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Abstract

This thesis presents a novel bilateral teleoperation algorithm for n degree of freedom

nonlinear manipulators connected through time delays. Teleoperation has many practical

uses, as there are many benefits that come from being able to operate machines from

a distance. For instance, the ability to send a remote controlled robotic vehicle into a

hazardous environment can be a great asset in many industrial applications. As well, the

field of remote medicine can benefit from these technologies. A highly skilled surgeon could

perform surgery on a patient who is located in another city, or even country. Earth to space

operations and deep sea exploration are other areas where teleoperation is quite useful.

Central to the approach presented in this work is the use of second order sliding mode

unknown input observers for estimating the external forces acting on the manipulators.

The use of these observers removes the need for both velocity and force sensors, lead-

ing to a lower cost hardware setup that provides all of the advantages of a position-force

teleoperation algorithm. Stability results for this new algorithm are presented for sev-

eral cases. Stability of each of the master and slave sides of the teleoperation system is

demonstrated, showing that the master and slave are both stabilized by their respective

controllers when the unknown input observers are used for state and force estimation. Ad-

ditionally, closed loop stability results for the teleoperation system connected to a variety

of slave side environments are presented. Delay-independent stability results for a linear

spring-damper environment as well as a general finite-gain stable nonlinear environment

are given. Delay-dependent stability results for the case where the slave environment is a

liner spring-damper and the delays are commensurate are also presented. As well, stability

results for the closed loop under the assumption that the human operator is modeled as a

finite-gain stable nonlinear environment are given. Following the theoretical presentation,

numerical simulations illustrating the algorithm are presented, and experimental results

verifying the practical application of the approach are given.
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Chapter 1

Introduction

Teleoperation is an area that holds a significant amount of interest to researchers. There

can be many benefits to being able to operate machines from a distance. One example is

the ability to send a remote controlled robotic vehicle into a hazardous environment [1].

Another useful application of teleoperation is in the field of remote medicine [2]. A highly

skilled surgeon could perform surgery on a patient who is located in another city, or even

country. Another example of a teleoperated system is in Earth to space operations, where

someone on the surface of the Earth controls a robot in space [3]. Deep sea exploration is

another application that benefits from teleoperation [4].

In such teleoperated systems, a major issue is that of delay in the communications

channel. As the physical distance between two sites grows, the time required to transmit

data across the network connecting the two sites can increase. As well, communications

across the Internet suffer from unpredictability in the amount of time required to transmit.

Since packets of data may take different routes to the remote end, congestion on the network

due to other sources of traffic can also affect the time delay. In Earth to space operations,

communication delays can also be significant – on the order of at least 0.4 seconds round-

trip for vehicles in low earth orbit, and at least 3 seconds for vehicles near the moon [3].

In force reflecting teleoperation systems, where both velocity and force information are

transmitted across the communication channel in a closed loop, even a small time delay
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can lead to instability of the closed loop [5].

The layout of a typical bilateral teleoperator system is given in Figure 1.1. An operator

interacts with a master manipulator in order to control a slave manipulator. The slave

manipulator could either be in free motion or in contact with the environment. When the

operator moves the master manipulator, the position and/or velocity signals are transmit-

ted across the communications network and used as the desired trajectory for the slave

manipulator to follow. The slave then follows these delayed master signals. As the slave

interacts with its environment, the force applied to it is sent back through the communi-

cations to the master side. The master manipulator then experiences a delayed version

of the force acting on the slave manipulator. The bilateral teleoperation system is one in

which signals are transmitted in both directions – from the master to the slave, and from

the slave back to the master. This transmission of signals in two directions results in a

closed loop between the master and slave. The work proposed here will focus exclusively

on bilateral teleoperation.

Figure 1.1: Typical layout of a bilateral teleoperation system.

There are several approaches to dealing with the time delay problem. Early results

presented by Anderson and Spong [5] and Niemeyer and Slotine [6, 7, 8, 9] use passivity-

based approaches. These approaches ensure that the communication link remains passive
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regardless of time delay, which is a condition for stability. However, as time delay increases,

the performance of the systems suffers. A non-passive communication link, such as one

with time delays, may add energy to the teleoperation system, destabilizing it.

While it is possible to stabilize a bilateral teleoperator with time delay, one desires

more than stability. Ideally, a system that presents the operator with the sensation that

he or she is in fact working with the remote environment in real time is desired. This desire

leads to the examination of the performance of bilateral teleoperation systems. Typically

transparency is used as the measure of performance. This concept will be discussed in

detail in Chapter 2. The closer a teleoperator is to the ideal transparency condition, the

better the sense of presence in the remote environment.

1.1 Original Contributions

While the field of teleoperation is one that has been under active research for several

decades now, there are a number of unsolved problems. This thesis aims to address and

resolve two of these problems.

Two popular teleoperation architectures, which will be discussed in detail in Chapter 2,

are the position-position architecture and the position-force architecture. The position-

position architecture allows for a more straightforward hardware setup. It does not rely on

force sensors to measure human and environment forces. Instead, it transmits other signals

such as positions, velocities, or position errors, to give some sense of the forces acting in

the remote environment. However, the cost associated with this decision comes out in

terms of performance. The position-position systems do not possess as high a degree of

transparency as the position-force approaches. In this thesis, an approach based on sliding

mode observers is used to generate force estimates of the human and environment forces.

These estimates may be used in place of measurements. This leads to the first original

contribution:

1. A novel bilateral teleoperation algorithm is developed that yields the performance,

from a transparency point of view, of a position-force algorithm without requiring
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the use of any force sensors in the system. Additionally, a thorough proof of stability

of the novel algorithm including the sliding mode observers is developed.

While performance is an important issue to consider in control design, the issue of

stability of the closed loop is at least as important. This work presents new closed loop

stability results for a teleoperator system where the slave is in contact with a variety

of environments. Many approaches to closed loop stability in the literature rely on the

assumption that the slave environment is passive, and prove stability based on that. In

this work, the assumption of a passive environment is not required. In particular, the

second major contribution presented is:

2. A sufficient proof of stability is given for any teleoperator system where both the

master and slave can be made into n linear mass spring damper systems in the closed

loop and the environment is modeled as a set of linear spring dampers. Provided

that the L2 norm of the slave+environment system is known, a constructive method

to select the master closed loop impedance parameters to ensure closed loop stability

is presented. A second sufficient proof of stability is given for the same master and

slave, but where an unknown nonlinear environment that is finite gain stable with a

known upper bound on the gain is interacting with the slave. Finally, a necessary

and sufficient stability result for the same master and slave with the set of n linear

spring-dampers as the environment is introduced, provided that the time delays in the

closed loop are commensurate. This assumption on commensurate time delay may

be fulfilled in any teleoperation system in practice by making use of signal buffers at

teach side of the teleoperation system.

1.2 Thesis Overview

The remainder of this document is organized as follows:

Chapter 2 provides the necessary background information and knowledge required to

understand the rest of the thesis. The target audience of this work is the control
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research community. As such, elementary aspects of control are not covered here.

However, an introduction to bilateral teleoperation is presented, along with an in-

troduction to sliding mode observers and higher order sliding modes. Additionally,

a review of the state of the art is given here.

Chapter 3 presents the novel bilateral teleoperation algorithm developed in this work.

This chapter contains the major theoretical contribution. The algorithm is devel-

oped and stability is demonstrated for each of the master and slave sides individu-

ally. Following the proofs of stability for each of the master and slave sides, closed

loop stability results for the entire teleoperator under various environment cases are

presented. As well, a numerical example showing the computation of closed loop

parameters in order to ensure stability is given.

Chapter 4 presents the numerical simulations and the experimental results from the novel

algorithm. The numerical simulations confirm the effectiveness of the proposed ap-

proach in an environment that is close to ideal. The experimental results, performed

on the University of Waterloo Teleoperation Platform, verify that the algorithm is

useful in practice, in the presence of non-idealities such as unmodeled dynamics and

sensor noise.

Chapter 5 concludes the thesis, summarizing the work and the results that have been

presented. As well, suggestions for future research are given.
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Chapter 2

Background

Bilateral teleoperation requires knowledge from several fields. In particular, one must

be familiar with control, robotics, electrical systems, haptic systems, and in some cases,

estimation. This chapter will begin by introducing some of the background knowledge re-

quired to understand bilateral teleoperation, including different teleoperation architectures.

Following that, a review of sliding mode observers will be presented. These observers are

fundamental to both the state and force estimation in the algorithm presented in this work.

After introducing these concepts, a review of the state of the art of bilateral teleoperation

will be given.

2.1 Bilateral Teleoperation

In bilateral teleoperation systems, as opposed to unilateral teleoperation systems, some

sense of force feedback from the slave side is available to the operator [10]. Closing the

loop in this way allows the operator to have some sensation of the slave side remote envi-

ronment. While it is advantageous to have this sense of feedback, doing so complicates the

stability of the teleoperator system, particularly in the presence of time delays. As well,

decisions must be made in terms of which signals are transmitted between the master and

slave sides. Different signals give rise to different teleoperation architectures. Two architec-
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tures of importance that will be discussed here are the position-position and position-force

architectures.

In order to evaluate the performance of a teleoperation system, the notion of trans-

parency is often used [11]. This concept refers to how “close” the experience is to what

the operator would experience if interacting with the remote environment directly. Trans-

parency is effectively a measure of the performance of the closed loop teleoperator. In-

tuitively, the system should feel like the master is connected to the remote environment

by a virtual rod that has an infinitesimal mass and an infinitely large stiffness [12]. More

formally, Lawrence [11] suggests that, given a task impedance of Zs at the slave environ-

ment and an impedance Zm which is experienced by the operator, the two must be equal.

Perfectly transparent teleoperation is not possible in practice [11] but is a good measure

of the performance of a teleoperation system.

Typically, one makes use of the hybrid matrix when analyzing the transparency of a

teleoperation system. This matrix relates the operator force Fh(t) and slave velocity Vs(t)

to the slave environment force Fe(t) and master velocity Vm(t). Expressing these signals

in the Laplace domain, the hybrid matrix is given as [11],

[
Fh(s)

Vs(s)

]
=

[
H11(s) H12(s)

H21(s) H22(s)

][
Vm(s)

−Fe(s)

]
(2.1)

When the slave is in contact with the environment, the slave force is related to the slave

velocity through the slave environment impedance Ze. That is,

Fe = Ze(Ve)

Similarly, the relationship between the force exerted by the operator on the master and

the velocity of the master is given as,

Fh = Zt(Vh)
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where Zh is the impedance experienced by the operator. In the case of ideal transparency,

one desires that the operator not sense the teleoperation dynamics. That is, for a force

Fh(t) exerted by the operator, and a corresponding velocity Vm(t) of the master, the slave

responds such that Fe(t) = Fh(t) and Vs(t) = Vm(t). This leads to the ideal transparency

matrix,

[
Fh(s)

Vs(s)

]
=

[
0 −1

1 0

][
Vm(s)

−Fe(s)

]
(2.2)

In the case of a time delayed bilateral teleoperator, with time delays of T1 seconds from

master to slave of T2 seconds from slave to master, the ideal transparency matrix has the

form [13],

[
Fh(s)

Vs(s)

]
=

[
0 −e−T2s

e−T1s 0

][
Vm(s)

−Fe(s)

]
(2.3)

All elements of the hybrid matrix have some physical meaning. The term H11(s) =

Fh(s)/Vm(s)|Fe(s)=0 represents the force applied to the operator by the motion of the master

when the slave is in free motion. In an ideal transparent setting, no force would be exerted

on the operator by the master when the slave is out of contact and this term would be

zero. The term H12(s) = Fh(s)/Fe(s)|Vm(s)=0 represents the force tracking characteristics

of the system when the motion of the master is fixed. In the ideal case, the force acting

on the master would be exactly the delayed slave environment force. The term H21(s) =

Vs(s)/Vm(s)|Fe(s)=0 represents the velocity tracking of the master by the slave when the slave

is in free motion. Ideally, the slave exactly tracks the delayed master velocity trajectory.

Finally, the term H22(s) = Vs(s)/Fe(s)|Vm(s)=0 represents the admittance of the slave when

the master is not in motion. The ideal value for this term is zero, indicating that when

the master is fixed, the slave does not experience any motion due to environmental forces

acting on it.

By examining the properties of the transparency matrix for a particular bilateral tele-

operation algorithm, one can glean information about the transparency properties of the

system, providing a measure of closeness to the ideal teleoperator.
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2.1.1 Position-Position Architecture

The position-position teleoperation architecture and its variants, including the position-

error-based architecture [14], work by transmitting functions of the position states of both

the master and slave across the communication channel. In a strict position-position

architecture, both the master and slave would have local position tracking controllers,

whose goals are to ensure that each manipulator tracks the other [11].

Anderson and Spong [5] as well as Niemeyer and Slotine [9, 8] have both produced well

known stable bilateral teleoperation algorithms based on a position-error-based architec-

ture. A principle advantage of these approaches is in being able to have a sense of force

feedback without requiring any force sensors in the system. Instead of force measurements,

a measure such as the slave tracking error is transmitted from the slave side back to the

master side. In an ideal case, if the slave were perfectly tracking the master while being

in free motion, there would be no tracking error signal transmitted to the operator, and

hence no perception of any environment force from the slave side. If the slave were in

contact with an environment, the slave tracking error signal would grow. This tracking

error would then be transmitted back to the master, giving a perception of the force acting

on the slave manipulator to the operator. In general, this is not exactly the force acting

on the slave, but instead is some combination of states that are related to the magnitude

of this force.

Both Lawrence [11] and Tavakoli et al. [13] have performed transparency analyses of the

position-position architecture. These analyses point out the difficulties of this approach.

It turns out that the position-position approach does not provide a high degree of trans-

parency. When the slave is in free motion, the operator perceives the dynamics of the

actual teleoperation system [11]. This can lead to a sensation of sluggishness in the sys-

tem. Any tracking error between the slave and master, even in free motion, is felt by the

operator. This gives a sense to the operator of an additional inertia in the system that is

not there. Tavakoli et al. [13] have also shown that this architecture suffers from non-ideal

force tracking even when the slave is in contact with the environment. By performing a

transparency analysis, they have shown that H12(s) is never equal to −1. This will always
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result in non-ideal force tracking [13]. Additionally, the entry H11(s) is not equal to zero.

This leads to the sensation of reflected force to the master even when the slave is in free

motion.

2.1.2 Position-Force Architecture

The position-force architecture typically involves an impedance controller at the master

side, allowing the designer to specify a closed loop desired impedance for the master manip-

ulator [11, 15]. This impedance controller is also responsible for transmitting the reflected

slave forces to the master manipulator. The master states (position, velocity, and perhaps

acceleration) are transmitted to the slave side for tracking of the master trajectory by the

slave. The environmental force acting on the slave is transmitted back to the master side.

In this scenario, only one manipulator (the slave) is concerned with tracking. At the master

side, the control objective is to provide a desired closed loop impedance and to apply the

reflected force. When these goals are accomplished, in the ideal case with no time delays,

the master operator would experience the same interaction with the environment as the

slave manipulator [11].

In this architecture, when the slave is in free motion, no force is reflected back from the

slave to the master [11]. As a result, the master feels no additional inertial effects from

the slave tracking error. Tavakoli et al. [13] have performed a transparency analysis, with

the conclusion that perfect force tracking is obtained with this architecture. However, the

perception of free motion is not ideal, as the term H11(s) in the transparency matrix is

nonzero. This term is smaller than it is in the case of the position-position architecture [13],

providing a better perception than the former architecture.

The position-force architecture is more prone to issues with stability than the position-

position architecture [11]. In particular, Lawrence [11] performs an analysis of this archi-

tecture and notes that the loop gain is proportional to the environmental stiffness. As a

result, a very stiff environment can lead to oscillations when the slave is in contact. By

reducing the force feedback gain, however, this effect can be diminished. As well, this

setup requires additional hardware in the way of force sensors. The use of these sensors
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can complicate implementation, as they are costly and tend to provide noisy measure-

ments [14]. Despite these issues, it is possible to obtain a more transparent teleoperator

with this architecture. As a result, one of the aims of the work presented in this thesis is to

develop a teleoperation architecture with the hardware requirements of a position-position

architecture that provides the benefits of a position-force architecture.

2.2 Sliding Mode Systems

In any real control or estimation problem, the system model is never perfectly known. As

a result, unless model uncertainty is taken into account in the design, there will be errors.

In the case of a control problem, this could result in a steady state tracking error or even

instability. For the estimation problem, the result can be errors in the state estimates.

Many techniques exist for dealing with model uncertainty for both linear and nonlinear

systems. One such approach is the use of sliding mode techniques. Sliding mode systems

may be implemented for both controllers and observers. This section will present the

background for both the sliding mode control and estimation problems.

2.2.1 Sliding Mode Control

Modeling error will, to some degree, always be an issue when controlling real systems. If, for

instance, the unmodeled dynamics in a system represented a term that lead to instability,

and the control method used did not account for this, it could be possible that the control

law designed for the system model would not stabilize the system itself. Consider feedback

linearization, which relies on exact mathematical cancellation of the system nonlinearities.

With such a control approach, it is not possible to cancel terms that are unknown.

As a result of these issues, robust control approaches are desirable. Sliding mode control

is one such approach. This section will provide an introduction to the concept of sliding

mode control. This development follows [16].

Consider a second-order nonlinear system expressed as,
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ẋ1 = x2 (2.4)

ẋ2 = h(x) + g(x)u (2.5)

where h : R2 → R and g : R2 → R are unknown nonlinear functions. The control objective

for this system will be to drive the trajectories to a certain manifold in the state space of

the system. This manifold is chosen by the designer. All that is known about g is that it

is bounded from below by some constant g0 > 0. The manifold, or sliding surface, that the

system trajectories are driven to is defined as,

s = ax1 + x2 = 0 (2.6)

where a > 0 is some constant. Assume also that the following inequality holds,

∣∣∣∣ax2 + h(x)

g(x)

∣∣∣∣ ≤ ρ(x), ∀x ∈ R2 (2.7)

Note that the derivative of the sliding surface (2.6) is expressed as,

ṡ = ax2 + h(x) + g(x)u (2.8)

One desires to drive the system to the manifold s = 0 in finite time. On this manifold,

the equation x2 = −ax1 holds. Substituting this into (2.4), one arrives at,

ẋ1 = −ax1 (2.9)

Therefore, if the manifold s = 0 can be reached with the sliding mode controller, the

origin of the system can be stabilized. This particular choice of sliding surface leads to

a reduction in model order in the closed loop. The system is governed by the first order

dynamics (2.9) on the sliding surface. The task remains to design a control law u that will
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drive the system to the sliding surface. Before developing the control law, note that the

sliding dynamics are given as,

ṡ = ax2 + h(x) + g(x)u (2.10)

Taking the first time derivative of the sliding surface s(t), one arrives at (2.10). Note

that the control input u appears in the first derivative of the sliding surface. Systems

of this nature are said to have a relative degree of one. Classical sliding mode control is

limited to systems of relative degree one. That is, the control input must appear in the first

derivative of the sliding surface in order for classical sliding mode control to be applicable.

In order to develop the control law, one seeks to stabilize the sliding dynamics (2.10).

Consider the Lyapunov function candidate,

V =
1

2
s2 (2.11)

Taking the derivative of (2.11), evaluating it along the trajectories of the system (2.10),

and rearranging, one arrives at,

V̇ = g(x)s

(
ax2 + h(x)

g(x)

)
︸ ︷︷ ︸

≤ρ(x)

+g(x)su (2.12)

Then,

V̇ ≤ g(x)sρ(x) + g(x)su (2.13)

≤ g(x)|s|ρ(x) + g(x)su (2.14)

Now choose the following control law,

u = −β(x)sgn(s) (2.15)
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where β(x) = ρ(x) + β0, and β0 > 0 is a parameter chosen by the designer. Substituting

β(x) into (2.14), one arrives at,

V̇ ≤ −g(x)|s|β0 (2.16)

≤ −g0β0|s| (2.17)

In order to show finite time convergence of the system states to the sliding surface

dynamics, the Comparison Lemma [16, p. 102] is introduced. It is used to compute an

upper bound on the convergence time to the sliding surface. Prior to introducing the

lemma, the upper right-hand derivative D+v(t) is defined as [16, p. 659],

D+v(t) = lim sup
h→0+

v(t+ h)− v(t)

h

The lemma is expressed in terms of the upper right-hand derivative so that it applies even

when v(t) is not differentiable. However, if the function v(t) is differentiable at time t,

then D+v(t) = v̇(t) [16]. This will be the case for functions in this work.

Lemma 2.2.1. (Comparison Lemma) Consider the scalar differential equation,

u̇ = f(t, u), u(t0) = u0

where f(t, u) is continuous in t and locally Lipschitz in u, for all t ≥ 0 and all u ∈ J ⊂ R.

Let [t0, T ) (T could be infinity) be the maximal interval of existence of the solution u(t),

and suppose u(t) ∈ J for all t ∈ [t0, T ). Let v(t) be a continuous function whose upper

right-hand derivative D+v(t) satisfies the differential inequality

D+v(t) ≤ f(t, v(t)), v(t0) ≤ u0

with v(t) ∈ J for all t ∈ [t0, T ). Then, v(t) ≤ u(t) for all t ∈ [t0, T ).
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In order to make use of this lemma to show finite time convergence of the system

trajectories to s = 0, define the function W =
√

2V = |s|. Then, the upper-right hand

derivative of W may be expressed as,

D+W = Ẇ =
1√
2V

V̇ =
1

|s|
V̇ ≤ −|s|

|s|
g0β0 = −g0β0 (2.18)

So D+W ≤ −g0β0. Define f(t,W ) = −g0β0. Then D+W ≤ f(t,W ). Now consider

u̇ = f(t, u) = −g0β0, u(t0) = W (s(t0)). Then,

∫ t

t0

du

dτ
dτ = −g0β0

∫ t

t0

dτ (2.19)

u(t)− u(t0) = −g0β0(t− t0) (2.20)

u(t) = u(t0)− g0β0(t− t0) (2.21)

Making use of Lemma 2.2.1, the result W (t) ≤ u(t) is obtained. Then,

W (t) ≤ W (s(t0))− g0β0(t− t0) (2.22)

Note that this inequality would be valid for all time for any W (t) satisfying D+W ≤ −g0β0

where the range on W (t) is not restricted. From (2.22), it is apparent that at some time

the function will reach zero. In this case W (t) = |s(t)| so W (t) is restricted to positive

values. Therefore, from (2.22), it is clear that after some finite time the value of |s(t)| will

reach zero, and the inequality (2.22) will hold up until that time. At this point the system

trajectories have reached the sliding surface s = 0. The Comparison Lemma guarantees

that the sliding surface will be reached in finite time. Due to the inequality (2.17), once

the trajectories have reached the sliding surface, they will not leave. At this point, the

closed loop system will be governed by the reduced order dynamics ẋ1 = −ax1. Of note in

this example is the fact that, despite the uncertainty associated with h and g, the sliding

mode controller is able to drive the system to the manifold s = 0 in finite time and keep it

there. This fact highlights the robustness properties of sliding mode control. In practice,
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one must be able to exert enough actuator effort to ensure that the sliding motion can be

induced. However, as long as that is possible, a very robust control strategy is available.

The application of a discontinuous control law, as in (2.15), results in a system with

a discontinuity in the right hand side. As a result, standard existence and uniqueness

results from the theory of ordinary differential equations do not apply. Filippov [17] de-

veloped much of the theory on fundamental issues such as existence and uniqueness of

solutions to differential equations driven by discontinuous functions. The interested reader

is encouraged to see [17] for an in depth treatment of the topic.

When a system’s trajectories are on the sliding manifold, the sliding mode controller

switches infinitely fast in any given finite time interval [18]. Utkin [19] has developed the

method of equivalent control in order to analyze the system’s behaviour on the sliding

surface. The fact that the actual control signal exhibits fast switching makes the use of

conventional analysis techniques difficult. As a result, Utkin proposes finding the so-called

equivalent control signal on the surface. Under the assumption that s = 0, and as a result

that ṡ = 0, one may compute the continuous control signal that would also lead to this

behaviour. Since systems for which classical sliding mode control is applied have relative

degree one in the sliding surface, the control signal appears in the term ṡ. Solving for this

control signal in ṡ = 0 yields the equivalent control signal ueq. For the system presented

here, the time derivative of the sliding surface is,

ṡ = ax2 + h(x) + g(x)u = 0 (2.23)

when the system is in the sliding mode. Solving for the equivalent control signal one arrives

at,

ueq =
−ax2 − h(x)

g(x)
(2.24)

This signal effectively represents the control signal that is applied to the plant under the

ideal case of infinitely fast switching. In practice, a signal cannot switch infinitely fast

in a finite period of time. The real control signal applied switches at a finite frequency,
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and contains both high frequency and low frequency components [19]. The high frequency

terms are filtered out by the plant, while the low frequency terms determine the plant’s

behaviour on the sliding surface. These low frequency terms represent, practically, the

value of the equivalent control signal (2.24). If one is interested in obtaining the equivalent

control signal, a low pass filtering operation on u(t) may be performed. The bandwidth

of the low pass filter should be such that the high frequency component is well filtered

out, and the lower frequency equivalent control is not distorted [19]. This technique will

be used with the sliding mode observers presented in this work in order to obtain external

force input estimates from the switching components of the observers.

In practice, the issue of generating a fast, but finite frequency, switching signal and

applying it to a plant can be troublesome. As well, in real cases there are imperfections

in actuators and delays in the system. These factors lead to the phenomenon known as

chattering [16]. Instead of the ideal situation, where the state trajectory stays exactly on

the manifold once reaching it, the trajectory is affected by delays in the control action and

will cross the sliding surface. Once on the other side of the sliding surface, the sign of the

control signal will change, driving the system back toward the surface. Again, delays in the

control action will allow the trajectory to cross over to the other side of the sliding surface.

This pattern repeats, effectively causing an oscillating behaviour. This effect is known as

chattering [16]. Chattering causes increased wear on mechanical components, results in a

loss of accuracy in the control, and may excite unmodeled high frequency dynamics in the

plant. This behaviour can be quite obvious in mechanical systems experiencing it, as the

plant can appear to shake at a very high frequency.

There are several approaches that may be used to eliminate chattering. Utkin et al.

present a number of them in [19]. One common approach is to replace the signum, which is

a discontinuous function, with a high-slope saturation function [16]. Instead of the control

law (2.15), consider the following control law,

u = −β(x)sat
(s
ε

)
(2.25)

where the saturation function, sat(·), is defined as,
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sat(x) =

{
x, if |x| ≤ 1

sgn(x), if |x| > 1

and ε is a positive parameter which determines the slope of the saturation function. The

slope is given by 1/ε. The high-slope portion of the saturation function gives rise to what

is termed a boundary layer. The system trajectories are said to lie withing the boundary

layer when |s| ≤ ε. An analysis of a sliding mode controller that makes use of a boundary

layer is carried out in the same fashion as the case where a pure switching component is

used, as long as the system is outside of the boundary layer. That is, in the same way

as was done for the pure switching sliding mode controller, finite time convergence of the

system to the boundary layer made be shown. Once the trajectory has reached the set

{|s| ≤ ε}, it will remain inside for all time thereafter [16]. In general, the behaviour of the

system inside the boundary layer is problem-dependent and must be analyzed on a case

by case basis. However, it is possible to demonstrate ultimate boundedness of the system

inside the boundary layer in general. The magnitude of this bound can be decreased by

decreasing epsilon. If the boundary layer is made to be too narrow, chattering can still

occur. A trade-off must be made between control accuracy and the presence of chattering

in the system.

This section has presented a brief introduction to sliding mode control as a robust

control strategy. The interested reader is referred to [16] and [19] for a more in depth

discussion of sliding mode control. With an understanding of the basics of sliding mode

control, the next section will present sliding mode observers.

2.2.2 Sliding Mode Observers

Typically one is interested in the use of state observers to reconstruct the state of a system

from partial state measurements. For instance, in a mechanical system only positions may

be measured, but one may need access to both positions and velocities. An observer is used

to provide an estimate of the system state from only the position measurements. As in the

case of control, one encounters modeling error in the system models used in observers. As
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a result, to ensure accurate state estimates, a technique for robust estimation is desirable.

Consider a standard observable SISO linear system,

ẋ(t) = Ax(t) +B (u(t) + ξ(t)) (2.26)

y(t) = Cx(t) (2.27)

where x(t) ∈ Rn is the state, u(t) ∈ R is the controlled input, y(t) ∈ R is the output,

and ξ(t) ∈ R is some unknown input, disturbance, or unmodeled dynamics. A standard

Luenberger observer for this system is expressed as,

˙̂x(t) = Ax̂(t) +Bu(t) +K(y(t)− Cx̂(t)) (2.28)

where x̂(t) is the estimated state and K is the observer gain matrix. Note the absence

of the unknown term ξ(t), since it is unavailable to the designer. Defining the estimation

error e(t) as e(t) = x(t)− x̂(t) yields the following estimation error dynamics,

ė(t) = (A−KC)e(t) +Bξ(t) (2.29)

Note here that the observer error dynamics may be made asymptotically stable by proper

choice of K, but are driven by the term ξ(t). As a result, for non-zero ξ(t), the estimation

error will not converge to zero. This example serves to show that classical Luenberger

observers are not robust to disturbances or modeling uncertainties. If ξ(t) were zero for all

time, the estimation error would converge to zero asymptotically.

Owing to the robustness properties of sliding mode systems, sliding mode observers

may be designed in order to deal with modeling uncertainties and disturbances. Early

work in sliding mode observers focused on a structure that is very similar to a standard

full order observer but with the replacement of the linear innovative term (the term of the

form K(y− ŷ)) with a discontinuous term of the form Ksgn(y− ŷ). Under a suitable choice
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of the sliding gain, the observer trajectory converges to the manifold y − ŷ = 0 in finite

time despite the possible presence of unknown disturbances. However, in [20] Drakunov

and Utkin propose a new approach to the design of sliding mode observers that makes use

of the equivalent control concept. In such an observer setup, the observer states converge

one by one to a sliding manifold in finite time, until at some point the entire state estimate

is available. Haskara et al. propose a design procedure for both continuous and discrete

versions of this type of sliding mode observer in [21]. The work presented in [21] improves

over the work in [20] in that the final observer equations are expressed in the original

system coordinates, as opposed to an observer design requiring a transformation of the

state variables.

An equivalent output injection first order sliding mode unknown input observer will now

be developed for a nonlinear system in triangular form. Stability of the observer and finite

time convergence of the estimated states to the true states despite unknown disturbances

will be demonstrated. Consider a system of the form,



ẋ1

ẋ2

...

ẋn−1

ẋn


=



x2

x3

...

xn

h(x) + g(x)(u+ ξ)


(2.30)

with output y = x1. The state vector is defined as x = [x1, x2, . . . , xn]T where each

xi ∈ R. As well the functions h(x) and g(x) are specified as h : R 7→ R and g : R 7→
R. Here, u ∈ R is the control input and ξ ∈ R is an unknown input or disturbance.

Though the development is limited to systems in this triangular form, many real systems

are expressed this way. Mechanical systems with friction uncertainties fit in to this model

structure. Modeling of mechanical systems typically results in systems with position and

velocity states, where the control and disturbances enter through the derivative of the

velocity state. The uncertain friction could be viewed as an unknown disturbance to the

model, which would be rejected by this observer. As well, many nonlinear systems for

which a diffeomorphism exists to transform the system into a form suitable for feedback
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linearization [16] can be expressed in the triangular form given above. In this case, the

observer would be designed to estimate the transformed states, and not the original system

states.

The following assumptions are made on the plant and the inputs,

Assumption 2.2.1. The plant, given by (2.30), may be unstable but it does not have a

finite escape time.

Assumption 2.2.2. The term g(x) is bounded away from zero ∀x ∈ Rn.

Assumption 2.2.3. The control input u(t) belongs to the extended Lp space1 denoted as

Lpe.
2 That is, any truncation of u(t) to a finite time interval is essentially bounded.

Assumption 2.2.4. The unknown disturbance input ξ(t) is bounded for all time with some

known upper bound ξ0.

In order to estimate the plant states, the following equivalent output injection first

order sliding mode observer can be used,



˙̂x1

˙̂x2

...

˙̂xn−1

˙̂xn


=



x̂2 + λ1sgn(y − x̂1)

x̂3 + E1(λ2sgn(x̃2 − x̂2))
...

x̂n + En−2(λn−1sgn(x̃n−1 − x̂n−1))

h(x̂) + g(x̂)u+ En−1(λnsgn(x̃n − x̂n))


(2.31)

where x̃i = x̂i + (λi−1sgn(xi−1 − x̂i−1))eq. The term Ei = 0 if xi − x̂i 6= 0 and Ei = 1

otherwise. While these terms are not necessary for stability, they are used as an anti-

peaking structure [23]. Before an observer state has converged, its information is not used

1From [22], for each real p ∈ [1,∞), the set Lp[0,∞) consists of all measurable functions f(·) : R+ 7→ R

such that
∫∞
0
|f(t)|pdt <∞. The set Ln

p consists of all n-tuples f = [f1 . . . fn]T where fi ∈ Lp for each i.
2From [22], the set Lpe consists of all measurable functions f : R+ 7→ R with the property that the

truncation of f to the interval [0, T ] is in Lp for all finite T , and is called the extension of Lp or the

extended Lp-space.
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in the next observer state down. This approach prevents peaks in the observer estimates

as it is converging. The equivalent output injection terms (λi−1sgn(x̃i−1 − x̂i−1))eq are

obtained by passing the terms λi−1sgn(x̃i−1−x̂i−1) through a low pass filter. In practice, an

ideal sliding mode cannot exist and so trajectories chatter around the sliding manifold [21].

According to Haskara et al. [21] the discontinuous term may be considered as a combination

of the low frequency equivalent control and the high frequency switching signal. Passing

this through a low pass filter with a bandwidth greater than the system bandwidth but

smaller than the switching frequency, one may obtain the equivalent output injection term.

This observer is designed so that the state estimates converge one at a time in finite

time, until eventually the entire state estimate is available. Once a particular state x̂i has

converged to the true state, the corresponding term Ei+1 is set to one. This allows the

next state to have the equivalent output injection information so that it may converge.

A similar design is presented in [24] but does not take into account disturbances in the

plant. Note that, in general, convergence of the first observer state x̂1 to the actual plant

state x1 does not imply that immediately x̂2 = x2 despite the fact that ẋ1 = x2 in the

plant structure. The reason for this is due to the selection of the initial conditions in the

observer. If the observer initial state happened to be the same as the plant initial state

then the state estimates would be equal to the plant states immediately. However, if one

considered the case where every observer state were initialized to a value different than

the actual plant state, each observer state would require time to converge to the actual

plant state. An example showing this step by step convergence behaviour is given in our

previous work [25].

In order to show convergence of the observer error dynamics to zero in finite time, an

expression for the observer error dynamics must first be developed.

Defining the observer error as e = x− x̂, the observer error dynamics are obtained from

(2.30) and (2.31) and are expressed as,
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

ė1

ė2

...

ėn−1

ėn


=



e2 − λ1sgn(e1)

e3 − E1(λ2sgn(x̃2 − x̂2))
...

en − En−2(λn−1sgn(x̃n−1 − x̂n−1))

∆h(x, x̂) + ∆g(x, x̂)u+ g(x)d− En−1(λnsgn(x̃n − x̂n))


(2.32)

where ∆h(x, x̂) = h(x)− h(x̂), ∆g(x, x̂) = g(x)− g(x̂).

The next theorem shows finite time convergence of the sliding mode observer, despite

the presence of a disturbance term or unmodeled dynamics in the plant.

Theorem 2.2.1. Consider the plant (2.30), observer (2.31), and Assumptions 2.2.1 to

2.2.4. Then, there exists observer gains λ1 to λn such that the estimated state x̂ converges

to the actual state x in finite time. Further, after some finite time Tn seconds, an estimate

of the unknown disturbance ξ is available as ξ = g(x)−1(λnsgn(en))eq.

Proof. See Appendix A.1.

This result has shown that a sliding mode observer, even in the presence of unknown

but bounded disturbances, yields finite time convergence of the state estimates to the

true states. As well, an estimate of the unknown disturbance/unmodeled dynamics is

obtained. In terms of robustness, then, the sliding mode observer is superior to the standard

Luenberger observer.

2.2.3 Higher Order Sliding Modes

While the previous subsection has demonstrated that it is possible to construct sliding

mode observers that provide both state and unknown input estimates in finite time, some

issues remain with this approach. Standard first order sliding mode algorithms, such

as the one already presented, suffer from chattering. The presence of the discontinuous

switching term in the dynamics is what leads to this phenomenon [16]. When a sliding
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mode controller is used with a physical system, this discontinuity in the control can lead

to chattering, due to the finite bandwidth of the controller. This chattering can cause

excitation of unmodeled high frequency dynamics, which can be hard on the system itself.

Higher order sliding mode control [26, 27] is an approach to deal with these practi-

cal issues that arise in classical, first order, sliding mode systems. Instead of having a

discontinuity appear in directly in the control signal, higher order sliding mode control

has the discontinuity appear in higher derivatives of the control signal. As a result, the

discontinuity is integrated before reaching the plant, yielding a continuous control signal.

This appearance of the discontinuity in higher derivatives of the control signal is why it

is termed higher order sliding mode control. As well, first order sliding mode control is

limited to systems that are relative degree one in the sliding dynamics, but an r-th order

sliding mode controller may be designed for systems that are relative degree r in the sliding

dynamics [28]. This makes it possible to extend the concept of sliding mode control to a

broader class of systems.

Another advantage of higher order sliding mode controllers and observers is their ac-

curacy in a discrete time implementation. When a first order sliding mode controller is

implemented in a discrete way, such as using a digital computer, the precision of the sliding

mode is proportional to the sample period [29]. However, in implementing an r-th order

sliding mode controller, one may be able to achieve precision up to the r-th power of the

sample period used in the system [29].

A number of second order sliding mode algorithms have been developed for systems

that are both relative degree one and relative degree two in the sliding dynamics [26].

The twisting algorithm is a well-known second order sliding mode controller for uncertain

relative degree two systems. Following [26], consider the single input system,

ẋ(t) = A(t)x(t) + b(t)u(t) (2.33)

s(t) = 〈c(t), x(t)〉+ ξ(t) (2.34)

where x(t) ∈ Rn is the system state and s : [0,∞)→ R is the sliding surface. The function
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c : [0,∞)→ Rn is specified by the designer to design the sliding surface, as is the function

ξ(t) : [0,∞) → R. The inner product here is taken to be the dot product. The structure

of A(t) and b(t) need not be known, but upper bounds on those functions and their first

derivatives must be known. As well, the sliding surface s(t) must have relative degree two.

That is, the control signal u(t) must first appear in the second derivative of s(t). Then,

the twisting controller for this system is given as,

u̇(t) =


−u(t) for |u(t)| > 1

−αmsign(s(t)) for s(t)ṡ(t) ≤ 0, |u(t)| ≤ 1

−αMsign(s(t)) for s(t)ṡ(t) > 0, |u(t)| ≤ 1

(2.35)

where αM > αm > 0. For suitable choices of the parameters αm and αM [26], it can be

shown that this controller yields a second order sliding mode and converges to the manifold

in a finite time. Note that a system of this setup cannot be controlled using a first order

sliding mode controller due to the relative degree two assumption of the sliding surface.

One practical implementation issue for the twisting algorithm is the necessity of having

access to the term ṡ(t). Levant [26] proposes the use of the first difference of s(t) since one

only actually requires the signum of ṡ(t) in (2.35).

The super-twisting algorithm is another type of second order sliding mode controller.

However, this algorithm is designed for relative degree one systems [30]. The advantage

of using this second order algorithm with a relative degree one system is the elimination

of chattering [26]. As well, this algorithm does not require measurement of the first time

derivative of the sliding surface, making implementation no more demanding than a first

order sliding mode algorithm. It also features finite time convergence of the system tra-

jectories to the sliding surface and has the advantage of giving more precision around the

sliding surface in a discrete time implementation as compared to a first order sliding mode

algorithm. The observers used in this work are based on the super-twisting algorithm so

its details will be presented in the next section.
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2.2.4 Second Order Sliding Mode Observer for Mechanical Sys-

tems

The observers used in this work are based on the super-twisting SISO observers presented

in [31]. Here, the work in [31] is extended and MIMO observers are designed and a corollary

is developed to prove that the SISO observers may be extended to MIMO observers while

still ensuring finite time convergence of the observer error dynamics to zero.

First, the SISO version of the observers is presented in order to show stability in this

case. The proof for the SISO observer is not a new result, but is found in [31]. Similar

proofs for second order sliding mode controllers are also found in [27] and [26]. In this

work, a proof was re-developed based on these references in order to include more detail.

Consider the following plant,

ẋ1 = x2 (2.36)

ẋ2 = f(t, x1, x2, u) + ξ(t, x1, x2, u) (2.37)

y = x1 (2.38)

where x1 ∈ R is the plant position, x2 ∈ R is the plant velocity, f(t, x1, x2, u) is the

nominal known part of the dynamics and ξ(t, x1, x2, u) is the unmodeled, unknown part of

the dynamics. In order to estimate the states and unknown input, consider the following

observer,

˙̂x1 = x̂2 + z1 (2.39)

˙̂x2 = f(t, x1, x̂2, u) + z2 (2.40)

where x̂1 ∈ R and x̂2 ∈ R are the position and velocity estimates. The variables z1 ∈ R
and z2 ∈ R are the output injections given as,
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z1 = λ|x1 − x̂1|1/2sign(x1 − x̂1) (2.41)

z2 = αsign(x1 − x̂1) (2.42)

It is assumed that x̂1(0) = x1(0) and x̂2(0) = 0. This choice is always possible since x1

is measured. Defining the estimation error as x̃1 = x1 − x̂1 and x̃2 = x2 − x̂2, the error

dynamics are given as,

˙̃x1 = x̃2 − λ|x̃1|1/2sign(x̃1) (2.43)

˙̃x2 = F (t, x1, x2, x̂2, u)− αsign(x̃1) (2.44)

where F (t, x1, x2, x̂2, u) = f(t, x1, x2, u) − f(t, x1, x̂2, u) + ξ(t, x1, x2, u). Assume that the

states can be bounded in the domain of interest, then one can assume the existence of a

constant f+ such that,

|F (t, x1, x2, x̂2, u)| < f+ (2.45)

holds for any possible t, x1, and x2 in the operational domain. As long as the controller

used would stabilize the process in the case of full state measurements, one can choose the

observer error dynamics to be fast enough so that the state estimates are recovered before

the plant leaves some chosen area. This will ensure that the bound (2.45) remains satisfied

in the operational domain [31]. Let α and λ satisfy the following inequalities,

α > f+ (2.46)

λ >

√
2

α− f+

(α + f+)(1 + p)

(1− p)
(2.47)

where p is some chosen constant such that 0 < p < 1.
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Theorem 2.2.2. Suppose that the parameters of the observer are selected according to the

above conditions for α and λ and condition (2.45) holds for the plant. Then, the variables

of the observer converge in finite time to the states of the system, i.e. (x̂1, x̂2)→ (x1, x2).

Further, the unknown term ξ(t, x1, x2, u) may be recovered in finite time as αsign(x̃1)eq.

Proof. See Appendix A.2.

Now consider an n-DOF plant,

ẋ1 = x2 (2.48)

ẋ2 = f(t, x1, x2, u) + ξ(t, x1, x2, u) (2.49)

where x1 ∈ Rn, x2 ∈ Rn, u ∈ Rn, and y = x1. Here, f(t, x1, x2, u) represents the known

plant dynamics, while ξ(t, x1, x2, u) represents the unknown inputs/dynamics. In this case,

this term represents the unknown force input. Also, f ∈ Rn may be expressed as,

f(t, x1, x2, u) =


f1(t, x1, x2, u)

f2(t, x1, x2, u)
...

fn(t, x1, x2, u)


and equivalently for ξ(t, x1, x2, u) ∈ Rn.

Now consider the following observer for the system (2.48) and (2.49),

˙̂x1 = x̂2 + z1 (2.50)

˙̂x2 = f(t, x1, x̂2, u) + z2 (2.51)

where x̂1 ∈ Rn and x̂2 ∈ Rn are the position and velocity estimates. As well, z1 ∈ Rn and

z2 ∈ Rn. The i-th element of vector z1 is given as,
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z1i
= λi|x1i

− x̂1i
|1/2sign(x1i

− x̂1i
) (2.52)

and the i-th element of vector z2 is given as,

z2i
= αisign(x1i

− x̂1i
) (2.53)

It is assumed that x̂1(0) = x1(0) and x̂2(0) = 0. This is a reasonable assumption, as x1(t)

is measured so it is always possible to initialize the observer with x̂1(0) = x1(0). Now

define the term F (t, x1, x2, x̂2, u) ∈ Rn as,

F (t, x1, x2, x̂2, u) = f(t, x1, x2, u)− f(t, x1, x̂2, u)

+ξ(t, x0, x2, u) (2.54)

and assume that the inequality,

|Fi(t, x1, x2, x̂2, u)| < f+
i (2.55)

holds over the operational domain. Provided that the controller used will stabilize the

plant in the case of full state measurements, one could choose the observer error dynamics

to be fast enough to ensure convergence of the state estimates before the plant leaves some

chosen area [31]. This would ensure that the above bound remain satisfied. Let αi and λi

satisfy the following inequalities, for every element i,

αi > f+
i (2.56)

λi >

√
2

αi − f+
i

(αi + f+
i )(1 + pi)

(1− pi)
(2.57)

where pi is some chosen constant such that 0 < pi < 1. Then, one can state the following

corollary,

29



Corollary 2.2.1. Suppose that the parameters for the observer (2.50) and (2.51) are se-

lected according to the above conditions (2.56) and (2.57) for α and λ, and that condition

(2.55) holds over the operational domain of the plant. Then, the variables of the observer

converge in finite time to the states of the system, i.e. (x̂1, x̂2) → (x1, x2). Further, the

i-th component of the unknown vector ξ(t, x1, x2, u) may be recovered in finite time as

αi sign(x1i
− x̂1i

)eq.

Proof. With the plant (2.48) and (2.49) the dynamics may be equivalently expressed as,

ẋ11 = x21 (2.58)

ẋ21 = f1(t, x1, x2, u) + ξ1(t, x1, x2, u) (2.59)

ẋ12 = x22 (2.60)

ẋ22 = f2(t, x1, x2, u) + ξ2(t, x1, x2, u) (2.61)
... (2.62)

ẋ1n = x2n (2.63)

ẋ2n = fn(t, x1, x2, u) + ξn(t, x1, x2, u) (2.64)

For each measured position variable x1i
, the i-th observer subsystem may be expressed.

From (2.50) and (2.51), the observer for the subsystem made up of the i-th position and

velocity states is defined as,

˙̂x1i
= x̂2i

+ z1i
(2.65)

˙̂x2i
= fi(t, x1, x2, u) + z2i

(2.66)

z1i
= λi|x1i

− x̂1i
|1/2sign(x1i

− x̂1i
) (2.67)

z2i
= αisign(x1i

− x̂1i
) (2.68)

Defining the i-th subsystem estimation error as,
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x̃1i
= x1i

− x̂1i

x̃2i
= x2i

− x̂2i

leads to the following observer error dynamics,

˙̃x1i
= x̃2i

− λi|x̃1i
|1/2sign(x̃1i

) (2.69)

˙̃x2i
= Fi(t, x1, x2, x̂2, u)− αisign(x̃1i

) (2.70)

Given that the bound (2.55) is satisfied, the i-th subsystem observer for the n-DOF

system fits into the form required in Theorem 2.2.2. The i-th subsystem observer error

dynamics will converge in Ti seconds. Since this is true of all observers for each subsystem,

the total observer convergence time is upper bounded by T , where

T = max
i

(Ti) (2.71)

Therefore, after T seconds the state estimates (x̂1, x̂2) will have converged to the true

state (x1, x2) and the unknown input vector ξ(t, x1, x2, u) will be available. In this case,

ξi(t, x1, x2, u) = αisign(x̃1i
)eq (2.72)

From these results it is clear that the mechanical observer proposed in [31] may be

applied to n-DOF nonlinear mechanical systems for both finite time state and unknown

input estimates.

2.3 State of the Art of Bilateral Teleoperation

When studying teleoperation systems in the presence of network time delays there are a

number of issues to deal with. Of principal importance are issues involving stability and
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transparency. Stability is of fundamental importance because, without it, a teleoperation

system cannot be operated in a safe fashion. Teleoperation systems that have some delay

in the communications are especially interesting to consider. It has been shown [5] that

even small time delays in the closed loop of a bilateral teleoperation system can destabilize

it. Transparency provides a measure of performance for a teleoperator system. As a result,

it is an important factor to consider in evaluating teleoperators.

In the sections that follow, a review of the state of the art in dealing with these issues

in teleoperation systems will be performed.

2.3.1 Passivity Approaches

Research in teleoperation systems dealing with time delay goes back as far as 1965 [32].

However this early work does not deal with force reflection. In 1966, research involving

force-reflecting bilateral teleoperation systems was presented [33]. In that work, the desta-

bilizing effects of time delay were apparent. A number of approaches for stable bilateral

teleoperation in the presence of time delays have been developed based on ensuring the

passivity of the system

In 1989, Anderson and Spong [5] presented work that developed a stable control law

for force reflecting teleoperation. This approach makes use of the concepts of passivity and

scattering theory. Scattering theory defines the scattering operator [5] as;

Definition 2.3.1. The scattering operator S : Ln2 (R+) 7→ Ln2 (R+) is defined by

u− y = S(u+ y) (2.73)

and maps effort plus flow into effort minus flow, where the flow y is entering the system’s

ports, and the effort u is measured across the system’s ports [5].

In a general sense, effort can be regarded as the input to the system, and flow the

resulting output. For a robot manipulator, the effort would be the torque exerted at each

joint and the flow would be the angular velocity at each joint.
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The following definition of passivity, taken from [22], is useful here.

Definition 2.3.2. An operator G : L2e 7→ L2e is said to be passive if

〈x,Gx〉T ≥ 0,∀T ≥ 0,∀x ∈ L2e

and is strictly passive if there exists a constant ε > 0 such that,

〈x,Gx〉T ≥ ε||x||2T2,∀T ≥ 0,∀x ∈ L2e

When working with passivity, the following theorems are of importance [22],

Theorem 2.3.1. Consider a feedback system in the standard configuration with blocks G1

and G2. Suppose there exist constants εi, δi, i = 1, 2, such that

〈x,Gix〉T ≥ εi||x||2T2 + δi||Gix||2T2,∀T ≥ 0,∀x ∈ L2e, i = 1, 2.

Then the system is L2 stable without bias if δ1 + ε2 > 0, δ2 + ε1 > 0.

Corollary 2.3.1. The standard configuration feedback system with blocks G1 and G2 is L2

stable without bias if both G1 and G2 are strictly passive.

From these theorems (which are proved in [22]) one observes that the passivity of

operators in a closed loop configuration is linked to stability. In particular, the feedback

of two strictly passive systems in the standard configuration is a sufficient condition for

L2 stability. It is important to note that, while passivity can be used to show stability, the

sufficiency of the condition implies that in some cases it could be a conservative result.

The approach in [5] makes use of the analogy between electrical and mechanical sys-

tems to represent a teleoperation system as a network of electrical components. In this

representation, each block is represented as an n-port system. Each port in an n-port will

have some effort applied to it (torque in the case of a manipulator) and some flow (angular
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velocity for a manipulator) travelling through it. Anderson and Spong represent the tele-

operation system in five blocks; a 1-port for the human operator, 2-ports for the master

manipulator, the communication channel, and the slave manipulator, and finally a 1-port

for the environment that interacts with the slave manipulator. This network representation

is shown in Figure 2.1.

Human
Operator

Master
Manipulator

Communication
Channel

Slave
Manipulator

Environment

+ + + +

- - - -

y y y y

u u u u

m

smd

sd

h e

m s

Figure 2.1: Representation of the teleoperator system using network ports.

Anderson and Spong evaluate the scattering matrix for the closed loop bilateral teleop-

eration system and show that the introduction of a time delay into the closed loop results

in a scattering matrix norm of ∞. They also show that a system is passive if and only if

the scattering matrix norm is less than or equal to one. Thus, the closed loop system is

potentially unstable with a time delay. Control laws for both the master and slave that

take time delay into account are then presented that result in a passive system, so the

closed loop is stable. Simulation results are presented in [5] showing the performance of

the proposed approach. While the system is stable, there remains significant position error

in the tracking, especially during periods in which the slave manipulator is in contact with

the environment.

Following the development of the passivity approach of Anderson and Spong [5], Niemeyer

and Slotine developed the concept of wave variables in the analysis and design of teleop-

eration systems with time delays [6, 7, 8, 9]. Wave variables encode the force and velocity

signals, denoted F and ẋ respectively, using an algebraic transformation defined as follows;

34



u =
bẋ+ F√

2b
, v =

bẋ− F√
2b

(2.74)

The variable u is termed the forward moving wave and carries signals from the master

manipulator to the slave manipulator, while v is termed the backward moving wave and

carries signals in the reverse direction. The scalar b is termed the characteristic wave

impedance, which serves as a tuning parameter to trade off between speed of motion and

level of forces [7]. As the wave impedance is increased, the velocity will become smaller

while the force becomes larger. This causes the system to feel more damped. Conversely,

decreasing the wave impedance makes movement easier and makes the system feel less

damped.

The approaches just presented pass velocity information. Since no position information

is explicitly passed, there can be a slow drift in the relative positions of the two manip-

ulators. This could be due to errors in numerical integration, as well as data loss. As

well, any initial offset in position between the two manipulators cannot be corrected [9].

In order to solve this problem, Niemeyer and Slotine [34] propose passing the integral of

the wave variables as well as the wave variables themselves. These wave integrals encode

position and momentum. Adding wave integrals to the communications does not effect

passivity [34], but guarantees that position drift is no longer a problem.

Chopra et al. [35, 36] show, using the wave variables framework and assuming linear

dynamics for the manipulators, that even in an ideal situation with both manipulators

having the same initial position, the reference position for the slave to follow is a function of

the time delay. Thus, as delay increases in the bilateral teleoperator, position drift between

the master and the slave increases as well. They propose a new architecture that makes

use of the wave variables but adds additional feedback paths where the master position

is transferred directly to the slave, and vice versa. Additional proportional controllers are

used on each side and it is shown that, for suitable choices of the controller gains, the

position tracking error goes to zero at steady state for free motion. On contact with the

environment, the force tracking error goes to zero at steady state [36]. Experimental results

in the presence of a constant time delay and occasional packet loss are presented in [36].
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Even in the presence of significant packet loss, the slave tracks the master at steady state.

With the traditional wave variables architecture, position tracking degrades at steady state

as packet losses increase [36].

In [37], Chopra et al. present a new bilateral teleoperation algorithm based on the wave

variables approach that is designed to deal with varying time delays and data loss while still

ensuring stability. The addition of Communication Management Modules (CMM) to the

standard wave-based teleoperation system is used to preserve stability in cases where the

network causes data loss and time varying transmission delays. The CMM is constructed

such that, instead of transmitting the wave variables, some function of the wave variables

that may be specified by the designer is transmitted. This portion of the CMM is termed

the function generator (FG). A signal reconstructor (SR) is used at the remote side in order

to reconstruct the signals transmitted by the FG. Chopra et al. prove [37] that satisfying

the following conditions on the wave variables ensures stability of the master-slave system,

∫ t

0

||ûs||2ds ≤
∫ t

0

||um||2ds (2.75)∫ t

0

||v̂m||2ds ≤
∫ t

0

||vs||2ds (2.76)

where um is the wave variable transmitted from master to slave, ûs is the output of the FG

received by the slave, vs is the wave variable transmitted from the slave to the master, and

v̂m is the output of the FG received by the master. Beyond satisfying these conditions, the

choice of the FG and SR are up to the designer. One option that satisfies these choices

is an identity function for the FG and time-varying gains for the SR. A discrete-time

version of these conditions is then developed, since many communications networks are

inherently discrete. Additionally, a technique for packet loss compensation is proposed.

In order to achieve this, a packet formatter on the transmitting side is used. This packet

formatter computes a running sum over time of the wave variable to be transmitted. As

well, it encodes a unique index for each wave variable. At the receiving side, a packet

reader extracts the summed wave variables and the packet index. Then, a subtractor

block subtracts the last received values of the summed wave variable from the latest one.
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Without packet loss, this difference will be equal to the transmitted wave variable. If

this is not the case, an interpolator is used and the computed difference is split up into

several samples using an interpolator in a way that preserves passivity [37]. This technique

is verified experimentally and shown to be effective against packet loss and time varying

delays.

Gu et al. [38] present an adaptive bilateral teleoperation algorithm that makes use of

the wave variables transformation. This approach is developed for systems that experi-

ence time-varying delays through the communications. The authors note that the wave

variables transformation as originally developed only preserves passivity for a constant

time delay [38]. As a result, an adaptive approach based on the variation in time delay

is proposed. By making use of the delay differentials, a modification to the wave variable

equation is made such that it is integrated before being sent through the communications,

and differentiated on the other side of the communications. This signal is then recombined

with the original wave variable. It can be shown [38] that this operation preserves passivity

even in the presence of varying time delays. While not an adaptive control algorithm in

the classical sense, the final wave variable output is adjusted according to the variation in

the time delay. It is in this sense that adaptation occurs. Simulation results using linear

master and slave plants are presented to confirm the effectiveness of this algorithm in the

presence of a varying time delay.

In [39], Aziminejad et al. perform passivity-based stability analyses for a variety of tele-

operation architectures. Both admittance type position error based (a form of the position-

position architecture) and hybrid position error based (which requires force sensing) are

examined. As well, a new approach termed the admittance-type kinesthetic force-based

(AKFB) algorithm is presented. This new approach is a two channel architecture that

requires force sensors at both the master and slave sides. It was shown that, in the case

of no time delays, the only non-ideal entry in the hybrid matrix is the entry H22(s). This

is an improvement in terms of performance over the admittance position error based ar-

chitecture. All of the approaches presented make use of the wave variables transformation

in order to preserve passivity. An interesting conclusion of this paper is that, from the

perspective of transparency, better performance is achieved when force sensors are used in
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the teleoperator system. The practical performance of each of the algorithms studied is

examined through a series of experiments.

Haddadi and Hashtrudi-Zaad [40] present a new approach for stability analysis of wave-

based bilateral teleoperation systems. This approach makes use of the concept of scattering

parameters from microwave systems [40]. It is advantageous over the absolute stability ap-

proach based on Llewellyn’s criteria in that it produces less conservative results. As well,

this new approach yields bounds on the stability of a system that may be unstable when

connected to a passive operator. This approach expands the opportunity to determine

that a system is stable even if the system is not absolutely stable. A new concept termed

bounded impedance absolute stability (BIAS) is introduced, allowing one to guarantee sta-

bility of a particular system provided that the operator and slave environment impedances

lie within some bound. This approach is perhaps more rigorous than that of absolute

stability in that it becomes possible to include the environment impedance in the stability

analysis. However, the assumption that the environment is linear is retained when it is

used in the analysis. Another advantage of this technique is that the stability results may

be used in the design of the bilateral teleoperator in order to ensure that the system is

robustly stable for the particular set of environment conditions that it will encounter [40].

The authors apply this analysis technique to both a four channel communications archi-

tecture and a two channel position-force architecture. The results of the analysis show

that a wider range of possible environment impedances, over those allowed by Llewellyn’s

stability criteria, may be used while still ensuring stability of the system.

Delay Predictors

In [41] Niemeyer and Slotine develop a wave variable based method for dealing with systems

that have variable time delays, such as the Internet. They show that, in the presence of

time varying delays, the passivity of the system using wave variables is no longer conserved.

To compensate for this, a reconstruction filter is used on the slave side of the system. This

filter receives the delayed wave integral and wave energy signals from the master side, as

well as local versions of the wave signal and wave energy, integrated on the slave side.
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Defining the master wave variable as um(t) and the received wave variable on the slave

side as ûs(t), the integrals of these two signals are computed, and their difference is taken.

This difference is a measure of the change in energy of the signal. By feeding that energy

back into ûs(t), the lost energy is restored. So, the wave variable to be used on the slave

side is computed as,

us(t) = ûs(t)− σ∆(t) (2.77)

In [42] the authors suggest that the choice of the gain σ must be made based on the

trade-off between rapid convergence of the slave wave variable to the delayed master side

variable and sensitivity to fluctuations in time delay. In order to balance this trade off,

Mirfakhrai and Payandeh [43, 44] propose an approach to model the time varying delay

in the communications. To model the delay, they propose the use of an autoregressive

discrete-time model driven by white noise. The time delay data is then fit to this model

and used to predict the future time delays. With the ability to predict future delay values,

Mirfakhrai and Payandeh propose using the delay predictions to adjust, via a lookup table,

the parameter σ in an optimal fashion to minimize the velocity and force errors.

Zhang and Li [45] propose a very similar delay prediction approach to tuning the

feedback gain σ in (2.77). However, instead of using a discrete-time autoregressive model to

estimate the time delay, they model the process dynamics of the delay as y(t) = x(t−τ(t)),

where τ(t) is the time-varying delay. The variable θ(t) is used as the estimate of the time

delay, and the estimation error is determined as e(t) = y(t)− x(t− θ(t)). The time delay

is estimated online using a steepest descent algorithm. With an estimate of the time

delay, heuristics are given to choose σ. If the time delay is large, σ should become more

negative [45]. This gain is adjusted based on empirical results, and no formal method for

choosing it is presented.

Predictive Approaches Using Wave Variables

Liu et al. [46] propose a pose reflecting teleoperation scheme that makes use of wave

variables and incorporates wave prediction. This scheme differs from most bilateral tele-
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operation systems considered here in that, instead of reflecting force back from the slave

to the master, the slave pose is reflected back. In this setup, the velocity and pose are

encoded in the wave variables. This work assumes linear models for the dynamics. At the

slave side, the dynamics of the slave as well as the wave transformations are treated as

one plant, called G(s). Effectively, this plant has wave variables as its input and output.

A discrete-time state space representation of G(s) is determined and it is used in a linear

discrete-time implementation of the Kalman filter. The Kalman filter is placed on the

master side. Using the Kalman filter update equations, the wave variable that would be

received from the slave side is predicted n steps into the future, depending on the value

of the time delay. The master side then uses this predicted estimate of the wave variable

in obtaining an estimate of the slave pose. Simulation results are presented showing the

effectiveness of this approach in the presence of a varying time delay, but no formal proof

of stability is presented.

Ganjefar et al. [47] propose an extension to the wave variables approach that also

involves predicting future values of the wave variables. A Smith predictor, based on the

slave plant dynamics, is used on the master side to predict the value of the wave variable

coming from the slave T seconds into the future, where T is the time delay in the system.

Simulation results, using linear dynamics, are presented to show the performance of the

approach. The addition of a Smith predictor has a positive effect on tracking performance.

However, no formal analysis of the stability of this system is presented.

Munir and Book [48] propose an alternate approach for wave based prediction. In

this setup, a modified Smith predictor, an energy regulator, and a Kalman filter are used

to predict the future values of the wave variables. The prediction happens entirely in

the wave domain, on the master side of the system. The entire slave side of the system,

which includes the slave plant, PD controller, and the wave transformation, is given by the

combined transfer function GR(s). Developing a state-space model of GR(s), a Kalman

filter is then used to estimate the state of the entire slave side. This state estimate is

delayed in time, since the returning wave that the Kalman filter uses as the measurement

passes through the delay in the communications.

The delayed slave side state estimate is passed to a time forward observer. The time
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forward observer generates a predicted state xp(t), which is predicted TT units of time

ahead of the delayed state to compensate for the time delay.

This predicted state can then be used to generate a prediction of the slave wave variable,

which is passed through an energy regulator. This regulator is designed to ensure that the

passivity condition is met by the predicted wave. That is, the predictor must not increase

the total energy in the system. Munir and Book then present a slight modification to this

prediction scheme in order to ensure stability in the presence of time-varying delays.

Such prediction approaches are dependent on having an accurate model of the slave

and environment [49]. However, when a slave manipulator moves from free space to envi-

ronmental contact, or to a situation in which the manipulator is under load, the dynamics

of the slave side change. To deal with this, Ching and Book [49] propose two approaches.

The first makes use of an adaptive switching algorithm whereby, depending on the slave

position error, different models of the slave are used to reflect the state of the slave and

environment. A second approach is suggested that makes use of a recursive least squares

(RLS) algorithm that is used to estimate the environmental force acting on the slave in an

online fashion. The RLS algorithm is constantly updating the environmental force term in

the predictor model on the master side.

Ching and Book state that the switching scheme is best in situations where the slave

will be in rigid contact, since the RLS approach is unable to predict when the slave will

leave the contact. The RLS algorithm is better suited to environments that vary slowly,

due to the transmission delay and the learning curve of the RLS algorithm [49]. Stability

of both of these approaches is guaranteed due to the use of the energy regulator, which is

the same as that proposed in [48]. A compensator for position drift, which is an issue due

to non-constant time delay and slave modeling error, is also presented in this work and

shown to be effective in the simulations.

In situations where the dynamics may change suddenly, such as due to sudden changes

in the environment, it may be beneficial to have a method to rapidly adapt to the change.

Kamrani et al. [50] propose the use of multiple model adaptive controllers along with a

wave variable approach and a Smith predictor to perform wave prediction. As well, their
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approach allows for possibly varying time delays, and models the delay with an ARX model.

In a multiple model adaptive controller, a supervisor is constantly evaluating cost functions

for each of the possible models. When some change in the system occurs, the supervisor

determines the best model for the current situation and switches to the corresponding

controller [50]. This allows for rapid changes to the control when the system changes

rapidly. According to [50], the closed loop system with such a control strategy is BIBO

stable. Simulation results show the effectiveness of the approach over a conventional wave

prediction algorithm.

Non-Wave Based Passive Control

While it is common in the literature to see the use of wave variables when dealing with

passivity approaches for bilateral teleoperation, other approaches exist as well.

In [11], Lawrence develops tools for the analysis of a general teleoperator architecture

in terms of stability and performance. The teleoperator system used for the analysis is

general enough to include the position-position architecture, the position-force architecture,

and a transparency-optimized architecture, depending on how certain controllers and local

feedback loops are chosen. The transparency-optimized architecture is a four channel

setup, while the other two approaches fall into the two channel setup. Lawrence shows

that a sufficient condition to achieve ideal transparency is the use of four channels. The

analysis performed in this work shows that a trade-off must be made between transparency

and stability. That is, an increased transparency setup provides a lower stability margin

than a system that provides less transparency. The stability analysis of the teleoperator

architectures is performed using passivity arguments that lead to a sufficient stability result.

A detailed analysis of the transparency properties of each of the three specific architectures

is performed as well, showing the relative performance of each approach.

Lee and Spong [51] propose a novel passivity-based control framework for nonlinear

robot manipulators in the presence of a constant time delay. One advantage of this frame-

work is the use of explicit position feedback. This feedback is useful in eliminating the

potential for position drift found in other passivity-based algorithms [5, 8]. The authors
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propose to render passive the combination of the controller and communication blocks. The

control objectives of this approach are master-slave position coordination when the ma-

nipulators are operating in free space, and static force reflection when the slave encounters

the environment.

To accomplish this control objective, a very straightforward proportional-derivative

controller with an additional dissipation term is used. The controller on the master side is

given by,

Tm(t) = −Kv(q̇m(t)− q̇s(t− τ2))− (Kd + Pε)q̇m(t)−Kp(qm(t)− qs(t− τ2)) (2.78)

where τ2 represents the delay from slave to master, qm(t) and qs(t) are the master and slave

joint positions, Kv and Kp are the PD controller gains, Kd is a dissipation gain to ensure

that the delayed P-control action is made passive, and Pε is an additional damping term

to ensure master-slave coordination. The control law used on the slave side is the same in

form, but receives the delayed signals from the master side. Lee and Spong prove that with

these controllers the closed loop is stable, in the absence of external forces the slave will

exactly track the master, and when the slave is immobilized against an environment, the

force applied at the master is equal to the force applied to the slave. Detailed proofs are

given in [51]. This control framework is largely concerned with low-frequency performance,

so high-frequency characteristics (i.e. detecting a sharp edge in the environment) have not

yet been examined [51]. Both simulation and experimental results are given in [51] to show

the effectiveness of the approach.

McIntyre et al. [52] propose a passivity based bilateral teleoperator control framework

that also deals with nonlinear robot manipulators. In [52], two different control approaches

are presented. The first approach allows for uncertainty in the master and slave dynamic

models provided that the user and environmental input forces are measurable. The second

approach requires that the master and slave dynamics be known, but allows for unmea-

surable user and input forces [52]. The stability of each control approach is shown using a

Lyapunov approach. However, this work does not deal with time delays and is less relevant

to the problem being examined in this research proposal.
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Ni and Wang [14] propose a gain switching control scheme for the bilateral teleoper-

ation control problem. Their approach is based on the position-position architecture. In

particular, the authors make use of position error feedback from the slave to the master.

They mention that position error feedback can be used, instead of measuring the contact

forces, to provide the master side with a sense of the force experienced at the slave. How-

ever, this approach provides poor transparency. In order to compensate for this, Ni and

Wang show that in free motion situations, the master controller should have small gains

while the slave controller should have large gains [14]. The opposite is the case when the

slave is in contact with an environment. To deal with this, a gain switching strategy is

employed. Another issue examined in [14] is that of contact transition stability. Despite

the fact that a controller can be designed that ensures a stable closed loop in both free

motion and contact, the transition from one mode to the other can lead to instability. The

control approach presented in this work ensures asymptotic stability of the entire system

while employing a gain switching controller for free motion, contact transitions, and con-

strained motion. Lyapunov arguments are used to prove stability. Note that time delay is

not considered in this paper.

According to Ryu et al. [53], using a passivity approach in designing controllers for

teleoperation systems leads to overly conservative controller designs. The reason for this

is due to the analysis of system passivity in the frequency domain, which results in a

fixed damping value regardless of operating conditions. In [53], the authors develop the

concept of a passivity observer (PO) and a passivity controller (PC). The PO is always

monitoring the energy through the controller/communications block to see whether it is

storing/dissipating energy or generating energy. With an idea of the system energy at

any given time instant, the PC can be designed to only dissipate the required amount of

energy [53]. Such a setup with a PO and a PC can be implemented in the context of

a standard position-force bilateral control setup. The paper [53] provides experimental

results to show the effectiveness of the PO/PC when the slave comes into hard contact

with its environment. This paper does not deal with teleoperation systems involving time

delay, except to mention that future work must be put into that problem.

Naerum and Hannaford [54] present a global transparency analysis of an extended
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form of the general teleoperation architecture developed by Lawrence [11]. They examine

the extension to this architecture that was proposed by Hashtrudi-Zaad and Salcudean.

This extended architecture, referred to as the Extended Lawrence Architecture (ELA),

differs from Lawrence’s original architecture in that local force controllers are included at

both the master and slave sides. Of particular interest in this work is a necessary and

sufficient condition for transparency using the ELA. In particular, it is proved that a two

channel architecture is a necessary and sufficient condition for achieving ideal transparency.

However, not every two channel configuration yields transparency. For instance, both the

position-position and position-force architectures will not yield ideal transparency. In order

to achieve this in a two channel setup, one robot must be velocity controlled, while the other

must be force controlled. Prior to this result, the common belief was that it is not possible

to achieve ideal transparency with only two channels [54]. Naerum and Hannaford show

that local feedback at each site with only two communication channels is equivalent to a

setup using four communication channels with no local feedback loops. Note that this work

deals only with teleoperation systems that do not contain delays in the communications.

In [55], Seo et al. present a stable bilateral teleoperation algorithm where passivity

is ensured in the presence of time-varying delays using an energy bounding algorithm

(EBA). This algorithm is designed in order to ensure that passivity is guaranteed despite

the presence of time delays. The signals transmitted from the master to the slave, and

vice-versa, are each passed through an EBA. These EBAs restrict the amount of energy

that passes from one side to the other in such a way that passivity is always preserved.

This approach was originally developed for haptic simulation of virtual environments [55],

and as such the EBA on each side views the combination of the communications, remote

plant and controller, sample and hold blocks, and environment/operator in an analogous

way to a virtual environment. The EBA passifies this whole remote system in order to

maintain stability. A PD controller is used at the slave side to ensure tracking of the

delayed master trajectories. The output of this controller is used as the remote force that

is transmitted back to the master side. This algorithm, then, is a position-error based type

of position-position algorithm. Experimental results for this algorithm are presented for

time-varying delays with nominal values up to 2.5 seconds in each direction and for cases
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involving both free and constrained motion at the slave side. The experimental results

show stable behaviour in all cases with the EBA, but position error increases for large

variable time delays.

2.3.2 Stable Teleoperation Without Relying on Passivity

While passivity is a popular tool to use in developing stable bilateral teleoperators, there is

motivation for using approaches that do not depend on passivity. Lawn and Hannaford [56]

performed a number of experiments on both passive and non-passive bilateral teleoperation

schemes and concluded that the passive approaches resulted in a roughly 50% increase in

task completion time. They conclude that the reason for this is that the guaranteed

stability of the passivity approaches comes at the cost of reduced stiffness [56]. As a result,

a number of approaches not based on passivity can be found in the literature.

In [57], Kim et al. present a case study of human-human interaction using haptic devices

over the Internet. One side of the experiment took place in the U.K., while the other took

place in the U.S.A. The high speed research network Internet2 was used to connect the

sites. The study examines the effect of haptic feedback on the ability of two humans in

geographically separate areas to complete a task together. In conducting the experiments,

separate groups of people were tested. In one group, haptic information was available

for feedback, while in the other it was not. Since human operators are placed at both the

master and slave sides of the system, explicit controllers are not implemented. However, due

to the network time delay and force feedback, additional damping is injected into the system

at various points to maintain stability [57]. A collision prediction algorithm is employed,

whereby the predicted motion of the remote hand is used to determine when the remote

side will contact the shared environment. The results of the experiments showed that the

addition of haptic feedback increased the sense of co-presence for the users. However, no

proof of stability for the closed loop system is given.

Polushin et al. have recently proposed an approach to bilateral teleoperation over a

network with unknown and varying time delays such as the Internet [58, 59, 60]. The

proposed control scheme guarantees stability that is independent of the time delay. As
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well, if the assumption that the delay is “approximately smooth” holds then the control

scheme will guarantee that the slave manipulator is able to track the master manipulator’s

delayed trajectory.

In order to deal with the unknown time delay and potential for data loss, a “dirty

derivative” filter is introduced. This filter is effectively an observer on the slave side that

has two uses. If data is lost in the communications from master to slave, it is possible that

the slave will receive a discontinuous reference trajectory from the master. The filter will

generate a smooth approximation of the reference trajectory for the slave to use. As well,

this filter generates velocity and acceleration estimates of the delayed master state.

This approach does not make use of passivity methods to guarantee stability. Instead,

a modified version of the input-to-state small-gain theorem for functional differential equa-

tions is used [58]. Using certain control laws, it can be shown [58] that, under certain

assumptions about the time delays, input to state stability can be guaranteed as well as

arbitrarily precise tracking of the delayed master manipulator signal by the slave manipu-

lator. Simulation results [58] and experimental results [60] for the proposed approach show

its effectiveness. Even in the presence of significant time delays (∼ 2 seconds), the slave

continues to track the delayed master position.

Alfi and Farrokhi [61] propose a stable bilateral control scheme that makes use of

classical linear control techniques to stabilize the closed loop. They assume a standard

bilateral teleoperator setup with a possibly time varying communication delay. Classical

PD controllers are designed for both the master and the slave manipulators. Since the

time delay can have a negative effect on system stability, a Smith predictor is used on the

master side in order to compensate for this. Alfi and Farrokhi note in [61] that the use of

a Smith predictor requires a constant time delay. In order to extend the use of the Smith

predictor to time-varying delays, an FIR filter is used to estimate the time delay online

using an LMS algorithm. The estimated time delay is then used in the Smith predictor in

order to compensate for the delay. The stability of the closed loop is shown, assuming the

magnitude of the closed loop frequency response is less than one for all frequencies. As

well, an assumption on the time delay is made, in that the time delay must not be greater

than 1 msec. Simulation results are given based on linear dynamics and small time delays.
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While the results show the effectiveness of the approach, it is limited by its requirement

for a very small time delay.

In [62], Pilieci reports on the use of haptic devices communicating across the Internet

between Ottawa and Geneva. In this setup, humans are controlling each side of the tele-

operator system. The setup allowed people to shake hands transatlantically, as well as the

ability to feel a pulse in a human located at the other end of the teleoperator. No technical

details are given in [62].

Nuno et al. [63] present new bilateral teleoperation algorithms for nonlinear manipula-

tors in the presence of constant time delays. Two separate approaches are proposed. In

both cases, the fairly common assumption that both the human operator and the slave

environment are passive is made. The first approach is based on the position-position

architecture. Both the master and slave track each other’s position. In this setup, simple

controllers are used at both the master and slave sites. Each controller has a proportional

term that contains the tracking error and an additional damping term that is proportional

to the plant’s velocity. They then show [63] that, for suitable choices of the controller

position and damping gains, the position error and velocity error of the teleoperator are

bounded. Under the additional assumptions that the human operator is motionless, the

slave is in free motion, and that a gravity compensation term is added to each controller,

they prove that position coordination is achieved. That is, one manipulator asymptotically

tracks the other. The second algorithm is a position-force algorithm. That is, the slave

tracks the delayed master trajectory and the force exerted on the slave by the environment

is reflected back to the master side. The slave controller in this approach is the same as

the controller used in the position-position algorithm. The master controller contains the

reflected slave torque and an additional damping term that is proportional to the mas-

ter velocity. With this setup, the same results are proved for this algorithm as for the

position-position algorithm. Simulation and experimental results are presented in [63] that

verify the effectiveness of the approaches. Constant time delays of 0.7 seconds from master

to slave and 0.9 seconds from slave to master are used in all cases. The simulations and

experiments confirm the validity of the approach.

In [64], Nuno and Basanez present initial results toward the task of developing a gen-

48



eral framework for performing stability analysis of teleoperator systems with time-varying

delays. A general Lyapunov-like function is developed that, under slight modifications,

may be used to analyze the stability of a variety of bilateral teleoperation architectures.

The master and slave plants are both assumed to be nonlinear robot manipulators with

gravity compensating controllers. The authors point out that this Lyapunov-like function

is not actually a Lyapunov function, because it may not be possible to show that it is non-

positive. However, stability of the system using this function is shown through integration

of the Lyapunov-like function, as in [65]. The proposed Lyapunov-like function contains

three terms. The first term represents the kinetic energy of both manipulators. The sec-

ond term represents the interaction of the operator with the master manipulator and the

environment with the slave manipulator. Note that the assumption that both the human

operator and slave environment are passive is made throughout [64]. The third term in

the function represents the energy in the communications between the master and slave

sites. This term must be designed on a case by case basis depending on the teleoperation

control strategy. The authors then present the use of this general Lyapunov-like function

to show stability of a variety of teleoperation algorithms. The stability analysis is able to

show boundedness of the position tracking error and velocity signals. Under the additional

assumption that the human does not move and the slave is in free motion, asymptotic

position tracking may be shown.

Sliding Mode Control

Sliding mode control is a popular control strategy when dealing with parametric uncertain-

ties in the plant model [16]. Park and Cho [66] present a sliding mode control approach for

a bilateral teleoperation system in the presence of varying time delays. This approach as-

sumes linear dynamics for both the master and the slave, and uses an impedance controller

on the master side. The sliding mode controller is implemented on the slave. Park and Cho

make mention of the sliding mode controller’s robustness to model parameter variations in

helping to compensate for the effects of the time delay [66]. The gain term on the switch-

ing control law used in standard sliding mode control must be increased as the time delay
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increases, and as this gain is increased, the controller is more likely to cause chattering [66].

In order to deal with this, Park and Cho propose a modified sliding mode controller whose

gain on the switching term can be designed independent of delay. Simulation results show

the effectiveness of this modified sliding mode controller. From the simulations, the slave

appears to track the delayed master position well. As well, the forces exerted on the slave

are reflected back to the master quite accurately. An extension of these results, presented

by Cho and Park [67], propose a similar algorithm, but include the slave environment force

as a driving term in the slave desired impedance model. This approach allows for a reduced

impact force when contacting the environment. In both cases, stability is proved under the

assumption of a passive operator and a passive environment. Llewellyn’s stability criteria

is used to give necessary and sufficient conditions for absolute stability of the system [67].

Conventional sliding mode control is known to introduce chattering into a system, due

to delays and the fact that actuators are not able to switch infinitely fast [16]. Second order

sliding mode control is an approach developed that solves the problem of chattering [68].

In this approach, no discontinuous terms appear in the control law. Garcia-Valdovinos et

al. [68] propose the use of a second order sliding mode controller for the slave in a bilateral

teleoperation system with a constant but unknown time delay. As well, they make use

of simple linear observers to estimate velocity and acceleration signals, in order to avoid

measuring them. Linear models of the master and slave dynamics are used in the analysis

and controller design. The master manipulator is controlled with a standard impedance

controller. A proof of stability is given showing that the closed loop system, including the

observers, is asymptotically stable. From the experimental results, it is evident that the

slave tracks the delayed master position during free motion, and the force experienced by

the slave is reflected back to the master during slave contact with the environment.

In many situations, controllers are implemented in a discrete-time computer. As a

result, there is merit in developing controllers directly in discrete time. Khan et al.[69]

present a bilateral teleoperation algorithm that makes use of a discrete-time sliding mode

controller at the slave side. This algorithm is applied to a teleoperation system with a

piezo actuator at the slave side, designed for micro manipulation tasks. Time delays are

not considered in this work. In order to deal with modeling error at the slave side, the
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addition of a disturbance observer is made. This disturbance observer produces an estimate

of all of the unmodeled terms acting on the plant by back-computing it from estimates

of the position, velocity, and acceleration generated from a standard discrete-time sliding

mode observer. Experimental results are presented to validate the algorithm. However, no

stability analysis is performed.

Adaptive Control

Adaptive control schemes are useful in any situation where the parameters of a dynamic

system are either unknown or time-varying. In many cases, the accuracy of a closed loop

system in terms of meeting a tracking objective is dependent on how well the parameters

of the plant are known. An adaptive controller may be used to learn the parameters of

the plant online in order to improve closed loop tracking. This is equally true of bilateral

teleoperation systems, when the manipulator parameters may not be perfectly known. As

a result, adaptive control has been used in the literature to improve teleoperation system

performance.

Lee and Chung [12] propose an adaptive controller for a bilateral teleoperator. The

adaptation law exists on the slave side and is used to estimate the parameters of both

the slave manipulator and the environment it is in contact with. All of the dynamics in

the system are assumed to be linear, and an adaptation law is derived using a Lyapunov

stability approach [12]. The closed loop is shown to be stable, and the simulation and

experimental results show excellent performance. However, this algorithm does not take

time delays into account.

Hashtrudi-Zaad and Salcudean [70] propose an adaptive controller for a bilateral tele-

operator under time delay in which the adaptive scheme is used to estimate the slave side

parameters. Linear dynamic models are used for the master, slave, and environment. A

composite adaptive controller is used, which aims to drive both the tracking error and

parameter estimation error to zero. Through different choices of the adaptation gain, con-

trollers with different uses can be obtained. For instance, a fixed adaptation gain is a good

choice in situations where the slave will be in intermittent contact with the environment,
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or when the environment is particularly hard. The controller at the master side is not

adaptive, and is designed to achieve transparency in that the transmitted impedance will

be equal to the environmental impedance at the slave side [70]. Simulation results show

that, in the presence of time delays, the proposed control scheme performs well in terms

of achieving transparency [70]. No proof of stability is given for this algorithm.

In [71], Fite et al. propose an adaptive bilateral teleoperation control scheme based on

linear dynamic models, and in the presence of constant time delays. A classical control

approach is taken in designing the controllers. A lead-lag compensator is used to perform

frequency domain manipulation of the transparency and stability robustness properties of

the closed loop [71]. In order to improve the stability margin in the presence of time delay, a

Smith predictor is added to the system. The Smith predictor includes the slave environment

model, so an adaptation law is proposed to learn the parameters of the environment. The

parameter estimates are used to adapt the Smith predictor to ensure proper time delay

compensation and improved transparency [71]. Experimental results show that the use of

an adaptive predictor allowed for a desired transparency bandwidth even in the presence

of variations in the environment. No tracking results were given.

Polushin et al. [72] propose an adaptive bilateral teleoperation control algorithm based

on nonlinear dynamic models and the presence of a constant time delay through the com-

munications. The adaptation law is based on the fact that nonlinear robot dynamics may

be expressed as linear in the parameters. A standard adaptation law is presented to es-

timate the unknown inertial parameters of both the master and slave robots. Nonlinear

control laws are proposed for each of the master and slave manipulators, based on the

estimates of the inertial parameters. The scheme requires only position measurements, as

a “dirty derivative” filter is used to estimate velocity and acceleration signals from the

position signals [72]. Stability of the approach is shown through the use of a modified

input-to-output stability small gain theorem for functional differential equations [72]. The

simulation results presented show the stability of the proposed approach when entering into

contact with the slave environment. As noted in [72], the quality of the position tracking

could benefit from improvement.

In [73], Shahdi and Sirouspour propose a combined robust and adaptive control algo-
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rithm for bilateral teleoperation with constant time delays. Both the master and slave

manipulators are modeled by nonlinear dynamics. The human and slave environment dy-

namics are modeled as second order decoupled linear systems in the robot task space.

Adaptation laws are used at both the master and slave sides to learn the unknown robot

parameters. Control design is performed in the robot task space, with feedback linearizing

controllers that make use of the inertial parameter estimates from the adaptation laws used

in order to render each of the master and slave linear in the closed loop. Since the robot

dynamics have been rendered linear by their respective controllers, the problem of tracking

and force reflection is addressed using the H∞ framework. The goal of this teleoperation

scheme is to have the slave track the delayed master trajectory, and have the master expe-

rience the delayed reflected environment force from the slave. The H∞ controller is placed

at the master side, and the entire teleoperator system is modeled as one large time delay

system. Design of the H∞ controller is based on this model of the system as a whole.

Experimental results are presented for cases involving 200 ms and 300 ms of time delay in

each direction. The results show that this approach works fairly well, although the plots

suggest that as time delay increases, tracking error begins to degrade.

Predictive Control Strategies

Due to the time delays inherent in many teleoperation setups, it is desirable to attempt to

include some form of prediction in the control scheme. A properly implemented predictor

would help to mitigate the effects of the time delay from the perspective of the operator.

Early work in predictive teleoperation focused mainly on the use of predictive displays [74,

75]. Typically, such systems did not include force feedback from the slave to the master.

In 1998, Brady and Tarn [76] presented a teleoperation scheme for use over the Internet

that makes use of a time-forward observer at the master side to predict the state of the

remote manipulator. The slave’s position information is passed back through the delay to

the master side, and it is used as the partial state measurement to drive the observer. No

force feedback is included in this setup. The estimated slave state is then used to update

a predictive display of the slave environment. An event based planner is included at the
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slave side to handle execution of a trajectory submitted to it from the teleoperator. Force

feedback is not implemented, and no proof of stability is offered.

Prokopiou et al. [77] propose a predictive approach to bilateral teleoperation control

that involves prediction of the master state. This is as opposed to predicting the slave state

and presenting the prediction to the operator. The notion is to have the slave respond to

the forward-time prediction of the master motion. This effectively leads to the slave oper-

ating ahead in time from the master [77]. The approach assumes equal and constant delays

in both the forward and backward direction, but the authors state that when this is not the

case additional buffering can be used to ensure equal and constant delays in both directions.

An advantage of predicting the master state at the slave side is that video from the slave

side may be passed back to the master without any additional prediction applied to the

video sequence. Two similar approaches are proposed. The first is a model-based predic-

tor, which makes use of both the human arm and master robot dynamics for prediction. A

second approach is a straightforward trajectory extrapolation, based on interpolating the

master position and force, and then using the simple model to extrapolate future values of

the master position and force. Linear dynamic models are used. The choice of controllers

results in perfect force tracking, and asymptotically convergent position tracking. Simu-

lation results for both the trajectory extrapolation and model-based approaches are given

in [77], showing the effectiveness of the approaches. Certain force profiles, that were easy

to extrapolate, resulted in better performance than others.

When developing an accurate predictive approach that involves prediction of the slave

state, it is important to have knowledge of the slave environment dynamics. Such dynamics

can be nonlinear and difficult to model accurately using a linear model. In order to deal

with this, Smith and Hashtrudi-Zaad [78, 79] propose the use of an online neural network

(NN) based estimator for the slave manipulator and dynamics. The NN is trained with

the delayed master position as an input, and the environmental force acting on the slave

as the output. In order to use the NN as a predictor, an NN with an identical structure

is implemented on the master side. Once the initial learning period is finished, changes to

the NN weights will be minimal [79].

The NN on the master side takes the non-delayed master position as input and generates
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an estimate of the slave environment force. This NN is then used in a Smith predictor

style architecture to mitigate the effect of the time delay. Experimental results show that

the proposed algorithm performs in a superior way to several benchmark algorithms it is

compared to. In the experimental results, there is still a delay between master and slave

positions, and master and slave forces. As well, no proof of stability is given for this control

scheme.

Model predictive control (MPC) is an attractive control technique when dealing with

the control of systems subject to input and state constraints. In MPC, a cost function is

minimized to generate the optimal control input sequence given the constraints. Several

researchers have applied MPC techniques to the bilateral teleoperation control problem.

Sheng and Spong [80] propose a slightly modified MPC algorithm for the control of

a bilateral teleoperator in the presence of uncertain time delay. Controllers for both free

motion and constrained motion are designed. In the case of constrained motion, a quadratic

programming problem must be solved to generate the optimal control inputs [80]. No

formal stability analysis is presented in [80].

Sirouspour and Shahdi [81, 82] propose linear quadratic Gaussian (LQG) controllers

for the control of a bilateral teleoperation system under constant time delay. In [81] the

development is done in discrete time. Separate controllers are designed for the cases of

free motion and rigid contact. A switching strategy is employed to choose the appropriate

controller depending on whether the slave is in free motion or constrained. In this control

scheme, the controller resides entirely on the master side. Slave control signals are gen-

erated at the master and passed through the communications to the slave. The Kalman

filter component of the LQG controller provides prediction of master and slave motion.

The control signals generated attempt to produce non-delayed tracking [81]. A stability

analysis based on the Nyquist theorem is given. Simulation and experimental results show

the effectiveness of the method in stabilizing the closed loop through a time delay and in

providing good position and force tracking.

In [82] Sirouspour and Shahdi propose a modification of the work in [81] where the

problem is solved, again using an LQG controller, in continuous time. A transformation is
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applied to the teleoperator system to bring it from an infinite dimensional system with time

delays in the control action to a system without delay [82]. The rest of the development

is parallel to the development in [81], but is done in continuous time. A stability analysis

is performed using the Nyquist theorem, and experimental results are given that show

good performance. This approach has the benefit over [81] that the state vector does not

increase in size with increasing delay.

Ni and Wang [83] propose the use of a fuzzy logic approach to tuning the controller

in a bilateral teleoperation system. This work is focused on a human-to-human system.

That is, there are humans operating both the master and slave manipulators. As well,

position error from the slave to master is used to provide the force feedback component

instead of actually measuring the environmental force at the slave side. In such systems,

one desires different sets of gains depending on the operating mode. When one manipulator

is operating in free motion, it is desirable to have low gains at the side operated by the

human and high gains at the remote site to ensure good position tracking . However, when

both manipulators are operated by humans, high gains are desired at both ends. In order

to intelligently select the appropriate gains depending on the situation, a set of fuzzy rules

is used to adjust the gains. By examining the power variable (the inner product of the

control input and velocity output of the plant), and by estimating the total inertia of each

manipulator in an online fashion, a set of fuzzy rules is developed to provide suitable PD

controller gains. Experimental results show, from a qualitative point of view, an increase

in the performance of the teleoperator system when tuning the PD controller gains using

the fuzzy logic rules.

Munir [84] proposes a predictive bilateral teleoperation algorithm based on the use

of a state estimator and a time forward observer. The development is performed using

state space models of the master and slave dynamics. Initially, the state models have

delays in both the control inputs and the state variables. The system is reduced to one

having no delays in the control inputs and state variables. Either a Luenberger observer

or a Kalman filter may be used to estimate the state of the slave side, based on the

force feedback measurement. The estimated state is marched forward in time by the time

forward observer. From the predicted state, the predicted force feedback term is obtained.
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The master side uses this in the force feedback. Algorithms are presented for constant

and varying time delays. No proof of stability is given, but simulation results show very

good performance. However, Munir notes [84] that even small errors in the model for this

approach can render the closed loop unstable.

In order to produce a control scheme that provides good transparency in the presence

of time delay, Pan et al. [85] propose an approach based on observers at both the master

and slave sides of the teleoperation system. Their focus is to find a less conservative control

design than other approaches while preserving closed loop stability. It is noted that such

prediction based approaches require a good knowledge of the dynamics of both the master

and slave systems [85]. This approach assumes a time varying, but bounded, delay. Linear

dynamic models for master and slave are assumed in the control design, but a nonlinear

slave environment model is used. The prediction scheme makes use of two predictors each

at the master and slave sides. Due to a coupling between certain states in the combined

master-slave system, predictors for both the master and slave must be implemented at

each side [85]. The predictors require an estimate of the time delay in order to artificially

delay some of the signals on each side of the teleoperator. These delayed signals serve

as inputs to the predictors, which generate estimates of the signals at the current time.

Only a position measurement is required in the predictors, as full order observers are also

implemented at both master and slave sides to estimate the velocity from the position

measurements. A proof of stability is given for the closed loop system, showing that the

tracking error is uniformly bounded and tends to a ball of a given radius [85] in finite time.

Yoshida et al. [86] present a predictive bilateral teleoperation algorithm using state

predictors for cases involving time-varying delays in the communications. This algorithm

aims to achieve trajectory synchronization from the master to the slave in the absence of

delays, and accurate static force reflection. That is, when neither manipulator is moving,

the force acting on the slave is accurately transmitted to the master such that those two

forces are equal. In order to learn the robot inertial parameters, an adaptation law is

used at each of the master and slave sides along with feedback linearizing controllers.

Predictors are placed at both the master and slave sides to compensate for the time delays.

These predictors are based on the solution equations for the closed loop master and slave
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manipulators. The solution equations make it possible to obtain an estimate of the remote

signals delayed through the communications. In the case where the human and environment

forces are constant, it is possible to show that the error on the predicted signals reaches zero

in finite time [86]. A stability analysis is performed showing that the position and velocity

errors in the system are bounded under this control strategy. Simulation and experimental

results are given to verify the approach. Time delays of 0.5 seconds in each direction are

used in all cases. From the results of the simulations and experiments, it is apparent that

the predictors help to minimize position tracking error, but do not completely remove the

effects of the time delays.

2.3.3 Summary of the Literature

Many different approaches to teleoperation have been examined in this section. Approaches

involving time delays, as well as approaches involving delay-free teleoperation have been

discussed. Initially, passivity-based approaches were presented. Early approaches based on

passivity involved modeling the teleoperation system as an n-port network and designing

control laws to ensure that the closed loop remains passive in the presence of time delays

were discussed. Shortly after the introduction of these control approaches, the wave vari-

ables concept was developed. The wave variables provide a transformation of the velocity

and force signals that ensures that the closed loop remains passive. Within the realm of the

wave variables approach, predictive methods have been developed. Approaches to model

the time delays in the case of varying time delays were presented. These approaches make

use of reconstruction filters in order to ensure that the system remains passive even in the

presence of varying time delays. Other predictive approaches have been developed to com-

pensate for time delays in the closed loop. These approaches involve prediction of the wave

variables that are transmitted across the communications. Smith predictors and Kalman

filters have been used to perform the wave variable prediction. Other passivity-based tele-

operation methods were presented that do not rely on the wave variable transformation.

A number of teleoperation algorithms that do not rely on passivity to ensure stability

were discussed. Some of these results rely on small gain arguments to guarantee stability of
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the closed loop. Algorithms involving Lyapunov-like functions to ensure stability were also

discussed. Following that, approaches based on sliding mode control were presented. Both

standard first order sliding mode control and second order sliding mode control algorithms

were discussed. Adaptive control techniques are also used in bilateral teleoperation. These

adaptive algorithms typically involve standard adaptation laws to estimate plant param-

eters. Approaches that learn the slave side environment dynamics were also presented.

Finally, predictive approaches not based on passivity were discussed. These approaches

often rely on time forward observers or other model-based estimators to predict the state

of the other side of the teleoperation system. The goal of these predictors is to compensate

for the time delays by predicting ahead in time. An approach involving the use of a neural

network at the master side to predict the state of the slave system was also given. Model

predictive approaches were also presented. These approaches are particularly well-suited

to predictive control, as the goal of model predictive control is to predict the state of the

system ahead in time.

Having provided a background of the theory necessary to understand the material to

be presented, and given a review of the state of the art in bilateral teleoperation, the next

chapter will present the theory behind the novel bilateral teleoperation algorithm developed

in this work.
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Chapter 3

Time Delayed Output Feedback

Bilateral Teleoperation

3.1 Introduction

This chapter presents a novel bilateral teleoperation algorithm for n degree of freedom

(DOF) nonlinear manipulators that provides the benefits of a position-force architecture

in terms of transparency and force tracking, but like the position-position architecture does

not require the use of force sensors. Unknown input sliding mode observers provide a useful

framework for force estimation in robotics, as shown in our earlier work for 1-DOF systems

in [87]. By treating the external forces acting on a manipulator as unknown inputs, those

forces can be recovered by the observer in finite time. This work makes use of second order

sliding mode observers, based on the work of Davila et al. [31].

Force feedback is a key element of bilateral teleoperation. It is what allows the operator

to have a sense of presence at the remote environment. By being able to feel the interacting

forces, one may be better able to work with the remote environment. Consider the case of

remote surgeries. Without a sense of the remote forces, it would be possible for a surgeon to

apply too much force with the surgical tools, potentially injuring a patient [88]. However,

the introduction of force feedback adds additional challenges in terms of ensuring stability
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in the presence of time delays for the bilateral teleoperation system. As a result, after

presenting the new algorithm, a rigorous stability analysis will be performed of both the

master and slave manipulators, as well as an analysis of the entire closed loop system in

contact with various environmental models.

This bilateral teleoperation control algorithm uses force feedback with n-DOF master

and slave manipulators at each side of the communications. Although similar to Cho et

al. [89], which deals with linear 1-DOF systems and requires measurement of positions,

velocities, and external forces, the algorithm presented here is developed for nonlinear n-

DOF plants and requires only position measurements. A sliding mode controller is used at

the slave side to ensure a desired closed loop impedance and tracking of the delayed master

trajectory. A computed torque method impedance controller at the master side is used to

give the master a desired impedance and to apply the reflected slave environment force

back to the master. This is an output feedback algorithm, so robot position measurements

drive observers that estimate both the state and the external forces. The control algorithm

in this work is designed in the manipulator Cartesian space and the slave environment is

modeled as an n-DOF system acting on the slave end effector. This is done since it is useful

to be able to specify a desired impedance for each degree of freedom of the end effector.

A block diagram representation of this system is given in Figure 3.1. The input to the

master system is the force applied by the human operator. The master trajectory estimate

is transmitted through the delayed communications to the slave. The slave interacts with

the environment through its state output, and receives as input the force applied by the

environment. Finally, the force estimate exerted on the slave by the environment is reflected

back to the master through the delayed communications.

Since the focus of teleoperation is in using robots to accomplish tasks, a discussion

of the robot dynamic models used will first be given in Section 3.2. The new bilateral

teleoperation algorithm is then presented in Section 3.3. Sections 3.4 and 3.5 develop proofs

of stability for the closed loop teleoperation system under various time delay restrictions.

A transparency analysis of the closed loop teleoperator is given in Section 3.7. The issue

of robustness to unmodeled dynamics is addressed in Section 3.8.
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Figure 3.1: Block diagram of the entire teleoperation system.

3.2 Robot Dynamics

Consider the following master manipulator dynamics in joint space,

Tm = Mm(qm)q̈m + hm(qm, q̇m)− Th (3.1)

where qm ∈ Rn is the vector of joint positions, Tm ∈ Rn is the vector of input torques,

Mm(qm) ∈ Rn×n is the mass matrix, hm(qm, q̇m) ∈ Rn is a vector of other nonlinear terms,

including gravity and Coriolis effects, and Th ∈ Rn is the vector of external torques applied

by the human. Similarly, the slave dynamics in joint space are given as,

Ts = Ms(qs)q̈s + hs(qs, q̇s) + Te (3.2)

where qs ∈ Rn is the vector of joint positions, Ts ∈ Rn is the vector of input torques,

Ms(qs) ∈ Rn×n is the mass matrix, hs(qs, q̇s) ∈ Rn is a vector of other nonlinear terms,

including gravity and Coriolis effects, and Te ∈ Rn is the vector of external torques ap-

plied by the environment. It is assumed that these manipulators are not kinematically

redundant, leading to a square Jacobian matrix.
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Control design will be performed in the robot task space. In order to determine the

the task space dynamics, consider first the master dynamics (3.1). Following [90], the

relationship between the end effector coordinates Xm ∈ Rn and the joint angles qm ∈ Rn

is expressed through the forward kinematics function fm(qm) as,

Xm = fm(qm) (3.3)

Note that this expression is only valid in areas that do not pass through kinematic singu-

larities. So for this work, the assumption is made that robots avoid regions of singularities.

This can be assured by proper trajectory planning for the manipulators. The relationship

between the end effector velocities and joint velocities is obtained by differentiating (3.3).

This yields,

Ẋm = Jm(qm)q̇m (3.4)

where Jm(qm) is the manipulator Jacobian. The accelerations in joint space and task space

are related through the time derivative of (3.4) as,

Ẍm = Jm(qm)q̈m + J̇m(qm)q̇m (3.5)

Note that the reaction torque Th from the human is related to the reaction force at the

end effector through the Jacobian. That is,

Th = JTm(qm)Fh

Next express the master dynamics (3.1) in terms of the acceleration as,

q̈m = M−1
m (qm)

(
Tm − hm(qm, q̇m) + JTm(qm)Fh

)
(3.6)

Substituting (3.6) into (3.5) yields,
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Ẍm = Jm(qm)M−1
m (qm)Tm − Jm(qm)M−1

m (qm)hm(qm, q̇m) + Jm(qm)M−1
m (qm)JTm(qm)Fh

+J̇m(qm)q̇m (3.7)

Multiplying both sides of (3.7) by,

(Jm(qm)T )−1Mm(qm)Jm(qm)−1

yields,

(Jm(qm)T )−1Mm(qm)Jm(qm)−1Ẍm = (Jm(qm)T )−1Tm − (Jm(qm)T )−1hm(qm, q̇m) + Fh

+ (Jm(qm)T )−1Mm(qm)Jm(qm)−1J̇m(qm)q̇m

Note that, from (3.4), q̇m = J−1
m (qm)Ẋm. Also note that the term (Jm(qm)T )−1Tm is exactly

the expression for the input force Fm acting on the end effector. Defining,

M̄m(Xm) = (Jm(qm)T )−1Mm(qm)Jm(qm)−1

h̄m(Xm, Ẋm) = (Jm(qm)T )−1hm(qm, q̇m)− M̄m(Xm)J̇m(qm)Jm(qm)−1Ẋm

leads to the following expression for the master dynamics,

M̄m(Xm)Ẍm = Fm − h̄m(Xm, Ẋm) + Fh (3.8)

Rearranging this expression yields,

M̄m(Xm)Ẍm + h̄m(Xm, Ẋm) = Fm + Fh (3.9)

This equation represents the master manipulator equations expressed in the task space.
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The same equation development can be performed for the slave manipulator. The only

difference is the sign of the force term in the slave dynamics. This leads to the following

task space description for the slave dynamics,

M̄s(Xs)Ẍs + h̄s(Xs, Ẋs) = Fs − Fe (3.10)

where the terms with a subscript s are defined in the same way as for the master dynamics.

The term Fe ∈ Rn is the vector of external forces applied to the end effector by the

environment. Expressing these dynamics in state space gives, for the master,

Ẋm1 = Xm2 (3.11)

Ẋm2 = M̄−1
m (Xm1)

(
−h̄m(Xm1 , Xm2) + Fm + Fh

)
(3.12)

where Xm1 ∈ Rn is the vector of positions and Xm2 ∈ Rn is the vector of velocities.

Defining the slave states similarly, the slave state space representation of the dynamics is

given as,

Ẋs1 = Xs2 (3.13)

Ẋs2 = M̄−1
s (Xs1)

(
−h̄s(Xs1 , Xs2) + Fs − Fe

)
(3.14)

It is these state space expressions of the robot dynamics expressed in task space that

will be used in all further development of the algorithm.

3.3 New Algorithm

Having developed the expressions for the robot dynamics that are used in the control

design, the teleoperation algorithm will now be presented. This algorithm requires only

position measurements, and as a result relies on second order sliding mode observers for
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both state and external force estimation. The observers used in the algorithm will first be

presented, followed by the control laws used at the master and slave sides.

The observers used here are direct applications of the MIMO observers presented in

Section 2.2.4, where the force signals are viewed as unknown inputs to the plants. The

observer for the master plant is given as,

˙̂
Xm1 = X̂m2 + zm1 (3.15)

˙̂
Xm2 = M̄−1

m (X̂m1)
(
−h̄m(X̂m1 , X̂m2) + Fm

)
+ zm2 (3.16)

where zm1 ∈ Rn and zm2 ∈ Rn. The i-th element of vector zm1 is given as,

zm1i
= λmi

|Xm1i
− X̂m1i

|1/2sign(Xm1i
− X̂m1i

) (3.17)

and the i-th element of vector zm2 is given as,

zm2i
= αmi

sign(Xm1i
− X̂m1i

) (3.18)

where λmi
and αmi

are constants whose values must be chosen according to (2.57) and

(2.56). Note that the human force exerted on the end effector does not appear at all in

the observer. Regardless of this, finite time convergence of the state estimates is achieved,

and an estimate of the human force is obtained as well. It is this force estimate that is

used in the control law. The human force estimate is obtained from the equivalent output

injection term zm2 as,

F̂h = M̄m(X̂m1)zm2eq (3.19)

where zm2eq represents a low pass filtering operation on zm2 in order to obtain the equivalent

output injection signal [20]. The second order sliding mode observer for the slave dynamics

takes the same form as the master side observer. The equations for the slave observer are

expressed as,
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˙̂
Xs1 = X̂s2 + zs1 (3.20)

˙̂
Xs2 = M̄−1

s (X̂s1)
(
−h̄s(X̂s1 , X̂s2) + Fs

)
+ zs2 (3.21)

where zs1 ∈ Rn and zs2 ∈ Rn. The i-th element of vectors zs1 and zs2 are defined analo-

gously to the i-th elements of zm1 and zm2 , respectively. The estimate of the environmental

force acting on the slave is obtained from the equivalent output injection term zs2 as,

F̂e = −M̄s(X̂s1)zs2eq (3.22)

The master and slave control laws are next presented. Before presenting these con-

trollers, some notation is introduced. A signal x(t) delayed by T1 seconds is represented

as,

xd1(t) ≡ x(t− T1)

A signal x(t) delayed by T2 seconds is represented as,

xd2(t) ≡ x(t− T2)

Similarly, a signal delayed by two times delays, T1 and T2, is represented as,

xdd(t) ≡ x(t− T1 − T2)

The master control law is a computed torque method controller to decouple and linearize

each degree of freedom in the task space. The outer loop controller is specified as,

Fm = M̄m(X̂m1)vm + h̄m(X̂m1 , X̂m2)− F̂h (3.23)

The inner impedance controller, to provide each degree of freedom with desired impedance

characteristics, is given as,
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vm = M̃−1
m

(
−B̃mX̂m2 − K̃mX̂m1 + F̂h − F̂ d2

e

)
(3.24)

where M̃m ∈ Rn×n is the diagonal constant matrix that specifies the desired mass charac-

teristic for each degree of freedom. The desired mass for the i-th degree of freedom is given

by the i-th diagonal of M̃m. The matrices B̃m ∈ Rn×n and K̃m ∈ Rn×n are also diagonal

constant matrices representing the desired damping and stiffness values for each degree of

freedom. Note that, in general, it may not always be desirable to have a non-zero value for

K̃m. This spring term draws the manipulator back to the origin. Viewing the manipulator

as a tool, the operator may want to be able to place the manipulator in the task space

and have it stay there. The spring term prevents this from happening. In practice, this

term may be set to zero. Note, though, that without a spring force the manipulator is not

asymptotically stable. The control law (3.23) and (3.24) ensures that, after convergence

of the observers, the master manipulator has the desired mass-spring-damper impedance

characteristics for each degree of freedom. As with any standard computed torque method

controller, there will not be a perfect cancellation of nonlinearities in practice. A robustness

analysis of the algorithm is presented in Section 3.8.

In order to present the slave controller, define the master-slave position and velocity

tracking error as er1 = Xs1 − Xd1
m1
∈ Rn and er2 = Xs2 − Xd1

m2
∈ Rn. The controller is

designed in order to give each degree of freedom of the end effector a desired impedance

characteristic. Intuitively, there is value in giving impedance characteristics to the end

effector, which will actually be interacting with the task. Controlling the mass, spring, and

damping characteristics of the end effector allows the operator to tune the system based

on the particular application. The desired impedance model for the slave end effector is

expressed as,

Zs(s) =
Fe(s)

Ve(s)
= −

(
M̃ss+ B̃s +

K̃s

s

)
(3.25)

where Fe(s) represents the Laplace transform of the environmental force, Ve(s) represents

the Laplace transform of the tracking error velocity, and the matrices M̃s, B̃s, and K̃s are
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defined as in the master controller, but for the slave impedances. This impedance model

gives rise to the following n-DOF equation of dynamics,

I = M̃sėr2 + B̃ser2 + K̃ser1 + Fe = 0 (3.26)

This equation is obtained from (3.25) by taking an inverse Laplace transform. When (3.26)

is satisfied, the slave has the desired closed loop impedance and asymptotically tracks the

delayed master trajectories. In order to ensure that this desired impedance characteristic

is satisfied, a sliding surface for the slave controller is defined as,

s =

∫ t

0

M̃−1
s I(τ) dτ = 0 (3.27)

Once the slave sliding mode controller has driven the system trajectories to s = 0

then (3.26) will be satisfied and the slave manipulator will have the desired closed loop

behaviour at the end effector.

However, this work examines output feedback control. An output feedback version of

the end effector dynamics that yield the desired impedance model is defined as,

Î = M̃s
˙̂er2 + B̃sêr2 + K̃sêr1 + F̂e = 0 (3.28)

where êr1 = X̂s1 − X̂d1
m1

and êr2 = X̂s2 − X̂d1
m2

. Now, the sliding surface in the output

feedback case is defined as,

ŝ =

∫ t

0

M̃−1
s Î(τ) dτ (3.29)

= êr2 +

∫ t

0

(
M̃−1

s B̃sêr2 + M̃−1
s K̃sêr1 + M̃−1

s F̂e

)
dτ (3.30)

= 0 (3.31)

Then, the slave side sliding mode controller is given as,
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Fs = −M̄s(X̂s1)
[
M̃−1

s K̃sX̂s1 + M̃−1
s B̃sX̂s2 − M̄−1

s (X̂s1)h̄s(X̂s1 , X̂s2)

+ (M̃−1
m K̃m − M̃−1

s K̃s)X̂
d1
m1

+ (M̃−1
m B̃m − M̃−1

s B̃s)X̂
d1
m2
− (M̃−1

m − M̄−1
m (X̂d1

m1
))F̂ d1

h

+M̃−1
m F̂ dd

e + M̃−1
s F̂e + zs2eq − zd1m2eq

+Kgsign(ŝ)
]

(3.32)

where Kg = kgI ∈ Rn×n and kg is a scalar whose value will be specified later. This control

law comes out of a Lyapunov stability analysis of the sliding mode dynamics. The control

law is chosen to ensure that the sliding mode dynamics are stable and additionally that they

satisfy the property of finite time convergence. This analysis is presented in Section 3.3.1

To summarize, for master plant (3.11), (3.12) and slave plant (3.13), (3.14) connected

bilaterally through a time delay of T1 seconds from the master to the slave and T2 seconds

from the slave to the master, the system may be controlled using the master control law

(3.23) and (3.24) with master side observer (3.15), (3.16) and slave sliding mode control

law (3.32) with slave side observer (3.20), (3.21).

Having presented the bilateral teleoperation algorithm in its entirety, the next section

will develop the stability analysis of this system.

3.3.1 Master and Slave Stability Analysis

In order to show stability of this system, the following assumption is made.

Assumption 3.3.1. The external forces acting on both master and slave are bounded for

all time with some known upper bounds.

The next theorem presents the main stability result for each of the master and slave

sides, showing asymptotic stability of each side under output feedback with force estima-

tion, and in the presence of time delays in the communications.

Theorem 3.3.1. Consider master plant (3.11), (3.12) and slave plant (3.13), (3.14) con-

nected bilaterally through a time delay of T1 seconds from the master to the slave and T2
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seconds from the slave to the master, with master control law (3.23) and (3.24), master

side observer (3.15), (3.16) and slave sliding mode control law (3.32) with slave side ob-

server (3.20), (3.21). Then, there exists observer gains λm, αm, λs, αs and a sliding mode

controller gain Kg = kgI where,

kg ≥ 2
√
n
(

max
i
αsi

+ max
i
αmi

)
+ εg (3.33)

for any εg > 0 such that the state estimates recover the true state in finite time, and the

master and slave plants have the desired impedance model.

Proof. The first step is to show that the estimated states converge to the true states

in finite time. Observer convergence for both the master and slave is guaranteed from

Corollary 2.2.1, provided that the observer gains are chosen according to (2.56) and (2.57).

The master observer states will be exactly the master states after Tm seconds, and likewise

for the slave observer states after Ts seconds.

In order to show stability of the slave system, a Lyapunov function is used, and the

controller is selected to ensure that the sliding mode dynamics are finite time stable. Due

to the definition of the sliding surface (3.30), expressions for the dynamics of both the

master and slave observers are required. The master observer dynamics, after substituting

the master control law (3.23) and (3.24) into the original expression for the master observer

dynamics (3.16), are given by,

˙̂
Xm1 = X̂m2 + zm1 (3.34)

˙̂
Xm2 = −M̃−1

m B̃mX̂m2 − M̃−1
m K̃mX̂m1 + M̃−1

m F̂h

−M̃−1
m F̂ d2

e − M̄−1
m (X̂m1)F̂h + zm2 (3.35)

Substituting the delayed version of the closed loop master observer dynamics (3.35) and the

slave observer dynamics (3.21) into the sliding surface (3.30) and simplifying, one arrives

at,
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ŝ =

∫ t

0

(
−M̄−1

s (X̂s1)h̄s(X̂s1 , X̂s2) + M̃−1
s K̃sX̂s1

+M̃−1
s B̃sX̂s2 − M̃−1

s K̃sX̂
d1
m1
− M̃−1

s B̃sX̂
d1
m2

+ M̃−1
m K̃mX̂

d1
m1

+ M̃−1
m B̃mX̂

d1
m2

−(M̃−1
m − M̄−1

m (X̂d1
m1

))F̂ d1
h + M̃−1

m F̂ dd
e

+M̃−1
s F̂e + M̄−1

s (X̂s1)Fs + zs2 − zd1m2

)
dτ (3.36)

Now consider the Lyapunov function candidate,

Vs =
1

2
ŝT ŝ (3.37)

Taking the derivative of Vs along the trajectories of the system,

V̇s = ŝT ˙̂s (3.38)

= ŝT
[(
−M̄−1

s (X̂s1)h̄s(X̂s1 , X̂s2) + M̃−1
s K̃sX̂s1

+M̃−1
s B̃sX̂s2 − M̃−1

s K̃sX̂
d1
m1
− M̃−1

s B̃sX̂
d1
m2

+M̃−1
m K̃mX̂

d1
m1

+ M̃−1
m B̃mX̂

d1
m2

−(M̃−1
m − M̄−1

m (X̂d1
m1

))F̂ d1
h + M̃−1

m F̂ dd
e

+M̃−1
s F̂e + M̄−1

s (X̂s1)Fs + zs2 − zd1m2

)]
(3.39)

Now choosing the control law as (3.32), substituting into (3.39) and simplifying yields,

V̇s = −ŝTkgIsign(ŝ) + ŝT
(
zs2 − zs2eq − zd1m2

+ zd1m2eq

)
(3.40)

Note that ŝT sign(ŝ) =
∑n

i=1 |ŝi| = ||ŝ||1. Then,

V̇s = −kg||ŝ||1 + ŝT
(
zs2 − zs2eq − zd1m2

+ zd1m2eq

)
≤ −kg||ŝ||1 + |ŝT

(
zs2 − zs2eq − zd1m2

+ zd1m2eq

)
|
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The second term on the right hand side of the above inequality represents an inner product

of two vectors. By the Cauchy-Schwartz inequality,

V̇s ≤ −kg||ŝ||1 + ||ŝ||2 ||zs2 − zs2eq − zd1m2
+ zd1m2eq

||2 (3.41)

Next, recall that ||x||2 ≤ ||x||1 in Rn. This leads to,

V̇s ≤ −kg||ŝ||1 + ||ŝ||1 ||zs2 − zs2eq − zd1m2
+ zd1m2eq

||2
= −||ŝ||1

(
kg − ||zs2 − zs2eq − zd1m2

+ zd1m2eq
||2
)

Note that for a vector x ∈ Rn, ||x||2 ≤
√
n||x||∞. Then consider the term ||zs2 − zs2eq −

zd1m2
+ zd1m2eq

||2. It follows from the triangle inequality that,

||zs2 − zs2eq − zd1m2
+ zd1m2eq

||2 ≤ ||zs2||2 + ||zs2eq||2 + ||zd1m2
||2 + ||zd1m2eq

||2
≤
√
n||zs2||∞ +

√
n||zs2eq||∞ +

√
n||zd1m2

||∞ +
√
n||zd1m2eq

||∞

Next note that ||zs2eq||∞ ≤ ||zs2 ||∞ and ||zd1m2eq
||∞ ≤ ||zd1m2

||∞. As well, ||zs2||∞ = maxi αsi

and ||zd1m2
||∞ = maxi αmi

, where αsi
and αmi

are the slave and master observer gains,

respectively. Then, one can conclude that,

||zs2 − zs2eq − zd1m2
+ zd1m2eq

||2 ≤ 2
√
nmax

i
αsi

+ 2
√
nmax

i
αmi

= 2
√
n
(

max
i
αsi

+ max
i
αmi

)
Choosing kg as in (3.33) then ensures that kg > ||zs2 − zs2eq − zd1m2

+ zd1m2eq
||2. From there,

one arrives at the following inequality,

V̇s < −||ŝ||1εg < 0 ∀ ||ŝ||1 6= 0 (3.42)

73



This guarantees stability, and additionally finite time convergence of the system trajectories

to the sliding surface. Finite time convergence is shown using Lemma 2.2.1. In order to

show this, define the function W1 =
√

2Vs = ||ŝ||2. Then,

D+W1 = Ẇ1

=
dW1

dVs
V̇s

=
1√
2Vs

V̇s

=
1

||ŝ||2
V̇s

≤ −||ŝ||1
||ŝ||2

εg

≤ −||ŝ||2
||ŝ||2

εg

= −εg

So D+W1 ≤ −εg. Define f1(t,W1) = −εg. Then D+W1 ≤ f1(t,W1). Now consider

u̇ = f1(t, u) = −εg, u(t0) = W1(ŝ(t0)). Then,

∫ t

t0

du

dτ
dτ = −εg

∫ t

t0

dτ

u(t)− u(t0) = −εg(t− t0)

u(t) = u(t0)− εg(t− t0)

Making use of Lemma 2.2.1, the result W1(t) ≤ u(t) is obtained. Then,

W1(t) ≤ W1(ŝ(t0))− εg(t− t0)

Since W1(t) = ||ŝ(t)||2, it is clear from the above that there will be some finite time when

||ŝ||2 reaches zero. In order to solve for the upper bound on this time, set W1(ŝ(t0)) −
εg(t− t0) = 0. Rearranging, one arrives at,
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Tg ,
||ŝ(t0)||2

εg
+ t0

Therefore by the time t = Tg the state ŝ will have converged to the sliding surface ŝ = 0.

Satisfying the conditions of Corollary 2.2.1 ensures that both the master and slave

estimation errors will converge to zero within Tm seconds and Ts seconds, respectively.

As well, the system trajectories will reach the sliding surface ŝ = 0 within Tg seconds.

Therefore, at t = max(Ts, Tm, Tg), all observers will have converged, the slave plant will

reach the sliding surface ŝ = 0, and all force estimates will be equal to the actual external

forces acting on the plants.

Using the method of equivalent control, one can show that the tracking error dynamics

will have exactly the desired characteristic impedance. The equivalent slave control signal,

that is the control signal when the system is exactly on the sliding surface, is found by

setting ˙̂s = 0 and solving for the control signal. The equivalent control signal is found as,

Fseq = −M̄s(X̂s1)
[
M̃−1

s K̃sX̂s1 + M̃−1
s B̃sX̂s2

−M̄−1
s (X̂s1)h̄s(X̂s1 , X̂s2)

+ (M̃−1
m K̃m − M̃−1

s K̃s)X̂
d1
m1

+ (M̃−1
m B̃m − M̃−1

s B̃s)X̂
d1
m2
− (M̃−1

m

− M̄−1
m (X̂d1

m1
))F̂ d1

h

+M̃−1
m F̂ dd

e + M̃−1
s F̂e + zs2 − zd1m2

]
(3.43)

In order to analyze the dynamics on the sliding surface, substitute the slave equivalent

control (3.43) into the slave dynamics (3.13), (3.14). Simplifying this expression yields,
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Ẋs1 = Xs2 (3.44)

Ẋs2 = M̄−1
s (Xs1)M̄s(X̂s1)

[
−M̃−1

s K̃sX̂s1 − M̃−1
s B̃sX̂s2 − M̃−1

s F̂e

]
−M̄−1

s (Xs1)(h̄s(Xs1 , Xs2)− h̄s(X̂s1 , X̂s2))− (M̄−1
s (Xs1)Fe + M̄−1

s (Xs1)M̄s(X̂s1)zs2)

+M̄−1
s (Xs1)M̄

−1
s (X̂s1)

[
−M̃−1

m K̃mX̂
d1
m1
− M̃−1

m B̃mX̂
d1
m2

+ M̃−1
m F̂ d1

h − M̃
−1
m F̂ dd

e

−M̄−1
m (X̂d1

m1
)F̂ d1

h + zd1m2
+ M̃−1

s B̃sX̂
d1
m2

+ M̃−1
s K̃sX̂

d1
m1

]
(3.45)

Now note that the equation (3.35), when a delay is inserted into it, is expressed as,

˙̂
Xd1
m2

= −M̃−1
m B̃mX̂

d1
m2
− M̃−1

m K̃mX̂
d1
m1

+ M̃−1
m F̂ d1

h − M̃
−1
m F̂ dd

e (3.46)

−M̄−1
m (X̂d1

m1
)F̂ d1

h + zd1m2
(3.47)

Substituting this equation into (3.45) gives the following slave dynamics on the sliding

surface ŝ = 0,

Ẋs1 = Xs2 (3.48)

Ẋs2 = M̄−1
s (Xs1)M̄s(X̂s1)

[
−M̃−1

s K̃sX̂s1 − M̃−1
s B̃sX̂s2 − M̃−1

s F̂e

]
−M̄−1

s (Xs1)(h̄s(Xs1 , Xs2)− h̄s(X̂s1 , X̂s2))− (M̄−1
s (Xs1)Fe + M̄−1

s (Xs1)M̄s(X̂s1)zs2)

+M̄−1
s (Xs1)M̄

−1
s (X̂s1)

[
˙̂
Xd1
m2

+ M̃−1
s B̃sX̂

d1
m2

+ M̃−1
s K̃sX̂

d1
m1

]
(3.49)

Next, the closed loop expression for the master dynamics is found by substituting

the master controller (3.23) and (3.24) into the master plant dynamics (3.11) and (3.12).

Making this substitution and simplifying yields,

Ẋm1 = Xm2 (3.50)

Ẋm2 = M̄−1
m (Xm1)M̄m(X̂m1)

[
−M̃−1

m B̃mX̂m2 − M̃−1
m K̃mX̂m1 + M̃−1

m F̂h − M̃−1
m F̂ d2

e

]
−M̄−1

m (Xm1)
(
h̄m(Xm1 , Xm2)− h̄m(X̂m1 , X̂m2)

)
+M̄−1

m (Xm1)
(
Fh − F̂h

)
(3.51)
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Once time t = max(Ts, Tm, Tg) is reached, all observers will have converged, the slave

plant will reach the sliding surface ŝ = 0, and all force estimates will be equal to the actual

external forces acting on the plants. At this point, the slave closed loop dynamics reduce

to,

Ẋs1 = Xs2 (3.52)

Ẋs2 = −M̃−1
s K̃sXs1 − M̃−1

s B̃sXs2 − M̃−1
s Fe + Ẋd1

m2
+ M̃−1

s B̃sX
d1
m2

+M̃−1
s K̃sX

d1
m1

(3.53)

Similarly, the master closed loop dynamics become,

Ẋm1 = Xm2 (3.54)

Ẋm2 = −M̃−1
m K̃mXm1 − M̃−1

m B̃mXm2 + M̃−1
m Fh − M̃−1

m F d2
e (3.55)

In order to determine the tracking error dynamics er1 = Xs1−Xd1
m1

and er2 = Xss−Xd1
m2

,

subtract the delayed version of (3.54) from (3.52) and the delayed version of (3.55) from

(3.53). This yields,

ėr1 = er2 (3.56)

ėr2 = −M̃−1
s K̃ser1 − M̃−1

s B̃ser2 − M̃−1
s Fe (3.57)

This result is exactly the equation of dynamics representing the desired characteristic

impedance for the tracking error dynamics. This equivalent control analysis has shown

that on the sliding surface the master and slave dynamics remain stable, and the desired

characteristic impedance is achieved.

Theorem 3.3.1 guarantees stability of each of the master and slave plants. However,

stability of the entire closed loop is not addressed in this result. The next section addresses

the issue of closed loop stability under a variety of environmental conditions.
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3.4 Closed Loop Stability Independent of Delay

Having guaranteed stability for each of the master and slave manipulators with their as-

sociated observers and controllers, it remains to show that the entire closed loop can be

stabilized in the presence of time delays. This section will present closed loop stability

results for two situations. These cases deal with the situation where the system may be

stabilized for any size of delay, and the delay need not be known a priori. Different results

are developed for cases where the environment is a linear spring damper and where the

environment is a nonlinear finite-gain stable system.

3.4.1 Linear Slave Side Environment

This case examines the situation where the slave end effector is in constant contact with a

linear environment. This environment is modeled as a set of n spring-dampers in connection

with each degree of freedom of the end effector. The environment is located at Xs1 = Xc

and is described by the model,

Fe = Ke(Xs1 −Xc) +BeXs2 (3.58)

where Ke ∈ Rn×n is a diagonal matrix of spring constants and Be ∈ Rn×n is a diagonal

matrix of damping constants. This sort of linear environment model may be found in

the teleoperation literature. See for example [71, 78, 91]. When this environment is in

contact with the slave manipulator, the equilibrium point of the slave system is no longer

the origin.

Figure 3.2 shows the layout of each of the components of this closed loop system. In

order to perform a stability analysis, a new state is defined to express the slave as a system

with an equilibrium at the origin. Define the new state as,

X ′s1 = Xs1 −
(
K̃s +Ke

)−1

KeXc (3.59)
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Figure 3.2: Block diagram of the master system and the slave and environment subsystem.

Applying this transformation to the slave plant ensures that the origin of the system in

the new states Xs = [X ′Ts1 , X
T
s2

]T is at the origin.

In this section, the Small Gain Theorem is used to develop sufficient conditions to

ensure closed loop stability regardless of the time delays. Before presenting the results,

the Small Gain Theorem [16], is given. Figure 3.3 shows two systems, H1 : Lme → Lqe and

H2 : Lqe → Lme , in the standard feedback configuration. Both systems are finite-gain L

stable, with gains γ1 and γ2 respectively, and the feedback system is well defined. Then,

the following result from [16] can be stated.

Theorem 3.4.1. Under the preceding assumptions, the feedback connection of Figure 3.3

is finite-gain L stable if γ1γ2 < 1.

In order to develop the stability results in this case, a transfer function representation

of the master system is used. The master system has as inputs the sum of the human force

and the delayed environmental force. Define this input signal as e1 = Fh−Fe(t−T2) ∈ Rn.

It produces as outputs position, velocity, and acceleration. Define the master output Ym =
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H1

H2
u2

u1 e1 y1

e2y2

+
-

+
+

Figure 3.3: The standard feedback configuration for the Small Gain Theorem.

[XT
m1
, XT

m2
, ẊT

m2
]T . Expressing the master dynamics in the familiar state-space notation for

linear systems one arrives at,

[
Ẋm1

Ẋm2

]
=

[
0 I

−M̃−1
m K̃m −M̃−1

m B̃m

]
︸ ︷︷ ︸

Am

[
Xm1

Xm2

]
+

[
0

M̃−1
m

]
︸ ︷︷ ︸

Bm

e1 (3.60)

Ym =


I 0

0 I

−M̃−1
m K̃m −M̃−1

m B̃m


︸ ︷︷ ︸

Cm

[
Xm1

Xm2

]
+


0

0

M̃−1
m


︸ ︷︷ ︸

Dm

e1 (3.61)

The slave+environment system receives e2 = Ym(t − T1) ∈ R3n as input. The envi-

ronmental forces acting on the slave end effector are taken as its output, that is, Ys =

KeX
′
s1

+ BeXs2 . For the slave+environment, the standard linear state-space form for the

dynamics (given in terms of the transformed state X ′s1 so the equilibrium point is at the

origin) is expressed as,
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[
Ẋ ′s1

Ẋs2

]
=

 0 I

−M̃−1
s

(
K̃s +Ke

)
−M̃−1

s

(
B̃s +Be

) 
︸ ︷︷ ︸

As

[
X ′s1

Xs2

]
(3.62)

+

[
0 0 0

M̃−1
s K̃s M̃−1

s B̃s I

]
︸ ︷︷ ︸

Bs

e2 (3.63)

Ys =
[
Ke Be

]
︸ ︷︷ ︸

Cs

[
X ′s1

Xs2

]
(3.64)

The master transfer function matrix Gm(s) ∈ C3n×n can be found as,

Gm(s) =


Gm1(s)

Gm2(s)

Gm3(s)

 (3.65)

where,

Gm1(s) = diag

(
1

mmi
s2 + bmi

s+ kmi

)
(3.66)

Gm2(s) = diag

(
s

mmi
s2 + bmi

s+ kmi

)
(3.67)

Gm3(s) = diag

(
s2

mmi
s2 + bmi

s+ kmi

)
(3.68)

for i = 1 . . . n, where mmi
, bmi

, and kmi
are the i-th diagonals of M̃m, B̃m, and K̃m

respectively. This transfer function matrix takes one input vector, the sum of the applied

human force and the delayed slave side force, and has three output vectors – master

position, velocity, and acceleration. The time delays in both the feedforward and feedback

paths may be combined with each transfer function matrix to yield the following transfer

matrices,
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Gd1
m (s) = Gm(s)e−T1s, Gd2

s (s) = Gs(s)e
−T2s (3.69)

Stability of the feedback interconnection of Gd1
m (s) and Gd2

s (s) will now be shown.

Assumption 3.4.1. An upper bound on the ∞-norm of the slave+environment system

Gs(s) is known.

Theorem 3.4.2. Consider master system (3.54) and (3.55) connected through time delays

to slave system (3.52) and (3.53). Define,

γs+e =
1

||Gs(s)||∞

where ||Gs(s)||∞ is the L2 norm of the slave+environment system. If the master impedance

parameters are chosen as,

mmi
>

1

γs+e

√
3

2
, kmi

= mmi
, bmi

=
√

2kmi
mmi

(3.70)

then the closed loop teleoperator system is L2 stable independent of delay.

Proof. Since the transfer function matrix for the slave+environment system given by Gs(s)

has no pole in C+ regardless of the values for Ke and Be, it therefore belongs to the space

H∞ and has a finite H∞ norm. As a result, an upper bound can always be found to satisfy

Assumption 3.4.1.

As a consequence of the Small Gain Theorem [16], if the product of the L2 gains of

Gd1
m (s) and Gd2

s (s) can be made strictly less than one, then the closed loop system will be

internally stable. Note that the H∞ norm satisfies the sub-multiplicative property,

||GH||∞ ≤ ||G||∞||H||∞

Therefore,
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||Gd1
m (s)||∞ = ||Gm(s)e−T1s||∞ ≤ ||Gm(s)||∞||e−T1s||∞

for the master system. Similarly, this is true for the slave system.

||Gd2
s (s)||∞ = ||Gs(s)e

−T2s||∞ ≤ ||Gs(s)||∞||e−T2s||∞

The H∞ norm of a pure delay is one. As a result, one need only show that the product

of the gains of Gm(s) and Gs(s) is less than unity in order to ensure internal stability

independent of time delays.

The H∞ norm of Gm(s) may be expressed as,

||Gm(s)||∞ = sup
ω

√
λmax(GT

m(−jω)Gm(jω)) (3.71)

SinceGm(s) ∈ C3n×n thenGT
m(−jω)Gm(jω) ∈ Cn×n. The ith diagonal ofGT

m(−jω)Gm(jω) ∈
Cn×n is found as,

ω4 + ω2 + 1

m2
mi
ω4 + (b2

mi
− 2mmi

kmi
)ω2 + k2

mi

(3.72)

The H∞ norm of Gm(s) is the supremum over ω of the square root of the maximum of

(3.72). This is expressed as,

||Gm(s)||∞ =

sup
ω

√
max
i

(
ω4 + ω2 + 1

m2
mi
ω4 + (b2

mi
− 2mmi

kmi
)ω2 + k2

mi

)
(3.73)

Since Gm(s) is a stable transfer function matrix, the H∞ norm is finite. With complete

control over the parameters of the system, the norm can be made as small as possible.

Consider the following choices for the parameters,
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kmi
= mmi

, bmi
=
√

2kmi
mmi

(3.74)

With these choices,

||Gm(s)||∞ = sup
ω

√
max
i

1

m2
mi

(
ω4 + ω2 + 1

ω4 + 1

)
(3.75)

Without loss of generality, assume that the j-th diagonal of GT
m(−jω)Gm(jω) is its

largest eigenvalue, leading to the maximum in (3.75). Then define,

W (ω) =
1

m2
mj

ω4 + ω2 + 1

ω4 + 1
(3.76)

It is straightforward to analytically determine the maximum over ω of W (ω). The

maximum of (3.76) will occur when its derivative is zero. It turns out that the derivative

of (3.76) has roots at ω = 0, ω = ±1, and ω = ±j. Evaluating W (·) at each of these points

yields,

W (0) =
1

m2
mj

, W (±1) =
3

2m2
mj

, W (±j) =
1

2m2
mj

(3.77)

Therefore, the maximum of W (ω) occurs at ω = ±1. So for the choices of parameters

given in (3.70) it can be said that,

||Gm(s)||∞ =
√
W (1) =

1

mmj

√
3

2
(3.78)

In order to satisfy the Small Gain Theorem, one must ensure that ||Gm(s)||∞·||Gs(s)||∞ <

1. Equivalently, ||Gm(s)||∞ < γs+e. From (3.78) one can express the small gain condition

as,
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Figure 3.4: Block diagram of the slave and environment systems.

1

mmj

√
3

2
< γs+e (3.79)

Rearranging (3.79) leads to the condition on mmi
in (3.70). Therefore, choosing the master

impedance parameters as in (3.70) ensures that the master-slave closed loop teleoperator

is stable for all time delays by the Small Gain Theorem.

3.4.2 Nonlinear Slave Side Environment

In general, one may not be able to assume a known structure for the slave side environment.

In fact, it may not even be possible to determine one. This section will show that, for a

general nonlinear environment with a finite gain and a small modification to the slave

closed loop plant, stability independent of delay for an unknown nonlinear environment

may be achieved. The use of nonlinear slave side environments may be found in other

works as well, such as [58, 59]. Consider Figure 3.4. This section will begin by deriving

conditions under which the slave+environment loop is stable. From there, stability of the

entire closed loop is examined.
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The slave has two vector valued inputs. The first, us1 ∈ R3n, is the delayed master

trajectory. That is,

us1 =


Xd1
m1

Xd1
m2

Ẋd1
m2


Then, us2 ∈ Rn is the environmental force applied to the slave. So, us2 = Fe. The

output ys1 ∈ Rn is the vector of environmental forces reflected back to the master. That

is, ys1 = Fe. The output ys2 ∈ R2n is the slave state, which is the input to the environment

operator. Defining Gs : L4n
2e → L3n

2e as the operator representing the slave system, one may

express the slave system as,

[
ys1

ys2

]
= Gs

[
us1

us2

]
(3.80)

The whole input us to the slave is defined as us = [uTs1 , u
T
s2

]T ∈ R4n. Similarly, the output

ys is defined as ys = [yTs1 , y
T
s2

]T .

Defining the environment as some relation,

us2 = Hys2 (3.81)

where H : L2n
2e → Ln2e is the mapping relating slave state (defined here as ys2) to environ-

mental force (defined here as us2), this subsystem must be finite-gain L2 stable. That is,

there must exist non-negative constants γe and βe such that,

||(Hys2)τ ||L2 ≤ γe||(ys2)τ ||L2 + βe (3.82)

for all ys2 ∈ L2n
2e and τ ∈ [0,∞).

One would like to be able to choose the slave plant L2 gain arbitrarily small to ensure

a loop gain of less than one. However, the H∞ norm of the slave system cannot be made
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arbitrarily small without some modification. In order to overcome this, a scaling term kp

on the delayed master states is introduced. As well, the desired impedance parameters are

re-defined. Define,

M̃s = εpM̃
′
s, B̃s = εpB̃

′
s, K̃s = εpK̃

′
s (3.83)

where εp is a positive scalar to be set by the designer and M̃ ′
s, B̃

′
s, and K̃ ′s are positive

diagonal matrices that may be freely chosen as well. Introducing these parameters has the

effect of giving full control of the H∞ norm of the slave to the designer while maintaining

the desired dynamic behaviour. Introducing the scalar master trajectory scaling factor

kp and using the re-definitions of the impedance parameters, one can express the slave

dynamics as,

[
Ẋs1

Ẋs2

]
=

[
0 I

−M̃ ′−1
s K̃ ′s −M̃

′−1
s B̃′s

]
︸ ︷︷ ︸

As

[
Xs1

Xs2

]
+

[
0 0 0 0

kpM̃
′−1
s K̃ ′s kpM̃

′−1
s B̃′s kpI −ε−1

p M̃
′−1
s

]
︸ ︷︷ ︸

Bs


Xd1
m1

Xd1
m2

Ẋd1
m2

Fe

 (3.84)

Ys =


0 0

I 0

0 I


︸ ︷︷ ︸

Cs

[
Xs1

Xs2

]
+


0 0 0 ε−1

p I

0 0 0 0

0 0 0 0


︸ ︷︷ ︸

Ds


Xd1
m1

Xd1
m2

Ẋd1
m2

Fe

 (3.85)

Lemma 3.4.1. Given the slave system (3.84) and (3.85) with the scaling factor kp on the

delayed master trajectory inputs, set K̃s = εpK̃
′
s, B̃s = εpB̃

′
s, and M̃s = εpM̃

′
s. Then, the

H∞ norm of the slave system may be made arbitrarily small.

Proof. One desires to be able to meet the condition,
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||Gs(s)||∞ < εs

where εs is some arbitrarily small constant. So one requires,

||Gs(s)||∞ = ||Cs(sI − As)−1Bs +Ds||∞ < εs (3.86)

It is possible to express Bs as,

Bs = kp

[
0 0 0 0

M̃
′−1
s K̃ ′s M̃

′−1
s B̃′s I 0

]
︸ ︷︷ ︸

B1

+ ε−1
p

[
0 0 0 0

0 0 0 −M̃ ′−1
s

]
︸ ︷︷ ︸

B2

(3.87)

As well, Ds may be expressed as,

Ds = ε−1
p


0 0 0 I

0 0 0 0

0 0 0 0


︸ ︷︷ ︸

D′

(3.88)

Substituting the right hand sides of (3.87) and (3.88) into (3.86) and using the triangle

inequality gives,

||kpCs(sI − As)−1B1 + ε−1
p Cs(sI − As)−1B2 +Ds||∞ ≤

kp||Cs(sI − As)−1B1||∞︸ ︷︷ ︸
α

+ ε−1
p

(
||Cs(sI − As)−1B2||∞ + ||D′||∞

)︸ ︷︷ ︸
β

(3.89)
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If it is possible to show that the right hand side of (3.89) is less than εs, it is then guaranteed

that ||Gs(s)||∞ < εs as well. By adjusting kp the term α may be decreased to an arbitrarily

small value. As well, as εp approaches infinity, the term β may be made arbitrarily small.

As a result, it is always possible to ensure,

||Gs(s)||∞ < εs (3.90)

Theorem 3.4.3. Consider the finite-gain stable environment operator (3.81), with known

gain γe, connected in feedback with the slave subsystem (3.84) and (3.85). One can always

ensure that this feedback connection is finite-gain stable by ensuring that the slave L2 gain

γs < 1/γe.

Proof. By Lemma 3.4.1 one can choose slave parameters such that γs may be made arbi-

trarily small. The condition γs < 1/γe may be equivalently expressed as,

γsγe < 1 (3.91)

This is a small gain condition. When (3.91) is satisfied, the slave-environment loop is

finite-gain L2 stable by the Small Gain Theorem.

The slave-environment closed loop gain is defined as γs+e. It has already been shown

above that a suitable choice of master plant parameters may always be made to ensure the

closed-loop stability of the master-slave system. In this case one can choose parameters to

ensure that,

||Gm(s)||∞ <
1

γs+e
(3.92)

Then the feedback connection of the finite-gain L2 stable master with the finite-gain L2

stable slave+environment subsystem is guaranteed to be stable by the Small Gain Theorem.
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3.5 Closed Loop Delay-Dependent Stability with a

Linear Environment

While the results of the previous two subsections show that sufficient conditions may

be found to stabilize the closed loop system for any delay, those choices may be overly

conservative for small delays. This section makes use of a result in [92] to determine

stability of the closed loop system for a particular range of delays. That is, for a given

choice of the master and slave parameters, the maximum delay for which the system

is stable may be found. With this result, the designer may determine if the particular

parameters chosen will maintain stability for the delay considered in a particular case.

This result applies for linear systems with commensurate delays, that is the delays

in the system must be integer multiples of a certain positive value τ . In a teleoperation

system, this is achievable as it is always possible to put buffers in the system on each

side so that incoming signals may be released to each of the master and slave at a known

time interval. As a result, it is possible to assume that the delays from the master to the

slave, and from the slave to the master, are equal. In this section it is assumed that the

environment is a linear set of spring-dampers having the form (3.58).

The theorem from [92] to be presented is valid for linear retarded function differential

equation (RFDE) systems of the form,

ẋ(t) = A0x(t) +
m∑
k=1

Akx(t− kτ), τ ≥ 0 (3.93)

where x(t) ∈ Rn and Ai ∈ Rn×n for all i = 0, . . . ,m.

The main delay dependent stability result, found in [92], is now presented.

Theorem 3.5.1. Suppose that the system (3.93) is stable at τ = 0, and let q = rank(Am).

Furthermore, define
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τ̄i :=



min1≤k≤n
θi
k

ωi
k

if λi(G(jωik), H(jωik)) =

e−jθ
i
k for some ωik ∈ (0,∞),

θik ∈ [0, 2π]

∞ if ρ(G(jω), H(jω)) > 1,

∀ω ∈ (0,∞)

where

G(s) :=


0 I · · · 0
...

...
. . .

...

0 0 · · · I

−(sI − A0) A1 · · · Am−1


H(s) := diag(I, . . . , I,−Am)

Then,

τ̄ := min
1≤i≤q+n(m−1)

τ̄i

The system (3.93) is stable for all τ ∈ [0, τ̄), but becomes unstable at τ = τ̄ .

Note that the notation λi(A,B) represents the i-th generalized eigenvalue of two square

matrices A and B. As well,

ρ(A,B) := min{|λ| | det(A− λB) = 0}

This theorem requires a frequency sweeping test. Strictly speaking, the theorem re-

quires the evaluation of generalized eigenvalues continuously between 0 rad/sec and ∞
rad/sec. In practice, a numerical approach is used [92]. The frequency axis is broken up

into a grid, and at each grid point the generalized eigenvalues of G(jωik) and H(jωik) are

computed. If ρ(G(jω), H(jω)) > 1 for all ω, the system has a delay margin of ∞. If this
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is not the case, the computation results in pairs (ωik, θ
i
k) that will provide estimates of the

delay margin τ̄i. The smallest τ̄i will be the delay margin for the system. The pairs are

found in the cases where the generalized eigenvalues have magnitude one. At these points,

the phase θik is found, since the generalized eigenvalues are complex in general.

To make use of Theorem 3.5.1 for the bilateral teleoperation system, the closed loop

master and slave dynamics must be expressed as a set of RFDEs of the form (3.93).

Substituting the environment dynamics into the slave dynamics and performing the change

of variable (3.59) to shift the equilibrium of the slave+environment dynamics to the origin

yields the following matrices for the RFDE (3.93)

A0 =


0 I 0 0

−M̃−1
s (K̃s +Ke) −M̃−1

s (B̃s +Be) 0 0

0 0 0 I

0 0 −M̃−1
m K̃m −M̃−1

m B̃m



A1 =


0 0 0 0

0 0 M̃−1
s K̃s − M̃−1

m K̃m M̃−1
s B̃s − M̃−1

m B̃m

0 0 0 0

−M̃−1
m Ke −M̃−1

m Be 0 0



A2 =


0 0 0 0

−M̃−1
m Ke −M̃−1

m Be 0 0

0 0 0 0

0 0 0 0


where the state of the RFDE system is defined as x(t) = [X ′Ts1 , X

T
s2
, XT

m1
, XT

m2
]T . For n-

DOF master and slave plants, Ai ∈ R4n×4n for all i = 0, . . . , 2. In this system, τ represents

the delay from the master to the slave, and the same delay from the slave to the master.

Some terms are delayed by 2τ because the environment force is sent from the slave to the

master, and then back from the master to the slave. This accounts for the matrix A2.
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With these matrices defined, the delay dependent stability of the closed loop teleoper-

ation system may be checked according to the conditions of Theorem 3.5.1.

3.5.1 Numerical Example

This section will examine the case of 6-DOF master and slave manipulators connected

through time delays. After application of the control laws given in Section 3.3 the master

and slave manipulators have closed loop dynamics given by (3.54), (3.55) and (3.52), (3.53)

respectively. The slave is in contact with a 6-DOF linear spring-damper environment

described by (3.58). The closed loop master and slave impedance parameters are chosen

as,

M̃m = M̃s = I, B̃m = B̃s = 4I, K̃m = K̃s = 4I

The environment on the slave side, modeled as a set of spring-dampers on each end effector

degree of freedom, has the following stiffness and damping matrices: Ke = 150I, Be = 0,

where I ∈ R6×6 is the identity matrix and 0 ∈ R6×6 is the zero matrix. Matrices A0,

A1, A2, G(s), and H(s) are constructed according to the previous section. Checking the

conditions of Theorem 3.5.1 yields information about the stability of this system. The

top graph in Figure 3.5 shows a plot of ρ over the frequency range. It is clear that it is

not greater than one for all ω, therefore there is a finite delay margin. Computing this

delay margin according to Theorem 3.5.1 shows that the system will be stable for delays

up to and including τ = 0.013571 seconds in each direction, but will be unstable for delays

beyond that value. The bottom plot in Figure 3.5 shows the position and velocity of the

first master degree of freedom in response to a step input for a time delay of τ = 0.0122

seconds.

Computing the H∞ norm of both the master and slave+environment for this choice

of parameters yields ||Gm(s)||∞ = 1 and ||Gs(s)||∞ = 17.5891. Clearly, the sufficient

condition of the Small Gain Theorem is violated, but a less conservative result for small

delays has been achieved with the result of Theorem 3.5.1.
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Figure 3.5: rho bar as a function of frequency for the numerical example (top plot). Position

(solid) and velocity (dashed) of first master DOF in response to step input (bottom plot).

By contrast, one can make use of Theorem 3.4.2 to choose master impedance parameters

that will ensure closed loop stability independent of delay. In this case, γs = 0.0569.

Therefore, one must choose mmi
> 21.54216. Choosing M̃m = 22I then yields K̃m = 22I

and B̃m = 31.1127I. Computing the H∞ norm of the master for this choice of parameters

yields ||Gm(s)||∞ = 0.0557. Then,

||Gm(s)||∞ · ||Gs(s)||∞ = 0.9792 < 1

Clearly the closed loop system is stable by the Small Gain Theorem for this choice of

parameters, leading to stability independent of delay. However, note that the master

parameters needed to be chosen much larger than the slave parameters. This could lead

to a system that, while stable independent of delays, may not perform as desirably as

possible. A simulation showing the validity of the delay-dependent stability results with

the entire teleoperation algorithm is given in Section 4.1.3.
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3.6 Closed Loop Stability with the Operator Modeled

as Nonlinear Dynamics

Just as the slave environment has been modeled as a dynamical system, it can be instructive

to perform an analysis in which the human operator is also modeled as a dynamical system.

It is often the case in bilateral teleoperation to assume that both the human operator and

the environment are passive [5, 8, 89]. It is the view of the author that this is an unfair

assumption. Humans have the ability to add energy to a system. As a result, assuming

that a human will not add energy to a system is simplistic and does not consider the reality

of the use of teleoperators. The same may be said for the slave side environment. It is

possible that the environment may not be passive, especially if it is a human that is on the

slave side as well. In light of this, the analysis carried out here makes no assumptions on

the passivity of the human or environment.

As in the previous sections, the Small Gain Theorem will be used to show stability.

While this is a conservative stability result, it is not restrictive in terms of the assumptions

placed on the human or the environment. The only requirement on these two subsystems

is that they be finite-gain stable with a known upper bound on the gain.

Consider the subsystem shown in Figure 3.6, where ym1 = [XT
m1
, XT

m2
]T and ym2 = Ẋm2 .

That is, the human receives as input the master manipulator state. The output from the

human is the force Fh ∈ Rn. The signal F d2
e ∈ Rn is the delayed environmental force

coming from the slave side. This section will show that, as long as the human is a finite-

gain stable operator, closed loop impedance parameters for the master manipulator may

always be found in order to stabilize the master-human loop.

Define the human operator as a relation,

Fh = Hmym1 (3.94)

where Hm : L2n
2e → Ln2e is the mapping relating the master state to the human force. This

subsystem is finite-gain L2 stable with gain γh. The master closed loop dynamics are
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Figure 3.6: Block diagram of the interconnection between the human operator and the

master plant.

expressed as in (3.60) and (3.61). This system has a transfer function representation given

by (3.65).

It was shown in Section 3.4 that the H∞ norm of the master system is expressed as,

||Gm(s)||∞ = sup
ω

√
λmax(GT

m(−jω)Gm(jω))

= sup
ω

√
max
i

(
ω4 + ω2 + 1

m2
mi
ω4 + (b2

mi
− 2mmi

kmi
)ω2 + k2

mi

)
(3.95)

Without loss of generality, assume that the j-th diagonal of GT
m(−jω)Gm(jω) is its

largest eigenvalue. Then, the H∞ norm of Gm(s) may be expressed as,

||Gm(s)||∞ = sup
ω

√
ω4 + ω2 + 1

m2
mj
ω4 + (b2

mj
− 2mmj

kmj
)ω2 + k2

mj

(3.96)

With this result, the following theorem can be stated.

Theorem 3.6.1. Consider the finite-gain stable human operator (3.94), with known gain

γh, connected in feedback with the master subsystem (3.60) and (3.61). One can always
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ensure that this feedback connection is finite-gain stable by ensuring that the master L2

gain γm < 1/γh.

Proof. Consider (3.96). It is clear that by increasing any one of mmj
, bmj

, or kmj
individ-

ually, it is possible to make ||Gm(s)||∞ = γm as small as desired. As a result, since γh is

known and bounded, one may always be able to choose the master closed loop gain such

that γm < 1/γh. Rearranging this expression leads to,

γmγh < 1

Then, when this condition is satisfied, the closed loop system consisting of the master

manipulator and the human operator is finite-gain L2 stable by the Small Gain Theorem.

The master+human closed loop gain is defined as γm+h. The sufficient stability result

of this section has shown that it is always possible to ensure that γm+h < 1. Results from

Section 3.4.2 have shown that the gain of the slave+environment system, γs+e, can be made

less than one, under suitable modifications to the slave closed loop plant. As a result, for

a human operator and slave side environment modeled as nonlinear relations, it is always

possible to ensure that the entire closed loop is finite-gain L2 stable by the Small Gain

Theorem.

3.7 Closed Loop Transparency Analysis

Since the closed loop teleoperation system presented here results in LTI systems for each

of the master and slave manipulators, it is possible to derive the hybrid matrix for this

system. Recall from Section 2.1 that the hybrid matrix is defined as,

[
Fh(s)

Vs(s)

]
=

[
H11(s) H12(s)

H21(s) H22(s)

][
Vm(s)

−Fe(s)

]
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Since each DOF of the closed loop system is linear and decoupled, it suffices to derive

the hybrid matrix for the i-th degree of freedom. The equation of dynamics for the i-th

degree of freedom of the master manipulator in the closed loop is given as,

M̃mi
Ẍm1i

+ B̃mi
Ẋm1i

+ K̃mi
Xm1i

= Fhi
− F d2

ei
(3.97)

where the subscript i denotes the i-th diagonal of the diagonal matrices or the i-th compo-

nent of the vector Xm1 . Similarly, the equation of dynamics for the i-th degree of freedom

of the slave manipulator tracking error dynamics is expressed as,

M̃si
ër1i

+ B̃si
ėr1i

+ K̃si
er1i

= −Fei
(3.98)

The hybrid matrix relies on a frequency domain model of the dynamics. Taking the

Laplace transform of (3.97) and (3.98) yields,

Vmi
(s)

(
M̃mi

s+ B̃mi
+
K̃mi

s

)
= Fhi

(s)− Fei
(s)e−T2s (3.99)

Vei
(s)

(
M̃si

s+ B̃si
+
K̃si

s

)
= −Fei

(s) (3.100)

where Vmi
(s) = sXm1i

(s) and Vei
(s) = ser1i

(s). Defining Vsi
(s) = sXs1i

and noting that

er1i
= Xs1i

− Xd1
m1i

, one arrives at Vei
(s) = Vsi

(s) − e−T1sVmi
(s). Substituting this last

expression into (3.100) and rearranging for Vsi
(s) yields,

Vsi
(s) = e−T1sVmi

(s)− s

M̃si
s2 + B̃si

s+ K̃si

Fei
(s) (3.101)

Rearranging (3.99) for Fhi
(s) gives,

Fhi
(s) =

(
M̃mi

s+ B̃mi
+
K̃mi

s

)
Vmi

(s) + e−T2sFei
(s) (3.102)
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Combining (3.101) and (3.102) into a matrix equation, one arrives at the following hybrid

matrix equation,

[
Fhi

(s)

Vsi
(s)

]
=

 M̃mi
s+ B̃mi

+
K̃mi

s
−e−T2s

e−T1s s
M̃sis

2+B̃sis+K̃si


︸ ︷︷ ︸

H(s)

[
Vmi

(s)

−Fei
(s)

]
(3.103)

Recall that the ideal hybrid matrix for transparent teleoperation requires that H11(s) = 0,

H12(s) = −e−T2s, H21(s) = e−T1s, and H22(s) = 0. From (3.103), entries H12(s) and

H21(s) are exactly the ideal values. The physical interpretation of this is that perfect

force tracking and perfect free motion tracking of the delayed master trajectory by the

slave are achieved with this algorithm. The non-zero entry for H11(s) shows that there

is some input impedance at the master side.1 This effectively means that the operator

will feel the dynamics of the master manipulator. This result is expected, as the master

controller is designed to give the master manipulator a particular closed loop impedance.

In fact, the closed loop stability results rely on having a non-zero impedance for the master

manipulator. Anderson and Spong [5] show, using scattering theory, that the norm of the

scattering matrix corresponding to the hybrid matrix for the ideal time-delayed system is

unbounded. This result means that the ideal time-delayed teleoperator with hybrid matrix

corresponding to (2.3) cannot be stabilized for all passive operators and environments.

Therefore, the ideal time-delayed teleoperator is not robustly stable [5].

Niemeyer and Slotine address the issue of sensing the dynamics of the teleoperator

in [9]. They mention that, in the presence of time delays, it is not possible to completely

remove the dynamics of the teleoperator from the operator’s perception. Instead, they

propose designing the teleoperator system, including the dynamics present, as a virtual

tool. This perspective fits well within the context of time delayed systems with a non-ideal

hybrid matrix. By designing the teleoperator as a tool with dynamics that the operator

1Note that this term is expressed in the standard impedance model form [90]. In this form, the dynamics

are expressed as the ratio of force to velocity, leading to a system that approaches infinity as the frequency

of the input velocity tends to zero when there is a spring in the dynamics.
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will learn to use, the limitations imposed by the time delay are directly addressed and not

necessarily seen as negative.

The non-zero entry for H22(s) in (3.103) is also an expected result. This term is an

admittance between slave environment force and slave motion when the master manipulator

is not in motion. The value for the ideal hybrid matrix is zero, which suggests that when

the master is not in motion, any environment forces acting on the slave should have no

effect on its motion. However, the design decision was made when designing the slave

sliding surface to allow the environmental force to drive the slave tracking error dynamics.

Allowing the slave manipulator to have some compliance in this way was done in order

to prevent large reaction forces at the slave when contacting a stiff environment. As well,

from a practical point of view, it would be possible for a large environment force to saturate

the slave controller if part of the control objective were to have the slave remain immobile

when the master is immobile, regardless of the environmental forces.

Of particular note in this transparency analysis is the achievement of the goal of per-

fect force tracking. Up until now, only algorithms with force sensors were able to achieve

this [13]. While the proposed algorithm does fall under the position-force type of architec-

tures in terms of its behaviour, it requires only the physical setup of a position-position

architecture, but offers the benefit of a position-force architecture.

3.7.1 Performance Comparison with Other Teleoperation Archi-

tectures

Since transparency is a very common measure of performance in teleoperation, it is a suit-

able metric for comparing the performance of various algorithms. The task of performing

a comprehensive numerical comparison of several algorithms would be quite involved, due

to the number of parameters that may be varied from one architecture to the next.

The hybrid matrix derived for the algorithm in this work has the same form as that

developed by Cho et al. [89]. This is due to the fact that the closed loop dynamics for each

of the master and slave have the same form in both cases. As a result, one could expect
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similar performance between the two approaches. (Note that the algorithm in [89] is only

presented for linear 1-DOF systems.) As well, the algorithm of Cho et al. requires force

sensors at both the master and slave sides, as well as velocity sensors, in order to achieve

this transparency result. Whereas, the approach presented here requires only position

sensors.

In [13], Tavakoli et al. derive the hybrid matrix representations for several teleoperation

architectures. Unfortunately, time delays are not considered in their work. However, the

similarities between the structure of the hybrid matrix derived here and those of other

architectures can still be discussed. For the standard non-delayed Position Error Based

(PEB) architecture, the hybrid matrix is given by,

H(s) =

[
Zm + Cm

Zs

Zts
− Cm

Ztm

Cs

Zts

1
Zts

]
(3.104)

where Zm(s) = Mms and Zs(s) = Mss represent the dynamics of the master and slave

robots respectively, Cm = (kvms + kpm)/s and Cs = (kvss + kps)/s are the PD controllers

used at each of the master and slave sides, and Ztm = Zm + Cm and Zts = Zs + Cs. It

is clear from the entry H12(s) that this method does not give ideal force tracking. This

has typically been the case for methods that do not make force measurements. Although,

ideal delayed force tracking is achieved by the new algorithm presented in this work with

unknown input sliding mode observers. The entry H21(s) is also not the ideal value. This

shows that for this method, in general, ideal free motion tracking is not achieved either.

As in the case with the method proposed in this work, the operator feels some dynamics

when using the teleoperator system even in free motion. With a proper choice of master

controller, the sensation of these dynamics could be adjusted. The PEB approach also has

some admittance between the slave and environment, as seen in the term H22(s).

Tavakoli et al. also present the hybrid matrix for the Direct Force Reflection (DFR)

architecture [13]. This method is a position-force architecture. A force sensor is required

at the slave side, and the forces measured by it are transmitted directly back to the master.

In this case, there is no controller at the master side. A local PD controller at the slave

side is used. The hybrid matrix for the DFR architecture is given as,
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H(s) =

[
Zm −1
Cs

Zts

1
Zts

]
(3.105)

where the parameters of the hybrid matrix are defined as above. The use of the slave side

force sensor provides ideal force tracking. The input impedance at the master side and

admittance term between the slave and environment remain present in this architecture.

Once again, ideal free motion tracking of the master trajectory by the slave is not achieved

with this architecture. This is due to the H21(s) term being non-ideal.

Hashtrudi-Zaad and Salcudean [93] show that, using a four channel teleoperation ar-

chitecture, significant time delays lead to the loss of stability and transparency. While in

the non-delayed case, a four channel architecture can provide ideal transparency, this is

not the case for delayed systems. However, the authors of [93] present two three channel

architectures that, under suitable conditions, can lead to ideally transparent systems in

the presence of time delays. For brevity, only the second approach will be discussed. The

interested reader may refer to [93] for further details. The second of these two control

architectures is known as the Environment-Force-Compensated (EFC) architecture. This

approach requires unity local force feedback at the slave side, thus the need to use a force

sensor. The slave velocity and environment force signals are transmitted to the master,

but only the human force is transmitted back to the slave. In this architecture, it can be

shown [93] that the hybrid matrix has the form,

H(s) =

[
Ztm

C2

(
1− e−2Ts

)
−e−Ts

e−Ts 0

]
(3.106)

where the term C2(s) is a feedforward control parameter that the slave environment force

passes through on the way to the master side. With this control architecture, choosing

C2(s) � 1 ensures that the term H11(s) approaches the ideal value. In [93], a constant

time delay of Ts seconds in each direction is assumed.

It is clear that the EFC architecture provides very close to ideal transparency for a

time delayed teleoperator. However, following Llewellyn’s absolute stability criterion, it
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can be shown [93] that one cannot guarantee stability of this architecture for all passive

operators and environments. This is a fundamental issue in ideally transparent time delayed

teleoperators. Hashtrudi-Zaad and Salcudean develop certain stability conditions in terms

of the closed loop impedance parameters and human and environment impedances such

that a necessary and sufficient stability condition set is available. That is, depending on

the human operator and environment impedances, one may be able to choose closed loop

parameters to stabilize the system. However, one may need to choose C2 in such a way

that ideal transparency is lost.

This comparison has shown that trade offs must always be made in designing a teleop-

erator. One may choose to use a simpler hardware setup, as in the case of the PEB method,

but this is often at the cost of performance. The PEB architecture is straightforward to

implement, and is based on PD controllers, but the performance from a transparency point

of view is poorer than other approaches. The DFR architecture provides increased per-

formance over the PEB method, but requires force sensing. As well, there remain several

non-ideal terms in the hybrid matrix. The three channel EFC architecture provides an

approach that is much closer to the ideal delayed transparency matrix. This approach

also requires more complicated hardware, in that force sensors are required. As well, the

cost associated with the increased transparency comes in terms of having a system that

is not necessarily stable for some combinations of even passive humans and environments.

Choosing stable closed loop parameters for particular combinations of environments may

result in a system that is further from the ideal hybrid matrix than may be desired.

The approach taken in the algorithm in this work has been to ensure ideal delayed force

tracking of the slave force by the master, and ideal delayed position tracking of the master

by the slave. These goals correspond to entries H12(s) and H21(s) in the hybrid matrix,

which are ideal for this algorithm. Entries H11(s) and H22(s) are not ideal in this work,

however this is not necessarily a negative aspect of the approach. The notion of a virtual

tool, as put forward by Niemeyer and Slotine [9], used by the operator to interact with

the environment clearly has merit. In many non-teleoperated tasks, an operator makes use

of a real tool that has its own dynamics to accomplish the task. Extending this concept

to virtual teleoperated tasks has merit. As well, Cho et al. [89] found that without some
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local compliance between the slave and environment, slave contact forces were quite high.

An earlier paper by Park and Cho [66] used a slave sliding mode controller without any

local compliance. The results of that work prompted further research into architectures

that allow compliance. So again, a non-ideal value in the term H22(s) can be useful from

an implementation perspective.

Based on this comparison, it is clear that the algorithm presented in this thesis pro-

vides good force and position tracking, while making other decisions that deviate from ideal

transparency. The benefits of of these deviations can be seen in terms of stability proper-

ties. This work has shown that this algorithm may be stabilized for any finite-gain stable

operator and environment. This represents a less restrictive assumption on the properties

of the human and environment in terms of passivity. As well, in practice, the admittance

at the slave-environment interface allows for contact that does not generate large reaction

forces, potentially destabilizing the system in the contact transition.

3.8 Robustness to Unmodeled Dynamics

A well known issue with feedback linearizing and computed torque method controllers is

the issue of robustness to unmodeled dynamics. Since these controllers rely on an exact

mathematical cancellation of the nonlinearities in the plant, a perfect cancellation of the

nonlinearities would require a perfect model. In practice, this is never feasible.

Consider the equations for the master manipulator dynamics (3.11), (3.12) expressed

in task space. In practice, the terms M̄m(Xm) and h̄m(Xm, Ẋm) are not known exactly.

These terms can be expressed as,

M̄m(Xm) = ˆ̄Mm(Xm)−∆M̄m (3.107)

h̄m(Xm) = ˆ̄hm(Xm, Ẋm)−∆h̄m (3.108)

where ˆ̄Mm(Xm) and ˆ̄hm(Xm, Ẋm) are the approximate models of M̄m(Xm) and h̄m(Xm),

104



and ∆M̄m and ∆h̄m represent the modeling error. In this case, the master observer is

actually implemented as,

˙̂
Xm1 = X̂m2 + zm1 (3.109)

˙̂
Xm2 = ˆ̄M−1

m (X̂m1)
(
−ˆ̄hm(X̂m1 , X̂m2) + Fm

)
+ zm2 (3.110)

Substituting the right hand sides of (3.107) and (3.108) into the master manipulator

dynamics in task space and simplifying, one arrives at,

Ẋm1 = Xm2 (3.111)

Ẋm2 = ˆ̄M−1
m (Xm1)

(
−ˆ̄hm(Xm1 , Xm2) + Fm

)
+ ˆ̄M−1

m (Xm1)
(

∆M̄mẊm2 + ∆h̄m + Fh

)
(3.112)

Provided that the unmodeled dynamics are bounded over all time, the observer states will

still converge to the true states in finite time for a suitable choice of the observer gains.

At that point, the observer velocity error dynamics may be expressed as,

ėm2 = ˆ̄M−1
m (Xm1)

(
∆M̄mẊm2 + ∆h̄m + Fh

)
− zm2 = 0 (3.113)

where em2 = Xm2 − X̂m2 . Then, the unknown input is recovered from the observer as,

Fh + ∆M̄mẊm2 + ∆h̄m︸ ︷︷ ︸
F̂h

= ˆ̄Mm(Xm1)zm2eq (3.114)

Therefore, the observer estimates the sum of the external force and some modeling

error terms in the case where modeling error is present in the plant. It is not possible

to separate out these terms. The master outer loop controller, expressed in terms of the

approximate dynamic model of the plant, is given as,
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Fm = ˆ̄Mm(X̂m1)vm + ˆ̄hm(X̂m1 , X̂m2)− F̂h (3.115)

Applying this controller to the master plant (3.111), (3.112) and simplifying yields,

Ẋm1 = Xm2 (3.116)

Ẋm2 = vm (3.117)

This is a noteworthy result since, despite the presence of unmodeled dynamics in the

plant, the unknown input estimate from the observer is able to estimate and cancel these

terms. (Provided that the unmodeled dynamics are bounded). Therefore, in a situation

where there is plant uncertainty, one could make use of an unknown input observer to

estimate the unmodeled dynamics and use the estimate to cancel the unmodeled terms.

This would ensure that the closed loop system does become a chain of integrators despite

modeling error. However, in the current situation, the inner control law vm is an impedance

controller and reintroduces the unmodeled terms. Applying the inner loop control law

(3.24) to the above double integrator system, making use of the unknown input estimate

(3.114), yields,

Ẋm1 = Xm2 (3.118)

Ẋm2 = −M̃−1
m B̃mXm2 − M̃−1

m K̃mXm1 + M̃−1
m Fh − M̃−1

m F̂ d2
e + M̃−1

m

(
∆M̄mẊm2 + ∆h̄m

)
(3.119)

The last term in (3.119) contains the unmodeled dynamics. In general, the form of these

terms is unknown. Therefore, it is not possible to conclude anything regarding the stability

of this system in the presence of modeling error.

Another complication comes from the fact that the estimate of the unmodeled dynamics

generated by the observer is transmitted to the slave side. It is not possible to conclude

anything about the stability of the slave system when driven with these unmodeled master
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dynamics. This analysis has only considered unmodeled dynamics on the master side,

but similar results can be found when the analysis is done on the slave side. In this

case, the slave unmodeled dynamics are transmitted back to the master manipulator, and

then again back to the slave side through the term F̂ dd
e . This additional feedback would

further complicate a stability analysis. While it is not possible to form conclusions about

the stability of the entire system in the presence of unmodeled dynamics, in practice it

appears that with a well-modeled plant, these terms will be quite small and do not appear

to cause problems in terms of the stability of the system.
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Chapter 4

Simulation and Experimental Results

While the previous chapter presented detailed theoretical results about the stability of the

proposed algorithm under a variety of situations, it remains important to evaluate the algo-

rithm in practice. This chapter will examine the stability and performance of the algorithm

through both numerical simulations and an experimental implementation. Simulation re-

sults for 2-DOF nonlinear manipulators are examined for situations involving both free and

constrained motion in the presence of time delays. The experimental implementation is

performed on the University of Waterloo Teleoperation Platform. The experimental results

show the effectiveness of the algorithm in a bilateral teleoperation setup for various time

delays in the forward and backward paths. In practice, these time delays can be largely

attributed to the communications. See Figure 3.1. Other real world factors are addressed

in the experimental implementation. The sliding mode controller is implemented with a

boundary layer in order to mitigate the effect of chattering. As well, the performance of

the experiments with the the inevitable presence of modeling error in the robot dynamic

models serves to show robustness of the approach to unmodeled dynamics.
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4.1 Numerical Simulations

The performance of the algorithm presented in this work is now examined through a

simulation study. In this case, the master and slave manipulators are chosen as 2-DOF

nonlinear serial link manipulators. The master and slave dynamics are given by (3.1) and

(3.2) respectively.

The dynamics of each manipulator have the same structure. To simplify notation, define

the inertial parameters as θi1 = mi1l
2
i and θi2 = mi2l

2
i , i ∈ {m, s}. Then mi1 and mi2

represent the masses of the first and second link, and li represents the length of each link.

The mass and Coriolis matrices may be expressed as,

Mi(qi) =

[
θi1 + 2θi2 + 2θi2 cos qi2 θi2 + θi2 cos qi2

θi2 + θi2 cos qi2 θi2

]
(4.1)

Ci(qi, q̇i) =

[
−2θi2 q̇i2 sin qi2 −θi2 q̇i2 sin qi2

θi2 q̇i1 sin qi2 0

]
(4.2)

The forward kinematics for each manipulator are as follows,

Xi1 = fi(qi) =

[
li cos(qi1) + li cos(qi1 + qi2)

li sin(qi1) + li sin(qi1 + qi2)

]
(4.3)

The manipulator Jacobian is given as,

Ji(qi) =

[
−li sin qi1 − li sin(qi1 + qi2) −li sin(qi1 + qi2)

li cos qi1 + li cos(qi1 + qi2) li cos(qi1 + qi2)

]
(4.4)

Note that the task space expressions of the manipulator dynamics are computed online

in the simulation. The master controller (3.23), (3.24) and master observer (3.15), (3.16)

are applied to the master plant. Similarly, the slave controller (3.32) and slave observer
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(3.20), (3.21) are applied to the slave plant. Both the master and slave have the same

dynamic parameters of mm1 = mm2 = ms1 = ms2 = 1 kg for the mass and lm = ls = 1 m

for the length of the links.

The sliding mode observer gains are set to λm1 = λm2 = 7.5, αm1 = αm2 = 11,

λs1 = λs2 = 3, and αs1 = αs2 = 16.5 in all simulations. These values were determined

through simulation to give good results. The slave sliding mode controller gain is chosen

as Kg = 20I, which is large enough to ensure that a sliding mode occurs. Note that, in

the slave controller, the pure switching function is replaced with a saturation function to

introduce a boundary layer where switching does not occur. The width of the boundary

layer is chosen as 10−2. This value was determined numerically to yield a control signal

that does not cause high frequency switching. This minimizes the effects of chattering

in the system. Note, however, that pure switching terms are used in the observers. The

master and slave force estimates are obtained with first order low pass filters that each

have a bandwidth of 30 Hz. A filter of this bandwidth will attenuate the high frequency

switching signals while allowing the lower frequency equivalent signals to pass through.

The human force applied to each master end-effector degree of freedom is a square wave

of amplitude 5 N passed through a first order pre-filter with a pole at s = −5.

Three simulations are performed. The first shows the teleoperation system when the

slave is in free motion. The second simulation shows the situation with the slave in contact

with an environment. The third simulation shows the case where the delay-dependent

stability results of Section 3.5 are used to determine a delay margin for a particular choice

of impedance parameters. In all simulations, the master and slave initial conditions in the

joint space are set as qm = [−0.5, 2.5]T , q̇m = [0, 0]T , and qs = [−0.55, 2.53]T , q̇s = [0, 0]T .

The observers are initialized as X̂m = [0.4614, 0.4299, 0, 0]T and X̂s = [0.4546, 0.3948, 0, 0]T .

Note that the initial conditions on the observers are the task space positions corresponding

to the robot joint angles, and velocities of zero. This is a very reasonable assumption, as

it is always possible to obtain initial positions from the position sensors. The system was

simulated in Matlab using a fixed step 5th order Runge-Kutta algorithm with a sample

period of Ts = 10−5 seconds.

Note that the end effector state estimates are a function of the joint angle estimates, but
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the observers are designed in the end effector space. In order to implement the observers,

the inverse kinematics of each manipulator must be known. The manipulator dynamics in

task space are actually functions of the manipulator joint angles and velocities. So in order

to correctly build up the dynamic expressions in task space, estimates of the joint space

positions and velocities are required. The inverse kinematics are used here to compute

the joint angle estimates from the end effector state estimates. The resulting joint angle

estimates are then used to build up the task space dynamics. However, note that the

observers estimate the task space states directly.

4.1.1 Simulation Results with Slave in Free Motion

Initially, a simulation where the slave is not in contact with an environment is performed.

A time delay of 0.25 seconds in each direction is used, giving a round trip time delay of

0.5 seconds. In this case, one expects the slave to asymptotically track the delayed master

trajectory. In this simulation, the desired impedance characteristics for each manipulator

are chosen as, M̃m = 22I, B̃m = 32I, K̃m = 22I, M̃s = I, B̃s = 4I, and K̃s = 4I.

Figure 4.1 shows the master and slave end effector trajectories. The time delay is evident

in this plot. It is also clear that the slave manipulator is tracking the delayed version of

the master trajectory, as desired. Figure 4.2 shows the slave tracking error. There is a

jump in the error at 0.25 seconds due to the time delay. For the first 0.25 seconds the slave

receives a zero valued signal as the master “trajectory” since the data from the master side

has not yet reached the slave side. Once the first bit of master data arrives at the slave,

there is a jump in the error since there has effectively been a jump in the delayed master

trajectory. After this jump, asymptotic tracking occurs.

Both the master and slave observers perform properly, as expected. Figure 4.3 shows

a plot of the slave state values and estimates during the simulation. Since the observer

is initialized with the same values as the actual states, observer convergence has already

occurred at the beginning of the simulation. Note that the observer must be initialized

such that the position estimates are exactly the position measurements, and the velocity

estimate is zero. Since the plants start from rest, the initial velocity is also zero. The
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Figure 4.1: Position of the slave (solid) and master (dashed) end effectors with the slave

in free motion.

master external force, along with its estimate, is shown in Figure 4.4. It is clear from this

plot that the external force is estimated quite well. There are some chattering type effects

from the switching, but this tends to be no worse than the noise that would be produced

from a strain gauge for force sensing.

From these results, it is apparent that the teleoperation algorithm works well for the

2-DOF nonlinear manipulators when the slave is not in contact with an environment. The

next case will show the performance of the algorithm when the slave is held in contact with

an environment.
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Figure 4.2: Slave tracking error with slave in free motion.

4.1.2 Delay-Independent Simulation Results with Slave in Con-

tact

In this case, the slave side environment is modeled as a set of two linear springs, one

connected to each slave end effector degree of freedom. That is,

Fe = Ke (Xs1 −Xc)

where Ke = 150I and Xc is the location of the environment. In this simulation, Xc =

[0.43, 0.41]T . A time delay of 0.25 seconds in each direction is used, giving a round trip

time delay of 0.5 seconds. Due to the definition of the slave desired impedance model,

one does not see asymptotic tracking when the slave is in contact with an environment. If

the slave were to come in contact with a stiff environment such as a wall, without some

local compliance in the controller there could be large reaction forces which could lead to

instability [89]. As a result, having some compliance in the slave control law allows for
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Figure 4.3: Slave actual (solid) and estimated (dashed) states when the slave is in free

motion.
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Figure 4.4: Actual (solid) and estimated (dashed) human force applied to the master

manipulator.
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more desirable behaviour in contact.

In this simulation, the desired impedance characteristics for each manipulator are cho-

sen as, M̃m = 22I, B̃m = 32I, K̃m = 22I, M̃s = I, B̃s = 4I, and K̃s = 4I. These

values are chosen to ensure that the closed loop system is stable independent of delay. See

Section 3.4 for the selection of these parameters to ensure stability independent of delay.

Figure 4.5 shows the master and slave end effector positions over time. Clearly, the slave is

not tracking the master trajectory. Since the slave tracking error dynamics are driven by

the environmental force, one expects the separation of master and slave trajectories that

is seen here. Note also that the slave, when coupled with the environment, has a much

smaller gain than the slave system in free motion. As a result, the same inputs to the

slave system that are applied in the case of free motion have a much smaller impact on the

slave+environment system.

The master manipulator states and estimates are shown in Figure 4.6. It is apparent

again in this simulation that the observers are functioning correctly. Figure 4.7 shows the

external environmental force acting on the slave and its estimate. The force estimates are

quite accurate, though the effect of chattering is more pronounced in the force acting on

the second degree of freedom. The effect of the relatively stiff spring environment is seen

as well. It is the cause of significant oscillation for the first two to three seconds of the

simulation. Coupling the slave to this spring environment shifts the equilibrium point of

the slave away from the origin to the location of the spring.

From the results of this simulation, it is clear that the algorithm works as expected for

ideal nonlinear plants in contact with an environment under some time delay. The next

section will present further simulation results for less conservative impedance parameters

and smaller delays.

4.1.3 Delay-Dependent Simulation Results with Slave in Contact

In order to demonstrate the usefulness of the results of Section 3.5 and the application of

Theorem 3.5.1 to the teleoperation system, a second simulation with the slave in contact
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Figure 4.5: Position of the slave (solid) and master (dashed) end effectors with the slave

in contact.
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Figure 4.6: Master actual (solid) and estimated (dashed) states when the slave is in contact.
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Figure 4.7: Actual (solid) and estimated (dashed) environment force applied to the slave

manipulator.
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with the environment is performed. In this case, desired master and slave impedance

parameters are chosen as M̃m = M̃s = I, B̃m = B̃s = 4I, and K̃m = K̃s = 4I. The

environment is modeled as a set of spring-dampers, one connected to each end effector

degree of freedom. That is,

Fe = Ke (Xs1 −Xc) +BeXs2

where Ke = 150I, Be = 10I, and Xc is the location of the environment. In this simulation,

Xc = [0.43, 0.41]T .

Putting the system in the RFDE form (3.93) and computing the delay margin using

Theorem 3.5.1, one arrives at a delay margin of Td = 0.070205 seconds. That is, for

delays up to and including Td the system will be stable, but for values greater than Td

the system will be unstable. The following simulation was run for a time delay of 0.06

seconds in each direction. Figure 4.8 shows the master and slave end effector positions for

this simulation. While the closed loop system is stable, the effect of the time delay on the

system is apparent. Oscillations in the end effector positions show that the closed loop

system is approaching instability. Figure 4.9 shows the same simulation, this time with

the time delay increased to 0.065 seconds in each direction. In this case, the oscillations

on the position states do not decay. In fact, it appears that the position of the slave first

degree of freedom is experiencing oscillations that increase in amplitude. While the delay

margin that was computed is greater than 0.065 seconds, this computation is numerical

and thus contains error. It is possible that the actual delay margin may be closer to

0.065 seconds. Another cause of this discrepancy could be the nonlinearities in the actual

teleoperator dynamics. The delay margin computation assumes a perfectly linear model,

but the system consists actually of nonlinear models as well as controllers and observers to

linearize the system. Any nonlinearities present could lead to some error on the computed

delay margin. Regardless, the delay margin that is computed gives a good indication of the

size of time delays that may be tolerated before the system becomes unstable. Compare

the end effector positions with those of Figure 4.10. This third plot shows a simulation

with the same parameters, except for a time delay of 0.001 seconds. It is clear that the
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Figure 4.8: Position of the slave (solid) and master (dashed) end effectors with the slave

in contact for the second in-contact simulation with time delay of 0.06 seconds.

increase in time delay takes the system closer to instability.

The slave tracking error is shown in Figure 4.11. As expected, since the slave is in

contact with the environment, the tracking error does not approach zero asymptotically.

Instead, it is driven by the environmental force. The presence of oscillations in the tracking

error are due to the fact that the time delay is close to the threshold for stability.

4.2 Experiments

So far, a theoretical proof of stability for the novel bilateral teleoperation algorithm has

been presented and verified through numerical simulation. It is also of great importance

to perform the additional step of experimental verification on a real platform. In this case,

many of the idealities present in a theoretical development and a numerical simulation are

absent. In particular, issues such as unmodeled dynamics, friction, sensor noise, and a

limited sample period appear in an experiment. The presence of these additional factors
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Figure 4.9: Position of the slave (solid) and master (dashed) end effectors with the slave

in contact for the second in-contact simulation with time delay of 0.065 seconds.
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Figure 4.10: Position of the slave (solid) and master (dashed) end effectors with the slave

in contact for the second in-contact simulation with time delay of 0.001 seconds.
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Figure 4.11: Slave tracking error for the second in-contact simulation.

makes it important to ensure that the proposed algorithm will in fact work in practice.

This section will cover in detail the experimental implementation of this algorithm.

4.2.1 Robot Dynamics

Dynamic models of the base degree of freedom for each manipulator were developed prior

to running the experiments. For each robot, the base degree of freedom was modeled as a

mass-damper with Coulomb friction. The master plant dynamics are given as,

ẋm1 = xm2 (4.5)

ẋm2 = −Bm

Jm
xm2 −

1

Jm
fcm(xm2) +

1

Jm
Fh +

1

Jm
Fm (4.6)

where Jm represents the robot inertia, Bm represents the robot damping, and the term fcm

is defined as,
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fcm(xm2) =

{
fcm1 if xm2 ≥ 0

fcm2 if xm2 < 0

Similarly, the slave dynamic model is given as,

ẋs1 = xs2 (4.7)

ẋs2 = −Bs

Js
xs2 −

1

Js
fcs(xs2)−

1

Js
Fe +

1

Js
Fs (4.8)

where,

fcs(xs2) =

{
fcs1 if xs2 ≥ 0

fcs2 if xs2 < 0

A system identification of these robots was performed using the approach proposed by

Madill [94]. The plants are modeled as linear systems with the addition of a Coulomb

friction term. The approach for system identification used by Madill is based on the

observation when a robot modeled by the above dynamics is placed under proportional

control, the velocity of the system remains positive until the first peak [94]. Using this

observation, the robot under proportional control may be modeled as an equivalent linear

system up until the time of the first peak in the position signal. The friction term, which

becomes a part of the equivalent linear dynamics, is determined by plotting the magnitude

of the first peak in position versus the magnitude of the input steps for a variety of step

inputs. Finding the intercept of this curve with the input step magnitude axis, one can

determine the coefficient of Coulomb friction. A similar approach, making use of the

equivalent linear system, is used to identify the inertia and damping parameters. See [94]

for complete details.

After performing the system identification of the base joint on the master manipulator,

the following values for the parameters were obtained: Jm = 0.8084 kg·m2, Bm = 0.1150

N·m·s·/rad, fcm1 = 0.1090 N·m, and fcm2 = −0.0746 N·m. Identifying the slave parameters
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yields the following values: Js = 0.8042 kg·m2, Bs = 0.1768 N·m·s·/rad, fcs1 = 0.1462 N·m,

and fcs2 = −0.0237 N·m. Note that different values for Coulomb friction were obtained for

different directions that the robots travelled. This shows that the friction is not symmetric.

Additional sources of friction such as cable drag could contribute to this.

A detailed description of the hardware and software that make up the experimental

platform is given in Appendix B.

4.2.2 Experimental Results

Due to limitations of the hardware used, the sample time in the experiments is limited to

Ts = 5× 10−4 seconds, giving a sample frequency of 2 kHz. While this sample frequency is

relatively high for the robot manipulators, it is much lower than the sample frequency used

in simulation. This lower sample frequency contributes to more chattering in the sliding

mode observer estimates. As well, the position encoders produce signals with some noise.

This can also be a complication with sliding mode observers in practice. As a result, the

pure switching components in the observers were replaced by saturation functions, which

allow the use of a boundary layer. This boundary layer reduces the effect of chattering and

provides more usable state estimates. In all experiments, it was determined experimentally

that boundary layer widths of εm = 10−4 and εs = 10−2, for the master and slave observers

respectively, yielded the best state estimates in terms of reducing chattering. The observer

gain parameters were chosen experimentally to ensure that the second order sliding mode

gain conditions are met and that good state estimates are produced. In all experiments,

the observer gains are set to λm = 10.5, αm = 15.4 for the master observer, and λs = 10.5,

αs = 15.4 for the slave as well. In order to obtain the estimated force signals from the

observers, the switching signals were passed through 5 Hz second order low pass filters.

This filtering yielded very usable force estimates.

It was also found in practice that the use of a pure switching component in the slave

control signal produced significant chattering in these manipulators. As a result, a bound-

ary layer was used in the slave sliding mode controller. Various values for the width of

the boundary layer were tried for different experimental runs. As well, the slave control
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signal was passed through a second order low pass filter before being applied to the plant.

Without the use of the filter, the chattering became too great, causing too much power

draw through the motor amplifier power supply. Various bandwidths for the second order

filter were used in different experimental runs.

From a usability point of view, it was found that the closed loop dynamics for the

master manipulator should not contain a spring term. Viewing the master manipulator as

a tool being used by an operator, a spring term makes the tool more difficult to use as it

moves away from the origin. As a result, for many experimental runs no spring term was

used at the master side. On the slave side, however, a spring term is necessary in order to

ensure asymptotic tracking of the delayed master trajectory. Without a spring term, the

tracking error dynamics are not asymptotically stable, and the slave no longer tracks the

delayed master trajectory either in or out of contact.

In the experiments where the slave manipulator comes into contact with an environ-

ment, a stiff metal structure was used. However, the last link on the manipulator (the link

that contacts the environment) is a link with some flexibility, giving some compliance to

the manipulator-environment interface. This allows for a softer contact with lower reaction

forces than if the manipulator were very rigid. When the manipulator is in contact with

the environment, the flexible link could be considered a part of the slave environment. The

environment dynamics are not specifically modeled, but closed loop impedance parameters

were chosen experimentally to ensure stable behaviour in contact.

The implementation of this teleoperation algorithm involves choosing the closed loop

impedance parameters. A number of different closed loop stability cases were examined

in Chapter 3. In each of these cases, methods for choosing the closed loop parameters

for a variety of environments were discussed. In practice, however, one may not know

precisely the environment dynamics or the time delays. The delay-independent stability

results effectively rely on making the master and slave systems sufficiently sluggish so that

they remain stable in the presence of time delays. This knowledge may be used as the basis

for selecting closed loop impedance parameters in practice. One may begin by choosing

the masses of the closed loop master and slave manipulators to be fairly large, leading

to a sluggish system. With a stable closed loop system in practice, one can adjust the
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impedance parameters in order to yield more desirable performance. Another possible

approach for choosing the impedance parameters in practice is through simulation. With

good dynamic models, one may simulate the teleoperation system and choose parameters

in simulation that will work well in the experimental implementation.

Experiment with No Time Delay

In the first experiment, the closed loop impedance parameters for the master manipulator

are chosen as M̃m = 7, B̃m = 14, and K̃m = 0. The slave closed loop impedance parameters

were chosen as M̃s = 7, B̃s = 14, and K̃s = 7. The slave sliding mode controller gain was

chosen to be Kg = 3. The boundary layer on the slave sliding mode controller was set

to εc = 0.15. The slave control signal was passed through a second order low pass filter

with a bandwidth of 100 Hz before being applied to the slave manipulator. A stiff metal

environment was placed on the slave side at an angular position of roughly -0.27 rad.

Figure 4.12 shows the master and slave positions during the run. When the slave

comes into contact with the environment, it is no longer able to travel in that direction.

However, as expected from the desired slave impedance model, the master may continue

to travel in that direction. When the slave comes out of contact with the environment it

is able to track the master position reasonably well. There is some error in the master

position tracking. Several factors may contribute to this. The first is modeling error. It is

apparent that there is some static friction in the system that has not been modeled, causing

a non-zero position error in steady state since not enough control effort is being applied

to overcome the static friction. As well, there is certainly some error on the inertial and

damping parameter values in the identified robot models. An additional source of error

is due to the fairly large boundary layer that is used in the sliding mode controller. This

contributes to tracking error, as the sliding surface s = 0 is never actually reached. This

tracking error is on the order of 0.06 rad, or roughly 3.4 degrees. A final source of error is

error on the velocity estimates in the sliding mode observers. Due to the use of saturation

functions in the observers, instead of pure switching terms, some error arises in the state

estimates. This effect is shown further in Section 4.2.3, where the same dynamic models
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Figure 4.12: Position of the master (solid) and slave (dashed) manipulators in the first

experiment.

used in the experiments are simulated.

The estimate of the external torque acting on the slave is given in Figure 4.13. It is

evident from this plot when the slave comes into contact with the environment. There is

an initial peak in the torque when the slave first comes into contact, but it then reaches a

steady state value. This torque estimate is transmitted to the master manipulator, where

it can be felt by the operator. When the slave is not in contact with the environment,

there is some non-zero torque estimate. This is as a result of running the observers at

a relatively large time step. If it were possible with the hardware being used to run the

observers at a smaller time step, more favourable results would be seen, as was the case in

simulation. The slave state estimate are shown in Figure 4.14. While there is some noise

due to chattering on the velocity estimate, it remains quite usable.
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Figure 4.13: Estimate of the environmental torque acting on the slave in the first experi-

ment.
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Figure 4.14: Slave state estimates and position measurement (top plot, solid line) in the

first experiment.
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Experiment with Small Time Delay

A second experiment was performed, this time introducing some time delay. The same

closed loop impedance parameters were chosen for both the master and slave in this case.

The slave control signal was filtered with a second order low pass filter with a bandwidth

of 25 Hz. Time delays of 30 milliseconds were introduced from the master to the slave side,

and from the slave back to the master.

Figure 4.15 shows the master and the slave trajectories for this experiment. In the

presence of small time delays, the system remains stable both in and out of contact with

the environment. Again there is some small error in tracking when the slave is in free

motion. This is likely for the same reasons as the previous experiment.

The estimate of the torque applied to the master manipulator is given in Figure 4.16.

A fairly clean estimate is supplied by the observer. During the periods of time that the

slave is in contact with the manipulator, the human operator applies a constant non-zero

torque to the master side, however when the slave is out of contact the torque applied by

the human is roughly zero when a constant position has been reached. This is due to the

fact that the master closed loop dynamics have a pole at the origin. When the slave is

out of contact with the environment, and therefore not reflecting any torque back to the

master side, a constant non-zero torque on the master would cause it to continue to move.

However, when the slave is reflecting a torque back to the master, a constant non-zero

torque on the master is required to balance this torque.

This second experimental run has shown that the teleoperation algorithm works effec-

tively even in the presence of forward and backward time delays in the communications.

Experiment with Larger Time Delay

A third experiment was performed, this time introducing a larger time delay. For this

experiment, the master closed loop impedance parameters were chosen as M̃m = 22, B̃m =

32, and K̃m = 22. The slave closed loop impedance parameters were chosen as M̃s = 7,

B̃s = 42, K̃s = 63. The slave values were chosen to give the slave manipulator, and
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Figure 4.15: Position of the master (solid) and slave (dashed) manipulators in the second

experiment.
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Figure 4.16: Estimate of the human torque applied to the master in the second experiment.
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by extension the tracking error dynamics, a pair of critically damped poles at s = −3.

The master impedance parameters were chosen such that the closed loop system would be

stable independent of delay by the Small Gain Theorem, assuming that the environment

is modeled as a linear spring with spring constant 19 N/m. The slave control signal was

filtered with a second order low pass filter with a bandwidth of 25 Hz. Time delays of

0.5 seconds were introduced from the master to the slave side, and from the slave back

to the master, for a round trip delay of 1 second. The same environment as the previous

experiments was placed on the slave side.

Figure 4.17 shows the master and the slave trajectories for this experiment. In the

presence of fairly large time delays, the system remains stable both in and out of contact

with the environment. Not surprisingly, there is again some small tracking error when

the slave is in free motion. This is likely caused by the same factors as in the previous

experiments. That is, modeling error, unmodeled effects, and large sliding mode boundary

layers could all be contributing factors to the tracking error. There are some small periods

of time where the slave manipulator experiences some chattering. This is likely caused by

the noise on the state and force estimates due to running the observers at a larger than

ideal sample period. However, it is not significant in this experiment.

The estimate of the torque applied to the master manipulator is given in Figure 4.18.

Due to the spring term on the master manipulator, which is actually a requirement for

the closed loop stability analysis, the human operator must always apply a non-zero force

to the manipulator when it is away from the origin. In practice, it is desirable to set the

spring term to zero, or close to zero, on the master side as this gives the operator the

sensation of using a tool that can be arbitrarily placed in the space and left there. It

is also apparent in Figure 4.18 that during periods of time when the slave manipulator

is in contact with the environment, the operator must apply more torque to the master

manipulator to compensate for the environment torque that is fed back to the master

from the slave. This further shows the effectiveness of the force feedback portion of the

algorithm.

This third experimental run has shown that the teleoperation algorithm works effec-

tively even in the presence of relatively large forward and backward time delays in the
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Figure 4.17: Position of the master (solid) and slave (dashed) manipulators in the third

experiment.

communications, both when the slave is in free motion and in contact with an environ-

ment.

4.2.3 Simulation of Experimental Dynamics

In order to verify the experimental results, a simulation of the experimentally identified

robot dynamics in the teleoperation algorithm was performed. This simulation makes it

possible to compare the experimental results, which are affected by modeling error and

sensor noise, to the results that would be expected for this setup, assuming there were no

modeling error or sensor noise. The robot dynamics used here in simulation are exactly

the identified dynamics of the base joint of each manipulator used in the experiments.

For the simulations in this section, the closed loop impedance parameters for the master

and slave manipulators are chosen as M̃m = M̃s = 7, B̃m = B̃s = 14, and K̃m = K̃s = 7.

The slave sliding mode controller gain was set to Kg = 3. The boundary layer on the slave
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Figure 4.18: Estimate of the human torque applied to the master in the third experiment.

sliding mode controller was set to εc = 0.15. The slave control signal was passed through

a linear second order low pass filter with a bandwidth of 100 Hz before being applied to

the manipulator. A spring-damper environment is used at the slave side at an angular

position of −0.27 rad. The environment has spring and damping constants of Ke = 40

and Be = 5. A time delay of 30 milliseconds in each direction is used in the simulation.

All of the other parameters in the system were set the same as in the experiments. The

choice of parameters in this simulation is the same as in the experiment with a small time

delay, with the exception of the non-zero spring term in the master dynamics here. This

non-zero spring was used so that, in simulation, the application of a step signal to the

master dynamics would result in a constant output at steady state. The human input to

the master manipulator is a step function passed through a first order low pass filter with

a pole at s = −5.

The master and slave position signals for the simulation are shown in Figure 4.19. It is

apparent from this plot that there is some steady state error in the tracking. Comparing

this to Figure 4.15, there is steady state tracking error in both plots. Figure 4.20 shows
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Figure 4.19: Position of the master (solid) and slave (dashed) manipulators in the simula-

tion with experimental dynamics.

the master velocity signal and its estimate for the simulation with experimental dynamics.

The master velocity state estimate has an error at steady state as well. This error is likely

the cause of the tracking error in Figure 4.19. While only the master velocity signals

are shown here, the same behaviour was observed in the slave velocity signals. In both

the experiments and this simulation, the discontinuous switching terms in the observers

were replaced with boundary layers. This was done in the experiments to reduce the

high frequency content in the state estimates and to make the observers less sensitive to

measurement error.

A second simulation with experimental dynamics was performed, this time reducing the

width of the boundary layers in the observers. Boundary layer widths of εm = εs = 10−6

were used for the master and slave observers. Figure 4.21 shows the master and slave

positions for this simulation run. It is clear that a reduction in the boundary layers of

the observers directly results in better steady-state tracking performance. Examining the

master velocity estimate in Figure 4.22, it is clear that the reduction in the width of the
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Figure 4.20: Master velocity (solid) and velocity estimate (dashed) in the simulation with

experimental dynamics.

observer boundary layer has reduced the steady-state velocity error. Due to the nature

of the experimental setup, the observer boundary layers were made as small as possible

while still yielding useful state estimates. However, it is clear that in this case the observer

boundary layer widths have an impact on tracking performance.

An examination, through simulation, of the experimental dynamics using the same

parameters as in the experiments themselves has provided validation of the experimental

results. In particular, it was seen that the presence of steady-state tracking error in the

experiments can be attributed to, at least in part, a steady-state error on the velocity

estimates.

4.3 Summary

This chapter has examined the implementation of the novel bilateral teleoperation algo-

rithm that has been proposed in this work. Initially, numerical simulation results were

136



0 10 20 30 40 50 60
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time (sec)

M
an

ip
ul

at
or

 P
os

iti
on

 (
ra

d)

Figure 4.21: Position of the master (solid) and slave (dashed) manipulators in the simula-

tion with experimental dynamics with smaller boundary layers.

presented that show the effectiveness of the algorithm in a situation that is close to ideal.

That is, the simulated robots were perfectly modeled, very small sample periods were used,

and noise was not a factor.

In all of the simulations, a 2-DOF robot model was used for both the master and slave

manipulators. The first simulation examined the performance of the algorithm in free

motion in the presence of time delays. The algorithm performed well and good tracking

results of the delayed master trajectory by the slave were obtained. The second simulation

examined results with the slave in contact with a linear spring environment. In this simu-

lation, closed loop impedance parameters were chosen to ensure that the whole system is

stable independent of delay. This decision resulted in master impedance parameters that

were quite large, making the master side gain very small. This effectively resulted in a very

“heavy” master manipulator. The final simulation showed the delay-dependent stability

results for the case where the slave is in contact with a known linear environment. In this

case, master and slave impedance parameters were chosen, and a delay margin was found
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Figure 4.22: Master velocity (solid) and velocity estimate (dashed) in the simulation with

experimental dynamics with smaller boundary layers.

for these parameters. It was found that simulating the system with a time delay close to

this delay margin did result in a stable system, but oscillations in the states were present.

As the time delay is increased toward the delay margin, the oscillations increase. Past that

margin, the closed loop system is unstable.

Following the simulation results, experiments were performed on the University of Wa-

terloo Teleoperation Platform. The experiments verified that the algorithm does in fact

work in practice, in the presence of non-idealities such as noise, modeling error, finite sam-

ple times, and unmodeled dynamics. All of the experiments involved the transition from

the slave in free motion to the slave in contact with an environment. The first experiment

considered the case of no time delays, and showed effective tracking and force feedback. In

the second experiment, a small time delay was inserted in both the forward and backward

paths while keeping the same closed loop impedance parameters. The system remained

stable both in and out of contact. A third experiment was performed, this time with a

much larger time delay. New impedance parameters were computed to ensure that the
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system would be stable independent of delay. In all cases, the experiments worked as ex-

pected. Tracking of the delayed master trajectory by the slave was seen, and the estimated

forces were properly reflected back to the operator through the master manipulator. Fi-

nally, simulations based on the experimental dynamics were run in order to compare the

experimental results to a situation free from modeling error and sensor noise.
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Chapter 5

Conclusions and Future Research

Having presented the entirety of the new theory and experimental results for a new force

estimating bilateral teleoperation algorithm, this chapter will focus on summarizing the

results and discussing potential directions for future research in this area.

5.1 Conclusions

The focus of this work has been the presentation of a novel bilateral teleoperation algorithm

for n-DOF nonlinear robot manipulators connected through time delayed communications.

Typically, in the field of bilateral teleoperation, a teleoperator either makes use of force sen-

sors for force feedback (i.e. the position-force architecture) or makes use of some function

of the position as a substitute for force feedback (i.e. position-position and position-error-

based architectures). It is possible to show that a teleoperation system that makes use of

force sensors can provide a higher level of transparency, which effectively means greater

performance, than a position-position type system. However, the cost of this decision is

that a more complicated hardware setup must be used. In particular, force sensors must

be mounted at the slave site, and in many situations the master site as well. Not only

is this more costly in terms of physical equipment, but force sensors may produce noisy

measurements and may be difficult to calibrate [87].
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The approach to bilateral teleoperation presented in this work has combined advantages

of both popular types of teleoperator architectures. Specifically, a teleoperation algorithm

with the performance of a position-force architecture has been developed, but this approach

requires the more simple hardware setup found in position-position type architectures. This

has been accomplished by integrating unknown input second order sliding mode observers

into the teleoperator system. These unknown input observers, when designed with an

accurate dynamic model of the plant being observed, provide an estimate of the full state

of the plant as well as an estimate of the unknown input acting on it. When the external

force applied to a robot manipulator is viewed as an unknown input, an estimate of this

force is obtained from the unknown input observer.

When considering the prior work in bilateral teleoperation, this work is most similar

to the algorithm presented by Cho and Park [67]. The new approach presented in this

thesis has advanced the state of knowledge in bilateral teleoperation, over and above the

contributions made in [67]. The algorithm presented by Cho and Park is designed for linear

1-DOF teleoperation systems, and requires full state and force measurements. As previ-

ously mentioned, the new algorithm is developed for nonlinear n-DOF non-kinematically

redundant manipulators, and requires only position measurements. Table 5.1 describes the

advances in the state of the art provided by this algorithm, as compared to the algorithm

of Cho and Park [67]. Note that, were the algorithm presented here implemented with a

linear 1-DOF teleoperation system, one would expect to see the same performance as the

algorithm in [67], but this algorithm would require fewer sensors and as a result a more

simple hardware configuration.

In particular, the major new contributions to knowledge presented in this thesis are as

follows,

• The development of a novel bilateral teleoperation algorithm that yields the perfor-

mance of a position-force architecture in terms of transparency, while only relying

on position measurements. In particular, the stability result involved a novel combi-

nation of a sliding mode controller and sliding mode observer where upper bounds

on convergence times were determined in order to guarantee the stability of the
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Table 5.1: Summary of differences between the new algorithm proposed in this work and
that presented by Cho and Park.

Cho and Park [67] New Algorithm
Degrees of Freedom 1 n ≤ 6
Type of Plant Linear Nonlinear
Required Sensors Position, Velocity, Force Position
Operator/Environment
Assumptions

Passive human and environ-
ment

General nonlinear operator
for both human and envi-
ronment

Stability Results Absolute stability for pas-
sive human and environ-
ment

Small gain stability results
for linear and nonlinear en-
vironments (no passivity re-
quirement), computation of
delay margin for linear en-
vironment with commensu-
rate delays

plant/controller/observer combination. This result was first published for the case

of first order sliding mode observers by the author and his supervisor in [25].

• Closed loop stability of the teleoperator algorithm was proved for a variety of envi-

ronmental conditions. As previously discussed, many closed loop stability proofs for

teleoperators rely on the assumption that both the human and the slave environment

are passive systems. This can be a particularly restrictive assumption. The closed

loop stability results presented in this work do not require passivity of either the

human operator or the slave environment.

The bilateral teleoperation algorithm presented in this thesis assumes that the dynamic

model of each manipulator is well known. A computed torque method controller was used

at the master side for the master manipulator, while a sliding mode controller was used

at the slave side to ensure that the slave tracks the delayed master trajectories. Unknown

input second order sliding mode observers were placed at both the master and slave sides to

perform state and force estimation. Control design was performed in the robot task space
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for each of the manipulators. This was done so that each degree of freedom in task space

could be assigned a characteristic impedance, and so that analysis of the system in terms

of the forces acting on the end effectors could be simplified. The process of expressing the

robot dynamics in task space was outlined in detail.

The specific controllers and observers used in the algorithm were next presented. The-

orem 3.3.1 presented the stability proofs for each of the master and slave plants. This

theorem showed that, provided certain assumptions are satisfied, both the master and

slave will have the desired impedance models, and estimates of all states and forces will be

available.

Following the proof of stability for each of the master and slave manipulators, the

stability of the entire closed loop was considered. Theorem 3.4.2 showed that, given the

closed loop teleoperator where the slave is in contact with a linear spring-damper envi-

ronment and the H∞ norm of the slave+environment system is known, master side closed

loop impedance parameters may always be chosen such that the closed loop teleoperator

is stable independent of the delays in the communications. In the case of a nonlinear

finite-gain stable environment with a known gain, Theorem 3.4.3 showed that the feedback

connection between the slave and this environment can always be made finite-gain stable

with a proper choice of slave closed loop impedance parameters. It is then straightforward

to show that the entire closed loop may be stabilized independent of delay, following the

results of Theorem 3.4.2. A final closed loop stability result was presented for the case

where the slave side environment may be modeled as a set of linear spring-dampers and

where the delays in each direction are commensurate. In that case, the closed loop dy-

namics are expressed in retarded functional differential equation form and Theorem 3.5.1

from [92] is used to determine the delay margin for the system. That is, for a particular

choice of closed loop impedance parameters that ensure stability with no delay, an upper

bound on the delay before which the system goes unstable may be found.

A transparency analysis of the closed loop teleoperator was given in order to deter-

mine the performance of this approach. This analysis shows that, while the approach is

not ideally transparent, some useful properties in terms of performance are obtained. In

particular, perfect force tracking and perfect free motion tracking of the delayed master
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trajectory by the slave are achieved. The hybrid matrix also shows that there is some

input impedance at the master side. Physically, this means that the operator will feel the

dynamics of the master manipulator. One can consider the master dynamics as part of a

virtual tool that allows the operator to perform the teleoperation task. The second non-

ideality in the transparency analysis is the occurrence of an admittance between the slave

environment force and the slave motion when the master manipulator is not in motion.

This result is expected, as this admittance was incorporated in the slave control design.

Some compliance between the slave and the environment is important in practice in order

to prevent large reaction forces.

In practice, there is always some error associated with a dynamic model of a real plant.

A robustness analysis of the teleoperator system was performed in order to examine the

impact of modeling error on this system. This analysis showed where the unmodeled

terms would appear in the closed loop expressions of the dynamics. However, without

specific knowledge of the unmodeled dynamics, it was not possible to conclude anything

theoretically in terms of stability in the presence of significant modeling error.

Both numerical simulation and experimental results have been presented in this work.

The numerical simulations used 2-DOF nonlinear robot manipulators as plants at the mas-

ter and slave sides. Three sets of simulations were performed. In all simulations, there

was some time delay in both the forward and backward directions. The first simulation

showed the performance of the algorithm when the slave is in free motion. The slave clearly

tracked the delayed master trajectory, as desired. The second simulation showed the per-

formance of the algorithm when the slave was in contact with an environment. Closed

loop impedance parameters were chosen to stabilize the teleoperator loop independent of

delay. The results of the simulation showed that the system remained stable in environ-

mental contact and that force estimates were reflected back from the slave to the master,

as expected. A final simulation with the slave in environmental contact was performed.

In this case, a particular delay margin was computed for a certain choice of closed loop

impedance parameters. The system was simulated with the time delay set to just below

this margin. From these results, it was clear that the system remained stable, but was

approaching instability. This simulation showed the delay-dependent stability results of
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Chapter 3 in practice.

Finally, the results of a set of experiments carried out on the University of Waterloo

Teleoperation Platform were presented. Three experiments were performed: an experiment

with no time delay, one with a small time delay, and one with a larger time delay. All

experiments involved transitions of the slave from free motion to environmental contact.

The experiments served to validate the theory, and further showed experimentally that

the proposed algorithm has some robustness properties. Despite the presence of modeling

error, unmodeled terms, sensor noise, and finite switching of the discontinuous sliding

terms, the algorithm performed as expected in practice.

5.2 Future Work

There are several avenues for pursuing future research related to the work presented in this

thesis. Initially, modifying the algorithm so that the controller at the slave side is a second

order sliding mode controller and developing an accompanying proof of stability would be

a useful endeavour. This would minimize the effect of chattering and the discontinuous

switching in the slave sliding mode control signal. Such a change would further facilitate

experimental implementation and hardware requirements.

The stability analyses performed in this thesis have assumed that the slave manipulator

is in contact with the slave side environment. Stability has been shown in this case, and a

proof of closed loop stability for the case when the slave is in free motion is trivial. However,

the issue of contact transition stability has not yet been examined from a theoretical

standpoint. Experimentally, it is apparent that the system remains stable through contact

transitions. It would be beneficial, though, to perform a theoretical analysis of this issue.

Though it is typical in the literature to examine stability for the situation where the slave

remains in contact, contract transition stability results do exist for other algorithms [95].

If a contact transition proof of stability were developed, the conditions on the stability

result could also be verified experimentally.

Another extension on the experimental side would be the implementation of this algo-
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rithm using robots with more than one degree of freedom. Due to the hardware available,

implementation in practice was limited to one degree of freedom in this work. While the

simulation results confirmed the effectiveness of the algorithm for more than one degree of

freedom, an experimental implementation would further strengthen the result.

In the experimental validation of this algorithm, the sample period was limited to

Ts = 5×10−4 seconds. While this sample period is sufficiently small for the time constants

of the robots, the sliding mode observers show significant improvements in performance

with smaller sample periods. If a hardware setup were available to allow an implementation

of the algorithm in real-time with a smaller sample period for the sliding mode observers,

it would be possible to refine the experimental results so that they more closely match the

simulation results. As well, if manipulators with less friction were available, this would

allow for a more accurate dynamic model. This, too, would aid in further verifying the

experimental implementation of the algorithm.

Due to the incorporation of time delays in the bilateral teleoperation system, the hybrid

matrix (3.103) contains terms of the form e−τs for some time delay τ . In an ideal teleoper-

ator without time delay, these terms would be unity. Some researchers have incorporated

predictive approaches into teleoperation algorithms in order to improve performance. Typ-

ically, approaches such as Kalman filters [46, 48, 81], time forward observers [84], and Smith

predictors [47, 50, 61, 71] are used as predictors. While this is a challenging task, especially

for situations where the slave comes into and out of contact with the environment, these

approaches have been shown to improve performance. Future work related to the algorithm

presented in this thesis could involve the addition of a predictive strategy to compensate

for time delays in the communications. This work would present theoretical challenges in

terms of proving the stability of a predictive strategy, but may allow for improved per-

formance. On the usability side, user testing could be performed to compare the current

non-predictive algorithm with a predictive version in order to determine if improvements

in task completion times can be seen when prediction is employed.

While the sliding mode observers used in this work effectively estimate the states and

unknown inputs of the robot manipulators, it is well known that they do not function

as well in the presence of measurement noise. There are other forms of estimators that
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are much better equipped to handle this noise. The Kalman filter and extended Kalman

filter work very well in the presence of Gaussian measurement noise. The particle filter can

provide accurate estimates in more general cases where the noise is not Gaussian. However,

to the best of the author’s knowledge, these estimators do not provide estimation of the

unknown inputs to a system. As an extension to the algorithm presented in this work,

the development of estimators that provide unknown input estimates and work well in the

presence of measurement noise would be useful. This would be challenging theoretically,

in terms of developing such estimators, but also in re-deriving proofs of stability for the

bilateral teleoperation algorithm with a different unknown input observer. The unknown

input sliding mode observers used in this work provide estimates that converge to the

true states in finite time. Other observers, such as the Kalman filter, yield asymptotically

stable error dynamics. The change from finite time convergent estimators to asymptotically

convergent ones would add a layer of difficulty in the closed loop stability proof for the

teleoperator. Experimental implementations of the teleoperation algorithm comparing the

effectiveness of an estimator that is more tolerant of noisy measurements to the current

algorithm would be worthwhile.

Section 3.5 presented delay-dependent stability results assuming a linear slave side

environment and commensurate time delays. It was shown that, using this result, one

could be less conservative with the choices of the closed loop impedance parameters for the

master and slave manipulators. However, the method proposed in that section does not

yield a constructive result in terms of selecting closed loop parameters to yield a particular

time delay. Instead, the designer may choose a set of closed loop impedance parameters,

and use the result of the section to determine an upper bound on the time delay before

which the closed loop system will go unstable. It would be interesting to develop an

approach that would operate in the other direction – given an upper bound on the time

delay, what is a suitable choice of closed loop impedance parameters? In practice, one may

have some idea of the time delay, so selecting impedance parameters based on a maximum

time delay makes sense. Given that the existing approach to compute the upper bound on

the time delay is numerical, it may be possible to develop an efficient numerical algorithm

to instead allow selection of the closed loop parameters based on a desired time delay
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margin.

In practice, the dynamics of a human operator are quite complicated and not always

well understood. Some of the teleoperation researchers have chosen to model the human in

the system as a passive system. In the work presented here, the human is modeled with a

finite-gain stable nonlinear operator. Further work to better understand the behaviour of

the human operator within the teleoperation loop would be of value. It would be useful to

examine the assumptions made on human operator dynamics in the teleoperation literature

and attempt to develop more accurate human models, both for simulation and analysis of

the teleoperation algorithms. The effect of the human in the closed loop on the stability

of the algorithm would also be a useful topic for further study.

Teleoperation is a particularly applications-oriented area within control and robotics.

As a result, the development of algorithms that work particularly well in certain appli-

cations is a useful task. The algorithm presented here is designed to apply generally to

teleoperation tasks. There are certain cases where it may perform particularly well over

other algorithms. This algorithm provides ideal force tracking without the need for force

sensing. As a result, applications where force feedback is desired, but where it would

be difficult to include a force sensor, seem particularly well fitted to the algorithm. For

instance, micro-manipulation, where the manipulator could be quite small, may benefit

from an algorithm such as this. It may be difficult to mount a force sensor on a very small

manipulator, but force signals may still be required. The investigation of the application of

this algorithm in such areas would be useful. Another applications oriented task for future

work could involve tailoring the choice of closed loop impedance parameters for certain

applications, and determining the stability of the resulting closed loop system. This would

allow for the application of the algorithm to a variety of scenarios. The practical perfor-

mance of the algorithm for completing tasks on a variety of scales (for example, very small

and very large manipulators with a variety of environments) with impedance parameters

that have been selected a priori could then be evaluated. In particular, specific applica-

tion areas such as hazardous environments and biomedical use including remote medical

surgeries could be investigated, and the usefulness of this algorithm in those areas could

be evaluated.
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Appendix A

Proofs

A.1 Proof of Theorem 2.2.1

Proof. The proof of this theorem follows that of [24] very closely, with the exceptions that

a slight modification of the observer design is made in this work and upper bounds on

convergence time are computed here. Initially, when x̂(t0) 6= x(t0), the observer error

dynamics take the form of (2.32) where all the Ei = 0.

As a result of Assumptions 2.2.1, 2.2.3, and 2.2.4 the estimation error does not have

a finite escape time. This effectively guarantees that the estimation error is in the space

Lpe. Consider the following Lyapunov function candidate for the state e1,

V1 =
1

2
e2

1 (A.1)

Then,

V̇1 = e1ė1 = −λ1|e1|+ e1e2 ≤ −λ1|e1|+ |e1||e2| = −|e1|(λ1 − |e2|) (A.2)

One could choose λ1 > |e2|+ε1, where ε1 > 0. Then, V̇1 ≤ −|e1|ε1. This would ensure that

V̇1 < 0 for all e1 6= 0, and also ensure finite time convergence of e1 to the sliding surface
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e1 = 0. Finite time convergence is assured through the use of the Comparison Lemma.

Alternatively, choosing λ1 > maxt∈[t0,T ] |e2| where T is greater than or equal to the time it

takes for e1 to converge to the sliding surface, allows a fixed value for λ1 and also ensures

that V̇1 < 0 for all e1 6= 0. Therefore, the state e1 will converge to zero. In order to show

that the convergence happens in finite time, define the function W1 =
√

2V1 = |e1|. Here,

the choice of gain λ1 > |e2|+ ε1 is considered. Then,

D+W1 = Ẇ1 =
1√
2V1

V̇1 =
1

|e1|
V̇1 ≤

−|e1|
|e1|

ε1 = −ε1 (A.3)

So D+W1 ≤ −ε1. Define f1(t,W1) = −ε1. Then D+W1 ≤ f1(t,W1). Now consider

u̇ = f1(t, u) = −ε1, u(t0) = W1(e1(t0)). Then,

∫ t

t0

du

dτ
dτ = −ε1

∫ t

t0

dτ (A.4)

u(t)− u(t0) = −ε1(t− t0) (A.5)

u(t) = u(t0)− ε1(t− t0) (A.6)

Making use of Lemma 2.2.1, the result W1(t) ≤ u(t) is obtained. Then,

W1(t) ≤ W1(e1(t0))− ε1(t− t0) (A.7)

Since W1(t) = |e1(t)|, it is clear from the above that there will be some finite time when |e1|
reaches zero. In order to solve for the upper bound on this time, set W1(e1(t0))−ε1(t−t0) =

0. Rearranging, one arrives at,

T1 ,
|e1(t0)|
ε1

+ t0 (A.8)

Therefore by the time t = T1 the state e1 will have converged to the sliding surface

e1 = 0. On that surface e1 = ė1 = 0 and solving for the equivalent output injection

yields (λ1sgn(e1))eq = e2. This results in x̃2 = x2 on the sliding surface. Following [21],

the equivalent control is obtained by a low pass filtering operation of λ1sgn(e1).
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After time T1 the error dynamics have the form,



ė1

ė2

ė3

...

ėn−1

ėn


=



e2 − λ1sgn(e1) = 0

e3 − λ2sgn(e2)

e4

...

en

∆h(x, x̂) + ∆g(x, x̂)u+ g(x)d


(A.9)

(Recall that on the surface e1 = 0, x̃2 = x2 and so x̃2 − x̂2 = x2 − x̂2 = e2. As well, the

term E1 is now set to one since e1 = 0, but the terms Ei for i > 1 remain zero.) Showing

convergence of the second observer error state may now proceed. From above, since the

observer error is in Lpe and a finite time T1 has elapsed, the state e2 remains finite at this

point by Assumption 2.2.1. Choosing as a Lyapunov function candidate for this system,

V2 =
1

2
e2

1 +
1

2
e2

2 =
1

2
e2

2 (A.10)

The e1 term drops out since after t = T1, e1 = 0 and the Lyapunov function simplifies, as

above. Taking the derivative along the trajectories of the system,

V̇2 = e2ė2 = −λ2|e2|+ e2e3 ≤ −λ2|e2|+ |e2||e3| = −|e2|(λ2 − |e3|) (A.11)

Choosing λ2 > |e3|+ ε2, ε2 > 0, yields V̇2 ≤ −|e2|ε2, for all e2 6= 0. Alternatively, choosing

a fixed gain λ2 > maxt∈(T1,T ] |e3|, for some T greater than or equal to the time it takes for

e2 to converge to the siding surface e2 = 0, would also ensure that V̇2 < 0 for all e2 6= 0.

With either choice of gain, the state e2 will converge to zero in finite time. It can be verified

that, when the gain is chosen as λ2 > |e3|+ ε2, the bound is,

T2 ,
|e2(T1)|
ε2

+ T1 (A.12)

Once the trajectory has converged to the surface e2 = 0, one has ė2 = 0 and the

equivalent output injection term (λ2sgn(e2))eq = e3. At this point, E2 is set to one, since
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e2 = 0. This equivalent value is obtained in practice through a low pass filtering operation

on λ2sgn(e2). At this point, x̃3 = x̂3 + e3 = x3. This procedure is carried out for each

observer error state up to and including en−1 in order to show that a gain λi exists at each

step and has a finite upper bound on the time for the state to converge to the particular

sliding surface. In general, the gain λi can be chosen as λi > |ei+1| + εi, εi > 0, for all

i = 1, . . . , n − 1. Once the sliding surfaces e1 = e2 = . . . = en−1 = 0 have been reached

and the corresponding anti-peaking terms have been set appropriately, an analysis of the

stability of the final state en may be performed. The upper bound on the time required

for the first n − 1 states to converge to their sliding surfaces is Tn−1. At this point, the

error dynamics have the form,



ė1

ė2

...

ėn−1

ėn


=



e2 − λ1sgn(e1) = 0

e3 − λ2sgn(e2) = 0
...

en − λn−1sgn(en−1) = 0

∆h(x, x̂) + ∆g(x, x̂)u+ g(x)ξ − λnsgn(en)


(A.13)

In order to show stability for the final observer state consider the Lyapunov function

candidate,

Vn =
1

2
e2

1 +
1

2
e2

2 + . . .+
1

2
e2
n =

1

2
e2
n (A.14)

since ei = 0 for all i < n at time Tn−1. Taking the derivative of Vn along the trajectories

of the system,

V̇n = enėn (A.15)

= en(∆h(x, x̂) + ∆g(x, x̂)u+ g(x)ξ − λnsgn(en)) (A.16)

= −λn|en|+ en(∆h(x, x̂) + ∆g(x, x̂)u+ g(x)ξ) (A.17)

≤ −λn|en|+ |en|(|∆h(x, x̂) + ∆g(x, x̂)u+ g(x)ξ|) (A.18)

= −|en|(λn − |∆h(x, x̂) + ∆g(x, x̂)u+ g(x)ξ|) (A.19)
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Choosing λn > |∆h(x, x̂) + ∆g(x, x̂)u + g(x)ξ| + εn, εn > 0 yields V̇n ≤ −|en|εn < 0, for

all en 6= 0 This ensures finite time convergence to the sliding surface en = 0. One could

alternatively choose a fixed value for λn as λn > maxt∈[Tn−1,T ) |∆h(x, x̂) + ∆g(x, x̂)u +

g(x)d0|, for some T greater than or equal to the time required for the state en to reach

the sliding surface. It can be verified that with the choice of the gain as λn > |∆h(x, x̂) +

∆g(x, x̂)u+ g(x)d|+ εn an upper bound is,

Tn ,
|en(Tn−1)|

εn
+ Tn−1 (A.20)

Finally, after time Tn has passed, the observer error trajectories lie on the surface

e1 = . . . = en = 0, and an estimate of the unknown input d can be obtained from the

equivalent output injection. To compute the equivalent output injection, solve the above

ėn equation for λnsgn(en) when en = ėn = 0. This results in ∆h(x, x̂) = ∆g(x, x̂) = 0,

since ∆h(x, x̂) = h(x)− h(x̂), ∆g(x, x̂) = g(x)− g(x̂). As well,

(λnsgn(en))eq = g(x)ξ (A.21)

So the unknown input ξ is computed as ξ = g(x)−1(λnsgn(en))eq. (Recall that, on the

surface e1 = . . . = en = 0 the state vector x is available since the observer error is

zero, so g(x) may be computed.) The equivalent output injection is obtained by a low

pass filtering operation on λnsgn(en) [21]. This concludes the proof, showing finite time

convergence of the state estimates to the actual states and providing an estimate of the

unknown disturbance as well.

A.2 Proof of Theorem 2.2.2

Proof. In order to prove convergence of the state estimates to the real states, it is necessary

to first prove the convergence of x̃1 and ˙̃x1 to zero. As follows from the observer error

dynamics and (2.45), the estimation error x̃1 and x̃2 satisfy the differential inclusion,
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˙̃x1 = x̃2 − λ|x̃1|1/2sign(x̃1) (A.22)

˙̃x2 ∈ [−f+,+f+]− αsign(x̃1) (A.23)

Note that the solutions of (A.22), (A.23) exist in the sense of Fillipov for any initial

condition. Next, compute ¨̃x1 when x̃1 6= 0.

¨̃x1 = ˙̃x2 −
1

2
λ|x̃1|−1/2 ˙̃x1

where the identity d|x|/dt = ẋsign(x) is used.

From (A.23) it is possible to express ¨̃x1 as the following inclusion,

¨̃x1 ∈ [−f+,+f+]−
(

1

2
λ

˙̃x1

|x̃1|1/2
+ αsign(x̃1)

)
(A.24)

The approach taken in what follows is to show the worst case error trajectory in each

quadrant of the x̃1- ˙̃x1 plane. This trajectory of the worst case system is called the majorant

trajectory. See Figure A.1.

In the first quadrant, x̃1 > 0 and ˙̃x1 > 0. The trajectory starts at x̃10 = 0 and ˙̃x10 = x2.

From (A.24) the worst case acceleration in this quadrant, that is the largest it can be, may

be found. Note that,

¨̃x1 ∈ [−f+,+f+]− α−
(

1

2
λ

˙̃x1

|x̃1|1/2

)
︸ ︷︷ ︸

positive

The last term in brackets is always positive in this quadrant, as a result it will only make

the acceleration more negative. So the largest that the acceleration can be is given by,

¨̃x1 = f+ − α︸ ︷︷ ︸
negative

(A.25)
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Figure A.1: Worst case trajectory for observer error dynamics.

So the trajectory is confined by the axis x̃1 = 0, ˙̃x1 = 0 and the equation (A.25). Since

α > f+, the acceleration ¨̃x1 < 0, and so ˙̃x1 decreases toward 0. The trajectory of the states

in this quadrant is found by solving (A.25). Integrating both sides of (A.25) one gets,

∫ ˙̃x1

˙̃x10

¨̃x1dt = −
∫ t

0

(α− f+)dτ

˙̃x1 − ˙̃x10 = −(α− f+)t

˙̃x1 = −(α− f+)t+ ˙̃x10 (A.26)

Now integrating (A.26) to get the equation of motion for x̃1, one arrives at,
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∫ x̃1

x̃10

˙̃x1dt = −
∫ t

0

(α− f+)τdτ +

∫ t

0

˙̃x10dτ (A.27)

x̃1 − x̃10 = −(α− f+)
t2

2
+ ˙̃x10t (A.28)

x̃1 = −(α− f+)
t2

2
+ ˙̃x10t+ x̃10 (A.29)

Re-arranging (A.26) gives,

t =
˙̃x10 − ˙̃x1

α− f+
(A.30)

Substituting (A.30) into (A.29) and simplifying yields,

˙̃x2
1 − ˙̃x2

10
= 2(α− f+)(x̃10 − x̃1) (A.31)

This curve is shown in quadrant 1 in Figure A.1.

Defining the point where the trajectory reaches the axis ˙̃x1 = 0 as x̃1m , the relationship

between the initial point (0, ˙̃x10) and (x̃1m , 0) may be obtained from (A.31) as,

˙̃x2
10

= 2(α− f+)x̃1m (A.32)

Since ¨̃x1 < 0 for all of quadrant 1, the curve will hit the ˙̃x1 = 0 axis in finite time. This

moves the trajectory into quadrant 2.

In quadrant 2, ˙̃x1 ≤ 0 and x̃1 > 0. Here the worst case trajectory of the estimation

error is given by the equation,

¨̃x1 = −f+ − αsign(x̃1)︸ ︷︷ ︸
negative

− 1

2
λ|x̃1|−1/2 ˙̃x1︸ ︷︷ ︸

negative

(A.33)

Note that in this quadrant the second term in (A.33) must be included in the worst case

trajectory. With the first term being negative, subtracting the second negative term from
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it will make the acceleration larger. So the worst case trajectory is made up of both terms

on the right hand side of (A.33). This equation is negative for a proper choice of α. As a

result, the largest value of x̃1 in quadrant 2 is x̃1m . As well, since ¨̃x1 < 0, one arrives at,

− 1

2
λ|x̃1|−1/2 ˙̃x1 < f+ + α (A.34)

Re-arranging for ˙̃x1 gives,

˙̃x1 > −
2

λ
|x̃1|1/2(f+ + α) (A.35)

Since x̃1 ≤ x̃1m , the velocity ˙̃x1 has the following lower bound defined as ˙̃x1m ,

˙̃x1m = −2

λ
|x̃1m |1/2(f+ + α) (A.36)

So the system trajectory will cross the axis x̃1 = 0 at ˙̃x1 ≥ ˙̃x1m , as in Figure A.1. The

trajectory of the error dynamics will continue to cross that axis as the trajectory continues

in time. Due to symmetry between the first and third quadrants, and symmetry between

the second and fourth quadrants, a similar result is obtained when x̃1 < 0.

In order to show convergence of the trajectory, one must show that | ˙̃x1m|/| ˙̃x10| < 1.

Each of the numerator and denominator are defined as,

| ˙̃x10| =
√

2(α− f+)x̃1m (A.37)

| ˙̃x1m| =
2

λ
x̃

1/2
1m

(f+ + α) (A.38)

Then,

| ˙̃x1m |
| ˙̃x10|

=
2(f+ + α)

λ
√

2(α− f+)
(A.39)

Substituting the definition of λ from (2.47) into the above and simplifying yields,
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| ˙̃x1m|
| ˙̃x10|

<
1− p
1 + p

< 1 (A.40)

Denoting the consequent crossing points of the system trajectory starting at (0, ˙̃x10) with

the x̃1 = 0 axis as ˙̃x10 , ˙̃x11 , ˙̃x12 , . . . , ˙̃x1i
, . . ., the following result, due to (A.40), will hold,

| ˙̃x1i+1
|

| ˙̃x1i
|
<

1− p
1 + p

< 1 (A.41)

This inequality ensures the convergence of the state to x̃1 = ˙̃x1 = 0 and ensures the

convergence of the geometric series
∑∞

0 | ˙̃xi|.

In order to show finite time convergence and determine an upper bound on the time,

consider the dynamics of x̃2. From (A.23),

0 < α− f+ ≤ | ˙̃x2| ≤ α + f+

which leads to,

| ˙̃x2| ≥ α− f+ (A.42)

Let ti represent the time of the i-th crossing of ˙̃x1 with the axis x̃1 = 0. At these crossing

points, that is when x̃1 = 0, x̃2 = ˙̃x1. So x̃2 crosses the axis at time ti as well. Integrating

both sides of (A.42) from the time of the (i − 1)-th axis crossing to the time of the i-th

axis crossing,

∫ ti

ti−1

| ˙̃x2|dτ ≥
∫ ti

ti−1

(α− f+)dτ (A.43)

|x̃2(ti)| − |x̃2(ti−1)| ≥ (α− f+) (ti − ti−1)︸ ︷︷ ︸
∆ti

(A.44)

|x̃2(ti)| ≥ (α− f+)∆ti

+|x̃2(ti−1)| (A.45)

|x̃2(ti)| ≥ (α− f+)∆ti (A.46)
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So the upper bound on the time between the i-th and (i− 1)-th axis crossing is given as,

∆ti ≤
|x̃2(ti)|

(α− f+)
(A.47)

An upper bound for the total convergence time is given as,

T ≤
∞∑
0

∆ti (A.48)

T ≤
∞∑
0

|x̃2(ti)|
(α− f+)

(A.49)

Note that, due to convergence of the geometric series, the right hand side of (A.49) exists

and is finite.

The only requirement for the implementation of this observer is the boundedness of

F (t, x1, x2, x̂2) in the domain of interest. One way to ensure that this is always true is to

design the observer to converge in a fast enough time that the system has not left some

pre-specified area, in which stabilization can be ensured [31]. This approach will ensure

boundedness of the system within the desired operating range.

Finally, to show that once the trajectory has reached (0, ˙̃x1m), it will return to cross the

axis x̃1 = 0 when ˙̃x1 > 0, consider the worst case trajectories in the final two quadrants.

In quadrant 3, where x̃1 < 0 and ˙̃x1 ≤ 0 the acceleration must be positive in order to drive

the velocity, ˙̃x1, back to zero. The boundary given by the differential inclusion is,

¨̃x1 = −f+ + α︸ ︷︷ ︸
positive

− 1

2
λ

˙̃x1

|x̃1|1/2︸ ︷︷ ︸
negative

(A.50)

The last term on the right hand side of (A.50) will only make the acceleration more positive,

so for the worst case acceleration (the smallest value that the acceleration will be) that

term is disregarded. This gives the following worst case trajectory for quadrant 3,
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¨̃x1 = α− f+︸ ︷︷ ︸
positive

(A.51)

This will always be positive and will drive the system trajectory back up to ˙̃x1 = 0. Define

the point where the system intersects with the axis ˙̃x1 = 0 as x̃1m2 .

At this point the trajectory will move into quadrant 4, where x̃1 < 0, ˙̃x1 ≥ 0. Again it

must be ensured that ¨̃x1 > 0. Here the boundary of the differential inclusion is given as,

¨̃x1 = −f+ + α︸ ︷︷ ︸
positive

− 1

2
λ

˙̃x1

|x̃1|1/2︸ ︷︷ ︸
positive

(A.52)

The last term on the right hand side of (A.52) will make the acceleration smaller, so it

must be considered in the worst case. Note that for a suitable choice of α, ¨̃x1 > 0 and

x̃1 will continue to increase until x̃1 = 0. The largest absolute value of x̃1 is x̃1m2 in this

quadrant. An expression for the upper bound on the velocity may be be found from the

inequality ¨̃x1 > 0. In this case,

− f+ + α− 1

2
λ

˙̃x1

|x̃1|1/2
> 0 (A.53)

Rearranging for ˙̃x1,

˙̃x1 <
2

λ
(α− f+)|x̃1|1/2 (A.54)

Since |x̃1| ≤ |x̃1m2|, the upper bound on the velocity, defined as ˙̃x11 , is given as,

˙̃x11 =
2

λ
(α− f+)|x̃1m2 |1/2 (A.55)

At this point the trajectory returns to (0, ˙̃x11) where ˙̃x11 > 0. It has already been shown

that, for suitably chosen λ, the trajectory will continue this pattern of twisting around the

origin, eventually converging in finite time.
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In order to show recovery of the unknown term ξ(t, x1, x2, u) in the dynamics, consider

the error dynamics (2.43) and (2.44). After T seconds, it is guaranteed that x̃1 = ˙̃x1 =

x̃2 = 0. At this point,

F (t, x1, x2, x̂2, u) = ξ(t, x1, x2, u)

so (2.44) reduces to,

ξ(t, x1, x2, u) = αsign(x̃1) (A.56)

The estimate of the unknown input to the dynamics is recovered from the equivalent value

of the discontinuous term on the right hand side of (A.56). The equivalent signal may be

obtained by passing this term through a low pass filter.
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Appendix B

Experimental Platform

The bilateral teleoperation algorithm presented in this work has been implemented exper-

imentally on the University of Waterloo Teleoperation Platform. This platform consists of

two 3-DOF direct-drive robot manipulators. Each manipulator is a five bar linkage that

operates in the vertical plane with an additional revolute joint at the base. These robots

were designed and manufactured at the University of Waterloo. The use of direct-drive

motors helps to eliminate issues such as stiction and backlash, which can be difficult to

account for in the dynamic models. Figure B.1 shows the master manipulator, while the

slave is shown in Figure B.2.

The experimental implementation makes use of only one degree of freedom on each

robot. For each manipulator, the two joints that actuate the five bar linkage were rigidly

locked. The base joint of each manipulator was actuated and used as the only degree

of freedom in the experiments. As a result of this, the dynamics of each manipulator

can be modeled as an inertia rotating in the horizontal plane with damping and friction.

Due to the hardware setup and available equipment, is was not possible to implement a

system where more than a total of three degrees of freedom between both robots could

be actuated at the same time. These limitations were caused by the available hardware.

There was only a power supply for three motor amplifiers, and the computer that was

used could only accommodate one data acquisition card. The use of only one degree
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Figure B.1: Master manipulator. Figure B.2: Slave manipulator.

of freedom per robot simplifies controller design in that it is not necessary to have a

Jacobian or to convert the robot dynamics into task space. This 1-DOF experimental

setup, along with 2-DOF simulation results, instills confidence that the algorithm will

function as expected with multiple degree of freedom setups. It is possible in practice that

other issues, such as unmodeled coupling between the degrees of freedom, will come out.

However, an experimental study of this situation is left for future work.

Data Acquisition Interface

The robots are connected to a desktop computer through PCI based data acquisition

hardware. This hardware is a Sensoray Model 626 Analog and Digital I/O interface card.

The card supports up to six encoders with a resolution of 24 bits each, four 14-bit D/A

outputs, sixteen 16-bit differential A/D inputs, and 48 digital I/O channels. For the

experimental setup used for this work, the digital I/O lines are not used.
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In order to interface the robots to the data acquisition card, a Quanser Consulting PCI

MultiQ VI terminal board was used. Ribbon cables from the Sensoray card are connected

to the terminal board to provide easy access to the I/O lines of the card.

Motors and Amplifiers

Each degree of freedom on the robots is driven by a Kollmorgen ServoDisc DC motor.

These motors are rated to produce a maximum of 1.41 horsepower. Position encoders

are fixed to each motor in order to give angular position measurements. Advanced Motion

Controls Series 50A servo amplifiers are used to power each of the motors. These amplifiers

generate PWM signals to drive the motors. Limit switches are placed on the robots at the

edge of the safe work envelope and connected to the fault lines of the amplifiers in order

to stop the motors should the robot move outside of the safe region.

Control Software

In order to implement the bilateral control algorithm, Simulink was used. Matlab has

built-in support for the Sensorary 626 card, making it quite straightforward to interface

with. The decision to use Simulink was made because of the availability of Real-Time

Workshop and the Real-Time Windows Target. This software makes it possible to run

Simulink models in real-time on a Windows PC, greatly simplifying the process of ex-

perimentally verifying the algorithm. The support available through Matlab allows the

implementation to be done directly in Simulink. Compiled code is automatically produced

and interfaces with the hardware. An environment of this nature makes it possible to focus

on the algorithm and the theory, while being able to implement it in a straightforward way.

Within the Simulink model, the controllers and observers were implemented with Em-

bedded Matlab blocks. These blocks allow the developer to write in a subset of the

Matlab language from within the Simulink environment. In many cases it can be easier

to write Matlab code to implement an algorithm. The various pieces of embedded code

may be easily interfaced with the rest of the Simulink model. The code in the embedded
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blocks is compiled at build time, and executed in real-time within the model. All of the

continuous time dynamics in the algorithm were integrated using a fifth order Runge-Kutta

algorithm.

Experimental Data Collection and Storage

When performing experiments of this nature, there are many possible parameters that

may be varied. For instance, controller gains, observer gains, time delays, sliding mode

boundary layers, and filter bandwidths are all parameters that may be modified from one

experiment to the next. This large number of parameters, combined with the fact that

many sets of experiments must be performed, creates the need for a suitable method to

store and organize the particular parameters used in each experimental run. While not

common in this field, a relational database can be an ideal tool for this task.

In order to store the parameters of each experimental run, a database was designed

using MySQL. The database is very straightforward in design. It consists of only one

table with a column for each of the parameters that may be varied, as well as columns

for experimental observations, and a reference to the data file for each experiment. Using

the Matlab Database Toolbox, Matlab code has been written to interface with this

database. In order to make use of this system, after completion of an experiment with the

robots the database interface code is run. This code stores experimental data to a file and

the parameters of the current experiment to the database. Several advantages exist to using

a system such as this over merely storing experimental data files. The database allows the

user to keep the parameters together with the data, as well as the set of observations made

during each particular experimental run. Also, once the data is in a relational database,

it is straightforward to perform searches and sorts on the experimental results, potentially

displaying only certain subsets of the experimental runs. This would be useful, for instance,

if the researcher wanted to examine only the set of results where a certain parameter was

held at a particular value.

Another piece of code has been written in order to allow the viewing of the experimental

results in a straightforward manner. Making use of the Matlab GUI development tools,
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Figure B.3: The Matlab interface used to display results of experimental runs.

combined with the Database Toolbox, this code connects to the experimental database,

retrieves the parameters from each of the experiments, and displays them in a graphical

table. The user may then select a particular experimental run and have the results plotted

on the screen. Sample output from the results display interface software is shown in

Figure B.3. This makes comparing results from various runs particularly straightforward.
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