
Efficient Cryptographic Algorithms
and Protocols for Mobile Ad Hoc

Networks

by

Xinxin Fan

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2010

c© Xinxin Fan 2010

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

As the next evolutionary step in digital communication systems, mobile ad hoc net-
works (MANETs) and their specialization like wireless sensor networks (WSNs) have been
attracting much interest in both research and industry communities. In MANETs, network
nodes can come together and form a network without depending on any pre-existing infras-
tructure and human intervention. Unfortunately, the salient characteristics of MANETs,
in particular the absence of infrastructure and the constrained resources of mobile devices,
present enormous challenges when designing security mechanisms in this environment.
Without necessary measures, wireless communications are easy to be intercepted and ac-
tivities of users can be easily traced. This thesis presents our solutions for two important
aspects of securing MANETs, namely efficient key management protocols and fast imple-
mentations of cryptographic primitives on constrained devices.

Due to the tight cost and constrained resources of high-volume mobile devices used in
MANETs, it is desirable to employ lightweight and specialized cryptographic primitives for
many security applications. Motivated by the design of the well-known Enigma machine,
we present a novel ultra-lightweight cryptographic algorithm, referred to as Hummingbird,
for resource-constrained devices. Hummingbird can provide the designed security with small
block size and is resistant to the most common attacks such as linear and differential crypt-
analysis. Furthermore, we also present efficient software implementations of Hummingbird
on 4-, 8- and 16-bit microcontrollers from Atmel and Texas Instruments as well as efficient
hardware implementations on the low-cost field programmable gate arrays (FPGAs) from
Xilinx, respectively. Our experimental results show that after a system initialization phase
Hummingbird can achieve up to 147 and 4.7 times faster throughput for a size-optimized
and a speed-optimized software implementation, respectively, when compared to the state-
of-the-art ultra-lightweight block cipher PRESENT on the similar platforms. In addition,
the speed optimized Hummingbird encryption core can achieve a throughput of 160.4 Mbps
and the area optimized encryption core only occupies 253 slices on a Spartan-3 XC3S200
FPGA device.

Bilinear pairings on the Jacobians of (hyper-)elliptic curves have received considerable
attention as a building block for constructing cryptographic schemes in MANETs with
new and novel properties. Motivated by the work of Scott, we investigate how to use ef-
ficiently computable automorphisms to speed up pairing computations on two families of
non-supersingular genus 2 hyperelliptic curves over prime fields. Our findings lead to new
variants of Miller’s algorithm in which the length of the main loop can be up to 4 times
shorter than that of the original Miller’s algorithm in the best case. We also generalize
Chatterjee et al.’s idea of encapsulating the computation of the line function with the
group operations to genus 2 hyperelliptic curves, and derive new explicit formulae for the
group operations in projective and new coordinates in the context of pairing computations.

v

Efficient software implementation of computing the Tate pairing on both a supersingular
and a non-supersingular genus 2 curve with the same embedding degree of k = 4 is in-
vestigated. Combining the new algorithm with known optimization techniques, we show
that pairing computations on non-supersingular genus 2 curves over prime fields use up to
55.8% fewer field operations and run about 10% faster than supersingular genus 2 curves
for the same security level.

As an important part of a key management mechanism, efficient key revocation proto-
col, which revokes the cryptographic keys of malicious nodes and isolates them from the
network, is crucial for the security and robustness of MANETs. We propose a novel self-
organized key revocation scheme for MANETs based on the Dirichlet multinomial model
and identity-based cryptography. Firmly rooted in statistics, our key revocation scheme
provides a theoretically sound basis for nodes analyzing and predicting peers’ behavior
based on their own observations and other nodes’ reports. Considering the difference of
malicious behaviors, we proposed to classify the nodes’ behavior into three categories,
namely good behavior, suspicious behavior and malicious behavior. Each node in the net-
work keeps track of three categories of behavior and updates its knowledge about other
nodes’ behavior with 3-dimension Dirichlet distribution. Based on its own analysis, each
node is able to protect itself from malicious attacks by either revoking the keys of the
nodes with malicious behavior or ceasing the communication with the nodes showing sus-
picious behavior for some time. The attack-resistant properties of the resulting scheme
against false accusation attacks launched by independent and collusive adversaries are also
analyzed through extensive simulations.

In WSNs, broadcast authentication is a crucial security mechanism that allows a multi-
tude of legitimate users to join in and disseminate messages into the networks in a dynamic
and authenticated way. During the past few years, several public-key based multi-user
broadcast authentication schemes have been proposed in the literature to achieve imme-
diate authentication and to address the security vulnerability intrinsic to µTESLA-like
schemes. Unfortunately, the relatively slow signature verification in signature-based broad-
cast authentication has also incurred a series of problems such as high energy consumption
and long verification delay. We propose an efficient technique to accelerate the signature
verification in WSNs through the cooperation among sensor nodes. By allowing some sen-
sor nodes to release the intermediate computation results to their neighbors during the
signature verification, a large number of sensor nodes can accelerate their signature ver-
ification process significantly. When applying our faster signature verification technique
to the broadcast authentication in a 4 × 4 grid-based WSN, a quantitative performance
analysis shows that our scheme needs 15.5% ∼ 34.5% less energy and runs about 50%
faster than the traditional signature verification method.

vi

Acknowledgements

This thesis describes the research that I conducted during the past four years I worked as
a research assistant at the Department of Electrical and Computer Engineering, University
of Waterloo. These four years have been a tremendous period of development for me, both
academically and personally, and I would like to take this opportunity to express my deep
gratitude to many people who have made much of this time unforgettable.

First and foremost, I would like to thank my supervisor, Prof. Guang Gong, for accept-
ing and supporting me as a Ph.D. student and allowing me to take the liberty to follow
my research interests. Her advice and expertise in the field resolved many hurdles that I
encountered throughout my research. I would like to thank Prof. Gong for her valuable
friendship and camaraderie that we developed while working together. I would like to
express my appreciation to Prof. Lein Harn at the University of Missouri, Kansas City, for
serving as my external examiner and giving me many valuable suggestions and comments.
I am also grateful to my thesis committee, Prof. Catherine Gebotys, Prof. Anwar Hasan
and Prof. Alfred Menezes at the University of Waterloo, for helping me to improve the
quality of my thesis. It is a privilege to have such a great committee.

I would like to thank Prof. David Jao at the University of Waterloo for all the fruitful
discussions about elliptic and hyperelliptic curve cryptography when we worked on pairing
computation on genus 2 hyperelliptic curves together. Thanks to Prof. Steven Galbraith at
the University of Auckland for answering me so many questions about hyperelliptic curve
pairings through emails and giving me valuable comments on my research work during
the course of attending “Pairing-Based Cryptography” conference. I am also grateful to
Prof. Mark Aagaard at the University of Waterloo for kindly sharing his experience with
me on FPGA and ASIC design of cryptographic algorithms as well as the use of hardware
synthesis and implementation tools.

I would like to thank Dr. Daniel Engels and Mr. Eric Smith from Revere Security Corpo-
ration for all the discussions on lightweight cryptographic primitives and their applications
in securing RFID systems as well as the exciting research project about Hummingbird cipher
we had. Their wealth of experience with applied cryptography is extremely helpful for me
to bridge the gap between cryptography theoretical research and practical applications.

I want to express my deep gratitude to my former supervisor Prof. Yumin Wang at the
Xidian University. Prof. Wang guided me to the exciting field of Cryptography and his
professionalism, enthusiasm and encouragement are always inspiring. This thesis is also
dedicated to him, especially on the occasion of his 74th birthday. My acknowledgements
also go to Dr. Thomas Wollinger from the escrypt GmbH-Embedded Security for giving
me many useful advices at the very beginning of my research and collaborating with me to
develop fast group operations for hyperelliptic curve cryptosystems. I miss all those days
we work together to write yet another research paper.

vii

I would like to give special thanks to all my (former) colleagues and friends. I thank
Dr. Kishan Gupta, Dr. Katrin Hoeper, Dr. Yassir Nawaz and Dr. Nam Yul Yu for their
friendship and exchanging ideas. I also thank Dr. Honggang Hu, Dr. Hong Wen, Zhijun
Li, Anuchart Tassanaviboon, Qi Chai, Zilong Wang, Yiyuan Luo, and Fei Huo for their
support, for their friendship, and for having much fun with them. I want to thank all the
members of the Communication Security (ComSec) Lab for always contributing to a good
and warm group atmosphere and making ComSec an excellent place for doing research.

Last but not least, I would like to thank my family, my parents, and my friends for
being patient with me and for their support. Special thanks go out to my wife Ning Zhang
for her unconditional love and understanding during the past four years and especially
during these last months writing the thesis.

To all of you thank you very much!

viii

To my wife
To my parents

For their endless love and support!

ix

Contents

List of Tables xvi

List of Figures xviii

1 Introduction 1

1.1 Mobile Ad Hoc Networks . 2

1.2 Attacks in Mobile Ad Hoc Networks . 3

1.3 Security Services and Design Goals . 5

1.4 This Thesis and Related Work . 6

1.5 Outline and Main Contributions . 9

2 Hummingbird: Ultra-Lightweight Cryptography for Resource-Constrained
Devices 13

2.1 Related Work . 14

2.2 The Hummingbird Cryptographic Algorithm 16

2.2.1 Initialization Process . 17

2.2.2 Encryption Process . 17

2.2.3 Decryption Process . 19

2.2.4 16-Bit Block Cipher . 19

2.2.5 Design Rationale . 21

2.3 Security Analysis . 22

2.4 Efficient Software Implementations on Low-Power Microcontrollers 25

2.4.1 Software Implementation on a 4-Bit Microcontroller 25

xi

2.4.2 Software Implementation on a 8-Bit Microcontroller 33

2.4.3 Software Implementation on a 16-Bit Microcontroller 38

2.5 Efficient Hardware Implementations on Low-Cost FPGAs 41

2.5.1 Target Platform and Design Tools 42

2.5.2 Selection of a “Hardware-Friendly” S-Box 42

2.5.3 Speed Optimized Hardware Architecture 43

2.5.4 Area Optimized Hardware Architecture 48

2.5.5 Implementation Results and Comparisons 53

2.6 Encryption Modes and Conclusions . 54

3 Efficient Pairing Computation on Genus 2 Hyperelliptic Curves over
Prime Fields 57

3.1 Related Work and Motivation . 57

3.2 Mathematical Background . 59

3.2.1 Genus 2 Hyperelliptic Curves over Prime Fields 59

3.2.2 Tate Pairing on Hyperelliptic Curves 60

3.2.3 Miller’s Algorithm . 60

3.3 Supersingular Curves and Non-supersingular Curves 62

3.3.1 Supersingular Genus 2 Curves over Fp 62

3.3.2 Non-Supersingular Genus 2 Curves over Fp 63

3.4 Efficient Pairings on Non-supersingular Genus 2 Curves 64

3.4.1 Pairing Computation with Efficient Automorphisms 65

3.4.2 A New Variant of Miller’s Algorithm 69

3.5 Encapsulated Computation on Genus 2 Curves 69

3.5.1 Encapsulated Divisor Addition and Line Computation 71

3.5.2 Encapsulated Divisor Doubling and Line Computation 73

3.6 Implementing the Tate Pairing with Efficient Automorphisms 75

3.6.1 Curve Generation . 75

3.6.2 Finite Field Arithmetic . 77

3.6.3 Encapsulated Group Operations . 77

xii

3.6.4 Using Degenerate Divisors and Denominator Elimination 77

3.6.5 Evaluating Line Functions at A Degenerate Divisor 78

3.6.6 Final Exponentiation . 79

3.6.7 Performance Analysis and Comparison 79

3.6.8 Experimental Results . 81

3.7 Conclusions . 82

4 Key Revocation Based on Dirichlet Multinomial Model for MANETs 85

4.1 Related Work and Motivation . 86

4.1.1 Threshold Cryptography Based Key Revocation Schemes 86

4.1.2 Self-Organized Key Revocation Schemes 88

4.1.3 Other Key Revocation Schemes . 90

4.1.4 Motivation . 91

4.2 Mathematical Background . 92

4.2.1 IBC and Bilinear Pairing . 92

4.2.2 Dirichlet Multinomial Model . 93

4.3 System Models and Design Goals . 94

4.3.1 Network Model . 94

4.3.2 Security Model . 95

4.3.3 Design Goals . 96

4.4 Protocol Description . 96

4.4.1 Overview . 97

4.4.2 Step 1. Network Initialization . 98

4.4.3 Step 2. Neighborhood Watch . 101

4.4.4 Step 3. Authenticated Information Dissemination 103

4.4.5 Step 4. Filter of False Statements . 103

4.4.6 Step 5. Multilevel Response for Malicious Nodes 106

4.5 Performance Evaluation . 107

4.5.1 Simulation Setup . 107

4.5.2 False Statement Attacks by Independent Adversaries 108

4.5.3 False Statement Attacks by Collusive Adversaries 110

4.6 Conclusion . 113

xiii

5 Accelerating Signature-Based Broadcast Authentication for WSNs 115

5.1 Related Work and Motivation . 115

5.2 Preliminaries . 118

5.2.1 Elliptic Curve Cryptography . 118

5.2.2 Elliptic Curve Digital Signature Algorithm 118

5.3 System and Adversary Models . 119

5.3.1 System Model . 119

5.3.2 Adversary Model . 120

5.3.3 Design Goal . 120

5.4 Faster Signature Verification in Wireless Sensor Networks 121

5.4.1 Problem Statement . 121

5.4.2 A Faster Signature Verification Scheme 121

5.4.3 Selection of System Parameters . 127

5.5 Security and Performance Analysis . 129

5.5.1 Case Study . 129

5.5.2 Performance in the Ideal Case . 131

5.5.3 Security and Performance under Attacks from Independent Adversaries132

5.5.4 Security and Performance under Attacks from Collusive Adversaries 133

5.6 Conclusions . 134

6 Conclusions and Future Research 135

6.1 Conclusions . 135

6.2 Future Work . 137

APPENDICES 139

A Criteria for Selection of S-Boxes in Hummingbird 141

A.1 Serpent-type S-boxes . 141

A.2 Additional Requirements for Serpent-type S-boxes 142

B Explicit Formulae for Genus 2 Curves over Fp 145

Bibliography 149

xiv

List of Tables

2.1 Notation . 16

2.2 Four S-Boxes in Hexadecimal Notation . 20

2.3 Differential Property of the 16-bit Block Cipher 23

2.4 Linear Property of the 16-bit Block Cipher 23

2.5 Memory Consumption and Cycle Count Comparison 32

2.6 Timing and Throughput Comparison at Three Clock Frequencies 33

2.7 The Overall Encryption Performance Comparison 33

2.8 The Overall Decryption Performance Comparison 34

2.9 Memory Consumption and Cycle Count Comparison (Size Optimized Im-
plementation on 8-bit Microcontrollers) . 35

2.10 The Overall Encryption Performance Comparison at 4 MHz (Size Optimized
Implementation on 8-bit Microcontrollers) 35

2.11 The Overall Decryption Performance Comparison at 4 MHz (Size Optimized
Implementation on 8-bit Microcontrollers) 36

2.12 Memory Consumption and Cycle Count Comparison (Speed Optimized Im-
plementation on 8-bit Microcontrollers) . 37

2.13 The Overall Encryption Performance Comparison at 4 MHz (Speed Opti-
mized Implementation on 8-bit Microcontrollers) 37

2.14 The Overall Decryption Performance Comparison at 4 MHz (Speed Opti-
mized Implementation on 8-bit Microcontrollers) 37

2.15 Memory Consumption and Cycle Count Comparison (Size Optimized Im-
plementation on 16-bit Microcontrollers) 39

2.16 The Overall Encryption Performance Comparison at 4 MHz (Size Optimized
Implementation on 16-bit Microcontrollers) 39

xv

2.17 The Overall Decryption Performance Comparison at 4 MHz (Size Optimized
Implementation on 16-bit Microcontrollers) 40

2.18 Memory Consumption and Cycle Count Comparison (Speed Optimized Im-
plementation on 16-bit Microcontrollers) 40

2.19 The Overall Encryption Performance Comparison at 4 MHz (Speed Opti-
mized Implementation on 16-bit Microcontrollers) 41

2.20 The Overall Decryption Performance Comparison at 4 MHz (Speed Opti-
mized Implementation on 16-bit Microcontrollers) 41

2.21 Boolean Function Representations for S-boxes in Hummingbird 43

2.22 Area Requirement Comparison for the Loop-Unrolled Architecture of 16-bit
Block Cipher on the Spartan-3 XC3S200 FPGA (Using four S-boxes and two
implementation strategies) . 44

2.23 Area Requirement Comparison for the Round-based Architecture of 16-bit
Block Cipher on the Spartan-3 XC3S200 FPGA (Using four S-boxes and two
implementation strategies) . 49

2.24 Implementation Results for Compact Version of Hummingbird on the Spartan-
3 XC3S200 FPGA . 53

2.25 Performance Comparison of FPGA Implementations of Cryptographic Al-
gorithms . 53

3.1 Mixed-Addition Formula on a Genus 2 Curve over Fp (New Coordinates) . 72

3.2 Divisor Class Addition in Different Systems and in Odd Characteristic . . 73

3.3 Doubling Formula on a Genus 2 Curve over Fp (New Coordinates) 74

3.4 Divisor Class Doubling in Different Systems and in Odd Characteristic . . 75

3.5 Performance Comparison of Pairing Computation on Curves C1 and C∗2 . . 80

3.6 Timings of Prime Field Fp Library . 81

3.7 Experimental Results – (160/1024) Security Level 82

5.1 Senders and Receivers of the Intermediate Computation Results in Faster
ECDSA Verification . 131

A.1 The Boolean and Polynomial Forms of S-Boxes 143

B.1 Mixed-Addition Formula on a Genus 2 curve over Fp (Projective Coordinates)146

B.2 Doubling Formula on a Genus 2 Curve over Fp (Projective Coordinates) . . 147

xvi

List of Figures

1.1 A Mobile Ad Hoc Network . 2

2.1 A Top-Level Description of the Hummingbird Cryptographic Algorithm . . 17

2.2 The Structure of Block Cipher in the Hummingbird Cryptographic Algorithm 20

2.3 The Function Call Graph in Hummingbird Implementation 27

2.4 A 16-bit Galois LFSR with Characteristic Polynomial f(x) = x16 + x15 +
x12 + x10 + x7 + x3 + 1 . 29

2.5 Loop-Unrolled Architecture of 16-bit Block Cipher 44

2.6 The Datapath of Speed Optimized Hummingbird Encryption Core Using the
Loop-Unrolled Architecture of 16-bit Block Cipher 45

2.7 The I/O Interface of Hummingbird Encryption Core 46

2.8 The Datapath of Speed Optimized Hummingbird Encryption/Decryption
Core Using the Loop-Unrolled Architecture of 16-bit Block Cipher 47

2.9 The I/O Interface of Hummingbird Encryption/Decryption Core 48

2.10 Round-based Architecture of 16-bit Block Cipher 49

2.11 The Datapath of Area Optimized Hummingbird Encryption Core Using the
Round-based Architecture of 16-bit Block Cipher 50

2.12 The Datapath of Area Optimized Hummingbird Encryption/Decryption Core
Using the Round-based Architecture of 16-bit Block Cipher 52

4.1 State Transition Diagram among Different Types of Nodes 100

4.2 Information Processing and Integration Algorithm 104

4.3 Simulation Results for False Statement Attacks by Independent Adversaries 109

4.4 Simulation Results for False Statement Attacks by Collusive Adversaries . 112

xvii

5.1 User broadcast in wireless sensor networks. A broadcast package is usually
forwarded multiple times through multi-hop communication. 122

5.2 Faster ECDSA digital signature verification through nodes cooperation.
Nodes A and B release l1P and l2Q, respectively, which will significantly
accelerate the signature verification of nodes D to G as a result. 123

5.3 Faster ECDSA Signature Verification for WSNs (Basic Scheme) 124

5.4 Faster ECDSA Signature Verification for WSNs (Enhanced Scheme) 126

5.5 Broadcast Authentication in a 4× 4 grid-based WSN. 130

xviii

Chapter 1

Introduction

With the rapid development in network technology, in particular wireless communications,
the traditional centralized, fixed networks cannot satisfy enormous demands on network
connectivity, data storage and information exchange any longer. New types of communi-
cation networks based on wireless and multi-hop communication have emerged to provide
efficient solutions for the growing number of mobile wireless applications and services. A
large family of the new types of wireless communication networks can be best represented
by mobile ad hoc networks (MANETs). In this paradigm, mobile devices self-organize to
create a network by exploiting their wireless network interface, without a requirement for a
pre-deployed infrastructure. While rapid technology progress for MANETs and their spe-
cialization like wireless sensor networks (WSNs) are making possible the era of seamless
wireless connections where any mobile device would be able to connect to any other mobile
device or network at any time and in any place, the intrinsic vulnerabilities of MANET
structure also introduce a wide range of attacks and present new difficulties and challenges
for the design of security mechanism. Without adequate security, MANETs should not
be widely deployed in either military or commercial areas, and ubiquitous computing will
only become pervasive nightmare.

In this thesis, we present our results for providing security solutions for various general-
purpose and specialized MANETs, ranging from developing and implementing lightweight
cryptographic primitives to designing and analyzing secure protocols. Our research will
focus on efficient cryptographic algorithms and key management protocols, two paramount
security issues for securing MANETs. This chapter starts with a brief introduction to the
basic concept and applications of MANETs in Section 1.1, followed by a description of
various types of attacks in Section 1.2. Section 1.3 presents the design goals of security
mechanisms in MANETs. In Section 1.4, we describe the related work as well as a couple
of research topics on which this thesis will focus. Finally, the outline of this thesis and a
summary of our research contributions are given in Section 1.5.

1

1.1 Mobile Ad Hoc Networks

A MANET is a collection of autonomous nodes or terminals that communicate with each
other by forming a multi-hop radio network and maintaining connectivity in a decentralized
manner [135]. Due to the limited transmission range of each mobile node, it may be
necessary for one mobile node to enlist the aid of other nodes in forwarding a package to
its destination. Therefore, in such environment, every node in the network plays the role of
a router by being able to determine the paths of transmitting packets to their destinations.
Figure 1.1 illustrates an example of a MANET which contains two laptops, two PDAs and
two digital cameras. Since node D is outside node A’s transmission range, the data from
A to D must be retransmitted by nodes B and C.

A

B

C

F
E D

Figure 1.1: A Mobile Ad Hoc Network

MANETs inherit common characteristics found in wireless networks in general, and add
characteristics specific to ad hoc networking. The MANETs generally have the following
characteristics [140]:

• Autonomous and infrastructureless : A MANET does not depend on any established
infrastructure or centralized administration. Each node operates in a distributed
peer-to-peer mode, acts as an independent router, and generates independent data.

• Dynamic Network Topology : Each node is free to move about while communicating
with other nodes. The topology of such an ad hoc network is dynamic in nature due
to constant movement of the participating nodes, causing the intercommunication
patterns among nodes to change continuously.

• Wireless Connections and Multi-hop Routing : Nodes communicate through wireless
connections and share the same media (radio, infrared, etc.). In order to be able to

2

communicate with devices that are out of range, intermediate devices will forward
data packets in a hop-by-hop fashion.

• Resource and Energy Constrained Devices. Most mobile devices are equipped with
cheap and slow processors and limited storage capability. In addition, mobile devices
generally rely on batteries as their power source. The use of complex algorithms
there may not be possible.

• Limited Physical Security. The use of wireless communication and the exposure of
the network nodes increase the possibility of attacks against the network. Due to the
mobility of the nodes, the risk that nodes are physically compromised by theft, loss,
or other means will probably be bigger than for traditional network nodes.

The dynamic and self-organizing nature of MANETs makes them particular useful in
situations where rapid network deployments are required or it is prohibitively costly to
deploy and manage network infrastructure. Some applications include:

• Attendees in a conference room sharing documents and other information via their
laptops and hand-held computer;

• Armed forces creating a tactical network in an unfamiliar territory for communica-
tions and distribution of situational awareness information;

• Small sensor devices located in animals and other strategic locations that collectively
monitor habitats and environmental conditions;

• Emergency services communicating in a disaster area and sharing video updates of
locations among workers in the field, and back to headquarters.

Unfortunately, due to the inherent characteristics of MANETs mentioned above, se-
curing such networks is particularly challenging and in many applications the traditional
security solutions cannot be directly used. To provide potential solutions for protecting
such networks, the primary task is to identify various types of attacks in MANETs, as
discussed in the next section.

1.2 Attacks in Mobile Ad Hoc Networks

Having discussed the basic concept and the applications of MANETs, we look at some
typical attacks in MANETs in this section. It is very important for protocol designers
to keep in mind various attacks when designing the security mechanisms for MANETs.

3

Attacks against MANETs can be roughly classified into two major categories, namely ex-
ternal attacks and internal attacks, according to the domain of attacks. External attacks
are carried out by nodes that do not belong to the domain of the network. These at-
tackers try to join the network and access the resources without authorization. Unlike
external attacks, internal attacks are from compromised nodes, which are actually part of
the network. Compared with external attacks, internal ones are more serious because the
attackers know valuable and secret information from compromised nodes and possess priv-
ileged access rights to the network resources. Furthermore, some attacks could be launched
at multiple layers of MANETs. We list some typical attacks in MANETs as follows:

• Eavesdropping : eavesdropping is a very easy passive attack in the wireless communi-
cation environment. By placing an antenna at an appropriate location, an attacker
can intercept and read the sensitive information that the victim transmits or re-
ceives without attracting the victim’s attention. However, this attack can usually be
prevented by encrypting the transmitted data.

• Traffic Monitoring and Analysis : Traffic monitoring and analysis can be deployed
to collect information of network nodes and data transmission such as the identities
and locations of nodes and the amount of data transmitted among them. These
information could be exploited to launch further attacks.

• Routing Attacks : Attackers try to alter the routing information and data in the
routing control packet. There are several attacks that fall into this category, such as
rushing attacks [89] and wormhole attacks [90].

• Location Disclosure Attack: Attackers attempt to reveal information regarding the
location of nodes or the structure of the network. By gathering the nodes’ location
information, the attacker can know which nodes are located in the routing path to
the target node, and then plan the further attacks [31].

• Resource Consumption Attack: In this attack [162] a malicious node interacts with a
victim with the intention of consuming its battery life by requesting excessive route
discovery, or by forwarding unnecessary packets to that node.

• Denial of Service Attack: Denial of service (DoS) attacks can be easily applied to
MANETs, where legitimate traffic cannot reach the target nodes since illegitimate
traffic overwhelms the frequencies. DoS attacks can be launched from various layers,
namely, physical layer, link layer, and network layer.

• Sybil Attack: In this attack [49] a single node attempts to create a large number of
identities with malicious intent.

4

1.3 Security Services and Design Goals

Based on the characteristics of MANETs and a variety of attacks that we have described
in the previous sections, we are now in a position to discuss the security services that
are usually expected to be provided by the security mechanism in MANETs. Security
services can be categorized into: authentication, access control, confidentiality, integrity,
non-repudiation, and availability.

• Authentication: Authentication is the ability to verify a user’s identity in an associ-
ation and to assure the recipient that the message is from the source that it claims
to be. Authentication is a fundamental mechanism to support access control.

• Access Control : Access Control is the ability to limit and control access to devices
and applications via communication links. A user trying to gain access to the resource
is first authenticated and then the corresponding access rights are granted.

• Confidentiality : Confidentiality ensures that the information transmitted over the
network is unreadable to unauthorized users or nodes. Confidentiality can be achieved
by using various encryption techniques.

• Integrity: Integrity is to be able to keep the data transmitted from being illegally
modified or destroyed during the transmission.

• Non-repudiation: Non-repudiation guarantees that neither the sender nor the receiver
of a message is able to deny the transmission.

• Availability: Availability is to keep the network service or resources available to legit-
imate users. It ensures the survivability of the network despite malicious incidents.

To provide the above security services, the first and also the paramount task is to
design efficient key management mechanisms in MANETs because once provided, security
services that employ cryptographic techniques can be implemented. Key management
is the process that describes how the cryptographic keys are distributed to the network
nodes and how these keys are further updated if required, revoked, and so on. The key
management usually involves the following tasks [122]:

1. Generating the system parameters and registering the system users.

2. Creating, distributing, and installing the keying material.

3. Organizing the use of keying material.

5

4. Updating, revoking, and destroying the keying material.

5. Storing, recovering, and archiving the keying material.

In MANETs, the purpose of the first step is to initialize the system. In this step, the
system administrator chooses a secure cryptosystem, verifies the credentials of the users,
and provides a unique identity to each user of the system. This is then followed by creation
and distribution of the keying material. In this step, the administrator generates the keying
material for each user based on the cryptosystem selected and loads the system parameters
and the keying material into the users’ devices. In the third step, all the network nodes
can communicate securely with each other by using the keys to encrypt the transmitted
data. Since the attacker can manipulate compromised nodes to launch various attacks,
the purpose of the fourth step is to revoke the compromised keys and therefore evict the
attackers from the network. Furthermore, it might be necessary to update the keys of
network nodes periodically to thwart some attacks. Finally, the fifth step could be needed
in cases where the keying material must be saved, for example, for auditing purposes.

1.4 This Thesis and Related Work

Key management in MANETs is more difficult than that in traditional wireline network
due to the salient characteristics of MANETs. Particularly, designing key management
mechanisms for MANETs encompasses a very wide information security research domain,
ranging from developing and implementing efficient cryptographic algorithms to formulat-
ing appropriate network security policies. This thesis will focus on the following subtopics:

(Ultra-)lightweight Symmetric Cipher

When deploying symmetric key-based key management schemes for MANETs, a symmetric
cipher is usually employed to establish secure communication links among mobile devices
during the operation of the network. However, those pervasive mobile devices usually
have extremely constrained resources in terms of computational capabilities, memory, and
power supply. Hence, classical cryptographic primitives designed for full-fledged comput-
ers might not be suited for resource-constrained mobile devices. Moreover, the tight cost
constrains inherent in mass deployments of mobile devices also bring forward impending
requirements for designing new cryptographic primitives that can perform strong authen-
tication and encryption, and provide other security functionalities for ultralow-power ap-
plications in MANETs. This emerging research area is usually referred to as lightweight
cryptography. The key issue of designing lightweight cryptographic algorithms is to deal
with the trade-off among security, cost, and performance [144]. A host of lightweight

6

symmetric ciphers that particularly target resource-constrained mobile devices have been
published in the past few years. All the previous proposals can be roughly divided into
the following three categories. The first category consists of highly optimized and com-
pact hardware implementations for standardized block ciphers such as Advanced Encryp-
tion Standard (AES) [63, 64, 78], International Data Encryption Algorithm (IDEA) [113]
and Extended Tiny Encryption Algorithm (XTEA) [98], whereas the proposals in the sec-
ond category involve slight modifications of a classical block cipher like Data Encryption
Standard (DES) [106] for lightweight applications. Finally, the third category features
new low-cost designs, including lightweight block ciphers HIGHT [87], mCrypton [109],
SEA [163], PRESENT [18] and KATAN and KTANTAN [26], as well as lightweight stream
ciphers Grain [82], Trivium [27] and MICKEY [9]. In Chapter 2, we are going to present a
novel ultra-lightweight cryptographic algorithm, referred to as Hummingbird, for resource-
constrained mobile devices used in MANETs and investigate its performance across a wide
range of resource-constrained software and hardware platforms.

Cryptographic Pairings on Genus 2 Hyperelliptic Curves

Identity-based cryptography (IBC) [157] has been extensively used to design asymmetric
key-based key management schemes for MANETs in the past few years, see [46,85,151,178,
179] for example. To implement those key management protocols in resource-constrained
mobile devices, it is essential to compute cryptographic pairings in an efficient manner.
It used to be widely accepted that the limited resources associated with mobile devices
make it impossible to execute public key cryptographic algorithms. However, recent stud-
ies have showed that even software implementations only of public-key cryptosystems such
as elliptic curve cryptosystems (ECC) [76,111,121,154,170,173], hyperelliptic curve cryp-
tosystems (HECC) [173] and pairing-based cryptosystems (PBC) [137, 138, 158, 159, 175]
are very viable and efficient on resource-constrained devices. For example, according to the
state-of-the-art software implementation results on an 8-bit microcontroller ATmega128L,
the generation and verification of a digital signature on a Koblitz elliptic curve defined over
F2163 take 0.36s and 0.63s [114], respectively, whereas the timing of computing an ηT pairing
over F2239 achieves about 1.93s [158]. The vast majority of the literature on pairing compu-
tation focuses solely on using elliptic curves. Note that Wollinger et al. [173] gave the first
thorough comparison of the performance of ECC and HECC on a wide range of embedded
processors including ARM, ColdFire and PowerPC. Their implementations demonstrated
that HECC is suited for use in constrained environments and that the performance of
HECC is better than ECC when special curve parameters are used. Therefore, an interest-
ing question is that whether hyperelliptic curves can provide a viable alternative to using
elliptic curves for pairing computation and achieve better performance. In [10, 80], the
authors investigated pairing computation on supersingular hyperelliptic curves of genus 2
over binary and prime fields, respectively. Their implementation results showed that pair-

7

ing computation on supersingular genus 2 curves over binary fields can outperform elliptic
curves by using so-called ηT pairing. Moreover, for prime field case supersingular genus 2
curves are also viable candidates for practical use. In Chapter 3 we will propose efficient
algorithms for pairing computation on two family of non-supersingular genus 2 curves and
detail various techniques that lead to an efficient implementation.

Key Revocation in MANETs

In the context of wired networks, implementations of key revocation schemes are usually
based on Public Key Infrastructures (PKIs) [88]. When the certificate of some user is
to be revoked, a certificate authority (CA) adds that user’s certificate information into
a Certificate Revocation List (CRL) and puts it on an on-line trusted public repository
or distributes it to other relevant users in some secure way. Based on such centralized
structure, various solutions for the revocation have been proposed such as Certificate Re-
vocation System (CRS) [123, 136], Certificate Revocation Tree (CRT) [101], and Online
Certificate Status Protocol (OCSP) [120]. One common characteristic of all these methods
is the need for good synchronization with the revocation source either by online status
checks or by frequently refreshed certificates. Unfortunately, these conventional techniques
are difficult to be applied to MANETs because of a number of unique features of MANETs
such as the absence of an on-line CA and a centralized repository. Two main classes of
solutions have been proposed for key revocation in MANETs. The schemes in the first
category employ threshold cryptography and network nodes collaborate to revoke keys
of malicious nodes [102, 117, 151, 179, 182]. Those in the second category are fully self-
organized and each node has its own opinion about the network and other nodes’ behav-
ior [3, 30, 40, 86]. These solutions can be implemented with either certificate-based cryp-
tography (CBC) [3,30,40,102,117,182] or identity-based cryptography (IBC) [86,151,179].
Furthermore, some novel ideas have also been proposed in the literature, which can be
used to quickly remove malicious nodes from MANETs in particular application scenar-
ios [37, 116, 129]. The main drawback of the existing key revocation systems is that they
all classify the behavior of nodes in MANETs as either good and bad without any interme-
diate state. Such a binary behavior differentiation omits the actual cause and the degree
of the misbehavior. In Chapter 4 we will describe a fine-grained key revocation scheme for
MANETs based on the decentralized reputation system and Dirichlet multinomial model.

Broadcast Authentication in WSNs

In wireless sensor networks (WSNs), multi-user broadcast is an efficient and common com-
munication paradigm, in which a host of network users will join in WSNs and disseminate
messages (i.e., queries or commands) into the networks dramatically for obtaining the in-
formation of their interest [112, 145, 146]. Unfortunately, due to the nature of wireless

8

communication in WSNs, adversaries can easily eavesdrop the traffic, impersonate other
users, inject bogus data or alter the contents of legitimate messages during the multi-hop
forwarding. Hence, authentication mechanisms need to be implemented in WSNs to pro-
tect broadcast messages from various malicious attacks. According to the cryptographic
primitives employed, three categories of solutions have been proposed in the literature
for addressing broadcast authentication in WSNs. Earlier research mainly focused on
designing symmetric-key based broadcast authentication schemes. Typical examples are
µTESLA [143] and its variants [50, 110, 112], which provide source authentication and
message integrity by utilizing one-way hash chains and delayed disclosure of authentica-
tion keys. µTESLA-like schemes provide efficient broadcast authentication mechanisms for
WSNs in terms of computational overhead and energy consumption. However, the inherent
features of µTESLA-like schemes, such as the need for (loose) time synchronization and the
delayed authentication, have made them vulnerable to a variety of attacks [134, 145, 146].
Moreover, scalability is another concern for symmetric-key based solutions [145]. The sec-
ond category of solutions achieve broadcast authentication through the use of one-time sig-
natures [32,142]. Unlike µTESLA, one-time signature based solutions do not need the time
synchronization and authentication is also immediate. Unfortunately, such schemes have
some undesirable features such as large key sizes and a limited number of usages per key,
which make them only suitable for applications with infrequent messages at unpredictable
times [115]. Considering the security and scalability of symmetric-key based broadcast
authentication schemes, a couple of public-key based solutions have been proposed during
the past few years [29, 145, 146, 176]. Public-key based broadcast authentication schemes
have a common shortcoming: signature verification is much slower than the message au-
thentication code verification used in symmetric-key based solutions. In Chapter 5 we will
show how to speed up the signature verification for public-key based multi-user broadcast
authentication schemes in WSNs.

1.5 Outline and Main Contributions

The outline and the main contributions of this thesis is the following:

• Chapter 1 provides a general description of security in mobile ad hoc networks,
including basic concept, typical attacks, security services and design goals. The
motivation and the context of the work in this thesis are also presented.

• Chapter 2 presents a novel ultra-lightweight cryptographic algorithm, referred to
as Hummingbird, for resource-constrained devices used in MANETs. A preliminary
security analysis of Hummingbird against the most common attacks to block ciphers
and stream ciphers is provided. Efficient software implementations of Hummingbird

9

on 4-, 8- and 16-bit microcontrollers are investigated. For the 4-bit microcontroller a
speed optimized implementation is suggested, whereas for the 8-bit and 16-bit plat-
forms both a speed optimized and a size optimized implementations are provided.
A detailed performance comparison of Hummingbird and the state-of-the-art ultra-
lightweight block cipher PRESENT on the similar platforms is conducted. Further-
more, four hardware architectures are devised for Hummingbird cipher, which stand
for different design goals such as performance (i.e., area requirement and through-
put) and supported functionalities (i.e., encryption-only or encryption/decryption).
Efficient hardware implementations of Hummingbird on low-cost field programable
gate arrays (FPGAs) and comparison with other cryptographic algorithms on simi-
lar hardware platforms are also described.

• Chapter 3 shows how to speed up pairing computations on two families of non-
supersingular genus 2 hyperelliptic curves over prime fields. We generalize Chatter-
jee et al.’s idea of encapsulating the computation of the line function with the group
operations to genus 2 hyperelliptic curves, and derive new explicit formulae for the
group operations in projective and new coordinates in the context of pairing compu-
tations. Moreover, we also propose new variants of Miller’s algorithm by exploiting
efficiently computable automorphisms on the two families of non-supersingular genus
2 curves in question. Various techniques that lead to an efficient implementation
are also detailed. As a case study, we combine our new algorithm with various opti-
mization techniques to efficiently implement the Tate pairing on a non-supersingular
genus 2 curve y2 = x5 + 9x over Fp with an embedding degree of k = 4. Detailed
performance analysis and comparison with pairing computations on supersingular
genus 2 curves are also provided.

• Chapter 4 proposes a fully self-organized key revocation scheme for MANETs based
on the Dirichlet multinomial model. The network and security modes as well as de-
sign goals are formulated. The behavior of network nodes is classified into three
categories, namely good behavior, suspicious behavior, and malicious behavior. A
detailed procedure for nodes analyzing and predicting peers’ behavior based on their
own observations and other nodes’ reports is described. 3-dimension Dirichlet distri-
bution is utilized by nodes to keep track of three categories of behavior defined and
classified by an external trusted authority, and updates its knowledge about other
nodes’ behavior. Moreover, a deviation test is employed to filter potentially false
statements from adversaries and Dempster-Shafer belief theory is used to integrate
other nodes’ reports. Our scheme differentiates between suspicious behavior and
malicious behavior, and therefore nodes can make two different responses by either
revoking malicious nodes’ keys or ceasing the communication with suspicious nodes
for some time based on the analysis of the collected information. Furthermore, the
robustness of our key revocation scheme against the false accusation attack from

10

independent and collusive adversaries are verified through extensive simulations.

• Chapter 5 describes an efficient technique to accelerate the signature verification for
public-key based multi-user broadcast authentication schemes in WSNs by exploiting
the cooperation among sensor nodes. The system and adversary models are defined
and the faster signature verification protocol is presented by using elliptic curve
digital signature algorithm (ECDSA) as an example. The selection of appropriate
system parameters is discussed and the security of the proposed technique is analyzed.
As a case study, we also apply the faster signature verification technique to the
broadcast authentication in a 4× 4 grid-based WSN and analyze the performance of
the proposed protocol with respect to communication and computation overheads. A
detailed performance comparison with the traditional ECDSA signature verification
is also conducted.

• Chapter 6 summarizes the conclusions of our work and suggests possible directions
for future research.

11

Chapter 2

Hummingbird: Ultra-Lightweight
Cryptography for
Resource-Constrained Devices

In this chapter we present a novel ultra-lightweight cryptographic algorithm, referred to
as Hummingbird, for resource-constrained devices used in MANETs. Hummingbird has a
hybrid structure of block cipher and stream cipher and was developed with both lightweight
software and lightweight hardware implementations for constrained devices in mind. The
hybrid model can provide the designed security with small block size and is therefore
expected to meet the stringent response time and power consumption requirements for a
large variety of embedded applications. We start with a brief overview of related work in
Section 2.1, followed by the description of the Hummingbird cryptographic algorithm and
its design rationale in Section 2.2. The security analysis of Hummingbird against common
attacks such as differential and linear cryptanalysis is presented in Section 2.3. Sections 2.4
and 2.5 treat efficient software and hardware implementations of Hummingbird for 4-, 8- and
16-bit microcontrollers as well as low-cost field-programmable gate array (FPGA) devices,
respectively. Finally, we close this chapter with further remarks on the operation modes
of Hummingbird in Section 2.6. Please note that parts of this chapter are based on joint
work with Daniel Engels, Honggang Hu, Guang Gong, and Eric Smith, and Hummingbird
is originally designed by Daniel Engels, Peter Schweitzer, and Eric Smith. Partial contents
of this chapter have been published in [57,60].

13

2.1 Related Work

Quite a few lightweight symmetric ciphers that particularly target resource-constrained
smart devices have been published in the past few years and those ciphers can be utilized
as basic building blocks to design security mechanisms for MANETs. The existing solutions
can be classified into the following three categories:

Compact Hardware Implementations for Standardized Block Ciphers

Feldhofer et al. [63,64] and Hämäläinen et al. [78] proposed low-power and compact ASIC
encryption cores for 128-bit AES, respectively. In both designs, the 8-bit datapath is
used for the round operations as well as for the on-the-fly key expansion and the S-box
is implemented as combinatorial logic. Their low-cost AES implementations require only
3, 400 and 3, 100 gate equivalents (GE) and are able to encrypt a 128-bit data block within
1, 032 and 160 clock cycles, respectively.

Liu et al. [113] implemented a low-power encryption core for IDEA on SMIC 0.18µm process.
Their implementation consumes about 4, 660 GE and can output 64-bit ciphertext per 320
clock cycles. Moreover, the average power is around 3µW when the supply voltage is 1.8V.

Kaps [98] presented efficient implementations of XTEA on FPGAs and ASICs for ultra-low
power applications such as RFID tags and wireless sensor nodes. The compact hardware
implementations of XTEA can encrypt a 64-bit data block within 112 clock cycles and
require 3, 490 GE (ASIC) or 254 slices (FPGA).

Slight Modifications of a Classical Block Cipher

Leander et al. [106] suggested a lightweight DES variant called DESL (DES Lightweight).
The key idea of the DESL design is to replace the eight original S-boxes with a single
new one. The resulting serialized DESL ASIC implementation has an area requirement of
1, 848 GE and it can encrypt one 64-bit data block within 144 clock cycles.

New Low-Cost Block Ciphers and Stream Ciphers

Hong et al. [87] proposed a lightweight block cipher HIGHT with 64-bit block length and
128-bit key length. It has a 32-round iterative structure and targets resource-constrained
devices like wireless sensor nodes and RFID tags. The authors claimed that a round-
based implementation of HIGHT requires 3, 048 GE and a software implementation on 8-bit
wireless sensor nodes is much faster than AES. Unfortunately, no details about software
and hardware implementations are provided.

14

Lim and Korkishko [109] designed a lightweight block cipher mCrypton in 2006, which has
a 64-bit block size and three key size options (64 bits, 96 bits and 128 bits). It consists of
13 rounds and specifically designed for resource-constrained smart devices. A round-based
prototype implementation for an encryption-only core requires 2, 420 GE with a 64-bit key,
2, 681 GE with a 96-bit key and 2, 949 GE with a 128-bit key, respectively.

Standaert et al. [163] suggested the Scalable Encryption Algorithm (SEA) in 2006, which is
a parametric block cipher targeted for small embedded applications. Different from other
block ciphers, SEA takes the plaintext size n, the key length k as well as the processor
word size b as parameters and, therefore, can be straightforwardly adapted to various
implementation contexts and security requirements. On an 8-bit microcontroller ATtiny
from Atmel, a software implementation of SEA with a block and key size of n = 96 bits, a
word size of b = 8 bits and nr = 93 rounds can encrypt one data block with 17, 745 clock
cycles [163], whereas a hardware implementation with the same parameters needs 1, 428
clock cycles and 3, 758 GE [118].

Bogdanov et al. [18] described an ultra-lightweight SP-network based block cipher PRESENT
in 2007, which has 32 rounds, a block size of 64 bits, and a key size of 80 or 128 bits.
PRESENT is an aggressively hardware optimized block cipher which uses a single 4-bit S-
box in both the datapath and the key scheduling. Particularly, a serial version of PRESENT
can be implemented with as few as 1, 000 GE [147]. Moreover, the detailed software imple-
mentation results of PRESENT on a wide range of platforms such as 4-, 8-, 16- and 32-bit
microcontrollers/CPUs can be found in [144].

Cannière et al. [26] proposed a new family of very efficient hardware-oriented block ciphers
KATAN and KTANTAN. The KATAN family is composed of three block ciphers with 32,
48, or 64-bit block size, 80-bit key size and 254 rounds, whereas the KTANTAN family
contains the other three ciphers with the same block sizes and achieves more compact
hardware implementation by burning the key into device. In particular, the hardware
implementation of the smallest cipher of the entire family, KTANTAN32, requires only 462
GE while achieving a throughput of 12.5 Kbit/sec at 100 KHz.

While many lightweight block ciphers have been proposed for resource-constrained devices,
a number of lightweight stream ciphers that specifically targeted lightweight hardware
implementation have been selected through the eSTREAM project [54]. Grain [82], Trivium
[27] and MICKEY [9] are among the finalist of the hardware profile. While Grain and Trivium
can be respectively implemented in only 1, 294 GE and 2, 580 GE, MICKEY requires 3, 188
GE [73]. Unlike block ciphers, the above three stream ciphers need a relatively long
initialization phase (i.e., 321 clock cycles for Grain, 1, 314 clock cycles for Trivium and 267
clock cycles for MICKEY) before first use.

15

2.2 The Hummingbird Cryptographic Algorithm

Hummingbird is neither a block cipher nor a stream cipher, but a rotor machine equipped
with novel rotor-stepping rules. The design of Hummingbird is based on an elegant combi-
nation of block cipher and stream cipher with 16-bit block size, 256-bit key size, and 80-bit
internal state. The size of the key and the internal state of Hummingbird provides a security
level which is adequate for many embedded applications. For clarity, we use the notation
listed in Table 2.1 in the algorithm description. A top-level structure of the Hummingbird
cryptographic algorithm is shown in Figure 2.1, which consists of four 16-bit block ciphers
Eki or Dki (i = 1, 2, 3, 4), four 16-bit internal state registers RSi (i = 1, 2, 3, 4), and a
16-stage Linear Shift Feedback Register (LFSR). Moreover, the 256-bit secret key K is
divided into four 64-bit subkeys k1, k2, k3 and k4 which are used in the four block ciphers,
respectively.

Table 2.1: Notation

PTi the i-th 16-bit plaintext block, i = 1, 2, . . . , n
CTi the i-th 16-bit ciphertext block, i = 1, 2, . . . , n
K the 256-bit secret key
EK(·) the encryption function of Hummingbird with 256-bit secret key K
DK(·) the decryption function of Hummingbird with 256-bit secret key K
ki the 64-bit subkey used in the i-th block cipher, i = 1, 2, 3, 4, such that K =

k1‖k2‖k3‖k4
Eki(·) a block cipher encryption algorithm with 16-bit input, 64-bit key ki, and 16-bit

output, i.e., Eki : {0, 1}16 × {0, 1}64 → {0, 1}16, i = 1, 2, 3, 4
Dki(·) a block cipher decryption algorithm with 16-bit input, 64-bit key ki, and 16-bit

output, i.e., Dki : {0, 1}16 × {0, 1}64 → {0, 1}16, i = 1, 2, 3, 4
RSi the i-th 16-bit internal state register, i = 1, 2, 3, 4
LFSR a 16-stage Linear Feedback Shift Register with the characteristic polynomial

f(x) = x16 + x15 + x12 + x10 + x7 + x3 + 1
� modulo 216 addition operator
� modulo 216 subtraction operator
⊕ exclusive-OR (XOR) operator
m� l left circular shift operator, which rotates all bits of m to the left by l bits, as if

the left and the right ends of m were joined.

K
(i)
j the j-th 16-bit key used in the i-th block cipher, j = 1, 2, 3, 4, such that ki =

K
(i)
1 ‖K(i)

2 ‖K(i)
3 ‖K(i)

4

Si(x) the i-th 4-bit to 4-bit S-box used in the block cipher, Si(x) : F4
2 → F4

2, i = 1, 2, 3, 4
NONCEi the i-th nonce which is a 16-bit random number, i = 1, 2, 3, 4
IV the 64-bit initial vector, such that IV = NONCE1‖NONCE2‖NONCE3‖NONCE4

16

RS1�RS3

Ek1

+

Ek2

+

Ek3

+

Ek4

+

TV

RS1

RS2

RS3

RS4

+

NONCE1

NONCE2

NONCE3

NONCE4

(a) Initialization Process

PTi

Ek1

+

Ek2

+

Ek3

+

Ek4

+

CTi

RS1

RS2

RS3

RS4

+

LFSR

+

+

(b) Encryption Process

PTi

Dk1

−

Dk2

−

Dk3

−

Dk4

−

CTi

RS4

RS3

RS2

RS1

+

LFSR

+

+

+

(c) Decryption Process

Figure 2.1: A Top-Level Description of the Hummingbird Cryptographic Algorithm

2.2.1 Initialization Process

The overall structure of the Hummingbird initialization algorithm is shown in Figure 2.1(a).
When using Hummingbird in practice, four 16-bit random nonces NONCEi are first chosen
to initialize the four internal state registers RSi (i = 1, 2, 3, 4), respectively, followed
by four consecutive encryptions on the message RS1 � RS3 by Hummingbird running in
initialization mode (see Figure 2.1(a)). The final 16-bit ciphertext TV is used to initialize
the LFSR. Moreover, the 13th bit of the LFSR is always set to prevent a zero register. The
LFSR is also stepped once before it is used to update the internal state register RS3. We
summarize the Hummingbird initialization process in the following Algorithm 1.

2.2.2 Encryption Process

The overall structure of the Hummingbird encryption algorithm is depicted in Figure 2.1(b).
After a system initialization process, a 16-bit plaintext block PTi is encrypted by first
executing a modulo 216 addition of PTi and the content of the first internal state register
RS1. The result of the addition is then encrypted by the first block cipher Ek1 . This
procedure is repeated in a similar manner for another three times and the output of Ek4
is the corresponding ciphertext CTi. Furthermore, the states of the four internal state
registers will also be updated in an unpredictable way based on their current states, the

17

Algorithm 1 Hummingbird Initialization

Input: Four 16-bit random nonce NONCEi (i = 1, 2, 3, 4)
Output: Initialized four rotors RSi4 (i = 1, 2, 3, 4) and LFSR

1: RS10 = NONCE1 [Nonce Initialization]
2: RS20 = NONCE2

3: RS30 = NONCE3

4: RS40 = NONCE4

5: for t = 0 to 3 do
6: V 12t = Ek1 ((RS1t �RS3t) �RS1t)
7: V 23t = Ek2(V 12t �RS2t)
8: V 34t = Ek3(V 23t �RS3t)
9: TVt = Ek4(V 34t �RS4t)

10: RS1t+1 = RS1t � TVt
11: RS2t+1 = RS2t � V 12t
12: RS3t+1 = RS3t � V 23t
13: RS4t+1 = RS4t � V 34t
14: end for
15: LFSR = TV3 | 0x1000 [LFSR Initialization]
16: return RSi4 (i = 1, 2, 3, 4) and LFSR

outputs of the first three block ciphers, and the state of the LFSR. Algorithm 2 describes
the detailed procedure of Hummingbird encryption.

Algorithm 2 Hummingbird Encryption

Input: A 16-bit plaintext PTi and four rotors RSit (i = 1, 2, 3, 4)
Output: A 16-bit ciphertext CTi

1: V 12t = Ek1(PTi �RS1t) [Block Encryption]
2: V 23t = Ek2(V 12t �RS2t)
3: V 34t = Ek3(V 23t �RS3t)
4: CTi = Ek4(V 34t �RS4t)
5: LFSRt+1 ← LFSRt [Internal State Updating]
6: RS1t+1 = RS1t � V 34t
7: RS3t+1 = RS3t � V 23t � LFSRt+1

8: RS4t+1 = RS4t � V 12t �RS1t+1

9: RS2t+1 = RS2t � V 12t �RS4t+1

10: return CTi

18

2.2.3 Decryption Process

The overall structure of the Hummingbird decryption algorithm is illustrated in Figure 2.1(c).
The decryption process follows the similar pattern as the encryption and a detailed de-
scription is shown in the following Algorithm 3.

Algorithm 3 Hummingbird Decryption

Input: A 16-bit ciphertext CTi and four rotors RSit (i = 1, 2, 3, 4)
Output: A 16-bit plaintext PTi

1: V 34t = Dk4(CTi) �RS4t [Block Decryption]
2: V 23t = Dk3(V 34t) �RS3t
3: V 12t = Dk2(V 23t) �RS2t
4: PTi = Dk1(V 12t) �RS1t
5: LFSRt+1 ← LFSRt [Internal State Updating]
6: RS1t+1 = RS1t � V 34t
7: RS3t+1 = RS3t � V 23t � LFSRt+1

8: RS4t+1 = RS4t � V 12t �RS1t+1

9: RS2t+1 = RS2t � V 12t �RS4t+1

10: return PTi

2.2.4 16-Bit Block Cipher

Hummingbird employs four identical block ciphers Eki(·) (i = 1, 2, 3, 4) in a consecutive
manner, each of which is a typical substitution-permutation (SP) network with 16-bit
block size and 64-bit key as shown in the following Figure 2.2.

The block cipher consists of four regular rounds and a final round. The 64-bit subkey ki
is split into four 16-bit round keys K

(i)
1 , K

(i)
2 , K

(i)
3 and K

(i)
4 that are used in the four regular

rounds, respectively. Moreover, the final round utilizes two keys K
(i)
5 and K

(i)
6 directly

derived from the four round keys (see Fig. 2.2). While each regular round comprises of a
key mixing step, a substitution layer, and a permutation layer, the final round only includes
the key mixing and the S-box substitution steps. The key mixing step is implemented using
a simple exclusive-OR operation, whereas the substitution layer is composed of four S-boxes
with 4-bit inputs and 4-bit outputs as shown in Table 2.2.

The selected four S-boxes, denoted by Si(x) : F4
2 → F4

2, i = 1, 2, 3, 4, are Serpent-type
S-boxes [1] with additional properties (see Appendix A) which can ensure that the 16-bit
block cipher is resistant to linear and differential attacks as well as interpolation attack.

19

S1 S2 S3 S4

16

4 4 4 4

+

m = (m0,m1, · · · ,m15)

K
(i)
1 ,K

(i)
2 ,K

(i)
3 ,K

(i)
4

4 4 4 4

16

Linear Transform L

+
16

4 4 4 4

after 4 rounds

S1 S2 S3 S4

4 4 4 4

16

K
(i)
5 = K

(i)
1 ⊕K

(i)
3

+
16

K
(i)
6 = K

(i)
2 ⊕K

(i)
4

16

16

16

16

m′ = (m′
0,m

′
1, · · · ,m′

15)

Figure 2.2: The Structure of Block Cipher in the Hummingbird Cryptographic Algorithm

Table 2.2: Four S-Boxes in Hexadecimal Notation

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S1(x) 8 6 5 F 1 C A 9 E B 2 4 7 0 D 3
S2(x) 0 7 E 1 5 B 8 2 3 A D 6 F C 4 9
S3(x) 2 E F 5 C 1 9 A B 4 6 8 0 7 3 D
S4(x) 0 7 3 4 C 1 A F D E 6 B 2 8 9 5

The permutation layer in the 16-bit block cipher is given by the linear transform L :
{0, 1}16 → {0, 1}16 defined as follows:

L(m) = m⊕ (m� 6)⊕ (m� 10),

where m = (m0,m1, · · · ,m15) is a 16-bit data block. We give a detailed description for the
encryption process of the 16-bit block cipher in the following Algorithm 4. The decryption
process can be easily derived from the encryption and therefore is omitted here.

20

Algorithm 4 16-bit Block Cipher Encryption Eki(·)
Input: A 16-bit data block m = (m0,m1, · · · ,m15) and a 64-bit subkey ki such that

subkey ki = K
(i)
1 ‖K(i)

2 ‖K(i)
3 ‖K(i)

4

Output: A 16-bit date block m′ = (m′0,m
′
1, · · · ,m′15)

1: for j = 1 to 4 do
2: m← m⊕K(i)

j [key mixing step]
3: A = m0‖m1‖m2‖m3, B = m4‖m5‖m6‖m7

C = m8‖m9‖m10‖m11, D = m12‖m13‖m14‖m15

4: m← S1(A)‖S2(B)‖S3(C)‖S4(D) [substitution layer]
5: m← m⊕ (m� 6)⊕ (m� 10) [permutation layer]
6: end for
7: m← m⊕K(i)

1 ⊕K(i)
3

8: A = m0‖m1‖m2‖m3, B = m4‖m5‖m6‖m7

C = m8‖m9‖m10‖m11, D = m12‖m13‖m14‖m15

9: m← S1(A)‖S2(B)‖S3(C)‖S4(D)

10: m′ ← m⊕K(i)
2 ⊕K(i)

4

11: return m′ = (m′0,m
′
1, · · · ,m′15)

Remark To further reduce the consumption of the memory, area and power of Humming-
bird in both software and hardware implementations, four S-boxes used in Hummingbird
can be replaced by a single S-box, which is repeated four times in the 16-bit block cipher.
The compact version of Hummingbird can achieve the same security level as the original
Hummingbird and will be implemented on both microcontrollers and FPGAs in this chapter.

2.2.5 Design Rationale

The design of the Hummingbird cryptographic algorithm is motivated by the well-known
Enigma machine1 and takes into account both security and efficiency simultaneously. The
encryption/decryption process of Hummingbird can be viewed as the continuous running
of a rotor machine, where four small block ciphers act as four virtual rotors which per-
form permutations on 16-bit words. The salient characteristics of Hummingbird lies in
implementing extraordinarily large virtual rotors with custom block ciphers and using suc-
cessively changing internal states to step each virtual rotor in various and unpredictable
ways. Besides a novel cipher structure, Hummingbird is also designed to protect against the
most common attacks such as linear and differential cryptanalysis, which will be discussed

1In Enigma machine each rotor has 26 contacts, whereas in Hummingbird each virtual rotor (i.e., a
16-bit block cipher) has 216 = 65536 contacts.

21

in detail in Section 2.3. Moreover, extremely simple arithmetic and logic operations are
extensively employed in Hummingbird, which make it well-suited for resource-constrained
environments.

2.3 Security Analysis

In this section, we analyze the security of the Hummingbird cryptographic algorithm by
showing that it is resistant to the most common attacks to block ciphers and stream ciphers
including birthday attack, differential and linear cryptanalysis, etc. Note that Hummingbird
has a hybrid mode of block cipher and stream cipher, which can be considered as a finite
state machine with the internal state (RS1, RS2, RS3, RS4,LFSR). However, the value of
LFSR does not depend on those of RS1, RS2, RS3, and RS4. The purpose of using the
LFSR is to guarantee the period of the internal state is at least 216.

A. Birthday Attack on the Initialization. For a fixed key, one may want to find two iden-
tical internal states (RS1, RS2, RS3, RS4,LFSR) initialized by two different IV s using the
birthday attack. However, if we fix the key in the initialization procedure of the Humming-
bird encryption scheme, the mapping (RS1t, RS2t, RS3t, RS4t)→ (RS1t+1, RS2t+1, RS3t+1,
RS4t+1) is one-to-one. Hence the birthday attack does not work in this case.

B. Differential Cryptanalysis. Let EK(·) denote the encryption function of Hummingbird
with the 256-bit key K. Recall that Eki(·), defined in Section 2.2.4, denotes the 16-bit
block cipher encryption used in Hummingbird with the 64-bit subkey ki. Then EK(·) is the
composition of four Eki(·), i = 1, 2, 3, 4. For a function F (x) from Fm2 to Fm2 , the differential
between F (x) and F (x+ a), where + is the bit-wise addition, is denoted by DF (a, b) and
defined as follows:

DF (a, b) = |{x | F (x) + F (x+ a) = b, x ∈ Fm2 }| .

For many keys, we have computed the differentials of both EK(·) and Eki(·). Note that
from Section 2.2.4 we know that there are five rounds in Eki(·). We list the differential
DEki

(a, b) for each round in the following Table 2.3.

For substantially large amount of initial vectors IV and keys K, the differentials for
both Eki(·) and EK(·) satisfy the following inequalities:

max
a,b∈F16

2 ,a 6=0
{DEki

(a, b)} ≤ 20, and max
a,b∈F16

2 ,a 6=0
{DEK

(a, b)} ≤ 20.

In other words, the differential of EK(·) has the same upper bound as Eki(·), the block
cipher components in EK(·). We also tested the reduced version of Hummingbird for more
instances of different pairs of (IV,K). From those experimental results, in general, the

22

Table 2.3: Differential Property of the 16-bit Block Cipher

of Rounds maxa6=0,bDEki
(a, b)

0 16384
1 1024
2 98
3 20
4 20

standard differential cryptanalysis method is not applicable to Hummingbird with practical
time complexity.

C. Linear Cryptanalysis. For the linear cryptanalysis of EK(·), we need to consider the
absolute value of the Walsh transform of EK(·), which is denoted by |ÊK(a, b)| and defined
as follows,

ÊK(a, b) =
∑
x∈F16

2

(−1)〈a,EK(x)〉+〈b,x〉, a, b ∈ F16
2 and a 6= 0,

where 〈x, y〉 is the inner product of two binary vectors x and y (see Appendix A for the
details). Unlike the case for the differential of EK(·) or Eki(·), we cannot perform an
exhaustive computation for |ÊK(a, b)| for all a, b ∈ F16

2 and a 6= 0. The reason is that there
are around 248 instances for (a, b, x) that need to be verified for a pair of fixed IV and key
K. For some fixed pairs of (IV,K), we have computed random subsets of (a, b) with size
around 220. Those experimental results show that |ÊK(a, b)| ≤ c ·

√
216, where c ≤ 4.96875.

We list some data in the following Table 2.4.

Table 2.4: Linear Property of the 16-bit Block Cipher

wt(a) wt(b) Constant c

1 1 4.703125
1 2 4.359375
1 3 4.500000
2 1 4.390625
2 2 4.281250
2 3 4.828125
3 1 4.968750
3 2 4.718750
3 3 4.781250

We also conducted the experiments for an 8-bit version of the Hummingbird encryption
scheme which means that all the rotors RSi, i = 1, 2, 3, 4 and LFSR contain only 8 bits.

23

The Walsh transform of this reduced version of Hummingbird is bounded by 5 ·
√

28 for
many pairs of IV and key. This is the supporting evidence (albeit weak) that the absolute
value of the Walsh transform of Hummingbird encryption function could be bounded by the
square root of 216 multiplying by a constant. Hence, Hummingbird seems to be resistant to
linear cryptanalysis attack with practical time complexity.

D. Structural Attack. The Hummingbird encryption scheme may be viewed as a certain
operation mode of a block cipher. For example, the ciphertext can be viewed as the internal
state of a block cipher in CBC mode. In [15, 16], Biham investigated some operation
modes of block ciphers. The author found that many triple modes are not as secure as
one expected. In [17], Biham and Knudsen broke the ANSI X9.52 CBCM Mode. However,
the internal state transition in Hummingbird encryption scheme is much more complicated
than those studied by [15–17]. Hence, those attacks cannot be simply applied to the
Hummingbird encryption scheme. In [169], by choosing IV , Wagner presented some new
attacks on some modes proposed by Biham. Because IV initialization is used in the
Hummingbird encryption scheme, Wagner’s attacks are not applicable.

E. Algebraic Attack. For the Hummingbird encryption scheme, the degree of each S-box
in the block cipher Eki(·) is maximized. Moreover, each block cipher Eki(·) consists of five
rounds. Thus, there are totally 20 rounds for the Hummingbird encryption scheme, i.e.,
EK(·). Furthermore, the internal state transition involves modulo 216 operation. Hence it
is hard to apply efficient linearization techniques for algebraic attacks to Hummingbird.

F. Cube Attack. The success probability of cube attack is high if the degree of the
internal state transition function in a stream cipher is low. For example, the degree of
internal state transition function of Trivium grows slowly [47]. However, for the Humming-
bird encryption scheme, the degree of the internal state transition function is very high. In
addition, Hummingbird encryption scheme has a hybrid mode of block cipher and stream
cipher. We have tested both the 16-bit block cipher Eki(·) used in the Hummingbird en-
cryption scheme and the Hummingbird encryption function EK(·). We note that no linear
equations of key bits can be used in the way as suggested in [47].

G. Slide and Related-Key Attack. Both slide attacks [19,20] and related-key attacks [14]
need to exploit the weakness of key scheduling. However, there is no key scheduling in
Hummingbird. In particular, the subkeys used in four small block ciphers are independent.
In addition, the four rotors affect the output of each small block cipher in a nonlinear
way. Hence, both slide attacks [19] and related-key attacks [14] cannot be applied to the
Hummingbird.

H. Interpolation and Higher Order Differential Attack. Interpolation and higher order
differential attacks [92,104] can be applied to block ciphers with the low algebraic degree.
As we discussed before for algebraic attack, the algebraic degree of the Hummingbird en-
cryption is high. Hence it is difficult to apply interpolation and higher order differential
attacks to the Hummingbird.

24

I. Complementation Properties. The DES has the following well-known complementa-
tion property, namely that if C is the ciphertext of the plaintext P under key K, then C
is the ciphertext of P under key K, where x is the bitwise complement of x. However,
Hummingbird does not have this weakness due to the presence of the carry propagation
resulting from four rotors.

2.4 Efficient Software Implementations on Low-Power

Microcontrollers

One of the design goals of Hummingbird is to achieve good performance on typical embedded
processors used in MANETs. This section presents software implementation results of the
compact version of Hummingbird (i.e., a single 4 × 4 S-box is used four times in the 16-
bit block cipher) across a wide range of low-power microcontrollers and compares the
performance of Hummingbird and the other ultra-lightweight block cipher PRESENT [18]
on the same or similar platforms. We first present implementation results of Hummingbird
on a zero-power 4-bit MARC4 microcontroller from Atmel, which are among the only two
implementations of cryptographic primitives on a 4-bit microcontroller so far. Then we
implement Hummingbird on the 8-bit microcontroller ATmega128L from Atmel and the
16-bit microcontroller MSP430 from Texas instrument (TI), which are the most popular
processors used in wireless sensor network platforms because of their low power design,
multiple sensor interfaces, and widely available development tools. For achieving a better
performance on the target 4-bit microcontroller, only a speed optimized implementation
is considered, whereas two implementation variants are provided for both 8-bit and 16-
bit microcontrollers, one of which is optimized for code size and the other for speed.
Moreover, all implementation variants can perform both encryption and decryption.

2.4.1 Software Implementation on a 4-Bit Microcontroller

The Atmel MARC4 family of microcontrollers is small and lightweight with low power con-
sumption and (optionally) integrated on-chip radio transmission. Their applications range
from remote keyless entry and car tire pressure monitoring to wireless warning and alarm
systems (tension, temperature, smoke detectors, etc.). In this subsection, we investigate
efficient implementation of Hummingbird on a zero-power 4-bit ATAM893-D microcontroller
of Atmel’s MARC4 family and compare the performance of Hummingbird and PRESENT
on the same platform.

25

4-Bit Microcontroller ATAM893-D and Development Tools

We chose the ATAM893-D [7], a member of Atmel’s MARC4 family of 4-bit single-chip
microcontrollers, as the target 4-bit platform due to its unique features such as high data
throughput and low current consumption, which make it a perfect candidate for energy
constrained wireless applications. The ATAM893-D mainly consists of a MARC4 4-bit CPU
core, parallel I/O ports, the Universal Timer/Counter Communication Module (UTCM)
with two 8-bit programmable multifunction/timer/counters, and the clock management
module with integrated RC-, 32-kHz and 4-MHz crystal oscillators. A block diagram of
the ATAM893-D can be found in [7].

The high performance and low power consumption of MARC4 microcontroller family
are based on the usage of an advanced stack-based 4-bit CPU core (see [6, p.8]). The core
contains 4KBytes program memory (ROM), 256× 4-bit data memory (RAM), 12-bit wide
Program Counter (PC), four 8-bit wide RAM address registers SP, RP, X and Y, 4-bit wide
Condition Code Register (CCR), 4-bit Arithmetic Logic Unit (ALU), instruction decoder
and interrupt controller. The key features of the MARC4 core include [6]:

• RISC2 Architecture: 72 simple and highly-optimized instructions are provided and
most of them are single-byte instructions.

• HARVARD Structure: Three independent buses (i.e., the instruction bus, the mem-
ory bus and the I/O bus) can be used in parallel to communicate between the ROM,
the RAM, and attached peripherals.

• Power Saving Modes : The MARC4 core provides various power-saving functions and
consumes 0.1µA in Deep-Sleep Mode, 0.6µA in Sleep Mode, 70µA in Power-down
Mode and less than 1mA in Active Mode.

• High-Level Programming Language: The MARC4 instruction set is optimized for the
high-level programming language qForth.

• Stack-based Architecture: The MARC4 inherits a stack-based architecture where the
RAM is used to construct the Expression Stack (EXP) and the Return Stack (RET),
which are addressed with the Expression Stack Pointer (SP) and the Return Stack
Pointer (RP), respectively. All arithmetic, I/O and memory reference operations take
their operands from, and return their result to the EXP. Both EXP and RET have
a user-definable maximum depth.

The development tool for programming on MARC4 microcontrollers is the MARC4
Starter Kit (see Figure 5 in [168]) containing the following components:

2Reduced Instruction Set Computing

26

• Hardware Components : an E-Lab ICP V24 Portable programmer, an MARC4 Pro-
gramming board, a ready-to-run application board TEMIC T4xCx92.

• Software Components : a Windows-based editor, an integrated qForth compiler, an
integrated simple MARC4 core simulator (only core, no peripheral modules), an in-
tegrated Help Function with qForth dictionary and an Atmel-wm ICP programmer
software.

4-Bit Implementation of the Hummingbird Cryptographic Algorithm

The MARC4 is a zero address machine with a compact and efficient instruction set. The
instructions contain only the operation to be performed but no source or destination ad-
dress information. Therefore, it is a formidable task to implement the Hummingbird on the
target platform since all operations and function calls must be organized and scheduled
according to the stack-based architecture of the MARC4 core. Figure 2.3 depicts the hier-
archical function call graph in the implementation of Hummingbird where 11 functions have
been implemented on the ATAM893-D microcontroller. The implementation details of the
functions in Figure 2.3 will be presented below using the qForth programming language 3.

SetInitialState HummingbirdEnc HummingbirdDec

BlockEncrypt UpdateLFSR BlockDecrypt

DoSbox LinearTransform InvLinearTransform DoInvSbox

ROTL2

Figure 2.3: The Function Call Graph in Hummingbird Implementation

Both the Expression and Return Stacks are located in RAM, whose size is variable and
must be defined by the programmer. By analyzing various operations in the Hummingbird

3To fully understand the code and its effects in this section, the reader is referred to [6].

27

algorithm and the function call graph in Figure 2.3, we define the maximum depth of the
EXP and the RET to be 9 and 7, respectively. Moreover, the following variables are used
in the implementation of Hummingbird:

Text0 -- Text3: 16-bit plaintext/ciphertext block;

RSi0 -- RSi3: 16-bit rotor RSi, i = 1, 2, 3, 4;

LFSR0 -- LFSR3: 16-stage LFSR;

V120 -- V123: 16-bit output of block cipher E_{k_1};

V230 -- V233: 16-bit output of block cipher E_{k_2};

V340 -- V343: 16-bit output of block cipher E_{k_3};

T0 -- T3 : temporary variables;

S0 -- S3 : temporary variables;

KeySelection : 4-bit variable for the subkey selection.

Initializing the internal state registers of Hummingbird can be divided into three phases
(see Figure 2.1(a)). These phases are 1) Initializing the rotor RSi with a randomly chosen
nonce NONCEi (i = 1, 2, 3, 4), 2) Encrypting the message RS1�RS3 using the four block
ciphers consecutively and updating the states four rotors for four rounds, 3) Using the final
16-bit ciphertext as the initial state of LFSR with the 13th bit set. The initialization of
the internal state registers is implemented by the following qForth word4 :SetInitialState
in which the qForth word :BlockEncrypt implements the 16-bit block cipher encryption.

: SetInitialState

4 #DO \ Four rounds encryption and rotor stepping

[...]

CLR_BCF \ Clear BRANCH and CARRY flag

V340 @ RS40 @ + Text0 ! \ Compute V34 + RS4

[...]

4 KeySelection ! \ Use the 4th 64-bit key k_4

BlockEncrypt \ 16-bit block cipher encryption

Text0 @ T0 ! \ Store the ciphertext in T0 to T3

[...]

CLR_BCF \ Clear BRANCH and CARRY flag

RS10 @ T0 @ + RS10 ! \ Step rotor RS1(t + 1) = RS1(t) + T

[...]

#LOOP

T0 @ LFSR0 ! \ Set the initial state of LFSR

[...]

T3 @ 0001b OR LFSR3 ! \ Set the 13th bit of LFSR

;

The encryption of one 16-bit plaintext block PTi with a given 256-bit secret key K
consists of two stages (see Figure 2.1(b)). PTi is first encrypted using four block ciphers
in a similar manner as the initialization of the internal state registers. Then the states of
the four rotors and the LFSR will be updated in terms of the process in Figure 2.1(b).
The encryption is implemented by the qForth word :HummingbirdEnc which calls two
subwords :BlockEncrypt and :UpdateLFSR.

4A word in qForth is a synonym of a subroutine in other programming languages [6].

28

: HummingbirdEnc

[...]

CLR_BCF \ Clear BRANCH and CARRY flag

V120 @ RS20 @ + Text0 ! \ Compute V12 + RS2

[...]

2 KeySelection ! \ Use the 2nd 64-bit key k_2

BlockEncrypt \ 16-bit block cipher encryption

Text0 @ V230 ! \ Store the ciphertext in V230 to V233

[...]

CLR_BCF \ Clear BRANCH and CARRY flag

RS30 @ V230 @ + RS30 ! \ Step rotor RS3(t + 1) = RS3(t) + V23 + LFSR

[...]

UpdateLFSR \ Step the Galois LFSR to the next state

RS30 @ LFSR0 @ + RS30 !

[...]

;

In Hummingbird, a 16-stage LFSR in Galois configuration (see Figure 2.4) is utilized
because it offers minimal latency and higher speed for both software and hardware im-
plementation. In the Galois configuration, when the state of LFSR needs to be updated,
bits that are not taps are shifted one position to the right unchanged. The taps, on the
other hand, are XORed with the output bit before they are stored in the next position.
The state update of the Galois LFSR can be efficiently implemented with the qForth word
:UpdateLFSR as follows:

: UpdateLFSR

LFSR0 @ LFSR1 @ LFSR2 @ LFSR3 @ \ Put LFSR into the stack

SHR Temp3 ! \ LFSR >> 1

[...]

LFSR0 @ 0001b AND 0001b = \ Test whether LFSR & 0x1 = 0x1

IF \ Yes, LFSR = (LFSR >> 1) ^ 0xca44

[...]

Temp3 @ 1100b XOR LFSR3 !

ELSE \ No, LFSR = LFSR >> 1

[...]

Temp3 @ LFSR3 !

THEN

;

Figure 2.4: A 16-bit Galois LFSR with Characteristic Polynomial f(x) = x16 +x15 +x12 +
x10 + x7 + x3 + 1

To implement the 16-bit block cipher encryption Eki as shown in Figure 2.2, the 4× 4

S-box S1 and the 64-bit subkey ki = K
(i)
1 ‖K(i)

2 ‖K(i)
3 ‖K(i)

4 are first stored in some specific
areas of the ROM of the MARC4 core with the qForth command ROMCONST as follows:

29

\ 16 nibbles for storing S-BOX used in the Compact Hummingbird

ROMCONST SBOX 8 , 6 , 5 , 15 , 1 , 12 , 10 , 9 ,

14 , 11 , 2 , 4 , 7 , 0 , 13 , 3 , AT 340h

\ 64-bit subkey k_1 and two derived round keys used in block cipher E_{k_1}

ROMCONST Key1 7eh , 2bh , 16h , 15h , aeh , 28h , a6h , d2h ,

d0h , 03h , b0h , c7h , AT 360h

[...]

Note that two derived round keys K
(i)
5 = K

(i)
1 ⊕K(i)

3 and K
(i)
6 = K

(i)
2 ⊕K(i)

4 are also stored
in the ROM for efficient implementation. Moreover, the qForth command ROMByte@
is used to fetch an 8-bit constant from the ROM each time. The four regular rounds of
the encryption algorithm can be implemented in a similar way. More specifically, after a
simple key mixing step, a message is divided into four 4-bit chunks and each of them is
then substituted by a single 4 × 4 S-box (see :DoSbox below). Subsequently, the 16-bit
message is further permuted by the linear transform L (see :LinearTransform below).
Unlike the regular round, the final round only consists of two key mixing steps with round
keys K

(i)
5 and K

(i)
6 and an S-box substitution step.

: BlockEncrypt

KeySelection @ \ Select a 64-bit subkey

CASE

1 OF

Key1 ROMByte@ \ Fetch the 1st 8-bit of k_1

Text0 @ XOR Text0 ! \ Add round key

Text1 @ XOR Text1 !

[...]

DoSbox \ S-box substitution

LinearTransform \ Linear transform Text ^ (Text << 6) ^ (Text << 10)

[...]

ENDOF

[...]

ENDCASE

;

The S-box substitution can be efficiently implemented by first pushing the base address
(12 bits) of the look-up table into the EXP. The value of the 4-bit chunk is then used as
the offset to form the address of the substitution result.

: DoSbox

SBOX Text0 @ + \ Look-up table addressing

ROMByte@ \ S-box substitution

Text0 ! \ Store SBOX[Text0] to Text0

DROP \ Drop high nibble which is 0

[...]

;

The linear transform L involves rotating a 16-bit message by 6 and 10 positions to
the left, respectively, which is performed by two steps: 1) rotate the message by 4 and 8

30

positions to the left, respectively; 2) rotate the resulting message by 2 positions to the left.
For the MARC4 4-bit architecture, the first step can be easily implemented by re-addressing
memory pointers, which is equivalent to change the order that a 16-bit message is pushed
into the EXP, as shown in the following qForth word :LinearTransform.

: LinearTransform

Text2 @ Text1 @ Text0 @ Text3 \ Push |Text0|Text1|Text2|Text3| onto stack << 4

ROTL2 \ T = Text << 6

Text0 @ T0 @ XOR S0 ! \ S = Text ^ (Text << 6)

[...]

Text1 @ Text0 @ Text3 @ Text2 \ Push |Text0|Text1|Text2|Text3| onto stack << 8

ROTL2 \ T = Text << 10

S0 @ T0 @ XOR Text0 ! \ Text = Text ^ (Text << 6) ^ (Text << 10)

[...]

;

The second step is implemented with the qForth word :ROTL2 (see below), which contin-
uously rotates a 16-bit message by one position to the left twice with the assistance of the
MARC4 Conditional Code Register (CCR).

: ROTL2

SHL T3 ! \ Rotate a 16-bit message by one position to the left

ROL T2 ! \ Text3 << 1

ROL T1 ! \ Text2 << 1

ROL T0 ! \ Text1 << 1

0111b CCR@ < \ Test whether there is a carry

IF T3 @ 1 XOR T3 ! \ If it is, insert 0001b into T3

ELSE T3 @ 0 XOR T3 ! \ Timing-attack resistance

THEN

[...]

;

The decryption procedure of Hummingbird is quite similar to the encryption process (see
Figure 2.1(c)). From the function call graph in Figure 2.3, we note that both encryption
and decryption share the same qForth words :UpdateLFSR and :ROTL2, which further
reduces the code size and enables us to fit an implementation that is capable of encryption
and decryption in spite of the harsh memory constrains of the MARC4 controllers (i.e.,
4KBytes ROM and 128Bytes RAM). Due to the similarity of the encryption and decryption,
we omit the description of the implementation of the decryption process here.

Experimental Results and Comparisons

To the best of our knowledge, the only published implementation of cryptographic algo-
rithms on 4-bit microcontrollers is about the ultra-lightweight block cipher PRESENT [168].
Hence, we compare the performance of the optimized implementations of PRESENT and
Hummingbird here. Table 2.5 summarizes the memory consumption and cycle count of two

31

ciphers on the target 4-bit platform. From Table 2.5, we note that Hummingbird encryption
and decryption algorithms require roughly equal lines of code5, which is longer than those
of PRESENT. The reason is that the loop unrolling technique is employed to optimize the
performance of the algorithm in our implementation, which increases the code size signifi-
cantly. Moreover, both Hummingbird and PRESENT use almost the same number of RAM
nibbles as the stack space6. In addition, the design of Hummingbird is based on a hybrid
mode of block cipher and stream cipher, which results in a relatively long initialization
process when compared to the block cipher PRESENT. After the initialization phase, the
encryption of a 16-bit plaintext block with Hummingbird requires 5, 773 cycles, whereas it
takes 55, 734 cycles for PRESENT to encrypt 64-bit plaintext. Furthermore, the decryp-
tion of one ciphertext block of 16/64 bits with Hummingbird/PRESENT requires 5, 212 and
65, 574 cycles on the target 4-bit microcontroller, respectively.

Table 2.5: Memory Consumption and Cycle Count Comparison

encryption/ ROM Stack Depth Init. Cycles/block
decryption [lines of code] [EXP/RET] [cycles] [cycles]

PRESENT-enc [168] 841 25/4 230 55, 734
PRESENT-dec [168] 945 25/4 230 65, 574

Hummingbird-enc 1532 9/7 22, 949 5, 773
Hummingbird-dec 1559 9/7 22, 949 5, 212

Table 2.6 estimates the running time and throughput of PRESENT and Hummingbird on
the 4-bit ATAM893-D microcontroller clocked at 16KHz, 500KHz and 2MHz, respectively.
As one can see from Table 2.6 that after an initialization phase the Hummingbird encryption
and decryption algorithms can achieve nearly 1.41 and 2.14 times faster throughput than
the state-of-the-art ultra-lightweight block cipher PRESENT at each given clock frequency,
respectively.

Combining the cost of the system initialization, Table 2.7 and Table 2.8 describe the
overall performance of PRESENT and Hummingbird for encrypting and decrypting messages
with different length on the target 4-bit microcontroller, respectively. From Tables 2.7 and
2.8, we note that the longer the message length, the larger performance improvement of
Hummingbird over PRESENT. Moreover, for typical embedded applications where most of
transmitted messages are usually very short, the advantage of using Hummingbird instead
of PRESENT is self-evident as well.

5We count the lines of code twice for the qForth words shared by the Hummingbird encryption and
decryption algorithms.

6While the depth (in RAM nibbles) of the EXP is exactly the number allocated, the RET depth is
expressed as RETvalue = RETdepth × 4.

32

Table 2.6: Timing and Throughput Comparison at Three Clock Frequencies

encryption/ Clock Freq. Clock Source Timing Throughput
decryption [KHz] [int./ext.] [ms] [bits/sec]

2, 000 int. 27.9 2, 297
PRESENT-enc [168] 500 ext. 111.5 574

16 ext. 3, 483 18.4
2, 000 int. 32.8 1, 952

PRESENT-dec [168] 500 ext. 131.1 488
16 ext. 4, 098 15.6

2, 000 int. 2.89 5, 543
Hummingbird-enc 500 ext. 11.55 1, 385.8

16 ext. 360.8 44.3
2, 000 int. 2.61 6, 139.7

Hummingbird-dec 500 ext. 10.4 1, 534.9
16 ext. 325.8 49.1

Table 2.7: The Overall Encryption Performance Comparison

Message Clock Freq. PRESENT-enc [168] Hummingbird-enc Performance
Length [KHz] [ms] [ms] Improvement

2, 000 28.02 23.03
64-bit 500 111.96 92.1 17.8%

16 3, 497.38 2, 877.51
2, 000 55.92 34.59

128-bit 500 223.46 138.3 38.1%
16 6, 980.38 4, 320.71

2, 000 83.82 46.15
192-bit 500 334.96 184.5 44.9%

16 10, 463.38 5, 763.91

2.4.2 Software Implementation on a 8-Bit Microcontroller

The ATmega128L from Atmel is a high-performance and low-power microcontroller that
has been widely deployed in wireless sensor nodes MICAz for various applications requiring
an extremely low power consumption for extended battery life. In this subsection, we
report efficient implementation of Hummingbird on the ATmega128L microcontroller and
compare the performance of Hummingbird and PRESENT on similar platforms.

33

Table 2.8: The Overall Decryption Performance Comparison

Message Clock Freq. PRESENT-dec [168] Hummingbird-dec Performance
Length [KHz] [ms] [ms] Improvement

2, 000 32.92 21.91
64-bit 500 131.56 87.5 33.4%

16 4, 112.38 2, 737.51
2, 000 65.72 32.35

128-bit 500 262.66 129.1 50.8%
16 8, 210.38 4, 040.71

2, 000 98.52 42.79
192bit 500 393.76 170.7 56.6%

16 12, 308.38 5, 343.91

8-Bit Microcontroller ATmega128L and Development Tools

The 8-bit ATmega128L microcontroller features the AVR enhanced RISC architecture.
The processor is equipped with 133 powerful and highly-optimized instructions and most of
them can be executed with one clock cycle. Moreover, ATmega128L comes with 128 KBytes
of In-System Self-Programmable Flash, 4 KBytes EEPROM and 8 KBytes Internal SRAM.
Optionally it can handle up to 64 KBytes of external memory space. Its clock frequency
can run from 0 to 8 MHz and the power supplies can go from 2.7 to 5.5 V. In addition,
at a frequency of 4 MHz with a power supply of 5 V ATmega128L draws 5.5 mA current
when active, 2.5 mA in Idle Mode and less than 15 µA in Power-down Mode.

In order to implement and test the performance of Hummingbird on the target platform,
we use a combination of the integrated development environment AVR Studio 4.17 [5] from
Atmel and the open-source WinAVR-20090313 tool kit [171] for our purpose. While AVR
Studio is used as an editor and a simulator, the WinAVR provides a GNU GCC compiler
with the according libraries and a linker.

Size Optimized Implementation on the Target 8-bit Platform

Note that the final round of the 16-bit block cipher in Hummingbird requires two derived
round keys K

(i)
5 = K

(i)
1 ⊕K(i)

3 and K
(i)
6 = K

(i)
2 ⊕K(i)

4 (see Figure 2.2). For a size optimized

implementation it is wise to calculate the above two keys K
(i)
5 and K

(i)
6 on-the-fly, which

can save the storage requirements by 16 bytes. Moreover, the single S-box is implemented
as a byte array with 16 elements, in which the lower half of a byte is used to store the
value of the Hummingbird S-box and the higher half of a byte is padded with zeros. The
S-box look-up of 16-bit block is conducted sequentially and 4 bits are processed each time.

34

To generate the code with minimal size on the ATmega128L microcontroller, we set the
optimization level to be “OPT = s” for GCC compiler in WinAVR-20090313.

Performance Results for Size Optimized Implementation

Table 2.9 summarizes the memory consumption and cycle count of two ultra-lightweight
ciphers Hummingbird and PRESENT on 8-bit microcontrollers for the size optimized imple-
mentation.

Table 2.9: Memory Consumption and Cycle Count Comparison (Size Optimized Imple-
mentation on 8-bit Microcontrollers)

Cipher Key Block 8-bit Micro- Flash Hex Code SRAM Init. Enc. Dec.
Size Size controller Size Size Size [cycles] [cycles/ [cycles/
[bit] [bit] [bytes] [Kbytes] [bytes] block] block]

Hummingbird 256 16 ATmega128L 1, 308 3.68 0 14, 735 3, 664 3, 868
PRESENT [144] 80 64 ATmega163 1, 474 – 32 – 646, 166 634, 614

From Table 2.9 we note that the code size of Hummingbird is about 13% smaller than
that of PRESENT on the 8-bit microcontrollers. In addition, Hummingbird needs a relatively
long initialization process when compared to the block cipher PRESENT because of the
hybrid structure of block cipher and stream cipher adopted in Hummingbird. However, after
an initialization procedure, Hummingbird encryption algorithm can achieve the throughput
of 17.5 Kbps at a frequency of 4 MHz on the 8-bit microcontroller. Under the same
settings, the throughput of Hummingbird decryption algorithm can amount to 16.5 Kbps.
Note that the throughput of PRESENT encryption and decryption algorithms is only 0.396
Kbps and 0.403 Kbps in this case. Therefore, for the size optimized implementation, the
throughput of Hummingbird is about 40 times faster than that of PRESENT on the target 8-
bit platforms. Considering the cost of the initialization phase in Hummingbird, we compare
the overall performance of Hummingbird and PRESENT for encrypting and decrypting
messages with different length in the following Tables 2.10 and 2.11, respectively.

Table 2.10: The Overall Encryption Performance Comparison at 4 MHz (Size Optimized
Implementation on 8-bit Microcontrollers)

Message PRESENT-enc [144] Hummingbird-enc Performance
Length [ms] [ms] Improvement

64-bit 161.54 7.35 95.5%
128-bit 323.08 11.01 96.6%
192-bit 484.62 14.68 96.9%

35

Table 2.11: The Overall Decryption Performance Comparison at 4 MHz (Size Optimized
Implementation on 8-bit Microcontrollers)

Message PRESENT-dec [144] Hummingbird-dec Performance
Length [ms] [ms] Improvement

64-bit 158.65 7.55 95.2%
128-bit 317.31 11.42 96.4%
192-bit 475.96 15.29 96.8%

For the size optimized implementation, Tables 2.10 and 2.11 show that one can achieve
around 95.2% ∼ 96.9% performance improvements when using Hummingbird instead of
PRESENT to encrypt or decrypt message blocks with length 64-bit, 128-bit, and 192-bit.

Speed Optimized Implementation on the Target 8-bit Platform

For a speed optimized implementation, we precompute and store all required round keys
K

(i)
5 and K

(i)
6 (see Figure 2.2) in an array and this precomputation procedure requires

additional 16 bytes of data memory and has to done once when a new key is used. Fur-
thermore, in order to accelerate the implementation of S-box layer in Hummingbird, we
use a more efficient technique that combines two identical 4× 4 S-boxes S(x)’s to form a
larger 8×8 S-box S8×8(x) such that S8×8(x1‖x2) = S(x1)‖S(x2), where x1 and x2 are 4-bit
inputs to the two 4× 4 S-boxes S(x)’s, respectively. Using the S-box S8×8(x) significantly
reduces the time for the S-box loop-up at the cost of 512 bytes of data memory (Note
that both S8×8(x) and S−18×8(x) have 256 entries of each one byte). To generate the code
with maximal speed, we set the optimization level to be “OPT = 3” for GCC compiler in
WinAVR-20090313.

Performance Results for Speed Optimized Implementation

Table 2.12 summarizes the memory consumption and cycle count of two ultra-lightweight
ciphers Hummingbird and PRESENT on 8-bit microcontrollers for the speed optimized im-
plementation.

From Table 2.12 we note that the code size of Hummingbird is about 78% larger than
that of PRESENT on the 8-bit microcontrollers. The main reason is that the -O3 option of
the GCC compiler aggressively optimizes for speed by unrolling all loops in the code, which
drastically increase the size of the code. Assuming that the microcontrollers operate at
the frequency of 4 MHz, Hummingbird encryption algorithm can achieve the throughput of
45.7 Kbps on the 8-bit microcontroller, which is about 71.3% faster than that of PRESENT

36

Table 2.12: Memory Consumption and Cycle Count Comparison (Speed Optimized Imple-
mentation on 8-bit Microcontrollers)

Cipher Key Block 8-bit Micro- Flash Hex Code SRAM Init. Enc. Dec.
Size Size controller Size Size Size [cycles] [cycles/ [cycles/
[bit] [bit] [bytes] [Kbytes] [bytes] block] block]

Hummingbird 256 16 ATmega128L 10, 918 30.5 0 8, 182 1, 399 1, 635
PRESENT [144] 80 64 ATmega163 2, 398 – 528 – 9, 595 9, 820

on the similar platform. Based on the same assumption, the throughput of Hummingbird
decryption algorithm can amount to 39.1 Kbps on the 8-bit microcontroller, which is around
50% faster than that of PRESENT on the similar platform. Combining the overhead of the
initialization phase in Hummingbird, we compare the overall performance of Hummingbird
and PRESENT for encrypting and decrypting messages with different length in the following
Tables 2.13 and 2.14 for the speed optimized implementation.

Table 2.13: The Overall Encryption Performance Comparison at 4 MHz (Speed Optimized
Implementation on 8-bit Microcontrollers)

Message PRESENT-enc [144] Hummingbird-enc Performance
Length [ms] [ms] Improvement

64-bit 2.40 3.38 -28.9%
128-bit 4.80 4.72 1.7%
192-bit 7.20 6.06 15.8%

Table 2.14: The Overall Decryption Performance Comparison at 4 MHz (Speed Optimized
Implementation on 8-bit Microcontrollers)

Message PRESENT-dec [144] Hummingbird-dec Performance
Length [ms] [ms] Improvement

64-bit 2.46 3.68 -33.2%
128-bit 4.92 5.32 -7.5%
192-bit 7.38 6.95 5.8%

For the speed optimized implementation, Tables 2.13 shows that on 8-bit microcon-
trollers Hummingbird encryption is about 28.9% slower than PRESENT encryption when
the message length is 64 bits. Furthermore, Hummingbird decryption (see Table 2.14) is
about 33.2% and 7.5% slower than PRESENT decryption for messages with length 64-bit
and 128-bit, respectively. The main reason is that Hummingbird has a hybrid structure of
block cipher and stream cipher which involves a relatively long initialization process when
compared to the block cipher PRESENT.

37

2.4.3 Software Implementation on a 16-Bit Microcontroller

The MSP430 family of microcontrollers from Texas Instrument (TI) has widespread appli-
cations in the embedded system community due to their extremely low power consump-
tion. In particular, the 16-bit MSP430F1611 has been integrated into wireless sensor nodes
TELOSB and TMote Sky for energy constrained wireless applications. This subsection ad-
dresses efficient implementation of Hummingbird on the MSP430F1611 microcontroller and
compare the performance of Hummingbird and PRESENT on similar platforms.

16-Bit Microcontroller MSP430 and Development Tools

The 16-bit microcontroller MSP430F1611 is different in many ways from the Atmel chip.
It has a traditional von-Neumann architecture and all special function registers (SFRs),
peripherals, RAM, and Flash/ROM share the same address space. Moreover, it comes
with 48 KBytes Flash memory and 10 KBytes RAM. The clock frequency of MSP430F1611
ranges from 0 to 8 MHz and the power supplies can go from 1.8 to 3.6 V. In particular, the
MSP430F1611 microcontroller features the ultralow power consumption. At a frequency
of 1 MHz and a voltage supply of 2.2 V the chip draws 200 µA current in Active Mode,
0.7 µA in Real-time Clock Mode, and 0.1 µA in Off Mode (RAM Retention). Although
the instruction set of MSP430F1611 only contains 27 instructions, 7 different addressing
modes provide great flexibility in data manipulation.

We use CrossWorks for MSP430 Version 2 from Rowley Associates [149] to implement
and simulate Hummingbird on the target platform. The CrossWorks for MSP430 bundles an
ANSI C compiler, macro assembler, linker/locator, libraries, core simulator, flash down-
loader, JTAG debugger, and an integrated development environment CrossStudio. Different
optimization levels can be set to generate codes with either smallest size or fastest speed.

Size Optimized Implementation on the Target 16-bit Platform

For a size optimized implementation we take the strategy of computing two round keys
K

(i)
5 and K

(i)
6 on-the-fly again in order to save 16 bytes of storage. Similar to the code

size optimized 8-bit implementation, the single S-box is implemented as a byte array with
16 elements and the S-box look-up for a 16-bit data block is realized sequentially for both
the encryption and the decryption routines. Moreover, to generate the code with minimal
size, we also choose “Minimize Size” as the optimization strategy in CrossStudio.

38

Performance Results for Size Optimized Implementation

Table 2.15 summarizes the memory consumption and cycle count of two ultra-lightweight
ciphers Hummingbird and PRESENT on 16-bit microcontrollers for the size optimized im-
plementation.

Table 2.15: Memory Consumption and Cycle Count Comparison (Size Optimized Imple-
mentation on 16-bit Microcontrollers)

Cipher Key Block 16-bit Micro- Flash Hex Code SRAM Init. Enc. Dec.
Size Size controller Size Size Size [cycles] [cycles/ [cycles/
[bit] [bit] [bytes] [Kbytes] [bytes] block] block]

Hummingbird 256 16 MSP430F1611 1, 064 2.95 0 9, 667 2, 414 2, 650
PRESENT [144] 80 64 C167CR – 9.67 – – 1, 442, 556 1, 332, 062

From Table 2.15 one can find that the code size of Hummingbird is about 69% smaller
than that of PRESENT on the 16-bit microcontrollers. In addition, after an initialization
process, Hummingbird encryption and decryption algorithms can achieve the throughput
of 26.5 Kbps and 24.2 Kbps at a frequency of 4 MHz on the 16-bit microcontrollers,
respectively. As a result, for the size optimized implementation, the throughput of Hum-
mingbird encryption and decryption algorithms is about 148 and 124 times faster than that
of PRESENT on the target 16-bit platforms, respectively. Considering the cost of the ini-
tialization phase in Hummingbird, we compare the overall performance of Hummingbird and
PRESENT for encrypting and decrypting messages with different length in the following
Tables 2.16 and 2.17.

Table 2.16: The Overall Encryption Performance Comparison at 4 MHz (Size Optimized
Implementation on 16-bit Microcontrollers)

Message PRESENT-enc [144] Hummingbird-enc Performance
Length [ms] [ms] Improvement

64-bit 360.64 4.83 98.7%
128-bit 721.28 7.24 98.9%
192-bit 1, 081.92 9.66 99.1%

For the size optimized implementation, Tables 2.16 and 2.17 show that about 98.5%
to 99.1% performance improvements can be achieved by using Hummingbird instead of
PRESENT to encrypt or decrypt message blocks with length 64-bit, 128-bit, and 192-bit.

39

Table 2.17: The Overall Decryption Performance Comparison at 4 MHz (Size Optimized
Implementation on 16-bit Microcontrollers)

Message PRESENT-dec [144] Hummingbird-dec Performance
Length [ms] [ms] Improvement

64-bit 333.02 5.07 98.5%
128-bit 666.03 7.72 98.8%
192-bit 1, 081.92 9.66 99.1%

Speed Optimized Implementation on the Target 16-bit Platform

For a speed optimized implementation, we precompute the required round keys K
(i)
5 and

K
(i)
6 at a cost of additional 16 bytes of storage. Similar to the speed optimized 8-bit imple-

mentation, S-box layer is implemented by combining two small 4× 4 S-boxes into a larger
8 × 8 S-box, which needs 512 bytes of data memory. To generate the code with maximal
speed, we also choose “Maximize Speed” as the optimization strategy in CrossStudio.

Performance Results for Speed Optimized Implementation

Table 2.18 summarizes the memory consumption and cycle count of Hummingbird and
PRESENT on 16-bit microcontrollers for the speed optimized implementation.

Table 2.18: Memory Consumption and Cycle Count Comparison (Speed Optimized Imple-
mentation on 16-bit Microcontrollers)

Cipher Key Block 16-bit Micro- Flash Hex Code SRAM Init. Enc. Dec.
Size Size controller Size Size Size [cycles] [cycles/ [cycles/
[bit] [bit] [bytes] [Kbytes] [bytes] block] block]

Hummingbird 256 16 MSP430F1611 1, 360 3.76 0 4, 824 1, 220 1, 461
PRESENT [144] 80 64 C167CR – 92.2 – – 19, 464 33, 354

From Table 2.18 one can find that the code size of Hummingbird is about 96% smaller
than that of PRESENT on the 16-bit microcontrollers. Assuming that the microcontrollers
operate at the frequency of 4 MHz, Hummingbird encryption and decryption algorithms can
achieve the throughput of 52.5 Kbps and 43.8 Kbps on the 16-bit microcontrollers, respec-
tively, after a initialization procedure. Therefore, for the speed optimized implementation,
the throughput of Hummingbird encryption and decryption algorithms is about 2.5 and 4.7
times faster than that of PRESENT on the similar platforms, respectively. Combining the
overhead of the initialization phase in Hummingbird, we compare the overall performance of
Hummingbird and PRESENT for encrypting and decrypting messages with different length
in the following Tables 2.19 and 2.20 for the speed optimized implementation.

40

Table 2.19: The Overall Encryption Performance Comparison at 4 MHz (Speed Optimized
Implementation on 16-bit Microcontrollers)

Message PRESENT-enc [144] Hummingbird-enc Performance
Length [ms] [ms] Improvement

64-bit 4.87 2.43 50.1%
128-bit 9.68 3.65 62.3%
192-bit 14.61 4.87 66.7%

Table 2.20: The Overall Decryption Performance Comparison at 4 MHz (Speed Optimized
Implementation on 16-bit Microcontrollers)

Message PRESENT-dec [144] Hummingbird-dec Performance
Length [ms] [ms] Improvement

64-bit 8.34 2.67 67.9%
128-bit 16.68 4.13 75.2%
192-bit 25.02 5.59 77.6%

For the speed optimized implementation and different length of messages, Table 2.19
shows that on 16-bit microcontrollers Hummingbird encryption is about 50.1% to 66.7%
faster than PRESENT encryption, whereas Hummingbird decryption is around 67.9% to
77.6% more efficient than that of PRESENT in our experiment. The main reason is that
the size (i.e., 16 bits) of the data block and the internal state registers in Hummingbird is
perfectly suited to the architecture of 16-bit microcontrollers.

2.5 Efficient Hardware Implementations on Low-Cost

FPGAs

Besides having good performance and low memory consumption on various embedded
processors, Hummingbird is also expected to achieve small footprint and high throughput
in different hardware platforms. This section describes efficient FPGA implementations
of a stand-alone Hummingbird component. We implement an encryption only core and an
encryption/decryption core on the low-cost Xilinx FPGA series Spartan-3 and compare
our results with other reported (ultra-)lightweight block cipher implementations on the
same series. Moreover, a speed-optimized and an area-optimized hardware architectures
are also described in this section. Note that the choice of different kinds of I/O interfaces
has a significant influence on the performance of hardware implementation and is highly
application specific. Therefore, we do not implement any specific I/O logic in order to

41

obtain the accurate performance profile of a plain Hummingbird encryption/decryption
core as well as provide enough flexibility for various applications. Again, only the compact
version of Hummingbird (i.e., a single 4-bit S-box S(x) is applied 4 times in parallel in each
round of the 16-bit block cipher) is chosen for implementation on the target platform in
order to reduce the required hardware resources and to achieve better performance.

2.5.1 Target Platform and Design Tools

FPGAs are composed of configurable logic blocks (CLB) and a programmable intercon-
nection network. We implement both encryption and decryption modules in VHDL for
the low-cost Spartan-3 XC3S200 (Package FT256 with speed grade -5) FPGA device from
Xilinx7 [174]. We use the integrated FPGA development environment Aldec Active-HDL
8.2sp1 for writing, debugging and simulating VHDL codes. Furthermore, Synopsys Synplify
Pro C-2009.06-SP1 and Xilinx ISE Design Suite v11.1 are employed for the design synthesis
and implementation, respectively.

2.5.2 Selection of a “Hardware-Friendly” S-Box

A “hardware-friendly” S-box is the S-box that can be efficiently implemented in the target
hardware platform with a small area requirement. Four 4× 4 S-boxes Si(x) : F4

2 → F4
2 (i =

1, 2, 3, 4) have been carefully selected in Hummingbird according to certain security criteria
(see Section 2.2.4). To implement the compact version of Hummingbird, we need to choose
a “hardware-friendly” S-box from four S-boxes listed in Table 2.2. Let x = (x3‖x2‖x1‖x0)
be the 4-bit input to the S-box and let Si(x) = (S

(3)
i (x)‖S(2)

i (x)‖S(1)
i (x)‖S(0)

i (x)) denote
the 4-bit output of the i-th S-box (i = 1, 2, 3, 4). By using the Boolean minimization
tool Espresso [58] we can obtain the following minimal Boolean function representations
(BFR) for the four S-boxes in Hummingbird as shown in Table 2.21, where xi denotes
the inversion of bit xi, · denotes a logical AND and + denotes a logical OR. Note that
each S-box can be implemented in hardware by using either a look-up table (LUT) or the
Boolean function representations (i.e., combinatorial logic). The exact efficiency of the
above two approaches significantly depends on specific hardware platforms and synthesis
tools. Therefore, for each proposed architecture of the 16-bit block cipher we investigate
two implementation strategies (i.e., BRR and LUT) for the four S-boxes in Sections 2.5.3
and 2.5.4, respectively, and select one that results in the most area-efficient implementation
of the 16-bit block cipher.

7Basic building blocks of Xilinx FPGA are CLB slices and each slice on a Spartan-3 device contains two
sets of a look-up table (LUT) followed by a flip-flop.

42

Table 2.21: Boolean Function Representations for S-boxes in Hummingbird

S-boxes Minimal Boolean Function Representations

S1(x)

S
(0)
1 (x) = x3 · x2 · x1 · x0 + x3 · x2 · x1 + x3 · x2 · x1 · x0 + x2 · x1 · x0 + x3 · x2 · x1 · x0 + x3 · x1 · x0
S
(1)
1 (x) = x3 · x2 · x1 · x0 + x3 · x2 · x1 · x0 + x3 · x2 · x1 · x0 + x3 · x2 · x0 + x3 · x2 · x0 + x3 · x1 · x0
S
(2)
1 (x) = x3 · x2 · x1 + x2 · x1 · x0 + x3 · x2 · x1 · x0 + x3 · x2 · x0 + x3 · x1 · x0 + x3 · x2 · x1 · x0
S
(3)
1 (x) = x3 · x2 · x1 · x0 + x3 · x2 · x1 · x0 + x2 · x1 · x0 + x3 · x2 · x1 · x0 + x3 · x1 · x0 + x3 · x2 · x1 · x0

S2(x)

S
(0)
2 (x) = x3 · x2 · x1 · x0 + x3 · x2 · x1 · x0 + x3 · x2 · x1 · x0 + x3 · x2 · x0 + x2 · x1 · x0 + x3 · x1 · x0
S
(1)
2 (x) = x3 · x2 · x1 · x0 + x3 · x2 · x1 · x0 + x3 · x2 · x0 + x3 · x2 · x1 · x0 + x3 · x2 · x1 · x0 + x3 · x1 · x0
S
(2)
2 (x) = x3 · x2 · x1 · x0 + x3 · x2 · x1 · x0 + x3 · x2 · x1 · x0 + x3 · x1 · x0 + x2 · x1 · x0 + x3 · x2 · x1
S
(3)
2 (x) = x3 · x2 · x1 · x0 + x3 · x2 · x1 · x0 + x3 · x2 · x1 · x0 + x3 · x1 · x0 + x3 · x2 · x1 · x0 + x3 · x2 · x1

S3(x)

S
(0)
3 (x) = x3 · x2 · x1 · x0 + x2 · x1 · x0 + x3 · x2 · x1 · x0 + x3 · x1 · x0 + x3 · x2 · x0 + x3 · x2 · x1
S
(1)
3 (x) = x3 · x2 · x1 · x0 + x3 · x2 · x1 · x0 + x3 · x2 · x1 · x0 + x3 · x2 · x1 + x3 · x2 · x1 · x0 + x2 · x1 · x0
S
(2)
3 (x) = x3 · x2 · x1 · x0 + x2 · x1 · x0 + x2 · x1 · x0 + x3 · x2 · x0 + x3 · x2 · x1
S
(3)
3 (x) = x3 · x2 · x1 · x0 + x3 · x2 · x1 · x0 + x3 · x2 · x1 · x0 + x3 · x1 · x0 + x3 · x2 · x1 · x0 + x3 · x1 · x0

S4(x)

S
(0)
4 (x) = x3 · x2 · x1 · x0 + x2 · x1 · x0 + x3 · x2 · x1 · x0 + x3 · x2 · x1 · x0 + x3 · x2 · x1 · x0 + x3 · x1 · x0
S
(1)
4 (x) = x3 · x2 · x1 · x0 + x3 · x2 · x1 · x0 + x3 · x2 · x1 · x0 + x2 · x1 · x0 + x3 · x2 · x1 + x3 · x2 · x1 · x0
S
(2)
4 (x) = x3 · x2 · x1 · x0 + x2 · x1 · x0 + x3 · x2 · x1 · x0 + x2 · x1 · x0 + x3 · x2 · x1 · x0 + x3 · x2 · x0
S
(3)
4 (x) = x3 · x2 · x1 · x0 + x3 · x2 · x1 · x0 + x3 · x1 · x0 + x3 · x2 · x1 · x0 + x3 · x2 · x1 + x3 · x2 · x1 · x0

2.5.3 Speed Optimized Hardware Architecture

In this subsection we present a speed-optimized hardware architecture for Hummingbird
encryption/decryption cores, where the encryption or decryption can be performed with
four clock cycles. The main goal of the design is to achieve a high speed and throughput. To
this end, we first propose a loop-unrolled architecture for the 16-bit block cipher, followed
by a detailed description of the data path architectures of encryption/decryption cores.

Loop-Unrolled Architecture of 16-bit Block Cipher

The loop-unrolled architecture for the 16-bit block cipher is illustrated in Figure 2.5. In
this architecture, only one 16-bit block of data is processed at a time. However, five rounds
are cascaded and the whole encryption can be performed in a single clock cycle. The loop-
unrolled architecture consists of 8 XORs, 20 S-boxes, and 4 permutation layers for the
datapath. After the given 16-bit block is XORed with the first round key, the obtained
result is split into four 4-bit chunks and each of them is then processed by a 4-bit S-box in
parallel. The linear transform L performs a permutation on the output of the S-box layer
for each of four regular rounds. The final round only includes the S-box layer and four
XOR operations and the output ciphertext is stored into a 16-bit flip-flop (FF).

43

S

16

4

4

4

4

+

L
in
ea
r
T
ra
n
sf
or
m

L

16

16

DIN
S

S

S

K
(i)
1

4

4

4

4

16 16 16

S

16

4

4

4

4

+

L
in
ea
r
T
ra
n
sf
or
m

L

16

S

S

S

K
(i)
4

4

4

4

4

16 16
· · · · · ·

S

16

4

4

4

4

+

16

S

S

S

K
(i)
3

4

4

4

4

16

+
16

K
(i)
1

16
K

(i)
4+

16

K
(i)
2

16

+

16

16 16

DOUT

D

Q

Figure 2.5: Loop-Unrolled Architecture of 16-bit Block Cipher

To select a “hardware-friendly” S-box for the compact version of Hummingbird, we
implement the loop-unrolled architecture of the 16-bit block cipher on the target FPGA
platform and test one S-box candidate from Table 2.2 each time. Table 2.22 summarizes
the area requirement when using different S-boxes and implementation strategies. All
experimental results are from post-place and route analysis.

Table 2.22: Area Requirement Comparison for the Loop-Unrolled Architecture of 16-bit
Block Cipher on the Spartan-3 XC3S200 FPGA (Using four S-boxes and two implementation
strategies)

S-box Implementation # LUTs # FFs Total Occupied
Strategy Slices

S1(x)
LUT 186 16 107
BFR 186 16 109

S2(x)
LUT 193 16 112
BFR 186 16 107

S3(x)
LUT 186 16 101
BFR 186 16 106

S4(x)
LUT 190 16 104
BFR 187 16 109

When comparing different S-boxes and implementation strategies, Table 2.22 shows
that the loop-unrolled architecture occupies the minimal number of slices provided that
the S-box S3(x) is employed and implemented by a LUT. Therefore, the S-box S3(x) is
chosen for efficient implementation of speed optimized Hummingbird encryption/decryption
cores that are described in detail in the following subsections.

Speed Optimized Hummingbird Encryption Core

The top-level description and the I/O interface of a speed optimized Hummingbird encryp-
tion core are illustrated in Figure 2.6 and Figure 2.7, respectively. As can be seen from

44

Figure 2.7, the speed optimized Hummingbird encryption core has 119 pins and therefore
can be implemented on the Spartan-3 XC3S200 FPGA that features 200, 000 systems gates
and a package (FT256) with 173 I/O pins.

RS4 M5
16

RS3
16

RS2
16

RS1
16

16

M1

+

16

M7
16

Loop-
Unrolled
Encryp-
tion

16

M4

16

16

16
T1

16

16

16

16

RSi

16

CET1
64

ki

M6

16� 1

16

16

16

16

M3

16

16

M2

16

16

16

CT

16

CNT

CNTCNT

16

16

CNT

LFSR

CELFSR16 16

� 1
16

16

Time Base CNT

+

+

CNT

CNT

PT/
SSID

Figure 2.6: The Datapath of Speed Optimized Hummingbird Encryption Core Using the
Loop-Unrolled Architecture of 16-bit Block Cipher

The speed optimized Hummingbird encryption core works as follows. After the chip
enable signal CE changes from ‘0’ to ‘1’, the initialization process (see Figure 2.1(a)) begins
and four rotors RSi (i = 1, 2, 3, 4) are first initialized by four 16-bit random nonce through
the interface RSi(15:0) within four clock cycles. From the fifth clock cycle, the core starts
encrypting RS1 � RS3 for four times (see Algorithm 1) and each iteration requires four
clock cycles to finish encryptions by four 16-bit block ciphers as well as the internal state
updating. During the above procedure, the 64-bit subkeys ki (i = 1, 2, 3, 4) are read from an
external register through the interfaces KEY1(15:0) to KEY4(15:0) and under the control
of the signal KEYSEL(1:0). Moreover, depending on the value of a round counter, the
multiplexer M5 chooses the correct computation results to update four rotors and other
multiplexers select appropriate inputs to feed the 16-bit block cipher. Note that in order

45

CLK

CE

INIT

RSi(15:0)

KEYSEL(1:0)

KEY1(15:0)

KEY2(15:0)

KEY3(15:0)

KEY4(15:0)

PT(15:0)

VO

READY

CT(15:0)

Figure 2.7: The I/O Interface of Hummingbird Encryption Core

to save chip area for the encryption-only core the full update of the rotor RS2 involves
successive encryptions of two plaintext blocks. More specifically, the rotor RS2 is updated
by V 12t and RS4t+1 (see Algorithm 2) when encrypting two successive plaintext blocks,
respectively. Once the initialization process is done after 20 clock cycles, the READY signal
changes from ‘0’ to ‘1’ and the first 16-bit plaintext block is read from an external register
for encryption. With another four clock cycles, the corresponding ciphertext is output
from the encryption core and the valid output signal VO becomes high level. Therefore, the
proposed speed optimized Hummingbird encryption core can encrypt one 16-bit plaintext
block per 4 clock cycles, after an initialization process of 20 clock cycles.

Speed Optimized Hummingbird Encryption/Decryption Core

We depict the top-level architecture and the I/O interface of a speed optimized Humming-
bird encryption/decryption core in the following Figure 2.8 and Figure 2.9, respectively.
As can be seen from Figure 2.9, the speed optimized Hummingbird encryption/decryption
core has 143 pins and therefore can also be implemented on the Spartan-3 XC3S200 FPGA.

The Hummingbird encryption/decryption core supports the following four operation
modes: i) encryption only; ii) decryption only; iii) encryption followed by decryption; and
iv) decryption followed by encryption. Both encryption and decryption routines share the
same initialization procedure that first takes 4 clock cycles to load four random nonce into
rotors through multiplexers M5 and M11, followed by 16 clock cycles for four iterations. The
architecture of the encryption/decryption core is quite similar to that of the encryption-
only core except the following several aspects. Firstly, the rotor RS2 completes the update
when encrypting two successive plaintext blocks in the encryption-only core, whereas all

46

RS4 M5
16

RS3
16

RS2RS1
16

16

M1

16

Loop-
Unrolled
Encryp-
tion

M4

16

16

16
T1

16

16
16

RSi

CET1

M6

16� 1

16

16

16

M3M2

16

16

CTO

16

16
16

LFSR

CELFSR16 16

� 1
16

16

Time Base CNT

+

CNT

PTI/
SSID

−

SUBSEL

Loop-
Unrolled
Decryp-
tion

64

ki

+

16

16 16
M8

16
M7

16

16

16
+

16

M9

16

16

16

PTO

16

CTI

16

16

M11

M10

16

16

16

+

16

16

16

16

16

16

16

MODE
CNT

MODE

MODE
CNT

MODE
CNT

CNT

MODE
CNT

MODE
CNT

MODE
CNT

MODE
CNT

CNT

Figure 2.8: The Datapath of Speed Optimized Hummingbird Encryption/Decryption Core
Using the Loop-Unrolled Architecture of 16-bit Block Cipher

rotors are fully updated each time a plaintext block is encrypted or decrypted in order
to support the four operation modes in the encryption/decryption core. For this purpose,
two multiplexers M10 and M11 are introduced to fully update the rotor RS2 after each
encryption/decryption. Secondly, an adder that can perform both modulo 216 addition
and subtraction is included, which executes the corresponding arithmetic according to the
operation modes of the core. Thirdly, two multiplexers M7 and M8 are used to feed correct
values to the encryption and decryption routines of the 16-bit block cipher, respectively.

47

CLK

CE

INIT

RSi(15:0)

KEYSEL(1:0)

KEY1(15:0)

KEY2(15:0)

KEY3(15:0)

KEY4(15:0)

PTI(15:0)

VO

READY

PTO(15:0)

MODE

CTI(15:0)

CTO(15:0)

Figure 2.9: The I/O Interface of Hummingbird Encryption/Decryption Core

Finally, all the other multiplexers select appropriate inputs based on the value of a round
counter as well as the operation modes. The workflow of the encryption/decryption core
is also similar to that of encryption-only core. Hence, the speed optimized Hummingbird
encryption/decryption core can encrypt or decrypt one 16-bit plaintext or ciphertext block
per 4 clock cycles, after an initialization process of 20 clock cycles.

2.5.4 Area Optimized Hardware Architecture

We describe an area-optimized architecture for Hummingbird encryption/decryption cores
in this subsection, which require 16 clock cycles to perform the encryption or decryption.
Different from the prior speed-optimized design, the area-optimized architecture features a
more compact and energy-efficient solution. A round-based architecture for the 16-bit block
cipher is first presented. According to the round-based design of the 16-bit block cipher,
we devise the corresponding hardware architecture for the area-optimized Hummingbird
encryption/decryption cores.

Round-based Architecture of 16-bit Block Cipher

To further reduce the chip area and power consumption, we propose a round-based archi-
tecture that repeatedly uses only one round function block as shown in Figure 2.10. In this
architecture, four regular rounds share the common hardware resources of one substitution
and permutation layer and the final round is composed of another substitution layer and

48

four XORs. Hence, there are totally 5 XORs, 8 S-boxes, and one permutation layer for the
datapath. Furthermore, three 16-bit multiplexers are introduced for different purposes: i)
a 4-to-1 multiplexer M1 is utilized to switch among the required round keys; ii) a 2-to-1
multiplexer M2 is employed to choose between the input and the computation result of
each round; and iii) a 2-to-1 multiplexer M3 is used to export either the computation re-
sult of each round or the final ciphertext that is then stored into a 16-bit register. For the
round-based architecture, the whole encryption can be performed in four clock cycles.

S

16

4

4

4

4

+

L
in
ea
r
T
ra
n
sf
or
m

L

16
DIN

S

S

S

K
(i)
3

4

4

4

4

16 16
+

16

K
(i)
1

S

16

4

4

4

4

S

S

S
4

4

4

4

16

16 16

DOUT
D

Q

M2

16

16

M1

16K
(i)
4 16

K
(i)
2 16

K
(i)
1 16

16
+

16

K
(i)
3

+

16

K
(i)
2

16
+

16

K
(i)
4

M3
16

16

16

CNT

CNT

CNT

Figure 2.10: Round-based Architecture of 16-bit Block Cipher

Similar to the case of the loop-unrolled architecture, we also implement the round-
based architecture of the 16-bit block cipher on the Spartan-3 XC3S200 FPGA and test its
area requirement when using four S-boxes and two implementation options, respectively.
Table 2.23 summarizes our experimental results that are from post-place and route analysis
on the target platform.

Table 2.23: Area Requirement Comparison for the Round-based Architecture of 16-bit
Block Cipher on the Spartan-3 XC3S200 FPGA (Using four S-boxes and two implementation
strategies)

S-box Implementation # LUTs # FFs Total Occupied
Strategy Slices

S1(x)
LUT 158 16 92
BFR 158 16 85

S2(x)
LUT 156 16 92
BFR 152 16 82

S3(x)
LUT 154 16 86
BFR 161 16 92

S4(x)
LUT 159 16 92
BFR 163 16 93

49

From Table 2.23 we note that the round-based architecture of the 16-bit block cipher can
achieve the minimal area on the Spartan-3 XC3S200 FPGA by employing the S-box S2(x) in
each round and implementing it with the boolean function representations. Consequently,
the S-box S2(x) is selected for efficient implementation of area optimized Hummingbird
encryption/decryption cores that are addressed in the following subsections.

Area Optimized Hummingbird Encryption Core

The top-level description of an area optimized Hummingbird encryption core is depicted in
Figure 2.11. Moreover, the area optimized Hummingbird encryption core has the same I/O
interface (see Figure 2.7) as that of the speed optimized encryption unit.

RS2 M1
16

RS4
16

RS1
16

RS3
16

16

16

RSi

CNT

RH

CERH

M2

� 1
16

16
16

16

LFSR

CELFSR

16

16

+

16

M3

16

Round-
based

Encryp-
tion

64
ki

RA

CERA

16

16

16

16

16

RE

CERE

16

16

CT
16

CNT

CNT

PT/SSID
16

16

16

Time Base CNT

Figure 2.11: The Datapath of Area Optimized Hummingbird Encryption Core Using the
Round-based Architecture of 16-bit Block Cipher

50

The area optimized Hummingbird encryption core works as follows. Once the chip
is enabled (i.e., CE = ‘1’), the initialization process (see Figure 2.1(a)) starts and four
rotors RSi (i = 1, 2, 3, 4) are first initialized by four 16-bit random nonce through the
interface RSi(15:0) within four clock cycles. Moreover, the value RS3 � SSID is also
stored into the register RA in the fourth clock cycle, where SSID denotes the identity
of current session8. The core then executes four iterations (see Algorithm 1) to encrypt
the message RS1 � RS3 from the fifth clock cycle. Each iteration takes 20 clock cycles
to complete encryptions by four 16-bit block ciphers and the internal state updating as
well. Depending on the value of a round counter, the 64-bit subkeys ki (i = 1, 2, 3, 4)
are read from an external register through the interfaces KEY1(15:0) to KEY4(15:0) and
under the control of the signal KEYSEL(1:0). In addition, multiplexers M1,M2 and M3

and temporary registers RH,RA and RE also choose the corresponding inputs under the
control of the round counter. While the multiplexer M1 takes care of the update of four
rotors, M2 and M3 select appropriate operands to form the correct input of the 16-bit block
cipher. After 80 clock cycles, the system initialization is finished and the READY signal
becomes high level. The first 16-bit plaintext block is then read from an external register
for encryption. For another 16 clock cycles, the corresponding ciphertext is output from
the encryption core and the valid output signal VO changes from ‘0’ to ‘1’. Therefore,
the proposed area optimized Hummingbird encryption core is able to encrypt one 16-bit
plaintext block per 16 clock cycles, after an initialization process of 84 clock cycles.

Area Optimized Hummingbird Encryption/Decryption Core

We show the top-level architecture of an area optimized Hummingbird encryption/decryption
core in Figure 2.12. Note that both area and speed optimized encryption/decryption cores
have the same I/O interface (see Figure 2.9).

Like the speed optimized Hummingbird encryption/decryption core, the area optimized
one also supports four operation modes (see Section 2.5.3). Moreover, both encryption and
decryption routines share the same initialization procedure that first takes 4 clock cycles
to load four random nonce into rotors through multiplexers M1, followed by 80 clock cycles
for four iterations. Three temporary registers RH,RA and RE store the required data
under the control of the operation mode selection signal MODE and a round counter. In
addition, the encryption/decryption core also consists of an 16-bit adder that can perform
both modulo 216 addition or substraction. Depending on the current operation mode and
the value of the round counter, multiplexers M2 and M3 choose appropriate operands that
will be used by the 16-bit adder to generate the correct inputs for the 16-bit encryption

8Note that session identity SSID is useful when using Hummingbird in some authentication protocols,
see [57] for an example. If Hummingbird is only used as an encryption engine, SSID is not necessary and
only RS3 is stored in RA in the fourth clock cycle.

51

RS2 M1
16

RS4
16

RS1
16

RS3
16

16

16

RSi
RH

CERH

M2

� 1
16

16
16

16

LFSR

CELFSR

16

+

M3

Round-
based

Encryp-
tion

64

ki

RA

CERA
16

16

RE

CERE

CTO

16

Time Base CNT

MODE
CNT

MODE
CNT

16

MODE
CNT

16

−

SUBSEL

16

16

Round-
based

Decryp-
tion16

M416

M5

MODE
CNT

16

16

16

MODE

16

16

16

16

16

16

PTI/
SSID

CTI
16

PTO

Figure 2.12: The Datapath of Area Optimized Hummingbird Encryption/Decryption Core
Using the Round-based Architecture of 16-bit Block Cipher

or decryption module. All rotors will be fully updated through the multiplexer M1 after
each encryption/decryption of a 16-bit plaintext/ciphertext block. While the plaintex and
ciphertext block will be read from the interfaces PTI(15:0) and CTI(15:0), the corresponding
ciphertext and plaintext will be output through CTO(15:0) and PTO(15:0), respectively.
Furthermore, two multiplexers M4 and M5 are also included in the encryption/decryption
core, where M4 drives the required inputs to the 16-bit decryption module and M5 selects
output of the 16-bit encryption or decryption module. Since the encryption/decryption
core is just a simple extension of the encryption-only core, both of them follow a quite
similar workflow. Therefore, the area optimized Hummingbird encryption/decryption core
can encrypt or decrypt one 16-bit plaintext or ciphertext block per 16 clock cycles, after
an initialization process of 84 clock cycles.

52

2.5.5 Implementation Results and Comparisons

A summary of our implementation results is presented in Table 2.24, where the area re-
quirements (in slices), the maximum work frequency, and the throughput are provided. All
experimental results were extracted after place and route with the ISE Design Suite v11.1
from Xilinx on a xc3s200-5ft256 Spartan-3 platform with speed grade −5. In addition, to
achieve better performance, we set Place & Route Effort Lever (Overall) to be “High” and
Place & Route Extra Effort to be “Continue on Impossible”.

Table 2.24: Implementation Results for Compact Version of Hummingbird on the Spartan-3
XC3S200 FPGA

Opt. Mode S-box & its # LUTs # FFs Total Occupied Max. Freq. # CLK Cycles Throughput Efficiency
(Enc/Dec) Implementation Slices (MHz) Init. Enc/Dec (Mbps) (Mbps/# Slices)

Speed
Enc

S3(x) with LUT
473 120 273 40.1

20 4
160.4 0.59

Enc/Dec 1, 024 145 558 32.2 128.8 0.23

Area
Enc

S2(x) with BFR
411 131 253 66.1

84 16
66.1 0.26

Enc/Dec 651 152 363 61.4 61.4 0.17

For the Hummingbird encryption-only and encryption/decryption cores, Table 2.24
shows that the throughput of the speed optimized implementation is 1.42 and 1.1 times
larger than that of the area optimized implementation at the cost of additional 20 and 195
slices on the target platform, respectively.

Table 2.25: Performance Comparison of FPGA Implementations of Cryptographic Algo-
rithms

Cipher Key Block FPGA Total Occupied Max. Freq. Throughput Efficiency
Size Size Device Slices (MHz) (Mbps) (Mbps/# Slices)

Hummingbird 256 16 Spartan-3 XC3S200-5 273 40.1 160.4 0.59

PRESENT [144]
80 64

Spartan-3 XC3S400-5
176 258 516 2.93

128 64 202 254 508 2.51
PRESENT [74] 80 64 Spartan-3E XC3S500 271 – – –

XTEA [98] 128 64
Spartan-3 XC3S50-5 254 62.6 36 0.14
Virtex-5 XC5VLX85-3 9, 647 332.2 20, 645 2.14

ICEBERG [164] 128 64 Virtex-2 631 – 1, 016 1.61
SEA [119] 126 126 Virtex-2 XC2V4000 424 145 156 0.368
AES [34]

128 128

Spartan-2 XC2S30-6 522 60 166 0.32

AES [72]
Spartan-3 XC3S2000-5 17, 425 196.1 25, 107 1.44
Spartan-2 XC2S15-6 264 67 2.2 0.01

AES [148] Spartan-2 XC2V40-6 1, 214 123 358 0.29
AES [25] Spartan-3 1, 800 150 1700 0.9

Table 2.25 describes the performance comparison of our Hummingbird implementation
with existing FPGA implementations of block ciphers PRESENT [74, 144], XTEA [98],
ICEBERG [164], SEA [119] as well as AES [25,34,72,148]. Note that numerous AES hardware
architectures, ranging from compact to high speed, have been proposed in literature and we

53

only focus on those implementations using low-cost Spartan series FPGA devices with speed
grade -5 and above for the purpose of comparison. Moreover, the implementation figures of
ICEBERG and SEA are only available on Virtex-2 series FPGAs. We also would like to point
out that it is quite difficult to provide a fair comparison among different implementations on
FPGAs, taking into account the diversity of FPGA devices and packages, speed grade level,
and synthesis and implementation tools. Therefore, we also include additional information
such as implementation platform and speed grade level in Table 2.25.

Our experimental results show that in the context of low-cost FPGA implementation
Hummingbird can achieve larger throughput with smaller area requirement, when compared
to block ciphers XTEA, ICEBERG, SEA and AES. However, the implementation of the ultra-
lightweight block cipher PRESENT is more efficient than that of Hummingbird, although a
slightly large (and hence more expensive) device Spartan-3 XC3S400 is required. The main
reason is due to the complex internal state updating procedure in Hummingbird cipher. As
a result, the control unit is more complicated and the delay of the critical path is much
longer in Hummingbird hardware architecture than those in PRESENT core.

2.6 Encryption Modes and Conclusions

In this chapter we present a novel ultra-lightweight cryptographic algorithm, Hummingbird,
which is a combination of block cipher and stream cipher. There are two modes related to
Hummingbird as follows: (a) Enigma Mode: this is the mode where Hummingbird is used
as a word-based cipher (16-bit word) where the plaintext is transitioned through a series
of rotors. The ciphertext is dependent on the plaintext; (b) Stream Mode: this is the
mode of Hummingbird where two values in the internal state (RS1�RS3) are fed into the
input of Hummingbird. The output is a keystream that is XORed with plaintext.

The hybrid structure adopted in Hummingbird can provide the designed security with
small block size which is expected to meet the stringent response time and power consump-
tion requirements in a large variety of embedded applications. We show that Hummingbird
seems to be resistant to the most common attacks to block ciphers and stream ciphers in-
cluding birthday attacks, differential and linear cryptanalysis, structure attacks, algebraic
attacks, cube attacks, etc.

Efficient software implementations of Hummingbird on 4-, 8- and 16-bit microcontrollers
are also investigated. 4-bit microcontrollers have extremely low power consumption (typ-
ically 1 − 70µA), making them interesting platforms for implementing various security
solutions. Our speed optimized implementation shows that after a system initialization
process Hummingbird can achieve up to 2.14 times faster throughput than the state-of-the-
art ultra-lightweight block cipher PRESENT on a 4-bit ATAM893-D microcontroller. When
comparing the performance of Hummingbird and PRESENT on similar 8-bit platforms, the

54

throughput of Hummingbird is about 40 and 0.7 times faster for a size-optimized and a
speed-optimized implementations, respectively. Moreover, since the block size of Hum-
mingbird is perfectly suited to the architecture of 16-bit microcontrollers, Hummingbird can
achieve up to 148 and 4.7 times faster throughput than PRESENT for a size-optimized and
a speed-optimized implementations, respectively.

On the side of hardware, we propose speed optimized and area optimized architec-
tures, respectively. Furthermore, for different optimization goals two hardware cores are
designed, one of which only supports encryption and the other can perform both encryp-
tion and decryption. We implement all four hardware cores on the low-cost Spartan-3
XC3S200 FPGA device. Our experimental results show that the speed optimized encryp-
tion core can achieve a throughput of 160.4 Mbps, whereas the area optimized core only
occupies 253 slices on the target platform. When compared to FPGA implementations of
other (lightweight) cryptographic algorithms, Hummingbird cipher also demonstrates better
trade-off between throughput and area requirement.

To sum up, our software and hardware implementation results highlight that Humming-
bird was designed with both lightweight software and lightweight hardware implementations
for constrained devices in mind. Consequently, Hummingbird is well suited for implementing
various security mechanisms on mobile devices used in MANETs.

55

Chapter 3

Efficient Pairing Computation on
Genus 2 Hyperelliptic Curves over
Prime Fields

In this chapter we propose new variants of Miller’s algorithm to speed up pairing compu-
tations on two families of non-supersingular genus 2 hyperelliptic curves over prime fields.
The achieved acceleration is mainly based on the marriage of two techniques developed
for genus 2 curves: 1) efficiently computable automorphisms; and 2) encapsulated group
operations. First we will review related work and our motivation in Section 3.1 before we
move to a brief introduction of mathematical background in Section 3.2. Then we recall
supersingular genus 2 curves over prime fields which have been used for pairing compu-
tations, and introduce two families of non-supersingular genus 2 curves with efficiently
computable automorphisms in Section 3.3. The new variants of Miller’s algorithm and
explicit formulae for encapsulated group operations are presented in Section 3.4 and Sec-
tion 3.5, respectively. Section 3.6 details various techniques for efficiently implementing the
Tate pairing on a non-supersingular genus 2 curve with embedding degree 4, analyzes the
computational cost of our new algorithm and gives experimental results. Finally, this chap-
ter is concluded in Section 3.7. The research results in this chapter have been published
in [61,62].

3.1 Related Work and Motivation

Miller proposed the first algorithm [125] for computing the Weil pairing on elliptic curves.
In practice, the Tate pairing shows better performance than that of the Weil pairing and

57

therefore is widely used. While many important techniques have been proposed to accel-
erate the computation of the Tate pairing and its variants on elliptic curves [10, 11, 81],
the subject of pairing computations on hyperelliptic curves is also receiving an increasing
amount of attention. Choie and Lee [35] investigated the implementation of the Tate pair-
ing on supersingular genus 2 hyperelliptic curves over prime fields. Later on, Ó hÉigeartaigh
and Scott [80] improved the implementation of [35] significantly by using a new variant of
Miller’s algorithm combined with various optimization techniques. Duursma and Lee [53]
presented a closed formula for the Tate pairing computation on a very special family of
supersingular hyperelliptic curves. Barreto et al. [10] generalized the results of [53] and
proposed the Eta pairing approach for efficiently computing the Tate pairing on supersin-
gular genus 2 curves over binary fields. In [108], Lee et al. considered the Eta pairing
computation on general divisors on supersingular genus 3 hyperelliptic curves with the
form of y2 = x7−x±1. Recently, the Ate pairing, which is an extension of the Eta pairing
to the setting of ordinary curves, has been generalized to hyperelliptic curves [75] as well.
Although the Eta and Ate pairings hold the record for speed at the present time, we will
focus our attention on the Tate pairing in this chapter. The main reason is that the Tate
pairing is uniformly available across a wide range of hyperelliptic curves and subgroups,
whereas the Eta pairing is only defined for supersingular curves and the Ate pairing incurs
a huge performance penalty in the context of ordinary genus 2 curves [75, Table 6].

Motivated by previous work in [152, 165, 181], we consider pairing computations on
two families of non-supersingular genus 2 hyperelliptic curves over prime fields. We first
explicitly give efficiently computable automorphisms (also isogenies) and the dual isogenies
on the divisor class group of these curves. We then exploit the automorphism in lieu of the
order of the torsion group to construct the rational functions required in Miller’s algorithm,
and shorten the length of the main loop in Miller’s algorithm as a result. Based on the new
construction of the rational functions, we propose new variants of Miller’s algorithm for
computing the Tate pairing on certain non-supersingular genus 2 curves over prime fields.
In the best case, the length of the loop in our new variant can be up to 4 times shorter
than that of the original Miller’s algorithm. In addition, we also address the efficient
implementation of the Tate pairing on genus 2 hyperelliptic curves over large prime fields
in projective coordinates in this chapter, which is a natural generalization of Chatterjee
et al.’s work [33] to genus two curves. More specifically, we derive new explicit formulae
for the group operations for genus 2 hyperelliptic curves in projective and new (weighted
projective) coordinates and show how to encapsulate the computation of the line function
with the group operations. Finally, we generate a non-supersingular pairing-friendly genus
2 curve with embedding degree 4 and compare the performance of our new algorithm with
that of the variant proposed by Ó hÉigeartaigh and Scott [80] for supersingular genus 2
curves.

58

3.2 Mathematical Background

In this section, we present a brief introduction to the theory of genus 2 hyperelliptic curves
over prime fields, the definition of the Tate pairing and Miller’s algorithm to compute it,
restricting attention to the material which is relevant to this work. For more details, the
reader is referred to [8].

3.2.1 Genus 2 Hyperelliptic Curves over Prime Fields

Let Fq be a finite field of characteristic p 6= 2, q = pn, and let Fq denote the algebraic
closure of Fq. Let Fq(C)/Fq be a quadratic function field defined via an equation

C : y2 = f(x), (3.1)

where f(X) = x5 + f4x
4 + f3x

3 + f2x
2 + f1x + f0 ∈ Fq[x] is a monic and square-free

polynomial of degree 5. The curve C/Fq associated with this function field is called a
hyperelliptic curve of genus 2 defined over Fq. For our purpose it is enough to consider a

point P as an ordered pair P = (x, y) ∈ F2

q which satisfies y2 = f(x). Besides these tuples
there is one point O at infinity. The inverse of P is defined as −P = (x,−y). We call a
point P that satisfies P = −P a ramification point. Note that for p 6= 5 the transform
x→ x− f4/5 makes the coefficient of x4 in f(x) zero.

Unlike elliptic curves, points on a hyperelliptic curve do not form a group. Rather than
points, divisors are employed. A divisor D of C(Fq) is an element of the free abelian group
over the points of C(Fq), e.g., D =

∑
P∈C(Fq)

nPP with nP ∈ Z and nP = 0 for almost

all points P . The degree of a divisor D is defined as deg(D) =
∑

P∈C(Fq)
nP . The support

supp(D) of a divisor D is the set of points P with nP 6= 0 and we define ordP (D) = nP .
We say that a divisor D is defined over Fq if Dσ = D, where Dσ =

∑
P∈C(Fq)

nPP
σ, for all

automorphisms σ of Fq over Fq. The divisor class group JC(Fq) is defined by the quotient
group Div0

C(Fq)/PrinC(Fq), where Div0
C is a group of degree zero divisors and PrinC is a

group of principal divisors on C, which is a finite formal sum of the zeros and poles.

Each divisor class in JC(Fq) can be represented uniquely by a so-called reduced divisor
[28], i.e. a divisor of the form

∑m
i=1(Pi)−m(O),m ≤ 2 with Pi = (xi, yi) ∈ C(Fq), Pi 6= O

and Pi 6= −Pj for i 6= j. Mumford [130] showed that a reduced divisor can be represented
by means of two polynomials u(x), v(x) ∈ Fq[x], where u(x) and v(x) satisfy the following
three conditions: (i) u(x) is monic, (ii) deg v(x) < deg u(x) ≤ 2, and (iii) u(x) | v(x)2 −
f(x). In the remainder of this chapter, we will use the notation [u, v] for the divisor
class represented by u(x) and v(x). For a genus 2 hyperelliptic curve, we have commonly
[u, v] = [x2 + u1x + u0, v1x + v0]. Cantor’s algorithm [28] describes how to perform the
group addition of two reduced divisors in Mumford’s representation. However, explicit
formulae [105] are used to implement the group operations in practice.

59

3.2.2 Tate Pairing on Hyperelliptic Curves

Let C be a hyperelliptic curve of genus 2 over Fq given by equation (3.1). We say that a
subgroup of the divisor class group JC(Fq) has embedding degree k if the order n of the
subgroup divides qk − 1, but does not divide qi − 1 for any 0 < i < k. For our purpose,
n should be a (large) prime with n | #JC(Fq) and gcd(n, q) = 1. Let JC(Fqk)[n] be the
n-torsion group and JC(Fqk)/nJC(Fqk) be the quotient group. Then the Tate pairing is a
well defined, non-degenerate, bilinear map [67]:

〈·, ·〉n : JC(Fqk)[n]× JC(Fqk)/nJC(Fqk)→ F∗qk/(F
∗
qk)n,

defined as follows: let D1 ∈ JC(Fqk)[n], with div(fn,D1) = nD1 for some rational function
fn,D1 ∈ Fqk(C)∗. Let D2 ∈ JC(Fqk)/nJC(Fqk) with supp(D1) ∩ supp(D2) = ∅ (to ensure
a non-trivial pairing value). The Tate pairing of two divisor classes D1 and D2 is then
defined by

〈D1, D2〉n = fn,D1(D2) =
∏

P∈C(Fq)

fn,D1(P)ordP (D2).

Note that the Tate pairing as detailed above is only defined up to n-th powers. One can
show that if the function fn,D1 is properly normalized, we only need to evaluate the rational
function fn,D1 at the effective part of the reduced divisor D2 in order to compute the Tate
pairing [11,75].

In practice, the fact that the Tate pairing is only defined up to n-th power is usually
undesirable, and many pairing-based protocols require a unique pairing value. Hence one
defines the reduced pairing as

〈D1, D2〉(q
k−1)/n

n = fn,D1(D2)
(qk−1)/n ∈ µn ⊂ F∗qk ,

where µn = {u ∈ F∗
qk
| un = 1} is the group of n-th roots of unity. In the rest of this

chapter we will refer to the extra powering required to compute the reduced pairing as the
final exponentiation. One of the important properties of the reduced pairing we will use in
this chapter is that for any positive integer N satisfying n | N and N | qk − 1 we have

〈D1, D2〉(q
k−1)/n

n = 〈D1, D2〉(q
k−1)/N

N . (3.2)

3.2.3 Miller’s Algorithm

The main task involved in the computation of the Tate pairing 〈D1, D2〉n is to construct a
rational function fn,D1 such that div(fn,D1) = nD1. In [125] (see also [126]), Miller described
a polynomial time algorithm, known universally as Miller’s algorithm, to construct the

60

function fn,D1 and compute the Weil pairing on elliptic curves. However, the algorithm
can be easily adapted to compute the Tate pairing on hyperelliptic curves.

Let GiD1,jD1 ∈ Fqk(C)∗ be a rational function with div(GiD1,jD1) = iD1 + jD1− (iD1⊕
jD1) where ⊕ is the group law on JC and (iD1 ⊕ jD1) is reduced. Miller’s algorithm
constructs the rational function fn,D1 based on the following iterative formula:

fi+j,D1 = fi,D1fj,D1GiD1,jD1 .

Algorithm 5 shows the basic version of Miller’s algorithm for computing the reduced Tate
pairing on hyperelliptic curves according to the above iterative relation. Essentially, com-
puting the Tate pairing with Miller’s algorithm amounts to performing a scalar multipli-
cation of a reduced divisor and evaluating certain intermediate rational functions which
appear in the process of the divisor class addition. A more detailed version of Miller’s
algorithm for hyperelliptic curves can be found in [75].

Algorithm 5 Miller’s Algorithm for Hyperelliptic Curves (basic version)

Input: D1 ∈ JC(Fqk)[n], D2 ∈ JC(Fqk), represented by D1 and D2 with
supp(D1) ∩ supp(D2) = ∅

Output: 〈D1, D2〉(q
k−1)/n

n

1: f ← 1, T ← D1

2: for i = blog2(n)c − 1 downto 0 do
3: . Compute T ′ and GT,T (x, y) such that T ′ = 2T − div(GT,T)
4: f ← f 2 ·GT,T (D2), T ← [2]T
5: if ni = 1 then
6: . Compute T

′
and GT,D1(x, y) such that T

′
= T +D1 − div(GT,D1)

7: f ← f ·GT,D1(D2), T ← T ⊕D1

8: end if
9: end for

10: return f (qk−1)/n

Choie and Lee [35] described how to explicitly find the rational function G(x, y) in the
Algorithm 5 for the case of genus 2 hyperelliptic curves. Their results can be summarized
as follows: Let D1 = [u1, v1] and D2 = [u2, v2] be the two reduced divisors in JC(Fqk)
that are being added. In the composition stage of Cantor’s algorithm, we compute the
polynomial δ(x) which is the greatest common divisor of u1, u2 and v1 + v2 + h and a
divisor D

′
3 = [u

′
3, v

′
3], which is in the same divisor class as D3 = [u3, v3] = D1 +D2. At this

point, two cases may occur:

• If the divisor D
′
3 is already reduced following the composition stage, then the rational

function G(x, y) = δ(x).

61

• If this is not the case, then the rational function G(x, y) = δ(x) · y−v
′
3(x)

u3(x)
.

In the most frequent cases1 δ = 1 and thus G(x, y) =
y−v′3(x)
u3(x)

.

3.3 Supersingular Curves and Non-supersingular Curves

In this section, we first recall the supersingular genus 2 curves over Fp which have been used
to implement the Tate pairing. Then, by making a small change to the definition of these
curves, we produce two families of non-supersingular genus 2 curves over Fp with efficiently
computable automorphisms which provide potential advantages for pairing computations.

3.3.1 Supersingular Genus 2 Curves over Fp

Theoretically, supersingular genus 2 hyperelliptic curves exist over Fp with an embedding
degree of k = 6 [150]. However, only supersingular genus 2 curves with an embedding de-
gree of k = 4 are known to the cryptographic community at the present time [36]. In [35,80],
the authors investigated the efficient implementation of the Tate pairing on supersingular
genus 2 curves with embedding degree 4. The curve used in their implementation is defined
by the following equation:

C1 : y2 = x5 + a, a ∈ F∗p and p ≡ 2, 3 (mod 5).

On these supersingular curves a modified pairing 〈D1, ψ(D1)〉(p
k−1)/n

n is computed, where
the map ψ1(·) is a distortion map that maps elements in C1(Fp) to C1(Fp4). The distortion
map ψ1 is given by ψ1(x, y) = (ξ5x, y), where ξ5 is a primitive 5-th root of unity in Fp4 .
We also note that another family of supersingular genus 2 curves over Fp with embedding
degree 4 [36] is also suitable for implementing pairings. Such curves are given by an
equation of the form

C2 : y2 = x5 + ax, a ∈ F∗p ∩QRp and p ≡ 5 (mod 8),

where QRp denotes the set of quadratic non-residues modulo p. The distortion map for
the curve C2 is defined by ψ2(x, y) = (ξ28x, ξ8y), where ξ8 is a primitive 8-th root of unity
in Fp4 .

1For addition, the inputs are two co-prime polynomials of degree 2, and for doubling the input is a
square free polynomial of degree 2.

62

3.3.2 Non-Supersingular Genus 2 Curves over Fp

Motivated by the work in [152, 165, 181], we consider now the following two families of
non-supersingular genus 2 hyperelliptic curves over Fp:

C ′1 : y2 = x5 + a, a ∈ F∗p and p ≡ 1 (mod 5),

C ′2 : y2 = x5 + ax, a ∈ F∗p and p ≡ 1 (mod 8).

Curves of this form exist which are pairing friendly (see Section 3.4). Note that the only
difference between the curves Ci and C ′i (i = 1, 2) is the congruence condition applied to the
characteristic p. Although distortion maps do not exist on these non-supersingular curves,
both C ′1 and C ′2 have efficiently-computable endomorphisms. In fact, these endomorphisms
also induce efficient automorphisms on the divisor class groups of C ′1 and C ′2, which have
been used to accelerate the scalar multiplication for hyperelliptic curve cryptosystems [139]
and to attack the discrete logarithm problems on the Jacobians [52,70]. In the next section,
we will show how to speed up the computation of the Tate pairing using these efficiently
computable automorphisms on the curves C ′1 and C ′2. We first recall some basic facts which
will be used in this work.

For the curve C ′1, the morphism ψ1 defined by P = (x, y) 7→ ψ1(P) = (ξ5x, y) (see
Section 3.3.1 and notice ξ5 ∈ Fp now) induces an efficient non-trivial automorphism of
order 5 on the divisor class group JC′1(Fp) [139]. The formulae for ψ1 on the Jacobian are
given by

ψ1 : [x2 + u1x+ u0, v1x+ v0] 7→ [x2 + ξ5u1x+ ξ25u0, ξ
−1
5 v1x+ v0]

[x+ u0, v0] 7→ [x+ ξ5u0, v0]

O 7→ O.

The characteristic polynomial of ψ1 is given by P (t) = t4 + t3 + t2 + t + 1. Since the
automorphism ψ1 is also an isogeny, we can construct its dual isogeny as follows:

ψ̂1 : [x2 + u1x+ u0, v1x+ v0] 7→ [x2 + ξ−15 u1x+ ξ−25 u0, ξ5v1x+ v0]

[x+ u0, v0] 7→ [x+ ξ−15 u0, v0]

O 7→ O.

Note that ψ1 ◦ ψ̂1 = [1] and # Ker ψ1 = deg[1] = 1, and ψ̂1 is also a non-trivial automor-
phism on the curve C ′1.

Let D ∈ JC′1(Fp) be a reduced divisor of a large prime order n. From [139], we know

that the automorphisms ψ1 and ψ̂1 act respectively as multiplication maps by [λ1] and

[λ̂1] on the subgroup 〈D〉 of JC′1(Fp), where λ1 and λ̂1 are the two roots of the equation

63

t4 + t3 + t2 + t + 1 ≡ 0 (mod n). Furthermore, it is easily seen that [λ1]D = ψ1(D) can
be obtained with only three or one field multiplications in Fp for a general divisor and a
degenerate divisor, respectively. In the genus 2 context, a general divisor has two finite
points in the support, whereas a degenerate divisor has only a single finite point in its
support.

Similarly, for the curve C ′2, the morphism ψ2 defined by P = (x, y) 7→ ψ2(P) = (ξ28x, ξ8y)
(see Section 3.3.1 and notice ξ8 ∈ Fp now) induces an efficient non-trivial automorphism
of order 8 on the divisor class group JC(Fp) as follows [139].

ψ2 : [x2 + u1x+ u0, v1x+ v0] 7→ [x2 + ξ28u1x+ ξ48u0, ξ
−1
8 v1x+ ξ8v0]

[x+ u0, v0] 7→ [x+ ξ28u0, ξ8v0]

O 7→ O.

The characteristic polynomial of ψ2 is given by P (t) = t4 + 1 and the dual isogeny of ψ2 is
defined as follows

ψ̂2 : [x2 + u1x+ u0, v1x+ v0] 7→ [x2 + ξ−28 u1x+ ξ48u0, ξ8v1x+ ξ−18 v0]

[x+ u0, v0] 7→ [x+ ξ−28 u0, ξ
−1
8 v0]

O 7→ O.

It is not difficult to show that ψ2 ◦ ψ̂2 = [1] and # Ker ψ2 = deg[1] = 1, and ψ̂2 is also
a non-trivial automorphism on the curve C ′2. Let D ∈ JC′2(Fp) be a reduced divisor of a
large prime order n. Then the automorphism ψ2 acts as a multiplication map by λ2 on the
subgroup 〈D〉 of JC′2(Fp), where λ2 is a root of the equation t4 +1 ≡ 0 (mod n). Moreover,
[λ2]D = ψ2(D) can be computed with four or two field multiplications in Fp for a general
divisor and a degenerate divisor, respectively.

3.4 Efficient Pairings on Non-supersingular Genus 2

Curves

In this section we investigate efficient algorithms for computing the Tate pairing on the two
families of genus 2 hyperelliptic curves C ′1 and C ′2 defined in Section 3.3.2. We show how
to use the efficiently-computable automorphisms on these curves to shorten the length of
the loop in Miller’s algorithm. As a result, we propose new variants of Miller’s algorithm
for certain non-supersingular genus 2 curves over large prime fields.

64

3.4.1 Pairing Computation with Efficient Automorphisms

In this subsection, we present the main results of this chapter in the following theorems
and show their correctness. The pairing computation on the curve C ′1 is first examined.

Theorem 3.4.1 Let C ′1 be a non-supersingular genus 2 hyperelliptic curve over Fp as

above, with embedding degree k > 1 and automorphisms ψ1 and ψ̂1 defined as above. Let
D1 = [u1(x), v1(x)] ∈ JC′1(Fp) be a reduced divisor of prime order n, where n2 - #JC′1(Fp).
Let [λ1] act as the multiplication map on the subgroup 〈D1〉 defined as above such that
[λ1]D1 = ψ1(D1). Suppose m ∈ Z is such that mn = λ41 + λ31 + λ21 + λ1 + 1. Let rational

functions c1(x,y)
d1(x,y)

, c2(x,y)
d2(x,y)

, c3(x,y)
d3(x,y)

∈ Fp(C ′1)∗ respectively satisfy the following three relations:

[λ1]D1 + [λ21]D1 −
(
[λ1]D1 ⊕ [λ21]D1

)
= div

(
c1(x, y)

d1(x, y)

)
,

[
λ31
]
D1 + [λ41]D1 −

(
[λ31]D1 ⊕ [λ41]D1

)
= div

(
c2(x, y)

d2(x, y)

)
,

[
λ1 + λ21

]
D1 + [λ31 + λ41]D1 −

(
[λ1 + λ21]D1 ⊕ [λ31 + λ41]D1

)
= div

(
c3(x, y)

d3(x, y)

)
.

Let g(x, y) = c1(x,y)·c2(x,y)·c3(x,y)
d1(x,y)·d2(x,y) . Then for D2 ∈ JC′1(Fpk), we have

〈D1, D2〉
m(pk−1)

n
n =

[
f
λ31+λ

2
1+λ1+1

λ1,D1
(D2) · fλ

2
1+λ1+1

λ1,D1

(
ψ̂1(D2)

)
· fλ1+1

λ1,D1

(
ψ̂2
1(D2)

)
·

fλ1,D1

(
ψ2
1(D2)

)
· g(D2)

] pk−1
n
.

Note that the condition that λ1 satisfies λ41 + λ31 + λ21 + λ1 + 1 ≡ 0 (mod n) guarantees
the existence of the integer m. Moreover, the pairing will be non-degenerate if n - m and
supp(D1) ∩ supp(D2) = ∅. We split the proof of the Theorem 3.4.1 into the following
lemmas.

Lemma 3.4.2 With notation as above, we have

〈D1, D2〉
m(pk−1)

n
n =

(
fλ41+λ31+λ21+λ1,D1

(D2) · u1(D2)
) pk−1

n
.

Proof. From the important property of the reduced pairing (see equation (3.2)), we have

〈D1, D2〉
m(pk−1)

n
n = 〈D1, D2〉

pk−1
n

mn = fmn,D1(D2)
pk−1

n .

65

From the condition that mn = λ41 + λ31 + λ21 + λ1 + 1, we get

〈D1, D2〉
m(pk−1)

n
n = fmn,D1(D2)

pk−1
n = fλ41+λ31+λ21+λ1+1,D1

(D2)
pk−1

n .

Since [λ41 + λ31 + λ21 + λ1]D1 = −D1, we obtain the following relation

D1 + [λ1 + λ21 + λ31 + λ41]D1 = D1 + (−D1) = div(u1(x)).

Therefore, we have

div
(
fλ41+λ31+λ21+λ1+1,D1

)
= (λ41 + λ31 + λ21 + λ1)D1 +D1

= div
(
fλ41+λ31+λ21+λ1,D1

)
+D1 + [λ1 + λ21 + λ31 + λ41]D1

= div
(
fλ41+λ31+λ21+λ1,D1

· u1(x)
)
,

which proves the result.

The next lemma shows the relation between div
(
fλ41+λ31+λ21+λ1,D1

· u1(x)
)

and the divi-

sors div
(
fλ1,[λi1]D1

)
for i = 0, 1, 2, and 3.

Lemma 3.4.3 With notation as above, we have

div
(
fλ41+λ31+λ21+λ1,D1

· u1(x)
)

=

div
(
f
λ31+λ

2
1+λ1+1

λ1,D1
· fλ

2
1+λ1+1

λ1,[λ1]D1
· fλ1+1

λ1,[λ21]D1
· fλ1,[λ31]D1

· g(x, y)
)
.

Proof. We first note the following relation

div
(
fλ41+λ31+λ21+λ1,D1

)
= (λ41 + λ31 + λ21 + λ1)D1 − [λ41 + λ31 + λ21 + λ1]D1

= div
(
fλ41+λ31,D1

)
+ div

(
fλ21+λ1,D1

)
+ [λ1 + λ21]D1 +

[λ31 + λ41]D1 −
(
[λ1 + λ21]D1 ⊕ [λ31 + λ41]D1

)
= div

(
fλ41+λ31,D1

)
+ div

(
fλ21+λ1,D1

)
+ div

(
c3(x, y)

d3(x, y)

)
= div

(
fλ41+λ31,D1

· fλ21+λ1,D1
· c3(x, y)

d3(x, y)

)
Since [λ41 + λ31 + λ21 + λ1]D1 = −D1, we get d3(x, y) = u1(x). Therefore, we have

div
(
fλ41+λ31+λ21+λ1,D1

· u1(x)
)

= div
(
fλ41+λ31,D1

· fλ21+λ1,D1
· c3(x, y)

)
. (3.3)

66

Similarly, we can obtain the following two equalities

div
(
fλ41+λ31,D1

)
= (λ41 + λ31)D1 − [λ41 + λ31]D1

= div
(
fλ41,D1

)
+ div

(
fλ31,D1

)
+ [λ41]D1 + [λ31]D1 −

(
[λ31]D1 ⊕ [λ41]D1

)
= div

(
fλ41,D1

)
+ div

(
fλ31,D1

)
+ div

(
c2(x, y)

d2(x, y)

)
= div

(
fλ41,D1

· fλ31,D1
· c2(x, y)

d2(x, y)

)
and

div
(
fλ21+λ1,D1

)
= (λ21 + λ1)D1 − [λ21 + λ1]D1

= div
(
fλ21,D1

)
+ div (fλ1,D1) + [λ21]D1 + [λ1]D1 −

(
[λ1]D1 ⊕ [λ21]D1

)
= div

(
fλ21,D1

)
+ div (fλ1,D1) + div

(
c1(x, y)

d1(x, y)

)
= div

(
fλ21,D1

· fλ1,D1 ·
c1(x, y)

d1(x, y)

)
Some easy calculations (see Lemma 2 in [10]) give us

div
(
fλ41,D1

)
= div

(
f
λ31
λ1,D1

· fλ
2
1

λ1,[λ1]D1
· fλ1

λ1,[λ21]D1
· fλ1,[λ31]D1

)
(3.4)

div
(
fλ31,D1

)
= div

(
f
λ21
λ1,D1

· fλ1λ1,[λ1]D1
· fλ1,[λ21]D1

)
(3.5)

div
(
fλ21,D1

)
= div

(
fλ1λ1,D1

· fλ1,[λ1]D1

)
(3.6)

Combining the equations (3.3)–(3.6) proves the result.

The following lemma shows how to evaluate functions fλ1,[λi1]D1
(i = 1, 2, 3) at the image

divisor D2 by using the function fλ1,D1 .

Lemma 3.4.4 With notation as above, we have (up to a scalar multiple in F∗p)

fλ1,[λ1]D1(D2) = fλ1,D1(ψ̂1(D2)),

fλ1,[λ21]D1
(D2) = fλ1,D1(ψ̂

2
1(D2)),

fλ1,[λ31]D1
(D2) = fλ1,D1(ψ

2
1(D2)).

67

Proof. Using the pullback property (see Silverman [160] p. 33) and following the same
proof as the Lemma 1 in [10], we obtain (up to a scalar multiple in F∗p)

fλ1,[λ1]D1 ◦ ψ1 = fλ1,D1 ,

fλ1,[λ21]D1
◦ ψ2

1 = fλ1,D1 ,

fλ1,[λ31]D1
◦ ψ3

1 = fλ1,D1 .

Using the relations between the isogeny ψ1 and its dual isogeny ψ̂1 (see Section 3.3.2), we
have

fλ1,[λ1]D1 ◦ ψ1 ◦ ψ̂1 = fλ1,[λ1]D1 = fλ1,D1 ◦ ψ̂1,

fλ1,[λ21]D1
◦ ψ2

1 ◦ ψ̂2
1 = fλ1,[λ21]D1

= fλ1,D1 ◦ ψ̂2
1,

fλ1,[λ31]D1
◦ ψ3

1 ◦ ψ̂3
1 = fλ1,[λ31]D1

= fλ1,D1 ◦ ψ̂3
1 = fλ1,D1 ◦ ψ2

1,

which proves the results.

With the above three lemmas, we can now prove the statement of Theorem 3.4.1 as
follows:

Proof of Theorem 3.4.1 For D1 ∈ JC′1(Fp)[n] and D2 ∈ JC′1(Fpk), Lemma 3.4.4 shows
that up to a scalar multiple in F∗p we have

fλ1,[λ1]D1(D2) = fλ1,D1(ψ̂1(D2)),

fλ1,[λ21]D1
(D2) = fλ1,D1(ψ̂

2
1(D2)),

fλ1,[λ31]D1
(D2) = fλ1,D1(ψ

2
1(D2)).

Now, substituting the above three equalities into Lemma 3.4.3 implies that

fλ41+λ31+λ21+λ1,D1
(D2) · u1(D2) = f

λ31+λ
2
1+λ1+1

λ1,D1
(D2) · fλ

2
1+λ1+1

λ1,D1

(
ψ̂1(D2)

)
·

fλ1+1
λ1,D1

(
ψ̂2
1(D2)

)
· fλ1,D1

(
ψ2
1(D2)

)
· g(D2).

Finally, substituting the above equation into Lemma 3.4.2 gives the result of Theorem 3.4.1.

Next, we consider how to use the efficiently-computable automorphism ψ2 to accelerate
the computation of the Tate pairing on the curve C ′2. The following Theorem 3.4.5 describes
our result.

68

Theorem 3.4.5 Let C ′2 be a non-supersingular genus 2 hyperelliptic curve over Fp as

above, with embedding degree k > 1 and automorphisms ψ2 and ψ̂2 defined as above. Let
D1 = [u1(x), v1(x)] ∈ JC′2(Fp) be a reduced divisor of prime order n, where n2 - #JC′2(Fp).
Let [λ2] act as the multiplication map on the subgroup 〈D1〉 defined as above such that
[λ2]D1 = ψ2(D1). Suppose m ∈ Z is such that mn = λ42 + 1. Then for D2 ∈ JC′2(Fpk), we
have

〈D1, D2〉
m(pk−1)

n
n =

[
f
λ32
λ2,D1

(D2) · fλ
2
2

λ2,D1

(
ψ̂2(D2)

)
· fλ2λ2,D1

(
ψ̂2
2(D2)

)
·

fλ2,D1

(
ψ̂3
2(D2)

)
· u1(D2)

] pk−1
n
.

Proof. The proof is similar to that of Theorem 3.4.1. Therefore, we omit it here.

From Theorem 3.4.1 and Theorem 3.4.5, we note that the pairing computation on
curve C ′2 is more efficient than that on curve C ′1 (i.e., more exponentiation computations
are needed on curve C ′1 than those on curve C ′2). Hence, the following discussions only
focus on the curve C ′2.

3.4.2 A New Variant of Miller’s Algorithm

In this subsection, we propose a new variant of Miller’s algorithm for the family of genus 2
hyperelliptic curves C ′2 over Fp with efficiently computable automorphisms ψ2 and ψ̂2. From
Theorem 3.4.5, we obtain the following Algorithm 6 for computing the Tate pairing on such
curves C ′2, which is a variant of Miller’s Algorithm (see Algorithm 5 in Section 3.2.3). For
the curve C ′1, we can also obtain a similar variant of Miller’s algorithm as in Algorithm 6,
based on Theorem 3.4.1.

3.5 Encapsulated Computation on Genus 2 Curves

In this section we generalize the idea of encapsulated add-and-line and encapsulated double-
and-line proposed in [33] to genus 2 hyperelliptic curves over large prime fields. Note
that, in the process of computing Tate pairings, one inversion is required for each divisor
class addition and doubling, and the calculation of the inversion of an element in large
characteristic is usually quite expensive. Therefore, to avoid inversions, we need to derive
efficient inversion-free explicit formulae for genus 2 hyperelliptic curves in the context of
pairing computations. In the remainder of this chapter, we use I to denote a field inversion,
M a field multiplication, and S a field squaring, respectively.

69

Algorithm 6 Computing the Tate Pairing with Efficient Automorphisms

Input: D1 = [u1, v1] ∈ JC′2(Fp)[n], D2 ∈ JC′2(Fpk), represented by D1 and D2 with
supp(D1) ∩ supp(D2) = ∅, λ2 = (er, er−1, . . . , e0)2, where ei ∈ {0, 1}

Output: 〈D1, D2〉m(pk−1)/n
n

1: T ← D1, f1 ← 1, f2 ← 1, f3 ← 1, f4 ← 1, f5 ← u1(D2)
2: for i = r − 1 downto 0 do
3: . Compute T ′ and GT,T (x, y) such that T ′ = 2T − div(GT,T)

4: T ← [2]T , f1 ← f 2
1 ·GT,T (D2), f2 ← f 2

2 ·GT,T (ψ̂2(D2))

5: f3 ← f 2
3 ·GT,T (ψ̂2

2(D2)), f4 ← f 2
4 ·GT,T (ψ̂3

2(D2))
6: if ei = 1 then
7: . Compute T

′
and GT,D1(x, y) such that T

′
= T +D1 − div(GT,D1)

8: T ← T ⊕D1, f1 ← f1 ·GT,D1(D2), f2 ← f2 ·GT,D1(ψ̂2(D2))

9: f3 ← f3 ·GT,D1(ψ̂
2
2(D2)), f4 ← f4 ·GT,D1(ψ̂

3
2(D2))

10: end if
11: end for
12: f ← ((fλ21 · f2)λ2 · f3)λ2 · f4 · f5
13: f ← f (pk−1)/n

14: return f

Lange [105] presented efficient explicit formulae for the group operations on genus 2
curves using various systems of coordinates. In the projective coordinate system, the
quintuple [U1, U0, V1, V0, Z] corresponds to the affine class [x2+U1/Zx+U0/Z, V1/Zx+V0/Z]
in Mumford representation [130], whereas the sextuple [U1, U0, V1, V0, Z1, Z2] stands for the
affine class [x2 +U1/Z

2
1x+U0/Z

2
1 , V1/(Z

3
1Z2)x+ V0/(Z

3
1Z2)] in the new coordinate system.

Lange’s formulae are designed to be used in the context of computing scalar multiplications,
and do not explicitly calculate all of the rational functions required in Miller’s algorithm.
However, one can extract the rational functions required from the formulae in [105] at the
cost of 3 extra field multiplications.

Choie and Lee [35] modified Lange’s explicit formulae in affine coordinates to reduce
the cost of extracting the rational functions required in Miller’s algorithm. The formulae
presented in [35] require 1I+23M+3S and 1I+23M+5S in Fp for divisor class addition2

and doubling, respectively, thereby saving 2 field multiplications over the previous method.
Ó hÉigeartaigh and Scott [80] further optimized the doubling formula proposed in [35] for
supersingular genus 2 curves over Fp of the form y2 = x5 + a by saving 1 multiplication
and 1 squaring.

2We note that the addition formula in [35] requires 3S instead of 2S as claimed. Indeed, each of Steps
1, 4, and 6 in [35, Table 5] requires a separate squaring.

70

Based on the above explicit formulae in affine coordinates, we derive new explicit mixed-
addition and doubling formulae in the projective and new coordinate systems in the context
of pairing computations, respectively. Since the explicit formulae in new coordinates are
more efficient than those in projective coordinates, we use new coordinates to represent
divisor classes in the main presentation. The mixed-addition and doubling formulae in
projective coordinates can be found in the Appendix B. We will explain how to encapsulate
the group operations and the line computations in the following subsections. To increase
performance, we also enlarge the set of coordinates to [U1, U0, V1, V0, Z1, Z2, z1, z2] as in
[105], where z1 = Z2

1 and z2 = Z2
2 .

3.5.1 Encapsulated Divisor Addition and Line Computation

In this subsection, we show how to encapsulate the computation of the line function with
the divisor class addition in new coordinates. Given two divisor classes E1 = [U11, U10, V11,
V10, 1, 1, 1, 1] and E2 = [U21, U20, V21, V20, Z21, Z22, z21, z22] in new coordinates as inputs,
Table 3.1 describes an explicit mixed-addition formula which calculates a divisor class

E3 = [u3(x), v3(x)] and the rational function l(x) such that E1 + E2 = E3 + div
(
y−l(x)
u3(x)

)
in the most common case. Our new explicit formula requires 36M + 5S for computing the
divisor class addition in new coordinates. Table 3.2 summarizes the computational cost of
calculating the divisor class addition and extracting the line function in various coordinate
systems. From Table 3.2 we note that in the context of pairing computations our mixed-
addition formulae can save 5M in the projective coordinate system and 3M in the new
coordinate system, respectively, when compared to the formulae given by Lange [105].

In the new coordinate system, the rational function c(x, y) = y − l(x) that is required
in Miller’s algorithm has the following form:

c(x, y) = y −
(
s′1
rz23

x3 +
l2
rz24

x2 +
l1
rz24

x+
l0
rz24

)
,

where s′1, l2, l1, l0, r, z23 and z24 = z21z23 are computed in Table 3.1. By defining the auxil-
iary rational function c′(x, y) = (rz24)c(x, y), we obtain

c′(x, y) = (rz24)y − ((s′1z21)x
3 + l2x

2 + l1x+ l0).

Note that the result of evaluating the function c(x, y) at an image divisor D2 will be raised
to the power (qk−1)/n (k > 1) in the last step of Miller’s algorithm. For efficiency reasons,
the first input to the Tate pairing is usually restricted to the 1-eigenspace of the Frobenius
endomorphism on JC [n]. Therefore, we have the following relation

c(D2)
(qk−1)/n = ((c′(D2)/(rz24))

q−1)(q
k−1+qk−2+...+1)/n = c′(D2)

(qk−1)/n.

71

Table 3.1: Mixed-Addition Formula on a Genus 2 Curve over Fp (New Coordinates)

Input Genus 2 HEC C : y2 = x5 + f3x
3 + f2x

2 + f1x+ f0
E1 = [U11, U10, V11, V10, 1, 1, 1, 1] and
E2 = [U21, U20, V21, V20, Z21, Z22, z21, z22]

Output E3 = [U31, U30, V31, V30, Z31, Z32, z31, z32] = E1 ⊕ E2

l(x) such that E1 + E2 = E3 + div
(
y−l(x)
u3(x)

)
Step Expression Cost

1 Compute resultant and precomputations: 7M, 1S

z23 = Z21Z22, z24 = z21z23, Ũ11 = U11z21, y1 = Ũ11 − U21

y2 = U20 − U10z21, y3 = U11y1, y4 = y2 + y3, r = y2y4 + y21U10

2 Compute almost inverse of u2 mod u1: –
inv1 = y1, inv0 = y4

3 Compute s′: 7M
w0 = V10z24 − V20, w1 = V11z24 − V21, w2 = inv0w0

w3 = inv1w1, s
′
1 = y1w0 + y2w1, s

′
0 = w2 − U10w3

4 Precomputations: 4M, 3S
r̃ = rz23, R = r̃2, Z31 = s′1Z21, Z32 = r̃Z21

z31 = Z2
31, z32 = Z2

32, s̃
′
0 = s′0z21

5 Compute l: 5M
l2 = s′1U21 + s̃′0, l0 = s′0U20 + rV20
l1 = (s′1 + s′0)(U21 + U20)− s′1U21 − s′0U20 + rV21

6 Compute U3: 7M, 1S

w1 = Ũ11 + U21, U31 = s′1(2s̃
′
0 − s′1y1)− z32, l′1 = l1s

′
1

U30 = s̃′0(s
′
0 − 2s′1U11) + s

′2
1 (y3 − Ũ10 − U20) + 2l′1 +Rw1

7 Compute V3: 6M
w1 = l2s

′
1 − U31, V30 = U30w1 − z31(l0s′1)

V31 = U31w1 + z31(U30 − l′1)
Sum 36M, 5S

72

Table 3.2: Divisor Class Addition in Different Systems and in Odd Characteristic

Reference Coordinate Addition Mixed Extracting Line
Type Addition Function l(x)

Miyamoto et al. [128] Affine 1I, 24M, 2S – no cost
Projective 54M – no cost

Lange [105] Affine 1I, 22M, 3S – 3M
Projective 47M, 4S 40M, 3S 3M

New 47M, 7S 36M, 5S 3M
Choie and Lee [35] Affine 1I, 23M, 3S – no cost

Our work Projective – 38M, 3S no cost
Table B.1

New – 36M, 5S no cost
Table 3.1

The above relation means that in new coordinates we can work with the rational func-
tion c′(x, y) instead of c(x, y) without altering the value of the resulting Tate pairing. For
the same reason we also work with the rational function u′3(x) = z31x

2 +U31x+U30 instead
of u3(x) = x2 + U31

z31
x+ U30

z31
for both divisor addition and divisor doubling.

3.5.2 Encapsulated Divisor Doubling and Line Computation

In this subsection, we describe how to encapsulate the computation of the line func-
tion with the divisor class doubling in new coordinates. Given a divisor class E1 =
[U11, U10, V11, V10, Z11, Z12, z11, z12] in new coordinates as an input, Table 3.3 describes
an explicit doubling formula which calculates a divisor class E3 = [u3(x), v3(x)] and the

rational function l(x) such that 2E1 = E3 + div
(
y−l(x)
u3(x)

)
in the most common case. Our

new explicit formula needs 35M + 7S to double a divisor class in new coordinates. Ta-
ble 3.4 summarizes the computational cost of doubling a divisor class and extracting the
line function in various coordinate systems. From Table 3.4 we note that in the context
of pairing computations our doubling formulae can save 2M in both projective and new
coordinates, when compared to the formulae given by Lange [105].

In the new coordinate system, the rational function c(x, y) = y − l(x) that is required
in Miller’s algorithm has the following form:

c(x, y) = y −
(

s1
s′1Z32

x3 +
l2

Z31Z32

x2 +
l1

Z31Z32

x+
l0

Z31Z32

)
,

where s1, s
′
1, l2, l1, l0, Z31 and Z32 are available in Table 3.3. By defining the auxiliary

73

Table 3.3: Doubling Formula on a Genus 2 Curve over Fp (New Coordinates)

Input Genus 2 HEC C : y2 = x5 + f3x
3 + f2x

2 + f1x+ f0
E1 = [U11, U10, V11, V10, Z11, Z12, z11, z12]

Output E3 = [U31, U30, V31, V30, Z31, Z32, z31, z32] = [2]E1

l(x) such that 2E1 = E3 + div
(
y−l(x)
u3(x)

)
Step Expression Cost

1 Compute resultant: 4M, 2S
w0 = V 2

11, w1 = U2
11, w2 = V10z11

w3 = w2 − U11V11, r = U10w0 + V10w3

2 Compute almost inverse: –
inv′1 = −V11, inv′0 = w3

3 Compute k′: 7M, 1S

z′11 = z211, w3 = f3z
′
11 + w1, Ũ10 = U10z11

k′1 = z12(2(w1 − Ũ10) + w3), z
′′
11 = z11z

′
11

k′0 = z12(U11(4Ũ10 − w3) + f2z
′′
11)− w0

4 Compute s′: 5M

w0 = k′0inv
′
0, w1 = k′1inv

′
1, s
′
1 = w2k

′
1 − V11k′0, s′0 = w0 − Ũ10w1

5 Precomputations: 8M, 4S
Z31 = s′1z11, z31 = Z2

31, w0 = rz11, w1 = w0Z12

Z32 = 2w1Z11, z32 = Z2
32, w2 = w2

1, R = rZ31

S0 = s′20 , S = s′0Z31, s0 = s′0s
′
1, s1 = s′1Z31

6 Compute l: 6M
l2 = s1U11 + s0z11, V

′
10 = RV10, l0 = s0U10 + 2V ′10

V ′11 = RV11, l1 = (s1 + s0)(U11 + U10)− s1U11 − s0U10 + 2V ′11
7 Compute U3: 1M

U30 = S0 + 4(V ′11 + 2w2U11), U31 = 2S − z32
8 Compute V3: 4M

w0 = l2 − U31, w1 = w0U30, w2 = w0U31

V31 = w2 + z31(U30 − l1), V30 = w1 − z31l0
Sum 35M, 7S

74

Table 3.4: Divisor Class Doubling in Different Systems and in Odd Characteristic

Reference Coordinate Doubling Extracting Line
Type Function l(x)

Miyamoto et al. [128] Affine 1I, 23M, 4S no cost
Projective 53M no cost

Lange [105] Affine 1I, 22M, 5S 3M
Projective 38M, 6S 3M

New 34M, 7S 3M
Choie and Lee [35] Affine 1I, 23M, 5S no cost

Ó hÉigeartaigh and Scott [80] Affine 1I, 22M, 4S no cost
Our work Projective 39M, 6S no cost

Table B.2
New 35M, 7S no cost

Table 3.3

rational function c′(x, y) = (Z31Z32)c(x, y), we obtain

c′(x, y) = (Z31Z32)y − ((s1z11)x
3 + l2x

2 + l1x+ l0),

where z11 is also available in Table 3.3. With the same argument as the case of the
mixed-addition, we have the relation c(D2)

(qk−1)/n = c′(D2)
(qk−1)/n for an image divisor

D2. Therefore, we can simply work with the rational function c′(x, y) instead of c(x, y)
without altering the value of the resulting Tate pairing in the new coordinate system.

3.6 Implementing the Tate Pairing with Efficient Au-

tomorphisms

In this section, we describe various techniques that enable the efficient implementation of
the Tate pairing on a non-supersingular genus 2 curve of type C ′2 over Fp. Furthermore,
we also analyze the computational cost of our new algorithm in detail and give timings for
our implementation.

3.6.1 Curve Generation

While generating suitable parameters for supersingular genus 2 hyperelliptic curves over
prime fields is easy, it seems to be more difficult to generate pairing-friendly non-supersingular
genus 2 curves over Fp because of the complicated algebraic structure of hyperelliptic

75

curves. Only a few results have appeared in the literature to address this issue [65,69,83,99]
and there is ongoing research in this direction. In [65], Freeman proposed the first explicit
construction of pairing-friendly genus 2 hyperelliptic curves over prime fields with ordinary
Jacobians by modeling on the Cocks-Pinch method for the elliptic curve case [38]. In the
appendix of [65], we find two examples which belong to the curve family C ′1 considered in
this chapter. Unfortunately, the curve parameters in the two examples are too large to be
optimal for efficient implementation. In a recent paper [99], Kawazoe and Takahashi pre-
sented two different approaches for explicitly constructing pairing-friendly genus 2 curves
of the type y2 = x5 + ax over Fp. One is an analogue of the Cocks-Pinch method and
the other is a cyclotomic method. Their findings are based on the closed formulae [68,77]
for the order of the Jacobian of hyperelliptic curves of the above type. In this chapter we
will restrict to the case p ≡ 1 (mod 8) and generate a suitable non-supersingular pairing-
friendly genus 2 curve C ′2 with embedding degree 4 using the theorems in [99]. The reason
that we only consider curves with embedding degree 4 in this section is to facilitate perfor-
mance comparisons between supersingular and non-supersingular genus 2 curves. However,
we would like to point out that non-supersingular curves with higher embedding degree
are available from [99] and that our method is also applicable to such curves.

To find good curve parameters which are suitable for applying our new algorithm, we
use the following searching strategies. From Theorem 3.4.5 we note that the subgroup order
n should satisfy mn = λ42 + 1 for an integer m. Assume that we require the (160/1024) bit
security level. Then n is a prime around 160 bits and λ2 is at least 40 bits3. Furthermore,
since the bit length of λ2 determines the length of the loop in Algorithm 6, λ2 should be
taken as small as possible. Based on these observations, we first check all λ2’s of the form
λ2 = 2a, a ∈ {41, 42, . . . , 60}. We found two λ2’s, namely λ2 = 258 and 259, for which λ42 +1
has a prime factor of 164 bits and 162 bits, respectively. However, using the above two
primes as the order n of the subgroup and running the algorithms of [99], we could not find
any curve. Therefore, we consider the slightly more complicated choice of λ2 = 2a + 2b,
where a ∈ {41, 42, . . . , 50}, b ∈ {1, 2, . . . , 50} and a > b. After a couple of trials, we
found that choosing λ2 = 243 + 210 generates a non-supersingular pairing-friendly genus 2
hyperelliptic curve whose Jacobian has embedding degree 4 with respect to a 163-bit prime
n. The curve is given by the equation

C∗2 : y2 = x5 + 9x

over Fp, for a 329-bit prime p, where the hexadecimal representations of n and p are as

3If we require the (256/3072) bit security level, we can use the method in [99] to generate a suitable
non-supersigular pairing-friendly genus 2 hyperelliptic curve with embedding degree 6. In this case, n is a
prime around 256 bits, p is about 512 bits and λ2 is at least 64 bits.

76

follows:

n = 00000006 a37991af 81ddfa3a ead6ec83 1ca0fc44 75d5add9 (163 bits)

p = 0000016b 953ca333 acf202b3 0476f30f ff085473 6d0a0be4

c542fa48 66e5afba 7bc6cd6d 21ca9fad eef796f1 (329 bits)

In the following five subsections, we will detail various techniques required to efficiently
implement the calculation of the Tate pairing on the curve C∗2 .

3.6.2 Finite Field Arithmetic

As the embedding degree of the curve C∗2 in our implementation is k = 4, we first discuss
how to construct the finite field Fp4 . Rather than construct Fp4 as a direct quartic extension
of Fp, the best way is to define the field Fp4 as a quadratic extension of Fp2 , which is in turn
a quadratic extension of Fp. Since the p is congruent to 5 modulo 12 in our implementation,
the field Fp2 can be constructed by the irreducible binomial x2 + 3 and the field Fp4 can be
constructed as a quadratic extension of Fp2 by the irreducible binomial x2−

√
−3. Letting

β = −3, elements of the field Fp2 can be represented as a+ b
√
β, where a, b ∈ Fp, whereas

elements of the field Fp4 can be represented as c+d 4
√
β, where c, d ∈ Fp2 . Under this tower

construction, a multiplication of two elements and a squaring of one element in Fp4 cost
9M and 6M in Fp, respectively [80].

3.6.3 Encapsulated Group Operations

Applying the explicit formulae in Section 3.5 to the curve C∗2 defined above, we can calculate
the divisor class addition and doubling with 36M + 5S and 32M + 6S in Fp in new
coordinates, respectively.

3.6.4 Using Degenerate Divisors and Denominator Elimination

For a hyperelliptic curve of genus g > 1, using a degenerate divisor as the image divisor
is more efficient than using a general divisor when evaluating line functions. Frey and
Lange [66] discussed in detail when it is permissible to choose a degenerate divisor as the
second argument of Miller’s algorithm. They also note that, when the embedding degree
k is even, one might choose the second pairing argument from a set S = {(x, y) ∈ C(Fqk) |
x ∈ Fqk/2 , y ∈ Fqk\Fqk/2}. Note that the point in the set S is on the quadratic twist of

77

C/Fqk/2 . When considering C∗2 as a curve defined over Fp2 , we can define a quadratic twist
of C∗2 over Fp2 , denoted by C∗2,t, as follows

C∗2,t : y2 = x5 + 9c4x,

where c ∈ Fp2 is a quadratic non-residue over Fp2 . It is known that C∗2,t(Fp4) ∼= C∗2(Fp4)
and the isomorphism of C∗2,t(Fp4) and C∗2(Fp4) also induces an isomorphism φ of JC∗2,t(Fp4)
and JC∗2 (Fp4) [103]. As in [62] we first generate a degenerate divisor class Dt = [x− xt, yt]
∈ JC∗2,t(Fp2) on the twisted curve C∗2,t/Fp2 . Then the isomorphism φ will map Dt to a

degenerate divisor class D2 = φ(Dt) = [x− c−1xt, c−5/2yt] ∈ JC∗2 (Fp4) on the curve C∗2 over
Fp4 . Note that the denominator elimination technique applies in this case since x− c−1xt
is defined over Fp2 . Furthermore, we do not need to compute f5 = u1(D2) ∈ Fp2 in
Algorithm 6 either, for the same reason.

3.6.5 Evaluating Line Functions at A Degenerate Divisor

Here we consider the evaluation of line functions at a degenerate divisor D2 = [x−x2, y2] ∈
JC∗2 (Fp4) generated by the method in Section 3.6.4, where x2 = c−1xt ∈ Fp2 and y2 =

c−5/2yt ∈ Fp4\Fp2 . Moreover, we further assume that in this work c =
√
−3 is taken as

a quadratic non-residue over Fp2 . Therefore, y2 has only two non-zero coefficients instead
of four in a polynomial basis representation of Fp4 . Furthermore, since the denominator
elimination technique applies in this case, we only need to evaluate the numerators of
the rational functions at D2. From Section 3.5 we know that in new coordinates we can
respectively work with the numerators c1(x, y) = (Z31Z32)y − ((s1z11)x

3 + l2x
2 + l1x + l0)

for group doubling and c2(x, y) = (r̃z21)y− ((s′1z21)x
3 + l2x

2 + l1x+ l0) for group addition,
where Z31, Z32, r̃, z11, z21, s1, s

′
1, l2, l1 and l0 are from Table 3.1 and Table 3.3. Note that

in Algorithm 6 we need to evaluate the function ci(x, y), i = 1 or 2 at four image divisors

D2 = [x− x2, y2], ψ̂2(D2) = [x− ξ−28 x2, ξ
−1
8 y2], ψ̂

2
2(D2) = [x− ξ48x2, ξ−28 y2] = [x+ x2, ξ

−2
8 y2]

and ψ̂3
2(D2) = [x− ξ28x2, ξ−38 y2] for each iteration of the loop. Hence we have the following

relations

ci(D2) = (r̃z11)y2 − [((s′1z11)x
3
2 + l1x2) + (l2x

2
2 + l0)],

ci(ψ̂2(D2)) = ((r̃z11)y2)ξ
−1
8 − [((s′1z11)x

3
2 − l1x2)ξ28 − (l2x

2
2 − l0)],

ci(ψ̂
2
2(D2)) = ((r̃z11)y2)ξ

−2
8 + [((s′1z11)x

3
2 + l1x2) − (l2x

2
2 + l0)],

ci(ψ̂
3
2(D2)) = ((r̃z11)y2)ξ

−3
8 + [((s′1z11)x

3
2 − l1x2)ξ28 + (l2x

2
2 − l0)].

We assume that x22, x
3
2, ξ
−1
8 and ξ28 are precomputed with 7M+2S over Fp. Since x2, x

2
2 and

x32 are in Fp2 and y2 has only two non-zero coefficients in the polynomial basis representation
of Fp4 , ci(D2) can be computed with 10M over Fp. By reusing the intermediate computation

78

results, we can compute ci(ψ̂2(D2)), ci(ψ̂
2
2(D2)) and ci(ψ̂

3
2(D2)) with 4M , 2M and 2M

over Fp, respectively. Therefore, the total cost of evaluating the function ci(x, y) at the
degenerate divisor D2 is 18M over Fp per iteration, with a precomputation of 7M + 2S.
For the case of evaluating the rational functions at a general divisor, the reader is referred
to [62].

3.6.6 Final Exponentiation

For a genus 2 curve with an embedding degree of k = 4, the output of Miller’s algorithm
needs to be raised to the power of (p4 − 1)/n. Calculating this exponentiation can follow
two steps as shown in [80]. Letting f ∈ Fp4 be the output of Miller’s algorithm, the first

step is to compute fp
2−1 which can be obtained with a conjugation with respect to Fp2 and

1I + 1M in Fp4 . The remaining exponentiation to (p2 + 1)/n is an expensive operation
which can be efficiently computed with the Lucas laddering algorithm [153] for the curve
C∗2 in question.

3.6.7 Performance Analysis and Comparison

In this subsection, we analyze the computational complexity of the Algorithm 6 for calcu-
lating the Tate pairing on non-supersingular genus 2 hyperelliptic curves C ′2 and compare
the performance of pairing computations on supersingular and non-supersingular genus 2
curves over prime fields with the same embedding degree of k = 4 .

We first analyze the algebraic complexity of the pairing computation on curves C ′2 with
our new algorithm (see Section 3.4.2). Recall that n is the subgroup order and λ2 is a
root of the equation λ4 + 1 ≡ 0 mod n. We assume that the embedding degree k is even
and the line functions in Algorithm 6 are evaluated at a degenerate divisor D2 instead of
a general divisor for efficiency reasons. We also assume that λ2 has a random Hamming
weight, meaning that about

(
1
2

log2 λ2
)

additions take place in Algorithm 6 on average.
Then the algebraic cost for computing the Tate pairing is given by (without including the
cost of the final exponentiation)

T1 + (log2 λ2)(TD + TG + 4Tsk + 8Tmk) +

(
1

2
log2 λ2

)
(TA + TG + 8Tmk) + T10,

where

1. T1 – the cost of precomputing f5 in Step 1 of Algorithm 6.

2. TD – the cost of doubling a general divisor.

79

3. TA – the cost of adding two general divisors.

4. TG – the cost of evaluating rational functionG(x, y) at the image divisorsD2, ψ̂2(D2), ψ̂
2
2(D2)

and ψ̂3
2(D2).

5. Tsk – the cost of squaring in Fpk .

6. Tmk – the cost of multiplication in Fpk .

7. T10 – the cost of computing f in Step 10 of Algorithm 2.

When applying various optimization techniques detailed in previous subsections to the
particular curve C∗2 , we can further reduce the above cost of computing the Tate pairing
to

43 · (TD + TG + 4Tsk + 4Tmk) + (TA + TG + 4Tmk) + T10,

where TD = 32M+6S, TA = 36M+5S, TG = 18M,Tsk = 6M,Tmk = 9M and T10 = 828M .
Furthermore, we also need 7M + 2S for precomputations (see Section 3.6.5). Note that all
multiplications and squarings here are over Fp. Therefore, the total cost of computing the
Tate pairing with our optimizations is given by 5655M + 265S in Fp.

In [35,62,80], the authors examined the implementation of the Tate pairing on a family
of supersingular genus 2 hyperelliptic curves C1 (see Section 3.3.1) over prime fields with
embedding degree 4 in affine and projective coordinates, respectively. We compare the per-
formance of pairing computations on the supersingular curve C1 and the non-supersingular
curve C∗2 in the following Table 3.5. Note that both curves have the same embedding degree
of k = 4.

Table 3.5: Performance Comparison of Pairing Computation on Curves C1 and C∗2

Reference Curve Coordinate Cost

Equation Type

Choie and Lee [35] Affine 240I, 17688M, 2163S

Ó hÉigeartaigh & Scott [80] C1 : y2 = x5 + a, Affine 162I, 10375M, 645S

Fan, Gong and Jao [62] a ∈ F∗p, p ≡ 2, 3 mod 5 Projective 13129M, 967S

New 12487M, 971S

This work C∗2 : y2 = x5 + 9x, New 5655M, 265S

p ≡ 1 mod 8

From Table 3.5, we note that for the same security level the computation of the Tate
pairing on the non-supersingular genus 2 curve C∗2 is algebraically about 55.8% faster than

80

on the supersingular genus 2 curve C1, under the assumption that field squarings have cost
S = 0.8M . Therefore, our algorithm improves previous work for pairing computations on
genus 2 hyperelliptic curves over prime fields by a considerable margin.

3.6.8 Experimental Results

For verifying our theoretical analysis in Section 3.6.7, we report implementation results of
computing the Tate pairing on the supersingular genus 2 curve C1 and non-supersingular
genus 2 curve C∗2 in this section. Both curves are defined over Fp and have an embedding
degree of k = 4. The code was written in C and Microsoft Developer Studio 6 was used for
compilation and debugging on a Core 2 DuoTM@2.67 GHz processor. For the curve C1 and
the (160/1024) bit security level we use the curve parameters that are generated in [80],
where the subgroup order n = 2159 + 217 + 1 is a Solinas prime [161] and the characteristic
p of the finite field Fp is a 256-bit prime. Recall that the curve C∗2 is defined over a prime
field of size 329 bits (see Section 3.6.1). The operations in the above two prime fields
are implemented with various efficient algorithms in [79]. Table 3.6 shows the timings of
our finite field library and the corresponding IM -ratio. From Table 3.6 we note that the
IM -ratios are sufficiently large for the two prime fields in our implementation that using
new coordinates and encapsulated group operations can provide better performance than
using affine coordinates in this case.

Table 3.6: Timings of Prime Field Fp Library

Curve # of bits of p Multiplication (M) Squaring (S) Inversion (I) IM -ratio

C1 256 0.84µs 0.78µs 41.9µs 53.7

C∗2 329 1.40µs 1.30µs 64.6µs 46.1

Table 3.7 summarizes previous work and our experimental results for the implementa-
tion of the Tate pairing on the curve C1 and C∗2 for the (160/1024) bit security level. All
of the timings are given in milliseconds.

From Table 3.7, we note that in our implementation the pairing computation on the
curve C∗2 is about 10% faster than that on the curve C1, in contrast to the algebraic com-
plexity analysis in Section 3.6.7. The reason is that the sizes of the fields over which both
curves are defined are different. Observe that the curve C∗2 is defined over a larger prime
field than C1, which significantly decreases the speed of computing the final exponentiation
of the Tate pairing when the curve C∗2 is used. This explains why our new algorithm only
obtains a 10% performance improvement in the implementation. Unfortunately, under
current techniques for generating pairing-friendly non-supersingular genus 2 hyperelliptic

81

Table 3.7: Experimental Results – (160/1024) Security Level

Reference Curve Coordinate Subgroup Running

Type Order Time (ms)

Choie and Lee [35] C1 Affine Random 515

Ó hÉigeartaigh and Scott [80] C1 Affine n = 2159 + 217 + 1 16

This work C1 New n = 2159 + 217 + 1 14.6

C∗2 New λ2 = 243 + 210 13.1

curves, we cannot find such a curve of the form y2 = x5 + ax defined over a 256-bit prime
field with an embedding degree of k = 4. Nevertheless, despite the unequal field size,
our implementation on the curve C∗2 is still slightly faster, even though strictly speaking
a direct comparison between fields of different size is complicated as many factors could
affect the comparison one way or another.

3.7 Conclusions

In this chapter, we have proposed new variants of Miller’s algorithm for computing the Tate
pairing on two families of non-supersingular genus 2 hyperelliptic curves over prime fields
with efficiently computable automorphisms. We describe how to use the automorphisms
to unroll the main loop of Miller’s algorithm. In the best case, the length of the loop in
our new variant can be up to 4 times shorter than that of the original Miller’s algorithm.

Furthermore, we also show how to efficiently implement pairing computations on genus
2 hyperelliptic curves over prime fields in projective coordinates. We generalize Chatterjee
et al.’s idea of encapsulated double-and-line computation and add-and-line computation
to genus 2 curves in projective and new coordinates, respectively. We also show that some
of the operations in the encapsulated method do not need to be computed since they are
eliminated by the final exponentiation. Our new explicit formulae are applicable to pairing
computations on both supersingular and non-supersingular genus 2 curves.

As a case study, we combine our new algorithm with various optimization techniques
in the literature to efficiently implement the Tate pairing on a non-supersingular genus
2 curve y2 = x5 + 9x over Fp with an embedding degree of k = 4. We also analyze the
performance for the new algorithm in detail. When compared with pairing computations
on supersingular genus 2 curves at the same security level, our new algorithm can obtain
55.8% performance improvements algebraically. However, the size of the field where the
non-supersingular curve is defined is 1.285 times larger than that of the field used for
supersingular curves, which somewhat offsets these gains. Nevertheless, our experimental

82

results show that using the non-supersingular genus 2 curve one can still obtain a 10%
performance improvement over the supersingular curve.

83

Chapter 4

Key Revocation Based on Dirichlet
Multinomial Model for MANETs

The absence of an online trusted authority makes the issue of key revocation in MANETs
particularly challenging. In this chapter we present a novel self-organized key revocation
scheme based on the Dirichlet multinomial model and identity-based cryptography (IBC).
Our key revocation scheme offers a theoretically sound basis for a node in MANETs to
predict the behavior of other nodes based on its own observations and reports from peers.
In our scheme, each node keeps track of three categories of behavior defined and classified
by an external trusted authority, and updates its knowledge about other nodes’ behavior
with 3-dimension Dirichlet distribution. Differentiating between suspicious behavior and
malicious behavior enables nodes to make multilevel response by either revoking keys of
malicious nodes or ceasing the communication with suspicious nodes for some time to
gather more information for making further decision. Furthermore, we also analyze the
attack-resistant properties of our key revocation scheme through extensive simulations in
the presence of independent and collusive adversaries, respectively. First we review existing
solutions and describes the motivation for our work in Section 4.1. Section 4.2 gives a short
introduction to mathematical tools used in this chapter including cryptographic pairings
and Dirichlet multinomial model. Section 4.3 formulates the network and security models
and presents our design goals. Section 4.4 gives a detailed description of our key revocation
scheme, followed by simulations and analysis of our key revocation scheme under false
statement attacks by independent and collusive adversaries in Section 4.5. This chapter
is finally concluded in Section 4.6. Partial contents of this chapter have been published
in [59].

85

4.1 Related Work and Motivation

Revoking cryptographic keys or certificates of malicious nodes is crucial for the security and
robustness of MANETs. Namely, good nodes can isolate malicious ones from the network
by ceasing the further communication with them and ignoring any message received from
them. Therefore, if cryptographic keys or certificates are issued by an authority, it must
possible, whenever necessary (e.g., key compromise), for the authority to revoke them, and
essentially evict malicious nodes from the network. In the context of wired networks, im-
plementations of key revocation schemes are usually based on Public Key Infrastructures
(PKIs). When the certificate of some user is to be revoked, the certificate authority (CA)
adds user’s certificate information into a Certificate Revocation List (CRL) and puts it
on an on-line trusted public repository or distributes it to other relevant users in some
secure way. However, these conventional techniques are difficult to be applied to MANETs
because of unique features of MANETs such as the absence of an on-line CA and a cen-
tralized repository. Two main classes of solutions have been proposed for key revocation in
MANETs. The schemes in the first category employ threshold cryptography and network
nodes collaborate to revoke keys of malicious nodes. Those in the second category are
fully self-organized and each node has its own opinion about the network and other nodes’
behavior. These solutions can be implemented with either the certificate-based cryptog-
raphy (CBC) or identity-based cryptography (IBC). Furthermore, some novel ideas have
also been proposed in the literature, which can be used to fast remove malicious nodes
from MANETs in particular application scenarios.

4.1.1 Threshold Cryptography Based Key Revocation Schemes

Key revocation schemes that depend on the use of a centralized trusted third party (TTP)
are not well suited to the ad hoc network scenario due to several reasons. Firstly, a CA
will be a vulnerable point in the network, especially if it is not distributed. If the CA
is compromised, the security of the entire network is breached. More importantly, the
CA should be available all the time in order to manage keys of network nodes. A typical
approach to solve these problems is to distribute the services of a centralized CA to a set
of network nodes using threshold cryptography [156]. And then these network nodes can
collaboratively carry out the key revocation. Although this kind of key revocation schemes
do not require the establishment of any infrastructure, the use of threshold cryptography
may cause tremendous computation and communication overhead on the network. We next
describe several key revocation schemes based on threshold cryptography for MANETs. In
the following discussion, N denotes the overall number of network nodes and t and n are
two positive integers satisfying t ≤ n < N .

86

Partially Distributed Authority

In the seminal paper by Zhou and Hass [182], the authors use CBC and a (t, n) threshold
scheme to distribute the services of the CA to a set of specialized server nodes in MANETs.
The system contains three types of nodes, namely, client, server and combiner nodes. The
client nodes are the normal users of the network, whereas the server and combiner nodes
are part of the CA. The system can tolerate t − 1 compromised servers due to the use
of threshold cryptography. Although the authors mentioned that the servers can collabo-
rate to revoke the certificates of the malicious nodes, no algorithms about the certificate
revocation are provided.

In [179], Zhang et al. designed a key management mechanism called IKM for MANETs
by combining IBC and threshold cryptography. The authors described a novel construction
method of ID-based public/private keys. In IKM, an external TTP distributes its func-
tionality to n Distributed Private Key Generators (D-PKGs) and bootstraps the network
with identity-based cryptography. More specifically, the TTP generates two master keys
and only introduces the information of one of master keys into the network using a (t, n)
threshold scheme. Therefore, each node has two pairs of keys, a static one issued by the
TTP and one that depends on the current time interval issued by the on-line D-PKGs.
By this means, IKM guarantees high-level resilience to node compromise attacks. Keys
are updated periodically through the broadcasts of the D-PKGs. In their key revocation
protocol, each node observing malicious behavior of other nodes securely reports its signed
accusations to the preassigned D-PKGs with ID-based signature and encryption schemes.
When the number of accusations against a malicious node reaches the revocation threshold
in a predetermined time window, the t D-PKGs will collaborate to revoke the key of the
malicious node with an ID-based (t, n)-threshold signature scheme. Although the design
of IKM minimizes the damage from node compromise attacks, the procedure of key re-
vocation involves a lot of expensive pairing computations, which means that the network
nodes in MANETs should have sufficient computational and power resources.

Fully Distributed Authority

In [102] and [117], a localized key management scheme was proposed for MANETs. The
authors use a (t, N) threshold scheme to distribute the capabilities of the CA to all nodes in
MANETs. In addition, the authors also briefly described a localized certificate revocation
scheme in a single paragraph. In their scheme, each node monitors the behavior of its one-
hop neighboring nodes. The key revocation will happen in two cases. One is when node A
observes that one of its neighbors is misbehaving. Node A will directly mark its neighbor
as “convicted”. Furthermore, node A also disseminates its signed accusations to its m-hop
neighborhoods with a RSA signature scheme, where m is a design parameter denoting the

87

range of the accusation propagation. The other case is when node A receives an accusation
against node B from node C. Node A first verifies whether the accuser C can be trusted by
checking its own certificate revocation lists. If it is, it verifies the signature of the accuser
C and updates its CRLs accordingly. Otherwise node A ignores the accusation received
from C. When the number of accusations for one node reaches a predefined network-wide
revocation threshold, the certificate of that node will be revoked. Furthermore, each node
only holds each entry in a CRL for some time Tcert (which is defined as the valid period of
a certificate) so that it will not provide the certificate update service for a convicted node
that still have a valid certificate. Therefore, the convicted node will be evicted from the
network after a period of Tcert. Although the proposed key revocation scheme meets some
requirements of MANETs, it is vulnerable to the Sybil attack [49] where an malicious node
can create a large number of identities to collect enough shares and reconstruct the CA’s
private key [30].

In [151], Saxena et al. proposed ID-GAC, an elegant identity-based access control
scheme for ad hoc groups such as MANETs. ID-GAC uses a (t, N) threshold scheme to
share the master key among all network nodes before the deployment. In particular, the
authors presented a membership revocation mechanism based on Membership Revocation
Lists (MRLs), which are the analogues of the CRLs used in the traditional PKI. Their
scheme is basically similar to those in [102] and [117] except that the signed accusations
are broadcasted to the entire network and a identity-based threshold signature scheme is
used to update key shares. The disadvantages of ID-GAC include: (i) Broadcasting accu-
sations to the entire network introduces a lot of communication load; (ii) The procedure of
key revocation needs many expensive pairing computations which impose a large compu-
tational overhead for mobile devices in MANETs; and (iii) ID-GAC suffers from the same
undesirable security drawback as the schemes in [102] and [117].

4.1.2 Self-Organized Key Revocation Schemes

The above key revocation schemes use threshold cryptography and therefore some nodes
need to collaborate to revoke keys of malicious nodes, whereas several fully self-organized
schemes are also proposed in the literature. In self-organized key revocation schemes,
each node has its own view about the network and decides whether cryptographic keys of
other network nodes should be revoked based on its own observations and the information
collected from peers in MANETs. These self-organized key revocation schemes do not
require any infrastructure and on-line access to trusted authorities.

In [30], Capkun et al. presented a self-organized key management scheme for MANETs.
This scheme uses a PGP-like trust model [183] and allows nodes to certify each other. When
a user want to revoke a certificate that he issued, the user sends an explicit revocation

88

statement to the nodes that regularly update that certificate. The disadvantage of this
scheme is that the assumption of a transitive trust might be too strong for MANETs.

The scheme proposed in [40] by Crépeau and Davis is the first self-organized certifi-
cate revocation scheme for MANETs. Their protocol uses a weighted accusation scheme
and provides the protection against the potentially false accusation attacks from malicious
nodes. The scheme is further improved and extended in [3]. Here, the value of a node’s
trustworthiness determines the weight of its accusation. The weight of node A’s accu-
sations depends on the number of accusations against node A, as well as the number of
additional accusations made by node A. The authors presented a method for actually
quantifying the trustworthiness of the nodes in MANETs satisfying that accusations from
the trustworthy nodes will have higher weight than those from less trustworthy nodes.
The underline principle of their scheme is that the weight of a node’s accusation is zero if
the trustworthiness of the node is the minimum possible value (i.e., the node receives the
maximum number of accusations from peers) and the node made the maximum number of
accusations that is allowed at the same time. All accusations are frequently broadcasted
throughout the entire network. Moreover, the newly joining nodes will receive the signed
profile tables of the existing members of the MANET from peers in order to obtain the
up-to-date information about the behavior profile of other nodes. The certificate of a node
is revoked when the sum of the weighted accusations against the node is equal to or greater
than a configurable threshold (revocation quotient). Their scheme does not need the time
synchronization and any access to on-line CAs after each node gets the certificate from an
off-line CA during network initialization. Furthermore, one-way hash chain is employed to
provide the authentication of the data origins and the integrity check of massages. Crépeau
et al.’s key revocation scheme uses the idea from game theory very tactfully and provides
a strong protection against certificates being wrongfully revoked through false accusations
attacks from malicious nodes. However their scheme also has the following disadvantages:
(i) Broadcasting accusations to the entire network introduces tremendous communication
overhead; (ii) Using µTESLA-based techniques [142] to authenticate accusations is vulner-
able to denial-of-service attacks [134]; (iii) The newly joining nodes need to verify a large
amount of profile tables received from peers, which means that these nodes should have
sufficient computational and power resources.

In [86], Hoeper and Gong presented self-organized key revocation and key renew schemes
for MANETs. These schemes are further analyzed in [84]. The authors introduced a new
format involving node’s identity, key expiry date, and key version number for ID-based
public keys such that new keys can be issued for the same identity after the previous
key has been revoked. In their revocation scheme, each node uses a neighborhood watch
mechanism to monitor nodes within its communication range. Upon detection of malicious
behavior, these observations are then securely propagated to an m-hop neighborhood (m
denotes the range of the accusation propagation) using the pre-shared secret key obtained

89

from a non-interactive ID-based key agreement protocol. Furthermore, when a node real-
izes that its private key has been compromised, the node will generate a harakiri message
and propagate this message to all its m-hop neighbors. Node A will consider node B’s
public key as revoked if at least one of the following three conditions is true: (i) A observes
the malicious behavior of B through the neighborhood watch; (ii) A receives a harakiri
message from B declaring that its private key has been compromised; (iii) A receives at
least δ accusations against B from trustworthy nodes within node A’s m-hop neighborhood,
where δ is a predetermined revocation threshold. The authors also used the majority vote
with parameter ε to mitigate the influence of false accusation attacks from colluding l-hop
neighbors (2 ≤ l ≤ m). In addition, newly joining nodes can simply join the network and
start the key revocation scheme without first verifying a large number of past accusations.

4.1.3 Other Key Revocation Schemes

In [116], Luo et al. proposed a certificate management scheme called DICTATE (DIstributed
CerTification Authority with probabilisTic frEshness) for special MANETs that have in-
termittent connections to a mother certificate authority (mCA), which is a trusted author-
ity connected to the backbone and known to all network nodes. Their scheme is based on
the combination of an offline mCA that issues initial certificates for nodes and a number
of online distributed servers (dCAs) that process certificate update and query requests.
To prevent the key compromise, the scheme requires nodes’ certificates to be updated pe-
riodically. Otherwise the certificates will become invalid. Periodically, there is a check
time, at which the dCAs (physically) go back to the mCA for purgation (only distributed
CA servers should go through this procedure and clients can still perform their remote
operations). During the check time, the mCA, through out-of-band mechanisms, detects
compromised servers and has them re-initiated or substituted by new ones. It also refreshes
the secret shared among the dCAs.

In [37], Clulow and Moore introduced the concept of the suicide for solving the prob-
lem of the credential revocation in self-organizing systems for the first time. Their work is
further extended and analyzed in [129]. The basic idea of the suicide attack is extremely
simple: a node who observes another node’s malicious behavior simply broadcasts a signed
message to the entire network and claims both of them to be dead. Therefore, a good node
that unilaterally removes a malicious node from MANETs sacrifices its own participation
in the future network operations as well. This radical strategy can fast isolate the malicious
nodes from the network and is ideally suited to highly mobile networks or special-purpose
MANETs, for example those deployed in a military battlefield, in which all entities be-
long to a group and have the common benefits and goals. The suicide protocol is fully
self-organized and incurs the low communication and storage overhead. The authors also
described possible implementations and proposed various countermeasures to mitigate the

90

abuse of this mechanism. More specifically, when a centralized trusted authority is avail-
able, it will broadcast the suicide note received from an accuser to the entire network. If
there is no trusted authority in MANETs but nodes are capable of performing asymmetric
primitives, an accuser will broadcast its signed suicide node accompanied with its public
key certificate. To mitigate the abuse of the suicide mechanism, the authors also suggested
that accusers attach a timestamp for their suicide nodes in order to resolve potential con-
flicts. Furthermore, each node should wait a long enough period for duplicate suicide notes
and only accept the one with the earliest timestamp.

Besides the suicide attacks, Moore et al. also proposed reelection-based key revoca-
tion schemes for relatively static MANETs. Reelection is in fact a kind of access control
mechanism in which good nodes collaborate to periodically renew their own membership.
If a malicious node cannot update its network access token, it will be evicted from the
network automatically. The authors describe two implementation options of the reelection
protocol. The first one is based on the combination of threshold secret sharing and one-
way hash chain techniques. Prior to the deployment, an external authority uses a one-way
hash chain to determine a set of network tokens that nodes will use to demonstrate their
membership in each time period. For each node, the authority then distributes the shares
of its network tokens, and the anchor of the hash chain to all its neighbors. Hash tree
based authentication mechanism is employed by each node to verify the received shares
from its neighbors. The network access token of a malicious node will be automatically
revoked when a number of its neighbors delete the stored shares of that token. Another
way to implement the reelection is to use the buddy list. The basic idea is that each node
periodically and locally broadcasts a buddy list of its approved neighbors, and the receivers
cross-reference these lists to determine whether to trust a node or not. A µTESLA-like
broadcast authentication mechanism is used for nodes to authenticate received buddy lists.

4.1.4 Motivation

We note that the key revocation procedure involves observations and interactions among
nodes. Therefore, it is closely related to reputation and trust of nodes in the network.
This observation allows us to design a key revocation scheme based on the decentralized
reputation system. Reputation systems have been investigated extensively in the past and
used successfully in many commercial online applications [97]. They provide a mechanism
for rating participants of transactions by having buyers and sellers compute each other
reputation scores, and therefore stimulate good behavior as well as sanction bad behavior.
In the context of MANETs, reputation systems have emerged as a promising mechanism
for ensuring cooperation and fairness, and thwarting node failures and malicious attacks
[22, 24, 124]. However, the previous reputation systems all classify the behavior of nodes
in MANETs as either good or bad without any intermediate state. Such a binary behavior

91

differentiation omits the actual cause and the degree of the misbehavior. Note that some
misbehavior may just happen accidently (for example, a node cannot forward packages due
to temporary congestion of the network) and last only for a short time. When a node shows
this kind of accidental misbehavior, it might not mean that the node has been compromised
by an attacker. Therefore, in this case it is more reasonable to keep collecting information
about the behavior of this node instead of immediately characterizing it as malicious and
excluding it from the network.

To provide more flexibility and precision for nodes analyzing peers’ behavior and mak-
ing different response based on results of the analysis, we present a novel self-organized
key revocation scheme based on IBC and Dirichlet multinomial model in this chapter. In
our scheme, depending on different application scenarios, an external TTP classifies nodes’
behavior into three categories during the network initialization phase, namely good behav-
ior, suspicious behavior, and malicious behavior. Each node keeps track of peers’ behavior
with a neighborhood watch scheme or by analyzing other nodes’ reports, and then up-
dates its own knowledge about peers’ behavior with 3-dimensional Dirichlet distribution
and makes the corresponding response. Furthermore, a deviation test is employed to filter
potentially false statements from adversaries and Dempster-Shafer belief theory [155] is
used to integrate other nodes’ reports. While a node revokes the keys of nodes showing
malicious behavior once enough evidence has been collected, it also shields itself from sus-
picious behavior of peers by ceasing the communication with them and continues gathering
information for further decisions.

4.2 Mathematical Background

In this section, we present a brief introduction to IBC, bilinear pairing, and Dirichlet multi-
nomial model, which form the basis of our design in this work. For a detailed treatment,
the reader is referred to references mentioned below.

4.2.1 IBC and Bilinear Pairing

The concept of IBC is due to Shamir [157]. In an ID-based cryptosystem, a user’s public
key is an easily calculated function of his identity, while his private key can be computed
by a TTP. Recently, IBC has been used to design efficient key management protocols for
MANETs [85,179]. All these protocols use so-called bilinear pairings. Due to the important
role of bilinear pairings in IBC, we give a brief introduction about the concept of bilinear
pairings below.

Let r be a positive integer. Let G1 and G2 be additively-written abelian groups of order
r with identity O, and let GT be a multiplicatively-written cyclic group of order r with

92

identity 1. A bilinear pairing on (G1,G2,GT) is a map

e : G1 ×G2 → GT

that satisfies the following additional properties:

1. Bilinearity: For ∀P, P ′ ∈ G1 and ∀Q,Q′ ∈ G2 we have e(P+P ′, Q) = e(P,Q)e(P ′, Q)
and e(P,Q+Q′) = e(P,Q)e(P,Q′).

2. Non-degeneracy: For ∀P ∈ G1 with P 6= O, there is some Q ∈ G2 such that
e(P,Q) 6= 1. Furthermore, for ∀Q ∈ G2 with Q 6= O, there is some P ∈ G1 such that
e(P,Q) 6= 1.

3. Computability: e(P,Q) can be efficiently computed for all P ∈ G1 and Q ∈ G2.

In practice, the abelian groups G1 and G2 are implemented using a divisor class group on
certain (hyper-)elliptic curves and the cyclic group GT is implemented using a multiplicative
subgroup of a finite field. Most pairing applications rely on the hardness of the so-called
Bilinear Diffie-Hellman Problem (BDHP)1. For more details, the reader is referred to [8].

4.2.2 Dirichlet Multinomial Model

The Dirichlet distribution, often denoted by Dir(~α), is a family of continuous multivariate
probability distributions parameterized by the vector ~α of positive reals which captures a
sequence of observations of the possible outcomes in a state space. The Dirichlet distribu-
tion is defined as follows: Let Θ = {θ1, . . . , θk} be a state space consisting of k mutually
disjoint events. Let ~p = (p(θ1), . . . , p(θk)) be a continuous random vector taking values in
the k-dimension simplex2 with the joint probability density function

f(~p | ~α) =
Γ
(∑k

i=1 α(θi)
)

∏k
i=1 Γ (α(θi))

k∏
i=1

p(θi)
α(θi)−1,

where Γ(x) =
∫∞
0
tx−1e−tdt is the Gamma function. Then ~p is said to have a k-dimension

Dirichlet distribution with parameter vector ~α = (α(θ1), . . . , α(θk)) (α(θi) > 0 for i =
1, . . . , k). The Dirichlet distribution is the multivariate generalization of the Beta distri-
bution and the probability expectation value of any of the k random variables is defined
as:

E(p(θi) | ~α) =
α(θi)∑k
i=1 α(θi)

.

1Let e be a bilinear pairing on (G1,G2,GT). The Bilinear Diffie-Hellman Problem (BDHP) is the
following: given P, P1 = [a]P, P2 = [b]P ∈ G1, Q ∈ G2 such that e(p,Q) 6= 1, compute e([ab]P,Q).

2The k-dimension simplex is such that if ~p = (p(θ1), . . . , p(θk)) then p(θi) ≥ 0 and
∑k

i=1 p(θi) = 1.

93

Since the Dirichlet distribution is a conjugate priori of the multinomial distribution, the
posteriori distribution is also Dirichlet and can be calculated as follows [95]:

f(~p | ~r,~a) =
Γ
(∑k

i=1 r(θi) + Ca(θi)
)

∏k
i=1 Γ (r(θi) + Ca(θi))

k∏
i=1

p(θi)
(r(θi)+Ca(θi)−1), (4.1)

where a(θi) is a base rate vector over the state space Θ satisfying a(θi) ≥ 0 and
∑k

i=1 a(θi) =
1, C is a priori constant which is equal to the cardinality of the state space over which a
uniform distribution is assumed (C is usually set to 2), and the vector r(θi) is a posteriori
evidence over the state space Θ. Given the Dirichlet distribution of Equation (4.1), the
probability expectation of any of the k variables can now be written as:

E(p(θi) | ~r,~a) =
r(θi) + Ca(θi)

C +
∑k

i=1 r(θi)
.

Dirichlet multinomial model [71] provides a flexible mechanism for constructing repu-
tation system for e-commerce applications. The basic idea behind a Dirichlet reputation
system [95] is to compute reputation values by statically updating Dirichlet probability
density function. Given the a priori reputation values, the a posteriori reputation value
is calculated to increase the precision of a belief by combining the a priori knowledge and
the new observations. For more details about the Dirichlet multinomial model and the
Dirichlet reputation system, the reader is referred to [71,95].

4.3 System Models and Design Goals

In this section, we formulate the network model and the security model as well as design
assumptions and goals.

4.3.1 Network Model

We consider a general MANET consisting of an unconstrained number of networking nodes
with a random mobility pattern, i.e., nodes moving independently within a given field or
keeping stationary in a location for a period of time. In addition, the network topology also
changes dynamically when a particular network event, such as node join, leave or failure,
occurs. Each node has limited transmission and reception capabilities. Mobile nodes
that are within each other’s radio range communicate directly via bandwidth-constrained,
error-prone insecure wireless links, while those that are far apart rely on other nodes to
relay their messages in a multi-hop fashion. As requirements of many network tasks and

94

protocols, each node must be unambiguously identified by a unique identity. It can be a
MAC address or an IP address.

In order for nodes monitoring various behavior of their direct neighbors within the
communication range, we assume that communication links are bidirectional in the network
and nodes are in promiscuous mode. Both assumptions are common in many low-layer
MANETs protocols such as DSR [93] and AODV [141] routing protocols. Furthermore,
for disseminating accusation messages securely with IBC in our key revocation scheme,
we assume that nodes know identities of their neighbors up to m-hop (m is a design
parameter denoting the range of the accusation propagation). Identifiers of neighbor nodes
can be obtained by running some neighborhood discovery protocols, which are part of many
existing routing protocols and therefore can be reused. Moreover, we also assume that
embedded processors of mobile nodes can perform public-key algorithms related to IBC.
We would like to point out that all the above assumptions are quite common and reasonable
for most application scenarios of MANETs. Hence, our design does not introduce additional
burdens into the network.

4.3.2 Security Model

We term as an adversary or attacker any node whose behavior deviates from the legitimate
MANET protocols. We assume that each node in MANET is installed an Intrusion De-
tection System [127] which can detect predefined misbehavior of nodes. The main purpose
of a key revocation scheme is to revoke keys of malicious nodes and finally isolates them
from the network. Most previous schemes [117,151,179] are vulnerable to potentially false
statement attacks in which malicious nodes accuse other nodes in a MANET at their own
will. Therefore, we need to evaluate the influence of false statement attacks mounted by
malicious nodes on our key revocation scheme in details. The analysis of other types of
attacks aimed at the different layers of MANETs, though important, is out of the scope of
this work.

The false accusation attack can be independently or collaboratively initiated by some
adversaries. We consider the following two attack scenarios in this chapter:

• Attacks by independent adversaries: in this attack scenario, each adversary
independently chooses attack targets and propagates false accusations against victims
through the network in order to accelerate keys of target nodes to be revoked by other
nodes in the MANET. Note that in this case it is possible that an adversary also
accuse other adversaries, except for accusing well-behaving nodes.

• Attacks by collusive adversaries: in this attack scenario, collusive adversaries
know each other and they choose one or several well-behaving nodes as common

95

attack objects. These adversaries always report positive observations about their
friends and negative ones about the chosen victims. In this way, the adversaries can
not only prolong their lifetime in the MANET, but also speed up the procedure of
revoking keys of the victims.

Furthermore, we also assume that adversaries always attempt to maximize their influence
by propagating extremely positive or extremely negative observations to the network. De-
tailed simulations and analysis of our scheme against the above two types of attacks are
presented in Section 4.5.

4.3.3 Design Goals

From our point of view, an ideal key revocation scheme for MANETs should have the
following properties:

• It should be fully self-organized.

• It should be flexible enough to deal with the information that nodes collect through
their own observations and interactions with peers, and to make corresponding re-
sponses based on results of the analysis.

• It should be able to efficiently revoke keys of malicious nodes when they show the
behavior that the network cannot tolerate.

• It should be robust enough to thwart false statement attacks mounted by independent
adversaries or a number of collusive adversaries.

• It should be efficient in terms of communication, computation and storage overhead.

4.4 Protocol Description

In this section, we describe our key revocation scheme in detail. We first provide an
overview of our key revocation scheme in Section 4.4.1. And then we present the detailed
procedure of our protocol in Sections 4.4.2 to 4.4.6.

96

4.4.1 Overview

Our fully self-organized key revocation scheme is within the framework of Bayesian data
analysis. We employ Dirichlet multinomial model and explicitly use probability to quan-
tify the uncertainty about nodes’ behavior. Each node in a MANET gradually updates
its knowledge about peers’ behavior through interactions among them, and finally makes
multilevel response based on the analysis of collected information. Furthermore, IBC is
used to secure the information transmission during interactions of nodes. Our scheme con-
sists of five parts: network initialization, neighborhood watch, authenticated information
dissemination, filter of false statements, and multilevel response for malicious nodes.

In the network initialization, an external TTP first generates a set of secure system
parameters for IBC. And then the TTP completes the registration of nodes by preloading
each node with appropriate key materials according to the expire date and the version num-
ber of every key. Moreover, nodes’ behavior is classified by the TTP into three categories:
good behavior set, suspicious behavior set and malicious behavior set.

To protect the MANET from adversaries, each node overhears the wireless channel in
the promiscuous mode, and monitors various behavior of its one-hop neighbors at all time
with the neighborhood watch scheme. Each node records its observation and updates the
knowledge about the behavior of all its one-hop neighbors. In addition, since nodes may
change their behavior over time, a discount factor is introduced for the case that nodes
can forget past observations gradually.

Each node not only uses direct observations to update its knowledge about one-hop
neighbors’ behavior, but also distributes these information to all its m-hop neighbors in
some secure way. The data integrity and the authenticity of the message origin are imple-
mented with a keyed-hash function where the key is derived from the bilinear pairing in a
non-interactive fashion.

After one node receives an observation report from the other node, it first decides
whether the sender can be trusted by checking the sender’s key status. And then the
receiver verifies the authenticity of the report with the pre-shared key between two nodes.
Although merging other nodes’ observations can accelerate the estimation about some sub-
ject’s behavior, using all the receiving reports without hesitation will result in potentially
false statement attacks from adversaries. Hence, we set two defence lines to thwart these
attacks. Firstly, a deviation test based on the statistical pattern of reports is used to
filter out false statements to some extent. Furthermore, if the sender’s report passes the
deviation test of the receiver, we will use Dempster-Shafer belief theory [155] to update
the receiver’s current knowledge about the behavior of the subject in question with this
report.

In our key revocation model, each node considers that their peers show good behavior,
suspicious behavior and malicious behavior with different probabilities. For approximating

97

to these unknown parameters, a node uses 3-dimension Dirichlet distribution as the prior
distribution of the unknown parameters, updates this distribution by either node’s direct
observations or its counterparts’ reports, then estimates two parameters with posteriori
expected probabilities and compares these values to predefined thresholds, and finally
makes multilevel response based on results of comparisons. A high level description of our
key revocation scheme is shown in the following Algorithm 7.

Algorithm 7 Self-Organized Key Revocation for MANETs

1: Network Initialization
. Generation of system parameters
. Registration of network nodes
. Classification of node behavior

2: Neighborhood Watch
. Monitor neighbors’ behavior and generate observation matrix
. Update key status of nodes with direct observations

3: Authenticated Information Dissemination
. Disseminate nodes’ direct observations to all m-hop neighbors in an authenticated

way by using a keyed-hash function
4: Filter of False Statements

. Filter out potentially false statements statistically

. Update key status of nodes based on Dempster-Shafer theory
5: Multilevel Response for Malicious Nodes

. Revoke keys of nodes showing malicious behavior

. Cease communication with nodes showing suspicious behavior and keep observing
their behavior for further decision

4.4.2 Step 1. Network Initialization

Our scheme assumes that an external TTP bootstraps the MANET with IBC and classifies
the behavior of nodes. More specifically, the external TTP will complete the following tasks
during network initialization:

Generation of system parameters

The TTP generates secure system parameters 〈q, k, C/Fq,G1,G2,GT , e〉 as described in
Section 4.2.1. Note that we take G1 = G2 in this chapter. The TTP also generates a
random master key s ∈ Z∗n and a random generator P ∈ G1, and sets his public key
Ppub = sP ∈ G1. Finally, the TTP chooses a cryptographic secure hash function: H :
{0, 1}∗ → G1. The TTP publishes all of these parameters except his master key.

98

Registration of network nodes

For the purpose of key revocation, we use the public key format Qi = H(IDi ‖ date ‖
version) for each node with identity IDi as introduced in [86], where date is the expiry date
of the key and version is its version number. After the user IDi shows his credential and
passes the authentication of the TTP, the TTP will derive his public key Qi and generate
the corresponding ID-based private key di = sQi.

Classification of node behavior

MANETs are complex and dynamic systems and the behavior of a node might change
at any time for various reasons. In our model, the state space Θ includes three mutually
disjoint events: good behavior θg, suspicious behavior θs and malicious behavior θm, namely
Θ = {θg, θs, θm}. To keep track of various observable behavior in the lifetime of the
MANET, the TTP classifies nodes’ behavior into three categories, namely good behavior set
Bg, suspicious behavior set Bs and malicious behavior set Bm. The set Bg includes behavior
complying with descriptions of the MANET protocols such as finding a path for a packet
correctly and relaying control and data packets for others at the best effort. The set Bs
contains accidental misbehavior that temporarily and slightly deteriorate the performance
of MANETs, for example node failures due to the network congestion or a lack of resources,
whereas intentional misbehavior such as dropping data packets or broadcasting fake routing
information, which seriously degrade the performance of MANETs, are comprised in the
set Bm. The practical classification of the sets Bg,Bs and Bm depends on the network
policy, the detection ability of nodes and the concrete application scenarios.

We note that all previous key revocation schemes for MANETs [3,86,117,129,151,179]
only classify nodes’ behavior as either good or malicious. The main motivation that we
consider suspicious behavior is based on the observation that nodes show some misbehavior
for a short time just by accident. For example, many reasons might cause a node not to
forward packages for others such as network congestion or malicious attacks. Therefore,
when a node observes that one of its neighbors cannot relay packages for some time,
it is more reasonable for the node to cease the communication with that neighbor and
keep observing its behavior instead of revoking its key and excluding it from the network
immediately. By introducing suspicious behavior, we give nodes that misbehave by accident
a chance to return to normal. As a result, our method provides more precise estimation
about nodes’ behavior than that with a simple binary behavior classification. Figure 4.1
demonstrates possible state transitions among different types of nodes in the lifetime of
the MANET.

• A good node may behave suspiciously due to various reasons, such as network con-

99

gestion and misconfiguration. Moreover, it is also possible that a good node is com-
promised by an adversary and becomes a malicious node.

• A suspicious node can become cooperative again when the network congestion is
resolved or the node is reconfigured. Furthermore, a suspicious node might behave
maliciously due to being compromised or energy depletion.

• A malicious node may reorder, delay and drop control and data packets, or disrupt
legitimate path selections by broadcasting fake route replies.

G ood
Nod es

Su sp iciou s
Nod es

M aliciou s
Nod es

good behavior

m alicious behav ior

m aliciou s behaviorb eh
avi

or
su s

p ic
iou

s
goo

d b
eha

vio
r

susp icious behav ior

Figure 4.1: State Transition Diagram among Different Types of Nodes

Since nodes’ behavior must fall into one of the above three categories, nodes can analyze
and predict peers’ behavior with 3-dimension Dirichlet distribution Dir(αg, αs, αm), where
(αg, αs, αm) is a parameter vector which keeps track of nodes’ behavior appearing in sets
Bg,Bs and Bm, respectively. Moreover, after the network initialization phase, each node
IDi is preloaded the following materials:

• System Parameters: 〈q, k, C/Fq,G1,GT , e,H, P, Ppub〉.

• Public / Private Key Pair: 〈Qi, di〉.

• Behavior Classification: Bg,Bs and Bm.

100

4.4.3 Step 2. Neighborhood Watch

A neighborhood watch mechanism is a localized monitoring scheme, the main aim of which
is to observe behavior of nodes and decide whether they are conformed to descriptions of
the MANET protocols. In the neighborhood watch scheme, each node IDi monitors all
its one-hop neighbors and records three categories of behavior each time they occur. We
do not limit types of node behavior in this work and any new type of observable behavior
can be added to the corresponding set Bg,Bs or Bm.

Without loss of generality, we use the notation N (1)
i to denote the set of one-hop

neighbors of node IDi. Let N
(1)
i be the cardinality of the set N (1)

i . Note that N (1)
i , and so

N
(1)
i , will be dynamically changed with time due to the mobility of nodes in the MANET.

We use the parameter vector
(
γij,g, γ

i
j,s, γ

i
j,m

)
of 3-dimension Dirichlet distribution to record

node IDi’s direct experience with the node IDj. Initially, the parameter vector is set to
(Ca(θg), Ca(θs), Ca(θm)), where (a(θg), a(θs), a(θm)) is the base rate vector and C is the
prior constant (see Section 4.2.2). Node IDi makes one individual observation for each

node IDj ∈ N (1)
i periodically. We set binary variables βij,g, β

i
j,s and βij,m to be 1 if the

node IDi’s observation about the node IDj’s behavior is classified into the sets Bg,Bs or
Bm, respectively, and 0 otherwise. According to new observations about behavior of all its
one-hop neighbors, node IDi first updates its direct experience for each IDj ∈ N (1)

i with
the following formulae:

γij,g := µγij,g + βij,g,

γij,s := µγij,s + βij,s,

γij,m := µγij,m + βij,m,

where the weight µ ∈ [0, 1] is a discount factor for past observations (typically, µ is very
close to 1). Node IDi then updates its own observation matrix OM i with new information.
Assume that node IDi has obtained direct experience with Ni nodes in the network up to
the current time instance, node IDi’s observation matrix is as follows:

OM i =


ID1 γi1,g γi1,s γi1,m

...
...

...
...

ID
N

(1)
i

γi
N

(1)
i ,g

γi
N

(1)
i ,s

γi
N

(1)
i ,m

...
...

...
...

IDNi
γiNi,g

γiNi,s
γiNi,m

 .

We use the parameter vector (αij,g, α
i
j,s, α

i
j,m) of 3-dimension Dirichlet distribution to

keep track of node IDi’s global knowledge about node IDj’s behavior. Note that the

101

vector (αij,g, α
i
j,s, α

i
j,m) will be updated by both node IDi’s direct experience and reports

from other nodes. Initially, the parameter vector is also set to (Ca(θg), Ca(θs), Ca(θm)).
After node IDi makes a direct observation about node IDj’s behavior, its global knowledge
about node IDj’s behavior will be updated with the following formulae:

αij,g := µαij,g + βij,g,

αij,s := µαij,s + βij,s,

αij,m := µαij,m + βij,m.

Upon obtaining new information about all its one-hop neighbors, node IDi also updates
corresponding rows in its node status matrix, NSM i, which indicates node IDi’s opinion
about key status of other nodes. Let N be the total number of nodes in the MANET.
Furthermore, we assume that node IDi has obtained the knowledge of key status of Mi

nodes until the current time instance by observing its one-hop neighbors and collecting in-
formation from others. Without loss the generality, we also assume that the first N

(1)
i rows

of NSM i include information of node IDi’s one-hop neighbors at current time instance.
Under the above assumptions, node IDi’s node status matrix NSM i is as follows:

NSM i =



ID1 (ti1, v
i
1) Ri

1 αi1,g αi1,s αi1,m
...

...
...

...
...

...
ID

N
(1)
i

(ti
N

(1)
i

, vi
N

(1)
i

) Ri

N
(1)
i

αi
N

(1)
i ,g

αi
N

(1)
i ,s

αi
N

(1)
i ,m

...
...

...
...

...
...

IDMi
(tiMi

, viMi
) Ri

Mi
αiMi,g

αiMi,s
αiMi,m

IDMi+1 ? ? Ca(θg) Ca(θs) Ca(θm)
...

...
...

...
...

...
IDN ? ? Ca(θg) Ca(θs) Ca(θm)


,

where tij and vij represent the expiry date and the version number of the current public key
Qj of the node IDj, respectively. Ri

j ∈ {−1, 0, 1} denotes key status of node IDj from the
point of view of node IDi, and “?” means node IDi does not obtain any information about
behavior of nodes IDk, k ∈ {Mi + 1, . . . , N} until the current time instance. Note that Ri

j

being −1, 0 or 1 indicates that the status of node IDj’s key is “Revoked”, “Suspicious”

or “Trustworthy”, respectively. After each node IDi updates the first N
(1)
i rows of NSM i

with the neighborhood watch scheme, it will use the method described in Section 4.4.6 to
decide whether key status of its one-hop neighbors need to be changed. For nodes whose
key status have been marked as “Suspicious”, node IDi will cease the communication with
those nodes. Furthermore, node IDi also keeps observing behavior of suspicious nodes and
receiving other nodes’ reports to make further decisions.

102

4.4.4 Step 3. Authenticated Information Dissemination

Periodically, node IDi securely disseminates its direct experience about other nodes’ be-
havior to all its m-hop neighbors. Let N (m)

i be the set of m-hop neighbors of node IDi.

Node IDi then sends its observation matrix OM i to each node IDj ∈ N (m)
i with the

following format:

omi
j = ((IDi, IDj, OM

i), hKi,j
((IDi, IDj, OM

i))),

where Ki,j is the pre-shared key between a pair of nodes IDi and IDj, and hKi,j
(·) is a

secure hash function taking Ki,j as the input key. With the aid of the cryptographic pairing
(see Section 4.2.1), the pre-shared key Ki,j can be separately calculated by nodes IDi and
IDj in a non-interactive fashion during the phase of a neighbor discovery as follows:

Ki,j = e(di, Qj) = e(sQi, Qj) = e(Qi, sQj) = e(Qi, dj),

where 〈Qi, di〉 and 〈Qj, dj〉 are the public/private key pair of nodes IDi and IDj, respec-
tively. Furthermore, both data integrity and authenticity of messages are simultaneously
guaranteed by the keyed-hash function hKi,j

(·). Therefore, an attacker cannot change
content of the observation matrix.

Note that we directly use the pairwise pre-shared secret key Ki,j to secure commu-
nications among nodes in order to eliminate the communication overhead of establishing
session keys. Although we can also use the lightweight ID-based key exchange protocol
proposed in [85] to generate a different session key for each interaction, we need three-round
communications between two nodes in this case.

4.4.5 Step 4. Filter of False Statements

Each time node IDi receives an observation matrix omj
i from node IDj, node IDi will per-

form the following information processing and integration algorithm shown in Figure 4.2.

In Step 4.1, node IDi checks the status of node IDj’s key in the node status matrix
NSM i. If Ri

j = 1, then node IDi considers node IDj to be trustworthy and continues the
next step; otherwise node IDi will discard the observation matrix received from node IDj

and stop.

In Step 4.2, node IDi verifies the authenticity of the message omj
i using the pre-shared

key Ki,j, as described in Section 4.4.4. If the message passes the authentication, node IDi

will further analyze reliability of node IDj’s observation in Step 4.3, otherwise node IDi

knows that the received message does not come from node IDj, and therefore just discards
it and stops.

103

4.2. Verify authenticity
of messages

4.3. Filter out false
statments statistically

4.1. Check key
status of nodes

Valid?

Node Status
Matrix

Discard messages
and Stop

No

No

Yes

Yes

4.4. Update the node status
matrix

(Dempster-Shafer Theory)
Node Status

Matrix

Valid?

Observation
Matrix

Yes

Pass? No

Figure 4.2: Information Processing and Integration Algorithm

Due to the possibility that nodes are compromised and then arbitrarily report their
observations under the control of attackers, messages that node IDi receives from its
counterparts might be spurious. Therefore, the main purpose of Step 4.3 is to avoid or
mitigate the influence of false statements from malicious nodes to some degree. In the
context of key revocation, attackers’ goals are twofold by manipulating observations of
compromised nodes. On the one hand, attackers can choose one or many good nodes and
report unfairly negative observations about victims’ behavior in order to revoke their keys.
On the other hand, if attackers know each other and collude in MANETs, they will also
propagate unfairly positive observations about their confederates’ behavior for the purpose
of keeping their keys valid and further damaging the operation of the network. Two efficient
statistical filtering techniques based on Beta distribution have been proposed to protect
Bayesian reputation systems from liars by Whitby et al. [172] and Buchegger et al. [22,23],
respectively. Their methods are based on the assumption that the statistical pattern of
dishonest reports is different from that of truthful ones. In addition, the difference between
these two techniques is that Whitby et al.’s method uses quantiles of Beta distribution,
whereas Buchegger et al.’s method employs a deviation test for the compatibility of received

104

messages. Since our key revocation scheme is based on the Dirichlet distribution and it is
difficult to define the quantile in the multivariate case, we only generalize the idea of the
deviation test suggested by Buchegger et al. [22, 23] to Dirichlet multinomial model here.

In Step 4.3, node IDi extracts orderly each row from the node IDj’s observation matrix
OM j and performs a deviation test for the compatibility of node IDj’s observations. More
specifically, when node IDi extracts the k-th row from OM j, it computes the following
two posteriori expected probabilities with which node IDk shows behavior in Bs and Bm,
respectively:

E
(
p(θs) | ~γjk,~a

)
=

γjk,s + Ca(θs)

C + γjk,g + γjk,s + γjk,m
,

E
(
p(θm) | ~γjk,~a

)
=

γjk,m + Ca(θm)

C + γjk,g + γjk,s + γjk,m
,

where ~γjk =
(
γjk,g, γ

j
k,s, γ

j
k,m

)
represents node IDj’s direct experience about node IDk’s

behavior, and ~a = (a(θg), a(θs), a(θm)) is the default base rate vector. And then, node
IDi takes the row corresponding to node IDk from its node status matrix NSM i and
separately calculates two expected probabilities based on its own knowledge about node
IDk’s behavior as follows:

E
(
p(θs) | ~αik,~a

)
=

αik,s + Ca(θs)

C + αik,g + αik,s + αik,m
,

E
(
p(θm) | ~αik,~a

)
=

αik,m + Ca(θm)

C + αik,g + αik,s + αik,m
,

where ~αik =
(
αik,g, α

i
k,s, α

i
k,m

)
denotes node IDi’s global knowledge about node IDk’s behav-

ior. After obtaining the above four expected probabilities, node IDi executes the following
deviation tests: ∣∣E (p(θs) | ~αik,~a)− E

(
p(θs) | ~γjk,~a

)∣∣ ≤ ε1,∣∣E (p(θm) | ~αik,~a
)
− E

(
p(θm) | ~γjk,~a

)∣∣ ≤ ε2,

where ε1, ε2 ∈ (0, 1) are two deviation thresholds determined by a system designer. If node
IDj’s report about node IDk’s behavior cannot pass the above deviation tests, node IDi

considers that report as incompatible and just discards it. Otherwise, node IDi uses node
IDj’s report to update its knowledge about the behavior of the node IDk in Step 4.4.

Note that the simplistic information integration method used in [23] is vulnerable to
false statement attacks from an adversary, as analyzed theoretically in [132]. Therefore, we
set up the second defense line to thwart false statement attacks by integrating other nodes’

105

reports based on Dempster-Shafer belief theory [155]. In [94], Jøsang constructed a bijective
mapping between Dirichlet distributions and Dempster-Shafer belief functions. Therefore,
we first map node IDi’s global knowledge and node IDj’s report about node IDk’s behavior
(two Dirichlet distributions) to two belief distribution functions, respectively. Then we use
the technique of belief discounting [96] to update node IDi’s opinion about node IDk’s
behavior as a result of node IDj’s report. Finally we map the resulting belief function to
a Dirichlet distribution. In this way, the reports from different nodes are given different
weight based on their respective reputation. Suppose that

ν =
Cαij,g(

C + αij,s + αij,m
) (
C + γjk,g + γjk,s + γjk,m

)
+ Cαij,g

.

Then node IDi uses node IDj’s report to update its global knowledge about node IDk’s
behavior with the following equations:

αik,g := µαik,g + νγjk,g,

αik,s := µαik,s + νγjk,s,

αik,m := µαik,m + νγjk,m.

4.4.6 Step 5. Multilevel Response for Malicious Nodes

Each time node IDi updates its knowledge about node IDk’s behavior in the MANET by
either the neighborhood watch scheme or other nodes’ reports, it checks whether IDk’s
behavior are still within boundaries of its misbehavior tolerance and the status of node
IDk’s key needs to be changed. Note that node IDk’s key status Ri

k in the node status
matrix NSM i directly determines how node IDi treats node IDk.

To minimize the squared-error loss for the deviation from the true probabilities p(θm)
and p(θs) with which node IDk shows respectively malicious and suspicious behavior, we
choose posteriori expected probabilities E (p(θm) | ~αik,~a) and E (p(θs) | ~αik,~a) as estimators
as usually done. As soon as node IDi obtains the updated vector ~αik describing node IDk’s
behavior, it will response as follows:

1. Node IDi computes the posteriori expected probability E (p(θm) | ~αik,~a). If E(p(θm) |
~αik,~a) ≥ trev, i.e., it is equal to or larger than a predetermined revocation threshold
trev, node IDi sets Ri

k = −1 and stops. Otherwise it goes to the next step. Here, Ri
k =

−1 denotes that node IDi believes that node IDk has been compromised and revokes
its key. Once node IDi revokes node IDk’s key, it will cease any communication with
node IDk until node IDk receives a new key from the TTP.

106

2. Node IDi calculates the posteriori expected probability E (p(θs) | ~αik,~a). If E(p(θs) |
~αik,~a) ≥ tksus, i.e., it is equal to or larger than a predetermined suspicion threshold
tksus, node IDi sets Ri

k = 0. Note that Ri
k = 0 means that node IDi suspects that

node IDk has been compromised, and so node IDi will shield itself against suspicious
behavior of node IDk by terminating the communication with it. Furthermore, to
make further decision, node IDi continues collecting information to update its knowl-
edge about node IDk’s behavior. Possible state transitions of the suspicious node
IDk are described with dash lines in Figure 4.1. Note that three cases might happen
for node IDk: a) Node IDk just shows suspicious behavior by accident, and therefore
behaves normally after a short time. In this case, it will become a good node and
be trusted by node IDi again. b) Node IDk continues behaving suspiciously. In
this case, all nodes will finally mark node IDk to be suspicious and terminate to
communicate with it. Hence, node IDk will be evicted from the network. c) Node
IDk shows malicious behavior. In this case, the key of node IDk will be revoked once
the posterior expected probability E (p(θs) | ~αik,~a) reaches the revocation threshold.
In addition, to react faster than before when node IDk behaves suspiciously again
in the above case a), node IDi also decreases the suspicion threshold of node IDk as
follows:

tksus := ξtksus,

where ξ ∈ (0, 1) is a fading factor of the suspicion threshold of a node. Furthermore,
we also introduce a parameter tmax which denotes the maximum number of state
transitions between good nodes and suspicious nodes (see Figure 4.1). Once the
state transition has appeared tmax times for node IDk, node IDi will revoke its key
immediately by setting Ri

k = −1 and terminate any further communication with
node IDk until node IDk receives a new key from the TTP.

4.5 Performance Evaluation

In this section, we evaluate the performance of our key revocation scheme through ex-
tensive simulations, the goal of which is to demonstrate attack-resistant properties of our
scheme under the existence of independent adversaries and collusive adversaries, respec-
tively. Furthermore, we also show the advantages of classifying nodes’ behavior into three
categories over the simple binary differentiation.

4.5.1 Simulation Setup

we have implemented our key revocation scheme with the C programming language on
Microsoft Visual Studio platform. The performance evaluations are based on the simulations

107

of 100 wireless nodes that form a MANET over a square (600m × 600m) space and interact
100 times. We use the “random waypoint” model [21] to simulate the mobility of nodes in
the MANET. For each node, We set the maximum speed as 10m/s and maximum travel
time as 20s. The communication range of each node is set to be 100 m. Furthermore,
we assume that the base rate vector ~a = (a(θg), a(θs), a(θm)) is (0.6, 0.25, 0.15), which
denotes the prior uncertainty that honest nodes show good behavior, suspicious behavior
and malicious behavior, respectively. We also assume that the discount factor µ is 0.999,
both deviation thresholds ε1 and ε2 are 0.1, the revocation threshold trev is 0.2, and the
suspicious threshold tksus is set to be 0.3. The simulation is repeated for a number of
communication sessions. In each session, each node moves to a new position and observe
the behavior of its neighbors. Moreover, in some sessions nodes also flood their observations
to all m-hop neighbors.

To simulate false statement attacks from adversaries, before running the simulation, we
randomly select a certain fraction of the network population as suspicious nodes and mali-
cious nodes, respectively. More specifically, we assume that 20% of all network nodes will
show suspicious behavior for different reasons. Among those suspicious nodes, we further
assume that half of them, named type-I suspicious nodes, show suspicious behavior just by
accident (for example, a node drops packages due to the network congestion.) and behave
normally after some time (due to the improvements of the network environment), whereas
the other half of suspicious nodes, called type-II suspicious nodes, show suspicious behavior
followed by malicious behavior. Note that type-I suspicious nodes are basically good and
therefore record their observations honestly, whereas type-II suspicious nodes are basically
malicious and so we assume that they record a suspicious behavior or a malicious behavior
with probability 1

2
, respectively, for selected attack objects in each communication session.

Considering two types of suspicious nodes in the simulations enables us to demonstrate the
following two cases (also see Figure 4.1): a) Type-I suspicious nodes can get trustworthy
again by good nodes after they are marked as suspicious; b) Keys of type-II suspicious
nodes will be finally revoked. Furthermore, we also change the fraction of malicious nodes,
ranging from 10% to 30%. Based on the above parameters and assumptions, we simulate
two attack scenarios described in Section 4.3.2.

4.5.2 False Statement Attacks by Independent Adversaries

In this section, we evaluate the impact of false statement attacks launched by independent
adversaries on our key revocation scheme. In this attack scenario, we further assume
that each adversary selects 10% of all network nodes as attack objects, randomly and
independently. These adversaries record a malicious behavior for the selected attack objects
in each communication session and flood their accusations to all one-hop neighbors each 5
communication sessions.

108

Note that we are concerned with the influence of false accusation attacks on good
nodes’ opinion about the key status of other nodes. Therefore, we randomly sample two
good nodes, a type-I suspicious node, a type-II suspicious node, and a malicious node. We
then keep track of the opinion of one good node about the key status of other four nodes.
Figure 4.3 shows the attack-resistance properties of our key revocation scheme against
independent adversaries when their population increases from 10% to 30%. Although we
randomly sample several nodes, we would like to point out that the opinion of other good
nodes follows the similar curves as Figure 4.3.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Communication Sessions

P
o

st
er

io
r

E
xp

ec
te

d
 P

ro
b

ab
ili

ty

Good Behavior (10% Malicious Nodes)
Suspicious Behavior (10% Malicious Nodes)
Malicious Behavior (10% Malicious Nodes)
Good Behavior (20% Malicious Nodes)
Suspicous Behavior (20% Malicious Nodes)
Malicious Behavior (20% Malicious Nodes)
Good Behavior (30% Malicious Nodes)
Suspicous Behavior (30% Malicious Nodes)
Malicious Behavior (30% Malicious Nodes)

Revocation Threshold

Suspicious Threshold

(a) A good node’s opinion about the key status of
the other good node

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Good Behavior (10% Malicious Nodes)
Suspicious Behavior (10% Malicious Nodes)
Malicious Behavior (10% Malicious Nodes)
Good Behavior (20% Malicious Nodes)
Suspicous Behavior (20% Malicious Nodes)
Malicious Behavior (20% Malicious Nodes)
Good Behavior (30% Malicious Nodes)
Suspicous Behavior (30% Malicious Nodes)
Malicious Behavior (30% Malicious Nodes)

Communication Sessions

P
o

st
er

io
r

E
xp

ec
te

d
 P

ro
b

ab
ili

ty

Revocation Threshold

Suspicious Threshold

(b) A good node’s opinion about the key status of
a type-I suspicious node

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Good Behavior (10% Malicious Nodes)
Suspicious Behavior (10% Malicious Nodes)
Malicious Behavior (10% Malicious Nodes)
Good Behavior (20% Malicious Nodes)
Suspicous Behavior (20% Malicious Nodes)
Malicious Behavior (20% Malicious Nodes)
Good Behavior (30% Malicious Nodes)
Suspicous Behavior (30% Malicious Nodes)
Malicious Behavior (30% Malicious Nodes)

Communication Sessions

P
o

st
er

io
r

E
xp

ec
te

d
 P

ro
b

ab
ili

ty

Revocation Threshold

Suspicious Threshold

(c) A good node’s opinion about the key status of
a type-II suspicious node

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Good Behavior (10% Malicious Nodes)
Suspicious Behavior (10% Malicious Nodes)
Malicious Behavior (10% Malicious Nodes)
Good Behavior (20% Malicious Nodes)
Suspicous Behavior (20% Malicious Nodes)
Malicious Behavior (20% Malicious Nodes)
Good Behavior (30% Malicious Nodes)
Suspicous Behavior (30% Malicious Nodes)
Malicious Behavior (30% Malicious Nodes)

Communication Sessions

P
o

st
er

io
r

E
xp

ec
te

d
 P

ro
b

ab
ili

ty

Revocation Threshold

Suspicious Threshold

(d) A good node’s opinion about the key status of
a malicious node

Figure 4.3: Simulation Results for False Statement Attacks by Independent Adversaries

109

Figure 4.3(a) describes a good node’s opinion about the key status of the other good
node. We note that from the point of view of a good node the posterior expected proba-
bilities that the other good node shows suspicious behavior and malicious behavior never
exceed the corresponding suspicious threshold and revocation threshold. Therefore, the
keys of good nodes never get wrongly revoked by other good nodes under the false state-
ment attacks by independent adversaries.

For a type-I suspicious node, Figure 4.3(b) shows that from the point of view of a good
node the posterior expected probability that a type-I suspicious node shows malicious be-
havior is always less than the revocation threshold. Hence, the key of the type-I suspicious
node will not be revoked unless it have altered their states between good and suspicious for
tmax times (also see Figure 4.1). In particular, when that node show suspicious behavior
followed by good behavior, the key of that node will be first marked as suspicious once the
posterior expected probability E

(
p(θs) | ~αi,newk ,~a

)
exceeds the suspicious threshold. Then

that node becomes trustworthy by the good node again after it behaves normally for some
time. Note that if one uses the simple binary differentiation for nodes’ behavior, the keys
of type-I suspicious nodes will be revoked immediately. However, the type-I suspicious
nodes only misbehave temporarily and are basically good in our simulations. Therefore,
our scheme provides more accurate estimation about nodes’ behavior than that in the
binary case.

For a type-II suspicious node who show suspicious behavior followed by malicious be-
havior, Figure 4.3(c) indicates that a good node will first mark its key as suspicious when
the posterior expected probability E

(
p(θs) | ~αi,newk ,~a

)
exceeds the suspicious threshold. Af-

ter gathering enough evidence about malicious behavior of the type-II suspicious node, the
good node will finally revoke its key. In addition, Figure 4.3(d) shows that a good node can
correctly revoke the key of a malicious node in the presence of independent adversaries.

From the simulation results in Figure 4.3, we note that our key revocation scheme can
efficiently isolate malicious nodes from the network and also demonstrates strong robustness
against the false statement attacks from independent adversaries even in a highly hostile
environment (10% type-II suspicious nodes and 30% malicious nodes).

4.5.3 False Statement Attacks by Collusive Adversaries

In this section, we study whether false statement attacks from collusive adversaries will
affect our key revocation scheme. To this end, we assume that all malicious nodes choose
10% good nodes as common targets instead of randomly and independently selecting attack
objects. In this attack scenario, all malicious nodes not only record malicious behavior for
the selected 10% good nodes but also record good behavior for other malicious nodes in
each communication session. Furthermore, they also propagate their false statements to
all one-hop neighbors each 5 communication sessions.

110

Here, we check the opinion of a good node about the key status of other nodes under
the collusive false statement attacks. Similar to the case of independent adversaries, we
randomly select two good nodes (one of them is the attack object of the collusive adver-
saries), a type-I suspicious node, a type-II suspicious node, and a malicious node again, and
keep track of the opinion of a good node. Figure 4.4 shows the attack-resistance properties
of our key revocation scheme against collusive adversaries when the number of malicious
nodes increases from 10% to 30%. We want to emphasize again that in our key revoca-
tion scheme each node has its own view about the key status of other nodes. Although
we observe that all good nodes have similar opinion about other nodes’ key status in our
simulations, it is impossible for us to show all good nodes’ opinion due to space limitations.
Therefore, we randomly sample several nodes from different categories.

In Figure 4.4(a), we note that false accusations from collusive adversaries cannot affect
the good node’s opinion about the key status of the victim they select. The posterior
expected probability that the victim shows malicious behavior is always less than the
revocation threshold. The reason is that good nodes have accumulated good reputation in
the early communication sessions and the false accusations from adversaries cannot pass
the deviation test set by good nodes. Therefore, the false accusations will be filtered by
good nodes and the keys of good nodes will not be wrongly revoked even in the presence
of collusive adversaries.

Similar to the case of independent adversaries, Figure 4.4(b) shows that the key of a
type-I suspicious node will not be revoked by the good node unless the number of times
that it changes its states between good and suspicious amount to tmax (see Figure 4.1). Fur-
thermore, if the key of the type-I suspicious node is marked as suspicious due to temporary
suspicious behavior, it can be trusted again by a good node after the posterior expected
probability E

(
p(θs) | ~αi,newk ,~a

)
is less than the suspicious threshold. Different from type-I

suspicious nodes, malicious behavior of a type-II suspicious node are finally identified by
the good node and therefore it will revoke the key of the type-II suspicious node as shown
in Figure 4.4(c). Figures 4.4(b) and 4.4(c) demonstrate how a good node responses suspi-
cious behavior in our scheme. While a good node showing suspicious behavior temporarily
can get trustworthy again by other good nodes, the real malicious nodes will be evicted
from the network. Moreover, false statement attacks from collusive adversaries have no
influence on type-I and type-II suspicious nodes since the attack objects of adversaries are
good nodes in our simulations.

Figure 4.4(d) shows that the key of the malicious node can still be revoked by the good
node even if malicious nodes praise each other. The reason is that after the good node have
established the bad reputation for the malicious node in the early communication sessions
the false praise from the friends of the malicious node is very difficult to pass the deviation
test of good nodes. Moreover, even if the false statement can pass the deviation test, this
information only has slight influence on the opinion of the good node because of the use

111

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Good Behavior (10% Malicious Nodes)
Suspicious Behavior (10% Malicious Nodes)
Malicious Behavior (10% Malicious Nodes)
Good Behavior (20% Malicious Nodes)
Suspicous Behavior (20% Malicious Nodes)
Malicious Behavior (20% Malicious Nodes)
Good Behavior (30% Malicious Nodes)
Suspicous Behavior (30% Malicious Nodes)
Malicious Behavior (30% Malicious Nodes)

Communication Sessions

P
o

st
er

io
r

E
xp

ec
te

d
 P

ro
b

ab
ili

ty

Suspicious Threshold

Revocation Threshold

(a) A good node’s opinion about the key status of
the other good node selected by collusive adver-
saries

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Good Behavior (10% Malicious Nodes)
Suspicious Behavior (10% Malicious Nodes)
Malicious Behavior (10% Malicious Nodes)
Good Behavior (20% Malicious Nodes)
Suspicous Behavior (20% Malicious Nodes)
Malicious Behavior (20% Malicious Nodes)
Good Behavior (30% Malicious Nodes)
Suspicous Behavior (30% Malicious Nodes)
Malicious Behavior (30% Malicious Nodes)

Communication Sessions

P
o

st
er

io
r

E
xp

ec
te

d
 P

ro
b

ab
ili

ty

Revocation Threshold

Suspicious Threshold

(b) A good node’s opinion about the key status of
a type-I suspicious node

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Good Behavior (10% Malicious Nodes)
Suspicious Behavior (10% Malicious Nodes)
Malicious Behavior (10% Malicious Nodes)
Good Behavior (20% Malicious Nodes)
Suspicous Behavior (20% Malicious Nodes)
Malicious Behavior (20% Malicious Nodes)
Good Behavior (30% Malicious Nodes)
Suspicous Behavior (30% Malicious Nodes)
Malicious Behavior (30% Malicious Nodes)

Communication Sessions

P
o

st
er

io
r

E
xp

ec
te

d
 P

ro
b

ab
ili

ty

Revocation Threshold

Suspicious Threshold

(c) A good node’s opinion about the key status of
a type-II suspicious node

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Good Behavior (10% Malicious Nodes)
Suspicious Behavior (10% Malicious Nodes)
Malicious Behavior (10% Malicious Nodes)
Good Behavior (20% Malicious Nodes)
Suspicous Behavior (20% Malicious Nodes)
Malicious Behavior (20% Malicious Nodes)
Good Behavior (30% Malicious Nodes)
Suspicous Behavior (30% Malicious Nodes)
Malicious Behavior (30% Malicious Nodes)

Communication Sessions

P
o

st
er

io
r

E
xp

ec
te

d
 P

ro
b

ab
ili

ty

Revocation Threshold

Suspicious Threshold

(d) A good node’s opinion about the key status of
a malicious node

Figure 4.4: Simulation Results for False Statement Attacks by Collusive Adversaries

of Dempster-Shafer theory (see Section 4.4.5), which gives less weight to the reports from
malicious nodes than those from good nodes.

The simulation results in Figure 4.4 demonstrate that false statements from collusive
malicious nodes cannot affect good nodes’ opinion about the key status of other nodes.
Most false statements are filtered by the deviation tests of good nodes. For those false
statements which pass the deviation tests, the information integration technique based on
Dempster-Shafer theory guarantees that the false statements only have slight influence on

112

good nodes’ opinion. Therefore, our key revocation can still perform well even under the
false statement attacks from collusive adversaries.

4.6 Conclusion

MANETs pose formidable challenges on the issue of key revocation due to lack of infras-
tructure and centralized servers. This work explores a novel self-organized approach to
solve the key revocation problem in MANETs. Firmly rooted in statistics, our key re-
vocation scheme provides a theoretically sound basis for nodes analyzing and predicting
peers’ behavior based on their own observations and other nodes’ reports. Furthermore,
classifying nodes’ behavior into three categories not only provides network designers more
flexibility for various application scenarios, but also enables nodes to make multilevel re-
sponse according to the severity of malicious behavior. In addition, our key revocation
scheme is designed to provide strong defense against false statement attacks from indepen-
dent and collusive adversaries. The effectiveness and attack-resistance properties of our
scheme are confirmed by extensive simulation results.

113

Chapter 5

Accelerating Signature-Based
Broadcast Authentication for WSNs

Broadcast authentication is a crucial security mechanism in WSNs, as it allows a multitude
of legitimate users to join in and disseminate messages into the networks in a dynamic and
authenticated way. During the past few years, several public-key based multi-user broad-
cast authentication schemes have been proposed in the literature to achieve immediate
authentication and address the security vulnerability intrinsic to µTESLA-like schemes.
Unfortunately, the relatively slow signature verification in signature-based broadcast au-
thentication has also incurred a series of problems such as high energy consumption and
long verification delay. In this chapter we propose an efficient technique to accelerate
public-key signature verification in WSNs by exploiting the cooperation among sensor
nodes. We first review related work and motivation for using public-key based broadcast
authentication schemes for WSNs in Section 5.1, followed by a brief introduction about el-
liptic curve cryptography and the corresponding digital signature algorithm in Section 5.2.
Section 5.3 presents the system model, adversary model and design goal. In Section 5.4, we
describe the acceleration technique for signature verification in WSNs and discuss the se-
lection of system parameters. Section 5.5 analyzes the performance of the proposed scheme
by a case study. Finally, Section 5.6 concludes this chapter.

5.1 Related Work and Motivation

Considering the security and scalability of symmetric-key based broadcast authentication
schemes [134, 145, 146], a couple of public-key based solutions have been proposed during
the past few years.

115

In [145], Ren et al. pointed out that µTESLA-like broadcast authentication schemes all
suffer from serious denial-of-service (DoS) attacks due to the delayed message authentica-
tion. To overcome the security vulnerability inherent to the existing µTESLA-like schemes,
the authors proposed several public-key based solutions, including a certificate-based au-
thentication scheme, a basic (enhanced) Merkle hash tree based authentication scheme, and
an ID-based authentication scheme (IDS). While the certificated-based scheme provides a
straightforward solution, it is inefficient to support user revocation in WSNs. The basic
and enhanced Merkle hash tree based schemes improve public key management problem
and enable users to make the trade-off between the storage and communication overhead.
However, these schemes are communication inefficient when the number of network users
become large. To further decrease the communication overhead and provide sound scalabil-
ity, the authors proposed an ID-based scheme using cryptographic pairings. Unfortunately,
this scheme has a very high computation and energy cost due to expensive bilinear pair-
ing computations involved. Therefore, the scheme is only feasible to be implemented on
high-end sensor nodes like Imote2 motes from Crossbow Technology [43].

Later on, Ren et al. [146] proposed two more advanced public-key based broadcast
authentication schemes in order to achieve both storage efficiency and communication ef-
ficiency simultaneously. Their schemes are based on the efficient integration of several
cryptographic techniques, including the Bloom filter, the partial message recovery signa-
ture scheme and the Merkle hash tree. In the Bloom filter based authentication scheme
(BAS), the authors employed the Bloom filter to address the public key management, and
a variant of Elliptic Curve Digital Signature Algorithm (ECDSA) with the partial mes-
sage recovery property for message signing and authentication. Since the Bloom filter only
provides probabilistic membership verification, the authors also discussed the problem of
selecting system parameters for minimizing the probability of a false positive. Further-
more, the authors noted that the maximum supported number of users by BAS is usually
limited given the storage limit and the probability of a false positive. In order to support
more network users, the authors proposed the hybrid authentication scheme (HAS) that
combines the Bloom filter and Merkle hash tree for public key management. However,
using Merkle hash tree only can achieve partial user scalability (i.e., the total number of
network users is fixed) and therefore a new network user can be allowed to join the network
only when an old user is revoked.

In [29], Cao et al. proposed the IMBAS, an identity-based multi-user broadcast authen-
tication scheme with strong security, sound scalability and efficiency for WSNs. Their au-
thentication scheme is based on a variant of BNN-IBS [12], which is a pairing-free identity-
based signature scheme with reduced signature size. Using the variant of BNN-IBS elim-
inates the requirement of transmitting public key certificate and provides the source and
message authentication simultaneously. By the detailed quantitative performance analy-
sis, the authors show that IMBAS achieves much better scalability as well as lower energy

116

consumption than those of IDS [145] and HAS [146].

Very recently Yamakawa et al. [176] presented a lightweight broadcast authentication
protocol called McSBA by employing a variant of McEliece signature scheme [39]. Their
estimation results show that McSBA protocol can verify much faster than µTESLA and
RSA at the same security level. However, McSBA authentication scheme has the following
obvious disadvantages when used in WSNs: 1) the size of public key is very large, which
incurs a much higher cost for storing and transmitting public keys as compared to other
public key cryptosystems; 2) the signature generation of the McSBA protocol is very slow,
especially if implemented on various embedded processors. Therefore, the McSBA protocol
is more suitable to be used in the case that all sensor nodes store the base station’s public
key (i.e., the public key does not need to be transmitted) and authenticate messages from
the powerful base station (i.e., signatures can be generated within a reasonable time period)
rather than a multi-user setting in WSNs.

The main impetus for using public key cryptosystems in WSNs comes from the ad-
vances in the manufacturing technology of wireless sensor nodes as well as the efficient
implementation of public key cryptographic algorithms on sensor platforms. On the one
hand, many high performance and low-power microcontrollers such as 8-bit ATmega128L
from Atmel [4], 16-bit MSP430 from Texas Instruments [166], and 32-bit XScale PXA271
from Intel [91], have been widely used in the design of wireless sensor nodes [41–43]. On the
other hand, recent studies have showed that even software implementations only of public-
key cryptosystems such as elliptic curve cryptosystems (ECC) [76, 111, 121, 154, 170] and
pairing-based cryptosystems (PBC) [137,138,158,159,175] are very viable and efficient on
resource-constrained sensor nodes. For example, according to the state-of-the-art software
implementation results on an 8-bit microcontroller ATmega128L, the generation and veri-
fication of a digital signature on a Koblitz elliptic curve defined over F2163 take 0.36s and
0.63s [114], respectively, whereas the timing of computing an ηT pairing over F2239 achieves
about 1.93s [158]. Employing public-key cryptography for implementing broadcast au-
thentication in WSNs provides simple solutions, strong security resilience, good scalability
and immediate message authentication, when compared to symmetric-key based solutions.
However, public-key based broadcast authentication schemes have a common shortcoming:
the signature verification is much slower than the message authentication code verification
used in symmetric-key based solutions, which might lead to the case that a large number
of packages will wait in a message queue of a senor node for signature verifications when
many users broadcast messages. As a result, the message queue will become full quickly
and the subsequent messages have to be dropped. Therefore, in order to improve the ser-
vice quality of broadcast authentication in WSNs, accelerating the signature verifications
in public-key based solutions become paramount.

In this chapter we address the issue of speeding up the signature verification for public-
key based multi-user broadcast authentication schemes in WSNs by exploiting the cooper-

117

ation among sensor nodes. The basic idea is that some sensor nodes will randomly release
their intermediate computation results to their neighbors during the signature verifica-
tion. Then many sensor nodes can use the received intermediate computation results to
accelerate their signature verifications. To demonstrate the performance of the proposed
technique, we conduct a case study for the broadcast authentication problem in a 4 × 4
grid-based WSN. The detailed quantitative analysis shows our scheme is greatly superior
to the traditional signature verification method for WSNs in terms of energy consumption
of the whole network.

5.2 Preliminaries

In this section, we first give a brief introduction about elliptic curve cryptography, followed
by the description of ECDSA, which will serve as an example to demonstrate the validity
of our proposed acceleration technique for digital signature verification in WSNs.

5.2.1 Elliptic Curve Cryptography

Let Fq be a finite field with q = pm elements, where p > 3 is a prime and m is a positive
integer. An elliptic curve E(Fq) is the set of solutions (x, y) over Fq satisfying an equation
of the form E : y2 = x3 + ax + b, where a, b ∈ Fq and 4a3 + 27b2 ∈ F∗q, together with
an additional point at infinity, denoted by O. The points on an elliptic curve form an
(additive) Abelian group, where O is the identity element and the group operation is given
by the well known chord-and-tangent rule [79]. The order of E(Fq) is denoted by #E(Fq)
and the order of a point P ∈ E is defined as the smallest non-negative integer n such
that nP = O, where n | #E(Fq) and nP = P + · · ·+ P︸ ︷︷ ︸

n times

. Let G be a cyclic subgroup of E

generated by the point P , such that the elliptic curve discrete logarithm problem (ECDLP)
is intractable. For more details about elliptic curve cryptography, the interested reader is
referred to [79].

5.2.2 Elliptic Curve Digital Signature Algorithm

The ECDSA [79] is a widely standardized variant of the ElGamal signature scheme, which
is described as follows:

1. System-wide parameters. Let G be a cyclic subgroup of E(Fq) generated by the
point P with prime order n and identity element O. Let H : {0, 1}∗ → Z∗n be a
collision-resistant hash function.

118

2. Initial set-up. Singer A randomly selects an integer d ∈ [1, n − 1] and publishes its
public key Q = dP . The parameter d is kept secret to A.

3. Signature generation. Signer A uses his/her private key d to generate a signature
(r, s) for a message M ∈ {0, 1}∗.

(a) Select a random integer k ∈ [1, n − 1], compute R = kP and set r to be the
x-coordinate of R.

(b) Compute s = k−1(e+ dr) mod n, where e = H(M).

(c) If r, s ∈ [1, n− 1], return (r, s); otherwise, go to Step (3-a).

4. Signature verification. Upon receiving the message M ∈ {0, 1}∗ and the signature
(r, s) from A, a verifier B verifies the signature using A’s public key Q.

(a) Check that r, s ∈ [1, n− 1]. If any verification fails, return ‘reject signature’.

(b) Compute R′ = s−1(eP + rQ), where e = H(M).

(c) Check that the x-coordinate of R′ is equal to r. If verification succeeds, return
‘accept signature’; otherwise, return ‘reject signature’.

Note that like most ElGamal signature schemes, the signature verification of ECDSA is
about twice as slow as signature generation, which is an undesirable property when using
ECDSA for multi-user broadcast authentication in WSNs.

5.3 System and Adversary Models

In this section, we present system and adversary modes as well as our design goals.

5.3.1 System Model

We consider a large-scale WSN that consists of a base station and a large number of
sensor nodes. While the base station is powerful enough to execute various complicated
operations, the sensor nodes usually have constrained resources in terms of computational
capabilities, memory, bandwidth, and power supply. Typical applications of such large-
scale WSNs include habitat and environmental monitoring, in which sensor nodes collect
localized measurements and detailed information that is hard, if not impossible, to obtain
through traditional instrumentation. By analyzing valuable data collected from WSNs,
people can precisely estimate changes of ecological environment and take corresponding

119

measures. In such application scenario, network users usually obtain the latest environ-
mental information through broadcasting queries and commands into WSNs. We assume
that users will join and leave the network dynamically, and be evicted from the network in
case of misbehaving. Moreover, users need to register with the WSN and obtain necessary
credentials for using the broadcast service. We also assume that the base station is always
trustworthy and the sensor nodes can be completely captured and manipulated by adver-
saries. Furthermore, both the base station and users may send a broadcast message into
the network. We further assume that one of public-key based multi-user broadcast authen-
tication schemes such as those in [29,145,146] is employed in the WSN and the sensor nodes
are capable of executing the corresponding digital signature verification algorithms. In ad-
dition, we assume that a single-chip 2.4GHz IEEE 802.15.4 compliant RF transceiver [167]
is used as the wireless transmission module in sensor nodes, which supports up to 102
bytes payload and thus provides enough space to contain both the broadcast message and
its digital signature in a package. Finally, we assume that the loose clock synchronization
is available in the WSN.

5.3.2 Adversary Model

We assume that an adversary can launch a wide range of attacks against the signature-
based broadcast authentication schemes. For example, he can simply mount the DoS
attacks by injecting bogus messages into the network, aiming at exhausting the limited
storage and energy of the sensor nodes. We assume that some efficient pre-authentication
techniques like those in [48,134] have been employed in the network to mitigate DoS attacks.
Moreover, it is also possible that an adversary attempts to impersonate other legitimate
sensor nodes and obtain valuable information through eavesdropping, modifying, deleting,
replaying, forging or blocking any network traffic. We also assume that a small fraction
of user devices and sensor nodes can be compromised by an adversary and therefore the
attacker can manipulate compromised devices to disseminate messages into the network.
Some efficient private-key protection mechanism and user revocation scheme [29, 146] can
be utilized to thwart the potential node compromise attack in WSNs.

5.3.3 Design Goal

The main design goal in this work is to accelerate the signature verification for public-key
based broadcast authentication schemes in WSNs. To achieve this goal we will fully exploit
the cooperation among sensor nodes in WSNs, which will be detailed in the next section.

120

5.4 Faster Signature Verification in Wireless Sensor

Networks

In this section, we first describe the broadcast authentication problem in WSNs and then
we use the ECDSA as an example to show how to accelerate the signature verification
through the cooperation among sensor nodes.

5.4.1 Problem Statement

When WSNs are deployed in hostile environments, broadcast authentication (i.e., verifia-
bility of the authenticity of broadcast packages) is a crucial security mechanism to ensure
the trustworthiness of network applications. After registering with the WSN a user first
contacts with several sensor nodes in the vicinity and sends a request for the broadcast
service. Then the user and the sensor nodes conduct a mutual authentication procedure1,
which grants the access to the WSN only to a legitimate user and, at the same time,
guarantees the user of the trustworthiness of the sensor nodes.

As illustrated in the following Figure 5.1, once the user and the sensor nodes establish
an authenticated channel, the user will sign a query or command and forward it to the
sensor nodes (e.g., nodes A, B and C). Nodes A, B and C then verify the signature of
the user2, respectively. If the verification succeeds, they will locally broadcast the user’s
query/command (within their communication range). When some node, say D, receives
the broadcast package for the first time, it will execute the same signature verification and
determine whether the received package should be forwarded to other nodes (e.g., node E).
This broadcast and authentication procedure continues until all reachable nodes receive
the user’s broadcast package. If any verification fails during the broadcast, sensor nodes
will drop the package and report to the base station.

5.4.2 A Faster Signature Verification Scheme

In the broadcast authentication procedure as shown in Figure 5.1, all sensor nodes execute
the same signature verification after receiving a broadcast package. Assuming that the
ECDSA is employed in WSNs, we show how to speed up the ECDSA signature verification
below. Although the ECDSA is used as an example, we would like to point out that the

1The discussion of user authentication in WSNs is out of the scope of this chapter and the interested
reader is referred to the references [13,44,45].

2For simplicity of exposition, we also assume that the keying materials (i.e., the user’s public key)
needed for signature verification have been distributed to all nodes in WSNs.

121

Base Station

User
Q

u
e
ry

/C
o
m

m
a
n
d

 S

ig
n
a
tu

re A

B

C

D E

Figure 5.1: User broadcast in wireless sensor networks. A broadcast package is usually
forwarded multiple times through multi-hop communication.

proposed acceleration technique of signature verification is also applicable to other public-
key based multi-user broadcast authentication schemes such as those in [29,145,146].

For verifying an ECDSA signature, each node needs to calculate R′ = s−1(eP + rQ) =
l1P + l2Q, where e = H(M), l1 = s−1e and l2 = s−1r (see Section 5.2.2). In other words,
two scalar multiplications l1P and l2Q have to be computed on each node. Our acceleration
technique comes from the following key observation: all sensor nodes independently execute
the same signature verification procedure during the broadcast authentication. Therefore,
if some sensor nodes would like to consume their energy to release some intermediate results,
the signature verification of their neighbors can be accelerated significantly. Moreover, the
energy consumption of the whole network will be decreased as well. Our idea is clearly
illustrated in the following Figure 5.2.

In Figure 5.2, a user’s broadcast package 〈M, r, s〉 will be received by nodes A, B and
C, where M denotes a user’s query or command and (r, s) is the corresponding ECDSA
signature of M . When all these three nodes finish the signature verification successfully,
nodes A (the green node) and B (the yellow node) decide to release (i.e., locally broadcast)
their intermediate computation results l1P and l2Q, respectively, whereas node C would
like to keep silent. By this means, nodes D and E (the orange nodes), which are the
neighbors of node A, can fast verify the digital signature by performing an elliptic curve
point addition l1P + l2Q, where l2Q is computed by nodes D and E themselves and l1P
comes from the contribution of node A. Moreover, nodes F and G can also perform fast

122

 Q
u
e
ry

/C
o
m

m
a
n
d

E
C

D
S

A
 S

ig
n
a
tu

re
A

B

C

F

G

User
D

E

1
l P

2
l Q

Release

Release

Figure 5.2: Faster ECDSA digital signature verification through nodes cooperation. Nodes
A and B release l1P and l2Q, respectively, which will significantly accelerate the signature
verification of nodes D to G as a result.

signature verification in a similar way. Hence, if some node in WSN releases its intermediate
computation result, all its neighbors can fast verify the digital signature by calculating one
scalar multiplication and one elliptic curve point addition, which can achieve about 50%
performance improvement as compared to the traditional signature verification procedure.
For the scenario described in Figure 5.2, the acceleration of signature verification on nodes
D to G benefits from the release of the intermediate computation results from nodes A and
B. Note that some sensor nodes might receive both intermediate computation results l1P
and l2Q from their neighboring nodes. However, the sensor nodes cannot use both received
l1P and l2Q to fast verify the signature with one elliptic curve point addition. The reason
is that an adversary can capture a sensor node and easily launch the following attack:

Step 1. The attacker generates a bogus message M̂ ;

Step 2. The attacker randomly chooses two integers l′1, l
′
2 ∈ [1, n − 1] and calculates R̂ =

l′1P + l′2Q;

Step 3. The attacker takes the x-coordinate r̂ of R̂ together with some random integer
ŝ ∈ [1, n− 1] to form the fake signature pair (r̂, ŝ);

123

Step 4. The attacker successively releases two bogus broadcast packages 〈M̂, r̂, ŝ, l′1P 〉 and

〈M̂, r̂, ŝ, l′2Q〉 to its neighbors;

Step 5. The victims compute l′1P + l′2Q and compare the x-coordinate of the result with

the received r̂. As a result, the victims accept M̂ as a valid message.

Hence, if sensor nodes use two received intermediate computation results to verify a sig-
nature, they might accept any bogus broadcast messages from an attacker.

To avoid the above attack, we only allow sensor nodes to use at most one intermediate
result (i.e., l1P or l2Q) from their neighboring nodes for signature verification. Moreover,
for the sake of simplicity of presentation, we further assume that if some sensor nodes release
their intermediate computation results they will release l2Q in the rest of this chapter. We
first illustrate a basic scheme of our faster ECDSA signature verification procedure for a
sensor node in the following Figure 5.3.

A Data Package

Type?

New? New?

〈M, r, s〉 〈M, r, s, l2Q〉

Discard the
package

Random
Data

No No

Yes Yes

Compute l1P &
Wait for τ seconds

Compute l1P

Does the package
including l2Q
be received?

Compute l2Q
No

Compute l1P + l2Q
and verifiy the signature

Yes

Successful?
Discard the package and
report to the base station

No

Yes

Release l2Q with probability prel and
forward the signed broadcast package

Fast Signature
Verification Path

Fast Signature
Verification Path

Figure 5.3: Faster ECDSA Signature Verification for WSNs (Basic Scheme)

124

Let SCA and ADD denote the elliptic curve scalar multiplication and the elliptic curve
point addition, respectively. In the basic scheme, a sensor node may receive a data package
〈M, r, s〉 or 〈M, r, s, l2Q〉. If a fresh package 〈M, r, s〉 is received3, the sensor node will first
compute l1P and then wait for a very short time period τ to see whether it can obtain
useful information from its neighbors for accelerating the signature verification. If it is,
the node can finish the signature verification with 1 SCA + 1 ADD. Otherwise, the node
will complete the verification itself with 2 SCA + 1 ADD after the time period τ . On the
other hand, if a fresh package 〈M, r, s, l2Q〉 is received, the sensor node will first calculate
l1P and then perform a fast signature verification with 1 SCA + 1 ADD. For the above
two cases, if the signature is verified successfully, the sensor node will continue forwarding
the broadcast package to its neighbors. Moreover, the intermediate computation result
l2Q will also be released with probability prel. Otherwise, if the signature verification is
failed4, the sensor node will send a signed report to the base station. Once the base station
receives enough reports from the network, it will perform appropriate security mechanisms
(see [180] for an example) to identify comprised nodes in WSN. Although the above basic
scheme is simple and efficient, it is still vulnerable to the following attack:

Step 1. The attacker generates a bogus message M̂ ;

Step 2. The attacker randomly chooses an integer k′ ∈ [1, n− 1], computes R′ = k′P and
sets r′ to be the x-coordinate of R′;

Step 3. The attacker randomly chooses an integer s′ ∈ [1, n − 1] and computes l′2Q =

R′ − s′−1e′P , where e′ = H(M̂);

Step 4. The attacker uses (r′, s′) as the signature of the message M̂ and releases the bogus

broadcast package 〈M̂, r′, s′, l′2Q〉 to its neighbors;

Step 5. The victims compute l′1P + l′2Q and compare the x-coordinate of the result with

the received r̂. As a result, the victims accept M̂ as a valid message.

The above attack works because the attacker knows that all its neighbors will first
calculate l1P = s−1eP and then use the released value l2Q to accelerate their signature
verifications. Consequently, the attacker chooses random r′, s′ and the bogus message M̂ ,
and forges the broadcast package 〈M̂, r′, s′, l′2Q〉 that can pass the signature verification
equation. Note that if sensor nodes use traditional ECDSA signature verification procedure
(see Section 5.2.2) the bogus broadcast package 〈M̂, r′, s′, l′2Q〉 cannot pass the verification

3The sensor node will check the time stamp, which is included in the message M , for the freshness of
the received data package.

4Both the transmission errors or attacks from compromised nodes can result in the failure of signature
verification in WSN.

125

since the released l′2Q is equal to s′−1r′Q with negligible probability. To thwart the above
attack for the basic scheme, we propose an enhanced scheme as shown in the following
Figure 5.4, which takes advantage of the redundancy of broadcast packages in WSN.

Data Packages

Type?

New?
Discard the

package
No

Yes

Wait for τ seconds
& cache σ packages

Compute l1P

Do σ packages
have identical M,
r, s and l2Q?

No

Compute l1P + l2Q
and verifiy the signature

Yes

Successful?
Discard the package and
report to the base station

No

Yes

Release l2Q with probability prel and
forward the signed broadcast package

Fast Signature
Verification Path

Random DataValid Data Package

Discard σ packages and
report to the base station

Do σ packages
include

〈M, r, s, l2Q〉?

Yes

Yes Compute l1P and l2Q

No

Figure 5.4: Faster ECDSA Signature Verification for WSNs (Enhanced Scheme)

In the enhanced scheme, each sensor node first waits for τ seconds and caches σ data
packages (i.e., 〈M, r, s〉 or 〈M, r, s, l2Q〉) received from its neighbors, where τ and σ are
selected such that the sensor node can receive at least one data package from an honest
neighbor (see Section 5.4.3). The sensor node then checks whether the cached σ data
packages have identical M, r, s and l2Q. Note that the main goal of adversaries is to
broadcast fake data packages into WSN. While all honest nodes forward a correct data
package 〈M, r, s〉 or 〈M, r, s, l2Q〉 to their neighboring nodes, adversaries try to deceive
their neighbors by broadcasting a bogus data package 〈M ′, r′, s′, l′2Q〉 as described in the

126

basic scheme. Hence, if the senor node finds that the received data packages have different
M, r, s or l2Q, it will report the potential attack to the base station immediately. On the
other hand, if all the cached σ data packages have identical M, r, s and l2Q, the sensor node
will further check whether it has received useful data packages 〈M, r, s, l2Q〉 for accelerating
signature verification. If it is, the sensor node will calculate l1P and then complete the
signature verification with 1 SCA + 1 ADD. Otherwise, the sensor node will perform the
traditional ECDSA signature verification with 2 SCA + 1 ADD. The remaining steps after
the signature verification are the same as those in the basic scheme.

5.4.3 Selection of System Parameters

In this subsection, we provide guidance for selecting the system-wide parameters τ, σ and
prel.

Selection of the Delay τ and the Threshold σ

In the enhanced scheme, a sensor node needs to wait for τ seconds and cache σ data
packages. We assume that on average a sensor node A has λ neighbors and half of them
will broadcast data packages to A at a certain communication round5. We further assume
that among A’s λ/2 neighbors µ nodes can be compromised by adversaries and each of
them can send at most ν bogus data packages to A during that communication round.
Note that all compromised nodes must collude to send identical bogus data packages to
A. Otherwise, A will discard all cached data packages and report to the base station. To
thwart the collusive attacks from adversaries, the threshold σ should satisfy the following
condition:

λ/2 ≥ σ ≥ µ · ν + 1.

The above condition guarantees that the sensor node A can receive at least one correct
broadcast package from an honest neighbor. As a result, A will not accept the bogus
messages for collusive adversaries since all the catched data packages are not identical.

After the threshold σ is determined, we can choose the delay τ such that σ data packages
can be received by the sensor node A. If a CC2420 IEEE 802.15.4 radio transceiver from
Texas Instruments [167] is used in sensor nodes, the data transmission rate can achieve
250Kbps. We also assume that the signed broadcast package fits in the maximum allowable
transmission limit (i.e., 128 bytes) of the CC2420 radio transceiver. So a 128-byte broadcast

5The procedure of broadcast authentication can be divided into a series of communication rounds.
Although a sensor node A has λ neighbors, only half of them will broadcast packages to A on average at
certain communication round and the other half will receive the broadcast package from A in the following
communication round.

127

package will be transmitted in the physical layer and the transmission delay is about
4.096ms. Moreover, we also need to consider the CC2420 radio backoff that is a period of
time where the radio pauses before attempting to transmit. Two backoff periods, namely
initial backoff and congestion backoff, can be chosen for the CC2420 radio [167]. The
initial backoff is 1 ∼ 32 backoff units6 (i.e., 300µs - 10ms), whereas the congestion backoff
is 1 ∼ 8 backoff units (i.e., 300µs - 2.5ms). Therefore, in the worst case a 128-byte broadcast
package can be received by the sensor node A within around 17ms. Taking into account
all these factors, we the delay τ should satisfy the following condition:

τ ≥ 17 · 10−3 · σ.

Selection of the Release Probability prel

In the enhanced scheme, prel is the probability that a node will release its intermediate
computation result, which is a predefined system parameter characterizing the trade-off
between the verification speed of digital signature and the energy consumption of WSNs.
Generally speaking, if a large value of prel is used, more sensor nodes will consume addi-
tional energy to broadcast their intermediate computation results and the signature verifi-
cation for a large group of sensor nodes will be accelerated as a result, and vice versa. The
selection of the release probability prel is closely related to the topology and the deploy-
ment of a WSN. Once the WSN is deployed, a network administrator first needs to analyze
the network topology and estimates the average number of sensor nodes that might work
on the signature verification during the transmission of a broadcast package. The admin-
istrator then determines a release probability prel that can achieve the optimal trade-off
between the energy consumption of the whole network and the efficiency of the signature
verification. More specifically, assuming that there are on average N sensor nodes working
on the signature verification at each communication round, the probability that T sensor
nodes will release their intermediate computation results is

pT =

(
N

T

)
· pTrel · (1− prel)(N−T).

Let Es, Er, and Esca be the energy consumption of sending and receiving one packet, and
calculating one elliptic curve scalar multiplication on sensor nodes, respectively. Recall
that we assume that each node has λ neighbors on average. Then we can roughly estimate
the additional energy consumption/saving due to the use of our fast signature verification
technique as follows:

• T sensor nodes will locally broadcast their intermediate computation results, the
energy consumption of which is T · Es;

6The units of backoff are 10 jiffies (32KHz ticks).

128

• About λT
2

sensor nodes will receive the intermediate computation results, the energy
consumption of which is λT

2
· Er;

• About λT
2

sensor nodes will accelerate their signature verifications using the received
intermediate computation results, the energy saving of which is λT

2
· Esca.

Therefore, the expected additional energy consumption/saving will be

E =
N∑
T=1

pT · (T · Es +
λT

2
· Er −

λT

2
· Esca). (5.1)

Note that the value in the round bracket of Equation (5.1) might be positive or negative,
which depends on the energy consumption of the microcontroller and the radio component
on different sensor motes. If the above value is positive, we need to choose a release
probability prel that can minimize the energy consumption E. Otherwise, we select a prel
that can maximize the energy saving E. Here, we only provide the guidance about the
selection of the release probability prel and omit the details of the specific applications.

5.5 Security and Performance Analysis

In this section, we analyze the performance of the proposed acceleration technique for
signature verification with respect to communication and computation overheads (in terms
of energy consumption). The performance analysis focuses on a simple 4 × 4 grid-based
WSN. We also compare our scheme with the traditional ECDSA signature verification
when applied to the broadcast authentication in the 4× 4 grid-based WSNs.

5.5.1 Case Study

Note that the performance of our faster signature verification technique is closely related
to the deployment of WSNs and the distribution of attackers in the network. To analyze
the performance of our scheme, we conduct a case study for the broadcast authentication
problem in a 4× 4 grid-based WSN, as illustrated in the following Figure 5.5.

In the above sensor network, each node only can directly communicate with its one-hop
neighbors. A user sends its signed broadcast package to the node 1 at Round 0. After six
communication rounds, the broadcast package will be received and verified by all sensor
nodes. Furthermore, in our faster signature verification scheme we assume that one sensor
node will release the intermediate computation result l2Q in each communication round
(see the green nodes 1, 2, 6, 7, 11 and 12 in Figure 5.5).

129

 Q
u
e
ry

/C
o
m

m
a
n
d

E
C

D
S

A
 S

ig
n
a
tu

re

User

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Round 0 Round 1 Round 2 Round 3

Round 4

Round 5

Round 6

Figure 5.5: Broadcast Authentication in a 4× 4 grid-based WSN.

To give a detailed quantitative analysis, we further assume that MICAz motes are used
in the WSN. Under a typical configuration such as a 3V supply voltage and a 7.37MHz
clock frequency, the MICAz mote draws a current of 12mA in an active mode (i.e., CPU is
operating) [41]. Based on the formulae of calculating the energy consumption on MICAz
motes [51], we obtain the following basic facts:

• A Chipcon CC2420 radio used in MICAz motes consumes Es = 83.6µJ and Er =
90.4µJ to transmit and receive l2Q with 40 bytes7, respectively;

• An Atmega128L microcontroller used in MICAz motes consumes about Ever = 22.68mJ
and Esca = 11.52mJ to verify an ECDSA signature and compute a scalar multiplica-
tion on a 163-bit Koblitz curve.

Note that we will not count the energy consumption of sensor nodes when sending and
receiving the broadcast package throughout the whole network since it is the same for both
faster and traditional signature verification schemes. We only compare the difference of
both schemes in terms of communication and computation overhead in the next subsection.

7Assuming that a 160-bit elliptic curve cryptosystem is employed in WSNs, the size of l2Q is around
40 bytes.

130

5.5.2 Performance in the Ideal Case

In this subsection we analyze the performance of our faster signature verification tech-
nique in the ideal case (i.e., no adversaries exist), which can serve as the upper bound of
performance improvement when applying our approach to broadcast authentication in the
4×4 grid-based WSN. In our scheme, some sensor nodes need to release their intermediate
computation results in order to accelerate the signature verification for their neighboring
nodes. Hence, our scheme consume more energy for transmitting the intermediate compu-
tation result l2Q, when compared to using the traditional ECDSA signature verification in
WSNs. In the 4 × 4 grid-based WSN (see Figure 5.5), the six green nodes (i.e., Nodes 1,
2, 6, 7, 11, 12) will locally broadcast their intermediate computation results to their one-
hop neighbors, which causes an extra energy consumption of 6× 83.6µJ = 501.6µJ in the
network. Furthermore, we list the sensor nodes that will receive and use the intermediate
computation results during the broadcast authentication in the following Table 5.1. Note

Table 5.1: Senders and Receivers of the Intermediate Computation Results in Faster
ECDSA Verification

Round Senders Receivers

0 node 1 nodes 2, 5

1 node 2 nodes 3, 6

2 node 6 nodes 7, 10

3 node 7 nodes 8, 11

4 node 11 nodes 12, 15

5 node 12 node 16

6 — —

that although some sensor nodes (e.g., node 6) has four one-hop neighbors, only two of
them (i.e., nodes 7 and 10) will receive the intermediate computation results since the other
two (i.e., nodes 2 and 5) have finished the signature verification in the previous round (i.e.,
Round 1) and gone into the power-saving sleep mode. Therefore, there are totally 11 sensor
nodes receiving the intermediate computation results, which causes an extra energy con-
sumption of 11× 90.4µJ = 994.4µJ in the WSN. In brief, our faster signature verification
incurs an extra energy consumption of 501.6 + 994.4 = 1496µJ ≈ 1.5mJ for transmitting
(i.e., sending and receiving) the intermediate computation results for the WSN in question.

With respect to the computation aspect, it is not difficult to find that the signature
verification on Nodes 2, 3, 5, 6, 7, 8, 10, 11, 12, 15 and 16 (see Table 5.1) will be accel-
erated by 50% (i.e., saving one elliptic curve scalar multiplication) due to the use of the

131

intermediate computation results from their neighboring nodes, which leads to a significant
energy saving of 11 × 11.52mJ = 126.72mJ in the WSN, as compared to the traditional
ECDSA signature verification technique. Moreover, the signed broadcast package will be
forwarded to other sensor nodes only if the signature verification is successful. Therefore,
the performance improvement on the signature verification will also reduce the transmis-
sion delay of the broadcast package by 50% in each round accordingly. Consequently, the
service quality of the broadcast authentication in WSNs has been improved remarkably by
using our faster signature verification technique.

To sum up, for the broadcast authentication in the target 4 × 4 grid-based WSN,
our faster signature verification can save the energy consumption of 126.72mJ− 1.5mJ =
125.22mJ in total, considering both the communication and computation overheads. There-
fore, using the proposed signature verification technique, one can save up to

125.22mJ

16× 22.68mJ
× 100% = 34.5%

energy consumption for the grid-based WSN in question.

5.5.3 Security and Performance under Attacks from Indepen-
dent Adversaries

In this subsection, we analyze the security and performance of our scheme when there
exist independent adversaries in the 4 × 4 grid-based WSN. To this end, we assume that
two independent adversaries (i.e., 12.5% nodes are compromised and become malicious
nodes.) are deployed in the WSN and each of them will broadcast a bogus package to
its neighbors. Note that in the grid-based WSN each bogus package will be received by
two sensor nodes in the following communication round. To maximize the influence of
independent adversaries, we select Node 3 and Node 9 as two independent adversaries in
the 4× 4 grid-based WSN. Moreover, for those nodes (i.e., Nodes 2, 3, 4, 5, 9, 11) that can
only receive one data package from its neighbors in certain communication rounds, they will
verify the signature themselves in order to avoid the attack descried in the basic scheme.
Other nodes (i.e., Nodes 6, 7, 8, 10, 11, 12, 15, 16) will cache two received data packages
from their neighbors and decide whether they can perform faster signature verifications.
Like the ideal case, we also assume that the six green nodes (i.e., Nodes 1, 2, 6, 7, 11, 12)
will locally broadcast the intermediate computation results l2Q to their neighbors.

Under the above settings, our faster signature verification still incurs an extra energy
consumption of 1.5mJ for transmitting the intermediate computation results l2Q like the
ideal case. However, due to the existence of independent adversaries Node 3 and Node 9,
Node 7 and Node 10 will receive two different data packages from their neighbors. Therefore,

132

Node 7 and Node 10 have to verify the signature themselves instead of using the released
l2Q from Node 6 for faster verification. Consequently, the signature verification will be
accelerated only for Nodes 6, 8, 11, 12, 15, 16 in this case, which can save the energy of
6 × 11.52mJ = 69.12mJ in the WSN. Combining both communication and computation
overheads, one can obtain that in the case of two independent adversaries the total energy
saving is

69.12− 1.5mJ

16× 22.68mJ
× 100% = 18.7%

for the 4× 4 grid-based WSN. In addition, attacks from two independent adversaries have
no effect on the security of our scheme and all the bogus data packages from independent
adversaries are also discarded by legitimate nodes.

5.5.4 Security and Performance under Attacks from Collusive
Adversaries

In this subsection, we analyze the security and performance of our scheme under the
existence of collusive adversaries in the 4× 4 grid-based WSN. Again, we assume that two
collusive adversaries are deployed in the WSN and they will broadcast identical bogus data
packages to their neighbors. To maximize the influence of collusive adversaries, we choose
Node 2 and Node 5 as two collusive adversaries in the 4× 4 grid-based WSN. Furthermore,
we use the same assumptions as the case of independent adversaries for other nodes. Note
that Node 6 will be cheated by collusive adversaries because of receiving two identical
bogus data packages from Node 2 and Node 5. Although Node 6 continues broadcasting the
bogus data package, Node 7 and Node 10 will discard it and verify the signature themselves
because they receive two different data packages. As a result, bogus data packages from
two collusive adversaries cannot be injected into the WSN successfully. Moreover, if Node
6 listens to the channel for one more communication round after broadcasting the bogus
package, it is also possible for Node 6 to find the potential attacks itself. More specifically,
after Node 7 and Node 10 verify the signature successfully at Round 3, they will broadcast
the correct data package to their neighbors. Node 6 will find that all the data packages
received from its neighbors (i.e., Nodes 2, 5, 7, 10) are different and therefore some attacks
have happened.

Like other cases, our faster signature verification needs to consume an extra energy
of 1.5mJ for transmitting the intermediate computation results l2Q. However, due to
the existence of collusive adversaries Node 2 and Node 5, Node 6 will be fooled and then
broadcast bogus data packages to Node 7 and Node 10. Note that both Node 7 and Node
10 will receive two different data packages from their neighbors and therefore verify the
signature themselves. As a result, the signature verification will be accelerated only for
Nodes 8, 11, 12, 15, 16 in this case, which can reduce the energy consumption of the WSN

133

by 5 × 11.52mJ = 57.6mJ. Taking both communication and computation overheads into
consideration, one can save around

57.6− 1.5mJ

16× 22.68mJ
× 100% = 15.5%

energy consumption for the 4×4 grid-based WSN. In particular, attacks from two collusive
adversaries have very limited effect on the security of our scheme and those attacks can
also be detected in the certain communication round.

5.6 Conclusions

Signature-based broadcast authentication schemes for WSNs have attracted a lot of atten-
tion in recent years due to their desirable features such as strong security resilience, good
scalability and immediate message authentication. However, the relatively slow signature
verification in public-key cryptosystems causes high energy consumption and long verifica-
tion delay for broadcast authentication in WSNs. In this chapter, we propose a novel and
efficient acceleration technique for signature verification in WSNs. Our scheme fully ex-
ploits the cooperation among sensor nodes and enables the significant energy consumption
saving for the whole network. As a case study, we apply our technique to the broadcast
authentication in a 4×4 grid-based WSN and analyze the security and performance of our
scheme under the existence of independent and collusive adversaries. While independent
adversaries do not have any influence on the security of our scheme, collusive adversaries
have very limited effect. Particularly, bogus data packages from adversaries cannot be
disseminated successfully through the entire network in both cases. Moreover, a quanti-
tative performance analysis shows that our scheme can save about 15.5% ∼ 34.5% energy
consumption and run 50% faster than traditional signature verification method.

As our future work, we are particularly interested in implementing our scheme on
real sensor platforms. Moreover, we will further analyze the effect when applying our
scheme to other WSNs with more complicated topologies and deployments. Comparing our
method with other faster signature verification techniques (see [2] for an example) as well
as conducting a large-scale experiment to evaluate our scheme in real world applications
are also highly desirable.

134

Chapter 6

Conclusions and Future Research

This chapter summarizes the research contributions of this thesis. A summary of the main
results as well as recommendations for future research will be provided.

6.1 Conclusions

In this thesis we deal with security solutions for mobile ad hoc networks, with emphasis on
efficient cryptographic algorithms and protocols that are targeted for resource-constrained
mobile devices.

Motivated by the design of the well-known Enigma machine, we first suggest a novel
ultra-lightweight cryptographic algorithm, Hummingbird, for resource-constrained devices.
Hummingbird is an elegant combination of block cipher and stream cipher with 16-bit
block size, 256-bit key size, and 80-bit internal state. In particular, Hummingbird was
developed with both lightweight software and lightweight hardware implementations for
constrained devices in mind. Using a hybrid structure enables Hummingbird to provide the
designed security with small block size which is expected to meet the stringent response
time and power consumption requirements for various embedded applications. A prelimi-
nary security analysis shows that Hummingbird seems to be resistant to the most common
attacks to block ciphers and stream ciphers including birthday attacks, differential and
linear cryptanalysis, structure attacks, algebraic attacks, cube attacks, and so on. Efficient
software implementations of Hummingbird across a range of low-cost and low-power micro-
controllers obtain the following favorable results, when compared to the state-of-the-art
ultra-lightweight block cipher PRESENT:

• On the 4-bit microcontroller ATAM893-D from Atmel, Hummingbird can achieve up
to 2.14 times faster throughput than PRESENT, after a system initialization process.

135

• On the 8-bit microcontroller ATmega128L from Atmel, the throughput of Humming-
bird is about 40 and 0.7 times faster than that of PRESENT (implemented on a similar
platform) for a size-optimized and a speed-optimized implementation, respectively,
after a system initialization process.

• On the 16-bit microcontroller MSP430 from Texas Instruments, Hummingbird can
even achieve up to 147 and 4.7 times faster throughput than PRESENT (implemented
on a similar platform) for a size-optimized and a speed-optimized implementation,
respectively, after a system initialization process.

In addition, efficient hardware implementations of Hummingbird cores on the low-cost FP-
GAs also demonstrate good performance of Hummingbird. More specifically, on the Spartan-
3 XC3S200 FPGA device, the speed optimized encryption core can achieve a throughput
of 160.4 Mbps at the cost of 273 slices, whereas the area optimized encryption core can be
implemented in 253 slices and operate at 66.1 Mbps.

Next, we propose new variants of Miller’s algorithm for computing the Tate pairing
on two families of non-supersingular genus 2 hyperelliptic curves over prime fields with
efficiently computable automorphisms. We describe how to exploit the automorphism in
lieu of the order of the torsion group to construct the rational functions required in Miller’s
algorithm, and shorten the length of the main loop in Miller’s algorithm as a result. In
the best case, the length of the loop in our new variants can be up to 4 times shorter than
that of the original Miller’s algorithm. Furthermore, we also generalize Chatterjee et al.’s
idea [33] of encapsulating the computation of the line function with the group operations
to genus 2 hyperelliptic curves, and derive new explicit formulae for the group operations
in projective and new coordinates in the context of pairing computations. When compared
to Lange’s formulae [105], our mixed-addition formulae can save 5M and 3M in projective
and new coordinates, respectively, whereas our doubling formulae can save 2M in both
projective and new coordinates. As a case study, we combine our new algorithm with
various optimization techniques in the literature to efficiently implement the Tate pairing
on a non-supersingular genus 2 curve y2 = x5 + 9x over Fp with an embedding degree of
k = 4. When compared with pairing computations on supersingular genus 2 curves at
the same security level, our new algorithm can obtain 55.8% performance improvements
algebraically. Furthermore, favorable experimental results have been obtained for the im-
plementation of the Tate pairing on both a supersingular and a non-supersingular genus 2
curve with embedding degree 4.

Revoking the cryptographic keys of malicious nodes is crucial for the security and
robustness of MANETs. We propose a fully self-organized key revocation scheme for
MANETs based on the Dirichlet multinomial model and identity-based cryptography. Hav-
ing noted the interactive behavior of nodes during the procedure of key revocation, we
borrowed ideas from reputation systems to design our key revocation mechanism. Firmly

136

rooted in statistics, our key revocation scheme provides a theoretically sound basis for
nodes analyzing and predicting peers’ behavior based on their own observations and other
nodes’ reports. In our scheme, each node keeps track of three categories of behavior defined
and classified by an external TTP, and updates its knowledge about other nodes’ behavior
with 3-dimension Dirichlet distribution. Differentiating between suspicious behavior and
malicious behavior enables nodes to make different responses by either revoking keys of
nodes showing malicious behavior or ceasing the communication with nodes showing suspi-
cious behavior for some time. Extensive simulations show that our key revocation scheme
is effective against the false accusation attacks from independent and collusive adversaries.
Moreover, our key revocation mechanism can also be adapted to PKI schemes in MANETs
with off-line or on-line CAs.

Finally, we address the issue of speeding up the signature verification for public-key
based multi-user broadcast authentication schemes in WSNs. We exploit the cooperation
among sensor nodes and allow some sensor nodes to randomly release their intermediate
computation results to their neighbors during the signature verification. In this way, many
sensor nodes can use the received intermediate computation results to accelerate their
signature verification. We demonstrate the performance of the proposed technique by
conducting a case study for the broadcast authentication in a 4 × 4 grid-based WSN. A
quantitative performance analysis shows that our scheme needs 15.5% ∼ 34.5% less energy
and runs about 50% faster than the traditional signature verification method.

6.2 Future Work

Providing security solutions for MANETs is an interesting and challenging research area.
While many problems have been addressed successfully, there are many others that still
need further study. Even the problems that have been addressed might have to be revisited
in terms of improvements in wireless communication technology and computational capa-
bility of mobile devices. While the former makes possible the use of higher bandwidths,
the latter enables the execution of more complicated cryptographic mechanisms. This sec-
tion will provide the reader with an overview of several interesting research areas in which
further work could be pursued.

Side Channel Attacks on Lightweight Cryptographic Primitives

Since the first introduction by Kocher in 1996 [100], side channel attacks have become an
important area of cryptanalytic research. Instead of performing a mathematical attack on
a cryptographic algorithm, side channel attacks exploit the information like execution time,
power consumption or electromagnetic radiation gained from the physical implementation

137

of a cryptosystem to deduce the secret key. Although quite a few lightweight cryptographic
primitives have been proposed during the past few years, the evaluation whether side
channel attacks are applicable to those algorithms did not been extensively investigated.
Note that lightweight cryptographic primitives will be finally implemented on resource-
constrained mobile devices to provide security functionalities. Considering that many
resource-constrained devices in MANETs might be deployed in unattended and even hostile
environments, it is possible that adversaries will capture those devices and launch various
side channel attacks to extract the secret key. Hence, evaluating the security of lightweight
cryptographic primitives against various side channel attacks is mandatory to guarantee
the long-term security of MANETs.

Security and Privacy in RFID Systems

Radio Frequency Identification (RFID) is a rapidly developing technology enabling au-
tomatic objects identification. In an RFID system, each object is labeled with a small
transponder, called an RFID tag, which receives and responds to radio-frequency queries
from a transceiver, called an RFID reader. An RFID tag is composed of a tiny integrated
circuit for storing and processing identification information, as well as a radio antenna
for wireless data transmissions. RFID tags usually have constrained capabilities in every
aspect of computation, communication and storage due to the extremely low production
cost. Despite the low cost of RFID systems and their convenience in identifying an object
without physical contact, the radio communications between RFID tags and readers also
raise a number of security issues. For example, today’s RFID systems do not conduct
the mutual authentication between RFID readers and tags, so it is easy for an adversary
to impersonate a reader or a tag to obtain sensitive information, and even launch denial-
of-service (DoS) attacks. Moreover, RFID tags automatically emit their unique identi-
fiers upon reader interrogation without alerting their users. Consequently, an adversary
equipped with commodity RFID readers can effectively trace a person carrying a tagged
item by linking two different sightings of the same RFID tag, which potentially violate the
owner’s privacy. In addition, many possible security threats arise from unprotected wire-
less communications between RFID readers and tags. To solve the aforementioned security
and privacy issues, a privacy-preserving mutual authentication protocol is required for a
reader and a tag to authenticate each other. Although numerous authentication protocols
have been proposed for RFID systems, most of them are not secure and far from practical.
Therefore, how to design a lightweight mutual authentication protocol, which meets all
stringent requirements of RFID system, needs to be further investigated.

138

APPENDICES

139

Appendix A

Criteria for Selection of S-Boxes in
Hummingbird

Let F2 = {0, 1} and Fm2 = {(x0, x1, · · · , xm−1) | xi ∈ F2}. If F (x) is a function from Fm2 to
Fm2 , i.e., a vectorial boolean function, then it is also called a S-box from Fm2 to Fm2 . The
Walsh transform of F (x) is defined by

F̂ (a, b) =
∑
x∈Fm

2

(−1)〈a,F (x)〉+〈b,x〉, a, b ∈ Fm2 ,

where 〈y, z〉 =
∑m−1

i=0 yizi is the inner product of two binary vectors y = (y0, y1, · · · , ym−1)
and z = (z0, z1, · · · , zm−1) with yi, zi ∈ F2.

A.1 Serpent-type S-boxes

Let S(x) be an S-box from F4
2 to F4

2. Then the Walsh transform of S(x) is given by

Ŝ(a, b) =
∑
x∈F4

2

(−1)〈a,S(x)〉+〈b,x〉,

for any a, b ∈ F4
2. S(x) is called a Serpent-type S-box if it satisfies the following properties:

C-1. For any nonzero a, b ∈ F4
2, it holds that |Ŝ(a, b)| ≤ 8.

C-2. For any a, b ∈ F4
2 with wt(a) = wt(b) = 1, we require that |Ŝ(a, b)| = 4, where wt(x)

represents the Hamming weight of a binary string x ∈ Fm2 .

141

C-3. For any nonzero a, b ∈ F4
2, it holds that |{x ∈ F4

2 | S(x) + S(x+ a) = b}| ≤ 4.

C-4. For any a, b ∈ F4
2 with wt(a) = wt(b) = 1, we have |{x ∈ F4

2 | S(x)+S(x+a) = b}| = 0.

The first two properties guarantee that the 16-bit block cipher is resistant to linear crypt-
analysis, whereas the last two address differential cryptanalysis. In [107], all Serpent-type
S-boxes are classified and presented by a representative in each class.

A.2 Additional Requirements for Serpent-type S-boxes

Let x = (x3‖x2‖x1‖x0) be the 4-bit input to the S-box S(x). We can write S(x) in terms
of its boolean form as follows:

S(x) = (S(3)(x)‖S(2)(x)‖S(1)(x)‖S(0)(x)).

In order to resist the algebraic attack, we select S-boxes such that the degree of S(i)(x) is
3 for 0 ≤ i ≤ 3, i.e., all components of S(x) should have maximum degree. For efficient
hardware implementation, the number of terms of S(i) should be small.

On the other hand, S(x) can be viewed as a mapping from F24 to F24 where F24 is
a finite field with 24 elements. Hence S(x) has a polynomial representation over F24 .
Consequently, any component of S(x) has a polynomial form over F24 . In order to resist
the interpolation attack, S(x) and S(i)(x) should have as many monomial terms as possible
under a polynomial representation [92,177].

Based on the above considerations, in addition to the Serpent-type properties, we list
the additional criteria for selection of S-boxes as follows:

C-5. The algebraic degrees of all four component functions in boolean representation are
maximized, i.e., 3.

C-6. The number of monomial terms of each component function in boolean representation
is small.

C-7. All component functions should have an approximately same number of monomial
terms.

C-8. The number of monomial terms of each component function in a polynomial repre-
sentation should be large under all defining polynomials for F24 .

C-9. Select one S-box from each equivalent class.

142

The four S-boxes are selected according to the above nine criteria. Table A.1 lists the
number of monomial terms in both boolean and polynomial representations of the selected
S-boxes. Note that maximum number of monomial terms for a S-box from F4

2 to F4
2 or its

component function is 15 whenever it is represented in a boolean form or a polynomial
form. In Table A.1 (a), the number under S(i) is the number of monomial terms in S(i).

For example, for the S-box S1(x), both S
(0)
1 and S

(1)
1 have 7 monomial terms, and both

S
(2)
1 and S

(3)
1 have 6 monomial terms. In Table A.1 (b), the number under each defining

polynomial of F24 denotes the number of monomial terms in each corresponding function.
For example, under the defining polynomial x4+x+1 for F24 , the S-box S1(x) has 15 terms

and the components S
(i)
1 , i = 0, 1, 2, 3 have 14, 14, 14, and 15 monomial terms respectively.

Table A.1: The Boolean and Polynomial Forms of S-Boxes

(a) The Boolean Form

S-boxes S(0)(x) S(1)(x) S(2)(x) S(3)(x) Total Monomial Terms Least Degree
S1(x) 7 7 6 6 26 3
S2(x) 7 8 6 7 28 3
S3(x) 7 6 7 7 27 3
S4(x) 7 6 7 6 26 3

(b) The Polynomial Form

S-boxes and x4 + x+ 1 x4 + x3 + 1 x4 + x3 + x2 + x+ 1
Their Components

S1(x) 15 15 14
S(0)(x) 14 14 14
S(1)(x) 14 14 14
S(2)(x) 14 14 14
S(3)(x) 15 13 15
S2(x) 13 13 14
S(0)(x) 14 14 12
S(1)(x) 14 14 14
S(2)(x) 14 14 14
S(3)(x) 14 12 12
S3(x) 15 14 14
S(0)(x) 14 12 14
S(1)(x) 13 15 15
S(2)(x) 14 14 14
S(3)(x) 14 10 14
S4(x) 14 14 14
S(0)(x) 10 12 12
S(1)(x) 14 14 14
S(2)(x) 12 14 12
S(3)(x) 14 14 14

143

Appendix B

Explicit Formulae for Genus 2
Curves over Fp

In this appendix, we give efficient explicit formulae for group operations on genus 2 curves
over Fp in projective coordinates in the context of pairing computations. Table B.1 and
Table B.2 address the cases of projective coordinates. Given two divisor classes E1 and
E2, Table B.1 computes the divisor class E3 = [u3(x), v3(x)] and the rational function

l(x) such that E1 + E2 = E3 + div
(
y−l(x)
u3(x)

)
in the projective coordinate system, where

l(x) =
s′1
r
x3 + l2

rZ2
x2 + l1

rZ2
x + l0

rZ2
. For doubling a reduced divisor class E1, Table B.2

calculates the divisor class E3 = [u3(x), v3(x)] and the rational function l(x) such that

2E1 = E3+div
(
y−l(x)
u3(x)

)
in projective coordinates, where l(x) = s1

R′
x3+ l2

R′Z1
x2+ l1

R′Z1
x+ l0

R′Z1
.

145

Table B.1: Mixed-Addition Formula on a Genus 2 curve over Fp (Projective Coordinates)

Input Genus 2 HEC C : y2 = x5 + f3x
3 + f2x

2 + f1x+ f0
E1 = [U11, U10, V11, V10, 1] and E2 = [U21, U20, V21, V20, Z2]

Output E3 = [U31, U30, V31, V30, Z3] = E1 ⊕ E2

l(x) such that E1 + E2 = E3 + div
(
y−l(x)
u3(x)

)
Step Expression Cost

1 Compute resultant r = Res(u1, u2): 5M, 1S

Ũ11 = U11Z2, Ũ10 = U10Z2, z1 = Ũ11 − U21, z2 = U20 − Ũ10

z3 = U11z1, z4 = z2 + z3, r = z2z4 + z21U10

2 Compute almost inverse of u2 mod u1: –
inv1 = z1, inv0 = z4

3 Compute s′: 7M
w0 = V10Z2 − V20, w1 = V11Z2 − V21, w2 = inv0w0

w3 = inv1w1, s
′
1 = z1w0 + z2w1, s

′
0 = w2 − U10w3

4 Precomputations: 4M, 1S
R = r2, s̃′0 = s′0Z2, s̃

′
1 = s′1Z2, S = s′1s̃

′
1, r̃ = rs̃′1

5 Compute l: 5M
l2 = s′1U21 + s̃′0, l0 = s′0U20 + rV20
l1 = (s′1 + s′0)(U21 + U20)− s′1U21 − s′0U20 + rV21

6 Compute U3: 8M, 1S

w1 = Ũ11 + U21, U31 = s′1(2s̃
′
0 − s′1z1)−RZ2, l

′
1 = l1s

′
1

U30 = s̃′0(s
′
0 − 2s′1U11) + s

′2
1 (z3 − Ũ10 − U20) + 2l′1 +Rw1

7 Compute V3: 6M
w1 = l2s

′
1 − U31, V30 = U30w1 − S(l0s

′
1)

V31 = U31w1 + S(U30 − l′1)
8 Adjust: 3M

Z3 = r̃S, U31 = r̃U31, U30 = r̃U30

Sum 38M, 3S

146

Table B.2: Doubling Formula on a Genus 2 Curve over Fp (Projective Coordinates)

Input Genus 2 HEC C : y2 = x5 + f3x
3 + f2x

2 + f1x+ f0
E1 = [U11, U10, V11, V10, Z1]

Output E3 = [U31, U30, V31, V30, Z3] = [2]E1

l(x) such that 2E1 = E3 + div
(
y−l(x)
u3(x)

)
Step Expression Cost

1 Compute resultant and precomputations: 4M, 3S

Z2 = Z2
1 , Ṽ11 = 2V11, Ṽ10 = 2V10, w0 = V 2

11, w1 = U2
11, w2 = Ṽ10Z1

w3 = 4w0, w4 = w2 − U11Ṽ11, r = U10w3 + Ṽ10w4

2 Compute almost inverse: –

inv′1 = −Ṽ11, inv′0 = w4

3 Compute k′: 5M
w3 = f3Z2 + w1, w4 = 2U10, w̃4 = w4Z1, k

′
1 = 2w1 + w3 − w̃4

k′0 = U11(2w̃4 − w3) + Z1(f2Z2 − w0)
4 Compute s′: 7M

w0 = k′0inv
′
0, w1 = k′1inv

′
1, s2 = w2k

′
1 − Ṽ11k′0

s′1 = s2Z1, s
′
0 = w0 − Z1U10w1

5 Precomputations: 6M, 2S

R = rZ2, R̃ = Rs′1, R
′ = Rs2, S0 = s′20

S1 = s′21 , S = s′0s
′
1, s0 = s′0s2, s1 = s′1s2

6 Compute l: 6M
l2 = s1U11 + s0Z1, l0 = s0U10 +R′V10
l1 = (s1 + s0)(U11 + U10)− s1U11 − s0U10 +R′V11

7 Compute U3: 4M, 1S

U30 = S0 +R(s2Ṽ11 + 2rZ1U11), U31 = 2S −R2

8 Compute V3: 4M
w1 = l2 − U31, w2 = U30w1, w3 = U31w1

V31 = w3 + S1(U30 − l1), V30 = w2 − S1l0
9 Adjust: 3M

Z3 = S1R̃, U31 = U31R̃, U30 = U30R̃
Sum 39M, 6S

147

Bibliography

[1] R. Anderson, E. Biham, and L. Knudsen, “Serpent: A Proposal for the Advanced
Encryption Standard”, available at http://www.cl.cam.ac.uk/~rja14/Papers/

serpent.pdf.

[2] A. Antipa, D. Brown, R. Gallant, R. Lambert, R. Struik, and S. Vanstone, “Ac-
celerated Verificaiton of ECDSA Signatures”, Selected Areas in Cryptography - SAC
2005, LNCS 3897, B. Preneel, S. Tavares (eds.), Berlin, Germany: Springer-Verlag,
pp. 307-318, 2006.

[3] G. Arboit, C. Crépeau, C. R. Davis, and M. Maheswaran, “A Localized Certificate
Revocation Scheme for Mobile Ad Hoc Networks”, Ad Hoc Network, vol.6, no.1, pp.
17-31, 2008.

[4] Atmel Corporation. “8-bit AVR Microcontroller with 128K Bytes In-System Pro-
grammable Flash – ATmega128/ATmega128L”. Available at http://www.atmel.

com/dyn/resources/prod_documents/doc2467.pdf.

[5] Atmel Corporation. AVR Studio 4.17. Available at http://www.atmel.com/dyn/

Products/tools_card.asp?tool_id=2725.

[6] Atmel Corporation, “MARC4 4-bit Microcontrollers Programmer’s Guide”, available
at http://www.atmel.com/dyn/resources/prod_documents/doc4747.pdf.

[7] Atmel Corporation, “ATAM893-D: Flash Version for ATAR080, ATAR090/890
and ATAR092/892”, available at http://www.atmel.com/dyn/resources/prod_

documents/doc4680.pdf.

[8] R. M. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, and F. Ver-
cauteren, Handbook of Elliptic and Hyperelliptic Curve Cryptography, Boca Raton,
Florida, USA: Chapman & Hall/CRC, 2006.

[9] S. Babbage and M. Dodd, “The Stream Cipher MICKEY 2.0”, ECRYPT
Stream Cipher, available at http://www.ecrypt.eu.org/stream/p3ciphers/

mickey/mickey_p3.pdf, 2006.

149

[10] P.L.S.M. Barreto, S. Galbraith, C. Ó hÉigeartaigh, and M. Scott, “Efficient Pairing
Computation on Supersingular Abelian Varieties”, Design, Codes and Cryptography,
42:239-271, 2007.

[11] P.L.S.M. Barreto, H. Y. Kim, B. Lynn, and M. Scott, “Efficient Algorithm for
Pairing-Based Cryptosystems”, Advance in Cryptology - CRYPTO’2002, LNCS 2442,
M. Yung (ed.), Berlin, Germany: Springer-Verlag, pp. 354-368, 2002.

[12] M. Bellare, C. Namprempre, and G. Neven, “Security Proofs for Identity-Based
Identification and Signature Schemes”, Advances in Cryptology-EUROCRYPT’2004,
LNCS 3027, C. Cachin and J. Camenisch (eds.), Berlin, Germany: Springer-Verlag,
pp. 268-286, 2004.

[13] Z. Benenson, N. Gedicke, and O. Raivio, “Realizing Robust User Authentication in
Sensor Networks”, Proceedings of the First Workshop on Real-World Wireless Sensor
Networks (REALWSN’05), June 2005.

[14] E. Biham, “New Types of Cryptanalytic Attacks Using Related Keys”, Journal of
Cryptology, Vol. 7, pp. 229-246, 1994.

[15] E. Biham, “Cryptanalysis of Multiple Modes of Operation”, Journal of Cryptology,
11(1), pp. 45-58, 1998.

[16] E. Biham, “Cryptanalysis of Triple Modes of Operation”, Journal of Cryptology,
12(3), pp. 161-184, 1999.

[17] E. Biham and L. R. Knudsen, “Cryptanalysis of the ANSI X9.52 CBCM Mode”,
Journal of Cryptology, 15(1), pp. 47-59, 2002.

[18] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Rob-
shaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: An Ultra-Lightweight Block Ci-
pher”, The 9th International Workshop on Cryptographic Hardware and Embedded
Systems - CHES 2007, LNCS 4727, P. Paillier, I. Verbauwhede (eds.), Berlin, Ger-
many: Springer-Verlag, pp. 450-466, 2007.

[19] A. Biryukov and D. Wagner, “Slide Attacks”, The 6th Annual Fast Software En-
cryption Workshop - FSE 1999, LNCS 1636, L. R. Knudsen (ed.), Berlin, Germany:
Springer-Verlag, pp. 245-259, 1999.

[20] A. Biryukov and D. Wagner, “Advanced Slide Attacks”, Advances in Cryptology
- EUROCRYPT 2000, LNCS 1807, B. Preneel (ed.), Berlin, Germany: Springer-
Verlag, pp. 589-606, 2000.

150

[21] J. Broch, D. Maltz, D. Johnson, Y. Hu, and J. Jetcheva, “A Performance Comparison
of Multi-hop Wireless Ad Hoc Network Routing Protocols”, Proceedings of the Fourth
Annual ACM/IEEE International Conference on Mobile Computing and Networking
(MobiCom’98), pp. 85-97, 1998.

[22] S. Buchegger and J.-Y. Le Boudec, “Performance Analysis of the CONFIDANT Pro-
tocol: Cooperation of Nodes – Fairness In Dynamic Ad-hoc Networks”, Proceedings
of the 3rd ACM International Symposium on Mobile Ad Hoc Networking and Com-
puting (MobiHoc’02), pp. 226-236, 2002.

[23] S. Buchegger and J.-Y. Le Boudec, “The Effect of Rumor Spreading in Reputa-
tion Systems for Mobile Ad-hoc Networks”, Proceedings of WiOpt’03: Modeling and
Optimization in Mobile, Ad Hoc and Wireless Networks, 2003.

[24] S. Buchegger and J.-Y. Le Boudec, “A Robust Reputation System for Peer-to-Peer
and Mobile Ad Hoc Networks”, Proceedings of the 2nd Workshop on the Economics
of Peer-to-Peer Systems, 2004.

[25] P. Bulens, F.-X. Standaert, J.-J. Quisquater, and P. Pellegrin, “Implementation of
the AES-128 on Virtex-5 FPGAs”, Progress in Cryptology - AFRICACRYPT 2008,
LNCS 5023, S. Vaudenay (ed.), Berlin, Germany: Springer-Verlag, pp. 16-26, 2008.

[26] C. De Cannière, O. Dunkelman, and M. Knežević, “KATAN and KTANTAN – A
Family of Small and Efficient Hardware-Oriented Block Ciphers”, The 11th Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems - CHES 2009,
LNCS 5747, C. Clavier, K. Gaj (eds.), Berlin, Germany: Springer-Verlag, pp. 272-
288, 2009.

[27] C. De Cannière and B. Preneel, “Trivium – A Stream Cipher Construction Inspired
by Block Cipher Design Principles”, ECRYPT Stream Cipher, Available at http:

//www.ecrypt.eu.org/stream/papersdir/2006/021.pdf, 2005.

[28] D. Cantor, “Computing in Jacobian of a Hyperelliptic Curve”, Mathematics of Com-
putation, vol. 48 (177), pp. 95-101, January 1987.

[29] X. Cao, W. Kou, L. Dang, and B. Zhao, “IMBAS: Identity-Based Multi-User Broad-
cast Authentication in Wireless Sensor Networks”, Computer Communications, vol.
31, no. 4, pp. 659-667, 2008.

[30] S. Capkun, L. Buttyán, and J.-P. Hubaux, “Self-Organized Public-Key Management
for Mobile Ad Hoc Networks”, IEEE Transactions on Mobile Computing, Vol. 2, No.
1, pp. 52-64, 2003.

151

[31] S. Čapkun, and J.-P. Hubaux, “Secure Positioning in Wireless Networks”, IEEE
Journal on Selected Areas in Communications, 24(2): 221-232, 2006.

[32] S. Chang, S. Shieh, W. Lin, and C.-M. Hsieh, ”An Efficient Broadcast Authentication
Scheme”, Proceedings of the 2006 ACM Symposium on Information, Computer and
Communications Security (ASIACCS 2006), pp. 311-320, 2006.

[33] S. Chatterjee, P. Sarkar, and R. Barua, “Efficient Computation of Tate Pairing in
Projective Coordinate over General Characteristic Fields”, Information Security and
Cryptology - ICISC 2004, ser. LNCS 3506, C. Park, S. Chee (eds.), Berlin, Germany:
Springer-Verlag, pp. 168-181, 2005.

[34] P. Chodowiec and K. Gaj, “Very Compact FPGA Implementation of the AES Algo-
rithm”, The 5th International Workshop on Cryptographic Hardware and Embedded
Systems - CHES 2003, LNCS 2779, C. D. Walter, Ç. K. Koç, C. Paar (eds.), Berlin,
Germany: Springer-Verlag, pp. 319-333, 2003.

[35] Y. Choie and E. Lee, “Implementation of Tate Pairing on Hyperelliptic Curve of
Genus 2”, Information Security and Cryptology - ICISC’2003, LNCS 2971, J. I. Lim
and D. H. Lee (eds.), Berlin, Germany: Springer-Verlag, pp. 97-111, 2004.

[36] Y. Choie, E. Jeong, and E. Lee, “Supersingular Hyperelliptic Curves of Genus 2 over
Finite Fields”, Journal of Applied Mathematics and Computation, 163(2):565-576,
2005.

[37] J. Clulow and T. Moore, “Suicide for the Common Good: A New Strategy for Cre-
dential Revocation in Self-Organizing Systems”, SIGOPS Operating System Reviews,
vol. 40, no. 3, pp. 18-21, 2006.

[38] C. Cocks and R. G. E. Pinch, “Identity-based Cryptosystems Based on the Weil
Pairing”, Unpublished manuscript, 2001.

[39] N. Courtois, M. Finiasz, and N. Sendrier, “How to Achieve a McEliece-Based Digi-
tal Signature Scheme”, Advances in Cryptology-ASIACRYPT’2001, LNCS 2248, C.
Boyd (ed.), Berlin, Germany: Springer-Verlag, pp. 157-174, 2001.

[40] C. Crépeau and C. R. Davis, “A Certificate Revocation Scheme for Wireless Ad Hoc
Networks”, Proceedings of the 1st ACM Workshop on Security of Ad Hoc and Sensor
Networks (SASN’03), pp. 54-61, 2003.

[41] Crossbow Technology Inc. “MICAz – Wireless Measurement System”. Available
at http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAz_

Datasheet.pdf.

152

[42] Crossbow Technology Inc. “TELOSB – TELOSB Mote Platform”. Available
at http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/TelosB_

Datasheet.pdf.

[43] Crossbow Technology Inc. “Imote2 – High-Performance Wireless Sensor Net-
work Node”. Available at http://www.xbow.com/Products/Product_pdf_files/

Wireless_pdf/Imote2_Datasheet.pdf.

[44] M. L. Das, “Efficient User Authentication and Secure Data Transmission in Wire-
less Sensor Networks”, Proceedings of the 16th IEEE International Conference on
Networks (ICON’08), 2008.

[45] M. L. Das, “Two-Factor User Authentication in Wireless Sensor Networks”, IEEE
Transactions on Wireless Communications, vol. 8, no. 3, pp. 1086-1090, March 2009.

[46] H. Deng, A. Mukherjee, and D. Agrawal, “Threshold and Identity-based Key
Management and Authentication for Wireless Ad Hoc Networks,” Proceedings of
the International Conference on Information Technology: Coding and Computing
(ITCC’04), pp. 107-111, 2004.

[47] I. Dinur and A. Shamir, “Cube Attacks on Tweakable Black Box Polynomials”,
Advances in Cryptology - EUROCRYPT 2009, LNCS 5479, A. Joux (ed.), Berlin,
Germany: Springer-Verlag, pp. 278-299, 2009.

[48] Q. Dong, D. Liu, and P. Ning, “Pre-Authentication Filters: Providing DoS Resis-
tance for Signature-Based Broadcast Authentication in Wireless Sensor Networks”,
Proceedings of the First ACM Conference on Wireless Network Security (WiSec’08),
pp. 2-12, 2008.

[49] J. Douceur, “The Sybil Attack”, Proceedings of the 1st International Workshop on
Peer-to-Peer Systems (IPTPS’02), pp. 251-260, 2002.

[50] J. Drissi and Q. Gu, “Localized Broadcast Authentication in Large Sensor Networks”,
Proceedings of the International conference on Networking and Services (ICNS’06),
pp. 25-31, 2006.

[51] B. Driessen, A. Poschmann, and C. Paar, “Comparison of Innovative Signature Al-
gorithms for WSNs”, Proceedings of the First ACM Conference on Wireless Network
Security (WiSec’08), pp. 30-35, 2008.

[52] I. Duursma, P. Gaudry, and F. Morain, “Speeding up the Discrete Log Computation
on Curves with Automorphisms”, Advances in Cryptology — ASIACRYPT’1999,
LNCS 1716, K. Y. Lam, E. Okamoto, C. Xing (eds.), Berlin, Germany: Springer-
Verlag, pp. 103-121, 1999.

153

[53] I. Duursma and H. S. Lee, “Tate Pairing Implementation for Hyperelliptic Curves
y2 = xp − x + d,” Advances in Cryptology - ASIACRYPT’2003, LNCS 2894, C. S.
Laih (ed.), Berlin, Germany: Springer-Verlag, pp. 111-123, 2003.

[54] ECRYPT Network of Excellence. The Stream Cipher Project: eSTREAM. Available
at http://www.ecrypt.eu.org/stream/.

[55] T. Eisenbarth, S. Kumar, C. Paar, A. Poschmann, and L. Uhsadel, “A Survey of
Lightweight-Cryptography Implementations”, IEEE Design & Test of Computers,
vol. 24, no. 6, pp. 522-533, 2007.

[56] D. Engels, X. Fan, G. Gong, H. Hu, and E. M. Smith, “Ultra-Lightweight Cryptogra-
phy for Low-Cost RFID Tags: Hummingbird Algorithm and Protocol”, Centre for Ap-
plied Cryptographic Research (CACR) Technical Reports, CACR 2009-29, available
at http://www.cacr.math.uwaterloo.ca/techreports/2009/cacr2009-29.pdf.

[57] D. Engels, X. Fan, G. Gong, H. Hu, and E. M. Smith, “Hummingbird: Ultra-
Lightweight Cryptography for Resource- Constrained Devices”, to appear in the
Proceedings of The 14th International Conference on Financial Cryptography and
Data Security - FC 2010, Berlin, Germany: Springer-Verlag, 2010.

[58] N. N. Espresso. Available at http://embedded.eecs.berkeley.edu/pubs/

downloads/espresso/index.htm, November 1994.

[59] X. Fan and G. Gong, “Key Revocation Based on Dirichlet Multinomial Model for
Mobile Ad Hoc Networks”, The Fourth IEEE LCN Workshop on Network Security
(WNS 2008), pp. 958-965, 2008.

[60] X. Fan, H. Hu, G. Gong, E. M. Smith and D. Engels, “Lightweight Implementa-
tion of Hummingbird Cryptographic Algorithm on 4-Bit Microcontrollers”, The 1st
International Workshop on RFID Security and Cryptography 2009 (RISC’09), pp.
838-844, 2009.

[61] X. Fan, G. Gong, and D. Jao, “Speeding Up Pairing Computations on Genus 2
Hyperelliptic Curves with Efficiently Computable Automorphisms”, Pairing-Based
Cryptography - Pairing 2008, LNCS 5209, S.D. Galbraith, K.G. Paterson (eds.),
Berlin, Germany: Springer-Verlag, pp. 243-264, 2008.

[62] X. Fan, G. Gong, and D. Jao, “Efficient Pairing Computation on Genus 2 Curves in
Projective Coordinates”, Selected Areas in Cryptography - SAC 2008, LNCS 5381,
R. Avanzi, L. Keliher, F. Sica (eds.), Berlin, Germany: Springer-Verlag, pp. 18-34,
2009.

154

[63] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer, “Strong Authentication for RFID
Systems Using the AES Algorithm”, The 6th International Workshop on Crypto-
graphic Hardware and Embedded Systems-CHES 2004, LNCS 3156, M. Joye, J.-J.
Quisquater (eds.), Berlin, Germany: Springer-Verlag, pp. 357-370, 2004.

[64] M. Feldhofer, J. Wolkerstorfer, and V. Rijmen, “AES Implementation on a Grain of
Sand”, IEE Proceedings Information Security, vol. 15, no. 1, pp. 13-20, 2005.

[65] D. Freeman, “Constructing Pairing-Friendly Genus 2 Curves over Prime Fields with
Ordinary Jacobians”, Pairing-Based Cryptography - Pairing 2007, LNCS 4575, T.
Takagi, T. Okamoto, E. Okamoto, T. Okamoto (eds.), Berlin, Germany: Springer-
Verlag, pp. 152-176, 2007.

[66] G. Frey and T. Lange, “Fast Bilinear Maps from The Tate-Lichtenbaum Pairing on
Hyperelliptic Curves”, Algorithmic Number Theory Symposium - ANTS VII, LNCS
4076, F. Hess, S. Pauli, M. Pohst (eds.), Berlin, Germany: Springer-Verlag, pp.
466-479, 2006.

[67] G. Frey and H.-G. Rück, “A Remark Concerning m-Divisibility and the Discrete
Logarithm Problem in the Divisor Class Group of Curves”, Mathematics of Compu-
tation, 62(206):865-874, 1994.

[68] E. Furukawa, M. Kawazoe, and T. Takahashi, “Counting Points for Hyperelliptic
Curves of Type y2 = x5 + ax over Finite Prime Fields”, Selected Areas in Cryptog-
raphy - SAC 2003, LNCS 3006, M. Matsui, R. Zuccherato (eds.), Berlin, Germany:
Springer-Verlag, pp. 26-41, 2004.

[69] S. D. Galbraith, J. F. McKee, and P. C. Valença, “Ordinary Abelian Varieties Having
Small Embedding Degree”, Finite Fields and Their Applications, vol. 13, iss. 4, pp.
800-814, 2007.

[70] P. Gaudry, “An Algorithm for Solving the Discrete Log Problem on Hyperelliptic
Curves”, Advances in Cryptology - EUROCRYPT’2000, LNCS 1807, B. Preneel (ed.),
Berlin, Germany: Springer-Verlag, pp. 19-34, 2000.

[71] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis,
Second Edition, Boca Raton, Florida, USA: Chapman & Hall/CRC, 2004.

[72] T. Good and M. Benaissa, “AES on FPGA from the Fastest to the Smallest”, The 7th
International Workshop on Cryptographic Hardware and Embedded Systems - CHES
2005, LNCS 3659, J. R. Rao, B. Sunar (eds.), Berlin, Germany: Springer-Verlag, pp.
427-440, 2005.

155

[73] T. Good and M. Benaissa, “ASIC Hardware Performance”, New Stream Cipher De-
sign - the eStream Finalists, LNCS 4986, M. Robshaw and O. Bilet (eds.), Berlin,
Germany: Springer-Verlag, pp. 267-293, 2008.

[74] X. Guo, Z. Chen, and P. Schaumont, “Energy and Performance Evaluation of an
FPGA-Based SoC Platform with AES and PRESENT Coprocessors”, Embedded
Computer Systems: Architectures, Modeling, and Simulation - SAMOS’2008, LNCS
5114, M. Berekovic, N. Dimopoulos, and S. Wong (eds.), Berlin, Germany: Springer-
Verlag, pp. 106-115, 2008.

[75] R. Granger, F. Hess, R. Oyono, N. Thériault, and F. Vercauteren, “Ate Pairing on
Hyperelliptic Curves”, Advance in Cryptology - EUROCRYPT’2007, LNCS 4515, M.
Naor (ed.), Berlin, Germany: Springer-Verlag, pp. 430-447, 2007.

[76] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz, “Comparing Elliptic
Curve Cryptography and RSA on 8-bit CPUs”, The 6th International Workshop on
Cryptographic Hardware and Embedded Systems-CHES 2004, LNCS 3156, M. Joye
and J.-J. Quisquater (eds.), Berlin, Germany: Springer-Verlag, pp. 119-132, 2004.

[77] M. Haneda, M. Kawazoe, and T. Takahashi, “Suitable Curves for Genus-4 HEC over
Prime Fields: Point Counting Formulae for Hyperelliptic Curves of Type y2 = x2k+1+
ax”, The 32nd International Colloquium on Automata, Languages and Programming
- ICALP 2005, LNCS 3580, L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi,
M. Yung (eds.), Berlin, Germany: Springer-Verlag, pp. 539-550, 2005.

[78] P. Hämäläinen, T. Alho, M. Hännikäinen, and T. D. Hämäläinen, “Design and Imple-
mentation of Low-Area and Low-Power AES Encryption Hardware Core”, The 9th
EUROMICRO Conference on Digital System Design: Architectures, Methods and
Tools - DSD 2006, pp. 577-583, IEEE Computer Society, 2006.

[79] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve Cryptography,
New York, USA: Springer-Verlag, 2004.

[80] C. Ó. hÉigeartaigh, and M. Scott, “Pairing Calculation on Supersingular Genus 2
Curves”, Selected Areas in Cryptography - SAC 2006, LNCS 4356, E. Biham, A. M.
Youssef (eds.), Berlin, Germany: Springer-Verlag, pp. 302-316, 2007.

[81] F. Hess, N. P. Smart, and F. Vercauteren, “The Eta Pairing Revisited”, IEEE Trans-
actions on Information Theory, 52(10):4595-4602, 2006.

[82] M. Hell, T. Johansson, and W. Meier, “Grain: A Stream Cipher for Constrained
Environments”, International Journal of Wireless and Mobile Computing, vol. 2, no.
1, pp. 86-93, 2007.

156

[83] L. Hitt, “Families of Genus 2 Curves with Small Embedding Degree”, Cryptology
ePrint Archive, Report 2007/001, 2007, http://eprint.iacr.org/2007/001.

[84] K. Hoeper, “Authentication and Key Exchange in Mobile Ad Hoc Networks”, Ph.D.
thesis, Department of Electrical and Computer Engineering, University of Waterloo,
Waterloo, Canada, 2007.

[85] K. Hoeper and G. Gong, “Identity-Based Key Exchange Protocols for Ad Hoc Net-
works”, Proceedings of the Canadian Workshop on Information Theory (CWIT’05),
pp. 127-130, 2005.

[86] K. Hoeper and G. Gong, “Key Revocation for Identity-Based Schemes in Mobile Ad
Hoc Networks”, Proceedings of the 5th International Conference on Ad-Hoc, Mobile,
and Wireless Networks (ADHOC-NOW 2006), LNCS 4104, Thomas Kunz, S. S. Ravi
(eds.), Berlin, Germany: Springer-Verlag, pp. 224-237, 2006.

[87] D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. S. Koo, C. Lee, D. Chang, J. Lee,
K. Jeong, H. Kim, and S. Chee, “HIGHT: A New Block Cipher Suitable for Low-
Resource Device”, The 8th International Workshop on Cryptographic Hardware and
Embedded Systems-CHES 2006, LNCS 4249, L. Goubin and M. Matsui (eds.), Berlin,
Germany: Springer-Verlag, pp. 46-59, 2006.

[88] R. Housley, W. Polk, W. Ford, and D. Solo, Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile, RFC 3280, 2002.

[89] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Rushing Attacks and Defense in Wireless
Ad Hoc Network Routing Protocols”, Proceeding of the 2003 ACM Workshop on
Wireless Security (WiSe 2003), pp. 30-40, 2003.

[90] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Wormhole Attacks in Wireless Networks”,
IEEE Journal on Selected Areas in Communications, 24(2): 318-328, 2006.

[91] Intel Corporation. “Intel PXA27x Processor Family”. Available at http://int.

xscale-freak.com/XSDoc/PXA27X/28000304.pdf.

[92] T. Jakobsen and L. Knudsen, “The Interpolation Attack on Block Ciphers”, The
4th Annual Fast Software Encryption Workshop - FSE 1997, LNCS 1267, E. Biham
(ed.), Berlin, Germany: Springer-Verlag, pp. 28-40, 1997.

[93] D. B. Johnson and D. A. Maltz, “Dynamic Source Routing in Ad Hoc Wireless
Networks”, Mobile Computing, vol. 353, Chapter 5, pp. 153-181, Kluwer Academic
Publishers, 1996.

157

[94] A. Jøsang, “Probabilistic Logic Under Uncertainty”, Proceedings of the thirteenth
Australasian symposium on Theory of computing - Volume 65, pp. 101-110, 2007.

[95] A. Jøsang and J. Haller, “Dirichlet Reputation Systems”, Proceedings of the 2nd
International Conference on Availability, Reliability and Security (ARES 2007), pp.
112-119, 2007.

[96] A. Jøsang and R. Ismail, “The Beta Reputation Systems”, Proceedings of the 15th
Bled Electronic Commerce Conference - eReality: Constructing the eEconomy, pp.
324-337, 2002.

[97] A. Jøsang, R. Ismail, and C. Boyd, “A Survey of Trust and Reputation Systems
for Online Service Provision”, Decision Support Systems, vol. 43, no. 2, pp. 618-644,
2007.

[98] J.-P. Kaps, “Chai-Tea, Cryptographic Hardware Implemenations of xTEA”, The 9th
International Conference on Cryptology in India - INDOCRYPT 2008, LNCS 5356,
D.R. Chowdhury, V. Rijmen, and A. Das (eds.), Berlin, Germany: Springer-Verlag,
pp. 363-375, 2008.

[99] M. Kawazoe and T. Takahashi, “Pairing-friendly Hyperelliptic Curves with Ordinary
Jacobians of Type y2 = x5 +ax”, Pairing-Based Cryptography - Pairing 2008, LNCS
5209, S.D. Galbraith, K.G. Paterson (eds.), Berlin, Germany: Springer-Verlag, pp.
164-177, 2008.

[100] P. C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems”, Advances in Cryptology - CRYPTO’96, LNCS 1109, N. Koblitz
(ed.), Berlin, Germany: Springer-Verlag, pp. 104-113, 1996.

[101] P. C. Kocher, “On Certificate Revocation and Validation”, Proceedings of the
2nd International Conference on Financial Cryptography - FC’98), LNCS 1465, R.
Hirschfeld (ed.), Berlin, Germany: Springer-Verlag, pp. 172-177, 1998.

[102] J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang, “Providing Robust and Ubiquitous
Security Support for Mobile Ad Hoc Networks”, Proceedings of the 9th International
Conference on Network Protocols (ICNP’01), pp. 251-260, 2001.

[103] S. Kozaki, K. Matsuo, and Y. Shimbara, “Skew-Frobenius Maps on Hyperelliptic
Curves”, The 2007 Symposium on Cryptography and Information Security - SCIS
2007, IEICE Japan, 1D2-4, January 2007.

[104] X. Lai, “Higher Order Derivatives and Differential Cryptanalysis”, Proceedings of
Symposium on Communication, Coding and Cryptography, in honor of James L.
Massey on the occasion of his 60’th birthday, 1994.

158

[105] T. Lange, “Formulae for Arithmetic on Genus 2 Hyperelliptic Curves”, Applicable
Algebra in Engineering, Communication and Computing, vol.15, No.5, pp. 295-328,
2005.

[106] G. Leander, C. Paar, A. Poschmann, and K. Schramm, “New Lightweight DES
Variants”, The 14th Annual Fast Software Encryption Workshop-FSE 2007, LNCS
4593, A. Biryukov (ed.), Berlin, Germany: Springer-Verlag, pp. 196-210, 2007.

[107] G. Leander and A. Poschmann, “On the Classification of 4 Bit S-Boxes”, The 1st
International Workshop on the Arithmetic of Finite Fields - WAIFI 2007, LNCS
4547, C. Carlet and B. Sunar (eds.), Berlin, Germany: Springer-Verlag, pp. 159-176,
2007.

[108] E. Lee, H.-S. Lee, and Y. Lee, “Eta Pairing Computation on General Divisors over
Hyperelliptic Curves y2 = x7 − x± 1”, Pairing-Based Cryptography - Pairing 2007,
LNCS 4575, T. Takagi, T. Okamoto, E. Okamoto, and T. Okamoto (eds.), Berlin,
Germany: Springer-Verlag, pp. 349-366, 2007.

[109] C. Lim and T. Korkishko, “mCrypton - A Lightweight Block Cipher for Security of
Low-cost RFID Tags and Sensors”, Workshop on Information Security Applications-
WISA 2005, LNCS 3786, J. Song, T. Kwon, and M. Yung (eds.), Berlin, Germany:
Springer-Verlag, pp. 243-258, 2005.

[110] D. Liu and P. Ning, “Multi-Level µTESLA: Broadcast Authentication for Distributed
Sensor Networks”, ACM Transactions on Embedded Computing Systems, vol. 3, no.
4, pp. 800-836, 2004.

[111] A. Liu and P. Ning, ”TinyECC: A Configurable Library for Elliptic Curve Cryptog-
raphy in Wireless Sensor Networks,” Proceedings of the 7th International Conference
on Information Processing in Sensor Networks (IPSN 2008), SPOTS Track, pp. 245-
256, 2008.

[112] D. Liu, P. Ning, S. Zhu, and S. Jajodia, “Practical Broadcast Authentication in
Sensor Networks”, Proceedings of the Second Annual International Conference on
Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous 2005), pp.
118-129, 2005.

[113] D. Liu, Y. Yang, J. Wang, and H. Min, “A Mutual Authentication Proto-
col for RFID Using IDEA”, Auto-ID Labs White Paper, WP-HARDWARE-
048, March 2009, available at http://www.autoidlabs.org/uploads/media/

AUTOIDLABS-WP-HARDWARE-048.pdf.

159

[114] J. López, D. Aranha, D. Câmara, R. Dahab, L. Oliveira, and C. Lopes, “Fast
Implementation of Elliptic Curve Cryptography and Pairing Computation for
Sensor Networks”, The 13th Workshop on Elliptic Curve Cryptography (ECC
2009), Available at http://ecc.math.ucalgary.ca/sites/ecc.math.ucalgary.

ca/files/u5/Lopez_ECC2009.pdf.

[115] M. Luk, A. Perrig, and B. Whillock, “Seven Cardinal Properties of Sensor Network
Broadcast Authentication”, Proceedings of the Fourth ACM workshop on Security of
Ad Hoc and Sensor Networks (SASN’06), pp. 147-156, 2006.

[116] J. Luo, J.-P. Hubaux, and P.T. Eugster, “DICTATE: Distributed CerTification Au-
thority with probabilisTic frEshness for Ad Hoc Networks”, IEEE Transactions on
Dependable and Secure Computing, Vol. 2, No. 4, pp. 311-323, 2005.

[117] H. Luo, J. Kong, P. Zerfos, S. Lu, and L. Zhang, “URSA: Ubiquitous and Rou-
bust Access Control for Mobile Ad Hoc Networks”, IEEE/ACM Transactions on
Networking, vol.12, no.6, pp. 1049-1063, 2004.

[118] F. Mace, F.-X. Standaert, and J.-J. Quisquater, “ASIC Implemenations of the Block
Cipher SEA for Constrained Applications”, RFID Security - RFIDsec 2007, Work-
shop Record, pp. 103-114, 2007.

[119] F. Mace, F.-X. Standaert, and J.-J. Quisquater, “FPGA Implemenation(s) of a Scal-
able Encryption Algorithm”, IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 16, no. 2, pp. 212-216, 2008.

[120] A. Malpani, S. Galperin, M. Myers, R. Ankney, and C. Adams, X.509 Internet Public
Key Infrastructure Online Certificate Status Protocol – OCSP, RFC 2560, 1999.

[121] D. J. Malan, M. Welsh, and M. D. Smith, “Implementing Public-Key Infrastructure
for Sensor Networks”, ACM Transactions on Sensor Networks, vol. 4, no. 4, pp.
22:1-22:23, 2008.

[122] A. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptog-
raphy, Boca Raton, Florida, USA: Chapman & Hall/CRC, 1997.

[123] S. Micali, “Efficient Certificate Revocation”, Technical Memo MIT/LCS/TM-542b,
Massachusetts Institute of Technology, Laboratory for Computer Science, March
1996.

[124] P. Michiardi and R. Molva, “CORE: A Collaborative Reputation Mechanism to
Enforce Node Cooperation in Mobile Ad Hoc Networks”, Proceedings of the IFIP
TC6/TC11 Sixth Joint Working Conference on Communication and Multimedia Se-
curity, pp. 107-121, 2002.

160

[125] V. S. Miller, “Short Programs for Functions on Curves”, Unpublished manuscript,
1986, available at http://crypto.stanford.edu/miller/miller.pdf.

[126] V. S. Miller, “The Weil Pairing and Its Efficient Calculation”, Journal of Cryptology,
vol. 17, no. 4, pp. 235-261, 2004.

[127] A. Mishra, K. Nadkarni, and A. Patcha, “Intrusion Detection in Wireless Ad Hoc
Networks”, IEEE Wireless Communication, vol. 11, no. 1, pp. 48-60, Feb. 2004.

[128] Y. Miyamoto, H. Doi, K. Matsuo, J. Chao and S. Tsujii, “A Fast Addition Algo-
rithm of Genus Two Hyperelliptic Curve”, The 2002 Symposium on Cryptography
and Information Security - SCIS 2002, pp. 497-502, 2002, in Japanese.

[129] T. Moore, J. Clulow, R. Anderson, and S. Nagaraja, “New Strategies for Revocation
in Ad Hoc Networks”, Proceedings of the Fourth European Workshop on Security
and Privacy in Ad Hoc and Sensor Networks (ESAS 2007), LNCS 4572, F. Stajano,
C. Meadows, S. Capkun, T. Moore (eds.), Berlin, Germany: Springer-Verlag, pp.
232-246, 2007.

[130] D. Mumford, “Tata Lectures on Theta II”, Prog. Math., vol. 43. Birkhäuser, 1984.

[131] J. Mundinger, and J.-Y. Le Boudec, “Analysis of A Robust Reputation System for
Self-Organized Networks,” European Transactions on Telecommunications, Special
Issue on Self-Organisation in Mobile Networking, vol.16, no.5, pp. 375-384, 2005.

[132] J. Mundinger, and J.-Y. Le Boudec, “Analysis of A Reputation System for Mobile
Ad-hoc Networks with Liars,” Proceedings of WiOpt 2005: Modeling and Optimiza-
tion in Mobile, Ad Hoc and Wireless Networks, pp. 41-46, 2005.

[133] J. Mundinger, and J.-Y. Le Boudec, “The Impact of Liars on Reputation in Social
Networks,” Proceedings of Social Network Analysis: Advances and Empirical Appli-
cations Forum, Oxford, UK, July 2005.

[134] P. Ning, A. Liu, and W. Du, “Mitigating DoS Attacks against Broadcast Authenti-
cation in Wireless Sensor Networks”, ACM Transactions on Sensor Networks, vol. 4,
no. 1, pp. 1-35, January 2008.

[135] National Institute of Standards and Technology (NIST). Wireless Ad Hoc Network
Projects. Available at http://www.antd.nist.gov/wahn_home.shtml.

[136] M. Naor and K. Nissim, “Certificate Revocation and Certificate Update”, IEEE
Journal on Selected Areas in Communications, vol. 18, no. 4, pp. 561-570, 2000.

161

[137] L. B. Oliveira, D. F. Aranha, E. Morais, F. Daguano, J. López, and R. Dahab,
“TinyTate: Computing the Tate Pairing in Resource-Constrained Sensor Nodes”,
Proceedings of the Sixth IEEE International Symposium on Network Computing and
Applications (NCA 2007), pp. 318-323, 2007.

[138] L. B. Oliveira, M. Scott, J. López, and R. Dahab, “TinyPBC: Pairings for Authen-
ticated Identity-Based Non-Interactive Key Distribution in Sensor Networks”, Pro-
ceedings of the 5th International Conference on Networked Sensing Systems (INSS
2008), pp. 173-180, 2008.

[139] Y-H. Park, S. Jeong, and J. Lim, “Speeding Up Point Multiplication on Hyperellip-
tic Curves with Efficiently-Computable Endomorphisms”, Advance in Cryptology -
EUROCRYPT’2002, LNCS 2332, L.R. Knudsen (ed.), Berlin, Germany: Springer-
Verlag, pp. 197-208, 2002.

[140] C. E. Perkins, Ad Hoc Networking, Addison-Wesley, Boston, MA, 2001.

[141] C. E. Perkins, E. M. Royer, and S. R. Das, “Ad Hoc On Demand Vector
(AODV) Routing”, IETF Internet Draft, Internet Draft (draft-ietf-manet-aodv-
09.txt), November 2001, Work in Progress.

[142] A. Perrig, “The BiBa One-time Signature and Broadcast Authentication”, Proceed-
ings of the ACM Conference on Computer and Communications Security, pp. 28-37,
2001.

[143] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler, “SPINS: Security
Protocols for Sensor Networks”, ACM Wireless Networks, vol. 8, no. 5, pp. 521-534,
2002.

[144] A. Poschmann, “Lightweight Cryptography - Cryptographic Engineering for a Per-
vasive World”, Ph.D. Thesis, Department of Electrical Engineering and Information
Sciences, Ruhr-Universitäet Bochum, Bochum, Germany, 2009.

[145] K. Ren, W. Lou, K. Zeng, and P. J. Moran, “On Broadcast Authentication in Wireless
Sensor Networks”, IEEE Transactions on Wireless Communications, vol. 6, no. 11,
pp. 4136-4144, 2007.

[146] K. Ren, S. Yu, W. Lou, and Y. Zhang, “Multi-user Broadcast Authentication in
Wireless Sensor Networks”, to appear in IEEE Transactions on Vehicular Technology,
2009.

[147] C. Rolfes, A. Poschmann, G. Leander, and C. Paar, “Ultra-Lightweight Implemen-
tations for Smart Devices-Security for 1000 Gate Equivalents”, The 8th Smart Card

162

Research and Advanced Application IFIP Conference - CARDIS 2008, LNCS 5189,
G. Grimaud and F.-X. Standaert (eds.), Berlin, Germany: Springer-Verlag, pp. 89-
103, 2008.

[148] G. Rouvroy, F.-X. Standaert, J.-J. Quisquater, and J.-D. Legat, “Compact and Effi-
cient Encryption/Decryption Module for FPGA Implementation of the AES Rijndael
VeryWell Suited for Small Embedded Applications”, International Conference on In-
formation Technology: Coding and Computing - ITCC 2004, pp. 583-587, 2004.

[149] Rowley Associates. CrossWorks for MSP430. Available at http://www.rowley.co.

uk/msp430/index.htm.

[150] K. Rubin and A. Silverberg, “Supersingular Abelian Varieties in Cryptography”, Ad-
vance in Cryptology - CRYPTO’2002, LNCS 2442, M. Yung (ed.), Berlin, Germany:
Springer-Verlag, pp. 336-353, 2002.

[151] N. Saxena, G. Tsudik, and J.H. Yi, “Identity-Based Access Control for Ad Hoc
Groups”, The 7th International Conference on Information Security and Cryptology
- ICISC 2004), LNCS 3506, C. Park, S. Chee (eds.), Berlin, Germany: Springer-
Verlag, pp. 362-379, 2004.

[152] M. Scott, “Faster Pairings Using an Elliptic Curve with an Efficient Endomorphism”,
Progress in Cryptology - INDOCRYPT’2005, LNCS 3797, S. Maitra, C.E. Veni Mad-
havan and R. Venkatesan (eds.), Berlin, Germany: Springer-Verlag, pp. 258-269,
2005.

[153] M. Scott and P.L.S.M. Barreto, “Compressed Pairings”, Advance in Cryptology -
CRYPTO’2004, LNCS 3152, M. Franklin (ed.), Berlin, Germany: Springer-Verlag,
pp. 140-156, 2004.

[154] S. C. Seo, D.-G. Han, and S. Song, “TinyECCK: Efficient Elliptic Curve Cryptog-
raphy Implemenation over GF (2m) on 8-bit Micaz Mote”, IEICE Transactions on
Information and Systems, E91-D(5):1338-1347, 2008.

[155] G. Shafer, A Mathematical Theory of Evidence, Princeton University, 1976.

[156] A. Shamir, “How to Share a Secret”, Communications of the ACM, vol. 22, no. 11,
pp. 612-613, 1979.

[157] A. Shamir, “Identity Based Cryptosystems and Signature Schemes”, Proceedings of
Advances in Cryptology - CRYPTO 1984, LNCS 196, G. R. Blakley, D. Chaum (eds.),
Berlin, Germany: Springer-Verlag, pp. 47-53, 1984.

163

[158] M. Shirase, Y. Miyazaki, T. Takagi, D.-G. Han, and D. Choi, “Efficient Implemen-
tation of Pairing Based Cryptography on a Sensor Node”, IEICE Transactions on
Information and Systems, E92-D(5):909-917, 2009.

[159] P. Szczechowiak, A. Kargl, M. Scott, and M. Collier, “On the Application of Pairing
Based Cryptography to Wireless Sensor Networks”, Proceedings of the Second ACM
Conference on Wireless Network Security (WiSec’09), pp. 1-12, 2009.

[160] J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics
106. Springer-Verlag, 1986.

[161] J. Solinas, “Generalized Mersenne Primes”, Centre for Applied Cryptographic Re-
search (CACR) Technical Reports, CORR 99-39, available at http://www.cacr.

math.uwaterloo.ca/techreprots/1999/corr99-39.pdf.

[162] F. Stajano and R. Anderson, “The Resurrecting Duckling: Security Issues for Ad-hoc
Wireless Networks”, Proceedings of 7th International Workshop on Security Proto-
cols, ser. LNCS 1796, B. Christianson, B. Crispo, and M. Roe (eds.), Berlin, Ger-
many: Springer-Verlag, pp. 172-194, 1999.

[163] F.-X. Standaert, G. Piret, N. Gershenfeld, and J.-J. Quisquater, “SEA: A Scal-
able Encryption Algorithm for Small Embedded Applications”, The 7th IFIP
WG 8.8/11.2 International Conference on Smart Card Research and Advanced
Applications-CARDIS 2006, LNCS 3928, J. Domingo-Ferrer, J. Posegga, and D.
Schreckling (eds.), Berlin, Germany: Springer-Verlag, pp. 222-236, 2006.

[164] F.-X. Standaert, G. Piret, G. Rouvroy, and J.-J. Quisquater, “FPGA Implementa-
tions of the ICEBERG Block Cipher”, Integration, the VLSI Journal, vol. 40, iss. 1,
pp. 20-27, 2007.

[165] K. Takashima, “Scaling Security of Elliptic Curves with Fast Pairing Using Efficient
Endomorphism”, IEICE Transactions on Fundamentals of Electronics, Communica-
tions and Computer Science, vol. E90-A NO.1, pp. 152-159, January 2007.

[166] Texas Instrument Inc. “MSP430 16-bit Ultra-Low Power MCUs”. Available at
http://focus.ti.com/mcu/docs/mcuprodoverview.tsp?sectionId=95&tabId=

140&familyId=342.

[167] Texas Instrument Inc. “2.4 GHz IEEE 802.15.4/ZigBee-ready RF Transceiver”.
Available at http://focus.ti.com/lit/ds/symlink/cc2420.pdf.

[168] M. Vogt, A. Poschmann, and C. Paar, “Cryptography is Feasible on 4-Bit Microcon-
trollers - A Proof of Concept”, 2009 IEEE International Conference on RFID, pp.
241-248, 2009.

164

[169] D. Wagner, “Cryptanalysis of Some Recently-Proposed Multiple Modes of Opera-
tion”, The 5th Annual Fast Software Encryption Workshop - FSE 1998, LNCS 1372,
S. Vaudenay (ed.), Berlin, Germany: Springer-Verlag, pp. 254-269, 1998.

[170] H. Wang and Q. Li, “Efficient Implementation of Public Key Cryptosystems on
MICAz Motes”, The 8th International Conference on Information and Communica-
tions Security-ICICS 2006, LNCS 4307, P. Ning, S. Qing, and N. Li (eds.), Berlin,
Germany: Springer-Verlag, pp. 519-528, 2006.

[171] WinAVR. Suite of Executable, Open Source Software Development Tools for the At-
mel AVR Series of RISC Microprocessors Hosted on the Windows Platform. Available
at http://winavr.sourceforge.net/.

[172] A. Withby, A. Jøsang, and J. Indulska, “Filtering Out Unfair Ratings in Bayesian
Reputation Systems”, The Icfain Journal of Management Research, vol. 4, no. 2, pp.
48-64, 2005.

[173] T. Wollinger, J. Pelzl, V. Wittelsberger, C. Paar, G. Saldamli, and Ç. K. Koç,
“Elliptic & Hyperelliptic Curves on Embedded µP,” ACM Transactions in Embedded
Computing Systems (TECS), vol. 3, no. 3, pp. 509-533, 2004.

[174] Xilinx Inc., “Spartan-3 FPGA Family Data Sheet”, DS099, December 4, 2009, avail-
able at http://www.xilinx.com/support/documentation/data_sheets/ds099.

pdf.

[175] X. Xiong, D. C. Wong, and X. Deng, “TinyPairing: Computing Tate Pairing on
Sensor Nodes with Higher Speed and Less Memory”, Proceedings of the Eighth
IEEE International Symposium on Network Computing and Applications (NCA’09),
pp. 187-194, 2009.

[176] S. Yamakawa, Y. Cui, K. Kobara, and H. Imai, “Lightweight Broadcast Authentica-
tion Protocols Reconsidered”, Proceedings of the IEEE Wireless Communications &
Networking Conference (WCNC 2009), 2009.

[177] A. Youssef and G. Gong, “On the Interpolation Attacks on Block Ciphers”, The 7th
Annual Fast Software Encryption Workshop - FSE 2000, LNCS 1978, B. Schneier
(ed.), pp. 109-120, Berlin, Germany: Springer-Verlag, 2001.

[178] Y. Zhang, W. Liu, W. Lou, and Y. Fang, “Location-Based Compromise-Tolerant
Security Mechanisms for Wireless Sensor Networks”, IEEE Journal on Selected Areas
in Communications, vol. 24, no. 2, pp. 247-260, 2006.

165

[179] Y. Zhang, W. Liu, W. Lou, and Y. Fang, “Securing Mobile Ad Hoc Networks with
Certificateless Public Keys”, IEEE Transactions on Dependable and Secure Comput-
ing, vol. 3, no. 4, pp. 386-399, 2006.

[180] Q. Zhang, T. Yu, and P. Ning, “A Framework for Identifying Compromised Nodes in
Wireless Sensor Networks”, ACM Transactions in Information and Systems Security
(TISSEC), vol. 11, no. 3, pp. 1-37, 2008.

[181] C. Zhao, F. Zhang, and J. Huang, “Speeding Up the Bilinear Pairings Computation
on Curves with Automorphisms”, Cryptology ePrint Archive, Report 2006/474, 2006,
http://eprint.iacr.org/2006/474.

[182] L. Zhou and Z.J. Hass, “Securing Ad Hoc Networks”, IEEE Networks Special Issue
on Network Security, vol. 13, no. 6, pp. 24-30, 1999.

[183] P. Zimmermann, The Official PGP User’s Guide, MIT Press, 1995.

166

