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Abstract 

The current study used a probabilistic Quantitative Microbial Risk Assessment (QMRA) 

framework to describe the change of E. coli O157:H7 concentration in lettuce through a foodborne 

pathway, to develop a predictive model for risk estimation for E. coli O157:H7 infection associated 

with lettuce.  The model consisted of a series of pathogen-associated events including initial 

contamination, growth during cooling, cold storage and distribution, disinfection (chlorine, gaseous 

chlorine dioxide and gamma irradiation), and dose response after consumption.  A modified Baranyi 

growth model was proposed which described the initial physiological state of E. coli O157:H7 as a 

function of the initial temperature.  The modified Baranyi growth model was used to predict  

E. coli O157:H7 growth under realistic time-temperature profiles, accounting for the time dynamics 

of temperature fluctuation.  The risk assessment model was constructed in an Excel spreadsheet and 

Monte Carlo uncertainty analysis was simulated using Crystal Ball.  The results in the current study 

showed that temperature control was the key measure for minimizing the risk of E. coli O157:H7 

infection associated with lettuce.  Disinfecting contaminated lettuce using the hypothetical methods 

examined in the study had limited effectiveness in risk reduction.   Temperature abuse occurring 

before or after the hypothetical disinfections significantly diminished the disinfection effect and 

contributed to increased risk.  Of all simulated scenarios, the lowest risk was associated with adequate 

temperature control and irradiation (44 infections per 1000 consumptions [95%: 94 infection per 

1,000 consumption; 5%: 5 infections per 1,000 consumption]).   The model can be used to explore the 

public health impact of other potential strategies that can be adopted to minimize the risk of E. coli 

O157:H7, while taking into account the possible amplification of pathogen through the food chain.  



 

 iv 

Acknowledgements 

It is a pleasure to thank those who made this thesis possible.   

First of all, I owe my deepest gratitude to my supervisor Dr. Steve McColl.  His immense knowledge 

about environmental health has been a great inspiration to me. Without his guidance, patience, 

motivation, enthusiasm and constant encouragement, this work would not have been possible.   

 
I am grateful to my committee members, Dr. Joel Dubin and Dr. Phil Bigelow for spending their 

precious time helping me with the project, and for their critical feedbacks and insightful comments.  

 
I would also like to thank Mr. Aamir Fazil of PHAC for providing constructive suggestions and Dr. 

Hans Rediers of the Institute for Microbial Control of the Food Chain in Belgium for generously 

providing valuable empirical time-temperature data.  

 
I am indebted to the many friends who supported me throughout this project.  I am especially grateful 

to Susan Kaai for her constant support and encouragement, and Zhijun Li for his wise advice and kind 

assistance with various applications. I also wish to thank Tiantian Bian for all his efforts with curve 

fitting and Hao Liang for making such pretty graphs.  And finally, my best friend as a grad student, 

Cherry Zhang, for helping me get through the tough times, and for all the emotional support and the 

joyful times we had together.  

 
Lastly, and most importantly, I would like to express my gratitude to my entire family for providing a 

loving environment and always believing in me.  I owe a great deal to my parents for all the sacrifices 

they made to give me the opportunity to pursue my Master’s degree in Canada. It is to them, I 

dedicate this thesis.  



 

 v 

Table of Contents 

Author's Declaration ............................................................................................................................... ii 

Abstract ................................................................................................................................................. iii 

Acknowledgements ............................................................................................................................... iv 

Table of Contents ................................................................................................................................... v 

List of Figures ..................................................................................................................................... viii 

List of Tables ......................................................................................................................................... ix 

Chapter 1 : Introduction ......................................................................................................................... 1 

Chapter 2 : Background .......................................................................................................................... 3 

2.1 E. coli O157:H7 ............................................................................................................................ 3 

2.2 Exposure Pathways ....................................................................................................................... 4 

2.3 E. coli O157:H7 Multiplication on Lettuce .................................................................................. 7 

2.4 Disinfection .................................................................................................................................. 7 

2.4.1 Chlorine ................................................................................................................................. 7 

2.4.2 Chlorine Dioxide ................................................................................................................... 9 

2.4.3 Irradiation ............................................................................................................................ 11 

2.5 Dose Response ........................................................................................................................... 12 

2.6 Study Rationale .......................................................................................................................... 13 

Chapter 3 : Methodology ...................................................................................................................... 15 

3.1 Model Depiction ......................................................................................................................... 15 

3.2 Initial Contamination Level ........................................................................................................ 17 

3.3 Microbial Growth Model ............................................................................................................ 18 

3.3.1 Data Source ......................................................................................................................... 18 

3.3.2 Primary Growth Model Fitting ............................................................................................ 19 



 

 vi 

3.3.3 Secondary Growth Model Fitting ........................................................................................ 20 

3.3.4 Growth Model Evaluation ................................................................................................... 21 

3.3.5 Assumptions ........................................................................................................................ 22 

3.4 Time-Temperature Profiles ........................................................................................................ 23 

3.4.1 Data Source ......................................................................................................................... 23 

3.4.2 Curve Fitting ........................................................................................................................ 23 

3.5 Disinfection Models ................................................................................................................... 24 

3.5.1 Chlorine Disinfection Model ............................................................................................... 24 

3.5.2 ClO2 Disinfection Model ..................................................................................................... 25 

3.5.3 Irradiation Model ................................................................................................................. 26 

3.6 Dose Response Model ................................................................................................................ 27 

3.7 Uncertainty Analysis and Monte Carlo Simulation .................................................................... 28 

Chapter 4 : Results ............................................................................................................................... 29 

4.1 Time-Temperature Profiles ........................................................................................................ 29 

4.2 Disinfection Scenarios ................................................................................................................ 29 

4.3 Scenario 1 ................................................................................................................................... 33 

4.4 Scenario 2 ................................................................................................................................... 37 

4.5 Scenario 3 ................................................................................................................................... 41 

4.6 Scenario 4 ................................................................................................................................... 45 

4.7 Summary of Findings ................................................................................................................. 48 

Chapter 5 : Discussion .......................................................................................................................... 50 

5.1 Selection of Model Form ............................................................................................................ 52 

5.1.1 Microbial Growth Model ..................................................................................................... 52 

5.1.2 Disinfection Models ............................................................................................................ 53 



 

 vii 

5.1.3 Dose Response Model ......................................................................................................... 54 

5.2 Biological Realism ..................................................................................................................... 55 

5.3 Data Quality ............................................................................................................................... 57 

5.3.1 Growth Data ........................................................................................................................ 57 

5.3.2 Disinfection Data ................................................................................................................. 58 

5.3.3 Dose Response Data ............................................................................................................ 59 

5.4 Local Sensitivity ......................................................................................................................... 60 

5.5 Model Robustness ...................................................................................................................... 61 

5.6 Computer Implementation .......................................................................................................... 62 

Chapter 6 : Future Work and Conclusions ........................................................................................... 63 

References ............................................................................................................................................ 64 

 

Appendices  .......................................................................................................................................... 75 

Appendix A .......................................................................................................................................... 75 

Appendix B ........................................................................................................................................... 76 

Appendix C ........................................................................................................................................... 77 

Appendix D .......................................................................................................................................... 78 

Appendix E ........................................................................................................................................... 86 

Appendix F ........................................................................................................................................... 87 

Appendix G .......................................................................................................................................... 92 

Appendix H .......................................................................................................................................... 98 

 



 

 viii 

List of Figures 
 

Figure 1. General Supply Chain Flow for Lettuce/Leafy Greens. .......................................................... 5 

Figure 2. Flow Diagram of the Model for Quantitative Risk Assessment of E. coli O157:H7 on 

Lettuce. ................................................................................................................................................. 15 

Figure 3. Development Process of the Growth Model for E. coli O157:H7 on Lettuce. ..................... 18 

Figure 4. Temperature Profile of Lettuce throughout the Postharvest Supply Chain, Scenario 1. ....... 31 

Figure 5.  Predicted Growth Trajectory of E. coli O157:H7 in Lettuce, Scenario 1. ........................... 33 

Figure 6. Change of Predicted E. coli O157:H7 Concentration and Associated Variance with Time, 

Scenario 1. ............................................................................................................................................ 35 

Figure 7. Predicted Median, 5th and 95th Percentiles of E. coli O157:H7 Infection Risk, Scenario 1. . 36 

Figure 8. Predicted Growth Trajectory of E. coli O157:H7 in Lettuce, Scenario 2. ............................ 37 

Figure 9. Change of Predicted E. coli O157:H7 Concentration and Associated Variance with Time, 

Scenario 2. ............................................................................................................................................ 39 

Figure 10. Predicted Median, 5th and 95th Percentiles of E. coli O157:H7 Infection Risk, Scenario 2. 40 

Figure 11. Predicted Growth Trajectory of E. coli O157:H7 in Lettuce, Scenario 3. .......................... 41 

Figure 12. Change of Predicted E. coli O157:H7 Concentration and Associated Variance with Time, 

Scenario 3. ............................................................................................................................................ 43 

Figure 13. Predicted Median, 5th and 95th Percentiles of E. coli O157:H7 Infection Risk, Scenario 3. 44 

Figure 14. Predicted Growth Trajectory of E. coli O157:H7 in Lettuce, Scenario 4. .......................... 45 

Figure 15. Change of Predicted E. coli O157:H7 Concentration and Associated Variance with Time, 

Scenario 4. ............................................................................................................................................ 46 

Figure 16. Predicted Median, 5th and 95th Percentiles of E. coli O157:H7 Infection Risk, Scenario 4. 47 

 



 

 ix 

List of Tables 
 

Table 1. Possible Sources of E.coli O157:H7 on Lettuce. ..................................................................... 6 

Table 2. Studies about the Efficacy of Chlorine Treatments. ................................................................. 9 

Table 3. Efficacy of ClO2 Treatment on E.coli O157:H7 Inoculated on Lettuce ................................. 10 

Table 4. The Relationship between Growth Model Parameter and Temperature for E. coli O57:H7. . 20 

Table 5. Comparison of Model Performance in Two Dynamic Temperature Scenarios. .................... 22 

Table 6. Inactivation Kinetics of E. coli O157:H7 on Lettuce by Gaseous ClO2. ................................ 25 

Table 7. D10 Values of E. coli O157:H7 on/in Various Types of Lettuce. ........................................... 26 

Table 8. Best Estimates of Dose-Response Model Parameters. ........................................................... 27 

Table 9. Major Differences in the Four Temperature Profiles. ............................................................ 29 

Table 10. Point Estimate of Final Microbial Concentrations, Scenario 1. ........................................... 33 

Table 11. Post-Processing Infection Risk Associated with One 50g-serving of Lettuce, Scenario 1. . 34 

Table 12. Probability of Infection Associated with the Consumption of One 50g-Serving of Lettuce, 

Scenario 1. ............................................................................................................................................ 37 

Table 13. Point Estimate of Final Microbial Concentrations, Scenario 2. ........................................... 38 

Table 14. Post-Processing Infection Risk Associated with One 50g-serving of Lettuce, Scenario 2. . 38 

Table 15. Probability of Infection Associated with the Consumption of One 50g-Serving of Lettuce, 

Scenario 2. ............................................................................................................................................ 41 

Table 16. Point Estimate of Final Microbial Concentrations, Scenario 3. ........................................... 42 

Table 17. Post-Processing Infection Risk Associated with One 50g-serving of Lettuce, Scenario 3. . 42 

Table 18. Probability of Infection Associated with the Consumption of One 50g-Serving of Lettuce, 

Scenario 3. ............................................................................................................................................ 44 

Table 19. Point Estimate of Final Microbial Concentrations, Scenario 4. ........................................... 45 



 

 x 

Table 20. Post-Processing Infection Risk Associated with One 50g-serving of Lettuce, Scenario 4. . 45 

Table 21. Probability of Infection Associated with the Consumption of One 50g-Serving of Lettuce, 

Scenario 4. ............................................................................................................................................ 47 

Table 22. Probability of Infection Associated with the Consumption of One 50g-Serving of Lettuce.

 .............................................................................................................................................................. 49 

Table 23. Criteria Used for Testing and Model Validation throughout the Development Process of   

Probabilistic Model. ............................................................................................................................. 51 



1 

 

Chapter 1: Introduction 

In recent years, Escherichia coli O157:H7 has emerged as a major cause of both 

outbreaks and sporadic cases of human diarrheal disease in North America and throughout the 

world (Griff & Boyce, 1998; Sparling, 1998; Woodward, Clark, Caldeira, Ahmed, & Rodgers, 

2002). Mead et al have estimated that E. coli O157:H7 causes approximately 73480 illnesses 

annually in the U.S.; 85% (62456 cases) as the result of foodborne exposure (Mead, Slutsker, & 

Dietz, 2000). 

Historically, foodborne E. coli O157:H7 infection was frequently associated with the 

consumption of foods of bovine origin. However, in the last few decades, a dramatic increase in 

the incidence of E. coli O157:H7 infection associated with fresh fruits and vegetables has 

occurred (Rangel, Sparling, Crowe, Griffin, & Swerdlow, 2005; Sivapalasingam, Friedman, 

Cohen, & Tauxe, 2004). In the U.S., between 1982 and 2002, whereas 52% of the 350 E. coli 

O157:H7 outbreaks reported were caused by foodborne sources, ground beef and fresh produce 

were responsible for 75 and 38 outbreaks, respectively (Rangel et al., 2005). 

Leafy green vegetables, such as lettuce, have been implicated in a number of large 

outbreaks of E. coli O157:H7, some of which had serious impact on public health (Hilborn, 

Mermin, & Mshar, 1999; Martin, Gustafson, Pelosi, Suarez, & Pierce, 1986; US FDA, 2006; US 

FDA, 2007). For example, two well-publicized outbreaks involving E. coli O157:H7-tainted 

lettuce served in Taco Bell and Taco John restaurants in the U.S. in 2006 sickened about 150 

patrons in total, including 2 cases of hemolytic uremic syndrome (HUS) (US FDA, 2006; US 

FDA, 2007). These statistics have highlighted the concerns that leafy green vegetables may be an 

increasing source of E. coli O157:H7-associated illness, since leafy green consumption has 

increased dramatically during the last three decades. Leafy green vegetables have recently been 

ranked by the World Health Organization as the highest priority in terms of fresh produce 
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microbial safety from a global perspective (FAO/WHO, 2008) and second (with ground beef 

being the first) most significant cause of human foodborne illness caused by E. coli O157:H7 by 

Codex Alimentarius Committee (Codex Alimentarius Committee, 2002). 

E. coli O157:H7 infection involving lettuce is receiving more and more attention. Leafy 

green vegetables are usually minimally processed without any kill steps; therefore, reduction of 

E. coli O157:H7 contamination to acceptable levels is essential to protecting public health. Given 

the serious impact of E. coli O157:H7 infection on health and the continued increase of lettuce 

consumption during recent years, prevention and control of E. coli O157:H7 on lettuce is a high 

priority for public health protection. 

Epidemiological studies suggest that contamination of leafy green vegetables with E. coli 

O157:H7 is an event with very low probability (Arthur, Jones, Fabri, & Odumeruz, 2007; 

Johannessen, Loncarevic, & Kruse, 2002; Mukherjee, Speh, Dyck, & Diez-Gonzalez, 2004; 

Sagoo, Little, & Mitchell, 2001). Traditional food inspection approach by products sampling at 

various points of the food chain is apparently inadequate to address this problem. A more 

systematic risk management approach is to integrate quantitative risk assessment techniques into 

the development Hazard Analysis Critical Control Point (HACCP) plan. While HACCP plan 

identifies potential hazards and establishes measures for their control at the critical points in food 

production where it is essential to prevent or eliminate a food safety hazard (WHO, 1998a), risk 

assessment, on the other hand, quantifies the combined human health risk of multiple control-

point deviations and therefore provides valuable information for risk management (Buchanan & 

Whiting, 1998). 

Thus, the purpose of this project is to conduct a risk assessment for human health risk 

involving E. coli O157:H7-contaminated lettuce, in order to quantify the combined effects of 

current intervention strategies and to identify potential risk mitigation strategies. Findings from 

this project will hopefully be used by the C-EnterNet Health Canada group in the future.  
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Chapter 2: Background 

2.1 E. coli O157:H7 

E. coli O157:H7 belongs to a class of pathogenic E. coli known as enterohemorrhagic 

Escherichia coli (EHEC), with O and H designating its somatic antigen and flagella antigen, 

respectively (Buchanan & Doyle, 1997). Although most E. coli strains are harmless and found 

normally in the mammalian intestine, E. coli O157:H7 is a highly virulent strain that has toxin 

producing capabilities. It is sometimes referred to as verocytotoxin producing E. coli (VTEC) or 

shiga-like toxin producing E. coli (STEC). 

Escherichia coli O157:H7 is the single most important EHEC serotype in relation to 

public health. It was first recognized as a human pathogen following two outbreaks of 

gastrointestinal illness in the U.S. associated with undercooked hamburger patties (Riley et al., 

1983).Statistics suggested that, in Canada, the UK, Germany, Belgium, the Netherlands and 

Japan, E. coli O157:H7 has been associated with most outbreaks of EHEC infection and 70% to 

80% of sporadic cases of classic HUS (Boyce, Swerdlow, & Griffin, 1995). The incidence of 

non-O157 EHEC is estimated to be only 20%-50% of that caused by E. coli O157:H7 (Mead et 

al., 2000). 

The importance of E. coli O157:H7 infection is derived from the severity of the disease. 

When ingested, E. coli O157:H7 exhibit effective acid resistance mechanisms that allow them to 

survive exposure to gastric acidity and finally to colonize in the large intestine, where they 

develop attaching and effacing (A/E) lesions in the host cells, induce inflammatory response and 

cause intestinal hemorrhaging by producing shiga toxins (Nataro & Kaper, 1998). Infectious dose 

of E. coli O157:H7 is found to be very small (10-1000 cells) (Harris et al., 2003). 

E. coli O157:H7 can affect people of all age; young children are most susceptible, 

followed by the elderly (Codex Alimentarius Committee, 2002).The incubation period of E. coli 
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O157:H7 disease ranges from two to five days (Harris et al., 2003).Clinical symptoms of E. coli 

O157:H7 infection begin with abdominal cramps and non-bloody diarrhea, which in more than 

70% of the cases leading to bloody diarrhea (Bell, Goldoft, & Griffin, 1994). Furthermore, some 

of those infected may develop hemorrhagic colitis (grossly bloody diarrhea) and HUS, which is a 

systemic complication involving acute and chronic kidney failure, thrombotic thrombocytopenic 

purpura (TTP) and neurological sequelae (Nataro & Kaper, 1998). These complications may 

result in end-stage renal disease (ESRD), a serious chronic condition that can cause death (Nataro 

& Kaper, 1998). 

 

2.2 Exposure Pathways 

E. coli O157:H7 is widely distributed within the environment. It has been isolated from 

food and water for livestock, manure, soil, flies, domestic animals (e.g., cattle, sheep, pigs, 

horses, dogs) and wild animals (e.g. deer and birds) (Bach, McAllister, Veira, Gannon, & Holley, 

2002). However, epidemiological studies demonstrate that dairy and beef cattle are primary 

reservoirs of E. coli O157:H7 (Bach et al., 2002). Cattle carry E. coli O157:H7 asymptomatically, 

shedding it intermittently and seasonally in their feces (Chapman, 2000). 

In developed countries, most lettuce is now produced on an industrial scale (Figure 1). 

However, in practice, operations at each stage in the production-distribution-consumption chain 

are diverse and vary considerably. 
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(Adapted from (US FDA/CFSAN, 2006)) 

Figure 1. General Supply Chain Flow for Lettuce/Leafy Greens.  

So far, outbreak investigations still do not provide sufficient information about how E. 

coli O157:H7 pathogens could have entered the lettuce supply chain and whether postharvest 

practices would have reduced or accentuated the contamination. In most cases, even extensive 

outbreak investigations failed to pinpoint the specific risk factors and the routes through which E. 

coli O157:H7 come into contact with lettuce (Ackers et al., 1998; California Food Emergency 

Response Team, 2007; Doyle & Erickson, 2008). A number of potential risk factors contributing 

to contamination during preharvest and postharvest phases have been proposed (Table 1). 
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Table 1. Possible Sources of E.coli O157:H7 on Lettuce. 

Preharvest Sources  Outbreak 
Investigation  Experimental Studies 

Feces  Ackers et al., 1998; 
Hilborn et al., 1999   

Irrigation water  Ackers et al., 1998  Wachtel, Whitehand, & Mandrell, 2002 

Manure  Ackers et al., 1998  Solomon, Yaron, & Matthews, 2002 

Wild and domestic animals;  Hilborn et al., 1999   
Lack of field sanitation  Hilborn et al., 1999   
Harvesting equipment    Gleeson & O'Beirne, 2005 
Human handling (workers, 
consumers)  Harris et al., 2003   

Ice    Kim & Harrison, 2008 
Wash and rinse water  Hilborn et al., 1999   
Improper storage 
(temperature, physical 
environment) 

  Wachtel & Charkowski, 2002 

Cross‐contamination with 
other foods  Harris et al., 2003 

Wachtel & Charkowski, 2002; Wachtel, 
McEvoy, Luo, Williams‐Campbell, & 
Solomon, 2003  

 

The dynamics of the production environment at the farm level and the variety and 

diversity of postharvest practices present challenges to controlling possible outbreaks. Efforts 

must be made throughout the entire system to address this issue. Where the possibility of 

contamination cannot be excluded, developing effective intervention strategies to minimize or 

eliminate the risk is a priority for the produce industry. Attention has been paid to examining the 

survival and growth characteristics of E. coli O157:H7 on lettuce and the efficacy of disinfection 

treatments to eliminate the hazard. The following four sections review the research in these two 

areas. 

 



 

 

7 

 

2.3 E. coli O157:H7 Multiplication on Lettuce 

Growth of E. coli O157:H7 may occur during cold storage, transportation, retail display 

or consumer storage, and is dependent on the interaction of a number of intrinsic and extrinsic 

factors. Operations during lettuce harvest and processing provide favorable conditions for the 

survival and proliferation of E. coli O157:H7 by creating cut surfaces where large amounts of 

nutrients are released (US FDA/CFSAN, 2001). It has been reported that packaging under 

modified atmosphere has no apparent effect on the survival and growth of E. coli O157:H7 

(Abdul-Raouf, Beuchat, & Ammar, 1993). 

Similar to other pathogens, temperature is an important factor determining the survival of 

E. coli O157:H7. High temperature during the storage, distribution or retail display of lettuce may 

result in the multiplication of E. coli O157:H7. Laboratory experiments revealed that given 

sufficient time, E. coli O157:H7 is capable of growing at 8°C (Rajkowski & Marmer, 1995). 

McEvoy et al (McEvoy, Luo, Conway, Zhou, & Feng, 2009) examined the survival and growth 

of E. coli O157:H7 under a simulated field temperature (30°C) and a refrigerated temperature 

(5°C) after E. coli O157:H7 were transferred onto lettuce during harvest. The result showed that 

E. coli O157:H7 populations increased by more than 2 log CFU/g in 8h at 30°C, whereas at 5°C, 

significant (P<0.05) growth or loss of viability of E. coli O157:H7 was not observed (McEvoy et 

al., 2009).  

 

2.4 Disinfection 

2.4.1 Chlorine 

Water containing 50-200 mg/L of chlorine is the most common sanitizer in wash, spray, 

and flume waters used in the fresh fruit and vegetable industry (WHO, 1998b). Antimicrobial 

activity of chlorine treatment depends on the amount of free available chlorine (as hypochlorous 
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acid) in water that comes into contact with microbial cells. Since chlorine reacts with organic 

matter, its inhibitory activity is compromised when organic matter is present in water (Beuchat, 

1999). In addition, human and environmental safety concerns have been raised about the 

production of chlorinated carcinogenic compounds as a result of the reaction between chlorine 

and organic matter (Ölmez & Kretzschmar, 2009). Moreover, Seo and Frank (Seo & Frank, 1999) 

found that E. coli O157:H7 are able not only to attach to the surface, trichomes, stomata and cut 

edges of lettuce, but also to penetrate into the internal tissue of lettuce via natural openings or cut 

surfaces as a result of environmental stresses (Takeuchi & Frank, 2000; Takeuchi & Frank, 

2001). The penetration of E. coli O157:H7 into lettuce tissue may increase the resistance of E. 

coli O157:H7 to disinfectants. 

A few studies investigated the effect of chlorine specifically on E. coli O157:H7 

inoculated onto lettuce (Table 2). It is obvious that chlorine treatment at conventional 

concentrations (50-200 mg/L) has little effect in E. coli O157:H7 inactivation. Elevated risk of E. 

coli O157:H7 infection involving lettuce may be attributable to the failure of this disinfection 

treatment, which has important implications for public health. In an attempt to effectively reduce 

the microbial load on produce, alternative disinfection methods that are more efficacious than 

chlorine have been investigated; these will be discussed in the next few subsections. 
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Table 2. Studies about the Efficacy of Chlorine Treatments. 

Investigation  Experimental details  Experimental results 

Beuchat, Nail, 
Adler, & Clavero, 
1998  

Sprayed inoculated lettuce with 
water or 200ppm chlorine, then 
soaked for 10 min and rinsed 
with water 

Spray treatments with 200ppm 
chlorine can further reduce 
E.coliO157:H7 populations by about 
1 log CFU/g after soaking with water 

Beuchat, 1999 

Used bovine feces as a vehicle of 
inoculation, spayed inoculated 
lettuce with water or 200ppm 
chlorine, and stored for up to 15 
days 

Spray treatments with 200ppm 
chlorine and water were equally 
effective in eliminating 
E.coliO157:H7. 

Li, Brackett, 
Chen, & Beuchat, 
2001 

Washed inoculated lettuce with 
20ppm chlorine or water at 20 
or 50°C and storage at 5°C or 
15°C for 18 days. 

Treatment with 20ppm chlorine at 
either 20 °C or 50 °C did not yield 
additional reductions in E. coli 
O157:H7 number, compared to 
water. 

 

 

2.4.2 Chlorine Dioxide 

Chlorine dioxide (ClO2) is a powerful oxidizing agent that is about 2.5 times more 

oxidative than chlorine, but it is more stable and does not react with organic matter to produce 

carcinogenic compounds (WHO, 1998b). It can be used in gaseous or aqueous forms. The 

effectiveness of ClO2 gas treatment is determined mainly by gas concentration, followed by the 

duration of treatment, relative humidity and temperature (Gómez-López, Rajkovic, Ragaert, 

Smigic, & Devlieghere). 

Currently, the use of ClO2 is not allowed to decontaminate fresh produce except in the 

U.S., where a maximum of 3ppm of ClO2 is permitted for disinfection of whole fruits and 

vegetables (US FDA, 2001).  Due to the development of technology that makes shipment of ClO2 

possible  and its on-site generation safer, more and more research about the use of ClO2 in fresh 

produce disinfection is being done. 
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Information regarding ClO2 disinfection on foodborne pathogens and its influence on 

food quality has been reviewed (Gómez-López et al.). In general, ClO2 effectively inactivates E. 

coli O157:H7 present on fresh fruits and vegetables, but complete elimination has not been 

observed. Application of gaseous ClO2 has been more successful than that of aqueous ClO2 due to 

the high penetrability of gaseous ClO2.  Table 3 outlines the results from studies about the effect 

of ClO2 treatment on E. coli O157:H7 inoculated into lettuce, as well as the conditions under 

which the experiments were carried out. 

Table 3. Efficacy of ClO2 Treatment on E.coli O157:H7 Inoculated on Lettuce 

Treatment  Concentration 
(mg/l) 

Time 
(min) 

Relative 
Humidity 
(%) 

Log 
Reduction 
(log CFU) 

Reference 

Aqueous 

ClO2 

10  5  ‐  1.2 
Singh, Singh, Bhunia, & 

Stroshine, 2002a  

20  15  ‐  1.7 
Singh, Singh, Bhunia, & 

Stroshine, 2002b  

Gaseous 

ClO2 

1  15  80  2.31 
Singh, Singh, Bhunia, & 

Stroshine, 2002b  

4.1  20.5  36‐84  1.57 
Sy, Murray, Harrison, & 

Beuchat, 2005  

5  10  90‐95  3.9  Mahmoud & Linton, 2008 

8.7  180  ‐  6.9 
Lee, Costello, & Kang, 

2004 
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According to these studies, gaseous ClO2 is much more effective than aqueous ClO2 at 

killing E. coli O157:H7 on lettuce and has the potential to be used as a sanitizer in industry. 

However, affecting the visual quality of lettuce is a concern when ClO2 gas treatment is used. 

Research has generated conflicting results: although Lee et al. (Lee et al., 2004) reported no 

deteriorating visual quality in lettuce after treatment with ClO2 gas at a concentration of 8.7 mg/l 

for 3h and 18-day storage at 4°C, immediate and adverse discolorations were observed by 

Mahmoud et al. (Mahmoud & Linton, 2008) and Sy et al. (Sy et al., 2005) after treatment with 

0.5 mg/l and 1.4 mg/l ClO2 for 10 min, respectively. More research into the use of ClO2 is 

required. 

 

2.4.3 Irradiation 

Irradiation is a decontamination process that exposes the food to an appropriate level of 

ionizing radiation in the form of gamma rays, X-rays or electron beams to kill bacteria, viruses or 

insects that might be present. Use of irradiation in the industry has been legalized in the U.S. and 

Canada for fresh pork, poultry, spice, dry ingredients, potatoes and onions, etc. (CFIA, 2005; US 

FDA, 2008b).  In August, 2008, as part of an overall antimicrobial strategy the U.S. FDA 

approved the irradiation of iceberg lettuce and spinach at a maximum absorbed dose of 4.0 kGy 

for disinfection (US FDA, 2008a). 

Application of irradiation to lettuce was once considered unsuitable because of 

phytotoxic damage that might be encountered with high-dose irradiation (Thayer & Rajkowski, 

1999). However, given that most surface disinfection treatments fail to assure lettuce safety, some 

attention has been paid to the value of irradiation as a disinfection method. Niemira (Niemira, 

2007) compared the antimicrobial efficacy of chlorine washes and irradiation. Results showed 

that whereas treatments with 300ppm and 600ppm chlorine were only able to decrease the 

number of E. coli O157:H7 by less than 1 log, a 4-log reduction was achieved via irradiation at a 
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dose of 1.5 kGy (Niemira, 2007). Similarly, in another study, irradiation was found to kill as 

many as 5 log of E. coli O157:H7 in iceberg lettuce (Niemira, 2008).  The relationships between 

the reduction of E. coli O157:H7 populations and irradiation dose have been found to be linear 

across the range of doses being tested in all but red leaf lettuce in which a tailing effect was 

observed (Niemira, Sommers, & Fan, 2002; Niemira, 2008). 

Compared to other disinfection methods, irradiation is a promising method of lettuce 

disinfection for many reasons other than its high efficacy: irradiated lettuce is free of chemical 

residues; irradiation treatment can be conducted either before or after packaging; and irradiation 

only causes minimal environmental pollution. As well, it has been reported that irradiation doses 

of up to 0.5kGy had no meaningful impact on the texture of Boston, iceberg, green leaf and red 

leaf lettuce (Hagenmaier & Baker, 1997; Niemira et al., 2002), although the threshold doses at 

which noticeable softening occurs in lettuce have yet to be determined. However, market 

acceptance of the application of this technology on lettuce is still questionable. Furthermore, the 

high costs of irradiation-associated facilities and equipment make it unaffordable for small firms. 

 

2.5 Dose Response 

Dose-response assessment, or hazard characterization, describes the relationship between 

the level of microbial exposure and the likelihood of infection, making it possible to estimate the 

risk of human infection following exposure to pathogens via either foodborne or environmental 

pathways (Buchanan, Smith, & Long, 2000). Because of ethical considerations, these data are 

usually unavailable for highly infectious pathogens, such as E. coli O157:H7 (Buchanan et al., 

2000). Based on the results from the empirical modeling of dose-response relationships,    

Strachan et al. (Strachan et al., 2005) fitted a Beta-Poisson model to the data obtained from eight 

foodborne and environmental E. coli O157:H7 outbreaks. 
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2.6 Study Rationale 

Good Agricultural Practices (GAPs), Good Manufacturing Practices (GMPs) and Hazard 

Analysis Critical Control Point (HACCP) − have been developed to advise growers and the 

industry about effective on-farm and in-plant sanitation programs (US FDA/CFSAN, 2006). Due 

to the complex production environment at the farm level, as well as the diversity and complexity 

that exist in the production chain and industry, prevention of contamination alone is clearly 

impossible to guarantee lettuce free of pathogens in most cases. Moreover, research has 

uncovered the ability of E. coli O157:H7 to survive on lettuce for extended periods of time. If 

E.coli O157:H7 is able to persist on lettuce for an extended period of time, it is possible that the 

infectious dose that remains may have grown. Thus, the implementation of effective intervention 

strategies to minimize or even eliminate the E. coli O157:H7 risk is an industry priority, 

especially when the produce industry is now increasingly dependent on importing lettuce from 

worldwide sources to fill domestic demand. 

Research has investigated the efficacy of various disinfection treatments along with the 

behavior of E. coli O157:H7 on lettuce. However, quantitative studies regarding the combined 

effect of interventions at various postharvest steps in terms of health risk mitigation have not been 

done, which presents a major challenge to decision makers in industry and public health officers. 

Thus, the purpose of this project is to develop a modeling framework for evaluating the 

effectiveness of risk mitigation strategies in eliminating E. coli O157:H7 from lettuce, to provide 

information necessary for HACCP development and evaluation. Below are the research questions 

which will be addressed and discussed in the discussion section:  

(a) What is the likelihood of E. coli O157:H7 infection as a result of consuming 

contaminated lettuce at various levels of contamination? 

(b) Whether increased health risk is attributable to E. coli O157:H7 proliferation as a 

result of temperature abuse? If so, what portion of the risk can be reduced if temperature abuse 
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were successfully prevented? 

(c) To what extent does the current disinfection method (treatment with chlorine, 

treatment with chlorine dioxide or irradiation) minimize the risks of consuming lettuce 

contaminated with E. coli O157:H7? What additional risk reduction can be expected from using 

alternative disinfection strategies? What is the major uncertainty in the successful application of 

these technologies? 

(d) What are the effects of the stochastic model versus the threshold model for dose-

response in predicting risk, given a specific estimate of the exposure level? 
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Chapter 3: Methodology 

3.1 Model Depiction 

Fitted to the exposure model was a hypothetical food system. Iceberg lettuce was 

assumed to be contaminated with E. coli O157:H7 during harvest by an unknown source. Before 

arriving at the restaurant, the lettuce traveled down the food system through various operation 

units, namely, cooling and cold storage, processing and distribution to the restaurant. The food 

pathway ended when the lettuce was disinfected with chlorine after delivery to the restaurant 

(Figure 2). 

 

 

Figure 2. Flow Diagram of the Model for Quantitative Risk Assessment of E. coli O157:H7 on 

Lettuce.  
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The primary model input was the population of E. coli O157:H7 present on 100 grams of 

lettuce and the final output of the exposure model was defined as the probability distribution of 

the ingested dose in colony-forming units (CFU) in 50 grams (one serving) of lettuce, with which 

the risk of infection was predicted by the dose-response model. 

The exposure model was constructed by linking the inputs and outputs of the consecutive 

modules in the cold chain, which referred to the intermediate stages in the supply chain from 

cooling and cold storage to distribution to the restaurant (Figure 2). In the cold chain, change of 

E. coli O157:H7 population size in 100 grams of lettuce was modeled under different temperature 

conditions which included low-risk temperature scenarios and high-risk temperature scenarios.  

Within each given temperature scenario, the effects of disinfection methods, i.e., chlorine wash 

(Cl), gaseous chlorine dioxide (ClO2), and gamma irradiation (irradiation), were explored.  

Considering that chlorine was widely accessible and easy to use, chlorine wash was the baseline 

disinfection method and assumed to have been implemented after arriving at the restaurant.  

During processing, only one of the three disinfection methods mentioned above was assumed to 

be used.  Therefore, four intervention strategies were constructed: baseline (1×Cl), chlorine wash 

(2×Cl), ClO2 disinfection (ClO2+Cl), as well as irradiation (irradiation+Cl).  These designs 

allowed for the examination of risk reduction as a result of using alternative disinfection.  The 

reason why disinfection was assumed to take place at the processing plant was because it was 

more feasible and cost-effective to apply disinfection at a centralized place.   

Note that cross-contamination may be another factor that could contribute to increased 

risk. Modeling cross-contamination may be done in future studies but was not within the scope of 

the study.  Since the effect of temperature abuse in the restaurant has been modeled elsewhere 

(Franz, Tromp, Rijgersberg, & van der Fels-Klerx, 2010), by assuming that temperature was well 

controlled at the restaurant, the current study focused on assessing the effect of temperature 

trajectories in the cold chain on the risk of infection.  
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Assumptions made for this model included the following:  

a)  E. coli O157:H7 were homogeneously distributed in lettuce;  

b)  Heads of lettuce were packaged individually;  

c)  No cross-contamination occurred; 

d)  Temperature was well controlled below 5°C in the restaurant; 

e)  One serving (50 grams) of lettuce was consumed at a time.  

Distributions were identified to represent model variables where possible. Description of 

each variable and its associated uncertainty were summarized in Appendix A.  

 

3.2 Initial Contamination Level 

Initial contamination level referred to the concentration of E. coli O157:H7 present in the 

lettuce after harvest. A number of microbial surveys have been conducted at the farm, the 

distribution, or the retailing levels to quantify the prevalence of E. coli O157:H7 in lettuce or 

leafy produce in North America and Europe (Abadias, Usall, Anguera, Solsona, & Viñas, 2008; 

Arthur et al., 2007; Bohaychuk et al., 2009; Mukherjee et al., 2004; Mukherjee, Speh, Jones, 

Buesing, & Diez-Gonzalez, 2006; Sagoo, Little, Ward, Gillespie, & Mitchell, 2003). To date, no 

E. coli O157:H7 was found in any of these studies. A probability distribution for the 

contamination level cannot be established until better concentration data are available. As “proof 

of concept”, three relatively low level of inoculum sizes (1, 2 or 3 logCFU/g) were used as the 

model input.  Although the lack of good data limited the ability of this model to make 

geographically-related predictions at the population level, the model design set out to establish a 

framework that could be further developed at a future point in time.   
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3.3 Microbial Growth Model 

 

Figure 3. Development Process of the Growth Model for E. coli O157:H7 on Lettuce.  

To construct the microbial growth model, raw log counts of E. coli O157:H7 were used 

to fit a sigmoidal growth curve at each constant temperature (Figure 3). Then, the parameters of 

these growth curves were further described as a function of temperature, which were known as 

secondary models.  Finally, these secondary models were substituted into the modified Baranyi 

model to estimate E. coli O157:H7 growth under dynamic temperature.  

3.3.1 Data Source 

Predictive microbiology has been widely used to predict microbial growth in specific 

food environments, based on influencing intrinsic and extrinsic factors incorporated into the 

mathematical model (J. Baranyi & Roberts, 2004; Isabelle & André, 2006).   The log counts of 

E.coli O157:H7 in lettuce were observed by Koseki et al. (2005) at a series of constant 

temperatures (5°C, 10°C, 15°C, 10°C and 25°C). The number of data point at each temperature 

varied from 10 to 44.  These data are freely available in the Combase Database1. Using these data, 

Koseki et al. parameterized a growth model, the Baranyi model (J. Baranyi, Robinson, Kaloti, & 

Mackey, 1995), for E. coli O157:H7 on shredded lettuce. However, this model performed poorly 

                                                      
1 Combase is an online database developed through international collaboration. It consists of useful 
microbial growth and survival data for the development of microbial models and is freely available to 
public.  
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when comparing the predicted counts with the viable counts of E. coli O157:H7 on lettuce under 

dynamic temperature conditions (Koseki & Isobe, 2005).   In the study, the same data set was 

used to build a slightly different growth model.  

 

3.3.2 Primary Growth Model Fitting 

The primary growth model used in the current study was the same as the one used by by  

Koseki et al. ( 2005).  It was the coupled sets of differential functions (Equation 1) developed by 

Baranyi and Roberts (J. Baranyi, Robinson, Kaloti, & Mackey, 1995).  

Equation 1 

 
max 0

max 0
max

, (0)

(1 ) , (0)
1

dq q q q
dt
dx q x x x x
dt q x

μ

μ

= =

= − =
+  

where μmax was maximum specific growth rate in terms of lnCFU/h;  xmax was the maximum 

population density in lnCFU/g; λ as the lag-phase duration in hours, referring to the length of 

time until maximum exponential growth occurs; q was a dimensionless quantity representing the 

initial physiological state of the cells.  

Using the DMFit web edition2, growth curves were fitted for a series of constants 

temperatures (Appendix B). The growth parameters (μmax, xmax and λ) were extracted for all 

temperatures except 5 ˚C (Appendix C). In a constant environment, α, and q0 were different ways 

to denote the physiological state of the cells (Equation 2, 3).  

Equation 2 

 

  
                                                      
2 DMFit is an online model fitting tool for bacterial growth curves. Using inputted time and bacterial log 
counts, it provides graphic representation of a bacterial growth data set and generates growth parameters, 
such as maximum growth rate and lag.  

0 e λμα −=
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Equation 3 

 

 

Fitting of the growth data and analysis of the results were done in lnCFU/g units but 

numbers reported in the current study are in log10CFU/g for easier interpretation.  

 

3.3.3 Secondary Growth Model Fitting 

Secondary model described how the model parameters (μmax, xmax and q0) vary with 

environmental conditions. The original Baranyi model assumed that the q0 stayed relatively 

constant regardless of the temperature, when the pre-inoculation history of the cells was identical 

(J. Baranyi et al., 1995). However, based on empirical data, q0 at 10 °C was about 100-fold 

different from that at 25 °C.  Contradictory evidence to this assumption was also found in other 

studies, which suggested a temperature-dependency in q0 (Mellefont, McMeekin, & Ross, 2003; 

Swinnen, Bernaerts, & Van Impe, 2006). Instead of adapting the original Baranyi model where q0 

was treated as a constant, in the study, q0 was characterized by a quadratic function of initial 

temperature within the temperature range of 10°C to 25°C (Table 4).  Therefore, the growth 

model used in the current study was coined as modified Baranyi model. The relationship between 

xmax and temperature was described by a linear equation, while μmax was described using the 

simple square root model of Ratkowsky et al. (1982).  

Table 4. The Relationship between Growth Model Parameter and Temperature for E. coli O57:H7. 

Parameter  Secondary Model  Adjusted R2 

max ( )X T   Xmax = 0.056T + 5.335  0.914 

( )Tμ   μ  = 0.032T ‐ 0.147  0.998 

0( )q T   q0 = ‐0.0039T2 + 0.0993T + 0.0157 0.623 

0
0

01
q α

α
=

−
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The three secondary functions were then substituted into the Baranyi model, allowing all 

the parameters to be temperature dependent.  This system was solved numerically by the fourth 

order Runge-Kutta method (Chitode, 2010) which was a standard numerical approximation 

technique used to solve ordinary differential equation (Equation 4).  The cell concentration was 

calculated iteratively as the cell concentration at the previous time interval plus the weighted-

average derivative of the four estimates of the derivative.  Each time interval was decided as 20 

minutes to avoid oscillation (Equation 5).  

Equation 4 

( , )dy f x y
dx

= , 0(0)y y=  

Equation 5 
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1
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=
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= + +

 

The process was programmed in Visual Basic from Microsoft Excel, by stating the initial 

contamination level, the length of the cold chain and step size (VBA codes can be found in 

Appendix D).  

 

3.3.4 Growth Model Evaluation 

In order to obtain data dynamic time- temperature data and E. coli O157:H7 cell counts 

for the use of model evaluation, two figures representing different scenarios from published study 

(Koseki & Isobe, 2005) were digitized, which allowed the graphical points to be accurately 
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converted back into numerical data.  Starting temperatures in these two scenarios differ; 18°C in 

the first scenario (cool scenario) and 25°C in the second scenario (warm scenario).  

The mean absolute relative error (MARE) is a standard goodness-of-fit statistics used for 

the evaluation of non-parametric curve.  It is an indicator of the absolute deviation of the model 

estimates to the observed values.  Therefore, a least positive value is desired.  

Equation 6 

1 ( ) 100O PMARE
N O

−
= ×∑

 

In each of the evaluation scenarios, MARE was calculated for both the original Baranyi 

model and the modified Baranyi model (Table 5).  The graphs with the predicted growth curves 

superimposed with the observed cell counts can be found in the Appendix E.  

Table 5. Comparison of Model Performance in Two Dynamic Temperature Scenarios. 

Temperature Profile  Growth Model  MARE (%)

Cool Scenario  Original Baranyi  2.83 

  Modified Baranyi 4.14 

Warm Scenario  Original Baranyi  36.33 

  Modified Baranyi 1.40 

Although the modified Baranyi model slightly overestimated growth in the cool scenario 

(MARE=4.14%), its predicted growth curve only deviated from the observation by 1.40% in the 

warm scenario, as opposed to 36.33% for the original Baranyi model.  

 

3.3.5 Assumptions 

For the maximum growth rate (μmax) and the maximum population density (xmax), 

parameter uncertainty was represented by a normal distribution associated with the regression 

beta coefficient in the least-squares fitted secondary functions, under the assumption that the 

errors in the regression were normally distributed.   
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The uncertainty associated with the physiological state (q0) of E. coli O157:H7 was 

captured with a uniform probabilistic distribution, the best estimate of which was estimated using 

the fitted function of initial temperature within the range of 10°C to 25°C, and the maximum and 

minimum values were arbitrarily defined as the q0 times two and the q0 divided by two, 

respectively.  Univariate sensitivity analysis of the q0 with respect to the model outcome was 

carried out by holding other variables constant at their point values derived from the secondary 

growth models.   

 

3.4 Time-Temperature Profiles 

3.4.1 Data Source 

Time-varying temperature data were generously provided by Dr. Rediers (Rediers, Claes, 

Peeters, & Willems, 2009) from the Institute for Microbial Control of the Food Chain in Belgium, 

to analyze the effect of temperature on pathogen proliferation.   Temperature was measured by 

data loggers attached to the leafy produce at one-minute intervals, following its route from 

harvest to the restaurant.   In this study, four scenarios were chosen, including two low-risk 

scenarios and two high-risk scenarios with temperature abuse.  

3.4.2 Curve Fitting 

The purpose of curve fitting of the two dimensional time and temperature data was to 

functionalize data for confidentiality.   Additionally, using function to describe the data was better 

than sampling point values directly from the data as it helped to smooth noise (i.e., measurement 

error) and avoid numerical artifacts resulting from over fitting the data.  

The PROC REG procedure in the SAS package (SAS 9.1) was used to fit a cubic 

piecewise regression spline to each of the four data sets.  The general principle of the curve fitting 

process was to characterize the change of temperature as much as possible in a parsimonious 
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form.  For each curve, about 10 knots (the abscissa value of the joint points) were placed at the 

joint points where necessary.  To start with, the section between each knot was fit by a third-

degree polynomial including a linear term, a quadratic term and a cubic term.  Then, any 

parameter that was not statistically significant in the regression function was removed from the 

model under the condition that removing this parameter did not compromise the visual fit of the 

curve.   The SAS codes used for the curve fitting were included (Appendix F), as well as the 

estimated parameters and fitted curves (Appendix G).   After the curve function was established, 

the instantaneous temperature was substituted by the function of time into the modified Baranyi 

model.  

 

3.5 Disinfection Models 

3.5.1 Chlorine Disinfection Model 

The efficacy of chlorine in removing pathogens from the produce has been reviewed by 

Fonseca (Fonseca, 2006).  Although the effectiveness of chlorine treatment varies by method of 

application, the treatment time and the concentration of effective ingredient, it was concluded that 

chlorine disinfection can only reduce pathogens populations by 1-2 log CFU/g (Fonseca, 2006).   

An attempt was made to derive a probabilistic model for the chlorine disinfection, but lack of 

disinfection model for industrial practices and the fact that relevant data were scattered by studies 

done under different conditions made it impossible.   

For the sake of accounting for the disinfection effect of chlorine, it was assumed that 

chlorine wash can only removed E. coli O157:H7 from lettuce by 1 log CFU/g.  This may be a 

conservative estimate in some case.  No assumption was made with respect to the concentration 

of chlorine and the treatment time.  
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3.5.2 ClO2 Disinfection Model 

The length of the treatment time with gaseous ClO2 at concentrations of 0.5-5.0 mg/L 

was found to be linearly related to the log reductions of E. coli O157:H7 population with high 

correlation coefficients (Mahmoud & Linton, 2008).  Higher ClO2 concentration and longer 

treatment times were associated with increased ClO2 efficacy (Table 6).  Yet, the benefit of using 

high concentration gas or extending treatment time was compromised by the browning problem 

of the leaves (Mahmoud & Linton, 2008).  For the study, 1 mg/L and 4 minutes were chosen as 

the concentration and treatment time.  In the literature review, it was found that internalization of 

pathogen may affect the efficacy of disinfection.  To date, no study has quantified the effect 

internalization has on the efficacy of disinfection and data is unavailable to model the possibility 

of internalization.   

Table 6. Inactivation Kinetics of E. coli O157:H7 on Lettuce by Gaseous ClO2. 

ClO2 concentration (mg/l) D10  *(min) 

0.5 7.2±0.4 

1.0 3.4±0.2 

1.5 3.3±0.2 

3.0 3.2±0.1 

5.0 2.9±0.1 

• D10 : Time required to achieve a 90% reduction in the number of microorganisms 
(Mahmoud & Linton, 2008) 
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The first-order kinetic model (Equation 7) was used to describe the inactivation kinetics 

of ClO2 for E. coli O157:H7: 

Equation 7 

0
10

log( ) log( ) tN N
D

= −  

where t was the length of treatment time and D10 was the decimal reduction time, which refers to 

the time required to achieve a 90% reduction in the number of microorganisms.  A normal 

distribution was constructed for D10 to represent the parameter uncertainty (Appendix A).  

 

3.5.3 Irradiation Model 

The data found in the peer-reviewed literature about irradiating lettuce suggested that the 

first-order kinetic model was the most appropriate model to describe this process.  The function 

form of the first order kinetics was the same as the one used for ClO2 (Equation 7) except that the 

D10 here was the dosimetry necessary to reduce the number of pathogen by 90%.   A range of D10 

values were reported for different types of lettuce and the locations where E. coli O157:H7 

attached to lettuce (Table 7).   To be consistent with the type of lettuce data the ClO2 disinfection 

model was derived from, the study used iceberg lettuce data with 0.5kGy treatment dose.   

Table 7. D10 Values of E. coli O157:H7 on/in Various Types of Lettuce. 

Types of lettuce 
D10 (kGy) 

(E. coli O157:H7 on lettuce)
D10 (kGy) 

(E. coli O157:H7 in lettuce) 
R2 

Green leaf  0.119A  0.37 B  0.95 B 
Red leaf  0.123 A  0.35 B  0.79 B 
Boston  0.140 A  0.45 B  0.88 B 
Iceberg  0.136 A  0.30 B  0.95 B 
Romaine  N/A  0.39 C  N/A 

A: Niemira et al., 2002; B: Niemira, 2008; C: Niemira, 2007 

Accounting for the uncertainty associated with the D10 depending of the proportion of 

pathogens internalized into the lettuce tissue, D10 was calculated as the weighted average of the 



 

 

27 

 

D10value for the situation when E. coli O157:H7 attached on the surface of lettuce (D10= 0.136) 

and the D10 value for the situation when the pathogens were inside the lettuce (D10=0.30).  The 

weight ranged from 0 to 1 was generated by randomly sampling from a continuous uniform 

distribution.  

 

3.6 Dose Response Model 

The predicted exposure dose served as the input for the dose-response model to predict 

the risk of infection associated with the consumption of contaminated lettuce.  The dose response 

model used in the study was the beta-Poisson model developed by Strachan (2005).  This model 

(Equation 8) took into account the variations that exist in pathogen-host interactions and were 

derived using collated foodborne and environmental outbreak data from global sources. 

Equation 8 

1 (1 )DP α

β
−= − +  

where P was the probability that an exposed individual will become infected, D represented the 

dose, and α and β were parameters that describe the distribution of host susceptibility.  It was 

assumed that each organism acted independently; one cell was capable of causing a finite 

probability of disease. The outcome of the dose response was the probability of disease resulting 

from various ingested doses. The best estimates of model parameter α and β are shown in Table 8.    

Table 8. Best Estimates of Dose-Response Model Parameters.  

Parameter  Best Estimate 

α  0.0571 

β  2.2183 
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3.7 Uncertainty Analysis and Monte Carlo Simulation 

Uncertainty analysis refers to identification and quantification of the variance introduced 

into the risk model’s output variables as model predictions due to propagation of uncertainty.  

The variance in the model outputs represents a hybrid distribution which contains some 

combination of uncertainty and variability (Morgan & Henrion, 1990).   

The Monte Carlo approach has been widely used in stochastic models to simulate the 

outcome distribution by sampling from the probability distribution defined for the input and 

intermediate parameters (Vose, 2008).  After the model forms for exposure, the distributional 

information for each variable and relevant constant for the models were defined, the stochastic 

model was constructed in an Excel spreadsheet and simulated using Crystal Ball (version 11.1.1, 

Oracle) as an add-on program.   Descriptions of all variables involved in the assessment can be 

found in (Appendix A).  Since there was no theoretical reason to treat any variables as correlated, 

no correlation was specified.  First-order uncertainty analyses were performed.  Each scenario 

was simulated using Monte Carlo sampling method for 10,000 iterations.  Each of the iterations 

produced one estimate of the probability of E. coli O157 infection resulted from consuming one 

serving (50g) of contaminated lettuce.  
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Chapter 4: Results 

4.1 Time-Temperature Profiles 

In this study, four time-temperature profiles were chosen to analyze the consumer’s risk 

of E. coli O157:H7 infection contributed by possible pathogen proliferation occurred in the post-

harvest stage of the lettuce supply chain (the cold chain), as well as to investigate the effect of 

selected disinfection methods for the use of risk reduction in certain circumstances.  Each of these 

time-temperature profiles described temperature situations which are realistic.  Scenario 1 was a 

typical low-risk scenario where temperature was generally well controlled at all stages.   

Compared to Scenario 1, the three other scenarios differed in their initial temperature, duration 

and overall temperature trajectory (Table 9).   

Table 9. Major Differences in the Four Temperature Profiles. 

Scenario* 
Initial 
Temperature 

Duration 
Major Difference in Temperature 
Trajectory 

Scenario 1  20°C  75h  Adequate temperature control  

Scenario 2  25°C  98h  Prolonged exposure to warm temperature 
before cooling  

Scenario 3  25°C  52h 
Slow initial cooling process with some 
temperature fluctuations 

Scenario 4  20°C  77h 
Abusive temperature while distributing lettuce 
to restaurants 

* Time-temperature data were generously provided by Dr. Rediers from the Institute for Microbial Control of the Food 
Chain in Belgium (Rediers et al., 2009).  

 

4.2 Disinfection Scenarios 

In all hypothetical scenarios, the lettuce was sanitized by chlorine (Cl), ClO2 or 

irradiation at the processing plant before transportation.  When distributed to the restaurant, 

chlorine was used again as the last safeguard to minimize contamination.  The overview for each 

scenario with the constructed temperature curve and points of disinfection are displayed in  
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Figure 4.A-D.   

In Scenario 1, the lettuce was cooled to below 5°C, 2 hours after harvest (Figure 4-A).  

As the lettuce was distributed down the cold chain, temperature was maintained at around 3°C 

with minimal fluctuation during processing.  Then it was exposed to a warm environment for a 

short period of time before being distributed to the restaurant.   

Scenario 2 described a situation commonly encountered in summer time (Figure 4-B), 

when the temperature was relatively high (25°C) to start with and the lettuce was exposed to 

approximately 18°C for 20 hours prior to placement in on-farm refrigerators.  During 

transpiration, temperature was maintained at around 3°C.   

Scenario 3 replicated Scenario 1 in terms of the overall temperature trajectory  

(Figure 4-C).  However, it had an elongated on-farm cooling process which took 20 hours before 

the temperature dropped to below 5°C.   

Scenario 4 was a situation when temperature control was very rigorous half of the time, 

but in the other half of the time, temperature control failure occurred due to accidental 

circumstances.  The lettuce was unrefrigerated and kept at 20°C for about 24 hours (Figure 4-D).   

In the remainder of this section, growth curves predicted under these four temperature 

scenarios are presented on a case-by-case basis.  The antimicrobial effects of different 

hypothetical disinfection treatments applied in the processing plant in terms of infection risk 

reduction, the overall change of pathogen concentration presented with uncertainty bounds, and 

the estimated risk associated with one serving of lettuce are also shown.  
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Figure 4-A. Temperature Profile of Lettuce throughout the Postharvest Supply Chain, Scenario 1.  

 
Figure 4-B. Temperature Profile of Lettuce throughout the Postharvest Supply Chain, Scenario 2.  
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Figure 4-C. Temperature Profile of Lettuce throughout the Postharvest Supply Chain, Scenario 3.  

 
Figure 4-D. Temperature Profile of Lettuce throughout the Postharvest Supply Chain, Scenario 4.  
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4.3 Scenario 1 

 

Figure 5.  Predicted Growth Trajectory of E. coli O157:H7 in Lettuce, Scenario 1.  

With stringent temperature control, the growth model in Scenario 1 predicted very minor 

increase in the E. coli O157:H7 population at all initial contamination levels (Figure 5).  Relative 

growth was the ratio of net increase to the inoculum.  There was little difference in the relative 

growth associated with different inoculum sizes (Table 10).  

Table 10. Point Estimate of Final Microbial Concentrations, Scenario 1.  

Inoculum   

(log CFU/g) 

Inoculum 

(CFU/g) 

Final Level       

(log CFU/g) 

Final Level 

(CFU/g) 

Net Growth 

(CFU/g) 

Relative Growth 

(%) 

1  10  1.05 11.11 1.11 11.12 

2  100  2.07 117.76 17.76 17.76 

3  1000  3.08 1205.04 205.04 20.50 

Furthermore, evaluation of disinfection (Cl, ClO2 and irradiation) efficacy was 

accomplished by converting the predicted post-processing E. coli O157:H7 concentration to the 

probability of infection using the dose response model.   Thus, the disinfection strategies were 

compared in terms of the residual infection risks associated with one serving of lettuce         

(Table 10).   Depending on the inoculum, irradiation could minimize the infection risk by as 
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much as 100 fold.  The risk associated with chlorine or ClO2 disinfection was within the same 

magnitude of the baseline risk.   

Table 11. Post-Processing Infection Risk Associated with One 50g-serving of Lettuce, Scenario 1. 

Inoculum (logCFU/g)  Baseline  Cl   ClO2   Irradiation  

1  0.269  0.168  0.149  0.003* 

2  0.358 0.268 0.251 0.023* 

3  0.437 0.358 0.343 0.096* 

*indicated significant difference compared to the Baseline.  
 

The Monte Carlo sampling method was used to propagate the variance associated with 

model parameters during simulation.  Trend charts were produced for the medium contamination 

level (2 logCFU/g) using Crystal Ball to display how the predicted E. coli O157:H7 concentration 

and its variance changed over time in a series of confidence bands (Figure 6).  Each confidence 

band was centered around the median of the estimate and represented the credibility intervals 

(i.e., certainty ranges) into which the actual values of the estimates fell.  For instance, the blue 

band which represented the 90% credibility interval showed the range of values into which a 

microbial concentration had a 90% chance of falling.   

These four trend charts represented four proposed disinfection scenarios.  Model output 

as infection risk was extracted at six time points in the cold chain.   Chlorine disinfection after the 

lettuce was distributed to the restaurant was the baseline scenario (the 6th point on Figure 6).  At 

the processing plant (the 3rd point on Figure 6), there were four options of disinfection: baseline 

chlorine wash after delivery (1×Cl), chlorine wash (2×Cl), chlorine dioxide (ClO2+Cl) and 

irradiation (irradiation+Cl).  
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In general, the credibility intervals associated with the predicted E. coli O157:H7 

concentrations were relatively tight, except in “irradiation + Cl”.   This was due to minimal 

predicted growth activity in the “irradiation + Cl” scenario.   The width of the uncertainty 

spanning was a function of the number of variables.  The tight uncertainty spanning associated 

with chlorine disinfection was a result of using point estimate for the disinfection function, rather 

than and uncertainty distribution (Figure 6. a, b), while the wide uncertainty spanning associated 

with irradiation resulted from the parameter uncertainty of D10 with respect to the various 

locations in lettuce where E. coli O157:H7 could attach to.        

 

Figure 7. Predicted Median, 5th and 95th Percentiles of E. coli O157:H7 Infection Risk, Scenario 1.                
 

Figure 7 demonstrated the comparative risks for all disinfection strategies, with the 

numerical results presented in Table 12.  The 5th percentile, the median, and the 95th percentile of 

the estimated risk associated with one serving of lettuce were shown to reflect uncertainty.  

Compared with the baseline scenario, all strategies using ClO2 and chlorine had only a limited 

antimicrobial effect.   Applying irradiation can lower the risk by 10-100 fold, with the lowest risk 
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associated with the inoculum size of 2 log CFU/g (44 infections per 1000 consumptions [95%: 94 

infection per 1,000 consumption; 5%: 5 infections per 1,000 consumption]).  Note that in the 

“irradiation+Cl”, the probability of infection associated with 1 log CFU/g inoculum was missing, 

because the residual pathogen load after irradiation at the processing plant exceeded the lower 

computational limit of the modified Baranyi growth model, which meant that the growth model 

was not able to predict post-processing pathogen loads.   

Table 12. Probability of Infection Associated with the Consumption of One 50g-Serving of Lettuce, 
Scenario 1. 

Inoculum 
 

Baseline(1 × Cl )  2 × Cl  ClO2 + Cl  Irradiation + Cl 

1 logCFU/g 

5th Percentile  0.167  0.067 0.049  N/A* 

Median  0.169  0.069 0.054  N/A* 

95th Percentile  0.171  0.070 0.059  N/A* 

2 logCFU/g 

5th Percentile  0.268  0.167 0.144  0.005 

Median  0.270  0.169 0.150  0.044 

95th Percentile  0.271  0.170 0.157  0.094 

3 logCFU/g 

5th Percentile  0.357  0.268 0.246  0.034 

Median  0.358  0.269 0.252  0.135 

95th Percentile  0.359  0.270 0.258  0.197 

* E. coli O157:H7 load exceeded the lower computational limit of the growth model.  

4.4 Scenario 2 

 
Figure 8. Predicted Growth Trajectory of E. coli O157:H7 in Lettuce, Scenario 2.  
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In Scenario 2, due to prolonged exposure to warm temperature during the cooling stage, 

the model predicted a significant increase in E. coli O157:H7 concentration (Figure 8).  By the 

time the lettuce was cooled down, the E. coli O157:H7 concentration had reached the maximum 

population density, regardless of the initial contamination level.  Accordingly, the relative growth 

was most significantly associated with the low inoculum, followed by the medium and the high 

inoculums (Table 13).  

Table 13. Point Estimate of Final Microbial Concentrations, Scenario 2.  

Inoculum      

(log CFU/g) 

Inoculum 

(CFU/g) 

Final Level 

(log CFU/g) 

Final Level 

(CFU/g) 

Net Growth 

(CFU/g) 

Relative 

Growth (%) 

1  10  6.63 4.22E+06 4.22E+06  4.22E+07

2  100  6.62 4.18E+06 4.18E+06  4.18E+06

3  1000  6.61 4.09E+06 4.09E+06  4.09E+05

 

The predicted residual infection risks associated with one serving of lettuce were equally 

high among all disinfection methods (Table 14).  The health benefit of applying irradiation was 

diminished when lettuce was contaminated with a high concentration of E. coli O157:H7.  

Table 14. Post-Processing Infection Risk Associated with One 50g-serving of Lettuce, Scenario 2. 

Inoculum (logCFU/g) 
Baseline  Cl  ClO2  Irradiation 

1  0.516  0.448 0.435 0.216 

2  0.521  0.453 0.441 0.224 

3  0.524  0.457 0.445 0.229 

The uncertainty bounds in Figure 8 reflected the uncertainty with respect to both the 

behaviors of E. coli O157:H7 in lettuce and the efficacy of disinfectants.  
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Figure 10. Predicted Median, 5th and 95th Percentiles of E. coli O157:H7 Infection Risk, Scenario 2. 

 

In all disinfection strategies, the predicted risk of infection resulted from consuming one serving 

of contaminated lettuce was alarmingly high (Figure 10).  The median predicted risk ranged from 40% to 

48%. Compared to the baseline strategy, using one extra step of chlorine disinfection (2×Cl) or ClO2 did 

not reduce the infection risk. Even with irradiation, one serving of contaminated lettuce was predicted to 

have a 39% chance of causing infection (95%:  31 infections per 100 consumptions; 5%: 44 infections per 

100 consumptions) (Table 15).  In this scenario, the risk of infection was independent of the initial 

contamination level.  
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Table 15. Probability of Infection Associated with the Consumption of One 50g-Serving of Lettuce, Scenario 2.  
 

Inoculum 
 

Baseline(1 × Cl )  2 ×Cl  ClO2 + Cl  Irradiation + Cl 

1 logCFU/g 

5th Percentile  0.455  0.415 0.407  0.307 

Median  0.479  0.442 0.436  0.389 

95th Percentile  0.506  0.469 0.464  0.435 

2 logCFU/g 

5th Percentile  0.455  0.418 0.411  0.307 

Median  0.479  0.444 0.438  0.393 

95th Percentile  0.507  0.471 0.466  0.438 

3 logCFU/g 

5th Percentile  0.455  0.421 0.414  0.313 

Median  0.479  0.446 0.440  0.395 

95th Percentile  0.507  0.472 0.467  0.439 

 

4.5 Scenario 3 

 
Figure 11. Predicted Growth Trajectory of E. coli O157:H7 in Lettuce, Scenario 3.  

The predicted growth trajectories in Scenario 1 and 3 shared a few common characteristics.  

During the extended initial cooling process in Scenario 3, no growth was predicted, which was due to the 

relatively high initial temperature (25˚C), at which E. coli O157:H7 needed a longer time to adjust to the 

new environment (Figure 11).  
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Table 16. Point Estimate of Final Microbial Concentrations, Scenario 3.  

Inoculum           

(log CFU/g) 

Inoculum 

(CFU/g) 

Final Level (log 

CFU/g) 

Final Level 

(CFU/g) 

Net Growth 

(CFU/g) 

Relative 

Growth (%) 

1  10  1.06  11.47  1.47  14.71 

2  100  2.10 124.63 24.63  24.63

3  1000  3.11  1284.82  284.82  28.48 

 

Table 17. Post-Processing Infection Risk Associated with One 50g-serving of Lettuce, Scenario 3. 

Inoculum (logCFU/g)  Baseline  Cl   ClO2   Irradiation  

1  0.268  0.166 0.148 0.003 

2  0.358  0.267 0.250 0.023 

3  0.436  0.357 0.342 0.096 

All trend charts displayed the similar pattern: the credibility intervals widened as predictions were 

made farther down the supply chain (Figure 12). Such phenomenon resulted from the propagation of 

uncertainty over time associated with one of the key variables, the physiological state (q). Forecast of this 

variable was dynamic throughout the simulation, because in the growth function, the instantaneous q was 

depended on the q from the previous interval and the maximum growth rate (μmax). 

 The predicted health risks in all disinfection strategies as well as their associated uncertainty were 

similar to those produced for Scenario 1 (Figure 13). The lowest predicted risk was (79 infections per 

1,000 consumptions [95%: 143 infection per 1,000 consumption; 5%: 6 infections per 1,000 

consumption]) (Table 18).
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Figure 13. Predicted Median, 5th and 95th Percentiles of E. coli O157:H7 Infection Risk, Scenario 3. 

 

Table 18. Probability of Infection Associated with the Consumption of One 50g-Serving of Lettuce, Scenario 3.  

Inoculum 

 
Baseline(1 × Cl )  2 ×Cl  ClO2 + Cl  Irradiation + Cl 

1 logCFU/g 

5th Percentile  0.171  0.100 0.080  N/A* 

Median  0.178  0.110 0.090  N/A* 

95th Percentile  0.191  0.123 0.104  N/A* 

2 logCFU/g 

5th Percentile  0.271  0.207 0.188  0.006 

Median  0.277  0.218 0.200  0.079 

95th Percentile  0.287  0.231 0.214  0.143 

3 logCFU/g 

5th Percentile  0.359  0.300 0.284  0.061 

Median  0.363  0.308 0.294  0.188 

95th Percentile  0.370  0.319 0.305  0.247 
* E. coli O157:H7 load exceeded the lower computational limit of the growth model.  
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4.6 Scenario 4 

 
Figure 14. Predicted Growth Trajectory of E. coli O157:H7 in Lettuce, Scenario 4.  

In Scenario 4, no growth was predicted in most parts of the cold chain where temperature was 

adequately controlled; however, substantial cell growth resulted due to the failure of temperature control 

which occurred at a later stage (Figure 14).  Irradiation at the processing plant successfully reduced the 

residual infection risk by as much as 100 fold, when the inoculum size was 1 log CFU/g (Table 20).   No 

significant risk reduction was predicted by chlorine or ClO2.  The magnitude of risk reduction achieved 

by irradiating lettuce was smaller as the initial contamination level became higher.   

Table 19. Point Estimate of Final Microbial Concentrations, Scenario 4.  
Inoculum              

(log FU/g) 

Inoculum 

(CFU/g) 

Final Level 

(log CFU/g) 

Final Level 

(CFU/g) 

Net Growth 

(CFU/g) 

Relative 

Growth (%) 

1  10  6.47 2.92E+06 2.92E+06  2.92E+07

2  100  6.47 2.93E+06 2.93E+06  2.93E+06

3  1000  6.47 2.94E+06 2.93E+06  2.93E+05

Table 20. Post-Processing Infection Risk Associated with One 50g-serving of Lettuce, Scenario 4. 

Inoculum (logCFU/g)  Baseline  Cl   ClO2   Irradiation  

1  0.273 0.172 0.153 0.003

2  0.361 0.272 0.255 0.024

3  0.438 0.359 0.344 0.098
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The infection risks estimated for the disinfection strategies in Scenario 4 were very high 

 (Figure 16), the median estimates were 47 infections per 100 consumptions (95%: 49 infection per 100 

consumptions; 5%: 44 infection per 100 consumptions) (Table 21).  

 

Figure 16. Predicted Median, 5th and 95th Percentiles of E. coli O157:H7 Infection Risk, Scenario 4. 
 
 

Table 21. Probability of Infection Associated with the Consumption of One 50g-Serving of Lettuce, Scenario 4. 
 

Inoculum   
Baseline(1 × Cl )  2 ×Cl  ClO2 + Cl  Irradiation + Cl 

1 logCFU/g 

5th Percentile  0.443  0.443  0.443  N/A* 

median  0.466  0.466  0.466  N/A* 

95th Percentile  0.490  0.489  0.489  N/A* 

2 logCFU/g 

5th Percentile  0.444 0.443 0.443 0.443 

median  0.467 0.466 0.466 0.466 

95th Percentile  0.491 0.490 0.490 0.490 

3 logCFU/g 

5th Percentile  0.445  0.443  0.443  0.443 

median  0.468  0.466  0.466  0.466 

95th Percentile  0.492  0.490  0.490  0.490 
* E. coli O157:H7 load exceeded the lower computational limit of the growth model.  
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4.7 Summary of Findings 

The results in the current study showed that temperature control was the key measure to minimize 

the risk of E. coli O157:H7 infection associated with consuming lettuce.  Disinfecting contaminated 

lettuce using the hypothetical methods examined in the study had limited effects in reducing the risk of 

infection.   In the case when temperature was low, the magnitude of risk reduction by disinfection was a 

function of the step of disinfection and the level of initial contamination.     

Scenarios 1 and 3 belonged to the same type of scenario where temperature was well controlled.   

In accordance to low temperature, the model predicted negligible net increase of E. coli O157:H7 

concentration across all three simulated initial contamination levels.  When efficacies of all three 

disinfection methods (chlorine, ClO2, and irradiation) were examined in terms of post-processing residual 

infection risk, no disinfection method except irradiation could reduce the level of risk by more than 10 

fold.  Yet, the predicted infection risks were generally high in all situations except when irradiation was 

implemented to disinfect lettuce with relatively low contamination level (1 logCFU/g).  Low temperature 

alone was not sufficient to control E. coli O157:H7 at realistic log inoculums.    

The time when temperature abuse occurred differed in Scenarios 2 and 4.  With substantial 

pathogen growth, the predicted risks associated with one serving of lettuce were unacceptably high in 

both scenarios.  All hypothetical disinfection methods could not reverse the adverse effect of abusive 

temperature; no matter if they were applied before or after the occurrence of temperature abuse.   The 

final risk was independent of the initial contamination level, which implicated that failure of temperature 

control occurred in the cold chain could compromise any effort to minimize the initial contamination 

level at the farm level.   
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Table 22. Probability of Infection Associated with the Consumption of One 50g-Serving of Lettuce.  

   Inoculums: 1 logCFU/g  Inoculums: 2 logCFU/g  Inoculums: 3 logCFU/g 

  Mean 
5th 

Percentile  Median 
95th 

Percentile  Mean 
5th 

Percentile  Median 
95th 

Percentile  Mean 
5th 

Percentile  Median 
95th 

Percentile 

Scenario 1 
   

Baseline(1×Cl )  0.169  0.167 0.169 0.171 0.270 0.268 0.270  0.271 0.358 0.357 0.358 0.359

2×Cl  0.069  0.067 0.069 0.070 0.169 0.167 0.169  0.170 0.269 0.268 0.269 0.270

ClO2+Cl 0.054  0.049 0.054 0.059 0.150 0.144 0.150  0.157 0.252 0.246 0.252 0.258

Irradiation+Cl  N/A*  N/A* N/A* N/A* 0.046 0.005 0.044  0.094 0.127 0.034 0.135 0.197

Scenario 2 

Baseline(1×Cl )  0.479  0.455 0.479 0.506 0.480 0.455 0.479  0.507 0.480 0.455 0.479 0.507

2×Cl  0.442  0.415 0.442 0.469 0.444 0.418 0.444  0.471 0.446 0.421 0.446 0.472

ClO2+Cl  0.436  0.407 0.436 0.464 0.439 0.411 0.438  0.466 0.440 0.414 0.440 0.467

Irradiation+Cl  0.382  0.307 0.389 0.435 0.385 0.307 0.393  0.438 0.388 0.313 0.395 0.439

Scenario 3 

Baseline(1×Cl )  0.179  0.171 0.178 0.191 0.278 0.271 0.277  0.287 0.364 0.359 0.363 0.370

2×Cl 0.110  0.100 0.110 0.123 0.218 0.207 0.218  0.231 0.309 0.300 0.308 0.319

ClO2+Cl  0.091  0.080 0.090 0.104 0.200 0.188 0.200  0.214 0.294 0.284 0.294 0.305

Irradiation+Cl  N/A*  N/A* N/A* N/A* 0.076 0.006 0.079  0.143 0.174 0.061 0.188 0.247

Scenario 4 

Baseline(1×Cl )  0.467  0.443 0.466 0.490 0.467 0.444 0.467  0.491 0.468 0.445 0.468 0.492

2×Cl  0.466  0.443 0.466 0.489 0.466 0.443 0.466  0.490 0.467 0.443 0.466 0.490

ClO2+Cl 0.466  0.443 0.466 0.489 0.466 0.443 0.466  0.490 0.466 0.443 0.466 0.490

Irradiation+Cl  N/A*  N/A* N/A* N/A* 0.466 0.443 0.466  0.490 0.466 0.443 0.466 0.490

* E. coli O157:H7 load exceeded the lower computational limit of the growth model (see Discussion).  
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Chapter 5: Discussion 

The current study adapted a probabilistic Quantitative Microbial Risk Assessment (QMRA) 

framework to describe the change of E. coli O157:H7 concentration in lettuce through the selected 

pathway, to develop a predictive model for risk estimation specific for E. coli O157:H7 infection 

associated with lettuce.   

The model is not a direct reflection of reality, but rather an informative approximation of the 

complex system it is designed to represent.   In industry, there is considerable variation in the pathway 

through which fresh produce is being distributed and the produce handlings that take place at operations 

units.  The overall food chain in the study was constructed to resemble the general supply chain for 

lettuce adapted from the US Food and Drug Administration (FDA) (US FDA/CFSAN, 2006), which 

included a number of consecutive modules representing stages from cooling to distribution.  The end 

point of the exposure model was set at the point of time when lettuce was delivered to the restaurant.  It 

was assumed that no temperature violation occurred in the restaurant and that the lettuce was properly 

handled before consumption, because no data were available for this period.  Thus, the predicted exposed 

dose was linked directly to the dose response model to estimate the risk of infection.    

Empirical time-temperature profiles were chosen over a distribution of average temperature 

which could only broadly represent the temperature variability which existed in the industry as a whole.  

Realistic temperature profiles have been used by others to model microbial growth on the chilled ready-

to-eat food in the school catering (Rosset, Cornu, Noël, Morelli, & Poumeyrol, 2004) and on leafy green 

vegetables consumed at salad bars (Franz et al., 2010).  This study was unique in that it took into account 

the time dynamics of temperature to assess not only the impact of temperature control but also the 

efficacy of selected disinfection strategies on public health, using a scenario-specific approach.  

A credible QMRA model should possess model input parameters of best-available quality, 
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reasonable assumptions, conceptual validity and operational soundness (Boone et al., 2009) (Appendix 

H).  Throughout the iterative process of model development, the overall appropriateness of model was 

evaluated using a list of standardized criteria that addressed three aspects of model validity: model design, 

model formulation, and computation and computer implementation (Table 23).  Each criterion was scored 

subjectively based on its level of fulfillment in the study.  Comments arising from some of these criteria 

were further discussed.   

Table 23. Criteria Used for Testing and Model Validation throughout the Development Process of   

Probabilistic Model. 

Validation Criteria   Rating  Comments 

Model Design 

Conceptual Validity   Medium  Efforts were made to increase the accuracy of model for its 
intended use.  See discussion.  

Biological realism   Medium  See discussion 

Extrapolation   Medium  Growth model was extrapolated to low temperature with 
prediction consistent with the data from which the model 
was derived from 

Generalizability   Unknown No geographic or population data were employed 

Model Formulation 

Appropriateness of model form  Medium See discussion

Parsimony   High  the model was kept as simple as necessary 

Data quality   Medium  See discussion 

Sensitivity to significant 
changes in input parameters  

High  Changes to key input parameters resulted in biologically 
appropriate changes to model outcomes 

Robustness to extreme values   Medium  Model was robust when dealing with log inoculum across a 
wide range of values 

Computation & Computer Implementation 

Computational/numerical 
correctness  

High  No detectable mathematical misspecification 

Internal consistency   High  Units of the same kinds of measure were consistent all 
through the model 

Absence of numerical artifacts   Medium  Model was stable without numerical outcome oscillations at 
low dose 

Computer Implementation   Medium  No errors identified in the syntax; still need to  record the 
model in high‐level language (e.g., Matlab) 
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5.1 Selection of Model Form 

The iterative process of model assembly followed the guiding principle of parsimony and 

conceptual validity, with consideration of data availability and the importance of the process in relation to 

the predictive ability of the overall model (Wen, Kalff, & Peters, 1999).  Due to the limited time and 

resources, the model was designed to focus mainly on the growth activity of E. coli O157:H7 in an 

idealized produce supply system.  Neither cross-contamination processes nor any sorts of leaf partitioning 

or mixing practices were considered.    

5.1.1 Microbial Growth Model 

The choice of the growth model can profoundly influence the model outcome, as the growth 

activity of E. coli O157:H7 was considered at all post-harvest stages in the study.  A number of sigmoidal 

growth models, such as the modified Gompertz model and logistic model, were excellent at predicting 

pathogen growth at a constant temperature, but they did not have the capability of handling growth at 

fluctuating temperature in a consistent way (Van Impe, Nicolai, Martens, De Baerdemaeker, & 

Vandewalle, 1992).  The Baranyi model, which consisted of a set of differential functions, had been used 

by many researchers to predict microbial growth under changing temperature (J. Baranyi et al., 1995; 

Bovill et al., 2000; Fujikawa, Kai, & Morozumi, 2004; Sutherland, Bayliss, Braxton, & Beaumont, 1997).  

Some limitations of the Baranyi model regarding its basic assumption about the lag time were 

noted.  The lag time was the delay in the growth of the microbial population due to a change in the 

environment.  In the Baranyi model, the lag time and the initial physiological state were interchangeable 

indicators of the potential for pathogens to adjust to new environment.  Baranyi and Roberts assumed that 

the initial physiological state of microorganisms remained constant, provided identical pre-inoculation 

history (J. Baranyi & Roberts, 1994).  In a controlled experimental environment, the initial physiological 

state of pathogens may be relatively constant, but it is unlikely the case when the same microorganisms is 

present in a complex environment.  Furthermore, this assumption has been refuted by contradictory 
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evidence generated from experimental studies (Alavi, Puri, Knabel, Mohtar, & Whiting, 1999; Koseki & 

Isobe, 2005; Mellefont et al., 2003; Swinnen et al., 2006).  Alavi et al. revealed that the initial 

physiological state was dependent to a great extent on the incubation temperature (Alavi et al., 1999).  

Koseki and Isobe found that the value of the initial physiological state peaked at 15°C and decreased 

monotonically as temperature went up or down from 15°C (Koseki & Isobe, 2005).   

To better characterize the growth response of E. coli O157:H7, the modified Baranyi model was 

developed in the study, with the physiological state described by a function of temperature instead of a 

static value.  Non-parametric goodness-of-fit statistics (MARE) were used to examine the external 

validity of the model, with independent growth data obtained under dynamic temperature conditions as 

calibration standards (Koseki & Isobe, 2005). One can have some comfort with the model accuracy given 

that the model prediction provided a good fit to these calibration data.  Further validation of the modified 

Baranyi growth model can be conducted with more independent growth data collected under a wider 

range of fluctuating temperature in the future.  

 

5.1.2 Disinfection Models 

Postharvest disinfection was a valuable way to reduce the microbial load on lettuce.  Chlorine, 

ClO2 and irradiation were chosen so that the study included the most common sanitizer (chlorine wash), a 

promising chemical sanitizer (ClO2) and an effective but controversial physical decontamination method 

(gamma irradiation).   

First-order kinetics was used for both ClO2 and irradiation in the study.  Although simple, these 

first-order kinetics were parsimonious and provided a statistically good fit to the observed relationship 

between the log reduction of E. coli O157:H7 and the treatment time for ClO2 (R2= 0.96) (Mahmoud & 

Linton, 2008) and irradiation (R2=0.95) (Niemira, 2008).   Yet, first-order kinetics may not always be the 
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right fit at all circumstances for ClO2 disinfection or irradiation.   It was valid for use under the conditions 

reported in these studies, and only to the extent that results obtained from these experimental studies 

reflected the true antimicrobial efficacies of these methods.  The efficacy or lack of efficacy of chlorine 

has been widely debated, but no chlorine disinfection kinetics were found from all accessible information 

sources.  For the purpose of risk assessment, it would be helpful to have a parametric model to 

characterize the effect of chlorine disinfection.    

 

5.1.3 Dose Response Model 

There were generally two types of dose-response models for pathogens: the threshold model and 

the non-threshold (or single hit) model.  The threshold model postulates that there is a threshold level of 

pathogenic bacteria cells below which the bacteria do not cause infection; whereas the non-threshold 

model (e.g., exponential model or beta-Poisson model) provides a non-threshold sigmoidal function, 

assuming that one single cell is capable of causing a significant probability of disease.  Unlike other 

foodboorne pathogens (e.g., Listeria Monocytogenes) E. coli O157:H7 is well-known for its extreme 

toxicity.   There was no scientific evidence to support the existence of such a dose-response threshold for 

E. coli O157:H7 infection.   

A number of non-threshold mathematical models had been used to describe the dose-response 

relationship for E. coli O157:H7.  The beta-Poisson model is commonly accepted and had been used to 

model data for several foodborne and waterborne pathogens (Crockett, Haas, Fazil, Rose, & Gerba, 1996; 

C. N. Haas, Thayyar-Madabusi, Rose, & Gerba, 2000; C. Haas, Thayyar-Madabusi, Rose, & Gerba, 1999; 

Powell, Ebel, Schlosser, Walderhaug, & Kause, 2000).  The beta-Poisson model was derived from the 

exponential model but it had an extra parameter that allows it to deal with highly skewed data with a long 

tail (Haas C.N., Rose J.B., Gerba C.P., 1999).  It assumes that each organism can act independently with 
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an equal probability of causing infection.  The beta-Poisson model was better than the exponential model 

as it accounted for the variability of the pathogen-host interaction probabilistically with a beta 

distribution, rather than unrealistically treating the host susceptibility as uniform in the general 

population.  The current study adapted the beta-Possion model developed via meta-analysis of the 

outbreak attack rates and the ingested doses collected from a number of foodborne and environmental 

outbreaks (Strachan et al., 2005).  This model was not subjected to some of the flaws inherent in using 

surrogate non-pathogen data or experimental animal data. 

 

5.2 Biological Realism 

One characteristic of E. coli O157:H7 that made it challenging to study was that E. coli O157:H7 

cells could lose their growing abilities on agar but remain alive as a response to stress, which was called 

the viable but non-culturable (VBNC) state (Oliver, 2005).  Decline in colony count of E. coli O157:H7 

could be caused by cell death, extended lag time, or pathogens in a VBNC state, which had different 

implications on human health risk.  Viable pathogens or pathogens that could not be cultured were still 

able to cause infection.  Decline of E. coli O157:H7 population at 5°C or less had been investigated by 

many researchers with mixed observations.  It was found that decline of E. coli O157:H7 population 

varied by the storage conditions and the length of storage time (Koseki & Isobe, 2005; McEvoy et al., 

2009; Theofel & Harris, 2009).  Whereas some observed about 1 log CFU/g decrease in E. coli O157:H7 

population inoculated on lettuce, at 4°C and 5°C for a 14-day storage period (Abdul-Raouf et al., 1993; 

Chang & Fang, 2007), others showed no growth or loss of viability of E. coli O157:H7 at 5°C over 5 

days(Koseki & Isobe, 2005).  Development of a strict decline model taking into account all these three 

possibilities would benefit from E. coli O157:H7 population data counted with more sensitive detection 

methods, such as polymerase chain reaction.  In this study, a fail-safe choice was made to model pathogen 
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growth without considering the occurrence of bacterial decay, with the assumption that at 5°C or lower, 

E. coli O157:H7 remained viable over time.   

More often than not, empirical data were available only for typical conditions, but risk assessment 

concerned about event in the conditions that were more extreme than typical.  This was also true when 

attempting to assess the potential growth activity of E. coli O157:H7 in lettuce at low temperature.  The 

extrapolation method is a common strategy used in risk assessment to bridge the gap between the 

condition of interest and data of relevance (Covello & Merkhofer, 1993). The secondary growth model 

described the microbial growth parameter (λ, μmax, xmax) as a function of an extrinsic factor, i.e., 

temperature, and served as the link between the sigmoidal Baranyi model (fitted with the DMFit web 

edition) and the differential Baranyi model.   Functionalizing E. coli O157:H7 behavior at low 

temperature was very challenging because existing evidence was sparse and not collected in a time series.  

In the study, prediction of E. coli O157:H7 growth at 3-10 °C was accomplished by extrapolating 

secondary growth models derived at temperatures ranging from 10°C to 25°C.  While problematic, 

extrapolation may be justified by the fact that the predicted change of E. coli O157:H7 population at 5°C 

was consistent with empirical observations.    

The trajectory of growth curve depended on the growth and decay rate of the microbial 

populations.   Microbial growth was influenced by the interactions of many extrinsic growth-determining 

factors.  It was unknown how behavior of E. coli O157:H7 in lettuce, or other leafy green vegetables, was 

affected by extrinsic conditions other than temperature, such as water activity, pH value and the 

antibacterial properties of lettuce itself.  It was possible that the lettuce composition (e.g., water activity 

and pH value) becomes slightly changed over time, and eventually became unfavorable for pathogens.  

Temperature was the only extrinsic factor considered by the current model.  Caution should be taken 

when using this model to predict growth in situations where other extrinsic factors are not as stable.  
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The antimicrobial effect of disinfectants was complicated by the possibility of E. coli O157:H7 

penetrating into the internal tissue of lettuce via natural openings or cut surfaces as a result of 

environmental stresses (Seo & Frank, 1999; Takeuchi & Frank, 2000; Takeuchi & Frank, 2001).   

Penetration of E. coli O157:H7 into lettuce tissue may increase the resistance of E. coli O157:H7 to 

disinfectants.  For instance, in order to reduce the total E. coli O157:H7 load by 90%, 0.3 kGy irradiation 

was required when E. coli O157:H7 located within the lettuce tissue; when the same pathogen was 

present on the leaf surface, only 0.136 kGy was required (Niemira et al., 2002; Niemira, 2008). Similar 

information was unavailable for chlorine and ClO2.  Surface disinfection methods (e.g., Cl2 and ClO2) 

were reported largely ineffective on E. coli O157:H7 present within lettuce, due to the limited access of 

these chemical disinfectants to the internalized pathogens (WHO, 1998b).  

 

5.3 Data Quality 

The quality of model input parameters was one important indicator of model reliability.  To 

assure transparency, the overall strength of parameters in the model was evaluated with four data quality 

criteria (proxy, empirical basis, methodological rigor and validation) proposed by Boone et al.  (Boone et 

al., 2009).    

5.3.1 Growth Data 

Prespecified arbitrary initial contamination levels were used as the primary model inputs, because 

empirical numbers were absent in all reviewed published literature and accessible grey literature that were 

desired to quantify the prevalence and concentration of E. coli O157:H7 in the fresh produce (Abadias et 

al., 2008; Arthur et al., 2007; Bohaychuk et al., 2009; Mukherjee et al., 2004; Mukherjee et al., 2006; 

Sagoo et al., 2003) .  
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The growth model was parameterized with E. coli O157:H7 growth data in shredded lettuce as 

published by Koseki and Isobe (Koseki & Isobe, 2005).   The authors used conventional plating method 

to observe changes of E. coli O157:H7 population with realistic inoculum sizes (4.71-4.86 log CFU/g) in 

a series of temperature from 5°C to 25°C (Appendix B).  However, the relative small number of 

temperature points examined in this experimental study limited the potential for using the data to extract 

parameter information pertaining E. coli O157:H7 growth at low temperature.  Nonetheless, this was so 

far the only study designed to examine growth of E. coli O157:H7 in lettuce in a time series with rigorous 

experimental method.   

Substantial amount of research had been conducted, in an attempt to characterize the growth 

behavior of E. coli O157:H7.  The empirical findings were, however, as diverse as the environmental 

conditions under which those studies were carried out.  Whereas Francis and O’Beirne reported up to       

2 log CFU/g increase of E. coli O157:H7 population in shredded lettuce at 8 °C within 5 days (Francis & 

O'Beirne, 2001), Delauquis et al. found no change in microbial population at 10°C over 14 days 

(Delaquis, Stewart, Cazaux, & Toivonen, 2002).  The data used for the study produced an increase of       

1 log CFU/g at 10°C over 3 days, which was in line with an increase of a 1.5 log CFU/g at 12°C over       

3 days reported by Addul-Raouf (Abdul-Raouf et al., 1993).  Until we gain an in-depth understanding of 

the microbiology of E. coli O157:H7, it is not clear whether this model might produce over/under 

estimates of the actual growth. 

 

5.3.2 Disinfection Data 

The efficacy of chemical disinfection is influenced by concentration, temperature, and time of 

exposure.  Existing data were insufficient for developing an empirical probabilistic distribution to capture 

the variability in the disinfection conditions (i.e., treatment time and concentration) occurrring in the fresh 

produce industry.  For each disinfection method in the current study, realistic point values of treatment 
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time and disinfectant concentration were chosen, with the uncertainty of the D10 values represented by a 

normal distribution.   

Using a point value of treatment time or disinfectant concentration instead of a probabilistic 

distribution did not allow examining the parametric variance of disinfection practices or identifying the 

most effective disinfection strategy.  Yet, given that the study was designed to assess the contribution of 

alternative disinfection strategy to risk reduction, this choice served the modeling purpose well as a proof-

of-concept.  

The internalization of pathogen can influence the disinfection effect and ultimately the risk of 

infection.  The model incorporated recent empirical data about the efficacy of irradiation for inactivating 

E. coli O157:H7 attached both to the surface of the lettuce and within the lettuce.  However, all 

disinfection models were set up in the spreadsheet in such a way that D10 values accounted for the effect 

of internalized pathogens can be included when required data become available in the future.   

 

5.3.3 Dose Response Data 

Adapting the beta-Poisson dose response model developed by Strachan et al. (2005)  may be a 

conservative choice.  The Strachan’s model assumed much higher virulence of E. coli O157:H7, 

compared to the model generated from rabbits, but was comparable with the Shigella surrogate model 

(Crockett et al., 1996; C. N. Haas et al., 2000).  However, the choice may be justified by the fact that       

E. coli O157:H7 was a particularly toxic strain; as few as 10 E. coli O157:H7 cells were reported to be 

sufficient to cause measurable infection (Harris et al., 2003).   

The dose response model took into account the variability of the natural susceptibility in the 

general population, but was not able to capture highly susceptible groups (e.g., children and the elderly) 
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due to the absence of specific data.  For simplicity, only the best estimates of the model parameters were 

used in the study.   

 

5.4 Local Sensitivity 

Global sensitivity analysis refers to the analysis of the effect on model predictions of simultaneous 

variation of all model input and intermediate variables.  Ideally, a global sensitivity analysis should have 

been performed to help identify the parameters important to the model output.  In the current study, given 

that the risk of infection was predicted on a scenario-specific basis, global sensitivity analysis was not 

applicable.  Nominal range sensitivity analysis is a less computationally intense local sensitivity analysis 

method that tested the sensitivity of intermediate model outcome to the change in value of specific variables.   

This method was employed to analyze the sensitivity of one growth parameter at a time while holding other 

parameters constant.   

Temperature was an important input variable, but the model output was relatively insensitive to 

abrupt changes in temperature at a short period of time, because the Baranyi differential function dealt 

with growth in a continuous way with the first derivative always being continuous.  This was considered 

biologically reasonable as it took into account the cells’ previous inoculation history.  

The physiological state of microorganism (q0) and the initial contamination level were two key 

variables identified by their relative importance to model output.  As an adaptation component in the 

growth model, q0 increased monotonically with time at the maximum growth rate.  Therefore, the initial 

value of q0 played an important role in determining how fast the inoculum adjusted to the new 

environment and subsequently reached the exponential growth phase (Baranyi et al., 1995).  The 

hypothetical uniform distribution associated with q0 consisted of a range of biologically plausible values.  

Changes in the value of q0 did not affect the shape of the predicted curve, but when q0 was large, the 
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growth curve was elevated proportionally.  On the other hand, the relationship between the initial 

contamination level and the final E. coli O157:H7 concentration depended on the temperature trajectory.  

As shown in 

Figure 10 and Figure 14, growth curves converged as a result of abusive temperatures, which suggested a 

lack of dependence of predicted growth on the initial contamination level.  When the net growth was 

minimal, the final concentration was dependent of the initial contamination level.    

 

5.5 Model Robustness 

Robustness of the model was fulfilled if its response was numerically reasonable while 

parameters varied over their defined range of values.  The minimum floor of the growth function was set 

at 5°C under which it was assumed that E. coli O157:H7 population remained stable without growth or 

decline.  The stability of model was examined with visual inspection regarding potential oscillations from 

the 4th order Runge-Kutta numerical approximation used in the growth function.  In general, the model 

was stable and did not exhibit oscillatory behavior.   

The modified Baranyi model can be classified as a deterministic predictive growth model 

particularly suitable for describing large population size of microorganisms.  When the log inoculum was 

smaller than zero, which indicated the average of the probabilistic exposure dose was smaller than one 

organism, the model failed to compute growth.  This shortcoming was evidenced in the study in the 

scenarios when log E. coli O157:H7 concentration was reduced to less than zero after disinfection.  

However, if what was indicated by the dose response model was true, minimal but non-zero dose of        

E. coli O157:H7 in the exposure prediction would still be a concern from a public health point of view.   
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5.6 Computer Implementation 

Implementation of mathematical formulas required coding in appropriate computer language.  

Assessment of computer implementation was generally accomplished by reviewing computer code line by 

line to ensure that the syntax and mathematical structure were accurate and free of errors.  Intermediate 

and final outputs were checked against published results from which these models were derived.  As an 

example, parameterized with empirical data and coded in Microsoft Excel VBA, the Baranyi growth 

model successfully replicated the published results generated by the author with the same data set (Koseki 

& Isobe, 2005).   

Although efforts were made to ensure the computer realization was as accurate as possible, the 

possibility of software imprecision remained.  Therefore, it is recommended to recode the model in 

higher-level software, e.g., Matlab, to check the results of new software implementation against the 

current results.   
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Chapter 6: Future Work and Conclusions 

Although the available data and approximations inherent in the model design limited the ability of 

the model to describe actual exposure and mechanisms of pathogen infection, development of a risk 

assessment was useful to identify critical gaps in currently published data.  With relevant data, the risk 

model developed in this study could be improved in the future in the following areas:    

• Quantification of the initial concentration and prevalence of E. coli O157:H7 on lettuce; 

• Accounting for the occurrence of cross contamination;  

• Increased understanding of the physiological state of E. coli O157:H7 and how the pathogen 

response differs by environmental situations ;  

• Gaining further insight to the conditions under which microbial penetration occurred and the 

survival of E. coli O157:H7 following leaf internalization; 

• Employing a more sophisticated stochastic growth model that accounts for the probability of 

exposing to small but non-zero amount of E. coli O157:H7; 

• Incorporating E. coli O157:H7 dose response relationship regarding susceptible population 

groups, i.e., children and the elderly. 

In conclusion, the quantitative microbial risk assessment model developed here can help to gain a 

quantitative insight into the risk of E.coli O157:H7 infection resulted from temperature control and 

disinfection occurring in the postharvest supply chain of lettuce.  Analysis of various scenarios 

demonstrated the crucial effect of temperature control at the postharvest level. Disinfecting contaminated 

lettuce using the hypothetical methods examined in the study had limited effectiveness in reducing the 

risk of infection, especially in the case of temperature abuse.   With empirical data collected by the C-

EnterNe (Health Canada) in the future, this model can be further developed to make microbial risk 

prediction more relevant to Canada.  
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Appendix A 

Overview of Food Pathway Parameters 
 

Parameter  Description   Distribution  Unit  Reference  

q0, s1  Initial physiological state, 
scenario1 

Uniform  
(0.037, 0.146) 

Unitless   

q0, s2  Initial physiological state, 
scenario2 

Uniform 
 (0.0009, 0.0036) 

Unitless   

q0, s3  Initial physiological state, 
scenario3 

Uniform  
(0.0009, 0.0036) 

Unitless   

q0, s4  Initial physiological state, 
scenario4 

Uniform  
(0.045, 0.178) 

Unitless   

Bu  Maximum growth rate   Normal  
(0.049, 1.39E‐06) 

lnCFU/h   Koseki & Isobe, 
2005  

Bx  Maximum population 
density   

Normal  
(0.129, 5.06E‐04) 

lnCFU/g   Koseki & Isobe, 
2005  

P  Percentage of E. coli 
O157:H7 residing within 
the lettuce 

Uniform (0,1)  Unitless   

D10, ClO2  Decimal reduction time  Normal (3.4, 0.04)  Minute   Mahmoud & 
Linton, 2008  

D10, Cl2  Decimal reduction time  ‐  Minute   
D10, 
irradiation 

Dosimetry of gamma 
irradiation 

0.136, 0.3  kGy   Niemira et al., 
2002; Niemira, 
2008  

t, ClO2  ClO2 treatment time  4  Minute   
t, Cl2  Cl2 treatment time  ‐  Minute   
α  Beta‐Poisson model 

parameter 
 0.0571  Unitless   Strachan et al., 

2005  
β  Beta‐Poisson model 

parameter 
2.2183  Unitless   Strachan et al., 

2005  
T  Temperature in the cold 

chain 
‐  ˚C   Rediers et al., 

2009  
t  Time in the cold chain  ‐  minute   Rediers et al., 

2009  
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Appendix B 

Graphical Representation of the Baranyi Growth Model Fitted to 
Microbiological Growth Data 

5˚C 10˚C 

  

15˚C 20˚C 

  

25˚C  

 
• All sigmoidal curves were fitted with DMFit web edition using empirical data provided by Koseki and 

Isobe (Koseki & Isobe, 2005).  

• No growth was observed at 5˚C; therefore it was not possible to fit with the Baranyi model.
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Appendix C 

Estimated Maximum Growth Rate, Lag Time and Maximum Population Density  

Temperature Growth Parameter Standard Error 

Maximum Growth Rate (µmax, log CFU/h) 

10°C 0.431 0.010 

15°C 0.256 0.043 

20°C 0.119 0.100 

25°C 0.029 0.157 

Lag time (λ, h) 

10°C 34.526 3.749 

15°C 7.519 1.484 

20°C 5.163 0.713 

25°C 6.374 0.503 

Maximum Population Density (xmax, logCFU/g) 

10°C 6.790 0.086 

15°C 6.336 0.227 

20°C 6.256 0.094 

25°C 5.882 0.113 

• All parameters were estimated with DMFit web edition using empirical data provided by Koseki and Isobe 

(Koseki & Isobe, 2005).  
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Appendix D 

Microsoft Excel VBA Code Used For the Modified Baranyi Model 

*************************START OF CODE********************** 

Option Explicit 

Dim QArray(0 To 500000) As Double     
Dim QALength As Integer              
Dim QStep As Double 
Dim QLastTwoStep As Double 
Dim CurrentIndex As Integer 
 
Function GrowthModel_RK4(InitialValue As Double, InitialTime As Double, EndTime As Double, Q0 As 
Double, Bu As Double, Bx As Double) As Double 
 
    Dim y As Double 
    Dim h As Double 
    Dim k1 As Double, k2 As Double, k3 As Double, k4 As Double   
    Dim roundEndTime As Double     
    Dim i As Integer 
    Dim increase As Double 
    Dim T As Double 
         
    On Error GoTo HandleError 
        
    h = 20 
    roundEndTime = (InitialTime + ((EndTime - InitialTime) \ h) * h) / 60 
    QALength = ((EndTime - InitialTime) \ h) * 2 + 1 
 
    InitialTime = InitialTime / 60# 
    EndTime = EndTime / 60# 
    h = h / 60# 
     

QArray(0) = Q0                              
 QStep = h / 2# 

     
    T = InitialTime 
     
    For i = 1 To QALength Step 1 
        QArray(i) = Q_RK4_OneRound(QArray(i - 1), T, T + QStep, Bu) 
        T = T + QStep 
    Next i 
 
    If roundEndTime < EndTime Then 
        T = roundEndTime 
        QLastTwoStep = (EndTime - roundEndTime) / 2# 
         
        QArray(QALength + 1) = Q_RK4_OneRound(QArray(QALength), T, T + QLastTwoStep, Bu) 
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        T = T + QLastTwoStep 
        QArray(QALength + 2) = Q_RK4_OneRound(QArray(QALength + 1), T, T + QLastTwoStep, Bu) 
         
        QALength = QALength + 2 
    End If 
 
 
    y = InitialValue 
     
    CurrentIndex = 0 
    For T = InitialTime To roundEndTime - h Step h 
        k1 = f_t_y2(T, y, QArray(CurrentIndex), Bu, Bx) 
        CurrentIndex = CurrentIndex + 1 
        k2 = f_t_y2(T + 0.5 * h, y + 0.5 * k1 * h, QArray(CurrentIndex), Bu, Bx) 
        k3 = f_t_y2(T + 0.5 * h, y + 0.5 * k2 * h, QArray(CurrentIndex), Bu, Bx) 
        CurrentIndex = CurrentIndex + 1 
        k4 = f_t_y2(T + h, y + k3 * h, QArray(CurrentIndex), Bu, Bx) 
        increase = 1 / 6 * (k1 + 2 * k2 + 2 * k3 + k4) * h 
        If increase > 0 Then y = y + increase 
    Next T 
     
    If roundEndTime < EndTime Then 
        h = EndTime - roundEndTime 
        T = roundEndTime 
        k1 = f_t_y2(T, y, QArray(CurrentIndex), Bu, Bx) 
        CurrentIndex = CurrentIndex + 1 
        k2 = f_t_y2(T + 0.5 * h, y + 0.5 * k1 * h, QArray(CurrentIndex), Bu, Bx) 
        k3 = f_t_y2(T + 0.5 * h, y + 0.5 * k2 * h, QArray(CurrentIndex), Bu, Bx) 
        CurrentIndex = CurrentIndex + 1 
        k4 = f_t_y2(T + h, y + k3 * h, QArray(CurrentIndex), Bu, Bx) 
        increase = 1 / 6 * (k1 + 2 * k2 + 2 * k3 + k4) * h 
        If increase > 0 Then y = y + increase 
    End If 
   
    GrowthModel_RK4 = y 
 
HandleError: 
     If Err <> 0 Then MsgBox "T=" & T & ", Err=" & Err & ", " & Error(Err) 
  
End Function 
 
 
Function f_t_y2(Time As Double, y As Double, q As Double, Bu As Double, Bx As Double) As Double 
 
    Dim M As Double 
    Dim u As Double 
    Dim bigT As Double 
 
    On Error GoTo HandleError 
 
    bigT = getT(Time) 



 

79 

 

    M = Bx * bigT + 12.269 
     
    If bigT < 5 Then 
              u = 0     'if Temperature<5C, u equals 0 
    ElseIf bigT >= 5 Then 
              u = (Bu * bigT - 0.2271) ^ 2 
    End If 
     
    f_t_y2 = u * q / (1 + q) * (1 - y / M) * y 
    Exit Function 
 
HandleError: 
     If Err <> 0 Then MsgBox "time=" & Time & ", Err=" & Err & ", " & Error(Err) 
End Function 
 
Function Q_RK4_OneRound(PreValue As Double, PreTime As Double, NextTime As Double, Bu As Double) 
As Double 
 
    Dim y As Double 
    Dim h As Double     ' h is actually the step 
    Dim Time As Double 
    Dim k1 As Double, k2 As Double, k3 As Double, k4 As Double  ' Four variants used in RK4 
            
    On Error GoTo HandleError 
 
    If PreValue > 100000000# Then 
        Q_RK4_OneRound = PreValue 
        Exit Function 
    End If 
         
    Time = PreTime 
    h = NextTime - PreTime 
    y = PreValue 
 
    k1 = f_t_q(Time, y, Bu) 
    k2 = f_t_q(Time + 0.5 * h, y + 0.5 * k1 * h, Bu) 
    k3 = f_t_q(Time + 0.5 * h, y + 0.5 * k2 * h, Bu) 
    k4 = f_t_q(Time + h, y + k3 * h, Bu) 
    y = y + 1 / 6 * (k1 + 2 * k2 + 2 * k3 + k4) * h 
   
    Q_RK4_OneRound = y 
HandleError: 
     If Err <> 0 Then MsgBox "time=" & Time & ", Err=" & Err & ", " & Error(Err) 
End Function 
 
 
Function f_t_q(Time As Double, q As Double, Bu As Double) As Double     
    Dim u As Double 
    Dim bigT As Double 
       
    On Error GoTo HandleError 
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    bigT = getT(Time) 
     
    If bigT < 5 Then 
              u = 0     'if Temperature<5C, u equals 0 
    ElseIf bigT >= 5 Then 
              u = (Bu * bigT - 0.2271) ^ 2 
    End If 
     
    f_t_q = u * q 
    Exit Function 
     
HandleError: 
     If Err <> 0 Then MsgBox "time=" & Time & ", Err=" & Err & ", " & Error(Err) 
     
End Function 
 
 
 
‘Time Temperature function, Scenario 1 
 
Function getT(Time As Double) As Double 
   
  Dim y As Double 
  Dim x As Double 
   
  On Error GoTo HandleError 
   
  x = Time * 60   'change T from hour to minute 
     
Const b01 = 18.8754558952 
Const b02 = -0.2947861272 
Const b03 = 0.0000099022 
Const b04 = -0.0000000018 
Const b05 = 0.2780259523 
Const b06 = 0.2232240877 
Const b07 = -0.3603787484 
Const b08 = 0.0000062962 
Const b09 = 0.1288649837 
Const b10 = -0.0000000039 
Const b11 = 0.0004950322 
Const b12 = -0.0000022422 
Const b13 = 0.0017125941 
Const b14 = -0.0000003793 
Const b15 = 0.0005779601 
Const b16 = 0.0000029303 
Const b17 = -0.0000003003 
   
  y = b01 + b02 * x + b03 * x ^ 2 + b04 * x ^ 3 
  If x > 25 Then y = y + b05 * (x - 25) 
  If x > 1400 Then y = y + b06 * (x - 1400) 
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  If x > 1420 Then y = y + b07 * (x - 1420) + b08 * (x - 1420) ^ 2 
  If x > 1440 Then y = y + b09 * (x - 1440) 
  If x > 1780 Then y = y + b10 * (x - 1780) ^ 3 
  If x > 2700 Then y = y + b11 * (x - 2700) ^ 2 + b12 * (x - 2700) ^ 3 
  If x > 2870 Then y = y + b13 * (x - 2870) ^ 2 + b14 * (x - 2870) ^ 3 
  If x > 3100 Then y = y + b15 * (x - 3100) ^ 2 + b16 * (x - 3100) ^ 3 
  If x > 3300 Then y = y + b17 * (x - 3300) ^ 3 
   
   getT = y 
      
      
 Exit Function 
   
HandleError: 
     If Err <> 0 Then MsgBox "time=" & x & ", Err=" & Err & ", " & Error(Err) 
  
End Function          
 
 
 
‘Time Temperature function, Scenario 2 

Function getT(Time As Double) As Double 
   
  Dim y As Double 
  Dim x As Double 
   
  On Error GoTo HandleError 
   
  x = Time * 60   'change T from hour to minute 
     
    Const b01 = 25.2211751830596 
Const b02 = -0.09138956872187 
Const b03 = 0.00035876400986 
Const b04 = -0.000000065556343 
Const b05 = -0.000277281113982 
Const b06 = -0.009557803363525 
Const b07 = 0.000060589380211 
Const b08 = -0.008262757131685 
Const b09 = 0.000068658483021 
Const b10 = -0.08639484303839 
Const b11 = 0.000451143117825 
Const b12 = -0.000923203162937 
Const b13 = 0.000638711916958 
Const b14 = 0.000000075557664 
Const b15 = 0.051540637192484 
Const b16 = 0.000680520198474 
Const b17 = -0.00000000989912 
Const b18 = -0.15223875323306 
Const b19 = -0.000696057604959 
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Const b20 = -0.030147165734108 
Const b21 = 0.009795076304211 
Const b22 = -0.000089638342888 
Const b23 = 0.00887502423335 
Const b24 = 0.000088494432305 
Const b25 = 0.35680405374695 
Const b26 = -0.002838685614399 
Const b27 = 0.000019531037764 
 
 
  y = b01 + b02 * x + b03 * x ^ 2 + b04 * x ^ 3 
  If x > 110 Then y = y + b05 * (x - 110) ^ 2 
  If x > 500 Then y = y + b06 * (x - 500) + b07 * (x - 500) ^ 2 
  If x > 850 Then y = y + b08 * (x - 850) + b09 * (x - 850) ^ 2 
  If x > 1210 Then y = y + b10 * (x - 1210) + b11 * (x - 1210) ^ 2 
  If x > 1350 Then y = y + b12 * (x - 1350) ^ 2 
  If x > 1420 Then y = y + b13 * (x - 1420) ^ 2 
  If x > 1950 Then y = y + b14 * (x - 1950) ^ 3 
  If x > 2660 Then y = y + b15 * (x - 2660) + b16 * (x - 2660) ^ 2 + b17 * (x - 2660) ^ 3 
  If x > 2680 Then y = y + b18 * (x - 2680) 
  If x > 2750 Then y = y + b19 * (x - 2750) ^ 2 + b20 * (x - 2750) 
  If x > 5570 Then y = y + b21 * (x - 5570) ^ 2 + b22 * (x - 5570) ^ 3 
  If x > 5640 Then y = y + b23 * (x - 5640) ^ 2 + b24 * (x - 5640) ^ 3 
  If x > 5820 Then y = y + b25 * (x - 5820) + b26 * (x - 5820) ^ 2 + b27 * (x - 5820) ^ 3   
   getT = y 
      
      
 Exit Function 
   
HandleError: 
     If Err <> 0 Then MsgBox "time=" & x & ", Err=" & Err & ", " & Error(Err) 
  
End Function          
 
 
 
‘Time Temperature function, Scenario 3 

Function getT(Time As Double) As Double 
   
  Dim y As Double 
  Dim x As Double 
   
  On Error GoTo HandleError 
   
  x = Time * 60    
     
Const b01 = 28.0891598668899 
Const b02 = -0.147413710867 
Const b03 = 0.000321840103599 
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Const b04 = 0.000000123345982 
Const b05 = -0.000407058601291 
Const b06 = -0.000000268010873 
Const b07 = 0.000072278516405 
Const b08 = 0.00000014850604 
Const b09 = 0.001670667015698 
Const b10 = -0.000002052301744 
Const b11 = -0.35985813304664 
Const b12 = -0.034783434784276 
Const b13 = -0.000665861067844 
Const b14 = 0.000002092472699 
Const b15 = -0.09568240882596 
Const b16 = 0.000259404032428 
Const b17 = -0.000002807911835 
Const b18 = -0.012567885427135 
Const b19 = -0.000205440859568 
Const b20 = 0.000001355451592 
Const b21 = -0.000990886813785 
Const b22 = 0.14305844864343 
Const b23 = 0.001468556124605 
Const b24 = -0.19426428667278 
Const b25 = 0.00062761961296 
Const b26 = -0.000006585563724 
Const b27 = 0.003193962216409 
Const b28 = -0.41548772904001 
Const b29 = 0.52481856531246 
 
  y = b01 + b02 * x + b03 * x ^ 2 + b04 * x ^ 3 
  If x > 180 Then y = y + b05 * (x - 180) ^ 2 
  If x > 420 Then y = y + b06 * (x - 420) ^ 3 
  If x > 750 Then y = y + b07 * (x - 750) ^ 2 + b08 * (x - 750) ^ 3 
  If x > 1750 Then y = y + b09 * (x - 1750) ^ 2 + b10 * (x - 1750) ^ 3 
  If x > 1815 Then y = y + b11 * (x - 1815) 
  If x > 1920 Then y = y + b12 * (x - 1920) + b13 * (x - 1920) ^ 2 + b14 * (x - 1920) ^ 3 
  If x > 2590 Then y = y + b15 * (x - 2590) + b16 * (x - 2590) ^ 2 + b17 * (x - 2590) ^ 3 
  If x > 2460 Then y = y + b18 * (x - 2460) + b19 * (x - 2460) ^ 2 + b20 * (x - 2460) ^ 3 
  If x > 2680 Then y = y + b21 * (x - 2680) ^ 2 
  If x > 2720 Then y = y + b22 * (x - 2720) + b23 * (x - 2720) ^ 2 
  If x > 2865 Then y = y + b24 * (x - 2865) + b25 * (x - 2865) ^ 2 
  If x > 2960 Then y = y + b26 * (x - 2960) ^ 3 + b27 * (x - 2960) ^ 2 + b28 * (x - 2960) 
  If x > 3100 Then y = y + b29 * (x - 3100) 
 
   getT = y 
      
      
 Exit Function 
   
HandleError: 
     If Err <> 0 Then MsgBox "time=" & x & ", Err=" & Err & ", " & Error(Err) 
  
End Function          
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‘Time Temperature function, Scenario 4 

Function getT(Time As Double) As Double 
   
  Dim y As Double 
  Dim x As Double 
   
  On Error GoTo HandleError 
   
  x = Time * 60    
     
Const b01 = 18.8754558952 
Const b02 = -0.2947861272 
Const b03 = 0.0000099022 
Const b04 = -0.0000000018 
Const b05 = 0.2780259523 
Const b06 = 0.2232240877 
Const b07 = -0.3603787484 
Const b08 = 0.0000062962 
Const b09 = 0.1288649837 
Const b10 = -0.0000000039 
Const b11 = 0.0004950322 
Const b12 = -0.0000022422 
Const b13 = 0.0017125941 
Const b14 = -0.0000003793 
Const b15 = 0.0005779601 
Const b16 = 0.0000029303 
Const b17 = -0.0000003003 
   
  y = b01 + b02 * x + b03 * x ^ 2 + b04 * x ^ 3 
  If x > 25 Then y = y + b05 * (x - 25) 
  If x > 1400 Then y = y + b06 * (x - 1400) 
  If x > 1420 Then y = y + b07 * (x - 1420) + b08 * (x - 1420) ^ 2 
  If x > 1440 Then y = y + b09 * (x - 1440) 
  If x > 1780 Then y = y + b10 * (x - 1780) ^ 3 
  If x > 2700 Then y = y + b11 * (x - 2700) ^ 2 + b12 * (x - 2700) ^ 3 
  If x > 2870 Then y = y + b13 * (x - 2870) ^ 2 + b14 * (x - 2870) ^ 3 
  If x > 3100 Then y = y + b15 * (x - 3100) ^ 2 + b16 * (x - 3100) ^ 3 
  If x > 3300 Then y = y + b17 * (x - 3300) ^ 3 
   getT = y 
      
 Exit Function 
   
HandleError: 
     If Err <> 0 Then MsgBox "time=" & x & ", Err=" & Err & ", " & Error(Err) 
 
End Function          
 
************************END OF CODE***********************  
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Appendix F 

SAS Code for Curve Smoothing 

************ Scenario 1 ************;   
 
data one;  
set work.exp051(keep=X B1); 
X1=X; 
X2=X**2; 
X3=(X>10)*(X-10); 
X4=(X>120)*((X-120)**2);  
X5=(X>210)*(X-210);  
X6=(X>210)*((X-210)**2);  
X7=(X>1190)*(X-1190);   
X8=(X>1190)*((X-1190)**2);   
X9=(X>1190)*((X-1190)**3);   
X10=(X>1360)*(X-1360);   
X11=(X>1360)*((X-1360)**2);   
X12=(X>1500)*((X-1500)**2);   
X13=(X>1680)*((X-1680)**3);   
X14=(X>4010)*((X-4010)**2);   
X15=(X>4010)*((X-4010)**3);   
X16=(X>4250)*(X-4250);   
X17=(X>4250)*((X-4250)**2);   
X18=(X>4250)*((X-4250)**3);   
X19=(X>4460)*(X-4460);   
X20=(X>4460)*((X-4460)**2);   
X21=(X>4460)*((X-4460)**3);   
run; 
 

ods trace on / listing; 
ods output ParameterEstimates=Par; 
proc reg data=one;; 
model B1=X1-X21; 
output out=exp051 predicted=pB1; 
run; 
title 'REG analysis of expansion variables'; 
title2 'Full Model: x1-x21'; 
quit; 
ods trace off; 
 
proc print data=Par; 
format Estimate 30.15; 
run; 
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legend label=none value=('B1' 'predicted B1') position=(bottom left inside) 
mode=share down =2; 
proc gplot data=exp051; 
plot (B1 pB1)*x/overlay legend=legend; 
run; 
 
 
 
 
 
*************** Scenario 2 ************; 
 

data two; 
set work.exp054(keep=X Y); 
X1=X; 
X2=X**2; 
X3=X**3; 
X4=(X>110 )*((X-110)**2);   
X5=(X>500)*(X-500);   
X6=(X>500 )*((X-500)**2);   
X7=(X>850)*(X-850);   
X8=(X>850)*((X-850)**2);   
X9=(X>1210)*(X-1210);   
X10=(X>1210)*((X-1210)**2);   
X11=(X>1350 )*((X-1350)**2);   
X12=(X>1420)*((X-1420)**2);   
X13=(X>1950 )*((X-1950)**3);   
X14=(X>2660)*(X-2660);   
X15=(X>2660)*((X-2660)**2);   
X16=(X>2660)*((X-2660)**3);   
X17=(X>2680)*(X-2680);   
X18=(X>2750)*((X-2750)**2);   
X19=(X>2750)*((X-2750)**1);   
X20=(X>5570 )*((X-5570)**2);   
X21=(X>5570)*((X-5570)**3);   
X22=(X>5640 )*((X-5640)**2);   
X23=(X>5640)*((X-5640)**3);   
X24=(X>5820)*(X-5820);   
X25=(X>5820 )*((X-5820)**2);   
X26=(X>5820 )*((X-5820)**3);   
run; 
 
ods trace on / listing; 
ods output ParameterEstimates=Par; 
proc reg data=two; 
model Y=X1-X26; 
output out=exp054 predicted=pY; 
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run; 
title 'REG analysis of expansion variables'; 
title2 'Full Model: x1-x26'; 
quit; 
ods trace off; 
 
proc print data=Par; 
format Estimate 30.15; 
run; 
legend label=none value=('Y' 'predicted Y') position=(bottom left inside) 
mode=share down =2; 
proc gplot data=exp054; 
plot (Y pY)*x/overlay legend=legend; 
run; 
 
 
 
************ Scenario 3 *************; 
 
data three; 
set work.exp061(keep=X Y); 
X1=X; 
X2=X**2; 
X3=X**3; 
X4=(X>180)*((X-180)**2);   
X5=(X>420)*((X-420)**3);   
X6=(X>750)*((X-750)**2);   
X7=(X>750)*((X-750)**3);   
X8=(X>1750 )*((X-1750)**2);   
X9=(X>1750)*((X-1750)**3);   
X10=(X>1815)*(X-1815);   
X11=(X>1920)*(X-1920);   
X12=(X>1920)*((X-1920)**2);   
X13=(X>1920)*((X-1920)**3);   
X14=(X>2590 )*(X-2590);   
X15=(X>2590)*((X-2590)**2);   
X16=(X>2590)*((X-2590)**3);   
X17=(X>2460)*(X-2460);   
X18=(X>2460)*((X-2460)**2);   
X19=(X>2460)*((X-2460)**3);  
X20=(X>2680 )*((X-2680)**2 );   
X21=(X>2720 )*(X-2720 );   
X22=(X>2720 )*((X-2720)**2);   
X23=(X>2865 )*((X-2865)*1);   
X24=(X>2865)*((X-2865)**2);   
X25=(X>2960 )*((X-2960)**3);   
X26=(X>2960 )*((X-2960)**2);   
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X27=(X>2960 )*((X-2960)**1);   
X28=(X>3100 )*(X-3100);   
run; 
 
ods trace on / listing; 
ods output ParameterEstimates=Par; 
proc reg data=three;; 
model Y=X1-X28; 
output out=exp061 predicted=pY; 
run; 
title 'REG analysis of expansion variables'; 
title2 'Full Model: x1-x28'; 
quit; 
ods trace off; 
 
proc print data=Par; 
format Estimate 30.15; 
run; 
 
legend label=none value=('y' 'predicted y') position=(bottom left inside) 
mode=share down =2; 
proc gplot data=exp061; 
plot (Y pY)*x/overlay legend=legend; 
run; 
 
 
 
************ Scenario 4 *************; 
 
data four; 
set work.exp063(keep=X Y); 
X1=X; 
X2=X**2; 
X3=X**3; 
X4=(X> 25)*(X-25);   
X5=(X>1400)*(X-1400);   
X6=(X>1420)*(X-1420);   
X7=(X>1420)*((X-1420)**2);   
X8=(X>1440)*(X-1440);   
X9=(X>1780)*((X-1780)**3);   
X10=(X>2700)*((X-2700)**2);   
X11=(X>2700)*((X-2700)**3);   
X12=(X>2870)*((X-2870)**2);   
X13=(X>2870)*((X-2870)**3);   
X14=(X>3100)*((X-3100)**2);   
X15=(X>3100)*((X-3100)**3);   
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X16=(X>3300 )*((X-3300)**3);   
run; 
 
ods trace on / listing; 
ods output ParameterEstimates=Par; 
proc reg data=four;; 
model Y=X1-X16; 
output out=exp063 predicted=pY; 
run; 
title 'REG analysis of expansion variables'; 
title2 'Full Model: x1-x16'; 
quit; 
ods trace off; 
 
proc print data=Par; 
format Estimate 30.15; 
run; 
legend label=none value=('y' 'predicted y') position=(bottom left inside) 
mode=share down =2; 
proc gplot data=exp063; 
plot (Y pY)*x/overlay legend=legend; 
run; 
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Appendix G 

Piecewise Cubic Regression Fitted to Time-Temperature Profile 

 

Scenario 1: 

Variable DF Estimate StdErr tValue Probt 

Intercept 1 20.332477320177500 0.10893 186.65 <.0001 

X1 1 -0.375306460433790 0.01274 -29.46 <.0001 

X2 1 0.001502300491138 0.00001098 136.85 <.0001 

X3 1 0.066927695415670 0.01367 4.89 <.0001 

X4 1 -0.002290984105323 0.00002117 -108.23 <.0001 

X5 1 0.090217016161230 0.00125 72.06 <.0001 

X6 1 0.000788713845252 0.00001132 69.68 <.0001 

X7 1 0.050730114095757 0.00075605 67.10 <.0001 

X8 1 -0.000127063768643 0.00000440 -28.87 <.0001 

X9 1 0.000000160167311 4.048354E-9 39.56 <.0001 

X10 1 -0.125186522302920 0.00151 -82.75 <.0001 

X11 1 0.000435237736999 0.00000374 116.31 <.0001 

X12 1 -0.000543767024861 0.00000655 -83.02 <.0001 

X13 1 -0.000000160084423 4.055784E-9 -39.47 <.0001 

X14 1 0.000111718193996 0.00000367 30.43 <.0001 

X15 1 -0.000000459864614 1.571306E-8 -29.27 <.0001 

X16 1 0.087270335482540 0.00251 34.79 <.0001 

X17 1 -0.000317718888709 0.00001855 -17.13 <.0001 

X18 1 0.000002308822291 7.152008E-8 32.28 <.0001 

X19 1 -0.306412503850460 0.00499 -61.38 <.0001 

X20 1 0.003134900975001 0.00006772 46.29 <.0001 

X21 1 -0.000011802356281 4.153751E-7 -28.41 <.0001 
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Scenario 2 

 
Variable DF Estimate StdErr tValue Probt 

Intercept 1 25.221175183059600 0.04683 538.53 <.0001 

X1 1 -0.091389568721870 0.00117 -78.09 <.0001 

X2 1 0.000358764009860 0.00000608 58.98 <.0001 

X3 1 -0.000000065556343 5.87512E-10 -111.58 <.0001 

X4 1 -0.000277281113982 0.00000655 -42.32 <.0001 

X5 1 -0.009557803363525 0.00050295 -19.00 <.0001 

X6 1 0.000060589380211 0.00000105 57.67 <.0001 

X7 1 -0.008262757131685 0.00055649 -14.85 <.0001 

X8 1 0.000068658483021 0.00000114 60.21 <.0001 

X9 1 -0.086394843038390 0.00102 -84.43 <.0001 

X10 1 0.000451143117825 0.00000447 100.99 <.0001 

X11 1 -0.000923203162937 0.00000907 -101.79 <.0001 

X12 1 0.000638711916958 0.00000550 116.22 <.0001 

X13 1 0.000000075557664 9.27371E-10 81.48 <.0001 

X14 1 0.051540637192484 0.00276 18.66 <.0001 

X15 1 0.000680520198474 0.00004037 16.86 <.0001 

X16 1 -0.000000009899120 3.83234E-10 -25.83 <.0001 

X17 1 -0.152238753233060 0.00675 -22.55 <.0001 

X18 1 -0.000696057604959 0.00004034 -17.26 <.0001 

X19 1 -0.030147165734108 0.00242 -12.44 <.0001 

X20 1 0.009795076304211 0.00003545 276.28 <.0001 

X21 1 -0.000089638342888 4.265453E-7 -210.15 <.0001 

X22 1 0.008875024233350 0.00007458 118.99 <.0001 

X23 1 0.000088494432305 3.70718E-7 238.71 <.0001 

X24 1 0.356804053746950 0.00676 52.82 <.0001 

X25 1 -0.002838685614399 0.00013240 -21.44 <.0001 

X26 1 0.000019531037764 0.00000103 18.98 <.0001 
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Scenario 3 

Variable DF Estimate StdErr tValue Probt 

Intercept 1 24.591348981412800 0.06416 383.30 <.0001 

X1 1 -0.074501386639630 0.00045713 -162.98 <.0001 

X2 1 0.000083694596245 6.768617E-7 123.65 <.0001 

X5 1 -0.000000189295316 2.425882E-9 -78.03 <.0001 

X6 1 0.000108859990239 0.00000247 44.12 <.0001 

X7 1 0.000000189566566 2.121565E-9 89.35 <.0001 

X8 1 0.001742809810341 0.00003860 45.15 <.0001 

X9 1 -0.000002213453644 1.294414E-7 -17.10 <.0001 

X10 1 -0.367233435576320 0.00822 -44.68 <.0001 

X11 1 -0.034395526421568 0.00567 -6.07 <.0001 

X12 1 -0.000649227461010 0.00005447 -11.92 <.0001 

X13 1 0.000002257244507 1.319667E-7 17.10 <.0001 

X14 1 -0.095677601078760 0.01334 -7.17 <.0001 

X15 1 0.000259501882604 0.00016128 1.61 0.1077 

X16 1 -0.000002807233758 9.873663E-7 -2.84 0.0045 

X17 1 -0.012584313230888 0.00826 -1.52 0.1279 

X18 1 -0.000205319746871 0.00014944 -1.37 0.1696 

X19 1 0.000001354733853 7.894645E-7 1.72 0.0863 

X20 1 -0.000990876398192 0.00030143 -3.29 0.0010 

X21 1 0.143058303316500 0.01811 7.90 <.0001 

X22 1 0.001468546837308 0.00017657 8.32 <.0001 

X23 1 -0.194264415382940 0.00979 -19.85 <.0001 

X24 1 0.000627616246598 0.00018359 3.42 0.0006 

X25 1 -0.000006585575745 9.802394E-7 -6.72 <.0001 

X26 1 0.003193960714469 0.00016100 19.84 <.0001 

X27 1 -0.415487840075530 0.01407 -29.54 <.0001 

X28 1 0.524818631863140 0.16609 3.16 0.0016 
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Scenario 4 

 
Variable DF Estimate StdErr tValue Probt 

Intercept 1 18.875455895202500 0.08446 223.49 <.0001 

X1 1 -0.294786127222160 0.00367 -80.34 <.0001 

X2 1 0.000009902240553 2.863243E-7 34.58 <.0001 

X3 1 -0.000000001763646 1.3221E-10 -13.34 <.0001 

X4 1 0.278025952251190 0.00373 74.45 <.0001 

X5 1 0.223224087728040 0.00384 58.16 <.0001 

X6 1 -0.360378748375840 0.00731 -49.33 <.0001 

X7 1 0.000006296222003 4.465615E-7 14.10 <.0001 

X8 1 0.128864983719280 0.00382 33.76 <.0001 

X9 1 -0.000000003943900 2.26576E-10 -17.41 <.0001 

X10 1 0.000495032172002 0.00000771 64.22 <.0001 

X11 1 -0.000002242170208 3.554957E-8 -63.07 <.0001 

X12 1 0.001712594057819 0.00001810 94.61 <.0001 

X13 1 -0.000000379333377 2.673068E-8 -14.19 <.0001 

X14 1 0.000577960106756 0.00000922 62.66 <.0001 

X15 1 0.000002930282926 1.842084E-8 159.07 <.0001 

X16 1 -0.000000300287060 4.824885E-9 -62.24 <.0001 

  



 

95 

 

 

 



 

96 

 

 



 97 

 
Appendix H 

NUSAP Matrix Used to Score the Parameter Strength 

Pedigree Criteria 

Score Proxy Empirical basis Methodological rigor Validation 

4 

Exact measure of the 
desired quantity (e.g., 
measurements from the 
same geographically 
representative area as 
that being investigated 

Large sample direct 
measurements, recent 
data, 
controlled 
experiments 
 

Best available 
(method) 
practice in well-
established 
discipline (accredited 
method for sampling/ 
diagnostic test) 
 

Compared with 
independent 
measurements of 
the same 
variable over 
long domain, 
rigorous 
correction of 
errors 
 

3 

Good fit or measure 
(e.g., measurements 
used from another 
geographical area but 
representative 

Small sample, direct 
measurements, 
less recent data, 
uncontrolled 
experiments, 
low nonresponse rate 
 

Reliable method 
common within 
established discipline, 
best available practice 
in immature discipline 
(sampling/diagnostic 
test) 
 

Compared with 
independent 
measurements of 
closely 
related variable 
over shorter 
period 
 

2 

Well correlated but not 
measuring the same 
thing (e.g. large 
geographical 
differences, less 
representative) 

Very small sample 
modeled/derived 
data/indirect 
measurements, 
structured expert 
opinion 
 

Acceptable method 
but limited consensus 
on reliability 
 

Compared with 
measurements 
not independent, 
proxy 
variable, limited 
domain 
 

1 

Weak correlation (e.g., 
very large geographical 
differences, low 
representativity) 
 

One expert opinion, 
rule-of-thumb 
estimate 
 

Preliminary methods 
with unknown 
reliability 
 

Weak, very 
indirect 
validation 
 

0 Not clearly correlated 
 

Crude speculation 
 

No discernible rigor 
 

No validation 
 

A     
B     

• Rows A and B were used to register missingness in two categories. A = no score due to insufficient 
information, B = no score due to insufficient expertise.  

Adapted from Boone et al. (Boone et al., 2009) 




