
Nymbler: Privacy-enhanced Protection
from Abuses of Anonymity

by

Ryan Henry

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2010

© Ryan Henry 2010

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Anonymous communications networks help to solve the real and important problem of en-
abling users to communicate privately over the Internet. However, by doing so, they also intro-
duce an entirely new problem: How can service providers on the Internet—such as websites,
IRC networks and mail servers—allow anonymous access while protecting themselves against
abuse by misbehaving anonymous users?

Recent research efforts have focused on using anonymous blacklisting systems (also known
as anonymous revocation systems) to solve this problem. As opposed to revocable anonymity
systems, which enable some trusted third party to deanonymize users, anonymous blacklisting
systems provide a way for users to authenticate anonymously with a service provider, while en-
abling the service provider to revoke access from individual misbehaving anonymous users with-
out revealing their identities. The literature contains several anonymous blacklisting systems,
many of which are impractical for real-world deployment. In 2006, however, Tsang et al. pro-
posed Nymble, which solves the anonymous blacklisting problem very efficiently using trusted
third parties. Nymble has inspired a number of subsequent anonymous blacklisting systems.
Some of these use fundamentally different approaches to accomplish what Nymble does without
using third parties at all; so far, these proposals have all suffered from serious performance and
scalability problems. Other systems build on the Nymble framework to reduce Nymble’s trust
assumptions while maintaining its highly efficient design.

The primary contribution of this thesis is a new anonymous blacklisting system built on the
Nymble framework—a nimbler version of Nymble—called Nymbler. We propose several en-
hancements to the Nymble framework that facilitate the construction of a scheme that minimizes
trust in third parties. We then propose a new set of security and privacy properties that anony-
mous blacklisting systems should possess to protect: 1) users’ privacy against malicious service
providers and third parties (including other malicious users), and 2) service providers against
abuse by malicious users. We also propose a set of performance requirements that anonymous
blacklisting systems should meet to maximize their potential for real-world adoption, and for-
mally define some optional features in the anonymous blacklisting systems literature.

We then present Nymbler, which improves on existing Nymble-like systems by reducing the
level of trust placed in third parties, while simultaneously providing stronger privacy guarantees
and some new functionality. It avoids dependence on trusted hardware and unreasonable assump-
tions about non-collusion between trusted third parties. We have implemented all key compo-
nents of Nymbler, and our measurements indicate that the system is highly practical. Our system
solves several open problems in the anonymous blacklisting systems literature, and makes use of
some new cryptographic constructions that are likely to be of independent theoretical interest.

iii

Acknowledgements

I would like to thank my supervisor Ian Goldberg for his collaboration and assistance with
this research, my readers Urs Hengartner and Mark Giesbrecht for their many helpful sugges-
tions, and my brother Kevin Henry for his role in the class project that spawned Nymbler. I am
also extremely grateful to Greta Coger for her careful proofreading, which greatly improved the
quality of presentation of this thesis.

iv

Dedication

This thesis is dedicated to the two special ladies in my life: Lindsay and Mocha.

v

Table of Contents

List of Tables ix

List of Figures x

List of Acronyms xi

1 Introduction 1

1.1 Background . 1

1.2 Nymble Framework . 3

2 System Requirements 9

2.1 Security Requirements . 9

2.2 Performance Requirements . 12

2.3 Optional Features . 13

3 Related Work 16

3.1 Anonymous and Pseudonymous Blacklisting Systems 16

3.1.1 Pseudonym Systems . 16

3.1.2 Nymble-like Systems . 18

3.1.3 Revocable Anonymous Credential Systems 20

3.2 (Restricted) Blind Signature Schemes . 22

4 Nymbler 24

4.1 Architectural Overview . 24

4.1.1 Trust and Threat Model . 25

vi

4.1.2 Parameters and Notation . 26

4.2 Cryptographic Preliminaries . 27

4.3 Threshold Verinyms . 28

4.3.1 Threshold Signatures . 28

4.3.2 Initializing the VIs . 29

4.3.3 Verinym Acquisition Protocol . 30

4.3.4 Verinym Showing Protocol . 35

4.4 Nymble Construction . 37

4.4.1 VERBS . 38

4.4.2 Nymble Acquisition Protocol . 39

4.4.3 Nymble Showing Protocol . 41

4.5 Revocation Mechanisms . 42

4.5.1 Revocation Lists . 42

4.5.2 Revocation Protocol . 43

4.5.3 Trapdoor Discrete Logarithms . 44

4.5.4 Pseudonym Extraction Protocol . 45

4.5.5 Revocation Audit Protocol . 45

4.5.6 Supporting Inter-window Revocation . 46

4.5.7 Non-membership Proof Protocol . 47

5 Implementation 51

5.1 Threshold Verinyms . 51

5.1.1 Verinym Acquisition Protocols . 51

5.1.2 Verinym Showing Protocols . 52

5.2 Nymble Construction . 55

5.2.1 VERBS . 55

5.2.2 Nymble Acquisition Protocol . 55

5.3 Revocation Mechanisms . 57

5.3.1 Pseudonym Extraction Protocol . 57

5.3.2 Non-membership Proof Protocol . 59

vii

Conclusion 67

APPENDICES 68

A Security Games 69

B VERBS Protocols 73

Bibliography 86

viii

List of Tables

4.1 Trust assumptions in Nymbler . 25

5.1 Verinym Acquisition Protocol timings . 53

5.2 Verinym Showing Protocol timings . 55

5.3 VERBS verification timings . 57

5.4 Nymble Acquisition Protocol timings . 59

5.5 Trapdoor discrete logarithm timings . 61

5.6 Non-membership Proof Protocol timings . 63

ix

List of Figures

1.1 Nymble construction . 5

1.2 Architecture of the extended Nymble framework 7

4.1 Verinym showing procedure . 36

4.2 Nymble construction in Nymbler . 38

5.1 Verinym Acquisition Protocol timings graph . 52

5.2 Verinym Showing Protocol timings graph . 54

5.3 VERBS verification timings graph . 56

5.4 Nymble Acquisition Protocol timings graph . 58

5.5 Trapdoor discrete logarithm timings graph . 60

5.6 Non-membership Proof Protocol timings graph 62

5.7 Comparison of non-membership proofs at the server 64

5.8 Comparison of non-membership proofs at the user 65

5.9 Comparison of non-membership proofs at the user for small blacklists 65

x

List of Acronyms

VERBS Verifier-Efficient Restricted Blind Signatures . 3

TTP Trusted Third Party . 3

PM Pseudonym Manager . 3

NM Nymble Manager . 3

U User . 3

SP Service Provider. .3

VI Verinym Issuer . 5

NI Nymble Issuer . 6

PE Pseudonym Extractor . 6

VVP Verinym Validity Period . 7

TPM Trusted Platform Module. .13

CPG Closed Pseudonymous Groups . 17

RM Revocation Manager . 18

GM Group Manager . 18

UST Unlinkable Serial Transactions . 18

CM Credential Manager . 19

PKI Public Key Infrastructure .19

ZKP Zero-Knowledge Proof . 21

BLAC Blacklistable Anonymous Credentials . 21

EPID Enhanced Privacy ID . 21

PEREA Privacy-Enhanced Revocation with Efficient Authentication . 21

xi

Chapter 1

Introduction

1.1 Background

Anonymous communications networks help to solve the real and important problem of enabling
users to communicate privately over the Internet. The largest deployed anonymous communi-
cations network is a worldwide-distributed network of about 2000 volunteer-run relays called
Tor [35, 81]. On an average day, Tor currently helps to protect between 100,000 and 300,000
privacy-conscious Internet users located in hundreds of countries around the world [58]. These
users first connect to a directory server to obtain the list of online relays. They then form a
random circuit (i.e., a path through some subset of the relays in the network) through which they
route their communications. A typical Tor circuit passes through three relays; the last relay in
the circuit is the exit relay. Before a packet is sent over the circuit, it is first encrypted in several
layers, with each layer containing only the routing information necessary to deliver that packet
to the next relay in the circuit (and eventually to its final destination). Each relay then strips off
one layer of encryption and forwards the resulting packet on to the next. When a packet finally
reaches the end of the circuit, the exit relay strips off the last layer of encryption and forwards
the plaintext packet to its final destination. This approach, called onion routing, prevents a lo-
cal adversary (who may be watching the user’s Internet connection) from learning with which
service providers—such as websites, IRC networks or mail servers—the user is interacting. It
also prevents those service providers from learning the user’s identity, location and IP address.
The privacy that Tor provides serves many important purposes, as elaborated on the Tor Project
website [82]: journalists use Tor to protect their sources; oppressed citizens use Tor to bypass
government-level censorship; law enforcement agencies use Tor to protect the integrity of their
investigations; and ordinary Internet users use Tor to protect themselves against irresponsible
corporations, marketers, and identity thieves. Nonetheless, ‘a few bad onions’ take advantage of
this anonymity for nefarious activities such as anonymously harassing users, trolling forums and
chat rooms, and committing cyber-vandalism. In response, several service providers now prevent

1

anonymous users from participating in, or contributing content to, their online communities; no-
table examples include Wikipedia [93], Slashdot [43], and most major IRC networks [80]. These
service providers prevent access from Tor users by blacklisting the IP address of every Tor exit
relay listed by the directory servers.

This is bad news for user privacy. If users are discouraged from using Tor because certain
service providers are unavailable through it, then the privacy of those who still use Tor suffers in
consequence. This is because the level of privacy that Tor can provide to a user depends on the
size of that user’s anonymity set.1 In other words, the greater the number of Tor users, the greater
the difficulty for an attacker to figure out which one of them initiated a particular connection.
The number of volunteers that run Tor exit relays also affects the level of privacy that Tor can
provide. This is because Tor is susceptible to timing attacks: if an attacker controls both the
first relay (called an entry guard) and the exit relay in a user’s circuit, then it can correlate
(indeed, introduce) timing patterns in the streams passing through these two relays. This may
enable such an attacker to infer which users are communicating with which service providers.
The number of available exit relays for a user to choose from influences the probability that an
attacker will control the exit relay that they choose. Unfortunately, one side effect of service
providers blocking Tor exit relays by IP address is that this also blocks nonanonymous access
from exit relay operators. The prospect of losing access to parts of the Internet likely discourages
many would-be exit relay operators from volunteering.

Thus, there is a real and pressing need for a privacy-preserving mechanism that enables ser-
vice providers on the Internet to allow anonymous access, while simultaneously protecting them
against abuse by individual misbehaving anonymous users. Recent research efforts [11,13,14,54,
57,83–86,88–90] have focused on using anonymous blacklisting systems (which are sometimes
called anonymous revocation systems) to fulfill this need. As opposed to revocable anonymity
systems [55], which enable some trusted third party to deanonymize users, anonymous blacklist-
ing systems provide users with a way to authenticate anonymously with a service provider (like
Wikipedia), while enabling the service provider to revoke access from any users that misbehave.
(The key difference is that in anonymous blacklisting systems the user is never deanonymized;
neither the service provider, nor any other party, ever learns the identity of a revoked user.) This
enables service providers to protect themselves against abuse by anonymous users in much the
same way as they already protect themselves against abuse from nonanonymous users. In par-
ticular, anonymous blacklisting systems allow for subjective revocation, wherein each service
provider is able to revoke a user’s access to their own services at their own discretion. In con-
trast, revocable anonymity systems cannot allow subjective revocation, since this would enable
service providers to deanonymize users at will.

This thesis presents a new anonymous blacklisting system called Nymbler. Nymbler im-
proves on existing work by weakening the trust assumptions and providing stronger privacy
guarantees together with some new functionality. Our approach avoids dependence on trusted

1A user’s anonymity set is the largest set of users on the network such that the user is not identifiable within it.

2

hardware or unreasonable assumptions about noncollusion between trusted third parties to guar-
antee its security and privacy properties.2 We have implemented the key components of Nymbler
and our performance measurements indicate that the system is highly practical even for use at
extremely large service providers like Wikipedia and Slashdot. We use a number of novel crypto-
graphic constructions, including our distributed threshold Verinym Issuer, our Verifier-Efficient
Restricted Blind Signatures (VERBS) scheme, trapdoor discrete logarithms, and a highly effi-
cient zero-knowledge proof of non-membership in a list. These tools enable us to solve several
open problems in the anonymous blacklisting systems literature.

1.2 Nymble Framework

Tsang et al. [54, 88–90] proposed Nymble as a solution to the problem of allowing service
providers on the Internet to revoke access from individual misbehaving users of anonymous
communications networks. Nymble uses a novel construction to build mutually unlinkable (and
efficiently verifiable) authentication tokens for users of anonymous communications networks,
while empowering service providers with access revocation capabilities comparable to what they
have with nonanonymous users. In particular, the scheme implements a privacy-preserving ana-
log of IP address banning for users of anonymous communications networks. Under some as-
sumptions regarding noncollusion of certain third parties, their approach is provably secure in
the random oracle model; i.e., privacy and availability for honest users are not adversely af-
fected, and blacklisted users remain anonymous. The construction used in Nymble results in an
extremely lightweight solution for all parties involved (most notably, for the service provider). It
does this, however, by placing a lot of trust in third parties. Since Nymble was first proposed in
2006, several schemes have appeared in the literature to solve the same problem, or one of sev-
eral closely related problems. (For some examples, see [13, 14, 50, 51, 57, 83–87].) Two of these
schemes operate within the same general framework as Nymble; they change only low-level de-
tails to weaken the trust assumptions and to provide stronger privacy guarantees and some new
functionality. We will return to both of these schemes in the following chapters and will not dis-
cuss them further here; we do remark here, however, that one of them is our own Nymbler system
and is the primary contribution of this thesis. It shall be instructive, though, to first examine the
Nymble framework in detail before focusing on our own proposal.

Nymble makes use of two trusted third parties (TTPs) called the Pseudonym Manager (PM)
and the Nymble Manager (NM). Together, the PM and the NM issue a User (U) with a set of
mutually unlinkable, use-once authentication tokens (called nymbles). This enables U to access
the services offered by a Service Provider (SP), while preserving the ability of the SP to block

2As we will see later, our approach does not altogether eliminate trust in third parties; however, given some
assumptions about the computational power of the third parties that do exist, we can quantify and minimize the level
of trust that users of the system must place in them.

3

U in the event that U misbehaves. Nymble divides time into fixed intervals called linkability
windows, which it further subdivides into smaller intervals called time periods. When U wishes
to use the system, she first connects directly (i.e., not through an anonymous communications
network) to the PM; this proves to the PM that U is in possession of a particular IP address.
The PM then issues U with a pseudonym (called a Nym) that is computed deterministically
by applying a one-way function (an HMAC with a secret key) to U’s IP address. When U
wishes to authenticate with some SP, she connects anonymously (over Tor, for example) to the
NM and presents a copy of her pseudonym and the canonical name of the SP. Based on these
two values (Nym and canonical name), the NM computes and issues to U a set of nymbles.
(See Figure 1.1.) Each nymble is valid for a particular place (an SP) and time (a time period
within the current linkability window). To be sure, nymbles are not entirely unlinkable; instead,
the nymble construction places a trapdoor within each nymble that allows the NM to, given a
nymble, compute all subsequent nymbles in the same linkability window. Given any nymble in
U’s sequence, the NM can always compute U’s last nymble for the current linkability window;
thus, we refer to this last nymble as U’s SP-specific pseudonym. If U somehow abuses the
services offered by the SP, then the SP can send the nymble used by U during that session
to the NM. The NM will then use knowledge of the trapdoor to compute all of U’s subsequent
nymbles for the remainder of the current linkability window. For each remaining time period, the
NM will then place the corresponding nymble on a list called a linking list (there is a different
linking list for each time period) and place U’s SP-specific pseudonym on the SP’s blacklist.
By consulting the blacklist, U can easily check her revocation status before she attempts to
authenticate. Similarly, by consulting the current linking list and denying access to any user
that attempts to authenticate with a nymble on it, the SP can prevent U from further abusing
its services for the remainder of the current linkability window. Figure 1.1 illustrates the basic
nymble construction.

At the start of each new linkability window, a change in system parameters causes all sub-
sequent nymbles and SP-specific pseudonyms to change unlinkably (even to the NM). Thus, at
the start of each linkability window, all SPs must reset their blacklist and forgive all prior mis-
behaviour. This brings dynamism and forgiveness to Nymble [54]; that is, it ensures that U’s
misbehaviour can (and eventually will) be forgiven without the NM or SP having the ability to
subsequently track U.3 On the other hand, from the perspective of the SP, it also limits the flex-
ibility of the system. Thus, in our scheme we propose a mechanism by which SPs can enforce
revocation that spans linkability windows.

Note that Nymble’s security relies heavily on strong assumptions about the noncollusion of
its two TTPs. In particular, if a malicious PM and NM collude then they can easily determine
with which SPs U is interacting; further, if a malicious NM colludes with any number of SPs

3This is important because, for example, Wikipedia’s blocking policy states that “IP addresses should rarely, if
ever, be blocked indefinitely” since “IP address blocks can affect many users, and IPs can change” [94, “IP address
blocks”].

4

no one
can go left

nymbles:

x f(x) f2(x) f3(x) . . .

g(x) g (f(x)) g (f2(x)) g (f3(x))

only NM can go up

Figure 1.1: Nymble construction: In Nymble, the black arrows (i.e., f(·)) are
implemented with an HMAC and the grey arrows (i.e., g(·)) are implemented
with symmetric-key encryption. Each SP shares a secret key with the NM; the
NM uses this to compute an HMAC on each nymble (not illustrated) to provide
authentication for the SP. The initial value x is the result of an HMAC (with a
linkability-window-specific key) applied to U’s Nym and the SP’s canonical name.

then they can easily link all of U’s actions at those SPs. Indeed, if a malicious PM, NM, and SP
combine these attacks, then U is completely deanonymized.

Nymble’s sensitivity to attacks involving the PM exists because the PM computes U’s Nym
deterministically from a verinym4 (her IP address). Although a one-way function maps IP ad-
dresses to Nyms, the space of valid IP addresses is cryptographically small; hence, given U’s
Nym and knowledge of the PM’s one-way function, a polynomial-time adversary can easily de-
termine U’s identity with a brute-force attack. The output of this one-way function is, therefore,
also a verinym for U. For the remainder of this manuscript we shall thus refer to U’s Nym as her
verinym, and to the entity that issues U’s verinym as a Verinym Issuer (VI).

To protect against attacks like the one above, we suggest a distributed (threshold) VI, and the
following property, as security requirements of Nymbler and future Nymble-like systems.

Definition 1 (ZK-verinym). A Nymble-like system satisfies the zero-knowledge verinym (ZK-
verinym) property

1. if no single entity can compute the verinym associated with a given IP address, and

2. if no (possibly colluding) third parties can extract nontrivial information about U’s verinym
by observing her interactions with the system, provided U correctly follows the protocols.
(In the case of a threshold VI, we assume that no colluding set of third parties contains a
threshold number of VIs.)

4A verinym is any piece of identifying information—such as an IP address, credit card number, etc.—that can
single a user out of a crowd of potential candidates [44].

5

The goal of this property is to minimize the potential for information leakage due to the use
of verinyms.

Nymble is also sensitive to attacks involving the NM. The ZK-verinym property reduces this
threat moderately because it prevents a malicious NM from linking U’s actions at one SP with her
actions at any other SP. On the other hand, the ZK-verinym property does nothing to prevent the
NM from linking all of U’s actions at a single SP. For this reason, we also suggest the following
complementary property as a security requirement of Nymbler and future Nymble-like systems.

Definition 2 (ZK-pseudonym). A Nymble-like system satisfies the zero-knowledge pseudonym
(ZK-pseudonym) property

1. if during nymble acquisition, no party other than U herself learns any nontrivial informa-
tion about the nymbles issued to U, and

2. if no entity is capable of extracting U’s SP-specific pseudonym from a nymble without
knowledge of the NM’s secret key.

The goal of this property is to minimize the potential for proactive deanonymization by a ma-
licious NM. If the ZK-pseudonym property is satisfied, then the NM must extract U’s pseudonym
from a nymble revealed by the SP before it is possible for the NM to link U’s actions. Below,
we will modify the framework in such a way as to render such wide scale deanonymization by a
malicious NM infeasible.

At this point we observe that the NM in Nymble plays two related but distinct roles: on
the one hand, the NM is responsible for issuing nymbles to users; on the other hand, the NM
is responsible for revoking access using a trapdoor computation. Indeed, these two roles are
logically orthogonal, and two distinct servers can fill them. Thus, we shall replace the NM by
two separate entities: the Nymble Issuer (NI), which is responsible for issuing nymbles to users,
and the Pseudonym Extractor (PE), which is responsible for extracting SP-specific pseudonyms
from nymbles to revoke misbehaving users. Figure 1.2 depicts each of the various parties in our
extended Nymble framework and illustrates the interactions between them.

The ZK-pseudonym property protects against a malicious NI, but it does not protect against a
malicious PE that has sufficient resources to extract many SP-specific pseudonyms from nymbles
in real time. In this case, the SP can immediately forward every nymble it receives to the PE
for instant deanonymization. To combat this threat, we propose a trapdoor computation with
tuneable computational cost; in particular, given tdl, the desired wall-clock time per trapdoor
computation, as input, the system should be able to output a trapdoor function that takes tdl time
to evaluate on average. Moreover, the PE should be able to prove in zero-knowledge that random
problem instances actually do require this much time to solve (on average) with the trapdoor.
If the PE revokes at most K users on average per L minutes, then tdl can be set to just under
L/K minutes. This renders wide-scale deanonymization economically infeasible for SPs with

6

VIs

VI3

VI2

U VI1

NI PE SP

Verinym Acquisition

Revocation

Nymble
Acquisition

Nymble Showing

Figure 1.2: Architecture of our extended Nymble framework: This figure illus-
trates the parties in our extended Nymble framework and the interactions between
them. Arrows that pass through the Tor cloud represent anonymous connections,
while those that do not pass through the Tor cloud represent direct (nonanony-
mous) connections.

sufficiently high traffic volumes. To facilitate this, we propose a new list called a revocation
queue, which works as follows: as soon as the SP files a complaint with the PE, the PE places
the associated nymble on the revocation queue. If the revocation queue is non-empty, then the
PE is always processing the request at the front of the queue; when the PE finishes extracting
an SP-specific pseudonym from the nymble at the front of the queue, it pops the entry from the
queue and adds the SP-specific pseudonym to the blacklist. As appropriate, it also adds nymbles
to the SP’s linking lists (starting from the time period immediately after the complaint is filed).
This enables the SP to trace (and clean up after) any actions performed by U between the time
that a complaint was filed against her with the PE and the time that her SP-specific pseudonym
was actually added to the blacklist. Thus, when U consults the blacklist, she must also consult
the revocation queue to ensure that her present actions will not soon become linkable.

In Nymble, the NI always issues U with the entire sequence of nymbles for her verinym,
right up to the end of the current linkability window. In Nymbler, we will instead subdivide
each linkability window into smaller intervals called Verinym Validity Periods (VVPs). (The
number of time periods in a linkability window will be a multiple of the number of VVPs.) Thus,
when the VI issues a verinym to U, this verinym is only valid until some future VVP; no nymble
will be issued to U for any time period in a VVP after her verinym expires. This capability
allows greater flexibility in the choice of system parameters. For example, if U obtains her IP
address through DHCP, then she may receive a new address daily; some SPs, however, may
wish to use, say, one-week linkability windows. With VVPs the VIs can set the duration of a

7

linkability window to one week while still requiring U to renew her verinym each day. Note
that by changing input parameters to the function that maps verinyms to nymble seeds (i.e, the
function that outputs the value x from Figure 1.1), particular SPs are able to choose a duration
for their own linkability windows that is shorter than the duration set by the VIs (but not longer).
However, for ease of presentation, we will assume that all SPs use the global linkability window
duration set by the VIs.

IP addresses as a unique identifier. Both the original Nymble and our Nymbler system use
U’s IP address as a verinym. Thus, if two different users share the same IP address (such as
two users who share a common terminal, or two users who share an Internet connection via
NAT [70]), then they will also share a common identity in the system. Likewise, if a single user
has access to two different IP addresses (such as by having access to two different terminals on
different Internet connections, or via DHCP [37]), then they can assume two different identities in
the system. We argue that this limitation is acceptable for two reasons: first, IP address blocking
has the same limitation even when the user is not connecting through an anonymous communi-
cations network, yet IP address blocking is still the de facto standard method for revoking access
from (unauthenticated) abusive users; and second, the design of Nymble and Nymbler does not
necessitate the use of IP addresses as a unique identifier. Indeed, if future research reveals a
viable alternative to blocking users by IP address, it should be trivial to modify these schemes
to support this new method. In several prior works, the authors have considered alternative re-
sources to distinguish between diffferent users; we refer the interested reader to one of our earlier
papers [49] for an overview. We emphasize, however, that at present, IP addresses seem to be
the only practical solution in the literature, and that the proposal of a superior (and still practical)
alternative will have much broader implications for protecting against Sybil attacks in a more
general context [36].

Infrastructure providers. Several key people involved with The Tor Project have recently
acknowledged the need for a real-world deployment of an anonymous blacklisting system [31,
34]. Therefore, it may be reasonble to expect that the operators of Tor (and its financial sponsors)
would be willing to provide the infrastructure necessary to deploy and maintain such a system in
the wild.

8

Chapter 2

System Requirements

This chapter proposes a set of security and privacy properties that Nymble-like systems should
possess to protect: 1) U’s privacy against malicious SPs and third parties (including other mali-
cious users), and 2) SPs against abuse by malicious users. We then propose a set of new perfor-
mance requirements that should be satisfied to maximize any anonymous blacklisting system’s
potential for real-world adoption, and provide formal definitions of some optional features al-
ready found in the literature on anonymous blacklisting systems.

2.1 Security Requirements

Each of the security properties presented in this section has previously appeared in the literature
on anonymous blacklisting systems; however, the formal definitions we propose here are our
own. We formally define each security property in terms of a security game played against a
probabilistic polynomial-time adversary. A function ε(·) is negligible if, for all c > 0 there
exists a κ0 such that ε(κ) < 1/κc for all κ > κ0. An event occurs with negligible probability
(resp. overwhelming probability) if the probability that the event occurs is bounded above by
ε(κ) (resp. below by 1 − ε(κ)), where ε is a negligible function and κ is an appropriate security
parameter. The formal definitions of the security games are located in Appendix A.

Definition 3 (Correctness). The system is correct if, with overwhelming probability1, an honest
SP will accept any nymble from an unrevoked user, as long as it is properly generated according
to the established protocols of the system.

1We cautiously define correctness in terms of overwhelming probabilities (instead of with absolute certainty)
because, with negligible probability, the one-way functions used in a scheme may have collisions. Thus, with
negligible probability, an authentication request by U may fail because of a collision with some revoked user.

9

Misauthentication resistance

Informally, we define misauthentication resistance as follows: with overwhelming probability,
verification should succeed only on those nymbles that are the result of a user correctly execut-
ing the established protocols. Note that our definition of misauthentication resistance does not
try to capture the notion of revocability (Definition 7). Formally, we define misauthentication
resistance in terms of Security Game A.1 in Appendix A.

Definition 4 (Misauthentication resistance). The system provides misauthentication resistance
if no probabilistic polynomial time adversary can win Security Game A.1 with non-negligible
probability.

Backward anonymity

Informally, we define backward anonymity as follows: given a nymble from some member of
a set of at least two users, it should be infeasible for an attacker to determine which user that
nymble belongs to, with more than negligible advantage over a random guess. Moreover, this
property should hold even if some SPs later revoke any subsets of these users. Formally, we
define backward anonymity in terms of Security Game A.2 in Appendix A.

Definition 5 (Backward anonymity). The system provides backward anonymity if no proba-
bilistic polynomial time adversary can win Security Game A.2 with probability non-negligibly
greater than 1/2.

Unlinkability

Informally, we define unlinkability as follows: given two or more nymbles from some set of at
least two users, it should be infeasible for an attacker to distinguish nymbles that belong to the
same user from those that belong to different users, with more than negligible advantage over
a random guess. This property should hold both within a single SP and among multiple SPs.
Formally, we define unlinkability in terms of Security Game A.3 in Appendix A.

Definition 6 (Unlinkability). The system provides unlinkability if no probabilistic polynomial
time adversary can win Security Game A.3 with probability non-negligibly greater than 1/2.

10

Revocability

Informally, we define revocability as follows: given one of U’s nymbles from an authentication
with an SP, it should be possible for that SP to have U’s access revoked. This mechanism should
have the property that no coalition of revoked (or unregistered) users should be able to produce
a nymble that the SP will accept. Revocability is related to—but distinct from—the previously
introduced notion of misauthentication resistance (Definition 4). Formally, we define revocability
in terms of Security Game A.4 in Appendix A.

Definition 7 (Revocability). The system provides revocability if no probabilistic polynomial
time adversary can win Security Game A.4 with non-negligible probability.

Revocation auditability

Informally, we define revocation auditability as follows: U should be able to check her revocation
status at an SP before trying to authenticate. If revoked, U can then disconnect without revealing
any nymbles to the SP. This is important to avoid the situation in which a malicious SP accepts
nymbles from U after she is revoked, thus tracing U’s actions without her knowledge. Formally,
we define revocation auditability in terms of Security Game A.5 in Appendix A.

Definition 8 (Revocation auditability). The system provides revocation auditability if no prob-
abilistic polynomial time adversary can win Security Game A.5 with probability non-negligibly
greater than 1/2.

Non-frameability

Informally, we define non-frameability as follows: no coalition of third parties should be able to
get U revoked from an SP.2 This definition assumes that no coalition contains the PE or a user
that shares U’s IP address. Formally, we define non-frameability in terms of Security Game A.6
in Appendix A.

Definition 9 (Non-frameability). The system provides non-frameability if no probabilistic poly-
nomial time adversary can win Security Game A.6 with non-negligible probability.

Remarks

1. Backward anonymity and unlinkability together imply the usual notion of anonymity for
unrevoked users; adding revocation auditability makes this full anonymity for all users
(revoked or otherwise).

2A coalition of third parties may be any subset of the following: the VIs, the NI, any other SPs, and all other
users.

11

2. Roger Dingledine raised the following question [32]: if some subset of users chooses to
use the system pseudonymously (e.g., by participating in online chat rooms or logging in to
a website with a persistent alias), what is the privacy impact on the other users? With our
definitions, pseudonymous users can be considered to be under adversarial control (see
Appendix A); thus, if the system provides backward anonymity and unlinkability, then
there is essentially no impact on user privacy.

2.2 Performance Requirements

The security requirements outlined in the previous section are necessary but not sufficient for a
useful Nymble-like system. We further believe that all anonymous blacklisting systems should
possess certain crucial performance characteristics. Our requirements contain a bias towards
producing an extremely lightweight component for the SP; we do this because many SPs appear
to consider the input of anonymous users to be of generally low quality, and are thus content to
block access from anonymous communications networks. To maximize the system’s potential
for real-world adoption it is therefore important to cap the level of computational and communi-
cations overhead for the SP; we call this property verifier efficiency. The system should also take
care to avoid affecting the observed interaction latency between U and the SP by ensuring that
any computation that U must perform to authenticate is independent of the blacklist size, and by
forcing significant computations to be precomputable. We call this latter property user efficiency.

Verifier efficiency

Informally, we define verifier efficiency as follows: the benefits that the system brings to an SP
must clearly compensate for any burden placed on the SP. As such, the SP’s cost in terms of
communications and computational complexity, storage requirements, hardware requirements,
and maintenance costs, should be extremely low.

Definition 10 (Verifier efficient). The system is verifier efficient if the cost of the system for an
SP is low. In particular,

1. the computational costs for the SP to verify U’s nymbles or have U’s access revoked are
both small and independent of the number of (revoked or unrevoked) users,

2. the code required for the SP is small and contains no computationally expensive operations,
and

3. the SP does not require any specialized hardware.

12

User efficiency

Informally, we define user efficiency as follows: the system should be accessible to all users
and should not negatively affect users’ online experiences. We note that one of Tor’s target
audiences is citizens of countries with oppressive leadership that censors access to certain infor-
mation. Unfortunately, users from these countries may not have access to state-of-the-art com-
puters or high-bandwidth Internet connections. Thus, requiring U to run specialized hardware
like a trusted platform module (TPM), to consume lots of bandwidth, or to solve computational
puzzles limits the system’s usefulness.

Definition 11 (User efficient). The system is user efficient if the cost for U to use the system is
low. In particular,

1. the computational cost of authenticating with an SP is independent of the number of (re-
voked or unrevoked) users,

2. any computationally expensive operations required by U can be precomputed, and

3. U does not require any specialized hardware.

2.3 Optional Features

Some anonymous blacklisting systems may offer other useful features. We propose formal defi-
nitions for four optional features already found in the literature. Note that our proposed Nymbler
scheme supports each of the features discussed in this section.

Objective revocation

Currently, all Nymble-like systems in the literature support the notion of subjective revocation,
wherein the SP decides subjectively and unilaterally whether to revoke U. With objective black-
listing systems, however, the PE can only revoke U if she violates a contract that specifies the SP’s
terms of service [72–74]. In this case, there exists a functionM : {0, 1}∗ → {true,false,⊥},
called a morality function, which takes as input a bit string proof describing U’s behaviour and
outputs a boolean value (or ⊥). The output indicates whether the behaviour described in proof
violates the contract (if ⊥ is returned, this means that subjective judgment is required to make a
final determination).

13

Definition 12 ((Strictly) objective blacklisting). The PE is said to enforce a contract on SP if the
PE will only extract pseudonyms from a nymble if the SP provides a string proof that is provably
associated with the nymble and for which M(proof) 6= false. In this case, the system is said
to support objective blacklisting; if the range of M is restricted to the set {true,false} then
the system is said to enforce strictly objective blacklisting.

The system is said to enforce contract-based revocation if the enforced contract is encoded
in each nymble and is known to and agreed upon by both U and the SP at the time of nymble
acquisition. It provides contract auditability if U knows the precise semantics of the morality
function (thus enabling U to determine if a specific activity constitutes misbehaviour before
deciding whether to engage in it).

Morality functions. Online forum software packages routinely incorporate mechanisms that
can automatically filter some forms of unwanted behaviour; for example, they often filter vulgar
language, scripts, external links, and unsolicited advertisements. Nonetheless, nearly all active
forums also have moderators that enforce their less-tangible rules; this is because it is difficult
or infeasible to write an algorithm that can effectively capture certain behaviours. Moreover,
users routinely find ways to circumvent existing mechanisms, even for simple situations like
swearing and posting external links, and such circumvention is likely to be at least as easy in
situations where the disallowed behaviour is more complex. To the extent that we can formally
specify and computationally verify a nontrivial morality function, contract-based revocation risks
being overly restrictive to the SPs on which it is enforced. Thus, constructing a useful morality
function appears to be a difficult problem to solve in practice; it is therefore unclear how practical
objective blacklisting is in many real-world situations.

Nonetheless, our Nymbler construction supports a limited form of contract-based revocation
that is inspired by the objective blacklisting extension to Jack [57]; however, we do not attempt
to develop full details for the specification of a morality function.

Rate-limited access

SPs often find it useful to rate-limit U’s access; this limits the amount of disruption a single
user can cause. Many large SPs use rate limiting even for non-anonymous users. We return to
the previous example of online forums: to keep spam levels reasonably low, forums often rate-
limit the posting of new messages. The original Nymble [54, 88, 89] incorporates rate limiting
by design, while subsequent anonymous blacklisting systems [57, 83–86] have proposed the use
of an auxiliary scheme such as k-Times Anonymous Authentication [79] or Periodic n-Times
Anonymous Authentication [15] to provide rate limiting.

14

Definition 13 (Rate limiting). A system provides rate limiting if, for a given interval of time T ,
the number of pair-wise mutually unlinkable nymbles that U can use at a given SP is bounded
above by some monotone increasing (in the length of T) function.

Inter-window revocation

Blacklisting U is intended to be preventative, not retributive; thus, the duration of the block
should somehow reflect the probability that, and cost to the SP if, the offensive behaviour is
repeated [94]. SPs typically forgive disruptive behaviour after a brief time (say, around 24 hours);
this is usually sufficient to put an end to edit wars on Wikipedia or flame wars on IRC, for
example. Less frequently, U’s misbehaviour warrants a long-term revocation; revocation that
spans two or more linkability windows is called inter-window revocation. The notion of inter-
window revocation was first introduced by Lin and Hopper [57] for their Jack scheme, although
the authors did not refer to it by this name in that work.

Blacklist transferability

Commonly on the Internet a single organization operates several different websites. For example,
the Wikimedia foundation [92] hosts several popular websites: Wikipedia [93], Wiktionary [96],
Wikiquote [95], etc. Using a single canonical SP name (and a common blacklist) would let Wiki-
media revoke U from all of their services simultaneously; however, from a privacy standpoint, U
should be able to access all Wikimedia services concurrently and unlinkably, which would not
be possible in the above setup.

Definition 14 (Blacklist transferability). The system provides blacklist transferability if U can
authenticate unlinkably and concurrently with SP1 and SP2 while SP1 can force U to prove that
she is not revoked from SP2 before granting her access.

Tsang et al.’s Blacklistable Anonymous Credentials scheme [83–85] appears to be the only
prior anonymous blacklisting system to support blacklist transferability. Note the similarities be-
tween blacklist transferability and inter-window revocation; we will later exploit this relationship
in Nymbler to support blacklist transferability through our inter-window revocation mechanism.

15

Chapter 3

Related Work

This chapter discusses existing anonymous and pseudonymous blacklisting systems in the liter-
ature, as well as some (restricted) blind signature schemes.

3.1 Anonymous and Pseudonymous Blacklisting Systems

We divide our discussion of anonymous and pseudonymous blacklisting systems into three sep-
arate categories: the pseudonym systems, the Nymble-like systems, and the revocable anonymous
credential systems.

3.1.1 Pseudonym Systems

The first class of blacklisting systems are the pseudonym systems. As the name implies,
pseudonym systems provide U with pseudonymity instead of full anonymity. That is, U’s identity
at an SP is not linkable back to her real identity (nor are U’s identities at different SPs linkable
with each other), but her individual actions at a particular SP are all easily linked with each other.
Because U interacts with the SP using a persistent pseudonym, revocation is as simple as adding
the pseudonym to a blacklist and denying access to any user with a pseudonym on the blacklist.
Existing pseudonym systems get their security and privacy properties from one of three primary
sources: 1) private credentials, 2) blind signatures, or 3) group signatures.

Schemes based on private credentials

Chaum [24] proposed pseudonym systems as a way for U to control the transfer of information
about herself between different organizations. To enable this, he proposed that U first establish

16

a pseudonym with every organization with which she wishes to interact. Then, to transfer infor-
mation about herself from one organization to another, U obtains a credential on a pseudonym
from the first organization, which encodes this information. U then transforms this credential
into the “same” credential on one of her other pseudonyms. This enables her to prove to a
second organization that the first organization has certified the information encoded in the cre-
dential, without necessarily revealing information about her pseudonym at the first organization.
Chaum and Evertse [25] presented the first construction of a pseudonym system based on RSA
in the year following Chaum’s proposal. Shortly thereafter, Damgård [29] proposed a provably
secure (assuming the existence of claw-free functions)—though impractical—scheme based on
zero-knowledge proofs. Later, Chen [27] proposed a practical construction for Damgård’s model
based on discrete logarithms.

In her Master’s thesis, Lysyanskaya [60, 62] presented a new model for pseudonym systems
that incorporates the ability for an organization to revoke access to a credential on a pseudonym;
thus, her model makes blacklist transferability possible. That is, SP1 can require U to show a
credential indicating that she has authorized access to SP2. If U is later revoked at SP2, then
her credential will also be revoked, thus preventing her from showing it to SP1 in the future.
Moreover, by having SP1 verify that U possesses a non-revoked access credential for SP1 itself,
a fully anonymous scheme can be built by allowing U to rerandomize her pseudonyms between
showings. Camenisch and Lysyanskaya [16] extend the idea to do just that, resulting in the first
of the revocable anonymous credential systems.

Schemes based on blind signatures

The first use of pseudonym systems specifically as a revocation mechanism appears to be by Holt
and Seamons [52]. Their Nym system was proposed as a way to enable the popular collaborative
website Wikipedia [93] to revoke access from misbehaving Tor users. It does away with much
of the sophisticated functionality offered by the earlier schemes based on private credentials to
build an extremely simple mechanism for U to establish pseudonyms with an SP. Nym was the
first scheme to issue pseudonyms based on a unique identifier (they recommend U’s IP address
or email address). In Nym, U proves possession of her unique identifier in exchange for a blind
RSA signature on a (user specified) random nonce. She later exchanges the unblinded signature
for a client certificate which, because of the unconditional hiding of blind RSA signatures, is
completely unlinkable to her real identity. Abbot et al. [1, 2] describe a similar system, called
Closed Pseudonymous Groups (CPG), wherein members of some ‘real-world’ group (for exam-
ple, students of the same class or subscribers to a service) register pseudonyms to participate
in a closed online community. Since pseudonymous access in their system is restricted only to
members of a certain ‘real-world’ group, Abbot et al. discuss approaches to revoking U based on
her real-world actions (for example, if she drops the class or lets her membership to the service
lapse).

17

Schemes based on group signatures

In 1991, Chaum and van Heyst [26] proposed group signatures, wherein each member of a
group can sign any message on behalf of the group. Anyone can verify a group signature using
the group’s public key, but only a special entity known as the Revocation Manager (RM) can
determine which group member produced a particular group signature. (Sometimes the RM
is the same entity that distributes private keys, in which case it is typically called the Group
Manager (GM).) If the RM is trusted, then group signatures make it easy to construct a closed
community in which non-revoked users are fully anonymous (within the anonymity set of all
non-revoked members of the group)1. If U misbehaves, then the RM can link her past and future
actions and thus revoke her anonymity.

Recently, Schwartz et al. [72–74] proposed contract-based revocation. They leverage ideas
from trusted computing to construct a contract-based revocation system, called RECAP, using
group signatures as the underlying primitive. In particular, they use remote attestation to allow
U to confirm that the software running on the RM will only deanonymize her in the event that
she violates a pre-agreed-upon (by U and the SP) contract. Their reliance on trusted computing
means that user privacy is not arbitrarily entrusted to the RM.

Remark. We reiterate that pseudonym systems provide users with pseudonymity instead of
full anonymity. Therefore, even under normal operation, users (misbehaving or otherwise) are
subject to a loss of privacy as compared to using an anonymous communications network without
a pseudonym system. The remaining classes—i.e., Nymble-like systems and revocable anony-
mous credential systems—improve on pseudonym systems by adding unlinkability and hence
full anonymity.

3.1.2 Nymble-like Systems

The second class of anonymous blacklisting systems are the Nymble-like systems. This class
gets its name from Nymble [54, 88, 89]. Nymble was already presented in detail in §1.2 so we
omit a detailed description here. Since its proposal in 2006, there have been two additional pro-
posals for Nymble-like systems in the literature.2 Our own Nymbler system—which appeared
as [50, 51], but which we present here in a significantly improved form—was the first of these
proposals. The second scheme is Lin and Hopper’s Jack [57]. However, before discussing these
systems further we briefly examine a predecessor to Nymble called Unlinkable Serial Transac-
tions (UST), first proposed by Syverson et al. [77, 78] in 1997.

1We place schemes based on group signatures in the class of pseudonym systems due to the fact that, upon
revocation, all of U’s actions at an SP become linkable, thus turning her anonymity into pseudonymity.

2Recently, a third Nymble-like system due to Lofgren and Hopper [59], called BNymble, was accepted for
publication; however, because we have not yet been able to obtain a copy of this paper, we will not discuss it here.

18

UST is a protocol for online subscription services that prevents the SP from tracking the
behaviour of a subscriber U while protecting it from abuse due to simultaneous active sessions by
U’s subscription. UST introduced the concept of having U authenticate with temporally related—
but mutually unlinkable—authentication tokens. In the scheme, U and the SP negotiate a blind
authentication token that U later exchanges for services from the SP. At the end of U’s session,
she and the SP negotiate a new blind authentication token for her next session. Thus, at any given
time, U possesses just one valid and unused token; this prevents a second anonymous user from
using U’s subscription at the same time as U. If U is judged by the SP to have misbehaved (for
example, by attempting to use the same token twice concurrently), then the SP can revoke U’s
access by ending her session without issuing a new authentication token. However, due to UST’s
token generation method, the scheme provides no way for the SP to revoke U for misbehaviour
that is recognized after her session has ended. This makes UST an unsuitable blacklisting system
for many real-world applications.

Lin and Hopper [57] proposed Jack in late 2010. Jack builds on the Nymble framework to
weaken Nymble’s trust assumptions. It reduces the level of trust in the VI (called the Credential
Manager (CM) in that scheme) by eliminating the link between U’s actual identity and her
nymbles. U’s Nym (we revert to this terminology since a pseudonym in Jack is decidedly not a
verinym) in Jack is instead based on user-chosen randomness; thus, the ZK-verinym property is
easily satisfied. The VI in this case must keep a log whenever it issues a credential to a user; it
must then refuse to issue a second credential to any user who already appears in the log. In the
case of a distributed VI, it is important that each VI possesses an up-to-date copy of the log at
all times; indeed, care must be taken to avoid race conditions that occur if U requests credentials
from several VIs concurrently. We also note that this approach to credential issuing does not
work well with using IP addresses to identify users. This is because IP addresses are neither
permanent nor unique [94]; some users may regularly obtain new IP addresses via DHCP, and
some users may share the same IP address via NAT. In both instances, legitimate users are likely
to encounter availability problems.3 Lin and Hopper suggest leveraging an existing public key
infrastructure (PKI) so that client certificates can identify users.

Jack also eliminates the role of the NI. Instead, U computes her own nymbles on demand
using Camenisch and Shoup’s Verifiable Encryption of Discrete Logarithms [20]. Along with
each nymble, she also computes a zero-knowledge proof to convince the SP that: a) the output is
an encryption of her correctly formed SP-specific pseudonym, and b) her SP-specific pseudonym
is not on the blacklist. The blacklist in Jack takes the form of a cryptographic accumulator; thus,
proof that an SP-specific pseudonym is not on the blacklist takes the form of a proof of non-
membership in an accumulator. This ensures that authentication times are independent of the
blacklist size at the SP. However, the cost of this approach is still considerably higher for the SP
as compared to Nymble and Nymbler.

3As more Internet services transition to IPv6 [30], these problems may all but vanish; at present, however, they
are real problems that one must consider when using IP addresses to identify users.

19

Jack also introduces some new functionality to the Nymble framework. For example, Jack is
the first Nymble-like system to support a limited form of contract-based revocation. Moreover,
rate limiting in their scheme is an optional add-on (it is mandatory in Nymble and Nymbler) and
they utilize blacklists of different durations to provide a weak form of inter-window revocation.
As originally presented, our Nymbler scheme did not support any of these features (except for
rate limiting); however, the improved version we present here has similar support for contract-
based revocation and versatile inter-window revocation.

Both Nymble and Jack are highly susceptible to linking attacks by a malicious NI/PE. In
Nymble, the malicious NI just sends all nymbles it computes to the SP, which results in instant
deanonymization of all users. In Jack, the attack works in reverse: the SP just sends all nymbles
it receives to the PE to have their SP-specific pseudonyms extracted. While the attack in Jack
is more costly than in Nymble, an adversarial PE can still deanonymize all Jack users in real
time. This is the case because extracting an SP-specific pseudonym in Jack takes about 26 ms
of computation [57]; thus, a malicious PE can deanonymize about 2,300 authentications per
minute using a single processor. On the other hand, the work required by the SP to verify the
zero-knowledge proofs that accompany each nymble is nearly 18 times that which is required
for the PE to extract SP-specific pseudonyms from those nymbles. This means that an SP can
only support about 128 authentications per minute on the same hardware. Our Nymbler scheme
protects against a malicious NI by enforcing the ZK-verinym and ZK-pseudonym properties,
while rendering the cost of attacks by a malicious PE economically infeasible with a tuneable-
cost trapdoor function for pseudonym extraction.

The cost of authentication (that is, verifying that a nymble is valid and checking its revoca-
tion status) at the SP is constant in all three Nymble-like schemes. In Nymble, the SP computes
an HMAC to verify that the nymble is valid and consults a hash map (with constant amortized
lookup time) to ensure that U’s SP-specific pseudonym is not on the blacklist. In Nymbler, the
SP checks a verifier-efficient restricted blind signature to verify that the nymble is valid, and
consults a hash map (much like Nymble) to ensure that U’s SP-specific pseudonym is not on the
blacklist. In Jack, the SP verifies two zero-knowledge proofs: one proof certifies that the nymble
is valid; the second certifies that U’s SP-specific pseudonym does not appear on the blacklist.
Computation for U is essentially zero in Nymble; it is constant—though somewhat higher than
in Nymble—in Nymbler. (Fortunately, most of the additional computation in Nymbler is pre-
computable.) In Jack, U must perform O(|∆B|) modular multiplications and exponentiations for
each authentication, where ∆B is set of updates to the SP’s blacklist since U’s last authentica-
tion.

3.1.3 Revocable Anonymous Credential Systems

The third class of anonymous blacklists systems are the revocable anonymous credential sys-
tems. These schemes take a heavyweight approach to security and privacy by completely replac-

20

ing TTPs with zero-knowledge proofs (ZKPs). Unfortunately, the high computational overhead
associated with them means that they are often of theoretical interest only.

As noted in our discussion of pseudonym systems based on private credentials, the first
scheme in this class is the anonymous credential system of Camenisch and Lysyanskaya [16].
Since the introduction of the Camenisch-Lysyanskaya credential system, several other general-
purpose anonymous credential systems with revocation capabilities have appeared. Our focus
here is only on those that specialize specifically as anonymous blacklisting systems.

Brands et al. [10, 11] construct an anonymous blacklisting system for the setting of single
sign-on systems using Brands’ private credential scheme [8, 9]. Because Brands’ credentials are
not rerandomizable (and thus different showings of the same credential are linkable), the system
calls for U to obtain a set of credentials upon registration; each credential in the set can then be
used for one authentication. Each SP maintains a blacklist of credentials of revoked users. To
prove that she is not on the blacklist, U computes a zero-knowledge proof of non-membership on
the blacklist and sends it to the SP. The authors utilize a novel proof technique that enables both
U and the SP to do this using a number of exponentiations that scales with the square root of the
list size (as opposed to linearly, as in other schemes). They accomplish this with a modified form
of the batch verification techniques of Bellare et al. [4].

Tsang et al. [83–85] (in fact, many of the same authors as Nymble) proposed Blacklistable
Anonymous Credentials (BLAC) in the following year. BLAC removes the trust assumptions
from Nymble by eliminating the role of the NM entirely. Similar to the work of Brands et
al. [10, 11], authentication with an SP in BLAC requires U to prove that her credential is not
present on a blacklist of revoked credentials. Unfortunately, BLAC is impractical for most real-
world applications because the number of modular exponentiations in the non-membership proof
scales linearly in the size of the blacklist. (For each blacklist entry, the proof takes about 1.8 ms
for U to prepare and 1.6 ms for the SP to verify [83].) If the blacklist grows to just one thousand
users, then several hundred kilobytes of communication and several seconds of computation are
required (per access) to prove that U is not on the blacklist [89]. For 7000 users—which we argue
on page 63 is a reasonble upper bound on blacklist size—this is over 1.3 megabytes download for
the blacklist alone, and ≈ 24 seconds of computation to prepare and verify the proof. For large
SPs with many users (such as Wikipedia), the performance of this approach is unacceptable. Note
that Nymbler’s inter-window revocation mechanism employs a similar proof of non-membership
on a blacklist. With our approach, this same scenario requires just 224 kilobytes of download for
the blacklist, and ≈ 1.5 seconds of computation to prepare and verify the proof.

Concurrently and independently, Brickell and Li [13, 14] proposed Enhanced Privacy ID
(EPID). EPID is similar to BLAC, but is specially designed to enable a TPM with an embedded
private key to authenticate anonymously, while enabling SPs to revoke access from compromised
TPMs. The non-membership proof in EPID is slightly faster than the one in BLAC, but the
scheme requires U to have specialized hardware and the cost is still prohibitively expensive since
the number of modular exponentiations also scales linearly in the size of the blacklist.

21

Privacy-Enhanced Revocation with Efficient Authentication (PEREA) [86] is a second re-
vocable anonymous credential system proposed by the same authors as BLAC. It uses a cryp-
tographic accumulator to reduce the linear-time non-membership proof to a constant-time non-
membership proof (for the SP). To facilitate this, the system uses an authentication window,
which is similar in concept to that of a linkability window, except that it specifies the maximum
number of subsequent connections U may make—as opposed to the maximum duration of time
that can elapse—before it becomes impossible to revoke her for her prior behaviour. However,
while the accumulator approach makes the cost of verification at the SP constant, it is still sev-
eral orders of magnitude slower (about 160 ms per authentication [86]) than authentication in the
Nymble-like systems. Moreover, U must still perform linear work to compute non-membership
witnesses (about 7 ms per entry on the blacklist, if the authentication window is of size 30 [86]).

3.2 (Restricted) Blind Signature Schemes

In his seminal work, Chaum [22] proposed the idea of blind signatures, wherein a user obtains
a cryptographic signature on a message without revealing any nontrivial information about the
message to the signer. In the following year, Chaum [23] gave the first construction of blind
signatures based on RSA signatures. One particularly appealing property of Chaum’s RSA-
based blind signatures is that, by choosing the public RSA exponent to be 3, the cost of the
verification equation is essentially just that of computing two modular multiplications.

Later, Brands ([7] and [9, Chap. 4]) proposed restricted blind signatures, wherein a user
obtains a blind signature on a message, while the signer gets to see certain parts of the structure
of the message before signing. If this structure does not conform to certain rules, the signer can
refuse to provide a signature; thus, the signer can restrict the set of messages that it is willing
to sign. If the user later modifies the structure of the message in any way, then the signature
will become invalid. However, unlike Chaum’s RSA-based blind signatures, verifying Brands’
restricted blind signatures has a computational cost that is dominated by a multi-exponentiation,
where each exponent is essentially random (modulo a large prime) and depends on the message
to be signed. In particular, the signer cannot select parameters to ensure that these exponents will
be small values (such as 3).

Camenisch and Lysyanskaya [16–18] propose a versatile restricted blind signature scheme
(often called the CL-signature scheme) that allows restricted blind signatures to be rerandomized.
One full-length exponentiation and one multi-exponentiation (with each exponent approximately
equal in size to the message being signed) dominate the cost of verifying a CL-signature. The
well-known CL-credential [5, 16, 17] scheme is constructed from CL-signatures.

Recently, Groth and Sahai [47] proposed a zero-knowledge proof system based on bilin-
ear pairings. Belenkiy et al. [3] constructed restricted blind signatures—which they called P-
signatures—and a noninteractive anonymous credential system from the Groth-Sahai framework.

22

The cost of signature verification in their scheme is about one elliptic curve exponentiation and
three pairing operations.

In this work, we propose Verifier-Efficient Restricted Blind Signatures (VERBS), a re-
stricted blind signature with an efficient verification protocol. Similar to Chaum’s blind signa-
tures, we base our approach on RSA signatures; however, we utilize zero-knowledge proofs in
the blinding and signing protocols to allow the user to prove certain properties about the mes-
sage before it is signed. The key advantage of our approach over other restricted blind signature
schemes is the extremely low cost of the verification protocol (i.e., verification in our scheme
is almost as efficient as Chaum’s non-restricted blind signatures with an exponent of 3). In
particular, the cost of verifying a signature is dominated by three modular multiplications; this
yields a verification protocol that is 1–2 orders of magnitude faster than any previously proposed
restricted blind signature scheme for realistic parameter sizes. We use VERBS to help the SP dis-
tinguish validly formed nymbles from random values; thus, the low cost of VERBS verificaton
is necessary to ensure that our scheme satisfies the verifier-efficiency property.

23

Chapter 4

Nymbler

This chapter presents Nymbler, our approach to anonymous blacklisting. It first provides an
overview of the architecture and the protocols involved. Then, following a discussion of the
system parameters, it gives a detailed exposition of the construction and each of Nymbler’s pro-
tocols. Implementation details and performance measurements are presented in Chapter 5.

4.1 Architectural Overview

Nymbler utilizes the general Nymble framework as presented in §1.2. The system therefore
includes three different third parties to facilitate its operation. The Verinym Issuer (VI) is a
distributed entity that is responsible for issuing a user (U) with a verinym; U then uses her
verinym to obtain a set of nymbles for some Service Provider (SP) from the Nymble Issuer
(NI). U can later authenticate with the SP using one of these nymbles; if U misbehaves, the SP
transmits her nymble to the Pseudonym Extractor (PE) to have her blacklisted. Please refer back
to §1.2 for a more comprehensive overview of how the framework operates.

Eight protocols comprise Nymbler; we mention each protocol here and briefly discuss: 1)
what the protocol does, 2) who is involved in the protocol, and 3) when the protocol is executed.

The Verinym Acquisition Protocol allows U to obtain a verinym from the VIs. If U is
a Tor exit relay or a user whose access to the VIs is blocked by a third party, then a modified
version of the Verinym Acquisition Protocol is used. (See §4.3.3 for details.) U uses the Verinym
Showing Protocol to convince the NI that she has a valid verinym without revealing any sensitive
information. If U wishes to connect to an SP, she uses the Nymble Acquisition Protocol to
obtain a set of nymbles from the NI for that SP. This protocol requires U to use the Verinym
Showing Protocol to prove that she has a valid verinym, as well as the Non-membership Proof
Protocol to prove that she is not subject to an inter-window revocation. She can then connect

24

Table 4.1: Trust assumptions required by U and the SP to guarantee Nymbler’s
security properties.

Security Property Who Whom

Misauthentication resistance SP

Backward anonymity U VI

Unlinkability U PE

Revocability SP VI, NI, PE

Revocation auditability U PE

Non-frameability U VI

This table lists Nymbler’s security properties, and specifies who must trust whom
to be honest (but curious) for these properties to hold. When the VI must be
trusted, this means that at most t− 1 VIs can be corrupt.

to the SP (or PE) to execute the Revocation Audit Protocol, which informs her if she appears
on the current blacklist or revocation queue. Finally, she invokes the Nymble Showing Protocol
with the SP to authenticate herself. If she misbehaves, the SP connects to the PE to invoke
the Revocation Protocol. This causes the PE to use the Pseudonym Extraction Protocol to
evaluate the trapdoor function.

4.1.1 Trust and Threat Model

Nymbler’s threat model allows for any subset of users or SPs to be compromised and hence
under adversarial control. The security and privacy properties of the system therefore make no
assumptions about the honesty of its users, and require that an SP is honest only to guarantee
the availability of that SP’s own services. As noted by Tsang et al. [89, Page 4], “not trusting
these entities is important because encountering a corrupt server and/or user is a realistic threat.”
However, as with Nymble, our approach does require certain trust assumptions regarding the
VIs, NI and PE. Table 4.1 summarizes these trust assumptions and describes which security
properties rely on each assumption. Note that Nymbler requires a dramatically reduced level of
trust as compared to Nymble (cf. [89, Fig. 3]).

25

4.1.2 Parameters and Notation

Our Nymbler construction uses several system parameters. This section briefly introduces these
parameters and our notation; we divide it into sections corresponding to each entity in the system.
In some instances in this section, we may appear to be placing arbitrary conditions on certain
values; we provide the rationales for these conditions in the appropriate part of the text. Our
goal here is simply to concisely list each of the symbols we use for ease of reference. We refer
the reader to Figure 4.1 on page 36 for an illustration of the relationship between linkability
windows, VVPs and time periods.

U hash(·) is a strong cryptographic hash function; `hash is the bit length of its output. (We
suggest SHA256 as a reasonable choice for hash.) U’s verinym x0 is computed from her IP
address z; computations involving z are usually performed on a hash y = hash(z).

VI There are s VIs and U must obtain a verinym share from at least t ≤ s of them to construct
her verinym. There are Lmax linkability windows for a given public key (of the VIs); the current
linkability window is Lcur. Each linkability window contains Kmax VVPs; the current VVP is
Kcur. A verinym is valid for at most Klim VVPs. Using a distributed protocol, the VIs generate
a public RSA modulus n = pnqn, such that N = 4n + 1 is prime. Provided an honest majority
exists among the VIs, the factorization of n is unknown to anybody. The VIs choose a master
public key E = ηKmax−1 ·

∏Lmax−1
L=0 eL such that η > s and eL > s (for 0 ≤ L < Lmax) are distinct

primes and E < ϕ(n); the tuple (n, eL) is then the VI’s public key for linkability window L.
Each VIi has share si of the master private key D = E−1 mod ϕ(n) and a verification value vi; a
VI can easily convert its share into a share of the inverse of any public key (ηKeL)−1 mod ϕ(n)
for 0 ≤ L < Lmax and 0 ≤ K < Kmax. If VIi computes a share of U’s verinym, we denote
this share by Xi; when t shares are recombined, the result is xKexp (where Kexp is the expiration
VVP). U computes her verinym x0 from xKexp via x0 = xη

Kexp

Kexp
. Both αn and βn are generators

of the order-n subgroup modulo N with logαn(βn) unknown. The details of these computations
will be given in §4.3.

NI There are Tmax time periods per linkability window (where Kmax divides Tmax). The NI
has a public RSA modulus m = pmqm, such that M = 2m + 1 is prime, and private key
dm = 3−1 mod ϕ(m); these keys are used for VERBS. Each SP is associated with a canonical
name ‘name’ and a group element h = hash(k‖Lcur‖name), where k is the smallest 4-byte
value that makes h a quadratic residue modulo n. U requests nymbles for at most the next
J ≤ Tlim time periods. For time period T , U’s nymble seed is hT = hx2T mod n and her nymble
is νT = ghT mod ζ , where g is a known generator of the order-ζ subgroup modulo Z (see below).
The NI also provides an `ρ-bit prime ρ, an (`P − `ρ − 1)-bit prime qρ for which P = 2ρqρ + 1

26

is prime, and a random `hash-bit integer ξ. (Here `P is the bit length of a prime modulo which
computing discrete logarithms is infeasible.)

PE The PE has a public RSA modulus ζ = pζqζ , such that Z = 4ζ + 1 is prime, pζ − 1 and
qζ − 1 are both products of primes in the range [B/2, B] (where B ≈ 2`B), and ϕ(ζ) > n. The
PE’s private key is the factorization of pζ − 1 and qζ − 1 (into `B-bit primes).

SP Each SP has a blacklist BSP and revocation queue RSP whose entries are reduced modulo
ρ. Computation with these values is done in the order-ρ subgroup modulo P ; αρ and βρ are
generators of this group with δ = logαρ(βρ) known only to the NI. Each SP also has one linking
list L(SP,Lcur,T) for each 0 ≤ T < Tmax.

4.2 Cryptographic Preliminaries

This chapter makes use of ZKPs about values in commitments. Commitments can be discrete
log commitments (the commitment to x is Cx = αx for a known group element α) or Pedersen
commitments [66] (the commitment to x is Cx = αxβγ for known group elements α, β where
logα (β) is unknown, and γ is random). In both cases, the commitment is said to hide the value
x; a commitment can be opened by revealing x (and γ).

We use several standard ZKPs from the literature; in particular, we use the standard proof of
knowledge of a committed value [71], proof that a commitment opens to a product of committed
values [19], and proof that a committed value is in a particular range [6]. No proof is necessary
for addition or scalar multiplication of committed values, as multiplication or exponentiation of
the commitments, respectively, can easily compute these.

We also use a proof of nested commitments (a “nest proof”); that is, given A,B, to prove
knowledge of x such that A is a commitment to a commitment to x and B is a commitment to the
same x. That is (for simplicity, we only show the discrete log case; the Pedersen case is similar),
to prove knowledge of x and G such that G = gx, A = αG, and B = βx. (All operations are in
appropriate groups, and g, α, β are generators of those groups.) This proof works the same way
as the ordinary proof of equality of discrete logarithms: the prover chooses r and outputs gr and
βr; the verifier (or a hash function if the Fiat-Shamir [39] method is used) chooses a challenge c;
the prover outputs v = r− cx; the verifier accepts if Gcgv = gr and Bcβv = βr. The twist in our
scenario is that G is not available to the verifier; only its commitment (A = αG) is. We solve this
problem by having the prover output αgr instead of gr, and having the prover compute A = αG

c

(the commitment to Gc) and provide a ZKP that this was done correctly (see below). Then the
verifier checks that (αG

c
)g
v

= αg
r (along with the unchanged Bcβv = βr). In the event that g

27

and β have different orders (which will be true in general, and in our case), the above range proof
is also utilized to show that 0 ≤ x < ord(t).

For the proof of an exponentiation of a committed value, we use a simplified version of the
algorithm of Camenisch and Michels [19]. In their paper, the exponent was also hidden from the
verifier. In our situation, the exponent c is known, which makes matters considerably easier. The
prover just performs any addition-and-multiplication-based exponentiation routine, and produces
a ZKP for each step.

We write our ZKPs using Camenisch-Stadler notation [21]; for example,

PK {(x, γ) : Cx = αxβγ}

denotes a ZKP of knowledge of the opening of the Pedersen commitment Cx, and

PK

(x, y, γ1, γ2, γ3) :

Cx = αxβγ1

∧ Cy = αyβγ2

∧ Cz = αxyβγ3


denotes a ZKP that Cz opens to the product of the values committed to in Cx and Cy. The tuple
of symbols are to remain secret during the proof, while the relations listed after them specify the
theorem to prove; any symbol that appears in some relation but not in the aforementioned tuple
is public.

4.3 Threshold Verinyms

We now present Nymbler’s threshold verinym construction in full detail. We first present the
intuition behind how our verinyms are created with a discussion of threshold signatures. We go
on to describe precisely how the system initializes the VIs and their public-private key pairs, and
how U obtains and uses her verinym.

4.3.1 Threshold Signatures

The key idea in our distributed VI is to have the VIs use a distributed “unique” (t, s)-threshold
signature scheme to compute U’s verinym. The security of this approach relies on two proper-
ties in the underlying threshold signatures: unforgeability and uniqueness. All secure signature
schemes provide unforgeability [45]; uniqueness, on the other hand, is a property that is only
possessed by certain signature schemes.

Definition 15 (Unique Signature Scheme [61]). A signature scheme is called unique if, for every
(possibly maliciously chosen) public key pk and every message msg, there exists at most one
signature σ such that Verpk(msg, σ) = true.

28

For completeness, we formally define a (t, s)-threshold signature scheme before discussing
our approach in further detail.

Definition 16 ((t, s)-threshold Signature Scheme). A (t, s)-threshold signature scheme is a
digital signature scheme with s signers and the property that any subset of at least t signers can
cooperate to sign a message msg. Conversely, any subset of fewer than t signers should not be
able to compute any nontrivial information about a valid signature on msg.

A unique (t, s)-threshold signature scheme is just a (t, s)-threshold signature scheme with
the uniqueness property.

We use the non-interactive threshold RSA signature scheme of Damgård and Koprowski [28]
for a concrete realization of this idea. Other choices of unique threshold signature scheme may
also work well. We choose Damgård and Koprowski’s threshold RSA signatures because: 1)
proving knowledge of an RSA signature in zero-knowledge is easy, and 2) the scheme does
not require a trusted dealer who knows the factorization of the RSA modulus. This latter point is
particularly useful in our case, since our nymble construction uses an RSA number with unknown
factorization to protect against a malicious PE. Damgård and Koprowski’s scheme makes use
of a slightly modified form of the Robust Efficient Distributed RSA-Key Generation protocol
of Frankel et al. [41]. In our case we will require that the public key n is chosen such that
N = 4n + 1 is a prime;1 this can be accomplished by repeatedly executing the protocol of [41]
until a suitable n has been found. The prime number theorem [64, Fact 2.95] tells us that, for
example, the protocol will have to be executed an average of 1536 · ln 2 ≈ 1064 times for a
1536-bit modulus. Note, however, that key generation occurs infrequently, since we have the
distributed VI generate a single n to use for a substantial number of future linkability windows.

The use of signatures in our application presents an interesting challenge; for security pur-
poses, U must be able to prove in zero-knowledge that one committed value is a signature on
a second committed value. This means that the VI cannot just sign a hash of the message as
is usually done to ensure security and integrity of RSA signatures. Instead, we use a modified
version of Rabin’s function: H(z, ξ) = (z2 + (z mod ξ)) mod n in place of a hash. We choose
this function to prevent U from exploiting the homomorphic properties of RSA encryption.

4.3.2 Initializing the VIs

Let VI = {VI1,VI2, . . . ,VIs} be a set of s VIs. The VIs initialize the system by first jointly
computing an RSA modulus n = pnqn, such that pn, qn andN = 4n+1 are each prime, by using
the ‘Distributed Computation of N ’ protocol from [41, §10] with the modification suggested
in [28, §5].

1The protocol of [41] with the modification suggested in [28, §5] produces an RSA modulus n = pnqn such that
gcd((pn − 1)/2, s!) = gcd((qn − 1)/2, s!) = 1; thus, it is easy to see that 2n+ 1 is always divisible by 3; this is why
we use N = 4n+ 1.

29

Choosing a set of public keys. Suppose that there are Kmax VVPs per linkability window and
n will be retired after Lmax linkability windows. The VIs agree on a prime η > s such that
dlog2 (η)e + hamming_weight(η) is the smallest possible. (If s < 17 then η = 17 is a good
choice.) They also agree on a product of Lmax distinct primes (and ηKmax−1), E = ηKmax−1 ·∏Lmax−1

L=0 eL, such that eL > s for all 0 ≤ L < Lmax and dlog2(E)e < dlog2(n)e − 2 (so that
E < ϕ(n)). As with η, each eL should be chosen with dlog2 (eL)e + hamming_weight(eL) as
low as possible. The VIs also choose ξ, a publicly known (random) `hash-bit integer.

Generating the set of private keys. Once E has been chosen, the VIs use the ‘Robust Dis-
tributed Generation of Public and Private Keys’ protocol of [41, §9] to find the private key ex-
ponent D = E−1 mod ϕ(n). After executing the protocol, the public key for linkability win-
dow L∗ is then (n, eL∗ , v, η,Kmax), where v is a verification value; the private key is dL∗ =
D ·
∏

L6=L∗ eL = D ·E/(eL∗ · ηKmax−1). Each VIi ∈ VI has a share si of D, and a public verification
key vi = vsi(s!)

2
mod n. For the remainder of this chapter, we shall assume that we are work-

ing in a fixed linkability window Lcur, whose corresponding public and private keys are simply
denoted by e and d, instead of eLcur and dLcur .

Deriving a public-private key pair. In the first VVP, the public key is e and the private key is
d; thus, VIi uses the share si · (E/e) to compute signatures. In the next VVP, the public key is e ·η
and the private key shares are si · (E/(e · η)). In general, in VVP K, 0 ≤ K < Kmax, the public
key is e · ηK and the private key shares are si · (E/(e · ηK)). Note that, if U obtains a signature
that is valid in VVP K∗, then it can easily be backdated; that is, turned into a signature that is
valid in any earlier VVP K ′ of the same linkability window by raising it to the power ηK∗−K′

and reducing modulo n: if (x)e·η
K∗ ≡ Y mod n then (xη

K∗−K′
)e·η

K′ ≡ Y mod n. On the other
hand, U is unable to produce a signature for a later VVP since this requires the computation of
η−1 mod ϕ(n).

4.3.3 Verinym Acquisition Protocol

We model the Verinym Acquisition Protocol after the signing protocol from [28, §3]. However,
we make two significant changes in our version: 1) the VIs produce a threshold signature on the
value Y = (y2 + (y mod ξ)) mod n instead of on y directly, and 2) the VIs modify their key
shares as needed to produce the correct signature for a particular linkability window and VVP.
The protocol is initiated by U and executed with at least t different VIs. Let z be U’s IP address
and set y = hash(z). There are Kmax VVPs per linkability window and the current VVP is Kcur.
A verinym is valid for at most Klim VVPs but will expire earlier if Kcur +Klim ≤ Kmax. Because
U runs the Verinym Acquisition Protocol with at least t different VIs, it is possible for two or
more VIs to compute shares of U’s verinym that expire in different VVPs. (This might happen

30

because the protocols execution spans the boundary between two VVPs, or because two different
VIs have different policies about Klim.) Of course, U could request a verinym with a particular
expiration VVP from each VI; however, we instead have each VI issue a share for the latest
VVP that their policy will allow. Once U has obtained all verinym shares, she then backdates
each share (to the last VVP for which all shares are valid) before constructing her verinym. The
protocol works as follows:

U

1. U chooses a random size-t subset of VI, say S = {VIi1 , . . . ,VIit} ⊆R VI.
2. U connects directly to each VIij ∈ S and requests a verinym.

VIij

3. VIij receives the request for a verinym from U, with IP address z. It notes the current VVP
Kcur and computes y = hash(z), Y = (y2 + (y mod ξ)) mod n and Kij = min{Kmax −
1, Kcur +Klim}.

4. VIij computes the signature share

Xij = Y 2(s!)2·sij ·(E/(e · ηKij)) mod n.

5. VIij computes a proof of correctness for Xij by choosing r ∈R {0, . . . , 4κ1 + (12s +
4) lg s}, where κ1 is a security parameter (see [28, 40, 75]), and computing

cij = hash(v, ỹ, vij , X
2
ij
, vr(s!)

2

, ỹr),

and gij = sij · (E/(e · ηKij)) · cij + r, where ỹ = Y 4(s!)2 . The proof is (gij , cij).
6. VIij sends (Xij , gij , cij , Kij) to U.

U

7. U receives (Xij , gij , cij , Kij) from each VIij .
8. U verifies each share by checking

cij
?
= hash(v, ỹ, vij , X

2
ij
, vgij (s!)2 · v

−cij ·(E/(e · ηKij))

ij
, ỹgij ·X

−2cij
ij

).

If verification fails for any ij , then U: 1) discards Xij , 2) selects VIij′ ∈R VI− S, 3) sets
S = (S ∪ {VIij′})− {VIij}, and 4) executes from Step 2 for VIij′ .

31

9. Let Kexp = min{Kij | VIij ∈ S}. (So Kexp is the latest VVP for which all verinym shares

are valid.) For each 1 ≤ j ≤ t, if Kij > Kexp, then U replaces Xij by X ′ij = Xη
(Kij

−Kexp)

ij
;

otherwise, U sets X ′ij = Xij . Each X ′ij is now a verinym share for VVP Kexp.
10. U recombines her shares as follows:

(a) U computes

ω =
∏

VIij∈S

(X ′ij)
2λij = Y 4(s!)5·d/(ηKexp)

where λij is the integer

λij = (s!) ·
∏

{i|VIi∈S}−{ij}

i

i− ij
.

(b) U uses the Extended Euclidean Algorithm to find a and b such that

a · 4(s!)5 + b · e · ηKexp = 1.

(c) U computes her verinym by first computing the signature:

xKexp = ωaY b

= (Y 4(s!)5·d/(ηKexp))aY b

= (Y 4(s!)5·d/(ηKexp))a(Y e·d)b

= (Y 4(s!)5·d/(ηKexp))a(Y (e·ηKexp)·d/(ηKexp))b

= (Y a·4(s!)5+b·e·ηKexp
)d/(η

Kexp)

= (Y)d/(η
Kexp)

= (y2 + (y mod ξ))d/(η
Kexp) mod n.

Verinym acquisition for Tor exit relays

SPs cannot distinguish connections originating at a Tor exit relay from connections made over
Tor and routed through that exit relay. One consequence of this is that SPs that block access
from Tor also block access from Tor exit relay operators, even when their connections are not
coming through Tor. Previous Nymble-like systems provided a viable solution to the availability
problem for Tor’s regular users, but neglected to show how their systems could support operators
of Tor exit relays.

Fortunately, Tor implements a public key infrastructure (PKI) among its relays. In particular,
each Tor relay has a long-term public signing key called an identity key [35]. Thus, the VI can

32

demand a ZKP of knowledge of the secret portion of an exit relay’s identity key at the start of
the Verinym Acquisition Protocol. In this way, the VIs prevent U from obtaining nymbles under
the guise of an exit relay, while permitting the operator of that exit relay to obtain nymbles for
his own use.

Suppose E is an exit relay operator who wishes to connect to an SP using Nymbler for anony-
mous authentication. We outline the additional proof required from E below:

E

1. E connects directly to each VIij ∈ S.

VIij

2. VIij checks z against the directory list of Tor exit relays.
3. If z not on the list, VIij proceeds as usual for the Verinym Acquisition Protocol; otherwise,

VIij chooses a random challenge c and sends it to E.

E

4. E receives the challenge c and prepares the standard request R for a verinym.
5. E computes a signature ψR on (c‖R) using his private identity key.
6. E transmits the tuple (R,ψR) to VIij .

VIij

7. VIij receives the ψR and verifies the signature. If ψR is incorrect, VIij aborts; otherwise,
VIij proceeds as usual for the Verinym Acquisition Protocol.

Verinym acquisition for censored users

Access to Tor is restricted in several countries due to government censorship (for example, the
‘Great Firewall of China’ [53]). To solve this problem, the Tor network uses bridges [33]. A
bridge relay is essentially just a regular Tor relay that the directory does not list. Using a variety
of different techniques, censored users can obtain portions of the list of bridges, and thereby find
an entry point into the Tor network. Obtaining the entire list, however, is intentionally a very

33

difficult task. The goal is to make it infeasible for even a government-level adversary to block all
of the bridge relays.

This solves the availability problem for Tor; i.e., censored users can still access the Tor net-
work by using bridges. However, it seems prudent to expect that when the entire Tor network is
blocked, then so too will be the VIs. This will prevent censored users from obtaining a verinym
in the usual way. What we need, it appears, is a Nymbler analog of bridges.

In particular, we envision a set of simple volunteer-run entities, which we call Identity Ver-
ifiers (IVs). The IVs are simple servers (perhaps an Apache module running on volunteer ma-
chines) distributed throughout the Internet. Each IV possesses a public-private key pair for sig-
nature generation. The list of IP addresses and public keys for all available IVs is known to the
VIs. Ideally, no single VI will possess the entire list, lest that VI be compromised; instead, each
VI may have approximately (1/s)th of the list.

It should be difficult for an attacker to gain access to large portions of the IV list. In fact,
bridge relays could double as IVs, making the problem of obtaining the list of bridge relays and
the list of IVs equivalent. Alternatively, the list of bridge relays and IVs could be linked in some
other way so as to make the task of obtaining large portions of the two lists equivalent. However,
we leave further development of these considerations to future work.

The IVs offer the following functionality: upon input a bit-string string c from a user U with
IP address z, an IV outputs a signature on hash(c‖z). The additional part of the protocol works
as follows:

U

1. U connects to an arbitrary bridge relay B and builds a circuit and SSL connection to VIij
through B; U sends her claimed IP address z to VIij through this connection.

VIij

2. VIij receives z from U and replies with a random challenge c and the IP address of a
random IV. (The method of selection can be arbitrary: random, the IV most trusted by the
VI, etc.)

U

3. U receives the challenge c and IP address of an IV from VIij ; she connects to the IV and
sends c.

34

IV

4. The IV receives c and determines z empirically from the IP connection header. It replies
by sending ψz, which is a signature on hash(c‖z).

U

5. U receives ψz from the IV and forwards it to VIij .

VIij

6. VIij receives ψz and checks the signature. If ψz incorrect, VIij aborts; otherwise, VIij
proceeds as usual for the Verinym Acquisition Protocol.

The naive protocol just described is susceptible to the following attack: a malicious U chooses
a random IP address and initiates the protocol with that as its self-reported address. In the (un-
likely) event that U receives the address of a colluding IV, she obtains a signature on the fake IP
address, thereby convincing the VI to issue a share of a verinym. Otherwise, U chooses a new
random IP address and tries again. To protect against this attack, we can require that: a) the VIs
somehow trust the IVs, b) the VIs choose multiple IVs and require U to obtain a signature from
each, or c) a combination of these approaches. Provided at least one of the IVs chosen by the
VIs is honest, the attack will fail.

4.3.4 Verinym Showing Protocol

At the conclusion of the Verinym Acquisition Protocol, U outputs a signature xKexp; given this
value, she can compute her verinym x0 by backdating this signature as follows:

x0 = xη
Kexp

Kexp
.

More to the point, she can compute (and prove in zero-knowledge that)(
y2 + (y mod ξ)

)
≡
(
xη

Kexp

Kexp

)e
mod n.

Figure 4.1 illustrates the Verinym Showing Protocol. In this example, U is requesting J
nymbles from the NI and her current verinym expires in VVP Kexp. In the Nymble Showing
Protocol, U must prove that her verinym is valid for the VVP that contains the time period asso-
ciated with her J th nymble, i.e., for VVP K∗ = min{b(Kmax · (Tcur + J))/Tmaxc, Kexp}. She backdates

35

her verinym xKexp (locally) as follows: xK∗ = xη
Kexp−K∗

Kexp
mod n. She then commits to y, xK∗

and x0 = xη
K∗

K∗ mod n and produces a zero-knowledge proof that x0 is indeed xη
K∗

K∗ mod n and
that (y2 + (y mod ξ)) ≡ xe0 mod n. Note that the exponent ηK∗ in this proof is public. That U
is able to compute this proof with exponent ηK∗ proves to the NI that U’s verinym is still valid
in VVP K∗. When the NI is convinced by U’s proof, the Nymble Acquisition Protocol runs as
usual using x0 as U’s verinym.

J︷ ︸︸ ︷
verinym valid

nymble requested

K0 K ′ Kcur K∗ Kexp Kmax

Tcur T ∗T0 Tmax

xK∗ = xη
Kexp−K∗

Kexpx0 = xη
K∗

K∗

h0 = hx0 mod n

hKcur = h2Kcur

0 mod n

Figure 4.1: Verinym showing procedure: This figure outlines our threshold
verinym construction. The upper timeline displays VVPs while the lower displays
time periods. The light grey bar is the range of VVPs for which the verinym is
valid. The dark grey bar is the range of time periods for which U is requesting
nymbles.

Let αn, βn be known generators of the order-n subgroup modulo N . U invokes the Verinym
Showing Protocol to prove to the NI that she has a valid verinym. The protocol works as follows:

U

1. U computes K∗ = min{b(Kmax · (Tcur + J))/Tmaxc, Kexp}, xK∗ = xη
Kexp−K∗

Kexp
mod n and x0 =

xη
K∗

K∗ mod n; VVP K∗ is the VVP that contains the last time period for which she is re-
questing a nymble.

2. U chooses γ1, γ2, γ3 ∈R Zn and computes Pedersen commitments ȳ = αynβ
γ1
n mod N ,

36

xK∗ = αxK∗n βγ2n mod N and x0 = αx0n β
γ3
n mod N and the ZKP

Πx∗K
=PK



(
γ1, γ2, γ3

y, xK∗ , x0

)
:

ȳ = αynβ
γ1
n modN

∧ xK∗ = αxK∗n βγ2n modN

∧ x0 = αx0n β
γ3
n modN

∧ x0 = xη
K∗

K∗ mod n

∧ xe0 = (y2 + (y mod ξ)) mod n

∧ 0 ≤ y < 2`hash

∧ 0 ≤ xK∗ < n


.

3. Finally, U transmits ȳ, xK∗ and x0, along with ΠxK∗ , to the NI.

NI

4. The NI receives and verifies ΠxK∗ . If verification fails, it aborts; otherwise, it accepts the
verinym as valid.

4.4 Nymble Construction

The nymble construction procedure in Nymbler is quite similar to the original Nymble. The
primary difference with our approach is that we replace the two HMACs and one symmetric-
key encryption from the original construction with different functions. We do this in order to
enable U to compute her own Nymbles and efficiently prove in zero-knowledge that she has
done so correctly. Proving knowledge of the preimage of an HMAC or of the plaintext associated
with a symmetric-key ciphertext are both prohibitively expensive operations; further, U can only
compute these values if she knows the associated key. Clearly, if the key used for symmetric-key
encryption is made public, this enables any SP to deanonymize all users at will.

The first function we employ is Rabin’s function: f(h) = h2 mod n. No single party knows
the factorization of n; thus, inverting f is equivalent to factoring n [64, Chapter 3]. We re-
place symmetric-key encryption by exponentiation in a trapdoor discrete logarithm group (see
§4.5.3). This allows the PE to extract U’s SP-specific pseudonym from one of her nymbles with
a (tuneably) moderate amount of effort. We replace the final HMAC (used for authentication)
with our very own verifier-efficient restricted blind signatures (VERBS). Figure 4.2 illustrates
Nymbler’s nymble construction (compare with Figure 1.1 in §1.2, page 5).

We now briefly introduce our VERBS protocols and then give full details of the Nymble
Acquisition Protocol and the Nymble Showing Protocol. We also briefly mention how contracts
can be encoded in our nymble construction to enable contract-based revocation.

37

no one
can go left

nymbles:

h h2 h4 h8 . . .

g(h) g(h2) g(h4) g(h8)

only PE can go up

Figure 4.2: Nymble construction in Nymbler: In Nymbler, black arrows
are implemented with Rabin’s function (f(z) = z2 mod n) and grey arrows
are implemented with exponentiation in a trapdoor discrete log group (f ′(z) =
gz mod ζ). The NI issues a VERBS on each nymble (not illustrated) to provide
authentication for the SP.

4.4.1 VERBS

We now briefly describe each of the protocols in VERBS. The full algorithms are located in
Appendix B. We state each algorithm in its noninteractive zero-knowledge form (such as by using
the Fiat-Shamir method [39]); the adaptation of VERBS-Blind and VERBS-Sign to interactive
zero-knowledge is straightforward. (The other two algorithms do not change.)

All computations are performed modulo an RSA number m = pmqm whose factorization
is known only to the signer; in our case, the signer is the NI. The VERBS-Blind algorithm is
executed by U. The algorithm takes as input a group element g, a commitment Cx (either a
discrete log or Pedersen commitment) to a secret value x, the secret value x itself (plus γ in the
case of a Pedersen commitment), and a context element ξ that encodes meta-information about
the signature. The role of this algorithm, much like its Chaumian counterpart, is to produce the
blinded message Sx = H(ν, ξ) · θ3 mod m, where ν = gx and the random blinding factor θ
are hidden from the signer, ξ is an `hash-bit number, and H(z, ξ) = (z2 + (z mod ξ)) mod m
is a one-way function. (It is one-way since the factorization of the modulus m is unknown to
everyone but the signer.) In practice, ξ is a hash output and information about the context in
which the signature should be accepted as valid are encoded in the preimage of the hash. The
algorithm also outputs a ZKP Πx that convinces the signer that Sx was computed correctly.

The VERBS-Sign protocol is run by the NI. It takes the tuple (Sx, pm, qm,Πx) as input:
Sx ∈ Z∗m is a blinding of the message x; pm and qm are the factors of m; and Πx is a ZKP
that Sx was correctly formed using the x committed to in Cx. It outputs the blinded signature
σ′ = (Sx)

1
3 mod m if all proofs in Πx are valid; otherwise, it outputs⊥. Note that σ′ is essentially

38

just a Chaum blind signature.

The VERBS-Unblind protocol is run by U. The algorithm takes the tuple (σ′, θ) as input;
σ′ is a blinded signature and θ is the blinding factor used to blind that signature. It outputs
σ = σ′ · θ−1 mod m, which is the unblinded signature.

VERBS-Verify is run by the SP (and U). It takes the tuple (ν, σ, ξ) as input; ν is the message
that was signed, σ is the (unblinded) signature, and ξ is the context element. It outputs true iff
σ3 mod m

?
= (ν2 + (ν mod ξ)) mod m. Note that the cost of VERBS-Verify is essentially just

three modular multiplications.2

4.4.2 Nymble Acquisition Protocol

Let x0 be U’s verinym and suppose x0 expires after VVP Kexp. For the remainder of this chapter,
we will consider the case when U wishes to connect to an SP with the canonical name ‘name’
during current linkability window Lcur. Let Texp be the last time period in Kexp and let Tlim be the
number of consecutive time periods, starting from Tcur, for which a user may request nymbles.
U’s first step in communicating with the SP is to invoke the Nymble Acquisition Protocol to
obtain nymbles from the NI.

This protocol begins with U computing her sequence of nymble seed values. The first nymble
seed is computed via exponentiation modulo n, and all subsequent values are computed via
repeated squaring modulo n. A publicly known generator of the order-ζ subgroup modulo Z is
then raised to the power of each nymble seed to obtain U’s nymbles. Finally, the nymbles are
blinded using the VERBS-Blind protocol and sent (along with ZKPs) to the NI for signing. The
protocol works as follows:

U

1. U computes h = hash(k‖Lcur‖name), where k is the smallest 4-byte value that makes h
a quadratic residue modulo n, and T ∗ = min{Tcur + Tlim, Texp}; she sends (name, T ∗) to
the NI. This indicates to the NI that U is requesting nymbles beginning at time periods Tcur

through T ∗. (This is a total of J = T ∗ − Tcur + 1 nymbles.)
2. U verifiably computes her first nymble seed hcur = hx02Tcur as follows:

(a) U computes the Pedersen commitments (to x0 and hcur) x0 = αx0n β
γ1
n mod N and

2We assume here that `hash is much smaller than n (say, 256-bit versus 1536-bit), and so the cost of ν mod ξ is
insignificant compared to the cost of the multiplications.

39

Ycur = αh
x02

Tcur

n βγ2n mod N , and the ZKP:

Π0 = PK

(x0, γ1, γ2) :

x0 = αx0n β
γ1
n modN

∧ Ycur = αh
x02

Tcur

n βγ2n modN
∧ 0 ≤ x0 < n

 .

3. U computes her remaining nymble seeds—using hcur as a starting point—as follows:

(a) U computes (hcur+i)
T ∗−1
i=2 , where hcur+i =

(
hcur+(i−1)

)2
= hcur

2i mod n;

(b) U computes J−1 Pedersen commitments Ycur+i = α
hcur+i
n βγin mod N (γi ∈R Z∗n) and

the ZKP

Π2 = PK


 hcur+i−1, γi−1,

hcur+i, γi
for 1 ≤ i ≤ J

 :

Ycur+i−1 = α
hcur+i−1
n β

γcur+i−1
n modN

∧ hcur+i = (hcur+i−1)2 modn

∧ Ycur+i = α
hcur+i
n β

γcur+i
n modN

for 1 ≤ i ≤ J

 .

4. U computes her nymbles νcur+i = ghcur+i mod ζ for 0 ≤ i ≤ J . (Here, the exponent is just
taken as an integer in [1, n).)

5. U computes ξSP
Lcur,(Tcur+i)

= hash(Lcur‖(Tcur + i)‖SP) and invokes VERBS-Blind to compute
(γ′i, Si,Πi) = VERBS-Blind(g, Ycur+i, νcur+i, γ

′
i, ξ

SP
Lcur,(Tcur+i)

) for 0 ≤ i ≤ J .
6. U sends all commitments, ZKPs and VERBS-Blind outputs to the NI. U additionally in-

vokes the Verinym Showing Protocol to prove that the value committed to in x0 is a valid
verinym for Kexp, and performs the Non-membership Proof Protocol (see Section 4.5.7) as
necessary.

NI

7. The NI receives the commitments, proofs and blinded nymbles from U. It verifies that J ≤
Tlim and Tcur + J ≤ Tmax. The NI also computes (or looks up) h = hash(k‖Lcur‖name),
which will be needed to verify the ZKPs.

8. The NI verifies each of the ZKPs sent by U. If any proof fails, the NI aborts.
9. The NI computes (or looks up) ξSP

Lcur,(Tcur+i)
= hash(Lcur‖(Tcur + i)‖SP) for 0 ≤ i ≤ J . It

invokes VERBS-Sign J times to issue blind VERBS on each of U’s blinded nymbles. If
any call to VERBS-Sign fails due to an incorrect ZKP, the NI aborts.

10. The NI transmits each blinded VERBS to U.

40

U

11. U receives the blinded VERBS from the NI. She invokes VERBS-Unblind on each blinded
VERBS σ′cur+i to obtain an unblinded VERBS σcur+i on νcur+i.

12. U computes and records her SP-specific pseudonym hTmax = g(hx02
Tmax

mod n) mod ζ .

If U wishes to authenticate with the SP during time period T ∗ she sends the tuple (νT ∗ , σT ∗).
U can first verify the validity of her nymble by checking if VERBS-Verify(νT ∗ , σT ∗ , ξ

SP
Lcur,T ∗

) re-
turns true. (Note that U is susceptible to tagging attacks if she does not do this.)

Contract-based Nymble Acquisition

Lin and Hopper [57] describe an objective blacklisting extension for Jack. Their approach uses
the label field in Camenisch and Shoup’s [20] verifiable encryption scheme to force the PE to
include a contract in its trapdoor computation. The idea is that if the provided contract is incor-
rect, then the trapdoor computation will fail. A similar mechanism can easily be incorporated
into Nymbler’s nymble construction as follows: replace Rabin’s function f(z) = z2 mod n with
f ′(z, c) = c′z2 mod n where c′ is a hash of the contract c. If the SP then provides U’s nymble to
the PE with an incorrect contract, then any nymbles output by the PE will not be linkable back
to U. Note that, unlike with Lin and Hopper’s approach, our approach does not leak information
to the PE or SP about whether the given contract is actually enforced on U. This means that, for
example, with our approach, different users may have different rights in their contracts, without
partitioning the anonymity set. In this case, the SP would just complain about U, even though
she may have a “special” contract that allows her to behave “badly”, but the resulting nymbles
would not actually result in her being blocked.

4.4.3 Nymble Showing Protocol

The Nymble Showing Protocol is quite simple; U sends her nymble to the SP, who then confirms
that it is valid for, and does not appear on the linking list of, the current time period Tcur and
linkability window Lcur. U initiates this protocol with the SP when she wishes to authenticate. It
works as follows:

U

1. U invokes the Revocation Audit Protocol (see Section 4.5.5) for the SP to ensure that she
is not presently on the blacklist or on the revocation queue. If U is on one of these lists, she
aborts immediately (and does not attempt to authenticate until the next linkability window).

2. U sends (νcur, σcur) to the SP.

41

SP

3. The SP receives (νcur, σcur) from U. It verifies that VERBS-Verify(νcur, σcur, ξ
SP
Lcur,Tcur

) is
true. If not, the SP aborts.

4. The SP checks if νcur appears on its linking list L(SP,Lcur,Tcur) for the current time period. If
so, the SP aborts.

5. The SP grants U access.

4.5 Revocation Mechanisms

We now present Nymbler’s revocation mechanisms. We first describe the format of the black-
list, linking lists and revocation queue before describing the Revocation Audit Protocol and the
Revocation Protocol. We then introduce trapdoor discrete logarithm groups and outline the
Pseudonym Extraction Protocol. Finally, we present the Non-membership Proof Protocol that
U executes with the NI during the Nymble Acquisition Protocol.

4.5.1 Revocation Lists

There are a total of Tmax + 2 different revocation lists per SP and linkability window Lcur: the
blacklist BSP, the revocation queueRSP, and Tmax linking lists L(SP,Lcur,T) for 0 ≤ T < Tmax.

U must download BSP andRSP each time she authenticates; naively implemented, a blacklist
of Λ nymbles is about (1536 · Λ)-bits of download (assuming `ζ = 1536, as we suggest) versus
only (256·Λ)-bits in the original Nymble, a factor of six increase. We solve this by reducing each
entry on BSP modulo an `ρ-bit prime. We reduce nymbles modulo a prime instead of using, say,
a cryptographic hash function, because this allows us to later prove statements about the reduced
nymbles. Let `ρ be a parameter specifying the desired bit-length of entries on the blacklist and let
`P be a bit length for which computing discrete logarithms modulo an `P -bit prime is infeasible.
Choose ρ and qρ prime such that:

1. dlog2(ρ)e = `ρ ,

2. dlog2(qρ)e = `P − `ρ − 1 , and

3. P = 2ρqρ + 1 is prime.

All entries on BSP are reduced modulo ρ. The Non-membership Proof Protocol in §4.5.7 con-
structs ZKPs in the order-ρ subgroup modulo P . We suggest `ρ = 256 (indeed, ρ = 2256 − 183
is a good choice) and `P = 1536 as reasonable values for these parameters.

BSP and each L(SP,Lcur,T) are implemented as a hash map (which is maintained and distributed
by the PE). This enables the SP and U to query these lists in constant amortized time.

42

Blacklist freshness

In order for U to verify the integrity and freshness of BSP, we adopt the idea of a daisy chain
(or simply a daisy), which was originally proposed by Tsang et al. [89] in the journal version of
their Nymble paper. The idea works as follows: when the PE places a new entry on the blacklist
(during time period T ∗), it also generates a random daisy seed δTmax . The PE ‘grows the daisy’
from this seed by computing the hash chain δTmax , δTmax−1, . . . , δT ∗ . (Each element in the chain
is a hash of the preceding element.) It also issues a signature σBSP on hash(δT ∗‖T ∗‖Lcur‖BSP)
and sends the tuple (BSP, δT ∗ , σBSP) to the SP. U now confirms that the blacklist is up-to-date
(freshness) and that it has not been modified by an unauthorized party (integrity) by downloading
BSP, computing hash(δT ∗‖T ∗‖Lcur‖BSP), and checking that the signature is valid for this value.
If there are no changes to the blacklist for the next i− 1 time periods, then on the ith time period
the PE sends δT ∗+i to the SP. U now checks the integrity and freshness of BSP by computing
δ = hashi(δT ∗+i) and hash(δ‖T ∗‖Lcur‖BSP), and then checking that the signature is valid. This
strategy avoids the need for the PE to recertify the blacklist at each time period even when no
updates have occurred. Instead, the PE need only reveal a single value (the preimage of a hash)
to the SP at the start of the time period.

Except for when it is empty, the revocation queue will typically not remain unchanged be-
tween two time periods. Therefore, we do not use daisies for the revocation queue. Instead, the
PE just publishes a signature on hash(Tcur‖Lcur‖SP‖RSP) at the start of each time period.

4.5.2 Revocation Protocol

Suppose that U misbehaves in time period T ∗ and her misbehaviour is discovered in time period
T ′ of the same linkability window. The SP connects to the PE to invoke the Revocation Protocol,
which works as follows:

SP

1. The SP connects to the PE and sends (νT ∗ , σT ∗).

PE

2. The PE receives (νT ∗ , σT ∗) from the SP. It notes the current time T ′ and checks that
VERBS-Verify(νT ∗ , σT ∗ , ξ

SP
Lcur,T ∗

) is true; if not, it aborts.
3. The PE pushes νT ∗ mod ρ onto RSP and waits for it to reach the front of the queue.

Meanwhile, at the end of each time period T ′ + i, the PE computes a signature σRSP on
hash(Tcur‖Lcur‖SP‖RSP).

43

4. The PE invokes the Pseudonym Extraction Protocol to have BSP and L(SP,Lcur,T) updated
(T ′ < T < Tmax).

5. The PE pops νT ∗ mod ρ from the front ofRSP.
6. The PE constructs a daisy for BSP as outlined in §4.5.1.
7. The PE sends (BSP,RSP,L(SP,Lcur,T ′+1), . . . ,L(SP,Lcur,Tmax), δTcur , σBSP , σRSP) to the SP.

4.5.3 Trapdoor Discrete Logarithms

The PE’s public key is an `ζ-bit product ζ = pζqζ of two B-smooth primes pζ and qζ (that is,
pζ−1 and qζ−1 are products of `B-bit primes), such thatZ = 4ζ+1 is a prime.3 It is required that
ζ > n, but being just barely larger is sufficient. A different ζ could be used in conjunction with
each SP and linkability window, but for brevity we will treat ζ as a fixed value in our discussion.

`B is chosen so that computing discrete logarithms modulo ζ in subgroups of order ≈ 2`B is
costly but feasible. In other words, given knowledge of the factorization of pζ − 1 and qζ − 1,
computing discrete logarithms modulo pζ and qζ (and hence, modulo ζ) is feasible using a lot of
parallelism and an efficient algorithm like van Oorschot and Wiener’s parallel ρ algorithm [91].
g is a generator of the group of quadratic residues modulo ζ , and αζ and βζ are generators of the
order-ζ subgroup of Z∗Z such that logαζ(βζ) is unknown. The PE’s private key is (pζ , qζ) and the
factorization of ϕ(ζ) (into `B-bit primes). Thus, the PE can compute discrete logarithms modulo
ζ using its private key, but for everyone else this is infeasible.

Proving statements about the cost of the trapdoor. We mentioned in §1.2 that the PE should
be able to prove in zero-knowledge that random instances of the trapdoor problem require a cer-
tain amount, tdl, of wall-clock time to solve (on average) with the trapdoor. Using a straightfor-
ward generalization of the zero-knowledge proof that a number is a product of two safe primes,
due to Camenisch and Michels [19], the PE can prove in zero-knowledge that ζ is B-smooth.
Given a number of cores available and the speed of each of these cores, we can easily come up
with an estimate for how long a trapdoor discrete logarithm computation will take (see §5.3.1);
this computation depends on the bit length of the public modulus, `ζ , and the bit length of the
prime factors of ϕ(ζ). In other words, given some assumptions about the computational power of
the PE, the PE can prove in zero-knowledge that the average time tdl needed to solve a trapdoor
discrete logarithm has a particular value. While the validity of this proof relies on assump-
tions about the computational capacity of the adversary, it does give a reliable estimate of the
computational—thus, economic—cost for a malicious PE to link the actions of a large number
of users.

3We use Z = 4ζ + 1 because it is easy to see that pζ and qζ must be congruent to 2 mod 3, and so 2ζ + 1 must
be divisible by 3.

44

4.5.4 Pseudonym Extraction Protocol

Suppose U misbehaves in time period T ∗ and a complaint is filed in time period T ′. When U’s
nymble reaches the front of the revocation queue, the PE invokes the Pseudonym Extraction
Protocol to perform a trapdoor discrete logarithm and add an entry to the SP’s blacklist and
linking lists. The protocol proceeds as follows:

PE

1. The PE looks up the most recent blacklist and linking lists for the SP. (It already has a local
copy.)

2. The PE uses knowledge of the factorization of ζ to recover hT ∗ = hx02T
∗

from (νT ∗ =
ghT∗ mod ζ, σT ∗).

3. The PE computes hT ′ = hx02T∗−T
′

mod n by repeated squaring of hT ∗ .
4. The PE computes hT ′+1, . . . , hTmax by repeated squaring of hT ′ . It uses these to compute
νT ′+1, . . . , νTmax via exponentiation.

5. For T ′ < T < Tmax, the PE puts ghT into L(SP,Lcur,T). It also adds ghTmax to BSP.

4.5.5 Revocation Audit Protocol

U invokes the Revocation Audit Protocol with either the SP or the PE in order to find out
her revocation status at the SP. As the name implies, this protocol is what brings revocation
auditability to Nymbler. It is important for the user to run this protocol each time she wishes
to authenticate with an SP; otherwise, a malicious SP could accept nymbles from U after she is
revoked and thus trace her actions without her knowledge. The protocol works as follows:

U

1. U connects (anonymously) to the SP (or the PE) and requests the latest copy of tuple
(BSP,RSP, σBSP , σRSP , δTcur , T

∗).
2. When U receives this tuple, she then verifies that σRSP is a valid signature on

hash(Tcur‖Lcur‖SP‖RSP)

and that σB is a valid signature on

hash(δ‖Tcur‖Lcur‖BSP),

where δ = hash(Tcur−T ∗)(δTcur). If either verification fails, then U aborts.

45

3. U checks BSP to ensure that it does not contain her SP-specific pseudonym νTmax; if it does
contain her SP-specific pseudonym, then she aborts.

4. U checksRSP to see if any of her recently used nymbles are listed; if so, she aborts.
5. U concludes that she is not revoked from SP and proceeds with the Nymble Acquisition

Protocol as usual.

4.5.6 Supporting Inter-window Revocation

Supporting inter-window revocations requires each SP to maintain a blacklist for each prior link-
ability window from which some user is still blocked. When U wishes to obtain a set of nymbles
for an SP, she first proves that her SP-specific pseudonyms from past linkability windows are not
on the associated blacklists. This is reminiscent of the BLAC [83–87] and EPID [13,14] approach
to blacklisting, which, as we discussed earlier, and has been discussed elsewhere [50, 88, 89],
raises performance and scalability concerns. However, five important distinctions with our ap-
proach warrant mention:

1. Since most IP address bans are short term [94], most revoked users will not appear on an
inter-window blacklist. This significantly reduces the expected size of the blacklist against
which U must generate a proof.

2. U forms a proof only once, during the Nymble Acquisition Protocol; the SP need not verify
any expensive ZKPs and the proof will not affect the observed interaction latency between
U and the SP.

3. The blacklist entries are all reduced modulo ρ, and we can therefore work in the order-ρ
subgroup modulo P .

4. Brands et al.’s [10, 11] square-root-time non-membership proof allows U to prove non-
membership on a blacklist, and the NI to verify this proof, using a number of exponenti-
ations proportional to

√
Λ, where Λ is the size of the blacklist against which the proof is

generated. For large blacklists, this method dramatically outperforms the linear exponen-
tiations approach used in both BLAC [83–87] and EPID [13, 14].

5. Finally, we can use blinded verification tokens to let U prove that she already proved that
her SP-specific pseudonym is not on a blacklist, thus eliminating much redundant compu-
tation. We argue that SPs are likely to discover a majority of misbehaviours—particularly
those serious enough to warrant inter-window revocation—during the linkability window
in which they occur; thus, long-term blacklists are likely to remain relatively static as com-
pared to the short-term blacklist. It is this largely static nature of long-term blacklists that
makes this approach effective.

Considered together, these five observations make our approach highly practical.

46

Remark. Observations 3 through 5 may be useful for reducing the computation and commu-
nication costs of some other anonymous blacklisting systems in the literature.

4.5.7 Non-membership Proof Protocol

Let B(SP,L∗) = {ν1 mod ρ, . . . , νΛ mod ρ} be the list of nymbles (reduced modulo ρ) that still
appear on SP’s blacklist from linkability window L∗. For ease of presentation, we will assume
that |B(SP,L∗)| = Λ is a perfect square and let λ =

√
Λ. Also, let αρ, βρ be generators of the order-

ρ subgroup modulo P ; αρ and βρ are publicly known and ψρ = logαρ(βρ) mod P is known only
to the NI. (See §5.3.2.)

Thus, to prove that she is not subject to a ban from linkability window L∗, U proves that her
pseudonym from linkability window L∗ (reduced modulo ρ), which we denote by νL∗ , does not
appear on B(SP,L∗). We use the following technique, due to Brands et al. [10, 11], to implement
this proof.

Let j = (i− 1) · λ and define the polynomial

pi(τ) = (τ − νj+1)(τ − νj+2) · · · (τ − νj+λ)
= ai,λτ

λ + · · ·+ ai,1τ + ai,0 mod ρ

for 1 ≤ i ≤ λ. Also, let hL∗ = h2Tmax , where h = hash(k‖L∗‖name) and k is the smallest
4-byte value making h a quadratic residue modulo n.

U invokes the Non-membership Proof Protocol to prove to the NI that she is not revoked
from an SP. This protocol works as follows:

U

1. U computes a Pedersen commitment to her verinym, x0 = αx0ρ β
γ1
ρ mod P and uses the

Verinym Showing Protocol to prove it is valid.
2. U computes her SP-specific pseudonym for L∗, νL∗ = (hx0L∗ mod N) mod ρ, a commit-

ment νL∗ = ανL∗ρ βγ2ρ mod P and a ZKP of correctness

Π1 = PK

{
(x0, γ1, γ2) :

x0 = αx0ρ β
γ1
ρ modP

∧ νL∗ = α
(h
x0
L∗ mod ρ)

ρ βγ2ρ modP

}

3. U chooses r1, . . . , rλ ∈R Zρ and, for 1 ≤ i ≤ λ, computes

(a) oi = pi (νL∗) mod ρ, the evaluation of pi at νL∗;

(b) ςi = ai,λrλ + . . .+ ai,1r1 mod ρ;

47

(c) Ci = α
(νL∗)i

ρ βriρ mod P ; and,

(d) Coi = αoiρ β
ςi
ρ mod P .

4. U sends each commitment νL∗ , Ci and Coi to the NI, together with Π1 and the following
ZKP:

Π2 = PK




γ2,
νL∗ ,
ri,
ςi,
oi

 :

νL∗ = ανL∗ρ βγ2ρ modP

∧ Ci = α
νi
L∗
ρ βriρ modP,

∧ Coi = αoiρ β
ςi
ρ modP,

∧ oi 6≡ 0 modρ,

for all 1 ≤ i ≤ λ


, (4.1)

which proves that: 1) the commitments Ci hide consecutive powers of νL∗; and, 2) the
commitments Coi each hide nonzero values. Note that, combined with Equation 4.2, this
proves to the NI that Coi is a commitment to pi(νL∗), and that this evaluation is nonzero.

NI

5. The NI verifies that, for each 1 ≤ i ≤ λ,

Coi
?≡ (Cλ)

ai,λ(Cλ−1)ai,λ−1 · · · (C1)ai,1αai,0ρ mod P (4.2)

If any of these equivalences fails, then the NI aborts.
6. The NI verifies the ZKPs Π1 and Π2. If either verification fails, the VI aborts.

Note Step 5 seems to require λ(λ + 1) = Λ + λ modular exponentiations; however, col-
lapsing all λ of these verifications into a single batch verification using techniques of Bellare et
al. [4] reduces this to just 2λ + 1 modular exponentiations. To do this, the NI chooses random
s1, . . . , sλ ∈R {1, . . . , κ2}, where κ2 is a security parameter, and checks if

λ∏
i=1

Csi
oi

?≡ α
∑λ
i=1 ai,0·si

ρ ·
λ∏
i=1

C
∑λ
j=1 aj,i·sj

i mod P. (4.3)

If the verification fails, at least one Coi is incorrect, and the NI aborts; otherwise, all of the Coi
are correct with probability at least 1− 1/κ2 and the NI accepts the proof.

Correctness

Let us briefly examine why this proof convinces the NI that νL∗ is not on B(SP,L∗). First observe
that, by way of construction, for 1 ≤ i ≤ λ, the zeros of pi(τ) are exactly those values appearing

48

on the sublist of B(SP,L∗) defined by {νj+1, νj+2, · · · , νj+λ}, where j = (i− 1) · λ, and that these
sublists cover the entire blacklist. Combined with Π1, the first line of Π2 proves that Ci hides
the ith power of νL∗; thus, if Equation 4.2 holds then it follows that Coi is a commitment to an
evaluation of pi(τ) at the point νL∗ , since

Coi ≡ (Cλ)
ai,λ(Cλ−1)ai,λ−1 · · · (C1)ai,1αai,0ρ

≡ α
(ai,λν

λ
L∗+···+ai,1νL∗+ai,0)

ρ β
(ai,λrλ+···+ai,1r1)
ρ

≡ αpi(νL∗)
ρ βςiρ mod P

≡ αoiρ β
ςi
ρ mod P.

The remainder of the proof convinces the verifier that noCoi hides the value zero, from which
it concludes that νL∗ is not a root of any pi(τ) and, consequently, that νL∗ /∈ B(SP,L∗).

Blacklist transferability

Our approach to inter-window revocation also enables a limited form of blacklist transferability.
More precisely, it provides blacklist transferability for inter-window revocations. In particular,
SP1 can choose some subset of entries from SP2’s long-term blacklist, and require U to prove
during the Nymble Acquisition Protocol that none of these entries are hers. In fact, SPs can
implement more sophisticated access structures (which we will not describe in detail) to gain
extremely fine-grained control over which sites a misbehaving user is able to access; e.g., Wiki-
media may revoke U from all of their services for 7 days, and just from Wikipedia itself for an
additional 7 days. This would have essentially zero additional impact on U’s privacy and would
introduce minimal overhead to the registration process.

Verification tokens

Since long-term blacklists are expected to be relatively static, both U and the NI can avoid
much redundant computation by—upon successful completion of the Non-membership Proof
Protocol—negotiating an efficiently verifiable token that certifies that U has already proved
that her SP-specific pseudonym is not on a blacklist. In other words, once U proves that her
pseudonym νL∗ is not on B(SP,L∗), she and the NI negotiate a blinded token certifying that the NI
has verified this proof. Of course, these lists are not entirely static; indeed, the SP will add and
remove entries as it detects and forgives misbehaviour. We thus associate a version number with
the blacklist. When the PE adds an entry, the version number gets incremented; when the PE
removes an entry, the version number is not changed. If U has a verification token for blacklist
version ver, she engages in one of the following two procedures: if ver is the version of the
current blacklist, she shows the token. If the blacklist version has been incremented since her

49

last authentication, U finds the sublist of SP-specific pseudonyms added since version ver. She
then shows her token and a proof for the smaller sublist.

Of course, the use of verfication tokens does leak some (albeit minimal) information to the
VI about U’s actions. In particular, the VI learns: 1) that some user is requesting nymbles for
a particular SP, 2) that this same user has previously obtained nymbles for this same SP, and 3)
the approximate time (i.e., the blacklist version) that this user last requested nymbles for this SP.
While we feel that this information leakage is acceptable for most users, we point out that verifi-
cation tokens are an opt-in feature; each user is free to make her own choice about whether this
much information leakage is acceptable to them. Those users who are uncomfortable revealing
this additional information about their actions can simply perform the entire non-membership
proof during each invocation of the Nymble Acquisition Protocol.

50

Chapter 5

Implementation

We have implemented each of the key components of Nymbler. This chapter presents some
details about this implementation and summarizes the performance measurements that we have
obtained from it.

Experimental setup. Our implementations are written in C++ using GMP [42] and NTL [76]
to handle multiprecision arithmetic. Except for trapdoor discrete logarithms, all performance
measurements are obtained on a 2.83 GHz Intel Core 2 Quad Q9550 running Ubuntu 9.10 64-bit.
All code that we run on this machine is single-threaded (our experiments use only a single Q9550
core). Trapdoor discrete logarithms are implemented in CUDA [65], utilizing NVIDIA Tesla
GPUs to achieve massively parallel computing. Our trapdoor discrete logarithm experiments are
performed on a 2.4 GHz Intel Xeon E5620 with two Tesla M2050s running Ubuntu 10.04 64-bit.
This code is highly parallelized.

5.1 Threshold Verinyms

5.1.1 Verinym Acquisition Protocols

Performance measurements. Table 5.1 summarizes performance measurements for the Veri-
nym Acquisition Protocol. We ran both U and the VIs on a single machine using a (3, 7)-
threshold construction. Thus, the performance measurements contained herein represent the
combined computational expense for all three VIs (indeed, these could easily be run in parallel)
and do not account for the expected latency due to communication between U and the VIs (no
inter-VI communication is required). Note, however, that such communication costs will be low;
in particular, each VI sends just four values to U (the verinym share Xij , the verification values

51

0

30

60

90

120

1024 1280 1536 1792 2048

t
=

 T
im

e
(m

s)

b = Bit length of public modulus

Verinym Acquisition Protocol

Obtain

(U)

Issue

(VIs)

Issue

(per VI)

t = 4×10-5b2 - 0.0628b + 36.046 ms

t = 6×10-5b2 - 0.0902b + 48.923 ms
R² = 0.9994

R² = 0.9973

t = 1×10-5b2 - 0.0209b + 12.015 ms
R² = 0.9973

Figure 5.1: Performance measurements for U and the VI in the Verinym Acquisi-
tion Protocol. See also Table 5.1.

cij and gij , and the expiration VVP Kij). Both Xij and gij are about the same size as n, while cij
and Kij are (much) smaller. Our experiments use a value of κ1 = 30 for the security parameter
(as recommended by Fouque and Stern [40]). We choose η = 17 and each trial uses a random
12-bit prime e with hamming weight 3 for the public key. For each bit length, we repeated the
experiment 100 times (with the VIs issuing, and U obtaining, 100 verinyms in each trial) and
report here the mean execution time for issuing and obtaining a single verinym (± the standard
deviation) in milliseconds. Figure 5.1 is a graph of the data contained in Table 5.1.

Distributed key generation in our implementation has been simulated using the dealer-based
version of the protocol from [28, §3]; thus, we omit timing measurements for this portion of the
protocol. We reiterate that distributed key generation only needs to occur once (or, at the very
worst, infrequently), during the initial setup of the protocol. Thus, performance measurements
associated with this portion of the protocol are not critical to Nymbler’s overall performance.

5.1.2 Verinym Showing Protocols

Performance measurements. Table 5.2 summarizes performance measurements for the Veri-
nym Showing Protocol. The experimental setup is identical to §5.1.1. For each of the 100
experiments of the Verinym Acquisition Protocol, we used the last verinym produced to perform
a trial of this experiment. The proof of knowledge of a valid verinym from U uses an expiration
VVP of 5 for each trial. For each bit length, we repeated the experiment 100 times and report

52

Table 5.1: Performance measurements for U and the VI in the Verinym Acquisition
Protocol.

Bit length Mean execution time ±
Operation Host of modulus standard deviation (ms)

Issue VI 1024 8.3 ms ± 0.34 ms
verinym 1280 14.3 ms ± 0.35 ms

1536 23.3 ms ± 0.43 ms
1792 35.3 ms ± 0.53 ms
2048 56.1 ms ± 0.60 ms

Obtain U 1024 19.5 ms ± 0.42 ms
verinym 1280 33.0 ms ± 0.64 ms

1536 53.4 ms ± 0.56 ms
1792 79.7 ms ± 0.89 ms
2048 118.0 ms ± 1.58 ms

Each experiment was repeated 100 times (with the VIs issuing, and U obtaining,
100 verinyms in each trial). The mean execution time for issuing and obtaining
a single verinym (± the standard deviation) in milliseconds across all trials is
reported here. See also Figure 5.1.

here the mean execution time (± the standard deviation) in milliseconds. Figure 5.2 is a graph
of the data contained in Table 5.2. Note that the cost of the Verinym Showing Protocol is higher
than the cost of the Verinym Acquisition Protocol; as a result, the the t-axis in Figure 5.2 uses a
different scale than the t-axis in Figure 5.1.

Improving efficiency. The exponentiation proof (i.e., the fourth and fifth lines of ΠxK∗ , in

which U proves that she knows xK∗ such that (xη
K∗

K∗)e = Y) dominates the cost of the Verinym
Showing Protocol. Our implementation uses the naive square-and-multiply algorithm for this
proof. It outputs commitments to, and a ZKP of correct multiplication for, each intermediate
result in the computation. Of course, a more sophisticated algorithm [48] might be able to reduce
the number of steps in the exponentiation. Alternatively, because a small number of exponents
are reused a large number of times, the VI or the NI could compute (and publish) short addition
chains for each exponent. Batch ZKPs of correct multiplication would likely further reduce the
cost. (This works just like the batch proof of knowledge of discrete logarithms with common
exponent from [4, 67].)

53

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

1024 1280 1536 1792 2048

t
=

 T
im

e
(m

s)

b = Bit length of public modulus

Verinym Showing Protocol

Show

(U)

Verify

(NI)

R² = 0.9965

t = 0.0013b2 - 2.3327b + 1388.4 ms

t = 0.0009b2 - 1.6178b + 944.38 ms

R² = 0.9968

Figure 5.2: Performance measurements for U and the NI in the Verinym Showing
Protocol. See also Table 5.2.

The strategy that our implementation uses is to fix η = 17 and to choose each public exponent
e with a short bit length and low hamming weight.1 We then compute xe·η

j

j in j + 1 stages: U
computes xi−1 = xηi for 0 < i ≤ j, then raises x0 to the eth power. This reduces the number of
multiplication steps in square-and-multiply to just j+ 2. (e is computed with two multiplies, and
each power of η uses one additional multiply, as the high order bit does not require a multiply.)
The number of squaring steps is j · blog2(η)c + blog2(e)c. Our measurements indicate that
computing this value in j + 1 stages reduces the cost of the Verinym Showing Protocol by a
factor of about two. We also sacrifice the unconditional hiding of Pedersen commitments to
further halve the cost of the exponentiation proof for U (and reduce it by about one third for the
VI). The exponentiation algorithm therefore uses discrete logarithm commitments [38] instead of
Pedersen commitments. To maintain unlinkability, U chooses a random group element φmodulo
N , computes Φ = φ4 mod N and sends (φ,Φxj) along with a proof that xj is the same value
previously committed to. The remainder of the algorithm then runs as usual.

Where Pedersen commitments are still used, the NI’s cost may be reduced by having ψn =
logαn(βn) mod N known (to the NI) but kept secret (from U). Then, multi-exponentiations of
the form αxnβ

γ
n mod N can be reduced to a single exponentiation of the form αx+ψnγ

n mod N by
the NI.

1Of course, e must still satisfy gcd(e, ϕ(n)) = gcd(e, s!) = 1 and so cannot be chosen to be arbitrarily small.

54

Table 5.2: Performance measurements for U and the NI in the Verinym Showing
Protocol.

Bit length Mean execution time ±
Operation Host of modulus standard deviation (ms)

Show U 1024 295.4 ms ± 68.58 ms
verinym 1280 495.7 ms ± 113.89 ms

1536 780.7 ms ± 168.05 ms
1792 1184.2 ms ± 278.19 ms
2048 1901.2 ms ± 483.36 ms

Validate NI 1024 196.6 ms ± 11.48 ms
verinym 1280 338.2 ms ± 12.09 ms

1536 546.4 ms ± 12.27 ms
1792 831.5 ms ± 19.71 ms
2048 1338.2 ms ± 15.33 ms

Each experiment was repeated 100 times. The mean execution time (± the stan-
dard deviation) in milliseconds across all trials is reported here. See also Figure
5.2.

5.2 Nymble Construction

5.2.1 VERBS

Performance measurements. Table 5.3 summarizes performance measurements for VERBS
verification. Note that the cost of VERBS verification dominates the cost of the Nymble Showing
Protocol (the rest of the cost comes from a lookup in a hash map). For each bit length of the public
modulus, we repeated the experiment 100 times and report here the mean execution time (± the
standard deviation) in milliseconds. Figure 5.3 is a graph of the data contained in Table 5.3.

We omit performance measurements for the other VERBS protocols, but note that we do
include indirect performance measurements for these protocols since they comprise a majority
of the Nymble Acquisition Protocol.

5.2.2 Nymble Acquisition Protocol

Performance measurements. Table 5.4 summarizes performance measurements for the Nym-
ble Acquisition Protocol. As in the previous experiments, we ran both U and the NI on a single

55

4

6

8

10

12

14

1024 1280 1536 1792 2048

t
=

 T
im

e
(μ

s)

b = Bit length of public modulus

VERBS verify

VERBS verify

(SP)R² = 1.0000
t = 2×10-6b2 + 0.0023b + 0.5551 μs

Figure 5.3: Performance measurements for VERBS verification. See also Table
5.3.

machine (so communication latency is not measured). Our implementation uses a bit-length of
`c = 30 for the challenge hash in the exponentiation proofs (see §5.3.1). A bit length of k bits
indiates that n is k − 2 bits long and ζ is k-bits long. For each bit length of n and ζ , we repeated
the experiment 100 times and report here the mean execution time (± the standard deviation) in
milliseconds. Figure 5.4 is a graph of the data for 1536-bit moduli contained in Table 5.4.

Improving efficiency. Our implementation uses the Fiat-Shamir heuristic to make each of the
ZKPs noninteractive [39]; this results in an expensive computation in the nest proof (the most
expensive part of the protocol). The cost of this computation scales linearly with the bit length
of the hash function used for the challenge. We therefore introduce the security parameter κ3

to specify the bit length of the challenge. In our implementation we use κ3 = 30—which is
relatively small, since U is only expected to do 2κ3 work to forge a nymble—but we note that κ3

can be safely reduced to, say, κ3 = 20, without reducing security if the noninteractive protocol
is replaced by an interactive one. This would result in about a one-third reduction in the compu-
tation time for the NI to verify the ZKP from U, at the cost of one additional round of interaction
latency and the bandwidth required for the NI to send a single group element to U.

56

Table 5.3: Performance measurements for VERBS verification.

Bit length Mean execution time ±
Operation Host of modulus standard deviation (µs)

Verify SP 1024 4.87 µs ± 0.13 µs
VERBS 1280 6.54 µs ± 0.12 µs

1536 8.50 µs ± 0.17 µs
1792 10.68 µs ± 0.20 µs
2048 13.10 µs ± 0.21 µs

Each experiment was repeated 100 times. The mean execution time (± the stan-
dard deviation) in microseconds across all trials is reported here. See also Figure
5.3.

5.3 Revocation Mechanisms

5.3.1 Pseudonym Extraction Protocol

Performance measurements. Table 5.5 summarizes performance measurements for the trap-
door discrete logarithm computation in the Pseudonym Extraction Protocol. These experiments
were performed on a 2.4GHz Intel Xeon E5620 with two Tesla M2050s running Ubuntu 10.04
64-bit. The experiment was performed 100 times for each value of `B. Each trial used a new
pseudorandomly generated 1536-bit modulus ζ such that ϕ(ζ) is 2`B -smooth. We report here the
mean execution time (± the standard deviation) in milliseconds of this protocol. Figure 5.5 is a
graph of the data contained in Table 5.5.

Parameter selection. A discrete logarithm computation takes about c · (`ζ/̀ B) · 2`B/2 modular
multiplications using van Oorschot and Wiener’s parallel ρ algorithm [91], which are almost
completely parallelizable, for some constant of proportionality c. If the PE has a parallelism
factor of Ψ (i.e., Ψ is the number of cores available to the PE), this will be about `ζ

`B
· c·2

`B/2

Ψ·µ
minutes to compute a discrete log, where µ is the number of multiplications modulo an (`ζ/2)-bit
modulus that can be computed by one core in one minute.

So we want to choose `B such that

2
`B/2

`B
≈ tdl · µ ·Ψ

`ζ · c
, (5.1)

where tdl is the desired wall-clock time (in minutes) for the PE to compute a trapdoor discrete
logarithm.

57

0

5000

10000

15000

20000

25000

30000

35000

40000

0 5 10 15 20 25

t
=

 T
im

e
(m

s)

J = Number of nymbles requested

Nymble Acquisition Protocol

Issue J

nymbles

(SP)

Obtain J

nymbles

(U)

R² = 0.9999

t = 590J + 815 ms

t = 357J + 547 ms

R² = 0.9999

Figure 5.4: Performance measurements for U and the NI in the Nymble Acquisi-
tion Protocol with 1536-bit moduli. See also Table 5.4.

On the other hand, it takes at least about 3
5
· 2`B multiplications modulo an `ζ-bit modulus to

factor ζ , taking advantage of its special form by using Pollard’s p− 1 factoring algorithm [68].2

This algorithm is inherently sequential [12]; only a small speedup can be obtained, even with
a very large degree of parallelism.3 This means it will take about 3

5
· 2`B

µ
minutes to factor ζ .

Assuming µ = 23100000 (as is the case on our Q9550 benchmark system, which has faster
individual cores than the Tesla machine), then `B = 53 yields over 445 years to factor ζ , and
`B = 54 yields over 890 years to factor ζ . (Remember again that this is wall-clock time, not CPU
time.) Note also that a different ζ can be used for each SP and for each linkability window, thus
reducing the value of expending even that much effort.

The reason we seem to be making the unusual claim that 253 security is sufficient is twofold:
first, these are counts of multiplications modulo an `ζ-bit modulus, each of which takes about
212.8 cycles for our suggested `ζ = 1536; thus, we are really proposing about 265 security here.
More importantly, these are counts of sequential operations. When one typically speaks of 280

2Other factoring algorithms, such as the elliptic curve factorization method (ECM) [56] or the quadratic sieve
algorithm (QS) [69], are highly parallelizable and can factor a general modulus with sublinear asymptotic complex-
ity; however, the linear cost of Pollard’s p − 1 factoring algorithm is by far the most efficient method for factoring
ζ, given its special form and our parameter selection. In other words, while both of the aforementioned algorithms
have superior asymptotic complexity to Pollard’s p − 1 factoring algorithm (depending on how one asymptotically
relates `B and `ζ), the actual position on the O(2`B) cost curve in our case is much smaller than the corresponding
position on the cost curves for these asymptotically faster algorithms.

3Of course, with arbitrarily large parallelism, other algorithms can factor ζ more quickly without taking advan-
tage of the special form of ζ; massively parallel trial division is an extreme example.

58

Table 5.4: Performance measurements for U and the NI in the Nymble Acquisition
Protocol.

Bit length Mean execution time (ms)
Operation Host of modulus and correlation coefficient (R2)

Issue nymble NI 1024 327J + 223 ms (R2 = 0.9999)

1280 592J + 435 ms (R2 = 0.9999)

1536 940J + 768 ms (R2 = 0.9998)

1792 1450J + 1068 ms (R2 = 0.9999)

2048 1445J + 638 ms (R2 = 0.9999)

Obtain nymble U 1024 477J + 315 ms (R2 = 1.0000)

1280 863J + 592 ms (R2 = 1.0000)

1536 1368J + 1102 ms (R2 = 0.9998)

1792 2113J + 1553 ms (R2 = 0.9999)

2048 1928J + 840 ms (R2 = 0.9999)

We performed experiments in which the client obtains between 5 and 25 nymbles
at a time (in increments of 5). Each experiment was repeated 100 times. A line
of best fit for the mean execution time in milliseconds across all trials is reported
here. See also Figure 5.4.

security (of a block cipher, for example), one assumes that the adversary can take advantage of
large degrees of parallelism, which is not the case here.

As noted by Maurer and Yacobi [63, §4], since the cost of factoring increases with 2`B , while
the cost of computing discrete logarithms increases with 2

`B/2, it follows that as cores get faster
(µ increases) and more numerous (Ψ increases), the time to factor ζ only goes up with respect
to the time to compute discrete logarithms. If µ increases by a factor of f , then this leads to a
net security increase by a factor of f ; if Ψ increases by a factor of g, this leads to a net security
increase by a factor of g2. These calculations suggest that the trapdoor discrete logarithm groups
will get more secure over time.

5.3.2 Non-membership Proof Protocol

Performance measurements. Table 5.6 summarizes performance measurements for the Non-
membership Proof Protocol. We ran both U and the NI on a single machine; thus, the perfor-
mance measurements contained herein represent computational expense only and do not account

59

30

60

120

50 51 52 53 54 55

t
=

 T
im

e
(s

)

Time to compute discrete logarithms

Wall clock

time (PE)

t = 0.0001e0.2483 s

R² = 0.9939

B = Bit length of prime factors of

B

)(

Figure 5.5: Performance measurements for the PE in trapdoor discrete logarithm
computation in the Pseudonym Extraction Protocol. Note that the time axis of this
plot uses a logarithmic scale. See also Table 5.5.

for the expected latency due to communication between the client and the NI. Moreover, we omit
the necessary call to the Verinym Showing Protocol in our experiments. (Thus, these timings cor-
respond precisely to the parts of the protocol that we analyze below.) We offer some suggestions
below about how these performance measurements could likely be improved. Figure 5.6 is a
graph of the data contained in Table 5.6.

Comparison with other work. Our measurements indicate that our unoptimized implemen-
tation dramatically outperforms the approach taken by BLAC, EPID4, and PEREA for even
moderate-sized blacklists. Figures 5.7—5.9 compare the performance of our approach with
the non-membership proofs in BLAC and PEREA. Moreover, we reiterate that, unlike in those
schemes, our non-membership proof only needs to be executed during the Nymble Acquisition
Protocol, and therefore does not place additional load on the SP nor affect the observed inter-
action latency between U and the SP. Indeed, our approach is practical even for extremely large
SPs such as Wikipedia and Slashdot.

Cost analysis. We now analyze the computational and communication complexity of the Non-
membership Proof Protocol. Let µρ (resp. µP) be the cost of multiplication modulo ρ (resp.

4We omit direct comparison with EPID because we do not have access to performance measurements for that
scheme. However, EPID has the same asymptotic complexity as BLAC; i.e., it scales linearly in the size of the
blacklist [86].

60

Table 5.5: Performance measurements for PE in trapdoor discrete logarithm com-
putation in the Pseudonym Extraction Protocol.

Mean execution time ±
Operation Host `B standard deviation (s)

Compute PE 50 32.3 s ± 2.4 s
discrete 51 41.0 s ± 3.4 s
logarithm 52 49.1 s ± 4.0 s

53 63.4 s ± 5.0 s
54 85.2 s ± 7.4 s
55 112.5 s ± 10.7 s

Each experiment was repeated 100 times. The mean execution time (± the stan-
dard deviation) in seconds across all trials is reported here. See also Figure 5.5.

modulo P), let ιρ (resp. ιP) be the cost of a modular inversion modulo ρ (resp. P), and let χρ
(resp. χκ2) be the cost of exponentiation modulo P with `ρ-bit (resp. dlog2(κ2)e-bit) exponent.

Upon updating the blacklist, the PE computes each pi(τ) mod ρ. Since each of these degree-
λ polynomials is monic, there are only λ coefficients modulo ρ to send for each polynomial.
Consequently, transmitting these polynomials instead of the blacklist requires zero additional
bandwidth. Thus, we do not consider the computational cost of this step in our analysis.

Evaluating each polynomial at the point νL∗ requires λ·µρ work using Horner’s method; thus,
the cost for this step is λ · λ · µρ = Λ · µρ. Similarly, computing ςi requires λ · µρ work; thus,
the cost for this step is also λ · λ · µρ = Λ · µρ. So far, this is 2Λ · µρ work for U. Computing
the commitment Ci requires two exponentiations with `ρ-bit exponents, plus one multiplication,
all modulo P . The cost of computing all λ such commitments is then 2λ(χρ + µP). The same
analysis applies to computing each Coi , thus yielding a total of 4λ(χρ + µP) + 2Λ · µρ work for
U. The bandwidth cost for U to upload each commitment Ci and Coi to the NI is just 2λ · `P
bits. Together with the cost of U downloading the blacklist from the NI, this yields a total
communications complexity of Λ · `ρ bits download and 2λ · `P bits upload for U (and vice-versa
for the NI).

The left-hand side of the batch proof, Equation 4.3, requires λ exponentiations with small
exponents and λ−1 multiplications modulo P ; this is λ ·χκ2 +(λ−1) ·µP work. The right-hand
side requires λ(λ + 1) multiplications modulo ρ to compute the exponents, followed by λ + 1
exponentiations with exponents modulo ρ and λ multiplications modulo P ; this is λ · χρ + Λ ·
µρ + λ · µP work.

61

0

1000

2000

3000

4000

5000

6000

50 150 250 350 450

t
=

 T
im

e
(m

s)

λ = Square root of blacklist size

Non-membership Proof Protocol

Proof

(U)

Verification

(NI)

R² = 1.0000

R² = 0.9998

t = 0.0034λ2 + 8.0564λ + 302.3 ms

t = 0.0039λ2 + 6.9555λ + 181.11 ms

Figure 5.6: Performance measurements for U and the NI in the Non-membership
Proof Protocol. See also Table 5.6.

The costs of the Verinym Showing Protocol and of the proof Π1 that the SP-specific pseudo-
nym is computed correctly are independent of the blacklist size Λ. Therefore, we omit them
from our detailed analysis of the dependence of the protocol’s cost on Λ. All that is left to be
considered, then, is the cost of the large zero-knowledge proof, Π2, in Equation 4.1.

The first line of Π2 requires U to compute 4(λ − 1) exponentiations with `ρ-bit exponents,
2λ multiplications modulo P and 3λ multiplications modulo ρ for a total cost of 4(λ− 1) · χρ +
2λ · µP + 3λ · µρ. U is also required to upload 2 · (λ − 1) · `P + 3(λ − 1) · `ρ bits. Here, U is
proving that each Ci, i > 1, is a commitment to the product of the values committed to in Ci−1

and C1. Verifying this requires 2λ · χρ work from the NI, using knowledge of ψρ = logαρ(βρ) to
reduce the number of exponentiations. The second and third lines of Π2 require U to compute λ
multiplicative inverses modulo P , λ multiplications modulo P , λ multiplicative inverses modulo
ρ, 2λ multiplications modulo ρ and two exponentiations with `ρ-bit exponents. Thus the cost for
U is λ(ιP + µP + ιρ + 2µρ) + 2χρ. Similarly, the NI can verify these proofs with λχρ + λιP
work. This is done using Brands’ NOT proof [9, §3]: to prove

PK
{

(oi, ςi) : Coi = αoiρ β
ςi
ρ mod P ∧ (oi 6= 0)

}
,

U simply performs a proof of knowledge of a discrete log representation of αρ with respect to
Coi and βρ. That is, U proves that she knows γ and ζ such that αρ = Cγ

oi
βζρ mod P ; in this

case, γ = o−1
i mod ρ and ζ = −ςiγ mod ρ. This convinces the NI that U knows oi and ςi since

they are easily computable from γ and ζ , and that oi is nonzero (since otherwise o−1
i would be

undefined). U transmits 2λ group elements modulo ρ for a total of 2λ · `ρ bits communication.

62

Table 5.6: Performance measurements for U and the NI in the Non-membership
Proof Protocol.

Mean execution time ±
Operation Host λ Λ = λ2 standard deviation (ms)

Non- U 100 10,000 1141.6 ms ± 30.57 ms
membership 200 40,000 2049.0 ms ± 53.22 ms
proof 300 90,000 3028.8 ms ± 76.94 ms

400 160,000 4076.6 ms ± 113.95 ms
500 250,000 5185.0 ms ± 137.46 ms

Non- NI 100 10,000 913.3 ms ± 16.46 ms
membership 200 40,000 1718.9 ms ± 34.81 ms
verify 300 90,000 2599.1 ms ± 55.80 ms

400 160,000 3615.5 ms ± 107.93 ms
500 250,000 4626.2 ms ± 181.07 ms

Each experiment was repeated 100 times. The mean execution time (± the stan-
dard deviation) across all trials is reported here. See also Figures 5.6–5.9.

Thus, the overall computational cost of this protocol for U is 2(Λ + 5λ) = O(Λ) multiplica-
tions modulo ρ, 7λ = O(λ) multiplications modulo P , λ = O(λ) multiplicative inverses modulo
ρ, λ = O(λ) multiplicative inverses modulo P , and 8λ − 2 = O(λ) exponentiations modulo P
with `ρ-bit exponents. The cost for the NI is Λ = O(Λ) multiplications modulo ρ, 2λ−1 = O(λ)
multiplications modulo P , λ = O(λ) multiplicative inverses modulo P , 4λ = O(λ) exponenti-
ations modulo P with `ρ-bit exponents, and λ = O(λ) exponentiations modulo P with `κ2-bit
exponents. Communication costs are Λ · `ρ bits download and ((7λ− 3) · `ρ + 2(λ− 1) · `P)
bits upload for U, and vice versa for the NI. As noted in [51], Wikipedia currently blocks just
under 7000 anonymous users per month; this gives a reasonable estimate for the upper bound on
the size of a long-term blacklist for that site. With our suggested parameters of `ρ = 256 and
`P = 1536, this means the blacklist will be 224 KB (assuming all 7000 SP-specific pseudonyms
appear on the same long-term blacklist), and U will upload less than 50 KB to the NI to perform
the non-membership proof.

Improving efficiency. Our implementation does not make use of the NI’s knowledge of ψρ =
logαρ(βρ) mod P to improve the efficiency of the verification equations. Also, we do not imple-
ment Brands’ error correcting factors technique [9], as suggested in [10, 11]. This would allow
much of the computational cost of this algorithm to be converted into precomputation. We refer
the reader to [10] or [9, §5.4.2] for details.

63

0

4000

8000

12000

16000

20000

24000

0 10000 20000 30000 40000

t
=

 T
im

e
(m

s)

Λ = Blacklist size

Comparison with BLAC/PEREA at server

BLAC

(SP)

This work

(NI)

PEREA

(SP)

t = 1.6Λ ms

t = 160 ms

t = 0.0039Λ + 6.9555Λ1/2 + 181.11 ms

R² = 0.9998

Figure 5.7: Comparison of non-membership proofs at the server for large blacklist
sizes. See also Table 5.6.

Observe that, for small blacklist sizes, the naive linear non-membership proof employed
by BLAC outperforms our more sophisticated square-root-time algorithm. In particular, the
number of exponentiations in BLAC’s approach scales linearly with the size of the blacklist
(about 1.8 ms per entry at the client and 1.6 ms per entry at the server). Our algorithm has a
very small linear component (a small number of multiplications modulo a small prime), but the
number of exponentiations scales with the square root of the size of the blacklist. For blacklists
of size at most 250000, our measurements indicate that the coefficient of the linear component is
only about 3400 ns per entry and the coefficient of the square root term is about 8 ms. However,
a significant constant component (about 302 ms) makes the linear algorithm outperform our
approach for small blacklists; it would therefore be beneficial in these instances to employ the
linear-time algorithm. For this reason, we propose a hybrid approach wherein a naive linear time
non-membership proof is employed for small blacklist sizes (smaller than 250, in this case) and
the above square-root-time non-membership proof is employed for larger blacklist sizes. Figures
5.7, 5.8 and 5.9 compare the relative complexities of the different non-membership proofs for
various blacklist sizes.

64

0

4000

8000

12000

16000

20000

24000

0 10000 20000 30000 40000

t
=

 T
im

e
(m

s)

Λ = Blacklist size

Comparison with BLAC/PEREA at user

PEREA

(U)

BLAC

(U)

This work

(U)

t = 7Λ ms

t = 1.8Λ ms

t = 0.0034Λ + 8.0564Λ1/2 + 302.3 ms

R2 = 1.0000

Figure 5.8: Comparison of non-membership proofs at the user for large blacklist
sizes. See also Table 5.6.

0

200

400

600

800

1000

0 100 200 300

t
=

 T
im

e
(m

s)

Λ = Blacklist size

Comparison with BLAC for small blacklists

BLAC (U)

This work

(U)t = 1.8Λ ms

t = 0.0034Λ + 8.0564Λ1/2 + 302.3 ms

R² = 1.0000

Figure 5.9: Comparison of non-membership proofs at the user for small blacklist
sizes. See also Table 5.6.

65

Conclusion

The ability to communicate without fear of network surveillance makes it possible for users to
research sensitive topics and share information and ideas that they may otherwise be unwilling
to reveal for fear of persecution, punishment or simply embarrassment. Deployed anonymous
communications networks, such as Tor, help users protect themselves from network surveillance
and thereby provide an important public service. Unfortunately, some users abuse the anonymity
provided by anonymous communications networks. In response, several major service providers
no longer allow anonymous users to participate in their online communities. For example, Tor
users are unable to edit articles on Wikipedia, post comments on Slashdot, or chat on most major
IRC networks. This hurts the Tor network by discouraging casual use of Tor and thus reducing
the size of each Tor user’s anonymity set.

Anonymous blacklisting systems try to solve this by enabling users to authenticate anony-
mously with service providers, while giving service providers the ability to revoke access to
their services from individual misbehaving anonymous users. Nymble is an efficient anonymous
blacklisting system that implements a privacy-preserving form of IP address banning. However,
Nymble makes extensive use of trusted third parties that can easily deanonymize users of the
system. Other schemes can provide very strong security and privacy guarantees without using
trusted third parties, but their computational costs make them impractical for real-world deploy-
ment.

We have thus proposed a new anonymous blacklisting system built in an extended Nymble
framework. Our Nymbler scheme reduces Nymble’s trust assumptions, improves on its secu-
rity guarantees, and provides some new functionality. Nymbler maintains much of the original
Nymble’s efficiency and is highly practical even for use at extremely large service providers like
Wikipedia and Slashdot. We employ several novel cryptographic constructions in our system, in-
cluding our distributed threshold Verinym Issuer, our verifier-efficient restricted blind signature
(VERBS) scheme, trapdoor discrete logarithms, and a highly efficient zero-knowledge proof of
non-membership in a list. These tools enable us to solve several previously unsolved problems
in the anonymous blacklisting systems literature.

One may pursue several directions to improve our system and we conclude this thesis by
discussing some useful extensions that warrant future research. As first mentioned by Tsang et

66

al. in the original Nymble paper [54], a useful feature would be to provide service providers with
the ability to block entire subnets in addition to just individual IP addresses. While there exist
straightforward modifications to our construction that would make this possible, these modifica-
tions would negatively affect user privacy; thus, we leave it to future work to develop a privacy-
friendly solution to this problem. On the other hand, there are also situations in which it would
be desirable to give certain IP addresses the ability to misbehave a threshold number of times
before revoking access to the users behind these addresses. For example, large institutions (such
as universities) often have many users who share a single IP address through NAT; in such cases,
it might be useful to allow the institution to run its own VI (and perhaps NI) internally that issues
verinyms (and nymbles) based on internal IP addresses. In this case, users that obtain verinyms
(and nymbles) from the internal VI (and NI) could access Nymbler-enabled services concurrently
and unlinkably. However, if more than some small threshold of internal users have their access
revoked from a service provider, then this would result in an institution-wide revocation at the
affected service provider.

Another useful extension would be to provide service providers with the ability to detect
repeat offenders and revoke these users’ access for longer durations of time. (For example,
Wikipedia’s blocking policy states that administrators should consider “the severity of the behav-
ior; [and] whether the user has engaged in that behavior before” when deciding on the duration
of a block [94, “Duration of blocks”].) Indeed, this is a trivial extension when the misbehaviours
all occur in a single linkability window (i.e., before the user’s access if revoked); however, de-
tecting repeat offenders whose offenses occur in different linkability windows seems to require
the ability for some party to link all users’ actions across linkability windows, which is clearly
undesirable.

Finally, while we have already implemented the key components of our system, our present
implementation only serves as a proof of concept. In order to deploy our system in the wild,
we must first expand this implementation into an industrial-grade software package. This would
involve building both the infrastructure necessary to support the service, as well as the server-side
and client-side tools needed to make it usable. In particular, it would be useful to develop both
IRC and HTTP proxy servers, as well as web browser and IRC client support modules (likely in
the form of plug-ins for existing clients).

67

APPENDICES

68

Appendix A

Security Games
A challenger C and probabilistic polynomial time adversaryA compete in each security game

in this appendix. If A controls a server, then A knows all of that server’s secrets and can direct
that server’s actions. In particular, A may direct the server to deviate from the established proto-
cols. If it is not explicitly stated that a particular server is under A’s control, then it is implicitly
assumed that this server behaves honestly. (Threshold entities, such as our threshold VI, are an
exception to this rule: A always controls at least one fewer than the threshold number of any
threshold entity; further, if it is explicitly stated thatA controls a server that is a threshold entity,
then A controls each of the servers that comprise this entity.) We also consider a set U of users.
C controls each user in U; however, the rules of each game permitA to compromise some subset
of users in U, learning all of those users’ secrets and controlling their future actions. In each
game, SP1 is under the control of C and behaves honestly, while SP2 is under the control of A
and may arbitrarily deviate from the protocols.

Misauthentication resistance
Security Game A.1 (Misauthentication resistance) [See Definition 4, page 10]

Adversary: A controls SP2 and the PE.
—
(Probing phase): A arbitrarily and adaptively compromises any subset of U, obtains verinyms
for these users from the VIs, and acquires nymbles for them for SP1 and SP2 from the NI. A
may authenticate any compromised users with these SPs as desired, and may have any nymble
revoked from either SP.

(End phase): A sends a nymble ν to SP1. A wins the security game if and only if:

1. ν was not output by a correct execution of the Nymble Acquisition Protocol; and,
2. SP1 accepts ν as valid.

69

Backward anonymity

Security Game A.2 (Backward anonymity) [See Definition 5, page 10]

Adversary: A controls SP2, the NI, and the PE.
—
(First probing phase): A arbitrarily and adaptively compromises a subset of U of size at most
|U| − 2, obtains verinyms for these users from the VIs, and acquires nymbles for them for SP1

and SP2 from the NI. A may authenticate any compromised users with these SPs as desired, or
have any nymble revoked from either SP.

(Challenge phase): For each uncompromised user Ui ∈ U, C obtains a verinym from the VIs
and acquires nymbles for SP2 from the NI. C then authenticates each uncompromised user with
SP2 (the order of authentications is random); Ui’s nymble from this step is νi. Note thatA learns
each νi, but does not learn with which user each nymble is associated.

(Second probing phase): A may ask C to authenticate any user with SP2 according to any
strategy, and may have any nymble revoked from either SP.

(End phase): A chooses a tuple (Ui, νj). A wins the game if and only if i = j.

Unlinkability

Security Game A.3 (Unlinkability) [See Definition 6, page 10]

Adversary: A controls SP2 and the NI.
—
(First challenge phase): For U0,U1 ∈ U, C obtains a verinym from the VIs and acquires
nymbles for SP1 and SP2 from the NI. C then authenticates both users with both SPs; the nymble
used by Ui at SPj is ν(i,j). C reveals each ν(i,j) to A.

(Probing phase): A arbitrarily and adaptively compromises any subset of U−{U0,U1}, obtains
verinyms for these users from the VIs, and acquires nymbles for them for SP1 and SP2 from the
NI. A may authenticate any compromised users with these SPs as desired, and may choose any
compromised users’ nymbles to be revoked from either SP.

(Second challenge phase): C flips two fair coins to obtain bits a, b ∈R {0, 1}. C authenticates
Ua with SPb+1.

(End phase): A chooses a nymble ν(i,j). A wins the game if and only if i = a.

70

Revocability

Security Game A.4 (Revocability) [See Definition 7, page 11]

Adversary: A controls SP2.
—
(Probing phase): A arbitrarily and adaptively compromises any subset of U, obtains verinyms
for these users from the VIs, and acquires nymbles for them for SP1 and SP2 from the NI.Amay
authenticate any compromised users with these SPs as desired, and may choose any compromised
users’ nymbles to be revoked from either SP. By the end of this phase, A must authenticate each
compromised user with SP1 at least once.

(Challenge phase): C sends to the PE the last nymble used at SP1 by each compromised user to
have these users revoked from SP1.

(End phase): A attempts to authenticate with SP1 using some nymble ν. A wins the game if and
only if SP1 accepts ν.

Revocation auditability

Security Game A.5 (Revocation auditability) [See Definition 8, page 11]

Adversary: A controls SP2 and the NI.
—
(First challenge phase): For U0,U1 ∈ U, C obtains a verinym from the VIs and acquires
nymbles for SP1 and SP2 from the NI. C then authenticates both users with both SPs; the nymble
used by Ui at SPj is ν(i,j). C reveals each ν(i,j) to A.

(Probing phase): A arbitrarily and adaptively compromises any subset of U − {U0,U1}. A
may authenticate any compromised users with either SP as desired, may ask C to authenticate
any uncompromised users with either SP according to any strategy, and may have any nymble
revoked from either SP.

(Second challenge phase): C flips a fair coin to obtain a bit a ∈R {0, 1}. For U0 and U1, C then
invokes the Revocation Audit Protocol to check that user’s revocation status at SP2. We denote
Ui’s reported revocation status at SP2 by bi ∈ {true,false}.
(End phase): A chooses a nymble ν(i,j) from the first challenge phase. A wins the game if and
only if i = a and b0 = b1 = true.

71

Non-frameability

Security Game A.6 (Non-frameability) [See Definition 9, page 11]

Adversary: A controls SP2 and the NI.
—
(First challenge phase): For each Ui ∈ U, C obtains verinyms from the VIs and acquires
nymbles for SP1 and SP2 from the NI. C then authenticates each user with both SPs; C reveals all
nymbles from this phase to A.

(Probing phase): A arbitrarily and adaptively compromises any proper subset of U. A may
authenticate any compromised users with either SP as desired, may ask C to authenticate any
uncompromised users with either SP according to any strategy, and may have any compromised
users’ nymbles revoked from either SP.

(Second challenge phase): For each uncompromised user Ui ∈ U, C invokes the Revocation
Audit Protocol to check that user’s revocation status at SP2, and then attempts to authenticate
that user with SP2 (regardless of the user’s reported revocation status). We denote Ui’s reported
revocation status at SP2 by bi ∈ {true,false}, while ci ∈ {true,false} indicates if Ui

successfully authenticated with SP2.

(End phase): A wins the game if and only if there exists an uncompromised user Ui such that
bi = true or ci = false.

72

Appendix B

VERBS Protocols

VERBS-Blind

Protocol B.1 VERBS-Blind(g, h, Ch, γ1, ξ) [Run by U]
Input: g, h, Ch, γ1, ξ [g ∈ Z∗m; M = 4m+ 1 is prime]
Output: θ, ν ′, Πν

Compute: ν ← gh mod ζ
Compute: Cν ← ανmβ

γ2
m

Choose: θ ∈R Z∗m [Blinding factor]

Compute: Cν′ ← α
θ3(ν2+(ν mod ξ))
m βγ3m [Commit to blinded nymble]

Set: ν ′ ← θ3 (ν2 + (ν mod ξ)) mod m [Open commitment]

Set: Πν ← PK





h, γ1,
ν,
γ2,

ν ′

θ, γ3

 :

Ch = αhnβ
γ1
n modN

∧ ν = gh modn

∧ Cν = ανmβ
γ2
m modM

∧ 0 ≤ h < n

∧ ν ′ = θ3 (ν2 + (ν mod ξ)) modm

∧ Cν′ = αν
′
mβ

γ3
m modM


Return: (θ, ν ′,Πν)

73

VERBS-Sign

Protocol B.2 VERBS-Sign(ν ′, pm, qm, ξ,Πν) [Run by NI]
Input: ν ′, pm, qm, ξ, Πν

Output: σ′ or ⊥
if (Πν is correct) then

Set: σ′ ← (ν ′)
1
3 mod m [Uses knowledge of pm and qm]

else
Set: σ′ ← ⊥

end if

Return: σ′

VERBS-Unblind

Protocol B.3 VERBS-Unblind(σ′, θ) [Run by U]
Input: σ′, θ
Output: σ

Set: σ ← σ′ · θ−1 mod m

Return: σ

VERBS-Verify

Protocol B.4 VERBS-Verify(ν, σ, ξ) [Run by SP]
Input: ν, σ, ξ
Output: b ∈ {true,false}

Set: b ←
(
σ3 ?≡ (ν2 + (ν mod ξ)) mod m

)
Return: b

74

Bibliography

[1] Reed S. Abbott. CPG: Closed Pseudonymous Groups. Master’s thesis, Brigham Young
University Computer Science Department, Provo, Utah, USA, April 2008. (One citation
on page 17.)

[2] Reed S. Abbott, Timothy W. van der Horst, and Kent E. Seamons. CPG: Closed Pseudony-
mous Groups. In Vijay Atluri and Marianne Winslett, editors, Proceedings of WPES 2008,
pages 55–64. Association for Computing Machinery (ACM) Press, New York, NY, USA,
October 2008. (One citation on page 17.)

[3] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. P-signatures
and Noninteractive Anonymous Credentials. In Ran Canetti, editor, Proceedings of TCC
2008, volume 4948 of Lecture Notes in Computer Science, pages 356–374. Springer-
Verlag, Berlin/Heidelberg, 2008. (One citation on page 22.)

[4] Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast Batch Verification for Modular Expo-
nentiation and Digital Signatures. In Kaisa Nyberg, editor, Advances in Cryptology: Pro-
ceedings of EUROCRYPT’98, volume 1403 of Lecture Notes in Computer Science, pages
236–250. Springer-Verlag, Berlin/Heidelberg, May 1998. (3 citations on pages 21, 48,
and 53.)

[5] Patrik Bichsel, Carl Binding, Jan Camenisch, Thomas Groß, Tom Heydt-Benjamin, Dieter
Sommer, and Greg Zaverucha. Cryptographic Protocols of the Identity Mixer Library, v.
1.0. Research Report RZ3730, IBM Research GmbH, Zurich, Switzerland, March 2009.
(One citation on page 22.)

[6] Fabrice Boudot. Efficient Proofs that a Committed Number Lies in an Interval. In Bart
Preneel, editor, Advances in Cryptology: Proceedings of EUROCRYPT 2000, volume 1807
of Lecture Notes in Computer Science, pages 431–444. Springer-Verlag, Berlin/Heidelberg,
2000. (One citation on page 27.)

[7] Stefan Brands. Untraceable Off-line Cash in Wallets with Observers (Extended Abstract).
In Douglas R. Stinson, editor, Advances in Cryptology: Proceedings of CRYPTO’93,

75

volume 773 of Lecture Notes in Computer Science, pages 302–318. Springer-Verlag,
Berlin/Heidelberg, 1993. (One citation on page 22.)

[8] Stefan Brands. Restrictive Blinding of Secret-Key Certificates. In Louis C. Guillou
and Jean-Jacques Quisquater, editors, Advances in Cryptology: Proceedings of EURO-
CRYPT’95, volume 921 of Lecture Notes in Computer Science, pages 231–247. Springer-
Verlag, Berlin/Heidelberg, 1995. (One citation on page 21.)

[9] Stefan A. Brands. Rethinking Public Key Infrastructures and Digital Certificates: Build-
ing in Privacy. The MIT Press, Cambridge, Massachusetts, USA, first edition, August
2000. ISBN 978-0-262-02491-4. [Online] Available: http://www.credentica.
com/the_mit_pressbook.php. (5 citations on pages 21, 22, 62, and 63.)

[10] Stefan A. Brands, Liesje Demuynck, and Bart De Decker. A practical system for glob-
ally revoking the unlinkable pseudonyms of unknown users. Technical Report CW472,
Katholieke Universiteit Leuven, Department of Computer Science, Leuven, Belgium, De-
cember 2006. 22 pages. [Online] Available: http://www.cs.kuleuven.be/
publicaties/rapporten/cw/CW472.pdf. This is the extended version of [11].
(7 citations on pages 21, 46, 47, 63, and 76.)

[11] Stefan A. Brands, Liesje Demuynck, and Bart De Decker. A Practical System for Glob-
ally Revoking the Unlinkable Pseudonyms of Unknown Users. In Josef Pieprzyk, Hossein
Ghodosi, and Ed Dawson, editors, Proceedings of ACISP 2007, volume 4586 of Lecture
Notes in Computer Science, pages 400–415. Springer-Verlag, Berlin/Heidelberg, 2007. An
extended version of this paper is available [10]. (7 citations on pages 2, 21, 46, 47, 63,
and 76.)

[12] Richard P. Brent. Parallel Algorithms for Integer Factorisation. In J. H. Loxton, editor,
Number Theory and Cryptography, volume 154 of London Mathematical Society Lecture
Note Series, pages 26–37. Cambridge University Press, Oxford, United Kingdom, 1990.
(One citation on page 58.)

[13] Ernie Brickell and Jiangtao Li. Enhanced Privacy ID: A Direct Anonymous Attestation
Scheme with Enhanced Revocation Capabilities. In Peng Ning and Ting Yu, editors, Pro-
ceedings of WPES 2007, pages 21–30. Association for Computing Machinery (ACM) Press,
New York, NY, USA, October 2007. (5 citations on pages 2, 3, 21, and 46.)

[14] Ernie Brickell and Jiangtao Li. Enhanced Privacy ID from Bilinear Pairing. Cryptology
ePrint Archive, Report 2009/095, 2009. [Online] Available: http://eprint.iacr.
org/2009/095. (5 citations on pages 2, 3, 21, and 46.)

76

http://www.credentica.com/the_mit_pressbook.php
http://www.credentica.com/the_mit_pressbook.php
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW472.pdf
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW472.pdf
http://eprint.iacr.org/2009/095
http://eprint.iacr.org/2009/095

[15] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyanskaya, and Mira
Meyerovich. How to Win the Clone Wars: Efficient Periodic n-Times Anonymous Authen-
tication. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors,
Proceedings of CCS 2006, pages 201–210. Association for Computing Machinery (ACM)
Press, New York, NY, USA, November 2006. (One citation on page 14.)

[16] Jan Camenisch and Anna Lysyanskaya. An Efficient System for Non-transferable Anony-
mous Credentials with Optional Anonymity Revocation. In Birgit Pfitzmann, editor, Ad-
vances in Cryptology: Proceedings of EUROCRYPT 2001, volume 2045 of Lecture Notes
in Computer Science, pages 93–118. Springer-Verlag, Berlin/Heidelberg, 2001. (4 citations
on pages 17, 21, and 22.)

[17] Jan Camenisch and Anna Lysyanskaya. A Signature Scheme with Efficient Protocols. In
Stelvio Cimato, Clemente Galdi, and Giuseppe Persiano, editors, Proceedings of SCN 2002,
volume 2576 of Lecture Notes in Computer Science, pages 268–289. Springer-Verlag,
Berlin/Heidelberg, 2002. (2 citations on page 22.)

[18] Jan Camenisch and Anna Lysyanskaya. Signature Schemes and Anonymous Credentials
from Bilinear Maps. In Matthew K. Franklin, editor, Advances in Cryptology: Proceed-
ings of CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages 56–72.
Springer-Verlag, Berlin/Heidelberg, 2004. (One citation on page 22.)

[19] Jan Camenisch and Markus Michels. Proving in Zero-Knowledge that a Number Is the
Product of Two Safe Primes. In Jacques Stern, editor, Advances in Cryptology: Proceedings
of EUROCRYPT’99, volume 1592 of Lecture Notes in Computer Science, pages 107–122.
Springer-Verlag, Berlin/Heidelberg, 1999. (3 citations on pages 27, 28, and 44.)

[20] Jan Camenisch and Victor Shoup. Practical Verifiable Encryption and Decryption of Dis-
crete Logarithms. In Dan Boneh, editor, Advances in Cryptology: Proceedings of CRYPTO
2003, volume 2729 of Lecture Notes in Computer Science, pages 126–144. Springer-
Verlag. 2003. (2 citations on pages 19 and 41.)

[21] Jan Camenisch and Markus Stadler. Efficient Group Signature Schemes for Large Groups
(Extended Abstract). In Burton S. Kaliski Jr., editor, Advances in Cryptology: Proceed-
ings of CRYPTO ’97, volume 1294 of Lecture Notes in Computer Science, pages 410–424.
Springer-Verlag, Berlin/Heidelberg, 1997. (One citation on page 28.)

[22] David Chaum. Blind Signatures for Untraceable Payments. In David Chaum,
Ronald L. Rivest, and Alan T. Sherman, editors, Advances in Cryptology: Proceedings
of CRYPTO’82, pages 199–203. Plenum Press, New York, NY, USA, 1982. (One citation
on page 22.)

77

[23] David Chaum. Blind Signature System. In David Chaum, editor, Advances in Cryptology:
Proceedings of CRYPTO’83, page 153. Plenum Press, New York, NY, USA, 1983. (One
citation on page 22.)

[24] David Chaum. Security Without Identification: Transaction Systems to Make Big Brother
Obsolete. Communications of the ACM, 28(10):1030–1044, October 1985. Association
for Computing Machinery (ACM) Press, New York, NY, USA. ISSN 0001-0782. (One
citation on page 16.)

[25] David Chaum and Jan-Hendrik Evertse. A Secure and Privacy-protecting Protocol for
Transmitting Personal Information Between Organizations. In Andrew M. Odlyzko, ed-
itor, Advances in Cryptology: Proceedings of CRYPTO’86, volume 263 of Lecture Notes
in Computer Science, pages 118–167. Springer-Verlag, Berlin/Heidelberg, 1986. (One
citation on page 17.)

[26] David Chaum and Eugène van Heyst. Group Signatures. In Donald W. Davies, editor,
Advances in Cryptology: Proceedings of EUROCRYPT’91, volume 547 of Lecture Notes
in Computer Science, pages 257–265. Springer-Verlag, Berlin/Heidelberg, 1991. (One
citation on page 18.)

[27] Lidong Chen. Access with Pseudonyms. In Ed Dawson and Jovan Dj. Golic, editors,
Cryptography: Policy and Algorithms, volume 1029 of Lecture Notes in Computer Science,
pages 232–243. Springer-Verlag, Berlin/Heidelberg, 1995. (One citation on page 17.)

[28] Ivan Damgård and Maciej Koprowski. Practical Threshold RSA Signatures without a
Trusted Dealer. In Birgit Pfitzmann, editor, Advances in Cryptology: Proceedings of
EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages 152–165.
Springer-Verlag, Berlin/Heidelberg, 2001. (6 citations on pages 29, 30, 31, and 52.)

[29] Ivan Bjerre Damgård. Payment Systems and Credential Mechanisms with Provable Secu-
rity Against Abuse by Individuals. In Shafi Goldwasser, editor, Advances in Cryptology:
Proceedings of CRYPTO’88, volume 403 of Lecture Notes in Computer Science, pages
328–335. Springer-Verlag, Berlin/Heidelberg, 1988. (One citation on page 17.)

[30] S. Deering and R. Hinden. RFC 2460 – Internet Protocol, Version 6 (IPv6) Specification,
1998. (One citation on page 19.)

[31] Roger Dingledine. Tor development roadmap, 2008–2011. Tor project technical report,
The Tor Project Inc., December 2008. [Online] Available: www.torproject.org/
press/presskit/2008-12-19-roadmap-full.pdf. (One citation on page 8.)

[32] Roger Dingledine. Personal communications, August 2010. (One citation on page 12.)

78

www.torproject.org/press/presskit/2008-12-19-roadmap-full.pdf
www.torproject.org/press/presskit/2008-12-19-roadmap-full.pdf

[33] Roger Dingledine and Nick Mathewson. Design of a blocking-resistant anonymity sys-
tem. Tor project technical report, The Tor Project Inc., November 2006. [Online]
Available: https://svn.torproject.org/svn/projects/design-paper/
blocking.html. (One citation on page 33.)

[34] Roger Dingledine, Nick Mathewson, and Paul Syverson. Deploying Low-Latency
Anonymity: Design Challenges and Social Factors. IEEE Security and Privacy, 5(5):83–
87, 2007. IEEE Educational Activities Department, Piscataway, New Jersey, USA. ISSN
1540-7993. (One citation on page 8.)

[35] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The Second-Generation
Onion Router. In Proceedings of USENIX Security’04, pages 303–320. The USENIX
Association, Berkeley, California, USA, 2004. (2 citations on pages 1 and 32.)

[36] John R. Douceur. The Sybil Attack. In Peter Druschel, M. Frans Kaashoek, and Antony I. T.
Rowstron, editors, Proceedings of IPTPS 2002, volume 2429 of Lecture Notes in Computer
Science, pages 251–260. Springer-Verlag, Berlin/Heidelberg, 2002. (One citation on page
8.)

[37] R. Droms. RFC 2131 – Dynamic Host Configuration Protocol, 1997. (One citation on
page 8.)

[38] Paul Feldman. A Practical Scheme for Non-interactive Verifiable Secret Sharing. In Pro-
ceedings of FOCS 1987, pages 427–437. The IEEE Computer Society. October 1987. (One
citation on page 54.)

[39] Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In Andrew M. Odlyzko, editor, Advances in Cryptology: Proceed-
ings of CRYPTO’86, volume 263 of Lecture Notes in Computer Science, pages 186–194.
Springer-Verlag, Berlin/Heidelberg, 1986. (3 citations on pages 27, 38, and 56.)

[40] Pierre-Alain Fouque and Jacques Stern. Fully Distributed Threshold RSA under Standard
Assumptions. In Colin Boyd, editor, Advances in Cryptology: Proceedings of ASIACRYPT
2001, volume 2248 of Lecture Notes in Computer Science, pages 310–330. Springer-
Verlag, Berlin/Heidelberg, December 2001. (2 citations on pages 31 and 52.)

[41] Yair Frankel, Philip D. MacKenzie, and Moti Yung. Robust Efficient Distributed RSA-Key
Generation. In Proceedings of STOC 1998, pages 663–672. Association for Computing
Machinery (ACM) Press, New York, NY, USA, 1998. (5 citations on pages 29 and 30.)

[42] Free Software Foundation. The GNU Multiple Precision (GMP) Arithmetic Library, Ver-
sion 5.0.1, February 2010. [Online] Available: http://gmplib.org/. (One citation
on page 51.)

79

https://svn.torproject.org/svn/projects/design-paper/blocking.html
https://svn.torproject.org/svn/projects/design-paper/blocking.html
http://gmplib.org/

[43] Geeknet Inc. Slashdot – News for nerds, stuff that matters. [Online] Available: http:
//slashdot.org/, Accessed: 11/08/2010. (One citation on page 2.)

[44] Ian Goldberg. A Pseudonymous Communications Infrastructure for the Internet. PhD
thesis, University of California at Berkeley, Berkeley, California, USA, December 2000.
(One citation on page 5.)

[45] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A Digital Signature Scheme Secure
Against Adaptive Chosen-Message Attacks. SIAM Journal on Computing (SICOMP), 17
(2):281–308, April 1988. Society for Industrial and Applied Mathematics (SIAM). ISSN
0097-5397. (One citation on page 28.)

[46] Jens Groth and Amit Sahai. Efficient Non-interactive Proof Systems for Bilinear Groups.
Electronic Colloquium on Computational Complexity (ECCC), 14(TR07-053), June 2007.
ISSN 1433-809. Also available as [47]. (One citation on page 80.)

[47] Jens Groth and Amit Sahai. Efficient Non-interactive Proof Systems for Bilinear Groups.
In Nigel P. Smart, editor, Advances in Cryptology: Proceedings of EUROCRYPT 2008,
volume 4965 of Lecture Notes in Computer Science, pages 415–432. Springer-Verlag,
Berlin/Heidelberg, 2008. Also available as [46]. (2 citations on pages 22 and 80.)

[48] Ryan Henry. Pippenger’s Multiproduct and Multiexponentiation Algorithms. Technical Re-
port CACR 2010-26, University of Waterloo, Centre for Applied Cryptographic Research,
Waterloo, Ontario, Canada, September 2010. [Online] Available: http://www.cacr.
math.uwaterloo.ca/techreports/2010/cacr2010-26.pdf. (One citation
on page 53.)

[49] Ryan Henry and Ian Goldberg. A Survey of Anonymous Blacklisting Systems. Technical
Report CACR 2010-24, University of Waterloo, Centre for Applied Cryptographic Re-
search, Waterloo, Ontario, Canada, September 2010. [Online] Available: http://www.
cacr.math.uwaterloo.ca/techreports/2010/cacr2010-24.pdf. (One
citation on page 8.)

[50] Ryan Henry, Kevin Henry, and Ian Goldberg. Making a Nymbler Nymble using VERBS.
In Mikhail Atallah and Nick Hopper, editors, Proceedings of PETS 2010, volume 6205 of
Lecture Notes in Computer Science, pages 110–129. Springer-Verlag, Berlin/Heidelberg,
July 2010. An extended version of this paper is available [51]. (4 citations on pages 3, 18,
46, and 81.)

[51] Ryan Henry, Kevin Henry, and Ian Goldberg. Making a Nymbler Nymble using VERBS
(Extended Version). Technical Report CACR 2010-05, University of Waterloo, Centre
for Applied Cryptographic Research, Waterloo, Ontario, Canada, March 2010. 24 pages.
[Online] Available: http://www.cacr.math.uwaterloo.ca/techreports/

80

http://slashdot.org/
http://slashdot.org/
http://www.cacr.math.uwaterloo.ca/techreports/2010/cacr2010-26.pdf
http://www.cacr.math.uwaterloo.ca/techreports/2010/cacr2010-26.pdf
http://www.cacr.math.uwaterloo.ca/techreports/2010/cacr2010-24.pdf
http://www.cacr.math.uwaterloo.ca/techreports/2010/cacr2010-24.pdf
http://www.cacr.math.uwaterloo.ca/techreports/2010/cacr2010-05.pdf
http://www.cacr.math.uwaterloo.ca/techreports/2010/cacr2010-05.pdf

2010/cacr2010-05.pdf. This is the extended version of [50]. (4 citations on pages
3, 18, 63, and 80.)

[52] Jason E. Holt and Kent E. Seamons. Nym: Practical Pseudonymity for Anonymous
Networks. Technical Report 2006-4, Brigham Young University, Internet Security Re-
search Lab, Provo, Utah, USA, June 2006. 12 pages. [Online] Available: http:
//isrl.cs.byu.edu/pubs/isrl-techreport-2006-4.pdf. (One citation
on page 17.)

[53] Human Rights Watch. “Race to the Bottom”: Corporate Complicity in Chinese In-
ternet Censorship: II. How Censorship Works in China: A Brief Overview, March
2009. [Online] Available: http://www.hrw.org/reports/2006/china0806/
3.htm, Accessed: 12/13/2010. (One citation on page 33.)

[54] Peter C. Johnson, Apu Kapadia, Patrick P. Tsang, and Sean W. Smith. Nymble: Anony-
mous IP-Address Blocking. In Nikita Borisov and Philippe Golle, editors, Proceedings of
PETS 2007, volume 4776 of Lecture Notes in Computer Science, pages 113–133. Springer-
Verlag, Berlin/Heidelberg, June 2007. A work-in-progress version of this paper is avail-
able [90]. (7 citations on pages 2, 3, 4, 14, 18, 67, and 85.)

[55] Stefan Köpsell, Rolf Wendolsky, and Hannes Federrath. Revocable Anonymity. In Günter
Müller, editor, Proceedings of ETRICS 2006, volume 3995 of Lecture Notes in Computer
Science, pages 206–220. Springer-Verlag, Berlin/Heidelberg, 2006. (One citation on page
2.)

[56] Hendrik W. Lenstra. Factoring integers with elliptic curves. The Annals of Mathematics,
126(3):649–673, November 1987. (One citation on page 58.)

[57] Zi Lin and Nick Hopper. Jack: Scalable Accumulator-based Nymble System. In Keith
Frikken, editor, Proceedings of WPES 2010, pages 53–62. Association for Computing
Machinery (ACM) Press, New York, NY, USA, October 2010. (9 citations on pages 2, 3,
14, 15, 18, 19, 20, and 41.)

[58] Karsten Loesing. Measuring the Tor Network: Evaluation of Client Requests to the
Directories. Technical report, The Tor Project, June 2009. [Online] Available: https://
metrics.torproject.org/papers/directory-requests-2009-06-25.
pdf. (One citation on page 1.)

[59] Peter Lofgren and Nicholas Hopper. BNymble (A short paper): More anonymous blacklist-
ing at almost no cost. In Proceedings of the Fifteenth International Conference on Financial
Cryptography and Data Security, 2011. to appear. (One citation on page 18.)

81

http://www.cacr.math.uwaterloo.ca/techreports/2010/cacr2010-05.pdf
http://www.cacr.math.uwaterloo.ca/techreports/2010/cacr2010-05.pdf
http://isrl.cs.byu.edu/pubs/isrl-techreport-2006-4.pdf
http://isrl.cs.byu.edu/pubs/isrl-techreport-2006-4.pdf
http://www.hrw.org/reports/2006/china0806/3.htm
http://www.hrw.org/reports/2006/china0806/3.htm
https://metrics.torproject.org/papers/directory-requests-2009-06-25.pdf
https://metrics.torproject.org/papers/directory-requests-2009-06-25.pdf
https://metrics.torproject.org/papers/directory-requests-2009-06-25.pdf

[60] Anna Lysyanskaya. Pseudonym Systems. Master’s thesis, Massachusetts Institute of Tech-
nology (MIT), Department of Electrical Engineering and Computer Science, Cambridge,
Massachusetts, USA, June 1999. (One citation on page 17.)

[61] Anna Lysyanskaya. Signature Schemes and Applications to Cryptographic Protocols. PhD
thesis, Massachusetts Institute of Technology (MIT), Department of Electrical Engineering
and Computer Science, Cambridge, Massachusetts, USA, September 2002. (One citation
on page 28.)

[62] Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf. Pseudonym Systems.
In Howard M. Heys and Carlisle M. Adams, editors, Proceedings of SAC’99, volume 1758
of Lecture Notes in Computer Science, pages 184–199. Springer-Verlag, Berlin/Heidelberg,
1999. (One citation on page 17.)

[63] Ueli M. Maurer and Yacov Yacobi. A non-interactive public-key distribution system. De-
signs, Codes and Cryptography, 9(3):305–316, 1996. (One citation on page 59.)

[64] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied Cryp-
tography. CRC Press, 1996. ISBN 978-0-8493-8523-0. Fifth Printing (August 2001).
[Online] Available: http://www.cacr.math.uwaterloo.ca/hac/. (2 citations
on pages 29 and 37.)

[65] NVIDIA. CUDA Toolkit 3.2 RC 2, October 2010. [Online] Available: http://
developer.nvidia.com/object/cuda_3_2_toolkit_rc.html. (One cita-
tion on page 51.)

[66] Torben P. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Se-
cret Sharing. In Joan Feigenbaum, editor, Advances in Cryptology: Proceedings of
CRYPTO’91, volume 576 of Lecture Notes in Computer Science, pages 129–140. Springer-
Verlag, Berlin/Heidelberg, 1991. (One citation on page 27.)

[67] Kun Peng, Colin Boyd, and Ed Dawson. Batch Zero-Knowledge Proof and Verification and
Its Applications. ACM Transactions on Information and System Security (TISSEC), 10(2),
Article No. 6, May 2007. Association for Computing Machinery (ACM) Press, New York,
NY, USA. ISSN 1094-9224. (One citation on page 53.)

[68] John M. Pollard. Theorems on factorization and primality testing. Proceedings of the
Cambridge Philosophical Society, 76(03):521, 1974. (One citation on page 58.)

[69] Carl Pomerance. The quadratic sieve factoring algorithm. In Thomas Beth, Norbert Cot,
and Ingemar Ingemarsson, editors, Advances in Cryptology: Proceedings of EUROCRYPT
1984, volume 209 of Lecture Notes in Computer Science, pages 169–182. Springer-Verlag,
Berlin/Heidelberg, 1984. (One citation on page 58.)

82

http://www.cacr.math.uwaterloo.ca/hac/
http://developer.nvidia.com/object/cuda_3_2_toolkit_rc.html
http://developer.nvidia.com/object/cuda_3_2_toolkit_rc.html

[70] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear. RFC 1918 – Address
Allocation for Private Internets, 1996. (One citation on page 8.)

[71] Claus-Peter Schnorr. Efficient Identification and Signatures for Smart Cards. In Gilles
Brassard, editor, Advances in Cryptology: Proceedings of CRYPTO’89, volume 435 of
Lecture Notes in Computer Science, pages 239–252. Springer-Verlag, Berlin/Heidelberg,
1989. (One citation on page 27.)

[72] Edward J. Schwartz. Contractual Anonymity. Master’s thesis, Carnegie Mellon Univer-
sity, The Information Networking Institute, Pittsburgh, Pennsylvania, USA, May 2009. (2
citations on pages 13 and 18.)

[73] Edward J. Schwartz, David Brumley, and Jonathan M. McCune. Contractual Anonymity.
Technical Report CMU-CS-09-144, Carnegie Melon University, School of Com-
puter Science, Pittsburgh, Pennsylvania, USA, September 2009. 29 pages. [On-
line] Available: http://reports-archive.adm.cs.cmu.edu/anon/2009/
abstracts/09-144.html. This is the extended version of [74]. (3 citations on
pages 13, 18, and 83.)

[74] Edward J. Schwartz, David Brumley, and Jonathan M. McCune. A Contractual Anonymity
System. In Proceedings of NDSS 2010. The Internet Society (ISOC). February 2010. An
extended version of this paper is available [73]. (3 citations on pages 13, 18, and 83.)

[75] Victor Shoup. Practical Threshold Signatures. In Bart Preneel, editor, Advances in Cryp-
tology: Proceedings of EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer
Science, pages 207–220. Springer-Verlag, Berlin/Heidelberg, 2000. (One citation on page
31.)

[76] Victor Shoup. NTL: A Library for doing Number Theory, Version 5.5.2, August 2009.
[Online] Available: http://www.shoup.net/ntl/. (One citation on page 51.)

[77] Stuart G. Stubblebine, Paul F. Syverson, and David M. Goldschlag. Unlinkable Serial
Transactions: Protocols and Applications. ACM Transactions on Information and System
Security (TISSEC), 2(4):354–389, November 1999. Association for Computing Machinery
(ACM) Press, New York, NY, USA. This is the journal version of [78]. (2 citations on
pages 18 and 83.)

[78] Paul F. Syverson, Stuart G. Stubblebine, and David M. Goldschlag. Unlinkable Serial
Transactions. In Rafael Hirschfeld, editor, Proceedings of FC ’97, volume 1318 of Lecture
Notes in Computer Science, pages 39–56. Springer-Verlag, Berlin/Heidelberg, February
1997. A journal version of this paper is available [77]. (2 citations on pages 18 and 83.)

83

http://reports-archive.adm.cs.cmu.edu/anon/2009/abstracts/09-144.html
http://reports-archive.adm.cs.cmu.edu/anon/2009/abstracts/09-144.html
http://www.shoup.net/ntl/

[79] Isamu Teranishi, Jun Furukawa, and Kazue Sako. k-Times Anonymous Authentication
(Extended Abstract). In Pil Joong Lee, editor, Advances in Cryptology: Proceedings of
ASIACRYPT 2004, volume 3329 of Lecture Notes in Computer Science, pages 308–322.
Springer-Verlag, Berlin/Heidelberg, 2004. (One citation on page 14.)

[80] The Tor Project Inc. TheOnionRouter/BlockingIrc – Tor Bug Tracker & Wiki, November
2010. [Online] Available: https://trac.torproject.org/projects/tor/
wiki/TheOnionRouter/BlockingIrc, Accessed: 11/08/2010. (One citation on
page 2.)

[81] The Tor Project Inc. TorStatus - Tor Network Status, November 2010. [Online] Available:
http://torstatus.cyberphunk.org/, Accessed: 11/08/2010. (One citation on
page 1.)

[82] The Tor Project Inc. Who uses Tor?, November 2010. [Online] Available: http:
//www.torproject.org/about/torusers.html.en, Accessed: 11/08/2010.
(One citation on page 1.)

[83] Patrick P. Tsang, Man Ho Au, Apu Kapadia, and Sean W. Smith. Blacklistable Anonymous
Credentials: Blocking Misbehaving Users Without TTPs. In Peng Ning, Sabrina De Cap-
itani di Vimercati, and Paul F. Syverson, editors, Proceedings of CCS 2007, pages 72–81.
Association for Computing Machinery (ACM) Press, New York, NY, USA, October 2007.
An extended version of this paper is available [84]. (9 citations on pages 2, 3, 14, 15, 21,
46, and 84.)

[84] Patrick P. Tsang, Man Ho Au, Apu Kapadia, and Sean W. Smith. Blacklistable Anony-
mous Credentials: Blocking Misbehaving Users Without TTPs (Extended Version). Tech-
nical Report TR2007-601, Dartmouth College, Computer Science Department, September
2007. 25 pages. [Online] Available: http://www.cs.dartmouth.edu/reports/
abstracts/TR2007-601/. This is the extended version of [83]. (8 citations on pages
2, 3, 14, 15, 21, 46, and 84.)

[85] Patrick P. Tsang, Man Ho Au, Apu Kapadia, and Sean W. Smith. BLAC: Revoking Repeat-
edly Misbehaving Anonymous Users Without Relying on TTPs. Technical Report TR2008-
635, Dartmouth College, Computer Science Department, Hanover, New Hampshire, USA,
October 2008. 33 pages. [Online] Available: http://www.cs.dartmouth.edu/
reports/abstracts/TR2008-635/. A journal version of this paper exists [87]. (8
citations on pages 2, 3, 14, 15, 21, 46, and 85.)

[86] Patrick P. Tsang, Man Ho Au, Apu Kapadia, and Sean W. Smith. PEREA: Towards Practical
TTP-free Revocation in Anonymous Authentication. In Peng Ning, Paul F. Syverson, and
Somesh Jha, editors, Proceedings of CCS 2008, pages 333–344. Association for Computing

84

https://trac.torproject.org/projects/tor/wiki/TheOnionRouter/BlockingIrc
https://trac.torproject.org/projects/tor/wiki/TheOnionRouter/BlockingIrc
http://torstatus.cyberphunk.org/
http://www.torproject.org/about/torusers.html.en
http://www.torproject.org/about/torusers.html.en
http://www.cs.dartmouth.edu/reports/abstracts/TR2007-601/
http://www.cs.dartmouth.edu/reports/abstracts/TR2007-601/
http://www.cs.dartmouth.edu/reports/abstracts/TR2008-635/
http://www.cs.dartmouth.edu/reports/abstracts/TR2008-635/

Machinery (ACM) Press, New York, NY, USA, October 2008. (9 citations on pages 2, 3,
14, 22, 46, and 60.)

[87] Patrick P. Tsang, Man Ho Au, Apu Kapadia, and Sean W. Smith. BLAC: Revoking Re-
peatedly Misbehaving Anonymous Users Without Relying on TTPs. ACM Transactions on
Information and System Security (TISSEC), 2010. Association for Computing Machinery
(ACM) Press, New York, NY, USA. To appear. This is the journal version of [85]. (4
citations on pages 3, 46, and 84.)

[88] Patrick P. Tsang, Apu Kapadia, Cory Cornelius, and Sean W. Smith. Nymble: Block-
ing Misbehaving Users in Anonymizing Networks. Technical Report TR2008-637, Dart-
mouth College, Computer Science Department, Hanover, New Hampshire, USA, December
2008. 41 pages. [Online] Available: http://www.cs.dartmouth.edu/reports/
abstracts/TR2008-637/. This is the extended version of [89]. (6 citations on pages
2, 3, 14, 18, 46, and 85.)

[89] Patrick P. Tsang, Apu Kapadia, Cory Cornelius, and Sean W. Smith. Nymble: Blocking
Misbehaving Users in Anonymizing Networks. IEEE Transactions on Dependable and
Secure Computing (TDSC), September 2009. The IEEE Computer Society. To appear. An
extended version of this paper is available [88]. (10 citations on pages 2, 3, 14, 18, 21, 25,
43, 46, and 85.)

[90] Patrick P. Tsang, Apu Kapadia, and Sean W. Smith. Anonymous IP-address Blocking in
Tor with Trusted Computing (Short Paper: Work in Progress). In In the Second Workshop
on Advances in Trusted Computing (WATC 2006 Fall), 30 November – 1 December 2006,
Tokyo, Japan, 2006. This is a work-in-progress version of [54]. (3 citations on pages 2, 3,
and 81.)

[91] Paul C. van Oorschot and Michael J. Wiener. Parallel Collision Search with Application to
Hash Functions and Discrete Logarithms. In ACM Conference on Computer and Commu-
nications Security, pages 210–218, 1994. (2 citations on pages 44 and 57.)

[92] Wikimedia Foundation. [Online] Available: http://www.wikimedia.org/, Ac-
cessed: 11/08/2010. (One citation on page 15.)

[93] Wikimedia Foundation. Wikipedia, the free encyclopedia. [Online] Available: http:
//www.wikipedia.org/, Accessed: 11/08/2010. (3 citations on pages 2, 15, and 17.)

[94] Wikimedia Foundation. Wikipedia:Blocking policy — Wikipedia, the free encyclo-
pedia. [Online] Available: http://en.wikipedia.org/wiki/Wikipedia:
Blocking_policy, Accessed: 12/10/2010. (5 citations on pages 4, 15, 19, 46, and 67.)

[95] Wikimedia Foundation. Wikiquote. [Online] Available: http://www.wikiquote.
org/, Accessed: 11/08/2010. (One citation on page 15.)

85

http://www.cs.dartmouth.edu/reports/abstracts/TR2008-637/
http://www.cs.dartmouth.edu/reports/abstracts/TR2008-637/
http://www.wikimedia.org/
http://www.wikipedia.org/
http://www.wikipedia.org/
http://en.wikipedia.org/wiki/Wikipedia:Blocking_policy
http://en.wikipedia.org/wiki/Wikipedia:Blocking_policy
http://www.wikiquote.org/
http://www.wikiquote.org/

[96] Wikimedia Foundation. Wiktionary. [Online] Available: http://www.wiktionary.
org/, Accessed: 11/08/2010. (One citation on page 15.)

86

http://www.wiktionary.org/
http://www.wiktionary.org/

	List of Tables
	List of Figures
	List of Acronyms
	1 Introduction
	1.1 Background
	1.2 Nymble Framework

	2 System Requirements
	2.1 Security Requirements
	2.2 Performance Requirements
	2.3 Optional Features

	3 Related Work
	3.1 Anonymous and Pseudonymous Blacklisting Systems
	3.1.1 Pseudonym Systems
	3.1.2 Nymble-like Systems
	3.1.3 Revocable Anonymous Credential Systems

	3.2 (Restricted) Blind Signature Schemes

	4 Nymbler
	4.1 Architectural Overview
	4.1.1 Trust and Threat Model
	4.1.2 Parameters and Notation

	4.2 Cryptographic Preliminaries
	4.3 Threshold Verinyms
	4.3.1 Threshold Signatures
	4.3.2 Initializing the VIs
	4.3.3 Verinym Acquisition Protocol
	4.3.4 Verinym Showing Protocol

	4.4 Nymble Construction
	4.4.1 VERBS
	4.4.2 Nymble Acquisition Protocol
	4.4.3 Nymble Showing Protocol

	4.5 Revocation Mechanisms
	4.5.1 Revocation Lists
	4.5.2 Revocation Protocol
	4.5.3 Trapdoor Discrete Logarithms
	4.5.4 Pseudonym Extraction Protocol
	4.5.5 Revocation Audit Protocol
	4.5.6 Supporting Inter-window Revocation
	4.5.7 Non-membership Proof Protocol

	5 Implementation
	5.1 Threshold Verinyms
	5.1.1 Verinym Acquisition Protocols
	5.1.2 Verinym Showing Protocols

	5.2 Nymble Construction
	5.2.1 VERBS
	5.2.2 Nymble Acquisition Protocol

	5.3 Revocation Mechanisms
	5.3.1 Pseudonym Extraction Protocol
	5.3.2 Non-membership Proof Protocol

	Conclusion
	APPENDICES
	A Security Games
	B VERBS Protocols
	Bibliography

