
Hash Families and Cover-Free
Families with Cryptographic

Applications

by

Gregory Zaverucha

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2010

c© Gregory Zaverucha 2010

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis is focused on hash families and cover-free families and their application to
problems in cryptography. We present new necessary conditions for generalized separating
hash families, and provide new explicit constructions. We then consider three cryptographic
applications of hash families and cover-free families. We provide a stronger definition of
anonymity in the context of shared symmetric key primitives and give a new scheme with
improved anonymity properties. Second, we observe that finding the invalid signatures
in a set of digital signatures that fails batch verification is a group testing problem, then
apply and compare many group testing algorithms to solve this problem efficiently. In
particular, we apply group testing algorithms based on cover-free families. Finally, we
construct a one-time signature scheme based on cover-free families with short signatures.

iii

Acknowledgements

I had a lot of help and support during the four years I worked towards this degree. First
I’d like to thank my supervisor, Doug Stinson, who consistently provided sound guidance,
on matters technical or otherwise. I’m also grateful for help from Ian Goldberg, Urs
Hengartner and Alfred Menezes who were always available to hear whatever questions I
thought they could answer. My internships at the IBM Zurich Lab were both fun and
productive, thanks to Jan Camenisch and members of the Security and Cryptography
group who were excellent hosts.

While a Ph.D. student I met many new and interesting people who made the time I
spent in Waterloo enjoyable. Overall, my colleagues in the CrySP lab were top notch, and
I especially enjoyed working and chatting with Aniket Kate, Joel Reardon and Jeremy
Clark. I had a lot of fun times outside the lab (mostly at Kickoffs) with Jaime Ruiz,
Christina Boucher, Rob Warren, Mike Patterson, Jeff Pound, Nick Miller, Söeren Bleikertz
and Cam Zwarich.

My family has always been very supportive. My parents Patricia and Walter encouraged
me to pursue graduate studies, and have always been understanding of my busy schedule.
I was happy to have them visit regularly, along with my brother Andrew and sister Rachel
while I was in Waterloo. The letters I regularly received from my grandmother Anne (on
paper!) were a welcome distraction. I’m fortunate to have such a great family. I had
plenty of additional love and support from my fiance Kate. While this chapter of my life
is wrapping up, I’m looking forward to starting the next chapter together.

Finally, I’m thankful I did not have to worry about money while completing my de-
gree. Thanks to the Canadian taxpayers, who (indirectly) funded me through the agencies
NSERC and MITACS, and to David Cheriton, who helped fund me and many of my peers.

Thank you all.

iv

Contents

List of Tables ix

1 Introduction 1

1.1 Summary of Contributions . 1

1.2 Combinatorial Structures . 2

1.2.1 Perfect Hash Families . 3

1.2.2 Separating Hash Families . 4

1.2.3 Cover-Free Families . 6

1.3 Information Theory . 9

2 Bounds 10

2.1 Previous Results . 10

2.2 New Upper Bounds for SHF of Type {w,w} and {w,w − 1} 11

2.2.1 Bounds For Type {3, 2} . 13

2.2.2 Staircases . 15

2.2.3 Proofs for Types {w,w} and {w,w − 1} 17

2.3 Necessary Condition for SHF of Type {w, d} 19

2.4 Necessary Conditions for SHF of Type {w1, . . . , wt} 27

2.5 Existence Results for SHF of type {w1, w2} 28

3 Constructions 34

3.1 Constructions . 35

v

3.1.1 Constructions From Codes with Large Distance 35

3.1.2 Direct and Recursive Constructions 39

3.1.3 Algebraic Geometry Background 42

3.1.4 Constructions From Algebraic Geometry 45

3.1.5 Construction of Compound Types 47

3.1.6 Analysis of Random Hash Families 48

3.2 A Detailed Look at the AG Construction 50

3.2.1 Metrics . 51

3.2.2 Reed-Solomon Codes . 51

3.2.3 Elliptic and Hyperelliptic Curves 52

3.2.4 Hermitian Curves . 52

3.2.5 The Garcia-Stichtenoth (GS) Tower 54

3.3 Experimental Observations . 56

3.3.1 Implementation of the AG-based Construction 57

3.3.2 Observed Number of Separating Rows 58

3.3.3 Randomness Metric . 59

3.3.4 Observed Error Rates . 60

3.4 Conclusion . 60

4 Anonymity in Shared Symmetric Key Primitives 62

4.1 Introduction . 62

4.1.1 Sharing Symmetric Operations . 64

4.1.2 The GCA-MAC Authentication Scheme 66

4.1.3 GCA-MAC Example . 66

4.2 Anonymity . 67

4.2.1 Threat Model . 67

4.2.2 Group Anonymity . 67

4.2.3 Participant Anonymity . 71

4.2.4 Malicious Setup Attack on Anonymity 71

vi

4.2.5 Verifiable Setup . 72

4.3 An Improved Scheme: BPHF-MAC . 73

4.3.1 Anonymity of BPHF-MAC . 74

4.3.2 Participant anonymity of BPHF-MAC 82

4.4 GCA Constructions From Arbitrary PHF 82

4.4.1 Impact on Efficiency . 84

4.4.2 Impact on Anonymity . 85

4.5 Conclusion . 87

5 Group Testing and Batch Verification 88

5.1 Introduction . 88

5.1.1 Batch Verification . 89

5.1.2 Finding Invalid Signatures in Bad Batches 91

5.2 Group Testing-Based ISF Algorithms . 92

5.2.1 Individual Testing . 93

5.2.2 Adaptive ISF Algorithms . 94

5.2.3 Nonadaptive Algorithms . 95

5.3 Comparison of Algorithms . 99

5.3.1 Number of Tests . 99

5.3.2 Unknown Number of Invalid Signatures 102

5.3.3 Comparison to Non-Generic ISF Algorithms 103

5.4 Comparison Details . 103

5.5 Conclusion . 103

6 Short One-Time Signatures 107

6.1 Introduction . 107

6.2 General Construction of OTS from Cover-Free Families 109

6.3 Related work . 110

6.3.1 Schemes Based on the CFF Model 110

6.3.2 Other Work Related to One-Time Signatures 111

vii

6.3.3 Applications of One-Time Signatures 112

6.4 A New OTS Scheme with Short Signatures 113

6.4.1 Scheme Description . 113

6.4.2 Encoding a message M as BM . 117

6.4.3 Parameter Selection . 117

6.5 Additional Features of the OTS Scheme 120

6.5.1 Batch Verification . 121

6.5.2 Aggregation . 121

6.5.3 Proving Knowledge of a Signature on the Message M 123

6.5.4 Verifiably Encrypting a Signature 123

6.6 Impact on Applications . 123

7 Future Work 125

Appendix 126

A Chromatic polynomials of complete multipartite graphs 127

References 128

viii

List of Tables

2.1 Summary of results for SHF of type {5, d}. 23

3.1 Sample parameters for d-CFF(m,n) constructed using Theorem 3.11. . . . 39

3.2 Examples of SHF constructed with Reed-Solomon codes. 52

3.3 Parameters of SHF constructed with Theorem 3.28. 53

3.4 Parameters of SHF constructed with Theorem 3.28. 54

3.5 Parameters of SHF constructed using the Garcia-Stichtenoth field F0. . . . 56

3.6 Parameters of SHF constructed using the Garcia-Stichtenoth field F1. . . . 56

3.7 Parameters of SHF constructed using the Garcia-Stichtenoth field F2. . . . 56

3.8 Comparison of expected and observed behaviour of SHF with m = 16. . . 58

3.9 Comparison of expected and observed behaviour of SHF with m = 64. . . 59

3.10 The randomness metric computed for SHF constructed by Theorem 3.28. 60

3.11 Observed error rates of SHF. 61

5.1 Number of tests required by ISF algorithms. 100

5.2 Algorithm requiring the fewest number of tests with p processors. 101

5.3 Behaviour of ISFs when d is estimated incorrectly. 102

5.4 Number of tests required by each group testing algorithm. 104

5.5 Number of tests required by each group testing algorithm. 105

5.6 Number of tests required by each group testing algorithm. 106

6.1 Comparison of various OTS schemes. 120

A.1 Running times of the formula from Theorem A.2. 129

ix

Chapter 1

Introduction

This thesis is focused on hash families and cover-free families and their application to
problems in cryptography.

A hash family is a collection of functions sharing a domain and co-domain. We say the
family separates two inputs, if there is at least one function in the family that gives different
outputs. This naturally generalizes to two or more sets of inputs, which are separated by a
function when their respective output sets are disjoint. Hash families with such a property
are called separating hash families (SHF). Perfect hash families (PHF) are an important
special case, where we always have one function that separates a fixed number of single
inputs. The number and size of the inputs is called the type of the SHF. Both PHF and
SHF are important tools for cryptographers.

Cover-free families are a closely related combinatorial object. Given a set, a cover-free
family is a collection of subsets, such that d of these subsets do not cover any other subset.
In other words, no subset is contained in the union of any other d sets in the family.

1.1 Summary of Contributions

Our first contribution relates to the existence of SHF; we present bounds on SHF of arbi-
trary type. Our motivation for studying SHF of general type is that this single structure
unifies previous definitions, since it includes many interesting structures previously studied
in the literature as special cases. An upper bound gives the largest domain possible, for
a fixed size co-domain and number of functions. We give the first upper bound for SHF
of arbitrary type, which immediately yields an improved bound for a specific type of SHF
called “secure frameproof codes”. The latter type has applications in fingerprinting digital
data.

1

Next, we consider ways of explicitly constructing SHF of arbitrary type, by generalizing
existing constructions that apply to special types. We provide generalizations of many
of the constructions from the literature. One construction that we examine in detail is
based on algebraic geometry codes. We compare various instantiations of this construction
and give a detailed description and comparison of the resulting parameters. We have
implemented this construction and discuss some practical issues. For applications where a
small amount of error is tolerable, random hash families can be used to separate a given
input type with high probability, but require significantly fewer rows. We give an analysis
of random hash families. Random hash families can easily be implemented.

With respect to cryptographic applications, we improve the anonymity of schemes for
sharing symmetric key primitives. In this problem, we would like to share a secret key
amongst many participants, so that any sufficiently large subset may compute a function
of the secret key, and such that none of them learns the secret key. An example of such
a function is a message authentication code. We provide a natural, stronger definition of
anonymity (for the participants), and show that existing schemes do not provide this level
of anonymity. A new scheme is presented, based on a special type of PHF, and we quantify
the amount of information the output of the shared operation provides about the group of
participants that collaborated to produce it.

The second cryptographic application we consider is a problem arising in batch verifi-
cation of digital signatures. A batch verification algorithm allows a set of signatures to be
verified as a group, and outputs a single bit to indicate that all the signatures are valid, or
that the batch contains one or more invalid signatures. We observe that finding the invalid
signatures in a failed batch is a group testing problem, then apply and compare many
group testing algorithms to solve this problem efficiently. In particular, cover-free families
provide a group testing algorithm that parallelizes with linear speedup, allowing all invalid
signatures in a batch to be located quickly when multiple processors are available.

The last cryptographic application we consider is one-time signatures based on cover-
free families. Five one-time signature schemes in the literature are based, either implicitly
or explicitly, on cover-free families. We give a general construction based on cover-free
families capturing these schemes, then give a new scheme. Our first goal is to reduce the
signature size, as schemes in this family have long signatures. Second, we show how to
choose parameters for these schemes to reduce the amount of storage required.

1.2 Combinatorial Structures

In this section we will introduce the main combinatorial structures used throughout this
thesis: perfect and separating hash families, and cover-free families. Along with the def-
inition of cover-free families we include some bounds from the literature which will be

2

relevant in later chapters. For perfect and separating hash families, bounds are discussed
in Chapter 2 and constructions are the topic of Chapter 3. A construction of cover-free
families is also presented in Chapter 3.

Definition 1.1. Let X and Y be sets with |X| = n and |Y | = m. An (N ;n,m)-hash
family is a set F of N functions from X to Y .

While X can be any any n-set, for simplicity we often choose X = {1, . . . , n}. The
matrix representation of an (N ;n,m)-hash family is the N×n matrix A where Ai,j = fi(j)
for all i, j. We sometimes refer to the entries of A as symbols. A third representation is
also useful at times.

Definition 1.2. An (N ;n,m)-code is a set of n vectors (called codewords) of length N
with coordinates from an alphabet of size m. Let C be an (N ;n,m) code. The distance
between two codewords x, y ∈ C, denoted dist(x, y), is the number of coordinates in which
x and y differ (also called the Hamming distance of x and y). The minimum distance of a
code is defined as the smallest distance between two different codewords, i.e.

dist(C) = min {dist(x, y) : x ∈ C, y ∈ C, x 6= y} .

If C has minimum distance D, we call C an (N ;n,m,D)-code.

Let A be the matrix representation of an (N ;n,m)-hash family with domain and range
X and Y , respectively. A can also be viewed as a code of size n and length N over the
alphabet Y of cardinality m, where each column of A is a codeword. The code represen-
tation of a hash family will be used to give constructions of hash families with a given
separating property from codes known to have large distance (§3.1.1).

1.2.1 Perfect Hash Families

A perfect hash family of strength two is a simple but useful hash family. Here we say that
the family of functions satisfies the following property: For any pair of inputs, at least one
of the functions in the family hashes them to distinct outputs (i.e., does not collide). The
natural generalization is to increase the strength from two to some value t ≤ m.

Definition 1.3. Let F be an (N ;n,m)-hash family from X → Y with |X| = n and |Y | =
m. F is called a perfect hash family of strength t if for any distinct inputs c1, . . . , ct ∈ X,
there exists some f ∈ F such that f(ci) 6= f(cj) for all i 6= j, 1 ≤ i, j ≤ t. We use the
notation PHF(N ;n,m, t).

3

In the matrix representation of a PHF(N ;n,m, t) we are guaranteed that any N × t
subarray contains a row with no repeated symbol.

This well-known structure was introduced by Mehlhorn [120, 121] in the context of hash
table data structures; if we must hash t elements of X at the same time, we can choose
the function in the family which is one-to-one on these elements. Perfect hashing is a
common tool in algorithms and complexity, see Alon and Naor [6] and the references given
there. PHF are used as inputs for constructing group testing algorithms [161], cover-free
families [161, 155] (see also §1.2.3), and covering arrays [117], a combinatorial object used
in software interaction testing [55] (amongst other things).

In terms of cryptographic applications, PHF have been used in threshold secret shar-
ing [23], broadcast encryption [83], shared symmetric key primitives [115, 116], private
information retrieval [17], construction of fingerprinting codes [155] and key distribution
patterns [161, 158].

Example 1.4. Here is the matrix representation of a PHF(4; 9, 3, 3), where X = {1, . . . , 9}
and Y = {1, 2, 3}, and F = {f1, f2, f3, f4}.

f1

f2

f3

f4

1 2 3 4 5 6 7 8 9
1 3 2 2 3 2 3 1 1
1 3 1 3 1 2 2 2 3
1 2 2 1 3 3 1 2 3
3 3 2 1 1 3 2 1 2

1.2.2 Separating Hash Families

A perfect hash family is a special case of a more general type of hash family, a separating
hash family (SHF). Consider hashing a subset C of X with a function f , where the output
is the set {f(c) : c ∈ C}. In an SHF, the input is comprised of multiple disjoint subsets of
X, and the separating property guarantees that the corresponding outputs sets are pairwise
disjoint for at least one function in the family.

Definition 1.5. Let F be an (N ;n,m) hash family from X → Y . F is called a separating
hash family of type {w1, w2, . . . , wt} if it satisfies the following property: For any disjoint
subsets C1, . . . , Ct of X with |Ci| = wi for 1 ≤ i ≤ t, there exists at least one function
f ∈ F such that

{f(a) : a ∈ Ci} ∩ {f(b) : b ∈ Cj} = ∅

for every i 6= j. We will use the notation SHF(N ;n,m, {w1, . . . , wt}) to denote such a
hash family.

4

If A is the matrix representation of F , then A represents an SHF(N ;n,m, {w1, . . . , wt})
provided that the following condition is satisfied: for disjoint sets of column indices
C1, . . . , Ct where |Ci| = wi for 1 ≤ i ≤ t, there exists a row r such that

{Ar,a : a ∈ Ci} ∩ {Ar,b : b ∈ Ci} = ∅

for all i 6= j. We say that the row r separates C1, . . . , Ct.

We also write
{

1`
}

for the SHF type consisting of ` ones. By generalizing to t input
sets, several previously studied separating properties are unified in a single definition. Here
is a list of some structures which may be described as separating hash families.

Perfect hash families are of SHF of type {1t}. Perfect hash families are the subject of
Section 1.2.1.

Frameproof codes are SHF of type {w, 1}. These were introduced by Boneh and Shaw
in [36] for fingerprinting digital data. This continues to be an active area of research
[24, 58, 74, 75, 148, 155, 161, 174, 183]

Secure frameproof codes are SHF of type {w,w}, introduced in Stinson et al. [161]
to provide improved security in fingerprinting applications. See also Cohen et al.
[56, 58]. There have been several recent papers giving constructions for 2-secure
frameproof codes; see [73, 172, 173]. Explicit constructions for w-secure frameproof
codes for arbitrary w ≥ 2 are found in [109, 161, 165]. Existence results using the
probabilistic method are provided in [165]; we will revisit these results in Section
2.5. Finally, a necessary condition for the existence of w-secure frameproof codes
was proven in [155] (we will give a significant improvement of this result in Section
2.2).

Strong SHF are SHF of type {1w1 , w2}, defined in Sarkar and Stinson [147]. Strong
separating hash families were invented independently by Sarkar et al. and Barg et
al. while studying w-IPP codes [14, 147]. (In [14] the term partially hashing code
was used.) We will use the notation SSHF(N ;n,m, {w1, w2}) to denote this type,

k-IPP Codes i.e., codes with the k-identifiable parent property, imply separating hash
families which are simultaneously of type

{
1k+1

}
and {k, k} (though the converse

is not necessarily true). 2-IPP codes were introduced in Hollmann et al. [96], and
generalized by Alon et al. [5]. k-IPP codes are also used in fingerprinting applications.
Staddon et al. describe relationships between various fingerprinting codes, PHF,
SHF and cover-free families [155]. Further results on k-IPP codes can be found in
[7, 15, 27, 147, 155, 174, 178].

5

(k, u)-hashing families are SHF of type
{

1k, u− k
}

(a strong SHF). This type was in-
troduced by Barg et al. [14] while studying k-IPP codes (see also Alon et al. [4]).

Separating hash families in their full generality were first considered by Cohen et al.
[57], who generalized a sufficient condition for a code with large distance to be an SHF of
a specified type. Stinson et al. did a thorough study (necessary conditions and existence
results) of SHF having small type, that is, for w1 + . . . + wt ≤ 4 [164]. This study was
extended to SHF of arbitrary type by Blackburn et al. [28].

To avoid trivialities, we always assume that t ≥ 2 and that u ≤ n, where we define
u =

∑t
i=1 wi. Clearly we must have that t ≤ m if an SHF(N ;n,m, {w1, w2, . . . , wt}) exists.

Note that when m ≥ n, an injective function is a separating hash family (with N = 1) and
the problem becomes trivial. So we may always assume that m < n.

Example 1.6. Here is the matrix representation of an SHF(3; 16, 8, {2, 2}).

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7
0 1 0 1 2 3 2 3 4 5 4 5 6 7 6 7
0 1 1 0 2 3 3 2 4 5 5 4 6 7 7 6

1.2.3 Cover-Free Families

Cover-free families (CFF) have a long history. They were first defined by Kautz and
Singleton [104] in 1964 (under the name superimposed binary codes). They were also
defined in other areas such as information theory, combinatorics and group testing (e.g.
[44, 69, 76, 77]). CFF also have many applications, especially in cryptography and com-
munications: blacklisting [106], broadcast encryption [50, 85, 158, 157], anti-jamming [64],
source authentication in networks [146], group key predistribution [124, 71, 157, 161], and
frameproof/traceability codes [155, 162].

In this thesis cover-free families will be used in group testing for batch verification of
digital signatures (Chapter 5), and the construction of one-time signatures (Chapter 6).
Informally, a CFF is a set of sets, such that the union of w of these sets does not contain
any of the other sets. A precise definition follows.

Definition 1.7. A w-cover-free family (X,B) is a set X of m elements, and a set B of n
subsets of X, with the following property. For any w sets Bi1 , . . . , Biw ∈ B, and all other
B ∈ B, it holds that

B 6⊆
w⋃
j=1

Bij

We say that Bi1 , . . . , Biw does not cover any other B ∈ B. We will use the notation
w-CFF(m,n) for cover-free families. If |Bi| = N , for all i, we call the CFF N-uniform.

6

We now give the relation between CFF and binary SHF of type {1, w}.

Theorem 1.8. Suppose there exists a w-CFF(m,n). Then there exists an SHF(m;n, 2,
{w, 1}).

Proof. Let (X,B) be the set of elements and subsets in the w-CFF(m,n) and define the
m × n incidence matrix A as follows: Ai,j = 1 if element i belongs to subset Bj, and
Ai,j = 0 otherwise. The cover-free property ensures that no column of A is covered by any
w others, since Bj contains an element not contained in the union of any w others sets.
Therefore column j has a row which is 1 where the w other columns are 0. Hence A is an
SHF of type {w, 1}.

The following theorem describes a partial converse.

Theorem 1.9. Suppose there exists an SHF(N ;n, 2, {w, 1}). Then there exists an N-
uniform w-CFF(2N, n).

Proof. Let A′ be an SHF(N ;n, 2, {w, 1}). Let A′ be the complement of A′ (formed by
flipping each entry in A′), and let A be the SHF(2N ;n, 2, {w, 1}) consisting of the rows of
A′ followed by the rows of A′. The matrix A is the incidence matrix of a w-CFF(2N, n),
call it C, and use (X,B) to denote the elements and set of subsets in C. Each row of A
corresponds to an element of X, and each column defines a block Bj ∈ B as follows: if
Ai,j = 1 then Bj contains the i-th element of X. By the type {w, 1} SHF property any
w + 1 columns of A′ contain either the pattern 00 . . . 0, 1 or 11 . . . 1, 0 in some row, and
always have the pattern 00 . . . 0, 1 in A. This ensures that each set B ∈ B will contain
some element which is not present in the union of w other subsets in B. To see that C is
N uniform, note that each column of A will have weight† N , since if column j of A′ has
weight wj, then column j in A′ will have weight N − wj and the weight of column j in A
is wj +N − wj = N .

Example 1.10. We illustrate Theorem 1.9 with an example, where A′ is an SHF(4; 5, 2,
{2, 1}).

A′ =

0 0 0 1 1
1 0 0 0 1
0 0 1 0 1
0 1 0 0 1

A′ =

1 1 1 0 0
0 1 1 1 0
1 1 0 1 0
1 0 1 1 0

A =
A′

A′

The output is a 4-uniform 2-CFF(8, 5), denoted (X,B). A has 8 rows, where row i of A
corresponds to element xi of X. The set Bj ∈ B is given by column j of A, therefore we

†Here weight refers to the number of nonzero entries in the column.

7

have:

B1 = {x2, x5, x7, x8}
B2 = {x4, x5, x6, x7}
B3 = {x3, x5, x6, x8}
B4 = {x1, x6, x7, x8}
B5 = {x1, x2, x3, x4}

The 2-CFF property is easily checked. For example B1 ∪ B2 does not contain x3 and x1,
and so it does not cover B3, B4 or B5.

Construction of 1-CFF(m,n) is optimal and simple, provided n ≤
(

m
bm/2c

)
. The set of

all
(

m
bm/2c

)
length m binary vectors with weight bm/2c form the m × n incidence matrix.

Since each column is distinct, the 1-CFF property holds. This is Sperner’s theorem1 [154].
In Section 3.1.1 we will give a more general construction for w-CFF.

Bounds for Cover-Free Families

First we present a necessary condition for the existence of CFF, a lower bound on the size
of the sets.

Theorem 1.11 (see [166, Theorem 1.1]). For any d ≥ 1, in a d-CFF(m,n), we have that

m ≥ c

(
d2

log d

)
log n .

The constant c is approximately 1/8 (shown in [145]).

De Bonis and Vaccaro bound m from the other direction.

Theorem 1.12 ([37, Corollary 1]). There exists a d-CFF(m,n) with

m < 24d2 log(n+ 2) .

Their proof method is constructive, based on a greedy algorithm, and it is efficient for
small CFF (i.e., when n is not large).

1For a proof in English, see Spencer [153].

8

1.3 Information Theory

Here we review some basic concepts from information theory that will be used in this
thesis.

We start with the definition of entropy of a random variable, (often called the Shannon
entropy). Let X be a random variable defined on a set X . The entropy of X is defined by

H(X) = −
∑
x∈X

(Pr[X = x]× log2 Pr[X = x]) .

The quantity H(X) measures the number of bits of uncertainty associated with X. When
X is the uniform distribution on X , i.e., X takes all values x ∈ X equally often, the entropy
of X is a maximal log2 |X | bits. In the other extreme, when X takes only one value from
X , H(X) = 0. We will also work with the entropy of a conditional probability distribution,
which is the entropy of X given that Y , a second random variable defined on a set Y , takes
the value y:

H(X|y) = −
∑
x∈X

(Pr[X = x|Y = y]× log2 Pr[X = x|Y = y]) .

The final measure of entropy we define is the min-entropy. Again, let X be a random
variable defined on a set X . Let γ = maxx∈X {Pr[X = x]}. The min-entropy of X is
defined to be

H∞(X) = log2

(
1

γ

)
= − log2 γ .

Since H(X) ≥ H∞(X), the min-entropy gives a lower bound on the Shannon entropy.

9

Chapter 2

Bounds

This chapter covers bounds on the size of SHF, i.e., given the number of rows N , the size
of the range m, and a type T , how large a value of n, the size of the domain, is possible
in an SHF of type T? An upper bound on n is sometimes called a necessary condition.
Equivalently, we also consider bounds on the number of rows, i.e., given n,m and T what
is the smallest possible value of N such that an SHF(N ;n,m, T) exists?

2.1 Previous Results

In this section we present previously known upper bounds on n for PHF, SHF and CFF.
First we start with PHF. For strength two, note that any N × n array with m symbols
is a PHF(N ;n,m, 2) if all columns are distinct, which can only happen when n ≤ mN .
This was generalized to arbitrary strength in the following theorem (due to Blackburn and
Wild [29]).

Theorem 2.1. [29] In a PHF(N ;n,m, t), we have n ≤ (t− 1)(md
N
t−1e − 1).

For SHF of type {2, 2}, Stinson et al. proved the following.

Theorem 2.2. [164] In an SHF(N ;n,m, {2, 2}), we have n ≤ 4md
N
3 e − 3.

The only previously known general bound for SHF of type {w,w} (secure frameproof
codes) is stated in Theorem 2.3.

Theorem 2.3. [155] In an SHF(N ;n,m, {w,w}), we have n ≤ md
N
w e + 2w − 2.

10

Observe that Theorem 2.2 provides a considerable improvement to Theorem 2.3 in the
case w = 2. In Section 2.2, we improve the bound of Theorem 2.3 first for SHF of type
{3, 2}, and then for all types {w,w} and {w,w − 1}, by generalizing and extending the
proof techniques of Stinson et al. [164].

For SHF of type {w, 1} (frameproof codes) the following bound was previously known.

Theorem 2.4. [24] In an SHF(N ;n,m, {w, 1}), n ≤ tmd
N
w e+O(md

N
w e−1), where t is the

unique integer such that t ∈ {1, 2, . . . , w} and t ≡ N mod w.

Staddon et al. prove the following more precise bound for type {w, 1}. Using our proof
techniques, we will give an alternate proof this bound in Section 2.3.

Theorem 2.5. [155] In an SHF(N ;n,m, {w, 1}), n ≤ w(md
N
w e − 1).

Our new bounds for SHF begin by considering types {w,w} and {w,w − 1}, then type
{w, d}, and finally, the most general type {w1, . . . , wt}. These results were published in
a series of papers: Stinson and Zaverucha [168] contains the results for types {w,w} and
{w,w − 1}, Stinson and Zaverucha [167] generalizes these to type {w, d} and the results
for type {w1, . . . , wt} were published in Blackburn, Etzion, Stinson and Zaverucha [28].

2.2 New Upper Bounds for SHF of Type {w,w} and

{w,w − 1}

In this section we present an upper bound on SHF of type {w,w}, which correspond to
secure frameproof codes. At the same time, since our proof techniques also apply to type
{w,w − 1}, we consider this type as well.

We begin with a couple of well-known elementary lemmas.

Lemma 2.6. Suppose there exists an SHF(N ;n,m, {w1, w2, . . . , wt}), and let c ≥ 1 be an
integer. Then there exists an SHF(

⌈
N
c

⌉
;n,mc, {w1, w2, . . . , wt}).

Proof. The case c = 1 is trivial. Let A be the matrix representation of an SHF(N ;n,m,
{w1, . . . , wt}). For c ≥ 2, create a new SHF A′ as follows. Group the rows of A into blocks
of size c, each group will correspond to a row of A′ (note that there are dN/ce groups).
Replace the c symbols in each column of each group by the concatenation of the c symbols
in the group (ordered by row). Note that A′ will have no more than mc distinct symbols,
and the number of columns remains n. A′ inherits the separating property from A: for
any input X of type {w1, . . . , wt}, some row r of A separates X, which causes the row of
A′ corresponding to the group containing r to separate X.

11

The next lemma is a useful special case of Lemma 2.6.

Lemma 2.7. Suppose there exists an SHF(N ;n,m, {w1, w2, . . . , wt}), and let d ≥ 1 be an

integer. Then there exists an SHF(d;n,md
N
d e, {w1, w2, . . . , wt}).

Proof. By setting c =
⌈
N
d

⌉
in Lemma 2.6, there exists an SHF(r;n,md

N
d e, {w1, . . . , wt}),

where r ≤ d. This upper bound on r holds because
⌈

N
dN/de

⌉
≤ d. In the case that r < d,

we can always add another row while maintaining the separating property, therefore, we
may take r = d.

Lemma 2.8. Suppose A is an SHF(N ;n,m, {w1, w2, . . . , wt}), and let w′1 ≤ w1. Then A
is also an SHF(N ;n,m, {w′1, w2, . . . , wt}).

Proof. Let X be an input of type {w1, . . . , wt} separated by row r of A, and X ′ be an
input of type {w′1, . . . , wt} such that w′1 ≤ w1. Since the output set of size w1 is pairwise
disjoint from the other output sets, so are all of its subsets.

The next lemma was first noticed by Hollmann et al. [95] and it provides a key idea
for many of our proofs. When discussing matrix representations of hash families, the
term “isomorphic” should be interpreted as “isomorphic up to permutation of rows and
columns”. We use “∗” to denote any symbol.

Lemma 2.9. [95] Let A be the matrix representation of an SHF(3;n,m, {2, 2}). Then
there is no submatrix of A isomorphic to the matrix

a a ∗ ∗
∗ b b ∗
∗ ∗ c c

.

Proof. The first and third columns cannot be separated from the second and fourth columns,
and all pairs of disjoint sets of size two must be separated in an SHF(3;n,m, {2, 2}).

Our proofs will work by generalizing this forbidden configuration from type {2, 2} to
types {w,w} and {w,w − 1} then to type {w, d} and finally type {w1, . . . , wt}.

12

2.2.1 Bounds For Type {3, 2}

To illustrate the technique we use, we first prove a result for SHF of type {3, 2}. We begin
by looking at the special case N = 4.

Theorem 2.10. Suppose m ≥ 2. If an SHF(4;n,m, {3, 2}) exists, then n ≤ 7m− 6.

Proof. Suppose A is an SHF(4;n,m, {3, 2}) with n = 7m− 5 (we will obtain a contradic-
tion).

We construct a submatrix A1 of A where all elements appearing in the first row appear
at least four times. To do this, we delete t1 + 2t2 + 3t3 columns from A; namely, those in
which elements appear exactly once, twice and three times (resp.) in the first row of A.
If t1 + t2 + t3 = m, then A would have at most 3m columns, which is fewer than 7m − 5
because m ≥ 2. Thus we delete no more than 3(m− 1) columns, leaving A1 with at least
7m− 5− 3(m− 1) = 4m− 2 columns.

Now we create A2 from A1 in such a way that elements in the second row of A2 repeat
three or more times. To do this, we delete u1 + 2u2 columns of A1; namely, those with an
element appearing exactly once or twice (resp.). If u1 + u2 = m, A1 would have at most
2m columns, which is fewer than 4m − 2, so we have that u1 + 2u2 ≤ 2(m − 1). We can
then say that A2 has at least 4m− 2− 2(m− 1) = 2m columns.

Our final submatrix will be A3, where, in the third row, all elements will appear at
least twice. Since A2 has at least 2m columns, the number of elements appearing exactly
once must be less than m. Then A3 will have at least 2m− (m− 1) = m+ 1 columns.

Since A3 has at least m + 1 columns, the fourth row of A3 contains an element which
occurs at least twice. Also, in A3 every element in the third row occurs at least twice, so
A3 has a submatrix isomorphic to either

case 1:

∗ ∗
∗ ∗
c c
d d

or case 2:

∗ ∗ ∗
∗ ∗ ∗
c c ∗
∗ d d

.

In case 1, all elements in the second row of A2 appear at least three times. Furthermore,
all elements in A1 appear at least four times in the first row of A1. Therefore, A has a
submatrix isomorphic to

a a ∗ ∗
∗ b b ∗
∗ ∗ c c
∗ ∗ d d

. (2.1)

13

In case 2, when we consider the second row (which has elements repeating three times)
there are two possibilities. The first is

∗ ∗ ∗ ∗
∗ b b b
∗ c c ∗
∗ ∗ d d

which leads to a submatrix of A having the form

a a ∗ ∗
∗ b b b
∗ c c ∗
∗ ∗ d d

. (2.2)

This is easily seen because the elements in the first row of A1 occur at least four times.

The second possibility for case 2 is

∗ ∗ ∗ ∗
b b ∗ ∗
∗ c c ∗
∗ ∗ d d

.

After considering the first row (as a submatrix of A), there are again two possibilities that
arise:

a a a a
b b ∗ ∗
∗ c c ∗
∗ ∗ d d

(2.3)

and
a a ∗ ∗ ∗
∗ b b ∗ ∗
∗ ∗ c c ∗
∗ ∗ ∗ d d

, (2.4)

depending on whether an a appears in columns three and four of the previous submatrix.

It is easy to see that all the possible submatrices (2.1), (2.2), (2.3) and (2.4) lead to
a contradiction, because the odd columns cannot be separated from the even columns.
If (2.4) is a submatrix, then A is not an SHF of type {3, 2}. If (2.1), (2.2) or (2.3) are
submatrices, then A is not an SHF of type {2, 2}. Applying Lemma 2.8, we see that A is
not an SHF of type {3, 2} in these cases, as well. In every case, we have shown that A is
not an SHF of type {3, 2}, which completes the proof.

14

Corollary 2.11. In an SHF(N ;n,m, {3, 2}), n ≤ 7md
N
4
e − 6.

Proof. We proceed by contradiction. Suppose there exists an SHF(N ;n,m, {3, 2}) where

n = 7md
N
4
e − 5. Then, by Lemma 2.7 there exists an SHF(4; 7m′ − 5,m′, {3, 2}) with

m′ = md
N
4
e, which contradicts the previous theorem.

2.2.2 Staircases

The following definition and lemmas will be useful tools for generalizing the proof technique
used in Theorem 2.10. Staircases are the forbidden configurations we will use to prove
necessary conditions for SHF of type {w,w} and {w,w − 1}.
Definition 2.12. An (N, t)-staircase is a matrix S with N rows of the form:

x1 x1

x2 x2

.

xt−1 xt−1

xt xt
xt+1 xt+1

.

xN−1 xN−1

xN xN

Further,

(i) when t = 1, S is a regular staircase, having N + 1 columns,

(ii) when 1 < t ≤ N , S is a compressed staircase having N columns.

Example 2.13. The first of the three matrices below is a (4, 1)-staircase, the second is a
(4, 4)-staircase and the third is a (4, 3)-staircase.

a a ∗ ∗ ∗
∗ b b ∗ ∗
∗ ∗ c c ∗
∗ ∗ ∗ d d

a a ∗ ∗
∗ b b ∗
∗ ∗ c c
∗ ∗ d d

a a ∗ ∗
∗ b b ∗
∗ c c ∗
∗ ∗ d d

15

Lemma 2.14. Let A be a matrix with N rows. If A has submatrices AN−1 ⊂ . . . ⊂ A1 ⊂ A
such that

• For 1 ≤ i < N − 1, all elements appearing in row i of Ai appear at least N − i + 1
times in row i of Ai, and

• The last row of AN−1 contains at least one element that occurs at least twice.

Then A has a submatrix isomorphic to an (N, t)-staircase, for some t, 1 ≤ t ≤ n.

Proof. In this proof, we number the columns in increasing order from right to left. First,
permute the columns of AN−1 so that there is a repeated element of row N appearing in
columns 1 and 2 (call this element x). These two cells form the base of the staircase. We
will create the staircase step by step, extending it upwards when moving from a submatrix
of Ai to Ai−1, for i = N − 1, N − 2, . . . , 1. In row N − 1 of AN−1, every element occurs
at least twice. Letting y be the element above x in column 2, we have two possibilities
(possibly after permuting columns):

case 1:
y y
x x

or case 2:
y y ∗
∗ x x

.

In the first case, all elements in row N − 2 of the submatrix AN−2 occur at least three
times. Our staircase is only two columns wide, so we extend it up and to the left by one
step. We can continue extending leftward by one column as we consider each successive
submatrix. The result is a (compressed) (N,N)-staircase.

In the second case, we consider the element in row N − 2 and column 3, say z. We
know that z occurs at least three times in row N − 2 of the submatrix AN−2. There are
two sub-cases: either z occurs in columns 1, 2 and 3, or z occurs in column 3 and some
new column which we can name column 4. These two sub-cases are analogous to sub-cases
considered in the proof of Theorem 2.10.

In the second sub-case, we have extended the staircase up and to the left by one step.
In the first sub-case, the staircase does not extend leftward at this stage.

This process can be continued until we reach the top of the staircase. If at any stage, we
do not extend the staircase leftward, then it must be the case that all further submatrices
cause the staircase to extend up and to the left. So we end up with a (N, t)-staircase, for
some t, 1 ≤ t ≤ n.

The usefulness of staircases is established in the following lemma.

16

Lemma 2.15. Suppose A is an (N ;n,m) matrix having a submatrix isomorphic to an
(N, t)-staircase S. Then A is not an SHF of type {h, h} if N = 2h − 1, and A is not an
SHF of type {h, h− 1} if N = 2h− 2.

Proof. When A has a submatrix isomorphic to an (N, t)-staircase, the odd and even indexed
columns of the staircase are inseparable. We consider two cases, depending on the parity
of N .

If N = 2h − 1, then S has 2h columns if S is regular and 2h − 1 columns if S is
compressed. If S is regular, then A is not an SHF of type {h, h}. If S is compressed, then
A is not an SHF of type {h, h− 1}. By Lemma 2.8, A is not an SHF of type {h, h}.

The case when N = 2h− 2 is similar. S has 2h− 1 columns if S is regular and 2h− 2
columns if S is compressed. If S is regular, then A is not an SHF of type {h, h− 1}. If S
is compressed, then A is not an SHF of type {h− 1, h− 1}. By Lemma 2.8, A is not an
SHF of type {h, h− 1}.

2.2.3 Proofs for Types {w,w} and {w,w − 1}

In this section, we generalize the technique used for SHF of type {3, 2} to types {w,w}
and {w,w − 1}.

Theorem 2.16. If A is an SHF(2w − 1, n,m, {w,w}), then

n ≤ m+ (w − 1)(2w − 1)(m− 1).

Proof. Let N = 2w − 1, and suppose A had one extra column, i.e., suppose A is an
SHF(N, n,m, {w,w})) with n = m+ 1 + N(N−1)

2
(m− 1) columns. We will derive a contra-

diction by showing A has a submatrix isomorphic to an (N, t)-staircase.

We will create a series of submatrices AN−1 ⊂ . . . ⊂ A1 ⊂ A. Submatrix Ai has the
property that elements in the i-th row repeat N − i + 1 or more times (in the ith row).
Denote A0 = A. The construction of Ai+1 from Ai deletes all columns of Ai where elements
in the (i + 1)-st row appear fewer than N − i − 1 times. Let |Ai| denote the number of
columns in Ai. By repeatedly applying this construction, we claim that

|Ai| ≥ m+ 1 +
1

2
(N − i− 1)(N − i)(m− 1) (2.5)

for 0 ≤ i ≤ N − 1. We will prove that (2.5) holds by induction on i.

First note that (2.5) holds for A0. To construct A1 from A0, we must delete the columns
containing elements which appear fewer than N times in the first row of A0. Let tq be the

17

number of columns with elements appearing exactly q times in the first row of A0. We
claim that t1 + . . . tN−1 ≤ m − 1. If t1 + . . . + tN−1 = m, then A0 has at most (N − 1)m
columns, fewer than the number given by (2.5). Then we delete at most (N − 1)(m − 1)
columns, so

|A1| ≥ |A0| − (N − 1)(m− 1)

≥ m+ 1 +
N(N − 1)

2
(m− 1)− (N − 1)(m− 1)

= m+ 1 +

(
N(N − 1)− 2(N − 1)

2

)
(m− 1)

= m+ 1 +
(N − 2)(N − 1)

2
(m− 1),

which shows that (2.5) holds for A1 as well.

Suppose (2.5) holds up to Ai, suppose that t1 + . . .+tN−i−1 ≤ (m−1), and suppose that
elements in the i-th row of Ai appear at least N−i times. To create Ai+1 from Ai, we delete
columns of Ai where elements in the (i+1)-th row appear less than N− (i+1) = N− i−1
times. If t1 + . . . + tN−i−2 = m, then Ai would have at most only m(N − i− 1) columns,
fewer than the number assumed in the inductive hypothesis. Then

|Ai+1| ≥ |Ai| − (N − (i+ 1))(m− 1)

= m+ 1 +
(N − i− 1)(N − i)

2
(m− 1)− (N − i− 1)(m− 1)

= m+ 1 +

(
(N − i− 1)(N − i)− 2(N − i− 1)

2

)
(m− 1)

= m+ 1 +

(
(N − i− 1)(N − i− 2)

2

)
(m− 1)

= m+ 1 +
(N − (i+ 1)− 1)(N − (i+ 1))

2
(m− 1)

which proves (2.5) by induction.

The last submatrix is AN−1, with

|AN−1| ≥ m+ 1 +
(N − (N − 1)− 1)(N − (N − 1))

2
(m− 1) = m+ 1 .

Since AN−1 has at least m+1 columns, one of the elements in row N is must repeat. By
applying Lemmas 2.14 and 2.15, we see that A is not an SHF, contradicting the assumption
that A was an SHF(2w − 1, 4wm− 4w,m, {w,w}). This proves the theorem.

18

Corollary 2.17. If an SHF(N ;n,m, {w,w}) exists, it holds that

n ≤ md
N

(2w−1)e + (w − 1)(2w − 1)(md
N

(2w−1)e − 1).

Proof. We proceed by contradiction (analogous to Corollary 2.11). Suppose there exists
an SHF(N ;n,m, {w,w}) where n = m+ 1 + (w− 1)(2w− 1)(m− 1). Then by Lemma 2.7,

there exists an SHF(2w−1;m′+(w−1)(2w−1)(m′−1),m′, {w,w}) with m′ = md
N

(2w−1)e,
which contradicts the previous theorem.

Theorem 2.18. If an SHF(2w − 2;n,m, {w,w − 1}) exists, then

n ≤ m+ (w − 1)(w − 3

2
)(m− 1).

Proof. Omitted. Follows the proof of Theorem 2.16 closely, with N = 2w − 2 instead of
N = 2w − 1.

The proof of the next corollary is basically the same as the proof of Corollary 2.17.

Corollary 2.19. If an SHF(N ;n,m, {w,w − 1}) exists, it holds that

n ≤ md
N

2w−2e + (w − 1)(w − 3

2
)(md

N
2w−2e − 1).

2.3 Necessary Condition for SHF of Type {w, d}

In this section we give necessary conditions for SHF of type {w, d}. This is motivated
by Section 2.4, where the result for type {w, d} leads to a necessary condition for type
{w1, . . . , wt}.

SHF of type {w, 1}

First we prove a necessary condition for SHF of type {w, 1}, not because it is new (see [29]
or [155]), but to illustrate part of the forbidden configuration that will be used in Section
2.3 for SHF of type {w, d}.

Theorem 2.20. In an SHF(w;n,m, {w, 1}), it holds that n ≤ m+ (w − 1)(m− 1).

19

Proof. Let N = w, and suppose A is an SHF(N ;n,m, {w, 1}) with n = m+1+(N−1)(m−
1). We will create a series of submatrices AN−1 ⊂ . . . ⊂ A1 ⊂ A. Let A0 = A. Submatrix
Ai has the property that all elements in the i-th row repeat at least twice. When we create
A1 from A, we delete no more than m−1 columns, since if all m symbols appeared exactly
once, A would have m columns, but we assumed it has m+ 1 + (N − 1)(m− 1). Thus

|A1| ≥ |A0| − (m− 1) = m+ 1 + (N − 2)(m− 1).

Assume that

|Ai| ≥ |Ai−1| − (m− 1) = m+ 1 + (N − (i+ 1))(m− 1). (2.6)

When we create Ai+1, we delete at most m − 1 columns since we assumed Ai has more
than m columns. Then

|Ai+1| ≥ |Ai| − (m− 1)

= m+ 1 + (N − (i+ 1))(m− 1)− (m− 1)

= m+ 1 + (N − (i+ 2))(m− 1)

and we conclude that (2.6) holds. The last submatrix AN−1, has m+ 1 columns so we can
be sure that at least one element repeats twice in row N . We permute columns to place
the repeated element in the last two columns, and label elements in the rightmost column.

∗ a
...

...
∗ x
∗ y
z z

Now we know that each element in the last column will be repeated in the same row as
we move from submatrix Ai to submatrix Ai−1. When each repetition occurs in a different
column, A has a submatrix isomorphic to

a ∗ ∗ ∗ ∗ a
. . .

...
∗ ∗ x ∗ ∗ x
∗ ∗ ∗ y ∗ y
∗ ∗ ∗ ∗ z z

,

in which the first w columns cannot be separated from the last. If some repetitions occur
in the same column, say all repetitions appear in t < w columns, then A is not an SHF
of type {t, 1}, and can therefore not be an SHF of type {w, 1} by the contrapositive of
Theorem 2.8. We have shown that A is not an SHF of type {w, 1}, a contradiction.

20

We now use Lemma 2.7 to extend the result to an arbitrary number of rows. We will use
this technique repeatedly, and will subsequently omit the proofs since they are analogous
to the one below.

Corollary 2.21. In an SHF(N ;n,m, {w, 1}), n ≤ wmd
N
w e − w + 1.

Proof. Suppose there exists an SHF(N ;n,m, {w, 1}) where n = wmd
N
w e −w+ 2. Then by

Lemma 2.7 there exists an SHF(w;wm′−w,m′, {w, 1}) with m′ = md
N
w e, which contradicts

the previous theorem.

Note that this bound is weaker (by one) than the bound of Staddon, Stinson and Wei

[155]. They show that n ≤ wmd
N
w e − w holds in an SHF(N ;n,m, {w, 1}).

SHF of type {5, d}

Now we examine necessary conditions for the existence of SHF of type {5, d} for 1 ≤ d ≤ 5.
Previous results were known for types {5, 1} and Section 2.2.3 gives bounds for types {5, 4}
and {5, 5}, while the bounds for the case d = 2, 3 are new. Proofs of the new bounds
will illustrate the forbidden configuration that will be used to obtain an upper bound for
type {w, d} in Section 2.3. The new forbidden configuration will be a combination of the
staircase configuration and the configuration used for type {w, 1}.

Theorem 2.22. If an SHF(7;n,m, {5, 3}) exists, then n ≤ m+ 24(m− 1).

Proof. Suppose A is an SHF(7;n,m, {5, 3}) with n = m+1+24(m−1). We will construct
submatrices A6 ⊂ A5 ⊂ . . . ⊂ A1 ⊂ A, by deleting certain columns.

We construct A1 so that elements appearing in the first row appear at least eight times
in the first row. The ti elements appearing exactly i times, for 1 ≤ i ≤ 7, will be deleted.
It must be that t1 + . . .+ t7 ≤ (m− 1) since if t1 + . . .+ t7 = m then A would have at most
7m columns, fewer than the number we assumed. After deleting columns from A, A1 has
at least m+ 1 + 17(m− 1) columns.

We now delete columns of A1 to form A2, where all elements in row 2 appear at least
seven times in row 2. Since t1 + . . .+t6 ≤ (m−1) we delete no more than 6(m−1) columns
so |A2| ≥ m+ 1 + 11(m− 1). Similarly A3 must have elements repeating six or more times
in row 3, and |A3| ≥ m + 1 + 6(m − 1) since we delete at most 5(m − 1) columns. In A4

elements must repeat at least five times, by similar reasoning |A4| ≥ m+ 1 + 2(m− 1).

In A5 and A6 elements appearing in rows 5 and 6 (resp.) must appear at least twice
in these rows. Both times we delete no more than (m − 1) columns. Therefore, |A5| ≥
m+ 1 + (m− 1) and |A6| ≥ m+ 1.

21

Now we will derive a contradiction, showing that A is not an SHF of type {5, 3}. A6

has at least m + 1 columns so we can be sure that there is a repeated element in the
seventh row. Call this element a, and permute columns of A6 so that both a appear in
the rightmost columns. Let b be the element in row 6 above the rightmost a. There is a
second b in row 6, giving two possibilities

b b
a a

or
b ∗ b
∗ a a

as a submatrix of A6. Let c be the element in row 5 in the rightmost column. Since c
appears at least twice in row 5, we have the following two possibilities,

c c
b b
a a

or
? ? ? c
∗ b ∗ b
∗ ∗ a a

where one of ? is the other c. In both cases, this submatrix is not an SHF of type {3, 1}
since the rightmost column cannot be separated from the other three.

We suppose the widest case occurs and consider what happens in the next row as a
submatrix of A4. All elements in the fourth row appear at least five times (in the fourth
row). Therefore A4 has a submatrix isomorphic to

d d ∗ ∗ ∗
∗ c ∗ ∗ c
∗ ∗ b ∗ b
∗ ∗ ∗ a a

The elements in the 3rd row of A3 appear at least six times, giving

e e ∗ ∗ ∗ ∗
∗ d d ∗ ∗ ∗
∗ ∗ c ∗ ∗ c
∗ ∗ ∗ b ∗ b
∗ ∗ ∗ ∗ a a

A similar situation exists for A2 and A1, and we finally get

g g ∗ ∗ ∗ ∗ ∗ ∗
∗ f f ∗ ∗ ∗ ∗ ∗
∗ ∗ e e ∗ ∗ ∗ ∗
∗ ∗ ∗ d d ∗ ∗ ∗
∗ ∗ ∗ ∗ c ∗ ∗ c
∗ ∗ ∗ ∗ ∗ b ∗ b
∗ ∗ ∗ ∗ ∗ ∗ a a

(2.7)

22

as a submatrix of A. Number the columns from right to left. The sets of columns
{2, 3, 4, 6, 8} and {1, 5, 7} cannot be separated, therefore A is not an SHF of type {5, 3}.

We assumed the widest case would occur for the bottom three rows in columns 2,3,4.
If the repeated elements occurred in fewer than three columns, then A would not even be
an SHF of type {4, 3} or {3, 3}, and the proof still holds.

Again, from the theorem above and Lemma 2.7 we get a bound on n for SHF of type
{5, 3} with N rows.

Corollary 2.23. If an SHF(N ;n,m, {5, 3}) exists, n ≤ 25md
N
7 e − 24.

Note that Theorem 2.22 started by showing that A could not have a submatrix isomor-
phic to an SHF of type {3, 1} (in the bottom three rows). Then a forbidden configuration
for SHF of type {3, 2} was added (in the top three rows). We can prove a similar result
for type {5, 2} by combining a forbidden configuration for type {4, 1} on the bottom, with
one for type {2, 1} on the top.

Theorem 2.24. If an SHF(6;n,m, {5, 2}) exists, then n ≤ m+ 14(m− 1).

Extending to N rows gives the following corollary.

Corollary 2.25. If an SHF(N ;n,m, {5, 2}) exists, then n ≤ 15md
N
6 e − 14.

Results for type {5, d} 1 ≤ d ≤ 5 are gathered up in Table 2.1.

Type Bound Source

{5, 1} n ≤ 5md
N
5 e − 5 [29] or [155]

{5, 2} n ≤ 15md
N
6 e − 14 Corollary 2.25

{5, 3} n ≤ 25md
N
7 e − 24 Corollary 2.23

{5, 4} n ≤ 15md
N
8 e − 14 Corollary 2.19

{5, 5} n ≤ 37md
N
9 e − 36 Corollary 2.17

Table 2.1: Summary of results for SHF of type {5, d} where 1 ≤ d ≤ 5.

Necessary condition for type {w, d}

In this section we generalize the method used in Section 2.3 for SHF of type {5, 2} and
{5, 3}. Our main result will be a necessary condition for the existence of SHF(N ;n,m,
{w, d}).

23

Proving Theorem 2.26 is a matter of adapting the proof of Theorem 2.22 to have a
variable number of rows. Recall the forbidden configuration in the proof for type {5, 3}
came from combining forbidden configurations for types {3, 1} and {3, 2}, with one column
overlapping. This generalizes as follows: to show the existence of a forbidden configura-
tion for type {w, d} (where d ≤ w), combine one for type {d, d− 1} with one for type
{w − d+ 1, 1}.

Theorem 2.26. If an SHF(w + d− 1;n,m, {w, d}) exists, then

n ≤ m+ (2dw − w − 1)(m− 1).

Proof. Let N0 = 2d− 2, N1 = w − d+ 1 and N = N0 +N1 = w + d− 1. Suppose A is an
SHF(N ;n,m, {w, d}) where n = m+ 1 + (2dw − w − 1)(m− 1). Then

|A| = m+ 1 +

(
N1 − 1 +N0N −

N0(N0 − 1)

2

)
(m− 1)

Let K = N1 − 1 +N0N −N0(N0 − 1)/2, then |A| = m+ 1 +K(m− 1).

We will create a series of submatrices of A, each of which satisfy one of two properties,
as indicated.

AN−1 ⊂ . . . ⊂ AN0+1︸ ︷︷ ︸
Property (ii)

⊂ AN0 ⊂ AN0−1 ⊂ . . . ⊂ A1︸ ︷︷ ︸
Property (i)

⊂ A0 = A

Property (i): elements in row i of Ai, 1 ≤ i ≤ N0, repeat at least N − (i− 2) times, and
we claim that

|Ai| ≥ m+ 1 + (K − iN + i(i− 1)/2)(m− 1) . (2.8)

Property (ii): elements appearing in row N0 + i of AN0+i, 1 ≤ i ≤ N1 appear at least
twice, and we claim that

|AN0+i| ≥ m+ 1 + (N1 − 1− i)(m− 1) . (2.9)

Similar to the proof of type {5, 3} we will show that these submatrices lead to a contra-
diction. The matrices satisfying Property (i) will contribute the top N0 rows, while those
satisfying Property (ii) will add the bottom N1 rows. The double line in (2.7) shows the
division in the {5, 3} case.

We now prove the claim of Property (i) by induction on i. When creating A1 from A0,
we want elements that appear in the first row to appear N + 1 times (in the first row). Let
ti be the number of elements repeating i times in the first row. We must delete at most

24

N(m−1) columns from A0, for if it were the case that t1 + t2 + . . .+ tN = m, A would only
have Nm columns. Assume (2.8) holds up to Ai. To ensure the elements appearing in row
i + 1 of Ai+1 appear at least N − i + 1 times in said row, we must delete (N − i)(m− 1)
columns of Ai. If t1 + . . . + tN−i = m, then Ai would have (N − i)m columns, fewer than
the number assumed in the inductive hypothesis. Then

|Ai+1| ≥ |Ai| − (N − i)(m− 1)

= m+ 1 + (K − iN + i(i− 1)/2−N + i)(m− 1)

= m+ 1 + (K − (i+ 1)N + i(i+ 1)/2)(m− 1) ,

which proves the claim in Property (i).

Since Property (i) holds and K = N1 − 1 +N0N −N0(N0 − 1)/2, note that

|AN0| ≥ m+ 1 + (K −N0N −N0(N0 − 1)/2)(m− 1)

= m+ 1 + (N1 − 1)(m− 1) .

Now we consider the submatrices of Property (ii). When we create AN0+1 we delete
columns from AN0 so that elements in row N0 + 1 appear at least twice. The number of
deleted columns does not exceed m − 1, since we know AN0 has more than m columns.
Therefore |AN0+1| ≥ |AN0| − (m− 1) as required. Assume Property (ii) holds up to i. We
want AN0+i+1 to have elements appearing at least twice in row N0 + i+1. Again, we delete
no more than m − 1 columns, since AN0+i has more than m columns by the inductive
hypothesis. Then

|AN0+i+1| = |AN0+i| − (m− 1) = m+ 1 + (N1 − 1− (i+ 1))(m− 1) ,

proving the claim of Property (ii).

In the very last submatrix,

|AN−1| = |AN0+N1−1| ≥ m+ 1 + (N1 − 1− (N1 − 1))(m− 1)

= m+ 1 ,

which means the last row of AN−1 has a repeated element. We can permute the columns
of AN−1 so that the two rightmost columns have the same element in row N . Since row
N − 2 of AN−2, row N − 3 of AN−3, . . . , row N0 + 1 of AN0+1 all have elements occurring
twice, AN0 has a submatrix isomorphic to

a ∗ ∗ ∗ ∗ a
. . .

...
∗ ∗ x ∗ ∗ x
∗ ∗ ∗ y ∗ y
∗ ∗ ∗ ∗ z z

,

25

in the widest case. This pattern covers N1 rows, and we proceed assuming the widest case,
when the above submatrix is N1 + 1 columns wide.

By Property (i), elements that appear in row N0 − 1 of AN0−1, appear at least N −
(N0 − 1− 2) = N0 +N1 −N0 + 3 = N1 + 3 times. Then we have

b b ∗ ∗ ∗ ∗ ∗
∗ a ∗ ∗ ∗ ∗ a

∗ . . .
...

∗ ∗ ∗ x ∗ ∗ x
∗ ∗ ∗ ∗ y ∗ y
∗ ∗ ∗ ∗ ∗ z z

.

Moving up row by row to A0, Property (i) ensures that each row has elements repeating
one more time than in the previous row. The staircase pattern is incrementally extended
leftward by one up to A0, which has a submatrix isomorphic to (numbered from right to
left):

. . . N1 . . . 4 3 2 1
c c ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ b b ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ a ∗ ∗ ∗ ∗ a

∗ ∗ ∗ . . .
...

∗ ∗ ∗ ∗ ∗ x ∗ ∗ x
∗ ∗ ∗ ∗ ∗ ∗ y ∗ y
∗ ∗ ∗ ∗ ∗ ∗ ∗ z z

.

Consider the following partition of the columns of A0.

Sd = {1} ∪ {N1 + 2k : 0 ≤ k,N1 + 2k < N + 1}
Sw = {2, . . . , N1} ∪ {N1 + 2k + 1 : 1 ≤ k,N1 + 2k + 1 < N + 1}

It is easy to see that the first two subsets {1} and {2, . . . , N1} cannot be separated, this
pattern formed the contradiction in the proof of Theorem 2.20. Likewise, the columns in
the second subsets of Sw and Sd are the odd and even indexed columns of a staircase,
which also cannot be separated. Therefore A is not an SHF of type {|Sw|, |Sd|}.

It remains to show that |Sw| = w and |Sd| = d. First we show the second subsets are
both of size d − 1. Note that the number of columns greater than or equal to N1 is odd,
since the staircase is a d, d− 1 forbidden configuration. The column N1 overlaps the two
patterns, and belongs to the first part of Sw leaving d − 1 for each set. The first subset

26

of Sw has size N1 − 1 = w − d + 1, giving |Sw| = w. The first subset of Sd has size 1, so
|Sd| = d.

Thus A is not an SHF of type {w, d}, contradicting our original assumption and thereby
proving the theorem.

The proof is still valid if the repeated elements in the bottom N1 rows occur in fewer
than N1 columns. The columns 2, . . . , N1 are in Sw, so if the repeated elements occupy t
fewer columns, then A is not an SHF of type {w − t, d} and therefore it cannot be an SHF
of type {w, d}.

Extending to N rows (in the usual way) gives the following corollary.

Corollary 2.27. If an SHF(N ;n,m, {w, d}) exists, then

n ≤ (2dw − w)md
N

w+d−1e − 2dw + w + 1.

Remark 2.28. The bound above applies to all choices of w, d; however it is the strongest
bound known only when 2 ≤ d ≤ w − 2. For the case {w, 1} see Theorem 2.20, for type
{w,w} see Corollary 2.17 and for type {w,w − 1} see Corollary 2.19. For the PHF case,
type {1, 1}, see [29].

2.4 Necessary Conditions for SHF of Type {w1, . . . , wt}

This section will discuss three proofs (and present one proof) for the following bound on
the size of a separating hash family.

Theorem 2.29. Suppose an SHF(N ;n,m, {w1, w2, . . . , wt}) exists. Define u =
∑t

i=1wi.
Then

n ≤ γmdN/(u−1)e,

where γ is a constant which depends only on w1, w2, . . . , wt.

In Blackburn et al. [28] three proofs of this theorem are provided. The first proof
shows that we may take γ =

(
u
2

)
in the theorem; this proof uses general results and so

the argument is quite short. The second proof (Theorem 2.30) extends the forbidden
configuration technique of Stinson et al. [164] to reduce the value we may take for γ. It is
shown that we may take γ = 2(u − w1)w1 − w1, where (without loss of generality) w1 is
the smallest of the integers wi. The final proof obtains a significantly better value for γ:
we may take γ = w1w2 + u− w1 − w2, where we assume (without loss of generality) that
w1 and w2 are the smallest two of the integers wi.

27

We claim that the exponent dN/(u−1)e in the bound of Theorem 2.29 is realistic, since
the exponent in a bound of this form cannot be improved to a value less than N/(u− 1).
To prove this, first note that a probabilistic construction due to Blackburn [26] shows that
an (N ;n,m, u) perfect hash family exists provided that

N >
log 4

((
n
u

)
−
(
n−u
u

))
logmu − log

(
mu − u!

(
m
u

)) .
In particular, this implies that for any fixed u, and any real number δ such that δ <
N/(u − 1), there exists an (N ; bmδc,m, u) perfect hash family whenever m is sufficiently
large. Since an (N ;n,m, u) perfect hash family is an SHF(N ;n,m, {w1, w2, . . . , wt}) for
any wi such that

∑t
i=1 wi = u, we have established our claim.

Proof Using Forbidden Configurations

The bound for type {w, d} from Section 2.3 immediately gives the following bound for type
{w1, w2, . . . , wt}.

Theorem 2.30. Suppose A is an SHF(N, n,m, {w1, . . . , wt}) where w1 ≤ w2 ≤ . . . ≤ wt.
Let u =

∑t
i=1wi. Then

n ≤ (2w1 − 1)(u− w1)mdN/(u−1)e − w1(2u− 2w1 + 1) + 1 (2.10)

Proof. By an appeal to Theorem 2.8, A is also an SHF of type {w1, . . . , wt−1 + wt}. Re-
peating this t− 2 more times, we have that A is also an SHF of type {w1, w2 + . . .+ wt}.
The upper bound on n follows directly from substituting w = w1 and d = u − w1 into
Corollary 2.27.

A remark similar to Remark 2.28 is appropriate here as better bounds may exist when
t = 2 and certainly do exist for PHF types. Additionally, a stronger bound is known for
type {1, 1, 2}, see [164].

2.5 Existence Results for SHF of type {w1, w2}

In this section, we consider existence results for SHF obtained using the probabilistic
method, and we analyze the asymptotic behaviour of the bounds obtained. We prove that
for given values ofN , m, w1 and w2, if n is less than some bound, an SHF(N ;n,m, {w1, w2})
exists.

28

For future reference, we need to recall some basic facts about chromatic polynomials.
Let G be a graph. The number of ways of colouring the vertices of G, using m colours,
such that no two adjacent vertices receive the same colour, is a polynomial in m, called
the chromatic polynomial of G and denoted χ(G,m). The following fundamental results
about chromatic polynomials will be useful.

Theorem 2.31. [140] Let G be a graph on ν vertices and ε edges, and let χ(G,m) be the
chromatic polynomial of G. Then the following hold:

1. the degree of χ(G,m) is ν

2. the coefficient of mν in χ(G,m) is 1,

3. the coefficient of mν−1 in χ(G,m) is −ε, and

4. the coefficients of χ(G,m) alternate in sign.

First, we begin by stating a special case of a general bound proven in [164]. For
completeness, we will provide a proof as well. The proof technique is a standard method in
probabilistic combinatorics known as the “expurgation method” or the “deletion method”
(see, for example, [99, Ch. 21]).

Theorem 2.32. [164, Theorem 4.1] Let w1 and w2 be positive integers. Define

cT =

{
1

w1!w2!
if w1 6= w2

1
2(w1!)2

if w1 = w2.
(2.11)

Also, define

pT = 1− χ(Kw1,w2 ,m)

mw1+w2
, (2.12)

where Kw1,w2 is the complete bipartite graph with w1 vertices in one part and w2 vertices in
the other part. Then there exists an SHF(N ;n,m, {w1, w2}) provided that n ≤ B(w1, w2),
where

B(w1, w2) = (1− cT)

(
1

pT

) N
w1+w2−1

. (2.13)

Proof. Suppose A is an N × L matrix whose entries are elements chosen from a set X of
size m. For two disjoint subsets C1, C2 of columns of A, where |Ci| = wi, i = 1, 2, define
a random variable RA(C1, C2) = 0 if there is a row in A which separates the sets C1, C2,
and define RA(C1, C2) = 1 otherwise.

Now suppose A is a random matrix (i.e., the entries of A are chosen independently and
uniformly at random from X). If we fix a row r of A, then the probability that row r

29

separates the sets C1, C2 is exactly χ(Kw1,w2 ,m)/mw, where w = w1 +w2 (this is explained
in detail in the proof of Theorem 3.35). Therefore, the probability that no row r of A
separates the sets C1, C2 is exactly(

1− χ(Kw1,w2 ,m)

mw

)N
.

Hence, the expected value of the random variable RA(C1, C2) is easily computed to be

E[RA(C1, C2)]

= 0× Pr[RA(C1, C2) = 1] + 1× Pr[RA(C1, C2) = 1]

= Pr[RA(C1, C2) = 1]

=

(
1− χ(Kw1,w2 ,m)

mw

)N
.

Next, denote

pT = 1− χ(Kw1,w2 ,m)

mw

and define the random variable

RA =
∑
C1,C2

RA(C1, C2), (2.14)

where C1, C2 are disjoint subsets of columns of A and |Ci| = wi, i = 1, 2.

The number of terms in the sum (2.14) is equal to
(
L
w1

)(
L−w1

w2

)
if w1 6= w2. If w1 = w2,

then the number of terms in the sum is
(
L
w1

)(
L−w1

w2

)
/2. It is clear that(

L

w1

)
≤ Lw1

w1!

and (
L− w1

w2

)
≤ Lw2

w2!
.

Therefore, it follows that the number of terms in the sum (2.14) is at most cT L
w, where

cT is defined in equation (2.11). Hence, we have that

E[RA] ≤ cT L
w pT

N . (2.15)

Now, suppose that the following inequality holds:

L ≤
(

1

pT

) N
w−1

.

30

Then it is easy to see that (2.15) implies that E[RA] ≤ cT L. In what follows, we will take

L =

(
1

pT

) N
w−1

. (2.16)

Since the expected value of RA is at most cT L, this implies that there exists a particular
matrix A such that RA ≤ cT L. Recall that RA is computed as a sum of terms in which
each term is equal to 0 or 1. Therefore, for this matrix A, there are at most cT L nonzero
terms in the sum (2.14).

Now, for each nonzero term RA(C1, C2) in the sum (2.14), delete one column y ∈ C1

from A. Call the resulting matrix A′. It is clear that A′ has at least (1 − cT)L columns,
since we have deleted at most cTL columns from A to construct A′.

Informally, we are deleting a certain set of columns from A so that the resulting matrix
A′ has no pairs C1, C2 such that RA′(C1, C2) = 1. This will imply that RA′ = 0.

We now formally prove that RA′ = 0. Let Y denote the set of all the columns of A and
let Y ′ denote the set of all the columns of A′. We have that

RA′ =
∑

{{C1,C2}:C1∪C2⊆Y ′}

RA′(C1, C2), (2.17)

where as usual, we require that C1∩C2 = ∅, |C1| = w1, and |C2| = w2. Suppose that RA′ >
0. Then there exists a term RA′(C1, C2) in the sum (2.17) such that RA′(C1, C2) = 1. Since
Y ′ ⊆ Y (i.e., all the columns in A′ are also in A), it must be the case that RA(C1, C2) = 1.
However, in constructing A′ from A, we deleted a column y ∈ C1 because RA(C1, C2) = 1.
Therefore there is a column y ∈ C1 such that y 6∈ Y ′. Therefore C1 ∪ C2 6⊆ Y ′, which is a
contradiction.

We conclude that RA′ = 0, and therefore A′ is an SHF(N ;L′,m, {w1, w2}) in which
L′ ≥ (1− cT)L. Substituting (2.16), we have

L′ ≥ (1− cT)

(
1

pT

) N
w1+w2−1

,

as desired. This completes the proof.

Next, we determine the asymptotic behaviour of the bound B(w1, w2). In order to do
this, we need to analyze the quantity 1/pT . This can be done by using the properties of
chromatic polynomials enumerated in Theorem 2.31.

31

Corollary 2.33. For positive integers w1 and w2, as m→∞ it holds that

B(w1, w2) = (1− cT)

(
m

w1w2

(1 + o(1))

) N
w1+w2−1

,

where cT is the constant defined in (2.11).

Proof. Applying the results listed in Theorem 2.31, we have that

pT = 1− χ(Kw1,w2 ,m)

mw1+w2

= 1− mw1+w2 − w1w2m
w1+w2−1 + g(m)

mw1+w2

=
w1w2

m
− g(m)

mw1+w2
, (2.18)

where g(m) is a polynomial of degree not exceeding w1 +w2 − 2, whose leading coefficient
is positive.

Now, if we write 1/pT in the form

1

pT
=

m

w1w2

(1 + ∆), (2.19)

then
∆ =

w1w2

mpT
− 1. (2.20)

Substituting (2.18) into (2.20), we obtain

∆ =
w1w2

m
(
w1w2

m
− g(m)

mw1+w2

) − 1

=
1

1− g(m)
w1w2mw1+w2−1

− 1.

Since g(m) has degree at most w1 + w2 − 2, it follows that

lim
m→∞

g(m)

w1w2mw1+w2−1
= 0,

and hence limm→∞∆ = 0. Therefore, we can rewrite (2.19) in the form

1

pT
=

m

w1w2

(1 + o(1)),

and the desired result follows from (2.13).

32

The bound B(w1, w2), which guarantees existence of the relevant SHF, has the same
exponent as the necessary conditions proven in Sections 2.2 and 2.3 (except for the ceiling
function). In this sense our bounds can be considered relatively tight. Also, we note that
the first term of B(w1, w2) quickly approaches one as w1 and w2 increase. For instance,
when w1 = 5 and w2 = 6, (1− ct) ≈ 1− 2−16.

33

Chapter 3

Constructions

In this chapter, we consider ways of constructing SHF of type T = {w1, . . . , wt}, by gener-
alizing existing methods which apply to special types. Section 3.1 will focus on generalizing
constructions from three main sources.

• Stinson et al. [165], which constructs PHF and SHF of type {w1, w2} using combi-
natorial methods and codes with large distance.

• Walker and Colbourn [179], which surveys existing constructions of PHF and provides
new ones. We also consider constructions from the paper of Martirosyan and van
Trung [118], which extends [179].

• Wang and Xing [181] and Liu and Shen [109], which give constructions for PHF, SHF
of type {w1, w2} and SSHF using a construction based on algebraic curves, similar
to the construction of algebraic geometry codes (AG codes) [31].

Walker and Colbourn [179], compare 25 constructions for PHF. Essentially, the metric
used for comparison is a count of how often, for fixed n,m and strength, a construction
gives a PHF with the smallest N (arrays used as input to recursive constructions which
produce the PHF with the smallest N are also counted). Unfortunately, in their comparison
the AG-based construction was not included.

Another question related to constructions of PHF and SHF is the asymptotic relation-
ship between N and n when m and T are fixed. AG-based constructions of PHF, SHF
and SSHF are asymptotically optimal, since they have N = O(log n). Liu and Shen [109]
prove the following.

Theorem 3.1 ([109, Theorem 3.3, 3.7]). For any positive integers m,w1, w2, there exists
an infinite class of explicitly constructed SSHF of type {w1, w2} and SHF of type {w1, w2}
for which N is O(log n).

34

Remark 3.2. The constant hidden by the big-O notation in Theorem 3.1 is w1w2 for SHF
and

(
w1

2

)
+ w1w2 for SSHF.

We will extend these results to SHF of the most general type {w1, . . . , wt}. Since the
result is asymptotic and relies on the existence of curves with certain properties, we take a
detailed look at the concrete parameters possible with the AG construction and provide an
implementation (§3.3). We also define metrics we use to describe and compare the possible
variants of the AG construction (obtained by using different curves).

With our implementation it is also possible to use hash families which separate inputs
of a specified type with known probability (chosen as needed). The number of rows in the
hash family can be significantly reduced, provided the application can tolerate occasional
errors (i.e., failing to separate an input). Finally, we analyze the behaviour of random hash
families, since they are simple to construct and implement.

3.1 Constructions

In this section we describe constructions of SHF of arbitrary type. We will use T to denote
the type of an SHF, which will be {w1, . . . , wt} unless specified otherwise.

The next definition is a quantity associated with the strength of an SHF, and will
appear in many constructions.

Definition 3.3. For the multiset T = {w1, . . . , wt}, define

P (T) =
t∑
i=1

t∑
j=i+1

wiwj

(i.e., the sum of the products of all unordered pairs wi, wj, i 6= j).

It should be noted that for the PHF type, when T = {w1 = 1, . . . , wt = 1}, P (T) =
(
t
2

)
.

3.1.1 Constructions From Codes with Large Distance

One approach to constructing hash families is to show that a code with large distance is
also a hash family of the desired type. If the code is constructed explicitly, it immediately
yields an explicit construction for the hash family as well. Alon [3] first used this idea to
construct PHF, then Sarkar and Stinson [147] gave a condition for SSHF of type {w1, w2}
to be constructed in this way. Shortly after, Cohen et al. [57] gave the distance condition
for a code to be an SHF of type {w1, . . . , wt}.

35

Theorem 3.4 ([57, Prop. 7]). Let C be an (N ;n,m,D)-code with minimum distance

D > N

(
1− 1

P (T)

)
. (3.1)

Then C is an SHF(N ;n,m, {w1, . . . , wt}).

Proof. Let C1, . . . , Ct be disjoint sets of C, with |Ci| = wi. Let

Si,j =
∑

x ∈ Ci,
y ∈ Cj

dist(x, y) .

Since dist(x, y) ≥ D for any distinct x, y ∈ C, we have Si,j ≥ wiwjD. Further

S =
∑
i<j

Si,j ≥ D (P (T))

and
S > N(P (T)− 1) (3.2)

by (3.1). Now suppose that C is not an SHF of type {w1, . . . , wt}. Then the maximum
contribution of each row (of the matrix representation of C) to S is P (T) − 1. This
implies that S ≤ N (P (T)− 1), which contradicts (3.2). Therefore C is an SHF of type
{w1, . . . , wt}.

Remark 3.5. The above is a sufficient condition, but not a necessary one. We will see an
SHF construction where this does not hold (see Remark 3.31).

The next theorem is new, and our first application of the distance condition. This
construction is inspired by the construction of Stinson, Wei and Zhu for SHF of type
{w1, w2} [165, Corollary 2.4].

Theorem 3.6. Let q be a prime power, and ` be an integer such that 2 ≤ ` < q. Then
there exists an SHF(q; q`, q, {w1, . . . , wt}), provided P (T) < q

`−1
.

Proof. We can construct a (q; q`, q, q − (` − 1)) Reed-Solomon code (see [177, §6.8]). In
order to apply Theorem 3.4, the distance q − (`− 1) must satisfy

q − (`− 1) > q

(
1− 1

P (T)

)

36

which can be expressed as a condition on P (T),

`− 1

q
<

1

P (T)

P (T) <
q

`− 1
.

Applying Theorem 3.4, the Reed-Solomon code is an SHF(q; q`, q, {w1, . . . , wt}), as re-
quired.

Note that the case ` = 1 is trivial since n = m.

Example 3.7. For type T = {2, 3, 4}, P (T) = 26. By setting q = 107, ` = 5, we get
q/(` − 1) = 26.75 and we can therefore construct an SHF(107; 1075, 107, {2, 3, 4}) with
Theorem 3.6.

The following recursive construction allows us to decrease the alphabet size in an SHF
at the expense of an increased number of rows. The next theorem is similar to a theorem
of Blackburn for PHF [25], and was first given for the general case by Cohen et al. [57].

Lemma 3.8. Let T = {w1, . . . , wt}. Suppose there exists an SHF(N0;n, v, T) and an
SHF(N1; v,m, T). Then there exists an SHF(N0N1;n,m, T).

Proof. Denote the SHF(N0;n, v, T) by A, the SHF(N1; v,m, T) by B and the SHF(N0N1;n,
m, T) by AB. We write FA and FB for the functions in A and B, respectively. Let
C1, . . . , Ct ⊂ X, |Ci| = wi, be any input sets to AB. Since A is an SHF of type T , there
exists some φ ∈ FA such that

⋂t
i=1 φ(Ci) = ∅. Each set Ci yields a multiset C ′i of elements

from the alphabet of size v, with |C ′i| = wi. We now use the sets C ′i as input to B, where
we have ψ ∈ FB, which separates C ′i, since B is also an SHF of type T .

Thus, FAB is defined as the N0N1 composed functions ψ ◦ φ where φ ∈ FA and ψ ∈
FB.

We now present a recursive construction for creating SHF of type {w1, . . . , wt} with
large domain. This construction is a generalization of a similar construction for PHF from
Stinson et al. [165, Theorem 3.6].

Theorem 3.9. Suppose there exists an SHF(N0; ql0 ,m, T) where q is a prime power and
ql0 > P (T). Then for all h ≥ 1, there exists an SHF(N0Ph; q

lh ,m, T), where P0 = 1 and

Ph = qlh−1Ph−1, and

lh = lh−1

⌊
qlh−1

P (T)

⌋
.

37

Proof. We proceed by induction on h. The case h = 0 is true by assumption, and we
assume the theorem holds up to h− 1. To prove the inductive step, we can use Theorem
3.6 with q replaced by qlh−1 and lh =

⌊
qlh−1/P (T)

⌋
to construct an SHF(qlh−1 ; qlh , qlh−1 , T)

(call it A). The required conditions P (T) < qlh−1/(r − 1) are satisfied since qlh−1 > ql0

and t > 2. By our inductive hypothesis, an SHF(N0Ph−1; qlh−1 ,m, T) exists (call it B).
Applying the product theorem to A and B (Lemma 3.8), an SHF(N0Ph; q

lh ,m, T) also
exists.

The next theorem generalizes a theorem of Stinson et al. [165, Theorem 3.7] for PHF,
and holds with virtually the same proof (the original proof is for PHF of strength t, and
remains valid if we replace

(
t
2

)
with P (T)).

Theorem 3.10. Let log∗(1) = 1, log∗(n) = log∗(dlog ne) + 1 if n > 1. For any positive
integers m and T = {w1, . . . , wt} there exists an infinite class of SHF(N ;n,m, {w1, . . . wt})
such that N = O(P (T)log∗ n log n).

Constructing CFF From Codes with Large Distance

This construction is due to Kautz and Singleton [104]. They prove a lemma that gives
conditions under which a constant weight binary code is the incidence matrix of a d-
CFF (X,B). Here, each codeword will define a column of the incidence matrix, each row
corresponds to one point x ∈ X, and each column defines a set B ∈ B. The codewords of a
constant weight code all have a fixed number of nonzero coordinates. Now suppose we have
an (N ;n, q, `) code, i.e., n codewords of length N over q symbols with minimum distance
`. We must replace the q-ary alphabet with a binary one in order to construct an incidence
matrix. Let ϕ : {1, . . . , q} → {0, 1}q0 be a map which encodes 1, . . . , q as binary vectors
of length q0. The codeword (c1, . . . , cN) will be replaced by (ϕ(c1), . . . , ϕ(cN)). Different
choices of ϕ are possible, so long as the encoding ϕ(1), . . . , ϕ(q) forms a d-CFF(q0, q). We
refer the reader to Kautz and Singleton [104] and Nguyen and Zeisel [128] for the details
of such recursive constructions.

A simple choice of ϕ encodes i as the i-th column of the q × q identity matrix. The
resulting code has constant weight, and gives a d-CFF(qN, n) if d < N−1

N−` . This gives the
following explicit construction.

Theorem 3.11 ([104]). Let q be a prime power, 2 ≤ k < q be an integer and let C be a
(q; qk, n, q − (k − 1)) Reed-Solomon code (see [177, §6.8]). Then C is d-CFF(q2, n) if

d <
q − 1

k − 1
.

The CFF is uniform if the input code, and the encoding ϕ are constant weight. Table
3.1 gives sample parameters produced by this construction.

38

q m k n d

8 64
3 512 3
4 4096 2

16 256
3 4096 7
4 65536 5
5 1048576 3

27 729
3 19683 13
4 531441 8
5 14348907 6

Table 3.1: Sample parameters for d-CFF(m,n) constructed using Theorem 3.11.

3.1.2 Direct and Recursive Constructions

Column Increase

In the work of Walker and Colbourn [179], a construction called column increase is pre-
sented. This construction does well in the ranking they present; it produces PHF(N ;n,m,w)
with the lowest known value of N for many n and m. The column increase construction
combines two arrays to produce a new array with an additional column and one or more
additional row(s), but no additional symbols. Let SHFN(n,m, T) denote the smallest N
for which an SHF(N ;n,m, T) is known to exist (define PHFN analogously).

Theorem 3.12 ([179, Theorem 4.13]). For w ≥ 3,

PHFN(n+ 1,m,w) ≤ PHFN(n,m,w) + PHFN(n− 1,m− 2, w − 2) .

Specifically, Theorem 3.12 takes a PHF(NA;n,m,w) and a PHF(NB;n−1,m−2, w−2)
as input, and outputs a PHF(NA +NB;n+ 1,m,w).

We give a generalization of the column increase construction to SHF of type {w1, w2}.

Theorem 3.13.

SHFN(n+ 1,m, {w1, w2}) ≤ SHFN(n,m, {w1, w2}) +

SHFN(n− 1,m− 2, {w1 − 1, w2 − 1})

Proof. Let A and B be input, and C the output.

• A is an SHF(NA;n,m, {w1, w2}),

39

• B is an SHF(NB;n− 1,m− 2, {w1 − 1, w2 − 1}), and

• C is an SHF(NA +NB;n+ 1,m, {w1, w2}).

C will have the following form:
w w
x x

A
...

...
y y
z z
v v′

v v′

B
...

...
v v′

v v′

A and B are vertically juxtaposed, the last column of A is repeated and B is extended by
two columns consisting of v and v′, the two symbols appearing in A which do not appear
in B. We now prove that C is an SHF of type {w1, w2}. Consider column sets W1 and
W2 of C with |W1| = w1 and |W2| = w2. We refer to the n-th column of C as ` and the
(n + 1)-st as `′. We now consider four cases, depending on which sets the columns `, `′

belong to. In the three cases,

• neither of ` nor `′ is in W1 or W2, i.e., `, `′ 6∈ (W1 ∪W2),

• one of `, `′ is in a set, i.e., (wlog) ` ∈ W1, `′ 6∈ W2, and,

• both ` and `′ are in the same set, i.e., {`, `′} ∈ W1, or {`, `′} ∈ W2,

the submatrix A will contain a row separating W1,W2.

In the remaining case when (wlog) ` ∈ W1 and `′ ∈ W2, B will separate W1 − ` from
W2 − `′ since |W1 − `| = w1 − 1 and |W2 − `′| = w2 − 1. Also, by construction ` and `′ are
separate from each other and from all other columns of B. Hence, C is an SHF of type
{w1, w2}.

We can also generalize Theorem 3.12 to SHF of arbitrary type. Unfortunately, in the
generalization the second ingredient is not of reduced strength (and hence the number of
rows is not reduced).

Theorem 3.14.

SHFN(n+ 1,m, T) ≤ SHFN(n,m, T) + SHFN(n− 1,m− 2, T) .

40

Proof. We use the same construction and notation as in Theorem 3.13 except the SHF A,
B and C are all of type T , and we consider the same cases for ` and `′. If neither belong
to W1, . . . ,Wt, one belongs to one of W1, . . . ,Wt, or both are in one of W1, . . . ,Wt, then
A will separate W1, . . . ,Wt. In the remaining case when (wlog) ` ∈ Wi and `′ ∈ Wj, B
will separate Wi − ` from Wj − `′ since B is an SHF of type T and by construction ` and
`′ are separate from each other and the other columns of B. Hence, C is an SHF of type
{w1, . . . , wt}.

The column increase construction was later generalized to the “columns increase” con-
struction by Martirosyan and van Trung [118].

Theorem 3.15 ([118]). For w ≥ 3, and for any integer 2 ≤ x ≤ m− w + 2,

PHFN(n+ x− 1,m,w) ≤ PHFN(n,m,w) + PHFN(n− 1,m− x,w − 2) .

We now give the corresponding columns increase construction for separating hash fam-
ilies.

Theorem 3.16. Suppose an SHF(N ;n,m, T) and an SHF(N ;n,m−x, T) exist with x ≥ 2.
Then

SHFN(n+ x,m, T) ≤ SHFN(n,m, T) + SHFN(n,m− x, T) .

Proof. (Sketch). We use the same construction and notation as in Theorems 3.14 and
3.13. After vertically juxtaposing A and B, we duplicate the last column of A x times,
and extend B by x columns, each containing one of the symbols of A not used in B. By a
similar argument as above, any inputs will be separated by either a row of A or a row of
B.

As was the case for column increase, it should be possible to improve the columns
increase construction for certain values of x and T .

A Direct Construction

In this section we generalize another construction for perfect hash families of Walker and
Colbourn [179] which they name the “First-N construction”. The construction is direct,
i.e., it does not require smaller PHF(s) as input.

Theorem 3.17 ([179]). For a ≥ 1 and b ≥ 2, there exists a PHF(a+1; ba+b, ba+1, 2a+1).

We show that this construction can be used to create SSHF in the following theorem.

41

Theorem 3.18. For a ≥ 1, b ≥ 2, there exists an SSHF(a+ 1; b(a+ 1), ba+ 1, {w1, w2}),
provided w1 < a+ 1 and w2 ≤ b(a+ 1)− w1.

Proof. Our array will have a+ 1 rows, and b(a+ 1) columns, partitioned into a+ 1 groups
of size b (pictured below). Fill the j-th partition of the j-th row with the symbol v, where
v = ba + 1. For the remaining positions of row j place the other ba symbols, once each
(omitted from the diagram). The j-th partition of the j-th row will be called the primary
partition.

v v . . . v
v v . . . v

.

v v . . . v

We first show that this array is an SHF of type {w1, w2}. Take any disjoint column sets
Ci, where |Ci| = wi for i = 1, 2. Since w1 < a + 1, and there are a + 1 partitions, there
exists a primary partition which contains no column from C1, call this partition p. We
claim row p separates C1 and C2.

First, note that all columns not in the primary partition of row p are distinct (in row
p). All the repeated elements in row p appear in the primary partition which does not have
columns belonging to C1. Therefore, repeated elements of row p can only occur in columns
of C2 and we have constructed an SHF of type {w1, w2}. Now since the columns of C1 are
distinct, the above construction is also an SSHF of type {w1, w2} as required.

We make a few remarks about Theorem 3.18.

Remark 3.19. 1. Note that this construction also yields an SHF of type {w′1, . . . , w′t}
if w1 = w′1 + . . .+ w′t−1 and w2 = w′t.

2. The condition on w2 serves only to ensure that there are enough columns; once C1

is chosen, C2 can contain all b(a+ 1)− w1 remaining columns.

3. The output of this construction may serve as a useful input to a recursive construction
which increases n but not m, to increase the compression of this SHF since n−m is
not very large.

3.1.3 Algebraic Geometry Background

We now give some background on algebraic curves and functions fields required for the
construction we will present in Section 3.1.4. Further details are available in [31, 156, 175].

42

We will specialize our presentation by defining all objects over the finite field Fq where q
is a prime power.

Let C/Fq be a plane affine curve over Fq of genus g. We use C to denote the irreducible
polynomial in Fq[x, y] which defines C. Let C(Fq) be the set of points on C with coordinates
in Fq, i.e., C(Fq) =

{
(x, y) ∈ F2

q : C(x, y) = 0
}

. We will use C as shorthand for C(Fq). The
coordinate ring of C is Fq[C] = Fq[x, y]/〈C〉, where 〈C〉 is the ideal generated by C. The
coordinate ring equates polynomials in Fq[x, y] that differ by a multiple of the equation of
the curve. The function field associated to C is the set of rational functions on C:

Fq(C) =

{
a(x, y)

b(x, y)
: a, b ∈ Fq[C]

}
.

For example, let C be the elliptic curve defined by C(x, y) = y2−x3−ax−b. The coordinate
ring is Fq[C] = Fq[x, y]/〈y2 − x3 − ax− b〉, and Fq(C) is the quotient field of Fq[C].

For a function r ∈ Fq(C) and a point P ∈ C, we say that P is a zero of r if r(P) = 0. If
all representations of r as a/b for a, b ∈ Fq[C] have b(P) = 0 then we say that P is a pole
of r and write r(P) = O, where O is an idealized point (called the point at infinity).

Now we define the order at a point of a function in Fq(C). For a point P ∈ C, a
uniformizing parameter is a function z ∈ Fq(C) such that i) z(P) = 0 and ii) for each
nonzero polynomial function f ∈ Fq(C), there exists an integer d and another function
s ∈ Fq(C) such that s(P) 6= 0 and f = zds. The order of f at P is defined to be
ordP (f) = d. Further, at least one such a function z exists for each point P , and d is
independent of the choice of z.

Definition 3.20. A divisor of C is a formal sum

D =
∑
P∈C

mPP , mP ∈ Z ,

where only finitely many mP are nonzero. The degree of D, denoted degD is
∑

P∈CmP .
A divisor is called positive if all mP are non-negative. We can compute the sum of two
divisors as

D1 +D2 =
∑
P∈C

mPP +
∑
P∈C

nPP =
∑
P∈C

(mP + nP)P .

Under this operation, the set of all divisors forms a free abelian group, denoted Div(C).

Definition 3.21. Let D ∈ Div(C) be as defined in Definition 3.20. The support of a
divisor is the set of points with nonzero mP , i.e.

Supp(D) = {P ∈ C | mP 6= 0} .

43

To each function x ∈ Fq(C) we can associate three divisors:

1. the zero divisor
(x)0 =

∑
P∈ zeroes(x)

ordP (x)P ,

2. the pole divisor

(x)∞ =
∑

P∈ poles(x)

ordP (x)P ,

3. and the principal divisor (x) = (x)0 − (x)∞.

The object in the next definition will be the basic building block for constructing hash
families.

Definition 3.22. Let C/Fq be an algebraic curve and G be a divisor of Div(C). The
Riemann-Roch space of G is defined

L(G) = {x ∈ Fq(C) | (x) +G is positive} ∪ {0} .

The Reimann-Roch space L(G) ⊂ Fq(C) of C is a finite dimensional vector space over Fq.
We write l(G) to denote the dimension of L(G). As a consequence of the Riemann-Roch
theorem,

l(G) ≥ deg(G) + 1− g ,

which holds with equality when deg(G) ≥ 2g− 1 [30]. Further, elements of L(G) can have
at most deg(G) zeroes [109, 181]. The SHF we will construct will hash from the domain
L(G) to the co-domain Fq, therefore, n = ql(G) and m = q.

A well studied class of algebraic geometry codes, introduced by Goppa, are the geomet-
ric Goppa codes [90]. The SHF constructed by Theorem 3.28 are a special type of Goppa
code.

Definition 3.23. A geometric Goppa code is defined for two divisors A,G with disjoint
supports, and |Supp(A)| = N , as

CL(A,G) = {x(P1), . . . , x(PN) | x ∈ L(G), Pi ∈ Supp(A)} .

It is well known that the minimum distance of CL(A,G) satisfies D ≥ N −deg(G) [156,
II.2.2]. For further details of AG codes, see [31, 156].

44

3.1.4 Constructions From Algebraic Geometry

A recent paper of Liu and Shen [109] gives constructions for strong separating hash families.
We first give a simple lemma relating SSHF and SHF.

Lemma 3.24. Let v = w1 + w2 + . . . + wt−1. Then an SSHF(N ;n,m, {v, wt}) is an
SHF(N ;n,m, {w1, w2, . . . , wt}).

Proof. By definition of an SSHF, an SSHF of type {v, wt} is an SHF of type {1v, wt}. Since
the first v inputs are always distinct, they can be arranged into groups of size w1, . . . , wt−1

provided their sum is v.

From this lemma, constructions for SSHF immediately yield constructions for more
general SHF. It follows that explicit constructions with asymptotically good parameters
exist for SHF of type {w1, . . . , wt}.

Theorem 3.25. For any positive integers m,w1, . . . , wt, there exists an infinite class of
explicitly constructed SHF(N ;n,m, {w1, . . . , wt}) for which N is O(log n).

Proof. Use Lemma 3.24 to extend Theorem 3.1 from SSHF to general SHF.

In Section 3.1.4 we will generalize the construction of of Liu and Shen for SHF of
type {w1, w2} to SHF of type {w1, . . . , wt} which will require fewer rows than using their
SSHF construction (Theorem 3.1) with Lemma 3.24. This improvement is possible since
P ({w1, . . . , wt}) ≤ P ({1w1+w2+...+wt−1 , wt}).

Construction for SHF of type {w1, . . . , wt}

Before presenting the construction we need some lemmas. First, it is possible to construct
a divisor of arbitrary degree whose support is disjoint from a set of rational points.

Lemma 3.26 ([156]). Let S be a subset of C(Fq) \ {O}. Then for any t ≥ 0, there exists
a divisor G such that deg(G) = t and S ∩ Supp(G) = ∅.

This can easily be seen by setting G = t(O). Now we define the set of functions F
which will be used in our construction.

Lemma 3.27 ([181]). For every point P in C(Fq), define the map hP : L(G) → Fq by
hP (f) = f(P). Let S ⊂ C(Fq) and F = {hP | P ∈ S}. Then |F| = |S|.

45

The function hP is sometimes called the residue class map. The next theorem is the
main result of this sub-section. It is a generalization of [109, Theorem 3.1] which was for
SHF of type {w1, w2}.

Theorem 3.28. Let C/Fq be an algebraic curve of genus g, and S a set of Fq-rational
points of C. Suppose that G is a divisor with deg(G) ≥ 2g+1, and S∩Supp(G) = ∅. Then
there exists an

SHF(|S|; qdeg(G)−g+1, q, {w1, . . . , wt})

if |S| > deg(G) · P (T) where P (T) =
∑t

i=1

∑t
j=i+1wiwj.

Proof. Let F = {hP | P ∈ S}. Each f ∈ F will define a row of the matrix representation
of the SHF. Recall from Lemma 3.27 that |F| = |S|. The domain of F will be L(G) which
is a vector space over Fq of dimension deg(G) − g + 1, since deg(G) ≥ 2g + 1. For any
disjoint subsets Ci, . . . , Ct of L(G) (the columns) with |Ci| = wi, we consider the sets of
differences

Φi,j = {u− v | u ∈ Ci, v ∈ Cj} .

The set Φi,j will have at most wiwj elements, each of which can have up to deg(G) ≤ 2g+1
zeroes. Therefore, the total number of zeroes for all elements in Φi,j is at most deg(G)·wiwj.
We now take the union over all unordered pairs (i, j),

Φ1,...,t =
t⋃
i=1

t⋃
j=i+1

Φi,j

for which

|Φ1,...,t| ≤
t∑
i=1

t∑
j=i+1

|Φi,j| = P (T) .

The total number of zeroes for the elements of Φ1,...,t is at most deg(G) · P (T). Since we
have |S| > deg(G) ·P (T), there must exist a point R ∈ S, such that R is not a zero of any
function of Φ1,...,t (multiple such points may exist, see Remark 3.30).

We now show that hR separates the inputs, by showing that hR(Ci) ∩ hR(Cj) = ∅ for
all i 6= j. Consider u ∈ Ci, v ∈ Cj. R is not a zero of u − v, since u − v ∈ Φi,j ⊂ Φ1,...,t,
and R was chosen not to be a zero of any element in Φ1,...,t. That R is not a zero of u− v
is equivalent to having hR(u) 6= hR(v). Therefore

t⋂
i=1

hR(Ci) = ∅

and we have an SHF(|S|; qdeg(G)−g+1, q, {w1, . . . , wt}).

46

We make a few remarks about this theorem.

Remark 3.29. The upper bound on the number of zeroes in Φ1,...,t is, for most choices of
C1, . . . , Ct, much larger than the actual number. There are therefore many R such that R
is not a zero of any element of Φ1,...,t, and therefore many separating rows. This claim will
be supported by experimental observations in Section 3.3.2.

Remark 3.30. There are actually λ = |S| − degG · P (T) functions which separate any
input sets. Such SHF are sometimes referred to as λ-SHF [109].

Remark 3.31. Theorem 3.28 is equivalent to the geometric Goppa code CL(A,G) with
the restrictions that degG ≥ 2g + 1 and |Supp(A)| ≥ degG · P (T) (cf. Definition 3.23).
Combining the minimum distance of CL(A,G), which satisfies D ≥ N − deg(G), and
Theorem 3.4, we find that if

N − deg(G) > N

(
1− 1

P (T)

)
,

or equivalently,

deg(G) >
N

P (T)
, (3.3)

then CL(A,G) is an SHF(N ; ql(G), q, {w1, . . . , wt}).

A natural question is to ask whether Theorem 3.28 improves on the simpler construction
via Goppa codes and the distance condition (Theorem 3.4). If we use the smallest values
allowed by Theorem 3.28, deg(G) = 2g+1, N = deg(G)P (T), and ask whether the distance
condition (3.3) holds, we find it does not (the LHS and RHS are equal). Therefore, the
construction of Theorem 3.28 does better than the straightforward approach of using a
Goppa code satisfying (3.1). To construct an SHF using the latter, we will always need an
extra row.

Theorem 3.28 is still not completely explicit until a particular choice of curve is made.
In Section 3.2 we will give examples, and compare the resulting parameters.

3.1.5 Construction of Compound Types

A separating hash family of compound type is one which acts as multiple types simultane-
ously. For example, consider A = SHF(N ;n,m, {w1, w2}+{w3, w4, w5}), where + is used to
mean “and”. ThenA is both an SHF(N ;n,m, {w1, w2}) and an SHF(N ;n,m, {w3, w4, w5}).
Depending on the types, this often occurs trivially, for example SHF of type {w1, w2} are
also SHF of type {w′1, w2} whenever w′1 ≤ w1. Similarly, SHF of type {w1, . . . , wt} are also
SHF of type {w1, w2 + . . .+ wt}.

47

A more interesting compound type is the one used to give a necessary condition for
w-IPP codes [155]. Staddon and Stinson [155] show that a w-IPP code must be an SHF
of type {w,w} + {1w+1}. The converse does not hold in general (but it does hold for
w = 2 [96]).

Theorem 3.32. Let A be an SHF(N ;n,m, {w,w}) constructed by Theorem 3.28 or 3.4.
Then A is also a PHF of strength w + 1.

Proof. From the construction, we have N = |S|, where |S| ≥ degG · P (T). Since
P ({w,w}) > P ({1w+1}), the construction for type {w,w} is also a construction for type
{1w+1}, which gives A both separating properties.

Theorem 3.32 generalizes as follows, by noting that a type with a given P (T) value is
also a construction for types with smaller P (T).

Theorem 3.33. Let A be an SHF of type T = {w1, . . . , wt} constructed by Theorem 3.28 or
3.4. Then A is simultaneously an SHF of type T ′, for all types T ′ for which P (T ′) ≤ P (T).

Note that this does not hold for SHF constructed arbitrarily as [164] gives (among
others) an example of an SHF of type {2, 2} which is not an SHF of type {1, 3} even
though P ({2, 2}) = 4 > P ({1, 3}) = 3.

3.1.6 Analysis of Random Hash Families

In this section, instead of explicitly constructing an SHF, we analyze the probability that
a matrix chosen at random acts as an SHF of a given type. In other words, if we choose
a matrix at random, what is the probability that it separates an input of type T? Such
random hash families have the advantage of being simple and efficient to implement. Fur-
ther, if the entries of the matrix are generated as needed from a pseudorandom function,
minimal storage is required. One of the metrics we will present in Section 3.2 compares
the behaviour of a particular SHF to the expected behaviour of a family of random func-
tions. Techniques similar to the ones used in this section were used in Section 2.5, to give
existence results for SHF of type {w1, w2} and in [164] for type {w1, . . . , wt}.

In the following, let Kw1,...,wt be the complete multipartite graph where each part has wi
nodes and there are w1 + . . .+wt vertices in total. We use χ(G, x) to denote the chromatic
polynomial of the graph G, which counts the number of proper colourings of G using x
colours. Recall that a colouring assigns one of the x colours to each vertex, and a colouring
is proper if no adjacent vertices have the same colour.

Definition 3.34. An (N ;n,m)-random hash family is an N×n matrix with entries chosen
randomly from an alphabet of size m uniformly and independently.

48

Theorem 3.35. Let A be an (N ;n,m)-random hash family and C1, . . . , Ct be disjoint sets
of columns, where |Ci| = wi. Then the probability ε, that no row of A separates C1, . . . , Ct,
is

ε =

(
1− χ(Kw1,...,wt ,m)

mw1+...+wt

)N
.

Proof. We first restrict our attention to f , a single row of the hash family. Consider the
complete multipartite graph, where set Ci will define the nodes in part i. Then colour the
nodes in part Ci = {c1, . . . , cwi} with one of m colours, depending on f(cj). Connect nodes
in one part to all other nodes in different parts to form the complete multipartite graph,
Kw1,...,wt . The main observation is that an improper colouring corresponds to inseparable
inputs. If two nodes (inputs) share an edge, then they belong to different parts (different
sets Ci), and if they have the same colour, then they have the same value for f .

There are a total of mw1+...+wt colourings, of which χ(Kw1,...,wt ,m) are proper and since
f is a random function, we are choosing a colouring at random. Since the random functions
are independent, we can take the product of the relevant probabilities over all N rows.

By considering the complimentary probability, whether a particular row will separate
an input, we can give the expected number of rows that will separate an input (which we
denote µ).

Corollary 3.36. In a random (N ;n,m)-hash family, the expected number of separating
rows for inputs C1, . . . , Ct is

µ = N

(
χ(Kw1,...,wt ,m)

mw1+...+wt

)
.

Remark 3.37. For many values of (N ;n,m) and {w1, . . . , wt} there will be multiple sep-
arating rows. For example, a random (64; 232, 16)-hash family has µ = 21.67 for inputs of
type {2, 2, 3}.

Remark 3.38. Computing chromatic polynomials of arbitrary graphs is intractable. See
[182] for details. However, an explicit and efficiently computable formula specific to com-
plete multipartite graphs is given in Appendix A. Previously, such a formula was known
only for complete bipartite graphs [72].

Error Rate of Randomly Behaving Hash Families

As shown in the previous section, a random hash family may have, on average, multi-
ple separating rows for a given input. Suppose a particular construction outputs A, an
(N ;n,m)-hash family, and the largest value of P (T) guaranteed by the construction is

49

maxP(T). What is the behaviour of A when we hash inputs “stronger” than those guar-
anteed by the theorem?

For a random hash family, the probability that an input C1, . . . , Ct is not separated is

ε =

(
1− χ(Kwi,...,wt ,m)

mwi+...+wt

)N
(3.4)

where N is the number of rows and {w1, . . . , wt} is the type.

Therefore, if an explicit construction produces randomly behaving hash families, then
(3.4) estimates the probability of failure when

1. hashing inputs of a type T ′, where P (T ′) > maxP(T), and

2. using only the first N ′ rows of A (here we would replace N by N ′ in (3.4)).

For applications which can tolerate failure at low probabilities, hash families with smaller
parameters can be used. Additionally, parameters can be selected so that the probability
given by (3.4) is sufficiently low for the application. We will confirm this experimentally
in §3.3.4.

The difference between using a random hash family, and an explicitly constructed non-
random, but randomly behaving, hash family is the partial guarantee provided by the
explicit construction. For example, suppose A is a hash family which is guaranteed to
be of type {1, 1, 1, 1}, and we use A to hash an input of type {2, 2, 2, 2}, given by the
sets C1, . . . , C4. If A behaves randomly, then equation (3.4) gives the probability that
C1, . . . , C4 are separated by some row. In the event that no row separates C1, . . . , C4, A
does guarantee that for one of the functions in A, all output sets f(Ci) will contain a
distinct element. With a random hash family, no such “partial separation” is guaranteed,
as it could happen that for all f , there exist some i, j such that f(Ci) = f(Cj).

3.2 A Detailed Look at the AG Construction

In this section we present three metrics that will be used to describe and compare SHF
constructed using Theorem 3.28. The parameters of the SHF constructed using Theorem
3.28 depend on the choice of algebraic curve used with the theorem. In this section we will
take a detailed look at this construction for five choices of algebraic curves.

50

3.2.1 Metrics

In this thesis, log x will always denote the base 2 logarithm of x. Below are the three
metrics we will use to compare various constructions of Section 3.1.

Compression: Let K = logn
logm

, which measures the ratio between the size of the domain
and co-domain. Larger values of K are generally better.

Cost: Let C = N
logn

, which measures how large a domain can be accommodated at a cost
of N rows. Lower values of C are better.

Randomness: Let R = µobs

µ
, which measures how close the hash family’s behaviour, with

respect to separation, resembles a set of uniformly random functions with the same
size, domain and co-domain. µ is the average number of separating rows in the
random hash family (see §3.1.6), and µobs is the observed average of the hash family
in question. A value R = 1 is ideal.

From this perspective, a good construction will have high compression, low cost and
random behaviour. Note that R must be computed experimentally, while C and K can be
calculated directly from the parameters of the construction. Also, an explicitly constructed
SHF with R ≈ 1 is only random in the sense that it separates inputs in the same number
of rows, on average, as a random hash family. This last point motivates the randomness
metric: knowing that a particular hash family behaves randomly allows us to apply the
analysis from Section 3.1.6.

In addition to giving concrete parameters for SHF constructed using the AG con-
struction, we also supplement the details given in Section 3.1.4 with details required for
implementation. Our implementation is described in Section 3.3.

3.2.2 Reed-Solomon Codes

In this section we use a (q; q`, q) Reed-Solomon code to construct an SHF(q; q`, q, T) for
T having P (T) < q/(` − 1). Table 3.2 shows some possible parameters of SHF. We try
to construct an SHF with P (T) = 10, and choose q = p2 for comparison with the other
examples.

We single out and name two Reed-Solomon codes to use for comparison in Section 3.3.
Reed Solomon codes are a special case of the AG construction, when the curve used is the
projective line X + Y + Z. G is the divisor used in the construction of Theorem 3.28.

RS 1 : defined over F24 , has 16 points, genus 0, degG = 3, and gives an
SHF(16; 216, 24,maxP(T) = 5), with K = 4, C = 1.

51

q ` log n maxP(T) C K
4 2 4 3 1 2
16 4 16 5 1 4
64 8 48 9 1.3 8
256 16 128 17 2 16

Table 3.2: The Reed-Solomon code (q; q`, q) gives an SHF(q; q`, q, T) for types T with
P (T) ≤ maxP(T).

RS 2 : defined over F26 , has 64 points, genus 0, degG = 12, and gives an
SHF(64; 278, 26,maxP(T) = 5), with K = 13, C = 0.82.

3.2.3 Elliptic and Hyperelliptic Curves

Here we briefly present a few instantiations of the AG construction with elliptic and hyper-
elliptic curves. These curves will be used for comparison in Section 3.3. We omit details of
the construction and simply present curves and the parameters obtained. Details for the
elliptic case (genus 1) are given in [109], while sufficient information about hyperelliptic
curves can be found in [59]. In general, explicit formulas are not known for the number of
points on these curves, so software must be used to compute the exact number. Again, G
refers to the divisor used in the construction to define L(G).

E1 : Elliptic curve Y 2Z +XY Z −X3 +X2Z + Z3 defined over F24 , has 15 points, genus
1, degG = 3, and gives an SHF(15; 212, 24,maxP(T) = 5), with K = 3, C = 1.25.

E2 : Elliptic curve E1, but defined over F26 , has 55 points, genus 1, degG = 10 and gives
an SHF(55; 260, 26,maxP(T) = 5), with K = 10, C = 0.91.

G1 : Hyperelliptic curve Z3Y 2 + Y Z4 −X5 − Z5 defined over F24 , has 33 points, genus 2,
degG = 6 and gives an SHF(33; 220, 24,maxP(T) = 5), with K = 5, C = 1.64.

G2 : Hyperelliptic curve Z7Y 2 +Y Z8−X9−Z9 defined over F26 , has 128 points, genus 4,
degG = 25 and gives an SHF(128; 2132, 26,maxP(T) = 5), with K = 22, C = 0.97.

3.2.4 Hermitian Curves

A Hermitian curve, denoted Hr, is defined by the affine equation

yr + y = xr+1 . (3.5)

52

Curve degG maxP(T) log n N C K
E1 3 5 12 15 1.25 3
E2 10 5 60 55 0.91 10
G1 6 5 20 33 1.64 5
G2 25 5 132 128 0.97 22

Table 3.3: Some possible parameters using the construction of Theorem 3.28 with elliptic
and hyperelliptic curves.

Over the finite field Fq, where q = r2 for a prime power r, Hr has r3 Fq-rational points and
1 point at infinity. The genus is

gr =
r(r − 1)

2
.

Let S be the set of points defining the rows of the SHF; we will choose S ⊆ Hr(Fq)\O.
We can get a divisor G of arbitrary degree deg(G) = z, by choosing G = z(O). If
r2 − r − 2 < degG < r3, the vector space L(G) has dimension

l(G) = degG+ 1− r2 − r
2

(3.6)

(see [175, Ex. 4.4.40]).

We can now construct an SHF(|S|; ql(G), q, {w1, . . . , wt}), using the construction of The-
orem 3.28, provided

(i) degG ≥ 2g + 1, and

(ii) |S| > P (T) degG.

To satisfy condition (i), we must choose degG ≥ r2 − r + 1. To satisfy condition (ii),
we must have P (T) < r3

r2−r+1
, since N = |T | is at most r3. For this choice of degG the

dimension of L(G) is given by (3.6).

Table 3.4 shows example parameters possible with this construction. Additional dis-
cussion of computational aspects of Hermitian function fields are available in [113].

The following two SHF constructed with Hermitian curves will be used for comparison
in Section 3.3.

H4 : X5 + Y 5 + Z5 defined over F24 , has 64 points, genus 6, degG = 13 and gives an
SHF(64; 232, 24,maxP(T) = 4), with K = 8, C = 2.

H8 : X9 + Y 9 + Z9 defined over F26 , has 512 points, genus 28, degG = 57 and gives an
SHF(512; 2180, 26,maxP(T) = 8), with K = 30, C = 2.84.

53

q degG maxP(T) l(G) N C K
4 3 2 3 8 1.33 3
16 13 4 8 64 2.00 8
64 57 8 30 512 2.84 30
256 241 16 122 4096 4.20 122

Table 3.4: Some possible parameters using the construction of Theorem 3.28 with Her-
mitian curves. Each row represents an SHF(N ; ql(G), q, T) for any type T with P (T) <
maxP (T).

3.2.5 The Garcia-Stichtenoth (GS) Tower

GS towers yield an optimal class of AG codes, a statement we justify after describing one of
the GS towers. The languages of algebraic curves and function fields are interchangeable,
but the GS towers are typically described as function fields (as we do here). Two similar
towers were defined by Garcia and Stichtenoth in [86] and [87]. The following describes
the tower from [87].

Again we assume q = r2, and specialize our presentation to the field Fq. The GS towers
are sequences of function fields F0, F1,

• F0 = Fq(x0) is the field of rational functions of Fq in one indeterminate (the function
field of the projective line).

• To create F1, we adjoin an element to F0, F1 = Fq(x0, x1), where x1 satisfies

xq1 + x1 =
xq0

xq−1
0 + 1

.

• In general Fi = Fq(x0, x1, . . . , xi), where xi satisfies

xqi + xi =
xqi−1

xq−1
i−1 + 1

.

We omit description of the other tower, which is given in [86].

Let g be the genus of a curve or a function field, and let δ = D/N the relative distance
of a (N ;n,m,D) code. The rate R = log(n)/N of an AG code is bounded by

R ≥ 1− δ − g

N

54

and the Drinfeld-Vlǎduţ bound says that

lim inf
g→∞

g

N
≥ 1√

r − 1
. (3.7)

Note that N is the same as the number of rational places in a function field (or rational
points on a curve). The tower of GS function fields has lim infg→∞ = 1/(

√
r− 1), which is

best possible by (3.7). Since the rate is maximized, codes constructed using the GS tower
are in this sense the best AG codes possible.

We now apply Theorem 3.28 with the tower of GS function fields above.

Corollary 3.39. Let N(Fi) be the number of Fq-rational places (where q = r2), and let gi
be the genus of the GS function field Fi defined above. Then there exists an SHF((2gi +
1)P (T); r4gi+2, q, T) provided that

P (T) ≤ N(Fi)

2gi + 1
. (3.8)

Proof. Let Gi be a divisor of degree zi. We will hash from L(Gi) to Fq. To apply Theorem
3.28 we require that

(i) zi ≥ 2gi + 1, and

(ii) N ≥ ziP (T).

The condition (3.8) comes from (i), (ii) and the fact that N ≤ N(Fi). Conditions (i) and
(ii) are satisfied if we set zi = 2gi + 1 and N = ziP (T). From the Riemann-Roch theorem,
l(Gi) ≥ 2gi + 1, and q2gi+1 = r4gi+2 which gives the result.

Before we can see some sample parameters of this construction, we need formulas for
gi and N(Fi). Bounds on these quantities are given in [109], but we will use more precise
formulas when possible. For the first two fields we have

N(F0) = r2 − r
N(F1) ≥ r3 − r2 .

For i ≥ 2 the exact number of Fr2 rational places is given by Aleshnikov et. al. [2]:

N(Fi) =

{
ri(r2 − r) + 2r, for odd r, i ≥ 2
ri(r2 − r) + 2r2, for even r, i ≥ 2 .

55

An exact formula for the genus was given by Garcia and Stichtenoth [87]:

gi =

{
(r(i+1)/2 − 1)(r(i−1)/2 − 1) for odd i ,
(ri/2 − 1)2 for even i .

Now that we have all the necessary formulas, possible parameters resulting from the
construction of Corollary 3.39 are given in Table 3.5 over F0, Table 3.6 over F1, and
Table 3.7 over F2. The largest allowable value of P (T) is listed and used to compute C.
The construction over F3 gives codes so large we omit it (for example when P (T) = 2,
n ≈ 22684).

q P (T) degG d log(n) N C K
4 2 1 2 4 2 0.50 2
16 12 1 2 8 12 1.50 2
64 56 1 2 12 56 4.66 2
256 240 1 2 16 240 15.00 2

Table 3.5: Table showing parameters of SHF(degG · P (T); qd, q, T) constructed over F0.

q P (T) degG d log(n) N C K
4 1 3 3 6 3 0.50 3
16 2 19 11 44 38 0.86 11
64 4 99 51 306 396 1.29 51
256 8 451 227 1816 3608 1.98 227

Table 3.6: Table showing parameters of SHF(degG · P (T); qd, q, T) constructed over F1.

q P (T) degG d log(n) N C K
4 2 7 5 10 14 1.39 5
16 2 91 47 188 182 0.96 47
64 4 883 443 2658 3532 1.32 443
256 8 7651 3827 30616 61208 1.99 3827

Table 3.7: Table showing parameters of SHF(degG · P (T); qd, q, T) constructed over F2.

3.3 Experimental Observations

Here we discuss our implementation which we use to compute the randomness metric for
some of the examples given in the previous section. We also confirm that the analysis of

56

random hash families accurately describes, for SHF constructed using Theorem 3.28, the
number of separating rows and the failure probabilities discussed in Section 3.1.6.

3.3.1 Implementation of the AG-based Construction

In this section, we describe an implementation of generalized separating hash families
using the construction of Theorem 3.28. The main challenge with the implementation is
computing a basis for L(G), where G = zO (and degG = z). For an algebraic curve defined
by a projective equation, the Brill-Noether algorithm can be used to find a basis [42, 129].
We are aware of two freely available implementations of this algorithm. The first is the
brnoeth package for the Singular computer algebra system [170], which we passed over
in favour of PAFF (Package for Algebraic Function Fields) [93] which runs in the Axiom
computer algebra system [169]. This package was created as a supplement to the thesis of
Haché [94]. The approach we use to implement hash families from the AG construction is
as follows.

Construct the code. Use PAFF to compute a basis for L(zO) =
{
x1, . . . , xl(G)

}
, for a

choice of z which satisfies Theorem 3.28. Using this basis, compute a generator matrix
M for C(D, zO) where the divisor D is the sum of all rational points P1, . . . , PN . The
generator matrix is then (see [156, II.2.3])

M =

 x1(P1) x1(P2) . . . x1(PN)
...

... . . .
...

xl(zO)(P1) xl(zO)(P2) . . . xl(zO)(PN)

 .

Store M . This will require O(N log(n) log(m)) bits. Let d = l(zO).

Hash inputs. To hash column sets C1, . . . , Ct, encode each c ∈ Ci as a vector in (Fq)d.
Compute vM for each encoded vector v, store all of the columns corresponding to
the inputs. Denote this subset of columns by A. For row r we must test whether
A(r, Ci) ∩ A(r, Cj) = ∅, for 1 ≤ i, j,≤ t. This can be done by checking whether (as
sets)

|A(r, C1)|+ . . .+ |A(r, Ct)| = |A(r, C1) ∪ . . . ∪ A(r, Ct)|.

Return the corresponding entries of A when a separating row is found, otherwise fail.

The cost of hashing a set of inputs can be easily calculated. Let u =
∑t

i=1wi. Comput-
ing the u codewords requires O(udN) = O(uN log(n)) multiplications in Fq, and finding a
separating row requires O(uN) Fq-comparisons.

57

A caveat of the first part of the implementation just described is that it is limited to
curves which can be described by a single equation, which excludes the Garcia-Stichtenoth
tower discussed in Section 3.2.5. The work of Shum et al. [151] describes algorithms for
finding the rational places of the GS field Fi and computing a basis for L(zO) ∈ Fi for
any integer z. The result is an explicit construction of AG codes from GS function fields
which requires at most dn logr ne

3 multiplications and divisions in Fq (where q = r2).

3.3.2 Observed Number of Separating Rows

By randomly sampling the input space (choosing C1, . . . , Ct at random), and counting the
number of separating rows, we can compute the mean number of separating rows µobs and
compare it to µ, the expected number in the case of a perfectly random hash family. This
serves to compare the analysis of §3.1.6 to the behaviour of hash families constructed by
Theorem 3.28. We will then compute R = µobs

µ
for the example hash families given at the

beginning of this section.

Table 3.8 gives this data for hash families over F16 constructed from (hyper)elliptic and
Hermitian curves, as well as Reed-Solomon codes, while Table 3.9 gives the data over F64.
We use maxP(T) to denote the largest allowable value of P (T) given by Theorem 3.28,
and include the standard deviation of µobs. In both tables, we used 104 random input sets
to compute the average number of separating rows.

Curve Type µ µobs stddev. ε
H4 {1, 2, 3} 30.67 30.72 3.97 7.32× 10−19

H4 {2, 2, 3} 21.67 21.67 3.75 3.22× 10−12

E1 {1, 2, 3} 7.19 7.22 1.91 5.62× 10−5

E1 {2, 2, 3} 5.08 5.12 1.80 0.00202
G1 {1, 2, 3} 15.34 15.38 2.82 4.45× 10−10

G1 {2, 2, 3} 10.84 10.85 2.68 1.19× 10−6

RS1 {1, 2, 3} 7.68 7.68 2.01 2.92× 10−5

RS1 {2, 2, 3} 5.42 5.41 1.89 0.00133

Table 3.8: Comparison of µ and µobs for SHF with m = 16. In all cases R is very close to
one. Since P ({1, 2, 3}) = 11 and P ({2, 2, 3}) = 16 are larger than the strength guaranteed
by the construction, the probability of failure, ε, is included (as estimated by (3.4)).

For hash families constructed by Theorem 3.28, the quantity µobs is also the number of
zeroes of the set

Φ1,...,t =
t⋃
i=1

t⋃
j=i+1

{f − g : f ∈ Ci, g ∈ Cj} .

58

Curve Type µ µobs stddev. ε
H8 {1, 2, 3, 4, 5} 126.65 126.35 9.69 6.46× 10−64

H8 {5, 5, 10} 67.51 67.530 7.61 3.64× 10−32

E2 {1, 2, 3, 4, 5} 13.60 13.64 3.20 1.63× 10−7

E2 {5, 5, 10} 7.25 7.25 2.50 4.19× 10−4

G2 {1, 2, 3, 4, 5} 31.66 31.68 4.92 1.59× 10−16

G2 {5, 5, 10} 16.88 16.88 3.90 1.38× 10−8

RS2 {1, 2, 3, 4, 5} 15.83 15.86 3.43 1.26× 10−8

RS2 {5, 5, 10} 8.44 8.43 2.70 1.18× 10−4

Table 3.9: Comparison of µ and µobs for SHF with m = 64. In all cases R is very close
to one. Since P ({1, 2, 3, 4, 5}) = 85 and P ({5, 5, 10}) = 125 are both much larger than
the strength guaranteed by the construction, the probability of failure, ε, is included (as
estimated by (3.4)).

Let Z(Φ1,...,t) be the number of distinct rational zeroes of all P (T) functions in Φ1,...,t.
Further, we suppose that all N rational points are used by the construction.

From the proof of Theorem 3.28, Z(Φ1,...,t) is an important quantity: each point which
is a zero of some function in Φ1,...,t corresponds to a row which cannot separate the input
C1, . . . , Ct. To see how Z(Φ1,...,t) and the number of separating rows s are related, recall
that the construction uses all rational points and that each point defines a function (row)
hP : L(A)→ Fq as hP (x) = x(P). Each point P corresponding to one of the s separating
rows is not a zero of any function in Φ1,...,t. If it were, then f(P) = g(P) for some f ∈ Ci,
g ∈ Cj (i 6= j), which would contradict the separating property. On the other hand, the
remaining N − s points correspond to rows which do not separate C1, . . . , Ct, must be a
zero of some function in Φ1,...,t. If this were not the case for a point P , then hP would
separate the inputs since (f − g)(P) 6= 0 is equivalent to f(P) 6= g(P) for all pairs of f, g
from different input sets.

Therefore the large number of separating rows observed in Tables 3.8 and 3.9 support
Remark 3.29, that the bound used on Z(Φ1,...,t) in the proof of Theorem 3.28 is not tight
for most inputs.

3.3.3 Randomness Metric

For the example SHF in Section 3.2 we compute the randomness metric using our imple-
mentation. The curves in Table 3.10 are defined in §3.2.

For type {5, 5, 5, 5} and m = 16, i.e., for H4, E1, G1 and RS1, the expected value
of µ was so small that 104 trials were not enough to accurately measure µobs, as nearly

59

Curve\Type {2, 3} {2, 7} {4, 4, 5} {5, 5, 5, 5}
H4 1.000065 1.000770 1.001967 —
H8 0.999989 1.000128 0.999180 0.99968
E1 1.000909 1.006130 0.994248 —
E2 0.999128 0.999834 0.998874 1.00180
G1 0.999438 1.003119 1.045361 —
G2 0.999849 1.000318 1.001051 1.00033
RS1 1.002123 0.999530 0.992877 —
RS2 0.999765 0.999972 0.999916 1.00138

Table 3.10: The randomness metric for hash families produced by Theorem 3.28. The
curves and associated parameters are given in §3.2.

every input hashed was not separated by any row. In the other cases, R is very close to 1,
suggesting that hash families constructed by Theorem 3.28 will behave like random hash
families. Further, the choice of curve or the type of inputs does not affect R, confirming
that randomness is independent of parameter selection.

3.3.4 Observed Error Rates

In Section 3.1.6, equation (3.4) gives the probability that a random hash family will fail
to separate a set of inputs. This probability will hold for hash families constructed by
Theorem 3.28 provided they behave randomly. Indeed this is the case, as shown in §3.3.3.
Table 3.11 confirms the accuracy of equation (3.4) experimentally by counting the number
of failures. For each of the hash families tested, 105 trials were run. The types were chosen
to be large enough so that the probability of error was observably large.

Since the observed error rates are close to those given by equation (3.4), some applica-
tions may benefit from the reduced number of rows. For example, if an error rate of 0.00024
is tolerable, using H8 with 212 rows gives a reduction of 300 rows, and type {5, 10, 10} is
much stronger than guaranteed by Theorem 3.28.

3.4 Conclusion

We have presented a variety of constructions for generalized SHF. Our detailed examina-
tion of the algebraic geometry construction finds that the choice of curve is important in
determining the compression and cost of the hash family, but that all curves we examined
give randomly behaving hash families. This random behaviour allows our implementation
to separate inputs with known probability.

60

Curve Type N ′ ε εobs
RS1 {2, 2, 3} 16 0.00133 0.00113
H4 {2, 4, 4} 64 0.00047 0.00039
H4 {2, 4, 4} 44 0.00518 0.00445
RS2 {14, 10} 12 0.00042 0.00024
E2 {5, 5, 10} 55 0.00041 0.00049
H8 {5, 10, 10} 212 0.00024 0.00020
G2 {5, 5, 10} 58 0.000274 0.00026

Table 3.11: Observed error rates of the SHF defined in §3.2 using the first N ′ rows. The
error rate of a perfectly random hash family is ε (computed using equation (3.4) and the
observed error rate is εobs.

Exactly which curve will be best for a given application depends on the relative im-
portance of the desired values C, K allowable strength P (T), as none of the examples we
have seen is best in all respects. For example, using the GS tower SHF constructed over
F0 have large allowable values of P (T), but low compression, while SHF constructed over
F2 have low cost, high compression but much lower allowable values of P (T).

Another finding is that the AG construction is practical and can be implemented, at
least for the parameter choices made in this chapter. We feel this is also an important con-
tribution as previous work related to this construction focus on the asymptotic behaviour
of the construction, instead of examining the constructed SHF for concrete parameter
choices, as we have done.

61

Chapter 4

Anonymity in Shared Symmetric
Key Primitives

In this chapter, we provide a stronger definition of anonymity in the context of shared
symmetric key primitives (§4.2), and show that existing schemes do not provide this level
of anonymity. A new scheme is presented to share symmetric key operations amongst a set
of participants according to a (t, n)-threshold access structure. We quantify the amount of
information the output of the shared operation provides about the group of participants
which collaborated to produce it. The material in this chapter was published in [185].

4.1 Introduction

In this chapter, we consider the anonymity provided by schemes for sharing symmetric
key operations such as block ciphers or message authentication codes (MACs). We will
focus on threshold access structures. Let P be a set of participants. A (t, n)-threshold
access structure on P is defined by Γ, which is the set of all authorized sets, namely Γ =
{A ⊆ P : |A| = t}. Put simply, any subset of participants of size at least t is authorized.1

In this model, the keys are distributed by an entity called the receiver, who will later
receive a message from some A ∈ Γ.

A first approach to construct such a primitive might be to share the symmetric key
using a (t, n) secret sharing scheme, i.e., distribute a share of the key to each of the n
participants such that t or more shares are required to recover the key. The problem with

1For simplicity, we do not include sets with more than t participants in Γ. Since the threshold access
structure is monotonic, the participants in excess of t may be ignored.

62

this approach is that it requires reconstructing the key from the shares, revealing the key
to the participants. To avoid this requires an approach which uses the shares directly.

Work on sharing block ciphers was initiated by Brickell et al. [40], using a variant of
secret sharing called sequence sharing. Subsequently, improved schemes for distributing
block ciphers using cumulative arrays and perfect hash families were studied by Martin et
al. in [116]. They introduce generalized cumulative arrays (GCAs) and give some efficient
solutions (in the number of keys). A second paper by Martin et al. extends [116] to
consider distributing the computation of MACs as well [115].

If a set of participants A ∈ Γ collaborates to encrypt a message, what information does
the receiver learn about A? Informally, anonymity is provided if the identity of A is kept
secret from the receiver. We will define anonymity for groups of participants as well as
individual participants in Section 4.2. In the rest of Section 4.1 we present the background
required to describe the GCA-MAC threshold MAC scheme of [116], as well as the scheme
itself (which will be used to illustrate the anonymity metrics in §4.2).

In addition to shared block ciphers and MACs, schemes using generalized cumulative
arrays have been used in secret sharing [110] and for sharing pseudo random functions
[180]. A GCA is defined below.

Definition 4.1. A generalized cumulative array (GCA) is a set Y = {y1, . . . , ym}, a par-
tition of Y , say {K1, . . . , Kv}, a set of subsets of Y , denoted by B = {B1, . . . , Bn}, and an
integer t, such that the following properties are satisfied.

(i) For any t-set A ⊆ B, Ki ∈
(⋃

B∈AB
)

for at least one i ∈ [1, . . . , v].

(ii) For any set A′ ⊆ B with |A′| < t, Kj 6∈
(⋃

B∈A′ B
)

for all j ∈ [1, . . . , v].

When |Bi| = ` for all Bi ∈ B, the GCA is `-uniform. In this work we consider only `-
uniform GCAs for (t, n)-threshold access structures, and adopt the notation GCA(t, n; `, v).
In the schemes we consider, Y is a set of key components, and each participant is given
one of the sets in B. Property (i) ensures that all t-sets of participants can recover one of
the keys, while property (ii) ensures that fewer than t participants are unable to recover
any key. Given that a particular key was used in a threshold operation, anonymity metrics
will quantify the uncertainty about which authorized subset of participants performed the
threshold operation. For example, if the receiver knows that key K1 was used, and that
there is only one A ∈ Γ which can recover K1, then the primitive provides no anonymity.
Anonymity of the group would be perfect if all A ∈ Γ were equally likely to have used K1.

Long et al. explore GCAs in the context of secret sharing and give upper and lower
bounds for existence of GCAs [110]. Martin and Ng [114] also give constructions of GCAs
and metrics to describe the efficiency of GCAs. The best construction for threshold access
structures in both papers uses perfect hash families.

63

We will usually depict a PHF(`;n,m, t) as an ` × n array populated with m symbols.
Each column represents an element xj ∈ X, and each row is defined by a function. The
(i, j)-th entry is defined to be fi(xj). This array has the property that within any ` × t
subarray, there is a row containing t distinct elements.

A PHF(`;n, t, t) naturally defines a GCA(t, n; `, t) as follows. Let Y = {(i, j) : i ≤ `,
j ≤ t}, and Ki = {(i, 1), . . . , (i, t)}. Each Bi ∈ B is a column of the matrix representation
of the PHF, along with row indices i.e., Bk = {(i, fi(k)) : 1 ≤ i ≤ `}.

Property (i) is satisfied since for any A = {Bi1 , . . . , Bit}, there will be some f such
that f(i1) 6= . . . 6= f(it) and hence A will have t distinct values in one row, and therefore
contain some Ki. However, A′ =

{
Bi1 , . . . , Bit−1

}
has at most t− 1 distinct values at each

row and therefore cannot cover any Ki. Hence property (ii) is satisfied as well.

Long et al. [110] prove that the PHF construction gives asymptotically optimal GCAs
for threshold access structures, i.e., GCAs with a minimal number of key components for a
fixed number of participants and threshold. Since practical and efficient constructions for
GCAs are only known for threshold access structures, our anonymity study will focus on
threshold GCAs constructed from PHFs as described above. We now give a small example
of this construction.

Example 4.2. Let f1, f2 be a PHF(2; 4, 2, 2):

1 2 1 2
1 1 2 2

.

The construction described above is used to construct a GCA(2, 4; 2, 2), where Y =
{(1, 1), (1, 2), (2, 1), (2, 2)}, K1 = {(1, 1), (1, 2)} , K2 = {(2, 1), (2, 2)}.

B1 B2 B3 B4

(1, f1(1)) (1, f1(2)) (1, f1(3)) (1, f1(4))
(2, f2(1)) (2, f2(2)) (2, f2(3)) (2, f2(4))

Since the schemes we will present assign Bi from the GCA to Pi for all Pi ∈ P , it makes
sense to talk about a “column of keys” given to Pi and a “row that separates A ∈ Γ”. If
row r separates A ∈ Γ, then the keys held by the participants of A in row r are distinct,
which will allow them to use Kr as the key in a threshold operation.

4.1.1 Sharing Symmetric Operations

There are a few possible approaches to share a symmetric key primitive amongst a group
of participants with a (t, n)-threshold access structure. We briefly review XOR-based

64

approaches, examined in detail for block ciphers in [116] and for MACs in [103, 115].
An alternative is to use sequences or cascade ciphers (as in [40, 78]); for details on this
approach, see [116]. Sharing using XOR has the advantage that the steps in the inverse
operation need not be performed in the same order as the forward operation.

Our presentation is specialized to the (t, n)-threshold access structure, but these tech-
niques are also applicable to general access structures. The methods are generic, in that
they can be used with any secure block cipher or MAC, and the resulting shared primitives
are at least as secure as the underlying function.

Let K be a keyspace, letM be a message space, let T be the set of authentication tags
and let F : K×M→ T be a secure MAC. Suppose Kr = (k1, . . . , kt) is a set of keys held
by some A ∈ Γ. The t-fold XOR MAC, F t : Kt ×M→ T is defined as follows:

F t(k1, . . . , kt,m) =

(
t⊕
i=1

F (ki,m), r

)
.

The index r is also included for use during verification, in schemes with multiple keys Ki.
To verify the tag (σ, r) on the message m, the verifier computes F (Kr,m) = (σ′, r) and
accepts the tag if σ = σ′. When referring to a key of F t we mean an element of Kt, and
refer to elements of K as key components. The following lemma proves that F t is at least
as secure as F .

Lemma 4.3 (Lemma 1, [115]). If F is a secure MAC, then F t is a secure MAC as well.
Moreover, an adversary can generate a forged MAC for F t if and only if they know all key
components (k1, . . . , kt).

We say that F provides strong unforgeability if an adversary cannot create a different
tag for a previously authenticated message, and weak unforgeability if the adversary cannot
create a valid tag for a new message (but may be able to create a different tag for an
old message). Formal definitions of security for MACs appear in An, Dodis and Rabin
[8]. Lemma 4.3 says that if F provides strong (or weak) unforgeability, then F t provides
the same level of unforgeability. If an attacker produces a forgery for F in time τ with
probability ε after observing q (message, tag) pairs, then producing a forgery for F t with
probability ε requires at least time τ (with q observations).

A similar construction is possible for block ciphers. Let E : K ×M → C be a secure
encryption function where C is the set of ciphertexts. A group of participants A ∈ Γ can
encrypt a message using Kr = (k1, . . . , kt) with

Et(k1, . . . , kt,m, n0) =

(
m

t⊕
i=1

E(ki, n0), n0, r

)
,

65

where n0 is a random nonce. Further details of these constructions and security proofs
are given in [116, 115]. In this chapter we will present schemes and give examples using a
shared MAC; however, our results can also be applied to shared block ciphers.

4.1.2 The GCA-MAC Authentication Scheme

The following scheme is presented in [115]. We specialize our discussion to the case of a
GCA(t, n; `, t) constructed from a PHF(`;n, t, t).

Setup Let (Y,K1, . . . , Kt,B) be a GCA(t, n; `, t), constructed from a PHF(`;n, t, t). Let
F t be the MAC defined in §4.1.1, and let P = {P1, . . . , Pn} be the set of participants.

Key Distribution The receiver chooses a set of `t key components and labels them with
the elements of Y , then distributes the key components corresponding to Bi to Pi.
In other words, the receiver gives the key components indexed by column i to Pi.

Tag Creation The participants Pi1 , . . . , Pit create a tag for a message m as follows. First
they determine j such that Kj ⊆ (Bi1 ∪ . . . ∪ Bit). This is done by finding a row in
the `× t subarray of columns i1, . . . , it which has t distinct entries. If multiple rows
have distinct entries, then j is set to the first such row. Then the tag is computed as

(σ, j) = F t(Kj,m),

and m and (σ, j) are sent to the receiver.

Verification The receiver uses Kj to check if (σ, j)
?
= F t(Kj,m) and accepts if they are

equal.

4.1.3 GCA-MAC Example

We reproduce an example of a (2, 8) GCA-MAC from [115], which will be used while
discussing anonymity in Section 4.2. This GCA(2, 8; 3, 2) is based on a PHF(3; 8, 2, 2).

P1 P2 P3 P4 P5 P6 P7 P8

1 1 1 1 2 2 2 2
1 1 2 2 1 1 2 2
1 2 1 2 1 2 1 2

The three possible keys corresponding to the three rows are K1, K2, K3, respectively, each
constructed by participants having both a 1 and 2 in that row. This example is small
enough to inspect all

(
8
2

)
= 28 possible cases. Note that pairs of participants can reconstruct

one key (for example P1, P2), two keys (e.g. P2, P3) or all three keys (e.g. P1, P8). There
are `t = 6 distinct key components.

66

4.2 Anonymity

Anonymity for shared symmetric key operations was first considered for the shared MAC
schemes in [115]. There are two types of anonymity to consider. The first is group
anonymity, which asks whether the receiver can learn which authorized subset collabo-
rated to create the tag. The second type is participant anonymity (which we introduce
in this chapter), which asks whether the receiver can learn if a particular participant was
involved in creating the tag. In both cases the receiver is given only the message and
the tag output by the threshold scheme. In this section, we provide a general description
of our new measures of anonymity, independent of any particular schemes, We use the
GCA-MAC example given in Section 4.1.3 to illustrate the various concepts we discuss.

4.2.1 Threat Model

The goal is to prevent the adversary from learning which set of participants A ∈ Γ per-
formed a particular operation such as encryption or authentication. The adversary may be
the receiver, who distributes key components and receives a ciphertext or authentication
tag created by a group of participants. It may also be anyone knowing how keys were
assigned to participants, who later observes the output of a shared primitive.

We assume that the message does not leak the identity of the participants in A and that
communication of the tag to the receiver is done using an anonymous channel. All details of
communications between members of P are assumed to be hidden from the adversary. The
knowledge of the adversary is limited to the output of the shared primitive, which includes
all information required to perform the associated operation (decryption or verification).
We also assume that all authorized sets are equally likely to use the primitive.

The anonymity provided is unconditional. Since multiple sets of participants can recon-
struct the key used to perform the operation, they are all equally likely to have performed
the operation in question, and no amount of computation on the part of the attacker will
give additional information.

4.2.2 Group Anonymity

In this section we consider anonymity of a single group A ∈ Γ and then define anonymity
for a whole scheme S.

67

Counting-Based Metrics

The counting-based metrics in this section extend the approach of Martin et al. [115]. The
idea is to count the number of authorized sets which can reconstruct a key, and determine
how likely each is to use it. Then, given that a particular key was used, determine which
authorized sets were most likely to use it.

Definition 4.4. Let S be a (t, n)-threshold MAC over n participants P , with ` keys. The
(t, n) access structure is Γ = {A : A ⊆ P , |A| = t} and |Γ| =

(
n
t

)
. Let A ∈ Γ. For any

message m and valid tag (σ, r) generated by A note that there may be multiple authorized
subsets that could have created (σ, r). We write Pr[A|r] to denote the conditional proba-
bility that A created the given tag (σ, r). The degree of anonymity of A ∈ Γ with respect
to S is defined d(A, r) = 1− Pr[A|r].

The following definition of group anonymity is from [115], where it was originally called
anonymity. We rename it average degree of anonymity. This metric is only applicable to
schemes where each authorized set uses only one key (as is the case with GCA-MAC).

Definition 4.5. In the notation of Definition 4.4, the average degree of anonymity for S
is defined by

dav(S) =

∑
{d(A, r) : A ∈ Γ}

|Γ|
,

where r is the index of the key used by A.

In the best case, upon seeing m and (σ, r), the adversary will see all sets in Γ as being
equally likely creators of σ. Therefore, at best, d(A, r) = 1− 1/

(
n
t

)
. The average degree of

anonymity of GCA-MAC was given in [115].

Theorem 4.6. The GCA-MAC scheme has average degree of anonymity

dav ≥ 1− `(
n
t

) .
Proof. (Sketch) Define Γi, 1 ≤ i ≤ `, as the set of all sets A ∈ Γ separated by row i but not
separated by any row j < i (i.e., i is the first row which separates A). The result follows
by noting that d(A, i) = 1− 1/|Γi| for all A ∈ Γi, and that

∑`
i=1 |Γi| ≥

(
n
t

)
, since all A ∈ Γ

are separated by at least one row.

Since a PHF(`;n, t, t) can be constructed when ` ≥ dtet log ne (see [121]), the following
result holds.

68

Theorem 4.7. There exists a (t, n)-threshold GCA-MAC scheme implemented with a
PHF(`;n, t, t) that has average degree of anonymity dav ≥ 1− dtet log ne /

(
n
t

)
.

As with security, anonymity should arguably be evaluated in the worst case, not the
average case. We now present a new, stronger, counting-based anonymity metric.

Definition 4.8. Let S and d(A) be as defined in Definition 4.4. The anonymity of S is
defined

µ = min {d(A, r) : A ∈ Γ, r ∈ [1, . . . , `]} .

Of course, average-case anonymity is still a useful measure. If a scheme does not provide
anonymity on average, anonymity in the worst case (and for all participants) will not be
possible.

We now use the example of Section 4.1.3 to illustrate the difference between dav and µ.
We also show how the GCA-MAC protocol reduces group anonymity by specifying that a
t-set of participants A will always choose the key corresponding to the first row separating
A. Therefore, those sets of participants separated by rows one and two will never use key
K2. In the example above, keys K1, K2 and K3 can each be reconstructed by 16 pairs of
participants. However, since the GCA-MAC protocol selects the first separating row, we
have the following:

• for (σ, 1) there are 16 possible choices for A, hence d(A, 1) = 1− 1/16,

• for (σ, 2) there are 8 possible choices for A, hence d(A, 2) = 1− 1/8, and

• for (σ, 3) there are 4 possible choices for A, hence d(A, 3) = 1− 1/4.

It can also be seen directly from the PHF that 16 inputs are separated first by row 1,
eight are separated first by row 2 and four are separated first by row 3. Those A ∈ Γ
which use K3 have an anonymity set one quarter the size of those which use K1. While
dav = 1− `/

(
8
2

)
= 1−3/28 ≈ 0.89 (by Theorem 4.6), the worst case anonymity is µ = 0.75.

Entropy-Based Metrics

By computing the entropy of the conditional probability distributions of the previous sec-
tion, we can measure the number of bits of uncertainty the adversary has about the creator
of a given tag. This provides a more accurate measure.

69

Definition 4.9. Let S be as defined in Definition 4.4. Let A be a random variable defined
on Γ, and let r be the index of a key in S. The anonymity of key r is the entropy of the
probability distribution Pr[A|r]:

hr = H(A|r) = −
∑
A∈Γ

Pr[A|r] log2 Pr[A|r] .

If the adversary observes a tag created with key r, then hr can be interpreted as the
number of bits of uncertainty the adversary has about the group which created the tag. It
measures the effect on group anonymity caused by using different keys. In our GCA-MAC
example, h1 = 4, h2 = 3 and h3 = 2, which is consistent with the adversary’s knowledge
(e.g. given that K3 was used, he can be certain that it was created by one of four groups).
More generally, µ ≈ 1 − 2−min{hr:r∈S} since this represents the worst case for anonymity.
Note that an upper bound on hr is the log of the number of groups separated by row r, in
this case four bits. The sets separated by row 1 are provided best possible anonymity under
this metric. In general, if Tr groups are separated by row r, then Tr is size of the largest
anonymity set possible given that r was used. Therefore, key entropy close to log2(Tr) bits
is desirable.

Averaging over the possible keys that A may use gives the average anonymity provided
to A.

Definition 4.10. Let S be as defined in Definition 4.4. The average anonymity provided
to A ∈ Γ is

µav(A) =
∑̀
r=1

(Pr[r|A]× hr) . (4.1)

The average anonymity of the scheme S is defined to be the average of µav(A) for all groups
A ∈ Γ,

µav(S) =
1

|Γ|
∑
A∈Γ

µav(A) .

Since in GCA-MAC groups only use one key, the average anonymity of A coincides
with the key anonymity for the first row which separates A. The average anonymity of the
scheme is 1

28
(16 · 4 + 8 · 3 + 4 · 2) = 3.4 bits. There is also a natural relation, as we saw

between hr and µ, to the average degree of anonymity, namely dav(S) ≈ 1− 2µav(S).

Remark 4.11. If all rows have the same value for hr, then µav(A) = hr, since

N∑
r=1

Pr[A|r] = 1 .

70

In this case the average anonymity is the same for all A ∈ Γ. This is desirable so that
no “weak keys” exist with respect to anonymity, i.e. keys with extremely low entropy
(such as K3 in our GCA-MAC example). When hr is the same for all keys, we have
µav(S) = µav(A) = hr, for all A ∈ Γ. The improved scheme we will present in Section 4.3
has this property.

4.2.3 Participant Anonymity

The issue of participant anonymity has not been considered in previous work. Participant
anonymity is more challenging to provide than group anonymity, since there are only n
participants, while there are

(
n
t

)
groups.

Let m be a message and (σ, r) be a valid tag created by an unknown group A ∈ Γ,
observed by the receiver. For Pi ∈ P , let Pr[Pi|r] be the probability that Pi ∈ A (the
group that created the tag), given that r was used. Suppose S has ` keys. We define the
participant anonymity of Pi ∈ P to be

ρ(Pi) = 1−max {Pr[Pi|r] : r ∈ [1, . . . , `]} ,

and the participant anonymity of the scheme S to be

ρ(S) = min {ρ(Pi) : Pi ∈ P} .

With respect to ρ, it is desirable for S to have two properties. First, ρ(S) = 1− t/n is
best possible, since if all participants are equally likely, and t are required for an operation,
then a participant has probability t/n of being involved. Therefore, it is desirable that
ρ(S) be close to 1 − t/n. Also, participant anonymity should be equitable, that is ρ(Pi)
should not differ significantly from ρ(Pj) (for all Pi, Pj ∈ P). Unfortunately, in any scheme
constructed from a PHF, since ` = Ω(log n), there is a trade-off between efficiency and
participant anonymity.

4.2.4 Malicious Setup Attack on Anonymity

In this attack, the GCA-MAC scheme is set up so that anonymity is reduced for certain
participants. The attack works by adding a row to the PHF that separates a small number
of A ∈ Γ. Suppose we use the following PHF(4; 9, 3, 3) to create a GCA(3, 9; 4, 3) (source:
PHFtables [98]).

P1 P2 P3 P4 P5 P6 P7 P8 P9

1 3 2 2 3 2 3 1 1
1 3 1 3 1 2 2 2 3
1 2 2 1 3 3 1 2 3
3 3 2 1 1 3 2 1 2

(4.2)

71

Using the GCA-MAC protocol,

• given (σ, 1), there are 27 possible choices for A,

• given (σ, 2), there are 21 possible choices for A,

• given (σ, 3), there are 18 possible choices for A,

• given (σ, 4), there are 18 possible choices for A.

If the attacker adds a “dummy” row to the PHF,

P1 P2 P3 P4 P5 P6 P7 P8 P9

1 1 1 1 1 1 1 2 3
1 3 2 2 3 2 3 1 1
1 3 1 3 1 2 2 2 3
1 2 2 1 3 3 1 2 3
3 3 2 1 1 3 2 1 2

,

then any message authenticated using K1 must have A = {P8, P9, Pi} (where Pi is any
of the other participants). This reduces the number of possible groups to 7, 27, 18, 16, 16
for keys 1, 2, 3, 4, 5, respectively. Using the measures defined above, µ = 1 − 1/18 = 0.94
before the attack and µ = 1 − 1/7 = 0.86 after the attack. The effect on participant
anonymity is that ρ(P8) = ρ(P9) = 0 since the receiver can say for sure that P8 and P9

participated whenever K1 is used. The key associated with the “dummy row” has much
lower key entropy than the others, reducing uncertainty about which groups use this key.

This attack may be especially effective when combined with other information about
the participants. If the attacker knows which participants are most likely to initiate a
message, they will be frequent senders, and the attack will be more effective when they are
targeted during setup.

4.2.5 Verifiable Setup

More generally, the setup should be verified by the participants to ensure consistency of
the key components distributed by the dealer. For example, in (4.2), suppose the key
component given to P1, call it k′1,1, in the first row differs from k1,1 given to P8 and P9

(who also have a 1 in row 1). Since P1 is the only participant who holds k′1,1, upon receiving
(σ, 1) the receiver may check whether k′1,1 was used to create (σ, 1) and learn whether P1

belongs to the set which created it.

A simple approach to verifying consistency is to have each pair of participants engage
in a key confirmation protocol to ensure they hold the same keys (when they should, based

72

on the PHF). If a trusted bulletin board is available, the dealer might alternately publish
a cryptographic hash of the key component and the associated PHF to allow participants
to check the validity of their key components. In this work we simply assume the setup
has been verified for consistency, and leave the problem of efficient verification to future
work.

4.3 An Improved Scheme: BPHF-MAC

The new scheme given below, BPHF-MAC, makes two changes to GCA-MAC to improve
anonymity. First, when multiple rows separate A ∈ Γ, i.e. when A can reconstruct
multiple keys Ki, a row/key is chosen at random from all of those possible. This recovers
the anonymity lost when only the first row which separates A is used.

The second change is to counter the malicious setup attack, and prevent keys which
provide weak anonymity. A special type of hash family, introduced by Stinson [159], will
be used in BPHF-MAC instead of an arbitrary PHF.

Definition 4.12. A PHF(`;n,m, t) is balanced if in every row, each symbol occurs exactly
n/m times. The notation BPHF(`;n,m, t) is used to denote a balanced PHF.

The balance property will maximize the possible key entropy, and simplify our analysis
of group and participant anonymity of BPHF-MAC. Fortunately, many good explicit con-
structions of PHFs are balanced. A PHF is said to be linear if the code formed by taking
the columns as codewords is linear. Since any linear PHF is balanced, constructions from
Reed-Solomon codes [161] or AG-codes [181] give BPHFs. The examples given in Section
4.1.3 and 4.2.4 are balanced.

BPHF-MAC:

Setup Construct a BPHF(`;n, t, t), where fi : X → Y . Let F t be the MAC defined in
§4.1.1, and let P = {P1, . . . , Pn} be the set of participants. The authorized sets are
Γ = {A ∈ P : |A| = t}. The BPHF should be verified by the participants if it is
constructed by a party untrusted with respect to anonymity.

Key Distribution The receiver chooses a set of `t key components and labels them with
the elements of Y , creates B using the construction of §4.1, and distributes the
key components corresponding to Bi to Pi. In other words, the receiver gives key
components indexed by column i to Pi.

73

Tag Creation The participants Pi1 , . . . , Pit create a tag for a message m as follows. First
they determine the set J such that Kj ⊆ (Bi1 ∪ . . . ∪Bit) for all j ∈ J . This is done
by finding the rows in the ` × t subarray of columns i1, . . . , it which have distinct
entries. Since we are using a PHF of strength t we are guaranteed |J | ≥ 1. An index
j is chosen uniformly at random from J , and the tag is computed to be

(σ, j) = F t(Kj,m) = F t(k1, . . . , kt,m) ,

and (σ, j) is sent to the receiver as the tag for m.

Verification The receiver uses Kj to check if (σ, j)
?
= F t(Kj,m) and accepts if they are

equal.

We remark that the performance of the tag creation step may be improved by repeatedly
selecting a row at random and checking whether it separates the participants, until a
separating row is found. There is no need for the set J to be computed explicitly.

The security of BPHF-MAC follows from the security of F t (Lemma 4.3) and the
properties of a GCA. By Lemma 4.3 all t components of Kj are required to compute F t,
while property (ii) in the definition of a GCA (Def. 4.1), ensures that no set of fewer than t
users hold Kj, for any j. Therefore, sets of participants A′ 6∈ Γ will not be able to compute
F t.

4.3.1 Anonymity of BPHF-MAC

To evaluate the anonymity of BPHF-MAC we first prove a key property of BPHFs.

Lemma 4.13. In a BPHF(`;n,m, t), with functions fi : X → Y , the size of the set
{A ⊂ X : |A| = t, |fi(A)| = t} is (

m

t

)(n
m

)t
,

for all fi, 1 ≤ i ≤ `.

Proof. From the definition of a BPHF, each of the m symbols occurs n/m times in each
row. We ask how many t-sets of columns are distinct when restricted to row i. The t
symbols can be chosen in

(
m
t

)
ways, and for each of these t symbols we must choose one of

the n/m positions. Therefore in a BPHF(`;n,m, t) each row separates
(
m
t

)
(n/m)t sets of

t columns.

The following definition will also be used to analyze the anonymity of BPHF-MAC.

74

Definition 4.14. Let C be a code, and A be a t-set of codewords of C. The t-separating
distance, denoted sA,t, is the number of coordinates in which all t codewords in A differ.

The t-separating distance first appears in the work of Bassalygo et al. [16] (where it
was originally called the t-th hash distance). The t-separating distance may be seen as
a generalization of the classic Hamming distance, which is the same as the 2-separating
distance. A PHF(`;n,m, t) guarantees sA,t ≥ 1 while a λ-PHF(`;n,m, t) guarantees sA,t ≥
λ ([109, 163]). In the (t, n) BPHF-MAC scheme, t is the threshold size, so we will simply
write sA in what follows.

To compute the anonymity of the BPHF-MAC scheme we require knowledge of Pr[A|r],
the probability that A created a tag using key r (row r of the PHF). Let us first consider
Pr[r|A]. If A is not separated by row r, it cannot use key r, therefore

Pr[r|A] =

{
0 when r does not separate A
1
sA

when r does separate A .

The probability that row r is used is 1/sA since A will choose r at random from one of the
sA separating rows.

We have assumed that Pr[A] = 1/
(
n
t

)
, i.e., all sets of participants are equally likely to

create a tag. The probability Pr[r], i.e. the probability that row r is used for a tag, is
given by

Pr[r] =
∑
A∈Γ

(Pr[r|A]× Pr[A])

=
1(
n
t

) ∑
A∈Γ

r separates A

1

sA
(4.3)

Since sA is at most ` and the sum in (4.3) has nt/tt terms by Lemma 4.13,

Pr[r] ≥ 1(
n
t

) (nt
tt

)
1

`

=
nt

`tt
(
n
t

) .
From Bayes’ theorem,

Pr[A|r] =
Pr[r|A] Pr[A]

Pr[r]

=
(1/sA)

(
1/
(
n
t

))
Pr[r]

=
1

sA
(
n
t

)
Pr[r] .

(4.4)

75

Now recall that µ = 1 − max{Pr[A|r] : A ∈ Γ, r = 1, . . . , `}. The probability Pr[A|r] is
maximized when the denominator of (4.4) is smallest, i.e. when sA = 1 and Pr[r] = nt

`tt(nt)
.

Therefore

µ = 1− 1(
n
t

)
nt

`tt(nt)

= 1−
`tt
(
n
t

)(
n
t

)
nt

= 1− `tt

nt
. (4.5)

Recall that for GCA-MAC, dav = 1 − `/
(
n
t

)
. Since (`t!)/(nt) ≤ `/

(
n
t

)
≤ (`tt)/nt,

the worst-case anonymity of BPHF-MAC is comparable to the average case anonymity of
GCA-MAC. If t is fixed, they are asymptotically equal.

Example 4.15. As an example, we compute µ for the (2, 8) BPHF-MAC scheme imple-
mented with the PHF(3; 8, 2, 2) given in Section 4.1.3, which has ` = 3, n = 2, t = 2:

µ = 1− 3(22)

82
= 1− 12

64
= 0.8125 .

The average anonymity of GCA-MAC, which we computed in Section 4.2.2, was 0.89.

Key Anonymity and Cyclic BPHF

We now consider the key anonymity of BPHF-MAC. In the following, we will require
knowledge of sA values for each A separated by r. This motivates the following definition.
Let ~Sr be the length ` vector defined as

~Sr(i) = | {A ∈ Γ : A is separated by row r and sA = i} | .

~Sr is the distribution of separating distances for t-sets separated by row r. Ignoring the
values in ~Sr, we prove that a large class of BPHF have ~Sri = ~Srj for all rows ri, rj. This
implies hri = hrj , which is a desirable property for anonymity (recall Remark 4.11). The
class in question are BPHF constructed from cyclic codes, which we briefly review here.

Definition 4.16. Let C be a code of length ` with symbols from an alphabet Σ, and let
(c1, c2, . . . , c`−1, c`) ∈ Σ`. C is cyclic if

c = (c1, c2, . . . , c`−1, c`) ∈ C

76

implies
c′ = (c`, c1, . . . , c`−2, c`−1) ∈ C .

The transformation of a codeword from c to c′ is called a cyclic shift. If a PHF is constructed
from a cyclic code, we say it is a cyclic PHF.

Important classes of cyclic codes are BCH codes (which include Reed-Solomon codes)
and quadratic residue codes. Reed-Solomon codes with large distance are an easily con-
structed class of cyclic BPHF (see Stinson et al. [161]). The example of Section 4.1.3 is a
cyclic BPHF.

Theorem 4.17. In a cyclic BPHF(`;n,m, t), ~Si = ~Sj for all i, j ∈ {1, . . . `}.

Proof. The case i = j is trivial. Without loss of generality, choose a pair (i, j) where j > i,
j = i+ g. Define the following two sets of t-sets of columns separated by rows i, and j,

Xi = {A1, . . . , AT}
Xj = {A′1, . . . , A′T}

where T = (n/t)t. The balance property of the PHF (see Lemma 4.13) provides the value
of T and proves T is the same for all rows.

Consider φ : Xi → Xj and define φ(A) as the set of columns obtained by cyclically
shifting each column in A by g positions. This mapping is well defined, i.e. φ(A) is a
set of columns in the BPHF by the cyclic property, and φ(A) is separated by row j, since
j = i+ g and A is separated by row i. We now show that

(i) φ preserves sA values, i.e., sA = sφ(A), and

(ii) φ is one-to-one.

Property (i) holds since the rows are shifted but not modified, so a row separating (or
not separating) A is intact with a different index in φ(A). Since the separating distance
is the same, sA = sφ(A). It is clear that φ(An) 6= φ(Am) for all n 6= m since An 6= Am.
Therefore the image of φ in Xj has size T , which implies φ is one-to-one.

Since the t-sets of columns separated by row i are in one-to-one correspondence with
those separated by row j, and they have the same sA values, ~Si = ~Sj.

The following theorem is the implication of Theorem 4.17 on anonymity in BPHF-MAC.

Theorem 4.18. Let S be an instance of the BPHF-MAC scheme constructed with a cyclic
BPHF. Then µav(Ai) = µav(Aj) = µav(S) for all Ai, Aj ∈ Γ.

77

Proof. In the case of cyclic codes we can show that all rows are equally likely to be used
in a tag. The probability that a given row r is used (recall equation (4.3)) is:

Pr[r] =
1(
n
t

) ∑
A∈Γ

r separates A

1

sA

=
1(
n
t

) (~Sr(1)

1
+
~Sr(2)

2
+ . . .+

~Sr(`)

`

)
.

This quantity is the same for all rows since ~Sri = ~Srj for all ri, rj and hence Pr[ri] = Pr[rj].
Substituting Pr[r] = 1/` in (4.4) gives

Pr[A|r] =
`

sA
(
n
t

) ,
and hr can be expressed as follows:

hr = −
∑
A∈Γ

r separates A

`

sA
(
n
t

) log2

(
`

sA
(
n
t

)) .

We will group the terms of this sum by sA value. There are ` possible sA values, and
~Sr(i) is the number of terms (i.e. sets A) with sA = i. Therefore,

hr = −
∑̀
i=1

~Sr(i)
`

i
(
n
t

) log2

(
`

i
(
n
t

)) . (4.6)

Since the values ~Sr are the same for all rows, hr is also the same for all rows. This is
sufficient, by Remark 4.11, to show that the entropy-based measures of group anonymity
are equal.

While we are not able to compute µav and hr for BPHF-MAC when arbitrary BPHF
are used, we can assure that, for cyclic BPHF, anonymity will be equitable. Computing
~Sr for large codes/PHF appears to be a difficult problem.

Example 4.19. For the cyclic BPHF(3; 8, 2, 2) given as an example in Section 4.1.3, ~S1 =
~S2 = ~S3 = (4, 8, 4) since there are 4, 8 and 4 sets separated by exactly 1, 2, and 3 rows,

respectively. Since this BPHF is cyclic, and ~S is known, we can use (4.6) to compute the

78

key entropy of any row r:

hr = −
3∑
i=1

~Sr(i)
3

i
(

8
2

) log2

(
3

i
(

8
2

))

= −4

(
3

28
log

3

28

)
+ 8

(
3

56
log

3

56

)
+ 4

(
3

84
log

3

84

)
≈ 3.9 .

As noted in the discussion following Definition 4.9, four bits is the maximum possible key
entropy in this example, therefore BPHF-MAC provides nearly optimal anonymity for all
A ∈ Γ.

Bounding the Key Entropy

While computing hr for BPHF-MAC schemes constructed from arbitrary BPHF appears
difficult without knowledge of ~Sr, we can use the min-entropy of Pr[A|r] to guarantee a
minimum amount of anonymity.

Let X be a random variable defined on a set X and γ = maxx∈X {Pr[X = x]}. The
min-entropy of X is defined to be

H∞(X) = log2

(
1

γ

)
= − log2 γ .

Since H(X) ≥ H∞(X), the min-entropy gives a lower bound on the Shannon entropy.

With respect to the key anonymity of BPHF-MAC, defined as H(A|r), to compute
H∞(A|r), we must determine the maximum value of Pr[A|r] over all authorized sets A and
all rows r. Following equation (4.5) in Section 4.3.1, we have

max {P [A|r] : A ∈ Γ, 1 ≤ r ≤ `} =
`tt

nt
,

and therefore

hr ≥ log2

(
nt

`tt

)
= t log2 n− log2 `− t log2 t . (4.7)

While this lower bound will, in general, be strictly lower than the actual value of hr, it is
useful since it can be easily computed for any instance of BPHF-MAC, without knowledge
of ~Sr.

79

Example 4.20. Recall the example PHF(3; 8, 2, 2) given in Section 4.1.3, for which hr was
computed in Example 4.19 as 3.9 bits. Using the bound of (4.7), we can compute

hr ≥ 2 log2 8− log2 3− 2 log2 2

≈ 2.4 .

A similar computation gives hr ≥ 2.75 for the PHF(4; 9, 3, 3) given in Section 2.4, while
hr = 4.6. In Example 4.24, for C2,2, hr ≥ 1 while hr = 1.91, for C2,6, hr ≥ 7.41 while
hr = 9.87, and for C2,10, hr ≥ 14.68 while hr = 17.92.

A Code with Known Separating Distance Distribution

Here we describe a simple code for which ~Sr may be computed explicitly. Let Cq,` be the
(`; q`, q) complete code over q symbols of length `. Note that Cq,` is cyclic since the cyclic
shift of any codeword is another `-tuple of the q symbols, hence it belongs to Cq,`.

Theorem 4.21. In the code Cq,` for a coordinate r, the separating distance distribution

vector ~Sr defined

~Sr(i) = | {A : A ⊂ Cq,`, |A| = q, A is separated by r and sA,q = i} |,

has the values

~Sr(i) =

(
`− 1

i− 1

)
(q!)i−1 (qq − q!)`−i+1 ,

for i = 1, . . . , `.

Proof. We wish to count the number of q-sets of codewords separated by coordinate r with
separating distance i. The coordinate r is fixed, and contains symbols 1, . . . , q. Each q-set
will have i−1 separating coordinates (excluding r) and `−i+1 non-separating coordinates.
First we must choose which i−1 coordinates will be separated, which can be done in

(
`−1
i−1

)
distinct ways. Each of the i − 1 separating coordinates may be chosen in q! ways, since
they must be a permutation of {1, . . . , q}. The `− i+ 1 non-separating coordinates can be
chosen in qq − q! different ways, since they are all possible assignments minus those which
separate the codewords in this coordinate. Taking the product gives the desired result;
the number of q-sets of codewords in Cq,` which are separated in position r and have i− 1
other separating coordinates.

The following corollary applies Theorem 4.21 to the case q = 2.

80

Corollary 4.22. C2,` is a cyclic BPHF(`, 2`, 2, 2) with

~Sr(i) =

(
`− 1

i− 1

)
2`−1

for all rows r and i = 1, . . . `.

Proof. Note that C2,` is a PHF of strength 2 because all codewords are distinct, and that
Cq,` is cyclic as remarked above. C2,` is balanced since it contains all words of length `
over the alphabet {0, 1}.

The next theorem gives an explicit formula for our entropy-based anonymity measures
for the case when C2,` is used with the BPHF-MAC scheme, by applying the formulas of
Theorem 4.18.

Theorem 4.23. Let S be an instance of the (2, 2`) BPHF-MAC scheme implemented with
C2,`. Then

µav(A) = µav(S) = hr = −
∑̀
i=1

(
`− 1

i− 1

)
2`−1 `

i
(
n
t

) log2

(
`

i
(
n
t

))
for all A ∈ Γ and key indices r.

Proof. Equality of µav(A), µav(S) and hr follows from Theorem 4.18. Recall that in the
case of cyclic BPHF, following (4.6), we can express hr as:

hr = −
∑̀
i=1

~Sr(i)
`

i
(
n
t

) log2

(
`

i
(
n
t

)) . (4.8)

By substituting ~Sr(i) with the value given in Corollary 4.22, we arrive at the desired
formula.

Example 4.24. We give a few examples of the group and participant anonymity (µ and
ρ) as well as the average anonymity µav, provided by the (2, 2`) BPHF-MAC scheme
implemented with C2,`. Details of the participant anonymity of BPHF-MAC are given in
Section 4.3.2. The column µav(opt) gives log2((n/t)t) which is the largest possible value of
hr (see the discussion following Definition 4.9).

` t n µ µav(S) µav(opt) ρ
2 2 4 0.5 1.91 bits 2 bits 0.5
6 2 64 0.994 9.87 bits 10 bits 0.968
10 2 1024 0.99996 17.92 bits 18 bits 0.998

81

4.3.2 Participant anonymity of BPHF-MAC

In this section we determine the anonymity of individual participants. Analysis of the
participant anonymity provided by BPHF-MAC is simpler than group anonymity, and
relies only on the balance property. BPHF-MACs provide optimal and equitable participant
anonymity, as proven in the following theorem.

Theorem 4.25. The participant anonymity of BPHF-MAC is

ρ(Pj) = 1− t

n

for all Pj ∈ P.

Proof. First, recall that every row separates (n/t)t sets of participants (Lemma 4.13). Let
Pj be any participant, and r be any row. Given that Kr was used, we evaluate Pr[Pj|r],
the probability that Pj has participated in the creation of a tag using Kr. Pj has some
symbol in row r, hence there remain t−1 symbols corresponding to participants which can
belong to a set including Pj separated by row r. Since our PHF is balanced, each of these
symbols occurs (n/t) times in row r. The other t− 1 symbols/participants can be chosen
in (n/t)t−1 ways. Therefore,

Pr[Pj|r] =
| {A ∈ Γ : Pj ∈ A, row r separates A} |
| {A ∈ Γ : row r separates A} |

=
(n/t)t−1

(n/t)t

=
1

n/t

=
t

n

Since Pr[Pj|r] = t/n is the same for all rows and all participants, ρ(Pj) = 1 − t/n for all
Pj ∈ P as required.

4.4 GCA Constructions From Arbitrary PHF

When previously discussing constructions of GCAs using PHF, we gave only the connection
between PHF(`;n, t, t) and GCA(t, n; `, `). This is a restriction, since we require that the
number of symbols in the PHF and the strength be equal (both must be t).

It is also possible to construct GCAs from a general perfect hash family, denoted
PHF(`;n,m, t), where m ≥ t. The new structure is only a GCA by some definitions,

82

due to the following small difference. Some definitions2 require that K = {K1, . . . , Kv}
(the set of keys) be a partition of Y = {k1, . . . , k`m} (the set of key components). In the
construction we are about to describe this is not the case, however all other GCA proper-
ties are satisfied. A GCA where the sets of K are not necessarily disjoint, which we call a
relaxed GCA, will be shown adequate for the application at hand.

We use the following PHF(3; 12, 5, 3) to illustrate the construction (source: PHFtables
[98]).

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

2 4 4 4 0 1 0 2 3 3 3 1
3 1 0 4 0 1 2 0 2 4 3 3
1 4 0 1 3 2 1 2 4 2 3 0

As in the restricted case, each (row, symbol) pair will correspond to a key component.
The total number of key components is `m in general, and 15 in our example. Instead of
having only one key Kr associated to row r, there will be

(
m
t

)
keys; one key for each subset

of t symbols in row r. The total number of keys is therefore `
(
m
t

)
. In the example, each

row has a key associated with each of the ten 3-sets of key components:

{1, 2, 3} , {1, 2, 4} , {1, 3, 4} , {2, 3, 4} , {1, 2, 5} ,
{1, 3, 5} , {2, 3, 5} , {1, 4, 5} , {2, 4, 5} , {3, 4, 5}

for a total of 3×10 = 30 keys. There are n players, and player i is given the key components
corresponding to the i-th column, denoted Bi. The notation Kr,i refers to the i-th key of
row r. The subsets are numbered using m bits in the following canonical way: if symbol
j (1 ≤ j ≤ m) belongs to the subset then bit j is 1, otherwise bit j is zero. For example,
{1, 2, 3} is numbered (00111)2 = 7 and {2, 4, 5} = (11010)2 = 26.

Now we verify the GCA properties.

1. For a set A = {Pi1 , . . . , Pit} ∈ Γ, columns i1, . . . , it will be distinct in at least one
row, therefore the key components held by A:

⋃t
j=1Bij , will contain at least one Kr,i.

As in the m = t case, A may have one key from multiple rows, but never multiple
keys from any row, since in each row they hold only t key components.

2. For a set A =
{
Pi1 , . . . , Pit−1

}
6∈ Γ, none of the Kr,i are held since A holds at most

t− 1 key components from each row, and |Kr,i| = t (for all keys).

2 The definition of GCAs in the literature is inconsistent. In [116] and [110] it is not specified that the
Kis be disjoint, but in [114] and [115] the requirement that the Kis be disjoint appears. The fact that the
Kis are disjoint is used once in the proof of [115, Theorem 4].

83

Note that the necessity of the condition that the keys in K be disjoint depends crucially on
how the key components are distributed to participants. The relaxed GCA construction
ensures that no participant gets more than one component of any Kr,i, to preserve the
threshold condition.

For an example, take participants P5, P7 and P8. They have key components 0 and 2 in
row 1, components 0 and 2 in row 2, and components 1, 2 and 3 in row 3. Therefore, they
may use key K3,7. Further, this key depends on components held by all three participants
and hence this key could not be used by only one or two of the participants.

The only modification required to the BPHF-MAC scheme when using a relaxed GCA
is that the index of the key used must be computed differently. The index information in
the tag grows from log(`) bits to log(`) +m bits (using the subset numbering scheme given
above, but this can be reduced to t log(m) or fewer bits if desired).

Using a hash family with these parameters for the BPHF-MAC scheme will improve
efficiency significantly, as shown in Section 4.4.1, but at the cost of a small reduction in
anonymity, discussed in Section 4.4.2.

A note on strong unforgeability. This MAC scheme does not provide strong unforge-
ability, as defined by An et al. [8]. While it is not possible for an adversary to create a
valid tag for a new message, it may be possible to create a different tag on a previously
authenticated message. Consider a (2, n) scheme that has four key components per row,
fix a row, and denote the key components k1, . . . , k4. Given σ1 = Fk1(m) ⊕ Fk2(m) and
σ2 = Fk3(m)⊕ Fk2(m), the tag σ1 ⊕ σ2 is valid but different for the same message m.

4.4.1 Impact on Efficiency

We make three general remarks with respect to efficiency of BPHF-MAC schemes based
on relaxed GCAs.

1. When considering upper bounds for PHF [29], larger n are possible when ` and t are
fixed, since n ≤ t`/(t−1) < m`/(t−1) when m > t.

2. There are a better variety of constructions available, including those from coding
theory, that construct cyclic BPHF. For example, the asymptotically optimal explicit
constructions of PHF of Wang and Xing [181] do not construct PHF with m = t, nor
do PHF constructions from Reed-Solomon codes (see Stinson et al. [161]).

3. The potentially large number of keys `
(
m
t

)
has no effect on efficiency, since the number

of key components is only `m.

84

Intuitively, lifting the requirement that all keys Ki be disjoint (as tuples of key compo-
nents), increases the number keys available for a given number of key components, which
reduces the number of such components required.

The comparison relevant for BPHF-MAC is the number of key components for a (t, n)
scheme using a PHF(`;n, t, t), versus the number of key components when a PHF(`′;n,m, t)
is used. Asymptotically, the improvement will be at most a constant factor and will depend
on a specific construction, since for fixed m and t, ` = O(log n).

Example 4.26. We compare the number of key components required for a (5, 121) thresh-
old scheme. Using the PHF construction based on Reed-Solomon codes in [161], we can
construct a PHF(11; 121, 11, 5), and BPHF-MAC requires 11 × 11 = 121 key components
in total, while each participant must store 11 key components. The best construction of a
PHF(`, 121, 5, 5) on PHFtables [98] has ` = 176. Here, BPHF-MAC requires 176×5 = 880
key components in total, about 7.3 times more. Each participant must store 176 key
components, which is 16 times more than the Reed-Solomon construction.

Example 4.27. We repeat Example 4.26 but using t = 6. Using the Reed-Solomon
construction we obtain a PHF(16; 256, 16, 6), which is trivially also a PHF(16; 121, 16, 6).
The (6, 121) and (6, 256) BPHF-MAC schemes using this PHF require 256 key components
in total, while each participant must store 16 key components. The equivalent best known
construction of PHF(`; 121, 6, 6) from [98] has ` = 1160 for a total of 6960 total key
components and a storage requirement of 1160 key components per participant. In the
(6, 256) case, the lowest value of ` is 1232, giving a total of 7392 key components, and a
storage requirement of 1232 key components per participant.

Additional examples with larger t for comparison are difficult to construct due to
the lack of direct constructions for PHF(N ;n, t, t). If we consider the existence result
of Mehlhorn [121], which states that a PHF(`;n,m, t) exists when ` ≥ tet

2/m log n, we
can make a more general comparison. In the case that m = αt, this bound requires
` ≥ t α

√
et log n, so the minimum value of ` is reduced from tet log n to t α

√
et log n.

4.4.2 Impact on Anonymity

To determine the worst-case anonymity of BPHF-MAC based on relaxed GCAs (the m ≥ t
case), we use an approach similar to the one used when m = t in Section 4.3.1. Let ri
denote the i-th key of row r (recall that there are

(
m
t

)
keys per row). By “ri separates A”

we mean that (i) row r separates A, and (ii) A has the i-th t-set of symbols in row r. In
other words, A is not only separated by r, but separated by t specific symbols in row r.

85

Given a group A ∈ Γ, A may use sA keys, and will choose to use one of them with
probability 1/sA. Therefore,

Pr[ri|A] =

{
0 when ri does not separate A
1
sA

when ri separates A .

Now we consider Pr[ri] the probability that key ri is used.

Pr[ri] =
∑
A∈Γ

(Pr[ri|A]× Pr[A])

=
1(
n
t

) ∑
A∈Γ

ri separates A

1

sA
(4.9)

The number of A ∈ Γ separated by a given ri is (n/m)t in a BPHF, since each of the t
symbols in ri appears n/m times in row r. Since sA is at most ` and the sum in (4.9) has
nt/mt terms,

Pr[ri] ≥
1(
n
t

) (nt
mt

)
1

`

=
nt

`mt
(
n
t

) .
From Bayes’ theorem,

Pr[A|ri] =
Pr[ri|A] Pr[A]

Pr[ri]

=
(1/sA)

(
1/
(
n
t

))
Pr[ri]

=
1

sA
(
n
t

)
Pr[ri]

(4.10)

Now recall that µ = 1−max{Pr[A|ri] : A ∈ Γ, ri = 1, . . . , `
(
m
t

)
}. The probability Pr[A|ri] is

maximized when the denominator of (4.10) is smallest, i.e. when sA = 1 and Pr[ri] = nt

`mt(nt)
.

Therefore

µ = 1− 1(
n
t

)
nt

`mt(nt)

= 1− `mt

nt
,

86

which corresponds to equation 4.5 in the case m = t.

For fixed `, there is clearly a decrease in anonymity. However, as shown in the efficiency
discussion, setting m > t reduces `. Therefore, when m > t, ` decreases while the other
term in the numerator increases. We now present two examples, one where anonymity is
significantly decreased, and one where it is decreased only slightly.

Example 4.28. Recall the example PHF(3; 8, 2, 2) from Section 4.1.3. Using this PHF,
the (2, 8) BPHF-MAC scheme has µ = 0.81. We can replace this PHF with the following
PHF(2; 8, 4, 2).

1 2 3 4 1 2 3 4
1 1 2 2 3 3 4 4

This instance of the (2, 8) BPHF-MAC scheme has µ = 0.5.

Example 4.29. Using the same parameters as in Example 4.26, the m = t instance of
the (5, 121) BPHF-MAC has µ = 0.9999787 and hr ≥ 15.53, while the relaxed instance
has µ = 0.9999316 and hr ≥ 13.84. (The bounds on hr are given by the min-entropy of
Pr[A|ri].)

When we revisit the (6, 256) scheme from 4.26, we find µ = 0.99999979 and hr ≥ 22.22
if m = t. The (6, 256) scheme based on the relaxed construction has µ = 0.99999904 and
hr ≥ 20.

The decrease in anonymity can be explained by the relative sizes of the parameters in
the examples. In Example 4.28, |Γ| is much smaller than in Example 4.29. Also the impact
of the change in ` in Example 4.29 counterbalances some of the lost anonymity.

Participant Anonymity. An analysis similar to the proof of Theorem 4.25 shows that
(t, n) BPHF-MAC schemes constructed with PHF(N ;n,m, t) have participant anonymity
ρ(P) = 1−m/n for all participants P . This is a reduction from 1− t/n.

4.5 Conclusion

We have strengthened the definition of anonymity in the context of shared symmetric key
primitives. Group anonymity is measured in the worst case, and the concept of participant
anonymity was introduced. We have presented modified schemes for sharing symmetric
key operations with improved group and participant anonymity using balanced perfect
hash families. The relaxed GCA construction of Section 4.4 provides a useful trade-off
for practical applications, providing large gains in efficiency with only a small decrease in
anonymity.

87

Chapter 5

Group Testing and Batch Verification

We observe that finding invalid signatures in batches of signatures that fail batch verifica-
tion is an instance of the classical group testing problem. We survey relevant group testing
techniques, and present and compare new sequential and parallel algorithms for finding
invalid signatures based on group testing algorithms. The parallel algorithms are based
on cover-free families. Of the five new algorithms, three show improved performance for
many parameter choices, and the performance gains are especially notable when multiple
processors are available. The material in this chapter was published in [184].

5.1 Introduction

A batch verification algorithm for a digital signature scheme verifies a list of n (message,
signature) pairs as a group. It outputs 1 if all n signatures are valid, and it outputs 0 if one
or more are invalid. In the most general case, the messages and signers may be different.
Batch verification algorithms may provide large gains in efficiency, as verification of the n
signatures is significantly faster than n individual verifications. In this chapter, we address
the problem of handling batches which fail verification, i.e., finding the invalid signatures
which caused the batch to fail.

It has not been previously observed that finding invalid signatures in bad batches is
an instance of the group testing problem, which in brief, is as follows. Given a set B, of n
items, d of which are defective, determine which items are defective by asking queries of
the form “Does B′ ⊆ B contain a defective item?”. Group testing is an old, well-studied
problem, for which many algorithms exist. We re-cast some solutions to the group testing
problem as solutions to the invalid signature finding problem, which are then compared
for efficiency, parallelizability and accuracy. The group testing algorithms are well known,
but have not been considered in the context of batch verification by previous work that

88

has studied methods to find invalid signatures [80, 108, 119, 133, 132]. Performance will
be measured by the number of subset tests required to find d invalid signatures.

In total, five new algorithms for finding invalid signatures are presented and included in
our comparison. Of these, three give performance improvements. With a single processor,
generalized binary splitting [68] gives a modest improvement over the well-known binary
splitting algorithm. In the case of two or more processors, large improvements are possible
using one of two new group testing-based algorithms: Li’s s-stage algorithm [68] and the
Karp, Upfal and Wigderson algorithm [101]. The other two algorithms also have interest-
ing properties. The algorithm based on cover-free families is fully parallelizable, and is an
improved instance of a known algorithm for batch verification, the id-code algorithm [133]
(for some parameter choices). The random matrices algorithm is probabilistic, fully paral-
lelizable and enjoys a simple implementation. Some algorithms require an a priori bound
on d (this will be addressed in our comparison).

We also give some general results on the limits of group testing that are also interesting
in the context of finding invalid signatures in batches, such as the conditions when the
näıve testing strategy is optimal.

Contributions and Outline The first contribution of this chapter is describing the
link between finding invalid signatures in bad batches and group testing (§5.1.1, 5.1.2),
a connection previously overlooked. We then provide a survey of algorithms from the
group testing literature, and describe how they correspond to new algorithms for finding
invalid signatures (§5.2). These are classified according to the adaptive (i.e., sequential
§5.2.2) or nonadaptive (i.e., parallel §5.2.3) nature of the algorithm. We then compare
the performance of the new invalid signature finding algorithms (and some previously
known algorithms) and determine the best one under various parameter choices (§5.3). For
many parameter choices, especially with multiple processors, the new methods outperform
previously known methods.

5.1.1 Batch Verification

Let the algorithms (Gen, Sign,Verify) specify a signature scheme. Gen takes as input a
security parameter k, and outputs a signing and verification keypair (sk, pk). Sign(sk,m)
outputs a signature σ on the message m using the secret key sk, and Verify(pk, σ,m)
outputs 1 if σ is a valid signature of m under the secret key sk which corresponds to pk,
and 0 otherwise.

Here is the most general definition of batch verification.

Definition 5.1 ([46]). Let P1, . . . , Pn be n signers, with corresponding keypairs (sk1, pk1), . . . ,
(skn, pkn) output by Gen(k) for some security parameter k. Let B be a list containing

89

pk1, . . . , pkn, and n tuples of the form (Pti , σi,mi) called the batch (note that the ti and
mi values may be repeated.) The algorithm Batch(B) is a batch verification algorithm
provided Batch(B) = 1 if and only if Verify(pkti , σ,mi) = 1 for all i.

A few variations appear in the literature, including the case with a single signer or
the case of multiple signers with a single message. We also mention the related concept
of aggregate signatures. Suppose σ1, . . . , σn are signatures on messages m1, . . . ,mn with
corresponding verification keys pk1, . . . , pkn. An aggregation algorithm is a public algo-
rithm, which given the σi, mi and pki (i = 1, . . . , n) outputs a compressed signature σ. An
associated verification algorithm verifies if σ is a valid compressed signature, given pki and
mi (for i = 1, . . . n).

A number of signature schemes in the literature support batch verification. Batch
cryptography was introduced by Fiat [81, 82] to improve efficiency of an RSA-like scheme,
where large numbers of operations are performed at a central site. History shows that
secure batch verification algorithms are tricky to construct; a number of schemes were
presented and subsequently broken or shown to be otherwise flawed. One example is the
scheme of Al-Ibrahim et al. [1], which was broken by Stinson in [160]. Camenisch et al. list
and reference ten proposed schemes which were later broken [46, §1.2]. Despite this poor
track record, a number of signature schemes have batch verification, many of them based
on the general techniques described in Bellare et al. [18].

Of the techniques in [18], the small exponents test is commonly used to create batch
verification algorithms. It works as follows. An instance consists of g and {(x1, y1), . . . ,
(xn, yn)}, where g and the yi are elements of a group G of order q, and the xi are elements
of Zq. The algorithm outputs 1 if yi = gxi for i = 1, . . . , n. All n inputs are checked in the
following comparison:

g
Pn
i=1 xidi

?
=

n∏
i=1

ydii ,

where the di values are randomly chosen `-bit integers. Since this is correct with probability
2−` (proven in [18]), ` may be relatively small, and the test is efficient.

We list a few examples of signature schemes with batch verification, but omit details
since the techniques in this work will apply to any scheme with batch verification. RSA*
is an RSA-variant with batch verification presented by Boyd and Pavlovski [39]. DSA** is
a signature scheme based on DSA, given by Naccache et al. [126], which uses the small ex-
ponents test from [18]. Camenisch et al. [46] give a variant of the Camenisch-Lysyanskaya
signature scheme [47] which supports batch verification, present a batch verifier for the
Π-IBS scheme of Chatterjee and Sarkar [52], and discuss batch verification of BLS signa-
tures [35]. Practical considerations and implementation timings of batch verification are
given in Ferrara et al. [80].

90

5.1.2 Finding Invalid Signatures in Bad Batches

Suppose we are given a batch B such that Batch(B) = 0. We know that B contains at
least one invalid signature, but what is the best way to determine which of the signatures
do not verify? Verifying each signature individually is certainly an option, but can Batch
be applied to subsets of B to perform less work overall? This problem can be considered as
the computational version of the batch verification problem (which is a decision problem).
We name it the invalid signature finding (ISF) problem. This does not apply to aggregate
signatures, where, since the batch is compressed, we do not have enough information to
determine which of the original signatures were invalid.

We will treat the algorithm Batch as a generic test for invalid signatures, and present
solutions which work for any signature scheme equipped with a Batch function as described
in Definition 5.1. There are several advantages of generic ISF algorithms.

1. Applicability. A generic ISF algorithm may be used with any signature scheme which
provides batch verification. This includes future schemes.

2. Implementation. A single implementation may be used to locate bad signatures of
multiple signature schemes, reducing the need to maintain multiple ISF algorithm
implementations. The single generic ISF algorithm may be optimized, verified and
otherwise improved since the effort is amortized over a larger number of applications.

3. Ability to handle variations of the ISF problem. The group testing literature has
considered many variations of the problem, many of which are applicable to variations
of the ISF problem. As examples, group testing with competitive algorithms [68,
Ch. 4], or when the size of each test group is restricted [70, 141], or with unreliable
tests [68, Ch. 5], all correspond to interesting variations of the ISF problem.

The performance of an ISF algorithm will be evaluated based on the number of calls to
Batch and the parallel performance of the algorithm (this is discussed further in Sections
5.2 and 5.3).

Related Work

There have been five papers addressing the ISF problem. The first two are by Pastuszak
et al. [132, 133]. They consider a generic Batch function for a signature scheme and study
the divide-and-conquer method of finding bad signatures in [132]. The divide-and-conquer
verifier was originally described in [126] under the name cut and choose, and is referred to
as binary splitting in the group testing literature. In brief, a batch B is divided in half, then
Batch is recursively called on each sub-batch, until 1 is output (this sub-batch contains only

91

valid signatures) or until the sub-batch has size one, which identifies the bad signatures.
This method was implemented in the work of Ferrara et al. [80], and we discuss their
findings in §5.2.2 when we relate the divide-and-conquer verifier to well-known techniques
from group testing.

The second paper [133] approaches the problem using identification codes (id-codes),
a code which encodes an ISF algorithm, by specifying subsets of B to test with Batch in
such a way that all bad signatures may be identified. This approach is an instance of well-
known non-adaptive group testing algorithms based on cover-free, separable and disjunct
matrices, discussed in §5.2.3. A limitation of [132, 133] is that either the number of bad
signatures in a batch, or a bound on the number of bad signatures is required a priori.
This is common to most group testing algorithms as well.

The work of Law and Matt [108] improves the divide-and-conquer method by consid-
ering the details of the signature scheme. The second part of [108] gives an improved
invalid signature finder using a special version of Batch. The batch verification and invalid
signature finding tasks are combined, to allow information and intermediate computations
from the verification step to be used in the ISF step. This trades off general applicability
for improved computational efficiency. Along similar lines, Matt improves the performance
of these methods when the number of invalid signatures is large [119]. This addresses a
limitation of [108]. The improved techniques of [119] are applicable to the Cha-Cheon
signature scheme [51] and the pairing-based schemes discussed in Ferrara et al. [80].

5.2 Group Testing-Based ISF Algorithms

We begin with a general description of the group testing problem called the (d, n)-problem.
Consider a set of n items which contains exactly d defective items, called the defective set.
Identification of a defective item requires the application of an error-free test, and we may
test an arbitrary subset of the items. The test outcome may be positive if the subset of
items contains at least one defective item, or negative if no defective items are present in
the subset. An algorithm A which finds all d defective items is a solution to the problem.
An algorithm where the tests are applied sequentially, and subsequent tests depend on the
results of previous tests is called an adaptive algorithm. Nonadaptive algorithms require all
tests to be specified at the outset; hence they may be executed in parallel.

Group testing has a long history, originating in World War II, motivated by the task
of testing blood samples of draftees to detect syphilis [66, 68]. In this application, a single
test on a combination of blood samples will return positive if any of the samples would
test positive for syphilis. Since there were only a few thousand cases of the disease in
millions of draftees, large subsets would come back negative, saving many individual tests.
Group testing later found many industrial applications, a line of research initiated by

92

Sobel and Groll [152]. In the past 50 years or so, a large literature has grown around the
problem, and many variants have been considered. The book of Du and Hwang [67, 68] is
a comprehensive reference.

It should now be clear that the ISF problem is a group testing problem: the items are
signatures, the test applied to subsets is the batch verification algorithm, and the defectives
are invalid signatures. This basic model makes the following assumptions:

• The subset tests all have the same cost, regardless of the number of items being
tested.

• The number of defectives d, or a bound on d, is known a priori.

The first assumption, which is standard in the group testing literature, is a simplifying
assumption for the ISF problem, since the cost of Batch(B) is typically composed of a
fixed overhead cost independent of |B|, plus a variable cost which grows with |B|. The
fixed cost is typically high (e.g. an exponentiation) while the variable cost consists of |B|
cheaper operations (e.g. multiplications). This assumption does however, allow us to keep
our analysis general, and ignore the details of Batch. The second assumption allows some
group testing algorithms to be more efficient. We will discuss the importance of the bound
on d for each algorithm, and the behaviour of the algorithm when d is initially bounded
incorrectly.

Probabilistic group testing (PGT) assumes a probability distribution on the defective
set, while combinatorial group testing (CGT) does not. The only information CGT assumes
about the defective set is that it is a d-subset of the n items. Some applications of batch
verification may benefit from PGT if it is reasonable to make an assumption about the
distribution of invalid signatures; however, we do not consider PGT algorithms.

Denote the minimal number of calls to Batch required to find d invalid signatures in a
batch of size n by M(d, n). First note that M(d, n) ≤ n− 1, by verifying n− 1 signatures
individually and inferring the validity of the last signature from knowledge of d and the
other n − 1 signatures. The following general lower bound is proven in [68, Corollary
2.1.11].

Theorem 5.2. M(d, n) ≥ min
{
n− 1, 2`+

⌈
log
(
n−`
d−`

)⌉}
for 0 < ` ≤ d < n.

Unless stated otherwise, log x is the base two logarithm of x, lnx is the natural logarithm
of x, and e is the natural base.

5.2.1 Individual Testing

The simplest way of identifying all invalid signatures in a bad batch is to individually verify
each signature. The question is, when is this näıve testing strategy optimal? Recall that

93

M(d, n) is the smallest possible number of tests for any (d, n) algorithm. Combining [68,
Theorem 3.5.1] and [68, Theorem 3.5.3], we have the following result.

Theorem 5.3. Let d be the number of invalid signatures in a batch of size n, and let
M(d, n) be as defined above. Then

M(d, n) < n− 1 for n > 3d, and

M(d, n) = n− 1 for n ≤ 2.625d.

Therefore, when the number of bad signatures is at most n/3 it is possible to do better
than individual testing, and when there are more than n/2.625 bad signatures the näıve
strategy is optimal. What is best when n < 3d and n ≥ 2.625d remains unknown; however,
Hu, Hwang and Wang [97] conjectured that individual testing is optimal whenever n ≤ 3d.

We note that individual testing is trivially parallelizable.

5.2.2 Adaptive ISF Algorithms

In this section we will present some adaptive ISF algorithms, based on group testing
algorithms. In adaptive (or sequential) algorithms, the results of each test determines the
items to be tested in subsequent tests. We will use the notation (d, n), where d is an upper
bound on the number of bad signatures in the batch of size n.

Binary Splitting

An adaptive group testing algorithm is naturally represented as a binary tree. Nodes of
the tree contain elements to be tested, starting at the root, which contains all n items. In
binary splitting, at each level of the tree, we halve (i.e. divide as evenly as possible) the
set of items in the parent node, to create two child nodes. When a test returns negative,
this node becomes a leaf, since we know the set of items at this node is valid. Repeating
this process recursively, we ultimately end up with nodes containing a single item, thus
identifying the invalid items of the batch. By using depth-first search from the root of
the tree we may locate an invalid item using at most dlog(n)e tests. We may remove the
invalid item, and repeatedly apply the binary splitting algorithm to find d invalid items
using at most d dlog(n)e tests.

An implementation of binary splitting for the BLS signature scheme [35] is discussed
in the work of Ferrara et al. [80]. They performed experiments with n = 1024 and they
found binary splitting was faster than individual verification when d < 0.15n. In these
experiments, a random fraction of the batch was corrupted, however Ferrara et al. note

94

that in practice if corrupted signatures occur in bursts, the binary splitting algorithm will
have better performance. Ordering of the batch may be an important consideration for
applications using binary splitting.

A variant of binary splitting is Hwang’s generalized binary splitting. The intuition of
the algorithm is that there is roughly one defective item in every n/d items, and therefore
a group smaller than n/2 could be tested and a defective found with fewer tests. When
d = 1 the number of tests required by generalized binary splitting is blog(n)c+1, and when
d ≥ 2, the number of tests is not more than d − 1 +

⌈
log
(
n
d

)⌉
, which gives a noticeable

saving as d gets larger [68, Corollary. 2.2.4].

Karp, Upfal and Wigderson describe an algorithm to identify a single invalid item using
p processors in at most

⌈
logp+1 n

⌉
parallel tests [101]. The algorithm is identical to binary

splitting when p = 1, since it uses a (p+ 1)-ary tree in the same way that binary splitting
does. At each level, p of the child sets are tested in parallel, and (if necessary) the validity
of the (p + 1)-th set is inferred. We may repeatedly apply this algorithm to identify d
invalid items in at most d

⌈
logp+1 n

⌉
parallel tests. We will refer to this algorithm as the

KUW algorithm.

Li’s s-Stage Algorithm

This algorithm has s rounds of testing, identifying good items at each round, until the
last round when the algorithm corresponds to individual testing. Li’s algorithm begins
by grouping the batch into g1 groups of size k1 (some groups might have k1 − 1 items).
The groups are tested, and items in valid groups are set aside. The i-th stage divides the
remaining elements into gi groups of size ki, tests them, and then removes items in valid
groups. The final stage has ks = 1, and remaining items are identified as valid or invalid.

When optimal choices are made for gi, ki and s (see [68, §2.3]), the number of tests is
not more than

e

log e
d log

(n
d

)
.

When p processors are available, Li’s algorithm may be parallelized (see [67, p. 33]), and
the number of parallel tests is not more than

e

log e

d

p
log

(
n

dp

)
+ ln

(
n

dp

)
+ d .

5.2.3 Nonadaptive Algorithms

As we have seen, some adaptive algorithms are somewhat parallelizable. All nonadaptive
algorithms are completely parallelizable. Recall that nonadaptive tests may be completely

95

specified without information from previous tests. This can be especially useful for online
batch verification in a system with time constraints where a batch of n signatures arrive
every time interval and must be processed before the next batch arrives, with a known
number of tests. This might be applicable in the example of public key authentication
in vehicular networks (this example is discussed in [46, 80]) or authentication of data
reported periodically from sensors (as discussed in [45]). We continue to use the (d, n)
notation defined at the beginning of Section 5.2.

Nonadaptive Group Testing with Cover-Free Families

A useful combinatorial structure for designing nonadaptive CGT (NACGT) algorithms is
a cover-free family, introduced in Section 1.2.3. Cover-free families are also studied under
the terms disjunct matrices [68], binary superimposed codes [104], and strongly selective
families [54]. Stinson et al. [161] discusses relations between these structures. We choose
the language of cover-free families since they have found multiple applications in cryptog-
raphy (see [85, 124, 155] for examples). The following definition of a CFF is easily seen
to be equivalent to Definition 1.7, however, this formulation is convenient when discussing
group testing.

Definition 5.4. A d-cover-free family is an N×n binary matrix, with n ≥ d+1, such that
for any set of columns C and single column c such that |C| = d and c 6∈ C the following
property holds. Let U(C) be the binary OR of the columns in C. The cover-free property
ensures that c 6∈ U(C), that is, c is 1 in at least one position where U(C) is 0. We will use
the notation d-CFF(N, n) for cover-free families.

The cover-free property ensures that no d-set of columns “covers” any other column.
A d-separable matrix satisfies a weaker property, namely, the OR of any two sets of d
columns are distinct. While any d-separable matrix yields a NACGT algorithm, it is not
efficient [68, Ch. 7]. We now describe how a d-CFF(N, n) defines an efficient (d, n) NACGT
algorithm.

Input: Signatures σ1, . . . , σn, batch verification function Batch.
Output: Up to d invalid signatures.

1. Construct a matrix A which is a d-CFF(N, n).

2. Associate σi to column i of A. Each row of A will define a sub-batch to test; if σi
has a 1 in row j then σi is included in sub-batch j.

3. Compute Batch(B1), . . . ,Batch(BN) where Bi = {σj : Ai,j = 1}.

96

4. For each row i such that Batch(Bi) = 1 mark all σj ∈ Bi as valid.

5. Output all the remaining signatures as invalid, i.e., signatures which do not belong
to a valid batch.

We now explain how the algorithm correctly identifies valid signatures (and thus cor-
rectly outputs invalid signatures in step 5). Suppose σi is a valid signature. Let C be the
set of columns corresponding to the invalid signatures. We are assuming that |C| ≤ d. Let
C ′ be any set of d columns that contains C as a subset and does not contain i (C ′ exists
because n ≥ d+ 1). Since A is the matrix of a d-CFF(N, n), there exists a row j such that
Aj,i = 1 and Aj,c = 0 for all c in C ′. Therefore Batch(Bj) = 1 and σi is recognized as a
valid signature in step 4 of the algorithm.

Remark 5.5. Shultz makes the following observation for batches containing d′ > d invalid
signatures [149]. Let B′ be the resulting set of signatures after removing all the signatures
belonging to valid sub-batches, in step 4. If |B′| > d, the number of invalid signatures in
the input batch exceeds d. In this case some valid signatures may be covered by U(D), but
are not present in a valid test. Thus B′ contains all d′ invalid signatures, but may contain
some valid signatures as well.

The number of rows, N , in the matrix representation of a d-CFF(N, n) gives the number
of tests required in the group testing algorithm given. The bounds on N given in Section
1.2.3 indicate how well (at best) we can expect CFF-based nonadaptive group tests to
perform. It is immediately clear that the nonadaptive feature comes at a cost, since the
number of tests will always be larger than d dlog(n)e, the number of tests required by
binary splitting (c.f. 5.2.2).

Using the optimal 1-CFF construction given in Section 1.2.3 gives the following non-
adaptive ISF.

Theorem 5.6. In a batch of n signatures, a single bad signature may be identified using
N parallel tests, provided (

N

bN/2c

)
≥ n .

Therefore, 15, 20 and 25 tests may identify a single bad signature in a batch of size at
most 6435, 184756 and 5200300, respectively.

A recent paper of Porat and Rothschild [137] explicitly constructs (n, d)-strongly selec-
tive families from error correcting codes. This structure is equivalent to a (d−1)-CFF(N, n)
(see [54]), and hence it gives a nonadaptive ISF.

Theorem 5.7 ([137, Theorem 1]). It is possible to construct a d-CFF(N, n) with N =
Θ((d+ 1)2 log n) in Θ((d+ 1)n log n) time.

97

In light of the bounds on N given in Section 1.2.3, this construction is asymptotically
optimal. We choose to ignore the constant hidden by the Θ-notation, as even with this
assumption the CFF algorithm is outperformed by other methods.

Nonadaptive Group Testing with id-codes

The definition of identification codes is very general: any binary matrix which specifies
a group testing algorithm is an id-code. Thus CFF are id-codes, and the d-separable
property defined earlier in Section 5.2.3 is both necessary and sufficient for an id-code.
The construction of id-codes put forward in Pastuszak et al. [133] is a cover-free family
with some additional constraints on the number of nonzero row and column entries. Using
their construction gives the following ISF.

Theorem 5.8 ([133, Corollary 4]). The number N of tests necessary to identify d bad
signatures in a batch of size n satisfies N ≤ (d+ 1)

√
n.

Clearly, as n→∞ for fixed d, this method will require a much larger number of tests
than CFF-based methods, since

√
n dominates log n. However, the CFF constructions

presented have a quadratic dependence on d, while d is linear in Theorem 5.8. Therefore,
for fixed n and increasing d, there will be a crossover point after which the id-code ISF
outperforms the CFF ISF. Comparing the formulas,

(d+ 1)2 log(n) < (d+ 1)
√
n

d <

√
n

log n
− 1 .

This gives the value of d in terms of n before which the CFF ISF outperforms the id-code
ISF. For example, when n = 103, 104, 105, 106, d must be greater than 2, 6, 18, 49 (resp.)
for the id-code ISF to be more efficient.

Random Matrices

In this section we describe a probabilistic nonadaptive ISF which is based on a random
matrix, and fails with a given probability. Du and Hwang give the probability that a
random matrix is a d-CFF.

Theorem 5.9. Let C be a random N × n binary matrix where Ci,j = 1 with probability
q = 1/(d+ 1). Then C is a d-CFF(N, n) with probability at least

(d+ 1)

(
n

d+ 1

)[
1− q(1− q)d

]N
.

98

Proof. Let D be a set of d columns of C, and let c a single column. In a single row, the
probability that c = 1 and D = 0, . . . , 0 is q(1− q)d. (Note that q = 1/(d + 1) maximizes
this probability.) The probability that this pattern does not occur in any of the N rows is[
1− q(1− q)d

]N
. Since the d+ 1 columns of D and c may be chosen in (d+ 1)

(
n
d+1

)
ways,

this gives the bound on the probability that C is a CFF stated in the theorem.

Now we consider constructing an ISF as described at the beginning of Section 5.2.3
using random matrices. Certainly, this approach would succeed with probability at least
that given by Theorem 5.9. However, the ISF will have significantly better performance,
since the only case that affects our result is when the d columns corresponding to the bad
signatures cover another column. If this occurs, then the covered column may be valid, but
it will not appear in a valid test. Columns corresponding to valid signatures which cover
each other will have no effect on the ISF. Therefore, we need only consider the probability
that a fixed set of d columns covers another column. Since the d columns corresponding
to defectives are fixed with respect to a batch, the remaining column may be chosen in
n− d ways, which gives the following result. The same improvement may be used in DNA
library screening (see [68, Theorem 9.3.3] and [12]).

Theorem 5.10. There exists an ISF which identifies d defectives in a batch of size n using

N tests with failure probability Pd,n ≤ (n− d)
[
1− q(1− q)d

]N
, where q = 1/(d+ 1).

Remark 5.11. The error of this ISF is one-sided. It may output a valid signature as
invalid. To detect this, we must individually test the output signatures, to confirm that
they are invalid.

5.3 Comparison of Algorithms

In this section we compare the ISF algorithms given in Section 5.2. We compare them based
on the number of tests, and their behaviour when d (the number of defectives) is unknown,
or estimated incorrectly. Finally we discuss how the ISFs given by Law and Matt [108, 119]
for a specific class of signature schemes compare to the generic ISF algorithms given in
this thesis.

5.3.1 Number of Tests

First, for each of the ISF algorithms in Section 5.2, we give the bound on the worst case
number of calls to Batch (Table 5.1). Table 5.1 gives the bound for the trivial parallelization
of (generalized) binary splitting: divide the original batch into p equal-sized sub-batches.
The KUW algorithm is a better parallelization of binary splitting. For generalized binary

99

Method Sec. Tests (worst case) Tests with p processors

Individual Testing 5.2.1 n− 1 dn/pe − p

Binary Splitting (B.S.) 5.2.2 d dlog ne d
⌈
log
(
n
p

)⌉
Gen. Bin. Splitting (G.B.S)∗ 5.2.2 d− 1 +

⌈
log
(
n
d

)⌉
d− 1 +

⌈
log
(
n/p
d

)⌉
Li’s s-stage∗ 5.2.2 e

log e
d log n

d
e

log e
d
p

log n
dp

+ ln n
dp

+ d

PR CFF∗ 5.2.3 (d+ 1)2 log n ((d+ 1)2 log n)/p

PPS id-codes∗ [133] 5.2.3 (d+ 1)
√
n ((d+ 1)

√
n)/p

KUW 5.2.2 d dlog2 ne d
⌈
logp+1 n

⌉
Table 5.1: Summary of the number of tests required for the ISF algorithms presented in
§5.2. The number of tests required by the random matrices ISF must be computed using
Theorem 5.10. “PR CFF” is the ISF based on Theorem 5.7, and “PPS id-codes” is the
ISF in Theorem 5.8. The algorithms marked with an asterisk (∗) require an a priori bound
on d.

splitting, the bounds given hold for d ≥ 2, while for d = 1 the number of required tests is
blog nc+ 1.

Next we compare the number of tests required by each method for various choices
of n, d, and p (the number of processors available). In Ferrara et al. [80], the choices
n = 1024, d = 1, . . . , 153 were used when investigating the practical performance of the
binary splitting method. In Pastuszak et al. [132], choices of n ∈ [16, 1024] are used to give
the average number of tests for the binary splitting method when d = 1, . . . , 16. In Law
and Matt [108], tables are given with n = 24, 26, 28, 210, 212 and d = 1, . . . , 4. In Matt [119],
the parameters chosen for comparison are n = 24, 26, 28, 210 and d = 1, . . . , n (here the
goal was to show better performance with large d). All previous work considered p = 1,
i.e., a single processor. We will compare the ISF algorithms with n = 103, 104, 105, 106,
d = 1, 2, 3, 4, 10 and p = 2, 4, 8, 16. When p = 1 the algorithm requiring the fewest tests is
always generalized binary splitting, and for smaller values of d, binary splitting performs
equally well. Table 5.2 lists the algorithm requiring the fewest number of tests when p ≥ 2
(according to the bounds in Table 5.1). A finer grained comparison is given in Section
5.4, where Tables 5.4, 5.5 and 5.6 give the actual number of tests required under various
combinations of parameters.

100

n d
Fewest Tests when p =
2 4 8 16

103 4 KUW LI LI LI
104 4 KUW KUW LI LI
105 4 KUW KUW LI LI
106 4 KUW KUW KUW LI
103 10 LI LI LI LI
104 10 KUW LI LI LI
105 10 KUW LI LI LI
106 10 KUW LI LI LI

Table 5.2: Algorithm requiring the fewest number of tests with p processors. The number
of tests required by all algorithms listed in Table 5.1 is given in Tables 5.5 and 5.6. Here,
LI stands for Li’s Algorithm (§5.2.2).

Discussion In the case of a single processor (Table 5.4) we find that the adaptive al-
gorithms have the best performance. In particular, generalized binary splitting slightly
outperforms binary splitting, especially as d grows. With a single processor the KUW
algorithm has the same performance as binary splitting, hence we have omitted it from the
table.

When two or more processors are available to the ISF (Tables 5.2, 5.5 and 5.6), Li’s
s-stage algorithm and the KUW algorithm begin to show the best performance. The
performance gap is most pronounced as the number of processors grows for any of the
choices of (n, d) presented. In general, the nonadaptive algorithms improve when more
processors are available, as they provide a speedup linear in the number of processors.
Regarding the nonadaptive algorithms, the PR CFF algorithm (Theorem 5.7) requires
fewer tests than the PPS id-code algorithm (Theorem 5.8) when d <

√
n/ log n − 1. If

a failure probability of at most Pd,n = 0.001 is tolerable (see Remark 5.11 and Theorem
5.10), the random matrix ISF (RM ISF) outperforms the CFF and id-codes methods since
it requires a weaker property from the matrix, as discussed following Theorem 5.9. The RM
ISF with failure probability 0.001 is best overall when p = 16, d = 4 and n = 104, 105, 106

(see Section 5.4). However, determining whether the RM ISF has failed requires each of
the output items to be individually verified.

In the detailed tables of Section 5.4, there are many parameter combinations where
multiple ISFs require a nearly equal number of tests. In these cases, implementation
factors, average case performance, and the size of subset tests may influence the best
choice.

101

Algorithm When d′ < d When d′ > d

B.S. Outputs d′ invalid signatures in time
MB.S.(d

′, n).

G.B.S., Li Outputs d′ invalid signatures but using sub-
optimal parameter choices thus requiring ex-
tra work.

KUW Outputs d′ invalid signatures in time
MKUW(d′, n).

CFF,
id-codes

returns d′ invalid signa-
tures

returns a set of d ≤ ` ≤ n po-
tentially invalid signatures

RM Outputs d′ signatures in
MRM(d, n) tests

Outputs d bad signatures with
prob. Pd,n and d′ bad sig-
natures with probability Pd′,n
(see Theorem 5.10)

Table 5.3: Behaviour of ISFs when the true number of invalid signatures d′ differs from the
estimated number d. Here, MA(d, n) represents the number of tests required by algorithm
A for a batch of size n with d defectives.

5.3.2 Unknown Number of Invalid Signatures

Table 5.3 lists the behaviour of each of the algorithms when the true number of signatures,
is d′, a value different from our estimate d.

The binary splitting algorithm has a certain grace with respect to handling arbitrary
d, in that the algorithm’s behaviour is unchanged, and the bound on the number of tests
holds as d changes. On the other hand, Li’s s-stage algorithm, and generalized binary
splitting begin by computing some parameters based on n and d in order to meet the
performance bound stated in Table 5.1. If a batch contains d′ 6= d invalid signatures these
parameters will not be chosen optimally, and it is unclear to what extent this will hurt the
performance of the algorithm. It is also unclear whether better performance is obtained
by underestimating or overestimating d′. Therefore, if no a priori information about d is
available, the best choice is binary splitting when p = 1, and KUW when p > 1.

When a batch contains d′ > d invalid signatures, the CFF and id-code algorithms
output a set B′ of ` signatures, where d < ` ≤ n. All d′ defectives are in B′; however,
it may contain valid signatures as well. As d′ increases, ` will increase as well, and less
information is gained. The case d′ > d is easily recognized (if |B′| > d), and we may restart
the ISF with a larger estimate of d.

102

The random matrix ISF outputs each d′ > d with probability Pd′,n, given in Theorem
5.10. For these algorithms we may run N tests to identify some valid signatures, remove
them from the batch, re-estimate d, and re-run the ISF.

Another option when d is unknown is to use a competitive algorithm, i.e., one which
assumes no a priori information about d, yet completes in a bounded number of tests (see
[68, Ch. 4]). For example, the “jumping algorithm” of Bar-Noy et al. [13], identifies d
invalid signatures in at most 1.65d(log n

d
+ 1.031) + 6 tests, for 0 ≤ d ≤ n. Note that this

flexibility comes at a cost because the performance of a competitive algorithm when d is
known to be small is poorer than the other ISFs presented.

5.3.3 Comparison to Non-Generic ISF Algorithms

Recall from Section 5.1.2 that a non-generic ISF is an ISF which is customized to a partic-
ular signature scheme, integrated into the Batch algorithm. In the single processor setting,
the ISFs requiring the fewest number of tests were binary splitting and generalized binary
splitting. Since the non-generic ISF given by Law and Matt [108, 119] outperforms bi-
nary splitting, their ISF will outperform the generic ISF algorithms presented here (for the
pairing-based signature schemes to which it applies).

The faster choice in the parallel case would depend on how well the specialized ISFs
described by Law and Matt parallelize. If their improved version of binary splitting yields
an improved version of the KUW test (which seems possible, since KUW and binary
splitting are similar), then the parameter combinations where KUW is the best may be
improved upon.

A general comparison is beyond the scope of this work since the units are different:
number of calls to Batch() (this work) vs. number of multiplications in a finite field (Law
and Matt).

5.4 Comparison Details

Table 5.4 gives the number of tests required by each algorithm when p = 1, with varying
n and d, while Tables 5.5 and 5.6 fix d = 4 and d = 10 respectively, with varying n and p.

5.5 Conclusion

We have introduced algorithms based on group testing for finding invalid signatures in
bad batches. For many parameter choices, and especially with multiple processors, the

103

Method
n = 103, d = n = 104, d =

1 2 3 4 10 1 2 3 4 10
Binary Splitting 10 20 30 40 100 14 28 42 56 140
Gen. Bin. Splitting 10 20 30 39 87 14 27 40 52 121
Li’s s-stage 18 33 47 60 125 25 46 66 85 187
PR CFF 13 89 159 249 1205 16 119 212 332 1607
PPS id-codes 63 94 126 158 347 200 300 400 500 1100
Random Matrices 49 87 124 162 387 57 101 145 189 452

n = 105 n = 106

Binary Splitting 17 34 51 68 170 20 40 60 80 200
Gen. Bin. Splitting 17 34 50 65 154 20 40 60 79 187
Li’s s-stage 31 58 84 110 250 37 71 103 135 312
PR CFF 20 149 265 415 2009 23 179 318 498 2411
PPS id-codes 632 948 1264 1581 3478 2K 3K 4K 5K 11K
Random Matrices 65 115 166 216 517 73 130 186 243 581

Table 5.4: Table showing the number of tests required by each group testing algorithm
from Table 5.1 when n = 103, 104, 105, 106 and d = 1, 2, 3, 4, 10. For random matrices a
success probability of 99.9% is required.

new methods outperform known methods. Our comparison shows that the best algorithm
depends strongly on the choice of parameters, and no single algorithm is best in all cases.
One way to more precisely compare these algorithms, while still maintaining some general-
ity, would be to count the number of calls to Batch() and the size the of input to each, then
assign values to the fixed and variable cost, depending on the underlying Batch() function,
to arrive at a final performance number. Other topics for future work include: i) compar-
ison of implementations to compensate for not considering the sizes of sub-batches, and
ii) specializing the given ISFs to specific signature schemes, perhaps by using techniques
from Law and Matt’s specialized ISFs for pairing-based signature schemes.

104

Method
d = 4

n = 103, p = n = 104, p =
2 4 8 16 2 4 8 16

Binary Splitting 36 32 28 24 52 48 44 40
Gen. Bin. Splitting 35 31 27 23 48 44 40 36
KUW 28 20 16 12 36 24 20 16
Li’s s-stage 35 19 12 8 49 27 17 12
PR CFF 125 63 32 16 166 83 42 21
PPS id-codes 79 40 20 10 250 125 63 32
Random Matrices 81 41 21 11 95 48 24 12

n = 105 n = 106

Binary Splitting 64 60 56 52 76 72 68 64
Gen. Bin. Splitting 61 57 53 49 75 71 67 63
KUW 44 32 24 20 52 36 28 20
Li’s s-stage 64 36 22 16 79 45 28 20
PR CFF 208 104 52 26 249 125 63 32
PPS id-codes 719 396 198 99 2.5K 1250 625 313
Random Matrices 108 54 27 14 122 61 31 16

Table 5.5: Table showing the number of tests required by each group testing algorithm from
Table 5.1 when n = 103, 104, d = 4 and the number of processors available is p = 2, 4, 8, 16.
For random matrices a success probability of 99.9% is required.

105

Method
d = 10

n = 103, p = n = 104, p =
2 4 8 16 2 4 8 16

Binary Splitting 90 80 70 60 130 120 110 100
Gen. Bin. Splitting 77 67 57 47 111 101 91 80
KUW 70 50 40 30 90 60 50 40
Li’s s-stage 67 35 21 14 100 53 31 21
PR CFF 603 302 151 76 804 402 201 101
PPS id-codes 174 87 44 22 550 275 138 69
Random Matrices 194 97 49 25 226 113 57 29

n = 105, p = n = 106, p =
2 4 8 16 2 4 8 16

Binary Splitting 160 150 140 130 190 180 170 160
Gen. Bin. Splitting 144 134 124 114 177 167 157 147
KUW 110 80 60 50 130 90 70 50
Li’s s-stage 134 70 41 27 167 88 51 33
PR CFF 1005 503 252 126 1206 603 302 151
PPS id-codes 1739 870 435 218 5500 2750 1375 688
Random Matrices 259 130 65 33 291 146 73 37

Table 5.6: Table showing the number of tests required by each group testing algorithm
from Table 5.1 when n = 103, 104, d = 10 and the number of processors available is
p = 2, 4, 8, 16. For random matrices a success probability of 99.9% is required.

106

Chapter 6

Short One-Time Signatures

In this chapter we present a new one-time signature scheme having short signatures. Our
new scheme is also the first one-time signature scheme that supports aggregation, batch
verification, and which admits efficient proofs of knowledge. It has a fast signing algorithm,
requiring only modular additions, and its verification cost is comparable to ECDSA verifi-
cation. These properties make our scheme suitable for applications on resource-constrained
devices such as smart cards and sensor nodes.

6.1 Introduction

A one-time signature (OTS) scheme is a digital signature scheme that can be used to sign
one message per key pair. More generally, we consider w-time signatures, which allow w
signatures to be signed securely with each key pair (signing more than w messages breaks
the security of the scheme). One-time signatures are an old idea: the first digital signature
scheme invented was an OTS (Rabin/Lamport [138, 107]). The two main advantages
of OTS is that they may be constructed from any one-way function, and the signing and
verification algorithms are very fast and (when compared to regular public-key signatures).
Common drawbacks, aside from the signature limit, are the signature length and the size
of the public and private keys.

Despite the limitations of OTS, they have found many applications. On the more prac-
tical side, OTS can be used to authenticate messages in sensor networks [61] and to provide
source authentication for multicast (also called broadcast) authentication [135]. One-time
signatures are also used in the construction of other primitives, such as online/offline sig-
natures [79] and CCA-secure public-key encryption [32].

With respect to signature length, designing conventional signature schemes with short
signatures is not a new problem, and is motivated by applications with strong bandwidth

107

constraints. For example, signatures which are bar-coded for postage stamps, or which
must be entered manually by users as a part of a product registration system, must be as
short as possible while maintaining security.

There is a significant gap in signature length between regular public-key signatures and
OTS. While signatures in conventional schemes can be very short, e.g., as small as 160 bits
for 80-bit security (in the BLS scheme [35]), one-time signatures are usually many times
longer (for typical examples, see [135, 142], where signature lengths are over one thousand
bits). This motivates the following questions: Are short OTS possible? Can we retain the
advantages of OTS but reduce the signature size?

We give a positive answer to these questions. In particular, we make the following
contributions:

• We give the first one-time signature scheme with short signatures and a tight security
reduction based on the difficulty of the discrete logarithm problem. The signature
length in our scheme is constant with respect to the size of the message to be signed,
and is about 180 bits long for 80-bit security.

• We give a unified description of five previous schemes and improve parameter selection
for these schemes.

• Our new scheme supports aggregation and batch verification, admits efficient proofs
of knowledge, and is fail-stop. Ours is the first OTS to have the first two of these
properties.

• As a corollary, we give a fail-stop signature scheme with the shortest signatures to
date.

• Our new OTS retains fast signing, but has slower verification than most OTS.
Nonetheless, verification in our new scheme is only about as expensive as verification
of an ECDSA signature.

Informal description of our solution. We consider a general class of OTS schemes
based on cover-free families, and make the observation that the one-way function in an
OTS scheme is being used as a commitment function. The signer creates commitments
during key generation that form the public key, and the openings of these commitments
make up the signature. By replacing the one-way function with Pedersen commitments
(of the form gshr) [134], we can use the algebraic properties of this commitment scheme to
compress a number of openings into a single opening. We also show that it is sufficient for
security to have the value r in the commitment be very small, leading to short signatures.
We make further use of the algebraic structure to prove security, and provide additional
features: batch verification, aggregation, and proofs of knowledge.

108

Chapter organization. First we describe a general construction of OTS based on cover-
free families (§6.2), then we review relevant related work on one-time signatures and their
applications (§6.3). In §6.4 we present our new scheme and discuss parameter selection. In
§6.5 we describe additional features of our scheme, and then we conclude with a discussion
of its applications (§6.6).

6.2 General Construction of OTS from Cover-Free

Families

A number of existing OTS schemes may be described as special cases of a (unified) general
construction based on cover-free families. Our new scheme will also be a variant of this
general construction. We start with the definition of a cover-free family (which is somewhat
specialized for this chapter).

Definition 6.1. A w-cover-free family (X,B) is a set X of m elements, and a set B of 2n

subsets of X called blocks, with the following property. For any w blocks Bi1 , . . . , Biw ∈ B,
and all other blocks B ∈ B, it holds that

B 6⊆
w⋃
j=1

Bij .

We say that Bi1 , . . . , Biw does not cover any other B ∈ B. We will use the notation
w-CFF(m, 2n) for cover-free families.

We now describe the general construction of a w-time signature scheme based on a
cover-free family. Throughout this chapter, the message space is {0, 1}n.

Setup(n): Let (X,B) be a w-CFF with |X| = m elements and |B| = 2n sets. Let
f : {0, 1}` → {0, 1}`0 be any one-way function (where ` and `0 are security pa-
rameters). Also, to each message M ∈ {0, 1}n we associate a unique BM ∈ B (this
correspondence is public).

Key Generation: Choose m random values s1, . . . , sm ∈ {0, 1}` and compute vi = f(si)
for i = 1, . . . ,m. Output the public key PK := (v1, . . . , vm) and the secret key
SK := (s1, . . . , sm).

Sign: To sign M ∈ {0, 1}n, compute BM ∈ B, the subset corresponding to M . Then
output the signature σ = {(si, i) : i ∈ BM}.

109

Verify: To verify (σ,M) using PK, compute BM , then check that f(si) = vi for all i ∈ BM .
If so, output 1; otherwise, output 0.

It is easy to see that security is provided by the one-wayness of f and the cover-free
property: given w signatures, all other messages require knowledge of at least one si value
that has not been revealed (a more detailed analysis appears in [136]). The correspondence
between M and BM depends on the CFF; we will describe an efficient algorithm for our
scheme in §6.4.2.

6.3 Related work

We will first describe five existing schemes that are special cases of the general CFF scheme
described above. Then we discuss other work related to OTS and fail-stop signatures.
The OTS literature is vast, and we do not provide a complete survey here. For a more
comprehensive survey, see Menezes et al. [122, Ch. 11.6] and Dods et al. [65]. All of the
schemes considered in [65, 122] have signatures that are longer than the new scheme we
present in §6.4. For details of the signature length in conventional signature schemes, see
[35].

6.3.1 Schemes Based on the CFF Model

The descriptions assume we want to sign n-bit messages. We write Mi for the i-th bit of
message M .

In the Lamport scheme [107], the public key consists of vi,b = f(si,b) for i = 1, . . . , n, and
for b = 0, 1. To sign M , reveal s1,M1 , . . . , sn,Mn . The verifier checks that vi,Mi

= f(si,Mi
),

for i = 1, . . . , n. This can be interpreted as a 1-CFF with 2n points, where X = {(i, b) :
i = 1, . . . , n and b = 0, 1} and BM = {(i, b) : Mi = b} for all M ∈ {0, 1}n.

The Bos and Chaum [38] scheme has m secrets and can be used to sign all weight
bm/2c binary vectors. Therefore, we require

(
m
bm/2c

)
> 2n in order to sign n-bit messages.

When these vectors are viewed as the incidence matrix of a CFF, this forms an optimal
1-CFF with m points (optimality is proven by Sperner [154]).

The Reyzin-Reyzin schemes [142] use random structures instead of explicitly con-
structed CFFs (under the name “subset-resilient functions”). Their security analysis con-
siders two probabilities. First, the probability that a random matrix is a w-CFF is used
in the security analysis for chosen-message attacks. The adversary has the description of
the CFF, and finding w blocks that cover another block allows the adversary to sign the
covered message after observing w signatures. Second, the probability that a randomly

110

chosen set of messages covers another message is used to analyze security when the adver-
sary is passive and observes w signatures on random messages. Some example parameters
are given in [142]. To sign two messages with 80-bit security and a forgery probability of
2−53, the public key size is ≈ 82 Kb and the signatures are 1600 bits in length.

The scheme of Pieprzyk, Wang and Xing [136] (the PWX scheme) is the first to explic-
itly use CFFs, and it uses some constructions based on polynomials and error-correcting
codes. All of the constructions in [136] are constructions for w-CFF for general w. The
special case w = 1 is not singled out (having already been considered in [38]).

Katz [102] defines the same scheme as the PWX scheme, but uses a CFF with a stronger
property, namely, that the union of w blocks misses λ (or more) points of any other block.
The stronger property is required to provide leakage resilience (a property that guarantees
security even if a bounded amount of the signer’s secret information is leaked). As in [136],
going from signing one message to signing multiple messages is done via a w-CFF.

Parameter Selection In Section 6.4.3 we show that better parameters (shorter signa-
tures and smaller keys) are obtained by using w 1-CFFs rather than a single w-CFF. This
improves the schemes above that use w-CFF.

6.3.2 Other Work Related to One-Time Signatures

Fail-Stop Signatures. In a fail-stop signature scheme, the signer may efficiently prove
that he did not create a given, valid signature (when the signature is a legitimate forgery).
The scheme of van Heyst and Pedersen [176] uses Pedersen commitments in the public key
to create a fail-stop signature scheme. For this reason, our schemes have some similarities:
both schemes can sign w messages, the public key is a list of commitments, and the secret
key is their openings. The signature and verification algorithms differ, however: in [176],
the messages are used in the signature directly (rather than being encoded with a CFF),
verification is slower (at least twice as slow) and signatures are about twice as long.

Other schemes. Goldwasser, Micali and Rivest [89] present a one-time signature scheme
based on trapdoor claw-free permutations. The scheme requires n evaluations of the per-
mutation to sign n-bit messages and the signature is the size of the output. For all known
trapdoor claw-free permutations, this means that the signature is at least as long as an
RSA modulus (i.e., 1024 bits at the 80-bit security level).

Groth [91] gives an alternate construction of an OTS scheme with the same properties
as the van Heyst and Pedersen scheme (though it is not fail-stop).

111

Bellare and Shoup [19] present a general construction of OTS from three-move identi-
fication protocols. Specific instantiations of their construction yield an OTS scheme with
short signatures (as short as ours) based on the one more discrete log problem [131], while
another gives a scheme with signatures about twice as large as ours having discrete log
security. Both schemes presented in [19] also require a collision-resistant hash function
(CRHF), even when signing short messages, i.e., the hash function is part of the signing
algorithm, and not just applied to the input message in the usual way.

A popular approach to convert an OTS scheme to a w-time signature scheme is to use
a Merkle tree to authenticate w one-time public keys [65, 122, 123]. Since the signature
must include a path through the authentication tree, the signature length is typically
thousands of bits. Some examples of multiple-time signatures using Merkle trees are given
in [22, 43, 127]. To our knowledge, the Merkle-like scheme with the shortest signatures is
due to Dahmen and Krauß [61]. At the 80-bit security level, the signatures produced by
their scheme are 330 bits long (in general the signature length is about 4κ to achieve κ-bit
security).

A recent paper by Mohassel gives a black-box construction of OTS schemes from
chameleon hash functions [125]. This result leads to new OTS schemes based on the
hardness of factoring, the discrete logarithm problem, and the short integer solution prob-
lem on lattices. The instantiation based on the discrete log assumption has the shortest
signatures, which are the same length as the van Heyst and Pedersen OTS, about twice as
long as in the new scheme we present.

6.3.3 Applications of One-Time Signatures

Here we review a few example applications of one-time signatures. In §6.6 we discuss using
our new OTS for these applications.

Smart cards and sensor networks. Resource-constrained devices that are not capable
of using public-key cryptography (RSA, for example) often have sufficient resources for
symmetric-key operations and w-time signatures. Rohde et al. [144] show that the Merkle
signature scheme is practical on smart cards without a cryptographic coprocessor. Nodes
in sensor networks have similar limitations, and one-time signatures were applied in this
case by Dahmen and Krauß [61]. Their scheme uses the fact that most messages in sensor
networks are short (8–24 bits), for example, basic commands or simple measurements (such
as temperature).

Bicakci et al. [21] introduce the concept of one-time sensors. In this application, nodes
in a wireless sensor network are given enough cryptographic material to produce only
one (or a few) authentic messages. This is motivated by nodes with a short lifespan, for

112

instance, due to limited battery life. Also, the nodes might not be strictly disposable, e.g.,
they must return to the central authority periodically to obtain new cryptographic keys.
Signing must be fast on a sensor node, while verification is done at a central repository
by a more powerful computer. Using public key signatures instead of a symmetric key
message authentication code allows other entities to verify the authenticity of a message.

Broadcast authentication. Using OTS to authenticate a stream of broadcasted data
was initiated by Gennaro and Rohatgi [88, 143]. For streams of data that are unknown
in advance (e.g., live broadcasts) their solution uses an OTS to authenticate each block of
the stream against the public key transmitted in the previous block.

The BiBa OTS scheme was designed by Perrig [135] as the main component of the BiBa
broadcast authentication protocol. In broadcast authentication, a sender wishes to send
authenticated packets to multiple receivers that may have limited resources. Fast signing
and verification are important in this application to allow high-throughput, low-latency
communication. Substituting the Reyzin-Reyzin scheme (see §6.3.1) for the BiBa OTS
improves the efficiency of the BiBa broadcast authentication protocol (see [142]).

6.4 A New OTS Scheme with Short Signatures

In this section we describe our new scheme and discuss parameter selection. We also give a
set of concrete parameters for 80-bit security. The scheme, given in Figure 6.1, signs only
one message, since in §6.4.3 we show that w public keys that each sign one message will
be smaller than one public key that signs w messages (for CFF-based OTS).

6.4.1 Scheme Description

We first briefly review Pedersen’s commitment scheme [134]. Let G be a group of order q,
where q is prime. Let g, h ∈ G be system parameters. To commit to a message m ∈ Z∗q,
choose r ∈ Zq at random, and output C = gmhr as the commitment. To open C, reveal
(m, r). Also note that, given two distinct openings to a Pedersen commitment using distinct
bases g and h, it is possible to recover logg h.

The complete scheme is presented in Figure 6.1.

Remark 6.2. For the scheme in Figure 6.1 to be fail-stop, logg h must be unknown to the
signer. In practice, g and h may be chosen by a trusted authority, or verifiably at random.
A forgery will allow the signer to recover logg h (with probability at least 1 − 2−`r), and
use it as a proof of forgery (under the assumption that the signer cannot compute logg h).

113

Setup(n): Choose a group G of order q, where q is an `q-bit prime (`q is a security
parameter). Let (X,B) be an optimal 1-CFF(m, 2n), and write BM for the block
corresponding to the message M ∈ {0, 1}n. Let g and h be generators of G (see
Remark 6.2 on choosing g and h).

Key Generation: For i = 1, . . . ,m, generate random values si ∈R Zq and ri ∈R
{0, 1}`r , where `r is a parameter. The secret key is SK := (si, ri)

m
i=1. For i =

1, . . . ,m, compute vi := gsihri . The public key is PK := (v1, . . . , vm).

Sign: To sign M , compute and output

(σ, ρ) :=

(∑
i∈BM

si (mod q),
∑
i∈BM

ri

)
∈ Zq × Z.

More precisely, ρ is an integer in [0,m(2`r − 1)/2], since |BM | = bm/2c in the
optimal 1-CFF.

Verify: To verify the signature (σ, ρ), check that 0 ≤ ρ ≤ m(2`r − 1)/2 and

gσhρ
?
=
∏
i∈BM

vi.

Output 1 if both conditions hold, and output 0 otherwise.

To sign w messages, simply create w public keys as above, and include a counter with
each signature to indicate which of the w public keys is being used.

Figure 6.1: Our new one-time signature scheme.

See the proof of Theorem 6.5 for details. If the fail-stop property is not desired, the signer
may use any distinct g and h, provided logg h is not publicly known.

Our scheme is secure if the discrete log problem is hard in G.

Definition 6.3. Let G be a cyclic group of prime order q, and let g be a generator of G.
The discrete log problem (DLP) is, when given g, h ∈ G, to compute x = logg h, i.e., x such
that h = gx.

We say that an adversary A (t, ε)-solves the DLP in G if after time t, A outputs a
correct solution to a DLP instance with probability ε.

The definition of security we use is strong unforgeability under chosen message attacks.

114

Strong unforgeability against an adaptive adversary is modelled by the following game
between a challenger C and an adversary A.

1. C publishes Params := Setup(n).

2. C runs the key generation algorithm with Params w times, and publishes PK1, . . . ,
PKw.

3. A adaptively requests up to w signatures, at most one per public key, which C
provides. Let Q be the set of (message, signature, public key index) triples queried
by A.

4. A outputs (M,σ, i).

We say that A (t, ε)-wins the game if

Pr[Verify(PKi,M, σ) = 1 ∧ (M,σ, i) 6∈ Q] = ε ,

and Step 4 takes time t. Note that A can win by outputting a triple (M,σ, i) where M
appears in Q, but with a different σ. This is the strong unforgeability property: a new
signature on a previously signed message is considered a forgery.

For our proof of security, we will require the following technical lemma. In what follows,
for an integer x we write [x] to denote {0, . . . , x− 1}.

Lemma 6.4. Let Xn be the probability distribution on [n2`] defined as Xn = X1 + . . .+Xn,
where Xi is the uniform distribution on [2`]. Then the min-entropy of Xn, H∞(Xn), is at
least ` bits.

Proof. Let Pn(k) = Pr[Xn = k] for k ∈ [n2`]. Clearly, P1(k) = 2−` for all k ∈ [2`] and zero
otherwise. By applying repeated convolution to P1,

Pn(k) =
∑
i∈Z

P1(i)Pn−1(k − i)

= 2−`(Pn−1(k − 1) + . . .+ Pn−1(k − 2`)) .

because P1(i) = 0 for values of i 6∈ [2`]. Since the sum of the terms Pn−1(k− i) are at most
one (Pn−1 is a probability distribution), it follows that Pn(k) ≤ 2−` for all n, k. Now we
compute the min-entropy of Xn:

H∞(Xn) = − log
(

max {Pr[Xn = x]}x∈[n2`]

)
≥ − log 2−` = `,

which proves the lemma.

115

We now prove the security of our scheme.

Theorem 6.5. Let A be an adversary who (t, ε)-wins the strong unforgeability security
game above for the w-time signature scheme in Figure 6.1. Then A can be used to (t +
c, ε(1− 2−`r))-solve the DLP in G, where `r is a parameter of the signature scheme, and c
is a small constant.

Proof. B will be a new algorithm that uses A to solve an instance of the DLP in G. Let
the DLP instance given as input to B be (g, h). B creates PK1, . . . ,PKw and SK1, . . . , SKw

as above, using g and h, and gives PK1, . . .PKw and the system parameters to A. Since
B knows SK1, . . . , SKi, the w adaptive queries A makes may all be answered correctly.
(Recall that each message is signed with one of the w keys, as the w-time key pair consists
of w one-time key pairs.) After seeing signatures on a set of Q messages, A outputs a
signature (σ, ρ, i) on a message M , which verifies using PKi. Let (σ, ρ) be the signature
on M created by B using SKi and the signing algorithm above. Now define the Pedersen
commitment

C :=
∏
j∈BM

vj = gσhρ = gσhρ .

There are two cases to consider: (i) M 6∈ Q or, (ii) M ∈ Q, but (σ, ρ) 6= (σ, ρ).

Since the ρ-value of a signature is in [0,m(2`r − 1)/2], there are m(2`r − 1)/2 valid
openings of C. We must analyze the probability that A outputs the same opening as
(σ, ρ). A does have some information about ρ; he knows that ρ is the sum of uniformly
random values from {0, 1}`r . By Lemma 6.4, the min-entropy of ρ as a random variable
defined on

{
0, . . . ,m(2`r − 1)/2

}
is at least `r bits. Therefore, in case (i) the forgery equals

(σ, ρ) with probability not more than 2−`r , and differs (giving distinct openings of C) with
probability at least 1 − 2−`r . In case (ii), (σ, ρ) 6= (σ, ρ) by definition, so we always have
distinct openings of C.

Thus, with probability at least ε(1− 2−`r) A succeeds and B has two distinct openings
of C, which allows B to recover logg h, solving the DLP instance. The time required by
B is t (the time required by A) plus the time required to: generate w key pairs, sign w
messages, and solve for logg h, i.e, compute logg h = (ρ− ρ)/(σ − σ).

Remark 6.6. Note that non-repudiation is provided, despite the signer’s ability to choose
SK such that two messages have the same signature (the signer can do this by ensuring that
the sum of two openings is the same). Suppose Bob has a signature (σ, ρ) from Alice on
the message M , and Alice later claims that (σ, ρ) is a signature on M ′ (and the verification
equation holds). If Alice is telling the truth, and she did not give Bob a signature on M ,
then Bob has produced a forgery on M , which is not possible by Theorem 6.5. Therefore,
Alice must have signed M .

116

A natural question to ask is whether we can change the commitments used in the public
key to simple discrete log commitments, i.e., a commitment to m is computed as gm. This
simplifies the scheme and reduces signature size (by 10 bits using our parameters from
§6.4.3). We chose the scheme presented because we were not able to find a security proof
for the modified scheme with a tight security reduction, and the scheme presented has only
a modest increase in signature length.

6.4.2 Encoding a message M as BM

Encoding messages is considered in detail by Bos and Chaum [38] as well as Reyzin and
Reyzin [142]. Pieprzyk et al. [136] discuss coding-theoretic approaches to the problem
(encoding using generator matrices). In both [38] and [142], algorithms to encode a message
as a weight bm/2c vector are given. Both require a nontrivial amount of computation (at
least m2n multiplications). Here we mention a simpler approach.

A bijective function S :
{

1, . . . ,
(
a
b

)}
↔ {b-subsets of [a]} is called a ranking algo-

rithm from integers to subsets and an unranking algorithm from subsets to integers. The
well-known ranking algorithm described in [60, 53] requires bm/2c subtractions and log d
comparisons where d =

(
n

bm/2c

)
, using precomputed values. The algorithm is as follows:

Input M : an n-bit integer, k: weight of the output
Output y: length d binary vector of weight k

for i = 1, . . . , d

if M >
(
n−i
k

)
yi = 1

M = M −
(
n−i
k

)
k = k − 1

else yi = 0

return y

This is called the co-lex ranking [105]. Bicakci et al. [22] use the lex ranking in their
implementation of the Bos-Chaum scheme.

6.4.3 Parameter Selection

We first argue that signing w messages using w instances of a 1-CFF will require less
storage than using a single w-CFF. This applies to all of the CFF schemes described in
Section 6.3.1.

117

Suppose w = `t for integers ` and t. In any w-CFF(m, 2n), we have m = Ω(w2

logw
n) (see

Stinson et al. [163]). Combining ` public keys allowing t signatures each to create a public
key permitting w = `t signatures therefore has m = Ω(` t2

log t
n) (where m in this case is the

total number of secrets needed by the signer). This bound on m is smallest when ` = w and
t = 1, i.e., when we use w public keys each allowing one signature (note that the constants
hidden by the Ω-notation are the same for all choices of ` and t). It is also easy to see
that an intermediate choice (e.g., using

√
w
√
w-CFFs) is not an improvement. Thus, by

using w 1-CFF(m, 2n) instead of one w-CFF(m, 2n), we can potentially reduce storage by
a factor of w/ logw. A minor drawback of this approach is that the signature must include
a counter, to tell the verifier which part of the public key to use. As we are comparing
necessary conditions on m, and in practice one must use an explicit CFF construction, this
comparison is not concrete, and may not hold for small parameters. Below we will give an
example showing that using multiple 1-CFFs reduces storage space even when w = 2.

Constructing an optimal 1-CFF(m, 2n) is simple: choose all length m binary vectors
with weight bm/2c (there are

(
m
bm/2c

)
such vectors). This is a 1-CFF(m, 2n) provided that(
m

bm/2c

)
> 2n ; (6.1)

in fact, it is the same CFF used in the Bos-Chaum scheme [38].1

Next we consider `q. We choose G to be a group of points on an elliptic curve, since its
elements have a compact representation. Therefore, `q must be large enough so that the
DLP is hard in G. We would probably use the standard NIST curves [130] for performance
reasons.

In most applications, `r = 10 will be sufficient. This means that the security reduction
succeeds with probability ε − ε/1024, or put another way, an instance of the DLP may
be solved on average, given a forgery, 1023 out of 1024 times. A probability of proving
a forgery of 1023/1024 should also be sufficient for most applications requiring fail-stop
signatures.

Parameter sizes for 80-bit security and arbitrary-length messages. We assume
that messages will be hashed with a collision-resistant hash function which produces a
160-bit output, and so n = 160. We need `q = 160 for security, therefore group elements
may be represented using 160 bits (recall our choice of G above). In this case the public
key size is 160 ·165w bits, which is about 26Kb per signature (we take m ≥ 165 in order to

1 The 1-CFF with the stronger property required to construct Katz’ leakage-resilient scheme also has
a simple (but not optimal) construction – a direct generalization of the Sperner construction (see Stinson
et al. [163, Lemma 3.2]). The reduction in required storage is even more pronounced here, as m depends
more strongly on w.

118

satisfy (6.1)). When w = 10, 100, and 1000, the public key is 264Kb, 2.64Mb and 26.4Mb,
respectively. Since `r = 10 and log2 ρ ≤ log2(bm/2c 2`r) the signature length is not more
than 160 + 17 + log2w = 177 + log2w bits. (The log2w bits are required for the counter.)
Next, the encoding algorithm requires log2

(
165
82

)
≈ 160 comparisons, and we must store

about 162 160-bit values, requiring about 26Kb space.

Now suppose we had used a w-CFF, instead of w 1-CFFs. For the purpose of compar-
ison, we will generously assume that w-CFF(m, 2n) may be constructed with m = w2

log2 w
n.

When w = 2 and n = 160, m = 640. The number of key elements is only 330 when using
two 1-CFF(m, 2n) each with m = 165. Therefore, even for small w, using w 1-CFFs is
preferable to using a single w-CFF.

Computational costs. Recall that m = 165 for 80-bit security and G is a prime-order
elliptic curve group. Key generation requires m multi-exponentiations in G. Verification
requires a single multi-exponentiation (where one exponent is small) and 82 multiplications,
which is comparable to ECDSA (which requires one multi-exponentiation with full-length
exponents). Signing requires 82 additions mod q. Note that, when computing the multi-
exponentiations during key generation and verification, fast exponentiation techniques are
applicable [20].

The signing and verification times of our scheme were compared to ECDSA using version
5.6.0 of the Crypto++ library [62] on a Pentium D 3.0GHz processor. The parameter sizes
and elliptic curve group implementation used in both schemes was the same. For signing,
our OTS is 47.14 times faster than ECDSA, while verification was 1.13 times slower.
We note a possible ECDSA tradeoff: if the signer can precompute and (securely) store
additional values, the ECDSA signing operation may be sped up significantly.

Parameter sizes for 80-bit security and short messages. We now consider the
parameter sizes when our scheme is used to sign 16-bit messages. Recall (§6.3) that short
messages are common in sensor networks [61]. To construct the optimal 1-CFF(m, 216)
requires m = 19. Therefore the public key contains 3040w bits to sign w 16-bit messages.
While the key sizes are larger than the Dahmen and Krauß scheme, the signature overhead
is halved.

Some possible tradeoffs. First, to reduce the signature size even further, we can avoid
including the counter at the cost of either (i) increased verification time, by simply omitting
it, which may be acceptable when w is small, or (ii) larger public and private parameters,
by using a w-CFF. Second, using randomized hashing, we may reduce the public and
private storage requirement. The idea is to use a target collision-resistant hash function,
which is a type of keyed hash function with a short digest (i.e., a κ-bit digest for κ-bit

119

Scheme Security PK size SK size Sig. size Sign Verify
vHP [176] DLP 2κ 4κ 2κ 2 mult. 3 exp.
Groth [91] DLP 3κ 2κ 2κ 3 mult. 3 exp.
BS [19] DLP +

CRHF
κ 2κ 2κ 2 mult. 1 exp.

BS [19] omDLP +
CRHF

κ 3κ κ 1 mult 1 exp.

Generic CFF
[38, 107,
136, 142]

OWF O(γn) O(γn) O(γn) Encode
(§6.4.2)

O(n) OWF
computa-
tions

This work DLP O(κn) O(κn) κ+ c Encode and
O(n) add.

1 exp. +
O(n) mult.

Table 6.1: Comparison of various OTS schemes. The DL security parameter is denoted
by κ, the one-way function (OWF) security parameter is denoted by γ, n is the number of
bits in the message to sign, and c is a small constant (c = 10 bits in the examples given
above). The “Generic CFF” construction is given in §6.2.

security, instead of a 2κ-bit digest). Since the digest is half the size, the public and private
parameters are roughly halved. However, the signer must commit to w hash keys during
key generation, and include the hash key with the signature. This idea is discussed in [127]
and [143]. Another possible way to reduce signer storage is to store only a short seed and
generate SK using a pseudorandom generator (PRG), which increases computation during
signing since the PRG must be invoked bm/2c times. Finally, we may reduce computation
by precomputing and storing values of hr for all r ∈ {0, 1}`r , since `r is small.

Comparison. In Table 6.1, we compare the size of the keys and signatures, and the
computation required to create signatures and verify them, for several OTS. For schemes
providing security under the DLP, our scheme has the shortest signatures. This is traded
off against the large public key size. The scheme of Bellare and Shoup (BS) has the best
all-around performance, but it requires stronger assumptions, namely, the one more DLP
(omDLP) and the existence of a collision-resistant hash function (CRHF).

6.5 Additional Features of the OTS Scheme

In this section, we describe four additional features of our OTS scheme. Batch verification
and aggregation are techniques for handling multiple signatures, in order to efficiently verify

120

or compress many signatures. Proving knowledge of a signature and verifiably encrypting
a signature are useful properties when using OTS to build more complex cryptographic
protocols (e.g., certified email [10]).

6.5.1 Batch Verification

Our new OTS provides batch verification under the most general definition: verification
of k signatures on k (possibly different) messages created under k public keys (that have
the same generators g and h). Given a batch of signatures, (σ1, ρ1, . . . , σk, ρk, M1, . . . ,Mk,
PK1, . . . ,PKk), we can efficiently verify them using the small exponents tests of Bellare,
Garay and Rabin [18], as follows:

gσ1d1+...+σkdkhρ1d1+...ρkdk ?
=

 ∏
i∈BM1

,vi∈PK1

vi

d1

× · · · ×

 ∏
i∈BMk ,vi∈PKk

vi

dk

where d1, . . . , dk are randomly chosen small exponents. Using `-bit exponents, there is a
2−` probability of error during verification. Note that the error is one-sided; the test will
never reject a valid batch of signatures. The cost of the test, (assuming m is even) is
km/2 multiplications plus k small exponentiations plus one full exponentiation. The cost
of individually verifying k signatures is km/2 multiplications plus k exponentiations.

6.5.2 Aggregation

In this section we prove that k signatures may be securely aggregated by simply computing
their sum. We consider the most general definition of aggregation: signatures from k
(possibly different) signers on k (possibly different) messages are combined to produce a
single signature. Here are the aggregation functions.

Aggregate(σ1, ρ1, . . . , σk, ρk): Output the aggregate signature

(σ, ρ) =

(
k∑
i=1

σi (mod q),
k∑
i=1

ρi (mod q)

)
∈ Zq × Zq .

Note that, when aggregating a large number of signatures, ρ may be reduced mod q.

VerAgg(PK1, . . . ,PKk,M1, . . . ,Mk, σ, ρ): Output 1 if

gσhρ
?
=

 ∏
i∈BM1

,vi∈PK1

vi

× · · · ×
 ∏
i∈BMk ,vi∈PKk

vi

 ,

holds, and output 0 otherwise.

121

Here we present the security game for aggregate signatures from Boneh et al. [33]. Let
C be the challenger and A be the adversary.

1. C runs Setup(n) to generate params, computes PK1 = Keygen(params), and gives
params and PK1 to A.

2. A adaptively queries a set of messages Q, and C provides signatures using SK1.

3. A outputs PK2, . . . ,PKk, (σ, ρ) and M = {M1, . . . ,Mk}. A’s success probability is
the probability that VerAgg(PK1, . . . ,PKk,M, σ, ρ) = 1 and M1 6∈ Q.

In order for Aggregate to be secure, we must augment the public key PKi with a zero-
knowledge (ZK) proof of knowledge Zi of the secret key (using standard techniques, e.g.,
[48, 63]). Alternatively, the signer may prove knowledge of the secret key to the verifier
when communicating the public key. This proves that each public key is well formed. We
naturally require that A must output valid public keys to win the above game. Since there
are multiple ZK proof systems meeting our requirements, and to keep the presentation
general, we do not specify that a particular system must be used.

Sketch of the security proof. We show that an adversary who produces a forgery in
the above game can be used to solve the DLP in G. The challenger creates PK1, SK1,
and Z1 and sends PK1 and Z1 to A. A makes adaptive queries, then responds as in Step
3. C then extracts SK2, . . . , SKk from Z2, . . . , Zk (which is possible using the knowledge
extractor since the proofs Zi are valid, see [63]). Given (σ, ρ), and SK2, . . . , SKk, the
challenger computes (σ′, ρ′) = Aggregate(PK2, . . . ,PKk, M2, . . . ,Mk). Now, σ′′ := σ − σ′,
ρ′′ := ρ − ρ′ is a valid signature on M1 under PK1 (a forgery). We now proceed as in the
proof of Theorem 6.5.

Remark 6.7. No ZK proofs are necessary when all signatures are created by a single
signer, or by a group of trusted signers. In this case, since the participants are honest
(not under A’s control), the above game should be modified to have the challenger choose
PK2, . . . ,PKk, instead of the adversary.

122

6.5.3 Proving Knowledge of a Signature on the Message M

The following ZK proof of knowledge allows a prover to convince a verifier that he possesses
a signature on M under a known public key without revealing the signature.2

PK{(σ, ρ) :
∏
i∈BM

vi = gσhρ}

Note that prover only needs to know g, h, σ, ρ and can remain ignorant of the whole public
key. This is easily generalized to proving knowledge of aggregate signatures. Using the
non-interactive version of Schnorr’s protocol, the computation of the prover is a single
multi-exponentiation in both cases. The size of the proof is about 4`q bits. (See [48] for
more details.)

6.5.4 Verifiably Encrypting a Signature

Since proving knowledge of a signature amounts to proving knowledge of a discrete log,
we can verifiably encrypt signatures by combining our OTS with the Camenisch-Shoup
verifiable encryption scheme [49]. The ability to verifiably encrypt signatures allows them
to be exchanged fairly using an optimistic fair exchange protocol [9]. If we encrypt using
an additively homomorphic encryption scheme with efficient proofs of plaintext knowledge
(such as the Paillier scheme [139]), encrypted signatures may also be aggregated.

6.6 Impact on Applications

In this section we discuss using our scheme in the applications mentioned in Section 6.3.3.
For two of the applications mentioned in the introduction, bar-coded postage and prod-
uct registration systems, our scheme may be used, but it does not offer any immediate
advantages over conventional signatures. So we do not discuss these applications further.

Smart cards and sensor networks. It is important that authentication for smart
cards and sensor networks have low overhead, due to the high cost of communication [112].
This is the biggest advantage of using our OTS: the number of signature bits per message
bit is smaller than alternative schemes. A specific application where short signatures are
especially important is when sensors are used in vehicular networks. Since the vehicles pass

2The “PK” (proof of knowledge) notation [48] is a short-hand for the various Schnorr-like proof of
knowledge of a discrete logarithm protocols which exist for types of statements such as knowledge of,
relations between, and the length of discrete logarithms.

123

roadside access points at high speed, only a limited amount of data can be transferred [100].
Key management can be handled offline, i.e., when the vehicle is parked.

The computation costs of our scheme favour applications where the card or nodes pro-
duce the signatures and verification is performed by a device with more resources. For
example, in heterogeneous sensor networks, where signatures are created by low-resource
nodes and verified by nodes with greater resources, or in sensor networks where the sen-
sors return authenticated data to a central authority (e.g., weather sensors reporting to
a meteorological agency). In the latter example, aggregation can reduce authentication
overhead even further, and batch verification can reduce verification time. We stress that
that resource-constrained devices are still able to efficiently verify signatures in our scheme.
ECDSA has been shown practical for sensor nodes and smart cards [92, 171], and verifica-
tion in our scheme requires equivalent computational resources.

Broadcast authentication. While our scheme could be used with BiBa, it will not be
as efficient as the Reyzin-Reyzin scheme because of the size of the public parameters; we
cannot use the hash chain technique to re-use a single public key for many signatures. How-
ever, our observation on parameter selection (i.e., to use w 1-CFFs instead of one w-CFF)
gives a variant of the Reyzin-Reyzin scheme with smaller public keys and signatures, and
thus gives a version of the BiBa protocol with reduced communication and computation,
and improved security.

124

Chapter 7

Future Work

Here we mention some possible topics for related future work. With respect to upper
bounds on the size of SHF, the exponent in the bound proven here cannot be improved
further, as shown in Section 2.4. Despite this, it may still be possible to improve the
constant in Theorem 2.29. It would be interesting to either improve the leading constant,
or show that this cannot be done. A second bound of interest would be a lower bound on
N for SHF of general type. In Section 2.5, we prove a lower bound on N for type {w1, w2}
but did not generalize this to type {w1, . . . , wt}.

In Chapter 3 we showed that constructing asymptotically optimal SHF of arbitrary
type is possible with the AG construction, and that many constructions for SHF of a
specific type may be generalized to construct SHF of arbitrary type. What remains open
in this area is the problem of finding constructions that produce good small SHF. This
is important since many applications require small SHF, while asymptotically optimal
constructions only guarantee good SHF in the limit. We saw an example of this with CFF
constructions used in batch verification: the id-codes CFF construction was outperformed
asymptotically by the construction of Porat and Rothschild, but gave better results for
smaller batch sizes (§5.2.3).

On the subject of anonymity in shared symmetric key primitives, it may be interesting
to determine the expected anonymity when the scheme is instantiated with a random
BPHF. Are there parameter choices for which trading guaranteed anonymity for anonymity
with high probability and reduced key storage are worthwhile?

We suggest two possible follow-up projects related to our batch verification work. First,
in our comparison, the function Batch was assumed to take unit time, independent of the
input size. A more precise comparison would model Batch with a cost function, which
depends on the implementation of batch, and the size of the input. For many of the
ISF algorithms, determining the input size for each call to Batch is difficult, therefore, an

125

empirical comparison would likely be necessary. Second, we considered only generic ISF
algorithms, where Batch is treated as a black box. Is it possible to construct improved ISF
algorithms for specific signature schemes, using ideas from the group testing literature?

Finally we mention a possible improvement to the short one-time signature scheme
presented in Chapter 6. The main drawback of the scheme is the size of the public key,
therefore reducing the public key size without increasing the signature size would make
a nice contribution. At the moment there is a large gap in public key size between our
scheme and the next shortest one-time signatures with discrete log security (the van Heyst
and Pedersen scheme). A common technique used in OTS schemes based on one-way
functions, recursively committing to a secret (i.e., publishing f(f(. . . f(s) . . .))) is no
longer applicable using Pedersen commitments. This reduces the public key size by allowing
multiple signatures to be created from the same public key. Can something similar be done
for our short OTS scheme?

126

Appendix A

Chromatic polynomials of complete
multipartite graphs

Let χ(G, q) be the chromatic polynomial of the graph G, with q colours. Let χ(G, r)
count the number of proper colourings of G using exactly r colours, with colour difference.
Sometimes χ(G, r) is defined with colour indifference, so we note that the two quantities
differ by a factor of r! (see [140, §7]). Finally, we let S(n, k) denote the Stirling numbers
of the second kind, which count the number of ways to partition an n-set into k blocks.

We give formulas for computing Kw1,...,wt , the complete multipartite graph with t parts
C1, C2, . . . , Ct such that |Ci| = wi. A formula for the special case Kw1,w2 was given by
Ehrenborg [72, Prop. 4.4]. The next theorem gives an alternative formula, and gives the
main ideas for the more general case which is a straightforward generalization.

Theorem A.1. Using the notation defined above,

χ(Kw1,w2 , q) =

q∑
r=1

(
q

r

)
r!

r−1∑
i=1

S(w1, i)S(w2, r − i) .

Proof. It is well known that the quantities χ and χ are related [140]

χ(G, q) =

q∑
r=1

(
q

r

)
χ(G, r) . (A.1)

For an arbitrary graph the number of colourings using exactly r = i+j colours with colour
indifference is the number of partitions of the vertices with the condition that no edge
connects two vertices in the same partition. For a complete bipartite graph, the vertices in
C1 are never connected to each other, but connected to all vertices in C2 (similarly for C2).

127

The proper colourings with i, j colours in C1, C2 (resp.) correspond to partitions of the
w1 nodes of C1 into i blocks and the w2 nodes of C2 into j blocks. The Stirling numbers
of the second kind S(n, k) count the number of ways to partition an n-set into k blocks.
Therefore

χ(Kw1,w2 , q) = r!
r−1∑
i=1

S(w1, i)S(w2, r − i) . (A.2)

The result follows by substituting (A.2) into (A.1).

This theorem can easily be generalized to multipartite graphs. First we need a gener-
alization of the pairs (i, r − i) used in the previous theorem. Define

Pt(n) =
{

(x1, x2, . . . , xt) ∈ (Z+)t | x1 + x2 + . . .+ xt = n
}
,

the set of all additive partitions of the integer n with t terms. We will write x = (x1, . . . , xt).

Theorem A.2. Using the notation defined above,

χ(Kw1,...,wt , q) =

q∑
r=1

(
q

r

)
r!
∑

x∈Pt(n)

S(w1, x1)S(w2, x2) . . . S(wt, xt) .

Proof. The proof follows the same reasoning as the proof of Theorem A.1. The colours
used for vertices of C1, . . . , Ct must all be disjoint, since vertices in Ci are connected to all
other vertices in the graph, but not those in Ci. We must consider all the ways to divide
the r colours amongst the t parts (so that each has at least one colour), this is Pt(n). Then
we must consider the possible ways of assigning the xi colours to the wi nodes of Ci, which
can be done in S(wi, xi) ways.

Implementation

The formula from the previous section was implemented (näıvely) in PARI-GP, to confirm
it will be sufficiently fast for our purposes. Sample running times are provided in Table
A.1. For large graphs a fast implementation could use the following improvements. 1)
Store S(wi, xi), as they get reused with each value of r, and 2) store r! then compute
(r + 1)! as (r + 1)r!.

128

χ(G, q) Time output size
χ(K10,20,30,40, 64) 6mn, 52s 516 bits
χ(K10,10,50, 64) 23s 423 ms 395 bits
χ(K10,50, 64) 1s, 572 ms 350 bits
χ(K10,10,10,10, 64) 4mn, 54s 225 bits
χ(K10,50, 8) < 1 ms 145 bits
χ(K10,10,10,10, 8) 8ms 52 bits

Table A.1: Running times of the formula from Theorem A.2.

129

References

[1] M. Al-Ibrahim, H. Ghodosi, and J. Pieprzyk. Authentication of concast communi-
cation. In Proceedings of INDOCRYPT’02, volume 2551 of LNCS, pages 185–198,
2002. 90

[2] I. Aleshnikov, P. V. Kumar, K. W. Shum, and H. Stichtenoth. On the splitting
of places in a tower of function fields meeting the Drinfeld-Vladut bound. IEEE
Transactions on Information Theory, 47:1613–1619, 2001. 55

[3] N. Alon. Explicit construction of exponential sized families of k-independent sets.
Discrete Mathematics, 58:191–193, 1986. 35

[4] N. Alon, G. Cohen, M. Krivelevich, and S. Litsyn. Generalized hashing and parent-
identifying codes. J. Combin. Theory Ser. A, 104:207–215, 2003. 6

[5] N. Alon, E. Fischer, and M. Szegedy. Parent-identifying codes. J. Combinatorial
Theory Series A, 95:349–359, 2001. 5

[6] N. Alon and M. Naor. Derandomization, witnesses for Boolean matrix multiplication
and construction of perfect hash functions. Algorithmica, 16:434–449, 1996. 4

[7] N. Alon and U. Stav. New bounds on parent-identifying codes: the case of multiple
parents. Combinatorics, Probability and Computing, 13:795–807, 2004. 5

[8] J.H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption.
In Proceedings of EUROCRYPT ’02, volume 2332 of LNCS, pages 83–107, 2002. 65,
84

[9] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signatures.
IEEE Journal on Selected Areas in Communications, 18:593–610, 2000. Extended
abstract published at EUROCRYPT’98. 123

[10] G. Ateniese. Verifiable encryption of digital signatures and applications. ACM Trans.
Inf. Syst. Secur., 7:1–20, 2004. 121

130

[11] M. Atici, S.S. Magliveras, D.R. Stinson, and W.-D. Wei. Some recursive constructions
for perfect hash families. Journal of Combinatorial Designs, 4:353–363, 1996.

[12] D.J. Balding, W.J. Bruno, E. Knill, and D.C. Torney. A comparative survey of
nonadaptive probing designs. In Genetic Mapping and DNA Sequencing, IMA Vol.
in Math. and Its Applications, pages 133–154. Springer-Verlag, 1996. 99

[13] A. Bar-Noy, F.K. Hwang, I. Kessler, and S. Kutten. Competitive group testing in
high speed networks. Discrete Applied Math., 52:29–38, 1994. 103

[14] A. Barg, G. Cohen, S. Encheva, G. Kabatiansky, and G. Zémor. A hypergraph
approach to the identifying parent property: the case of multiple parents. SIAM J.
Disc. Math., 14:423–431, 2001. 5, 6

[15] A. Barg and G. A. Kabatiansky. A class of I.P.P. codes with efficient identification.
J. Complexity, 20:137–147, 2004. 5

[16] L.A. Bassalygo, M. Burmester, A. Dyachkov, and G. Kabatianski. Hash codes. In
Proceedings of the 1997 IEEE International Symposium on Information Theory, page
174, 1997. 75

[17] A. Beimel and Y. Stahl. Robust information-theoretic private information retrieval.
Journal of Cryptology, 20:295–321, 2007. 4

[18] M. Bellare, J. Garay, and T. Rabin. Fast batch verification for modular exponen-
tiation and digital signatures. In Proceedings of EUROCRYPT’98, volume 1403 of
LNCS, pages 236–250, 1998. 90, 121

[19] M. Bellare and S. Shoup. Two-tier signatures, strongly unforgeable signatures, and
Fiat-Shamir without random oracles. In Public Key Cryptography, volume 4450 of
LNCS, pages 201–216, 2007. 112, 120

[20] D. Bernstein. Pippenger’s exponentiation algorithm. Manuscript. Available online
http://cr.yp.to/papers.html#pippenger., 2002. 119

[21] K. Bicakci, C. Gamage, B. Crispo, and A. S. Tanenbaum. One-time sensors: A novel
concept to mitigate node-capture attacks. In Proceedings of Security and Privacy in
Ad-hoc and Sensor Networks (ESAS’05), volume 3813 of LNCS, pages 80–90, 2005.
112

[22] K. Bicakci, G. Tsudik, and B. Tung. How to construct optimal one-time signatures.
Computer Networks, 43:339–349, 2003. 112, 117

131

[23] S. R. Blackburn, M. Burmester, Y. Desmedt, and P.R. Wild. Efficient multiplicative
sharing schemes. In EUROCRYPT, pages 107–118, 1996. 4

[24] Simon R. Blackburn. Frameproof codes. SIAM J. Discrete Math., 16:499–510, 2003.
5, 11

[25] S.R. Blackburn. Combinatorics and threshold cryptography. In Combinatorial De-
signs and their Applications, pages 49–70. Chapman and Hall, 1999. 37

[26] S.R. Blackburn. Perfect hash families: Probabilistic methods and explicit construc-
tions. Journal of Combinatorial Theory, Series A, 92:54–60, 2000. 28

[27] S.R. Blackburn. An upper bound on the size of a code with the k-identifiable parent
property. Jounal of Combinatorial Theory, Series A, 102:179–185, 2003. 5

[28] S.R. Blackburn, T. Etzion, D.R. Stinson, and G.M. Zaverucha. A bound on the size of
separating hash families. Jounal of Combinatorial Theory, Series A, 115:1246–1256,
2008. 6, 11, 27

[29] S.R. Blackburn and P.R. Wild. Optimal linear perfect hash families. Journal of
Combinatorial Theory, Series A, 83:233–250, 1998. 10, 19, 23, 27, 84

[30] I.F. Blake. Curves with many points and their applications. In Proceedings of Ap-
plied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC-13), vol-
ume 1719 of LNCS, pages 55–64, 1999. 44

[31] I.F. Blake, C. Heegard, T. Høholdt, and V. Wei. Algebraic-geometry codes. IEEE
Transactions on Information Theory, 44:2596–2618, 1998. 34, 42, 44

[32] D. Boneh, R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from
identity-based encryption. SIAM J. Comput., 36:1301–1328, 2007. Extended abstract
published at EUROCRYPT’04. 107

[33] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In Proceedings of EUROCRYPT’03, volume 2656 of
LNCS, pages 416–432, 2003. 122

[34] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In
Proceedings of ASIACRYPT’01, volume 2248 of LNCS, pages 514–532, 2001.

[35] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. Journal
of Cryptology, 17:297–319, 2004. 90, 94, 108, 110

[36] D. Boneh and J. Shaw. Collusion-free fingerprinting for digital data. IEEE Trans-
actions on Information Theory, 44:1897–1905, 1998. 5

132

[37] A. De Bonis and U. Vaccaro. Constructions of generalized superimposed codes with
applications to group testing and conflict resolution in multiple access channels. The-
oretical Computer Science, 306:223–243, 2003. 8

[38] J.N. Bos and D. Chaum. Provably unforgeable signatures. In Proceedings of
CRYPTO’92, volume 740 of LNCS, pages 1–14, 1992. 110, 111, 117, 118, 120

[39] C. Boyd and C. Pavlovski. Attacking and repairing batch verification schemes. In
Proceedings of ASIACRYPT’00, volume 1976 of LNCS, pages 58–71, 2000. 90

[40] E.F. Brickell, G. Di Crescenzo, and Y. Frankel. Sharing block ciphers. In Information
Security and Privacy, volume 1841 of LNCS, pages 457–470, 2000. 63, 65

[41] D. Le Brigand and J.J. Risler. Algorithme de Brill-Noether et codes de Goppa. Bull.
Soc. Math. France, 116:231–253, 1988.

[42] A. Brill and M. Noether. Über die algebraischen Functionen und ihre Anwendung in
der Geometrie. Math. Ann., 7:269–310, 1874. 57

[43] J. Buchmann, E. Dahmen, E. Klintsevich, K. Okeya, and C. Vuillaume. Merkle
signatures with virtually unlimited signature capacity. In Proceedings of ACNS’07,
volume 4521 of LNCS, pages 31–45, 2007. 112

[44] K.A. Bush, W.T. Federer, H. Pesotan, and D. Raghavarao. New cobminatorial
designs and their application to group testing. Journal of Statistical Planning and
Inference, 10:335–343, 1984. 6

[45] J. Camenisch, S. Hohenberger, M. Kohlweiss, A. Lysyanskaya, and M. Meyerovich.
How to win the clonewars: efficient periodic n-times anonymous authentication. In
Proceedings of the 13th ACM Conference on Computer and Communications Security
(CCS), pages 201–210. ACM Press, 2006. 96

[46] J. Camenisch, S. Hohenberger, and M. Østergaard Pedersen. Batch verification of
short signatures. In Proceedings of EUROCRYPT’07, volume 4515 of LNCS, pages
246–263, 2007. 89, 90, 96

[47] J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. In
Proceedings of SCN’02, volume 2576 of LNCS, pages 268–289, 2002. 90

[48] J. Camenisch and M. Stadler. Proof systems for general statements about discrete
logarithms. Technical Report TR 260, Institute for Theoretical Computer Science,
ETH Zürich, 1997. 122, 123

133

[49] Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In Proceedings of CRYPTO’03, volume 2729 of LNCS, pages
126–144, 2003. 123

[50] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas. Multicast
security: A taxonomy and some efficient constructions. In Proceedings of IEEE
INFOCOM, volume 2, pages 708–716, 1999. 6

[51] J. Cha and J. Cheon. An identity-based signature scheme from gap Diffie-Hellman
groups. In Proceedings of PKC’03, volume 2567 of LNCS, pages 18–30, 2003. 92

[52] S. Chatterjee and P. Sarkar. Trading time for space: Towards an efficient IBE scheme
with short(er) public parameters in the standard model. In Proceedings of the 8th
International Conference on Information Security and Cryptology (ICISC), volume
3935 of LNCS, pages 424–440, 2005. 90

[53] B. Chor and R. Rivest. A knapsack-type public key cryptosystem based on arithmetic
in finite fields. IEEE Transactions on Information Theory, 34:901–909, 1988. 117

[54] A.E.F. Clementi, A. Monti, , and R. Silvestri. Distributed broadcast in radio networks
of unknown topology. Theoretical Computer Science, 302:337–364, 2003. 96, 97

[55] D.M. Cohen, S.R. Dalal, M.L. Fredman, and G.C. Patton. The AETG system: An
approach to testing based on combinatiorial design. IEEE Trans. Software Eng.,
23:437–444, 1997. 4

[56] G.D. Cohen, S.B. Encheva, S. Litsyn, and H.G. Schaathun. Intersecting codes and
separating codes. Discrete Applied Mathematics, 128:75–83, 2003. 5

[57] G.D. Cohen, S.B. Encheva, and H.G. Schaathun. On separating codes. Technical
Report 2001D003, TELECOM ParisTech, Ecole Nationale Superieure des Telecom-
munications, 2001. 6, 35, 36, 37

[58] G.D. Cohen and H.G. Schaathun. Upper bounds on separating codes. IEEE Trans-
actions on Information Theory, 50:1291–1294, 2004. 5

[59] H. Cohen, G. Frey, and C. Doche (Editors). Handbook of elliptic and hyperelliptic
curve cryptography. Chapman & Hall/CRC, Boca Raton, 2006. 52

[60] T.M. Cover. Enumerative source coding. IEEE Transactions on Information Theory,
19:73–77, 1973. 117

[61] E. Dahmen and C. Krauß. Short hash-based signatures for wireless sensor net-
works. In Proceedings of Cryptology and Network Security (CANS’09), volume 5888
of LNCS, pages 463–476, 2009. 107, 112, 119

134

[62] W. Dai. Crypto++: A free C++ class library of cryptographic schemes. Accessed
January 2010. 119

[63] I. Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string model. In
Proeedings of EUROCRYPT’00, volume 1807 of LNCS, pages 418–430, 2000. 122

[64] Y. Desmedt, R. Safavi-Naini, H. Wang, L. Batten, C. Charnes, and J. Pieprzyk.
Broadcast anti-jamming systems. Computer Networks, 35:223–236, 2001. 6

[65] C. Dods, N.P. Smart, and M. Stam. Hash based digital signature schemes. In
Proceedings of Cryptography and Coding 2005, volume LNCS of 3796, pages 96–115,
2005. 110, 112

[66] R. Dorfman. The detection of defective members of large populations. Ann. Math.
Statist., 14:436–440, 1943. 92

[67] D. Du and F.K. Hwang. Combinatorial Group Testing and its Applications. World
Scientific, Singapore, 1993. 93, 95

[68] D. Du and F.K. Hwang. Combinatorial Group Testing and its Applications (2nd
Edition). World Scientific, Singapore, 2000. 89, 91, 92, 93, 94, 95, 96, 99, 103

[69] A. G. Dyachkov and V. V. Rykov. Bounds on the length of disjunctive codes. Prob-
lemy Peredachi Informatsii, 18:7–13, 1982. (Russian). 6

[70] A.G. D’yachkov and V.V. Rykov. Optimal superimposed codes and designs for
Renyi’s search model. Journal of Statististical Planning and Inference, 100:281–302,
2002. 91

[71] M. Dyer, Trevor Fenner, Alan Frieze, and Andrew Thomason. On key storage in
secure networks. Journal of Cryptology, 8:189–200, 1995. 6

[72] R. Ehrenborg and S. van Willigenburg. Enumerative properties of Ferrers graphs.
Discrete and Computational Geometry, 32:481–492, 2004. 49, 127

[73] S. Encheva and G. Cohen. Partially identifying codes for copyright protection. In
Proceedings of AAECC-14, volume 2227 of LNCS, pages 260–267, 2001. 5

[74] S. Encheva and G. Cohen. Some new p-ary two-secure frameproof codes. Applied
Mathematics Letters, 14:177–182, 2001. 5

[75] S. Encheva and G. Cohen. Frameproof codes against limited coalitions of pirates.
Theoretical Computer Science, 273:295–304, 2002. 5

135

[76] P. Erdös, P. Frankl, and Z. Füredi. Families of finite sets in which no set is covered
by the union of two others. Journal of Combinatorial Theory, Series A, 33:158–166,
1982. 6

[77] P. Erdös, P. Frankl, and Z. Füredi. Families of finite sets in which no set is covered
by the union of r others. Israel Journal of Mathematics, 51:75–89, 1985. 6

[78] S. Even and O. Goldreich. On the power of cascade ciphers. ACM Transactions on
Computer Systems, 3:108–116, 1985. 65

[79] S. Even, O. Goldreich, and S. Micali. On-line/off-line digital signatures. Journal of
Cryptology, 9:35–67, 1996. 107

[80] A.L. Ferrara, M. Green, S. Hohenberger, and M. Østergaard Pedersen. Practical
short signature batch verification. In Proceedings of CT-RSA’09, volume 435 of
LNCS, pages 309–324, 2009. 89, 90, 92, 94, 96, 100

[81] A. Fiat. Batch RSA. In Proceedings of CRYPTO’89, volume 435 of LNCS, pages
175–185, 1989. 90

[82] A. Fiat. Batch RSA. Journal of Cryptology, 10:75–88, 1997. 90

[83] A. Fiat and M. Naor. Broadcast encryption. In Proceedings of CRYPTO’93, volume
773 of LNCS, pages 480–491, 1993. 4

[84] M.L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1) worst
case access time. J. ACM, 31:538–544, 1984.

[85] J.A. Garay, J.N. Staddon, and A. Wool. Long-lived broadcast encryption. In Pro-
ceedings of CRYPTO’00, volume 1880 of LNCS, pages 333–352, 2000. 6, 96

[86] A. Garcia and H. Stichtenoth. A tower of Artin-Schreier extensions of function fields
attaining the Drinfeld-Vladut bound. Inventiones Mathematicae, 121:211–222, 1995.
54

[87] A. Garcia and H. Stichtenoth. On the asymptotic behaviour of some towers of
function fields over finite fields. Journal of Number Theory, 61:248–273, 1996. 54, 56

[88] R. Genarro and P. Rohatgi. How to sign digital streams. In Proceedings of CRYPTO
’97, volume 1294 of LNCS, pages 180–197, 1997. 113

[89] S. Goldwasser, S. Micali, and R.L. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Computing, 17:281–308, 1988. 111

[90] V.D. Goppa. Algebraico-geometric codes. Math. USSR Izvestiya, 21:75–91, 1983. 44

136

[91] J. Groth. Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In In proceedings of ASIACRYPT’06, volume 4284 of LNCS, pages
444–459, 2006. 111, 120

[92] N. Gura, A. Patel, A. Wander, H. Eberle, and S.C. Shantz. Comparing elliptic curve
cryptography and RSA on 8-bit CPUs. In Proceedings of CHES ’04, volume 3156 of
LNCS, pages 118–132, 2004. 124

[93] G. Haché. PAFF: Package for algebraic function fields in one variable. 57

[94] G. Haché. Construction effective des codes géométriques. PhD thesis, Université
Pierre et Marie Curie (Paris 6), 1996. 57

[95] H. Hollmann, J. van Lint, J. Linnartz, and L. Tolhuizen. On codes with the identifi-
able parent property. Journal of Combinatorial Theory, Series A, 82:121–133, 1998.
12

[96] H.D. Hollmann, J.H. van Lint, J-P. Linnartz, and L.M. Tolhuizen. On codes with the
identifiable parent property. Journal of Combinatorial Theory Series A, 82:121–133,
1998. 5, 48

[97] M.C. Hu, F.K. Hwang, and J.K. Wang. A boundary problem for group testing. SIAM
J. Alg. Disc. Methods, 2:81–87, 1981. 94

[98] R.A. Walker II. PHFtables.com. Accessed April 2008. 71, 83, 85

[99] S. Jukna. Extremal Combinatorics with Applications in Computer Science. Springer,
2001. 29

[100] F. Kargl, P. Papadimitratos, L. Buttyan, M. Müter, E. Schoch, B. Wiedersheim,
T.-V. Thong, G. Calandriello, A. Held, A. Kung, and J.-P. Hubaux. Secure vehicu-
lar communication systems: Implementation, performance, and research challenges.
IEEE Communications Magazine, 46:110–118, 2008. 124

[101] R.M. Karp, E. Upfal, and A. Wigderson. The complexity of parallel search. Journal
of Computer and System Sciences, 36:225–253, 1988. 89, 95

[102] J. Katz. Signature schemes with bounded leakage resilience. Technical Report
2009/220, IACR ePrint Archive, 2009. http://eprint.iacr.org/2009/220. 111

[103] J. Katz and A.Y. Lindell. Aggregate message authentication codes. In Proceedings
of CT-RSA ’08, volume 4964 of LNCS, pages 155–169, 2008. 65

[104] W.H. Kautz and R.G. Singleton. Nonrandom binary superimposed codes. IEEE
Transactions on Information Theory, 10:363–373, 1964. 6, 38, 96

137

[105] D.L. Kreher and D.R. Stinson. Combinatorial Algorithms: Generation, Enumeration
and Search. CRC Press, Boca Raton FL, 1999. 117

[106] R. Kumar, S. Rajagopalan, and A. Sahai. Coding constructions for blacklisting prob-
lems without computational assumptions. In Proceedings of CRYPTO’99, volume
1666 of LNCS, pages 609–623, 1999. 6

[107] L. Lamport. Constructing digital signatures from a one-way function. Technical
Report CSL-98, SRI International, 1979. 107, 110, 120

[108] L. Law and B.J. Matt. Finding invalid signatures in pairing-based batches. In
Proceedings of Cryptography and Coding 2007, volume 4887 of LNCS, pages 34–53,
2007. 89, 92, 99, 100, 103

[109] L. Liu and H. Shen. Explicit constructions of separating hash families from algebraic
curves over finite fields. Designs, Codes and Cryptography, 41:221–233, 2006. 5, 34,
44, 45, 46, 47, 52, 55, 75

[110] S. Long, J. Pieprzyk, H. Wang, and D.S. Wong. Generalised cumulative arrays in
secret sharing. Designs, Codes and Cryptography, 40:191–209, 2006. 63, 64, 83

[111] B. Lòpez. Codes on Drinfeld modular curves. Coding Theory, Cryptography and
Related Areas, pages 175–183, 1998.

[112] M. Luk, A. Perrig, and B. Whillock. Seven cardinal properties of sensor network
broadcast authentication. In Proceedings of the fourth ACM workshop on Security
of ad hoc and sensor networks (SASN ’06), pages 147–156. ACM Press, 2006. 123

[113] H. Maharaj, G.L. Matthews, and G. Pirsic. Riemann-Roch spaces of the Hermitian
function field with applications to algebraic geometry codes and low-discrepancy
sequences. Journal of Pure and Applied Algebra, 195:261–280, 2005. 53

[114] K.M. Martin and S.-L. Ng. The combinatorics of generalised cumulative arrays.
Journal of Mathematical Cryptology, 1:13–32, 2007. 63, 83

[115] K.M. Martin, J. Pieprzyk, R. Safavi-Naini, H. Wang, and P.R. Wild. Threshold
MACs. In Proceedings of ICISC 2002, volume 2587 of LNCS, pages 237–252, 2003.
4, 63, 65, 66, 67, 68, 83

[116] K.M. Martin, R. Safavi-Naini, H. Wang, and P.R. Wild. Distributing the encryption
and decryption of a block cipher. Designs, Codes and Cryptography, 36:263–287,
2005. 4, 63, 65, 66, 83

138

[117] S. Martirosyan and T. van Trung. On t-covering arrays. Designs, Codes and Cryp-
tography, 32:323–339, 2004. 4

[118] S. Martirosyan and T. van Trung. Explicit constructions for perfect hash families.
Designs, Codes and Cryptography, 41:97–112, 2008. 34, 41

[119] B.J. Matt. Identification of multiple invalid signatures in pairing-based batched
signatures. In Proceedings of PKC 2009, volume 5443 of LNCS, pages 337–356, 2009.
89, 92, 99, 100, 103

[120] K. Mehlhorn. On the program size of perfect and universal hash functions. In
Proceedings of the 23rd Annual Symposium on Foundations of Computer Science,
pages 170–175, Washington, DC, USA, 1982. IEEE Computer Society. 4

[121] K. Mehlhorn. Data Structures and Algorithms, Vol. 1. Springer-Verlag, 1984. 4, 68,
85

[122] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied Cryptog-
raphy. CRC Press LLC, Boca Raton, FL, 1996. 110, 112

[123] R. Merkle. A certified digital signature. In Proceedings of CRYPTO ’89, volume 435
of LNCS, pages 218–238, 1989. 112

[124] C.J. Mitchell and F.C. Piper. Key storage in secure networks. Discrete applied
mathematics, 21:215–228, 1988. 6, 96

[125] P. Mohassel. One-time signatures and chameleon hash functions. To appear in the
Proceedings of Selected Areas in Cryptography (SAC) 2010. 112

[126] D. Naccache, D. M’raihi, S. Vaudenay, and D. Raphaeli. Can DSA be improved?
complexity trade-offs with the digital signature standard. In Proceedings of EURO-
CRYPT’94, volume 950 of LNCS, pages 77–85, 1994. 90, 91

[127] D. Naor, A. Shenhav, and A. Wool. One-time signatures revisited: Have they become
practical? Technical Report 2005/442, IACR ePrint Archive Report, 2005. http:

//eprint.iacr.org/2005/442. 112, 120

[128] Q.A. Nguyen and T. Zeisel. Bounds on constant weight binary superimposed codes.
Problems in Control and Information Theory, 17:223–230, 1988. 38

[129] M. Noether. Rationale Ausführung der Operationen in der Theorie der algebraischen
Functionen. Math. Ann., pages 311–358, 1884. 57

[130] National Institute of Standards and Technology (NIST). Digital signature standard
(DSS), 2000. FIPS PUB 186-2. 118

139

[131] P. Paillier and D. Vergnaud. Discrete-log-based signatures may not be equivalent to
discrete log. In Proceedings of ASIACRYPT’05, volume 3788 of LNCS, pages 1–20,
2005. 112

[132] J. Pastuszak, D. Michalek, J. Pieprzyk, and J. Seberry. Identification of bad sig-
natures in batches. In Proceedings of PKC’00, volume 1751 of LNCS, pages 28–45,
2000. 89, 91, 92, 100

[133] J. Pastuszak, J. Pieprzyk, and J. Seberry. Codes identifying bad signatures in
batches. In Proceedings of INDOCRYPT’00, volume 1977 of LNCS, pages 143–154,
2000. 89, 91, 92, 98, 100

[134] T.P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Proceedings of CRYPTO’91, volume 1440 of LNCS, pages 129–140, 1992.
108, 113

[135] A. Perrig. The BiBa one time signature and broadcast authentication protocol. In
Proceedings of the 8th ACM Conference on Computer and Communications Security
(CCS ’01), pages 28–37, New York, 2001. ACM Press. 107, 108, 113

[136] J. Pieprzyk, H. Wang, and C. Xing. Multiple-time signature schemes against chosen
message attacks. In Proceedings of Selected Areas in Cryptography (SAC ’03), volume
3006 of LNCS, pages 88–100, 2003. 110, 111, 117, 120

[137] E. Porat and A. Rothschild. Explicit non-adaptive combinatorial group testing
schemes. In Proceedings of Automata, Languages and Programming, ICALP’08, vol-
ume 5125 of LNCS, pages 748–759, 2008. 97

[138] M.O. Rabin. Digitalized signatures. In Foundations of Secure Computation, pages
155–168, New York, 1978. Academic Press. 107

[139] I. Damg̊ard and M. Jurik. A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system. In Proceedings of PKC 2001, volume 1992
of LNCS, pages 119–136, 2001. 123

[140] R.C. Read. An introduction to chromatic polynomials. Journal of Combinatorial
Theory, 4:52–71, 1968. 29, 127

[141] A. Reyni. On the theory of random search. Bulletin of the AMS, 71:809–828, 1965.
91

[142] L. Reyzin and N. Reyzin. Better than BiBa: Short one-time signatures with fast
signing and verifying. In Proceedings of ACISP ’02, volume 2384 of LNCS, pages
144–153, 2002. 108, 110, 111, 113, 117, 120

140

[143] P. Rohatgi. A compact and fast hybrid signature scheme for multicast packet au-
thentication. In Proceedings of the 6th ACM Conference on Computer and Com-
munications Security (CCS ’99), pages 93–100, New York, 1999. ACM Press. 113,
120

[144] S. Rohde, T. Eisenbarth, E. Dahmen, J. Buchmann, and C. Paar. Fast hash-based
signatures on constrained devices. In Proceedings of CARDIS’08, volume 5189 of
LNCS, pages 104–117, 2008. 112

[145] M. Ruszinkó. On the upper bound of the size of the r-cover-free families. Journal of
Combinatorial Theory, Series A, 66:302–310, 1994. 8

[146] R. Safavi-Naini and H. Wang. Multireceiver authentication codes: Models, bounds,
constructions and extensions. Information and Computation, 151:148–172, 1999. 6

[147] P. Sarkar and D.R. Stinson. Frameproof and IPP codes. In Proceedings of IN-
DOCRYPT’01, volume 2247 of LNCS, pages 117–126, 2001. 5, 35

[148] H.G. Schaathun and G.D. Cohen. A trellis-based bound on (2,1)-separating codes. In
Proceedings of Cryptography and Coding 2005, volume 3796 of LNCS, pages 59–67,
2005. 5

[149] D.J. Shultz. Topics in nonadaptive group testing. PhD thesis, Temple University,
1992. 97

[150] K. Shum. A low-complexity construction of algebraic geometric codes better than the
Gilbert-Varshamov bound. PhD thesis, University of South California, Los Angeles,
2001.

[151] K. Shum, I. Aleshnikov, P. V. Kumar, H. Stichtenoth, and V. Deolalikar. A low-
complexity algorithm for the construction of algebraic-goemetric codes better than
the Gilbert-Varshamov bound. IEEE Transactions on Information Theory, 47:2225–
2241, 2001. 58

[152] M. Sobel and P.A. Groll. Group testing to eliminate efficiently all defectives in a
binomial sample. Bell System Technical Journal, 28:1179–1252, 1959. 93

[153] J. Spencer. Minimal completely separating systems. Journal of Combinatorial The-
ory, 8:446–447, 1970. 8

[154] E. Sperner. Ein Satz Uber Untermengen einer endliche Menge. Math. Zeit., 27:544–
548, 1928. 8, 110

141

[155] J.N. Staddon, D.R. Stinson, and R. Wei. Combinatorial properties of frameproof and
traceability codes. IEEE Transactions on Information Theory, 47:1042–1049, 2001.
4, 5, 6, 10, 11, 19, 21, 23, 48, 96

[156] H. Stichtenoth. Algebraic Function Fields and Codes. Springer-Verlag, New York,
1993. 42, 44, 45, 57

[157] D. R. Stinson and T. van Trung. Some new results on key distribution patterns and
broadcast encryption. Designs, Codes and Cryptography, 14:261–279, 1998. 6

[158] D.R. Stinson. On some methods for unconditionally secure key distribution and
broadcast encryption. Designs, Codes and Cryptography, 12:215–243, 1997. 4, 6

[159] D.R. Stinson. Some baby-step giant-step algorithms for the low Hamming weight
discrete logarithm problem. Mathematics of Computation, 71:379–391, 2002. 73

[160] D.R. Stinson. Attack on a concast signature scheme. Information Processing Letters,
91:39–41, 2004. 90

[161] D.R. Stinson, T. van Trung, and R. Wei. Secure frameproof codes, key distribu-
tion patterns, group testing algorithms and related structures. Journal of Statistical
Planning and Inference, 86:595–617, 2000. 4, 5, 6, 73, 77, 84, 85, 96

[162] D.R. Stinson and R. Wei. Combinatorial properties and constructions of traceability
schemes and frameproof codes. SIAM J. Discrete Math, 11:41–53, 1998. 6

[163] D.R. Stinson and R. Wei. Generalized cover-free families. Discrete Mathematics,
279:463–477, 2004. 75, 118

[164] D.R. Stinson, R. Wei, and K. Chen. On generalized separating hash families. Journal
of Combinatorial Theory, Series A, 115:105–120, 2008. 6, 10, 11, 27, 28, 29, 48

[165] D.R. Stinson, R. Wei, and L. Zhu. New constructions for perfect hash families and
related structures using combinatorial designs and codes. Journal of Combinatorial
Designs, 8:189–200, 2000. 5, 34, 36, 37, 38

[166] D.R. Stinson, R. Wei, and L. Zhu. Some new bounds for cover-free families. Journal
of Combinatorial Theory, Series A, 90:224–234, 2000. 8

[167] D.R. Stinson and G.M. Zaverucha. New bounds for generalized separating hash
families. Technical Report 2007-21, Center for Applied Cryptographic Research,
University of Waterloo, 2007. 11

142

[168] D.R. Stinson and G.M. Zaverucha. Some improved bounds for secure frameproof
codes and related separating hash families. IEEE Transactions on Information The-
ory, 54:2508–2514, 2008. 11

[169] The Axiom Scientific Computation System. http://www.axiom-developer.org/.
Accessed February 2008. 57

[170] The Singular Computer Algebra System. http://www.singular.uni-kl.de. Ac-
cessed February 2008. 57

[171] P. Szczechowiak, L.B. Oliveira, M. Scott, M. Collier, and R. Dahab. Nanoecc: Testing
the limits of elliptic curve cryptography in sensor networks. In Proceedings of EWSN
’08, volume 4913 of LNCS, pages 305–320, 2008. 124

[172] V.D. Tô, R. Safavi-Naini, and Y. Wang. A 2-secure code with efficient tracing
algorithm. In Proceedings of INDOCRYPT’02, volume 2551 of LNCS, pages 149–
162, 2002. 5

[173] D. Tonien and R. Safavi-Naini. Explicit construction of secure frameproof codes.
International Journal of Pure and Applied Mathematics, 6:343–360, 2003. 5

[174] D. Tonien and R. Safavi-Naini. Recursive constructions of secure codes and hash
families using difference function families. Journal of Combinatorial Theory, Series
A, 113:664–674, 2006. 5

[175] M. Tsfasman, S. Vlǎduţ, and D. Nogin. Algebraic Geometry Codes: Basic Notions,
volume 139 of Mathematical Surveys and Monographs. American Mathematical So-
ciety, 2007. 42, 53

[176] E. van Heyst and T.P. Pedersen. How to make efficient fail-stop signatures. In
Proceedings of EUROCRYPT ’92, volume 658 of LNCS, pages 366–377, 1993. 111,
120

[177] J.H. van Lint. Introduction to Coding Theory. Springer, New York, 1998. 36, 38

[178] T. van Trung and S. Martirosyan. New constructions for ipp codes. Designs, Codes
and Cryptography, 35:227–239, 2005. 5

[179] R.A. Walker and C.J. Colbourn. Perfect hash families: constructions and existence.
Journal of Mathematical Cryptology, 1:125–150, 2007. 34, 39, 41

[180] H. Wang and J. Pieprzyk. Shared generation of pseudo-random function with cumu-
lative maps. In Proceedings of CT-RSA ’03, volume 2612 of LNCS, pages 281–294,
2003. 63

143

[181] H. Wang and C. Xing. Explicit constructions of perfect hash families from algebraic
curves over finite fields. Journal of Combinatorial Theory, Series A, 93:112–124,
2001. 34, 44, 45, 73, 84

[182] D.J.A. Welsh. Complexity: Knots, Colourings and Counting, volume 186 of LMS
Lecture Note Series. Cambridge University Press, 1993. 49

[183] C. Xing. Asymptotic bounds on frameproof codes. IEEE Transactions on Informa-
tion Theory, 48:2991–2995, 2002. 5

[184] G.M. Zaverucha and D.R. Stinson. Group testing and batch verification. To appear
in the Proceedings of the 4th International Conference on Information Theoretic Se-
curity (ICITS’09). 88

[185] G.M. Zaverucha and D.R. Stinson. Anonymity in shared symmetric key primitives.
Designs, Codes and Cryptography, 57:139–160, 2010. 62

144

	List of Tables
	Introduction
	Summary of Contributions
	Combinatorial Structures
	Perfect Hash Families
	Separating Hash Families
	Cover-Free Families

	Information Theory

	Bounds
	Previous Results
	New Upper Bounds for SHF of Type {w,w} and {w, w-1}
	Bounds For Type {3,2}
	Staircases
	Proofs for Types {w,w} and {w,w-1}

	Necessary Condition for SHF of Type {w,d}
	Necessary Conditions for SHF of Type {w1,…, wt}
	Existence Results for SHF of type { w1,w2 }

	Constructions
	Constructions
	Constructions From Codes with Large Distance
	Direct and Recursive Constructions
	Algebraic Geometry Background
	Constructions From Algebraic Geometry
	Construction of Compound Types
	Analysis of Random Hash Families

	A Detailed Look at the AG Construction
	Metrics
	Reed-Solomon Codes
	Elliptic and Hyperelliptic Curves
	Hermitian Curves
	The Garcia-Stichtenoth (GS) Tower

	Experimental Observations
	Implementation of the AG-based Construction
	Observed Number of Separating Rows
	Randomness Metric
	Observed Error Rates

	Conclusion

	Anonymity in Shared Symmetric Key Primitives
	Introduction
	Sharing Symmetric Operations
	The GCA-MAC Authentication Scheme
	GCA-MAC Example

	Anonymity
	Threat Model
	Group Anonymity
	Participant Anonymity
	Malicious Setup Attack on Anonymity
	Verifiable Setup

	An Improved Scheme: BPHF-MAC
	Anonymity of BPHF-MAC
	Participant anonymity of BPHF-MAC

	GCA Constructions From Arbitrary PHF
	Impact on Efficiency
	Impact on Anonymity

	Conclusion

	Group Testing and Batch Verification
	Introduction
	Batch Verification
	Finding Invalid Signatures in Bad Batches

	Group Testing-Based ISF Algorithms
	Individual Testing
	Adaptive ISF Algorithms
	Nonadaptive Algorithms

	Comparison of Algorithms
	Number of Tests
	Unknown Number of Invalid Signatures
	Comparison to Non-Generic ISF Algorithms

	Comparison Details
	Conclusion

	Short One-Time Signatures
	Introduction
	General Construction of OTS from Cover-Free Families
	Related work
	Schemes Based on the CFF Model
	Other Work Related to One-Time Signatures
	Applications of One-Time Signatures

	A New OTS Scheme with Short Signatures
	Scheme Description
	Encoding a message M as BM
	Parameter Selection

	Additional Features of the OTS Scheme
	Batch Verification
	Aggregation
	Proving Knowledge of a Signature on the Message M
	Verifiably Encrypting a Signature

	Impact on Applications

	Future Work
	Appendix
	Chromatic polynomials of complete multipartite graphs
	References

