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Abstract

Database systems employ physical structures such as indexes and materialized

views to improve query performance, potentially by orders of magnitude. It is

therefore important for a database administrator to choose the appropriate con-

figuration of these physical structures (i.e., the appropriate physical design) for a

given database. Deciding on the physical design of a database is not an easy task,

and a considerable amount of research exists on automatic physical design tools

for relational databases. Recently, XML database systems are increasingly being

used for managing highly structured XML data, and support for XML data is be-

ing added to commercial relational database systems. This raises the important

question of how to choose the appropriate physical design (i.e., the appropriate set

of physical structures) for an XML database. Relational automatic physical design

tools are not adequate, so new research is needed in this area.

In this thesis, we address the problem of automatic physical design for XML

databases, which is the process of automatically selecting the best set of physical

structures for a given database and a given query workload representing the client

application’s usage patterns of this data. We focus on recommending two types of

physical structures: XML indexes and relational materialized views of XML data.

For each of these structures, we study the recommendation process and present a de-

sign advisor that automatically recommends a configuration of physical structures

given an XML database and a workload of XML queries. The recommendation

process is divided into four main phases: (1) enumerating candidate physical struc-

tures, (2) generalizing candidate structures in order to generate more candidates

that are useful to queries that are not seen in the given workload but similar to

the workload queries, (3) estimating the benefit of various candidate structures,

and (4) selecting the best set of candidate structures for the given database and

workload. We present a design advisor for recommending XML indexes, one for

recommending materialized views, and an integrated design advisor that recom-

mends both indexes and materialized views. A key characteristic of our advisors

is that they are tightly coupled with the query optimizer of the database system,
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and rely on the optimizer for enumerating and evaluating physical designs whenever

possible. This characteristic makes our techniques suitable for any database system

that complies with a set of minimum requirements listed within the thesis. We have

implemented the index, materialized view, and integrated advisors in a prototype

version of IBM DB2 V9, which supports both relational and XML data, and we

experimentally demonstrate the effectiveness of their recommendations using this

implementation.
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Chapter 1

Introduction

1.1 Motivation

Recently, an increasing amount of data is exchanged, processed and stored in XML

format. In addition, XML is now commonly used in many applications to represent

and exchange semi-structured data. This has led to an increased focus on XML

data management. There are three main approaches for storing and managing

XML data: (1) Native XML databases, (2) Shredding XML data into relational

databases, and (3) XML column type. In this thesis, we focus on XML data that

is stored in an XML column in a table in a relational database. This approach is

now supported by most commercial database systems [15, 73, 76].

Database systems introduce several physical structures to improve the perfor-

mance of query execution. Examples of physical structures that relational database

systems support and XML database systems fully or partially support are indexes,

materialized views, and partitioning. For XML databases, the performance im-

provements provided by these physical structures stem primarily from: (1) direct

access to parts of the data in the XML documents without needing to scan them

(for instance, indexes), (2) grouping parts of the data into one logical unit that

can be scanned independently of other such units (for instance, materialized views

and partitioning), and (3) rewriting the query for a smaller part of the data (for

instance, materialized views).
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The various XML physical structures can potentially improve the performance

of XML database systems by orders of magnitude, but users of these systems now

face the problem of deciding on the best set of physical structures to create for

a given XML database and query workload. Automatic physical database design

has been studied extensively in the context of relational databases, and most com-

mercial database systems now include Design Advisors/Tuners that automatically

recommend various physical structures [3, 22, 23, 87, 92]. However, automatic phys-

ical design for XML databases has not been studied as extensively in the database

literature.

In this thesis, we study automating the physical design of XML databases. We

answer the question “what physical structures are useful for an XML database

and an XML query workload?” and build a system to recommend these physical

structures given an XML database and query workload. We study the automatic

recommendation of two physical structures: XML indexes and XML materialized

views. A well established architecture for physical design recommendation has been

developed in the context of relational physical design advisors. A design advisor

needs to address four questions: (1) how to determine the candidate structures

that would be useful for a query or a workload consisting of a set of queries, (2)

how to expand the candidates with more general ones, (3) how to estimate the

benefit of a physical design configuration (i.e., a set of physical structures), and

(4) how to search all the possible configurations for the best one. The recommen-

dation process is divided into several phases where each phase addresses one of

these questions. Figure 1.1 shows the general architecture of relational database

design advisors, which we follow in our proposed XML design advisors. The query

optimizer is extended with operation modes that allow it to accomplish two tasks:

(1) recommend physical structures that can be useful for a query, and (2) construct

a query execution plan and estimate its cost while assuming the existence of some

physical structures.

XML databases have unique characteristics and so their physical structures are

also different from the ones that are defined and built for relational systems. The
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Figure 1.1: General architecture of a physical design advisor.

unique challenges introduced by XML databases make automatic physical design

for XML databases more difficult than that for relational databases and lead to

the details of the physical design procedure being significantly different. Also, the

physical structures for XML databases are not yet well established and so there is

an opportunity for research on automatic physical design to impact the definition

of the physical structures being recommended. For example, a wide variety of XML

indexes have been explored in the literature [24, 41, 51, 53, 64, 71, 73, 74]. On the

other hand, XML materialized views of various types are still being investigated in

research [1, 7, 44, 73]. In this thesis, we explore using the result of the XMLTable
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functions [49, 73] as relational-structured materialized views to speed up answering

XQuery queries, and we develop an advisor that recommends XMLTable views for

a given workload of XQuery queries.

In this thesis, we focus on developing techniques and algorithms to automate

the recommendation of XML indexes and XMLTable materialized views for a given

XML database and XML query workload. We present two end-to-end advisors: an

XML Index Advisor and an XMLTable View Advisor. We then incorporate these

two advisors into one integrated advisor that recommends both XML indexes and

XMLTable materialized views for an XML database.

To test the validity of our proposed techniques, we have implemented our index,

view and integrated advisors on top of IBM DB2 9 [30, 31, 32, 34]. To support our

index advisor, we have implemented optimizer extensions in a prototype version of

IBM DB2 9, which supports both relational and XML data. These extensions have

been incorporated into the mainline code of DB2 and are available in versions of

DB2 starting with DB2 9.7. Our XML Index Advisor application, which uses the

server-side extensions that we have implemented, is available for download from

the IBM alphaWorks web site [33].

1.2 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 presents a summary

of research areas that are related to this work. The following chapters present our

contributions.

In Chapter 3, we describe our proposed architecture for building an XML Index

Advisor. We start by describing all the required phases of the recommendation

process and the new components added to the database query optimizer. Next,

we present our algorithms for recommending two common types of XML indexes:

linear and multipath XML indexes. Finally, we describe our implementation of

an XML Index Advisor for IBM DB2 that recommends linear XML indexes and

present the results of an experimental evaluation.
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In Chapter 4, we focus on one of type of materialized views that have been

proposed in the literature for XML databases, namely XMLTable views. We de-

scribe the recommendation process for XMLTable views given an XML database

and XQuery workload. Finally, we present our implementation and evaluation

results for our XMLTable View Advisor.

In Chapter 5, we combine our index and view advisors proposed in Chapters 3

and 4 to build an integrated advisor. We compare the results from the XML

Index Advisor (Chapter 3), the XMLTable View Advisor (Chapter 4), and the

Integrated Index-View Advisor we present in this chapter to show the efficiency of

our integration techniques.

We conclude by summarizing our contributions in Chapter 6. We also present

some directions for future work. Finally, we include the following three appendices.

Appendix A describes the details of the process we followed to verify that the

estimation of the penalty incurred by the update statements because of the presence

of XML indexes in the database is close to the actual value. Appendix B lists the

workloads that we have used in our experiments. Appendix C describes in detail a

run made by the advisor and the various decisions made by its different modules.
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Chapter 2

Background and Related Work

2.1 XML Databases

Several approaches have been proposed in the database research literature for stor-

ing and querying XML data. We note the following approaches:

• Native XML databases. In this approach, an XML document is the logical

unit of storage and a logical model is defined for querying these documents.

One of the early attempts to build a database management system for semi-

structured data using the native storage approach is Lore [64]. Natix [37] and

eXist [35, 65] are other examples of database systems that are designed for

natively storing and processing XML data.

• Shredding XML data into relational databases. This approach at-

tempts to benefit from the mature technology in relational database systems

by shredding XML data and storing it in relational tables [17, 18, 39, 26,

27, 84, 91]. These shredding techniques are well studied in the literature.

They range from schema oblivious storage where XML elements are stored in

relational tables regardless of their schema [39, 26, 27, 89], to schema aware

approaches where the schema of the XML data is used to determine a good

relational storage strategy [18, 81].
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• XML column type. Recently, major commercial database vendors have

added support for XML storage and querying to their relational database

systems by expanding their column type definition to include an XML col-

umn type [15, 73, 76]. This extension involves not only supporting a new

storage type but also extending the query processor and optimizer to handle

XML queries, in particular XQuery and SQL/XML queries [14, 58]. Database

systems that support an XML column type also support building XML phys-

ical structures that speed up query processing, such as XML indexes [71].

In this thesis, we focus on recommending physical designs for XML data that

is stored natively. We have developed our design advisors on top of a relational

database system extended with an XML column type, but our proposed algorithms

can also be used for XML data that is stored and managed in a native XML

database: an XML query processor and the support of XML physical structures

are the two main requirements for our framework.

2.2 XML Query Languages

There are several programming and query languages that can process XML. In this

section, we briefly describe XPath, XQuery and SQL/XML. XPath [25] is a native

XML programming language that is used to address (i.e., refer to) parts of an XML

document by modeling the document as a logical tree of nodes and then operating

on them. XPath enables users to identify different parts of an XML document,

but does not support more complex operations. XQuery [16] and SQL/XML [67]

are query languages that can handle more complex operations on XML such as

joins, aggregation, or user defined functions. Both these languages use XPath path

expressions to extract data in XML documents.

XQuery is a native XML query language that is supported by most major

database vendors. It is an extension of the XPath query language to allow inte-

grating data from different data sources and creating new XML structures as the

result of queries. An XQuery query has four main blocks (or clauses): FOR, LET,
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WHERE, ORDER BY, and RETURN. XQuery queries are referred to as FLWOR

expressions or FLWOR blocks, pronounced “flower.”

SQL/XML is an extension of the SQL query language with new functions that

handles XML data. It is mainly useful when queries span relational and XML data

sources. SQL/XML extends SQL with functions that allow retrieving XML data,

creating new XML structures, and performing other essential XML data processing

operations.

2.3 XML Indexes

The retrieval of elements from XML data can be helped by the presence of an XML

index, and there have been many proposals for different types of XML indexes over

the past few years [24, 41, 51, 53, 64, 71, 73, 74]. XPath path expressions are

usually used to specify the elements in the XML data that are being included in

the indexes. XML indexes can be categorized into structural indexes and value

indexes. We discuss in more details the different types of XML indexes and their

implementation in commercial database systems in Chapter 3.

2.4 XML Materialized Views

Creating views of relational and XML data can take place on either the logical

or physical level or both. On the logical design level, data can be XML and be

published as relational views [44, 63], or data can be relational and be published

as XML views [19, 28, 36, 63, 80]. Queries are written according to the published

schema, so if, for example, the published schema is XML and the data is stored

in relational format, we need to (1) translate the XML queries to SQL queries

according to the stored schema, and (2) transform the XML data to relational to

be stored in the relational store, and vice versa for query answers.

On the physical design level, materialized views of XML data can be in one of

the following forms:
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1. Views of XML data fragments that are defined by XQuery queries [7, 72]. The

queries written against the views are also in XQuery. Result containment is

checked to decide if a view can be used to answer a query.

2. Views of XML data fragments that are defined by XPath path expressions [12,

61, 88]. Queries can be either XPath or full XQuery. In the latter case, indexes

containing fragments of the data constitute the XML views that are used to

answer the XQuery queries.

3. Views of XML data elements and their values that are defined by XPath

path expressions and stored in relational tables. Queries can be written us-

ing XQuery or SQL/XML. When XQuery queries are used, they need to be

translated into SQL queries to be executed on these materialized relational

views. The expected benefit of using these views stems from replacing XQuery

queries on the XML data by SQL queries on the relational materialized views

which saves the navigation of the XML data. This approach has some similar-

ities to shredding the XML data into relational tables [17, 18, 39, 62, 81, 84].

We adopt this approach in this thesis and elaborate on it in Chapter 4.

2.4.1 XMLTable Views of XML Data

Using relational materialized views for XML data and queries allows us to benefit

from the rich and mature infrastructure for these views built into many database

systems. Using these views provides a simple and effective way to improve the

performance of XML query workloads by leveraging existing database system in-

frastructure. However, building relational views of XML data requires a mechanism

that maps between XML elements and their corresponding column names in the

relational views. For example, in ROX [44], the XML Wrapper of IBM DB2 [50]

is used to do this mapping. The XML Wrapper allows CREATE NICKNAME

statements that include nicknames for XPath expressions in the XML document.

A new approach for creating relational views for XML data is to use the

XMLTable function [1, 40, 73, 90]. XMLTable is an SQL table function that cre-
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SELECT u. col1, u.col2, ...

FROM tableName

col1 col2 col3

Derived table column names

FROM tableName,

XMLTABLE (‘$docRef/rowGeneratorQuery’

PASSING tableName.colName as “docRef”

COLUMNS

“col1”  type1 PATH  ‘path1’

…… …... …...

…… …… …...

Row 

generator
Navigated 

columns“col2”  type2  PATH  ‘path2’

.......

)as u 

…... …... …...columns

Figure 2.1: XMLTable view example.

ates a virtual derived relational table based on XML data. The virtual table can

then be queried using SQL or materialized as a relational view [40]. An example of

using the XMLTable function to create indexes is described in [60]. The XMLTable

function is executed on a table with an XML-typed column. Figure 2.1 illustrates

an example SQL query with an XMLTable function. The description of the syntax

of the XMLTable function is as follows:

• A row generator XQuery string, which is an XQuery expression. The XMLTable

function iterates through the results of the XQuery expression in the row gen-

erator and generates a tuple in the derived table for every one of these results.

An XQuery expression can be an XPath expression and hence each element

reachable by this path expression is used to create a row in the derived table.

• Column navigators are XPath navigation expressions that define the columns

of the derived table to be created by the XMLTable function. Each column

navigator entry is bound to the result of the XPath navigation expression and

is used to populate a column in the derived table.

• An optional XMLNAMESPACES clause, which contains the namespace dec-

larations that are referenced by the row generator and the column navigators

(not shown in Figure 2.1).

• An optional passing clause, which specifies input values.

Consider the data shown in Figure 2.2, and assume that this data is stored in

table security that has an XML column sdoc. Now, let us execute the SQL query
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<?xml version="1.0" encoding="US!ASCII"?>

<Security id="10000“> 

k i i /<Name>Track Communications, Inc.</Name>

<SecurityInformation>

<StockInformation>

<Sector>Healthcare</Sector> 

</StockInformation>/

</SecurityInformation>

<Yield>6.95</Yield> 

</Security>

<?xml version "1 0" encoding "US ASCII"?><?xml version="1.0" encoding="US!ASCII"?>

<Security id="10001“> 

<Name>Micro International Limited</Name>

<SecurityInformation>

<StockInformation>

<Sector>Conglomerates</Sector> 

</StockInformation>

</SecurityInformation>

<Yield>4.78</Yield> 

</Security></Security>

Figure 2.2: Example XML data.

in Figure 2.3 (which uses the XMLTable function) on this data. This query can be

used to define a relational materialized view on the XML data. First, we execute the

query in the row generator /Security. The resulting XML fragments are similar

to the original data shown in Figure 2.2. Next, we iterate through these resulting

XML fragments and generate a row for each one of them. For every resulting

XML fragment, a further navigation is needed to process the path expressions in

the column navigators. Finally, the extracted values from processing the column

navigators are stored in the columns of the corresponding row. Table 2.1 shows the

resulting relational table.

Using the XMLTable function to create materialized relational views of the

XML data allows us to benefit from both the mature relational view matching [43]

and also XPath view matching [12, 61, 88]. The XMLTable is defined in the FROM

clause of a SELECT statement which allows two levels of matching of queries with

views. The query optimizer matches queries that contain XMLTable functions with
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SELECT u. Yield, u.Sector, u.Name

FROM security,

(‘$ / ’XMLTABLE (‘$sec/Security’

PASSING security.sdoc as “sec”

COLUMNS

“Yield”  double  PATH  ‘Yield’

“Sector”  varchar (20)  PATH  ‘SecInfo/*/Sector’( ) / /

“Name”   varchar(100)  PATH  ‘Name’

) as u 

Figure 2.3: An XMLTable example.

Yield Sector Name

6.95 Healthcare Track Communications, Inc.

4.78 Conglomerates Micro International Limited

Table 2.1: Result of query with XMLTable.

XMLTable views. Next, XMLTable definitions of the query and view can use XPath

matching to find the needed compensation and so to rewrite the query to use the

contents of the view.

A discussion of the possible techniques and issues related to matching and

rewriting SQL/XML queries with XMLTable functions to use XMLTable views

is presented in [40]. That work focuses on describing the matching and rewriting

rules needed by a query optimizer to use XMLTable views. The input queries to the

optimizer are SQL/XML queries that have XMLTable functions. The materialized

views stored in the database are XMLTable views which are similar to the ones

described above. The row generators and column navigators are assumed to be

XPath path expressions.

2.4.2 XQuery Views of XML Data

Query containment decides if a view contains the answer of a query. Containment

in nested XML queries is studied in [29]. The authors show that the containment of

conjunctive XML Queries (c-XQueries), which are analogous to select-project-join
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queries in SQL, can be checked in polynomial time if the fanout (number of sibling

sub-blocks) of the query is restricted to be 11. The authors also show that (1)

query containment for c-XQueries with arbitrary fanout but fixed nesting depth is

coNP-complete, and (2) query containment for c-XQueries with arbitrary fanout

is coNP-hard. Due to the complexity of checking query containment, and hence

query rewriting, all the work on rewriting XQuery queries using XQuery views

addressed views that are a restricted subset of XQuery. The main challenge of

XML query containment is the nesting that can occur in the XML structures in the

query results. Rewriting XQuery queries using views that are a subset of XQuery

and allow nesting in the result structure is studied in [7, 72]. The work presented

in [72] focuses on rewriting XQuery queries using views that are a subset of XQuery

and feature nested FLWOR blocks. A different approach is studied in [7], namely

rewriting XQuery queries in the presence of a structural summary of the document

(for example, a Dataguide [41]) as a constraint. In that work, both queries and

views are described by extended tree patterns [6], which are semantically close to

XQuery. Using tree patterns to represent the queries and the views helps query

matching and query containment of XQuery queries, and hence allows expanding

the set of views that can be used to rewrite queries.

2.5 Automatic Physical Design for Relational Data-

bases

Most major commercial database systems include physical design advisors that

help database administrators automatically select a physical design for an input

database and query workload. These advisors are coupled with the query optimizer

to estimate the benefit of using candidate physical structures [3, 22, 38, 92]. In this

section, we summarize the progress made over the last decade in the area of physical

design for relational databases.

1We restrict ourselves to this class of queries in Chapter 4

13



2.5.1 What-if Analysis: Virtual Physical Structures

A common approach that is used by almost all commercial design advisors of rela-

tional database systems is using the optimizer cost model to estimate the cost of

a query in the presence of a candidate physical structure. In [38], a new Explain

statement, which triggers executing queries in a special optimizer mode, is intro-

duced. In this optimizer mode, the optimizer estimates the cost of queries when

hypothetical (virtual) physical structures are assumed to be present in the database.

Moreover, building statistics for these hypothetical indexes is introduced in [38]. A

detailed discussion of collecting statistics for such hypothetical indexes and of cost

estimation formulas that use these indexes can be found in [87]. The new optimizer

mode allows the physical design tool to use the optimizer’s cost model instead of

building a new cost model to estimate the cost of queries in the presence of dif-

ferent candidate physical structures. This process is called what-if analysis and a

detailed description of a tool that performs this process appears in [22]. The tool

uses the what-if analysis to help a database administrator choose between physical

structures.

2.5.2 Automatic Recommendation of Relational Indexes

Two end-to-end relational index advisors are described in [23] and [87]. The ar-

chitecture that we described in Chapter 1 (Figure 1.1) is followed, and hence the

solutions presented in these papers address the following areas: (1) enumerating

candidate indexes, (2) enumerating index configurations (sets of indexes) and se-

lecting one of them according to a performance criteria and constraints, and (3)

estimating the benefit of indexes and index configurations. Next, we describe some

of the ideas developed for candidate index enumeration and index selection.

Candidate Enumeration

The number of indexes enumerated by the index advisor tool is considered as a

measure of its efficiency. The efficiency of the index advisor is reduced when there
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is a large number of candidate indexes to choose from. Yet, an advisor should not

ignore candidates that can benefit workload queries. Columns that appear in WHERE,

GROUP BY, and ORDER BY clauses are indexable columns that can be considered as

candidates when searching for the best index configuration [23, 87].

Indexable columns provide candidate single column indexes. However, multi-

column indexes are also important. An iterative algorithm that starts with single

column indexes and then consider other combinations of multiple indexes that are

admissible is proposed in [23]. According to the algorithm, all the columns that are

included in a multi-column index must be important indexable columns themselves.

Enumerating Index Configurations and Searching for the Best Confir-

guartion

The number of indexable columns can grow very large for any workload. Hence, this

large set of possible indexes is pruned into a smaller set before enumerating index

configurations and searching for the best one that fits the performance criteria.

In [23], the best index configuration is selected for every query in the workload.

The union of the resulting indexes constitutes the candidate indexes for the entire

workload and a configuration search algorithm is then used to select a configuration

of indexes of size k that has the lowest workload cost. An exhaustive search of all

the index configurations is infeasible because the number of candidates can be

large and hence an approximate search algorithm is used. To select the best index

configuration for the entire workload, first, an exhaustive search is performed to

select the firstm indexes. Next, a greedy search is performed to select the remaining

k −m indexes.

In [87], a greedy search is performed to select indexes where the total size of

the selected indexes can fit within a disk space constraint. Moreover, to reduce the

number of optimizer calls, the optimizer is extended to include the enumeration

algorithm and hence only one call to the optimizer is made by the index advisor

tool to select the best index configuration.
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2.5.3 Automatic Recommendation of Relational Material-

ized Views

Materialized views have richer structure than indexes, which makes automatically

selecting a configuration of materialized views for SQL databases a nontrivial task

compared to selecting indexes. Moreover, materialized views can have relational

indexes on them. The approaches presented in [4] and in [92] select indexes and

materialized views for a database given a workload of queries.

A large number of syntactically valid materialized views can exist for a workload

of queries. However, considering all of these materialized views in the configuration

enumeration process will limit the scalability and practicality of the materialized

view advisor. Algorithms for enumerating candidate materialized views are intro-

duced in [4, 92]. In [4], the candidate materialized views enumeration process is

divided into the following steps:

1. Finding interesting table subsets. A new metric is defined to capture

the usefulness of a table subset (i.e., columns of a table in the database) in

materialized views. Only table subsets that have a weight according to this

metric exceeding a certain threshold are considered in the following steps.

2. Finding a configuration of materialized views for every query in

the workload. New rules are introduced to find the set of materialized

views that are useful for a query based on the table subsets found in Step 1.

Next, the best configuration of materialized views is selected for every query

in the workload.

3. Merging views found in the previous step. If storage is constrained,

then some of the views recommended for all the queries in the workload

will not be recommended in the final configuration, leading to sub-optimal

performance. A step of merging views is performed to try to avoid such

sub-optimal recommendations.
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In [92], the following steps are followed to enumerate candidate materialized

views:

1. For every query in the workload, the combination of SELECT-FROM-WHERE-

GROUP BY columns in the query is used to generate a starting set of candi-

date materialized views. Next, rules are applied to generalize the generated

views. For example, predicates like A=5 are generalized to GROUP BY A.

2. Multi-query optimization described in [57], is then used to find common

subexpressions among multiple views.

2.5.4 Recommending Both Indexes and Materialized Views

Both indexes and materialized views can improve query execution. Yet, they com-

pete for the same resources (for example, storage). There are two approaches for

enumerating indexes and materialized views for a workload:

1. Selecting indexes followed by materialized views or vice versa. This approach

has the drawback of missing opportunities because it ignores the interaction

between indexes and materialized views and that their benefit to a workload

of queries can increase due to the presence of other physical structures. In

addition, a decision should be made about the amount of resources (typically

storage) to be dedicated to each type of physical structure.

2. Using the design advisor’s combinatorial search algorithm to select indexes,

materialized views, and indexes on materialized views at the same time.

Work described in both [4] and [92] follows the second approach. Weights are

introduced in [92] to favor one type of physical structure over the other.

2.6 XML Index Advisors

A few attempts were made to recommend indexes for XML data that is shredded

and stored in relational databases [21, 42]. In [42], the proposed approach focuses
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on a specific type of structural index that can be used over relational databases.

The proposed solution cannot be generalized to other types of database systems

and the proposed cost model is independent of the database system, which can lead

to inaccurate estimates. In [21], a new approach to take the interplay of logical

and physical design into consideration when shredding XML data into relational

databases is proposed. The physical design targets relational database systems and

so cannot be adopted in database systems that store XML data natively.

Two recent works have made preliminary attempts to tackle the index recom-

mendation problem for XML databases [46, 75]. They both suffer from having

rudimentary techniques for candidate generation, cost estimation, and configura-

tion enumeration. Furthermore, the index advisors proposed in these works are

independent of the database system query optimizer, so there is no guarantee that

the recommended indexes will be of use to the optimizer, and no guarantee that

the benefits of candidate index configurations are estimated with any accuracy.

In addition, neither of them tackles the problem of generalizing the initial set of

candidates, which is equivalent to merging physical design structures in relational

databases [3]. We address these shortcomings, and we also propose a configuration

enumeration algorithm that takes into account the interaction between indexes and

yet is efficient in the number of optimizer calls it makes.

In [75], a tool is proposed for selecting indexes for an XML database system.

The main focus of the work is to find a good cost model for selecting the best

set of indexes for a query workload, making use of structural information and

data statistics. In our work, we adopt a simple and powerful solution to the cost

estimation problem by leveraging the query optimizer cost model. The candidate

indexes used in [75] are all path expressions that occur in the data, with some

grouping of structurally equivalent candidate indexes based on schema information

if this information is available. This method is inefficient because it leads to an

uncontrolled explosion of the space to search for the best set of candidates. The

candidate generation process does not attempt to generate candidates that are

useful for multiple queries. In our work, we rely on the query optimizer to enumerate
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only the relevant candidate indexes, and we generalize the candidates to generate

additional candidates that are useful to similar queries that may appear in future

workloads. This results in a much smaller search space of possible configurations,

with much more relevant indexes.

Another index recommender for XML is presented in [45, 46]. This index rec-

ommender analyzes the workload periodically and creates or drops XML indexes

on the fly. As in [75], the cost model used is independent of the query optimizer

and hence likely to be inaccurate. Candidate enumeration is not described. For

configuration enumeration, [45] proposes using either a greedy search, which can be

inaccurate, or an exhaustive search, which is slow. The configuration enumeration

step in [45, 46] also ignores the penalty for updates, inserts, and deletes.

2.7 XML View Advisors

In Chapter 4 we propose an advisor that recommends relational materialized views

(XMLTable views) for XML queries. In this section, we first discuss existing ap-

proaches that decide on how to store the data based on its characteristics. Next, we

present previous cost based approaches that are used to recommend materialized

views for XML databases. Finally, we briefly present background about XQuery

to SQL translation which is required by the query optimizer to be able to rewrite

XQuery queries using XMLTable views.

2.7.1 XML and Relational Storage

Relational and XML data reside side by side in current database systems [14].

Query execution cost depends on the storage mode of the data, and so there are

situations where it is efficient to use a relational representation of the data and

others where it is more efficient to use an XML representation. A discussion of the

factors affecting the choice of using a relational or XML representation to store data

is presented in [48, 56, 69]. The situations where using XML data representations

is beneficial are as follows: (1) the schema is continuously evolving, (2) the data
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is inherently hierarchical and hence the XML representation saves (a) normalizing

the data when storing it and (b) reconstructing the data by joining tables at query

time, (3) the schema has sparse attributes, and (4) the data has a complex structure

and small components only have meaning in their context. On the contrary, using

relational representation is more beneficial in these situations: (1) high performance

is required and XML data parsing is frequently needed to answer queries, (2) data

is required to be stored as relational, for example when we need to apply OLAP

processing to the data in a data warehouse, and (3) the data is naturally tabular

or can easily be normalized. Since the appropriate representation depends on the

data and the usage scenario, the work in [48, 56, 69] attempts to find a logical

design for a database given the characteristics of the data to be stored in it.

Application access patterns of the data can also help in choosing how to store

this data. These alternative access patterns can be exploited to add materialized

views to the database to enhance query execution performance [43]. To incorporate

both relational and XML data models in the same database system, several hybrid

XML-relational architectures are presented in [44]. In Chapter 4, we study building

relational materialized views as an alternative access pattern for XML data.

2.7.2 Cost Based Recommendation of Materialized Views

for XML Data

Another area where relational and XML data coexist is publishing relational data

as XML, an area that has been extensively studied in the last few years. In these

systems, data is stored in relational stores and published as an XML schema, which

requires translating XQuery queries written for the published XML schema into

SQL queries to be executed on the relational data stores, and translating relational

data into XML data that satisfies the published XML schema. Most publishing

techniques have one fixed way to translate the relational data into XML based on

the XML schema. However, some research projects attempt using a cost based

analysis for choosing the best translation [17, 28].
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In MARS [28], the data is originally stored in relational and XML format.

Partial relational and XML views of the data are also created. One virtual XML

view is published and the incoming queries are translated according to the source

that is chosen to answer them. A cost based analysis to choose the best query

translation is proposed.

LegoDB [17] also uses a cost based approach to choose the mapping between

XML and relational views of the data. The application using the data is represented

by a workload of queries. A subset of the XML schema, called p-schema, is used

to describe the data. P-schema has the advantage that it can be directly mapped

to relational data, and it is also annotated with statistical information. Initially,

different candidate p-schemas are enumerated. Then, a greedy heuristic search

is used to find the best schema. The cost of a schema is estimated by mapping

between the XML data and the relational storage, translating the XML workload

according to this mapping, importing the XML statistics into the new relations,

and finally, estimating the cost of the workload using a relational query optimizer.

An attempt to partially automate the logical design of a hybrid (Relational-

XML) database is presented in [69]. The input to the proposed Schema Advisor

is an annotated information model that is considered as a conceptual design for

the database. Based on this annotated model, the schema advisor analyzes various

storage alternatives and chooses the best of them according to a scoring function.

Users of the system can also give their input to the tool to guide the advisor process.

Another cost based approach for automating the logical design of XML databases

is proposed in the ULoad project [8]. That work uses the XML Access Mod-

ules (XAMs) algebraic formalism to represent the data and its storage structures.

ULoad uses a fixed set of designs to choose from, but users can expand them with

their own persistent data structures using the same graphical language. A struc-

tural summary of the data is then used to estimate the cost of answering a workload

of queries given a configuration of XAMs.
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2.7.3 XQuery Translation to SQL

In this thesis, we propose using relational materialized views of XML data to speed

up the execution of XQuery queries on this data. This requires translating XQuery

queries on the XML data to SQL queries on the materialized views. In the liter-

ature, XQuery translation to SQL has traditionally taken place at the application

level, where the XQuery string gets translated into an SQL string before it is sent

to the database server [39, 26, 27, 84, 89]. In comparison, XQuery native compila-

tion, described in [59] takes place inside the database server. During XQuery native

compilation, an XQuery query is compiled into the server internal data structures

which are shared between XQuery and SQL queries.

The main focus in [59] is to rewrite XQuery queries into SQL queries using the

SQL/XML extensions provided by the Oracle DBMS. This rewriting is done during

query compilation to take advantage of the powerful capabilities of the full-fledged

relational query optimizer. The first phase of XQuery compilation is to parse the

query into the XQueryX [66] representation. Next, static type checking, which is

important for XQuery optimization, is performed. Finally, the XQuery query is

rewritten to an SQL/XML query. To rewrite XQuery to SQL/XML, each XQuery

expression is converted into an SQL operator or operator tree or a sub-query block.

In some cases, when native compilation is not possible (i.e. a mapping between

XQuery and SQL/XML is not available), a hybrid approach is taken, and a co-

processor is used to handle these parts of the XQuery query. In Chapter 4, we take

a similar but simpler approach for XQuery to SQL/XML translation. We limit

ourself to a subset of XQuery that can be mapped to SQL/XML with XMLTable

functions.
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Chapter 3

Recommending XML Indexes

Having presented the necessary background and survey of related work in the pre-

vious chapter, we now move to presenting the main technical contributions of the

thesis. In this chapter we present the XML Index Advisor, and in Chapters 4 and 5

we present the XMLTable View Advisor and the Integrated Index-View Advisor,

respectively.

3.1 Introduction

XML database systems employ various types of structural and value XML indexes

to improve performance, potentially by orders of magnitude. Also, partial indexes

are now supported by some commercial database systems [71, 73]. A partial index

is an index on parts of an XML document that match index patterns specified

by the user. These patterns can be represented, for example, by XPath path

expressions, in which case only the XML elements that are reachable by these

path expressions are included in the index [14]. Partial XML indexing leads to

smaller indexes that include only the paths in a document that are relevant to user

queries. This makes index maintenance on database updates more efficient, and

significantly improves index lookup performance over indexes that include all the

paths in a document [10]. The large number of partial indexes that a user can

choose makes the decision of which ones to build more difficult. In the rest of this
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chapter, we present an XML Index Advisor that automatically recommends the

best set of XML index patterns for a given database and query workload, while

taking into account the cost of updating the index on data modification. XML

index patterns can be linear patterns or general patterns that allow branching. We

refer to general index patterns that allow branching as multipath index patterns.

Hence, in this chapter, for each phase of the recommendation process, we outline

the basic requirements for this phase, and we then describe our approaches for

recommending both linear XML index patterns and multipath XML index patterns

specific to this phase. In our implementation of the XML Index Advisor, and in

our experimental evaluation using this implementation, we only recommend linear

index patterns. Implementing and evaluating the recommendation of multipath

XML index patterns requires more support from the database system (the index

manager and query optimizer) than was available to us in DB2 at the time of this

writing.

Approaches developed for recommending indexes for relational databases, dis-

cussed in the previous chapter, cannot be used for recommending indexes for XML

databases due to some challenges introduced by XML. These challenges stem from

the richness of XML query languages and the potential complexity of the structure

of XML data. The primary use of XML indexes is to answer XPath [13] queries

(path expressions) within XQuery queries and SQL/XML queries. We illustrate

the challenges introduced by XML through an XPath example: XPath supports

wildcards and descendant navigation, and XML data can be recursive. Thus, for

any query, there can be several potentially useful index patterns. For example, the

XPath query /Security[Yield>4.5] can benefit from a value index on the index

patterns /Security/Yield, /Security/*, or //Yield1. The rich structure of XML

leads to an exponential increase in the number of candidate index configurations

that need to be searched to find the optimal one, which places additional impor-

tance on the search algorithm used, and makes it important to try to minimize the

number of query optimizer calls to evaluate the benefit of index configurations.

1Throughout this thesis, we use examples from the TPoX benchmark [70].
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Because of the added challenges, a new XML Index Advisor is needed. This

advisor must address the following four questions: (1) how to determine the candi-

date indexes that would be useful for a query, (2) how to obtain candidate indexes

that would be useful for multiple queries in the workload starting from those that

would benefit individual queries, (3) how to estimate the benefit for a given query

of a particular index configuration (i.e., a set of indexes), taking into account the

increased cost of update statements due to indexes in this configuration, and (4)

how to search the space of possible index configurations for the optimal configu-

ration that provides the maximum benefit to the workload, while satisfying disk,

schema, and other system constraints. We present our design choices in answering

these four questions for XML indexes in the remainder of this chapter. These four

question have been addressed for relational databases [23, 87] but our proposed

solution is different for the following reasons:

1. While relational indexes are built on one or more table columns that can be

enumerated by a relational index advisor, an XML index advisor also needs

to identify the XPath path expressions to build indexes on. Multiple XPath

expressions can exist in the same column and hence multiple indexes could

reference the same column of a table.

2. Since XML indexes are different from relational indexes, their generalization

process is inherently different.

3. We use what-if analysis to estimate the benefit of XML indexes. This process

mainly depends on the virtual indexes that we create in the database and the

statistics that we collect for them. We propose a new type of virtual indexes

and new formulas for generating statistics on these virtual indexes.

4. New types of interactions between XML indexes can exist and we address

them in the search algorithms that we propose.

We have implemented an XML Index Advisor that recommends linear indexes

in a prototype version of IBM DB2 9, which supports both relational and XML
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data, and we experimentally demonstrate the effectiveness of our techniques us-

ing this implementation. Part of this work appeared in [32] and [30], and it was

demonstrated in [31].

The rest of this chapter is organized as follows. In Section 3.2, we describe

the architecture of the proposed XML Index Advisor. We describe the details of

the Index Advisor phases in the following sections. In Section 3.3, we introduce

our algorithm for enumerating candidate XML indexes. Section 3.4 presents the

generalization algorithm that we use to expand the index candidates. In Section 3.5,

we describe the approach we used to estimate the benefit of indexes and index

configurations. We then discuss the combinatorial search algorithms that we used

to find the optimal index configuration in Section 3.6. Finally, we describe our

implementation of an XML Index Advisor for DB2 and show our evaluation results

for the proposed techniques.

3.2 Overview and Architecture

3.2.1 XML Indexes

XML query languages (for example, XQuery and SQL/XML) use XPath path ex-

pressions to represent elements to be retrieved from the data. The retrieval of

elements from the XML data can be helped by the presence of an XML index, and

there have been many proposals for XML indexes over the past few years. XML

indexes can be categorized into structural indexes that speed up navigation through

the hierarchical structure of the XML data (e.g., [53]), and value indexes that help

in retrieving XML elements based on some condition on the values they contain

(e.g., [71, 73]). A structural index can help in answering an XPath query such

as /Security/Symbol (find all security symbols), while a value index can help in

answering an XPath query like /Security[Yield >= 4.5] (find all securities with

yield greater than 4.5).

26



Covering indexes (for example, DataGuide [41], 1-Index [68], and F&B-

Index [2]) can grow as large as the data that they index [52], so they might not im-

prove query execution time. In addition, large indexes are harder to maintain than

smaller ones. Unlike covering indexes, several proposals of XML indexes have the

ability to partially index the XML data to improve the speed of index maintenance

and lookups. In this case, the index includes only the XML elements that are reach-

able via specific index patterns [14, 73]. These index patterns are typically speci-

fied as XPath expressions. For example, we can have an index that includes only

XML elements that are reachable by the pattern /Security/*. This index would

be useful for answering queries such as the example queries above, but it would

not be useful in answering queries on, say, /Security/SecInfo//Sector because

/Security/* only indexes elements that are immediate children of /Security.

An example of a database system that allows partial indexing of XML data is

DB2. In DB2 [14, 15], XML data is stored natively in columns with XML data

type. In the create table statement, one or more columns can be defined to be

of type XML. For every row in the XML column of the table, a well formed XML

document is stored. XML indexes are created for one XML column and would

only include elements from all documents of that column that are reachable by a

pattern that is given in the create index statement. Moreover, only elements that

can be cast to the data type specified in the create index statement are included

in this index. For example, the data definition language (DDL) statement for

creating an index on an XML column SDOC of table Security, with index pattern

/Security/*, is shown in Figure 3.1. Linear XML indexes are implemented in

DB2 as B-trees, so they can use the same data structure and concurrency control

and recovery algorithms as relational indexes. A detailed description of the XML

indexes supported by DB2 appears in [14, 71]. Every entry of the index refers to

one XML node stored in a row of the table. For a single row in the table, there can

be zero, one, or multiple index entries. Every index entry includes:

1. A RowID to identify the row in the table and hence the document containing

the indexed node.
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2. A PathID to identify the path to the indexed node.

3. A NodeID to identify the specific node being indexes.

4. The value stored at that XML node.

CREATE INDEX securityVals_db2 ON Security(SDOC)y _ y( )

GENERATE KEY USING XMLPATTERN /Security/*

AS SQL DOUBLE

Figure 3.1: Example DDL for creating an XML index in DB2.

Partial indexes are also supported in Oracle 11g [73]. Oracle 11g allows two

types of indexes: Function-Based Indexes and XMLIndex. Function-Based Indexes

are similar to the XML indexes allowed in DB2, as one index includes the elements

and values specified by a linear XPath expression. XMLIndex is a more general

index that can include all the elements in the XML documents while allowing path

subsetting, which is the inclusion and exclusion of path expressions. Elements that

are reachable by multiple paths in the data are included in the XMLIndex, so it is

an example of a multipath XML index. Path subsetting allows us to create smaller

indexes and hence improves the performance of index maintenance. Every entry of

the index includes:

1. A RowID, which specifies the row ID of the table.

2. A PathID, which is a unique identifier for the XPath path to the node.

3. An ORDER KEY to identify the hierarchical position of the node.

4. A LOCATOR, which specifies the location of the corresponding document

fragment.

5. A VALUE, which is the text of an attribute node or a simple element node.

Secondary indexes can be built on the XMLIndex to enhance the performance of

index navigation. Example DDL statements for creating Function-Based and XM-

LIndex indexes are shown in Figures 3.2 and 3.3, respectively. The DDL statement
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that creates a Function-Based index shown in Figure 3.2 includes all the elements

that are reachable by the path expression /Security/Symbol. We can use an

XMLIndex index to include elements reachable by multiple path expressions. For

example, the DDL statement shown in Figure 3.3 creates an XMLIndex index that

includes elements that are reachable by the path expressions: /Security/Symbol

and /Security/SecInfo//Sector.

CREATE INDEX securityVals_ORACLE11g_fn_based ON Security 

(extractValue(SDOC, '/Security/Symbol'))

Figure 3.2: Example DDL for creating a Function-Based index in Oracle.

CREATE INDEX securityVals_ORACLE11g_XI ON Security(SDOC)

INDEXTYPE IS XDB.XMLINDEX

PARAMETERS ('PATHS (INCLUDE (/Security/* 

/Security/SecInfo//Sector))')

Figure 3.3: Example DDL for creating an XMLIndex that uses path subsetting in

Oracle.

In the rest of this chapter, we present algorithms for two types of XML indexes:

linear XML indexes and multipath XML indexes. Linear XML indexes are similar

to the XML indexes implemented in DB2 and the Function-Based indexes imple-

mented in Oracle. Multipath indexes are similar to XMLIndex indexes in Oracle

11g. We represent linear path expression patterns as linked lists in which each

node represents a path navigational step. Figure 3.4 shows the representation of

the index patterns /Security/Symbol.

A linear index represents all the XML nodes reachable by the index pattern.

Each entry in the index represents one of these nodes, and contains the value at

this node, the record or document ID in which the node appears, and the node ID

within this record or document. A query operator can use the index as a structural

index or a value index. To use the index as a structural index, the query operator

would scan all the entries in the index, thereby obtaining all XML nodes reachable
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Symbol/Security/

root

Symbol/Security/

/Security 

/Symbol

nullnull

Figure 3.4: An example of the structure used to represent linear indexes.

by the XPath path expression used as the index pattern. To use the index as a

value index, the query operator would provide a lookup value and get back all the

nodes that contain this value.

Multipath indexes can be represented as a tree where the leaf nodes are the

indexed nodes. For example, if the following two path expressions are included

in the multipath index: /Security/Yield and /Security/SecInfo/*/Sector,

then we represent them with an index tree that has the linear representation

/Security〈Yield〉/SecInfo/*〈Sector〉. The nodes enclosed in angle brackets in

the XPath expression are the nodes that are being indexed in this tree.

Another example of a multipath index is an index that includes these two path

expressions: /Security and /Security/Yield. A representation for this index is

/〈Security〈Yield〉〉. In addition, when indexing more than one element with the

same ancestors, we use ∪ to represent this. For example, to build an index on the

patterns /Security/Yield and /Security/PE together, we represent this by the

pattern /Security〈Yield ∪ PE〉.

Since multipath indexes have a richer structure than linear indexes, we change

the internal representation of an index pattern from a list to a tree to accom-

modate the multiple indexed values. For this purpose, we use expression trees
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with the same structure as the XPS trees defined in [12]. An XPS tree (XPath

Step tree) is composed of labeled nodes. Each node is labeled with its navigation

axis and its node test, where the navigation axis is the special axis root or one

of: child, descendant, or attribute. The test can be either a name test (e.g.,

/Secruity) or a wildcard test (i.e., /*). Each node can have two children, the left

child represents nodes to be included in the index (nodes enclosed in angle brack-

ets), while the right child represents the next step in the expression. To navigate

the tree, we advance the navigational pointer to the right children of nodes. Also,

to check if a node has an immediate descendant that is indexed, we check its left

child. The XPS trees navigation would path through a left node and then right

nodes to handle multiple elements being indexed along the same path, for exam-

ple /〈Security〈Yield〉〉. Figures 3.5, 3.6, and 3.7 show the XPS tree representa-

tions of indexes /Security〈Yield〉/SecInfo/*〈Sector〉, /〈Security〈Yield〉〉, and

/Security〈Yield ∪ PE〉, respectively. In our multipath index representation, we

consider XPath index patterns that can contain both navigational steps and indexed

elements. The navigation can contain label wildcards, "*", child axis navigation,

"/", and descendant navigation, "//". A union of elements enclosed in angle brack-

ets indicates that these elements that share the same ancestors are being indexed.

A query operator does a lookup in a multipath index by providing values for one

or more of the indexed nodes in the index pattern. The index returns the node IDs

and document (or record IDs) for the nodes that contain these values.

3.2.2 XML Index Advisor Architecture

The architecture of the XML Index Advisor is presented in Figure 3.8. The high-

level framework of the index recommendation process is as follows: First, for every

query in the workload, we rely on the query optimizer to enumerate a set of can-

didate indexes that would be useful for this particular query. Next, we expand the

enumerated set of candidate indexes to include more general indexes, each of which

can potentially benefit multiple queries from the current workload or from future,

yet-unseen but related workloads. Finally, we search the space of possible index
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Linear indexes:

Yield/Security/

Multipath index: Sector*/SecInfo/Yield/Security

/Sector*SecInfo//Security/

Yield/Security/

XPS(root)

XPS(/Security )null

XPS(/Yi ld ) XPS(/S I f )XPS(/Yield )

nullnull

XPS(/SecInfo)

null XPS(/*)
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nullnull null XPS(/ )
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nullnull

Figure 3.5: XPath XPS tree for the index pattern /Security〈Yield〉/SecInfo

/*〈Sector〉.

Linear indexes: 

/Security

Multipath index:

Yield/Security/

/Security

YieldSecurity/

XPS(root)

y

XPS(/Security ) null

nullXPS(/Yield )

nullnull

Figure 3.6: XPath XPS tree for the index pattern /〈Security〈Yield〉〉.
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Linear indexes:

Yield/Security/

Multipath index: PEYield/Security  

PE/Security/

Yield/Security/

XPS(root)

XPS(/Security )null

null 

XPS(/PE)XPS(/Yield )

nullnullnullnull nullnullnullnull

Figure 3.7: XPath XPS tree for the index pattern /Security〈Yield ∪ PE〉.

configurations to find the optimal configuration, which maximizes the performance

benefit to the workload while satisfying the disk space constraint provided by the

user.

Much of the functionality of the advisor is implemented in a client-side applica-

tion. However, to be able to use the query optimizer for index recommendation, we

need to extend it with two new query optimizer modes. In the first mode, which we

call the Enumerate XML Indexes mode, the optimizer takes a query and enumer-

ates the indexes that can help this query, hence enabling us to start with a basic

set of candidate indexes known to be useful. In the second mode, which we call the

Evaluate XML Indexes mode, the optimizer simulates an index configuration and

estimates the cost of a query under this configuration. These optimizer modes are

the only server-side extensions required for the XML Index Advisor. They allow

us to tightly couple the index recommendation process with the query optimizer,
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Figure 3.8: XML Index Advisor architecture.

and they eliminate the need to replicate any functionality that is already available

in the optimizer. Moreover, the XML Index Advisor client application is now use-

ful for any database system that supports XML indexes, and whose optimizer is

extended with our proposed modes.

In the new modes, the optimizer needs to work with hypothetical indexes that

do not exist but are still needed to identify candidate indexes or evaluate their cost.

To enable this, we modify the query optimizer to allow it to create virtual indexes

that can then be used during query optimization. These virtual indexes are added

to the database catalog and to all the internal data structures of the optimizer,

but they are not physically created on disk and no data is inserted into them. The
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virtual indexes cannot be used for query execution, and so they are only created in

the special query optimizer modes, where the goal is not to generate query execution

plans. Virtual indexes are used in relational index advisors to enable the optimizer

to estimate the cost of candidate index configurations [23, 87]. In our XML Index

Advisor, we use virtual indexes for cost estimation, but a novel feature of our work

is that we also use them for enumerating candidate indexes for workload queries.

Next, we describe the details of the XML Index Advisor recommendation phases

for linear XML indexes. We also present our proposal for recommending general

XML indexes as an extension to our proposal for linear XML indexes. However,

we stress the fact that we have not implemented recommending multipath indexes

in our current prototype. In the rest of the chapter, we use as a running example,

a workload consisting of the following two queries from the TPoX benchmark [70].

Q1: Return a security having a specified Symbol

for $sec in SECURITY(’SDOC’)/Security

where $sec/Symbol= "BCIIPRC"

return $sec

Q2: List securities in a particular sector given a yield range

for $sec in

SECURITY(’SDOC’)/Security[Yield>4.5]

where $sec/SecInfo/*/Sector= "Energy"

return <Security>{$sec/Name}</Security>

3.3 Basic Candidate Set

XQuery and SQL/XML are complex languages. In these languages, XML patterns

can appear in various parts of the statement, but indexes are not useful for some

of the XML patterns that appear in the queries (e.g., patterns that appear in

the return clause [10]). In addition, the process of deciding on which indexes can

benefit which patterns in the query is dependent on the XML query optimizer
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implementation. To obtain the basic candidate set of indexes that are useful to a

given query, we tightly couple the process of generating candidate indexes in the

XML Index Advisor with the process of index matching in the optimizer. Index

matching is a fundamental process performed by query optimizers. In this process,

the optimizer decides which of the available indexes can be used by the query being

optimized, and how they can be used (e.g., for which predicates in the query) [12,

61, 88].

Coupling candidate enumeration with index matching allows us to leverage the

fairly elaborate query parsing, index matching, type checking, and query rewriting

functionality of the query optimizer, without the need to replicate this functional-

ity. In addition, we can support any type checks or type casts that the optimizer

performs when using an index, and we can enumerate indexes that are only exposed

by query rewrites in the optimizer. Moreover, we are assured that the candidate

indexes considered by the Index Advisor can actually be matched and used by the

optimizer. Adding our proposed index enumeration mode to the query optimizer

of any database system allows our Index Advisor to recommend indexes that are

usable by this system.

The XML Index Advisor optimizes each workload query in Enumerate XML

Indexes mode. The resulting candidate index patterns of all queries are considered

as a basic candidate set that is expanded in the generalization step. Next, we

present our proposed techniques for enumerating candidate index patterns given

a workload of queries for linear XML indexes (Section 3.3.1) and multipath XML

indexes (Section 3.3.2).

3.3.1 Linear XML Indexes

To leverage the index matching capability of the query optimizer for enumerating

candidate XML indexes, we modify the optimizer to create a special Enumerate

XML Indexes query optimizer mode. In this mode, we create a virtual universal

index over the XML data, which is a virtual index whose index pattern is //*. This

//* virtual index, (virtually) indexes all elements in the document and hence can be
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C1 /Security/Symbol string

C2 /Security/SecInfo/*/Sector string

C3 /Security/Yield numerical

Table 3.1: Basic set of linear index candidates for queries Q1 and Q2.

matched with any XPath pattern that can be answered using an index. Next, the

query optimizer optimizes the workload query with the //* virtual index in place.

After the index matching step of the optimizer, the optimizer returns to the user all

the index patterns in the query that were matched with the //* virtual index and

quits the query optimization without generating alternate query execution plans.

Essentially, we have enabled the optimizer to answer the question: “If all possible

indexes were available, which ones would be considered for this query?”

The candidate index patterns enumerated by the optimizer will already take

predicates into account and include indexes that are only exposed by query rewrites.

For example, C1, C2, and C3 in Table 3.1 are the patterns enumerated by the DB2

optimizer for our example queries, Q1 and Q2. All three candidates take predicates

into account to determine the target nodes of the index patterns.

Our Index Advisor can work with any database system that can construct an

XML index with index pattern //* and can match this //* with all the indexable

patterns in the queries. Adding the Enumerate XML Indexes query optimizer mode

to the database system requires modifying the query optimizer and index manager

to support a virtual //* index instead of the actual //* index.

3.3.2 Multipath XML Indexes

A multipath index (for example, the XMLIndex index described in [73]) can be con-

sidered as a set of linear XPath expressions that are used to construct an XPath

tree as described in Section 3.2.1. We can rely on the same Enumerate XML

Indexes optimizer mode described for linear indexes to recommend multipath in-

dexes. All the linear XML patterns enumerated for every query are included in

one multipath index to construct a new expression tree. For example, using the
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CG1 /Security〈Yield〉/SecInfo/*〈Industry〉

CG2 /Security〈Yield〉/SecInfo/*〈Sector〉

Table 3.2: Basic set of multipath index candidates for queries Q2 and Q3.

basic set of linear indexes recommended by the optimizer in Table 3.1, we can

now construct a tree that represents the multipath index we are recommending

as /Security〈Symbol ∪ Yield〉/SecInfo/*〈Sector〉. More than one tree can be

constructed from the candidate basic linear indexes based on other factors such

as the table column that includes them. We illustrate candidate enumeration and

generalization, which is described in the next section, for multipath indexes using

two queries on the TPoX data: Q2 presented in Section 3.2.2 and Q3 which is as

follows:

Q3: List securities with a particular industry type given a yield range

for $sec in SECURITY(’SDOC’)/Security

where $sec/Yield < 3

and $sec/SecInfo/*/Industry= "Personal"

return $sec

For Q3, we enumerate the linear patterns /Security/Yield and

/Security/SecInfo/*/Industry as candidate patterns using the Enumerate

XML Indexes mode developed for linear indexes (Section 3.3.1). These two

linear patterns are then used to construct the multipath index tree pattern

/Security〈Yield〉/SecInfo/*〈Industry〉 (Figure 3.9). Similarly, the multipath

index /Security〈Yield〉/SecInfo/*〈Sector〉 (Figure 3.5) is enumerated for Q2.

Table 3.2 summarizes these results.

3.4 Candidate Generalization

The optimizer helps us identify index patterns specific to each query. However, it

is unable to identify index patterns that can benefit multiple queries in the cur-

rent workload and also future queries with similar patterns. We assume that the
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Linear indexes: 

Yield/Security/

Multipath index: Industry*/SecInfo/Yield/Security

/Industry*SecInfo//Security/

Yield/Security/

XPS(root)

XPS(/Security )null

XPS(/Yi ld ) XPS(/S I f )XPS(/Yield )

nullnull

XPS(/SecInfo)

null XPS(/*)

XPS(/Industry)

nullnull null XPS(/ )

null

nullnull

Figure 3.9: XPath XPS tree for the index pattern /Security〈Yield〉/SecInfo

/*〈Industry〉.

queries that we have not seen in the input workload and would like to answer in

the future have XPath expressions that are slight variants of the XPath expressions

that appeared in the queries of the input workload. The XML patterns that can

be part of queries in future workloads and that we would like to be able to answer

are patterns that have at least one XML expression step shared with at least two

XML patterns that appear in queries in the input workload. For example, if we

have seen the XPath expression /Customer/homePhone in the input workload, we

want to recommend an index that can also answer a query that has the expres-

sion /Customer/cellPhone even though this expression is not seen in the input

workload. To address this shortcoming of relying on the optimizer for candidate

enumeration, we expand the set of candidates generated by the optimizer by ap-

plying a set of generalization rules. These rules allow us to generate more general
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candidate indexes that can be useful for multiple queries from the specific index

patterns enumerated by the optimizer for individual queries. In addition, we apply

these rules on pairs of enumerated candidate XML index patterns to give us an

intuition about what other similar expressions that exist in the data. Therefore,

every XML index pattern generated by the generalization rules shares a common

sub-path expression with at least a pair of XML index patterns from the enumer-

ated candidates.

For example, the extensions we propose to the query optimizer helped us identify

the following two XPath path expressions for queries Q1 and Q2 for indexing:

/Security/Symbol and /Security/SecInfo/*/Sector. Based on these two path

expressions, we expand the set of candidates to include the more general pattern

/Security//*. This new path expression covers the two original path expressions

as well as other path expressions that could potentially exist in the data, such as

/Security//Industry. This more general candidate index is a new alternative that

can be recommended by our Index Advisor instead of the two original candidate

indexes. This new candidate index will generally have a size that is greater than

or equal to the total size of the two original candidate indexes, since it potentially

covers more elements in the data than they do. But this new general index has the

advantage that it can answer more queries than the two original indexes and so it

can potentially be useful for queries beyond the training workload.

The candidate generalization algorithm attempts to find more generalized index

patterns by iteratively applying several generalization rules to each pair of basic

candidate indexes and to the resulting generalized indexes. The process contin-

ues until no new generalized XPath expressions can be found. The rules consider

two XML index patterns concurrently and try to find common path nodes (rep-

resenting common subexpressions) between these two patterns. This commonality

is captured in a newly formed, generalized XPath expression. We add this newly

formed XPath expression to our set of candidate index patterns. Before attempting

to generalize two patterns together, we check their compatibility under any other

constraints, such as data type and namespace.
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/Sector*SecInfo//Security/

root

/SectorSecInfo//Security/

/Security 

Navigational
/SecInfo

/*

Navigational 

steps

/  

/Sector
Indexed 

nodes

null

Figure 3.10: Linked list for index pattern .

In Section 3.4.1, we focus on index patterns that are expressed as linear

XPath path expressions that contain a single element to be indexed through-

out the XML documents. For example, we would handle an XML index with

index pattern /Security/Yield, which can be used to answer a query like

/Security[Yield >= 4.5]. In Section 3.4.2, we extend our approach to handle

multipath indexes.

3.4.1 Linear XML Indexes

We represent path expression patterns as linked lists in which each node repre-

sents a path step. During the generalization of a pair of expressions, we divide

each path into two parts: the last step, which represents the nodes we are index-

ing, and the navigational steps leading to this last step. For the index pattern

/Security/SecInfo/*/Sector, the nodes Security, SecInfo, and * are naviga-

tional steps, while Sector represents the nodes being indexed by this pattern.

Figure 3.10 shows the linked list that we use to represent this index pattern.
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To generalize a pair of XML patterns, we start at the head nodes of the linked

lists representing the path expressions and perform a synchronized traversal of the

two lists. We examine each navigational step in the two patterns and check if they

match. If a match is found, we add a matching step in the generated pattern. If

an immediate match is not found we skip steps looking for a match and this is

reflected in the generated pattern by adding * steps. We continue this procedure

until we reach the indexed nodes. Our process for generalizing pairs of index pat-

terns is divided into two functions: generalizeStep and advanceStep. Each of these

functions returns one or more linked lists representing generalized patterns. To gen-

eralize a pair of path expressions, we make an initial call generalizeStep(null , pi, pj)

(Algorithm 1), where pi and pj are pointers to the head nodes of the linked lists

representing the path expressions (the initial steps of the two XPaths). In the algo-

rithm, we refer to the generalized pattern currently being built as genXPath. The

algorithm generalizes the nodes pointed to by pi and pj to newNode, and appends

this new node to the genXPath path expression built up to this point. To perform

this generalization, we check if pi and pj have the same name test. If so, the newly

generated node retains the same name test as these nodes. If not, we replace the

name test with a wildcard label, *. The navigation axis of newNode is determined

by calling a function genAxis(pi .axis , pj .axis), which returns descendant axis (//) if

at least one of the inputs is a descendant axis, and returns child axis (/) otherwise.

We also use a function isLast(p) to test whether p points to the last step of a path

expression (the target of the navigation). The function generalizeStep generalizes

two steps if both are navigational steps or both are last steps, and hence we need

another function to navigate through the expressions.

The other function, advanceStep, plays the role of traversing the expression

lists by advancing the pointers pi and pj as outlined in Algorithm 2. The function

advanceStep is designed to generate candidates that are as general as possible. We

terminate the navigation of the two expressions once we finish generalizing their

last steps (Line 1 in Algorithm 2). A last step node can only be generalized with

another last step node, so the conditions listed in Lines 3 and 7 in Algorithm 2
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Algorithm 1 generalizeStep(genXPath, pi , pj )

1: if (isLast(pi) and !isLast(pj)) or (!isLast(pi) and isLast(pj)) then

2: return {advanceStep(genXPath, pi, pj)}

3: end if

4: create newNode

5: if pi.nameTest == pj .nameTest then

6: newNode.nameTest = pi.nameTest

7: else

8: newNode.nameTest = "*"

9: end if

10: newNode.axis = genAxis(pi.axis , pj.axis )

11: append newNode to genXPath

12: return {advanceStep(genXPath , pi, pj)}

test for the case that one expression has reached its last step while the other has

not and advance the pointer of the latter to reach its last step. A wildcard * step

is inserted into the generalized expression to account for advancing the navigation

pointer at one of the input expressions. The last case (Line 11) handles generalizing

two navigational middle steps. In this case, we return the results of three gener-

alizations: (1) advance the pointers of both expressions one step and generalize

them, (2) and (3) try to find an occurrence of the first node of first (second) ex-

pression in the second (first) expression and generalize them together. In cases (2)

and (3), no generalization is performed if the search fails. These two cases handle

the reoccurrence of nodes in an expression, for example generalizing /a/b/d and

/a/d/b/d will return /a//d and /a//b/d. We perform a final rewrite step before

returning an XPath by replacing every occurrence of one or more contiguous /*

steps appearing in the middle of an expression with a descendant axis (//) in the

step following it. For example, we rewrite both /a/*/b and /a/*/*/b to /a//b.

For example, to generalize candidates C1: /Security/Symbol and C2:

/Security/SecInfo/*/Sector from Table 3.1, we follow these steps:
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Algorithm 2 advanceStep(genXPath , pi , pj )

1: if isLast(pi) and isLast(pj) then

2: return {genXPath}

3: else if isLast(pi) and !isLast(pj) then

4: pjL ⇐ last step in pj expression

5: genXPath ⇐ append a node with nameTest "*" to genXPath

6: return generalizeStep(genXPath, pi, pjL)

7: else if !isLast(pi) and isLast(pj) then

8: piL ⇐ last step in pi expression

9: genXPath ⇐ append a node with nameTest "*" to genXPath

10: return generalizeStep(genXPath, piL, pj)

11: else

12: pin ⇐ first match of nameTest of first node of pj.next in pi.next expression

13: pjn ⇐ first match of nameTest of first node of pi.next in pj .next expression

14: genXPathnew ⇐ append a node with nameTest "*" to genXPath

15: return {generalizeStep(genXPath , pi.next , pj.next),

generalizeStep(genXPathnew, pin, pj .next),

generalizeStep(genXPathnew, pi.next , pjn)}

16: end if
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1. We call

generalizeStep(null , /Security/Symbol, /Security/SecInfo/*/Sector).

generalizeStep looks at the nodes /Security in both paths and recognizes

that they have the same name tests, therefore it creates a node with a

/Security name test and appends it to the genXPath being produced.

2. To complete processing the two expressions, we call advanceStep(/Security,

/Security/Symbol, /Security/SecInfo/*/Sector). In this call, the condi-

tion listed in Line 11 of advanceStep fires, and we have three possible gener-

ated XPath expressions.

(a) The first is the result of advancing the pointer of each of them to the

next step: generalizeStep(/Security, /Symbol, /SecInfo/*/Sector).

This call will result in another call advanceStep(/Security, /Symbol,

/SecInfo/*/Sector) because we are trying to generalize a last step

with a middle step.

(b) We search for /Symbol in /SecInfo/*/Sector, but the search fails and

no generalized path expressions is produced.

(c) We search for /SecInfo in /Symbol, but the search fails and no gener-

alized path expressions is produced.

3. After checking the previous alternatives, we only proceed with the call

advanceStep(/Security, /Symbol, /SecInfo/*/Sector). In advanceStep,

the condition listed in Line 3 is now triggered and the pointer of the second ex-

pression is advanced until its last step and a call generalizeStep(/Security/*,

/Symbol, /Sector) is issued.

4. Finally, advanceStep(/Security/*/*, /Symbol, /Sector) is called from

line 12 of Algorithm 1, the condition listed in Line 1 is triggered, a rewrite

step is performed, and /Security//* is returned.
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C4 /Security//* string

C5 /Security/* numerical

Table 3.3: Generalized candidates obtained from linear indexes in Table 3.1.

Based on these results, we can extend the basic candidates in Table 3.1 to include

candidate C4 in Table 3.3. Candidate C3 cannot be generalized with either C1 or

C2 because it is of a different data type.

Since the training workload might not allow us to have enough opportunities to

expand the set of candidate indexes, we propose heuristic approaches for general-

izing index patterns in the basic candidate set individually, even if they cannot be

generalized with other path expressions in the basic candidate set. An example of a

path expressions in the basic candidate set that might not be generalized with any

other path expression is candidate C3 in Table 3.1. To get more general candidates

even from these individual candidate paths that have no common sub-expressions

with other candidates, we explore using a heuristic technique that predicts the ex-

istence of other expressions similar to a candidate. The heuristic replaces the last

non-* navigation step in the candidate path with a * navigation step. For example,

we can generalize path C3 to /Security/*, C5 in Table 3.3. This approach could

be extended to consult the XML data in the database to determine the usefulness

of such a generalization and recommend other generalizations. With this extension,

a * replacement would only be performed when there are other paths in the data

with the same common leading path. In the current implementation, described in

Section 3.7, we do not consult the data as described above.

3.4.2 Multipath XML Indexes

We revisit the generalization algorithm to make it capable of generalizing expres-

sion trees representing the index patterns for multipath XML indexes. To gen-

eralize a pair of expression trees we rely on the function generalizeTreeStep (Al-

gorithm 3) and its helper functions outlined in Algorithms 4–9. The function

generalizeTreeStep generalizes the first steps of the pair of expression trees passed
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to it, and then navigates to the next nodes in the trees and recursively calls itself to

generalize them. generalizeTreeStep takes two expression trees pi and pj and a list

of general expression trees built to this point, and returns a list of all general expres-

sion trees constructed after adding the generalization of the current steps of pi and

pj . The initial call to generalize a pair of expressions is generalizeTreeStep(null , pi,

pj). Recursive calls are made in generalizeTreeStep to generalize all the steps of the

expression trees. generalizeTreeStep applies multiple conditions on pi and pj and

calls the respective helper functions. The conditions checked by generalizeTreeStep

are as follows:

1. When at least one of the expressions reaches its end (Line 1, Algorithm 3),

we terminate the navigation of the two expressions and return the expression

trees generated to this point.

2. When generalizing two steps with no index children (Line 3, Algorithm 3), we

call the helper function generalizeTree–NoIndexedChildren outlined in Algo-

rithm 4. Recall that a navigational step that does not have an index child is

represented in the expression tree as a node with no left child. In this case we

try to find an occurrence of the first node of the first (second) expression in the

second (first) expression and generalize them together. If both searches fail,

we only generalize the current steps together. In these two cases, a copy of

the new general node is appended to all the existing general expression trees

that are under construction, and the new trees are returned to the calling

function.

3. When we generalize two steps where only one of them has an index child

(Lines 5 and 7, Algorithm 3), we call the helper function generalizeTree–

OneIndexedChild outlined in Algorithm 5. In this case, we try to advance the

pointer of the step with no index child to a step with an index child similar

to the one in the other expression. If this fails, we try to find a matching step

with a similar name to generalize with. If the previous two attempts fail, the

current two steps are generalized together while ignoring the index child.
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4. When the current two steps have index children (Line 9, Algorithm 3), we call

the helper function generalizeTree–IndexedChildren outlined in Algorithm 6.

In this case, an attempt to generalize each one of these steps with a step from

the other expression that has a similar index child is made. If these attempts

fail, the two expression steps are generalized together and a new index child

with a union of the original two index children is created.

Algorithm 3 generalizeTreeStep(genXPathTrees , pi , pj )

1: if pi==null or pj==null then

2: return genXPathTrees

3: else if !hasIndexChild(pi) and !hasIndexChild(pj ) then

4: return generalizeTree–NoIndexedChildren(genXPathTrees, pi , pj )

5: else if hasIndexChild(pi) and !hasIndexChild(pj ) then

6: return generalizeTree–OneIndexedChild(genXPathTrees, pi , pj )

7: else if !hasIndexChild(pi) and hasIndexChild(pj ) then

8: return generalizeTree–OneIndexedChild(genXPathTrees, pj , pi)

9: else if hasIndexChild(pi) and hasIndexChild(pj ) then

10: return generalizeTree–IndexedChildren(genXPathTrees, pi , pj )

11: end if

In order to accomplish the task of generalizeTreeStep, some helper functions

are used. hasIndexChild is a boolean function that returns true if the current step

of the expression has a left child, which is also an element to be included in the

index. For example, hasIndexChild(/Security〈Yield〉) returns true. appendStep

navigates to the last step of an expression and appends a next step child to it. For

example, appendStep(/Security, /SecInfo) returns /Security/SecInfo. Similar

to appendStep is appendIndexChild , which navigates to the last step of an expression

and then appends an index child to it. For example, appendIndexChild(/Security,

/Yield) returns /Security〈Yield〉. generalizeNode, which is described in Algo-

rithm 7, takes two nodes and generalizes them to newNode, and returns newNode.

To perform this generalization, we check if the two nodes have the same name test.
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Algorithm 4 generalizeTree–NoIndexedChildren(genXPathTrees , pi , pj )
1: pinext

⇐ pi

2: pjnext
⇐ pj

3: if pi.nameTest == pj .nameTest then

4: genTrees ⇐ generalizeStepNoIndexChild(genXPathTrees, pi, pj , null)

5: else

6: pin ⇐ first occurrence of first node of pj in pi

7: pjn ⇐ first occurrence of first node of pi in pj

8: if pin 6= null then

9: genTree1 ⇐ generalizeStepNoIndexChild(genXPathTrees, pin, pj , "*")

10: pinext
⇐ pin

11: end if

12: if pjn 6= null then

13: genTree2 ⇐ generalizeStepNoIndexChild(genXPathTrees, pi, pjn, "*")

14: pjnext
⇐ pjn

15: end if

16: if pin == null and pjn == null then

17: genTree3 ⇐ generalizeStepNoIndexChild(genXPathTrees, pi, pj , null)

18: end if

19: genTrees ⇐ genTree1 ∪ genTree2 ∪ genTree3

20: end if

21: return generalizeTreeStep(genTrees, pinext
.next , pjnext

.next)
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Algorithm 5 generalizeTree–OneIndexedChild(genXPathTrees , pi , pj )
1: pjnext

⇐ pj

2: pjn ⇐ first occurrence of first node of pi in pj

3: pjpn ⇐ first occurrence of first node of pi in pj where pjpn.indexChild ==

pi.indexChild

4: if pjpn 6= null then

5: genTree1 ⇐ generalizeStepWithIndexChild(genXPathTrees, pi, pjpn, "*")

6: pjnext
⇐ pjpn

7: end if

8: if pjn 6= null and pjpn == null then

9: genTree2 ⇐ generalizeStepNoIndexChild(genXPathTrees, pi, pjn, "*")

10: pjnext
⇐ pjn

11: end if

12: if pjn == null and pjpn == null then

13: genTree3 ⇐ generalizeStepNoIndexChild(genXPathTrees, pi, pj , null)

14: end if

15: genTrees ⇐ genTree1 ∪ genTree2 ∪ genTree3

16: return generalizeTreeStep(genTrees, pi.next , pjnext
.next)
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Algorithm 6 generalizeTree–IndexedChildren(genXPathTrees , pi , pj )
1: pinext

⇐ pi

2: pjnext
⇐ pj

3: if pi.nameTest == pj .nameTest then

4: genTrees ⇐ generalizeStepWithIndexChild(genXPathTrees, pi, pj, null)

5: else

6: pipn ⇐ first occurrence of first node of pj in pi where pipn.indexChild ==

pj.indexChild

7: pjpn ⇐ first occurrence of first node of pi in pj where pjpn.indexChild ==

pi.indexChild

8: if pipn 6= null then

9: genTree1 ⇐ generalizeStepWithIndexChild(genXPathTrees, pipn, pj, "*")

10: pinext
⇐ pipn

11: end if

12: if pjpn 6= null then

13: genTree2 ⇐ generalizeStepWithIndexChild(genXPathTrees, pi, pjpn, "*")

14: pjnext
⇐ pjpn

15: end if

16: if pipn == null and pjpn == null then

17: genTree3 ⇐ generalizeStepWithIndexChild(genXPathTrees, pi, pj , null)

18: end if

19: genTrees ⇐ genTree1 ∪ genTree2 ∪ genTree3

20: end if

21: return generalizeTreeStep(genTrees, pinext
.next , pjnext

.next)
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If so, the newly generated node retains the same name test as these nodes. If not,

we replace the name test with a wildcard label, *. The navigation axis of newNode

is determined by calling a function genAxis(pi .axis , pj .axis), which returns descen-

dant axis (//) if at least one of the inputs is a descendant axis, and returns child

axis (/) otherwise. We use generalizeStepNoIndexChild, outlined in Algorithm 8, to

generalize two nodes and add their generalization to all the general expressions be-

ing constructed as a next step. A similar function is generalizeStepWithIndexChild

(Algorithm 9), which generalizes two nodes and their index children and then ap-

pends the new generalized step and index children to all the general expressions

being constructed.

Algorithm 7 generalizeNode(pi, pj)

1: create newNode

2: if pi.nameTest = pj.nameTest then

3: newNode.nameTest = pi.nameTest

4: else

5: newNode.nameTest = "*"

6: end if

7: newNode.axis = genAxis(pi.axis , pj.axis )

8: append newNode to genXPath

9: return newNode

For example, we generalize candidates CG1 (/Security〈Yield〉/SecInfo

/*〈Industry〉) and CG2 (/Security〈Yield〉/SecInfo/*〈Sector〉) from Table 3.2

by applying our generalization rules as described in the following steps:

1. Initially, we make a call

generalizeTreeStep(null , /Security〈Yield〉/SecInfo/*〈Industry〉,

/Security〈Yield〉/SecInfo/*〈Sector〉). Since the first nodes of both ex-

pressions have index children, Condition on Line 9 of Algorithm 3 is

triggered, and function generalizeTree–IndexedChildren (Algorithm 6) is

called. Both expressions have Security as their first node, and there-
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fore generalizeStepIndexChild(null , /Security〈Yield〉, /Security〈Yield〉)

is called and a new expression /Security〈Yield〉 is returned.

2. The pointers of the two expressions are advanced and

generalizeTreeStep(/Security〈Yield〉, /SecInfo/*〈Industry〉,

/SecInfo/*〈Sector〉) is called again to continue processing the expressions.

The current steps have no index children, so the condition on Line 3 of Al-

gorithm 3 is triggered, and generalizeTree–NoIndexedChildren is called. The

two expressions have first steps with the same nameTest therefore a new node

/SecInfo is appended to the current general expression.

3. Next, generalizeTreeStep(/Security〈Yield〉/SecInfo, /*〈Industry〉,

/*〈Sector〉) is called. The condition on Line 9 of Algorithm 3 is triggered

as the two expressions have index children. But the two index children

Industry and Sector are not equal. Hence, a new index child node with

a union of Industry and Sector is created. Finally a new expression of

/Security〈Yield〉/SecInfo/*〈Industry ∪ Sector〉 is returned.

4. The generalization process is terminated when we encounter null steps (Line 1,

Algorithm 3). Figure 3.11 shows the expression tree representation of the

generated index /Security〈Yield〉/SecInfo /*〈Industry ∪ Sector〉.

3.5 Estimating the Benefit of XML Indexes

After the candidate enumeration and generalization steps, we have in hand an

expanded set of candidate indexes. To find the best index configuration from these

candidates, the XML Index Advisor needs to be able to estimate the benefit of an

index or a set of indexes to a given workload. In this section, we describe how

we efficiently compute the benefit of an index or an index configuration. We also

describe how we account for maintenance (update, delete, and insert) statements

in the workload when estimating this benefit. Indexes pose an additional cost
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Algorithm 8 generalizeStepNoIndexChild(genXPathTree , pi, pj, preNode)

1: genXPathTreeNew ⇐ {}

2: newNode ⇐ generalizeNode(pi , pj)

3: for all t such that t ∈ genXPathTree do

4: if preNode 6= null then

5: tnew ⇐ appendStep( t, preNode)

6: tnew ⇐ appendStep(tnew, newNode)

7: else

8: tnew ⇐ appendStep(t, newNode)

9: end if

10: genXPathTreeNew ⇐ genXPathTreeNew ∪ tnew

11: end for

12: return genXPathTreeNew

on maintenance statements because the index has to be modified along with the

data, and it is important to take this cost into account when estimating benefit.

Techniques described in this section work for both linear and multipath indexes.

Relational index advisors leverage the query optimizer to estimate the benefit

to a query workload of having a particular index configuration [23, 87]. To do the

same in our XML Index Advisor, we employ a new query optimizer mode that we

call the Evaluate XML Indexes mode. This mode relies on creating virtual indexes

and estimating the cost of workload queries with these virtual indexes in place. To

estimate the cost of queries when using these virtual indexes, we need to collect

statistics on the XML data populated in the database (e.g., RUNSTATS command

in DB2). The optimizer in Evaluate XML Indexes mode uses these data statistics

to estimate for the virtual indexes the index statistics that are necessary for the

optimizer cost model (e.g., the number of leaf nodes in a B-tree). The details of

the index statistics that are needed depend on the implementation of the query

optimizer. The optimizer can then include the virtual indexes with other existing

real indexes when performing index matching to find the possible indexes to be
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Algorithm 9 generalizeStepWithIndexChild(genXPathTree , pi, pj, preNode)

1: genXPathTreeNew ⇐ {}

2: newNode ⇐ generalizeNode(pi , pj)

3: newIndexChild ⇐ generalizeNode(pi.indexChild , pj .indexChild)

4: for all t such that t ∈ genXPathTree do

5: if preNode 6= null then

6: tnew ⇐ appendStep(t, preNode)

7: tnew ⇐ appendStep(tnew, newNode)

8: else

9: tnew ⇐ appendStep(t, newNode)

10: end if

11: if newIndexChild 6= null then

12: tnew ⇐ appendIndexChild(tnew, newIndexChild)

13: else

14: tnew ⇐ appendUnionIndexChild(tnew, pi.indexChild , pj.indexChild)

15: end if

16: genXPathTreeNew ⇐ genXPathTreeNew ∪ tnew

17: end for

18: return genXPathTreeNew
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Multipath index:Multipath index: 

XPS(root)

SectorIndustry*/SecInfo/Yield/Security  

XPS(/Security )null
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nullnull null XPS(/*)

XPS(/Sector)

null

XPS(/Industry)

 

nullnullnullnull

Figure 3.11: XPath XPS tree for the index pattern /Security〈Yield〉/SecInfo

/*〈Industry ∪ Sector〉.

used in a query, and when determining a query execution plan for this query. After

optimizing a query in Evaluate XML Indexes mode, the optimizer returns the set

of indexes that were used, plus their index statistics and the new cost information

of the evaluated query. This information is used by our index advisor to determine

the benefit of using an index or a configuration consisting of multiple indexes.

The XML Index Advisor architecture allows us to rely completely on the query

optimizer for cost estimation by using the Evaluate XML Indexes mode. This has

the advantage of leveraging the optimizer’s tuned, well-developed cost model. The

XML Index Advisor does not attempt to influence or improve the query optimizer

cost model and instead uses the cost model as is. XML cost modeling is an active

area of research in its own right and is beyond the scope of this thesis. We describe

the details of the Evaluate Index mode that we have implemented in the DB2 query

optimizer in Section 3.7. Other database systems may use other XML statistics
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and cost models and therefore require different implementation details, but the

fundamental idea of the Evaluate XML Indexes mode is the same for all cost-based

query optimizers. In the rest of this section, we describe how we use the information

returned by the optimizer in our Index Advisor application.

3.5.1 Estimating the Benefit of an Index Configuration

In the XML Index Advisor application, we make use of the information returned

by the optimizer after evaluating a query in the Evaluate XML Indexes mode with

a specific virtual index configuration in place. The benefit of using an index is

estimated as the reduction in query execution cost when the index is created. The

benefit of index x to query q is calculated as the difference between the initial cost

of query Cold(q) (i.e. the cost of the query when any existing configuration is in

place) and its cost after creating the index Cnew(q) (i.e. the cost of the query when

the index is added to any existing configuration). Thus, the benefit of index x to

query q is Benefit(x; q) = Cold (q) − Cnew(q). We use the Evaluate XML Indexes

mode to evaluate the cost of a query when an index is in place without actually

creating the index.

To evaluate the benefit of an index for a workload of queries, we generalize the

above calculation to: Benefit(x;W ) =
∑

q∈W (Cold(q) − Cnew(q)). Furthermore, to

calculate the benefit of a configuration consisting of multiple indexes, we create all

the indexes in the configuration as virtual indexes and then optimize all queries in

the workload in Evaluate XML Indexes mode to estimate their new costs. Thus,

we have: Benefit(x1, x2, . . . , xn;W ) =
∑

q∈W (Cold(q)− Cnew(q)).

3.5.2 Estimating the Benefit of Update, Delete, and Insert

Statements

Our workloads may contain update, delete, and insert (UDI) statements in addition

to queries. Any index that we recommend must be maintained for each of the UDI

statements in the workload. At the same time, update and delete statements may
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benefit from an index that helps them identify the data that needs to be updated or

deleted. The benefit of having an index for update or delete statements is estimated

just like the benefit of indexes for queries. If the cost of updating indexes is included

in the optimizer cost estimates of these statements, no special processing is required

for them. In some database systems, such as DB2, the optimizer cost estimates do

not include the cost of updating indexes. This is because updating the indexes is an

operation that has to be performed regardless of the chosen query execution plan,

so ignoring the cost of this operation will not affect the chosen query execution plan.

Hence, we have special techniques in our application to estimate the maintenance

cost of indexes under UDI statements.

To estimate the maintenance cost for an index xi due to a UDI statement,

we use the data statistics to estimate the number of XML documents that have

changed because of this update statement s, docChanged(s), and the total number

of elements included in this index numElement(xi). Given the total number of

XML documents in the database numDocs, we can estimate the number of XML

elements that the statement will affect in the index as follows:

elementsUpdated(xi, s) = numElements(xi)× docsChanged(s)/numDocs

In this equation we are making two simplifying assumption. We are assum-

ing that the number of indexed XML elements from all documents is the same.

We are also assuming that all the index entries corresponding to these XML ele-

ments will need to be updated, and we use the docChanged(s) value to estimate the

maintenance cost for this index because of statement s. Based on the system, two

calibration constants are used: (1) CPUCostPerNode: number of CPU operations

performed per an index node and (2) IOCostPerNode: number of I/O operations

performed per an index node. We assume that a B-tree is used as the index imple-

mentation. Therefore, for every element updated in the index, a CPUCostPerNode

cost and an IOCostPerNode cost multiplied by the number of navigated levels of

the B-tree are incurred. In many (or most) cases, some of the navigated B-tree

nodes will be in the buffer pool, so no I/O is incurred to traverse them. The

value of the calibration constant IOCostPerNode is chosen in a way that takes this
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buffering into account. Thus, the total maintenance cost of an index xi because of

a statement s, is calculated as:

mc(xi, s) = elementsUpdated(xi, s)× CPUCostPerNode+

elementsUpdated(xi, s)× numBTreeLevels × IOCostPerNode

Putting it together, to account for the index maintenance cost, we subtract from

the calculated benefit the maintenance cost (mc) of all indexes in the configuration.

Thus, for indexes x1, x2, . . . , xn and workload W that contains queries q1, q2, . . . , ql

and maintenance statements s1, s2, . . . , sk:

BenefitUDI(x1, x2, . . . , xn;W ) =
∑

q∈W (Cold (q)− Cnew (q))+
∑

s∈W (Cold (s)− Cnew (s))−
∑n

i=1mc(xi, s)

3.5.3 Efficient Index Configuration Evaluation

To evaluate the benefit of a configuration consisting of multiple indexes, we can

simply estimate the benefit of the individual indexes independently and add up

these estimated benefits. However, this method ignores the interaction between

indexes: The benefit of an index will change depending on what other indexes

are available because the query optimizer can use multiple indexes in its plans.

A simplistic approach for taking index interaction into account is to evaluate the

entire workload with all indexes in the configuration created as virtual indexes.

Since we evaluate the benefit of index configurations repeatedly during our search

for the optimal index configuration, we have developed a more efficient approach

that reduces the number of calls to the optimizer while taking index interaction into

account. This approach is inspired by the atomic configuration concept described

in [23].

While we are generating the set of candidate indexes (basic and generalized), for

each index, x, we keep track of which (XQuery or SQL/XML) workload statements

produced basic candidate index patterns that are covered by this index. These

are the statements that can benefit from x, and we call this set of statements the

affected set of x. To evaluate the benefit of a configuration, we only need to call

the optimizer for the union of the affected sets of its indexes.
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Furthermore, we divide a configuration into smaller sub-configurations, where

each sub-configuration includes indexes that may interact with each other, which

are indexes that have overlapping affected sets. We maintain a cache of previously

evaluated sub-configurations and we only evaluate a sub-configuration if it is not

found in this cache. To create the set of sub-configurations for a given configuration,

we start with a sub-configuration for each index, and we iteratively merge the sub-

configurations whose affected sets overlap, until there can be no more merging.

For example, to evaluate the benefit of the indexes configuration containing

C1, C2 and C3 from Table 3.1, we initially have each one of them in a separate

sub-configuration. Because C2 and C3 are enumerated from the same query Q2,

we merge their sub-configurations, which gives us the two sub-configurations {C1}

and {C2, C3}. To evaluate the {C1} sub-configuration, we only need to optimize

Q1 while C1 is created as virtual index. Similarly, to evaluate the {C2, C3} sub-

configuration, we only need to optimize Q2 while C2 and C3 are created as virtual

indexes. The benefit of the configuration {C1, C2, C3} will be the sum of the

individual benefits of {C1} and {C2, C3}. When evaluating a configuration of,

say, {C1, C2, C5}, we split it into the two sub-configurations, {C1} and {C2, C5}.

Since {C1} was evaluated in the previous step, we only need to evaluate {C2, C5}.

3.6 Searching for the Optimal Configuration

3.6.1 Search Problem

The XML Index Advisor needs to search the space of possible index configurations

consisting of indexes from this candidate set to find the index configuration with

the maximum benefit, subject to a constraint specified by the user on the disk space

available for the configuration. This combinatorial search problem can be modeled

as a 0/1 knapsack problem [87], which is NP-complete. The size of the knapsack

is the disk space budget specified by the user. Each candidate index, which is an

“item” that can be placed in the knapsack, has a cost, which is its estimated size,
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and a benefit. The search problem goal is described as:

maximizep∈P{Benefit(W , p)}

such that
∑

x∈p

Size(x) ≤ DiskBudget

In the previous equation, p is an index configuration in the set of candidate

configurations P , W is the workload, and x is an index in p.

Modeling the index search as a 0/1 knapsack problem gives us a spectrum of

solutions that ranges from greedy approximation to dynamic programming. When

considering the right algorithm for the search problem, we also need to take into

account the fact that indexes interact with each other. The benefit of an index

for a query can change depending on whether or not other indexes exist. The

simplest approach to solving the 0/1 knapsack problem is to use a greedy search

that ignores index interaction. To take index interaction into account, we have

added some heuristics to the greedy search to ensure that we use as many indexes

with high benefit as we can, and that they are all actually used in the optimizer

plans. We also propose a top down search that chooses as many general indexes as

it can fit into the disk budget. The goals of the greedy search with heuristics and

the top down search are fundamentally different: The greedy search with heuristics

attempts to find the best possible set of indexes for the given workload, without

any consideration for the generality of these indexes, while the top down search

attempts to find configurations that are as general as possible so that they can

benefit not only the given workload but also any similar future workloads.

In our search algorithms, we model the relationship between queries in the

workload, the extracted XML patterns, and the generalized candidates as directed

acyclic graph (DAG). Figure 3.12 presents an example of such a DAG. For queries

q1, q2, . . . qn we enumerate a basic set of candidates p1, p2, . . . pm as described in

Section 3.3. Each query and basic candidate is represented as a node in the DAG.
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Figure 3.12: Relationship between workload queries and candidate XML patterns

One basic candidate can be enumerated because of more than one query, and one

query can produce more than one candidate, so we associate with each candidate

the set of queries that produced it via a set of edges in the DAG. We build the

next levels in the DAG by generalizing the basic candidates using the Algorithm in

Section 3.4.1, and we continue until we reach the most general candidates as shown

in the figure. For each new candidate created during candidate generalization, we

associate with it the set of XML patterns that were the cause of generating it

through a set of edges in the DAG. Hence, by following these edges, we will have

for any candidate index pattern a list of all candidates in the subtree rooted at this

pattern, which we call the coverage list. The leaves of the subtree are the queries

that can benefit from this candidate index pattern. Along with the coverage list,

we keep a list of affected queries (described in Section 3.5.3). The affected list of

a generalized pattern is the concatenation of the affected lists of its children. For

example, in Figure 3.12, the XML pattern pl+1 has the coverage list {pm+1, pm+2,

p1, p2, p3, p4} and the list of affected queries {q1, q2, q3}. Next, we present our two

search algorithms.
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3.6.2 Greedy Search with Heuristics

The greedy approximation of the 0/1 knapsack problem was not effective for our

XML Index Advisor. The benefit of an index is highly dependent on the existence

of other indexes in the configuration that answer the same query. Moreover, the

greedy search can select general indexes that can be used for path expressions

already covered by other indexes in the configuration. However, the optimizer can

use only one of these indexes in its plan. A possible solution to this problem is

to compile all workload queries after the indexes in the configuration are selected,

and then to eliminate indexes that are never used. The problem with this solution

is that we free up extra disk space at the end of the index selection process that

we never use again for adding more indexes, even though this space could be very

useful. A similar approach is used for searching relational indexes in [87]. After

selecting a configuration of indexes and eliminating redundant indexes from it, an

iterative phase of random swapping of indexes is performed to try other variations

of the configuration. In our proposed solution for searching candidate XML indexes,

we take another deterministic approach.

To address the index redundancy problem described above, we add one more

objective to our search problem: maximizing the number of workload XPath ex-

pressions that use indexes in the selected configuration. We use a greedy search

algorithm, and maximizing the workload benefit remains the primary objective of

the search. Heuristics are added to the greedy search to attempt to enforce the

new objective in a best effort manner.

This search algorithm maintains a bitmap of XPath patterns in the workload

queries that have indexes on them. Then, before adding any general index to our

configuration we use this bitmap to make sure that this index will not replicate

others already chosen. When a general index, xgeneral, is added to the recom-

mended index configuration, it must be “better” than the indexes it generalizes,

x1, x2, . . . , xn. We define IB(X), the improved benefit of the set of indexes X , as

the benefit of the recommended index configuration built to this point when X is
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Algorithm 10 heuristicSearch(candidates)

1: sort candidates according to their benefit/size ratio

2: recommended ← φ, currSize ← 0, currCoverage ← φ

3: while currSize < diskConstraint do

4: best ← pick the next best cand in candidates

5: if currCoverage = φ or currCoverage ∩ best .coverage = φ then

6: if currSize + best .size ≤ diskConstraint then

7: recommended ← recommended ∪ best

8: currCoverage ← currCoverage ∪ best .coverage

9: currSize ← currSize + best .size

10: end if

11: else

12: overlapConfig ← {cand ∈ recommended , cand .coverage ∩ best .coverage}

13: configWithBest ← recommended ∪ best − overlapConfig

14: configPredicted ← recommended after adding predicted candidates to it

15: evaluate the benefit of configWithBest and configPredicted

16: select the best configuration between configWithBest and configPredicted

according to the benefit and size heuristic rules

17: update recommended

18: end if

19: end while

20: return recommended

64



added to it. A general index is added to the configuration only if the following two

heuristic conditions are satisfied:

IB(xgeneral) ≥ IB(x1, x2, . . . , xn)

Size(xgeneral) ≤ (1 + β)

n∑

i=1

Size(xi)

Most of the time, general indexes are larger than specific indexes because they

contain more nodes from the data. The second heuristic restricts the expansion in

size that we allow when we choose a general index, and the first heuristic ensures

that the general index is at least as good as the specific indexes. Hence, we are

biased towards choosing the smallest configuration that is the best for the current

workload. The value β is a threshold that specifies how much increase in size we

are willing to allow. We have found β = 10% to work well in our experiments.

Algorithm 10 illustrates the greedy search algorithm with the added heuristic

rules. We start by sorting the list of candidate indexes (candidates) according to

their benefit/size ratio and creating an empty configuration (recommended) with a

zero size (currSize) and empty coverage (currCoverage). Next, we iterate through

the sorted list of candidates by selecting the index with the highest benefit/size

ratio (best), while the configuration size (currSize) has not reached the given budget

(diskConstraint). Every iteration, we have two cases: (1) the new index is useful to

new queries in the workload (Lines 6 - 10) and (2) the new index has more specific or

more general forms of it that are already chosen in the recommended configuration

(Lines 12 - 17). In the first case, when the index is adding a new query coverage,

we add the index to the recommended configuration if the disk constraints allow

it. In the second case, when the coverage of the index overlaps with the coverage

with selected indexes, we apply our proposed heuristic rules (Line 16). In this case,

we create two configurations: (1) configWithBest : the most updated recommended

configuration after adding best index to it and removing any children indexes of best

from it and (2) configPredicted : the recommended configuration selected in previous

iterations of the algorithm after adding children indexes of best that we have not

yet seen from candidates to it. We evaluate the benefit of these two configurations
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Figure 3.13: Directed acyclic graph of the candidates.

and compare them according to the heuristic rules we described above. Finally,

according to the result of applying our heuristics, we decided whether to add the

best index to the recommended configuration or not.

3.6.3 Top Down Search

The greedy search with heuristics attempts to recommend a configuration with

the highest benefit that fits the specific given workload. Because of that, it can

be viewed as over-training for the given workload. If the workload changes even

slightly, the recommended configuration may not be of use. This is acceptable

if the DBA knows that the workload will not change at all. For example, this

might occur if the workload is all the queries in a particular application. However,

another likely scenario is that the DBA has assembled a representative training

workload, but the actual workload may be a variation on this training workload.

This is true for relational data, but it is of added importance for XML, because the

rich structure of XML allows users to pose queries that retrieve different paths of

the data with slight variations. If this is the case, and the workload presented to

the Index Advisor is a representative of a larger class of possible workloads, then

we posit that the goal of the Index Advisor should be to choose a set of indexes

that is as general as possible, while still benefiting the workload queries. We have

developed a top down search algorithm to achieve this goal.

In the top down search, we construct a DAG, similar to the one shown

in Figure 3.12, of the candidate indexes while generalizing them. Each node
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in the DAG represents an XML pattern, and has as its parents the possi-

ble generalizations of this pattern, based on our candidate generalization algo-

rithm. For example, when generalizing the two candidates /Security/Symbol and

/Security/SecurityInformation/*/Industry to get /Security//*, a node will

be created in the DAG for /Security//* and this node will be a parent of the

two candidates. At the end of this construction phase, we will have a DAG rooted

at the most general indexes that can be obtained from the workload. Figure 3.13

illustrates the DAG constructed for the expanded set of candidates for our running

example. We start with these roots of the DAG as our current configuration. Since

general indexes are typically large in size, this starting configuration is likely to

exceed the available disk space budget, but it likely has a higher benefit compared

to specific indexes. General indexes can have zero or negative benefit for two rea-

sons: (1) high maintenance cost because of update, delete, and insert statements

in the workload, and (2) not being used in optimizer plans. To handle this, we add

a preprocessing phase to remove any indexes with zero or negative benefit from

our search space. Next, we iteratively replace a general index from the current

configuration with its specific (and smaller) child indexes, and we repeat this step

until the configuration that we have fits within the disk space budget. The top

down search pseudocode is illustrated in Algorithm 11.

To choose the general index to replace, we introduce two new metrics ∆B and

∆C. Assume that candidates x1, x2, . . . , xn are generalized to a candidate xgeneral.

There will be nodes in the DAG for each of these candidates, and xgeneral will be a

parent of x1, x2, . . . , xn. We define ∆B and ∆C as follows:

∆B = IB(xgeneral)− IB(x1, . . . , xn)

∆C = Size(xgeneral)− Σ0≤i≤nSize(xi)

Since our goal is to obtain the maximum total benefit for the workload with the

most general configuration that fits in the disk space budget, we iteratively choose

the general index with the smallest ∆B/∆C ratio, and we replace it with its (more

specific) children in the DAG. That is, we replace general indexes whose additional
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Algorithm 11 topDownSearch(topCandidates)

1: recommended ← topCandidates

2: currSize ← recommended .size

3: while currSize > diskConstraint do

4: for all cand ∈ recommended do

5: calculate ∆B/∆C of cand

6: end for

7: recommended ←configuration after replacing the candidate with minimum

(∆B/∆C) with its children

8: currSize ← recommended .size

9: end while

10: return recommended

benefit per unit cost over their children is lowest. In case of ties, we select the index

with the largest ∆C. If we run out of general candidates to replace and do not yet

meet the disk space budget, we use greedy search. Note that in this case we do not

need to apply our heuristics since none of the indexes we are searching is general.

3.7 Implementation in DB2

To implement our XML index recommendation techniques we need to extend the

query optimizer of the database system with the new query optimizer modes de-

scribed in Sections 3.3 and 3.5. In addition, the main functionality of the XML

Index Advisor is implemented as a client-side application on top of the database

system. We have implemented the server-side extensions required for our index

advisor in a prototype version of IBM R© DB2 R© 9.5 for Linux, Unix, and Windows

(henceforth referred to simply as DB2). DB2 supports both relational and XML

data. It stores XML data in XML-typed columns of tables, and it can create XML

indexes on these columns with specific index patterns that are given as XPath path

expressions [71]. The indexes can be used to answer structural or value queries

on the data. We have implemented and experimentally verified our recommen-
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dation techniques for linear XML indexes. However, we have not implemented

recommending multipath indexes in our current prototype.

We have extended the DB2 query optimizer with Enumerate XML Indexes and

Evaluate XML Indexes modes. These are implemented as EXPLAIN modes in the

DB2 optimizer. Our EXPLAIN modes have been integrated into the main line

DB2 code base and have been available to all users since DB2 version 9.7. The

client side XML Index Advisor is implemented in Java
TM

1.6, and communicates

with the prototype server via JDBC (DB2 JCC package). This application is

available for download from the IBM alphaWorks web site [33]. We have used this

implementation to verify the efficiency of our Index Advisor and the high quality of

the index configurations that it recommends. A demo of our XML Index Advisor for

DB2 was presented in [31]. Next, we describe more details of our implementation.

The details for a database system other than DB2 would be different, but the

fundamental ideas would remain the same.

3.7.1 Implementation of the Enumerate XML Indexes Mode

DB2 allows only XML indexes that are represented by index patterns expressed as

linear XPath path expressions that do not include predicates. Hence, we focus on

linear indexes in our implementation. We have extended the DB2 query optimizer

with a new Enumerate XML Indexes EXPLAIN mode. In this mode, the optimizer

creates virtual universal indexes (or //* indexes, described in Section 3.3) and

returns the XPath patterns in the queries that were matched with these universal

indexes. These XPath patterns are the basic candidate patterns for the XML

indexes recommended by the XML Index Advisor. The virtual universal indexes

are not physically created on disk, but are only created in the metadata and in the

optimizer’s internal data structures. To conform with the XPath standard, DB2

uses distinct indexes for distinct data types, and distinct indexes for elements and

attributes [14, 15]. Thus, in our implementation of the Enumerate XML Indexes

mode in DB2, we create several virtual universal indexes. For each data type, we

create an index with the pattern //* ( for elements) and an index with the pattern
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//@* (for attributes). All of these indexes are used by the optimizer in Enumerate

XML Indexes mode to recommend candidate XPath index patterns.

3.7.2 Implementation of the Evaluate XML Indexes Mode

The Evaluate XML Indexes EXPLAIN mode relies on the query optimizer for cost

estimation. A detailed description of the cost model of the DB2 optimizer, which we

use in our prototype, can be found in [11]. The DB2 query optimizer needs statistics

about virtual indexes to estimate the execution time of queries using these indexes.

Some of these statistics are data statistics, such as the number of distinct XPaths

in the data that are being indexed and their frequencies, while others are index

statistics such as the number of disk pages occupied by the index. Our approach

is to collect all the necessary data statistics if needed using the query optimizer’s

normal (i.e., non-virtual) statistics collection module (RUNSTATS in DB2). We then

use these data statistics to estimate the index statistics for the virtual indexes. We

use the same approach for estimating an XML index cardinality that is described

in [11].

DB2 implements XML indexing using a B-tree index, and the query optimizer

requires two statistics for an XML index: its cardinality and its size on disk [11].

The cardinality, or total number of entries of an index, is the total number of XML

nodes in all the XML documents that are stored in the column of the table that

the index is defined on that match the index pattern. As described in [11], to

estimate the XML column cardinality, a count of all linear rooted paths occurring

in the documents of that column is collected. But because the number of occurring

rooted paths can be very large, this count is only kept for the most frequently

occurring paths. To estimate the cardinality of an XML pattern, we check the

most frequently occurring paths, stored in the catalog, for the ones that can be

matched with this pattern, and calculate their average. The calculated average is

used as an estimate of the number of nodes that are reachable by this XML pattern.

To estimate the size of an index, we again use the data statistics to estimate

all components needed: the size of the index key and the number of keys. While
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the number of keys for an index is based on the data to be indexed and the index

implementation, the size of the index key is calculated as the average size of the

index keys for the most frequently occurring paths. Multiplying the size of the

index key by the number of keys gives us an estimate of the total size of the index.

With the cardinality and index size statistics of a virtual index in place, this index

can be used for cost estimation like any real index.

3.7.3 Search Algorithms

In the client-side XML Index Advisor application, we have implemented the two

search algorithms described in Sections 3.6.2 and 3.6.3, that is, greedy search with

heuristics and top down search, respectively. In addition, we have implemented a

naive greedy search to show the benefit of adding our proposed heuristics. These

three search algorithms find approximations to the optimal solution. To find a

near optimal solution, we use a dynamic programming algorithm that searches the

exponential space of possible configurations. However, the dynamic programming

algorithm does not consider the possible index interactions and hence it sometimes

misses the true optimal solution.

We implemented the dynamic programming algorithm given in [47], which has

a time and space complexity of O(min{2n, n
∑

1≤i≤n pi, nm}), where pi is the size

of index i, n is the number of indexes, and m is the disk size allocated for building

indexes. In this solution, optimal sub-configurations are kept in a table, and in

every iteration, an index is considered to be added to all of these optimal sub-

configurations. This is equivalent to the search algorithm starting with a small disk

budget and increasing it in every stage until the available disk budget is exhausted.

To account for index interaction, we evaluate the benefit to the workload of having

all the indexes in a configuration. Since we consult the optimizer to evaluate the

workload execution cost for each configuration, this adds overhead to the solution.

This solution suffers from pruning some configurations in the space because of their

low overall benefit. But because indexes can have higher benefit to a query when

combined with other indexes, the low benefit configurations might turn out to be
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the best ones later on. Another problem with dynamic programming is that it

focuses on the absolute reduction in execution time, not the reduction relative to

the original execution time of a query. It therefore favors indexes that benefit longer

running queries, even if the benefit is small in relative terms.

We have implemented two versions of the top down algorithm. In the first, we

ignore index interaction when calculating ∆B. The benefit of a configuration is

calculated as the sum of the benefits of its indexes. We call this version top down

lite. The main purpose of this version is to overcome the overhead of calculating

the benefit of every index configuration we are examining during the search. In

the second version, we evaluate the benefit of every configuration as described in

Section 3.5.1. We also use the efficient configuration evaluation technique described

in Section 3.5.3. We refer to this version of the search algorithm as top down full.

In both versions of the top down search algorithm, if the total budget is less than

the size of the basic indexes (we searched through the DAG till we reached the leaf

nodes), we perform a greedy search on the specific indexes.

3.7.4 Implementation Requirements for Other Database Sys-

tems

Although this thesis uses DB2 for evaluating our index recommendation techniques,

we believe that these techniques can be used for most database systems that support

XML. In this section, we discuss the requirements for implementing our index rec-

ommendation techniques in a system other than DB2. In our proposed architecture

of the XML Index Advisor, we divided our implementation into two main parts:

a client-side application and optimizer extensions (Figure 3.8). The client-side ap-

plication encapsulates all the communication details with the database system in

one database communication package. For every database system, we only need

to implement on the client side a new database connection package with the spe-

cific details of this database system. In addition, we need to extend the database

query optimizer with two new optimizer modes to allow us to enumerate candidate
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indexes and evaluate cost of queries when candidate indexes are existing in the

database.

The database system that we can extend needs to have the following character-

istics:

1. The database system supports building partial XML indexes.

2. An XML query optimizer that performs cost based query optimization for

XQuery queries and/or SQL/XML queries.

3. The ability to add special optimization modes to the query optimizer. Most

database systems allow such special optimizer modes, and we need to add

two new optimizer modes as described in Sections 3.7.1 and 3.7.2.

To implement an Enumerate XML Indexes optimizer mode, the query optimizer

needs to have the following features:

1. XML index matching is performed by the optimizer prior to plan enumeration.

2. It is possible to create a universal index that would match all the XPath

path expressions in a query that can be answered by an index. However, a

rudimentary Enumerate XML Indexes optimizer mode can be implemented

using an XML query parser that can extract the XPath path expressions ref-

erenced in the query. In this case, some of the enumerated candidate indexes

will have zero benefit because the optimizer cannot use them. However, these

zero benefit candidates will be eliminated while searching for the best index

configuration.

To implement the Evaluate XML Indexes optimizer mode, the optimizer needs

to have the following features:

1. It is possible to collect data statistics prior to query optimization (e.g., using

RUNSTATS).

2. The index statistics required for XML cost estimation can be derived or esti-

mated from the data statistics.
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3. The optimizer can use virtual indexes in the index matching and plan enu-

meration phases of query optimization.

4. The optimizer can estimate the cost of a query that uses virtual indexes.

We believe that all of these requirements are easily supported by most cur-

rent database systems that handle XML, especially database systems that have

sophisticated relational design advisors and advanced XML indexing capabilities.

3.8 Experimental Evaluation

3.8.1 Experimental Setup

We have conducted our experiments on a Dell PowerEdge 2850 server with two

Intel Xeon 2.8GHz CPUs (with hyperthreading) and 4GB of memory running SuSE

Linux 10. The database is stored on a 146GB 10K RPM SCSI drive. As mentioned

in Section 3.7, we use DB2 for our experimental evaluation.

We used two XML benchmarks for our experiments: the TPoX [70] and

XMark [78] benchmarks. We generate the data for both benchmarks using a scale

factor of 1GB. For both benchmarks, we evaluate our XML Index Advisor on the

standard queries that are part of the benchmark specification: 11 XQuery queries

for TPoX and 15 XQuery queries for XMark. To illustrate the effectiveness of

our generalization algorithm, we also use synthetic queries on the TPoX data in

Section 3.8.3.

Our metric for evaluating the recommendations of the XML Index Advisor is

estimated speedup: The estimated execution time of the workload with no XML

indexes divided by the estimated execution time of the workload with the index

configuration recommended by the Index Advisor. For some experiments, we report

the geometric mean of the speedup achieved by the queries in the workload. The

geometric mean of the speedup for a workload is defined as: (
∏n

i=1 si)
1/n where n

is the number of queries in the workload and si is the speedup of query i when

the index configuration recommended by the XML Index Advisor is created in the
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database. We use the geometric mean of the query speedups because the variance

in execution time for queries in both the TPoX and XMark workloads is very large.

Simply measuring the total speedup for all queries or computing the arithmetic

mean will make long-running queries dominate the speedup metric, and we do not

want that to happen. Using the geometric mean leads to all queries contributing

equally to the metric regardless of their execution time. For this reason, benchmarks

such as TPC-D [85] also use the geometric mean to measure performance. In

addition, we also report the actual speedup for some workloads: The measured

execution time of the workload with no XML indexes divided by the measured

execution time of the workload with the index configuration recommended by the

Index Advisor.

In the following sections, we illustrate that our XML Index Advisor makes good

index recommendations that effectively use the available disk space budget and that

it is efficient in terms of run-time. We also show that by using the top down search

algorithm, the advisor can recommend general index configurations that are useful

beyond the training workload. Furthermore, we demonstrate the accuracy of the

statistics we create for cost estimation in the Evaluate XML Indexes mode, and of

our estimation of the cost of updating indexes.

3.8.2 Effectiveness of the Advisor Recommendations

We have implemented five different combinatorial search strategies in our Index

Advisor: (1) greedy search (without heuristics), (2) greedy search with the heuris-

tics, (3) top down lite, (4) top down full, and (5) dynamic programming. In our

first experiment, we compare the index recommendations of these five strategies.

Figures 3.14 and 3.15 show the estimated speedup for the search strategies with

varying disk space budgets for the TPoX and XMark benchmarks, respectively. For

each benchmark, we create an index configuration in which we have XML indexes

for every indexable XPath expression in the query workload (i.e., an index for every

basic indexing candidate enumerated by the Enumerate XML Indexes optimizer

mode). We call this the All Index configuration. This configuration is overfitted to
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the workload, but it is also the configuration with the highest possible speedup for

a workload that consists of queries with no updates. The size of this configuration

is 96.4MB for TPoX and 132.6MB for XMark. The estimated speedup achieved by

this configuration is 48.9 for TPoX and 7.6 for XMark. In these figures, we use the

benchmark queries (11 for TPoX and 15 for XMark) for recommending the indexes

and also for evaluating the recommendations.
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Figure 3.14: Estimated workload speedup (TPoX).
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Figure 3.15: Estimated workload speedup (XMark).

Figures 3.14 and 3.15 show that our XML Index Advisor is able to recommend

indexes that speed up workload execution for both workloads and all disk space
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budgets. As expected, speedup increases as we increase the available disk space

budget, until it reaches the best possible speedup of the All Index configuration.

Dynamic programming recommends configurations that has an overall workload

benefit that is higher than configurations recommended by other search strategies,

but as we see later this comes at a cost since dynamic programming is the slowest

search strategy.

One observation about the figures is that greedy search, greedy search with

heuristics, and top down search all perform the same. Greedy search recommends

the same indexes with and without heuristics because for the TPoX and XMark

workloads, all the basic candidate indexes enumerated by the advisor have bene-

fit/cost ratios that are less than any of the generalized indexes that are generated

during the candidate generalization phase. This is because the generalized indexes

generated for these workloads were all quite large in size. Both greedy search

and greedy search with heuristics sort the candidate indexes and examine them

in ascending order according to their benefit/cost ratio. In this case, all the basic

candidate indexes (which are not generated by the generalization algorithm) will

be selected before any general index is examined by the greedy and greedy with

heuristics search algorithms. When the disk space constraint input to the advisor

is smaller than the size of the All Index configuration, the disk budget is exhausted

before examining generalized indexes. This means that the heuristics will never

be applied (since they are only applicable to generalized indexes). When the disk

space constraint input to the advisor is larger than the size of the All Index config-

uration, all the basic candidate indexes are selected by the greedy search algorithm

in addition to other generalized candidate indexes. In this case, the heuristic rules

are applied to select between basic and generalized candidate indexes by the greedy

search with heuristics algorithm. In Appendix C, we show examples of our search

algorithms in action, and we demonstrate cases where the heuristics would be used.

We note that the heuristics were useful for the TPoX and XMark workloads when

we used our Index Advisor with an earlier version of DB2 [32]. The optimizer of

that previous version of DB2 overestimated the benefit of some general indexes,
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which led to their benefit/cost ratios being smaller than other specific indexes, and

they were considered by the search algorithm first. Therefore, the greedy search

selected general and specific indexes for the same queries while ignoring other useful

indexes. But the greedy search with heuristics applied the heuristic rules to avoid

making such a selection.

Top down search performs the same as greedy search in Figures 3.14 and 3.15,

also due to the fact that the generalized indexes are too large in size. For these

large generalized indexes, and small disk space budgets, the top down algorithm

eliminates all generalized indexes and still does not satisfy the disk space constraint.

Hence, the algorithm resorts to greedy search on the basic candidate indexes.

Figure 3.16 shows the geometric mean of the speedups shown in Figure 3.14.

We note that dynamic programming underperforms the other search algorithms at

a disk budget of 70MB because it chooses an index that provides a small benefits

(in relative terms) to a long running query over one that provides a larger relative

benefit to a short query.
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Figure 3.16: Geometric mean of estimated speedup, low disk budgets (TPoX).

To demonstrate the top down search algorithms, Figures 3.17 and 3.18 show the

geometric mean of the estimated speedup for much larger disk space budgets for

the TPoX and XMark benchmarks, respectively. The figures show that as the disk

space budget increases, the top down algorithms choose index configurations that
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are different from those chosen by greedy search. These configurations are not the

best for the specific training workload (i.e, the speedup is not the highest), but this

is expected since the goal of the top down algorithms is to enable generalization to

unseen workloads and not to achieve the best possible performance on the training

workload. We examine the generalization ability of the top down algorithms in the

next section. Figure 3.17 shows some cases where top down full outperforms top

down lite. This is due to the fact that top down full takes index interactions into

account by re-evaluating the benefit of all unselected indexes given the selected

indexes at every iteration, whereas top down lite does not modify the benefit of

unselected indexes. In our workloads, this can result in a factor of 2 difference

in performance between top down lite and top down full for queries where index

interactions have an effect.

Figure 3.18 also shows the effectiveness of the heuristics that we add to greedy

search. The figure shows that the greedy search algorithm sometimes chooses mul-

tiple indexes that answer the same query, thereby wasting some of the available

disk space budget without gaining any benefit. Therefore, the greedy search does

not achieve the same level of speedup as the greedy search with heuristics for the

same disk space budget. Greedy search with heuristics avoids this problem by en-

suring that any selected index does not replicate previously chosen indexes, and

so it makes better use of the available disk space budget. As an example of the

wastefulness of greedy search, we note that with a disk space budget of 1000MB,

greedy search chooses a configuration with size 524MB, while greedy search with

heuristics chooses a configuration with size 96MB, and both of these configurations

have the same benefit (see Appendix C for details).

Figure 3.19 shows the actual speedup for the workload consisting of the 11

queries of the TPoX benchmark (the estimated speedup for this workload is pre-

sented in Figure 3.14). We can see that the actual speedup corroborates the conclu-

sions drawn from the estimated speedup experiment. In addition, the figure shows

that the benefit of some indexes is overestimated by the optimizer. For example,

the dynamic programming search selects an index that turns out to be not as useful
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Figure 3.17: Geometric mean of estimated speedup (TPoX).
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Figure 3.18: Geometric mean of estimated speedup (XMark).
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as it was estimated by the query optimizer, which is why the actual speedup for

dynamic programming search is much lower than that for top down search even

though their estimated speedups are similar.
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Figure 3.19: Actual speedup (TPoX).

3.8.3 Recommending General Indexes

In this section, we demonstrate that our Index Advisor can recommend indexes that

are more general than the candidates generated from the workload, and that these

indexes can benefit future queries different from those in the training workload.

This is a key feature of our Index Advisor.

The first question we address is how many generalized indexes can potentially be

found in a workload. To address this question, we generated synthetic workloads

consisting of random XPath path expressions that occur in the data. Table 3.4

shows for the TPoX workload the number of basic candidate indexes generated

by the query optimizer in Enumerate XML Indexes mode for these workloads as

the number of workload queries increases, and also the total number of candidate

indexes after candidate generalization (Section 3.4). The numbers show that, even

for these random workloads with little or no locality, we are able to expand the

number of candidate indexes by 25% to 50% by adding general candidate indexes.
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Queries Basic Cands. Total Cands.

10 12 16

20 23 34

30 33 49

40 42 60

50 52 81

Table 3.4: Number of candidate indexes after generalization (TPoX).

The next question we address is how many of the general candidate indexes we

generate can be recommended by our top down algorithm, and how useful these

recommended indexes are. Recall that the goal of top down search is to recommend

a set of indexes that is useful for the workload and as general as possible given the

disk space budget. The generality of these indexes is typically not expected to add

any benefit to the workload queries, but it will make the configuration more usable

if the workload has new unseen queries added to it in the future.

Tables 3.5 and 3.6 show the number of general and specific indexes recom-

mended for different disk space budgets by greedy search with heuristics, top down

lite search, and top down full search for the 11 TPoX and the 15 XMark benchmark

queries, respectively. Greedy search with heuristics is not designed with the explicit

goal of recommending general indexes, and so it is very conservative about recom-

mending them. Top down search, on the other hand, recommends more general

indexes the more disk space it has. Figures 3.20–3.23 shows the selected indexes

in the DAG of indexes generated for the TPoX workload for disk budgets 100MB,

500MB, 1000MB, and 2000MB (the selected indexes are shaded in a darker color).

Appendix C has a detailed description of the indexes in the DAG generated for the

TPoX workload.

To show the effect of recommending general indexes on the speedup of various

workloads, we perform an experiment where the training workload used by the

Index Advisor for recommending indexes is different from the test workload used

to evaluate the recommended configuration. For TPoX, we used a workload of
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Disk Budget Heuristics Top Down Lite Top Down Full

100MB G: 0, S:15 G: 0, S: 15 G: 0, S: 15

500MB G: 0, S: 15 G: 1, S: 12 G: 2, S: 10

1000MB G: 0, S: 15 G: 2, S: 8 G: 2, S: 9

1500MB G: 0, S: 15 G: 4, S: 4 G: 4, S: 4

2000MB G: 0, S: 15 G: 8, S: 0 G: 4, S: 4

Table 3.5: Number of generalized (G) and specific (S) indexes recommended

(TPoX).

Disk Budget Heuristics Top Down Lite Top Down Full

100MB G: 1, S:10 G: 1, S: 10 G: 1, S: 10

500MB G: 2, S: 9 G: 3, S: 5 G: 3, S: 5

1000MB G: 2, S: 9 G: 2, S: 3 G: 2, S: 3

1500MB G: 2, S: 9 G: 3, S: 0 G: 3, S: 0

2000MB G: 2, S: 9 G: 3, S: 0 G: 3, S: 0

Table 3.6: Number of generalized (G) and specific (S) indexes recommended

(XMark).

20 queries, the 11 TPoX queries followed by 9 synthetic queries generated as de-

scribed above to increase workload diversity. For XMark, we used the 15 benchmark

queries. We train (i.e., recommend configurations) based on n queries, and we test

based on the entire workload, and we vary n from 1 to the number of queries (20 for

TPoX and 15 for XMark). Figures 3.24 and 3.25 show the estimated speedup on

the test workload as we vary the training workload size for TPoX and XMark, re-

spectively, with a disk space budget of 2GB. We choose 2GB to represent an infinite

disk budget because any index configuration that can be recommended to either

the TPoX or XMark workloads is guaranteed to have a size that is smaller than

2GB. A training workload with size n is the same as the training workload with

size n−1 after adding one additional query to it. The figures show the speedup for
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Figure 3.20: Selected indexes for disk budget of 100 MB (TPoX).
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Figure 3.21: Selected indexes for disk budget of 500 MB (TPoX).

top down full search and greedy search with heuristics. In this case, the speedup of

top down lite is similar to that of top down full, so we eliminate it from the figure

for clarity. The figures show that as the advisor sees more and more of the test

workload, it can recommend a configuration of indexes that can be useful to unseen

queries. The figures also show that top down search is quite effective at using the

available disk space to generalize from the queries seen in the training workload to

the unseen queries in the test workload, whereas greedy search with heuristics is

unable to perform such generalization.

Figures 3.24 shows the results of the experiment when we added TPoX queries

to the training workload in one order. To confirm that the subset of queries chosen

as the training workload does not affect the conclusion that we are making (i.e.,

the conclusion is not affected by the order of the queries), we repeat the above

experiment for different orders of queries. In every run of this experiment, we

change the order of the training queries input to the advisor. Figure 3.26 shows the

average estimated speedup computed over five runs of the experiment using five
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Figure 3.22: Selected indexes for disk budget of 1000 MB (TPoX).
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Figure 3.23: Selected indexes for disk budget of 2000 MB (TPoX).

different random permutations of the workload queries. The figure reaffirms the

conclusions drawn from Figure 3.24: the top down search algorithm can generalize

from the training workload to future unseen queries while the greedy search with

heuristics cannot.

3.8.4 Advisor Run Time

Figure 3.27 shows the run time of the Index Advisor for varying disk space budgets

on the TPoX workload. Top down full search takes up to 4 times more than greedy

search with heuristics. However, the run time of top down full search improves as

the available disk space increases because it needs to explore fewer nodes in the

DAG of candidate indexes before arriving at a configuration that fits within the

disk space budget. The runtimes of the greedy search and the top down lite search

are lower than all the other search algorithms and are not affected by changing the

disk budget because both search algorithms check every candidate index at most

once. In addition, the runtime of the dynamic programming search increases expo-
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Figure 3.24: Generalization to unseen queries (TPoX).
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Figure 3.25: Generalization to unseen queries (XMark).

50

60

e
d

u
p

Top Down

H i ti

30

40

50

60

rk
lo

a
d

 S
p

e
e

d
u

p

Top Down

Heuristics

10

20

30

40

50

60

m
a

te
d

 W
o

rk
lo

a
d

 S
p

e
e

d
u

p

Top Down

Heuristics

0

10

20

30

40

50

60

0 5 10 15 20

E
st

im
a

te
d

 W
o

rk
lo

a
d

 S
p

e
e

d
u

p

Top Down

Heuristics

0

10

20

30

40

50

60

0 5 10 15 20

E
st

im
a

te
d

 W
o

rk
lo

a
d

 S
p

e
e

d
u

p

Training Workload Size (Queries)

Top Down

Heuristics

0

10

20

30

40

50

60

0 5 10 15 20

E
st

im
a

te
d

 W
o

rk
lo

a
d

 S
p

e
e

d
u

p

Training Workload Size (Queries)

Top Down

Heuristics

0

10

20

30

40

50

60

0 5 10 15 20

E
st

im
a

te
d

 W
o

rk
lo

a
d

 S
p

e
e

d
u

p

Training Workload Size (Queries)

Top Down

Heuristics

Figure 3.26: Generalization to unseen queries, average result of 5 workload permu-

tations (TPoX).

86



nentially with the increase of the disk space budget. Thus, we can deduce that the

recommendations of the dynamic programming search algorithm, which are some-

times better than the recommendations of other approximate search algorithms,

come at a cost.
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Figure 3.27: Advisor runtime (TPoX).

3.8.5 Evaluating Candidate Configurations

The quality of the configurations recommended by the XML Index Advisor depends

on how accurate we are in estimating the benefit of candidate index configurations

in the Evaluate XML Indexes optimizer mode, and in estimating in our client-side

application the penalty of updating the index configuration when updating the

database with update, insert, or delete (UDI) statements.

The key statistic used by Evaluate XML Indexes mode is the size of a virtual

index. We have found that for the TPoX and XMark workloads, the median relative

estimation error for this statistic is 12% and 11%, respectively. Notably, we are

able to estimate size of large indexes – which have the most impact on performance

– with a very small error. For example, the largest candidate indexes for TPoX are

indexes on /FIXML/Order/OrdQty/@* and /FIXML/Order//@*, and we are able to

estimate their size with 3.7% and 5.5% error, respectively.
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Figure 3.28 illustrates the effect of estimating the penalty of updating candidate

index configurations in response to UDI statements. We add to the TPoX workload

a varying number of UDI statements that insert documents into one of the tables

(the ORDER table), and we use the Index Advisor to recommend a configuration

with a 100MB disk space budget. The figure shows the estimated execution time

(in millions of optimizer time units, or timerons in DB2 terminology) as we vary

the number of UDI statements. The figure shows the case where the design advisor

ignores UDI statements while recommending an index configuration, and for the

case where the design advisor takes UDI statements into account. The figure also

shows the cost of the queries and the insert statements for the second case. As

the number of UDI statements increases, workload execution time increases in all

cases, but the advisor that takes into account UDI statements is able to reduce

the increase in execution time by dropping indexes when the penalty for updating

them exceeds their benefit (which happens when insertions are around 70% of the

table size). The figure also shows that the queries in the workload suffer when

indexes are dropped, but dropping the indexes saves time overall. Thus, from these

experiments, we can see that we can effectively estimate the benefit of indexes and

continue to do so in the presence of updates.
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Figure 3.28: Effect of updates, budget=100MB (TPoX).
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The overall conclusion of our experiments is that the XML Index Advisor can

effectively recommend index configurations that significantly speed up workload

execution while fitting within the available disk space budget. The DBA should

decide on the search algorithm to use based on the goal of the search. If the goal is to

recommend a configuration that is specific to the given workload, then greedy search

with heuristics should be used. If the goal is to recommend a configuration that is

useful for the given workload but can also benefit future, yet unseen queries, then

the top down lite search algorithm should be used. The XML Index Advisor is a

novel and powerful addition to the toolbox of the DBA of an XML database system.

It deals with the structural complexity of XML data and workloads, and with the

complexity of recommending partial indexes in this setting. Having described the

Index Advisor, we turn our attention next to recommending materialized views for

XML workloads.
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Chapter 4

Recommending XML Views

In the previous chapter, we focused on indexes as one of the physical design struc-

tures for XML databases. We described an end-to-end XML Index Advisor that

automatically recommends XML indexes that are represented by linear XPath path

expressions, and we described techniques for extending the advisor to support mul-

tipath indexes that are represented by a set of XPath path expressions that can

be used to construct a tree of the data. In this chapter, we study automatically

recommending materialized views for XML databases.

4.1 Introduction

There are currently several types of materialized views for XML data. Many pro-

posals have defined view languages for XML data and have studied matching these

views with XML queries. In this chapter, we focus on enumerating and recommend-

ing XMLTable materialized views for a workload of XQuery queries. XMLTable

views are relational views that use an SQL/XML extension, namely the XMLTable

table function that is used to query XML data and export the result into a relational

table1. One way to look at an XMLTable view is that it is a set of linear XPath

path expressions where the results of executing these XPath queries are stored in a

relational table. The main difference between what we propose in this chapter and

1A more detailed description of XMLTable views was given in Section 2.4.1
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what we presented in the previous chapter for multipath XML indexes is that the

XMLTable views that we focus on in this chapter represent an alternative relational

access path of the XML data. This enables the query optimizer to use these views

as it would use a regular relational table. We also deal with XMLTable views in this

chapter as one unit, not as a set of linear XPath path expressions as we did for the

multipath indexes in the previous chapter. Materializing XMLTable views helps

the performance of XQuery queries by enabling the database system to pre-scan

frequently queried XML data, perform complex operation in advance, and provide

a normalized version of parts of the XML data.

Materialized views for XML databases are different from those for relational

databases because the structure of the data is more complex and XQuery queries

can reference any parts of the XML data in one row of the table using XPath

path expressions. XML indexes are based on XPath path expressions and several

indexes can be used together to answer a query. Materialized views for XML data

are more complex (and more flexible) than indexes because one materialized view

can capture not only several XPath path expressions in the XQuery query but also

other operators such as join and projection. Furthermore, in this thesis we focus on

using relational views of the XML data to answer XQuery queries, which adds extra

complexity because it requires an intermediate translation of the XQuery queries

to SQL queries.

The main issues that we need to address when recommending materialized

views are: (1) determining the candidate physical structures (relational materi-

alized views) that would be useful for an XQuery query or a workload consisting

of a set of XQuery queries, (2) expanding the set of candidates by generating new

ones that are useful for multiple queries in the workload as well as adding indexes

that can help these views, and (3) searching the space of possible materialized view

configurations for the optimal configuration that provides the maximum benefit to

the workload while satisfying disk, schema, and other system constraints. In this

chapter, we present novel techniques to address each of these challenges. We have

implemented our XMLTable View Advisor in a prototype version of DB2 V9.7,
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which supports both relational and XML databases, and we have used this imple-

mentation to verify the efficiency of our proposed advisor and the high quality of

the view configurations that it recommends. Part of this work appeared in [34].

The rest of the chapter is organized as follows. In Section 4.2, we discuss

the architecture of a database compiler/optimizer that translates XQuery queries

into SQL/XML queries and matches and then rewrites the translated queries us-

ing materialized XMLTable views. We also discuss the architecture of our pro-

posed XMLTable View Advisor. Next, we describe an end-to-end solution for an

XMLTable View Advisor that recommends relational materialized views given an

XML database and a workload of XQuery queries. Section 4.3 describes enu-

merating basic candidate materialized views. Section 4.4 describes generalizing

these candidates. Section 4.5 discusses recommending relational indexes on the

XMLTable views, and Section 4.6 presents our algorithm for searching for the best

possible configuration of views. We describe how to translate XQuery queries into

SQL/XML queries with XMLTable functions in Section 4.7, which is an extension

that would be added to the database optimizer. Finally, we describe our prototype

implementation of the XMLTable View Advisor in DB2 (Section 4.8) and present

our experimental results (Section 4.9).

4.2 Overview of XMLTable View Recommenda-

tion

4.2.1 Database Compiler/Optimizer Architecture for Rewrit-

ing XQuery Queries with XMLTable Views

The XMLTable table function is an SQL extension that maps XML data into re-

lational tables. Our advisor recommends XMLTable materialized views for im-

proving the performance of XQuery queries. This requires the XQuery queries to

be rewritten at run time by the query optimizer so that they use the XMLTable

views. Thus, the query optimizer of a database system using our approach needs to
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be extended with the ability to translate XQuery queries into SQL/XML queries

that use XMLTable functions. This translation process allows the optimizer to

match the translated query with the XMLTable views materialized in the database.

Translating queries during compilation by the database engine to use the internal

data structures is referred to as native compilation. The idea of natively compil-

ing XQuery queries into SQL with extension operators to process them using a

relational DBMS is described in [59]. In this thesis we use a similar (but more

simplified) approach, described in detail in Section 4.7. The database compila-

tion/optimization of XQuery queries to use materialized XMLTable views runs

through the following steps, which are also illustrated in Figure 4.1:

1. XQuery parsing. The XQuery query is parsed into XQueryX [66], which

is an XML representation of XQuery. This step helps the XQuery compiler

analyze the clauses of an input query and prepare it for the following steps.

2. XMLTable views enumeration. Using the XQueryX format of the input

XQuery query, the XQuery compiler examines all the clauses in the query

and enumerates the possible XMLTable views that include all the XPath

expressions that are referenced in the input query. We describe this process

in more detail in Section 4.7.

3. Generating SQL/XML query using enumerated views. The XQuery

compiler uses the XMLTable views enumerated in the previous step in trans-

lating the input XQuery query into an SQL/XML query that has these views

in the FROM clause as sub-queries. Return constructs in the input XQuery

are translated into SQL/XML publishing functions (Section 4.7).

4. Matching query with materialized views and selecting the best

matching materialized XMLTable views. The optimizer matches the

translated SQL/XML query with all the XMLTable views materialized in the

database and applies a cost based function to select the best set of views to

rewrite the query.

93



XQuery XQuery Parsing

Enumerate exact 

match XMLTable

Views

Translate XQuery

to SQL/XML 

Query with 

XMLTable

function calls

Match query  

with XMLTable

views

XMLTable views

Rewrite query to 

use materialized 

XMLTable views

Execute rewritten query

Query optimizer

Figure 4.1: Query optimizer rewriting queries to use XMLTable materialized views.

5. Rewriting query to use the selected views. The final phase of the

optimization process is to use the set of matched XMLTable views to rewrite

the query.

To concretely demonstrate the kinds of materialized views that we aim to rec-

ommend, and how they would be used by a query optimizer, we give a brief example

that illustrates how to translating an XQuery query to an SQL/XML query and

rewriting it to use materialized views. A detailed example with a description of the

translation rules is presented in Sections 4.3 and 4.7. Consider the XQuery query

XQeg on the data of the TPoX [70] benchmark (shown below). The following steps

summarize how the query optimizer would compile, translate, and rewrite XQeg to

an SQL/XML query that uses XMLTable views:
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Example query: XQeg: Return the name and the account information

of the customer whose ID equals 9000.

for $cust in ("CUSTACC.CADOC")/Customer[@id = 9000]

return

<customerInfo>

<name>$cust/name</name> <accounts>$cust/Accounts/Account</accounts>

</customerInfo>

1. First, query XQeg is parsed and the XMLTable views that encapsulate all the

XPath expressions referenced in the query are enumerated. For XQeg, only

one XMLTable view is generated in this step: view Vrw (shown below).

Vrw: Generated XMLTable view that contains query XQeg.

select u.cx0, u.cx1, u.cx2 from CUSTACC, xmltable(

’$cadoc/Customer’ passing CUSTACC.CADOC as "cadoc"

columns

cx0 double path ’@id’,

cx1 string path ’name’,

cx2 xml path ’Accounts/Account’) as u

2. Next, the query optimizer uses Vrw to translate XQeg to SQeg (shown below).

SQeg: The rewriting of XQeg to use Vrw.

select XMLElement( NAME "customerInfo" ,

XMLElement( NAME "name" , Vv0.cx1) ,

XMLElement( NAME "accounts" , Vv0.cx2))

from ( select v0.cx0, v0.cx1, v0.cx2 from CUSTACC, xmltable(

’$cadoc/Customer’ passing CUSTACC.CADOC as "cadoc"

columns

cx0 double path ’@id’,

cx1 string path ’name’,

cx2 xml path ’Accounts/Account’) as v0 ) as Vv0

where ( Vv0.cx0 = 9000 )
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3. The optimizer then matches the translated query SQeg with all the XMLTable

views that are available as materialized views in the database. In this exam-

ple, we assume that there are two materialized views Veg1 and Veg2 (shown

below) that match the translated query SQeg. Our aim in this chapter is to

recommend materialized views that are similar to Veg1 and Veg2.

Veg1: Example XMLTable materialized view.

select u.cx0, u.cx1, u.cx2 from CUSTACC, xmltable(

’$cadoc/Customer’ passing CUSTACC.CADOC as "cadoc"

columns

cx0 double path ’@id’,

cx1 string path ’name’,

cx2 xml path ’Accounts/Account’) as u

Veg2: Example XMLTable materialized view.

select u.cx0, u.cx1, u.cx2 from CUSTACC, xmltable(

’$cadoc/Customer’ passing CUSTACC.CADOC as "cadoc"

columns

cx0 double path ’@id’,

cx1 string path ’name’,

cx2 xml path ’Accounts’) as u

4. Finally, the optimizer chooses one or more materialized view to rewrite the

query. Veg1 is similar to view Vrw which means that we can rewrite SQeg

to use Veg1 by replacing the sub-query Vv0 in the FROM clause and all its

references in the query with a reference to Veg1. The rewritten query using

Veg1 is RSQeg1. Veg2 is a general form of Vrw and hence compensation is

needed to rewrite the query to use the view. The rewritten query using Veg2

is RSQeg2. In this thesis, we study rewriting XQuery queries into equiva-

lent SQL/XML queries that use XLMTable views, but we do not consider
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any rewriting for these SQL/XML queries that use XMLTable views. Thus,

we would not be able to automatically generate the query RSQeg2 since it

requires a compensating expression on top of Veg2.

RSQeg1: Query SQeg after rewriting it using view Veg1.

select XMLElement( NAME "customerInfo" ,

XMLElement( NAME "name" , Veg1.cx1) ,

XMLElement( NAME "accounts" , Veg1.cx2))

from Veg1

where ( Veg1.cx0 = 9000 )

RSQeg2: Query SQeg after rewriting it using view Veg2.

select XMLElement( NAME "customerInfo" ,

XMLElement( NAME "name" , Veg2.cx1) ,

XMLElement( NAME "accounts" , Vv0.cxv2))

from Veg2 ,

(

select v0.cxv2

from Veg2, xmltable(

’$cx2’ passing Veg2.cx2 as "cx2"

columns

cxv2 xml path ’Account’) as v0

) as Vv0

where ( Veg2.cx0 = 9000 )
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Figure 4.2: Architecture of the XMLTable View Advisor.

4.2.2 XMLTable View Advisor Architecture

We now present the architecture of our XMLTable View Advisor. Our view ad-

visor architecture follows the same general architecture described in Chapter 1

(Figure 1.1). Figure 4.2 illustrates the specifics of the XMLTable View Advisor

architecture. First, the XMLTable View Advisor analyzes each query in the work-

load and enumerates its possible XMLTable view candidates. The set of XMLTable

views enumerated for all queries in the workload constitutes the basic set of candi-

date views for the entire workload. Next, the advisor expands the set of candidate

views by recommending more general views that can answer multiple queries in the
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workload. Then, for each candidate view, the advisor invokes the query optimizer

in a special mode to estimate the benefit of the view to the queries in the workload.

Finally, the advisor searches the space of candidates to find the best configuration

of views that has the highest benefit to the workload and fits into the given disk

space budget.

At a high level, the goal of the XMLTable View Advisor is to identify com-

mon access patterns in the input XQuery workload, and to extract the XML data

accessed by these patterns into XMLTable views. For example, if the queries in

the input workload frequently access the value of an element in the XML data (an

ID element for instance), then it is beneficial to extract this element as a separate

column in an XMLTable view. Moreover, for elements or attributes that are usu-

ally accessed together in the input workload, it is useful to store them as an XML

construct in the XMLTable view. For example, if customers’ phones are usually

retrieved together in the input queries, then we deduce that it is beneficial to store

them as an XML construct in the recommended views.

The class of XQuery queries that our advisor supports includes queries with

FOR, LET, WHERE, and RETURN clauses. The RETURN clause can have either

a simple expression or a constructed expression. Multiple FOR and LET clauses

can occur in the query. Expressions that appear in the FOR, LET, WHERE, and

RETURN clauses can have any number of predicates. The simplified grammar of

the class of queries that we support is as follows:

FLWORExpr ::= (ForClause | LetClause)+ WhereClause?

ReturnClause

ForClause ::= "for" "$" VarName "in" Expr

("," "$" VarName "in" Expr)*

LetClause ::= "let" "$" VarName ":=" Expr

("," "$" VarName ":=" Expr)*

WhereClause ::= Expr

ReturnClause ::= Expr | ConstructExpr
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ConstructExpr ::= "<" ConstructName ">"

(Expr | ConstructExpr)+

"</" ConstructName ">"

Expr ::= OrExpr

OrExpr ::= AndExpr ( "or" AndExpr )*

AndExpr ::= ComparisonExpr ( "and" ComparisonExpr )*

ComparisonExpr ::= SingleExpr ( ComparisonOp SingleExpr )?

SingleExpr ::= PathExpr | Literal

VarName is a valid XQuery variable name. ConstructName is an XML tag name

of an XML constructed return value. PathExpr is any valid XPath path expression.

Literal can be a numerical or string literal. ComparisonOp can be: (1) a general

comparison: “=” | “ 6=” | “<” | “≤” | “>” | “≥”, (2) a value comparison: ”eq” |

”ne” | ”lt” | ”le” | ”gt” | ”ge”, or (3) a node comparison: “is” | “≪” | “≫”.

Next, we describe the phases of the view recommendation process in detail. We

use the following query Q1, which is the same as query Qeg discussed above after

adding more clauses to it, as a running example:

Q1: For every customer whose age is greater than 50 and has an ID

greater than 9000, return her name and the number of accounts she has.

for $cust in ("CUSTACC.CADOC")/Customer[@id > 9000]

let $accounts := count($cust/Accounts/Account)

where $cust/age > 50

return

<print>

<name>$cust/name</name>

<accounts_number>$accounts</accounts_number>

</print>
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4.3 Enumerating Candidate Views

In Chapter 3, we enumerated candidate indexes by completely relying on the opti-

mizer index matching algorithm to identify the indexable expressions in the XQuery

query. XMLTable views are more complex physical structures, since views can in-

clude XML data from multiple XML paths. Therefore, it would be more difficult for

the query optimizer to enumerate candidate views due to the fact that there is no

simple equivalent to the //* index for materialized views. Because of that, we de-

cided to develop a process for enumerating candidate XMLTable materialized views

that does not rely on the query optimizer. The process for enumerating XMLTable

views relies on translating the input XQuery queries into SQL/XML queries that

use XMLTable functions, as described briefly in Section 4.2. During this transla-

tion process, potentially useful XMLTable views are identified and added to the set

of candidate views. We describe the XQuery-to-SQL/XML translation algorithms

that we use to enumerate candidate views in this section. In Section 4.7, we revise

these algorithms to enable translating XQuery queries into SQL/XMLTable queries

that use the recommended materialized views.

To enumerate candidate views for an XQuery query, we parse the query and

break it down into its FOR, LET, WHERE, and RETURN clauses. Then, for each

one of these clauses we further break it into its components. The FOR and LET

clauses in the FLWOR expression are used to produce a tuple stream in which each

tuple consists of one or more bound variables. This behavior resembles the row

generator in the XMLTable function. Therefore, for every FOR or LET clause in

the input XQuery, we create a new candidate XMLTable view. Every reference

to the bound variable declared in a FOR or LET clause represents a navigation

to an element in its expression subtree, and hence we add a column navigator

in the corresponding view. We describe next the details of how we handle each

clause in the candidate enumeration process (Algorithm 12 and the helper functions

described in Algorithms 13–17).
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Algorithm 12 enumerateCandidates(xquery )

1: for clause ∈ xquery do

2: if clause is forClause then

3: call enumerateCandidates–handleForClause(clause)

4: else if clause is letClause then

5: call enumerateCandidates–handleLetClause(clause)

6: else if clause is whereClause then

7: call enumerateCandidates–handleWhereClause(clause)

8: else if clause is returnClause then

9: call enumerateCandidates–handleReturnClause(clause)

10: end if

11: end for

Algorithm 13 enumerateCandidates–handleForClause(forClause)

1: break forClause into forVarName and forExpr

2: view ← enumerateCandidates–handleExpr(forVarName, forExpr)

Algorithm 14 enumerateCandidates–handleLetClause(letClause )

1: break letClause into letVarName and letExpr

2: view ← enumerateCandidates–handleExpr(letVarName, letExpr)

3: if letClause has aggFn then

4: add an SQL GROUP BY clause to view with all columns except the expres-

sion that appears in the aggFn

5: update the SELECT clause of view to reflect applying the aggFn

6: end if

Algorithm 15 enumerateCandidates–handleWhereClause(whereClause )

1: for comparisonExpr found in the whereClause do

2: for pathExpr found in the comparisonExpr do

3: find refView associated with the varRef referenced in pathExpr

4: add pathExpr to refView as a column navigator

5: end for

6: end for
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Algorithm 16 enumerateCandidates–handleReturnClause(returnClause )

1: for pathExpr found in the returnClause do

2: find refView associated with the varRef referenced in pathExpr

3: add pathExpr to refView as a column navigator

4: end for

Algorithm 17 enumerateCandidates–handleExpr(varName , expr)

1: create a new view view and associate it with the variable name varName

2: break expr into pathExpr and predicateList

3: if pathExpr has a variable reference varRef then

4: find refView associated with varRef

5: set the row generator of view to be the concatenation of the row generator

of refView and pathExpr

6: add column “.” to refView and a backward navigation path “refCol” to view

7: else

8: set the row generator of view to be pathExpr

9: end if

10: for p ∈ predicateList do

11: for pathExpr found in the p do

12: add pathExpr to view as a column navigator

13: end for

14: end for

return view
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FOR Clause. We divide the FOR clause into a variable, the path expression

associated with the variable (the binding sequence for that variable), and the op-

tional predicates. A FOR clause produces a tuple stream for every variable and

iterates over the binding sequence of that variable. We deduce that the behavior of

the binding sequence of the FOR clause is similar to the behavior of the row gen-

erator of the XMLTable function. Therefore, for every FOR clause: (1) we create a

new candidate view and assign its row generator to be the binding sequence in the

FOR clause (i.e. the path expression after removing any predicate values from it,

e.g., /Customer in the FOR clause of Q1), (2) we record the variable name and the

created view so that we can add any expression that references the variable to the

view as a column navigator, and finally (3) for every predicate expression appearing

in the binding sequence of the FOR clause, we add it as a column navigator path

expression to the view. For example, when we parse the FOR clause of Q1, we

create a new view V1 that has the row generator /Customer and the column @id:

V1:

select u.cx0 from CUSTACC, xmltable(

’$cadoc/Customer’ passing CUSTACC.CADOC as "cadoc"

columns

cx0 double path ’@id’) as u

LET Clause. Similar to the FOR clause, a LET clause produces a tuple stream

for every variable declared in it. Unlike the FOR clause, a LET clause binds each

variable declared in it to the result of its associated expression without iteration and

hence we need to compensate for this behavior. First, we parse the LET clause to

find the clause variable and its binding expression. Next, we create a new candidate

XMLTable view with the binding expression after removing any predicates from it

as its row generator. To compensate for the non-iterative behavior of the LET

clause, we add column navigator with the "." expression to the generated view to

represent all the tuples generated by the row generator of the view and then group

all of these tuples using a GROUP BY clause.
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For a binding sequence that references another variable (e.g., the expression

$cust/Accounts/Account in Q1), we look up the expression referenced by this

variable ($cust references /Customer in the FOR clause, which is also associated to

the already generated view V1) and concatenate it with the rest of the expression

to form the path expression that we use as a row generator when creating the

XMLTable view (/Customer/Accounts/Account is used as the row generator for

V2 in this example). We then add a column in each of the views: (1) a column

in the newly generated view (V2) to backward navigate the row generator of the

view that represents the referenced variable in the binding sequence (the column

parent::Accounts/parent::Customer in V2 references /Customer in V1) and

(2) a "." column in the referenced view (V1). These columns are used for joining

the two views in the translated query. Additionally, a LET clause might have an

optional aggregation function that we handle by adding the aggregation of the "."

column to the SELECT clause of the XMLTable view (count(u.cy0) in V2). The

updated version of V1 and the newly generated V2 will be as follows:

V1:

select u.cx0, u.cx1 from CUSTACC, xmltable(

’$cadoc/Customer’ passing CUSTACC.CADOC as "cadoc"

columns

cx0 double path ’@id’,

cx1 xml path ’.’) as u

V2:

select count(u.cy0) as ACc1, u.cy1 from CUSTACC, xmltable(

’$cadoc/Customer/Accounts/Account’ passing CUSTACC.CADOC as "cadoc"

columns

cy0 xml path ’.’,

cy1 xml path ’parent::Accounts/parent::Customer’) as u

group by cy1

WHERE Clause. For every predicate appearing in a WHERE clause, we

extract the XPath expressions appearing in this predicate. For each XPath path
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expression, we lookup the view associated with the referenced variable in this ex-

pression and add a column to that view to correspond to this navigation. For

example, to account for the predicate on age in Q1, we add a column navigator in

view V1, which will be updated to look as follows:

V1:

select u.cx0, u.cx1, u.cx2 from CUSTACC, xmltable(

’$cadoc/Customer’ passing CUSTACC.CADOC as "cadoc"

columns

cx0 double path ’@id’,

cx1 xml path ’.’,

cx2 double path ’age’) as u

RETURN Clause. For all the XPath path expressions that appear in the RE-

TURN clause, we find all the views that are associated with the reference variables

that appear in these expressions and we then add a column for each expression to

the corresponding view. For example, the expression $accounts in the RETURN

clause of Q1 references an existing column in V2 and hence no change is needed

to the view. However, for the expression $cust/name, we add the column name to

V1. The updated version of view V1 is as follows:

V1:

select u.cx0, u.cx1, u.cx2, u.cx3 from CUSTACC, xmltable(

’$cadoc/Customer’ passing CUSTACC.CADOC as "cadoc"

columns

cx0 double path ’@id’,

cx1 xml path ’.’,

cx2 double path ’age’,

cx3 varchar(100) path ’name’) as u

After parsing queries in the workload, we have a set of enumerated views for this

workload. Next, we expand this set of candidates through generalization rules.
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4.4 Generalizing the Set of Enumerated Views

Recall that the XML Index Advisor generalizes the index patterns to make them

useful for queries not seen in the input workload that is used for recommendation.

Similarly, creating XMLTable views that answer multiple queries in the workload

and potential unseen queries can increase the usefulness of our recommendations.

Since our proposed view definition involves both XPath expressions and SQL query

definitions, generalization can benefit from the index generalization techniques pro-

posed in Chapter 3 and the query merging techniques proposed in [57, 92]. The

possible generalization techniques include generalizing the row generator or the col-

umn navigators of the view and merging views. We describe the forms of query

generalization that we have explored in this section. The XMLTable View Advisor

applies these generalization rules to the basic set of candidate views to generate an

expanded set of candidate views.

4.4.1 Generalizing Column Navigators to Include Subtrees

Most of the XMLTable views that we recommend in the enumeration phase are a

normalization (flattening) of all the values that are being accessed in the workload

queries. An alternative approach is to recommend views that store sub-trees of

the data as XML columns. A recommended XMLTable view can now have one

column navigator with a "." path expression to represent all the subtrees reachable

by the row generator. For example, V3 (below) is a generalization of V1. This

approach is useful when the query requires reconstructing the XML tree. This

general view requires that the matching infrastructure allow matching multiple

columns in the query with one column in the view and is also capable of performing

XPath compensation. For example, matching view V3 with sub-query Vv0 in the

translated query RQ1 (listed in Section 4.7) means matching columns cx0, cx1, cx2

and cx3 in Vv0 with cx0 in V3. Compensation is required in this case to navigate

to @id, age, and name for columns cx0, cx2, and cx3, respectively, to rewrite the

translated query to use the view V3.
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Instead of replacing the column navigators of a view with a "." column, a less

aggressive approach is to generalize pairs of column navigators that come from a

different pair of views that share the same row generator using the index general-

ization algorithms proposed in Section 3.4. Since our XMLTable View Advisor does

not consider rewriting SQL/XML queries (and hence does not consider generating

compensating queries), we do not implement these generalization rules and we leave

the details of generating the required compensating queries to future work.

V3:

select u.cx0 from CUSTACC, xmltable(

’$cadoc/Customer’ passing CUSTACC.CADOC as "cadoc"

columns

cx0 int path ’.’) as u

4.4.2 Merging Views

A common generalization approach used in relational advisors is view merging [92].

For XMLTable views, we merge views that have the same row generator to produce

a new view that has the set of column navigators that appear in the merged views

after removing duplicates. The goal of this approach is to decrease the disk space

required for views by removing duplicate columns from the merged views, while still

achieving the same performance. This approach is a special case of the approach

we discussed in Section 4.4.1, since we are keeping the normalization state (flat or

nested) of the column navigator. For example, view V5 is a merging of V1 (listed

in Section 4.3) and V4 (shown below).

V4:

select u.cx0, u.cx1 from CUSTACC, xmltable(

’$cadoc/Customer’ passing CUSTACC.CADOC as "cadoc"

columns

cx0 double path ’@id’,

cx1 varchar(100) path ’occupation’) as u
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V5:

select u.cx0, u.cx1, u.cx2, u.cx3, u.cx4

from CUSTACC, xmltable(

’$cadoc/Customer’ passing CUSTACC.CADOC as "cadoc"

columns

cx0 double path ’@id’,

cx1 xml path ’.’,

cx2 double path ’age’,

cx3 varchar(100) path ’name’,

cx4 varchar(100) path ’occupation’) as u

4.5 Indexes on XMLTable Views

One approach to make XMLTable views more useful is to build relational indexes

on their columns. This is possible since the XMLTable views are regular relational

SQL tables with indexable columns that happen to originate from XML data. There

can be many possible indexes that can be built on the columns of an XMLTable

view to help the view perform better. In this thesis, we use a heuristic approach

to select only one index for each view. The chosen index has all the columns of

the view that appear in a predicate in the XQuery that caused this view to be

recommended. This guarantees that these columns have relational values that are

used for lookup in the query. The index follows the same order of the columns

in the view. For example, the index that we build for view V1 is index I1. For

every candidate view, we add to the search space another alternative structure that

consists of the view with a relational index on its columns.

I1: Generated relational index for view V1.

create index index1 on V1(cx0, cx2)
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4.6 Searching for the Optimal View Configura-

tion

The techniques presented in the previous two sections result in a set of candidate

views being enumerated: basic candidate views generated directly from the input

queries and generalized candidate views obtained by applying the generalization

rules. To choose some of these enumerated XMLTable views (a view configuration)

to recommend for a workload, we search the space of enumerated candidate views

to find the best set of views that fits in a given disk space budget. We generalize

the search algorithms in Section 3.6 to be able to search any physical structure

(indexes, views, views with indexes over them, etc.). The search problem can be

modeled as a 0/1 knapsack problem similar to that discussed in Section 3.6. We

compute the benefit of a physical structure as the difference between the workload

cost as estimated by the query optimizer before and after creating this structure.

In this section, we focus on developing rules that are similar to the ones described

in Section 3.6.2 for the greedy search with heuristics algorithm. The top down

search algorithm described in Section 3.6.3 can be used without any changes for

searching the candidate XMLTable views.

XMLTable views can interact with each other in ways that affect their total

benefit for a query workload. Our search algorithm takes such interactions into

consideration. The main types of interaction affecting the selection of views are: (1)

views that can be used together to rewrite a query and (2) views that are generated

by merging other views and therefore subsume those views. These interactions are

similar to the ones encountered when searching the space of XML indexes, so we use

a greedy search algorithm similar to the one described in Section 3.6, but we modify

the heuristic rules used in this search to deal with the new types of interactions so

that they suit the view search problem.

The high-level outline of the greedy search algorithm is as follows. First, we

estimate the size of each candidate view, and the total benefit of this view for the

workload. We then sort the candidate views according to their benefit/size ratio.
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Finally, we add candidates to the output configuration in sorted order of bene-

fit/size ratio if they agree with the heuristic rules, starting with the highest ratio,

and we continue until the available disk space budget is exhausted. In Section 3.6,

we proposed heuristic rules that are based on index coverage. We define the view

coverage of a view as its view ID as well as the IDs of the views that it subsumes

(i.e., the views that it was generated from using the generalization algorithm and

the views that have the same row generator and column navigators that were enu-

merated for other queries). The coverage of a configuration of views is defined as

the combination of the view coverage of its constituent views. For example, if V5

is generated by merging V1 and V4, then the coverage of V5 is the set {1, 4, 5}.

We refer to the coverage of a candidate view (cand) or a group of views (config)

as cand .coverage and config .coverage, respectively. We also refer to the size of a

candidate view (cand) or a group of views (config) as cand .size and config .size,

respectively. Algorithm 18 outlines the search algorithm. We use the following

functions to perform the search and apply the heuristics:

• benefit(config) returns the estimated benefit of the workload when this con-

figuration of views (or views with relational indexes on them) is created. It is

based on calling the query optimizer with and without the views in place and

computing the reduction in the optimizer’s estimated cost when the views are

in place.

• addCandIfSpaceAvl(cand , config) adds the candidate cand to the set config if

cand .size + config .size ≤ diskConstraint. In addition, if the condition holds,

addCandIfSpaceAvl updates the size and coverage of config .

• replaceCandIfSpaceAvl(cand , subConfig , config) replaces the subConfig in config

with cand if the new configuration after performing the replacement newConfig

has a higher benefit than config and the added size is below a threshold β.

This is the heuristic that we add to the greedy search to deal with view in-

teractions. The value β is a threshold that specifies how much increase in

size we are willing to allow. We have found β = 10% to work well in our
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experiments. Finally, if the condition holds and there is enough disk space to

do the replacement, replaceCandIfSpaceAvl updates the size and coverage of

config.

• overlapCoverage(cand , config) scans a configuration config and returns the

maximal set of candidates overlapConfig that has the view coverage of cand

or has a view coverage that is less than cand .coverage.

Algorithm 18 heuristicViewSearch(candidates , diskConstraint)

1: sort candidates according to their benefit(cand)/cand .size ratio

2: recommended ← ∅, recommended .size ← 0, recommended .coverage ← ∅

3: while recommended .size < diskConstraint do

4: bestCand ← pick the next best cand in candidates

5: if recommended .coverage ∩ bestCand .coverage = φ then

6: addCandIfSpaceAvl(bestCand ,recommended)

7: else if recommended .coverage ≤ best .coverage then

8: replaceCandIfSpaceAvl (bestCand ,recommended ,recommended)

9: else

10: overlapConfig ← overlapCoverage(bestCand , recommended)

11: replaceCandIfSpaceAvl (bestCand ,overlapConfig,recommended)

12: end if

13: end while

14: return recommended

4.7 Translating XQuery Queries into SQL Queries

that Use XMLTable Views

The search algorithm described in the previous section results in a recommended

configuration of XMLTable views that would help the performance of future XQuery

queries. At run time, the query optimizer needs to translate the XQuery queries to
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SQL queries with XMLTable functions to be able to match these queries with the

XMLTable views. Translation of XQuery queries to SQL queries with XMLTable

functions during query compilation is studied in [59]. We adopt a similar approach

that we describe in this section. The translation involves using XMLTable views

that are similar to the ones being enumerated for the XQuery queries using Algo-

rithm 12 (Section 4.3). This ensures that the XMLTable views in the translated

XQuery queries will match the recommended XMLTable views.

During the XQuery to SQL translation, we examine the parsed XQuery, gener-

ate XMLTable views that encapsulate all referenced XPath expressions in the query,

and then construct an SQL query based on this information. We add all the gener-

ated views to the FROM clause of the SQL query. We then construct the SELECT

and WHERE clauses in the translated query by referring to the columns of the

views to reflect how their associated expressions appear in the original query. We

also add joins between the views that are used to rewrite the query when needed.

These joins are needed to link two FOR or LET clauses where one references the

other (this is equivalent to joining two tables in SQL) to make sure that the data

referenced by both clauses at any iteration is the same. For example, the bind-

ing sequence of the LET clause in Q1 ($cust/Accounts/Account) references the

binding sequence of the FOR clause (/Customer). Therefore, we add an equality

predicate for the expressions represented by $cust referenced in the FOR and LET

clauses to make sure that the XML data is the same at any iteration (i.e., we are

aggregating the accounts of the same customer at any iteration).

Algorithm 19 and its helper functions outlined in Algorithms 20–22 illustrate

the extensions we made to Algorithm 12 and its helper functions to build the three

lists selectElementsList , fromViewsList , and wherePredicatesList that we use to

construct the translated query. The lines added in this section to the algorithms

of Section 4.3 are underlined. First, we initialize the three lists in Lines 1, 2, and 3

in Algorithm 19. For every FOR or LET clause in the query, we record the views

that we create by adding them to fromViewsList in Lines 3 (Algorithm 20) and 7

(Algorithm 21). For every predicate we encounter during the parsing either in an
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Algorithm 19 translateXQuery(xquery)

1: selectElementsList ← φ

2: fromViewsList ← φ

3: wherePredicatesList ← φ

4: for clause ∈ xquery do

5: if clause is forClause then

6: call enumerateCandidates–handleForClause(clause)

7: else if clause is letClause then

8: call enumerateCandidates–handleLetClause(clause)

9: else if clause is whereClause then

10: call enumerateCandidates–handleWhereClause(clause)

11: else if clause is returnClause then

12: call enumerateCandidates–handleReturnClause(clause)

13: end if

14: end for

15: generateQuery(selectElementsList , fromViewsList , wherePredicatesList)

Algorithm 20 translateXQuery–handleForClause(forClause , fromViewsList)

1: break forClause into forVarName and forExpr

2: view ← enumerateCandidates–handleExpr(forVarName, forExpr)

3: add view to fromViewsList

Algorithm 21 translateXQuery–handleLetClause(letClause)

1: break letClause into letVarName and letExpr

2: view ← enumerateCandidates–handleExpr(letVarName, letExpr)

3: if letClause has aggFn then

4: add an SQL GROUP BY clause to view with all columns except the expres-

sion that appears in the aggFn

5: update the SELECT clause of view to reflect applying the aggFn

6: end if

7: add view to fromViewsList
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Algorithm 22 translateXQuery–handleExpr(varName , expr)

1: create a new view view and associate it with the variable name varName

2: break expr into pathExpr and predicateList

3: if pathExpr has a variable reference varRef then

4: find refView associated with varRef

5: set the row generator of view to be the concatenation of the row generator

of refView and pathExpr

6: add column “.” to refView and a backward navigation path “refCol” to view

7: construct predicate joinPred to join columns “.” in refView and “refCol” in view

8: add predicate joinPred to wherePredicatesList

9: else

10: set the row generator of view to be pathExpr

11: end if

12: for p ∈ predicateList do

13: for pathExpr found in the p do

14: add pathExpr to view as a column navigator

15: end for

16: add predicate p to wherePredicatesList

17: end for

return view

Algorithm 23 translateXQuery–handleWhereClause(whereClause)

1: for comparisonExpr found in the whereClause do

2: for pathExpr found in the comparisonExpr do

3: find refView associated with the varRef referenced in pathExpr

4: add pathExpr to refView as a column navigator

5: end for

6: add predicate comparisonExpr to wherePredicatesList

7: end for
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Algorithm 24 translateXQuery–handleReturnClause(returnClause)

1: for pathExpr found in the returnClause do

2: find refView associated with the varRef referenced in pathExpr

3: add pathExpr to refView as a column navigator

4: end for

5: construct return value returnVal

6: add returnVal to selectElementsList

expression appearing in a FOR or LET clause or in a WHERE clause, we add a

reference to it in the wherePredicatesList (Line 16 in Algorithm 22 and Line 6 in

Algorithm 23). When a binding sequence references a previously defined variable,

we interpret this occurrence as a join between the referenced view and the new view.

The predicate added for this join is illustrated in Lines 7 and 8 (Algorithm 22).

Finally, we call the function generateQuery to construct the translated query from

the three lists selectElementsList , fromViewsList , and wherePredicatesList . The

generateQuery function uses a template of an SQL query with SELECT, FROM,

and WHERE clauses to construct the translated query as follows: (1) simple ele-

ments or XML constructs in selectElementsList are added to the SELECT clause

of the query, (2) references to views in fromViewsList are added to the FROM

clause of the query, and (3) all predicates in wherePredicatesList are added to the

WHERE clause. If the return value is a simple XPath expression, then the corre-

sponding column name is used, otherwise if an XML fragment is constructed, an

XQuery construction is done using the XMLElement SQL function. The pseu-

docode of generateQuery that is used to generate the translated query TQ is given

in Algorithm 25.

To illustrate our translation process, we present the following example which

shows translating query Q1. The two views V1 and V2 are recommended for query

Q1, so we construct the FROM clause in the translated query as from V1, V2.

Next, we examine the return clause and construct the SELECT clause of the rewrit-

ten query. A return XML fragment with two elements name and accounts number
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Algorithm 25 generateQuery(selectElementsList , fromViewsList ,wherePredicatesList)

1: initialize query TQ

2: for selectElement ∈ selectElementsList do

3: if selectElement is simple then

4: find selectElementColRef as the column reference of selectElement in the

list of views fromViewsList

5: concatenate selectElementColRef to TQ .SELECT

6: else if selectElement is construct then

7: build selectElementConstruct using SQL/XML publishing functions (For

example, XMLElement)

8: concatenate selectElementConstruct to TQ .SELECT

9: end if

10: end for

11: for view ∈ fromViewsList do

12: concatenate view to TQ .FROM

13: end for

14: for predicate ∈ wherePredicatesList do

15: concatenate predicate to TQ .WHERE

16: end for
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is created via the XMLElement function and added to the SELECT clause of the

translated version of the query. Finally, we construct the WHERE clause as a con-

junction of all the predicates that appear in the XQuery and those that correspond

to joins between views. The final translated query for Q1 is as follows:

Translated Query: SQ1

select XMLElement( NAME "print" ,

XMLElement( NAME "name", Vv0.c3) ,

XMLElement( NAME "accounts_number", Vv1.ACc1))

from

(select v0.c0, v0.c1, v0.c2, v0.c3

from CUSTACC, xmltable(

’$rowVar/Customer’ passing CUSTACC as "rowVar"

columns

c0 double path ’@id’ ,

c1 xml path ’.’ ,

c2 double path ’age’,

c3 varchar(100) path ’name’) as v0 ) as Vv0,

(select count(v1.c0) as ACc1 , v1.c1

from CUSTACC, xmltable(

’$rowVar/Customer/Accounts/Account’ passing CUSTACC as "rowVar"

columns

c0 xml path ’.’,

c1 xml path ’parent::Accounts/parent::Customer’) as v1

group by v1.c1 ) as Vv1

where ( Vv0.c0 > 9000 ) and ( Vv1.c1 = Vv0.c1 ) and ( Vv0.c2 > 50 )

4.8 Implementation

We have used a prototype version of IBM DB2 V9.7 that was modified to support

creating materialized views using the XMLTable function as well as matching them
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with queries [1]. The client side of the XMLTable View Advisor is implemented in

Java 1.6 and communicates with the prototype server via JDBC. The optimizer in-

frastructure that supports rewriting XQuery queries to use materialized XMLTable

views described in Section 4.2.1 is not fully implemented in DB2. For example, the

XQuery to SQL/XML translation described in Section 4.7 is not currently imple-

mented inside the engine. Therefore, we implemented the translation algorithm in

our client side application. The XMLTable View Advisor sends workload queries

after translating them into SQL/XML to the database optimizer to match them

with materialized XMLTable views.

The current infrastructure of DB2 did not allow us to implement the candidate

enumeration algorithm described in Section 4.3 inside the database engine. Hence,

we have implemented the candidate enumeration algorithm in the client side appli-

cation of the XMLTable View Advisor (in contrast to the Enumerate XML Indexes

mode that we added as an extension to the DB2 optimizer for the XML Index

Advisor). Enumerating candidate physical structures in the advisor and not in the

query optimizer is an approach that has been used by prior design advisors such as

Microsoft’s Database Tuning Advisor (DTA) [3, 4, 23].

To evaluate the benefit of an XMLTable view, we need to create it as a virtual

view and call the query optimizer in what-if mode to optimize the workload queries

with this virtual view in place. For XML indexes, we added the ability to create

virtual XML indexes to DB2 and implemented the Evaluate XML Indexes query

optimizer mode as an EXPLAIN mode fully integrated in DB2. For XMLTable

views we adopted a simpler but not fully integrated approach. Instead of imple-

menting virtual XMLTable views in DB2, we implement our what-if infrastructure

for estimating the cost of a query in the presence of an XMLTable view as fol-

lows. We actually create the XMLTable view (or configuration of views) whose

benefit we want to estimate, populate it with data from the database, and then

estimate the query execution time using the query optimizer’s regular relational

EXPLAIN mode (this EXPLAIN mode is an integral part of DB2 since its early

versions). The estimated execution times obtained using this approach are fairly
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accurate since they are based on regular, fully-populated XMLTable views. Thus,

this approach enables us to estimate the benefit of XMLTable views with a high

degree of accuracy. Hence, we can study the effectiveness of our XMLTable View

Advisor at recommending view configurations that benefit the workload, and we

can accurately measure the benefit of the recommended configurations.

What we cannot do with our current implementation is to obtain meaningful

measurements of the run time of the XMLTable View Advisor since we use actual

materialized views instead of virtual materialized views. We do not believe this

to be a major concern for two reasons: First, creating virtual physical structures

has been a staple of physical design advisors for a long time, so creating virtual

XMLTables should be straightforward (although it does require access to source

code and a significant effort in coding). Second, our advisor uses a greedy search

algorithm, and greedy search is well-known to be fast, so we do not anticipate the

time taken by the search algorithm to be a bottleneck in a production version of our

advisor. The run time of our prototype View Advisor was not a bottleneck during

our experiments. A typical run of the advisor on the TPoX benchmark would take

around 70–85 minutes.

In both candidate enumeration and XQuery translation, we use the XQuery

Normalizer and Static Analyzer (XQNSTA) [82] to normalize XQuery queries into

XQueryX format. We then, parse the resulting XQueryX for every query to examine

its blocks and enumerate its candidate XMLTable views.

Our XMLTable View Advisor implementation has some limitations due to the

existing DB2 infrastructure. We can only use SQL data types for columns that

appear in the XMLTable functions, since casting XML data elements into their

corresponding relational data types fails in some cases. However, we use XML type

for column navigators that represent an XML fragment of the data. In addition, we

limit expressions that appear in column generators in the XMLTable functions to

only select one element because if multiple elements are reachable by an XPath path

expression then the values of all these elements are concatenated into one string

value, and we lose their XML structure, whereas XQuery queries require this struc-
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ture during execution. Additionally, our implementation does not support more

than two joins per query. We have also left adding support for structured queries,

which are XQuery queries with a sub-query in the return clause, for future work.

However, these limitations have not prevented us from verifying the usefulness of

XMLTable views to answer XQuery queries.

4.8.1 Implementation Requirements

The basic requirement for a database system to support our XMLTable View Advi-

sor is that it has to be able to match XMLTable materialized views with SQL/XML

queries that use the XMLTable function in their FROM clause (which is the sup-

port provided by DB2). The XMLTable View Advisor requires extending such a

database system to support the following functionality: (1) the ability to trans-

late XQuery queries to SQL/XML queries that use the XMLTable function, (2)

the ability to enumerate basic candidate XMLTable views for the XQuery queries

based on this translation, and (3) a what-if mode to estimate the cost of XQuery

queries when they are translated to use candidate XMLTable views.

In this chapter, we implemented all this required functionality outside the

database system, in the client side application. A full-fledged implementation of the

XMLTable view advisor requires the database compiler/optimizer to be extended

to translate XQuery queries into SQL/XML queries with XMLTable functions in

a way similar to that described in [59]. In addition, two optimizer modes similar

to the ones described in Chapter 3 (Sections 3.7.1 and 3.7.2) are required. We

call these modes the Enumerate XMLTable Views and Evaluate XMLTable Views

modes. In the Enumerate XMLTable Views, the optimizer would take an XQuery

query, parse it to extract all the XPath expressions in this query, and finally organize

them into the enumerated candidate XMLTable views. In the Evaluate XMLTable

Views mode, the optimizer would create virtual XMLTable views, populate its in-

ternal structures with statistics about these views, and estimate the execution time

of queries as if these views are present in the system. Furthermore, improving

the query optimizer view matching and rewriting algorithms to support generating
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compensating queries would allow the XMLTable View Advisor to generate more

candidate XMLTable views. Generalizing the enumerated views and searching for

the best possible configuration, including the necessary calls to the what-if API,

would still be part of a client-side application.

4.9 Experimental Evaluation

4.9.1 Experimental Setup

Our experimental setup is the same as that used for evaluating the XML Index

Advisor in Chapter 3. We have conducted our experiments on a Dell PowerEdge

2850 server with two Intel Xeon 2.8GHz CPUs (with hyperthreading) and 4GB of

memory running SuSE Linux 10. The database is stored on a 146GB 10K RPM

SCSI drive. The database system is the prototype version of DB2 V9.7 described

in Section 3.8. The client application is written in Java and runs on a separate

machine. When measuring the actual execution times of queries, all the measured

times are on the server machine, where the database is stored, to make sure that

network traffic does not affect these measurements.

We used the TPoX [70] benchmark in our experiments, and we generated the

data using a scale factor of 1GB. We evaluate our advisor on the standard 10

queries that are part of the benchmark specification (we ignore one query that has

multiple joins). We have made minor changes to the workload queries to account

for some implementation limitations. These changes can be summarized as follows:

(1) we add type casting to all XPath path expressions referenced in the queries

to avoid duplicating the type checking module in our advisor application, and (2)

we changed some XPath path expressions in the queries because they referenced

multiple nodes in the data, which is currently not supported in our implementation.

The queries used for our evaluation are given in Appendix B.

122



As in Chapter 3, our metric for evaluating the recommendations of the XMLTable

View Advisor is estimated workload speedup: the estimated execution time of the

workload with no XMLTable views created in the database divided by the estimated

execution time of the workload with the view configuration recommended by our

advisor in place. In addition, we show figures with the actual workload speedup:

the measured execution time of the workload with no XMLTable views created in

the database divided by the measured execution time of the workload with the

view configuration recommended by our advisor in place. We also report the esti-

mated execution time in optimizer units (timerons) and the actual execution time

in seconds for queries in the workload.

In the following sections, we show that our XMLTable View Advisor recom-

mends configurations of XMLTable views that effectively reduce the execution time

of queries in the input workload. We focus on evaluating the effectiveness of the

greedy search with heuristics. We did not evaluate the top down search algorithm in

our experiments because the DAG (similar to that described in Section 3.6) that we

constructed for the candidate XMLTable views enumerated for the TPoX workload

had only two levels. The top down search algorithm is mainly effective when there

are many DAG levels to navigate and hence minor configuration changes are made

in every iteration of the algorithm. Furthermore, we demonstrate the effectiveness

of recommending generalized XMLTable views that are generated by merging other

views and relational indexes over XMLTable views.

4.9.2 Effectiveness of the XMLTable View Advisor Recom-

mendations

Figures 4.3 and 4.4 show the estimated (based on query optimizer estimates) and

actual (based on measured execution time) speedups for the TPoX workload. Both

figures show that a maximum ratio of 1.6 (for the estimated workload execution

speedup) and 1.3 (for the actual workload execution speedup) is achieved when we

create the recommended views. Some queries in the workload did not benefit from
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the views (speedup of 1), while others benefited significantly from the views. To

show the effectiveness of our recommendations for queries that did benefit from

the recommended views, we show the estimated and actual execution time of each

query in Figures 4.5 and 4.6. Figures 4.5 and 4.6 show the estimated and actual

execution time per query for a configuration with no views and the recommended

view configurations with different disk space budgets. Queries Q1, Q2, Q7, Q8,

Q9, and Q10, which range from simple navigation to join queries, benefit from

the recommended XMLTable views. The actual speedup exceeds 1500 for some

queries, for example Q1 and Q7. The execution times of Q1 and Q7 without the

views were 21 seconds and 125 seconds, respectively. With the recommended views,

these times were 0.016 seconds and 0.04 seconds. The configuration that consists

of all useful views has a size of 115 MB, which also helped us to achieve an average

speedup per query of 639 (the speedup of queries that did not benefit from views is

1). Even for a configuration size of 9.8 MB, the average speedup per query is 134.

This shows that XMLTable views can be useful for many query types, and that our

XMLTable View Advisor is quite effective at recommending these views.
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Figure 4.3: Estimated workload speedup for the recommended XMLTable views.
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Figure 4.4: Actual workload speedup for the recommended XMLTable views.
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Figure 4.5: Estimated query execution time per query for the recommended

XMLTable views.
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Figure 4.6: Actual query execution time per query for the recommended XMLTable

views.

4.9.3 Recommending Merged XMLTable Views

To evaluate the performance of generalized views, we compare the effect of two

configurations on the execution time of the TPoX workload. The first configura-

tion (Basic) contains all the views enumerated for all the queries in the workload.

The second configuration (Generalized) contains a new set of generalized views

generated by merging views in the first configuration using the generalization rules

presented in Section 4.4.2. In this experiment, we only use the queries that can be

helped by at least one view from one of the two configurations. That is, we omit the

queries that do not benefit from views (Q3-Q6, as seen in Figures 4.5 and 4.6). We

measured the execution time of all queries in the workload after materializing each

configuration. Table 4.1 summarizes the results. The table shows that 16% of the

total size of the configuration is saved by merging views. The measured speedup

with the generalized configuration is lower than the speedup with the basic con-

figuration. However, the benefit/size ratio achieved is higher for the generalized

configuration. From this we conclude that using generalized views reduces the ex-

ecution cost of queries, but the benefit is lower than using basic views that only

contain data referenced by the queries. However, if we also consider the reduction
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in disk size needed to create the generalized configuration, the merged views are a

more efficient alternative.

Configuration Size Measured speedup Benefit/size ratio

Basic 58.2MB 354.6 5.3

Generalized 48.8MB 198 6.3

Table 4.1: Effect of merging views on performance.

4.9.4 Recommending Relational Indexes on XMLTable Views

In this section we investigate the benefit of building relational indexes on XMLTable

views. For this experiment, we let the advisor choose a configuration consisting only

of XMLTable views (with no relational indexes on them) in one case. In the other

case, we let the advisor choose a configuration from a set of candidates consisting of

XMLTable views and XMLTable views with relational indexes on them. The disk

space budget was 2GB in both cases. Figure 4.7 shows actual execution time in both

these cases, and when there are no views. We omit the TPoX queries that do not

use XMLTable views from the figure. In all the remaining queries, using relational

indexes over the XMLTable views reduces the execution time of the queries in the

workload. The speedup achieved due to using relational indexes (compared to using

views with no indexes) ranges from 1.5 to 32.5. This demonstrates the effectiveness

of our approach to recommending relational indexes on the XMLTable views.

Overall, our experiments show that our XMLTable View Advisor can effectively

recommend XMLTable materialized views that significantly benefit the queries that

can take advantage of these views. Since the physical structure of the views is simply

a relational table, view matching is simpler than full-fledged XQuery view matching.

Furthermore, we can take advantage of relational query processing technology, for

example by creating relational indexes on the recommended materialized views.
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Figure 4.7: Actual query execution time per query for the recommended XMLTable

views and XMLTable views with relational indexes on them.
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Chapter 5

Integrated Recommendation of

Indexes and Views

In the previous two chapters, we described two physical design advisors to rec-

ommend XML indexes and XMLTable views. In this chapter, we integrate these

two advisors into one Integrated Index-View Advisor that recommends both XML

indexes and XMLTable views for a workload of XQuery queries.

5.1 Introduction

In Chapters 3 and 4, we have shown that the recommendations of the XML Index

Advisor and the XMLTable View Advisor reduce the execution time of the training

workload queries as well as other queries similar to them. The magnitude of the

reduction in execution time of a query due to using indexes or materialized views

depends on the complexity of the query and the selectivity of its referenced path

expressions. For example, a query with a low selectivity path expression which

retrieves all the rows of the XML table might not benefit from an index on that

predicate, but may benefit from a materialized view that contains all the elements

referenced by the path expression. Similarly, if the view that is recommended for

a query is as large as the data, this view will not enhance the performance of the

query, but the query may still benefit from an XML index. Moreover, the execution

129



time of queries that are rewritten to use indexes and/or materialized views depend

on the implementation of these indexes and materialized views. In this chapter, we

propose an integrated version of the advisors described in the previous two chapters

that recommends both XML indexes and XMLTable materialized views for a given

XML database and XQuery query workload.

The Integrated Index-View Advisor recommends the set of XML indexes and

XMLTable materialized views that leads to the best workload execution time when

created in the database. The advisor also ensures that the recommended config-

uration satisfies the given disk space constraint. The integrated advisor initially

enumerates all possible XML index and XMLTable view candidates for the given

workload. Next, we search the space of candidate XML indexes and XMLTable

materialized views together to find the best configuration to recommend. How-

ever, for a given query in the workload, the optimizer can use either XML indexes

or XMLTable views in its execution plan because any XQuery query can either

be rewritten to use XML indexes or be translated into an SQL/XML query to

be rewritten using XMLTable views. Therefore, we revisit the search algorithms

described in the previous two chapters to account for this.

The rest of the chapter is organized as follows. We motivate integrating the

search for XML indexes and XMLTable views by studying their effect on query

execution plans in Section 5.2. We then give a high-level description of the archi-

tecture of the Integrated Index-View Advisor in Section 5.3. Next, we describe the

new search algorithm in Section 5.4. Finally, we describe our implementation in

DB2 (Section 5.5) and present our experimental results (Section 5.6).
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5.2 Motivation

5.2.1 Comparing Query Execution Plans that Use XML

Indexes and XMLTable Materialized Views

XMLTable materialized views are considered alternative relational access paths to

the XML data in the database. Yet, they can grow as large as the data, and the

query execution plans that use them might not be better than the query execution

plans without them. In contrast, partial XML indexes are usually smaller in size

and can drastically reduce the execution time of queries. In this section, we show

that XMLTable views are specifically useful for certain types of queries. We also

show that XML indexes are not useful all the time. We study the usefulness of

XML indexes and XMLTable views to query execution plans by comparing these

different plans. We highlight three usage patterns for indexes and views: pre-

navigation, joining tables, and aggregation.

Pre-navigation

Pre-navigation to the XML elements that are needed during query execution and

storing them in a format that is easily accessible can save a huge amount of query

execution time. The XMLTable function allows pre-navigation and stores the re-

sulting pre-navigated values in a relational table format. By using XMLTable func-

tions, we create new relational views of some of the fragments of the XML data

that are accessed by the queries in the workload. Therefore, we can now translate

complex XQuery queries into simple select statements. XML indexes are also useful

in navigating to the nodes (or their values) referenced in the query. To evaluate

the benefit of pre-navigation, we compare four optimizer query plan alternatives for

query Q1 (below): (1) the execution plan when no physical structures are used, (2)

the execution plan when indexes are used, (3) the execution plan when XMLTable

views are used, and (4) the execution plan when XMLTable views and relational

indexes on them are used. In these plans we use the following abbreviations:

131



• DFetch refers to fetching a document from an XML column.

• XSCAN refers to scanning an XML document, which consequently means

parsing or navigating an XML document depending on how the XML data

are stored in the database.

• TBFetch refers to fetching specific rows in the table.

• TBSCAN refers to scanning an entire table to examine its entries.

Q1: Return order IDs which have their status OrdStatus equal to P

for $ord in doc("ORDER.ODOC")/Order[OrdStatus = "P"]

return $ord/@ID

Figure 5.1 shows four possible query execution plans for Q11. Figure 5.1(a)

illustrates a typical query execution plan when no physical structures are used. In

this plan, all the documents in the table are read and scanned to find the qualifying

predicate(s) and the return value(s). The total cost of this plan essentially equals

the cost of navigating all documents in the table. To reduce the execution cost,

there are three alternatives:

1. We can use an XML index (for example, an index that includes the XML

nodes that are reachable by the XPath expression /Order/OrdStatus) to se-

lect the XML subtrees rooted by nodes that satisfy the predicate(s) in the

query. We would then navigate to these subtrees to find the return value(s).

In this execution plan, the execution cost is equal to the sum of the index nav-

igation cost and the navigation cost of the selected documents (Figure 5.1(b)).

2. We can use an XMLTABLE view such as V1 (below). The execution plan

for the rewritten query that uses this view (RQ1 below) includes scanning all

the rows of the view to find qualifying tuples. The cost of this execution plan

is equal to the cost of scanning the entire view (Figure 5.1(c)).

1We generated these query execution plans using DB2. XQuery queries used as examples in

this section are simple queries, and most database systems would generate similar execution plans

for them.
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3. We can use an XMLTABLE view and a relational index on the columns that

represent all predicates in the original XQuery (for example, an index on

the column cx1 in view V1). In this case, the cost of executing the plan is

equal to the sum of the index navigation and fetching the qualified tuples

(Figure 5.1(d)).

V1: Create a view on the ORDER table that contains the ID and OrdStatus

values for all the order documents that are stored in the table
select u.cx0, u.cx1

from ORDER, xmltable(

’$odoc/Order’ passing ORDER.ODOC as "odoc"

columns

cx0 varchar(100) path ’@ID’,

cx1 varchar(100) path ’OrdStatus’) as u

RQ1: A rewritten version of query Q1 to use view V1

select V1.cx0

from V1

where V1.cx1 = "P"

Depending on the structure of the XML documents and the selectivity of the

predicates in the query, various situations will lead to different possible plans having

the lowest cost.

Joining Tables

Joining tables is a common and important operation in XQuery queries. The

execution cost of XQuery queries with table joins can be reduced by pre-navigating

the values to be joined, storing them in relational tables, and then joining these

relational tables. For example, we show in Figure 5.2 the execution plans for

Query Q2 (shown below), which has a join between tables ORDER and SECURITY.

Figures 5.2(a) and 5.2(b) show the execution plans for query Q2 using XML indexes

and XMLTABLE views, respectively. The number of elements in the join operator’s
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physical structures.

DFetch

TBFetch
XSCAN

/Order/@ID

XML Index

/Order[OrdStatus = “P”]

Table

Order

(b) Query execution plan with XML

indexes.
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(c) Query execution plan with

XMLTABLE views.
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TBFetch

Relational Index

OrdStatus = “P”
OrderView

(d) Query execution plan with

XMLTABLE views and relational

indexes on them.

Figure 5.1: Query execution plans for query Q1.

two inputs is the same in both execution plans. The total execution cost can be

lower in the execution plan with XMLTABLE views because of the following: (1)

the relational optimizer can use a larger variety of join operators, hash joins for

instance, and (2) the table scan of the XMLTable materialized view is cheaper than

scanning a table with XML documents stored in one of its columns. In the latter

case, it is required to further scan (parse or navigate) the XML documents.

Q2: Return current open price of a particular order

for $ord in doc("ORDER.ODOC")/Order[@ID="109505"]

for $sec in doc("SECURITY.SDOC")/Security[Symbol=$ord/Instrmt/@Sym]

return <ret> {...} <ret>
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(b) Query execution plan with XMLTABLE

views.

Figure 5.2: Query execution plans for query Q2.

Aggregation

Another type of queries that benefit from using XMLTable views are queries with

grouping and aggregation functions. In addition to the benefit of pre-navigation,

pre-grouping and/or pre-aggregating the data in an XMLTable view reduces query

execution time. This can be done only with views and not with indexes.

5.2.2 Comparing Query Execution Times of Plans that Use

XML Indexes and XMLTable Materialized Views

Having qualitatively described and contrasted the benefit of XML indexes and

XMLTable views, we now compare the execution time of queries when creating

the recommendations of the XML Index Advisor and the XMLTable View Advisor

for large space budget (2 GB). Figures 5.3 and 5.4 show the estimated execution

times and actual execution times, respectively, of queries in the TPoX workloads

for the following three cases: (1) no physical structures are used, (2) XML indexes

recommended by the XML Index Advisor are created, and (3) XMLTABLE views

recommended by the XMLTable View Advisor are created. We note that we could

not use views with four TPoX queries, Q3-Q6 (Section 4.8). We observe that the

execution times of four out of the remaining six queries of the TPoX workload

when rewritten to use XMLTable views are less than the execution times of these
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queries when rewritten to use XML indexes. However, the benefit/size ratios of

the XMLTable views used in rewriting these queries are less than the benefit/size

ratios of indexes used for rewriting the same query because views usually have

larger sizes compared to indexes. Table 5.1 shows the total sizes in MB of both the

XML indexes and the XMLTable materialized views recommended for every query

in the workload.
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Figure 5.3: Estimated execution time per query for advisor recommendations.
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Queries XML indexes XMLTable views

Q1 2.7 2.9

Q2 29.5 14

Q3 30.6 None

Q4 23.3 None

Q5 2.7 None

Q6 37.2 None

Q7 14.4 35.8

Q8 0.8 1.3

Q9 0.8 2.1

Q10 3 2.1

Table 5.1: Sizes in MB of recommended XML indexes and XMLTable materialized

views for TPoX queries.

5.2.3 Summary

From the above comparison, we conclude that both XML indexes and XMLTable

views are useful to different query types. It would be difficult to inspect each

query to decide whether to recommend XML indexes or XMLTable views for it.

Furthermore, some queries can benefit from having either indexes of views, and

our rewriting algorithms restrict us to using one type of physical structure for

each query. More complications arise when searching the space of candidate XML

indexes and XMLTable views due to considering relational indexes on XMLTable

views. Therefore, it is beneficial to consider XML indexes and XMLTable views

together when recommending a physical design for an XML workload. In the rest

of this chapter, we present an Integrated Index-View Advisor that recommends the

best configuration of XML indexes and XMLTable views for a given XML database

and XQuery workload.
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5.3 Design of the Integrated Index-View Advisor

To build an integrated Index-View Advisor, we incorporate the two advisors pre-

sented in Chapters 3 and 4. Figure 5.5 shows the architecture of our integrated ad-

visor. Since the candidate enumeration processes for XML indexes and XMLTable

materialized views are different, we enumerate and generalize candidates of each

type separately using the candidate enumeration and generalization algorithms de-

scribed in Chapters 3 and 4. This results in candidates of three types: XML indexes,

XMLTable materialized views, and XMLTable materialized views with relational

indexes on them. We combine all these candidates into one pool of candidates,

and we search for the best configuration among all the candidates. The search

algorithm is different from the search algorithms in Chapters 3 and 4 because the

space of candidates contains different types of physical structures, which introduce

new types of interactions. In the next section, we generalize the search algorithms

described in Chapters 3 and 4 to an algorithm that considers different types of

interactions between different physical structures.

5.4 Search Algorithm

The search algorithms that we have proposed in Chapters 3 and 4 take into account

two types of interactions between candidates: (1) interaction between candidates

that can be used to rewrite the same query, and (2) candidates where one is a

general form of the other. While the former type of interaction affects the benefit

of candidates due to the existence of other candidates, the latter type of interaction

poses a restriction that at most one candidate is to be chosen. When searching the

combined space of XML indexes and XMLTable views, we also consider that a

query can either be rewritten to use XML indexes or XMLTable views, but not

both, because of their different rewriting algorithms. The notion of candidate

coverage is not valid any more, as there is no clear relation between the XML

indexes and the XMLTable views that can be used for the same query, and we
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Figure 5.5: The Integrated Index-View Advisor architecture.

also want to consider using either of them for each query. We choose to define

the coverage in the integrated search algorithm based on query coverage, and we

introduce new rules to handle special cases. We treat the case of an XMLTable

view with a relational index on it as a separate structure from its corresponding

XMLTable view. Hence, we have three types of candidates in the search space:

(1) XML indexes, (2) XMLTable views, and (3) XMLTable views with relational

indexes on their columns.

The high level outline of the search algorithm is similar to the one we use to

search the space of views (Section 4.6), with different rules for the various types

of candidates. Algorithm 26 presents the integrated search algorithm. The first

step of the search algorithm is to sort all of the physical structures according to

their benefit/size ratio. We then iteratively consider candidate physical structures:
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Algorithm 26 searchIntegrated(candidates , diskConstraint)

1: sort candidates according to their benefit/size ratio

2: recommended ← ∅

3: recommended .size ← 0

4: recommended .coverage ← ∅

5: while recommended .size < diskConstraint do

6: bestCand ⇐ pick the next best cand in candidates

7: if recommended .coverage ∩ bestCand .coverage = ∅ then

8: addCandIfSpaceAvl(bestCand ,recommended)

9: else if recommended .coverage ∩ bestCand .coverage 6= ∅ then

10: overlapConfig ⇐ overlapQCoverage(bestCand ,recommended)

11: if bestCand is XINDEX then

12: replaceConfig ⇐ {cand | cand ∈ overlapConfig and

(isGeneral(bestCand , cand) or cand is VIEW or cand is

VIEW RINDEX )}

13: else if bestCand is XVIEW then

14: replaceConfig ⇐ {cand | cand ∈ overlapConfig and (cand is XINDEX

or cand .view = bestCand or isGeneral(bestCand , cand))}

15: else if bestCand is XVIEW RINDEX then

16: replaceConfig ⇐ {cand | cand ∈ overlapConfig and (cand is XINDEX

or cand = bestCand .view or isGeneral(bestCand , cand))}

17: end if

18: if replaceConfig = ∅ then

19: addCandIfSpaceAvl(bestCand ,recommended)

20: else

21: replaceCandIfSpaceAvl(bestCand ,replaceConfig,recommended)

22: end if

23: end if

24: end while
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XML indexes (XINDEX), XMLTable views (XVIEW), and XMLTable views with

relational indexes on them (XVIEW RINDEX) and try to add them to the set of

recommended structures (recommended). In every iteration, if the recommended

set of candidates is empty or the candidate that we are considering in this iteration

(bestCand) adds new coverage (i.e., it helps a query in the workload that is not yet

helped by any of the structures already selected by the advisor), we add bestCand

to our set of recommended physical structures if enough disk space is available.

Otherwise, if there is overlap between the queries that are already covered by phys-

ical structures in the recommended configuration and the candidate’s (bestCand)

coverage, we apply heuristic rules to decide whether to add bestCand to our set of

recommended physical structures or not. First, we find the set of physical struc-

tures in the recommended configuration that help some or all the queries that are

covered by the candidate physical structure bestCand . We call this set of candi-

dates the overlapConfig. We then apply the following rules depending on the type

of bestCand :

1. bestCand is an XML index: We build an alternate configuration (replaceConfig)

consisting of the set of physical structures that belong to the overlapConfig

set and that satisfy one of these conditions:

(a) The physical structure is an XML index and is a general form of bestCand .

In this case, the physical structure cand can replace bestCand in its query

execution plans.

(b) The physical structure is an XMLTable view or XMLTable view with

a relational index on it. In this case, choosing an XMLTable view to

answer a query in the workload means that we cannot use XML indexes

for rewriting it, because the query rewriting algorithm can use either

XML indexes or XMLTable views to rewrite a given query, but not both.

2. bestCand is an XMLTable view: We build an alternate configuration

(replaceConfig) as the set of physical structures that belong to the overlapConfig

and that satisfy one of these conditions:
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(a) The physical structure is an XML index. Hence, we either choose the

XML index that is already selected or the new XMLTable view that we

are currently considering.

(b) The physical structure is an XMLTable view, and it is a general form of

bestCand . We add this candidate to replaceConfig because it can replace

bestCand in rewriting the queries that bestCand can help.

(c) The physical structure is an XMLTable view with a relational index on

it. We add this candidate to replaceConfig if its view cand .view is the

same as bestCand or a general form of it.

3. bestCand is an XMLTable view with a relational index on it: We build

an alternate configuration (replaceConfig) as the set of physical structures

that belong to the overlapConfig and that satisfy one of these conditions:

(a) The physical structure is an XML index. Hence, we either choose the

XML index that is already selected or the new XMLTable view with a

relational index on it that we are currently considering.

(b) The physical structure is an XMLTable view. Whether cand is the same

as bestCand .view or is a general form of it, we add cand to replaceConfig.

(c) The physical structure is an XMLTable view with a relational index on

it. We add this candidate to replaceConfig if its view cand .view is a

general form of bestCand .view .

The next step in the algorithm is to check the alternate configuration

replaceConfig. If it is empty, this means that bestCand can be used together

with already selected physical structures to answer queries in the workload and

that we can safely add bestCand to the recommended configuration if there

is enough disk space. Otherwise, we check the following two configurations:

(1) bestCand ∪ (recommended − replaceConfig): the configuration that includes

bestCand in addition to the structures that we have already selected after removing

the ones in replaceConfig from it, and (2) recommended . If the new configuration

142



(bestCand ∪ (recommended − replaceConfig)) has a higher benefit and its size does

not exceed the disk space constraint, we make it the recommended configuration.

In Algorithm 26, we use the following helper functions:

• isGeneral(cand1 , cand2 ): returns true if cand1 is of the same type as cand2

and is a general form of cand2 .

• addCandIfSpaceAvl(cand ,config): adds the candidate physical structure cand

to the configuration of physical structures config if the size of the new con-

figuration is not larger than the disk space constraint input to the advisor.

• replaceCandIfSpaceAvl(cand ,replaceConfig,config): it replaces the set of

structures in replaceConfig from the configuration config with the candidate

structure cand if the new configuration’s size does not exceed the disk space

constraint. The new configuration is: cand ∪ (config − replaceConfig).

5.5 Implementation in DB2

The Integrated Index-View Advisor does not require any new server-side infrastruc-

ture. Instead, we rely on the implementation of the XML Index Advisor and the

XMLTable View Advisor described in Chapters 3 and 4, respectively. We imple-

mented the search algorithm described in the previous section in a Java client-side

application.

5.6 Experimental Evaluation

5.6.1 Experimental Setup

We use the same experimental setup as the previous chapters. We have conducted

our experiments on a Dell PowerEdge 2850 server with two Intel Xeon 2.8GHz

CPUs (with hyperthreading) and 4GB of memory running SuSE Linux 10. The

database is stored on a 146GB 10K RPM SCSI drive. We use IBM DB2 9.7 as our

database system.
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We again use the TPoX [70] benchmark in our experiments, and we generate the

data using a scale factor of 1GB. To evaluate the results from the Integrated Index-

View Advisor and compare it to the results from both the XML Index Advisor and

XMLTable View Advisor, we used the same workload of the 10 TPoX queries that

we used in evaluating the XMLTable View Advisor (Section 4.9.1).

Our metrics for evaluating the recommendations of the Integrated Index-View

Advisor and for comparing its results with the recommendations of the XML In-

dex Advisor and the XMLTable View Advisor are the estimated query execution

time in optimizer units (timerons) and actual query execution time in seconds. In

contrast to our approach in Chapters 3 and 4 in relying on workload speedups for

evaluating the benefit of our advisors, we present only query execution times in

this chapter because they give a better presentation of the differences between the

advisor recommendations.

5.6.2 Effectiveness of the Integrated Index-View Advisor

Recommendations

In our first experiment, we show that the Integrated Index-View advisor recom-

mends configurations of XML indexes and XMLTable views that are useful to

workload queries. Figures 5.6 and 5.7 show the estimated and actual execution

time per query for a configuration with no physical structures and configurations

of XML indexes and XMLTable views that are recommended by the Integrated

Index-View Advisor for various disk space constraints (10MB, 50MB, 100MB, and

200MB). The larger the disk size used to build physical structures, the better the

workload execution time that can be achieved. For the best execution time that can

be reached, a configuration of XML indexes and XMLTable views of size 158MB

is recommended by the advisor. The corresponding workload estimated speedup is

30174.

In our second experiment, we compare the recommendations of the XML Index

Advisor, the XMLTable View Advisor, and the Integrated Index-View Advisor.
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Figure 5.6: Estimated execution time per query for the Integrated Index-View

Advisor recommendations.

Figures 5.8 and 5.9 are an updated version of Figures 5.3 and 5.4 discussed earlier

in this chapter, respectively showing estimated and actual query execution times,

after adding one more column to represent the estimated and actual execution

times of the queries in the workload when the recommendations of the Integrated

Index-View Advisors are materialized in the database. We observe that the In-

tegrated Index-View Advisor always chooses XML indexes for all queries in this

experiment. For some queries in this workload, XML indexes have higher benefit

than XMLTable views so choosing indexes is simple to justify. However, there are

queries for which the advisor chooses an index even though it has lower benefit

than the candidate view for this query because the index has a much smaller size

and hence its benefit/size ratio is higher. Another reason that the advisor chooses

an index for some queries in this workload when the candidate materialized view

is more beneficial for the query is that the index can be useful to other queries

in the workload while the materialized view is only useful to one query. Hence,

choosing the index is justified because its benefit to the entire workload is higher

than the benefit of selecting the candidate materialized views for each of the queries

helped by this index. For example, for query Q1 in the TPoX workload, the Inte-
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Figure 5.7: Actual execution time per query for the Integrated Index-View Advisor

recommendations.

grated Index-View Advisor recommends an XML index for it although selecting an

XMLTable view is expected to result in a lower execution time. The explanation

of this behavior is as follows: Query Q1 benefits from building an XML index I1,

which is also useful for queries Q4 and Q5. Query Q1 also benefits from building an

XMLTable view V1. The estimated benefit of the XML index I1 when calculated

for the entire workload is higher than the estimated benefit of the XMLTable view

V1. Hence, the candidate XML index is chosen by the search algorithm.

To eliminate the effect of this type of interaction, we compare the recommen-

dations of the three advisors when the input workload is composed of queries Q1,

Q7–Q10. The results are shown in Figure 5.10. The figure shows that the Integrated

Index-View Advisor selects the candidate structures that lower the execution time

of individual queries when these structures also lower the execution time of the

entire workload. In this figure we can see that the advisor sometimes recommends

indexes and sometimes recommends views.

These experiments demonstrate that our Integrated Index-View Advisor effec-

tively recommends suitable physical designs for XML workloads. This integrated

advisor puts together all the contributions of this thesis into one tool that can be

used by DBAs of XML databases.
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Figure 5.8: Estimated execution time per query for advisor recommendations. Disk
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Figure 5.9: Actual execution time per query for advisor recommendations. Disk

budget 400MB.
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Figure 5.10: Estimated execution time per query for advisor recommendations.

Disk budget 400MB.
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Chapter 6

Conclusions

This thesis focuses on developing automatic physical design tools for XML databases.

In this chapter, we present our conclusions and suggestions for future work.

6.1 Summary of Contributions

The main contributions presented in this thesis are as follows: (1) Chapter 3 pre-

sented techniques and algorithms to automatically recommend XML indexes, (2)

We described the XMLTable materialized views and their automatic recommenda-

tion in Chapter 4, and (3) Chapter 5 presented an integrated advisor that recom-

mends XML indexes and XMLTable materialized views.

The XML Index Advisor presented in Chapter 3 has the following key features:

1. The advisor is tightly coupled with the query optimizer, using it for both

enumerating and evaluating indexes. To leverage the query optimizer for

enumerating candidate indexes and evaluating their benefit to queries, we

use the notion of virtual indexes in two query optimizer extensions. The

virtual universal index, which is a new notion introduced in this thesis, hy-

pothetically indexes all elements in the document and hence can be matched

with any XPath pattern that appears in a query and can be answered using

an index. This allows us to enumerate these matched patterns as candidate

index patterns. To estimate the benefit of an index, we create this index as
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a virtual index in the database in a way that enables the query optimizer to

use it in its query plans.

2. Our index advisor can employ a variety of combinatorial search algorithms to

find the optimal configuration depending on the goal of the user, whether it

is finding a configuration that is best only for the given workload, or finding

a configuration that is as general as possible and so can help a wide variety

of workloads.

3. We employ techniques to minimize the number of optimizer calls that the

XML Index Advisor makes.

4. We have developed a method for estimating the penalty imposed by the in-

dexes on update, delete, and insert statements. We take this penalty into

account when estimating the benefit of an index for a workload that has

maintenance statements in addition to queries.

In Chapter 4, we presented an XMLTable View Advisor. This is a new approach

for building relational materialized views for XQuery workloads. The recommended

relational views are in the form of XMLTable materialized views. These views can

help the query execution performance by pre-navigating to queried values that ap-

pear in the data. In addition, XMLTable view matching is based on relational view

matching and XPath matching, and hence we can leverage the existing infrastruc-

ture of many database system query optimizers.

In Chapter 5, we analyzed the different benefits that XML indexes and XMLTable

views can provide to various types of XQuery queries. We concluded that both XML

indexes and XMLTable views are useful and that they benefit different query types

with different degrees. However, we cannot rewrite one query to use both XML

indexes and XMLTable views, and we need to choose between them for any query

in the workload. We presented an Integrated Index-View Advisor that searches for

the best physical design for a workload in a pool of candidate physical structures

that contains XML indexes and XMLTable views.
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We have implemented our proposed advisors in a prototype version of IBM DB2.

Our experiments with this implementation show that our advisors can effectively

recommend physical designs that result in significant speedups for workload queries.

6.2 Future Work

The work presented in this thesis can be extended in the following directions:

• Studying other optimization constraints. In the work that studies build-

ing relational design advisors [4, 23, 87, 92], the main constraint in the opti-

mization problem when searching for the best configuration of physical struc-

tures is usually the disk space budget. In this thesis, we used the same

constraint when recommending the best configuration of physical structures.

The disk size allocated to build physical structures indirectly affects other

constraints such as maintenance overhead because large physical structures

will necessarily impose a high penalty to maintain them. Maintenance can

also be reflected directly as a constraint in the optimization problem by con-

straining the number of physical structures that can be recommended by the

advisor [23]. Alternatively, we can include a threshold for the overhead im-

posed by these structures because of maintenance statements. If the database

is rarely maintained, then we do not need to limit the physical structures rec-

ommended by the advisor. Studying other constraints for the search problem

of finding the best physical design is a possible direction for future research.

• Penalty of maintaining XMLTable views. We have discussed our ap-

proach for estimating the penalty incurred by maintenance statements when

indexes exist in the database in Section 3.5.2. We left for future work estimat-

ing the penalty incurred by maintenance statements because of materialized

XMLTable views and taking these estimates into account when estimating

the benefit of views.
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• Removing the limitations on XMLTable view recommendation.

There are several limitations in our current approach to recommending

XMLTable views, such as the lack of support for compensating queries, or

the limitations on the XQuery format that can be handled. Removing these

limitations is another interesting direction for future work.

• Automatically partitioning XML data. We focused in this thesis on

automatically recommending physical design structures for XML databases.

Query execution can also be improved by rearranging the way that the XML

data is stored (partitioning). Two notable characteristics of XML databases

are: (1) the schema is heterogeneous, and (2) XML query processing is based

on path navigation and result construction. Commercial database systems al-

low XML documents with different schemas to be stored in the same XML col-

umn, which leads to the heterogeneity. The XML query languages supported

by these systems rely on navigation. Therefore, partitioning is a good can-

didate for increasing database manageability and improving performance [5].

All previous research has focused on partitioning XML data trees stored in

one XML document [9, 54, 55, 83]. A novel research direction is partition-

ing a table with columns of XML type. This involves finding partitioning

keys from the XML data to cluster the documents that are stored separately.

These concepts can be applied to create multiple partitions on one machine,

or on several machines in a shared nothing environment.

• Recommending XQuery views. In Chapter 4, we focused on recom-

mending XMLTable materialized views for an XML database and an XQuery

workload. XQuery query containment and rewriting is studied in [7, 29, 72].

This opens the door to recommending XQuery materialized views for XQuery

workloads. To recommend XQuery views, we need to study enumerating can-

didate views for an XQuery workload and evaluating their benefit to queries.

We also need to ensure that the views that we recommend can be matched

by the optimizer at query execution time.
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• Online Physical Design. This thesis focused on selecting the best physical

structures for a database and input workload in an offline manner. Changing

the physical design decisions online to adapt to the changes in the workload

by modifying the physical design of the database is studied in [20, 77, 79] for

relational databases. Studying online physical design for XML databases is

an open problem and an interesting direction for future work.
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I. Davis, and K. Hare. XMLTABLE. Available at: http://www.wiscorp.

com/H2-2004-039-xmltable.pdf, 2004.

163



[91] H. Zhang and F. W. Tompa. Querying XML documents by dynamic shredding.

In Proc. ACM Symp. on Document Engineering, 2004.

[92] D. C. Zilio, J. Rao, S. Lightstone, G. M. Lohman, A. Storm, C. Garcia-

Arellano, and S. Fadden. DB2 design advisor: Integrated automatic physical

database design. In Proc. Int. Conf. on Very Large Data Bases (VLDB), 2004.

164



Appendices

165



Appendix A

Update Penalty Estimation

Verification

In Section 3.5.2, we described the method we use to estimate the penalty of the

workloads’ update statements incurred because of indexes created in the database.

In this appendix, we describe an experiment that we have designed to measure how

accurately our maintenance (insert, delete, or update) penalty estimation method

reflects the actual maintenance cost of the indexes. Our procedure is based on

confirming that the estimated index maintenance cost corresponds to the actual

time needed to perform that task.

Our experimental procedure computes an estimated penalty for one database

maintenance operation based not on the estimation formulas of Section 3.5.2, but

rather on fitting a linear equation to the measured penalty. We call this estimated

penalty that we compute P . We use the following variables to calculate P :

• EQN : The estimated query execution time when no indexes are used in the

query execution plan.

• EQI : The estimated query execution time when indexes are used in the query

execution plan.

• AQN : The measured query execution time when no indexes are used in the

query execution plan.
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• AQI : The measured query execution time when indexes are used in the query

execution plan.

• PE: The estimated penalty for one database maintenance computed using

the formula in Section 3.5.2. Recall that this penalty PE computed for main-

tenance statement s is defined as:

mc(xi, s) = elementsUpdated(xi, s)× CPUCostPerNode+

elementsUpdated(xi, s)× numBTreeLevels × IOCostPerNode

• PA: The measured penalty for one database maintenance (insert, delete, or

update).

• AUN : The measured maintenance statement execution time when no indexes

are created in the database.

• AUI : The measured maintenance statement execution time when indexes are

created in the database.

• BEST : The estimated benefit of an index or a set of indexes.

• BACT : The measured benefit of an index or a set of indexes.

In this experiment, we measure the discrepancy between P and PE. Based

on the average P and PE, we compute a multiplicative factor representing an ap-

proximation of P/PE . The index advisor multiplies PE by this factor as a way of

calibrating its estimates. For maximum accuracy, this process is repeated for every

database and workload. However, it is possible to obtain reasonably accurate advi-

sor recommendations based on one value of this calibration factor for all databases

and workloads.

The experiment we performed is as follows. First, we run the XML Index Advi-

sor with the TPoX workload and one maintenance statement. For this experiment

our maintenance statements are always insert statements in the ORDER table. We

learn from this advisor invocation the recommended indexes, the estimated cost of

one maintenance statement, and the estimated costs of the queries and the main-

tenance statement before and after creating the indexes. We want to map the
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estimated cost of the maintenance statement to the actual cost. Therefore, we

want to find a reference point where both the actual and estimated penalty are

equal. In principle, it should be possible to use any estimated or actual cost as this

reference point, since the estimated and actual penalties should always be equal.

However, for this calibration experiment we use the point when the cost of updating

the index is equal to the reduction in queries execution time due to using indexes.

Hence, we increase the number of updates (N) until the measured benefit of using

indexes reaches zero. This point is used to compute P by equating the measured

benefit to the estimated benefit for the same N .

We calculate the estimated benefit of indexes for a query workload (BEST ) as the

difference between the estimated query execution time of queries in the workload

when no indexes are created and the estimated query execution time of queries

in the workload when indexes are created, reduced by the estimated penalty of

update statements in the workload. Similarly, the measured benefit of indexes for

a query workload (BACT ) is the difference between the measured query execution

time of queries in the workload when no indexes are created and the measured

query execution time of queries in the workload when indexes are created, reduced

by the measured penalty of maintenance statements in the workload. These two

definitions are formulated as follows:

BEST = (EQN −EQI)−N ∗ P

BACT = (AQN −AQI)−N ∗ (AUI − AUN)

Our goal is to compute P so that the estimated index benefit when considering

any maintenance statements in the workload approaches the actual benefit of the

index. This can be presented as follows:

BEST = BACT

(EQN −EQI)−N ∗ P = (AQN −AQI)−N ∗ (AUI − AUN)
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For our calibration, we use the point where the estimated and actual benefits

are both zero. We call it the zero benefit point.

BEST = BACT = 0

(EQN − EQI)−N ∗ P = (AQN − AQI)−N ∗ (AUI − AUN) = 0

Therefore, we can calculate P as follows:

P =
(EQN −EQI)

(AQN −AQI)
∗ (AUI − AUN)

We define these new variables:

KE = (EQN − EQI)

KA = (AQN − AQI)

PA = (AUI − AUN)

Using these variables, we can rewrite P as:

P =
KE

KA

∗ PA

To find the calibration value for our estimated index insertion penalty, we de-

signed an experiment to compare the value of P as calculated using the formula

above and PE which is the value of the index penalty as estimated by the advi-

sor using the calculation equations in Section 3.5.2. To calculate P we select a

database, a workload, and a disk space budget upon which we will base this calcu-

lation. We calculate KE, KA, and PA using the following procedure for every index

Ii identified by the advisor as being useful for the workload:

1. We identify the queries that can use index Ii in their plan, we call this set of

queries SQIi .
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2. We measure the execution times of queries in SQIi . The total execution time

of queries in SQIi is AQN .

3. We measure the time needed to perform an insertion in the data, which will

affect index Ii. We repeat this experiment for values of N that are equivalent

to 1 insertion, 10%, 100%, and 200% of the size of the data. We calculate

AUN from the measured values for different N values.

4. We create index Ii and calculate the values AQI and AUI for different N

values. The average time to do one insertion is the penalty incurred because

of the index PA.

5. We run the XML Index Advisor to find the estimated values EQN , EQI .
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Figure A.1: Measured insertion penalty due to different indexes in created in the

database.

For estimating P in this thesis, we use the queries of the TPoX workload as

our calibration queries, and we give the advisor a disk space budget of 2GB. The

advisor recommends 5 indexes for these queries that are built on the same table

that we are inserting data in. We plotted the penalty incurred due to inserting

XML data into the database when these indexes are created in the database for

different N values and we confirmed that the penalty increases linearly with N
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(Figure A.1). Hence, we can take the average penalty per maintenance operation

performed to the database from all these runs to be PA.

Table A.1 summarizes the results found from running the penalty evaluation

experiment. We also compare P to the penalty calculated by the XML Index

Advisor for each index PE . On average, we calculate P as 1189498 and PE as

130. This means that to calibrate the penalty estimated by the advisor we need to

multiply the calculated value PE by P
PE

= 1189498
130

≈ 9150. This is the calibration

factor we use in this thesis.

Index Queries EQN EQI KE AQN AQI KA PA P PE

I1 3 4.3E6 2.2E6 2E6 1.5E3 1.4E3 39.2 6.4E-4 34.5 5.4

I2 2,4,6,7 5.6E10 3.1E8 6E10 5.2E2 1.8E2 334 5E-3 8E5 599

I3 2,7 5.5E10 2.9E8 6E10 2E2 24.87 180 1.7E-2 5E6 17.2

I4 4,6 2.6E7 2.3E8 3E6 3.3E2 158.99 171 7E-3 107 19.2

I5 6 3.7E6 1.1E6 3E6 2.2E2 171.92 45 4.5E-3 265 8.8

Table A.1: Calibration experiment results for multiple indexes.
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Appendix B

Data and Workloads

In our experiments we have used two benchmarks: XMark [78] and TPoX [70].

TPoX, which stands for Transaction Processing over XML, is an application-level

XML database benchmark, which simulates a financial multi-user workload. The

main focus of TPoX is to evaluate the performance of XML database systems. In

the rest of this appendix we describe the TPoX data, TPoX main workload, which

is part of the benchmark, and the other workloads we used in the experiments.

B.1 TPoX Data

TPoX has five logical data entities: (1) Customer, (2) Account, (3) Holding, (4)

Order, and (5) Security. These five entities are represented by three XML schemas:

1. CUSTACC: every XML document includes a customer’s information and all of

her accounts and holdings.

2. ORDER: every document includes an order information.

3. SECURITY: a fixed number of 20833 security documents representing the vast

majority of US-traded stocks.

TPoX has its own data generator that efficiently generates millions of XML

documents with well-defined value distributions and referential consistency across

documents. The TPoX data generation process is described in [70] and [86].
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B.2 TPoX Workload

TPoX has a set of transactions that represent a financial scenario to be run on the

generated data. These transactions include the following:

1. Queries in XQuery and SQL/XML formats.

2. Maintenance statements in the form of insert, update, and delete operations.

In the rest of this section, we first list the 11 TPoX queries in the XQuery

language. We then describe the method we used to generate a synthetic workload

to use in our evaluation experiments in Chapter 3. Finally, we list the queries that

we have modified to use in our evaluation experiments in Chapters 4 and 5.

B.2.1 Main TPoX Workload Queries

The following are the 11 TPoX queries that are defined as part of the benchmark.

We have used this query workload in the experiments in Sections 3.8.2 and 3.8.5.

Q1: Retrieve an order with the specified ID.

for $ord in ("ORDER.ODOC")/FIXML

where $ord/Order/@ID = "103415"

return $ord/Order

Q2: Return a security having the specified Symbol.

for $s in ("SECURITY.SDOC")/Security

where $s/Symbol = "BCIIPRC"

return $s
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Q3: Return a customer profile for the specified customer.

for $cust in ("CUSTACC.CADOC")/Customer

where $cust/@id = 2009

return

<Customer_Profile CUSTOMERID="{$cust/@id}">

{$cust/Name}

{$cust/DateOfBirth}

{$cust/Gender}

{$cust/Nationality}

{$cust/CountryOfResidence}

{$cust/Languages}

{$cust/Addresses}

{$cust/EmailAddresses}

</Customer_Profile>

Q4: Return a list of securities in a particular sector, with a given PE and

Yield ranges. The query uses ’*’ in /Security/SecurityInformation/*/Sector

to filter and retrieve both funds and stocks of the Sector.

for $sec in ("SECURITY.SDOC")/Security

where $sec/SecurityInformation/*/Sector = "Energy" and $sec/PE >= 30

and $sec/PE < 35 and $sec/Yield > 4.5

return

<Security>

{$sec/Symbol}

{$sec/Name}

{$sec/SecurityType}

{$sec/SecurityInformation//Sector}

{$sec/PE}

{$sec/Yield}

</Security>
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Q5: Return the securities in each account of the specified customer.

for $cust in db2-fn:xmlcolumn("CUSTACC.CADOC")/Customer[@id=1011]

return

<Customer>{$cust/@id}

{$cust/Name}

<Customer_Securities>

{

for $account in $cust/Accounts/Account

return

<Account BALANCE="{$account/Balance/OnlineActualBal}"

ACCOUNT_ID="{$account/@id}">

<Securities>

{$account/Holdings/Position/Name}

</Securities>

</Account>

}

</Customer_Securities>

</Customer>

Q6: Print the open price of a particular security.

for $s in ("SECURITY.SDOC")/Security

where $s/Symbol = "SFDBX"

return

<print>The open price of the security "{$s/Name/text()}"

is {$s/Price/PriceToday/Open/text()} dollars

</print>

175



Q7: Return the most expensive order of the customer with the specified

id.

let $orderprice :=

for $cust in ("CUSTACC.CADOC")/Customer[@id=1011]

for $ord in ("ORDER.ODOC")/FIXML/Order

[@Acct=$cust/Accounts/Account/@id/fn:string(.)]

return $ord/OrdQty/@Cash

return max($orderprice)

Q8: Return the maximum order value for the stocks in a certain industry

bought by customers living in the specified State.

let $order :=

for $ss in ("SECURITY.SDOC")/Security

[SecurityInformation/StockInformation/Industry =

"Software&amp;Programming"]

for $ord in ("ORDER.ODOC")/FIXML/Order[Instrmt/@Sym=$ss/Symbol/fn:string(.)

for $cs in ("CUSTACC.CADOC")/Customer[Addresses/Address/State="West Virginia"]

/Accounts/Account[@id=$ord/@Acct/fn:string(.)]

return $ord/OrdQty/@Cash

return string(max($order))

Q9: Retrieve the names of the customers in the specified country who

have orders higher than a given value.

for $ord in ("ORDER.ODOC")/FIXML/Order

for $cust in ("CUSTACC.CADOC")/Customer

[Accounts/Account/@id=$ord/@Acct/fn:string(.)]

where $ord/OrdQty/@Cash>3000 and $cust/CountryOfResidence="Taiwan"

return $cust/ShortNames/ShortName
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Q10: Get the phone numbers of customers in a specific postal code who

have sold any security. Sort by customer last name.

for $cust in ("CUSTACC.CADOC")/Customer[Addresses/Address/PostalCode=26652]

for $ord in ("ORDER.ODOC")/FIXML/Order

[@Acct=$cust/Accounts/Account/@id/fn:string(.) and @Side="2"]

order by $cust/Name/LastName/text()

return

<Customer>

{$cust/Name/LastName/text()} -

{$cust/Addresses/Address[@primary="Yes"]/Phones/Phone[@primary="Yes"]}

</Customer>

Q11: For a given order, get the current open price of the corresponding

security.

for $ord in ("ORDER.ODOC")/FIXML/Order[@ID="109505"]

for $sec in ("SECURITY.SDOC")/Security[Symbol=$ord/Instrmt/@Sym/fn:string(.)]

return

<Today_Order_Price ORDER_ID="{$ord/@ID}">

{string($ord/OrdQty/@Qty*$sec/Price/PriceToday/Open)}

</Today_Order_Price>

B.2.2 Synthetic Workload

In Section 3.8.3, we generated a Synthetic TPoX workload to show the benefit

of recommending generalized indexes. The Synthetic workload is composed of the

main TPoX queries listed in the previous section as well as other generated queries.

We used Q1, Q4, and Q5 as templates for generating more queries. The query

templates that we have chosen represent different return value complexities as well

as the three XML tables in the TPoX database. All of the three query templates

have a predicate in the FOR or WHERE clause and a return value. The method

we followed to generate queries is to insert a new predicate in the FOR or WHERE
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clause while keeping the RETURN clause the same as it is in the original query.

For example, Table B.1 summaries some of the XPath path expressions and their

values that we used to replace the predicate in the FOR clause of Q5 to generate

new queries.

XPath expression Value

/Customer/BankingInfo/CustomerStatus "Inactive”

/Customer/Name/LastName "Tedrick”

/Customer/Nationality "Georgia”

/Customer/Addresses/Address/Phones/Phone/AreaCode 519

/Customer/Addresses/Address/Phones/Phone/Number 8849780

/Customer/BankingInfo/PremiumCustomer "Yes”

Table B.1: XPath path expressions and the values inserted as new predicates in

the query Q5 template.

B.2.3 Updated Workload Queries

To cope with the limitations of the XMLTable View Advisor described in Chapter 4,

we made changes to the TPoX queries listed in Section B.2.1. The main changes

that we made to queries are of two types:

1. Adding data type casting information to all XPath path expressions that

appear in queries.

2. Simplifying the query by removing the complex constructs or the expressions

that select multiple values.

In the revisited query workload, we have added type casting to all the queries.

We have dropped query Q8 because it performs a three table join that is not

currently supported by our XMLTable view advisor. We have also simplified the

complex return structure in Q5. The new version of Q5 is as follows:
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Q5’: Return the name of the specified customer.

for $cust in db2-fn:xmlcolumn("CUSTACC.CADOC")/Customer[@id/xs:double(.) = 1011]

return

<Customer>{$cust/@id/xs:double(.)}

{$cust/Name/string(.)}

</Customer>
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Appendix C

An Index Advisor Example Run

In this appendix, we describe the results of various XML Index Advisor runs to

highlight the decisions made by various phases of the advisor and the differences

between the proposed search algorithms. First, we show the enumerated candidate

index patterns for the TPoX workload in Section C.1. Next, we show the generalized

XML patterns generated by the index advisor in Section C.2. Finally, we compare

the set of XML indexes recommended by the different search algorithms studied in

this thesis in Section C.3.

C.1 Basic Candidate Set

The first phase of the index advisor is to enumerate candidate XML patterns that

are useful to the input workload. Table C.1 shows the basic candidate XML index

patterns enumerated by the XML Index Advisor for the TPoX workload. For each

candidate, we mention the data type of the values included in it as well as the

workload queries that would benefit from it.

C.2 Candidate Generalization

The XML Index Advisor uses the algorithm described in Section 3.4.1 for general-

izing the set of basic candidate index patterns to generate new index patterns that
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Index Index XPath expression Type Queries

I0 /Customer/@id double Q0, Q3, Q4

I1 /Security/Symbol string Q1, Q7, Q8

I2 /FIXML/Order/@ID string Q1, Q6

I3 /Customer/CountryOfResidence string Q2

I4 /Customer/Accounts/Account/@id string Q2, Q9

I5 /FIXML/Order/OrdQty/@Cash double Q2

I6 /FIXML/Order/@Acct string Q3, Q5

I7 /FIXML/Order/@Side string Q5

I8 /Customer/Addresses/Address/PostalCode double Q5

I9 /Customer/Addresses/Address/State string Q9

I10 /FIXML/Order/Instrmt/@Sym string Q9

I11 /Security/SecurityInformation/ string Q9

StockInformation/Industry

I12 /Security/Yield double Q10

I13 /Security/PE double Q10

I14 /Security/SecurityInformation/*/Sector string Q10

Table C.1: Basic set of candidates enumerated by the XML Index Advisor for the

TPoX workload.

are useful beyond the input workload. Table C.2 lists the generalized candidate

XML patterns that would be generated when running the generalization algorithm

on the XML patterns in Table C.1. Figure C.1 illustrates the relation between gen-

erated candidate XML patterns, basic candidate XML patterns, and the workload

queries that produced them.

C.3 Searching for the Optimal Configuration

Having enumerated a set of candidate index patterns, the XML Index Advisor

employs a combinatorial search algorithm to find the best set of candidate index
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Index Index XPath expression Type Queries

I15 /FIXML/Order/@* string Q1, Q3, Q5, Q6

I16 /Customer//* string Q2, Q9

I17 /Security/SecurityInformation//* string Q9, Q10

I18 /Security/* double Q10

I19 /FIXML/Order//@* string Q1, Q3, Q5, Q6, Q9

I20 /Security//* string Q1, Q7, Q8, Q9, Q10

Table C.2: Expanded set of candidates generated by the XML Index Advisor for

the TPoX workload.

patterns to recommend that fits within a disk space budget. We have proposed

two search algorithms in Section 3.6, namely the greedy search with heuristics and

the top down search. We have implemented two versions of the top down search:

(1) top down full, which evaluates the benefits of candidate XML indexes in every

iteration of the algorithm to account for the interaction between these indexes and

the indexes already selected in previous iterations, and (2) top down lite, which

evaluates the benefits of candidate XML indexes once. We have also implemented a

naive greedy search algorithm and a dynamic programming algorithm as described

in Section 3.7.3. In this section, we compare the set of XML indexes recommended

by the five search algorithms for different disk size constraints.

The configuration that includes all the basic candidate index patterns is the

smallest configuration that is overfitted to the input workload. The size of the

basic candidate XML patterns enumerated for the TPoX workload is 96.4MB. In

this section, we compare the five candidate search algorithms for a disk constraint

that is smaller than the basic candidate configuration size (50MB) and two disk

constraints that are larger than the basic candidate configuration size (100MB and

1000MB). Figure C.2 shows the DAG of all the candidate XML index patterns

for the TPoX workload after annotating it with information about the estimated

benefits and sizes of the XML index patterns.
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I19 I20

I15 I17I16 I18

I3 I4 I5I1 I2 I8 I9 I10I6 I7 I13 I14I0 I11 I12

q1 q2 q3 q8q0 q5 q6 q7q4 q9 q10

Figure C.1: The DAG showing the relationship between the TPoX workload queries

and candidate XML patterns enumerated by the XML Index Advisor.

C.3.1 Disk Constraint Smaller than Basic Candidate Set

(50MB)

In this section, we compare the XML index recommendations of the five candidate

search algorithms that we have implemented in the XML Index Advisor when the

disk space constraint is 50MB.

Greedy Search

The initial step of the greedy search algorithm is to sort all the candidate indexes

according to their benefit size ratio. Table C.3 shows the list of candidates after

sorting them. Table C.4 shows the iterations of the algorithm until it chooses a

configuration of size 47.95MB. Tables C.5 and C.6 show the XML indexes recom-

mended by the greedy search algorithm.

Greedy Search with Heuristics

For low disk size constraint, the greedy search with heuristics behaves the same as

greedy search because the smaller candidates are selected first in both cases. The
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Figure C.2: The DAG constructed for the TPoX workload after annotating it with

the benefit and size information for all XML patterns.

iterations of the greedy search algorithm with heuristics are the same as those listed

for greedy search in Table C.4. Hence, the recommended indexes are also the same

as the ones listed in Tables C.5 and C.6.

Top Down Search

In the top down search algorithm, we traverse the DAG nodes by replacing nodes

in the recommended configuration of indexes with their children until the configu-

ration size fits within the disk constraint. For disk size constraint that is smaller

than the total size of basic candidates, the recommended configuration will be com-

posed of basic candidates (leaves of the DAG) and yet does not fit into the disk

constraint. In this case, we perform greedy search to find the best subset of basic

candidate indexes to recommend.

Top Down Lite: The greedy search performed by the top down lite algorithm

is similar to the naive greedy search algorithm except that we do not have gener-

alized indexes in the pool of candidates we are searching. When running the top

down lite search for a disk size constraint of 50MB, the set of recommended indexes

are the same as the one recommended by the greedy search and greedy search with

heuristics listed in Tables C.5 and C.6.
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Top Down Full: In the top down full algorithm, we evaluate the benefit of

index every iteration to account for index interaction with the indexes selected

by the algorithm so far. We note that the recommendations of the top down lite

algorithm and the top down full algorithm might differ in this case. For example,

when running the top down lite search, the indexes I12 (/Security/Yield) and I13

(/Security/PE) are not selected, which is different from the recommendations of

the naive greedy search, greedy search with heuristics, and top down lite algorithms.

The main reason is that the benefits of indexes I12 and I13 are negligible when index

I14 is used in the query plan of query Q10 in the TPoX workload. The total size of

the index configuration recommended by the top down full algorithm is 46.25MB.

Table C.7 shows the indexes recommended by the top down full algorithm for a

disk size constraint of 50MB.

Dynamic Programming Search

The dynamic programming search algorithm tries to construct the set of optimal

sub-configurations in every iteration. The indexes recommended by the algorithm

are shown in Tables C.8 and C.9.

185



Index Benefit/Size Benefit Size Subsumed Indexes Queries

I0 1248180 3178959 2.55 I0 Q0, Q3, Q4

I3 508942 1622254 3.19 I3 Q2

I1 445314 473146 1.06 I1 Q1, Q7, Q8

I10 386509 7059823 18.27 I10 Q9

I2 335224 5300725 15.81 I2 Q1, Q6

I8 305522 1059780 3.47 I8 Q5

I6 301321 5301365 17.59 I6 Q3, Q5

I11 280796 355383 1.27 I11 Q9

I5 255931 2119432 8.28 I5 Q2

I14 246177 157707 0.64 I14 Q10

I7 243364 2650389 10.89 I7 Q5

I4 231657 1227056 5.3 I4 Q2, Q9

I9 192114 1218723 6.34 I9 Q9

I13 156717 134679 0.86 I13 Q10

I12 119090 100483 0.84 I12 Q10

I15 25218 10602090 420.42 I2, I6, I7, I15 Q1, Q3, Q5,

Q6

I17 24914 513075 20.59 I12 Q9, Q10

I20 22639 986191 43.56 I1, I11, I14, I17, Q1, Q7, Q8,

I20 Q9, Q10

I19 20015 17661913 882.45 I2, I6, I7, I10, Q1, Q3, Q5,

I15, I19 Q6, Q9

I18 19527 148895 7.63 I12, I13, I18 Q10

I16 5386 2834331 526.28 I3, I9, I16 Q2, Q9

Table C.3: A sorted list of candidate index patterns according to their Benefit/Size

ratio.
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Itr Cnd Recommended Indexes Size Query Coverage

0 {} 0 {}

1 I0 {I0} 2.55 {Q0, Q3, Q4}

2 I3 {I0, I3} 5.73 {Q0, Q2–Q4}

3 I1 {I0, I1, I3} 6.8 {Q0-Q4, Q7, Q8}

4 I10 {I0, I1, I3, I10} 25.06 {Q0–Q4, Q7–Q9}

5 I2 {I0, I1, I2, I3, I10} 40.88 {Q0–Q4, Q6–Q9}

6 I8 {I0, I1, I2, I3, I8, I10} 44.34 {Q0–Q9}

7 I6 {I0, I1, I2, I3, I8, I10} 44.34 {Q0–Q9}

8 I11 {I0, I1, I2, I3, I8, I10, I11} 45.61 {Q0–Q9}

9 I5 {I0, I1, I2, I3, I8, I10, I11} 45.61 {Q0–Q9}

10 I14 {I0, I1, I2, I3, I8, I10, I11, I14} 46.25 {Q0–Q10}

11 I7 {I0, I1, I2, I3, I8, I10, I11, I14} 46.25 {Q0–Q10}

12 I4 {I0, I1, I2, I3, I8, I10, I11, I14} 46.25 {Q0–Q10}

13 I9 {I0, I1, I2, I3, I8, I10, I11, I14} 46.25 {Q0–Q10}

14 I13 {I0, I1, I2, I3, I8, I10, I11, I13, I14} 47.11 {Q0–Q10}

15 I12 {I0, I1, I2, I3, I8, I10, I11, I12, I13, I14} 47.95 {Q0–Q10}

16 I15 {I0, I1, I2, I3, I8, I10, I11, I12, I13, I14} 47.95 {Q0–Q10}

17 I17 {I0, I1, I2, I3, I8, I10, I11, I12, I13, I14} 47.95 {Q0–Q10}

18 I20 {I0, I1, I2, I3, I8, I10, I11, I12, I13, I14} 47.95 {Q0–Q10}

19 I19 {I0, I1, I2, I3, I8, I10, I11, I12, I13, I14} 47.95 {Q0–Q10}

20 I18 {I0, I1, I2, I3, I8, I10, I11, I12, I13, I14} 47.95 {Q0–Q10}

21 I16 {I0, I1, I2, I3, I8, I10, I11, I12, I13, I14} 47.95 {Q0–Q10}

Table C.4: Iterations of the greedy search algorithm for the TPoX workload, Budget

= 50MB
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Index Size Query Coverage

I0 2.55 Q0, Q3, Q4

I1 1.06 Q1, Q7, Q8

I2 15.81 Q1, Q6

I3 3.19 Q2

I8 3.47 Q5

I10 18.27 Q9

I11 1.27 Q9

I12 0.84 Q10

I13 0.86 Q10

I14 0.64 Q10

Table C.5: Recommended indexes for the TPoX workload using greedy search,

Budget = 50MB.

Query Indexes Used Estimated Speedup

Q0 I0 20000.37

Q1 I1, I2 25525.76

Q2 I3 1.61

Q3 I0 1.4

Q4 I0 27998.03

Q5 I8 1.4

Q6 I2 70032.31

Q7 I1 5209.66

Q8 I1 5209.16

Q9 I10, I11 7.88

Q10 I12, I13, I14 5202.88

Table C.6: Index recommendations per query for the TPoX workload using greedy

search, Budget = 50MB.
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Index Size Query Coverage

I0 2.55 Q0, Q3, Q4

I1 1.06 Q1, Q7, Q8

I2 15.81 Q1, Q6

I3 3.19 Q2

I8 3.47 Q5

I10 18.27 Q9

I11 1.27 Q9

I14 0.64 Q10

Table C.7: Recommended indexes for the TPoX workload using top down full

search, Budget = 50MB.

Index Size Query Coverage

I0 2.55 Q0, Q3, Q4

I1 1.06 Q1, Q7, Q8

I2 15.81 Q1, Q6

I3 3.19 Q2

I4 5.3 Q2, Q9

I8 3.47 Q5

I10 18.27 Q9

Table C.8: Recommended indexes for the TPoX workload using the dynamic pro-

gramming search algorithm, Budget = 50MB.
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Query Indexes Used Estimated Speedup

Q0 I0 520000.37

Q1 I1, I2 25525.76

Q2 I3, I4 1.61

Q3 I0 1.4

Q4 I0 27998.03

Q5 I8 1.4

Q6 I2 70032.31

Q7 I1 5209.66

Q8 I1 5209.16

Q9 I4, I10 41.31

Q10 1

Table C.9: Index recommendations per query for the TPoX workload using the

dynamic programming search algorithm, Budget = 50MB.
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C.3.2 Disk Constraint Slightly Larger than Basic Candi-

date Set (100MB)

In this section, we study the different search algorithms when the disk space con-

straint is 100MB, which is very close to the size of the configuration required by

the basic candidate indexes.

Greedy Search

The iterations of the greedy search algorithm proceed as shown in Table C.4 except

that different decisions are taken at different iterations. At iterations 7, 9, 11, 12,

and 13, index patterns I6, I5, I7, I4, and I9 are added to the configuration that the

algorithm recommends. The recommended configuration size is 96.4MB.

Greedy Search with Heuristics

The search proceeds the same as the greedy search. The resulting configuration is

the same as the one recommended by the greedy search.

Top Down Search

For a disk space budget of 100MB, the top down search algorithm navigates the

DAG of candidate indexes and finally recommends the basic candidate indexes. We

next show how the DAG is navigated in top down lite and top down full search

algorithms.

Top Down Lite: Figure C.3 shows the initial state of the DAG with indexes

I0, I4, I5, I8, I16, I18, I19, and I20 selected as the configuration to recommend.

The nodes of the DAG are annotated with the calculated values for ∆B and ∆S,

which are described in Section 3.6.3. Figures C.4, C.5, C.6, C.7, C.8, and C.9, show

the iterations of the algorithm to traverse the DAG based on the values of ∆B and

∆S calculated at every iteration. At each iteration, the indexes currently selected

by the algorithm are shown with dotted circles.
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Figure C.3: Initial state of the DAG showing the XML patterns initially selected

by the top down lite search algorithm.
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Figure C.4: State of the DAG after the first iteration of the top down lite search

algorithm, Budget = 100MB.
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Figure C.5: State of the DAG after the second iteration of the top down lite search

algorithm, Budget = 100MB.
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Figure C.6: State of the DAG after the third iteration of the top down lite search

algorithm, Budget = 100MB.
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Figure C.7: State of the DAG after the fourth iteration of the top down lite search

algorithm, Budget = 100MB.
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Figure C.8: State of the DAG after the fifth iteration of the top down lite search

algorithm, Budget = 100MB.
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Figure C.9: State of the DAG after the sixth iteration of the top down lite search

algorithm, Budget = 100MB.
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Top Down Full: Figure C.10 shows the initial state of the DAG with indexes

I0, I4, I5, I8, I16, I18, I19, and I20 selected as the configuration to recommend.

The nodes of the DAG are annotated with the calculated values for ∆B and

∆S. We note that the values of ∆B and ∆S in Figure C.10 are different from

those in Figure C.3, which will affect the decisions made at every iteration. Fig-

ures C.11, C.12, C.13, C.14, C.15, and C.16 show the iterations of the algorithm to

traverse the DAG based on the values of ∆B and ∆S calculated at every iteration.

As before, the indexes currently selected by the algorithm at each iteration are

shown with dotted circles.
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Figure C.10: Initial state of the DAG showing the XML patterns initially selected

by the top down full search algorithm.

C.3.3 Disk Constraint Much Larger than Basic Candidate

Set (1000MB)

Greedy Search

The algorithm behaves as described in Section C.3.2 and more indexes can now be

included in the configuration that it recommends. One more index is now added
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Figure C.11: State of the DAG after the first iteration of the top down full search

algorithm, Budget = 100MB.

to the recommended set of indexes which is I15 from iteration 16. The size of the

recommended configuration is 524.4MB. We note that I15 is redundant in this case

as it is a generalized form of indexes I2, I6, and I7, which are already selected in

the configuration.

Greedy Search with Heuristics

The configuration recommended by the algorithm is the same as the one recom-

mended for a disk constraint of 100MB (Section C.3.2). This shows that the algo-

rithm does not usually recommend generalized indexes even if enough disk space is

available.

Top Down Search

When the disk size constraint is increased, the traversal of the DAG stops when the

largest configuration that fits into the disk constraint is found. The top down lite

search stops at the second iteration, which is shown in Figure C.5. On the other

hand, the top down full stops at the third iteration, which is shown in Figure C.13.
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Figure C.12: State of the DAG after the second iteration of the top down full search

algorithm, Budget = 100MB.

We note that in the indexes configurations recommended by both versions of the top

down search algorithm recommended general indexes with no redundancy, which

reflects the wise usage of the allocated disk space.
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Figure C.13: State of the DAG after the third iteration of the top down full search

algorithm, Budget = 100MB.
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Figure C.14: State of the DAG after the fourth iteration of the top down full search

algorithm, Budget = 100MB.
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Figure C.15: State of the DAG after the fifth iteration of the top down full search

algorithm, Budget = 100MB.
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Figure C.16: State of the DAG after the sixth iteration of the top down full search

algorithm, Budget = 100MB.
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