpac = <fgc7 Epcles ectrlc>

tpaa = <f.gg,7 €pclas ectrla>
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We denote label equality for both states and transitions using the opetgior *

qPAc =PA qPAq = (dOMgpa. = domqpaa) V (gpac = finalpac N qpaqa = finalpa,) (4.5)

tPAc =PAtPAL =

V (ec, b,v) € fg,..Succ 3 (eq,b,v) € fg..SuUCC e, =4 eq
A

V (€q,b,v) € fg..Succ 3 (ec,b,v) € fg,.SUCC e, ~=4; e (4.6)
A

Ectric = Ectrla
V

tpac =0 N tpag =0

In Equation 4.6 the comparison of the fan-out graphs is made moduld: ‘the fan-out graphs
are identical with the exception of constants. In that equaticende, may only be constants or
variables.

We say an abstract parcel automaton is consistent with respect to denkthe abstract fan-out
edges corresponding to a concrete fan-out édgeb, v) are all identical tqwy,, b, v). If the parcel
automaton is consistent with respect to constants, then in abstract inteoprgtse constant. is
replaced byw,.

Figure 4.33 and Figure 4.34 describe an abstract parcel automatomrphesents parcel compu-
tations of an abstraction of thBiffAddMult pipeline model. The abstract modBIffAddMult,
is defined as an abstract interpretation of the concrete one. We dendabstinact datapaths by
Subg, Neg,, Add,, Mult,. From the parcel automaton we infer that the datagath, is non-

deterministic:
pClPSub ‘ selNSub ‘ pClNSubl pClNSubZ

a0 010 as as
(e7)) 001 a1 aq
a0 100 s ay

Abstract multiplication is also non-deterministic. We ust * to denote any constant iB3. When
the parcel automaton is in the abstract stajg defined by

qPaa(TMut) = o

4PAa (TMulw) = Qa7

it can non-deterministically remain in the same state for an arbitrary humbemsitioms under
any possible combination etateln andstateOut or it can transition to the final state, indicating
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v =
pclPg,,, = v v;
=
ll\;Add/ — el pelPgyy = i Sef«NSM)/
peilN gyp1 = Q2 Mult1
selN gup = 001 pelN o
TNeg, = pClNSubl
pelN g0 = o1
pelP e, TNeg
= ooz T = pelN
Tadd’ = PCIN ye,
TAdd = @2
T Mult1
T Mult2
pelP pryye =
PelP pryyy =
stateln =
stateOut =
! —
TMultl =
! —
pclPagq = TAdd TMult2” =
Vol = a3
pelPppgpn =
pelP ppgre =
TMult1 stateln =
TMult2 stateOut =
Tautl’ =
a2 =
pelP gy = TMuitl
ol pelP s = TMuit2
@ stateln = 100
stateOut = 111
Vo2 = Qg

Figure 4.33: Abstract parcel automaton.

= V4

100
PelN g2

as
TMult1
000
010

TMultl
PCIN pryizo

TMult1
TMult2
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pclP e, = TNeg pelP ., = TNeg
TNeg ro= TNeg TNeg ! TNeg

pelP 444
TAdd = 02 TAdd

Figure 4.34: Abstract parcel automaton (continuation).

TAdd
TAdd

the end of the multiplication. Intuitively, the abstract parcel automaton hasadept computations
to each of the parcel computations described in Section 4.3.

Simulation on parcel automata is a simulation between labeled transition systemseeves
label equality on states and transitions.

4.6.1 Definition (Simulation Of Parcel Automata)A simulation relationSpa € Qpac X Qpaq
between the two labeled transition systems is a parcel automata simulation relation if:

e Spa respects the state labeling:
Y qpac- ¥ qpaa- (GPAc, @PA0) € SPA = qPAc =PA qPAa (4.7)
e Spa respects the transition labeling:
tPAa ,
dPAa > qPAa
Spa Sea = tpAc =PA tPAq (4.8)
tpac ’
qPAc —— qpPAc

e Spa satisfies the property:

Y gpac- ¥ qpaa- (QPAc; qPAG) € Spa = (4.9)

V vars C domgpac. (qpac | € Spa

vars® 4PAa | Uars)
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Equation 4.9 in the definition of simulation of parcel automata is demanded bydtina parcel
automata states are composites. A transitign, tpa, gpa’) € Rpa corresponds to a parcel step
which uses only the current state registerggpy . It is therefore semantically correct to have the
transition(gpaz, tpa, gpa’) for any superstatepa; C gpaz. It is also possible that given a substate
gpa2 C gqpar the transition(gpaz, tpa, gpa’) is still well defined. In both cases, such transitions,
though allowed under the definition of the parcel step, might not be pdtpofThis is exactly the
reason for which Equation 4.9 compensates.

4.6.2 Definition. We call a parcel automatariosedif it satisfies the following two conditions:

e For each transitioigpai, tpa, gra’) € Rpa, the transition relatioRpa contains all the similar
well-defined transitions of both substates and supersipie®f gpai :

V (gpat, tpa, gpa’) € Rpa.

V qpaz € Qpa.
gpr2 € gpat A (gpa2, tpa, qpa’) 1s legal = (qpaz, tpa, grA’) € Rpa) (4.10)
A

V qpa2 € Qpa.
apa1 C qpa2 = (qpa2, tpa, qpaA’) € Rpa)

e For each transitiofigpa, tpa, gpa’) € Rpa, the transition relatiorRpa contains all transitions
to non-empty substates,’’ of gpa’:

V (gratra, gpa’) € Rpa.
Vapd' € Qpa.
qpa’ # 0 A qpa” € qpa’ = (qPa,tPa,qpA”) € Rpa

Closing a parcel automaton is a syntactic operation. It does not add napattabehaviours.

The following proposition states that we do not need Equation 4.9 in the deiinit&imulation for
parcel automata if the parcel automata satisfy Equation 4.10.

4.6.3 Proposition. If pa, andpa, satisfy Equation 4.10 and there exists a simulation relatign
that satisfies Equation 4.7 and Equation 4.8 from the definition of simulatiorafeepautomata,
then we can defin€pa; by extendingSea such thatSea; is a simulation for parcel automata.

Proof. We defineSpa; as follows:

_ Spa1 =Spa U { (gPac, @Paa) 13 (qPAc1; qPAa1) € Spa. Fwars C domgpac . (4.11)

vars # 0 A gpac = qpac1 | vars /N 4PAa = aPaat | o )
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By constructionSpa satisfies Equation 4.9. It also preserves labeling of states (Equatiorive?).
need to show it is a simulation relation that preserves transition labeling.

tpAa
qPAq > qpaa
Spai Sear (4.12)

tPAc ’
qPAC e qPAC

Case 1(gpaq; grac) € Spa. Equation 4.12 is equivalent to Equation 4.13 which holds bec&pse
is a simulation relation.

tPAa
GPAa T g
Spa Spa (4.13)

tPAc ’
dPAc — gpAc

Case 2According to Equation 4.11 there exigiac 1 € Qpac, gpac1 € Qpa, andvars C domgpac1

suchthatpa: = gpact | 4. @NAGPAG = GPAGT | - SINCEPa, is Closed we haveypac 1, tpac, grac’) €
Rpa.. Since(qpac1, gpaa1) € Spa the following diagram commutes:

tpa
qPAa1 ‘a‘”> qPAa/

A

Spa Spa (4.14)
tpac ’
dPAc1 —— qpPAc

Since

(qPac; tPAc, gPAC’) Rp.

S
(qPAa1:tPAG: gPA.’) € Rpy
C

4PAa dPAa 1

it follows that the transitiorigpaa, tPaq, grpas’) is well defined and sincga,, is closed we have
(qPAa: tPAG, qPAd’) € Rpaq (4.15)
Combining Equation 4.15 with the fact th8ta C Spa; We obtain Equation 4.12.
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O]

Simulation holds between the abstract parcel automaton and the conctkeguaomaton in Fig-
ure 4.28 and Figure 4.29 that models the concrete paicel he simulation relatiosp, is defined
by the following concrete-abstract pairs:

Concrete Abstract
0 0
rNeg = (—40,5,mult) TN — 0
rvurr = (40,5) TMultl = 04
mvuz = (0,0) TMultl = Q5
Tvurr = (40,5) TMultl = O
Tmuz = (@ X ¢ =8 X 5) TMult2 = Q7
TMultl = (40 5) TMultl = Q6
rvuz = (a x ¢ =8 x5, low(bc) = 10) | ryue = o
finalpa finalpa

Language containment is defined with respect to the state and transition dteés parcel au-
tomata. Parcel runs are denoteddp € £(pa). Fork € N we use the notation:

opa(k) = (qba. the)

Two runsopa. € L(pa,) andopa, € L(pa,) are equivalent if they specify states and transitions
that have the same label. We overload thga’ operator to denote equivalent runs:

_ k k k k
opac =PA OPAq =V Kk € N. gpa. =PA qpaq /\ thac =PA tpaq
Language containment is defined using run equivalence:

£<pa’c) Cra ﬁ(paa)

Vopac € L(pa,). opas € L(pa,). opac =pA OPAa
Recalling the example used for simulation between parcel automata, for ttod tlum parcel au-

tomaton that represents pargal there exists an equivalent run of the abstract automaton shown in
Figure 4.35.
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v, = Qo
pclPgy = v
TNegl = pClNSubl
pelP e, =  TNeg
it = PCIN peg
PelP prupe = Qs
PelP gy = TMuitl
stateln = 000
stateOut = 010
TMultl] = TMuitl
w2’ = PClN o
TMultl =
TMult2
PClP prypn = TMuit
PelP pye = TMult2
stateln = 010
stateOut = 100
TMulf,ll = TMultl
Tauite’ = PCN po
T Mult1
TMult2
pelPypyyn = TMuitl
PelP s = TMuit2
stateIn| = 100
state Out = 111
Vo2 = Qg

Figure 4.35: Abstract equivalent run corresponding Ao
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4.7 Abstract Interpretation Using Parcel Automata

In this section, we describe how we can obtain abstract interpretatioresafticrete pipeline model
using abstract parcel automata. In the previous sections, parcel aatomie used to represent
datapath behaviour of the pipeline model. In this section, we examine how tlpattateehaviour
represented by parcel automata can be used to define datapath circsiits divect application,
abstract interpretations of the concrete pipeline model can be obtaineditiyng abstract datapaths
from abstract parcel automata.

We recall the equation that was used to define a consistent parcésieffanOutp, ey, ectri), qpa’):

V dp € datapathg$fanOutp).
3 (gp, tp, qp) € LTS(dp.C).Re.
VoedpVpyUdp.Vey.
(€ctrt U eper) (Arg(v)) = tp(v)

(4.16)

Equation 4.16 characterizes parcel automaton transitions in terms of ddtabatliour. By refor-
mulating it, we characterize datapath behaviour in terms of the parcel autoriétarse the parcel
automaton to define the transition relati@p of a labeled transition system that corresponds to a
combinational datapatilp. The transition relatiorRp is the union of all datapath behaviours that
are specified in the parcel transitions of the parcel automaton:

Rp ={(0,tp,0) |
3 (gea, {19, €pels €ctrt)s qra’) € Rpa.
dp € datapathgfanOutp) ANV v € dp.Vpg U dp.V i

tp(v) = (ectri U epet) (Arg(v)) }

(4.17)

We illustrate Equation 4.17 using the abstract parcel automaton in Figure #l83e are three
transitions of the abstract parcel automaton that mention argumentsfoiluatapath. We write

RSub = { (®7t17 Q))v (®7t27 ®)7 (®7t37 @) }

And the three transition labels are defined by:

ti(pclPgy) = o to(pclPg,p) = o ts(pclPg,) = o
tl(selNSub) = 010 A tQ(SelNSub) = 001 A tg(seleub) = 100
i (pCZNSubl) = 2 t2 (pClNSubl) = o1 i3 (pClNSubl) = Oy
t1(pelN gyp2) = a2 ta(pelN gp0) = a1 t3(pelN gyp2) = 4
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1 typein_tyis{ap };

2 typeouttyis{aj,as,ay};

3

4 ckt Suby(pclP :in_ty)(pcIN, : outty, pcIN, : outty, selN : bitvec[2])
5 var

6 case:1..3;
7  assign

8 case :=choice
9

pelN | =
10 if case == then ay
11 else ifcase == 2hen oy
12 elseay;
13 pclN o =
14 if case == then ay
15 else ifcase == 2hen a3
16 elseay;
17 selN =
18 if case == lthen 010
19 else ifcase == Zhen 001
20 elsel10Q
21 end

Figure 4.36: Circuit equivalent tBg,;.

The transition relatiorRg,; is represented by the circuit in Figure 4.36. We can similarly obtain
the circuitsNeg,,, Add, and Mult, that are characterized by the transitions of the abstract parcel
automaton. We have arrived at the point where we can use the abstreek gutomaton to give an
abstract interpretation of the concrete pipeline datapath. We denote tipattistareated from the
parcel automatopa,, by Dpspa,. The abstract interpretation obtained this way is denoted as:

Pipe, = Pipe, |DPSpa,/ Dps,

The abstract parcel automaton defines the abstract datapaths. diovparf abstract interpretation
we also replace occurrences of constants in the concrete exprdsgiabstract counterparts. If the
abstract interpretation in Equation 4.7 holds, then the abstract parcelatotois consistent with

respect to constants.
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4.8 Summary

Parcel automata formalize the behaviour of groups of related data vahlks] parcels, with re-
spect to the pipeline datapath. Abstract parcel automata lead to the defimitibatract datapaths
which are used to create abstract pipeline models using abstract intégoreTdne conditions and
correctness of datapath abstraction using parcel automata are degtibe the next chapter.
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Chapter 5

Datapath Abstraction Framework

Section 5.1 presents parcel maps and the concept of parcel indeperntat allows the runs of
the pipeline model to be decomposed into runs of the parcel automaton. Seetidescribes the
obligations needed to prove a parcel map satisfies the conditions of paleeéndence. Section 5.3
presents additional requirements that must hold of the concrete pipelind maxtder to apply
abstraction using parcel automata. The soundness of abstraction asietjgutomata is proven in
Section 5.4.

5.1 Parcel Independence

In the previous chapter we described parcel automata as a formalisne fepitesentation of parcel
computations. One of the examples showed the simultaneous parcel compsufadionere taking

place in the first few steps of a pipeline computation of Bi#AddMult model. Parcel indepen-
dence is a property of pipeline computations that states that the computatiohe dacomposed
into parcel computations that interact only through control variables.paheel computations are
independent of each other if they do not simultaneously use the samévzaiables or datapaths.

In the following we formalize the decomposition of pipeline runs into indepetnpia@rcel compu-
tations. We first define the decomposition of a pipeline step into parcel stepthan state the
condition under which the parcel steps form parcel computations. Quoagh uses a function

PclMap : Rp — P(P(Vpa U NextRegPal)

that returns the set of disjoint parcels at each step of the pipeline modeé dieethree properties
that the parcel map must satisfy.
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e Every parcel variable belongs to a parcel’s fan-out.

v (qP; tp, q;;) € RP‘

(5.1)
Vv € Vpu U NextRegPcl3 p € PclMap (qp, tp, qp). v € p*

e Datapaths transform only one parcel at a time.

Y (gp, tp, qp) € Rp.
Vdp € Dps.V p1 € PclMap (qp,tp, qp). ¥ p2 € PclMap (qp, tp, qp). (5.2)
Arg(dp.PclP N pf # 0 A Arg(dp.PclP N p3 # 0 = p1 = p

e The state of a parcel in the current step is part of the next state of @l patie previous step.

Vap.Vitp.Yqp.Vtp.Vqp'
(ap.tp,qp) € Rp A (gp, tp, qp) € Rp=> 5:3)
VY p2 € PclMap (qp, tp, gp)- 3 p1 € PelMap (gp, tp, p)-
pclStatep, C pciNextStatep,

The first two properties of parcel maps ensure that the datapath compstatia pipeline step
decompose into disjoint parcel steps. Since parcels are disjoint, the oplgheia fan-outs could

not be disjoint is if two input arguments of a datapath were to be in the fapfalistinct parcels.

The inductive application of the third property ensures that parcel stepsonnected into parcel
computations.

parcel condition

{ Vg } TACC Muylt,Sub

{ i, ragare’ } aCCMult, Sub

{ T'Neg } T1GCC Mult,Neg

{ T'Neg TMultZI } ACC Muylt,Neg

{rneg } (ace Neg,sub V stall neg)

{ TAdd } true

{raad" } —(accadd,sub V accadd,Neg V stall 4qq)

{ raguttrs Tvar2 b | true

{ rarue’s ragui” b | 2 (ace vuit, sub NV ace Muit, Neg NV 0CC Muit, Mult)

Figure 5.1: Parcel map f@iffAddMult

For DiffAddMult the parcel map is defined in Figure 5.1. In the figure, a given parteliongs
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to the parcel map if the pipeline step satisfies the corresponding conditioimsEance, given the
pipeline stegg}, th, ¢%) described in Figure 4.13, since

(QI137 tI137 QIQD) ': (_'aCCMult,Sub) A (aCCMult,Neg) A (_‘(aCCNeg,Sub \ Sta”Neg))

the parcel map returns the following value:

PelMap (qp, th, qp) = { { vi }, { "Negs Tarute2’ }+ { ™Neg’ L Tada }s { Phsuters Tague2 } }

Examining the three properties satisfied by parcel maps we notice that tiveddsdld vacuously
for singleton parcels. Thus they are automatically satisfied by parcel metasily return singleton
parcels. In addition, if every datapath has at most one input pardéablarthen the pipeline model
is guaranteed to have a parcel map. We define a parcel map which hgieton parcels and thus
only needs to satisfy the first property. The singlefan} is a parcel if it is not in the fan-out of
another parcel variable:

v € RegPcl
V
3 (w,b,v) € FanOutEdges. (qp,tp,qp) = b
{v} € PclMap (gp. tp, qp) <= %
3 (choice, b, v) € FanOutEdges. (qp,tp,qp) E b
V
Jdp € Dps. |dp.PclR =0 A v € Arg(dp.PcIN)

(5.4)

The existence of a parcel map for a pipeline model allows us to performathtapstraction using
parcel automata. A parcel map induces a parcel automaton which we sestmrabout datapath
abstractions. The transitions of the automaton correspond to the papirseleced by the parcel
map.

5.1.1 Definition (Parcel Automaton Induced by Parcel Ma@ parcel mapPciMap induces a
parcel automatop& Pipe, PclMap) = (Qpa, Rpa, Tra, Ipa) as follows:

Qpa = {qralqpa € PENYRegPc)} (5.5)
Rpa = {(finalpa,, finalpa) } U
{ (qra, tra, gpa’) |
3 (gp, tr,qp) € Rp. 3 p € PclMap (qp, tp, gp)-
qra = qp | p\tPa= pciTransp A gea’ C pclNextStatey } (5.6)
Iea = {0}U{qpra|3(gp,tr,qp) € Rp. qp € Ip A
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3p € PclMap (qp, tp, p). qpa = pciStatep } (5.7)

5.2 \Verification Of Parcel Independence

In this section we describe how we can state the three properties of weledefiaps into proposi-
tional logic. For each property, we describe a propositional formulagfzatautology if and only if
the property is true.

We use an equivalent representation of the parcel map
PclMap ., : Rp— Ve U NextRegPcl— {0, ..., |V,q U NextRegPdl}
so that a parcel variable maps to a non-zero value if it belongs to a parcel

V (qp, tr, qp) € Rp.
Vv e V,q U NextRegPcl
PclMap o, (gp, tp, gp) v # 0 <= 3 p € PclMap (qp, tp, gp)- v € p

and two parcel variables map to the same non-zero value if they belong tantieepsrcel.

v (qP; tp, q;D) € RP'
Vv € Vpa U NextRegPclY vy € V., U NextRegPcl
PclMap o, (qp, tp, gp) v1i # 0 A PelMap o, (qp, tp, gp) vi = PclMap y v
—

3p € PclMap (gp,tp,qp). { v1, 12} C p

Recall from Section 2.3 that the transition relati®ga of a circuit C' is represented by a propositional
formulaformula Elab( C'). Tr). For a pipeline model its transition relatid®p is represented by the
formula formula Elab( Pipe.C).Tr) which we designate bjfzg|, ,- This formula is defined over
current-state register variables, combinational variables and next-agiter variables, denoted in
order asViey, Veomp, Vnestreg- TO Make explicit the variables that appear in the formula we write
itas[Rely,o; (Viegs Veombs Vnestireg)- NOte that the set of variablég,,,,, subsumes the set of input
parcel variablegnputPcl We also letV ., stand forVie; U Veomy U ViestReg-

The propositional formula that represents the parcel map is givErdd ap ;1,01 (Vstep, Vipeirtap):
where Vi, IS in bijection with V., U NextRegPcland each variableciMap, € Vpunmap
represents the valuBclMap ., (qp, tp, qp) v. The semantics of the propositional representation is
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summarized by the equation below:

v gap € QP- th € Tp. v QP/ € QF" v €pclMap € Env( VpclMap)-
(QP U tP U qP/ [VnextReg/ Vreg U epclMap) ): [RFJII)OOZ (Vstep) /\ I[PClMap(llt]lbool (Vstepa VpclMap)
<~

(gp,tp,qp) € RP AV v € Ve U NextRegPcl PclMap .y, (gp, tp, gp) v = €pcintap (pclMap,,)

Next, we describe how we represent the fan-out of parcels in pitapas logic. We use the set of
fan-out variablesV/,,,0.: in bijection with the seV,.; U NextRegPcto represent for each parcel
variable the parcel that contains it in its fan-out. Thias,Out,, = 0 means that the parcel variable
v is not in the fan-out of any parcel, whignOut, = n, with n # 0 means that € p* with
p={v | PclMap,; (qp.tp,qp) v =n}.

A parcel’'s fan-out is derived transitively using fan-out edges.rAdat edge v;, b, v;) € FanOutEdges
corresponds to the assignmet.Out,, := fanOut,, . Since the assignment is performed only
whenb holds, the propositional formula for the fan-out edge becomes

b= (fanOut,_ := fanOut,)
Similarly, edges of formfw, b, v ), with w constant, andchoice, b, v;) are encoded as
b= (fanOut,, := pclMap,, )

Since every combinational and next-state register parcel variable imadsfgr each such variable
there must exist an incoming fan-out edge that is satisfied under anplemironment.

The propositional formula that describes the fan-out of parcels isatkéin follows:

N\ (fanOut, := pclMap,,)

vElnputPcl
A
N (fanOut, := pclMap,,)
Ue V’r‘eg
N
FanOut(Viiep, Vpciraps Vianout) = " Uk)elé\nouwdges b= (fanOut,, := fanOut,)
A

b= (fanOut,, := pclMap,, )
(w,b,vr) € FanOutEdges )

A

b= (fanOut,, := pclMap,, )
(choice,b, v, )€ FanOutEdges
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We formulate the first two properties of a well-defined parcel map as foeraflgropositional

logic.
e Every parcel variable belongs to a parcel’s fan-out.

[R'%lbool (Vstep> A [PClMapalt]bool (Vstep, VpclMap) A FanOUt( Vstepa VpclMapa VfanOut)

—

/\ fanOut, # 0

ve Ve UNextRegPcl

(5.8)

e Datapaths transform only one parcel at a time.

[R":}Ibool (Vstep) A [PClMa’palt]bagl (V5t6p7 VpclMap) A FanOUt( Vstepy VpclMapa Vf(mOut)

=
/\ ( A fanOut ip = fanOut pp, )
dpe Dps { pclP,pclP4 }Cdp.PclP
(5.9)
The third property, stated in Equation 5.3 can be reformulated as follows:
A qp. W tp. A qp/. A tp/. A qP”.
(gp, tr,qp) € Rp A (4p tp: qp) € Rp
=
(5.10)

YV u1 € RegPclV v, € RegPcl!
3 p2 € PclMap (qp, tp, qp). { v1, 02} C p2
—
3 p1 € PclMap (gp,tp, qp)- { v, 2’ } C pf

In order to state Equation 5.10 into an equivalent propositional logic fornmdaneed two copies
of each of the following sets of variabled/s;c,, Vpcnap and Vignou:. We will denote the two
copies ofV by V! andV2. Forv € V we denote its two copies ad € V! andv? € V2. The
propositional formula for Equation 5.10 is defined below.
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e The state of a parcel in the current step is part of the state of a parcel metious step.

I[RFilbool (VStel)l) N [PClMapalt]bool (V8t€P17 VPClMapl) N Fa‘nOUt( VSt@Plﬂ VpClMapl7 VfanOUtl)

VAN
I[RFiIbOOl (Vstep2) A [PClMapalt]bool (VstePQa VpclMapQ) A FanOUt( Vstep2a VpclMap2a VfanOut2)
VAN
A () =v?)
ve Vr'eg
—
/\ /\ (pclMapzlg = pclMapizz = f(mOut%Ull), = fanOut%vg)/)

vZeRegPct vZeRegPcl
(5.11)

5.3 Concrete Pipeline Models And Abstract Interpretation

In Section 3.3 we describe the general form of abstract interpretatipipefine models and in
Section 4.7 we explain how abstract parcel automata are used to destvacallatapaths suitable
for abstract interpretation. In this section we examine the relationship beteeerete and abstract
pipeline model states and transitions.

5.3.1 Assumptions About Initial States

We write the initial conditions of the concrete and abstract models as disjaomsubetween the
set of assignments to control variables and the set of assignments tbvaaizieles.

Pipe .Init = Init.,; & Init, .

Pipe,.Init = Inity; W INit,,

In the abstract pipeline model any state that is a disjoint union of initial statbe parcel automaton
satisfies the initial parcel variable constraint.

V qpa € Qpa-
( 1 P € P(RegPc). RegPcl= pLeﬂPp ANYp € P. qp | p € Ipaq ) = qpa |= INityerq
(5.12)

We require all abstract interpretations to satisfy Equation 5.12. We not&theition 5.12 holds
trivially if Init,.; , is empty.
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The concept of induced parcel states is used to describe a propéiky parcel map with respect
to initial concrete model states. It will also appear when we construct thdaiorubetween the
concrete and abstract pipeline models. Given a concrete pipeline modéste., ¢p.) € Rec
the parcel map induces a set of parcel automaton sRtkHatesqp., tp:, qp,) C Qpac. We use
PclStategp. to denote the set of states defined as the unidPoibtategqp., tp., qp.) Over all steps
(qPe, tpe, qp.) from gpe.

PciStatesqp., tpe, qp,) = {pclStatep | p € PclMap (qpe,tpe, qpe’) A p N RegPck: 0}

PciStategp. = U PclStatedqpe, tpe, dp.)
(gpe;tpe 7‘1//30 )ERpc

We say that the parcel states are fixed in a sfate= Qp. if in all steps from statep, the parcel
map induces the same set of states:

Vipe1-Vape1- Vipeo. Vgpeo.

(QPcatPCLQPc 1) € Rp. A (chatP627QP02) € Rp. (513)
—

PclStategqp.,tpc 1, gpc 1) = PclStatesqp., tp.2, qp:2)

Our proof of simulation between the abstract and concrete pipeline motletsar Equation 5.13
to hold for initial states. We therefore provide a way to verify it by givingaa$iation into propo-
sitional logic. Equation 5.13 rewrites alternatively as follows:

V (qpe1stPe1,qpe1) € Rpe- V (qpe2, the2, apeo) € Rpe.
dpPc1 = 4pPc2 A gpc1 € IPc

—

V p1 € PclMap (qpe1,tre1, dpe1)- (5.14)
p1 N RegPck: )
—
3 pa € PclMap (qpe2,tpe2, dpeo)-
p1 N RegPcl= py N RegPcl

Equation 5.14 states that, for any two pipeline model steps from an initiakgtatde set of parcel
states of the former is a subset of the set of parcel states of the latteris Bujgivalent to stating
that the sets of parcel states of any two pipeline model steps are the sasguahtbPcl/Stategp. .

We show how Equation 5.14 expresses in term of the alternate represermtitiee parcel map
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PclMap .-

v (QPclptPcl’Q;:’cl) € RF’c- V(qpc%tPchqg%Q) € RF’c-
qpPc1 = qpc2 N qpe1 € Ipc

—

PclMap o (qpe1stpe1, @p.1) v1 = PelMap gy (qpe1,teets qpe 1) 2

A A =

vLERegPch; €RegPel PclMap o (qpe2,tPe2, dp. o) v1 = PclMap y; (gPe2,tre2, qpyo) 2
(5.15)

Using the approach described in Section 5.2, Equation 5.15 is repregeptegositional logic by
the following formula:

|[RP]|bool (Vstepl) AP ClMa'palt]bool (Vsteplv VpclMapl)

A
I[R’%Ibool (V5t€p2) A [PClMapalt]bool (Vstepzv VpclMap2)
A
A (07 =0?)
VE Vieg (5.16)
A

I[IFJ bool ( VT@Q 1)

/\ /\ (pclMap})ll = pclMapi%) = (pclMapilg = pclMapiQQ)
v} €RegPc} vy €RegPcl

5.3.2 Fundamental Relationship

Theorem 5.3.1 states the mechanism by which a step of the concrete pipeliakisnmodtched by

a step of the abstract model. We recall thedOr example from Section 4.1. Figure 5.2 shows
a pipeline model commuting diagram that is derived on the basis of parcehat#a@ommuting
diagrams. The parcel commuting diagrams describe abstract parcettsiépsatch the concrete
parcel steps that happen within one concrete pipeline model step. Gogrceete pipeline model
state and a control equivalent abstract pipeline model state such thartied giagrams commute,
we can construct a matching abstract pipeline model step. The abstrah@imodel step is
constructed using the abstract pipeline automaton steps.

5.3.1 Theorem.Let Pipe, and Pipe,, be two pipeline models such that
Pipe, = Pipe, DPSP%/DpSC (5.17)
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| 51| | B |
[ n— o T8
o] o]
¥ x
=p =p
[o000) + [00I)
(o0 (o0

Fig. 5.2a.Pipeline commuting diagram.
Fig. 5.2b. Parcel commuting diagrams.

Figure 5.2: AndOr example.

Given

b (qutPca q;DC) € RPC

qpPq € QPa

pa, € P4 Pipe,)

pelTrans,, : PelMap (qpe, tpe, 4p.) — TPaq

pclNeatState,, : PclMap (qpe, tee, 4p.) — QpPaa
such that:

e The pipeline stategp. andgp, are control equivalent.

qpc =V,,, qPa (5.18)
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e The following diagram commutes:

¥ p € PclMap (qpe, tpe, gpe)-

pclTrans

qpa | p >I}7clNextStateap

A

(5.19)

=PA =P

T 5
ape | 4, P belNextState

Then there existp, € Tp, andgp,’ € Qp, such that the following diagram commutes:

tp
Gpa - gp,!

A

— — (5.20)

tpe /
e — gp,

Furthermoretp, andgp,’ are constructed using:!Trans,, andpciNeztState,,. Let pclTrans, p =
(f94 p» €pclaps €ctriap)- The construction has the following properties:

\V/p € PCZMa’p (QP, tP, Q;D) (5 21)
Vv e p* N CombPcltp,(v) = €eperap(v) .

V p € PclMap (qp, tp, qp)- (5.22)
Vo' € p* N NextRegPclqp,' (v) = (pclNextState, p)(v) .

Proof. Equation 5.21 definep, over parcel variables. Similarly, Equation 5.22 defipeg over
parcel variables. Since the diagram in Equation 5.20 commutes we also have:

tpa =v,, trc (5.23)

/

apd =V, apc (5.24)

Equation 5.21 and Equation 5.23 defiipg € Tp, over the combinational pipeline variables. Equa-
tion 5.22 and Equation 5.24 defige,” over the entirety of its domain. We must show that
can be defined over the combinational instance variables sd¢hatp,, gp,’) € Rp,. We apply
Proposition 2.3.16. Accordingly, we have two obligations:

Vv = expr,” € Pipe,.C.Tr.
/ (5.25)
(tPa U gp, VnextReg/ Vreg )(’U) = [[ea:praﬂqpautpa
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YV dp, € Pipe,.Dps
3 (¢Das tpa, 9pa’) € LTS(dp,.C).Rc. (5.26)
Vovedp,CViUdp,.CV,.tp.(v) =tp,(Arg(v))

Part 1 Consider v := expr,” € Pipe,.C.Tr. There are two cases depending on whethes a
control variable or a parcel variable.

Part lav € (Vg N V) U (Ve N V). SincePipe, is an abstract interpretation ands a
control variable we have
‘v := expr,’ € Pipe..C.Tr (5.27)

In this caseczpr, is an expression over control variables. Equation 5.18, Equation 5(2Bgun-
tion 5.24 imply:

(tpa U gpa’ {VnemtReg/ Vreg] )(v) = (tec Ugp.' [VnmReﬂ/ Vieg|) (V) (5.28)
[[expra]]qpautpa = [[expra]]qpcutpc (5.29)

From Equation 5.27 it follows that

(tpe U gp’ [VneztReg/Vreg} )(v) = [[ea:pra]]qpﬂutpa (5.30)

Equation 5.25 follows from Equation 5.28, Equation 5.29 and Equation 5.30.

Part 1b v € CombPclu NextRegPclAccording to Section 4.%xpr , is an ITE parcel expression
that is either equal to a constant or contains atlipice and parcel variables. Consider €
PclMap (gpe, tpe, qp,) such thatv € p*. We apply the commuting diagram in Equation 5.19 to
parcelp. Letting

pC/TranSp = (fgcpvepclcpaectrlcp)

pclTrans, p = (f94ps €pclayp, Cctriap)

we have

f9cp = [9ap (5.31)

Ectrlcp = Ectrlap

Case 1If ezpr, reduces to a constant, then the assignment := w, corresponds to an abstract
fan-out edg€w,, b, v) on the transitiorpcl Trans, p such that € p. Therefore

(€pelap U (pclNextState,p) [NeXtReQPC/Reng})(U) = Wq
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and thus

[[v]]epclaPu(pclNea:tStateap)[NeXtRegPC/IRegPdI) - [[expra]]epdapu(pclNeztStateap) [NeXtRegPC/’RegPdl)

which implies Equation 5.25.

Case 2If ezpr, reduces tehoice

lexpr,] (gPaUtia) = choice

‘Vctrl
then any environment satisfies the assignment choice’.

Case 3The final case is whearpr, reduces ta, € V-

[[exp?"a]] (gpaUtp,)| Ve -

Consider the assignment ‘= expr,” € Pipe,.C.Tr. Since(qp. U tp.) | Vo = (gpa U tpy) |
CUT
Vo andezpr, ~,; expr, thenexpr, must also reduce to.

[[ex.prc]] (chUtPc)l Vctrl =u

Therefore fg .., contains an edge of forifu, b, v) such that(gp. U tp.) |\, . = b. Equation 5.31
implies that the same edge existsfin, ,. According to Equation 4.3 in the definition of a parcel
step we must have

epclap(v) = epclap(u) (532)

Equation 5.21 and Equation 5.22 imply that

(tpa U qpa’ VnextReg/Vreg )(v) = epelap(v) (5.33)

SincepclTrans, p labels the transition from the parcel statg | P we also have:

(QPa U tPa)(u) = epclap(u) (5-34)

Equation 5.32, Equation 5.33 and Equation 5.34 imply that

(tpa U QPa, VnemtReg/Vreg} )(v) = (gpa U tpa)(u)

Part 2 Considerdp, € Pipe,.Dps Letdp. € Pipe..Dpsbe the corresponding datapath given by
the rules of abstract interpretation. There must exist a pareelPclMap (qpc, tpe, qp,) such that
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the input and output arguments &, belong top*. The parcel's step expresses as:
pclStepp = ( qpe | » pclTransp, pclNeztState, p ) (5.35)

Applying the commuting diagram in Equation 5.19 to pagcale have the matching step:

( qra | p,pclensa p, pclNextState ,p ) (5.36)
Letting
pciTransp = (fg.,,€pclep, Cctricp)
pclensa p = (fgapaepclapaectrlap)
we have
fgcp - fgap (5.37)
€ctricp = CEctrlap (538)

The parcel step in Equation 5.35, satisfies Equation 4.1 and Equation 4.2 defthigtion of the
parcel step. Therefore, its fanout grafgh, contains the parcel argumentsdf, and the domain
of ecr1cp CONtains the control arguments @f .. Equation 5.37 and Equation 5.38 imply tifaf ,
contains the parcel argumentsdf, and that the domain ef.,;, , contains the control arguments
of dp,. Therefore, the step in Equation 5.36 contains a computatidp pfSincepa , is consistent
with respect tdDpspa ,, applying Equation 4.4 we get:
3 (4pas tpas dpe) € LTS(dp,-C).Re.
Voedp, VpaUdp,. Ve (5.39)

(ectrlap U epclap)(Arg(v)) = tDa(v)

Since the parcel step in Equation 5.35 is parte@f., tp., ¢p.) We have

ectrlcp g tPc ‘ Vctrl

and also

€ctrlap = CEctricp

tpe | Vctrl = tpe ’ Vctrl
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Combining the last two steps we get

€ctriap U Epclap C tpaq
which is used to rewrite Equation 5.39 to

3 (qDa,tDa,q'Da) € LTS(dpa.C).Rc.
Vuvée dpa'vpcl U dp,-Ver-

tpa(Arg(v)) = tpa(v)

which is the desired conclusion.

5.4 General Correctness

We present two correctness theorems that link abstraction of parcehatatdo abstraction of
pipeline models. Theorem 5.4.1 states that simulation of parcel automata tsaiesgmulation
of pipeline models and Theorem 5.4.8 states the similar result for languagercoant.

5.4.1 Simulation

5.4.1 Theorem(Abstraction Using Simulation)Let Pipe, and Pipe , be two pipeline models such
that
Pipe, = Pipe, [Dpsa/DpSJ (5.40)

e The abstract automaton simulates the induced parcel automaton:

pa Pipe., PciMap) =pa pa, (5.41)

then
Pipe, <p Pipe, (5.42)

Figure 5.3 describes the intuition behind Theorem 5.4.1. A pair of concneltalastract states are

in the simulation relatiosp if for each parcel state in the concrete pipeline model state, there exists
a corresponding abstract parcel state in the abstract pipeline modsirthdates it. The parcel
commuting diagrams are used to define the abstract pipeline step that makiegthexdcommute.
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0000 >| 0022
[ 00 ] [ 00 ]

Fig. 5.3a.Pipeline commuting diagram.
Fig. 5.3b. Parcel commuting diagrams.

Figure 5.3: AndOr example (simulation).

Proof. We defineSp by the equation

(qPe; qpa) € SP=
(5.43)
(qPc =V Pa) N (Y gpac € PclStategp.. gpac <pa qpu | doquAc)

We need to show$p satisfies the commuting diagram in Equation 3.15 and the condition on initial
states in Equation 3.16 of Definition 3.2.1.

Commuting Diagram
Consider(gp:, gpa) € Sp and (gec,tpc,qp.) € Rp.. We need to show the following diagram
commutes:

tpa
ape " gy

SFW So (5.44)

tpe i
ape —— gp,
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We apply Theorem 5.3.1 to fing, € Tp, andgp,’ € Qp, So that the following diagram commutes:

tp
aPa " gpy!

- - (5.45)

We then show that

(V gpa.’ € PclStategp.’. qpa.’ <pa qpra’ | domgpa,’) (5.46)

which implies
(arc’, qpra’) € Sp

In order to apply Theorem 5.3.1 we need to provide

pclTrans, @ PclMap (qpe, tpe, 4p.) — Traa
pclNextState,, : PclMap (qpe, tpe, 4p.) — Qpaa

so that the following diagram commutes:

vV p € PelMap (qpe, tpe, dp.)-

pclTrans,,

QPa’p “““““““ >

ppclNeactState oD

(5.47)

m |
ape | ) P pelNextStatey

We have

Vp e PclMap (QPthmq/Pc)'

( qpe | p € PcliStategp. U {0 } ) A ( (qpc | » pclTransp, pcINextStatey) € Rpa. )
(5.48)
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Using Equation 5.43 and Equation 5.48 we infer that the following diagram caesmnu

¥ p € PclMap (qpe, tpe, gp.)-

dtpas € TPaa-

e (]PAa/ € Qpaq-
ap | tpaa
a g 4 CJPAa (5.49)
qpPc ‘ P 7£ 0= i
_PAW =pa
pclTransp

gpe | )" —— pclNextStatq;

Sincel) € Ipac., using Equation 5.41 and Equation 5.48 we infer that the following diagram co
mutes:

vp € PClMap (QPthc;‘I;Dc)'

dtpac € TPAa-

3 qpad’ € Qraa-
tPAa
Ot > qpaa’ (5.50)
qpe | P =)= W\ /‘
=PA =PA:
I
ape | ) peTansy pcINextStat@

Sincegp, | p= () it means thap contains no registers

qPAc = qPu | p= 0 (5.51)

and therefore we can rewrite Equation 5.50:

V p € PclMap (qpe, tpe, qpe)-

dtpas € Tpaa-

3 qrad’ € Qpaa-
tPaa
qPAa | p o T qrPAa’ (5.52)
qPc | P = @ — A
—PA/I\ =pa’
I
qpe | ppﬂp pclNextStat@
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Combining Equation 5.49 and Equation 5.52 we get:

¥ p € PclMap (qpe, tpe, gp.)-

Jtpaq € Traa- 3 qPad’ € QPaa-

tpaa ’
qpg | p o > qPAq

W A (5.53)
pclTransp

gpe | ,"——" pcINextStatep

Using Equation 5.53 we can defipel Trans,, andpclNextState , SO that Equation 5.47 holds.
Initial States
Let gp. € Ip.. We show there exisig, € Ip, SO thatgp. <p qp,.

On control variables, we must defipg, so that the following equation holds:

4dPc =V 4y 9Pa (554)

Since Pipe,, is an abstract interpretation @fipe ., in the two models the initial conditions with

respect to control variables are the same.

c?

On parcel variables, we must defige, so that

V gpac € PclStategp.. gpac =pa qpa | domgpa. (5.55)

Sincegp. € Ip. We havePclStategp. C Ipa.. Therefore

V gpac € PclStategp.. 3 gpaqc € Ipaa- GPAc =PA QPAq

Denoting the Skolem constant By, the previous equation expresses as

V gpac € PclStategp.. gpac =pa fa(qpac)

Due to the condition that parcel states in initial states are fixed, as stateddtidgb. 14 PclStategp,
is a partition ofgp.. We can therefore defing, by the following equation:

V qpac € PclStategp.. qp, | domagpa. = J5(qpac) (5.56)
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Given that all abstract interpretations satisfy Equation 5.12, using Equaté we infer that

dPq ’: Initpcl a (557)

Equation 5.54 and Equation 5.57 imply thal = Pipe,,.Init. O

5.4.2 Language Containment

We say parcels duplicate if two distinct parcels at the current step atmgations of the same
parcel at the previous step.

dgp. Itp. Igp. Itp. g,
(gp,tP,qp) € Rp A (p, th, qp) € RP A

3 p1 € PclMap (gp, tp, qp)- 3 p2 € PclMap (qp, tp, p)- 3 p3 € PclMap (gp, tp, qp)-
p2 # p3 A pclStatep, C pclNextStatey, A pclStateps C pclNextStatey;

(5.58)
Equation 5.58 is reformulated equivalently to Equation 5.59.
dgp. Itp. 3 qp'. 3 tp,. 3 qp/,.
(qP7 tP) q;:’) € RP A (q;:’) t/ ) qg) € RP A
v € RegPcl3 v, € RegPcl3 py € PclMap (gp, tp, qp).
(PClMapalt (Q;Da t;Da Qg) U 7& PClMapalt (Q;Da t%’? qg) UQ) A Ul/ € pf A ,02/ € pik
(5.59)

Equation 5.59 holds if and only if the following propositional formula is sati$iab

[RF%Ibool (VStEIJl) A I[PClMapalt]lbool (VStEPl’ VpClMapl) A FanOUt( VStE])l? VpclMap17 Vfﬁmo’“tl)
A
I[R’%Ibool (V5t8P2) N [PClMapalt]lbool (V8t6p27 VpclMap2)
A
A (W) =27
VE Vieg
A

2 2 1 1
. \V ) V (pclMapvlg + pclMapvzg A fanOut(vll), = fanOut(v%),)
v eRegPd vieRegPcl

(5.60)

We can therefore verify parcel separation using a Boolean solver.
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We formalize the parcel automaton runs that occur within a pipeline modetgun £( Pipe). In
order to find the parcels that belong to the same run we define the pargal’ Q(don the parcels
of the pipeline run so that<< corresponds to the transitive closure of the relatlonshlp of a parcel

continuing another. When parcels do not duplicate, every parcel iniplediree run belongs to a

unigue maximal chain (totally ordered subset)«f: Each such maximal chain in turn corresponds
op

to a run of the parcel automaton.

5.4.2 Definition (Parcel Order) We define the relatlmq over the sefP(V,q) \ 0) x N:

(p",n) < (p"“,n—}— 1) =

op
p" € PclMap (qp, tp, qg“) A p" e PelMap (gp ntl t"H, qﬁ”) A (5.61)
pclStatep™ ™! C pclNextState™

The relation << is the reflexive and transitive closure 6f".
P

The relation <’ is by definition transitive and reflexive. To show the relation is also antisyimoe
op
consider

,ny) < (p™?,ng) (5.62)

op
;n2) < (p™,m) (5.63)
op

We must haver; < no andns < n; and son; = ns. The only possibility is to also hayg't = p™2

Given the run in Figure 5.4 of théndOr example, first described in Section 4.1, we have:

({r}0) < {2} 1)
({r23,00 < ({rs}h 1)
(fei},0) < {mh1)
{vi},0) < {n2}2)

Let (p™,n) € (P(Vya) \ 0) x N. We make the following two observations.

1. If parcels do not duplicate thép™, n) has at most one successor in Equation 5.61.

2. The third property of parcel maps ensures thét n) has at most one predecessor in Equa-
tion 5.61.

120



0 1 2 3 4 5
r | [00] 11 ] 01 ]
r2 | [[0000] [0000] [0011] [0001] [1000] [1100]
rs | [HIOOM [00 ] [00 ] [11] [o1 ] [10 ]
c:O
c:O v =
c:O v =
c:O V=
c:O v=20
[oo00}+—%{moor]
[00 ]

Figure 5.4:AndOr Computation.

5.4.3 Definition (Chain) C' C P((P(V,a) \ 0) x N) is a chain of« if any two elements are
op
comparable:

V(p",n) € C.V(p™,n2) € C.(p",n1) < (p",n2) V (p"*,n2) < (p"',n1)  (5.64)
op op

A chain C is maximal if it does not occur as a strict subset of another chain.

For our example in Figure 5.4, some examples of maximal chains are:

{0 < ({r2hD) < ({rsh2)
({?"2},0) Cf<P ({?"3},1)
{vi},0) < (b < ({2}h2) < {r3}h3)

P
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5.4.4 Proposition. If parcels do not duplicate then every element of the(8tV,.;) \ 0) x N
belongs to a unique maximal chain e&’. For (p™,n) € (P(Vya) \ 0) x N we denote the
op

corresponding maximal chain lmhain(p™, n).

Proof. ExistenceWe define:

chain(p™,n) ={ (p" *,n—k) | (p"*,n—k) < (p"n)}
F (5.65)
U{ (", n+k)|(p" n) < (p"* n+k)}

We need to showhain(p™, n) is a chain. Consider two distinct elements

(p"t,n1) € chain(p",n)

(p

n2

,n2) € chain(p",n)
We have to show that either of the following holds:

,’I’ll) < (pnzan)

op

"2 ng) < (p™,m1)

op

(p™,m) < (p"n)

op

,n) < (p" ng)
ap
or

,ng) < (p",n)

op
7”) < (pnlanl)

op

by transitivity we get the desired conclusion. Consider the case when

122



Therefore, we must have:

(P",n1) = a < -+ < a1 < a = (p",n)
op op op
(p™,m2) = bg < -+ < bi1 < by = (p™n)
op op op
We show that eithety € {bg, ..., bj } orbg € {ao, ..., a; }. Assume by contradiction that that
is not the case. We consider the smallest{ 1, ..., i } so thata;, = b, forsomel € {1, ..., j }.

We have

ag—1 < ag

b1 < ag

It follows that a; has two distinct predecessors, contradicting our first previous digmar. The
case when

7n) < (pn17n1)

op
,TL) §<P (pn27n2)

is treated similarly, arriving to a contradiction of our second observation.

Uniquenesslf C is a chain containindp™, n) then according to Equation 5.65 we must have
C C chain(p™, n). SinceC' is maximal we must havé' = chain(p™,n). O

For our example, the set of maximal chains to which every elerfiént:) belongs to is described
as follows:

({7"1},0) U<P ({T2}¢1) U<P ({T3}>2>

({r2},0) < {rsh1)

({Tg},O)

({ v },n) a<p {ri1},n+1) U<P {re},n+2) U<P {rs},n+3),n>0

5.4.5 Proposition.If ¢ C P((P(V,q) \ 0) x N) is a maximal chain of then:
op
e If C is finite thenC has form

C={("n), ..., " "* n+k)} (5.66)

and
Vie{n, ...,n+k—1}% (p",5) < (@, +1) (5.67)
ap
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e If C isinfinite thenC has form
C={(p"*  n+k)|keN}

and
VEeN. (p"F n+k) < ("™l n+k+1)

op

(5.68)

(5.69)

Proof. Since any two elements are comparabledyand since the definition of implies that if
op op

(p™,n1) < (p™*,n2) thenn; < ng thenC must have form:

op

(p"n) < (p" M n+ k1) < ("R n 4 ko) <+
op op op

where
kl < k2 -
SinceC is maximal we must have
kh = 1
ke = 2

5.4.6 Definition(Associated Parcel Automaton Rurbet

C = <pn7n) < (anrl,n_’_ 1) <o
op op
We define
runpa C : N — Qpa X Tpa

e (Cisinfinite

runea C j = (¢p | n+j, pelTransp™ )

'

o C=(qhyn) << (¢&fF n+k)
op Op
s C j = (gp" | pn+j,pclTranSp”+ 7)1 j<k
PA =

(finalpa, 0) : j >k
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c=01

r, = 0011

Figure 5.5: Associated parcel automaton run.

The associated run for the chain

{00 <({m}p1D<{r2},2) <{rs},3)

op op op
is shown in Figure 5.5.

5.4.7 Proposition. If C = (p™,n) < (p"*',n + 1) <---is a maximal chain thenunps C €
op op
L(pa Pipe, PclMap)).
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Proof. Letrunpa C' j = (gha, ths)- We need to show

(@has thar Tbs') € Repa (5.72)
qBa € Ipa (5.73)

If C'isinfinite, runpa C' is defined by Equation 5.70. Therefore, Equation 5.72 is equivalent to

‘ A -
( ap’ |pn+j,PC’Tfa”SP"+]7qgﬂ+ ’pn+j+1 ) € Rpa

which holds becaus@™t7,n + j) < (p" 1, n+j +1).
op

If C = (g n) < < (gps™, n + k) is finite thenrunpa C is defined according to Equation 5.71.

<o
e j < k Equation 5.72 is equivalent to

+j i ntjtl
( ap | pn+j,PclTranSp”” Jap T »

n+j+1 ) € BRpa
which holds becaus@”t/,n + j) < (p"t+l n 45+ 1).
op
e j = k Equation 5.72 is equivalent to

( sl pnﬂ,pcITranSp"Jr 7, finalpa ) € Rpa
which holds because any parcel automaton state can transition to the fieal sta
e j > k Equation 5.72 is equivalent to
(finalpa, 0, finalpa) € Rpa

which holds according to the definition of parcel automata.

Equation 5.73 is equivalent to
qp | o € Ipa (5.74)

We consider two cases:

e nn = 0. In this caseyg ¢ Ipand therefore;% | i € Ipa according to the definition of the
induced parcel automaton.

e 1 > (. We consider two subcases:

— p™ N RegPck= () It follows thatgp | = (). Sinceld € Ipa, Equation 5.74 holds.
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— p™ N RegPck~ () This leads to a contradiction sing& must continue a parcel*—! in
the previous stepgp ', 1!, gB). We therefore havép™ !, n — 1) < (p™,n) which

op

contradicts the fact thaf' is maximal sinceC' U { (p"~!,n — 1) } is a chain.

0

5.4.8 Theorem(Abstraction Using Language Containmeritet Pipe, and Pipe,, be two pipeline

models such that
Pipe, = Pipe, [Dpsa/Dsz (5.75)

If the following conditions are met
1. Parcels do not duplicate Pipe...
2. Language containment of parcel automata.

L(pd Pipe,, PclMap)) Cpa L(pa,) (5.76)

then language containment of pipeline model holds:

L(Pipe,.) Cp L(Pipe,) (5.77)

Figure 5.6 describes the construction we use in the proof of Theorem e 8irst identify the
maximal chains o, then, corresponding to each chain we have a concrete parcel automiato

op
For each such run there exists an equivalent abstract run. Thachsircel runs are used to create
the abstract pipeline model run.

Proof. Letop. € L(Pipe.).

We need to show there exists, € L(Pipe,) such that
Opc =P OPq (5.78)
We will defineop, : N — Qp, x Tp, by induction. We recall the notation

Opcn = (qgcv ’gc)

Opg 0 = (qga’ ga)
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| [00 ] [[11 ] [ o1 | [ 10 | 11 ] [oo0 ]
r» | [0000] | | [O000) | | (O0EE | | [©0om] | | [Hoool | | [EEGE)
rs | HOON | | (DOON | | DN | | DN | | Do | |
[ 0 F——f o |
[ 0 ——{ 00 |
{v}h4) & ({r}5)
7 —{F =%
(01— 23— monl
{vi},3) op {rih4) &5 ({r2}5)
[0+ == nak.)
[0 +—{70 1*={miooe =L om——{frak.]
{u}12) & {mh3) &5 {r2ha) 5 {r3),5)
o] A =% =L [finalag]
7 +—— o =% {mmeon— il {naka]

HudhD) 5 (rh2) 5 (r213) 5 {rsh4)

7 +— A == {maka]
[0 +——{ 2z 1*=% oo = {finalpa]
{v:10) o {mbD) 5 ({r2h2) 5 {rs}3)

R v=0 fnala,
C:O ’U:O -
[ 00 ]
{r}0) 5 (r2h 1) 5 {r3}2)
v=0
o
({r2},0) 5 ({rs},1)
({rs},5)

Figure 5.6: Construction in Theorem 5.4.8.

Forn > 0 we will be applying Theorem 5.3.1 i, and derivelp, € Tp, andqﬁgH € @p, SUch
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that the diagram commutes:

R A
_{ = (5.79)

(4

ap —— qp"!
If Equation 5.79 holds inductively ang, € Ip, thenop, € L(Pipe,) and Equation 5.78 holds.

For eachn > 0 andp™ € PclMap (qp,, th. qgjl) we denote the parcel automaton run associated
with chainp™ by opac pn:
OPAc pn = UNpa (Cchainp™)

According to Definition 5.4.6, if p™, n) occurs on positior, in its chain then

(9pacp)(in) = (a5 |y, PCITrANS)") (5.80)

SinceL(pd Pipe,, PciMap)) Cp L(pa,) there existerpaq ,» € L(pa Pipe,)) So that

OPAc p™ =—PA OPAa p™ (581)
We use the notation:
(UPAC P”)(k) = (QI]%AC o tllgAc p’”)
(UPAG P”)(k) = (q]E’Aa p" t]IgAa p")

Equation 5.81 implies that the the following diagram commutes:

k
tPAa p" k+1
dpAq pn qpAq pn

=pA =pA (5.82)

th 1
k PAc p™ k+1
PAcpr — 7 9PAc pn

Fork = j, we have:

qIJ;Ac pn - qgc ’ p”
thac,n = PclTransp”
q,jaﬁ\ﬁ,n = pcINextState™
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The diagram in Equation 5.82 becomes

tjn

Jn PhAa p™ Jn+1
dpaq pn T dpag pn
- o (5.83)

ITransp™ 5
ape | pnpcrﬂg pcINextState™

We will definegp,, so that:

IPaa | o= TPha pr (5.84)
Base case
On control variables we must have:
Ay =Ven QP (5.85)

On parcel variablegy, is defined according to Equation 5.84:

0 0 0 1 0 j
Vp" € PclMap (qpe; tpes Gpe)- dPa | p0 = Gpag p0 (5.86)

Since parcel automaton runs begin at inexe have

v p® € PelMap (qPe, thes Gp.)- Ghpg o = TPaa 0 A dpaq 0 € IPaa (5.87)

Since abstract interpretations satisfy Equation 5.12, using Equation 5i&&amation 5.87 we infer
that

qua ’: Initpcla (588)

Equation 5.85 and Equation 5.88 imply th@} = Pipe,.Init.
Inductive case

We assume the following inductive hypothesis:

vpn € PClMap (qgca TFL’qu/;(j_l)' qga ’ p” = qf’%ap" (589)
QP =Ven dpe (5.90)

In order to apply Theorem 5.3.1 we need to define

pelTrans, : PelMap (g, the, ab ") — Traa
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pclNeatState, : PclMap (g, th, dm ) — Qpaa
so that the following diagram commutes:

vV p™ € PclMap (qp., the, ape )-

n pclTrans, p™

B, | pn > pclNextState ,p"

A

(5.91)

ITransp™ |
ape | pnpﬂ pciNextState)™

Using the inductive hypothesis, the diagram in Equation 5.91 becomes:

YV p" € PelMap (g, the, gitt).

. 1T o "
qf;;\a pfc e V>ppclNe:1:tState oD

A

(5.92)

pclTransp™

Gpe | yn"—— pciNextState"
We definepclTrans, andpclNextState , as follows:

pclTrans, p" = t%,’}\apn (5.93)
pclNextState,, p" = q‘,jgj\:;n (5.94)

With this definition, the diagram in Equation 5.92 commutes because it is identicad mnthin
Equation 5.83.

Applying Theorem 5.3.1 we obtaify, € Tp, andqg;rl € Qp, SO that the diagram in Equation 5.79
commutes. It remains to show that we maintain our inductive hypothesis:

¥ ptt e PelMap (5]t ap - ap | et = apat e (5.95)

Parcels at stepqgjl,tgjl,qgf) are either combinational or continue continue a parcel at the
previous step. 1p"+! is combinational then

+1

=0
Jnt1 —

qPAa pn+1
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and therefore Equation 5.95 holds.
One of the postconditions of Theorem 5.3.1 (Equation 5.22) implies the following

v p" e PelMap (qﬁjl,tgjl,qgjq).

p"t N RegPckt ) —> (5.96)

jn+1
dp™ € PclMap (qgm gmqg:rl)' qg;rl | pn+1 = q’JDAGP"

If p"+1 N RegPck () then there exists™ € PclMap (gp ', th, gi 1) so that
pn < pn+1

Opc

which implies that that the two parcels belong to the same ryaad?ipe,,) and therefore
QIJDT;\len+1 = (Iﬁ\z;n (5.97)

Equation 5.96 and Equation 5.97 imply that Equation 5.95 hptds N RegPck~ ().

5.5 Summary

Parcel independence is used to prove Theorem 5.3.1 that states thattoogroragrams between
the concrete and abstract parcel automaton states imply a commuting diagnasarbthe contain-
ing concrete and abstract pipeline states. Theorem 5.3.1 is used to pumdnsss of abstraction
using parcel automata for simulation in Theorem 5.4.1 and respectivelgriguage containment
in Theorem 5.4.8.
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Chapter 6

Abstraction Of Parcel Automata

This chapter describes an algorithm that abstracts the parcel autopaatenpd Pipe,., PclMap)
induced by the parcel map to a parcel automaiepsuch that

pa, =pa pa, (6.1)
L(pa,) Cpa L(pa,) (6.2)

The abstract parcel automatpm, is used to produce an abstract interpretation of the pipeline data-
path, resulting in a pipeline modétpe, such that:

Pipe, = Pipe, [Dpsa/ppsc} (6.3)

Applying Theorem 5.4.1 to Equation 6.1 and Theorem 5.4.8 to Equation 6.2twe ge

Pipe, =<p Pipe,
L(Pipe,) Cp Pipe,

Thus the datapath abstraction algorithm preserves control properties.

Section 6.1 formalizes path abstraction and proves that it implies simulation mepaeeel au-
tomata. In Section 6.2 we define inductively the parcel automgdon that is an an approximation
of the induced parcel automaton. The parcel automaiQn may also represent unreachable datap-
ath behaviours but is more practical to represent than the induced parceaton. Path abstraction
is based on the systematic exploration of the paths through the parcel auigmato For each
such path there is an equivalent one in the the abstract parcel automaton.

The encoding of the approximate parcel automaton in propositional logiesepted in Section 6.3
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and Section 6.4. An abstraction algorithm that is based on path abstractimegfproximate parcel
automaton is presented in Section 6.5. We present experimental resultsion $e86.

6.1 Path Abstraction

In this section, an abstraction that maps concrete paths to abstract sthtegnssbe conservative,
i.e. implies simulation, in Lemma 6.1.1. The notion of paths that are not distinguishwfire
control is captured using path equivalence. Finite paths and infinite rartoanected through the
concept of terminating run, which requires that a run consist of a fingéxpin which all state
updating datapath computations are confined, followed by an infinite sudfixctimtains only value
copying transitions. Lemma 6.1.4 gives sufficient conditions under whithatestraction preserves
language containment.

Given a parcel automaton rumpa € L(pa), we use the following notation for the finite path from
stateg%, to stategh, that occurs in the prefix of lengthof opa:

e _ o tha tha
TpA = qpa — "~ pa (6.4)

Whenk = 0 the pathrk, reduces tg%,. The set of all such paths is denotedIbgpa):
M(pa) = {7ps | k € N A Jopa € L(pa). 7f, is a prefix ofopa }

Given the pathr}, in Equation 6.4 we use the notation:

k

™
0 PA &k
dpa ™~ d4pa
k
TpA

Iea ~2' qpa(sincegpy, € Ipa)

Lemma 6.1.1 describes path abstraction and states its correctness.

6.1.1 Lemma(Correctness Of Path Abstractior} the abstraction function) : II(pa,.) — Qpaa
satisfies the following properties:

e ) preserves the label of the last state on the path:

U(TBac) = APAck = APac =PA QPAGk (6.5)
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e ¢ makes the diagram commute:

tPAa k
QPAak > 9PAa k+1

A

v v (6.6)
k t’E’Ac k:—&-l
TPAC " TpAc
e ¢ preserves initial states:
qIUDAc € [PAC - w(quc) € IPAa (67)

¢ ) has the additional property, related to simulation on parcel automata:

k t(I)DA t’fvll k
_ 0
Thact = Qpac —5 % Qa1 A
e thac = Y(Thac1) € V(Thacs) (6.8)
”ﬁAcz = quc _g”'4qllgA02 A
k k
Pac1 & dpace
then
L(pa,) Cpa L(pa,) (6.9)
pa, =pa pa, (6.10)

Path abstraction is driven by exploration of concrete paths in the parm@haton. Therefore the
abstraction function is defined on the set of concrete paths onto alssti@sty) : I1(pa,.) — Qpaq-

In Figure 6.1 we recall the parcel automaton of thedOr example that we first presented in
Section 4.1. We use this example to illustrate path abstraction. Figure 6.2 dssanitabstract
automaton that satisfies the conditions of Lemma 6.1.1. The abstract automatartrea like
structure — with the exception of the transitions leading to its final state, pamegg to the
depth-first-search tree of paths through the concrete parcel autamaton

Table 6.1 describes the mappigigthat maps the paths through the concrete parcel automaton to

abstract states. For instance, line 13 in the table describes thejttht is composed of the path

7T2

0—r=00°=91. _ 0000

followed by the transition
viO



Figure 6.1:AndOr Parcel Automaton.

leading to the state
r3 = 00

The pathz? in Equation 6.1 is described at line 5 in the table. The mapping of thezath an
abstract state ig(73) = {3 = as }. Corresponding to Equation 6.11, we have the commuting
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Figure 6.2: An abstracindOr parcel automaton.

diagram:

<

—
<

>

(6.11)

Proof. We prove Equation 6.10 holds. This implies Equation 6.9 also holds. For simplieity w
assume all states i@pa. are reachable from an initial state. Non-reachable states do not thiéect
behaviour of the parcel automaton so we can safely ignore them.
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# Concrete Path Transition  Next StateAbstract State| Predecessor
0|0 0

1 0 — r = 00 = Qg 0
2 |0 — r1 = 01 rL=ag 0
3 10 — r = 10 1= ag 0
4 |0 — ro=11 rL=ag 0
5 |0—m=00 c=0 o, — 0000| 1y = oy 1
6 |0 —m=00 c=10 L~ 0000| ry = au 1
7 | 0—r =01 C:—QI 9 = 0001 | 0 = o1 2
8 |0—m=o01 c=10 o~ 0100| 1 = au 2
9 |0 —r =10 c=01 L, —0010| = 3
100 —r =10 c=40 1~ 1000| 1 = au 3
1|0—rn=11 c=01 ro=0011| r3 = o 4
120 —r =11 c=40 o~ 1100| m = au 4
130 — r =00°=9" 1, — 0000 =0 200 | = as 5
14| 0 — r =00°=4%r, = 0000 v=0 =00 | m=as 6
150 —m=01°= 7, = 0001 vzl rs=01 | r13=as 7
16 @—>r1:010:—}0r2:0100 v=l r3 = 01 r3 = ag 8
17| 0 — r = 120°=9 1, = 0010 vl =10 | r=as 9
180 —r =10°=4% 1, — 1000 S 210 | = ae 10
190 —r=11°=% 4, — 0011 vl =11 | r3=as 11
20 | 0 — = 121°=4% 1, — 1100 vl rs=11 | r3=ag 12
21 [0 — =00 =9 1, — 0000 =0 1y —00 —s finalba, | 1 = finala, | 13
23 [0 — =000, — 0000 =" ry =00 — finaloa. | 1 = finalpas | 14
23 0—m=01°= 1, = 0001" = s =01 — finalba, | r1 = finala, | 15
24 [0 —m=01°=30 0, — 0100 =y =01 — finala. | 1 = finalas | 16
25 | 90— rm =120°=9" 1, = 0010" =5 r3 =10 —» finalpac r1 = finalpa, | 17
2% | 0 —m =120°=49 1, = 1000° = s =10 — finalba. | 1 = finala, | 18
27 | 0—rm =22°= 0 —0012° S 11— finalpae | 1 = finalpae | 19
28| 0—m =113 = 1200" = s =11 — finalba. | 1 = finalag | 20

We consider the relatiog C Qpa. x II(pa,) defined by

Table 6.1: The path magp.

ik k k ek
X = { (qPac> TPac) | Tpa. €NdS Withgp,, }

We show that) o x is a parcel automata simulation relation.
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Commuting Diagram We show the following diagram commutes:

tpaa k
QPAak > qPAa k+1

A

Pox Pox (6.12)
k tllgAc k:+1
dpac — " 4pac

The diagram in Equation 6.12 is obtained by combining the two diagrams in Eqati8n The
lower part commutes according to the definitionyadnd the upper part according to Equation 6.11.

tpaa k

APAak > qPAa k+1
P P
e
kP c +1
TPAc ’ TpAc (613)
X X'
tha ki
k © kel
dpAc dpac

Additional Property The relatiom) o x must satisfy Equation 4.9 in the definition of simulation
on parcel automata. For this purpose we use Equation 6.8 satisfied®gnsider

(aPac2: GPAak2) € Yo X (6.14)

GFact S dhaco (6.15)

We must show there exisiga, 1.1 SO that:

qPAck1 S QPAak2 (6.16)
(ahac1: dPAak1) € 1 oX (6.17)

From Equation 6.14 we infer there must exig}, ., € II(pa,) such that:

k k
(@Pac2, TPac2) € X

t(F)’A PA
Wl]gACQ = Q%Ac .5 qucz (6.18)

U(Thacs) = QPAck2
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Equation 6.18 implies that there exists, ., € II(pa,) such that:

k k
(@Pac1> TPac1) € X

£ A
k o ‘teag  leag i
TPAcl = 4PAc o dPAc1
Applying Equation 6.8 tark, ., andnk, ., we have that
kN ap(rk
U(mpac1) € Y(mhaco)

If we set

GPaak1 = V(Thac1)
then both Equation 6.16 and Equation 6.17 hold.

Initial States Let q(,%AC € Ipa.. We must show that there existga, o € Ipaq SO that
(qPac, GPAc0) € Y o X
Sincend, .. = qba. is a path tagd, . we have

0 0
(2Pacs Apac) € X

Applying Equation 6.7 t@®,. we have:

w(qOPAc) € IPAa

For gras0 = (g%, ) We get the desired conclusion.

We say two parcel transitions are equivalent if they have equivalerditian labels.

(qpa1, tpat, grar’) =pa (qpaz, tpaz, qpa2’) = (tpa1 =pa tpaz)

We define path equivalence between two paths if they both start froraadepii states, have the
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same length and have pairwise equivalent transitions:

koo !
TpA1 =PA TpA2

(k=1) A (domgpa; = domgpas) A

(£>0=¥5e {0 k=1 (char thars Boal) = (ahas: thaos abi3) )

Path equivalence is related to run equivalence. However, becaussengath equivalence in the
context of closed parcel automata we do not require in its definition thatatesst the same index
be equivalent.

Parcel computations are infinite. Termination of the abstraction algorithmeseptin Section 6.5
depends on whether the datapath computations that affect the pardel'arsta@onfined to a finite
prefix of the parcel run . From a point on in the run, a parcel's statedateg only by copying of
values from the previous state.

StateFanOut® denotes the set of variables in the fan-out of the current state regatatep

k1.
(aBa tha doA ):

Base Case
domqp, C StateFanOut®

Inductive Case

Y (v1,b,12) € fg*.Succ v, € StateFanOut® A vy & PcIN=> v, € StateFanOut®

6.1.2 Definition (Terminating Run) The runopa is terminating if it either contains the final state
finalpa or there exists > 0 such that for alk > n, in the step(gia, ths, b4 ") only current state
values are copied into next-state parcel registers.

Yk > n. domgpi? [NeXtRegPC/Reng} C StateFanOut® (6.19)

We can think of Equation 6.19 to cover termination when the parcel exits thing@ad its state
becomes empty since we can define the domain of the final state to be the em[jttheatinopa
contains the final state then there exists 1 so that

VEk>n.qbs = finalps
VE>n.thy, = 0
Y k > n. dom finaba [NextRegPC/Reng} c 0
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Equation 6.19 states that datapath computed values, consfanise and inputs do not propagate
into the parcel’'s next state. For instance, a computation in which a pardsl intéefinitely is
terminating. As a generalization, the definition could be relaxed to allow petipagof constants.

The notion of the driver of a variable at stépis used to analyze terminating runs. We define
driver (v2, k) to be(v1, n) such that variable, at stepn propagates through copying into the value
of vy at stepk. The definition is inductive.

6.1.3 Definition (Driver). Base Casek = 0 A v € domgp,

Vv € domgps. driver (v,0) = (v,0)

Inductive Case £ > 0

Y v € (rootsfg®) \ RegPcl driver (v, k) = (v,k)
Y (v1,b,12) € fg¥.Succ vy & PcIN=> driver (v, k)
Y (w,b,v) € fg*.Succ driver (v, k)

Vv € PcIN. driver (v, k) = (v,k)
)

= driver (v, k)

= driver (v, k)

= drier (v, k)
Y v € domgh,. driver (v, k 4 1

We define the equivalence-g;je; 0N the parcel automaton states of the .
Q;lg,lq =driver ql;,za\ =
(qms =pa q/2) AV v € domgls. driver (v, k1) = driver (v, k)

The equivalence is stronger than state equality:
k k k k
dpp =driver dpp = Ipa = dpA

We extend =4iver to transitions:

k1 k1 ki+1y _ . ko ko ko+1\ __
(dpaas LA TPaa ) =driver (Apaq: thaq> TPaq ) =

k k k k k141 ko+2
(qph =driver 4p) AN (tphg =PAtER.) A (dBa =PA dph )

Sincet’,?,;\a andt’,‘;fqa are equivalent, they specify the same copying of values into next states so
follows that

kv Lk k1+1 _ ko Lk ko+1 i+l kotl
(9P tpaa: dpag ) =driver (4paqs thaas dPaq ) = dpa =driver dpa
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Before we present the next lemma, we recall the concept of closeelmrtomaton (Defini-
tion 4.6.2). The closure of a parcel automaton does not influence theattatsghaviours it specifies.
Our proofs rely in some cases on the parcel automata to be closed. Siecelthesult of obtaining
an abstract parcel automaton is to perform abstract interpretation oatayeath, the closure of the
parcel automaton is not implemented. Instead, the closure performed omboifs p

Lemma 6.1.4 shows that under sufficient conditions, path abstractiomypgsdanguage equality.
The essential condition is that for each path in the abstract parcel autothate exists an equiva-
lent one in the concrete automaton.

6.1.4 Lemma. If the following conditions hold:

e The parcel automatopu . is closed.
e All runs of pa, are terminating.

e For every prefix ifl(pa,) there exists an equivalent onelif{pa . ):
Vﬂ-I]gAa € H(pa'a)' 3 7TllgAc € H(pac)‘ ﬂ-I]gAc —PA 7TllgAa (620)

then
L(pa,) Cpa L(pa,) (6.21)

Proof. Considetopa, € L(pa,). We need to show there existsa. € L(pa,) so that

OPAa =PA OPAc (6.22)

Case lopa, is non-terminating. We prove this leads to a contradiction.

If opa, iS NON-terminating it has increasingly longer prefixé,’;a of form

" tBag  tPha
Toaa = QPAa — * — Upig

such that the number of parcel transitions that contain datapath computatibesast.

Applying Equation 6.20 to each preﬁo{;;\a we obtain an equivalent prefix ii(pa,):

k e oA &
i _ 0 g i
Tpac =  4pPAc R dpac
kz — kl
Tpae —PA Tpac (6.23)
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Equation 6.28 implies that the padrlﬁ,;\C also has at leasttransitions that contain datapath com-
putations. For > | Qpa.| there exists one statg, that performs two different transitions both of
which contain datapath computations. The pefi. expresses as

. t“ t] t] ltj"!‘l ;
4 _ 0 PA ! j PA ] PA 1 J — ]
T . ch—§4 _g C_§W|thq . =q .

The following is a non-terminating run @i

0 gl

t . .
0 PA PA PA
QPac — 5 Qppe —" " Gpac

Case 20pa, is terminating.

If it contains the staténalpa,, then by selecting a prefixs, , so thatgp,, = finalpa, and applying
Equation 6.20 we obtaing, . so thatrg, . =pa mp,,- This concrete path is trivially extended to a
concrete run matchingpa, .

Consider now the case whdinalpa, does not appear in the rurma,. The run then consists of the
finite prefixwp, , followed by an infinite suffix of transitions that only update the parcel’s digte

copying.

thae 1P tha 1
OPAa — qPAa .= qEAa — qg:\ra
thae  thaq
ThAg = QPAa . dpaa
Since theRpy, is finite, in the infinite suffix
tn il

n PA¢ n+1 n+2
dpaq — 4paq — Apaq -

we have
Vko>n. Vi € domq’,f-,Aa. Ik < n.Jvp. driver (ve, k) = (v1, k1)

Since the indice%; are bounded by, there exists an index > n such that from then on, all
transitions are=ge; €quivalent to transitions at an index betweeands — 1:

ds > n.

(6.24)
k k k+1 1
\V/k Z S. Ell € {n, ey S ]. } (qPALNtPAa’qPXa) —driver (qPAa,tPAa,qF;;a)
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Applying Equation 6.20 to the prefixy, , we obtainrp, . such that:
7rI83Ac =PA WI%Aa
o Al
Thac = dpac — % QPac
Sincepa, is closed we can assume that the path . has the property that

VkE{Ov ) S}' q]IgAc :PAqllgAa

We prove by induction that fat > n, w’,?,AC can be extended to a paﬂﬁj(j that is equivalent to the
prefix path of lengttk + 1 of opa,.

First, we prove a helping result:

Vk>s.
7TilgAc =PA ﬂJFC’Aa
= (6.25)
Vie{n, ...k} Vi€ {n, ..., k}.
(0Raq =driver 45aa) = dPac = GFac
Sincert, . =pa Thy, it means that forany € {n, ..., k } the transitions fromy3,,, to gh,, have

the same copying effect as the transitions frgip, to gb,.. Since =grve; captures the make up
of statesjl, andg’2, in terms of the values in stat@,, it follows that if g2, =driver 7, then

U
dpac = dpAc
Base Casek = n. Sincernd,, =pa Tha, andn < s, mh,, is a prefix ofr, . and it therefore
extends so thatji ! =pa hi 1.

Inductive Case

If k& < sthenm},, is still a strict prefix ofrg, . and therefore the extension is done as in the base
case.

If £ > sthen there exists€ {n, ..., s — 1} sothat

ko 4k k+1 1 1 I+1
(4Paqs thaa: Gpaq ) =driver (paq: thaa: Ipas)
Using the inductive hypothesis we have:

! I 141 l I 141N e
(qPAavtPAav(JP—,:a) =PA (qPAcvtPAc’qP—,t\c) (sincel < k)
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Gbae = qPa. (SINCEGhA, =driver Thpa)

We can therefore extend the pathy, . with the step(gha.., tha.; doa.):

4
k1 — ok UPAc 141
TPAc = TPAc dPAc

We use the set of patsth, , | i > 0} to definespa. o thatrpa. =pa opaq-

6.2 Approximating The Induced Parcel Automaton

The parcel automaton induced by the parcel map contains all parcetlsé¢pscur in pipeline com-
putations and it describes exactly the datapath computations that arisepgtige computations.
Since the steps of the induced parcel automaton are defined by the steppipkline, its definition

needs the inductive run of the entire pipeline which is not practical. Weftirerapproximate the
induced parcel automaton with another one that is defined inductively apprgximations of the

parcel steps of the induced parcel automaton. This definition is simple ficidrdéfand can be used
in the abstraction algorithm.

The approximate parcel automaton is conservative since its set of stdtasiasitions include the
ones of the induced parcel automaton. Given two parcel automata

pa; = (Qpa1, Rpa1, Trai, Ipa1)

pay = (Qpaz, Rpa2, Traz, Ipa2)
We define
pay € pag = (Rpar € Rpa2) A (Ipat € Ipaz)
6.2.1 Proposition. If pa; C pa, then

pay =pa Py
L(pa;) Cpa L(pas)

A parcel automatompa € P4 Pipe) coversthe datapath computations of the pipeline ma8lgle if
pa Pipe, PclMap) C pa. A parcel automaton that covers the datapath computations is a conserva-
tive approximation according to Proposition 6.2.1. Our approximation is basegproximations
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of the parcel map and of the parcel steps that occur in the pipeline modeutatiops.

In the remainder of the section we describe a technique to define the apptexarcel automaton
pa., that covers the datapath computations:

pé(Pipeca PClMap) - pacq

A parcel step is determined by the parcel’'s representation as a setiablgar the parcel’s cur-
rent state, the fan-out graph and the parcel and control environmanpswrcel step is executed
within a pipeline step. The control variables that determine the parcel’'sigae@re constrained

by control assignments and datapath computed control values. In thédioefof the states and
steps of the automatagm: . ; we substitute, for the control environment contained in the step of the
pipeline model, an environment that is easier to compute. We denote it in theifalequations by
ectristep € PENYV iy U NextRegCtr). The environment ., .., Should respect the assignments
to control variables:

€ctrl step ): (Pipec-Tr) | dome .y, step (626)

If parcelp has the parcel ste@pac, (f9., €ctric, €pcic)s gpac’) in the pipeline model stefge., tpc, gp, ),
then the fan-out graplig, is maximal. There are no fan-out edges, b, v;) such thaty, €

fg..Nodesand (¢gp. U tp.) = b butv, ¢ fg..Nodes The fan-out graptfg,. is maximal under
the environmengp, U tp.. The following predicate represents maximality of the fan-out graph on
the transition label of the parcel step.

IsMazximalFanOut (qPAc> <fgc> €ctric, epclc>a QF’AC/) Ectrl step =

Y (v, b, v) € FanOutEdges. (6.27)
(u, b, v) € fg..Succ<= v, € fg,..NOAESA €ty step = b

The control environment,;,; s, that determines the fan-out graph of the parcel and influences its
datapath computations may contain register variables that in a pipeline compatatiofluenced

by the previous step of the parcel. If such variables are not condrairiee definition ofe .y sep,

then the automatopa,.; may have parcel steps and computations that are not reachable in the
induced (precise) parcel automaton. These non-reachable compsitddiomt affect the datapath
circuits thatpa ., specifies, however they do affect an abstraction algorithm: first, bygenéathe
search space and second, by affecting terminatiopg if has non-terminating runs that are not
possible in the induced automaton.

Figure 6.3 describes two different pipeline models that both have urablctatapath computa-
tions. In both cases a parcel produces in the current parcel steyralo@lue that later influences
its datapath computation in the next parcel step. For the pipeline model in FHaethe con-
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Figure 6.3: Pipeline models with unreachable datapath computations.
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trol outputv,.; produced bydp, and corresponding to a pargel= { r; } is saved into the control
registerv.o. At the next step, the value af, influences the parcel step of pargek= { } as it
propagates througty,. Therefore, in a parcel computation, the outpytof dp, and the input.o

of dp, are the same. The example in Figure 6.3b describes a pipeline model in whitdwtaipath
performs an iterative operation. Datapdih has both a control input and output. As the schemat-
ics of the pipeline control describe, the output of the datapath in the ¢stegminfluences both the
the control input in the next step and the fan-out graph, i.e. whetheratteelpstalls. The variable
veo represents the control state of the datapath computation. In a pipeline ctioyptha variable
converges to a final control state that ends the parcel computation.

The abstraction algorithm requires a set of pardéiscels C P(P(V,u U NextRegPql) that
approximates the parcel map:

v (qpc,th quc) € Rpc. PCZMap (QPcﬂch, Q;Dc) € Parcels (628)

We define the parcel step predicatelStep to be used in the definition gfa,,. In the defini-
tion below we use the predical&ellDefinedPclStep that stands for the definition of parcel steps
(Definition 4.4.1). Consistency with respect to datapath behaviour (Equatd is represented by
ConsistentPclStep. The parcel step predicate states whether the tiipat, (9., ectric, €pcic), qrac’)
is a parcel step that can execute under a control environment thatesatisfitrol assignment con-
straints and maximality of fan-out graphs. The predicate also takes in eoatsah the propagation
of the parcel’s control state, that represents the control valuesajeddyy the parcel’s step.

PClStep (QPAcy <fgc7 Ectricy epclc>7 QPAC,) Ectrl step =

Ectrl step ): (P@peCTr) | domecm step
A

Ectric € €ctrl step

A

We”DeﬁnedPClStep (QPAca <fg> €ctrls epclc>a QPACI) (629)
AN

ConsistentPclStep (qum (fgu Ectrls epclc>7 QF’AC,)
AN

( dp € Parcels. p N RegPcIC domgpa. A rootsfg = p )
A

IsMaximalFanOut (qPAw <fgc7 Ectric, epclc>7 QPAC/) Ectrl step
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The definition of the parcel automaton

pa.1 = (Qpac1, React, Tracts Ipact)

is done by induction. The resulting parcel automaton depends on a furiétiaimol EnvDom that
stands for the heuristical choice of the control variables that affegieel. When the definition of
PclStep is implemented in the abstraction algorith@ynirolEnvDom will be chosen heuristically
to trim the search space or to provide termination.

We prove thapa . ; covers the datapath computations independently of the particular heuredic us
The set of reachable pairs of parcel and control states are denoféd3iatePairs.

Base CaseThe set of initial states consists of all unconstrained parcel states.

Ipac1 = {4qpac | I p € Parcels. domgpa. = p N RegPcl (6.30)
PclStatePairs C  Ipac1 x {true} (6.31)

Inductive Case The set of states and transitions is defined inductively using the predicite)p.

v 4dPAc- v qctrl- v tPac. v QPAc/-

(gPAc, qetr1) € PclStatePairs N
I ectri step € PENUV iy U NextRegClr).
dome iy step = ControlEnvDom (qpac, Getri, tPAc) A
PclStep (qpac, tPac; GPAC") €ctrl step

( Getri U QCtrl/ [Regcm/NextRegCtr} ) C ectrl step

=
(gpac’s qetrt’) € PclStatePairs A (qpac, tPac, @pac’) € Rpact A qpac’ € Qpact
(6.32)
The domain of the control environment;,; s, iS chosen so that
domQCtrl C ControlEnvDom (QPAm Getrls tPAc) (633)

As defined by Equation 6.32, the transition relatiorp@f ; contains only parcel steps. The closure
pa,, of pa,, includes the parcel transitions for such steps. We use the following nofatidine
closed automaton:

mc 1= (@PAC 1 EPAC 1, TPAC 1, TPAC 1)
Lemma 6.2.2 states that ., covers the datapath computations.
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6.2.2 Lemma.
pdpipeca PclMap) - Pay

Proof. The claim is proved by induction. We show that for any pipeline step anghargel within
that step, there exists a control state so that the parcel and controla&tateip PclState Pairs.

V qpe € QP(:-
VtPc € TPc- VQPC/ € QPc-
V p € PclMap (qpe, tpe, qp,.)-
dgpact € Qraci- 3 qetr € PEn\(RegCtr).

(gPac1 € qpe) A (qemnt € gpe) N (pelStatep C qpac1)
A (qPac1, Qetrl) € PclStatePairs

(qpe; tre, dpe) € Rpe =

(6.34)
The other claim we prove by induction is th@ga. C Rpac1-
\v/qpc € QF’c-
Vip. € Tp.. YV qp.’ € Qpe.
V p € PclMa e tPes qpy)-
(QPthca (];Dc) € RPc - P P (qP Pe> 0P ) —
(pclStatep, pclTransp, pcINextStatey) € Rpac1
(6.35)

Base Casejp. € Ip.. From Equation 6.30 and Equation 6.31 we have

Ieac € Ipac
Ipac1 X {true} C PclStatePairs

Since the parcel states of parcels within pipeline steps from initial pipelines sta¢einitial, it
follows that Equation 6.34 holds whemp, € Ip..

Inductive CaseLet (gpc, tpe, ¢p.) € Rec. By induction, Equation 6.36 holds gf..
V p € PclMap (qpc, tee, gp,)-
3 gpac c1- 3 qetrt € PENRegCltr).
qrPac1 € QPac1- 3 qein € YRegCtr} (6.36)

(qPac1 € gpe) A (e  gpe) A (PelStaten C qpact)
A (qPAc1, etri) € PclStatePairs
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We prove Equation 6.37 holds for the stgp., tp., gp,)-

V p € PclMap (qpc, tee, gp,)-

_ 6.37
(pciStatep, pclTransp, pcINextStatey) € Rpac1 ( )

And that Equation 6.34 holds inductively fog,’.

Vitp.' € Tp.. ¥ qp.” € Qpe.
V p' € PclMap (qpe; tpes pe)-
I qpact’ € Qpact- 3 g’ € PENRegClr).

(gpact’ € ap") A (qew’ € qp.’) N (peiStatep” C gpact”)
A (gpact1’, qetr’) € PclStatePairs

(q;DcaﬁDcngc> € RPC =

(6.38)

Part 1 We prove Equation 6.37.

Considerp € PclMap (qpe, tre, qp.)- Applying Equation 6.36, there exigpa. 1 andg.,; o that

(gPac1 C gqpe) N (qetrt € gpe) N (pelStatep € gpac1) A (gPact; Getrt) € PclStatePairs  (6.39)

We let
dom = ControlEnvDom qpac1 qetr1 (PCITransp) (6.40)
Cctristep — ( qpe U tp. U qpc/ [VT//VT:| > | dom (6.41)
QCtrl/ = Ectrl step ‘ Vr/ (642)
and show that
PclStep (qpac 1, pclTransp, pcINextState) e iy siep = true (6.43)

We prove the following conjunct aPclStep. The remaining ones are trivial to prove.
dp € Parcels. p N RegPcIC domgpa.1 A roots((pclTransp).fg) = p

We havep N RegPclIC domgpa.1 SincepclStatep C gpac 1.

Equation 6.43 together with Equation 6.32 in the inductive definitiopugf, imply
(gpac1, pclTransp, pciNextStater) € Rpac1 (6.44)
Noting thatroots((pclTransp).fg) N RegPcl= dom(pciStatep) and sincepa, ; is the closure of
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pa. 1, Equation 6.44 implies

(pclStatep, pclTransp, pcINextStatey) € Rpa. 1

Part 2

Y (abes tpes Gpe) € Rpe. ¥ p' € PelMap (gpe, the, dpe ).
gpac1’ € Qpact- Fqun’ € PENRegCtr).
(grac1’ C qpe') A (gern’ € qpc’) A (pelStatep’ € gpact’)
A (gPact’s qetrd’) € PclStatePairs

(6.45)

To prove Equation 6.45 we use the continuity property (Equation 5.3 onJ#gen the definition
of the parcel map. Considéqp,, tp,, ¢p.) € Rp. andp’ € PclMap (qp,, tp., ap,). Therefore, there
exists a parcep at step(gec, tec, gp.) SO thatpciStatep’ C pclNextStatey. Using the induction
hypothesis, there exigpa. 1 andq.; such that:

dPAc 1 - 4qPc
qctrl - 4dPc

(qPac1, Qetrl) €  PclStatePairs

We perform the construction in Equation 6.40 to Equation 6.42. Equation 6g&&htr with
Equation 6.32 in the inductive definition dtclStatePairs imply that (pcINextState, q.ii') €
PclStatePairs. We therefore seajpa.1” = pclNextStatey.

6.2.3 Proposition. If Tpa.1 C Ipa. then
Pipe, [DPSWC 1/ Dps,| =p Pipe,

Proof. The parcel automatopu ., differs from the induced parcel automaton by representing un-
reachable datapath behaviours. Its closure does not add new haavimreachable behaviours
are already specified by the datapath circuits and therefore do najeliae datapath when per-
forming abstract interpretation. O
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6.3 Parcel Steps In Propositional Logic

A path through the concrete parcel automaton consists of a sequerareelffpansitions. Since the
parcel automata we work with are closed we consider only parcel trarssttiab are parcel steps.
Each such step satisfies the predic8téStep described in Equation 6.29. The essential part of the
abstraction algorithm is to derive the equivalence classes of the peepel(@,.., tha., dba. ) from

a constrained statg, ., where the constraint requires that the stdifg be reachable by a pattf, .

equivalent to the abstract pat, .

In order to define the representation BflStep in proposition logic, we observe that the span of
a parcel step(q,’gAc,t’,%Ac,q’,f,jcl) (i.e. the parcel variables, datapaths and control variables that it
mentions), is limited by the domain af,, and by the set of all possible parceParcels. We

denote byp* our conservative approximation of a possible parcel in &g, thy., goal):

k= U{p | p € Parcels A p N RegPclC domgl,.} (6.46)

The cone of influence of a set of pipeline variablégs a set of pipeline variablesoneV' that
consists of the variables that can be assigned transitively ffom

6.3.1 Definition(Cone Of Influence) The cone of influence of a parcel is the smallest set satisfying:

Base CaseV C coneV

Inductive Case
e If y; € coneV and there existsvy, := ¢’ € Pipe,.Tr such thaty, € varse thenwv, €
conevV.

e If dp € DpsandArg(dp.PclP N (coneV') # ( thenArg(dp.PcIN) U OutputArd dp.V .i1) C
conevV'.

We extend the notation and writey € conep if any of the input parcel parameters of the datapath
dp is in the cone of the parcel, i.&rg(dp.PclP N (conep) # 0. Similarly, for fan-out edges we
write (v, b, v;) € conep if v; € conep.

The parcel at step is denoted by* C p*. The representation dPclStep in propositional logic
requires that variables encode the current state, transition label anstaie of parcep”. In addi-
tion, we also need to represent the associated current and nextl abates and the fan-out graph
of the parcel. Consistency with the datapath behaviour is specified by apegitional formula
[Rap),,,; that represents the transition relation for each datagath conep*. We denote the set
of variables corresponding to a datapath instanc& hy
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The variables that make up the parcel step variaﬁé/@) are defined below:

RegPcl = domgk,,
CombPcl = CombPch conep®

NextRegPcl = NextRegPch conep”

ControlVars = U ControlEnvDom, (qba., q%, 1, tha.)
2(:IEI’AC
VDps = U Vdp
dpeconepk
Parcel = {pcl,|vep*}

VianOut { fanOut,, | v € (conep®) N (Ve U NextRegPdl}

where

e RegPckepresents the current state of the parcel.

e CombPcHenotes the combinational parcel variables in the cone.

° Ne;t_l\?gchare the next state parcel registers in the congrof

e ControlVars denotes the upper bound on the domain of possible environmfents, . This
is chosen heuristically.

e The set of datapath instance variables in the cone of the parcel is d@yo@g.

e The set of variable®arcel encode the parcel® as a subset gi*. Forv € p* we have that
pcl, = true if the parcelp® containsv.

e The set of fan-out variable;,,, 0.; represent whether ¢ (conep®) N (Vpa U NextRegPal
is in the fan-out of the parcel. ThereforefanOut, = trueif v € (p*)*.

We define

NextF\’egPéclJrl = ( Ne;t_l\?gch{RegF’C/ NextRegP%l )Hl

With the above above sets of variables the set of parcel step variablkescistad as follows:

k

——k k —— k

— k+1 k ——k k
Vsiep = RegPcl & CombPcl & NextRegPcl & ControlVars & Vp,s W Parcel W Vigou

——k
We are now prepared to describe the formialStep),,,; ( Vitep )-
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[Assignments],,,,,
A\
. [Datapaths),,,,
[PclSteplyoo; (Vstep ) = A (6.47)
[FanOutPropagation),,,,
AN
[WellDefinedPclStepl,,,,

The description ofPciStep in propositional logic consists of four subformulas. The variables that
could occur in the parcel step are constrained by the relevant assignarah datapaths of the
pipeline model. The formula in Equation 6.48 consists of the assignments td patteontrol
variables in the cone of the parcel. The formula in Equation 6.49 ensurestiséstency of the
parcel step with respect to datapath behaviour.

: ‘ —~k
[Assignments],,,, = [[(Pzpec.c. Tr) | coneﬁkﬂ bool (Vstep ) (6.48)
——k
[Datapaths),,,, = /\ [Raplypo; (Vtep ) (6.49)
dp€conepk

The following formula propagates the fan-out of the parcel throughaheofit edges in the cone.
The first conjunct represents the base case: the variables thattawétha parcel are also in its fan-
out. The second conjunct corresponds to the inductive case, antbatf@ropagates transitively.
The third case covers the case of parcel variables that are notderansitively from the parcel.

A pelt = fanOut®
vEpk
A

A b= (fanOutﬁl = fanOuth)

[FanOutPropagation),,,, = (01 b,02) e cONe

A

A < =pelly, A < (U1,b,’02/\ b > = ~fanOutk, )

vp€conepk )econep*
(6.50)

The last subformula ensures the parcel step is well defined. A datapatthaue either all argu-
ments in the parcel’s fan-out or none at all.

k k
fanOutyp = fanOutyp, )

(6.51)

[WellDefinedPclStep),,,, = e C/(}neﬁk < CetPs e, Y Arg(ap PolP
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—k
Finally, we provide the semantics of our encoding by defining the satisfialfififycd@Step],,,; ( Vstep )

by a parcel step. We use the notatig, = (fg", ek, ek, ).

6.3.2 Definition (Propositional Semantics Of Parcel Stepéje write

—k
ko Lk k
(QPAcatPAcaqP:\rcl) =[P ClStep]bool (Vstep )

——k
if there exists an environmeeftep € En( V., ) such that:

elsctep = [PclSteplyy, (Vs;;k)
IPac [RegPCI?/Rech- C ey (6.52)
Erel e {CombP C17/ Comch_ C eb, (6.53)
eﬁtrl c [ControlVarsk/ C’omars_ C el:tep (6.54)
TPhc [NeXtRengI/Rech_ C el (6.55)

true : v € rootsfg”
ekpep (pell) = 1o (6.56)
false : v ¢ rootsfg”

true : v e fg¥.Succ
fanOut®) = vels (6.57)
false : v ¢ fg".Succ

k
estep(

Proposition 6.3.3 states the correctness of our encoding.

6.3.3 Proposition.

——k k k k k+1y\ _k
( (@Facs thac: Giae ) = [PelSteplyon (Vetep ) ) = 3€Ci1 step- PelStep (apac: thac Gpac ) Ectri step
(6.58)

. . k
Given an environmendy,,,

——k
parcel StEF{qEAC, tllgA(ﬂ qII;Xcl) SO that(qllgAw tllgAc’ qlngcl) ): I[PClStep]l bool ( VSt@P )

—~—k
that satisfie§PclStep],,,; (Vstep ) We can define the corresponding

—~ k
q]IgAc = (e];tep ’ RegPC'?) [RegPC/Rechl} (6.59)
fg* .Nodes = {v | e]s“tep (fanOut®) = true} (6.60)

fg*.Succ = {(v1,b, w) € FanOutEdges |
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(fanOutl = true) A (fanOut}, = true) A el =b}  (6.61)

—~~— k
e];clc = (elgtep | (fgkNodesﬂ Combpcyk> |:CombPC/C0mbPCI:| (6.62)
k
( e]sftep | U Arg(dp~vctrl) )
e = dpEdatapath" (6.63)
—~— k
CO?”Lt?“OlVLW‘S/ ControlVars
—~— k
qucl = (e];:tep ’ NextRegPCk[) [RegPC/NeXtRegPCI} (6.64)
The step formulaf’,, stands for an equivalence class of parcel sl{%@éAc, t’,gAc,q,’éj\cl)ﬂ It

consists of two parts, one subformula for the parcel step and anothieat@ncodes the eqif\?alence
class of the transition labé,_ :

—k ——k

P Vi) = [[betbanatid] ] 72

——k

—k ——k
|:|: “:(qllgAca t’IgAm qll-?’Xcl):H - ( VSt@P ) = I[PClStep] bool ( VSt@p ) N |:|: [[tllgAcﬂ o ﬂ ( Vstep )
~PALl bool —PAL bool

A b
_ N (e,b,v2)€fg".Succ
i o~ _ &
|:|: “:tPAc:H _ ( VSt@p ) = N A /\ U= €l c(v)
AL bool /\ b vedome’gmc

(e,b,u2)Econepk\ fg*.Succ

The encoding of the equivalence class of the transition lghelconsists of two parts, correspond-
ing to the fan-out graplfy* and respectively, to the control environme@ttrl o

6.3.4 Definition (Propositional Semantics of Equivalence Classes Of Parcel Stéfesjvrite

——k
k k k+1 k
(QPAC 1 tPAc 1 QPXC 1) ): fstep( Vstep )

—k
if there exists an environmenf, , ., € EnY V., ) satisfying Equation 6.52 up to Equation 6.57
and

—k

k k
Cstep c 1 >: fstep( Vstep )

6.3.5 Proposition. Step formulas correspond to equivalence classes of parcel steps.

k k k+1 ko o4k o k+l k k k+1 k
(@Pac1: tPac1: GpAc1) € [[(QPAcvtPAca dpAc )]] = (qPac1> tPac 1) Tpact) F fstep
=pA
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6.4 Path Formulas

Path formulas are propositional formulas that represent equivaléasses of concrete paths in the
parcel automatopa, . A path formula is satisfiable if and only if it stands for such an equivalence
class. A path formulgfﬁath corresponds to pathst, . of lengthk. The path formula describes each
stepi of the path using a step formufg,.,,. Corresponding to the inductive definition of a path

0 _ 0
TpAc — 4pPAc
tha,
k+1 &k k+1
Teae — TPAc dpac

we have a similar type of definition of path formulas:

fgath = true
fk—i—l _ k A k
path path step

6.4.1 Definition (Propositional Semantics Of Parcel Automaton Patkig} define

——k
k k
TPAC |: fpath( Vstep )

by induction:
Base CaseFor paths of lengtli we have:

78, = true

Inductive Case

k+1 k+1
Teae = f path

k k ko 4k K+l k
TBac = fpath /N (@Pacs tPacs Gpac ) E fstep

6.4.2 Proposition. Step formulas stand for equivalence classes of parcel automaton paths.

k k k k
TPac1 € |]:7TPACj|:| = Tpac1 F fpath

=PA

The parcel automatopu ., described in Section 6.2 is defined inductively. The inductive definition
is exploited in the use of path formulas which are used to explore the corgiolevdatapath be-
haviours represented by the parcel automaton. The control stateadisdogith the parcel state is
propagated along the path formula by sharing variables between ctineetaps.
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The setControlVars represents the current and next control states as follows:

domgq., ControlVars

(domgq.ii') [NextRegCtr/ RegCtr]

N

—_—~—

ControlVars

N

In the k-th step this corresponds to

domq’jm {RegCtr 1 / RegCtrJ C  ControlVars

k k
(domq'C“;;ll) [NextRegCtrI / RegCtrJ C  ControlVars

To propagate the control staj@j;ll to thek + 1-th step, we perform variable substitution in the step

formula /% :

—~ k
A = (domgtf)) [NeXtRegcm/RegCtr]

e
B = A {RegCtr oy NextRegCtrI]
ey = [he [A/B] (6.65)

6.5 Abstraction Algorithms

The basic abstraction algorithm constructs an abstract parcel autonetiifos each equivalence
class of the set of pathi$(pa . ;) with respect to the equivalence on paths4’. The abstract initial
states correspond to paths of length one, that consist of a single st&eqtitvalence classes of
such paths correspond to sets of initial states that have the same domaisetTielomains of
initial states is denoted binitParcels.

InitParcels = { domgpa. | qpac € Ipac1 }

Accordingly, the set of abstract initial statésa, is in bijection with the set of domains of the
concrete initial states:
Ippq < InitParcels (6.66)

At the current step the algorithm extends the abstract path

0 k—1
t A tPA

7Tll-g’Aa = quAa —- - QI]gAa (667)
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The pathzr,’gAa stands for the non-empty set of concrete stétesentStates reachable along equiv-
alent concrete paths:

ak

T PA
CurrentStates = { qpac | 3mha, € (DA, ). Ipaci 2 qpac A (Tha. =paTha,)}  (6.68)

The equivalence class of concrete statesﬁ-lﬁ,@g denotes is represented by the path fornﬁ@a@h.

Atany given timef},, is satisfiable.

The algorithm finds all possible extensiong;/, of the pathsrk, . equivalent torf, .. For each
equivalence class of the set of patts/, the algorithm constructs an abstract sigig’ and the
pathvr,’ijcf that continuea,’gAa. The correspondence is shown by the following commuting diagram:

k+1

TPAG
71—!I;C’A a k tl!gAa k-+1
Ipaq " dpAq " dpaq
Spa Sea (6.69)
7r,]§A c k tll—S’Ac 1 k;i- 1
Ipac " dPAc1 " dpact

k+1
TpAc1

Concrete pathshi !, of lengthk 4 1 extend paths of length that are equivalent tof, , if

——k
mhaly b fhan A [PelSteplyo (Vatep ) (6.70)

Equation 6.70 is the basis of the path extension algorithm in Algorithm 6.1.

Each iteration of the while loop in Algorithm 6.1 solves a constrained path forofditam fz’f A

a

Constraint. Initially, Constraint = [PclStep],,,; (Vstep ). The solution to the path formula is
interpreted as a concrete stef,,, tha., 44 ) (lines 5-6). At the end of the iteration, the equiv-
alence class corresponding to the current solution is excluded frome fedlutions by adding the

negation- Mt’,ﬁ,AC] :PA]] to the constrained path formula (line 19).

bool

Corresponding to the concrete st@,.., ths., ¢bA. ), the algorithm constructsl,, andgiz’. In

order to make the diagram in Equation 6.69 commute we must have

k k _k k
tPAc = <fgc7 Cetrl ¢ epcl c>

k k _k k
75PA(/L = <fga7 Cetrl a 6]ocl a>

fo* =4 f¢® (equality modulo constants)
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1
2
3
4

5

© 00 N O

11

12

13

14
15
16
17
18

19
20

InpUt: <QI]gAa7 f;:ath>
_ E 4k k+1 ko 4k k+1
Output: Abstract stepstqpa, . thaq 1> Ipaa 1): (@Baas thaa 2 Toaa2)s - - -

fi= F5 o APelSteplyn (Vorep )

result := ()
while f is satisfiabledo

€path ¢ *— SOIVqu)
k .

€step = €pathc ‘ I//;_e/p
/1l Use construction in Equation 6.59 up to Equation 6. 64

k+1
(qI’gAw t]IgAm qPXc ) = Stemelztep)
k _k k .tk
<fgc’ Cctrl ¢ epcl c) T tF'Ac
— k
pk L parce(elgtep | Pa/r*cel )
ek i=¢ek Il nust be equal
ek . 1 == createAbstractValuég*, fgt))
k _ ok ‘
epcla T epcla] Vc
11 foa ~ai Joe
k - k _k k
tPAa T <fga’ €ctria epcl a>
£k
it ehera 1 | NextRegpcr 0 then

ql’iA*i = (egczaz ‘ NextRech)I [Rech/ NextRegP%l

else

k+1._
dpa, = finalpa,

end

append ¢ha,, tha,, GEAL) tO result
— k

fi=fNA= [“[tPAc] :PA]]

end

k

bool

Algorithm 6.1: Path Extension Algorithm

k _ k
Cetrlia - Cetrl c

We defineq,’i,;'{a1 over the next-state registers that appear in the fan-out graph

domgii! = {v | v € fg.Nodes}

It remains to describe hova/;da andgpi! evaluate the combinational variables and, respectively,

the next-state parcel variables (lines 2—19) of Algorithm 6.2. The edigie dan-out grapb‘g’;
describe value copying or datapath transformations. For each parashatdatapath output par-
cel variablepcIN we create a new abstract value that denotes the corresponding inazisdm
(line 10). Similarly, a new value is used for inputs (line 3)croice assigned variables (line 18).
For each constant variablewe choose an advance an abstract vatyevhich we assign ta at
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Input: (p*, fg¢)
Output: Abstract parcel environmeng®

pcla 1
1k, =011 eby,, stands for tha, Ugpd,
2 foreach v € InputPcln p* do
3 by, (v) == newAbstractValug
4 end
5 foreach (v, b, ) € fg*.Succdo
6 mark vy
7 if v1 ¢ PcINthen
8 elgcla 1 (UQ) = (el;cl a U qEAa)(Ul)
9 else
10 eb 4 1(v2) := newAbstractvalug
11 end
12 end
13 foreachv € p* N V, do
14 if v is unmarkedhen
15 if v is assigned a constant ify" then
16 era (V) =w,/] w, is the abstract constant for the edge
(we, b, v) € fo
17 else
18 ek 14 1(v) == newAbstractValug/ /| v is assigned choice
19 end
20 end
21 end
Algorithm 6.2: Abstract Value Propagation
line 16.

Formally, we define the environmeaﬁdal € Envfg.Nodeg that stands fork,, U giil by
induction:

Base Case

o If v € RegPcthenel, ., (v) = gpa,(v).

e If v € InputPclthene’, , , (v) = newAbstractValug

e If v is assigned a constant, thene’;cla ;(v) = wq, Wherew, is the abstract constant

corresponding to the edde., b, v) € fglé.

e Otherwisey is assigneethoice, soe’ , , , (v) = newAbstractValug.

Inductive Case
e If v & PcINthen there existéu;, b, v) € fg.Succso thaty = v,. We sete? ,  (v) =

. p
€pclat (vl)'
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e If v € PcINthenv = newAbstractValug.

Usinge® , , k we define:

pcla
€pcla = 6];clal | combPcl (6-71)
k N
qk+1 . (epclal | NextRegP(,)[ [NeXtRegPC/REQPC} . 6pclal | NextRegPCfé @ (6 72)
PAa . . ok — .
finalpa, “Cpelai | NextRechl_w

The abstraction algorithm is represented in Algorithm 6.3. It performs éhe@pt-search ex-
ploration of the paths in the concrete parcel automateon,. The algorithm maintains a stack
of concrete paths to be explored. The concrete pdgh. that is currently explored is repre-
sented by the formulg” , such thatrf,. = f¥,. The entries of the stack consist of tuples
(aPaq> domby,, fh..), where the abstragf,, is on the frontier of the on-the-fly construction of the
abstract parcel automaton. It is reached in the abstract parcel autobyaéopathrf, , equivalent
to wf,.. For each possible extension of the paff,, of form (gk., tha., dbas), the algorithm

creates a new equivalent transition in the parcel automaton (lines 19-29).

The test at line 23 fails if the stack contains an already visited abstracysigtthat subsumes the
newly constructed statg:i . This check ensures termination of the algorithm when the runs of
pa,, are terminating (Definition 6.1.2). If the abstract sigg’ has not been visited before, a new
entry is added to the stack. It is possible the stgfel has been visited before, but it is not on the
stack. In the DFS algorithniyf,,, tha,, dba.) is called a cross edge. To be sound, the algorithm

must visitgS; ! under the current path constraint.

The abstraction algorithm explores the paths of the concrete parcel d@atopaa; according to

the inductive definition opa,; on page 150. At line 23 the abstraction algorithm checks whether
the pair of abstract state, control state has been visited on the curtbnflie termination of the
algorithm is proven if the heuristic functiofontrolEnvDom has the property that for transitions
that only copy the parcel state, the next control state is empty. This rewgritas justifiable since
the purpose of of the next-state control variablesiwntrolEnvDom is to prevent unreachable
computations due to datapath transformations that propagate into the paes¢ksate.

The proof of correctness of Algorithm 6.3 is based on showing that theritdgh performs path
abstraction of the concrete parcel automgiop,. From Lemma 6.1.1 we get

ﬁ(mcl) - E(paa)

Pa,1 =pa Do,

We begin by showing termination. We show that the algorithm explores a finite erushlequiva-
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Input: Pipe,.
Output: (Qpaa; Rpraa, Traq, IPAa)
1 (QpPAa, Rpaa, Traa, Ipaqs) := ({ finalpa, },0, 0, 0)

2 Stack =)

3 Visited :== ()

4 foreachp € InitParcels do

5  qda, := NewAbstractState)
6 Ipas = Ipaa U { dpa, }

7 Qpaa = Qpaqs U {qopAa }

8 I?ath true

9 dom?%,; =0

10 pushStack, (g, domY,,, true)
11 end

12 while Stack # ) do

13 (@, domk, ., lefath> = topStack// 1f k=0 then f* path, = true
Il The successors of ¢f,, have been visited?.

14 if gfs, € Visited then

15 pop Stack
16 continue
17 end

18 Visited := Visited U { qia, }

19  foreach extensior(qPAa, t’,%Aa, aial) of (gha,, dom®,,,, Fron) do

20 Qpaa := Qpas U { gt}
21 Traq := Tras U {tPAa}
22 Rpaa = Reaa U { (¢Fna: thaas @hae ) }

Il s (ghAs,q%}) visited on the current path?
/1l The test holds vacuously for final pAa

23 if (domlz;ll =0 A I gby, € Stack N Visited. giit C ghp, A doml,,,, =
k

24 step [PClStep]lbool A H:“:tPAa]l :PA:H bool

25 dom® 1! .= ControlEnvDom (dom¥,,, fg¥, e~ )

/1 Performthe substitution in Equation 6.65
= Updatéfstep’ dokarl)

26

step ctrl
27 pushStack, <Q;]g:\ralvd0m]§;llvf ath N Fitep)
28 end
29 end
30 end

Algorithm 6.3: Abstraction Algorithm
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lences of concrete parcel automaton paths. The algorithm pushes zi»sr;teaciatstatq,’ij(a1 onto the

stack at line 27 iff )"\ = %, A fk  is satisfiable and

—(dom* ! =0 A3 gha, € Stack N Visited. qpit C ghag A dom'y,, = 0) (6.73)

We state an equivalent condition in terms of the corresponding concréite 7§/ that satisfy
f;f;% = f;lfath A fftep that implies that the negation of Equation 6.73 holds. We show that the
number of concrete paths that do not satisfy this condition is finite. Therefguation 6.73 is true

only for a finite number of cases.

We recall the notion of a variable’s driver introduced on page 142. driver of a variablev, at
stepk is a variablev; at stepn such that variable, at stepn propagates through copying into the
value ofw, at stepk.

We say a concrete paﬂ‘f;Ac is visitedif during the execution of the algorithm the stack contains a

tuple (qfa,, dom¥y,,, f¥,,,) such thatrp, . = f% . The stack grows at line 10 or at line 27.

6.5.1 Definition(Explored Path)

EzxploredPath thy . =

dng<k.dng+1<n; <k.
Vi€ {ng, ..., n }. domgsy! [NeXtRegPC/Reng}f C StateFanOut®
A
Vo € domgpitt. driver (v,ny + 1) = driver (v,ng + 1)

We define the dual predicaféotExplored Path that characterizes the paths that are not explored:

NotExploredPath w,’_i,j(j =

dng <k.dng+1<n; <k.
Vi€ {no, ..., n1}. domgph! [NeXtRegPC/Reng}f C StateFanOut
A
Vv € domgpitt. driver (v,ny + 1) = driver (v,ng + 1)

6.5.2 Lemma(Termination Of Abstraction Algorithm)If the runs of the concrete parcel automaton
pa,, are terminating then Algorithm 6.3 terminates.

Proof. Part 1 We show that if a path satisfies td&tFxplored Path predicate then it is not visited.

To show a path is not visited it suffices to show it has a prefix that is not dislteerefore, assume
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w’,_f,:(j is minimal to satisfyNotExploredPath, i.e. has no strict prefixes that satisfy it. If

dng <k.dng+1<n; <k.
Vi€ {ng, ..., }. domgpp! [NeXtRegPC/Regpc} C StateFanOut®
A
Vv € domgpat. driver (v,ny + 1) = driver (v,ng + 1)

then sincery4 = is by construction equivalent tep; t we have thatrjs, !t/ satisfies the similar
property:

dng<k.dng+1<ny <k.
Vi€ {no, ..., ni}. domgsh! [NeXtRegPC/Reng} C StateFanOut'
A
Vv € domgpy . driver (v,ny +1) = driver (v,ng + 1)

(6.74)

Given the implication
(Vv € domgpptt. driver (v,ny + 1) = driver (v,n9)) = qppt ' C qpa,

we obtain thaypa ! C ¢p3.. And therefore the pathp,t! is not visited and sincep,t! is a

prefix of 71 1, the latter is not visited either.

Part 2 We show that the set of paths that do not sati$by¢Explored Path is finite:

ExploredPaths = {nhs, | k € N A EzploredPath why .}
| ExploredPaths| < oo (6.75)

The proof of Equation 6.75 is based on showing the claim below, which impbe&itylored Paths
contains only paths of length up to a constanand therefore it is finite.

Jko. VE > ko.

vrkt!, (6.76)
NotExploredPath 71'],_9,2'5

To prove Equation 6.76 we observe that a p@@\ig may contain at mostQpa. 1| transitions that
do not exclusively copy the parcel’s state into the next state:

NonCopyTrans = {i| (domgph!) [NeXtRegPC/Reng}/ Z StateFanOut'}
|NonCopyTrans| < |Qpaci| (6.77)
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Equation 6.77 is proven by contradiction. If it does not hold we can catis&r runopa. that
does not terminate. IfNonCopyTrans| > |Qpac1| then there must be two indicés < iy in
NonCopyTrans such thay,. = q,.. We then construct the non-terminating i, as follows:

A tPac i tPac TP
— 71 11
Opac = i, P05 PAG g TPAG TPAS g

We now return to Equation 6.76. We need to filgdlarge enough so that’,_f,:(j admits a large
enough subsequence of transitions that only copy the parcel’s state:

dn<m<k.

. , (6.78)
Vie{n,...,m}. (domgshl) [NeXtRegPC/Reng}' C StateFanOut"

Forie {n+1, ..., m} we define the function
driver i = { (v, driver (v,4)) | v € domgba, }

Since for all states at indices betweer- 1 andm the parcel registers take their value from parcel
values at step + 1, the number of different values thétiver can take is bounded by

2‘QPAEI‘X|QPA01|X|d0mqut1| < 2|QPAC1|><\QPAE1\><|RGQPC|/

Therefore whemr—n—1 is large enough there will exisly andn, such thatiriver ny = driver ny
which implies
Vv € domgpytt. driver (v,ny + 1) = driver (v,ng)

Denote byt the number of non-copying transitions i Xj and bys the largest subsequence of
copying transitions im—,’éjj . There are at most+ 1 copying subsequencesﬂﬁjj because copying
subsequences are separated by at least one non-copying transiitimerefore obtain:

(t+1) xs+t > k

k—t
t+1

k —|Qpaci]
| QpPac1| +1

. k —
The longest subsequence is at Ieac?t@. Therefore, we choogeg) so that
PA

’ clH‘1

s =

w
Y

(sincet < Qpac1)

w ~ 9l @pac1|X|Qpac 1] x|RegPd
|Qpac1| +1
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The following theorem states correctness of the abstraction algorithm.

6.5.3 Theorem(Path Abstraction)If the runs of the concrete parcel automajen ; are terminat-
ing then Algorithm 6.3 performs path abstraction of the concrete parcehatopa.. ;.

Proof. We use Lemma 6.5.2 that states that the algorithm visits a finite number of condiete pa
which implies that if a statef,, is on the stack then there is a point in the execution of the algorithm
whengk, . is popped off the stack and extended by Algorithm 6.1.

We prove the following two claims by induction.

(i) If ExploredPath w,’g,Ac then the algorithm creates the abstract sigte that is reachable along
a patthAa —=pa Ths, and pushes onto the stack the tupig,,, dom”,;, fpath> such that

7rPAc F fpath'

(i) For anyk, . the abstraction algorithm constructs an abstract gtgte which is reachable
along a pathrk, . equivalent tark, ..

Base Casé: = 0. The concrete path2, . consists of a single initial statg,.. At lines 4-11 the
algorithm pushes onto the stack the stglg, =pa qp,. and thereforeg, . =pa 7hs,.

Inductive CaseWe assume that the two claims are trueifet k£ and prove it fork + 1.

Claim (i) We need to show that |Ea:ploredPath 7rk+1 then the algorithm creates the abstract

stategpi! that is reachable along a pattii! =pa ﬂ,’%j\rj and pushes onto the stack the tuple
k+1 k+1 pk+1 k+1 k+1

(appa > domen), f :;h> such thatrps . = fpath

Since ExploredPath wii! holds, its prefixrf, , also satisfies the predlcaiérploredPath By

mductlon the algorithm puts on the stack the tul,,,, dom?%,,;, fr;i A step> such thattk, . =

k—1 k
Sath N fstep And further,gk,, is reachable via a pattf, , =pa Th.-

Since only a finite number of paths are visited, the typlg,,, domk, ., fpath> is eventually popped
off the stack at line 13. The sta§,, is then extended by abstract steps corresponding to the equiva-

—k
lence classes of concrete paths of lerigthl that satisfy the formulg? ,, A [PclSteplyyy (Vstep )-

Sincenpa, = 5, il = FEan N [PelSteply; (V. (/S\te/p ). The path extension algorithm there-

a

fore constructs an abstract stdp,, that is equivalent taf,, and an abstract statg! reachable
by a path equivalent t@,’i}j The abstraction algorithm then performs the check at line 27 which
returns false sinc&aploredPath wg)! holds. The tuplegpi,, dom® !l & A fE ) such that

ctrl ’ step

Toae = [ A fE., is then pushed onto the stack.
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Claim (i) If w,ﬁ;\*c] satisfiesFaplored Path then this case reduces to the previous one.

Consider the maximal prefix, . of 755! such thatEzploredPath 7, holds. By induction the
algorithm visits the path;; . and extends the equivalent abstract pgth, so that

ny+1 __ ny+1
Tpac ~—PATPAG

However, the pathrp; 7 is not visited because

dng <k.dng+1<n <k.
Vi€ {ng, ..., n}. domgpp! [NeXtRegPC/Regpc} C StateFanOut®
A
Vv € domgpa . driver (v,ny + 1) = driver (v,ng + 1)

(6.79)

Equation 6.79 implies thags, ™ C ¢, therefore

tn1+1 tk‘
np+1 “PAc PAc  k+1

TPACL = Tpa,  — " dpac
is a path inpa., of length less equal té. By induction there exists an equivalent abstract path
Trae1l =pPA Tpac1. Since the equivalence class of a concrete path is visited only once, tthe pa
Tpaq1 CONtinues the pathzat?.

tPha, ' tlvag
_ _mp+1 k+1
TPAL1 = Tpa, o 4pAq

We modify the pathrpa, 1 by splicing in the path segment

B B
no+1 ni ni+1
9pAq " dpag 9pAq

; ; ; k+1
The resulting pathrpa, 2 is equivalent tarp, . .

+ 71;/% ! tg}A + 2}4 ! t]IgA
no+1 n ni+1 k+1
TPAa 2 ”P/Za 4'”qu\a JQP/}Aa 4”'4QPACL

O]

Because abstract states could be reached on different paths in theddgaF8 m, due to either back
edges or cross edges, it is not generally the case that

L(pa,) € L(pa.y)
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Figure 6.4: Pipeline model with stall and exclusive paths.

We use the example in Figure 6.4 to illustrate the result produced by the iostralgorithm.
There are two possible paths through the pipeline:

v — T — T — 13— U
Vi — T — 13 —> U

When the parcel im; produces output.; = 0, it transfers to». Whenwv.; = 1 it should transfer
to r3. If both the parcel in, andr, need to transfer tes, the one inr, is given priority. This means
the parcel in stalls.

The concrete parcel automatpam, ; is succinctly described in Figure 6.5. The figure represents the
two types of paths that are possible through the pipeline and uses symbhodis varansition labels
that such that..,;. = () are not shown. The result of Algorithm 6.3 is shown in Figure 6.6. The two
concrete path® — {r = ao } andd) — {r; = by } are indistinguishable during abstraction
and are therefore represented by the same abstrac path { , = «( }. The abstract value,
stands for botfay andby. When the stat¢ r, = « } is expanded, there are two abstract transitions
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ve1 =0 ve1 = 1

ve1 =0 ve1 = 1

Figure 6.5: Partial representationf,; using symbolic values.

satisfied by, and another two satisfied lby. Because of the self loogs = ag } Vel 5 O{ r=

ap yand{r =ap} Vel 5 {1 = «p } the abstract automaton can represent paths that are a mix
of distinct paths of the concrete automaton:

D—{rn=a} “— {n=a} “—  {r3= P50} — finalpa,
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Figure 6.6: Partial representationf, constructed by Algorithm 6.3.
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In the rest of the section we generalize the idea behind Algorithm 6.3 s&that,) = L(pa. ).
The abstract parcel automaton contains paths that are not possible amtinete one due to the fact
that constraints corresponding to paths that have a common prefix aeel sotiependently. The
constraint the algorithm uses when expanding an abstract state cowlssjp the conjunction of
the step formulas that represent the path currently explored. The ggnexalization is to replace
path formulas by a conjunction of formulas representing all the abstraditicms discovered so
far by the DFS procedure.

We recall the representation of parcel steps in propositional logic intemtlin Section 6.3. The set
of variables that encode the parcel step is defined as follows:

k

RegPcl & CombPcl & NextRegPcl & ControlVars & Vp,s W Parcel W Vigou

—~k

Vstep

—k
and the formula that encodes a parcel step from a gfgteis given by[PcIStep,,,; (Vstep )- The
equivalence class of a parcel step was represented by the formula belo

——k —k
fftep = I[PClStep]bool (VStGP ) A |:|:[[tlf3Acﬂ PA:|:| (Vstep )
- bool

According to Definition 6.3.4 we write

——k
k k k+1 k
(qPAc’ tPAcs qPXc ) ): fstep( Vstep )

—k
if there exists an environmeftepc € En( V., ) satisfying Equation 6.52 up to Equation 6.57
and

—~k

k k
€step c ): fstep( VStEP )

Given a propositional formuld, v a variable and” = { v4, ..., v, } a set of variables, we use the
following standard notation:

(Fv) f

V4]

deTy(v)
@V)v = (Fv) (- (Fvn) f)

It follows that the existence of a step equivalentdfi,., ths., ¢ba.) from stategl,. is equivalent

to the satisfiability of the following propositional formula:

HasStep( [{tpAcﬂ ) (RegPcl) = (3 Vstep \ RegPcl) fg.,
bool

=pA

The path extension procedure (Algorithm 6.1) uses the satisfiability solestrtact all the concrete
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parcel steps

ko gk k ko gk k
{ (@Pacs tPac 1) TPac1)s -+ -5 (@Pacs tPAc m> QPAcm) }

that are possible from a concrete stag, constrained byConstrainty, where Constrainty, =

f;jath in the first version of the abstraction algorithm.

We say the non-empty set of steps

ko gk k ko k k
{ (@Pac> thaciy> @Paciy ) - -+ (QPacs tPaci,» dPaci,) }

is exactif the following formula

bool

Constrainty,
A
. k
A [[HasStep( [[tPAC ]}]i )]] (RegPcl)
Je{it, oy ir } =PA 1l bool
A
k
A - [[HasStep([[tlﬁchﬂ )]] (RegPcl)

je{1,...,mN\{i1,...
is satisfiable.

Note that to represent an exact set of parcel steps in a for@nwtatraint;, we must have multiple
—~k
copies of the set of variablelg,;,,, .

——k k e~ e~ o k

k —— k+1 k —k k
Vstepj = RegPcl W CombPc| & NextRegPcl/ & ControlVars; & VDij W Parcel; & VfanOutj

—k

——k
fftepj = [PclStep] bool ( Vstepj ) A |:|: [[tllgAajﬂ PA:|:| ( Vstepj)
- bool

The generalized abstraction algorithm is shown in Algorithm 6.4. The achsafaation is per-
formed by the recursive procedufdstractRedescribed in Algorithm 6.5.

The idea in algorithm in Algorithm 6.5 is similar to the one in Algorithm 6.3. The gdizedh
algorithm finds exact sets of parcel steps that continue the abstractrsiatgas popped off the
stack. For each such subset it makes a recursive call that passpsltied DFS state of the current
instance ofAbstractRec The algorithm makes use of a functi@opyPclthat returns a fresh copy
of the DFS digraph (partially constructed abstract parcel automataamyetfursive call is made the
current instance returns since the recursive calls cover all the posaies.

6.5.4 Proposition. If the runs of the concrete parcel automagar).; are terminating then Algo-
rithm 6.4 terminates.
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Input: Pipe,
Output: (Qpraa; Rraa; TP, IPAa)

1 (Qpraa, Rpaa, Traa, Iraqs) := ({ finalpa, },0, 0, 0)

2 foreachp € InitParcels do
3 (P, = NewAbstractState)
a4 dom%,, =10
5 Ipaco = {qPa, }
6 Qpaco = {qpa, }
7 Rpaqo :=10
8 TPAa = Q)
9 Constraintg == ()
10 Stacko = { (ghay, dom®y,) }
11 Visitedg := ()
12 AbStI’aCtReC<<IpAa0, QpAa[), Rpago, Traa Q), Constrainty, Stacky, Visit€d0>
13 end
Algorithm 6.4: Abstraction Algorithm II

Proof. The same technique used in Lemma 6.5.2 to prove termination of Algorithm 6.3 is also
applicable here. O

6.5.5 Theorem. If the runs of the concrete parcel automagen ; are terminating then the abstract
parcel automatopa,, has the same language as the concrete parcel automagtpn

Proof. The abstract parcel automaton consists of the union of the parcel autostataed at
lines 25-28 in Algorithm 6.5. These parcel automata can only share thestates{ (), finalpa, }.
When such a parcel automaton is returned, all the edges of the finite pathtrépresents are
encoded in the global constraitbonstraint,, in the procedurédbstractRec The invariant of the
algorithm is that the global constraint is always satisfiable. It therefdi@re that for each finite
path througlpa , there exists an equivalent onega, ;. We can apply Lemma 6.1.4 on page 143 to
prove the inclusiorC(pa,) Cpa L(pa,). The other inclusion holds since the algorithm performs
path abstraction. Ol

Itis possible that for the abstract parcel automatenreturned by Algorithm 6.4 language equality
between the concrete and abstract pipelines does not hold. This sapipemparcel input variables
and parcel variables that are assigréice occur in several parcel steps of the abstract parcel
automaton. In this cas®pspa,, returnschoice for a combination of values that does not show up
on the edges of the parcel automaton.

To solve this problem, we need to modify the parcel automata returned at 5r@8 2Instead of a
parcel automaton with abstract valugélstractReaeturns one based on a solution to the constraint
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Input: ({Ipagn, QPaan, RPaans TPAan), Constraint,, Stack,,, Visited,,)
Output: updatesIpaq, Qraa; Rraa: TrPaa)

1 while Stack,, # () do

2 (ghag, domgy,) == popStacky,
3 foreachset of exact stepBractSteps® of (¢k,,, Constraint,,) do
4 (Ipan+1, QPan+1, Rpant1, TPAan+1) := COpYPClIpan, Qpan, Rpan, TPaan) (n + 1)
5 Stacky+1 := CopyPclStack,, (n+ 1)
6 Visited,,+1 := CopyPclVisited,, (n + 1)
7 EzactSteps® | := CopyPclEzactStepst (n + 1)
8 foreach (q,lgAa,75”,314\1”-7 q,’gj\alj) € ExactStepsk , do
9 QPaan+1 = QPaant1 U {q,’if\alj}
10 Traan+1 = TPaant+1 U {tlvaaj}
11 Rpaan+1 = Rpaant1 U { (QI]gAa’tllgAaj’ qﬁ:\rjj)}
1 ftepj = [PclStep]yy, (Vstep?) A |:|:[|:tllgAaj:|] :PA]]
bool

13 domf;l; := ControlEnvDom (domlztrl,fg?7 er.1)

[l Performthe substitution in Equation 6.65
14 b p; = updatéft .. dom ftj,'l;.) -
15 Constraint,y1 := Constraint, A fftep j

Il 1s q’F“,,‘{alj visited on the current path?

/1 The test holds vacuously for finalpa,
16 if ﬂ(domft;fl; =0 A 3 gbp, € Stackp+1 N Visited, 1. q’;j\;j C ghp, A doml,,, = 0)

then
17 Visited 1 := Visited, 1 U { gipa it
18 pushsStack, 1, <qlnga1j7 domftjlb
19 end
20 end

/'l Recursive call for the current set of successors.

21 AbstractReq( Qpaa n+1, RPaan+1, TPAan+1), Constraint, 1, Stackyi1, Visited,, 1)
22 end

/1 The DFS al gorithmwas finished by the recursive calls.
23 return
24 end

/!l There were no recursive calls
25 Ipaq := Qpaa U Ipaan
26 Qpaa := Qprac U Qpaan
27 Rpaq := Rpas U Rpaan

28 Tpraq := Tras U Traan
Algorithm 6.5: Recursive Abstraction ProcedufstractRec
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Constraint,. We then use a simulator to find out the values produced by datapathspardef
input combinations that are not known from the parcel steps.

6.6 Case Studies

This section describes our implementation results in the Bluenose Il desigvesdfidation tool.
Our abstraction algorithm was tested with several designiffdddMult arithmetic pipeline, an
edge detector and a two-wide superscalar OpenRISC microprocessor.

6.6.1 Design For Verification UsingPipeNet

DataP Reqp AccP
\ J W\ J A
IntPrev < Arbiter
——
MkRegAcc
Datapath selN -
IntNext IntNReqgAcc
> < Y N
DataN ReqgN AccN

Figure 6.7: Pipeline stage template.

Our case studies were designed using a library of reusable designwentpaalledipeNetHig-

gins and Aagaard, 2005]. The main building block tRgieNetuses is the pipeline stage. With
PipeNet the design consists of a collection of interconnected blocks that repreepipeline cir-

cuit and associated memories, register files and other design compondngsdwazard detection
units. Within a stageRipeNetprovides a clean separation between datapath and control. The struc-
ture of a stage is described in Figure 6.7. The parcel that enters theissajected by the mux
InterfacePrevand is stored in the stage register. When it eventually exits, its value is copiegth

the demuxnterfaceNext
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Parcel flow through the stage and through the pipeline is coordinated aisgmuest-accept pro-
tocol. Parcels move from one stage to another by generating requests igi@anted an accept,

lead to the parcel transferring to one of the requested stages. Thestemeept protocol has a
distributed implementation. Requests and accepts propagate through thespipéhiout the need

of global control.

Inside a stage, the request accept protocol is implemented by the threaingndocks: Arbiter,
MakeRegAcandinterfaceNextRegAcd he role of the arbiter is to prioritize the incoming requests
and drive the select signal of tiheterfacePrevmux. TheMakeRegAcblock maintains the occupa-
tion status of the stage and calculates whether the stage will be able to aecegujubst of another
based on whether its own request has been granted. The requékethatcel in the current stage
makes, originates as a control output of the stage datapath, which bgntmmvis calledselN .
InterfaceNextReqAaicts as the relay for the request-accept protocol with the downstregessta

The concept of pipeline models presented in Chapter 3 is a natural festioa of PipeNet The
PipeNettemplate provides clear boundaries between datapath and control. Bestages, parcel
values are only copied through muxes or demuxes, which correspotidsdassignment of if-then-
else parcel expressions in the pipeline model. Among the generalizatiamghbtay the pipeline
model are the dissolution of stage boundaries and the hiding of the reapeegit protocol. The
stage datapaths are replaced by combinational datapath modules with multiglemapautput
parcel variables. Datapaths are allowed to consume both primary pgpoehiriables and parcel
registers. The protocol used BypeNetto synchronize multicycle datapaths has also been hidden
away.

Stage datapaths can take multiple cycles to compute their result. During this timedheegtage

is busy, and it will not generate or accept requests and the enablé¢ sigha stage register is not
asserted. Multicyle datapaths use a simple protocol to start their computatidn aignal when

the result is available. An input control signal of the datapath is used talstéacomputation, and
respectively, an output signal of the datapath is asserted in the cyctetihdneomputation is done.
In the pipeline model, multicycle datapaths are represented by combinatidaphttes that take
as additional input and output parameters the registers correspondihg iiaternal state of the
multicyle datapath.

In a PipeNetdesign, the parcel map is defined using the pipeline stages or primary naibles.
For combinational datapaths, parcels are singletons that consist ofearstaster. For sequential
datapaths, the parcel consists of both the stage register and the adgiorell registers of the
multicycle datapath. The proof obligations for the parcel map (Section se13iaplified by the
fact that parcels are singletons when they transfer into a stage. Thefstatéticycle datapaths is
reset when a new parcel transfers into the stage and thereforesindopersist after a multicycle
computation ends.
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6.6.2 Implementation

The abstraction algorithm is implemented in Bluenose Il [Chan et al., 2007l &otothe design
and verification of pipelined circuits. The high-level description of a pigediesign is input into the
tool using block diagrams in a visual editor based on the Eclipse Graphimaélvig Framework
or textually using the Groovy Builder syntax [Koenig et al., 2007].

PipeStagéname: 'sub_stage’,next : ['neg_stage’, 'addstage’, ‘'multstage’]){
Blkinterface () {
Parcel(name: 'pclin’, vhdIType : ’pcl_suhty’, direction : ’IN’)
Parcellname: 'pclOut’, vhdIType : 'pcl_negty’, direction : 'OUT’)

}

Datapath(name: 'sub’, vhdlld : ’sub’, implFiles : ['sub.vhd’) {
BlkInterface () {
Parcel(’i _data’)
Parcel(’o_data’)
SelN(regN")
}
}
}

Figure 6.8: Combinational stage.

We recall theDiffAddMultexample first introduced in Chapter 3. Figure 6.8 and Figure 6.9 illustrate
how a combinational and, respectively, a sequential stage are refge$e Bluenose Il. The user
describes the parcel ports of the stage and provides annotations faté#path. The datapaths have
standalone user provided VHDL implementations which are referencedfradel file. Multicycle
datapaths have additional annotations describing the start and finishlquorts.

Bluenose Il generates hierarchical VHDL for the pipeline model and tieeMentor Graphics Pre-
cision RTL synthesis tool to create a hierarchical gate-level netlist ofékgd. At this stage, the
netlist contains black boxes that in a design flow are implemented using the RE®&G&A technol-
ogy. We have reverse engineered using trial and error close to twacttybdack box operators for
which we have provided generic gate-level VHDL implementations. Furthands of synthesis
are performed to rewrite recursively all the black box operators witHeyatieimplementations. A
translation to the NuSMV model checker [Cimatti et al., 2002] is made availabpgdwding se-
mantics of the primitive gates in the model checker’s language. Identifyingptiiect semantics of
the various types of flip-flops was the most challenging aspect in addpmpaiufor NUSMV.

We have implemented the first flavour of path abstraction (Algorithm 6.3) inrBise Il. Our al-
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PipeStagéname: 'mult_stage’){
Blkinterface () {
Parcellname: 'pclin’, vhdIType : 'pcl_negty’, direction : 'IN")
Parcellname: 'pclOut’, vhdIType : 'pcl_mult_resty’, direction : 'OUT")

}

SequentialDatapati{name: 'mult’, implFiles : mult.vhd’, 'multiplier.vhd’]) {
Blkinterface () {
Parcel(’'i _data’)
Parcel('o_data’)
Clock(’i _clk’)
Resef’i _reset’)
Start(’i _start’)
Finished('o_finished’)
SelN(regN")

Figure 6.9: Sequential Stage

gorithm exploits theselN and finished signals produced by the pipeline datapaths to compute the
possible parcel steps for the abstract state at the top of the staclke/Mhsignal uses a one hot-
encoding to represent the stage the parcel needs to go next. Thesucstates of the parcel state
correspond to the stages that are encoded bynathe selN vector. For multicycle stages, when
the value of theinished signal isO, the next parcel automaton state consists of the current parcel’s
value and the next datapath state. Once abstraction is done, the toatgendrDL for abstract
datapaths represented by the parcel automaton. Control propertiesretthited pipeline are then
verified using a model checker.

The path formula corresponding to a multiply operation in Ehi#AddMult example is shown in
Figure 6.10. The path formula is satisfied by computations of the concratel @artomaton of
form
= = ished =0
Sub SEU\/vSﬂ> 001 Neg SEZNM loMult ﬁms eﬂult

finished yp, ;=1

It ﬁniShEd ult — 0 SelNMut =0

Mu Mult

In the path formula the first instance of théult datapath is used to put the datapath in the reset
state. Corresponding to the internal registers of the datapath, the foromikires constraints that
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Sub 5 SelNSub = 001

Neg > SelN neg = 10

clockyruy = 1 L5 selN pui
reset pur = 1 ) Mult

start pruit N > finished ypi.

clockyryy = 1 | L selN pui
resetyut = 0 — 5 pNpult

start yryy = 1 )]

> finished yp = 0

clockyy = 1 —) L selN ppuit
reset yut = 0 — | pNpult

start yuy = 0 N

> finished ypn = 0

clock ppyy = 1 |, selNpyur =1
resetyut = 0 — 5 pNpult

start gy = 0 )

el [ sl

|, finished yp = 1

Figure 6.10: Example of path formula fBiffAddMult

ensure updates to the registers in the current cycle propagate into thefcbg registers in the
next cycle.

The abstract parcel automaton iffAddMultis represented in Figure 6.11. Our implementation
uses the MiniSat solver [Een and Sorensson]. The datapath of thie 32dion of Diff AddMult
has a total of 22881 gates. After abstraction, the total becomes 148.atthenoblems require 56
SAT problems with a cumulative time of 94 seconds. The maximum memory used MB%ugd
maximum time is 5 seconds.

Another example that we used illustrates the ease of applying abstractionluétind3e Il to circuits
that were not designed with verification in mind. We imported with minimal effortdisign of

a Kirsch edge detector that was originally created for a course projdw. cifcuit consists of a
pipeline that has two multicycle stages. The parcel automaton obtained bgdilostris shown
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(top_0, pcl_0)

selN=1

(add_stage, pcl_2)

seIN=001

(mult_stage, pcl_1, 0)

inished=1, seIN=1\{inished=0

(neg_stage, pcl_3)

selN=1 finished=1, seIN=1\finished=0 inished=0
inished=0 inished=0
@@ (mult_stage, pcl_1, 3)

inished=0 finished=1, seIN=IN\finished=0

(mult_stage, pcl_5, 3)

(bot_1, pcl_10)

(mult_stage, pcl_1, 4)

inished=1, seIN=1\{inished=0

(bot_1, pcl_11) (mult_stage, pcl_1, 5)

inished=1, seIN=1

(bot_1, pcl_13)

finished=1, seIN=Nfinished=0

(bot_1, pcl_12) (mult_stage, pcl_5, 4)

finished=1, seIN=I\finished=0

(bot_1, pcl_14) (mult_stage, pcl_5, 5)

inished=1, seIN=1

Figure 6.11:DiffAddMultabstract parcel automaton.

in Figure 6.12. The concrete datapath had 2200 gates and was redumdy @4 gates, with a
cumulative time of 33 seconds for 32 SAT problems, using less than 3.5MBabnye

6.6.3 Abstraction Of The OpenRisc Processor

Our OpenRISC processor is a two-wide superscalar pipeline for the 882B32-bit integer RISC
instruction set; it contains a cyclic path, uses bubble squashing, angtesétstructions in program
order. Our OpenRISC design implements 47 of the 52 instructions — all itistngexcept those
that require operating system support or special-purpose regiSthesORBIS32 instruction set
architecture uses a load/store approach and defines a flag conditiemeggpster that is used for
conditional branch operations.

In Figure 6.13, parcel connections are shown as thick lines and noignalls are shown as thin
lines. The three grey parcel connections are secondary paths thia¢ eesed to squash bubbles in
the event that the primary path is stalled. For examplg will use the secondary paifty — ID;

if IDg is stalled and there is a bubblelid,. The ALU stage has two groups of multi-cycle instruc-
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(top_0, pcl_0)

selN=1

(pipeStagel, pcl_0, 0)

finished=0

(pipeStagel, pcl_0, 1)

b

finished=0

(pipeStagel, pcl_0, 2)

b

finished=0

(pipeStagel, pcl_0, 3)

b

finished=0

i

(pipeStagel, pcl_0, 4)

finished=1, selN=1

(pipeStage2, pcl_1, 0)

b

finished=0

(pipeStage2, pcl_1, 1)

b

finished=0

(pipeStage2, pcl_1, 2)

b

finished=0

b

(pipeStage2, pcl_1, 3)

finished=0

(pipeStage2, pcl_1, 4)

i

finished=0

(pipeStage2, pcl_1, 5)

b

finished=0

(pipeStage2, pcl_1, 6)

b

finished=0

O O

b

(pipeStage2, pcl_1, 7)

finished=0

(pipeStage2, pcl_1, 8)

inished=1, selN=1

(bot_0, pcl_2)

Figure 6.12: Abstract parcel automaton of edge-detector
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| Instruction Class| Instruction Listing

Arithmetic add, addc, addi, mul, muli, mulu, sub

Logical and, andi, or, ori, rori, sll, slli, sra, srai, srl, srli, xor, xori
Control flow bf, bnf, |, jal, jalr, jr

Flag set sfeq, sfges, sfgeu, sfgts, sfgtu, sfles, sfleu, sflts, sfltu, sfne
Load/Store Ibs, Ibz, Ihs, lhz, lws, lwz, sb, sh, sw

Misc nop, movhi

Not implemented trap, rfe, mfspr, mtspr, sys

Table 6.2: ORBIS32 Instruction Set

Inst
| Mem

Data
Mem

| Parcel connection }  Normal signal

Secondary parcel connection D Control circuit

Figure 6.13: OpenRisc pipeline

tions: multiply instructions use a sequential datapath inside the stage and &#tirstructions
loop through the stage multiple times. We chose these two different methodsgfrdalti-cycle

operations to illustrate that our abstraction supports both. Latencies thifoeig\LU vary from one
clock cycle for simple instructions to four clock cycles for multiplications.

Structural reduction [Beer et al., 1994] removes the register file, ingirusmemory, data memory,
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and program counter. The source end of the parcel connectiamstifi® program counter tiF,
andIF; become unconnected. Similarly, the target end of the parcel connectiom#ife writeback
stages become unconnected. Each unconnected source end is thectedho a top pseudo stage
and each unconnected target end is connected to a bottom pseudoT$taggey control circuits
are preserved, because they are connected to control circuits witgesstaot to the datapaths.
The unconnected source ends on non-parcel data signals to datgpgthglata outputs from the
register file and memory) become non-deterministic inputs to the datapaths. kVapply our
abstraction algorithm (Algorithm 6.3) to the pipeline, replace the datapaths pighkne with the
abstractions, and generate an abstract pipeline.

*+u—e
u—

.
-

o
‘%

Figure 6.14: OpenRisc abstract parcel automaton

Figure 6.14 shows the abstract operation graph for OpenRisc. Tieeagtatal of 35 paths through
the operation graph, representing the 35 paths through the pipeline. Iseeay surprising that
there are so many distinct paths in this processor, but they really do all €kis paths include all

possible combinations of an instruction being fetched into IFO or IF1, primadysecondary paths
through ID and IF, and multi-cycle operations through ALU.

There are 35183 gates in the concrete processor and only 2047 igatedatraction. The concrete
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datapath accounts for 30341 gates and the abstract one for 1458 fageabstraction algorithm
generated 334 SAT problems. Cumulative SAT solver time is 536 seconds witdxiEnum of
51.7MB of memory used.

6.7 Summary

Path abstraction performs an implicit DFS like traversal of the concretelpantomaton using a
SAT solver. The algorithm uses propositional formulas called path forntinéasstand for equiva-
lence classes of finite path prefixes in the concrete automaton. The algardpma set of equiva-
lent paths of the concrete automaton to an abstract state. Our methododdggemavalidated with
several datapath intensive pipelined designs. The most complex desidgwasvdade superscalar
OpenRISC microprocessor. There are 35183 gates in the concreespoo and only 2047 gates
after abstraction.
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Chapter 7

Conclusions

Formal methods are techniques that use mathematical reasoning to preatress of hardware
and software systems. The main challenges to their wide adoption are autoaradi@apacity.
There are two main directions in formal methods that differ with respect tothewrepresent the
behaviour of the system. In the deductive approach the behaviour®ftbem is described by logic
terms that are derived syntactically from the the text of the program. Suttfodsesupport reason-
ing about very general implementations, proving correctness abogitgons that use unbounded
memory or have parameterized implementations with an unbounded number cireamtgy The
difficulty in applying deductive techniques is often due to the fact that tlielying logic is not
decidable and thus algorithmic approaches are not complete. They inskgad the user to guide
the proof. The other approach in formal verification is to apply automatgoreag to the finite ex-
plicit representation of the program. This representation is often givarstge machine or Kripke
structure. Automatic verification is performed by exploring the state spateedfystem. In this
approach the challenge is to overcome the state space explosion prold¢otke size of the state
space being exponentially larger than the text of the program. In automatioaahes the state
explosion problem is alleviated using abstraction and decomposition.

The most complex hardware designs are found in today’s microprase€dmmmonly encountered
optimizations are out-of-order speculative execution, register renamitiglygnamic scheduling.
Pipelining is a ubiquitous technique in these designs whereby the executiestrofictions is de-
composed into a sequence of operations performed at different staties pipeline. Pipelining
increases the utilization of the circuit and the throughput of instructionghieerate at which in-
structions come out of the pipeline. Pipelining brings challenges to both dasiwerification.
Pipeline hazards are the equivalent of race conditions in multi-threadsehs®. The hazards are
denoted by conditions related to the concurrent execution of instructicta.dnd control hazards
refer to the requirement that the overlapped execution of the instructichg ipipeline have the

188



same effect as if the instructions were executed one at a time in program Stductural hazards
occur due to resource contention in the pipeline. Their incorrect resolotay lead to resource
starvation or deadlocks.

The challenges in the formal verification of pipelined circuits arise in bothifipation of correct-
ness and verification. The definitions of correctness statements for gigalircuits, such as the
ones based on simulation, must relate a pipeline state to a specification state.pipsedining, the
implementation variables that correspond to the specification reflect thiajpwed updates made
by the various instructions in the pipeline. It is therefore not straightfait@ relate the imple-
mentation with a sequential specification that executes one instruction at a tioshing based
correctness [Burch and Dill, 1994] mitigates this factor using a pipelingfgpfarm of abstraction
called flushing. Flushing transforms an implementation state by completing allfnfigiructions
without fetching new ones. Another approach to pipeline correctnessnaifated in terms of the
correct resolution of hazards [Aagaard, 2003]. This approachorgep to imply the commuting
diagram based on flushing. Hazard based correctness has theaagvérat correctness can be
formulated more easily in terms of pipeline specific behaviour. The state éxplooblem in the
automatic verification of pipelined circuits arises mainly due to the presencelefdatapaths and
memories. Abstraction of memories and datapath is the natural approach triffeation of the
control.

Model checking is an automated approach to formal verification. With mdaelking, correctness
properties are defined in temporal logic and verified by state space atiplorTo verify systems
with large state spaces model checking uses symbolic representationstatttepace [Burch et al.,
1992], abstraction and decomposition.

Our work is concerned with datapath abstraction for the verification of dméra circuitry of
pipelined circuits using model checking. Due to the interaction between dataps control, data-
path abstraction must be precise enough so that control propertiesdlsatrsitive to the paths and
latencies through the pipeline are satisfied by the abstract pipeline.

In Chapter 4 we formalize the pipeline datapath as a state machine called kapdéoogaton. The
parcel automaton describes the execution of a parcel by the pipelingptiires the paths parcels
take through the pipeline, the transformations that they undergo and ttrelogsible effects they
produce. Consequently, the parcel automaton is a representation dp#tiee datapath and its
abstraction induces an abstraction of the datapath. Parcel automata atoreason about abstrac-
tions of the pipeline datapath in terms of simulation and language containmeiatrél putomata.
Conversely, abstract parcel automata can be thought of represabstrgct datapaths. Substitution
of the concrete datapath by the abstract one induced by the abstrael gniatomaton is a form of
abstract interpretation. In Chapter 5 we show the soundness of dlostnasing parcel automata is
proven by showing that simulation and language containment on parcehatadransfer to sim-
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ulation and language containment between the concrete pipeline and thectbst obtained by
abstract interpretation.

Chapter 3 describes the model of pipelined circuits as a network of paadables and datapath
instances through which parcels flow as coordinated by the controiteyrclihe variables of the
circuit are divided into datapath and control. The separation is enfdrgesyntactic restrictions
on the type of expressions that can be assigned to each of the two kindsiadiles. Control
variables can be assigned only expressions over control variabdsel Rariables on the other
hand, act as output parameters to the datapath instances or can bedhdigen-else expressions
that correspond to mux trees, the leaves of which are parcel variabletants or non-deterministic
choice, and the select signals of the mux nodes are Boolean contra@seiqprs. The datapath
instances are modeled as combinational circuits with annotations describipgrtiet and control
variables. The control and the datapath interact through the contralanploutput variables of the
datapaths. Abstract interpretation of the datapath is performed by reptheirtoncrete datapaths
by abstract ones. The type of the pipeline parcel variables is adjusteddagly. The control is
left unchanged.

A parcel represents a group of related values which propagate togeitieg a pipeline computa-
tion. Both the values of the parcel and the variables that hold them chanigg the computation
of the pipeline. In a particular pipeline step, the parcel is identified by its blagawhich can

be register and combinational. We define parcels as non-empty subsetselfyariables. Parcel
automata are labeled transition systems that describe parcel computatienstafehof a parcel is
an environment over the parcel’s registers. The transitions denote themaat of the parcel from
the current state variables into the the next-state variables in one pipelin@ ktetransition label

captures the value transformation through the datapaths, the effect cortinel variables and the
path through the combinational circuitry.

In a pipeline computation multiple parcel computations take place simultaneoustyy Anwportant
characteristic of the parcel computations that coexist during a computatitie pipeline model,
is that within a pipeline step they do not share parcel variables or datapd@tiis property of
pipeline computations is called parcel independence, or parcel sepaaatias formalized using
parcel maps. Parcel separation is an inductive property that stateth¢hparcel arguments of
each datapath belong to the same parcel. Parcel separation implies thatgh# the pipeline
model decompose into runs of the parcel automaton. The proof obligatioparicel independence
are based on propositional formulas that unfold the pipeline model forooneo consecutive
steps. Parcel independence is used to prove Theorem 5.3.1 that stategntimuting diagrams
between the concrete and abstract parcel automaton states imply a commugiagndisetween
the containing concrete and abstract pipeline states. Theorem 5.3.1 i®ysede soundness of
abstraction using parcel automata for simulation in Theorem 5.4.1 and tigspgdor language
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containment in Theorem 5.4.8.

The technigue for abstracting parcel automata is called path abstractide dafined in Chap-
ter 6. Path abstraction performs an implicit DFS like traversal of the conpeateel automaton
using a SAT solver. The algorithm uses propositional formulas called patiufas that stand for
equivalence classes of finite path prefixes in the concrete automatoralgdrghm maps a set of
equivalent paths of the concrete automaton to an abstract state. Theet$istte represents all the
concrete states that are reachable by concrete paths in the corregpeqdivalence class. The
main property of this construction is stated in Lemma 6.1.1: the abstract automasodetfined
simulates the concrete parcel automaton. At each iteration, the algorithnafireadtsensions of the
path formula at the top of the stack that stands for an equivalence clpashafof lengttk. In the
DFS traversal this corresponds to visiting the successors of the tymmeached abstract state. If
a variable in the domain of a newly created abstract state is in the fan-outadépath, it receives
a fresh abstract value. Otherwise the variable gets its value from a leainiahe previous abstract
state. The algorithm terminates if at some point during abstraction new dhstlaes are no longer
created. This corresponds to the concept of terminating paths in theest®parcel automaton. A
path is terminating if it has an infinite suffix in which datapath outputs do nobtdrinto next state
variables.

Our methodology has been validated with several datapath intensive pibdisegns. The most
complex design is a two-wide superscalar OpenRISC microprocessme @le 35183 gates in the
concrete processor and only 2047 gates after abstraction. Thetmdatapath accounts for 30341
gates and the abstract one for 1458 gates. The abstraction algoritemnaigen334 SAT problems.
Cumulative SAT solver time is 536 seconds with a maximum of 51.7MB of memory used
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