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Abstract 

Infinitesimal strain approximation and its additive decomposition into elastic 

and plastic parts used in phenomenological plasticity models are incapable of 

predicting the hardening behavior of materials for large strain loading paths. 

Experimentally observed second-order effect in finite torsional loading of cylindrical 

bars, known as the Swift effect, as well as deformations involving significant amount 

of rotations are examples for which infinitesimal models fail to predict the material 

response accurately. Several different Eulerian and Lagrangian formulations for finite 

strain elastoplasticity have been proposed based on different decompositions of 

deformation and their corresponding flow rules. However, issues such as spurious 

shear oscillation in finite simple shear and elastic dissipation in closed-path loadings 

as well as elastic ratchetting under cyclic loading have been identified with the 

classical formulations for finite strain analysis.  

A unified framework of Eulerian rate-type constitutive models for large strain 

elastoplasticity is developed here which assigns no preference to the choice of 

objective corotational rates. A general additive decomposition of arbitrary 

corotational rate of the Eulerian strain tensor is proposed. Integrability of the model 

for the elastic part of the deformation is investigated and it is shown that the proposed 

unified model is consistent with the notion of hyperelasticity for its elastic part. Based 

on this, the stress power is physically separable into its reversible and irreversible 

parts using the proposed constitutive model irrespective of the objective rate used in 

the model. As a result, all of the issues of finite strain elastoplasticity are resolved 

using the proposed Eulerian rate model for arbitrary corotational rate of stress.  

A modified multiplicative decomposition of the right stretch tensor is 

proposed and used to set up a new Lagrangian framework for finite strain 

elastoplasticity. Decomposition of the deformation is solely defined by the 
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multiplicative decomposition of the total right stretch tensor into its elastic and plastic 

parts. The flow rule and evolution of the plastic internal variables are based on the 

Hencky measure of the plastic right stretch tensor instead of the strain rate tensor. As 

a result, the issue of mismatch between the elastic and plastic parts of the deformation 

which mostly exists in the classical multiplicative models does not exist in the 

proposed Lagrangian model. The problem of back stress oscillation observed in the 

classical Lagrangian models is also resolved using the proposed Lagrangian model 

and results are identical to those of the proposed unified Eulerian rate model for finite 

strain elastoplasticity.  

In the context of nonlinear elasticity, no preference for either Lagrangian or 

Eulerian formulations exists since the two formulations can be related through proper 

transformations and are equivalent form of each other in different backgrounds. 

However, classical Eulerian and Lagrangian models of elastoplasticity do not provide 

such an equivalency under the same loading path. This is due to different definitions 

used for the elastic and plastic parts of the deformation and different flow rules used 

in the classical Eulerian and Lagrangian models. In this research it is shown that both 

the proposed Lagrangian and unified Eulerian rate models are equivalent and results 

obtained from both models are identical for the same finite strain loading path. Such 

an equivalency verifies that the proposed Eulerian and Lagrangian models are unified 

and transformable to each other.  

The unified Eulerian and Lagrangian models are extended to mixed nonlinear 

hardening material behavior. Predicted results for the second-order effect (the well-

known Swift effect) are in good agreement with experimental data for fixed-end finite 

torsional loading of SUS 304 stainless steel tubes. The proposed models are therefore 

good candidates to be implemented in the displacement-based formulation of the 

finite element method for the Lagrangian and Eulerian frameworks of finite strain 

elastoplasticity.  
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Chapter 1  

Introduction 

Finite plasticity has a wide range of applications, including deformation due to 

impact and metalworking, which involve significant amounts of plastic deformation. 

Applications to rubber-like or bio-related materials, as well as shape memory alloys 

(SMA), involve large recoverable elastic deformations known as hyperelasticity and 

pseudoelasticity, respectively. In addition, applications involving cyclic loading with 

finite deformations cannot be accurately predicted with available infinitesimal cyclic 

plasticity models. Experiments with cyclic loading of hollow cylinders under free-end 

finite torsion have shown that the axially induced strain affects the cyclic hysteresis 

response of the material remarkably ‎[1]. For example, prediction of cyclic behavior of 

superelastic SMA under cyclic loading is important for vibration damping devices in 

seismic applications where large recoverable elastic strains exist during service ‎[2]. 
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To accurately predict the material response in such applications, constitutive models 

should be formulated in a large deformation framework. Due to significant amounts 

of deformation, alternate configurations can be used as the reference configuration 

resulting in either Lagrangian or Eulerian formulations for finite deformation. 

Various material models based on the corresponding kinematics of finite deformation 

have been introduced in the literature; however, issues have been identified with these 

constitutive models when the deformation involves significant material rotations.  

Finite torsional loading is one example in which shearing of the material 

causes significant rotations. Spurious shear oscillation have been observed and 

reported as issues for constitutive models undergoing large deformation ‎[3]. Elastic 

dissipation and elastic ratchetting in cyclic closed path loading is another issue which 

has been reported for Eulerian rate formulations of finite strain analysis [4,5]. 

Another issue with the kinematics of finite deformation is the choice of a physically 

acceptable decomposition of the deformation into its elastic and inelastic parts. There 

has been a large degree of disagreement on the choice for such decomposition in the 

finite strain analysis literature and as a result a unified definition does not exist ‎[5]. 

Different definitions for the plastic part of the deformation result in different flow 

rules and as a result different stress responses under finite deformation loading path.  

Constitutive models for finite deformation plasticity must be consistent with 

the thermodynamics of irreversible phenomena. Issues such as elastic dissipation and 

shear oscillation are not physically acceptable for the elastic part of the deformation, 
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due to a violation of thermodynamic principles. Furthermore, additional requirements 

should be met in setting up constitutive models for finite deformations as compared to 

models for infinitesimal elastoplasticity. Several attempts have been made to resolve 

the issues of finite deformation analysis, leading to a number of different constitutive 

models in the literature of finite strain elastoplasticity formulated using both 

Lagrangian and Eulerian descriptions ‎[5]. Figure ‎1-1 shows the general trend in the 

development of Lagrangian and Eulerian formulations of elastoplasticity for finite 

deformation, and their corresponding issues and limitations.  

As shown in Figure ‎1-1, issues of finite deformation plasticity has limited the 

use of Eulerian rate models to a specific objective rate of stress known as the D or 

logarithmic rate ‎[5]. On the other hand, currently available Lagrangian models are 

unable to accurately predict material response under finite torsional loading, as 

observed in free- and fixed-end experiments done on cylindrical bars ‎[1]. In addition, 

some of the available Lagrangian models exhibit a spurious shear oscillation for back 

stress components under simple shear motion, which is not physically sound.  

In the context of nonlinear elasticity, no preference for either Lagrangian or 

Eulerian formulations exists since the two formulations can be related through proper 

transformations. Such correspondence motivates the development of a unified 

Eulerian-Lagrangian formulation of plasticity for large strain analysis. This is the 

focus of the present work.  
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Figure ‎1-1-  Eulerian and Lagrangian formulations of elastoplasticity for finite strain analysis
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Figure 1-1-  Eulerian and Lagrangian formulations of elastoplasticity for finite strain analysis (continued)

Complicated formulation for anisotropic plasticity, additional evolution 
equations needed for plastic spin in some Lagrangian models 
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The main goal of the current research is to develop a unified Eulerian rate 

model for finite strain elastoplasticity, which is correct for all of objective 

corotational rates of stress, including the Jaumann, Green- McInnis-Naghdi, and D or 

logarithmic rates. All of the issues of finite strain analysis discussed above should be 

resolved with the proposed unified model. Thermodynamic consistency of the 

proposed model will be satisfied using the unified work conjugacy theorem. The 

model would be exactly integrable for its elastic part and consistent with the notion of 

hyperelasticity. The equivalent Lagrangian framework of the proposed Eulerian 

model is further developed based on the logarithmic measure of the Lagrangian 

strain. A new right stretch decomposition is proposed and the evolution of the plastic 

internal variables derived based on the logarithmic measure of the right plastic stretch 

tensor. A new back stress evolution equation is proposed and used in the Lagrangian 

model. The Lagrangian model is integrated on the principal axis of the plastic stretch 

tensor without any reference to objective rates of stress. 

1.1 Background 

Phenomenological plasticity models have been widely used to predict inelastic 

deformation of metals and polycrystalline solids under multiaxial loading. Various 

plasticity models, depending on the type of application, have been proposed for rate 

independent and rate dependent plastic behavior of hardening materials under 

monotonic and cyclic loading. Several different constitutive models for large strain 
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elastoplasticity have been proposed in the literature ‎[5]; however, issues for finite 

strain analysis exist when significant material rotation happens during deformation.   

One of the issues of finite strain analysis is spurious shear oscillation in finite 

shear, which has been attributed to inconsistent choices for the objective rates of the 

kinematic and kinetic variables used in the Eulerian rate-type constitutive models 

[5,6]. Different frames of reference (observations) for the rate of quantities impose 

different rotations on the material response, which cause shear oscillation. Although 

objective tensor variables are used and the objectivity requirement of the constitutive 

model for finite deformation is met, involvement of different observations for the 

corresponding objective rates causes a non-physical shear oscillation response.  

The issue of elastic dissipation for closed path loading also questions the 

physical plausibility of available constitutive models for finite deformation. This 

happens as a result of inconsistent observations in rate-type constitutive models. An 

elastic material should not dissipate energy for closed path loading. Therefore, elastic 

dissipation observed using rate-type constitutive models for finite deformation 

implies their non-integrability in the sense of Green elasticity (hyperelasticity) [5,6]. 

From a thermodynamic point of view, these issues are inconsistent with the 

thermodynamics of elastic systems, for which the elastic energy must be recoverable 

and non-dissipative. In general, a physical requirement for consistent constitutive 

models for finite deformation is this thermodynamic consistency. The balance of 

energy defines the associated (conjugate) variables or driving forces of internal 
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variables used in a constitutive model ‎[7]. Furthermore, any dissipative phenomenon 

should be in accordance with the second law of thermodynamics. This means that any 

irreversible phenomenon must dissipate energy during inelastic deformation while 

internal variables corresponding to the elastic part of the deformation must be non-

dissipative. These important requirements, though trivial, must be satisfied in setting 

up any constitutive model for finite deformation analysis.  

1.2 Finite deformation plasticity models 

Several multiaxial plastic constitutive models for finite deformation have been 

published in the literature of finite deformation elastoplasticity. Two different classes 

of kinematics decomposition have been used in setting up such models: additive 

decomposition of the strain rate tensor used mostly in Eulerian rate-type models and 

multiplicative decomposition of the deformation gradient used in both Lagrangian 

and Eulerian formulations ‎[5].  

The first class of constitutive models uses an additive decomposition of the 

strain rate tensor (rate of deformation) into elastic and inelastic parts. Constitutive 

models based on this class of decomposition use spatial (Eulerian) internal variables 

and are rate-type models. One requirement for spatial rate-type models is that they 

should account for the effect of material rotations. A rigid rotation of the body cannot 

impose any stress inside the material and as a result constitutive models for finite 

deformation should be independent of applied rigid rotations. This requirement 
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restricts the use of the time rate of Eulerian quantities to the special class of objective 

time rates in rate-type models. This requirement was first introduced by Zaremba and 

Jaumann [5,6,8] who used a spinning frame of reference based on the skew-

symmetric part of the velocity gradient for objective rates of tensor variables. Noll ‎[9] 

introduced a general framework for rate-type constitutive models based on the 

Jaumann rate of stress and related it to the symmetric part of the velocity gradient 

through a fourth-order stress dependent hypoelasticity tensor. A similar constitutive 

model based on the Jaumann rate was introduced by Truesdell ‎[10] and Cotter-Rivlin 

‎[11]. Truesdell and Noll ‎[6] discussed the general framework of constitutive models 

with the use of various objective rates and showed that hypoelastic models written in 

one frame of reference can be transformed into another frame of reference with 

different spins.  

Truesdell and Noll ‎[6] further applied the Jaumann version of the hypoelastic 

model for an isotropic elastic response of the material under simple shear loading. An 

oscillatory stress response was obtained at high strains. Application of the same 

hypoelastic model for linear kinematic hardening of the material under simple shear 

loading by Nagtegaal and de Jong ‎[3] showed the same oscillatory response for the 

back stress tensor. Use of different frames of reference in hypoelastic models showed 

different oscillatory and/or non-oscillatory stress responses for the problem of simple 

shear [12,13]. This led to the conclusion that the stress response of a hypoelastic 

model can be remarkably affected by the selected objective rate of stress.  Green and 

Naghdi ‎[12] substituted the body spin from the polar decomposition of the 
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deformation gradient with the Jaumann rate and removed the oscillatory response of 

the model under simple shear. Dafalias ‎[14] modified the hypo-based plasticity model 

with the linear kinematic hardening behavior by substituting the Green-McInnis-

Naghdi rate for back stress and stress evolutions and obtained a non-oscillatory 

response. Lee at al. ‎[15] used a modified version of the Jaumann rate in their 

kinematic hardening model and obtained a non-oscillatory stress response under 

simple shear.  

Truesdell and Noll ‎[6], Bernstein [16,17] and Ericksen ‎[18] investigated the 

integrability of hypoelastic models. The conclusion was that in general all elastic 

models were hypoelastic; however, the reverse statement did not apply in general. 

Bernstein [16,17] showed that a hypoelastic model is exactly integrable in the sense 

of Cauchy and Green elasticity if a hydrostatic state of stress exists. For a stress-

dependent fourth-order hypoelasticity tensor, integrability conditions and the 

existence of a hypoelastic potential were obtained by Bernstein [16,17] and Ericksen 

‎[18]. The issue of elastic dissipation in closed path loading observed by Koji and 

Bathe ‎[4] was consistent with the hypoelastic model non-integrability in the sense of 

Green elasticity (hyperelasticity) reported earlier by Bernstein [16,17].  

None of the original or modified hypoelastic models were consistent with the 

isotropic finite deformation behavior of elastic materials. Furthermore, hypo-based 

plasticity models could not accurately predict the experimentally observed second 

order effects under shear loading of cylindrical bars (the so-called Swift effect ‎[19]). 
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A more realistic prediction of the Swift effect was obtained by Atluri and Reed ‎[20]. 

The Jaumann rate of back stress and the back stress tensor itself were employed in 

their back stress evolution.  

A different approach was used by Reinhardt and Dubey ‎[21] and Xiao et al. 

‎[22] to derive a consistent rate of stress for which the hypoelastic model is 

unconditionally integrable and consistent with the notion of elasticity. The concept of 

Green elasticity entails existence of an elastic potential from which a direct relation 

between conjugate stress and strain is derivable. Experimental results by Anand 

[23,24] have shown that the logarithmic measure of strain (Hencky’s strain) provides 

a good approximation to the elastic part of the deformation for metals subject to large 

deformation. Based on this observation it is desirable to have a hypoelastic material 

model which in its integrated form returns a Hookean response for the material based 

on the Hencky strain. Following the work of Lehmann et al. ‎[25], Reinhardt and 

Dubey ‎[21] and Xiao et al. ‎[22] introduced a new objective rate of stress called the D 

or logarithmic rate. This new rate of stress resolved the issues of finite deformation. 

Later, it was shown by Xiao et al. ‎[26] that this specific rate makes the grade-zero 

hypoelastic model unconditionally integrable as a Cauchy and Green elastic material. 

The logarithmic (D) rate of stress made the hypoelastic model integrable as an elastic 

material, which related the Kirchhoff stress to the logarithmic strain in its integrated 

form. Based on this, Bruhns et al. ‎[27] developed a self-consistent Eulerian rate form 

of elastoplasticity using the D or logarithmic rate of stress and applied it to the 

solution of the simple shear problem. The so-called Swift effect was accurately 



12 

 

predicted when the logarithmic (D) rate of stress was used ‎[28]. As a result, it has 

been suggested by Xiao et al. ‎[26] that the logarithmic rate is the only rate of stress 

that can produce consistent results. It will be shown in this work that other well-

known rates such as the Jaumann and Green-McInnis-Naghdi rates can equally 

produce consistent results for elastic and elastoplastic behavior of hardening 

materials. 

 The second class of constitutive models uses a multiplicative decomposition 

of the deformation gradient and is based on the assumption of an intermediate stress-

free configuration. This decomposition and its corresponding intermediate 

configuration are physically well grounded based on the observations of crystal 

plasticity ‎[29]. This class of constitutive models mostly uses a hyperelastic strain 

energy function for the elastic part of deformation and as a result issues regarding 

model non-integrability as found in hypo-based models do not appear in this class of 

models. Decomposition of the deformation into elastic and plastic parts results in a 

modified additive decomposition of the strain rate tensor. Unlike Eulerian rate 

models, constitutive models of this class are involved with two different 

configurations. The intermediate configuration is usually used to update the plastic 

internal variables and is stress-free while the elastic part is updated on the current 

deformed configuration. Mathematically, using such constitutive models requires 

successive pulling-back and pushing-forward of kinematic and kinetic state variables 

during the stress update procedure [30,31]. The problem of back stress oscillation 

might still be present in some hyper-based model of elastoplasticity due to 
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inconsistent use of tensors and their corresponding transformations ‎[32]. Furthermore, 

for cases other than isotropic plasticity, for which principal axes of elastic stretch and 

Kirchhoff stress do not coincide, a complicated measure of stress is the work 

conjugate to the logarithmic strain which complicates the formulation [32,33].  

Numerical implementation of the above mentioned classes of constitutive 

models is another key factor in developing constitutive models for finite 

deformations. From one point of view, Eulerian rate models provide simple 

algorithmic implementations due to the fact that only one configuration is involved 

during the integration process. However, the requirement of objectivity and more 

generally spatial covariance entails use of objective integration schemes ‎[30]. 

Furthermore, an exact (closed form) algorithmic linearization of the Eulerian rate-

type models might not exist if different objective rates of stress are used ‎[30]. On the 

other hand, the class of models based on multiplicative decomposition of the right 

stretch tensor bypasses the requirement of an objective time integration scheme 

[30,32,34]. However, due to the involvement of two different configurations for 

elastic and plastic parts of the deformation, successive pull-back and push-forward of 

state variables are required during time integration, which complicates the 

algorithmic implementation of such models. One major drawback in numerical 

implementation of this class of models is that pull-back and push-forward of tensors 

are not orthogonal transformations. As a result, constitutive models formulated in the 

deviatoric space, such as evolution equations for back stress, do not preserve the 

deviatoric property during transformation from one configuration to the other [35,36]. 
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A volumetric/deviatoric decoupling of the kinematics and kinetics variables is 

therefore needed during time integration.  

For both classes of constitutive models, the well-known return mapping 

algorithm [37,38] can be used for the plastic update. However, material rotations for 

finite deformation affect the applicability of the corrective step in the direction of the 

trial normal vector. For some constitutive models, return in the trial direction is exact, 

while for others return mapping can be used in an approximate sense ‎[30].  

1.3 Objectives and outline of the thesis 

The primary aim of the present work is to develop a consistent Eulerian rate 

form of elasticity and to apply it to set up a self-consistent plasticity model for 

arbitrary rates of stress. The derived model can be used for any objective rate of 

stress, resulting in identical stress responses. Furthermore, a new multiplicative 

decomposition of the right stretch tensor is proposed and used for a Lagrangian 

formulation of finite deformation plasticity. This formulation is based on the 

logarithmic measure of the plastic stretch tensor and a new back stress evolution 

equation is used in the model based on this measure of plastic strain. The proposed 

Lagrangian model is a unified hyper-based model which is equivalent to the self-

consistent Eulerian rate-type model for finite strain elastoplasticity. Both the 

proposed Eulerian and Lagrangian models resolve all of the issues reported in finite 

strain elastoplasticity and produce results that are in excellent agreement with 
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experimental results. The models are capable of correctly modeling large deformation 

induced phenomena such as the well-known Swift effect. It is worth mentioning that 

the developed models do not break at larger deformation and are valid over a large 

range of finite strains. The organization of the thesis is as follows. 

In ‎Chapter 2, the basic kinematics of finite deformation is discussed in detail. 

Objective rates of stress corresponding to different spinning frames of reference are 

presented. Different measures of stress on different configurations are reviewed. 

Work conjugacy in its original and unified forms is discussed in detail and as a result 

the physically accepted Lagrangian and Eulerian conjugate pairs of stress and strain 

are introduced. The hypoelastic models based on the conjugate pair of stress and 

strain for different objective rates of stress is presented next. Integrability conditions 

for the hypoelastic model are used to show the soundness of the recently discovered 

logarithmic (D) rate of stress for a self-consistent Eulerian rate model of 

elastoplasticity for finite deformations.  

In ‎Chapter 3, classical infinitesimal plasticity models are reviewed and their 

thermodynamic consistency is discussed. Additional requirements for the extension of 

classical infinitesimal plasticity models to hypo-based plasticity models for finite 

strain analysis are discussed. The physical applicability of the additive decomposition 

of the strain rate tensor, widely used in hypo-based plasticity models, is further 

discussed. Finally, numerical integration of classical hypo-based plasticity models is 
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presented and implemented in a general finite element code. The finite element 

implementation is used to solve finite strain problems for different loading paths.  

In ‎Chapter 4, a generalized Eulerian rate form of elasticity is proposed. 

Integrability conditions of this model for a general stress-dependent elasticity tensor 

is examined and it is shown that the grade-zero model is unconditionally integrable 

for arbitrary corotational rates. Closed form solutions for different problems including 

simple shear and four-step closed path elastic loading are presented and compared to 

available results. Numerical implementation of the proposed model is also developed 

and discussed in detail. The model is further implemented for setting up an Eulerian 

rate form of plasticity which does not assign any preference to the choice of objective 

rates. The proposed unified model is integrated for two cases of deformation where 

the principal axes of the Kirchhoff stress and stretch are either coinciding or non-

coinciding. Finally, the model is extended to combined nonlinear kinematic/isotropic 

hardening behavior. Response of the model is compared with experimental results for 

finite torsional loading of SUS 304 stainless steel tubes. The predicted Swift effect 

from the model is compared with the experiments on SUS 304 cylindrical bars under 

finite fixed-end torsion available in the literature.  

In ‎Chapter 5, a novel kinematic decomposition of the right stretch tensor is 

proposed. Based on this decomposition a hyper-based Lagrangian form of 

elastoplasticity is proposed which utilizes Hencky’s plastic strain for plastic internal 

variables. The Lagrangian axis of the plastic right stretch tensor is used for the 
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integration of the proposed model. Response of the model for the linear kinematic 

hardening behavior of the material under simple shear is compared with those of the 

self-consistent Eulerian rate form of elastoplasticity developed earlier. The proposed 

Lagrangian model updates all of the elastic and plastic variables with no reference to 

objective rates. Finally, the model is applied to predict the mixed nonlinear hardening 

behavior of SUS 304 stainless steel. The so-called Swift effect predicted by the 

proposed model is compared with available experimental observations. 

Finally, in ‎Chapter 6 the concluding remarks are presented and 

recommendations for future work are suggested. 
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Chapter 2  

Review of Elastic constitutive models 

for finite deformations 

Constitutive models used to describe the deformation of a continuum body 

must satisfy a set of general principles. These rules are mainly associated with 

rational continuum mechanics and are described in detail by Truesdell and Noll ‎[6] 

and Malvern ‎[8].  Constitutive models should be consistent with thermodynamic 

considerations such as balance of mass and energy as well as being invariant under 

change of units. The following is a brief review of principles in constitutive 

modeling.  
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2.1 General principles  

The principle of local action states that the state variables used in any 

constitutive model at each point are affected by the history of a small neighborhood 

around this point. Any motion outside this small neighborhood may be disregarded in 

determining the evolution of state variables. 

The principle of determinism states that the current state of the body depends 

only on the history of its motion and states of the points belonging to the body. In 

other words, history of the motion of a continuum body determines the stress in that 

body. 

The principle of material frame-indifference (Objectivity) enforces 

constitutive models for finite deformation to be invariant under rigid motion and a 

change in the frame of reference. This principle in fact requires use of objective 

quantities in constitutive models and states that different observations should not 

affect the response of a constitutive model.  

The principle of work conjugacy requires use of consistent measures of stress 

and strain in a constitutive model. Such consistency is defined by the 

thermodynamics of the system and is based on the balance of energy.  

Additional principles apply for simple rate-type constitutive models and will 

be discussed at the end of this chapter.  
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2.2 Kinematics for finite deformation 

In the description of the motion of a deforming body, two different reference 

configurations can be used. The spatial (Eulerian) configuration, which is fixed in 

space, is usually used for spatial measures of tensor variables, while a Lagrangian or 

convected (material) one is used for convected variables and deforms along with the 

body.  

The coordinate vector 𝒭 of a particle 𝒫 in its initial configuration at time 

𝑡 = 0 is given by 

𝒭 = 𝑋𝑖𝑁𝑖 = 𝑋𝑖𝑛𝑖  (‎2-1) 

The vectors 𝑁𝑖  and 𝑛𝑖  represent the material and spatial direction vectors, 

respectively. At time 𝑡 = 𝜏 the particle has the same coordinate representation in the 

Lagrangian system, whereas the coordinate vector in the Eulerian system changes to 

𝓇 = 𝑥𝑖𝑛𝑖  (‎2-2) 

The deformation gradient of this motion is described by 

𝐹 =  
𝜕𝑥𝑖
𝜕𝑋𝑗

  (‎2-3) 

Such a measure of deformation given by (‎2-3) contains both the rigid rotation and 

stretch of the material. A polar decomposition of the deformation gradient can be 

used to decompose it into a pure stretch of the body and its orthogonal rigid rotation 
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𝐹 = 𝑅𝑈 = 𝑉𝑅 (‎2-4) 

in which 𝑅 is the rigid rotation and 𝑈 and 𝑉 are the right and left stretch tensors, 

respectively. The decomposition (‎2-4) offers two different representations of the 

deformation of the body. The left stretch tensor is representation in the fixed or 

Eulerian background, while the right stretch tensor is observed in a rotated frame, 

referred to as the Lagrangian (but not convected) frame. The components of the two-

point tensor 𝐹 are however expressed on a mixed Lagrangian/Eulerian basis.  

Due to the symmetry of the stretch tensor, an orthogonal transformation can 

be applied to transform the right and left stretch tensors onto their principal axes as 

follows: 

𝛬 = 𝑅𝐸
𝑇𝑉𝑅𝐸 = 𝑅𝐿

𝑇𝑈𝑅𝐿 = 𝑑𝑖𝑎𝑔 𝜆𝑖  (‎2-5) 

in which 𝜆𝑖’s are eigenvalues of the stretch tensor and 𝑅𝐿 and 𝑅𝐸  are the rotations of 

the Lagrangian and Eulerian triads, respectively. Use of equations (‎2-4) and (‎2-5) 

gives the following relationship between the Lagrangian and Eulerian rotations: 

𝑅𝐸 = 𝑅𝑅𝐿  (‎2-6) 

The deformation gradient and the stretch of the body is one way of measuring 

deformation; however, it is more convenient to describe the deformation of a body 

through strain-displacement relationships. Assuming an infinitesimal line element on 

the undeformed and deformed surfaces of the continuum body, the square of the 

corresponding arc length can be given by 
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𝑑𝑆2 = 𝑑𝒭. 𝑑𝒭 = 𝑑𝑋𝑖𝑑𝑋𝑖  

𝑑𝑠2 =
𝜕𝓇

𝜕𝑋𝑖
.
𝜕𝓇

𝜕𝑋𝑗
𝑑𝑋𝑖𝑑𝑋𝑗 = 𝐶𝑖𝑗𝑑𝑋𝑖𝑑𝑋𝑗  

(‎2-7) 

where 𝐶𝑖𝑗  is the matrix of the metric tensor and is called Cauchy-Green deformation 

tensor. A measure of strain can be defined by the difference between the square of the 

current and initial arc lengths as follows: 

𝑑𝑠2 − 𝑑𝑆2 =  𝐶𝑖𝑗 − 𝛿𝑖𝑗  𝑑𝑋𝑖𝑑𝑋𝑗 = 2𝜚𝑖𝑗𝑑𝑋𝑖𝑑𝑋𝑗  (‎2-8) 

where 𝜚𝑖𝑗  represents the components of the Green-Saint-Venant strain tensor and 𝛿𝑖𝑗  

is the Kronocker delta. 

Push-forward of the Green strain tensor onto the current (spatial) 

configuration leads to the Eulerian measure of the strain tensor given by 

𝜉𝑖𝑗 = 𝐹𝑘𝑖
−1𝜚𝑘𝑙𝐹𝑙𝑗

−1 =
1

2
 𝛿𝑖𝑗 − 𝐹𝑘𝑖

−1𝐹𝑘𝑗
−1  (‎2-9) 

in which 𝜉𝑖𝑗  represents the components of the Almansi-Euler strain tensor.  

A general definition of the strain measure was given by Hill ‎[8] based on the 

right stretch tensor: 

ℰ
 
𝑛
2
 

=
1

𝑛
 𝑈𝑛 − 𝐼  (‎2-10) 
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in which 𝐼 is the identity tensor and 𝑛 is an integer number. Setting 𝑛 = 2 gives the 

definition of the Green strain tensor, i.e. ℰ 1 = 𝜚. The Lagrangian Hencky 

(logarithmic) strain tensor can be found by setting 𝑛 = 0 

ℰ 0 = 𝑙𝑛 𝑈 = 𝐼 +
1

1!
ℰ 0 +

1

2!
 ℰ 0  

2
+ ⋯ (‎2-11) 

ℰ 0  represents the Lagrangian form of Hencky’s strain measure. The Lagrangian 

Hencky strain can be rotated onto the current configuration to define its Eulerian 

counterpart through 

𝑒 0 = 𝑙𝑛 𝑉 = 𝑙𝑛 𝑅𝑈𝑅𝑇 = 𝑅 𝑙𝑛 𝑈 𝑅𝑇 (‎2-12) 

2.3 Tensor transformation, objectivity, and objective rates 

For a body experiencing an orthogonal transformation 𝑄, quantities with 

reference to the Eulerian triad change while quantities measured with reference to the 

material frame do not. Eulerian tensors of any order should follow the general 

transformation rule under any orthogonal transformation (rotation) 𝑄 as follows: 

𝓉𝑖𝑗 …𝑚𝑛
∗ = 𝑄𝑖𝑝𝑄𝑗𝑟 …𝑄𝑚𝑠𝑄𝑛𝑡 𝓉𝑝𝑟…𝑠𝑡  (‎2-13) 

where 𝓉∗ represents the components of the Eulerian tensor 𝓉 in the rotated 

background. Similarly, two-point second order tensors such as the deformation 

gradient should transform by 
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𝐹𝑖𝑗
∗ = 𝑄𝑖𝑘𝐹𝑘𝑗  (‎2-14) 

Let’s assume that a body subjected to a constant stress during the deformation 

history experiences a rigid rotation. Since the stress is held constant on the body its 

time rate should be zero, i.e. 𝜎 = 0. In spatial coordinates under rigid rotation one 

finds 

𝜎∗ = 𝑄𝜎𝑄𝑇  𝜎 ∗ =
𝑑

𝑑𝑡
 𝑄𝜎𝑄𝑇 = 𝑄 𝜎𝑄𝑇 + 𝑄𝜎𝑄 𝑇 ≠ 0 (‎2-15) 

which shows that the rate of change of stress is not zero. If such a rate of stress is 

used in a rate-type constitutive model, the response of the body will be incorrectly 

predicted. According to the principle of frame-indifference, constitutive models 

should not be affected by any rigid rotation. This leads to the conclusion that material 

time rates of Eulerian quantities cannot be used in Eulerian rate-type constitutive 

models. In order to use the time derivative of Eulerian tensors, a rotation independent 

measure of rate of change is required. Objective rates of Eulerian tensors have been 

widely used in the literature of continuum mechanics as rotation-independent rates 

and are briefly reviewed in the next section. 

2.3.1 Objective corotational rates 

Assuming a spinning frame of reference with spin 𝛺∗, it is possible to relate an 

orthogonal rotation tensor to this spin by 
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𝛺∗ = 𝑄 ∗𝑄∗
𝑇  (‎2-16) 

The rotated components of any Eulerian tensor such as 𝓉 on this spinning frame are 

𝓉𝑟 = 𝑄∗𝓉𝑄∗
𝑇
. An objective corotational rate of this Eulerian tensor can be defined by 

𝓉 = 𝑄∗
𝑇 𝓉𝑟 + 𝓉𝑟𝛺∗ − 𝛺∗𝓉𝑟 𝑄∗ (‎2-17) 

Defining 𝑡  
∗

𝑟 = 𝓉𝑟 + 𝓉𝑟𝛺∗ − 𝛺∗𝓉𝑟  as the objective rate of the rotated Eulerian tensor 

𝓉𝑟 , equation (‎2-17) follows the general rule of tensor transformation for 𝓉 . In other 

words, if 𝓉 = 0 during deformation, the objective rate of its rotated counterpart is also 

zero. This property satisfies the objectivity requirement for the time rate of Eulerian 

tensors and therefore equation (‎2-17) is rotation-independent.  

Mathematically, an infinite number of objective rates can be defined ‎[8]. 

Among these rates are some well-known rates used widely in the literature. 

The velocity gradient 𝑙 can be additively decomposed into a symmetric part 𝑑, and a 

skew-symmetric part 𝑤: 

𝑙 = 𝑑 + 𝑤 (‎2-18) 

in which 𝑙 =  
𝜕𝑣𝑖

𝜕𝑥𝑗
  and 𝑣 is the particle velocity. The symmetric part 𝑑, which is the 

rate of deformation, is also called the “stretching” or “strain rate” tensor and 𝑤 is 

called the material or Jaumann spin and is dual to the vorticity tensor. Other measures 

of spins are the spin of the Eulerian triad 𝛺𝐸  and rigid spin 𝛺𝑅  defined by 
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𝛺𝐸 = 𝑅 𝐸𝑅𝐸
𝑇  

𝛺𝑅 = 𝑅 𝑅𝑇  

(‎2-19) 

Another spin introduced by Hill ‎[39] is the spin of the Lagrangian axis defined by 

𝛺𝐿 = 𝑅 𝐿𝑅𝐿
𝑇  (‎2-20) 

where the relation 𝛺𝑅 + 𝑅𝐸𝛺𝐿𝑅𝐸
𝑇 = 𝛺𝐸  exists between the rigid spin and the Eulerian 

and Lagrangian spins. It should be noted that the spin of the Lagrangian triad should 

not be used for the objective rate of Eulerian tensors since under rigid rotation the 

Lagrangian spin is zero ‎[40]. Relationships between different spin tensors can be 

obtained on the principal axis of the stretch tensor. Knowing that 𝑉 = 𝑙𝑉 − 𝑉𝛺𝑅 , the 

following relationships can be obtained for different objective rates of the left stretch 

tensor: 

𝑉 
𝑍

= 𝑑𝑉 +  𝑤 − 𝛺𝑅 𝑉 

𝑉 
𝐽

= 𝑑𝑉 + 𝑉 𝑤 − 𝛺𝑅  

𝑉 
𝐸

= 𝑑𝑉 +  𝑤 − 𝛺𝐸 𝑉 − 𝑉 𝛺𝑅 − 𝛺𝐸  

(‎2-21) 

in which 𝑉 
𝑍

, 𝑉 
𝐽

, and 𝑉 
𝐸

 are the objective Z-rate, J-rate, and E-rate of the left stretch 

tensor, respectively. Transferring equation (‎2-21) on the principal axis of the left 

stretch tensor and knowing that 𝛬 = 𝑅𝐸
𝑇𝑉 
𝐸

𝑅𝐸 in which 𝛬 = diag 𝜆𝑖  is the 

diagonalized matrix of the principal stretch tensor, gives: 
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𝑑𝛬

𝑑𝑡
= 𝑑 𝑒 𝛬 +  𝑤 𝑒 − 𝛺𝐸

 𝑒  𝛬 − 𝛬  𝛺𝑅
 𝑒 − 𝛺𝐸

 𝑒   (‎2-22) 

in which superscript 
(e)

 indicates tensor components taken on the principal axis of the 

left stretch tensor. Taking the symmetric and skew-symmetric parts of equation (‎2-22) 

gives the following relationships ‎[41] 

𝑤𝑖𝑗
 𝑒 − 𝛺𝑅,𝑖𝑗

 𝑒 = −
𝜆𝑗−𝜆𝑖

𝜆𝑗+𝜆𝑖
𝑑𝑖𝑗
 𝑒  ; (no sum, 𝑖 ≠ 𝑗) 

𝛺𝑅,𝑖𝑗
 𝑒 − 𝛺𝐸,𝑖𝑗

 𝑒 = −
2𝜆𝑗𝜆𝑖

𝜆𝑗
2−𝜆𝑖

2 𝑑𝑖𝑗
 𝑒  ; (no sum, 𝑖 ≠ 𝑗) 

𝜆 𝑖

𝜆𝑖
= 𝑑𝑖𝑖

 𝑒  ; (no sum, 𝑖 ≠ 𝑗) 

(‎2-23) 

Therefore, the following relationships can be obtained for the off-diagonal 

components of objective rates of the logarithmic strain, 𝜀, [21,40]: 

𝜀 
𝑍

𝑖𝑗
 𝑒 =

2𝜆𝑗𝜆𝑖

𝜆𝑗
2−𝜆𝑖

2 𝑙𝑛
𝜆𝑗

𝜆𝑖
𝑑𝑖𝑗
 𝑒 =

𝛦𝑖−𝛦𝑗

𝑠𝑖𝑛𝑕 𝛦𝑖−𝛦𝑗  
𝑑𝑖𝑗
 𝑒  ; (no sum, 𝑖 ≠ 𝑗) 

𝜀 
𝐽

𝑖𝑗
 𝑒 =

𝜆𝑗
2+𝜆𝑖

2

𝜆𝑗
2−𝜆𝑖

2  𝑙𝑛
𝜆𝑗

𝜆𝑖
𝑑𝑖𝑗
 𝑒 =

𝛦𝑖−𝛦𝑗

𝑡𝑎𝑛 𝑕 𝛦𝑖−𝛦𝑗  
𝑑𝑖𝑗
 𝑒  ; (no sum, 𝑖 ≠ 𝑗) 

𝜀 
𝐸

𝑖𝑗
 𝑒 = 0 ; (no sum, 𝑖 ≠ 𝑗) 

(‎2-24) 

in which 𝛦𝑖 = ln 𝜆𝑖  are the principal logarithmic strains. The diagonal components are 

given by 

𝜀 
𝑍

𝑖𝑖
 𝑒 = 𝜀 

𝐽

𝑖𝑖
 𝑒 = 𝜀 

𝐸

𝑖𝑖
 𝑒 = 𝑑𝑖𝑖

 𝑒 = 𝛦 𝑖 =
𝜆 𝑖
𝜆𝑖

  (𝑛𝑜 𝑠𝑢𝑚) (‎2-25) 
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Equations (‎2-24) and (‎2-25) show that on the principal axis of stretch the off-diagonal 

components of the Eulerian rate of the logarithmic strain vanish. This specific 

property of the E-rate of the logarithmic strain has been extensively used in setting up 

Eulerian rate-type constitutive models for finite deformation [42,43].  

2.3.2 Convected rates 

 Another class of objective rates can be defined in the material (convected) 

background. Since the material frame is covariant, a covariant convected rate of 

Eulerian tensors can be defined. As a result, the general requirement of spatial 

covariance in constitutive modeling of finite deformation can be met using such 

convected rates ‎[30]. One example is the covariant rate of the Kirchhoff stress given 

by 

𝜏 = 𝐹𝑆𝐹𝑇  𝜏 − 𝑙𝜏 − 𝜏𝑙𝑇 = 𝐹𝑆 𝐹𝑇   (‎2-26) 

where 𝜏 is the Kirchhoff stress and 𝑆 is the second Piola-Kirchhoff stress tensor. 

Equation (‎2-26) leads to 𝑆 = 𝐹−1 𝜏 − 𝑙𝜏 − 𝜏𝑙𝑇 𝐹−𝑇 = 𝐹−1𝜏 
𝑐

𝐹−𝑇 where 𝜏 
𝑐

 is the 

convected covariant rate of the Kirchhoff stress also known as the upper Oldroyd rate 

of stress. 

A general definition of the class of Lie derivatives of spatial tensors can be 

given by 



29 

 

𝐿𝑣𝓉 = 𝜙∗
𝑑

𝑑𝑡
𝜙∗ 𝓉  (‎2-27) 

where 𝐿𝑣 is the Lie operator, 𝜙∗ is the push-forward operator, and 𝜙∗ is the pull-back 

operator [34,44]. Operators 𝜙∗ and 𝜙∗ act differently on the kinematic and kinetic 

tensor variables in order to be consistent with the invariance of the stress power in 

different backgrounds. Table ‎2-1 briefly shows the effect of these operators on tensor 

variables.   

Table ‎2-1 Pull-back and push-forward operators ‎[34] 

Type of tensor Push-forward 𝜙∗ Pull-back 𝜙∗ 

Kinematic (covariant-covariant tensors) 𝜙∗ ∎ = 𝐹−𝑇 ∎ 𝐹−1 𝜙∗ ∎ = 𝐹𝑇 ∎ 𝐹 

Kinetic (contravariant-contravariant tensors) 𝜙∗  = 𝐹  𝐹𝑇  𝜙∗  = 𝐹−1  𝐹−𝑇  

𝐿𝑣𝜏 has a much stronger condition of objectivity which is called “spatial 

covariance” and as a result this derivative can be used in setting up Eulerian rate 

models for finite deformation ‎[44]. The principle of material frame-indifference 

requires invariance under rigid motion and therefore the metric tensor remains 

unchanged during transformation. However, in the spatial covariance requirement 

rigid motions (spatial isometries) are replaced by diffeomorphisms where the metric 

tensor changes tensorially based on the push-forward of the kinematics variables 

[35,44]. It can be easily shown that the Lie derivative of the Kirchhoff stress tensor is 

the push-forward of the material time rate of the second Piola-Kirchhoff stress on the 

current configuration, and is covariant.  
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Another possibility is to set up an objective rate based on the dual 

contravariant convected frame. Such a convected derivative can be given by 

𝜏 
𝐶

= 𝜏 + 𝑙𝑇𝜏 + 𝜏𝑙 (‎2-28) 

Equation (‎2-28) is defined in the dual space of equation (‎2-26). This rate of the 

Kirchhoff stress is also known as the lower Oldroyd rate of the Kirchhoff stress.  

The above mentioned Oldroyd rates can be expressed in the mixed covariant-

contravariant space as well; however, the two mixed rates obtained do not preserve 

the symmetry of the tensor on which they are applied.  

The requirement of spatial covariance of the constitutive models for finite 

deformation can be met with the use of the class of convected Lie derivatives; 

however, some drawbacks may appear with the application of the convected rates. 

First, orthogonality of the corotational frames no longer exists for the convected 

frames. One drawback of this is that the deviatoric property of a deviatoric tensor is 

not preserved for its convected rate. As a result, constitutive equations which are 

formulated in deviatoric space, such as back stress evolution equations, need further 

consideration during integration. A detail description of constitutive models based on 

convected rates and their algorithmic treatment is given in ‎Chapter 5.  
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2.4 Stress measures 

In large deformation analysis a proper measure of stress must be used. 

Constitutive models formulated on the Eulerian configuration should use a measure 

of stress which is expressed using the current configuration of the body. One such 

spatial measure is the Cauchy (true) stress 𝜎, which is a tensor defined by the effect 

of the actual traction 𝔱 on the current surface (configuration) of the body, with the unit 

outward normal vector 𝑛 as observed by a spatially fixed observer 

𝔱 = 𝜎: 𝑛 (‎2-29) 

Based on the balance of energy, the weighted Cauchy stress (Kirchhoff stress), 𝜏, 

generates power on the current configuration and is defined by 

𝜏 = 𝐽𝜎 =
𝜌0

𝜌
𝜎 (‎2-30) 

in which 𝐽 is the Jacobian of deformation and defines the ratio of the current density 

of the body to its initial density prior to deformation. Therefore, for a deformation to 

be physically acceptable, the Jacobian of deformation should be positive. 

Another measure of stress can be obtained using Nanson’s formula and 

finding the effect of the applied force on the undeformed configuration. A surface 

element on the undeformed configuration 𝑁d𝑆 is related to its spatial counterpart on 

the deformed configuration 𝑛d𝑠 by 
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𝐽𝑁𝑗𝑑𝑆 = 𝐹𝑖𝑗 𝑛𝑖𝑑𝑠 (‎2-31) 

The boundary force 𝑓 applied on the current configuration relates the Cauchy stress to 

its transformed counterpart by 

𝑓 = 𝜎: 𝑛𝑑𝑠 = 𝐽𝜎𝐹−𝑇 :𝑁𝑑𝑆 (‎2-32) 

which results in the following definition for the stress on the undeformed 

configuration 

𝑃 = 𝜏𝐹−𝑇  (‎2-33) 

where 𝑃 is the non-symmetric first Piola-Kirchhoff stress. The non-symmetry 

property of this tensor is due to the involvement of two different configurations; the 

boundary force is measured on the deformed configuration while the effect of it is 

considered on the original undeformed configuration. The first Piola-Kirchhoff stress 

tensor is a two-point (mixed) tensor similar to the deformation gradient. If the state of 

the boundary force is also measured on the undeformed configuration, the second 

Piola-Kirchhoff stress, S, is obtained 

𝑆 = 𝐹−1𝜏𝐹−𝑇  (‎2-34) 

Unlike the first Piola-Kirchhoff stress, the second Piola-Kirchhoff stress is a 

symmetric tensor.  
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2.5 Work conjugacy 

2.5.1 Hill’s original work conjugacy 

For constitutive models for finite deformations, different measures of strain 

and stress can be used. A criterion is therefore required for the proper choice of stress 

and strain measures in constitutive models. The stress power has been shown to be a 

physically acceptable criterion for the choice of a conjugate stress-strain pair. Based 

on Hill’s original work ‎[39], and Truesdell and Noll ‎[6], any pair of Lagrangian or 

Eulerian measures of stress and strain can be used in a constitutive model provided 

they produce equivalent stress power. According to the first law of thermodynamics, 

conservation of energy should be satisfied for any deforming continuum body. From 

the balance of energy the stress power is given by 

𝑊 = 𝜏: 𝑙 = 𝜏:  𝑑 + 𝑤 = 𝜏: 𝑑 (‎2-35) 

in which 𝑊  is the stress power. Equation (‎2-35) shows that the material spin has no 

effect on the stress power.  

Hill [45,46] states that Lagrangian measures of strain and stress can be used in 

constitutive models for finite deformation if they furnish the same stress power given 

in equation (‎2-35). This implies that a pair of Lagrangian strain ℰ and stress 𝒯 is work 

conjugate if 

𝑊 = 𝒯: ℰ = 𝜏: 𝑑 (‎2-36) 
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Such a criterion for Lagrangian measures of strain and stress has been found to be 

successful in setting up constitutive models for finite deformation [39,45,46].  

The original definition of Hill’s work conjugacy fails to define a similar 

criterion when Eulerian measures of strain and stress are used, as stated by Hoger 

‎[33] and Ogden ‎[47]. Furthermore, the rotated Kirchhoff stress, 𝜏 = 𝑅𝑇𝜏𝑅,  which is a 

Lagrangian measure of Kirchhoff stress and has a wide application in Lagrangian 

constitutive models (cf. Green and Naghdi ‎[12], and Simo and Marsden ‎[48]) cannot 

be assigned any conjugate strain through the original Hill’s work conjugacy [33,47]. 

As a result, a unified definition of work conjugacy for both the Lagrangian and 

Eulerian measures of stress and strain is required.  

2.5.2 Unified work conjugacy 

For the Eulerian strain and stress measures, Hill’s original work conjugacy 

cannot be used because of the non-objectivity of the material time rate of the Eulerian 

strain. Hoger ‎[33] derived expressions for the conjugate stress to the Lagrangian 

logarithmic strain on the principal axis of the right stretch tensor. It was further 

shown that for the case of isotropic elasticity, for which the principal axes of stress 

and stretch tensor coincide, the rotated Kirchhoff stress is conjugate to the Lagrangian 

logarithmic strain. Basis-free expressions for the conjugate stress to the Jaumann rate 

of the Eulerian logarithmic strain were derived by Lehmann and Liang ‎[49]. Xiao 

‎[50] derived basis-free expressions for the conjugate stress to arbitrary Lagrangian 

measures of the Hill’s strain tensor. Nicholson [51,52] derived relations for conjugate 
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measures of stress to the Jaumann rate of different measures of deformation, using the 

method of the Kronecker product ‎[53]. More recently, Asghari et al. ‎[54] derived 

basis-free expressions for the Jaumann rate of arbitrary Eulerian measures of strain 

based on Hill’s original work conjugacy. In general, the derived conjugate stress 

tensors to the Eulerian strain tensors are based on objective rates of the Eulerian 

strains. A unified definition of Hill’s original work conjugacy can be obtained using 

objective rates of the Eulerian strain.  

With the help of three orthogonal eigenvectors of the right and left stretch 

tensors, denoted by the Lagrangian triad  𝑁  and the Eulerian triad  𝑛 , and the 

eigenvectors of the stretch tensor 𝜆𝑖 , a general definition of Hill’s strain tensor can be 

given by 

ℯ =  𝒻 𝜆𝑖 𝑛𝑖⨂𝑛𝑖

3

𝑖=1

= 𝒻 𝑉 

ℰ =  𝒻 𝜆𝑖 𝑁𝑖⨂𝑁𝑖

3

𝑖=1

= 𝒻 𝑈 

 (‎2-37) 

in which 𝒻 𝜆𝑖  is a smooth and monotonically increasing scale function with the 

property 𝒻 1 = 𝒻 ′ 1 − 1 = 0. According to Hill ‎[39], Ogden ‎[47] and Doyle and 

Ericksen ‎[55], a general form for such a scale function can be defined by 

𝒻 𝜆 =
1

𝑚
 𝜆𝑚 − 1  (‎2-38) 

where m is an integer number. As a result, Hill’s generalized strain definition can be 

given by 
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ℯ =
1

𝑚
 𝑉𝑚 − 𝐼 

ℰ =
1

𝑚
 𝑈𝑚 − 𝐼 

 (‎2-39) 

in which the relation ℰ = 𝑅𝑇ℯ𝑅 exists. Let’s assume that a Lagrangian stress measure 

𝒯 and its Eulerian counterpart 𝓉 = 𝑅𝒯𝑅𝑇 are given. Furthermore, in an 𝛺∗-spinning 

frame with rotation 𝑅∗ the rotated counterparts of stress and strain are given by 

𝓉𝑟 = 𝑅∗
𝑇𝓉𝑅∗ and ℯ𝑟 = 𝑅∗

𝑇ℯ𝑅∗, respectively. An observer in the spinning background 

sets up the following scalar product: 

𝓉𝑟 : ℯ 𝑟 =  𝑅∗
𝑇𝓉𝑅∗ :  𝑅∗

𝑇ℯ𝑅∗ 
 

 
(‎2-40) 

The scalar product given by equation (‎2-40) is the same as a scalar product set up by 

a fixed observer for a Lagrangian stress and strain pair. Following a similar definition 

for Hill’s original work conjugacy, a modified form of work conjugacy can be found 

in an arbitrary spinning background as follows: 

𝑊 = 𝓉𝑟 : ℯ 𝑟 =  𝑅∗
𝑇𝓉𝑅∗ :  𝑅∗

𝑇ℯ𝑅∗ 
 

= 𝓉: ℯ 
∗

 
(‎2-41) 

Equation (‎2-41) defines a unified work conjugacy in an 𝛺∗-spinning frame for any 

pair of Eulerian strain and stress measures  𝓉, ℯ  ‎[56]. Since both 𝑊  and 𝓉 are 

objective, use of equation (‎2-41) requires that the corresponding rate of the Eulerian 

strain be also an objective rate. In other words, the spinning background in which the 

rates are measured should be an objective corotational frame. Xiao et al. ‎[56] further 

discussed the applicability of the unified work conjugacy given by (‎2-41) for all of 
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the objective rates. According to Xiao et al. ‎[56] a linear transformation tensor relates 

the stretching tensor to the objective rate of the Eulerian strain tensor by 

ℯ 
∗

= 𝕃∗ 𝑑  
(‎2-42) 

where 𝕃∗ = 𝕃 ∗ 𝑏  is a fourth-order transformation tensor function of the left Cauchy-

Green tensor 𝑏 possessing the major and minor symmetries. Use of equations (‎2-41) 

and (‎2-42) results in 

𝜏 = 𝕃∗ 𝓉  (‎2-43) 

Equation (‎2-43) implies that the fourth-order transformation tensor 𝕃∗ should be a 

nonsingular transformation between symmetric second-order tensors. This means that 

a one to one correspondence between the stretching tensor 𝑑 and ℯ 
∗

 should exist ‎[56]. 

As a result, the unified work conjugacy is applicable for all of the objective 

corotational rates provided that 𝕃∗ is a nonsingular transformation.  

The unified work conjugacy can also be used for the Lagrangian measures of 

stress and strain ‎[56]. Knowing that ℰ = 𝑅𝑇ℯ𝑅 and 𝒯 = 𝑅𝑇𝓉𝑅, pre and post 

multiplying the work conjugacy (‎2-41) by the rigid rotation gives: 

𝑊 = 𝑅𝑇  𝓉: ℯ 
∗

 𝑅 =  𝑅𝑇𝓉𝑅 :  𝑅𝑇ℯ 
∗

𝑅 = 𝒯: ℰ 
∗−𝑍

 (‎2-44) 

which is similar to Hill’s original work conjugacy for Lagrangian measures of stress 

and strain. In equation (‎2-44) ℰ 
∗−𝑍

= ℰ − 𝛺∗−𝑍ℰ + ℰ𝛺∗−𝑍 is the relative objective rate 

of the Lagrangian strain and 𝛺∗−𝑍 = 𝑅𝑇 𝛺∗ − 𝛺𝑅 𝑅. Equation (‎2-44) defines a 
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conjugate pair of the Lagrangian measure of the stress and strain in an 𝛺∗−𝑍-spinning 

frame. It is clear that, for the case of Z-frame with rigid spin 𝛺∗ = 𝛺𝑅 , the relative 

spin 𝛺∗−𝑍  vanishes and Hill’s original work conjugacy is obtained.  

2.6 Finite Elasticity and Hypoelastic material models 

For an isotropic linear elastic material the generalized Hook’s law is given by 

𝜏 = 𝜅 𝑡𝑟 𝜀 𝐼 + 2𝜇𝜀 (‎2-45) 

in which “tr” indicates the trace function and 𝜅 and 𝜇 are Lame’s constants. For the 

case of infinitesimal elasticity, any measure of strain and stress can be used in (‎2-45) 

because the deformations are so small that deviation from infinitesimal engineering 

strain is negligible. However, for finite deformation analysis a proper choice for strain 

and stress measures should be used in (‎2-45). From work conjugacy, any conjugate 

pair of Lagrangian or Eulerian measure of stress and strain can be used in the 

Hookean model given by (‎2-45). One possible choice is the Eulerian Hencky 

(logarithmic) strain and the Kirchhoff stress. Another choice is the Green-Lagrange 

strain and the symmetric second Piola-Kirchhoff stress. Another possibility is the use 

of the Kirchhoff stress and the Eulerian counterpart of Green’s strain. From one point 

of view, use of Green’s strain is more convenient because the reference configuration 

is the initial undeformed configuration of the body, while the Eulerian logarithmic 

strain refers to the current deformed configuration. However, unlike to the 
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logarithmic strain, Green’s strain cannot be simply decoupled into an additive 

deviatoric/volumetric form. Therefore, use of the logarithmic strain is more 

convenient in this case. Furthermore, response of the model using the Kirchhoff stress 

and the logarithmic strain shows better agreement with experimental observations for 

moderate elastic deformations of metals [21,24]. Therefore, use of the Kirchhoff 

stress and the Eulerian logarithmic strain in the Hookean model given by (‎2-45) gives 

good prediction of finite elastic Hookean response of metals.  

For the case of small strain elasticity, a quadratic strain energy function exists 

from which the Hookean model is derivable ‎[8]. As a result, the infinitesimal 

Hookean elastic model given in (‎2-45) is consistent with the notion of hyperelasticity. 

In finite deformation analysis, a rate-type form of the linear elasticity is required 

because of the differential-type constitutive models for the inelastic part of the 

deformation. One important consideration is whether the integrated form of a rate-

type model yields the Hookean response for finite deformation or not. In other words, 

integrability of the rate-type models in the sense of Cauchy and Green elasticity 

(hyperelasticity) should be considered when rate-type models are used for finite 

deformation analysis. Such integrability conditions are discussed in more detail in the 

following sections. 

2.6.1 Simple materials and Cauchy elasticity 

Assuming an observer 𝑂 reports the motion of a body ℬ using 
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𝑥 = 𝑥 𝑋, 𝑡  ; 𝑋 ∈ ℬ (‎2-46) 

If 𝜎 𝑥, 𝑡  represents the Cauchy stress at time 𝑡 corresponding to the material point 𝑋 

with current coordinates 𝑥 = 𝑥 𝑋, 𝑡 , then according to the principle of determinism 

the Cauchy stress depends on the history of the motion of the body ‎[47] 

𝜎 𝑥, 𝑡 = Ⅎ 𝜒𝑡 ; 𝑋, 𝑡  (‎2-47) 

where Ⅎ is the stress functional with respect to its first argument and a function of its 

second and third arguments, and 𝜒𝑡 𝑋, 𝑠 = 𝜒 𝑋, 𝑡 − 𝑠  is the history of the motion 

of the body for 𝑠 ≥ 0. A new observer 𝑂∗ under the frame transformation 𝑥∗ =

𝑄 𝑡 𝑥 + 𝑐 𝑡  and 𝑡∗ = 𝑡 − 𝑎 reports the Cauchy stress using 𝜎𝑟 𝑥∗, 𝑡∗ =

𝑄 𝑡 𝜎 𝑥, 𝑡 𝑄 𝑡 𝑇 . Material objectivity then requires that 

𝜎𝑟 𝑥∗, 𝑡∗ = Ⅎ 𝜒∗
𝑡∗; 𝑋, 𝑡∗  (‎2-48) 

Assumption of the spatial locality of material response simplifies the constitutive law 

given by (‎2-47). If two motions 𝜒 and 𝜒  are present such that for all the particles 𝑋′  

belonging to a small neighborhood 𝒩 𝑋  of the body, the relation 𝜒  𝑋′ , 𝑠 =

𝜒 𝑋′ , 𝑠  exists and if Ⅎ 𝜒 𝑡 ; 𝑋, 𝑡 = Ⅎ 𝜒𝑡 ; 𝑋, 𝑡 , then the history of any motion outside 

the neighborhood 𝒩 𝑋  has no effect on the material response. This condition is a 

mathematical representation of the principle of local action used in classical 

constitutive models. 

A material is said to be a “simple material” at coordinate 𝑋 if for every 

deformation at 𝑋 its response is uniquely defined by its response to deformations 
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homogeneous in a neighborhood of 𝑋 ‎[47]. As a result, relative to any chosen 

reference configuration 𝜒0 the Cauchy stress is related to deformation by 

𝜎 𝑥, 𝑡 = Ⅎ0 𝐺𝑟𝑎𝑑 𝜒𝑋
𝑡 ; 𝑋, 𝑡  (‎2-49) 

where Grad 𝜒𝑋
𝑡  is the history of the deformation gradient at 𝑋 relative to a chosen 

reference configuration and 𝜒𝑋
𝑡  𝑋′ , 𝑠 = 𝜒𝑡 𝑋′ , 𝑠 − 𝜒𝑡 𝑋, 𝑠 . If in equation (‎2-49) 

the Cauchy stress is assumed to be a function of the deformation gradient only 

(excluding history dependency), then the simple material is an elastic Cauchy 

material. For Cauchy elastic materials, the stress response is independent of the rate at 

which the deformation occurs and the path of loading. However, the work done by the 

stress is not necessarily path independent and the stress is not derivable from a scalar 

potential function, and therefore has a non-conservative structure ‎[47]. For a Cauchy 

elastic material the functional given by equation (‎2-49) reduces to a function as 

follows: 

𝜎 𝜒 𝑋, 𝑡 , 𝑡 = Ⅎ0 𝐹; 𝑋  (‎2-50) 

where 𝐹 𝑋, 𝑡 = Grad 𝜒 𝑋, 𝑡 . With the assumption of homogeneity of the elastic 

properties, the constitutive model for a Cauchy elastic material can be further 

simplified to: 

𝜎 = Ⅎ 𝐹  (‎2-51) 
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where Ⅎ is the response function of the Cauchy elastic material. The requirement of 

objectivity restricts the response function to satisfy the following transformation 

[8,30,47]  

Ⅎ 𝑄𝐹 = 𝑄Ⅎ 𝐹 𝑄𝑇  (‎2-52) 

for all orthogonal transformations 𝑄 and arbitrary deformation gradients 𝐹. Such a 

restriction suggests the use of a Lagrangian measure of deformation, such as the right 

Green-Cauchy deformation tensor, the Green-Lagrange strain tensor (or Green’s 

Strain) and/or objective Eulerian measures of deformation in (‎2-51), instead of the 

deformation gradient [30,47]. One possible choice for the orthogonal transformation 

in (‎2-52) is the rigid rotation of the material, i.e.  𝑄 = 𝑅.  Use of relation 𝐹 = 𝑅𝑈 and 

𝑄 = 𝑅 in equation (‎2-52), gives the following Cauchy elastic model based on the 

right stretch tensor: 

𝜎 = Ⅎ 𝐹 = 𝑅Ⅎ 𝑈 𝑅𝑇 (‎2-53) 

The stress function given in equation (‎2-51) can also be expressed in terms of 

the first Piola-Kirchhoff stress by 

𝑃 = 𝐽𝐹−1𝜎 = 𝐽𝐹−1Ⅎ 𝐹 = ℳ 𝐹  (‎2-54) 

Equation (‎2-54) is another form of the response function for a Cauchy elastic material 

in terms of the nominal stress and deformation gradient. Due to the symmetry of the 

Cauchy stress, the restriction 𝐹ℳ 𝐹 = ℳ 𝐹 𝑇𝐹𝑇 applies on the stress function 
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given by (‎2-54). Also material objectivity requires that ℳ 𝑄𝐹 = ℳ 𝐹 𝑄𝑇 and as a 

result: 

𝑃 = ℳ 𝑈 𝑅𝑇  (‎2-55) 

where ℳ 𝑈 = 𝐽𝑈−1Ⅎ 𝑈 . 

2.6.2 Green elasticity 

The stress power per unit volume can be expressed in terms of 𝑊 = 𝑃: 𝐹 =

tr  ℳ 𝐹 𝐹   . In general tr ℳ 𝐹 d𝐹  is not an exact differential for Cauchy elastic 

materials. However, if a scalar function exists such that 𝑊 = tr ℳ 𝐹 𝐹  =

tr  
𝜕𝑊

𝜕𝐹
𝐹  , then the stress function ℳ 𝐹  is derivable from the elastic potential energy 

function (strain energy function) by 

𝑃 = ℳ 𝐹 =
𝜕𝑊

𝜕𝐹
 (‎2-56) 

A Cauchy elastic material for which such a strain energy function exists is called a 

Green elastic or hyperelastic material and 𝑊 is its corresponding hyperelastic 

function (strain energy function). Green elasticity is a more special form of the class 

of Cauchy elastic materials and therefore all characteristics and restrictions applied to 

Cauchy elastic materials should also be applied to Green elastic materials ‎[47].  
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The same requirement of objectivity leads to the conclusion that 𝑊 𝐹 =

𝑊 𝑈 = 𝑊 𝑉 . For the case of isotropic elasticity the strain energy function can be 

expressed in terms of principal stretches as follows: 

𝑊 𝑈 = 𝑊 𝑉 = 𝑊 𝜆1 , 𝜆2 , 𝜆3  (‎2-57) 

Or more generally it might be expressed as a function of the stretch tensor invariants 

by 

𝑊 𝑈 = 𝑊 𝑉 = 𝑊 𝐼1 , 𝐼2 , 𝐼3  (‎2-58) 

in which 𝐼1 = 𝜆1
2 + 𝜆2

2 + 𝜆3
2, 𝐼2 = 𝜆1

2𝜆2
2 + 𝜆1

2𝜆3
2 + 𝜆2

2𝜆3
2, and 𝐼3 = 𝜆1

2𝜆2
2𝜆3

2. The strain 

energy function given by (‎2-58) can be a linear or nonlinear function of the stretch 

invariants for the class of hyperelastic materials. A simple quadratic strain energy 

function results into the well-known linear Hookean model. Use of higher order 

polynomials for the strain energy function results in nonlinear hyperelasticity 

[6,8,47]. For the Hookean constitutive model given in equation (‎2-45) the following 

quadratic complementary hyperelastic function exists ‎[30] 

𝒵 𝜏 =
1 + 𝜈

2𝐸
𝑡𝑟 𝜏2 −

𝜈

2𝐸
 𝑡𝑟 𝜏 2 (‎2-59) 

where 𝜈 and 𝐸 are the material Poisson’s ratio and elastic modulus. As a result, the 

Eulerian logarithmic strain is derivable from the complementary potential 𝒵 as 

follows: 
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𝜀 =
𝜕𝒵

𝜕𝜏
= 𝛭−1: 𝜏 (‎2-60) 

where 𝛭−1 =
𝜕2𝒵

𝜕𝜏𝜕𝜏
=

1+𝜈

𝐸
𝕀 −

𝜈

𝐸
𝐼⨂𝐼 is the fourth-order  isotropic compliance tensor, 𝐼  

is the second order identity tensor, and 𝕀 is the fourth order identity tensor. Equation 

(‎2-60) clearly shows that the extended finite deformation Hookean model given by 

equation (‎2-45) is consistent with the notion of hyperelasticity.  

2.6.3 Hypoelasticity 

Eulerian rate-type models for finite elastoplasticity use a spatial rate model for 

the elastic part of the deformation. The additive decomposition of the strain rate 

tensor into its elastic and inelastic parts has been widely used in the literature of finite 

deformation ‎[57]. Hypoelastic models introduced by Rivlin ‎[58] and Truesdell ‎[59] 

are simple rate-type material models expressed as a linear function of the strain rate 

tensor and relate an objective rate of the Kirchhoff stress to the elastic part of the 

strain rate tensor by 

𝜏 
∗

= ℳ 𝜏 : 𝑑 (‎2-61) 

where ℳ 𝜏  is the fourth-order stress-dependent hypoelasticity tensor. For a grade-

zero hypoelastic model, the fourth-order hypoelastic tensor is stress-independent and 

the hypoelastic model given in (‎2-61) reduces to 

𝜏 
∗

𝑑 = 2𝜇𝑑𝑑  
(‎2-62) 
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where a subscript “d” denotes the deviatoric part of a tensor. The hydrostatic part of 

the stress is related to the trace of the strain rate tensor by 𝑝 =
1

3
tr 𝜏  =

3𝜅+2𝜇

3
tr 𝑑 . 

In general, no restrictions on the choice of objective rate of the Kirchhoff 

stress were given in the classical model of hypoelasticity and any objective rate of 

stress (corotational or convected) could be used with this model. However, recent 

development in finite deformation analysis restricts the use of hypoelastic models to a 

specific rate of stress [21,22,26]. 

2.6.4 Issues with hypoelasticity 

 Hypoelastic models have been widely used in setting up the Eulerian rate 

formulation of elastoplasticity and viscoplasticity. The hypoelastic part of such 

Eulerian models is used for the elastic deformation and stress update. It is expected 

that a hypoelastic model returns the Hookean response in its integrated form; as a 

result, one important concern about hypoelastic materials is whether they are elastic 

materials and consistent with the notion of Cauchy or Green elasticity.  

While all Elastic materials are hypoelastic (cf. Truesdell and Noll ‎[6]) the 

reverse statement is not true in general. This means that, a given hypoelastic model 

does not necessarily provide an elastic response in its integrated form. This fact can 

be shown using two different approaches. The first approach is through direct 

integration of a hypoelastic model for certain simple elastic loading paths to obtain 

the stress response of the model. The second approach is more general and is through 
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examining hypoelastic model integrability mathematically. Both approaches are 

discussed here. 

2.6.4.1 Hypoelastic response for certain elastic loading paths 

We assume here two cases of deformation. The first case is shear deformation 

of a cube fixed at one end and sheared at the other end as shown in Figure ‎2-1. The 

deformation is homogeneous and the hypoelastic model is integrated using the 

Jaumann (J) and Green-McInnis-Naghdi (GMN) rates.  

 

Figure ‎2-1-  Problem of simple shear 

The deformation gradient of this motion is given by: 

𝐹 = 𝑁1⨂𝑁1 + 𝑁2⨂𝑁2+𝛾𝑁1⨂𝑁2 (‎2-63) 

in which 𝛾 is the applied shear. The polar decomposition of the deformation gradient 

yields the following for the rigid rotation and the left and right stretch tensors: 

𝑉 =
1

 4 + 𝛾2
  2 + 𝛾2 𝑁1⨂𝑁1 + 2𝑁2⨂𝑁2+𝛾 𝑁1⨂𝑁2 + 𝑁2⨂𝑁1  

𝑈 =
1

 4 + 𝛾2
 2𝑁1⨂𝑁1 +  2 + 𝛾2 𝑁2⨂𝑁2+𝛾 𝑁1⨂𝑁2 + 𝑁2⨂𝑁1  

𝑅 =
1

 4 + 𝛾2
 2𝑁1⨂𝑁1 + 2𝑁2⨂𝑁2+𝛾 𝑁1⨂𝑁2 −𝑁2⨂𝑁1                

 (‎2-64) 
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The rigid spin of the material 𝛺𝑅  is given by 

𝛺𝑅 = 𝑅 𝑅𝑇 =
2𝛾 

4 + 𝛾2
 𝑁1⨂𝑁2 − 𝑁2⨂𝑁1  (‎2-65) 

The velocity gradient and its symmetric and skew-symmetric parts are given by 

𝑙 = 𝛾 𝑁1⨂𝑁2 

𝑑 =
𝛾 

2
 𝑁1⨂𝑁2 + 𝑁2⨂𝑁1  

𝑤 =
𝛾 

2
 𝑁1⨂𝑁2 −𝑁2⨂𝑁1  

(‎2-66) 

The Kirchhoff stress tensor is a traceless (deviatoric) tensor for this motion. As a 

result, the hypoelastic model given in equation (‎2-62) yields the following coupled 

differentials for the Jaumann and Green-McInnis-Naghdi rates under simple shear 

motion: 

J rate  

𝑑𝜏11

𝑑𝛾
− 𝜏12 = 0

𝑑𝜏12

𝑑𝛾
+ 𝜏11 = 𝜇

  (‎2-67) 

GMN rate  

𝑑𝜏11

𝑑𝛾
−

4

4+𝛾2 𝜏12 = 0

𝑑𝜏12

𝑑𝛾
+

4

4+𝛾2 𝜏11 = 𝜇
  (‎2-68) 

Solution of the above coupled linear differential equations yields the following stress 

response for the J and GMN stress rates 

𝜏12 = 𝜇 𝑠𝑖𝑛 𝛾 ; (J rate) (‎2-69) 
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𝜏12 = 2𝜇  
4𝛾 𝑙𝑛

4 + 𝛾2

4
+  4 − 𝛾2  2 𝑎𝑡𝑎𝑛

𝛾
2
−
𝛾
2
 

4 + 𝛾2   ; (𝐺𝑀𝑁 𝑟𝑎𝑡𝑒) 

To compare the above hypoelastic results with the finite Hookean model, the 

stress response of the Hookean model given by (‎2-45) is given as follows. The 

components of the logarithmic strain for the simple shear problem can be found as 

𝜀 = 𝛾𝜂 𝑁1⨂𝑁1 −𝑁2⨂𝑁2 + 2𝜂 𝑁1⨂𝑁2 + 𝑁2⨂𝑁1  (‎2-70) 

where 𝜂 =
asinh

𝛾

2

 4+γ2
. Using the Hookean model given by (‎2-45), the stress components 

are given by 

𝜏 = 2𝜇𝛾𝜂 𝑁1⨂𝑁1 − 𝑁2⨂𝑁2 + 4𝜇𝜂 𝑁1⨂𝑁2 + 𝑁2⨂𝑁1  (‎2-71) 

It should be noted that for the problem of simple shear the Cauchy stress and 

Kirchhoff stress are the same because 𝐽 = 1. Figure ‎2-2 shows the stress response for 

the problem of simple shear using the hypoelastic model with the J and GMN rates of 

stress as well as the response from the hyperelastic Hookean model.  

As shown in Figure ‎2-2 the stress response from the J rate shows an 

oscillatory response. The GMN rate shows a monotonically increasing stress 

response. However, it is not clear whether either solution is physically acceptable. If 

we are expecting a Hookean response from the hypoelastic model, neither the J rate 

nor the GMN rate returns the correct response. This example shows that grade-zero 

hypoelastic models cannot be integrated to return a Hookean elastic response for 
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arbitrary rates of stress. As a result, the question of a consistent rate of stress is raised 

here, which will be discussed in details in section ‎2.6.4.2.  

 

Figure ‎2-2- Shear stress responses for the problem of simple shear using the hypoelastic and 

Hookean model 

The second example is four-step closed path elastic deformation of a cube. 

This problem is used to show if hypoelastic models are consistent with the notion of 

hyperelasticity. As shown in Figure ‎2-3 a cube of unit length is fixed at one end and 

the other end is subjected to closed path loading with the following deformation 

steps: 

Step 1- Tension 

Step 2- Shearing while previous tension is maintained 

Step 3- Removing tension while the previous shear is maintained 

Step 4- Removing shear to return to the original configuration 
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This problem was originally solved by Koji and Bathe ‎[4] for the case of the J rate of 

stress. In what follows we consider the solution for both the J and GMN rates as well 

as the Hookean response of the model. The details of the closed form solutions for the 

J and GMN rates can be found in Lin et al. ‎[60] and only the final stress solutions at 

the end of each deformation step are reported herein. 

 

Figure ‎2-3- Four-step loading 

Step 1- Stretching 0≤ 𝑡 ≤ 1 

The deformation for this step can be expressed by 𝑥1 = 𝑋1 ;  𝑥2 = 𝐴𝑋2 ;  𝑥3 = 𝑋3, in 

which 𝐴 = 1 +
𝑢

𝐻
 and 𝑢 linearly increases from zero at 𝑡 = 0 to the maximum of 𝑢  

at 𝑡 = 1. Parameters related to the kinematics of this deformation step are expressed 

as follows: 

𝐹 = 𝑁1⨂𝑁1 + 𝐴𝑁2⨂𝑁2 + 𝑁3⨂𝑁3 

𝑙 = 𝐹 𝐹−1 =
𝐴 

𝐴
𝑁2⨂𝑁2 

𝑑 = 𝑙 ; 𝛺𝐽 = 𝑤 = 0
~

 ;  𝛺𝑅 = 𝑅 𝑅𝑇 = 0
~

 

(‎2-72) 
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Since both the material spin tensor 𝛺𝐽  and the rigid spin 𝛺𝑅  are zero, both the J and 

GMN rates of stress are equivalent to their corresponding material time derivatives. 

Hence, the stress solution for this deformation step for both objective rates is given by 

𝜏11 = 𝜅 𝑙𝑛 𝐴 ;  𝜏22 =  𝜅 + 2𝜇 𝑙𝑛 𝐴 ;  𝜏12 = 0 (‎2-73) 

where 𝜅 and 𝜇 are Lame’s constants.  

Step 2- Shearing at constant stretch 1 ≤ 𝑡 ≤ 2 

The motion of this step can be expressed by 𝑥1 = 𝑋1 + 𝛾 𝑋2 ;  𝑥2 = 𝐴𝑚𝑋2 ;  𝑥3 = 𝑋3 

where 𝛾 is the applied shear and linearly increases over time from zero to a maximum 

of 𝛾𝑚 . The kinematical parameters of this deformation step are given by 

𝐹 = 𝑁1⨂𝑁1 + 𝐴𝑚𝑁2⨂𝑁2 + 𝑁3⨂𝑁3 + 𝛾𝑁1⨂𝑁2 

𝑙 = 𝐹 𝐹−1 =
𝛾 

𝐴𝑚
𝑁1⨂𝑁2 

𝑑 =
𝛾 

2𝐴𝑚
 𝑁1⨂𝑁2 + 𝑁2⨂𝑁1  

𝛺𝐽 = 𝑤 =
𝛾 

2𝐴𝑚
 𝑁1⨂𝑁2 −𝑁2⨂𝑁1  

𝛺𝑅 = 𝜃  𝑁1⨂𝑁2 −𝑁2⨂𝑁1  ; 𝜃 =
𝛾  1 + 𝐴𝑚  

 1 + 𝐴𝑚  
2 + 𝛾2

 

(‎2-74) 

At the end of this step the stress solution for the J rate with the classical hypoelastic 

model is:  

𝜏11 = 𝜅 𝑙𝑛 𝐴𝑚 + 𝜇 1 + 𝑙𝑛 𝐴𝑚   1 − 𝑐𝑜𝑠
𝛾

𝐴𝑚
  (‎2-75) 
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𝜏22 =  𝜅 + 2𝜇 𝑙𝑛 𝐴𝑚 − 𝜇 1 + 𝑙𝑛 𝐴𝑚   1 − 𝑐𝑜𝑠
𝛾

𝐴𝑚
  

𝜏12 = 𝜇 1 + 𝑙𝑛 𝐴𝑚  𝑠𝑖𝑛
𝛾

𝐴𝑚
 

And for the GMN rate the solution is: 

𝜏11 = 2𝜇  1 +
1

𝐴𝑚
  𝑐𝑜𝑠 2𝛽 𝑙𝑛 𝑐𝑜𝑠 2𝛽 + 𝛽 𝑠𝑖𝑛 2𝛽 − 𝑠𝑖𝑛2 𝛽 

− 𝜇 𝑙𝑛 𝐴𝑚 𝑐𝑜𝑠 2𝛽 +  𝜅 + 𝜇 𝑙𝑛 𝐴𝑚  

𝜏22 = −2𝜇  1 +
1

𝐴𝑚
  𝑐𝑜𝑠 2𝛽 𝑙𝑛 𝑐𝑜𝑠 2𝛽 + 𝛽 𝑠𝑖𝑛 2𝛽 − 𝑠𝑖𝑛2 𝛽 

+ 𝜇 𝑙𝑛 𝐴𝑚 𝑐𝑜𝑠 2𝛽 +  𝜅 + 𝜇 𝑙𝑛 𝐴𝑚  

𝜏12 = 𝜇  1 +
1

𝐴𝑚
 𝑐𝑜𝑠 2𝛽  2𝛽 − 2 𝑡𝑎𝑛 2𝛽 𝑙𝑛 𝑐𝑜𝑠 2𝛽 −

𝛾

1 + 𝐴𝑚
 

+ 𝜇 𝑙𝑛 𝐴𝑚 𝑠𝑖𝑛 2𝛽 

(‎2-76) 

in which 𝑡𝑎𝑛 𝛽 =
𝛾

1+𝐴𝑚
. 

Step 3- Removing the extension at constant shear 2≤ 𝑡 ≤ 3 

The motion of this step can be expressed by 𝑥1 = 𝑋1 + 𝛾𝑚  𝑋2 ;  𝑥2 = 𝐴𝑋2 ; 𝑥3 = 𝑋3 

in which 𝐴 = 1 +
𝑢𝑚−𝑢

𝐻
 and 𝑢 linearly increases from zero at 𝑡 = 2 to the maximum 

of 𝑢𝑚  at 𝑡 = 3.  The kinematical parameters of this deformation step are: 
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𝐹 = 𝑁1⨂𝑁1 + 𝐴𝑁2⨂𝑁2 + 𝑁3⨂𝑁3 + 𝛾𝑚𝑁1⨂𝑁2 

𝑙 = 𝐹 𝐹−1 =
𝐴 

𝐴
𝑁2⨂𝑁2 

𝑑 =
𝐴 

𝐴
𝑁2⨂𝑁2 

𝛺𝐽 = 𝑤 = 0
~

 

𝛺𝐺𝑀𝑁 = 𝜃  𝑁1⨂𝑁2 − 𝑁2⨂𝑁1  ;  𝜃 = −
𝛾𝑚𝐴 

 1 + 𝐴 2 + 𝛾𝑚
2  

(‎2-77) 

In step 3 the stress solution for the J rate with the classical hypoelastic model is 

𝜏11 = 𝜅 𝑙𝑛 𝐴 + 𝜇 1 + 𝑙𝑛 𝐴𝑚   1 − 𝑐𝑜𝑠
𝛾𝑚
𝐴𝑚

  

𝜏22 =  𝜅 + 2𝜇 𝑙𝑛 𝐴 − 𝜇 1 + 𝑙𝑛 𝐴𝑚   1 − 𝑐𝑜𝑠
𝛾𝑚
𝐴𝑚

  

𝜏12 = 𝜇 1 + 𝑙𝑛 𝐴𝑚  𝑠𝑖𝑛
𝛾𝑚
𝐴𝑚

 

(‎2-78) 

And for the GMN rate is given by 

𝜏11 = 𝐵1 𝛽 +  𝐶2 + 𝐵2 𝛽  𝑐𝑜𝑠 2𝛽 +  𝐶3 + 𝐵3 𝛽  𝑠𝑖𝑛 2𝛽 

𝜏22 = 𝐵1 𝛽 −  𝐶2 + 𝐵2 𝛽  𝑐𝑜𝑠 2𝛽 −  𝐶3 + 𝐵3 𝛽  𝑠𝑖𝑛 2𝛽 

𝜏12 = − 𝐶3 + 𝐵3 𝛽  𝑐𝑜𝑠 2𝛽 +  𝐶2 + 𝐵2 𝛽  𝑠𝑖𝑛 2𝛽 

(‎2-79) 

in which: 

𝐵1 𝛽 =  𝜅 + 𝜇 𝑙𝑛 𝐴 
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𝐵2 𝛽 =
𝜇

1 + 𝛾𝑚
2
 2𝛾𝑚  𝛽 − 𝛾𝑚 𝑙𝑛 𝑐𝑜𝑠 𝛽  +  1 − 𝛾𝑚

2  𝑙𝑛 𝐴  

𝐵3 𝛽 = −
2𝛾𝑚𝜇

1 + 𝛾𝑚
2
 𝛽𝛾𝑚 + 𝑙𝑛 𝑐𝑜𝑠 𝛽 + 𝑙𝑛 𝐴  

𝐶2 =   𝜏11 𝑡=2 − 𝐵1 𝛽𝑚   𝑐𝑜𝑠 2𝛽𝑚 +  𝜏12 𝑡=2 𝑠𝑖𝑛 2𝛽𝑚 − 𝐵2 𝛽𝑚  

𝐶3 =   𝜏11 𝑡=2 − 𝐵1 𝛽𝑚   𝑠𝑖𝑛 2𝛽𝑚 −  𝜏12 𝑡=2 𝑐𝑜𝑠 2𝛽𝑚 − 𝐵3 𝛽𝑚  

𝛽𝑚 = 𝑎𝑡𝑎𝑛
1 + 𝐴𝑚
𝛾𝑚

 

Step 4- Removing shear and unloading 3≤ 𝑡 ≤ 4 

The deformation at this step is given by 𝑥1 = 𝑋1 + 𝛾𝑋2 ;  𝑥2 = 𝑋2 ; 𝑥3 = 𝑋3 where 𝛾 

linearly decreases from 𝛾𝑚  at 𝑡 = 3 to zero at 𝑡 = 4. The solution of this step is 

identical to the solution given in the first example for the simple shear problem. The 

only difference is the nonzero initial conditions for the stresses. The stress solution 

for the J rate with the classical hypoelastic model is 

𝜏11 = −𝜏22 = 𝜇 + 𝜇 𝑙𝑛 𝐴𝑚 𝑐𝑜𝑠 𝛾𝑚 − 𝛾 − 𝜇 1 + 𝑙𝑛 𝐴𝑚  𝑐𝑜𝑠  𝛾 − 𝛾𝑚
𝐴𝑚 − 1

𝐴𝑚
  

𝜏12 = 𝜇 𝑙𝑛 𝐴𝑚 𝑠𝑖𝑛 𝛾𝑚 − 𝛾 + 𝜇 1 + 𝑙𝑛 𝐴𝑚  𝑠𝑖𝑛  𝛾 − 𝛾𝑚
𝐴𝑚 − 1

𝐴𝑚
  

(‎2-80) 

And for the GMN rate the stress solution is given by 

𝜏11 = −𝜏22 =  𝐶1 + 4𝜇 𝑙𝑛 𝑐𝑜𝑠 𝛽  𝑐𝑜𝑠 2𝛽 +  𝐶2 + 𝜇 4𝛽 − 𝛾  𝑠𝑖𝑛 2𝛽 

𝜏12 =  𝐶2 + 𝜇 4𝛽 − 𝛾  𝑐𝑜𝑠 2𝛽 −  𝐶1 + 4𝜇 𝑙𝑛 𝑐𝑜𝑠 𝛽  𝑠𝑖𝑛 2𝛽 

(‎2-81) 

in which: 
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𝐶1 = −4𝜇 𝑙𝑛 𝑐𝑜𝑠 𝛽𝑚  +  𝜏11 𝑡=3 𝑐𝑜𝑠 2𝛽𝑚 −  𝜏12 𝑡=3 𝑠𝑖𝑛 2𝛽𝑚  

𝐶2 = −𝜇 4𝛽𝑚 − 𝛾𝑚  +  𝜏11 𝑡=3 𝑠𝑖𝑛 2𝛽𝑚 +  𝜏12 𝑡=3 𝑐𝑜𝑠 2𝛽𝑚  

𝛽𝑚 = 𝑎𝑡𝑎𝑛
𝛾𝑚
2

 

The solution from the finite elastic Hookean response for each deformation 

step is as follows: 

Step 1- Stretching 0≤ 𝑡 ≤ 1 

𝜏11 = 𝜅 𝑙𝑛 𝐴 ;  𝜏22 =  𝜅 + 2𝜇 𝑙𝑛 𝐴 ;  𝜏12 = 0 (‎2-82) 

Step 2- Shearing at constant stretch 1≤ 𝑡 ≤ 2 

𝜏11 =  𝜅 + 2𝜇  
1

2
𝑙𝑛 𝐴𝑚 +

1

2
 
ℑ − 𝐴𝑚

 ℑ2 − 1
 𝑐𝑜𝑠𝑕−1 ℑ 

+ 𝜅  
1

2
𝑙𝑛 𝐴𝑚 −

1

2
 
ℑ − 𝐴𝑚

 ℑ2 − 1
 𝑐𝑜𝑠𝑕−1 ℑ  

𝜏22 = 𝜅  
1

2
𝑙𝑛 𝐴𝑚 +

1

2
 
ℑ − 𝐴𝑚

 ℑ2 − 1
 𝑐𝑜𝑠𝑕−1 ℑ 

+  𝜅 + 2𝜇  
1

2
𝑙𝑛 𝐴𝑚 −

1

2
 
ℑ − 𝐴𝑚

 ℑ2 − 1
 𝑐𝑜𝑠𝑕−1 ℑ  

𝜏12 = 𝜇
𝛾

 ℑ2 − 1
𝑐𝑜𝑠𝑕−1 ℑ 

(‎2-83) 

where ℑ =
1+γ2+Am

2

2Am
. 

Step 3- Removing the stretch at constant shear 2≤ 𝑡 ≤ 3 
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𝜏11 =
𝜅 + 2𝜇

2
 𝑙𝑛 𝐴 +  

ℑ − 𝐴

 ℑ2 − 1
 𝑐𝑜𝑠𝑕−1 ℑ +

𝜅

2
 𝑙𝑛 𝐴 −  

ℑ − 𝐴

 ℑ2 − 1
 𝑐𝑜𝑠𝑕−1 ℑ  

𝜏22 =
𝜅

2
 𝑙𝑛 𝐴 +  

ℑ − 𝐴

 ℑ2 − 1
 𝑐𝑜𝑠𝑕−1 ℑ +

𝜅 + 2𝜇

2
 𝑙𝑛 𝐴 −  

ℑ − 𝐴

 ℑ2 − 1
 𝑐𝑜𝑠𝑕−1 ℑ  

𝜏12 = 𝜇
𝛾𝑚

 ℑ2 − 1
𝑐𝑜𝑠𝑕−1 ℑ 

(‎2-84) 

where ℑ =
1+γm

2 +A

2A
. 

Step 4- Removing the shear and back to the initial configuration 3≤ 𝑡 ≤ 4 

𝜏11 = 2𝜇𝛾𝜂 

𝜏12 = 4𝜇𝜂 

(‎2-85) 

where 𝜂 =
asinh

𝛾

2

 4+𝛾2
. 

To plot the different stress responses for the J and GMN rates with the 

response of the finite Hookean model, a Young’s modulus of 𝐸 = 30000 and a 

Poisson’s ratio of 𝜐 = 0.3 is used. Furthermore, it is assumed that 𝐻 = 1, 𝑢𝑚 = 0.8, 

and 𝛾𝑚 = 1. Figure ‎2-4 shows the Cauchy stress responses for the J and GMN rates 

using the classical hypoelastic model and the finite elastic Hookean stress response 

vs. the deformation steps. It should be noted that in this problem Cauchy stress and 

Kirchhoff stress are not identical because 𝐽 ≠ 1.  

Since the deformation is a closed elastic path it is expected that the material 

retains its initial stress-free configuration after the cycle is completed. However, from 
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Figure ‎2-4 it is obvious that the classical hypoelastic model fails to predict such a 

physical response. The finite elastic Hookean model does not show any residual 

elastic stress while the classical hypoelastic model shows residual stresses at the end 

of the cycle for both the J and GMN rates. The conclusion here is that the hypoelastic 

model is not consistent with the notion of Cauchy and Green elasticity and in general 

a hyperelastic potential from which a hypoelastic model is derivable does not exist. 

This results have been reported by many authors (cf. Koji and Bathe ‎[4], Truesdell 

and Noll ‎[6], and Lin et el. ‎[60]).  

 

Figure ‎2-4- Cauchy stress components using the classical hypoelastic model and Finite elastic 

Hookean model 
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The question which remains to be answered is: under which conditions 

hypoelastic models are integrable and consistent with the notion of elasticity? This is 

discussed mathematically in the next section.  

2.6.4.2 Integrability conditions for hypoelastic models 

A general conclusion by Bernstein [16,17] and Truesdell and Noll ‎[6] states 

that hypoelastic models are not elastic materials. Mathematically, this means that 

hypoelastic models, as simple rate-type constitutive models, are not exact differentials 

and therefore are not unconditionally integrable. Investigating the integrability 

conditions of hypoelastic materials is helpful to examine the conditions under which 

the model might provide an elastic response.  

Bernstein [16,17] examined the conditions under which the classical 

hypoelastic model based on the J rate is elastic. Bernstein derived the following 

conditions for hypoelastic model to be integrable in the sense of Cauchy elasticity: 

𝜕𝐵𝑖𝑗𝑘𝑙

𝜕𝜏𝑟𝑠
𝐵𝑟𝑠𝑝𝑞 −

𝜕𝐵𝑖𝑗𝑝𝑞

𝜕𝜏𝑟𝑠
𝐵𝑟𝑠𝑘𝑙 − 𝐵𝑖𝑗𝑘𝑞 𝛿𝑝𝑙 + 𝐵𝑖𝑗𝑝𝑙 𝛿𝑘𝑞 = 0 (‎2-86) 

in which 𝐵𝑖𝑗𝑘𝑙 =
1

2
 𝜏𝑖𝑙𝛿𝑗𝑘 + 𝜏𝑗𝑙 𝛿𝑖𝑘 − 𝜏𝑖𝑘𝛿𝑗𝑙 − 𝜏𝑗𝑘 𝛿𝑖𝑙 +  ℳ 𝜏  𝑖𝑗𝑘𝑙 . Bernstein further 

showed that the hypoelastic model based on the J rate is integrable in the sense of 

Green elasticity if in addition to conditions (‎2-86) the following conditions are 

satisfied: 

 ℳ 𝜏  𝑖𝑗𝑘𝑙 + 𝜏𝑖𝑗 𝛿𝑘𝑙 =  ℳ 𝜏  𝑘𝑙𝑖𝑗 + 𝜏𝑘𝑙𝛿𝑖𝑗  (‎2-87) 
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Integrability conditions (‎2-86) and (‎2-87) show that the grade-zero hypoelastic 

model based on the J rate, where ℳ is constant, is not integrable in general. The only 

case where the model returns an elastic response is under the application of a 

hydrostatic state of stress. 

Since hypoelastic models are affected by the choice of objective rates of 

stress, the final question regarding their integrability is whether any specific objective 

rate of stress exists which makes the model exactly integrable as an elastic material. 

This question is discussed in more detail in the following section. 

2.6.5 Logarithmic (D) rate of stress and integrability conditions 

Unconditional integrability of the hypoelastic model requires that the 

hypoelastic model be an exact differential for at least one specific rate of stress, i.e.: 

𝜏 
∗

= ℳ:𝑑  
𝑑

𝑑𝑡
 𝑅∗

𝑇𝜏𝑅∗ = ℳ:
𝑑

𝑑𝑡
 𝑅∗

𝑇𝜀𝑅∗  
(‎2-88) 

This condition is equivalent to the existence of an objective rate for which 𝑑 = 𝜀 
∗

. In 

other words, we are looking for at least one objective frame of reference for which the 

rate of the Eulerian logarithmic strain in this background is identical to the rate of 

deformation tensor.  

Reinhardt and Dubey ‎[21] derived the following relationship between the 

objective rate of the Eulerian logarithmic strain and the strain rate tensor on the 

principal axis of stretch: 
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𝜀 
∗

𝑖𝑗
 𝑒 

= 𝒬
∗

𝑖𝑗  𝛦𝑖 − 𝛦𝑗  𝑑𝑖𝑗
 𝑒 

= 𝒫
∗

𝑖𝑗𝑑𝑖𝑗
 𝑒 

 ; 𝑖 ≠ 𝑗 (no sum) 

𝜀 
∗

𝑖𝑖
 𝑒 

= 𝑑𝑖𝑖
 𝑒  (no sum) 

(‎2-89) 

where the 𝐸𝑖’s are the principal logarithmic strains and 𝒫
∗

𝑖𝑗  is a scalar scale function, 

which has the following forms for the Jaumann, Green-McInnis-Naghdi and Eulerian 

frames, respectively: 

𝒫
𝐽

𝑖𝑗 =
𝛦𝑖 − 𝛦𝑗

𝑡𝑎𝑛𝑕 𝛦𝑖 − 𝛦𝑗  
 

𝒫
𝐺𝑀𝑁

𝑖𝑗 =
𝛦𝑖 − 𝛦𝑗

𝑠𝑖𝑛𝑕 𝛦𝑖 − 𝛦𝑗  
 

𝒫
𝐸

𝑖𝑗 = 0 

(‎2-90) 

Therefore, to find a corotational frame for which 𝑑 = 𝜀 
∗

, the requirement 𝒫
∗

𝑖𝑗 = 1 

should be met. For such a frame the corresponding 𝒬
∗

 should be 

𝒬
∗

𝑖𝑗 =
1

𝛦𝑖 − 𝛦𝑗
 (‎2-91) 

Based on equation (‎2-91) and using the principal axis method, Reinhardt and Dubey 

‎[21] further derived the following relationship for the spin of the D frame on the 

principal axis of stretch: 

𝛺𝐷,𝑖𝑗
 𝑒 =  

1

𝛦𝑖 − 𝛦𝑗
−
𝜆𝑗

2 + 𝜆𝑖
2

𝜆𝑗
2 − 𝜆𝑖

2 𝑑𝑖𝑗
 𝑒 + 𝑤𝑖𝑗

 𝑒  (‎2-92) 
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This relationship is valid when the stretch tensor has distinct eigenvalues. Reinhardt 

‎[40] further derived basis-free expressions for the D spin for the cases of distinct and 

coincident eigenvalues of the stretch tensor.  

A similar approach was used by Xiao et al. ‎[22] to derive relations between 

the logarithmic strain and strain rate tensor. Xiao et al. ‎[61] proved that any material 

spin 𝛺𝑀  can be obtained by the following general relationship: 

𝛺𝑀 = 𝑤 +  𝑕 
𝜆𝑖

2

𝐼1
,
𝜆𝑗

2

𝐼1
 𝑃𝑖𝑑𝑃𝑗

𝑚

𝑖≠𝑗

= 𝑤 + 𝑁𝑀  (‎2-93) 

in which 𝜆𝑖
2’s and  𝑃𝑖’s are the eigenvalues and eigenprojections of the left Cauchy-

Green tensor, 𝑏 = 𝐹𝐹𝑇 , 𝐼1 = tr 𝑏, and 𝑕 is the corresponding skew-symmetric spin 

function. For the case of the logarithmic rate and defining ℷ𝑖𝑗 =
𝜆𝑖

𝜆𝑗
 , the spin function 

𝑁𝑙𝑜𝑔  is given by 

𝑁𝑙𝑜𝑔 =   
1 + ℷ𝑖𝑗

2

1 − ℷ𝑖𝑗
2 +

1

𝑙𝑛 ℷ𝑖𝑗
 𝑃𝑖𝑑𝑃𝑗

𝑚

𝑖≠𝑗

 (‎2-94) 

A basis-free expression for the logarithmic spin was further derived by Xiao et 

al. ‎[61] as follows: 
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𝑁𝑙𝑜𝑔 =  

0                                                          ;  𝜆1 = 𝜆2 = 𝜆3

𝒽 𝑏𝑑                                                  ;  𝜆1 ≠ 𝜆2 = 𝜆3

𝒽1 𝑏𝑑 + 𝒽2 𝑏
2𝑑 + 𝒽3 𝑏

2𝑑𝑏   ;  𝜆1 ≠ 𝜆2 ≠ 𝜆3

  

𝒽 =
1

𝜆1
2 − 𝜆2

2  
1 + ℷ12

2

1 − ℷ12
2 +

1

𝑙𝑛 ℷ12
  

𝒽𝑘 = −
1

△
  −𝜆𝑖

2 
3−𝑘

 
1 + ℯ𝑖

2

1 − ℯ𝑖
2 +

1

𝑙𝑛 ℯ𝑖
 

3

𝑖=1

 ; 𝑘 = 1,2,3 

 𝑏𝑑 = 𝑏𝑑 − 𝑑𝑏 

 𝑏𝑟𝑑 = 𝑏𝑟𝑑 − 𝑑𝑏𝑟  

 𝑏𝑟𝑑𝑏𝑠 = 𝑏𝑟𝑑𝑏𝑠 − 𝑏𝑠𝑑𝑏𝑟  

(‎2-95) 

where ℯ1 =
𝜆2

𝜆3
, ℯ2 =

𝜆3

𝜆1
, ℯ3 =

𝜆1

𝜆2
, and △=  𝜆1

2 − 𝜆2
2  𝜆2

2 − 𝜆3
2  𝜆3

2 − 𝜆1
2 .  

Xiao et al. [26,62] further examined the integrability of the hypoelastic model 

based on the logarithmic (D) spin. For a general hypoelastic model 𝜏 
log

= ℳ 𝜏 : 𝑑 

and following the work of Bernstein [16,17], the following integrability conditions 

were expressed for the hypoelastic model based on the logarithmic spin in the sense 

of Cauchy elasticity 

𝜕ℳ𝑘𝑙𝑚𝑛
−1

𝜕𝜏𝑝𝑞
=
𝜕ℳ𝑘𝑙𝑝𝑞

−1

𝜕𝜏𝑚𝑛
 

𝜕ℳ𝑘𝑙𝑚𝑛

𝜕𝜏𝑟𝑠
ℳ𝑟𝑠𝑝𝑞 =

𝜕ℳ𝑘𝑙𝑝𝑞

𝜕𝜏𝑟𝑠
ℳ𝑟𝑠𝑚𝑛  

(‎2-96) 
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where ℳ𝑖𝑗𝑝𝑞
−1 ℳ𝑝𝑞𝑘𝑙 = 𝕀𝑖𝑗𝑘𝑙 =

1

2
 𝛿𝑗𝑘 𝛿𝑖𝑙 + 𝛿𝑖𝑘𝛿𝑗𝑙  . Integrability conditions (2-96-1) 

and (2-96-2) are two equivalent conditions applied to the hypoelasticity tensor and its 

inverse form. Xiao et al. [26,62] further showed that in order to satisfy the above 

mentioned integrability conditions, it suffices that a symmetric second order tensor-

valued function of the Kirchhoff stress 𝛹 𝜏  exist such that 

ℳ−1 = 𝛻𝛹 𝜏  (‎2-97) 

where the operator 𝛻 denotes gradient with respect to 𝜏. 

Xiao et al. ‎[62] further showed that a hypoelastic model based on the 

logarithmic spin, which is also integrable as an isotropic Cauchy elastic material, will 

be consistent with the notion of Green elasticity (hyperelasticity) if the fourth-order 

hypoelasticity tensor possesses main diagonal symmetry 

ℳ𝑖𝑗 𝑘𝑙 = ℳ𝑘𝑙𝑖𝑗  (‎2-98) 

Ericksen ‎[18] investigated the existence of a hypoelastic potential for the case 

of the Jaumann spin for which a scalar invariant hypoelastic potential 𝛱 exist such 

that with another scalar invariant potential 𝛤, the stress power can be expressed by 

𝜏: 𝑑 = 𝛤𝛱  (‎2-99) 

For such existence, Ericksen ‎[18] showed that the following conditions should be 

met: 
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𝜕𝛩𝑖𝑗

𝜕𝜏𝑘𝑚
−
𝜕𝛩𝑘𝑚
𝜕𝜏𝑖𝑗

 𝛩𝑟𝑠 +  
𝜕𝛩𝑘𝑚
𝜕𝜏𝑟𝑠

−
𝜕𝛩𝑟𝑠
𝜕𝜏𝑘𝑚

 𝛩𝑖𝑗 +  
𝜕𝛩𝑟𝑠
𝜕𝜏𝑖𝑗

−
𝜕𝛩𝑖𝑗

𝜕𝜏𝑟𝑠
 𝛩𝑘𝑚 = 0 (‎2-100) 

in which 𝛩𝑖𝑗 = 𝛤
𝜕𝛱

𝜕𝜏𝑖𝑗
. A similar approach was used by Xiao et al. ‎[62] for the case of 

the logarithmic spin. They extended the Ericksen’s conditions for arbitrary rates of 

stress as follows: 

𝜏: 𝑑 = 𝛤𝛱 = 𝛩: 𝜏 = 𝛩: 𝜏 
∗

= 𝛩:ℳ 𝜏 : 𝑑 
(‎2-101) 

Therefore, the same condition (‎2-100) is required for the existence of a hypoelastic 

potential for the case of the logarithmic rate.  

2.6.6 Unconditional integrability of the grade-zero hypoelastic model 

based on the logarithmic (D) spin 

According to the Bernstein’s integrability conditions for a grade-zero 

hypoelastic model, the hypoelastic model based on the Jaumann rate is not integrable 

for a general state of stress. However, for the grade-zero logarithmic-based 

hypoelastic model the Xiao et al. integrability conditions are automatically satisfied 

since 
𝜕ℳ

𝜕𝜏
= 0

~
. Therefore, the grade-zero hypoelastic model based on the logarithmic 

spin is unconditionally integrable as a Cauchy and Green elastic model. This means 

that the hypoelastic model based on the logarithmic rate is an exact differential and is 

equivalent to the extended finite isotropic elastic (Hookean) model given in equation 

(‎2-45) 
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𝜏 
𝑙𝑜𝑔

= ℳ:𝑑  𝜏 = 𝜅 𝑡𝑟 𝜀 𝐼 + 2𝜇𝜀 (‎2-102) 

Equation (‎2-102) is unconditionally satisfied and as a result all of the issues of 

hypoelasticity can be resolved when the logarithmic (D) spin is used.  

2.7 Summary 

Issues of hypoelasticity have been attributed to model non-integrability as 

elastic materials. Such issues have questioned the applicability of hypoelastic models 

for constitutive modeling for finite deformation. Integrability conditions of 

hypoelastic models showed that in general the model in not integrable as an elastic 

material. Solution of the inverse problem, which searched for a spinning background 

in which the rate of the logarithmic strain is equivalent to the strain rate tensor, 

resulted into a new spinning frame called the D or logarithmic frame. This frame 

resolved the issues of hypoelasticity and is a good candidate for application in finite 

deformation analysis of elastoplastic hardening materials.  

As a general conclusion, an extra principle for rate-type constitutive models 

for finite deformation should be introduced. According to this principle, objective 

rates of Eulerian quantities used in a rate-type constitutive model should be observed 

in the same background. This principle is called here the principle of rate 

homogeneity and should be satisfied in Eulerian rate-type constitutive models.  
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Chapter 3  

Review of Eulerian rate plasticity 

models and their algorithmic 

implementation 

Infinitesimal plasticity models are based on additive decomposition of strain 

into elastic and plastic parts. Flow rules are obtained through the choice of a specific 

plastic potential and relate the plastic internal variables to their corresponding driving 

forces. Plasticity, as a dissipative phenomenon, should be consistent with the 

thermodynamics of irreversible systems. Therefore, flow rules should be in 

accordance with the second law of thermodynamics.  
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Extension of infinitesimal plasticity to finite deformation can be done by 

considering further modifications of the flow rule. The strain rate tensor and its 

decomposition into elastic and plastic parts are primarily used in the Eulerian rate 

form of elastoplasticity for finite deformations. Numerical implementation of finite 

strain elastoplastic models should maintain the objectivity of the model during time 

integration.  

In this chapter formulation of classical infinitesimal plasticity models based 

on the thermodynamics of irreversible phenomena is reviewed. Next, extension of 

infinitesimal plasticity models for finite deformation based on hypoelastic material 

models and an additive decomposition of the strain rate tensor is reviewed. Finally, 

numerical implementation of the classical rate plasticity models is discussed. The 

integration of classical models is implemented in the ABAQUS finite element 

software through a user subroutine UMAT for different objective rates of stress.  

3.1 Thermodynamics of irreversible deformations 

State variables defining the state of a system can be either observable 

variables which are measurable experimentally or internal variables representing the 

irreversible phenomena of system dissipation ‎[7]. Mathematically, it can be assumed 

that a scalar thermodynamics potential function of state variables exists which defines 

the state laws and relates the state variables to their corresponding driving forces.  
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For the case of elasticity, viscoelasticity, plasticity, viscoplasticity, damage 

and fracture of hardening materials, two observable variables, i.e. the temperature 𝑇 

and the total strain 𝜀, can be introduced. Furthermore, for different dissipative 

phenomena additional internal variables (scalar or tensorial) can be introduced and 

used in macro or micro scale modeling. Examples of internal variables are the plastic 

strain and back stress tensors associated with the relaxed configuration in plasticity 

and the scalar or tensorial damage parameter in ductile damage of materials. Internal 

variables are representative of physical phenomena (for example density of 

dislocations, microstresses, microcracks and cavities) happening during irreversible 

deformation which are not directly measurable by experiment ‎[7].  

Mathematically, the free specific energy potential 𝜓 can be defined in terms of 

observable and internal variables by 

𝜓 = 𝜓 𝜀, 𝑇, 𝜀𝑒 , 𝜀𝑝 , 𝑣𝑘  (‎3-1) 

where 𝜀𝑒  and 𝜀𝑝  are the elastic and plastic parts of the strain, and 𝑣𝑘  represents the 

vector of additional internal variables related to system dissipation. Considering the 

case of infinitesimal plasticity where an additive decomposition of strain is valid, i.e. 

𝜀 = 𝜀𝑒 + 𝜀𝑝 , the thermodynamics potential can be modified as follows: 

𝜓 = 𝜓 𝜀𝑒 , 𝑇, 𝑣𝑘  (‎3-2) 
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Balance of energy for such a system relates the elements of internal work to 

the elements of external work. The differential form of the first law of 

thermodynamics (conservation of energy) is given by 

𝜌𝔢 = 𝜏: 𝑑 + 𝑟 − 𝛻  . 𝑞  (‎3-3) 

where 𝜌 is the density of the material, 𝔢 is the specific internal energy, 𝑟 is the 

volumetric density of internal heat generation, 𝑞    is the heat flux vector, and 𝜏 and 𝑑 are 

the Kirchhoff stress and the rate of deformation tensors.  

According to the second law of thermodynamics, for any dissipative system 

the rate of the specific entropy per unit mass of the system 𝑠  should be greater than or 

equal to the rate of heating divided by temperature 

𝜌 𝑇𝑠 − 𝔢  + 𝜏: 𝑑 − 𝑞 .
𝛻  𝑇

𝑇
≥ 0 

(‎3-4) 

Assuming that the free energy potential is given by 𝜓 = 𝔢 − 𝑇𝑠, with the help of 

equation (‎3-4) the Clausius-Duhem inequality can be obtained as follows ‎[63]: 

𝜏: 𝑑 − 𝜌 𝜓 + 𝑠𝑇  − 𝑞 .
𝛻  𝑇

𝑇
≥ 0 

(‎3-5) 

For the case of infinitesimal deformation it can be assumed that 𝑑 = 𝜀 . Use of 

equations (‎3-2) and (‎3-5) gives 

 𝜏 − 𝜌
𝜕𝜓

𝜕𝜀𝑒
 : 𝜀 𝑒 + 𝜏: 𝜀 𝑝 − 𝜌  𝑠 +

𝜕𝜓

𝜕𝑇
 𝑇 − 𝜌

𝜕𝜓

𝜕𝑣𝑘
: 𝑣 𝑘 − 𝑞 .

𝛻  𝑇

𝑇
≥ 0 (‎3-6) 
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Let’s assume that the elastic deformation happens at constant and uniform 

temperature, i.e. 𝑇 = 0 and 𝛻  𝑇 = 0 and does not affect the plastic internal variables. 

From (‎3-6) it necessarily follows that 

𝜏 = 𝜌
𝜕𝜓

𝜕𝜀𝑒
= −𝜌

𝜕𝜓

𝜕𝜀𝑝
= 𝜌

𝜕𝜓

𝜕𝜀
 (‎3-7) 

Next, assume that a thermal deformation happens at uniform temperature, which has 

no effect on internal plastic variables, and equality (‎3-7) holds. Equation (‎3-6) yields 

‎[7] 

𝑠 = −
𝜕𝜓

𝜕𝑇
 (‎3-8) 

Equations (‎3-7) and (‎3-8) define the thermoelastic laws of any deforming continuous 

system. Equation (‎3-7) shows that the stress tensor 𝜏 is the conjugate variable (driving 

force) associated with the total, elastic, and plastic strains.  Similarly, setting 𝒷𝑘 =

𝜌
𝜕𝜓

𝜕𝑣𝑘
 in (‎3-6) defines the conjugate variables (driving forces) to the internal variables 

𝑣𝑘 . The associated (conjugate) variables define the dual space to the space of the 

observable and internal state variables ‎[7]. Use of equations (‎3-6) to (‎3-8) leads to the 

simplified form of the Clausius-Duhem inequality as follows: 

𝜑 = 𝜏: 𝜀 𝑝 −𝒷𝑘 : 𝑣 𝑘 − 𝑞 .
𝛻  𝑇

𝑇
≥ 0 

(‎3-9) 
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which enforces that the dissipation of the system be positive. The dissipation potential 

𝜑 can further be decoupled into an intrinsic (mechanical) dissipation 𝜑𝑀 = 𝜏: 𝜀 𝑝 −

𝒷𝑘 : 𝑣 𝑘  and a thermal dissipation 𝜑𝑇 = −𝑞 .
𝛻   𝑇

𝑇
.  

Complementary laws for the dissipative state variables are obtained through 

the definition of a continuous and convex scalar valued dissipation potential. Such a 

potential is a function of the flux variables, i.e. 𝜙  𝜀 𝑝 , 𝑣 𝑘 ,
𝑞  

𝑇
 , which has a zero value 

at the origin of the space and relates the internal dissipative variables to their 

corresponding associative (dual) variables by ‎[7] 

𝜏 =
𝜕𝜙

𝜕𝜀 𝑝
 ;  𝒷𝑘 = −

𝜕𝜙

𝜕𝑣 𝑘
 ;  𝛻  𝑇 = −

𝜕𝜙

𝜕  
𝑞 
𝑇 

 (‎3-10) 

Equivalent expressions can be obtained in the dual space of conjugate variables using 

the Legendre-Fenchel transformation ‎[7] 

𝜀 𝑝 =
𝜕𝜙∗

𝜕𝜏
 ;  −𝑣 𝑘 =

𝜕𝜙∗

𝜕𝒷𝑘
 ;  −

𝑞 

𝑇
=

𝜕𝜙∗

𝜕 𝛻  𝑇 
 (‎3-11) 

where 𝜙∗ is dual to 𝜙 and is given by 

𝜙∗ 𝜏, 𝒷𝑘 , 𝛻  𝑇 = 𝑆𝑢𝑝

𝜀 𝑝 ,𝑣 𝑘 ,
𝑞  
𝑇

 𝜏: 𝜀 𝑝 −𝒷𝑘 : 𝑣 𝑘 − 𝑞 .
𝛻  𝑇

𝑇
− 𝜙  𝜀 𝑝 , 𝑣 𝑘 ,

𝑞 

𝑇
   (‎3-12) 

Two further simplifications can be applied to (‎3-10) and (‎3-11). Firstly, as 

stated above it can be assumed that thermal and mechanical dissipations are 
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decoupled. Secondly, it can be assumed that the dual potential 𝜑∗ has a positive-

definite quadratic form in terms of the dual variables and therefore a linear 

relationship exists between the flux variables and their dual driving forces, which is 

known as Onsager’s symmetry property ‎[7].  

3.2 Classical infinitesimal plasticity 

3.2.1 A general quadratic form 

For the class of rate independent plasticity models, internal variables are 

chosen to represent the current size 𝛶 and center coordinates 𝛽 of the yield surface in 

stress space. A general quadratic flow potential for rate independent plasticity can be 

given as follows ‎[30]: 

𝜙 𝜂 =  𝜂:𝕡: 𝜂 (‎3-13) 

where 𝜂 = dev 𝜏 − 𝛽, 𝕡 is a symmetric positive-definite fourth order projection 

tensor, and “dev” denotes the deviatoric part of a symmetric tensor. Such a flow 

potential is homogenous of degree one, i.e. 
𝜕𝜙  𝜂 

𝜕𝜂
: 𝜂 = 𝜙 𝜂  ‎[30].  

The yield criterion for the rate independent plasticity can take the following 

form: 

𝑓 𝜏, 𝛽, 𝛶 =  𝜂: 𝕡: 𝜂 − 𝛶 ≤ 0 (‎3-14) 
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Let’s assume that 𝓆 =  𝛽, 𝛶  defines the vector of hardening plastic variables in 

stress space. The evolution equations for the internal variables can be given by 

𝜏 = 𝛭:  𝜀 − 𝜀 𝑝  

𝜀 𝑝 = 𝜆 𝓈 𝜏, 𝓆  

𝓆 = 𝜆 𝓀 𝜏, 𝓆  

(‎3-15) 

where 𝛭 is the fourth order elasticity tensor, 𝓈 𝜏, 𝓆  and 𝓀 𝜏, 𝓆  define the direction 

of the plastic flow and the hardening functions, respectively, and 𝜆  is the plastic 

multiplier used to satisfy the consistency condition. The hardening function can be a 

constant (linear), piecewise linear, or nonlinear function of plastic internal variables.  

3.2.2 Principle of maximum plastic dissipation 

Assuming that the vector of hardening internal variables are given by 𝓆 =

 𝛽, 𝛶  in the stress space and its corresponding dual vector is given by 𝒬 =  𝑣1, 𝑣2  in 

the strain space, using equation (‎3-9) the plastic dissipation is given by 

𝜑𝑝 𝜏, 𝓆; 𝜀 𝑝 , 𝒬  = 𝜏: 𝜀 𝑝 + 𝓆: 𝒬  (‎3-16) 

where the internal hardening variables are related to their conjugate variables through 

general evolution equations. If the closure of the elastic region is denoted by 𝛦𝜂 , any 

state of stress  𝜏, 𝓆  on the boundary of the elastic region 𝜕𝛦𝜂  should satisfy  

𝜕𝛦𝜂 =   𝜏, 𝓆  𝑓 𝜏, 𝓆 = 0   (‎3-17) 
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And any stress state for which 𝑓 𝜏, 𝓆 > 0 is a non-admissible one. The principle of 

maximum plastic dissipation defines the actual state of stress point  𝜏∗, 𝓆∗  among all 

admissible states  𝜏, 𝓆  for which the plastic dissipation is maximum ‎[30]. Its 

corresponding mathematical representation is given by a constrained maximization 

problem as follows: 

𝜑𝑝 𝜏∗, 𝓆∗; 𝜀 𝑝 , 𝒬  = 𝑀𝐴𝑋
 𝜏,𝓆 ∈𝛦𝜂

  𝜏: 𝜀 𝑝 + 𝓆:𝒬   

Subject to: 𝑓 𝜏, 𝓆 = 0 

(‎3-18) 

Using the method of Lagrange multipliers, a solution for the optimization problem 

given in (‎3-18) can be found. The Lagrangian of this problem is given by 

ℒ 𝜏, 𝓆, 𝜆 ; 𝜀 𝑝 , 𝒬  = −𝜏: 𝜀 𝑝 − 𝓆: 𝒬 + 𝜆 𝑓 𝜏, 𝓆  (‎3-19) 

which results in the following relations between internal variables and their 

corresponding dual variables 

𝜕ℒ

𝜕𝜏
= 0  𝜀 𝑝 = 𝜆 

𝜕𝑓 𝜏, 𝓆 

𝜕𝜏
 

𝜕ℒ

𝜕𝓆
= 0  𝒬 = 𝜆 

𝜕𝑓 𝜏, 𝓆 

𝜕𝓆
 

(‎3-20) 

Equations (‎3-20) define the well-known classical associative plasticity rules for the 

evolution of the state variables. The Kuhn-Tucker loading/unloading (optimality) 

conditions are therefore given by 

𝜆 ≥ 0 , 𝑓 𝜏, 𝓆 ≤ 0 , 𝜆 𝑓 𝜏, 𝓆 = 0 (‎3-21) 
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Another consequence of the principle of maximum plastic dissipation is the 

convexity requirement of the elastic region 𝛦𝜂 , proof of which is given in ‎[30].  

3.3 Algorithmic implementation of infinitesimal plasticity 

Integration of plasticity models discussed in section ‎3.2 is based on the 

iterative solution of the discretized momentum equations. In general three steps are 

used for numerical integration of nonlinear boundary value problems as follows 

[30,34,64]: 

Step1- The incremental displacement vector (or vector of incremental strain) is 

obtained based on the previously converged load increment and linearized form of the 

momentum equations. 

Step 2- State variables are updated for the given incremental strain by integrating the 

corresponding constitutive models.  

Step 3- The balance of the momentum equations is examined based on the updated 

state variables. If the solution is not converged the iterative solution continues by 

returning to step 1.  

In what follows the numerical treatment of step 2 is discussed in detail and the 

numerical treatment of steps 1 and 3 is excluded; the reader is referred to references 

[30,34,64]. The focus is on the integration of the constitutive models in step 2 and its 

corresponding linearized form.  
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3.3.1  Closest point projection method 

Let’s assume that a set of differentials for classical plasticity is given by the 

following evolution equations: 

𝜏 = 𝛭:  𝜀 − 𝜀 𝑝  

𝜀 𝑝 = 𝜆 𝓈 𝜏, 𝓆  

𝓆 = 𝜆 𝓀 𝜏, 𝓆  

𝑓 𝜏, 𝓆 ≤ 0 

(‎3-22) 

where the elasticity tensor 𝛭 is assumed to be constant. An associative plasticity 

version of (‎3-22) can be obtained by choosing 𝓈 𝜏, 𝓆 =
𝜕𝑓 𝜏,𝓆 

𝜕𝜏
 and 𝓀 𝜏, 𝓆 =

−𝛻𝛨 𝒬 :
𝜕𝑓 𝜏,𝓆 

𝜕𝓆
 where 𝛻 denotes the gradient operator of a scalar or tensor with 

respect to its argument. The objective is to integrate the evolution equations (‎3-22) 

with the known initial conditions 

 𝜀, 𝜀𝑝 , 𝜏, 𝓆 𝑡=𝑡𝑛 =  𝜀𝑛 , 𝜀𝑛
𝑝

, 𝜏𝑛 , 𝓆𝑛  (‎3-23) 

for a given incremental strain (displacement) of ∆𝜀 (∆𝑢) such that the updated state 

variables 𝜀𝑛+1, 𝜀𝑛+1
𝑝 , 𝜏𝑛+1, 𝓆𝑛+1 at time 𝑡𝑛+1 = 𝑡𝑛 + ∆𝑡 satisfy the consistency 

condition 𝑓 𝜏𝑛+1, 𝓆𝑛+1 = 𝑓𝑛+1 = 0. 

Applying an implicit backward-Euler integration scheme to the set of 

equations given in (‎3-22) yields 
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𝜏𝑛+1 = 𝜏𝑛 + 𝛭:  ∆𝜀 − ∆𝜀𝑝  

𝜀𝑛+1
𝑝

= 𝜀𝑛
𝑝

+ ∆𝜆𝑛+1𝓈 𝜏𝑛+1 , 𝓆𝑛+1  

𝓆𝑛+1 = 𝓆𝑛 + ∆𝜆𝑛+1𝓀 𝜏𝑛+1 , 𝓆𝑛+1  

(‎3-24) 

which yields the following form for the case of associative plasticity: 

𝜏𝑛+1 = 𝜏𝑛 + 𝛭:  ∆𝜀 − ∆𝜀𝑝  

𝜀𝑛+1
𝑝

= 𝜀𝑛
𝑝

+ ∆𝜆𝑛+1𝜕𝜏𝑓 𝜏𝑛+1 , 𝓆𝑛+1  

𝓆𝑛+1 = 𝓆𝑛 − ∆𝜆𝑛+1𝛻𝑛+1𝛨 𝑄𝑛+1 : 𝜕𝓆𝑓 𝜏𝑛+1 , 𝓆𝑛+1  

(‎3-25) 

The Kuhn-Tucker optimality conditions however require that at time 𝑡𝑛+1 the 

following be satisfied: 

𝑓𝑛+1 ≤ 0 , ∆𝜆𝑛+1 ≥ 0 , ∆𝜆𝑛+1𝑓𝑛+1 = 0 (‎3-26) 

Let’s define an elastic predictor (trial) step by freezing the plastic internal 

variables as follows: 

𝑓𝑛+1
∗ = 𝑓 𝜏𝑛+1

∗ , 𝓆𝑛+1
∗   

𝜏𝑛+1
∗ = 𝜏𝑛 + 𝛭: ∆𝜀 

𝓆𝑛+1
∗ = 𝓆𝑛  

(‎3-27) 

where a superscript 
*
 indicates the trial state of the state variables. The Kuhn-Tucker 

optimality condition is solely defined by the state of the trial yield function ‎[30]  



79 

 

𝑓𝑛+1
∗ < 0  ∆𝜆𝑛+1 = 0 

𝑓𝑛+1
∗ > 0 ∆𝜆𝑛+1 > 0 

(‎3-28) 

Proof of (3-28) can be found by first proving that 𝑓𝑛+1
∗ ≥ 𝑓𝑛+1. The convexity of 

elastic region requires that the following be satisfied ‎[30] 

𝑓𝑛+1
∗ − 𝑓𝑛+1 ≥  𝜏𝑛+1

∗ − 𝜏𝑛+1 : 𝜕𝜏𝑓𝑛+1 +  𝓆𝑛+1
∗ − 𝓆𝑛+1 : 𝜕𝓆𝑓𝑛+1 (‎3-29) 

with the help of (‎3-25) and (‎3-27), equation (‎3-29) yields 

𝑓𝑛+1
∗ − 𝑓𝑛+1 ≥ ∆𝜆𝑛+1 𝜕𝜏𝑓𝑛+1:𝑀: 𝜕𝜏𝑓𝑛+1 + 𝜕𝓆𝑓𝑛+1: 𝛻𝑛+1𝛨 𝒬𝑛+1 : 𝜕𝓆𝑓𝑛+1  (‎3-30) 

Assuming that both 𝑀 and ∇𝑛+1𝛨 𝒬𝑛+1  are positive definite fourth-order tensors, 

equation (‎3-30) is either zero or positive and as a result 𝑓𝑛+1
∗ ≥ 𝑓𝑛+1. Now let’s 

assume that 𝑓𝑛+1
∗ < 0, which immediately indicates that 𝑓𝑛+1 < 0 and the discrete 

Kuhn-Tucker optimality condition leads to ∆𝜆𝑛+1 = 0. As a result, the incremental 

step is elastic and the updated variables are the same as their trial states. On the other 

hand, if 𝑓𝑛+1
∗ > 0 then the discrete Kuhn-Tucker optimality condition implies that  

∆𝜆𝑛+1 > 0 and as a result 𝑓𝑛+1 = 0 for plastic consistency. Therefore, the step is 

plastic and the trial state should be corrected in order to satisfy plastic consistency. 

Geometrically, it can be shown that the plastic corrector step is the closest 

point projection of the trial state 𝜏𝑛+1
∗  onto the current yield surface as shown in 

Figure ‎3-1‎[30]. 
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Figure ‎3-1- Geometric representation of the closest point projection concept ‎[30] 

3.3.2 Plastic corrector step using the return mapping algorithm 

In what follows the radial return mapping algorithm originally proposed by 

Wilkins ‎[65] is used for numerical integration of the special case of the J2 associative 

flow theory and nonlinear mixed isotropic/kinematic hardening.  

Assuming that the vector of internal variables is given by 𝑞 =  𝛽, 𝛶  where 𝛽 

is the back stress tensor and 𝐸𝑝,𝑒𝑞  represents the accumulated plastic strain, the Mises 

yield potential is given by 

𝑓 𝜏, 𝛽, 𝛶 =  𝜂: 𝜂 −  
2

3
 𝜎0 + 𝛶 𝐸𝑝,𝑒𝑞    

𝛶  𝐸𝑝,𝑒𝑞  = 𝐾  𝐸𝑝,𝑒𝑞   

𝛽 = − 
2

3
𝐻  𝐸𝑝,𝑒𝑞  𝜕𝛽𝑓 𝜏, 𝛽, 𝛶  

𝐸 𝑝,𝑒𝑞 =  
2

3
𝜆  

(‎3-31) 
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where 𝜂 = dev 𝜏 − 𝛽 is the shift stress tensor, and 𝛫 𝐸𝑝,𝑒𝑞   and 𝛨 𝐸𝑝,𝑒𝑞   are the 

nonlinear hardening moduli for the subsequent yield surface size and center, 

respectively. Defining 𝑛 = 𝜕𝜂𝑓 =
𝜕𝑓

𝜕𝜂
= 𝜕𝜏𝑓 = −𝜕𝛽𝑓  as the unit normal vector to the 

yield surface in the deviatoric stress space and using the implicit backward-Euler 

method yield: 

𝜀𝑛+1
𝑝

= 𝜀𝑛
𝑝

+ ∆𝜆𝑛+1𝑛𝑛+1 

𝑠𝑛+1 = 𝑑𝑒𝑣 𝜏𝑛+1 = 𝑠𝑛 + 2𝜇 𝑑𝑒𝑣 𝛥𝜀 − 𝛥𝜀𝑝 = 𝑠𝑛 + 2𝜇𝑑𝑒𝑣𝛥𝜀 − 2𝜇∆𝜆𝑛+1𝑛𝑛+1 

𝛶𝑛+1 = 𝛶𝑛 +  𝛫 𝐸𝑛+1
𝑝,𝑒𝑞

 − 𝛫 𝐸𝑛
𝑝,𝑒𝑞

  = 𝛶𝑛 + ∆𝛫 

𝛽𝑛+1 = 𝛽𝑛 +  
2

3
 𝛨 𝐸𝑛+1

𝑝,𝑒𝑞
 − 𝛨 𝐸𝑛

𝑝,𝑒𝑞
  𝑛𝑛+1 = 𝛽𝑛 +  

2

3
∆𝐻𝑛𝑛+1 

𝐸𝑛+1
𝑝,𝑒𝑞

= 𝐸𝑛
𝑝,𝑒𝑞

+  
2

3
∆𝜆𝑛+1 

(‎3-32) 

where 𝜇 is the shear modulus of the material. The trial state is defined by freezing the 

plastic internal variables 

𝜀𝑛+1
𝑝 ∗

= 𝜀𝑛
𝑝

 ;  𝛶𝑛+1
∗ = 𝛶𝑛  ;  𝛽𝑛+1

∗ = 𝛽𝑛  (‎3-33) 

Knowing that 𝑠𝑛+1 = 𝑠𝑛 + 2𝜇dev𝛥𝜀 − 2𝜇∆𝜆𝑛+1𝑛𝑛+1 = 𝑠𝑛+1
∗ − 2𝜇∆𝜆𝑛+1𝑛𝑛+1 the 

trial shift stress tensor is 𝜂𝑛+1
∗ = 𝑠𝑛+1

∗ − 𝛽𝑛+1
∗ = 𝑠𝑛+1

∗ − 𝛽𝑛 . Therefore, the trial yield 

function takes the following form: 
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𝑓𝑛+1
∗ =  𝜂𝑛+1

∗  − 
2

3
 𝜎0 + 𝛶𝑛  

(‎3-34) 

where  𝜂𝑛+1
∗  =  𝜂𝑛+1

∗ : 𝜂𝑛+1
∗  is the norm of the trial shift stress tensor. The actual 

state of the yield surface is given by 𝑓𝑛+1 =  𝜂𝑛+1 −  
2

3
 𝜎0 + 𝛶𝑛+1 . Knowing that 

𝜂𝑛+1 = 𝑠𝑛+1 − 𝛽𝑛+1 = 𝑠𝑛+1
∗ − 𝛽𝑛 − 2μ∆𝜆𝑛+1𝑛𝑛+1 − 

2

3
∆𝐻𝑛𝑛+1  yields: 

𝜂𝑛+1 = 𝜂𝑛+1
∗ − 2𝜇∆𝜆𝑛+1 +  

2

3
∆𝐻 𝑛𝑛+1 (‎3-35) 

From equation (‎3-35) the coaxiality of the trial and actual unit normal vectors can be 

concluded. Knowing that 𝜂𝑛+1 =  𝜂𝑛+1 𝑛𝑛+1 and 𝜂𝑛+1
∗ =  𝜂𝑛+1

∗  𝑛𝑛+1
∗ , equation 

(‎3-35) yields 

 𝜂𝑛+1 𝑛𝑛+1 =  𝜂𝑛+1
∗  𝑛𝑛+1

∗ −  2𝜇∆𝜆𝑛+1 +  
2

3
∆𝐻 𝑛𝑛+1 (‎3-36) 

Equation (‎3-36) implies that the trial unit normal vector 𝑛𝑛+1
∗ =

𝜂𝑛+1
∗

 𝜂𝑛+1
∗  

, which is 

known from the trial state, is in the direction of the actual unit normal vector 𝑛𝑛+1 =

𝜂𝑛+1

 𝜂𝑛+1 
, which is not known and should be found. This property shows that the plastic 

corrector step is in the radial direction to the yield surface and the trial unit vector 

remains unchanged during the plastic update. As a result, the trial unit normal vector 
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solely defines the direction of the return to the actual yield surface. Knowing that trial 

and actual directions are coincident, equation (‎3-36) yields 

 𝜂𝑛+1 =  𝜂𝑛+1
∗  −  2𝜇∆𝜆𝑛+1 +  

2

3
∆𝐻  (‎3-37) 

Using equation (‎3-37), the actual state of the yield surface is given by 

𝑓𝑛+1 =  𝜂𝑛+1 −  
2

3
 𝜎0 + 𝛶𝑛+1 = 𝑓𝑛+1

∗ − 2𝜇∆𝜆𝑛+1 − 
2

3
∆𝐻 − 

2

3
∆𝛫=0 (‎3-38) 

Equation (‎3-38) is a nonlinear function of the plastic multiplier ∆𝜆𝑛+1, which 

can be iteratively solved using a local Newton-Raphson algorithm. Since this function 

is a convex function, its convergence is guaranteed. Details of the local Newton 

iterative solution is given in ‎[30].  

Once the plastic consistency ∆𝜆𝑛+1 is calculated, the actual state of stress and 

back stress tensors can be found using equation (‎3-32). A geometric representation of 

the radial return mapping algorithm is given in Figure ‎3-2. 

 

Figure ‎3-2- Geometric representation of the radial return mapping algorithm ‎[30] 
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The plastic corrector step is completed by updating the plastic internal 

variables for the current increment of strain; however, linearization of the algorithm is 

necessary for the calculation of the vector of incremental displacement corresponding 

to the next load increment. A simple way is to use the continuum tangent modulus for 

the linearized modulus; however, quadratic convergence of the Newton method is not 

guaranteed because the linearized modulus is dependent on the method of integration. 

An algorithmic linearization based on the integration scheme has been suggested 

instead of a continuum tangent modulus by several researchers (cf. Simo and Hughes 

‎[30] and Bathe ‎[64]), which guarantees the quadratic convergence norm of the 

Newton method and is called the “algorithmic or consistent tangent modulus”. An 

exact linearization of the radial return mapping algorithm for the J2 flow theory and 

mixed nonlinear hardening has been given in ‎[30] which will be summarized below.  

Knowing that 𝜏𝑛+1 = 𝜅 tr 𝜀𝑛+1 𝐼 + 2μ dev𝜀𝑛+1 − ∆𝜆𝑛+1𝑛𝑛+1  yields 

𝑑𝜏𝑛+1 =  𝑀 − 2𝜇𝑛𝑛+1⨂
𝜕∆𝜆𝑛+1

𝜕𝜀𝑛+1
− 2𝜇∆𝜆𝑛+1

𝜕𝑛𝑛+1

𝜕𝜀𝑛+1
 :d𝜀𝑛+1 (‎3-39) 

where 𝑀 = 𝜅𝐼⨂𝐼 + 2𝜇  𝕀 −
1

3
𝐼⨂𝐼  is the constant elasticity tensor. It can be shown 

that 
𝜕𝑛

𝜕𝜂
=

1

 𝜂 
 𝕀 − 𝑛⨂𝑛 . The consistency condition leads to 

𝜕∆𝜆𝑛+1

𝜕𝜀𝑛+1
=  1 +

𝛫𝑛+1
′ + 𝛨𝑛+1

′

3𝜇
 

−1

𝑛𝑛+1 (‎3-40) 

And as a result the algorithmic tangent modulus is given by 
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𝑀𝑛+1
𝑎𝑙𝑔

= 𝜅𝐼⨂𝐼 + 2𝜇𝐶𝑛+1  𝕀 −
1

3
𝐼⨂𝐼 − 2𝜇𝐷𝑛+1𝑛𝑛+1⨂𝑛𝑛+1 

𝐶𝑛+1 = 1 −
2𝜇∆𝜆𝑛+1

 𝜂𝑛+1
∗  

 

𝐷𝑛+1 =
3𝜇

3𝜇 + 𝛫𝑛+1
′ + 𝛨𝑛+1

′ +
2𝜇∆𝜆𝑛+1

 𝜂𝑛+1
∗  

 

(‎3-41) 

A general return mapping algorithm for the plastic corrector step for the cases 

of a general yield function and arbitrary flow rule is given in ‎[30] based on two 

different iterative methods, i.e. the closest point projection method and the cutting 

plane algorithm.  

3.4 Extension of the infinitesimal plasticity models to finite 

deformation based on hypoelastic material models 

An extension of the classical plasticity to finite deformation is possible using 

the Eulerian strain rate tensor. The Eulerian strain rate tensor is a preferred measure 

of deformation for flow-type constitutive models since it does not need a reference 

configuration and is a pure Eulerian tensor ‎[5]. The class of Eulerian rate-type 

formulation of elastoplasticity provides a simple extension of the classical model for 

finite deformation and their corresponding numerical implementation.  

The strain rate tensor can be decomposed into its elastic and plastic parts 

similar to the case of infinitesimal plasticity. However, such an additive 
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decomposition of the strain rate tensor should be used only under certain conditions. 

Furthermore, extension of the infinitesimal loading/unloading conditions to hypo-

based plasticity models requires additional restrictions on the yield condition and the 

objective rates used in the model. These are discussed in the following sections.  

3.4.1 Hypo-based finite plasticity models 

A proper decomposition of deformation into its elastic and inelastic parts is 

the key step for the extension of classical models to finite deformations. An Eulerian 

rate formulation of plasticity requires an Eulerian measure of deformation. Since the 

flow rules are differential types the strain rate tensor can be used as an appropriate 

measure of deformation. The strain rate tensor can be additively decomposed into its 

elastic and plastic parts by 

𝑑 = 𝑑𝑒 + 𝑑𝑝  (‎3-42) 

However, physical applicability of decomposition (‎3-42) remains to be investigated, 

and will be discussed later in this section. The elastic part of the strain rate tensor can 

be related to the Kirchhoff stress through a hypoelastic model by 

𝜏 
∗

= ℳ:𝑑𝑒  
(‎3-43) 

And the Mises flow potential can be expressed in terms of the Kirchhoff stress and 

the Eulerian back stress tensor 

𝑓 = 𝑓 𝜏, 𝛽, 𝛶  (‎3-44) 
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where 𝛽 and 𝛶 are the two tensorial and scalar variables representing the kinematic 

and isotropic hardening of the material in the stress space, respectively.  

A spatial fixed observer in space sets up the dissipation potential on the 

current configuration by 

𝜑𝑝  𝜏, 𝓆; 𝑑𝑝 , 𝑄 
𝑜

 = 𝜏: 𝑑𝑝 + 𝓆:𝑄 
𝑜

 (‎3-45) 

where 𝓆 is the vector of plastic internal variables in the stress space and 𝑄 
o

 is its 

corresponding objective rate of the dual vector in the strain space. Using the principle 

of maximum plastic dissipation, the following expression for the Lagrangian function 

is obtained 

ℒ  𝜏, 𝓆, 𝜆 ; 𝑑𝑝 , 𝑄 
𝑜

 = −𝜏: 𝑑𝑝 − 𝓆:𝑄 
𝑜

+ 𝜆 𝑓 𝜏, 𝓆  (‎3-46) 

Minimization of the Lagrangian function given in (‎3-46) leads to the following 

expressions for the flow rule: 

𝜕ℒ

𝜕𝜏
= 0  𝑑𝑝 = 𝜆 

𝜕𝑓 𝜏, 𝓆 

𝜕𝜏
 

𝜕ℒ

𝜕𝓆
= 0  𝑄 

𝑜

= 𝜆 
𝜕𝑓 𝜏, 𝓆 

𝜕𝓆
 

(‎3-47) 

Use of (‎3-42), (‎3-43) and (3-47-1) yields 

𝑑 = 𝑀−1: 𝜏 
∗

+ 𝜆 
𝜕𝑓 𝜏, 𝓆 

𝜕𝜏
 (‎3-48) 
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An evolution equation for the internal tensorial variables (back stress tensor) should 

be objective under rigid rotation. As a result, a general evolution equation for the 

back stress tensor should take the following form: 

𝛽 
𝑜

= 𝓀 𝛽, 𝑑𝑝  
(‎3-49) 

Here for simplicity we assume the case of a linear evolution equation for the back 

stress tensor as follows: 

𝛽 
𝑜

= 𝛨𝑑𝑝  
(‎3-50) 

where 𝛨 is the constant hardening modulus. It is worth mentioning that evolution 

equations for scalar plastic variables are objective under rigid rotations and no 

modification is therefore required for such equations. Equations (‎3-42) to (‎3-50) 

define the extended form of infinitesimal plasticity models to an Eulerian hypo-based 

model for finite deformations. Such an Eulerian rate model of plasticity has been 

widely used by several researchers for metal plasticity based on the J2 associative 

flow theory (cf. Nagtegaal and DeJong ‎[3], Pinsky et al. ‎[38], Needleman ‎[66], and 

Rolph and Bathe ‎[67]). 

Two concerns regarding the extended hypo-based Eulerian model must be 

discussed in detail. The first concern is toward the physical applicability of the 

additive decomposition of the strain rate tensor given by equation (‎3-42). The second 

concern is related to the choice of objective rates of stress and back stress given in 

equations (‎3-43) and (‎3-50). These are discussed in the following sections.  
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3.4.2 Prager’s yielding stationary condition and choice of objective rates 

In its original form Prager’s yielding stationary states that for a perfect plastic 

material the yield function should be stationary when the stress does not change. The 

same condition applies for work hardening materials where vanishing stress rates 

should result in a stationary state of hardening. Prager ‎[68] examined the suitability of 

different stress rates in the Eulerian rate formulation of elastoplasticity. As a result, 

the well-known Jaumann rate was proposed by Prager as a preferred rate of stress for 

the rate-type evolution equations. However, as was shown in ‎Chapter 2, use of the 

classical Jaumann rate has issues regarding hypoelastic model integrability. While 

Prager’s suggestion for the choice of the Jaumann rate in the stress and back stress 

evolution equations is still valid, the issues regarding the hypoelastic model non-

integrability questions the physical applicability of the Jaumann rate in the Eulerian 

rate model of elastoplasticity.  

Using Prager’s yielding stationary condition, Xiao et al. ‎[69] proved that 

identical objective rates should be used in the stress and back stress evolution 

equations. Furthermore, they have shown that among all of the possible objective 

rates, only the corotational rates can be used for such a purpose. This proof is in 

accordance with the original suggestion of Prager on the use of the Jaumann rate for 

both the stress and back stress evolutions.  
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3.4.3 Self-consistent Eulerian rate model 

The second consideration is related to the physical applicability of the 

decomposition of the strain rate tensor into its elastic and plastic parts. The stress 

power from the balance of energy is given by 

𝑊 = 𝜏: 𝑑 (‎3-51) 

A physical requirement for the additive decomposition of the strain rate tensor 

given by (‎3-42) is the exact decomposition of stress power into an elastic recoverable 

part and a dissipative (irrecoverable) part as follows: 

 𝑊 = 𝜏: 𝑑 = 𝑊 𝑒 + 𝑊 𝑝 = 𝜏:  𝑑𝑒 + 𝑑𝑝  (‎3-52) 

This means that the additive decomposition of the strain rate tensor is physically 

acceptable if the hypoelastic model used for the elastic part of the deformation given 

by equation (‎3-43) is exactly integrable as a Green elastic material. In other words, 

rate-type constitutive models used for the elastic part of the deformation should be 

non-dissipative. Based on the discussion given in ‎Chapter 2, the logarithmic (D) rate 

has been introduced as the unique rate which makes the grade-zero hypoelastic model 

unconditionally integrable as a Cauchy and Green elastic material. As a result, use of 

the additive decomposition of the strain rate tensor is physically acceptable if and 

only if the logarithmic (D) spin is used.  

The self-consistency requirement of the hypoelastic model along with the 

Prager’s yielding stationary criterion suggests the use of the logarithmic spin as the 
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only acceptable objective corotational rate in the Eulerian rate form of 

elastoplasticity. Based on this, Bruhns et al. ‎[27] have introduced a self-consistent 

Eulerian rate model of elastoplasticity for finite plastic deformations.  

3.5 Numerical implementation of the hypo-based plasticity 

models 

Integration of the plasticity models for finite deformation can be done using a 

similar approach as discussed in section ‎3.3. However, the integration method should 

preserve the objectivity of the model under rigid rotations. In this section such 

objective integration schemes are presented and implemented for the solution of 

homogenous and non-homogenous deformation paths.  

3.5.1 Objective integration schemes for hypoelastic models 

Hypoelastic models can be integrated in a rotated configuration. Considering a 

grade-zero hypoelastic model given by 𝜏 
∗

= ℳ:𝑑 in an 𝛺∗-spinning frame and 

defining the rotated counterparts of the Kirchhoff stress and rate of deformation 

tensors by 𝛴 = 𝑅∗
𝑇𝜏𝑅∗ and 𝐷 = 𝑅∗

𝑇𝑑𝑅∗, the hypoelastic model takes the following 

form on the rotated configuration 

𝛴 = ℳ:𝐷 (‎3-53) 
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In equation (‎3-53) it is assumed that the fourth-order hypoelasticity tensor is 

isotropic. Integrating equation (‎3-53) in the time interval  𝑡𝑛 , 𝑡𝑛+1  using the midpoint 

rule yields 

𝛴𝑛+1 = 𝛴𝑛 + ℳ:  𝛥𝑡𝐷𝑛+𝛼  
(‎3-54) 

where 𝛼 defines the method of integration; 𝛼 = 1 and 𝛼 = 0 yield the well-known 

methods of implicit backward-Euler and explicit forward-Euler integration schemes. 

Rotating back equation (‎3-54) onto the fixed background yields 

𝜏𝑛+1 = 𝑅𝑛
𝑛+1𝜏𝑛𝑅𝑛

𝑛+1𝑇 + ℳ: 𝑅𝑛+𝛼
𝑛+1𝛥𝑡𝑑𝑛+𝛼𝑅𝑛+𝛼

𝑛+1𝑇  (‎3-55) 

where 𝑅𝑛
𝑛+1 = 𝑅∗𝑛+1

𝑅∗𝑛
𝑇  and 𝑅𝑛+𝛼

𝑛+1 = 𝑅∗𝑛+1
𝑅∗𝑛+𝛼

𝑇  are the relative frame rotation 

tensors.  

Furthermore, an objective integrated form of 𝛥𝑡𝑑𝑛+𝛼  in (‎3-55) is required. A 

second-order accurate approximation (𝛼 = 0.5) for integration of the rate of 

deformation is given in ‎[30] and is used here as follows: 

𝛥𝑡𝑑𝑛+𝛼 = 𝑓𝑛+𝛼
−𝑇 𝑒𝑛+1𝑓𝑛+𝛼

−1  (‎3-56) 

where 𝑒𝑛+1 =
1

2
 𝑓𝑛+1

𝑇 𝑓𝑛+1 − 𝐼  is the strain at the end of the interval. The relative 

deformation gradients are defined by: 

𝑓𝑛+𝛼 = 𝐹𝑛+𝛼𝐹𝑛
−1 

𝐹𝑛+𝛼 = 𝛼𝐹𝑛+1 +  1 − 𝛼 𝐹𝑛  

(‎3-57) 
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and 𝐹𝑛+1 and 𝐹𝑛  are the known deformation gradients at the start and end of the time 

interval. Equation (‎3-56) is a rotation-independent integrated form of the rate of 

deformation tensor. This can be examined by assuming a rigid motion of the form 

𝑥𝑛+1 = 𝑄𝑥𝑛 + 𝑐 in the interval  𝑡𝑛 , 𝑡𝑛+1 . Such a rigid motion results in 𝑓𝑛+1 = 𝑄 

and 𝑒𝑛+1 =
1

2
 𝑄𝑇𝑄 − 𝐼 = 0; as a result, equation (‎3-56) preserves the objectivity of 

the strain rate tensor under rigid motion. 

The final step to be considered when using equation (‎3-55) is the update of the 

frame rotation based on the given spin tensor. An integration scheme was proposed 

by Hughes and Winget ‎[70] based on the generalized midpoint rule. According to 

their method for an arbitrary orthogonal transformation, the evolution of the rotation 

tensor is given by 

𝑅 ∗ = 𝛺∗𝑅∗ 
(‎3-58) 

Integrating (‎3-58) using the generalized midpoint rule yields 

𝑅∗𝑛+1 − 𝑅∗𝑛 =  𝛥𝑡𝛺∗𝑛+𝛼  𝛼𝑅∗𝑛+1 +  1 − 𝛼 𝑅∗𝑛   
(‎3-59) 

which yields the following relation for the rotation tensor at the end of the time 

interval: 

𝑅∗𝑛+1 =  𝐼 − 𝛼𝛥𝑡𝛺∗𝑛+𝛼 
−1
 𝐼 + 𝛥𝑡 1 − 𝛼 𝛺∗𝑛+𝛼  𝑅∗𝑛  (‎3-60) 

Another integration scheme has been proposed by Simo and Hughes ‎[30] 

based on the exponential mapping method and is given by 
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𝑅∗𝑛+1 = 𝑒𝑥𝑝 𝛥𝑡𝛺∗𝑛+𝛼 𝑅∗𝑛  (‎3-61) 

Use of equation (‎3-61) requires the exponential of the spin tensor during time 

integration. Several different numerical methods for exponential mapping have been 

proposed in the literature (cf. Moler and Loan ‎[71]).  

3.5.2 Extension of the algorithm to hypo-based plasticity models 

Similar to the case of infinitesimal plasticity, the radial return mapping 

algorithm can be used for the integration of the hypo-based J2 flow theory for finite 

deformations. The trial predictor step of the integration is done on the mid-

configuration  𝛼 = 0.5  and a radial return mapping for the corrector step can be 

used on the current configuration  𝛼 = 1 . An algorithmic chart for the case of J2 

flow theory and linear hardening rules is given in ‎[30].  

However, algorithmic (consistent) linearization of the integration scheme is 

complex and is directly affected by different spinning-frames used in the model. 

Exact linearization algorithms for the case of the Jaumann and Green-McInnis-

Naghdi rates are given by Fish and Shek ‎[72] and Voyiadjis and Abed ‎[73].  

3.6 Numerical integration of simple loading paths  

In this section the integration schemes discussed above are used for the hypo-

based plasticity models with three different corotational rates of stress, i.e. the 
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Jaumann, Green-McInnis-Naghdi, and logarithmic (D) rates. The formulation is 

implemented in the ABAQUS ‎[74] commercial software with the help of the user 

defined subroutine UMAT.  

Three different loading schemes have been defined for the stress integration. 

The first two are of the homogenous deformation path defined by simple shearing and 

closed path elliptical loading, respectively. The third loading scheme is a non-uniform 

deformation path of the four-step loading discussed in ‎Chapter 2.  

3.6.1 Simple shear problem 

The problem of simple shear shown in Figure ‎2-1 is considered here first. 

Analytical elastic solutions are plotted in Figure ‎3-3 for a maximum applied shear 

max=8. To verify the developed UMAT results, the simple shear problem was solved 

and compared with the analytical solutions given in section ‎2.6.4.1. Material 

properties used for the numerical integration of this problem are given in Table ‎3-1.  

Table ‎3-1 Material properties for the simple shear problem 

Elastic Modulus (GPa) 195 

Shear Modulus (GPa) 75 

Poisson’s Ratio 0.3 

Yield Stress (MPa) 180 

Hardening Modulus (GPa) 2.0 

Shear Yield Stress Y (MPa) 104 

The elastic numerical solution of the problem is obtained first. Finite element 

(FE) UMAT results as well as ABAQUS built-in formulation results are plotted in 
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Figure ‎3-3. FE results are consistent with the analytical elastic solutions for each rate 

of stress. 

 

Figure ‎3-3- Simple shear problem, analytical ‎[75] and FE results for normalized shear stress 

The problem of simple shear was also solved for 50 elastic cycles of fully 

reversed shear, i.e.  𝛾𝑚𝑖𝑛 = −8 , 𝛾𝑚𝑎𝑥 = 8 , to examine the effect of different rates of 

stress. Figure ‎3-4 and Figure ‎3-5 show the components of the residual stress at the 

end of each cycle. As shown in Figure ‎3-4, no residual shear is observed for the D 

and the Jaumann rates as well as the ABAQUS built-in formulation. However, the 

Green-McInnis-Naghdi rate of stress shows residual shear stress accumulation. For 

the normal component of residual stress shown in Figure ‎3-5, the built-in ABAQUS 

formulation exhibits larger residual stress compared to the other formulations. The 
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normal residual stress component from the Green-McInnis-Naghdi formulation is also 

non-zero, but several orders of magnitude smaller than the ABAQUS built-in results. 

The problem of simple shear is further solved using a bilinear material, 

following Ziegler’s linear kinematic hardening rule. Figure ‎3-6 shows the material 

response for max=8 using different rate formulations obtained from both FE analysis 

and the analytical solution given in ‎[75].  

Similar to the elastic response of material the problem of shear oscillation 

with the Jaumann rate of stress happens for the back stress tensor. No shear 

oscillation is observed for the Green-McInnis-Naghdi and D rates of stress. 

 

Figure ‎3-4- Cyclic simple shear, normalized elastic residual shear stress component results for 

different rate type formulations for 50 cycles 
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Figure ‎3-5- Cyclic simple shear results, normalized elastic residual normal stress component for 

50 cycles, (a) UMAT and ABAQUS result, (b) UMAT results only 

 

Figure ‎3-6- Elasto-plastic simple shear problem (linear kinematic hardening) response using 

different rate formulations from FE and analytical results 
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To investigate the elastoplastic behavior of the material under fully reversed 

cyclic shear loading, the same problem was solved for 50 cycles of fully reversed 

shear load for a maximum applied shear of max=8. Figure ‎3-7 shows the normalized 

residual stress vs. cycle number for different rate formulations. Compared to the other 

formulations, the ABAQUS results show significantly higher residual shear stress 

beyond the first cycle. All formulations exhibit constant shear residual stresses and no 

strain ratchetting or cyclic stress hardening/softening were observed. The cyclic 

strain-stress curves are stabilized after the first cycle.  

 

Figure ‎3-7- Cyclic simple shear results for 50 cycles, normalized residual shear stress using linear 

kinematic hardening rule, (a) UMAT results including ABAQUS results, (b) UMAT results only  
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3.6.2 Elliptical closed path loading 

The problem of closed path cyclic loading has been discussed extensively in 

the literature. Recently, Meyers et al. ‎[76] considered an elliptical loading path of a 

hypoelastic material for several cycles to study the effect of different rates on the 

elastic ratchetting response of the material. Here the same problem of elliptical 

loading is considered and the results are compared with those of Meyers et al. ‎[76]. 

As shown in Figure ‎3-8 a square of side H is loaded using the elliptical loading path. 

The motion is described by ‎[76]: 

𝑥1 = 𝑋1 + 𝛼𝛽
1 − 𝑐𝑜𝑠 𝜙

1 + 𝛼 𝑠𝑖𝑛 𝜙
𝑋2 

𝑥2 =  1 + 𝛼 𝑠𝑖𝑛 𝜙 𝑋2 

(‎3-62) 

 

Figure ‎3-8- Cyclic closed path loading 

where 𝛼 =
𝑏

𝐻
 and 𝛽 =

𝑎

𝑏
. The material properties used for the simulation are given in 

Table ‎3-2. The problem is solved assuming 𝛼 = 0.1 and 𝛽 = 5. The user defined 

subroutine DISP in ABAQUS was used to define the elliptical loading. 
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Table ‎3-2 Material properties for the elliptical cyclic loading problem 

Elastic Modulus (GPa) 200 

Shear Modulus (GPa) 77 

Poisson’s Ratio 0.3 

Yield Stress (MPa) 800 

Hardening Modulus (GPa) 20 

Shear Yield Stress Y (MPa) 462 

 

Figure ‎3-9- Elliptical cyclic loading, normalized Mises stress for 2 cycles, using 3 different stress 

rates, Jaumann, Green-McInnis-Naghdi, and D rates of stress (FE UMAT), ABAQUS 

formulation, and analytical solution 

To examine elastic ratchetting, the same problem was solved for 50 cycles. 

Figure ‎3-10 shows the normalized residual elastic shear and residual normal stress 

components vs. cycle number.  



102 

 

 

Figure ‎3-10- Elliptical cyclic loading results for 50 cycles using different rate formulations, (a) 

normalized residual elastic shear stress, (b) normalized residual elastic normal stress 
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As can be seen from Figure ‎3-10, the residual stress for the Green-McInnis-

Naghdi rate shows an increasing pattern with cycles, while the Jaumann rate and the 

ABAQUS built-in formulation show an oscillatory pattern. Only the D rate of stress 

exhibits no residual stress. The strain-stress cyclic responses for each formulation are 

plotted in Figure ‎3-11. Strain-stress curves clearly show how the rate formulation 

affects the material response. For all the cases except the D rate of stress, elastic 

dissipation is evident. Similar to the results given in ‎[76], only the D rate of stress 

shows the expected elastic behavior under cyclic loading, i.e. no elastic dissipation. 

 

Figure ‎3-11- Strain-Stress curves  for 50 cycles of egg-shaped cyclic loading using different rate 

formulations, (a) ABAQUS Formulation, (b) Jaumann rate UMAT, (c) Green-McInnis-Naghdi 

rate UMAT, (d) D rate UMAT  
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The problem of elliptical cyclic loading is further solved assuming Ziegler’s 

linear kinematic hardening rule. The problem was solved for 50 cycles using different 

rate-type formulations. Figure ‎3-12 shows the normalized residual stress components 

at the end of each cycle for different rate formulations.  

From Figure ‎3-12, the D rate shows a constant residual stress which is not 

affected by the cycles. The Green-McInnis-Naghdi rate shows monotonically 

increasing residual stress which becomes unrealistic for high numbers of cycles. The 

Jaumann and ABAQUS formulations show an oscillatory residual stress response. 

 

Figure ‎3-12- Elliptical cyclic loading results for 50 cycles, normalized residual (a), normal 11, (b) 

shear 12, and (c) normal 22 stresses vs. cycle number for different rate formulations using a 

linear kinematic hardening (Ziegler) rule 
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Figure ‎3-13 shows the cyclic shear strain-stress curves for 50 cycles. From 

Figure ‎3-13 the Jaumann and ABAQUS formulations predict a profound cyclic 

softening material response, while the Green-McInnis-Naghdi rate formulation 

predicts a rather unusual but equally unrealistic response. Only the D rate formulation 

exhibits the expected stabilized hysteresis loop.  

 

Figure ‎3-13- Elliptical cyclic loading results for 50 cycles, shear strain-stress curves using a linear 

kinematic hardening rule 

3.6.3 Non-uniform four-step loading 

The problem of four-step loading solved in ‎Chapter 2 is considered next. 

Unlike the four-step loading discussed in ‎Chapter 2, the deformation applied here is 

not homogeneous and therefore the FE solution requires use of discretized elements. 
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As illustrated in Figure ‎3-14, a 1*1 m
2
 square is subjected to a closed path four-step 

loading at its top edge while the bottom edge is fixed. The loading path is shown in 

Figure ‎3-15. Material properties used for this problem is the same as those given in 

Table ‎3-2 for the problem of elliptical cyclic loading. First the problem was solved 

for 10 complete elastic cycles with the maximum extension and shear displacement 

magnitudes equal to 0.2 (m) each. Therefore, deformations are not large; only 20% of 

maximum extension and a maximum shear of 0.2. Since the stress field is not uniform 

in this problem, no analytical solution is available and use of the finite element 

method is required for a solution. 

 

Figure ‎3-14- Four-step loading, (a) initial configuration (no extension and no shear), (b) after 

extension, (c) after added shear, (d) after removing extension 
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Figure ‎3-15-Four-step loading path 

Quadrilateral 8 noded elements were used in the FE simulation. All of the 

results are reported at the centroid of the element shown in Figure ‎3-16. 

 

Figure ‎3-16- Location of the element and its centroid used for the results output 

Figure ‎3-17 shows the residual elastic shear stresses at the end of each cycle 

for different rates of stress. Again, except for the D rate, all other rates show 

increasing residual stress over cycles. Figure ‎3-18 shows the strain-stress response 

using different rate formulations. The applied deformation is not large (20% 

extension), however, the error accumulation is considerable even after a few cycles. 
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Figure ‎3-17- Four-step loading results for 10 cycles, normalized residual elastic shear stress using 

different rate formulations 

 

Figure ‎3-18- Four-step loading elastic response for 10 cycles, (a) ABAQUS Formulation, (b) 

Jaumann rate UMAT, (c) Green-McInnis-Naghdi rate UMAT, (d) D rate UMAT 
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The problem of closed path four-step loading was further solved assuming 

Ziegler’s linear kinematic hardening rule. The same quadrilateral elements (8 noded) 

were used for this simulation. All the results are reported at the centroid of the 

element which was shown in Figure ‎3-16. The problem is solved for 10 cycles. Figure 

‎3-19 shows the normalized residual stress components vs. cycle number for different 

rate-type formulations. Figure ‎3-20 also shows the shear strain-stress cyclic curves 

obtained for different rate type formulations. 

 

Figure ‎3-19- Four-step loading results for 10 cycles, assuming linear kinematic hardening rule, 

normalized residual stress components 
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Figure ‎3-20- Four-step loading, shear strain-stress response, linear kinematic hardening rule, (a) 

ABAQUS formulation, (b) Jaumann rate, (c) Green-McInnis-Naghdi rate, (d) D rate 

The deformation is not very large, however, differences in response of 

different rate formulations build up very fast and the results even after a few cycles 

deviate significantly. The D rate formulation exhibits a constant residual stress 

response as expected for a stabilized hysteresis loop. The residual stresses for the 

Jaumann, ABAQUS, and Green-McInnis-Naghdi formulations exhibit a mixture of 

oscillatory and monotonically increasing pattern. Also, the cyclic shear strain-stress 

curves for the Jaumann, Green-McInnis-Naghdi, and ABAQUS formulations are not 

stabilized, showing a mix cyclic strain ratchetting and stress hardening. Only, the D 

rate formulation exhibits the expected stabilized cyclic shear strain-stress curve. 
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It should be mentioned that the deformation path for this problem is non-

uniform which necessitates a linearized form of the constitutive model at the end of 

each load increment. The algorithmic tangent modulus for this problem was based on 

the formulation given in [72,73] for the Jaumann and Green-McInnis-Naghdi rates, 

respectively. For the D rate however an exact algorithmic modulus was not 

implemented. The algorithmic modulus used for the Jaumann rate was used for the D 

rate as an approximation. While this approximation does not affect the accuracy of 

the converged solutions it might slow down the convergence rate or sometimes lead 

to the divergence of integration. As a result, the approximation used does not 

guarantee the convergence of the stress integration.  

3.7 Summary 

Extension of the infinitesimal plasticity models for finite deformation and 

their corresponding numerical integration were discussed in this chapter. The 

Eulerian rate-type plasticity models are based on the hypoelastic material models. As 

a result, certain considerations should be taken when such models are used.  

Hypoelastic material models should be exactly integrable and consistent with 

the notion of hyperelasticity. Furthermore, Prager’s yielding stationary requires use of 

objective corotational rates in evolution equations. Such conditions suggest the use of 

the D or logarithmic spin as the only consistent rate in the Eulerian rate models of 

elastoplasticity.  



112 

 

Numerical solutions obtained for different loading paths along with the 

analytical proof of hypoelastic model integrability given in ‎Chapter 2 verify the 

uniqueness of the logarithmic (D) rate. As a result, only the Eulerian rate model of 

plasticity based on the logarithmic (D) rate of stress provides the consistent 

formulation of elastoplasticity for finite deformations. Physically, thermodynamics 

considerations regarding the recoverable and irrecoverable parts of the deformation 

can be satisfied if the logarithmic (D) rate is used in the formulation.  
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Chapter 4  

Finite plasticity based on a unified 

Eulerian rate form of elasticity 

Eulerian rate models of elastoplasticity are mostly based on the additive 

decomposition of the strain rate tensor and hypoelastic material models for the elastic 

part of the deformation and stress update. However, issues with hypoelasticity limit 

the applicability of hypoelastic models in Eulerian rate models to the use of a specific 

rate of stress, as discussed in Chapters 2 and 3.  

In this chapter, an Eulerian rate form of elasticity is presented and used to set 

up a new Eulerian rate model for finite deformation plasticity. The model is based on 

the Eulerian Hencky (logarithmic) strain and additive decomposition of its objective 
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corotational rate. Integrability conditions of the proposed model for a general stress-

dependent isotropic elasticity tensor are investigated and it is shown that the grade-

zero form of the model is unconditionally integrable in the sense of hyperelasticity for 

any objective corotational rate.  

The grade-zero form of the proposed model is used in an Eulerian rate form of 

elastoplasticity. Thermodynamic consistency of the model requires proper definition 

of the conjugate stress for the corotational rate of strain used in the model. Two cases 

of deformation, i.e. the cases of coaxiality and non-coaxiality of stress and strain, are 

discussed in the proposed model. Application of the proposed model to mixed 

nonlinear hardening behavior is further presented. Predicted results by the proposed 

model are in good agreement with the available experimental data of finite fixed-end 

torsional loading of SUS 304 stainless steel tubes ‎[83]. Prediction of the axially 

induced strain (stress) under free-end (fixed-end) finite torsional loading (the Swift 

effect) is of importance since the axially induced strain (stress) remarkably affects the 

cyclic behavior of hardening materials for finite deformation ‎[1]. 

The proposed model does not assign any preference to different objective 

rates and any corotational objective rate of stress can be successfully used in the 

model. 
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4.1 Eulerian rate form of elasticity 

An incremental hyperelastic model can be given in Eulerian form by ‎[47] 

𝛿ℯ =
𝜕2𝒵

𝜕𝓉𝜕𝓉
: 𝛿𝓉 (‎4-1) 

where  ℯ, 𝓉  is an Eulerian conjugate pair of stress and strain and 𝛭−1 𝓉 =
𝜕2𝒵

𝜕𝓉𝜕𝓉
 is 

the instantaneous (stress-dependent) compliance tensor.  

The objectivity and rate homogeneity requirements of a rate model in a 

spinning background discussed in ‎Chapter 2 require that an incremental form of the 

hyperelastic model (‎4-1) be written in terms of identical objective rates, i.e.: 

ℯ 
∗

= 𝛭−1 𝓉 : 𝓉 
∗

 (‎4-2) 

Or equivalently  

𝓉 
∗

= 𝛭 𝓉 : ℯ 
∗

 (‎4-3) 

According to Truesdell and Noll ‎[6] all elastic materials are hypoelastic while the 

inverse statement is not true in general. Here, a more general question is asked: if a 

hyperelastic model given by equation (‎4-1) is derivable from equation (‎4-3). In other 

words, integrability of the Eulerian rate model (‎4-3) in the sense of Cauchy and Green 

elasticity is under question. This is investigated mathematically in the following 

sections.  
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4.1.1 Integrability of the Eulerian rate model of elasticity  

Following the approach used by Bernstein [16,17] the integrability of the 

Eulerian rate model (‎4-3) is investigated here [77,78]. Rotating the Eulerian rate 

model (‎4-3) in its corresponding spinning frame with the rotation tensor 𝑅∗ yields 

𝛴 = 𝛭 𝛴 : 𝛦  (‎4-4) 

in which 𝛴 = 𝑅∗
𝑇𝓉𝑅∗ and 𝛦 = 𝑅∗

𝑇ℯ𝑅∗ are the rotated counterparts of the Eulerian 

stress and strain tensors, respectively. In deriving (‎4-4) it is assumed that the elasticity 

tensor is isotropic, i.e. 𝛭 𝑅∗
𝑇𝓉𝑅∗ = 𝛭 𝓉 . Equation (‎4-4) has the standard form of a 

first-order differential as follows: 

𝜕𝛴

𝜕𝛦
= 𝛭 𝛴  (‎4-5) 

Integrability of equation (‎4-5) can be investigated by differentiating it with respect to 

𝛦 as follows: 

𝜕2𝛴𝑖𝑗

𝜕𝛦𝑚𝑛 𝜕𝛦𝑘𝑙
−

𝜕2𝛴𝑖𝑗

𝜕𝛦𝑘𝑙𝜕𝛦𝑚𝑛
=
𝜕𝛭𝑖𝑗𝑘𝑙  𝛴 

𝜕𝛦𝑚𝑛
−
𝜕𝛭𝑖𝑗𝑚𝑛  𝛴 

𝜕𝛦𝑘𝑙
= 0 (‎4-6) 

Knowing that 
𝜕𝛭 𝑖𝑗𝑘𝑙  𝛴 

𝜕𝛦𝑚𝑛
=

𝜕𝛭 𝑖𝑗𝑘𝑙  𝛴 

𝜕Σ𝑟𝑠

𝜕Σ𝑟𝑠

𝜕𝛦𝑚𝑛
=

𝜕𝛭 𝑖𝑗𝑘𝑙  𝛴 

𝜕Σ𝑟𝑠
𝛭𝑟𝑠𝑚𝑛  𝛴  and substituting it into 

equation (‎4-6) yields 

𝜕𝛭𝑖𝑗𝑘𝑙  𝛴 

𝜕𝛴𝑟𝑠
𝛭𝑟𝑠𝑚𝑛  𝛴 =

𝜕𝛭𝑖𝑗𝑚𝑛  𝛴 

𝜕𝛴𝑟𝑠
𝛭𝑟𝑠𝑘𝑙  𝛴  (‎4-7) 

Since 𝛦 and Σ are arbitrary stress and strain tensors and 𝛭 𝛴  is an isotropic tensor, 

equation (‎4-7) can be re-written in the fixed background as follows: 
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𝜕𝛭𝑖𝑗𝑘𝑙  𝓉 

𝜕𝓉𝑟𝑠
𝛭𝑟𝑠𝑚𝑛  𝓉 =

𝜕𝛭𝑖𝑗𝑚𝑛  𝓉 

𝜕𝓉𝑟𝑠
𝛭𝑟𝑠𝑘𝑙  𝓉  (‎4-8) 

Conditions (‎4-8) are necessary and sufficient conditions for the Eulerian rate model 

given by (‎4-3) to be integrable in the sense of Cauchy elasticity. Conditions (‎4-8) are 

similar to Bernstein’s integrability conditions given by (‎2-86) except that conditions 

(‎4-8) are solely imposed on the spatial elasticity tensor. It is worth mentioning that, 

contrary to Bernstein’s integrability conditions given by (‎2-86), the integrability 

conditions (‎4-8) are derived irrespective of any specific spin tensor.  

Conditions (‎4-8) can be expressed in terms of the compliance tensor. 

Differentiating 𝛭 𝓉 :𝛭−1 𝓉 = 𝕀 with respect to 𝓉 yields: 

𝜕𝛭𝑖𝑗𝑚𝑛
−1

𝜕𝓉𝑝𝑞
𝛭𝑚𝑛𝑘𝑙 + 𝛭𝑖𝑗𝑚𝑛

−1 𝜕𝛭𝑚𝑛𝑘𝑙

𝜕𝓉𝑝𝑞
= 0 (‎4-9) 

Substituting (‎4-9) into (‎4-8) yields 

𝜕𝛭𝑖𝑗𝑘𝑙
−1

𝜕𝓉𝑚𝑛
=
𝜕𝛭𝑖𝑗𝑚𝑛

−1

𝜕𝓉𝑘𝑙
 (‎4-10) 

Conditions (‎4-10) are an equivalent form of integrability conditions (‎4-8) and are 

applied on the compliance tensor. To satisfy (‎4-8) or (‎4-10) it is sufficient that the 

compliance tensor 𝛭−1 𝓉  be an isotropic tensor valued function of 𝓉, i.e.: 

𝛭−1 𝓉 = 𝛻𝛹 𝓉  (‎4-11) 

in which 𝛻 indicates the gradient of a tensor with respect to its argument.  
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For the Green integrability conditions of the Eulerian rate model (4-3), in 

addition to the conditions (‎4-8) or (‎4-10), a scalar function of stress, 𝜁 𝓉 , should 

exist such that: 

𝜁  𝓉 = 𝓉: ℯ 
∗

 (‎4-12) 

where from the unified work conjugacy given by equation (‎2-41) equality 𝓉: ℯ 
∗

= 𝜏: 𝑑 

holds and (‎4-12) generates the same stress power in the spinning background. A 

similar approach used above is followed to investigate the existence of the scalar 

function 𝜁 𝓉 . Transferring equation (‎4-12) to the rotated configuration yields 

𝜁  𝛴 = 𝛴: 𝛦  (‎4-13) 

in which 𝜁  𝛴 = 𝜁  𝑅∗
𝑇𝓉𝑅∗ = 𝜁  𝓉  applies since 𝜁  𝓉  is a scalar function of stress. 

With the help of (‎4-4) equation (‎4-13) can be modified as follows: 

 𝜁  𝛴 = 𝛴:𝛭−1 𝛴 : 𝛴  (‎4-14) 

Equation (‎4-14) has the standard form of a first order differential as follows: 

𝜕𝜁 𝛴 

𝜕𝛴
= 𝛴:𝛭−1 𝛴  (‎4-15) 

Differentiating (‎4-15) with respect to 𝛴 yields the conditions for which equation 

(‎4-15) is an exact differential: 

𝜕2𝜁 𝛴 

𝜕𝛴𝑚𝑛 𝜕𝛴𝑘𝑙
−

𝜕2𝜁 𝛴 

𝜕𝛴𝑘𝑙𝜕𝛴𝑚𝑛
=

𝜕

𝜕𝛴𝑚𝑛
 𝛴𝑖𝑗𝛭𝑖𝑗𝑘𝑙

−1  −
𝜕

𝜕𝛴𝑘𝑙
 𝛴𝑖𝑗𝛭𝑖𝑗𝑚𝑛

−1  = 0 (‎4-16) 

And in the fixed background, equation (‎4-16) can be re-written as follows: 
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𝜕

𝜕𝓉𝑚𝑛
 𝓉𝑖𝑗𝛭𝑖𝑗𝑘 𝑙

−1  𝓉  =
𝜕

𝜕𝓉𝑘𝑙
 𝓉𝑖𝑗𝛭𝑖𝑗𝑚𝑛

−1  𝓉   (‎4-17) 

Conditions (‎4-17) are necessary and sufficient conditions for the Eulerian rate model 

given by (‎4-3), which is integrable as a Cauchy elastic material to be also integrable 

as a Green elastic one. A simplified form of conditions (‎4-17) can be obtained as a 

result of the Cauchy integrability of the model. Expanding (‎4-17) gives: 

𝜕𝓉𝑖𝑗

𝜕𝓉𝑚𝑛
𝛭𝑖𝑗𝑘𝑙

−1 + 𝓉𝑖𝑗
𝜕𝛭𝑖𝑗𝑘𝑙

−1

𝜕𝓉𝑚𝑛
=
𝜕𝓉𝑖𝑗

𝜕𝓉𝑘𝑙
𝛭𝑖𝑗𝑚𝑛

−1 + 𝓉𝑖𝑗
𝜕𝛭𝑖𝑗𝑚𝑛

−1

𝜕𝓉𝑘𝑙
 (‎4-18) 

With the help of (‎4-10), equation (‎4-18) can be simplified as follows: 

𝛭𝑚𝑛𝑘𝑙
−1  𝓉 = 𝛭𝑘𝑙𝑚𝑛

−1  𝓉  (‎4-19) 

So the compliance tensor should possess main diagonal symmetry as a consequence 

of the Green integrability conditions.  

A special case applies to the grade-zero form of the Eulerian rate model (‎4-3) 

where the elasticity tensor is assumed to be constant and isotropic. In this case 

𝜕𝛭

𝜕𝓉
= 0

~
 and the Cauchy and Green integrability conditions given by (‎4-8) and (‎4-19) 

are automatically satisfied. Such an unconditional integrability was expected since the 

grade-zero form of (‎4-3) trivially yields an exact differential of the following form: 

𝑑

𝑑𝑡
 𝑅∗

𝑇𝓉𝑅∗ = 𝛭:
𝑑

𝑑𝑡
 𝑅∗

𝑇ℯ𝑅∗  𝓉 = 𝛭: ℯ (‎4-20) 



120 

 

A special case of the hypoelastic models can be obtained from (‎4-3) if the 

spinning frame is chosen to be a frame having the logarithmic spin and the strain 

measure is the Eulerian Hencky strain. In this case the logarithmic rate of the Eulerian 

Hencky strain and the Kirchhoff stress are work conjugate and 𝜀 
𝑙𝑜𝑔

= 𝑑. Use of the 

Eulerian rate model (‎4-3) in the logarithmic frame yields: 

𝜏 
𝑙𝑜𝑔

= 𝛭 𝜏 : 𝜀 
𝑙𝑜𝑔

= 𝛭 𝜏 : 𝑑 (‎4-21) 

As a result, the same integrability conditions apply to hypoelastic models based on 

the logarithmic spin. This is in agreement with the integrability conditions derived by 

Xiao et al. ‎[26] for the case of hypoelastic models based on the logarithmic spin.  

4.1.2 Elastic potentials 

Following Ericksen ‎[18] and Xiao et al. ‎[26] conditions for the existence of 

hypoelastic potentials given by equations (‎2-100) and (‎2-101), a similar approach can 

be used here for the Eulerian rate model (‎4-3). Since the Eulerian tensors 𝓉 and ℯ are 

work conjugate in an 𝛺∗-spinning frame, i.e. 𝓉: ℯ 
∗

= 𝜏: 𝑑, equation (‎2-101) can be 

extended in the form of: 

𝜏: 𝑑 = 𝛤𝛱 = 𝛤
𝜕𝛱

𝜕𝜏
: 𝜏 = 𝛤

𝜕𝛱

𝜕𝜏
: 𝜏 
∗

= 𝛤
𝜕𝛱

𝜕𝜏
:ℳ 𝜏 : 𝑑 = 𝓉: ℯ 

∗

= 𝛤
𝜕𝛱

𝜕𝓉
:𝛭 𝓉 : ℯ 

∗

 (‎4-22) 

Therefore, elastic potentials exist for the Eulerian rate model (‎4-3) if conditions 

(‎2-100) are satisfied.  
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4.2 Extension to finite deformation plasticity 

Similar to the additive decomposition of the strain rate tensor given by 

equation (‎3-42), in an 𝛺∗-spinning frame of reference an additive decomposition of 

the objective rate of Eulerian strain tensor can be given by ‎[79] 

ℯ 
∗

= ℯ 
∗
𝑒 + ℯ 

∗
𝑝  (‎4-23) 

Such an additive decomposition is physically acceptable if the constitutive model 

used for the elastic part of the deformation generates the exact recoverable part of the 

stress power and the plastic part of the constitutive model generates the corresponding 

dissipative part, i.e.: 

𝓉: ℯ 
∗

= 𝓉: ℯ 
∗
𝑒 + 𝓉: ℯ 

∗
𝑝  (‎4-24) 

Since  ℯ, 𝓉  are 𝛺∗-frame work conjugate and the grade-zero form of the Eulerian rate 

model given by (‎4-3) is unconditionally integrable in the sense of hyperelasticity, the 

elastic part of equation (‎4-24) can be given by 

𝓉 
∗

= 𝛭: ℯ 
∗
𝑒  (‎4-25) 

where 𝛭 is assumed to be constant. Therefore, decomposition (‎4-24) is physically 

acceptable since equation (‎4-25) is an elastic material and generates the recoverable 

part of the stress power ‎[79].  

In the 𝛺∗-spinning frame the plastic part of the deformation can be related to a 

flow potential based on associative plasticity (maximum plastic dissipation) by ‎[79] 
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𝛦 𝑝 = 𝜆 
𝜕𝜙∗
𝜕𝛴∗

 (‎4-26) 

where 𝛦 𝑝 = 𝑅∗
𝑇ℯ 
∗
𝑝𝑅∗. The corresponding Kuhn-Tucker loading/unloading conditions 

are given by 

𝜙∗ ≤ 0 ; 𝜆 ≥ 0 ;  𝜆 𝜙∗ = 0 (‎4-27) 

An observer in the 𝛺∗-spinning frame defines a yield limit by 

𝑓∗ 𝜂∗, 𝛶∗ = 𝜙∗ − 𝛶∗ (‎4-28) 

where 𝜂∗ = dev 𝓉∗ − 𝛽∗ is the shift stress tensor. 𝜙∗ and 𝛶∗ are scalar functions and 

therefore rotation-independent. As a result, the yield surface takes the following form 

in the fixed background: 

𝑓 𝜂, 𝛶 = 𝜙 − 𝛶 (‎4-29) 

The evolution equations for the tensorial internal variables should be objective. To 

satisfy Prager’s yielding stationary requirement, the same objective rate of stress must 

be used for the objective rates of tensorial internal variables (such as back stress 

tensor). Therefore, in the fixed background an evolution equation for the back stress 

tensor can be proposed with the following form ‎[79]: 

𝛽 
∗

= 𝜆 𝓀  𝛽, ℯ 
∗
𝑝  (‎4-30) 

Equations (‎4-23) to (‎4-30) define a unified Eulerian rate form of elastoplasticity for 

arbitrary objective corotational frames of reference.  
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It is worth mentioning that, if the Eulerian Hencky strain is used in the model, 

the Kirchhoff stress is conjugate to the logarithmic (D) rate of the Eulerian Hencky 

strain. As a result, the self-consistent Eulerian rate model of Bruhns et al. ‎[27] is 

derivable from the proposed unified model given by equations (‎4-23) to (‎4-30).  

In what follows it is assumed that only the Eulerian Hencky strain is used in 

the model and any evolution equation is based on this measure of strain.  

4.2.1 Case of coaxial stress and total stretch 

The stress power is scalar and therefore rotation-independent. The principal 

axis representation of the work conjugacy can be given by 

𝜏: 𝑑 = 𝜏𝐸 : 𝑑𝐸  (‎4-31) 

where subscript “E” indicates components of a tensor on the principal axis of the left 

stretch tensor (Eulerian triad). If the Kirchhoff stress is coaxial with the left stretch 

tensor, the principal axis representation of the Kirchhoff stress is a diagonal tensor. 

Therefore, the rate of deformation tensor in equation (‎4-31) can be replaced by any 

arbitrary objective rate of the Eulerian Hencky strain and rotated back to the fixed 

background as follows: 

𝜏: 𝑑 = 𝜏𝐸 : 𝑑𝐸 = 𝜏𝐸 : 𝜀 
∗

𝐸 = 𝜏: 𝜀 
∗

 (‎4-32) 

which states that the conjugate Eulerian stress 𝓉 is equivalent to the Kirchhoff stress 

irrespective of the chosen spinning frame of reference.  
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One example for which the principal axes coincide is the case of isotropic 

elasticity. In this case equation (‎4-25) yields the following rate form of elasticity: 

𝜏 
∗

= 𝛭: 𝜀 
∗

 (‎4-33) 

which is an exact differential and trivially yields the following integrated form for 

arbitrary objective rates: 

𝜏 = 𝛭: 𝜀 (‎4-34) 

In Appendices A and B details of direct integrations of the rate form (‎4-33) under 

simple shear deformation path and four-step closed path loading are given for 

different objective corotational rates.  

4.2.2 Case of non-coaxial stress and total stretch 

In this case the principal axes do not coincide and as a result the Kirchhoff 

stress is not work conjugate to different objective rates of the Eulerian Hencky strain. 

Therefore, use of equation (‎4-25) requires proper definition of the conjugate stress 𝓉 

to the Hencky strain in different spinning backgrounds. Here the case of isotropic 

plasticity for which the elastic part of the deformation is assumed to be isotropic (i.e. 

constant isotropic elasticity tensor) is considered.  

Transferring the unified work conjugacy on the Eulerian triad yields: 

𝜏: 𝑑 = 𝜏𝐸 : 𝑑𝐸 = 𝓉𝐸 : 𝜀 
∗

𝐸  (‎4-35) 
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According to Xiao et al. ‎[56] (see also Reinhardt and Dubey ‎[21], Lehmann et al. 

‎[25], Hill ‎[39], Lehmann and Liang ‎[49], and Scheidler ‎[80]), objective corotational 

rates of strain can be related to the strain rate tensor through a linear transformation 

given by 

𝜀 
∗

= 𝕃∗: 𝑑 (‎4-36) 

where 𝕃∗ = 𝕃∗ 𝑏  is a fourth order transformation tensor function of the left Cauchy-

Green tensor 𝑏. Use of (‎4-35) and (‎4-36) yields 

𝜏 = 𝕃∗: 𝓉 (‎4-37) 

On the principal axis of the left stretch tensor, simple forms of the transformation 

function can be found for different objective rates. In what follows we consider only 

the cases of the Jaumann and Green-McInnis-Naghdi frames without loss of 

generality. Following the work of Reinhardt and Dubey ‎[21], Lehmann et al. ‎[25], 

Hill ‎[39], and Scheidler ‎[80] for an Eulerian measure of strain ℯ = 𝑓 𝑉 , the 

following can be obtained on the Eulerian triad: 

ℯ 
𝐽

𝐸,𝑖𝑗 = 𝑓 
𝐽

 𝑉 𝐸,𝑖𝑗 =
ℷ𝑖𝑗

2 + 1

ℷ𝑖𝑗
2 − 1

𝑓 ℷ𝑖𝑗  𝑑𝐸,𝑖𝑗  ;  ℷ𝑖𝑗 ≠ 1 

ℯ 
𝐺𝑀𝑁

𝐸,𝑖𝑗 = 𝑓 
𝐺𝑀𝑁

 𝑉 𝐸,𝑖𝑗 =
2ℷ𝑖𝑗

ℷ𝑖𝑗
2 − 1

𝑓 ℷ𝑖𝑗  𝑑𝐸,𝑖𝑗  ;  ℷ𝑖𝑗 ≠ 1 

(‎4-38) 
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where ℷ𝑖𝑗 =
𝜆𝑗

𝜆𝑖
 and 𝜆𝑖’s are the principal stretches. The normal components are the 

same as the normal components of the strain rate tensor on the Eulerian triad. Use of 

the Hencky strain measure, i.e. 𝜀 = ln 𝑉 , in (‎4-35) and (‎4-38) yields: 

𝓉∗𝐸,𝑖𝑗 = 𝒽∗ ℷ𝑖𝑗  𝜏𝐸,𝑖𝑗     ;    ℷ𝑖𝑗 ≠ 1 (‎4-39) 

where 𝒽∗ ℷ𝑖𝑗   is a scalar scale function and is dependent on the selected spinning 

frame. For the J and GMN frames the scaling function is given by 

𝒽𝐽 ℷ𝑖𝑗  =
ℷ𝑖𝑗

2 − 1

ℷ𝑖𝑗
2 + 1

1

𝑙𝑛 ℷ𝑖𝑗
 ;  ℷ𝑖𝑗 ≠ 1 

𝒽𝐺𝑀𝑁 ℷ𝑖𝑗  =
ℷ𝑖𝑗

2 − 1

2ℷ𝑖𝑗

1

𝑙𝑛 ℷ𝑖𝑗
 ;  ℷ𝑖𝑗 ≠ 1 

(‎4-40) 

The scale function for the special case of the logarithmic rate of the Eulerian Hencky 

strain is given by 𝒽log  ℷ𝑖𝑗  = 1. For all of the corotational rates ℷ𝑖𝑖 = 1 (normal 

components) and the scale function is given by 𝒽∗ ℷ𝑖𝑖 = 1 and therefore 𝓉∗𝐸,𝑖𝑖 =

𝜏𝐸,𝑖𝑖  (no sum on i). The same thing applies to the case of coincident eigenvalues of the 

stretch tensor. Basis-free expressions for (‎4-39) have been obtained for specific 

objective rates by different researchers (cf. Asghari et al. ‎[54] and references therein). 

4.2.2.1 Application to the simple shear problem  

The problem of simple shear using a bilinear material model based on 

Ziegler’s linear kinematic hardening is considered here as a case of non-coaxial stress 

and total stretch tensors.  
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Defining the shift stress tensor by 𝜂∗𝐸 = 𝓉∗𝐸 − 𝛽∗𝐸  and considering the 

normality rule on the principal axis of the left stretch tensor (Eulerian triad) yields: 

𝜀 𝐸
𝑝

𝑟𝑒𝑙

= 𝜆 
𝜕𝜙∗
𝜕𝓉∗𝐸

 

𝛽 
𝑟𝑒𝑙

= 𝛨𝜀 𝐸
𝑝

𝑟𝑒𝑙

 

(‎4-41) 

where 𝐻 is the hardening modulus and is assumed to be constant. On the Eulerian 

triad the Mises yield function can be given by 

𝜙∗ =  2𝜂∗𝐸,11
2 + 2𝒽∗

2𝜂∗𝐸,12
2 − 𝜏0 (‎4-42) 

where 𝜏0 =  
2

3
𝜎0 and 𝜎0 is the uniaxial yield limit and is assumed to be constant. In 

equation (‎4-41) a superposed “rel” indicates the objective rate of a tensor relative to 

the Eulerian triad and is given by 

 𝑠 𝐸
𝑟𝑒𝑙

= 𝑠 𝐸 + 𝑠𝐸𝛺𝑟𝑒𝑙 − 𝛺𝑟𝑒𝑙 𝑠𝐸 = 𝑅𝐸
𝑇𝑠 
∗

𝑅𝐸 (‎4-43) 

And the relative spin is defined by 𝛺𝑟𝑒𝑙 = 𝑅𝐸
𝑇 𝛺∗ − 𝛺𝐸 𝑅𝐸. Use of equations (‎4-23), 

(‎4-25), and (4-41-1) on the Eulerian triad yields 

𝓉 ∗𝐸

𝑟𝑒𝑙

= 2𝜇  𝜀 𝐸
𝑟𝑒𝑙

− 𝜆 
𝜕𝜙∗
𝜕𝓉∗𝐸

  (‎4-44) 

And therefore the shift stress tensor is given by 
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𝜂 ∗𝐸
𝑟𝑒𝑙

= 2𝜇𝜀 𝐸
𝑟𝑒𝑙

−  2𝜇 + 𝛨 𝜆 
𝜕𝜙∗
𝜕𝓉∗𝐸

 (‎4-45) 

Equations (‎4-41), (‎4-42), and (‎4-45) can be used for the solution of the problem of 

simple shear on the Eulerian triad. The plastic multiplier 𝜆  can be found using the 

consistency condition 𝜙 ∗ = 0. The spin tensors for this motion are given by 

𝛺𝐽 =
𝛾 

2
 𝑁1⨂𝑁2 −𝑁2⨂𝑁1  

𝛺𝐺𝑀𝑁 =
2𝛾 

4 + 𝛾2
 𝑁1⨂𝑁2 −𝑁2⨂𝑁1  

𝛺𝐸 =
𝛾 

4 + 𝛾2
 𝑁1⨂𝑁2 −𝑁2⨂𝑁1  

𝛺𝑙𝑜𝑔 =  
1

4 + 𝛾2
+

𝛾

4 4 + 𝛾2 𝑎𝑠𝑖𝑛𝑕  
𝛾
2
 
 𝛾  𝑁1⨂𝑁2 −𝑁2⨂𝑁1  

(‎4-46) 

All the kinematics variables such as spin tensors and the total stretch and its 

corresponding Hencky strain are known since the motion is uniform. Therefore, ℷ12  

and the orientation of the Eulerian triad are also known during stress integration. 

From the consistency condition one can obtain the plastic multiplier function of the 

shift stress components and eigenvalues of the left stretch tensor, i.e. 𝜆 =

𝛾 𝑔 𝜂∗𝐸,11 , 𝜂∗𝐸,12 , ℷ12; 𝛾 . As a result, the following differentials can be obtained from 

(‎4-41), (‎4-45), and (‎4-46): 
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𝑑𝜂∗𝐸,11

𝑑𝛾
= 2

𝑑𝛺𝑟𝑒𝑙 ,12

𝑑𝛾
𝜂∗𝐸,12 + 2𝜇

𝑑𝜀 𝐸,11

𝑟𝑒𝑙

𝑑𝛾
−  2𝜇 + 𝛨 

𝜂∗𝐸,11

𝜏0
𝑔 𝜂∗𝐸,11 , 𝜂∗𝐸,12 , ℷ12  

𝑑𝜂∗𝐸,12

𝑑𝛾
= −2

𝑑𝛺𝑟𝑒𝑙 ,12

𝑑𝛾
𝜂∗𝐸,11 + 2𝜇

𝑑𝜀 𝐸,12

𝑟𝑒𝑙

𝑑𝛾

−  2𝜇 + 𝛨 𝒽∗
2
𝜂∗𝐸,12

𝜏0
𝑔 𝜂∗𝐸,11 , 𝜂∗𝐸,12 , ℷ12  

(‎4-47) 

where 𝜂∗𝐸,11
2 + 𝒽∗

2𝜂∗𝐸,12
2 =

𝜏0
2

2
. Equations (‎4-47) can be numerically integrated for the 

cases of the J and GMN rates. A fourth-order Runge-Kutta integration scheme is used 

here for such a purpose. Values of 
𝜇

𝜏0
=

30

 6
,  𝜏0 = 200 MPa, and 𝛨 =  

2

3
𝜏0 are used 

during the numerical integration of (‎4-47).  

Once the components of the shift stress tensor 𝜂∗𝐸  are found for each spinning 

frame, the components of the back stress tensor on the Eulerian triad can be 

integrated by the following approach. Defining the complex variable 𝓏 𝛾 = 𝛽𝐸,12 +

𝑖𝛽𝐸,11  and substituting for back stress components from (4-41-2) into 
𝑑𝓏 𝛾 

𝑑𝛾
=

𝑑𝛽𝐸,12

𝑑𝛾
+

𝑖
𝑑𝛽𝐸,11

𝑑𝛾
 yields: 

𝑑𝓏 𝛾 

𝑑𝛾
− 𝑖2

𝑑𝛺𝑟𝑒𝑙
𝑑𝛾

𝓏 𝛾 =
𝛨

𝜏0
 𝒽∗

2𝜂∗𝐸,12 + 𝑖𝜂∗𝐸,11 𝑔 𝛾  (‎4-48) 

which has a solution of the following form: 

𝓏 𝛾 =
𝛨

𝜏0
𝑒𝑥𝑝 𝑖Ⅎ 𝛾   𝑒𝑥𝑝 −𝑖Ⅎ 𝛾   𝒽∗

2𝜂∗𝐸,12 + 𝑖𝜂∗𝐸,11 𝑔 𝛾 𝑑𝛾
𝛾

𝛾𝑝

 (‎4-49) 
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where Ⅎ 𝛾 =  2𝛺 𝑟𝑒𝑙 ,12𝑑𝛾
𝛾

𝛾𝑝
. Separating the real and imaginary parts of (‎4-49) yields 

the following integrals for the back stress components: 

𝛽𝐸,11 𝛾 =
𝛨

𝜏0
𝑠𝑖𝑛 Ⅎ 𝛾   𝛲 𝛾 

𝛾

𝛾𝑝

𝑑𝛾 −
𝛨

𝜏0
𝑐𝑜𝑠 Ⅎ 𝛾   𝑅 𝛾 

𝛾

𝛾𝑝

𝑑𝛾 

𝛽𝐸,12 𝛾 =
𝛨

𝜏0
𝑐𝑜𝑠 Ⅎ 𝛾   𝛲 𝛾 

𝛾

𝛾𝑝

𝑑𝛾 +
𝛨

𝜏0
𝑠𝑖𝑛 Ⅎ 𝛾   𝑅 𝛾 

𝛾

𝛾𝑝

𝑑𝛾 

(‎4-50) 

in which 𝛾𝑝 = 2 sinh  
 2𝜏0

4𝜇
  is the amount of shear for which plastic yielding starts 

and: 

𝛲 𝛾 = 𝑔 𝛾  𝒽∗
2𝜂∗𝐸,12 𝑐𝑜𝑠 Ⅎ 𝛾  + 𝜂∗𝐸,11 𝑠𝑖𝑛 Ⅎ 𝛾    

𝑅 𝛾 = 𝑔 𝛾  𝒽∗
2𝜂∗𝐸,12 𝑠𝑖𝑛 Ⅎ 𝛾  − 𝜂∗𝐸,11 𝑐𝑜𝑠 Ⅎ 𝛾    

(‎4-51) 

Equations (‎4-51) can be integrated using a trapezoidal integration scheme. Having 

obtained the back stress components, the conjugate stress corresponding to each 

corotational frame can be obtained on the Eulerian triad using 𝓉∗𝐸,𝑖𝑗 = 𝜂∗𝐸,𝑖𝑗 + 𝛽∗𝐸,𝑖𝑗 .  

Figure ‎4-1 and Figure ‎4-2 show the fixed components of the conjugate stress 

and its equivalent Kirchhoff stress for the J and GMN rates. Using the proposed 

formulation both the J and GMN rates return identical Kirchhoff stress responses as 

compared to that of the self-consistent Eulerian rate model of Bruhns et al. ‎[27] based 

on the logarithmic rate.  
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Figure ‎4-1- Normal stress component, (a): conjugate stress for the J and GMN rates of the 

Hencky strain (proposed model), (b): equivalent Kirchhoff stress (proposed model, J and GMN 

rates) and classical hypoe-based model (J, GMN, and logarithmic rates), linear kinematic 

hardening behavior 
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Figure ‎4-2- Shear stress component, (a): conjugate stress for the J and GMN rates of the Hencky 

strain (proposed model), (b): equivalent Kirchhoff stress (proposed model, J and GMN rates) 

and classical hypoe-based model (J, GMN, and logarithmic rates), linear kinematic hardening 

behavior 
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4.3 Application of the proposed model to nonlinear mixed 

hardening  

An extension of the proposed model to the case of nonlinear mixed hardening 

is used here to predict the hardening behaviour of SUS 304 stainless steel thin tubes 

under fixed end finite torsional loading. With the help of the Armstrong-Frederick 

(A-F) nonlinear hardening model ‎[81] the proposed back stress evolution equation 

given by (4-41-2) can be extended as follows: 

𝛽 𝐸

𝑟𝑒𝑙

= 𝐴𝑓𝜀 𝐸
𝑝

𝑟𝑒𝑙

− 𝐵𝑓𝐸 
𝑝,𝑒𝑞𝛽𝐸 (‎4-52) 

where 𝐴𝑓  and 𝐵𝑓  are the A-F material parameters and 𝐸 𝑝,𝑒𝑞  is a scalar parameter 

representing the rate of the equivalent plastic strain and will be defined later in this 

section. The yield surface of a strain hardening material can expand and translate 

nonlinearly in the stress space. Therefore, a modified Mises yield surface under 

simple shear motion can be given by 

𝜙∗ =  3𝜂∗𝐸,11
2 + 3𝒽∗

2𝜂∗𝐸,12
2 − 𝛶 (‎4-53) 

where 𝛶 is a scalar parameter function of the plastic internal variables representing 

the subsequent yield surface size during plastic loading. An exponential form of the 

yield surface size based on the original model of Voce ‎[82] can be used here as 

follows: 

𝛶 = 𝜎𝑌0 +  𝜎𝑌𝑠 − 𝜎𝑌0  1 − 𝑒𝑥𝑝 −𝑏𝐸𝑝,𝑒𝑞    (‎4-54) 
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where 𝜎𝑌0 is the initial yield surface size, 𝜎𝑌𝑠  is the saturation value of the yield 

surface size, and 𝑏 is a parameter which controls the rate of saturation.  

A modified plastic work can be used to derive an expression for the equivalent 

plastic strain. The plastic work in relative spinning frame can be given by 

𝑊 𝑝 = 𝜂∗𝐸 : 𝜀 𝐸
𝑝

𝑟𝑒𝑙

= 𝛶𝐸 𝑝,𝑒𝑞  (‎4-55) 

in which 𝛶 =  3𝜂∗𝐸,11
2 + 3𝒽∗

2𝜂∗𝐸,12
2  is the equivalent Mises shift stress. Use of 

equations (4-41-1) and (‎4-55) yields the following definition for the equivalent plastic 

strain: 

𝐸 𝑝,𝑒𝑞 =  
2

3𝒽∗
2
𝜀 𝐸
𝑝

𝑟𝑒𝑙

: 𝜀 𝐸
𝑝

𝑟𝑒𝑙

 (‎4-56) 

It is worth mentioning that definition (‎4-56) is similar to the classical definition of the 

equivalent plastic strain rate. For the special case of the logarithmic rate 𝒽𝑙𝑜𝑔
2  ℷ𝑖𝑗  =

1 and (‎4-56) yields 𝐸 𝑝,𝑒𝑞 = 𝑑𝑝,𝑒𝑞 =  
2

3
𝑑𝑝 : 𝑑𝑝 =  

2

3
𝑑𝐸
𝑝 : 𝑑𝐸

𝑝
. 

Similar to the case of the Ziegler’s linear hardening discussed in section ‎4.2.2, 

the governing equations (‎4-52) to (‎4-56) are numerically integrated using the fourth 

order Runge-Kutta integration method for three different objective rates, i.e. the J, 

GMN, and logarithmic rates. The stress responses from the proposed model are 

plotted in Figure ‎4-3 using the material parameters given in ‎[83] for SUS 304 

stainless steel, which are summarized in Table ‎4-1. Also, the stress responses for the J 
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and GMN rates using the classical hypo-based model are plotted for comparison. 

From Figure ‎4-3, the proposed model gives identical results to those of the self-

consistent classical model of Bruhn’s et al. ‎[27] based on the logarithmic rate. Unlike 

the classical model response, the Jaumann stress response of the proposed model does 

not show any shear oscillation.  

Table ‎4-1 Parameters used for the mixed hardening behaviour of SUS 304 stainless steel ‎[83] 

Shear Modulus 𝜇 = 78 GPa 

Exponential Isotropic Hardening Parameters 𝜎𝑌0 = 285.6 MPa ; 𝜎𝑌𝑠 = 680 MPa ; 𝑏 =
5

3
 

Armstrong-Frederick Model Parameters 𝐴𝑓 = 20 MPa ; 𝐵𝑓 = 0.2 

 

Figure ‎4-3- Stress components for SUS 304 stainless steel under fixed end torsion using the 

proposed mixed hardening model 
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Figure ‎4-4 shows the evolution of the yield surface size vs. the applied shear. 

It is clear that the radius of the yield surface is not affected by the corotational rates 

used in the model. 

 

Figure ‎4-4- Radius of the subsequent yield surfaces as predicted by the proposed model using 

any corotational rates with the mixed hardening rule 

4.4 Summary 

An Eulerian rate form of elasticity was used for setting up a unified Eulerian 

rate model for finite strain elastoplasticity. The grade-zero model was shown to be 

unconditionally integrable for its elastic part and was consistent with hyperelasticity 

in its integrated form irrespective of the objective rate of stress used in the model. 

Conjugate measure of stress to each objective corotational rate of the Eulerian strain 

was obtained based on the unified work conjugacy theorem. An additive 
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decomposition of the arbitrary objective rate of the Eulerian strain was proposed 

which was consistent with thermodynamic considerations. A modified flow rule in 

each spinning background was used in the model. Furthermore, a new evolution 

equation for the back stress tensor was proposed and used in the model. The model 

was successfully integrated on the Eulerian axes of the total stretch tensor which were 

known during the time integration process.  

Results obtained for the simple shear problem and the case of linear kinematic 

hardening using different objective corotational rates, such as the Jaumann and 

Green-McInnis-Naghdi rates, were identical to those of the self-consistent Eulerian 

rate model of Bruhn’s et al. ‎[27] based on the logarithmic (D) rate of stress. 

Therefore, the proposed model assigns no preference on the choice of objective rates 

for its consistency and is unified for all of the objective corotational rates.  

The unified model was further extended to the mixed nonlinear hardening 

behavior. Application of the proposed unified model to fixed-end finite torsional 

loading of SUS 304 stainless steel tubes showed that the model predicts the second 

order effect (Swift effect) accurately and obtained results were in good agreement 

with the available experimental data done for this material.  

The unified Eulerian model is a good candidate for Eulerian rate models for 

finite strain elastoplasticity and can be successfully implemented in the displacement-

based formulation of the finite element method. 
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Chapter 5  

Phenomenological plasticity models 

based on multiplicative decomposition 

In ‎Chapter 3 and ‎Chapter 4 respectively, Eulerian rate models of plasticity 

based on the additive decomposition of the strain rate tensor and arbitrary objective 

rates of the Hencky strain tensor were presented. These models are mainly based on 

rate-type material models and need objective integration schemes for their numerical 

implementation.  

Another class of plasticity models has been formulated based on the 

multiplicative decomposition of the deformation gradient. Such decomposition has 

been physically validated based on observations made in crystal plasticity. Plastic 
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flow of material can be viewed as the flow of material through the crystal lattice by 

the movement of dislocations ‎[30]. This physical interpretation is given in the work of 

Taylor and Elam [84,85] and Taylor ‎[86]. A detail review of micromechanical 

description of plastic flow is given in the review work of Asaro and Rice ‎[87] and 

Asaro ‎[88]. As shown in Figure ‎3-19 for a single crystal having a single slip system 

defined by  𝑠,𝑚  the plastic flow can be characterized by ‎[30] 

𝐹𝑃 = 𝐼 + 𝛾𝑠⨂𝑚 (‎5-1) 

where 𝛾 is the plastic shearing parameter in the crystallographic slip system. Such a 

plastic deformation results into an intermediate stress-free configuration as shown in 

Figure ‎5-1. 

 

Figure ‎5-1- Micromechanical representation of deformations in a crystall lattice ‎[30] 

Next, the elastic part of the deformation stretches and rotates the crystal lattice. The 

total deformation can therefore be split into plastic and elastic parts using 

𝐹 = 𝐹𝑒𝐹𝑝  (‎5-2) 
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Constitutive models based on the decomposition (‎5-2) are mostly formulated 

in the Lagrangian framework of elastoplasticity and are based on hyperelastic 

material models; as a result, they do not require any rate-type material model for the 

elastic part of deformation. However, this does not preclude the use of decomposition 

(‎5-2) in the Eulerian framework of elastoplasticity; rate-type Eulerian formulations of 

finite elastoplasticity based on the multiplicative decomposition have been proposed 

by several authors ‎[43].  

In this chapter a review of phenomenological plasticity models based on 

multiplicative decomposition (‎5-2) is presented first. A modified decomposition 

based on the right stretch tensor is then introduced. Using this modified 

decomposition, a unified Lagrangian model of plasticity based on the right plastic 

stretch tensor is proposed. A hyperelastic function is used to relate the rotated 

Kirchhoff stress to the Lagrangian Hencky strain. The proposed model is integrated 

on the Lagrangian triad of the plastic stretch tensor using a modified back stress 

evolution equation. Results obtained for the problem of simple shear for a Ziegler 

kinematic hardening material are identical to those of the self-consistent Eulerian rate 

model of Bruhn’s et al. ‎[27] discussed in ‎Chapter 3 and ‎Chapter 4. The proposed 

model is further extended to mixed nonlinear hardening behavior. Predicted results by 

the proposed model for SUS 304 stainless steel under fixed-end finite torsion are in 

good agreement with the corresponding experimental observations. 



141 

 

5.1 Continuum formulation of multiplicative plasticity 

The Green-Lagrange strain tensor is defined relative to the reference 

configuration by 

𝜚 =
1

2
 𝐶 − 𝛧  

𝜚𝑃 =
1

2
 𝐶𝑃 − 𝛧  

(‎5-3) 

where 𝐶 = 𝐹𝑇𝐹 and 𝐶𝑃 = 𝐹𝑃
𝑇
𝐹𝑃  are the total and plastic right Green-Cauchy 

deformation tensors, respectively and 𝛧 is the metric tensor of the reference 

configuration and is equal to the Kronecker delta in a Cartesian coordinate system. 

Similarly on the current configuration the Almansi-Euler strain tensor is defined by 

𝜉 =
1

2
 𝑧 − 𝑏−1  

𝜉𝑒 =
1

2
 𝑧 − 𝑏𝑒

−1
  

(‎5-4) 

where 𝑏−1 = 𝐹−𝑇𝐹−1 and 𝑏𝑒−1 = 𝐹𝑒−𝑇𝐹𝑒−1
 are the total and elastic Finger 

deformation tensors, respectively, and 𝑧 is the spatial metric tensor of the current 

configuration. The spatial metric tensor is the push-forward of the Green deformation 

tensor and is given by 

𝐶𝐴𝐵 = 𝐹𝐴
𝑖𝑧𝑖𝑗𝐹𝐵

𝑗  (‎5-5) 

Similarly, the intermediate plastic configuration has the following coordinate 

transformation: 
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𝐶𝐼𝐽
𝑝

=  𝐹𝑝 𝐼
𝐴𝑍𝐴𝐵 𝐹

𝑝 𝐽
𝐵 (‎5-6) 

By definition the Eulerian plastic strain tensor can be defined by 

𝜉𝑝 = 𝜉 − 𝜉𝑒 =
1

2
 𝑏𝑒

−1 − 𝑏−1  (‎5-7) 

which shows that 𝑏𝑒−1
 serves as the plastic metric tensor ‎[35] and the following 

relations define the coordinate transformation: 

𝐶𝑝 = 𝐹𝑇𝑏𝑒−1𝐹 

𝜚𝑝 = 𝐹𝑇𝜉𝑝𝐹 

(‎5-8) 

The Eulerian strain rate tensor can be related to the Lie derivative of the spatial metric 

tensor by 

𝐿𝑣𝑧 = 𝜙∗
𝑑

𝑑𝑡
𝜙∗𝑧 = 𝐹−𝑇𝐶 𝐹−1 = 2𝑑 (‎5-9) 

And the Lie derivative of the Finger deformation tensor is given by 

𝐿𝑣𝑏
−1 = 𝜙∗

𝑑

𝑑𝑡
𝜙∗𝑏−1 = 𝐹−𝑇

𝑑

𝑑𝑡
 𝐹𝑇𝐹−𝑇𝐹−1𝐹 𝐹−1 = 0

~
 (‎5-10) 

A unique definition cannot be derived for the elastic and plastic parts of the 

strain rate tensor from kinematic analysis ‎[89]. Different definitions for the elastic 

and plastic parts might be used in constitutive models, which result in different flow 

rules and stress responses. Simo and Ortiz ‎[90] proposed the following definitions for 

elastic and plastic parts of the strain rate tensor: 
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𝑑𝑒 = 𝐿𝑣𝜉
𝑒  

𝑑𝑝 = 𝐿𝑣𝜉
𝑝 =

1

2
𝐿𝑣𝑏

𝑒−1
 

(‎5-11) 

Contrary to equation (5-11-1), one can define the elastic part by: 

 𝑑𝑒 = 𝑠𝑦𝑚 𝑙𝑒 =
1

2
 𝐹 𝑒𝐹𝑒

−1
+ 𝐹𝑒

−𝑇
𝐹 𝑒

𝑇
  (‎5-12) 

Using the spatial velocity gradient tensor, i.e. 𝑙 = 𝐹 𝐹−1, and decomposition (‎5-2) the 

following kinematic relation can be obtained: 

𝑙 = 𝐹 𝐹−1 = 𝐹 𝑒𝐹𝑒
−1

+ 𝐹𝑒 𝐹 𝑝𝐹𝑝
−1
 𝐹𝑒

−1
 (‎5-13) 

Similarly it is possible to define the plastic velocity gradient 𝐿 𝑝 = 𝐹 𝑝𝐹𝑝−1
 on the 

intermediate stress-free configuration and introduce a modified additive 

decomposition of the velocity gradient by 

𝑙 = 𝐹 𝐹−1 = 𝑙𝑒 + 𝐹𝑒𝐿 𝑝𝐹𝑒−1 = 𝑙𝑒 + 𝑙𝑝  (‎5-14) 

Using equation (‎5-14), different definitions for the plastic part of the strain rate tensor 

and plastic spin on the intermediate configuration can be obtained as follow: 

𝑑 𝑝 = 𝑠𝑦𝑚 𝐿 𝑝   

𝑤 𝑝 = 𝑠𝑘𝑒𝑤 𝐿 𝑝   
(‎5-15) 

And the pull-back of the elastic velocity gradient tensor on the intermediate 

configuration, i.e. 𝐿 𝑒 = 𝐹𝑒𝑇𝐹 𝑒𝐹𝑒−1𝐹𝑒 = 𝐹𝑒𝑇𝐹 𝑒 , yields the elastic part of the 

deformation by 
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𝑑 𝑒 = 𝑠𝑦𝑚 𝐿 𝑒  

𝑤 𝑒 = 𝑠𝑘𝑒𝑤 𝐿 𝑒  
(‎5-16) 

Equations (‎5-15) and (‎5-16) are different definitions for the elastic and plastic parts of 

the strain rate tensor on the intermediate plastic configuration.  

Another possibility for the definition of the elastic and plastic parts of 

deformation on the intermediate configuration is first to pull-back the velocity 

gradient on the intermediate plastic configuration by 

𝐿 = 𝐹𝑒𝑇 𝐹 𝐹−1 𝐹𝑒 = 𝐿 𝑒 + 𝐶 𝑒𝐿 𝑝  (‎5-17) 

where 𝐿 𝑒 = 𝐹𝑒𝑇𝐹 𝑒  is the pull-back of the elastic velocity gradient and 𝐶 𝑒 = 𝐹𝑒𝑇𝐹𝑒  is 

the right Cauchy-Green deformation tensor on  the intermediate configuration. Use of 

equation (‎5-17) results in a different definition for the plastic part of the strain rate 

tensor as follows [91-93]:  

 𝑑 𝑝 = 𝑠𝑦𝑚 𝐶 𝑒𝐿 𝑝   (‎5-18) 

Simo ‎[35] introduced a framework of finite strain elastoplasticity based on the 

principle of maximum plastic dissipation, which bypassed the need for an explicit 

definition of the plastic strain rate in the formulation. Equivalent material (convected) 

and spatial forms of the formulation were derived in his formulation. Simo ‎[35] 

assumed two functionals representing the free energy of the system in the convected 

and spatial frames and derived a hyper-based stress-strain relationship by 
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𝑆 = 2𝜌0

𝜕𝛹  𝐶, 𝐶𝑝 , 𝒬 

𝜕𝐶
= 𝜌0

𝜕𝛹  𝜚, 𝜚𝑝 , 𝒬 

𝜕𝜚
 

𝜏 = 2𝜌0

𝜕𝛹  𝑧, 𝑏𝑒
−1

, 𝐹, 𝓆 

𝜕𝑧
= 𝜌0

𝜕𝛹  𝜉, 𝜉𝑝 , 𝐹, 𝓆 

𝜕𝜉
 

(‎5-19) 

where 𝑆 and 𝜏 are the second Piola-Kirchhoff and Kirchhoff stress tensors, and 𝛹  and 

𝛹  are the free energy potentials in the material and spatial frames, respectively. Flow 

potentials and their corresponding hardening rules were given in the material and 

spatial frames by 

𝜙  𝑧, 𝑏𝑒−1, 𝐹, 𝓆 ≤ 0 ; 𝐿𝑣𝓆 = 𝜆 𝓀 𝑧, 𝑏𝑒−1, 𝐹, 𝓆  

𝜙  𝐶, 𝐶𝑝 , 𝒬 ≤ 0 ; 𝒬 = 𝜆 ℳ 𝐶, 𝐶𝑝 , 𝒬  

(‎5-20) 

where 𝒬 and 𝓆 are the vectors of the material and spatial hardening parameters and    

𝒬 = 𝜙∗𝓆 is the pull-back of the spatial hardening tensor on the convected 

background. Using the principle of maximum plastic dissipation, Simo derived the 

following flow rules on the material and spatial configurations: 

𝐿𝑣𝜏
𝑝 = 2𝜆 

𝜕𝜙  𝑧, 𝑏𝑒−1, 𝐹, 𝓆 

𝜕𝑧
= 𝜆 

𝜕𝜙  𝜉, 𝜉𝑝 , 𝐹, 𝓆 

𝜕𝑒
 

𝑆 𝑝 = 2𝜆 
𝜕𝜙  𝐶, 𝐶𝑝 , 𝒬 

𝜕𝑍
= 𝜆 

𝜕𝜙  𝜚, 𝜚𝑝 , 𝒬 

𝜕𝜚
 

(‎5-21) 

A complete volumetric/deviatoric decoupled form of the model was further derived 

by Simo. Details of the decoupled formulation and its algorithmic implementation for 

the case of the J2 flow theory can be found in Simo [35,36].  
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A modified multiplicative decomposition based on the left stretch tensor was 

used by Metzger and Dubey ‎[43]. The hypoelastic model was integrated on the 

principal axis of the elastic stretch tensor and results were independent of the choice 

of objective rates. An isotropic flow rule based on the modified multiplicative 

decomposition of the left stretch tensor was used to solve the problem of simple 

shear. The left stretch tensor decomposition used in their formulation was given by 

𝛤 = 𝛬𝛱 (‎5-22) 

where 𝛤, 𝛱, and 𝛬 are the total, plastic, and elastic left stretch tensors on the principal 

axis of the elastic stretch tensor, respectively. The Z rate of these tensors was used in 

developing the kinematic relations in the formulation. Integration of the model 

needed the current orientation of the principal axis of the elastic stretch. Therefore, 

additional equations were needed for the evolution of the principal elastic directions. 

The integrated model returned equivalent stress responses for the problem of simple 

shear for different objective rates of stress.  

Eterovic and Bathe ‎[94] and Gabriel and Bathe ‎[32] proposed a finite strain 

model based on the decomposition of the right stretch tensor and integrated their 

model on the mid-configuration. The case of isotropic plasticity was assumed in their 

proposed model and the effect of plastic spin was neglected. Recently, Montans and 

Bathe ‎[95] extended the original formulation of Eterovic and Bathe ‎[94] and included 

the effect of plastic spin. They expressed the modified stress power on the 

intermediate configuration by 
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𝜏: 𝑙 = 𝑆 : 𝑙  = 𝑆 :  𝑙  𝑒 + 𝐶 𝑒 𝑙  𝑝 = 𝑆 :  𝑑 𝑒 + 𝑤 𝑒 + 𝐶 𝑒𝑆 :  𝑑 𝑝 + 𝑤 𝑝  (‎5-23) 

where 𝑆 = 𝐹𝑒−1𝜏𝐹𝑒−𝑇 is the pull-back of the Kirchhoff stress tensor on the 

intermediate configuration. In equation (‎5-23) the term Ξ = 𝐶 𝑒𝑆  is defined as the 

non-symmetric Mandel ‎[96] stress tensor. Symmetry of 𝑆  requires that the elastic spin 

have no contribution in the stress power. Therefore: 

𝜏: 𝑙 = 𝑆 : 𝑙  = 𝑆 : 𝑑 𝑒 + 𝛯𝑠𝑦𝑚 : 𝑑 𝑝 + 𝛯𝑠𝑘𝑒𝑤 : 𝑤 𝑝  (‎5-24) 

Montans and Bathe ‎[95] concluded that the symmetric part of the Mandel stress 

tensor generates power on the modified plastic strain rate while the skew part of it 

generates power on the modified plastic spin. They further showed that for the case of 

isotropic plasticity, where the principal axes of the stress and elastic stretch coincide, 

the skew-symmetric part of the Mandel stress tensor vanishes and as a result the 

plastic spin has no contribution to plastic dissipation. In this case 𝐹𝑒 = 𝑅𝑒𝑈𝑒  and as a 

result: 

𝛯𝑠𝑦𝑚 = 𝑈𝑒𝑆 𝑈𝑒 = 𝑅𝑒𝑇𝜏𝑅𝑒 = 𝜏  (‎5-25) 

which shows that for isotropic plasticity the rotated Kirchhoff stress defines the work 

conjugacy on the intermediate configuration. The dissipation inequality on the 

intermediate configuration is given by 

𝜙 = 𝑆 : 𝑑 𝑒 + 𝛯𝑠𝑦𝑚 : 𝑑 𝑝 + 𝛯𝑠𝑘𝑒𝑤 : 𝑤 𝑝 − 𝜓 ≥ 0 (‎5-26) 
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If the free energy potential is assumed to be a function of the elastic strain rate 𝑑 𝑒  and 

other tensorial and scalar internal variables such as 𝛽  and 𝛶, the dissipation inequality 

(‎5-26) and the assumption of maximum plastic dissipation yield the following 

relationships:  

𝑆 =
𝜕𝜓 𝑑 𝑒 , 𝛽  , 𝛶 

𝜕𝐸 𝑒
 

𝑑 𝑝 = 𝜆 
𝜕𝑓

𝜕𝛯𝑠𝑦𝑚
 ;  𝑤 𝑝 = 𝜆 

𝜕𝑓

𝜕𝛯𝑠𝑘𝑒𝑤
 ;  𝜗 𝛽 = 𝜆 

𝜕𝑓

𝜕𝛽 
 ;  𝜗 𝛶 = 𝜆 

𝜕𝑓

𝜕𝛶
 

(‎5-27) 

where 𝑓 = 𝑓 𝛯, 𝛽 , 𝛶  is a convex plastic potential, and 𝜗𝛽 and 𝜗𝛶 are the conjugate 

tensor and scalar variables to 𝛽  and 𝛶 in the dual strain space, respectively. For the 

case of isotropic plasticity the elastic strain energy function was assumed to be given 

by the following hyperelastic function (cf. [32,95,97]): 

𝑊 𝜆1, 𝜆2 , 𝜆3 = 𝑢 𝐽 + 𝜇  𝑙𝑛 𝜆 𝑖 
2

3

𝑖=1

 (‎5-28) 

where 𝜆 𝑖 = 𝐽−
1

3𝜆𝑖 are the principal values of the deviatoric stretch tensor, 𝐽 is the 

Jacobian of the deformation, 𝑢 𝐽  is the volumetric part of the strain energy, and 𝜇 is 

the material shear modulus. Therefore the symmetric Mandel stress tensor, which is 

the same as the rotated Kirchhoff stress, can be derived from the stored energy by 

𝛯𝑠𝑦𝑚 = 𝜏 =
𝜕𝑊 𝜆1 , 𝜆2, 𝜆3 

𝜕𝐸 𝑒
= 𝐽𝑢′ 𝐽 𝐼 + 2𝜇𝐸 𝑑𝑒𝑣

𝑒  (‎5-29) 
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where 𝐸 𝑑𝑒𝑣
𝑒 = 𝐸 𝑒 −

1

3
 ln 𝐽 𝐼 = ln  𝐽−

1

3𝑈𝑒  is the deviatoric elastic strain. Details of 

the numerical integration of the above formulation based on the exponential mapping 

algorithm are given in [32,95,97].  

Reinhardt and Dubey ‎[98] developed a rate form model based on the 

multiplicative decomposition of the left stretch tensor. The deformation gradient was 

decomposed based on the left stretch tensor by 

𝐹 = 𝑉𝑒𝐹𝑝 = 𝑉𝑒𝑉𝑝𝑅𝑝𝑅 (‎5-30) 

Using the left stretch decomposition (5-30) they proposed the following additive 

decomposition of the velocity gradient: 

𝑙 = 𝑙𝑒 + 𝑉𝑒 𝑙∗
𝑝
− 𝛺𝑅 𝑉

𝑒−1
 (‎5-31) 

where 𝑙𝑒 =  𝑉 𝑒 + 𝑉𝑒𝛺𝑅 𝑉
𝑒−1

 and 𝑙∗
𝑝
 is given by 

𝑙∗
𝑝

= 𝑉𝑒 𝑉 𝑝𝑉𝑝
−1 + 𝑉𝑝 𝛺𝑝 + 𝛺∗ 𝑉

𝑝−1
 𝑉𝑒

−1 = 𝑑∗
𝑝

+ 𝑤∗
𝑝
 (‎5-32) 

where 𝛺𝑝 = 𝑅 𝑝𝑅𝑝𝑇   and 𝛺∗ = 𝑅𝑝𝛺𝑅𝑅
𝑝𝑇. Following the approach used by Metzger 

and Dubey ‎[43], Reinhardt and Dubey ‎[98] further derived a relationship for the 

modified plastic spin based on the known kinematic variables. The complete field of 

equations and the corresponding Eulerian rate constitutive model based on the 

modified additive decomposition given by (‎5-31) were derived and integrated with 

different objective rates of stress. Recently, Ghavam and Naghdabadi ‎[99] have used 

a modified decomposition of the left stretch tensor originally proposed by Metzger 
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and Dubey ‎[43] and applied it to nonlinear mixed kinematic/isotropic hardening 

material models.  

5.2 Proposed Lagrangian formulation 

In the Lagrangian formulations of elastoplasticity based on multiplicative 

decomposition, a right stretch decomposition is often used. However, the left stretch 

tensor decomposition can also be used in constitutive models which would result in 

an Eulerian rate formulation as discussed in the previous section. While the left 

stretch decomposition-based formulations require use of an objective rate of the 

Kirchhoff stress (or more generally a covariant rate) and a neutrally objective 

integration scheme, the right stretch decomposition-based formulations use a total 

relation between the rotated Kirchhoff stress and Hencky strain through a hyperelastic 

strain energy function and bypass the need for objective rate quantities as discussed in 

the previous section.  

Assuming that the total symmetric right stretch tensor can be decomposed into 

a symmetric elastic part and a non-symmetric plastic part, one can write: 

𝐹 = 𝑅𝑈 = 𝑅𝑈𝑒𝜒𝑝  

𝑈 = 𝑈𝑒𝜒𝑝  
(‎5-33) 

Polar decomposition of the non-symmetric plastic tensor 𝜒𝑝  into a symmetric plastic 

stretch tensor 𝑈𝑝  and an orthogonal transformation tensor 𝑄𝑝  yields: 
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𝜒𝑝 = 𝑄𝑝𝑈𝑝  
(‎5-34) 

As a result, the modified plastic velocity gradient 𝐿 𝑝  can be defined by 

𝐿 𝑝 = 𝜒 𝑝𝜒𝑝
−1

= 𝑄 𝑝𝑄𝑝𝑇 + 𝑄𝑝 𝑈 𝑝𝑈𝑝−1
 𝑄𝑝𝑇 = 𝛺𝑄 + 𝑄𝑝 𝑈 𝑝𝑈𝑝−1

 𝑄𝑝𝑇  (‎5-35) 

Figure ‎5-2 shows a schematic representation of the proposed decomposition: 

 

Figure ‎5-2- Schematic representation of the proposed multiplicative decomposition 

In Figure ‎5-2, the non-symmetric plastic deformation 𝜒𝑝  maps the old 

configuration “n” onto the stress-free intermediate plastic configuration. This 

mapping induces no stress in the body and is assumed to be an isochoric mapping. 

The symmetric elastic stretch tensor then deforms the mid-configuration into a 

stressed body. Finally, the rigid rotation R maps the stretched body onto the current 

configuration “n+1”. Taking the symmetric and skew-symmetric parts of equation 

(‎5-35) yields ‎[100]:  

𝑑 𝑝 =
1

2
𝑄𝑝 𝑈 𝑝𝑈𝑝−1 + 𝑈𝑝−1𝑈 𝑝 𝑄𝑝𝑇   

𝑤 𝑝 = 𝛺𝑄 +
1

2
𝑄𝑝 𝑈 𝑝𝑈𝑝−1 − 𝑈𝑝−1𝑈 𝑝 𝑄𝑝𝑇 

(‎5-36) 
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With the rotation of the Lagrangian axis of the right plastic stretch tensor, 𝑅𝐿
𝑝
, the 

diagonalized form of the plastic stretch tensor can be obtained by the following 

transformation: 

𝑈𝑝 = 𝑅𝐿
𝑝
𝛬𝑑
𝑝
𝑅𝐿
𝑝𝑇

 (‎5-37) 

Similarly, the diagonalized plastic stretch tensor, 𝛬𝑑
𝑝

, can be rotated back to the left 

plastic stretch tensor using the rotation of the Eulerian axis as follows: 

𝑉𝑝 = 𝑅𝐸
𝑝
𝛬𝑑
𝑝
𝑅𝐸
𝑝𝑇

 (‎5-38) 

in which 𝑅𝐸
𝑝
 is the rotation of the Eulerian axis of the plastic stretch tensor and 𝑉𝑝  is 

the symmetric left plastic stretch tensor satisfying:  𝜒𝑝 = 𝑄𝑝𝑈𝑝 = 𝑉𝑝𝑄𝑝 . 

The relation between the Lagrangian and Eulerian axes is given by 

𝑅𝐸
𝑝

= 𝑄𝑝𝑅𝐿
𝑝
 (‎5-39) 

The orthogonal plastic rotation and the rotations of the Lagrangian and Eulerian triads 

are related to their corresponding spin tensors by 

𝑄 𝑝 = 𝛺𝑄𝑄𝑝  

𝑅 𝐸
𝑝

= 𝑅𝐸
𝑝
𝛺𝐸  

𝑅 𝐿
𝑝

= 𝑅𝐿
𝑝
𝛺𝐿  

(‎5-40) 

in which 𝛺𝐸
𝑝
 and 𝛺𝐿

𝑝
 are the spins of the Eulerian and Lagrangian triads satisfying the 

equality 𝛺𝑄 = 𝑅𝐸
𝑝 𝛺𝐸

𝑝 − 𝛺𝐿
𝑝 𝑅𝐸

𝑝𝑇
, respectively. 
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Transferring equation (‎5-36) to the Lagrangian axis of the plastic stretch 

tensor yields: 

𝑑 𝐸
𝑝

= 𝛬 𝑑
𝑝
𝛬𝑑
𝑝−1

+
1

2
 𝛬𝑑

𝑝−1
𝛺𝐿
𝑝
𝛬𝑑
𝑝
− 𝛬𝑑

𝑝
𝛺𝐿
𝑝
𝛬𝑑
𝑝−1

  

𝑤 𝐸
𝑝

= 𝛺𝐸
𝑝
−

1

2
 𝛬𝑑

𝑝−1
𝛺𝐿
𝑝
𝛬𝑑
𝑝

+ 𝛬𝑑
𝑝
𝛺𝐿
𝑝
𝛬𝑑
𝑝−1

  

(‎5-41) 

in which 𝑑 𝐸
𝑝 = 𝑅𝐸

𝑝𝑇𝑑 𝑝𝑅𝐸
𝑝
 and 𝑤 𝐸

𝑝 = 𝑅𝐸
𝑝𝑇𝑤 𝑝𝑅𝐸

𝑝
 are the Eulerian representations of the 

plastic strain rate and plastic spin, respectively. Following the method of the principal 

axis (cf. Hill ‎[39], Reinhardt and Dubey ‎[98], and Eterovic and Bathe ‎[101]), the 

symmetric and skew-symmetric parts of equation (5-41-1) give the following 

relations for the diagonalized plastic stretch tensor and its corresponding Lagrangian 

spin: 

 𝛬 𝑑
𝑝
 
𝑖𝑖

𝜆𝑖
𝑝 =  𝑑 𝐸

𝑝
 
𝑖𝑖

     ;     𝑛𝑜 𝑠𝑢𝑚  

        

 𝛺𝐿
𝑝
 
𝑖𝑗

=
2𝜆𝑗

𝑝
𝜆𝑖
𝑝

𝜆𝑗
𝑝2
− 𝜆𝑖

𝑝2  𝑑
 
𝐸
𝑝
 
𝑖𝑗

   ; (𝑖 ≠ 𝑗) 

(‎5-42) 

Similarly, use of equations (5-41-2) and (5-42-2) gives the following relation for the 

evolution of the Eulerian triad of the plastic stretch: 

 𝛺𝐸
𝑝
 
𝑖𝑗

=  𝑤 𝐸
𝑝
 
𝑖𝑗

+
𝜆𝑗
𝑝2

+ 𝜆𝑖
𝑝2

𝜆𝑗
𝑝2
− 𝜆𝑖

𝑝2  𝑑
 
𝐸
𝑝
 
𝑖𝑗

   ; (𝑖 ≠ 𝑗) (‎5-43) 

in which 𝜆𝑖
𝑝
’s are the principal plastic stretches.  
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The rotated Kirchhoff stress, 𝜏 , is work conjugate to the Lagrangian Hencky 

strain for the case of isotropic plasticity. Defining 𝜏 𝐿 and 𝑈 𝐿
𝑒  as the Lagrangian 

representations of the rotated Kirchhoff stress and elastic right stretch tensors on the 

Lagrangian triad, we have: 

𝜏 𝐿 =  𝑄𝑝𝑅𝐿
𝑝
 
𝑇
𝜏  𝑄𝑝𝑅𝐿

𝑝
 = 𝑅𝐸

𝑝𝑇
𝜏 𝑅𝐸

𝑝
 

𝑈 𝐿
𝑒

=  𝑄𝑝𝑅𝐿
𝑝 

𝑇
𝑈 
𝑒
 𝑄𝑝𝑅𝐿

𝑝 = 𝑅𝐸
𝑝𝑇
𝑈 
𝑒
𝑅𝐸
𝑝
 

(‎5-44) 

in which a superposed double bar along with a subscript “L” indicate the components 

of a tensor on the Lagrangian axis of the plastic stretch tensor. The Lagrangian 

rotated Kirchhoff stress, 𝜏 𝐿, can be related to the Lagrangian rotated elastic Hencky 

strain through a hyperelastic function as follows: 

𝜏 𝐿 = 𝑀:  𝑅𝐸
𝑝𝑇
𝑙𝑛 𝑈 𝑒 𝑅𝐸

𝑝
 = 𝑀: 𝑙𝑛  𝑅𝐸

𝑝𝑇
𝑈 𝑒𝑅𝐸

𝑝
 = 𝑀: 𝑙𝑛 𝑈 𝐿

𝑒  (‎5-45) 

In equation (‎5-45) the fourth-order elasticity tensor 𝑀 is assumed to be isotropic and 

constant. Equation (‎5-45) defines the elastic part of the proposed constitutive model 

on the Lagrangian axis of the plastic stretch. 

The shift stress tensor on the intermediate configuration 𝜂 = dev𝜏 − 𝛽 , where 

𝛽  is the deviatoric back stress tensor and “dev” denotes the deviatoric part of a 

symmetric tensor, can be rotated to the Lagrangian axis of plastic stretch by 

𝜂 𝐿 =  𝑄𝑝𝑅𝐿
𝑝
 
𝑇
𝜂  𝑄𝑝𝑅𝐿

𝑝
 = 𝑅𝐸

𝑝𝑇
𝜂 𝑅𝐸

𝑝
= 𝑑𝑒𝑣𝜏 𝐿 − 𝛽 𝐿 (‎5-46) 
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Furthermore, the following evolution equation for the back stress tensor on the 

Lagrangian axis is proposed ‎[100]: 

𝛽  𝐿 = 𝐻𝐸  𝐿
𝑝

 (‎5-47) 

Similar expressions can be proposed for a nonlinear back stress evolution equation, 

and will be discussed in the next section. In equation (‎5-47), 𝐻 is the hardening 

modulus and 𝐸  𝐿
𝑝

 is the material time rate of the Lagrangian plastic Hencky strain and 

is related to the plastic strain rate tensor by 

 𝐸  𝐿
𝑝
 
𝑖𝑗

= 𝒽𝑖𝑗
𝑙𝑜𝑔

 𝑑 𝐸
𝑝
 
𝑖𝑗

 ; (no sum on i and j) (‎5-48) 

𝒽𝑖𝑗
log

 in equation (‎5-48) is a scaling function defined by 

𝒽𝑖𝑗
𝑙𝑜𝑔

=

 
 
 

 
 

1                              ; 𝑖𝑓 𝜆𝑗
𝑝

= 𝜆𝑖
𝑝

 

2 𝑙𝑛  
𝜆𝑗
𝑝

𝜆𝑖
𝑝 𝜆𝑗

𝑝
𝜆𝑖
𝑝

𝜆𝑗
𝑝2
− 𝜆𝑖

𝑝2      ; 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  (‎5-49) 

A Mises plastic potential on the Lagrangian axis of plastic stretch is used here. 

The yield surface for the case of associative J2 flow of plasticity is given by ‎[100] 

𝜙 =  
3

2
𝜂 𝐿 : 𝜂 𝐿 − 𝛶 = 0 (‎5-50) 

in which 𝛶 is a scalar parameter function of the equivalent plastic strain representing 

the current size of the yield surface.  



156 

 

With the assumption of maximum plastic dissipation (cf. Simo and Hughes 

‎[30] and Lemaitre and Chaboche ‎[7]) the plastic strain rate tensor can be related to the 

normal to the yield surface by 

𝑑 𝑝 = 𝜆 
𝜕𝜙

𝜕𝜏 
 𝑑 𝐸

𝑝
= 𝜆 

𝜕𝜙

𝜕𝜏𝐿
 (‎5-51) 

in which 𝜆  is the plastic multiplier which can be found from the consistency condition 

𝜙 = 0. The Kuhn-Tucker loading/unloading conditions for the proposed model can 

therefore be given by 

𝐸  𝐿
𝑝

= 𝜆 𝒽 𝑙𝑜𝑔
𝜕𝜙

𝜕𝜏 𝐿
 

𝜆 ≥ 0 ;  𝜙 ≤ 0 ;  𝜆 𝜙 = 0 

(‎5-52) 

The plastic spin 𝑤 𝑝  can be related to the known kinematics parameters, and will be 

discussed in detail in the next section.  

5.3 Solution of the simple shear problem 

The deformation gradient of the simple shear motion is given by: 

𝐹 = 𝑁1⨂𝑁1 + 𝑁2⨂𝑁2+𝛾𝑁1⨂𝑁2 (‎5-53) 

in which 𝛾 is the applied shear. Polar decomposition of the deformation gradient leads 

to equation (‎2-64) for the rigid rotation and the total left and right stretch tensors. The 

rotated Lagrangian Kirchhoff stress tensor is given by: 
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𝜏 𝐿 = 𝜏 𝐿,11 𝑁1⨂𝑁1 − 𝑁2⨂𝑁2 + 𝜏 𝐿,12 𝑁1⨂𝑁2 + 𝑁2⨂𝑁1  (‎5-54) 

Use of the proposed constitutive model yields the following for the elastic part of the 

model under the simple shear motion: 

𝑈 𝐿
𝑒 = 𝑒𝑥𝑝  

𝜏 𝐿
2𝜇
 = 𝔅𝑁1⨂𝑁1 + ℭ𝑁2⨂𝑁2+𝔍 𝑁1⨂𝑁2 + 𝑁2⨂𝑁1  (‎5-55) 

in which 𝜇 is the shear modulus of the material and 𝔅, ℭ, and 𝔍 are given by ‎[99] 

𝔅 =
1

2𝐺𝛵
 𝛵 1 + 𝐺2 − 𝜏 𝐿,11 1 − 𝐺2   

𝔍 =
1

2𝐺𝛵
 𝜏 𝐿,12 𝐺

2 − 1   

ℭ =
1

2𝐺𝛵
 𝛵 1 + 𝐺2 + 𝜏 𝐿,11 1 − 𝐺2   

(‎5-56) 

in which 𝛵 =  𝜏 𝐿,11
2 + 𝜏 𝐿,12

2  and 𝐺 = exp 
𝛵

2𝜇
 .  

The Mises plastic potential for a pure kinematic hardening behavior under simple 

shear motion is given by 

𝜙 =  3 𝜂 𝐿,11
2 + 𝜂 𝐿,12

2  − 𝜎0 = 0 (‎5-57) 

in which 𝜎0 is the initial yield surface size and is assumed to be constant during 

plastic deformation. Plastic incompressibility requires that the third invariant of the 

plastic stretch tensor be 1, i.e. det 𝜒𝑝 = det 𝑈𝑝 = 1. Such an incompressibility 

condition specifies the following form for the diagonalized plastic stretch tensor 

under simple shear motion ‎[100]: 
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𝛬𝑑
𝑝

= ℓ𝑝𝑁1⨂𝑁1 +
1

ℓ𝑝
𝑁2⨂𝑁2 (‎5-58) 

The rotations of the Lagrangian and Eulerian axes of the right plastic stretch tensor 

for the case of the simple shear motion are given by: 

𝑅𝐿
𝑝

= 𝑐𝑜𝑠 𝜃𝐿
𝑝  𝑁1⨂𝑁1 + 𝑁2⨂𝑁2 + 𝑠𝑖𝑛 𝜃𝐿

𝑝  𝑁1⨂𝑁2 −𝑁2⨂𝑁1  

𝑅𝐸
𝑝

= 𝑐𝑜𝑠 𝜃𝐸
𝑝  𝑁1⨂𝑁1 + 𝑁2⨂𝑁2 + 𝑠𝑖𝑛 𝜃𝐸

𝑝  𝑁1⨂𝑁2 −𝑁2⨂𝑁1  
(‎5-59) 

in which 𝜃𝐿
𝑝
 and 𝜃𝐸

𝑝
 are the angles of the Lagrangian and Eulerian axes with respect to 

the fixed coordinate system, respectively.  

Using the proposed decomposition given by equations (‎5-33) and (‎5-34), 

equations (‎5-39) and (5-44-2) yield the following for the rotated Lagrangian elastic 

stretch: 

𝑈 𝐿
𝑒 = 𝑅𝐸

𝑝𝑇
𝑈𝑅𝐿

𝑝
𝛬𝑑
𝑝−1

 (‎5-60) 

The time derivative of equation (‎5-60) yields the following for the components of 

time rate of the Lagrangian elastic right stretch tensor: 

𝑑𝑈 𝐿,11
𝑒

𝑑𝛾
= ℱ1 ℓ

𝑝 , 𝜃𝐸
𝑝

, 𝜃𝐿
𝑝

; 𝛾 
𝑑𝜆

𝑑𝛾
+ Ⅎ1 ℓ

𝑝 , 𝜃𝐸
𝑝

, 𝜃𝐿
𝑝

; 𝛾  

𝑑𝑈 𝐿,12
𝑒

𝑑𝛾
= ℱ2 ℓ

𝑝 , 𝜃𝐸
𝑝

, 𝜃𝐿
𝑝

; 𝛾 
𝑑𝜆

𝑑𝛾
+ Ⅎ2 ℓ

𝑝 , 𝜃𝐸
𝑝

, 𝜃𝐿
𝑝

; 𝛾  

(‎5-61) 

On the other hand, equations (‎5-55) and (‎5-56) yield the following for the 

components of the time rate of the Lagrangian elastic right stretch tensor: 
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𝑈  𝐿
𝑒 =

𝑑

𝑑𝑡
 𝑒𝑥𝑝  

𝜏 𝐿
2𝜇
  =  𝔅 𝑁1⨂𝑁1 + ℭ 𝑁2⨂𝑁2+𝔍  𝑁1⨂𝑁2 + 𝑁2⨂𝑁1   (‎5-62) 

Therefore, the following are derived for the material time rate of the Lagrangian 

rotated Kirchhoff stress with the help of equations (‎5-61) and (‎5-62): 

𝑑𝜏 𝐿,11

𝑑𝛾
= 𝒜1 ℓ

𝑝 , 𝜃𝐸
𝑝

, 𝜃𝐿
𝑝

, 𝔅, 𝔍, ℭ; 𝛾 
𝑑𝜆

𝑑𝛾
+ ℬ1 ℓ

𝑝 , 𝜃𝐸
𝑝

, 𝜃𝐿
𝑝

, 𝔅, 𝔍, ℭ;   

𝑑𝜏 𝐿,12

𝑑𝛾
= 𝒜2 ℓ

𝑝 , 𝜃𝐸
𝑝

, 𝜃𝐿
𝑝

, 𝔅, 𝔍, ℭ; 𝛾 
𝑑𝜆

𝑑𝛾
+ ℬ2 ℓ

𝑝 , 𝜃𝐸
𝑝

, 𝜃𝐿
𝑝

, 𝔅, 𝔍, ℭ;   

(‎5-63) 

Details of the derivation of the component form of equations (5-61), (‎5-62), and 

(‎5-63) and their corresponding coefficients ℱ1, ℱ2, Ⅎ1, Ⅎ2, 𝒜1, 𝒜2, ℬ1, and ℬ2 are 

given in Appendix C.  

Use of the proposed constitutive model for the evolution of the back stress 

tensor given by (‎5-47) results in the following differential equations for the simple 

shear problem: 

𝑑𝛽 𝐿,11

𝑑𝛾
=  

3

2
𝐻𝑁 𝐿,11

𝑑𝜆

𝑑𝛾
 

𝑑𝛽 𝐿,12

𝑑𝛾
=  

3

2
𝐻𝒽12

𝑙𝑜𝑔
 𝑁 𝐿,12

𝑑𝜆

𝑑𝛾
 

(‎5-64) 

in which 𝑁 𝐿 =  
2

3

𝜕𝜙

𝜕𝜂 𝐿
=

𝜂 𝐿

 𝜂 𝐿 
 is the unit normal to the yield surface.  
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Use of equations (‎5-63) and (‎5-64) and the consistency condition, which 

requires that 𝜙 = 0 during plastic loading, the plastic multiplier can be obtained as 

follows: 

𝑑𝜆

𝑑𝛾
=

𝜂 𝐿,11ℬ1 + 𝜂 𝐿,12ℬ2

 3
2
𝐻 𝑁 𝐿,11𝜂 𝐿,11 + 𝒽12

𝑙𝑜𝑔
 𝑁 𝐿,12𝜂 𝐿,12 −  𝒜1𝜂 𝐿,11 + 𝒜2𝜂 𝐿,12 

 
(‎5-65) 

In summary the governing differential equations for the problem of simple 

shear using the proposed constitutive model and the case of linear kinematic 

hardening are given as follows: 

𝑑𝜏 𝐿,11

𝑑𝛾
= 𝒜1 ℓ

𝑝 , 𝜃𝐸
𝑝

, 𝜃𝐿
𝑝

, 𝔅, 𝔍, ℭ; 𝛾 
𝑑𝜆

𝑑𝛾
+ ℬ1 ℓ

𝑝 , 𝜃𝐸
𝑝

, 𝜃𝐿
𝑝

, 𝔅, 𝔍, ℭ; 𝛾  

𝑑𝜏 𝐿,12

𝑑𝛾
= 𝒜2 ℓ

𝑝 , 𝜃𝐸
𝑝

, 𝜃𝐿
𝑝

, 𝔅, 𝔍, ℭ; 𝛾 
𝑑𝜆

𝑑𝛾
+ ℬ2 ℓ

𝑝 , 𝜃𝐸
𝑝

, 𝜃𝐿
𝑝

, 𝔅, 𝔍, ℭ; 𝛾  

𝑑𝛽 𝐿,11

𝑑𝛾
=  

3

2
𝐻𝑁 𝐿,11

𝑑𝜆

𝑑𝛾
 

𝑑𝛽 𝐿,12

𝑑𝛾
=  

3

2
𝐻𝒽12

𝑙𝑜𝑔
 𝑁 𝐿,12

𝑑𝜆

𝑑𝛾
 

𝑑𝜃𝐸
𝑝

𝑑𝛾
= 𝔗1 ℓ

𝑝 , 𝜃𝐸
𝑝

, 𝜃𝐿
𝑝

; 𝛾 
𝑑𝜆

𝑑𝛾
+ 𝔗2 ℓ

𝑝 , 𝜃𝐸
𝑝

, 𝜃𝐿
𝑝

; 𝛾  

𝑑𝜃𝐿
𝑝

𝑑𝛾
= − 

3

2
𝑁 𝐿,12

2ℓ𝑝2

ℓ𝑝4 − 1

𝑑𝜆

𝑑𝛾
 

(‎5-66) 
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𝑑ℓ𝑝

𝑑𝛾
=  

3

2
𝑁 𝐿,11ℓ

𝑝
𝑑𝜆

𝑑𝛾
 

𝑑𝜆

𝑑𝛾
=

𝜂 𝐿,11ℬ1 + 𝜂 𝐿,12ℬ2

 3
2
𝐻 𝑁 𝐿,11𝜂 𝐿,11 + 𝒽12

𝑙𝑜𝑔
 𝑁 𝐿,12𝜂 𝐿,12 −  𝒜1𝜂 𝐿,11 + 𝒜2𝜂 𝐿,12 

 

Evolution equation (5-66-5) is used to update the Eulerian triad angle during time 

integration instead of equation (‎5-43), which needs a separate evolution equation for 

the plastic spin. This is due to the fact that the plastic spin is a function of the known 

kinematic variables and does not require a separate evolution equation to be specified 

(see Appendix C for a detailed derivation of the evolution equations). 

The set of differential equations given in (‎5-66) is numerically integrated for a 

maximum applied shear of 𝛾 = 8 using a fourth-order Runge-Kutta numerical 

integration scheme. The amount of shear at which the plastic yielding starts is 

𝛾𝑝 = 2 sinh  
𝜎0

 12𝜇
  and the initial conditions at this amount of shear are given by 

𝜏12 𝛾𝑝 =
4𝜇 𝑎𝑠𝑖𝑛𝑕  

𝛾𝑝
2  

 4 + 𝛾𝑝
2

 ;  𝜏11 𝛾𝑝 =  
𝜎0

2

3
− 𝜏12

2  

𝛽 𝐿,11 𝛾𝑝 = 𝛽 𝐿,12 𝛾𝑝 = 0 

ℓ𝑝 𝛾𝑝 = 1 

𝜃𝐸
𝑝
 𝛾𝑝 = 𝜃𝐿

𝑝
 𝛾𝑝 = 𝜃 𝛾𝑝 = 𝑎𝑡𝑎𝑛  

𝛾𝑝
2
  

(‎5-67) 
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Figure ‎5-3 and Figure ‎5-4 show the evolution of the Kirchhoff stress using the 

proposed constitutive model for the problem of simple shear. Values of 𝜏0 =  
2

3
𝜎0 =

200 MPa, 𝐻 =  
2

3
𝜏0, and 𝜇 =

30𝜏0

 6
 were used for the size of the yield surface, 

hardening modulus, and shear modulus of the material, respectively. The stress 

response of the same problem using the self-consistent Eulerian rate model of Bruhns 

et al. ‎[27] based on the logarithmic (D) rate is also plotted. The stress responses of the 

original and modified formulations by Gabriel and Bathe ‎[32], as well as the stress 

response of the decoupled volumetric/deviatoric model of Simo ‎[35], are also plotted 

for comparison. Details of the numerical implementations of the original and 

modified formulation of Gabriel and Bathe and the decoupled volumetric/deviatoric 

formulation of Simo are given in [32,36]. Figure ‎5-5 and Figure ‎5-6 also show the 

evolution of the back stress components using the proposed constitutive model, and 

models presented in [27,32,36,95]. It should be noted that in Figure ‎5-5 and Figure 

‎5-6 the back stress components of the model proposed by Simo ‎[36] are the 

decoupled deviatoric components used in the spatial representation of the model. The 

response of the model is identical to those of the self-consistent Eulerian rate model 

of Bruhns et al. ‎[27]. However, unlike the self-consistent Eulerian rate model of 

Bruhns et al. which is based on the specific logarithmic rate of the Kirchhoff stress, 

the proposed model is integrated without making any reference to any specific rate of 

stress. No objective rate of stress is used in the proposed model and a total 

hyperelastic stress function relates the Kirchhoff stress to the Hencky strain.  
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Figure ‎5-3- Normal component of the Kirchhoff stress using different models 

 

Figure ‎5-4- Shear component of the Kirchhoff stress using different models 
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Figure ‎5-5-  Normal component of the back stress using different models 

 

Figure ‎5-6- Shear component of the back stress using different models 
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Figure ‎5-7 shows the evolution of the principal plastic stretches for the 

proposed model only.  

 

Figure ‎5-7- Evolution of the principal plastic stretches (Proposed Model only) 

5.4 Application of the proposed model to the mixed 

nonlinear hardening behavior of SUS 304 stainless steel 

In this section the proposed constitutive model is extended to a mixed 

nonlinear kinematic/isotropic hardening. The model is then used to predict the 

behavior of SUS 304 stainless steel under fixed-end finite torsional loading.  
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With the help of the Armstrong-Frederick nonlinear kinematic hardening 

model ‎[81], the proposed backstress evolution equation given in (‎5-47) can be 

modified as follows: 

𝛽  𝐿 = 𝐴𝑓𝐸 
 
𝐿
𝑝
− 𝐵𝑓𝛽 𝐿𝐸 

𝑝,𝑒𝑞  (‎5-68) 

in which 𝐴𝑓  and 𝐵𝑓  are the A-F material parameters and 𝐸 𝑝,𝑒𝑞  is the rate of the 

equivalent plastic strain which will be defined later in this section.  

The Mises flow potential given in equation (‎5-50) is extended for a nonlinear 

mixed hardening by 

𝜙 =  
3

2
𝜂 𝐿 : 𝜂 𝐿 − 𝛶 = 0 (‎5-69) 

in which 𝛶 is a scalar function of the equivalent plastic strain which represents the 

current size of the yield surface, and is related to the equivalent plastic strain through 

an exponential form as follows ‎[82]: 

𝛶 = 𝜎𝑌0 +  𝜎𝑌𝑠 − 𝜎𝑌0  1 − 𝑒𝑥𝑝 −𝑏𝐸𝑝,𝑒𝑞    (‎5-70) 

In equation (‎5-70) 𝜎𝑌0 is the initial yield surface size, 𝜎𝑌𝑠  is the saturation value for 

the subsequent yield stress, b is a material parameter which controls the rate of 

saturation, and 𝐸𝑝,𝑒𝑞 =  𝐸 𝑝,𝑒𝑞d𝑡
𝑡

0
 is the accumulated equivalent plastic strain. 

To derive a relation for the equivalent plastic strain, a modified plastic work is 

used here as follows: 
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𝑊 𝑝 = 𝜂 𝐿 : 𝐸  𝐿
𝑝

= 𝛶𝐸 𝑝,𝑒𝑞  (‎5-71) 

in which 𝛶 =  
3

2
𝜂 𝐿: 𝜂 𝐿 . Equations (‎5-48) and (‎5-71) yield the following expression 

for the rate of the equivalent plastic strain for the case of the simple shear problem: 

𝑑𝐸𝑝,𝑒𝑞

𝑑𝛾
=

2 𝜂 𝐿,11
2 + 𝒽12

𝑙𝑜𝑔
 𝜂 𝐿,12

2  

 𝜂 𝐿 
2

𝑑𝜆

𝑑𝛾
 (‎5-72) 

Similar to the case of the linear kinematic hardening discussed in section ‎5.3, 

the governing equations given in (‎5-66) are modified as follows for the case of 

nonlinear mixed hardening. The evolution equations for the stress components remain 

the same as given by equations (‎5-66). The evolution equations for the back stress 

tensor should be modified as follows: 

𝑑𝛽 𝐿,11

𝑑𝛾
=   

3

2
𝐴𝑓𝑁 𝐿,11 −

2 𝜂 𝐿,11
2 + 𝒽12

𝑙𝑜𝑔
 𝜂 𝐿,12

2  

 𝜂 𝐿 
2

𝐵𝑓𝛽 𝐿,11 
𝑑𝜆

𝑑𝛾
 

𝑑𝛽 𝐿,12

𝑑𝛾
=   

3

2
𝐴𝑓𝒽12

𝑙𝑜𝑔
 𝑁 𝐿,12 −

2 𝜂 𝐿,11
2 + 𝒽12

𝑙𝑜𝑔
 𝜂 𝐿,12

2  

 𝜂 𝐿 
2

𝐵𝑓𝛽 𝐿,12 
𝑑𝜆

𝑑𝛾
 

(‎5-73) 

And the consistency condition for the evolution of the plastic multiplier should be 

modified as follows: 

𝑑𝜆

𝑑𝛾
=
𝑁 𝐿,11ℬ1 + 𝑁 𝐿,12ℬ2

𝑇1 − 𝑇2 − 𝑇3 + 𝑇4
 (‎5-74) 

in which: 
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𝑇1 =  
3

2
𝐴𝑓 𝑁 𝐿,11𝜂 𝐿,11 + 𝒽12

𝑙𝑜𝑔
 𝑁 𝐿,12𝜂 𝐿,12  

𝑇2 =  𝒜1𝑁 𝐿,11 + 𝒜2𝑁 𝐿,12  

𝑇3 =
2𝐵𝑓 𝜂 𝐿,11

2 + 𝒽12
𝑙𝑜𝑔

 𝜂 𝐿,12
2  

 𝜂 𝐿 
2  𝛽 𝐿,11𝜂 𝐿,11 + 𝛽 𝐿,12𝜂 𝐿,12  

𝑇4 =
𝑏 𝜎𝑌𝑠 − 𝛶 

 6
 

(‎5-75) 

Similar to the case of the linear kinematic hardening model, the governing 

equations given by (‎5-66) with their corresponding modified equations given by 

equations (‎5-73) to (‎5-75) are numerically integrated using the fourth-order Runge-

Kutta method for a maximum applied shear of 𝛾 = 4. The stress responses from the 

proposed model are plotted in Figure ‎5-8 using the material parameters given in ‎[83] 

for SUS 304 stainless steel, which were summarized in Table ‎4-1. The model 

prediction for the fixed-end finite torsional loading of SUS 304 is in good agreement 

with the experimental data reported by Ishikawa ‎[83]. Furthermore, from Figure ‎5-8, 

the proposed model gives identical results to those of the self-consistent Eulerian rate 

model of Bruhns et al. ‎[27], based on the logarithmic (D) rate. Figure ‎5-9 and Figure 

‎5-10 also show the evolution of the back stress tensor and subsequent yield surface 

size vs. the applied shear, respectively.  
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Figure ‎5-8- Stress components for SUS 304 stainless steel under fixed end finite torsional loading 

using the proposed mixed hardening model, self-consistent model based on logarithmic rate, and 

experimental data 

 

Figure ‎5-9- Evolution of back stress components for SUS 304 stainless steel under fixed end 

torsion using the proposed mixed hardening model and self consistent model based on 

logarithmic rate 
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Figure ‎5-10- Evolution of subsequent yield surface size for SUS 304 stainless steel under fixed 

end torsional using the proposed mixed hardening model and the self-consistent model based on 

the logarithmic rate 

5.5 Summary 

A new kinematic decomposition of the deformation gradient based on the 

right stretch tensor was proposed in this chapter. The total right stretch tensor was 

decomposed into a symmetric elastic stretch tensor and a non-symmetric plastic 

deformation tensor. The plastic deformation tensor was further decomposed into an 

orthogonal plastic rotation and a symmetric right plastic stretch tensor. Based on this 

decomposition, a new Lagrangian model for finite strain elastoplasticity was 

proposed. The rotated Kirchhoff stress was related to the Lagrangian logarithmic 

strain for the elastic part of the deformation through a hyperelastic potential. The flow 
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rule was modified based on the logarithmic measure of the right plastic stretch tensor. 

Furthermore, a new evolution equation for the back stress tensor was proposed based 

on the Hencky plastic strain tensor. The proposed model was successfully integrated 

on the Lagrangian axis of the plastic stretch tensor.  

Results obtained for the problem of simple shear and linear kinematic 

hardening of the material were identical to those of the self-consistent Eulerian rate 

model of Bruhns et al. ‎[27]. The model was integrated with no reference to any 

objective rate of stress.  

The proposed Lagrangian model was extended to mixed nonlinear hardening 

behavior. Application of the proposed Lagrangian model to fixed-end finite torsional 

loading of SUS 304 stainless steel tubes showed that the model predicts the second 

order effect (Swift effect) accurately and results obtained were in good agreement 

with the available experimental data for this material. Therefore, the Lagrangian 

model is an equivalent framework of the unified Eulerian model proposed in ‎Chapter 

4.  

The proposed Lagrangian model is a good candidate for the Lagrangian 

framework of finite strain elastoplasticity and can be successfully implemented in the 

displacement-based formulation of the finite element method. 
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Chapter 6  

Conclusions and Recommendations 

6.1 Summary and Conclusions 

Both approaches for finite strain elastoplasticity have issues arising from 

inconsistent formulations. Eulerian formulations, which mostly have adopted 

hypoelastic material models for the elastic part of deformation, have faced issues such 

as shear oscillation, elastic dissipation, and elastic ratchetting because of the 

hypoelastic material models non-integrability. Issues regarding hypoelastic models 

non-integrability found in the existing hypo-based Eulerian rate formulation for finite 

strain elastoplasticity, which have questioned the physical applicability of such 

models, have been addressed thoroughly. The oscillatory shear stress response for 
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simple shear motion is one drawback of hypoelastic material models non-integrability 

in the sense of elasticity. Elastic dissipation in closed path loading when different 

rates of stress, such as the Jaumann and Green-McInnis-Naghdi rates, are used is 

another issue of hypoelasticity.  In addition, elastic ratchetting under application of 

cyclic loading happens as a result of inconsistency of hypoelastic material models 

with the notion of Green elasticity. Previous attempts at resolving such issues have 

been focused on examining different objective rates of stress (e.g., Green-McInnis-

Naghdi and logarithmic rates) and/or solution techniques such as the principal axes 

integration technique in the literature of finite strain analysis. Analytical and 

numerical results obtained from classical finite hypo-elastoplastic models have shown 

that the use of hypoelastic material models is limited to the specific case of the 

logarithmic (D) rate of stress. Grade-zero hypoelastic material models have been 

shown to be exactly integrable only if the logarithmic (D) rate of stress is used. 

Therefore, Hypo-based Eulerian rate models for finite strain elastoplasticity are not 

physically consistent when objective rates other than the logarithmic (D) rate of stress 

is used in their evolution equations. Applicability of other physical objective rates, 

such as the Jaumann and Green-McInnis-Naghdi rates, for setting up a consistent 

Eulerian model for finite strain analysis has remained unanswered. 

On the other hand, existing Lagrangian formulations bypassed the need for 

hypoelastic material models for the elastic part of the deformation, by adopting a 

hyperelastic strain energy function. As a result, the requirement of spatial covariance 

(objectivity) and the need for covariant (objective) rates of stress were bypassed using 
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hyperelasticity. The elastic response of the existing Lagrangian models was therefore 

non-oscillatory and non-dissipative, consistent with the physical requirements of 

elasticity. However, a large degree of disagreement exists on a unique definition for 

the plastic part of deformation in the existing Lagrangian hyper-based models. 

Different definitions for plastic part of deformation have led to different flow rules 

and evolution equations for plastic internal variables. Such definitions were mostly 

based on the plastic part of the strain rate tensor in different reference configurations. 

In most of the existing Lagrangian models, the elastic part of the right stretch tensor 

has been used for stress update, while the plastic part of the strain rate tensor on the 

intermediate configuration has been used for the evolution of the plastic internal 

variables. The integrated form of the plastic part of the strain rate tensor does not 

necessarily represent the plastic part of the stretch tensor. Such a mismatch between 

the elastic and plastic parts of the deformation is not physically acceptable and it does 

not necessarily decompose the stress power into its reversible and irreversible parts. 

This has resulted in shear oscillation of the back stress and in cases the stress tensors. 

Several attempts, such as introducing the effect of plastic spin and/or formulations 

which bypassed the need for a definition of the plastic part of deformation, have been 

made to remove the oscillatory response. However, the mismatch between the elastic 

and plastic parts of deformation has yet to be resolved.  

Issues of finite strain elastoplasticity enforce restrictions on the choice of 

objective rates and decomposition of the deformation for a physically consistent 

formulation. Furthermore, the non-unique decomposition of deformation used in 
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setting up Lagrangian and Eulerian models has led to different responses from 

different models and as a result currently available Eulerian and Lagrangian 

formulations for finite strain elastoplasticity are not transferable into each other.  

In the current work, constitutive models for finite strain analysis have been 

formulated in both Lagrangian and Eulerian frameworks based on additive and/or 

multiplicative decompositions of deformation. It is shown that within the context of 

rate-independent isotropic plasticity, there should be no preference in the Lagrangian 

or Eulerian formulations for finite strain analysis since the two formulations are 

transformable into each other by proper transformations.  

In this research, the unified Eulerian rate model for finite strain 

elastoplasticity has been presented based on an additive decomposition of 

deformation for arbitrary corotational rates of the Eulerian strain tensor into its elastic 

and plastic parts in the corresponding spinning background. Based on the presented 

additive decomposition, for the first time, an Eulerian rate form of elasticity was used 

for the stress update. Integrability conditions of the Eulerian rate form of elasticity 

were mathematically investigated and it was shown that the grade-zero form of the 

model was unconditionally integrable and consistent with hyperelasticity. As a result, 

the new additive decomposition was shown to be physically sound and led to an exact 

decomposition of the stress power into its reversible and irreversible parts. In this 

way, the flow rule and the yield surface were unified based on the plastic part of the 

objective corotational rate of the Eulerian strain. Depending on the objective rate used 
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in the model, flow rules and the corresponding yield surfaces were defined in each 

spinning background. Using the unified work conjugacy, conjugate measures of stress 

to different objective rates of the Eulerian strain, such as the Jaumann and Green-

McInnis-Naghdi rates, have been obtained. The unified Eulerian rate model was 

successfully integrated on the principal axes of the total left stretch tensor. Any 

objective corotational rate of the Eulerian strain tensor can be used in the unified 

model provided the consistent conjugate measure of the Eulerian stress tensor is 

employed. The unified model returned identical stress responses irrespective of the 

chosen corotational rate of stress. Results obtained from the new unified model were 

identical for all of the classical objective rates of stress including the Jaumann, Green-

McInnis-Naghdi, and logarithmic (D) rates of stress. 

An equivalent Lagrangian framework for the unified Eulerian rate model was 

presented based on the multiplicative decomposition of the right stretch tensor for the 

case of isotropic plasticity. The presented right stretch tensor decomposition led to the 

definition of the non-symmetric right plastic stretch tensor. A quadratic hyperelastic 

function was used to relate the rotated Kirchhoff stress tensor to the Lagrangian 

Hencky strain tensor. This relationship is the transformed integrated form of the 

Eulerian rate model of elasticity used in the unified Eulerian model which was 

presented in ‎Chapter 4 of this thesis. The flow rule was expressed in terms of the 

material time rate of the Hencky measure of the plastic stretch tensor instead of the 

plastic part of the strain rate tensor. Such a logarithmic type of flow is consistent with 

the Lagrangian Hencky strain measure used for the elastic part of the model; as a 
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result, the mismatch between the elastic and plastic parts of deformation is resolved 

and a unique decomposition of the deformation is employed in the presented 

Lagrangian model. The presented Lagrangian model was successfully integrated on 

the principal axes of the Lagrangian plastic stretch tensor. Results obtained were 

identical to those of the unified Eulerian rate model for the problem of simple shear. 

Assumption of isotropy bypassed the need for additional evolution equations for the 

plastic spin.  

Both the unified Eulerian rate model and the Lagrangian model were extended 

to predict mixed nonlinear hardening behavior of materials. Results using the new 

unified models were in good agreement with experimental data for SUS 304 stainless 

steel tubes under fixed-end finite torsional loading. The well-known second order 

Swift effect was accurately predicted by the unified Eulerian and Lagrangian models.  

Results from the new unified Eulerian and Lagrangian models show the 

equivalency of these models. As a result, the novel models formulated in the 

Lagrangian and Eulerian frameworks are equivalent and transformable to each other 

through proper transformations and no preference exists in order to have a consistent 

model for finite strain elastoplasticity. 

A summary of the current research contributions to the field of finite strain 

elastoplasticity is given as follows: 

1- An Eulerian rate form of elasticity was implemented for setting up the 

unified Eulerian rate formulation for finite strain elastoplasticity. 
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Integrability conditions of the new model were mathematically investigated 

and showed that the grade-zero form of the model is unconditionally 

integrable and consistent with the notion of elasticity. It is shown for the first 

time that instead of hypoelastic material models an exactly integrable rate 

form of elasticity for arbitrary corotational rate of stress can be used for 

setting up the unified Eulerian rate model and its corresponding stress 

update. As a result, the unified Eulerian rate model does not require 

hypoelastic material models for its stress update and is not limited to any 

specific rate of stress. 

2- An additive decomposition of the objective rate of the Eulerian logarithmic 

strain tensor into elastic and plastic parts was used for the kinematic 

decomposition. Such an additive decomposition was shown to be in 

accordance with the thermodynamic principle. Based on the presented 

additive decomposition, the stress power was shown to be physically 

separable into its reversible and irreversible parts. The flow rule was derived 

based on the principle of maximum plastic dissipation for the plastic part of 

the stress power. This is in accordance with the second principle of 

thermodynamics which requires elastic reversibility and plastic 

irreversibility. As a result, maximization of the plastic part of the stress 

power to derive the corresponding flow rule for the unified Eulerian rate 

model in different spinning background is physically acceptable.  
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3- The new unified Eulerian rate model assigned no preference on the choice of 

objective corotational rates of stress and was thermodynamically consistent 

with the definition of stress power in arbitrary spinning background. Using 

the principle of maximum plastic dissipation, the flow rule was expressed in 

arbitrary spinning frame of reference for the plastic part of the objective rate 

of the Eulerian logarithmic strain. Since the stress power is invariant in 

different spinning background and it was shown that the stress power in the 

unified Eulerian rate model was exactly separable into its elastic and plastic 

parts irrespective of the chosen objective rate, maximization of the plastic 

part of the stress power returns identical flow rules for arbitrary objective 

rates of stress. The back stress evolution equation was accordingly modified 

in the arbitrary spinning background for a consistent definition of the back 

stress evolution equation.  

4- The unified Eulerian rate model was successfully integrated on the principal 

axes of the total stretch tensor.  Results were validated for the problem of 

simple shear assuming linear kinematic hardening behavior. Identical stress 

responses were obtained for arbitrary corotational rates of strain using the 

unified Eulerian rate model. The unified model assigned no preference on 

the choice of objective corotational rates of stress. 

5- The unified Eulerian rate model was extended to nonlinear mixed hardening 

behavior. The extended model was used to predict the stress response of the 
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SUS 304 stainless steel tubes under fixed-end finite torsional loading. 

Predicted results were in good agreement with the available experimental 

data for SUS 304 stainless steel under fixed-end torsion. The well-known 

second order Swift effect was accurately predicted by the unified Eulerian 

rate model.  

6- A novel equivalent Lagrangian framework for the unified Eulerian rate 

model was presented in the current research and it was shown for the first 

time that an exactly equivalent Lagrangian framework for the unified 

Eulerian rate model exists. The same thermodynamic principles were used 

for setting up the equivalent Lagrangian model. Based on the assumption of 

isotropic plasticity, the rotated Kirchhoff stress was used for setting up the 

stress power in the Lagrangian background. Because of this assumption, 

plastic spin has no contribution in stress power and is a function of known 

kinematic variables. The equivalent Lagrangian model is currently limited to 

the case of rate-independent isotropic plasticity. For the case of anisotropic 

plasticity, the rotated Kirchhoff stress is no longer work conjugate to the 

Lagrangian logarithmic strain and plastic spin contributes in plastic 

dissipation.  

7- A new multiplicative decomposition of the right stretch tensor was presented 

for a unique definition for the elastic and plastic parts of the deformation. 

The total right stretch tensor was multiplicatively decomposed into a 
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symmetric right elastic stretch tensor and a non-symmetric plastic 

deformation tensor. The non-symmetric plastic deformation tensor was 

further decomposed into a symmetric right plastic stretch tensor and its 

corresponding orthogonal rotation. The logarithmic (Hencky) measures of 

the symmetric right elastic and plastic stretch tensors were used as unique 

definitions for the elastic and plastic parts of the deformation. The plastic 

strain rate tensor has no contribution in the current definition for the plastic 

part of the deformation in the presented Lagrangian model. The flow rule in 

the presented Lagrangian model was modified based on the Lagrangian 

logarithmic plastic strain tensor. As a result, contrary to the existing 

Lagrangian models, the flow rule used in the presented Lagrangian model 

returns exactly the plastic part of the stretch tensor in its integrated form. 

Back stress evolution equation was further modified based on the 

logarithmic plastic strain tensor instead of plastic strain rate tensor in order 

to be consistent with the presented flow rule. 

8- The equivalent Lagrangian model was successfully integrated on the 

Lagrangian axes of the plastic stretch tensor for the problem of simple shear 

using linear kinematic hardening material model. Results obtained showed 

that the presented Lagrangian model returns the same stress response as 

compared to those of the presented unified Eulerian rate model. No shear 

oscillation was observed for the back stress response under simple shear 

motion from the presented Lagrangian model.  
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9- The equivalent Lagrangian model was further extended to mixed nonlinear 

hardening material behavior. The extended model was used to predict the 

stress response of the SUS 304 stainless steel tube under finite fixed-end 

torsional loading. Predicted results were in good agreement with the 

available experimental data for this material. The second order Swift effect 

was accurately predicted by the presented Lagrangian model.  

10- Obtained results validate the equivalency of the presented unified Eulerian 

rate model and its equivalent Lagrangian framework. The presented models 

return equivalent stress responses for the same finite deformation loading 

path. The unified Eulerian and Lagrangian frameworks presented in this 

work for the first time, are transformable to each other and physically well-

grounded based on the thermodynamic principles for the case of rate-

independent isotropic plasticity.   

6.2 Recommendations for future work 

In the present work, a unified Eulerian rate model and its corresponding 

consistent Lagrangian form has been presented for large strain elastoplasticity. The 

following recommendations are suggested for the future work based on the present 

study: 

1- Currently, the unified model is limited to rate-independent isotropic 

plasticity. Applications involving rate dependency and viscoplastic behavior 
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of hardening materials need to be properly implemented in the proposed 

models. Extension of the proposed models to rate-dependent plasticity is 

straightforward.  

2- The unified Eulerian rate model is currently integrated on the principal axes 

of the total left stretch tensor. While integration on the principal axes 

simplifies the integration process, eigenvalue extraction is required at each 

material point during stress integration, which is not numerically efficient for 

finite element applications. Deriving basis-free expressions for each 

conjugate Eulerian stress tensor to the corresponding objective rate of the 

Eulerian strain tensor allows integration of the unified model on the fixed 

background. For some corotational rates, such as the Jaumann rate, such 

basis-free expressions are available ‎[54]; however, the possibility of deriving 

basis-free expressions for other corotational rates must be investigated in 

more detail.  

3- Covariance requirement (objectivity) limits the use of the proposed unified 

Eulerian rate model to the case of material isotropy. Generalization of the 

Eulerian rate model to the elastically anisotropic material is therefore 

required. Such generalization seems to be convenient since an incremental 

form of elasticity is used in the unified formulation. Generalization to 

anisotropy is feasible by introducing material symmetry groups into the 
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fourth-order stress-dependent spatial elasticity tensor. Integrability 

conditions for the case of anisotropy should be further investigated in detail.   

4- The presented Lagrangian model is currently integrated on the principal axes 

of the right plastic stretch tensor. This was done because the flow rule was 

specified on the principal axes of the plastic stretch tensor. Integration of the 

model on the intermediate fixed configuration simplifies the integration 

process; however, it requires that the flow rule be specified on the fixed 

background. To do this, a basis-free expression for the evolution of the 

Hencky plastic strain is required which leads to a flow rule expressed on the 

fixed intermediate configuration.  

5- The presented equivalent Lagrangian model is limited to isotropic plasticity. 

Extension of the proposed Lagrangian model to the case of anisotropic 

plasticity seems to be more convenient since limitations due to covariance 

requirement do not exist in the presented Lagrangian model. However, 

additional evolution equations for the evolution of the plastic spin should be 

specified for the case of anisotropic plasticity. Proper phenomenological 

models for the plastic spin can be obtained through experimental 

observations. Furthermore, for anisotropic elasticity the rotated Kirchhoff 

stress is no longer work conjugate to the Lagrangian Hencky strain and as a 

result a complicated measure of stress should be used instead of the rotated 
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Kirchhoff stress. Use of such a complicated measure of stress in the 

proposed Lagrangian model should be investigated in more detail.  

6- The developed Eulerian and Lagrangian models should be implemented into 

a finite element code for engineering applications. This requires an 

algorithmic integration of the unified Eulerian and Lagrangian models. For 

the unified Eulerian model the integration scheme should be objective and 

neutral under superposed rigid rotation while for the Lagrangian model this 

requirement is bypassed. From a numerical point of view, some of objective 

rates of stress, such as the Jaumann rate, are preferred since they are 

obtainable from direct kinematic analysis and have simple kinematic 

representations. Contrary to the classical Eulerian rate model of 

elastoplasticity which is limited to the specific logarithmic (D) rate of stress, 

use of simpler corotational rates in the proposed Eulerian rate model is 

possible and therefore numerically efficient. However, applicability of the 

well-known radial return mapping scheme for the unified Eulerian model 

should be investigated in more detail. The general return mapping method 

can be used for the integration of the proposed Eulerian rate model in cases 

where the radial return mapping is not applicable.  

7- Algorithmic linearization (used to derive the consistent tangent modulus) 

should be based on the strain and stress measures used in the Eulerian rate 

model instead of the strain rate tensor. Therefore, modifications must be 
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applied to the discretized momentum equations for finite element 

implementation. Existence of a closed form linearization for the consistent 

tangent modulus depends on the type of objective rate used in the model, 

which should be investigated in more detail.  

8- Numerical implementation of the proposed Lagrangian model is also 

required for a finite element implementation. Algorithmic integration of the 

proposed Lagrangian model is not currently available. The radial return 

mapping method can be used for stress integration of the proposed 

Lagrangian model. Consistent linearization of the integrated form of the 

proposed Lagrangian model is also required for a quadratic norm of 

convergence of the Newton-Raphson method. Existence of such linearization 

is strongly dependent on the integration method which should be 

investigated in more detail.  

9- Experimental verification for finite strain elastoplasticity under multiaxial 

non-proportional cyclic loading is still deficient. Especially, the influence of 

the axially induced strain (stress) under free-end (fixed-end) torsion of 

cylindrical bars on their cyclic response should be explored in more detail. A 

biaxial tension-torsion testing machine with independent axial and torsional 

load cells is suitable for such experimental verifications. However, contrary 

to infinitesimal measurement techniques, a suitable technique for measuring 

large torsional strains for finite strain should be developed first. There are 
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some techniques proposed in the literature which might be suitable for this 

task [1,83]. Extension of the proposed Eulerian and Lagrangian models to 

cyclic plasticity under multiaxial non-proportional loading should be done 

based on the observed experimental data. The problem of error accumulation 

over cycles reported in the classical hypo-based models of elastoplasticity 

does not exist in the unified model. As a result, the unified Eulerian model 

and its equivalent Lagrangian form are good candidates for extension to 

multiaxial non-proportional cyclic applications for finite strain 

elastoplasticity. 

10- Smart materials such as shape memory alloys (SMA) and bio-related 

materials exhibit large recoverable elastic and viscoelastic responses. The 

proposed Eulerian and Lagrangian models are good candidates for 

applications related to this class of materials.  
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Appendix A.  

Closed form solution of the simple 

shear problem using the proposed 

Eulerian rate form of elasticity 

The deformation gradient of this motion is given by 

𝐹 = 𝑁1⨂𝑁1 + 𝑁2⨂𝑁2 + 𝛾𝑁1⨂𝑁2 (A-1) 

For this isochoric motion J=detF=1 and therefore the Cauchy and Kirchhoff stresses 

are the same. The spin tensors corresponding to the J and GMN frames are given by 
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𝛺𝐽 =
𝛾 

2
 𝑁1⨂𝑁2 −𝑁2⨂𝑁1  

𝛺𝐺𝑀𝑁 = 𝜃  𝑁1⨂𝑁2 − 𝑁2⨂𝑁1  

(A-2) 

in which 𝜃 =
2𝛾 

4+𝛾2. The logarithmic strain tensor for this deformation can be found as 

follows: 

𝜀 = 𝛾𝜂 𝑁1⨂𝑁1 −𝑁2⨂𝑁2 + 2𝜂 𝑁1⨂𝑁2 + 𝑁2⨂𝑁1  (A-3) 

in which 𝜂 =
asinh  

𝛾

2
 

 4+𝛾2
. Time derivative of the logarithmic strain has the following 

components: 

𝑑𝜀

𝑑𝛾
=
𝛾 + 4𝜂

4 + 𝛾2
 𝑁1⨂𝑁1 −𝑁2⨂𝑁2 +

2 1 − 𝛾𝜂 

4 + 𝛾2
 𝑁1⨂𝑁2 + 𝑁2⨂𝑁1  (A-4) 

Use of the J rate form of the proposed grade-zero Eulerian rate model given by 

equation (‎4-3) leads to the following coupled first order differential equations: 

𝑑𝜏11

𝑑𝛾
− 𝜏12 = 2𝜇  

𝑑𝜀11

𝑑𝛾
− 𝜀12  

𝑑𝜏12

𝑑𝛾
+ 𝜏11 = 2𝜇  

𝑑𝜀12

𝑑𝛾
+ 𝜀11  

(A-5) 

Similarly, the following system of differentials is obtained for the GMN form of the 

proposed model: 

𝑑𝜏11

𝑑𝛾
−

4

4 + 𝛾2
𝜏12 = 2𝜇  

𝑑𝜀11

𝑑𝛾
−

4

4 + 𝛾2
𝜀12  (A-6) 
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𝑑𝜏12

𝑑𝛾
+

4

4 + 𝛾2
𝜏11 = 2𝜇  

𝑑𝜀12

𝑑𝛾
+

4

4 + 𝛾2
𝜀11  

To solve the above system of differentials, these equations are first decoupled. 

Assigning vector 𝑋 =  
𝑋1

𝑋2
 =  

𝜏11

𝜏12
 , the coupled equations (A-5) and (A-6) can now 

be re-written in matrix form by 𝑋 = 𝐴𝑋 + 𝐵, in which 𝐴 =  
0 1
−1 0

 , 𝐵 =

 𝐵1 𝛾 , 𝐵2 𝛾   
𝑇 = 2𝜇  

𝑑𝜀11

𝑑𝛾
− 𝜀12 ,

𝑑𝜀12

𝑑𝛾
+ 𝜀11 

𝑇

 in (A-5) and 𝐴 =

 0 cos2 𝜃
−cos2 𝜃 0

 , 𝐵 =  𝐵1 𝛾 , 𝐵2 𝛾   
𝑇 = 2𝜇  

𝑑𝜀11

𝑑𝛾
− 𝜀12 cos2 𝜃 ,

𝑑𝜀12

𝑑𝛾
+

𝜀11 cos2 𝜃 
𝑇
, and cos2 𝜃 =

4

4+𝛾2 in (A-6). 

Here, the differential equations (A-5) corresponding to the J spin are solved first. 

Using the eigenvalues of the coefficient matrix A, i.e. 𝜆1,2 = ±𝑖, the decoupled 

system of equations can be found as follows: 

 
𝑌 1
𝑌 2
 =  

𝑖𝑌1

−𝑖𝑌2
 −  2𝜇  

𝑖𝐵1 + 𝐵2

𝑖𝐵1 − 𝐵2
  (A-7) 

in which 𝑌 = 𝑆−1𝑋 and 𝑆 is the matrix of the eigenvectors of A. The general solution 

of this system is given by: 

𝑌1 = 𝐶1 𝑒𝑥𝑝 𝜆1𝛾 −  2𝜇 𝑒𝑥𝑝 𝜆1𝛾  𝑒𝑥𝑝 −𝜆1𝛾  𝑖𝐵1 + 𝐵2 𝑑𝛾 

𝑌2 = 𝐶2 𝑒𝑥𝑝 𝜆2𝛾 −  2𝜇 𝑒𝑥𝑝 𝜆2𝛾  𝑒𝑥𝑝 −𝜆2𝛾  𝑖𝐵1 − 𝐵2 𝑑𝛾 

(A-8) 

Solution of the above decoupled first order differentials is given by 
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𝑌1 = 𝐶1 𝑒𝑥𝑝 𝑖𝛾 −  2𝜇 𝑖𝛾 + 2 𝜂 

𝑌2 = 𝐶2 𝑒𝑥𝑝 −𝑖𝛾 −  2𝜇 𝑖𝛾 − 2 𝜂 
(A-9)  

The following relationships have been used in deriving (A-9): 

𝑑

𝑑𝛾
 𝑖 𝑒𝑥𝑝 −𝑖𝛾 𝛾𝜂 = 𝛾𝜂 𝑒𝑥𝑝 −𝑖𝛾 + 𝑖 𝑒𝑥𝑝 −𝑖𝛾 

4𝜂 + 𝛾

4 + 𝛾2
 

𝑑

𝑑𝛾
 𝑒𝑥𝑝 −𝑖𝛾 𝜂 = −𝑖 𝑒𝑥𝑝 −𝑖𝛾 𝜂 + 𝑒𝑥𝑝 −𝑖𝛾 

2 1 − 𝛾𝜂 

4 + 𝛾2
 

(A-10)  

And therefore the solution for the stress components is given by 

𝜏11 = 𝑋1 =
 2

2
 𝐶1𝑖 𝑒𝑥𝑝 𝑖𝛾 + 𝐶2𝑖 𝑒𝑥𝑝 −𝑖𝛾  + 2𝜇𝛾𝜂 

𝜏12 = 𝑋2 =
 2

2
 𝐶2 𝑒𝑥𝑝 −𝑖𝛾 − 𝐶1 𝑒𝑥𝑝 𝑖𝛾  + 4𝜇𝜂 

(A-11)  

Assuming a stress-free state as the initial configuration yields C1=C2=0. Therefore 

the solution of the simple shear problem using the J rate of stress and the J rate of the 

Hencky strain can be found in closed form as follows: 

𝜏11 = 2𝜇𝛾𝜂 = 2𝜇𝜀11  

𝜏12 = 4𝜇𝜂 = 2𝜇𝜀12 

(A-12)  

which is identical to the Hookean response of the problem and was expected due to 

the unconditional integrability of the proposed Eulerian rate model.   

A similar approach can be used to decouple and solve for the differential 

equations corresponding to the GMN spin given in equation (A-6). Using the 
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eigenvalues of matrix A, i.e. 𝜆1,2 = ±𝑖cos2 𝜃, and its corresponding eigenvectors, the 

coupled differential equation (A-6) can be decoupled as follows: 

 
𝑌 1
𝑌 2
 =  

𝑖𝑌1𝑐𝑜𝑠
2 𝜃

−𝑖𝑌2𝑐𝑜𝑠
2 𝜃

 −  2𝜇  
𝑖𝐵1 + 𝐵2

𝑖𝐵1 − 𝐵2
  (A-13)  

The general solution for Y is given by: 

𝑌1 = 𝐶1 𝑒𝑥𝑝 𝑔 𝛾  −  2𝜇 𝑒𝑥𝑝 𝑔 𝛾   𝑒𝑥𝑝 −𝑔 𝛾   𝑖𝐵1 + 𝐵2 𝑑𝛾 

𝑌2 = 𝐶2 𝑒𝑥𝑝 −𝑔 𝛾  −  2𝜇 𝑒𝑥𝑝 −𝑔 𝛾   𝑒𝑥𝑝 𝑔 𝛾   𝑖𝐵1 − 𝐵2 𝑑𝛾 

(A-14)  

where 𝑔 𝛾 = 𝑖  cos2 𝜃 𝑑𝛾. Substitution and simplifications give Y1 and Y2 to be: 

𝑌1 = 𝐶1 𝑒𝑥𝑝 2𝑖𝜃 −  2𝜇 𝑖𝛾 + 2 𝜂 

𝑌2 = 𝐶2 𝑒𝑥𝑝 −2𝑖𝜃 −  2𝜇 𝑖𝛾 − 2 𝜂 

(A-15)  

Use of the following relations has been made in deriving the above solution (A-15): 

𝑑

𝑑𝛾
 𝑖𝛾𝜂 𝑒𝑥𝑝 2𝑖𝜃  = −𝛾𝜂 𝑒𝑥𝑝 2𝑖𝜃 𝑐𝑜𝑠2 𝜃 + 𝑖 𝑒𝑥𝑝 2𝑖𝜃 

4𝜂 + 𝛾

4 + 𝛾2
 

𝑑

𝑑𝛾
 𝜂 𝑒𝑥𝑝 2𝑖𝜃  = 𝑖𝜂 𝑒𝑥𝑝 2𝑖𝜃 𝑐𝑜𝑠2 𝜃 + 𝑒𝑥𝑝 2𝑖𝜃 

2 1 − 𝛾𝜂 

4 + 𝛾2
 

(A-16)  

And therefore the solution for the stress components is given by: 
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𝜏11 = 𝑋1 =
 2

2
𝑖 𝐶1 𝑒𝑥𝑝 2𝑖𝜃 + 𝐶2 𝑒𝑥𝑝 −2𝑖𝜃  + 2𝜇𝛾𝜂 

𝜏12 = 𝑋2 =
 2

2
 𝐶2 𝑒𝑥𝑝 −2𝑖𝜃 − 𝐶1 𝑒𝑥𝑝 2𝑖𝜃  + 4𝜇𝜂 

(A-17)  

Assuming a stress-free state of the material for the initial configuration leads to 

C1=C2=0. Therefore the solution of the simple shear problem using the GMN rate of 

stress and the GMN rate of the Hencky strain returns the same closed form solution 

for the J rate given by (A-12) which was again expected due to unconditional 

integrability of the proposed Eulerian rate model.  
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Appendix B.  

Closed form solution of the four-step 

loading using the proposed Eulerian 

rate form of elasticity 

Step 1- Stretching 0 ≤ 𝑡 ≤ 1 

The deformation gradient for this step can be given by 

𝐹 = 𝑁1⨂𝑁1 + 𝐴𝑁2⨂𝑁2 (B-1) 

The components of the logarithmic strain are: 

𝜀 =
1

2
𝑙𝑛 𝐹𝐹𝑇 = 𝑙𝑛 𝐴  𝑁2⨂𝑁2  (B-2)  
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For this pure extension, both the material spin 𝛺𝐽  and the body spin 𝛺𝐺𝑀𝑁  are zero, 

and therefore both the J and GMN rates of stress and strain are equivalent to their 

corresponding material time derivatives. Hence, the solution for this deformation step 

is as follows: 

𝜏 = 𝑙𝑛 𝐴  𝜆𝑁1⨂𝑁1 +  𝜆 + 2𝜇 𝑁2⨂𝑁2  (B-3)  
 

At time t=1 the stress components are: 

𝜏 = 𝑙𝑛 𝐴𝑚  𝜆𝑁1⨂𝑁1 +  𝜆 + 2𝜇 𝑁2⨂𝑁2  (B-4) 
 

in which 𝐴𝑚 = 1 +
𝑢𝑚

𝐻
. Equation (B-4) serves as the initial conditions for the next 

deformation step.   

 

Step 2- Shearing at constant stretch 1≤ 𝑡 ≤ 2  

The deformation gradient at this step is given by 

𝐹 = 𝑁1⨂𝑁1 + 𝐴𝑚𝑁2⨂𝑁2 + 𝛾𝑁1⨂𝑁2 (B-5) 
 

And the Jaumann and GMN spin tensors can be found as follow: 

𝛺𝐽 =
𝛾 

2𝐴𝑚
 𝑁1⨂𝑁2 − 𝑁2⨂𝑁1  

𝛺𝐺𝑀𝑁 =
𝛾 𝑐𝑜𝑠2 𝜃  

1 + 𝐴𝑚
 𝑁1⨂𝑁2 −𝑁2⨂𝑁1  

(B-6) 
 

To calculate the components of the logarithmic strain, the method of spectral 

decomposition is used here. The eigenvalues of 𝑉2 can be obtained as follow: 
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𝛬1,2 = 𝐴𝑚  𝜉 ±  𝜉2 − 1  (B-7) 
 

where 𝜉 =
1+𝛾2+𝐴𝑚

2

2𝐴𝑚
. Therefore, the components of the logarithmic strain can be 

written in the following form: 

𝜀11 =
1

2
𝑙𝑛 𝐴𝑚 +

1

2
 𝜉 − 𝐴𝑚  𝜂 

𝜀22 =
1

2
𝑙𝑛 𝐴𝑚 −

1

2
 𝜉 − 𝐴𝑚  𝜂 

𝜀12 =
1

2
𝛾𝜂 

(B-8) 
 

in which 𝜂 =
cosh −1 𝜉

 𝜉2−1
. Taking the derivative of the logarithmic strain components 

with respect to   gives: 

𝑑𝜀11

𝑑𝛾
= −

𝑑𝜀22

𝑑𝛾
=

𝛾 𝜉 − 𝐴𝑚  

2𝐴𝑚  𝜉
2 − 1 

+
𝛾𝜂

2𝐴𝑚
−
𝛾𝜉 𝜉 − 𝐴𝑚  𝜂

2𝐴𝑚  𝜉
2 − 1 

 

𝑑𝜀12

𝑑𝛾
=
𝜂

2
+

𝛾2 1 − 𝜉𝜂 

2𝐴𝑚  𝜉
2 − 1 

 

(B-9) 
 

The following relationships have been used in deriving the eigenprojections of 𝑉2 and 

time derivative of the logarithmic strain components: 

𝛬1𝛬2 = 𝐴𝑚
2 ;  𝛬1 + 𝛬2 = 1 + 𝛾2 + 𝐴𝑚

2  ;  𝛬1 − 𝛬2 = 2𝐴𝑚 𝜉
2 − 1; 

𝑑𝜉

𝑑𝛾
=

𝛾

𝐴𝑚
 (B-10) 

 

Using the J spin given in (B-6) gives the following for the J rate of the Kirchhoff 

stress tensor: 
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𝜏 
𝐽

11 = 𝜏 11 −
𝛾 

𝐴𝑚
𝜏12 

𝜏 
𝐽

12 = 𝜏 12 +
𝛾 

2𝐴𝑚
 𝜏11 − 𝜏22  

𝜏 
𝐽

22 = 𝜏 22 +
𝛾 

𝐴𝑚
𝜏12 

(B-11) 
 

From (B-9) it is concluded that 𝜀 11 + 𝜀 22 = 0 and therefore 𝜏 11 + 𝜏 22 = 0 leading to 

𝜀11 + 𝜀22 = 𝐶1 and 𝜏11 + 𝜏22 = 𝐶2. Use of the grade-zero form of the Eulerian rate 

model given in (‎4-3) leads to: 

𝑑𝜏11

𝑑𝛾
−
𝜏12

𝐴𝑚
= 2𝜇  

𝑑𝜀11

𝑑𝛾
−
𝜀12

𝐴𝑚
  

𝑑𝜏12

𝑑𝛾
+
𝜏11

𝐴𝑚
= 2𝜇  

𝑑𝜀12

𝑑𝛾
+
𝜀11

𝐴𝑚
+ 𝐶3  

(B-12) 
 

in which 𝐶3 =
𝐶2

4𝜇𝐴𝑚
−

𝐶1

2𝐴𝑚
. 

Similarly, for the case of the GMN rate, the following coupled first order 

differential is obtained: 

𝑑𝜏11

𝑑𝛾
−

2 𝑐𝑜𝑠2 𝜃

1 + 𝐴𝑚
𝜏12 = 2𝜇  

𝑑𝜀11

𝑑𝛾
−

2 𝑐𝑜𝑠2 𝜃

1 + 𝐴𝑚
𝜀12  

𝑑𝜏12

𝑑𝛾
+

2 𝑐𝑜𝑠2 𝜃

1 + 𝐴𝑚
𝜏11 = 2𝜇  

𝑑𝜀12

𝑑𝛾
+

2 𝑐𝑜𝑠2 𝜃

1 + 𝐴𝑚
𝜀11 +

𝑐𝑜𝑠2 𝜃

1 + 𝐴𝑚
𝐶4  

(B-13) 
 

in which 𝐶4 =
𝐶2

2𝜇
− 𝐶1. Similar to the approach used to solve the simple shear 

problem in Appendix A, equations (B-12) and (B-13) are coupled first order 
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differential of the form 𝑋 = 𝐴𝑋 + 𝐵 in which, 𝐴 =  
0 𝐴𝑚

−1

−𝐴𝑚
−1 0

  and 𝐵 =

 𝐵1, 𝐵2  𝑇 = 2𝜇  
𝑑𝜀11

𝑑𝛾
−

𝜀12

𝐴𝑚
,
𝑑𝜀12

𝑑𝛾
+

𝜀11

𝐴𝑚
+ 𝐶3 

𝑇

 for (B-12), and 

𝐴 =  
0

2 cos 2 𝜃

1+𝐴𝑚

−
2 cos 2 𝜃

1+𝐴𝑚
0

  and  𝐵1, 𝐵2  𝑇 = 2𝜇  
𝑑𝜀11

𝑑𝛾
−

2 cos 2 𝜃

1+𝐴𝑚
𝜀12 ,

𝑑𝜀12

𝑑𝛾
+

2 cos 2 𝜃

1+𝐴𝑚
𝜀11 +

cos 2 𝜃

1+𝐴𝑚
𝐶4 

𝑇

  in (B-13). Here the solution of (B-12) is considered first. To simplify the 

solution of (B-12) it is decoupled with the help of eigenvalues and eigenvectors of its 

coefficient matrix 𝐴. Doing so, the followings are obtained for the decoupled form of 

(B-12): 

𝑌 =  𝑆−1𝐴𝑆 𝑌 + 𝑆−1𝐵 (B-14) 
 

in which 𝑆 =
 2

2
 
𝑖 𝑖
−1 1

  is the matrix of the eigenvectors of 𝐴. Solution of (B-14) is 

given as follows: 

𝑌1 = 𝐾1𝑔 𝛾 −  2𝜇𝑔 𝛾  𝑔−1 𝛾   𝑖𝐵1 + 𝐵2 𝑑𝛾 

𝑌2 = 𝐾2𝑔
−1 𝛾 −  2𝜇𝑔−1 𝛾  𝑔 𝛾  𝑖𝐵1 − 𝐵2 𝑑𝛾 

(B-15) 
 

where 𝑔 𝛾 = exp  
𝑖𝛾

𝐴𝑚
 . After simplifications the followings are obtained for the 

solution of (B-15): 

𝑌1 = 𝐾1𝑔 𝛾 −
 2

2
𝜇 𝑖 𝜉 − 𝐴𝑚  𝜂 + 𝛾𝜂 + 𝑖𝐴𝑚𝐾3  (B-16) 
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𝑌2 = 𝐾2𝑔
−1 𝛾 −

 2

2
𝜇 𝑖 𝜉 − 𝐴𝑚  𝜂 − 𝛾𝜂 + 𝑖𝐴𝑚𝐾3  

in which 𝐾3 =
𝐶2

4𝜇𝐴𝑚
−

𝐶1

2𝐴𝑚
+

ln 𝐴𝑚

2𝐴𝑚
. The following relationships were used to find the 

solution (B-16): 

𝑑

𝑑𝛾
 
1

2
𝑖𝑔−1 𝛾  𝜉 − 𝐴𝑚  𝜂 

=
1

2𝐴𝑚
𝑔−1 𝛾   𝜉 − 𝐴𝑚  𝜂 + 𝑖𝛾  𝜂 +

 𝜉 − 𝐴𝑚   1 − 𝜉𝜂 

𝜉2 − 1
   

𝑑

𝑑𝛾
 
1

2
𝑔−1 𝛾 𝛾𝜂 =

1

2𝐴𝑚
𝑔−1 𝛾  −𝑖𝛾𝜂 + 𝐴𝑚  𝜂 +

𝛾2 1 − 𝜉𝜂 

𝐴𝑚  𝜉
2 − 1 

   

(B-17) 
 

Using the backward relationship 𝑋 = 𝑆𝑌, the solution for the stress components can 

be obtained as follows: 

𝜏11 = 𝑋1 =
 2

2
𝑖 𝐾1𝑔 𝛾 + 𝐾2𝑔

−1 𝛾  + 𝜇 𝜉 − 𝐴𝑚  𝜂 + 2𝜇𝐴𝑚𝐾3 

𝜏12 = 𝑋2 =
 2

2
 𝐾2𝑔

−1 𝛾 − 𝐾1𝑔 𝛾  + 𝜇𝛾𝜂 

(B-18) 
 

Applying the initial conditions (B-4) at time t=1 to (B-18) leads to: 

 𝜀11 𝑡=1 +  𝜀22 𝑡=1 = 𝐶1 = 𝑙𝑛𝐴𝑚  

 𝜏11 𝑡=1 +  𝜏22 𝑡=1 = 𝐶2 = 2 𝜆 + 𝜇 𝑙𝑛 𝐴𝑚  

(B-19) 
 

which leads to: 
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𝐾3 =
 𝜆 + 𝜇 𝑙𝑛 𝐴𝑚

2𝜇𝐴𝑚
 ;  𝐾1 = 𝐾2 = 0 (B-20) 

 

Substituting (B-20) into (B-19) the final solution for the stress components will be as 

follows: 

𝜏11 = 𝜆 𝑙𝑛 𝐴𝑚 +
2𝜇

𝛬1 − 𝛬2
  𝐴𝑚

2 − 𝛬2 𝑙𝑛 𝐴𝑚 +
1

2
 1 + 𝛾2 − 𝐴𝑚

2  𝑙𝑛 𝛬1  

𝜏22 = 𝜆 𝑙𝑛 𝐴𝑚 +
2𝜇

𝛬1 − 𝛬2
  𝛬1 − 𝐴𝑚

2  𝑙𝑛 𝐴𝑚 −
1

2
 1 + 𝛾2 − 𝐴𝑚

2  𝑙𝑛 𝛬1  

𝜏12 = 𝜇𝛾𝜂 = 2𝜇
𝐴𝑚𝛾 𝑙𝑛 𝛬1 − 𝑙𝑛 𝐴𝑚  

𝛬1 − 𝛬2
 

(B-21) 
 

In deriving (B-21) the following relationships were used: 

𝜉 − 𝐴𝑚 =
1 + 𝛾2 − 𝐴𝑚

2

2𝐴𝑚
=
𝛬1 + 𝛬2 − 2𝛬1𝛬2

𝛬1 − 𝛬2
 

𝑐𝑜𝑠𝑕−1 𝜉 =
1

2
𝑙𝑛
𝛬1

𝛬21

 

(B-22) 
 

A similar approach can be used for the solution of the differential equations 

(B-13) corresponding to the Green-McInnis-Naghdi rate. Using the eigenvalues and 

eigenvectors of the coefficient matrix 𝐴, the following decoupled form is obtained: 

 
𝑌 1
𝑌 2
 =

 
 
 
 
 
2𝑖𝑐𝑜𝑠2𝜃

1 + 𝐴𝑚
0

0 −
2𝑖𝑐𝑜𝑠2𝜃

1 + 𝐴𝑚  
 
 
 
 

 
𝑌1

𝑌2
 +  2𝜇  

−𝑖 −1
−𝑖 1

  
𝐵3

𝐵4
   (B-23) 

 

Similarly, the following solutions can be obtained for (B-23): 
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𝑌1 = 𝐾1 𝑒𝑥𝑝 2𝑖𝜃 −
 2

2
𝜇 𝑖 𝜉 − 𝐴𝑚  𝜂 + 𝛾𝜂 + 𝑖𝐾3  

𝑌2 = 𝐾2 𝑒𝑥𝑝 −2𝑖𝜃 −
 2

2
𝜇 𝑖 𝜉 − 𝐴𝑚  𝜂 − 𝛾𝜂 + 𝑖𝐾3  

(B-24) 
 

in which 𝐾3 =
𝐶2

2𝜇
− 𝐶1 + ln𝐴𝑚 . The following relationships have been used in 

deriving (B-24): 

𝑑

𝑑𝛾
 
1

2
𝑖 𝑒𝑥𝑝 −2𝑖𝜃  𝜉 − 𝐴𝑚  𝜂 

= 𝑒𝑥𝑝 −2𝑖𝜃   𝜉 − 𝐴𝑚  𝜂
𝑐𝑜𝑠2 𝜃

1 + 𝐴𝑚

+
𝑖𝛾

2𝐴𝑚
 𝜂 +

 𝜉 − 𝐴𝑚   1 − 𝜉𝜂 

𝜉2 − 1
   

𝑑

𝑑𝛾
 
1

2
𝑒𝑥𝑝 −2𝑖𝜃 𝛾𝜂 = 𝑒𝑥𝑝 −2𝑖𝜃  −𝑖𝛾𝜂

𝑐𝑜𝑠2 𝜃

1 + 𝐴𝑚
+

1

2
 𝜂 +

𝛾2 1 − 𝜉𝜂 

𝐴𝑚  𝜉
2 − 1 

   

(B-25) 
 

Therefore a solution of the following form is obtained for the stress components: 

𝜏11 = 𝑋1 =
 2

2
𝑖 𝐾1 𝑒𝑥𝑝 2𝑖𝜃 + 𝐾2 𝑒𝑥𝑝 −2𝑖𝜃  + 𝜇 𝜉 − 𝐴𝑚  𝜂 + 𝜇𝐾3 

𝜏12 = 𝑋2 =
 2

2
 𝐾2 𝑒𝑥𝑝 −2𝑖𝜃 − 𝐾1 𝑒𝑥𝑝 2𝑖𝜃  + 𝜇𝛾𝜂 

(B-26) 
 

Using the same initial conditions at the start of the deformation step given by (B-18) 

leads to  𝐾1 = 𝑘2 = 0 and 𝐾3 =
𝜆+𝜇

𝜇
ln 𝐴𝑚 . This leads to the same solution for the 

GMN rates given in (B-21).  
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Solution (B-21) is identical to the Hookean response for both the J and GMN 

rates as it was expected because of the unconditional integrability of the proposed 

Eulerian model.  

 

Step 3- Removing the extension at constant shear 2 ≤ 𝑡 ≤ 3 

The kinematical parameters of this deformation step is given by 

𝐹 = 𝑁1⨂𝑁1 + 𝐴𝑁2⨂𝑁2 + 𝛾𝑚𝑁1⨂𝑁2 

𝛺𝐽 = 0
~

 

𝛺𝐺𝑀𝑁 = −
𝛾𝑚𝐴 𝑐𝑜𝑠

2 𝜃  

 1 + 𝐴 2
 𝑁1⨂𝑁2 −𝑁2⨂𝑁1  

(B-27) 
 

The eigenvalues of 𝑉2 can be written as follows: 

𝛬1,2 = 𝐴 𝜉 ±  𝜉2 − 1  (B-28) 
 

where 𝜉 =
1+𝐴2+𝛾𝑚

2

2𝐴
. Using the spectral decomposition method, the components of the 

logarithmic strain are given by 

𝜀11 =
1

2
𝑙𝑛 𝐴 +

1

2
 𝜉 − 𝐴 𝜂 

𝜀22 =
1

2
𝑙𝑛 𝐴 −

1

2
 𝜉 − 𝐴 𝜂 

𝜀12 =
1

2
𝛾𝑚𝜂 

(B-29) 
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in which 𝜂 =
cosh −1 𝜉

 𝜉2−1
. Derivative of the logarithmic strain components with respect to 

the shearing parameter is given by 

𝑑𝜀11

𝑑𝛾
=

1

2
 

1

𝐴
− 𝜂 +

𝐴2 − 𝛾𝑚
2 − 1

4𝐴2
 
 𝜉 − 𝐴  1 − 𝜉𝜂 

𝜉2 − 1
+ 𝜂  

𝑑𝜀22

𝑑𝛾
=

1

2
 

1

𝐴
+ 𝜂 −

𝐴2 − 𝛾𝑚
2 − 1

4𝐴2
 
 𝜉 − 𝐴  1 − 𝜉𝜂 

𝜉2 − 1
+ 𝜂  

𝑑𝜀12

𝑑𝛾
=
 𝐴2 − 𝛾𝑚

2 − 1  1 − 𝜉𝜂 

4𝐴2 𝜉2 − 1 
𝛾𝑚  

(B-30) 
 

The following relationships have been used in deriving the eigenprojections of 𝑉2 and 

derivative of the logarithmic strain components: 

𝛬1𝛬2 = 𝐴2;  𝛬1 + 𝛬2 = 1 + 𝐴2 + 𝛾𝑚
2  ;  𝛬1 − 𝛬2 = 2𝐴 𝜉2 − 1 (B-31) 

 

Since the Jaumann spin in this step is zero, the Jaumann rates of the Kirchhoff stress 

tensor and logarithmic strain are equivalent to their corresponding time derivative. 

Therefore, the stress solution for the case of J spin can be easily obtained as follows: 

𝜏11 =  𝜆 + 2𝜇 𝜀11 + 𝜆𝜀22 + 𝐶1 

𝜏22 = 𝜆𝜀11 +  𝜆 + 2𝜇 𝜀22 + 𝐶2 

𝜏12 = 2𝜇𝜀12 + 𝐶3 

(B-32) 
 

Constants in (B-32) can be found using the initial condition for the stress response at 

time t=2, i.e.: 

𝑡 = 2;  𝛾 = 𝛾𝑚 ; 𝐴 = 𝐴𝑚 ;  (B-33) 
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 𝜏11 𝑡=2 =  𝜆 + 𝜇 𝑙𝑛 𝐴𝑚 + 𝜇
 𝜉𝑚 − 𝐴𝑚  𝑐𝑜𝑠𝑕

−1 𝜉𝑚

 𝜉𝑚
2 − 1

 𝐶1 = 0 

 𝜏12 𝑡=2 = 𝜇
𝛾𝑚 𝑐𝑜𝑠𝑕−1 𝜉𝑚

 𝜉𝑚
2 − 1

 𝐶3 = 0 

 𝜏22 𝑡=2 =  𝜆 + 𝜇 𝑙𝑛 𝐴𝑚 − 𝜇
 𝜉𝑚 − 𝐴𝑚  𝑐𝑜𝑠𝑕

−1 𝜉𝑚

 𝜉𝑚
2 − 1

 𝐶2 = 0 

Therefore the solution for the stress components in this step for the J spin can be 

obtained as follows: 

𝜏11 = 𝜆 𝑙𝑛 𝐴 +
2𝜇

𝛬1 − 𝛬2
  𝐴2 − 𝛬2 𝑙𝑛 𝐴 +

1

2
 1 + 𝛾𝑚

2 − 𝐴2 𝑙𝑛 𝛬1  

𝜏12 = 2𝜇
𝐴𝛾𝑚

𝛬1 − 𝛬2
𝑙𝑛
𝛬1

𝛬2
 

(B-34) 
 

For the stress solution corresponding to the GMN rate, the following differential 

equation is obtained: 

𝑑𝜏11

𝑑𝐴
− 2𝜏12

𝑑𝜃

𝑑𝐴
= 2𝜇

𝑑𝜀11

𝑑𝐴
+
𝜆

𝐴
− 4𝜇

𝑑𝜃

𝑑𝐴
𝜀12 

𝑑𝜏12

𝑑𝛾
+ 2𝜏11

𝑑𝜃

𝑑𝐴
=  2 𝜆 + 𝜇 𝑙𝑛 𝐴 + 𝐶1 + 2𝜇 𝜉 − 𝐴 𝜂 

𝑑𝜃

𝑑𝐴
+ 2𝜇

𝑑𝜀12

𝑑𝐴
 

(B-35) 
 

A similar approach for decoupling the above equations and its solution, leads to the 

following stress solution: 
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𝜏11 = 𝑋1 =
 2

2
𝑖 𝐾1 𝑒𝑥𝑝 2𝑖𝜃 + 𝐾2 𝑒𝑥𝑝 −2𝑖𝜃  +  𝜆 + 𝜇 𝑙𝑛 𝐴 + 𝜇 𝜉 − 𝐴 𝜂

+
1

2
𝐶1 

𝜏12 = 𝑋2 =
 2

2
 𝐾2 𝑒𝑥𝑝 −2𝑖𝜃 − 𝐾1 𝑒𝑥𝑝 2𝑖𝜃  + 𝜇𝛾𝑚𝜂 

(B-36) 
 

Applying the initial conditions given by (B-33) to (B-36) leads to the same stress 

solution given by (B-34). Such a solution is in accordance with the finite Hookean 

response of the model and was expected because of the unconditional integrability of 

the Eulerian rate model.  

 

Step 4- Removing the shear and back to the initial configuration 3 ≤ 𝑡 ≤ 4 

The solution of this step is identical to the solution given in Appendix A for the 

simple shear motion. The only difference is the nonzero initial conditions for the 

stresses. The general stress solution for the simple shear problem with the J spin is 

given by (A-11). The stress solution at the end of the previous step using (B-34) 

serves as the following initial conditions for this step: 

𝑡 = 3;  𝛾 = 𝛾𝑚 ; 𝐴 = 1;  

 𝜏11 𝑡=3 = 2𝜇
𝛾𝑚𝑠𝑖𝑛𝑕

−1  
𝛾𝑚
2  

 4 + 𝛾𝑚
2

 

 𝜏12 𝑡=3 = 4𝜇
𝑠𝑖𝑛𝑕−1  

𝛾𝑚
2  

 4 + 𝛾𝑚
2

 

(B-37) 
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in (B-37) use of the following relationships has been made: 

𝜉𝑚 =
2 + 𝛾𝑚

2

2
 ;  𝜉𝑚 − 𝐴 =

𝛾𝑚
2

2
 ;  𝜉𝑚

2 − 1 =
𝛾𝑚
2
 4 + 𝛾𝑚

2  (B-38) 
 

Applying the initial conditions (B-38) to (A-11) yields the stress response for the final 

step as follows: 

𝜏11 = 2𝜇
𝛾𝑠𝑖𝑛𝑕−1  

𝛾
2
 

 4 + 𝛾2
 

𝜏12 = 4𝜇
𝑠𝑖𝑛𝑕−1  

𝛾
2
 

 4 + 𝛾2
 

(B-39) 
 

which for 𝛾 = 0 yields the stress-free configuration of the material. This result was 

expected since the proposed Eulerian rate model is consistent with the Green 

elasticity and therefore for a closed path elastic loading the initial stress free 

configuration should be obtained from the model.  
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Appendix C.  

Derivation of the proposed Lagrangian 

model coefficients 

To derive a relation between the time rate of stress and plastic multiplier to be 

used for plastic integration and satisfying plastic consistency condition for the 

problem of simple shear, equations (‎5-66) and (‎5-67) yield:  

𝑈  𝐿
𝑒 =

𝑑

𝑑𝑡
 𝑒𝑥𝑝  

𝜏 𝐿
2𝜇
  =  𝔅 𝑁1⨂𝑁1 + ℭ 𝑁2⨂𝑁2+𝔍  𝑁1⨂𝑁2 + 𝑁2⨂𝑁1   (C-1)  

 

in which: 
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𝔅 =  𝓋1𝜏 𝐿,11 −𝓋0 𝜏  𝐿,11 + 𝓋1𝜏 𝐿,12𝜏  𝐿,12 

𝔍 = 𝓋2𝜏 𝐿,11𝜏  𝐿,11 +  𝓋2𝜏 𝐿,12 −𝓋0 𝜏  𝐿,12 

ℭ =  𝓋3𝜏 𝐿,11 + 𝓋0 𝜏  𝐿,11 + 𝓋3𝜏 𝐿,12𝜏  𝐿,12 

(C-2) 
 

and the scalar 𝓋𝑖’s are given as follows: 

𝓋0 =
1 − 𝜇2

2𝐺𝛵
 

𝓋1 =
1

2𝐺𝜇𝛵2  𝜇 1 + 𝜇2 + 𝐺2 𝛵 + 𝜏 𝐿,11 − 𝔅𝐺 2𝜇 + 𝛵   

𝓋2 =
1

2𝜇𝛵2  𝐺𝜏 𝐿,12 − 𝔍 2𝜇 + 𝛵   

𝓋3 =
1

2𝐺𝜇𝛵2  𝜇 1 + 𝐺2 + 𝐺2 𝛵 − 𝜏 𝐿,11 − ℭ𝐺 2𝜇 + 𝛵   

(C-3) 
 

Use of equations (38), (39), and (43) yields: 

𝑈 𝐿
𝑒

= 𝑅𝐸
𝑝𝑇
𝑈𝑅𝐿

𝑝
𝛬𝑑
𝑝−1

= 𝔅𝑁1⨂𝑁1 + ℭ𝑁2⨂𝑁2+𝔍 𝑁1⨂𝑁2 + 𝑁2⨂𝑁1  (C-4) 
 

Taking the time derivative of (C-4) results into the followings for time rate of  𝑈 𝐿
𝑒 : 

𝑈  𝐿
𝑒 =  −𝛺𝐸

𝑝
+ 𝑅𝐸

𝑝𝑇
𝑈 𝑈−1𝑅𝐸

𝑝
+ 𝑅𝐸

𝑝𝑇
𝑈𝛺𝐿

𝑝
𝑈−1𝑅𝐸

𝑝
 𝑈 𝐿

𝑒 + 𝑈 𝐿
𝑒𝛬𝑑

𝑝
𝛬 𝑑
𝑝−1

 (C-5) 
 

Substituting for known kinematics quantities such as 𝑈, 𝑈 , and 𝑈−1 in (C-5) and 

knowing that 
d𝛺𝐸

𝑝

d𝛾
=

d𝜃𝐸
𝑝

d𝛾
 𝑁1⨂𝑁2 − 𝑁2⨂𝑁1 , and 

d𝛺𝐿
𝑝

d𝛾
= −

 6ℓ𝑝
2
𝑁 𝐿,12

ℓ𝑝 4−1

d𝜆

d𝛾
 𝑁1⨂𝑁2 −

𝑁2⨂𝑁1 , the followings are obtained for the components of the time derivative of the 

rotated elastic stretch tensor on the Lagrangian axis: 
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𝑑𝑈 𝐿,11
𝑒

𝑑𝛾
= −𝔍

𝑑𝜃𝐸
𝑝

𝑑𝛾
−  

 6ℓ𝑝
2
𝑁 𝐿,12

ℓ𝑝4 − 1
 𝑀1𝐿1 + 𝑀2𝐿3 +  

3

2
𝔅𝑁 𝐿,11 

𝑑𝜆

𝑑𝛾

+  𝐾1𝐿1 + 𝐾2𝐿3  

(C-6) 

𝑑𝑈 𝐿,12
𝑒

𝑑𝛾
= −ℭ

𝑑𝜃𝐸
𝑝

𝑑𝛾
+  −

 6ℓ𝑝
2
𝑁 𝐿,12

ℓ𝑝4 − 1
 𝑀1𝐿2 + 𝑀2𝐿4 +  

3

2
𝔍𝑁 𝐿,11 

𝑑𝜆

𝑑𝛾

+  𝐾1𝐿2 + 𝐾2𝐿4  

(C-7) 

𝑑𝑈 𝐿,22
𝑒

𝑑𝛾
= 𝔅

𝑑𝜃𝐸
𝑝

𝑑𝛾
−  

 6ℓ𝑝2𝑁 𝐿,12

ℓ𝑝4 − 1
 𝑀3𝐿1 + 𝑀4𝐿3 +  

3

2
𝔍𝑁 𝐿,11 

𝑑𝜆

𝑑𝛾
+  𝐾3𝐿1 + 𝐾4𝐿3  

(C-8) 

in which: 

𝐾1 𝜃𝐸
𝑝

; 𝛾 = −𝑔1 𝛾 𝑐𝑜𝑠 𝜃𝐸
𝑝
− 𝑔3 𝛾 𝑠𝑖𝑛 𝜃𝐸

𝑝
 

𝐾2 𝜃𝐸
𝑝

; 𝛾 = 𝑔2 𝛾 𝑐𝑜𝑠 𝜃𝐸
𝑝
− 𝑔1 𝛾 𝑠𝑖𝑛 𝜃𝐸

𝑝
 

𝐾3 𝜃𝐸
𝑝

; 𝛾 = −𝑔1 𝛾 𝑠𝑖𝑛 𝜃𝐸
𝑝

+ 𝑔3 𝛾 𝑐𝑜𝑠 𝜃𝐸
𝑝
 

𝐾4 𝜃𝐸
𝑝

; 𝛾 = 𝑔2 𝛾 𝑠𝑖𝑛 𝜃𝐸
𝑝

+ 𝑔1 𝛾 𝑐𝑜𝑠 𝜃𝐸
𝑝
 

𝑔1 𝛾 =
2𝛾

4 + 𝛾2
 ;  𝑔2 𝛾 =

2

4 + 𝛾2
 ;  𝑔3 𝛾 =

8 − 𝛾2 2 + 𝛾2 

 4 + 𝛾2 2
 

𝑀1 𝜃𝐸
𝑝

; 𝛾 = −𝛾 𝑐𝑜𝑠 𝜃𝐸
𝑝

+  1 + 𝛾2 𝑠𝑖𝑛 𝜃𝐸
𝑝

 

𝑀2 𝜃𝐸
𝑝

; 𝛾 = 𝑐𝑜𝑠 𝜃𝐸
𝑝
− 𝛾 𝑠𝑖𝑛 𝜃𝐸

𝑝
 

𝑀3 𝜃𝐸
𝑝

; 𝛾 = −𝛾 𝑠𝑖𝑛 𝜃𝐸
𝑝
−  1 + 𝛾2 𝑐𝑜𝑠 𝜃𝐸

𝑝
 

(C-9) 
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𝑀4 𝜃𝐸
𝑝

; 𝛾 = 𝑠𝑖𝑛 𝜃𝐸
𝑝

+ 𝛾 𝑐𝑜𝑠 𝜃𝐸
𝑝
 

and: 

𝐿1 𝔅,𝔍, ℭ, 𝜃𝐸
𝑝
 = 𝔅𝑐𝑜𝑠 𝜃𝐸

𝑝
+ 𝔍𝑠𝑖𝑛 𝜃𝐸

𝑝
 

𝐿2 𝔅,𝔍, ℭ, 𝜃𝐸
𝑝
 = 𝔍𝑐𝑜𝑠 𝜃𝐸

𝑝
+ ℭ𝑠𝑖𝑛 𝜃𝐸

𝑝
 

𝐿3 𝔅,𝔍, ℭ, 𝜃𝐸
𝑝
 = −𝔅𝑠𝑖𝑛 𝜃𝐸

𝑝
+ 𝔍𝑐𝑜𝑠 𝜃𝐸

𝑝
 

𝐿4 𝔅,𝔍, ℭ, 𝜃𝐸
𝑝
 = −𝔍𝑠𝑖𝑛 𝜃𝐸

𝑝
+ ℭ𝑐𝑜𝑠 𝜃𝐸

𝑝
 

(C-10) 

Equations (C-7) and (C-8) can be used to find a relation for the evolution of 

the 𝜃𝐸
𝑝
 during plastic loading. Symmetry of 𝑈 𝐿

𝑒  requires that 𝑈  𝐿
𝑒  be also symmetric; as 

a result, 
d𝑈 𝐿,21

𝑒

d𝛾
=

d𝑈 𝐿,12
𝑒

d𝛾
  which leads to: 

𝑑𝜃𝐸
𝑝

𝑑𝛾
=

1

𝔅 + ℭ
 𝐾1𝐿2 + 𝐾2𝐿4 − 𝐾3𝐿1 −𝐾4𝐿3 

+
 6

𝔅 + ℭ
 𝔍𝑁 𝐿,11 +

𝑁 𝐿,12ℓ
𝑝2

ℓ𝑝4 − 1
 𝑀3𝐿1 + 𝑀4𝐿3 −𝑀1𝐿2 −𝑀2𝐿4  

𝑑𝜆

𝑑𝛾
 

(C-11) 

Or equivalently: 

𝑑𝜃𝐸
𝑝

𝑑𝛾
= 𝔗1

𝑑𝜆

𝑑𝛾
+ 𝔗2 (C-12) 

Substituting (C-12) into (C-6) and (C-7) yields: 
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𝑑𝑈 𝐿,11
𝑒

𝑑𝛾
= −  𝔍𝔗1 +

 6ℓ𝑝
2
𝑁 𝐿,12

ℓ𝑝4 − 1
 𝑀1𝐿1 + 𝑀2𝐿3 +  

3

2
𝔅𝑁 𝐿,11 

𝑑𝜆

𝑑𝛾

+  𝐾1𝐿1 + 𝐾2𝐿3 − 𝔍𝔗2  

(C-13) 

𝑑𝑈 𝐿,12
𝑒

𝑑𝛾
=  −ℭ𝔗1 −

 6ℓ𝑝
2
𝑁 𝐿,12

ℓ𝑝4 − 1
 𝑀1𝐿2 + 𝑀2𝐿4 +  

3

2
𝔍𝑁 𝐿,11 

𝑑𝜆

𝑑𝛾

+  𝐾1𝐿2 + 𝐾2𝐿4 − ℭ𝔗2  

(C-14) 

Or equivalently: 

𝑑𝑈 𝐿,11
𝑒

𝑑𝛾
= ℱ1 ℓ

𝑝 , 𝜃𝐸
𝑝

, 𝔅, 𝔍, ℭ, 𝑁 𝐿,11 , 𝑁 𝐿,12 ; 𝛾 
𝑑𝜆

𝑑𝛾
+ Ⅎ1 ℓ

𝑝 , 𝜃𝐸
𝑝

, 𝔅, 𝔍, ℭ, 𝑁 𝐿,11 , 𝑁 𝐿,12; 𝛾  (C-15) 

𝑑𝑈 𝐿,12
𝑒

𝑑𝛾
= ℱ2 ℓ

𝑝 , 𝜃𝐸
𝑝

, 𝔅, 𝔍, ℭ, 𝑁 𝐿,11 , 𝑁 𝐿,12 ; 𝛾 
𝑑𝜆

𝑑𝛾

+ Ⅎ2 ℓ
𝑝 , 𝜃𝐸

𝑝
, 𝔅, 𝔍, ℭ, 𝑁 𝐿,11 , 𝑁 𝐿,12; 𝛾  

(C-16) 

It is worth mentioning that use of a definition for the plastic spin is bypassed 

due to the symmetry property of the elastic stretch tensor. In other words, in isotropic 

plasticity the plastic spin is function of the known kinematics variables and does not 

require a separate evolution equation. 

Using equations (C-2), (C-15), and (C-16) gives the followings for the time 

rate of stress tensors: 
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𝔅 =  𝓋1𝜏 𝐿,11 −𝓋0 𝜏  𝐿,11 + 𝓋1𝜏 𝐿,12𝜏  𝐿,12 = ℱ1

𝑑𝜆

𝑑𝛾
+ Ⅎ1 

𝔍 = 𝓋2𝜏 𝐿,11𝜏  𝐿,11 +  𝓋2𝜏 𝐿,12 −𝓋0 𝜏  𝐿,12 = ℱ2

𝑑𝜆

𝑑𝛾
+ Ⅎ2 

(C-17) 

Therefore, equation (C-17) yields the following expression for the time rate of stress 

components: 

𝑑𝜏 𝐿,11

𝑑𝛾
= 𝒜1 ℓ

𝑝 , 𝜃𝐸
𝑝

, 𝜃𝐿
𝑝

, 𝔅, 𝔍, ℭ; 𝛾 
𝑑𝜆

𝑑𝛾
+ ℬ1 ℓ

𝑝 , 𝜃𝐸
𝑝

, 𝜃𝐿
𝑝

, 𝔅, 𝔍, ℭ; 𝛾  

𝑑𝜏 𝐿,12

𝑑𝛾
= 𝒜2 ℓ

𝑝 , 𝜃𝐸
𝑝

, 𝜃𝐿
𝑝

, 𝔅, 𝔍, ℭ; 𝛾 
𝑑𝜆

𝑑𝛾
+ ℬ2 ℓ

𝑝 , 𝜃𝐸
𝑝

, 𝜃𝐿
𝑝

, 𝔅, 𝔍, ℭ; 𝛾  

(C-18) 

in which: 

 
𝒜1 ℬ1
𝒜2 ℬ2

 =  
𝓋1𝜏 𝐿,11 −𝓋0 𝓋1𝜏 𝐿,12

𝓋2𝜏 𝐿,11 𝓋2𝜏 𝐿,12 −𝓋0
 

−1

 
ℱ1 Ⅎ1

ℱ2 Ⅎ2
  (C-19) 

Equations (C-12) and (C-19) are used during the time integration for the plastic 

consistency and update of the Eulerian triad angle for the problem of simple shear.  
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