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Abstract

The problem of finding a schedule with the lowest makespan in the class of all flowtime-
optimal schedules for parallel identical machines is an NP-hard problem. Several approxi-
mation algorithms have been suggested for this problem. We focus on algorithms that are
fast and easy to implement, rather than on more involved algorithms that might provide
tighter approximation bounds. A set of approaches for proving conjectured bounds on
performance ratios for such algorithms is outlined. These approaches are used to examine
Coffman and Sethi’s conjecture for a worst-case bound on the ratio of the makespan of
the schedule generated by the LD algorithm to the makespan of the optimal schedule. A
significant reduction is achieved in the size of a hypothesised minimal counterexample to
this conjecture.
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Chapter 1

Introduction

Various performance criteria may be used to schedule n independent jobs on m parallel
identical machines. These criteria often involve the minimization of some measure of time
for the set of n jobs. The term makespan refers to the amount of time that elapses between
the instant when the processing of the first job in a batch of jobs begins and the instant
when the processing of the last job in the batch is completed. Makespan minimization tends
to ensure the earliest possible completion date for a set of jobs. The flow time of a job is the
amount of time that elapses between the instant when a job is released to the system and
the instant when the processing of the job is completed. The mean flow time for a set of jobs
is the average value of the flow time for that set of jobs. Minimization of mean flow time
tends to minimize the average amount of time spent by a job in the system and therefore the
mean level of work-in-process inventory in the system. Minimizing the makespan has been
shown to be an NP-complete problem. Various versions of this problem have been studied
by several researchers. Graham (1966) examines the problem of makespan minimization
for a set of jobs with a partial order (precedence constraints) on a set of parallel identical
machines. He shows that the ratio of the makespan of any schedule that satisfies these
constraints to the makespan of the optimal schedule that satisfies these constraints cannot
exceed 2− 1/m. He provides examples that show that this ratio can be achieved. Graham
(1969) proves that if there are no precedence constraints and if jobs are sequenced based on
the LPT (Longest Processing Time) rule, with the longest remaining task being scheduled
next, the best possible bound for the ratio of the makespan of any such schedule to the
optimal makespan is 4/3 − 1/(3m). Graham also considers the case in which each of the
m largest jobs is assigned to a different machine and the remaining jobs are subsequently
assigned in any order. In this case, the best possible bound for the makespan ratio is
3/2−1/(2m). A comprehensive survey of these and related results is contained in Graham
(1972). Coffman and Sethi (1976b) obtain an improved bound for the LPT for situations
in which the number of jobs is large. They show that, if at least k jobs are assigned to
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each machine, the 4/3 − 1/(3m) bound can be replaced by a (k + 1)/k − 1/(mk) bound.
Thus, if the number of jobs is very large, the ratio is significantly smaller than the ratio
obtained by Graham, and it approaches 1 for large values of k.

The bin-packing problem may be regarded as the dual problem to the makespan mini-
mization problem. In the bin-packing problem, a set of items of — in general — unequal
sizes `(Ti) must be packed into a set of m bins, each of a given capacity C. The objective
of the bin-packing problem is to minimize the number of bins m used for the packing.
In the FFD (First Fit Decreasing) algorithm (Johnson (1974) and Johnson et al. (1974),
the bins are assigned indices 1 through m. The largest remaining item is assigned to the
lowest-indexed bin into which it can fit. The FFD solution is the smallest value of m for
which the algorithm is able to pack the entire set of items into m bins. Garey and Johnson
(1981) and Coffman, Garey and Johnson (1983) have proposed various alternatives to the
FFD algorithm. In these algorithms, items are ordered arbitrarily - not based on increasing
or decreasing order of size. In the NF (Next Fit) algorithm, starting with the first item,
items are assigned to the lowest-indexed bin in which they can fit. If an item does not fit
in a bin, that bin is permanently closed. Thus, starting with the lowest-indexed bin, the
bins are filled in succession. Another alternative is the FF (First Fit) algorithm, items are
assigned to the lowest-indexed bin in which they can fit. However, a bin is closed only
when the entire capacity of the bin has been used up. In the Best Fit (BF) algorithm, an
item is assigned to the lowest-indexed bin in which it can fit and which has the smallest
amount of capacity remaining after the assignment of the item. In the Worst Fit (WF)
algorithm, an item is assigned to the lowest-indexed bin in which it can fit and which has
the largest amount of capacity remaining after the assignment of the item.

Coffman, Garey, and Johnson (1978) propose an algorithm for makespan minimization,
the Multifit algorithm, that is based on the FFD algorithm for the bin-packing problem.
The authors obtain a solution for the makespan minimization problem by attempting to
find the smallest bin capacity (makespan) for which a set of items (jobs) can be packed
into m bins (machines). They develop upper and lower bounds for the capacity and
subsequently use a binary search procedure to obtain FFD solutions to a series of bin-
packing problems. The final suggested solution to the makespan minimization problem
is the smallest capacity for which a feasible solution is obtained (for a given value of
m) and the corresponding assignment of items to bins. Dosa (2000 and 2001) proposes
generalized versions of the LPT and Multifit methods and provides numerical results that
show that these versions often provide better solutions than the original version of these
algorithms. Chang and Hwang(1999) extend the Multifit algorithm to a situation in which
different processors have different starting times. Coffman, Garey, and Johnson (1978)
provide a bound of 1.22 for the performance of the Multifit algorithm. Friesen (1984) and
Yue, Kellerer and Yu(1988) provide alternative proofs for a bound of 1.2 for the Multifi
algorithm. Friesen showed that the bound could not be less than 13/11. Yue (1990) and
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Cao(1995) provide a tight bound of 13/11 for the performance of the Multifit algorithm.

Using the notation proposed by Graham, Lawler, Lenstra and Rinnooy Kan (1979),
the makespan minimization problem for m parallel identical machines, where m is fixed,
is denoted by Pm ||Cmax. The problem Qm |ri|Cmax (m uniform machines, where m is
fixed, release times, a makespan minimization objective) has been shown to be pseudopoly-
nomially solvable by Lawler, Lenstra, Rinnooy Kan and Shmoys (1993). It follows that
Pm ||Cmax (makespan minimization on m parallel identical machines without release times
and with fixed m) is also pseudopolynomially solvable. Vega and Leuker (1981) propose a
PTAS (Polynomial Time Approximation Scheme) for the bin packing problem that runs
in linear time. Hochbaum and Shmoys (1987) propose a PTAS for the makespan mini-
mization problem for parallel identical machines. Ho and Wong (1995) propose an O(2n)
algorithm, the two-machine optimal scheduling (TMO) algorithm (based on a lexicographic
search procedure) to find the optimal solution for P2 ||Cmax. They use a simulation study
to show that the average runtime for the TMO algorithm tends to be significantly better
than exponential and is less than that required by the Multifit algorithm.

Besides makespan minimization, another objective examined by researchers is the min-
imization of mean flow time on a set of parallel identical machines. A schedule that
minimizes mean flow time is termed a flowtime-optimal schedule. The mean flow time for
a set of jobs on a set of parallel identical machines can be readily minimized by using the
SPT (Shortest Processing Time) rule. This rule requires jobs to be assigned in nonde-
creasing order of processing times. If there are a total of m machines, each of the first m
jobs is assigned to the first position on any of the m machines, each of the next m jobs is
assigned to the second position on any of the m machines, and so on until every job has
been assigned. The optimality of this rule follows from the inequalities that were proposed
and proved by Hardy, Littlewood and Polya (1934). The optimality of this rule can be
proved by using the following argument.

Notice that, for a given number of jobs, the minimization of the mean flow time is
equivalent to the minimization of the total flow time. For a set of n jobs assigned to
m machines, the total flow time is a weighted sum of flow times

∑
j=1,...,n((pj)(nj + 1)),

where pj denotes the processing time of job j and nj refers to the number of jobs that are
processed after job j on the same machine as job j. We assume that the processing times
are strictly greater than zero and are arranged in nonincreasing order i.e. pj ≥ pj+1 for
j = 1, 2, . . . , n− 1. Let N ′′ ≡ {n′′1, n′′2, . . . , n′′n} and N ′′′ ≡ {n′′′1 , n′′′2 , . . . , n′′′n }, where N ′′ and
N ′′′ are feasible sets of values of nj for j = 1, . . . , n that satisfy the following: n′′j ≤ n′′′j for
j = 1, . . . , n, and n′′u < n′′′u for some value of u that satisfies 1 ≤ u ≤ n. Note that a feasible
set of values of nj is a set of integers that corresponds to one or more feasible solutions to
any instance of the problem with n jobs and m machines. Clearly, using the set of values
N ′′ results in a weighted sum of flow times that is less than the weighted sum of flow times
that results from using the set of values N ′′′.
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Let Nopt ≡
{
n1opt , n2opt , . . . , nnopt

}
denote a feasible set of weights nj that results in a

weighted sum of flow times that is less than or equal to that attained by any other feasible
set of weights. For any given set of weights, the smallest weighted sum is attained by
assigning weights to the processing times in nondecreasing order. Thus njopt ≤ n(j+1)opt

for
j = 1, . . . , n−1. It is evident that Nopt consists of m zeros, followed by m ones,..., followed

by n−m(
⌈
n
m

⌉
− 1) values that are equal to

⌈
n
m

⌉
− 1. Thus njopt =

⌈
jopt
m

⌉
− 1. This proves

the optimality of the SPT rule.

The SPT rule generates a very large number of flowtime-optimal schedules. If we have
a stream of jobs arriving in the system, the average number of jobs in the system (also
referred to as the work-in-process inventory or WIP inventory) at any point in time is
equal to the product of the arrival rate and the average amount of time that each job
spends in the system. The average amount of time that each job spends in the system
is the mean flow time. The objectives of minimizing WIP inventory (by minimizing the
mean flow time) and ensuring the earliest possible completion date (by minimizing the
makespan) can be combined by selecting the schedule with the smallest makespan among
the class of all flowtime-optimal schedules. In this thesis, we term this problem the FM
(’flowtime-makespan’)problem. Using the notation proposed by Graham et al., the FM
problem is denoted by P ||Fh(Cmax/ΣCi). This problem is known to be NP-hard (Bruno,
Coffman and Sethi, 1974). The development of approximation algorithms for this problem
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and the development of worst-case performance bounds for these algorithms is therefore
of considerable interest. Bruno, Coffman and Sethi obtain bounds on the ratio of the
makespan of any flowtime-optimal schedule to the makespan of an LPT schedule. They
show that this ratio lies between (4m− 1)/(5m− 2) and (2− 1/m) and that these are the
best possible bounds.

Conway, Maxwell and Miller (1967) develop the notion of ranks for the FM problem.
A schedule is flowtime-optimal if jobs are assigned in decreasing order of ranks, with the
jobs in the first rank being assigned last. If n is the number of jobs and m is the number of
machines, we may assume thatm divides n. (If it does not, we add (dn/me∗m−n) jobs with
zero processing times.) If we assume that the jobs are numbered in nonincreasing order of
processing times, with job 1 having the largest processing time, the set of jobs belonging to
rank r are the following: (r − 1)m+ 1, (r − 1)m+ 2, · · · , (r − 1)m+m. Any schedule in
which all rank r+ 1 jobs are started before all rank r jobs (where r = 1, 2, · · · , (n/m)− 1),
there is no idle time between successive jobs assigned to the same machine, and all rank
n/m jobs start at time 0, is flowtime-optimal. Figure 1 consists of two figures that show
two flowtime-optimal schedules for an instance of the FM problem with three machines
and six jobs. Note that the vertical axis denotes time, with the upper left-hand corner of
each figure corresponding to time equal to 0, and time increasing in each figure from top
to bottom. The six jobs have processing times 2,3,4,4,5, and 6 respectively. The jobs with
processing times 2,3, and 4 lie in the second rank. The jobs with processing times 4, 5,
and 6 lie in the first rank. Any schedule in which each machine is assigned one job in the
second rank, followed by one job in the first rank, is flowtime-optimal. Clearly, there are
a total of or (m!)

n
m or 36 such schedules. Each flowtime-optimal schedule has an average

flowtime equal to 5.5. The first schedule in Figure 1 is a rectangular flowtime-optimal
schedule obtained by assigning the jobs in the first rank largest-first after assigning the
jobs in the second rank. To assign jobs in the first rank largest-first, the jobs are assigned
in nonincreasing order of processing times to the earliest available machine. A machine
is available if it does not already have a job in the second rank assigned to it. This
largest-first assignment results in a makespan of 8. The second schedule in the figure is a
flowtime-optimal schedule with a makespan of 9. The first schedule clearly has the lowest
makespan among all flowtime-optimal schedules. For larger problem instances, optimal
schedules cannot be found easily and approximation algorithms are used to construct good
schedules.

Coffman and Sethi (1976a) propose two approximation algorithms for the FM problem.
In LI scheduling, ranks are assigned in decreasing order of ranks, starting with the rank
containing the m jobs with the smallest processing times. In LD scheduling, ranks are
assigned in increasing order of ranks, starting with the rank containing the m jobs with
the largest processing times. Jobs with the same rank are assigned largest-first onto distinct
machines as they become available after executing the previous ranks. In LD scheduling,
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the sequence thus obtained must be reversed and all jobs in the last rank must be set to the
same starting time of zero to ensure that the schedule is flowtime-optimal. Coffman and
Sethi show that, in LI scheduling, assigning only the jobs in rank 1 largest-first results in
a makespan that is no more than 4/3 times the lowest makespan of any flowtime-optimal
schedule. A complete LI schedule results in a worst-case bound of (5m− 4)/(4m− 3).

No bound on the makespan ratio has been proved for the LD algorithm. Coffman and
Sethi make the following conjecture for the makespan ratio for the LD algorithm.

Coffman-Sethi Conjecture: tSLD
/tS∗ ≤ (5m− 2)/(4m− 1)

where tSLD
denotes the makespan of the LD schedule and tS∗ denotes the optimal makespan

for any flowtime-optimal schedule.

To obtain a bound for the LI algorithm, Coffmann and Sethi use the notion of a profile
to represent a schedule. The profile of a schedule after rank r is defined as the sorted set
of completion times after rank r. They propose three measures for the comparison of any
two schedules - the variation, the relative distance, and a measure denoted by δ`. For two
schedules, the variation v` after rank ` refers to the gap between the largest completion time
attained in either schedule and the smallest completion time attained in either schedule in
rank `. The relative distance x` between two profiles after rank ` is the largest difference
between the corresponding elements of the two profiles after rank `. For two schedules
with profiles a(`) and b(`), if x` = bj(`)− aj(`), the measure δ` is defined as being equal to
max[a1(`), bj(`)]−min[aj(`), bm(`)].

Coffman and Sethi propose and prove three lemmas that provide bounds for these
measures as a function of the rank. They subsequently use these lemmas to prove that
merely assigning the rank with the largest processing times largest-first (after assigning the
other ranks) ensures that the makespan is no more than (4m−3)/(3m−2) times the lowest
makespan among all flowtime-optimal schedules. They use a somewhat similar proof to
show that complete LI scheduling (assigning all ranks largest-first, starting with the largest
rank) results in a schedule with a makespan that is no more than (5m− 4)/(4m− 3) times
the smallest makespan among all flowtime-optimal schedules.

Coffman and Yannakakis (1984) study a more general version of this problem. They
study the problem of permuting the elements within the columns of an m × n matrix
so as to minimize its maximum row sum, where the term row sum refers to the sum of
the elements in a row of the matrix. They propose a greedy approximation algorithm
(Algorithm Row Sum or RS) for this problem. Their algorithm starts out by identifying
the m largest elements in the matrix. The algorithm subsequently executes permutations
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within each column so that, for i = 1, . . . ,m, the ith smallest element is located in row i.
Subsequently, the remaining elements of each column are sorted into ascending order using
only those positions not already occupied by the m largest elements. The next step of the
algorithm processes rows 2 through m in that order in the following manner. For row i,
if the row sum for i is not larger than the maximum row sum for rows 1 through i − 1,
then no action is taken and RS proceeds to the next row. If the row sum for i is larger
than the maximum row sum for rows 1 through i− 1, and if row `, ` < i, has the smallest
row sum among the first i − 1 rows, then RS scans rows i and ` from right to left until
corresponding elements in the same column of i and ` are found such that neither of them
is among the m largest elements in the matrix and interchanging them would reduce the
maximum row sum in the first i rows. If such a pair of elements is found, the two elements
are interchanged and the process is reapplied to row i. This process continues until no
such pair is found or the row sum for i no longer exceeds the maximum row sum for rows
1 through i− 1. The algorithm is then applied to the remaining rows.

Coffman and Yannakakis show that the ratio of the maximum row sum obtained by
applying the RS algorithm to the optimal maximum row sum cannot exceed 3/2 - 1/(2m)
and that this bound is best possible. Notice that, for the special case in which, for j =
1, . . . , n, every element of column j is less than or equal to every element of column j+1, the
problem reduces to the makespan minimization problem for flowtime-optimal schedules.
In this case, each row may be taken to refer to a machine and each column may be taken
to refer to a rank.

Eck and Pinedo (1993) propose a new algorithm for the problem of finding the flowtime-
optimal schedule with the smallest makespan. Their algorithm, the LPT* algorithm, is a
modified version of Graham’s LPT algorithm. Their algorithm requires the construction
of a new problem instance by replacing every processing time in a rank by the difference
between it and the smallest processing time in that rank. They consider the effect of ap-
plying the LPT rule to these differences for any two-machine problem instance. Arranging
these differences according to LPT generates a sequence for the original problem that is,
in general, not identical to the LPT sequence for the originial problem. This procedure is
the LPT* algorithm. For the two-machine case, the authors obtain a worst-case bound of
(28/27) on the makespan ratio for the LPT* algorithm.

The bin-packing and makespan minimization references cited previously show that it
is possible to obtain extremely tight bounds (such as the 13/11 bound for the multifit
algorithm) and PTASs for these problems. It is possible to construct algorithms for the
FM problem that provide tighter bounds than the algorithms discussed above. Gupta and
Ho (2001) build on the procedure developed by Ho and Wong for makespan minimization
to develop three algorithms — an algorithm to find the optimal solution and two heuristic
procedures — for the two-machine FM problem. Lin and Liao(2004) extend the procedures
developed by Ho and Wong and by Gupta and Ho to construct a procedure to obtain the
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optimal solution to the FM problem in O(m!n/m) time. They use numerical experiments to
show that the average runtime tends to be much less than is indicated by the exponential
worst-case bound. Besides developing procedures to obtain an optimal solution, it might
also be possible to construct PTASs for the FM problem. The focus of this thesis is not
on the development of a PTAS or the development of more sophisticated heuristics that
provide better approximation ratios. Instead, we focus on fast and simple algorithms like
the LI and LD algorithms. The time taken by these algorithms is of the same order as the
time required to sort a set of n processing times. These are thus extremely fast algorithms
and are extremely simple to implement. We study the problem of proving a conjectured
bound for such algorithms and focus specifically on attempting to prove Coffman and
Sethi’s conjectured bound for the LD algorithm.

The approach used to attempt to obtain a proof of Coffman and Sethi’s conjectured
bound is to identify properties of a minimal counterexample. In Chapter 2 of this thesis, the
algorithms developed by Coffman and Sethi (LI and LD) and by Eck and Pinedo (LPT*)
are formally defined. An improved version of LPT* and a new category of algorithms,
the GAP algorithms (both of which were proposed by Huang and Tunçel (2004)), are
also defined. In Chapter 3 of this thesis, worst-case examples are provided for the LI
and LD algorithms. Note that the example provided for LD may not be a worst-case
example if the Coffman-Sethi conjecture is false. In Chapter 4, the notion of minimality is
defined and clarified. In Chapter 5, the three measures developed by Coffman and Sethi to
study the LI scheduling algorithm are redefined for the LD scheduling algorithm. Lemmas
are proposed that provide bounds for these measures as a function of the rank for LD
scheduling. These lemmas and their proofs are similar to those proposed by Coffman and
Sethi for LI scheduling. Subsequently, it is shown that, under certain assumptions, there
always exists a minimal counterexample with integer processing times. It is also shown
that, if the second rank is assigned largest-first, the ratio of makespan of the resulting
schedule to the optimal makespan among all flowtime-optimal schedules cannot exceed
4/3. In Chapter 6, the two-machine, three-machine, and m-machine cases (for general m)
are examined. A novel duality-based approach (proposed by Huang and Tunçel (2004)) is
used to analyse the three-machine, three-rank case and the two-machine case. Huang and
Tunçel (2004) used this approach to show that the conjecture holds for the three-machine,
three-rank case. This approach is used to show that the conjecture holds for the two-
machine case. Thus a hypothesised minimal counterexample to the conjecture must have
at least four machines and three ranks, or three machines and four ranks. In Chapter 7,
various properties are derived for a hypothesised minimal counterexample to the Coffman-
Sethi conjecture with integer processing times. It is shown that a minimal counterexample
to the conjecture has either three machines and no more than six ranks, or four or more
machines and no more than five ranks. It is also shown that, if the conjecture is false,
there exists a minimal counterexample to the conjecture with an LD makespan equal to
µ1 +

∑r=k
r=2 λr.
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Thus the key results obtained in this thesis are the following:
(i) The Coffman-Sethi conjecture holds for the two-machine case.
(ii) If the Coffman-Sethi conjecture is false, there exists a minimal counterexample with
integer processing times and with either three machines and no more than six ranks, or
four or more machines and no more than five ranks.
(iii) If the Coffman-Sethi conjecture is false, there exists a minimal counterexample with
integer processing times and with an LD makespan equal to the sum of the smallest pro-
cessing time in rank 1 and the largest processing time in each of the remaining k − 1
ranks.

9



Chapter 2

Fast and Simple Algorithms for
Problem FM

Let pj denote the processing time of job j, where the jobs are numbered in nonincreasing
order of processing times. Thus pj ≥ pj+1. The set of jobs belonging to rank r are the
following: (r − 1)m+ 1, (r − 1)m+ 2, · · · , (r − 1)m+m.

Any schedule in which all rank r + 1 jobs are started before all rank r jobs (where
r = 1, 2, · · · , (n/m)− 1) is said to satisfy the rank restriction or rank constraint.

Any schedule in which all rank r + 1 jobs are started before all rank r jobs (where
r = 1, 2, · · · , (n/m)−1), there is no idle time between successive jobs assigned to the same
machine, and all rank n/m jobs start at time 0, is termed a flowtime-optimal schedule. Let
λr and µr denote the largest and smallest processing times respectively in rank r. Note
that

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ . . . ≥ λk−1 ≥ µk−1 ≥ λk ≥ 0 (2.1)

and for every h, ` ∈ {1, 2, . . . , k} with h < `, we have

`−1∑
r=h

µr ≥
∑̀
r=h+1

λr. (2.2)

The profile of a schedule after rank r is defined as the sorted set of completion times on
m machines after rank r. If the jobs in r ranks (out of a total of k) have been assigned to
machines, and if the jobs in the remaining ranks have not yet been assigned to machines, the
profile after rank r is termed the current profile. We let a(r) ∈ Zm : a

(r)
1 ≥ a

(r)
2 ≥ · · · ≥ a

(r)
m

denote the current profile. Thus, a
(r)
1 denotes the largest completion time after rank r, a

(r)
2
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denotes the second-largest completion time after rank r, . . ., and a
(r)
m denotes the smallest

completion time after rank r. We may omit “(r)” when the rank is clear from the context.

The algorithms listed in this section differ in two ways — the set of processing times
examined and the sequence in which ranks are examined. The first two algorithms listed
in this chapter make no modification to the original set of processing times. The last four
algorithms in this chapter examine a modified set of processing times. This modified set
of processing times is constructed by subtracting the smallest processing time in each rank
from every processing time in that rank. The sequence in which ranks are examined varies
from one algorithm to the next. The set of ranks discussed in Chapter 1 is denoted by
the labels 1, 2, . . . , k, where 1 denotes the rank containing the largest processing times and
k denotes the rank containing the smallest processing times. The LI algorithm processes
ranks in the order k, k − 1, . . . , 1 while the LD algorithm processes ranks in the order
1, 2, . . . , k. Each of the remaining algorithms - the LPT*, PIA, GAP-L∞ and GAP-L1

algorithms - examine ranks in a different order. We let [r] denote the rth rank examined
by an algorithm. Thus [1] denotes the first rank examined by an algorithm, [2] denotes
the second rank examined by the algorithm, . . . , and [k] denotes the last rank examined
by the algorithm.

In each algorithm, the jobs in the next rank are assigned based on the Longest Pro-
cessing Time criterion. Thus the longest remaining job is assigned to the machine that
becomes available first. The general idea behind assigning jobs largest-first is to try to
achieve a rectangular schedule. A rectangular schedule is one in which the completion
time is the same on every machine. Clearly, if a rectangular schedule exists after the last
rank, that schedule is an optimal schedule.

After an algorithm has processed the entire set of ranks, the modified processing times
are replaced by the original processing times and the ranks are rearranged to ensure that
the resulting schedule is flowtime-optimal. Note that this does not change the set of jobs
assigned to a machine.

2.1 LI (Coffman and Sethi, 1976a)

The LI algorithm starts with rank k, the rank containing the m jobs with the lowest
processing time, and works its way through ranks k, k−1, . . . , 2, 1. The schedule generated
by the algorithm is thus a flowtime-optimal schedule.

The algorithm works as follows: Schedule the ranks in the following order:

k, k − 1, . . . , 2, 1.

Let a ∈ Zm:
a1 ≥ a2 ≥ · · · ≥ am

11



denote the current profile. Schedule the jobs in the next rank so that the largest processing
time is matched with am, second largest with am−1, . . . , and the smallest processing
time is matched with a1.

Of the six algorithms listed in this chapter, the LI algorithm is the only algorithm for
which a tight bound (equal to (5m− 4)/(4m− 3)) has been proved in the literature. The
algorithm moves from rank k to rank 1, with jobs within a rank being assigned based on
Longest Processing Time.

2.2 LD (Coffman and Sethi, 1976a)

The LD algorithm starts with rank 1, the rank containing the m jobs with the largest
processing time, and works its way through ranks 1, 2, . . . , k − 1, k. The sequence of jobs
on each machines is then reversed to make it a flowtime-optimal schedule.

The algorithm works as follows: Schedule the ranks in the following order:

1, 2, . . . , k − 1, k.

Let a ∈ Zm:
a1 ≥ a2 ≥ · · · ≥ am

denote the current profile. Schedule the jobs in the next rank so that the largest processing
time is matched with am, second largest with am−1, . . . , and the smallest processing time
is matched with a1. After all the jobs are scheduled, reverse the schedule and left-justify
it.

Like the LI algorithm, the LD algorithm tries to achieve a rectangular schedule by
assigning jobs within a rank based on Longest Processing Time. The only difference is
that the algorithm is applied in increasing order of ranks, starting with rank 1 and ending
with rank k. Coffman and Sethi (1976a) proposed but did not prove a bound for the
LD algorithm. The conjectured LD bound is slightly smaller than the LI bound. This
is not surprising because the LD algorithm starts with the ranks that make the greatest
contribution to makespan.

2.3 LPT* (Eck and Pinedo, 1993)

The smallest completion time on any machine after all jobs have been assigned cannot be
less than the sum of the smallest processing times in each rank. Therefore the sum of the
smallest processing times in each rank represents a lower bound on the makespan. The
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LPT* algorithm seeks to minimize the extent to which the makespan exceeds this lower
bound.

Recall that λr and µr denote the largest and the smallest processing time respectively
in rank r. We define λ̃r := λr−µr for r ∈ {1, 2, . . . , k}. Recall that, if jobs are arranged in
nonincreasing order of processing times, the jobs in rank ` are the following:
(`− 1)m+ 1, (`− 1)m+ 2, . . . , (`− 1)m+m.
If job j′ is in rank `, we set the processing time of job j′ to be equal to pj′−minj∈rank(`) {pj}.

For the new set of processing times, let a ∈ Zm:

a1 ≥ a2 ≥ · · · ≥ am

denote the current profile.

Schedule the ranks in the order

[1], [2], . . . , [k − 1], [k],

where
λ̃[1] ≥ λ̃[2] ≥ · · · ≥ λ̃[k].

Schedule the jobs in the next rank so that the largest modified processing time is matched
with am, second largest with am−1, . . . , and the smallest processing time is matched
with a1. After all the jobs are scheduled, rearrange the ranks to ensure that the schedule
is flowtime-optimal.

The LPT* algorithm recognizes the fact that the sum of the smallest processing times
in each rank represents a constant component of the makespan and a lower bound on
the makespan. The ranks are sorted based on the difference between the largest and the
smallest processing time in each rank, with rank [1] corresponding to the largest difference
and rank [k] corresponding to the smallest difference. The algorithm is applied to the
residual processing times (the difference between the original processing time of a job and
the smallest processing time in that rank) rather than to the original processing times.
The set of jobs in each rank are assigned based on Longest Processing Time being applied
to the residual processing times, with the algorithm being applied starting with rank [1]
and ending with rank [k]. After all the jobs are scheduled, the schedule is made flowtime-
optimal by rearranging the ranks.

There are two key elements of weakness in the LPT* algorithm: (i) The ranks are
ordered based on the difference between the largest and the smallest processing times in
each rank. Thus information about all other processing times in each rank is not used to
order the ranks. It is quite possible that rank [r] has a profile that is almost flat, except
for one very small or very large processing time, while rank [h] (for some value of h > r)
has a very uneven profile. (ii) The algorithm does not suggest a way of breaking ties for
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ranks with the same value of λ̃[r]. For a problem instance with r = 1, 2, . . . , ` ranks, with

every rank having the same value of λ̃[r], there could exist `! LPT* schedules. Different
ways of breaking ties could result in very different values of the makespan.

2.4 Pairwise Improvement Algorithm (PIA) (Huang

and Tunçel, 2004)

Here we attach to LPT* an iterative, local improvement routine. If m = 2, we apply LPT*
and stop. If m ≥ 3, we apply LPT*. Then we find the machines i and i′ in the LPT*
schedule with the largest total processing time and the smallest total processing time
respectively. We apply LPT* to the two-machine subproblem given by the jobs on the
machines i and i′. Then we look for the machines with the largest and smallest processing
times again (breaking the ties appropriately). If we can’t find a new pair we stop. The
ranks are then rearranged to ensure that the schedule is flowtime-optimal.

The motivation behind this improvement routine is to take advantage of the theoret-
ical bound 28/27 proven for the LPT* algorithm for the two-machine problem (Eck and
Pinedo, 1993). The LPT* algorithm provides a near-optimum solution for the two-machine
problem, therefore it seems likely that applying LPT* to a two-machine subproblem will
result in a significant improvement to the overall makespan. At any stage of the Pairwise
Improvement Algorithm, if there exist m′ machines, such that each of those machines has
a total processing time equal to the largest total processing time, LPT* must be applied
to m′ two-machine subproblems in succession before any reduction in the makespan is
achieved. Thus this algorithm takes more time than the LD, LI, and LPT* algorithms,
but could provide a better solution. The algorithm may never converge and an upper
bound must, therefore, be placed on the number of iterations.

2.5 GAP Algorithms (Huang and Tunçel, 2004)

As in the LPT* algorithm, if job j′ is in rank `, we set the processing time of job j′ to be
equal to pj′ −minj∈rank` pj.

However, we do not sort the ranks based on values of λ̃[r]. Instead, we try to utilize
more detailed information within each rank. We define the maximum adjacency gap of
rank ` as

σ` := max
j∈{(`−1)m+1,(`−1)m+2,...,`m−1}

{pj − pj+1} ,
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where ` ∈ {1, 2, . . . , k}. Also, we define

σ̄` :=
m∑
j=2

(
p(`−1)m+1 − p(`−1)m+j

)
= mλ` −

∑
j∈rank(`)

pj,

where ` ∈ {1, 2, . . . , k}.
While LPT* uses the difference between the largest and the smallest processing time in

a rank to measure unevenness of a rank, the GAP algorithms use the differences between
adjacent members of an ordered set of processing times in a rank as measures of the
unevenness of a rank, with these differences being used in different ways to sort ranks in
the two GAP algorithms. The GAP algorithms assign the set of modified processing times
within a rank based on Longest Processing Time, with the algorithm being applied starting
with the most uneven rank. The GAP algorithms clearly use more detailed information
than the LPT* algorithm and therefore might produce schedules with lower makespans.

2.5.1 GAP-L∞ (Huang and Tunçel, 2004)

Use the same set of modified processing times as in the algorithm LPT*; but use the
following ordering of ranks. Schedule the ranks from last to first in the order of ranks

[1], [2], . . . , [k − 1], [k],

where
σ[1] ≥ σ[2] ≥ · · · ≥ σ[k].

Once the jobs are assigned to the machines, reorder the ranks so that the final schedule is
a flowtime-optimal schedule.

The measure of unevenness of a rank for the GAP-L∞ algorithm is the largest difference
between adjacent members of an ordered set of processing times in the rank.

2.5.2 GAP-L1 (Huang and Tunçel, 2004)

Use the same set of modified processing times as in the algorithm LPT*; but use the
following ordering of ranks. Schedule the ranks from last to first in the order of ranks

[1], [2], . . . , [k − 1], [k].

σ̄[1] ≥ σ̄[2] ≥ · · · ≥ σ̄[k].

Once the jobs are assigned to the machines, reorder the ranks so that the final schedule is
a flowtime-optimal schedule.

The measure of unevenness of a rank for the GAP-L1 algorithm is the sum of the
differences between the processing times of adjacent jobs in the rank.
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Chapter 3

Worst-Case Examples

Worst-case examples have been proposed for the LI and LD algorithms. These worst-case
examples will be discussed below.

For problem instances with a large number of ranks, a small number of ranks (consisting
of the jobs with the largest processing times) will contribute a large proportion of the
total completion time on each machine. It seems likely that, for such problem instances,
removing the rank with the smallest processing times will result in only a small change in
the optimal makespan and in the makespan of the schedules resulting from the application
of these algorithms. Therefore, one may hypothesize that, for these algorithms, a worst-
case example will consist of a relatively small number of ranks. On the other hand, a
worst-case example must consist of more than two ranks. A worst-case example cannot
have only one rank because, for a single rank, there exists only one possible value for
the makespan. For two ranks, every algorithm listed in the previous chapter produces an
optimal solution. Thus a worst-case example must consist of at least three ranks.

Further, the solutions produced by each of these algorithms are profile-dependent. The
algorithms lose their effectiveness when they are applied to a fully rectangular schedule.
One may hypothesize that, in each case, a worst-case example is one in which the algorithm
results in a rectangular schedule after rank k − 1, where k is the total number of ranks,
while the optimal schedule is one which is rectangular after rank k.

It will be shown in subsequent chapters of this paper that, for the LI and LD algorithms,
there will always exist a worst-case problem instance with integer processing times and with
a rectangular optimal schedule. Each of the worst-case problem instances proposed below
has three ranks, integer processing times, a rectangular schedule produced by the algorithm
after the second rank, and a rectangular optimal schedule after the third rank. Note that
the worst-case example for the LD algorithm is a conjectured worst-case example.
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3.1 LI

The next example is presented in Coffman and Sethi (1976a). For m ≥ 2, let n := 3m and
consider

pj :=


(j − 1) for j ∈ {1, 2, . . . ,m}
(j − 2) for j ∈ {m+ 1,m+ 2, . . . , 2m}

(2m− 2) for j ∈ {2m+ 1, 2m+ 2, . . . , 3m− 1}
(3m− 2) for j = 3m.

The ratio of the objective value of the LI schedule to the optimal objective value is 5m−4
4m−3 .
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Figure 2: The optimal schedule and the LI schedule for a worst-case problem instance
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Figure 2 consists of two figures. Note that the vertical axis denotes time, with the upper
left-hand corner of each figure corresponding to time equal to 0, and time increasing in each
figure from top to bottom. The figure on the left shows an optimal schedule for an instance
of the FM problem with three machines and nine jobs. The nine jobs have processing times
0,1,2,2,3,4,4,4, and 7 respectively. The figure on the right shows the LI schedule for the
same problem instance. The LI schedule is rectangular after rank 2, while the optimal
schedule is rectangular after rank 1. Both schedules are flowtime-optimal schedules. One
of the nine jobs has a processing time equal to zero. In both figures, the job with zero
processing time is the first job assigned to machine 1. A sufficient number of jobs with zero
processing time must be included in any problem instance to ensure that the total number
of jobs is an integer multiple of the number of machines. If these jobs with zero processing
time are not included in the problem instance, the set of jobs allocated to each rank would
be different. This could, in general, result in schedules that are not flowtime-optimal.
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3.2 LD

The following example is presented in Huang and Tunçel (2004).

For m ≥ 2, let n := 3m and consider

pj :=


0 for j ∈ {1, 2, . . . ,m− 1}
m for j = m

(j − 1) for j ∈ {m+ 1,m+ 2, . . . , 2m}
(j − 2) for j ∈ {2m+ 1, 2m+ 2, . . . , 3m}.

It is easy to show that the ratio of the objective value of the LD schedule to the optimal
objective value is 5m−2

4m−1 .
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Figure 3: The optimal schedule and the LD schedule for a worst-case problem instance
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Figure 3 consists of two figures. Note that the vertical axis denotes time, with the
upper left-hand corner of each figure corresponding to time equal to 0, and time increasing
in each figure from top to bottom. The figure on the left shows an optimal schedule for
an instance of the FM problem with three machines and nine jobs. The nine jobs have
processing times 0,0,3,3,4,5,5,6, and 7 respectively. The figure on the right shows the LD
schedule for the same problem instance. The sequence of jobs assigned to each machine
must be reversed to obtain flowtime-optimal schedules. This method of representing the
schedules serves to highlight the fact that the LD algorithm starts with the jobs in the first
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rank and processes jobs in increasng order of ranks. This method of representation also
shows that the LD schedule is rectangular after rank 2. The optimal schedule is rectangular
after rank 3. Two of the nine jobs have a processing time equal to zero. A sufficient number
of jobs with zero processing time must be included in any problem instance to ensure that
the total number of jobs is an integer multiple of the number of machines.
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Chapter 4

A definition of minimality

Our general approach in this current attempt to obtain a proof of the Coffman-Sethi
conjecture is to obtain a set of properties for a minimal counterexample to the conjecture.
These properties are then used either to construct a counterexample or to prove that no
such counterexample exists.

Observation: If an instance of the FM problem with m machines and k ranks has fewer
than mk jobs, increasing the number of jobs to mk by including up to m − 1 jobs with
zero processing time does not result in any change in the total flowtime or the optimal
makespan or the makespan of an LD schedule, though it changes the set of jobs allocated
to each rank.

From this observation, it follows that, for the purpose of proving conjectures regarding
worst-case makespan ratios for algorithms for the problem FM, only problem instances
with mk jobs need to be considered. Jobs with zero processing time are unique in the
sense that they can be assigned to any position on any machine without altering the total
flowtime. For example, for a problem instance with 3 machines and 27 jobs, each with a
processing time greater than zero, the smallest job must be the third job performed on
either the first, second, or third machine. If the smallest job has a processing time equal
to zero, it could be the first, second, or third job performed on the first, second, or third
machine. Focusing on problem instances with mk jobs leads to a standardized method of
allocating jobs to ranks. This makes it easier to analyze the performance of algorithms for
the FM problem. Further, as shown later in this thesis, a worst-case problem instance for
the LD algorithm always includes at least one job with zero processing time.

We define the ordered set of processing times P for a scheduling problem instance with
m machines and k ranks to consist of elements equal to the processing times of these mk
jobs arranged in nonincreasing order. We let P (j) refer to the jth element of P . Thus,
P (j) ≥ P (j + 1) for j = 1, . . . ,mk − 1.
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Consider two scheduling problem instances, each with m machines and k ranks. If P1

is the set of processing times for the first problem instance and P2 is the set of processing
times for the second problem instance, we define P2 to be < P1 if and only if: (i) for some
j′, 1 ≤ j′ ≤ mk, P2(j

′) < P1(j
′), and (ii) for all j, 1 ≤ j ≤ mk, P2(j) ≤ P1(j). Thus the

sets of processing times are lexicographically ordered.

For the problem of characterizing a minimal counterexample to the Coffman-Sethi con-
jecture, minimality will be defined based on the following criteria: the number of machines,
the number of ranks, and the set of processing times. A minimal counterexample is defined
to be a counterexample with k ranks, m machines, and a set of processing times P1 for
which there does not exist another counterexample with one of the following:
(i) number of ranks < k
(ii) number of ranks = k and number of machines < m
(iii) k ranks, m machines and a set of processing times P2 < P1.

Thus, the notion of minimality is based on the number of ranks and the number of
machines (in that order). For a given number of ranks and a given number of machines,
minimality is based on the set of processing times.

This thesis proposes a set of techniques to characterise a hypothesised minimal coun-
terexample and to reduce it to a relatively small size. The approach discussed in this
thesis may be useful in the characterisation of minimal counterexamples to conjectured
bounds for algorithms for some other constrained optimization problems. The general
approach is to assume the existence of a minimal counterexample. We then subtract a
vector from the vector of hypothesised parameters, subject to the condition that none of
the constraints in the problem are violated. This will produce a new problem instance.
The original counterexample was assumed to be a minimal counterexample, therefore the
new problem instance must satisfy the conjecture. This may allow us to obtain a property,
i.e. a constraint or several constraints that are satisfied by the original counterexample.
By repeating this process and by suitable choices of vectors, we obtain a set of constraints
(properties) and keep reducing the size of the minimal counterexample. For certain prob-
lems and conjectures, the size of the minimal counterexample may be reduced sufficiently
to make it possible to analyse all possible cases and thus to either prove or disprove the
conjecture. After reducing the size of the problem, a novel approach (obtained from Huang
and Tunçel (2004)) inspired by the notion of LP duality may be used. For given values
of m, the number of machines, and/or k, the number of ranks, this approach treats the
parameters of problem FM (job processing times) as variables. The problem examined
is that of determining the values of the processing times that result in the LD makespan
being maximised for a given value of the optimal makespan. All possible relationships
between processing times (subject to the rank restriction) are considered in the form of
various cases. Thus, an exhaustive set of linear programs, each corresponding to a different
case, is set up and solved. The solution to each linear program is checked to determine if
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it violates the conjecture. In Chapter 6, this approach is used to show that the Coffman-
Sethi conjecture is satisfied when m = 2, and when m = 3 and k = 3. After a reduction in
the size of the problem, this duality-based approach may, in principle, be used to prove or
disprove the existence of a counterexample to a conjectured bound on the makespan ratio
for any algorithm for problem FM and potentially for other scheduling problems.

Later in this thesis, it will be shown that, if the Coffman-Sethi conjecture is false, there
must exist a counterexample with integer processing times. Further, if the conjecture is
false, there must exist a counterexample with integer processing times and a rectangular
optimal schedule. Therefore, we define four types of problem instances, counterexamples
and minimal counterexamples to the Coffman-Sethi conjecture. A problem instance of
Type A is one that is not required to have either integer processing times or a rectangular
optimal schedule. A problem instance of Type I is one with integer processing times. A
problem instance of Type R is one with a rectangular optimal schedule. A problem instance
of Type IR is one with integer processing times and a rectangular optimal schedule. A
counterexample of a particular type (A, I, R, or IR) is a problem instance of that type that
violates the Coffman-Sethi conjecture. A minimal counterexample of a particular type is a
counterexample of that type for which there does not exist a smaller counterexample (based
on the notion of minimality defined in this chapter) of the same type. It will be shown
later in this thesis that, if the Coffman-Sethi conjecture is false, there exists a minimal
counterexample of Type IR.
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Chapter 5

Properties of flowtime-optimal
schedules

Before examining the correctness of any particular conjecture, it might be useful to obtain
general properties of flowtime-optimal schedules. Coffman and Sethi (1976) derive a set of
properties that are appropriate for algorithms that examine ranks in decreasing order. In
the first part of this chapter, similar properties (Lemma 5.1 and Lemma 5.2) are derived
for algorithms (such as the LD algorithm) that examine ranks in increasing order. The
next two lemmas show that, under certain conditions, it is appropriate to focus entirely on
hypothesised counterexamples with integer-valued parameters. We subsequently examine
a very simple algorithm for this problem, one that merely requires a largest-first assignment
of jobs in the second rank. We show that this simple algorithm, the LD0 algorithm has
a makespan ratio with a bound equal to 4/3. This is also a bound for the LD algorithm.
This analysis serves to demonstrate the fact that the use of integer-valued parameters can
serve as a useful tool in developing and proving bounds for algorithms for this problem.
The last three lemmas in this chapter begin the process of examining the LD algorithm.
This process continues in the next two chapters of this thesis.

The choice of schedule determines the set of completion times (or the profile) for each
rank associated with that schedule.

The profile after rank ` of Schedule Sa is denoted by a(`) = (a1(`), · · · , am(`)), where
ai(`) ≥ ai+1(`) for i = 1, 2, · · · ,m− 1. Note that ai(`) is the ith largest completion time
after rank `.

For two schedules, the gap between the largest completion time attained in either
schedule and the smallest completion time attained in either schedule for a given rank
provides a measure of the lack of ‘flatness’ or lack of ‘rectangularity’ in the two profiles after
that rank. We use the term variation between profiles to denote this lack of rectangularity
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for a pair of profiles. Note that, if the gap between the largest and smallest completion time
is small for two schedules after a given rank, both schedules are close to being rectangular
after that rank. Conversely, if two schedules are approximately rectangular after a given
rank, the largest completion time after that rank will be approximately equal for those
two schedules because they must have the same average completion time per machine
after that rank. Thus, two schedules that are approximately rectangular after a given
rank will have a small gap between the largest and the smallest completion time for either
schedule after that rank. Note that rectangularity of two schedules is a sufficient but not
a necessary condition for the two schedules to have makespans that are roughly equal.
Absence of rectangularity is a necessary but not a sufficient condition for two schedules to
have different makespans.

Let a(`) and b(`) be profiles of schedules Sa and Sb.

The variation v` in a(`) and b(`) is given by v` = max [b1(`), a1(`)]−min [bm(`), am(`)]

A large variation between two profiles indicates an absence of rectangularity for the two
profiles but does not guarantee that the two profiles are very different from each other. The
amount of information contained in the ‘variation’ measure is limited due to the fact that
it depends only on the largest and the smallest completion times in the two schedules. This
measure does not make any distinction between the processing times of the first schedule
and the processing times of the second schedule. For a set of m machines, the variation
can be computed by considering a set of 2m processing times (for the two schedules) and
finding the range of values for this set of 2m processing times.

Therefore, to obtain a deeper understanding of the dissimilarity between the two sched-
ules, we need more information than that provided by the variation measure. We need a
second measure that makes a distinction between the processing times for the two schedules
and considers the two sets of m processing times separately (without merging them into
one set of 2m elements). This second measure should also ideally compare corresponding
elements of the profiles associated with the two schedules, rather than merely looking at
the largest and the smallest element.

This second measure is the ‘relative distance’ between two profiles. The relative distance
is determined by calculating the differences in the corresponding elements of the two profiles
after a given rank and by finding the largest value. Thus, we compute the difference between
the ith largest completion time in schedule Sb after rank ` and the ith largest completion
time in schedule Sa after rank `.

The relative distance x` between profiles a(`) and b(`) is given by

x` = max1≤i≤m |bi(`)− ai(`)|

For example, consider a problem with three machines labelled Machine 1, Machine 2
and Machine 3, and nine jobs with processing times 9, 8, 7, 6, 5, 4, 3, 2, and 1 respectively.
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In schedule Sa, jobs with processing times 1, 5, and 7 are assigned to Machine 1, jobs with
processing times 2, 4, and 8 are assigned to Machine 2, and jobs with processing times 3, 6,
and 9 are assigned to Machine 3. In schedule Sb, jobs with processing times 1, 4, and 7 are
assigned to Machine 1, jobs with processing times 2, 6, and 8 are assigned to Machine 2, and
jobs with processing times 3, 5, and 9 are assigned to Machine 3. Thus a(2) = (9, 6, 6) and
b(2) = (8, 8, 5). Therefore the variation after the second rank v2 = max[8, 9]−min[5, 6] = 4.
The relative distance after the second rank x2 = max[|8− 9|, |8− 6|, |5− 6|] = 2.

Note that two identical but very non-rectangular profiles will have a large variation
but would have a relative distance equal to zero. A positive relative distance between two
profiles for a given rank indicates that the corresponding elements in at least one position
in the profiles (e.g. the 7th largest element in either profile) are not identical. Due to
the fact that the cumulative completion time across all machines after a given rank is the
same for every schedule, the fact that the corresponding elements in one position are not
identical implies that there exists at least one other position for which the corresponding
elements in the two profiles are not identical.

The following lemma establishes relationships between the relative distance, the vari-
ation and the processing times. The left-hand side inequality in part (a) of the lemma
establishes a relationship between the variation in two profiles after rank ` and the relative
distance between them after rank `+ 1. This relationship is based on the following under-
lying insight. If two flowtime optimal schedules have a low variation in profiles after rank
`, the two schedules are close to being rectangular after rank `. Every rectangular schedule
after rank ` has the same average completion time. Therefore, if the two schedules are
close to being rectangular, they must be very similar after rank `, and the relative distance
between the two profiles after rank ` + 1 cannot be large because it results mainly from
the differing assignments of jobs to machines in rank `+ 1.

Let λi denote the largest processing time in rank i and let µi denote the smallest
processing time in rank i.

Lemma 5.1. For a given problem instance, let Sa and Sb be two flowtime-optimal schedules
with k ranks. Let a(`) and b(`) denote the profiles of Sa and Sb respectively after rank `.
Then:
(a) For every ` ∈ {1, 2, ..., k − 1}, the variation v` between profiles a(`) and b(`) is less
than or equal to the difference between the largest task processing time and the smallest
task processing time assigned so far. The relative distance x`+1 between profiles a(` + 1)
and b(`+ 1) is less than or equal to the variation in the previous rank v`. Thus,

x`+1 ≤ v` ≤ λ1 − µ`.

(b) For every ` ∈ {1, 2, . . . , k − 1},
x` − xh ≤ λh+1 − µ` ≤ min {µh − µ`, λh+1 − λ`+1} .
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Thus, the increase in relative distance from rank h to rank `, where h < `, is less than or
equal to the increase in the smallest task time from rank ` to rank h. It is also less than
or equal to the increase in the largest task time from rank `+ 1 to rank h+ 1.

Proof. Proof of part (a):

The earliest and latest times at which a processor can become free after rank ` are
given by

∑`
r=1 µr and

∑`
r=1 λr respectively.

Hence

v` = max(b1(`), a1(`))−min(bm(`), am(`)) ≤

(∑̀
r=1

λr

)
−

(∑̀
r=1

µr

)
≤ λ1 − µ`,

where the last inequality uses (2.1).

To prove the lower bound, we may assume x`+1 = bs(` + 1) − as(` + 1) for some
s ∈ 1, 2, . . . ,m.

There are s jobs in schedule Sb that finish at or after bs(`+ 1).

There are m− s+ 1 jobs in schedule Sa that finish at or before as(`+ 1).

So, there is clearly at least one job j′ that finishes at or before as(` + 1) in Sa and at
or after bs(`+ 1) in Sb.

Let C
(a)
j′ and C

(b)
j′ denote the completion times of job j′ in schedules Sa and Sb respec-

tively. Then, by the above observation,

C
(b)
j′ − C

(a)
j′ ≥ bs(`+ 1)− as(`+ 1) = x`+1. (5.1)

Moreover,

C
(a)
j′ ≥ am(`) + pj′ (5.2)

C
(b)
j′ ≤ b1(`) + pj′ (5.3)

Therefore, we obtain

v` = max{b1(`), a1(`)} −min{bm(`), am(`)}
≥ b1(`)− am(`)

≥ C
(b)
j′ − C

(a)
j′ by (5.2) and (5.3)

≥ x`+1 by (5.1)
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as claimed.

Proof of part (b):

Let ` > h. Without loss of generality, we may assume bs(`) ≥ as(`) and x` = bs(`) −
as(`).

For every i ∈ {1, 2, . . . ,m}, ai(`) ≥ ai(h) +
∑̀
r=h+1

µr , and

bi(`) ≤ bi(h) +
∑̀
r=h+1

λr. (5.4)

Thus, x` − xh = (bs(`)− as(`))−max1≤i≤m |bi(h)− ai(h)|
≤ max1≤i≤m |bs(`)− bs(h)− (ai(`)− ai(h))|
≤ max

∣∣∣∑`
r=h+1 λr −

∑`
r=h+1 µr

∣∣∣
≤ λh+1 − µ`
≤ min{µh − µ`, λh+1 − λ`+1},

where the second inequality follows from (5.4) and the third inequality follows from (2.2).

The right-hand side inequality in part (a) of the above lemma develops an upper bound
for the variation in two profiles after rank `. The largest possible completion time for any
schedule after rank ` is obtained by assigning the largest processing time for each rank
to the same machine. On the other hand, the smallest completion time for any schedule
after rank ` is obtained by assigning the smallest processing time for each rank to the same
machine. Thus the difference between the largest completion time for any schedule after
rank ` and the smallest completion time for any schedule after rank ` is bounded above
by the sum of the differences between the largest and the smallest processing times for
each rank (for ranks 1 to `). However, the smallest processing time in any rank cannot be
smaller than the largest processing time in the next rank.

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ . . . ≥ λk−1 ≥ µk−1 ≥ λk ≥ 0.

It follows that the sum of the differences is bounded above by the difference between the
largest processing time in rank 1 and the smallest processing time in rank `.

Part (b) of Lemma 5.1 is based on the following underlying intuition. If there is only a
small reduction in the largest processing time from rank h+ 1 to rank `+ 1 (where ` > h),

27



it follows that the processing times do not change much from ranks h to ` for any schedule
and these processing times lie within a narrow range. A small relative distance between
the profiles for two schedules Sa and Sb after rank h indicates that there exist only small
differences between the corresponding elements of the two profiles after rank h. These
differences will not undergo a large increase if we add a set of ranks (h+ 1 to `) consisting
of jobs with processing times that lie within a narrow range.

The key purpose served by parts (a) and (b) of Lemma 5.1 is to show that the largest
contributions to the differences between the makespan for two flowtime-optimal schedules
occurs in the earlier ranks, thus suggesting that the worst case ratio of makespan for a
schedule obtained by examining the ranks in increasing order (from largest to smallest
processing times) to the makespan for the optimal schedule is likely to occur for some
small number of ranks. Thus this lemma suggests that the LD algorithm is likely to have
a worst case for a small number of ranks.

Lemma 5.2. Let ` be any rank, 1 ≤ ` ≤ k, and let s be such that x` = bs(`)− as(`). Let
δ` = max[a1(`), bs(`)]−min[as(`), bm(`)]. Then δ` ≥ mx`

m−1 .

Proof. Let ` ∈ {1, 2, . . . , k} and s ∈ {1, 2, . . . ,m} be as above. Firstly, note that

δ` ≥ a1(`)− as(`) ≥ ai(`)− as(`),∀i ∈ {1, 2, . . . , s− 1}, (5.5)

δ` ≥ bs(`)− bm(`) ≥ bs(`)− bi(`),∀i ∈ {s+ 1, s+ 2, . . . ,m}. (5.6)

Secondly, we have

i < s⇒ bi(`) ≥ bs(`) = as(`) + x`,

i > s⇒ ai(`) ≤ as(`) = bs(`)− x`. (5.7)

Moreover,

m∑
i=1

ai(`) =
m∑
i=1

bi(`). (5.8)

Now, using the above facts, we obtain

x` =
m∑

i=1,i 6=s

(ai(`)− bi(`))

≤
s−1∑
i=1

(ai(`)− as(`)− x`) +
m∑

i=s+1

(bs(`)− x` − bi(`))

=
s−1∑
i=1

(ai(`)− as(`)) +
m∑

i=s+1

(bs(`)− bi(`))− (m− 1)x`

≤ (s− 1)δ` + (m− s)δ` − (m− 1)x`, (5.9)
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where the first inequality uses (5.7) and the second inequality follows from (5.5) and (5.6).
Therefore, mx` ≤ (m− 1)δ`.

Observation: Let S be a flowtime-optimal schedule that is constructed using the fol-
lowing two-step process: (i) Ranks are assigned in increasing order and the last rank
(containing the smallest jobs) is assigned largest-first. (ii) The jobs assigned to each ma-
chine are then reversed to make the schedule flowtime-optimal. Note that the processing
times in the last rank can be made arbitrarily small. Therefore the ratio of the makespan
of S to the optimal makespan among all flowtime-optimal schedules could be arbitrarily
close to this ratio for the schedule with the highest ratio of makespan to optimal makespan
among all flowtime-optimal schedules.

Recall that a schedule in which all rank r + 1 jobs are started before all rank r jobs
(where r = 1, 2, · · · , (n/m) − 1) is said to satisfy the rank constraint. It is evident that
if, after subtracting a constant amount from each processing time in rank `, the smallest
processing time in rank ` is still greater than or equal to the largest processing time in
rank `+ 1, the assignment of jobs to ranks remains unchanged.

Claim 5.1. For the LD algorithm for problem FM, construction of a new problem instance
from an existing problem instance by subtracting tconstant from the processing time of each
job in a rank without violating the rank constraint will lead to a problem instance for which
the LD algorithm yields a makespan equal to tSLD

− tconstant.

Proof. Let PO denote the original problem instance and let PR denote the new problem
instance. The LD algorithm can, in general, produce multiple solutions with the same value
of the maximum completion time after each rank. It is clear that, for any LD solution to
PO, an LD solution to PR can be constructed by assigning each modified job to the same
machine as the original job and, for every job that remains unchanged, by assigning the
job to the same machine in PR to which it was assigned in PO. It is clear, using similar
arguments, that for any LD solution to PR, an LD solution to PO can be constructed.
It follows that the makespan of an LD solution to PR is equal to the makespan of the
corresponding LD solution to PO − tconstant.

Let OPT denote an algorithm that finds the optimal solution to any problem instance of
the FM problem. (One example of such an algorithm is a complete enumeration procedure.)

Claim 5.2. For the OPT algorithm for problem FM, construction of a new problem in-
stance from an existing problem instance by subtracting tconstant from the processing time
of each job in a rank without violating the rank constraint will lead to a problem instance
with an optimal makespan equal to tS∗ − tconstant.
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Proof. Assume that this claim is invalid. Let PO denote the original problem instance and
let PR denote the new problem instance. Let tS∗ denote the optimal makespan of PO. Let
tR∗ denote the optimal makespan of PR. If every job in PR is assigned to the same slot to
which the corresponding job is assigned in an optimal solution to PO, it is clear that the
makespan of this solution for PR is equal to tS∗− tconstant. It follows that tR∗ is less than or
equal to tS∗ − tconstant. Assume that tR∗ is less than tS∗ − tconstant. Now, assign every job in
PO to the same slot to which the corresponding job is assigned in an optimal solution to
PR. It is clear that the makespan of this solution for PO is equal to tR∗ + tconstant. This is
less than (tS∗ − tconstant) + tconstant = tS∗ . This violates the initial assumption that tS∗ was
the optimal makespan of PO. Therefore the assumption that tR∗ is less than tS∗ − tconstant
is invalid. It follows that tR∗ is equal to tS∗ − tconstant.

Corollary 5.1. If tconstant > 0, construction of a new problem instance from an existing
problem instance by subtracting tconstant from the processing time of each job in a rank
without violating the rank constraint will lead to an increase in the tSLD

/tS∗ ratio.

Proof. This follows from Claim 5.1 and Claim 5.2.

Most scheduling problems are considered in the context of the Turing machine model
of computation and, as a result, the data are assumed to be drawn from the rationals.
In our problem FM, this would mean that pj ∈ Q,∀j ∈ 1, 2, . . . , n. Below, we prove
that, under certain assumptions, a counterexample to a conjectured makespan ratio with
irrational processing times could exist only if there existed a counterexample with rational
processing times.

In the following lemmas, the term continuous function is used to refer to a function
that satisfies the epsilon-delta definition of continuity proposed by Weierstrass (1886).

Let G ⊆ Rn. Consider functions of the form h : G→ R. We define continuity for such
functions as follows.

Definition 5.1. h is continuous at x ∈ G if for every ε > 0, there exists a δ > 0 such
that for all x ∈ G, ‖x − x‖ < δ ⇒ ‖h(x) − h(x)‖ < ε. Here ‖.‖ refers to any norm on
Rn, unless otherwise specified. h is termed a continuous function if it is continuous at all
points in G.

The following result shows that tS∗ is a continuous function.

Let p ∈ Rn
+ denote the set of processing times for an instance E of the problem FM.

Let p = (p1, p2, . . . , pn). Let t∗p denote the value of tS∗ for E. Let p ∈ Rn
+ denote the set of

processing times for an instance E of the problem FM. Let t∗p denote the value of tS∗ for

E.
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Claim 5.3. The maximum value of
∣∣t∗p − t∗p∣∣ over {p ∈ Rn

+ : ‖p− p‖∞ ≤ δ} is attained
either by p = p + δ.e or p = (max(p1 − δ, 0),max(p2 − δ, 0), . . . ,max(pn − δ, 0)), where
e ∈ Rn

+ is the vector of all ones.

Proof. Assume that the claim does not hold. Thus, the maximum value of
∣∣t∗p − t∗p∣∣ over

{p ∈ Rn
+ : ‖p− p‖∞ ≤ δ} is attained neither by p = p + δ.e nor by p = (max(p1 −

δ, 0),max(p2 − δ, 0), . . . ,max(pn − δ, 0)). Therefore, there exists p′ ∈ Rn
+ such that the

maximum value of
∣∣t∗p − t∗p∣∣ over {p ∈ Rn

+ : ‖p− p‖∞ ≤ δ} is attained by p = p′, where
p′ = (p′1, p

′
2, . . . , p

′
n), and ∃j1, j2 such that p′j1 > max(pj1 − δ, 0) and p′j2 < pj2 + δ. (Note

that j1 could be equal to j2.)

Case 1: t∗p − t∗p ≤ 0

Consider the problem instance E ′ of the problem FM with m machines and the set of
processing times p′, and the problem instance E ′′ of the problem FM with m machines
and the set of processing times p + δ.e. Assign every job in E ′ to the same slot to which
the corresponding job is assigned in the optimal solution to E ′′. Clearly, for flowtime-
optimal schedules, the optimal makespan of E ′′ is greater than or equal to the makespan
of this solution to E ′, and the makespan of this solution to E ′ is greater than or equal
to the optimal makespan for E ′. Therefore t∗p ≤ t∗p ≤ t∗E′′ , where t∗E′′ denotes the optimal

makespan for E ′′. Therefore the maximum value of
∣∣t∗p − t∗p∣∣ over {p ∈ Rn

+ : ‖p− p‖∞ ≤ δ}
is attained by the set of processing times p+ δ.e. This contradicts the assumption that the
claim does not hold.

Case 2: t∗p − t∗p > 0

Consider the problem instance E ′ of the problem FM with m machines and the set of
processing times p′, and the problem instance E ′′′ of the problem FM with m machines
and the set of processing times (max(p1− δ, 0),max(p2− δ, 0), . . . ,max(pn− δ, 0)). Assign
every job in E ′′′ to the same slot to which the corresponding job is assigned in the optimal
solution to E ′. Clearly, for flowtime-optimal schedules, the makespan of this solution to
E ′′′ is less than or equal to the optimal makespan of E ′, and the makespan of this solution
to E ′′′ is greater than or equal to the optimal makespan for E ′′′. Therefore t∗p > t∗p ≥
t∗E′′′ , where t∗E′′′ denotes the optimal makespan for E ′′′. Therefore the maximum value
of
∣∣t∗p − t∗p∣∣ over {p ∈ Rn

+ : ‖p− p‖∞ ≤ δ} is attained by the set of processing times
(max(p1 − δ, 0),max(p2 − δ, 0), . . . ,max(pn − δ, 0)). This contradicts the assumption that
the claim does not hold.

Corollary 5.2. The maximum value of
∣∣t∗p − t∗p∣∣ over {p ∈ Rn

+ : ‖p− p‖∞ ≤ δ} is less
than or equal to k.δ.

Proof. This follows from Claim 5.3 and the fact that every machine has either k jobs or
k − 1 jobs assigned to it.
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Claim 5.4. Let tS∗ denote the optimal objective value for any instance of the problem FM.
Then tS∗ is a continuous function at every point in Rn

+.

Proof. Let p ∈ Rn
+ denote the set of processing times for an instance E of the problem

FM. Let t∗p denote the value of tS∗ for E. Let k denote the number of ranks in E. Pick
any value of ε > 0. Set δ = ε/k. Let p ∈ Rn

+ denote the set of processing times for an
instance E of the problem FM, where ‖p− p‖∞ < δ. Let t∗p denote the value of tS∗ for E.

From Corollary 5.2, it follows that
∣∣t∗p − t∗p∣∣ < k.δ = ε. This proves that tS∗ is a continuous

function.

The above claim is used in the proof of the following lemma. The lemma shows that,
to prove or disprove a conjectured makespan ratio for the algorithms listed in Chapter 2 of
this thesis, we can focus on problem instances in which all processing times are integers.
This lemma will be needed to prove some of the results in this thesis.

Let k denote the number of ranks in an instance of problem FM, where FM refers to
the problem of selecting the schedule with the smallest makespan among the class of all
flowtime-optimal schedules.

An instance of the FM problem is defined by an integer m denoting the number of
machines and a set of processing times (p1, p2, . . . , pn). Therefore, the domain of FM is a
subset of Z+ × Rn

+. Let FM(m,n) denote the FM problem with a fixed value of m and
a fixed value of n. An instance of FM(m,n) is defined by (m,n; p1, p2, . . . , pn). It follows
that the domain of FM(m,n) is a subset of Z2

+ × Rn
+.

Lemma 5.3. For every algorithm ALG
′

for problem FM(m,n) that produces a feasible
solution SALG′ whose makespan tSALG′

: G→ R+ is a continuous function at every point in
G and for a conjecture which states that the makespan is no greater than f(m).tS∗, where
f : Z+ → R+, the following must hold: If there exists a counterexample of Type A to a
conjectured tSALG′

/tS∗ ratio, then there exists a counterexample of Type I.

Proof. Suppose there exists a counterexample to the conjectured ratio tSALG′
/tS∗ . For a

contradiction, suppose that every such counterexample has one or more irrational process-
ing times. Pick such a counterexample, call it EI. Let m denote the number of machines
and let k denote the number of ranks in EI. Then, we may assume that the number of jobs
is n = m.k.

Then, tSALG′
associated with EI is greater than the conjectured upper bound on tSALG′

associated with EI and there exists ε > 0 such that

tSALG′
> f(m)tS∗ + ε.
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Let p denote the vector of job processing times for EI. Let tSALG′
denote the makespan

associated with the schedule for EI generated by ALG’. Let tS∗ denote the makespan of
the optimal schedule associated with EI.

For p ∈ Qn
+ and m machines, let tSALG′

denote the makespan of the schedule generated
by ALG’ and let tS∗ denote the makespan of the optimal schedule for this instance. Since
tSALG′

is continuous, there exists δ1 > 0 such that for every p ∈ Qn
+ with ‖p− p‖ < δ1 we

have

∣∣∣tSALG′
− tSALG′

∣∣∣ < ε

2
. (5.10)

Since tS∗ is continuous by Claim 5.4, there exists δ2 > 0 such that for every p ∈ Qn
+ with

‖p− p‖ < δ2, we have

|tS∗ − tS∗| <
ε

2f(m)
(5.11)

Let δ0 := min{δ1, δ2} > 0. By (5.10) and (5.11), for every p with ‖p− p‖ < δ0, we have
tSALG′

− f(m)tS∗ = (tSALG′
− f(m)tS∗) + (tSALG′

− tSALG′
) + (f(m)tS∗ − f(m)tS∗)

> ε− ε
2
− ε

2
from (5.10) and (5.11)

= 0.

Thus, we obtain a counterexample to the conjecture with rational processing times. Each
processing time in this counterexample can be expressed as pj = uj/vj, where uj, vj ∈ Z+.
Construct a new problem instance EI with integer processing times by multiplying each
processing time by

∏n
j=1 vj. Multiplying processing times by a constant does not change

makespan ratios. Therefore, EI is also a counterexample to the conjecture.

Corollary 5.3. For the FM problem and the LD algorithm, the following must hold: If
there exists a counterexample EI to a conjectured tSLD

/tS∗ ratio, then there exists a coun-
terexample EN with integer processing times.

Proof. We show that the FM problem and the LD algorithm satisfy the conditions listed
in Lemma 5.3. The LD algorithm maps values in Rn

+ onto values in R+. We need to show
that the makespan tSLD

of the LD solution is a continuous function at every point in Rn
+ and

that the optimal makespan tS∗ is a continuous function at every point in Rn
+. Let tSLD

(p)
denote the makespan of the LD solution at p ∈ Rn

+. tSLD
is continuous at p ∈ Rn

+ if for every
ε > 0, there exists a δ > 0 such that for all p ∈ Rn

+, ‖p− p‖ < δ ⇒ |tSLD
(p)− tSLD

(p)| < ε.
Let ε > 0 be given. Let p ∈ Rn

+ be arbitrary. Choose δ := ε/k, where k denotes the
number of ranks. Let p ≡ (p(1), p(2), . . . , p(n)). Select p such that ‖p − p‖∞ < δ. Let
p′ ≡ (p′(1), p′(2), . . . , p′(n)) and p′′ ≡ (p′′(1), p′′(2), . . . , p′′(n)), where p′(j) = p(j) + δ
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for j = 1, 2, . . . , n and p′′(j) = max(p(j) − δ, 0) for j = 1, 2, . . . , n. The following four
inequalities follow from Claim 5.1.

tSLD
(p′)− tSLD

(p) > 0 (5.12)

tSLD
(p′′)− tSLD

(p) ≤ 0 (5.13)

tSLD
(p)− tSLD

(p′) = −kδ (5.14)

tSLD
(p)− tSLD

(p′′) ≤ kδ (5.15)

From (5.12) and (5.14),

tSLD
(p)− tSLD

(p) ≥ −kδ (5.16)

From (5.13) and (5.15),

tSLD
(p)− tSLD

(p) ≤ kδ (5.17)

From (5.16) and (5.17),

|tSLD
(p)− tSLD

(p)| ≤ kδ

ε was selected to be greater than kδ. It follows that

|tSLD
(p)− tSLD

(p)| ≤ ε.

From Claim 5.4, it follows that the optimal makespan tS∗ is a continuous function at every
point in Rn

+. This completes the proof of the corollary.

Let us define an LD0 schedule to be a flowtime-optimal schedule in which the second
rank is assigned largest-first. An LD0 schedule is constructed using the following four-step
process: (i) Jobs in the first rank are assigned arbitrarily to machines. (ii) Jobs in the
second rank are assigned largest-first. Thus the jobs are assigned in nonincreasing order
of processing times to the earliest available machine. (iii) Jobs in each remaining rank are
assigned arbitrarily to machines. (iv) The jobs assigned to each machine are reversed to
make the schedule flowtime-optimal. A worst-case LD0 schedule for a given set of tasks
is an LD0 schedule with the largest length among all LD0 schedules for that set of tasks.
A problem instance with a worst-case tSLD0

/tS∗ ratio is one with the largest tSLD0
/tS∗ ratio

among all flowtime-optimal schedules. Let us define the LD0worst schedule to be the LD0

schedule with the largest makespan ratio among all LD0 schedules for a given problem
instance. Clearly, an LD0worst schedule is constructed by assigning the second rank largest-
first and, if machine i′ has the largest completion time after rank 2, assigning a job with
processing time λr to machine i′ for r = 3, . . . , k. From this definition, it follows that the
worst-case makespan ratio of the LD0worst algorithm is equal to the worst-case makespan
ratio of the LD0 algorithm. Let tSLD0worst

denote the makespan of the LD0worst schedule.
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Corollary 5.4. For the FM problem and the LD0worst algorithm, the following must hold:
If there exists a counterexample EI to a conjectured tSLD0worst

/tS∗ ratio, then there exists a

counterexample EN with integer processing times.

Proof. The proof of this corollary is essentially identical to the proof of the previous corol-
lary.

The following proposition is a generalization of the previous lemma to a larger class
of constrained minimization problems. This class consists of all constrained minimization
problems that satisfy the following conditions: (i) Every member of this class is a con-
strained minimization problem P with a vector of q positive real-valued parameters k. (ii)
For every member of this class, a vector p of n real-valued variables defines an instance PI
of the problem P. (iii) The optimal objective function value g(S∗) is continuous for every
member of this class.

Proposition 5.1. Consider any constrained minimization problem P with a vector of q
positive real-valued parameters k. Let a vector p of n real-valued variables define an instance
PI of the problem P. For any algorithm ALG for problem P that produces a feasible solution
SALG whose objective function value g(SALG) : G → R+ is a continuous function at every
point in G, where G ⊆ Rn

+, and for a conjecture that states that the objective function value

is no greater than f(k).g(S∗), where f : Rq
+ → R+ and g(S∗) denotes the optimal objective

function value, and where g(S∗) is continuous and g(S∗) and g(SALG) are homogeneous
of the same degree, the following must hold: If there exists a counterexample EI to a
conjectured g(SALG)

g(S∗) ratio, then there exists a counterexample EN with integer processing
times.

Proof. Assume that there exists a counterexample EI with one or more of the n variables
having values that are irrational numbers. Then, g(SALG) associated with EI is greater
than the conjectured upper bound on g(SALG) associated with EI and there exists ε > 0
such that

g(SALG) > f(k).g(S∗) + ε.

Let p denote the vector of variables for EI. Let g(SALG) denote the value of the objective
function associated with the solution for EI generated by ALG. Let g(S∗) denote the value
of the objective function for the optimal solution to EI. Let ER be a problem instance with
all n variables having values that are rational numbers. Let p denote the vector of variables
for ER. Let g(SALG) denote the value of the objective function associated with the solution
for ER generated by ALG. Let g(S∗) denote the value of the objective function for the
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optimal solution to ER. Since g(SALG) is continuous, we may pick δ1 > 0 and p ∈ Qn
+ such

that ‖p− p‖ < δ1. This implies that∣∣g(SALG)− g(SALG)
∣∣ < ε

2
. (5.18)

Since g(S∗) is continuous, we may choose δ2 > 0 such that ‖p− p‖ < δ2

⇒
∣∣g(S∗)− g(S∗)

∣∣ < ε

2f(k)
. (5.19)

Let δ0 := min{δ1, δ2}. Then ‖p− p‖ < δ0 implies that

g(SALG)− f(k)g(S∗) =

(g(SALG)− f(k)g(S∗)) + (g(SALG)− g(SALG)) + (f(k)g(S∗)− f(k)g(S∗))

> ε− ε

2
− ε

2
(from (5.18) and (5.19))

= 0.

ER is thus a counterexample to the conjecture with rational processing times. Each pro-
cessing time in ER can be expressed as pj = uj/vj, where uj, vj ∈ Z+. Construct a new
problem instance EI with integer processing times by multiplying each processing time in
ER by

∏n
j=1 vj. Since g(SALG) and g(S∗) are homogeneous functions of the data with the

same degree of homogeneity, multiplying processing times by a constant does not change
the ratio of objective function values. Therefore, EI is also a counterexample to the con-
jecture.

The following lemmas are useful because they make it possible to subsequently restrict
our attention to rectangular schedules for an examination of the worst-case makespan ratio
for the LD0 and LD algorithms.

Proposition 5.2. Increasing the processing times of one or more tasks in the first rank of
a LD0worst schedule, while leaving the remaining processing times unchanged, will result in
a LD0worst schedule with the same or higher length.

Proof. Let a(2) denote the profile of the LD0worst schedule after rank 2. a1(2) is the length
of the set of tasks upon completion of the second rank in an LD0worst schedule. An LD0worst

schedule is obtained by assigning the tasks with the largest processing times in ranks 3
through k, where k is the last rank, to a machine with completion time a1(2) after rank 2.
So, tSLD0worst

= a1(2)+
∑k

i=3 λj, with a1(2) = maxi=1,...,m(τi,1+τm−i+1,2), where τi,j refers to

the ith largest processing time in rank j. Leaving all τi,2 values unchanged and increasing
one or more τi,1 values can only increase the value of a1(2) and thus of tSLD0worst

.
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A problem instance with a worst-case tSLD0worst
/tS∗ ratio is one with the largest tSLD0worst

/tS∗

ratio among all flowtime-optimal schedules.

Lemma 5.4. For any problem instance PA for the FM problem, there exists a problem
instance PB with a rectangular optimal schedule and a tSLD0worst

/tS∗ ratio that is at least

the makespan ratio for PA.

Proof. Consider the optimal schedule for PA. Construct a new problem instance as follows:
For every job in the first rank that is performed on a machine for which the completion time
after rank k in the optimal schedule is less than the makespan of the optimal schedule,
increase the processing time so that the completion time after rank k in the optimal
schedule is equal to the makespan. Clearly, the optimal schedule for the new problem
instance is a rectangular schedule with a makespan equal to the makespan of PA. Also,
the new problem instance continues to be a flowtime-optimal problem instance because
the increase in processing times does not lead to a violation of the rank restrictions. From
Proposition 5.2, the makespan of the LD0worst schedule for the new problem instance is at
least the makespan of the LD0worst schedule for the original problem instance. Therefore,
the new problem instance has a tSLD0worst

/tS∗ ratio that is at least the makespan ratio for

PA.

Corollary 5.5. There always exists a problem instance with a worst-case tSLD0worst
/tS∗

ratio and a rectangular optimal schedule.

Lemma 5.5. There exists a problem instance with a rectangular optimal schedule and a
worst-case tSLD0worst

/tS∗ ratio in which the following hold:

(i) All the tasks in the second rank have a processing time equal to λ3.
(ii) There exist one or more tasks in the first rank with a processing time equal to λ3.
Thus, µ1 = λ2 = µ2 = λ3.

Proof. By Corollary 5.4, there always exists a problem instance with a rectangular opti-
mal schedule and a worst-case tSLD0worst

/tS∗ ratio. Let S∗ denote this rectangular optimal

schedule. Let the machines be labelled based on the completion times after rank 2 in the
optimal schedule S∗. Thus the machine with the largest completion time after rank 2 in
S∗ is labelled machine 1, the machine with the second-largest completion time after rank
2 in S∗ is labelled machine 2, and the machine with the qth largest processing time (for
q = 1, 2, ...,m) is labelled machine q. Note that ai(2) denotes the ith largest element of
the S∗ profile after rank 2. This labelling ensures that machine i (for i = 1, 2, ...,m) has
completion time ai(2) after rank 2.

For machine i = 1, 2, · · · ,m : Set the processing time of the task in the second rank
equal to λ3 and the processing time of the task in the first rank equal to ai(2)− λ3. This
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change will either increase or leave unchanged the processing time of each job in rank 1.
Therefore, it will not violate the rank restriction. Note that ai(2) remains unchanged and
therefore the value of tS∗ remains unchanged.

For the LD0worst schedule, the set of changes in the task set described above is equivalent
to: (i) Reassigning the tasks in rank 2 so that each task in rank 2 is placed after the same
task in rank 1 as it was in the S∗ schedule. (ii) After completing step (i): For machine
i = 1, 2, · · · ,m (labelled as indicated above): Set the processing time of the task in the
second rank equal to λ3 and the processing time of the task in the first rank equal to
ai(2)− λ3.

Note that the resulting schedule is an LD0worst schedule. An LD0worst schedule is optimal
for a two-rank system. The rearrangement of the tasks in step (i) can therefore only increase
the value of ai(2). tSLD0worst

= ai(2) +
∑k

j=3 λj. Therefore, the value of tSLD0worst
can only

increase as a result of the rearrangement in step (i). The subsequent changes in step (ii)
do not cause any further change in ai(2) and therefore do not cause any further change in
tSLD0worst

.

Thus the value of tSLD0worst
can only increase as a result of steps (i) and (ii) while the

value of tS∗ remains unchanged. Therefore, the ratio tSLD0worst
/tS∗ can only increase.

After completing steps (i) and (ii), if am(1) > λ3, for i = 1, 2, · · · ,m : set ai(1) equal to
ai(1)− (am(1)− λ3). By Claim 5.1, this will reduce tSLD0worst

and tS∗ by the same amount

and will therefore increase the ratio tSLD0worst
/tS∗ . This will result in a value of µ1 equal to

λ3.

The following lemma shows that tSLD0worst
is a continuous function.

Lemma 5.6. tSLD0worst
is a continuous function at every point in its domain.

Proof. Let τi,h refers to the ith largest processing time in rank h.
tSLD0worst

= maxi=1,...,m [τi,1 + τm−i,2] +
∑

r=3,...,k λr. It is evident that tSLD0worst
is a contin-

uous function at every point in its domain.

Coffman and Sethi (1976) proved that the ratio of the makespan of any schedule in
which the rank containing the largest processing times was assigned largest-first to the
makespan of the optimal schedule could not exceed (4m − 3)/(3m − 2), and this bound
could be achieved for m = 2 and for m = 3. The following theorem provides a similar
bound for LD0worst schedules. It shows that the worst-case ratio for LD0worst schedules
cannot exceed 4/3. While Coffman and Sethi suggest that their (4m− 3)/(3m− 2) bound
is unlikely to be achieved for m > 3, this bound can be achieved for all m. The proof
below uses an approach that is different from the approach used by Coffman and Sethi.
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Theorem 5.1. 1 ≤ tSLD0worst
/tS∗ ≤ 4/3, and the upper bound is achieved for all m ≥ 3.

Proof. Consider a problem instance PI that satisfies the conditions established in Lemma 5.5.
All the tasks in the second rank of a flowtime-optimal schedule for this problem instance
have a processing time equal to λ3. Let tS denote the makespan of S, the LD0worst schedule
for this problem instance. Let tS∗ denote the makespan of S∗, the optimal schedule for this
problem instance.

Now, construct a new problem instance PI ′ by removing the jobs in the second rank
from PI. Consider the schedules obtained by removing the jobs in the second rank from
S and S∗. Coffman and Sethi (1976) show that, for any problem instance with a flowtime-
optimal schedule, the makespan ratio is less than or equal to 3/2. It follows that

(tSLD0worst
− λ3)/(tS∗ − λ3) ≤ 3/2.

⇒ tSLD0worst
/tS∗ ≤ 3/2− λ3/2tS∗

Note that S∗ is rectangular. Therefore, the machine with processing time µ1 in rank 1 has
a completion time at the end of rank k that is equal to the length of S∗. An upper bound
on tS∗ can be obtained by adding the largest processing time in ranks 2 through k to µ1.
Therefore,

tS∗ ≤ µ1 +
∑k

j=2 λj

⇒ tS∗ ≤ 3λ3 +
∑k

j=4 λj.

This conversion can be done by removing the jobs in the second rank. It follows that

(tSLD0worst
− λ3)/(tS∗ − λ3) ≤ 3/2.

⇒ tSLD0worst
/tS∗ ≤ 3/2− λ3/2tS∗ .

From Lemma 5.3 and Lemma 5.6, it follows that, if there exists a counterexample to
the 4/3 bound, there exists a counterexample in which all processing times are integers.
Also note that, if a counterexample to the 4/3 bound exists, a problem instance with a
worst-case tSLD0worst

/tS∗ ratio would be a counterexample. Let us assume that the 4/3 con-

jecture is false. For a problem instance with a worst-case tSLD0worst
/tS∗ ratio and integer

processing times,

λi ≤ λ3 − i+ 3 for 4 ≤ i ≤ k.

⇒
k∑
j=4

λj ≤ (k − 3)(2λ3 − k + 2)/2.

⇒ tS∗ ≤ kλ3 − 1
2
(k − 5

2
)2 + 1

8
.
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Assume that λ3 is fixed and is set equal to a positive integer value. (Note that this is
only a matter of scaling up or scaling down all processing times.) For k ≥ 3, and assuming
integer processing times, λ3 must be greater than or equal to k− 2. The right-hand side of
the above inequality has a partial derivative with respect to k that is equal to λ3 − k + 5

2
.

It follows that, for 3 ≤ k ≤ λ3 + 2, the right-hand side has a positive partial derivative
with respect to k. For k = 3, the right-hand side is equal to 3λ3. Therefore, for k ≥ 3, the
right-hand side is greater than or equal to 3λ3. It follows that

tSLD0worst
/tS∗ ≤ 3/2− (1/2)(1/3).

⇒ tSLD0worst
/tS∗ ≤ 4/3.

However, this contradicts the assumption that there exists a counterexample to the 4/3
bound. It follows that no such counterexample exists and the bound is valid.

For any value of m ≥ 2, the tSLD0worst
/tS∗ ratio equals the upper bound for the following

three-rank system:

pi = 2 for 1 ≤ i ≤ m− 1,

pi = 1 for m ≤ i ≤ 2m+ 1,

pi = 0 for 2m+ 2 ≤ i ≤ 3m.

This completes the proof of the lemma.

Corollary 5.6. 1 ≤ tSLD0
/tS∗ ≤ 4/3, and the upper bound is achieved for all m ≥ 3.

Proof. This follows from the previous theorem and the definition of an LD0worst schedule.

The results obtained above for the simple LD0 algorithm provided insight into the
approaches that could be used to prove bounds for other algorithms for problem FM. The
rest of this chapter will focus the LD algorithm proposed by Coffman and Sethi (1976a).

Lemma 5.7. An increase in one or more processing times of jobs in rank r for 1 ≤ r ≤ k−1
(with no change in the remaining processing times, and subject to the rank constraint) does
not result in a reduction in any element of the profile b(`) of an LD schedule after rank `
for r ≤ ` ≤ k.

Proof. The lemma will be proved by induction on `.

Let us assume that the lemma holds for `′ ranks, where `′ ∈ {r, r + 1, . . . , s}.
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Let τi,h refers to the ith largest processing time in rank h.

The induction assumption states that an increase in processing times in rank r does
not cause a reduction in bm−i+1(`

′) for i = 1, 2, . . . ,m. Note that the increase in processing
times in rank r leaves τi,`′+1 unchanged for i = 1, 2, . . . ,m.

The profile b(`′+ 1) after rank `′+ 1 consists of the following m elements: bm−i+1(`
′) +

τi,`′+1 for i = 1, 2, . . . ,m.

It follows that none of the elements of the profile b(`′ + 1) gets reduced as a re-
sult of the increase in processing times in rank r. Thus the theorem holds for rank
`′ + 1, for `′ ∈ {r, r + 1, . . . , s}. It follows that the theorem holds for rank `′ for `′ ∈
{r, r + 1, . . . , s, s+ 1} .

The base case follows from the fact that the result holds trivially for `′ = r.

One important fact follows from the above theorem. An optimal flowtime-optimal
schedule that is not rectangular can be made rectangular by increasing the lengths of all
tasks in the first rank that are performed on machines that have a completion time after
the last rank that is strictly less than the makespan. This result is stated and proved
below.

Lemma 5.8. There always exists a problem instance with a worst-case tSLD
/tS∗ ratio that

has the following property: There exists a rectangular optimal schedule for this set of jobs.
(Coffman and Sethi, 1976a)

Proof. Consider the optimal schedule for any problem instance. For every job in the first
rank that is performed on a machine for which the completion time after rank k in the
optimal schedule is less than the makespan of the optimal schedule, increase the processing
time so that the completion time after rank k in the optimal schedule is equal to the
makespan. Clearly, the increase in processing times does not lead to a violation of the rank
restriction for flowtime-optimal schedules. Also, the increase in processing times results in
a rectangular optimal schedule. From Lemma 5.7, the increase in processing times does
not affect the makespan of the optimal schedule but may increase the makespan of the LD
schedule. Therefore, it will either increase or leave unchanged the tSLD

/tS∗ ratio.

Note that, if the Coffman-Sethi conjecture is false, a problem instance with a worst-case
tSLD

/tS∗ ratio would be a counterexample to the conjecture. This leads to the following
corollary.

Corollary 5.7. If the Coffman-Sethi conjecture is false, then there exists a minimal coun-
terexample to the conjecture of Type R.
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This corollary states that, if the Coffman-Sethi conjecture is false, there always exists
a minimal counterexample to the conjecture with a rectangular optimal schedule.

Rectangular worst-case schedules are interesting for the following reasons. They formed
the basis of the derivation of the worst-case LI bound by Coffman and Sethi. Therefore
they hold out the promise of being able to extend the approach used for an LI bound to
study LD bounds. Further, the problem of finding the rectangular worst-case schedule is
related to the partition problem. In the classical partition problem, the objective is to
partition a set of integers into two groups, each of which has the same sum.

Rectangular schedules contain more information than non-rectangular schedules be-
cause they impose a restriction on the sets of processing times in each rank. The restric-
tion is the following: If there are m machines and k ranks, the union of the k sets, each
consisting of m processing times, can be partitioned into m subsets, each consisting of k
processing times with the same sum. This restricts the set of potential worst cases that
must be examined.

The following lemma shows that, if the Coffman-Sethi conjecture is false, every minimal
counterexample to the conjecture of Type A or Type I has only two processing times in
the last rank.

Lemma 5.9. If the Coffman-Sethi conjecture is false, then every minimal counterexample
of Type A or Type I with k ranks satisfies the following:
(a) The processing time of jobs in the last rank are equal to either λk or µk.
(b) µk = 0.
(c) For 1 ≤ r ≤ k − 1, µr = λr+1. (Huang and Tunçel, 2004)

Proof. If the Coffman-Sethi conjecture is false, there exists a minimal counterexample of
Type A. We begin by proving the lemma for minimal counterexamples of Type A. Part (a)
can be readily proved by considering a minimal counterexample of Type A that does not
satisfy this condition. All jobs in the last rank cannot have the same positive processing
time; if they do have the same processing time, the last rank could be removed to obtain
a problem instance with a larger tSLD

/tS∗ ratio. If j is the job (with processing time pj)
that finishes last in the LD schedule, we reduce the processing time of every job in the
last rank with processing time greater than pj to pj, and we reduce the processing time
of every job in the last rank with processing time less than pj to µk. This has no impact
on the length of the LD schedule and cannot result in an increase in the length of the
optimal schedule. Thus the makespan ratio either stays the same or increases. The result-
ing problem instance is smaller than the original problem instance. This contradicts the
assumption that the original problem instance was a minimal counterexample. It follows
that the minimal counterexample satisfies part (a) of the lemma. To prove part (b), we
assume that there exists a minimal counterexample of Type A with µk greater than 0. We
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subtract µk from every processing time in rank k. This results in both tSLD
and tS∗ being

reduced by muk, thus resulting in an increase in the tSLD
/tS∗ ratio. The resulting problem

instance is smaller than the original problem instance. This contradicts the assumption
that the original problem instance was a minimal counterexample. It follows that the min-
imal counterexample satisfies part (b) of the lemma. To prove part (c)), we assume that
there exists a minimal counterexample of Type A in which µh > λh+1 for some value of h
that satisfies 1 ≤ h ≤ k−1. We subtract µh−λh+1 from the processing time of every job in
rank h. This results in both tSLD

and tS∗ being reduced by µh − λh+1, thus resulting in an
increase in the tSLD

/tS∗ ratio. The resulting problem instance is smaller than the original
problem instance. This contradicts the assumption that the original problem instance was
a minimal counterexample. It follows that the minimal counterexample satisfies part (c)
of the lemma.
From Corollary 5.3, if the Coffman-Sethi conjecture is false, there exists a minimal coun-
terexample of Type I. The above proof also applies to minimal counterexamples of Type
I. This follows from the fact that, for a problem instance of Type I, subtracting an integer
from one or more processing times results in another problem instance of Type I.
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Chapter 6

Analysis of the 2-machine, 3-machine,
m-machine (for general m), and
3-machine 3-rank cases, and a new
proof technique

In this chapter, the approach used is to examine the validity of the Coffman-Sethi conjecture
for various values of m, the number of machines. It is shown that, if the Coffman-Sethi
conjecture is false, a minimal counterexample to the conjecture has at least three machines.
Two approaches are used for the two-machine case. The first approach examines ranks in
increasing order, starting with rank 1. The second approach examines ranks in decreasing
order, starting with rank k. The second approach starts with the ranks contaning the
largest jobs. It appears to be more effective and leads to a proof of the conjecture for the
m = 2 case. For both the 2-machine case and the 3-machine, 3-rank case, an approach
(obtained from Huang and Tunçel (2004)) inspired by the notion of LP duality is used. This
approach treats the parameters of problem FM (job processing times) as variables. The
problem of determining the values of the processing times that result in the LD makespan
being maximised for a given value of the optimal makespan is formulated as a set of linear
programs. (Here, Lemma 5.9 is utilized.) The solution to each linear program is checked
to determine if it violates the conjecture. It is shown that the Coffman-Sethi conjecture
holds for the m = 2 case and the m = 3, k = 3 case.

6.1 Analysis of the two-machine case

We now consider a situation in which the number of machines m is equal to 2.

44



If µj > λj+1 for some value of j that satisfies 1 ≤ j ≤ k − 1, then µj − λj+1 may
be subtracted from every processing time in rank j to obtain a problem instance with a
larger ratio of the LD makespan to the optimal makespan. It follows that, in a worst-case
problem instance, µj = λj+1 for j = 1, 2, · · · , k − 1.

6.1.1 First approach: Ranks examined in increasing order, start-
ing with rank 1

Properties are developed for a minimal counterexample of Type R i.e. a minimal coun-
terexample with a rectangular optimal schedule.

The completion times after rank 1 are λ1 and µ1. The completion times after rank 2 in
the LD schedule are λ1 + µ2 and µ1 + λ2. Thus, the completion times after rank 2 in the
LD schedule are λ1 + λ3 and 2λ2. The completion times after rank 3 are the following:

If λ1 + λ3 ≤ 2λ2, the completion times after rank 3 are λ1 + 2λ3 and 2λ2 + µ3. (6.1)

If λ1 + λ3 ≥ 2λ2, the completion times after rank 3 are λ1 + λ3 + µ3 and 2λ2 + λ3. (6.2)

The first if condition listed above is labelled Condition 6.1 and the second if condition
is labelled Condition 6.2. The second condition can be rewritten as: Condition 6.2: If
λ1−λ2 ≥ λ2−λ3, the completion times after rank 3 are λ1+λ3+λ4 and 2λ2+λ3. If Condition
6.2 holds, the completion times after rank 4 are the following: If λ1+λ3+λ4 ≤ 2λ2+λ3, the
completion times after rank 4 are λ1+λ3+2λ4 and 2λ2+λ3+λ5. If λ1+λ3+λ4 ≥ 2λ2+λ3,
the completion times after rank 4 are λ1 + λ3 + λ4 + λ5 and 2λ2 + λ3 + λ4.

The second condition for rank 4 can be rewritten as: Condition 6.2.2: If λ1 − λ2 ≥
λ2 − λ4, the completion times after rank 4 are λ1 + λ3 + λ4 + λ5 and 2λ2 + λ3 + λ4. Note
that Condition 6.2.2 holds only if Condition 6.2 holds. Extending this line of reasoning
further: Condition 6.2.(k − 2): If λ1 − λ2 ≥ λ2 − λk, the completion times after rank k
are λ1 + λ3 + λ4 + · · · + λk + µk and 2λ2 + λ3 + λ4 + · · · + λk. Note that Condition
6.2.(k − 2) holds only if Condition 6.2.r holds for 1 ≤ r ≤ k − 3. The makespan for an
optimal rectangular schedule (with k ranks) = λ1/2 + λ2 + λ3 + · · · + λk−1 + λk

We consider two subcases:
Case (i): λ1 ≥ 2λ2. In this case the ratio of the LD makespan to the optimal makespan is

λ1+λ3+λ4+··· +λk
λ1/2+λ2+λ3+··· +λk−1+λk

. For k > 3, deleting every rank r for which 3 ≤ r ≤ k − 1 clearly

results in an increase in this ratio. Therefore this ratio is maximized when k = 3. Therefore
the ratio = λ1+λ3

λ1/2+λ2+λ3
. For a three-rank problem, a rectangular optimal schedule implies

that one of the following holds: (a) λ1 = 2λ3, (b) λ1 + 2λ3 = 2λ2, or (c) λ1 = 2λ2. For
case (i), (a) and (b) cannot hold. Therefore λ1 = 2λ2. Therefore the ratio = 2λ2+λ3

2λ2+λ3
= 1.

It follows that, in case (i), the LD schedule always provides an optimal solution.
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Case (ii): λ1 < 2λ2. In this case the ratio of the LD makespan to the optimal makespan
is 2λ2+λ3+λ4+··· +λk

λ1/2+λ2+λ3+··· +λk
. Clearly, this ratio is maximized by setting k equal to 3. Therefore

the ratio = 2λ2+λ3
λ1/2+λ2+λ3

. For a three-rank problem, a rectangular optimal schedule implies

that one of the following holds: (a) λ1 = 2λ3, (b) λ1 + 2λ3 = 2λ2, or (c) λ1 = 2λ2. Note
that (b) and (c) cannot hold in case (ii). Therefore λ1 = 2λ3. The ratio = 2λ2+λ3

λ2+2λ3
=

2 − 3/((λ2/λ3) + 2). Note that λ1 = 2λ3 and λ1 + λ3 ≥ 2λ2. It follows that λ2/λ3 ≤ 3/2.
Clearly, the ratio is maximized by setting λ2/λ3 equal to 3/2. This gives a value of the
ratio equal to 2 − 6/7 = 8/7. This is equal to the value of the bound defined by the
Coffman-Sethi conjecture.

Similar analyses can be performed by branching out on other conditions (such as Con-
dition 1.1) and considering various cases.

6.1.2 Second approach: Ranks examined in decreasing order,
starting with rank k

We consider a minimal counterexample of Type A i.e. a minimal counterexample that is
not required to have either integer processing times or a rectangular optimal schedule.

Lemma 6.1. : If the Coffman-Sethi conjecture is false, for m = 2 there exists a minimal
counterexample of Type A with 3 ranks.

Proof. In rank k, one of the two machines has a processing time of λk and the second
machine has a processing time of 0. Clearly, the makespan is equal to the completion time
after rank k on the machine with a processing time of λk. (If this is not the case, the
last rank could be deleted to obtain a problem instance with the same or larger makespan
ratio.) It follows that the two completion times on the two machines after rank k − 1
in the LD schedule are ≥ tSLD

− λk. ⇒ tS∗ ≥ tSLD
− λk + λk/2. In a counterexample,

tSLD
/tS∗ > 8/7.⇒ tS∗ < 7λk/2. Clearly, µ` ≥ λk for ` < k. ⇒ tS∗ ≥ kλk. ⇒ k ≤ 3.

For k = 1 and k = 2, the LD schedule is optimal. It follows that, if the Coffman-Sethi
conjecture is false, there exists a minimal counterexample of Type A with 3 ranks.

The following analysis of the 2-machine case is based on an approach developed by
Huang and Tunçel (2004). Huang and Tunçel’s approach treats the parameters of problem
FM (job processing times) as variables. For a given value of the optimal makespan, the
problem of determining the values of the processing times that result in the LD makespan
being maximised is set up as a set of linear programs. Each possible relationship between
the processing times (subject to the rank restriction) results in a different linear program.
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The solution to each linear program is checked to determine if it violates the Coffman-
Sethi conjecture. Huang and Tunçel’s approach is used to show that the Coffman-Sethi
conjecture is not violated in the two-machine case.

Lemma 6.2. The Coffman-Sethi conjecture holds for m = 2.

Proof. Clearly, we only need to consider the k = 3 case.

There are two possible LD schedules:

LD schedule 1: Jobs with processing times λ1, λ3, 0 on machine 1, jobs with processing
times λ2, λ2, λ3 on machine 2.

LD schedule 2: Jobs with processing times λ1, λ3, λ3 on machine 1, jobs with processing
times λ2, λ2, 0 on machine 2.

For a makespan ratio > 1, the second and third ranks must not be the same in the LD
schedule and the optimal schedule. There is only one possible optimal schedule: Jobs with
processing times λ1, λ2, 0 on machine 1, jobs with processing times λ2, λ3, λ3 on machine 2.

In each of the following cases, we set the optimal makespan equal to 1. The makespan
ratio is then equal to the LD makespan. We seek to maximise the LD makespan in each
case.

There are 4 possible values for the LD makespan, resulting in the following 4 cases.

Case 1: tSLD
= λ1 +λ3. This will be true only if λ1 ≥ 2λ2 ⇒ λ1 ≥ 2λ3 ⇒ tS∗ = λ1 +λ2

This is clearly infeasible.

Case 2: tSLD
= 2λ2 + λ3. This will be true only if λ1 ≤ 2λ2 and λ1 + λ3 ≥ 2λ2

Case 2A: λ1 ≤ 2λ3. So, tS∗ = λ2 + 2λ3

Maximize 2λ2 + λ3

subject to

λ1 ≤ 2λ3

λ2 + 2λ3 = 1

2λ2 ≤ λ1 + λ3

This can be simplified as follows:

Maximize 2λ2 + λ3

subject to

2λ2 ≤ 3λ3

λ2 + 2λ3 = 1
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Solution: λ2 = 3/7, λ3 = 2/7, objective function = 8/7.

Case 2B: λ1 ≥ 2λ3 ⇒ tS∗ = λ1 + λ2

Maximize 2λ2 + λ3

subject to

λ1 + λ2 = 1

λ1 ≥ 2λ3

λ1 ≤ 2λ2

2λ2 ≤ λ1 + λ3

This can be simplified as follows:

Maximize 2λ2 + λ3

subject to

λ2 ≥ 1/3

λ2 + 2λ3 ≤ 1

3λ2 ≤ 1 + λ3

Solution: λ2 = 3/7, λ3 = 2/7, objective function = 8/7.

Case 3: tSLD
= λ1 + 2λ3. This will be true only if λ1 + λ3 ≤ 2λ2 and λ1 + 2λ3 ≥ 2λ2.

Case 3A: λ1 ≤ 2λ3 ⇒ tS∗ = λ2 + 2λ3

Maximize λ1 + 2λ3

subject to

λ1 + λ3 ≤ 2λ2

λ1 + 2λ3 ≥ 2λ2

λ2 + 2λ3 = 1

2λ1 ≤ 2λ3

The constraints can be replaced by the following equivalent set of constraints:

λ1 + 5λ3 ≤ 2

λ1 + 6λ3 ≥ 2

2λ1 ≤ 2λ3

Solution: λ1 = 4/7, λ2 = 3/7, λ3 = 2/7, objective function = 8/7.

Case 3B: λ1 ≥ 2λ3 ⇒ tS∗ = λ1 + λ2
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Maximize λ1 + 2λ3

subject to

λ1 + λ2 = 1

λ1 ≥ 2λ3

λ1 + λ3 ≤ 2λ2

λ1 + 2λ3 ≥ 2λ2

This can be simplified as follows:

Maximize λ1 + 2λ3

subject to

λ1 ≥ 2λ3

3λ1 + λ3 ≤ 2

3λ1 + 2λ3 ≥ 2

Solution: λ1 = 4/7, λ2 = 3/7, λ3 = 2/7, objective function = 8/7.

Case 4: tSLD
= 2λ2

This will be true only if 2λ2 ≥ λ1 + 2λ3

Case 4A: λ1 ≤ 2λ3 ⇒ tS∗ = λ2 + 2λ3.

Maximize 2λ2

subject to

λ1 ≤ 2λ3

λ2 + 2λ3 = 1

2λ2 ≥ λ1 + 2λ3

The constraints can be replaced by the following equivalent set of constraints:

λ1 + λ2 ≤ 1

−2λ1 + 5λ2 ≥ 1.

Solution: λ1 = 1/2, λ2 = 1/2, λ3 = 1/4, objective function = 1.

Case 4B: λ1 ≥ 2λ3 ⇒ tS∗ = λ1 + λ2

Maximize 2λ2

subject to

λ1 + λ2 = 1
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λ1 ≥ 2λ3

λ1 + 2λ3 ≤ 2λ2

This can be simplified as follows:

Maximize 2λ2

subject to

λ2 ≥ λ3

2λ3 + λ2 ≤ 1

−2λ3 + 3λ2 ≥ 1

Solution: λ1 = 1/2, λ2 = 1/2, λ3 = 1/4, objective function = 1.

The second approach appears to be more promising. For m > 2, we will use the second
approach.

6.2 Huang and Tunçel’s analysis of the 3-machine, 3-

rank case

The following analysis shows that the Coffman-Sethi conjecture holds for the m = 3, k = 3
case. It uses an approach similar to the approach used for the m = 2 case. In general, after
reducing the size of a minimal counterexample to a scheduling conjecture to a relatively
small size, it may be possible to use this approach to prove or disprove the conjecture.

From the previous lemma, µ1 = λ2 and µ2 = λ3 and µ3 = 0 and either α3 = λ3 or
α3 = µ3. For 1 ≤ r ≤ 3, let λr, αr and µr denote the processing times in rank r, where
λr ≥ αr ≥ µr.

The first two ranks of the LD schedule will look like λ1 λ3
α1 α2

λ2 λ2

 .

The third rank will fit depending on the length of processing times on the first two ranks.
We will use case analysis to cover all possible LD schedules.
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For all cases we will have λ1 ≥ α1 ≥ λ2 ≥ α2 ≥ λ3 > 0. This results in the following 5
constraints.

−λ1 +α1 ≤ 0 (1)
λ2 −α1 ≤ 0 (2)
−λ2 +α2 ≤ 0 (3)

λ3 −α2 ≤ 0 (4)
−λ3 ≤ 0 (5)

We begin by looking at the cases when α3 = λ3.

Consider the case λ1 + λ3 ≥ α1 + α2 ≥ 2λ2, then we have the constraints

−λ1 −λ3 +α1 α2 ≤ 0 (6)
2λ2 −α1 −α2 ≤ 0 (7)

Further, the LD schedule will look like λ1 λ3 0
α1 α2 λ3
λ2 λ2 λ3


tSLD

= max(λ1 + λ3, α1 + α2 + λ3).

If tS∗ = λ1 + λ3, then tS∗ is equal to a lower bound and
tSLD

tS∗
= 1. So we may assume

tS∗ = α1 + α2 + λ3.

Consider an optimal configuration for this problem. For the third job, the machine with
λ1 in the first rank must have a job in the third rank with processing time = 0, otherwise
that machine will have processing time ≥ λ1 + 2λ3 ≥ α1 + α2 + λ3 = tSLD

. Since the
machine with λ1 in the frst rank has a job with processing time = 0 in the last rank, the
machine with α1 in the first rank has a job with processing time = λ3 in the third rank.
In order for tS∗ to be less than tSLD

, the machine with α1 in the first rank must have a
job with processing time = λ3 in the second rank as well. Thus the optimal configuration
must be either  λ1 α2 0

α1 λ3 λ3
λ2 λ2 λ3

 or

 λ1 λ2 0
α1 λ3 λ3
λ2 α2 λ3


We consider the case where the former is the optimal configuration. Suppose tS∗ =

λ1 + α2 then we have λ1 + α2 ≥ α1 + 2λ3 and λ1 + α2 ≥ 2λ2 + λ3.

This leads to two more constraints

−λ1 +2λ3 +α1 −α2 ≤ 0, (8)
−λ1 +2λ2 +λ3 −α2 ≤ 0. (9)
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Because the processing times of the jobs can be scaled to any number we let tS∗ = 1.
We add the constraint

λ1 +α2 ≤ 1. (10)

We now consider the linear program

Max tSLD
= α1 + α2 + λ3

s.t. constraints(1), (2) ...(10)

The solution will give the worst case ratio of
tSLD

tS∗
for this particular case.

Solving the LP yields objective value = 1.125 = 9
8

when [λ1, λ2, λ3, α1, α2] = 1
8

[5, 3, 2,
4, 3].

We now suppose tS∗ = α1 + 2λ3. Constraints (8) - (10) are now replaced with

λ1 −2λ3 −α1 +α2 ≤ 0 (8)
2λ2 −λ3 −α1 ≤ 0 (9)

2λ3 +α1 ≤ 1. (10)

This new LP also yields objective value = 9
8

when [λ1, λ2, λ3, α1, α2] = 1
8

[5, 3, 2, 4, 3].

We now suppose tS∗ = 2λ2 + λ3. Constraints (8) - (10) are replaced with

λ1 −2λ2 −λ3 +α2 ≤ 0 (8)
−2λ2 +λ3 +α1 ≤ 0 (9)
2λ2 +λ3 ≤ 1. (10)

Again the new LP yields objective value = 9
8

when [λ1, λ2, λ3, α1, α2] = 1
8

[5, 3, 2, 4, 3].

We now consider the other possible configuration as the optimal configuration. We
consider each possibility for tS∗ by changing constraints (8)-(10) to accomodate each tS∗.
For example, when tS∗ = λ1 + λ2, constraints (8) - (10) are

−λ1 −λ2 +2λ3 +α1 ≤ 0 (8)
−λ1 +λ3 +α2 ≤ 0 (9)
λ1 +λ2 ≤ 1. (10)

For all three LPs for this configuration, the optimal objective value is 9
8

which is attained
when [λ1, λ2, λ3, α1, α2] = 1

8
[5, 3, 2, 4, 3].

We have exhausted this case and now move to the case where λ1 + λ3 ≥ 2λ2 ≥ α1 +α2

We change constraints (6) and (7) to reflect the inequalities related to this case.

We continue in this manner and set up and solve every possible case for the 3-machine,
3-rank problem. In every case, the makespan ratio is less than or equal to 13/11. This shows
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that the Coffman-Sethi conjecture holds for the 3-machine, 3-rank problem. Further, an
LD makespan of 13/11 is actually attained in some cases, thus showing that the Coffman-
Sethi conjecture provides a tight bound for the 3-machine, 3-rank problem. If the size of a
hypothesised minimal counterexample to the Coffman-Sethi conjecture can be shown the
satisfy m ≤ 3 and k ≤ 3, then the above analysis would show that the Coffman-Sethi
conjecture holds for all problem instances.

In the next chapter, we will continue to work on reducing the size of a hypothesised
minimal counterexample to the Coffman-Sethi conjecture.
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Chapter 7

Properties of a hypothesised minimal
counterexample to the Coffman-Sethi
conjecture

The results obtained in the previous chapter showed that a hypothesised minimal coun-
terexample to the Coffman-Sethi conjecture would have at least 3 machines, and that a
hypothesised counterexample could not have 3 machines and 3 ranks. The approach pro-
posed in Chapter 4 was applied in Chapter 6 to problem instances in which job processing
times were assumed to be real numbers. A large part of the analysis in Chapter 7 focuses
on problem instances in which job processing times are integers. The approach used is to
check if the algorithm and problem satisfy the conditions of Lemma 5.3. If the conditions
of Lemma 5.3 are satisfied, we may focus on problem instances with integer-valued param-
eters. As discussed in Chapter 4, we assume the existence of a minimal counterexample.
We then subtract an integer-valued vector from the vector of hypothesised parameters,
subject to the conditions that none of the constraints in the problem are violated. This
will produce a new problem instance. The original counterexample was a minimal coun-
terexample, therefore the new problem instance must satisfy the conjecture. This may
allow us to obtain a property, i.e., a constraint or several constraints that are satisfied
by the original counterexample. By repeating this process and by suitable choices of the
integer-valued vectors, we keep reducing the size of the minimal counterexample.

The first three lemmas in this chapter do not use the approach described above.
Lemmas 7.4 to 7.11 and Theorem 7.1 use the approach described above. The final result
obtained is that a hypothesised minimal counterexample to the Coffman-Sethi conjecture
has only a small number of ranks.

After each rank, there exists a set of one or more machines with a completion time equal
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to the largest completion time after that rank. Lemmas 7.1 to 7.3 characterize changes in
this set of machines.

Let Ih denote the set of machines with the largest completion time after rank h in the
LD schedule.

Lemma 7.1. If the Coffman-Sethi conjecture is false, every minimal counterexample of
Type A with k ranks must satisfy the following: ∃i′ ∈ Ik−1 such that i′ /∈ Ik.

Proof. Suppose that the Coffman-Sethi conjecture is false. Then there exists a minimal
counterexample to the Coffman-Sethi conjecture of Type A with k ranks. For a contradic-
tion to the lemma, assume that there exists an integer r that satisfies the following: r is
the smallest integer greater than or equal to 1 for which Ih ⊆ Ih+1 for r ≤ h ≤ k − 1. Let
i′ ∈ Ir. It follows that i′ ∈ Ih+1 for r ≤ h ≤ k−1. Let ai(k)LD denote the completion times
after rank k in the LD schedule, where ai(k)LD ≥ ai+1(k)LD for 1 ≤ i ≤ m− 1. Similarly,
let a∗i (k), 1 ≤ i ≤ m, denote the completion times after rank k in an optimal schedule S∗,
where a∗i (k) ≥ a∗i+1(k) for 1 ≤ i ≤ m− 1. Clearly,

tSLD
= a1(k)LD = a1(r)LD + µr+1 + µr+2 + . . .+ µk.

Also,

tS∗ = a∗1(k) ≥ a∗1(r) + µr+1 + µr+2 + . . .+ µk.

It follows that, for r < k,

a1(r)LD
a∗1(r)

≥ a1(k)LD − (µr+1 + µr+2 + . . .+ µk)

a∗1(k)− (µr+1 + µr+2 + . . .+ µk)
≥ tSLD

tS∗
.

So, an instance of FM constructed from the first rm jobs has at least as bad an approx-
imation ratio as

tSLD

tS∗
. This contradicts the assumption that the original counterexample

was a minimal counterexample. Therefore, no such r exists and the lemma is true.

Lemma 7.2. If the Coffman-Sethi conjecture is false, then:
(i) In a minimal counterexample of Type A with k ranks, if there exists s ∈ {2, 3, . . . , k−1}
such that Is−1 is not a subset of Is and Ih ⊆ Ih+1 for s ≤ h ≤ k − 2, then

s > k − 4m− 1

m− 1
− 1.

(ii) In a minimal counterexample of Type I with k ranks, if there exists s ∈ {2, 3, . . . , k−1}
such that Is−1 is not a subset of Is and Ih ⊆ Ih+1 for s ≤ h ≤ k − 2, then

(k − 1− s)
(

1− 1

2µk−1

)
+

(k − 1− s)2

2µk−1
<

(
4m− 1

m− 1

)
.

55



Proof. Suppose that the Coffman-Sethi conjecture is false. Then there exists a minimal
counterexample to the Coffman-Sethi conjecture of Type A with k ranks. Assume that
there exists an integer s that satisfies the following: Let s be the smallest integer greater
than or equal to 2 for which Is−1 is not a subset of Is and Ih is a subset of Ih+1 for
s ≤ h ≤ k − 2. If s = k − 1, the results clearly hold. Assume that s ≤ k − 2. We have

tSLD
= a1(s)LD + µs+1 + µs+2 + . . .+ µk−1 + (a1(k)LD − a1(k − 1)LD)

≤ a1(s)LD + µs+1 + µs+2 + . . .+ µk−1 + λk. (7.1)

Also,

tS∗ ≥ a∗1(s) + µs+1 + µs+2 + . . .+ µk. (7.2)

For a minimal counterexample,

a1(s)LD
a∗1(s)

<
tSLD

tS∗
. (7.3)

From (7.1), (7.2), and (7.3), we deduce that

tSLD

tS∗
<
µs+1 + µs+2 + . . .+ µk−1 + λk
µs+1 + µs+2 + . . .+ µk−1 + µk

. (7.4)

Also, for a counterexample to the conjecture,

tSLD

tS∗
>

5m− 2

4m− 1
. (7.5)

Note that, by Lemma 5.9,

λk = µk−1 and µk = 0. (7.6)

From (7.4), (7.5), and (7.6), we obtain

µk−1
µs+1 + µs+2 + . . .+ µk−1

>
m− 1

4m− 1
. (7.7)

The latter is equivalent to

(µs+1 + µs+2 + . . .+ µk−1)

µk−1
<

(4m− 1)

(m− 1)
. (7.8)

In a minimal counterexample to the Coffman-Sethi conjecture, every job in a rank
cannot have the same processing time. (If every job in a rank has the same processing

56



time, that rank can be removed to obtain a smaller counterexample.) It follows that

µs+1 > µs+2 > . . . > µk−1. (7.9)

From (7.8) and (7.9), we have

(k − 1− s) < (4m− 1)

(m− 1)
. (7.10)

Thus,

s > k − (4m− 1)

(m− 1)
− 1. (7.11)

If the processing times are integers, then we have

µh ≥ µh+1 + 1 for s ≤ h ≤ k − 2. (7.12)

From (7.8) and (7.12),

(k − 1− s)µk−1 + ( (k−1−s)
2

)(0 + (k − 2− s)(1))

µk−1
<

(4m− 1)

(m− 1)
.

Hence,

(k − 1− s)(1− 1

2µk−1
) +

((k − 1− s)2)
(2µk−1)

<
(4m− 1)

(m− 1)
.

From the above lemma, it follows that, if the Coffman-Sethi conjecture is false, a
minimal counterexample of Type A must satisfy the following:

For m = 2, s > k − 8. For m = 3, s ≥ k − 6. For m ≥ 4, s ≥ k − 5.

In the following lemma, s refers to the rank that satisfies the first condition established
in the previous lemma.
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Lemma 7.3. If the Coffman-Sethi conjecture is false:
In a minimal counterexample of Type A with k ranks,
if ∃s and ∃r that satisfy 2 ≤ r ≤ s− 1 and 2 ≤ s ≤ k − 1 such that:
(i)Is−1 is not a subset of Is, and
(ii)Ih ⊆ Ih+1 for s ≤ h ≤ k − 2, and
(iii)Ir−1 is not a subset of Ir, and
(iv)Ih ⊆ Ih+1 for r ≤ h ≤ s− 2
then

r > k − 2(4m− 1)

m− 1
− 2.

Proof. Suppose that the Coffman-Sethi conjecture is false. Then there exists a minimal
counterexample to the Coffman-Sethi conjecture of Type A with k ranks. Assume that
there exist integers s and r that satisfy the following: Let s be the smallest integer greater
than or equal to 2 for which Is−1 is not a subset of Is and Ih is a subset of Ih+1 for
s ≤ h ≤ k−2. Let r be the smallest integer greater than or equal to 2 for which Ir−1 is not
a subset of Ir and Ih is a subset of Ih+1 for r ≤ h ≤ s − 2. If r = s − 1, the claim clearly
holds. Assume that r ≤ s− 2.

tSLD

= a1(r)LD +
s+1∑

h=r+1

µh + (a1(s)LD − a1(s− 1)LD) +
k−1∑
h=s+1

µh + (a1(k)LD − a1(k − 1)LD)

≤ a1(r)LD +
s−1∑

h=r+1

µh + λs +
k−1∑
h=s+1

µh + λk. (7.13)

Also,

tS∗ ≥ a∗1(r) +
k∑

h=r+1

µh. (7.14)

For a minimal counterexample,

a1(r)LD
a∗1(r)

<
tSLD

tS∗
and

tSLD

tS∗
>

(5m− 2)

(4m− 1)
. (7.15)

From (7.13), (7.14), and (7.15),∑s−1
h=r+1 µh +

∑k−1
h=s+1 µh + (λs + λk)∑s−1

h=r+1 µh +
∑k−1

h=s+1 µh + (µs + µk)
>

(5m− 2)

(4m− 1)
. (7.16)

58



⇒ (λs + λk)− (µs + µk)∑s−1
h=r+1 µh +

∑k−1
h=s+1 µh + (µs + µk)

>
(m− 1)

(4m− 1)
. (7.17)

Note that

λs = µs−1 and λk = µk−1. (7.18)

Also,

µr+1 > µr+2 > . . . > µs−1 and µs > µs+1 > . . . > µk−1 > µk = 0. (7.19)

From (7.17), (7.18), and (7.19),

(s− 1− r)µs−1 + (k − s)µk−1
µs−1 + µk−1

<
4m− 1

m− 1
. (7.20)

There are two possibilities:

Case 1: s− 1− r ≤ k − s. In this case, r > s− 4m−1
m−1 − 1⇒ r > k − 2(4m−1)

m−1 − 2.

Case 2: s− 1− r > k − s. Therefore (s−1−r)+(k−s)
2

< 4m−1
m−1 ⇒ r > k − 2(4m−1)

m−1 − 1.

From the above lemma, it follows that, if the Coffman-Sethi conjecture is false, a
minimal counterexample of Type A must satisfy the following:

For m = 2, r > k − 16. For m = 3, r > k − 13. For m = 4, r > k − 12. For
m = 5, r ≥ k − 11. For m = 6, r ≥ k − 11. For m ≥ 7, r ≥ k − 10.

If tSLD
denotes the makespan of the LD schedule for a problem instance and tS∗ denotes

the optimal makespan for the same problem instance, we use the term makespan ratio to
refer to tSLD

/tS∗ .

Lemma 7.4. (i) If the Coffman-Sethi conjecture is false, then there exists a minimal
counterexample to the conjecture of Type IR.
(ii) If the Coffman-Sethi conjecture is false, any minimal counterexample to the conjecture
of Type A, I, R, or IR must satisfy the following: At least one of the jobs in the last rank
(rank k) has a processing time equal to 0.

Proof. Proof of part (i): From Corollary 5.7 and Corollary 5.3, it follows that, if the
Coffman-Sethi conjecture is false, there exists a minimal counterexample to the conjecture
of Type IR.
Proof of part (ii): For minimal counterexamples of Type A or Type I, part (ii) follows from
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Lemma 5.9. To prove part (ii) for minimal counterexamples of Type R, assume that there
exists such a minimal counterexample with every job in the last rank having a processing
time greater than 0. Subtract µk from every processing time in the last rank to obtain a
counterexample with a larger tSLD

/tS∗ ratio, thus contradicting the assumption that this
was a minimal counterexample. Note that subtracting µk from every processing time in the
last rank of a rectangular schedule results in a schedule that is still rectangular. To prove
part (ii) for minimal counterexamples of Type IR, assume that there exists such a minimal
counterexample with every job in the last rank having a processing time greater than
0. Subtract µk from every processing time in the last rank to obtain a counterexample
with a larger tSLD

/tS∗ ratio, thus contradicting the assumption that this was a minimal
counterexample. Note that subtracting µk from every processing time in the last rank leaves
a set of processing times that are integers. Also, subtracting µk from every processing time
in the last rank of a rectangular schedule results in a schedule that is still rectangular.

We define a minimal counterexample of Type IR1 as follows. If the Coffman-Sethi
conjecture is false, a minimal counterexample of Type IR1 is a minimal counterexample
of Type IR that has an LD schedule with the following property: Every machine with a
completion time after rank k equal to the makespan has a job with processing time = λk
in rank k, where k denotes the number of ranks.

Lemma 7.5. If the Coffman-Sethi conjecture is false, then there exists a minimal coun-
terexample to the conjecture of Type IR1, and every minimal counterexample of Type IR
is a minimal counterexample of Type IR1.

Proof. Consider a minimal counterexample P1 of Type IR. By Lemma 7.4, such a coun-
terexample exists if the Coffman-Sethi conjecture is false. Now apply the following two-step
process. Step 1: Construct a new problem instance P2 as follows. Subtract 1 time unit
from the processing time of every job in rank k − 1. Also subtract 1 time unit from the
processing time of every job in rank k that has a processing time of λk. Note that, for
a minimal counterexample, all processing times in rank k are not equal, therefore there
exist processing times in rank k that are less than λk. Leave these processing times un-
changed. Note that the assignment of jobs in each rank to machines in the LD schedule
remains unchanged. Clearly, if tS∗ denotes the optimal makespan of problem instance P1,
problem P2 has an optimal makespan that is equal to tS∗ − 1. Step 2: For every job in
rank 1 of the optimal schedule for P2 that is processed on a machine with a completion
time after rank k that is less than the makespan, increase the processing time so that the
completion time after rank k becomes equal to the makespan. This produces a problem
instance P2R of Type IR. P1 is a minimal counterexample of Type IR. It follows that P2R
has a smaller makespan ratio than P1. P2R will have an optimal makespan that is equal
to the optimal makespan of P2. Therefore P2R has an optimal makespan that is equal to
tS∗ − 1. It follows that the makespan of the LD schedule for problem instance P2R is less
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than or equal to tSLD
− 2, where tSLD

denotes the LD makespan of problem instance P1.
From Lemma 5.7, the LD makespan of P2R cannot be less than the LD makespan of P2.
Therefore the makespan of the LD schedule for problem instance P2 is less than or equal to
the LD makespan for P1 −2. This implies that, in the LD schedule for P1, every machine
with a completion time after rank k equal to the makespan has a job with processing time
λk in rank k. Therefore P1 is a minimal counterexample of Type IR1.

We define a problem instance, a counterexample and a minimal counterexample of Type
I1 as follows. A problem instance of Type I1 is a problem instance of Type I that has an
LD schedule with the following properties:
(i) It has only one machine i′ with a completion time after rank k equal to the makespan.
(ii) Machine i′ has a processing time equal to λk−1 in rank k − 1 and λk in rank k, where
k denotes the number of ranks.
If the Coffman-Sethi conjecture is false, a counterexample to the conjecture of Type I1 is
a counterexample of Type I that has an LD schedule with the following properties:
(i) It has only one machine i′ with a completion time after rank k equal to the makespan.
(ii) Machine i′ has a processing time equal to λk−1 in rank k − 1 and λk in rank k, where
k denotes the number of ranks.

A minimal counterexample of Type I1 is a counterexample of Type I1 for which there
does not exist a smaller counterexample of Type I1.

Lemma 7.6. If the Coffman-Sethi conjecture is false, then there exists a minimal coun-
terexample to the conjecture of Type I1.

Proof. Consider a minimal counterexample P1 of Type IR1. By Lemma 7.5, such a coun-
terexample exists if the Coffman-Sethi conjecture is false. Now construct a new problem
instance P2 as follows. Subtract 1 time unit from the processing time of every job in rank
k − 2. Also subtract 1 time unit from the processing time of every job in rank k − 1 that
has a processing time of λk−1. Note that, for a minimal counterexample, all processing
times in rank k− 1 are not equal, therefore there exist processing times in rank k− 1 that
are less than λk−1. Leave these processing times unchanged. Note that the assignment of
jobs in each rank to machines in the LD schedule remains unchanged. Problem instance
P1 had an optimal rectangular schedule. Reducing the processing time of every job in rank
k− 2 by 1 leaves the rectangular property unchanged and results in a reduction of 1 in the
optimal makespan. A further reduction of 1 in one or more, but not all, jobs in rank k− 1
results in no further reduction in the optimal makespan. This follows from the fact that
any reduction in the optimal makespan of a schedule that is initially rectangular requires
the sum of processing times to be reduced by at least m. Thus, if tS∗ denotes the optimal
makespan of problem instance P1, problem P2 has an optimal makespan equal to tS∗ − 1.
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Now construct a problem instance P2R of Type IR by adding 1 unit to the processing time
of every job in rank 1 that is performed on a machine with completion time after rank k
in the optimal schedule that is less than the makespan. The optimal makespan of P2R
is equal to the optimal makespan of P2. Let tSLD

denote the LD makespan of problem
instance P1. P1 is a minimal counterexample of type IR. Therefore, the makespan of the
LD schedule for problem instance P2R is less than or equal to the makespan of the LD
schedule for P1 −2. From Lemma 5.7, the LD makespan of P2R cannot be less than the
LD makespan of P2. Therefore the makespan of the LD schedule for problem instance P2
is less than or equal to the LD makespan for P1 −2. This implies that one of the following
is true: (i) In the LD schedule for P1, there exists a machine i′ with a completion time
after rank k equal to the makespan and with a job with processing time λk−1 in rank k−1.
(If more than one such machine exists, arbitrarily select one of those machines and label it
i′.) From the preceding lemma, this machine has a job with processing time λk in rank k.
(ii) In the LD schedule for P1, there does not exist any machine with a completion time
after rank k equal to the makespan and with a job with processing time λk−1 in rank k−1.
However, there must exist machines i′ and i′′, where i′ is not equal to i′′, machine i′ and
machine i′′ have the same completion time after rank k − 1, machine i′ has a completion
time after rank k equal to the makespan and a job with processing time less than λk−1 in
rank k− 1, and machine i′′ has a job with processing time equal to λk−1 in rank k− 1 and
a completion time after rank k that is less than the makespan. From the previous lemma,
machine i′ has a job with processing time that is equal to λk in rank k. Machine i′′ has
a lower completion time after rank k and the same completion time after rank k − 1 as
machine i′. Therefore machine i′′ has a job with processing time that is less than λk in
rank k.

In case (ii), swap the jobs assigned to machines i′ and i′′ in rank k of the LD schedule
and swap the labels assigned to those machines. The resulting schedule is a valid LD
schedule. It follows that, for a minimal counterexample P1 of Type IR1, there exists an
LD schedule with a machine i′ with a completion time after rank k equal to the makespan,
a job with processing time λk in rank k, and job with processing time λk−1 in rank k − 1.

Now construct a new counterexample P3 as follows. In the LD schedule for P1, for
every machine i 6= i′ with a completion time after rank k equal to the makespan, delete the
job in rank k. The makespan and the set of jobs assigned to i′ in the LD schedule for P3
are the same as those in the LD schedule for P1. The makespan of the optimal schedule
for P3 is less than or equal to the makespan of the optimal schedule for P1. However, the
optimal schedule for P3 may not be rectangular. P3 is clearly a counterexample to the
conjecture of Type I1.

Thus, there exists a counterexample to the conjecture of Type I1. It follows that there
exists a minimal counterexample to the conjecture of Type I1.
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We define a problem instance, a counterexample and a minimal counterexample of Type
I2 as follows. A problem instance of Type I2 is a problem instance of Type I1 with the
following property: The machine i′ with a completion time equal to the makespan has a
processing time equal to λr in rank r for 2 ≤ r ≤ k. If the Coffman-Sethi conjecture is false,
a counterexample to the conjecture of Type I2 is a minimal counterexample of Type I1 with
the following property: The machine i′ with a completion time equal to the makespan has
a processing time equal to λr in rank r for 2 ≤ r ≤ k. A minimal counterexample of Type
I2 is a counterexample of Type I2 for which there does not exist a smaller counterexample
of Type I2.

Lemma 7.7. If the Coffman-Sethi conjecture is false, there exists a minimal counterex-
ample to the conjecture of Type I2.

Proof. The statement is proved using induction. The induction assumption is that there
exists a minimal counterexample P3′ of Type I1 that has an LD schedule with a machine
i′ that has a processing time equal to λr in rank r for h ≤ r ≤ k, where h is an integer
greater than or equal to 3. Construct P3′′ from P3′ by subtracting 1 time unit from the
processing time of every job in rank h−2, and subtracting 1 time unit from the processing
time of every job in rank h − 1 that has a processing time of λh−1. Leave the remaining
processing times unchanged. Note that P3′′ has integer processing times and a single
machine with the completion time equal to the makespan, and that machine has a job
with processing time equal to the largest processing time in ranks k and k − 1. If P3′′

were a counterexample to the conjecture, it would be a counterexample of Type I1, thus
contradicting the assumption that P3′ is a minimal counterexample of Type I1. It follows
that P3′′ satisfies the Coffman-Sethi conjecture. If tS∗ denotes the optimal makespan of
P3′, problem P3′′ has an optimal makespan that is less than or equal to tS∗ − 1. If tSLD

denotes the makespan of the LD schedule for P3′, the makespan of the LD schedule for
P3′′ must be less than or equal to tSLD

− 2. Clearly, one of the following must hold: (i)
In the LD schedule for P3′, machine i′ has a job with processing time equal to λh−1 in
rank h− 1. (ii) In the LD schedule for P3′, machine i′ has a job with processing time less
than λh−1 in rank h − 1. However, there exists a machine i′′ with the same completion
time after rank h − 1 as machine i′ and a job with processing time equal to λh−1 in rank
h− 1 and a completion time after rank k that is less than the makespan. In this case, for
ranks h, h+ 1, . . . , k, swap the jobs assigned to machines i′ and i′′. After the swap of jobs
is completed, swap the labels i′ and i′′ assigned to the two machines. Clearly, after the
swap, the schedule continues to be an LD schedule. After the swap, machine i′ is the only
machine with a completion time after rank k equal to the makespan and machine i′ has a
processing time equal to λr in rank r for h− 1 ≤ r ≤ k.

In both cases, there exists a counterexample P3′ with a machine i′ that has a processing
time equal to λr in rank r for h− 1 ≤ r ≤ k. The base case of the induction corresponding
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to the situation in which h = k − 1 follows from the previous lemma. This proves that
there exists a counterexample to the conjecture of Type I2. It follows that there exists a
minimal counterexample to the conjecture of Type I2.

Lemma 7.8. If the Coffman-Sethi conjecture is false, in a minimal counterexample of
Type I2, the sole machine i′ with a completion time after rank k equal to the makespan has
a processing time equal to µ1 in rank 1.

Proof. If the Coffman-Sethi conjecture is false, it follows from the previous lemma that
there exist one or more minimal counterexamples to the conjecture of Type I2. Let P3′

denote one of these minimal counterexamples. If, in the LD schedule for P3′, there exists
only one machine with a processing time equal to λr in rank r for 2 ≤ r ≤ k, the lemma
clearly holds. Assume that there exists a set of two or more machines with a processing
time equal to λr in rank r for 2 ≤ r ≤ k. Let i1 denote the machine with the largest
processing time in rank 1 in this set of machines. If there exist two or more machines with
the largest processing time in rank 1, arbitrarily select one of these machines to be machine
i1. Let i2 6= i1 denote another machine with a processing time equal to λr in rank r for
2 ≤ r ≤ k. Let S∗ denote the optimal schedule for P3′. Find the machine i3 in S∗ with
the same job assigned to it in rank 1 as is assigned to machine i2 in the LD schedule. For
rank r = 2, 3, . . . , k, do the following:
Step 1: For machine i3, if the processing time of the job assigned to rank r in S∗ is λr,
delete that job from S∗ and from rank r of machine i2 in P3′.
Step 2: For machine i3, if the processing time of the job assigned to rank r in S∗ is less
than λr, find a machine i4 in S∗ with a processing time equal to λr in rank r. Delete the
job with processing time equal to λr from the set of jobs assigned to machine i4 in S∗ and
from rank r of machine i2 in P3′. Transfer the job in rank r of S∗ that was originally
assigned to machine i− 3 from machine i3 to machine i4.
After completing steps 1 and 2 above for r = 2, 3, . . . , k, do the following: Step 3: Delete
the job assigned to machine i2 in rank 1 of the LD schedule and to machine i3 in rank 1 of
S∗.

Note that each step in this process will either reduce the makespan of S∗ or will leave
it unchanged. When the process is completed, all jobs that were originally assigned to i3
in S∗ would have been moved to another machine or deleted from S∗. All the jobs that
were assigned to machine i2 in the LD schedule have been deleted. We now delete machine
i3 from S∗ and machine i2 from the LD schedule. Clearly, the new problem instance is
also a problem instance of Type I2. It has the same LD makespan as the original problem
instance and an optimal makespan that is less than or equal to that of the original problem
instance. The number of machines in the new problem instance is less than the number of
machines in P3′. This contradicts the assumption that P3′ is a minimal counterexample
of Type I2. It follows that, in the LD schedule for P3′, only one machine has a processing
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time equal to λr in rank r for r = 2, 3, . . . , k. From the previous lemma, this machine has
a completion time after rank k that is equal to the makespan. From the mechanics of the
LD algorithm, it is clear that this machine has a job with a processing time that is equal
to µ1 in rank 1.

Lemma 7.9. If the Coffman-Sethi conjecture is false, a minimal counterexample to the
conjecture of Type I2 with k ranks has an optimal schedule that satisfies the following:
(i) At least one of the machines with a completion time equal to the makespan has a
processing time equal to λk in rank k − 1 and a processing time equal to 0 in rank k, or
(ii) At least one of the machines with a completion time equal to the makespan has a
processing time equal to λk in rank k, or
(iii) At least one of the machines with a completion time equal to the makespan has a
processing time equal to 0 in rank k and a job in rank k − 1 which, in the LD schedule
for the original counterexample, has the same completion time after rank k − 1 as the
job assigned to rank k − 1 on machine i′. i′ refers to the only machine in the original
counterexample with a completion time after rank k equal to the makespan.

Proof. From Lemma 7.7, if the Coffman-Sethi conjecture is false, there exists a minimal
counterexample to the conjecture of Type I2. Note that the optimal schedule for this
minimal counterexample is not guaranteed to be rectangular. Assume that, in the opti-
mal schedule for the counterexample, every machine with a completion time equal to the
makespan has a job with processing time greater than 0 in the last rank. In the LD schedule
for the counterexample, there exists only one machine i′ with a completion time equal to
the makespan and that machine has a processing time equal to λk in the last rank, where
k is the number of ranks. Subtract 1 from the processing time of every job in rank k that
has a processing time greater than 0. Clearly, the assignment of jobs to machines in each
rank of the optimal schedule and the LD schedule remain unchanged. λk gets reduced by
1, and this results in a reduction of 1 in the makespan of the LD schedule. The makespan
of the optimal schedule also gets reduced by 1. This follows from the assumption that
every machine with a completion time equal to the makespan has a job with processing
time greater than 0 in the last rank. The new problem instance obtained after the reduc-
tion in processing times is a problem instance of Type I2. For the new problem instance,
the ratio of the makespan of the LD schedule to the makespan of the optimal schedule is
(tSLD

− 1)/(tS∗ − 1), where tSLD
denotes the makespan of the LD schedule and tS∗ denotes

the makespan of the optimal schedule prior to the change in processing times. This con-
tradicts the assumption that the original counterexample was a minimal counterexample
of Type I2.
Therefore, in the optimal schedule for the minimal counterexample, at least one machine
with a completion time equal to the makespan has a job with processing time equal to 0
in the last rank. Subtract 1 from the processing time of every job that, in the optimal
schedule, is assigned to rank k − 1 or rank k and has a completion time equal to the
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makespan. If one of these jobs has a processing time equal to λk in rank k − 1, subtract
1 from the processing time of every job in rank k that has a processing time equal to λk.
The makespan of the optimal schedule gets reduced from tS∗ to tS∗ − 1.
If the new problem instance resulting from the reduction in processing times is not a prob-
lem instance of Type I2, it follows that the new problem instance cannot have an LD
schedule in which only a single machine has a completion time after rank k equal to the
makespan and in which the LD makespan is equal to µ1 + λ2 + λ3 + . . . + λk, where µr
denotes the smallest processing time and λr denotes the largest processing time in rank
r. It follows that the new problem instance has an LD schedule with a makespan that is
less than the LD makespan of the original problem instance. If the new problem instance
resulting from the reduction in processing times is a problem instance of Type I2, it fol-
lows that, to ensure that the original problem instance was a minimal counterexample of
Type I2, the makespan of the LD schedule of the new problem instance is less than the
LD makespan of the original problem instance −1. In both cases, the LD makespan of
the new problem instance is less than the LD makespan of the original problem instance.
A reduction in the LD makespan occurs only if, in the optimal schedule for the original
counterexample, one of the following holds:
(i) At least one of the machines with a completion time equal to the makespan has a pro-
cessing time equal to λk in rank k − 1 and a processing time equal to 0 in rank k, or
(ii) At least one of the machines with a completion time equal to the makespan has a
processing time equal to λk in rank k, or
(ii) At least one of the machines with a completion time equal to the makespan has a
processing time equal to 0 in rank k and a job in rank k − 1 which, in the LD schedule
for the original counterexample, has the same completion time after rank k − 1 as the job
assigned to rank k − 1 on machine i′.

Lemma 7.10. If the Coffman-Sethi conjecture is false, a minimal counterexample to the
conjecture of Type I2 with k ranks has an LD schedule that satisfies the following:
(i) Every job in rank k has a processing time equal to either λk or 0.
(ii) Every job in rank k− 1 with a processing time p that is greater than µk−1 but less than
λk−1 satisfies one of the following: (a) It has a completion time after rank k − 1 that is
equal to the completion time after rank k − 1 on machine i′, or (b) It has a completion
time after rank k − 1 that is less than the completion time after rank k − 1 on machine i′,
but there exists another job in rank k − 1 with a processing time p that has a completion
time after rank k − 1 that is equal to the completion time after rank k − 1 on machine i′,
where i′ is the only machine with a completion time after rank k equal to the makespan.

Proof. Part (i) of the lemma can be proved in two ways. The first proof is the proof of
Lemma 5.9. The second proof is the following. Consider a minimal counterexample of
Type I2 that has k ranks. From Lemma 7.4, µk = 0 for any minimal counterexample
of Type I. Assume that there exists at least one job in rank k with a processing time
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that is greater than 0 and less than λk. Subtract 1 from the processing time of every job
in rank k that has a processing time that is greater than 0 and less than λk. From the
preceding lemmas, a minimal counterexample of Type I2 has an LD schedule with only
one machine with a completion time after rank k equal to the makespan, and that machine
has a processing time of µ1 in rank 1 and a processing time of λr in rank r for 2 ≤ r ≤ k.
Clearly, this machine has the same set of jobs assigned to it in the LD schedule even after
the reduction in processing times in rank k. Thus the makespan of the LD schedule remains
the same even after the reduction in processing times.

Clearly, the reduction in processing times leads either to no change in the optimal
makespan or to a reduction of 1 unit in the optimal makespan. In both cases, the new
problem instance with the reduced processing times clearly has a makespan ratio that is
greater than or equal to the makespan ratio for the original counterexample. This contra-
dicts the assumption that the original counterexample was a minimal counterexample.

It follows that there does not exist any job in rank k with a processing time that is
greater than 0 and less than λk. This completes the proof of part (i) of the lemma.

Part (ii) of the lemma can be proved as follows. Consider a minimal counterexample
to the conjecture of Type I2. Consider a job in rank k − 1 of the LD schedule for the
counterexample with a processing time p that is greater than µk−1 but less than λk−1. If
the job is processed on machine i′′, the completion time after rank k−2 on machine i′′ must
be greater than or equal to the completion time after rank k − 2 on machine i′. Reduce
the processing time of the job by 1. This could result in a new problem instance of Type
I2 or in a new problem instance that is not of Type I2. In both cases, the LD makespan
of the new problem instance must be less than the LD makespan of the original problem
instance. If neither condition (a) nor condition (b) hold, the reduction in processing time
has no impact on the LD makespan. It follows that at least one of these conditions must
hold.

Lemma 7.11. If the Coffman-Sethi conjecture is false, a minimal counterexample to the
conjecture of Type I2 with k ranks has a set of jobs that satisfy the following:

(5m− 2)λ1 < (8m− 2)λ2 − (m− 1)(λ3 + λ4 + . . .+ λk).

Proof. Consider a minimal counterexample of Type I2 that has k ranks. From Lemma 7.8,
it follows that tSLD

= µ1+λ2+λ3+. . .+λk. Also, tS∗ ≥ λ1+µ2+µ3+. . .+µk−2+µk−1+µk.

µk is equal to zero and µh is equal to λh+1 for 1 ≤ h ≤ k − 1. It follows that
tSLD

tS∗
≤

2λ2+λ3+λ4+...λk
λ1+λ3+λ4+...+λk−1+λk

. Also,
tSLD

tS∗
> 5m−2

4m−1 .

This completes the proof of the lemma.

Theorem 7.1. If the Coffman-Sethi conjecture is false, then every minimal counterexample
to the conjecture of Type IR or I or I2 satisfies tSLD

/tS∗ < k/(k − 1).
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Proof. Proof for minimal counterexamples of Type IR:
Consider a minimal counterexample P1 of Type IR. Now apply the following two-step
process. Step 1: Reduce each nonzero processing time by 1 to construct a new problem
instance P2. Clearly, the assignment of jobs in each rank to machines can be kept un-
changed for the new LD schedule. The schedule that was originally an optimal rectangular
schedule for P1 will not be rectangular but will be optimal for P2 after the reduction in
processing times. In the modified schedule, there are only (k− 1) jobs assigned to the one
or more machines with a zero processing time job in the last rank. This implies that the
new optimal makespan is equal to tS∗ − (k − 1). Step 2: For every job in rank 1 of the
optimal schedule for P2 that is processed on a machine with a completion time after rank
k that is less than the makespan, increase the processing time so that the completion time
after rank k becomes equal to the makespan. This produces a problem instance P2R of
Type IR. P2R will have an optimal makespan that is equal to the optimal makespan of
P2. From Lemma 5.7, it follows that the LD makespan of P2R cannot be less than the
LD makespan of P2.
The optimal makespan of P2R is equal to tS∗ − (k − 1). For the LD schedule for P2R,
there are two possibilities: (i) tSLD

gets reduced to a value that is greater than or equal to
tSLD

− (k − 1). This results in a new problem instance with a makespan ratio that is at
least (tSLD

− (k − 1))/(tS∗ − (k − 1)). This new ratio is larger than tSLD
/tS∗ , thus contra-

dicting the assumption that the original problem instance was a minimal counterexample
of Type IR. (ii) tSLD

gets reduced to tSLD
−k. This results in a new problem instance with

a makespan ratio ≥ (tSLD
− k)/(tS∗ − (k − 1)). The original problem instance P1 was a

minimal counterexample of Type IR. This implies that (tSLD
− k)/(tS∗ − (k − 1)) is less

than tSLD
/tS∗ . Therefore, tSLD

/tS∗ < (k/(k − 1)). This completes the proof for minimal
counterexamples of Type IR.
Proof for minimal counterexamples of Type I:
Consider a minimal counterexample P1′ of Type I. Now reduce each nonzero processing
time by 1 to construct a new problem instance P2′ with integer processing times. Clearly,
the assignment of jobs in each rank to machines can be kept unchanged for the new LD
schedule and the new optimal schedule. The new optimal makespan is less than or equal
to tS∗ − (k − 1). For the new LD schedule, there are two possibilities: (i) tSLD

gets re-
duced to a value that is equal to tSLD

− (k − 1). This results in a new problem instance
with a makespan ratio that is at least (tSLD

− (k − 1))/(tS∗ − (k − 1)). This new ratio
is larger than tSLD

/tS∗ , thus contradicting the assumption that the original problem in-
stance was a minimal counterexample of Type I. (ii) tSLD

gets reduced to tSLD
− k. This

results in a new problem instance with a makespan ratio that is greater than or equal to
(tSLD

−k)/(tS∗−(k−1)). The original problem instance P1′ was a minimal counterexample
of Type I. This implies that (tSLD

− k)/(tS∗ − (k − 1)) is less than tSLD
/tS∗ . Therefore,

tSLD
/tS∗ < (k/(k − 1)). This completes the proof for minimal counterexamples of Type I.
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Proof for minimal counterexamples of Type I2:
Consider a minimal counterexample P1′′ of Type I2. Now reduce each nonzero processing
time by 1 to construct a new problem instance P2′′. Clearly, the assignment of jobs in each
rank to machines can be kept unchanged for the new LD schedule and the new optimal
schedule. The new problem instance P2′′ is a problem instance of Type I2. The new optimal
makespan is less than or equal to tS∗ − (k − 1). For the new LD schedule, there are two
possibilities: (i) tSLD

gets reduced to a value that is equal to tSLD
−(k−1). This results in a

new problem instance with a makespan ratio that is at least (tSLD
−(k−1))/(tS∗−(k−1)).

This new ratio is larger than tSLD
/tS∗ , thus contradicting the assumption that the original

problem instance was a minimal counterexample of Type I2. (ii) tSLD
gets reduced to

tSLD
− k. This results in a new problem instance with a makespan ratio that is greater

than or equal to (tSLD
− k)/(tS∗ − (k − 1)). The original problem instance P1′ was a

minimal counterexample of Type I2. This implies that (tSLD
− k)/(tS∗ − (k − 1)) is less

than tSLD
/tS∗ . Therefore, tSLD

/tS∗ < (k/(k − 1)). This completes the proof for minimal
counterexamples of Type I2.

It follows that, if the Coffman-Sethi conjecture is false, a minimal counterexample of
Type IR or I or I2 must satisfy the following: k/(k − 1) > (5m− 2)/(4m− 1)
⇒ 1/(k − 1) > (m− 1)/(4m− 1)
⇒ k < (5m− 2)/(m− 1).
For m = 2, k must be less than or equal to 7. For m = 3, k must be less than or equal to
6. For m ≥ 4, k must be less than or equal to 5. Thus, if the Coffman-Sethi conjecture is
false, a minimal counterexample to the conjecture of Type IR or I or I2 has only a small
number of ranks.
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Chapter 8

Directions for future research

The most immediate potential direction for future research would be the application of
the approaches outlined in this thesis to conjectured worst-case makespan ratios for other
fast and simple algorithms for the FM problem. For the LI algorithm, it might be possible
to obtain an alternative proof of the worst-case makespan ratio. For the LPT*, PIA and
GAP algorithms, the first step would be to develop a conjecture for the makespan ratio.
An attempt could then be made to prove or disprove these conjectures using techiques
similar to those used for the LD algorithm.

It might also be possible to prove performance bounds for algorithms for other problems
and algorithms, particularly other algorithms for scheduling and constrained minimisation.
These include problems in related areas such as bin packing and makespan minimisation.
If a loose upper bound is available, it might be possible to use a binary search procedure
to construct a sequence of proofs that lead to a continual tightening of the upper bound.
For any algorithm for the FM problem, the starting point could be a lower bound of 1 and
an upper bound of 3/2, followed by a lower bound of 1 and an upper bound of 5/4, etc.
For the LD algorithm, this procedure could have resulted in a set of proofs that showed
that the upper bound lay between 9/8 and 5/4.

The novel approach of treating the parameters of the problem (job processing times
in this case) as variables and subsequently setting up the performance ratio maximisation
problem as a set of linear programs could also be potentially applied to other combina-
torial optimization problems. Further, many reasonably simple algorithms and objective
functions would satisfy the continuity requirements needed to discretize the problem. For
most problems in combinatorial optimization, being able to focus entirely on integer or
rational parameters should make it easier to determine a bound on the performance ratio.
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