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Abstract

The next-generation wireless networks are expected to integrate diverse network

architectures and various wireless access technologies to provide a robust solution for

ubiquitous broadband wireless access, such as wireless local area networks (WLANs),

Ultra-Wideband (UWB), and millimeter-wave (mmWave) based wireless personal area

networks (WPANs), etc. To enhance the spectral efficiency and link reliability, smart

antenna systems have been proposed as a promising candidate for future broadband

access networks. To effectively exploit the increased capabilities of the emerging wire-

less networks, the different network characteristics and the underlying physical layer

features need to be considered in the medium access control (MAC) design, which plays

a critical role in providing efficient and fair resource sharing among multiple users.

In this thesis, we comprehensively investigate the MAC design in both single- and

multi-hop broadband wireless networks, with and without infrastructure support. We

first develop mathematical models to identify the performance bottlenecks and con-

straints in the design and operation of existing MAC. We then use a cross-layer ap-

proach to mitigate the identified bottleneck problems. Finally, by evaluating the per-

formance of the proposed protocols with analytical models and extensive simulations,

we determine the optimal protocol parameters to maximize the network performance.

In specific, a generic analytical framework is developed for capacity study of an IEEE

802.11 WLAN in support of non-persistent asymmetric traffic flows. The analysis can

be applied for effective admission control to guarantee the quality of service (QoS)

performance of multimedia applications. As the access point (AP) becomes the bottle-

neck in an infrastructure based WLAN, we explore the multiple-input multiple-output

(MIMO) capability in the future IEEE 802.11n WLANs and propose a MIMO-aware

multi-user (MU) MAC. By exploiting the multi-user degree of freedom in a MIMO
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system to allow the AP to communicate with multiple users in the downlink simultane-

ously, the proposed MU MAC can minimize the AP-bottleneck effect and significantly

improve the network capacity. Other enhanced MAC mechanisms, e.g., frame aggrega-

tion and bidirectional transmissions, are also studied.

Furthermore, different from a narrowband system where simultaneous transmissions

by nearby neighbors collide with each other, wideband system can support multiple con-

current transmissions if the multi-user interference can be properly managed. Taking

advantage of the salient features of UWB and mmWave communications, we propose an

exclusive region (ER) based MAC protocol to exploit the spatial multiplexing gain of

centralized UWB and mmWave based wireless networks. Moreover, instead of studying

the asymptotic capacity bounds of arbitrary networks which may be too loose to be

useful in realistic networks, we derive the expected capacity or transport capacity of

UWB and mmWave based networks with random topology. The analysis reveals the

main factors affecting the network (transport) capacity, and how to determine the best

protocol parameters to maximize the network capacity. In addition, due to limited

transmission range, multi-hop relay is necessary to extend the communication coverage

of UWB networks. A simple, scalable, and distributed UWB MAC protocol is crucial

for efficiently utilizing the large bandwidth of UWB channels and enabling numerous

new applications cost-effectively. To address this issue, we further design a distributed

asynchronous ER based MAC for multi-hop UWB networks and derive the optimal ER

size towards the maximum network throughput. The proposed MAC can significantly

improve both network throughput and fairness performance, while the throughput and

fairness are usually treated as a tradeoff in other MAC protocols.
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Chapter 1

Introduction

Motivated by the rapid evolution of wireless communication technologies and the ever-

growing demands of multimedia services, a diversity of wireless networks have been

emerging in the last decade, e.g., cellular networks, wireless metropolitan area net-

works (WMAN), IEEE 802.11 wireless local area network (WLANs), Bluetooth, Ultra-

wideband (UWB), and millimeter wave (mmWave) based wireless personal area net-

works (WPANs) and wireless body area networks (WBANs), etc. While the network

architecture, service scenarios, and underlying communication technologies make these

networks fundamentally different from each other, these networks will co-exist and op-

erate synergistically together in the next generation wireless networks to enable ubiq-

uitous broadband wireless access anywhere anytime.

Wireless medium access control (MAC) defines a set of rules for multiple users to

effectively and fairly share the radio resources [2]. As wireless communication is broad-

cast in nature, interference resulting from uncoordinated transmissions limits the link

capacity or even cause link breakage, which degrades the performance of the network

and individual users. Therefore, MAC design in wireless networks plays an important

role in efficient resource utilization and quality of service (QoS) provisioning. Although

wireless MAC has been heavily pursued in the literature, there still exists considerable
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room for improving MAC protocol performance to meet the ever-increasing demands of

broadband multimedia applications, as the emerging communication technologies bring

both great opportunities and challenges in the MAC design.

1.1 Research Challenges and Motivations

It is known that a wireless channel exhibits characteristics different from wireline be-

cause of the hostile wireless fading environment. Due to the radio propagation property,

e.g., multipath fading, signal reflection and wave dispersion, the achievable channel ca-

pacity is generally very limited and varies over time. With the recent advances in

wireless communications, next generation wireless networks will employ various physi-

cal layer techniques, e.g., multiple input multiple output (MIMO) beamforming, direc-

tional antenna, etc., to improve the link capacity and reliability. On the other hand, the

enhanced physical link capability opens a door for high rate multimedia services, which

are usually infeasible in traditional low rate wireless networks. To explore efficient

MAC design in next generation broadband wireless networks in support of multimedia

services, we first present the challenging research issues in the MAC design as follows.

1. Capacity and fairness: The proliferation of consumer electronics and popularity

of multimedia services lead to the ever-growing density of wireless networks. In

addition, wireless users may create and exchange large volumes of rich multimedia

information locally and remotely. Therefore, it is of critical importance to fully

utilize the wireless resources to push up the limit of the number of users that

can share the available wireless resources. Moreover, it is recognized that the

conventional network resource allocation strategy that maximizes the network

capacity is generally unfair because resources will always be allocated to the user

that can best exploit it [3]. As fairness is another important performance metric

in MAC design, a desirable MAC should well balance the capacity and fairness
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performance, e.g., maximize the network capacity while maintain a good fairness

performance as well.

2. QoS provisioning: Next generation wireless networks are envisioned to support

a variety of multimedia applications. Various multimedia applications have dif-

ferent QoS requirements and evaluation criteria [4, 5]. For example, interactive

media such as voice calls and video conferencing are very delay-sensitive while

video streaming and bulky data transfer are more bandwidth-intensive but can

tolerate a certain level of startup delay. Therefore, QoS aware MAC design along

with admission control are required to assure the QoS performance of multimedia

applications.

3. Infrastructure support: Some wireless networks usually operate in an infrastruc-

ture mode, such as a WLAN with an access point (AP) and a WPAN with a

piconet coordinator (PNC). However, infrastructure support may not always be

available due to user failure or mobility, and the network scaling. In this case, a

simple but robust MAC with distributed function is more desirable. It is known

that the widely deployed IEEE 802.11 Distributed Coordination Function (DCF)

does not scale well and suffer from hidden/exposed terminal problems in a multi-

hop network. How to improve the efficiency of distributed MAC in a densely

deployed multi-hop wireless network needs further investigation.

4. Peer to peer communications: To improve the transmission efficiency, users in a

WPAN can communicate with each other via direct link peer to peer transmis-

sions. In this case, the central controller is no longer the performance bottleneck

as the AP in an infrastructure WLAN. However, it is difficult to collect the

channel condition information between peer to peer links for efficient MAC layer

resource allocation. Thus, scheduling of peer to peer transmissions is much more

challenging than that of uplink or downlink transmissions.
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5. Multiple-antenna system: The next generation IEEE 802.11n WLAN uses MIMO

technology to improve communication performance. The emerging mmWave

WPAN will also employ directional antennas with a higher directivity gain to

combat high path loss in the 60 GHz mmWave channel. On one hand, the use

of multiple antennas increases the antenna operation complexity. On the other

hand, multiple antennas provides great potential for efficient space utilization of

wireless channels. Thus, we should investigate the impacts of multiple antenna

techniques on the MAC protocol design and explore low complexity scheduling

algorithms for efficient spatial division multiple access, considering different net-

work scenarios and communication features of the wireless access networks.

As a summary, efficient MAC design in next generation broadband access networks

is still fraught with many fundamental challenges because of the ever-increasing user

density, diverse QoS requirements, and various network communication scenarios, etc.

The main objective of this dissertation is to address the above research issues in the

design and analysis of MAC protocols in different wireless networks, including single-

and multi-hop networks, with and without infrastructure support, employing a single

and multiple antenna system. Towards this goal, we will 1) analytically study the

existing MAC protocols and identify their performance bottlenecks and constraints; 2)

explore the salient features of the emerging communication technologies, i.e., multiple

antenna system, UWB, and mmWave, etc., in the MAC protocol design to mitigate

the identified problems; and 3) maximize the network capacity by analyzing the MAC

protocols and fine tuning protocol parameters.

1.2 Research Contributions

The main contributions of this dissertation are listed as follows.

• Development of a generic analytical framework for the performance study of IEEE
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802.11 DCF MAC in support of non-persistent asymmetric multimedia traffic

flows [6]. The obtained voice and video capacity can be applied for effective

call admission control to maintain QoS performance of voice and video connec-

tions in a WLAN. Different enhanced MAC mechanisms, e.g., aggregation and

bidirectional transmission, are also compared [7].

• Proposal of a distributed MIMO-aware multi-user MAC in a WLAN with MIMO

capability [8]. By exploiting multi-user MIMO beamforming in the downlink, the

proposed MAC effectively mitigates the AP bottleneck effect in an infrastructure

based WLAN.

• Analytical study of IEEE 802.15.3 MAC [9]; the intrinsic relationship among pro-

tocol parameters is disclosed, which provides important guideline for parameter

setting for a hybrid MAC.

• Proposal of a novel ER based MAC for a single hop UWB/mmWave WPANs

with omni- and directional antennas [10]. By efficiently exploiting the spatial

reuse opportunities in a UWB/mmWave channel, the proposed MAC achieves

high network capacity and maintain good fairness among multiple users as well.

• Development of an analytical framework to study the spatial multiplexing capac-

ity of a UWB/mmWave WPAN with random topology, considering the physical

layer rate adaptation and different types of antennas [11, 12]. The analytical

framework can be applied to other distributed MAC protocols in general. The an-

alytical results reveal the main factors affecting the network (transport) capacity,

and the best protocol parameters, e.g., exclusive region size, can be determined

toward the maximum network capacity.

• Proposal of a distributed asynchronous ER based MAC for a multi-hop UWB

network [13]. Appropriate ER size is analytically derived to maximize the network
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capacity. The proposed MAC significantly outperforms IEEE 802.11 DCF in

terms of network throughput, transport throughput, and fairness. In addition,

the distributed and asynchronous nature makes it robust and scalable in a densely

deployed multi-hop network.

1.3 Outline of the Thesis

The remainder of the thesis is organized as follows. Chapter 2 reviews the background

of wireless MAC protocols. Chapter 3 describes the system model under consideration.

In Chapter 4, we first study MAC protocol design and analysis in WLANs. We analyze

the MAC performance of legacy IEEE 802.11 DCF and some enhanced mechanisms.

A MIMO-aware multi-user MAC in WLANs with MIMO capability is also proposed

and analyzed. In Chapter 5, we investigate the UWB and mmWave characteristics and

propose a novel ER based MAC in centralized WPANs. Theoretical network capacity

of a WPAN is analyzed and the best ER size is derived. In Chapter 6, we design

a distributed asynchronous ER based MAC for a densely deployed multi-hop UWB

network. Finally, Chapter 7 gives concluding remarks and outlines future work.
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Chapter 2

Overview of Wireless MAC

Protocols

2.1 Wireless MAC Classification

Generally, wireless MAC protocols can be classified into three categories [2]: random

access, guaranteed access and hybrid access protocols.

2.1.1 Contention-based Random Access

Random access protocols, such as pure Aloha, slotted Aloha, carrier sense multiple

access with collision avoidance (CSMA/CA), and non/p/1-persistent CSMA, etc., are

contention-based protocols that can operate in either infrastructure-based wireless net-

works or infrastructureless (ad hoc) networks. As collision detection is not available in

wireless networks, usually a random backoff procedure, e.g., binary exponential back-

off, is applied to reduce potential collisions. The main advantage of the random access

protocol is that it operates in a distributed manner and thus does not require a central-

ized controller. In addition, synchronization among users is not a necessity and thus it

is relatively simple for implementation. Asynchronous data transmissions has been a
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key factor to the overwhelming success of the IEEE 802.11 WLANs. However, as col-

lision is inevitable and the collision resolution overhead degrades the network resource

utilization, random access provides no satisfactory QoS guarantee.

2.1.2 Contention-free MAC

Unlike random access protocols, guaranteed access are contention-free protocols in

which wireless users access the medium in an orderly manner, e.g., in a round-robin

fashion. Contention-free access can also be divided into two sub-categories: Channel

partitioning access and turn-taking access. In the channel partitioning access, chan-

nel access can be partitioned in the time domain, e.g., time division multiple access

(TDMA), frequency domain, e.g., frequency division multiple access (FDMA), and code

domain, e.g., code division multiple access (CDMA), or any combinations of them. For

example, wideband-CDMA combines the frequency domain and code domain chan-

nel partitioning for multiple access. Turn-taking protocols includes polling based and

token passing based protocols. Polling based scheme is usually used in a centralized

network. The controller polls other mobile users according to a pre-defined scheduling

scheme and the user can transmit without contention only when it is polled by the

controller [14]. In a token based protocol, e.g., wireless token ring protocol [15, 16],

the ring owner determines the transmission order and the maximum transmission time

of each user. A user can transmit when he holds the token and the token has to be

passed to the next user when the maximum time is reached. Therefore, contention-free

MAC can provide a certain level of QoS in terms of bounded access delay and reserved

bandwidth.

2.1.3 Hybrid MAC

Hybrid MAC protocol operates in a request-grant fashion. In a hybrid MAC, each user

sends a request to the network controller indicating how much time or bandwidth is

8



Chapter 2. Overview of Wireless MAC Protocols

required for data transmission using a random access protocol. Based on the received

requests, the controller allocates time slots and sends grants to the requesting users

indicating the start time and the duration of data transmissions. Users can transmit

data in the reserved time duration without contentions. Thus, it is also called con-

tention based reservation access. Hybrid protocols combine the best qualities of the

random access and guaranteed access protocols to achieve flexibility, efficiency and QoS

provisioning [2].

2.2 MAC Standards in Wireless Local/Personal Area

Networks

2.2.1 IEEE 802.11 MAC

The IEEE 802.11 standard defines two modes in the MAC protocol: the mandatory

DCF mode and the optional Point Coordination Function (PCF) mode. Although the

PCF mode is designed for real-time traffic [17, 18], it is not widely deployed due to its

inefficient polling schemes, limited QoS provisioning, and implementation complexity1.

The IEEE 802.11 DCF uses the CSMA/CA mechanism [14]. A user monitors the

medium before attempting a transmission. If the medium is sensed busy, the user

defers transmission until the medium is sensed idle for a period of time equal to a DCF

InterFrame Space (DIFS). After a DIFS medium idle time, the user enters the backoff

phase and sets a random backoff counter randomly chosen from [0, CW ), where CW is

the contention window (CW) size. The backoff counter decreases by one for every time

slot if the medium is idle; otherwise, the counter freezes, and the decrement resumes

after the medium is sensed idle again for a DIFS. When the backoff counter reaches

1Since both DCF and PCF have limited support for real-time applications, the IEEE 802.11e

has been proposed to enhance the current 802.11 MAC to support applications with stringent QoS

requirements [19].

9



Chapter 2. Overview of Wireless MAC Protocols

zero, the user transmits the frame. If another user transmits a frame at the same time,

a collision occurs and both transmissions fail. After an unsuccessful transmission, CW

is doubled until it reaches the maximum value (CWmax), and the sender reschedules

the transmission by randomly choosing a backoff counter in [0, CW ). The frame is

dropped when the retransmission limit is reached. After a successful transmission, CW

is reset to its minimum value (CWmin). Upon receiving a frame successfully, the receiver

transmits an acknowledgment (ACK) following a Short InterFrame Space (SIFS). Two

medium access techniques are specified in DCF: the basic access mechanism and the

request to send/clear to send (RTS/CTS) mechanism. Frames are transmitted using

the RTS/CTS mechanism if their payload exceeds a given threshold; otherwise, the

basic access is used.

With the IEEE 802.11 DCF-based MAC, all users have the same priority to access

the channel. This is unfavorable to the AP which usually has much higher traffic

loads. In addition, the CSMA/CA mechanism was originally designed for asynchronous

data transmission, without considering delay-sensitive multimedia traffic. Before being

successfully transmitted, each frame has to wait a random time period which depends on

the network load and collisions it experienced. A high collision probability reduces the

frame service rate and accentuates the queue length and delay. On the other hand, in

order to provide satisfactory QoS for multimedia services over contention based IEEE

802.11 MAC, it is essential to quantify the network capacity for effective admission

control so that the network contentions can be controlled at a certain level to assure

the delay performance of WLAN users.

2.2.2 IEEE 802.15.3 MAC

IEEE 802.15.3 standard uses a hybrid MAC protocol, with random access periods for

network initiation/association and resource allocation, and contention-free periods for

data transmissions. Multiple users can autonomously form a piconet in which one
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Figure 2.1: 802.15.3 Superframe

of them is selected as the PNC. The PNC can collect global user information in the

piconet and allocate radio resources or schedule channel times to all user in the piconet

according to their requirements. Based on the scheduling, all devices can communicate

in a peer-to-peer fashion. Such a semi-ad hoc setting can provide better QoS than a

pure ad hoc network.

Timing in IEEE 802.15.3 is based on the superframe structure as illustrated in

Fig. 2.1. IEEE 802.15.3 defines three methods for data transmissions between wireless

users [20]: a) transmitting asynchronous data or communication commands in the

contention access period (CAP); b) allocating channel time for isochronous streams in

the channel time allocations period (CTAP); and c) allocating asynchronous channel

time in the CTAP. Although both commands and asynchronous data can be transmitted

in the CAP, it is recommended that only commands be transmitted to minimize the

length of contention period. This is desirable for reducing the protocol overheads and

inefficiency resulting from the collision avoidance mechanism used for random access.

In addition, for multimedia applications, users may need channel times on a regular

basis, and they send channel time requests during the CAP to reserve isochronous
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channel time in the following CTAP. Based on the successfully received requests from

all users, the PNC will schedule and allocate channel time in the CTAP in a TDMA

manner.

IEEE 802.15.3 MAC requires a centralized network architecture and suffers from

single-point-of-failure problem. Thus, IEEE 802.15.3 is more suitable for a network

where a central controller is usually available and network topology is relatively stable.

In public hotspots, a large number of wireless users may join and leave the network at

any time and the network topology changes dynamically. If the current PNC disappears

(e.g., powers off or moves away), it may take several seconds before the remaining users

reorganize and re-elect a new PNC [21]. In addition, when multiple piconets are used in

public hotspots to extend the communication coverage, it is very challenging and costly

to manage the inter-piconet interference which may degrade the network performance

significantly.

2.2.3 WiMedia MAC

To address the aforementioned problems in IEEE 802.15.3 MAC, the WiMedia alliance

has specified a distributed MAC based on Multi-band Orthogonal Frequency Division

Multiplexing (MB-OFDM) UWB [22]. Similar to IEEE 802.15.3, timing in WiMedia

MAC is based on the slotted superframe structure, as shown in Fig.2.2. Each super-

frame starts with a beacon period (BP). A user first senses the UWB channels for

several superframes and selects a channel for communication if a beacon is received;

otherwise, the user will select a channel and initiate a BP by itself. All users com-

municating in the same channel will collect the beacons from their neighbors and pick

up unoccupied beacon slots to transmit their own beacon frames. Data frames are

transmitted during the data transmission period (DTP), which consists of multiple

medium access slots (MASs). During the DTP, users can access the channel in an

asynchronous manner via the prioritized channel access (PCA) protocol, which is sim-
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Figure 2.2: WiMeda MAC Superframe Structure

ilar to the enhanced distributed channel access (EDCA) specified in IEEE 802.11e.

The basic difference between PCA and EDCA lies in the physical layer. Due to the

low power level of UWB signals, PCA uses preamble sensing instead of energy detec-

tion based carrier sensing in EDCA. Users carrying isochronous traffic can also reserve

multiple MASs for contention-free channel access via a distributed reservation protocol

(DRP). A device first sends a reservation request to the receiver either in the beacon

or using DRP or PCA. The receiver analyzes the channel time utilization of its neigh-

bors and responds to the sender. If the requested MASs are not available, the receiver

will provide additional information (e.g., available MASs in its beacon group) to the

sender. Otherwise, a successful reservation is announced in the beacons so that other

users within the transmission range become aware of the reservation and defer their

channel access during that period.

WiMedia MAC is still a TDMA based MAC and requires channel time synchroniza-

tion among users, i.e., all users communicating in the same channel need to synchronize

the BP starting time with each other. However, synchronization is difficult and costly

in a multi-hop network. In a densely deployed multi-hop network where multiple bea-
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con groups may overlap with each other, merging different BPs into one single common

BP is not a trivial task. Another problem is when a burst of users join in the network

during one superframe, it is very likely that two or more users may select the same bea-

con slot which causes beacon collisions. A user can only determine a beacon collision

or transmission error if its own address is not included in its neighbors’ beacons for

multiple continuous superframes. In other words, it may take hundreds of milliseconds

for a user to detect a beacon collision.

2.3 Summary

Due to the low resource utilization and lack of QoS guarantee in the random access

protocols and the inflexibility of guaranteed access protocols, we anticipate a hybrid

MAC will be deployed in next generation wireless networks with infrastructure support

for providing satisfactory QoS performance for delay-sensitive multimedia applications;

while a robust asynchronous random access protocol is more desirable for distributed

wireless networks without infrastructure support.
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System Model

Generally, wireless networks can be classified into different categories. According to

the communication coverage, wireless networks can be grouped into wireless body, per-

sonal, local, metropolitan, and wide area networks. Based on the network architecture,

wireless networks can be divided into infrastructure-based and infrastructureless net-

works. Based on the network scale, wireless networks can also be categorized into single

hop and multi-hop networks. Usually, an infrastructure-based network is a single hop

network in which a base station or AP serves as the portal to a network infrastructure

so that wireless users in its coverage can access a backbone network such as the Internet

for global communication. An infrastructureless network can be either a single hop or a

multi-hop network which autonomously operates in an ad hoc mode without a central

controller. Since current backbone network is rapidly upgraded to terabit speed, the

last-mile wireless access networks, e.g., WLANs and WPANs, are usually considered as

the bottleneck for achieving the full potential of high speed Internet access. Therefore,

in this study, we focus on high rate wireless personal and local area networks in sup-

port of various multimedia applications, e.g., video, voice, and data. We study efficient

MAC protocol design for both single-hop and multi-hop networks with and without

network infrastructure.
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Figure 3.1: System Model

3.1 Network Model

3.1.1 Wireless Local Area Network

As one of the most successful wireless networks deployed all over the world, a WLAN

offers a quick and effective wireless extension to the wired Ethernet. A typical WLAN

usually covers a small geographical area and is a single hop network. For example, in

an open indoor office environment, an IEEE 802.11b device using 100 mW transmission

power and 2.2 dBi gain diversity dipole antenna can transmit at 11 Mbps within 48 m;

an IEEE 802.11g device using 30 mW transmission power and the same type of antenna

can transmit at 54 Mbps within 27 m.

We consider a single hop fully connected WLAN with N users, which can operate

in both ad hoc mode and infrastructure mode, as shown in Fig. 3.1 (A) and (B),
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respectively. In an ad hoc WLAN, users communicate with each other in a peer-

to-peer manner; while in an infrastructure-based WLAN, all the traffic to and from

the WLAN go through the AP. We use the mandatory IEEE 802.11 DCF MAC that

all N users, including the AP if an infrastructure WLAN is considered, contend for

channel access. Every user has a half-duplex transceiver thus can not receive and

transmit simultaneously. An omni-directional antenna is used for both transmitting

and receiving. All users can sense the status of the shared wireless channel and are

well synchronized with each other. Unless otherwise specified, we assume an ideal

wireless channel such that all transmitted frames can be received error-free if there is

no collision. The performance of a single hop WLAN will be studied in Chapter 4.

3.1.2 UWB/mmWave based Wireless Personal Area Network

UWB communication technology can achieve very high data rate at short distance and

is considered one of the best candidates for high rate WPANs. The first approved com-

mercial UWB system operates in 3.1−10.6 GHz frequency band. Several physical layer

have been proposed for the UWB system: continuous wave UWB (C-UWB), direct se-

quence UWB (DS-UWB), and MB-OFDM UWB. C-UWB uses bursts of pulses and

variable spreading codes to trade data rate for communication range and is specified

in IEEE 802.15.4a for low rate WPANs [23]. DS-UWB and MB-OFDM are two phys-

ical specifications for high rate WPANs. DS-UWB is based on direct sequence spread

spectrum (DSSS) technology and MB-OFDM uses a combination of frequency hopping

and OFDM technologies. To allow a UWB system to co-exist with other systems,

e.g., WiFi, cellular, the FCC power spectral density emission limit for UWB devices is

−41.3 dBm/MHz. Because of the stringent power constraint and the wide bandwidth

in UWB communications, normally the UWB transmission power can not be adjusted,

and spreading technologies in both the time domain and the frequency domain are used

to vary the data rates [24]. The inherent characteristics of spreading technology make
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UWB systems immune to interference. Thus, different from narrowband systems (e.g.,

WiFi) where simultaneous transmissions from nearby neighbors causes severe interfer-

ence to each other, multiple concurrent transmissions are possible in UWB systems

if and only if the multi-user interference is properly managed. In addition, UWB can

provide high precision ranging which facilitate location-aware applications and protocol

design in UWB networks [25, 26].

Another UWB system operates in 57− 64 GHz frequency band, i.e., mmWave fre-

quency band. In this dissertation, we denote UWB as UWB operating in 3.1−10.6 GHz

frequency band, and mmWave as UWB operating in 57− 64 GHz frequency band. Be-

cause of the unique characteristics of 60 GHz channel, i.e., high path loss due to oxygen

absorption and atmospheric attenuation, and the stringent power limitation for wireless

devices, it is highly desirable to use directional antenna to achieve high directivity and

diversity gains. On the other hand, the size of the antenna used for mmWave band

could be very small, and thus it is feasible to deploy a directional antenna with multiple

antenna elements in a single device. For large bandwidth mmWave communications

supporting extremely high data rates, the negative impacts of intersymbol interference

(ISI) due to multipath propagation become significant. Orthogonal frequency-division

multiplexing (OFDM) signals are intrinsically multipath robust due to the low symbol

rate in each of the subcarriers, so OFDM will be a good candidate for mmWave commu-

nications1. For RF oscillators at mmWave spectrum, it is very difficult if not impossible

to maintain a low level phase noise, which affects the signal in the frequency conversion

operations, and results in higher bit error rate (BER) for effective communications.

Different multiple access techniques, including OFDM/TDMA, direct sequence (DS)-

CDMA, Multi Carrier (MC)-CDMA, and MC-DS-CDMA, have different sensitivities

to phase noise. Among these techniques, MC-DS-CDMA is the most robust against

phase noise and multiple access interference (MAI) in 60 GHz wireless channel [27].

1Although we use OFDM in our system model, our work is independent of any particular modula-

tion schemes.
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In this dissertation, we consider a dense UWB-based single hop WPAN with the

piconet as the basic network element, as shown in Fig. 3.1 (C)2. Wireless users are

randomly distributed over a square room. Based on IEEE 802.15.3 MAC specification

for high rate WPANs introduced in Chapter 2.2.2, the PNC provides the basic timing

and schedules peer to peer communications between wireless users. Spreading tech-

niques are applied for UWB in both time and frequency bands, e.g., DSSS for UWB

and MC-DS-CDMA for mmWave. Denote G0 as the cross correlation between two

(pseudo-random) spreading codes used by two different flows. In the special case of

G0 = 1, two flows use a common speading code for transmissions. All senders use

the maximum transmission power and the data rate is adapted according to the re-

ceived signal-to-interference-plus-noise ratio (SINR). Taking advantage of the ranging

service in UWB, users can determine their locations by measuring the beacon signals

and report the location information to the PNC. Thus, the PNC has the topology in-

formation of the network. We use omni-directional antenna for UWB and directional

antenna for mmWave networks. For directional antenna, we first employ an ideal flat-

top model [28, 29] to study the capacity of a UWB/mmWave WPAN, assuming the

antenna gain is constant within the beamwidth θ, Gm = 2π/θ, and zero outside the

beamwidth, Gs = 0. We also employ a simplified cone plus circle model in a two-

dimensional plane to consider the sidelobe effect [30], which defines the antenna gains

of the mainlobe and sidelobe as Gm = ς 2π
θ
and Gs = (1− ς) 2π

2π−θ
, respectively, where ς

is the antenna radiation efficiency.

3.1.3 Multi-hop Wireless Network

Due to the limited transmission range of UWB communications, multi-hop relay is nec-

essary to meet the escalating demands for high rate wireless connections anywhere and

2The high dense network scenarios can be in future stock exchange rooms, conference rooms,

shipping malls, expo rooms, etc.
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at any time. We consider a dense multi-hop UWB network with no central controller

for time synchronization and transmission scheduling. It is found in [31, 32] that the

deployment of directional antenna is not suitable for a fully distributed system be-

cause the increased hidden terminal/beam, deafness, and ’ACK suicide’ problems, etc.,

which could significantly degrade the network performance. Therefore, we use omni-

directional antenna for both transmitting and receiving in a distributed multi-hop UWB

network3. Similar to the UWB WPAN model in Section 3.1.2, all senders use the max-

imum transmission power and the data rate is adapted according to the received SINR.

We assume all users share a pool of spreading codes, one of which is chosen for control

message exchange and others are used for data transmissions. Different data flows can

use different spreading codes to reduce the mutual interference level among concurrent

transmissions. Asynchronous distributed MAC design for a multi-hop UWB network

will be discussed in Chapter 6.

3.2 Traffic Model

Although original WLAN applications are mainly data centric, there is a growing de-

mand for multimedia applications over WLAN, e.g., voice over IP (VoIP) and video

conferencing. Recent advances in UWB communications further open a door for emerg-

ing killer multimedia applications such as Internet Protocol TV (IPTV). Compared with

best effort data traffic, multimedia traffic usually have stringent delay and bandwidth

requirements. To provide better services to wireless users, we need to theoretically

study the network capacity in support of these multimedia applications, where the

network capacity is defined as the maximum number of multimedia flows that can be

supported in a WLAN/WPAN with satisfactory user-perceived quality during any one

use. The theoretical study of network capacity is of critical importance for effective

3For UWB operating in mmWave band, it is also possible if each node is equipped with a number

of beams and switches on/off all beams to work in an omni-directional mode.
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Table 3.1: Frequently Used Voice Codecs

Voice Codec G.711 G.723a G.729 iLBC

Codec Bit Rate (64Kbps) (5.3/6.3Kbps) (8Kbps) (15.2/13.3Kbps)

Sample Arrival Rate Payload Payload Payload Payload

Period (frames/sec) (Byte) (Byte) (Byte) (Byte)

10ms 100 80 10

20ms 50 160 20 38

30ms 33.33 240 20/24 30 50

40ms 25 320 40

50ms 20 400 50

60ms 16.67 480 40/48 60

admission control and scheduling to guarantee the QoS performance of multimedia

applications.

As an IEEE 802.11b/n based WLAN can provide from tens to hundreds of Mbps

data rate, we consider both voice and low/medium rate video applications over WLAN.

UWB and mmWave based WPANs can achieve up to several Gbps data rate and is

considered an ideal candidate for last meter high definition (HD) IPTV distribution [33].

Thus, we deploy high volume data and video traffic in a UWB/mmWave based WPAN.

• Voice: VoIP application is one of the fastest growing Internet applications. In a

VoIP system, analogue voice signals are first digitized, compressed, and encoded

into voice streams, and then packetized into constant-bit-rate (CBR) flows. We

use CBR voice model because of the following three reasons: 1) many voice codecs

do not use silence suppression; 2) if silence suppression is used and voice traffic

exhibits on-off characteristics, a tighter bound derived is robust in the worst case

when all voice flows are in the “on” state; and 3) even if silence suppression is used,
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Table 3.2: Levels in H.264/MPEG-4 AVC [1]

Level video bit rate resolution average frame

Number (bps) & frame rate(fps) payload (bytes)

1b 128k 128x96 & 15 1067

1.2 384k 320x240&20 2400

1.3 768k 352x288&30 3200

2 2M 352x288&30 8333

320x240&36 6944

some packets are still transmitted intermittently during “off” period to maintain

a better voice quality [34]. The main attributes of some commonly used voice

codecs with different packetization intervals are tabulated in Table 3.1. Different

codecs use different compression algorithms resulting in different bit rates. For

example, G.711 codec provides high quality voice with low compression ratio and

high bit rate of 64 Kbps, while iLBC is a very bandwidth efficient codec with a

bit rate of 13.3Kbps and has been used in Internet soft-phone applications, e.g.,

skype.

A two-way conversation is very sensitive to packet delay and jitter, but it can

tolerate certain degree of packet losses. A playout buffer at the receiver can

efficiently remove the delay jitter and thus we only consider the delay and packet

loss in our study. According to International Telecommunication Union (ITU)

standards, the one-way end-to-end delay of voice traffic should be no greater than

150 ms for good voice quality and up to 400 ms for acceptable voice quality, with

an echo canceller [35]. Also, usually the packet loss rate should be no more than

1% to maintain satisfactory voice quality.
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• Video: With the advances of wireless communication technologies, video stream-

ing with stringent QoS requirements becomes possible to deliver in high perfor-

mance WLANs and UWB networks. For example, video telephony and video

conferencing are in high demand in WLANs for various applications such as

telecommuting, telemedicine, e-training and e-learning, etc. IPTV with high def-

inition content is an emerging killer application in multi-Gigabit UWB WPANs.

Video traffic is usually modelled as a variable bit rate (VBR) flow with different

compression ratios and various payload formats in the codec. In this study, we

consider H.264 codec, which supports very efficient video compression and is ap-

plied in a broad range of video applications from low rate Internet video streaming

to high definition video (HDV). H.264 defines 16 different levels, tied mainly to

the picture size and frame rate [1]. Some examples for various resolution, frame

rate, and maximum compressed video rate in five levels are listed in Table 3.2 for

video capacity evaluation. The level 2 supports up to 2 Mbps video rate, with

the frame rate of 30 frames per second (fps) at the frame resolution of 320× 240

pixels, or with a higher frame rate of 36 fps at a lower resolution of 352 × 288

pixels. Higher resolution provides better image quality and higher frame rate

results in a smoother motion video. The emitted frames are then encapsulated

into RTP packets for transmission, depending on the maximum transmission unit

(MTU) of underlying layers.

The general QoS metrics of video applications include throughput, delay, jitter,

and packet loss. The throughput demands vary among different video flows.

We consider low/medium rate video telephony applications in WLANs and high

rate video distribution in UWB WPANs. Similar to voice traffic, we do not

consider jitter because a playout buffer at the receiver can efficiently remove the

delay variations. For interactive applications, e.g., video telephony, the normal

tolerable delay should be less than 100 ms and packet loss rate should be below
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1%.

• Data: There are many data applications including email, web browsing, file trans-

fer, etc. We also adopt a simple saturated data model in the performance study of

wireless networks, i.e., a user always has a frame in the queue ready for transmis-

sion. The saturated data model is applicable for large volume bulk data transfer

applications.

Data traffic is usually delay-insensitive, but require no transmission error. Trans-

mission errors can be improved by link layer automatic repeat request (ARQ) and

transport layer reliable transmission control protocol, etc. In this dissertation,

we evaluate the QoS metrics for data traffic in terms of throughput and fairness.

We aim to design a MAC that allow multiple data flows to fairly and efficiently

share the wireless resources, in both single hop and multi-hop networks.
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MAC Protocol in Wireless Local

Area Networks

As IEEE 802.11 WLANs are one of the most successful wireless networks which have

been widely deployed all over the world, we first study the performance of a WLAN

using IEEE 802.11 MAC. By developing an analytical framework to study the network

capacity in terms of the maximum number of multimedia flows that can be supported

with satisfactory user-perceived quality, we point out the drawbacks and performance

constraints of the existing MAC [6]. Some enhanced MAC mechanisms to mitigate the

performance bottleneck are investigated [7]. In response to the escalating demands for

high throughput WLANs with the rise of broadband multimedia applications, the next

generation WLAN will employ MIMO technology in the physical layer to improve the

capacity and reliability of the wireless channel. A distributed MIMO-aware multi-user

MAC protocol is also proposed to exploit the multi-user degree of freedom in a MIMO

system in future WLANs with MIMO capability [8].
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4.1 Related Work

Existing performance studies of IEEE 802.11 WLAN can be broadly classified into two

categories, saturation and non-saturation cases. The early IEEE 802.11 models in the

literature mainly focus on saturation case that a user always has data for transmission.

Bianchi [36] develops a bi-dimensional discrete-time Markov chain model to calculate

the network throughput as a function of the number of saturated users. Since then, a

large number of follow-up papers have appeared. The Markov model is improved in [37]

with the consideration of the frame retry limits specified in the standard. The delay

performance under different traffic loads is analyzed in [38]. By integrating frame loss

in wireless fading channels, the mean throughput and delay are studied in [39]. Fur-

thermore, Bianchi’s model is extended to study QoS enabled EDCA in [40, 41]. These

works provide important insight into the detail protocol operations. However, satu-

ration assumption simplifies the performance analysis by ignoring the traffic arrival

characteristics. In reality, some users, especially those with real-time multimedia traf-

fic, are unsaturated. It is also found in [42] that the maximum throughput of WLAN

can be achieved only in the unsaturated user case when there are more than one users

sharing the wireless resource. To provide more thorough studies on the performance of

IEEE 802.11 MAC, some recent papers relax the saturation assumption to investigate

network throughput and delay with unsaturated users. An extended Markov chain

based on Bianchi’s model is proposed in [43], assuming traffic arrives follow a Poisson

process. The channel access delay is studied in [44] where an on-off model is applied

for traffic arrivals. A more general model is presented in [45, 46] which accounts for

arbitrary arrival patterns. The queue of an unsaturated user is modeled as a discrete

time G/G/1 queue and the second-order queueing analysis techniques are applied for

service time distribution. Complex mathematical computations are involved in G/G/1

queueing formulations. In addition, to the best of our knowledge, most existing ana-

lytical models simply assume a homogeneous network in an independent BSS where all
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users have the same traffic arrival patterns. However, different users may carry various

applications and have different traffic loads. Moreover, the majority of WLANs are

operating in an infrastructure mode, where the AP usually has much higher traffic load

and is the bottleneck. In this study, we will develop a generic analytical framework

for IEEE 802.11 MAC with saturated or unsaturated users carrying homogeneous or

heterogeneous traffic loads. We use the framework to analyze the AP-bottleneck effect

in infrastructure-based WLANs, which provides important guidelines for network plan-

ning, protocol design and optimization. The generic framework can also be applied to

study the capacity region and optimal parameter setting in multi-class WLANs [47, 48].

Some enhanced MAC mechanisms, i.e., frame concatenation (or aggregation) and

piggyback are proposed for high throughput WLANs. The two mechanisms are ana-

lyzed in [49] under the best-case and saturation scenarios. The saturation throughput

of an IEEE 802.11 WLAN using bidirectional frame aggregation is analyzed in [50].

Studies in [49, 50] show that these two mechanisms can greatly improve the network

throughput in the saturation case. We further analyze and compare the performance

of these enhanced MAC mechanisms in support of non-persistent traffic, e.g., voice and

video applications.

The next generation WLANs will employ MIMO technology to improve link capac-

ity and reliability. MAC design for a MIMO-enabled WLAN has drawn great attention

recently. In [51], a unified MAC framework for ad hoc networks with smart antennas

is proposed, assuming ideal interference cancellation in a closed-loop MIMO system.

MAC design and routing issues in mobile ad hoc networks are investigated in [52], fo-

cusing on exploiting spatial diversity. A MIMO-DCF protocol is presented in [53], using

modified RTS/CTS frames to exchange antenna selection information and exploiting

diversity and multiplexing gains. A distributed MIMO-aware MAC is proposed in [54],

which is specifically designed for a three element antenna array based MIMO system

that allows two simultaneous transmissions in a single collision domain. Due to the size
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and cost constraints of antennas, it is likely that AP will be equipped with multiple

antenna elements while mobile users can only employ one or a limited number of an-

tennas. Based on this network scenario, a space-division time-division multiple access

scheme is proposed in [32]. It is shown that significant throughput enhancements can

be achieved at the expense of redesigning the asynchronous IEEE 802.11 MAC to be

a synchronous MAC to avoid unwanted interferences. On the other hand, it is well

known that MIMO capacity increases linearly with the number of employed antennas

at the transmitter and receiver. Some recent results indicate that similar capacity

scaling also applies when an AP with multiple antennas communicates with multiple

users [55]. Considering a homogeneous network where each users is equipped with M

antennas, it is shown in [56] that multi-user transmission has higher link utilization

than a single user case due to a large degree of multi-user diversity, using contention-

free transmissions. In a centralized network where the channel conditions are usually

available at the base station via a feedback channel, multi-user beamforming can pro-

vide a substantial gain in downlink throughput [57]. However, channel information is

generally not available in a distributed random access network and thus it is difficult to

exploit the multi-user diversity gain. To the best of our knowledge, how to efficiently

exploit multi-user degree of freedom of a MIMO system to minimize the AP-bottleneck

effect in an infrastructure based WLAN remains an open issue. In addition, previous

studies either focus on the design of MIMO techniques or the MAC performance anal-

ysis. There is little analytical work in the literature which addresses the performance

of asynchronous random access MAC in a MIMO system.

4.2 Analytical Framework of IEEE 802.11 DCF

As discussed in Chapter 3.1.1, we consider an IEEE 802.11 DCF-based WLAN with N

users. Denote the mean traffic arrival rate and frame service rate of user i as λi and

µi frames per slot, respectively, where i = 0, 1, ...N − 1. The queue utilization ratio, or
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the traffic intensity of user i is ρi = λi/µi. Define the conditional collision probability

pi as the probability of a collision seen by a frame being transmitted by user i. The

assumption that pi is constant and independent from the number of retransmissions

the frame has experienced [36] is adopted in the analysis. As the probability of three

or more simultaneous transmissions is very small, in what follows, we assume that

collisions are due to two users transmitting simultaneously.

Define pi[T ] the probability that user i transmits a frame in a randomly chosen slot.

Conditional on the queue state, the transmission probability of user i is derived as

pi[T ] = pi[T |QE]pi[QE] + pi[T |QNE]pi[QNE], (4.1)

where pi[QE] and pi[QNE] are the probabilities of an empty queue and a nonempty

queue of user i, respectively. The queue of a user is considered empty when the user is

idle, i.e., no frame is in service or waiting for service. A user is idle with probability

1 − ρi for ρi < 1. Note that a saturated user always has data for transmission and

ρi = 1. For a unsaturated user, ρi = λi/µi < 1. Therefore,

pi[QE] = 1− ρi, and pi[QNE] = ρi. (4.2)

Since a user never transmits with an empty queue, pi[T |QE] = 0. Let τi = pi[T |QNE]

to simplify the notation, the transmission probability of user i is given by

pi[T ] = 0 ∗ (1− ρi) + τi ∗ ρi = ρiτi. (4.3)

If user i transmits in a given slot, a collision occurs if at least one of the remaining

users also transmits in the same slot. We have

pi = 1−
N−1
∏

j=0,j 6=i

(1− pj[T ]) = 1−
N−1
∏

j=0,j 6=i

(1− λjτj/µj), (4.4)

where i = 0, 1, ..., N − 1, and ρi = λi/µi ≤ 1.
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The exponential backoff procedure of CSMA/CA can be modeled as a truncated

geometrical random variable, and the average backoff time of user i is derived as

E[Wi] = (1− pi)
CW0

2
+ pi(1− pi)

CW0 + CW1

2
+ · · ·+ pmi

∑m
j=0 CWj

2

=

m−1
∑

k=0

pki (1− pi)

k
∑

j=0

CWj

2
+ pmi

m
∑

j=0

CWj

2
, (4.5)

where CWj is the contention window in the j-th backoff stage and m is the retransmis-

sion limit. During the period of E[Wi], user i makes Ai transmission attempts, which

can also be modeled as a truncated geometrical random variable with mean

E[Ai] = (1− pi) · 1 + pi(1− pi) · 2 + · · ·+ pmi · (m+ 1)

=

m−1
∑

k=0

pki (1− pi)(k + 1) + pmi (m+ 1) =
1− pm+1

i

1− pi
. (4.6)

As a user initiates a transmission at the beginning of each slot, the transmission prob-

ability τi is derived as

τi =
E[Ai]

E[Wi] + E[Ai]
. (4.7)

Note that (4.4) and (4.7) yield the same results as Bianchi’s Markov model for the

saturation case with ρi = 1.

During 1/µi, from the time instant that a frame is ready for transmission to the

time instant that the frame is successfully transmitted, the following events may occur:

1) a successful transmission by the tagged user i; 2) successful transmissions by the

remaining N−1 users; 3) collisions; 4) channel idle when user i is in its backoff stage(s).

Denote Tsi as a frame transmission time of user i, and Tci as the collision time user i

experiences each time a collision occurs. In the basic access mode, a frame transmission

time includes the transmission of data plus headers encapsulated in each layer, a SIFS,

an ACK frame, and a DIFS. A collision duration consists of the time for data frame

transmission, the time waiting for ACK timeout, and a DIFS.

Tsi = Tdata + SIFS + TACK +DIFS (4.8)
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Tci = Tdata + ACKtimeout +DIFS (4.9)

As SIFS, DIFS and ACK frame length are deterministic according to the standard,

Tsi and Tci only depend on Tdata, which is proportional to the data frame length.

In IEEE 802.11, RTS and CTS frames are used to reserve channel access for data

transmission when data frame exceed a given threshold. In the RTS/CTS mode, the

frame transmission and collision times are

Tsi = TRTS + SIFS + TCTS + SIFS + Tdata + SIFS + TACK +DIFS, (4.10)

Tci = TRTS + CTStimeout +DIFS. (4.11)

(4.10) and (4.11) show that the RTS/CTS frames introduce extra overhead for RTS/CTS

exchange, i.e., TRTS + SIFS + TCTS + SIFS, which lowers the network throughput.

On the other hand, Tci in the RTS/CTS mode is deterministic and independent of the

data frame length. In other words, the time a user waits during collisions is reduced

when the payload size of the data frame is much larger than that of a RTS frame, which

improves the throughput to some extent.

We study a system operating in the stable state, i.e., all incoming data are eventu-

ally served within a finite delay. In IEEE 802.11 standard, the retransmission limit is

m = 4 for long data frames and m = 7 for short data frames. The frame drop proba-

bility, pdrop = pm+1
i , is negligible with a small pi and a large m. Therefore, we assume

all frames are eventually received successfully in a stable system. During 1/µi, on av-

erage the remaining users successfully transmit 1
µi

∑N−1
j=0,j 6=i λj frames, which contribute

to 1
µi

∑N−1
j=0,j 6=i λjTsj time slots. Before the users successfully transmit the frames, the

total amount of collision time each user experiences is 1
µi

∑N−1
j=0,j 6=i λjTcj +Tci, where Tci

is the average collision time of a frame transmitted by user i. Denote Tci the collision
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time user i experiences each time a collision occurs; Tci can be derived as

Tci =
m
∑

k=1

pki (1− pi) · kTci

=
pi(1− (m + 1)pmi +mpm+1

i )

1− pi
Tci

≈ pi
1− pi

Tci. (4.12)

Given the frame length of user i, Tsi and Tci can be easily obtained. Since a collision is

assumed to occur due to two simultaneous transmissions, the duration of the channel to

be busy because of collisions equals half of the total amount of collision time experienced

by all users, which is 1
2
( 1
µi

∑N−1
j=0,j 6=i λjTcj + Tci). Finally, user i spends E[Wi] in the

backoff stage before it successfully transmits the current frame. Therefore, we have

1

µi
= Tsi +

1

µi

N−1
∑

j=0,j 6=i

λjTsj +
1

2
(
1

µi

N−1
∑

j=0,j 6=i

λjTcj + Tci) + E[Wi], (4.13)

where i = 0, 1, ..., N − 1.

Given the arrival rates ~λ = [λ0, λ1, ..., λN−1], the equation sets (4.4) and (4.13) can

be solved numerically to obtain ~p = [p0, p1, ..., pN−1], ~µ = [µ0, µ1, ..., µN−1], and ~ρ =

[ρ0, ρ1, ..., ρN−1].

4.3 Voice Capacity Analysis of an Infrastructure-

based WLAN with Unbalanced Traffic

In this section, we study the network performance of an infrastructure-based WLAN,

considering the practical issue induced by unbalanced traffic. We first apply the de-

veloped analytical framework to study the capacity of a WLAN with non-persistence

unbalanced traffic flows. Given the parameters of IEEE 802.11 MAC and voice codecs,

we then quantify the voice capacity of an infrastructure-based WLAN. Our voice capac-

ity analysis is compared with that in [58, 59]. In [58], it is assumed there is no collision
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during transmissions and all mobile users take advantage of the backoff time of the AP

to fulfill their own backoff requirements. The work in [59] takes contention into consid-

eration yet assumes that there are always two and only two active users competing for

the wireless channel. The voice capacity obtained in [58, 59] may be over-optimistic

due to these simplified assumptions. A loose estimation of voice capacity is harmful

for admission control, since, once traffic load exceeds network capacity, the quality of

all on-going voice traffic will be jeopardized [60]. We show that our analysis gives a

tighter upper bound of voice capacity by considering detail MAC behaviors in an IEEE

802.11 WLAN.

4.3.1 Analytical Model

We consider an infrastructure based WLAN consisting of one AP and N − 1 users.

The AP and correspondent users are connected to the Internet backbone. Multimedia

connections are established between WLAN users and correspondent users, through

the AP. We assume every user has the same traffic load with an arrival rate of λ1

frames per slot and the AP carries half of the traffic in the WLAN, λ0 = (N − 1)λ1

frames per slot. This scenario is valid for an infrastructure WLAN with two-way

VoIP connections. Denote the frame service time of the AP and a user as µ0 and µ1,

respectively. Accordingly, the queue utilization ratios at the AP and a user are







ρ0 = λ0/µ0 = (N − 1)λ1/µ0

ρ1 = λ1/µ1

(4.14)

Similarly, we define the conditional collision probability pi as the probability of a

collision seen by a frame being transmitted by the tagged node, which is either the AP

(i = 0) or any user (i = 1). If the AP transmits in a given slot, a collision occurs if

at least one of the users also transmit in the same slot. If the tagged node is a user, a

collision occurs if either the AP or one of the remaining N − 2 users transmit in the
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same slot. According to (4.4), the conditional collision probabilities p0 and p1 are







p0 = 1− (1− ρ1τ1)
N−1

p1 = 1− (1− ρ1τ1)
N−2(1− ρ0τ0).

(4.15)

From (4.7), (4.5) and (4.6), the transmission probabilities of the AP and a user at any

given slot, τ0 and τ1, are functions of p0 and p1, respectively,







τ0 = E[A0]/(E[A0] + E[W0])

τ1 = E[A1]/(E[A1] + E[W1]),
(4.16)

where


























E[A0] = (1− pm+1
0 )/(1− p0)

E[A1] = (1− pm+1
1 )/(1− p1)

E[W0] =
∑m−1

k=0 pk0(1− p0)
∑k

j=0
CWj

2
+ pm0

∑m
j=0

CWj

2

E[W1] =
∑m−1

k=0 pk1(1− p1)
∑k

j=0
CWj

2
+ pm1

∑m
j=0

CWj

2
.

The average collision time of a frame transmitted by the AP and by a user can be

obtained from (4.12):







Tc0 = p0
1−p0

[1− (m + 1)pm0 +mpm+1
0 ]Tc ≈ p0

1−p0
Tc

Tc1 = p1
1−p1

[1− (m + 1)pm1 +mpm+1
1 ]Tc ≈ p1

1−p1
Tc.

(4.17)

From the time an AP attempts to transmit a frame till the frame is transmit-

ted successfully, the time interval 1/µ0 consists of four parts: (a) on average the

remaining N − 1 users successfully transmit (N − 1)λ1/µ0 frames, which contribute

(N − 1)λ1Ts/µ0; (b) the AP spends Ts in transmitting the current frame; (c) before

the users successfully transmit these frames, the total time that the channel is sensed

busy due to failed transmissions is [(N − 1)λ1Tc1/(2µ0) + Tc0/2]; and (d) E[W0] is the

average backoff time the AP experiences before it successfully transmits the current

frame.
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Similarly, the time interval 1/µ1 also consists of four parts: (a) the remaining N−2

users and the AP contribute (N − 2)λ1

µ1
Ts and (N−1)λ1

µ1
Ts in successful transmissions,

respectively; (b) the tagged user spends Ts in transmitting the current frame; (c) the

average collision time is 1
2
[(N − 2)λ1

µ1
Tc1 +Tc1 +

(N−1)λ1

µ1
Tc0 ]; and (d) the average backoff

time of the tagged user is E[W1]. Therefore, the average service time for the AP and

the users are given by







1
µ0

=
(

(N − 1)λ1

µ0
+ 1

)

Ts +E[W0] +
1
2

(

(N − 1)λ1

µ0
Tc1 + Tc0

)

1
µ1

=
(

(N − 2)λ1

µ1
+ 1 + (N−1)λ1

µ1

)

Ts +E[W1] +
1
2

((

(N − 2)λ1

µ1
+ 1

)

Tc1 +
(N−1)λ1

µ1
Tc0

)

.
(4.18)

Equations (4.15), (4.18), along with (4.16)-(4.17), can be solved numerically to

obtain p0, p1, µ0, µ1, ρ0 and ρ1.

A user is considered stable only if its traffic intensity or queue utilization ratio ρi < 1,

i.e., the traffic arrival rate is less than the frame service rate. In an infrastructure-

based WLAN, the AP is the bottleneck since the traffic to all users has to go through

the AP. Therefore, the maximum number of non-persistent connections that can be

accommodated in a WLAN can be obtained under the constraint that the AP is stable,

i.e., the queue utilization ratio of the AP, ρ0 < 1. The number of active users, i.e., a

user that currently has a frame in service, in the WLAN can be obtained as

N−1
∑

i=0

ρi = ρ0 + (N − 1)ρ1. (4.19)

4.3.2 Voice Capacity Evaluation

We investigate the maximum number of VoIP connections that can be supported in a

single-AP WLAN and compare our analysis with that in [58, 59]. The main parameters

of the IEEE 802.11a/b and the upper-layer-header overheads of voice frames are listed

in Table 4.1. The highest data rate is 11 Mbps in an IEEE 802.11b WLAN. The values

of a slot duration, DIFS, and SIFS are 20 µs, 50 µs and 10 µs, respectively. Each
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Table 4.1: Parameters of Voice over 802.11

ACK Frame

PLCP & Preamble

Voice Payload

RTP/UDP/IP Header

MAC Header + FCS

PLCP & Preamble 

77Retry Limit

2.1 µs10.2 µs

24 µs192 µsTACK

(payload *8/54) µs(payload *8/11) µs

6 µs29.1 µs

5 µs24.7 µs

24 µs192 µs

Tvoice

10241024CWmax

1632CWmin

34 µs50 µsDIFS

16 µs10 µsSIFS

9 µs20 µsSlot Time

54Mbps11MbpsHighest Channel Rate

802.11a802.11b

ACK frame has 14 bytes, and it takes 14 ∗ 8/11 = 10.2 µs for transmission. Each

data frame has a 34 bytes MAC layer overhead and a 40 bytes RTP/UDP/IP-header

overhead, which take 34 ∗ 8/11 = 24.7 µs and 40 ∗ 8/11 = 29.1 µs to transmit. In

addition, it takes 192 µs to transmit the physical layer overheads consisting of 48 µs

Physical Layer Convergence Protocol (PLCP) header and 144 µs preamble. In the

IEEE 802.11a standard, the maximum data rate is 54 Mbps, approximately five times

of that of 802.11b. It takes 2.1 µs, 5 µs, and 6 µs to transmit the ACK frame, MAC

layer overhead, and the RTP/UDP/IP headers, respectively. The values of a slot time,

DIFS, and SIFS are 9 µs, 34 µs and 16 µs, respectively; and it takes 24 µs to transmit

the physical layer overhead, which is eight times smaller than that in 802.11b.

We use Maple 9.5 [61] to calculate the analytical results. Fig. 4.1 shows the condi-

tional collision probabilities of the AP and mobile nodes (MN) with G.711 and G.729

codecs and a 10 ms packetization interval, in an IEEE 802.11b WLAN. The collisions

increase with the number of voice connections. Due to the larger payload, the collision

probability of G.711 is higher than that of G.729. Since the traffic load of the AP is

N − 1 times the load of a user, collisions are more likely to occur from the viewpoint

of a user than that from the AP.

Real-time applications are very sensitive to delay and jitter. With constant arrival
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Figure 4.1: Comparison of the Conditional Collision Probabilities of the AP and MNs

(802.11b)

rate, delay guarantee of real-time applications is possible only when the traffic arrival

rate is less than the service rate (ρi < 1). A user is considered unstable if its queue

utilization ratio ρi ≥ 1. For an unstable user, the queue will be built up, and thus the

real-time applications will be damaged because of the ever increasing queuing delay

and packet losses due to buffer overflow.

We use G.729 with a 10 ms packetization interval for illustration. Due to the

characteristics of the voice traffic, the traffic arrival rate of a user is constant. With

the increase of the number of users, the traffic arrival rate of the AP increases linearly

while the frame service rate exhibits a non-linear decreasing trend, as shown in Fig. 4.2.

Although the frame service rate of a user degrades more rapidly than that of the AP due

to the higher collision probability, the AP enters the unstable state before users because

of its much higher traffic load. It can be seen from Fig. 4.2, when the seventh G.729

voice connection joins in, the queue of the AP is no longer stable. Therefore, with G.729

and a 10 ms packetization interval, at most six bi-directional VoIP connections can be
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supported in an IEEE 802.11b WLAN. One more VoIP connection will jeopardize the

performance of all voice connections. Therefore, an accurate upper bound is critical for

connection admission control to maintain QoS performance of all VoIP connections.

In Fig. 4.3, it can be seen that the queue utilization ratio of the AP (ρ0) is always

much higher than that of a user (ρ1) due to the higher traffic load. The maximum

number of voice connections with ρ0 < 1 can also be observed. With the G.729 codec,

six voice connections with a 10 ms packetization interval, thirteen connections with a

20 ms interval, and nineteen with a 30 ms interval can be supported in an 802.11b

WLAN. It is also observed that using G.729 or G.723 makes little difference on the

maximum number of voice connections being supported in the WLAN. With G.729 or

G.723, up to nineteen simultaneous voice connections with a 30 ms packetization inter-

val can be supported. The payload of G.711 is eight times that of G.729, but only two

fewer connections can be accommodated. Compared to the huge overheads specified in

the physical and MAC layers, the payload difference between different codecs is rela-

tively small. The maximum number of connections with iLBC is similar to that with
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G.723 and G.729. For VoWLAN, G.729 and iLBC are preferred over G.723 because

less compression is required. Another observation is that more VoIP connections can

be accommodated when the packetization interval is enlarged. However, larger pack-

etization interval will result in a longer delay. There is a tradeoff between the delay

constraint and the voice capacity.

Table 4.2 tabulates the maximum number of VoIP connections for various codecs in

an 802.11bWLAN. It shows that only a very limited number of voice connections can be

Table 4.2: The Maximum Number of VoIP Connections (802.11b)
G.711 G.729 G.723 iLBC

Audio Proposed [59] [58] Proposed [59] [58] Proposed [59] [58] Proposed

(ms) Analysis Analysis Analysis Analysis

10 6 6 6 6 7 7

20 11 12 12 13 14 14 12

30 15 17 18 19 21 22 19 21 22 18

40 19 21 22 25 28 28

50 22 25 26 31 34 35

60 25 28 29 37 41 42 37 42 42
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Table 4.3: Comparison of the Maximum Number of VoIP Connections (802.11a)
G.711 G.729 G.723 iLBC

Audio Proposed [59] Proposed [59] Proposed [59] Proposed

(ms) Analysis Analysis Analysis Analysis

10 25 30 27 32

20 47 56 53 64 53

30 66 79 79 95 80 96 78

40 82 98 105 126

50 97 116 130 156

60 110 131 155 185 158 187

supported in a WLAN, even with efficient codecs such as G.723 and iLBC. Compared to

the results in [58, 59], the obtained analytical upper bounds are much tighter. When the

packetization interval is enlarged to accommodate more voice connections, analytical

results given in [58, 59] become too optimistic. This is because in [58] it is assumed that

any transmitted frame is received successfully without any collision. This assumption

may not hold, especially when the number of voice connections is close to capacity. A

simple approximation is made in [59] that there are always two active users (one is the

AP and the other is a user) in the network and the collision probability keeps as low as

0.03, independent of the number of voice connections. However, in the unsaturated-user

scenario, the number of active users is not a constant but increases with the number

and the traffic intensity of users in the network. The AP has a frame in service with

probability ρ0 while each user has a frame in service with probability ρ1. On average,

there are ρ0 + (N − 1)ρ1 users that have a frame in service. As shown in Fig. 4.4, the

average number of active users in the WLAN varies from 0.02, when there is only one

voice connection, to above 3, when the AP is nearly saturated.

The data rate of an 802.11a WLAN is roughly five times of that of an 802.11b

WLAN. However, the voice capacity of 802.11a is less than five times of that of 802.11b

due to the different parameter values specified in the standard, including the minimum

contention window, duration of a slot, DIFS, SIFS, etc. For example, a smaller mini-

40



Chapter 4. MAC Protocol in Wireless Local Area Networks

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2  4  6  8  10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

N
um

be
r 

of
 A

ct
iv

e 
U

se
rs

Number of Voice Connections 

G.729-10ms
G.729-20ms
G.729-30ms
G.729-40ms
G.729-50ms
G.729-60ms

Figure 4.4: Number of Active Users

mum contention window may result in more collisions and a larger SIFS causes longer

service time, so both of them may reduce the voice capacity. On the other hand, a

smaller physical-layer overhead and shorter slot duration result in higher voice capac-

ity. The effect of different codecs and packetization intervals on the voice capacity of

an 802.11a WLAN is given in Table 4.3.

We further validate the analytical results by extensive simulations using the Network

Simulator (NS2-2.27) [62]. We use the same parameter values of the IEEE 802.11b as

those listed in Table 4.1. The IEEE 802.11 code in NS2 is rigorously checked and some

modifications are made according to the standard: the ACK transmission rate is set to

11 Mbps and the preamble transmission rate is kept at 1 Mbps. The network topology

is shown in Fig. 3.1 (B). The links connecting the AP and the correspondent users have

a data rate of 100 Mbps with a 20 ms propagation delay. The end-to-end packet delay

bound is set to 150 ms to maintain good voice quality [35]. Any packets arrive after

150 ms will be discarded from the receiver’s playout buffer. In order to show the queue
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accumulating effect in the AP, the buffer size of the AP is set to 300 packets. Initially, a

voice connection is established every 10 ms to gradually approach the network capacity,

with the starting time randomly chosen over [0, 10] ms. To eliminate the warming-up

effects, the simulation data are collected from 10 s to 100 s. We repeat each simulation

ten times and calculate the average values.

Fig. 4.5 shows the mean and variation of the delay of G.729 voice flows with a

10 ms packetization interval. The delay of the uplink (from a user to the AP) and

downlink (from the AP to a user) voice flows is very low when there are fewer than

six connections in the WLAN. When the seventh user joins the system, the delay of

the downlink flow increases rapidly while the delay of the uplink is as low as 2 ms. It

implies that the AP is saturated when the queue utilization ratio ρ0 ≥ 1. Meanwhile,

the queue utilization ratio of the users ρ1 is much less than 1. When more users join,

which result in more collisions in the network and decreases the frame service rate, the

delay of the uplink flow also increases to more than 300 ms, implying that the users

become saturated when there are more than twelve voice connections.
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Since the downlink transmissions always suffer longer queuing delays at the AP

than the uplink transmissions at the users, we are more interested in the delay of

downlink flows due to this bottleneck effect. Fig. 4.6 shows the delay outage ratio (the

ratio of the packets with end-to-end delay exceeding 150 ms over the packets being

transmitted) of downlink flows, with G.729 and different packetization intervals. Due

to the non-bursty characteristics of voice traffic, packet delay is quite low and no packet

is discarded from the playout buffer when all users are not saturated. However, the

outage ratio of downlink flows becomes significant when the AP is saturated, due to

the ever increasing queuing delay at the AP.

In the simulation, the maximum number of voice connections is obtained in the way

that one more connection will result in the delay outage ratio larger than 1%. As shown

in Fig. 4.7, the simulation results conform with our analysis results quite well, and the

obtained upper bounds are more accurate than the result in [58, 59], since we consider

the different collision probabilities and queue states of the AP and users. Therefore,

our analytical results can be used as a guideline for admission control. Also from the

43



Chapter 4. MAC Protocol in Wireless Local Area Networks

 5

 10

 15

 20

 25

 30

 35

 40

 45

 10  20  30  40  50  60

N
um

be
r 

of
 V

oi
ce

 C
on

ne
ct

io
ns

Packetization Period (ms) 

G.711, anal
G.711, simu
G.711, [59]
G.711, [58]
G.729, anal

G.729, simu
G.729, [59]
G.729, [58]

Figure 4.7: Maximum Number of Voice Connections

simulation results, all frames are transmitted within five retransmissions and none is

dropped by the MAC due to excessive number of retransmissions, which validates our

assumption in Section 4.2.

4.4 Analysis of Enhanced MAC Mechanisms

In response to the demand for high throughput WLANs to support multimedia ap-

plications such as voice, video conferencing and mobile television, the IEEE 802.11n

task group has been established to standardize the next generation WLAN to provide

over 100 Mbps throughput at the MAC data service access point (SAP). Different from

IEEE 802.11b/a/g, which aims to improve raw data rates with different PHY specifi-

cations, IEEE 802.11n aims to achieve higher MAC layer throughput with both PHY

and MAC enhancements. In this section, we first present some enhanced MAC mecha-

nisms. We then analytically study the capacity improvements and quantify voice and

video capacities with these enhanced MAC mechanisms.
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4.4.1 MAC Enhancements

Several new MAC features have been proposed to improve throughput efficiency. One

approach is frame aggregation, the idea of which is to aggregate multiple MAC/PHY

frames into a single frame (or a train of frames) for transmission [63]. Generally, aggre-

gation mechanisms can be classified into many different aspects: uplink vs. downlink,

PHY-level vs. MAC-level, immediate ACK vs. delayed ACK, single-destination vs.

multi-destination, etc.

Some frame aggregation mechanisms are illustrated in Fig. 4.8. In Fig. 4.8(a), a

train of n PHY frames are sent one by one with no inter-frame space (IFS). These frames

can be transmitted to one or multiple destinations, and each destination acknowledges

the received frame in the same order after a SIFS. In Fig. 4.8(b), each destination sends

an ACK immediately after a SIFS when it successfully receives a frame.

Maximizing throughput may require a large aggregation frame with length longer
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than that specified in the current standard (4095 bytes) [63]. On the other hand, it is

suggested that the total length of the aggregation frame should be smaller than a thresh-

old since some huge frames may cause unfairness among different users. In addition,

long data frames will result in a large collision time and thus reduce the transmission

efficiency when collision probability is high. In legacy 802.11, the optional RTS/CTS

mode is used to improve the transmission efficiency when the frame size is larger than

a threshold (0 − 2347 bytes). However, RTS/CTS in legacy 802.11 is employed by a

pair of sender and receiver for unicast transmission and is not suitable for the down-

link aggregation mechanism which may involve multiple destinations. Therefore, we

propose a modified RTS/CTS function that can be used with downlink aggregation to

reduce collisions resulting from large data frames, as shown in Fig. 4.8(c). Generally,

an RTS frame can be sent in a multicast fashion and all involved destinations need to

send back CTS frames if they are available to receive data. In a single-hop WLAN with

no hidden terminals, a modified RTS frame with aggregation information, e.g., a list

of destinations and transmission sequence, can be sent out and the destination users

send back CTS frames in the same sequence of the destination list. Upon receiving the

RTS frame, all users check the destination list. Users not on the list set the NAV and

will not access the channel during the period indicated by NAV. To further reduce the

CTS overhead, another option is that only a couple of destinations, which are chosen

randomly by the transmitter, send back CTS frames in a predetermined sequence.

The above three mechanisms are PHY level aggregations. The PHY overhead can

be further reduced through MAC level aggregations, which are shown in Fig. 4.8(d)

and (e) for basic access mode and RTS/CTS mode, respectively. With these two

mechanisms, n MAC frames for different destinations can be aggregated into one PHY

frame. After the (shared) PHY preamble and header, destination users receive the

scheduling information, based on which they can determine the time to receive the

MAC frames if there is any. Using downlink multi-destination aggregation, the AP only
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needs to contend once to transmit an aggregated frame to multiple users, in contrast

to multiple contentions and transmissions without frame aggregation.

Another approach to improve throughput efficiency is by allowing data transmis-

sion in both directions. That is, a receiver can piggyback aggregation frames to the

transmitter without initiating a new transmission, as shown in Fig. 4.9(a). In an infras-

tructure WLAN, the AP can piggyback a frame to a user in the downlink after the user

successfully transmits a frame to the AP in the uplink, and vice versa. Thus, the num-

ber of contentions in the WLAN can be significantly reduced and network throughput

and capacity will be effectively improved. The bidirectional transmission mechanism

is efficient when the traffic flows between the transmitter and receiver are symmetric,

but it may not be useful for some other applications, e.g., half-duplex voice services

with silence suppression. In other words, bidirectional transmission cannot improve the

transmission efficiency if there is no frame in the reverse direction for piggyback. Thus,

we extend the bidirectional transmission scheme in a more general scenario to smooth

the AP-bottleneck effect. As shown in Fig. 4.9(b), the heavily loaded AP can transmit

one frame to any destination users without contentions upon receiving an uplink frame.
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4.4.2 Analytical Model

A. Analysis of Frame Aggregation Mechanisms

We consider the same WLAN in Section 4.3.1 that the traffic load of the AP (i =

0) is N − 1 times that of a user (i = 1, ..., N). With the legacy DCF MAC, all

users have the same priority for channel access, which is unfavorable to the heavily

loaded AP, which becomes unstable when ρ0 = (N − 1)λ1/µ0 ≥ 1. By efficient frame

aggregations, the frame arrival rate of the AP, λ0, can be effectively reduced. Without

loss of generality, we consider that the AP aggregates N − 1 frames for multiple users,

using the aggregation schemes shown in Fig. 4.8. Therefore, λ0 is reduced to λ1 yet

the transmission time of an aggregated frame is much larger than that of a single

frame. Denote the frame transmission time in the downlink and uplink as TD and TU ,

respectively. The uplink transmission time is

TU = DIFS + POH + TMF + TACK + SIFS, (4.20)

where POH is the transmission time of PHY overheads including the preamble and

physical layer header, and TMF is the transmission time of the MAC payload. For

downlink aggregation schemes (a) and (b), the downlink transmission time TD are

TD = DIFS + (N − 1)(POH + TMF + TACK) + SIFS, (4.21)

and

TD = DIFS + (N − 1)(POH + TMF + TACK) + 2(N − 1)SIFS, (4.22)

respectively. During 1/µ0, the AP spends TD seconds transmitting an aggregation frame

and users transmit (N−1)λ1/µ0 frames which contribute (N−1)λ1TU/µ0 seconds. Due

to the different lengths of downlink and uplink frames, the collision times of downlink

frames TCD and uplink frames TCU are different. The average collision time a downlink

frame experiences is

TCD =
p0

1− p0
[1− (m + 1)pm0 +mpm+1

0 ]TD ≈ p0
1− p0

TD. (4.23)
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An uplink frame may collide with another uplink frame with probability (N−2)ρ1/[(N−
2)ρ1 + ρ0] and a downlink frame with probability ρ0/[(N − 2)ρ1 + ρ0]. The average

collision time an uplink frame experiences is

TCU =
p1

1− p1
[1− (m + 1)pm1 +mpm+1

1 ](
(N − 2)ρ1

(N − 2)ρ1 + ρ0
TU +

ρ0
(N − 2)ρ1 + ρ0

TD)

≈ p1
1− p1

(
(N − 2)ρ1

(N − 2)ρ1 + ρ0
TU +

ρ0
(N − 2)ρ1 + ρ0

TD). (4.24)

Thus, the equations of µi of the AP (i = 0) and a user (i = 1) are given by

1

µ0
= (N − 1)

λ1

µ0
TU + TD +

1

2
((N − 1)

λ1

µ0
TCU + TCD) + E[W0], (4.25)

1

µ1
= (

(N − 2)λ1

µ1
+ 1)TU +

λ1

µ1
TD +

1

2
((
(N − 2)λ1

µ1
+ 1)TCU +

λ1

µ1
TCD) + E[W1].(4.26)

With CSMA/CA, users have to wait TC each time a collision occurs. In the basic

access mode, a long frame results in a large TC , which degrades transmission efficiency

significantly when the collision probability is high. The RTS/CTS mode is an option

used by the legacy MAC to reduce data frame collisions when the frame payload exceeds

a threshold. As shown in Fig. 4.8(c), in the RTS/CTS mode,

TD = DIFS +RTS + CTS + (N − 1)(POH + TMF + ACK) + 3SIFS. (4.27)

A CTS timeout implies a collision and the transmitter will re-initiate a transmission

following the CSMA/CA mechanism. Since RTS and CTS frames are very small, the

duration of a collision depends on the uplink data frame. When the frame length does

not exceed the RTS threshold, the uplink frames are transmitted in the basic access

mode, so the collision time of both uplink and downlink frames is

TCU = TCD = TU ; (4.28)

otherwise, the uplink frames are transmitted in the RTS/CTS mode, and

TCU = TCD = RTS + CTStimeout +DIFS. (4.29)
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The PHY overheads can be further reduced with a MAC-level aggregation scheme.

As shown in Fig. 4.8(d),

TD = DIFS + POH + Tsch + (TMF + TACK)(N − 1) + SIFS, (4.30)

where Tsch is the transmission time of the scheduling information that is transmitted

before the MAC frames. After synchronization, users can determine when to receive

their MAC frames by checking the scheduling information. Hence, strict synchroniza-

tion is critical for the MAC aggregation scheme. Similar to Fig. 4.8(c), RTS/CTS can

also be used in MAC aggregation for transmission efficiency, and the collision time can

be reduced to either TU or RTS + CTStimeout + DIFS. Substitute the aggregation

transmission time TD and collision time TCU and TCD into (4.25) and (4.26), we can

obtain pi, τi, µi, and ρi of user i accordingly.

B. Analysis of Bidirectional Transmission Scheme

Assume symmetric traffic are transmitted between the AP and users. After a user

successfully transmits a frame to the AP, the AP can piggyback data frames to the

transmitter without initiating a new transmission, and vice versa. Therefore, half of

the frames are piggybacked without contentions, while all frames have to be transmitted

via contention using the legacy DCF MAC. For the downlink piggyback scheme, i.e.,

the AP that carries half of the frames in the WLAN do not contend with the users.

Thus, only the N − 1 users contend for uplink transmissions. We have

p1 = 1− (1− ρ1τ1)
N−2, (4.31)

1

µ1
= ((N − 2)

λ1

µ1
+ 1)TS +

1

2
((N − 2)

λ1

µ1
+ 1)

p1TC

1− p1
+ E[W1], (4.32)

where τ1 is a function of p1 derived from (4.7). When the traditional piggyback is used,

as shown in Fig. 4.9(a),

TS = DIFS + 2(POH + TMF ) + 2SIFS + TACK (4.33)

TC = DIFS + 2(POH + TMF ) + SIFS.
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Table 4.4: Parameters of Voice/Video over 802.11(n)

PHY layer data rate 216 Mbps Tsch 300 Bytes

PHY preamble & header (POH) 24 µs retry limit m 7

DIFS 34 µs MAC header & FCS 34 Bytes

SIFS 16 µs IP/UDP/RTP header 40 Bytes

a slot time 9 µs TACK ,CTS 24.5µs

CWmin 16 RTS 24.7µs

CWmax 512

In the extended scheme, as shown in Fig. 4.9(b),

TS = DIFS + 2(POH + TMF ) + 3SIFS + 2TACK (4.34)

TC = DIFS + POH + TMF + SIFS.

Substitute TS and TC in (4.31) and (4.32), p1 and µ1 can be obtained.

4.4.3 Voice and Video Capacity Evaluation

To substantiate the analysis of enhanced MAC mechanisms, we calculate the capacity

of an IEEE 802.11n WLAN supporting multimedia services, such as low rate voice and

broadband video applications. We validate the analysis through extensive simulations

with an event-driven simulator written in C language. The system parameters are

listed in TABLE 4.4. The network topology is the same as in Section 4.3.2. Similarly,

to show the queue accumulating effect in the AP, we set the buffer size of the AP to 300

packets. In the initial stage, a voice or a video connection is established during every

codec sample period to gradually approach the network capacity, with the starting

time randomly chosen over the sample period. To eliminate the warming-up effects,

the simulation data are collected from 10 s to 200 s.

A. Voice Capacity Evaluation

The service rates of the AP and WLAN users carrying G.729 voice connections
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Figure 4.10: Service Rates of Different MAC Aggregation Schemes

with a 10 ms interval under different MAC mechanisms are compared in Fig. 4.10.

With the legacy DCF MAC, every MAC frame needs to initiate a transmission and the

service rates of the AP and users are quite low. With downlink aggregation, the AP only

needs to contend once to transmit a train of frames for a single or multiple destinations.

Although the AP requires a long time period to transmit the aggregated frame (which

contains N−1 separate downlink frames), the average service time for a single downlink

frame is significantly improved with the average service rate of (N −1)µ1 (since a train

of N − 1 frames can be served during the interval 1/µ1). When the number of voice

connections is small, it is more efficient to transmit multiple small G.729 packets in

the basic access mode to avoid RTS/CTS overheads. When the number of connections

increases, RTS/CTS outperforms basic access by reducing the collision time among

large data frames. We also observe that MAC layer aggregations achieve much higher

service rates of the AP and users than PHY level aggregation by further reducing the

PHY overheads, although the scheduling information added may degrade the service

rate slightly when the number of connections is quite small.
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Figure 4.11: Capacity Comparisons of Various Aggregation Schemes

The capacity of various aggregation schemes are compared with that of legacy 802.11

DCF MAC in Fig. 4.11. It can be seen that physical aggregation in the basic access

mode may not always improve the voice capacity. With a large sample period, more

voice connections can be supported and more collisions may occur. Under high colli-

sions, long frames may degrade the transmission efficiency significantly and thus reduce

the voice capacity, even if the arrival rate of the AP is as low as that of an MN. When

RTS/CTS is used, voice capacity can be improved by 30 ∼ 40% compared to that with

the legacy 802.11 DCF. Voice capacity can be further improved by around 10% with

MAC-level aggregation which reduces N − 2 physical overheads POH compared with

PHY-level aggregation.

Voice capacity can be improved by 35 − 45% with bidirectional transmission, as

shown in Fig. 4.12. The analysis is for CBR traffic, in which case the AP always has

a frame to transmit in the reverse direction during a sample period. Since voice appli-

cation is almost half-duplex, the AP may not always be able to piggyback. With the

consideration of the packets transmitted during the off period, bidirectional transmis-
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Figure 4.12: Bidrectional Transmission

sion mechanism is still useful for voice applications.

B. Video Capacity Evaluation

We further quantify the video capacity of the legacy DCF MAC, using the main

parameters of H.264 video codec tabulated in TABLE 3.2. As shown in Fig. 4.13, the

number of supported L1b video flows is quite large due to the low data rate (128 kbps)

and encoding frame rate (15 fps). Low frame rate results in a longer frame interval,

and thus more multiplexing gain can be achieved. The video capacity is non-decreasing

with the increased MTU size. An L1b video flow requires a payload of 1067 bytes and

video frames can be encapsulated in one RTP packet for transmission when MTU ≥
1500 bytes, while a video frame may be fragmented and encapsulated over multiple

RTP packets for transmission when a smaller MTU is used, e.g., 3 RTP packets with

an average payload of 355 bytes are output for transmission when MTU = 500 bytes

and 2 packets with an average payload of 533 bytes when MTU = 1000 bytes. Since

every packet needs to contend for transmission in the legacy DCF MAC, the MAC layer

traffic arrival rate for MTU = 1500, 1000, 500 bytes are 15× 9× 10−6 = 0.135× 10−3,
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Figure 4.13: Video Capacity of the Legacy 802.11 DCF MAC

15× 2 × 9 × 10−6 = 0.27 × 10−3, and 15 × 3 × 9 × 10−6 = 0.405× 10−3 MAC frames

per slot, respectively. The number of output RTP packets is non-deceasing with the

reducing MTU size. Thus, the MAC layer traffic arrival rate λi (i = 0 for AP and

i = 1 for an MN) increases accordingly, which results in a lower capacity based on the

AP-bottleneck constraint (N − 1)λ0/µ0 < 1.

Although a large number of low rate video flows can be supported with the enhanced

data rate in the next generation WLAN, the video capacity for high rate video flows is

still very limited. For L2 video with 2Mbps data rate, 30fps frame rate, and 1500 bytes

MTU, a video frame is fragmented into 6 RTP packets and the MAC layer traffic

arrival rate is as high as 1.62× 10−3 MAC frames per slot. The maximum number of

L2 video connections that can be supported with the legacy MAC is only 12. When

MTU = 1000 bytes and 500 bytes, the traffic arrival rate increases to 2.43 × 10−3

and 4.59 × 10−3 MAC frames per slot, and the video capacity decreases to 9 and 5,

respectively.

Video capacity under various MAC mechanisms are compared in Fig. 4.14. We
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Figure 4.14: Video Capacity Comparison under Various MAC Mechanisms

employ a frame aggregation scheme as shown in Fig. 4.8(b). That is, a train of MAC

frames that belong to one single video frame can be aggregated for one transmission.

With this aggregation scheme, the MAC arrival rate is only determined by the frame

rate, no matter how many fragments (or RTP packets) are output from one single

video frame. However, the transmission time increases with the number of output

fragments. We take L2 video with 2Mbps data rate and 30fps frame rate for illustration.

When MTU = 1500 bytes, one video frame is fragmented over 6 RTP packets and the

corresponding transmission time is Ts = DIFS + 6(POH + TMF + SIFS + TACK +

SIFS)− SIFS. It is observed that video capacity can be improved by up to 66% for

L1.3 video flow (768 kbps) and 80% for L2 video (2 Mbps) with MAC level aggregation

scheme in Fig. 4.8(b). More improvements can be achieved by further reducing the

PHY, SIFS and ACK overheads using delayed ACK in Fig. 4.8(a), group ACK, or MAC

level aggregation scheme in Fig. 4.8(d). When MTU = 3500 bytes, no fragmentation

is required and thus the legacy MAC and the aggregation scheme achieve the same

capacity performance.
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Downlink aggregation scheme can effectively smooth the AP bottleneck effect and

efficiently improve the voice capacity, as shown in Section 4.4.3 A. However, it may

not be appropriate for high rate video connections with much higher payload because

an overly long transmission time of the aggregated downlink flow may cause serious

starvation of the uplink flows. On the other hand, bidirectional transmissions can be

used to eliminate the AP-bottleneck effect and improve the capacity for both video and

voice services. Therefore, we combine the bidirectional transmission and aggregation

schemes for video services. That is, the heavily loaded AP do not contend with WLAN

users, but can transmit an aggregated train of MAC frames belonging to one single video

frame upon receiving an aggregated train of uplink frames. As shown in Fig. 4.14, the

combined scheme can improve the video capacity of legacy 802.11 MAC by 2−3 times.

4.5 Distributed MIMO-aware Multi-user MAC

Future WLAN will employ promising MIMO technology in the physical layer. Thus,

it is important to study the impacts of MIMO technology on medium access. In this

section, we explore the MIMO technology in the MAC design for multi-user downlink

transmissions to mitigate the AP-bottleneck in an infrastructure based WLAN.We then

extend the developed framework to study the performance of the proposed multi-user

MIMO MAC.

4.5.1 Multi-user MIMO Beamforming

MIMO communication techniques have shown great potential to provide enhanced link

capacity combined with increased diversity and interference suppression. Single-user

MIMO techniques were first studied in the literature. Recently, multi-user MIMO has

been an important research area as it is indicated multi-user MIMO can also achieve

similar capacity scaling as single user MIMO system. An important practical issue
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is that multiple antenna elements are hardly deployed over customer’s mobile devices

due to technique limitations as well as cost consideration. In a realistic WLAN, it

is more likely that only AP be equipped with multiple antennas. Thus motivated,

we study how to explore a multi-user MIMO system to mitigate the AP-bottleneck

effect in traditional infrastructure based WLAN, where the AP with multiple antennas

communicates with multiple users equipped with a single antenna simultaneously in

the downlink.

We consider the same single-hop WLAN scenario as in Section 4.3. The AP employs

M antennas and user i is equipped with Mi antennas, where 1 ≤ Mi ≤ M . By

using MIMO beamforming technology to effectively suppress co-channel interference

(CCI) at the end users, the AP is able to communicate with K (≤ M) users in the

same frequency channel simultaneously. Here, we propose a distributed MU MAC

protocol based on a leakage-based precoding scheme for multi-user beamforming. A

functional block diagram of the multi-user beamforming is shown in Fig. 4.15 [64, 65].

The data intended for user i, si, is multiplied by a beamforming vector Wi prior to

transmission, and the overall data,
∑K

k=1Wksk, is broadcast over the wireless channel.

At the receiver’s end, the received data vector of size Mi × 1 of user i is given by

yi = Hi

K
∑

k=1

Wksk +Vi = HiWisi +Hi

K
∑

k=1,k 6=i

Wksk +Vi (4.35)

where Vi is an additive Gaussian noise vector and each element in Vi has zero mean

and variance N0, Hi is the MIMO channel matrix denoted by Hi = [hp,q
i ]Mi×M with

(p,q)th entry hp,q
i representing the channel gain from the q-th antenna at the AP to the

p-th antenna at user i. The channel gain hp,q
i is assumed to be independent complex

Gaussian with zero mean and unit variance, and time-invariant over each transmission

frame time. Based on the concept of power leakage introduced in [57], which is the

total interference power leaked from user i to all other co-channel users, the signal-to-
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Figure 4.15: Block Diagram of Multi-user Beamforming System

leakage-noise ratio (SLNR) of user i is defined as

SLNRi =
||HiWi||2

MiN0 +
∑K

k=1,k 6=i ||HkWi||2
. (4.36)

The beamforming vectors, Wi, i = {1, ..., K}, is determined such that (4.36) is maxi-

mized over Wi and subject to
∑

Wi = PT , where PT is the total transmission power.

A closed form solution of the optimization problem is given by [64]

Wi ∝ max. eigenvector
(

(MiN0I+ H̃
∗
i H̃i)

−1
)

. (4.37)

4.5.2 Multi-user MIMO MAC

Interoperation with the widely deployed legacy WLANs is critical for MAC protocol

design in the next generation WLANs with MIMO capability. Therefore, the proposed
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Figure 4.16: Control Frame Formats

MU MAC protocol integrates MIMO technology into IEEE 802.11 MAC without chang-

ing the asynchronous, distributed medium access mechanism of the legacy MAC.

A. Extended Control Frames

Prior to data transmission, users exchange RTS/CTS control frames, to reserve the

channel for the subsequent data frames, share with each other the hardware capabilities,

and estimate the associated MIMO channel matrix between the transmitters’ and the

receivers’ antennas if possible. The control frames are generally transmitted at the

basic rate, which is much lower than the data rate, to assure that all users in the

WLAN are capable of decoding them. The formats of the extended control frames are

shown in Fig. 4.16. The multi-user RTS (MU-RTS) frame is extended from the original

RTS frame structure defined in the standard. To support multi-user transmissions, the

extended MU-RTS frame includes multiple receiver address (RA) fields. The receiver

estimates the MIMO channel matrix upon receiving the MU-RTS frame and attaches

the measured channel information in the extended multi-user CTS (MU-CTS) frame.

B. Uplink Transmissions

Because of the difficulties for effectively managing the multi-user interference and ac-

quiring synchronization among multiple uplink transmissions at the AP receiver, in the
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proposed MU-MAC, all the users contend for channel access with IEEE 802.11 DCF.

That is, only one user accesses the channel at a time in the uplink. In a MIMO/SIMO

system, users still can exploit multi-antenna degree of freedom to improve the transmis-

sion rate and reliability. When a spatial diversity scheme is applied, the transmission

rate of user i is given by [66]

RU
i,1 = ηW log2(1 + γi) (4.38)

where η is a system coefficient related to the efficiency of the transceiver design, W

is the signal bandwidth, γi = max{
∑M

j=1 γj,1,
∑M

j=1 γj,2, ...,
∑M

j=1 γj,Mi
}, and γj,k =

|hj,k
i |2PT/N0. When a spatial multiplexing scheme is used, the transmission rate of

user i is given by [67]

RU
i,2 = max

min(M,Mi)
∑

j=1

ηW log2(1 +
P ∗
j λ

2
j

N0

) (4.39)

where λj is the singular value of Hi of user i, P
∗
j = max{µ− N0

λ2

j

, 0} is the waterfilling

power allocation, and µ is the Lagrange multiplier selected under the constraints of
∑

j P
∗
j = PT .

C. Multi-user Downlink Transmissions

In the downlink transmission, we exploit the multi-user degree of freedom for the AP

to simultaneously serve multiple users. The multi-user downlink transmission diagram

is shown in Fig. 4.17 and the operational procedure is as follows.

Step 1. The AP sends out an MU-RTS frame to a group of users (i.e., K users) at

the basic rate.

Step 2. User j on the RA list measures the MIMO channel matrix Hj upon

receiving the MU-RTS; and responds with an MU-CTS containing Hj sequentially

in the same order as that in the MU-RTS if it satisfies the multi-user transmission

condition. A SIFS is applied between any two consecutive MU-CTS frames. That is,
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Figure 4.17: Multi-user Transmissions

based on Hj and the overheard Hi from the previous users, user j can decide if it can

be admitted or not by measuring the SINR values of all admitted users plus itself,

SINRi =
||HiWi||2

MiN0 +
∑j

k=1,k 6=i ||HiWk||2
≥ β, i = 1, ..., j (4.40)

where β is a threshold to ensure successful decoding. If the SINR of any user is below

β, user j will not respond with an MU-CTS frame.The next user calculates the SINR

at the same time as user j and sends an MU-CTS frame after SIFS + a slot time if

user j does not transmit and it satisfies the multi-user transmission condition.

Step 3. Based on the Hi in MU-CTS frames, the AP can decide the beamforming

weights Wi for concurrent downlink transmissions, according to (4.37). A transmis-

sion opportunity (TXOP) and aggregation schemes can also be applied for downlink

transmissions. The users not on the RA list set the network allocation vector (NAV)

and defer their transmissions.

Step 4. After the longest downlink transmission completes and the channel is

sensed idle for SIFS, users send back a delayed group ACK frame sequentially in the

same order of MU-CTS frame transmissions.
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Step 5. It is also possible that the AP may not be able to predict the NAV

duration accurately due to the complicated scenario of multi-user transmissions, and

the AP needs to set a long NAV to protect all ongoing transmissions. In this case,

the AP transmits a CF-End frame after all downlink transmissions finish, explicitly

indicating the completion of its TXOP.

D. Multi-user Selection

Generally, when a network operates in the stable state, all traffic can be served during

a certain time interval. However, when a network is heavily loaded with bursty traffic,

traffic from some users may suffer from overly long delays. In this case, it is critical

for the MU-MAC to determine a proper set of users for multiple transmissions. If the

channel conditions of all users are available, the AP can use exhaustive search or greedy

user selection algorithms for downlink multi-user scheduling to enhance the downlink

throughput. However, to accurately obtain timely channel state information (CSI) at

the transmitter is very challenging and costly, especially in a distributed network where

users randomly access the wireless channel. In the proposed MU-MAC protocol, the

CSI is measured by the AP and other users through the RTS/CTS control message ex-

changes, as shown in Fig. 4.17. In other words, the AP can not determine the multi-user

sets according to Hi before it successfully accesses the channel and exchanges control

messages with other users. On the other hand, with the enhanced performance in terms

of throughput, transmission reliability, and communication coverage, broadband mul-

timedia services can be supported in WLANs. To provide QoS for multimedia services,

we implement a simple priority queue (PQ) based scheduling scheme for multi-user

downlink transmissions.

Data traffic can be generally classified into realtime (RT) and non-realtime (NRT)

categories. Denote the waiting time of the head-of-the-line frame in the queue and

the number of frames to user i at time t as ωi(t) and qi(t), respectively. The AP first
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checks the queue of the RT traffic, QRT . If at least K users have traffic in QRT , the

AP selects the set of K users with the largest
∑

i ωi(t). Otherwise, the AP needs to

select the remaining users with traffic in the NRT queue, QNRT . To further improve

the efficiency of multiple downlink transmissions, the users with similar transmission

duration in QNRT will be selected. Notice that a strict priority scheduling policy is

implemented to provide QoS guarantee for delay-sensitive RT traffic, i.e., the AP will

choose users from the NRT queue only when the RT queue is empty. For scheduling

relatively delay-tolerable NRT traffic, the AP selects the set of users with the largest

queue lengths, i.e.,
∑

i qi(t), to guarantee the system stability and improve the downlink

NRT throughput.

4.5.3 Performance Analysis

We extend the analytical framework to study the performance of the proposed MU-

MAC protocol supporting non-persistent traffic flows. During the service time interval

1/µ0, AP can successfully access the channel and serve multiple users in the downlink

simultaneously. The number of users in the multi-user downlink transmission is de-

termined by the instantaneous channel conditions and the threshold β for successful

decoding, as in (4.40). Denote K̄ as the average number of users in the downlink trans-

missions, the average downlink service rate of the AP is K̄/(1/µ0) = K̄µ0. Thus, we

have

ρi =







λ0/K̄µ0, i = 0 (AP)

λi/µi, 1 ≤ i ≤ N (users).
(4.41)

We then extend (4.13) to obtain the average service rate of the AP (µ0) and any user

(µi) as

1

µ0
= Ts0 +

1

µ0

N
∑

j=1,j 6=i

λjTsj +
1

2
(
1

µ0

N
∑

j=1,j 6=i

λjTcj + Tc0) + E[W0] (4.42)

64



Chapter 4. MAC Protocol in Wireless Local Area Networks

and

1

µi

= Tsi +
1

µi

(
N
∑

j=1,j 6=i

λjTsj +
λ0

K̄
Ts0) +

1

2
(
1

µi

N
∑

j=1,j 6=i

λjTcj +
λ0

µiK̄
Tc0 + Tci) + E[Wi].(4.43)

Since we use RTS/CTS frames to measure channel conditions and exploit MIMO ca-

pabilities, we have

Ts0 = DIFS + TRTS + SIFS +KTCTS +KSIFS + TData0 +KSIFS +KTACK ,

Tsi = DIFS + TRTS + SIFS + TCTS + SIFS + TDatai + SIFS + TACK , (4.44)

and

Tc = DIFS + TRTS + CTStimeout. (4.45)

The data transmission time is given by TDatai = POH + Li/Ri, where POH is the

transmission time of the physical overheads, i.e., physical header and preamble, Li is the

frame payload length, and Ri is the transmission rate of user i. The uplink transmission

rate, RU
i , is determined by the MIMO spatial diversity/multiplexing scheme, as derived

in (4.38) and (4.39). For multi-user downlink transmissions, we approximately use the

average transmission rate of the AP to user i, which is given by

RD
i = E[ηW log2(1 + SINRi)] (4.46)

where SINRi is given in (4.40). Notice that, during the service time interval 1/µi, on

average the successful transmissions of the AP equals λ0/µi under the stable state [6],

but contributes only λ0

K̄µi
Ts0 in (4.43) since the AP serves K̄ users in the downlink

simultaneously. In a stable network, all arrival traffic will eventually be served, thus

the average network throughput under the stable state is

E[S] = λ0L0 +
N
∑

i=1

λiLi (4.47)

where N is the maximum number of the user supported in a WLAN, which is bounded

by the stable state condition. That is, when one more user joins the network, the

system will become unstable for either λ0/K̄µ0 ≥ 1 or λi/µi ≥ 1 ( 1 ≤ i ≤ N).
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Table 4.5: PHY Modes in IEEE 802.11a

Mode Modulation Code Rate Data Rate Bytes/Symbol

1 BPSK 1/2 6 Mbps 3

2 BPSK 3/4 9 Mbps 4.5

3 QPSK 1/2 12 Mbps 6

4 QPSK 3/4 18 Mbps 9

5 16-QAM 1/2 24 Mbps 12

6 16-QAM 1/2 36 Mbps 18

7 64-QAM 2/3 48 Mbps 24

8 64-QAM 3/4 54 Mbps 27

4.5.4 Numerical Results

We use Matlab 7.0 and an event-driven simulator written in C to obtain the simulation

results. The physical modes is based on IEEE 802.11a, as listed in Table 4.5. Hard-

decision Veterbi decoding is used at the receiver. We use the same physical and MAC

parameters as listed in Table 4.4. Users have the same CBR traffic with the frame

payload Li = 1024 bytes and average arrival rate λi, and the AP carries half of the

traffic in the network, λ0 = Nλi. The AP employs M = 6 antenna elements while

each user only has one antenna. The signal bandwidth is 20MHz. We first evaluate the

average bit error rate (BER) performance of all physical modes with the leakage-based

precoding technique. Then we obtain the average number of users that can be served

simultaneously in the downlink with satisfactory BER performance, e.g., BER is not

larger than 10−4, and investigate the performance of the proposed MAC with multi-user

beamforming in a stable network.

Fig. 4.18 shows the relationship between the number of users that are simultaneously

served by the AP in the downlink and the achieved BER of each user. The normalized

SNR is defined as the ratio of the total transmission power over the Gaussian noise,
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Figure 4.18: BER vs SNR

PT/N0. The BER performance increases with the SNR for a given number of users, but

degrades when more users are supported for a given PHY mode. This is because the

co-channel interference among multiple users are not fully suppressed with the leakage-

based precoding scheme1. For mode 8 and SNR = 30 dB, the BER is on the order of

10−5 when 4 users are served simultaneously, and the BER degrades to be on the order

of 10−4 for 5 users due to higher co-channel interference. It is also observed that 5 users

can be supported with BER less than 10−4 when a lower mode, mode 6, is considered.

The average number of users that can be supported simultaneously with the downlink

beamforming is given in Table 4.6.

We compare the traffic intensities of the AP and mobile nodes (MN) in Fig. 4.19.

The traffic arrival rate of a single user is 50 packets per second. For SNR = 30 dB, the

1To obtain the optimal Wi to maximize the received SINR at each user is very challenging, and

thus the leakage-based precoding uses the alternative SLNR criterion instead [65].
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Table 4.6: Maximum Number of Users and Average Data Rate

5dB 10dB 15dB 20dB 25dB 30dB

6M 3 4 4 5 5 5

9M 2 3 4 5 5 5

12M 2 3 4 5 5 5

18M - 2 3 4 5 5

24M - 2 3 4 5 5

36M - - 2 3 4 5

48M - - - 2 4 4

54M - - - 2 4 4

AP can serve up to 4 users simultaneously, each of which has a data rate of 54 Mbps.

The uplink transmission rate under SNR = 30 dB can also reach 54 Mbps with either

diversity (4.38) or multiplexing (4.39) scheme. Since the AP with a higher traffic load

has the same priority for channel access as other mobile users, the traffic intensity of

the AP is generally larger than that of a mobile user. Thus, the maximum number of

users, N , that can be supported in a stable WLAN is obtained such that the traffic

intensity of the AP is less than 1, ρ0 < 1. It is shown that for SU MAC, N = 21 and

the maximum allowed traffic intensity of the AP is 6 times that of a user, ρ0/ρ1 = 6.

For MU MAC supporting K = 2 users in the downlink transmissions, M = 26 and

ρ0/ρ1 = 4.5. When K = 4, M increases to 29 and ρ0/ρ1 further decreases to 3.9. By

employing multi-user beamforming at the AP, the proposed MU MAC protocol can

significantly improve the network performance by minimizing the AP-bottleneck effect

in legacy WLANs.

We further investigate the MU MAC performance under various traffic loads in

Figs. 4.20 and 4.21. The maximum number of users supported in a stable WLAN

decreases when the traffic arrival rate of each user increases. For random channel access,

68



Chapter 4. MAC Protocol in Wireless Local Area Networks

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  5  10  15  20  25  30

T
ra

ff
ic

 I
nt

en
si

ty

Number of Users (N)

SU, K=1, AP
SU, K=1, MN
MU, K=2, AP

MU, K=2, MN
MU, K=4, AP

MU, K=4, MN

Figure 4.19: Traffic Intensity Comparison

 10

 20

 30

 40

 50

 60

 70

 20  30  40  50  60  70  80  90  100

N
um

be
r 

of
 U

se
rs

 (
N

)

Traffic Arrival Rate (packets/s)

SU, K=1, R=54, anal

SU, K=1, R=54, simu

MU, K=4, R=54, anal

MU, K=4, R=54, simu

MU, K=5, R=36, anal

MU, K=5, R=36, simu

Figure 4.20: Maximum Number of Users under Various Traffic Arrivals

69



Chapter 4. MAC Protocol in Wireless Local Area Networks

all users with a non-empty queue contend for channel access. A higher traffic load

results in more collisions in the network, which can significantly degrade the network

performance. It is shown in Fig. 4.20 that M decreases when the traffic arrival rate

of a user increases. M decreases from 52 to 10 when the traffic arrival rate of a user

increases from 20 to 100 packets per second, in the SU MAC supporting 54 Mbps for

a single user transmission. According to Table 4.6, for SNR = 30 dB, the AP can

support up to K = 4 users with a rate of 54 Mbps and up to K = 5 users with a

rate of 36 Mbps each. For MU MAC, M decreases from 73 to 15 for K = 4, and 65

to 13 for K = 5. A larger K may not necessarily improve the network performance

due to the larger MAC layer overheads, including a larger MU-RTS frame, more MU-

CTS frames and the involved IFSs, and the degraded data rate resulting from the

co-channel interference. The maximum network throughput under the stable state is

shown in Fig. 4.21. When the traffic load of each user increases, the number of users,

N , that can be supported in the network decreases. Hence, the maximum network

throughput under the stable state does not change much with the traffic loads. By

employing multi-user beamforming at the AP, the proposed MU MAC can outperform

SU MAC by 40 percent. The proposed MU MAC with K = 4 achieves the highest

network throughput, as compared with SU MAC and MU MAC with K = 5.

4.6 Summary

In this chapter, we analytically study the performance of IEEE 802.11 WLAN in sup-

port of non-persistent multimedia traffic flows. The main accomplishments of this

chapter are summarized as follows:

• We have developed a generic analytical framework to study the performance of

an IEEE 802.11 WLAN, considering the practical issues induced by asymmetric

non-persistent multimedia traffic flows.
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Figure 4.21: Network Throughput

• We have applied the analytical framework to investigate the voice capacity of

an infrastructure based WLAN. The analysis reveals how the protocol overheads

from different layers, the selection of codecs, and the heterogeneous load distri-

bution in the network, affect the capacity of a WLAN.

• We have further analytically studied some enhanced MAC mechanisms, i.e., frame

aggregation and bidirectional transmission, which have been proposed for next

generation high throughput WLANs. With various MAC mechanisms, voice and

video capacities have been quantified and compared as well.

• We have explored multi-user MIMO technique in MAC design for future WLANs

with MIMO capability and proposed a distributed multi-user MIMO MAC. The

proposed multi-user MAC significantly outperforms the legacy single-user MAC

by effectively mitigating the AP-bottleneck effect.
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MAC Protocol in UWB/mmWave

Wireless Personal Area Networks

In this chapter, we first analytically study the performance of existing IEEE 802.15.3

MAC [68], and discuss the potential MAC enhancements in UWB/mmWave WPANs,

considering the salient features of UWB and mmWave communication technologies.

Then, We propose exclusive regions (ER) based MAC layer resource allocation to ex-

plore the spatial multiplexing gain of UWB/mmWave WPANs by allowing appropriate

concurrent transmissions [10]. We further theoretically derive the spatial multiplex-

ing capacity and obtain the best protocol parameters, e.g., the ER size, in order to

maximize the network capacity [12].

5.1 Related Work

5.1.1 Analysis of IEEE 802.15.3 MAC

IEEE 802.15.3 is a hybrid MAC designed for high rate WPANs. A simulation study

of IEEE 802.15.3 MAC is presented in [69] to investigate the performance of real-

time and best-effort traffic with various superframe lengths and different ACK policies.
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In [70], the performance of intra-piconet communications is enhanced by taking advan-

tage of the multi-rate support in the physical layer. In [71], the relationship between

the duration of contention period and the number of requesting users is studied. The

analysis in [71] is based on the result from [72] which studies the capacity of the

p-persistent CSMA and may not be suitable for the traditional CSMA/CA adopted

in IEEE 802.15.3. In [71, 72], the channel is observed at the end of each successful

transmission, and the time interval between two successful transmissions is considered

regenerative. However, due to the very small size of the minimum contention window

and maximum retry limit specified in IEEE 802.15.3, which are 7 and 3, respectively,

the frames are not always successfully transmitted and may be dropped after 3 retrans-

missions. The frame drop probability increases with the number of requesting users

and may not be negligible. Thus, the general assumption of no frame drop in IEEE

802.11 and the previous model in [71] does not hold in IEEE 802.15.3. Moreover, the

regenerative property of each successful transmission holds when all users continuously

have packets for transmission during the contention period, but it does not hold in

the case that each user only transmits at most one request per superframe, which is a

special case in non-saturation scenarios. None of the existing models can be directly

used for investigating this special case. To the best of our knowledge, existing works

on IEEE 802.15.3 either study the throughput and delay performance in the CAP and

CTAP separately or focus on scheduling in the CTAP. There is little analytical study on

the overall performance of a hybrid MAC with respect to the tunable parameters [68],

including the initial contention window, the retry limit, the length of contention period

CAP and contention free period CTAP, etc. As discussed in Section 2.1.3, a hybrid

MAC usually adopts a request-grant mechanism to provide a certain level of QoS for

realtime applications. That is, users send requests in the CAP and transmit data in

the CTAP if their requests are successfully granted. Given a superframe, more users

can successfully send requests in a longer CAP, but fewer slots can be allocated for
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data transmissions in the CTAP, and vice versa. Therefore, appropriate lengths for

contention and contention free periods are critical to IEEE 802.15.3 MAC.

5.1.2 UWB/mmWave MAC

Besides the MAC protocols specified in the current high rate WPAN standards, i.e.,

IEEE 802.15.3 and WiMedia MAC, there has been significant research work on UWB

MAC and related MAC layer resource allocation issues. MAC layer generally uses

temporally exclusive mechanisms in the time, frequency, or space domains to elimi-

nate or reduce interference from simultaneous transmissions. Technically, interference

and multiple access can be effectively managed through power control, rate control,

or mutual exclusion. Recognizing the UWB characteristics, e.g., low power emission

and interference levels, MAC protocols based on the concept of maximum sustainable

interference (MSI) have been studied in the literature. In [73], a proactive and adaptive

MAC is presented for joint power and transmission rates assignment. However, it is

shown in [74] that complex power control scheme can only provide marginal through-

put gain in UWB systems due to the stringent transmission power limit. In [75], a

MSI-based MAC layer resource allocation scheme is proposed to resolve the near-far

problem and alleviate the negative effect of long acquisition time of UWB transmis-

sions. However, frequency control message exchanges are required, which introduces

heavy overheads and degrades the network performance. In [76], measurement based

interference management in wireless mesh networks is studied. A rate control based

interference mitigation scheme is proposed in [77] to mitigate the impacts of interfering

pulses to the receiver in a pulsed time-hopping (TH) UWB system. If pulses from a

strong interferer are larger than the erasure threshold, the scheme will replace them by

erasures (i.e., skipping in the decoding process). Simulations in a symmetric topology

show that a source can always send and continuously adapts its rate without mutual

exclusion when the physical layer interference mitigation scheme is properly applied.
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Another general approach is to use an exclusive mechanism in the space domain.

In [74], a general model for joint scheduling, power allocation and routing optimization

problem is studied for UWB networks. The most important finding is that the optimal

MAC protocol in an UWB network should be a combination of rate adaptation and

mutual exclusion. That is, to improve the resource utilization in UWB networks, it is

optimal to allow concurrent transmissions, as long as all interferers are outside a well-

defined ER around the destinations. Based on the mutual exclusion concept, exclusive

region based resource allocation scheme appears. In [78], two simple heuristic schedul-

ing algorithms with polynomial time complexity are presented. In [79], a multi-class

scheduling problem for UWB networks supporting heterogeneous traffic is formulated

as a utility maximization problem under the fairness constraint. They show that ER

based scheduling scheme can greatly improve the network performance with a carefully

selected ER. However, how to determine the best ER size in a random network to

maximize the capacity of UWB WPANs remains an open research issue.

On the other hand, considering the salient features of mmWave communications

with directional antenna, directional MAC design in mmWave WPANs has been emerg-

ing recently. An mmWave WPAN architecture is proposed in [80], where an interme-

diate node is selected as the relay when the LOS link between source and destination

is blocked by moving obstacles. The proposed architecture is shown to be effective

to keep the network connectivity when serious link outage happens due to obstacles.

An enhanced MAC with spatial reuse TDMA is presented in [81]. Simulations show

that the enhanced MAC improves the throughput and delay performance by allowing

spatial reuse in mmWave channel. To the best of our knowledge, there is little theo-

retical work on the resource management issues in mmWave WPANs. How to design

ER based MAC and determine appropriate spatial reuse parameters in the mmWave

WPAN is beckoning for further investigation.
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Figure 5.1: Protocol Model

5.1.3 Capacity Analysis

Optimizing resource utilization of wireless networks is crucial because wireless resource

in general is at a premium. To meet the ever-growing demand of anytime, anywhere,

higher data-rate wireless connectivity, we are striving to explore the wireless capac-

ity in a networked environment. In the pioneer work of Gupta and Kumar [82], the

asymptotic bounds of network transport capacity have been derived, given the node

density in an arbitrary or random wireless network. To quantify the network capacity,

two transmission models are proposed, namely, the protocol model and physical model,

which define an exclusive region or guard zone between the transmitter and interferers.

They extended their work to three dimensional space in [83], considering all nodes are

located in a sphere. Since then, a large number of follow-up papers has appeared.

The impact of user mobility on network capacity has been studied in [84, 85]. It was

found that node mobility can be exploited to increase the network capacity [84], but

excessive mobility contrarily limits the capacity [85]. The capacity of different networks

with different traffic patterns, e.g., relay traffic, convergent traffic (in sensor networks),

and broadcast traffic, have been investigated in [86–89]. The upper and lower bounds

of throughput capacity of UWB networks have been derived in [90, 91], considering
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power constraints of UWB communications and link layer packet loss. It was found

in [90] that different properties of the physical layer may dramatically alter the network

capacity. In contrast with the result in [82] that the capacity per node is a decreasing

function of node density, the capacity bounds derived in [90] increase with the node

density, assuming that the interference is negligible for UWB networks with low trans-

mission power. To the best of our knowledge, most of the previous work studied the

capacity region, or the upper/lower bounds on network capacity are based on the same

transmission models proposed in [82]: the protocol model and the physical model. In

the protocol model, the transmission between two nodes Xi and Xj is successful if

|Xk −Xj| ≥ (1 + ∆)|Xi −Xj|

for every other node Xk simultaneously transmitting over the same subchannel. In

other words, to ensure the transmission from Xi to Xj to be successful, there is a guard

zone centered at Xj with radius proportional to |Xi−Xj|, as shown in Fig. 5.1 [82]. No

other node inside the guard zone should transmit concurrently. In the physical model,

a transmission from a node Xi is successfully received by a node Xj if

Pi

|Xi−Xj |α

Pn +
∑

k 6=i
Pk

|Xk−Xj |α
≥ β ,

where Pi and Pk are the transmission power levels of node Xi and Xk, respectively, Pn

is the ambient noise power level, and α is the path loss exponent. This model indicates

that the transmission from Xi to Xj can be successful only if the SINR at the receiver

exceeds a certain threshold. If not, the transmission will fail and the flow throughput

will be zero. In these two models, the transmission rate is a binary function, which

is simple and thus analytically attractive for capacity analysis. However, with the

recent advances in wireless communication technologies, the two models are no longer

applicable in some emerging wireless networks. For instance, in a UWB system, the

sender can adjust the data rate according to the received SINR. Such rate adaptation
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scheme is also used in other wireless communication systems including IEEE 802.11

WLAN, IEEE 802.15.3c, and IEEE 802.16 WiMAX. Therefore, even if there is an

interferer which is located inside the guard zone specified in the protocol model in [82],

the flow throughput may not immediately drop to zero. Similarly, there is no single

threshold β (in the physical model in [82]) that decides the transmission rate, which

is adaptive according to SINR. To model realistic UWB and mmWave networks, it

is necessary to employ a more general communication model that captures the rate

adaptation in the physical layer. In addition, the asymptotic capacity bounds derived

in the previous work, especially those for arbitrary networks, may be too loose to be

useful in realistic networks where the network topology is random and may change

from time to time due to user mobility. Therefore, we are more interested in deriving

the expected network capacity or network transport capacity of a random network,

and maximizing them for MAC layer resource allocation by fine tuning the protocol

parameters.

5.2 Performance Analysis of IEEE 802.15.3 MAC

We consider a WPAN consisting of N users, as shown in Fig. 3.1(C). The PNC serves as

an AP or gateway when a piconet user establish a two-way multimedia connection with

a correspondent user outside the WPAN. Let the achievable data rate with transmission

distance dmax be R Mbps, and the distance between the i-th user to the PNC be di,

where 0 ≤ di ≤ dmax for i = 1, 2, ...N . The achievable data rate of the i-th user is

Ri = (di/dmax)
−αR. To support a number of multimedia connections in a WPAN, we

first quantify the appropriate CAP duration to ensure that the requests for channel

times can be successfully sent to PNC. Second, we calculate the number of multimedia

connections that can be accommodated in the CTAP period. We then substantiate the

analysis by calculating how many voice and video calls can be supported in a high rate

WPAN [9].
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Figure 5.2: Process of Frame Service

5.2.1 Contention Access Period

For constant rate multimedia traffic, e.g., voice applications, the user may only need to

send one request per call and reserve channel time for contention free data transmission

in the CTAPs. Therefore, we denote the number of contending users at the beginning

of each CAP as n ≤ N . As shown in Fig. 5.2, the process of frame service continues

until all channel requests are served. Note that a served frame can be either successfully

transmitted or dropped due to excessive retransmissions. Define p|k the conditional

collision probability and τ |k the transmission probability of a user at any slot when

there are k contending users in the piconet. Conditioning on the number of contending

user k, we have

p|k = 1− (1− τ |k)k−1. (5.1)

The transmission probability τ |k can be derived from (4.7) and is a function of p|k.
Conditioning on k contending users in the piconet, a frame is dropped with proba-

bility (p|k)m+1 when the retry limit m is reached, and successfully transmitted with

probability 1− (p|k)m+1. Therefore, during the contention period, the total number of

successfully transmitted requests can be approximated as

ns ≈
n

∑

k=1

(1− (p|k)m+1), (5.2)

and the number of failed requests is nf = n−ns. To avoid collisions, the failed requests

will not contend with others in the same CAP, but will be re-initiated in the next

contention period.
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For a given number of users contending at the beginning of each CAP, the duration

of the contention periods in a superframe can be considered as a renewal process.

During each CAP, the number of contending users monotonically decreases with time.

To analyze the duration of the CAP, we need to track n at every time slot, which

can be very complicated. To simplify the analysis, we consider the average number

of contending users over the CAP, which is l = n/2. We can then obtain the average

conditional collision probability p and average transmission probability τ of a user. We

investigate the network performance from the viewpoint of the channel status, which

can be either idle or busy. The channel is idle only when there is no transmission,

and sensed busy because of collisions or successful transmissions, as shown in Fig. 5.3.

Thus, the length of CAP (TCAP ) is the summation of the busy periods and idle periods.

Here we consider an ideal duration of CAP that ends when the last request is served.

TCAP = E[Nbusy] · Tbusy + E[Nidle] · Tslot, (5.3)

where E[Nbusy] is the average number of busy slots, E[Nidle] is the average number of

idle slots, and Tbusy and Tslot are the duration of a busy slot and an idle slot, respectively.

According to IEEE 802.15.3 [20], Tslot = 17.3 µs, and Tbusy = Treq + SIFS + TACK +

BIFS, where Treq is the transmission time of a request. Tbusy is constant with a fixed

request frame length. To obtain the duration of the CAP, we need to compute E[Nbusy]

and E[Nidle]. Since the channel is idle only when all requesting users are in the backoff

stage, E[Nidle] is the average backoff time the last requesting user experiences, which
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can be approximated as

E[Nidle] =
m−1
∑

i=0

pi(1− p)
i

∑

j=0

2jW − 1

2
+ pm

m
∑

j=0

2jW − 1

2
. (5.4)

We calculate E[Nbusy] from its probability distribution function

E[Nbusy] =

NB
∑

i=0

i · P [Nbusy = i], (5.5)

where NB is the maximum number of busy slots. For a retry limit m, n frames can

be transmitted at most (m + 1)n times. During the CAP, n request frames can be

served, but only ns are successfully transmitted. Therefore, among (m + 1)n busy

slots, ns are successful transmissions and (m + 1)n − ns are collisions. With most

collisions caused by two simultaneous transmissions, the maximum number of busy

slots is NB = [(m + 1)n− ns]/2 + ns = [(m+ 1)n+ ns]/2.

Given the channel is busy, implying at least one user is transmitting in the given slot,

two events may occur: 1) a collision resulting from multiple simultaneous transmissions;

2) a successful transmission when only one user transmits in that slot. Thus, the

probability of a collision and a successful transmission can be derived as

pc =
1− (1− τ)l − l τ(1− τ)l

1− (1− τ)l
, (5.6)

ps =
l τ(1− τ)l

1− (1− τ)l
. (5.7)

The number of busy slots can be considered as a binomial random variable. In other

words, in i busy slots, ns slots are due to successful transmissions and the remaining

i− ns slots are due to collisions.

P [Nbusy = i] =





i

ns



 (ps)
ns(pc)

i−ns (5.8)

Substitute (5.4)-(5.8) into (5.3), we can obtain the CAP duration in which n requests

can be served but only ns requests are transmitted successfully.
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Figure 5.4: Channel Time Allocation Policies

5.2.2 Channel Time Allocation Period

After receiving requests, the PNC can allocate network resources to the requesting flows

and, in the mean time, reserve resource for the isochronous flows that have requested

in the previous suprframes.

TDMA — In IEEE 802.15.3 adopting standard TDMA, guard times (Tg) are

required to keep transmissions in adjacent CTAs from colliding. Assume all multimedia

connections have a constant packet inter-arrival time. If Tsf is less than the packet

inter-arrival time, all N connections can be supported in the UWB network. Then the

duration of the superframe, Tsf , is

Tsf = Tbeacon + TCAP + (2N + 1)Tg + 2NTCTA. (5.9)

where TCTA is the time unit for a channel time allocation. In the CTAP, a SIFS time

is required to ensure sufficient turnaround time between transmissions,

TCTA = k(Tframe + SIFS + TACK + SIFS),

where k = 1 without link layer fragmentation and k > 1 in other cases. Denote L

the payload of a packet. The frame payload, including L and RTP/UDP/IP headers

(RUIh), will be transmitted at a data rate of Ri. The PHY header (PHYh), MAC

header (MACh), Header Check Sequence (HCS) and Frame Check Sequence (FCS)
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will be transmitted at a lower basic rate of R0. The preamble is used for clock/carrier

acquisition and receiver training. The length of the preamble should be long enough

for synchronization between the users in the network, i.e., the preamble time Ta of the

i-th user is determined by di. Therefore, Tframe and TACK are obtained as

Tframe = Ta + (pl +RUIh)/Ri + (PHYh +MACh +HCS + FCS)/R0, (5.10)

TACK = Ta + (PHYh +MACh +HCS)/R0. (5.11)

Since di ≤ dmax for all connections, the lower bound of the number of multimedia

connections being supported, Nmin, can be obtained as

Nmin =
Tsf − Tbeacon − TCAP − Tg

2Tg + 4k SIFS + 2k Tframe + 2k TACK
(5.12)

Piggyback — As shown in Fig. 5.4(b), the PNC only needs to allocate one CTA

for a two-way multimedia connection by allowing the PNC and the user to exchange

their frames. Therefore, N CTAs are required for N multimedia connections while 2N

CTAs are needed when traditional TDMA is used. The duration of the superframe is

Tsf = Tbeacon + TCAP + (N + 1)Tg +NTCTA, (5.13)

where TCTA = 2kTframe + (2k + 1)SIFS + TACK . And Nmin is obtained as

Nmin =
Tsf − Tbeacon − TCAP − Tg

Tg + (2k + 1)SIFS + 2k Tframe + TACK
(5.14)

No-ACK — With error-resilient source coding schemes, many multimedia appli-

cations can tolerate a certain degree of packet loss, and thus No-ACK policy can be used

to reduce the ACK overhead. In this case, TCTA is reduced to TCTA = kTframe+k SIFS,

as shown in Fig. 5.4(c). Accordingly, Nmin is obtained as

Nmin =
Tsf − Tbeacon − TCAP − Tg

2Tg + 2k SIFS + 2k Tframe
(5.15)

The overhead of guard times can be further reduced by allowing the sender and receiver

to exchange data in one CTA, With the combined CTA, the duration of the superframe
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is

Tsf = Tbeacon + TCAP + (N + 1)Tg +NTCTA, (5.16)

where TCTA = 2kTframe + 2k SIFS, as shown in Fig. 5.4(d). Compared with separate

CTA, the number of guard time is reduced from 2Nf + 1 to Nf + 1. Therefore, Nmin

is obtained as

Nmin =
Tsf − Tbeacon − TCAP − Tg

Tg + 2k SIFS + 2kTframe

(5.17)

No-ACK can effectively reduce the ACK overhead at the cost of reliability because

it disables the link layer recovery. Therefore, No-ACK is not desired when channel

error rate is high. On the other hand, piggyback is highly recommended when the

users in the WPAN carry symmetric traffic, such as two-way voice communications.

With dynamically asymmetric traffic, it is difficult for the PNC to efficiently allocate

combined CTAs for a pair of sender and receiver.

5.2.3 Numerical Results

To substantiate the analysis, we first calculate the voice capacity of a DS-UWB WPAN

as an example, since voice capacity of other wireless networks (e.g., cellular, WLAN)

has been heavily studied and it can be used for direct comparison. We then calculate

the maximum number of high data rate multimedia connections being supported in a

WPAN with different data rates. To maximize the capacity, we obtain the required

minimum duration of CAP. Extensive simulations are conducted to validate the analysis

using NS-2 [62].

Let a UWB PNC support a large number of VoIP calls with a comparatively large

range, 10 m. The system parameters for DS-UWB are listed in Table 5.1. DS-UWB

supports two independent bands of operation. The lower band occupies the spectrum

from 3.1 GHz to 4.85 GHz and the upper band occupies the spectrum from 6.2 GHz

to 9.7 GHz. R0 is 28 Mbps for the lower band, and 55 Mbps for the upper band. We
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Table 5.1: System Parameters (DS-UWB)

Data rate R 110 Mbps

Basic rate R0 28 Mbps

Preamble Ta 5 or 15 or 30 µs [92]

PHY header 2 Bytes [92]

MAC header 10 Bytes [20]

HCS 2 Bytes [92]

FCS 4 Bytes [92]

SIFS 10 µs [20]

IP/UDP/RTP header 40 Bytes
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choose the basic rate R0 = 28 Mbps and data rate R = 110 Mbps to calculate the voice

capacity in this paper. There are three preambles defined in [92]: 1) short preamble: 5

µs in length that requires a high SINR with low channel dispersion – it is most suitable

for short range links (< 3 meters); 2) nominal preamble, 15 µs in length that requires

a nominal SINR with a nominal channel – it is the default preamble choice; and 3)

long preamble, 30 µs in length that is used for a poor SINR and/or highly dispersive

channel. Long preamble is intended for extended range applications. The Beacon of

each superframe contains variable number of information elements (IEs), 4 bytes FCS,

and 21 bytes synchronization parameters [20]. The beacon length is approximately 200

bytes plus 34n bytes for CTA IEs and CTA status IEs. Guard times are calculated

based on the worst-case drift in a superframe and the maximum allowed number of

lost beacons g [20], Tg = g ∗ (Clock accuracy/106) ∗ Tsf , where g = 10 and the clock

accuracy is ±25 ppm. The voice codecs used for performance evaluation are tabulated

in Table 3.1.

We first determine the proper duration of CAP. At the beginning of a superframe,

each contending user sends a request with the starting time randomly chosen over the
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minimum contention window, i.e., [0, 7]. The required CAP duration is obtained that n

requests are served, either successfully received or dropped. The channel request frames

are transmitted at the basic rate of 28 Mbps and the voice/video frames are transmitted

at a data rate of 110 Mbps. Fig. 5.5 shows the number of failed requests for a given

number of contending users and retry limit m. It is observed that the increase rate of

the failed transmissions goes higher with a larger n and smaller m. In IEEE 802.11,

the minimum contention window CWmin and m are relatively large (CWmin = 32 and

m = 7), and most frames will be eventually transmitted successfully. But in IEEE

802.15.3, due to the smaller minimum contention window (CWmin = 8) and retry limit

(m ≤ 3), the collision probability could be very high when n is large. The request frames

are more likely to be dropped and thus fewer requests can be successfully transmitted.

If a request is dropped in the CAP, the user needs to re-initiate the request in the

following superframe, which degrades the network performance due to the waste of

network resources caused by retransmissions, and also affects user-perceived QoS with

a longer delay. The duration of the CAP for a given n and m is shown in Fig. 5.6.

Note that not all served requests can be successfully transmitted. For m ≤ 1, most

request frames are dropped due to excessive transmissions for a large n, as shown in

Fig. 5.5, and it is no use to enlarge CAP in this case. It is recommended that a large

m be used to improve the number of successful requests when n is large. Although

it is not desirable for the PNC to change the CAP duration in every superframe, it

is necessary for the PNC to determine the CAP duration from time to time, based

on the varying number of contending users in the network. For real time multimedia

connections that require channel time in a regular basis, we expect that each connection

can last for a certain period, and there are only a limited number of new connections

that contend in the CAP. In the simulation, we set the retry limit to the maximum

value defined in IEEE 802.15.3, i.e., m = 3. We choose TCAP = 2 ms when Tsf = 10 ms,

which is suitable to serve 12 contending users. The TCAP increases by 0.5 ms when
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Table 5.2: Number of VoIP Connections Supported in a UWB WPAN with Different

Preambles and Voice Codecs

Audio G.711 G.729 G.723 iLBC

ms 5 µs 15 µs 30 µs 5 µs 15 µs 30 µs 5 µs 15 µs 30 µs 5 µs 15 µs 30 µs

10 71 52 37 79 56 39

20 137 104 76 163 118 84 157 115 82

30 187 146 110 238 175 126 238/237 176/175 126/126 229 171 124

40 227 181 139 304 228 165

50 259 211 165 364 276 203

60 286 237 188 418 321 238 433/431 330/329 243/242

Table 5.3: Number of Video Connections Supported in a UWB Network with Different

Data Rates

Preamble Data Rate

(µs) 1 Mbps 2 Mbps 3 Mbps 4 Mbps 5 Mbps

5 32 16 11 8 6

15 28 14 9 7 5

30 24 12 8 6 4

the superframe length increases by 10 ms to accommodate more connections. When

Tsf = 60 ms, TCAP = 4.5 ms, which is suitable for serving 20 contending users.

The number of voice calls supported in a UWB WPAN for different voice codecs

is listed in Table 5.2. The voice capacity of G.729 is slightly higher than that of

G.711 (less than 30%), although the payload of G.729 is much smaller than that of

G.711. High compression codec cannot significantly improve the voice capacity of a

high rate UWB network. Thus, for low rate voice applications over high rate UWB

networks, it is recommended to use low compression codecs with low complexity and

high voice quality. The voice capacity of UWB networks will surpass that of all existing

wireless technologies by a large margin. UWB has great potential to support other high

data rate multimedia services that are otherwise impossible with existing narrow band

communications technologies. On the other hand, without the protocol overheads, a
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Table 5.4: Number of Connections Supported in a UWB Network Using Different

Policies

MAC Data Rate

Policies 8 kbps 64 kbps 1 Mbps 2 Mbps 3 Mbps 4 Mbps 5 Mbps

TDMA 39 37 20 10 7 5 4

Piggyback 51 48 23 12 8 6 5

No-ACK with Separate CTA 70 64 27 13 9 7 5

No-ACK with Combined CTA 72 66 27 13 9 7 5

110 Mbps channel should be able to support 110000/64 ≈ 1718 G.711 voice calls with

64 Kbps codec rate. The actual capacity of a UWB network is far below that upper

bound, which reflects the inefficiency of the protocol. Some multimedia applications

require high data rate. We list some examples of high data rate video connections and

calculate their capacity in Table 5.3. The superframe length is 30 ms, and the CAP

duration is 3 ms. With link layer fragmentation, one video packet corresponds to several

link layer frames transmitted in a CTA. The average payload of a frame is 1250 bytes.

Therefore, for a 2 Mbps video flow, the number of link layer frames transmitted in a

30 ms interval is 2× 106 × 30× 10−3/(1250× 8) = 6. It is observed that the number of

high rate video connections being supported is very limited due to the high bandwidth

requirement and protocol overheads. Only 32 one Mbps two-way video connections can

be supported, and the video capacity decreases proportionally when the rates of video

connection increases. Compare to voice connections, where the payload size is quite

small and no frame fragmentation is needed, the fragmentation overheads of video

traffic (e.g., SIFSs between frames, header overheads in each frame, etc.) are quite

large. The number of supported connections is even less if high definition television

(HDTV) is considered, which requires high bandwidth from tens of Mbps (using efficient

compression algorithms) to up to 1.5 Gbps (without compression). Thus, there remain

considerable issues that need further improvement.
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The numbers of supported voice or video connections under different policies are

compared in Table 5.4. The preamble is 30 µs and superframe length is 10 ms. It is

observed that with piggyback and No-ACK policies, the number of high data rate video

connections being supported can only be improved by around 15−35%, while the voice

capacity can be improved by 60−85%. This is because the overheads of SIFS and ACK

become relatively small compared with the large video payload. Therefore, piggyback

is more efficient for small payload and highly recommended for two way symmetric,

low data rate voice applications. With a limited number of high data rate connections,

the guard times are negligible and there is no capacity difference under separate and

combined CTA policies.

5.2.4 Discussion

IEEE 802.15.3 is a hybrid MAC combining CSMA/CA based random access and TDMA

based guaranteed access to provide a certain level of QoS for multimedia application.

Due to the large protocol overheads resulting from contentions in CSMA/CA-based

CAP, it is highly recommended data be transmitted in a contention-free manner and

only commands, e.g., channel time request, be transmitted in the CAP. Moreover, chan-

nel time requests should be performed on a per-flow basis rather than on a per-packet

basis. The numerical results indicate although a UWB WPAN can provide very high

voice capacity for low rate voice calls, the number of high rate video flows supported

in a UWB WPAN is still limited due to the protocol inefficiency and overheads. Thus,

it is essential to explore enhanced MAC design in IEEE 802.15.3 based WPANs to

support high volume multimedia applications.

Different from narrow band communications where simultaneous transmissions in

nearby neighbors collides with each other, wideband communication system can support

multiple concurrent transmissions if the multi-user interference is properly managed.

On the other hand, taking advantage of precise localization capability of UWB system,
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location-aware MAC is possible. Therefore, to improve the network capacity for high

volume multimedia applications, we can utilize the network topology information for

efficient interference management and explore the spatial reuse opportunity in UWB

channel for appropriate concurrent transmissions. The use of directional antenna in

mmWave networks can further improve the network capacity with a higher directivity

gain and more efficient spectrum reuse. In the following sections, we will present

the detail enhanced MAC design and theoretical analysis of the network capacity of

UWB/mmWave WPANs.

5.3 ER-based MAC Design

5.3.1 Exclusive Regions with Different Types of Antenna

We consider a IEEE 802.15.3 based UWB/mmWave WPAN consisting of Nf flows,

{fi, |i ∈ 1, 2, ..., Nf}, with the piconet as the basic network element, as shown in Fig. 3.1(C).

According to the Shannon limit of an additive white Gaussian noise (AWGN) channel,

the achievable data rate of fi is

Ri = W log2(1 +
PR(i)

N0W +
∑

j 6=i,j∈γ Ij,i
) (5.18)

where PR(i) is the receiving power of flow fi, N0 is the one-sided power spectral density

of additive white Gaussian noise, W is the signal bandwidth, γ is the set of flows

concurrently transmitting with flow fi, and Ij,i is the interference power of the sender

of flow fj to the receiver of flow fi. Due to the low power level of UWB systems,

all flows use the maximum transmission power PT . Denote the distance between the

sender and receiver of the i-th flow as di, and the distance between the sender of flow

j and the receiver of flow i as dj,i. The received signal power of flow fi is given by

PR(i) = k1PTGT (i)GR(i)d
−α
i Si, (5.19)
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where k1 ∝ (λ/4π)2 is a constant coefficient dependent of the wavelength λ, α is the

path loss exponent dependent of the propagation environment and usually takes the

value between 2 to 6 [93], and Si captures the fast fading characteristics and equals

the instantaneous channel gain normalized by its time-average value. Denote G0 as

the cross correlation between coefficient between two concurrent flows. The received

interference from flow j is

Ij,i = k1PTG0GT (j)GR(i)d
−α
j,i Sj,i (5.20)

Let k flows transmit in k time slots in a serial TDMA fashion, each flow achieves a

higher instant throughout in its assigned slot without interference and the achievable

throughput over k slots is

RT
i =

1

k
W log2(1 +

k1PTGT (i)GR(i)d
−α
i Si

N0W
). (5.21)

If all flows can transmit concurrently in each of the k slot, the instant throughput of

each flow is lower due to mutual interference but each flow can transmit during more

slots, and the achievable throughput of fi is

RC
i = W log2(1 +

k1PTGT (i)GR(i)d
−α
i Si

N0W +
∑

j 6=i(Ij,i)
). (5.22)

To investigate when concurrent transmission is preferable, we first ignore the short

term fast fading effect and consider long term path loss fading to compare the achiev-

able throughput of the serial TDMA transmission scheme and concurrent transmis-

sion scheme. To compare RT
i and RC

i , we consider two cases separately. First, if

SINR << 1, the achieved data rate can be approximated as

k1W log2(SINR + 1) ≈ k1W × SINR log2 e. (5.23)

With this approximation, from (5.21) and (5.22), a sufficient condition to ensure that

RC
i ≥ RT

i is Ij,i ≤ N0W, ∀j 6= i, i.e., the average interference power from any other
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flow should be less than the background noise1. Thus, if we allow flows with mutual

interference less than that of the background noise to transmit simultaneously, the

throughput of each flow can be higher than that of serial TDMA transmissions.

Second, if SINR is close to or larger than one, the approximation in (5.23) does not

hold when SINR ≥ 1. Nevertheless, the previous derived sufficient condition can still

ensure that RC
i ≥ RT

i . Since log2(x/k + 1) ≥ (1/k) log2(x + 1), ∀x ≥ 1, k ≥ 1, and

if Ij,i ≤ N0W , RC
i /R

T
i ≥ 1/k log2(SNR + 1)/ log2(SNR/k + 1) ≥ 1. Thus, the derived

sufficient condition is always applicable.

To ensure that the interference power from a concurrent flow is less than the noise

level, we should not allow any interferer inside an ER around the receiver. In other

words, an interferer, the sender of fj, should be at least r(i) away from the receiver of

the i-th flow, where r(i) is given as

r(i) = (
k1G0GT (j)GR(i)PT (j)

N0W
)1/α. (5.24)

In the following, we consider three cases and derive ERs according to the types of

transmitting and receiving antennae, i.e., omni- or directional.

Case 1: Omni-antenna to Omni-antenna

In this case, both the transmitters and receivers use omni-antennae, GT (i) =

GR(i) = 1, ∀i ∈ 1, 2, ..., Nf . To ensure that the interference from any interferer to

be lower than the noise level, all interfering sources should be at least r0 away from the

receiver of the i-th flow (dj,i ≥ r0), where r0 is given by

r0 = (
k1G0PT

N0W
)1/α. (5.25)

Therefore, the ER is a circle centered at the receiver, with radius r0, as shown in Fig. 5.7

(a).

1The necessary and sufficient condition to ensure that RC
i ≥ RT

i is
∑

j 6=i Ij,i ≤ (k− 1)WN0, where

flow j is scheduled to transmit concurrently with flow i. The sufficient condition given in the main

text is more conservative, but it allows to design much simpler and practically more feasible scheduling

algorithms.
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Case 2: Directional-antenna to Omni-antenna

In the second case, the transmitter antennae are directional and the receiver an-

tenna are omni-directional (GR(i) = 1). The directional antenna pattern consists of a

mainlobe of gain GTM
with beamwidth θ and a sidelobe of gain GTS

with beamwidth

2π − θ.

As shown in Fig. 5.7(b), if a receiver is inside the radiation angle of an interferer,

the average interference is Ij,i = k1G0GTM
Pd−α

j,i . Thus, an interferer should be outside

the circle centered at the receiver with radius r1:

r1 = (
k1G0GTM

PT

N0W
)1/α. (5.26)

If a receiver is outside the radiation angle of an interferer, we have Ij,i = k1G0GTS
Pd−α

j,i ,

and the ER is a circle with radius r2:

r2 = (
k1G0GTS

PT

N0W
)1/α. (5.27)

If an ideal directional antenna is considered, GTS
= 0, and the ERs are reduced to one

circle with radius r1.

Case 3: Directional-antenna to Directional-antenna
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When both the transmitter and receiver antennae are directional, the ER contains

four zones. If an interferer is located within the beamwidth of the receiver, and the

receiver is also within the beamwidth of the interferer, the interferer should be at least

r8 away from the receiver:

r3 = (
k1G0GTM

GRM
PT

N0W
)1/α. (5.28)

Therefore, the first ER zone is a cone with angle θ and radius r8.

If an interferer is within the radiation angle of the receiver, but the receiver is

outside the radiation angle of the interferer, the second ER zone is a cone with angle θ

and radius r6:

r4 = (
k1G0GTS

GRM
PT

N0W
)1/α. (5.29)

If an interferer is outside the radiation angle of the receiver with its radiation

beamwidth toward the receiver, the third ER zone is a sector with angle 2π − θ and

radius r7:

r5 = (
k1G0GTM

GRS
PT

N0W
)1/α. (5.30)

If both the interferer and the receiver are outside of each other’s radiation beamwidth,

the last ER zone is a sector with angle 2π − θ and radius r5:

r6 = (
k1G0GTS

GRS
PT

N0W
)1/α. (5.31)

The four ER zones for this case are shown in Fig. 5.7 (d). Similarly, if ideal directional

antenna is assumed, four ER zones are reduced to one cone with radius r8.

Different from the guard zone specified in the protocol model in [82], we derive a

general exclusive region surround the receiver, which is independent of the transceiver

distance. The total interference level at the tagged receiver can be bounded for a given

ER. In this section, we give a sufficient condition to show that concurrent transmissions

are preferable. A detailed concurrent scheduling scheme and parameter setting will be

presented in Sections 5.3.2 and 5.4, respectively.
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5.3.2 Exclusive Region based Concurrent Transmissions

In UWB/mmWave WPANs, concurrent transmissions are possible and favorable com-

pared with serial TDMA transmissions if all interfering users are sufficiently far apart,

i.e., outside a well defined ER of the other receivers. In other words, network through-

put can be greatly improved by exploiting the spatial reuse opportunity of the wireless

channel for concurrent transmissions. With a random network topology, the opti-

mal scheduling problem for peer-to-peer concurrent transmissions is known to be NP-

hard [78, 94]. Unlike the traditional scheduling problems, each flow’s throughput per

time slot in UWB/mmWave WPANs is unknown before the scheduling decision, and it

depends on network topology, user deployment, transmission power, cross-correlations

of interfering signals, and the scheduling decision itself.

In the following, we propose REX [10, 95], a randomized ER based scheduling

scheme in a centralized mmWave WPAN, with computational complexity O(N 2
f logNf)

to allocate a time slot. The PNC of a WPAN has the global information of the WPAN,

e.g., the number of active flows and their demands for network resources, and the lo-

cation of all users, etc., based on which the PNC schedules peer-to-peer transmissions

for active flows. Denote the set of all active flows as S{Nf} of Nf elements. A subset

of flows γi ⊂ S{Nf} contains the flows scheduled in slot i that satisfy the conditions

favoring concurrent transmissions, as derived in (5.25)-(5.31). Denote FS the set of

scheduled flows in S{Nf} and Ta(j) a scheduling weight associate with flow j. Ta(j) can

be defined as a function of the allocated network resource (e.g., the achieved through-

put), the resource demands, traffic class, and buffer occupation, etc. In this work, we

define Ta(j) the number of slots allocated to flow j. Initially, FS = γi = NULL and

Ta = 0 for all flows in any slot. The proposed REX operates as follows.

• Step 1: Randomly choose one flow with the minimum Ta and schedule it in slot

i (initially, i = 1 for the first slot). Add this flow to the subsets γi. If the flow is

not included in FS, add it to FS;
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• Step 2: Check all the remaining active flows in the set S{Nf}− γi for concurrent

transmission conditions, starting from the flow with the smallest Ta(j). If any

flow satisfies the concurrent transmission condition, i.e., the new flow and the

flows in set γi are mutually outside each other’s exclusive regions, add it to γi

and increase Ta(j) of the flow by one. If this flow is not included in FS, add it

to FS;

• Step 3: Increase the slot number i by one and sort flows according to Ta(j) in

ascending order;

• Step 4: Repeat Steps 1-3 until all flows are scheduled, FS = S{Nf}.

The procedure can also be repeated until the requirements of all active flows are

fully satisfied. It is worth noting that although sorting flows according to their Ta(j)

in step 2 will increase the computational complexity by O(Nf logNf ), it is essential for

maintaining fairness among flows. If we search flows in a deterministic sequence for slot

allocation, those flows with smaller sequence number are more likely to be scheduled

in γi. This will cause serious unfairness problem, as shown in the simulation results in

a later section. With the searching sequence used in Step 2, the maximum access delay

of all flows can be bounded.

The results of whether two flows are mutually exclusive can be saved in a look-up

table to reduce the execution time of REX. In WPANs, the mobility is typically low,

e.g., less than 1 m/s, and the superframe duration is usually on the order of tens of

ms2. Thus, the node movement is normally much less than 0.1 m during the superframe

duration. Such small change in location will not significantly affect the received power

and interference power level, and it is acceptable to ignore mobility for scheduling

decision. Due to low mobility in WPANs, the frequency of updating the table of

mutual exclusive condition is also low. In the case a transmitter or a receiver detects

2The maximum length of a superframe specified in IEEE 802.15.3 is 65535 µs.
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the topology change by measuring the link quality between them, the neighbor discovery

(ND) process embedded in the association process will be automatically triggered and

the network topology will be updated accordingly. In this work, we focus on the

enhanced MAC layer resource allocation and do not consider the impact of the ND

process on network capacity.

5.4 Capacity Analysis and Parameter Setting

In this section, we develop an analytical model to study the network capacity of a

WPAN using ER based concurrent transmissions [11]. Our objective is to control

the interference level and set the best ER r to maximize the spatial multiplexing ca-

pacity of a WPAN with random topology. In specific, given a two-dimensional or

three-dimensional space with a number of users randomly distributed over the space,

we analyze the expected per-flow throughput, total network throughput, and network

transport throughput. The analysis can be used to select the best ER size to maximize

the network capacity.

5.4.1 Average Number of Concurrent Transmissions

Given the number of active users in an area, what is the number of flows that can

transmit simultaneously under the constraint of the ER condition? Since network

topology and user deployment drastically affect the network performance, we focus on

the expected number of concurrent transmissions, which is general and independent of

network topology and user deployment.

Consider an L × L square room containing Nf active flows, with Nf transmitters

and Nf receivers randomly deployed. Define P (k, n) as the probability that only k

flows satisfy the ER condition and can be scheduled for concurrent transmissions, after

checking the first n ≤ Nf flows one by one. Without loss of generality, we check flows
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in ascending order 1, 2, ..., Nf . The first flow f1 will be scheduled for transmission in

the set γ, and we have P (1, 1) = 1. Flow f2 will be added to γ if it does not conflict

with flow f1. Define Q as the probability of a transmitter lying outside an ER of a

receiver. The probability that a flow does not conflict with another flow is Q2, because

both transmitters should be outside the ERs of the other receivers. Accordingly, the

probability that two flows do not satisfy the ER condition is 1−Q2. Therefore, in the

two-flow case, we have P (2, 2) = Q2 and P (1, 2) = 1− Q2. After we check the first n

flows, there are k flows in γ if a) there are k−1 flows in γ when we check the first n−1

flows, and the n-th flow does not conflict with the other k − 1 flows in γ; or b) there

are k flows in the set when we check the first n − 1 flows, and the n-th flow conflicts

with one of the k flows in γ. The probability that a flow does not conflict with any of

the other k − 1 flows is Q2(k−1).

P (k, n) = P (k − 1, n− 1)Q2(k−1) + P (k, n− 1)(1−Q2k) for k < n. (5.32)

If, among the n flows, only the first flow can be added in γ, implying that the

following n− 1 flows do not satisfy the ER condition, we have

P (1, n) = (1−Q2)n−1 for k = 1. (5.33)

Another extreme case is that all n flows can be scheduled concurrently, which means

that none of the flows conflicts with the remaining n− 1 flows,

P (n, n) = (Qn−1)n for k = 1. (5.34)

Given the initial values of P (1, 1), P (1, 2) and P (2, 2), we can iteratively obtain

P (k,Nf) as a function of Q for ∀k, 1 ≤ k ≤ Nf . The expected number of concurrent

transmissions is

E[CT ] =

Nf
∑

k=1

kP (k,Nf). (5.35)
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Figure 5.8: Exclusive Region for Concurrent Transmissions

Derivation of Q: Approach I

To obtain E[CT ], we need to know Q. Let the size of the ER of a receiver be A, and

total area S = L2. As shown in Fig. 5.8, with each user randomly deployed in the

room, an interferer of one flow is outside the ER of the receiver of another flow with

probability Q = 1−A/S Since the ER region and Q are related to the types of antennae

used, in the following, we derive Q by considering the three cases shown in Fig. 5.7.

Case 1: Omni-antenna to Omni-antenna

In case 1, the ER is a circle with radius r0 and A0 = πr20, as shown in Fig. 5.8(a).

The probability that an interferer is outside the ER of a receiver is given by

Q1 = 1− A0

S
= 1− πr20

S
, for r0 << L. (5.36)

Case 2: Directional-antenna to Omni-antenna

Due to the omni- receivers and directional transmitters, the ER in case 2 con-

tains two zones, a circle with radius r1 and another circle with radius r2, as shown

in Fig. 5.8(b). Accordingly, the areas of the two zones are A1 = πr21 and A2 = πr22.

If a receiver is within the radiation angle of an interferer with probability θ/2π, the

interferer is outside the first ER zone (A1) with probability 1 − A1/S. Similarly, if a

receiver is outside the radiation angle of an interferer with probability 1 − θ/2π, the
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interferer is outside the second ER zone (A2) with probability 1 − A2/S. Therefore,

the probability that an interferer is outside the ER of a receiver is given by

Q2 = 1− πr22
S

+
r22θ

2S
− r21θ

2S
, for r1, r2 << L. (5.37)

Case 3: Directional-antenna to Directional-antenna

The ER in this case contains four zones, as shown in Fig. 5.8(c). The first zone A6

is a sector with radius r6 and angle 2π − θ and the second zone A4 is a sector with

radius r4 and angle θ. The areas of these two exclusive zones are A6 = πr26(1− θ/2π)

and A4 = πr24(θ/2π). Note that the two areas A4 and A6 are exclusive to each other,

i.e., A4 ∩ A6 = Null. If a receiver is outside the radiation angle of another sender,

the sender can concurrent transmit if it is outside the ER zones of the receiver (A4

and A6). A receiver is outside the radiation angle of another sender with probability

1 − θ/2π, and the sender is outside the ER zones of the receiver with probability

1 − (A4 + A6)/S. Similarly, if a receiver is within the radiation angle of an interferer

with probability θ/2π, the interferer is outside the ER zones of the receiver (A3 and

A5) with probability 1− (A3 +A5)/S, where A5 = πr25(1− θ/2π) and A3 = πr23(θ/2π).

Therefore, we have

Q3 = (1− A5 + A3

S
)
θ

2π
+ (1− A4 + A6

S
)(1− θ

2π
), (5.38)

for r3, r4, r5, r6 << L.

Edge Effect — If the areas of ER zones are relatively large compared to the

room area or a user is located near the edge of the room, it is likely that some parts

of the ER zones will be outside the room, and this is referred to as “edge effect”.

Using case 1 as an example, if the receiver is at the corner of the square room, we

have A′ = πr20/4 < A. The actual probability that a random interferer is within

the ER of a receiver should be A′/S ≤ A/S. Thus, the developed analytical model

without considering the edge effect may result in a conservative estimation of E[CT ].
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To mitigate the edge effect, we set a constraint for the area of ERs such that Ai ≤ S

and ri ≤
√
2L, ∀i, i = 0, ..., 6, in all cases.

Derivation of Q: Approach II

Another approach to derive Q is based on the distance distribution among any two

users. Given the distance between two users at random from the interior of a unit

square [96], the pdf of the distance between two randomly deployed users in an l × l

square room, f(x), is derived as

f(x) =







2 x
l2
(x

2

l2
− 4x

l
+ π) for 0 ≤ x ≤ l

2 x
l2
(4
√

x2

l2
− 1− (x

2

l2
+ 2− π)− 4 tan−1

√

x2

l2
− 1) for l < x ≤

√
2l).

(5.39)

Case 1: Omni-antenna to Omni-antenna In case 1, an interferer of flow fj is

outside of the ER of the receiver of flow fi if the distance dj,i is larger than r,

Q1 = P (dj,i ≥ r) =

∫

√
2l

r

f(x)dx. (5.40)

Case 2: Directional-antenna to Omni-antenna In case 2, an interferer is inside

an ER of the receiver of flow fi if the receiver is within the radiation angle θ of the

interferer and the distance dj,i is less than the exclusive distance r1; or if the receiver

is not within the radiation angle and the distance is less than r2. Thus,

Q2 = 1− θ

2π

∫ r1

0

f(x)dx− (1− θ

2π
)

∫ r2

0

f(x)dx. (5.41)

Case 3: Directional-antenna to Directional-antenna

Similarly, in case 3, an interferer is inside an ER of a receiver if 1) both the interferer

and the receiver are within the radiation angle θ of each other and the distance dj,i < r3;

or 2) if an interferer is within the beamwidth of the receiver but the receiver is outside

of the beamwidth of interferer, and the distance dj,i < r4 ; or 3) an interferer is outside

the radiation angle θ of the receiver but the receiver is within the angle of interferer,
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and their distance dj,i < r6. or 4) both the interferer and the receiver are outside each

other’s radiation angle and their distance dj,i < r6.

Q3 = 1−(
θ

2π
)2
∫ r3

0

f(x)dx− θ

2π
(1− θ

2π
)(

∫ r4

0

f(x)dx+

∫ r5

0

f(x)dx)−(1− θ

2π
)2
∫ r6

0

f(x)dx.

(5.42)

5.4.2 Network Capacity and Transport Capacity

Given the transmission distance z′ and the channel gain s between the transmitter and

the receiver, the received signal power, PR, is given by (5.19)

PR = k1GTGRz
′−αsPT . (5.43)

Accordingly, the achievable data rate of the flow is calculated as

R = ηW log2(1 +
k1GTGRz

′−αsPT

N0W +
∑

Ii
), (5.44)

where η is a constant coefficient related to the efficiency of the transceiver design. As

UWB fast fading characteristics follow the Nakagami distribution [97]3, and the pdf of

the Nakagami channel gain is given by

fS(s) = (
m

ω
)m

sm−1

Γ(m)
e

−ms
ω , (5.45)

where m is the Nakagami parameter denoting the channel fading conditions and ω

is the average received power. Notice that (5.44) does not apply when z ′ → 0, and

the achievable data rate is actually bounded in realistic communication systems. We

assume that the maximum data rate is achieved when the transmission distance is not

larger than the reference distance dmin, z
′ ≤ dmin.

3Although we adopt a UWB channel model in this work, other channel models can also be applied

in the analytical framework in general.
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Let the random variable Z ′ denote the effective transmission distance, which can

be represented as a truncated random variable over [dmin, dmax] with probability den-

sity function of fZ′(z′). The derivation of fZ′(z′) in 2-D and 3-D space is given in

Appendix 7.2.4.

Denote the interference distance and the gain of the channel between the ith inter-

ferer to a receiver as random variables Vi over [r, dmax] and Si, respectively. The pdf of

Vi is given by

fVi
(v) =

fZ(v)
∫ dmax

r
fZ(z)dz

. (5.46)

The channel between the interferer and the receiver also follows Nakagami fading model

and the pdf of R.V. Si is the same as in (5.45).

Given the interference distance v and the channel fading factor si, the interference

from a single interferer is

I1 = k1C0GTGRv
−αsiPT . (5.47)

Given that there are k concurrently transmitting flows, each flow has k − 1 inter-

ferers. Since the received signal strength and the interference strength are independent

R.V.s, the received SINR of a single flow can be obtained as

SINR|k = k1GTGRz
′−αsPT/[N0W +

k−1
∑

i=1

Ii]

≈ k1GTGRPT sz
′−α/[N0W + (k − 1)I1]. (5.48)

Accordingly, the average transmission rate and the bit-meter product of a single

flow under k − 1 interferers are given by

E[TS|k]

= ηWE[log2(1 + SINR|k)]

≈
∫∫∫∫

ηW log2(1 +
k1GTGRz

′−αsP

N0W + (k − 1)KC0GTGRPTv
−α
i si

)

·fVi
(vi)fSi

(si)fS(s)fZ′(z′) dvi dsi ds dz′, (5.49)
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and

E[TrS|k]

≈
∫∫∫∫

z′ηW log2(1 +
k1GTGRz

′−αsPT

N0W + (k − 1)KC0GTGRPTv
−α
i si

)

·fVi
(vi)fSi

(si)fS(s)fZ′(z′) dvi dsi ds dz′. (5.50)

We then remove the condition of k − 1 interferers to obtain the average single flow

throughput E[TS] and bit-meter product E[TrS] when it is scheduled for transmission

as

E[TS ] =

Nf
∑

k=1

E[TS|k]p(k,Nf ), (5.51)

and

E[TrS] =

Nf
∑

k=1

E[TrS|k]p(k,Nf), (5.52)

where p(k,Nf) is obtained in Section 5.4.1.

The capacity and transport capacity of the network are the sum of the throughput

and bit-meter products of all flows concurrently transmitting, which are obtained as

E[T ] =

Nf
∑

k=1

kE[TS|k]p(k,Nf), (5.53)

and

E[Tr] =

Nf
∑

k=1

kE[TrS|k]p(k,Nf). (5.54)

Given the system parameters such as α, G0, P , etc., E[T ] and E[Tr] can be obtained as

a function of r. Consequently, we can obtain the best value of r to maximize network

capacity and transport capacity.

5.5 Numerical Results and Discussions

We use Maple 10 to calculate the analytical results and validate them through extensive

simulations with C. We set up the experimental network in a 10 m × 10 m 2 dimensional
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and a 10 m × 10 m × 2 m three dimensional square room, respectively. A number of

flows with distinctive senders and receivers are randomly deployed in the space. All

flows keep active for a long period of time that the transmitters always have data for

transmission. We consider the use of omni-directional antenna in a UWB network, and

directional antenna in a mmWave network. k1 is set to 1 for calculation simplicity. The

parameters used in the analysis and simulations are listed in Table 5.5. All flows use

the maximum transmission power. The background noise level is N0 = 114 dBm/MHz

over a 500 MHz signal bandwidth. The path loss exponent is 4 and the cross correlation

among concurrent flows G0 = 1 if not otherwise specified. The reference distance is set

as dmin = 1 m and the path loss at dmin is 43.9 dB. We set the transceiver efficiency η =

0.21 so the expected achievable data rate at 1 m is R = ηW log2(1+SINR) = 1 Gbps.

In the simulations, the scheduler assigns time slots to flows that can be transmitted

concurrently using the random selection algorithm introduced in Section 5.3.2. We

also use the UWB channel proposed in [97] to study the impact of channel fading on

the network performance. Independent Nakagami fading channels with ω = 1 and

m = 1 ∼ 6 are applied between any two users. Since the number of concurrent

transmissions and network capacity largely depend on the user deployment, we repeat

the simulation 500 times with different seeds and calculate the average values.

5.5.1 Concurrent Transmissions vs Serial Transmissions

We first use the simplified cone plus circle model in a two-dimensional plane to com-

pare the performance of the concurrent transmissions using the ER distance derived

in (5.25)-(5.31) with that of serial TDMA transmissions. Based on the sufficient con-

dition, the ER distance varies with the antenna beamwidth θ. A small θ results in

a higher antenna gain, and thus a larger r. As shown in Figs. 5.9 (a) and (b), since

the ER area increases with the ER distance r or the beamwidth θ, fewer flows can be

scheduled for concurrent transmissions. In cases 2 and 3, due to the use of directional
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Table 5.5: Simulation Parameters

Signal Bandwidth (W ) 500 MHz

Transmission Power (PT ) −41.3 dBm/MHz

Noise Power Density (N0) 114 dBm/MHz

Path Loss Exponent (α) 2.5− 6

Reference Distance (dmin) 1 m

Path loss at dmin (PL0) 43.9 dB

Cross Correlation (G0) 0.1-1

Nakagami Factor (m) 1 ∼ 6

Transceiver Efficiency (η) 0.21
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Figure 5.9: Number of Concurrent Transmissions (α = 4) (ς = 1)
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antenna, a receiver is less likely to be in the radiation angle of an interferer, and vice

versa. Thus, more flows can be scheduled for concurrent transmissions. We use the area

based approach I to calculate E[CT ]. Our analysis is slightly conservative with a small

beamwidth due to the edge effect. Overall, simulation results validate the accuracy of

our analysis.

The spatial multiplexing gain, defined as the ratio of network throughput with

concurrent transmissions to that with serial TDMA transmissions, is shown in Fig. 5.10.

For case 1 (omni-to-omni), the sufficient condition to favor concurrent transmissions is

to set the ERs as circles with radius r0 = 5.24 m centered at each receiver, as derived

in (5.25). When the radius is set close to 0, almost all flows can transmit concurrently.

However, concurrent transmissions may achieve lower throughput than TDMA due

to severe mutual interference. When the ER size is too small, the interference among

concurrent flows is so high that the concurrent transmissions will not always outperform

TDMA (spatial multiplexing gain is less than 1), especially in a dense network. When

the ER size increases, fewer flows can be transmitted concurrently and thus more time

slots are required to schedule all flows. When the ER size is large enough to forbid any

concurrent transmission, the performance of the proposed scheme is the same as that

of TDMA and the spatial multiplexing gain equals 1. Although network throughput

may vary with different user deployments, we find that the spatial multiplexing gain

achieved with r0 is much higher than 1, as shown in Fig. 5.10 (a). Therefore, by

scheduling concurrent transmissions with appropriate ERs, significant improvement on

network throughput can be achieved. Fig. 5.10(b) shows the spatial multiplexing gains

obtained in cases 2-3. Using a directional antenna with a small beamwidth, most flows

can be transmitted concurrently and the spatial multiplexing gain is very high in both

case 2 and case 3. In all cases, concurrent transmissions always outperforms serial

TDMA transmissions under the derived sufficient condition of ERs.

In reality, the antenna gain is a product of the antenna directivity gain and the
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radiation efficiency ς < 1, and the sidelobe is not negligible. We then investigate the

expected number of concurrent transmissions in case 3 under various antenna efficien-

cies, and the numerical results are shown in Fig. 5.11(a). The antenna gain within the

beamwidth deceases by a factor of ς, which results in a smaller ER sector with radius

r3. However, other ER zones (sectors with radius r4, r5, and r6) are non-zero when

the sidelobes are considered. Take θ = 40 degree for example. The antenna gain is

9 when η = 1, and decreases to 8.1 when η = 0.9. Without considering the sidelobe,

the ER for η = 1 is a sector of a circle with radius r3 = 13.4 m. When η = 0.9, the

ER contains four zones, as shown in Fig. 5.7(c) with r6 = 1.5 m, r4 = r5 = 4.5 m and

r3 = 12.7 m. Here, r4 = r5 because the antennae gains used for the transmission and

receiving are the same. Obviously, the areas of the four ER zones for η = 0.9 are larger

than those for η = 1. According to (5.36)-(5.38), the probability, Q, that a transmitter

is outside the ER of a receiver decreases when the ER areas increase, and thus fewer

concurrent transmissions can be scheduled. As shown in Fig. 5.11(a), when ς is reduced

from 1 to 0.9, the expected number of concurrent transmissions decreases significantly

due to the increased ER areas. The base 10 logarithmic throughput in case 3 is shown

in Fig. 5.11(b). It can be seen that the spatial multiplexing throughput also decreases

with ς.

5.5.2 Network Spatial Multiplexing Capacity

In this subsection, we apply an ideal flat-top antenna model to study parameter setting

for concurrent transmissions in UWB/mmWave WPANs.

Number of Concurrent Transmissions

We use the distance based approach II in (5.40-5.42) to calculate the expected num-

bers of concurrent transmissions under various ER distance r in Fig. 5.12. Note that

in Fig. 5.9, r is a function of θ, while in Fig. 5.12, r is a tunable parameter that is inde-
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Figure 5.14: Expected Number of Concurrent Transmissions in 2D and 3D Space

pendent of θ. In all cases, the expected number of concurrent transmissions decreases

when the exclusive distance r increases. Both area and distance based methods are

validated by the simulation results. The number of E[CT ] under various r in all cases

are compared in Fig. 5.13. It is shown that E[CT ] decreases much more drastically in

case 1 than that in cases 2 and 3.

The expected number of concurrent transmissions in a 3-D space (10m×10m×2m)

is shown in Fig. 5.14. The obtained E[CT ] in a 3-D space is slightly larger than that in a

2-D space by considering the third dimension of the space. The relationship of E[CT ]

and the network density is shown in Fig. 5.15. It is observed that E[CT ] increases

rapidly with the increase of the total number of flows when r is small, and the increase

ratio decreases when r becomes large. For example, when r is large enough to prevent

most concurrent transmissions, E[CT ] does not vary much with the network density.
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Figure 5.15: Expected Number of Concurrent Transmissions vs Number of Flows (3D)

Network capacity and transport capacity

We first evaluate the network performance without the channel fast fading, i.e., consid-

ering constant channel gain S = 1. The network spatial multiplexing capacity in cases

1-3 is shown in Fig. 5.16. For a small exclusive distance r, the spatial capacity is quite

low, although a large number of flows can be scheduled for concurrent transmissions.

This is because, the more the concurrent transmissions, the larger the interference from

other flows. We also observe that in Fig. 5.16(a), the maximum capacity is achieved

when r is 3.5 m. We further enlarge r, the network capacity decreases and becomes

constant when r > 10 m. In Fig. 5.16(b), the network capacity in cases 2 and 3 is much

higher than that in cases 1 due to greater antenna gain and more aggressive spatial

reuse, especially when θ is small. As shown in Fig. 5.17, the network capacity peaks

under certain exclusive distances in all cases.

We also study the relationship of the exclusive region radius r and the data rate

of a single flow during transmission. Basically, the average data rate of a flow is
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Figure 5.16: Network Spatial Multiplexing Capacity
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Figure 5.18: Single Flow Data Rate During Transmission (3D)

proportional to its average received SINR, which increases when the exclusive region

radius r becomes larger and the number of concurrent transmissions decreases. When

r is small, more flows can transmit concurrently, which results in higher interference

level that degrades the data rate of each flow significantly. When r is sufficiently

large to forbid any concurrent transmission, the maximum data rate of a single flow

can be achieved with no interference, as shown in Fig. 5.18. Notice that both signal

and interference power levels are dependent on the path loss exponent α. When the

exclusive region radius r is small, interference from concurrent transmission could be

serious. A larger value of α may result in a drastic decrease of interference level and

a higher SINR can be achieved. When r is large and there is no serious interference,

the signal power decreases as α increases, so a lower data rate is achieved when α is

larger. As shown in Fig. 5.18, when r = 3 m, flow data rate for α = 4 is slightly larger

than that for α = 3 and α = 2, in which cases, interference is the dominant factor of

the single flow data rate. When r ≥ 9 m, the data rate for α = 4 is much less than that

for α = 3 and α = 2, because in these cases the signal strength becomes the dominant
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Figure 5.19: Network Capacity vs Path Loss Exponent(3D)

factor.

The network spatial multiplexing capacity with omni antenna in a 3D space under

various path loss exponents is shown in Fig. 5.19. It is observed that the network

capacity increases with α when r = 3 m, but decreases when r = 9 m. Although the

single flow data rate of r = 3 m is always much smaller than that of r = 9 m, the total

throughput when r = 3 m may be larger when the path loss is severe enough to sig-

nificantly reduce the interference level. For r = 9 m, there is little spatial multiplexing

gain since only one flow transmits at a time; the network throughput equals to that of

a single flow throughput which decreases with α due to signal dispersion over distance.

We further investigate the impacts of spread spectrum techniques on spatial mul-

tiplexing gain. As shown in Fig. 5.20, the network spatial multiplexing capacity in a

3D space is a concave curve with different exclusive distances as in a 2D space. The

network capacity is bounded by high interference level when r is small; and the capacity

becomes constant and equals the average throughput of a single flow when r is large

enough to forbid any concurrent transmissions. When a certain spreading technique
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Figure 5.20: Network Capacity vs ER Radius(3D)

(FDMA or CDMA) is used to reduce the cross correlation among concurrent flows, a

smaller G0 can be achieved, which can significantly reduce the interference level among

concurrent flows and thus improve the network capacity. For G0 = 0.1, the maximum

network capacity is higher than that of G0 = 1. However, in wireless networks, it

is difficult to maintain the orthogonality among different spreading codes. In addi-

tion, efficiently distributing spreading codes among multiple flows is not a trivial task.

Simulation results validate the accuracy of our analysis.

The transport capacity of the network in a 3D space is shown in Fig. 5.21. There

are 40 flows in the network. Similar to the network capacity, the transport capacity

of the network is also a concave curve under different exclusive region radii. The rela-

tionship between the transport capacity and network density under different exclusive

regions is investigated in Fig. 5.22. When the network is sparse, the transport capacity

is relatively low because spatial reuse is not fully deployed. We increase the number of

flows in the network, and the transport capacity improves with more flows transmit-

ting concurrently. Given the exclusive region size r, the expected number of concurrent
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Figure 5.23: Impacts of Nakagami Channel Fading (3D, G0 = 0.1)

transmissions will not increase rapidly with the total number of flows in a dense net-

work, as shown in Fig. 5.15, and the increment of the transport capacity slows down

accordingly.

We then study the impacts of the Nakagami channel fading on network capacity.

The network capacity under various Nakagami fading parameter m (m = 1 ∼ 6) is

shown in Fig. 5.23. The parameter m generally reflects the severity of the channel

fading conditions. The larger the m is, the more likely there is a line-of-sight path, and

thus the better channel condition we have. It is observed that the network capacity

increases as m increases.

Fairness

We further investigate the fairness performance of the proposed REX. Fairness is mea-

sured by Jain’s fairness index [98], (
∑

xi)
2/(N

∑

x2
i ), in terms of the total number

of time slots allocated to each flow. The fairness index in cases 1 to 3 are shown
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Figure 5.24: Fairness Comparison w.r.t Number of Allocated Slots

in Figs. 5.24. TDMA can always achieve perfect fairness since it allocates time slots

evenly to all flows. With the deterministic searching scheme, all 40 flows are exam-

ined in ascending order of the flow number, i.e., from flow 1 to flow 40, thus the

flows with smaller sequence numbers are more likely to be scheduled. As shown in

Fig. 5.24(a), with the deterministic searching sequence, fairness degrades drastically

when the number of flows increases, while our proposed scheduling scheme using sorted

searching sequence can achieve better fairness, regardless of the number of flows. In

Fig. 5.24(b), we compare Jain’s fairness index in cases 2 to 3. The scheduler with de-

terministic searching sequence provides poor fairness performance because those flows

with smaller sequence number are more likely to be scheduled. The proposed REX

scheme can achieve better fairness since it always gives higher priority to the flows

with fewer number of assigned slots. On the other hand, for fair resource allocation, it

is desirable to maximize the minimal flow throughput among all competing flows. We

compare the per-flow throughput of different transmission schemes in Fig. 5.25. The

simulation results show that, although Jain’s fairness index of the proposed scheme is
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lower than that of the TDMA scheme, the minimal per-flow throughput is improved

with the proposed scheme. Thus, the proposed scheme achieves better Min-Max fair-

ness and it is more desirable for user experience.

5.6 Summary

In this chapter, we analytically study the performance of IEEE 802.15.3 MAC and

investigate the enhanced MAC layer resource allocation in UWB/mmWave WPANs.

The main accomplishments of this chapter are summarized as follows:

• We have developed an analytical model to study IEEE the performance 802.15.3

MAC. Our analysis disclose the interaction between the tunable parameters, in-

cluding the initial contention window, the retry limit, the length of contention

period CAP and contention free period CTAP, etc., and thus provides important

guideline for parameter setting.

121



Chapter 5. MAC Protocol in UWB/mmWave Wireless Personal Area Networks

• We have proposed a novel ER based MAC for UWB/mmWave WPANs to ef-

ficiently explore the spatial capability of UWB/mmWave channel, considering

the salient features of UWB and mmWave communications. The proposed MAC

not only achieves high network capacity, but also provides good fairness among

multiple users for channel access.

• We have further analyzed the spatial multiplexing capacity of a UWB/mmWave

WPAN using the proposed ER based MAC. Given a 2D or 3D space, we have

derived the expected number of concurrent transmissions, per-flow throughput,

and network (transport) throughput of a WPAN. The analytical results reveal

what are the main factors affecting the network (transport) capacity, and how to

determine the best protocol parameters, e.g., exclusive region size, to maximize

the network capacity.
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Chapter 6

MAC Protocol in Distributed

Multi-hop UWB Networks

6.1 Related Work

6.1.1 Distributed MAC

MAC protocols in general can be classified into two categories: centralized and dis-

tributed MAC. Extensive research has been conducted on developing efficient cen-

tralized MAC protocols for wireless networks, with dedicated centralized coordinators

or randomly chosen coordinators [99]. A centralized MAC protocol usually provides

more reliable and predictable services than distributed MAC at the expense of con-

trol overheads [79, 82, 100–102]. However, a centralized solution may not be desirable

for large-scale, multi-hop wireless networks for the following reasons: a) centralized

schemes normally have significant communication and computational overheads. With

high data rate (up to Gbps) UWB communication technologies, the transmission time

is usually on the order of µs, so any packet-level scheduler with complexity more than

O(1) becomes less desirable. On the other hand, the traffic of many applications, e.g.,

data and video traffic, are bursty in nature, thus it is difficult to reserve an appropri-
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ate amount of resources for these traffic flows; b) tight synchronization among users

is costly, especially in a large scale multi-hop UWB networks; c) centralized architec-

ture is not scalable, and it may suffer the single-point-of-failure problem; d) when a

hierarchical structure is used to divide the entire network into multiple small piconets,

efficient coordination among piconets is not an easy task and interference resulting from

inter-piconets communication may severely degrade the network performance.

Recently, the WiMedia Alliance has launched PHY and MAC layer specifications

based on MB-OFDM UWB technology [24]. The Wimedia MAC specification uses a

combination of CSMA and TDMA mechanisms to provide a certain level of quality

of service for isochronous traffic in a distributed manner. In [103], a contention based

distributed algorithm, RCAMA, is proposed, using a physical interference model. How-

ever, both RCAMA and Wimedia MAC are based on a time slotted frame structure

with a implicit assumption of negligible overhead in acquiring tight MAC layer syn-

chronization among users. The maximum throughput region attained by a distributed

scheduling strategy under arbitrary network topology and interference models was given

in [104]. A distributed maximal matching scheduling strategy was presented in [105] to

guarantee a certain fraction of the optimal throughput region. In [106], a distributed

greedy scheduling scheme based on a more general interference model was proposed,

and a lower bound on the capacity region was also investigated. However, to guaran-

tee a certain throughput region, the schemes in [104–106] may require many rounds

of computation and control message exchanges, and thus are not scalable because the

overheads increase with the network scale. These works mainly focused on proposing

new protocols or algorithms with more complicated control messages and computations

to improve the resource utilization. In addition, the rate adaptive characteristics of the

UWB communication technologies were not considered. A joint PHY/MAC architec-

ture for impulse-based time-hopping UWB was proposed in [107], considering power

control, rate adaptation, and mutual exclusive region. The approach mainly focused
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on effective physical layer modulation schemes to cancel the interfering energy, and

effective MAC protocol design still remains an open issue.

6.1.2 Asynchronous MAC

IEEE 802.11 DCF MAC is one of the most successful MAC protocols that has been

widely deployed over the world due to its asynchronous data transmissions. Several

recent works have been proposed to adaptively adjust the carrier sensing range of the

transmitters to improve the spatial reuse performance of IEEE 802.11 MAC [108–112].

In [109], the relationship between transmission power and the carrier sensing threshold

was studied, assuming a perfect MAC protocol that all communication channels are

fully utilized. The impact of the carrier sensing threshold on the network capacity

was investigated in [110]. The optimal carrier sensing threshold that maximizes spatial

reuse for several regular topologies was obtained in [111]. It was found in [112] that the

optimal carrier sensing range of IEEE 802.11 MAC should consider the tradeoff between

the spatial reuse and the packet collision probability, and that an optimal carrier sensing

range can be obtained based on a reward formulation. However, all the previous works

use a simple collision model1 in a WLAN environment, where the transmission and

interference levels are much higher than those in UWB networks. Due to the stringent

power emission regulation and the wide bandwidth of UWB communications, spreading

technologies are usually employed to allow multiple concurrent transmissions [24, 92].

Thus, the simple collision model used in WLANs does not hold in UWB systems.

In addition, adjusting the carrier sensing range of the transmitters can only reduce

possible collisions among those transmitters within their carrier sensing ranges, but

cannot guarantee successful receptions at the receivers. Therefore, instead of adjusting

sensing ranges around the transmitters, we define exclusive regions around the receivers

to assure that the ongoing transmission to the tagged receiver will not be interrupted

1A collision occurs if two or more stations within their transmission ranges transmit simultaneously.
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by other interferers. To the best of our knowledge, little work has been done for

asynchronous distributed MAC design and optimization for multi-hop UWB wireless

networks, considering the characteristics of UWB communication technologies. Thus

motivated, we utilize the salient features of UWB communications and propose the

Distributed EXclusive (DEX) region based MAC protocol to efficiently exploit the

spatial capacity of multi-hop UWB networks.

6.2 Distributed ER-based MAC Protocol

In this section, we extend our ER based MAC design for centralized WPAN to a dis-

tributed multi-hop wireless network [13, 113]. We consider a multi-hop UWB network

as shown in Fig. 3.1(D). Spreading techniques are employed for multiple access and all

users share a pool of spreading codes, which are numbered as 1, 2, ..., κ. One common

spreading code is chosen for control message exchange, e.g., for RTS and CTS frames.

Each user maintains a code table to record all the spreading codes used by the ongoing

neighboring transmissions. The procedures to choose codes and initiate transmissions

at the sender and receiver sides are given in Algorithm 1 and Algorithm 2, respectively.

Initially, the code table and the NAV maintained by each node are empty, the initial

contention window size equals the minimum window size, i.e., CW = CWmin, and the

node attempting retransmission (retry) sets its counter to 0.

If node A receives data from the upper layer for transmission to node B, A will use

a hash function to obtain a spreading code: X = Hash(A + B) for the transmission,

where A and B used in the hash function are related to their MAC addresses. A starts

channel sensing when its NAV reaches zero. If the channel is sensed idle for a backoff

interframe space (BIFS), A transmits an RTS frame to B, including the chosen code

X and the transmission time T2 = RTS + SIFS + CTS + SIFS + DATA + ACK.

Otherwise, A enters a backoff procedure and sets a backoff counter (BC) uniformly

distributed over [0, CW ) for the first transmission attempt and A freezes its BC until
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the channel is sensed idle for a BIFS.

If the channel is sensed busy but A has not successfully received an RTS or CTS,

A needs to continue channel sensing till the channel is idle for BIFS. If A overhears

an RTS or CTS frame from another transmission fi, A checks the ER condition: 1) if

either the transmitter or the receiver of fi is in A’s ER region, A should postpone its

own transmission until the ongoing transmission fi completes, and A updates its NAV

according to T2; 2) if A is outside the ER of fi, A only needs to wait until RTS times

out and updates its NAV according to T1 = RTS + SIFS + CTS. An example of

NAV setting is shown in Fig. 6.1, where A and B exchange RTS and CTS messages,

C and D are neighbors within the ER of flow AB, respectively, and E is another

neighbor outside the ER of flow AB. Since A is outside the ER of fi and concurrent

transmission is allowed, A adds the spreading code used by fi in its code table and

assures that its own code X does not conflict with any record in its code table. If code

collision occurs, A can hash again till there is no code collision. Each record in the

code table is associated with a time to live (TTL) parameter and will be removed from

the table if TTL expires.

If A successfully receives a CTS from B after an interval SIFS, implying that B is

available for the transmission using the spreading code X, A starts to transmit data

to B at a rate of R(i) after a SIFS. For implementation simplicity, the rate R(i) is not

determined based on the measurement of the instantaneous interference and noise level

of the tagged transmission, but on the worst case scenario that assumes the maximum

number of dominant interferers. Therefore, DEX is robust against interference from

neighborhood asynchronous transmissions. The detailed derivation of R(i) is presented

in Section 6.3. If no CTS is received successfully, implying that B is not available at

this moment to receive data using code X, A will enter the backoff stage and attempt

retransmission thereafter, until the retransmission limit m is reached. The backoff

procedure in DEX is the same as that in IEEE 802.11. Each time A retransmits RTS,
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Figure 6.1: Network Allocation Vector Update

it will also choose a different code X by repeating hash functions because the code it

chose previously may not be acceptable for use at B, (although the probability of code

collision at B is very low).

To further improve the protocol efficiency, a TXOP is employed, i.e., a time duration

T is reserved in each RTS/CTS that a transmitter can transmit a burst of data frames

during T . The longer the T , the better resource utilization will be, because less overhead

is involved in each transmission. But a longer T leads to a larger access delay. Therefore,

T should be chosen appropriately so that the access delay is tolerable for other flows

in the ER region. On the other hand, a smaller ER region allows for more concurrent

transmissions, which reduces the access delay of each flow. Thus, it is possible to choose

a larger T for DEX and still well maintain the desired delay and fairness performance.

At the receiver side, B is ready for channel sensing or receiving only if its NAV = 0.

Whenever B overhears an RTS or CTS frame from its neighboring node, B will update

its NAV and code table in the same way as sender A does. Upon successfully receiving

an RTS from A, B sends back a CTS if X does not conflict with any record in B’s code

table and the channel is idle for a SIFS period. Otherwise, B keeps silent and A may

retransmit an RTS and choose another code after the RTS timeout.
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Algorithm 1 Sender

1: if (A has data for B) then

2: X = Hash(A + B);

3: if X conflicts with any record in A’s code table, repeat X = Hash(A+X);

4: wait till NAV = 0

5: channel sensing;

6: if (Channel = idle for BIFS) then

7: go to Line 29

8: else

9: exponential random backoff;

10: end if

11: while (BC > 0) do

12: channel sensing;

13: if (Channel = idle ) then

14: decrease BC by 1 for each idle slot;

15: end if

16: if (Channel = busy that A overhears an RTS/CTS ) then

17: if (the overheard sender is in A’s ER region) then

18: update NAV according to T2;

19: else

20: update NAV according to T1;

21: end if

22: update A’s code table;

23: if X conflicts with any record in A’s code table, repeat X=Hash(A+X) ;

24: wait till NAV = 0;

25: else

26: freeze BC; wait till channel is idle;

27: end if

28: end while

29: transmit RTS to B;

30: if (receive CTS from B before timeout) then

31: transmit DATA at rate R after SIFS;

32: else

33: increase retry by 1;

34: if ( retry > m) then

35: drop the current frame;

36: else

37: if X conflicts with any record in A’s code table, repeat X=Hash(A+X) ;

38: exponential backoff, and go to Line 4;

39: end if

40: end if

41: end if
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Algorithm 2 Receiver

1: if (NAV ! = 0) then

2: wait;

3: else

4: ready for receiving;

5: end if

6: if (overhear RTS/CTS ) then

7: if (the overheard transmitter/receiver is not in B’s ER) then

8: update B’s code table;

9: update NAV according to T1;

10: go to Line 1;

11: else

12: update NAV according to T2;

13: go to Line 1;

14: end if

15: end if

16: if receive RTS from A then

17: if (X does not conflict with any record in B’s code table and Channel = idle for SIFS )

then

18: transmit CTS; receive data; send ACK; go to Line 4;

19: else

20: silent; go to Line 4;

21: end if

22: end if
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6.3 Performance Analysis and Parameter Setting

In this subsection, we first prove that the DEX protocol is correct, i.e., for each pair

of users that successfully exchanges RTS/CTS messages, their data transmissions can

be collision-free. Here, collision-free means that the interference from other concur-

rent transmissions is less than the tolerable threshold. We also study the performance

bounds of a dense multi-hop UWB network and propose a method to choose ER size

appropriately towards the maximum network throughput in a randomly deployed net-

work.

To evaluate the network performance, we use the log distance path loss model for

signal loss in an indoor radio propagation channel, which is given by

PL(d) = PL0 + 10α log10(d/dref), (6.1)

where PL(d) (dB) is the total path loss at distance d, PL0 is the path loss at the

reference distance dref = 1 m, α is the path loss exponent. Under this channel model,

the received SINR of flow i is given by

SINR(i) =
P (si)d

−α
i

N0W +
∑

j 6=i P (sj)d
−α
j,i G0

, (6.2)

where P (si) is the transmission power of the sender of flow i, dj,i is the distance between

the sender of flow j and the receiver of flow i.

6.3.1 Protocol Correctness

For a network with random topology and user deployment, we first consider the max-

imum amount of interference generated by concurrent transmissions from other users

to the tagged receiver ri.

The highest interference level is related to the “circle packing” problem. Each sender

is located in the mid-point of an ER which is a circle. The maximum interference occurs
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Figure 6.2: Worst-case Scenario with the Maximum Interference

when the non-overlapping circles are packed in the plane with highest density, which

has been proved to be the hexagonal packing. Thus, the maximum interference to the

receiver ri occurs when all interferers are located at the center of each hexagonal cell

around ri, as shown in Fig. 6.2, i.e., there are 6 interferers located in the first tier of

cells of ri, and 6k interferers located in the k-th tier of cells. The distance from the

k-th tier interferers to ri is no less than
√
3kD/2. Thus, the total interference to ri, Ir,

is bounded by

Ir,D <
∞
∑

k=1

6PG0(
√
3D/2)−α(k)1−α

= 6PG0(
√
3D/2)−αζ(α− 1). (6.3)

The above Riemann Zeta-function, ζ(α−1), converges iff α > 2. Therefore, if the path

loss exponent α is a constant not larger than 2, an infinite coverage area cannot allow

an infinite number of concurrent transmissions, and vice versa. Fortunately, empirical

evidences from experimental field studies suggest that while path loss exponent near the
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transmitter is likely to be 2, at large distance, it is larger than 2, and the received power

level even decays exponentially with distance if the distance is quite large. Therefore,

the interference to a tagged user can be well bounded. With a random network setting,

it is practical to assume that the maximum interference to ri, Ir,D, is 6PG0D
−α, because

(a) the number of first tier interferers is less than six almost surely, (b) the number

of interferers is finite, and (c) the path loss exponent is large for high dense wireless

networks, so the value of ζ(α− 1) is close to one.

Now, we can prove that the sender and receiver which successfully exchange RTS/CTS

can successfully transmit without being interrupted by other users at rate R(i) =

ηW log2(P (ri)/[N0W + Ir,D] + 1). First, since the RTS/CTS of the pair has been

successfully exchanged, all other users within their ER will not interrupt the tagged

transmission. Second, the actual SINR should be larger than Ir,D. Thus, the transmis-

sion can be successful because the data rate chosen by the pair is more conservative

than the actual achievable one.

6.3.2 Hidden Terminal and Exposed Terminal

We examine the hidden terminal and exposed terminal problems in multi-hop wireless

networks. The hidden terminal problem exists for RTS transmissions. Since DEX

allows concurrent transmissions and each pair of users can transmit data/ACK for a

comparatively long time T consecutively, the number of RTS messages exchanged is

reduced, so the collisions due to hidden terminal are reduced. In addition, if we can set

the carrier sensing range to be the sum of the transmission range and the interference

range of RTS, we can eliminate hidden terminals.

Using 802.11 DCF, there are proposals to mitigate the hidden terminal problem,

which usually leads to more severe exposed terminal problem. The nice feature of the

proposed DEX protocol is that the reserved space by RTS/CTS is determined by the

ER region, instead of the carrier sensing range, so it does not suffer from the exposed
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terminal problem as much as the IEEE 802.11 DCF protocol. Since the ER is much

smaller than their carrier sensing regions, more flows can transmit concurrently, and

the spatial multiplexing gain of DEX is higher than that of 802.11 DCF.

Another issue may result in performance degradation is that the RTS message in

802.11 DCF will notify all other users within the carrier sensing range of the sender

to refrain from contention till the end of the transmission. If the receiver cannot send

CTS because it is inside the carrier sensing range of some ongoing transmissions, the

reservation of the RTS is totally wasted. In addition, if both the sender and the receiver

of a flow need to compete with a large number of other users, the flow may starve due

to the low possibilities that both the sender and the receiver can successfully access the

channel. With DEX, since the ER is smaller than the carrier sensing region, the chance

that the receiver cannot reply to the RTS is much lower, and the starvation problem

can be alleviated.

6.3.3 Network Performance Bounds

We investigate the performance of the DEX protocol and derive the performance

bounds. A node’s ER is a circle centered at the node with radius D. D is a key

parameter, which affects the number of concurrent transmissions in an area and the

interference level to a tagged user. Considering a dense network, we are interested

in obtaining the best value of D which can maximize the expected network transport

throughput. To derive the throughput, we need to know the average number of con-

current transmissions (CTs), which is very difficult to obtain because it is sensitive to

the network topology and the sequence of users initiating transmissions. Thus, we first

obtain the theoretical upper bound and lower bound of the number of CTs in a dense

network.

Lemma 1 In an area of L× L, for a given ER with radius D, the upper bound of the

number of CTs is 2L2/(D2
√
3).
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Figure 6.3: (a) Circle Packing Problem, (b) Circle Covering Problem

Proof 1 As shown in Fig. 6.3, in the extreme case that, for each flow, the ER region

(the solid circles) of the sender and that of the receiver fully overlap, the maximum

number of CTs is equivalent to the maximum number of circles with radius D/2 (the

dashed circles) that can be packed in the area. This is the classical circle packing

problem. Toth proved that the hexagonal lattice is indeed the densest of all possible

plane packings [114]. Accordingly, the maximum number of CTs is 2L2/(D2
√
3).

Remark: In a sparse network, we can improve the network throughput by increasing

the user density to enlarge the number of CTs. However, according to Lemma 1, once

the user density is large enough to saturate the network, further increasing the user

density cannot improve the network throughput, but only increase the competition

levels of all users within the associated ER and results in severe collisions.

The lower bound of the number of CTs in a sparse network can be as low as zero

and it is not of our interest. In the following, we consider the lower bound of a saturated

network. Wireless resources have three dimensions: time, frequency, and space. In a

saturated network, we assume that if there is any unoccupied time/frequency/space to

allow new collision-free transmissions, some user will initiate a transmission. As one of

the main concerns for MAC protocols is to control congestion in the link layer, perfor-

mance study for saturated networks can provide important insights and guidelines.
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Lemma 2 Given the ER with radius D in a saturated network of size L×L, the lower

bound of the number of CTs is L2/(
√
27D2).

Proof 2 We consider the extreme scenario that the ERs of all senders and receivers

do not overlap with each other. For a given ER with radius D and a saturated network

of size L×L, the lower bound of the number of CTs is equivalent to half of the minimal

number of circles with radius D that can cover the area. This is the classical circle

covering problem. It has been derived that a lower bound for a covering using equivalent

circles is 2π/
√
27 [115]. Thus, the minimal number of circles covering an area equals

(2π/
√
27)(L2/πD2) = 2L2/(

√
27D2). Given that each flow has two non-overlapping

circles, the minimal number of CTs in a saturated network is L2/(
√
27D2).

6.3.4 Exclusive Region Size

From Lemmas 1 and 2, for a saturated network, the upper bound of the number of

CTs is six times that of the lower bound, and both are proportional to D−2. The

distribution of the number of CTs in a random network is very difficult if not impossible

to obtain. Nevertheless, the expected number of CTs should be proportional to D−2:

E[CT] = k1/D
2, where k1 is an unknown coefficient.

As the REX sender will use 6PG0D
−α as the interference level to set the trans-

mission rate, we then estimate the expected network transport throughput, as given

by
k1
D2

ηWE[d] log2(1 +
PE[d]−α

N0W + 6PG0D−α
), (6.4)

where E[d] is the expected transmission distance. As the expected transport through-

put is a non-linear function of d, using E[d] to get the expected transport throughput

is an approximation. Simulation results show that the above approximation is accept-

able. Taking the derivative of (6.4), we can obtain the best D value which maximizes

the expected network transport throughput.
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Figure 6.4: Normalized Expected Network Transport Throughput

Fig. 6.4 shows the normalized expected network transport throughput as a function

of the exclusive region of radius D, with G0 = 0.01, using the parameters listed in

TABLE 6.1. It is shown that the expected network transport throughput is a concave

function of D, while fixing other parameters, including P , W , N0, etc. The best value

of D can be determined when the maximum expected throughput is achieved. The

analytical results of best D under different parameter values of α and G0 are listed

in TABLE 6.2. It is observed that the best D becomes larger when G0 increases,

but changes less with α. This is because the path loss exponent α affects both the

received signal strength and the interference level and the corresponding SINR does

not change much, while the cross correlation, G0, determines the interference only (in

the denominator of SINR). A greaterG0 results in higher interference among concurrent

transmissions, and thus a larger D is required to bound the total interference level to

achieve high network throughput.

In practical, the value of α may not be accurately measured or estimated, so the
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Table 6.1: System Parameters

W 500 MHz BIFS 20 µs

P (si) −41.3 dBm/MHz SIFS 10 µs

N0 −114 dBm/MHz a slot time 20 µs

α 2.5-6 CWmin 31

G0 0.01-1 CWmax 1023

η 0.21 maximum retry limit 7

dref 1m RTS/CTS 20 µs

PL0 43.9 dB Transmission range 10 m

Table 6.2: Best Exclusive Region Size (Analysis)

α G0 = 0.01 G0 = 0.1 G0 = 1

3 1.87 m 4.03 m 8.69 m

4 2.34 m 4.15 m 7.39 m

5 2.28 m 3.61 m 5.72 m

6 2.11 m 3.10 m 4.55 m

value of D may not be the best. However, as shown in Fig. 6.4, the best values of D

for α = 3, 4, 5 only have small difference. Thus, even we under- or over- estimate α,

the value of D chosen by the DEX protocol can still be close to the best value.

6.4 Simulation Results

In this section, we evaluate the performance of the proposed DEX protocol in terms of

transport throughput, fairness, and access delay, and compare it with that of the IEEE

802.11 DCF via simulations. We choose the IEEE 802.11 DCF protocol as benchmark

since it is the most popular asynchronous MAC protocol widely adopted.
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6.4.1 Simulation Settings

The simulated network is set up in a 20 m × 20 m square room, which contains up to

100 active flows, with distinct senders and receivers uniformly distributed in the room.

The simulation parameters are listed in TABLE 6.1. The senders use the maximum

transmission power and the transmission range is 10 m. The background noise power

density is −114 dBm/MHz [92]. All Nf active flows contend for channel access in an

asynchronous manner, with its initial arrival time uniformly chosen over [0, 32) time

slots. The reference distance is set as dref = 1 m, and the path loss at dref is 43.9 dB.

Thus, the maximum data rate at 1 m, i.e., R = ηWlog2(1 + SINR) = 1 Gbps. The

achievable data rate decreases with distance d, e.g., given the path loss exponent α = 4,

the received SINR degrades from 28.8 dB at dref = 1 m to 16.76 dB at d = 2 m and the

achievable data rate at 2 m decreases to R = 585 Mbps. To eliminate the warming-up

effects, the simulation data are collected from 10 s to 60 s. We repeat each simulation

10 times with different random seeds and calculate the average values.

6.4.2 Transport Throughput

The transport throughput of a dense network with 40 flows using the DEX protocol

is shown in Fig. 6.5. The data transmission time is T = 10 ms. When the ER radius

D is very small, more flows are likely to be outside of each other’s ER to transmit

concurrently; however, a smaller D results in a higher interference level that decreases

the data transmission rate.It is observed in Fig. 6.5 that the total transport through-

put of the network is maximized if the value of D is close to the best value obtained

from the analysis. When the cross correlation G0 is larger, the interference level among

concurrent flows becomes more serious so we should enlarge the value of D accord-

ingly. Simulation results validate the accuracy of our analysis, which demonstrate the

significant spatial multiplexing gain achieved by the proposed DEX protocol.

Another observation from Fig. 6.5 is that, if the value of D is slightly different from
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Figure 6.5: Transport Throughput vs ER Radius

the best setting, the throughput is slightly below the highest one. Combining this

observation with the results shown in Fig. 6.4, we can claim that, even if the value

of α is not accurately obtained, the protocol performance of DEX will not degrade

significantly.

We then investigate the network transport throughput under various network den-

sities, and compare the performance of the DEX protocol (with ER radius D = 4.15 m,

G0 = 0.1, T = 10 ms and α = 4) with that of IEEE 802.11 DCF (with carrier sensing

range of 10 m) in Fig. 6.6. When there are only 10 flows in a 20 m × 20 m square

room, the network is relatively sparse, and the transport throughput of the DEX pro-

tocol is 1.45 times that of IEEE 802.11 DCF. When the number of flows exceeds 30,

the network throughput of IEEE 802.11 DCF decreases due to serious collisions among

the competing flows; while with the proposed DEX, more concurrent transmissions are

allowed when the number of active flows increases. The achieved transport throughput

of DEX is around 2 times that of IEEE 802.11 DCF with 30 active flows, and 2.7 times
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Figure 6.6: Transport Throughput Comparison of Different Protocols

with 70 active flows. It is also shown in Fig. 6.6 that the network transport throughput

of DEX increases w.r.t. the network density until the number of active flows in the

network exceeds 70, when serious collisions degrade the network performance. In all

cases, the proposed DEX significantly outperforms IEEE 802.11 DCF by aggressively

exploiting spatial reuse opportunities, and it is more suitable for a dense multi-hop

UWB network.

We further study the impact of data transmission time T on both protocols. In

the DEX protocol, we use the best ER radius D = 4.15 m for G0 = 0.1 and α = 4.

It is observed in Fig. 6.7 that the transport throughput of 40 active flows increases

with the data transmission time T in both DEX and IEEE 802.11.With a larger T , the

protocol overheads, including RTS/CTS, backoff time, interframe space, etc., become

relatively smaller, and more flows can transmit concurrently to achieve a higher spatial

multiplexing gain with DEX. As shown in Fig. 6.7, the ratio of the achieved transport

throughput using DEX at the best D to that of IEEE 802.11 increases from 1.6 for
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Figure 6.7: Transport Throughput vs Data Transmission Time T

T = 0.5 ms to 2.29 for T = 10 ms. The proposed DEX always outperforms IEEE

802.11 w.r.t. various T values. It is worth noting that a large value of T is preferable

for network throughput, but it will result in unfairness problem and longer access

delays for other flows in the same contention region. In the following subsections, we

investigate the fairness and access delays.

6.4.3 Fairness

Fairness is evaluated using Jain’s fairness index [98], in terms of the network transport

throughput. We first compare the fairness performance of DEX under various D values

with that of IEEE 802.11 DCF in Fig. 6.8. It is well known that the 802.11 DCF based

MAC exhibits serious unfairness among competing flows in a multi-hop environment.

Some “lucky” flows are more likely to access the channel, while other “unlucky” ones

may suffer from complete throughput starvation. Starvation phenomenon becomes
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Figure 6.8: Fairness (Transport Throughput) Comparison of Different Protocols

more severe in a denser network. As shown in Fig. 6.8, the fairness performance of both

protocols decreases when the number of active flows increases. However, the proposed

DEX with smaller ER radius D achieves better fairness than the 802.11 DCF. This is

because smaller ER region can effectively reduce the flow starvation by reducing the

number of competing flows, and accordingly improve the fairness performance.

The impact of T on fairness is shown in Fig. 6.9. We consider 40 active flows in

the room. With a larger value of T , all neighbors within the ER of the tagged sender

and receiver have to postpone their transmissions for a longer duration, and thus they

are more likely to starve, especially when the ER radius is large and there are many

competing flows in the neighborhood. As shown in Fig. 6.9, the fairness performance

degrades significantly when the ER radius D and data transmission time T increase.
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Figure 6.10: Delay Outage Ratio Comparison of Different Protocols
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Figure 6.11: Delay Outage Ratio vs ER Radius

6.4.4 Delay Outage Ratio

Access delay is another important performance metric for evaluating a MAC protocol.

We define the delay outage ratio as the ratio of the number of attempts with access

delay exceeding the delay threshold to the total number of attempts. We set the delay

threshold to 150 ms, G0 = 0.1 and α = 4. As shown in Fig. 6.10, the delay outage ratio

increases with the number of active flows because more collisions among competing

flows result in more backoff and thus longer access delays. However, the proposed DEX

allows for more concurrent transmissions, so the average access delay of each flow is

reduced when the ER radius is smaller.

For choosing the value of T , there is a tradeoff between fairness/delay and transport

throughput. We can choose the maximum value of T , under the constraints that the

corresponding fairness index is above certain threshold and the delay outage ratio is

below certain threshold. Since the ER of DEX is much smaller than the carrier sensing

region of 802.11 DCF, DEX can use a larger value of T for higher throughput and still
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maintain a desirable delay and fairness performance.

6.5 Summary

In this chapter, we study distributed asynchronous MAC design to effectively utilize

the wireless spatial capacity of a multi-hop UWB network. The main accomplishments

of this chapter are summarized as follows:

• We have proposed a distributed asynchronous MAC for a multi-hop UWB net-

work, based on the ER concept applied in centralized MAC design in WPANs.

Considering UWB characteristics, the proposed DEX can achieve significantly

higher network throughput and better fairness performance, while fairness and

throughput are usually treated as a tradeoff in other MAC protocols.

• We have systematically analyzed the performance of the proposed MAC. The an-

alytical framework can be applied to other distributed MAC protocols in general.

• We have further investigated the parameter setting to maximize the expected net-

work transport throughput of a randomly and densely deployed multi-hop UWB

network. Extensive simulations are performed to demonstrate the effectiveness

and efficiency of the proposed MAC.
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Conclusions and Future Work

This dissertation aims at efficient MAC protocol design and analysis in broadband

wireless networks, including WLANs, UWB/mmWave based WPANs, and multi-hop

UWB networks. In this chapter, we conclude this dissertation by summarizing our

contributions and proposing future work.

7.1 Major Research Contributions

7.1.1 Design and Analysis of MAC Protocols in IEEE 802.11

based WLANs

IEEE 802.11 has witnessed the overwhelming success over the last decades. However,

IEEE 802.11 WLAN is originally designed for asynchronous data transmission, the

network capacity of a WLAN in support of non-persistent realtime multimedia appli-

cations is still unknown. In addition, to improve the throughput in the MAC layer,

IEEE 802.11n specifies several MAC layer and PHY layer enhancements. The impacts

of these enhancements on the MAC layer performance needs to be further investigated.

In this dissertation, we have analytically studied IEEE 802.11 MAC and identified the

performance bottleneck in an infrastructure WLAN. We have also shown how to mit-
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igate the bottleneck effect by exploiting enhanced MAC design and multi-user MIMO

beamforming technology in the physical layer. The main contributions are:

• We have developed an analytical framework for capacity analysis of a WLAN by

studying the queue utilization of the users. The maximum capacity of the network

is obtained such that one more traffic flow will result in at least one of the users’

queues become unstable. The generic framework can be applied for WLANs with

and without infrastructure support, carrying saturated or non-saturated traffic

flows. In addition, the computational complexity of the framework does not scale

up with the backoff stages as in other Markov based approaches. We have fur-

ther applied the framework to obtain the voice and video capacity of a WLAN,

i.e., the maximum number of voice and video flows that can be supported in the

WLAN with satisfactory user-perceived quality. We found that the queue uti-

lization of the AP is much higher than other users due to heavier traffic loads

in an infrastructure mode, which limits the network capacity. Several MAC en-

hancements, e.g., frame aggregation and bidirectional transmissions, have also

also been studied and compared with the legacy MAC.

• IEEE 802.11n WLANs will employ MIMO technology to improve link capacity

and reliability. However, it is not practical to implement multiple antennas in

a mobile user’s device in the near future due to the cost and technical issues.

It is more likely that the AP will be equipped with multiple antennas while

mobile user only has one omni antenna. We propose a MIMO-aware multi-user

MAC to exploit the multi-user MIMO beamforming at the AP. By allowing the

AP to communicate with multiple users in the downlink simultaneously, the AP-

bottleneck effect in conventional WLAN can be greatly mitigated and the network

capacity can be significantly improved.
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7.1.2 Efficient Resource Allocation and Capacity Analysis in

Centralized UWB/mmWave WPANs

The inherent ultra wide spectrum of UWB and mmWave communications favors con-

current transmissions in the proximity. Oxygen absorption and atmospheric attenua-

tion make it essential to use directional antenna in 60 GHz mmWave systems, which

can further improve the spatial utilization of mmWave based WPANs. As the instan-

taneous interference between peers are usually not available at the PNC, we propose

a simple yet efficient ER based resource management schemes to exploit the spatial

capacity of UWB/mmWave WPANs, taking advantages of the salient features of UWB

and mmWave communication technologies, e.g., wide spectrum, low interference, and

precise localization service, etc. The main contributions are:

• We have analyzed the performance of IEEE 802.15.3 MAC and revealed the intrin-

sic relationship among protocol parameters. That is, given a superframe length,

more users can successfully send requests in a longer CAP, but fewer slots can

be allocated for data transmissions in the CTAP, and vice versa. The analysis

provides important guideline for critical parameter setting to improve the IEEE

802.15.3 MAC performance. We have also quantified the video and voice capac-

ity of a UWB based WPAN using IEEE 802.15.3 MAC. Analytical results show

that without considering the particular features of UWB communications, cur-

rent MAC design is inherent inefficient for supporting emerging broadband killer

applications.

• We have justified a sufficient condition to assure that ER based concurrent trans-

missions outperform serial TDMA transmissions. Then we have derived different

ERs based on various types of antenna applied by transmitters and receivers. A

simple scheduling scheme has been proposed to improve the spatial utilization

of UWB and mmWave based WPANs and provide good fairness performance as
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well.

• With the ever-increasing density of wireless devices, researchers are striving to

push up the limit of the number of users that can share the available resources.

Given a 2D or 3D space with the number of active users randomly distributed,

what are the expected per-flow throughput, network capacity, and network trans-

port capacity, and how to maximize the space resource utilization are still open

issues. Instead of deriving the asymptotic capacity bounds of arbitrary networks

which may be too loose to be useful in realistic networks, we have analytically

studied the expected spatial multiplexing capacity of a UWB/mmWave based

WPAN. With the increasing number of concurrent transmissions, the interference

level becomes higher that degrades the per-flow throughput. Therefore, there is

a tradeoff between the per-flow throughput and spatial utilization. Our analysis

show that the expected network spatial multiplexing capacity can be maximized

under the best ER size. The analytical framework is applicable to other networks

in general.

7.1.3 Asynchronous Distributed MAC Design in Multi-hop

UWB Networks

UWB is a promising enabling technology to provide very high data rate at a short

distance. To meet the escalating demands for high rate wireless connections anywhere

and at any time, multi-hop relay is necessary for extending the communication cov-

erage. Since centralized MAC usually involves a large number of communication and

computation overheads, it does not scale well with the network size. Moreover, syn-

chronization in a large scale multi-hop UWB networks is very costly if not impossible.

Therefore, a simple, scalable, distributed, and asynchronous MAC is more desirable in

a multi-hop environment. The main contributions are:
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• We have proposed an asynchronous distributed ER based MAC for a densely de-

ployed multi-hop UWB network. The proposed MAC capitalizes on the achiev-

able spatial multiplexing gain of UWB networks by reserving ERs surrounding

the sender and receiver for data and ACK transmissions, so that users can ef-

ficiently and fairly share network resources in a distributed and asynchronous

manner. Further, we have shown that by reserving two small ERs around the

transceivers, the proposed MAC does not suffer from the hidden and exposed ter-

minal problems as much as the IEEE 802.11 MAC. Therefore, the proposed MAC

can achieve a higher spatial capacity and provides better fairness performance in

the mean time.

• Analyzing the capacity of a multi-hop distributed network is very challenging,

since it is highly sensitive to the network topology and the sequence of users

initiating transmissions. To evaluate the network performance, we first obtain

the theoretical upper bound and lower bound of the number of concurrent trans-

missions in a dense network. We have found that we can improve the network

capacity by increasing the number of flows in a sparse network; however, analyti-

cal results show that once the user density is large enough to saturate the network,

further increasing the user density cannot improve the network capacity, but only

increase the competition levels in the network. Instead of depending on compli-

cated control messages, we have studied how to determine protocol parameters

to improve the protocol performance in a dense network environment.

7.2 Future Work

This dissertation focuses on MAC design and analysis in various broadband wireless

networks, e.g., WLANs and UWB/mmWave networks. There are many relevant re-

search issues that are worth further investigation.
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7.2.1 Interference-aware MAC Enhancement

Our current asynchronous UWB MAC design uses a conservative estimation, i.e., an

upper bound of the total interference, to decide the transmission rate in order to as-

sure the successful transmissions in a distributed random access network. As wireless

users are able to measure and estimate the interference level over the fading channel

distributedly, it is possible to improve the transmission rate according to the statis-

tical interference information while still maintain the robustness of the protocol. In

addition, most of our work uses a simple path loss model for wireless channels without

considering other channel impairments due to fast fading and shadowing in WLAN

and mmWave channels. How to accurately estimate the accumulative interference lev-

els and appropriately exploit the diversity gain of wireless channels in a multi-hop

network to further improve the network performance and maintain fair channel access

is an interesting research issue.

7.2.2 Distributed QoS Control in Multihop UWB/mmWave

Networks

The next generation wireless network is envisioned to support heterogeneous multi-

media applications with various QoS requirements and evaluation criteria. Although

we study the network capacity of WLANs and WPANs in support of voice and video

flows, great efforts are still needed for QoS provisioning in emerging broadband mul-

timedia networks. Admission control and MAC layer scheduling are two general QoS

control approaches that are relatively easy implement in a single hop or centralized

wireless network for QoS provisioning. However, distributed QoS control in a multi-

hop UWB/mmWave network poses many challenges as wireless users only have very

limited and inconsistent network information from their neighbors. How to extend our

asynchronous MAC design in a multi-hop UWB network for distributed QoS control

152



Chapter 7. Conclusions and Future Work

requires further research.

7.2.3 Cross-layer Design of Scalable Routing and MAC Pro-

tocols

This dissertation primarily focuses on MAC layer issues, and assume a routing protocol

is in place to choose the appropriate path from the source to the destination. For future

research, a cross-layer design of scalable routing and MAC protocols should be consid-

ered. Geographical routing is an efficient approach for wireless ad hoc networks, thanks

to the low complexity of the localized routing algorithm, scalability with the network

size, and fast route convergence when network topology changes. Taking advantage of

the localization service of the UWB/mmWave systems, users are able to decide their

locations which makes geographical routing in multi-hop UWB and mmWave networks

possible. As the available radio resources in wireless networks are highly dynamic, op-

portunistic channel access in the MAC layer is also desirable. Therefore, further efforts

are needed to exploit the cooperations among physical, MAC and network layers for

proper routing decisions.

7.2.4 Energy Efficient Protocol Design in Green Communica-

tion Networks

Driven by the steady increase of relevant global CO2 emission and energy cost, green

communication approaches have attracted great research attentions for reducing power

consumptions of electrical devices and promoting environment conditions. For example,

wireless users may use alternative sustainable energy source such as solar or wind

power to replace the traditional AC power. To improve the energy and spectrum

efficiency in hybrid solar or wind powered WLANs and WPANs, physical layer power

control, link layer resource allocation and opportunistic spectrum access should be
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jointly considered, which is a critical yet challenging research issue that deserves further

study.
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Probability Density Function of

Distance in 3D Space

To measure the signal and interference levels for network capacity study, the proba-

bility density functions (pdf) of the distance among devices is required. In a three-

dimensional space, the distance distribution between two devices can be derived given

the distributions of their coordinators in the three dimensions. The following is an ex-

ample of how to obtain the pdf function of the distance for devices randomly deployed

in an l × l × h space, i.e., the three coordinators of each device are random variables

with uniform distribution.

The probability distribution of the distances between two devices randomly (uni-

formly) located on a one-dimensional line or in a two-dimensional plane are known [96].

Based on the pdf of the distance on a unit line and in a unit square, we derive the cu-

mulative distribution function (CDF) of the distance in 3D space and obtain its pdf as

follows.

Let X be the distance between two devices in an l × l square with uniform distri-
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bution. The pdf of X, fX(x), is a piecewise function given by,

fX(x) =







2 x
l2
(x

2

l2
− 4x

l
+ π) for 0 ≤ x ≤ l

2 x
l2
(4
√

x2

l2
− 1− (x

2

l2
+ 2− π)− 4 tan−1

√

x2

l2
− 1 ) for l < x ≤

√
2l.

(A-1)

Let Y be the distance between two devices randomly located on a line of length h. The

pdf of Y , fY (y), is given by

fY (y) =
2

h
(1− y

h
) for 0 ≤ y ≤ h. (A-2)

Let Z be the distance between two devices randomly located in an l× l×h space. The

CDF of Z is derived as

Pr(Z ≤ z) (A-3)

=

∫ h

0

Pr(X ≤ x|Y = y)fY (y)dy

=







∫ h

0
FX(

√

z2 − y2)fY (y)dy for z > h
∫ z

0
FX(

√

z2 − y2)fY (y)dy for z ≤ h,

where FX(
√

z2 − y2) can be obtained from (A-1),

FX(
√

z2 − y2) =

∫

√
z2−y2

0

fX(x)dx.

According to (A-1) and (A-3), fZ(z) is also a piecewise function. To simplify the

presentation and analysis, we can use polynomial functions to fit the fZ(z) in each

range:

fZ(z) =















∑j
i=1 a1iz

i for 0 ≤ z ≤ h
∑j

i=1 a2iz
i for h < z ≤ l

∑j
i=1 a3iz

i for l < z ≤
√
2l2 + h2,

(A-4)

where j is the degree of the polynomials. For instance, using the polynomial fitting

function in Matlab, we obtain the numerical results of the CDF and pdf of the distance
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between two devices randomly located in a room of l = 10 m and h = 2 m. The proba-

bility functions are shown in Fig. A-1. The coefficient vectors of the three polynomials

are






~a1 = [−0.016556, 0.058759,−0.00231682,−0.00012774],
~a2 = [0.00019773,−0.007981, 0.063154, 0.0003309],
~a3 = [−0.00053767, 0.022103,−0.30305, 1.3859].

The errors introduced by the fitting functions of the third degree polynomials are less

than 0.6%, as shown in Fig. A-1.
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