
Audio Processing on Constrained

Devices

by

Amod Gupta

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2009

c© Amod Gupta 2009

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis discusses the future of smart business applications on mobile phones

and the integration of voice interface across several business applications. It pro-

poses a framework that provides speech processing support for business applica-

tions on mobile phones. The framework uses Gaussian Mixture Models (GMM)

for low-enrollment speaker recognition and limited vocabulary speech recognition.

Algorithms are presented for pre-processing of audio signals into different categories

and for start and end point detection. A method is proposed for speech processing

that uses Mel Frequency Cepstral Coeffcients (MFCC) as primary feature for ex-

traction. In addition, optimization schemes are developed to improve performance,

and overcome constraints of a mobile phone. Experimental results are presented

for some prototype applications that evaluate the performance of computationally

expensive algorithms on constrained hardware. The thesis concludes by discussing

the scope for improvement for the work done in this thesis and future directions in

which this work could possibly be extended.

iii

Acknowledgements

I would like to take this opportunity to express my gratitude to all those people

who supported me in one way or another. First and foremost, I’d like to deeply

thank my supervisor, Dr. Tamer Ozsu for his unstinting support and patient guid-

ance which led my research towards the right direction. His hardworking spirit,

experience and enthusiasm has always been a source of inspiration for me.

I would also like to thank Dr. Serhan Dagtas and Nolwen Mahe, my team leader

and manager at SAP Labs during my internship there in the summer of 2008. Their

valuable input and support helped me to look at this work from an industrial point

of view.

I dedicate this thesis to my parents and my younger brother who supported me

throughout my years of study. Without their love, support and encouragement this

would not be possible.

iv

Contents

List of Tables viii

List of Figures x

List of Algorithms xi

1 Introduction 1

1.1 Objectives and Motivation . 2

1.2 Speech applications on mobile phones 5

1.3 User interface perspective . 6

1.4 Challenges and Contributions . 7

1.5 Outline of thesis . 9

2 Background and Related Work 11

2.1 Background . 11

2.1.1 Sampling . 12

2.1.2 Audio file formats . 13

2.1.3 Pre-processing . 13

v

2.1.4 Speech processing systems 16

2.1.5 Signal Processing . 17

2.1.6 Feature Extraction . 22

2.1.7 Pattern Recognition . 24

2.2 Related Work . 26

3 Pre-processing 29

3.1 Stage I . 31

3.2 Stage II . 36

4 Speech Processing 42

4.1 Feature Extraction . 43

4.1.1 Segmentation . 44

4.1.2 Windowing . 46

4.1.3 Spectral Analysis . 49

4.1.4 Filtering . 50

4.1.5 Cepstral Analysis . 53

4.1.6 Discrete Cosine Transform 54

4.2 Decision and Similarity estimation 55

5 Experiments and Results 61

5.1 Classification Experiments (Module I) 61

5.1.1 Accuracy of detection for Module I 62

5.1.2 Processing time . 65

vi

5.2 Experiments for Start and End point Detection 66

5.3 Experiments for Speech Processing Module 69

5.3.1 Text Independent Speaker Recognition I 69

5.3.2 Text Independent Speaker Recognition II 70

5.3.3 Text Dependent Speaker Recognition 70

5.3.4 Text Dependent Speaker Recognition II 73

5.3.5 Limited Vocabulary Speech recognition 74

5.4 Results and Interpretation . 75

6 Conclusions and Future Work 77

6.1 Conclusions . 77

6.2 Future Work . 79

References 82

vii

List of Tables

5.1 Processing time in Milli seconds . 66

5.2 Start and end point detection module 67

viii

List of Figures

2.1 A simplified overview of speech processing architecture 12

3.1 A possible categorization of Audio 30

3.2 Data flow within the speech processing module. The square boxes

represent the categories into which the audio signal could be classified

and the diamond box represents the decision making unit. 31

3.3 Zero crossings . 32

3.4 Fricatives ‘f’ and ‘v’ [17] . 34

3.5 Plot of ZCRframe vs Frame number 35

3.6 Categorization into Silence, Noise and Speech 35

3.7 Audio recording of 3 seconds with the word ‘back’ in it 40

3.8 Extracted speech after passing the 3 sec long recording through the

start-end point detection stage . 40

4.1 Architecture of the speech processing module 43

4.2 Two speakers uttering the same phrase 44

4.3 Extraction procedure for MFCC . 45

4.4 Speech frames with 50% overlap and zero padding. 46

ix

4.5 Hamming window function and frequency response 48

4.6 Speech frames after windowing . 48

4.7 Frames after fast fourier transformations 50

4.8 Mel scale vs linear frequency in Hertz 51

4.9 Triangular Mel filterbank . 52

4.10 Speech frames from two different speakers after filtering 53

4.11 17 MFC coefficients in a frame for two different speakers 56

4.12 MFCC spread for the original utterances for two speakers 58

4.13 Codebooks for two different speakers 60

5.1 Efficiency gain in terms of reduction in size for five words 68

6.1 Sensors on a mobile device . 81

6.2 Framework Architecture for multiple sensors 82

x

List of Algorithms

1 Calculation of ZCR skew . 33

2 Start point detection . 37

3 End point detection . 39

xi

Chapter 1

Introduction

As technological improvements allow for the development of more powerful and

ubiquitous hand-held devices, such as mobile phones and PDAs, the need for better

utilization of the capabilities of these devices intensifies. No longer merely luxurious

items, these devices have advanced far beyond the realms of simple phones or

calendars and are now often used as cameras, music players and gaming consoles.

A lot of business applications these days are launched on mobile platforms, which

add to the different functions these devices are required to perform.

Due to the myriad of different functions that these devices are required to per-

form, there is also need to look beyond the traditional way of interacting with the

device. Currently, by far the most prevalent way of communication with a mobile

phone is the limited keyboard present on the device. This keyboard is constrained

by the size of the device. The keys are so small that in some cases anything except

punching a few numbers becomes tedious. This difficulty has been identified and

some attempts to overcome it have been made by introducing full QWERTY key-

boards and touch screen functionality. These alleviate the problem in some way as

demonstrated by the increasing popularity of PDAs. In this thesis we investigate

an alternative mode of interaction, namely the use of voice.

1

1.1 Objectives and Motivation

Most of the work on speech technologies (throughout this thesis, speech technology

refers to speech-to-text) has focused on desktop computers with comparatively

little work focusing on mobile phones. However, with the rapid increase in the

capabilities of mobile phones, huge advances are being made in this field. More

and more phones with sophisticated technologies and new sensors are introduced

every day. For example, Apple recently launched its iPhone 3GS which comes

loaded with

• Accelerometer - Used to detect rotation and position of the device for better

user experience.

• Ambient Light Sensor - Adjusts the brightness of the screen according to the

surroundings of the phone.

• Proximity Sensor - Senses when the device is close to the ear and turns off

the display to save battery.

Devices like Blackberry Storm, HTC Touch, Samsung Omnia, Samsung Instinct

are other phones that have used new sensors to enhance user experience. Looking

at this recent trend one can see that there is a major shift in the market towards

smart phones. Two major reasons emerge for this shift

1. Mobile phones are not just pocket phones anymore. They have become mul-

tipurpose devices and the industry recognizes that treating them as mere

phones is no longer a viable option. The popularity of a device apart from

other things will also depend on its usefulness. This partially explains the race

to make a mobile phone also work as a camera, music player, PDA, internet

surfing device etc.

2

2. Mobile phones are small in size and the size cannot be increased beyond

a certain measure. In fact, size is one of the biggest limiting factors and

it makes the use of mobile phones cumbersome. Therefore by adding new

sensors there is an attempt to enhance the user experience, making it richer

and more comfortable.

Apart from the smart phones, ordinary mobile phones have had many built-in sen-

sors. A built-in camera has almost become a standard for mobile phones today.

However one of the most under-used sensor on a phone is the microphone. In

addition to its obvious function, it can be used for speech recognition and envi-

ronment sensing. This functionality, if properly utilized, can prove to be beneficial

for context-aware (i.e. intelligent) business applications. One of the objectives of

this work is to provide context-aware information to business applications that may

need it. As the devices become increasingly powerful more and more business ap-

plications are being released in their mobile versions. Some of these applications

can benefit a great deal if provided with information about the surroundings of the

device, such as the noise level, the brightness of light, presence of humans in the

surroundings etc. As will be shown later, new sensors are not required to gather a

lot of context aware information.

Speech is a natural mode for man-machine interaction. Speech input imple-

mented in user interfaces and speech output, such as reading out SMS and emails,

play an important role in enhancing the usability of a device. This consideration

becomes more relevant for small devices like mobile phones where the size of the

keyboard and the screen limits the ease of interaction between the user and the de-

vice. More convenient ways of interacting with the mobile phone are now needed.

With the increase in the computational capabilities, on board memory and the data

handling capabilities of the phone, more and more sophisticated business applica-

tions are now launched over mobile platforms. Few buttons at the bottom of the

3

screen are not enough for navigation, nor is the keyboard convenient enough for

typing anything more than a short message. Most of the phones don’t have the

advanced sensory capabilities of the iPhone or its other rivals like HTC Touch or

Blackberry Storm to help enhance interaction. On the other hand, speech commu-

nication with a mobile device overcomes the barriers introduced by other modes of

interaction.

Most of the phones are bundled with speech processing capabilities to some

extent. Traditionally these capabilities were limited to applications such as name

dialling, digit recognition or (somewhat limited) voice commands. Some current

phones claim to have advanced speech processing capabilities like SMS dictation or

speech recognition. However, most of these traditional and advanced applications

are native to the phone and are tightly coupled with the phone’s operating system

for efficiency and performance. As such, they serve a specific purpose and are not

portable or general. This means that a similar application on a different platform

has to be developed from scratch. A portable modular framework that provides

speech support across different applications is useful for a number of business ap-

plications that need to run on different mobile platforms. An objective of the work

reported in this thesis is to develop a framework that provides speech support to

different applications across different platforms.

Depending on where the processing is being done, mobile speech applications

can be divided into three categories

1. Embedded - client side processing of audio data. The applications perform all

the processing of audio data on the mobile phone itself. These applications

are limited by the hardware present on board the mobile phone. Memory and

processing power are the resources constraining such applications.

2. Network - server based processing. Applications falling in this category collect

4

audio data using the mobile phone but send it over the network to a server that

does the processing for them and then hands the result back. Audio data is

passed over the network and these applications are limited by the availability

of the network hence can be unstable at times. Also, issues related to network

latency need to be addressed.

3. Distributed - processing load is shared between the client and the server.

Audio data are collected on the client side, some processing is done and the

results are passed over the network to the server. The server provides inter-

mediate results back to the device and then the results (as they are or with

some modifications) are presented to the user. These types of applications

try to have the best of both the worlds, but also inherit the limitations of

both.

1.2 Speech applications on mobile phones

Phones possessing speech processing capabilities are now quite common. This is a

sign of both the maturity of the speech processing technology and the enhancement

in the capabilities of mobile phones. A historical survey of applications on mobile

phones [6] covers the history of embedded speech applications from the Samsung

A500 that had a digit dial application, A600 that had name dialling to Samsung

P-207 that incorporates a large vocabulary speech recognition system.

Many commercial applications are now available that use the speech technology.

Nuance, Voice Signal and Scansoft were the market leaders in providing speech

solutions before they merged to form one entity. They provide an impressive range

of speech solutions like Device Control, Voice SMS, Name and number dialling

and boast applications for Blackberry, Nokia, Samsung and other leading mobile

phone manufacturers. For advanced phones like iPhone, new applications are being

5

released continually. These range from voice dialling to speech interfacing. Speech

solutions have made immense progress from the time of when Samsung launched

number dialling support for A500; however one aspect where they still fall short is

platform independence. The functionalities come in different flavors depending on

the phone manufacturer and are native to the phone. Also, these applications have

specific functionalities like voice commands or name dialling, thereby restricting

the voice support present on the device to these few applications. Our framework

differs from these applications in that it provides platform independent support to

applications on the mobile phone. Any application developed on the J2ME platform

can make use of this framework to make itself speech enabled.

1.3 User interface perspective

Due to the limited size of mobile phones, the traditional way of interacting with the

phone, namely using a keyboard is not very convenient. An effort has been made

to discover different ways of interacting with the device. The most recent trends in

the industry suggest that ’touch’ is currently preferred way of interaction. Apple,

Nokia, Blackberry and HTC have all come out with their touch-based phones.

Touch enhances the user interaction by providing a bigger screen and larger space

for selection. Although touch phones have been a success since they were launched,

speech can yet offer an alternative and possibly a better way of interaction with

the device.

From the user interface perspective, experts are generally of the opinion that

voice provides a very convenient and useful way of interacting with the mobile

device. Hands-free and eyes-free UI for the phone will not only increase the safety

of using mobile phones but it will also increase the ease of use with which these

devices can be handled. Cohen [6, 5] argues that the future is bright for the speech

6

technologies. However, while voice-centric interfaces have been widely available in

modern phones (even the low cost versions) they are not very popular with the

users. Cohen [6] argues that the customer indifference can be attributed to 3 major

reasons: marketing, interfaces and applications. From the marketing perspective

the original voice support had sub-optimal performance and was oversold. None of

the recent marketing campaigns have been able to differentiate between the modern,

competent speaker-independent technologies and the earlier implementations. In

the cell phone industry, marketing is controlled by the carriers, and they have not

viewed speech interfaces as critical for their financial success. As for interfaces, they

are not intuitive enough and there is no “must-have” voice application. When it

comes to applications, Cohen argues that once such a killer application is developed

this user interface will catch up rapidly. He goes on to suggest that voice search

may turn out to be that killer application. However its not only the lack of a killer

application but also the lack of modular voice support across all applications on

the device that has restricted the popularity of voice as a viable user interface.

1.4 Challenges and Contributions

In this thesis we propose a framework for embedded speech processing functions

that can be used to provide speech support and environment sensing capabilities to

any mobile business application. While this is not meant to be full-fledged speech

recognition or speaker recognition system, the framework is capable of providing

limited vocabulary speech recognition for business applications to develop voice

interface, low enrolment speaker identification and environment sensing for context

aware applications that need it. This framework is platform-independent and can

be used on any phone supporting J2ME. It does all the processing on the client

side and does not require any backend support over the network which enhances

7

its usability.

The methodology and algorithms that we developed for implementing this frame-

work have their foundation in mathematical fundamentals that have formed the

theoretical core for any speech processing technology. This approach ensures the

correctness and the accuracy of the framework. However, considerable adaptation

is necessary to match the unique constraints of a mobile phone. Proven desktop

speech processing technologies, when ported to the phone without careful adjust-

ments, result in unacceptable performance.

When compared to desktop computers, mobile phones and PDAs have only a

few megabytes of RAM and a few hundred megahertz of processing power. This

severely limits the complexity of applications that can be run on these devices.

These constraints assume an even greater significance for speech technology, because

the response time requirement for such applications is often real-time. To provide

real time response on mobile phones by modifying, adapting and optimizing the

existing technologies for desktop computers is one of the challenges addressed in

this thesis.

Most of the speech applications on the mobile phones and other such constrained

devices available today are very tightly integrated with the hardware and the op-

erating system of the device. These applications have very specific functionalities

and are native to the phone. The challenge is to develop platform independent

framework for providing speech support. J2ME is used as the preferred technol-

ogy due to the fact that it’s platform independent and very popular (hence easily

available on a lot of phones). However, any J2ME application is inherently slow

when compared to the native application and since J2ME is the micro edition of

JAVA it is not as powerful as J2EE or J2SE. To develop a framework for supporting

speech in J2ME that ensures reasonable response time is another challenge that is

addressed.

8

The main contributions of this thesis are

• Platform-independent speech processing and environment sensing support for

mobile phones;

• Framework for providing a voice interface to business applications;

• Adaptation and optimization of proven speech processing algorithms on the

mobile phone.

1.5 Outline of thesis

The rest of this thesis is organized as follows: In Chapter 2 a review is provided

of some existing applications for speech processing on mobile phones and desktop

computers. The chapter also includes the role of voice-centric interface on the

usability of mobile phones, and why it has not been very successful till now. Some

speech processing algorithms are presented and basic mathematical fundamentals

are identified that form the core of the proposed framework.

In Chapter 3 presents the general architecture of the proposed speech process-

ing system, focussing on the extraction of information for both speech recognition

and speaker identification from the same speech engine. Existing models for speech

processing applications are reviewed and reasoning behind the proposed approach

is provided. In Chapter 4, a description of the main algorithm used for audio signal

processing in general and speech processing in particular is presented. A step-

by-step walk-through of the whole procedure from speech audio input collection

to speaker verification is provided. Following the description of the methodology,

Chapter 5 describes the settings for the experiments that were conducted for per-

formance analysis. It also describes in detail the optimization techniques that were

9

used to adapt the framework to the unique hardware and computational constraints

of a mobile phone and present proof of concept applications. In Chapter 6, the busi-

ness application scenarios in which this framework would be useful are considered.

These applications may use the framework for providing navigational support or

gathering input for context aware processing. Finally a conclusion with a short

summary and directions for future work is presented.

10

Chapter 2

Background and Related Work

In this chapter, a comprehensive survey of the work done in the areas related to

speech processing is presented. Before an audio signal can be processed to derive

meaningful speech information, it has to be pre-processed. This pre-processing

might determine whether the signal has any speech content in it. On finding speech

content, the pre-processing module might be responsible for amplifying that part

of the signal, removing periods of silence etc. After this pre-processing has been

done, the audio signal is then sent to different modules for transformation, feature

extraction and then verification. Figure 2.1 shows a simplified pipes and filter

architecture for a generic speech processing system. First the background for a

general speech processing system is presented and then related work done in these

different areas is discussed.

2.1 Background

Physically the speech signal (actually all sound) is a series of pressure changes

in the medium between the sound source and the listener. The most common

representation of the speech signal is the oscillogram, often called the waveform,

11

Figure 2.1: A simplified overview of speech processing architecture

which will be used in figures in the following chapters. In this representation the

time axis is the horizontal axis from left to right and the curve shows how the

pressure increases and decreases in the signal.

2.1.1 Sampling

Speech is a continuous signal but is stored electronically as discontinuous samples.

This process of reducing a continuous signal to discrete samples is called sampling.

The continuous signal varies over time and the sampling process is performed by

measuring the continuous signal’s value after a fixed interval of time, called the

sampling interval. This process of sampling is governed by the Nyquist theorem

which states that an analog signal that has been sampled can be reconstructed

from its samples if the sampling frequency is at least twice the highest frequency

present in the analog signal. In practice, for a signal that is a function of time, the

sampling interval is typically quite small, of the order of milliseconds, microseconds,

or less. This results in a sequence of numbers, called samples, to represent the

original signal. Each sample value is associated with the instant in time when it

was measured. Though the range of human hearing lies between 20 to 20,000Hz

most of the energy in a speech signal (signals intended to carry human speech) is

12

contained in the band between 5Hz - 4kHz allowing a sampling rate of 8kHz. Most

telephony systems use 8kHz or 16kHz as their sampling frequency.

2.1.2 Audio file formats

Once the speech signal has been sampled it is stored in the form of samples in a file.

Some of the most popular encoding formats are MP3 (.mp3) format, WAVE (.wav)

format and AMR (.amr) format. These formats differ in the amount and type

(lossy or lossless) of compression, their headers and some other specifics. WAVE

file formats are one of the pure (lossless) ways of storing sound and will be discussed

here. Standard format for a wav file is 44,100 samples per second and 16 bits per

sample. The wav format is based on the Resource Interchange File Format (RIFF),

which stores audio files in indexed chunks and sub-chunks. The main two chunks

are the format chunk and the data chunk. The format chunk contains information

about how the data are stored. Information such as number of channels, sampling

rate, data size, etc are needed to make any meaningful use of the data. The data

chunk contains the digital audio sample data which contains speech and related

information. Speech applications, depending on the audio file format, first read the

format chunk and then read the data chunk to derive any meaningful information.

Since each sample is stored (generally 16 bits) in 2 bytes, each speech application

first re-constructs the samples and stores them in an array. Pre-processing and

further processing is then performed on arrays thus obtained.

2.1.3 Pre-processing

After the array of samples is obtained, pre-processing is performed on it before

any speech specific information is extracted from it. This pre-processing is not

a standard feature and might be totally absent from some speech applications.

13

Further, pre-processing will also depend on the goal of the speech application. Pre-

processing is generally performed initially to determine if an audio signal contains

any speech content. Once speech content has been determined, emphasizing of

the speech content and end point detection may also be performed during the pre-

processing stage itself.

Short time energy is one of the most popular metrics used for any kind of

speech processing. Its popularity can be attributed to the fact that computing

energy from a speech signal is a relatively easy operation. In their paper Wasson et

al [38] present speaker recognition experiments in which they use short term energy

to pre-process the signal before feature extraction. Wu, Ren, Liu and Zhang [44]

present a Voice Activity Detection (VAD) system in which short term energy in

the speech signal forms one of the most important metrics for VAD in moderate

Signal-to-Noise ratio (SNR) conditions. They also use the short term energy for

beginning and end point detection but argue that short term energy, as a metric

for VAD, loses its usefulness in low SNR conditions. Mathematically, short term

energy for a frame can be calculated as

Energyi =
n∑
j=0

a2
j

where aj represents the amplitude of the jth sample. Energyi represents the energy

of the ith frame and n the number of samples in the frame.

Fundamental frequency is another useful metric that is used in a number of

speech processing systems. Fundamental frequency is the dominant frequency of

repetition in any audio signal. Fundamental frequency is often used for speaker

recognition purposes. Gerhard [13] presents an overview of audio signal classifi-

cation, where it is argued that fundamental frequency is the lowest frequency of

repetition in a signal and can be used to gauge the periodicity. This in turn can

14

be used to distinguish if the audio is music, birdcall etc. According to Gerhard,

most information that can be derived from the fundamental frequency is obtained

by observing how the sound changes over time. According to Wasson et al [38],

apart from fundamental frequency, formant frequencies also play an important role

in classification of sound. Formants are distinguishing meaningful frequencies in

human speech and singing. For instance, the information needed to distinguish

between vowels is contained in the formant frequencies. The calculation of funda-

mental and formant frequency for speech as described in [19] is not a trivial process

and hence the mathematical algorithm for it will not be presented here.

Another important metric used for speech analysis and pre-processing is Zero

Crossing Rate (ZCR). ZCR, like short term energy, is a popular metric due to the

ease with which it can be measured. As the name suggests, ZCR is the measure of

how often the signal crosses from positive to negative and vice-versa. A detailed

explanation of how ZCR is computed is presented in the next chapter. According

to Gerhard [13] ZCR is useful for estimating fundamental frequency and extracting

features such as spectral content, voicedness and noise content. Wasson et al [38]

show how ZCR can be used to identify speakers in an automated manner. Kedem

[21] shows how different statistical metrics can be collected using the ZCR and how

they can be used to perform spectral analysis. The emphasis of this work is on

higher order ZCR analysis.

Marolt [25] cites the importance of pitch as a feature for computing similarity

specially of musical fragments. Though Marolt’s work focuses on music informa-

tion retrieval by finding melodic lines through a given piece of music, it shows that

pitch can be used as a useful discriminator between speech music and other au-

dio categories. Apart from these, other metrics that have been used during the

pre-processing stage of speech processing systems are Artificial Neural Networks

(ANN) [25] and Linear Discriminant Analysis [3]. Both ANNs and LDAs are com-

15

putationally expensive as compared to using simple metrics like Short term energy

and ZCRs. ANN and LDA might be suitable for performing speech processing

when powerful computers are available, but on limited computing hardware as the

mobile phone, this option is unviable. Another distinct disadvantage of using ANN

is that the whole system has to be re-trained on addition of a new entity.

2.1.4 Speech processing systems

The metrics mentioned in the previous subsection can be used for pre-processing

on different types of speech processing systems. These systems might have different

end goals and consequently might require different approaches for pre-processing.

Some of the possible speech processing system goals might be the following:

• Emotion Detection A lot of research today is devoted to identifying the

emotion in a human voice. Giripunje [14] discusses the use of Artificial Neu-

ral Networks for this purpose using metrics like Pitch, formant frequencies,

energy and speaking rate. The aim of this work is to determine the emotional

state such as anger, sadness, happiness, fear etc.

• Gender Classification Gender classification could be another objective of a

speech processing system. It is a well studied problem that finds application

in the fields of speaker indexing, speaker recognition, annotation and retrieval

of multimedia databases, voice synthesis, human computer interaction, bio-

metrics, robotics etc. Kotti et al [22] discuss gender classification from speech

samples using support vector machines.

• Speech Recognition Speech recognition is another well studied speech ap-

plication problem. The aim of a speech recognition system is to identify

spoken speech. Such a system could be an exhaustive or a limited vocabu-

16

lary speech recognition system. Speech-to-text conversion is one of the most

popular applications of speech recognition.

• Speaker Recognition Speaker recognition is the process of automatically

recognizing who is speaking on the basis of individual information included in

speech signals. It can be divided into Speaker Identification and Speaker Ver-

ification. Speaker identification determines which registered speaker provides

a given utterance from amongst a set of known speakers. Speaker verification

accepts or rejects the identity claim of a speaker - is the speaker the person

he/she claim to be?

While the above mentioned types of speech processing systems are fairly popu-

lar, there might be other applications with a different set of goals. The emphasis of

this work is on speech recognition and speaker recognition on constrained devices,

hence the focus from now on would be towards these two applications of speech

processing systems.

2.1.5 Signal Processing

After the pre-processing stage, the audio signal is passed through the signal pro-

cessing framework. This framework is responsible for doing majority of the work

required for speech recognition or speaker recognition. Since this thesis basically

deals with speech recognition and speaker recognition, this background will be dis-

cussed in detail. Many of the techniques for both speech recognition and speaker

recognition are common. Speech recognition and speaker recognition, in general,

both require models to be developed for a word or a speaker. Various techniques

have been studied and used to develop such models. Some of the more popular

ones are the following:

17

1. Hidden Markov Models (HMM) The Hidden Markov Model is a finite

set of states, each of which is associated with a (generally multidimensional)

probability distribution. Transitions among the states are governed by a set

of probabilities called transition probabilities. In a particular state an out-

come or observation can be generated, according to the associated probability

distribution. It is only the outcome, not the state visible to an external ob-

server; therefore states are “hidden” to the outside, hence the name Hidden

Markov Model. In order to define an HMM completely, following elements

are needed:

• The number of states

• The number of observation symbols

• A set of state transition probabilities

In a typical speech recognition system based on HMMs, words are usually rep-

resented by networks of phonemes. Phonemes are the sounds that constitute

each word. Each path in a word network represents a pronunciation of the

word. The same phoneme can have different acoustic distributions of obser-

vations if pronounced in different contexts. The HMM model moves from one

state to another depending on the probabilities ascertained from the training

set. The end state is identified as the spoken word. Speaker recognition sys-

tems are similar, where a speaker instead of a word is modeled as an entity.

There has been a lot of research for speech processing systems based on

HMMs. They are generally considered to be a very good approach towards

solving speech recognition or speaker recognition problems. For instance Jiang

et al [18] describe large margin hidden markov models for speech recognition.

Without going into the details, in their work, Jiang et al propose to estimate

the HMM problem using a minmax function. They show that large mar-

18

gin HMM perform significantly better than traditional HMMs. Dumitru et al

in [8] describe a speaker recognition system based on HMM for Romanian lan-

guage.

Though HMMs have been proven to be fairly successful for speech recog-

nition tasks, they need a fairly exhaustive training set. Also, building models

is computationally expensive. The accuracy of HMM-based systems depends

on the exhaustiveness of the training set. The bigger the training set, the

more computationally expensive it is to build the system. Since this work

focuses on speech processing systems embedded on a constrained device, this

computationally expensive building of the models (even if only once) is not

preferable. Further, with HMM-based systems, addition of any entity to the

system needs the system to be re-trained. Thus HMMs are not a good choice

considering the objectives of this work.

2. Artificial Neural Networks (ANN) An Artificial Neural Network (ANN)

is an information processing paradigm that is inspired by the way biological

nervous systems, such as the brain, process information. The key element of

this paradigm is the novel structure of the information processing system. It

is composed of a large number of highly interconnected processing elements

(neurones) working in unison to solve specific problems. ANNs, like people,

learn by example. An ANN is configured for a specific application, such

as pattern recognition or data classification, through a learning process. In

general for a speech recognition system based on ANNs the features extracted

from the training set are fed into the neural nets as input. Each output neuron

represents a voice command or a word. The training is generally iterative and

the weights are adjusted for each training set. Back propagation is carried

out to minimize the error.

ANNs suffer from the same drawbacks that HMMs do as far as speech recog-

19

nition on constrained devices is concerned. Training has to be exhaustive and

intensive. Any addition to the training set requires retraining for the whole

system, which is a very costly process to perform on a device like a mobile

phone.

3. HMM/ANN Hybrid Though both ANNs and HMMs have proven their

usefulness in the field of speech recognition, they both suffer from a number

of limitations. HMMs were the first modeling technique to be used for speech

recognition. Its success lies in its mathematical simplicity; efficient and ro-

bust algorithms have been developed to facilitate its practical implementation.

Standard HMMs model speech as a series of stationary regions in some repre-

sentation of the acoustic signal. However speech is a continuous process, and

ideally should be modeled as such. Furthermore, HMMs assume that state

and phone boundaries are strictly synchronized with events in the parameter

space, whereas in fact different parameters do not necessarily change value

simultaneously at boundaries. As an alternate to HMMs Artificial Neural

networks have been used. However, they have their own drawbacks. ANNs

were found to be unsuccessful in dealing with long time-sequences of speech

signals. This is because they are originally static qualifiers. They do not in-

herently model the temporal evolution of data and in speech processing they

have to deal with the duration variability of speech units. While neural net-

works can readily be applied to acoustic modeling, it is not yet clear how to

use them for temporal modeling. Some researchers have explored a new ap-

proach that combines HMMs and ANNs within a single, hybrid architecture.

Joe Tebelski [37] states that the goal in hybrid systems is to take advantage of

the properties of both HMMs and ANNs, improving efficiency and recognition

performance. Therefore, Tebelskis et al [37] explore a class of systems called

NN-HMM hybrids, in which neural networks perform acoustic modeling, and

20

HMMs perform temporal modeling.

In general, in such hybrid models, ANNs are used to estimate the transition

probabilities that are then used when the system is modeled as a HMM.

However, in terms of constrained devices, such hybrid models suffer from the

same drawback as ANNs and HMMs.

4. Gaussian Mixture Models (GMM) In statistics, a mixture model is a

probabilistic model for density estimation using a mixture distribution. A

mixture model can be regarded as a type of unsupervised learning or cluster-

ing. When the distribution is assumed to be Gaussian, the model is called

gaussian mixture model.

Typically in a speech processing system modeled as a GMM, multidimen-

sional statistical models are built for both speech recognition and speaker

recognition. Each dimension is a feature(such as ZCR, energy amplitude,

MFCC etc) and every entity has a value in all the dimensions. An entity

here may represent a word for a speech recognition system or a speaker for a

speaker recognition system. Clustering is later done for the formation of the

model during training and shortest distance from the cluster identifies the en-

tity during testing. Reynolds et al [31] describe a speaker recognition system

based on GMMs. The focus of their work is on applications that require high

identification rates using short utterances from unconstrained conversational

speech.

There are some distinct advantages to using a GMM-based model for the

constraints mentioned in this work. GMM-based models can be trained with

a very limited dataset as will be shown later in the experiments section.

Further, addition of an entity to the model does not require re-training of the

whole system. Thus the computational overhead can be reduced. While this

21

is sufficient reason to adopt a GMM-based statistical model, this work does

not intend to prove that GMM-based models are better suited to this task

than any of the above as different techniques might be useful under different

constraints.

Since, this thesis is concerned with a GMM-based speech processing system, a

deeper look at a typical GMM based speech processing system is provided in this

section. Typically, such a system has two main parts

1. Feature Extraction

2. Pattern Recognition

2.1.6 Feature Extraction

Feature Extraction is a special form of dimensionality reduction. When the input

data to an algorithm are too large to be processed and it is suspected to be highly

redundant (much data, but not much information) then the input data will be

transformed to a reduced representative set of features (also named features vector).

Transforming the input data into the set of features is called features extraction.

If the extracted features are carefully chosen, it is expected that the feature set

will extract the relevant information from the input data in order to perform the

desired task using this reduced representation instead of the full size input. In

terms of audio processing, feature extraction involves information retrieval from

audio signals. Since frequency is one of the most important pieces of information

necessary to accurately recognize sound, audio signal is generally transformed from

time domain to frequency domain to break the signal into its frequency components.

One of the most popular transformation techniques is the Fourier transforma-

tion. The Fourier Transform, in essence, decomposes or separates a waveform or

22

function into sinusoids of different frequency that sum to the original waveform. It

identifies or distinguishes the different frequency sinusoids and their respective am-

plitudes. The Fourier Transform is based on the discovery that it is possible to take

any periodic function of time x(t) and resolve it into an equivalent infinite summa-

tion of sine waves and cosine waves with frequencies that start at 0 and increase in

integer multiples of a base frequency f0 = 1
T

, where T is the period of x(t). Fourier

transformation is generally performed on continuous signals; even though speech is

a continuous signal, sampling makes it discrete. Hence, Discrete Fourier Transfor-

mation (DFT) is used for transformation. For most computational purposes, the

Fast Fourier Transformation algorithm is used. The fast Fourier transform (FFT)

is a discrete Fourier transform algorithm that reduces the number of computations

needed for points from 2 ·N2 to 2 ·NlgN , where lg is the base-2 logarithm.

Another popular technique is the discrete wavelet transformation technique.

The Wavelet Transform provides a time-frequency representation of the signal. It

was developed to overcome the shortcoming of the Short Time Fourier Transform

(STFT), which can also be used to analyze non-stationary signals. While STFT

gives a constant resolution at all frequencies, the Wavelet Transform uses multi-

resolution technique by which different frequencies are analyzed with different res-

olutions. A wave is an oscillating function of time or space and is periodic. In

contrast, wavelets are localized waves. They have their energy concentrated in

time or space and are suited to analysis of transient signals. While Fourier Trans-

form and STFT use waves to analyze signals, the Wavelet Transform uses wavelets

of finite energy. Though the wavelet transformation was developed to overcome

the shortcomings of the fourier transformation, it has not been proven that wavelet

transformation is better suited to speech processing. Furthermore, FFT is a well

studied algorithm and computationally fast, which is why it is preferred in this

work.

23

Mel frequency cepstral coefficients (MFCC) are used as the primary feature in

this speech analysis framework. Different speech processing systems have experi-

mented with various types of features for speech analysis. Due to the sheer number

of such features, this section will concentrate on the feature used here that is Mel

Frequency Cepstral Coefficients.

The word Mel comes from Melody and Mel scale is a perceptual scale of pitches.

Mel Frequency Cepstrum (MFC), a representation of short term power spectrum

of a sound based on linear cosine transform, and MFCC collectively make up the

MFC. MFCCs have been shown to have good discriminatory properties for both

limited vocabulary speech recognition and speaker verification. They come in var-

ious flavors(depening on the method of extraction) as shown in [12]. Each MFCC,

once extracted, is a dimension in itself. Using these MFCCs, the GMM is built

where every entity has a value for each MFCC dimension, and taken together,

these define the multi-dimensional Gaussian mixture model. The details of how

MFCCs are extracted in this framework are presented theoretically and graphically

in the next chapter.

2.1.7 Pattern Recognition

After feature extraction, clustering is performed for pattern recognition. Clustering

can be considered the most important unsupervised learning problem; so, as every

other problem of this kind, it deals with finding a structure in a collection of

unlabeled data. A loose definition of clustering could be the process of organizing

data into groups whose members are similar in some way. Consequently, the aim

of clustering is to determine the intrinsic grouping. Some of the main clustering

algorithms are described in this section.

One of the simplest and most popular algorithms used for clustering is called the

24

K-means clustering algorithm [24]. The procedure follows a simple and easy way

to classify a given data set through a certain number of clusters. The number of

clusters k is fixed before running the algorithm and k centroids are defined, one for

each cluster. The placement of these centroids affects the results and hence should

be decided with a lot of care. A thumb’s rule is to place these centroids as far as

possible from each other. The next step is to take each point in the data set and

associate it to the nearest centroid. After this has been done for all the points in the

dataset, first round is completed. At this point k new centroids are recalculated as

barycenters (centre of mass) of the clusters resulting from the previous step. A new

binding is then done between the same data set points and the nearest new centroid.

Thus, a loop has been generated and is executed until no change in cluster centres

is observed. Various implementations of Kmeans algorithm are freely available. An

efficient implementation of the algorithm is given by Tapas et al[36].

Another popular clustering algorithm is the Fuzzy C-means algorithm. Its very

similar to the K-means clustering algorithm, the main difference being that each

point in the dataset belongs to each cluster with a degree of belonging. Thus, points

on the edge of a cluster, may be in the cluster to a lesser degree than points in the

center of cluster. Thus for each point x there is a coefficient giving the degree of

being in the kth cluster. Usually, the sum of those coefficients for any given x is

defined to be 1. This method was developed by Dunn [9]

Clustering has been well studied. There has been a lot of research on which clus-

tering algorithm is better than the other [45]. Different clustering algorithms are

suited to different types of datasets. In this thesis, different clustering algorithms

were experimented with as has been explained in Chapter 4. Template matching is

performed for pattern identification once the model has been built after training.

The test data is compared with all the training sets and the one with the least

Euclidean distance is considered to be the match. Dynamic Time Warping, a tech-

25

nique that uses both frequency and time domain characteristics (where as template

matching uses only frequency domain characteristics) was also considered. But

computational constraints allow don’t allow for a very elaborate pattern matching.

More details about this are presented in Chapter 4.

2.2 Related Work

Context-aware applications are touted to be the next big thing for mobile phones

and provide a better experience through collaboration with each other [15]. The

framework presented here can go some distance in providing audio input to such

context-aware applications. There have been a few similar attempts in the past,

albeit with a slightly different objective. We’ll describe a few such attempts in this

section.

1. Sensay SenSay, described in [34], is a context-aware mobile phone that

adapts to dynamically changing environmental and physiological states. Sen-

say comes mounted with external sensors like accelerometer, light sensors

and microphones mounted at different points of the users body. Sensay has

abilities such as providing the remote caller with an option to convey the ur-

gency of their call, make call suggestions to users when they are idle, provide

feedback on the current status of the sensay user, manipulate ringer volume,

vibrations and phone alerts. While some of the functions performed by sen-

say are not related to the objective of this thesis, functions like manipulation

of ringer, vibration and phone alerts can be performed by any application

making use of the output from the framework presented in this thesis. Fur-

thermore, these functions can be performed without the need of mounting

extra sensors on the user at different places, which can clearly be cumber-

some. These functions can be performed by measuring the loudness of the

26

environment using the built-in microphone and taking pictures and measuring

the brightness levels. Apart from measuring the loudness of the audio signal,

the framework is also capable of differentiating speech and silence from noise

in indoor environments. This can be vital input to some applications and will

be discussed in more detail in the discussion section.

2. Exploration of small enrollment speaker verification on handheld

devices This work [43] focuses on low enrollment speaker verification in the

context of very limited training data. It discusses the importance of normal-

ization techniques, such as handset normalization and zero normalization as

well as model training methodologies to minimize the detrimental impact of

highly variable environment and microphone conditions on speaker verifica-

tion robustness. The focus is on speaker verification process from a security

point of view rather than speech recognition and speaker verification for pro-

viding contextual information to business applications that is the focus of

this thesis. Furthermore, the speaker verification process takes speaker’s ut-

terance and his or her identity as input and outputs whether or not they were

both a match. These methods require a lot of computational resources to this

one aspect of speech processing. Hence, while similar mathematically this is

not directly applicable to the framework presented in this thesis.

3. Fixed-point GMM-based Speaker Verification over Mobile Embed-

ded System As has been mentioned previously, speech processing is not a

novel area for research. Although by no means a solved problem, the topic has

been the focus of research for quite a few years now. Long before devices like

PDAs and mobile phones came into existence there has been research in this

field focussing on performing speech processing on powerful desktop comput-

ers. Due to the difference in the hardware configuration of handheld devices

27

and powerful desktop computers, algorithms employed for speech processing

could not be directly ported to handheld devices. Moon et al [26] describe the

implementation of a speaker verification system on a PDA. They describe the

step-by-step porting of an existing speaker verification system on a desktop

computer to a PDA. They make use of fixed point implementation to speed

up the existing speaker verification system. This is similar to the frame-

work presented in this thesis, because a GMM based model is built using

Mel frequency cepstral co-efficient. However, the difference lies in the fact

that fixed point implementation has been used. Though faster for compu-

tationally constrained devices, fixed point implementation of any algorithm

has its drawbacks. Fixed point implementations introduce a tradeoff between

accuracy and performance and these have been studied in detail [23].

4. (Commercial Systems) Commercial applications are also available in this area

though none of them have been a huge success or considered the answer to the

problem of speech processing. Due to their commercial nature its not possi-

ble to comment on their technical details. Commercial systems developed by

Scansoft and Nuance (two of the pioneers in this field) are tailored towards

industrial applications such as health care and financial sectors, that require

high levels of security to protect sensitive customer account information. In

addition to providing security, commercial speaker verification systems al-

low companies to reduce costs by replacing expensive live call centers with

automated systems for speaker verification.

28

Chapter 3

Pre-processing

This chapter focuses on the design issues, algorithms and techniques that are used

to pre-process an audio signal before it is further processed by applications such as

word recognition or speaker recognition. One of the objectives of pre-processing is

to categorize the audio into a number of categories. Once the audio is determined

to be in the speech category, start and end point detection is performed on the

audio recording. Pre-processing is done in two stages:

1. Categorization

2. Start and end point detection for speech recordings

An audio signal can be categorized into various classes depending on different pa-

rameters chosen. For instance, a possible categorization is shown in Figure 3.1.

This is by no means an exhaustive categorization but it serves to illustrate the pur-

pose of pre-processing. The images on the right hand side are waveforms in time

domain of a sample from each category.

Figure 3.2 depicts the data flow within the pre-processing module. One of the

advantages of this architecture is that the design is modular so different modules for

29

Figure 3.1: A possible categorization of Audio

deriving context-aware information can be added. For example, a module for dif-

ferentiating between noise and music could be added to increase the functionality.

New modules can also be added before feature extraction such as Vocal Tract Nor-

malization (VTN) [39], Dynamic Time Warping (DTW) [16] for speech recognition,

or modules for gender classification. These modules can then work independently

of the existing modules thereby adding more functionality.

Each module can provide different applications with the sort of information that

it needs. For example the silence or non-silence (speech or noise) classification may

be used to determine whether or not the user is sleeping. There’s a clock built in

the phone, and if the time of the day is late at night and this module concludes

there is silence then it is probably safe to assume that the user is sleeping. On the

other hand if the user is traveling in a car and pre-processing suggests that there

is noise in the background then the volume of the ringer can be adjusted to suit

the noise levels of the environment. This stage of pre-processing not only makes

30

Figure 3.2: Data flow within the speech processing module. The square boxes
represent the categories into which the audio signal could be classified and the
diamond box represents the decision making unit.

speech detection much more efficient, but it also provides contextual information.

This forms the first stage of pre-processing.

For our proof of concept applications, we instantaneously classify the input

audio signal as silence, speech or noise during the first stage of pre-processing. For

our proof of concept applications and those applications that need to do speech

recognition or speaker recognition, the pre-processing module in the second stage

does end point detection and then extracts the portion out of the original recording

that has speech content.

3.1 Stage I

The audio signal captured by the microphone is sent through the classification

module to identify whether the captured audio recording is silence, has speech

31

Figure 3.3: Zero crossings

content, or is noise. Different functions can then be performed depending on the

class of the signal. If the audio signal is identified as having speech content, it

undergoes further processing to extract meaningful information from it. As has

been mentioned in the previous chapter, pre-processing stage can make use of a lot

of features to determine the category of an audio signal. In this work, we make use

of two features:

1. Short term energy

2. Zero crossing rate skew

Short term energy is the energy present in the audio signal over a very short

duration. While short term energy is sufficient to classify a signal as silence, its not

sufficient to derive any meaningful information out of it. Zero crossing rate skew is

used to further categorize the audio into noise or having speech content.

Zero crossings is defined as the number of times an audio waveform in time

domain crosses the zero line. As the name suggests, zero crossing rate (ZCR) is the

number of zero crossings per unit time. For instance the number of zero crossings

in Figure 3.3 are four. Zero crossing rate is determined over the entire signal by

32

counting the zero crossings and then dividing them by the length of the signal

measured in units of time. The signal is then broken into small frames and the

ZCR for each frame is measured. ZCR skew is defined as the difference between

the number of frames whose ZCR is greater than the mean ZCR and number of

frames whose ZCR is less than the mean ZCR. This is given in Algorithm 1

Algorithm 1: Calculation of ZCR skew
Data: Total zero crossings zc, Total time t, Frame length f , Zero crossings

for each frame zf

Result: ZCR skew

// Calculate mean ZCR

mz ← zc
t

;

// Initialize counters

p← 0 and n← 0 ;

while all frames have not been processed do

if zfi

f
> mz then

p = p+ 1;

else if zfi

f
< mz then

n = n+ 1;

else

Ignore this frame and move to the next

end

end

skew = |p− n|;

return skew

Algorithm 1 describes how ZCR skew is calculated. It begins by calculating

mean ZCR over the entire signal. Then each frame is processed separately to

measure the ZCR for that particular frame. The number of frames whose ZCR is

greater than the mean is stored in p, and the number of frames having ZCR less

33

Figure 3.4: Fricatives ‘f’ and ‘v’ [17]

than the mean is stored in n. The difference of these two provides the skew. In

actual implementation, for counting the number of positive frames, ZCR in a frame

is compared with mz + X, and for counting negative frames, ZCR in a frame is

compared with mz −X. X is a small percentage of the mean value that is added

or subtracted to smooth out minor fluctuations and get a stable value for the skew.

This skew is higher for speech than other categories because of the presence of

fricatives in human speech. Fricatives are sounds of consonants, such as ‘f’ or ‘v’

in English, produced by the forcing of breath through a constricted passage. For

both of these sounds, the constriction is caused by upper teeth touching the lower

lip, as depicted in Figure 3.4. The fricatives are high energy sounds and are easy to

detect. ZCR skew catches this property of sound to a certain extent. For, silence or

uniform noise the ZCR skew for obvious reasons will be relatively small. Variable

noise is not considered in this work, because without a noise pattern, distinguishing

variable noise from speech would be computationally very expensive and, thus, is

not possible during the pre-processing stage.

Figure 3.5 shows the plot of ZCR-per-frame on y-axis and frame-number on

x-axis for an audio recording that has speech content. The dark band in the center

is the mean±’X’. All the points above the band are positive frames and all the plots

below the band are negative frames.

34

Figure 3.5: Plot of ZCRframe vs Frame number

Figure 3.6: Categorization into Silence, Noise and Speech

35

After Stage I pre-processng categorization as represented by Figure 3.6 is achieved.

The grey color in the center represents different types of noise. The white on the

left hand side is meant to denote silence and the black at the other extreme de-

picts noise. The arrows in front of short term energy and ZCR skew represent the

increase in the values of these parameters from silence to speech.

3.2 Stage II

If stage I decides that the recorded audio signal has speech content, second stage

of processing is performed. This stage is responsible for detecting the start and the

endpoint of speech content in the audio signal and then “trimming” it. Trimming

means removing those parts of the audio signal from the beginning and end that

do not have speech content. Naturally, if the speech content lasts from the start to

the end of the recording no trimming will be necessary. Otherwise trimming is nec-

essary because the next module (speech processing) transforms the pre-processed

speech signal from the time domain to the frequency domain. Fast fourier trans-

form algorithm is used to achieve this transformation. The transformation module,

which is discussed in detail in the next chapter, forms the bottleneck in terms of

performance. Therefore, the length of the speech signal needs to be kept small

to achieve reasonable transformation performance. Second stage of pre-processing

reduces the length of the audio signal drastically, thereby increasing the perfor-

mance many-folds. Though this stage is important for future processing of the

audio signal, by itself it doesn’t provide any useful information. Therefore, a lot of

36

processing time or power should not be spent at this stage.

Algorithm 2: Start point detection
Data: Array containing samples from audio signal to be processed

Result: Starting frame number for speech content

Divide input signal into nf frames ;

TotalEnergy = 0 ;

forall All the samples in the audio signal do

TotalEnergy = TotalEnergy + amplitudei
2 ;

end

Compute total energy of the signal ;

// Calculate mean energy

me = TotalEnergy
nf

;

for i = 0 to nf do

if FrameEnergyi ≤ me
4

then

// Skip n frames

i = i + n ;

else

Mark i as possible starting frame ;

// Check next n frames

for j = 1 to n do

if FrameEnergy > me
4

then

Confirm i as the starting frame;

return i ;

else

j + +;

end

end

end

end

return i ;

37

This section presents a simple algorithm to detect the start and end point of

speech content in an audio signal. It is simple in the sense that it doesn’t require

a lot of computation power, it is fast, and it re-uses some of the statistics already

collected in the previous stage of pre-processing. Stage II of pre-processing assumes

that there might be periods of silence at the start and end of a recording and it

strives to remove these periods of silence if they exist. On desktop computers

this step might be done to improve efficiency of feature collection during speech

processing, but on mobile phones it assumes even greater importance as it enforces

efficient use of scarce resources.

The start and end-point detection algorithm 2 and 3 uses short term energy of

the audio signal for removing the silent frames from the beginning and the end.

A silent frame is defined as a frame whose energy is less than a certain threshold.

The value of this threshold varies from implementation to implementation, we’ve

chosen 25% of the mean energy of the entire signal, as our threshold value.

Algorithm 2 starts from the first frame and then proceeds by checking the frame

energy initially after every n frames. The aim is to avoid having to check every

frame, thereby speeding up the computation. This might cause deviation of a

maximum of n−1 speech frames from the actual start of the speech content, which

is an error that is considered acceptable for small values of n. The assumption here

is that when the algorithm reaches the part of the signal that has speech content,

then any consecutive n frames will have more than one frame that will be identified

as non-silent frames by the algorithm. This serves two purposes. Firstly, each frame

need not be checked, and secondly, a false non-silent frame is not marked at the

start point.

Algorithm 3 for detecting end point is similar to the start point detection. The

algorithm begins by testing every nth frame from the start point till it finds a silent

frame. The next n frames are then tested for the presence of any non-silent frame,

38

whose energy is greater than 25% of the mean energy. If all of the next n frames are

found to be silent frames then the initial frame is marked as the end point. If how-

ever one of the frames turns out to be non-silent while checking the consecutive n

frames, then the current index is updated to this frame’s index and the algorithm re-

iterates.

Algorithm 3: End point detection
Data: Array containing samples from audio signal to be processed, Starting

frame number sf

Result: Ending frame number for speech content

for i = sf to nf do

if FrameEnergyi >
me
4

then

// Skip n frames

i = i + n ;

else

Mark i as possible starting frame ;

// Check next n frames

for j = 1 to n do

if FrameEnergy > me
4

then

i = i+ j;

Break ;

else

j + +;

if j == n then

return i ;

end

end

end

end

end

return i ;

This algorithm was tested under indoor conditions with moderate noise and was

39

Figure 3.7: Audio recording of 3 seconds with the word ‘back’ in it

Figure 3.8: Extracted speech after passing the 3 sec long recording through the
start-end point detection stage

found to be working satisfactorily. Test results are presented in Chapter 5. There

are other algorithms for end-point detection that are robust in high noise envi-

ronment that we discussed in Chapter 2. These can easily be integrated in this

module but they will increase the computational complexity, and are, therefore,

not considered in this thesis.

Figure 3.7 represents the word ‘back’ spoken in an audio recording which lasted

3 seconds. Figure 3.8 represents the extracted speech portion from this audio

recording. Both of these are plots in time domain of the audio signal. The x-axis

is time and y-axis is the amplitude of the signal. The parameter n and threshold

can be tuned to make the algorithm more strict or relaxed in terms of detecting

the start and end point. A relaxed algorithm would run faster but could be off by

a few frames while detecting start and end point. The strictest algorithm would

40

have n = 1 as the parameter value.

41

Chapter 4

Speech Processing

In this chapter the techniques that are employed for speech processing are discussed

in detail. Starting from feature extraction to vector quantization, each step is

presented in detail. The term ‘speech processing’, as used in this chapter, refers

to both speech recognition and speaker recognition, since a majority of the steps

involved for both of these are identical although some differences exist. These

differences will be highlighted as and when needed. Speech processing starts with

the trimmed audio signal that is generated at the end of pre-processing as discussed

in chapter 3

A simplified architecture of the speech processing module is presented here in

Figure 4.1. The design is modular and the implementation of each of the sub-

systems shown is also modular. Pipes-and-filter design is specially evident in this

speech processing module, and different components are designed to be re-usable

and replaceable. This architecture is then used for both training and testing.

The input speech is the output from the pre-processing sub-system described

in the previous chapter. This audio signal is then fed to the Feature Extraction

module. Once the feature set is extracted from the input signal, it is then sent

to the Classification module, which is responsible for measuring the similarity of

42

Figure 4.1: Architecture of the speech processing module

the extracted feature set to the models already present in the reference set. The

computed measure of similarity is passed on to the Decision module that decides

on a positive or a negative match. The reference models are computed in the same

way as has been just described and are already present in the system before it’s

used. The following sections look at each of these components in greater detail.

4.1 Feature Extraction

The procedure to extract MFCC from audio signal is common to both speech and

speaker recognition. In fact, one of the reasons for selecting MFCC as the primary

feature for extraction is the fact that MFCC is a popular feature for extraction

which has been used for both speech and speaker recognition. Different number

of MFCC need to be extracted for speech recognition and speaker recognition, as

explained later.

Speech processing is illustrated through the application of speaker recognition.

Figure 4.2 shows two speakers uttering the same phrase that is a few seconds in

length. Y-axis represents the amplitude of the signal and X-axis represents the

43

Figure 4.2: Two speakers uttering the same phrase

different samples in the utterance. The utterances shown in Figure 4.2 will be

passed through different stages of the extraction procedure shown in Figure 4.3.

The output from each stage will be graphically shown and each step explained in

detail in the following subsections.

4.1.1 Segmentation

Segmentation is the process of breaking the speech signal into small peices called

frames which are then processed separately. Speech is fundamentally a non-stationary

signal, so small segments of speech signal are cut and speech is approximated as a

stationary random process during each frame. Speech applications typically choose

a framesize of somewhere between 8 milliseconds to 30 milliseconds. After some

experimentations a fixed framesize of approximately 10 milliseconds was chosen. In

the segmentation step, entire speech is blocked into frames. A blocked frame is a

44

Figure 4.3: Extraction procedure for MFCC

frame which overlaps partially with the next frame.

Overlapping successive frames emphasizes the features in each frame and allows

for a smoother extraction of features. The amount of overlapping varies from system

to system and depends on the amount of speech content expected to be present in

the signal. The more speech content expected in the signal, the higher the amount

of overlapping is done although there is no precise way of determining how much

overlapping is optimal. In this thesis, frames overlap by 50%. The number of

frames with a 50% overlap can be calculated as follows:

nFrames =
2× SampleLength
FrameLength

− 1

Figure 4.4 shows frames from two different speakers. Y-axis represents the

amplitude of the speech signal in time domain and X-axis represents the sample

number in a frame. These frames have a 50% overlap and have been zero padded

45

Figure 4.4: Speech frames with 50% overlap and zero padding.

to 1024 samples. This is done to quickly transform the signal from time domain

to frequency domain using the Fast Fourier Transform (FFT) algorithm. Trans-

formation from time domain to frequency domain is a computationally expensive

process. FFT is a fast way of doing this but it requires that the length of the signal

to be transformed be a power of 2. That is why each frame of the speech signal is

padded to 1024 before transformation.

4.1.2 Windowing

In the next step of feature extraction, windowing is performed on all the frames to

minimize spectral distortion caused by framing. Each frame of the original function

is multiplied with a window function also called tapering functions. These functions

are called window functions because they exist only inside a window and evaluate

to zero outside some chosen interval. When multiplied with the speech frame they

46

taper down the beginning and the end to zero to minimize spectral distortion. :

Some of the popular windowing functions used are:

• Hamming window function

• Hann window function

• Cosine window function

• Lanczos window function

In this work a Hamming window function is applied to the frames to minimize

the discontinuity of the signal at the beginning and at the end caused by framing

in the previous step. The hamming window function used in this thesis is given by

the following equation where n represents

F (n) = 0.54− 0.46 cos(
2πn

N − 1
)

the sample where n represents the sample number in the frame and N is the total

number of samples in a frame.

Figure 4.5(a) shows the hamming window function [20]. The x-axis for the

window function represents the samples and the y-axis represents the amplitude of

these samples.

Figure 4.6 represents the same two frames from from the example earlier after

the hamming window function was applied to them. When compared with Figure

4.4, which shows the same frames before the hamming function was applied to

them, the smoothened edges at the beginning and end are easily noticeable.

47

Figure 4.5: Hamming window function and frequency response

Figure 4.6: Speech frames after windowing

48

4.1.3 Spectral Analysis

After windowing, each frame is transformed from the time domain to the frequency

domain using Discrete Fourier Transformation (DFT). The frequency domain re-

sponse is called the spectrum and the fast fourier transform (FFT) algorithm to

obtain the spectrum. The zero padding of frames up to 1024 samples per frame

performed during the framing step enables the use of FFT to obtain the spectrum,

as FFT requires the number of samples per frame to be a power of 2. The fourier

equation governing the transformation from time domain to frequency domain is

given by the following:

F (ν) =

∫ ∞

−∞
f(t)e2πνt dt

MFCCs can be obtained by taking either a fourier transform or a short term Lin-

ear Predictive Coding (LPC) transform. LPC is a tool like DFT to obtain the

spectral envelope of a digital signal. This is done by modelling the system as a

linear predictive model. Linear prediction is an operation where future values of

a discrete-time signal are estimated as a linear function of previous samples. Var-

ious studies have been undertaken to compare the performances of LPC-based vs

FFT-based MFCCs [40, 41]. There is no general consensus as to which one is bet-

ter. Some reports claim comparable performance while others indicate a slightly

better performance for LPC. Without getting involved in the discussion of which

one is better, FFT based MFCC are chosen in this thesis only because it is easier

to implement.

Finally, Figure 4.7 represents frames from the previous example, transformed

to their frequency domains. Notice that it is easy to discriminate between the

two speakers by comparing the dominant frequencies in this figure which can be

identified by looking at the frequencies with high ampliture 4.7. However, this is

49

Figure 4.7: Frames after fast fourier transformations

just one frame from the entire utterance. When all the dominant frequencies over

the entire utterances are summed for both speakers, the difference may not be so

prominent. Hence, its not possible to identify the entities using frequency response

alone.

4.1.4 Filtering

In this step of feature extraction, each frame (now in frequency domain) is passed

through a filterbank (set of filters). These filters are equally spaced on the Mel

scale and are called Mel filters. Mel scale is a perceptual scale of pitches judged by

listeners to be equal in distance from one another. The name mel comes from the

word melody to indicate that the scale is based on pitch comparisons.

This scaling to mel scale is performed because equally spaced frequency bands

on the Mel scale approximate the human auditory system’s response more closely

50

Figure 4.8: Mel scale vs linear frequency in Hertz

than the linearly-spaced frequency bands. The scaling of linear frequency to mel

scale is governed by the following equation:

Mel(f) = 2595× log10(1 +
f

700
)

where f represents linear frequency before warping. Equal spacing on Mel scale

translates to linear spacing from 0 to 1000Hz but logarithmic spacing after that as

shown in Figure 4.8.

This is the first step that is different for limited vocabulary speech recognition

and low enrollment speaker recognition. For limited vocabulary speech recognition

it was observed during the experiments that a few MFCCs were enough to differen-

tiate one word from another, but for speaker recognition acceptable accuracy levels

were obtained when at least 30 MFCCs were extracted from the speech signal. This

point is relevant because the number of MFCCs that can be extracted from a speech

signal is directly proportional to the number of used Mel filters as will be shown

shortly.

51

Figure 4.9: Triangular Mel filterbank

Figure 4.9 shows Mel filters on a normal frequency scale where x-axis represents

the frequency in Hertz and y-axis represents the scaling response of these filters.

The range in Figure 4.9 goes from 0 to 5000 Hz but during implementation the

range depends on the number of Mel filters to be extracted. Mel filterbanks can be

defined by three parameters:

1. Starting Frequency Fs

2. Ending Frequency Fe

3. Number of Filters M

Since human voice lies between 200Hz and 16Khz, this range is a good choice for

speech processing applications. However, one must take into account the sampling

frequency of the recorded audio before deciding on these parameters. The maximum

frequency has to be lower than half the sampling rate as dictated by the Nyquist-

Shannon sampling theorem. In Mel frequency domain, these filters are equally

52

Figure 4.10: Speech frames from two different speakers after filtering

spaced and overlap each other at the center. The start and end point of one filter

is the mid-point of its neighbors. The end point of these filters is governed by the

following equation:

Fs + i× Fe − Fs
M + 1

where i goes from 0 to 1 and M represents the total number of filters. Fe and Fs

are frequencies on Mel scale.

The speech frames shown in Figure 4.7 when passed through the filterbank

shown in Figure 4.9 are converted to frames shown in Figure 4.10.

4.1.5 Cepstral Analysis

The word Cepstral in Mel Frequency Cepstral Coefficients comes from the analysis

that is performed after filtering, which will be described in this section. Speech

signal is often assumed to be the output of a linear time-invariant system that is

53

the convolution of the input and impulse response. Convolution is a mathematical

operation on two functions which produces a modified version of one of them. In

speech processing, one of the functions is the input and impulse response the other

one. De-convolution is necessary to characterize or model the system. Cepstral

analysis is a common procedure used for such de-convolution [33].

During cepstral analysis (de-convolution), the power of the filterbank is summed

and their logarithm is taken to compress the sum. Mathematically, it is represented

by

Xi = log[
N−1∑
k=0

|X(k)| ·Hi(k)] i=1,2...M

where M is the total number of filters, N is the number of samples in a frame,

Hi(k) represents the response of the filters calculated in the previous section.

4.1.6 Discrete Cosine Transform

Discrete Cosine Transform (DCT) is needed to convert the data back from frequency

domain to time domain. The mathematically correct procedure is to use Inverse

Fast Fourier Transform (IFFT) or apply Principal Component Analysis (PCA).

However, since the signal is real, DCT is used because its computationally less

expensive than IFFT or PCA. Discrete cosine transform expresses a sequence of

finitely many data points in terms of a sum of cosine functions oscillating at different

frequencies. The equation for Discrete Cosine Transformation is,

Cj =
M∑
i=1

Xi · cos(j · (i− 1

2
) · π
M

) j = 1,2...J

where J is the number of MFC coefficients to be extracted, M the number of filters

in the filterbank and Xi the log energy output of the ith filter.

54

As has been mentioned before, MFCCs are abstract mathematical quantities

and may or may not correspond to something tangible in the real world. Each of

these coefficients can be treated as a dimension and these dimensions are calculated

for every frame. Once quantized, these dimensions can then be easily compared

for different words or different speakers. As was noted, the number of dimensions

or MFCCs to extract will depend on the problem. A good rule of thumb is that

J < M . Also, the first MFCC coefficient is normally ignored for computations

and comparisons as it represents the average loss in energy [27]. Finally, if the two

frames that have been used so far to illustrate the MFCC extraction process were

treated as the entire signal then the MFCCs extracted from them would look like

Figure 4.11. The dashed line in the graph represents the x-axis. It immediately

becomes clear that the y-axis is the value of these MFCCs and that these values

can be both negative and positive. Since each MFCC is a separate dimension, we

obtain a discontinuous graph as shown in Figure 4.11.

4.2 Decision and Similarity estimation

In Gaussian Mixture Model (GMM) based pattern recognition problems like speech

recognition or speaker recognition, the next step after feature extraction is to nor-

malize the extracted features. Normalization of features is important for vector

quantization. Normalization could mean different things like spreading the data

points obtained after feature extraction or compressing them inside a given range.

Normalization is performed to facilitate the formation of clusters and reduce error

during pattern matching. Vector quantization or clustering is performed to cre-

ate codebooks for every entity (a word or a speaker) that exists in the system. A

codebook represents the entity in a system in terms of its feature vectors. These

codebooks are then used for pattern matching, which is explained below.

55

Figure 4.11: 17 MFC coefficients in a frame for two different speakers

56

Speech processing applications have, in the past, used different techniques for

normalization, such as a weighting matrix. Normalization with weighting matrices

involves multiplying all the MFFCs extracted with a weighting matrix to spread

the vectors in a given range. This step helps in comparing different sets. Initial

experiments were performed with weighting matrices but after some experiments it

was observed that linear weighting produced better results. This was because, each

MFCC is a dimension in itself and is only spread along one dimension (i.e changes

only in amplitude), along y when plotted as a graph with amplitude on the y-axis

and MFCC coefficient number on the x-axis. Hence for normalization instead of

multiplying the feature set with a matrix, the feature set was multiplied by the

equation of line. Furthermore, due to the constraints of the device, linear weighing

provided a computationally cheaper option.

After normalization, clustering is performed. The clustering algorithm needs to

cluster these MFCCs into different clusters. Clustering tends to expose a trade-

off between accuracy of representing an entity and the computational expense of

comparing a test entity with a reference model. Experimentation with different

algorithms, pre-seeded, k-means [24], kmeans++ [1] led to some interesting obser-

vations. One of the clusters always forms around the mean and others close to

each other above and below the mean, regardless of the training set. Moreover, if

the number of clusters was increased to anything beyond 20 then a lot of cluster

centers ended up having 0 members. This was true for all the data sets used in the

experiments. This peculiar behavior is observed because MFCCs are spread in one

dimension and they tend to group at certain places; hence if the number of clusters

is preset to a large value a lot of cluster centers end up with no members.

All the MFCCs from different frames are clustered together to create what

is called as codebooks. Different frames have different values for each MFCC.

While Figure 4.11 shows the MFCC coefficients derived from a speech frame for

57

Figure 4.12: MFCC spread for the original utterances for two speakers

two speakers, Figure 4.12 shows the MFCCs extracted from all the frames of the

utterance in Figure 4.2.

After experimenting with different clustering algorithms for clustering and ob-

serving the above mentioned behavior a pre-seeded clustering algorithm, which is

called ‘Regional Clustering’, was used in this work. The central observation which

led to the development of regional clustering and the (pre seeded cluster centers)

was that in each dimension clusters were formed at the mean and the rest were

spread close to each other above and below the mean. Clusters between these three

groups were observed to be very sparse. Hence for regional clustering, the clusters

were pre-seeded with their centers at the mean, positive mean and negative mean.

Positive mean is defined as the mean of all the MFCCs for that particular dimen-

sion that lie above zero. Similarly, negative mean is defined as the mean of all the

MFCCs for any dimension that lie below zero. One argument that could be made

against this type of pre-seeding is that for those dimensions where no MFCCs lie

above or below zero, the cluster would be empty. Such cases were encountered very

58

rarely.

After this step, a codebook is created for every entity that exists in the system.

Each codebook representing an entity, has three values in it.

1. Cluster center value at mean cm

2. Cluster center value at positive mean cp

3. Cluster center value at negative mean cn

That is, for a speech recognition system an entity would be a word. Similarly

for speaker recognition the entity would be a speaker. While using the system, for

instance when a speaker speaks, a codebook is created for the unknown speaker

and distance calculated between the codebook for the unknown user and each of

the codebooks already in the system. The speaker corresponding to the codebook

with the least distance from the codebook for the unknown speaker is identified as

the match. Distance between two codebooks C1 and C2 is defined as:

Distance(C1, C2) =
√

(cm1 − cm2)2 + (cp1 − cp2)2 + (cn1 − cn2)2

where cmi represents the center at mean for codebook i, cpi denotes the positive

mean and cni denotes negative mean for codebook i. A conscious effort was made

to not build a complicated classifier owing to the processing constraints of the

device. Figure 4.13 represents the codebooks prepared from the utterances shown

in Figure 4.2 for two speakers. In Figure 4.13 x-axis represents the extracted

features denoted by their coefficient numbers, and y-axis represents their values.

Larger circles indicate two or more clusters formed very close to each other.

59

Figure 4.13: Codebooks for two different speakers

60

Chapter 5

Experiments and Results

In this chapter the experiments and accompanying results to test various modules

of the system, described in the previous chapters, are described. These experiments

measure different aspects of the system, such as memory consumption while execu-

tion, performance in terms of time taken during execution and accuracy of results.

The experiments for different modules will be presented in different sections.

5.1 Classification Experiments (Module I)

The aim of the following experiments is to test the performance of the pre-processing

module. The objective is to answer questions like, ‘How long does it take to clas-

sify an input signal as silence, speech or noise?’ or ‘What is the percentage of

misclassification?’. Three categories are used for classification :

1. Silence is the category where the input signal does not have any speech in it.

2. Noise is the category where the input signal has some noise that cannot be

identified clearly as speech. It could be speech or it could be noise from some

other source.

61

3. Voice is the category where the input signal has speech content.

To achieve this, these experiments aim to measure two things:

1. The percent accuracy of classification

2. Processing time required for classification

Experimental setup comprised of an indoor environment (office or home). The

pre-processing module was loaded on a Nokia N95 and a Nokia N80 cellphone.

Samples from the Silent and Voiced categories were used to measure accuracy of

classification and processing time required by the device to classify the input in

one of the three categories - Silence, Noise or Voice. Training set comprised of n

samples from each the silent category and the voiced category. The value of n was

varied in different experiments to get an idea of the dependence of classification

accuracy over the size of training set. More than one speaker were used to test

the system. Specifically, the speaker testing the system wasn’t necessarily the one

whose voice had been used to train it. Data for training and testing was obtained

by making different speakers speak into the device. While recording samples for

’Voice’ category the device was put on the table and not held close to the mouth.

The idea was to replicate the situation where a phone kept on the table can identify

human speech in its environment.

5.1.1 Accuracy of detection for Module I

In the first experiment two samples from the silent category were used to measure

the accuracy of classification. The aim here is to find out how many of these silent

samples would be classified as voice or noise. The reason for using only two samples

is to find out if the system could perform at acceptable level with minimal training.

62

Of the 43 samples used about 83% of samples were correctly detected as silence

while around 16% which were incorrectly classified as noise. None of the silent

samples was classified as voice.

In the next experiment two samples from the voice category were used to mea-

sure the accuracy of classification. The aim here is to find out how many of these

voice samples will be classified as silence or noise. Of the 32 samples used for

testing about 81% of samples were correctly detected as voice while about 19%

were misclassified as noise. Once again, none of the voice samples was classified as

silence.

To gauge the effect of the size of training set on the accuracy of classification, the

same experiment was performed again in the same setup with the difference that

instead of two, ten samples from each category were used to train the system. Of

the 31 silent samples used to test the system about 81% of samples were correctly

detected as silence while around 19% were incorrectly classified as noise. None of

the silent samples was classified as voice.

Similarly to measure the accuracy of the system for detection of voice when

trained with 10 samples, 31 samples were used to test the system. Of these about

90% of samples were correctly detected as voice while around 9% which were incor-

rectly classified were classified as noise. None of the silent samples was classified as

voice.

The following conclusions can be drawn from the above experiments.

1. Increasing the number of training samples does not result in a better accuracy

for detecting silence. The reason for this is that silence has a very steady

profile in terms of energy and ZCR contour (the two parameters used for

detection). Samples are very similar to each other and increasing the number

of samples does not necessarily provide any more information.

63

2. Increasing the number of training samples results in a better accuracy for de-

tecting voice. We see that the percentage increase in accuracy for detecting

voice increases from lower 80% to 90% when the number of training samples

is increased from 2 to 10. This happens because, unlike silence, it is hard

to capture the nature of voice even for a single speaker in 2 samples. More

samples provide more information and therefore lead to an increased accu-

racy. However there is a limit to the number of samples that can be used for

training. Keeping in mind that this is just a pre-processing module and the

user might not want to spend a lot of time on training the system we did not

test it with more than 10 samples in the training set. However, if this module

was used with a feedback loop in an application, the accuracy of detection

would get better with time. This is because with a feedback loop, the number

of samples for training would increase with the usage.

Another minor point worth noting is that, even though the algorithm is prone to

mistakes as shown by the accuracy levels, it never commits the gross miscalculation

of classifying silence as voice or vice versa.

By training the system with n samples from each category, the system builds a

model for each category. The higher the value of n, the better and more accurate

is the model. Instead of allowing the device to calibrate this model automatically,

values describing this model were hard coded. The hard coded values were obtained

by observing the experiments performed. To test this set up, 12 samples each from

silence and voice category were used. This experiment resulted in a 100% accuracy

but one limitation of the experiment was that the test samples were recorded in

the same environment in which thresholds were determined for hardcoding. When

the same thresholds were used in a moderately noisy environment outside a library,

or inside an office with people talking or very noisy environment (inside a bus)

the accuracy levels dropped alarmingly. On using 2 samples to train the device,

64

accuracy levels in the range of lower 80% were observed for both silence and noise

in moderately noisy environment. However, detection was impossible in very noisy

conditions like inside a bus. This was because the noise was so overwhelmingly

loud that it completely enveloped the profile for both silence and voice.

This technique can be further improved to handle high noise environment or

additional modules can be added for the same purpose but that would increase

the computational complexity and the classification would not be instantaneous.

Being the pre-processing module, the classification needs to be instantaneous and

increasing the accuracy in noisy environments at the expense of slowing down the

classification in all environments is not an acceptable tradeoff for this thesis.

5.1.2 Processing time

The aim of these experiments described below was to determine how much pro-

cessing time was taken to classify an audio clip as silence, noise or voice. The

experimental setup described in the previous section was used for these experi-

ments too. System clock built in the mobile device was used for measuring the

processing time for classification.

This experiment was performed in 4 sets with about 30 samples in each set.

Each set differs from the other in terms of the environment in which the samples

were collected. The processing time for each audio clip is directly proportional to

its length. Irrespective of the category the length of each audio clip, was between

3 to 4 seconds. The results are presented in the Table 5.1.

To calculate these processing times, time for each sample in each set was mea-

sured in milliseconds. Afterwards, for each set, the highest and the lowest process-

ing time was discarded and the mean for each set was computed. 5.1 show that

the classification process is instantaneous and satisfies the time constraint of the

65

Table 5.1: Processing time in Milli seconds

SetNo. Processing Time Number of Samples

1 55.51 32
2 73.41 43
3 67.50 31
4 59.83 31

pre-processing module.

5.2 Experiments for Start and End point Detec-

tion

Module II is the end point detection module and is responsible for narrowing down

an audio clip to the part which contains speech. By trimming down the audio clip

to only that part which contains speech, higher accuracy and efficiency is obtained

since the system has to process a smaller audio clip. Higher accuracy is obtained

because the models built for speech recognition and speaker recognition are not

influenced by the silent portion of the audio clip. Higher efficiency is obtained

because the modules after this step have to process smaller clips. Therefore, effi-

ciency is measured in terms of shortening of the audio clips. For instance if the

input audio clip is i units in length and the start and end points are given by s and

e respectively then,

Efficiency% =
i− (e− s)

i
× 100

To measure the efficiency, audio clips of about 3 and a half seconds (88000 bytes)

are collected (longer clips are trimmed by hand). These clips have one word spoken

somewhere in them to mimic a scenario where the user gives a command to the

66

device. In this experiment 5 words of different lengths are used and data are

collected. Before proceeding, lengths of audio clips and words are measured in

terms of number of samples. Each sample is stored in 2 bytes. So, for a byte array

of 88000 elements the length is 44000 samples.

NumSamples = LengthByteArray ÷ 2

Table 5.2 represents the data about each word measured after start and end point

detection. The Length column in Table 5.2 represents the length of each word

measured in terms of the number of samples. The % length column represents

the percentage of the time the window is occupied by a word. To compute this

percentage, lengths of each word were measured 5 times and mean of all the lengths

computed.

Table 5.2: Start and end point detection module

Word Internet SMS Menu Hornbook Back

Length 4640 5540 3560 4220 2360
% length 10.54 12.5 8.1 9.6 5.4

Each audio clip initially recorded was 44000 samples long and the percentage

efficiency achieved by reducing the audio clip to the lengths mentioned above is

shown in Figure 5.1.

This reduction in size matters a lot, because in the next step, Fourier transform

of the entire audio clip is taken. That is the slowest step, and any increase or

decrease in the length of audio clip being sent for Fourier transformation affects

the performance directly.

67

Figure 5.1: Efficiency gain in terms of reduction in size for five words

68

5.3 Experiments for Speech Processing Module

In this section experiments related to both low enrollment speaker recognition and

limited vocabulary speech recognition are described. These experiments test the

prototype of speech recognition and speaker recognition applications built using the

algorithms described in the previous chapters. The statistics presented in all the

experiments are mean values derived by repeating the same experiments a number

of times. The aim of these experiments is to measure the accuracy of recognition

(word recognition and speaker recognition) and time taken for processing. This sec-

tion begins by describing the preliminary experiments first. They are preliminary,

because, apart from gathering data for measuring the performance of the system

they were also used to fine tune different parameters of the system like the number

of MFCCs to be extracted or the length of the audio clip to be used.

5.3.1 Text Independent Speaker Recognition I

This experiment was aimed at testing the accuracy of recognition and time taken for

processing during a speaker recognition process. This process was text independent

because it did not depend on the content of what was spoken. A different audio clip

(4 sec long) was used for training and 4 to 5 audio clips (each different in content),

also 4 sec long, were used for testing. The number of audio clips depended on

the availability of the testers hence for some users there were 4 while for others

there were 5 clips. The number of MFCCs extracted were varied over different

experiments because this number would directly influence the accuracy of detection

and processing time. The experiments were performed in the same experimental

setup as the previous ones. In the first experiment 18 MFCC (Mel Frequency

Cepstral Coefficients) were extracted. The accuracy levels obtained were around

60%.

69

5.3.2 Text Independent Speaker Recognition II

The same experiment was performed again with a 15 sec long speech. This was

to make sure that the low levels of accuracy obtained are not due to the small

length of the audio input speech. This time 20 MFCCs were extracted instead of

only 18. This was done to gauge if increasing the number of coefficients by a small

value would have any drastic effect on the accuracy of recognition . However the

accuracy increased by only 5% to become 65%. Though a greater number of MFCC

are expected to increase the accuracy and this number is increased in subsequent

experiments, due to the computational expense involved and the limited hardware

available on a mobile phone, it is not possible to extract a very large number of

MFCC.

Hence it was not the length of speech that was responsible for the low levels

of accuracy. What was instead responsible was lack of proper training, but in an

application without a feedback loop, it cannot be assumed that the user would

take the trouble to train the device with 15 seconds of speech multiple times. The

whole process of classification as voice, end point detection and speaker recognition

took over 2 minutes on the device. These experiments were also found to be very

sensitive to environment noise. Therefore, it was decided not to proceed in the

direction of “Text independent speech recognition”.

5.3.3 Text Dependent Speaker Recognition

Next, experiments to determine the accuracy and processing times for text depen-

dent speaker recognition were performed. In the first experiment 18 MFCCs were

extracted from an approximately 12 sec long utterance. Since this is text dependent

speaker recognition the system was tested with utterances with the same sentences.

This does not mean that the same audio clip was used for both training and testing.

70

In fact, it means that the audio clips used for training and testing had the user

speaking the same sentences. The system could detect the correct speaker with a

71% accuracy.

After seeing the unacceptable processing times, the system was broken down

into different modules which were run independently to discover the bottleneck. As

expected, the time to frequency domain transformation step was found to be the

bottleneck.

When compared with the experiment for text independent speaker recognition

where the accuracy levels were around 60%-65% , though the accuracy increased

slightly to 71% it is still not good enough. Moreover, it still took over 90 seconds

to process on the phone. The reduction of about 30 seconds in processing time

was due to shortening the length of the audio clips from 15 seconds to 12 seconds.

From the preliminary experiments described so far, the following conclusions can

be drawn:

1. As has been stated in the experiments described above, utterances of three

different lengths, 4 seconds, 15 seconds and 12 seconds respectively were used.

The number of MFCCs to be extracted was varied only by a small number

to ensure that it did not have any effect on the processing time. Compar-

ing the different times it took to process the utterances of different lengths,

it can be seen that processing times depend directly on the length of the

utterance. This is also the expected behavior utterances with longer length

will have more frames that need to be transformed from time to frequency

domain. Therefore, the first conclusion to be drawn is that the length of ut-

terance would have to be reduced significantly since the devices were taking

an unacceptable time to process it.

2. Even though the length of utterances was varied from 4 sec to 15 seconds and

71

experiments were performed with both text independent speaker recognition

and text dependent speaker recognition systems, acceptable accuracy levels

or recognition were not obtained. Therefore, it can be concluded that the ac-

curacy of speaker recognition depends primarily on the number of MFCCs ex-

tracted and 18-20 MFCC coefficients are not enough to characterize a speaker.

More coefficients will have to be extracted to improve the accuracy.

At this point one of the major concerns was to reduce the processing time and the

following optimizations were performed to achieve that.

Algorithmic Optimizations

1. Windowing step was removed during feature extraction. This step would

ensure that every sample in the audio clip will not be multiplied by a complex

valued function and thus computational time could be saved.

2. Linear line weighing was used to spread the MFCCs instead of the matrix

weighing. The reasoning behind this has been explained previously and will

not be mentioned here again.

3. Pre-seeded clustering algorithm with a fixed number of cluster centers , de-

scribed in the previous chapters was used. This would save time since the

algorithm will not have to count the number of cluster centers during every

iteration.

4. Zero padding before FFT was reduced from 1024 samples per frame to 512

samples per frame. This is the optimization that sped up the computation

drastically. This is to be expected because FFT is the bottleneck and this op-

timization halves the amount of samples to be transformed from time domain

to frequency domain.

72

Coding Optimizations

1. Strength reduction - Replacing multiplicative and division operators with

bitwise operators wherever possible. Bitwise operators are faster.

2. Sub-expression elimination. All common expressions were calculated once,

outside the loop and not multiple times inside the loop.

3. Loop Unrolling. ‘For’ loop of the following form

for(int i = 0; i < vector.length; i++){...}

was changed to

int N = vector.length;

for(int i = N; -i > 0;){...}

The rest of the code was adjusted accordingly. This resulted in comparison

with ‘0’ which is always faster than comparing with any other number and it

also resulted in one less condition to be evaluated.

After making these changes, the experiment for text dependent speaker recognition

were performed again.

5.3.4 Text Dependent Speaker Recognition II

Different speakers were made to speak a very small utterance like one sentence

containing 5-7 words. Four sets of this utterance were used to train the system.

The number 4 was not chosen for any mathematical reason, it was because of the

limited availability of the speakers . 30 MFCCs were extracted to form the speaker

profile. Recognition rates of up to 78% were achieved and the processing time came

73

down to just over 5 seconds. All the changes and optimizations were not employed

at once. Incremental improvements in time were observed but nothing significant

till the zero padding before FFT was reduced from 1024 to 512 per frame. Since,

the bottleneck had already been located, this was not unexpected.

5.3.5 Limited Vocabulary Speech recognition

Experiments similar to the ones that have been described above were also performed

for limited vocabulary speech recognition. One of the first questions that springs

to mind on reading limited vocabulary speech recognition is “How Limited?”. The

answer to this question is, using a smart architecture like a ‘dictionary of pages’

a greater number of words can be accommodated. In this type of an architecture

there are a few words present on each page and each word when spoken links to

another page which has a new set of words. This way a greater number of words

can be accommodated without having to compare all of them at the same time. It

also suits mobile devices because due to their limited screen size, only a few words

can be displayed at once.

In this experiment a model of each word was created in the system by using

4 samples of the same word. 12 MFCCs were extracted for each word. This

number was reached after observing that consistent results were obtained using

10-12 MFCC coefficients. During testing, a window of 3 seconds was provided to

the user to utter a one-word command which the device recognized. Accuracy

levels of 85% were observed and a processing time of under 3 seconds was achieved

on average. Higher accuracy was obtained for speech recognition and with lesser

processing time. Higher accuracy can be attributed to the fact that word models

can be formed more accurately than speaker models. The reason being that there

is more scope for variation from one utterance to another when the utterances are

74

as long as a sentence. Factors like the gap between words, the speed of utterance

may vary even for the same speaker and cause variations which lead to inaccuracy

during detection. On the other hand, for a word model, there is no gap between

start to end, the modeling has to be done for a smaller utterance and the speed

with which a word is spoken remains fairly constant. This leads to higher accuracy.

The faster processing time is due to the fact that after trimming from the start and

end point detection module the word utterances are very small. Also fewer MFCC

coefficients are extracted. These factors combine to reduce the processing time for

limited vocabulary speech recognition.

5.4 Results and Interpretation

Apart from accuracy, another metric that is crucial to performance is processing

time. Even after all the optimizations, processing is not real time. The reason for

the prototype applications being slower than the ones that come pre-installed on

the phone are

1. J2ME code as against native code. J2ME is good for developing applications

from the portability point of view. It is also very popular and J2ME applica-

tions can easily be run on a lot of handheld devices. But there is a drawback

to writing applications in J2ME. These applications run comparatively much

slower than the applications written in code native to the device. Sometimes

the difference can be as much as an order of magnitude [4]. These differences

have been studied in detail in [4].

2. On some phones, third party applications do not have all of the memory avail-

able to them. For example, on Nokia N95, there is 64MB RAM out of which

3rd party applications can use up to 26 MB of RAM. These experiments were

75

performed on different phones with about the same amount of RAM. Two

characteristics, RAM and Processing power were identified as possible bottle-

necks. Experiments using on open source application, Tasky, were performed

to measure the size of the heap (free memory). Different speaker recognition

applications were being run in the background and it was found that a de-

creasing heap size was not a performance bottleneck unless the size of heap

decreased to 3-4 MB. Hence, it was concluded that the processing power of a

device is responsible for speed rather than the memory.

3. Native applications on the phone have fixed point implementations. Due to a

lack of a floating point processor there’s no direct support for floating point

applications which decrease the speed further.

As for the accuracy, the prototyped applications turned out to be more accurate

than some applications that come pre-installed on the phones. This accuracy can

be increased further by building a feedback loop. Almost all the pre-installed

applications have in built feedback loop. A typical command recognition application

for instance displays a list of results after a command has been spoken into the

phone. Once the user chooses from that list, the system assumes that the chosen

word was spoken. This helps the system to re-calibrate the word models built in.

Continuous feedback can greatly improve the recognition accuracy of the prototype

applications described here.

76

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Mobile phones have become extremely popular and pervasive. They are not merely

portable telephones, in fact they have become portals to access information from

anywhere. Many businesses have realized this fact and are keen to take advantage of

it. Consequently, mobile versions of many business applications have been released,

ready to run on the phone. These applications perform complex functions and

require new and better ways of interaction with the device. Several attempts are

being made to facilitate this interaction such as touch screen phones, full keypad

phones etc.

In this thesis we examine the use of speech as a possible way of communicating

with a mobile device. We also examine other ways in which speech could be useful

such as providing contextual information to business applications. Another aspect

that we look at in this thesis is embedded processing. Mobile devices, both simple

phones and PDAs have seen major improvements in the hardware that they carry

on board. However, they still fall under the category of constrained devices when

it comes to running applications meant for PCs or even laptops.

77

Speech processing applications can be computationally very expensive. A full

fledged speech recognition application may require hardware that’s not available to

majority of mobile devices. In this thesis, we try to develop a library for speech

processing on mobile phones. Instead of being a speech processing application, this

library helps business applications to perform the kind of processing that they may

need.

The speech processing framework that is developed in this thesis consists of the

following steps:

1. It captures audio signal from the environment.

2. The speech framework then performs pre-processing on the captured audio

signal to determine the category to which the audio belongs. Some business

applications may require the results of only pre-processing such as determining

whether the audio was voice, silence or noise.

3. For those applications that need complicated speech processing, the frame-

work then performs processing to perform speech recognition or speaker recog-

nition as required by the business application.

The results of our experiments show that, the pre-processing performed at the

beginning can be performed instantaneously. This stage is not only important

for speech processing but can also be useful in itself. Applications that require

information like the loudness of noise in the background or the presence of speech

in the noise can make use of the pre-processing module.

Experiments performed for accuracy show that the accuracy of the prototype

applications is acceptable. These prototype applications demonstrate how other

business applications can make use of the speech processing module. One of the

78

benefits of this approach is that each application can choose to implement their

own speech processing application thus providing each with a speech interface.

Mobile phones and PDAs are considered constrained devices, because of the

lack of computation power on board when compared to desktop PCs. One of the

aims of this thesis was to explore whether computationally expensive algorithms

used during speech processing could be performed on devices like mobile phones.

Our experiments show that with careful adaptation and improvisation, speech pro-

cessing can indeed be performed on constrained devices. Furthermore, reasonable

performance in terms of accuracy and processing time can also be achieved.

In conclusion, the research described in this thesis shows that constrained de-

vices such as mobile phones now have sufficient processing power on board to handle

embedded speech processing applications. It also shows that microphone present

on the mobile phones can be used to provide limited contextual information to

business applications.

6.2 Future Work

Although the speech processing framework described in this thesis performs rea-

sonably well for the type of prototype applications that were intended and the en-

vironment it was used in, there is still significant scope for improvement. The first

thing that comes to mind is the performance in noisy environment. One approach

to tackle this would be to model noise as an entity in the prototype applications and

then audio recordings matched to the noise model could be identified as such. The

drawback with this approach is that noise comes in various flavors, hence numerous

noise models could be required depending on the environments the user operates

in. Another way of tackling this problem of noise is to weed it out at the beginning

during pre-processing. This could be done by amplifying those frequencies where

79

speech exists. But even this might not cancel out all kinds of noise.

A major performance improvement can be brought about by building a feed-

back loop in those applications that make use of the speech processing framework

described here. Accuracy reported in Chapter V was brought about by minimal

training. The reason behind minimal training was to reduce the effort required

on the part of the user. But, as shown in some of the experiments, performance

improvements can be brought about by more training. Constant training by im-

plementing a feedback loop would be a good way of doing this.

Microphone is just one of many sensors available to a mobile device. One other

sensor that can be used in much the same way is the camera. A camera is now

standard on many mobile phones. It can be used to gather more information about

the environment of the user. Pictures taken from the camera at regular intervals can

provide information about the surroundings. Such contextual information, when

combined with the information from microphone or even separately, can be useful

for some applications. Taking this principle forward, sensors such as

1. Microphone

2. Camera

3. Built-in clock

4. Signal Strength

Figure 6.1 can be used to gather more information about a user’s surrounding.

For example, the built-in clock can be used to check if it is day or night time,

the camera can be used to take pictures to infer whether the background is dark,

the microphone can be used to find out if there is noise in the background or if

it is silent. Using these sensors, it may be possible to infer whether the user is

80

Figure 6.1: Sensors on a mobile device

sleeping or not. If the user is sleeping then the ringer’s volume, for example, can

be lowered or muted. Let’s call such an application a ‘Sleep Detector’. Now if the

sleep detector had a signal profile for different places where the user spent a lot

of time, then that could further be used to ascertain that the user was at home.

Taking this a step forward, if information could be collected from applications like

calendar, memos, alarms etc then a lot of applications could benefit. For example,

the phone could know when the user was in a meeting and consequently the volume

of the ringer could be adjusted automatically.

The architecture of such an information gathering system could look like Figure

6.2. The controller module would be responsible for gathering data from all the

sensors and then processing it to generate meaningful information. Different appli-

cations could then call the functions inside the controller module to get information

gathered in such a manner from all the sensors or sensors of their choice. The ovals

81

Figure 6.2: Framework Architecture for multiple sensors

in Figure 6.2 have been used to differentiate between applications and sensors, both

of which can be used to gather data.

82

References

[1] Arthur and Vassilvitskii. k-means++: The advantages of careful seeding. In

Proc. of SODA: ACM-SIAM Symposium on Discrete Algorithms, pages 1027–

1035, 2007. 57

[2] B. S. Atal. Automatic speaker recognition based on pitch contours. J. Acoust.

Soc. Amer., 52(6 (Part 2)):1687–1697, 1977.

[3] Alessandro Bugatti, Alessandra Flammini, and Pierangelo Migliorati. Audio

classification in speech and music: A comparison between a statistical and a

neural approach. Eurosip Journal on Applied Signal Processing, 3:372–378,

2002. 15

[4] Carlos Garcia-Rubio Celeste Campo and Alberto Cortes. Performance evalu-

ation of j2me and symbian applications in smart camera phones. In Proc. of

3rd Symposium of Ubiquitous Computing and Ambient Intelligence, pages 1–2,

2007. 75

[5] Jordan Cohen. Is embedded speech recognition disruptive technology? In

CTO: Voice Signal, 2004. 6

[6] Jordan Cohen. Embedded speech recognition applications in mobile phones:

Status, trends and challenges. In Proc. of the IEEE International Conference

on Acoustics, Speech and Signal Processing, pages 5352–5355, 2008. 5, 6, 7

83

[7] George R. Doddington. Speaker recognition identifying people by their voices.

Proceedings of IEEE, 73(11):1651–1664, 1985.

[8] C.O. Dumitru, I. Gavat, and R. Vieru. Speaker verification using hmm for

romanian language. In In proc. Multimedia Signal Processing and Commu-

nications, 48th International Symposium ELMAR-2006, pages 131–134, 2006.

19

[9] J. C. Dunn. A fuzzy relative of the isodata process and its use in detecting

compact well-separated clusters. Journal of Cybernetics, (3):32–57, 1973. 25

[10] Masakiyo Fujimoto and Yasuo Ariki. Speech recognition in a noisy environment

using a speech signal estimation method based on the kalman filter. Systems

and Computers in Japan, 35(3):46–57, 2004.

[11] A. Ganapathiraju, J. Hamaker, and J. Picone. Hybrid svm/hmm architectures

for speech recognition. In Proc. Speech Transcription Workshop, pages 504–

507, 2000.

[12] Todor Ganchev, Nikos Fakotakis, and George Kokkinakis. Comparative eval-

uation of various mfcc implementations on the speaker verification task. In In

Proc. 10th International Conference on Speech and Computer, pages 191–194,

2005. 24

[13] David Gerhard. Audio signal classification: An overview. Canadian Artificial

Intelligence, 45:4–6, 2000. 14, 15

[14] Shubhangi Giripunje and Anshish Panat. Speech recognition for emotions with

neural network: A design approach. In Mircea Gh. Negoita, Robert J. Howlett,

and Lakhmi C. Jain, editors, Knowledge-Based Intelligent Information and

Engineering Systems, 8th International Conference, Part II, volume 3214 of

Lecture Notes in Computer Science, pages 640–645. Springer, 2004. 16

84

[15] Jonna Häkkilä and Jani Mäntyjärvi. Collaboration in context-aware mobile

phone applications. In In Proc. 38th Annual Hawaii International Conference

on System Sciences, page 33.1, 2005. 26

[16] S. Haltsonen. An endpoint relaxation method for dynamic time warping al-

gorithms. In Proc. IEEE International Conference on Acoustics, Speech and

Signal Processing, pages 9.8.1–9.8.4, 1984. 30

[17] Caroline Heycock. Lecture 6: Phonetics ii. http://www.ling.udel.edu/

colin/courses/ling101_f99/lecture6.html. ix, 34

[18] Hui Jiang, Xinwei Li, and Chaojun Liu. Large margin hidden markov mod-

els for speech recognition. IEEE Transactions on Audio, Speech & Language

Processing, 14(5):1584–1595, 2006. 18

[19] G. S. Jovanovic. A new algorithm for speech fundamental frequency estimation.

IEEE Trans. Acoustics, Speech and Signal Processing, ASSP-34(3):626, 1986.

15

[20] Bob K. Hamming window and frequency response, 15-Dec-2005. 47

[21] B. Kedem. Spectral analysis and discrimination by zero-crossings. In Proc. of

the IEEE, 74:1477–1493, 1986. 15

[22] M. Kotti and C. Kotropoulos. Gender classification in two emotional speech

databases. In In Proc. International Conference on Pattern Recognition, pages

1–4, 2008. 16

[23] C. C. Leung and Y. S. Moon. Effect of window size and shift period in mel-

warped cepstral feature extraction on GMM-based speaker verification. In

Proc. Audio- and Video-Based Biometric Person Authentication, pages 438–

445, 2003. 28

85

http://www.ling.udel.edu/colin/courses/ling101_f99/lecture6.html
http://www.ling.udel.edu/colin/courses/ling101_f99/lecture6.html

[24] J. MacQueen. Some methods for classification and analysis of multivariate

observations. In L. M. LeCam and J. Neyman, editors, In Proc. 5th Berkeley

Symp. on Mathematics Statistics and Probability, pages 281–297, 1967. 25, 57

[25] Matija Marolt. On finding melodic lines in audio recordings. In In Proc. 7th

International Conference on digital Audio Effects, pages 217–221, 2004. 15

[26] Y.S. Moon, C.C. Leung, and K.H Pun. Fixed-point gmm-based speaker verifi-

cation over mobile embedded system. In Proc. ACM SIGMM 2003 Multimedia

Biometrics Methods and Applications Workshop, pages 53–57, 2003. 28

[27] D. O’Shaughnessy. Efficient automatic speech recognition. In Proc. Internet

and Multimedia Systems and Applications, page 427, 2004. 55

[28] Joeseph Picone. Signal modeling techniques in speech recognition. In Proc.

CTO: Voice Signal, pages 1215–1247, 1993.

[29] Richard C. Price, Jonathan P. Willmore, William J. J. Roberts, and Kathleen

Zyga. Genetically optimised feedforward neural networks for speaker identi-

fication. In Fourth International Conference on Knowledge-Based Intelligent

Information Engineering Systems & Allied Technologies, pages 479–482, 2000.

[30] Steve Renals and Vincent Wan. Speaker verification using sequence discrim-

inant support vector machines. Technical Report EDIINFRR0659, The Uni-

versity of Edinburgh, 2005.

[31] Douglas A Reynolds and Richard C Rose. Robust text- independent speech

recognition using gaussian mixture models. IEEE Trans. Speech Audio Pro-

cess., 3:72–83, 1995. 21

[32] Aaron E. Rosenberg. Automatic speaker recognition: A review. Proceedings

of IEEE, 64(4):475–487, 1975.

86

[33] Xavier Serra. Cepstral analysis. http://www.dtic.upf.edu/~xserra/

cursos/TDP/8-Cepstral-Analysis.pdf. 54

[34] Daniel P. Siewiorek, Asim Smailagic, Junichi Furukawa, Andreas Krause,

Neema Moraveji, Kathryn Reiger, Jeremy Shaffer, and Fei Lung Wong. Sensay:

A context-aware mobile phone. In Proc. International semantic web confer-

ence, pages 248–249, 2003. 26

[35] Zheng-Hua Tan and Børge Lindberg. Automatic speech recognition on mobile

devices and over communication networks. Springer-Verlag, London, 2008.

[36] Nathan S. Netanyahu Christine D. Paitko Ruth Silverman Tapas Kanungo,

David M. Mount and Angela Y. Wu. An efficient k-means clustering algorithm:

Analysis and implementation. IEEE Trans. on Pattern Analysis and Machine

Intelligence, 24(7):881, July 2002. 25

[37] Joe Tebelskis. Speech recognition using neural networks. Technical report,

1995. 20

[38] D. Wasson and R. Donaldson. Speech amplitude and zero crossings for auto-

mated identification of human speakers. In Proc. IEEE International confer-

ence on Acoustics, Speech and Signal Processing, pages 390– 392, 1975. 14,

15

[39] L. Welling and X. Aubert. A study on speaker normalization using vocal tract

normalization and speaker adaptive training, October 05 1998. 30

[40] Febe De Wet. Comparing acoustic features for robust asr in fixed and cellular

network applications, February 16 2000. 49

[41] Febe De Wet, Bert Cranen, Johan De Veth, and Loe Boves. A comparison of

LPC and FFT-based acoustic features for noise robust ASR, July 03 2001. 49

87

http://www.dtic.upf.edu/~xserra/cursos/TDP/8-Cepstral-Analysis.pdf
http://www.dtic.upf.edu/~xserra/cursos/TDP/8-Cepstral-Analysis.pdf

[42] Wikipedia. Cepstrum. http://en.wikipedia.org/wiki/Cepstrum.

[43] Ram H. (Ram Han) Woo. Exploration of small enrollment speaker verification

on handheld devices. Master’s thesis, Massachusetts Institute of Technology,

Dept. of Electrical Engineering and Computer Science, 2005. 27

[44] Bian Wu, Xiaolin Ren, Chongqing Liu, and Yaxin Zhang. A robust, real-time

voice activity detection algorithm for embedded mobile devices. 1997. 14

[45] Rui Xu and Donald Wunsch. Survey of clustering algorithms. IEEE Trans. on

Neural Networks, 16(3):645–678, May 2005. 25

[46] Dmitry Zaykovskiy and Alexander Schmitt. Java (J2ME) front-end for dis-

tributed speech recognition. In Proc. nternational Conference on Advanced

Information Networking and Applications Workshops, pages 353–357, 2007.

88

http://en.wikipedia.org/wiki/Cepstrum

	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Objectives and Motivation
	Speech applications on mobile phones
	User interface perspective
	Challenges and Contributions
	Outline of thesis

	Background and Related Work
	Background
	Sampling
	Audio file formats
	Pre-processing
	Speech processing systems
	Signal Processing
	Feature Extraction
	Pattern Recognition

	Related Work

	Pre-processing
	Stage I
	Stage II

	Speech Processing
	Feature Extraction
	Segmentation
	Windowing
	Spectral Analysis
	Filtering
	Cepstral Analysis
	Discrete Cosine Transform

	Decision and Similarity estimation

	Experiments and Results
	Classification Experiments (Module I)
	Accuracy of detection for Module I
	Processing time

	Experiments for Start and End point Detection
	Experiments for Speech Processing Module
	Text Independent Speaker Recognition I
	Text Independent Speaker Recognition II
	Text Dependent Speaker Recognition
	Text Dependent Speaker Recognition II
	Limited Vocabulary Speech recognition

	Results and Interpretation

	Conclusions and Future Work
	Conclusions
	Future Work

	References

